ICs
 AUDIO and RADIO ICs

DATABOOK

 AUDIO and RADIO 01
-
-1

[^0]ET.SKS-TMOMSON
KACROELECTONICS

AUDIO AND RADIO ICs

DATABOOK

$1^{\text {st }}$ EDITION

USE IN LIFE SUPPORT MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices or systems are devices or systems which, are intended for surgical implant into the body to support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

ALPHANUMERICAL INDEX 7
PRODUCT SELECTOR GUIDE 11
DATASHEET 17
PACKAGES: 947
DESIGNING WITH THERMAL IMPENDANCE 949
MECHANICAL DATA 963
SALES OFFICES 974

TWENTY YEARS OF INNOVATION

Way back in 1969 SGS-THOMSON Microelectronics developed the World's first monolithic audio power amplifier. Called TAA611 this trailblazing device combined signal circuits with an integrated 1W power stage.

Introduced almost twenty years ago, SGS-THOMSON's TAA611 (left) was the first integrated audio power amplifier. The new TDA7360 (right) is twenty-five times more powerful but only nine times larger.

TAA611(1969)

Since then SGS-THOMSON has always remained at the forefront of audio amplifier development, creating classic products such as the much-copied TDA2003 \& TDA2005, innovative solution like the TDA7232/60 class D amplifier kit and new generation devices like the TDA7360 complementary amplifier. In packages, too, SGS-THOMSON has led the way with innovations like the Multiwatt plastic power packages and antistress leadframes that enhance reliability.

SGS-THOMSON audio amplifiers have special "antistress" leadframes that isolate the die from mounting stresses, enhancing reliability. Notches and a groove between the tab and die flag ensure that the die is unaffected even when the tab is deformed.

Not just the leader in technology, SGS-THOMSON is also the leader in audio amplifier sales; to date more than 600,000,000 amplifier ICs have been produced by the company and more than half of the car radios produced worldwide include SGS-THOMSON amplifiers.

Audio amplifier are only a part of the present Audio \&Radio portfolio. Today the company is developing advanced signal circuits for the same markets - devices like the TDA7300 audio processor and the M114A digital sound generator.

Whatever your application, you'll probably find the best product for the job right here in the SGS-THOMSON Audio \& Radio Products databook.

Manufactured by a major US manufacturer for high-end car stereo systems, this 25 W class D amplifier module is based on two ICs specially designed for the application by SGS-THOMSON.

Type	Function	Page
AM6012/A	HIGH SPEED 12 BIT D/A CONVERTERS	19
DAC0808/7/6	8 BIT D/A CONVERTERS	31
L272/M	DUAL POWER OPERATIONAL AMPLIFIERS	43
L272D	DUAL POWER OPERATIONAL AMPLIFIER	49
L293B/E	PUSH-PULL FOUR CHANNEL DRIVERS	53
L293C	PUSH-PULL / H-BRIDGE DRIVER	61
L293D	PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES	65
L2720/2/4	LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS	69
L2726	LOW DROP DUAL POWER OPERATIONAL AMPLIFIER	77
L3654S	PRINTER SOLENOID DRIVER	81
L4901A	DUAL 5V REGULATOR WITH RESET	85
L4902A	DUAL 5V REGULATOR WITH RESET AND DISABLE	95
L4903	DUAL 5V REGULATOR WITH RESET AND DISABLE	105
L4904A	DUAL 5V REGULATOR WITH RESET	113
L4905	DUAL 5V REGULATOR WITH RESET AND DISABLE	121
L4915	ADJUSTABLE VOLTAGE REGULATOR PLUS FILTER	129
L4916	VOLTAGE REGULATOR PLUS FILTER	135
L4918	VOLTAGE REGULATOR PLUS FILTER	141
L4920/21	VERY LOW DROP ADJUSTABLE REGULATORS	147
L4940	VERY LOW DROP 1.5A REGULATOR	151
L4941	VERY LOW DROP 1A REGULATOR	159
L4960	2.5A POWER SWITCHING REGULATORS	165
L4962	1.5A POWER SWITCHING REGULATOR	179
L6201	0.3 OHM DMOS FULL BRIDGE DRIVER	191
L6202	0.3 OHM DMOS FULL BRIDGE DRIVER	203
L6203	0.3 OHM DMOS FULL BRIDGE DRIVER	219
L6210	DUAL SCHOTTKY DIODE BRIDGE	235
L6233	PHASE LOCKED FREQUENCY CONTROLLER	239
L6235	R-DAT BRUSHLESS DRIVER	247
L6236	BIDIRECTIONAL R-DAT BRUSHLESS DC MOTOR DRIVER	255
LM1837/D	DUAL TAPE PREAMPLIFIER WITH AUTOREVERSE	263
LS404	HIGH PERFORMANCE QUAD OPERATIONAL AMPLIFIER	271
LS4558N	HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIER	281
M082/82A	TONE GENERATORS	289
M083/83A	TONE GENERATORS	289
M086/86A	TONE GENERATORS	289
M108	SINGLE CHIP ORGAN ...	293
M112	POLYPHONIC SOUND GENERATOR.	303
M114A	DIGITAL SOUND GENERATOR	319
M114S	DIGITAL SOUND GENERATOR	333

Type	Function	Page
M208	SINGLE CHIP ORGAN....	293
M3004	REMOTE CONTROL TRANSMITTER	347
M3005	REMOTE CONTROL TRANSMITTER	347
M5450	LED DISPLAY DRIVER ..	357
M5451	LED DISPLAY DRIVER	357
M5480	LED DISPLAY DRIVER .	365
M5481	LED DISPLAY DRIVER	371
M5482	LED DISPLAY DRIVER	377
M8438A	SERIAL INPUT LCD DRIVER	383
M8439	SERIAL INPUT LCD DRIVER	391
M8571	1024 BIT SERIAL S-BUS EEPROM	397
M8716A	CLOCK/CALENDAR WITH SERIAL $I^{2} \mathrm{C}$ BUS	409
M9306	256 BIT SERIAL EEPROM	415
M145026	REMOTE CONTROL ENCODER/DECODER CIRCUIT	421
M145027	REMOTE CONTROL ENCODER/DECODER CIRCUIT .	421
M145028	REMOTE CONTROL ENCODER/DECODER CIRCUIT	421
TBA810CB	7W AUDIO AMPLIFIER	431
TBA810P	7W AUDIO AMPLIFIER	435
TBA810S	7W AUDIO AMPLIFIER	439
TBA820M	MINIDIP 1.2W AUDIO AMPLIFIER	443
TCA3089	FM-IF RADIO SYSTEM	447
TCA3189	FM-IF HIGH QUALITY RADIO SYSTEM	451
TDA1151	MOTOR SPEED REGULATOR ...	455
TDA1154	SPEED REGULATOR FOR DC MOTORS ...	461
TDA1220B	AM-FM QUALITY RADIO	465
TDA1220L	LOW VOLTAGE AM-FM RADIO	481
TDA1904	4W AUDIO AMPLIFIER .. .	489
TDA1905	5W AUDIO AMPLIFIER WITH MUTING ..	497
TDA1908	8W AUDIO AMPLIFIER ..	509
TDA1910	10W AUDIO AMPLIFIER WITH MUTING ...	519
TDA2002	8W CAR RADIO AUDIO AMPLIFIER ..	531
TDA2003	10W CAR RADIO AUDIO AMPLIFIER ...	533
TDA2004	10+10W STEREO AMPLIFIER FOR CAR RADIO	543
TDA2005	20W BRIDGE AMPLIFIER FOR CAR RADIO ...	551
TDA2006	12W AUDIO AMPLIFIER ...	569
TDA2007	6+6W STEREO AMPLIFIER ..	579
TDA2008	12W AUDIO AMPLIFIER	585
TDA2009	10+10W HIGH QUALITY STEREO AMPLIFIER ..	593
TDA2009A	10+10W SHORT CIRCUIT PROT. STEREO AMPLIFIER	603
TDA2030	14W Hi-Fi AUDIO AMPLIFIER ..	613

Type	Function	Page
TDA2030A	18W Hi-Fi AMPLIFIER AND 35W DRIVER .	623
TDA2040	20W Hi-Fi AUDIO POWER AMPLIFIER .	637
TDA2220	AM/FM RADIO	647
TDA2320	INFRARED REMOTE CONTROL PREAMPLIFIER.	655
TDA2320A	MINIDIP STEREO PREAMPLIFIER ...	661
TDA2822	DUAL POWER AMPLIFIER	671
TDA2822M	DUAL LOW-VOLTAGE POWER AMPLIFIER ..	679
TDA2824S	DUAL POWER AMPLIFIER	689
TDA3410	DUAL TAPE PREAMPLIFIER WITH AUTOREVERSE	695
TDA3420/D	DUAL VERY LOW NOISE PREAMPLIFIER	703
TDA7211A/D	LOW VOLTAGE FM FRONT END	709
TDA7220/D	VERY LOW VOLTAGE AM-FM RADIO	717
TDA7230A	STEREO DECODER AND HEADPHONE AMPLIFIER	729
TDA7231	1.6W AUDIO AMPLIFIER.	735
TDA7232	LOW NOISE PREAMPLIFIER COMPRESSOR	739
TDA7233/D	IW AUDIO AMPLIFIER WITH MUTE ..	751
TDA7236/D	VERY LOW VOLTAGE AUDIO BRIDGE ..	755
TDA7240A	20W AUDIO AMPLIFIER FOR CAR RADIO ..	759
TDA7241	20W BRIDGE AMPLIFIER FOR CAR RADIO ..	765
TDA7250	Hi-Fi DUAL DRIVER	769
TDA7255	22W F/R OR BRIDGE AMPLIFIER ..	777
TDA7256	22W BRIDGE AMPLIFIER ...	783
TDA7260	HIGH EFFICIENCY AUDIO PWM DRIVER...	789
TDA7270S	MULTIFUNCTION SYSTEM FOR TAPE PLAYERS	803
TDA7272	HIGH PERFORMANCE MOTOR SPEED REGULATOR	807
TDA7274	LOW-VOLTAGE DC MOTOR SPEED CONTROLLER	823
TDA7275A	MOTOR SPEED REGULATOR ..	829
TDA7276	SPEED REGULATOR FOR SMALL DC MOTORS	833
TDA7282/D	STEREO LOW VOLTAGE CASSETTE PREAMPLIFIER	837
TDA7300	DIGITAL CONTROLLED STEREO AUDIO PROCESSOR	843
TDA7302	DIGITAL CONTROLLED STEREO AUDIO PROCESSOR	855
TDA7320	AM/FM CAR RADIO SYSTEM	865
TDA7322	AM/FM CAR RADIO SYSTEM ..	867
TDA7325	PLL RADIO TUNING SYNTHESIZER ..	869
TDA7350	BRIDGE-STEREO AMPLIFIER FOR CAR RADIO	877
TDA7359/D	LOW VOLTAGE NBFM IF SYSTEM ...	883
TDA7360	BRIDGE-STEREO AMPLIFIER WITH CLIPPING DETECTOR	889
TDA7361/D	LOW VOLTAGE NBFM IF SYSTEM ...	895
TDA8160	INFRARED REMOTE CONTROL RECEIVER ..	901
TEA1330	FM STEREO DECODER..	905

Type	Function	Page
TEA2025B	STEREO AMPLIFIER ...	911
TL072	LOW NOISE JFET-INPUT DUAL OPERATIONAL AMPLIFIER.	915
TL074	LOW NOISE JFET-INPUT QUAD OPERATIONAL AMPLIFIER	923
TL082	JFET-INPUT DUAL OPERATIONAL AMPLIFIER.	931
TL084	JFET-INPUT QUAD OPERATIONAL AMPLIFIER	939

POWER AMPLIFIERS FOR CAR-RADIO
(20.

Hi-Fi AND HIGH QUALITY POWER AMPLIFIERS

TDA7250	- Dual Driver .. 769
TDA2030A	- 18W Amplifier and 35W Driver ... 623
TDA2030	- 14W Audio Amplifier... 613
TDA2040	-20W Audio Power Amplifier .. 637
TDA2009	-10+10W Stereo Amplifier ... 593
TDA2009A	-10+10W Short Circuit Protected Stereo ... 603
TDA2007	-6+6W Stereo Amplifier .. 579
TDA2006	- 12W Audio Amplifier... 569
TDA1910	- 10W Audio Ampl. with Mute .. 519

GENERAL PURPOSE POWER AMPLIFIERS

TDA2007	-6+6W Stereo Amplifier	$\begin{array}{r}\text { Page } \\ \hline . .579\end{array}$
TDA2008	- 12W Audio Amplifier.... 585
TEA2025B	- Stereo Amplifier 911
TDA2822	- Dual Power Amplifier 671
TDA2822M	- Dual Low-Voltage Power Amplifier 679
TDA2824S	- Dual Power Amplifier 689
TDA7231	- 1.6W Audio Amplifier 735
TDA7233	- 1W Audio Amplifier with Mute 751
TDA1904	-4W Audio Amplifier 489
TDA1905	- 5W Audio Amplifier with Mute 497
TDA1908	- 8W Audio Amplifier 509
TDA1910	- 10W Audio Amplifier with Mute 519
TBA820M	- 1.2W Audio Amplifier 443

LOW VOLTAGE POWER AMPLIFIER

(

PREAMPLIFIERS AND AUDIO PROCESSORS

RADIO CIRCUITS

TDA7320	- AM-FM Car Radio System	. 865
TDA7322	- AM-FM Car Radio System	. 867
TDA7325	- PLL Radio Tuning Synthesizer	. 869
TDA2220	- AM-FM Radio 647
TDA7211A	- Low Voltage FM Front-End	... 709
TDA7220	- Very Low Voltage AM-FM Radio	. 717
TDA7230A	- Stereo Decoder and Headphone Amplifier	. 855
TDA7359	- Low Voltage NBFM IF System 883
TDA7361	- Low Voltage NBFM IF System 895
TDA1220B	- AM-FM Quality Radio 465
TDA1220L	- Low Voltage AM-FM Radio	. 481
TCA3089	- FM-IF Radio System 447
TCA3189	- FM-IF High Quality Radio System 451
TEA1330	- FM Stereo Decoder 905

PRODUCT SELECTOR GUIDE

REMOTE CONTROL

		Page
TDA8160	- Infrared Remote Control Receiver 901
TDA2320	- Preamplifier for Infrared RC 655
M3004	- Remote Control Transmitter	.. 347
M3005	- Remote Control Transmitter	.. 347
M145026	- Encoder Circuit 421
M145027	- Decoder Clrcuit 421
M145028	- Decoder Clrcuit 421

MUSIC SYNTHESIS

DISPLAY DRIVERS

		Page
M8438A	- Serial Input LCD Driver	... 383
M8439	- Serial Input LCD Driver 391
M5450	- LED Display Driver.	... 357
M5451	- LED Display Driver..	... 357
M5480	- LED Display Driver..	... 365
M5481	- LED Display Driver 371
M5482	- LED Display Driver 377
M8716A	- Clock/Calendar with Serial ${ }^{2} \mathrm{C}$ BUS	.. 409

MOTOR CONTROLLERS

		Page
L272D	- Dual Power Operational Amplifier 49
L272/M	- Dual Power Operational Amplifier	... 43
L2720/2/4	- Low Drop Dual Power Operational Amplifier	... 69
L2726	- Low Drop Dual Power Operational Amplifier	... 77
L293B/E	- Push-Pull Four Channel Driver 53
L293D	- Push-Pull Four Channel Driver	... 65
L6201	-0.3ת DMOS Full Bridge Driver	.. 191
$L 6202$.. 203
L6203	-0.3 ${ }^{\text {DMOS Full Bridge Driver }}$ 219
$L 6233$	- Phase Locked Frequency Control 239
L6235	-R-DAT Brushless Driver 247
L6236	-R-DAT Brushless Driver .	.. 255
TDA1151	- Motor Speed Regulator .	.. 455
TDA1154	- Speed Regulator for DC Motors 461
TDA7272	- High Performance Motor Speed Regulator	.. 807
TDA7274	- Low Voltage DC Motor Speed Controller.	.. 823
TDA7275A	- Motor Speed Regulator 829
TDA7276	- Speed Regulator for Small DC Motors 833

VOLTAGE REGULATORS

DATASHEET

AM6012 AM6012A

12-BIT HIGH SPEED D/A CONVERTERS

- ALL GRADES 12-BIT MONOTONIC OVER TEMPERATURE
- DIFFERENTAL NONLINEARITY TO $\pm 0.012 \%$ (13 BITS) MAX OVER TEMPERATURE (A GRADES)
- 250ns TYPICAL SETTLING TIME
- FULL SCALE CURRENT 4mA
- HIGH SPEED MULTIPLYING CAPABILITY
- TTL/CMOS/ECL/HTL COMPATIBLE
- HIGH OUTPUT COMPLIANCE: -5 V TO +10V
- COMPLEMENTARY CURRENT OUTPUTS
- LOW POWER CONSUMPTION: 230 mW

DESCRIPTION

The AM6012 is an industry standard monolithic 12-bit digital-to analog converter. Complementary current output and high speed multiplying capability make the AM6012 useful in a wide range of applications such as video displays, process control circuitry and fast A/D converters. The 6012 is the first D/A to achieve 12-bit differential linearity without the use of thin film resistors or active trimming. The 6012's unique circuit design insures monotonicity without the precision trimming associated with most other 12-bit DAC architectures. The AM6012 is packaged in a 20 -pin plastic DIP and is SO-20L for surface mounting. Although tested and specified at $\pm 15 \mathrm{~V}$, the AM6012 works well over a wide range of power supply voltages. Performance is essentially independent of supply voltage over the range of +5 volts, -12 volts to ± 18 volts. The AM6012 series guarantees full 12-bit monotonicity for all grades and differential nonlinearity as high as 0.012% (13 bits) for the A grades and 0.025% (12 bits) for the standard grades over the entire temperature range.
Guaranteed monotonicity and low cost make the AM6012 an ideal choice for high volume applications requiring fine local resolution. Typical applications include printer graphics and video displays. These applications need a minimum of 12 bits of resolution, although conformance to an ideal straight line from zero to full scale is less important.

PIN CONNECTIONS

A6012-2

AM6012-AM6012A

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
Power Supply Voltage	± 18	V
Logic Inputs	-5 to +18	V
Voltage at Current Outputs Pins	-8 to +12	V
Reference Inputs	+VS to $-\mathrm{VEE} \pm 18 \mathrm{~V}$	V
Reference Input Current	max Differential	mA

CONNECTION DIAGRAM AND ORDERING INFORMATION

Type	Differential linearity (\%)	Temperature Range (${ }^{\circ} \mathrm{C}$)	Package
AM6012PC	0.025	0 to 70	DIP.20
AM6012APC	0.012	0.025	0 to 70
AM6012 D	0.012	SO.20L	
AM6012 AD			

BLOCK DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {thj-amb }}$	Thermal resistance junction-ambient	\max	$100^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS
These specifications apply for $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$, $\operatorname{I} \mathrm{REF}=1.0 \mathrm{~mA}$, over the operating temperature range unless otherwise specified

Param.	Description		Test Conditions	AM6012A			AM6012			Units	
			Min.	Typ.	Max.	Min.	Typ.	Max.			
	Resolution				12	12	12	12	12	12	Bits
	Monotonicity			12	12	12	12	12	12	Bits	
D.N.L.	Differential Nonlinearity		Deviation from ideal step size	-	-	$\pm .012$	-	-	$\pm .025$	\%FS	
			13	-	-	12	-	-	Bits		
N.L.	Nonlinearity			Deviation from ideal straight line	-	-	$\pm .05$	-	-	± 0.05	\%FS
$I_{\text {FS }}$	Full Scale Current		$\begin{aligned} & V_{\text {REF }}=10.000 \mathrm{~V} \\ & R_{14}=R_{15}=10.000 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	3.967	3.999	4.031	3.935	3.999	4.063	mA	
TCl ${ }_{\text {FS }}$	Full Scale Temp.Co.			-	± 5	± 20	-	± 10	± 40	ppm ${ }^{\circ} \mathrm{C}$	
				-	$\pm .0005$	$\pm .002$		$\pm .001$	$\pm .004$	$\% \mathrm{FS}^{\circ} \mathrm{C}$	
$V_{O C}$	Output Voltage Compliance		D.N.L. Specification guaranteed over compliance range ROUT> 10 megohme typ.	-5	-	+10	-5	-	+10	V	
$\mathrm{I}_{\text {FSS }}$	Full Scale Symmetry		$\mathrm{IFS}^{-1} \mathrm{FS}$	-	± 0.2	± 1.0	-	± 0.4	± 2.0	$\mu \mathrm{A}$	
lzs	Zero Scale Current			-	-	0.10	-	-	0.10	$\mu \mathrm{A}$	
Is	Setting Time		To $\pm 1 / 2$ LSB, all bits ON or OFF, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	250	500	-	250	500	nSec	
${ }^{t_{\text {PLH }}}$ tphL	Propagation Delay - all bits		50\% to 50\%	-	25	50	-	25	50	nSec	
COUT	Output Capacitance			-	20	-	-	20	-	pF	
$V_{\text {IL }}$	Logic Input Levels	Logic "O"		-	-	0.8	-	-	0.8		
$V_{1 H}$		Logic "1"		2.0	-	-	2.0	-	-		
IIN	Logic Input Current		$V_{\text {IN }}=-5$ to +18 V	-	-	40	-	-	40	$\mu \mathrm{A}$	
$V_{\text {IS }}$	Logic Input Swing		$V_{E E}=-15 \mathrm{~V}$	-5	-	+18	-5	-	+ 18	V	
IREF	Reference Current Range			0.2	1.0	1.1	0.2	1.0	1.1	mA	
I_{15}	Reference Bias Current			0	-0.5	-2.0	0	-0.5	-2.0	$\mu \mathrm{A}$	

AM6012-AM6012A

ELECTRICAL CHARACTERISTICS (Continued)

Param.	Description	Test Conditions	AM6012A			AM6012			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
di/dt	Reference Input Slew Rate	$\begin{aligned} & \mathrm{R}_{14(\mathrm{eq})}=800 \Omega \\ & \mathrm{CC}=0 \mathrm{pF} \end{aligned}$	4.0	8.0	-	4.0	8.0	-	$\mathrm{mA} / \mu \mathrm{S}$
$\mathrm{PSSI}_{\text {FS }}+$	Power Supply Sensitivity	$\begin{aligned} & V_{S}=(+13.5 \mathrm{~V} \text { to }+16.5 \mathrm{~V}) \\ & V_{E E}=-15 \mathrm{~V} \end{aligned}$	-	$\pm .00005$	$\pm .001$	-	± 0.0005	$\pm .001$	\%FS/\%
$\mathrm{PSSI}_{\text {FS }}-$		$\begin{aligned} & V_{E E}=-13.5 \mathrm{~V} \text { to }-16.5 \mathrm{~V} \\ & V_{S}=+15 \mathrm{~V} \end{aligned}$	-	$\pm .00025$	$\pm .001$	-	$\pm .00025$	$\pm .001$	
V_{S}	Power Supply Range	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	4.5	-	18	4.5	-	18	V
V_{EE}			-18	-	-10.8	-18	-	-10.8	
I+	Power Supply Current	$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	5.7	8.5	-	5.7	8.5	mA
I-			-	-13.7	-18.0	-	-13.7	-18.0	
I+		$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$		5.7	8.5	-	5.7	8.5	
I-			-	-13.7	-18.0	-	-13.7	- 18.0	
P_{D}	Power Dissipation	$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	234	312	-	234	312	mW
		$\mathrm{V}_{S}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	291	397	-	291	397	

Fig. 1 - Relative Accuracy Error

A6012-10: : DIS

Fig. 2 - Example of Nonmonotonic Behavior

A6012-10: : LIB

APPLICATION INFORMATION

FUNCTIONAL DESCRIPTION

The segmented design of the AM6012, shown in the block diagram, insures that there are no significant differential nonlinearities in the transfer characteristic. The eight major carries of the most significant bits are not subject to the gross differential nonlinearities that can occasionally occur in an R-2R type DAC. This advantage is due to the fundamentally different way that the current is handled in an AM6012.
In a conventional R-2R type DAC, when the input code is increemented past a major carry, a current representing the new code is substituted for the sum of all the less significant bit currents that were previously on. To avoid any nonlinearities, the two total currents must be extremely well matched. In the case of the MSB major carry in a 12-bit DAC, the match must be better than one part in 2048 to maintain monotonicity. However, in the AM6012, a new current is never substituted for the sum of several smaller ones, but redirected through alternate channels and incremented one step at a time. For example, consider the MSB carry in an AM6012. In the initial state of 011111111111 as shown in the block diagram, the switches in the segment generator are set in such a way that currents $\mathrm{I}_{\mathrm{l}} \mathrm{I}_{1}$ and I_{2} are steered directly into the noninverting output lout. In addition, a portion of I_{3} is directed through the 9-bit DAC that is controlled by the 9 least significant bits into lout. With the 9 LSBs set to " I '", all of the I_{3} current is directed to lout except for the $1 / 512$ that goes to ground through the right-most transistor in the 9-bit DAC. After the input word is changed to 100000000000 , the segment decoder switch for l_{3} will be all the way to the right, the switch for I_{4} will be in the middle, and all the switches in the 9-bit DAC will be to the left. lout will be composed of $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}. None of I_{4} will be directed into lout until a higher code is reached. In other words, I_{3} is now steered directly to lout instead of being divided by a factor of $511 / 512$ in the 9 -bit DAC. Since no major current substitution occurs, there is less chance of a large nonlinearity at this transition than in a comparable R-2R DAC.

RELATIVE ACCURACY VS. DIFFERENTIAL NONLINEARITY
We defines relative accuracy as the maximum deviation of the actual, adjusted DAC output from the ideal analog output (a straight line drawn between the lowest code output voltage and the highest code output voltage) for any bit combination. Relative accuracy is often referred to as nonlinearity. The DAC transfer function shown in Figure 1 has a bow
that results in a maximum relative accuracy error of 3LSB. This must be distinguished from a differential linearity error. Differential nonlinearity is the measure of the variation in analog value, normalized to full scale, associated with a ILSB change in digital input code.
For example, for a 4 mA full scale output, a change of ILSB in digital input code should result in a $0.98 \mu \mathrm{~A}$ change in the analog output current (ILSB $=4 \mathrm{~mA} \times 1 / 4096=0.98 \mu \mathrm{~A}$). If in actual use, however, a ILSB change in the input code results ina change of only $0.24 \mu \mathrm{~A}(1 / 4 \mathrm{LSB})$ in output current, the differential linearity error would be $0.74 \mu \mathrm{~A}$ or 3/4LSB.
The AM6012 has very good differential linearity in spite of the porr relative accuracy. Conversely, the DAC of Figure 1 has very good relative accuracy but poor differential linearity. The anomaly in the middle of the transfer function is the result of a positive differential linearity error followed by a negative differential linearity error greater than 1LSB. A negative output step for an increase in digital input code is referred to as nonmonotonic behavior. In general, if a DAC has a differential linearity error specification greater than 1LSB, it may be nonmonotonic at one or more of the major carries. In most case the worst differential linearity error will occur at the MSB transition point.
As noted in the functional description, the 6012's unique design minimizes differential linearity errors at the transition points of the 3MSBs. This results in a tight specification on maximum differential nonlinearity over temperature. Differential linearity is verified on all AM6012s with 100% final testing. In many converter applications, uniform step size (or minimum differential linearity error) is more important than conformance to an ideal straight line. Twelve-bit onverters are usually needed for high resolution rather than high linearity as evidenced by the fact that few transducers are more linear than 0.1%. This is also true in video graphics, where the human eye has difficulty discerning nonlinearity of less than 5%. The AM6012 is especially well suited for these applications since it has inherently low differential linearity error.

APPLICATION INFORMATION (Continued)

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided where $\mathrm{IO}+\mathrm{lO}=\mathrm{I}$ FR. Current appears at the "true" output when a " 1 "' is applied to each logic input. As the binary count increases, the sink current at pin 18 increases proportionally, in the fashion of a "positive logic" D/A converter. When a " 0 " is applied to any input bit, that current is turned off at pin 18 and turned on at pin 19. A decreasing logic count increase lo as in a negative or inverter logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing IFR; do not leave an unused output pin one.
Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 25 V above V - and is independent of the positive supply. Negative compliance is +10 V above $\mathrm{V}-$.
The dual outputs enable double the usual peak-topeak load swing when driving loads in quasidifferential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped coils and transformers.

POWER SUPPLIES

The AM6012 operates over a wide range of power supply voltages from a total supply of 20 V to 36 V . When operating with V - supplies of -10 V or less, IREF $\leq 1 \mathrm{~mA}$ is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range; consult the various figures fro guidance. For example, operation at -9 V with IREF $=1 \mathrm{~mA}$ is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8 V total must be applied to insure turn-on of the internal bias network.
Symmetrical supplies are not required, as the AM6012 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required; however, an artificial ground may be used to insure logic swings, etc. remain between acceptable limits.

TEMPERATURE PERFORMANCE

The nonlinearity and mononicity specifications of the AM6012 are guaranteed to apply over the entire rated operating temperature range. Full scale
output current drift is flight, typically $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with zero scale output current and drift essentially negligible compared to $1 / 2$ LSB.
The temperature coefficient of the reference resistor R14 should match and track that of the output resistor for minimum overall full scale drift.

SETTLING TIME

The AM6012 is capable of extremely fast settling times, typically 250 ns at IREF $=1.0 \mathrm{~mA}$. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 25 ns for each of the 12 bits. Settling time to within $1 / 2$ LSB of the LSB is therefore 25 ns , with each progressively larger bit taking successively longer. The MSB settles in 250 ns , thus determining the overall settling time of 250 ns . Settling to 10 -bit accuracy requires about 90 to 130 ms . The output capacitance of the AM6012 including the package is approximately 20 pF ; therefore, the output RC time constant dominates settling time if $R_{L}>500 \Omega$.
Settling time and propagation delay are relatively insensitive to logic input amplitude and rise and fall times, due to the high gain of the logic switches. Settling time also remains essentially constant for IREF values down to 0.5 mA , with gradual increases for lower Iref values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant.
Measurement of settling time requires the ability to accurately resolve $\pm 2 \mu \mathrm{~A}$, therefore a $2.5 \mathrm{k} \Omega$ load is needed to provide adequate drive for most oscilloscopes. At Iref values of less than 0.5 mA , excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 011111111111 to 100000000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within $\pm 0.1 \%$ of the final value, and thus settling times may be observed at lower values of IREF. AM6012 switching transients or "glitches" are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.
Fastest operation can be octained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference, and VLc terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; $0.1 \mu \mathrm{~F}$ capacitors at the supply pins provide full transient protection.

APPLICATION INFORMATION (Continued)

REFERENCE AMPLIFIER SETUP

The AM6012 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +1.0 mA . The full range output current is a linear function of the reference current and is given by:
$I_{R F}=\frac{4095}{4096} \times 4 \times\left(\right.$ IREF $^{2}=3.999 I_{\text {REF }}$,
where $I_{\text {REF }}=I_{14}$

In positive reference applications, an external positive reference voltage forces current through R14 into the $\mathrm{V}_{\text {REF }}(+$) terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to $\mathrm{VREF}_{(-)}$at pin 15 . Reference current flows from ground through R14 into VREF(+) as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R15 (nominally equal to R14) is used to cancel bias current errors. (Figure 3).
Bipolar references may be accommodated by offsetting $V_{\text {REF }}$ or pin 15 . The negative commonmode range of the reference amplifier is given by: $\mathrm{V}_{\mathrm{CM}}-=\mathrm{V}$ - plus (IREF $\times 3 \mathrm{k} \Omega$) plus 1.8 V . The positive common-mode range is $\mathrm{V}+$ less 1.23 V . When a DC reference is used, a reference bypass capacitor is recommended. A 5.0 V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R14 should be split into two resistors with the junction bypassed to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
For most applications the tight relationship between IREF and IFS will eliminate the need for trimming IREF. If required, full scale trimming may be accomplished by adjusting the value of R14, or by using a potentiometer for R14.

MULTIPLYING OPERATION

The AM6012 provides excellent multiplying performance with an extremely linear relationship between IfS and IREF over a range of 1 mA to $1 \mu \mathrm{~A}$. Monotonic operation is maintained over a typical range of IREF from $100 \mu \mathrm{~A}$ to 1.0 mA .

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to $\mathrm{V}-$. The value of this capacitor depends on the impedance presented to pin 14. For R14 values of 1.0, 2.5 and $5 \mathrm{Ok} \Omega$; minimum values of C_{c} are 5,12 and 25 pF . Larger values of R14 require proportionately increased values of Cc for proper phase margin (See Figure 4 and 5).
For fastest response to a pulse, low values of R14 enabling small Cc values should be used. If pin 14 is driven be a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall compensated which will decrease overall bandwidth and slew rate. For $R 14=1 \mathrm{k} \Omega$ and $\mathrm{CC}=5 \mathrm{pF}$, the reference amplifier slews at $4 \mathrm{~mA} / \mathrm{ms}$ enabling a transition from $I_{\text {ReF }}=0$ to $I_{\text {REF }}=1 \mathrm{~mA}$ in 250 ns.
Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff (IREF = 0) condition. Full scale transition (0 to 1 mA) occurs in 62.5 ns when the equivalent impedance at pin 14 is 800Ω and $C_{C}=0$. This yields a reference slew rate of $8 \mathrm{~mA} / \mu \mathrm{s}$ which is relatively independent of RIN and V_{IN} values.

LOGIC INPUTS

The AM6012 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, $40 \mu \mathrm{~A}$ logic input current, and completely adjustable logic inputs may swing between -5 and +10 V .
This enables direct interface with +15 V CMOS logic, even when the AM6012 is powered from a +5 V supply. Minimum input logic swing and minimum logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 13, VLC). For TTL interface, simply ground pin 13 . When interfacing ECL, an Iref $\leq 1 \mathrm{~mA}$ is recommended. For interfacing other logic families, see block titled "Interfacing with Various Logic Families''. For general setup of the logic control circuit, it should be noted that pin 13 will sink 1.1 mA typical, external circuitry should be designed to accommodate this current (Figure 6).

Fig. 3 - Reference amplifier biasing

Reference Configuration	R_{14}	R_{15}	RIN	C_{c}	$\mathrm{I}_{\text {REF }}$
Positive Reference	$\mathrm{V}_{\mathrm{R}+}$	OV	N/C	. $01 \mu \mathrm{~F}$	$\mathrm{V}_{\mathrm{R}+} / \mathrm{R}_{14}$
Negative Reference	OV	$\mathrm{V}_{\mathrm{R}-}$	N/C	. $01 \mu \mathrm{~F}$	- V_{R} - $/ \mathrm{R}_{14}$
Lo Impedance Bipolar Reference	V +	OV	VIN	(Note 1)	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{R}}+/ \mathrm{R}_{14}\right)+\left(\mathrm{V}_{\text {IN }} / \mathrm{RIN}^{\prime}\right) \\ & (\text { Note } 2) \end{aligned}$
Hi Impedance Bipolar Reference	$\mathrm{V}_{\mathrm{R}}+$	VIN	N/C	(Note 1)	$\begin{aligned} & \left(V_{R+}-V_{I N}\right) / R_{14} \\ & \text { (Note 3) } \end{aligned}$
Pulsed Reference (Note 4)	$\mathrm{V}_{\mathrm{R}+}$	OV	VIN	No Cap	$\left(\mathrm{V}_{\mathrm{R}}+\mathrm{R}_{14}\right)+\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{R}_{1 \mathrm{~N}}\right)$

Notes:

1. The compensation capacitor a function of the impedance seen at the $+V_{R E F}$ input and must be at least $5 p F \times R_{14(e q)}$ in $\mathrm{k} \Omega$. For $\mathrm{R}_{14}<800 \Omega$ no capacitor is necessary.
2. For negative values of $V_{I N}, V_{R+} / R_{14}$ must be greater than $-V_{I N} M a x / R_{I N}$ so that the amplifier is not turned off.
3. For positive values of $\mathrm{V}_{\mathbb{I}}, \mathrm{V}_{\mathrm{R}+}$ must be greater than $\mathrm{V}_{\mathbb{N}}$ Max so the amplifier is not turned off.
4. For pulsed operation, $\mathrm{V}_{\mathrm{R}+}$ provides a $D C$ offset and may be set to zero in some cases. The impedance at pin 14 should be 800Ω or less.
5. For optimum settling time, decouple V - with 20Ω and bypass with $22 \mu \mathrm{~F}$ tantulum capacitor.
6. Reference current and reference resistor - there is a 1 to 4 schale factor between the reference current (IREF) and the full scale output current (I_{FS}). If $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{FS}}=4 \mathrm{~mA}$, the value of the R_{14} is:
$R_{14}=\frac{4 \times 10 \text { Volt }}{4 \mathrm{~mA}}=10 \mathrm{k} \Omega \quad R_{14}=R_{15}$

Fig. 4 - Minimum size compensation capacitor ($I_{\text {FS }}=4 \mathrm{~mA}, \mathrm{I}_{\mathrm{REF}}=1.0 \mathrm{~mA}$)

$\mathbf{R}_{\mathbf{1 4 (E Q)}}(\mathbf{K} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mathbf{p F})$
10	50
5	25
2	10
1	5
5	0

Note: $\mathrm{A} 0.01 \mu \mathrm{~F}$ capacitor is recommended for fixed reference operation.

Fig. 5 - Reference Amplifier Frequency response

A6012-11: : DI

Fig. 7 - Accomodating Bipolar Reference
VAEF (+) MUST BE ABOVE PEAK POSITIVE SWING OF VIN

AM6012-AM6012A

Fig. 8 - AM6012 Logic Inputs

Code Format		Connec.	Output Scale	$\begin{aligned} & \text { MSB } \\ & \text { B1 B2 } \end{aligned}$										$\begin{gathered} \text { LSB } \\ \text { B12 } \end{gathered}$	I_{0}	I_{0}	$\mathrm{V}_{\text {OUT }}$
Unipolar	Straight bynary one polarity with true input code, true zero output.	$\begin{gathered} a-c \\ b-g \\ R_{1}=R 2=2.5 K \end{gathered}$	Positive full scale Positive full scale-LSB Zero scale	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 3.999 \\ 3.998 \\ .000 \end{gathered}$	$\begin{array}{r} .000 \\ .001 \\ 3.999 \end{array}$	9.9978 9.9951 .0000
	Complementary binary one polarity with complementary input code, true zero output.	$\begin{gathered} a-g \\ \mathrm{~b}-\mathrm{c} \\ \mathrm{R} 1=\mathrm{R} 2=2.5 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB Zero scale	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} .000 \\ .001 \\ 3.999 \end{array}$	$\begin{array}{r} 3.999 \\ 3.998 \\ .000 \end{array}$	$\begin{array}{r} \hline 9.9976 \\ 9.9951 \\ .0000 \end{array}$
Symmetrical Offset	Straight offset binary; offset half scale, symmetrical about zero, no true zero output.	$\begin{gathered} a-c \\ b-d \\ f-0 \\ R 1=R 3=2.5 \mathrm{~K} \\ \mathrm{R} 2=1.25 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB (+) Zero scale (-) Zero scale Negative full scale-LSB Negative full scale	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.000 \\ 1.999 \\ .001 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ .001 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 9.9976 \\ 9.9927 \\ .0024 \\ -.0024 \\ -9.9927 \\ -9.9976 \end{array}$
	1's complement offset half scale symmetrical about zero, no true zero output MSB complemented (need inverter at B1).	$\begin{gathered} a-c \\ b-d \\ f-g \\ R 1=R 3=2.5 \mathrm{~K} \\ R 2=1.25 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB (+) Zero scale (-) Zero scale Negative full scale-LSB Negative full scale	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.000 \\ 1.999 \\ .001 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ .001 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 9.9976 \\ 9.9927 \\ .0024 \\ -.0024 \\ -9.9927 \\ -9.9976 \end{array}$
Offset with True Zero	Offset binary, offset half scale, true zero output.	$\begin{gathered} \mathrm{e}-\mathrm{a}-\mathrm{c} \\ \mathrm{~b}-\mathrm{g} \\ \mathrm{R} 1=\mathrm{R} 2=5 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB $+ \text { LSB }$ Zero Scale -LSB Negative full scale + LSB Negative full scale	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.001 \\ 2.000 \\ 1.999 \\ .001 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ .001 \\ 1.998 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 9.9951 \\ 9.9902 \\ .0049 \\ .000 \\ .0049 \\ -9.9951 \\ -10.000 \end{array}$
	2's complement offset half scale true zero output MSB complemented (need inverter at B1)	$\begin{gathered} e-\mathrm{a}-\mathrm{c} \\ \mathrm{~b}-\mathrm{g} \\ \mathrm{R} 1=5 \mathrm{R} 2=5 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB +1 LSB Zero scale -1 LSB Negative full scale + LSB Negative full scale	$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.001 \\ 2.000 \\ 1.999 \\ .001 \\ .000 \end{array}$.006 .001 1.998 1.999 2.000 3.998 3.999	$\begin{array}{r} 9.9951 \\ 9.9902 \\ .0049 \\ .000 \\ -0.049 \\ -9.9951 \\ -10.000 \end{array}$

ADDITIONAL CODE MODIFICATIONS

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.

Fig. 9 - Basic Negative Reference Operation
VREF (-)

Fig. 11-CRT Display Driver

Fig. 12-12-BIT High-Speed A/D Converter

Fig. 13 - Interface with 8-bit Microprocessor Bus

Fig. 14 - Interface with digital signal processor TS68930/31

8-BIT D/A CONVERTERS

- RELATIVE ACCURACY: $\pm 0.19 \%$ ERROR MAXIMUM (DAC0808)
- FULL SCALE CURRENT MATCH: ± 1 LSB TYP
- 7 AND 6-BIT ACCURACY AVAILABLE (DAC0807, DAC0806)
- FAST SETTING TIME: 150 ns TYP
- NONINVERTING DIGITAL INPUTS ARE TTL AND CMOS COMPATIBLE
- HIGH SPEED MULTIPLYING INPUT SLEW RATE: $8 \mathrm{~mA} / \mu \mathrm{s}$
- POWER SUPPLY VOLTAGE RANGE: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- LOW POWER CONSUMPTION: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

DESCRIPTION

The DAC0808 series is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/256. Relative accuracies of better than 0.19% assure 8-bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for IREF $\geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
The DAC0808 will interface directly with popular TTL, or CMOS logic levels, and is a direct replacement for the MC1508/MC1408.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage		
VS	+18	V
VEE	-18	V
Digital Input Voltage V5-V12	-10 V to +18	V
Reference Current, I 14	5	mA
Reference Amplifier Inputs, V14, V15	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	
Operating Temperature Range		
DAC0808L		
DAC0808LC/D1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$0 \leq \mathrm{T}_{\mathrm{A}} \leq+75$	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

Accuracy	Temperature range	Plastic DIP-16	Ceramic DIP-16	SO-16
8 bit	0 to $75^{\circ} \mathrm{C}$	DAC0808LCN	DAC0808LCJ	DAC0808D
7 bit	0 to $75^{\circ} \mathrm{C}$	DAC0807LCN	DAC0807LCJ	DAC0807D
6 bit	0 to $75^{\circ} \mathrm{C}$	DAC0806LCN	DAC0806LCJ	DAC0806D
8 bit	-55 to $125^{\circ} \mathrm{C}$	-	DAC0808LJ	-

BLOCK DIAGRAM

THERMAL DATA

		Ceramic DIP-16	SO-16	Plastic DIP-16
Rthj-amb	Thermal resistance junction-ambient max	$150^{\circ} \mathrm{C} / \mathrm{W}$	$120^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

$\left(V_{S}=5 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / \mathrm{R} 14=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$ and all digital inputs at high logic level unless otherwise noted.)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
E_{r}	Relative Accuracy (Error Relative to Full Scale I_{O}) DAC0808L DAC0807LC/D1 (Note 1) DAC0806LC/D1 (Note 1) Settling Time to Within 1/2 LSB (Includes $\mathrm{t}_{\mathrm{PLLH}}$)	(Figure 10) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\ & \text { (Figure 11) } \end{aligned}$		150	$\begin{aligned} & \pm 0.19 \\ & \pm 0.39 \\ & \pm 0.78 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 11)		30	100	ns
TClo	Output Full Scale Current Drift			± 20		ppm $/{ }^{\circ} \mathrm{C}$
$\begin{array}{\|l\|} \hline \text { MSB } \\ \mathrm{V}_{1 \mathrm{H}} \\ \mathrm{~V}_{\mathrm{IL}} \end{array}$	Digital Input Logic Levels High Level, Logic "1', Low Level, Logic " 0 "	(Figure 9)	2		0.8	$\begin{aligned} & V_{D C} \\ & V_{D C} \\ & \hline \end{aligned}$
MSB	Digital Input Current High Level Low Level	$\begin{aligned} & \text { (Figure 9) } \\ & V_{1 H}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 0 \\ -0.003 \end{gathered}$	$\begin{gathered} 0.040 \\ -0.8 \end{gathered}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$
I_{15}	Reference Input Bias Current Output Current Range	(Figure 3) (Figure 9) $V_{E E}=-5 \mathrm{~V}$ $V_{E E}=-15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline-1 \\ 2.0 \\ 2.0 \end{array}$	$\begin{array}{r} -3 \\ 2.1 \\ 4.2 \end{array}$	${ }_{\mu} \mathrm{A}$ mA mA
10	Output Current Output Current, All Bits Low Output Voltage Compliance $V_{E E}=-5 \mathrm{~V}$ $V_{E E}$ Below - 10 V	$V_{R E F}=2.000 \mathrm{~V}$. $R 14=1000 \Omega$ (Figure 9) (Figure 9) $\mathrm{E}_{\mathrm{r}} \leq 0.19 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.9	$\begin{aligned} & 1.99 \\ & 0 \end{aligned}$	$\begin{gathered} 2.1 \\ 4 \\ -0.55,+0.4 \\ -5.0,+0.4 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$
SRIREF	Reference Current Siew Rate Output Current Power Supply Sensitivity	$\begin{aligned} & \text { (Figure 14) } \\ & -5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-16.5 \mathrm{~V} \end{aligned}$	4	$\begin{aligned} & \hline 8 \\ & 0.05 \end{aligned}$	2.7	$\mathrm{mA} / \mu \mathrm{S}$ $\mu \mathrm{A} / \mathrm{V}$
$\begin{array}{\|l} \hline \text { Power } \\ \text { Is } \\ \text { IEE } \\ \hline \end{array}$	upply Current (All Bits Low)	(Figure 9)		$\begin{array}{r} 2.3 \\ -4.3 \end{array}$	$\begin{array}{r} 22 \\ -13 \\ \hline \end{array}$	mA
Power V_{S} $V_{E E}$	upply Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 9)	$\begin{array}{r} 4.5 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ -15 \\ \hline \end{array}$	$\begin{array}{r} 5.5 \\ -16.5 \\ \hline \end{array}$	V
	Power Dissipation All Bits Low All Bits High	$\begin{aligned} & V_{S}=5 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{S}=15 \mathrm{~V}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=15 . V_{E E}=-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 33 \\ & 106 \\ & 90 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 305 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \\ & \hline \end{aligned}$

Note 1: All current switches are tested to guarantee at least 50% of rated current.
Note 2: All bits switched.
Note 3: Range control is not required.

Fig. 1 - Supply Current vs Temperature

Fig. 4-Logic Input Current vs Input Voltage

Fig. 7 - Output Voltage Compliance vs Temperature

Fig. 2 - Supply Current vs Supply Voltage (V_{EE})

Fig. 5-Bit Transfer Characteristics

Fig. 3 - Supply Current vs Supply Voltage (V_{S})

Fig. 6 - Output Voltage Compliance

Unless otherwise specified: R14 =
$\mathrm{R} 15=1 \mathrm{k} \Omega, \mathrm{C}=15 \mathrm{pF}$, pin 16 to V_{EE}; $R_{L}=50 \Omega$, pin 4 to ground.
Curve A: Large Signal Bandwidth Method of Figure 7, VREF $=2$ Vp-p offset 1 V above ground

Curve B: Small Signal Bandwidth Method of Figure 7, $\mathrm{R}_{\mathrm{L}}=250 \Omega$, $V_{\text {REF }}=50 \mathrm{mVp}-\mathrm{p}$ offset 200 mV above ground.
Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op amp. $R_{L}=50 \Omega$), $R_{S}=50 \Omega$, $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mVp}$-p centered at 0 V .

Test Circuits

FIGURE 9. Notation Definitions

The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
$\mathrm{lO}=\mathrm{K}\left(\frac{\mathrm{A} 1}{2}+\frac{\mathrm{A} 2}{4}+\frac{\mathrm{A} 3}{8}+\frac{\mathrm{A} 4}{16}+\frac{\mathrm{A} 5}{32}+\frac{\mathrm{A} 6}{64}+\frac{\mathrm{A} 7}{128}+\frac{\mathrm{A} 8}{256}\right)$
where $K \cong \frac{V_{\text {REF }}}{R 14}$
and $A_{N}=$ "1" if A_{N} is at high level
$A_{N}=$ " 0 " if A_{N} is at low level

FIGURE 10. Relative Accuracy

DAC0808-0807-0806

FIGURE 11. Transient Response and Settling Time

FIGURE 12. Positive $V_{\text {REF }}$

FIGURE 13. Negative $V_{\text {REF }}$

FIGURE 14. Reference Current Slew Rate Measurement

APPLICATION INFORMATION

CIRCUIT DESCRIPTION

The DAC0808 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.
The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.
The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Nota that there is always a remainder current which is equal to the last significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, l14, must always flow into pin 14, regardiess of the set-up method or reference voltage polarity.

Connections for a positive voltage are shown in Fi gure 12. The reference voltage source supplies the full current I_{14}. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.
The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1, 2.5 and $5 \mathrm{k} \Omega$, minimum capacitor values are 15,37 and 75 pF . The capacitor may be tied to either V_{EE} or ground, but using $V_{E E}$ increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 13. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3 V above the VEE supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive by pass to ground is recommended. The 5 V logic supply is not recommended as a reference voltage. If a well regulated 5 V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5 V through another resistor and bypassing the junction of the 2 resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5 V , a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to 0.5 V when $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$ due to the current switching methods employed in the DAC0808.
The negative output voltage compliance of the DAC0808 is extended to -5 V where the negative supply voltage is more negative than -10 V . Using a full-scale current of 1.992 mA and load resistor of $2.5 \mathrm{k} \Omega$ between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 V . Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_{L} up to 500Ω do not significantly affect performance, but a 2.5 $\mathrm{k} \Omega$ load increases worst-case setting time to $1.2 \mu \mathrm{~s}$ (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7 V , due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the fullscale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.

The DAC0808 series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full-scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2 mA , with the loss of 1 LSB $(8 \mu \mathrm{~A})$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mis-match in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full-scale output current of 1.992 mA . This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA .

Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 , or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.019 \%$ specification provided by the DAC0808.

MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8-bit accuracy when the reference current is varied over a range of 256:1. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within 8 -bit accuracy when referred to full-scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a DC reference current is 0.5 to 4 mA .

SETTLING TIME

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-high transition for all bits. This time is typically 150 ns for settling to within $\pm 1 / 2$ LSB for 8 -bit accuracy and 100 ns to $1 / 2$ LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns . These timers apply when $R_{L} \leqslant 500$ ohms and $C_{0} \leqslant 25$ pF.

The test circuit of Figure 11 requires a smaller voltage swing for the current switches due to internal voltage clamping in the DAC0808 A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 200 ns.
Thus, it is voltage swing and not the output RC time constant that determines setting time for most applications.
Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time.
Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mondatory.

PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTEPUATOR

When used in the multiplying mode can be applied as a digital attenuator. See Figure 15. One advantage of this technique is that if $\mathrm{Rs}_{\mathrm{S}}=50$ ohms, no compensation capacitor is needed. The small and large signal band are now identical and are shown in Figure 8C.
The best frequency response is obtained by not allowing I_{14} to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. Rs can be set for $\mathrm{a} \pm 1.0 \mathrm{~mA}$ variation in relation to I_{14}. I_{14} can never be negative.
The output current is always unipolar. The quiescent dc output current level changes with the digital word which makes accoupling necessary.

CURRENT TO VOLTAGE CONVERSION

Voltage output of a larger magnitude are obtainable with the circuit of fig. 16 which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the DAC0808 ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and setting time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases over compensation may be desirable.
Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input. The LM301 can be used in a feedforwerd mode resulting in a full scale setting time on the order of $2.0 \mu \mathrm{~s}$.

COMBINED OUTPUT AMPLIFIER AND VOLTAGE REFERENCE

For many of its applications the DAC0808 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular LM723 voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA output current. See Figure 17. The reference
voltage is developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its amplifier as a classic current-tovoltage converter with the non-inverting input grounded.
Since $\pm 15 \mathrm{~V}$ and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.
Full scale output may be increasing Ro and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the LM723 Co may be decreased to maintain the same RoCo product if maximum speed is desired.

PROGRAMMABLE POWER SUPPLY

The circuit of figure 17 can be used as a digitally programmed power supply by the addition of thumb-wheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in 0.1 -volt increments, $\pm 10 \mathrm{mV}$.

PANEL METER READOUT

The DAC0808 can be used to read out the status of BCD or binary registers or counters a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 20 mA full scale is used. Full scale calibration can be done by adjusting R14 or $\mathrm{V}_{\text {ref }}$ (see fig. 18).

CHARACTER GENERATOR

In a character generation system fig. 19 one DAC0808 circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 16 -bit D-to-A converter (see Accuracy Section).

TWO-DIGIT BCD CONVERSION

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter (fig. 21). If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an DAC0806 may be used for the least significant word.

FIGURE 16.

FIGURE 17. Combined output amplifier and voltage reference circuit

FIGURE 15. Programmable Gain Amplifier or Digital Attenuator Circuit

$V_{0}=10 \mathrm{~V}\left(\frac{\mathrm{~A} 1}{2}+\frac{\mathrm{A} 2}{4}+\cdots \frac{\mathrm{A} 8}{256}\right)$

FIGURE 18. Panel meter readout circuit

(*) DIGItal word from counter/register

FIGURE 19. Digital summing and character generation

$$
v_{0}=\left(I_{01}+l_{02}\right) R_{0}
$$

$$
V_{\mathrm{O}}=\left[\frac{\mathrm{V}_{\text {ref1 }}}{\mathrm{R} 14_{1}}\{\mathrm{~A}\}+\frac{\mathrm{V}_{\text {ref } 2}}{\mathrm{R} 14_{2}}\{\mathrm{~B}\}\right] \mathrm{R}_{\mathrm{O}}
$$

FIGURE 20. Analog product of two digital words (High Speed Operation)

$$
\begin{aligned}
& V_{\mathrm{O}}=-\mathrm{I}_{\mathrm{O} 1} \mathrm{R}_{\mathrm{O}}=\frac{V_{\text {ref }}}{R 14_{1}}\{A\} R_{\mathrm{O}} \\
& \mathrm{I}_{\mathrm{O} 2}=\frac{\{B\}\left|V_{\mathrm{O}}\right|}{R 14_{2}}=\frac{\{B\}}{R 14_{2}}\left[R_{\mathrm{O}}\left(\frac{V_{\text {ref }}}{R 14_{1}}\right)\{A\}\right]
\end{aligned}
$$

Since $\mathrm{R}_{\mathrm{O}}=\mathrm{R} 14_{2}$ and $\mathrm{K}=\frac{\mathrm{V}_{\text {ref }}}{\mathrm{R} 14_{1}}$
$\mathrm{I}_{\mathrm{O} 2}=\mathrm{K}\{\mathrm{A}\}\{\mathrm{B}\} \mathrm{K}$ can be an analog variable
FIGURE 21. Two-digit BCD conversion

(*) MOST SIGNIFICANT BCD WORD
(**) LEAST SIGNIFICANT BCD WORD

DUAL POWER OPERATIONAL AMPLIFIERS

- OUTPUT CURRENT TO 1A
- operates at low voltages
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN

The L272 and L272M are monolithic integrated circuits in powerdip and minidip packages intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies, compact disc, VCR, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	28	V
V_{1}	Input voltage	V_{5}	
V_{1}	Differential input voltage	$\pm \mathrm{V}_{\text {s }}$	
I_{0}	DC output current	1	A
I_{p}	Peak output current (non repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$		1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

S.5906n
$L 272$

5. 5929

L272M

CONNECTION DIAGRAM

(Top view)

L272

SCHEMATIC DIAGRAM (one only)

THERMAL	DATA	Powerdip	Minidip	
$R_{\text {th j-case }}$	Thermal resistance junction-pins		$15^{\circ} \mathrm{C} / \mathrm{W}$	${ }^{*} 70^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th J-amb }}$	Thermal resistance junction-ambient	\max	$70^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$

[^1]ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			4		28	V
I_{5}	Quiescent drain current	$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{s}}}{2}$	$V_{\text {s }}=24 \mathrm{~V}$		8	12	mA
			$V_{\text {S }}=12 \mathrm{~V}$		7.5	11	mA
I_{b}	Input bias current				0.3	2.5	$\mu \mathrm{A}$
$V_{\text {os }}$	Input offset voltage				15	60	mV
Ios	Input offset current				50	250	nA
SR	Slew rate				1		$\mathrm{V} / \mu \mathrm{s}$
B	Gain-bandwidth product				350		KHz
R_{1}	Input resistance			500			$K \Omega$
G_{v}	O.L. voltage gain	$f=100 \mathrm{~Hz}$		60	70		dB
		$f=1 \mathrm{KHz}$			50		dB
${ }^{\text {e }}$	Input noise voltage	$B=20 \mathrm{KHz}$			10		$\mu \mathrm{V}$
I_{N}	Input noise current	$B=20 \mathrm{KHz}$			200		pA
CRR	Common Mode rejection	$f=1 \mathrm{KHz}$		60	75		dB
SVR	Supply voltage rejection	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & R_{G}=10 \mathrm{~K} \Omega \\ & V_{R}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{s}=24 V \\ & V_{s}= \pm 12 V \\ & V_{s}= \pm 6 \mathrm{~V} \end{aligned}$	54	$\begin{aligned} & 70 \\ & 62 \\ & 56 \end{aligned}$		dB dB dB
V_{0}	Output voltage swing		$\begin{aligned} & I_{p}=0.1 \mathrm{~A} \\ & I_{p}=0.5 \mathrm{~A} \end{aligned}$	21	$\begin{gathered} 23 \\ 22.5 \end{gathered}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
C_{5}	Channel separation	$\begin{aligned} & f=1 \mathrm{KHz} ; R_{L}=10 \Omega ; G_{v}=30 \mathrm{~dB} \\ & V_{s}=24 \mathrm{~V} \\ & V_{s}= \pm 6 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
d	Distortion	$\begin{aligned} & f=1 K H z \\ & V_{s}=24 V \end{aligned}$	$\begin{aligned} & G_{v}=30 d B \\ & R_{L}=\infty \end{aligned}$		0.5		\%
$\mathrm{T}_{\text {sd }}$	Thermal shutdown junction temperature				145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Quiescent current
vs. supply voltage

Fig. 2 -- Quiescent drain current vs. temperature

Fig. 5 -- Output voltage swing vs. load current

Fig. 3 - Open loop voltage gain

Fig. 4 - Output voltage swing vs. load current

Fig. 7 - Channel separation
vs. frequency

Fig. 8 -- Common mode rejection vs. frequency

APPLICATION SUGGESTION

NOTE

In order to avoid possible instability occurring into final stage the usual suggestions for the linear power stages are useful, as for instance:

- layout accuracy;
- A 100 nF capacitor corrected between supply pins and ground;
- boucherot cell (0.1 to $0.2 \mu \mathrm{~F}+1 \Omega$ series) between outputs and ground or across the load.

Fig. 9 - Bidirectional DC motor control with $\mu \mathrm{P}$ compatible inputs

Fig. 10 - Servocontrol for compact-disc

Fig. 11 - Capstan motor control in video recorders

Fig. 12 - Motor current control circuit

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 13 - Bidirectional speed control of DC motors.
For circuit stability ensure that $R_{X}>\frac{2 R 3 \circ R 1}{R_{M}}$ where $R_{M}=$ internal resistance of motor. The voltage available at the terminals of the motor is $V_{M}=2\left(V_{i}-\frac{V_{s}}{2}\right)+\left|R_{0}\right| \cdot I_{M}$ where $\left|R_{0}\right|=\frac{2 R \circ R 1}{R_{X}}$ and I_{M} is the motor current.

DUAL POWER OPERATIONAL AMPLIFIER

ADVANCE DATA

- OUTPUT CURRENT TO 1A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDWON

The L272D is a monolithic integrated circuit in SO-16 packages intended for use as power operational amplifier in a wide range of appli-
cations including servo amplifiers and power supplies, compact disc, VCR, etc. The high gain and high output power capability provide superior performance wheatever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	28	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	$\pm \mathrm{V}_{\mathrm{s}}$	
I_{0}	DC Output current	1	A
I_{p}	Peak output current (non repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	1.2	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAMS

[^2]SCHEMATIC DIAGRAM (one only)

THERMAL DATA

| $R_{\text {thj-alumina(*) }} \quad$ Thermal resistance junction-alumina | $\max 50 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- |

(*) Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring $15 \times 20 \mathrm{~mm} ; 0.65 \mathrm{~mm}$ thickness and infinite heathsink.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			4		28	V
I_{s}	Quiescent drain current	$V_{0}=\frac{V_{s}}{2}$	$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$		8	12	mA
			$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$		7.5	11	mA
I_{b}	Input bias current				0.3	2.5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage				15	60	mV
$\mathrm{I}_{\text {OS }}$	Input offset current				50	250	$n \mathrm{~A}$
SR	Slew rate				1		$\mathrm{V} / \mu \mathrm{s}$
B	Gain-bandwidth product				350		KHz
R_{i}	Input resistance			500			$K \Omega$
G_{v}	O.L. voltage gain	$f=100 \mathrm{~Hz}$		60	70		dB
		$\mathrm{f}=1 \mathrm{KHz}$			50		dB
e_{N}	Input noise voltage	$B=20 \mathrm{KHz}$			10		$\mu \mathrm{V}$
${ }^{\prime} \mathrm{N}$	Input noise current	$B=20 \mathrm{KHz}$			200		pA
CRR	Common Mode rejection	$\mathrm{f}=1 \mathrm{KHz}$		60	75		dB
SVR	Supply voltage rejection	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & R_{G}=10 \mathrm{~K} \Omega \\ & V_{R}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{s}=24 \mathrm{~V} \\ & V_{\mathrm{s}}= \pm 12 \mathrm{~V} \\ & V_{\mathrm{s}}= \pm 6 \mathrm{~V} \end{aligned}$	54	$\begin{aligned} & 70 \\ & 62 \\ & 56 \end{aligned}$		dB dB dB
v_{0}	Output voltage swing		$\begin{aligned} & I_{p}=0.1 \mathrm{~A} \\ & I_{p}=0.5 \mathrm{~A} \end{aligned}$	21	$\begin{gathered} 23 \\ 22.5 \end{gathered}$		V
C_{5}	Channel separation	$\begin{aligned} f=1 \mathrm{KHz} ; R_{L}=10 \Omega ; & G_{V}=30 \mathrm{~dB} \\ V_{S} & =24 \mathrm{~V} \\ V_{S} & = \pm 6 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & V_{s}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & G_{v}=30 d B \\ & R_{L}=\infty \end{aligned}$		0.5		\%
$\mathrm{T}_{\text {sd }}$	Thermal shutdown junction temperature				145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Quiescent current
vs. supply voltage

Fig. 4 - Output voltage swing vs. load current

Fig. 2 -. Quiescent drain current vs. temperature

Fig. 5 -- Output voltage swing vs. load current

Fig. 3 - Open loop voltage gain

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 7 - Channel separation vs. frequency

Fig. 8 - Common mode rejection vs. frequency

PUSH-PULL FOUR CHANNEL DRIVERS

- OUTPUT CURRENT 1A PER CHANNEL
- PEAK OUTPUT CURRENT 2A PER CHANNEL (NON REPETITIVE)
- INHIBIT FACILITY
- HIGH NOISE IMMUNITY
- SEPARATE LOGIC SUPPLY
- OVERTEMPERATURE PROTECTION

The L293B and L293E are quad push-pull drivers capable of delivering output currents to 1 A per channel. Each channel is controlled by a TTLcompatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation.

Additionally, the L293E has external connection of sensing resistors, for switchmode control.

The L293B and L293E are packaged in 16 and 20pin plastic DIPs respectively; both use the four center pins to conduct heat to the printed circuit board.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	36	V
$\mathrm{V}_{\text {ss }}$	Logic supply voltage	36	V
V_{i}	Input voltage	7	V
$V_{\text {inh }}$	Inhibit voltage	7	V
$\mathrm{I}_{\text {out }}$	Peak output current (non-repetitive $\mathrm{t}=5 \mathrm{~ms}$)	2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {ground }-\mathrm{pins}}=80^{\circ} \mathrm{C}$	5	W
$\underline{\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

DC motor control

Bidirectional DC motor control

CONNECTION AND BLOCK DIAGRAM (L293)
(top view)

CONNECTION AND BLOCK DIAGRAM (L293E)
(top view)

SCHEMATIC DIAGRAM

(*) In the L293 these points are not externally available. They are internally connected to the ground (substrate).
O Pins of L293 () Pins of L293E

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	$\max ^{\circ}$	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{amb}}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (For each channel, $\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage		$\mathrm{V}_{\text {ss }}$		36	V
$\mathrm{V}_{\text {SS }}$	Logic supply voltage		4.5		36	V
I_{s}	Total quiescent supply current	$V_{i}=L \quad \mathrm{I}_{0}=0 \quad V_{i n h}=H$		2	6	mA
		$\mathrm{V}_{\mathrm{i}}=\mathrm{H} \quad \mathrm{I}_{0}=0 \quad \mathrm{~V}_{\mathrm{inh}}=\mathrm{H}$		16	24	
		$V_{\text {inh }}=L$			4	
I_{ss}	Total quiescent logic supply current	$\mathrm{V}_{\mathrm{i}}=\mathrm{L} \quad \mathrm{I}_{0}=0 \quad \mathrm{~V}_{\text {inh }}=\mathrm{H}$		44	60	mA
		$\mathrm{V}_{\mathrm{i}}=\mathrm{H} \quad \mathrm{I}_{0}=0 \quad \mathrm{~V}_{\text {inh }}=\mathrm{H}$		16	22	
		$\mathrm{V}_{\text {inh }}=\mathrm{L}$		16	24	
$V_{\text {iL }}$	Input low voltage		-0.3		1.5	V
$\mathrm{V}_{\text {iHi }}$	Input high voltage	$\mathrm{V}_{\text {ss }} \leqslant 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {ss }}$	V
		$\mathrm{V}_{\mathrm{ss}}>7 \mathrm{~V}$	2.3		7	
$\mathrm{I}_{\text {iL }}$.	Low voltage input current	$\mathrm{V}_{\text {IL }}=1.5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
I_{iH}	High voltage input current	$2.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{iH}} \leqslant \mathrm{V}_{\text {ss }}-0.6 \mathrm{~V}$		30	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {inhL }}$	Inhibit low voltage		-0.3		1.5	V
$\mathrm{V}_{\text {inhH }}$	Inhibit high voltage	$\mathrm{V}_{\mathrm{ss}} \leqslant 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {ss }}$	V
		$\mathrm{V}_{\text {ss }}>7 \mathrm{~V}$	2.3		7	
$\mathrm{I}_{\text {inhL }}$	Low voltage inhibit current	$\mathrm{V}_{\text {inhL }}=1.5 \mathrm{~V}$		-30	-100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {inhH }}$	High voltage inhibit current	$2.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{inhH}} \leqslant \mathrm{V}_{\text {ss }}-0.6 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$V_{\text {CEsat }}$	Source output saturation voltage	$\mathrm{I}_{0}=-1 \mathrm{~A}$		1.4	1.8	V
$V_{\text {CEsat }}$	Sink output saturation voltage	$\mathrm{I}_{0}=1 \mathrm{~A}$		1.2	1.8	V
$\mathrm{V}_{\text {SENS }}$	Sensing Voltage $(\text { pins } 4,7,14,17)(* *)$				2	V
t_{r}	Rise time	0.1 to $0.9 \mathrm{~V}_{0}\left({ }^{*}\right)$		250		ns
t_{f}	Fall time	0.9 to $0.1 \mathrm{~V}_{0}\left({ }^{*}\right)$		250		ns
$t_{\text {on }}$	Turn-on delay	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}\left({ }^{*}\right)$		750		ns
$\mathrm{t}_{\text {off }}$	Turn-off delay	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $\left.0.5 \mathrm{~V}_{0}{ }^{*}{ }^{*}\right)$		200		ns

(*) See fig. 1.
(**) Referred to L293E.

TRUTH TABLE

Fig. 1 - Switching times

V_{i} (each channel)	V_{o}	$V_{\text {inh. }}{ }^{(0 \circ)}$
H	H	H
L	L	H
H	$X(\circ)$	L
L	$X\left({ }^{\circ}\right)$	L

(${ }^{\circ}$) High output impedance.
$(\circ \circ)$ Relative to the considerate channel.

Fig. 2 - Saturation voltage vs. output current

Fig. 5 - Quiescent logic supply current vs. logic supply voltage

Fig. 3 - Source saturation voltage vs. ambient temperature

Fig. 6 - Output voltage vs. input voltage

Fig. 4 - Sink saturation voltage vs. ambient temperature

Fig. 7 - Output voltage vs. inhibit voltage

APPLICATION INFORMATION

Fig. 8 - DC motor controls (with connection to ground and to the supply voltage)

V $_{\text {inh }}$	A	M1	B	M2
H	H	Fast motor stop	H	Run
H	L	Run	L	Fast motor stop
L	X	Free running motor stop	X	Free running motor stop

L L Low $\quad H=$ High $X=$ Don't care

Fig. 9 - Bidirectional DC motor control

INPUTS		FUNCTION	
$V_{i n h}=H$	$C=H ;$	$D=L$	Turn right
	$C=L ;$	$D=H$	Turn left
	$C=D$	Fast motor stop	
$V_{i n h}=L$	$C=X ;$	$D=X$	Free running motor stop

$\mathrm{L}=$ Low $\quad \mathrm{H}=$ High $\mathrm{X}=$ Don't care

Fig. 10 - Bipolar stepping motor control

APPLICATION INFORMATION (continued)

Fig. 11 - Stepping motor driver with phase current control and short circuit protection

D1 to D8: $\left\{\begin{array}{l}\mathrm{V}_{\mathrm{F}} \leqslant 1.2 \mathrm{~V} @ \mathrm{I}=300 \mathrm{~mA} \\ \mathrm{trr} \leqslant 200 \mathrm{~ns}\end{array}\right.$

L293B-L293E

MOUNTING INSTRUCTIONS

The $R_{\text {th } j \text {-amb }}$ of the L293 and the L293E can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in figure 12 or to an external heatsink (figure 13).

Fig. 12 - Example of P.C. board copper area which is used as heatsink

During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 13 - External heatsink mounting example ($R_{\text {th }}=30^{\circ} \mathrm{C} / \mathrm{W}$)

PUSH-PULL FOUR CHANNEL/DUAL H- BRIDGE DRIVER

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (NON REPETITIVE) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL " 0 " INPUT VOLTAGE UP TO 1.5V (HIGH NOISE IMMUNITY)
- SEPARATE HIGH VOLTAGE POWER SUPPLY (UP TO 44V)

The L293C is a monolithic high voltage, high current integrated circuit four channel driver in a 20 pin DIP. It is designed to accept standard TTL or DTL input logic levels and drive inductive loads (such as relays, solenoids, DC and stepping motors) and switching power transistors.

The device may easily be used as a dual H-bridge driver: separate chip enable and high voltage power supply pins are provided for each Hbridge. In addition, a separate power supply is provided for the logic section of the device.
The L293C is assembled in a 20 lead plastic package which has 4 center pins connected together and used for heatsinking.

Powerdip

(16+2+2)

ORDER CODE: L293C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	50	V
$V_{\text {ss }}$	Logic supply voltage	7	V
V_{1}	Input voltage	7	V
$V_{\text {EN }}$	Enable voltage	7	V
lout	Peak output current (non-repetitive $t=5 \mathrm{~ms}$)	1.2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {ground-pins }}=80^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	C

CONNECTION DIAGRAM

(Top view)

TRUTH TABLE

INPUT	ENABLE	OUTPUT
H	H	H
L	H	L
X	L	Z

$Z=$ High output impedance
$X=$ Don't care

SWITCHING TIMES

THERMAL DATA

$R_{\text {th J-case }}$	Thermal resistance junction-case	\max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (For each channel, $\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Supply voltage ($\mathrm{pin} 9,10$)		$\mathrm{V}_{\text {SS }}$		44	v
$\mathrm{V}_{\text {ss }}$	Logic supply voltage (pin 20)		4.5		7	v
Is	Total quiescent supply current (pin 9, 10)	$V_{i}=L ; \quad \mathrm{I}_{0}=0 ; \quad V_{E N}=H$		2	6	mA
		$V_{1}=H ; \quad I_{0}=0 ; \quad V_{E N}=H$		16	24	
		$V_{E N}=L$			4	
Iss	Total quiescent logic supply current (pin 20)	$V_{i}=L ; \quad \mathrm{I}_{0}=0 ; \quad V_{E N}=H$		44	60	mA
		$V_{i}=H ; \quad \mathrm{I}_{0}=0 ; \quad V_{E N}=H$		16	22	
		$\mathrm{V}_{\mathrm{EN}}=\mathrm{L}$		16	24	
$\mathrm{V}_{\text {IL }}$	Input low voltage (pin 2, 8, 12, 19)		-0.3		1.5	v
$\mathrm{V}_{1} \mathrm{H}$	Input high voltage (pin 2, 8, 12, 19)		2.3		$\mathrm{v}_{\text {ss }}$	V
IIL	Low voltage input current (pin 2, 8, 12, 19)	$\mathrm{V}_{\mathrm{i}}=1.5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
$I_{1 H}$	High voltage input current (pin 2, 8, 12, 19)	$2.3 V \leqslant V_{1} \leqslant V_{\text {Ss }}-0.6 \mathrm{~V}$		30	100	$\mu \mathrm{A}$
$V_{\text {ENL }}$	Enable low voltage (pin 1, 11)		-0.3		1.5	V
$\mathrm{V}_{\text {ENH }}$	Enable high voltage (pin 1, 11)		2.3		$\mathrm{V}_{\text {ss }}$	\checkmark
IENL	Low voltage enable current (pin 1, 11)	$\mathrm{V}_{\mathrm{ENL}}=1.5 \mathrm{~V}$		-30	-100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ENH }}$	High voltage enable current (pin 1, 11)	$2.3 \mathrm{~V} \leqslant \mathrm{VENH} \leqslant \mathrm{V}_{\text {ss }}-0.6$			± 10	$\mu \mathrm{A}$
$V_{\text {CE (sat) }}$	Source output saturation voltage (pins 3, 7, 13, 18)	$\mathrm{I}_{0}=-0.6 \mathrm{~A}$		1.4	1.8	V
$\mathrm{V}_{\text {CE (sat) }}$	Sink output saturation voltage (pins 3, 7, 13, 18)	$\mathrm{I}_{0}=+0.6 \mathrm{~A}$		1.2	1.8	v
t_{r}	Rise time (${ }^{\text {) }}$	0.1 to $0.9 \mathrm{~V}_{0}$		250		ns
t_{f}	Fall time (*)	0.9 to $0.1 \mathrm{~V}_{0}$		250		ns
$\mathrm{t}_{\text {on }}$	Turn-on delay (*)	$0.5 \mathrm{~V}_{1}$ to $0.5 \mathrm{~V}_{0}$		750		ns
$\mathrm{t}_{\text {off }}$	Turn-off delay (*)	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}$		200		ns

(*) See switching times diagram

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

PRELIMINARY DATA

- 600mA. OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (NON REPETITIVE) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VILTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

The L293D is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.
This device is suitable for use in switching applications at frequencies up to 5 kHz .

The L293D is assembled in a 16 lead plastic package which has 4 center pins connected together and used for heatsinking.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	36	V
$\mathrm{V}_{\text {ss }}$	Logic supply voltage	36	V
V_{i}	Input voltage	7	V
$V_{\text {en }}$	Enable voltage	7	V
$\mathrm{I}^{\text {o }}$	Peak output current (100μ s non repetitive)	1.2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {ground-pins }}=80^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (For each channel, $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 8)		$V_{\text {ss }}$		36	V
$V_{\text {ss }}$	Logic supply voltage (pin 16)		4.5		36	V
I_{5}	Total quiescent supply current (pin 8)	$V_{i}=L \quad I_{0}=0 \quad V_{\text {en }}=H$		2	6	mA
		$V_{i}=H \quad I_{0}=0 \quad V_{\text {en }}=H$		16	24	
		$V_{\text {en }}=L$			4	
$I_{\text {ss }}$	Total quiescent logic supply current (pin 16)	$\mathrm{V}_{\mathrm{i}}=\mathrm{L} \quad \mathrm{I}_{\mathrm{o}}=0 \quad \mathrm{~V}_{\text {en }}=\mathrm{H}$		44	60	mA
		$V_{i}=H \quad \mathrm{I}_{0}=0 \quad V_{\text {en }}=H$		16	22	
		$V_{\text {en }}=L$		16	24	
$V_{\text {IL }}$	Input low voitage (pin 2, 7, 10, 15)		-0.3		1.5	V
$\mathrm{V}_{\text {IH }}$	Input high voltage (pin 2, 7, 10, 15)	$\mathrm{V}_{5 s} \leqslant 7 \mathrm{~V}$	2.3		V_{ss}	V
		$\mathrm{V}_{\text {ss }}>7 \mathrm{~V}$	2.3		7	
$I_{\text {IL }}$	Low voltage input current (pin 2, 7, 10, 15)	$\mathrm{V}_{\text {IL }}=1.5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
$I_{1 H}$	High voltage input current (pin 2, 7, 10, 15)	$2.3 \mathrm{~V} \leqslant \mathrm{~V}_{1 H} \leqslant \mathrm{~V}_{\text {ss }}-0.6 \mathrm{~V}$		30	100	$\mu \mathrm{A}$
$V_{\text {enL }}$	Enable low voltage (pin 1,9)		-0.3		1.5	V
$\mathrm{V}_{\text {enH }}$	Enable high voltage (pin 1, 9)	$\mathrm{V}_{\mathrm{ss}} \leqslant 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {ss }}$	V
		$\mathrm{V}_{\text {ss }}>7 \mathrm{~V}$	2.3		7	
IenL	Low voltage enable current current (pin 1,9)	$V_{\text {enL }}=1.5 \mathrm{~V}$		-30	-100	$\mu \mathrm{A}$
ienH	High voltage enable current (pin 1, 9)	$2.3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{enH}} \leqslant \mathrm{V}_{\mathrm{ss}}-0.6 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEsath }}$	Source output saturation voltage (pins 3, 6, 11, 14)	$\mathrm{I}_{\mathrm{O}}=-0.6 \mathrm{~A}$		1.4	1.8	V
$V_{\text {cesatL }}$	Sink output saturation voltage (pins 3, 6, 11, 14)	$\mathrm{I}_{\mathrm{O}}=+0.6 \mathrm{~A}$		1.2	1.8	V
V_{F}	Clamp diode forward voltage	$\mathrm{I}_{\mathrm{o}}=600 \mathrm{~mA}$		1.3		V
t_{r}	Rise time (*)	0.1 to $0.9 \mathrm{~V}_{0}$		250		ns
t_{f}	Fall time (*)	0.9 to $0.1 \mathrm{~V}_{\text {o }}$		250		ns
ton	Turn-on delay (*)	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{0}$		750		ns
$t_{\text {off }}$	Turn-off delay (*)	$0.5 \mathrm{~V}_{\text {i }}$ to $0.5 \cdot \mathrm{~V}_{0}$		200		ns

(*) See fig. 1

TRUTH TABLE (One channel)

INPUT	ENABLE (*)	OUTPUT
H	H	H
L	H	L
H	L	Z
L	L	Z

$\mathrm{Z}=$ High output impedance
(*) Relative to the considered channel

Fig. 1 - Switching Times

L2720/2/4

LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

- OUTPUT CURRENT TO 1A
- operates at low voltages
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- low saturation voltage
- THERMAL SHUTDOWN
- CLAMP DIODE

The L2720, L2722 and L2724 are monolithic integrated circuits in powerdip, minidip and SIP-9 packages, intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

They are particularly indicated for driving, inductive loads, as motor and finds applications in compact-disc VCR automotive, etc.
The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	28	V
$\mathrm{V}_{\text {s }}$	Peak supply voltage (50ms)	50	V
V_{1}	Input voltage	$V_{\text {s }}$	
V_{1}	Differential input voltage	$\pm \mathrm{V}_{\text {s }}$	
1 。	DC output current	1	A
I_{p}	Peak output current (non repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$ (L2720), $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$ (L2722)	1	W
	$\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}(\mathrm{L2720})$	5	W
	$\mathrm{T}_{\text {case }}=50^{\circ} \mathrm{C}$ (L2724)	10	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{J}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAMS

CONNECTION DIAGRAMS
(Top view)

L2722

L2724

L2720

SCHEMATIC DIAGRAM (one section)

THERMAL DATA		SIP-9	Powerdip	Minidip	
$R_{\text {th } j \text { - case }}$	Thermal resistance junction-pins	Thermal resistance junction-albient		\max	$10^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} \mathrm{j}$-amb	$15^{\circ} \mathrm{C} / \mathrm{W}$	${ }^{*} 70^{\circ} \mathrm{C} / \mathrm{W}$			

[^3]ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Fig. 1 - Quiescent current
vs. supply voltage

Fig. 2 - Open loop gain vs. frequency

Fig. 3 - Common mode rejection vs. frequency

Fig. 4 - Output swing vs. load current ($\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$)

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 5 - Output swing vs. load current ($\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}$)

Fig. 7 - Channel separation
vs. frequency

APPLICATION SUGGESTION

In order to avoid possible instability occurring into final stage the usual suggestions for the linear power stages are useful, as for instance:

- layout accuracy;
- A 100 nF capacitor connected between supply pins and ground;
- boucherot cell (0.1 to $0.2 \mu \mathrm{~F}+1 \Omega$ series) between outputs and ground or across the load. With single supply operation, a resistor ($1 \mathrm{~K} \Omega$) between the output and supply pin can be necessary for stability.

Fig. 8 - Bidirectional DC motor control with $\mu \mathrm{P}$ compatible inputs

$\mathrm{V}_{\mathrm{S} 1}=$ logic supply voltage
Must be $\mathrm{V}_{\mathrm{S} 2}>\mathrm{V}_{\mathrm{S} 1}$
$\mathrm{E} 1, \mathrm{E} 2=$ logic inputs

Fig. 9 - Servocontrol for compact-disc

Fig. 10 - Capstan motor control in video recorders

L2720/2/4

Fig. 11 - Motor current control circuit

Note: The input voltage level is compatible with L291 (5-BIT D/A converter)

Fig. 12 - Bidirectional speed control of DC motors.
For circuit stability ensure that $R_{X}>\frac{2 R 3 \circ R 1}{R_{M}}$ where $R_{M}=$ internal resistance of motor. The voltage available at the terminals of the motor is $V_{M}=2\left(V_{1}-\frac{V_{s}}{2}\right)+\left|R_{0}\right| . I_{M}$ where $\left|R_{0}\right|=\frac{2 R \circ R 1}{R_{X}}$ and I_{M} is the motor current.

Fig. 13 - VHS-VCR Motor control circuit

LOW DROP DUAL POWER OPERATIONAL AMPLIFIER

ADVANCE DATA

- output current to 1a
- OPERATES AT LOW VOLTAGES
- Single or split supply
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN
- CLAMP DIODE

The L2726 is a monolithic integrated circuit in SO-20 package intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

It is particularly indicated for driving inductive loads, as motor and finds applications in com-pact-disc VCR automotive, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	28	V
$V_{\text {s }}$	Peak supply voltage (50 ms)	50	V
V_{i}	Input voltage	$V_{\text {s }}$	
V_{i}	Differential input voltage	$\pm \mathrm{V}_{\text {s }}$	
10	DC output current	1	A
I_{p}	Peak output current (non repetitive)	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{Tamb}=85^{\circ} \mathrm{C}$	1	W
	$\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM (one section)

THERMAL DATA

| $R_{\text {th j-case }}$
 $R_{\text {th j-amb }}$ | Thermal resistance junction-case
 Thermal resistance junction-ambient (|
| :--- | :--- | :--- | :--- | :--- |

(*) With 4 sq. cm copper area heatsink

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Fig. 1 - Quiescent current
vs. supply voltage

Fig. 2 - Open loop gain vs.
frequency

Fig. 3 - Common mode rejection vs. frequency $\boldsymbol{y}_{6.0,61}$

Fig. 4 - Output swing vs. load current $\left(V_{\mathrm{s}}= \pm 5 \mathrm{~V}\right)$

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 5 - Output swing vs. load current ($\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}$)

Fig. 7 - Channel separation
vs. frequency

PRINTER SOLENOID DRIVER

The L3654S is a printer solenoid driver containing ten open-collector driver outputs and a ten-bit serial-in, parallel-out register.
Data is clocked into the shift register serially and transferred to the open-collector outputs by an enable input. Serial input data is loaded by the rising edge of the clock. A serial output from the tenth bit is provided which changes at the falling edge of the clock. This output is not controlled by the enable input and remains active at all time.
The L3654S is pin to pin compatible with the standard L 3654 , but can work with V_{s} down to 4.75 V . Each output is rated at 250 mA (sink) and is
clamped to ground internally at 50 V to dissipate stored energy in inductive loads.
The L3654S is supplied in a 16 lead dual in-line plastic package, and its main fields of application comprise thermal printers, cash registers and printing pocket calculators.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	9.5	V
V_{i}	Input voltage	9.5	V
$V_{\text {E }}$	External supply voltage	45	V
I_{0}	Output current (single output)	0.4	A
I_{g}	Ground current	4.0	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation ($\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$)	1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

L3654S

CONNECTION DIAGRAM

(top view)

OUTPUT ENABLE 1 OUTP 6
OUTPUT 7
OUTPUT 8
OUTPUT 9
OUTPUT 10
GND OUTPUT

Fig. 1 - Timing diagram

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	$\max \quad 80 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=0^{\circ}\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			4.75		9.5	V
I_{S}	Supply current	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}=9.5 \mathrm{~V} \end{aligned}$	$V_{E N}=0 \mathrm{~V} ; \mathrm{V}_{\text {DO }}=0 \mathrm{~V}$		27	40	mA
			$\begin{aligned} & V_{E N}=2.6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \text { (each bit) } \end{aligned}$		55	70	mA
V_{E}	External operating supply voltage					40	V
'leak	Output leakage current (each output)	$V_{E}=40 \mathrm{~V}$	$V_{E N}=0 \mathrm{~V}$			1	mA
V_{z}	Internal clamp voltage	$\mathrm{I}_{\mathrm{z}}=0.3 \mathrm{~A}$ *	$\mathrm{V}_{\text {EN }}=O \mathrm{~V}$	45	50	65	V
$V_{\text {CE sat }}$	Output saturation voltage	$\mathrm{I}_{0}=250 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{EN}}=2.6 \mathrm{~V}$			1.6	V
$V_{\text {DI }}$ $V_{\text {CLK }}$ $V_{E N}$	Input logic levels (pins 1, 9, 10)	Low State (L)				0.8	V
		High state (H)		2.6			
${ }^{\prime} \mathrm{DI}$	Data input current	$\mathrm{V}_{\text {DI }}=2.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.3	0.57		
			$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$		0.57	0.75	
		$\mathrm{V}_{\text {DI }}=1 \mathrm{~V}$	$\mathrm{Tamb}=70^{\circ} \mathrm{C}$		220		$\mu \mathrm{A}$
${ }^{\text {I CLK }}$	Clock input current	$\mathrm{V}_{\text {CLK }}=2.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.2	0.33		
			$\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$		0.33	0.5	
		$\mathrm{V}_{\text {CLK }}=1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$		125		$\mu \mathrm{A}$
$I_{\text {EN }}$	Enable input current	$V_{E N}=2.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.2	0.33		mA
			$\mathrm{Tamb}=0^{\circ} \mathrm{C}$		0.33	0.5	
		$V_{E N}=1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$		125		$\mu \mathrm{A}$
$R_{1 N}$	Input pull-down resistance Clock input	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CLK }}<\mathrm{V}_{\text {s }}$		8		$K \Omega$
	Enable input	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{EN}}<\mathrm{V}_{5}$		8		
	Data input	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {DI }}<\mathrm{V}_{\text {S }}$		4.5		
$\mathrm{V}_{\text {DO }}$	Output logic levels (pin 7)	Low state (L) $V_{D I}=0 V$	$\mathrm{I}_{\mathrm{DO}}($ pin 7$)=0$		0.01	0.5	V
		$\begin{aligned} & \text { High state }(\mathrm{H}) \\ & \mathrm{V}_{\mathrm{DI}}=2.6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DO}}(\text { pin } 7)=-0.75 \mathrm{~mA} \end{aligned}$		2.6	3.4		V
$\mathrm{R}_{\text {DO }}$	Output puli-down resistance (pin 7)	$\mathrm{V}_{\text {DI }}=0 \mathrm{~V}$	$V_{\text {DO }}=1 \mathrm{~V}$		14		$K \Omega$

* Pulsed: pulse duration $=300 \mu$ s, duty cycle $=2 \%$

ELECTRICAL CHARACTERISTICS (see fig. 1 and the section "definition of terms")

Parameter		Test conditions	Min.	Typ.	Max.	Unit
Clock, data and enable input	${ }^{t}$ CLK		4			$\mu \mathrm{s}$
	$\overline{{ }^{\text {c }} \text { CLK }}$		5.5			
	${ }^{\text {t SET-UP }}$		1			
	$\mathrm{t}_{\text {HOLD }}$		3			
Clock to enable delay ${ }^{\text {t CLK EN }}$			2 tBIT			
Enable to clock delay	${ }^{\text {t EN CLK }}$		${ }_{\text {t BIT }}$			
Data output delay	${ }^{\text {t }}$ PDH, ${ }^{\text {tPDL }}$	$R_{L}=5 \mathrm{~K} \Omega, \quad C_{L} \leqslant 10 \mathrm{pF}$		0.8	2.5	$\mu \mathrm{s}$
Output delay	tPDEL			3		$\mu \mathrm{s}$
	${ }^{\text {tPDEH }}$			3.5		
Output rise time		$\mathrm{R}_{\mathrm{L}}=100 \Omega, C_{L}<100 \mathrm{pF}$		1.2		$\mu \mathrm{s}$
Output fall time		$R_{L}=100 \Omega, C_{L}<100 \mathrm{pF}$		1.2		$\mu \mathrm{s}$
$\mathrm{V}_{\text {DO }}$ rise time				0.4		$\mu \mathrm{s}$
$\mathrm{V}_{\text {DO }}$ fall time				0.4		$\mu \mathrm{s}$

DEFINITION OF TERMS

$\mathrm{V}_{\mathrm{ss}} \quad$: External power supply voltage. The return for open-collector relay driver outputs.
$\mathrm{V}_{\mathrm{DI}}, \mathrm{V}_{\mathrm{CLK}}, \mathrm{V}_{\mathrm{EN}}$: The voltages at the data, clock and enable inputs respectively.
$V_{\text {DO }} \quad:$ The voltage at data output.
$t_{\text {BIT }} \quad:$ Period of the incoming clock.
$\mathrm{t}_{\mathrm{CLK}} \quad:$ The portion of $\mathrm{t}_{\mathrm{BIT}}$ when $\mathrm{V}_{\mathrm{CLK}} \geqslant 2.6 \mathrm{~V}$.
$\overline{t_{C L K}} \quad$: The portion of $\mathrm{t}_{\mathrm{BIT}}$ when $\mathrm{V}_{\text {CLK }} \leqslant 0.8 \mathrm{~V}$.
$\mathrm{t}_{\text {HOLD }} \quad$: The time following the start of $\mathrm{t}_{\mathrm{CLK}}$ required to transfer data within the shift register.
$\mathrm{t}_{\text {SET-UP }}$: The time prior to the end of $\overline{\mathrm{t}_{\mathrm{CLK}}}$ required to insure valid data at the shift register input for subsequent clock transitions.

DUAL 5V REGULATOR WITH RESET

PRELIMINARY DATA

- OUTPUT CURRENTS: $\mathrm{I}_{01}=400 \mathrm{~mA}$
$\mathrm{I}_{02}=400 \mathrm{~mA}$
- FIXED PRECISION OUTPUT VOLTAGE 5V $\pm 2 \%$
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- LOW LEAKAGE CURRENT, LESS THAN $1 \mu \mathrm{~A}$ AT OUTPUT 1
- LOW QUIESCENT CURRENT (INPUT 1)
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- RESET OUTPUT HIGH
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION

The L4901A is a monolithic low drop dual 5 V regulator designed mainly tor supplying microprocessor systems.

Reset and data save functions during switch on/ off can be realized.

ABSOLUTE MAXIMUM RATINGS

$V_{I N}$	DC input voltage	24	V
	Transient input overvoltage ($\mathrm{t}=40 \mathrm{~ms}$)	60	V
I_{o}	Output current	internally limited	
T_{j}	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM
(Top view)

PIN FUNCTIONS

\mathbf{N}°	NAME	FUNCTION
1	INPUT 1	Low quiescent current 400 mA regulator input.
2	INPUT 2	400 mA regulator input.
3	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $10 \mu \mathrm{~A}$ constant current. When Reg. 2 is switch-ed-OFF the delay capacitor is discharged.
4	GND	Common ground.
5	RESET OUTPUT	When pin 3 reaches 5 V the reset output is switched high. Therefore $t_{R D}=C_{t}\left(\frac{5 V}{10 \mu A}\right) ; t_{R D}(m s)=C_{t}(n F)$
6	OUTPUT 2	$5 \mathrm{~V}-400 \mathrm{~mA}$ regulator output. Enabled if $\mathrm{V}_{\mathrm{O}} 1>\mathrm{V}_{\mathrm{RT}}$ and $V_{I N 2}>V_{1 T}$. If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.
7	OUTPUT 1	$5 \mathrm{~V}-400 \mathrm{~mA}$ regulator output with low leakage (in switch-OFF condition).

THERMAL DATA

$\mathrm{R}_{\text {th f-case }}$	Thermal resistance junction-case	\max	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=14,4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	DC operating input voltage				20	V
V_{01}	Output voltage 1	R load $1 \mathrm{~K} \Omega$	4.95	5.05	5.15	V
$\mathrm{V}_{02 \mathrm{H}}$	Output voltage 2 HIGH	R load $1 \mathrm{~K} \Omega$	$\mathrm{V}_{01}-0.1$	5	V_{01}	V
$\mathrm{V}_{\text {O2L }}$	Output voltage 2 LOW	$\mathrm{I}_{02}=-5 \mathrm{~mA}$		0.1		V
l_{01}	Output current 1	$\Delta V_{01}=-100 \mathrm{mV}$	400			mA
${ }^{\text {I }}$ O1	Leakage output 1 current	$\begin{aligned} & V_{I N}=0 \\ & V_{01} \leqslant 3 V \end{aligned}$			1	$\mu \mathrm{A}$
l_{02}	Output current 2	$\Delta V_{02}=-100 \mathrm{mV}$	400			mA
$\mathrm{V}_{\text {i01 }}$	Output 1 dropout voltage (*)	$\begin{aligned} & I_{01}=10 \mathrm{~mA} \\ & I_{01}=100 \mathrm{~mA} \\ & I_{01}=300 \mathrm{~mA} \end{aligned}$		0.7 0.8 1.1	$\begin{gathered} 0.8 \\ 1 \\ 1.4 \end{gathered}$	V V V
$V_{\text {IT }}$	Input threshold voltage		$\mathrm{V}_{01}+1.2$	6.4	$\mathrm{V}_{01}+1.7$	V
$V_{\text {ITH }}$	Input threshold voltage hyst.			250		mV
ΔV_{01}	Line regulation 1	$\begin{aligned} & 7 V<V_{\text {IN }}<18 V \\ & \mathrm{I}_{01}=5 \mathrm{~mA} \end{aligned}$		5	50	mV
ΔV_{02}	Line regulation 2	$\cdots \quad \mathrm{I}_{02}=5 \mathrm{~mA}$		5	50	mV
ΔV_{01}	Load regulation 1	$5 \mathrm{~mA}<\mathrm{I}_{01}<400 \mathrm{~mA}$		50	100	mV
ΔV_{02}	Load regulation 2	$5 \mathrm{~mA}<\mathrm{l}_{02}<400 \mathrm{~mA}$		50	100	mV
${ }^{\prime} \mathrm{Q}$	Quiescent current	$\begin{aligned} & 0<V_{I N}<13 V \\ & 7 V<V_{I N}<13 V \\ & I_{02}=I_{01} \leqslant 5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {Q1 }}$	Quiescent current 1	$\begin{array}{ll} 6.3 V<V_{\text {IN } 1} & <13 V \\ V_{\text {IN } 2}=0 & I_{02}=0 \\ I_{01} \leqslant 5 \mathrm{~mA} \quad \end{array}$		0.6	0.9	mA

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{RT}	Reset threshold voltage		$\mathrm{V}_{02}-0.15$	4.9	$\mathrm{V}_{02}-0.05$	V
$\mathrm{V}_{\text {RTH }}$	Reset threshold hysteresis		30	50	80	mV
$\mathrm{V}_{\text {RH }}$	Reset output voltage HIGH	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{02}{ }^{-1}$	4.12	V_{02}	V
$\mathrm{V}_{\text {RL }}$	Reset output voltage LOW	$\mathrm{I}_{\mathrm{R}}=-5 \mathrm{~mA}$		0.25	0.4	V
$t_{\text {RD }}$	Reset pulse delay	$\mathrm{C}_{\mathrm{t}}=10 \mathrm{nF}$	3	5	11	ms
t_{d}	Timing capacitor discharge time	$C_{t}=10 n \mathrm{~F}$			20	$\mu \mathrm{s}$
$\frac{\Delta V_{01}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\text {amb }} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{02}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{amb}} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR1	Supply voltage rejection	$\begin{array}{ll} f=100 \mathrm{~Hz} & V_{R}=0.5 \mathrm{~V} \\ & \mathrm{I}_{0}=100 \mathrm{~mA} \end{array}$	50	84		dB
SVR2	Supply voltage rejection		50	80		dB
TJSD	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.

APPLICATION INFORMATION

In power supplies for $\mu \mathrm{P}$ systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4901A makes it very easy to supply such equipments; it provides two voltage regulators (both 5 V high precision) with separate inputs plus a reset output for the data save function.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.
When the input 2 reaches $\mathrm{V}_{1 T}$ and the output 1 is higher than V_{RT} the output $2\left(\mathrm{~V}_{02}\right)$ switches on and the reset output $\left(\mathrm{V}_{\mathrm{R}}\right)$ also goes high after a programmable time $T_{R D}$ (timing capacitor).
V_{02} and V_{R} are switched together at low level when one of the following conditions occurs:

- an input overvoltage
- an overload on the output $1\left(\mathrm{~V}_{01}<\mathrm{V}_{\mathrm{RT}}\right)$;
- a switch off ($\mathrm{V}_{I N}<\mathrm{V}_{I T}-\mathrm{V}_{I T H}$);
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features:

- 5 V internal reference without voltage divider between the output and the error comparator;
- very low drop series regulator element utilizing current mirrors;
permit high output impedance and then very low leakage current error even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The V_{01}

CIRCUIT OPERATION (continued)

regulator also features low consumption 10.6 mA typ.) to minimize battery drain in applications where the V_{1} regulator is permanently connected to a battery supply.

The V_{02} output can supply other non essential 5 V circuits wich may be powered down when the system is inactive, or that must be powered
down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT', permitting RAM access only in correct power conditions, or as a "BACKUP ENABLE' to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

Fig. 1

APPLICATION SUGGESTIONS

Fig. 2 shows an application circuit for a $\mu \mathrm{P}$ system typically used in trip computers or in car radios with programmable tuning.
Reg. 1 is permanently connected to a battery and supplies a CMOS time-of-day clock and a CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OFF when the system is inactive.
Fig. 4 shows the L4901A with a back up battery on the V_{01} output to maintain a CMOS time-ofday clock and a stand by type N-MOS $\mu \mathrm{P}$. The reset output makes sure that the RAM is forced into the low consumption stand by state, so the access to memory is inhibit and the back up battery voltage cannot drop so low that memory contents are corrupted.
In this case the main on-off switch disconnects both regulators from the supply battery.

The L4901A is also ideal for microcomputer systems using battery backup CMOS static RAMs. As shown in fig. 5 the reset output is used both to disable the $\mu \mathrm{P}$ and, through the address decoder M74HC138, to ensure that the RAMS are disabled as soon as the main supply starts to fall.
Another interesting application of the L4901A is in $\mu \mathrm{P}$ system with shadow memories. (see fig. 6)
When the input voltage goes below $\mathrm{V}_{1 T}$, the reset output enables the execution of a routine that saves the machine's state in the shadow RAM (xicor x 2201 for example).

Thanks to the low consumption of the Reg. 1 a $680 \mu \mathrm{~F}$ capacitor on its input is sufficient to provide enough energy to complete the operation. The diode on the input guarantees the supply of the equipment even if a short circuit on V_{1} occurs.

APPLICATION SUGGESTION (continued)
Fig. 2

Fig. 3 - P.C. board component layout of fig. 2 (1: 1 scale)

APPLICATION SUGGESTION (continued)

Fig. 4

Fig. 5

APPLICATION SUGGESTION (continued)

Fig. 6

Fig. 7 - Quiescent current
(Reg. 1) vs. output current

Fig. 10 - Regulator 1 output current and short circuit current vs. input voltage

Fig. 8 - Quiescent current
(Reg. 1) vs. input voltage

Fig. 11 - Regulator 2 output current and short circuit current vs. input voltage

Fig. 9 - Total quiescent current vs. input voltage

Fig. 12 - Supply voltage rejection regulators 1 and 2 vs. input ripple frequence

DUAL 5V REGULATOR WITH RESET AND DISABLE

PRELIMINARY DATA

- DOUBLE BATTERY OPERATING
- OUTPUT CURRENTS: $\mathrm{I}_{01}=300 \mathrm{~mA}$
$\mathrm{I}_{02}=300 \mathrm{~mA}$
- FIXED PRECISION OUTPUT VOLTAGE 5V $\pm 2 \%$
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- OUTPUT 2 DISABLE LOGICAL INPUT
- LOW LEAKAGE CURRENT, LESS THAN $1 \mu \mathrm{~A}$ AT OUTPUT 1
- RESET OUTPUT NORMALLY HIGH
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION

The L4902A is a monolithic low drop dual 5 V regulator designed mainly for supplying microprocessor systems.
Reset and data save functions and remote switch on/off control can be realized.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {IN }}$	DC input voltage	28	V
	Transient input overvoltage $(\mathrm{t}=40 \mathrm{~ms})$	60	V
I_{O}	Output current	internally limited	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

N°	NAME	FUNCTION
1	INPUT 1	Regulators common input.
2	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $5 \mu \mathrm{~A}$ constant current. When Reg. 2 is switch- ed-OFF the delay capacitor is discharged.
3	V_{02} DISABLE INPUT	A high level ($\left.>\mathrm{V}_{\mathrm{DT}}\right)$ disable output Reg. 2.
4	GND	Common ground.
5	RESET OUTPUT	When pin 2 reaches 5 V the reset output is switched high.

6	OUTPUT 2	$5 \mathrm{~V}-300 \mathrm{~mA}$ regulator output. Enabled if $\mathrm{V}_{\mathrm{O}} 1>\mathrm{V}_{\mathrm{RT}}$ DISABLE INPUT $<V_{D T}$ and $V_{I N}>V_{I T}$. If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.
7	OUTPUT 1	$5 \mathrm{~V}-300 \mathrm{~mA}$. Low leakage (in switch-OFF condition) output.

THERMAL DATA

| $R_{\text {th j-case }}$ | Thermal resistance junction-case | \max |
| :--- | :--- | :--- | $4^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{IN}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	DC operating input voltage				24	V
V_{01}	Output voltage 1	R load $1 \mathrm{~K} \Omega$	4.95	5.05	5.15	V
$\mathrm{V}_{02 \mathrm{H}}$	Output voltage 2 HIGH	R load $1 \mathrm{~K} \Omega$	$\mathrm{V}_{01}-0.1$	5	V_{01}	V
$\mathrm{V}_{02 \mathrm{~L}}$	Output voltage 2 LOW	$\mathrm{l}_{02}=-5 \mathrm{~mA}$		0.1		V
I_{01}	Output current 1 max.	$\Delta V_{01}=-100 \mathrm{mV}$	300			mA
'LO1	Leakage output 1 current	$\begin{aligned} & V_{I N}=0 \\ & V_{01} \leqslant 3 V \end{aligned}$			1	$\mu \mathrm{A}$
I_{02}	Output current 2 max.	$\Delta \mathrm{V}_{02}=-100 \mathrm{mV}$	300			mA
$\mathrm{V}_{\mathrm{i} 01}$	Output 1 dropout voltage (*)	$\begin{aligned} & I_{01}=10 \mathrm{~mA} \\ & I_{01}=100 \mathrm{~mA} \\ & I_{01}=300 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 1.1 \end{aligned}$	$\begin{gathered} 0.8 \\ 1 \\ 1.4 \end{gathered}$	V V V
$V_{\text {IT }}$	Input threshold voltage		$\mathrm{V}_{01}+1.2$	6.4	$\mathrm{V}_{01}+1.7$	V
$\mathrm{V}_{\mathrm{iTH}}$	Input threshold voltage hysteresis			250		mV
$\Delta \mathrm{V}_{01}$	Line regulation 1	$7 \mathrm{~V}<\mathrm{V}_{1 N}<24 \mathrm{~V} \quad \mathrm{I}_{01}=5 \mathrm{~mA}$		5	50	mV
ΔV_{02}	Line regulation 2	$\mathrm{I}_{02}=5 \mathrm{~mA}$		5	50	mV
$\Delta \mathrm{V}_{01}$	Load regulation 1	$5 \mathrm{~mA}<\mathrm{I}_{01}<300 \mathrm{~mA}$		40	80	mV
ΔV_{02}	Load regulation 2	$5 \mathrm{~mA}<\mathrm{I}_{02}<300 \mathrm{~mA}$		50	80	mV
I_{Q}	Quiescent current	$\begin{aligned} & 0<V_{\text {IN }}<13 V \\ & 7 V<V_{\text {IN }}<13 V V_{02} \text { LOW } \\ & 7 V<V_{1 N}<13 V V_{02} \mathrm{HIGH} \\ & I_{01}=I_{02} \leqslant 5 \mathrm{~mA} \end{aligned}$		4.5 2.7 1.6	$\begin{aligned} & 6.5 \\ & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {RT }}$	Reset threshold voltage		$\mathrm{V}_{02}-0.15$	4.9	$\mathrm{V}_{02}-0.05$	V
$\mathrm{V}_{\text {RTH }}$	Reset threshold hysteresis		30	50	80	mV

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {RH }}$	Reset output voltage HIGH	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{02}-1$	4.12	V_{02}	V
$\mathrm{V}_{\text {RL }}$	Reset output voltage LOW	$\mathrm{I}_{\mathrm{R}}=-1 \mathrm{~mA}$		0.25	0.4	V
t_{RD}	Reset pulse delay	$\mathrm{C}_{\mathrm{t}}=10 \mathrm{nF}$	3	5	11	ms
t_{d}	Timing capacitor discharge time	$C_{t}=10 n F$			20	$\mu \mathrm{s}$
$V_{\text {DT }}$	V_{02} disable threshold voitage			1.25	2.4	V
${ }^{1}$	V_{02} disable input current	$\begin{aligned} & V_{D} \leqslant 0.4 \mathrm{~V} \\ & V_{D} \geqslant 2.4 V \end{aligned}$		$\begin{aligned} & -150 \\ & -30 \end{aligned}$		$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$
$\frac{\Delta V_{01}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{amb}} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{02}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{Tamb} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR1	Supply voltage rejection	$f=100 \mathrm{~Hz} \quad \mathrm{~V}_{\mathrm{R}}=0.5 \mathrm{~V} \quad \mathrm{I}_{0}=100 \mathrm{~mA}$	50	84		dB
SVR2	Supply voltage rejection		50	80		dB
TJSD	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.

APPLICATION INFORMATION

In power supplies for $\mu \mathrm{P}$ systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4902A makes it very easy to supply such equipments; it provides two voltage regulators (both 5 V high precision) with common inputs plus a reset output for the data save function and a Reg. 2 disable input.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.
When the input reaches $\mathrm{V}_{I T}$ and the output 1 is higher than V_{RT} the output $2\left(\mathrm{~V}_{02}\right)$ switches on and the reset output (V_{R}) also goes high after a programmable time T_{RD} (timing capacitor).
V_{02} and V_{R} are switched together at low level when one of the following conditions occurs: - a high level ($>\mathrm{V}_{\mathrm{DT}}$) is applied on pin 3;

- an input overvoltage;
- an overload on the output $1\left(\mathrm{~V}_{01}<\mathrm{V}_{\mathrm{RT}}\right)$;
- a switch off $\left(\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{IT}}-\mathrm{V}_{\text {ITH }}\right)$;
and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features:

- 5 V internal reference without voltage divider between the output and the error comparator
- very low drop series regulator element utilizing current mirrors
permit high output impedance and then very low leakage current even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.

CIRCUIT OPERATION (continued)

The V_{02} output can supply other non essential 5 V circuits wich may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.
The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.
The disable function can be used for remote on/off control of circuits connected to the V_{02} output.

Fig. 1

APPLICATION SUGGESTION

Fig. 2 illustrate how the L4902A's disable input may be used in a CMOS μ Computer application.
The V_{01} regulator (low consumption) supply permanently a CMOS time of day clock and a CMOS μ computer chip with volatile memory. V_{02} output, supplying non-essential circuits, is turned OFF under control of a $\mu \mathrm{P}$ unit.

Configurations of this type are used in products where the OFF switch is part of a keyboard scanned by a micro which operates continuously even in the OFF state.
Another application for the L4902A is supplying a shadow-ram microcomputer chip (SGS M38SH72 for exemple) where a fast NV memory is backed up on chip by a EEPROM when a low level on
the reset output occurs.
By adding two CMOS-SCHMIDT-TRIGGER and few external components, also a watch dog function may be realized (see fig. 5). During normal operation the microsystem supplies a periodical pulse waveform; if an anomalous condition occours (in the program or in the system), the pulses will be absent and the disable input will be activated after a settling time determined by R1 C1. In this condition all the circuitry connected to V_{02} will be disabled, the system will be restarted with a new reset front.
The disable of V_{02} prevent spurious operation during microprocessor malfunctioning.

APPLICATION SUGGESTION (continued)

Fig. 2

Fig. 3 - P.C. board and component layout of the circuit of Fig. 2 (1: 1 scale)

APPLICATION SUGGESTION (continued)

Fig. 4

Fig. 5

APPLICATION SUGGESTION (continued)

Fig. 6 - Quiescent current vs. output current

Fig. 7 - Quiescent current vs. input voltage

Fig. 8 - Supply voltage rejection regulators 1 and 2 vs. input ripple frequence

DUAL5V REGULATOR WITH RESET AND DISABLE FUNCTIONS

PRELIMINARY DATA

- OUTPUT CURRENTS: $\mathrm{I}_{01}=50 \mathrm{~mA}$
$\mathrm{I}_{02}=100 \mathrm{~mA}$
- FIXED PRECISION OUTPUT VOLTAGE $5 \mathrm{~V} \pm 2 \%$
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
- reset output level related to OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- OUTPUT 2 DISABLE LOGICAL INPUT
- LOW LEAKAGE CURRENT, LESS THAN $1 \mu \mathrm{~A}$ AT OUTPUT 1
- INPUT OVERVOLTAGE PROTECTION UP TO 60 V
- RESET OUTPUT NORMALLY LOW
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION

The L4903 is a monolithic low drop dual 5 V regulator designed mainly for supplying microprocessor systems.
Reset, data save functions and remote switch on/off control can be realized.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}$	DC input voltage	24	V
V_{t}	Transient input overvoltage $(t=40 \mathrm{~ms})$	60	V
$P_{\text {tot }}$	Power dissipation at $T_{\text {amb }}=50^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

N°	NAME	FUNCTION
1	INPUT 1	Low quiescent current 50mA regulator input.
2	INPUT 2	100 mA regulator input.
3	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $10 \mu \mathrm{~A}$ constant current. When Reg. 2 is switchedOFF the delay capacitor is discharged.
4	GND	Common ground.
5	V_{02} DISABLE INPUT	A high level ($>\mathrm{V}_{\mathrm{DT}}$) disables output Reg. 2.
6	RESET OUTPUT	When pin 3 reaches 5 V the reset output is switched low. Therefore $\mathrm{t}_{\mathrm{RD}}=\mathrm{C}_{\mathrm{t}}\left(\frac{5 \mathrm{~V}}{10 \mu \mathrm{~A}}\right) ; \mathrm{t}_{\mathrm{RD}}(\mathrm{ms})=\mathrm{C}_{\mathrm{t}}(\mathrm{nF})$.

7 OUTPUT $2 \quad 5 \mathrm{~V}-100 \mathrm{~mA}$ regulator output. Enabled if $\mathrm{V}_{\mathrm{O}} 1>\mathrm{V}_{\mathrm{RT}}$. DISABLE INPUT $<V_{D T}$ and $V_{I N 2}>V_{I T}$. If Reg. 2 is switched OFF the C_{02} capacitor is discharged.

8 OUTPUT 1
$5 \mathrm{~V}-50 \mathrm{~mA}$ regulator output with low leakage in switchOFF condition.

THERMAL DATA

$R_{\text {th j-pin }}$	Thermal resistance junction-pin 4	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

P.C. board and components layout of the test circuit (1:1 scale)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{IN}}=14,4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	DC operating input voltage				20	V
V_{01}	Output voltage 1	R load $1 \mathrm{~K} \Omega$	4.95	5.05	5.15	V
$\mathrm{V}_{02 \mathrm{H}}$	Output voltage 2 HIGH	R load $1 \mathrm{~K} \Omega$	$\mathrm{V}_{01}-0.1$	5	V_{01}	V
$\mathrm{V}_{02 \mathrm{~L}}$	Output voltage 2 LOW	$\mathrm{I}_{02}=-5 \mathrm{~mA}$		0.1		V
I_{01}	Output current 1 max. (*)	$\Delta V_{01}=-100 \mathrm{mV}$	50			mA
$\mathrm{I}_{\text {LO1 }}$	Leakage output 1 current	$\begin{aligned} & V_{I N}=0 \\ & V_{01} \leqslant 3 V \end{aligned}$			1	$\mu \mathrm{A}$
l_{02}	Output current 2 max. (*)	$\Delta \mathrm{V}_{02}=-100 \mathrm{mV}$	100			mA
V_{101}	Output 1 dropout voltage (*)	$\begin{aligned} & I_{01}=10 \mathrm{~mA} \\ & I_{01}=50 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.7 \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$V_{\text {IT }}$	Input threshold voltage		$\mathrm{V}_{01}+1.2$	6.4	$\mathrm{V}_{01}+1.7$	V
$\mathrm{V}_{\text {ITH }}$	Input threshold voltage hysteresis			250		mV
ΔV_{01}	Line regulation 1	$7 \mathrm{~V}<\mathrm{V}_{1 \mathrm{~N}}<18 \mathrm{~V} \quad \mathrm{I}_{01}=5 \mathrm{~mA}$		5	50	mV
ΔV_{02}	Line regulation 2	$\mathrm{I}_{02}=5 \mathrm{~mA}$		5	50	mV
$\Delta \mathrm{V}_{01}$	Load regulation 1	$\mathrm{V}_{1 N 1}=8 \mathrm{~V} 5 \mathrm{~mA}<\mathrm{I}_{01}<50 \mathrm{~mA}$		5	20	mV
ΔV_{02}	Load regulation 2	$5 \mathrm{~mA}<\mathrm{I}_{02}<100 \mathrm{~mA}$		10	50	mV
I_{Q}	Quiescent current	$\begin{aligned} & 0<V_{I N}<13 V \\ & 7 V<V_{I N}<13 \mathrm{~V} V_{02} \text { LOW } \\ & 7 V<V_{I N}<13 \mathrm{~V} V_{02} \mathrm{HIGH} \\ & I_{01}=I_{02} \leqslant 5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 2.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {Q1 }}$	Quiescent current 1	$\begin{aligned} & 6.3 \mathrm{~V}<\mathrm{V}_{1 N_{1}}<13 \mathrm{~V} \\ & \mathrm{~V}_{1 N_{2}}=0 \\ & \mathrm{I}_{01}<5 \mathrm{~mA} \quad \mathrm{I}_{02}=0 \\ & \hline \end{aligned}$		0.6	0.9	mA

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {RT }}$	Reset threshold voltage		$V_{02}-0.4$	4.7	$V_{02}-0.2$	V
$V_{\text {RTH }}$	Reset threshold hysteresis		30	50	80	mV
$\mathrm{V}_{\text {RH }}$	Reset output voltage HIGH	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	V_{02-1}	4.12	V_{02}	V
$\mathrm{V}_{\text {RL }}$	Reset output voltage LOW	$\mathrm{I}_{\mathrm{R}}=-5 \mathrm{~mA}$		0.25	0.4	V
${ }^{\text {t }}$ RD	Reset pulse delay	$\mathrm{C}_{\mathrm{t}}=10 \mathrm{nF}$	3	5	11	ms
t_{d}	Timing capacitor discharge time	$C_{t}=10 \mathrm{nF}$			20	$\mu \mathrm{S}$
$V_{\text {DT }}$	V_{02} disable threshold voltage			1.25	2.4	V
I_{D}	V_{02} disable input current	$\begin{aligned} & V_{D} \leqslant 0.4 V \\ & V_{D} \geqslant 2.4 V \end{aligned}$		$\begin{gathered} -150 \\ 30 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\frac{\Delta V_{01}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{Tamb} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{02}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{Tamb} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR1	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz} \quad \mathrm{~V}_{\mathrm{R}}=0.5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	50	84		dB
SVR2	Supply voltage rejection	$\mathrm{I}_{0}=100 \mathrm{~mA}$	50	80		dB
TJSD	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current conditions.

APPLICATION INFORMATION

In power supplies for $\mu \mathrm{P}$ systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4903 makes it very easy to supply such equipments; it provides two voltage regulators (both 5 V high precision) with separate inputs plus a reset output for the data save function and Reg. 2 disable input.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.
When the input 2 reaches $V_{I T}$ and the output 1 is higher than V_{RT} the output $2\left(\mathrm{~V}_{02}\right.$ and $\left.\mathrm{V}_{\mathrm{R}}\right)$ switches on and the reset output $\left(\mathrm{V}_{\mathrm{R}}\right)$ goes low after a programmable time $T_{R D}$ (timing capacitor). V_{02} is switched at low level and V_{R} at high level when one of the following conditions occurs:

- a high level ($>\mathrm{V}_{\mathrm{DT}}$) is applied on pin 5;
- an input overvoltage;
- an overload on the output $1\left(\mathrm{~V}_{01}<\mathrm{V}_{\mathrm{RT}}\right)$;
- a switch off ($\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IT }}-\mathrm{V}_{\text {ITH }}$);
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features:

- 5 V internal reference without voltage divider between the output and the error comparator
- very low drop series regulator element utilizing current mirrors
permit high output impedance and then very low leakage current even in power down conditions.
This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.

CIRCUIT OPERATION (continued)

The V_{02} output can supply other non essential 5 V circuits wich may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT', permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE' to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.
The disable function can be used for remote on/off control of circuits connected to the V_{02} output.

Fig. 1

APPLICATION SUGGESTION

Fig. 2 illustrates how the L4903's disable input may be used in a CMOS μ Computer application.
The V_{01} regulator (low consumption) supply permanently a CMOS time of day clock and a CMOS μ computer chip with volatile memory. V_{02} output, supplying non-essential circuits, is
turned OFF under control of a $\mu \mathrm{P}$ unit.
Configurations of this type are used in products where the OFF switch is part of a keyboard scanned by a micro which operates continuously even in the OFF state.

Fig. 2

Fig. 3 - Quiescent current (Reg. 1) vs. output current

Fig. 5 -- Total quiescent current vs. input voltage

Fig. 4 - Quiescent current (Reg. 1) vs. input voltage

Fig. 6 - Supply voltage rejection regulators 1 and 2 vs. input ripple frequence

DUAL 5V REGULATOR WITH RESET

PRELIMINARY DATA

- OUTPUT CURRENTS: $\mathrm{I}_{01}=50 \mathrm{~mA}$
$l_{02}=100 \mathrm{~mA}$
- FIXED PRECISION OUTPUT VOLTAGE $5 \mathrm{~V} \pm 2 \%$
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- LOW leakage current, less than $1 \mu \mathrm{~A}$ AT OUTPUT 1
- LOW QUIESCENT CURRENT (INPUT 1)
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- RESET OUTPUT NORMALLY HIGH
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION

The L4904A is a monolithic low drop dual 5 V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions during switch on/ off can be realized.

Minidip Plastic
ORDERING NUMBER: L4904A

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}$	DC input voltage	24	V
	Transient input overvoltage $(t=40 \mathrm{~ms})$	60	V
I_{O}	Output current	internally limited	1
$P_{\text {tot }}$	Power dissipation at $T_{\text {amb }}=50^{\circ} \mathrm{C}$	W	
T_{j}	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

\mathbf{N}°	NAME	FUNCTION
1	INPUT 1	Low quiescent current 50 mA regulator input.
2	INPUT 2	100mA regulator input.
3	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $10 \mu \mathrm{~A}$ constant current. When Reg. 2 is switchedOFF the delay capacitor is discharged.
4	GND	Common ground.
6	RESET OUTPUT	When pin 3 reaches 5 V the reset output is switched high.
7	OUTPUT 2	$5 \mathrm{~V}-100 \mathrm{~mA}$ regulator output. Enabled if $\mathrm{V}_{\mathrm{O}} 1>\mathrm{V}_{\mathrm{RT}}$ and $V_{I N 2}>V_{I T}$. If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.
8	OUTPUT 1	$5 \mathrm{~V}-50 \mathrm{~mA}$ regulator output with low leakage in switchOFF condition.

THERMAL DATA

$\mathrm{R}_{\text {th j jamb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

P.C. board and components layout of the test circuit ($1: 1$ scale)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{IN}}=14,4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	DC operating input voltage				20	V
V_{01}	Output voltage 1	R load $1 \mathrm{~K} \Omega$	4.95	5.05	5.15	V
$\mathrm{V}_{02 \mathrm{H}}$	Output voltage 2 HIGH	R load $1 \mathrm{~K} \Omega$	$\mathrm{V}_{01}-0.1$	5	V_{01}	V
$\mathrm{V}_{02 \mathrm{~L}}$	Output voltage 2 LOW	$\mathrm{I}_{02}=-5 \mathrm{~mA}$		0.1		V
I_{01}	Output current 1	$\Delta V_{01}=-100 \mathrm{mV}$	50			mA
IL01	Leakage output 1 current	$\begin{aligned} & V_{I N}=0 \\ & V_{01} \leqslant 3 V \end{aligned}$			1	$\mu \mathrm{A}$
l_{02}	Output current 2	$\Delta V_{02}=-100 \mathrm{mV}$	100			mA
V_{101}	Output 1 dropout voltage (*)	$\begin{aligned} & I_{01}=10 \mathrm{~mA} \\ & I_{01}=50 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.7 \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.9 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
$V_{\text {IT }}$	Input threshold voltage		$\mathrm{V}_{01}+1.2$	6.4	$\mathrm{V}_{01}+1.7$	V
$\mathrm{V}_{\text {ITH }}$	Input threshold voltage hyst.			250		mV
ΔV_{01}	Line regulation	$7 V<V_{I N}<18 V \quad \frac{l_{01}=5 \mathrm{~mA}}{\mathrm{l}_{02}=5 \mathrm{~mA}}$		5	50	mV
ΔV_{02}	Line regulation 2			5	50	
ΔV_{01}	Load regulation 1	$V_{I N}=8 V \quad \frac{5 \mathrm{~mA}<\mathrm{I}_{01}<50 \mathrm{~mA}}{5 \mathrm{~mA}<\mathrm{I}_{02}<100 \mathrm{~mA}}$		5	20	mV
ΔV_{02}	Load regulation 2			10	50	
I_{Q}	Quiescent current	$\begin{aligned} & 0<V_{I N}<13 \mathrm{~V} \\ & 7 \mathrm{~V}<V_{I N}<13 \mathrm{~V} \\ & I_{02}=I_{01} \leqslant 5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {Q1 }}$	Quiescent current 1	$\begin{aligned} & 6.3 V<V_{1 N 1}<13 V \\ & V_{1 N 2}=0 \quad I_{02}=0 \\ & l_{01} \leqslant 5 \mathrm{~mA} \quad \end{aligned}$		0.6	0.9	mA

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {RT }}$	Reset threshold voltage		$V_{02}-0.15$	4.9	$V_{02-0.05}$	V
$\mathrm{V}_{\text {RTH }}$	Reset threshold hysteresis		30	50	80	mV
$\mathrm{V}_{\text {RH }}$	Reset output voltage HIGH	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	V_{02-1}	4.12	V_{02}	V
$\mathrm{V}_{\text {RL }}$	Reset output voltage LOW	$\mathrm{I}_{\mathrm{R}}=-5 \mathrm{~mA}$		0.25	0.4	\checkmark
${ }^{\text {t }}$ RD	Reset pulse delay	$C_{t}=10 \mathrm{nF}$	3		11	ms
t_{d}	Timing capacitor discharge time	$C_{t}=10 n \mathrm{~F}$			20	$\mu \mathrm{s}$
$\frac{\Delta V_{01}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{Tamb} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{02}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{Tamb} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR1	Supply voltage rejection	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	50	84		dB
SVR2	Supply voltage rejection	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	50	80		dB
TJSD	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.

APPLICATION INFORMATION

In power supplies for $\mu \mathrm{P}$ systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4904A makes it very easy to supply such equipments; it provides two voltage regulators (booth 5 V high precision) with separate inputs plus a reset output for the data save function.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input 2 reaches $V_{I T}$ and the output 1 is higher than V_{RT} the output $2\left(\mathrm{~V}_{02}\right)$ switches on and the reset output (V_{R}) also goes high after a programmable time $T_{R D}$ (timing capacitor).
V_{02} and V_{R} are switched together at low level when one of the following conditions occurs: - an input overvoltage

- an overload on the output $1\left(\mathrm{~V}_{01}<\mathrm{V}_{\mathrm{RT}}\right)$;
- a switch off ($\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IT }}-\mathrm{V}_{\text {ITH }}$);
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features:

- 5 V internal reference without voltage divider between the output and the error comparator;
- very low drop series regulator element utilizing current mirrors;
permit high output impedance and then very low leakage current even in power down conditions.
This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The V_{01} regulator also features low consumption 0.6 mA

CIRCUIT OPERATION (continued)

typ.) to minimize battery drain in applications where the V_{1} regulator is permanently connected to a battery supply.
The V_{02} output can supply other non essential 5 V circuits which may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply
voltages below the minimum value.
The reset output can be used as a "POWER DOWN INTERRUPT', permitting RAM access only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

Fig. 1

APPLICATION SUGGESTIONS

Fig. 2 shows an application circuit for a $\mu \mathrm{P}$ system.
Reg. 1 is permanently connected to a battery and supplies a CMOS time-of-day clock and a CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OFF when the system is inactive.
Fig. 3 shows the L4904A with a back up battery
on the V_{01} output to maintain a CMOS time-ofday clock and a stand by type C-MOS $\mu \mathrm{P}$. The reset output makes sure that the RAM is forced into the low consumption stand by state, so the access to memory is inhibit and the back up battery voltage cannot drop so low that memory contents are corrupted.
In this case the main on-off switch disconnects both regulators from the supply battery.

SGS-THOMSON
MncRoclecrionnce

APPLICATION SUGGESTIONS (continued)

Application Circuits of a Microprocessor system (Fig. 2) or with data save battery (Fig. 3). The reset output provide delayed rising front at the turn-off of the regulator 2.

Fig. 2

Fig. 3

APPLICATION SUGGESTIONS (continued)

Fig. 4 - Quiescent current
(Reg. 1) vs. output current

Fig. 6 - Total quiescent current vs. input voltage

Fig. 5 - Quiescent current
(Reg. 1) vs. input voltage

Fig. 7 - Supply voltage rejection regulators 1 and 2
vs. input ripple frequence

DUAL 5V REGULATOR WITH RESET

ADVANCE DATA

- DOUBLE BATTERY OPERATING
- OUTPUT CURRENTS: $I_{01}=200 \mathrm{~mA}$

$$
\mathrm{I}_{02}=300 \mathrm{~mA}
$$

- FIXED PRECISION OUTPUT VOLTAGE 5V $\pm 1 \%$
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- LOW LEAKAGE CURRENT, LESS THAN $1 \mu \mathrm{~A}$ AT OUTPUT 1
- LOW QUIESCIENT CURRENT (INPUT 1)
- INPUT OVERVOLTAGE PROTECTION UP TO 60V

- RESET OUTPUT HIGH

- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION

The L 4905 is a monolithic low drop dual 5 V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions during switch on/ off can be realized.

Heptawatt

ORDERING NUMBER: L4905

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {IN }}$	DC input voltage	28	V
	Transient input overvoltage $(\mathrm{t}=40 \mathrm{~ms})$	60	V
I_{o}	Output current	internally limited	
T_{j}	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

PIN FUNCTIONS

${ }^{\circ}$	NAME	FUNCTION
1	INPUT 1	Low quiescent current 200 mA regulator input.
2	INPUT 2	300 mA regulator input.
3	TIMING CAPACITOR	If Reg. 2 is switched-ON the delay capacitor is charged with a $10 \mu \mathrm{~A}$ constant current. When Reg. 2 is switch ed-OFF the delay capacitor is discharged.
4	GND	Common ground.
5	RESET OUTPUT	When pin 3 reaches 5 V the reset output is switched high Therefore $t_{R D}=C_{t}\left(\frac{5 V}{10 \mu A}\right) ; t_{R D}(m s)=C_{t}(n F)$
6	OUTPUT 2	$5 \mathrm{~V}-300 \mathrm{~mA}$ regulator output. Enabled if $\mathrm{V}_{\mathrm{O}} 1>\mathrm{V}_{\mathrm{RT}}$ and $V_{I N 2}>V_{I T}$. If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.
7	OUTPUT 1	$5 \mathrm{~V}-200 \mathrm{~mA}$ regulator output with low leakage (in switch-OFF condition).

THERMAL DATA

$\mathrm{R}_{\text {thf -case }}$	Thermal resistance junction-case	\max	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=14,4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ}\right.$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{1}	DC operating input voltage				24	V
V_{01}	Output voltage 1	R load $1 \mathrm{~K} \Omega$	5.0	5.05	5.1	V
$\mathrm{V}_{02 \mathrm{H}}$	Output voltage 2 HIGH	R load $1 \mathrm{~K} \Omega$	$\mathrm{v}_{01}-0.1$	5	V_{01}	V
$\mathrm{V}_{02 \mathrm{~L}}$	Output voltage 2 LOW	$\mathrm{I}_{02}=-5 \mathrm{~mA}$		0.1		V
I_{01}	Output current 1	$\Delta V_{01}=-100 \mathrm{mV}$	200			mA
${ }_{\text {L }}$ O1	Leakage output 1 current	$\begin{aligned} & V_{I N}=0 \\ & V_{01} \leqslant 3 V \end{aligned}$			1	$\mu \mathrm{A}$
I_{02}	Output current 2	$\Delta V_{02}=-100 \mathrm{mV}$	300			mA
$\mathrm{V}_{\mathrm{i} 01}$	Output 1 dropout voltage (*)	$\begin{aligned} & I_{01}=10 \mathrm{~mA} \\ & I_{01}=100 \mathrm{~mA} \\ & I_{01}=200 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 1.05 \end{aligned}$	$\begin{gathered} 0.8 \\ 1 \\ 1.3 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {IT }}$	Input threshold voltage		$\mathrm{V}_{01}+1.2$	6.4	$\mathrm{V}_{01}+1.7$	V
$V_{\text {ITH }}$	Input threshold voltage hyst.			250		mV
ΔV_{01}	Line regulation 1	$\begin{aligned} 7 V<V_{I N} & <24 \mathrm{~V} \\ \mathrm{I}_{01} & =5 \mathrm{~mA} \end{aligned}$		5	50	mV
ΔV_{02}	Line regulation 2	$\mathrm{I}_{02}=5 \mathrm{~mA}$		5	50	mV
ΔV_{01}	Load regulation 1	$5 \mathrm{~mA}<\mathrm{I}_{01}<200 \mathrm{~mA}$		40	80	mV
ΔV_{02}	Load regulation 2	$5 \mathrm{~mA}<\mathrm{I}_{02}<300 \mathrm{~mA}$		50	100	mV
$\mathbf{I}_{\mathbf{Q}}$	Quiescent current	$\begin{aligned} & 0<V_{I N}<13 V \\ & 7 V<V_{I N}<13 V \\ & I_{02}=I_{01} \leqslant 5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {Q1 }}$	Quiescent current 1	$\begin{array}{ll} 6.3 V<V_{1 N 1} & <13 V \\ V_{1 N 2}=0 & I_{02}=0 \\ l_{01} \leqslant 5 m A & \end{array}$		0.6	0.9	mA

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {RT }}$	Reset threshold voltage		$\mathrm{V}_{02}-0.15$	4.9	$\mathrm{V}_{02}-0.05$	V
$\mathrm{V}_{\text {RTH }}$	Reset threshold hysteresis		30	50	80	mV
$\mathrm{V}_{\text {RH }}$	Reset output voltage HIGH	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{02}{ }^{-1}$	4.12	V_{02}	V
$\mathrm{V}_{\text {RL }}$	Reset output voltage LOW	$\mathrm{I}_{R}=-5 \mathrm{~mA}$		0.25	0.4	V
$t_{\text {RD }}$	Reset puise delay	$C_{t}=10 n F$	3	5	11	ms
t_{d}	Timing capacitor discharge time	$C_{t}=10 n F$			20	$\mu \mathrm{s}$
$\frac{\Delta V_{01}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{amb}} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{02}}{\Delta T}$	Thermal drift	$-20^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{amb}} \leqslant 125^{\circ} \mathrm{C}$		$\begin{array}{r} 0.3 \\ -0.8 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR1	Supply voltage rejection	$\begin{array}{ll} f=100 \mathrm{~Hz} & V_{R}=0.5 \mathrm{~V} \\ & I_{0}=100 \mathrm{~mA} \end{array}$	$\begin{aligned} & 54 \\ & 50 \end{aligned}$	84		dB
SVR2	Supply voltage rejection		50	80		dB
$\mathrm{T}_{\text {JSD }}$	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of $\mathbf{2 5 m V}$ under constant output current condition.

APPLICATION INFORMATION

In power supplies for $\mu \mathrm{P}$ systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4905 makes it very easy to supply such equipments; it provides two voltage regulators (both 5 V high precision) with separate inputs plus a reset output for the data save function.

CIRCUIT OPERATION (see Fig. 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input 2 reaches $V_{I T}$ and the output 1 is higher than V_{RT} the output $2\left(\mathrm{~V}_{02}\right)$ switches on and the reset output $\left(\mathrm{V}_{\mathrm{R}}\right)$ also goes high after a programmable time T_{RD} (timing capacitor).
V_{02} and V_{R} are switched together at low level when one of the following conditions occurs:

- an input overvoltage.
- an overload on the output $1\left(V_{01}<V_{R T}\right)$;
- a switch off ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{IT}}-\mathrm{V}_{\text {ITH }}$);
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features:

- 5 V internal reference without voltage divider between the output and the error comparator;
- very low drop series regulator element utilizing current mirrors;
- permit high output impedance and then very low leakage current error even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The V_{01}

CIRCUIT OPERATION (continued)

regulator also features low consumption $(0.6 \mathrm{~mA}$ typ.) to minimize battery drain in applications where the V_{1} regulator is permanently connected to a battery supply.

The V_{02} output can supply other non essential 5 V circuits wich may be powered down when the system is inactive, or that must be powered
down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

Fig. 1

APPLICATION SUGGESTIONS

Fig. 2 shows an application circuit for a $\mu \mathrm{P}$ system typically used in trip computers or in car radios with programmable tuning.
Reg. 1 is permanently connected to a battery and supplies a CMOS time-of-day clock and a CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OFF when the system is inactive.

Fig. 4 shows the L 4905 with a back up battery on the V_{01} output to maintain a CMOS time-ofday clock and a stand by type N-MOS μ P. The reset output makes sure that the RAM is forced into the low consumption stand by state, so the access to memory is inhibit and the back up battery voltage cannot drop so low that memory contents are corrupted.
In this case the main on-off switch disconnects both regulators from the supply battery.

SGS-THOMSON
MRCROELECTRONUCS

APPLICATION SUGGESTION (continued)

Fig. 2

Fig. 3 - P.C. board component layout of fig. 2 (1: 1 scale)

APPLICATION SUGGESTION (continued)

Fig. 4

Fig. 5 - Quiescent current (Reg. 1) vs. output current

Fig. 6 - Quiescent current (Reg. 1) vs. input voltage

Fig. 7 - Total quiescent current vs. input voltage

L4915

ADJUSTABLE VOLTAGE REGULATOR PLUS FILTER

PRELIMINARY DATA

- OUTPUT VOLTAGE ADJUSTABLE FROM 4 TO 11V
- HIGH OUTPUT CURRENT (UP TO 250 mA)
- HIGH RIPPLE REJECTION
- HIGH LOAD REGULATION
- HIGH LINE REGULATION
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN WITH HYSTERESIS
- DUMP PROTECTION

This circuit combines both a filter and a voltage regulator in order to provide a high ripple rejection over a wide input voltage range.

A supervisor low-pass loop of the element prevents the output transistor from saturation at low input voltage.

The non linear behaviour of this control circuitry allows a fast settling of the filter.

Power Minidip $(4+4)$

ORDERING NUMBER: L4915

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{1}	Peak input voltage (300 ms)	40	V
V_{i}	DC input voltage	28	V
I_{0}	Output current	internally limited	
$P_{\text {tot }}$	Power dissipation	internally limited	
$T_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

Fig. 1 - Application circuit

S-7896/2

* OUTPUT VOLTAGE $V_{0}=\frac{2.5(R 1+R 2)}{R 2}$

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j-\mathrm{pins}}$	Thermal resistance junction-pins	\max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{i}}=13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=8.5 \mathrm{~V}\right.$, circuit of Fig. 1 , unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	Input voltage				20	V
V_{0}	Output voltage	$\begin{aligned} & V_{1}=6 \text { to } 18 \mathrm{~V} \\ & I_{0}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$	4		11	V
$\Delta V_{1 / O}$	Controlled input-output dropout voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{i}}=6 \text { to } 10 \mathrm{~V} \end{aligned}$		1.6	2.1	V
ΔV_{0}	Line regulation	$\begin{aligned} & V_{i}=12 \text { to } 18 \mathrm{~V} \\ & I_{0}=10 \mathrm{~mA} \end{aligned}$		1	20	mV
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{t}_{\mathrm{o}}=5 \text { to } 250 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\text {off }}=\geqslant 1 \mathrm{~ms} \end{aligned}$		50	100	mV
ΔV_{0}	Load regulation (filter mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=8.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{o}}=5 \text { to } 150 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\text {off }}=\geqslant 1 \mathrm{~ms} \end{aligned}$		150	250	mV
$V_{\text {ref }}$	Internal voltage reference			2.5		V
I_{q}	Quiescent current	$\mathrm{I}_{0}=5 \mathrm{~mA}$		1	2	mA
$\Delta I_{\text {q }}$	Quiescent current change	$\begin{aligned} & V_{i}=6 \text { to } 18 \mathrm{~V} \\ & \mathrm{I}_{0}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$		0.05		mA
$I_{A D}$	Adjust input current			40		nA
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{aligned} & V_{i a c}=1 V_{r m s} \\ & f=100 \mathrm{~Hz} \\ & I_{0}=150 \mathrm{~mA} \end{aligned}$ Regulator		71		dB
		Filter mode		35 (*)		dB
Isc	Short circuit current		250	300		mA
Ton	Switch on time	$\mathrm{I}_{0}=150 \mathrm{~mA} \quad \frac{\text { Filter mode }}{\text { Regulator }}$		500 (*)		ms
				300		ms
T_{j}	Thermal shutdown junction temperature			145		${ }^{\circ} \mathrm{C}$

(*) Depending of the C_{FT} capacitor.

PRINCIPLE OF OPERATION

During normal operation (input voltage upper than $V_{\text {IMIN }}=V_{\text {OUT NOM }}+\Delta V_{1 / O}$). The device works as a normal voltage regulator built around the OP1 of the block diagram.
The series pass element uses a PNP-NPN connection to reduce the dropout. The reference voltage of the OP1 is derived from a REF through the OP2 and Q3, acting as an active zener diode of value $V_{\text {REF }}$.
In this condition the device works in the range (1) of the characteristic of the non linear drop control unit (see fig. 2).
The output voltage is fixed to its nominal value:

$$
\begin{gathered}
V_{\text {OUTNOM }}=V_{\text {REF }}\left(1+\frac{R 1}{R 2}\right)= \\
V_{\text {CFT }}\left(1+\frac{R 1}{R 2}\right)
\end{gathered}
$$

The ripple rejection is quite high (70 dB) and independent to C_{FT} value.
On the usual voltage regulators, when the input voltage goes below the nominal value, the regulation transistors (series element) saturate bringing the system out of regulation and making it very sensible to every variation of the input voltage. On the contrary, a control loop on the L4915 consents to avoid the saturation of the series element by regulating the value of the reference voltage (pin 2). In fact, whenever the input voltage decreases below $\left(V_{\perp \text { MiN }}\right.$ the supervisor loop, utilizing a non linear OTA, forces the reference voltage at pin 2 to decrease by discharging C_{FT}. So, during the static mode, when the input voltage goes below $V_{\text {MIN }}$ the drop out is kept fixed
to about 1.6 V . In this condition the device works as a low pass filter in the range (2) of the OTA characteristic. The ripple rejection is externally adjustable acting on C_{FT} as follows:

$$
\begin{aligned}
& \operatorname{SVR}(j \Omega)=\left|\frac{V_{i}(j \Omega)}{V_{\text {out }}(j \Omega)}\right|= \\
& 1+\frac{10^{-6}}{\frac{g m}{j w C_{F T}}\left(1+\frac{R 1}{R 2}\right)}
\end{aligned}
$$

Where:
$\mathrm{gm}=2 \cdot 10^{-5} \Omega^{-1}=$ OTA'S typical transconductance value on linear region
$\frac{R 1}{R 2}=$ fixed ratio
$\mathrm{C}_{\mathrm{FT}}=$ value of capacitor in $\mu \mathrm{F}$
The reaction time of the supervisor loop is given by the transconductance of the OTA and by CFT. . When the value of the ripple voltage is so high and its negative peak is fast enough to determine an istantaneous decrease of the dropout till 1.2 V , the OTA works in a higher transconductance condition [range (3) of the characteristic] and discharges the capacitor rapidously.
If the ripple frequency is high enough the capacitor won't charge itself completely, and the output voltage reaches a small value allowing a better ripple rejection; the device's again working as a filter (fast transient range).
With $\mathrm{C}_{\mathrm{FT}}=10 \mu \mathrm{~F} ; \mathrm{f}=100 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{o}}=8.5 \mathrm{~V}$ a SVR of 35 is obtained.

Fig. 2 - Nonliner transfer characteristic of the drop control unit

$$
\text { S-961712 } \mid
$$

Fig. 3 - Supply voltage rejection vs. input voltage

Fig. 4 - Supply voltage rejection vs. frequency

Fig. 5 - V_{0} vs. supply voltage ($\mathrm{V}_{0}=8.5 \mathrm{~V}$)

Fig. 6 - Quiescent current vs. input voltage ($\mathrm{V}_{0}=8.5 \mathrm{~V}$)

Fig. 7 - Dropout vs. load current

VOLTAGE REGULATOR PLUS FILTER

PRELIMINARY DATA

- FIXED OUTPUT VOLTAGE 8.5V
- 250 mA OUTPUT CURRENT
- HIGH RIPPLE REJECTION
- HIGH LOAD REGULATION
- HIGH LINE REGULATION
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN WITH HYSTERESIS
- DUMP PROTECTION

This circuit combines both a filter and a voltage regulator in order to provide a high ripple rejection over a wider input voltage range.

A supervisor low-pass loop of the element prevents the output transistor from saturation at low input voltages.
The non linear behaviour of this control circuitry allows a fast settling of the filter.

Power Minidip
$(4+4)$

ORDER CODE: L4916

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{i}	Peak input voltage (300 ms)	40	V
V_{i}	DC input voltage	28	V
I_{o}	Output current	internally limited	
$P_{\text {tot }}$	Power dissipation	internally limited	
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	

CONNECTION DIAGRAM (top view)

THERMAL DATA

$R_{\text {th J-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-pins }}$	Thermal resistance junction pins	\max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{i}}=13.5 \mathrm{~V}\right.$, Test circuit of fig. 1 , unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	Input voltage				20	V
V_{0}	Output voltage	$\begin{aligned} & V_{i}=12 \text { to } 18 \mathrm{~V} \\ & \mathrm{I}_{0}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$	8.1	8.5	8.9	V
$\Delta V_{1 / O}$	Controlled input-output dropout voltage	$\begin{aligned} & V_{i}=5 \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$		1.6	2.1	V
ΔV_{0}	Line regulation	$\begin{aligned} & V_{i}=12 \text { to } 18 \mathrm{~V} \\ & I_{0}=10 \mathrm{~mA} \end{aligned}$		1	20	mV
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{t}_{\mathrm{o}}=5 \text { to } 250 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\mathrm{off}}=\geqslant 1 \mathrm{~ms} \end{aligned}$		50	100	mV
ΔV_{0}	Load regulation (filter mode)	$\begin{aligned} & \mathrm{V}_{1}=8.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} . \\ & \mathrm{t}_{\text {off }}=\geqslant 1 \mathrm{~ms} \end{aligned}$		150	250	mV
I_{q}	Quiescent current	$\mathrm{I}_{0}=5 \mathrm{~mA}$		1	2	mA
ΔI_{q}	Quiescent current change	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=6 \text { to } 18 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$		0.05		mA
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA}$		1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{aligned} & V_{i a c}=1 V_{r m s} \\ & f=100 \mathrm{~Hz} \\ & I_{0}=150 \mathrm{~mA} \end{aligned}$ $\begin{aligned} & V_{\text {IDC }}=12 \text { to } 18 \mathrm{~V} \\ & V_{\text {IDC }}=6 \text { to } 11 \mathrm{~V} \end{aligned}$		$\begin{gathered} 70 \\ 35(*) \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isc	Short circuit current		250	300		mA
$T_{\text {on }}$	Switch on time	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$ $\begin{aligned} & V_{i}=5 \text { to } 11 \mathrm{~V} \\ & V_{i}=11 \text { to } 18 \mathrm{~V} \end{aligned}$		$\begin{gathered} 500(*) \\ 300 \end{gathered}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
T_{j}	Thermal shutdown junction temperature			145		${ }^{\circ} \mathrm{C}$

(*) Depending of the C_{FT} capacitor.

Fig. 1 - Test and Application Circuit

Fig. 2 - P.C. board and component layout of fig. 1 (1:1 scale)

PRINCIPLE OF OPERATION

During normal operation (input voltage upper than $\mathrm{V}_{\text {IMIN }}=\mathrm{V}_{\text {OUT NOM }}+\Delta \mathrm{V}_{\text {I/O }}$). The device works as a normal voltage regulator built around the OP1 of the block diagram.
The series pass element use a PNP-NPN connection to reduce the dropout. The reference voltage of the OP1 is derived from a REF through the OP2 and Q3, acting as an active zener diode of value $\mathrm{V}_{\mathrm{REF}}$.
In this condition the device works in the range (1) of the characteristic of the non linear drop control unit (see fig. 3).
The output voltage is fixed to its nominal value:

$$
\begin{gathered}
V_{\text {OUT NOM }}=V_{\text {REF }}\left(1+\frac{R 1}{R 2}\right)= \\
V_{\text {CFT }}\left(1+\frac{R 1}{R 2}\right) \\
\frac{R 1}{R 2}=\text { INTERNALLY FIXED RATIO }=2.4
\end{gathered}
$$

The ripple rejection is quite high (70 dB) and independent from C_{FT} value.
On the usual voltage regulators, when the input voltage goes below the nominal value, the regulation transistors (series element) saturate bringing the system out of regulation making it very sensible to every variation of the input voltage. On the contrary, a control loop on the L4916 consents to avoid the saturation of the series element by regulating the value of the reference voltage (pin 2). In fact, whenever the input voltage decreases below $\mathrm{V}_{\text {IMIN }}$ the supervisor loop, utilizing a non linear OTA, forces the reference voltage at pin 2 to decrease by discharging C_{FT}.

So, during the static mode, when the input voltage goes below $\mathrm{V}_{\text {MIN }}$ the drop out is kept fixed to about 1.6 V . In this condition the device works as a low pass filter in the range (2) of the OTA characteristic. The fipple rejection is externally adjustable acting on C_{FT} as follows:

$$
\begin{aligned}
& \text { SVR (jw) }=\left|\frac{V_{1}(j w)}{V_{\text {out }}(j w)}\right|= \\
& \left|1+\frac{10^{-6}}{\frac{\text { gm }}{j w C_{F T}}\left(1+\frac{R 1}{R 2}\right)}\right|
\end{aligned}
$$

Where:
$\mathrm{gm}=2 \cdot 10^{-5} \Omega^{-1}=$ OTA'S typical transconductance value on linear region
$\frac{\mathrm{R} 1}{\mathrm{R} 2}=$ fixed ratio
$\mathrm{C}_{\mathrm{FT}}=$ value of capacitor in $\mu \mathrm{F}$
The reaction time of the supervisor loop is given by the transconductance of the OTA and by C_{FT}. When the value of the ripple voltage is so high and its negative peak is fast enough to determine an istantaneous decrease of the dropout till 1.2 V , the OTA works in a higher transconductance condition [range (3) of the characteristic] and discharge the capacitor rapidously.
If the ripple frequency is high enough the capacitor won't charge itself completely, and the output voltage reaches a small value allowing a better ripple rejection; the device's again working as a filter (fast transient range).
With $\mathrm{C}_{\mathrm{FT}}=10 \mu \mathrm{~F} ; \mathrm{f}=100 \mathrm{~Hz}$ a SVR of 35 is obtained.

Fig. 3 - Nonliner transfer characteristic of the drop control unit

SGS-THOMSON
5/6
NDCROEMECTRONUCS

Fig. 4 - Supply voltage rejection vs. input voltage

Fig. 5 - Supply voltage rejection vs. frequency

Fig. $6-V_{o}$ vs. supply voltage

Fig. 7 - Quiescent current vs. input voltage

Fig. 8 - Dropout vs. load current

Fig. 9 - Inhibit function realized on C_{FT} pin.

VOLTAGE REGULATOR PLUS FILTER

PRELIMINARY DATA

- FIXED OUTPUT VOLTAGE 8.5V
- 250mA OUTPUT CURRENT
- HIGH RIPPLE REJECTION
- HIGH LOAD REGULATION
- HIGH LINE REGULATION
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN WITH HYSTERESIS
- DUMP PROTECTION

The L4918 combines both a filter and a voltage regulator in order to provide a high ripple rejection over a wider input voltage range.

A supervisor low-pass loop of the element prevents the output transistor from saturation at low input voltages.

The non linear behaviour of this control circuitry allows a fast setting of the filter.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Peak input voltage (300 ms)	40	V
$\mathrm{~V}_{\mathrm{s}}$	DC voltage	28	V
I_{o}	Output current	internally limited	
$\mathrm{P}_{\text {tot }}$	Power dissipation	internally limited	
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

Fig. 1 - Application and test circuit

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	4
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=13.5 \mathrm{~V}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	Input voltage				20	V
V_{0}	Output voltage	$\begin{aligned} & V_{1}=12 \text { to } 18 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$	8.1	8.5	8.9	V
$\Delta V_{1 / O}$	Controlled input-output dropout voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=5 \text { to } 10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$		1.6	2.1	V
ΔV_{0}	Line regulation	$\begin{aligned} & V_{1}=12 \text { to } 18 \mathrm{~V} \\ & I_{0}=10 \mathrm{~mA} \end{aligned}$		1	20	mV
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{t}_{\mathrm{O}}=5 \text { to } 250 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\text {off }}=\geqslant 1 \mathrm{~ms} \end{aligned}$			100	mV
ΔV_{0}	Load regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=8.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{o}}=5 \mathrm{to} 150 \mathrm{~mA} \\ & \mathrm{t}_{\text {on }}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\text {off }}=\geqslant 1 \mathrm{~ms} \end{aligned}$		100	250	mV
I_{q}	Quiescent current	$\mathrm{I}_{\mathrm{o}}=5 \mathrm{~mA}$		1.0	2	mA
ΔI_{q}	Quiescent current change	$\begin{aligned} & V_{i}=6 \text { to } 18 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5 \text { to } 150 \mathrm{~mA} \end{aligned}$		0.05		$m A$
$\frac{\Delta V_{o}}{\Delta T}$	Output voltage drift	$\mathrm{I}_{0}=10 \mathrm{~mA}$		1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{aligned} & V_{\text {iac }}=1 V_{r m s} \\ & f=100 \mathrm{~Hz} \\ & I_{0}=150 \mathrm{~mA} \end{aligned}$ $\begin{aligned} & V_{\text {IDC }}=12 \text { to } 18 \mathrm{~V} \\ & V_{\text {IDC }}=6 \text { to } 11 \mathrm{~V} \end{aligned}$		$\begin{gathered} 71 \\ 35(*) \end{gathered}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
Isc	Short circuit current		250	300		mA
$\mathrm{t}_{\text {on }}$	Switch on time	$\begin{array}{ll} I_{0}=150 \mathrm{~mA} \\ & V_{i}=5 \text { to } 11 \mathrm{~V} \\ V_{i}=11 \text { to } 18 \mathrm{~V} \end{array}$		$\begin{gathered} 500(*) \\ 300 \end{gathered}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
TJSD	Thermal shut down			150		${ }^{\circ} \mathrm{C}$

(*) Depending of the CFT capacitor

PRINCIPLE OF OPERATION

During normal operation (input voltage upper than $\mathrm{V}_{\text {IMIN }}=\mathrm{V}_{\text {OUT NOM }}+\Delta \mathrm{V}_{\text {I/O }}$). The device works as a normal voltage regulator built around the OP1 of the block diagram.
The series pass element use a PNP-NPN connection to reduce the dropout. The reference voltage of the OP1 is derived from a REF through the OP2 and Q3, acting as an active zener diode of value $\mathrm{V}_{\mathrm{REF}}$.
In this condition the device works in the range (1) of the characteristic of the non linear drop control unit (see fig. 2)
The output voltage is fixed to its nominal value:

$$
\begin{gathered}
\mathrm{V}_{\text {OUT NOM }}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)= \\
\mathrm{V}_{\mathrm{CFT}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \\
\frac{\mathrm{R} 1}{\mathrm{R} 2}=\text { INTERNALLY FIXED RATIO }=2.4
\end{gathered}
$$

The ripple rejection is quite high (71 dB) and independent from C_{FT} value.
On the usual voltage regulators, when the input voltage goes below the nominal value, the regulation transistors (series element) saturate bringing the system out of regulation making it very sensible to every variation of the input voltage. On the contrary, a control loop on the L4918 consents to avoid the saturation of the series element by regulating the value of the reference voltage (pin 2). In fact, whenever the input voltage decreases below $V_{1 \text { MIN }}$ the supervisor loop, utilizing a non linear OTA, forces the reference voltage at pin 2 to decrease by discharging C_{FT}. So, during the static mode, when the input volt-
age goes below $\mathrm{V}_{\text {MIN }}$ the drop out is kept fixed to about 1.6 V . In this condition the device works as a low pass filter in the range (2) of the OTA characteristic. The ripple rejection is externally adjustable acting on C_{FT} as follows:

$$
\begin{aligned}
& \operatorname{SVR}(j w)=\left|\frac{V_{1}(j w)}{V_{\text {out }}(j w)}\right|= \\
& \left\lvert\, 1+\frac{10^{-6}}{\frac{g m}{j w C_{F T}}}\left(1+\frac{R 1}{R 2}\right)\right.
\end{aligned}
$$

Where:
$\mathrm{gm}=2 \cdot 10^{-5} \Omega^{-1}=$ OTA'S typical transconductance value on linear region
$\frac{\mathrm{R} 1}{\mathrm{R} 2}=$ fixed ratio
$\mathrm{C}_{\mathrm{FT}}=$ value of capacitor in $\mu \mathrm{F}$
The reaction time of the supervisor loop is given by the tranconductance of the OTA and by C_{FT}. When the value of the ripple voltage is so high and its negative peak is fast/enough to determine an istantaneous decrease of the dropout till 1.2 V , the OTA works in a higher transconductance condition [range (3) of the characteristic] and discharge the capacitor rapidously.
If the ripple frequency is high enough the capacitor won't charge itself completely, and the output voltage reaches a small value allowing a better ripple rejection; the device's again working as a filter (fast transient range).
With $\mathrm{C}_{\mathrm{FT}}=10 \mu \mathrm{~F} ; \mathrm{f}=100 \mathrm{~Hz}$ a SVR of 35 is obtained.

Fig. 2 - Nonliner transfer characteristic of the drop control unit

Fig. 3 - Supply voltage rejection vs. frequency

Fig. 4 - Supply voltage rejection vs. input voltage

Fig. 5 - Output voltage vs input voltage

L4920
L4921

VERY LOW DROP ADJUSTABLE REGULATORS

- VERY LOW DROP VOLTAGE

- ADJUSTABLE OUTPUT VOLTAGE FROM 1.25 V TO 20 V
- 400 mA OUTPUT CURRENT
- LOW QUIESCENT CURRENT
- overvoltage and reverse voltAGE PROTECTION
- +60/-60V TRANSIENT PEAK VOLTAGE
- Short circuit protection with FOLDBACK CHARACTERISTICS
- THERMAL SHUT-DOWN

The L4920 and L4921 are adjustable voltage regulators with a very low voltage drop (0.4 V typ. at 0.4 A), low quiescent current and comprehensive on-chip protection.
These devices are protected against load dump transients of $\pm 60 \mathrm{~V}$, input overvoltage, polarity reversal and over heating.

A foldback current limiter protects against load short circuits.

The output voltage is adjustable through an external divider from 1.25 V to 20 V . The minimum operating input voltage is 5.2 V .

These regulators are designed for automotive, industrial and consumer applications where low consumption is particularly important.
In battery backup and standby applications the low consumption of these devices extends battery life.
L4920 ORDERING NUMBERS:

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{i}	DC input operating voltage	26	V
V_{t}	Positive transient peak voltage ($\mathrm{t}=300 \mathrm{~ms} 1 \%$ duty cycle)	+60	V
V_{t}	Negative transient peak voltage ($\mathrm{t}=100 \mathrm{~ms} \quad 1 \%$ duty cycle)	-60	V
V_{i}	Reverse input voltage	-18	\checkmark
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
Top	Operating junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAMS (top view)

APPLICATION CIRCUIT

THERMAL DATA	Minidip $(4+4)$	Pentawatt	
$R_{\text {th j-amb }}$	Thermal resistance junction ambient	\max	$80^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} \mathbf{j - \text { -pins }}$	Thermal resistance junction pins	$60^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {th } j \text {-case }}$	Thermal resistance junction case	\max	$15^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (For $\mathrm{V}_{\mathrm{i}}=14.4 \mathrm{~V}, \mathrm{Vo}_{\mathrm{o}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{C}=100 \mu \mathrm{~F} ; \mathrm{R} 2=$ $6.2 \mathrm{~K} \Omega$ unless otherwise noted)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{i}	Operating input voltage	$\begin{aligned} & V_{o} \geqslant 4.5 \mathrm{~V} \\ & \mathrm{I}_{0}=400 \mathrm{~mA} \end{aligned}$	$V_{0}+0.7$		26	V
		$\begin{aligned} & V_{\text {REF }} \leqslant V_{0}<4.5 \mathrm{~V} \\ & \mathrm{I}_{0}=400 \mathrm{~mA} \end{aligned}$	5.2		26	V
$V_{\text {REF }}$	Reference voltage	$\begin{aligned} & 5.2 \mathrm{~V}<V_{i}<26 \mathrm{~V} \\ & 10 \leqslant 400 \mathrm{~mA}(*) \end{aligned}$	1.20	1.25	1.30	V
ΔV_{0}	Line regulation	$\begin{aligned} & V_{0}+1 \mathrm{~V}<V_{i}<26 \mathrm{~V} \quad V_{0} \geqslant 4.5 \mathrm{~V} \\ & l_{0}=5 \mathrm{~mA} \end{aligned}$		1	10	$\mathrm{mV} / \mathrm{V}_{0}$
ΔV_{0}	Load regulation	$5 \mathrm{~mA}<10<400 \mathrm{~mA}\left(^{*}\right) \quad \mathrm{V}_{0} \geqslant 4.5 \mathrm{~V}$		3	15	$\mathrm{mV} / \mathrm{V}_{0}$
V_{D}	Dropout voltage	$\begin{aligned} & I_{0}=10 \mathrm{~mA} \\ & \mathrm{I}_{0}=150 \mathrm{~mA} \\ & \mathrm{I}_{0}=400 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.2 \\ 0.4 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
10	Quiescent current	$\begin{aligned} & \mathrm{I}_{0}=0 \mathrm{~mA} \\ & V_{0}+1 \mathrm{~V}<\mathrm{V}_{\mathrm{i}}<26 \mathrm{~V} \end{aligned}$		0.8	3	mA
		$\begin{aligned} & I_{0}=400 \mathrm{~mA}\left({ }^{*}\right) \\ & V_{o}+1 \mathrm{~V}<V_{i}<26 \mathrm{~V} \end{aligned}$		65	100	mA
I_{0}	Maximum output current			750	1000	mA
Iosc	Short circuit output current (*)		200	350	500	mA
V_{R}	Reverse polarity input voltage (DC)	$V_{0} \geqslant-1.5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}} \leqslant 500 \Omega$			-18	V

(*) Foldback protection

Fig. 1 - Output voltage vs. temperature

Fig. 2 - Foldback current limiting

Fig. 3 - Quiescent current vs. output current ($\mathrm{V}_{0}=5 \mathrm{~V}$)

APPLICATION INFORMATION

1) The $L 4920$ and $L 4921$ have $V_{R E F} \cong 1.25 \mathrm{~V}$. Then the output voltage can be set down to $V_{\text {REF }}$ but V_{i} must be greater than 5.2 V .
2) As the regulator reference voltage source works in closed loop, the reference voltage may change in foldback condition.
3) For applications with high V_{i}, the total power dissipation of the device with respect to the thermal resistance of the package may be limiting the application. The total power dissipation is:

$$
P_{\text {tot }}=V_{i} I_{q}+\left(V_{i}-V_{0}\right) I_{0}
$$

A typical curve giving the quiescent current I_{q} as a function of the output current I_{0} is shown in fig. 3.

L4940 Series

VERY LOW DROP 1.5A REGULATORS

PRELIMINARY DATA

- PRECISE 5V, 8.5V, 10V, 12V OUTPUTS
- LOW DROPOUT VOLTAGE (500 mV TYP AT 1.5A)

■ VERY LOW QUIESCENT CURRENT

- THERMAL SHUTDOWN
- SHORT CIRCUIT PROTECTION
- REVERSE POLARITY PROTECTION

age drop, these devices are particularly suitable for battery powered equipments, reducing consumption and prolonging battery life. Each type employs internal current limiting, antisaturation circuit, thermal shut-down and safe area protection.

BLOCK DIAGRAM

CONNECTION DIAGRAM AND ORDERING NUMBERS
(Top view)

S-2568/1

ORDERING NUMBERS	OUTPUT VOLTAGE
L4940V5	5 V
L4940V85	8.5 V
L4940V10	10 V
L4940V12	12 V

ABSOLUTE MAXIMUM RATINGS

$\begin{aligned} & v_{i} \\ & v_{i R} \end{aligned}$	Forward input voltage			30	V
	Reverse input voltage	$1 \mathrm{~V}_{0}=5 \mathrm{~V}$	$\left.\mathrm{R}_{\mathrm{O}}=100 \Omega\right)$	-15	
		$1 \mathrm{~V}_{0}=8.5 \mathrm{~V}$	$\left.\mathrm{R}_{\mathrm{O}}=180 \Omega\right)$		
		$\left(\mathrm{V}_{0}=10 \mathrm{~V}\right.$	$\left.\mathrm{R}_{\mathrm{O}}=200 \Omega\right)$		
		$\left(\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}\right.$	$\left.\mathrm{R}_{\mathrm{O}}=240 \Omega\right)$		
I_{0}	Output current			Internally limited	
$\mathrm{P}_{\text {tot }}$	Power dissipation			Internally limited	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Junction and storage t	mperature		-40 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\text {th }}$ j-case	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUITS

Fig. 1 - DC Parameters

Fig. 2 - Load Regulation

Fig. 3 - Ripple Rejection

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{i}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$, unless otherwise specified)

Parameter		Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
OUTPUT VOLTAGE			5			8.5			V
INPUT VOLTAGE (unless otherwise specified)			7			10.5			V
V_{0}	Output voltage	$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$	4.9	5	5.1	8.3	8.5	8.7	V
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	$\begin{array}{l\|l\|l} 4.8 & 5 & 5.2 \\ \left(V_{i}=6.5\right. & \text { to } & 16 \mathrm{~V}) \end{array}$			$\begin{array}{\|l\|l\|l} \hline 8.15 & 8.5 & 8.85 \\ \left(V_{i}=\right. & 10.2 \text { to } 16 \mathrm{~V}) \end{array}$			
V_{i}	Operating input voltage	$\mathrm{I}_{0}=5 \mathrm{~mA}$			17			17	V
$\Delta \mathrm{V}_{0}$	Line regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$	$\left(\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V} \text { to } 17 \mathrm{~V}\right)$			$\left(\mathrm{V}_{\mathrm{i}}=9.5 \text { to } 17 \mathrm{~V}\right)$			mV
ΔV_{0}	Load regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1.5 A		8	25		12	30	mV
		$\mathrm{I}_{0}=0.5 \mathrm{~A}$ to 1 A		5	15		8	16	
I_{Q}	Quiescent current	$\mathrm{I}_{0}=5 \mathrm{~mA}$		5	8		4	8	mA
		$\mathrm{I}_{0}=1.5 \mathrm{~A}$	$\begin{aligned} & 30 \\ & \left(\mathrm{~V}_{\mathrm{i}}=6.5 \mathrm{~V}\right) \\ & \hline \end{aligned}$			$\begin{array}{c\|c} 30 & 50 \\ \left(V_{i}=10.2 \mathrm{~V}\right) \end{array}$			
$\Delta \mathbf{I}_{\mathbf{Q}}$	Quiescent current	$\mathrm{I}_{0}=5 \mathrm{~mA}$			3			2.5	mA
		$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$	$\left(\mathrm{V}_{\mathrm{i}}=6.5\right.$ to 16 V$)$			$\left(\mathrm{V}_{\mathrm{i}}=10.2 \text { to } 16 \mathrm{~V}\right)$			
V_{d}	Dropout voltage	$\mathrm{I}_{0}=0.5 \mathrm{~A}$		200	400		200	400	mV
		$\mathrm{I}_{0}=1.5 \mathrm{~A}$		500	900		500	900	
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift			0.5			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \end{aligned}$	58	68			58	66	dB
$I_{\text {sc }}$	Short circuit current limit	$V_{i}=14 \mathrm{~V}$		2	2.7		2	2.7	A
			$\begin{array}{l\|l\|l} & 2.2 & 2.9 \\ \left(V_{i}=6.5 \mathrm{~V}\right) \end{array}$			$\begin{array}{l\|l\|l} & 2.2 & 2.9 \\ \left(V_{i}=10.2 \mathrm{~V}\right) \end{array}$			
Z_{0}	Output impedance	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A} \end{aligned}$		30			32		$\mathrm{m} \Omega$
e_{N}	Output noise	$B=100 \mathrm{~Hz}$ to 100 KHz		30			30		$\mu \mathrm{V} / \mathrm{N}_{0}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{i}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$, unless otherwise specified)

Parameter		Test Conditions	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
OUTPUT VOLTAGE			10			12			V
INPUT VOLTAGE (unless otherwise specified)			12			14			V
V_{0}	Output voltage	$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$	9.8	10	10.2	11.75	12	12.25	V
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$ to 1.5 A	$\begin{array}{c\|c\|c} 9.6 & 10 & 10.4 \\ \left(\mathrm{~V}_{\mathrm{i}}=11.7 \text { to } 16 \mathrm{~V}\right) \end{array}$			$\begin{array}{\|l\|l\|l} 11.5 & 12 & 12.5 \\ \left(V_{i}=13.8 \text { to } 17 \mathrm{~V}\right) \\ \hline \end{array}$			
V_{i}	Operating input voltage	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			17			17	V
ΔV_{0}	Line regulation	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$	$\left\langle V_{i}=11 \text { to } 17 \mathrm{~V}\right.$			$\left(V_{i}=13 \text { to } 14 \mathrm{~V}\right)$			mV
$\Delta \mathrm{V}_{0}$	Load regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1.5 A		15	35		15	35	mV
		$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$ to 1 A		10	20		10	25	
I_{Q}	Quiescent current	$\mathrm{I}_{0}=5 \mathrm{~mA}$		4	8		4	8	mA
		$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$	$\begin{array}{c\|c\|c} & 30 & 50 \\ \left(V_{i}=11.7 \mathrm{~V}\right) \\ \hline \end{array}$			$\begin{array}{l\|l\|l} & 30 \\ \left(V_{i}=13.8 \mathrm{~V}\right) \end{array}$			
$\Delta \mathbf{I}_{\mathbf{Q}}$	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$			2			1.5	mA
		$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$	$\left(\mathrm{V}_{\mathrm{i}}=11.7 \text { to } 16 \mathrm{~V}\right)$			$\left(V_{i}=13.8 \mathrm{~V}\right)^{10}$			
V_{d}	Dropout voltage	$\mathrm{I}_{0}=0.5 \mathrm{~A}$		200	400		200	400	mV
		$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$		500	900		500	900	
$\frac{\Delta V_{0}}{\Delta T}$	Output voltage drift			1			1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
SVR	Supply voltage rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \end{aligned}$	56	62		55	61		dB
$\mathrm{I}_{\text {sc }}$	Short circuit current limit	$V_{i}=14 \mathrm{~V}$		2	2.7		2	2.7	A
		$\mathrm{V}_{\mathrm{i}}=11.7 \mathrm{~V}$		2.2	2.9		-	-	
Z_{0}	Output impedance	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A} \end{aligned}$		36			40		$\mathrm{m} \Omega$
eN	Output noise voltage	$B=100 \mathrm{~Hz}$ to 100 KHz		30			30		$\mu \mathrm{V} / \mathrm{V}_{\circ}$

Fig. 4 - Dropout voltage vs. output current

Fig. 7 - Output voltage vs. temperature (L4940V85)

Fig. 10 - Quiescent current vs. temperature (L4940V5)

Fig. 5 - Dropout voltage vs. temperature

Fig. 8 - Output voltage vs. temperature (L4040V10)

Fig. 11 - Quiescent current vs. input voltage (L4940V5)

Fig. 6 - Output voltage vs. temperature (L4940V5)

Fig. 9 - Output voltage vs. temperature (L4940V12)

Fig. 12 - Quiescent current vs. output current
(L4940V5)

SGS-THOMSON
5/8
MUCROELECTRONLCS

Fig. 13 - Short circuit current vs. temperature (L4940V5)

Fig. 16 - Low voltage be-
havior (L4940V85)

Fig. 19 - Supply voltage rejection vs. frequency
(L4940V5)

Fig. 14 - Peak output current vs. input/output differential voltage (L4940V5)

Fig. 17 - Low voltage behavior (L4940V10)

Fig. 20 - Supply voltage rejection vs. output current

Fig. 15 - Low voltage behavior (L4940V5)

Fig. 18 - Low voltage behavior (L4940V12)

Fig. 21 - Load dump characteristics (L4940V5)

Fig. 22 - Line transient response (L4940V5)

Fig. 23 - Load transient response

Fig. 24 - Total power dissipation

Fig. 25 - Distributed supply with on-card L4940 and L4941 low-drop regulators

Fig. 26 - Distributed supply with on-card L4940 and L4941 low-drop regulators

ADVANTAGES OF THESE APPLICATIONS ARE:

- On card regulation with short circuit and thermal protection on each output.
- Very high total system efficiency due to the switching preregulation and very low-drop postregulations.

L4940 Series

Fig. 27

ADVANTAGES OF THIS CONFIGURATION ARE:

- Very high regulation (line and load) on both the output voltages.
- 12 V output short-circuit and thermally protected.
- Very high efficiency on the 12 V output due to the very low drop regulator.

VERY LOW DROP 1A REGULATOR
PRELIMINARY DATA

- LOW DROPOUT VOLTAGE (450 mV TYP AT 1A)
- VERY LOW QUIESCENT CURRENT
- THERMAL SHUTDOWN
- SHORT CIRCUIT PROTECTION
- REVERSE POLARITY PROTECTION

TO-220

ORDERING NUMBER: L4941
ticularly suitable for battery powered equipment, reducing consumption and prolonging battery life. It employs internal current limiting, antisaturation circuit, thermal shut-down and safe area protection.

BLOCK DIAGRAM

88L 4940-01

CONNECTION DIAGRAM

(Top view)

S-2568/1

ABSOLUTE MAXIMUM RATINGS

V_{i}	Forward input voltage	30	V
$\mathrm{~V}_{\mathrm{iR}}$	Reverse input voltage $\left(\mathrm{R}_{\mathrm{O}}=100 \Omega\right)$	-15	V
I_{O}	Output current		
$\mathrm{P}_{\text {tot }}$	Power dissipation	Internally limited	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Junction and storage temperature	Internally limited	

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	50

TEST CIRCUITS

Fig. 1 - DC Parameters

Fig. 2 - Load Regulation

Fig. 3 - Ripple Rejection

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{i}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{o}}=22 \mu \mathrm{~F}$, unless otherwise specified)

Fig. 4 - Dropout voltage vs. output current

Fig. 7 - Quiescent current vs. temperature

Fig. 10 - Short circuit current vs. temperature

Fig. 5 - Dropout voltage vs. tomperature

Fig. 8 - Quiescent current vs. input voltage

Fig. 11 - Peak output current vs. input/output differential voltage

Fig. 6 - Output voltage vs. temperature

Fig. 9 - Quiescent current vs. output current

Fig. 12 - Low voltage behavior

Fig. 13 - Supply voltage rejection vs. frequency

Fig. 16 - Line transient response

Fig. 14 - Supply voltage rejection vs. output current

Fig. 17 - Load transunt response

Fig. 15 - Load dump characteristics

Fig. 18 - Totale power dissipation

Fig. 19 - Distributed supply with on-card L4940 and L4941 low-drop regulators

ADVANTAGES OF THESE APPLICATIONS ARE:

- On card regulation with short circuit and thermal protection on each output.
- Very high total system efficiency due to the switching preregulation and very low-drop postregulations.

SCS-THOMSON

Fig. 20 - Distributed supply with on-card L4940 and L4941 low-drop regulators

2.5A POWER SWITCHING REGULATOR

- 2.5A OUTPUT CURRENT
- 5.1V TO 40 V OUTPUT VOLTAGE RANGE
- PRECISE ($\pm 2 \%)$ ON-CHIP REFERENCE
- HIGH SWITCHING FREQUENCY
- VERY HIGH EFFICIENCY (UP TO 90\%)
- VERY FEW EXTERNAL COMPONENTS
- SOFT START
- INTERNAL LIMITING CURRENT
- THERMAL SHUTDOWN

The L4960 is a monolithic power switching regulator delivering 2.5 A at a voltage variable from 5 V to 40 V in step down configuration. Features of the device include current limiting,
soft start, thermal protection and 0 to 100% duty cycle for continuous operation mode.
The L4960 is mounted in a Heptawatt plastic power package and requires very few external componénts.
Efficient operation at switching frequencies up to 150 KHz allows a reduction in the size and cost of external filter components.

ABSOLUTE MAXIMUM RATINGS

V_{1}	Input voltage	50	V
$\mathrm{~V}_{1}-\mathrm{V}_{7}$	Input to output voltage difference	50	V
$\mathrm{~V}_{7}$	Negative output DC voltage	-1	V
	Negative output peak voltage at $\mathrm{t}=0.1 \mu \mathrm{~s} ; \mathrm{f}=100 \mathrm{KHz}$	-5	V
$\mathrm{~V}_{3}, \mathrm{~V}_{6}$	Voltage at pin 3 and 6	5.5	V
$\mathrm{~V}_{2}$	Voltage at pin 2	7	V
I_{3}	Pin 3 sink current	1	mA
I_{5}	Pin 5 source current	20	mA
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {case }} \leqslant 90^{\circ} \mathrm{C}$	15	W
$\mathrm{~T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Junction and storage temperature		

BLOCK DIAGRAM

CONNECTION DIAGRAMI

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient			

PIN FUNCTIONS

N°	NAME	FUNCTION
1	SUPPLY VOLTAGE	Unregulated voltage input. An internal regulator powers the internal logic.
2	FEEDBACK INPUT	The feedback terminal of the regulation loop. The output is connected directly to this terminal for 5.1V operation; it is connected via a divider for higher volt- ages.
3	FREQUENCY COMPENSATION	A series RC network connected between this terminal and ground determines the regulation loop gain charac- teristics.
4	GROUND	Common ground terminal.
5	OSCILLATOR	A parallel RC network connected to this terminal determines the switching frequency.
6	SOFT START	Soft start time constant. A capacitor is connected bet- ween this terminal and ground to define the soft start time constant. This capacitor also determines the average short circuit output current.
7	OUTPUT	Regulator output.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{1}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$, unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DYNAMIC CHARACTERISTICS

V_{0}	Output voltage range	$V_{1}=46 \mathrm{~V}$	$\mathrm{I}_{0}=1 \mathrm{~A}$	$\mathrm{V}_{\text {ref }}$		40	V
V_{1}	Input voltage range	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$ to	$\mathrm{I}_{0}=2.5 \mathrm{~A}$	9		46	V
ΔV_{0}	Line regulation	$V_{1}=10 \mathrm{~V}$ to	$V_{o}=V_{\text {ref }} \quad I_{0}=1 \mathrm{~A}$		15	50	mV
ΔV_{0}	Load regulation	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$	$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$ to 2 A		10	30	mV
$V_{\text {ref }}$	Internal reference voltage (pin 2)	$V_{1}=9 \mathrm{~V}$ to	$\mathrm{I}_{0}=1 \mathrm{~A}$	5	5.1	5.2	V
$\frac{\Delta V_{\text {ref }}}{\Delta T}$	Average temperature coefficient of refer. voltage	$\begin{aligned} & T_{j}=0^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \end{aligned}$			0.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{d}	Dropout voltage	$\mathrm{I}_{0}=2 \mathrm{~A}$			1.4	3	V
Iom	Maximum operating load current	$\begin{aligned} & V_{1}=9 V \text { to } 46 \mathrm{~V} \\ & V_{0}=V_{\text {ref }} \text { to } 36 \mathrm{~V} \end{aligned}$		2.5			A
$1_{7 L}$	Current limiting threshold (pin 7)	$\begin{aligned} & V_{1}=9 V \text { to } 46 \mathrm{~V} \\ & V_{0}=V_{\text {ref }} \text { to } 36 \mathrm{~V} \end{aligned}$		3		4.5	A
I_{SH}	Input average current	$V_{1}=46 \mathrm{~V}$; output short-circuit			30	60	mA
η	Efficiency	$\begin{aligned} & f=100 \mathrm{KHz} \\ & \mathrm{I}_{0}=2 \mathrm{~A} \end{aligned}$	$V_{0}=V_{\text {ref }}$		75		\%
			$\mathrm{V}_{\mathrm{o}}=12 \mathrm{~V}$		85		\%
SVR	Supply voltage ripple rejection	$\begin{array}{ll} \Delta V_{i}=2 V_{\text {rms }} & \\ f_{\text {ripple }}=100 \mathrm{~Hz} & \\ V_{0}=V_{\text {ref }} & I_{0}=1 \mathrm{~A} \end{array}$		50	56		dB
f	Switching frequency			85	100	115	KHz
$\frac{\Delta f}{\Delta V_{i}}$	Voltage stability of switching frequency	$\mathrm{V}_{1}=9 \mathrm{~V}$ to 46 V			0.5		\%
$\frac{\Delta f}{\Delta T_{j}}$	Temperature stability of switching frequency	$\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			1		\%
$f_{\text {max }}$	Maximum operating switching frequency	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$	$\mathrm{I}_{0}=2 \mathrm{~A}$	120	150		KHz
$\mathrm{T}_{\text {sd }}$	Thermal shutdown junction temperature				150		${ }^{\circ} \mathrm{C}$

L4960

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS

$\mathrm{I}_{1 Q}$	Quiescent drain current	100\% duty cycle pins 5 and 7 open	$V_{1}=46 \mathrm{~V}$		30	40	mA
		0\% duty cycle			15	20	mA
- I_{7}	Output leakage current	0\% duty cycle				1	mA

SOFT START

$\mathrm{I}_{6 S 0}$	Source current		100	130	150	$\mu \mathrm{~A}$
$\mathrm{I}_{6 S 1}$	Sink current		50	70	120	$\mu \mathrm{~A}$

ERROR AMPLIFIER

$V_{3 H}$	High level output voltage	$V_{2}=4.7 \mathrm{~V}$	$I_{3}=100 \mu \mathrm{~A}$	3.5		
$V_{3 L}$	Low level output voltage	$V_{2}=5.3 \mathrm{~V}$	$I_{3}=100 \mu \mathrm{~A}$			0.5
$\mathrm{I}_{3 S 1}$	Sink output current	$\mathrm{V}_{2}=5.3 \mathrm{~V}$	V			
$-\mathrm{I}_{3} \mathrm{SO}$	Source output current	$\mathrm{V}_{2}=4.7 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
I_{2}	Input bias current	$\mathrm{V}_{2}=5.2 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
G_{V}	DC open loop gain	$\mathrm{V}_{3}=1 \mathrm{~V}$ to 3 V	46	55		dB

OSCILLATOR

$-I_{5}$	Oscillator source current		5			mA

CIRCUIT OPERATION (refer to the block diagram)

The L4960 is a monolithic stepdown switching regulator providing output voltages from 5.1 V to 40 V and delivering 2.5A.

The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage. An error signal is produced by comparing the output voltage with a precise 5.1 V on-chip reference (zener zap trimmed to $\pm 2 \%$).
This error signal is then compared with the sawtooth signal to generate the fixed frequency pulse width modulated pulses which drive the output stage.
The gain and frequency stability of the loop can be adjusted by an external RC network connected to pin 3. Closing the loop directly gives an output voltage of 5.1 V . Higher voltages are obtained by inserting a voltage divider.
Output overcurrents at switch on are prevented by the soft start function. The error amplifier output is initially clamped by the external capa-
citor $\mathrm{C}_{5 s}$ and allowed to rise, linearly, as this capacitor is charged by a constant current source. Output overload protection is provided in the form of a current limiter. The load current is sensed by an internal metal resistor connected to a comparator. When the load current exceeds a preset threshold this comparator sets a flip flop which disables the output stage and discharges the soft start capacitor. A second comparator resets the flip flop when the voltage across the soft start capacitor has fallen to 0.4 V .
The output stage is thus re-enabled and the output voltage rises under control of the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached. The average short circuit current is limited to a safe value by the dead time introduced by the soft start network. The thermal overload circuit disables circuit operation when the junction temperature reaches about $150^{\circ} \mathrm{C}$ and has hysteresis to prevent unstable conditions.

Fig. 1 - Soft start waveforms

Fig. 2- Current limiter waveforms

Fig. 3 - Test and application circuit

C6, C7: EKR (ROE)
$\mathrm{L} 1=150 \mu \mathrm{H}$ at 5A (COGEMA 946042)
CORE TYPE: MAGNETICS 58206-A2 MPP
N° TURNS 45, WIRE GAUGE: 0.8 mm (20 AWG)

Fig. 4 - Quiescent drain current vs. supply voltage (0\% duty cycle)

Fig. 5 - Quiescent drain current vs. supply voltage (100\% duty cycle)

Fig. 6 - Quiescent drain current vs. junction temperature (0% duty cycle)

$\begin{array}{llllll}-25 & 0 & 25 & 50 & 75 & 100\end{array}$

Fig. 7 - Quiescent drain cur-
rent vs. junction temperature (100% duty cycle)

Fig. 10 - Open loop frequency and phase responde of error amplifier

Fig. 13 - Switching frequency vs. R2 (see test circuit)

Fig. 8 - Reference voltage (pin 2) vs. V_{1}

Fig. 11 - Switching frequency vs. input voltage

Fig. 9 - Reference voltage vs. junction temperature (pin 2)

Fig. 12 - Switching frequency vs. junction temperature

Fig. 15 - Load transient response

Fig. 16 - Supply voltage ripple rejection vs. frequency

Fig. 17 - Dropout voltage between pin 1 and pin 7 vs. current at pin 7

Fig. 18 - Dropout voltage between pin 1 and 7 vs. junction temperature 0.003

Fig. 19 - Power dissipation derating curve

Fig. 20 - Efficiency vs. output current

Fig. 21 - Efficiency vs. output current

Fig. 22 - Efficiency output current

Fig. 23 - Efficiency vs. output voltage

APPLICATION INFORMATION

Fig. 24 - Typical application circuit

$\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{7}$: EKR (ROE)
D_{1} : BYW80 OR 5A SCHOTTKY DIODE
SUGGESTED INDUCTOR: $L_{1}=150 \mu \mathrm{H}$ at 5 A
CORE TYPE: MAGNETICS 58206-A2 - MPP
N° TURNS: 45, WIRE GAUGE: 0.8 mm (20 AWG), COGEMA 946042
U15/GUP15: N° TURNS: 60, WIRE GAUGE: 0.8mm (20 AWG), AIR GAP: 1mm, COGEMA 969051.

Fig. 25 - P.C. board and component layout of the Fig. 24 (1:1 scale)

Resistor values for standard output voltages		
$\mathbf{V}_{\mathbf{0}}$	$\mathbf{R 3}$	$\mathbf{R 4}$
12 V	$4.7 \mathrm{~K} \Omega$	$6.2 \mathrm{~K} \Omega$
15 V	$4.7 \mathrm{~K} \Omega$	$9.1 \mathrm{~K} \Omega$
18 V	$4.7 \mathrm{~K} \Omega$	$12 \mathrm{~K} \Omega$
24 V	$4.7 \mathrm{~K} \Omega$	$18 \mathrm{~K} \Omega$

APPLICATION INFORMATION (continued)

Fig. 26 - A minimal 5.1V fixed regulator; Very few component are required

Fig. 27 - Programmable power supply

WOCROELECTRONACS

APPLICATION INFORMATION (continued)

Fig. 28 - Microcomputer supply with $+5.1 \mathrm{~V},-5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V outputs

APPLICATION INFORMATION (continued)

Fig. 29 - DC-DC converter $5.1 \mathrm{~V} / 4 \mathrm{~A}, \pm 12 \mathrm{~V} / 2.5 \mathrm{~A}$; a suggestion how to synchronize a negative output

L1, L3 = COGEMA 946042 (969051)
L2 $=$ COGEMA 946044 (946045)
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D} 3=$ SGS8R20 or BYW80

Fig. 30 - In multiple supplies several L4960s can be synchronized as shown

APPLICATION INFORMATION (continued)

Fig. 31 - Regulator for distributed supplies

MOUNTING INSTRUCTION

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Heptawatt package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink
and the package it is better to insert a layer of silicon grease, to optimize the thermal contact, no electrical isolation is needed between the two surfaces.

Fig. 32 - Mounting example

L4962

1.5A POWER SWITHING REGULATOR

PRELIMINARY DATA

- 1.5A OUTPUT CURRENT
- 5.1V TO 40 V OUTPUT VOLTAGE RANGE
- PRECISE ($\pm 2 \%$) ON-CHIP REFERENCE
- HIGH SWITCHING FREQUENCY
- VERY HIGH EFFICIENCY (UP TO 90\%)
- VERY FEW EXTERNAL COMPONENTS
- SOFT-START
- INTERNAL LIMITING CURRENT
- THERMAL SHUTDOWN

The L4962 is a monolithic power switching regulator delivering 1.5 A at a voltage veriable from 5 V to 40 V in step down configuration. Features of device include current limiting, soft start, thermal protection and 0 to 100% duty cycle for continuous operating mode.
The L4962 is mounted in a 16 -lead Powerdip
plastic package and Heptawatt package and requires very few external components.
Efficient operation at switching frequencies up to 150 KHz allows a reduction in the size and cost of external filter components.

ABSOLUTE MAXIMUM RATINGS

V_{7}	Input voltage	50	V
$V_{7}-V_{2}$	Input to output voltage difference	50	V
V_{2}	Negative output DC voltage	-1	V
	Output peak voltage at $\mathrm{t}=0.1 \mu \mathrm{~s}, \mathrm{f}=100 \mathrm{KHz}$	-5	V
$\mathrm{V}_{11}, \mathrm{~V}_{15}$	Voltage at pin 11, 15	5.5	V
V_{10}	Voltage at pin 10	7	V
11	Pin 11 sink current		mA
l_{14}	Pin 14 source current $\leqslant 00^{\circ} \mathrm{C}$	20	mA
$\mathrm{P}_{\text {tot }}$	$\begin{array}{cc}\text { Power dissipation at } T_{\text {pins }} \leqslant 90^{\circ} \mathrm{C} & \text { (Powerdip) } \\ \mathrm{T}_{\text {case }} \leqslant 90^{\circ} \mathrm{C} & \text { (Heptawatt) }\end{array}$	4.3	W
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	Junction and storage temperature	-40 to 150	${ }^{\text {C }}$

BLOCK DIAGRAM

CONNECTION DIAGRAMS

(Top view)

THERMAL	DATA	Heptawatt	Powerdip	
$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	$4^{\circ} \mathrm{C} / \mathrm{W}$	
$R_{\text {th j-pins }}$	Thermal resistance junction-pins	Thermal resistance junction-ambient	\max	
$R_{\text {th j-amb }}$	Thax	$50^{\circ} \mathrm{C} / \mathrm{W}$	$14^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$	

* Obtained with the GND pins soldered to printed circuit with minimized copper area.

PIN FUNCTIONS

HEPTAWATT	POWERDIP	NAME	FUNCTION
1	7	SUPPLY VOLTAGE	Unregulated voltage input. An internal regu- lator powers the internal logic.
2	10	FEEDBACK INPUT	The feedback terminal of the regulation loop. The output is connected directly to this ter- minal for 5.1V operation; it is connected via a divider for higher voltages.
3	11	FREQUENCY COMPENSATION	A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
4	$4,5,12,13$	GROUND	Common ground terminal.
5	14	OSCILLATOR	A parallel RC network connected to this ter- minal determines the switching frequency. This pin must be connected to pin 7 input when the internal oscillator is used.
6	15	SOFT START	Soft start time constant. A capacitor is con- nected between this terminal and ground to define the soft start time constant. The capaci- tor also determines the average short circuit output current.
7	2	OUTPUT	Regulator output.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{i}}=35 \mathrm{~V}$, unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DYNAMIC CHARACTERISTICS

V_{0}	Output voltage range	$V_{1}=46 \mathrm{~V}$	$I_{0}=1 \mathrm{~A}$	$\mathrm{V}_{\text {ref }}$		40	V
V_{1}	Input voltage range	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$ to 36 V		9		46	V
ΔV_{0}	Line regulation	$V_{1}=10 \mathrm{~V}$ to	$V_{0}=V_{\text {ref }} \quad I_{0}=1 \mathrm{~A}$		15	50	mV
ΔV_{0}	Load regulation	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$	$\mathrm{I}_{0}=0.5 \mathrm{~A}$ to 1.5 A		8	20	mV
$\mathrm{V}_{\text {ref }}$	Internal reference voltage (pin 10)	$V_{1}=9 \mathrm{~V}$ to	$\mathrm{I}_{0}=1 \mathrm{~A}$	5	5.1	5.2	V
$\frac{\Delta V_{\text {ref }}}{\Delta T}$	Average temperature coefficient of refer. voltage	$\begin{aligned} & T_{j}=0^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{o}}=1 \mathrm{~A} \end{aligned}$			0.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V_{d}	Dropout voltage	$\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$			1.5	2	V
Iom	Maximum operating load current	$\begin{aligned} & V_{1}=9 \mathrm{~V} \text { to } 46 \mathrm{~V} \\ & V_{0}=V_{\text {ref }} \text { to } 36 \mathrm{~V} \end{aligned}$		1.5			A
$\mathrm{I}_{2} \mathrm{~L}$	Current limiting threshold (pin 2)	$\begin{aligned} & V_{1}=9 \mathrm{~V} \text { to } 46 \mathrm{~V} \\ & V_{0}=V_{\text {ref }} \text { to } 36 \mathrm{~V} \end{aligned}$		2		3.3	A
$\mathrm{I}_{\text {SH }}$	Input average current	$\mathrm{V}_{\mathrm{i}}=46 \mathrm{~V}$; output short-circuit			15	30	mA
η	Efficiency	$\begin{aligned} & f=100 \mathrm{KHz} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }}$		70		\%
			$\mathrm{V}_{\mathrm{o}}=12 \mathrm{~V}$		80		\%
SVR	Supply voltage ripple rejection	$\begin{aligned} & \Delta V_{i}=2 V_{\text {rms }} \\ & f_{\text {ripple }}=100 \mathrm{~Hz} \\ & V_{o}=V_{\text {ref }} \end{aligned} \quad I_{0}=1 \mathrm{~A}$		50	56		dB
f	Switching frequency			85	100	115	KHz
$\frac{\Delta f}{\Delta V_{i}}$	Voltage stability of switching frequency	$V_{i}=9 \mathrm{~V}$ to 46 V			0.5		\%
$\frac{\Delta f}{\Delta T_{j}}$	Temperature stability of switching frequency	$\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			1		\%
$f_{\text {max }}$	Maximum operating switching frequency	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {ref }} \quad \mathrm{I}_{0}=1 \mathrm{~A}$		120	150		KHz
$\mathrm{T}_{\text {sd }}$	Thermal shutdown junction temperature				150		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS

${ }^{17 Q}$	Quiescent drain current	100\% duty cycle pins 2 and 14 open	$V_{1}=46 \mathrm{~V}$	30	40	mA
		0\% duty cycle		15	20	mA
$-\mathrm{I}_{2} \mathrm{~L}$	Output leakage current	0\% duty cycle			1	mA

SOFT START

I_{15} SO	Source current		100	130	160	$\mu \mathrm{~A}$
$\mathrm{I}_{15 \mathrm{SI}}$	Sink current		50	70	120	$\mu \mathrm{~A}$

ERROR AMPLIFIER

$V_{11 \mathrm{H}}$	High level output voltage	$V_{10}=4.7 \mathrm{~V}$	$\mathrm{I}_{11}=100 \mu \mathrm{~A}$	3.5		
$\mathrm{~V}_{11 \mathrm{~L}}$	Low level output voltage	$\mathrm{V}_{10}=5.3 \mathrm{~V}$	$\mathrm{I}_{11}=100 \mu \mathrm{~A}$			0.5
$\mathrm{I}_{11 \mathrm{SI}}$	Sink output current	$\mathrm{V}_{10}=5.3 \mathrm{~V}$	V			
$-\mathrm{I}_{11 \mathrm{SO}}$	Source output current	$\mathrm{V}_{10}=4.7 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
I_{10}	Input bias current	$V_{10}=5.2 \mathrm{~V}$	100	150		$\mu \mathrm{~A}$
G_{V}	DC open loop gain	$\mathrm{V}_{11}=1 \mathrm{~V}$ to 3 V	46	55		dB

OSCILLATOR

$-I_{14}$	Oscillator source current		5			mA

CIRCUIT OPERATION (refer to the block diagram)

The L4962 is a monolithic stepdown switching regulator providing output voltages from 5.1 V to 40 V and delivering 1.5 A .
The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage. An error signal is produced by comparing the output voltage with a precise 5.1 V on-chip reference (zener zap trimmed to $\pm 2 \%$).
This error signal is then compared with the sawtooth signal to generate the fixed frequency pulse width modulated pulses which drive the output stage.

The gain and frequency stability of the loop can be adjusted by an external RC network connected to pin 11. Closing the loop directly gives an output voltage of 5.1 V . Higher voltages are obtained by inserting a voltage divider.
Output overcurrents at switch on are prevented by the soft start function. The error amplifier output is initially clamped by the external capa-
citor $\mathrm{C}_{\text {ss }}$ and allowed to rise, linearly, as this capacitor is charged by a constant current source. Output overload protection is provided in the form of a current limiter. The load current is sensed by a internal metal resistor connected to a comparator. When the load current exceeds a preset threshold this comparator sets a flip flop which disables the output stage and discharges the soft start capacitor. A second comparator resets the flip flop when the voltage across the soft start capacitor has fallen to 0.4 V .
The output stage is thus re-enabled and the output voltage rises under control of the soft start network. If the overload condition is still present the limiter will trigger again when the threshold current is reached. The average short circuit current is limited to a safe value by the dead time introduced by the soft start network. The thermal overload circuit disables circuit operation when the junction temperature reaches about $150^{\circ} \mathrm{C}$ and has hysteresis to prevent unstable conditions.

Fig. 1 - Soft start waveforms

Fig. 2 - Current limiter waveforms

Fig. 3 - Test and application circuit (Powerdip)

1) D_{1} : BYW98 or 3A Schottky diode, 45 V of VRRM;
2) L_{1} : CORE TYPE - MAGNETICS 58120-A2 MPP
N° TURNS 45, WIRE GAUGE: 0.8 mm (20 AWG)
3) $\mathrm{C}_{6}, \mathrm{C}_{7}$: ROE, EKR $220 \mu \mathrm{~F} 40 \mathrm{~V}$

Fig. 4 - Quiescent drain current vs. supply voltage (0\% duty cycle)

Fig. 5 - Quiescent drain current vs. supply voltage (100\% duty cycle)

Fig. 6 - Quiescent drain current vs. junction temperature (0% duty cycle)

$\begin{array}{llllll}-25 & 0 & 25 & 50 & 75 & 100\end{array}$

Fig. 7 - Quiescent drain current vs. junction temperature (100% duty cycle)

$\begin{array}{llllllll}-25 & 0 & 25 & 50 & 75 & 100 & \mathrm{~T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)\end{array}$

Fig. 10 - Open loop frequency and phase response of error amplifier

Fig. 13 - Switching frequency vs. R2 (see test circuit)

Fig. 8 - Reference voltage (pin 10) vs. V_{1} rdip) vs. V_{1}

Fig. 11 -- Switching frequency vs. input voltage

Fig. 14 - Line transient response

Fig. 9 - Reference voltage (pin 10) vs. junction temperature

Fig. 12 - Switching frequency vs. junction temperature

Fig. 15 - Load transient response

Fig. 16 - Supply voltage ripple rejection vs. frequency

Fig. 19 - Efficiency vs. output current

Fig. 22 - Efficiency vs. output voltage

Fig. 17 - Dropout voltage between pin 7 and pin 2 vs. current at pin 2

Fig. 20 - Efficiency vs. output current

Fig. 23 - Efficiency output voltage

Fig. 18 - Dropout voltage between pin 7 and 2 vs. junction temperature \qquad

Fig. 21 - Efficiency
vs. output current

Fig. 24-Maximum allowable power dissipation vs. ambient temperature (Powerdip)

APPLICATION INFORMATION

Fig. 25 - Typical application circuit

$\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{7}$: EKR (ROE)
D_{1} : BYW98 OR VISK 340 (SCHOTTKY)
SUGGESTED INDUCTORS (L_{1}): MAGNETICS 58120 - A2MPP - 45 TURNS - vwi.ie GAUGE 0.8mm (20AWG) COGEMA 946043
OR U15, GUP15, 60 TURNS 1 mm , AIR GAP 0.8 mm (20AWG) - COGEMA 969051

Fig. 26 - P.C. board and component layout of the circuit of Fig. 25 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 27 - A minimal 5.1V fixed regulator; very few components are required

Fig. 28 - Programmable power supply

$\mathrm{V}_{\mathrm{O}}=5.1 \mathrm{~V}$ to 15 V
$\mathrm{I}_{0}=1.5 \mathrm{~A}$ max
Load regulation (0.5 A to 1.5 A$)=10 \mathrm{mV}\left(\mathrm{V}_{\mathrm{o}}=5.1 \mathrm{~V}\right)$
Line regulation $\left(220 \mathrm{~V} \pm 15 \%\right.$ and to $\left.\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}\right)=15 \mathrm{mV}\left(\mathrm{V}_{\mathrm{o}}=5.1 \mathrm{~V}\right)$

APPLICATION INFORMATION (continued)

Fig. 29 - DC-DC converter $5.1 \mathrm{~V} / 4 \mathrm{~A}, \pm 12 \mathrm{~V} / 1 \mathrm{~A}$. A suggestion how to synchronize a negative output

L1, L3 = COGEMA 946043 (969051)
L2 $=$ COGEMA 946044 (946045)

Fig. 30 - In multiple supplies several L4962s can be synchronized as shown

Fig. 31 - Preregulator for distributed supplies

* L2 and C2 are necessary to reduce the switching frequency spikes when linear regulators are remote from L4962

MOUNTING INSTRUCTION

The $R_{\text {th J-amb }}$ of the L 4962 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 32).
The diagram of figure 33 shows the $R_{\text {th }}$ famb a function of the side " ℓ " of two equal square copper areas having the thickness of 35μ (1.4
mils). During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 32 - Example of P.C. board copper area which is used as heatsink

COPPER AREA 35μ THICKNESS

Fig. 33 - Maximum dissipable power and junction to ambient thermal resistance vs. side " ℓ "

0.3 Ω DMOS FULL BRIDGE DRIVER

- SUPPLY VOLTAGE UP TO 48V
- 2A MAX PEAK CURRENT
- TOTAL RMS CURRENT UP TO 1.0A
- RDDS(ON) 0.3Ω (TYPICAL VALUE AT $25^{\circ} \mathrm{C}$)
- CROSS CONDUCTION PROTECTION
- TTL COMPATIBLE DRIVE
- OPERATING FREQUENCY UP TO 100 KHz
- THERMAL SHUTDOWN
- INTERNAL LOGIC SUPPLY

■ HIGH EFFICIENCY (TYPICAL 90\%)

The L6201 is a full bridge driver for motor control applications realised in Multipower-BCD technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip. By using mixed technology it has been possible to optimise the logic circuitry and the power stage to achieve the best possible performance. The DMOS output transistors can deliver 1.0A RMS at motor supply voltages up

ADVANCE DATA

to 48 V and efficiently at high switching speeds. All the logic inputs are TTL, CMOS and $\mu \mathrm{C}$ compatible. Each channel (half-bridge) of the device is controlled by a separate logic input, while a common enable controls both channels. The L6201 is mounted in an SO. 20 package. Even at the full rated current and voltage no external heatsink is required at normal operating temperatures.

MultiPower BCD Technology

SO-20
$(12+4+4)$

ORDERING NUMBER: L6201

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Power supply	52	V
$V_{\text {IN }}, \mathrm{V}_{\text {EN }}$	Input or Enable voltage	-0.3 to 7	V
Io	DC output current (note 1)	1	A
	- non repetitive ($<1 \mathrm{~ms}$)	5	A
$\mathrm{V}_{\text {sense }}$	Sensing voltage	-1 to 4	V
V_{b}	Boostrap peak voltage	60	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation ($\mathrm{T}_{\text {pins }}=90^{\circ} \mathrm{C}$)	4	W
	($\mathrm{Tamb}^{\text {amb }}=70^{\circ} \mathrm{C}$ no copper area on PCB)	0.9	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

Note 1 : Pulse width limited only by junction temperature and the transient thermal impedance.

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-pins }}$	Thermal resistance junction-pins	\max	15

PIN FUNCTIONS

PIN	NAME	F U N C T I O N
1	SENSE	A resistance R bense connected to this pin provides feed- back for motor current control
2	ENABLE	When a logic high is present on this pin the DMOS POWER transistors are enabled to be selectively driven by IN1 and IN2.
3	NO CONNECTION	Common ground terminal.
$4,5,6,7$	GND	Output of the half bridge.
8	OUT2 CONNECTION	Supply voltage.
10	OUTput of the half bridge.	

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$, unless otherwise stated)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage		12	36	48	\checkmark
$V_{\text {ref }}$	Reference voltage			13.5		V
I_{5}	Quiescent supply current	$\begin{array}{lll} E N=H & V_{I N}=L & \\ E N=H & V_{I N}=H & I_{L}=0 \\ E N=L & \text { Fig. } 10 & \end{array}$		10 10 8		$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$
f_{c}	Commutation frequency			30	100	KHz
T_{j}	Thermal shutdown			150		${ }^{\circ} \mathrm{C}$
T_{d}	Dead time protection			100		ns

TRANSISTORS

OFF							
Ioss	Leakage current	Fig. 11			100		$\mu \mathrm{A}$
ON							
R_{DS}	On resistance				0.3		Ω
$\mathrm{V}_{\text {DS (ON) }}$	Drain source voltage	$\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~A}$	Fig. 9		0.36		V
$V_{\text {sens }}$	Sensing voltage			-1		4	v

SOURCE DRAIN DIODE

$V_{s d}$	Forward ON voltage	$I_{S D}=1.0 \mathrm{~A} \quad \mathrm{EN}=\mathrm{L}$		0.9		V
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A} \quad \frac{\mathrm{dif}}{\mathrm{dt}}=25 \mathrm{~A} / \mu \mathrm{s}$		300		ns
t_{fr}	Forward recovery time			200	ns	

LOGIC LEVELS

$V_{\text {INL }}, V_{E N L} \quad$ Input Low voltage		-0.3		0.8	V
$V_{\text {INL }}, V_{E N H} \quad$ Input High voltage		2		7	V
$I_{I N L}, I_{E N L} \quad$ Input Low current	$V_{I N}, V_{E N}=L$			-10	μA
$I_{\text {INH }}, I_{E N H}$. Input High current	$V_{I N}, V_{E N}=H$		30		μA

LOGIC CONTROL TO POWER DRIVE TIMING

Fig. 1 - Typical I_{s} normalized vs. T_{i}

Fig. 2 - Quiescent current vs. frequency

Fig. 3 - Typical I_{s} normalized vs. V_{s}

Fig. 4 - Typical diode behaviour in synchronous rectification

Fig. 6 - $\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ normalized at $25^{\circ} \mathrm{C}$ vs. temperature typical values

Fig. 5 - Typical $R_{\text {DS (ON) }}$
vs. $\mathrm{V}_{\mathrm{s}} \cong \mathrm{V}_{\text {ref }}$

Fig. 7 - R $\mathrm{RS}_{\text {(ON) }}$ vs. DMOS transistor current

Fig. 8 - Typical power dissipation vs. I_{L}

Fig. 8a - Two phase chopping

Fig. 8b - One phase chopping

Fig. 8c - Enable chopping

TEST CIRCUITS

Fig. 9 - Saturation voltage
a) Source outputs

For IN1 source output saturation :
$V_{1}=$ " H " $\left.\begin{array}{l}S_{1}=A \\ S_{L}=A\end{array}\right\} \quad V_{2}=" H "$

For IN2 source output saturation: $\mathrm{V}_{1}=$ " H " $\left.\begin{array}{l}V_{1}=" H^{\prime \prime} \\ S_{1}=B \\ S_{L}=B\end{array}\right\} V_{2}=" H "$
b) Sink outputs

For IN1 sink output saturation:

For IN2 sink output saturation:
$\left.\begin{array}{l}V_{1}=" H^{\prime \prime} \\ S_{1}=B \\ S_{L}=B\end{array}\right\} \quad V_{2}=" L "$

TEST CIRCUITS (continued)

Fig. 10 - Quiescent current

Fig. 11 - Leakage current
a) Source outputs
b) Sink outputs

SWITCHING TIMES

Fig. 12 - Source current delay times vs. input

Fig. 13 - Sink current delay times vs. input

CIRCUIT DESCRIPTION

The L6201 is a monolithic full bridge switching motor driver realized in the new MultipowerBCD technology which allows the integration of multiple, isolated DMOS power transistors plus mixed CMOS/bipolar control circuits. In this way it has been possible to make all the control inputs TTL, CMOS and $\mu \mathrm{C}$ compatible and eliminate the necessity of external MOS drive components.

LOGIC DRIVE

INPUTS			OUTPUT MOSFETS (*)
	IN1	IN2	
	L	L	Sink 1, Sink 2
	L	H	Sink 1, Source 2
	H	L	Source 1, Sink 2
	H	H	Source 1, Source 2
$V_{E N}=$ L	X	X	All transistors turned oFF

(*) Numbers referred to INPUT 1 or INPUT2 controlled outputs stages

CROSS CONDUCTION

Although the device guarantees the absence of cross-conduction, the presence of the intrinsic diodes in the POWER DMOS structure causes the generation of current spikes on the sensing terminals. This is due to charge-discharge phenomena in the capacitors C1 \& C2 associated with the drain source junctions (Fig. 14). When the output switches from high to low, a current spike is generated associated with the capacitor C1. On

Fig. 14 - Intrinsic structures in the POWER. DMOS transistors

the low-to-high transition a spike of the same polarity is generated by C2, preceded by a spike of the opposite polarity due to the charging of the input capacity of the lower POWER DMOS transistor. (Fig. 15)

Fig. 15 - Current typical spikes on the sensing pin

TRANSISTOR OPERATION

ON STATE

When one of the POWER DMOS transistor is ON it can be considered as a resistor R_{DS} (ON) ($=0.3 \Omega$) throughout the recommended operating range. In this condition the dissipated power is given by:

$$
P_{\mathrm{ON}}=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

The low $R_{\text {DS (ON) }}$ of the Multipower-BCD process can provide high currents with low power dissipation.

OFF STATE

When one of the POWER DMOS transistor is OFF the $V_{D S}$ voltage is equal to the supply voltage and only the leakage current IDSs flows. The power dissipation during this period is given by:

$$
P_{\text {OFF }}=V_{S} \cdot I_{\text {DSS }}
$$

The power dissipation is in the order of pW and is negligible in comparison to that dissipated in the ON STATE.

TRANSITIONS

Like all MOS power transistors the DMOS POWER transistors have as intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode

SGS-THOMSON
applications. During recirculation with the ENABLE input high, the voltage drop across the transistor is $R_{D S}(O N) \cdot I_{D}$ and when the voltage reaches the diode voltage it is clamped to its characteristic. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage and current waveforms in the application.

$$
P_{\text {trans. }}=I_{D S}(t) \cdot V_{D S}(t)
$$

BOOSTRAP CAPACITORS

To ensure that the POWER DMOS transistors are driven correctly gate source voltage of about 10V must be guaranteed for all of the N -channel DMOS transistors. This is no problem for the lower POWER DMOS transistors as their sources are refered to ground but a gate voltage greater than the supply voltage is necessary to drive the upper transistors. In the L6201 this achieved by an internal charge pump circuit that guarantees correct DC drive in combination with the boostrap circuit charges the external C_{B} capacitors when the source transistor is OFF and the sink transistor is ON giving lower commutation losses in switched mode operation. For efficient charging the value of the boostrap capacitor should be greater than the input capacitance of the power transistor which is around 1 nF . It is recommended that a capacitance of at least 10 nF is used for the bootstrap. If a smaller capacitor is used there is a risk that the POWER transistors will not be fully turned on and they will show a higher R DS (ON). On the other hand if a elevated value is used it is possible that a current spike may be produced in the sense resistor.

REFERENCE

To stabilise the internal drive circuit it is recommended that a capacitor be placed between this pin and ground. A value of $0.22 \mu \mathrm{~F}$ should be sufficient for most applications.
This pin is also protected against a short circuit to ground.

DEAD TIME

To protect the device against simultaneous conduction in both arms of the bridge and the
resulting rail to rail short, the logic control circuit provides a dead time greater than 40 ns .

THERMAL PROTECTION

A thermal protection circuit has been included that will disable the device if the junction temperature e reaches $150^{\circ} \mathrm{C}$. When the temperature has fallen to a safe level the device restarts under the control of the input and enable signals.

APPLICATION INFORMATION

RECIRCULATION

During recirculation with the ENABLE input high, the voltage drop across the transistor is $R_{\text {DS (ON). }} I_{L}$ for voltages less than 0.7 V and is clamped at a voltage depending on the characteristics of the source-drain diode for greater voltages. Although the device is protected against cross conduction, current spikes can appear on the current sense pin due to charge/discharge phenomena in the intrinsic source drain capacitances. In the application this does not cause any problems because the voltage created across the sense resistor is usually much less than the peak value, although a small RC filter can be added if necessary.

POWER DISSIPATION

In order to achieve the high performance provided by the L 6201 some attention must be paid to ensure that it has an adequate PCB area to dissipate the heat. The first stage of any thermal design is to calculate the dissipated power in the application, for this example the half step operation shown in figure 16 is considered.

RISE TIME T_{r}

When an arm of the half bridge is turned on current begins to flow in the inductive load until the maximum current I_{L} is reached after a time T_{r}. The dissipated energy $E_{\text {OFF/ON }}$ is in this case:

$$
E_{\text {OFF/ON }}=\left[R_{\text {DS (ON) }} \cdot I_{L}{ }^{2} \cdot T_{r}\right] \cdot 2 / 3
$$

ON TIME TON

During this time the energy dissipated is due to the ON resistance of the transistors E_{ON} and the commutation $\mathrm{E}_{\text {сом }}$. As two of the POWER DMOS transistors are ON EON is given by:

$$
E_{O N}=I_{L}^{2} \cdot R_{D S}(O N) \cdot 2 \cdot T_{O N}
$$

In the commutation the energy dissipated is:

$$
\mathrm{E}_{\text {COM }}=\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{L}} \cdot \mathrm{~T}_{\text {COM }} \cdot \mathrm{f}_{\text {SWITCH }} \cdot \mathrm{T}_{\text {ON }}
$$

Where:
$\mathrm{T}_{\text {COM }}=$ Commutation Time and it is assumed that;
$T_{\text {COM }}=T_{\text {TURN-ON }}=T_{\text {TURN-OFF }}=100 \mathrm{~ns}$
$\mathrm{f}_{\text {SWITCH }}=$ Chopper frequency

FALL TIME T $_{f}$

For this example it is assumed that the energy dissipated in this part of the cycle takes the same form as that shown for the rise time:

$$
E_{\text {ON } / \text { OFF }}=\left[R_{\text {DS (ON })} \cdot I_{L}^{2} \cdot T_{f}\right] \cdot 2 / 3
$$

QUIESCENT ENERGY

The last contribution to the energy dissipation is due to the quiescent supply current and is given by:

$$
E_{\text {QUIESCENT }}=I_{\text {QUIESCENT }} \cdot V_{\mathrm{s}} \cdot T
$$

TOTAL ENERGY PER CYCLE

$$
\begin{gathered}
E_{\text {TOT }}=E_{\text {OFF/ON }}+E_{\text {ON }}+E_{\text {COM }}+ \\
+E_{\text {ON/OFF }}+E_{\text {QUIESCENT }}
\end{gathered}
$$

The Total Power Dissipation $\mathrm{P}_{\text {DIs }}$ is simply:

$$
P_{D I S}=E_{T O T} / T
$$

$\mathrm{T}_{\mathrm{r}}=$ Rise time
$\mathrm{T}_{\mathrm{ON}}=\mathrm{ON}$ time
$\mathrm{T}_{\mathrm{f}}=$ Fall time
$\mathrm{T}_{\mathrm{d}}=$ Dead time
$\mathrm{T}=$ Period

$$
T=T_{r}+T_{O N}+T_{f}+T_{d}
$$

Fig. 16 - Load current in half step operation

Fig. 17 - Two phase Bipolar stepper motor control circuit with chopper current control and translator

Fig. 18 - Rth junction to ambient vs. "on board" heat sink area

0.3 Ω DMOS FULL BRIDGE DRIVER

- SUPPLY VOLTAGE UP TO 48V
- 5A MAX PEAK CURRENT
- tOTAL RMS CURRENT UP TO 1.5A
- R_{DS} (ON) 0.3Ω (TYPICAL VALUE AT $25^{\circ} \mathrm{C}$)
- CROSS CONDUCTION PROTECTION
- TTL COMPATIBLE DRIVE
- OPERATING FREQUENCY UP TO 100 KHz
- THERMAL SHUTDOWN
- INTERNAL LOGIC SUPPLY
- HIGH EFFICIENCY (TYPICAL 90\%)

The L6202 is a full bridge driver for motor control applications realized in Multipower-BCD technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip. By using mixed technology it has been possible to optimise the logic circuitry and the power stage to achieve the best possible performance. The DMOS output transistors can deliver 1.5A RMS at motor supply voltages up to 48 V and efficiently at high switching speeds. All the logic inputs are TTL, CMOS and $\mu \mathrm{C}$ compatible. Each channel (half-bridge) of the
device is controlled by a separate logic input, while a common enable controls both channels. The L6202 is mounted in an 18-lead powerdip package and the six center pins are used to conduct heat to the PCB. Even at the full rated current and voltage no external heatsink is required at normal operating temperatures.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{5}	Power supply	52	V
$\mathrm{V}_{\text {OD }}$	Differential output voltage (Between pins 10 and 8)	60	V
$V_{\text {IN }}, \mathrm{V}_{\text {EN }}$	Input or Enable voltage	-0.3 to 7	V
Io	Pulsed output current (note 1)	5	A
	- non repetitive (<1ms)	10	A
$V_{\text {sense }}$	Sensing voltage	-1 to 4	V
V_{b}	Bucustrap peak voltage	60	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation ($\mathrm{T}_{\text {pins }}=90^{\circ} \mathrm{C}$)	5	W
	($\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ no copper area on PCB)	1.3	W
	($\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C} 4 \mathrm{~cm}^{2}$ copper area on PCB)	2	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

Note 1 : Pulse width limited only by junction temperature and the transient thermal impedance.

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-pins }}$	Thermal resistance junction-pins	\max	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient (Fig. 21)	\max	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

PIN	NAME	FUNCTION
1	SENSE	A resistance $\mathrm{R}_{\text {sense }}$ connected to this pin provides feedback for motor current control.
2	ENABLE	When a logic high is present on this pin the DMOS POWER transistors are enabled to be selectively driven by IN1 and IN2.
3	NO CONNECTION	
4	GND	Common ground terminal.
5	GND	Common ground terminal.
6	GND	Common ground terminal.
7	NO CONNECTION	
8	OUT2	Output of the half bridge.
9	V_{s}	Supply voltage.
10	OUT1	Output of the half bridge.
11	B00T1	A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at high switching frequencies.
12	IN1	Digital input from the motor controller.
13	GND	Common ground terminal.
14	GND	Common ground terminal.
15	GND	Common ground terminal.
16	IN2	Digital input from the motor controller.
17	BOOT2	A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at high switching frequencies.
18	$V_{\text {ref }}$	Internal voltage reference, a capacitor from this pin to GND increases stability of the POWER DMOS logic drive circuit.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=42 \mathrm{~V}$, unless otherwise stated)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		12	36	48	\checkmark
$V_{\text {ref }}$	Reference voltage			13.5		\checkmark
$I_{\text {REF }}$	Output current				2	mA
I_{5}	Quiescent supply current	$\begin{array}{lll} E N=H & V_{I N}=L & \\ E N=H & V I N=H & I_{L}=0 \\ E N=L & \text { Fig. } 10 & \end{array}$		10 10 8		$m A$ $m A$ $m A$
f_{c}	Commutation frequency			30	100	KHz
T_{j}	Thermal shutdown			150		${ }^{\circ} \mathrm{C}$
T_{d}	Dead time protection			100		ns

TRANSISTORS

OFF							
IDSS	Leakage current	Fig. $11 \mathrm{~V}_{\mathrm{s}}$				1	mA
ON							
R_{DS}	On resistance				0.3		Ω
R DS (ON)	Drain source voltage	$I_{\text {DS }}=1.2 \mathrm{~A}$	Fig. 9		0.36		V
$V_{\text {sens }}$	Sensing voltage			-1		4	V

SOURCE DRAIN DIODE

V_{sd}	Forward ON voltage	$\mathrm{I}_{\mathrm{SD}}=1.2 \mathrm{~A} \quad \mathrm{EN}=\mathrm{L}$		0.9		V
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=1.2 \mathrm{~A} \quad \frac{\mathrm{dif}}{\mathrm{dt}}=25 \mathrm{~A} / \mu \mathrm{s}$		300		ns
t_{fr}	Forward recovery time			200		ns

LOGIC LEVELS

$V_{I N L}, V_{E N L}$ Input Low voltage		-0.3		0.8	V
$V_{I N L}, V_{E N H} \quad$ Input High voltage		2		7	V
$I_{I N L}, I_{E N L} \quad$ Input Low current	$V_{I N}, V_{E N}=L$			-10	$\mu \mathrm{~A}$
$I_{\text {INH }}, I_{E N H} \quad$ Input High current	$V_{I N}, V_{E N}=H$		30		$\mu \mathrm{~A}$

LOGIC CONTROL TO POWER DRIVE TIMING

$t_{1}\left(V_{i}\right)$	Source current turn-off delay	Fig. 12		300	
$t_{2}\left(V_{i}\right)$	Source current fall time	Fig. 12	ns		
$t_{3}\left(V_{i}\right)$	Source current turn-on delay	Fig. 12	200		ns
$\mathrm{t}_{4}\left(V_{i}\right)$	Source current rise time	Fig. 12		400	
$\mathrm{t}_{5}\left(V_{i}\right)$	Sink current turn-off delay	Fig. 13	ns		
$\mathrm{t}_{6}\left(V_{i}\right)$	Sink current fall time	Fig. 13	200		ns
$\mathrm{t}_{7}\left(V_{i}\right)$	Sink current turn-on delay	Fig. 13	300		ns
$\mathrm{t}_{8}\left(V_{i}\right)$	Sink current rise time	Fig. 13	200		ns

Fig. 1 - Typical I_{s} normalized vs. T_{j}

Fig. 2 - Quiescent current vs. frequency

Fig. 3 - Typical I_{s} normalized vs. V_{s}

Fig. 4 - Typical diode behaviour in synchronous rectification

Fig. 6 - $\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ normalized at $25^{\circ} \mathrm{C}$ vs. temperature typical values

Fig. 5 - Typical $R_{D S}$ (ON) vs. $\mathrm{V}_{\mathrm{s}} \cong \mathrm{V}_{\text {ref }}$

Fig. 7 - R_{Ds} (ON) vs. DMOS transistor current

Fig. 8 - Typical power dissipation vs. I_{L}

Fig. 8a - Two phase chopping

Fig. 8b - One phase chopping

Fig. 8c - Enable chopping

TEST CIRCUITS

Fig. 9 - Saturation voltage
a) Source outputs

For IN1 source output saturation : $\mathrm{V}_{1}=$ " H "

$$
\left.\begin{array}{l}
\mathrm{S}_{1}=A \\
\mathrm{~S}_{\mathrm{L}}=A
\end{array}\right\} \quad \mathrm{V}_{2}=" \mathrm{H} \text { " }
$$

For IN2 source output saturation: $\mathrm{V}_{1}=$ " $\mathrm{H}^{\prime \prime}$

$$
\left.\begin{array}{l}
V_{1}=" H^{\prime \prime} \\
S_{1}=B \\
S_{L}=B
\end{array}\right\} V_{2}=" H^{\prime \prime}
$$

b) Sink outputs

For IN1 sink output saturation:
$V_{1}=" H "$
$\left.\begin{array}{l}S_{1}=A \\ S_{L}=A\end{array}\right\} \quad V_{2}=" L "$
For IN2 sink output saturation:

$$
\left.\begin{array}{l}
V_{1}=" H^{\prime \prime} \\
S_{1}=B \\
S_{L}=B
\end{array}\right\} \quad V_{2}=" L "
$$

TEST CIRCUITS (continued)

Fig. 10 - Quiescent current

Fig. 11 - Leakage current
a) Source outputs
b) Sink outputs

SWITCHING TIMES

Fig. 12 - Source current delay times vs. input chopper

Fig. 13 - Sink current delay times vs. input chopper

CIRCUIT DESCRIPTION

The L6202 is a monolithic full bridge switching motor driver realized in the new MultipowerBCD technology which allows the integration of multiple, isolated DMOS power transistors plus mixed CMOS/bipolar control circuits. In this way it has been possible to make all the control inputs TTL, CMOS and $\mu \mathrm{C}$ compatible and eliminate the necessity of external MOS drive components.

LOGIC DRIVE

INPUTS			OUTPUT MOSFETS (*)
	IN1	IN2	
$V_{E N}=H$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	Sink 1, Sink 2 Sink 1, Source 2 Source 1, Sink 2 Source 1, Source 2
$\mathrm{V}_{\mathrm{EN}}=\mathrm{L}$	X	X	All transistors turned oFF

[^4]
CROSS CONDUCTION

Although the device guarantees the absence of cross-conduction, the presence of the intrinsic diodes in the POWER DMOS structure causes the generation of current spikes on the sensing terminals. This is due to charge-discharge phenomena in the capacitors C1 \& C2 associated with the drain source junctions (Fig. 14). When the output switches from high to low, a current spike is generated associated with the capacitor C1. On
Fig. 14 - Intrinsic structures in the POWER DMOS transistors

the low-to-high transition a spike of the same polarity is generated by C2, preceded by a spike of the opposite polarity due to the charging of the input capacity of the lower POWER DMOS transistor. (Fig. 15)

Fig. 15 - Current typical spikes on the sensing pin

TRANSISTOR OPERATION

ON STATE

When one of the POWER DMOS transistor is ON it can be considered as a resistor R_{DS} (ON) ($=0.3 \Omega$) throughout the recommended operating range. In this condition the dissipated power is given by:

$$
P_{\mathrm{ON}}=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

The low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the Multipower-BCD process can provide high currents with low power dissipation.

OFF STATE

When one of the POWER DMOS transistor is OFF the $V_{D S}$ voltage is equal to the supply voltage and only the leakage current I Dss flows. The power dissipation during this period is given by:

$$
P_{\text {OFF }}=V_{\mathrm{s}} \cdot I_{\text {DSS }}
$$

The power dissipation is in the order of pW and is negligible in comparison to that dissipated in the ON STATE.

TRANSITIONS

Like all MOS power transistors the DMOS POWER transistors have as intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode

SGS-THOMSON
MOCROELEETRONDCS
applications. During recirculation with the ENABLE input high, the voltage drop across the transistor is $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot I_{\mathrm{D}}$ and when the voltage reaches the diode voltage it is clamped to its characteristic. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage and current waveforms in the application.

$$
P_{\text {trans. }}=I_{D S}(t) \cdot V_{D S}(t)
$$

BOOSTRAP CAPACITORS

To ensure that the POWER DMOS transistors are driven correctly gate source voltage of about 10 V must be guaranteed for all of the N -channel DMOS transistors. This is no problem for the lower POWER DMOS transistors as their sources are refered to ground but a gate voltage greater than the supply voltage is necessary to drive the upper transistors. In the L6202 this achieved by an internal charge pump circuit that guarantees correct DC drive in combination with the boostrap circuit charges the external C_{B} capacitors when the source transistor is OFF and the sink transistor is ON giving lower commutation losses in switched mode operation. For efficient charging the value of the boostrap capacitor should be greater than the input capacitance of the power transistor which is around 1 nF . It is recommended that a capacitance of at least 10 nF is used for the bootstrap. If a smaller capacitor is used there is a risk that the POWER transistors will not be fully turned on and they will show a higher RDS (ON). On the other hand if a elevated value is used it is possible that a current spike may be produced in the sense resistor.

REFERENCE

To stabilise the internal drive circuit it is recommended that a capacitor be placed between this pin and ground. A value of $0.22 \mu \mathrm{~F}$ should be sufficient for most applications.
This pin is also protected against a short circuit to ground.

DEAD TIME

To protect the device against simultaneous conduction in both arms of the bridge and the
resulting rail to rail short, the logic control circuit provides a dead time greater than 40 ns .

THERMAL PROTECTION

A thermal protection circuit has been included that will disable the device if the junction temperature e reaches $150^{\circ} \mathrm{C}$. When the temperature has fallen to a safe level the device restarts under the control of the input and enable signals.

APPLICATION INFORMATION

RECIRCULATION

During recirculation with the ENABLE input high, the voltage drop across the transistor is $R_{D S(O N)} I_{L}$ for voltages less than 0.7 V and is clamped at a voltage depending on the characteristics of the source-drain diode for greater voltages. Although the device is protected against cross conduction, current spikes can appear on the current sense pin due to charge/discharge phenomena in the intrinsic source drain capacitances. In the application this does not cause any problems because the voltage created across the sense resistor is usually much less than the peak value, although a small RC filter can be added if necessary.

POWER DISSIPATION

In order to achieve the high performance provided by the L 6202 some attention must be paid to ensure that it has an adequate PCB area to dissipate the heat. The first stage of any thermal design is to calculate the dissipated power in the application, for this example the half step operation shown in figure 16 is considered.

RISE TIME T_{r}

When an arm of the half bridge is turned on current begins to flow in the inductive load until the maximum current I_{L} is reached after a time T_{r}. The dissipated energy $\mathrm{E}_{\text {OFF/ON }}$ is in this case :

$$
E_{O F F / O N}=\left[R_{D S(O N)} \cdot I_{L}{ }^{2} \cdot T_{r}\right] \cdot 2 / 3
$$

ON TIME TON

During this time the energy dissipated is due to the ON resistance of the transistors E_{ON} and the commutation $\mathrm{E}_{\text {com }}$. As two of the POWER DMOS transistors are ON E ${ }_{\text {ON }}$ is given by:

$$
E_{O N}=I_{L}{ }^{2} \cdot R_{D S}(O N) \cdot 2 \cdot T_{O N}
$$

In the commutation the energy dissipated is:

$$
E_{\text {COM }}=V_{S} \cdot I_{L} \cdot T_{\text {COM }} \cdot f_{\text {SWITCH }} \cdot T_{\text {ON }}
$$

Where:
$\mathrm{T}_{\text {COM }}=$ Commutation Time and it is assumed that;
$T_{\text {COM }}=T_{\text {TURN-ON }}=T_{\text {TURN-OFF }}=100 \mathrm{~ns}$
$\mathrm{f}_{\text {SWITCH }}=$ Chopper frequency

FALL TIME \mathbf{T}_{f}

For this example it is assumed that the energy dissipated in this part of the cycle takes the same form as that shown for the rise time:

$$
E_{\text {ON/OFF }}=\left[R_{\text {DS }(O N)} \cdot I_{L}{ }^{2} \cdot T_{f}\right] \cdot 2 / 3
$$

QUIESCENT ENERGY

The last contribution to the energy dissipation is due to the quiescent supply current and is given by:

$$
E_{\text {QUIESCENT }}=I_{\text {QUIESCENT }} \cdot \mathrm{V}_{\mathrm{s}} \cdot T
$$

total energy per cycle

$$
\begin{gathered}
E_{\text {TOT }}=E_{\text {OFF/ON }}+E_{\text {ON }}+E_{\text {COM }}+ \\
+E_{\text {ON/OFF }}+E_{\text {QUIESCENT }}
\end{gathered}
$$

The Total Power Dissipation $P_{\text {DIS }}$ is simply:

$$
P_{\mathrm{DIS}}=\mathrm{E}_{\mathrm{TOT}} / \mathrm{T}
$$

$T_{r}=$ Rise time
$\mathrm{T}_{\mathrm{ON}}=\mathrm{ON}$ time
$T_{f}=$ Fall time
$\mathrm{T}_{\mathrm{d}}=$ Dead time
$T=$ Period

$$
T=T_{r}+T_{O N}+T_{f}+T_{d}
$$

Fig. 16

DC MOTOR SPEED CONTROL

Since the L6202 integrates a full H -Bridge in a single package it is idealy suited for controlling small DC motors. When used for DC motor control the L6202 provides the power stage required for both speed and direction control. The L6202 can be combined with a current regulator like the L6506 to implement a transconductance amplifier for speed control, as shown in
figure 17. In this particular configuration only half of the L6506 is used and the other half of the device may be used to control a second motor.
In this configuration the L6506 sense the voltage across the sense resistor, $\mathrm{R}_{\text {SENSE }}$, to monitor the motor current. The L6506 then compares the sensed voltage against the current control input and chops the input signals to the L6202 to control the motor current.

SCS-THOMSON
11/16

Fig. 17 - Bidirectional DC motor control

BIPOLAR STEPPER MOTORS APPLICATIONS

Bipolar stepper motors can be driven with an L297 or L6506, two L6202 bridge BCD drivers and very few external components. Together these three chips form a complete micropro-cessor-to-stepper motor interface.
As shown in Fig. 18 and Fig. 19, the controller connect directly to the two bridge BCD drivers. External component requirements are minimal: an RC network to set the chopper frequency and a resistive divider to establish the comparator reference voltage (pin 15 for L297, pin 10 and 15 for L6506). These solutions have a very high efficiency because of low power dissipation.
When the voltage drop across the $\mathbf{R}_{\text {sense }}$ is more negative than -0.4 V , diodes must be used between each schottky sense output and ground.
Depending on the PCB configuration, a snubber network would be connected between pins 8 and 10 of each IC (Generally 0.1 microF in series to 10 ohm).

HIGH CURRENT MICROSTEP DRIVE FOR STEPPER MOTORS

The L6202 can by used in conjunction with the L6217 to (figure 20) implement a high current microstepping controller for stepper motors. In this application the L6217 is used as a control
circuit and its outputs are used only to drive the inputs of the L6202. The application allows easy interface to a microprocessor since the L6217 may be connected directly to the microprocessor bus.

In the circuit shown in Figure 20, the L6217 senses the motor current by monitoring the voltage across the sense resistors, $\mathrm{R}_{\text {SENSE }}$, and compares this value to the output of a 6 bit (7 bit if the L6217A is used) D to A Converter. The $L 6217$ controls the current using a frequency modulated, constant off time, switching controller. The off time of each coil may be set using and external resistor and capacitor connected to PTA and PTB.

In this configuration the microprocessor simply loads the appropriate value for the direction of current flow through the coil and the data for the DAC into the L6217. The L6217 and L6202 then forms the complete interface between the micro and the motor.

When the pins 3 and 4 of the L6217 (Test A and B) are low, the bridges must be in tri-state condition.
For this reason two LM339 comparators must be used. The outputs of the comparators act on the enable inputs of the L6202 ICs.
A bilevel operation can be used for decreasing the minimum controllable load current. The mi-
nimum current that can be controlled is given by the following expression :

$$
I_{L} \text { (avg.) }=\frac{V_{s}}{R_{\text {sense }}+\left(2 R_{\text {DSon }}+R_{\text {LOAD }}\right) / D C}
$$

where $R_{\text {LOAD }}$ is the equivalent resistance of the load $\overline{L C}$ is the duty cycles given by

$$
\frac{T_{\text {on }}}{T_{\text {on }}+T_{\text {off }}}
$$

If 12 V is forced on pin 18 (Reference voltage) and the supply voltage V_{s} is reduced below 12 V the on resistance tends to increase above the normal guaranteed 0.3 ohm .

Consequently the minimum current will also be reduced, as given in the above expression. When a minimum current operation is required, a high signal at point (A) can disable the pnp transistors in fig. 20. So it's possible to operate at a V_{s} of $\left(7 V-V_{B E}\right)$.

Fig. 18 - Two phase Bipolar stepper motor control circuit with chopper current control

Fig. 19 - Two phase Bipolar stepper motor control circuit with chopper current control and translator

Fig. 20 - High current microstepping controller for stepper motors

THERMAL CHARACTERISTICS

Fig. 21 - $R_{\text {th }}$ with two "on board" square heatsink vs. side ℓ

Fig. 22 - Transient thermal resistance for single pulses

Fig. 23 - Peak transient $R_{\text {th }}$ vs. pulse width and duty cycle

L6203

0.3Ω DMOS FULL BRIDGE DRIVER

- SUPPLY VOLTAGE UP TO 48V
- 5A MAX PEAK CURRENT
- TOTAL RMS CURRENT UP TO 4A
- R RS (ON) 0.3Ω (TYPICAL VALUE AT $25^{\circ} \mathrm{C}$)
- CROSS CONDUCTION PROTECTION
- TTL COMPATIBLE DRIVE
- OPERATING FREQUENCY UP TO 100 KHz
- thermal shutdown
- INTERNAL LOGIC SUPPLY
- HIGH EFFICIENCY (TYPICAL 90\%)

The L6203 is a full bridge driver for motor control applications realized in Multipower-BCD technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip. By using mixed technology it has been possible to optimise the logic circuitry and the power stage to achieve the best possible performance. The DMOS output transistors can
deliver 4A RMS at motor supply voltages up to 48 V and efficiently at high switch speeds. All the logic inputs are TTL, CMOS and $\mu \mathrm{C}$ compatible. Each channel (half-bridge) of the device is controlled by a separate logic input, while a common enable controls both channels. The L6203 is mounted in a 11 -lead Multiwatt package.

MultiPower BCD Technology

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Power supply	52	V
$V_{\text {OD }}$	Differential output voltage (Between pins 1 and 3)	60	V
$V_{\text {IN }}, V_{\text {EN }}$	Input or Enable voltage	-0.3 to 7	V
I_{0}	Pulsed output current (note 1)	5	A
	- non repetitive ($<1 \mathrm{~ms}$)	10	A
$V_{\text {sense }}$	Sensing voltage	-1 to 4	V
V_{b}	Boostrap peak voltage	60	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation ($\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$)	20	W
	($\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ free air)	2.3	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

Note 1 : Pulse width limited only by junction temperature and the transient thermal impedance.

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

PIN	NAME	FUNCTION
1	OUT2	Output of the half bridge.
2	V_{s}	Supply voltage.
3	OUT1	Output of the half bridge.
4	BOOT1	A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at high switching frequencies.
5	IN1	Digital input from the motor controller.
6	GND	Common ground terminal.
7	IN2	Digital input from the motor controller.
8	BOOT2	A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at high switching frequencies.
9	$V_{\text {ref }}$	Internal voltage reference, a capacitor from this pin to GND increases stability of the POWER DMOS logic drive cricuit.
10	SENSE	A resistance $\mathrm{R}_{\text {sense }}$ connected to this pin provides feedback for motor current control.
11	ENABLE	When a logic high is present on this pin the DMOS POWER transistors are enabled to be selectively driven by IN1 and IN2.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=42 \mathrm{~V}$, unless otherwise stated)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage		12	36	48	V
$\mathrm{V}_{\text {ref }}$	Reference voltage			13.5		V
$\mathrm{I}_{\text {REF }}$	Output current				2	mA
I_{s}	Quiescent supply current	$\begin{array}{lll} E N=H & V_{I N}=L & \\ E N=H & V_{I N}=H & I_{L}=0 \\ E N=L & \text { Fig. } 10 & \end{array}$		10 10 8		$m A$ $m A$ $m A$
f_{c}	Commutation frequency			30	100	KHz
T_{j}	Thermal shutdown			150		${ }^{\circ} \mathrm{C}$
T_{d}	Dead time protection			100		ns
TRANSISTORS						

OFF						
IDSs	Leakage current	Fig. $11 \quad \mathrm{~V}_{\mathrm{s}}=52 \mathrm{~V}$			1	mA
ON						
$R_{\text {DS }}$	On resistance			0.3		Ω
$V_{\text {DS (ON) }}$	Drain source voltage	$I_{D S}=3 A$		0.9		V
$\mathrm{V}_{\text {sens }}$	Sensing voltage		-1		4	V

SOURCE DRAIN DIODE

V_{sd}	Forward ON voltage	$\mathrm{I}_{\mathrm{SD}}=3 \mathrm{~A}$	$\mathrm{EN}=\mathrm{L}$		1.35	
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A} \quad \frac{\mathrm{dif}}{\mathrm{dt}}=25 \mathrm{~A} / \mu \mathrm{S}$		300		ns
t_{fr}	Forward recovery time			200		ns

LOGIC LEVELS

$V_{\text {INL }}, V_{E N L}$	Input Low voltage		-0.3		0.8
$V_{\text {INH }}, V_{E N H}$	Input High voltage		2		7
$I_{I N L}, I_{E N L} \quad$ Input Low current	$V_{I N}, V_{E N}=L$			-10	$\mu \mathrm{~A}$
$I_{I N H}, I_{E N H}$	Input High current	$V_{I N}, V_{E N}=H$		30	

LOGIC CONTROL TO POWER DRIVE TIMING

$t_{1}\left(V_{i}\right)$	Source current turn-off delay	Fig. 12		300		ns
$\mathrm{t}_{2}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Source current fall time	Fig. 12		200		ns
$\mathrm{t}_{3}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Source current turn-on delay	Fig. 12		400		ns
$\mathrm{t}_{4}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Source current rise time	Fig. 12	200		ns	
$\mathrm{t}_{5}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Sink current turn-off delay	Fig. 13		300		ns
$\mathrm{t}_{6}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Sink current fall time	Fig. 13	200		ns	
$\mathrm{t}_{7}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Sink current turn-on delay	Fig. 13	400		ns	
$\mathrm{t}_{8}\left(\mathrm{~V}_{\mathrm{i}}\right)$	Sink current rise time	Fig. 13	200		ns	

Fig. 1 - Typical I_{s} normal-
ized vs. T_{j}

Fig. 2 - Quiescent current
vs. frequency

Fig. 3 - Typical I_{s} normalized vs. V_{s}

Fig. 4 - Typical diode behaviour in synchronous rectification

Fig. 6 - $R_{\text {DS (ON) }}$ normalized at $25^{\circ} \mathrm{C}$ vs. temperature typical values

Fig. 5 - Typical $R_{D S}$ (ON)
vs. $\mathrm{V}_{\mathrm{s}} \cong \mathrm{V}_{\text {ref }}$

Fig. 7 - R_{DS} (oN) vs. DMOS transistor current

Fig. 8 - Typical power dissipation vs. I_{L}

Fig. 8a - Two phase chopping

Fig. 8b - One phase chopping

Fig. 8c - Enable chopping

TEST CIRCUITS

Fig. 9 - Saturation voltage
a) Source outputs

For IN1 source output saturation : $\mathrm{V}_{1}=$ " H " $\left.\begin{array}{l}\mathrm{S}_{1}=A \\ \mathrm{~S}_{\mathrm{L}}=A\end{array}\right\} \quad \mathrm{V}_{2}=" \mathrm{H}^{\prime \prime}$

For IN2 source output saturation: $\mathrm{V}_{1}=$ " H "

$$
\left.\begin{array}{l}
V_{1}=" H^{\prime \prime} \\
S_{1}=B \\
S_{L}=B
\end{array}\right\} V_{2}=" H "
$$

b) Sink outputs

For IN1 sink output saturation :
$\left.\begin{array}{l}V_{1}=" H " \\ S_{1}=A \\ S_{L}=A\end{array}\right\} \quad V_{2}=" L "$
For IN2 sink output saturation :
$V_{1}=" H$ "
$\left.\begin{array}{l}S_{1}=B \\ S_{L}=B\end{array}\right\} \quad V_{2}=" L "$

TEST CIRCUITS (continued)

Fig. 10 - Quiescent current

Fig. 11 - Leakage current
a) Source outputs
b) Sink outputs

SWITCHING TIMES

Fig. 12 - Source current delay times vs. input chopper

Fig. 13 - Sink current delay times vs. input chopper

CIRCUIT DESCRIPTION

The L6203 is a monolithic full bridge switching motor driver realized in the new MultipowerBCD technology which allows the integration of multiple, isolated DMOS power transistors plus mixed CMOS/bipolar control circuits. In this way it has been possible to make all the control inputs TTL, CMOS and $\mu \mathrm{C}$ compatible and eliminate the necessity of external MOS drive components.

LOGIC DRIVE

InPUTS			OUTPUT MOSFETS (*)
	IN1	IN2	
$V_{E N}=H$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	Sink 1, Sink 2 Sink 1, Source 2 Source 1, Sink 2 Source 1, Source 2
$V_{E N}=L$	\times	x	All transistors turned ofF
$L=$ Low $\quad H=$ High $\quad X=$ Don't care (*) Members referred to INPUT 1 or INPUT2 controlled outputs stages			

CROSS CONDUCTION

Although the device guarantees the absence of cross-conduction, the presence of the intrinsic diodes in the POWER DMOS structure causes the generation of current spikes on the sensing terminals. This is due to charge-discharge phenomena in the capacitors C1 \& C2 associated with the drain source junctions (Fig. 14). When the output switches from high to low, a current spike is generated associated with the capacitor C1. On
Fig. 14 - Intrinsic structures in the POWER MOS transistors

the low-to-high transition a spike of the same polarity is generated by C2, preceded by a spike of the opposite polarity due to the charging of the input capacity of the lower POWER DMOS transistor. (Fig. 15)

Fig. 15 - Current typical spikes on the sensing pin

TRANSISTOR OPERATION

ON STATE

When one of the POWER DMOS transistor is ON it can be considered as a resistor R_{DS} (ON) ($=0.3 \Omega$) throughout the recommended operating range. In this condition the dissipated power is given by:

$$
\mathrm{P}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

The low $R_{\text {DS (ON) }}$ of the Multipower-BCD process can provide high currents with low power dissipation.

OFF STATE

When one of the POWER DMOS transistor is OFF the $V_{D s}$ voltage is equal to the supply voltage and only the leakage current IDss flows. The power dissipation during this period is given by:

$$
P_{\text {OFF }}=V_{s} \cdot I_{\text {DSS }}
$$

The power dissipation is in the order of pW and is negligible in comparison to that dissipated in the ON STATE.

TRANSITIONS

Like all MOS power transistors the DMOS POWER transistors have as intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode
applications. During recirculation with the ENABLE input high, the voltage drop across the transistor is $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \cdot I_{\mathrm{D}}$ and when the voltage reaches the diode voltage it is clamped to its characteristic. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage and current waveforms in the application.

$$
P_{\text {trans. }}=I_{D S}(t) \cdot V_{D S}(t)
$$

BOOSTRAP CAPACITORS

To ensure that the POWER DMOS transistors are driven correctly gate source voltage of about 10 V must be guaranteed for all of the N -channel DMOS transistors. This is no problem for the lower POWER DMOS transistors as their sources are refered to ground but a gate voltage greater than the supply voltage is necessary to drive the upper transistors. In the L6203this achieved by an internal charge pump circuit that guarantees correct DC drive in combination with the boostrap circuit charges the external C_{B} capacitors when the source transistor is OFF and the sink transistor is ON giving lower commutation losses in switched mode operation. For efficient charging the value of the boostrap capacitor should be greater than the input capacitance of the power transistor which is around 1 nF . It is recommended that a capacitance of at least 10 nF is used for the bootstrap. If a smaller capacitor is used there is a risk that the POWER transistors will not be fully turned on and they will show a higher R DS (ON). On the other hand if a elevated value is used it is possible that a current spike may be produced in the sense resistor.

REFERENCE

To stabilise the internal drive circuit it is recommended that a capacitor be placed between this pin and ground. A value of $0.22 \mu \mathrm{~F}$ should be sufficient for most applications.
This pin is also protected against a short circuit to ground.

DEAD TIME

To protect the device against simultaneous conduction in both arms of the bridge and the
resulting rail to rail short, the logic control circuit provides a dead time greater than 40 ns .

THERMAL PROTECTION

A thermal protection circuit has been included that will disable the device if the junction temperature e reaches $150^{\circ} \mathrm{C}$. When the temperature has fallen to a safe level the device restarts under the control of the input and enable signals.

APPLICATION INFORMATION

RECIRCULATION

During recirculation with the ENABLE input high, the voltage drop across the transistor is $R_{D S(O N)}$. I_{L} for voltages less than 0.7 V and is clamped at a voltage depending on the characteristics of the source-drain diode for greater voltages. Although the device is protected against cross conduction, current spikes can appear on the current sense pin due to charge/discharge phenomena in the intrinsic source drain capacitances. In the application this does not cause any problems because the voltage created across the sense resistor is usually much less than the peak value, although a small RC filter can be added if necessary.

POWER DISSIPATION

In order to achieve the high performance provided by the L6203 some attention must be paid to ensure that it has an adequate PCB area to dissipate the heat. The first stage of any thermal design is to calculate the dissipated power in the application, for this example the half step operation shown in figure 16 is considered.

RISE TIME Tr

When an arm of the half bridge is turned on current begins to flow in the inductive load until the maximum current I_{L} is reached after a time T_{r}. The dissipated energy $E_{\text {OfF/ON }}$ is in this case:

$$
E_{O F F / O N}=\left[R_{D S(O N)} \cdot I_{L}{ }^{2} \cdot T_{r}\right] \cdot 2 / 3
$$

ON TIME TON

During this time the energy dissipated is due to the ON resistance of the transistors E_{ON} and the commutation $\mathrm{E}_{\text {сом }}$. As two of the POWER DMOS transistors are ON $E_{O N}$ is given by:

$$
E_{O N}=I_{L}{ }^{2} \cdot R_{D S}(O N) \cdot 2 \cdot T_{O N}
$$

In the commutation the energy dissipated is:

$$
E_{\text {COM }}=V_{S} \cdot I_{L} \cdot T_{\text {COM }} \cdot f_{\text {SWITCH }} \cdot T_{\text {ON }}
$$

Where:

$$
\begin{aligned}
& \mathrm{T}_{\text {COM }}=\text { Commutation Time and it is assumed } \\
& \text { that; } \\
& \mathrm{T}_{\text {COM }}=\mathrm{T}_{\text {TURN-ON }}=\mathrm{T}_{\text {TURN-OFF }}=100 \mathrm{~ns} \\
& \mathrm{f}_{\text {SWITCH }}=\text { Chopper frequency }
\end{aligned}
$$

FALL TIME \mathbf{T}_{f}

For this example it is assumed that the energy dissipated in this part of the cycle takes the same form as that shown for the rise time:

$$
E_{\text {ON } / \text { OFF }}=\left[R_{\text {DS (ON })} \cdot I_{L}{ }^{2} \cdot T_{f}\right] \cdot 2 / 3
$$

QUIESCENT ENERGY

The last contribution to the energy dissipation is due to the quiescent supply current and is given by:

$$
E_{\text {QUIESCENT }}=I_{\text {QUIESCENT }} \cdot \mathrm{V}_{\mathrm{s}} \cdot \mathrm{~T}
$$

TOTAL ENERGY PER CYCLE

$$
\begin{gathered}
E_{\text {TOT }}=E_{\text {OFF/ON }}+E_{\text {ON }}+E_{\text {COM }}+ \\
+E_{\text {ON/OFF }}+E_{\text {QUIESCENT }}
\end{gathered}
$$

The Total Power Dissipation P DIs is simply :

$$
P_{\mathrm{DIS}}=\mathrm{E}_{\mathrm{TOT}} / \mathrm{T}
$$

$\mathrm{T}_{\mathrm{r}}=$ Rise time
$\mathrm{T}_{\mathrm{ON}}=\mathrm{ON}$ time
$\mathrm{T}_{\mathrm{f}}=$ Fall time
$T_{d}=$ Dead time
$\mathrm{T}=$ Period

$$
T=T_{r}+T_{O N}+T_{f}+T_{d}
$$

Fig. 16

DC MOTOR SPEED CONTROL

Since the L6203 integrates a full H -Bridge in a single package it si idealy suited for controlling small DC motors. When used for DC motor control the L6203 provides the power stage required for both speed and direction control. The L6203 can be combined with a current regulator like the L6506 to implement a transconductance amplifier for speed control, as shown in
figure 17. In this particular configuration only half of the L6506 is used and the other half of the device may be used to control a second motor.
In this configuration the L6506 sense the voltage across the sense resistor, $\mathrm{R}_{\text {SENSE }}$, to monitor the motor current. The L 6506 then compares the sensed voltage against the current control input and chops the input signals to the L6203 to control the motor current.

Fig. 17 - Bidirectional DC motor control

BIPOLAR STEPPER MOTORS APPLICATIONS

Bipolar stepper motors can be driven with an L297 or L6506, two L6203 bridge BCD drivers and very few external components. Together these three chips form a complete micropro-cessor-to-stepper motor interface.

As shown in Fig. 18 and Fig. 19, the controller connect directly to the two bridge BCD drivers. External component requirements are minimal: an RC network to set the chopper frequency and a resistive divider to establish the comparator reference voltage (pin 15 for L297, pin 10 and 15 for L6506). These solutions have a very high efficiency because of low power dissipation.
When the voltage drop across the $\mathrm{R}_{\text {sense }}$ is more negative than -0.4 V , diodes must be used between each schottky sense output and ground.
Depending on the PCB configuration, a snubber network would be connected between pins 1 and 3 of each IC (Generally 0.1 microF in series to 10 ohm).

HIGH CURRENT MICROSTEP DRIVE FOR STEPPER MOTORS

The L6203 can by used in conjunction with the L6217 to (figure 20) implement a high current microstepping controller for stepper motors. In this application the L6217 is used as a control
circuit and its outputs are used only to drive the inputs of the L6203. The application allows easy interface to a microprocessor since the L6217 may be connected directly to the microprocessor bus.

In the circuit shown in Figure 20, the L6217 senses the motor current by monitoring the voltage across the sense resistors, $\mathrm{R}_{\text {SENSE, }}$ and compares this value to the output of a 6 bit (7 bit if the L6217A is used) D to A Converter. The L 6217 controls the current using a frequency modulated, constant off time, switching controller. The off time of each coil may be set using and external resistor and capacitor connected to PTA and PTB.

In this configuration the microprocessor simply loads the appropriate value for the direction of current flow through the coil and the data for the DAC into the L6217. The L6217 and L6203 then forms the complete interface between the micro and the motor.
When the pins 3 and 4 of the L6217 (Test A and B) are low, the bridges must be in tri-state condition.
For this reason two LM339 comparators must be used. The outputs of the comparators act on the enable inputs of the L6203 ICs.
A bilevel operation can be used for decreasing the minimum controllable load current. The mi-
nimum current that can be controlled is given by the following expression :

$$
I_{L} \text { (avg.) }=\frac{V_{s}}{R_{\text {sense }}+\left(2 R_{D \text { Son }}+R_{\text {LOAD }}\right) / D C}
$$

where $R_{\text {LOAD }}$ is the equivalent resistance of the load DC is the duty cycle given by

$$
\frac{T_{\text {on }}}{T_{\text {on }}+T_{\text {off }}}
$$

If 12 V is forced on pin (Reference voltage) and the supply voltage V_{s} is reduced below 12 V the on resistance tends to increase above the normal guaranteed 0.3 ohm .
Consequently the minimum current will also be reduced, as given in the above expression. When a minimum current operation is required, a high signal at point (A) can disable the pnp transistors in fig. 20. So it's possible to operate at a V_{s} of ($7 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}$).

Fig. 18 - Two phase Bipolar stepper motor control circuit with chopper current control

Fig. 19 - Two phase Bipolar stepper motor control circuit with chopper current control and translator

Fig. 20 - High current microstepping controller for stepper motors

THERMAL CHARACTERISTICS

Fig. 21 - $\mathrm{R}_{\text {th j-amb }}$ of Multiwatt package vs. dissipated power

Fig. 22 - Comparison of transient $R_{t h}$ for single pulses with and without heatsink

Fig. 23 - Peak transient $R_{\text {th }}$ vs. pulse width and duty cycle

DUAL SCHOTTKY DIODE BRIDGE

- MONOLITHIC ARRAY OF EIGHT SCHOTTKY DIODES
- HIGH EFFICIENCY
- 4A PEAK CURRENT
- LOW FORWARD VOLTAGE
- FAST RECOVERY TIME
- TWO SEPARATED DIODE BRIDGES

The L6210 is a monolithic IC containing eight Schottky diodes arranged as two separated diode bridges.

This diodes connection makes this device versatile in many applications.

They are used particular in bipolar stepper motor applications, where high efficient operation,
due to low forward voltage drop and fast reverse recovery time, are required.
The L6210 is available in a 16 Pin Powerdip Package $(12+2+2)$ designed for the 0 to $70^{\circ} \mathrm{C}$ ambient temperature range.

ABSOLUTE MAXIMUM RATINGS

I_{f}	Repetitive forward current peak	2	A
$\mathrm{~V}_{\mathrm{r}}$	Peak reverse voltage (per diode)	50	V
$T_{\text {amb }}$	Operating ambient temperature	70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	Storage temperature range	-55 to	150

BLOCK DIAGRAM

$4,5,12,13$

THERMAL DATA

$\mathrm{R}_{\mathrm{tj} j \text {-case }}$	Thermal impedance junction-case $\mathbf{R}_{\mathrm{th} \text {-amb }}$ Thermal impedance junction-ambient without external heatsink	\max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$

CONNECTION DIAGRAM

(Top view)

ELECTRICAL CHARACTERISTICS $\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
V_{f}	Forward voltage drop	$\mathrm{I}_{\mathrm{f}}=100 \mathrm{~mA}$			0.65	0.8	V
		$\mathrm{I}_{\mathrm{f}}=500 \mathrm{~mA}$			0.8	1	
		$\mathrm{If}_{\mathrm{f}}=1 \mathrm{~A}$			1	1.2	
IL	Leakage current	$\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

NOTE: At forward currents of greater than 1A, a parasitic current of approximately 10 mA may be collected by adiacent diodes.

Fig. 1 - Reverse current vs. voltage

MOUNTING INSTRUCTIONS

The $R_{\text {tn J-amb }}$ of the $L 6210$ can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in figure 3 or to an external heatsink (Figure 4).

Fig. 3 - Example of P.C. board copper area which is used as heatsink

Fig. 2 - Forward voltage vs. current

During soldering the pin temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer then 12s. The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 4 - Example of an external heatsink

PHASE LOCKED FREQUENCY CONTROLLER

- PRECISION PHASE LOCKED FREQUENCY CONTROL SYSTEM
- XTAL OSCILLATOR
- programmable reference freQUENCY DIVIDERS
- PHASE DETECTOR WITH ABSOLUTE FREQUENCY STEERING
- DIGITAL LOCK INDICATOR
- double edge option on the freQUENCY FEEDBACK SENSE AMPLIFIER
- TWO HIGH CURRENT OP-AMPS

- 5V REFERENCE OUTPUT

The L6233 is designed for use in phase locked frequency control loops. While optimized for precision speed control of DC motors, these device is universal enough for most applications that require phase locked control. A precise reference frequency can be generated using the device's high frequency oscillator and programmable frequency dividers. The oscillator operates using a broad range of crystals, or, can function as a buffer stage to an external frequency source.
The phase detector on these integrated circuit compares the reference frequency with a frequency/phase feedback signal. In the case of a motor, feedback is obtained at a hall output or other speed detection device. This signal is buffered by a sense amplifier that squares up the

CONNECTION DIAGRAMS

(Top views)

signal as it goes into the digital phase detector. The phase detector responds proportionally to the phase error between the reference and the sense amplifier output. This phase detector includes absolute frequency steering to provide maximum drive signals when any frequency error exists. This feature allows optimum startup and lock times to be realized.
Two op-amps are included that can be configured to provide necessary loop filtering. The outputs of these op-amps will source or sink in excess of 16 mA , so they can provide a low impedance control signal to driving circuits. Additional features include a double edge option on the sense amplifier that can be used to double the loop reference frequency for increased loop bandwidths. A digital lock signal is provided that indicates when there is zero frequency error and a 5 V reference output allows DC operating levels to be accurately set.

June 1988

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	14	V
$P_{\text {tot }}$	Power dissipation $\left(\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}\right)$	1	W
$\mathrm{~T}_{\text {op }}$	Operating temperature range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAMS

(DIP-16)

(PLCC PACKAGE)

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, specifications hold for $\mathrm{T}_{\mathrm{amb}}=$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ;+\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
IS \quad Supply current			20		mA

REFERENCE

$V_{\text {REF }}$ Output voltage		4.75	5.0	5.25	V
$\triangle V_{\text {REF }}$ Load Regulation	$I_{\text {OUT }}=0$ to 7 mA		5.0	20	mV
$\triangle V_{\text {REF }}$ Line regulation	$+\mathrm{V}_{\text {IN }}=8$ to 12 V		2.0	20	mV
ISC	Short circuit current	$\mathrm{V}_{\text {OUT }}=0 \vee$		35	

OSCILLATOR

G_{v}	DC voltage gain	Oscillator input to oscillator output			16	dB
$V_{\text {IB }}$	Input DC level	Oscillator input pin open,	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.3	V
ZIN^{*}	Input impedance	$V_{\text {IN }}=V_{\text {IB }} \pm 0.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.6	$K \Omega$
V_{0}	Output DC level	Oscillator input pin open	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.4	V
fomAX	Maximum operating frequency			10		MHz

DIVIDERS

fomAX	Maximum input frequency	Input $=1 \mathrm{~V}_{\text {Pp }}$ at oscillator input	10			MHz
Div. 4/5 input current		Input $=5 \mathrm{~V}$ (Div. by 4)		150	500	$\mu \mathrm{A}$
		Input $=0 \mathrm{~V}$ (Div. by 5)	-5.0	0.0	5.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Div. 4/5 threshold		0.5	1.6	2.2	V
Div. 2/4/8 input current		Input $=5 \mathrm{~V}$ (Div. by 8)		150	500	$\mu \mathrm{A}$
		Input $=0 \mathrm{~V}$ (Div. by 2$)$	-500	-150		$\mu \mathrm{A}$
	Div. 2/4/8 open circuit voltage	Input current $=0 \mu \mathrm{~A}($ Div. by 4$)$	1.5	2.5	3.5	V
	Div. by 2 threshold		0.35	0.8		\checkmark
	Div. by 4 threshold		1.5		3.5	V
	Div. by 8 threshold	Volts below $\mathrm{V}_{\text {REF }}$	0.35	0.8		V

SENSE AMPLIFIER

$\mathrm{V}_{\mathbf{T}}$	Threshold voltage	Percent of $\mathrm{V}_{\text {REF }}$		30	
$\mathrm{H}_{\mathbf{T}}$	Threshold hysteresis		$\%$		
l_{b}	Input bias current	Input $=1.5 \mathrm{~V}$	10		mV

DOUBLE EDGE DISABLE INPUT

$\mathrm{V}_{\boldsymbol{I}}$	Input current	Input $=5 \mathrm{~V}$ (Disabled)		150	500	$\mu \mathrm{~A}$
		Input $=0 \mathrm{~V}$ (Enabled)	-5.0	0.0	5.0	$\mu \mathrm{~A}$
$\mathrm{~V}_{\boldsymbol{T}}$	Threshold voltage		0.5	1.6	2.2	V

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test Conditions. | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | Unit | Uner |
| :--- |

PHASE DETECTOR

V OH	High output level	Positive Phase/Freq. Error, Volts Below $\mathrm{V}_{\text {REF }}$		0.2	0.5	V
VOL	Low output level	Negative Phase/Freq. Error		0.2	0.5	V
V OM	Mid output level	Zero Phase/Freq. Error, Percent of $\mathrm{V}_{\text {REF }}$	47	50	53	\%
	High level maximum source current	$\mathrm{V}_{\text {OUT }}=4.3 \mathrm{~V}$	2.0	8.0		mA
	Low level maximum sink curr.	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	2.0	5.0		mA
	Mid level output impedance (Note 2)	$\mathrm{I}_{\text {OUT }}=-200$ to $+200 \mu \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		6.0		$K \Omega$

LOCK INDICATOR OUTPUT

$V_{\text {sat }}$	Saturation voltage	Freq. Error,	$I_{\text {OUT }}=5 \mathrm{~mA}$		0.3	0.45
Leakage current	Zero Freq. Error	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{~A}$

LOOP AMPLIFIER

	NON INV. reference voltage	Percent of $\mathrm{V}_{\text {REF }}$		47	50	53	\%
l_{b}	Input bias current	Input $=2.5 \mathrm{~V}$		-0.8	-0.2		$\mu \mathrm{A}$
G_{v}	Open loop gain			60	75		dB
SVR	Supply voltage rejection	$+V_{\text {IN }}=8$ to 12 V		70	100		dB
${ }^{\text {SH }}$	Short circuit current	Source,	$V_{\text {OUT }}=0 \mathrm{~V}$	16	35		mA
		Sink,	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	16	30		mA

AUXILIARY OP-AMP

V_{OS}	Input offset voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$			8	mV
I_{b}	Input bias current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		200		mA
I_{OS}	Input offset current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		10		mA
G_{V}	Open loop gain		70	120		dB
SVR	Supply voltage rejection	$+\mathrm{V}_{\mathrm{IN}}=8$ to 12 V	70	100		dB
CMR	Common mode rejection	$\mathrm{V}_{\mathrm{CM}}=0$ to 10 V	70	100		dB
ISH	Short circuit current	Source,	$V_{\text {OUT }}=0 \mathrm{~V}$		35	
	Sink,	$\mathrm{VOUT}=5 \mathrm{~V}$		30		mA

* These impedance levels will vary with T_{j} at about $1700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

APPLICATION INFORMATION

Determining the Oscillator Frequency

The frequency at the oscillator is determined by: the desired RPM of the motor, the divide ratio selected, the number of poles in the motor, and the state of the double edge select pin.
$\mathrm{f}_{\text {osc }}(\mathrm{Hz})=($ Divide Ratio $) \cdot($ Motor RPM $) \cdot$
(1/60 SEC/MIN) • (No. of Rotor Poles/2) • ($\times 2$ if $\operatorname{Pin} 5$ Low)

The resulting reference frequency appearing at the phase detector inputs is equal to the oscillator frequency divided by the selected divide ratio. If the double edge option is used, (Pin 5 low), the frequency of the sense amplifier input signal is doubled by responding to both the rising and falling edges of the input signal. Using this option the loop reference frequency can be doubled for a given motor RPM.

Fig. 1 - Recommended Oscillator Configuration Using AT Cut Quartz XTAL

Fig. 2 - External Reference Frequency Input

Fig. 3 - Method for Deriving Rotation Feedback Signal From Analog Hall Effect Device

* This signal may require filtering if chopped mode drive scheme is used.

APPLICATION INFORMATION (continued)

Phase detector operation

The phase detector on these devices is a digital circuit that responds to the rising edges of the detector's two inputs. The phase detector output has three states: a high, 5 V state, a low, 0 V state, and a middle, 2.5 V state. In the high and low states the output impedance of the detector is low, the middle state output impedance is high, tipically $6.0 \mathrm{~K} \Omega$. When there is any static frequency difference between the inputs the detector output is fixed at its high level if the +input (the sense amplifier signal) is greater in frequency, and fixed at its low level if the -input (the reference frequency signal) is greater in frequency.
When the frequencies of the two inputs to the detector are equal the phase detector switches between its middle state and either the high or low states, depending on the relative phase of the two signals. If the +input is leading in phase then, during each period of the input frequency, the detector output will be high for a time equal to the time difference between the rising edges of the inputs, and will be at its middle level the remainder of the period. If the phase relationship is reversed then the detector will go low for a time proportional to the phase difference of the inputs. The resulting gain of the
phase detector, $K \phi$, is $5 \mathrm{~V} / 4 \pi$, radians, or about $0.4 \mathrm{~V} /$ radian. The dynamic range of the detector is $\pm 2 \pi$ radians.
The operation of the phase detector is illustrated in the figures below. The upper figure shows typical voltage waveforms seen at the detector output for leading and lagging phase conditions. The lower figure is a state diagram of the phase detector logic. In this figure, the circles represent the 10 possible states of the logic and the connecting arrows the transition events/paths to and from these states. Transition arrows that have a clockwise rotation are the result of a rising edge on the +input, and conversely, those with counter-clockwise rotation are tied to the rising edge on the-input signal.
The normal operational states of the logic are 6 and 7 for positive phase error, 1 and 2 for a negative phase error. States 8 and 9 occur during positive frequency error, 3 and 4 during negative frequency error. States 5 and 10 occur only as the inputs cross over from a frequency error to a normal phase error only condition. The level of the phase detector output is determined by the logic state as defined in the state diagram figure. The lock indicator output is high, off, when the detector is in states $1,2,6$ or 7 .

Fig. 4 - Typical Phase Detector Output Waveforms

Fig. 5 - Phase Detector State Diagram

Fig. 6 - Suggested Loop Filter Configuration

$$
\frac{V_{\text {OUT }}}{V_{I N}}(S)=\frac{R 3}{R 1} \cdot \frac{1+S / \omega Z}{1+S / \omega P}
$$

$$
\omega P=\frac{1}{R 2 C 1}
$$

$$
\omega Z=\frac{1}{(R 1+R 2) C 1}
$$

* The statistic phase error of the loop is easily adjusted by adding resistor, R4, as shown. To lock at zero phase error R4 is determined by :

$$
\mathrm{R} 4=\frac{2.5 \mathrm{~V} \cdot \mathrm{R}^{\prime} 3}{\left|\Delta \mathrm{~V}_{\text {OUT }}\right|}
$$

L6233

Fig. 7 - Reference Filter Configuration

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}(S)=\frac{1}{1+\frac{S 2}{\omega N}+\frac{S^{2}}{\omega N^{2}}}
$$

$$
\omega N=\frac{1}{\sqrt{R 1 R 2 \mathrm{C} 1 \mathrm{C} 2}}
$$

$$
\delta=\frac{1}{20}=\frac{1}{2} \sqrt{\frac{\mathrm{C} 2}{\mathrm{C} 1}} \frac{\mathrm{R} 1+\mathrm{R} 2}{\sqrt{\mathrm{R} 1 \mathrm{R} 2}}
$$

$$
\text { Note: with R1 }=\mathrm{R} 2 \quad \delta=\sqrt{\frac{\mathrm{C} 2}{\mathrm{C} 1}}
$$

Fig. 8 - Reference Filter Design Aid - Gain Response

Fig. 9 - Reference Filter Design Aid - Phase Response

R-DAT BRUSHLESS DC MOTOR DRIVER

- 400 mA OUTPUT CURRENT, CONTROLLED IN LINEAR MODE
- COMPATIBLE WITH ANI F-TO-V CONVERTER AND PLL SPEED CONTROL SYSTEM
- INHIBIT FUNCTION
- SLEW RATE LIMITING FOR EMI REDUCTION
- CONNECTS DIRECTLY TO HALL EFFECT CELLS
- THERMAL SHUTDOWN WITH HYSTERESIS
- THREE-STATE OPERATION ALLOWS NEGLIGIBLE POWER DISSIPATION DURING 1/3f CYCLE
- INTERNAL PROTECTION DIODES
- FEW EXTERNAL COMPONENTS

The L 6235 is single-chip driver for three-phase brushless DC motors capable of delivering 400 mA output current with supply voltages to 18 V . Designed to accept differential input from the Hall effect sensors, the device drives the three phases of a brushless DC motor and includes all the commutation logic required for a three phase drive.

To limit EMI emission the $L 6235$ controls the rise and fall times of the output stage. In addition the device is designed to limit power dissipation: during recirculation the output stage is switched to an off state, reducing dissipation to a very low value and minimizing torque ripple.

A speed control input controls the base current to the lower transistors to limit the motor current and hence control the speed. Any type of speed control system, including F to V and PLL system, may be used with the L6235 by providing an analog signal at this input. The motor current may be sensed by an external resistor connected to a sensing pin on the device.

The power stage of the device is designed to eliminate the possibility of simultaneous conduction of the upper and lower power transistors of one output driver, when operating in the right loop.

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	18	V
I_{0}	Peak output current each channel		
	- non repetitive ($100 \mu \mathrm{~s}$)	1.5	A
	- repetitive (80% on - 20% off; $\mathrm{t}_{\text {on }}=10 \mathrm{~ms}$)	500	mA
	- DC operation	400	mA
V_{i}	Logic and analogic inputs	$+\mathrm{V}_{5}$	
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {pins }}=50^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {op }}$	Operating temperature range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathbf{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\mathrm{tn} \text { j-pins }}$	Thermal resistance junction-pins	\max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
\mathbf{R}_{tt}	Transient thermal resistance $(\mathrm{t}=2 \mathrm{sec})$.	\max	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

N°	NAME	1/0	FUNCTION
4	INHIBIT	1	Output stage inhibit. When this pin is high all three output stages are in a high impedance state!
5	INDEX	0	Signal pulse proportional to the motor speed. In PLL speed control applications, this is the feedback to the PLL. One pulse per electrical rotation. This is an open collector output.
6	H1 (+)	1	Positive input of differential amplifier on channel 1. Interfaces with Hall Effect sensor, S1, from motor.
7	H1 (-)	1	Negative input of differential amplifier on channel 1. Interfaces with Hall Effect sensor, S1, from motor.
8	H2 (+)	1	Same as pin 3 for channel 2.
9	H2 (-)	1	Same as pin 4 for channel 2.
10	H3 (+)	1	Same as pin 3 for channel 3.
11	GND		Ground connection.
12	H3 (-)	1	Same as pin 4 for channel 3.
13	V_{c}	1	Speed control input. Connected to output of PLL in PLL speed control applications.
14	Out 3	0	Output motor drive for phase 3.
15	Sense	1	Current Sensing. Input for load current sense voltage for output stage.
16	Out 2	0	Output motor drive for phase 2.
17	V_{s}		Motor supply voltage.
18	Out 1	0	Output motor drive for phase 1.

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}\right.$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		10	12		V
I_{s}	Quiescent supply current	Without Load		30	60	mA

HALL AMPLIFIERS

$V_{C M}$	Common mode voltage range		0		10
$V_{i o}$	Input offset voltage	$V_{i}=6 \mathrm{~V}$		2	10
I_{ib}	Input bias current	$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}$	mV		
I_{io}	Input offset current	$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}$	2	10	$\mu \mathrm{~A}$

SPEED CONTROL INPUT $\left(V_{C}\right)$

V_{i}	Input voltage range		0		5	V
I_{ib}	Input bias current	$\mathrm{V}_{\mathrm{C}}<\mathrm{V}_{\text {sens }}$		1	5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{ic}}$	Input clamping voltage			5.9		V

INHIBIT INPUT

$V_{\text {IH }}$	Input high voltage		2		V_{s}	V
$V_{\text {IL }}$	Input low voltage		0		0.8	V
$I_{\text {IH }}$	Input high current				10	$\mu \mathrm{~A}$
$I_{\text {IL }}$	Input low current			-5	-50	$\mu \mathrm{~A}$

HALL LOGIC OUTPUT

$V_{\text {LO }}$	Low output voltage	$\mathrm{I}=5 \mathrm{~mA}$		0.8	V
I_{L}	Leakage current	$\mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}$			10

OUTPUT POWER STAGE

$V_{\text {sat }}$	Total saturation voltage	$I_{0}=0.15 A$ $I_{0}=0.4 A$ $I_{0}=1.0 A$		2.2		

THERMAL SHUTDOWN

T_{j}	Junction temperature		150			${ }^{\circ} \mathrm{C}$
T_{H}	Hysteresis				30	${ }^{\circ} \mathrm{C}$

DESCRIPTION

The L6235 is a three-phase brushless motor driver IC containing all the power stages and commutation logic required for a three-phase drive. When the INHIBIT INPUT is high all three OUTPUTS ARE PLACED in a high - IMPEDANCE STATE.

Logic signals from the motor's Hall effect sensors are decoded to generate the correct driving sequence according to the truth table of Fig. 1.
When one of the push-pull output drivers is activated the upper transistor is always in saturation while the lower transistor is controlled in linear mode to set the desired speed in steady state conditions.

In PLL speed control applications the device provides a signal proportional to the motor speed at pin 2 (it is the buffered H 1 input). The output of the PLL is connected to the speed control input of the device at pin $10, \mathrm{~V}_{\mathrm{C}}$.
In addition, a 1 V offset is added to the speed demand voltage to match the minimum output of the PLL.

An external resistor, R_{s}, senses the output stage current. The sensing voltage across this resistor is amplified in the device by a factor of 7 to allow a reduction in the voltage drop the resistor.

The amplified sensing voltage is then compared with the speed demand signal from the PLL and the resulting error signal sets the amplifier output accordingly.

The output current is related to the speed control voltage by:

$$
I_{o}=\frac{\left(V_{c}-1\right)}{7 R_{s}}
$$

The value of the sensing resistor is given by:

$$
R_{s}=\left(V_{x}-1\right) /\left(7 I_{\max }\right)
$$

where V_{X} is the full scale voltage of V_{C}.
In this way the $V_{C} / l_{\text {out }}$ characteristics can be modified. Note that V_{X} max is clamped at 5.9 V .
The most important feature of the L 6235 is slew rate control. With this device a typical value of $0.1 \mathrm{~V} / \mu$ s is achieved, reducing EMI to a very low value.
Another key feature is three-state operation; when the current is recirculating the corresponding phase driver is switched off and power dissipation is negligible. Current recirculates through the free-wheeling diodes in the acceleration phase and through the motor is steady-state conditions. Torque ripple is also minimized.
The L6235 can also operate with a brushless motor connected in a star configuration, leaving the centre floating.

The Hall inputs are ground compatible comparators and can work with direct active digital Hall signals on three terminals (of the same polarity) and a TTL level on the other three terminals.

Fig. 1 - TRUTH TABLE

HALL EFFECT DIFF. INPUT			UPPER DRIVER STATUS			LOWER DRIVER STATUS		
$\begin{aligned} & 1=\text { POSITIVE } \\ & 0=\text { NEGATIVE } \end{aligned}$			$\begin{aligned} & 1=O N \\ & 0=O F F \end{aligned}$			$\begin{aligned} & 1=O N \\ & 0=O F F \end{aligned}$		
H1	H2	H3	UD1	UD2	UD3	LD1	LD2	LD3
1	0	0	0	0	1	1	0	0
1	1	0	0	0	1	0	1	0
1	1	1	1	0	0	0	1	0
0	1	1	1	0	0	0	0	1
0	0	1	0	1	0	0	0	1
0	0	0	0	1	0	1	0	0

Fig. 2 - Timing diagram

DETERMINING HALL EFFECT SENSOR CODING

The L6335 assumes that the positioning of the Hall Effect sensors in a three-phase brushless DC bipolar motor are at 30 intervals. One can imagine two "windows" on the rotor each of which is 90 wide and 180 apart, see fig. 4. As a window passes over a sensor, the sensor output goes high. The timing diagram, fig. 2, shows the waveforms produced. These waveforms must appear at the Hall Effect Inputs of the L6235. Note that the rotation in fig. 3 must be counterclockwise for forward rotation of the motor in whatever manner that is defined for the motor.

Fig. 3 is a stylized concept for determining the Hall Effect code pattern and does not reflect the actual direction of rotation of the motor in a physical sense. If a motor is chosen whose sensor outputs do not match the L6235 desired input pattern, a signal set conversion must be determined. It is helpful to visualize this by developing a diagram similar to that of fig. 4.

Fig. 3

For example, let us examine the output pattern of a different type of motor (fig. 4). Assuming 90 windows at 180 intervals, then with respect to fig. 3, a similar diagram, fig. 5, results in sensors 60 apart with the windows rotating clockwise. The situation results in a "forward" rotation of the motor.

Since S3 is the first sensor encountered by the window in fig. 5, this should be used for the L6235 Hall Effect Input, H1. After 30 of rotation CW, the H 2 input of the L6235 must go high. The inverse of S1 from the motor would satisfy this. After an additional 30 of rotation, the H3 input must go high. The S2 sensor is encountered by the window. Thus, S2 is applied to this input, H3. By continuing around the diagram, one can develop a pattern which matches that for the L6235.

Fig. 4

Fig. 5

Thus the conversion table for this particular motor is:

Motor Sensors L6235 Inputs

S3	H 1
S1	H 2
S2	H 3

Note, for the inverted signal from S1 an actual inverter gate is not necessary with the L6235. Since the L6235 has differential inputs, the negative input pin may be used. Therefore, with TTL compatible Hall Effect sensors, the positive input is connected to a reference point along with the other negative inputs.

Fig. 6 - Application circuit using the L6233 PLL-Controller

SCS-THOMSON
MICROBLECTRONOCS

BIDIRECTIONAL R-DAT BRUSHLESS DC MOTOR DRIVER

- 400mA OUTPUT CURRENT, CONTROLLED IN LINEAR MODE

- COMPATIBLE WITH ANI F-TO-V CONVERTER AND PLL SPEED CONTROL SYSTEM
- SLEW RATE LIMITING FOR EMI REDUCTION
- CONNECTS DIRECTLY TO HALL EFFECT CELLS
- THERMAL SHUTDOWN WITH HYSTERESIS
- THREE-STATE OPERATION ALLOWS NEGLIGIBLE POWER DISSIPATION DURING 1/3f CYCLE
- INTERNAL PROTECTION DIODES
- FEW EXTERNAL COMPONENTS

The L6236 is a single-chip driver for three-phase brushless DC motors capable of delivering 400 mA output current with supply voltages to 18 V . Designed to accept differential input from the Hall effect sensors, the device drives the three phases of a brushless DC motor and includes all the commutation logic required for a three phase bidirectional drive. Both delta and wye configurations may be used.

To limit EMI esmission the L6236 operates in a linear mode and controls the rise and fall times of the output stage. In addition the device is designed to limit power dissipation: during recirculation the output stage is switched to an off state reducing dissipation to a very low value and minimizing torque ripple.
A speed control input controls the base current to the lower transistors to limit the motor current and hence control the speed. Any type of speed control system, including F to V and PLL systems, may be used with the L6236 by providing an analog signal at this input. The motor current may be sensed by an external resistor connected to a sensing pin on the device.
The power stage of the device is designed to eliminate the possibility of simultaneous conduction of the upper and lower power transistors of one output driver, when operating in the right loop.

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	18	V
I_{0}	Peak output current each channel		
	- non repetitive ($100 \mu \mathrm{~s}$)	1.5	A
	- repetitive (80% on - 20% off; $\mathrm{t}_{\text {on }}=10 \mathrm{~ms}$)	500	mA
	- DC operation	400	mA
V_{1}	Logic and analogic inputs	$+\mathrm{V}_{5}$	
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {pins }}=50^{\circ} \mathrm{C}$	5	W
Top	Operating temperature range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-amb }}$	Thermal resistance junction-ambient	max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} \mathrm{j}$-pins	Thermal resistance junction-pins	max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{tt}	Transient thermal resistance ($\mathrm{t}=2 \mathrm{sec}$.)	max	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

N°	NAME	1/0	FUNCTION
4	FWD/REV	1	Direction Control. When this pin is low, the motor will run in the forward direction. A high will drive the motor in the reverse direction. Direction is defined by the positive of the sensors in the motor.
5	INDEX	0	Signal pulse proportional to the motor speed. In PLL speed control applications, this is the feedback to the PLL. One pulse per electrical rotation. This is an open collector output.
6	H1 (+)	1	Positive input of differential amplifier on channel 1. Interfaces with Hall Effect sensor, S1, from motor.
7	H1 (-)	1	Negative input of differential amplifier on channel 1. Interfaces with Hall Effect sensor, S1, from motor.
8	H2 (+)	1	Same as pin 3 for channel 2.
9	H2 (-)	1	Same as pin 4 for channel 2.
10	H3 (+)	1	Same as pin 3 for channel 3.
11	GND		Ground connection.
12	H3 (-)	1	Same as pin 4 for channel 3.
13	V_{c}	1	Speed control input. Connected to output of PLL in PLL speed control applications.
14	OUT3	0	Output motor drive for phase 3.
15	SENSE	1	Current Sensing. Input for load current sense voltage for output stage.
16	OUT2	0	Output motor drive for phase 2.
17	V_{s}		Motor supply voltage.
18	OUT1	0	Output motor drive for phase 1.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Supply voltage		10	12		V
I_{S}	Quiescent supply current			30	60	mA

HALL AMPLIFIERS

$V_{C M}$	Common mode voltage range		0		10	V
$V_{i o}$	Input offset voltage	$V_{i}=6 \mathrm{~V}$		2	10	mV
I_{ib}	Input bias current	$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}$		2	10	$\mu \mathrm{~A}$
I_{io}	Input offset current	$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}$		0.1		$\mu \mathrm{~A}$

SPEED CONTROL INPUT (V_{C})

V_{i}	Input voltage range		0		5
I_{ib}	Input bias current	$\mathrm{V}_{\mathrm{C}}<\mathrm{V}_{\text {sens }}$		1	5
$\mathrm{~V}_{\mathrm{ic}}$	Input clamping voltage			5 A	

FWD/REVERSE INPUT

$V_{\text {IH }}$	Input high voltage		2		V_{S}	V
$V_{\text {IL }}$	Input low voltage		0		0.8	V
$I_{\text {IH }}$	Input high current				10	$\mu \mathrm{~A}$
$I_{\text {IL }}$	Input low current			-5	-50	$\mu \mathrm{~A}$

HALL LOGIC OUTPUT

$V_{\text {LO }}$	Low output voltage	$\mathrm{I}=5 \mathrm{~mA}$		0.8	V
I_{L}	Leakage current	$\mathrm{V}_{\mathrm{CE}}=12 \mathrm{~V}$			10

OUTPUT POWER STAGE

| $V_{\text {sat }}$ | Total saturation voltage | $I_{0}=0.15 A$
 $I_{0}=0.4 A$
 $I_{0}=1.0 A$ | | 2.2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

THERMAL SHUTDOWN

T_{j}	Junction temperature		150		
T_{H}	Hysteresis				30

DESCRIPTION

The L6236 is a three-phase brushless motor driver IC containing all the power stages and commutation logic required for a three-phase bidirectional drive.
Logic signals from the motor's Hall effect sensors are decoded to generate the correct driving sequence according to the truth-table of Fig. 1.

The direction of rotation is controlled by the forward/reverse input (pin 1). When this pin is at a low level the motor rotates in the forward direction.
When one of the push-pull output drivers is activated the upper transistor is always in saturation while the lower transistor is controlled in linear mode to set the desired speed in steady state conditions.
In PLL speed control applications the device provides a signal proportional to the motor speed at pin 2 (it is the buffered H 1 input). The output of the PLL is connected to the speed control input on the device at pin $10, \mathrm{~V}_{\mathrm{C}}$.
In addition, a 1 V offset is added to the speed demand voltage to match the minimum output on the PLL.

An external resistor, \mathbf{R}_{s}, sense the output stage current. The sensing voltage across this resistor is amplified in the device by a factor of 7 to allow a reduction in the voltage drop in the resistor.
The amplified sensing voltage is then compared with the speed demand signal from the PLL and the resulting error signal sets the amplifier output accordingly.

The output current is related to the speed control voltage by:

$$
I_{o}=\left(V_{c}-1\right) / 7 R_{s}
$$

The value of the sensing resistor is given by:

$$
R_{s}=\left(V_{X}-1\right) /\left(7 I_{\max }\right)
$$

where V_{X} is the full scale voltage of V_{C}.
In this way the $\mathrm{V}_{\mathrm{C}} / \mathrm{I}_{\text {out }}$ characteristics can be modified. Note that $V_{X} \max$ is clamped at 5.9 V .

The most important feature of the L 6236 is slew rate control. With this device a typical value of $0.1 \mathrm{~V} / \mu \mathrm{s}$ is achieved, reducing EMI to a very low value.

In a delta configuration a key feature is threestate operation; when the current is recirculating the corresponding phase driver is switched off and power dissipation is negligible. Current recirculates through the integrated free-wheeling diodes in the acceleration phase and through the motor in steady-state conditions. Torque ripple is also minimized.

The L6236 can also operate with a brushless motor connected in a star configuration, leaving the center floating.
The Hall inputs are ground compatible comparators and can work with direct active digital Hall signals on three terminals (of the same polarity) and a TTL level on the other three terminals.

Fig. 1 - TRUTH TABLE FOR FORWARD ROTATION

HALL EFFECT DIFF. INPUT			UPPER DRIVER STATUS			LOWER DRIVER STATUS		
$\begin{aligned} & 1=\text { POSITIVE } \\ & 0=\text { NEGATIVE } \end{aligned}$			$\begin{aligned} & 1=O N \\ & 0=O F F \end{aligned}$			$\begin{aligned} & 1=O N \\ & 0=O F F \end{aligned}$		
H1	H2	H3	UD1	UD2	UD3	LD1	LD2	LD3
1	0	0	1	0	0	0	0	1
	1	0	0	1	0	0	0	1
1	1	1	0	1	0	1	0	0
0	1	1	0	0	1	1	0	0
0	0	1	0	0	1	0	1	0
0	0	0	1	0	0	0	1	0

Fig. 2 - Timing diagram

DETERMINING HALL EFFECT SENSOR CODING

The L6236 assumes that the positioning of the Hall Effect sensors in a three-phase brushless DC bipolar motor are at 30 intervals. One can imagine two "windows" on the rotor each of which is 90 wide and 180 apart, see fig. 4. As a window passes over a sensor, the sensor output goes high. The timing diagram, fig. 2, shows the waveforms produced. These waveforms must appear at the Hall Effect Inputs of the L6236. Note that the rotation in fig. 3 must be counterclockwise for forward rotation of the motor in whatever manner that is defined for the motor.

Fig. 3 is a stylized concept for determining the Hall Effect code pattern and does not reflect the actual direction of rotation of the motor in a physical sense. If a motor is chose whose sensor outputs do not match the L 6236 desired input pattern, a signal set conversion must be determined. It is helpful to visualize this by developing a diagram similar to that of fig. 4.

Fig. 3

For example, let us examine the output pattern of a different type of motor (fig. 4). Assuming 90 windows at 180 intervals, then with respect to fig. 3, a similar diagram, fig. 5 , results in sensors 60 apart with the windows rotating clockwise. The situation results in a "forward" rotation of the motor.

Since S3 is the first sensor encountered by the window in fig. 5, this should be used for the L6236 Hall Effect Input H1. After 30 of rotation CW, the H2 input of the L6236 must go high. The inverse of S1 from the motor would satisfly this. After an additional 30 of rotation, the H3 input must go high. The S2 sensor is encountered by the window. Thus, S2 is applied to this input, H3. By countinuing around the diagram, one can develop a pattern which matches that for the L6236.

Fig. 4

Fig. 5

Thus the conversione table for this particular motor is:

Motor Sensors	L6236 inputs
S3	H1
S1	H2
S2	H3

Note, for the inverted signal from S1 actual inverter gate is not necessary with the L6236. Since the L6236 has differential inputs, the negative input pin may be used. Therefore, with TTL compatible Hall Effect sensors, the positive input is connected to a reference point along with the other negative inputs.

Fig. 6 - Application circuit using the L6233 PLL-Controller

DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE

- PROGRAMMABLE TURN-ON DELAY
- TRANSIENT-FREE MUTING AND POWERUP - NO POPS
- LOW-NOISE - $0.6 \mu \mathrm{~V}$ CCIR/ARM
- HIGH POWER SUPPLY REJECTION - 95dB
- LOW DISTORTION - 0.03\% AND HIGH SLEW RATE - $6 \mathrm{~V} / \mu \mathrm{s}$
- SHORT CIRCUIT PROTECTION
- INTERNAL DIODES FOR DIODE SWITCHING APPLICATIONS

The LM1837 is a dual autoreversing high gain tape preamplifier for applications requiring optimum noise performance. It has forward (left, right)
and reverse (left, right) inputs which are selectable through a high impedance logic pin. It is an ideal choice for a tape playback amplifier when a combination of low noise, autoreversing, good power supply rejection, and no power-up transients are desired. The application also provides transi-ent-free muting with a single pole grounding switch.

DIP-18 Plastic

ORDERING NUMBER: LM1837

Fig. 1 - Autotoreversing tape plyback application

ABSOLUTE MAXIMUM RATINGS

	Supply voltage	18	V
V	Voltage on pins 1 and 18	18	V
	Package dissipation	1390	mW
$\mathrm{P}_{\text {tot }}$	C		
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	0 to 70	${ }^{\circ} \mathrm{C}$
	Minimum voltage on any pin	-0.1	V

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\mathrm{thj} \text { jamb }}$ Thermal resistance junction-ambient
$\max 90 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($T_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$, see test circuits)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V_{S}	Supply voltage	R5 removed from circuit for low voltage operation	4		18	V
Is	Supply current	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$		9	15	mA
d	Total harmonic distortion	$f=1 \mathrm{KHz} \quad V_{i}=0.3 \mathrm{mV}$ pins 2 and 17, see test circuit		0.03		\%
	THD + noise (note 1)	$f=1 \mathrm{KHz} \quad V_{0}=1 \mathrm{~V}$ pins 2 and 17, see test circuit		0.1	0.25	\%
SVR	Power supply rejection	input ref. $\mathrm{f}=1 \mathrm{KHz}, 1 \mathrm{Vrms}$	80	95		dB
c_{s}	Channel separation (note 2) Left to right Forward to reverse	$\begin{aligned} & f=1 \mathrm{KHz} \text {, output = } 1 \mathrm{Vrms} \\ & \text { Output to output } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
S / N	Signal-to-noise (note 3)	Unweighted $32 \mathrm{~Hz}-12.74 \mathrm{KHz}$ (note 1) CCIR/ARM (note 4) A weighted CCIR, peak (note 5)		$\begin{aligned} & 58 \\ & 62 \\ & 64 \\ & 52 \end{aligned}$		dB dB dB dB
e_{N}	Noise	Output voltage CCIR/ARM (note 4)		120	200	$\mu \mathrm{V}$

INPUT AMPLIFIERS

l_{b}	Input bias current Input impedance	$\mathrm{f}=\mathrm{KHz}$	150	0.5	2	$\mu \mathrm{A}$ $\mathrm{K} \Omega$
	AC gain	$\mathrm{f}=\mathrm{KHz}$	27	28	29	dB
	AC gain imbalance			± 0.15	± 0.5	dB
Vo	DC output voltage		2.1	2.5	2.9	V
Vo	Output voltage mismatch	pins 5 and 14	-200	30	200	mV
${ }^{1} 0^{+}$	Output source current	pins 5 and 14	2	10		mA
10^{-}	Output sink current	Pins 5 and 14	300	600		$\mu \mathrm{A}$

LOGIC LEVEL

Forward				0.5	V
Reverse		2.2			V
Logic pin current			2	6	$\mu \mathrm{~A}$
DC voltage change at pins 5 and 14	Change logic state	-100	20	100	mV

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

OUTPUTS AMPLIFIERS

	Closed loop gain	stable operation	5			V/V
G_{v}	Open loop voltage gain	DC		100		dB
	Gain bandwidth product			5		MHz
	Slew rate			6		$\mathrm{V} / \mu \mathrm{s}$
Vos	Input offset voltage			2	5	mV
Ios	Input offset current			20	100	nA
I_{i}	Input bias current			250	500	nA
${ }^{1}{ }^{+}$	Output source current	Pin 2 or 17	2	10		mA
$10-$	Output sink current	Pin 2 or 17	400	900		$\mu \mathrm{A}$
V_{0}	Output voltage swing	Pin 2 or 17		11		Vp-p
	Output diode leakage	Voltage on pins 1 and $18=18 \mathrm{~V}$		0	10	$\mu \mathrm{A}$

Note:
1 - Measured with an average responding voltmeter using the filter circuit in figure 4. This simple filter is approximately equivalent a "brick wall" filter with a passband of 20 Hz to 20 KHz (see Application Hints). For 1 KHz THD the 400 Hz high pass filter on the distortion analyzer is used.

2 - Channel separation can be measured by applyng the input signal through transformers to simulate a floating source (see Application Hints). Care must be taken to shield the coils from extraneous signal. Actual production test techniques simulate this floating source with a more complex op amp circuit.

3 - The numbers are referred to an output level of 160 mV at pins 2 and 17 using the circuit figure 2 . This corresponds
4 - Measured with an average responding voltmeter using the Dolby lab's standard CCIR filter having a unity gain reference 2 KHz .

5 - Measured using the Rhode-Schwartz psophometer, mode UPGR.

Fig. 2 - Test circuit

Fig. 3 - Input amplifier distortion vs. input level

Fig. 4 - Input amplifier gain and phase vs frequency

Fig. 5-Output amplifier open loop gain and phase vs. frequency

Fig. 6 - Noise voltage vs. frequency

Fig. 9 - Turn-on delay vs. component values and gain

Fig. $12-I_{s}$ vs. V_{S}

Fig. 7 - Noise current vs. frequency.

Fig. 10 SVR vs. frequency

Fig. 13 - Rigth to left channel separation vs. frequency

Fig. 8 - Total harmonic distortion vs. frequency

Fig. 11 - SVR vs. supply voltage

Fig. 14 - Forward to reverse channel separation vs. frequency

Fig. 15 - Input amplifier DC output voltage vs. temperature (pins 5,4)

Fig. 16 - Frequency response of test circuit

Fig. 17 - Simple $32 \mathrm{~Hz}-12740 \mathrm{~Hz}$ filter and meter

APPLICATION INFORMATION

EXTERNAL COMPONENTS (Figures 1 and 18)

Component	Normal Range of Value and Function
$\begin{gathered} \text { R1, C2 } \\ \text { and R12, C9 } \end{gathered}$	$2 K \Omega-40 K \Omega, 0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$ (low leakage). Set turn-on delay and second amplifier's low frequency pole. Leakage current in C2 results in DC offset between the amplifier's inputs and therefore this current should be kept low. R1 is set equal to R2 such that any input offset voltage due to bias current is effectively cancelled. An input offset voltage is generated by the input offset current multiplied by the value of these resistors.
$\begin{aligned} & \text { R2, R3 } \\ & \text { and R13, R10 } \end{aligned}$	$2 \mathrm{~K} \Omega-40 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega-10 \mathrm{~K} \Omega$. Set the DC and frequency gain of the output amplifier. The total input offset voltage will also be multiplied by the DC gain of this amplifier. They are threfore essential to keep the input offset voltage specification in mind when employing high DC gain in the output amplifier; i.e., $5 \mathrm{mV} \times$ $400=2 \mathrm{~V}$ offset at the output.
$\begin{gathered} \text { R4, C1 } \\ \text { and R11, C8 } \end{gathered}$	$10 \mathrm{~K} \Omega-200 \mathrm{~K} \Omega, 470 \mathrm{pF}$ to 10 nF . Set tape playback equalization characteristics in conjunction with R3 (calculations for the component values are included in the application (Hints section).
R6, R8	$2 K \Omega-47 K \Omega$ Blas the output diode in DC switching applications. These resistors can be excluded if diode switching is not desired.
C3...C6	100pF-1000pF Often used to resonate with tape head in order to compensate for tape playback losses including tape head gap and eddy current. For a typical cassette tape head, the resonant frequency selected is usually between 13 KHz and 17 KHz .
R5, R14	$100 \mathrm{~K} \Omega-10 \mathrm{M} \Omega$. Increase the output DC bias voltage from the nominal 2.5 V value (see Application information).
R7, R9	Optionally used for tape muting. The use of these resistor can also provide "no-pop" turn-off if desired (see Application information).

LM1837

APPLICATION INFORMATION (continued)

Fig. 18 - Autoreversing tape plyback application.

Fig. 19 - P.C. board and components layout of the circuit of Fig. 18 (1:1 scale)

HIGH PERFORMANCE QUAD OPERATIONAL AMPLIFIERS

- SINGLE OR SPLIT SUPPLY OPERATION
- VERY LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- high Channel separation

The LS404 is a high performance quad operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage
range, and it is partucularly intended for professional and telecom applications (active filters, etc.).
The patented input stage circuit allows small input signal swings below the negative supply voltage and prevents phase inversion when the input is over driven.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage		± 18	V
V_{i}	Input voltage	(positive) (negative)	$+V_{s}$ $-V_{5}-0.5$	V
V_{i}	Differential input voltage		$\pm\left(V_{5}-1\right)$	
$\mathrm{T}_{\text {op }}$	Operating temperature	LS 404	-25 to +85	${ }^{\circ} \mathrm{C}$
		LS 404C	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Power dissipation	($\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$)	400	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to +150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

Type	DIP 14	SO-14
LS 404	-	LS 404M
LS 404C	LS 404CB	LS 404CM
LS 8404	-	LS 8404M
LS 8404C	-	LS 8404CM

OUTPUT A

SCHEMATIC DIAGRAM (one section)

THERMAL DATA

THERMAL DATA	DIP 14	SO-14	
$R_{\text {thj-amb }}$ Thermal resistance junction-ambient	\max	$200^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}^{*}$

(*) Measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

	Parameter	Test conditions		LS 404			LS 404C			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	
I_{5}	Supply current				1.3	2		1.5	3	mA
I_{b}	Input bias current				50	200		100	300	nA
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$			0.7	2.5		0.5	5	$\mathrm{M} \Omega$
$V_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$			1			1		mV
$\frac{\Delta V_{\text {os }}}{\Delta T}$	Input offset voltage drift	$\begin{aligned} & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{0} \end{aligned}$	$<T_{\text {max }}$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input offset current				10	40		20	80	nA
$\frac{\Delta \mathrm{I}_{\mathrm{os}}}{\Delta \mathrm{~T}}$	Input offset current drift	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			0.08			0.1		$\frac{\mathrm{nA}}{{ }^{\circ} \mathrm{C}}$
$I_{\text {sc }}$	Output short circuit current				23			23		mA
G_{v}	Large signal open loop voltage gain	$R_{L}=2 K \Omega$	$\begin{aligned} & V_{s}= \pm 12 V \\ & V_{s}= \pm 4 V \end{aligned}$	90	$\begin{gathered} 100 \\ 95 \end{gathered}$		86	$\begin{gathered} 100 \\ 95 \end{gathered}$		dB
B	Gain-bandwidth product	$f=20 \mathrm{KHz}$		1.8	3		1.5	2.5		MHz
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$			$\begin{gathered} 8 \\ 10 \\ 18 \end{gathered}$	15		$\begin{aligned} & 10 \\ & 12 \\ & 20 \end{aligned}$		$\frac{n V}{\sqrt{H z}}$
d	Distortion	unity gain $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vpp} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & f=20 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.03 \end{aligned}$	0.04		$\begin{aligned} & 0.01 \\ & 0.03 \end{aligned}$		\%
V_{0}	DC output voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{aligned} & V_{s}= \pm 12 \mathrm{~V} \\ & V_{s}= \pm 4 \mathrm{~V} \end{aligned}$	± 10	± 3		± 10	± 3		V
V_{0}	Large signal voltage swing	$f=10 \mathrm{KHz}$	$\begin{aligned} & R_{L}=10 \mathrm{~K} \Omega \\ & R_{L}=1 \mathrm{~K} \Omega \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$			22		Vpp
SR	Slew rate	unity gain$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		0.8	1.5			1		$\mathrm{V} / \mu \mathrm{s}$
CMR	Comm. mode rejection	$\mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}$		90	94		80	90		dB
SVR	Supply voltage rejection	$V_{i}=1 \mathrm{~V}$	$f=100 \mathrm{~Hz}$	90	94		86	90		dB
CS	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$		100	120			120		dB

Fig. 1 - Supply current vs. supply voltage

Fig. 4 - Open loop frequency and phase response

Fig. 7 - Large signal frequency response

Fig. 2 - Supply current vs. ambient temperature

Fig. 5 - Open loop gain vs. ambient temperature

Fig. 8 - Output voltage swing vs. load resistance

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Total input noise vs. frequency

APPLICATION INFORMATION

Active low-pass filter:

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering.
The cutoff frequency, f_{c}, is the frequency at which the amplitude response in down 3 dB . The attenuation rate beyond the cutoff frequency is -n 6 dB per octave of frequency where n is the order (number of poles) of the filter.
Other characteristics:

- Flattest possible amplitude response.
- Excellent gain accuracy at low frequency end of passband.

Fig. 10 - Amplitude response

Fig. 11 - Amplitude response

Fig. 12 - Amplitude response ($\pm 1 \mathrm{~dB}$ ripple)

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.
Chebyschev filters are normally designed with peak-to-peak ripple values from 0.2 dB to 2 dB .
Increased ripple in the passband allows increased attenuation above the cutoff frequency.
The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band.
Other characteristics:

- Greater selectivity
- Very nonlinear phase response
- High overshoot response to step inputs.

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.
The maximum phase shift is $\frac{-n \pi}{2}$ radians where n is the order (number of poles) of the filter. The cutoff frequency, f_{c}, is defined as the frequency at which the phase shift is one half to this value. For accurate delay, the cutoff frequency should be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter.

	2 pole	4 pole	6 pole	8 pole
-3 dB frequency	$0.77 \mathrm{f}_{\mathrm{c}}$	$0.67 \mathrm{f}_{\mathrm{c}}$	$0.57 \mathrm{f}_{\mathrm{c}}$	$0.50 \mathrm{f}_{\mathrm{c}}$

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth.
- Very small overshoot response to step inputs
- Fast rise time.

APPLICATION INFORMATION (continued)

The table below shows the typical overshoot and settling time response of the low pass filter to a step input.

	NUMBER OF POLES	PEAK OVERSHOOT	SETTLING TIME (\% of final value)		
		\% Overshoot	$\pm 1 \%$	\pm 0.1\%	\pm 0.01\%
BUTTERWORTH	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \\ 14 \\ 16 \end{array}$	$\begin{aligned} & 1.1 / f_{c} \text { sec. } \\ & 1.7 / f_{c} \\ & 2.4 / f_{c} \\ & 3.1 / f_{c} \end{aligned}$	$\begin{aligned} & 1.7 / \mathrm{f}_{\mathrm{c}} \text { sec. } \\ & 2.8 / \mathrm{f}_{\mathrm{c}} \\ & 3.9 / \mathrm{f}_{\mathrm{c}} \\ & 5.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.9 / f_{c} \mathrm{sec} . \\ & 3.8 / \mathrm{f}_{\mathrm{c}} \\ & 5.0 / \mathrm{f}_{\mathrm{c}} \\ & 7.1 / \mathrm{f}_{\mathrm{c}} \end{aligned}$
BESSEL	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 / \mathrm{f}_{\mathrm{c}} \\ & 1.0 / \mathrm{f}_{\mathrm{c}} \\ & 1.3 / \mathrm{f}_{\mathrm{c}} \\ & 1.6 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.4 / f_{c} \\ & 1.8 / f_{c} \\ & 2.1 / f_{c} \\ & 2.3 / f_{c} \end{aligned}$	$\begin{aligned} & 1.7 / \mathrm{f}_{\mathrm{c}} \\ & 2.4 / \mathrm{f}_{\mathrm{c}} \\ & 2.7 / \mathrm{f}_{\mathrm{c}} \\ & 3.2 / \mathrm{f}_{\mathrm{c}} \end{aligned}$
CHEBYSCHEV (RIPPLE $\pm 0.25 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 11 \\ & 18 \\ & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 1.1 / \mathrm{f}_{\mathrm{c}} \\ & 3.0 / \mathrm{f}_{\mathrm{c}} \\ & 5.9 / \mathrm{f}_{\mathrm{c}} \\ & 8.4 / \mathrm{f}_{\mathrm{c}} \end{aligned}$	$\begin{array}{r} 1.6 / \mathrm{f}_{\mathrm{c}} \\ 5.4 / \mathrm{f}_{\mathrm{c}} \\ 10.4 / \mathrm{f}_{\mathrm{c}} \\ 16.4 / \mathrm{f}_{\mathrm{c}} \end{array}$	-
CHEBYSCHEV (RIPPLE $\pm 1 \mathrm{~dB}$)	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 28 \\ & 32 \\ & 34 \end{aligned}$	$\begin{array}{r} 1.6 / f_{c} \\ 4.8 / f_{c} \\ 8.2 / f_{c} \\ 11.6 / f_{c} \end{array}$	$\begin{array}{r} 2.7 / f_{c} \\ 8.4 / f_{c} \\ 16.3 / f_{c} \\ 24.8 / f_{c} \end{array}$	-

Design of $2^{\text {nd }}$ order active low pass filter
 (Sallen and Key configuration unity gain op-amp)

Fig. 13 - Filter configuration

$\frac{V_{o}}{V_{i}}=\frac{1}{1+2 \xi \frac{S}{\omega_{c}}+\frac{S^{2}}{\omega_{c}{ }^{2}}}$
where:
$\omega_{c}=2 \pi f_{c} \quad$ with $f_{c}=$ cutoff frequency
ξ = damping factor.

APPLICATION INFORMATION (continued)

Three parameters are needed to characterize the frequency and phase response of a $2^{\text {nd }}$ order active filter: the gain (G_{v}), the damping factor (ξ) or the Q -factor $\left(\mathrm{Q}=(2 \xi)^{-1}\right)$, and the cutoff frequency (f_{c}).
The higher order responses are obtained with a series of $2^{\text {nd }}$ order sections. A simple RC section is introduced when an odd filter is required. The choice of ' ξ ' (or Q-factor) determines the filter response (see table).

TAB. 1

Filter response	ξ	\mathbf{Q}	Cutoff frequency $\mathbf{f}_{\mathbf{c}}$
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	Frequency at which phase shift is -90°
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$	Frequency at which $\mathbf{G}_{v}=-3 \mathrm{~dB}$
Chebyschev	$<\frac{\sqrt{2}}{2}$	$>\frac{1}{\sqrt{2}}$	Frequency at which the amplitude response passes through specified max. ripple band and enters the stop band

Fig. 14 - Filter response vs. damping factor

Fixed $\mathrm{R}=\mathrm{R}_{1}=\mathrm{R}_{2}$, we have (see fig. 13)
$C_{1}=\frac{1 \xi}{R \omega_{\mathrm{c}}}$
$\mathrm{C}_{2}=\frac{1}{\mathrm{R}} \frac{1}{\xi \omega_{\mathrm{c}}}$
The diagram of fig. 14 shows the amplitude response for different values of damping factor ξ in $2^{\text {nd }}$ order filters.

EXAMPLE:

Fig. $15-5^{\text {th }}$ order low pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

In the circuit of fig. 15, for $f_{c}=3.4 \mathrm{KHz}$ and $R_{i}=R_{1}=R_{2}=R_{3}=R_{4}=10 \mathrm{~K} \Omega$, we obtain:
$C_{i}=1.354 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=6.33 \mathrm{nF}$
$C_{1}=0.421 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=1.97 \mathrm{nF}$
$\mathrm{C}_{2}=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
$C_{3}=0.309 \cdot \frac{1}{R} \cdot \frac{1}{2 \pi f_{c}}=1.45 \mathrm{nF}$
$\mathrm{C}_{4}=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For f_{c} $=5 \mathrm{KHz}$ and $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mathrm{nF}$ we obtain:

$$
R_{i}=\frac{1}{1.354} \cdot \frac{1}{C} \cdot \frac{1}{2 \pi f_{c}}=23.5 \mathrm{~K} \Omega
$$

Tab. II
Damping factor for low-pass Butterworth filters

Order	$\mathbf{C}_{\mathbf{i}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{5}}$	$\mathbf{C}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{7}}$	$\mathbf{C}_{\mathbf{8}}$
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	$1.02 \cdot$	0.83	1.20	0.556	1.80	0.195	5.125

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{1}{0.421} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=75.6 \mathrm{~K} \Omega \\
& \mathrm{R}_{2}=\frac{1}{1.753} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=18.2 \mathrm{~K} \Omega \\
& \mathrm{R}_{3}=\frac{1}{0.309} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=103 \mathrm{~K} \Omega \\
& \mathrm{R}_{4}=\frac{1}{3.325} \cdot \frac{1}{\mathrm{C}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=9.6 \mathrm{~K} \Omega
\end{aligned}
$$

Fig. $16-5^{\text {th }}$ order high-pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

Fig. 17 - Multiple feedback 8-pole bandpass filter.

$\mathrm{f}_{\mathrm{c}}=1.180 \mathrm{~Hz} ; \mathrm{A}=1 ; \mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{5}=\mathrm{C}_{6}=\mathrm{C}_{8}=\mathrm{C}_{9}=\mathrm{C}_{10}=\mathrm{C}_{11}=3.300 \mathrm{pF}$;
$\mathrm{R}_{1}=\mathrm{R}_{6}=\mathrm{R}_{9}=\mathrm{R}_{12}=160 \mathrm{~K} \Omega ; \mathrm{R}_{5}=\mathrm{R}_{8}=\mathrm{R}_{11}=\mathrm{R}_{14}=330 \mathrm{~K} \Omega ; \mathrm{R}_{4}=\mathrm{R}_{7}=\mathrm{R}_{10}=\mathrm{R}_{13}=5.3 \mathrm{~K} \Omega$

Fig. 18 - Frequency response of band-pass filter

Fig. 19 - Bandwidth of bandpass filter

APPLICATION INFORMATION (continued)

Fig. 20 - Six-pole 355 Hz low-pass filter (Chebychev type)

This is a 6-pole Chebychev type with $\pm 0.25 \mathrm{~dB}$ ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz . The in band attenuation is limited in practice to the $\pm 0.25 \mathrm{~dB}$ ripple and does not exceed 0.5 dB at 0.9 fc .

Fig. 21 - Subsonic filter $\left(\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}\right)$

$\mathbf{f}_{\mathbf{c}}(\mathrm{Hz})$	$\mathbf{C}(\mu \mathrm{F})$
15	0.68
22	0.47
30	0.33
55	0.22
100	0.1

Fig. 22 - High cut filter $\left(G_{v}=0 \mathrm{~dB}\right)$

$\mathbf{f}_{\mathbf{c}}$ (KHz)	$\mathbf{C 1}(\mathbf{n F})$	$\mathbf{C 2}$ (nF)
3	3.9	6.8
5	2.2	4.7
10	1.2	2.2
15	0.68	1.5

DUAL HIGH PERFORMANCE OPERATIONAL AMPLIFIER

- SINGLE OR SPLIT SUPPLY OPERATION
- LOW POWER CONSUMPTION
- HIGH UNITY GAIN BANDWIDTH
- NO CROSSOVER DISTORTION
- NO POP NOISE
- SHORT CIRCUIT PROTECTION
- HIGH CHANNEL SEPARATION

The LS4558N is a high performace dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the entire supply voltage range and the specially designed input stage allow
the LS4558N to be used in low noise audio signal processing application. The optimized class $A B$ output stage completely eliminates crossover, distortion, under any load conditions, has large source and sink capacity and is short circuit protected.

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage		± 18	V
V_{1}	Inpuit voltage		$\pm \mathrm{V}_{5}$	
V_{i}	Differential input voltage		$\pm\left(\mathrm{V}_{5}-1\right)^{5}$	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	Minidip	- ${ }^{\text {c }}$ - 665	mW
		Micropackage	400	mW
$\mathrm{T}_{\text {op }}$	Operating temperature		0 to 70	${ }^{\circ} \mathrm{C}$
T_{j}	Junction temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55 to 150	${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATIONS:

Balanced input audio preamplifier

DC coupled low-pass active filter
($f=1 \mathrm{KHz}, \mathrm{G}_{\mathrm{v}}=6 \mathrm{~dB}$

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

THERMAL DATA	Minidip	SO-8
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	$120^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}$

282

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter				nditions	Min.	Typ.	Max.	Unit
I_{5}	Supply current (*)					1	2	mA
I_{b}	Input bias current					50	500	nA
			$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}$				800	nA
R_{i}	Input resistance		$\mathrm{f}=1 \mathrm{KHz}$		0.3	1		$\mathrm{M} \Omega$
$\mathrm{V}_{\text {os }}$	Input offset voltage		$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega$			0.5	5	mV
			$\begin{aligned} & \mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}} \end{aligned}$				7.5	mV
I_{os}	Input offset current					20	200	nA
			$\mathrm{T}_{\text {min }}<\mathrm{T}_{\mathrm{op}}$				500	nA
$I_{\text {sc }}$	Output shor current	ircuit				23		mA
G_{v}	Large sig voltage g	en loop	$R_{L}=2 \mathrm{~K} \Omega$		86	100		dB
B	Gain-band	h product	$\mathrm{f}=20 \mathrm{KHz}$		2	3		MHz
e_{N}	Total inp	ise voltage	$f=1 \mathrm{KHz}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \hline \end{aligned}$		8 10 18	15	$\frac{n V}{\sqrt{H z}}$
${ }^{\text {en }}$	Popcorn		$\begin{aligned} & \mathrm{B}=1 \mathrm{~Hz} \text { to } \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{t}=10 \mathrm{sec} \end{aligned}$				10	$\underset{\text { peak }}{\mu \mathrm{V}}$
d	Distortio		$\begin{aligned} & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vpp} \end{aligned}$	$\begin{aligned} & R_{L}=2 K \Omega \\ & f=1 \mathrm{KHz} \end{aligned}$		0.03		\%
V_{0}	Output v	swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$			± 13		V
V_{0}	Large sig	Itage swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}=10 \mathrm{KHz} \end{aligned}$			28		Vpp
Transi SR	response	Rise time	$\begin{aligned} & V_{i}=20 \mathrm{mV} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 K \Omega$		0.13		$\mu \mathrm{S}$
		Overshoot				5		\%
SR	Slew rate		unity gain $R_{L}=2 \mathrm{~K} \Omega$		0.8	1.5		$\mathrm{V} / \mu \mathrm{s}$
CMR	Common mode rejection		$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=10 \mathrm{~V} \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}} \end{aligned}$		70	90		dB
SVR	Supply voltage rejection		$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=1 \mathrm{~V} \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{op}} \end{aligned}$	$f=100 \mathrm{~Hz}$	80	100		dB
CS	Channel separation		$\mathrm{f}=10 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega$		105		dB

(*) Both amplifiers.

Fig. 1 -Open loop frequency and phase response

Fig. 4 - Large signal frequency response

Fig. 7 - Channel separation

Fig. 8 - Transient response

Fig. 3 - Supply voltage rejection vs. frequency

Fig. 6 - Total input noise vs. frequency

Fig. 9 - Voltage follower large-signal pulse response

APPLICATION INFORMATION

Fig. 10 - Mike/Line preamplifier for audio mixers (0 dB to 60 dB continuously variable gain)

Note - The particular characteristics of the circuit of fig. 10 is that using a linear potentiometer, the gain is continuously variable in a logarithmic mode from 0 dB to 60 dB in the audio band.

Fig. 11 - Microphones nomograph

$5-4800$

Fig. 12 - Very Low-Noise mike preamplifier ($\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

Fig. 13 - Balanced input audio preamplifier

APPLICATION INFORMATION (continued)

Fig. $14-20 \mathrm{~Hz}$ to 200 Hz variable High-pass filter ($\mathrm{G}_{\mathrm{v}}=\mathbf{3 \mathrm { dB }}$)

Fig. 15 - Frequency response of the High-pass filter of fig. 14

Fig. 16 - DC coupled low-pass active filter ($\mathrm{f}=1 \mathrm{KHz}, \mathrm{G}_{\mathrm{v}}=6 \mathrm{~dB}$)

Fig. 17 - Switchable HP-LP audio filter

Fig. 18 - Subsonic or rumble filter ($\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$)

$\mathbf{f}_{\mathbf{c}}(\mathrm{Hz})$	$\mathbf{C}(\mu \mathrm{F})$
15	0.68
22	0.47
30	0.33
55	0.22
100	0.1

Fig. 19 - High-cut filter $\left(\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}\right)$

$f_{c}(\mathrm{KHz})$	$\mathbf{C 1}(\mathrm{nF})$	$\mathrm{C} 2(\mathrm{nF})$
3	3.9	6.8
5	2.2	4.7
10	1.2	2.2
15	0.68	1.5

APPLICATION INFORMATION (continued)

Fig. 20 - Fifth order 3.4 KHz low-pass Butterworth filter

For $\mathrm{f}_{\mathrm{c}}=3.4 \mathrm{KHz}$ and $\mathrm{R}_{\mathrm{i}}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=10 \mathrm{~K} \Omega$, we obtain:
$\mathrm{C} 1=1.354 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=6.33 \mathrm{nF}$
$\mathrm{C} 3=0.309 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.45 \mathrm{nF}$
$\mathrm{C} 1=0.421 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.97 \mathrm{nF}$
$\mathrm{C} 4=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2, \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
$\mathrm{C} 2=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

Fig. 21 - Six-pole 355 Hz low-pass filter (Chebychev type)

This is a 6 - pole Chebychev type with $\pm 0.25 \mathrm{~dB}$ ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz . The in band attenuation is limited in practice to the $\pm 0.25 \mathrm{~dB}$ ripple and does not exceed 0.5 dB at 0.9 fc .

M082/A-M083/A-M086/A

TONE GENERATORS

NOT FOR NEW DESIGN

- SINGLE POWER SUPPLY
- WIDE SUPPLY VOLTAGE OPERATING RANGE
- LOW POWER DISSIPATION < 500mW
- 13 (M082/A, M083/A) OR 12 (M086/A) TONE OUTPUTS
- HIGH OUTPUT DRIVE CAPABILITY
- HIGH ACCURACY OF OUTPUT FREQUENCIES: ERROR LESS THAN $\pm 0.069 \%$
- INPUT PROTECTED AGAINST STATIC CHARGES
- LOW INTERMODULATION

The M082/A, M083/A and M086/A are monolithic tone generators specially designed for etectronic organs. The only difference between the M082, M083, M086 and the M082A, M083A, M086A is the maximum input clock frequency, which is 4500 KHz for the standard types and 2500 KHz for the " A " types. Constructed on a single chip using low threshold N -channel silicon gate technology they are supplied in a 16 lead dual in-line plastic package.

ABSOLUTE MAXIMUM RATINGS

V_{1}	Voltage on any pin relative to $\mathrm{V}_{\text {ss }}$ (GND)	+20 to -0.3	V
$\mathrm{~T}_{\text {op }}$	Operating temperature	0 to 50	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

PIN CONNECTIONS

* $V_{D D}$ is the highest supply voltage
** $V_{\text {SS }}$ is the lowest supply voltage

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS $\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{amb}} \leqslant 50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\right.$ to +14 V unless otherwise specified)

* Output unloaded.

Fig. 1 Input clock waveform

Fig. 2 - Output signal d.c. loading

Fig. 3 - Output loading

APPLICATION INFORMATION

Keyboard frequencies for electronic organs (*)

NOTE		OCTAVES								
		0	1	2	3	4	5	6	7	8
DOH	C	16.3516	32.7032	65.4064	130.813	261.626	523.251	1046.50	2093.00	4186.01
	C \#	17.3239	34.6478	69.2957	138.591	277.183	554.365	1108.73	2217.46	4434.92
RAY	D	18.3540	36.7081	73.4162	146.832	293.665	587.330	1174.66	2349.32	4698.64
	D \#	19.4454	38.8909	77.7817	155.563	311.127	622.254	1244.51	2489.02	4978.03
ME	E	20.6017	41.2034	82.4069	164.814	329.628	659.255	1318.51	2637.02	5274.04
FAH	F	21.8268	43.6536	87.3071	174.614	349.228	698.456	1396.91	2793.83	5587.65
	F \#	23.1247	46.2493	92.4986	184.997	369.994	739.989	1479.98	2959.96	5919.91
SOH	G	24.4997	48.9994	97.9989	195.998	391.995	783.991	1567.98	3135.96	6271.93
	C \#	25.9565	51.9131	103.826	207.652	415.305	830.609	1661.22	2322.44	6644.88
LA	A	27.5000	55.0000	110.000	220.000	440.000	880.000	1760.00	3520.00	7040.00
	A \#	29.1352	58.2705	116.541	233.082	466.164	932.328	1864.66	3729.31	7458.62
TE	B	30.8671	63.7354	123.471	246.942	493.883	987.767	1975.53	3951.07	7902.13

(*) The frequencies can be obtained from a 99680 Hz (or multiples) master oscillator by the following division ratios, and subsequent repeated division by 2

C\# $\div 451$	$\mathrm{~F} \div 358$	$\mathrm{~A} \div 284$
$\mathrm{D} \div 426$	$\mathrm{~F} \div 338$	$\mathrm{~B}^{\mathrm{b}} \div 268$
$\mathrm{E}^{\mathrm{b}} \div 402$	$\mathrm{G} \div 319$	$\mathrm{~B} \div 253$
$\mathrm{E} \div 379$	$\mathrm{G} \div \div 301$	$\mathrm{C} \div 239$

The frequency error in these approximations is less than $\pm 0.069 \%$.

SINGLE CHIP ORGAN (SOLO + ACCOMPANIMENT)

- SIMPLE KEY SWITCH REQUIREMENTS FOR 61 KEYS, IN A MATRIX OF 12×6
- LOW TIME REQUIRED FOR SCANNING CYCLE OF $576 \mu \mathrm{sec}$.
- ACCEPTANCE OF ALL KEYS PRESSED
- TWO KEYBOARD FORMATS: 61 KEYS (SOLO) OR $24+37$ (M108), $17+44$ (M208) KEYS (ACC. + SOLO) WITH POSSIBILITY OF AUTOMATIC CHORDS OF THE "ACCOMPANIMENT" SECTION TOP OCTAVE SYNTHESIZER INCORPORATED FOR GENERATION OF 3 "FOOTAGES"
- more than one chip can be emPLOYED WITH SYNCHRONIZATION THROUGH THE RESET INPUT
- SEPARATED ANALOG OUTPUTS (FOR EACH FOOT) FOR "SOLO", "ACC'" AND "BASS" SECTIONS (SQUARE WAVE 50\% D.C.) WITH AVERAGE VALUE CONSTANT
- INTERNAL ANTI-BOUNCE CIRCUITS
- KEY DOWN AND TRIGGER OUTPUTS FOR "SOLO", "ACC." AND "BASS" SECTIONS
- SUSTAIN FOR THE LAST KEYS RELEASED IN THE "SOLO" SECTION
- CHOICE OF OPERATING MODE IN "ACC." SECTION
- MANUAL, WITH OR WITHOUT MEMORIZATION OF THE SELECTED KEY (FREE CHORDS WITH ALTERNATE BASS)
- AUTOMATIC, WITH OR WITHOUT MEMORIZATION OF THE SELECTED KEY (PRIORITY TO THE LEFT FOR AUTOMATIC CHORDS AND BASS ARPEGGIO)
- mULTIPLE CHOICE POSSIBILITY ON THE CHORDS IN AUTOMATIC MODE
- MAJOR OR MINOR THIRD
- WITH OR WITHOUT SEVENTH
- LOW DISSIPATION OF $\leqslant 600 \mathrm{~mW}$
- STANDARDS SINGLE SUPPLY OF +12V $\pm 5 \%$
- INPUTS PROTECTED FROM ELECTROSTATIC DISCHARGES

The M108 and M208 are realized on a single monolithic chip using N -channel silicon gate technology.
They are available in a 40 lead dual in-line plastic package.

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$	Source supply voltage	-0.3 to +20	V
V_{i}	Input voltage	-0.3 to +20	V
I_{o}	Output current (at any pin)	3	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	0 to 50	${ }^{\circ} \mathrm{C}$

PIN CONNECTIONS

$*^{*} \mathbf{V}_{\text {SS }}$	1	400	MCK
RESET	2	$39]$	TCK
oth/7in	03	38.	B1
4/5th	4	370	B2
0/3rd	d 5	36	B3
161ROOT	06	350	B4
BASS	07	340	B5
A	08	33	B6
B	0	32	F1
C	10	310	F2
$\overline{\text { NPA }}$	11	300	F3
$\overline{T D B}$	12	$29]$	F4
TDS	13	280	F5
$\overline{\mathrm{KPA}}$	14	27	F6
$\overline{\mathrm{KPS}}$	15	26	$\overline{\mathrm{F}}$
16°	016	25	$\overline{\mathrm{FB}}$
8.	17	24.0	$\overline{\mathrm{Fg}}$
$4{ }^{\prime}$	018	230	$\overline{\mathrm{F} 10}$
$\overline{\text { TEST }}$	019	22.	$\overline{\mathrm{F} 11}$
$* *{ }^{\text {O }}$ DD	220	210	$\overline{F 12}$

[^5]BLOCK DIAGRAM

GENERAL CHARACTERISTICS

The caracteristics of the M208 are similar to those of the M108; the only difference is the keyboard split, which is $24+37$ for the M108 and $17+44$ for the M208 when used in "accompaniment + solo" mode.
The circuit comprises:
a) 2 pins for clock input: one for the matrix scanning, the other for the incorporated T.O.S.;by connecting both the clock inputs to the same matrix scanning clock (1000.12 KHz), the three "footages" generated are $10^{\prime}, 8^{\prime}$ and 4^{\prime}.
b) 6 inputs from the octave bars (keyboard and control scanning).
c) 3 multiplexed data inputs for addressing the bass selection. These inputs normally come from the outputs of an external memory (negative or positive logic with control inside the chip)
d) 8 signal outputs divided by section: 3 for the "SOLO" section ($16^{\prime}, 8^{\prime}, 4$ '), 4 for the "ACC." section (16^{\prime} or root, 8^{\prime} or 3 rd, 4^{\prime} ' or 5 th, 8 th/ 7 th according to operating mode), 1 for the bass
e) 12 outputs for the matrix scanning
f) 5 "trigger" and "key down" outputs: $\overline{K P S}$ (key pressed "SOLO"), $\overline{T D S}$ (trigger decay "SOLO"), $\overline{K P A}$ (key pressed "ACC."), $\overline{N P A}$ (pitch present in "ACC." outputs), $\overline{T D B}$ (trigger decay "BASS") respectively. These outputs, in conjunction with an external time constant, allow the formation of the envelope of the sustain and percussion effects. The duration of the trigger pulses is $\cong 9 \mathrm{msec}$.
g) 1 input (reset) to synchronize the device or more than one device (with the same keyboard scanning and using a single contact per key).
The reset action, provided by an external circuit, is of the "POWER ON RESET" (high active) type and its duration must be $\cong 0.5 \mathrm{msec}$.
h) 1 TEST pin (in use it must be connected to $V_{D D}$)
i) 2 supply pins.

MATRIX ORGANIZATION (Keyboard and controls)

M108/208 Matrix outputs	M108/208 Octave bar inputs					
	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$\overline{F_{1}}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$\overline{F_{2}}$	$\mathrm{C}_{1} \#$	$\mathrm{C}_{2} \#$	$\mathrm{C}_{3} \#$	$\mathrm{C}_{4}{ }^{\text {\# }}$	$\mathrm{C}_{5}{ }^{\text {\# }}$	7th OFF/7th ON
$\overline{F_{3}}$	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	$3 \mathrm{rd}+/ 3 \mathrm{rd}$ -
\bar{F}_{4}	$\mathrm{D}_{1}{ }^{\text {\% }}$	$\mathrm{D}_{2} \#$	$\mathrm{D}_{3}{ }^{\text {\# }}$	$\mathrm{D}_{4} \#$	$\mathrm{D}_{5}{ }^{\text {\# }}$	Sust. OFF/Sust. ON
$\overline{F_{5}}$	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	Latch/Latch
$\overline{F_{6}}$	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	Man/Auto
\bar{F}_{7}	$\mathrm{F}_{1} \#$	$\mathrm{F}_{2} \#$	$\mathrm{F}_{3}{ }^{\text {\# }}$	$\mathrm{F}_{4}{ }^{\text {\# }}$	$\mathrm{F}_{5}{ }^{\text {\# }}$	$61 / 24+37(17+44)$
$\overline{F_{8}}$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	Antibounce ON/Antibounce OFF
$\overline{F_{9}}$	$\mathrm{G}_{1}{ }^{\text {\# }}$	$\mathrm{G}_{2}{ }^{\text {a }}$	$\mathrm{G}_{3}{ }^{\text {\% }}$	$\mathrm{G}_{4} \#$	$\mathrm{G}_{5}{ }^{\text {\# }}$	ROM Low/ROM High
$\overline{F_{10}}$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	--------
$\overline{F_{11}}$	$\mathrm{A}_{1}{ }^{\text {\# }}$	$\mathrm{A}_{2}{ }^{\text {\# }}$	$\mathrm{A}_{3}{ }^{\text {\% }}$	$\mathrm{A}_{4} \#$	$\mathrm{A}_{5}{ }^{\text {\# }}$	-------
$\overline{F_{12}}$	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	--------
C_{1} is the first key on the left, C_{6} is the last key on the right of the keyboard.						

The main feature of this chip is the possibility of formating the keyboard either with 61 keys (only "SOLO" without automatism) or separating it into two sections ("ACCOMPANIMENT + SOLO") with the possibility of chord and bass automatic in the first section.

FEATURES

a) The " $61 / 24+37$ " $(17+44)$ control chooses the keyboard operating mode, i.e. the whole keyboard dedicated to "SOLO" or 24 (17) keys dedicated to "ACCOMPANIMENT" and 37 (44) to "SOLO".
b) The "Man/Auto" control, which operates only in case of "ACC.+ SOLO", chooses the manual or the automatic accompaniment.
c) The "Sust OFF/Sust ON" allows the storage of the "SOLO" section and handles the whole keyboard or 37 (44) keys depending on the operating mode.
d) The "Latch/Latch" similarly allows the storage of the "ACC." section and operates in "ACC. + SOLO" only.
e) The "3rd+/3rd-" which operates only in case of "ACC. + SOLO" and "AUTOMATIC", changes the automatic chord generated from major to minor or viceversa.
f) The "7th OFF/7th ON" adds the seventh to the automatic chord generated.
g) The "Antibounce ON/Antibounce OFF" disables the antibounce circuit which is usually enabled.
h) The "ROM Low/ROM High" selects between ROMs with return to "1" (Low active) or with return to " 0 " (High active). Usually the chip is enabled for ROMs with return to " 1 " (Low active).

"SOLO" Operation

In this case the chip recognizes the whole keyboard as "SOLO" and does not read the controls which concern the "ACC. + SOLO" operation.
The chip identifies all the keys pressed and transfers to the outputs of each section (ACC. and SOLO) the analog sum of corresponding pitches.
The outputs are current generators with average value constant, therefore it is sufficient to connect the pins to one load and send the signals on to the filters.
In the case of "Sustain OFF" each new key pressed or released is accepted or deleted in a time $\leqslant 576 \mu \mathrm{sec}$.
In the case of "Sustain ON" the chip has a different operation according to whether the new key (keys) is pressed or released: each new key pressed is always accepted in a time $\leqslant 576 \mu \mathrm{sec}$., whereas each key released is deleted with a delay of 73 msec . and only if there are still keys pressed.
In fact, if after the 73 msec . there are no keys pressed, the last key (or keys) released remains stored until new keys are pressed.
In this mode it is possible to have Sustain, with external envelope shaping, for the last keys (or key) released.
The pitch envelope is controlled by a D.C. signal $\overline{\mathrm{KPS}}$ (any key pressed) and there is also an A.C. signal $\overline{T D S}$ (trigger decay "SOLO") which provides a pulse whenever a key is pressed.
An appropriate antibounce circuit, inside the chip, solves the problems associated with the keyboard contacts.

"SOLO + ACCOMPANIMENT" Operation

In this case the chip identifies the "ACCOMPANIMENT" on the first 24 (17) keys on the left, and the "SOLO" on the remaining 37 (44) keys and reads all the controls which concern the "ACC." section. The "SOLO" function is identical to " 61 keys" mode, but for the "ACC." section there are two possibilities:

A) MANUAL

The chip identifies which keys are pressed in the "ACC." section, and transfers to the "ACC." outputs the analog sum of the corresponding pitches.
The "ACC." section is fully independent of the "SOLO" section and the signals(if there is no"LATCH") remain at the output only while the keys are pressed even if there is "SUSTAIN ON".

The "BASS" section gives at the bass output an alternating bass between the first on the left and the first on the right of the keys pressed in the "ACC." section; the pitch switching timing is dependent on an external ROM (3 bits).
The "LATCH" control stores the last keys released and the output signals, including the bass output, remain until new keys are pressed.
The $\overline{\text { TDB }}$ (trigger decay "BASS") output gives a pulse corresponding to every output change; there are also two D.C. signals, $\overline{K P A}$ (any key pressed accompaniment) and $\overline{N P A}$ (pitches in output accompaniment) relative only to the "ACC." section.
The first of these signals (analogous to $\overline{\mathrm{KPS}}$) concerns the keyboard and does not consider the "LATCH" condition.
The second on the contrary concerns the "ACC." output and considers the "LATCH" condition.
B) AUTOMATIC

The chip recognizes in the "ACC." section only the first on the left of the keys pressed and, according to the setting of the following controls, produces a major or minor chord with or without seventh only the 4' footage but with separated outputs for root, third, fifth and eighth (or seventh if the chord is with seventh).
The bass section gives the bass arpeggio among root, third, fourth, fifth, sixth, seventh and eighth with pitch switching dependent on an external ROM (3 bits).
In automatic mode the two octaves of the "ACC." section inside the chip are connected in parallel both for the chord and for the bass; therefore by pressing anyone of the two keys of the same note the chip generates the same chord.
The "LATCH" control stores the major chord and the bass pitches (until new keys are pressed); the modification of the chord stored (from major to minor, addition of seventh) is always possible by operating the proper controls: by releasing these controls the chord becomes major again.
It is possible to delete the stored pitches both is manual and in "AUTOMATIC" mode by a Latch control signal.
Once again there are $\overline{\mathrm{KPA}}, \overline{\mathrm{NPA}}$, and $\overline{\mathrm{TDB}}$ information; however the $\overline{\mathrm{TDB}}$ pulse, which normally appears at each arrival of the ROM codes, does not appear if there are no pitches in the "ACC." (and bass) outputs or, in the case of alternate bass (in manual mode) if the codes indicate conditions of indifference.

RECOMMENDED OPERATING CONDITIONS

Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {SS }}$	Lowest supply voltage		0		0
$V_{\text {DD }}$	Highest supply voltage		11.4	12	12.6

M108-M208

BASS TRUTH TABLES
LOW ACTIVE

External Memory Code			Bass Arpeggio Output (Automatic mode)
C	B	A	Alternate Bass Output (Manual mode)
1	1	1	No change
1	1	0	Root

HIGH ACTIVE

External Memory Code		Bass Arpeggio Output (Automatic mode)	Alternate Bass Output (Manual mode)
C B	A	No change	Root
0	0	0	3 rd
0	0	1	4 th
0	1	0	5 th
1	1	1	6 th
1	0	0	7 th
1	1	0	8 th

M108-M208

STATIC ELECTRICAL CHARACTERISTICS (Positive Logic, $\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.

INPUT SIGNALS

$\mathrm{V}_{1 \mathrm{H}}$	Input high voltage	Note 1		$V_{D D^{-1}}$	VOD	V
		Note 2		4	18	V
		Note 3		$V_{D D}{ }^{-2}$	VDD	v
$V_{1 L}$	Input low voltage	Note 1		V_{ss}	$\mathrm{V}_{\text {SS }}+1$	V
		Note 2		$\mathrm{v}_{\text {SS }}$	$\mathrm{V}_{S S}+0.6$	v
		Note 3		$\mathrm{v}_{\text {SS }}$	$\mathrm{v}_{\mathrm{ss}}+2$	V
$I_{\text {LI }}$	Input leakage current	$\mathrm{V}_{1}=+12.6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$

LOGIC SIGNAL OUTPUTS

$\mathrm{R}_{\text {ON }}$	Output resistance with respect to V_{SS}			300	500	Ω
R_{ON}	Output resistance with respect to $V_{D D}$	$\begin{aligned} & V_{\text {OUT }}=V_{D D^{-1}} \\ & \text { (driver off) } \end{aligned}$		15	25	$\mathrm{k} \Omega$
V_{OH}	Output high voltage		$V_{\text {DD }}{ }^{-0.4}$		$V_{\text {DD }}$	V
$\mathrm{V}_{\text {OL }}$	Output low voltage			$\mathrm{V}_{\mathrm{SS}^{+}}$0.2	$\mathrm{V}_{5 S}+0.4$	V

POWER DISSIPATION

IDD	Supply current	$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	30	45	mA

ANALOG SIGNAL OUTPUTS (the external load must be connected to $\mathrm{V}_{\mathrm{DD}} / 2$)

IOH	Output current with respect to $V_{D D} / 2$	Outputs loaded with $1 \mathrm{~K} \Omega$ resistor versus $V_{D D} / 2$	8	20	$\mu \mathrm{~A}$
I_{OL}	Output current with respect to $V_{S S}$	Outputs loaded with $1 \mathrm{~K} \Omega$ resistor versus $V_{D D} / 2$	-8	-20	$\mu \mathrm{~A}$

Note 1 : Refers only to the clock inputs.
Note 2 : Refers only to the inputs from the external memory.
Note 3 : Refers only to the reset input.

DYNAMIC ELECTRICAL CHARACTERISTICS

Parameter	Test conditions	Min.	Typ.	Max.

MASTER CLOCK INPUT

f_{i}	Input clock frequency		800	1000.12	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$Input clock rise and fall time 10% to 90%	1000.12 KHz	KHz			
$\mathrm{t}_{\text {on, }} \mathrm{t}_{\text {off }}$ Input clock ON and OFF times	1000 KHz		40	ns	

T.O.S. CLOCK INPUT

f_{i}	Input clock frequency		100	1000.12	2500
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \quad$Input clock rise and fall times 10% to 90%	1000.12 KHz				
ton, $\mathrm{t}_{\text {off }}$ Input clock ON and OFF times	2000 KHz			40	ns

$\overline{T D S}$ and $\overline{T D B}$ OUTPUTS

$t_{\text {on }}$	Pulse duration	1000 KHz		9.216	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Outputs rise and fall times 10% to 90%	1000 KHz	ms		

INPUT CLOCK WAVEFORM

FREQUENCY RANGE OF EACH OCTAVE ($16^{\prime}, 8^{\prime}, 4^{\prime}$ footages)

CONNECTION OF THE KEYBOARD AND CONTROL SWITCHES

Note: The switch "OPEN" corresponds to "KEY NOT PRESSED" or "CONTROL IN THE FIRST CONDITION" (see the drawing "MATRIX ORGANIZATION").

TYPICAL APPLICATION

TIMING DIAGRAMS

Note: MCK is the master clock input (matrix scanning), $\varphi 1, \varphi 2, \varphi 3$ are internal phases to generate $\overline{\mathrm{F} 1} \div \overline{\mathrm{F} 12}$.

Note: The matrix scanning starts (after the power on reset) at the second arrival in output of $\overline{\mathrm{F1}}$ (*) from B1 to B6 in continuous sequence.

POLYPHONIC SOUND GENERATOR

- $8 \mu \mathrm{P}$ PROGRAMMABLE SOUND GENERATOR CHANNELS
- 2 MHz CLOCK
- INTERNAL TOS WITH POSSIBILITY OF EXTERNAL SYNCHRONIZATION FOR MULTICHIP USE
- 6 COMPLETE OCTAVE KEYBOARDS (72 KEYS)
- FIVE HOMOGENEOUS FOOTAGES $\mu \mathrm{P}$ PROGRAMMABLE BY ADDING A CONSTANT K TO THE KEYBOARD SITUATION
- SEVEN OCTAVE RELATED OUTPUTS ENVELOPED WITHOUT CONSTANT DC LEVEL (4 FOOTAGES)
- SEVEN FOOTAGE RELATED OUTPUTS WITH DIFFERENT CONFIGURATIONS FOR :
- FOOTAGES WITH ENVELOPE (WITHOUT CONSTANT DC LEVEL) AND:
- FOOTAGES WITHOUT ENVELOPE (WITH CONSTANT DC LEVEL) AND:
- VARIOUS SOUND CHANNEL DIVISIONS (SEE OPTION I, II AND III)
- POSSIBILITY OF EXCLUDING ONE OR MORE SOUND CHANNELS FROM THE NON ENVELOPED FOOTAGE OUTPUTS
- ONE MONOPHONIC OUTPUT NON ENVELOPED RELATED TO SOUND CHANNEL 1 WITH THE POSSIBILITY OF CHOOSING THE FOOTAGE (TWO ADDITIONAL MONOPHONIC OUTPUTS ON OPTION II)
- 50\% DUTY CYCLE ON ALL OUTPUTS
- DIGITAL DRAWBAR CONTROL (32 LEVELS)
- ATTACK - DECAY - SUSTAIN - RELEASE (ADSR) ENVELOPE DEFINITION WITH DIGITAL CONTROL ON A.D.R. AND ANALOG CONTROL ON S
- ADDITIONAL ANALOG CONTROL ON RELEASE
- ANALOG PERCUSSION INPUT TO ENVELOPE ONE FOOTAGE (M2) ON THE OCTAVE RELATED OUTPUTS
- SPECIAL EXTERNAL ENVELOPE POSSIBILITY USING HOLD AND/OR RELEASE ∞
HOLD AND RELEASE ∞ ARE DEDICATED TO DECAY AND PEDAL EFFECT

ORDERING NUMBER: M112B1

- N-CHANNEL TECHNOLOGY - 12V SINGLE SUPPLY.
The M112 is a polyphonic sound generator that combines eight generators with envelope shapers and drawbar circuitry in a single package.
This versatile circuit simplifies the design of a wide range of polyphonic instruments and, interfacing directly with a microcomputer chip, gives designers an unprecedented degree of flexibility. The M112 is realized on a single monolithic silicon chip using low threshold N -channel silicon gate MOS technology. It is available in a 40 lead plastic package.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{DD}}{ }^{*}$	Supply voltage	-0.3 to 20	V
V_{i}	Input voltage	-0.3 to $V_{D D}$	
V° (off)	Off state output voltage	-0.3 to 20	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation	500	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
Top	Operating temperature	0 to 70	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Rarings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

* All voltages are with respect to V_{SS}.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Parameter	Test conditions	Values			Unit
			Typ.	Max.	
V		11.4	12	12.6	V

STATIC ELECTRICAL CHARACTERISTICS
($V_{D D}=12 \mathrm{~V} \pm 5 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=0$ to $50^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

INPUT SIGNALS

$V_{\text {IH }}$	Input High Voltage	Pins 3, 6 to 11		2.4		$\mathrm{V}_{\text {DD }}$	V
		All other inputs		6		$V_{D D}$	V
$V_{1 L}$	Input Low Voltage	Pins 3, 6 to 11		-0.3		0.8	V
		All other inputs		-0.3		1	V
VSA	Analog Ground	$R<10 \Omega$	$\mathrm{C}=100 \mu \mathrm{~F}$	0	0	1	V
VT	ADR Control Time	$R=1 \mathrm{~K}$	$\mathrm{C}=1 \mu \mathrm{~F}$ (note 3)	0		$V_{\text {DD }}$	V
VAR	Analog Release	$R=10 \mathrm{~K}$	$\mathrm{C}=0.1 \mu$	0		$V_{\text {DD }}$	V
$V_{\text {reg }}$	Control OFF Asymptote	$R<10 \Omega$	$C=100 \mu$	0	0	1	V
$\mathrm{V}_{\text {SUST }}$.	Control Level Sustain	$R=1 \mathrm{~K}$.	$\mathrm{C}=100 \mu$ (note 2)	0		$V_{\text {DD }}$	V
Perc. M2	Control Level Percussion	$\mathrm{R}=10 \mathrm{~K}$		0		$V_{\text {DD }}$	V
$\mathrm{I}_{\text {LI }}$	Input Leakage Current	$V_{1}=V_{D D}$				1	$\mu \mathrm{A}$

OUTPUT SIGNALS (One key pressed)

${ }^{\text {IOL }}$	Output Low current	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{DD} / 2-1 \mathrm{~V}} \mathrm{l}$ (note 1)	10	30	50	$\mu \mathrm{A}$
${ }^{\mathrm{I}} \mathrm{OH}$	Output High Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD} / 2+1 \mathrm{~V}}$ (note 1)	10	30	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V} \mathrm{~V}_{\mathrm{CHN}}=\mathrm{V}_{\mathrm{DD}} / 2(*)$	100	300	500	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V} \mathrm{~V}_{\text {CHN }}=\mathrm{V}_{\text {DD }} / 2$	10	30	50	$\mu \mathrm{A}$
'O(off)	Off state output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}$ (all output pins)			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}} \underset{3^{\text {rd }}}{ } \operatorname{lpins}_{\text {state }} 14-15-20 \text { in }$			-1	$\mu \mathrm{A}$

POWER DISSIPATION

$I_{D D}$ Supply current	$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			50

Notes: 1. Refers only to FL, FM1, FM2 (pins $20,15,14$).
2. With a standard ADSR $V_{S U S T} \leqslant 4.5 \mathrm{~V}$
3. The best region is $V_{T}-V_{S U S T} \geqslant 4 V$
(*) Refers only to octave outputs with drawbar max.

DYNAMIC ELECTRICAL CHARACTERISTICS

| Parameter | Test conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | Unit | (|
| :--- |

CLOCK

| f_{i} Input Clock Frequency | | 250 | 2000.24 | 2.300 | kHz |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ Rise and Fall Times 10% to 90% | | | | 30 | ns |
| $\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\mathrm{off}}$ ON and OFF Times | | 150 | | | ns |

RESET

t_{w}	Pulse Width	Clock $=2 \mathrm{MHz}$	10			$\mu \mathrm{~s}$
t_{f}	Fall Time				30	ns

OUTPUT SIGNALS

$t_{\text {on, }}, t_{\text {off }}$ Outptu duty cycle			50	

GENERAL DESCRIPTION

The M112 contains a microprocessor interface, eight programmable sound generator channels, a top octave synthesiser, a divider chain and control circuitry, (see fig. 1). Each generator consists of logic to select the desired notes and harmonics from 96 frequencies obtained by division, an ADSR envelope generator and two voltage-controlled amplifiers. Programmable attenuators are included for drawbar control of the harmonic content of the sound.

To simplify system design the signals generated in each channel are directed to octave separated outputs and footage outputs. Two voltage-controlled amplifiers are provided for each channel to keep the octave and footage outputs separate.
The attack time, decay time, release time and sustain level are set for all eight channels by common controls. Tone selection, the attack, decay, release parameters, drawbars and special effects are all software controlled.
In a typical configuration (fig. 2), one or more M112s are connected to a microprocessor which scans the keyboard and front panel controls in a matrix arrangement. When the microprocessor detects a key depression it chooses one of the sound generators and allocates it to that note. If another key is pressed the microprocessor allocates another sound generator and so on. This process can be repeated until there are no more free channels, i.e. when 8 N keys are pressed simultaneously where N is the number of M112s used.
When one of the keys is released the microprocessor resets a control bit in the appropriate generator channel which will then be re-allocated to another key when needed.

Fig. 2

OUTPUTS

The M112 has 15 music output pins. Seven of these are octave outputs, seven are footage outputs and the last is a monophonic output from channel one. This standard configuration can be changed under program control.
The octave outputs, which are enveloped, are so called because there is one output for each octave, i.e. output signals from all eight channels that fall within the same octave are routed to the same output. These outputs are provided to simplify the generation of sinewaves from the squarewaves generated by the M112s digital circuitry. Since each of these outputs handles a limited range of frequencies - exactly one octave - a simple low pass or bandpass filter will do the job. The blend of harmonics sent to the octave outputs is controllęd by the drawbar attenuators.
The footage outputs are related to the five footages generated by the M112. These are referred to as L, $M 1, M 2, H 1$ and $H 2(L=$ Low, $M=$ mid, $H=$ high $)$ and can be programmed to give the three different ranges given in table 1, adding a constant K (number of half tones) to the keyboard information.
All five footages can be obtained from these outputs but only four are mixed by the drawbar circuitry and routed to the octave outputs.

TABLE 1 - THE THREE FOOTAGE RANGES OF THE M112

	L	M1	M2	H1	H2
0	16^{\prime}	8'	4'	2'	$1{ }^{\prime}$
7	$10^{2 / 3}$	$5^{1 / 3}$	$2^{2 / 3}$	$1^{1 / 3}$	2/3'
4	$12^{4 / 5}$	$6^{2 / 5}$	$3^{1 / 5^{\prime}}$	$13 / 5^{\prime}$	4/5'

Fig. 3 - Example of octave related output "EVEN" and "ODD" with Percussion input.

In no case will the maximum frequency be higher than 7902 Hz (with a 2 MHz clock).
The output configuration for the octave and footage outputs can be changed under program control as mentioned above. There are three options, including the standard configuration, and these are:

- Option 1, the normal configuration gives four enveloped footage outputs, LE, M1E, M2E, H1E, and three non-enveloped outputs, L, M1 and M2. All eight channels are present on each output.
- Option 2 is a special configuration for sawtooth generation (sawtooth waveforms are frequently used in sound synthesis). In this case channels two and three appear only on the outputs FM1 and FM2 (footages M1 and M2) and are excluded from the rest. All five footages are available as enveloped outputs.
- Option 3 is intended for sophisticated automatic accompaniment circuits. All the channels appear on three non-enveloped outputs (FL, FM1, FM2) for chord generation and can be disconnected or command. Channels 4,5,6 and 7 appear on four enveloped outputs for arpeggi. The octave outputs are used for the bass and include only channel 8.

TABLE 2 - OUTPUT CONFIGURATIONS

Pin	Option 1	Option II	Option III	Option IV
15	FM2	FM2 (Channel 3)	FM2	FM2 (Ch. 3)
14	FM1	FM1 (Channel 2)	FM1 All channels	FM1 (Ch. 2)
20	FL	FH 2 E)	FL (see note 3)	FH2E (Ch. 4, 5, 6, 7, 8)
18	FH1E	FH1E	FH1E	FH1E
16	FM2E	FM2E	FM2E only channels	FM2E only channels
17	FM1E	FM1E	FM1E 4-5-6-7	FM1E 4-5-6-7
19	FLE For the	FLE	FLE	FLE
40	O1E 8 channels	O1E Only	O1E	O1E
36	O2E	O2E $\begin{aligned} & \text { Only channels } \\ & 1-4-5-6-7-8\end{aligned}$	O2E	O2E
35	O3E	O3E	O3E	O3E
38	O4E	O4E	O4E $\}$ only channel 8	04E only channel 8
39	O5E	O5E	O5E	O5E
37	O6E	O6E	O6E	O6E
34	O7E	O7E	O7E	O7E
21	Monophonic out (channel 1)	Mono (channel 1)	Mono (channel 1)	Mono (channel 1)
	Standard use	Special for sawtooth generation etc.	Special for high class accompaniment	Only for information (no musical meaning)

- FL, FM1, FM2 are footage outputs not enveloped (with constant DC level)
- FLE, FM1E, FM2E, FH1E, FH2E are enveloped (without constant DC level).

Notes: 1) H 2 is available only in option 2 on FH 2 enveloped outputs. It is not available on octave related outputs.
2) In the option 2 the Sound channels 2 and 3 are available only on pins 14 and 15 and consequently are excluded from the other outputs.
3) Each channel can be disconnected with commands NC1 to NC8 (register 10).

DRAWBARS AND EFFECTS

One of the significant features of the M112 is the implementation of drawbar control circuitry. This consists of four programmable attenuators, one for each of the footages routed to the octave outputs, which are used to blend harmonics to produce the desired sound.
Other features of the M112 include hold, pedal and percussion effects, all of which are enabled/disabled under software control. Hold, when active, interrupts the decay of the ADSR envelope and Pedal interrupts the release curve. Hold and pedal permit external control of the envelope. This feature can be used, for example, to synthesize very realistic piano and harpisichord sounds.

A piano effect can be produced by suitably programming the envelope shapers but by using the hold and pedal controls and a few external components much greater realism can be obtained. Fig. 4 shows a simplified schematic of one of the envelope shapers together with the type of envelope generated. The envelope parameters are controlled by RA, RD, RR and $V_{\text {sus }}$ (RA, RD and RR are programmed resistors controlling attack, decay and release). Disabling the natural decay and release and adding a handful of components a close approximation to the ideal waveform can be produced (fig. 5). R1 is a very large resistance (typically $3 \mathrm{M} \Omega$) to give the long (several seconds) time constant for the second decay.

Fig. 4 - With an external capacitor the M112's envelope shapers produce the standard ADSR envelope.

Fig. 5 - Disabling the normal decay and release and adding a few external components a realistic piano envelope can be produced.

INPUTS

Eight pins on the M112 are used to define the elementary time interval of the ADSR envelope shapers (Pins 26 to 33). Capacitors, nominally $1 \mu \mathrm{~F}$, are connected to these pins. Eight separate capacitors are necessary because the envelope shapers are independently triggered. Analog inputs are also provided to adjust the asymptotic release level ($\mathrm{V}_{\text {reg }} \mathrm{pin} 24$) and the charge/discharge current for attack, decay and release (VT pin 12) in order to compensate the differences of ADR time constant between several M112s used in the same instrument.
The sustain level is fixed by the voltage at pin 23.
The release time constant, digitally controlled by software, can also be fine adjusted by a trimmer connected at pin 25.

PROGRAMMING

The M112 is programmed using five basic commands:

- CHANNEL PROGRAM
- ADSR PROGRAM
- NON-ENVELOPED OUTPUT MASK
- LOAD CONTROL REGISTER
- DRAWBAR PROGRAM

These commands all consist of 12 bits transferred to the M112 (or one of the M112s) in two six-bit bytes through six data lines. Data is latched into the M112 synchronously by a strobe signal. The M112 can be connected directly to an M387X series microcomputer.
Each command contains the address of the Register in which data is to be memorized (there are 16 registers) and the data.

Channel program commands consist of the channel code (4 bits), octave code (3 bits), note code (4 bits) and a control bit, KP (key pressed). KP must be set if the key has just been pressed and reset if the note has just been released.

Resetting KP does not necessarily silence the channel because the sound continues after the key has been released if the release time is non-zero. To stop a channel completely the unused note and octave codes are used.
If an unused note code is programmed the channel is turned off with the output transistor in the ON state and if an unused octave code is used the channel is turned off with the output transistor in the OFF state. Six octave codes and twelve note codes are recognized, giving a keyboard span of 72 keys.
For example, to tell an M112 that channel three is to play F\# in the third octave the command is:

CHANNEL 3 CODE IS 0010
OCTAVE 3CODE IS 011
F \# NOTE CODE IS 0110
KP IS SET

The ADSR Program command sets the attack, decay and release times for all the envelope shapers. This command takes the form:

ADSR
PROGRAM

The code 1000 selects the ADSR control register, a3/a2/a1 is the attack time, $\mathrm{d} 2 / \mathrm{d} 1$ is the decay time and $\mathrm{r} 3 / \mathrm{r} 2 / \mathrm{r} 1$ is the relase time. These times are all multiples of the time interval set by external capacitors. With the suggested $1 \mu \mathrm{~F}$ values this time interval is 3 ms . The release code 000 is used to enable the pedal effect.

The Non-Enveloped Output Mask command is used to select which channels are to be routed to the non-enveloped footage outputs. Any or all of the eight channels can be excluded by setting the appropriate bit.
D1

1	0	0	1	NC8	NC7
NC6	NC5	NC4	NC3	NC2	NC1

The Load Control Register command selects the footage and output options and enables/disables the hold and percussion facilities.

"NC1m" is a control bit that excludes channel one from all outputs except the three non-enveloped footages outputs. PO is the percussion disable bit, $\mathrm{m} 2 / \mathrm{m} 1$ is the footage option select code for the monophonic output and OP2/OP1 the output configuration select code.
The drawbar-controlled attenuators are set independently for each footage using the Drawbar Program Command which has the form:

Footage is selected by addressing registers R12 to R15.
Attenuation is controlled in 32 linear steps which can be conveniently reduced to the conventional 16 or 8 -step logarithmic scale using a lookup table.

APPLICATIONS

The M112 is intended for a wide range of applications ranging from simple single-keyboard organs to 2-3 manual instruments with sophisticated synthesis and accompaniment facilities. It can also be used in electronic pianos, harpsichords, string synthesizers etc.

DESCRIPTION

Pin 1 - VSA Analog ground

Ground connection of all outputs. It is typically connected to V_{SS}. By adjusting its value with respect to V_{SS} (plus/minus) it is possible to modify the output current and compensate the differences in current between several M112s used in the same applications.

Pins 2 and $13-V_{S S}, V_{\text {DD }}$

Power supply connections. $V_{D D}$ is nominally $12 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}$ is to be connected to GND.

Pin 4 - Reset input

It is used to synchronize various M112s in multichip use. The reset is activated when the input is at H Level. In this condition the chip is blocked.

Pin 5 - Clock input

It has to be connected to an external oscillator of 2 MHz .

Pin 6 to 11 - D1, D6 Data bus input

Pin 3 - STD Data Strobe input

These pins are used to transfer the 12 bits of data from the microprocessor to the registers of various M112s using a two phase procedure.
The first six bits of data are latched on the positive edge of STD, while the other six bits are latched on the negative edge of STD.

Each 2×6 bit of information contains the address of the register (4 bit/ 16 registers) and the data up to 8 bits to be memorized in the selected register.

TABLE 3 - REGISTER SELECTION

AO	A1	A2	A3	Register \mathbf{n}°	Register function
0	0	0	0	1	
1	0	0	0	2	
0	1	0	0	3	
1	1	0	0	4	Note-octave etc.
0	0	1	0	5	For Sound channel
1	0	1	0	6	
0	1	1	0	7	
1	1	1	0	8)
0	0	0	1	9	
1	0	0	1	10	
0	1	0	1	11	
1	1	0	1	12	Control Commands
0	0	1	1	13	
1	0	1	1	14	
0	1	1	1	15	
1	1	1	1	16	Used for test*

* This address sets the Ic in a test condition that can only be modified by a Reset command on pin 4.

Registers 1 to 8

There registers are related to the sound channels

PHASE 1	Bus	Data	$\begin{aligned} & \text { must be " " } 0 \text { " } \\ & \left\{\begin{array}{l} \text { Sound } \\ \text { Channel } \\ \text { Selection } \end{array}\right. \end{aligned}$
	D1	A3	
	D2	A2	
	D3	A1	
	D4	AO	
	D5	KP	
	D6	O 2	
PHASE 2	D1	01	Key information
	D2	00	
	D3	N3	
	D4	N2	
	D5	N1	
	D6	NO	

A0-A2: Sound channel selection with reference to table 3, register 1 is related to channel 1 , register 2 to channel 2 and so on up to channel 8.
$K P: 1=$ pressed key $0=$ relased key
O0-01-O2: Octave code of the note (Table 4).

TABLE 4

O0	O1	O2	Code	Octave	
0	0	0	0		Note OFF
1	0	0	1	1	
0	1	0	2	2	
1	1	0	3	3	
0	0	1	4	4	
1	0	1	5	5	
0	1	1	6	6	
1	1	1	7		Note OFF

Output transistor "OFF"

NO-N1-N2-N3 = Note Code (Table 5)
TABLE 5

N0	N1	N2	N3	Code	Note
0	0	0	0	0	DO
1	0	0	0	1	DO\#
0	1	0	0	2	RE
1	1	0	0	3	RE\#
0	0	1	0	4	MI
1	0	1	0	5	FA
0	1	1	0	6	FA\#
1	1	1	0	7	SOL
0	0	0	1	8	SOL\#
1	0	0	1	9	LA
0	1	0	1	10	LA\#
1	1	0	1	11	SI
0	0	1	1	12	Note '"OFF'"
1	0	1	1	13	Note "'OFF'"
0	1	1	1	14	Note "'OFF'"
1	1	1	1	15	Note "OFF"'

Output transistor "ON"

Register 9 to 15

These registers are related to the various control commands

TABLE 6

PHASE 1	Rata Bus	R9	R10	R11	R12	R13	R14	R15	R16
	D1	1	1	1	1	1	1	1	1
	D2	0	0	0	0	1	1	1	1
	D3	0	0	1	1	0	0	1	1
	D4	0	1	0	1	0	1	0	1
	D5	r3	NC8	X	X	X	X	X	X
	D6	r2	NC7	PO	X	X	X	X	X
PHASE 2	D1	r1	NC6	HOLD	X	X	x	x	x
	D2	d2	NC5	OP3	L5	M1 5	M2 5	H1 5	x
	D3	d1	NC4	OP2	L4	M1 4	M2 4	H1 4	X
	D4	a3	NC3	NC1m	L3	M1 3	M2 3	H1 3	x
	D5	a2	NC2	m2	L2	M1 2	M2 2	H1 2	X
	D6	a1	NC1	m1	L1	M1 1	M2 1	H1 1	X
		nvelo	Channe off	Various		rawbar footag octav	on fo nly for tputs		Test

Register 9 - R9 selects the ADR envelope parameters for ADSR control (see fig. 6)
Attack - a1-a2-a3 = 3 bit
Decay - d1-d2 = 2 bit 8 bit
Release - r1-r2-r3 = 3 bit

Fig. 6 - ADSR envelope control

Table 7 shows the various time constants for Attack, Decay and Release.
TABLE 7

a3	a2	a1	Attack		
	d 2	d 1		Decay	
r 3	r 2	r 1			Release
0	0	0	$\mathrm{~T} / 2$	$4 T$	$*$
0	0	1	T	8 T	T
0	1	0	$2 T$	$16 T$	$2 T$
0	1	1	$4 T$	$32 T$	$4 T$
1	0	0	$8 T$		$8 T$
1	0	1	$16 T$		$16 T$
1	1	0	$32 T$		$32 T$
1	1	1	$64 T$		$64 T$

* In this case it is possible to obtain the pedal effect.
$\mathrm{T}=3 \mathrm{~ms}$ is the typical time constant unit with 8 external capacitors of $1 \mu \mathrm{~F}$ connected to pins 26 to 33 .

Register 10 - Contains 8 commands to exclude the corresponding sound channel from the non-enveloped footage outputs (FL-FM1-FM2)

$$
0=O N \quad 1=O F F
$$

Register 11 - Contains the following 8 commands: $m 1$ and $m 2$ select one of the four footages available for the monophonic output (C1m) according to table 8.

TABLE 8

$m 1$		0	1	0	1
m 2		0	0	1	1
K	0	16^{\prime}	8^{\prime}	4^{\prime}	2^{\prime}
	7	$10^{\prime} 2 / 3^{\prime}$	$5^{1 / 3^{\prime}}$	$2^{2 / 3^{\prime}}$	$1^{1 / 3^{\prime}}$
	4	$12^{\prime} 4 / 5^{\prime}$	$6^{2 / 5^{\prime}}$	$3^{1 / 5^{\prime}}$	$1^{\prime} 3 / 5^{\prime}$

OP2-OP3 - Select the four output options described in table 2 according to tabel 9.
TABLE 9

OPTION	OIT	OP2
OP3		
$I I$	0	0
$I I I$	1	0
IV	0	1

HOLD - If 0 , disconnects the external 8 capacitors of envelope ($1 \mu \mathrm{~F}$) from the $\mathrm{V}_{\text {sustain }}$ pin (pin 23) in the decay phase.
PO (Percussion Off) - If 1, the percussion input is inhibited (see pin 22 description).
NC1m-If1, eliminates channel 1 from all outputs except the 3 footage outputs not enveloped (it can be eliminated from these outputs through the command NC1 of register 10).
N.B. NC1m command is inoperative on the monophonic output (C1m) where channel 1 is always present.

Registers 12-13-14-15

These registers contain the drawbar control for 4 footages on the octave related output.
Footages L, M1, M2 and H1 are controlled in 32 linear levels or for example, using conversion table in the microprocessor in 8 or 16 logarithmic levels.
Table 10 shows an example of footage L with 32,16 and 8 step control in dB .

TABLE 10

L5	$\begin{aligned} & L \\ & 4 \end{aligned}$	L3	L2	$\begin{aligned} & L \\ & 1 \end{aligned}$	Attenuation in dB		
					32 steps	16 steps	8 steps
0	0	0	0	0	OFF	OFF	OFF
0	0	0	0	1	-29.8	-29.8	-29.8
0	0	0	1	0	-23.8	-23.8	-23.8
0	0	0	1	1	-20.3	-20.3	-20.3
0	0	1	0	0	-17.8	-17.8	
0	0	1	0	1	-15.8	-15.8	
0	0	1	1	0	-14.3	-14.3	-14.3
0	0	1	1	1	-12.9		
0	1	0	0	0	-11.8	-11.8	
0	1	0	0	1	-10.7		
0	1	0	1	0	-9.8	-9.8	
0	1	0	1	1	-9.0		-9.0
0	1	1	0	0	-8.2	-8.2	
0	1	1	0	1	-7.5		
0	1	1	1	0	-6.9	-6.9	
0	1	1	1	1	-6.3		
1	0	0	0	0	-5.7	-5.7	
1	0	0	0	1	-5.2		
1	0	0	1	0	-4.7		
1	0	0	1	1	-4.2	-4.2	-4.2
1	0	1	0	0	-3.8		
1	0	1	0	1	-3.4		
1	0	1	1	0	-3.0	-3.0	
1	0	1	1	1	-2.6		
1	1	0	0	0	-2.2		
1	1	0	0	1	-1.9		
1	1	0	1	0	-1.5	-1.5	
1	1	0	1	1	-1.2		
1	1	1	0	0	-0.9		
1	1	1	0	1	-0.58		
1	1	1	1	0	-0.29		
1	1	1	1	1	0	0	0

Pin 12 - VT - ADR Control

It is used to adjust the ADR time constant for several M112s used in the same application. Using a single M112 it has to be connected to $V_{\text {DÓ }}$.

Pin 14 to 20 - FM1, FM2, FM2E, FM1E, FH1E, FLE, FL (Footages output)

The "wired-or" function is possible on all outputs.
The non enveloped outputs (with constant DC level) are push-pull current generators.
The enveloped outputs (with non constant DC level) are open drain sink current generators. Output duty cycle is 50%.

Pin 21-C1m

Monophonic output of channel 1 (always present). Duty cycle of the waveform is 50%. Open drain output.

Pin 22 - Percussion M2

Using a specific signal on this input it is possible to have a percussion effect on M2 footage for the octave related output.

Pin 23 - V sustain

This input defines the level of sustain (see fig. 6).

Pin 24 - $V_{\text {reg }}$

This pin controls the asymptote of $\mathrm{V}_{\text {RELEASE }}$ through the gate of a transistor which discharges the envelope capacitor. If the performance at the end of release time is considered satisfactory, this pin must be connected to V_{ss}. Otherwise this input can be connected to a voltage not higher than 1 V .

Pin 25 - VAR Analog release

This pin is intended for analog control of the release time constant when it is required in addition to the digital one controlled by software.

It allows intermediate values not included in table 7 (see explanation of register 9). In the case of pedal effect connect this input to $\mathrm{V}_{\text {ss }}$.

Pin 26 to 33 - CH1, CH8 Envelope capacitor inputs

8 capacitors (typical value $=1 \mu \mathrm{~F}$) have to be connected for the ADSR envelopes.

Pin 34 to 40 - O1E, 07E Octave Outputs

Octave related outputs. Duty cycle is 50%.

DIGITAL SOUND GENERATOR

- MAX EXTERNAL ADDRESSING MEMORY OF 256K
- 16 INDEPENDENT CHANNELS
- 12 BIT EQUIVALENT D/A CONVERTER RESOLUTION (DELTA CODING)
- SOUND GENERATED BY READING TABLES CODED IN DELTA CODING OR IN ABSOLUTE VALUES, SITUATED IN AN EXTERNAL MEMORY
- 8 DIFFEREINT TABLE LENGHTS AND 8 READING MODES GIVING A TOTAL OF 58 DISTINCT COMBINATIONS
- 16 DIFFERENT MIXABLE LAYERS BETWEEN TWO SEPARATE TABLES
- MULTIPLE READING PERMITS INTERPOLATION BETWEEN TWO ADJOINING SAMPLES ON THE SAME TABLE
- 4 SELECTABLE ANALOG OUTPUTS
- 10 BIT INTERNAL ATTENUATOR WITH GRADUAL AMPLITUDE VARIATION
- ROM ENABLE OUTPUT TO MINIMISE EXTERNAL MEMORY POWER CONSUMPTION
- POSSIBILITY OF SYNCHRONOUS AND ASYNCHRONOUS FREQUENCY-TABLE CHANGE AT THE END OF THE READING TABLE

The M114A is a 16 channels digital polyphonic, politimbric sound generator.
The M114A must be driven by a microprocessor and needs an external memory.
With this device it is possible to synthesize a large range of sound by simply transcribing the most significant periods of the sound to be reproduced into an external memory and programming a suitable reading sequence for these periods with the use of a microprocessor.
The M114A is realized on a single monolithic silicon chip using low threshold N -channel silicon gate MOS technology and is assembled in plastic DIP.48.

CONNECTION DIAGRAM

GND (digital)	1	TESTING
EA 1		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	-0.3 to 7	V
$\mathrm{~V}_{1}$	Input voltage	-0.3 to V_{DD}	V
V_{O}	Output voltage	-0.3 to V_{DD}	V
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature	0 to 70	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - Block Diagram

Fig. 2 - System Configuration

STATIC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{amb}}=0 / 70^{\circ} \mathrm{C}\right.$, V_{DD} DIG $=\mathrm{V}_{\mathrm{DD}}$ Analog)

Symbol	Parameter	Test Conditions	Value			

INPUTS: RESET (pin 20), CLOCK (pin 19), ROM DATA (pins 32-39), DATA BUS (pins 40-45), DATA ST. (pin 46)

$V_{I L}$	Low Input Level				0.8	V
$\mathrm{~V}_{1 \mathrm{H}}$	High Input Level		2.2			V
I_{I}	Input Leakage Current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ to V_{SS}			± 1	$\mu \mathrm{~A}$

DIGITAL OUTPUTS (HIGH IMPEDANCE* with $10 \mathrm{~K} \Omega$ pull-up): ROM-ADD (pins 3-8; 11-17), EA (pins $2,9,10,47$), ROM EN. (pin 31)

V_{OL}	Low Output Level	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	High Output Level	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	2.4			V

ANALOG OUTPUTS: (pins 26, 28,29, 30), $\mathrm{V}_{\text {REF }}$ (pin 23)

$V_{\text {REF }}$	Voltage Reference Output	$I_{\mathrm{O}}= \pm 1 \mathrm{~mA}$		2.5		V
I_{O}	Output Current (current generator)	Zero attenuation Max input code to the DAC		± 1		mA

POWER DISSIPATION

$I_{D D}$	Supply Current	$V_{D D}=5.25 \mathrm{~V}$			120	mA

* High impedance means that, when the addresses are off, the digital output is connected with an internal resistive pull-up.

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

CLOCK

${ }^{\mathrm{t}} \mathrm{CK}$	Input Clock Frequency			4.000		KHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	10% to 90%			20	ns
$\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\mathrm{WL}}$	High and Low Pulse Width		80			ns

RESET

t_{W}	Pulse Width	Clock $=4 \mathrm{MHz}$	10			$\mu \mathrm{~s}$
t_{f}	Fall Time	10% to 90%			20	ns

DATA BUS

t_{W}	Pulse Width		750			ns
$\mathrm{t}_{\text {set-up }}$	Set-up Time to DATA Strobe		0			ns
$\mathrm{t}_{\text {hold }}$	Hold time from DATA Strobe		750			ns

DATA STROBE

t_{W}	Pulse width		1.5		128	$\mu \mathrm{~s}$
$t_{W R}$	Pulse Width for Internal Reset generation		128			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{r}}$	Pulse and Fall Times				100	ns

ROM ENABLE

$t_{\text {LOW }}$			600		ns	
$\mathrm{t}_{\text {HIGH }}$				350		ns
$\mathrm{t}_{\text {set-up }}{ }^{*}$)	Set-up Time ROM-EN		70			ns

($\left.^{*}\right) \mathrm{t}_{\text {set-up }}$ time means that the data coming from ext. ROM must be stable at least 70 nsec before the rising edge of ROM-EN.

PIN FUNCTIONS

Pin 1 - GND (digital)
Digital ground is linked to this pin.
Pin 21 - GND (analog)
Analog ground is linked to this pin.

Pin 3-8 and 11-17 - ROM-ADD

13 PUSH PULL type output pins for external memory address. When the output is off (doesn't exist an address) the output is connected to a internal resistive pull-up of about $10 \mathrm{~K} \Omega$.
Pins 2, 9, 10, 47 - EA
These four pins give in output the channel number that is reading the external memory.
When the output is off (doesn't exist an address) the output is connected to a internal pull-up. With these 4 pins the memory is expanded up to 128 Kbyte (8 Kbyte/channel).

Pin 24 - TAB1/TAB2

It shows which one of the two tables (TAB1 or TAB2) is read.

Pin 24 permits to double the memory so reading 256 Kbyte addressing memory (top configuration).
Pin 19 - CLOCK (4 MHz)
For correct functioning the generator must be external to the chip and the duty cycle must be very close to 50%.

Pin 20 - RESET
All channel are reset by reading this pin and the 13 external ROM address outputs toghether with the 4 sound outputs are placed in a high impedence state.
Pin 22 - Analog power supply
The power supply for all analog parts, i.e. DAC attenuator, etc...., are linked to this pin. It is therefore important that this power supply should be very stable and well smoothed.
The internal power supply chip separation allows a great improvement of signal/noise ratio.

PIN FUNCTIONS (continued)

Pin 23 - Voltage reference ($\mathrm{V}_{\text {REF }}$)
$V_{\text {REF }}$ is the average value of the DAC output. With $\mathrm{V}_{\text {supply }}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$ is nominally 2.5 but could vary by chip to chip ($\sim 10 \mathrm{mV}$).
It's only necessary to filter the $\mathrm{V}_{\text {REF }}$ output with an external capacitor of some tens of $\mu \mathrm{F}$ (Fig. 3a). To get a voltage suitable to act as $\mathrm{V}_{\text {REF }}$ towards external integrator which reconstruct the output signal. Since such a voltage is quite the same than DAC output for a null input code, it automatically conforms itself, following possible differencies between various device instances. It is possible to modify slightly, from the external environment, the obtained $\mathrm{V}_{\text {REF }}$ value with suitable resistive networks so that the operational integrator offset can be compensated. (Fig. 3b) To improve the $\mathrm{V}_{\mathrm{REF}}$ it's possible to use a filter as in Fig. 3c.

Fig. 3

Pins 26, 28, 29, 30 - Analog out

These outputs are under current with an output impedance of approximatly $1 \mathrm{~K} \Omega$ and the filter or external integrator must have a low input impedance. This means that the voltage between output and $\mathrm{V}_{\text {REF }}$ must be negligeable so as to obtain a good signal linearity.

An integrator together with a low pass filter are necessary if the tables have been DELTA coded. If on the other hand they have been coded in absolute values then only a low pass filter is needed. If the channels do not have to be separated for stereofonic effects or otherwise, a single output may be used routing, by $\mu \mathrm{P}$ programming, all channels to this pin.
Pin 31 - ROM ENABLE (Low active)
This is a PUSH-PULL-TYPE-OUTPUT and is used to set the external memory is stand-by so as to reduce consumption whenever is not read.
Pin 32-39 - ROM-DATA
8 input pins for data from external memory.

Pin 40-45 - DATA-BUS

6 input pins for data from the microprocessor. 8 of these data groups make up a complete piece of information.

Pin 46 - BUS-STROBE

A signal from the microprocessor must arrive at this input in order to memorize the present code onto the DATA-BUS
Memorization occurs on both edges.

Pin 27 - COMMON NODE

This pin permit the access to the common point placed before the four output switches.
Pin 18 - Digital Power Supply
The power supply for all digital parts, i.e. counters, memories, etc....., are linked to this pin.

Pin 48 - Testing

This pin is utilized only for testing and must be left unconnected by the user.
Pin 25 (+12V out)
This pin is the output of an internal $5 \mathrm{~V} / 14 \mathrm{~V}$ -DC-DC converter and it needs an external filtering capacitance ($\min 100 \mathrm{nF}$). The performances of DAC and attenuator are very improved with an external zener that clamps the voltage elevator output (see Fig. 4).

Fig. 4

GENERAL DESCRIPTION

The M114A is a device that allows digital sound synthesis.
The essential system needed consists of a microprocessor, an M114A and an external memory with a maximum of 256 Kbytes.

Sound generation is based on cyclic reading of a table corresponding to a waveform of the timbre to be reproduced.
As the waveform and therefore also the spectrum frequently change, a series of tables of form and frequency appropriate to the sound are cyclically scanned during sound reproduction.
The effect caused by the sudden passage from one table to the next would be unpleasant unless there is such a large number of tables to allow a smooth unnoticeable change from one table to the following.
A favourable compromise between number of tables and quality of sound, that has been implemented in the M114A is the following: A limited number of tables which may even diverge from one another are chosen during an initial phase of analysis after which, during the reproduction phase, two adjoining tables are read simultaneously by extracting a percentage of one and the remaining percentage of the other.
Therefore by starting with 100% of one and zero of the other and successively increasing the second while decreasing the first, so that the sum of the percentages is always equal to 100 , there will come a point at which there is a 100% of the second and zero of the first thus having achieved a smooth passage from one table to the next. In the M114A this passage is made up of a maximum of 16 steps.
The tables are stored in an external memory and may be of eight different lengths ranging from 16 to 2048 bytes. The M114A can handle up to a maximum of 256 Kbytes.

MEMORY EXPANSION

With the 13 pins ROM-ADD is possible to address 8 Kbyte of memory.

The 4 pins named EA permit an expansion to 128 Kbyte, while with the pin TAB1/TAB2 we have 256 Kbyte for the top configuration.
The tables may be coded using waveform's absolute value or by the difference between
adjoining samples, that is, in a incremental manner (Delta Coding).
The typical resolution in Delta Coding is 12 bit with a sinusoidal wave coded in a 16-byte table.
A low pass filter at the output is sufficient in the first case to reconstruct the original signal but very long tables would be necessary for low frequency sounds causing a waste of memory.
With the use of an integrator at the output in the second case, the waveforms are coded thus allowing easy interpolation. By simply reading the same data n time and dividing the amplitude of each reading by n, a ramp of n small steps is obtained instead of a large single step.
The value of n may be 1,2 or 4 .
When a waveform is coded in this way (DeltaCoding or incrementally), one must check that the sum or the samples in an entire period is always equal to zero or there would be a continuity which could even saturate the external integrator.
Always the M114A completes the reading of a table before the starting of another. This too avoids saturation of the external integrator.
Whenever it is necessary to suddenly move from one table to another before the read cycle has been completed the FTT forced table termination code must be forwarded to the 8 frequency bits.

It is possible to drive the M114A in such a way that the programmed frequency becomes active immediately, without waiting for the running table to end (asynchronous mode); or that this change of frequency occurs only at the end of the running table (synchrounous-mode).

ASYNCHRONOUS MODE (SET UP AT RESET)

The frequency-information in a command causes the immediate change of the frequency, while the table and all the other parameters are changed only when the running table has been completely scanned. This type of operation is useful for producing vibrato effects on long tables or vibrato effects on low frequency sounds.

In fact in these cases it is useful fo be able to vary continuously the scanning frequency of the same table without being bound to execute the variation of frequency at the end of the table.

GENERAL DESCRIPTION (continued)

SYNCHRONOUS MODE

The frequency-information in a command causes the synchronous change of table and frequency; this is obtained by delaying the frequency change until the running table has been completely scanned.
This command is very useful in some special effects (glide) because it avoids the reading of the table in part with the old frequency and in part with the new one, thus causing an audible click.
This way-to-operate is useful in the reproduction of deep vibrato on notes placed at the octave boundary, for glide effects and in any case when it is necessary to go beyond the octave boundary without discontinuity.
In fact in these causes it is necessary to schedule in the M114A a length of table and a table frequency scanning completely different from the previous programming.
To avoid clicks it is indispensable to finish the old table with the old frequency before starting the new one with new frequency.
The feature is obtained by acting in global synchronous mode.
The commands for synchronization are:
SSG Set Global Sync. (F9 Hex Code). Activates the global synchronous mode i.e. sinchronize, also the frequency change with the table end.

RSG Reset Sync. Global (FB Hex Code). This command disables global synchronous mode.

RSS Reverse Sync. Status (FA Hex Code). This command inverts the synchronism state only for the next programming sequence.

Everyone of these three commands is accomplished by sending a complete programming sequence with F9/FB/FA frequency codes, respectively.
They affect the whole working mode of the device (all its channels).
All the remaining bits are ignored.
Note that the RSS command can be obtained by sending eight times the 6-bit data 111110.
As shown in Tab. 3, there are six bit among the control bits that are dedicated to the choice of table pair length and n number of repeated readings of each table.
The frequency of sample readings is synchronous.
This means that the frequency is a whole multiple of the table length.

In this way any problem caused by intermodula tion is eliminated but a noise due to "collision" is produced. As there is a single output circuit for all channels, that is interpolator, D/A converter, attenuator, ecc., each time more than one channel requires access to this circuit one or more other channels must wait.
The amount of time necessary for the output circuit to process each table, that is the period of time for which each channel uses the circuit during each sample reading cycle, is of $2 \mu \mathrm{~s}$. The delay will therefore be proportional to the number of channels operating simultaneously and to the frequency that they are generating. As these parameters casually vary, so will the delay thus producing a casual alteration of the original waveform.
Simulation has proved that under worst possible conditions the signal/noise ratio due to this problem is around 60 dB .
In conclusion let us mention the envelope that has to be controlled by the microprocessor which, at suitable intervals, must forward the desired attenuation coefficient.
There are 64 possible attenuations each with steps of approximately 0.75 dB ;
These passage from one level to another may be immediate or to gradual increments of $1 / 256$ of the maximum amplitude at a frequency proportional to external table reading frequency.

OPERATION

The M144A receives from the $\mu \mathrm{P}$ a single programming sequence at a time. This programming sequence is made up of 48 bits.
The $\mu \mathrm{P}$ must send a 48 bit set for every M114A active channel.
Each M114A channel continuously generates the same signal, that is it reads the same table, with the same mixing coefficient, with the same amplitude, ecc., until the microprocessor forwards a different programming sequence (variation of one or more parameters characterising the sound to be generated within a single channel.
Timbre amplitude evolution and any other slight frequency changes must be handled in real-time by the microprocessor.
Often the microprocessor is unable to update the amplitude with sufficient speed. For this reason the M114A carries out a gradual change from one amplitude to another at steps of $1 / 256$ of maximum sample frequency amplitude if the change in level is greater than 128 steps, of $1 / 2$ of this frequency if greater than 64, of $1 / 4$ if greater than 32 and of $1 / 8$ if smaller than or equal to 32 steps.

GENERAL DESCRIPTION (continued)

Each channel reads two samples at the sampling frequency by taking one from each table, sums them according to the mixing coefficient and forwards the result to the DAC whose suitably attenuated output goes to the previously selected output pin (Fig. 5)

This operation requires $2 \mu \mathrm{~s}$ and as there is a single output circuit for all channels it is certain that one or more channels will simultaneously request the use of the circuit. Thus a priority order has been assigned to each channel. This order is fixed, channel zero being that of greatest priority followed in order by the others.

Fig. 5

When more than one channel is simultaneously active at the output pin there will be an overlap of impulse sequence of each channel.

The example of Fig. 6 shows an output signal with 2 active channels, CH 1 has greater priority then CH 2 :

Fig. 6

The signal will change from impulsive to continuous by passing through:

- a low pass filter if the table have been coded using absolute values.
- an integrator if in delta coding

PROGRAMMING

48 bits subdivided into 8 groups of 6 bits each must be forwarded in order to programme a channel.
A group of 6 bits is memorised on every Data Strobe switch front. As the data bus is read approximately 250 ns after transition from the Data Strobe, the 6 data bits may simultaneously arrive with the Data Strobe switch.

DATA PROGRAMMING ORDER

N. PIN BYTE	34	35	36	37	38	39
$1^{\text {st }}$	ATTENUATION					
	A5	A4	A3	A2	A1	AO
$2^{\text {nd }}$	4 OUTPUTS		TABLE 1 ADDRESS		TABLE 2 ADDRESS	
	1	0	7	6	7	6
$3^{\text {rd }}$	TABLE 2 ADDRESS					
	5	4	3	2	1	0
$4^{\text {th }}$	TABLE 1 ADDRESS					
	5	4	3	2	1	0
$5^{\text {th }}$	READING METHOD \& TABLE LENGTH					
	L2	L1	LO	M2	M1	MO
$6^{\text {th }}$	INTERPOLATION				IMMEDIATE CONNECTION	$\begin{aligned} & \text { OCTAVE } \\ & \text { DIVISOR } \\ & \hline \end{aligned}$
	3	2	1	0	0	0
$7^{\text {th }}$	CHANNEL NUMBER				FREQUENCY	
	3	2	1	0	1	0
$8^{\text {th }}$	FREQUENCY					
	7	6	5	4	3	2

GENERAL DESCRIPTION (continued)

The following graph shows the time lapse that must be assigned to these signal for correct functioning.
No more than 128μ s must pass between one Data Strobe transition and the next during transmission of the 8 groups of data or else synchronisation is lost due to the internal auto-
matic reset generated after 128μ s from the last Data Strobe transition, causing the data to be misinterpreted.
One should wait for at least $9 \mu \mathrm{~s}$ after the forced-zero-cross command has been given between the last group of data of one instruction and the first group of the next.

The degree of priority of the channel and the number of channels in use at that moment must be taken into account in order to shorten this wait, If there is maximum priority the wait will be a minimum wait of approximately $2 \mu \mathrm{~s}$. The same holds if the priority is not maximum but there are no other channels in use. There will however be a maximum wait of $2 \mu \mathrm{~s}$ for each active channel with greater priority than the channel in question.
If another instruction were to be transmitted without a sufficient wait, there would be the risk of losing the previous instruction of forced trable termination.
The wait is unnecessary after normal commands.
Every data group must be remain present for at least $1 \mu \mathrm{~s}$ after Data Strobe transition.
The 48 bit functions are the following:
A) 8 address bits for the $1^{\text {st }}$ table (ext. ROM)
B) 8 address bits for the $2^{\text {nd }}$ table (ext ROM)
C) 8 frequency bits (4-note and 4 -twelfths of note and ± 1 or $2 / 1000$)
D) 6 attenuation or amplitude address bits
E) 4 interpolation bits
F) 4 channel address bits
G) 6 reading mode and table length bits (ext. ROM)
H) 2 bits for choice between four outputs
I) 1 bit for a frequency octave change
J) 1 bit for disable of gradual envelope

While waiting for the present $1^{\text {st }}$ table reading to terminate, the above data (not immediately operational) is memorized into the internal RAM1).

The new data is transfered to RAM2 and becomes operational when the addressed channel ends the current table scanning.
An exception is made by the 8 frequency bits and the one varying the frequency octave as they operate immediately (See synchronization).
All data may be made operational by giving the forced-table-termination command.

48 PROGRAMMING BIT FOR CHANNEL SELECTION

8 Address Bits $1^{\text {st }}$ Table (ext. ROM)
These determine the most significant part of the 13 external memory address bits but according to the table length chosen by the 6 mode bits, some of the least significant of these 8 bits are suitably substituted by the M114A.
In the case of a maximum table length, 2048 bytes, there will only be 2 significant bits to address the table while the remaining 11 will address each single table word.
By already knowing the table length, the programmer will be able to programme the most significant bits needed for table address only and ignore the others.
As the maximum memory that can be handled is of 8 Kbytes, if the table has a length of 1 Kbyte it is sufficient to program the 3 MSB bits and ignore the other five.

48 PROGRAMMING BIT FOR CHANNEL SELECTION (continued)

8 Address Bits $2^{\text {nd }}$ Table (ext. ROM))
As above but refering to the second table.
One must consider that the forced table termination refers to the first table and that during table mixing the second table may assume a percentage value of zero while the first table can only assume a minimum percentage value of $1 / 16$ of the maximum value.

8 Frequency Bits

The 4 most significant bits characterize one of the 15 available notes with HEX. Codes from 0 to E .

Eleven movements in twelfths of a semitone may be obtained with the remaining 4 bits as well as four $\pm 1 / 1000$ and $\pm 2 / 1000$ note frequency variations.
These permit the production of: Vibrato, Glissando, Chorus effect etc....
The FF codes correspond to the forced-tabletermination command while FC maintains the previous frequency. F9, FA, FB are synchronisation commands. The F8 code $=$ ROMID is a ROM identification command.

It just sets the programmable counters of the M114A to a very short counting modulo ($8+0$) useless for misical purposes.
The remaining codes are used for testing and therefore must not be used by the operator.
Table 1 shows the 240 frequencies obtainable by setting the external clock to 4 MHz and the table length to 16 bytes, with single reading and without inserting an octave divisor. These are the highest octave frequencies obtainable with the M114A.
In practice double, quadruple, etc . . . frequencies may be obtained by writing 2, 4, etc. complete waveform periods in the table.

6 Attenuation Bits

These are the addresses for the internal attenuation table.
The contents of this table follow a logarithmic pattern so as to produce a decrease of 0.75 dB for each address unit increment. See table 2. The word length is of 10 bits.
After processing by a suitable circuit in order to obtain a gradual amplitude variation the ten outputs of this table are linked to the 10 bit attenuator.
The gradual movement from the present level to that just programmed takes place by increasing or decreasing the 8 most significant bits of the attenuation table contents, with the same frequency with which the external memory tables are being scanned if the difference in level is greater than 128 steps, or with $1 / 2$ of this frequency if greater than 64 steps or $1 / 4$ if greater than 32 , or $1 / 8$ if smaller than or equal to 32 .

In conclusion, the output signal amplitude increases of decreases at each variation by $1 / 256$ of the maximum value.

By setting the bit that deals with the gradual envelope there is an immediate passage from the present level to that programmed.

4 Interpolation Bits

These define the mixing coefficient between the two waveform tables.
It is possible in this way to sum the $1^{\text {st }}$ waveform percentage with the remaining $2^{\text {nd }}$ waveform percentage thus obtaining a third signal which will be forward to the output.
In greater detail, the operation carried out is the following:

$$
D=(D 1 *(K+1) / 16)+(D 2 *(15-K) / 16)
$$

where :

- D is the data at the input of the DAC (8 bits in complement with 2)
- D1 is the data read from the $1^{\text {st }}$ table (8 bits in complement with 2)
- D2 is the data read from the $2^{\text {nd }}$ table (8 bits in complement with 2)
- K is a 4 bit interpolation coefficient (from 0 to 15)
Obviously only the first waveform will be output if $K=15$.

4 Channel Address Bits

These indicate to which of the 16 M114A channel the remaining 44 bits will be forwarded.

6 Mode Bits

These indicate the table couple reading mode (ext. ROM).

For each table there are 58 distinct combinations that include, both table lengths and the number of repeated readings from the same address. (ext ROM). See table n. 3.
The three most significant bits characterize the table lengths while the other three characterise the length ratio between tables and the number of repeated readings.

2 Output Address Bits

These indicate to which of the 4 output pins the corresponding channel signal must be forwarded.
This is necessary in order to obtain stereophonic effect or to separate channels used for accompanyment from those of "SOLO", etc. . .

1 Octave Divisor Bit

This is used to pass from one octave to another without changing the table length. If octave divisor bit is set to 1 the programming frequency is divided by two.

1 Instant ENVELOPE Change Bit

This orders instant passage from the present amplitude to that programmed.

TABLE 1 - FREQUENCIES

NOTE	DEVIATION	$\mathbf{- 6 / 1 2}$	$\mathbf{- 5 / 1 2}$	$\mathbf{- 4 / 1 2}$	$\mathbf{- 3 / 1 2}$	$\mathbf{- 2 / 1 2}$	$\mathbf{- 1 / 1 2}$	$\mathbf{- 2 / 1 0 0 0}$	$\mathbf{- 1 / 1 0 0 0}$
	(Hex)	0	1	2	3	4	5	6	7
C	0	1016.78	1021.45	1026.69	1031.46	1036.27	1041.67	1044.39	1045.48
C\#	1	1077.01	1082.25	1087.55	1092.90	1098.30	1103.14	1106.81	1107.42
D	2	1140.90	1146.79	1152.07	1158.08	1163.47	1168.91	1172.33	1173.71
D\#	3	1209.19	1215.07	1221.00	1226.99	1232.29	1238.39	1242.24	1243.78
E	4	1281.23	1287.00	1293.66	1299.55	1305.48	1312.34	1315.79	1317.52
F	5	1356.85	1363.33	1369.86	1376.46	1383.13	1389.85	1393.73	1395.67
F\#	6	1437.81	1445.09	1451.38	1458.79	1466.28	1472.75	1478.20	1479.29
G	7	1523.23	1530.22	1538.46	1545.60	1552.80	1560.06	1564.95	1566.17
G\#	8	1614.21	1622.06	1629.99	1638.00	1644.74	1652.89	1658.37	1659.75
A	9	1709.40	1718.21	1727.12	1734.61	1743.68	1751.31	1757.47	1759.01
A\#	A	1811.59	1819.84	1829.83	1838.24	1846.72	1855.29	1860.47	1862.20
B	B	1919.39	1928.64	1937.98	1947.42	1956.95	1966.57	1972.39	1974.33
2C	C	2032.52	2042.90	2053.39	2063.98	2072.54	2083.33	2087.68	2089.86
2C\#	D	2155.17	2164.50	2176.28	2185.79	2195.39	2207.51	2212.39	2214.84
2D	E	2283.11	2293.58	2304.15	2314.81	2325.58	2339.18	2344.67	2347.42
	F	For							
		Testing							

NOTE	DEVIATION	0	$+1 / 1000$	$+2 / 1000$	$+1 / 12$	$+2 / 12$	$+3 / 12$	$+4 / 12$	$+5 / 12$
	(Hex)	8	9	A	B	C	D	E	F
C	0	1046.57	1047.67	1048.77	1051.52	1056.52	1061.57	1066.67	1071.81
C\#	1	1108.65	1109.88	1111.11	1114.21	1119.19	1124.86	1130.58	1135.72
D	2	1174.40	1175.78	1177.16	1180.64	1186.24	1191.90	1197.60	1203.37
D\#	3	1244.56	1245.33	1246.88	1250.78	1256.28	1262.63	1269.04	1274.70
E	4	1318.39	1319.26	1321.00	1324.50	1331.56	1337.79	1344.09	1350.44
F	5	1396.65	1397.62	1398.60	1403.51	1410.44	1417.43	1424.50	1430.62
F\#	6	1480.38	1481.48	1482.58	1486.99	1494.77	1501.50	1508.30	1516.30
G	7	1567.40	1568.63	1569.86	1576.04	1583.53	1591.09	1598.72	1606.43
G\#	8	1661.13	1662.51	1663.89	1669.45	1677.85	1684.92	1693.48	1702.13
A	9	1760.56	1762.11	1763.89	1768.35	1777.78	1785.71	1793.72	1803.43
A\#	A	1863.93	1865.67	1867.41	1874.41	1883.24	1892.15	1901.14	1910.22
B	B	1976.28	1978.24	1980.20	1984.13	1994.02	2004.01	2014.10	2024.29
2C	C	2092.05	2094.24	2096.44	2103.05	2114.16	2123.14	2134.47	2143.62
2C\#	D	2217.29	2219.76	2222.22	2227.17	2239.64	2249.72	2259.89	2272.73
2D	E	2350.18	2352.94	2355.71	2361.28	2372.48	2383.79	2395.21	2406.74
	F					Previously	For	For	Forced
		ROMID	SSG	RSS	$R S G$	Selected	Testing	Testing	Terminat.

M114A

TABLE 2 - ATTENUATION

$\mathrm{N}=$ six bit attenuation code decimal value (0:63)
$V=$ internally decoded linear ten bit value ($0: 1023$)
$A=$ theoretical attenuation value in decibels $=20 \cdot \log ((V+1) / 1024)$

N	V	A
$\mathbf{0}$	1023	0.00
1	939	0.74
2	863	1.48
3	791	2.23
4	727	2.96
5	667	3.71
6	611	4.47
7	559	5.24
8	515	5.95
9	471	6.73
10	431	7.50
11	395	8.25
12	363	8.98
13	335	9.68
14	307	10.43
15	283	11.14
16	259	11.91
17	235	12.75
18	215	13.52
19	199	14.19
20	183	14.91
21	166	15.75
22	152	16.51
23	140	17.22
24	128	17.99
25	117	18.77
26	107	19.54
27	98	20.29
28	90	21.03
29	83	21.72
30	76	22.48
31	69	23.30

N	V	A
32	64	23.95
33	58	24.79
34	53	25.56
35	49	26.23
36	45	26.95
37	41	27.74
38	37	28.61
39	34	29.32
40	31	30.10
41	28	30.96
42	26	31.58
43	24	32.25
44	22	32.97
45	20	33.76
46	18	34.63
47	16	35.60
48	14	36.68
49	13	37.28
50	12	37.93
51	11	38.62
52	10	39.38
53	9	40.21
54	8	41.12
55	7	42.14
56	6	43.30
57	5	44.64
58	4	46.23
59	3	48.16
60	2	50.66
61	1	54.19
62	0	60.21
63	0	60.21

TABLE 3 - READING MODES

MODE		LENGTH		READ N .	
M	L		T2	T1	T2
000	000	16	16	2	2
000	001	32	32	2	2
000	010	64	64	2	2
000	011	128	128	2	2
000	100	256	256	2	2
000	101	512	512	2	2
000	110	1024	1024	2	2
000	111	2048	1048	2	2
001	000	16	16	1	1
001	001	32	32	1	1
001	010	64	64	1	1
001	011	128	128	1	1
001	100	256	256	1	1
001	101	512	512	1	1
001	110	1024	1024	1	1
001	111	2048	2048	1	1
010	000	16	16	4	4
010	001	32	32	4	4
010	010	64	64	4	4
010	011	128	128	4	4
010	100	256	256	4	4
010	101	512	512	4	4
010	110	1024	1024	4	4
010	111	1024*	1024	4	4
011	000	16	16\$	1	1
011	001	32	16	1	1
011	010	64	32	1	1
011	011	128	64	1	1
011	100	256	128	1	1
011	101	512	256	1	1
011	110	1024	512	1	1
011	111	2048	1024	1	1

MODE		LENGTH		READ N.	
M	L	T1	T2	T1	T2
100	000	16	8	1	2
100	001	32	16	1	2
100	010	64	32	1	2
100	011	128	64	1	2
100	100	256	128	1	2
100	101	512	256	1	2
100	110	1024	512	1	2
100	111	2048	1024	1	2
101	000	16	$16 \$$	1	1
101	001	32	$16 \$$	1	1
101	010	64	16	1	1
101	011	128	32	1	1
101	100	256	64	1	1
101	101	512	128	1	1
101	110	1024	256	1	1
101	111	2048	512	1	1
110	000				
110	001	32	4	1	4
110	010	64	16	1	4
110	011	128	32	1	4
110	100	256	64	1	4
110	101	512	128	1	4
110	110	1024	256	1	4
110	111	2048	512	1	4
111	000	16	$16 \$$	1	1
111	001	32	$16 \$$	1	1
111	010	64	$16 \$$	1	1
111	011	128	16	1	1
111	100	256	32	1	1
111	101	512	64	1	1
111	110	1024	128	1	1
111	111	2048	256	1	1

[^6]
Γ SGS-THOMSON
 MUCROELECTRONCCS

DIGITAL SOUND GENERATOR

- SOUND GENERATED BY READING TABLES CODED IN DELTA CODING OR IN ABSOLUTE VALUES SITUATED IN AN INTERNAL MEMORY OF 16K MAX.
- 16 INDEPENDENT CHANNELS
- 12 BIT EQUIVALENT D/A CONVERTER RESOLUTION (DELTA CODING)
- 8 DIFFERENT TABLE LENGTHS AND 8 READING MODES GIVING A TOTAL OF 58 DISTINCT COMBINATIONS
- 16 DIFFERENT MIXABLE LAYERS BETWEEN TWO SEPARATE TABLES
- MULTIPLE READING PERMITS INTERPOLATION BETWEEN TWO ADJOINING SAMPLES ON THE SAME TABLE
- 4 SELECTABLE ANALOG OUTPUTS
- 10 BIT INTERNAL ATTENUATOR WITH GRADUAL AMPLITUDE VARIATION
- ROM ENABLE OUTPUT TO MINIMISE EXTERNAL MEMORY POWER CONSUMPTION
- POSSIBILITY OF SYNCHRONOUS AND ASYNCHRONOUS FREQUENCY-TABLE ChANGE AT THE END OF THE READING TABLE

The M114S is a 16 channel digital polyphonic, politimbric sound generator.
The M114S must be driven by a microprocessor and needs an external memory.
With this device it is possible to synthesize a large range of sound by simply transcribing the most significant periods of the sound to be reproduced into an external memory and programming a suitable reading sequence for these periods with the use of a microprocessor.
The M114S is realized on a single monolithic silicon chip using low threshold N -channel silicon gate MOS technology and is assembled in plastic DIP. 40.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{D D}$	Supply voltage	-0.3 to 7	V
$\mathrm{~V}_{1}$	Input voltage	-0.3 to V_{DD}	V
V_{O}	Output voltage	-0.3 to V_{DD}	V
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {OD }}$	Operating temperature	0 to 70	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - Block Diagram

Fig. 2 - System Configuration

STATIC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=5 V \pm 5 \%, V_{S S}=0, T_{a m b}=0 / 70^{\circ} \mathrm{C}\right.$, $V_{D D}$ DIG $=V_{D D}$ Analog)

Symbol	Parameter	Test Conditions	Value			
			Min.	Typ.	Max.	

INPUTS: RESET (pin 17), CLOCK (pin 16), ROM DATA (pins 26-33), DATA BUS (pins 34-39), DATA ST. (pin 40)

$V_{I L}$	Low Input Level				0.8	V
$V_{I H}$	High Input Level		2.2			V
I_{I}	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\text {SS }}$			± 1	$\mu \mathrm{~A}$

DIGITAL OUTPUTS (HIGH IMPEDANCE* with $10 K \Omega$ pull-up): ROM-ADD (pins 2-14; 11-17) ROM-EN (pin 25)

V_{OL}	Low Output Level	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	High Output Level	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	2.4			V

ANALOG OUTPUTS: (pins 21, 22, 23, 24), $\mathrm{V}_{\text {REF }}$ (pin 19)

$\mathrm{V}_{\text {REF }}$	Voltage Reference Output	$\mathrm{I}_{\mathrm{O}}= \pm 1 \mathrm{~mA}$		2.5		V
I_{O}	Output Current (current generator)	Zero attenuation Max input code to the DAC		± 1		mA

POWER DISSIPATION

IDD	Supply Current	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$			120	mA

* High impedance means that, when the addresses are off, the digital output is connected with an internal resistive pull-up.

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit

CLOCK

t_{CK}	Input Clock Frequency			4.000		KHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	10% to 90%			20	ns
$\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\mathrm{WL}}$	High and Low Pulse Width		80			ns

RESET

t_{W}	Pulse Width	Clock $=4 \mathrm{MHz}$	10			$\mu \mathrm{~s}$
t_{f}	Fall Time	10% to 90%			20	ns

DATA BUS

$t_{\text {W }}$	Pulse Width		750			ns
$\mathrm{t}_{\text {set-up }}$	Set-up Time to DATA Strobe		0			ns
$\mathrm{t}_{\text {hold }}$	Hold time from DATA Strobe		750			ns

DATA STROBE

t_{W}	Pulse width		1.5		128	$\mu \mathrm{~s}$
$t_{\text {WR }}$	Pulse Width for Internal Reset generation		128			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{r}$	Pulse and Fall Times				100	ns
$\mathrm{t}_{\text {LOW }}$				600		ns
$\mathrm{t}_{\text {HIGH }}$				350		ns
$\left.\mathrm{t}_{\text {set-up }}{ }^{*}\right)$	Set-up Time ROM-EN		70			ns

(*) $^{*} \mathrm{t}_{\text {set-up }}$ time means that the data coming from ext. ROM must be stable at least 70 nsec before the rising edge of ROM-EN.

PIN FUNCTIONS

PIN 1 - GND (Analog and Digital)
Analog ground and digital ground are both linked to this pin.

Pins 21-24 - Analog Outputs

These outputs are under current with an output impedance of approximately $1 \mathrm{~K} \Omega$ and the filter or external integrator must have a low input impedance. This means that the voltage drop between output pin and $V_{\text {REF }}$ must be negligeable so as to obtain a good signal linearity.
An integrator together with a low pass filter are necessary if the tables have been "DELTA" coded. If on the other hand they have been coded in absolute values then only a low pass filter is needed.
If the channels do not have to be separated for stereophonic effects or otherwise, a single output may be used routing, by $\mu \mathrm{P}$ programming, all channels to this pin.

Pin 19 - Voltage Reference Output ($\mathrm{V}_{\text {REF }}$)
$\mathrm{V}_{\text {REF }}$ is the average value of the DAC output. With $\mathrm{V}_{\text {supply }}=5 \mathrm{~V} \mathrm{~V}_{\text {REF }}$ is nominally 2.5 V but could vary by chip to chip ($\sim 10 \mathrm{mV}$).
It's only necessary to filter the $\mathrm{V}_{\text {REF }}$ output with an external capacitor of some tens of $\mu \mathrm{F}$ (Fig. 3a). To get a voltage suitable to act as $\mathrm{V}_{\text {REF }}$ towards external integrator which reconstruct the output signal. Since such a voltage is quite the same than DAC output for a null input code, it automatically conforms itself, following possible differencies between various device instances. It is possible to modify slightly, from the external environment, the obtained $\mathrm{V}_{\text {REF }}$ value with suitable resistive networks so that the operational integrator offset can be compensated. (Fig. 3b) To improve the $\mathrm{V}_{\text {REF }}$ it's possible to use a filter as in Fig. 3c.

PIN FUNCTIONS (continued)
Fig. 3.

Pin 18 - Analog Power Supply

The power supply for all analog parts, i.e. DAC, attenuator, etc...., are linked to this pin.
It is therefore important that this power supply should be very stable and well smoothed.
The internal power supply chip separation allows a great improvement of signal/noise ratio.

Pin 15 - Digital Power Supply

The power supply for all digital parts, i.e. counters, memories, etc...., are linked to this pin.

Pin 17 - RESET

All channels are reset by raising this pin and the 13 external ROM address outputs together with the 4 sound outputs are placed in a high impedance state.

Pin 16 - CLOCK (4 MHz)
For correct functioning the generator must be external to the chip and the duty cycle must be very close to 50%.
The internal programmable counters switch on the positive leading edge.

Pin 20 (+12 V out)
This pin is the output of an internal voltage elevator and it needs of an external filtering capacitance ($\min .100 \mathrm{nF}$).
The performance of DAC and attenuator are very improved with an external zener that clamps the voltage elevator output (see Fig. 4).

Pins 25 - ROM-ENABLE (Low active)

This is a PUSH-PULL type output and is used to set the external memory in stand-by so as to reduce consumption whenever it is not read. It is possible to double the addressable memory size (16 Kbyte by connecting this pin to the MSB address line of the external memory trough an F / F.

Pins 26 \& 33 - ROM-DATA

8 input pins for data from external memory.

Pins 2 \& 14 - ROM-ADDRESS

13 PUSH-PULL type output pins for external memory address.

Pins 34-39 - DATA-BUS

6 input pins for data from the microprocessor. 8 of these data groups make up a complete piece of information.

Pin 40 - DATA-BUS Strobe

A signal from the microprocessor must arrive at this input in order to memorise the present code onto the DATA-BUS.
Memorization occurs on both edges.

Fig. 4

GENERAL DESCRIPTION

The M114S is a device that allows digital sound synthesis.

The essential system needed consists of a microprocessor, an M114S and an external memory with a maximum of 8192 bytes.
Sound generation is based on cyclic reading of a table corresponding to a waveform of the timbre to be reproduced.
As the waveform and therefore also the spectrum frequently change, a series of tables of form and frequency appropriate to the sound are cyclically scanned during sound reproduction.

The effect caused by the sudden passage from one table to the next would be unpleasant unless there is such a large number of tables to allow a smooth unnoticeable change from one table to the following.
A favourable compromise between number of tables and quality of sound, that has been implemented in the M114S is the following: A limited number of tables which may even diverge from one another are chosen during an initial phase of analysis after which, during the reproduction phase, two adjoining tables are read simultaneously by extracting a percentage of one and the remaining percentage of the other.
Therefore by starting with 100% of one and zero of the other and successively increasing the second while decreasing the first, so that the sum of the percentages is always equal to 100 , there will come a point at which there is a 100% of the second and zero of the first thus having achieved a smooth passage from one table to the next. In the M114S this passage is made up of a maximum of 16 steps.
The tables are stored in an external memory and may be of eight different lengths ranging from 16 to 2048 bytes. The M114S can handle up to a maximum of 16 K bytes (see fig. 8).

The tables may be coded using waveform's absolute value or by the difference between adjoining samples, that is, in a incremental manner (Delta coding).

The typical resolution in Delta coding is 12 bit with a sinusoidal wave coded in a 16-byte table.

A low pass filter at the output is sufficient in the first case to reconstruct the original signal, but very long tables would be necessary for low frequency sounds causing a waste of memory.

With the use of an integrator at the output in the second case, the waveforms are coded thus allowing easy interpolation. By simply reading the same data n time and dividing the amplitude of each reading by n, a ramp of n small steps is obtained instead of a large single step.
The value of n may be 1,2 or 4 .
When a waveform is coded in this way (DeltaCoding or incrementally), one must check that the sum of the samples in an entire period is always equal to zero or there would be a continuity which could even saturate the external integrator.

Always the M114S completes the reading of a table before the starting of another. This too avoids saturation of the external integrator. Whenever it is necessary to suddenly move from one table to another before the read cycle has been completed the FTT forced table termination code must be forwarded to the 8 frequency bits.

It is possible to drive the M114S in such a way that the programmed frequency becomes active immediately, without waiting for the running table to end (asynchronous mode); or that this change of frequency occurs only at the end of the running table (synchrounous-mode).

ASYNCHRONOUS MODE (SET UP AT RESET)

The frequency-information in a command causes the immediate change of the frequency, while the table and all the other parameters are changed only when the running table has been completely scanned.
This type of operation is useful for producing vibrato effects on long tables or vibrato effects on low frequency sounds.
In fact in these cases it is useful to be able to vary continuously the scanning frequency of the same table, without being bound to execute the variation of frequency at the end of the table.

SYNCHRONOUS MODE

The frequency-information in a command causes the synchronous change of table and frequency; this is obtained by delaying the frequency change until the running table has been completely scanned.

GENERAL DESCRIPTION (continued)

This command is very useful in some special effects (glide) because it avoids the reading of the table in part with the old frequency and in part with the new one, thus causing an audible click.
This way-to-operate is useful in the reproduction of deep vibrato on notes placed at the octave boundary, for glide effects and in any case when it is necessary to go beyond the octave boundary without discontinuity.
In fact in these causes it is necessary to schedule in the M114S a length of table and a table frequency scanning completely different from the previous programming.
To avoid clicks it is indispensable to finish the old table with the old frequency before starting the new one with new frequency.
The feature is obtained by acting in global synchronous mode.
The commands for synchronization are:
SSG Set Global Sync. (FB Hex Code). Activates the global synchronous mode i.e. sinchronize, also the frequency change with the table end.
RSG Reset Sync. Global (F9 Hex Code). This command disables global synchronous mode.
RSS Reverse Sync. Status (FA Hex Code). This command inverts the synchronism state only for the next programming sequence.
Everyone of these three commands is accomplished by sending a complete programming sequence with F9/FA/FB frequency codes, respectively.
They affect the whole working mode of the device (all its channels).
All the remaining bits are ignored.
Note that the RSS command can be obtained by sending eight times the 6-bit data 111110.
As shown in Tab. 3, there are six bit among the control bits that are dedicated to the choice of table pair length and n number of repeated readings of each table.
The frequency of sample readings is synchronous.
This means that the frequency is a whole multiple of the table length.
In this way any problem caused by intermodula tion is eliminated but a noise due to "collision" is produced. As there is a single output circuit for all channels, that is interpolator, D/A converter, attenuator, ecc., each time more than one channel requires access to this circuit one or more other channels must wait.

The amount of time necessary for the output circuit to process each table, that is the period of time for which each channel uses the circuit during each sample reading cycle, is of $2 \mu \mathrm{~s}$. The delay will therefore be proportional to the number of channels operating simultaneously and to the frequency that they are generating. As these parameters casually vary, so will the delay thus producing a casual alteration of the original waveform.
Simulation has proved that under worst possible conditions the signal/noise ratio due to this problem is around 60 dB .
In conclusion let us mention the envelope that has to be controlled by the microprocessor which, at suitable intervals, must forward the desired attenuation coefficient.
There are 64 possible attenuations each with steps of approximately 0.75 dB ;
These passage from one level to another may be immediate or to gradual increments of $1 / 256$ of the maximum amplitude at a frequency proportional to external table reading frequency.

OPERATION

The M114S receives from the $\mu \mathrm{P}$ a single programming sequence at a time. This programming sequence is made up of 48 bits.
The $\mu \mathrm{P}$ must send a 48 bit set for every M114S active channel.
Each M114S channel continuously generates the same signal, that is it reads the same table, with the same mixing coefficient, with the same amplitude, ecc., until the microprocessor forwards a different programming sequence (variation of one or more parameters characterising the sound to be generated within a single channel.
Timbre amplitude evolution and any other slight frequency changes must be handled in real-time by the microprocessor.
Often the microprocessor is unable to update the amplitude with sufficient speed. For this reason the M114S carries out a gradual change from one amplitude to another at steps of $1 / 256$ of maximum sample frequency amplitude if the change in level is greater than 128 steps, of $1 / 2$ of this frequency if greater than 64, of $1 / 4$ if greater than 32 and of $1 / 8$ if smaller than or equal to 32 steps.
Each channel reads two samples at the sample frequency by taking one from each table, sums them according to the mixing coefficient and forwards the result to the DAC whose suitably attenuated output goes to the previously selected output pin (Fig. 5).

GENERAL DESCBIPTION (continued)

This operation requires $2 \mu \mathrm{~s}$ and as there is a single output circuit for all channels it is certain that one or more channels will simultaneously request the use of the circuit. Thus a priority order has been assigned to each channel. This order is fixed, channel zero being that of greatest priority followed in order by the others.

Fig. 5

PAM CURRENT PULSES

When more than one channel is simultaneously active at the output pin there will be an overlap of impulse sequence of each channel.
The example of Fig. 6 shows an output signal with 2 active channels, CH 1 has greater priority
then CH 2 :
Fig. 6

The signal will change from impulsive to continuous by passing through:

- a low pass filter if the table have been coded using absolute values.
- an integrator if in delta coding

PROGRAMMING

48 bits subdivided into 8 groups of 6 bits each must be forwarded in order to programme a channel.
A group of 6 bits is memorised on every Data Strobe switch front. As the data bus is read approximately 250 ns after transition from the Data Strobe, the 6 data bits may simultaneously arrive with the Delta Strobe switch.

DATA PROGRAMMING ORDER

BYTE PIN	34	35	36	37	38	39
$1^{\text {st }}$	ATTENUATION					
	A5	A4	A3	A2	A1	AO
$2^{\text {nd }}$	4 OUTPUTS		TABLE 1 ADDRESS		TABLE 2 ADDRESS	
	1	0	7	6	7	6
$3^{\text {rd }}$	TABLE 2 ADDRESS					
	5	4	3	2	1	0
$4^{\text {th }}$	TABLE 1 ADDRESS					
	5	4	3	2	1	0
$5^{\text {th }}$	TABLE LENGTH			READING METHOD		
	L2	L1	LO	M2	M1	MO
$6^{\text {th }}$	INTERPOLATION				IMMEDIATE CONNECTION	OCTAVE DIVISOR
	3	2	1	0	0	0
$7^{\text {th }}$	CHANNEL NUMBER				FREQUENCY	
	3	2	1	0	1	0
$8^{\text {th }}$	FREQUENCY					
	7	6	5	4	3	2

GENERAL DESCRIPTION (continued)

The graph of fig. 7shows the time lapse that must be assigned to these signal for correct functioning.
No more than 128μ s must pass between one Data Strobe transition and the next during transmission of the 8 groups of data or else synchronisation is lost due to the internal auto-
matic reset generated after $128 \mu \mathrm{~s}$ from the last Data Strobe transition, causing the data to be misinterpreted.
One should wait for at least 9μ s after the forced-zero-cross command has been given between the last group of data of one instruction and the first group of the next.

Fig. 7

The degree of priority of the channel and the number of channels in use at that moment must be taken into account in order to shorten this wait, If there is maximum priority the wait will be a minimum wait of approximately $2 \mu \mathrm{~s}$. The same holds if the priority is not maximum but there are no other channels in use. There will however be a maximum wait of $2 \mu \mathrm{~s}$ for each active channel with greater priority than the channel in question.
If another instruction were to be transmitted without a sufficient wait, there would be the risk of losing the previous instruction of forced table termination.
The wait is unnecessary after normal commands.
Every data group must be remain present for at least 1μ s after Data Strobe transition.
The 48 bit functions are the following:
A) 8 address bits for the $1^{\text {st }}$ table (ext. ROM)
B) 8 address bits for the $2^{\text {nd }}$ table (ext ROM)
C) 8 frequency bits (4 -note and 4 -twelfths of note and ± 1 or $2 / 1000$)
D) 6 attenuation or amplitude address bits
E) 4 interpolation bits
F) 4 channel address bits
G) 6 reading mode and table length bits (ext. ROM)
H) 2 bits for choice between four outputs
I) 1 bit for a frequency octave change
J) 1 bit for gradual disable of envelope

While waiting for the present $1^{\text {st }}$ table reading to terminate, the above data (not immediately
operational) is memorized into the internal RAM 1).
The new data is transfered to RAM2 and becomes operational when the addressed channel ends the current table scanning.
An exception is made by the 8 frequency bits and the one varying the frequency octave as they operate immediately (See synchronization).
All data may be made operational by giving the forced-table-termination command.

48 PROGRAMMING BIT FOR CHANNEL SELECTION

8 Address Bits $1^{\text {st }}$ Table (ext. ROM)
These determine the most significant part of the 13 external memory address bits but according to the table length chosen by the 6 mode bits, some of the least significant of these 8 bits are suitably substituted by the M114S.
In the case of a maximum table length, 2048 bytes, there will only be 2 significant bits to address the table while the remaining 11 will address each single table word.
By already knowing the table length, the programmer will be able to programme the most significant bits needed for table address only and ignore the others.
As the maximum memory that can be handled is of 8 Kbytes, if the table has a length of 1 Kbyte it is sufficient to program the 3 MSB bits and ignore the other five.

48 PROGRAMMING BIT FOR CHANNEL SELECTION (continued)

8 Address Bits $2^{\text {nd }}$ Table (ext. ROM))

As above but refering to the second table.
One must consider that the forced table termination refers to the first table and that during table mixing the second table may assume a percentage value of zero while the first table can only assume a minimum percentage value of $1 / 16$ of the maximum value.

8 Frequency Bits

The 4 most significant bits characterize one of the 15 available notes with HEX. Codes from 0 to E . Eleven movements in twelfths of a semitone may be obtained with the remaining 4 bits as well as four $\pm 1 / 1000$ and $\pm 2 / 1000$ note frequency variations.
These permit the production of: Vibrato, Glissando, chorus effect etc.....
The FF codes correspond to the forced-tabletermination command while FC maintains the previous frequency. F9, FA, FB are synchronisation commands. The F8 code $=$ ROMID is a ROM identification command.
It just sets the programmable counters of the M114S to a very short counting modulo ($8+0$) useless for musical purposes.
The remaining codes are used for testing and therefore must not be used by the operator. Table 1 shows the 240 frequencies obtainable by setting the external clock to 4 MHz and the table length to 16 bytes, with single reading and without inserting an octave divisor. These are the highest octave frequencies obtainable with the M114S.
In practice double, quadruple, etc . . . frequencies may be obtained by writing 2,4 , etc. complete waveform periods in the table.

6 Attenuation Bits

These are the addresses for the internal attenuation table.
The contents of this table follow a logarithmic pattern so as to produce a decrease of 0.75 dB for each address unit increment. See table 2. The word length is of 10 bits.
After processing by a suitable circuit in order to obtain a gradual amplitude variation the ten outputs of this table are linked to the 10 bit attenuator.
The gradual movement from the present level to that just programmed takes place by increasing or decreasing the 8 most significant bits of the attenuation table contents, with the same frequency with which the external memory tables are being scanned if the difference in level is greater than 128 steps, or with $1 / 2$ of this frequency if greater than 64 steps or $1 / 4$ if greater than 32 , or $1 / 8$ if smaller than or equal to 32 . In conclusion, the output signal amplitude increases of decreases at each variation by $1 / 256$ of the maximum value.
By setting the bit that deals with the gradual envelope there is an immediate passage from
the present level to that programmed.
4 Interpolation Bits
These define the mixing coefficient between the two waveform tables.
It is possible in this way to sum the $1^{\text {st }}$ waveform percentage with the remaining $2^{\text {nd }}$ waveform percentage thus obtaining a third signal which will be forward to the output.
In greater detail, the operation carried out is the following:

$$
D=(D 1 *(K+1) / 16)+(D 2 *(15-K) / 16)
$$

where :

- D is the data at the input of the DAC (8 bits in complement with 2)
- D1 is the data read from the $1^{\text {st }}$ table (8 bits in complement with 2)
- D2 is the data read from the $2^{\text {nd }}$ table (8 bits in complement with 2)
- K is a 4 bit interpolation coefficient (from 0 to 15)
Obviously only the first waveform will be output if $K=15$.

4 Channel Address Bits

These indicate to which of the 16 M114S channel the remaining 44 bits will be forwarded.
6 Mode Bits
These indicate the table couple reading mode (ext. ROM).
For each table there are 58 distinct combinations that include, both table lengths and the number of repeated readings from the same address. (ext ROM). See table n. 3.
The three most significant bits characterize the table lengths while the other three characterise the length ratio between tables and the number of repeated readings.

2 Output Address Bits

These indicate to which of the 4 output pins the corresponding channel signal must be forwarded. This is necessary in order to obtain stereophonic effect or to separate channels used for accompanyment from those of "SOLO", etc. . .

1 Octave Divisor Bit

This is used to pass from one octave to another without changing the table length. If octave divisor bit is set to 1 the programming frequency is divided by two.
1 Instant ENVELOPE Change Bit
This orders instant passage from the present amplitude to that programmed.

TABLE 1 - FREQUENCIES

NOTE	DEVIATION	$-6 / 12$	$-5 / 12$	$-4 / 12$	$-\mathbf{3 / 1 2}$	$-\mathbf{- 2 / 1 2}$	$-\mathbf{1 / 1 2}$	$\mathbf{- 2 / 1 0 0 0}$	$\mathbf{- 1 / 1 0 0 0}$
	(Hex)	0	1	2	3	4	5	6	7
C	0	1016.78	1021.45	1026.69	1031.46	1036.27	1041.67	1044.39	1045.48
C\#	1	1077.01	1082.25	1087.55	1092.90	1098.30	1103.14	1106.81	1107.42
D	2	1140.90	1146.79	1152.07	1158.08	1163.47	1168.91	1172.33	1173.71
D\#	3	1209.19	1215.07	1221.00	1226.99	1232.29	1238.39	1242.24	1243.78
E	4	1281.23	1287.00	1293.66	1299.55	1305.48	1312.34	1315.79	1317.52
F	5	1356.85	1363.33	1369.86	1376.46	1383.13	1389.85	1393.73	1395.67
F\#	6	1437.81	1445.09	1451.38	1458.79	1466.28	1472.75	1478.20	1479.29
G	7	1523.23	1530.22	1538.46	1545.60	1552.80	1560.06	1564.95	1566.17
G\#	8	1614.21	1622.06	1629.99	1638.00	1644.74	1652.89	1658.37	1659.75
A	9	1709.40	1718.21	1727.12	1734.61	1743.68	1751.31	1757.47	1759.01
A\#	A	1811.59	1819.84	1829.83	1838.24	1846.72	1855.29	1860.47	1862.20
B	B	1919.39	1928.64	1937.98	1947.42	1956.95	1966.57	1972.39	1974.33
2C	C	2032.52	2042.90	2053.39	2063.98	2072.54	2083.33	2087.68	2089.86
2C\#	D	2155.17	2164.50	2176.28	2185.79	2195.39	2207.51	2212.39	2214.84
2D	E	2283.11	2293.58	2304.15	2314.81	2325.58	2339.18	2344.67	2347.42
	F	For							
		Testing							

NOTE	DEVIATION	0	+1/1000	+2/1000	+1/12	+2/12	+3/12	+4/12	+5/12
	(Hex)	8	9	A	B	C	D	E	F
C	0	1046.57	1047.67	1048.77	1051.52	1056.52	1061.57	1066.67	1071.81
C\#	1	1108.65	1109.88	1111.11	1114.21	1119.19	1124.86	1130.58	1135.72
D	2	1174.40	1175.78	1177.16	1180.64	1186.24	1191.90	1197.60	1203.37
D \#	3	1244.56	1245.33	1246.88	1250.78	1256.28	1262.63	1269.04	1274.70
E	4	1318.39	1319.26	1321.00	1324.50	1331.56	1337.79	1344.09	1350.44
F	5	1396.65	1397.62	1398.60	1403.51	1410.44	1417.43	1424.50	1430.62
F\#	6	1480.38	1481.48	1482.58	1486.99	1494.77	1501.50	1508.30	1516.30
G	7	1567.40	1568.63	1569.86	1576.04	1583.53	1591.09	1598.72	1606.43
G \#	8	1661.13	1662.51	1663.89	1669.45	1677.85	1684.92	1693.48	1702.13
A	9	1760.56	1762.11	1763.89	1768.35	1777.78	1785.71	1793.72	1803.43
A \#	A	1863.93	1865.67	1867.41	1874.41	1883.24	1892.15	1901.14	1910.22
B	B	1976.28	1978.24	1980.20	1984.13	1994.02	2004.01	2014.10	2024.29
2C	C	2092.05	2094.24	2096.44	2103.05	2114.16	2123.14	2134.47	2143.62
2C\#	D	2217.29	2219.76	2222.22	2227.17	2239.64	2249.72	2259.89	2272.73
2D	E	2350.18	2352.94	2355.71	2361.28	2372.48	2383.79	2395.21	2406.74
	F	ROMID	SSG	RSS	RSG	Previously Selected Frequency	For Testing	For Testing	Forced Table Terminat.

TABLE 2 - ATTENUATION
$N=$ six bit attenuation code decimal value ($0: 63$)
$V=$ internally decoded linear ten bit value ($0: 1023$)
$A=$ theoretical attenuation value in decibels $=20 \cdot \log ((V+1) / 1024)$

N	V	A
0	1023	0.00
1	939	0.74
2	863	1.48
3	791	2.23
4	727	2.96
5	667	3.71
6	611	4.47
7	559	5.24
8	515	5.95
9	471	6.73
10	431	7.50
11	395	8.25
12	363	8.98
13	335	9.68
14	307	10.43
15	283	11.14
16	259	11.91
17	235	12.75
18	215	13.52
19	199	14.19
20	183	14.91
21	166	15.75
22	152	16.51
23	140	17.22
24	128	17.99
25	117	18.77
26	107	19.54
27	98	20.29
28	90	21.03
29	83	21.72
30	76	22.48
31	69	23.30

N	V	A
32	64	23.95
33	58	24.79
34	53	25.56
35	49	26.23
36	45	26.95
37	41	27.74
38	37	28.61
39	34	29.32
40	31	30.10
41	28	30.96
42	26	31.58
43	24	32.25
44	22	32.97
45	20	33.76
46	18	34.63
47	16	35.60
48	14	36.68
49	13	37.28
50	12	37.93
51	11	38.62
52	10	39.38
53	9	40.21
54	8	41.12
55	7	42.14
56	6	43.30
57	5	44.64
58	4	46.23
59	3	48.16
60	2	50.66
61	1	54.19
62	0	60.21
63	0	60.21

TABLE 3 - READING MODES

MODE		LENGTH		READ N .	
M	L	T1	T2	T1	T2
000	000	16	16	2	2
000	001	32	32	2	2
000	010	64	64	2	2
000	011	128	128	2	2
000	100	256	256	2	2
000	101	512	512	2	2
000	110	1024	1024	2	2
000	111	2048	1048	2	2
001	000	16	16	1	1
001	001	32	32	1	1
001	010	64	64	1	1
001	011	128	128	1	1
001	100	256	256	1	1
001	101	512	512	1	1
001	110	1024	1024	1	1
001	111	2048	2048	1	1
010	000	16	16	4	4
010	001	32	32	4	4
010	010	64	64	4	4
010	011	128	128	4	4
010	100	256	256	4	4
010	101	512	512	4	4
010	110	1024	1024	4	4
010	111	1024*	1024	4	4
011	000	16	16\$	1	1
011	001	32	16	1	1
011	010	64	32	1	1
011	011	128	64	1	1
011	100	256	128	1	1
011	101	512	256	1	1
011	110	1024	512	1	1
011.	111	2048	1024	1	1

[^7]| MODE | | LENGTH | | READ ${ }^{\text {. }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M | L | T1 | T2 | T1 | T2 |
| 100 | 000 | 16 | 8 | 1 | 2 |
| 100 | 001 | 32 | 16 | 1 | 2 |
| 100 | 010 | 64 | 32 | 1 | 2 |
| 100 | 011 | 128 | 64 | 1 | 2 |
| 100 | 100 | 256 | 128 | 1 | 2 |
| 100 | 101 | 512 | 256 | 1 | 2 |
| 100 | 110 | 1024 | 512 | 1 | 2 |
| 100 | 111 | 2048 | 1024 | 1 | 2 |
| 101 | 000 | 16 | 16\$ | 1 | 1 |
| 101 | 001 | 32 | 16\$ | 1 | 1 |
| 101 | 010 | 64 | 16 | 1 | 1 |
| 101 | 011 | 128 | 32 | 1 | 1 |
| 101 | 100 | 256 | 64 | 1 | 1 |
| 101 | 101 | 512 | 128 | 1 | 1 |
| 101 | 110 | 1024 | 256 | 1 | 1 |
| 101 | 111 | 2048 | 512 | 1 | 1 |
| 110 | 000 | 16 | 4 | 1 | 4 |
| 110 | 001 | 32 | 8 | 1 | 4 |
| 110 | 010 | 64 | 16 | 1 | 4 |
| 110 | 011 | 128 | 32 | 1 | 4 |
| 110 | 100 | 256 | 64 | 1 | 4 |
| 110 | 101 | 512 | 128 | 1 | 4 |
| 110 | 110 | 1024 | 256 | 1 | 4 |
| 110 | 111 | 2048 | 512 | 1 | 4 |
| 111 | 000 | 16 | 16\$ | 1 | 1 |
| 111 | 001 | 32 | 16\$ | 1 | 1 |
| 111 | 010 | 64 | 16\$ | 1 | 1 |
| 111 | 011 | 128 | 16 | 1 | 1 |
| 111 | 100 | 256 | 32 | 1 | 1 |
| 111 | 101 | 512 | 64 | 1 | 1 |
| 111 | 110 | 1024 | 128 | 1 | 1 |
| 111 | 111 | 2048 | 256 | 1 | 1 |

M114S

Fig. 8 - The M114S can handle up to 16 Kbyte of memory with this application circuit.

REMOTE CONTROL TRANSMITTERS

- FLASHED OR MODULATED TRANSMISSIONS (M3004 $=\mathrm{f}_{\text {osc/12 }}, \mathrm{M} 3005=\mathrm{f}_{\text {osc }}$)
- 7 SUB-SYSTEM ADDRESSES
- UP TO 64 COMMANDS PER SUB-SYSTEM ADDRESS
- HIGH-CURRENT REMOTE OUTPUT AT $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}\left(l_{\mathrm{OH}}=-40 \mathrm{~mA}\right)$
- LOW NUMBER OF ADDITIONAL COMPONENTS
- KEY RELEASE DETECTION BY TOGGLE BITS
- "LOCK-UP" PROTECTION TO PREVENT BATTERY DISCHARGE
- VERY LOW STAND-BY CURRENT $(<2 \mu A)$
- OPERATIONAL CURRENT $<2 \mathrm{~mA}$ AT 6V SUPPLY
- WIDE SUPPLY VOLTAGE RANGE (4 TO 10.5V)
- CERAMIC RESONATOR CONTROLLED FREQUENCY (400 TO 600 KHz)
- CMOS SI-GATE TECHNOLOGY
- PACKAGES: 20-LEAD PLASTIC DIL OR 20-LEAD PLASTIC SMALL OUTLINE (SO-20)

DESCRIPTION

The M3004/M3005 transmitter ICs are designed for infrared remote control systems. They have a total of 448 commands which are divided into 7 sub-system groups with 64 commands each. The sub-system code may be selected by a press button, a slider switch or hard wired.
The M3004/M3005 generate the pattern for driving the output stage. These patterns are pulse distance coded. The pulses are infrared flashes or modulated.
Modulated pulses allow receivers with narrowband preamplifier for improved noise rejection to be used. In the M3004 the modulation frequency is $f_{\text {osc } / 12}$ about 38 KHz with ($f_{\text {osc }}=$ 455 KHz) while in the M3005 the modulation frequency corresponds to $f_{\text {osc }}$. In flash mode the M3004 and M3005 are identical. Flashed pulses require a wideband preamplifier within the receiver.

PIN NAMES

$\left.\begin{array}{|rll|lll|}\hline 1 & \text { REMO } & \text { Remote data output } & 11 & \text { OSCI } & \begin{array}{l}\text { Oscillator input } \\ 2\end{array} \\ \text { SEN6N } \\ 3 & \text { SEN5N } \\ 4 & \text { SEN4N } \\ 5 & \text { SEN3N } \\ 6 & \text { SEN2N } \\ 7 & \text { SEN1N } \\ 8 & \text { SENON }\end{array}\right\}$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage range	-0.3 to +12	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage range	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage range	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\pm \mathrm{I}$	D.C. current into any input or output	max. 10	mA
$\mathrm{I}_{\text {REMO }}$	Peak REMO output current during $10 \mu \mathrm{~s} ;$ duty factor $=1 \%$	$\max . \quad-300$	mA
$\mathrm{P}_{\text {tot }}$	Power dissipation per package for $\mathrm{T}_{\text {amb }}=0$ to $70^{\circ} \mathrm{C}$	max. 200	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified)

Symbol	$\begin{aligned} & \text { VDD } \\ & \text { (V) } \end{aligned}$	Parameter	Value			Unit
			Min.	Typ.	Max.	
$V_{\text {DD }}$	-	Supply voltage $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+70^{\circ} \mathrm{C}$	4	-	10.5	V
${ }^{\text {I D }}$	6	Supply current; active ${ }^{f}$ fs $=455 \mathrm{KHz}$; REMO output unloaded	-	0.4	-	mA
IDD	$\frac{6}{9}$	Supply current; inactive (stand-by mode) $T_{a m b}=25^{\circ} \mathrm{C}$	-	-	2	$\mu \mathrm{A}$
${ }^{\text {fosc }}$	4 to 11	Oscillator frequency (ceramic resonator)	400	-	600	KHz

KEYBOARD MATRIX

$V_{\text {IL }}$	4 to 11	Inputs SENON to SEN6N Input voltage LOW				
			-	-	$0.2 \times V_{\text {DD }}$	V
$\mathrm{V}_{1 \mathrm{H}}$	4 to 11	Input voltage HIGH	$0.8 \times \mathrm{V}_{\text {DD }}$	-	-	V
$1 /$	4	Input current $V_{i}=0 \mathrm{~V}$	-10 -30	-	-100 -300	$\mu \mathrm{A}$
11	11	Input leakage current $V_{i}=V_{D D}$	-	-	1	$\mu \mathrm{A}$
		Outputs DRV0N to DRV6N				
$\mathrm{V}_{\text {OL }}$	$\frac{4}{11}$	$\begin{aligned} & \text { Output voltage "ON" } \\ & \mathrm{l}_{\mathrm{O}}=0.1 \mathrm{~mA} \\ & \mathrm{O}=1.0 \mathrm{~mA} \end{aligned}$	-	-	$\frac{0.3}{0.5}$	V
10	11	$\begin{aligned} & \text { Qutput current "OFF" } \\ & \mathrm{V}_{\mathrm{O}}=11 \mathrm{~V} \end{aligned}$	-	-	10	$\mu \mathrm{A}$

CONTROL INPUT ADRM

$\mathrm{V}_{\text {IL }}$	-	Input voltage LOW	-	-	$0.2 \times V_{\text {DD }}$	V
$\mathrm{V}_{\text {IH }}$	-	Input voltage HIGH	$0.8 \times V_{\text {DD }}$	-	-	V
Input current (switched P and N-channel pull-pu/pull-down)						
IIL	4	Pull-up active stand-by voltage: OV	$\frac{-10}{-30}$	-	$\begin{array}{r} \hline-100 \\ \hline-300 \\ \hline \end{array}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{I H}}$	4	Pull-down active stand-by voltage: $V_{D D}$	10 30	-	100	$\mu \mathrm{A}$

DATA OUTPUT REMO

V_{OH}	6	Output voltage HIGH $-1 \mathrm{OH}=40 \mathrm{~mA}$	3	-	-	V
$\mathrm{V}_{\text {OL }}$	6	Output voltage LOW $\mathrm{I}_{\mathrm{OL}}=0.3 \mathrm{~mA}$	-	-	0.2	V
${ }^{\text {toh }}$	6	Pulse length oscillator stopped	-	-	1	ms

OSCILLATOR

I_{i}	6	Input current OSCI at V_{DD}	0.8	-	2.7
$\mathrm{~V}_{\mathrm{OH}}$	6	Output voltage HIGH -IOL $=0.1 \mathrm{~mA}$	-	-	$\mathrm{V}_{\mathrm{DD}}-1$

Fig. 1 - Transmitter with M3004/M3005

INPUTS AND OUTPUTS

KEY MATRIX INPUTS AND OUTPUTS (DRVON TO DRV6N AND SENON TO SEN6N)

The transmitter keyboard is arranged as a scanned matrix. The matrix consists of 7 driver outputs and 7 sense inputs as shown in Fig. 1. The driver outputs DRVON to DRV6N are open drain Nchannel transistors and they are conductive in the stand-by mode. The 7 sense inputs (SENON to SEN6N) enable the generation of 56 command codes. With 2 external diodes all 64 commands are addressable. The sense inputs have P-channel pull-up transistors, so that they are HIGH until they are pulled LOW by connecting them to an output via a key depression to initiate a code transmission.

ADDRESS MODE AND TRANSMISSION MODE INPUT (ADRM)

The sub-system address and the transmission mode are defined by connecting the ADRM input to one or more driver outputs (DRVON to DRV6N) of the key matrix. If more than one driver is connected to ADRM, they must be decoupled by a diode. This allows the definition of seven sub-system addresses as shown in Table 5. If driver DRV6N is connected to ADRM the data output format of REMO is modulated or if not connected, flashed.
The ADRM input has switched pull-up and pulldown loads. In the stand-by mode only the pulldown device is active. Whether ADRM is open (sub-system address 0 , flashed mode) or con-

INPUTS AND OUTPUTS (continued)

nected to the driver outputs, this input is LOW and will not cause unwanted dissipation. When the transmitter becomes active by pressing a key, the pull-down device is switched off and the pull-up device is switched on, so that the applied driver signals are sensed for the decoding of the sub-system address and the mode of transmission.
The arrangement of the sub-system address coding is such that only the driver DRVnN with the highest number (n) defines the sub-system address, e.g. if driver DRV2N and DRV4N are connected to ADRM, only DRV4N will define the sub-system address. This option can be used in transmitters for more than one sub-system address. The transmitter may be hard-wired for sub-system address 2 by connecting DRV1N to ADRM. If now DRV3N is added to ADRM by a key or a switch, the transmitted sub-system address changes to 4.
A change of the sub-system address will not start a transmission.

REMOTE CONTROL SIGNAL OUTPUT (REMO)

The REMO signal output stage is a push-pull type. In the HIGH state a bipolar emitter-follower allows a high output current. The timing of the data output format are listed in Table 1 and 2 (M3004), 3 and 4 (M3005).

The information is defined by the distance t_{B} between the leading edges of the flashed pulses or the first edge of the modulated pulses (see Fig. 3).
The format of the output data is given in Figs 2,3 and 4. In the flashed transmission mode the data word starts with two toggle bits T1 and TO, followed by three bits for defining the subsystem address S2, S1 and S0, and six bits F, E, D, C, B and A, which are defined by the selected key.
In the modulated transmission mode the first toggle bit T1 is replaced by a constant reference time bit (REF). This can be used as a reference time for the decoding sequence.
The toggle bits function as an indication for the decoder that the next instruction has to be considered as a new command.

The codes for the sub-system address and the selected key are given in Table 5 and 6.

The REMO output is protected against "lockup", i.e. the lenght of an output pulse is limited to $<1 \mathrm{~ms}$ even if the oscillator stops during an output pulse. This avoids the rapid discharge of the battery that would otherwise be caused by the continuous activation of the LED.

OSCILLATOR INPUT/OUTPUT (OSCI AND OSCO)

The external components must be connected to these pin when using an oscillator with a ceramic resonator. The oscillator frequency may vary between 400 KHz and 600 KHz as defined by the resonator.

FUNCTIONAL DESCRIPTION KEYBOARD OPERATION

In the stand-by mode all drivers (DRVON to DRV6N) are on. Whenever a key is pressed, one or more of the sense inputs (SENnN) are tied to ground. This will start the power-up sequence. First the oscillator is activated and after the debounce time $t_{D B}$ (see Fig. 5) the output drivers (DRVON to DRV6N) become active successively.
Within the first scan cycle the transmission mode, the applied sub-system address and the selected command code are sensed and loaded into an internal data latch. In contradiction to the command code the sub-system address is sensed only within the first scan cycle. If the applied subsystem address is changed while the command key is pressed, the transmitted sub-system address is not altered.
In a multiple key-stroke sequence (see Fig. 6) the command code is always altered in accordance with the sensed key.

MULTIPLE KEY-STROKE PROTECTION

The keyboard is protected against multiple keystrokes. If more than one key is pressed at the same time, the circuit will not generate a new output at REMO (see Fig. 6). In case of a multiple key-stroke the scan repetition rate is increased to detect the release of a key as soon as possible.

FUNCTIONAL DESCRIPTION (continued)

There are two restrictions caused by the special structure of the keyboard matrix:

- The keys switching to ground (code numbers 7, 15. 23. $31,39,47,55$ and 63) and the keys connected to SEN5N and SEN6N are not covered completely by the multiple key protection. If one sense input is switched to ground, further keys on the same sense line are ignored.
- SEN5N and SEN6N are not protected against multiple key-stroke on the same driver line because this condition has been used for the definition of additional codes (code numbers 50 to 63).

OUTPUT SEQUENCY (DATA FORMAT)

The output operation will start when the selected code is found. A burst of pulses, including the latched address and command codes, is generated at the output REMO as long as a key is pressed. The format of the output pulse train is given in Figs. 2, 3 and 4. The operation is terminated by releasing the key or if more than one key is pressed at the same time. Once a sequence is started, the transmitted words will always be completed after the key is released.

The toggle bits T0 and T1 are incremented if the key is released for a minimum time $t_{\text {reL }}$ (see Fig. 5). The toggle bits remain unchanged within a multiple key-stroke sequence.

Fig. 2 - Data format of REMO output; REF = reference time; T0 and T1 = toggle bits; S0, S1 and S2 $=$ sub-system address; $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and $\mathrm{F}=$ command bits.

- Flashed mode: transmission with 2 toggle bits and 3 address bits, followed by 6 command bits (pulses are flashed).
- Modulated mode: transmission with reference time, 1 toggle bit and 3 address bits, followed by 6 command bits (pulses are modulated).

FUNCTIONAL DESCRIPTION (continued)

Fig. 3 - REMO output waveforms (M3004)

Table 1 - Pulse train timing (M3004); $f_{\text {osc }}=455 \mathrm{KHz}$ Table 2 - Pulse train separation (t_{B}) (M3004)

Mode	$\begin{aligned} & \mathbf{T}_{0} \\ & \mathrm{~ms} \end{aligned}$	$\underset{\mu \mathrm{s}}{\mathrm{tp}}$	$\underset{\mu \mathbf{s}}{\mathbf{t}_{\mathbf{M}}}$	$\underset{\mu \mathrm{S}}{\mathrm{t}_{\mathrm{M}}}$	$\underset{\mu \mathrm{s}}{\mathbf{t}_{\mathbf{M}}}$	tw ms
$\begin{aligned} & \text { Flashed } \\ & \left(\mathrm{f}_{\text {osc }}=455 \mathrm{KHz}\right) \end{aligned}$	2.53	8.8	-	-	-	121
Modulated $\left(\mathrm{f}_{\mathrm{osc}}=455 \mathrm{KHz}\right)$	2.53	-	26.4	17.6	8.8	121

Code	\mathbf{t}_{B}
Logic " 0 "	$2 \times \mathrm{T}_{0}$
Logic " 1 "	$3 \times \mathrm{T}_{0}$
Reference time	$3 \times \mathrm{T}_{0}$
Toggle bit time	$2 \times \mathrm{T}_{0}$ or $3 \times \mathrm{T}_{0}$

$\mathrm{f}_{\text {osc }}$	455 KHz	$\mathrm{t}_{\text {OSC }}=2.2 \mu \mathrm{~s}$
t_{p}	$4 \times \mathrm{t}$ osc	flashed pulse width
t_{M}	$12 \times \mathrm{tosc}$	modulation period
${ }^{\text {t ML }}$	$8 \times \mathrm{tosc}$	modulation period LOW
${ }^{\text {t }} \mathrm{MH}$	$4 \times$ tosc	modulation period HIGH
To	$1152 \times \mathrm{t}$ osc	basic unit of pulse distance
${ }^{\text {t }}$ W	$55196 \times \mathrm{t}_{\text {osc }}$	word distance

FUNCTIONAL DESCRIPTION (continued)

Fig. 4 - REMO output waveforms (M3005)

Table 3 - Pulse train timing (M3005)

Mode	To ms	$\begin{aligned} & \mathbf{t p} \\ & \mu \mathrm{s} \end{aligned}$	$\underset{\mu \mathbf{S}}{\mathbf{t}_{\mathbf{M}}}$	tw ms
$\begin{aligned} & \text { Flashed } \\ & \left(f_{\text {osc }}=455 \mathrm{KHz}\right) \end{aligned}$	2.53	8.8	-	121
Modulated $\left(f_{\text {osc }}=600 \mathrm{KHz}\right)$	2.53	-	1.66	121

Table 4 - Pulse train separation (t_{B}) (M3005)

Code	t_{B}
Logic " 0 "	$2 \times \mathrm{T}_{0}$
Logic " 1 "	$3 \times \mathrm{T}_{0}$
Reference time	$3 \times \mathrm{T}_{0}$
Toggle bit time	$2 \times \mathrm{T}_{0}$ or $3 \times \mathrm{T}_{0}$

	Flashed mode (455 KHz)	Modulated mod	(600 KHz)
tosc	2,2 2 s	$1.66 \mu \mathrm{~s}$	
t_{p}	$4 \times$ tosc		flashed pulse width
${ }_{N}^{\text {N }}$	-	${ }_{8}^{\text {tosc }}$	modulation period
To	$1152 \times$ tosc	$1536 \times$ tosc	basic unit of pulse distance
${ }^{\text {tw }}$	$55296 \times$ tosc	$73728 \times$ tosc	word distance
$\mathrm{t}_{\mathrm{MH}} / \mathrm{t}_{\mathrm{M}}$	-	0.4 to 0.6	pulse duty cycle during carrier mode

NOTE - The different dividing ratio for I_{O} and t_{W} between fashed mode and modulated mode is obtained by changing the modulo of a particular divider from divide by 3 during flash mode to divide by 4 during modulated mode. This allows the use of a 600 KHz ceramic resonator during modulated mode to obtain a better noise immunity for the receiver without a significant change in T_{O} and t_{W}.

FUNCTIONAL DESCRIPTION (continued)
Fig. 5 - Single key-stroke sequence. Debounce time: $\mathrm{t}_{\mathrm{DB}}=4$ to $9 \times \mathrm{T}_{\mathrm{o}}$. Start time: $\mathrm{t}_{\mathrm{ST}}=5$ to $10 \times \mathrm{T}_{\mathrm{o}}$. Minimum release time: $\mathrm{t}_{\mathrm{reL}}=\mathrm{T}_{\mathrm{o}}$. Word distance: t_{w}.

Fig. 6 - Multiple key-stroke sequence. Scan rate multiple key-stroke: $\mathrm{t}_{\mathrm{SM}}=8$ to $10 \times \mathrm{T}_{\mathrm{o}}$. For $\mathrm{t}_{\mathrm{DB}}, \mathrm{t}_{\mathrm{ST}}$ and t_{W} see Fig. 5.

Table 5 - Transmission mode and sub-system address selection
The sub-system address and the transmission mode are defined by connecting the ADRM input to one or more driver outputs (DRVON to DRV6N) of the key matrix. If more than one driver is connected to ADRM, they must be decoupled by a diode.

Mode	Sub-system address				Driver DRVnN for $\mathrm{n}=$						
	\#	S2	S1	S0	0	1	2	3	4	5	6
F	0	1	1	1							
L	1	0	0	0	0						
A	2	0	0	1	x	0					
S	3	0	1	0	X	X	0				
H	4	0	1	1	X	x	x	0			
E	5	1	0	0	X	X	X	X	0		
D	6	1	0	1	X	X	X	X	X	0	
M											
0	0	1	1	1							0
D	1	0	0	0	0						0
U	2	0	0	1	X	0					0
L	3	0	1	0	X	X	0				0
A	4	0	1	1	X	X	X	0			0
T	5	1	0	0	X	X	X	x	\bigcirc		0
E	6	1	0	1	X	X	X	X	X	0	0
D											

$0=$ connected to ADRM
blank $=$ not connected to ADRM
X $=$ don't care

Table 6 - Key codes

Matrix drive	Matrix sense	F	E	D	C	B	A	Matrix position
DRVON	SENON	0	0	0	0	0	0	0
DRV1N	SENON	0	0	0	0	0	1	1
DRV2N	SENON	0	0	0	0	1	0	2
DRV3N	SENON	0	0	0	0	1	1	3
DRV4N	SENON	0	0	0	1	0	0	4
DRV5N	SENON	0	0	0	1	0	1	5
DRV6N	SENON	0	0	0	1	1	0	6
$\mathrm{V}_{\text {SS }}$	SENON	0	0	0	1	1	1	7
*	SEN1N	0	0	1		**		8 to 15
*	SEN2N	0	1	0		**		16 to 23
*	SEN3N	0	1	1		**		24 to 31
*	SEN4N	1	0	0		**		32 to 39
*	SEN5N	1	0	1		**		40 to 47
*	SEN6N	1	1	0		**		48 to 55
*		1	1	1		**		56 to 63

[^8]
LED DISPLAY DRIVERS

- M5450 34 OUTPUTS/15mA SINK
- M5451 35 OUTPUTS/15mA SINK
- CURRENT GENERATOR OUTPUTS (NO EXTERNAL RESISTORS REQUIRED)
- CONTINUOUS BRIGHTNESS CONTROL
- SERIAL DATA INPUT
- ENABLE (ON M5450)
- WIDE SUPPLY VOLTAGE OPERATION
- TTL COMPATIBILITY

Application examples:

- MICROPROCESSOR DISPLAYS
- INDUSTRIAL CONTROL INDICATOR
- RELAY DRIVER
- instrumentation readouts

The M5450 and M5451 are monolithic MOS integrated circuits produced with an N -channel
silicon gate technology. They are available in 40-pin dual in-line plastic packages.

A single pin controls the LED display brightness by setting a reference current through a variable resistor connected to $V_{D D}$ or to a separate supply of 13.2 V maximum.
The M5450 and M5451 are pin-to-pin replacements of the NS MM 5450 and MM 5451.

ABSOLUTE MAXIMUM RATINGS

	Supply voltage		
$V_{\text {DD }}$	Input voltage	-0.3 to 15	V
$\mathrm{~V}_{1}$	-0.3 to 15	V	
$\mathrm{~V}_{\mathrm{O} \text { (off) }}$	Off state output voltage	15	V
I_{O}	Output sink current	40	mA
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	at $25^{\circ} \mathrm{C}$	1 W
		at $85^{\circ} \mathrm{C}$	560 mW
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	150	${ }^{\circ} \mathrm{C}$
T_{op}	Operating temperature range	-25 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$

[^9]
CONNECTION DIAGRAMS

BLOCK DIAGRAM

Fig. 1

STATIC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}$ within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {DD }}$	Supply Voltage		4.75		13.2	V
${ }^{\text {I D D }}$	Supply Current	$V_{D D}=13.2 \mathrm{~V}$			7	mA
VI	Input Voltage Logical "0" Level Logical "1" Level	$\begin{aligned} & \pm 10 \mu \mathrm{~A} \text { input bias } \\ & 4.75 \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 5.25 \\ & \mathrm{~V}_{\mathrm{DD}}>5.25 \end{aligned}$	$\begin{gathered} -0.3 \\ 2.2 \\ \mathrm{~V}_{\mathrm{DD}}-2 \end{gathered}$		$\begin{gathered} 0.8 \\ V_{D D} \\ V_{D D} \end{gathered}$	V V V
${ }^{\prime} B$	Brightness Input Current (note 2)		0		0.75	mA
V_{B}	Brightness Input Voltage (pin 19)	Input current $=750 \mu \mathrm{~A}$	3		4.3	V
$V_{\text {O (off) }}$	Off State Out. Voltage				13.2	V
${ }^{1} \mathrm{O}$	Out. Sink Current (note 3) Segment OFF Segment ON	$\begin{aligned} \mathrm{V}_{\mathrm{O}}= & 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}= & 1 \mathrm{~V} \text { (note 4) } \\ & \text { Brightness In. }=0 \mu \mathrm{~A} \\ & \text { Brightness In. }=100 \mu \mathrm{~A} \\ & \text { Brightness In. }=750 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 0 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 2.7 \\ & 15 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 4 \\ 25 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
${ }^{\text {clock }}$	Input Clock Frequency		0		0.5	MHz
I_{0}	Output Matching (note 1)				± 20	\%

Notes: 1. Output matching is calculated as the percent variation from $I_{\text {MAX }}+I_{\text {MIN }} / 2$.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to another.
3. Absolute maximum for each output should be limited to 40 mA .
4. The V_{O} voltage should be regulated by the user. See figures 5 and 6 for allowable V_{O} versus l_{O} operation.

FUNCTIONAL DESCRIPTION

Both the M5450 and the M5451 are specifically designed to operate 4 or 5-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display.
Outputs change only if the serial data bits differ from the previous time.
Display brightness is determined by control of the output current LED displays.
A 1 nF capacitor should be connected to brightness control, pin 19, to prevent possible oscillations. A block diagram is shown in figure 1. For the M5450 a DATA ENABLE is used instead of the 35 th output. The DATA ENABLE input is a metal option for the M5450.

FUNCTIONAL DESCRIPTION (continued)

The output current is typically 20 times greater than the current into pin 19, which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 2 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36 th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configurations. There is no clear for the master portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Bit 1 is the first bit following the start bit and it will appear on pin 18. A logical " 1 " at the input will turn on the appropriate LED.
Figure 3 shows the timing relationship between Data, Clock and DATA ENABLE.
A max clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current per output or operate the part at higher than $1 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$.
The following equation can be used for calculations.

$$
T_{j}=\left[\left(\mathrm{V}_{\text {OUT }}\right)\left(I_{\text {LED }}\right)(\text { No. of segments })+\left(\mathrm{V}_{\text {DD }} \cdot 7 \mathrm{~mA}\right)\right]\left(124^{\circ} \mathrm{C} / \mathrm{W}\right)+\mathrm{T}_{\mathrm{amb}}
$$

where:
$\mathrm{T}_{\mathrm{j}}=$ junction temperature $\left(150^{\circ} \mathrm{C}\right.$ max)
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$\mathrm{I}_{\text {LED }}=$ the LED current
$124^{\circ} \mathrm{C} / \mathrm{W}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{amb}}=$ ambient temperature
The above equation was used to plot figure 4,5 and 6 .

Fig. 2 - Input Data Format

Fig. 3

Fig. 4

Fig. 5

Fig. 6

TYPICAL APPLICATIONS

Basic electronically tuned Radio or TV system

TYPICAL APPLICATIONS (continued)
Duplexing 8 Digits with One M5450

POWER DISSIPATION OF THE IC

The power dissipation of the IC can be limited using different configurations.
a)

In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated

$$
R=\frac{V_{C}-V_{D M A X}-V_{O M I N}}{N_{\text {MAX }} \cdot I_{D}}
$$

The worst case condition for the device is when roughly half of the maximum number of segments are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings of the device.
In critical cases more resistors can be used in conjunction with groups of segments.
In this case the current variation in the single resistor is reduced and $\mathrm{P}_{\text {tot }}$ limited.
b)

In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly chosen.
The total power dissipation of the IC depends, in a first approximation, only on the number of segments activated.
c)

In this configuration $\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}$ is constant. The total power dissipation of the IC depends only on the number of segments activated.

- - - - - - - - - - - - -

LED DISPLAY DRIVER

- $31 / 2$ DIGIT LED DRIVER (23 SEGMENTS)
- CURRENT GENERATOR OUTPUTS (NO RESISTORS REQUIRED)
- CONTINUOUS BRIGHTNESS CONTROL
- SERIAL DATA INPUT
- NO LOAD SIGNAL REQUIRED
- WIDE SUPPLY VOLTAGE OPERATION
- TTL COMPATIBILITY

Applications examples:

- MICROPROCESSOR DISPLAYS
- INDUSTRIAL CONTROL INDICATION
- RELAY DRIVER
- INSTRUMENTATION READOUTS

The M5480 is a monolithic MOS integrated circuit produced with a N -channel silicon gate
technology. It utilizes the M5451 die packaged in a 28-pin plastic package making it ideal for a $31 / 2$ digit dispaly. A single pin controls the LED dispaly brightness by setting a reference current through a variable resistor connected either to V_{DD} or to a separate supply of 13.2 V maximum.
The M5480 is a pin-to-pin replacement of the NS MM 5480.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {DD }}$	Supply voltage	-0.3 to 15	V
V_{1}	Input voltage	-0.3 to 15	V
$\mathrm{V}_{\text {O (off) }}$	Off state output voltage	15	V
10	Output sink current	40	mA
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	$\begin{aligned} & \text { at } 25^{\circ} \mathrm{C} \\ & \text { at } 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 940 \mathrm{~mW} \\ & 490 \mathrm{~mW} \end{aligned}$
T	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature range	-25 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CONNECTION DIAGRAM

vSS [1	28	Output bit 12
OUTPUT BIT 11 [2	27	Ooutput bit 13
OUTPUT BIT 10 [3	26	Joutput bit 14
OUTPUT BIT 9 [4	25	Joutput bit 15
OUTPUT BIT 8 [5	24	Joutput bit 16
OUTPUT BIT 7 [6	23	Ooutput bit 17
OUTPUT BIT 6 [7	22	Joutput bit 18
OUTPut bit 5 ¢ 8	21	Ooutput bit 19
OUTPUTBIT 4 [9	20	Joutput bit 20
OUTPUT Bit 3 -10	19	Joutput bit 21
OUTPUT Bit 2 [11	18	Joutput bit 22
OUTPut bit 1 [12	17	Joutput bit 23
BRIGHTNESS 13	16	DATA IN
$V_{\text {DO }}$	15	clock in

BLOCK DIAGRAM

Fig. 1

STATIC ELECTRICAL CHARACTERISTICS ($T_{\text {amb }}$ within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
VDD	Supply Voltage		4.75		13.2	V
IDD	Supply Current	$V_{D D}=13.2 \mathrm{~V}$			7	mA
V_{1}	Input Voltages Logical "0' Level Logical "1" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \leqslant V_{D D} \leqslant 5.25$ $\mathrm{V}_{\text {DD }}>5.25$	$\begin{gathered} -0.3 \\ 2.2 \\ v_{D D^{-2}} \end{gathered}$		$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	v v v
I_{B}	Brightness Input Current (note 2)		0		0.75	mA
V_{B}	Brightness Input Voltage (pin 13)	Input Current $=750 \mu \mathrm{~A}$	3		4.3	V
$\mathrm{V}_{\text {O(off) }}$	Off State Output Voltage			13.2	18	V
I_{0}	Output Sink Current (note 3) Segment OFF Segment ON	$\begin{aligned} \mathrm{V}_{\mathrm{O}}= & 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}= & 1 \mathrm{~V} \text { (note 4) } \\ & \text { Brightness } \operatorname{In} .=0 \mu \mathrm{~A} \\ & \text { Brightness } \operatorname{In} .=100 \mu \mathrm{~A} \\ & \text { Brightness } \operatorname{In} .=750 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 0 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 2.7 \\ & 15 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 4 \\ 25 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
${ }_{\text {f clock }}$	Input Clock Frequency		0		0.5	MHz
I_{0}	Output Matching ($n o t e 1$)				± 20	\%

Notes: 1. Output matching is calculated as the percent variation from $I_{M A X}+I_{\text {MIN }} / 2$.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to another.
3. Absolute maximum for each output should be limited to 40 mA .
4. The V_{O} voltage should be regulated by the user.

FUNCTIONAL DESCRIPTION

The M5480 is specifically designed to operate $3 \frac{1}{2}$ digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display.
Outputs change only if the serial data bits differ from the previous time.
Display brightness is determined by control of the output current for LED displays. A 1 nF capacitor should be connected to brightness control, pin 13, to prevent possible oscillations.

A block diagram is shown in figure 1 . The output current is typically 20 times greater than the current into pin 13, which is set by an external variable resistor.
There is an internal limiting resistor of 400Ω nominal value.

SCS-THOMSON
MJCROELECTRONDCS

FUNCTIONAL DESCRIPTION (continued)

Figure 2 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configurations. There is no clear for the master portion of the first register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 3 shows the timing relationships between Data, and Clock. A maximum clock frequency of 0.5 MHz is assumed.

Figure 4 shows the Output Data Format for the 5480 . Because it uses only 23 of the possible 35 outputs, 12 of the bits are "Don't Care".
For applications where a lesser number of outputs are used, it is possible to either increase the current per output, or operate the part at higher than $1 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$.
The following equation can be used for calculations.

$$
T_{j}=\left[\left(V_{\text {OUT }}\right)\left(I_{\text {LED }}\right)(\text { No. of segments })+V_{D D} \cdot 7 \mathrm{~mA}\right]\left(132^{\circ} \mathrm{C} / \mathrm{W}\right)+\mathrm{T}_{\text {amb }}
$$

where:
$\mathrm{T}_{\mathrm{j}}=$ junction temperature ($150^{\circ} \mathrm{C}$ max)
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$\mathrm{I}_{\text {LED }}=$ the LED current
$132^{\circ} \mathrm{C} / \mathrm{W}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{amb}}=$ ambient temperature

Fig. 2 - Input Data Format

LOAD
(INTERNAL) \qquad

RESET
(INTERNAL)

Fig. 3

> сьоск

DATA

Fig. 4 - Serial Data Bus/Outputs Correspondence

5451	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	START
5480	X	23	22	21	20	19	X	X	18	X	17	16	15	14	13	12	X	X	X	X	11	10	9	8	X	X	X	7	6	5	4	3	2	1	X	START

TYPICAL APPLICATION

BASIC $3^{1 ⁄ 2} 2$ Digit interface.

POWER DISSIPATION OF THE IC

The power dissipation of the IC can be limited using different configurations.
a)

In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated.

$$
R=\frac{V_{C}-V_{D \text { MAX }}-V_{\text {OUT MIN }}}{N_{\text {MAX }} \cdot I_{D}}
$$

The worst case condition for the device is when roughly half of the maximum number of segments are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings of the device.
In critical cases more resistors can be used in conjunction with groups of segments.
In this case the current variation in the single resistor is reduced and $\mathrm{P}_{\text {tot }}$ limited.
b)

In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly chosen.
The total power dissipation of the IC depends, in a first approximation, only on the number of segments activated.
c)

In this configuration $V_{O U T}+V_{D}$ is constant. The total power dissipation of the IC depends only on the number of segments activated.

M5481

LED DISPLAY DRIVER

- 2 DIGIT LED DRIVER (14 SEGMENTS)
- CURRENT GENERATOR OUTPUTS (NO RESISTOR REQUIRED)
- CONTINUOUS BRIGHTNESS CONTROL
- SEŔIAL dATA INPUT
- DATA ENABLE
- WIDE SUPPLY VOLTAGE OPERATION
- TTL COMPATIBILITY

Application examples:

- MICROPROCESSOR DISPLAYS
- INDUSTRIAL CONTROL INDICATOR
- RELAY DRIVER
- INSTRUMENTATION READOUTS

The M5481 is a monolithic MOS integrated circuit produced with a N -channel silicon gate
technology. It utilizes the M5450 die packaged in a 20-pin plastic packàge copper frame, making it ideal for a 2 -digit display. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected either to $V_{D D}$ or to a separate supply of 13.2 V maximum.

The M5481 is a pin-to-pin replacement of the NS MM 5481.

DIP-20 Plastic
(0.25)

ORDERING NUMBER: M5481 B7

ABSOLUTE MAXIMUM RATINGS

$V_{\text {DD }}$	Supply voltage	-0.3 to 15	V
V_{1}	Input voltage	-0.3 to 15	V
$\mathrm{V}_{\mathrm{O} \text { (off) }}$	Off state output voltage	15	V
lo	Output sink current	40	mA
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	at $25^{\circ} \mathrm{C}$	1.5 W
		at $85^{\circ} \mathrm{C}$	800 mW
T_{j}	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating temperature range	-25 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CONNECTION DIAGRAM

BLOCK DIAGRAM

Fig. 1

STATIC ELECTRICAL CHARACTERISTICS $\left(T_{\text {amb }}\right.$ within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {DD }}$	Supply Voltage		4.75		13.2	\checkmark
IDD	Supply Current	$V_{D D}=13.2 \mathrm{~V}$			7	mA
V ,	Input Voltages Logical "0' Level Logical "1" Level	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \leqslant V_{D D} \leqslant 5.25$ $\mathrm{V}_{\text {DD }}>5.25$	$\begin{gathered} -0.3 \\ 2.2 \\ V_{D D^{-2}} \end{gathered}$		$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	V V V
${ }^{\prime} B$	Brightness Input Current (note 2)		0		0.75	mA
V_{B}	Brightness Input Voltage (pin 9)	Input Current $=750 \mu \mathrm{~A}$	3		4.3	V
$\mathrm{V}_{\mathrm{O} \text { (off) }}$	Off State Output Voltage				13.2	V
10	Output Sink Current (note 3) Segment OFF Segment ON	$\begin{aligned} \mathrm{V}_{\mathrm{O}}= & 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}= & 1 \mathrm{~V} \text { (note 4) } \\ & \text { Brightness } \operatorname{In} .=0 \mu \mathrm{~A} \\ & \text { Brightness } \operatorname{In} .=100 \mu \mathrm{~A} \\ & \text { Brightness } \ln .=750 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 0 \\ 2 \\ 12 \end{array}$	$\begin{aligned} & 2.7 \\ & 15 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 4 \\ 25 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
$\mathrm{f}_{\text {clock }}$	Input Clock Frequency		0		0.5	MHz
${ }^{1} \mathrm{O}$	Output Matching (note 1)				± 20	\%

Notes: 1. Output matching is calculates as the percent variation from $I_{M A X}+I_{\text {MIN }} / 2$.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to another.
3. Absolute maximum for each output should be limited to 40 mA .
4. The V_{O} voltage should be regulated by the user.

FUNCTIONAL DESCRIPTION

The M5481 uses the M5450 die which is packaged to operate 2-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal.
The 35 data bits are latched after the 36th bit is complete, thus providing non--multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A 1 nF capacitor should be connected to brightness control, pin 9, to prevent possible oscillations.

A block diagram is shown in figure 1. The output current is typically 20 times greater than the current into pin 9 , which is set by an external variable resistor.
These is an internal limiting resistor of 400Ω nominal value.

FUNCTIONAL DESCRIPTION (continued)
Figure 2 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36 th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master slave configurations. There is no clear for the master portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 3 shows the timing relationships between Data, Clock and DATA ENABLE.
A maximum clock frequency of 0.5 MHz is assumed.
Figure 4 shows the Output Data Format for the M5481. Because it uses only 14 of the possible 35 outputs, 21 of the bits are "Don't Cares".
For applications where a lesser number of outputs are used it is possible to either increase the current per output or operate the part at higher than $1 \mathrm{~V} \mathrm{~V}_{\text {Out }}$.
The following equation can be used for calculations.

$$
T_{j} \equiv\left[\left(V_{\text {OUT }}\right)\left(I_{\text {LED }}\right)(\text { No. of segments })+V_{D D} \cdot 7 \mathrm{~mA}\right]\left(80^{\circ} \mathrm{C} / \mathrm{W}\right)+\mathrm{T}_{\mathrm{amb}}
$$

where: $\quad T_{i}=$ junction temperature $\left(150^{\circ} \mathrm{C}\right.$ max)
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$I_{\text {LED }}=$ the LED current $80^{\circ} \mathrm{C} / \mathrm{W}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{amb}}=$ ambient temperature

Fig. 2 - Input Data Format

LOAD
(INTERNAL) \qquad

RESET

Fig. 3

Fig. 4 - Serial Data Bus/Outputs Correspondence

| 5450 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | START |
| :---: |
| 5481 | X | X | X | X | 14 | 13 | X | X | X | X | 12 | 11 | 10 | 9 | x | X | X | X | 8 | 7 | 6 | 5 | X | X | X | X | 4 | 3 | 2 | 1 | X | X | X | X | START |

TYPICAL APPLICATION

BASIC electronically tuned TV system

POWER DISSIPATION OF THE IC

The power dissipation of the IC can be limited using different configurations.
a)

In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated.

$$
R=\frac{V_{C}-V_{D M A X}-V_{O M I N}}{N_{\text {MAX }} \cdot I_{D}}
$$

The worst case condition for the device is when roughly half of the maximum number of segments are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings of the device.
In critical cases more resistors can be used in conjunction with groups of segments. In this case the current variation in the single resistor is reduced and $P_{\text {tot }}$ limited.

SGS-THOMSON
b)

In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly chosen.
The total power dissipation of the IC is, in first approximation, depending only on the number of segments activated.
c)

In this configuration $\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}$ is constant. The total power dissipation of the IC depends only on the number of segments activated.

LED DISPLAY DRIVER

- 2 DIGIT LED DRIVER (15 SEGMENTS)
- CURRENT GENERATOR OUTPUTS (NO RESISTOR REQUIRED)
- CONTINUOUS BRIGHTNESS CONTROL
- SERIAL DATA INPUT
- WIDE SUPPLY VOLTAGE OPERATION
- TTL COMPATIBILITY

Application examples:

- MICROPROCESSOR DISPLAYS
- INDUSTRIAL CONTROL INDICATOR
- RELAY DRIVER
- INSTRUMENTATION READOUTS

The M5482 is a monolithic MOS integrated circuit produced with an N -channel silicon gate
technology. It utilizes the M5450 die packaged in a 20-pin plastic package copper frame, making it ideal for a 2-digit display. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected either to $V_{D D}$ or to a separate supply of 13.2 V maximum.

DIP-20 Plastic
(0.25)

ORDERING NUMBER: M5482 B7

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {DD }}$	Supply voltage	-0.3 to	15
$\mathrm{~V}_{1}$	Input voltage	V	
$\mathrm{V}_{\text {O (off) }}$	Off state output voltage	-0.3 to	15
I_{O}	Output sink current	V	
$\mathrm{P}_{\text {tot }}$	Total package power dissipation	15	V
		40	mA
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	at $25^{\circ} \mathrm{C}$	1.5 W
$\mathrm{~T}_{\text {op }}$	Operating temperature range	at $85^{\circ} \mathrm{C}$	800 mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	150	${ }^{\circ} \mathrm{C}$

[^10]
CONNECTION DIAGRAM

BLOCK DIAGRAM

Fig. 1

STATIC ELECTRICAL CHARACTERISTICS ($T_{a m b}$ within operating range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {DD }}$	Supply Voltage		4.75		13.2	V
${ }^{\text {IDD }}$	Supply Current	$V_{D D}=13.2 \mathrm{~V}$			7	mA
V_{1}	Input Voltages Logical "0" Level Logical " 1 " Level	$\begin{aligned} & \pm 10 \mu \mathrm{~A} \text { Input Bias } \\ & 4.75 \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 5.25 \\ & \mathrm{~V}_{\text {DD }}>5^{\circ}: 25 \end{aligned}$			$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$	V V V
${ }^{\prime} B$	Brightness Input Current (note 2)		0		0.75	mA
V_{B}	Brightness Input Voltage (pin 9)	Input Current $=750 \mu \mathrm{~A}$	3		4.3	V
$\mathrm{V}_{\mathrm{O} \text { (off) }}$	Off State Output Voltage				13.2	V
10	Output Sink Current (note 3) Segment OFF Segment ON	$\begin{aligned} \mathrm{V}_{\mathrm{O}}= & 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}= & 1 \mathrm{~V} \text { (note 4) } \\ & \text { Brightness } \operatorname{In}=0 \mu \mathrm{~A} \\ & \text { Brightness } \operatorname{In} .=100 \mu \mathrm{~A} \\ & \text { Brightness In. }=750 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 0 \\ 2 \\ 12 \end{array}$	$\begin{gathered} 2.7 \\ 15 \end{gathered}$	$\begin{array}{r} 10 \\ 10 \\ 4 \\ 25 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
$\mathrm{f}_{\text {clock }}$	Input Clock Frequency		0		0.5	MHz
10	Output Matching (note 1)				± 20	\%

Notes: 1. Output matching is calculated as the percent variation from $I_{M A X}+I_{M I N} / 2$.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to another.
3. Absolute maximum for each output should be limited to 40 mA .
4. The V_{O} voltage should be regulated by the user.

FUNCTIONAL DESCRIPTION

The M5482 uses the M5451 die which is packaged to operate 2-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading "1" followed by the 35 data bits allows data transfer without an additional load signal.
The 35 data bits are latched after the 36th bit is complete, thus providing non--multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A 1 nF capacitor should be connected to brightness control, pin 9, to prevent possible oscillations.

A block diagram is shown in fiqure 1. The output current is typically 20 tir, es greater than the current into pin 9, which is set by an external variable resistor.
There is an internal limiting resistor of 400Ω nominal value.

M5482

FUNCTIONAL DESCRIPTION (continued)

Figure 2 shows the input data format. A start bit of logical " 1 " precedes the 35 bits of data. At the 36 th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master slave configurations. There is no clear for the master portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 3 shows the timing relationships between Data and Clock.
A maximum clock frequency of 0.5 MHz is assumed.
Figure 4 shows the Output Data Format for the M5482. Because it uses only 15 of the possible 35 outputs, 20 of the bits are "Don't Cares".
For applications where a lesser number of outputs are used it is possible to either increase the current per output or operate the part at higher than $1 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$.
The following equation can be used for calculations.

$$
T_{j} \equiv\left[\left(V_{\text {OUT }}\right)\left(I_{\text {LED }}\right)(\text { No. of segments })+V_{D D} \cdot 7 \mathrm{~mA}\right]\left(80^{\circ} \mathrm{C} / \mathrm{W}\right)+\mathrm{T}_{\mathrm{amb}}
$$

where: $\quad \mathrm{T}_{\mathrm{j}}=$ junction temperature ($150^{\circ} \mathrm{C}$ max)
$\mathrm{V}_{\text {OUT }}=$ the voltage at the LED driver outputs
$I_{\text {LED }}=$ the LED current
$80^{\circ} \mathrm{C} / \mathrm{W}=$ thermal coefficient of the package
$\mathrm{T}_{\mathrm{amb}}=$ ambient temperature

Fig. 2 - Input Data Format

LOAD
(INTERNAL) \qquad

RESET
(INTERNAL)
S-5785/1

Fig. 3

Fig. 4 - Serial Data Bus/Outputs Correspondence

5451	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	START
5482	15	X	X	X	X	14	13	X	X	X	X	12	11	10	9	X	X	X	X	8	7	6	5	X	X	X	X	4	3	2	1	X	X	X	X	START

TYPICAL APPLICATION

BASIC electronically tuned TV system

POWER DISSIPATION OF THE IC

The power dissipation of the IC can be limited using different configurations.
a)

In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated.

$$
R=\frac{V_{C}-V_{D M A X}-V_{O M I N}}{N_{\text {MAX }} \cdot I_{D}}
$$

The worst case condition for the device is when roughly half of the maximum number of segments are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings of the device.
In critical cases more resistors can be used in conjunction with groups of segments. In this case the current variation in the single resistor is reduced and $\mathrm{P}_{\text {tot }}$ limited.
b)

In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly chosen.
The total power dissipation of the IC is, in first approximation, depending only on the number of segments activated.
c)

In this configuration $\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}$ is constant. The total power dissipation of the IC depends only on the number of segments activated.

SERIAL INPUT LCD DRIVER

- DRIVES UP TO 32 LCD SEGMENTS

- DATA TRANSFER: FIXED ENABLE MODE FOR DIP-40, ENABLE AND LATCH-MODE FOR 44PLCC
- INPUTS ARE CMOS, NMOS AND TTL COMPATIBLE
- CASCADABLE
- REQUIRES ONLY 3 CONTROL LINES
- ON CHIP OSCILLATOR
- CMOS TECHNOLOGY FOR WIDE SUPPLY VOLTAGE RANGE
- -40 TO $85^{\circ} \mathrm{C}$ TEMPERATURE RANGE

DESCRIPTION

The M8438A is a CMOS integrated circuit that drives an LCD display, usually under microprocessor control. The part acts as a smart peripheral that drives up to 32 LCD segments. It needs only three control lines due to its serial input construction. It latches the data to be displayed and relieves the microprocessor from the task of generating the required waveforms.
The M8438A can drive any standard or custom parallel drive LCD whether it be field effect or dynamic scattering. Several drivers can be cascaded, if more than 32 segments are to be driven. The AC frequency of the LCD waveforms can be supplied by the user or can be generated by attaching a capacitor to the OSC input which determines the frequency of an internal oscillator.
The M8438A is available in DIE form and assembled in 40 pin dual-in line plastic or 44 PLCC packages.

BLOCK DIAGRAM

OSC :Oscillator (capacitor or drive signal)
EL :Enable/Latch control input
MS :Mode select input (not available in 40 Pin DIL)
DI :Serial data input
DO :Serial data output
BP :Backplane output
SEG :Segment output signal

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
(VDD-VSS)	Supply voltage	-0.3 to +12	V
$\mathrm{~V}_{1}$	Input voltage	$\mathrm{VSS}-0.3$ to VDD +0.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	$\mathrm{VSS}-0.3$ to VDD +0.3	V
P_{D}	Power dissipation	250	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted) STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
$V_{D D}$	Supply Voltage		3	10	V
IDD	Supply Current	Oscillator $\mathrm{f}<15 \mathrm{kHz}$		60	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		10	$\mu \mathrm{A}$
V_{IH}	Input High Level		. $5 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}	V
$\mathrm{V}_{\text {IL }}$	Input Low Level CLOCK		0	. $2 \mathrm{~V}_{\mathrm{DD}}$	V
IIN	Input Current EL			± 5	$\mu \mathrm{A}$
C_{1}	Input Capacitance			5	pF
V_{IH}	Input High Level	Driven mode	. $9 \mathrm{~V}_{\mathrm{DD}}$		V
$\mathrm{V}_{\text {IL }}$	Input Low Level OSC	Driven mode		. $1 \mathrm{~V}_{\mathrm{DD}}$	V
IIN	Input Current	Driven mode		± 10	$\mu \mathrm{A}$
R_{ON}	Segment Output Impedance	$\mathrm{I}_{\mathrm{IL}}=10 \mu \mathrm{~A}$		40	$\mathrm{k} \Omega$
R_{ON}	Backplane Output Impedance	$\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$		3	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {OFF }}$	Output Offset Voltage	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$ between each SEG output and BP		± 50	mV
R_{ON}	Data Output Impedance	$\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$		3	k Ω

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
$t_{T R}$	Transition Time OSC	Driven mode		500	ns
t_{SD}	Data Set-up Time	Fig. 1 and 2	150		ns
t_{HD}	Data Hold Time	Fig. 1 and 2	50		ns
t_{SE}	EL Set-up Time	Fig. 1	100		ns
t_{HE}	EL Hold Time	Fig. 1	100		ns
t_{WE}	EL Pulse Width	Fig. 2	175		ns
t_{CE}	Clock to EL Time	Fig. 2	250		ns
$\mathrm{t}_{\text {pd }}$	DO Propagation Delay	Fig. 1, 2; $\mathrm{C}_{\mathrm{L}}=55 \mathrm{pF}$		500	ns
f	Clock Rate	$V_{\mathrm{DD}}=1050 \%$ duty cycle;	DC	1.5	MHz

FUNCTIONAL DESCRIPTION

LCD-AC-GENERATOR

This block generates a 50% duty cycle signal for the backplane output. The circuit can be used in two different modes: oscillator or driven.
OSCILLATOR MODE:
In this mode the backplane frequency is determined by the internal RC oscillator together with an 8 -stage frequency divider. For generating the backplane output signal of 50% duty cycle the oscillator frequency is divided by 256. The RC oscillator requires an external capacitor to be connected bet-
ween input OSC and VSS. A value of 18 pF gives a backplane frequency of $80 \mathrm{~Hz} \pm 30 \%$ at $\mathrm{VDD}=5 \mathrm{~V}$. The variation of the backplane frequency over the entire temperature and supply voltage range is $\pm 50 \%$.

DRIVEN MODE:
In this mode the signal at the backplane output BP is in phase with an external driving signal applied to input OSC. This mode is used to synchronize the LCD drive of two or more cascaded driver circuits.

FUNCTIONAL DESCRIPTION (continued)

DETECTION LOGIC

The circuit is able to distinguish between the conditions for oscillator or driven mode. If the circuit is to be in the oscillator mode, the OSC pin has a capacitor connected to it. The oscillator will start as soon as the supply voltage exceeds a certain minimim value. The signal at pin OSC swings within a range from $0.3 \mathrm{~V}_{D D}$ to $0.7 \mathrm{~V}_{\mathrm{DD}}$. If the circuit is to be in the driven mode, the OSC pin has to be forced to logic levels by an external source. The transition time between the logic levels must be short, so that the circuit does not react on the voltage level in between. In the driven mode the 8 -stage frequency divider is by-passed.

SEGMENT OUTPUTS

A logic 0 at the data input DI causes a segment output signal to be in phase with the backplane signal and turns the segment off. A logic 1 causes a segment output to be in opposite phase to the backplane signal and turns the segment on.

MICROPROCESSOR INTERFACE

The circuit can operate in two different data transfer modes: Enable mode and latch mode. One of either mode can be chosen with the mode select input MS. An internal pull up device is provided between this input and VDD. Enable mode is selected if MS is left open or connected to VDD.
Latch mode is selected if MS is connected to VSS. The input MS is not available, if the device is assembled in the 40 pin package, and is internally fixed to operate in ENABLE MODE.

ENABLE MODE

Fig. 3 shows a timing diagram of the enable mode. Data is serially shifted in and out of the shift register on the negative transition of the clock. Serial entry into the shift register is permitted when the enable/latch control EL is high. When EL is low it causes the shift register clock to be inhibited and the content of the shift register to be loaded into the latches that control the segment drivers.

LATCH MODE

Fig. 4 shows a timing diagram of the latch mode. Data is serially shifted in and out of the shift register on the negative transition of the clock. Serial entry into the shift register is permitted independently of the enable/latch control EL. When EL is high it causes a parallel load of the content in the shift register into the latches. It is accepta-
ble to tie the EL line high. Then the latches are transparent and only two lines, clock and data input, would then be needed for data transfer.

POWER-ON LOGIC

A power on reset pulse is generated internally when the supply voltage is being turned on. The generation of the reset pulse is level dependent and will occur even on a slowly rising supply voltage. The power on reset pulse resets all shift register stages and the latches that control the segment drivers. Therefore all segment outputs are initially in phase with the backplane output. This causes the display to be blanked and no arbitrary data to show up. This condition is maintained until data is shifted into the register and loaded into the latches.

CONDITIONS FOR POWER-ON RESET FUNCTION

The POR circuit triggers on the rising slope of the positive supply voltage $V_{D D}$. A reset pulse will be generated, if conditions a) through d) are given:
a) Level

Rising slope from V1 to V2
$\mathrm{V} 1 \max =0.5 \mathrm{~V}$
$\mathrm{V} 2 \min =3.0 \mathrm{~V}$
b) Rise time
$t_{r} \min =10 \mu \mathrm{~S}$
$\mathrm{t}_{\mathrm{r}} \max =1 \mathrm{~s}$

Rise function
The function of $V_{D D}$ between $t 1$ und $t 2$ may be nonlinear, but should not show a maximum and should not exceed $0.25 \mathrm{~V} / \mu \mathrm{s}$.
d) Recovery time

The minimum time between turn-off and turnon of $V_{D D}$ is 1 s .

CASCADE CONFIGURATION

Several LCD drivers can be cascaded if a liquid crystal display with more than 32 segments is to be connected.
The phase correlation between all segment outputs is achieved by using the second (and any other) device in the driven mode.
Two different cascade configurations can be chosen depending whether the LCD frequency is to be determined by the internal RC oscillator or by an external signal.
Figure 3 shows the connection scheme for a self oscillating configuration, figure 4 shows the connection of an externally controlled one.

Fig. 1 - Timing diagram of enable mode: set-up and hold time

Fig. 2 - Timing diagram of latch mode: set-up and hold time

M8438A

Fig. 3 - Timing diagram of enable mode: Serial load into SR and parallel transfer to LCD

Fig. 4 - Timing diagram of latch mode: Serial load into SR and parallel transfer to LCD

Fig. 5 - Cascade configuration, self oscillating

$5-8314$

Fig. 6 - Cascade configuration, drive by external signal

SERIAL INPUT LCD DRIVER

- DRIVES UP TO 32 LCD SEGMENTS
- DATA TRANSFER: LATCH MODE
- INPUTS ARE CMOS, NMOS AND TTL COMPATIBLE
- CASCADABLE
- REQUIRES ONLY 3 CONTROL LINES
- ON CHIP OSCILLATOR
- CMOS TECHNOLOGY FOR WIDE SUPPLY VOLTAGE RANGE
- -40 TO $85^{\circ} \mathrm{C}$ TEMPERATURE RANGE

DESCRIPTION

The M8439 is a CMOS integrated circuit that drives an LCD display, usually under microprocessor control. The part acts as a smart peripheral that drives up to 32 LCD segments. It needs only three control lines due to its serial input construction. It latches the data to be displayed and relieves the microprocessor from the task of generating the required waveforms.
The M8439 can drive any standard or custom parallel drive LCD whether it be field effect or dynamic scattering. Several drivers can be cascaded, if more than 32 segments are to be driven. The AC frequency of the LCD waveforms can be supplied by the user or can be generated by attaching a capacitor to the OSC input which determines the frequency of an internal oscillator.
The M8439 is available in DIE form and assembled in 40 pin dual-in line plastic.

Plastic DIP-40
ORDERING NUMBERS: M8439 B6 M8439 DIE 1

PIN CONNECTIONS

OSC :Oscillator (capacitor or drive signal)
EL :Enable/Latch control input
DI :Serial data input
DO :Serial data output
BP :Backplane output
SEG :Segment output signal

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
(VDD-VSS)	Supply voltage	-0.3 to +12	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	$\mathrm{VSS}-0.3$ to VDD +0.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	$\mathrm{VSS}-0.3$ to VDD +0.3	V
P_{D}	Power dissipation	250	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ unless otherwise noted)
STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
V_{DD}	Supply Voltage		3	10	V
IDD	Supply Current	Oscillator $\mathrm{f}<15 \mathrm{kHz}$		60	$\mu \mathrm{A}$
I_{0}	Quiescent Current	$V_{D D}=10 \mathrm{~V}$		10	$\mu \mathrm{A}$
V_{IH}	Input High Level		. $5 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}	V
V_{IL}	Input Low Level CLOCK		0	. $2 \mathrm{~V}_{\mathrm{DD}}$	V
IN	Input Current			± 5	$\mu \mathrm{A}$
Cl_{1}	Input Capacitance			5	pF
V_{IH}	Input High Level	Driven mode	. $9 \mathrm{~V}_{\mathrm{DD}}$		V
V_{IL}	Input Low Level	Driven mode		.1V $\mathrm{V}_{\text {D }}$	V
In	Input Current	Driven mode		± 10	$\mu \mathrm{A}$
R_{ON}	Segment Output Impedance	$\mathrm{I}_{\text {IL }}=10 \mu \mathrm{~A}$		40	k Ω
Ron	Backplane Output Impedance	$\mathrm{L}_{\mathrm{L}}=100 \mu \mathrm{~A}$		3	k Ω
V OFF	Output Offset Voltage	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$ between each SEG output and $B P$		± 50	mV
R_{ON}	Data Output Impedance	$\mathrm{L}_{\mathrm{L}}=100 \mu \mathrm{~A}$		3	k Ω

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
$\mathrm{t}_{\text {TR }}$	Transition Time OSC	Driven mode		500	ns
${ }^{\text {t }}$ SD	Data Set-up Time	Fig. 1 and 2	150		ns
$t_{\text {HD }}$	Data Hold Time	Fig. 1 and 2	50		ns
$t_{\text {SE }}$	EL Set-up Time	Fig. 1	100		ns
$t_{\text {HE }}$	EL Hold Time	Fig. 1	100		ns
twe	EL Pulse Width	Fig. 2	175		ns
t_{CE}	Clock to EL Time	Fig. 2	250		ns
t_{pd}	DO Propagation Delay	Fig. 1, 2; $\mathrm{C}_{\mathrm{L}}=55 \mathrm{pF}$		500	ns
f	Clock Rate	$V_{D D}=1050 \%$ duty cycle;	DC	1.5	MHz

FUNCTIONAL DESCRIPTION

LCD-AC-GENERATOR

This block generates a 50% duty cycle signal for the backplane output. The circuit can be used in two different modes: oscillator or driven.

OSCILLATOR MODE:

In this mode the backplane frequency is determined by the internal RC oscillator together with an 8 -stage frequency divider. For generating the backplane output signal of 50% duty cycle the oscillator frequency is divided by 256. The RC oscillator requires an external capacitor to be connected bet-
ween input OSC and VSS. A value of 18 pF gives a backplane frequency of $80 \mathrm{~Hz} \pm 30 \%$ at $\mathrm{VDD}=5 \mathrm{~V}$. The variation of the backplane frequency over the entire temperature and supply voltage range is $\pm 50 \%$.
DRIVEN MODE:
In this mode the signal at the backplane output BP is in phase with an external driving signal applied to input OSC. This mode is used to synchronize the LCD drive of two or more cascaded driver circuits.

FUNCTIONAL DESCRIPTION (continued)

DETECTION LOGIC

The circuit is able to distinguish between the conditions for oscillator or driven mode. If the circuit is to be in the oscillator mode, the OSC pin has a capacitor connected to it. The oscillator will start as soon as the supply voltage exceeds a certain minimim value. The signal at pin OSC swings within a range from $0.3 \mathrm{~V}_{\mathrm{DD}}$ to $0.7 \mathrm{~V}_{\mathrm{DD}}$. If the circuit is to be in the driven mode, the OSC pin has to be forced to logic levels by an external source. The transition time between the logic levels must be short, so that the circuit does not react on the voltage level in between. In the driven mode the 8 -stage frequency divider is by-passed.

SEGMENT OUTPUTS

A logic 0 at the data input DI causes a segment output signal to be in phase with the backplane signal and turns the segment off. A logic 1 causes a segment output to be in opposite phase to the backplane signal and turns the segment on.

MICROPROCESSOR INTERFACE

Fig. 2 shows a timing diagram.
Data is serially shifted in and out of the shift register on the negative transition of the clock.
Serial entry into the shift register is permitted independently of the enable/latch control EL. When EL is high it causes a parallel load of the content in the shift register into the latches. It is acceptable to tie the EL line high. Then the latches are transparent and only two lines, clock and data input, would then be needed for data transfer.

POWER-ON LOGIC

A power on reset pulse is generated internally when the supply voltage is being turned on. The generation of the reset pulse is level dependent and will occur even on a slowly rising supply voltage.
The power on reset pulse resets all shift register stages and the latches that control the segment dri-
vers. Therefore all segment outputs are initially in phase with the backplane output. This causes the display to be blanked and no arbitrary data to show up. This condition is maintained until data is shifted into the register and loaded into the latches.

CONDITIONS FOR POWER-ON RESET FUNCTION

The POR circuit triggers on the rising slope of the positive supply voltage V_{DD}. A reset pulse will be generated, if conditions a) through d) are given:
a) Level

Rising slope from V1 to V2
$\mathrm{V} 1 \max =0.5 \mathrm{~V}$

$\mathrm{V} 2 \mathrm{~min}=3.0 \mathrm{~V}$
b) Rise time
$t_{r} \min =10 \mu \mathrm{~S}$
$t_{r} \max =1 \mathrm{~s}$

c) Rise function

The function of V_{DD} between t 1 und t 2 may be nonlinear, but should not show a maximum and should not exceed $0.25 \mathrm{~V} / \mu \mathrm{s}$.
d) Recovery time

The minimum time between turn-off and turnon of $V_{D D}$ is 1 s .

CASCADE CONFIGURATION

Several LCD drivers can be cascaded if a liquid crystal display with more than 32 segments is to be connected.
The phase correlation between all segment outputs is achieved by using the second (and any other) device in the driven mode.
Two different cascade configurations can be chosen depending whether the LCD frequency is to be determined by the internal RC oscillator or by an external signal.
Figure 3 shows the connection scheme for a self oscillating configuration, figure 4 shows the connection of an externally controlled one.

Fig. 1 - Timing diagram of latch mode: set-up and hold time

Fig. 2 - Timing diagram of latch mode: Serial load into SR and parallel transfer to LCD

SGS-THOMSON

Fig. 3 - Cascade configuration, self oscillating

Fig. 4 - Cascade configuration, driven by external signal

S-8364

1024 BIT SERIAL S-BUS/I²C BUS NMOS EEPROM

- 10 YEAR DATA RETENTION
- SINGLE +5V POWER SUPPLY
- AUTOMATIC POWER DOWN
- INTERNAL HIGH VOLTAGE AND SHAPING GENERATOR
- SELF TIMED E/W OPERATION
- AUTOMATIC ERASE BEFORE WRITE
- 3-WIRES S-BUS (I2C BUS COMPATIBLE)
- 2 CHIP SELECT FOR SIMPLE MEMORY EXTENSION
- SELF INCREMENTING ADDRESS REGISTER
- MULTI-MODE ADDRESSING (WHEN MS $=\mathrm{V}_{1 \mathrm{H}}$ ALLOWING:
- PARTITIONING OF THE 1024 BITS INTO:
-128×8 bit
- 64×16 bit
- 32×32 bit
- OPCODE-LIKE ADDRESSES FOR:
- halting of a modify operation
- reading of the device "busy" status
- "block erase" operation
- reloading of the address register with the pre-increment value

DESCRIPTION

The M8571 is a 1024-bit Electrically Erasable Programmable Read Only Memory (EEPROM). It allows partitioning of the 1024 -bit into: 128×8-bit (bytes); 64×16-bit (words); 32×32-bit (pages).
The M8571 is manufactured with SGSTHOMSON's reliable floating gate technology. Addresses and data are transferred serially via a threeline bidirectional bus (S-BUS). When the MS pin is at V_{IL} the device works like the PCD 8571 CMOS RAM. The built-in address register is incremented automatically after writing or reading of each address partition.
The M8571 is designed and tested for applications requiring up to 10.000 erase/write cycles and data retention in excess than 100 years.
The M8571 is available in 8 -pin dual in-line plastic and ceramic packages.

PIN DESCRIPTION

- V ${ }_{\text {CC }}$; GND: Power supplies.
- SCL: Clock line for the S-BUS system.
- SEN: Start/Stop line for the S-BUS system.
- SDA: Data line for the S-BUS system (open drain).
- CS1/CS2: Chip Select inputs. In order to select a device the 2 bits (7 th and 6th) in the first byte

PIN NAMES

CS	CHIP SELECT INPUTS
SEN	START/STOP INPUT
SCL	CLOCK INPUT
SDA	DATA INPUT/OUTPUT
V $_{\text {CC }}$	POWER SUPPLY
GND	GROUND
MS	MODE SELECT INPUT

of the interface protocol, must match the CS values.

- MS: Mode Select input to determine the operating mode of the M8571 (this pin can recognize a non standard level, $\mathrm{V}_{\mathrm{IN}} \geqslant 7.5 \mathrm{~V}$, to enable "Block Erase" operations).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{1}	All Input or Output voltages with respect to ground	+6 to -0.6	V
$\mathrm{~T}_{\mathrm{amb}}$	Ambient temperature under bias /B1	$/ \mathrm{B} 6$	-10 to +80
		-50 to +95	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \mathrm{C}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(0^{\circ}\right.$ to $+70^{\circ} \mathrm{C}$, for standard Temperature $/-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ for extended Temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified)

DC AND OPERATING CHARACTERISTICS

Symbol	Parameter		Test Conditions	Values		
				Typ.	Max.	
I_{LI}	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			10	$\mu \mathrm{~A}$
I_{LO}	Output Leakage Current	$\mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V}$			10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC}}$ Current Active			10	20	mA
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage		-0.1		1.5	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		3.0		$\mathrm{~V}_{\mathrm{CC}}+1$	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V

AC CHARACTERISTICS (refer to S-BUS Timing Diagram)

Symbol	Parameter	Test Conditions	Values		Unit
			Min.	Max.	
${ }^{\text {f SCL }}$	SCL clock frequency		0	125	KHz
T_{1}	Tolerable spike width on bus			100	ns
$t_{\text {AA }}$	SCL low to SDA data out valid			3.5	$\mu \mathrm{S}$
$t_{\text {BUF }}$	Time the bus must be free before a new transmission can start		4		$\mu \mathrm{S}$
$t_{\text {HDSTA }}$	Start condition hold time		4		$\mu \mathrm{S}$
t LOW	Clock low period		4		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{HIGH}}$	Clock high period		4		$\mu \mathrm{S}$
tsu STA	Start condition set-up time (for a repeated start condition)		4		$\mu \mathrm{S}$
$t_{\text {HD DAT }}$	Data in hold time		0		$\mu \mathrm{S}$
${ }^{\text {tSU DAT }}$	Data in set-up time		250		ns
t_{R}	SDA and SCL rise time			700	ns
t_{F}	SDA and SCL fall time			300	ns
tsu sto	Stop condition set-up time		4		$\mu \mathrm{S}$

ERASE/WRITE CHARACTERISTICS

Symbol	Parameter	Test Conditions	Values			Unit
			Min.	Typ.	Max.	
t_{EW}	Erase/Write cycle time	Note 1		6	10	ms
t_{BE}	Block erase time		5		10	ms

Note 1: The t_{EW} is the same for byte, word, and page configuration

S-BUS TIMING DIAGRAM

S-BUS DESCRIPTION

The S-BUS is a three-wire bidirectional data-bus with functional features similar to the $I^{2} \mathrm{C}$ bus. In fact the S-BUS includes decoding of START/STOP conditions and the arbitration procedure in case of multimaster system configuration. Both different transmission modes are shown in figures 2 a and $\mathrm{2b}$. As it can be seen, the SDA line, in the ${ }^{12} \mathrm{C}$ bus, represents the AND combination of SDA and SEN lines in the S-BUS.
If the SDA and the SEN lines of the S-BUS are short-circuit connected, they appear as the SDA line of $I^{2} \mathrm{C}$ bus.
The START/STOP conditions (respectively points 1 and 6) are detected (by the peripherals designed to work with S-BUS) by a transition of the SEN line $(1-->0 / 0-->1)$ while the SCL line is at the high level.

The SDA line is only allowed to change during the time the SCL line is low (points 2, 3, 4, 5). After the START information (point 1) the SEN line returns to the high level and remains unchanged for all the time the transmission is performed.
When the transmission is completed (point 5) the SDA line is set to high level and, at the same time, the SEN line returns to the low level in order to supply the STOP information with a low to high transition; while the SCL line is at high level.
On the S-BUS, as on the I ${ }^{2} \mathrm{C}$ bus, each byte of eight bits is followed by one acknowledge bit which is a high level put on the SDA line by transmitter. A peripheral that acknowledges has to pull down the SDA line during the acknowledge clock pulse as shown in Figure 3.

FIG. 1 - S-BUS CONFIGURATION

SCL

SOA

SEN

FIG. 2-12C BUS CONFIGURATION

SCL

SDA

FIG. 3 - ACKNOWLEDGE

S-BUS DESCRIPTION (Continued)

An addressed receiver has to generate an aknowledge after the reception of each byte; otherwise the SDA line remains at the high level during the ninth clock pulse time.
In this case the master transmitter can generate the STOP information, via the SEN line, in order to abort the transfer.

COMPATIBILITY S-BUS/I²C BUS.
Using the S-BUS protocol it's possible to implement "mixed" system including S-BUS $/ I^{2} \mathrm{C}$ bus peripherals.
In order to have the compability with the $I^{2} \mathrm{C}$ bus peripherals, the devices including the S-BUS interface must have their SDA and SEN pins connected together as shown in figures 5 a and 5 b . It is also possible to use mixed S-BUS/I ${ }^{2} \mathrm{C}$ bus protocols as showed in figure 5c. S-BUS peripherals will only react to S-BUS protocol signals, while $I^{2} \mathrm{C}$ bus peripheral will only react to $I^{2} \mathrm{C}$ bus signals.

FIG. 4 - SYSTEM WITH S-BUS PERIPHERALS

Fig. 5 - SYSTEM WITH '"MIXED' S-BUS/I²C BUS PERIPHERAL

S-BUS DESCRIPTION (Continued)

MULTIMASTER SYSTEM.
The S-BUS allows the implementation of the multimaster configuration (two or more master stations and slave peripherals). In such a system if two or
more transmitter, through the SEN line (SEN $1 \rightarrow 0$ while $S C L=1$), require the bus at the same time, the arbitration procedure is performed as in the ${ }^{2} \mathrm{C}$ bus.

FIG. 6 - MULTIMASTER SYSTEM

S-BUS INTERFACE

The serial, 3-wire, interface (SDA, SCL and SEN wires are open drain to allow "wired-and" operation) connects several devices which can be divided into "masters" and "slaves". A master is a device that can manage a data transfer; as such, it drives the Start and Stop (SEN), the clock (SCL) and the data (SDA) lines. The bus is "multimaster" in that more master devices can access it; arbitration procedures are provided in the bus management. Obviously, at least one master must be present on the bus. The M8571 is a hardware slave device. It can only answer the requests of the masters on the bus; therefore SDA is an I/O, while SCL and SEN are inputs. The S-BUS allows two operating speed: high (125 KHz) and low (2 KHz). The M8571 can work at both high and low speed.

START/STOP ACKNOWLEDGE

The timing specs of the S-BUS protocol require that data on the SDA and SEN lines be stable during the "high" time of SCL. Two exceptions to this rule are foreseen and they are used to signal the start and stop condition of a data transfer.
A "high to low" transition on the SEN line, with SCL "high", is a start (STA).
A "low to high" transition on the SEN line, with SCL "high", is a stop.
Data are transmitted in 8 -bit groups; after each group, a ninth bit is interposed, with the purpose of acknowledging the transmitting sequence (the transmitter device place a " 1 "' on the bus, the acknowledging receiver a " 0 ").

INTERFACE PROTOCOL

The following description deals with 8-bits data transfers, so that it fully fits when the memory is "seen" as 128×8 array. Although the basic structure of the protocol remains the same the behaviour of the M8571 in 16 or 32 bit data transfers is somewhat different. The differencies are descibed later on.

The interface protocol comprises:

- A start condition (STA)
- A "chip address" byte, trasmitted by the master, containing two different informations.
a) the code identifying the device the master wants to address (this information is present in the first seven bits); 4bits indicates the type of the device (i.e. memory, tuning, A/D, etc.; the code for memories is 1010); then
there is a bit at low level and 2bits that are the Chip Select configuration that must match the hardware present on the 2 CS pins (this is the case of a device with 2 Chip Select like the M8571, for M8571 CS1 and CS2 must match respectively the 7th and the 6th bit of the byte).
b) the direction of transmission on the bus (this information is given in the $8^{\text {th }}$ bit of the byte); " 0 " means "Write", that is from the master to the slave, while " 1 " means "Read". The addressed slave must always acknowledge.
The sequence, from now on, is different according to the value of the R/W bit.

1) $R / \bar{W}=$ " 0 " (WRITE)

In all the following bytes the master acts as transmitter; the sequence follows with:
a) a "word address" byte containing the address of the selected memory word and/or opcode (see word address/opcode section).
b) a "data"' byte which will be written at the address given in the previous byte.
c) further data bytes which, due to the self incrementing address register, will be written in the "next" memory locations. At the end of each byte the M8571 acknowledges.
d) a stop condition (STO)

After receiving and acknowledging a data byte or a set of data bytes to be written, the M8571 automatically erases the addressed memory locations and rewrites them with the received data. Since the E/W time for an EEPROM is in the order of 10 ms , the next operation can take place only after $t_{E / W}$ (what the master can and must do is described in the E/W TIME SPECS section).
An example of a write sequence is given below:
0. STA

1. 10100ss0 A (M8571 acknowledges only if "ss" matches its CS code)
2. xyyyyyyy A
3. zzzzzzzzA (at this moment the M8571 starts writing zzzzzzzz at the address yyyyyyy)
4a. t tettet H (the new data is not acknowledged while the M8571 is busy)
4b. $\operatorname{ttt} \mathrm{tt}^{2} \mathrm{t}$ A (now the M8571 writes data tttttttat address yyyyyyy+1)
The write sequence can be composed by an unlimited number of data bytes.

MASTER TRANSMITS TO SLAVE RECEIVER (WRITE MODE)

2) $R / \bar{W}=$ " 1 " (READ)

In this case the slave acts as transmitter and, therefore, the transmission changes direction. The second byte of the sequence will be sent by the M8571 and it will contain the data present in the memory present at the address pointed by the "current" value of the address register. Following bytes will be the data present at the "next" addresses. At the end of each byte, the M8571 places a " 1 " on the bus during acknowledge time and waits for the master to send a " 0 " (meaning "acknowledge"). When the master want to stop the transfer, it gives a "1" (not "acknowledged"): as a consequence, the M8571 leaves the bus high so that the master can give the stop condition. An example is given below:
0. STA

1. 10100 ss 1 A
2. $x x x x x x x x$ H ($x x x x x x x x$ is the data present in the currently addressed memory location; H is the high level placed on the bus by M8571)

3) MIXED SEQUENCE

When the master wants to read a memory location different from the one currently addressed, a longer sequence is needed, which includes the writing of the address register. The sequence is as follows:
0. STA

1. 10100 ss0 A
2. xyyyyyyy A
3. STA
4. 10100 ss 1 A
5. $\mathrm{xxxxxxxx} H$

Where $x x x x x x x x$ is the data present in the $y y$ yyyyy memory location
As appears from the example, a start condition can be given without a previous stop condition.

MASTER READS SLAVE IMMEDIATELY AFTER FIRST BYTE (READ MODE)

MASTER READS AFTER SETTING WORD ADDRESS (WRITE WORD ADDRESS; READ DATA)

4) E/W TIME SPECS

After the beginning of an E/W operation at a certain location the M8571 is "busy' until the operation is finished. To show this busy state, the M8571 refuses acknowledge of the next data bytes to remove the M8571 from the "busy" state a data byte must be sent after the tew is over. This "dummy" byte will not be acknowledged and written. The data to be written in the next address must be sent again and will be acknowledged and written by the M8571.
The master device that wants to use the self increment feature must therefore keep sending the next data byte and monitoring the acknowledge bit until it becomes active.
The communication sequence on the bus becomes, therefore.
0. STA

1. 10100ss0 A
2. xyyyyyyy A
3. zzzzzzzzA

> 4a. $\mathrm{ttttt}^{\mathrm{tt} \mathrm{H}}$ (not acknowledged when $t<t_{E N}$)
after tew:
4b. $\mathrm{tttthtth}^{\text {(not acknowledged, the M8571 }}$ is removed from the "busy" state)
4c. $\operatorname{ttt} t \mathrm{tt} \mathrm{t}$ A (acknowledged, the M8571 starts writing data ttttttt at address yyyyyyy+1)

Now the M8571 will write data ttttttt at address yyyyyyy+1

This usage mode keeps the bus unavailable for other tasks during the $t_{E N W}$ time. It is possible to free the bus by giving a stop condition (this condition stops only the bus sequence, not the E/W operation). After a stop condition the access sequence must be started again from the beginning (start).
The E/W circuitry in the M8571 performs automatically the "Erase before Write" sequence required by the technology. Furthermore, both erase and write last all (and only) the time needed for the required modification to happen (this is accomplished by an intelligent "compare and retry" circuitry). This optimizes E/W time but may have the drawback of "locking" the circuitry in case a memory location "breaks down" and can not be modified (in which case $t_{E / W}$ becomes infinite).
To overcome this drawback, it has been made possible to force the circuit out of the E/W status, that is to halt a modify operation. Two different modes are provided, depending on the value of the MS control pin:

$$
M S \leqslant V_{\mathrm{IL}}
$$

The E/W operation is unconditionally stopped by a following valid chip address byte.

$$
\mathrm{MS} \geqslant \mathrm{~V}_{\mathrm{IH}}
$$

An opcode is provided to halt the operation (see "EEPROM mode" section).

5) WORD ADDRESS/OPCODE

The second byte transmitted in a write sequence can assume several meaning according to the value of the MS pin. In any case, it carries all the informations the M8571 needs to perform the desired operation.
MS can assume three different values:

- $\mathrm{V}_{\text {IL }}\left(\mathrm{V}_{\text {IN }} \leq 1.5 \mathrm{~V}\right)$
$-\mathrm{V}_{\mathrm{IH}}\left(3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}+1\right)$
$-\mathrm{V}_{\mathrm{H}}\left(9.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 12 \mathrm{~V}\right)$

With regards to the value of MS, the possible behaviours are:
a) $\mathrm{MS}=\mathrm{V}_{\mathrm{IL}}$ ('RAM mode'')

In this mode the M8571 is compatible with the PCD 8571 RAM (128×8 bit). The second byte of the sequence gives the address of the word to be selected, both for write and for read:

1. xyyyyyyy A
yyyyyyy is the word address; the first bit
is "don't care; the main feature of this mode are the following:
. the memory appears as an 128×8 array
. only "byte operations are allowed;
. E/W operations are stopped by the following accesses.
b) $\mathrm{MS}=\mathrm{V}_{\mathrm{IH}}$ (EEPROM mode)

The word address-byte now must be regarded as mixed address-opcode byte; more precisely, the first three bits indicate the meaning to be attributed to the remainder of the byte. The possible combinations are:

Oyyyyyy
10yyyyyy
110yyyyy
11111111
11100000
11100100
11110001
byte-mode (8 bits) RD or E/W at address yyyyyyy
word-mode (16 bits) RD or E/W at address yyyyy
page-mode (32 bits) RD or E/W at address yyyyy
E/W cycle stop
Read busy bit
Block Erase (needs VH on MS pin, see also BLOCK mode)
1110001 Reload Address Register with pre-increment data

In this mode, as well as in RAM mode, the "busy" information is transmitted from the M8571 to the
master using the "no acknowledge"' format. Furthermore, "Read busy bit" instruction, which is always answered by the M8571 no matter what it is doing, allows the master to know wheter the "no acknowledge" condition comes from a "busy" status or from a malfunction; the "busy"' status is signalled by the byte 11100101; the "no busy" by 00011010.

Also in this mode the self-incrementing address register is available, both for read and for write, for each word length.
The M8571 is provided with a double register for storing the address that is sent during the second byte of a write sequence.
When the self-incrementing is used, this address becomes the "starting address" of the modified string of bytes. The "reload" instruction allows the master to recover this address if it wants to read the modified string from the beginning, without the need for external storage of the "starting address".
c) $M S=V_{H}$ (BLOCK mode)

The only instruction that can be executed in this mode is "Block Erase", which is useful to erase the whole array in a single shot. This can occur either during testing or at the set-up of a new system, when the whole memory must be written. When this instruction is given, the self-timing circuitry is disabled, so that the operation must be stopped (after $t_{B E}$) by the master executing a START on the bus. The "enable" feature obtained with the non standard level on MS was added to avoid unintentional clearing of the whole memory, whenever the "Block Erase" code was erroneously sent.

6) 16-bit or 32-bit OPERATIONS

The obvious advantage of an operation on 16 bits (a word) or on 32 bits (a page) is that the E/W time is 10 ms for the whole word or page. When a word or page mode operation is required, the device behaviour undergoes some slight modifications:

The M8571 waits for receiving all the bytes that compose the word or the page before starting an E/W operation;

- The self-incrementing address register keeps into account the word or page lenght so that, at the end of a word or page mode operation, it points to the next word or page.

ORDERING INFORMATION

Port Number	Max Frequency	Supply Voltage	Temp. Range	Package.
M8571B1	125 KHz	$5 \mathrm{~V} \pm 10 \%$	0° to $+70^{\circ} \mathrm{C}$	DIP- 8
M8571B6	125 KHz	$5 \mathrm{~V} \pm 10 \%$	-40° to $+85^{\circ} \mathrm{C}$	DIP-8

CLOCK/CALENDAR WITH SERIAL ${ }^{2} \mathrm{C}$ BUS

- 32kHZ QUARTZ TIMEBASE
- COUNTERS FOR SEC; MIN; HRS; DAY; MONTH OR SEC; MIN; HRS; DAY OF WEEK
- EXTREMELY LOW POWER CONSUMPTION IN STANDBY OPERATION (TYP. $5 \mu \mathrm{~A}$)
- 8 PIN DIP PACKAGE
- INTEGRATED POWER FAIL DETECTION AND POWER-ON RESET

- PULSE OUTPUT FOR SECONDS

The integrated circuit M8716A contains a digital clock with a 32 kHz quartz oscillator and a serial bus interface (${ }^{2} \mathrm{C}$ BUS). The circuit is programmable to count seconds, minutes, hours, days and month or seconds, minutes, hours and day of the week.
This circuit is intended for use within a microcomputer system.
The M8716A is available in a 8 lead dual in-line plastic package.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	Supply voltage	-0.3 to +10	V
$\mathrm{~V}_{\mathrm{I}} \mathrm{N}_{\mathrm{O}}$	Input voltage, output voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
P_{D}	Total package power dissipation	300	mW
$\mathrm{~T}_{\mathrm{stg}}$	Storage temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating temperature	0 to +70	${ }^{\circ} \mathrm{C}$

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}: \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$; $\mathrm{F}_{\mathrm{OSC}}=32.768 \mathrm{kHz}$ if not otherwise specified).

Symbol	Parameter	Test Condition	Values			Unit
			Min.	Typ.	Max.	
V_{DD}	Supply voltage		4.5	5.0	5.5	V
IDD	Supply current				1	mA
$\mathrm{V}_{\text {BAT }}$	Supply voltage (standby operation)	No Data Transfer	2.0	2.4		V
$\mathrm{I}_{\text {bat }}$	Supply current (standby operation)	Test circuit $\mathrm{V}_{\mathrm{BAT}}=2.4 \mathrm{~V}$		5	15	$\mu \mathrm{A}$
IN	Input current SDA; SCL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			5	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$			-5	
lout	Output current SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	4			mA
Iout	Output current Fout, SEC	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$	0.1			mA
		$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}$	-0.1			
$\mathrm{C}_{\text {OUt }}$	Oscillator output-capacitance		16	20	24	pF

GENERAL DESCRIPTION

The integrated circuit M8716A contains a digital clock counting seconds, minutes, hours, days and months or seconds, minutes, hours and days of the week as an option. A 32.768 kHz quartz oscillator serves as time-base. This circuit is intended for use within a microcomputer system.
Writing (time setting) and reading of the counters is done via a serial interface (${ }^{2} \mathrm{C}$ BUS). The microcomputer is used for controlling the data transfer and for generating the signals to drive a (7 segment) display. If a data transfer takes place between the M8716A and the microprocessor, a 5 V supply voltage has to be provided. During standby the circuit is supplied by two NiCd-cells at a very low power consumption.

FUNCTIONAL DESCRIPTION

DIVIDERS AND COUNTERS

The oscillator frequency of 32.768 kHz is first divided by 256 and then again by 128. The resulting output frequency of 1 Hz then serves as clock pulse for the time counters.
The content of the counters for sec, min, hr, day and month of sec, min, hr, and day of week can be read or modified (written) via the $I^{2} \mathrm{C}$ BUS interface. During a "write" cycle only the content of the counters starting from the minutes counter is modified: the seconds counter and the seconds divider block are reset to zero.
Selection between "calendar" operation (display of day and month) and "day of week" operation (display of day of week 1 to 7) is done as follows: If the second bit in the first data byte is " 1 " during a "write" operation, the counters are set for the mode "day of week".
If this bit remains at " 0 " during a "write" operation the calendar mode is selected. In this case, carry of the "day" counter is performed automatically at positions 28,30 or 31 , depending on the month. In case of a leap year the day 29 (of Fe bruary) can be set by a "write" operation.
In this case, carry takes place on 3-1 (March 1st).

${ }^{12}$ C BUS INTERFACE

GENERAL DESCRIPTION
Data transfer from the circuit M8716A to the microcomputer (reading) and vice versa (writing) takes place via the two lines SDA and SCL. Address and data are transmitted on SDA while at the same time clock pulses have to be provided on SCL for synchronization by the microcomputer.

${ }^{12} \mathrm{C}$ BUS INTERFACE ADDRESSING

 (see Fig. 1 to 3)A data transfer (reading or writing) is initiated by a start condition (" 1 " - > " 0 '" transition on SDA while SCL remains at " 1 ') and a subsequent address byte. By assigning a unique address to each circuit, several circuits may be connected to the ${ }^{2} \mathrm{C}$ BUS without interfering each other.
If the M8716A recognizes an address transmitted on the bus as its own address, the data transfer starts. The least significant bit of the address word controls the direction of data transfer ($\mathrm{R} / \overline{\mathrm{W}}$-control). If it is set to " 0 ", data is transferred from the microcomputer to the circuit, i.e. the content of the time counters is modified. If it is set to " 1 " the time information is read out by the microcomputer. The clock frequency (SCL) may be from DC up to 100 kHz . If a carry of the time counter should take place during a data transfer, the carry will be stored and made after the data transfer. As only one carry can be stored, the whole data transfer must not take a time longer than one second.

SYNCHRONIZATION

For easy of synchronization with an external time reference in case of small deviations ($<+/-$ 30 sec), only the address (with $\mathrm{R} / \overline{\mathrm{W}}=$ ' 0 '") has to be transmitted, followed immediately by a stop condition. No data is transmitted (see Fig. 4). The second divider block (128 Hz to 1 Hz) and the seconds counter are reset. If the seconds counter was at position $30 \ldots 59$, a carry to the minutes counter takes place in addition to the reset.

POWER FAIL

In case of total power fail an internal register is set to " 0 ". This register disables the data of the watch. So in a read cycle the $\mu \mathrm{P}$ recognizes " 0 " of the watch content. This is a unique situation appearing only in case of a power fail. The power fail register is automatically reset by the first "write" command.

PULSE OUTPUTS Fout, SEC

The output frequency of the first divider block (128 Hz) is provided on the pin FOUT and facilitates adjustment of the oscillator frequency without loading (and detuning) the oscillator.
The output SEC $(1 \mathrm{~Hz})$ may be utilized for a blinking second indication.
Both pins Fout and SEC can also be used as input during the functional test. A Low impedance (50 to 100Ω) external signal source which overrides the internal output buffer can drive the circuit at a frequency higher than the normal rate. This allows to reduce test time.

Fig. 1-Complete timing for an address/-read; resp. address/-write cycle

Fig. 2a - Data format for one cycle address/-read (with calendar)

Fig. 2b - Data format for one cycle address/-write (with calendar)

Fig. 3a - Data format for one cycle address/-read (with day of week indication)

Fig. 3b - Data format for one cycle address/-write (with day of week indication)

Fig. 4 - Data format for synchronisation (deviation $<30 \mathrm{sec}$)

Fig. 5 - Test circuit

Fig. 6 - Typical application

256 BIT (16×16) SERIAL NMOS EEPROM

- SINGLE SUPPLY READ/WRITE/ERASE OPERATIONS ($5 \mathrm{~V} \pm 10 \%$)
- TTL COMPATIBLE
- 16×16 READ/WRITE MEMORY
- LOW STANDBY CURRENT
- LOW COST SOLUTION FOR NON VOLATILE ERASE AND WRITE MEMORY
- RELIABLE FLOTOX PROCESS
- EXTENDED TEMPERATURE RANGE

B
DIP-8 (Plastic Package)

M
SO8
(Plastic Micropackage)
(Ordering Information at the end of the datasheet)

PIN NAMES

CS	CHIP SELECT
SK	SERIAL DATA CLOCK
DI	SERIAL DATA INPUT
DO	SERIAL DATA OUTPUT
$V_{C C}$	POWER SUPPLY
GND	GROUND

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Values	Unit
V_{1}	Voltage Relative to GND	+6 V to -0.3	V
$\mathrm{~T}_{\mathrm{amb}}$	Ambient Operating Temperature: standard		
extended			

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability (except for $\mathrm{T}_{\mathrm{amb}}$)

ELECTRICAL CHARACTERISTICS $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$, for standard Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for extended Temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{C C}$	Operating Voltage		4.5		5.5	V
lcc1	Operating Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CS}=1$		1.5	5	mA
ICC2	Standby Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CS}=0$		1.2	3	mA
ICC3	E/W Operating Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		2.5	6	mA
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \hline \end{aligned}$	Input Voltage Levels		$\begin{array}{r} -0.1 \\ 2.0 \\ \hline \end{array}$		$\begin{gathered} 0.8 \\ v_{C C}+1 \end{gathered}$	V
V_{OL} V_{OH}	Output Voltage Levels	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \hline \end{aligned}$	2.4		0.4	V
ILI	Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{CS}=0$			10	$\mu \mathrm{A}$
	SK Frequency				250*	kHz
	SK Duty Cycle		25		75	\%
${ }^{t} \mathrm{CSS}$ t_{CSH} $t_{\text {DIS }}$ $t_{\text {DIH }}$	Input Set-Up and Hold Times: CS DI		$\begin{gathered} 0.2 \\ 0 \\ 0.2 \\ 0.2 \end{gathered}$			$\mu \mathrm{S}$
$\begin{aligned} & \mathrm{t}_{\text {PD1 }} \\ & \mathrm{t}_{\text {PDO }} \end{aligned}$	Output Delay DO	$\begin{aligned} & \mathrm{CL}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{E} / \mathrm{W}}$	Erase/Write Pulse Width		5		30	ms
tcs	Min CS Low Time (Note 1)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			1	$\mu \mathrm{S}$

* The maximum SK Frequency is 500 KHz when SK Duty Cycle is as 50%

Note: 1. CS must be brought low for a minimum of $1 \mu \mathrm{~S}\left(\mathrm{~V}_{\mathrm{CS}}\right)$ between consecutive instruction cycles.

FUNCTIONAL DESCRIPTION

The input and output pins are controlled by separate serial formats. Seven 9-bit instruction can be executed. The instruction format as a logical "1" has a start bit, four bits as an op code, and four bits of address. The on-chip programming voltage generator allows the user to use a single power supply (V_{CC}). The serial output (DO) pin is valid only during the read mode. During all other modes the DO pin is in high impedance state, eliminating bus contention.

READ

The read instruction is the only instruction which outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the memory register into a 16 bit serial out shift register. A dummy bit (logical " 0 ") preceds the 16 bit data output string. The output data changes during the high state of the system clock.

ERASE/WRITE ENABLE AND DISABLE

Programming must be preceded once by programming enable (EWEN) instruction. Programming remains enabled until a programming disable (EWDS) instruction in executed. The programming disable instruction is provided to protect against accidental data disturbance.
Execution of a READ instruction is independent of both EWEN and EWDS instructions.

ERASE

Like most EEPROMs, the register must first be erased (all bits set to 1s) before the register can
be written (certain bits set to 0s). After an ERASE instruction is input, CS is dropped low. This falling edge of CS determines the start of programming. The register at the address specified in the instruction is then set entirely to 1 s . When the erase/write programming time ($\mathrm{t}_{\mathrm{E} / \mathrm{W}}$) constraint has been satisfied, CS is brought up for at least one SK period. A new instruction may then be input, or a low power standby state may be achieved by dropping CS low.

WRITE

The WRITE instruction is followed by 16 bits of data which are written into the specified address. This register must have been previously erased. Like any programming mode, erase/write time is determined by the low state of CS following the instruction. The on chip high voltage section only generates high voltage during this programming mode, which prevents spurious programming during other modes. When CS rises to V_{IH}, the programming cycles ends. All programming mode should be ended with CS high for one SK period, or followed by another instruction.

CHIP WRITE

Entire chip can be written for ease of testing. Writing the chip means that all registers in the memory array have each bytes set as the byte sent with the instruction.

CHIP ERASE

Entire chip erasing is provided for ease of programming. Erasing the chip means that all registers in the memory array have each bit set to a 1. Each register is then ready for a WRITE instruction.

INSTRUCTION SET

Instruction	SB	Op Code	Address	Data	Comments
READ	1	$10 \times X$	A3A2A1A0		Read register A3A2A1A0
WRITE	1	$01 \times X$	A3A2A1A0	D15-D0	Write register A3A2A1A0
ERASE	1	$11 \times X$	A3A2A1A0		Erase register A3A2A1A0
EWEN	1	0011	$\times \times \times \times$		Erase/write enable
EWDS	1	0000	$\times \times \times \times$		Erase/write disable
ERAL	1	0010	$\times \times \times \times$		Erase all registers
WRAL	1	0001	$\times \times \times \times$	D15-DO	Write all registers

TIMING DIAGRAMS

ORDERING INFORMATION

Part Number	Max Frequency	Supply Voltage	Temp. Range	Package
M9306B1	250 KHz	$5 \mathrm{~V} \pm 10 \%$	0° to $+70^{\circ} \mathrm{C}$	DIP-8
M9306B6	250 KHz	$5 \mathrm{~V} \pm 10 \%$	-40° to $+85^{\circ} \mathrm{C}$	DIP-8
M9306M1	250 KHz	$5 \mathrm{~V} \pm 10 \%$	0° to $+70^{\circ} \mathrm{C}$	SO8
M9306M6	250 KHz	$5 \mathrm{~V} \pm 10 \%$	-40° to $+85^{\circ} \mathrm{C}$	SO8

M145026/7/8

REMOTE CONTROL ENCODER/DECODER CIRCUITS

- M145026 ENCODER
- M145027/M145028 DECODERS
- MAY BE ADDRESSED IN EITHER BINARY OR TRINARY
- TRINARY ADDRESSING MAXIMIZES NUMBER OF CODES
- INTERFACES WITH RF, ULTRASONIC, OR INFRARED TRANSMISSION MEDIAS
- DOUBLE TRANSMISSIONS FOR ERROR CHECKING
- 4.5V TO 18V OPERATION
- ON-CHIP R/C OSCILLATOR, NO CRYSTAL REQUIRED
- HIGH EXTERNAL COMPONENT TOLERANCE, CAN USE 5\% COMPONENTS
- STANDARD CMOS B-SERIES INPUT AND OUTPUT CHARACTERISTICS
- APPLICATIONS INCLUDE GARAGE DOOR OPENERS, REMOTE CONTROLLED TOYS, SECURITY MONITORING, ANTITHEFT SYSTEMS, LOW END DATA TRANSMISSIONS, WIRE LESS TELEPHONES

The M145026 encodes nine bits of information and serially transmits this information upon receipt of a transmit enable, $\overline{T E}$, (active low) signal. Nine inputs may be encoded with trinary
data (0,1 , open) to allow $3^{9}(19,683)$ different codes.

Two decoders are presently available. Both use the same transmitter - the M145026. The decoders will receive the 9 -bit word and will interpret some of the bits as address codes and some as data. The M145028 treats all nine bits as address. If no errors are received, the M145027 outputs the four data bits when the transmitter sends address codes that match that of the receiver. A valid transmission output goes high on both decoders when they recognize an address that matches that of the decoder. Other receivers can be produced with different address/data ratios.

All the devices are available in 16 lead plastic package.

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ DC Supply Voltage
$V_{1} \quad$ Input Voltage, All Inputs
$I_{1} \quad$ DC Current Drain Per Pin
$\mathrm{T}_{\text {stg }} \quad$ Storage Temperature Range
$\mathrm{T}_{\mathrm{op}} \quad$ Operating Temperature Range

-0.5 to +18	V
-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
10	mA
-65 to +150	${ }^{\circ} \mathrm{C}$
-40 to +85	${ }^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SWITCHING CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Parameter		VDD	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t} \mathrm{~T} L \mathrm{H} \\ & { }^{\mathrm{T} T H \mathrm{H}} \end{aligned}$	Output Rise and Fall Time	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	200 100 80	ns
$\begin{aligned} & \mathrm{t} \text { TLH } \\ & \text { t'THL } \end{aligned}$	Data In Rise and Fall Time (M145027, M145028)	5 10 15	-	-	15 15 15	$\mu \mathrm{s}$
${ }^{\text {f }} \mathrm{CL}$	Encoder Clock Frequency	5 10 15	0 0 0	-	2 5 5	MHz
${ }^{\mathrm{f}} \mathrm{CL}$	Maximum Decoder Frequency (Referenced to Encoder Clock) (See Figure 9)	5 10 15	-	-	240 410 450	kHz
${ }^{t}$ WL	TE Pulse Width	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 65 \\ & 30 \\ & 20 \end{aligned}$	-	-	ns
	System Propagation Delay (TE to Valid Transmission)	-	-	182	-	Clock Cycles
	Tolerance on Timing Components $(\triangle R T C+\Delta C T C+\Delta R 1+\Delta C 1)$ $(\Delta R 2+\Delta C 2)$	-	-	-	± 25 ± 25	\%

ELECTRICAL CHARACTERISTICS

Parameter		$\begin{gathered} \mathrm{V} D \mathrm{D} \\ \mathbf{v} \end{gathered}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Unit	
		Min	Max	Min	Typ	Max	Min	Max			
V_{OL}	Output Voltage $V_{1}=V_{D D} \text { or } 0 \quad " 0 \prime \text { Level }$		$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	$V_{1}=0$ or $V_{\text {DD }} \quad$ " 1 " Level	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	V	
$V_{\text {IL }}$	$\begin{aligned} & \text { Input Voltage } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=0.9 \text { or } 1 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{~V}\right) \quad \text { "0" Level } \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	-	2.25 4.50 6.25	1.5 3 4	-	1.5 3 4	V	
$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \left(V_{O}=0.5 \text { or } 4.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9 \mathrm{~V}\right) \quad " 1 " \text { Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{~V}\right) \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	2.75 5.50 8.25	-	3.5 7 11	-	V	
IOH	Output Drive Current $(\mathrm{VOH}=2.5 \mathrm{~V})$ $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}\right)$ $(\mathrm{VOH}=9.5 \mathrm{~V})$ Source $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}\right)$	$\begin{gathered} 5 \\ 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & -2.5 \\ & -0.52 \\ & -1.3 \\ & -3.6 \end{aligned}$	-	$\begin{gathered} -2.1 \\ -0.44 \\ -1.1 \\ -3 \end{gathered}$	$\begin{array}{r} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{array}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	- - -	mA	
${ }^{\text {IOL }}$	$\begin{aligned} & (\mathrm{VOL}=0.4 \mathrm{~V}) \\ & (\mathrm{VOL}=0.5 \mathrm{~V}) \\ & (\mathrm{VOL}=1.5 \mathrm{~V}) \end{aligned} \quad \text { Sink }$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 0.52 \\ 1.3 \\ 3.6 \end{gathered}$	-	$\begin{gathered} 0.44 \\ 1.1 \\ 3 \end{gathered}$	0.88 2.25 8.8	-	0.36 0.9 2.4	-	mA	
11	Input Current TE (M145026, Pullup Device)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	-	3 16 35	4 20 45	7 26 55	-	-	$\mu \mathrm{A}$	
11	Input Current RS (M145026) Data In (M145027, M145028)	15	-	± 0.3	-	± 0.00001	± 0.3	-	± 1.0	$\mu \mathrm{A}$	
1	$\begin{aligned} & \text { Input Current } \\ & \text { A1/D 1-A9/D9 (M145026) } \\ & \text { A1-A5 (M145027) } \\ & \text { A1-A9 (M145028) } \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	-	-	-	$\begin{gathered} \pm 55 \\ \pm 300 \\ \pm 650 \end{gathered}$	$\begin{gathered} \pm 80 \\ \pm 340 \\ \pm 725 \end{gathered}$	-	-	$\mu \mathrm{A}$	
C_{1}	Input Capacitance ($\mathrm{V}_{1}=0$)	-	-	-	-	5	7.5	-	-	pF	
IDD	Quiescent Current - M145026	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	-	-	0.0050 0.0100 0.0150	$\begin{aligned} & 0.10 \\ & 0.20 \\ & 0.30 \end{aligned}$	-	-	$\mu \mathrm{A}$	
${ }^{\prime}$ DD	Quiescent Current M145027, M145028	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	-	-	$\begin{aligned} & 30 \\ & 60 \\ & 90 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 150 \end{gathered}$	-	-	$\mu \mathrm{A}$	
${ }^{\prime} T$	Total Supply Current M145026 (${ }^{\mathrm{f}} \mathrm{CL}=20 \mathrm{kHz}$)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	-	-	-	$\begin{aligned} & 100 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	-	-	$\mu \mathrm{A}$	
${ }^{\prime} T$	Total Supply Current M145027, M145028 ($\mathrm{f} \mathrm{CL}=20 \mathrm{kHz}$)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	-	-	-	200 400 600	$\begin{gathered} 400 \\ 800 \\ 1200 \end{gathered}$	-	-	$\mu \mathrm{A}$	

OPERATING CHARACTERISTICS

M145026

The encoder will serially transmit nine bits of trinary data as defined by the state of the A1/D1-A9/D9 input pins. These pins can be in either of three states (0,1 , open) allowing $3^{9}=19683$ possible codes. The transmit sequence will be initiated by a low level of the TE input pin. Each time the TE input is forced low the encoder will output two identical data words. This redundant information is used by the receiver to reduce errors. If the TE input is kept low, the encoder will continuously transmit the data words. The transmitted words are self-completing (two words will be transmitted for each TE pulse).
Each transmitted data bit is encoded into two data pulses. A logic zero will be encoded as two consecutive short pulses, a logic one by two consecutive long pulses, and an open as a long pulse followed by a short pulse. The input state is determined by using a weak output device to try to force each input first low, then high. If only a high state results from the two tests, the input is assumed to be hard wired to V_{DD}. If only a low state is obtained, the input is assumed to be hard wired to V_{SS}. If both a high and a low can be forced at an input, it is assumed to be open and is encoded as such.
The transmit sequence is enabled by a logic zero on the $\overline{T E}$ input. This input has an internal pullup device so that a simple switch may be used to force the input low. While TE is high the encoder is completely disabled, the oscillator is inhibited and the current drain is reduced to quiescent current. When TE is brought low, the oscillator is started, and an internal reset is generated to initialize the transmit sequence. Each input is then sequentially selected and a determination is made as to input logic state. This information is serially transmitted via the Data Out output pin.

M145027

The decoder will receive the serial data from the encoder, check it for errors and output data if valid. The transmitted data consisting of two identical data words is examined bit by bit as it is received. The first five bits are assumed to be address bits and must be encoded to match the address inputs at the receiver. If the address bits match, the next four (data) bits are stored and compared to the last valid data stored. If this data matches, the VT pin will go high on the 2 nd rising edge of the 9 th bit of the first word. Between the two data words no signal is sent for three data bit times. As the second encoded word is received, the address must again match, and if it does, the data bits are checked against the previously stored data bits. If the two words of data (four bits each) match, the data is transferred to the output data latches and will remain until new data replaces it. At the same time, the Valid Transmission output pin is brought high and will remain high until an error is received or until no input signal is received for four data bit times.
Although the address information is encoded in trinary fashion, the data information must be either a one or a zero. A trinary (open) will be decoded as a logic one.

M145028

This receiver operates in the same manner as the M145027 except that nine address bits are used and no data output is available. The Valid Transmission output is used to indicate that a valid signal has been received.
Although address information normally is encoded in trinary, the designer should be aware that, for the M145028, the ninth address bit (A9) must be either a one or a zero. This part, therefore, can accept only $2 \times 3^{8}=13,122$ different codes. A trinary (open) A9 will be interpreted as a logic 1 . However if the transmitter sends a trinary (or logic 1) and the receiver address is a logic 1 (or trinary) respectively, the valid transmission output will be shortened to the $\mathrm{R} 1 \times \mathrm{C} 1$ time constant.

DOUBLE TRANSMISSION DECODING

Although the encoder sends two words for error checking, a decoder does not necessarily wait for two transmitted words to be received before issuing a valid transmission output. Refer to the flowcharts in Figure 7 and 8.

Fig. 1 - Encoder block diagram M145026

Fig. 2 - Decoder block diagram M145027

Fig. 3 - Decoder block diagram M145028

PIN DESCRIPTION

M145026 ENCODER

A1/D1-A9/D9

These inputs will be encoded and the data serially output from the encoder.

$V_{s s}$

The most negative supply (usually ground).
RS, CTC, RTC
These pins are part of the oscillator section of the encoder. If an external signal source is used instead of the internal oscillator it should be connected to the RS input and the RTC and CTC pins should be left open.
$\overline{T E}$
This Transmit-Enable (active low) input will initiate transmission when forced low. A pullup device will keep this input high normally.

Data Out

This is the output of the encoder that will present the serially encoded signals.
$V_{D D}$
The most positive supply.

M145027/M145028 DECODERS

A1-A5 (M145027) / A1-A9 (M145028)

These are the address inputs that must match the encoder inputs A1/D1-A5/D5 in the case of M145027 or A1/D1-A0/D9 in the case of M145028, in order for the decoder to output data.

D6-D9 (M145027)

These outputs will give the information that is presented to the encoder inputs A6/D6-A9/D9.
Note: Only binary data will be acknowledged, a trinary open will be decoded as logic one.
R1, C1
These pins accept a resistor and capacitor that are used to determine whether a narrow pulse or a wide pulse has been encoded. The time constant $\mathrm{R} 1 \times \mathrm{C} 1$ should be set to 1.72 transmit clock periods. R1C1 $=3.95$ RTC \times CTC .

R2/C2

This pin accepts a resistor to V_{SS} and a capacitor to V_{SS} that are used to detect both the end of an encoded word and the end of transmission. The time constant R2 \times C2 should be 33.5 transmit clock periods (four data bit periods). This time constant is used to determine that the Data In input has remained low for four data bit times (end of transmission). A separate comparator looks at a voltage equivalent two data bit times (0.4 R 2 C 2) to detect the dead time between transmitted words.
R2C2 $=77 \times$ RTC \times CTC.
Valid Transmission, VT
This output will go high when the following conditions are satisfied:

1. the transmitted address matches the receiver address, and
2. the transmitted data matches the last valid data received (M145028 only).

VT will remain high until either a mismatch is received, or no input signal is received for four data data bit times.
$V_{D D}$
The most positive supply

$V_{\text {ss }}$

The most negative supply (usually ground).

Figure 4 - Encoder Oscillator Information
This oscillator will operate at a frequency determined by the external RC network; i.e..

$$
\begin{aligned}
& f \cong \frac{1}{2.3 \times R T C \times C T C}(H z) \\
& \text { for } 1 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 400 \mathrm{kHz} \\
& \text { where: } \mathrm{CTC}=\mathrm{CTC}+\mathrm{C} \text { layout }+12 \mathrm{pF} \\
& \mathrm{RS} \approx 2 \mathrm{RTC} \\
& \mathrm{RS} \geqslant 20 \mathrm{k} \\
& \mathrm{RTC} \geqslant 10 \mathrm{k} \\
& 400 \mathrm{pF}<\mathrm{CTC}<\mu \mathrm{F}
\end{aligned}
$$

The value for RS should be chosen to be about 2 times RTC. This range will ensure that current through RS is insignificant compared to current through RTC. The upper limit for RS must ensure that RS $\times 5 \mathrm{pF}$ (input capacitance) is small compared to RTC \times CTC.

For frequencies outside the indicated range, the formula will be less accurate. The actual oscillation range of this circuit is from less than 1 Hz to over 1 MHz .

Figure 5 - Encoder/Decoder Timing Diagram

Figure 6 - Encoder Data Waveforms (M145026)

* 150 ns PUlSe appears at this point (THIS DOES NOT AFFECT THE TRANSMITTER/RECEIVER OPERATION)
Figure 7 - M145027 Flowchart

Figure 8 - M145028 Flowchart

Figure $9-\mathrm{M} 145027 / \mathrm{M} 145028$ ($\mathrm{f}_{\max }$ vs. $\mathrm{C}_{\text {layout }}$)

Figure 10 - Typical Application

Example R/C Values
(CTC' $=C T C+20 \mathrm{pF}) \quad$ (All Resistors and Capacitors are $\pm 5 \%$)

fosc $^{\prime}(\mathrm{kHz})$	RTC	CTC'	RS	R1	C1	R2	C2
362	10 k	120 pF	20 k	10 k	470 pF	100 k	910 pF
181	10 k	240 pF	20 k	10 k	910 pF	100 k	1800 pF
88.7	10 k	490 pF	20 k	10 k	2000 pF	100 k	3900 pF
42.6	10 k	1020 pF	20 k	10 k	3900 pF	100 k	7500 pF
21.5	10 k	2020 pF	20 k	10 k	8200 pF	100 k	$0.015 \mu \mathrm{~F}$
8.53	10 k	5100 pF	20 k	10 k	$0.02 \mu \mathrm{~F}$	200 k	$0.02 \mu \mathrm{~F}$
1.71	50 k	5100 pF	100 k	50 k	$0.02 \mu \mathrm{~F}$	200 k	$0.1 \mu \mathrm{~F}$

7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

- HIGH OUTPUT POWER (7W AT 16V/4 Ω; $14.4 \mathrm{~V} / 2 \Omega$)
- HIGH OUTPUT CURRENT (3A REPETITIVE)
- LOAD DUMP PROTECTION UP TO 40V
- LOAD SHORT CIRCUIT PROTECTION UP TO $\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}$
- POLARITY INVERSION PROTECTION
- THERMAL PROTECTION

The TBA810CB is a monolithic integrated circuit in a 12 -lead quad in-line plastic package, ex-
pressly designed for use as a power audio amplifier in CB radios.

Findip

ORDERING NUMBER: TBA810CB

ABSOLUTE MAXIMUM RATINGS

V_{5} (peak)	Peak supply voltage (50 ms)	40	V
V_{5}	DC supply voltage	28	V
V_{s}	Operating supply voltage	20	V
I_{0}	Output peak current (non repetitive)	4	A
I_{0}	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$	1	W
	at $\mathrm{T}_{\text {tab }} \leqslant 90^{\circ} \mathrm{C}$	5	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	C

TEST AND APPLICATION CIRCUIT

*C3.C7 SEE FIG. 6

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-tab }}$	Thermal resistance junction-tab		
$R_{\text {th j-amb }}$	Thermal resistance junction-ambeint	\max	12

[^11]ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 1)		4		20	V
V_{0}	Quiescent output voltage (pin 12)		6.4	7.2	8	V
I_{d}	Quiescent drain current			12	20	mA
I_{b}	Input bias current (pin 8)			0.4		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{kHz} \\ R_{L}=4 \Omega \\ R_{L}=2 \Omega \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
$V_{\text {i(rms) }}$	Input saturation voltage		220			mV
v_{i}	Input sensitivity	$\begin{array}{ll} \mathrm{f}=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \\ \mathrm{P}_{\mathrm{o}}=7 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ \mathrm{R}_{\mathrm{f}}=56 \Omega & \\ \mathrm{R}_{\mathrm{f}}=22 \Omega & \end{array}$		$\begin{aligned} & 75 \\ & 30 \\ & \\ & 55 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{C}_{3}=820 \mathrm{pF} \\ & \mathrm{C}_{3}=1500 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 40 \text { to } 20000 \\ & 40 \text { to } 10000 \end{aligned}$			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 2.5 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.3		\%
G_{v}	Voltage gain (open loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$		80		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$	34	37	40	dB
e_{N}.	Input noise voltage	$\begin{aligned} & V_{5}=16 \mathrm{~V} \\ & \mathrm{~B}(-3 \mathrm{~dB})=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
i_{N}	Input noise current			80		pA
η	Efficiency	$\begin{array}{ll} P_{0}=6 W & R_{L}=4 \Omega \\ f=1 \mathrm{kHz} & \end{array}$		75		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \quad \mathrm{~V}_{\text {ripple }}=1 \mathrm{~V}_{\text {rms }} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	48		dB

7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

The TBS810P is an improvement of TBA810S.
It offers:

- Higher output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$ and 2Ω)
- Low noise
- Polarity inversion protection
- Fortuitous open ground protection
- High supply voltage rejection (40dB min.)

The TBA810P is a monolithic integrated circuit in a 12 -lead quad in-line plastic package, intended for use as a low frequency class B amplifier.
The TBA810P provides 7 W output power at $16 \mathrm{~V} / 4 \Omega$; 7 W at $14.4 / 2 \Omega$.

It gives high output current (up to 3A), high efficiency (75% at 60 W output) very low harmonic and crossover distortion. The circuit is provided with a thermal limiting circuit and can withstand a short-circuit on the load for supply voltages up to 15 V .

ABSOLUTE MAXIMUM RATINGS

	Supply voltage	20	V
$\mathrm{~V}_{\text {s }}$	Output peak current (non repetitive)	4	A
I_{o}	Output peak current (repetitive)	3	A
I_{0}	Power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$	1	W
$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\text {tab }} \leqslant 90^{\circ} \mathrm{C}$	5	W
			${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$,	T_{j}	Storage and junction temperature	-40 to 150

TEST AND APPLICATION CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-tab }}$	Thermal resistance junction-tab	\max	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	70^{*}	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^12]ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage (pin 1)		4		20	V
V_{0}	Quiescent output voltage (pin 2)		6.4	7.2	8	V
l_{d}	Quiescent drain current			12	20	mA
I_{b}	Input bias current			0.4		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 K H z \\ R_{L}=4 \Omega & \\ R_{L}=2 \Omega & \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { W } \end{aligned}$
$\mathrm{V}_{\mathrm{i}}(\mathrm{rms})$	Input saturation voltage		220			mV
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response (-3dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega / 2 \Omega \\ & \mathrm{C}_{3}=820 \mathrm{pF} \\ & \mathrm{C}_{3}=150 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 40 \text { to } 20,000 \\ & 40 \text { to } 10,000 \end{aligned}$			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distortion	$\begin{aligned} & P_{0}=50 \mathrm{~mW} \text { to } 2.5 \mathrm{~W} \\ & R_{\mathrm{L}}=4 \Omega / 2 \Omega \quad f=1 \mathrm{KHz} \end{aligned}$		0.3		\%
G_{v}	Voltage gain (open loop)	$R_{L}=4 \Omega \quad f=1 \mathrm{KHz}$		80		dB
G_{v}	Voltage gain (closed loop)	$R_{L}=4 \Omega / 2 \Omega \quad f=1 \mathrm{KHz}$	34	37	40	dB
e_{N}	Input noise voltage	$\begin{aligned} & V_{s}=16 \mathrm{~V} \\ & B(-3 d B)=40 \text { to } 15,000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
i_{N}	Input noise current			80		pA
η	Efficiency	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} & R_{L}=4 \Omega \end{array}$		75		\%
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}_{\text {ripple }}=10 \mathrm{~Hz} \end{aligned}$	40	48		dB

Fig. 1 - Output power vs. supply voltage

Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 3 - Value of C3 vs. feedback resistance for various values of B

7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

The TBA810S is a monolithic integrated circuit in a 12 -lead quad in-line plastic package, intended for use as a low frequency class B amplifier.
The TBA810A provides 7W power output at $16 \mathrm{~V} / 4 \Omega, 6 \mathrm{~W}$ at $14.4 \mathrm{~V} / 4 \Omega, 2.5 \mathrm{~W}$ at $9 \mathrm{~V} / 4 \Omega$, 1 W at $6 \mathrm{~V} / 4 \Omega$ and works with a wide range of supply voltage (4 to 20 V); it gives high output current (up to 2.5 A), high efficiency (75%) at 6 W output). very low harmonic and cross-over distor-
tion. In addition, the circuit is provided with a thermal protection circuit.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{o}	Output peak current (non-repetitive)	3.5	A
I_{o}	Output current (repetitive)	2.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	1	W
	at $\mathrm{T}_{\text {tab }} \leqslant 90^{\circ} \mathrm{C}$	5	W
$\mathrm{~T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature		-40 to 150

TEST AND APPLICATION CIRCUIT

TBA810S

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-tab }}$	Thermal resistance junction-tab	\max	$12^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	$70^{* \circ} \mathrm{C} / \mathrm{W}$

* Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage (pin 1)		4		20	V
V_{0}	Quiescent output voltage (pin 12)	$V_{s}=14.4 \mathrm{~V}$	6.4	7.2	8	V
l_{d}	Quiescent drain current			12	20	mA
I_{b}	Bias current (pin 8)			0.4		$\mu \mathrm{A}$
P_{o}	Power output	$\begin{aligned} & \mathrm{d}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{s}}=16 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V} \end{aligned}$	5.5	$\begin{array}{r} 7 \\ 6 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \\ & \hline \end{aligned}$
$V_{i(r m s)}$	Input voltage				220	mV
V_{i}	Input sensitivity	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=6 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{f}}=56 \Omega \\ & \mathrm{R}_{\mathrm{f}}=22 \Omega \end{aligned}$		$\begin{aligned} & 80 \\ & 35 \end{aligned}$		$\begin{aligned} & m V \\ & m V \end{aligned}$
R_{i}	Input resistance (pin 8)			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{C} 3=820 \mathrm{pF} \\ & \mathrm{C} 3=1500 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 40 \text { to } 20,000 \\ & 40 \text { to } 10,000 \end{aligned}$			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
d	Distorsion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.3		\%
G_{v}	Voltage gain (open loop)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		80		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	34	37	40	dB
${ }^{\text {e }}$	Input noise voltage	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=0 \\ & \mathrm{~B}(-3 \mathrm{~dB})=20 \mathrm{~Hz} \text { to } \\ & 20,000 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{V}$
${ }^{\mathrm{N}} \mathrm{N}$	Input noise current	$\begin{aligned} & V_{\mathrm{S}}=14.4 \mathrm{~V} \\ & \mathrm{~B}(-3 \mathrm{~dB})=20 \mathrm{~Hz} \text { to } \\ & 20,000 \mathrm{~Hz} \end{aligned}$		0.1		nA
η	Efficiency	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=5 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		70		\%
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V} \\ & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \hline \end{aligned}$		38		dB

MINIDIP 1.2W AUDIO AMPLIFIER

The TBA820M is a monolithic integrated audio amplifier in a 8 lead dual in-line plastic package. It is intended for use as low frequency class B power amplifier with wide range of supply voltage: 3 to 16 V , in portable radios, cassette recorders and players etc. Main features are: minimum working supply voltage of 3 V , low quiescent current, low number of external components, good ripple rejection, no cross-over distortion, low power dissipation.

Output power: $P_{\mathrm{o}}=2 \mathrm{~W}$ at $12 \mathrm{~V} / 8 \Omega, 1.6 \mathrm{~W}$ at $9 \mathrm{~V} / 4 \Omega$ and 1.2 W at $9 \mathrm{~V} / 8 \Omega$.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output peak current	1.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST AND APPLICATION CIRCUITS

Fig. 1 - Circuit diagram with load connected to the supply voltage

Fig. 2 - Circuit diagram with load connected to ground

[^13]
CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

| $R_{\text {th j-amb }} \quad$ Thermal resistance junction-ambient | $\max \quad 100 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage			3		16	V
V_{0}	Quiescent output voltage (pin 5)			4	4.5	5	V
l_{d}	Quiescent drain current				4	12	mA
I_{b}	Bias current (pin 3)				0.1		$\mu \mathrm{A}$
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & R_{f}=120 \Omega \\ & V_{s}=12 \mathrm{~V} \\ & V_{s}=9 \mathrm{~V} \\ & V_{s}=9 \mathrm{~V} \\ & V_{s}=6 \mathrm{~V} \\ & V_{s}=3.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz} \\ & R_{L}=8 \Omega \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \\ & R_{L}=4 \Omega \\ & R_{L}=4 \Omega \end{aligned}$	0.9	$\begin{gathered} 2 \\ 1.6 \\ 1.2 \\ 0.75 \\ 0.25 \end{gathered}$		$\begin{aligned} & w \\ & w \\ & w \\ & w \\ & w \end{aligned}$
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 3)	$\mathrm{f}=1 \mathrm{kHz}$			5		$\mathrm{M} \Omega$
B	Frequency response (-3 dB)	$\begin{aligned} & R_{L}=8 \Omega \\ & C_{5}=1000 \mu \mathrm{~F} \\ & R_{f}=120 \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{B}}=680 \mathrm{pF}$	25 to 7,000			Hz
			$\mathrm{C}_{\mathrm{B}}=220 \mathrm{pF}$	25 to 20,000			
d	Distortion	$\begin{aligned} & P_{\mathrm{O}}=500 \mathrm{~mW} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		0.8		\%
			$\mathrm{R}_{\mathrm{f}}=120 \Omega$		0.4		
Gv	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		75		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & R_{L}=8 \Omega \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{f}}=33 \Omega$		45		dB
			$R_{f}=120 \Omega$		34		
e_{N}	Input noise voltage (*)				3		$\mu \mathrm{V}$
i_{N}	Input noise current (*)				0.4		nA
$\frac{S+N}{N}$	Signal to noise ratio (*)	$P_{0}=1.2 \mathrm{~W}$	$\mathrm{R1}=10 \mathrm{~K} \Omega$		80		dB
			$\mathrm{R} 1=50 \mathrm{k} \Omega$		70		
SVR	Supply voltage rejection (test circuit of fig. 2)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f} \text { (ripple) }=10 \\ & \mathrm{C}=47 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{f}}=120 \Omega \end{aligned}$			42		dB

(*) $\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Maximum power dissipation (sine wave operation)

Fig. 9 - Harmonic distortion vs. frequency

4/4
446

Fig. 4 - Harmonic distortion vs. output power

Fig. 7 - Suggested value of C_{B} vs. R_{f}

Fig. 10 - Supply voltage rejection (Fig. 2 circuit)

Fig.5-Power dissipation and efficiency vs. output power

Fig. 8 - Frequency response

Fig. 11 - Quiescent current vs. supply voltage

FM-IF RADIO SYSTEM

NOT FOR NEW DESIGN

- HIGH LIMITING SENSITIVITY
- HIGH AMR
- HIGH RECOVERED AUDIO
- good capture ratio
- LOW DISTORTION
- muting capability

The TCA3089 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package. It provides a complete subsystem for amplification of FM signals.
The functions incorporated are:

- FM amplification and detection
- Interchannel controlled muting
-- AFC and delayed AGC for FM tuner
- Switching of stereo decoder
- Driver of a field strength meter

The TCA3089 can be used for FM-IF amplifier application in $\mathrm{Hi}-\mathrm{Fi}$, car-radios and communication receivers.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output current (from pin 15)	2	mA
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$T_{\text {op }}$	Operating temperature	-25 to 70	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

CONNECTION DIAGRAM

(top view)

S-0398/1

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th j-amb }}$.	Thermal resistance junction-ambient	\max	100

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}$, $\left.\mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Parameter	Test conditions	Min.	Typ.	Max.

DC CHARACTERISTICS

I_{s}	Supply current		16	23	30	mA
V_{i}	Voltage at the IF amplifier input		1.2	1.9	2.4	V
$\mathrm{~V}_{2}, \mathrm{~V}_{3}$	Voltage at the input bypassing		1.2	1.9	2.4	V
$\mathrm{~V}_{6}$	Voltage at the audio output		5	5.6	6	V
$\mathrm{~V}_{10}$	Reference bias voltage		5	5.6	6	V

AC CHARACTERISTICS

$V_{i(\text { threshold })}$	Input limiting voltage (-3 dB) at pin 1	$\begin{aligned} & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$		12	25	$\mu \mathrm{V}$
V 。	Recovered audio voltage (pin 6)	$\begin{aligned} & V_{i} \geqslant 100 \mu \mathrm{~V} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$	300	400	500	mV
V_{7}	Recovered audio voltage (p in 7)		200	350	500	mV
d	Distortion	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \end{aligned}$		0.5	1	\%
$\frac{S+N}{N}$	Signal to noise ratio		60	67		dB
AMR	Amplitude modulation rejection	$\begin{aligned} & V_{i}=100 \mathrm{mV} \\ & f_{m}=1 \mathrm{kHz} \\ & \Delta f= \pm 75 \mathrm{kHz} \\ & m=0.3 \end{aligned}$	45	55		dB
V_{i}	Input voltage for delayed AGC action (pin 1)			10		mV
V_{15}	AGC output	$V_{i}=100 \mathrm{mV}$			0.5	V
$\frac{\Delta I_{7}}{\delta f}$	AFC control slope (note 1)	$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$		1.2		$\frac{\mu \mathrm{A}}{\mathrm{kHz}}$
V_{13}	Field strength meter output sensitivity	$\mathrm{V}_{\mathrm{i}}=0.5 \mathrm{mV}$		1.5		V
	No signal mute (note 2)	muting: ON	55			dB

Note: 1) $\Delta I_{7}=\frac{\Delta V_{7,10}}{R_{7,10}}$
2) No signal mute $=20 \log \frac{V_{o} @ V_{i} \geqslant 100 \mu \mathrm{~V}}{V_{o} @ V_{i}=0}$

Fig. 1 - Relative recovered audio and noise output vs. input voltage

Fig. 4 - AFC output current vs. change in tuning frequency

Fig. 2 - Capture ratio vs. input voltage

Fig. 5 - Amplitude modulation rejection vs. input voltage

Fig. 3 - AGC $\left(\mathrm{V}_{15}\right)$ and field strength meter output $\left(\mathrm{V}_{13}\right)$ vs. input voltage

Fig. 6 - AMR vs. change in tuning frequency

FM-IF HIGH QUALITY RADIO SYSTEM

- EXCEPTIONAL LIMITING SENSITIVITY
- VERY LOW DISTORTION (0.1\% - DOUBLE TUNED DETECTOR COIL)
- IMPROVED S/N RATIO
- EXTERNALLY PROGRAMMABLE AUDIO LEVEL
- ON CHANNEL STEP FOR SEARCH CONTROL
- programmable agC voltage and AFC FOR TUNER
- INTERCHANNEL MUTING (SQUELCH)
- DEVIATION MUTING
- DIRECT DRIVE OF TUNING METER

- DIRECT DRIVE OF FIELD STRENGTH METER

The TCA3189 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package, which provides a complete subsystem for amplification of 10.7 MHz FM signal in $\mathrm{Hi}-\mathrm{Fi}$, car-radios and communications receivers.

ORDERING NUMBER: TCA3189

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output current (from pin 15)	2	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$T_{\text {op }}$	Operating temperature	-25 to 85	${ }^{\circ} \mathrm{C}$

Double tuned detector coil

CONNECTION DIAGRAM

(top view)

S-3286

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max.	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage range	No signal input, non muted		9		16	V
I_{s}	Supply current			20	31	44	mA
V_{1}	Voltage at the IF amplifier input			1.2	1.9	2.4	V
$\mathrm{V}_{2}, \mathrm{~V}_{3}$	Voltage at the input bypass			1.2.	1.9	2.4	V
V_{15}	Voltage at the pin 15 (RF AGC)			7.5	9.5	11	V
V_{10}	Reference bias voltage			5	5.6	6	V
V_{i}	Input limiting voltage (-3 dB) at pin 1	$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \end{aligned}$			12	25	$\mu \mathrm{V}$
V_{0}	Recovered audio voltage (pin 6)	$\begin{aligned} & V_{i} \geqslant 50 \mu \mathrm{~V} \\ & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \end{aligned}$		325	500	650	mV
d	Distortion (single tuned)	$\begin{aligned} & V_{i} \geqslant 1 \mathrm{mV} \\ & f_{o}=10.7 \mathrm{MHz} \\ & f_{m}=1 \mathrm{KHz} \\ & \Delta f= \pm 75 \mathrm{KHz} \end{aligned}$			0.5	1	\%
d	Distortion (double tuned)				0.1		\%
$\frac{S+N}{N}$	Signal to noise ratio			65	72		dB
AMR	Amplitude modulation rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=100 \mathrm{mV} \\ & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} \\ & \Delta \mathrm{f}= \pm 75 \mathrm{KHz} \\ & \mathrm{AM} \bmod .30 \% \end{aligned}$		45	55		dB
V_{16}	RF AGC threshold				1.25		V
$\frac{\Delta I_{7}}{\Delta f}$	AFC control slope				1.9		$\frac{\mu \mathrm{A}}{\mathrm{KHz}}$
V_{12}	On channel step (deviation mute)	$V_{i}=100 \mathrm{mV}$$\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}$	$\begin{aligned} & \mathrm{f}_{\mathrm{DEV}}< \\ & \pm 40 \dot{\mathrm{~K}} \mathrm{~Hz} \end{aligned}$		0		V
			$\begin{aligned} & \text { fDEV. }> \\ & \pm 40 \dot{K} H z \end{aligned}$		5.6		V

TEST CIRCUIT

Fig. 1 - Single tuned detector coil

Fig. 2 - Limiting and noise characteristics

Fig. 5-AFC characteristics

Fig. 3 -- Deviation mute threshold vs. R R_{7-10}

Fig. 6 - AGC voltage for FM tuner vs. input level

Fig. 4 - Recovered audio and muting action vs. input

Fig. 7 - Field strength and tuning meter output vs. input level

MOTOR SPEED REGULATOR

- EXCELLENT VERSATILITY IN USE
- HIGH OUTPUT CURRENT (UP TO 800 mA)
- LOW QUIESCENT CURRENT (1.7mA)
- LOW REFERENCE VOLTAGE (1.2V)
- EXCELLENT PARAMETERS STABILITY VERSUS TEMPERATURE

The TDA1151 is a monolithic integrated circuit in SOT-32 plastic package. It is intended for use
as speed regulator for DC motors of record players, tape and cassette recorders, movie cameras, toys etc.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	at $T_{\text {case }}=100^{\circ} \mathrm{C}$	0.8
	W		
		5	W
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

APPLICATION CIRCUIT

CONNECTION DIAGRAM
tab connected to pin 3

TEST CIRCUIT

THERMAL DATA

$R_{\text {th } j \text {-case }}$ Thermal resistance junction-case
$\mathrm{R}_{\mathrm{th}} \mathrm{j}$-amb Thermal resistance junction-ambient

\max	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {ref }}$	Reference voltage (between pins 1 and 2)	$V_{s}=6 \mathrm{~V} \quad \mathrm{I}^{\prime}=0.1 \mathrm{~A}$	1.1	1.2	1.3	V
$l_{\text {d }}$	Quiescent drain current	$\mathrm{V}_{5}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=100 \mu \mathrm{~A}$		1.7		mA
$I_{\text {MS }}$	Starting current	$V_{s}=5 \mathrm{~V} \quad \Delta V_{\text {ref }} / V_{\text {ref }}=-50 \%$	0.8			A
V_{1-3}	Minimum supply voltage	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \quad \Delta \mathrm{~V}_{\mathrm{ref}} / \mathrm{V}_{\mathrm{ref}}=-5 \%$			2.5	V
$\mathrm{K}=\mathrm{I}_{\mathrm{M}} / \mathrm{I}_{\mathrm{T}}$	Reflection coefficient	$\mathrm{V}_{5}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	18	20	22	-
$\frac{\Delta K}{K} / \Delta V_{s}$		$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ to $18 \mathrm{~V} \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.45		\%/V
$\frac{\Delta K}{K} / \Delta I_{M}$		$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=25$ to 400 mA		0.005		\%/mA
$\frac{\Delta K}{K} / \Delta T$		$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta V_{s}$	Line regulation	$\mathrm{V}_{5}=6 \mathrm{~V}$ to $18 \mathrm{~V} \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.02		\%/V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta I_{M}$	Load regulation	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=25$ to 400 mA		0.009		\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}\langle\Delta T$	Temperature coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$

Fig. 1 - Quiescent drain current vs. power supply

Fig. 4 - Reference voltage vs. motor current

Fig. 7 - Reflection coefficient vs. motor current

Fig. 2 - Quiescent drain current vs. ambient tem-

Fig. 5 - Reference voltage vs. ambient temperature

Fig. 8 - Reflection coefficient vs. ambient tem-

Fig. 3 - Reference voltage vs. supply voltage

Fig. 6 - Reflection coefficient vs. supply voltage

Fig. 9 - Typical minimum supply voltage vs. motor current

Fig. 10 - Application circuit

Note: A ceramic capacitor of 10 nF between pins, 1 and 2 improves stability in some applications.

Fig. 11 - P.C. board and component layout of the circuit of Fig. 10 (1:1 scale)

Fig. 12 - Speed variation vs. supply voltage

Fig. 13 - Speed variation vs. motor current

Fig. 14 - Speed variation vs. ambient temperature

Fig. 15 - Low cost application circuit

$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}$
$\mathrm{R}_{\mathrm{M}}=14.7 \Omega$
$\mathrm{R}_{\mathrm{T}}=290 \Omega$
$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$
$\mathrm{E}_{\mathrm{g}}=2.65 \mathrm{~V}$
$\mathrm{I}_{\mathrm{M}}=110 \mathrm{~mA}$

Fig. 16 - Speed variation vs. supply voltage

Fig. 17 - Speed variation vs. motor current

Fig. 18 - Speed variation vs. ambient temperature

SPEED REGULATOR FOR DC MOTORS

- MATCHING FLEXIBILITY TO MOTORS WITH VARIOUS CHARACTERISTICS
- BUILT-IN CURRENT LIMIT
- ON-CHIP 1.2V REFERENCE VOLTAGE
- STARTING CURRENT: 0.5A @ 2.5V
- REFLECTION COEFFICIENT K $=20$

The TDA1154 is a monolithic integrated circuit intended for speed regulation of permanent magnet dc motors used in record players, tape recorders, cassette recorders and toys.

The circuit offers an excellent speed regulation with much higher power supply, temperature and load variations than conventional circuits built around discrete components.

Fig. 1 - Application circuit

3 : Ground
5 : Reference
8 : Output
Other pins are not connected

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS

$V_{c c}$	Supply voltage	20	V
I_{O}	Output current	1.2	A
$\mathrm{P}_{\text {tot }}$	Power dissipation	(see curve)	W
T_{j}	Junction temperature	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

Fig. 2 - Test circuit

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
$R_{\text {th j-amb }}$					\quad	${ }^{\circ} \mathrm{C} / \mathrm{W}$
:---	:---					

ELECTRICAL CHARACTERISTICS $T_{\text {amb }}=+25^{\circ} \mathrm{C}$ (Unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {(ref) }}$	Reference voltage	$\mathrm{VCC}^{=+6 \mathrm{~V}} \quad 1(8)=0.1 \mathrm{~A}$	1.15	1.25	1.35	V
$\frac{\Delta V_{\text {(ref) }}}{V_{\text {(ref) }}} / \Delta T$	Reference voltage temperature coefficient	$\begin{array}{ll} V_{c c}=+6 \mathrm{~V} & I(8)=0.1 \mathrm{~A} \\ \mathrm{~T}_{\mathrm{amb}}=-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$	-	0.02	-	\%/ ${ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\text {(ref) }}}{V_{\text {(ref })}} / \Delta V_{\text {cc }}$	Line regulator	$\begin{aligned} & \mathrm{VCC}=+4 \mathrm{~V} \text { to }+18 \mathrm{~V} \\ & \mathrm{l}(8)=0.1 \mathrm{~A} \end{aligned}$	-	0.02	-	\% /V
$\frac{\Delta V_{(\text {ref })}}{V_{(\text {ref })}} / \Delta I(8)$	Load regulator	$\begin{aligned} & V_{C C}=+6 \mathrm{~V} \\ & 1(8)=25 \text { to } 400 \mathrm{~mA} \end{aligned}$	-	0.009	-	\%/mA
$V(5-3)$	Minimum supply voltage	$I(8)=0.1 \mathrm{~A} \frac{\Delta V_{(\text {ref })}}{V_{(\text {ref })}}=-5 \%$	2.5	-	-	V
1(8)	Starting current (*)	$\frac{\Delta V_{(\text {ref })}}{V_{(\text {ref })}}=-50 \%$	1.2	-	-	A
		$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$	0.5	0.8	-	
10 (5)	Quiescent current on pin 5	$\mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} \quad \mathrm{l}(8)=100 \mu \mathrm{~A}$	-	1.7	-	mA
K	$K=\frac{\Delta I(8)}{\Delta I(5)} \begin{aligned} & \text { reflection } \\ & \text { coefficient } \end{aligned}$	$V_{C C}=+6 \mathrm{~V} \quad \mathrm{I}(8)=0.1 \mathrm{~A}$	18	20	22	
$\frac{\Delta K}{K} / \Delta V_{c c}$	K spread versus V_{CC}	$\begin{aligned} & V C C=+6 V \text { to }+18 \mathrm{~V} \\ & I(8)=0.1 \mathrm{~A} \end{aligned}$	-	0.45	-	\%/V
$\frac{\Delta K}{K} / \Delta I(8)$	K spread versus I(8)	$\begin{aligned} & \mathrm{VCC}=+6 \mathrm{~V} \\ & \mathrm{l}(8)=25 \text { to } 400 \mathrm{~mA} \end{aligned}$	-	0.005	-	\%/mA
$\frac{\Delta K}{K} / \Delta T$	K spread versus temperature	$\begin{array}{ll} V_{c c}=+6 \mathrm{~V} & \quad(8)=0.1 \mathrm{~A} \\ \mathrm{~T}_{\mathrm{amb}}=+20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}$	-	0.02	-	\%/ $/{ }^{\circ} \mathrm{C}$

(*) An internal protection circuit reduces the current if the temperature of the junction increase: $1(8)=0.75 \mathrm{~A}$ at $T_{j}=+140^{\circ} \mathrm{C}$.

OPERATING MODE

Fig. 3

The circuit maintains a 1.2 V constant reference voltage between pins 5 and 8:

$$
V(5-8)=V_{(\text {ref })}=1.2 V
$$

The current (I(5)) drawn by the circuit at pin 5 is
sum of two currents.
One is constant: $\mathrm{I}_{\mathrm{O}}(5)=1.7 \mathrm{~mA}$ and the other is proportional to pin 8 current (1(8)):
$I(5)=I_{O}(5)+I(8) K(a) \quad\left(I_{O}(5)=1.7 \mathrm{~mA}, K=20\right)$

If E_{g} and R_{m} are motor back electromotive force and motor internal resistance respectively, then:
$E_{g}+R_{m} I_{m}=R_{t}\left[I(5)+\frac{V_{(\text {ref })}}{R_{S}}\right]+V_{(\text {ref })}$
From figure 2 it is seen that:

$$
\begin{equation*}
I(8)=I_{m}+\frac{V_{(\text {ref })}}{R_{S}} \tag{c}
\end{equation*}
$$

Substituting equations (a) and (c) into (b) yields:

(1)
$\underbrace{+V_{\text {(ref) }}\left[\frac{R_{t}}{R_{s}}\left(1+\frac{1}{K}\right)+1\right]+R_{t} I_{o}(5)(d)}$

(2)

The motor speed will be independent of the resisting torque if E_{g} is also independent of I_{m}. Therefore, in order to determine the value of R_{t} term(1) in (d) must be zero:

$$
R_{t}=K \quad R_{m} \quad(K=20)
$$

If $R_{t}>K R_{m}$, an instability may occur as a result of overcompensation.
The value of R_{S} is determined by term (2) in (d) so as to obtain the back electromotive force $\left(E_{g}\right)$ corresponding to required motor speed:

$$
R_{S}=R_{t} \frac{V_{(\text {ref })}(1+1 / K)}{E_{g}-V_{(\text {ref })}-R_{t} I_{0}(5)} \cong
$$

$\cong R_{t} \frac{V_{\text {(ref) }}}{E_{g}-V_{\text {(ref) })}-R_{t} I_{O}(5)}$
Where $\mathrm{V}_{(\text {ref })}=1.2 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{O}}(5)=1.7 \mathrm{~mA}$

Fig. 4 - Application circuit

AM-FM QUALITY RADIO

The TDA1220B is a monolithic integrated circuit in a 16-lead dual in-line package.

It is intended for quality receivers produced in large quantities.
The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer
- One pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

The TDA1220B is suitable up to 30 MHz AM and for FM bands (including 450 KHz narrow band) and features:

- Very constant characteristics (3 V to 16 V)
- High sensitivity and low noise
- Very low tweet
- Very high signal handling (1V)
- Sensitivity regulation facility (*)
- High recovered audio signal suited for stereo decoders and radio recorders
- Very simple DC switching of AM-FM
- Low current drain
- AFC facility
(*) Maximum AM sensitivity can be reduced by means of a resistor (5 to $12 \mathrm{~K} \Omega$) between pin 4 and ground.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	16	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{Tamb}<110^{\circ} \mathrm{C}$	400	mW
Top	Operating temperature	-20 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

| $R_{\text {th j-amb }}$ | Thermal resistance junction-ambient | \max | 100 |
| :--- | :--- | :--- | :--- |${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

	Parameter	Test conditions	Min.	Typ	Max	Unit
$\mathrm{V}_{\mathbf{s}}$	Supply voltage		3		16	V
I_{d}	Drain current	FM		10	15	mA
		AM		14	20	mA

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=\mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		12	25	$\mu \mathrm{V}$
S/N		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$	45	52		dB
V_{i}	AGC range	$\Delta V_{\text {out }}=10 \mathrm{~dB}$	$\mathrm{m}=0.8$	94	100		dB
V_{0}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	80	130	200	mV
d	Distortion	$V_{1}=1 \mathrm{mV}$	$\mathrm{m}=0.3$		0.4	1	\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d<10\%	1			V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		K Ω
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{0}	Output resistance (pin 9)			4.5	7	9.5	$\mathrm{K} \Omega$
	Tweet 2 IF	$\mathrm{m}=0.3$	$V_{i}=1 \mathrm{mV}$		40		dB
	Tweet 3 IF				55		dB

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB limiting point			22	36	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{i}}=3 \mathrm{mV} \end{aligned}$	$m=0.3$	40	50		dB
S/N	Ultimate quieting ।	$\Delta f= \pm 22.5 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	55	65		dB
d	Distortion	$\Delta \mathrm{f}= \pm 75 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.7	1.5	\%
d	Distortion	$\Delta f= \pm 22.5 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.25	0.5	\%
d	Distortion (double tuned)				0.1		\%
V_{0}	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	80	110	140	mV
R_{1}	Input resistance between pin 16 and ground				6.5		$K \Omega$
C_{i}	Input capacitance between pin 16 and ground				14		pF
R_{0}	Output resistance (pin 9)			4.5	7	9.5	$K \Omega$

Fig. 1 - Test circuit

Fig. 2 - PC board and component layout (1:1 scale) of the test circuit.

Fig. 3 - Audio output, noise and tweet levels vs. input signal (AM section)

Fig. 6 - Audio output and noise level vs. input signal (FM section)

Fig. 9 - Amplitude modulation rejection vs. input signal (FM section)

Fig. 4 - Distortion vs input signal and modulation index (AM section)

Fig. 7 - Distortion vs. input signal (FM section)

Fig. 10 - $\triangle \mathrm{DC}$ output voltage (pin. 9) vs. frequency shift (FM section)

Fig. 5 - Audio output vs. supply voltage (AM section)

Fig. 8 - Audio output vs. supply voltage (FM section)

Fig. $11-\Delta \mathrm{DC}$ output voltage (pin 9) vs. ambient tempetature (FM section)

APPLICATION INFORMATION

AM Section

RF Amplifier and mixer stages

The RF amplifier stage (pin 2) is connected directly to the secondary winding of the ferrite rod antenna or input tuned circuit. Bias is provided at pin 4 which must be adequately decoupled. The RF amplifier provides stable performance extending beyond 30 MHz .
The Mixer employed is a double - balanced multiplier and the IF output at pin 3 is connected directly to the IF filter coil.

Local oscillator

The local oscillator is a cross coupled differential stage which oscillates at the frequency determined by the load on pin 1.
The oscillator resonant circuit is transformer coupled to pin 1 to improve the \mathbf{Q} factor and frequency stability.
The oscillator level at pin 1 is about 100 mV rms and the performance extends beyond 30 MHz , however to enhance the stability and reduce to a minimum pulling effects of the AGC operation or supply voltage variations, a high C/L ratio should be used above 10 MHz .
An external oscillator can be injected at pin 1 . The level should be 50 mV rms and pin 1 should be connected to the supply via a 100Ω resistor.

IF Amplifier Detector

The IF amplifier is a wide band amplifier with a tuned output stage.
The IF filters can be either LC or mixed LC/ceramic.
AM detection occurs at pin 7. A detection capacitor is connected to pin 6 to reduce the radiation of spurious detector products.
The Audio output is at pin 9 (for either AM or FM); the IF frequency is filtered by an external capacitor which is also used as the FM mono de-enphasis network. The audio output impedance is about $7 \mathrm{~K} \Omega$ and a high impedance load $(\sim 50 K \Omega)$ must be used.

AGC
Automatic gain control operates in two ways.
With weak signals it acts on the IF gain, maintaining the maximum S / N. For strong signals a second circuit intervenes which controls the entire chain and allows signal handling in excess of one volt ($m=0.8$). At pin 8 there is a carrier envelope signal which is filtered by an external capacitor to remove the Audio and RF content and obtain a mean DC signal to drive the AGC circuit.

APPLICATION INFORMATION (continued)

FM Section

IF Amplifier and limiter

The 10.7 MHz IF signal from the ceramic filter is amplified and limited by a chain of four differential stages.
Pin 16 is the amplifier input and has a typical input impedance of $6.5 \mathrm{~K} \Omega$ in parallel with 14 pF at 10.7 MHz .

Bias for the first stage is available at pin 14 and provides 100% DG feedback for stable operating conditions. Pin 15 is the second input to the amplifier and is decoupled to pin 14, which is grounded by a 20 nF capacitor.
An RLC network is connected to the amplifier output and gives a 90° phase shift (at the IF centre frequency) between pins 13 and 12 . The signal level at pin 13 is about 150 mV rms .

FM Detector

The circuit uses a quadrature detector and the choise of component values is determined by the acceptable level of distortion at a given recovered audio level.
With a double tuned network the linearity improves (distortion is reduced) and the phase shift can be optimized; however this leads to a reduction in the level of the recovered audio. A satisfactory compromise for most FM receiver applications is shown in the test circuit.

Care should be taken with the physical layout.
The main recommandations are:

- Locate the phase shift coil as near as possible to pin 13.
- Shunt pins 14 and 16 with a low value resistor (between 56Ω and 330Ω).
- Ground the decoupling capacitor of pin 14 and the 10.7 MHz input filter at the same point.

AM-FM Switching

AM-FM switching is achieved by applying a DC voltage at pin 13 , to switch the internal reference.

Typical DC voltages (refer to the test circuit)

Pins	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	Unit
AM	9	1.4	9	1.4	1.4	8.4	9	0.7	1.9	9	0	0.1	0.1	8.5	8.5	8.5	V
FM	9	0.02	9	0.02	0.02	8.5	9	0	1.7	9	0	9	9	8	8	8	V

APPLICATION SUGGESTION

Reccomended values are referred to the test circuit of Fig. 2

$\begin{array}{c}\text { Part } \\ \text { number }\end{array}$	$\begin{array}{c}\text { Recommended } \\ \text { value }\end{array}$	Purpose	$\begin{array}{c}\text { Smaller than } \\ \text { recommended value }\end{array}$	$\begin{array}{c}\text { Larger than } \\ \text { recommended value }\end{array}$
C1	$100 \mu \mathrm{~F}$	AGC bypass	$\begin{array}{l}\text { Increase of the } \\ \text { distortion at low audio } \\ \text { frequency }\end{array}$	$\begin{array}{l}\text { Increase of the AGC } \\ \text { time constant }\end{array}$
C2 (*)	100 nF	$\begin{array}{l}\text { AM input } \\ \text { DC cut }\end{array}$	$\begin{array}{l}\text { FM input } \\ \text { DC cut }\end{array}$	FM amplifier bypass

sensitivity\end{array}\right]\)| C3 (*) |
| :--- |
| C4 |
| C5 |

(*) Only for test circuit

APPLICATION INFORMATION (continued)

Fig. 13 - PC board and component layout of the fig. $121: 1$ scale

CS-0159/1

APPLICATION INFORMATION (continued)

F1 - 10.7 MHz IF Coil

C_{0} (pF)	f $(M H z)$	\mathbf{Q}_{0}	TURNS		
-		$1-3$	$1-2$	$2-3$	$4-6$
-		110	6	8	2

TOKO - FM1-10×10 mm. 154 AN - 7A5965R

F3 and F5-455 KHz IF Coil

$\begin{gathered} C_{o} \\ (\mathrm{pF}) \end{gathered}$	$\underset{(\mathbf{l} \mathbf{k} \mathrm{Hz})}{\mathbf{f}}$	O_{0}	TURNS		
1-3		1-3	1-2	2-3	4-6
180	455	70	57	116	24

TOKO - AM3-10×10 mm. RLC - 4A7525N

F4 - FM Detector Coil

\mathbf{C}_{0}	$\stackrel{f}{(\mathrm{MHz})}$	a_{0}	TURNS		
1-3		1-3	1-3	-	-
82	10.7	100	12	-	-

TOKO-10×10 mm. KACS - K586 HM

F6 - AM Oscillator Coil

f $(k H z)$	L (μH) $1-3$	\mathbf{Q}_{0}	TURNS		
	$1-3$	$1-2$	$2-3$	$4-6$	
796	220	80	2	75	8

TOKO $-10 \times 10 \mathrm{~mm}$ RWO + 6A6574N

L5 - Antenna Coil

f $(K H z)$	L (μH)	Q_{0}	TURNS	
	$1-2$	$1-2$	$1-2$	$3-4$
796			105	7

WIRE: LITZ $-15 \times 0.05 \mathrm{~mm}$. CORE: $10 \times 80 \mathrm{~mm}$.

S-6161

APPLICATION INFORMATION (continued)

Typical performance of the radio receiver of fig. $12\left(\mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V}\right)$

Parameter		Test Conditions		Value
WAVEBANDS	FM			87.5 to 108 MHz
	AM			510 to 1620 KHz
SENSITIVITY	FM	S/N = 26dB	$\Delta \mathrm{f}=22.5 \mathrm{KHz}$	$1 \mu \mathrm{~V}$
	AM	$\mathrm{S} / \mathrm{N}=6 \mathrm{~dB}$	$\mathrm{m}=0.3$	$1 \mu \mathrm{~V}$
	AM	$S / N=26 d B$	$\mathrm{m}=0.3$	$10 \mu \mathrm{~V}$
DISTORTION$(\mathrm{fm}=1 \mathrm{KHz})$	FM	$\begin{aligned} & P_{0}=0.5 \mathrm{~W} \\ & V_{i}=100 \mu \mathrm{~V} \end{aligned}$	$\Delta f=22.5 \mathrm{KHz}$	0.25\%
			$\Delta \mathrm{f}=75 \mathrm{KHz}$	0,7\%
	AM		$\mathrm{m}=0.3$	0.4\%
			$\mathrm{m}=0,8$	0,8\%
SIGNAL TO NOISE$(\mathrm{fm}=1 \mathrm{KHz})$	FM	$\begin{aligned} & P_{\mathrm{O}}=0.5 \mathrm{~W} \\ & V_{\mathrm{i}}=100 \mu \mathrm{~V} \end{aligned}$	$\Delta f=22.5 \mathrm{KHz}$	64 dB
	AM	$\begin{aligned} & P_{\mathrm{o}}=0.5 \mathrm{~W} \\ & V_{\mathrm{i}}=1 \mathrm{mV} \end{aligned}$	$m=0.3$	50 dB
AMPLITUDE MODULATION REJECTION	FM	$V_{i}=100 \mu \mathrm{~V}$	$\Delta f=22.5 \mathrm{KHz} \quad \mathrm{m}=0.3$	50 dB
TWEET	d H.	$f=911 \mathrm{KHz}$		0.3\%
	rd H.	$\mathrm{f}=1370 \mathrm{KHz}$		0.07\%
QUIESCENT CURRENT				20 mA
SUPPLY VOLTAGE RANGE				3 to 12 V

APPLICATION INFORMATION (continued)

Fig. 14 - Low cost 27 MHz receiver

Fig. 15 - L2 Oscillator coil

Coil support: Toko 10K
Primary winding: 10 Turns of enamelled copper wire 0.16 mm diameter (pins 3-1).
Secondary winding: 4 Turns copper wire
0.16 mm diameter (pins 6-4)

Fig. 16-L1 Antenna Coil

Coil support: Toko 10K.
Primary winding: as L2 (pins 3-1)
Secondary winding: 2 Turns copper wire
0.16 mm diameter (pins 6-4)

Fig. 17 - Low cost 27 MHz receiver with external xtal oscillator

APPLICATION INFORMATION (continued)

Fig. 18-455 KHz FM narrow band IF

Fig. 19 - P.C. board and component layout of the circuit of fig. 18

APPLICATION INFORMATION (continued)

Fig. 20 - Discriminator " S " curve response (circuit of fig. 18)

Fig. 21 - Application in sound channel of multistandard TV or in parallel AM modulated sound channel (AM section only).

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$)

AM Section ($\mathrm{f}_{\mathrm{o}}=39 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=15 \mathrm{KHz}$)

Parameter	Typ	Unit
Audio out ($\mathrm{m}=0.3$) $\begin{array}{ll} \mathrm{S} / \mathrm{N}\left(\mathrm{~V}_{\mathrm{i}}=100 \mu \mathrm{~V} ;\right. & \mathrm{m}=0.3) \\ \mathrm{S} / \mathrm{N}\left(\mathrm{~V}_{\mathrm{i}}=1 \mathrm{mV} ;\right. & \mathrm{m}=0.3) \\ \mathrm{S} / \mathrm{N}\left(\mathrm{~V}_{\mathrm{i}}=10 \mathrm{mV} ;\right. & \mathrm{m}=0.3) \end{array}$ AGC range ($\mathrm{m}=0.8, \Delta$ Vout $=3 \mathrm{~dB}$) Max input signal handling ($m=0.8$; $d=5 \%$) $-3 d B$ bandwidth Distortion $\begin{array}{ll} \left(\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V} ;\right. & \mathrm{m}=0.3) \\ \left(\mathrm{V}_{\mathbf{i}}=1 \mathrm{mV} ;\right. & \mathrm{m}=0.3) \\ \left(\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} ;\right. & \mathrm{m}=0.3) \\ \left(\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V} ;\right. & \mathrm{m}=0.8) \\ \left(\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} ;\right. & \mathrm{m}=0.8) \\ \left(\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} ;\right. & \mathrm{m}=0.8) \end{array}$	$\begin{gathered} 60 \\ 37 \\ 55 \\ 56 \\ 65 \\ 150 \\ 600 \\ 2 \\ 1 \\ 0.8 \\ 7 \\ 5 \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{mV} \\ \mathrm{KHz} \\ \% \\ \% \\ \% \\ \% \\ \% \\ \% \end{gathered}$

FM Section ($\mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

Parameter	Typ	Unit
-3dB input limiting voltage ($\triangle f=25 \mathrm{KHz}$)	3	$\mu \mathrm{V}$
AMR $\quad\left(\triangle f=+25 \mathrm{KHz} ; \quad m=0.3 ; \quad V_{i}=100 \mu \mathrm{~V}\right)$	40	dB
$\left(\Delta \mathrm{f}=+25 \mathrm{KHz} ; \quad \mathrm{m}=0.3 ; \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}\right)$	58	dB
$\left(\Delta f=+25 \mathrm{KHz} ; \quad m=0.3 ; \quad V_{i}=10 \mathrm{mV}\right)$	54	dB
$\mathrm{S} / \mathrm{N} \quad\left(\triangle \mathrm{f}= \pm 25 \mathrm{KHz} ; \quad \mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}\right)$	51	dB
$\mathrm{S} / \mathrm{N} \quad\left(\triangle \mathrm{f}= \pm 25 \mathrm{KHz} ; \quad V_{i}=1 \mathrm{mV}\right)$	70	dB
$\mathrm{S} / \mathrm{N} \quad\left(\triangle \mathrm{f}= \pm 25 \mathrm{KHz} ; \quad V_{i}=10 \mathrm{mV}\right)$	70	dB
Distortion ($\left.\triangle \mathrm{f}= \pm 25 \mathrm{KHz} ; \quad \mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}\right)$	0.5	\%
$\left(\Delta f= \pm 25 \mathrm{KHz} ; \quad V_{i}=1 \mathrm{mV}\right)$	0.6	\%
$\left(\Delta f= \pm 25 \mathrm{KHz} ; \quad V_{i}=10 \mathrm{mV}\right)$	0.6	\%
$\left(\Delta f= \pm 50 \mathrm{KHz} ; \quad V_{i}=100 \mu \mathrm{~V}\right)$	1	\%
$\left(\Delta f= \pm 50 \mathrm{KHz} \quad V_{i}=1 \mathrm{mV}\right)$	1	\%
$\left(\Delta f= \pm 50 \mathrm{KHz} ; \quad V_{i}=10 \mathrm{mV}\right)$	1	\%
Recovered audio ($\triangle \mathrm{f}= \pm 15 \mathrm{KHz} ; \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$) (Recovered audio can be varied by variation of 3.3 K ohm resistor in parallel with the discriminator coil)	70	mV
Max input signal handling	1	V

Note: AM performance at 39 MHz can be improved by mean of a selective preamplifier stage.

LOW VOLTAGE AM-FM RADIO

The TDA1220L is a monolithic integrated circuit in a 16 -lead dual in-line plastic package designed for use in $4.5 \mathrm{~V}-6 \mathrm{~V}$ portable AM-FM radio receivers.

The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer
- One pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

The TDA1220L is suitable for AM applications up to 30 MHz and for FM-IF and features:

- High sensitivity and low noise
- Very low tweet
- High signal handling
- Low battery drain
- AM sensitivity regulation facility
- Operating supply voltage: 2.5 V to 9 V
- Very simple DC switching of AM-FM

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	12	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}<110^{\circ} \mathrm{C}$	400	mW
$\mathrm{~T}_{\text {op }}$	Operating temperature		
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-20 to 85	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

THERMAL DATA

$R_{\text {th J-amb }} \quad$ Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{s}}=4.5 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{d}	Drain current	AM section		10	15
	FM section			7	11

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		15	25	$\mu \mathrm{V}$
S/N		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$	45	50		dB
V_{i}	AGC range	$\Delta \mathrm{V}_{\text {out }}=10 \mathrm{~dB}$	$\mathrm{m}=0.8$	94	100		dB
V_{0}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	70	90	120	mV
d	Distortion				0.4	1	\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d < 10\%	1			V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		$K \Omega$
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{0}	Output resistance (pin 9)			3.5	5	6.5	$K \Omega$
	Tweet 2 IF	$\mathrm{m}=0,3$	$V_{i}=1 \mathrm{mV}$		40		dB
	Tweet 3 IF				55		dB

FM SECTION ($f_{o}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB limiting point			26	36	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & V_{i}=3 \mathrm{mV} \end{aligned}$	$\mathrm{m}=0.3$	35	46		dB
S/N	Ultimate quieting	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	55	64		dB
d	Distortion	$\Delta f= \pm 22.5 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.3	0.6	\%
V_{0}	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	55	80	100	mV
$\mathrm{R}_{\mathbf{i}}$	Input resistance between pin 16 and ground				6.5		$K \Omega$
$\mathrm{C}_{\boldsymbol{i}}$	Input capacitance between pin 16 and ground				14		pF
R_{0}	Output resistance (pin 9)			3.5	5	6.5	$K \Omega$

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{s}}=3 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{d}	Drain current	AM section		9	14
		FM section		6	10

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		15	25	$\mu \mathrm{V}$
S / N		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$	45	50		dB
V_{i}	AGC range	$\Delta \mathrm{V}_{\text {out }}=10 \mathrm{~dB}$	$m=0.8$	94	100		dB
V_{0}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	70	95	120	mV
d	Distortion				0.4	1	\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d $<10 \%$	1			V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		$K \Omega$
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{0}	Output resistance (pin 9)			3.5	5	6.5	$\mathrm{K} \Omega$
	Tweet 2 IF	$\mathrm{m}=0,3$	$V_{i}=1 \mathrm{mV}$		40		dB
	Tweet 3 IF				55		dB

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB limiting point		40	75	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{array}{rlr} \Delta \mathrm{f} & = \pm 22.5 \mathrm{KHz} \quad \mathrm{~m}=0.3 \\ \mathrm{~V}_{\mathrm{i}} & =3 \mathrm{mV} & \\ \hline \end{array}$	35	42		dB
S/N	Ultimate quieting	$\Delta f= \pm 22.5 \mathrm{KHz} \quad V_{i}=1 \mathrm{mV}$	55	64		dB
d	Distortion	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		0.3	0.7	\%
		$\Delta f=75 \mathrm{KHz}$		0.9		\%
V_{0}	Recovered audio signal (pin 9)	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	55	80	100	mV
R_{i}	Input resistance between pin 16 and ground	,		6.5		$K \Omega$
C_{i}	Input capacitance between pin 16 and ground			14		pF
R_{0}	Output resistance (pin 9)		3.5	5	6.5	$\mathrm{K} \Omega$

Fig. 1 - Test circuit

Fig. 2 - PC board and component layout (1:1 scale) of the test circuit.

APPLICATION INFORMATION

Fig. 4 - PC board and component layout of the circuit of fig. 3. (1:1 scale)

APPLICATION INFORMATION (continued)

F1 - 10.7 MHz IF Coil

	$\underset{(\mathrm{pF})}{\mathrm{C}_{\mathrm{o}}}$	$\stackrel{f}{(\mathrm{MHz})}$	O_{0}	TURNS		
			1-3	1-2	2-3	4-6
	-	10.7	1.05	6	8	2

TOKO - FM1 - $7 \times 7 \mathrm{~mm}$. 119 AN - A5066R

F3-455 KHz IF Coil

(3)	$\underset{(\mathrm{pF})}{\mathrm{C}_{\mathrm{o}}}$	$\underset{(K \mathrm{Kz})}{\mathbf{f}}$	O_{0}	TURNS		
	1-3		1-3	1-2	2-3	4-6
	180	455	70	63	81	7

TOKO - AM1 - $7 \times 7 \mathrm{~mm}$
7LC - A5070EK

F4 - FM Detector Coil

	$\begin{gathered} \mathrm{C}_{\mathrm{O}} \\ \mathrm{pF}) \end{gathered}$	$\stackrel{f}{(\mathrm{MHz})}$	O_{0}	TURNS		
	1-3		1-3	1-3	-	-
	82	10.7	100	12	-	-

TOKO - $10 \times 10 \mathrm{~mm}$. KACS - K586 HM

F5-455 KHz IF Coil

$\underset{(\mathrm{pF})}{\mathrm{C}_{\mathrm{O}}}$	$\stackrel{f}{(\mathrm{KHz})}$	O_{0}	TURNS		
1-3		1-3	1-2	2-3	4-6
180	455	70	41	103	20

TOKO - AM3 $-7 \times 7 \mathrm{~mm}$. 7LC - A5073 EK

F6 - AM Oscillator Coil

f $(K H z)$	L $(\mu \mathrm{H})$	$\mathbf{o}_{\mathbf{o}}$	TURNS		
	$1-3$	$1-3$	$1-2$	$2-3$	$4-6$
	320	80	90	3	9

TOKO - OAM320-7×7 mm.
7BO - A5071 DC

L5 - Antenna Coil

WIRE: LITZ $-10 \times 0.05 \mathrm{~mm}$. CORE: $10 \times 80 \mathrm{~mm}$.

TDA1904

4W AUDIO AMPLIFIER

- HIGH OUTPUT CURRENT CAPABILITY (UP TO 2A)
- PROTECTION AGAINST CHIP OVERTEMPERATURE
- LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- SUPPLY VOLTAGE RANGE: 4V TO 20V

The TDA 1904 is a monolithic integrated circuit in POWERDIP package intended for use as low-
frequency power amplifier in wide range of applications in portable radio and TV sets.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{0}	Peak output current (non repetitive)	2.5	A
I_{0}	Peak output current (repetitive	2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=80^{\circ} \mathrm{C}$	1	W
	at $\mathrm{T}_{\text {pins }}=60^{\circ} \mathrm{C}$	6	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST AND APPLICATION CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathbf{R}_{\text {th } j \text {-case }}$	Thermal resistance junction-pins $\mathbf{R}_{\text {th } j-a m b}$ Thermal resistance junction-ambient	\max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $=$ $20^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		20	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{S}=4 V \\ & V_{S}=14 V \end{aligned}$		$\begin{aligned} & 2.1 \\ & 7.2 \end{aligned}$		V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=14 V \end{aligned}$		$\begin{array}{r} 8 \\ 10 \end{array}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	mA
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{s}}=12 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V} & \end{array}$	$\begin{gathered} 1.8 \\ 4 \\ 3.1 \\ 0.7 \end{gathered}$	$\begin{gathered} 2 \\ 4.5 \end{gathered}$		W
d	Harmonic distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{S}}=9 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 1.2 \mathrm{~W} \mathrm{R}=4 \Omega \end{aligned} \quad \mathrm{R}_{\mathrm{L}}=4$		0.1	0.3	\%
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=14 V \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$			V
R_{i}	Input resistance (pin 8)	$f=1 \mathrm{KHz}$	55	150		$K \Omega$
η	Efficiency	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{o}=2 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{\mathrm{O}}=4.5 \mathrm{~W} \end{array}$		$\begin{aligned} & 70 \\ & 65 \end{aligned}$		\%
BW	Small signal bandwidth (-3 dB)	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	40 to 40,000			Hz
G_{v}	Voltage gain (open loop)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$		75		dB
G_{v}	Voltage gain (closed loop)	$\begin{array}{ll} V_{\mathrm{s}}=14 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{f}=1 \mathrm{KHz} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \end{array}$	39.5	40	40.5	dB
e_{N}	Total input noise	$\begin{align*} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{align*}$		$\begin{gathered} 1.2 \\ 2 \end{gathered}$	4	$\mu \mathrm{V}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		2 3		$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=12 \mathrm{~V} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \quad \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{Vrms} \end{aligned}$	40	50		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$P_{\text {tot }}=2 W$		120		${ }^{\circ} \mathrm{C}$

Note: $\quad\left({ }^{\circ}\right)$ Weighting filter $=$ curve A.
$\left(^{\circ}\right)$ Filter with noise bendwidth: 22 Hz to 22 KHz .

Fig. 1 - Test and application circuit

Fig. 2 - P.C. board and components layout of fig. 1 (1: 1 scale)

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 1.
When the supply voltage V_{S} is less than 6 V , a 68Ω resistor must be connected between pin 2
and pin 3 in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Components	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value	Allowed range	
					Min.	Max.
R1	$10 \mathrm{~K} \Omega$	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	9 R 3	
R2	100Ω		Decrease of gain.	Increase of gain.		$1 \mathrm{~K} \Omega$
R3	4.7Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R4	68Ω	Increase of the output swing with low supply voltage.			39Ω	220Ω
C1	$2.2 \mu \mathrm{~F}$	Input DC decoupling.	Higher cost lower noise.	Higher low frequency cutoff. Higher noise.		
C2	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C3	$22 \mu \mathrm{~F}$	Ripple rejection	Increase of SVR increase of the switch-on time.	Degradation of SVR.	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C4	2.2 F	Inverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C5	$47 \mu \mathrm{~F}$	Bootstrap.		Increase of the distortion at low frequency.	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C6	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		.
C7	$1000 \mu \mathrm{~F}$	Output DC decoupling.		Higher low frequency cutoff.		

Fig. 3 -- Quiescent output voltage vs. supply voltage

Fig. 6 - Distortion vs. output power

Fig. 9 - Distortion vs. output power

Fig. 4 - Quiescent drain current vs. supply voltage

Fig. 7 - Distortion vs. output power

Fig. 10 - Distortion vs. output power

Fig. 5 - Output power vs. supply voltage

Fig. 8 - Distortion vs. output power

Fig. 11 - Distortion vs. output power

Fig. 12 - Distortion vs. frequency

Fig. 15 - Distortion vs. frequency

Fig. 18 - Total power dissipation vs. output power

Fig. 13 - Distortion vs. frequency

Fig. 16 - Supply voltage rejection vs. frequency

Fig. 19 - Total power dissipation vs. output power

Fig. 14 - Distortion vs. frequency

Fig. 17 - Total power dissipation and efficiency vs. output power

Fig. 20 - Total power dissipation vs. output power

THERIMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increase up to $150^{\circ} \mathrm{C}$, the thermal shutdown simply reduces the power dissipation and the current consumption.

MOUNTING INSCTRUCTION

The TDA 1904 is assembled in the Powerdip, in which 8 pins (from 9 to 16) are attached to the frame and remove the heat produced by the chip.
Figure 21 shows a PC board copper area used as a heatsink ($1=65 \mathrm{~mm}$).
The thermal resistance junction-ambient is $35^{\circ} \mathrm{C}$.
Fig. 21 - Example of heatsink using PC board copper ($1=65 \mathrm{~mm}$)

COPPER AREA 35μ THICKNESS

5W AUDIO AMPLIFIER WITH MUTING

The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets:

- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise
- voltage range 4 V to 30 V

The TDA 1905 is assembled in a new plastic package, the POWERDIP, that offers the same
assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6 W and a thermal resistance of $15^{\circ} \mathrm{C} / \mathrm{W}$ (junction to pins).

Powerdip
$(8+8)$

ORDERING NUMBER: TDA1905

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	30	V
I_{o}	Output peak current (non repetitive)	3	A
I_{\circ}	Output peak current (repetitive)	2.5	A
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	0 to	
V_{i}	Differential input voltage	$\pm \mathrm{V}_{\mathrm{s}}$	V
V_{11}	Muting thresold voltage	V	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}$	V_{s}	V
	$\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	6	W

APPLICATION CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal resistance junction-pins	max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal resistance junction-amb	max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUITS:

WITHOUT MUTING

WITH MUTING FUNCTION

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, R_{th} (heatsink) $=$ $20^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage		4		30	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{s}=4 V \\ & V_{s}=14 \mathrm{~V} \\ & V_{s}=30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.6 \\ 6.7 \\ 14.4 \end{gathered}$	$\begin{gathered} 2.1 \\ 7.2 \\ 15.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 7.8 \\ 16.8 \end{gathered}$	V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{s}=4 \mathrm{~V} \\ & V_{s}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V} \end{aligned}$		15 17 21	35	mA
$V_{\text {CE sat }}$	Output stage saturation voltage	$\begin{aligned} & I_{C}=1 A \\ & I_{C}=2 A \end{aligned}$		$\begin{gathered} 0.5 \\ 1 \end{gathered}$		V
P_{\circ}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{S}=9 V & R_{L}=4 \Omega \\ V_{S}=14 V & R_{L}=4 \Omega \\ V_{S}=18 V & R_{L}=8 \Omega \\ V_{S}=24 V & R_{L}=16 \Omega \end{array}$	$\begin{gathered} 2.2 \\ 5 \\ 5 \\ 4.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 5.5 \\ & 5.5 \\ & 5.3 \end{aligned}$		W
d	Harmonic distortion	$\begin{aligned} & f=1 \mathrm{KHz} \quad \\ & V_{S}=9 V \quad R_{L}=4 \Omega \\ & P_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 1.5 \mathrm{~W} \\ & V_{S}=14 V \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & V_{\mathrm{S}}=18 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & V_{\mathrm{S}}=24 V \quad R_{L}=16 \Omega \\ & P_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		\%
V_{i}	Input sensitivity	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{S}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{O}=2.5 \mathrm{~W} \\ V_{S}=14 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=18 \mathrm{~V} & R_{L}=8 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=24 \mathrm{~V} & R_{L}=16 \Omega & P_{O}=5.3 \mathrm{~W} \end{array}$		$\begin{gathered} 37 \\ 49 \\ 73 \\ 100 \end{gathered}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=14 V \\ & V_{s}=18 \mathrm{~V} \\ & V_{s}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \\ & 1.8 \\ & 2.4 \end{aligned}$			V
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 8)	$\mathrm{f}=1 \mathrm{KHz}$	60	100		$K \Omega$
I_{d}	Drain current	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{s}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{O}=2.5 \mathrm{~W} \\ V_{S}=14 \mathrm{~V} & R_{L}=4 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=18 \mathrm{~V} & R_{L}=8 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=24 \mathrm{~V} & R_{L}=16 \Omega & P_{O}=5.3 \mathrm{~W} \end{array}$		$\begin{aligned} & 380 \\ & 550 \\ & 410 \\ & 295 \end{aligned}$		mA
η	Efficiency	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{\mathrm{S}}=9 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{O}=2.5 \mathrm{~W} \\ V_{S}=14 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=18 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega & P_{O}=5.5 \mathrm{~W} \\ V_{S}=24 \mathrm{~V} & R_{\mathrm{L}}=16 \Omega & P_{0}=5.3 \mathrm{~W} \end{array}$		73 71 74 75		\%

(*) With an external resistor of 100Ω between pin 3 and $+V_{5}$.

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
BW	Small signal bandwidth (-3 dB)	$V_{s}=14 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	40 to 40,000			Hz
G_{v}	Voitage gain (open loop)	$\begin{aligned} & V_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$			75		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & V_{\mathrm{S}}=14 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \end{aligned}$	39.5	40	40.5	dB
e_{N}	Total input noise		$\begin{align*} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \tag{०}\\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{align*}$		1.2 1.3 1.5	4.0	$\mu \mathrm{V}$
			$\begin{align*} & \mathbf{R}_{\mathrm{g}}=50 \Omega \\ & \mathbf{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathbf{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{align*}$		2.0 2.0 2.2	6.0	$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\begin{align*} & V_{S}=14 \mathrm{~V} \\ & P_{O}=5.5 \mathrm{~W} \\ & R_{L}=4 \Omega \end{align*}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		90 92		dB
			$\begin{align*} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{align*}$		87 87		dB
SVR	Supply voltage rejection	$\begin{array}{ll} V_{s}=18 \mathrm{~V} \quad R_{L}=8 \Omega \\ f_{\text {ripple }}=100 \mathrm{~Hz} \\ V_{\text {ripple }}=0.5 \mathrm{Vrms} \end{array} \quad \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$		40	50		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down (*) case temperature	$\mathrm{P}_{\text {tot }}=2.5 \mathrm{~W}$			115		${ }^{\circ} \mathrm{C}$

MUTING FUNCTION

$\mathrm{V}_{\text {TOFF }}$	Muting-off threshold voltage (pin 4)		1.9		4.7	V
$\mathrm{V}_{\text {TON }}$	Muting-on threshold voltage (pin 4)		0		1.3	V
			6.2		V_{5}	
R_{5}	Input resistance (pin 5)	Muting off	80	200		$K \Omega$
		Muting on		10	30	Ω
R_{4}	Input resistance (pin 4)		150			$K \Omega$
$\mathrm{A}_{\text {T }}$	Muting attenuation	$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}=10 \mathrm{~K} \Omega$	50	60		dB

Note:

$\left(^{\circ}\right) \quad$ Weighting filter = curve A.
$\left(^{\circ}\right)$ Filter with noise bandwidth: 22 Hz to 22 KHz .
(*) See fig. 30 and fig. 31

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Distortion vs. output power ($R_{L}=16 \Omega$)

Fig. 7 - Distortion vs. frequency ($R_{L}=16 \Omega$)

6/12

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 9 - Distortion vs. frequency ($R_{L}=4 \Omega$)

.

10

Fig. 8 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 5 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

SCS-THOMSON
WMEROELECTROMCS

Fig. 10 - Open loop frequency response

Fig. 13-Supply voltage rejection vs. voltage gain (ref. to the Muting circuit)

Fig. 16 - Power dissipation and efficiency vs. output power

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs. source resistance

Fig. 17 - Power dissipation and efficiency vs. output power

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting
 for $V_{s}<10 \mathrm{~V}$.
$P_{0}=5.5 \mathrm{~W}(d=10 \%)$
$V_{s}=14 \mathrm{~V}$
$\mathrm{I}_{\mathrm{d}}=0.55 \mathrm{~A}$
$\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$
Fig. 20 - PC board and components lay-out of the circuit of fig. 19 (1:1 scale)

Fig. 22 - Delayed muting circuit

APPLICATION INFORMATION (continued)

Fig. 23 - Low-cost application circuit without bootstrap.

Fig. 25 - Two position DC tone control using change of pin 5 resistance (muting function)

Fig. 27 - Bass Bomb tone control using change of pin 5 resistance (muting function)

Fig. 28 - Frequency response of the circuit of fig. 27

MUTING FUNCTION

The output signal can be inhibited applying a $D C$ voltage V_{T} to pin 4, as shown in fig. 29

Fig. 29

The input resistance at pin 5 depends on the threshold voltage V_{T} at pin 4 and is typically:

$$
\begin{array}{lll}
\mathrm{R}_{5}=200 \mathrm{~K} \Omega & @ 1.9 \mathrm{~V} \leqslant \mathrm{~V}_{T} \leqslant 4.7 \mathrm{~V} & \text { muting-off } \\
\mathrm{R}_{5}=10 \Omega & @ \quad \begin{array}{l}
0 \mathrm{~V} \leqslant \mathrm{~V}_{\top} \leqslant 1.3 \mathrm{~V} \\
6 \mathrm{~V} \leqslant \mathrm{~V}_{T} \leqslant \mathrm{~V}_{\mathrm{s}}
\end{array} & \text { muting-on }
\end{array}
$$

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression:

Considering $R_{g}=10 \mathrm{~K} \Omega$ the attenuation in the muting-on condition is typically $A_{T}=60 \mathrm{~dB}$. In the muting-off condition, the attenuation is very low, tipically 1.2 dB .
A very low current is necessary to drive the threshold voltage V_{T} because the input resistance at pin 4 is greater than $150 \mathrm{~K} \Omega$. The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier power-on transients (see fig. 22)
- during switching at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many application and two examples are shown in fig. 25 and 27 , where it has been used to change the feedback network, obtaining 2 different frequency response.

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 21. When the supply voltage V_{5} is less than 10 V , a 100Ω resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Component	Raccom. value	Purpose	Larger than recommended value	Smaller than recommended value	Allow Min.	d range \| Max.
$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}$	$10 \mathrm{~K} \Omega$	Input signal imped. for muting operation	Increase of the attenuation in muting-on condition. Decrease of the input sensitivity.	Decrease of the attenuation in muting on condition.		
R_{2}	$10 \mathrm{~K} \Omega$	Feedback resistors	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{3}$	$1 \mathrm{~K} \Omega$
R_{3}	100Ω		Decrease of gain.	Increase of gain.		
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R_{5}	100s	Increase of the output swing with low supply voltage.			47	330
P_{1}	$20 \mathrm{~K} \Omega$	Volume potentiometer	Increase of the switch-on noise.	Decrease of the input impedance and of the input level.	$10 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$
$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{C}_{2} \\ & \mathrm{C}_{3} \end{aligned}$	$0.22 \mu \mathrm{~F}$	Input DC decoupling.	Higher cost lower noise.	Higher low frequency cutoff. Higher noise		
C_{4}	$2.2 \mu \mathrm{~F}$	Inverting input DC decoupling.	Increase of the switch-on noise.	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C_{5}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{6}	$10 \mu \mathrm{~F}$	Ripple rejection	Increase of SVR increase of the switch-on time	Degradation of SVR	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{7}	$47 \mu \mathrm{~F}$	Bootstrap.		Increase of the distortion at low frequency.	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{8}	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{9}	$1000 \mu \mathrm{~F}$	Output DC decoupling.		Higher low frequency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 30 - Output power and drain current vs. case temperature.

Fig. 31 - Output power and drain current vs. case temperature

Fig. 32 - Maximum allowable power dissipation vs. ambient temperature.

MOUNTING INSTRUCTION: See TDA1904

8W AUDIO AMPLIFIER

The TDA1908 is a monolithic integrated circuit in 12 lead quad in-line plastic package intended for low frequency power applications. The mounting is compatible with the old types TBA800, TBA810S, TCA830S and TCA940N. Its main features are:

- flexibility in use with a max output curent of 3A and an operating supply voltage range of 4 V to 30 V ;
- protection against chip overtemperature;
- soft limiting in saturation conditions;
- low "switch-on" noise;
- low number of external components;
- high supply voltage rejection;
- very low noise.

ORDER CODE : TDA1908

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	30	V
I_{0}	Output peak current (non repetitive)	3.5	A
I_{0}	Output peak current (repetitive)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation: at $\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{amb}}=90^{\circ} \mathrm{C}$	1	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

APPLICATION CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

TEST CIRCUIT

* See fig. 12.

THERMAL DATA

$\begin{aligned} & \mathrm{R}_{\mathrm{th} j-\mathrm{tab}} \\ & \mathrm{R}_{\mathrm{th} j-\mathrm{amb}} \end{aligned}$	Thermal resistance junction-tab Thermal resistance junction-ambient	max max	$\begin{array}{r} 12 \\ \left(^{\circ}\right) 70 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

$\left({ }^{\circ}\right)$ Obtained with tabs soldered to printed circuit board with min copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $=$ $8^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		30	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{s}=4 \mathrm{~V} \\ & V_{s}=18 \mathrm{~V} \\ & V_{s}=30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.6 \\ 8.2 \\ 14.4 \end{gathered}$	$\begin{gathered} 2.1 \\ 9.2 \\ 15.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 10.2 \\ 16.8 \end{gathered}$	V
I_{d}	Quiescent drain current	$\begin{aligned} & V_{\mathrm{S}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=30 \mathrm{~V} \end{aligned}$		$\begin{gathered} 15 \\ 17.5 \\ 21 \end{gathered}$	35	mA
$V_{\text {CEsat }}$	Output stage saturation voltage (each output transistor)	$\begin{aligned} & I_{C}=1 \mathrm{~A} \\ & I_{C}=2.5 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.3 \end{aligned}$		V
P_{0}	Output power	$\begin{array}{rl} d=10 \% & f=1 \mathrm{KHz} \\ V_{\mathrm{s}} & =9 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{s}}=22 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=16 \Omega \end{array}$	$\begin{gathered} 7 \\ 6.5 \\ 4.5 \end{gathered}$	$\begin{gathered} 2.5 \\ 5.5 \\ 9 \\ 8 \\ 5.3 \end{gathered}$		W

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test condition		Min.	Typ.	Max	Unit
d	Harmonic distortion	$\begin{array}{r} \mathrm{f}=1 \mathrm{KHz} \\ \mathrm{~V}_{\mathrm{s}}=9 \mathrm{~V} \\ \mathrm{P}_{\mathrm{O}}= \\ \mathrm{V}_{\mathrm{S}}=18 \mathrm{~V} \\ \mathrm{P}_{\mathrm{O}}= \\ \mathrm{V}_{\mathrm{s}}=24 \mathrm{~V} \\ \mathrm{P}_{\mathrm{O}}= \end{array}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{~mW} \text { to } 1.5 \mathrm{~W} \\ R_{\mathrm{L}}=4 \Omega \\ \mathrm{~mW} \text { to } 4 \mathrm{~W} \\ \mathrm{R}_{\mathrm{L}}=16 \Omega \\ \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{gathered}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		\%
V_{i}	Input sensitivity	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=14 V \\ & V_{s}=18 V \\ & V_{s}=22 V \\ & V_{s}=24 V \end{aligned}$	$\begin{aligned} & =4 \Omega \mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} \\ & =4 \Omega \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ & =4 \Omega \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} \\ & =8 \Omega \\ & =16 \Omega \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \\ & =5.3 \mathrm{~W} \end{aligned}$		$\begin{array}{r} 37 \\ 52 \\ 64 \\ 90 \\ 110 \end{array}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{s}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.3 \\ & 1.8 \\ & 2.4 \end{aligned}$			V
R_{i}	Input resistance (pin 8)	$\mathrm{f}=1 \mathrm{KHz}$		60	100		$K \Omega$
I_{5}	Drain current	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{s}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =4 \Omega \mathrm{P}_{\mathrm{O}}=5.5 \mathrm{~W} \\ & =4 \Omega \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} \\ & =8 \Omega \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \\ & =16 \Omega \mathrm{P}_{\mathrm{O}}=5.3 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 570 \\ & 730 \\ & 500 \\ & 310 \end{aligned}$		mA
η	Efficiency	$V_{S}=18 \mathrm{~V}$	$f=1 \begin{aligned} & 1 \mathrm{KHz} \\ & P_{O}=9 W \end{aligned}$		72		\%
BW	Small signal bandwidth (-3 dB)	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$	$=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		to 40		Hz
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$			75		dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & V_{s}=18 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & R_{L}=4 \Omega \\ & P_{O}=1 \mathrm{~W} \end{aligned}$	39.5	40	40.5	dB
e_{N}	Total input noise		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		1.2 1.3 1.5	4.0	$\mu \mathrm{V}$
		(00)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		2.0 2.0 2.2	6.0	$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\begin{align*} & V_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} \tag{0}\\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{align*}$	$\begin{aligned} & R_{g}=10 \mathrm{~K} \Omega \\ & R_{g}=0 \end{aligned}$		92 94		dB
			$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad(\circ \circ) \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		88 90		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{s}=18 \mathrm{~V} \\ & \mathrm{f}_{\text {ripple }}=1 \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{Rz}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{gathered}$	40	50		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down junction temperature				145		${ }^{\circ} \mathrm{C}$

Note:
(०) Weighting filter = curve A.
(००) Filter with noise bandwidth: 22 Hz to 22 KHz .

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Distortion vs. output power ($R_{L}=16 \Omega$)

Fig. 7 - Distortion vs. frequency ($R_{L}=16 \Omega$)

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 8 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. output power ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 9 - Distortion vs. frequency ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 10 - Open loop frequency response

Fig. 13 - Supply voltage rejection vs. voltage gain G $\mathbf{~} 4266 / 2$

Fig. 16 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=14 \mathrm{~V}$)

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs. source resistance ${ }^{6.4265}$

Fig. 17 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$)

Fig. 12 - Values of capacitor C_{x} versus gain and B_{w}

Fig. 15 - Max power dissipation vs. supply voltage

Fig. 18 - Power dissipation and efficiency vs. output power ($\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$)

APPLICATION INFORMATION

Fig. 19 - Application circuit with bootstrap

* R4 is necessary when V_{s} is less than 10 V .

Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 21 - Application circuit without bootstrap

Fig. 22 - Output power vs. supply voltage (circuit of fig. 21)

Fig. 23 - Position control for car headlights

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 19.
When the supply voltage V_{s} is less than 10 V , a 100Ω resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power.
Different values can be used. The following table can help the designer.

Component	Raccom. value	Purpose	Larger than raccomanded value	Smaller than raccomanded value	Allowed range	
					Min.	Max.
R_{1}	$10 \mathrm{~K} \Omega$	Close loop gain setting.	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{2}$	
R_{2}	100Ω	Close loop gain setting.	Decrease of gain.	Increase of gain.		$\mathrm{R}_{1} / 9$
R_{3}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
R_{4}	100Ω	Increasing of output swing with low V_{s}.			47Ω	330Ω
C_{1}	$2.2 \mu \mathrm{~F}$	Input DC decoupling.	Lower noise	Higher low frequency cutoff. Higher noise.	$0.1 \mu \mathrm{~F}$	
C_{2}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{3}	$2.2 \mu \mathrm{~F}$	Iriverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C_{4}	$10 \mu \mathrm{~F}$	Ripple Rejection.	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{5}	$47 \mu \mathrm{~F}$	Bootstrap		Increase of the distortion at low frequency	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{6}	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{7}	$1000 \mu \mathrm{~F}$	Output DC decoupling.		Higher low frequency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device
damage due to high junction temperature.
If, for any reason, the junction temperature increase up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows the dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 24 - Output power and drain current vs. case temperature

Fig. 25 - Output power and drain current vs. case temperature

Fig. 26 - Maximum power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by soldering the tabs to a copper area on the PC board (see Fig. 27).

Fig. 27 - Mounding example

During soldering, tab temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.

Fig. 28 - Maximum power dissipation and thermal resistance vs. side " ℓ "

10W AUDIO AMPLIFIER WITH MUTING

The TDA 1910 is a monolithic integrated circuit in MULTIWATT ${ }^{\circledR}$ package, intended for use in $\mathrm{Hi}-\mathrm{Fi}$ audio power applications, as high quality TV sets.

The TDA 1910 meets the DIN 45500 ($\mathbf{d}=0.5 \%$) guaranteed output power of 10 W when used at $24 \mathrm{~V} / 4 \Omega$. At $24 \mathrm{~V} / 8 \Omega$ the output power is 7 W min . Features:

- muting facility
- protection against chip over temperature
- very low noise
- high supply voltage rejection
- low "switch-on" noise.

The TDA 1910 is assembled in MULTIWATT ${ }^{\circledR}$ package that offers:

- easy assembly
- simple heatsink
- space and cost saving
- high reliability.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	30	V
I_{o}	Output peak current (non repetitive)	3.5	A
I_{o}	Output peak current (repetitive)	3.0	A
$\mathrm{~V}_{i}$	Input voltage	0 to $+\mathrm{V}_{\mathrm{s}}$	V
V_{i}	Differential input voltage	± 7	V
$\mathrm{~V}_{11}$	Muting thresold voltage	V_{s}	V
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

(*) See fig. 13.

CONNECTION DIAGRAM (Top view)

tab connected to pin 6

SCHEMATIC DIAGRAM

TEST CIRCUIT

MUTING CIRCUIT

THERMAL DATA

| $\mathrm{R}_{\text {th } j-\mathrm{c}} \quad$ Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $=$ $4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		8		30	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{s}=18 V \\ & V_{s}=24 V \end{aligned}$	$\begin{gathered} 8.3 \\ 11.5 \end{gathered}$	$\begin{gathered} 9.2 \\ 12.4 \end{gathered}$	$\begin{gathered} 10 \\ 13.4 \end{gathered}$	V
Id	Quiescent drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	mA
$V_{\text {CE sat }}$	Output stage saturation voltage	$I_{C}=2 A$		1		V
		$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$		1.6		
P_{0}	Output power	$\begin{array}{lc} d=0.5 \% & f=40 \text { to } 15,000 \mathrm{~Hz} \\ V_{s}=18 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=24 V & R_{L}=4 \Omega \\ V_{s}=24 V & R_{L}=8 \Omega \end{array}$	$\begin{gathered} 6.5 \\ 10 \\ 7 \end{gathered}$	$\begin{gathered} 7 \\ 12 \\ 7.5 \end{gathered}$		W
		$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{S}=18 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=24 \mathrm{~V} & R_{L}=4 \Omega \\ V_{S}=24 \mathrm{~V} & R_{L}=8 \Omega \end{array}$	$\begin{gathered} 8.5 \\ 15 \\ 9 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 17 \\ & 10 \end{aligned}$		W
d	Harmonic distortion	$\begin{array}{cc} f=40 \text { to } & 15,000 \mathrm{~Hz} \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6.5 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 10 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{S}}=24 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } \quad 7 \mathrm{~W} \end{array}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	\%
d	Intermodulation distortion	$\begin{aligned} & V_{\mathrm{s}}=24 \mathrm{~V} \quad R_{\mathrm{L}}=4 \Omega \quad P_{\mathrm{O}}=10 \mathrm{~W} \\ & f_{1}=250 \mathrm{~Hz} \quad \begin{array}{l} f_{2}=8 \mathrm{KHz} \\ \\ \\ \text { (DIN 45500) } \end{array} \end{aligned}$		0.2		\%
v_{i}	Input sensitivity	$\begin{array}{lll} f=1 \mathrm{KHz} & & \\ V_{\mathrm{S}}=18 \mathrm{~V} & R_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=7 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \\ \mathrm{~V}_{\mathrm{s}}=24 \mathrm{~V} & R_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=7.5 \mathrm{~W} \end{array}$		$\begin{aligned} & 170 \\ & 220 \\ & 245 \end{aligned}$		mV
V_{i}	Input saturation voltage (rms)	$\begin{aligned} & V_{5}=18 V \\ & V_{5}=24 V \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$			V
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 5)	$f=1 \mathrm{KHz}$	60	100		$K \Omega$
I_{d}	Drain current	$\begin{array}{rr} V_{S}=24 \mathrm{~V} & f=1 \mathrm{KHz} \\ R_{\mathrm{L}}=4 \Omega & \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} \\ R_{\mathrm{L}}=8 \Omega & \mathrm{P}_{\mathrm{O}}=7.5 \mathrm{~W} \end{array}$		$\begin{aligned} & 820 \\ & 475 \end{aligned}$		mA

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test condition	Min.	Typ.	Max.	Unit
η	Efficiency	$\begin{array}{rl} V_{S}=24 \mathrm{~V} & f=1 \mathrm{KHz} \\ R_{\mathrm{L}}=4 \Omega & P_{\mathrm{O}}=12 \mathrm{~W} \\ R_{\mathrm{L}}=8 \Omega & P_{O}=7.5 \mathrm{~W} \\ \hline \end{array}$		$\begin{aligned} & 62 \\ & 65 \end{aligned}$		\%
BW	Small signal bandwidth	$\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		to 120		Hz
BW	Power bandwidth	$\begin{array}{ll} V_{s}=24 V & R_{L}=4 \Omega \\ P_{O}=12 W & d \leqslant 0.5 \% \end{array}$		to 15,0		Hz
G_{v}	Voltage gain (open loop)	$f=1 \mathrm{KHz}$		75		dB
G_{v}	Voltage gain (closed loop)	$\begin{array}{ll} V_{s}=24 \mathrm{~V} & R_{L}=4 \Omega \\ f=1 \mathrm{KHz} & P_{O}=1 \mathrm{~W} \end{array}$	29.5	30	30.5	dB
e_{N}	Total input noise	$\begin{aligned} & R_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega \quad(\circ) \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		1.2 1.3 1.5	3.0 3.2 4.0	$\mu \mathrm{V}$
		$\begin{aligned} & R_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=1 \mathrm{~K} \Omega(00) \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		2.0 2.0 2.2	$\begin{aligned} & 5.0 \\ & 5.2 \\ & 6.0 \end{aligned}$	$\mu \mathrm{V}$
S/N	Signal to noise ratio	$\begin{array}{l\|l} \mathrm{V}_{\mathrm{s}}=24 \mathrm{~V} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{g}}=0 \end{array}$	97	$\begin{aligned} & 103 \\ & 105 \end{aligned}$		dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$	93	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB
SVR	Supply voltage rejection	$\begin{aligned} & V_{s}=24 \mathrm{~V} \quad R_{L}=4 \Omega \\ & f_{\text {ripple }}=100 \mathrm{~Hz} \quad R_{g}=10 \mathrm{~K} \Omega \end{aligned}$	50	60		dB
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\mathrm{P}_{\text {tot }}=8 \mathrm{~W}$	110	125		${ }^{\circ} \mathrm{C}$

MUTING FUNCTION (Refer to Muting circuit)

V_{T}	Muting-off threshold voltage (pin 11)		1.9		4.7	V
$\mathrm{~V}_{\mathrm{T}}$	Muting-on threshold voltage (pin 11)		0		1.3	
		6		V_{s}		
$\mathrm{R}_{1} \quad$ Input resistance (pin 1)	Muting off	80	200		$\mathrm{~K} \Omega$	
	Muting on		10	30	Ω	
R_{11}	Input resistance (pin 11)		150			$\mathrm{~K} \Omega$
$\mathrm{~A}_{\mathrm{T}}$	Muting attenuation	$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}=10 \mathrm{~K} \Omega$	50	60		dB

Note:

$(\circ) \quad$ Weighting filter $=$ curve A.
(००) Filter with noise bandwidth: 22 Hz to 22 KHz .
(*) See fig. 29 and fig. 30.

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 4 - Output power vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 5 - Output power vs. supply voltage

Fig. 8 - Output power vs. frequency

Fig. 3 -Open loop frequency response

Fig. 6 - Distortion vs. output power

Fig. 9 - Output power vs.

Fig. 10 - Output power vs. input voltage

Fig. 13 - Values of capacitor C_{x} vs. bandwidth (BW) and gain (G_{v})

Fig. 16 - Power dissipation and efficiency vs. output power

Fig. 11 - Output power vs. input voltage

Fig. 14 - Supply voltage rejection vs. voltage gain

Fig. 17 - Power dissipation and efficiency vs. output power

Fig. 12 - Total input noise vs. source resistance

Fig. 15 - Supply voltage rejection vs. source resitance

Fig. 18 - Max power dissipation vs. supply voltage

APPLICATION INFORMATION

Fig. 19 - Application circuit without muting
Fig. 20 - PC board and component lay-out of the circuit of fig. 19 (1:1 scale)

Fig. 21 - Application circuit with muting

Performance (circuits of fig. 19 and 21)
$P_{0}=12 \mathrm{~W}(40$ to $15000 \mathrm{~Hz}, \mathrm{~d} \leqslant 0.5 \%$)
$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$
$\mathrm{I}_{\mathrm{d}}=0.82 \mathrm{~A}$
$\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$

APPLICATION INFORMATION (continued)

Fig. 22 - Two position DC tone control (10 dB boost 50 Hz and 20 KHz) using change of pin 1 resistance (muting function)

Fig. 24-10 dB 50 Hz boost tone control using change of pin 1 resistance (muting function)

Fig. 23 - Frequency response of the circuit of fig. 22

Fig. 25 - Frequency response of the circuit of fig. 24

Fig. 26 - Squelch function in TV applications

Fig. 27 - Delayed muting circuit

MUTING FUNCTION

The output signal can be inhibited applying a DC voltage V_{T} to pin 11 , as shown in fig. 28
Fig. 28

The input resistance at pin 1 depends on the threshold voltage V_{T} at pin 11 and is typically.

$$
\begin{array}{lll}
\mathrm{R}_{1}=200 \mathrm{~K} \Omega \text { @ } 1.9 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 4.7 \mathrm{~V} & \text { muting-off } \\
\mathrm{R}_{1}=10 \Omega & @ \quad \begin{array}{l}
0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant 1.3 \mathrm{~V} \\
6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{T}} \leqslant \mathrm{~V}_{\mathrm{s}}
\end{array} & \text { muting-on }
\end{array}
$$

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression.

Considering $R_{g}=10 \mathrm{~K} \Omega$ the attenuation in the muting-on condition is typically $A_{T}=60 \mathrm{~dB}$. In the muting-off condition, the attenuation is very low, typically 1.2 dB .
A very low current is necessary to drive the threshold voltage V_{T} because the input resistance at pin 11 is greater than $150 \mathrm{~K} \Omega$. The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier power-on transients (see fig. 27)
- during commutations at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 1 can be useful in many applications and we have shown 2 examples in fig. 22 and 24, where it has been used to change the feedback network, obtaining 2 different frequency responses.

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 21. Different values can be used.
The following table can help the designer.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value	Allowed range	
					Min.	Max.
$\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}$	$10 \mathrm{~K} \Omega$	Input signal imped. for muting operation	Increase of the attenuation in muting-on condition.Decrease of the input sensitivity.	Decrease of the attenuation in muting on condition.		
R_{2}	$3.3 \mathrm{~K} \Omega$	Close loop gain setting.	Increase of gain.	Decrease of gain. Increase quiescent current.	$9 \mathrm{R}_{3}$	
R_{3}	100Ω	Close loop gain setting.	Decrease of gain.	Increase of gain.		$\mathrm{R}_{2} / 9$
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.			
P_{1}	$20 \mathrm{~K} \Omega$	Volume potentiometer.	Increase of the switch-on noise.	Decrease of the input impedance and the input level.	$10 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$
$\begin{aligned} & \mathrm{C}_{1} \\ & \mathrm{C}_{2} \\ & \mathrm{C}_{3} \end{aligned}$	$\begin{gathered} 1 \mu \mathrm{~F} \\ 1 \mu \mathrm{~F} \\ 0.22 \mu \mathrm{~F} \end{gathered}$	Input DC decoupling.		Higher low frequency cutoff.		
C_{4}	$2.2 \mu \mathrm{~F}$	Inverting input DC decoupling.	Increase of the switch-on noise.	Higher low frequency cutoff.	$0.1 \mu \mathrm{~F}$	
C_{5}	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillations.		
C_{6}	$10 \mu \mathrm{~F}$	Ripple Rejection.	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.	$2.2 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{7}	$47 \mu \mathrm{~F}$	Bootstrap.		Increase of the distortion at low frequency.	$10 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$
C_{8}	$0: 22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.		
C_{9}	$\begin{gathered} 2200 \mu \mathrm{~F} \\ \left(\mathrm{R}_{\mathrm{L}}=4 \Omega\right) \\ 1000 \mu \mathrm{~F} \\ \left(\mathrm{R}_{\mathrm{L}}=8 \Omega\right) \end{gathered}$	Output DC decoupling.		Higher low frequency cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 29 - Output power and drain current vs. case temperature

Fig. 30 - Output power and drain current vs. case temperature

Fig. 31 - Maximum allowable power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Multiwatt ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

8W CAR RADIO AUDIO AMPLIFIER

NOT FOR NEW DESIGN

The TDA2002 is a class B audio power amplifier in Pentawatt ${ }^{\circledR}$ package designed for driving low impedance loads (down to 1.6Ω).

The device provides a high output current capability (up to 3.5A), very low harmonic and cross-over distortion.

In addition, the device offers the following features:

- very low number of external components
- assembly ease, due to Pentawatt ${ }^{\circledR}$ power package with no electrical insulation requirement
- space and cost saving
- high reliability
- flexibility in use

Protection against:
a) short circuit;
b) thermal over range;
c) fortuitous open ground;
d) load dump voltage surge.

See TDA 2003 for more complete information.
ORDER CODE: TDA2002H (Hor. Pentawatt)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Peak supply voltage (50 ms)	40	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Operating supply voltage	18	V
I_{o}	Output peak current (repetitive)	3.5	A
I_{o}	Output peak current (non repetitive)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	15	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

Fig. 1 - Application circuit

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

DC CHARACTERISTICS (Refer to DC test circuit)

V_{s}	Supply voltage		8		18	V
V_{o}	Quiescent output voltage (pin 4)		6.1	6.9	7.7	V
I_{d}	Quiescent drain current (pin 5)			45	80	mA

AC CHARACTERISTICS (Refer to AC test circuit, $\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

Po	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega \\ \mathrm{~V}_{\mathrm{s}}=16 \mathrm{~V} & R_{\mathrm{L}}=2 \Omega \\ & R_{\mathrm{L}}=4 \Omega \\ & R_{\mathrm{L}}=2 \Omega \end{array}$	4.8	$\begin{gathered} 5.2 \\ 8 \\ 6.5 \\ 10 \end{gathered}$		W W W W
$V_{i(r m s)}$	Input saturation voltage		300			mV
V_{i}	Input sensitivity	$\begin{array}{ll} & f=1 \mathrm{kHz} \\ \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} & R_{\mathrm{L}}=2 \Omega \\ \mathrm{P}_{\mathrm{O}}=5.2 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} & R_{\mathrm{L}}=2 \Omega \end{array}$		15 11 55 50		$m V$ $m V$ $m V$ $m V$
B	Frequency response (-3 dB)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		150		Hz
d	Distortion	$\begin{array}{ll} & f=1 \mathrm{kHz} \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 3.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
$\mathrm{R}_{\mathbf{i}}$	Input resistance (pin 1)	$\mathrm{f}=1 \mathrm{kHz}$	70	150		$k \Omega$
G_{V}	Voltage gain (open loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$		80		dB
G_{V}	Voltage gain (closed loop)	$\mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{kHz}$	39.3	40	40.5	dB
e_{N}	Input noise voltage (*)			4		$\mu \mathrm{V}$
i_{N}	Input noise current (*)			60		pA
η	Efficiency	$f=1 \mathrm{kHz}$ $P_{0}=5.2 \mathrm{~W}$ $R_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=8 \mathrm{~W}$ $R_{\mathrm{L}}=2 \Omega$		$\begin{aligned} & 68 \\ & 58 \end{aligned}$		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{L}=4 \Omega \\ & R_{\mathrm{g}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \hline \end{aligned}$	30	35		dB

(*) Filter with noise bandwidth: 22 Hz to 22 KHz .

10W CAR RADIO AUDIO AMPLIFIER

The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external components, ease of assembly, space and cost saving, are maintained.
The device provides a high output current capability (up to 3.5A) very low harmonic and crossover distortion.
Completely safe operation is guaranteed due to protection against DC and AC short circuit between all pins and ground, thermal over-range, load dump voltage surge up to 40 V and fortuitous open ground.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Peak supply voltage (50 ms)	40	V
V_{s}	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Operating supply voltage	18	V
I_{o}	Output peak current (repetitive)	3.5	A
I_{O}	Output peak current (non repetitive)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

TDA2003

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	3
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

DC TEST CIRCUIT

AC TEST CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(V_{s}=14.4 V, T_{a m b}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :---: | :---: | :---: | :--- | :--- | Unit | (|
| :--- |

DC CHARACTERISTICS (Refer to DC test circuit)

V_{s}	Supply voltage		8		18	V
V_{o}	Quiescent output voltage (pin 4)		6.1	6.9	7.7	V
I_{d}	Quiescent drain current (pin 5)			44	50	mA

AC CHARACTERISTICS (Refer to AC test circuit, $\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	40 to 15,000			Hz
d	Distortion	$\begin{array}{ll} \mathrm{f}=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 4.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.05 \text { to } 7.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
R_{i}	Input resistance (pin 1)	$\mathrm{f}=1 \mathrm{kHz}$	70	150		$\mathrm{k} \Omega$
G_{v}	Voltage gain (open loop)	$\begin{aligned} & f=1 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 80 \\ & 60 \end{aligned}$		$d B$ dB
G_{v}	Voltage gain (closed loop)	$\begin{aligned} & f=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega \end{aligned}$	39.3	40	40.3	dB
e_{N}	Input noise voltage (0)			1	5	$\mu \mathrm{V}$
i_{N}	Input noise current (0)			60	200	pA
η	Efficiency	$\begin{array}{ll} f=1 \mathrm{kHz} & \\ \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$		$\begin{aligned} & 69 \\ & 65 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
SVR	Supply voltage rejection	$\begin{array}{ll} f=100 \mathrm{~Hz} & \\ V_{\text {ripple }}=0.5 \mathrm{~V} & \\ R_{\mathrm{g}}=10 \mathrm{k} \Omega & R_{\mathrm{L}}=4 \Omega \\ \hline \end{array}$	30	36		dB

(0) Filter with noise bandwidth: 22 Hz to 22 kHz

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Output power vs. load resistance R_{L}

Fig. 7 - Distortion vs. output power

Fig. 10 - Supply voltage rejection vs. frequency

Fig. 5 - Gain vs. input sensitivity

Fig. 8 - Distortion vs. frequency

Fig. 11 - Power dissipation and efficiency vs. output power ($R_{L}=4 \Omega$)

Fig. 6 - Gain vs. input sensitivity

Fig. 9 - Supply voltage rejection vs. voltage gain

Fig. 12 - Power dissipation and efficiency vs. output power ($\mathrm{R}_{\mathrm{L}}=2 \Omega$)

Fig. 13 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 14 - Maximum allowable power dissipation vs. ambient temperature

Fig. 15 - Typical values of capacitor (C_{x}) for different values of frequency response

APPLICATION INFORMATION

Fig. 16 - Typical application circuit

Fig. 18-20W bridge configuration application circuit (*)

(*) The values of the capacitors C3 and C4 are different to optimize the SVR (Typ. $=40 \mathrm{~dB}$)

Fig. 17 - P.C. board and component layout for the circuit of fig. 16 (1:1 scale)

Fig. 19 - P.C. board and component layout for the circuit of fig. 18 ($1: 1 \mathrm{scale}$)

APPLICATION INFORMATION (continued)

Fig. 20 - Low cost bridge configuration application circuit (*) ($\left.\mathrm{P}_{\mathrm{O}}=18 \mathrm{~W}\right)$

(*) In this application the device can support a short circuit between every side of the loudspeaker and ground.

Fig. 21 - P.C. board and component layout for the low-cost bridge amplifier of fig. 20, in stereo version (1:1 scale)

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA 2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in fig. 23.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 5 , in order to assure that the pulses at pin 5 will be held within the limits shown in fig. 22.

A suggested LC network is shown in fig. 23. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A. This type of protection is $O N$ when the supply voltage (pulsed or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 22

Short-circuit (AC and DC conditions)

The TDA 2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16 V .

Polarity inversion

High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse (normally connected in series with the supply).
This feature is added to avoid destruction if, during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA 2003 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided between pin 4 and 5 (see the internal schematic diagram) to

Fig. 24 - Output power and drain current vs. case tem-

Fig. 23

allow use of the TDA 2003 with inductive loads. In particular, the TDA 2003 can drive a coupling transformer for audio modulation.

DC voltage

The maximum operating DC voltage on the TDA 2003 is 18 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries were series connected to crank the engine.

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), oran excessive ambient temperature can be easily withstood.
2) the heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{o} (and therefore $P_{\text {tot }}$) and I_{d} are reduced.

Fig. 25 - Output power and drain current vs. case temperature ($R_{L}=2 \Omega$)

SGS-THOMSON
MACROELECTRONICS

PRATICAL CONSIDERATION

Printed circuit board

The layout shown in fig. 17 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows.

Assembly suggestion

No electrical insulation is required between the
package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed $260^{\circ} \mathrm{C}$ for 12 seconds.

Application suggestions

The recommended component values are those sjown in the application circuits of fig. 16. Different values can be used. The following table , is intended to aid the car-radio designer.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
C1	2.2 $\mu \mathrm{F}$	Input DC decoupling		Noise at switch-on, switch-off
C2	$470 \mu \mathrm{~F}$	Ripple rejection		Degradation of SVR
C3	$0.1 \mu \mathrm{~F}$	Supply bypassing		Danger of oscillation
C4	$1000 \mu \mathrm{~F}$	Output coupling to load		Higher low frequency cutoff
C5	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation at high frequencies with inductive loads
C_{x}	$\cong \frac{1}{2 \pi B R 1}$	Upper frequency cutoff	Lower bandwidth	Larger bandwidth
R1	$\left(\mathrm{G}_{\mathrm{v}}-1\right) \cdot \mathrm{R} 2$	Setting of gain		Increase of drain current
R2	2.2Ω	Setting of gain and SVR	Degradation of SVR	
R3	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	
R_{X}	$\cong 20 \mathrm{R} 2$	Upper frequency cutoff	Poor high frequency attenuation	Danger of oscillation

10+10W STEREO AMPLIFIER FOR CAR RADIO

The TDA2004 is a class B dual audio power amplifier in MULTIWATT ${ }^{\circledR}$ package specifically designed for car radio applications; stereo amplifiers are easily designed using this device that provides a high current capability (up to 3.5A) and that can drive very low impedance loads (down to 1.6Ω).

Its main features are:

Low distortion.

Low noise.
High reliability of the chip and of the package with additional safety during operation thanks to protections against:

- output AC short circuit to ground;
- very inductive loads
- overrating chip temperature;
- load dump voltage surge;
- fortuitous open ground;

Space and cost saving: very low number of external components. very simple mounting system with no electrical isolation between the package and the heatsink.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage		
V_{s}	DC supply voltage	18	V
V_{s}	Peak supply voltage (for 50 ms$)$	28	V
$\mathrm{I}_{0}\left({ }^{*}\right)$	Output peak current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms}$)	40	V
$\mathrm{I}_{0}\left({ }^{*}\right)$	Output peak current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=60^{\circ} \mathrm{C}$	3.5	A
$\mathrm{~T}_{j}, T_{\text {stg }}$	Storage and junction temperature	30	W

(*) The max. output current is internally limited.

CONNECTION DIAGRAM

(Top view)

Fig. 1 - Test and application circuit

Fig. 2 - PC board and components layout (scale 1:1)

THERMAL DATA

| $\mathrm{R}_{\text {th j-case }}$ | Thermal resistance junction-case | \max | $3{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}$, $R_{\text {th (heatsink) }}=4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		8		18	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{S}=14.4 \mathrm{~V} \\ & V_{S}=13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.2 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
I_{d}	Total quiescent drain current	$\begin{aligned} & V_{\mathrm{S}}=14.4 \mathrm{~V} \\ & V_{\mathrm{S}}=13.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {SB }}$	Stand-by current	Pin 3 grounded		5		mA
P_{0}	Output power (each channel)	$\begin{array}{ll} f=1 \mathrm{KHz} & \mathrm{~d}=10 \% \\ \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} & \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} & \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{array}$	$\begin{gathered} 6 \\ 7 \\ 9 \\ 10 \\ \\ 6 \\ 9 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 8 \\ & 10(*) \\ & 11 \\ & \\ & 6.5 \\ & 10 \\ & 12 \end{aligned}$		$\begin{aligned} & w \\ & w \end{aligned}$
d	Distortion (each channel)	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 4 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=14.4 \mathrm{~V} \text { R } \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} \text { R } \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=13.2 \mathrm{~V} \text { R } \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	\% \% \% \%
CT	Cross talk	$\begin{array}{ll} V_{s}=14.4 \mathrm{~V} & \\ V_{o}=4 V \mathrm{Vms} & R_{L}=4 \Omega \\ f=1 \mathrm{KHz} & R_{g}=5 \mathrm{~K} \Omega \\ f=10 \mathrm{KHz} & { }^{2}=2 \end{array}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
V_{i}	Input saturation voltage		300			mV
$\mathrm{R}_{\mathbf{i}}$	Input resistance (non inverting input)	$f=1 \mathrm{KHz}$	70	200		K Ω
f_{L}	Low frequency roll off (-3 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \\ & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \end{aligned}$
f_{H}	High frequency roll off (-3 dB)	$R_{L}=1.6 \Omega$ to 4Ω	15			KHz
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$		90		dB

ELECTRICAL CHARACTERISTICS (continued)

Parameters		Test conditions	Min.	Typ.	Max.	Unit
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$	48	50	51	dB
	Closed loop gain matching			0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega\left({ }^{\circ}\right)$		1.5	5	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \quad \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{C}_{3}=10 \mu \mathrm{~F} \quad \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	35	45		dB
η	Efficiency	$V_{S}=14.4 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{L}=4 \Omega$ $P_{O}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=2 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$ $V_{S}=13.2 \mathrm{~V}$ $f=1 \mathrm{KHz}$ $R_{\mathrm{L}}=3.2 \Omega$ $P_{\mathrm{O}}=6.5 \mathrm{~W}$ $R_{\mathrm{L}}=1.6 \Omega$ $P_{\mathrm{O}}=10 \mathrm{~W}$		$\begin{aligned} & 70 \\ & 60 \\ & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
T_{j}	Thermal shut down junction temperature			145		${ }^{\circ} \mathrm{C}$

(*) 9.3W without bootstrap.
(0) Bandwidth filter: 22 Hz to 22 KHz .

Fig. 3 - Quiescent output voltage vs. supply voltage

Fig. 6 - Output power vs. supply voltage $\quad 0.430$

Fig. 4 - Quiescent drain current vs. supply voltage

Fig. 5 - Distortion vs. output power

Fig. 8 - Distortion vs. frequency

6-4302 11

M MCROELECTRONUCS

Fig. 9 - Distortion vs. frequency

Fig. 12 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 15 - Maximum allowable power dissipation vs. ambient temperature - $4314 / 1$

Fig. 10 - Supply voltage rejection vs. C_{3}

Fig. 13 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 16 - Total power dissipation and efficiency vs. output power

6-4310/1

Fig. 11 - Supply voltage rejection vs. frequency

Fig. 14 - Gain vs. input sensitivity

Fig. 17 - Total power dissipation and efficiency vs. output power
6.-23nn

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R_{1}	$120 \mathrm{~K} \Omega$	Optimisation of the output signal simmetry	Smaller $\mathrm{P}_{\text {o max }}$	Smaller $\mathrm{P}_{\text {o max }}$
R_{2} and R_{4}	$1 \mathrm{~K} \Omega$	Close loop gain setting (*)	Increase of gain	Decrease of gain
R_{3} and R_{5}	3.3Ω		Decrease of gain	Increase of gain
R_{6} and R_{7}	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C_{1} and C_{2}	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise.
C_{3}	$10 \mu \mathrm{~F}$	Ripple rejection	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.
C_{4} and C_{6}	$100 \mu \mathrm{~F}$	Bootstrapping		Increase of distortion at low frequency.
C_{5} and C_{7}	$100 \mu \mathrm{~F}$	Feedback Input DC decoupling.		
C_{8} and C_{9}	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
$\begin{gathered} \mathrm{C}_{10} \text { and } \\ \mathrm{C}_{11} \end{gathered}$	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling.		Higher low-frequency cut-off.

(*) The closed-loop gain must be higher than 26dB

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA2004 has a circuit which enables it to withstand a voltage pulse train, on pin 9, of the type shown in Fig. 19.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 9 , in order to assure that the pulses at pin 9 will be held within the limits shown.
A suggested LC network is shown in Fig. 18. With this network, a train of pulse with amplitude up to 120 V and with of 2 ms can be applied to point A. This type of protection is ON when the supply voltage (pulse or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 18

Fig. 19

Short circuit (AC conditions)

The TDA2004 can withstand an accidental shortcircuit from the output to ground caused by a wrong connection during normal working.

Polarity inversion

High current (up to 10A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA2004 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided to allow use of the TDA2004 with inductive loads.

DC voltage

The maximum operating DC voltage on the TDA2004 is 18 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries are series connected to crank the engine.

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is the P_{o} (and therefore $\mathrm{P}_{\text {tot }}$) and I_{d} are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); Fig. 20 shown this dissipable power as a function of ambient temperature for different thermal resistance.

20W BRIDGE AMPLIFIER FOR CAR RADIO

The TDA2005 is class B dual audio power amplifier in MULTIWATT ${ }^{\circledR}$ package specifically designed for car radio application: power booster amplifiers are easily designed using this device that provides a high current capability (up to 3.5A) and that can drive very low impedance loads (down to 1.6Ω in stereo applications) obtaining an output power of more than 20W (bridge configuration).

High output power: $P_{o}=10+10 \mathrm{~W} @ R_{L}=2 \Omega$, $d=10 \% ; P_{o}=20 W @ R_{L}=4 \Omega, d=10 \%$.

High reliability of the chip and package with additional complete safety during operation thanks to protection against:

- output DC and AC short circuit to ground;
- overrating chip temperature
- load dump voltage surge
- fortuitous open ground
- very inductive loads

Flexibility in use: bridge or stereo booster amplifiers with or without boostrap and with programmable gain and bandwidth.
Space and cost saving: very low number of external components, very simple mounting system with no electrical isolation between the package and the heatsink (one screw only).
In addition, the circuit offers loudspeaker protection during short circuit for one wire to ground.

Multiwatt-11 ${ }^{\circledR}$

ORDERING NUMBERS:
TDA2005M - Bridge application
TDA2005S - Stereo application

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for 50 ms)	40	V
$\mathrm{I}_{0}\left({ }^{*}\right)$	Output peak current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms})$	4.5	A
$\mathrm{I}_{\mathrm{o}}\left({ }^{*}\right)$	Output peak current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	3.5	A
$P_{\text {tot }}$	Power dissipation at $T_{\text {case }}=60^{\circ} \mathrm{C}$	30	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

(*) The max. output current is internally limited.

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

| $\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$ | Thermal resistance junction-case | \max | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

BRIDGE AMPLIFIER APPLICATION (TDA 2005M)

Fig. 1 - Test and application circuit (Bridge amplifier)

Fig. 2 - P.C. board and component layout (scale 1:1)

ELECTRICAL CHARACTERISTICS (Refer to the bridge application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}, \mathrm{R}_{\mathrm{th} \text { (heatsink) }}=4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified).

Parameters		Test conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			8		18	V
$\mathrm{V}_{\text {os }}$	Output offset voltage (${ }^{\circ}$) (between pin 8 and 10)	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{gathered} m V \\ m V \end{gathered}$
	Total quiescent drain current	$\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$		75	150	mA
		$\mathrm{V}_{\mathrm{S}}=13.2 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$		70	160	mA
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & V_{s}=14.4 \mathrm{~V} \\ & V_{S}=13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & 19 \end{aligned}$		$\begin{aligned} & w \\ & w \\ & w \end{aligned}$
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & V_{S}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \\ & V_{\mathrm{S}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & R_{L}=4 \Omega \\ & 15 W \\ & R_{L}=3.2 \Omega \\ & 13 W \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	\% \%
V_{i}.	Input sensitivity	$\begin{aligned} & f=1 \mathrm{KHz} \\ & P_{o}=2 W \\ & P_{o}=2 W \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{aligned} & 9 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$		70			$\mathrm{K} \Omega$
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$				40	Hz
f_{H}	High frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=3.2 \Omega$		20			KHz
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$			50		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$			3	10	$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \\ & \mathrm{~V}_{\text {ripple }}=0.5 \end{aligned}$	$C_{4}=10 \mu \mathrm{~F}$	45	55		dB
η	Efficiency	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=20 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{O}}=22 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=19 \mathrm{~W} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \\ & R_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \\ & 58 \end{aligned}$		\%
T_{j}	Thermal shut-down junction temperature	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\text {tot }}=13 \mathrm{~W} \end{aligned}$		145		${ }^{\circ} \mathrm{C}$
V OSH	Output voltage with one side of the speaker shorted to ground	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$			2	V

(${ }^{\circ}$) For TDA 2005M only.
(o०) Bandwidth filter: 22 Hz to 22 KHz .

Fig. 3-Output offset voltage vs. supply voltage

Fig. 4 - Distortion vs. output power (Bridge amplifier)

Fig. 5 - Distorsion vs. output power (Bridge amplifier)

BRIDGE AMPLIFIER DESIGN

The following considerations can be useful when designing a bridge amplifier.

Parameter		Single ended	Bridge
$V_{0 \text { max }}$	Peak output voltage (before clipping)	$\frac{1}{2}\left(\mathrm{~V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE sat }}\right)$	$\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE sat }}$
I_{0} max	Peak output current (before clipping)	$\frac{1}{2} \frac{\left(V_{s}-2 V_{\text {CE sat }}\right)}{R_{L}}$	$\frac{V_{s}-2 V_{\text {CE sat }}}{R_{L}}$
$\mathrm{P}_{\text {o max }}$	rms output power (before clipping)	$\frac{1}{4} \frac{\left(V_{s}-2 V_{C E ~ s a t}\right)^{2}}{2 R_{L}}$	$\frac{\left(V_{s}-2 V_{C E ~ s a t}\right)^{2}}{2 R_{L}}$

where: $\quad V_{\text {CE sat }}=$ output transistors saturation voltage
$\mathrm{V}_{\mathrm{S}}=$ allowable supply voltage
$R_{\mathrm{L}}=$ load impedance.

Voltage and current swings are twice for a bridge amplifier in comparison with single ended amplifier. In order words, with the same \mathbf{R}_{L} the bridge configuration can deliver an output power that is four times the output power of a single ended amplifier, while, with the same max output current the bridge configuration can deliver an output power that is twice the output power of a single ended amplifier. Core must be taken when selecting V_{s} and R_{L} in order to avoid
an output peak current above the absolute maximum rating.
From the expression for $\mathrm{I}_{\mathrm{omax}}$, assuming $\mathrm{V}_{\mathrm{s}}=$ 14.4 V and $\mathrm{V}_{\text {CE sat }}=2 \mathrm{~V}$, the minimum load that can be driven by TDA2005 in bridge configuration is:
$R_{\text {Lmin }}=\frac{\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CEsat }}}{\mathrm{I}_{\mathrm{omax}}}=\frac{14.4-4}{3.5}=2.97 \Omega$

BRIDGE AMPLIFIER DESIGN (continued)

Fig. 6 - Bridge configuration.

The voltage gain of the bridge configuration is given by (see fig. 6):

$$
G_{v}=\frac{V_{0}}{V_{i}}=1+\frac{R_{1}}{\left(\frac{R_{2} \cdot R_{4}}{R_{2}+R_{4}}\right)}+\frac{R_{3}}{R_{4}}
$$

For sufficiently high gains ($40 \div 50 \mathrm{~dB}$) it is possible to put $R_{2}=R_{4}$ and $R_{3}=2 R_{1}$, simplifing the formula in:

$$
\mathrm{G}_{\mathrm{v}}=4 \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}
$$

$\mathbf{G}_{\mathrm{v}}(\mathrm{dB})$	$\mathbf{R}_{1}(\Omega)$	$\mathbf{R}_{2}=\mathbf{R}_{\mathbf{4}}(\Omega)$	$\mathbf{R}_{\mathbf{3}}(\Omega)$
40	1000	39	2000
50	1000	12	2000

STEREO AMPLIFIER APPLICATION (TDA 2005S)

Fig. 7 - Typical application circuit

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{G}_{\mathrm{v}}=50 \mathrm{~dB}, \mathrm{R}_{\text {th (heatsink) }}=4^{\circ} \mathrm{C} / \mathrm{W}$, unless otherwise specified).

Parameters		Test conditions		Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage			8		18	V
V_{0}	Quiescent output voltage	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$		$\begin{gathered} 6.6 \\ 6 \end{gathered}$	$\begin{aligned} & 7.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.2 \end{aligned}$	v
I_{d}	Total quiescent drain current	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\mathrm{mA}_{\mathrm{mA}}$
P_{0}	Output power (each channel)	$\begin{aligned} & f=1 \mathrm{KHz} \\ & V_{\mathrm{s}}=14.4 \mathrm{~V} \end{aligned}$ $\begin{aligned} & V_{s}=13.2 \mathrm{~V} \\ & V_{\mathrm{s}}=16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{d}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \end{aligned}$	$\begin{gathered} 6 \\ 7 \\ 9 \\ 10 \\ 6 \\ 9 \end{gathered}$	$\begin{gathered} 6.5 \\ 8 \\ 10 \\ 11 \\ 6.5 \\ 10 \\ 12 \end{gathered}$		$\begin{aligned} & w \\ & w \end{aligned}$
d	Distortion (each channel)	$\begin{aligned} & \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \mathrm{t} \\ & \mathrm{~V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \mathrm{t} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \mathrm{t} \\ & \mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{O}}=40 \mathrm{~mW} \mathrm{t} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & 4 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \\ & 6 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \\ & 3 W \\ & \mathrm{R}_{\mathrm{L}}=1.6 \Omega \\ & 6 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	\% \% \% \%
CT	Cross talk (${ }^{\circ}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{R}_{\mathrm{g}}=5 \mathrm{~K} \Omega \end{aligned}$	$\mathrm{f}=1 \mathrm{KHz}$		60		dB
			$\mathrm{f}=10 \mathrm{KHz}$		45		dB
V_{i}	Input saturation voltage			300			mV
V_{i}	Input sensitivity	$\mathrm{f}=1 \mathrm{KHz}$	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{aligned}$		$\begin{gathered} 6 \\ 5.5 \end{gathered}$		mV
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$		70	200		$K \Omega$
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=2 \Omega$				50	Hz
f_{H}	High frequency roll off (-3 dB)	$\mathrm{R}_{\mathrm{L}}=2 \Omega$		15			KHz
G_{v}	Voltage gain (open loop)	$f=1 \mathrm{KHz}$			90		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$		48	50	51	dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Closed loop gain matching				0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$			1.5	5	$\mu \mathrm{V}$

(ㅇ) For TDA 2005S only.
$\left({ }^{\circ}\right)$ Bandwidth filter: 22 Hz to 22 KHz .

ELECTRICAL CHARACTERISTICS (continued)

Parameters		Test conditions	Min.	Typ.	Max.	Unit
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{C}_{3}=10 \mu \mathrm{~F} \quad \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$	35	45		dB
η	Efficiency	$\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$ $\mathrm{f}=1 \mathrm{KHz}$ $\mathrm{R}_{\mathrm{L}}=4 \Omega$ $\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=2 \Omega$ $\mathrm{P}_{\mathrm{o}}=10 \mathrm{~W}$ $\mathrm{~V}_{\mathrm{s}}=13.2 \mathrm{~V}$ $\mathrm{f}=1 \mathrm{KHz}$ $\mathrm{R}_{\mathrm{L}}=3.2 \Omega$ $\mathrm{P}_{\mathrm{o}}=6.5 \mathrm{~W}$ $\mathrm{R}_{\mathrm{L}}=1.6 \Omega$ $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$		$\begin{aligned} & 70 \\ & 60 \\ & 70 \\ & 60 \end{aligned}$		\% $\%$ $\%$ $\%$
T_{j}	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

Fig. 8 - Quiescent output voltage vs. supply voltage

Fig. 9 - Quiescent drain current vs. supply voltage

Fig. 12 - Output power vs. supply voltage
6.4301r

Fig. 10 - Distortion vs. output power

6-4299/1

Fig. 11 - Output power vs. supply voltage

Fig. 14 - Distorsion vs. frequency

Fig. 17 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 20 - Gain vs. input sensitivity

Fig. 15 - Supply voltage rejection vs. C_{3}

Fig. 18 - Supply voltage rejection vs. values of capacitors C_{2} and C_{3}

Fig. 21 - Total power dissipation and efficiency vs. output power (bridge) 0.64012

Fig. 16 - Supply voltage rejection vs. frequency

Fig. 19 - Gain vs. input sensitivity

Fig. 22 - Total power dissipation and efficiency vs. output power

6-4311/1

SGS-THOMSON

APPLICATION SUGGESTION

The recommended values of the components are those shown on Bridge application circuit of fig. 1 Different values can be used; the following table can help the designer.

Component	Recommended Value	Purpose	Larger than	Smaller than
R_{1}	$120 \mathrm{~K} \Omega$	Optimization of the output symmetry	Smaller $\mathrm{P}_{\text {O max }}$	Smaller $\mathrm{P}_{\mathrm{omax}}$
R_{2}	$1 \mathrm{~K} \Omega$	Closed loop gain setting (see BRIDGE AMPLIFIER DESIGN) (*)		
R_{3}	$2 K \Omega$			
R_{4} and R_{5}	12Ω			
R_{6} and R_{7}	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive loads	
C_{1}	2.2 F	Input DC decoupling	High turn on delay	Higher turn on pop. Higher low frequency cutoff. Increase of noise.
C_{2}	$2.2 \mu \mathrm{~F}$	Optimization of turn on pop and turn on delay.		
C_{3}	$0.1 \mu \mathrm{~F}$	Supply by pass		Danger of oscillation.
C_{4}	$10 \mu \mathrm{~F}$	Ripple Rejection	Increase of SVR. Increase of the switch-on time.	Degradation of SVR.
C_{5} and C_{7}	$100 \mu \mathrm{~F}$	Bootstrapping		Increase of distortion at low frequency.
C_{6} and C_{8}	$220 \mu \mathrm{~F}$	Feedback input DC decoupling, low frequency cutoff.		Higher low frequency cutoff.
C_{9} and C_{10}	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.

(*) The closed loop gain must be higher than 32dB.

APPLICATION INFORMATION

Fig. 23 - Bridge amplifier without boostrap

Fig. 24 - P.C. board and component layout of the circuit of Fig. 23 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 25 - Dual - Bridge amplifier

Fig. 26 - P.C. board and components layout of circuit of Fig. 25 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 27 - Low cost bridge amplifier ($\mathrm{G}_{\mathrm{v}}=42 \mathrm{~dB}$)

Fig. 28 - P.C. and component layout of the circuit of Fig. 27 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 29-10 + 10W stereo amplifier with tone balance and loudness control

Fig. 31-20W Bus amplifier

$5-435011$

Fig. 32 - Simple 20W two way amplifier ($\mathrm{F}_{\mathrm{c}}=2 \mathrm{KHz}$)

Fig. 33 - Bridge amplifier circuit suited for low-gain applications ($\mathrm{G}_{\mathrm{v}}=34 \mathrm{~dB}$)

APPLICATION INFORMATION (continued)

Fig. 34 - Example of muting circuit

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The TDA2005 has a circuit which enables it to withstand a voltage pulse train, on pin 9 , of the type shown in Fig. 36.
If the supply voltage peaks to more than 40 V , then an LC filter must be inserted between the supply and pin 9 , in order to assure that the pulses at pin 9 will be held withing the limits shown.
A suggested LC network is shown in Fig. 35. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulse or DC) exceeds 18 V . For this reason the maximum operating supply voltage is 18 V .

Fig. 35

Fig. 36

Short circuit (AC and DC conditions)
The TDA2005 can withstand a permanent shortcircuit on the output for a supply voltage up to 16 V .

Polarity inversion

High current (up to 10A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

Open ground

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA2005 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provided to allow use of the TDA2005 with inductive loads.

DC voltage

The maximum operating DC voltage for the TDA2005 is 18 V .
However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries are series connected to crank the engine.

BUILT-IN PROTECTION SYSTEMS (continued)

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{o} (and therefore $\mathrm{P}_{\text {tot }}$) and I_{d} are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); Fig. 37 shows the dissipable power as a function of ambient temperature for different thermal resistance.

Loudspeaker protection

The circuit offers loudspeaker protection during short circuit for one wire to ground.

Fig. 37 - Maximum allowable power dissipation vs. ambient temperature

Fig. 38 - Output power and drain current vs. case temperature

Fig. 39 - Output power and drain current vs. case temperature

The TDA2006 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class " $A B^{\prime \prime}$ amplifier. At $\pm 12 \mathrm{~V}, \mathrm{~d}=$ 10% typically it.provides 12 W output power on a 4Ω load and 8 W on a 8Ω. The TDA2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown
system is also included. The TDA2006 is pin to pin equivalent to the TDA2030.

Pentawatt

ORDER CODE: TDA2006H
TDA2006V

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 15	V
V_{i}	Input voltage	$\mathrm{V}_{\text {s }}$	
V_{i}	Differential input voltage	± 12	V
I_{0}	Output peak current (internally limited)	3	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST AND APPLICATION CIRCUIT

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th-j case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{s}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Paremeter	Test Conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		± 6		± 15	V
I_{d}	Quiescent drain current	$V_{s}= \pm 15 \mathrm{~V}$		40	80	mA
I_{b}	Input bias current			0.2	3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input offset voltage			± 8		mV
Ios	Input offset current			± 80		nA
Vos	Output offset voltage			± 10	± 100	mV
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & f=1 \mathrm{KHz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$	6	$\begin{gathered} 12 \\ 8 \end{gathered}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
d	Distortion	$\begin{aligned} & P_{0}=0.1 \text { to } 8 W \\ & R_{L}=4 \Omega \\ & f=1 \mathrm{KHz} \end{aligned}$		0.2		\%
		$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 4 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$		0.1	1	\%
V_{i}	Input sensitivity	$\begin{array}{ll} & f=1 \mathrm{KHz} \\ \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 200 \\ & 220 \end{aligned}$		$\begin{aligned} & m V \\ & m V \end{aligned}$
B	Frequency response (-3dB)	$\mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	20 Hz to 100 KHz			
R_{i}	Input resistance (pin 1)	$f=1 \mathrm{KHz}$	0.5	5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)			75		dB
G_{v}	Voltage gain (closed loop)		29.5	30	30.5	dB
e_{N}	Input noise voltage	$\begin{array}{r} B(-3 \mathrm{~dB})=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ R_{\mathrm{L}}=4 \Omega \end{array}$		3	10	$\mu \mathrm{V}$
${ }^{\prime} \mathrm{N}$	Input noise current			80	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=22 \mathrm{~K} \Omega \end{aligned}$ $\begin{equation*} f_{\text {ripple }}=100 \mathrm{~Hz} \tag{*} \end{equation*}$	40	50		dB
I_{d}	Drain current	$\begin{array}{ll} \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 850 \\ & 500 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Tj	Thermal shutdown junction temperature				145	${ }^{\circ} \mathrm{C}$

(*) Referring to Fig. 15, single supply.

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. frequency

Fig. 7 - Frequency response with different values of the rolloff capacitor C_{8} (see fig. 13)

Fig. 2 -Distortion vs. output power

Fig. 5 -Sensitivity vs. output power

Fig. 8 - Value of C_{8} vs. voltage gain for different bandwidths (see fig. 13)

Fig. 3 - Distortion vs. frequency

Fig. 6 -Sensitivity vs. output power

Fig. 9 - Quiescent current vs. supply voltage

Fig. 10 - Supply voltage rejection vs. voltage gain

Fig. 13 - Application circuit with split power supply

Fig. 11 - Power dissipation and efficiency vs. output power

Fig. 12 - Maximum power dissipation vs. supply voltage (sine wave operation)

Fig. 14 - P.C. board and component layout for the circuit of fig. 13

SGS-THOMSON

Fig. 15 - Application circuit with single power supply

Fig. 16 - P.C. board and component layout for the circuit of fig. 15

Fig. 17 - Bridge amplifier configuration with split power supply ($\mathrm{Po}=24 \mathrm{~W}, \mathrm{~V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$)

PRACTICAL CONSIDERATION

Printed circuit board

The layout shown in Fig. 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows.

Assembly suggestion

No electrical isolation is needed between the package and the heat-sink with single supply voltage configuration.

Application suggestion

The recommended values of the components are the ones shown on application circuits of Fig. 13. Different values can be used. The following table can help the designers.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
R_{1}	$22 \mathrm{~K} \Omega$	Closed loop gain setting	Increase of gain	Decrease of gain (*)
R_{2}	680Ω	Closed loop gain setting	Decrease of gain (*)	Increase pf gain
R_{3}	$22 \mathrm{~K} \Omega$	Non inverting input biasing	Increase of input impedance	Decrease of input impedance
R_{4}	1Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	
R_{5}	$3 \mathrm{R}_{2}$	Upper frequency cutoff	Poor high frequencies attenuation	Danger of oscillation
C_{1}	$2.2 \mu \mathrm{~F}$	Input DC decoupling		Increase of low freqencies cut off
$\mathrm{C}_{2} \mathrm{C}_{4}$	$22 \mu \mathrm{~F}$	Inverting input DC decoupling	Increase of low frequencies cutoff	
$\mathrm{C}_{5} \mathrm{C}_{6}$	$100 \mu \mathrm{~F}$	Supply voltage by pass		Danger of oscillation
C_{7}	$0.22 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation
C_{8}	$\frac{1}{2 \pi \mathrm{BR}}$	Spper frequency cutoff	Lower bandwidth	Danger of oscillation
$\mathrm{D}_{1} \mathrm{D}_{2}$	1 N 4001	To protect the device against output voltage spikes.	Larger bandwidth	

(*) Closed loop gain must be higher than 24 dB

SHORT CIRCUIT PROTECTION

The TDA2006 has an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (Fig. 19).

Fig. 18 - Maximum output current vs. voltage $\mathrm{V}_{\text {Ce(sat) }}$ across each output transistor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of

This function can therefore be considered as being peak power limiting rather than simple current limiting.
It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground.

Fig. 19 - Safe operating area and collector characteristics of the protected power transistor

safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shutdown simply reduces the power dissipation and the current consumption.

Fig. 20 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows the

Fig. 21 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

dissipable power as a function of ambient temperature for different thermal resistances.

Fig. 23 - Example of heatsink

Dimension suggestion

The following table shows the lenght of the heatsink in fig. 23 for several values of $P_{\text {tot }}$ and $R_{t h}$.

$P_{\text {tot }}(W)$	12	8	6
Lenght of heatsink (mm)	60	40	30
$R_{\text {th }}$ of heatsink $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	4.2	6.2	8.3

6+6W STEREO AMPLIFIER

The TDA 2007 is a class AB dual Audio power amplifier assembled in single in line 9 pins package, specially designed for stereo application in music centers TV receivers and portable radios. Its main features are:

- High output power
- High current capability
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the SIP. 9 package.

SIP. 9

ORDERING NUMBER: TDA 2007

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	28	V
I_{o}	Output peak current (repetitive $\mathrm{f} \geqslant 20 \mathrm{~Hz}$)	3	A
I_{o}	Output peak current (non repetitive, $\mathrm{t}=100 \mu \mathrm{~s}$)	3.5	A
$\mathrm{P}_{\text {tct }}$	Power dissipation at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	10	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

STEREO TEST CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th } j \text {-case }}$	Thermal resistance junction-case	\max	8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max	70°	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $V_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$, unless otherwise specified)

Parameters		Test conditions		Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage			8		26	V
V_{0}	Quiescent output voltage				8.5		V
I_{d}	Total quiescent drain current				48		mA
P_{0}	Output power (each channel)	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & d=0.5 \% \\ & V_{s}=i 8 \mathrm{~V} \\ & V_{s}=22 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{KHz} \\ & =4 \Omega \\ & =8 \Omega \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { W } \end{aligned}$
d	Distortion (each channel)	$\begin{aligned} & f=1 \mathrm{KHz}, V_{\mathrm{S}}=18 \mathrm{~V}, R_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$			0.1		\%
		$\begin{aligned} & f=1 \mathrm{KHz}, V_{\mathrm{S}}=22 \mathrm{~V}, R_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$			0.05		\%
CT	Cross talk (${ }^{(000 \text {) }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$	$\mathrm{f}=1 \mathrm{KHz}$	50	60		dB
			$f=10 \mathrm{KHz}$	40	50		dB
V_{i}	Input saturation voltage (rms)			300			mV
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$		70	200		$K \Omega$
f_{L}	Low frequency roll off (-3 dB)				40		Hz
f_{H}	High frequency roll off (-3 dB)				80		KHz
G_{v}	Voltage gain (closed loop)	$f=1 \mathrm{KHz}$		35.5	36	36.5	dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Closed loop gain matching				0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega\left({ }^{\circ}\right)$			1.5		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega(\circ 0)$			2.5	8	$\mu \mathrm{V}$
SVR	Supply voltage rejection (each channel)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$			55		dB
TJ	Thermal shut-down junction temperature				145		${ }^{\circ} \mathrm{C}$

() Curve A.
(००) 22 Hz to 22 KHz .
(000) Optimized test box.

Fig. 1 - Stereo test circuit ($\mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$)

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1: 1 scale)

CS-0265

Fig. 3 - Output power vs. supply voltage ($\mathrm{d}=0.5 \%$)

Fig. 6 - Supply voltage rejection vs. value of capacitor C3

Fig. 9 - Cross-talk vs. frequency

Fig. 4 - Output power vs. supply voltage ($\mathbf{d}=10 \%$)

Fig. 7 - Supply voltage rejection vs. frequency

Fig. 10 - Simple short-circuit protection

Fig. 5 - Quiescent current
vs. supply voltage

Fig. 8 - Total power dissipation vs. output power

Fig. 11 - Example of muting circuit

APPLICATION INFORMATION

Fig. $12-12 \mathrm{~W}$ bridge amplifier ($\mathrm{d}=0,5 \%, \mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recomm. value	- Purpose	Larger than	Smaller than
R1 and R3	$1.3 \mathrm{~K} \Omega$	Close loop gain setting(*)	Increase of gain	Decrease of gain
R2 and R4	18Ω		Decrease of gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	$22 \mu \mathrm{~F}$	Ripple rejection	Better SVR. Increase of the switch-on time	Degradation of SVR.
C6 and C7	$220 \mu \mathrm{~F}$	Feedback Input DC decoupling		-
C8 and C9	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation
C10 and C11	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling		Higher low-frequency cut-off

(*) The closed loop gain must be higher than 26 dB .

12W AUDIO AMPLIFIER $\left(V_{s}=22 V, R_{L}=4 \Omega\right)$

The TDA2008 is a monolithic class B audio power amplifier in Pentawatt ${ }^{\circledR}$ package designed for driving low impedance loads (down to 3.2Ω). The device provides a high output current capability (up to 3A), very low harmonic and crossover distortion.

In addition, the device offers the following features:

- very low number of external components;
- assembly ease, due to Pentawatt ${ }^{\circledR}$ power package with no electrical insulation requirements;
- space and cost saving;
- high reliability;
- flexibility in use;
- thermal protection.

Pentawatt

ORDERING NUMBER: TDA2008V

ABSOLUTE MAXIMUM RATINGS

V_{s}	DC supply voltage	28	V
I_{o}	Output peak current (repetitive)	3	A
I_{o}	Output peak current (non repetitive)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATION CIRCUIT

CONNECTION DIAGRAM (top view)

SCHEMATIC DIAGRAM

DC TEST CIRCUIT

AC TEST CIRCUIT

THERMAL DATA
$\mathrm{R}_{\text {th j-case }}$ Thermal resistance junction-case

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=22 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
V_{5}	Supply voltage			10		28	V
V_{0}	Quiescent output voltage (pin 4)				10.5		V
I_{d}	Quiescent drain current (pin 5)				65	115	mA
P_{0}	Output power	$\begin{aligned} & d=10 \% \\ & f=1 K \mathrm{~Hz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		8		W
			$\mathrm{R}_{\mathrm{L}}=4 \Omega$	10	12		W
V_{i} (RMS) Input saturation voltage				300			mV
v_{i}	Input sensitivity	$\begin{array}{ll} f=1 \mathrm{KHz} & \\ \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{P}_{\mathrm{O}}=8 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array}$			20 80 14 70		$\begin{aligned} & m V \\ & m V \\ & m V \\ & m V \end{aligned}$
B	Frequency response (-3 dB)	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		40 to 15000			Hz
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} \\ & P_{\mathrm{o}}=0.05 \\ & P_{\mathrm{O}}=0.05 \end{aligned}$	$\begin{aligned} & R_{L}=8 \Omega \\ & R_{L}=4 \Omega \end{aligned}$		$\begin{aligned} & 0.12 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
R_{i}	Input resistance (pin 1)	$\mathrm{f}=1 \mathrm{KHz}$		70	150		$\mathrm{K} \Omega$
G_{v}	Voltage gain (open loop)	$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		80		dB
G_{v}	Voltage gain (closed loop)			39.5	40	40.5	dB
e_{N}	Input noise voltage	$\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz			1	5	$\mu \mathrm{V}$
i_{N}	Input noise current				60	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & V_{\text {ripple }}=0 \\ & R_{g}=10 K \\ & R_{L}=4 \Omega \end{aligned}$	$f=100 \mathrm{~Hz}$	30	36	.	dB

APPLICATION INFORMATION

Fig. 1 - Typical application circuit
Fig. 2 - P.C. board and component layout for the circuit of fig. 1 (1:1 scale)

Fig. 3-25W bridge configuration application circuit (${ }^{\circ}$)

Fig. 4 - P.C. board and component layout for the circuit of fig. 3 ($1: 1$ scale)

$\left({ }^{\circ}\right)$ The value of the capacitors C3 and C4 are different to optimize the SVR (Typ. $=40 \mathrm{~dB}$)

Fig. 5 - Quiescent current vs. supply voltage

Fig. 8 - Distortion vs. frequency

Fig. 6 - Output voltage vs. supply voltage

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 7 - Output power vs. supply voltage

Fig. 10 - Maximum allowable power dissipation vs. ambient temperature

PRACTICAL CONSIDERATIONS

Printed circuit board

The layout shown in Fig. 2 is recommended. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground of the output through which a rather high current flows.

Assembly suggestion

No electrical insulation is needed between
the package and the heat-sink. Pin length should be as short as possible. The soldering temperature must not exceed $260^{\circ} \mathrm{C}$ for 12 seconds.

Application suggestions

The recommended component values are those shown in the application circuits of Fig. 1. Different values can be used. The following table is intended to aid the car-radio designer.

Component	Recommended value	Purpose	Larger than recommended value	Smaller than recommended value
C 1	$2.2 \mu \mathrm{~F}$	Input DC decoupling.		Noise at switch-on, switch-off.
C 2	$470 \mu \mathrm{~F}$	Ripple rejection.		Degradation of SVR.
C 3	$0.1 \mu \mathrm{~F}$	Supply bypassing.		Danger of oscillation.
C 4	$1000 \mu \mathrm{~F}$	Output coupling.		Higher low frequency cutoff.
C5	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation at high frequencies with inductive loads.
R1	$\left(\mathrm{G}_{\mathrm{V}}-1\right) \cdot \mathrm{R} 2$	Setting of gain. (*)		Increase of drain current.
R2	2.2Ω	Setting of gain and SVR.	Degradation of SVR.	
R3	1Ω	Frequency stability.	Danger of oscillation at high frequencies with inductive loads.	

(*) The closed loop gain must be higher than 26dB.

10+10W HIGH QUALITY STEREO AMPLIFIER

The TDA2009 is class AB dual Hi -Fi Audio power amplifier assembled in Multiwatt ${ }^{\circledR}$ package, specially designed for high quality stereo application as $\mathrm{Hi}-\mathrm{Fi}$ and music centers. Its main features are:

- High output power ($10+10 \mathrm{~W}$ min. @ $\mathrm{d}=0.5 \%$)
- High current capability (up to 3.5A)
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt ${ }^{\circledR}$ package.

Multiwatt-11

ORDERING NUMBER: TDA2009

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	28	V
I_{o}	Output peak current (repetitive $\mathrm{f} \geqslant 20 \mathrm{~Hz}$)	3.5	A
I_{o}	Output peak current (non repetitive, $\mathrm{t}=100 \mu \mathrm{~s}$)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

| $R_{\text {th j-case }} \quad$ Thermal resistance junction-case | $\max \quad 3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $V_{s}=23 V, G_{v}=36 \mathrm{~dB}$, unless otherwise specified)

Parameters		Test conditions			Min.	Typ.	Max.	Unit
V_{5}	Supply voltage				8		28	V
V_{0}	Quiescent output voltage	$V_{\text {S }}=23 \mathrm{~V}$				11		V
l_{d}	Total quiescent drain current	$\mathrm{V}_{\mathrm{s}}=23 \mathrm{~V}$				55	120	mA
P_{0}	Output power (each channel)	$\begin{array}{ll} \mathrm{f}=50 \mathrm{~Hz} \text { to } 16 \mathrm{KHz} \\ \mathrm{~d}=0.5 \% & \\ \mathrm{~V}_{\mathrm{S}}=23 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{array}$			$\begin{array}{r} 10 \\ 5.5 \end{array}$	$\begin{gathered} 11 \\ 6.5 \\ 6.5 \\ 4 \end{gathered}$		W W W W
d	Distortion (each channel)	$\begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{S}}=23 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 8 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{S}}=23 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW} \text { to } 3 \mathrm{~W} \end{aligned}$				$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%
CT	Cross talk (000)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{aligned}$		$f=1 \mathrm{KHz}$	50	65		dB
				$f=10 \mathrm{KHz}$	40	50		dB
V_{i}	Input saturation voltage (rms)				300			mV
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	non	verting input	70	200		$\mathrm{K} \Omega$
	Low frequency roll off (-3 dB)					20		Hz
${ }^{\mathrm{f}} \mathrm{H}$	High frequency roll off (-3 dB)					80		KHz
Gv	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{KHz}$			35.5	36	36.5	dB
$\Delta \mathrm{G}_{\mathrm{v}}$	Closed loop gain matching					0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega\left({ }^{\circ}\right)$				1.5		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega(00)$				2.5	8	$\mu \mathrm{V}$
SVR	Supply voltage rejection (each channel)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$			43	55		dB
T_{J}	Thermal shut-down junction temperature					145		${ }^{\circ} \mathrm{C}$

(${ }^{\circ}$) Curve A .
$\left(^{\circ \circ}\right) 22 \mathrm{~Hz}$ to 22 KHz .
$\left({ }^{\circ 00)}\right.$ Optimized test box.

Fig. 1 - Test and application circuit ($\mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$)

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1:1 scale)

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. frequency

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 4 - Output power vs. supply voltage

Fig. 7 - Quiescent current vs. supply voltage

Fig. 10 - Total power dissipation an efficiency vs. out-

Fig. 5 - Distortion vs. output power

Fig. 8 - Supply voltage rejection vs. value of capacitor C3

Fig. 11 - Total power dissipation and efficiency vs. output power

Fig. 12 - Cross-talk vs. frequency

Fig. 13 - Output power vs. closed loop gain

Fig. 14 - Output power vs. closed loop gain

APPLICATION INFORMATION

Fig. 15 - Simple short-circuit protection

Fig. 16 - Example of muting circuit

Fig. 17-10 + 10W stereo amplifier with tone balance and

Fig. 18 - Tone control response (circuit of fig. 17)

APPLICATION INFORMATION (continued)

Fig. 19 - High quality $10+20 \mathrm{~W}$ two way amplifier for stereo music center (one channel only)

Fig. 20-18W bridge amplifier ($\mathrm{d}=0.5 \%, \mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

Fig. 21 - P.C. board and components layout of the circuit of fig. 20 (1: 1 scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1 . Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R1 and R3	$1.2 \mathrm{~K} \Omega$	Close loop gain setting(*)	Increase of gain	Decrease of gain
R2 and R4	18Ω		Decrease of gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	$22 \mu \mathrm{~F}$	Ripple rejection	Better SVR. Increase of the switch-on time	Degradation of SVR.
C6 and C7	$220 \mu \mathrm{~F}$	Feedback Input DC decoupling.		
C8 and C9	$0.1 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
C10 and C11	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling.		Higher low-frequency cut-off.

(*) The closed loop gain must be higher than 26dB

BUILD-IN PROTECTION SYSTEMS

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional

Fig. 22 - Maximum allowable power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between
circuits. There is no device damage in the case of excessive junction temperature: all that happens is that P_{o} (and therefore $P_{\text {tot }}$) and I_{d} are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 23 - Output power vs. case temperature

the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

10+10W SHORT CIRCUIT PROTECTED STEREO AMPLIFIER

The TDA2009A is class AB dual $\mathrm{Hi}-\mathrm{Fi}$ Audio power amplifier assembled in Multiwatt ${ }^{\circledR}$ package, specially designed for high quality stereo application as $\mathrm{Hi}-\mathrm{Fi}$ and music centers. Its main features are:

- High output power ($10+10 \mathrm{~W}$ min. @ d = 1\%)
- High current capability (up to 3.5A)
- AC short circuit protection
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt ${ }^{\circledR}$ package.

Multiwatt-11

ORDERING NUMBER: TDA2009A

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	28	V
I_{o}	Output peak current (repetitive $\mathrm{f} \geqslant 20 \mathrm{~Hz}$)	3.5	A
I_{o}	Output peak current (non repetitive, $\mathrm{t}=100 \mu \mathrm{~s}$)	4.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to	150

TEST CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $V_{s}=24 V, G_{v}=36 \mathrm{~dB}$, unless otherwise specified)

	Parameters	Test Conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		8		28	V
V_{0}	Quiescent output voltage	$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$		11.5		\checkmark
I_{d}	Total quiescent drain current	$\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$		60	120	mA
P_{0}	Output power (each channel)	$\begin{array}{ll} d=1 \% & \\ V_{s}=24 \mathrm{~V} & \\ f=1 \mathrm{KHz} & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{array}$		$\begin{gathered} 12.5 \\ 7 \end{gathered}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
		$\begin{aligned} & f=40 \mathrm{~Hz} \text { to } 12.5 \mathrm{KHz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$			$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
		$\begin{array}{ll} V_{s}=18 \mathrm{~V} & \\ f=1 \mathrm{KHz} & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{array}$		7 4		$\begin{aligned} & W \\ & W \end{aligned}$
d	Distortion (each channel)	$\begin{array}{ll} f=1 \mathrm{KHz} \\ V_{s}=24 \mathrm{~V} & \\ P_{\mathrm{O}}=0.1 \text { to } 7 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ P_{\mathrm{O}}=0.1 \text { to } 3.5 \mathrm{~W} & R_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
		$\begin{array}{ll} V_{s}=18 \mathrm{~V} & \\ P_{\mathrm{O}}=0.1 \text { to } 5 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 2.5 \mathrm{~W} & R_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
CT	Cross talk (000)	$R_{L}=\infty$ $f=1 \mathrm{KHz}$		60		dB
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad \mathrm{f}=10 \mathrm{KHz}$		50		dB
V_{1}	Input saturation voltage (rms)		300			mV
R_{i}	Input resistance	$f=1 \mathrm{KHz}$ non inverting input	70	200		$K \Omega$
${ }^{\text {f }}$ L	Low frequency roll of (-3dB)	$R_{L}=4 \Omega$		20		Hz
f_{H}	High frequency roll off (-3dB)			80		KHz
G_{v}	Voltage gain (closed loop)	$f=1 \mathrm{KHz}$	35.5	36	36.5	dB
ΔG_{v}	Closed loop gain matching			0.5		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$ (0)		1.5		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega(00)$		2.5	8	$\mu \mathrm{V}$
SVR	Supply voltage rejection (each channel)	$\begin{aligned} & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \\ & V_{\text {ripple }}=0.5 \mathrm{~V} \end{aligned}$		55		dB
TJ	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

(o) Curve A
(00) 22 Hz to 22 KHz
(000) Optimized test box.

TDA2009A

Fig. 1 - Test and application circuit ($\mathrm{G}_{\mathrm{v}}=36 \mathrm{~dB}$)

Fig. 2 - P.C. board components layout of the circuit of fig. 1 (1:1 scale)

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. frequency

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 4 - Output power vs. supply voltage

Fig. 7 - Distortion vs. frequency

Fig. 10 - Total power dissipation and efficiency vs. output power

Fig. 5 - Distortion vs. output power

Fig. 8 - Quiescent current vs. supply voltage

Fig. 11 - Total power dissipation and efficiency vs. output power

APPLICATION INFORMATION

Fig. 12 - Example of muting circuit

Fig. $13-10 \mathrm{~W}+10 \mathrm{~W}$ stereo amplifier with tone balance and loudness control

APPLICATION INFORMATION (continued)

Fig. 15 - High quality $20+20 \mathrm{~W}$ two way amplifier for stereo music center (one challel only)

Fig. 16-18 Wbridge amplifier ($\mathrm{d}=1 \%, \mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

Fig. 17 - P.C. board and components layout of the circuit of fig. 16 ($1: 1$ scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R1 and R3	$1.2 \mathrm{~K} \Omega$	Close loop gain setting (*)	Increase of gain	Decrease of gain
R2 and R4	$18 \mathrm{~K} \Omega$		Decrease of gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	$2.2 \mu \mathrm{~F}$	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	$22 \mu \mathrm{~F}$	Ripple rejection	Better SVR. Increase of the Switch-on time	Degradation of SVR
C6 and C7	$220 \mu \mathrm{~F}$	Feedback input DC decoupling.		
C8 and C9	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation
C10 and C11	$\begin{aligned} & 1000 \mu \mathrm{~F} \text { to } \\ & 2200 \mu \mathrm{~F} \end{aligned}$	Output DC decoupling.		Higher low-frequency cut-off

(*) Closed loop gain must be higher than 26dB

BUILD-IN PROTECTION SYSTEMS

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1) an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case
of excessive junction temperature: all that happens is that P_{0} (and therefore $P_{\text {tot }}$) and I_{0} are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 18 shows this dissipable power as a function of ambient temperature for different thermal resistance.
Short circuit (AC Conditions). The TDA2009A can withstand an accidental short circuit from the output and ground made by a wrong connection during normal play operation.

Fig. 18 - Maximum allowable power dissipation vs. ambient temperature
6.4314/1

Fig. 19 - Output power vs. case temperature

Fig. 20 - Output power and drain current vs. case temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the MULTIWATT ${ }^{\circledR}$ package attaching the heatsink is very simple, a screw or a com-
pression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

14W Hi-Fi AUDIO AMPLIFIER

The TDA2030 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package, intended for use as a low frequency class $A B$ amplifier. Typically it provides 14 W output power ($d=0.5 \%$) at 14 V / 4Ω; at $\pm 14 \mathrm{~V}$ the guaranteed output power is 12 W on a 4Ω load and 8 W on a 8Ω (DIN45500). The TDA2030 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the
working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
V_{i}	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{0}	Output peak current (internally limited)	3.5	A
$P_{\text {tot }}$	Power dissipation at $T_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATION

CONNECTION DIAGRAM

(top view)

TEST CIRCUIT

THERMAL DATA

$R_{\text {tn j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 14 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		± 6		± 18	V
I_{d}	Quiescent drain current	$V_{s}= \pm 18 \mathrm{~V}$		40	60	mA
l_{b}	Input bias current			0.2	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			± 2	± 20	mV
Ios	Input offset current			± 20	± 200	nA
P_{0}	Output power	$\begin{aligned} & d=0.5 \% \quad G_{v}=30 \mathrm{~dB} \\ & f=40 \text { to } 15000 \mathrm{~Hz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$	$\begin{array}{r} 12 \\ 8 \end{array}$	$\begin{array}{r} 14 \\ 9 \end{array}$		$\begin{aligned} & W \\ & w \end{aligned}$
		$\begin{aligned} & d=10 \% \\ & f=1 \mathrm{kHz} \\ & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{aligned}$		18 11		W
d	Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=0.1 \text { to } 12 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		0.2	0.5	\%
		$\begin{aligned} & P_{o}=0.1 \text { to } 8 W \\ & R_{L}=8 \Omega \\ & f=40 \text { to } 15000 \mathrm{~Hz} \end{aligned}$		0.1	0.5	\%
B	Power Bandwidth (-3 dB)	$\begin{array}{ll} \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} & \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array}$		to 140		Hz
R_{i}	Input resistance (pin 1)		0.5	5		$\mathrm{M} \Omega$
G_{v}	Voltage gain (open loop)			90		dB
G_{v}	Voltage gain (closed loop)	$\mathrm{f}=1 \mathrm{kHz}$	29.5	30	30.5	dB
e_{N}	Input noise voltage	$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		3	10	$\mu \mathrm{V}$
i_{N}	Input noise current			80	200	pA
SVR	Supply voltage rejection	$\begin{aligned} & R_{L}=4 \Omega \\ & R_{\mathrm{g}}=22 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {ripple }}=0.5 \mathrm{~V} \mathrm{~V}_{\text {eff }} \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	50		dB
I_{d}	Drain current	$\begin{array}{ll} P_{o}=14 W & R_{\mathrm{L}}=4 \Omega \\ \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W} & R_{\mathrm{L}}=8 \Omega \end{array}$		$\begin{aligned} & 900 \\ & 500 \end{aligned}$		$\mathrm{mA}_{\mathrm{mA}}^{\mathrm{mA}}$
T_{j}	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. output power

Fig. 7 - Distortion vs. frequency

Fig. 2 - Output power vs. supply voltage

Fig. 5 - Distortion vs. output power

Fig. 8 - Frequency response with different values of the rolloff capacitor C8 (see fig. 13)

Fig. 3 - Distortion vs. output power

Fig. 6 - Distortion vs. frequency

Fig. 9 - Quiescent current vs. supply voltage

Fig. 10 - Supply voltage rejection vs. voltage gain

Fig. 11 - Power dissipation and efficiency vs. output power

Fig. 12 - Maximum power dissipation vs. supply voltage (sine wave operation)

APPLICATION INFORMATION

Fig. 13 - Typical amplifier with split power supply

Fig. 14 - P.C. board and component layout for the circuit of fig. 13 ($1: 1$ scale)

APPLICATION INFORMATION (continued)

Fig. 15 - Typical amplifier with single power supply

Fig. 16 - P.C. board and component layout for the circuit of fig. 15 (1:1 scale)

Fig. 17 - Bridge amplifier configuration with split power supply ($P_{0}=28 \mathrm{~W}, V_{5}= \pm 14 \mathrm{~V}$)

PRACTICAL CONSIDERATIONS

Printed circuit board

The layout shown in Fig. 16 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the ground return of the output in which a high current fiows.

Assembly suggestion

No electrical isolation is needed between the
package and the heatsink with single supply voltage configuration.

Application suggestions

The recommended values of the components are those shown on application circuit of fig. 13. Different values can be used. The following table can help the designer.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value
R1	$22 \mathrm{k} \Omega$	Closed loop gain setting	Increase of gain	Decrease of gain (${ }^{*}$)
R2	680Ω	Closed loop gain setting	Decrease of gain (${ }^{*}$)	Increase of gain
R3	$22 \mathrm{k} \Omega$	Non inverting input biasing	Increase of input impedance	Decrease of input impedance
R4	1Ω	Frequency stability	Danger of oscillat. at high frequencies with induct. loads	
R5	$\cong 3 \mathrm{R} 2$	Upper frequency cutoff	Poor high frequencies attenuation	Danger of oscillation
C1	$1 \mu \mathrm{~F}$	Input DC decoupling		Increase of low frequencies cutoff
C2	$22 \mu \mathrm{~F}$	Inverting DC decoupling		Increase of low frequencies cutoff
C3,C4	$0.1 \mu \mathrm{~F}$	Supply voltage bypass		Danger of oscillation
C5,C6	$100 \mu \mathrm{~F}$	Supply voltage bypass		Danger of oscillation
C7	$0.22 \mu \mathrm{~F}$	Frequency stability		Danger of oscillat.
C8	$\cong \frac{1}{2 \pi \mathrm{~B} \mathrm{R1}}$	Upper frequency cutoff	Smaller bandwidth	Larger bandwidth
D1,D2	1N4001	To protect the device against output voltage spikes		

(*) Closed loop gain must be higher than 24dB

SHORT CIRCUIT PROTECTION

The TDA2030 has an original circuit which limits the current of the output transistors. Fig. 18 shows that the maximum output current is a function of the collector emitter voltage; hence the output transistors work within their safe operating area (Fig. 2). This function can there-

Fig. 18 - Maximum output current vs. voltage [$\mathrm{V}_{\mathrm{CEsat}}$] across each output transitor

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1. An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2. The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If
fore be considered as being peak power limiting rather than simple current limiting.
It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground.

Fig. 19 - Safe operating area and collector characteristics of the protected power transistor

5-076411
for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation at the current consumption.
The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 20 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=4 \Omega$)

Fig. 21 - Output power and drain current vs. case temperature ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)

Fig. 22 - Maximum allowable power dissipation vs. ambient temperature

Fig. 23 - Example of heat-sink

Dimension : suggestion.
The following table shows the length that the heatsink in fig. 23 must have for several values of $P_{\text {tot }}$ and $R_{t h}$.

$\mathrm{P}_{\text {tot }}(\mathrm{W})$	12	8	6
Length of heatsink $_{(\mathrm{mm})}$	60	40	30
R_{th} of heatsink $\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	4.2	6.2	8.3

18W Hi-Fi AMPLIFIER AND 35W DRIVER

The TDA2030A is a monolithic IC in Pentawatt ${ }^{\circledR}$ package intended for use as low frequency class $A B$ amplifier.
With $\mathrm{V}_{\mathrm{s} \text { max }}=44 \mathrm{~V}$ it is particularly suited for more reliable applications without regulated supply and for 35W driver circuits using lowcost complementary pairs.
The TDA2030A provides high output current and has very low harmonic and cross-over distortion.
Further the device incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output
transistors within their safe operating area. A conventional thermal shut-down system is also included

ORDERING NUMBERS: TDA2030A TDA2030AH

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 22	V
V_{i}	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}	Peak output current (internally limited)	3.5	A
$P_{\text {tot }}$	Total power dissipation at $T_{\text {case }}=90^{\circ} \mathrm{C}$	20	W
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40	to 150

TYPICAL APPLICATION

CONNECTION DIAGRAM

(top view)

TEST CIRCUIT

THERMAL DATA

| $R_{\text {th j-case }}$ | Thermal resistance junction-case | \max | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
	Supply voltage			± 6		± 22	V
l_{d}	Quiescent drain current				50	80	mA
l_{b}	Input bias current	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$			0.2	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage				± 2	± 20	mV
los	Input offset current				± 20	± 200	nA
P_{0}	Output power	$\begin{aligned} & d=0.5 \% \\ & f=40 \text { to } 15 \text { (} \end{aligned}$	$\begin{aligned} \mathrm{G}_{\mathrm{v}} & =26 \mathrm{~dB} \\ \mathrm{~Hz}^{2} & =4 \Omega \\ \mathrm{R}_{\mathrm{L}} & =8 \Omega \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \end{aligned}$		W
		$\mathrm{V}_{\mathrm{s}}= \pm 19 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	13	16		
BW	Power bandwidth	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$		100		KHz
SR	Slew Rate				8		$\mathrm{V} / \mu \mathrm{sec}$
G_{v}	Open loop voltage gain	$f=1 \mathrm{KHz}$			80		dB
G_{v}	Closed loop voltage gain			25.5	26	26.5	dB
d	Total harmonic distortion	$\begin{aligned} & P_{o}=0.1 \text { to } 14 \mathrm{~W} \\ & R_{L}=40 \text { to } 15000 \mathrm{~Hz} \\ & f=1 \mathrm{KHz} \end{aligned}$			$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$		\%
		$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 9 \mathrm{~W} \\ & \mathrm{f}=40 \text { to } 15000 \mathrm{~Hz}=8 \Omega \end{aligned}$			0.05		\%
d_{2}	Second order CCIF intermodulation distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=4 \mathrm{~W} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\mathrm{f}_{2}-\mathrm{f}_{1}=1 \mathrm{KHz}$		0.03		\%
d_{3}.	Third order CCIF intermodulation distortion	$\begin{aligned} & f_{1}=14 \mathrm{KHz} \\ & f_{2}=15 \mathrm{KHz} \end{aligned}$	$2 \mathrm{f}_{1}-\mathrm{f}_{2}=13 \mathrm{KHz}$		0.08		\%
e_{N}	Input noise voltage	$B=$ curve A			2		
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz			3	10	
i_{N}	Input noise current	$B=$ curve A			50		
		$B=22 \mathrm{~Hz}$ to 22 KHz			80	200	
S/N	Signal to noise ratio	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~B}=\text { curve } \mathrm{A} \end{aligned}$	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$		106		
			$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$		94		

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
R_{i}	Input resistance (pin 1)	(open loop)	$f=1 \mathrm{KHz}$	0.5	5		$\mathrm{M} \Omega$
SVR	Supply voltage rejection	$\begin{aligned} & R_{L}=4 \Omega \\ & R_{g}=22 K \Omega \end{aligned}$	$\begin{aligned} & G_{v}=26 \mathrm{~dB} \\ & f=100 \mathrm{~Hz} \end{aligned}$		54		dB
T_{j}	Thermal shut-down junction temperature				145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Single supply amplifier

Fig. 2 - Open loop-frequency response

*) Test using noise filters.

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Total harmonic distortion vs. output power(*)

Fig. 5 - Two tone CCIF intermodulation distortion

Fig. 6 - Large signal frequency response

Fig. 7 - Maximum allowable power dissipation vs. ambient temperature

Fig. 8 - Single supply high power amplifier (TDA 2030A + BD907/BD908)

Fig. 9 - P.C. board and component layout for the circuit of fig. 8 (1:1 scale)

Typical performance of the circuit of fig. 8

Parameter		Test conditions		Min.	Typ.	Max.	Unit
	Supply voltage				36	44	V
l_{d}	Quiescent drain current	$\mathrm{V}_{5}=36 \mathrm{~V}$			50		mA
P_{0}	Output power	$\begin{aligned} & d=0.5 \% \\ & R_{L}=4 \Omega \\ & f=40 \mathrm{~Hz} \text { to } 15 \mathrm{KHz} \end{aligned}$	$\mathrm{V}_{5}=39 \mathrm{~V}$		35		
			$\mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$		28		
		$\begin{aligned} & d=10 \% ; f=1 \mathrm{KHz} \\ & R_{L}=4 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{s}}=39 \mathrm{~V}$		44		
			$\mathrm{V}_{5}=36 \mathrm{~V}$		35		
G_{v}	Voltage gain	$\mathrm{f}=1 \mathrm{KHz}$		19.5	20	20.5	dB
SR	Slew Rate				8		$\mathrm{V} / \mu \mathrm{sec}$
d	Total harmonic distortion		$f=1 \mathrm{KHz}$		0.02		
		$\mathrm{P}_{\mathrm{o}}=20 \mathrm{~W} \mathrm{f}=40 \mathrm{~Hz}$ to 15 KHz			0.05		
v_{i}	Input sensitivity	$\begin{aligned} & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \\ & \mathrm{P}_{\mathrm{O}}=20 \mathrm{~W} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \end{aligned}$		890		mV
S/N	Signal to noise ratio	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~B}=\text { curve } \mathrm{A} \end{aligned}$	$\mathrm{P}_{\mathrm{o}}=25 \mathrm{~W}$		108		dB
			$\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$		100		dB

Fig. 10 - Output power vs. supply voltage

Fig. 11 - Total harmonic distortion vs. output power

Fig. 12 - Output power vs. input level

Fig. 13 - Power dissipation
vs. output power

Fig. 14 - Typical amplifier whit split power supply

Fig. 15 - P.C. board and component layout for the circuit of fig. 14 (1:1 scale)

Fig. 16 - Bridge amplifier whit split power supply $\left(P_{o}=34 \mathrm{~W}, \mathrm{~V}_{\mathrm{s}}= \pm 16 \mathrm{~V}\right)$

Fig. 17 - P.C. board and component layout for the circuit in fig. 16 (1:1 scale)

Multiway speaker systems and active boxes

Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two or three bands.
To maintain a flat frequency response over the $\mathrm{Hi}-\mathrm{Fi}$ audio range the bands covered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segmento of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum to determine the cutoff frequencies of the crossover filters (see Fig. 18). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50 W for the woofer, 35 W for the midrange unit and 15 W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using aircored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters:

- power less;
- increased impedance seen by the loudspeaker (lower damping)

Fig. 18 - Power distribution vs. frequency

- difficulty of precise design due to variable loudspeaker impedance.
Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers.
In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks (6dB/octave) can be recommended.
The result obtained are excellent beceuse this is the best type of audio filter and the only one free from phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker

Fig. 19 - Active power filter

i
must operate linearly well beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in Fig. 19.
The proposed circuit can realize combined power amplifiers and $12 \mathrm{~dB} /$ octave or $18 \mathrm{~dB} /$ octave high-pass or low-pass filters.
In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation.
The impedance at the pin $(-)$ is of the order of 100Ω, while that of the pin (+) is very high, which is also what was wanted.

The component values calculated for $\mathrm{f}_{\mathrm{c}}=900 \mathrm{~Hz}$ using a Bessel 3rd order Sallen and Key structure are:

$\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{C}_{3}$	\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}
22 nF	$8.2 \mathrm{~K} \Omega$	$5.6 \mathrm{~K} \Omega$	$33 \mathrm{~K} \Omega$

Using this type of crossover filter, a complete 3-way 60W active loudspeaker system is shown in Fig. 20.

It employs 2nd order Buttherworth filters with the crossover frequencies equal to 300 Hz and 3 KHz .
The midrange section consists of two filters, a high pass circuit followed by a low pass network. With $\mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$ the output power delivered to the woofer is 25 W at $\mathrm{d}=0.06 \%$ (30 W at $\mathrm{d}=0.5 \%$). The power delivered to the midrange and the tweeter can be optimized in the design phase taking in account the loudspeaker efficiency and impedance ($R_{L}=4 \Omega$ to 8Ω).
It is quite common that midrange and tweeter speakers have an efficiency 3dB higher than woofers.

Fig. 20-3 way 60W active loudspeaker system ($\mathrm{V}_{\mathrm{s}}=36 \mathrm{~V}$)

Musical instruments amplifiers

Another important field of application for active systems is music.
In this area the use of several medium power amplifiers is more convenient than a single high power amplifier, and it is also more realiable. A typical example (see Fig. 21) consist of four amplifiers each driving a low-cost, 12 inch loudspeaker. This application can supply 80 to 160W rms.

Fig. 21 - High power active box for musical instrument

Transient intermodulation distortion (TIM)

Transient intermodulation distortion is an unfortunate phenomen associated with negativefeedback amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e. contains high-frequency components, the feedback can arrive too late so that the amplifiers overloads and a burst of intermodulation distortion will be produced as in Fig. 22. Since transients occur frequently in music this obviously a problem for the designer of audio amplifiers. Unfortunately, heavy negative feedback is frequency used to reduce the total harmonic distortion of an amplifier, which tends to aggravate the transient intermodulation (TIM situation. The best known method for the measurement of TIM consists of feeding sine waves superimposed onto square waves, into the amplifier under test. The output spectrum is then examined using a

Fig. 22 - Overshoot phenomenon in feedback amplifiers

spectrum analyser and compared to the input. This method suffers from serious disadvantages: the accuracy is limited, the measurement is a rather delicate operation and an expensive spectrum analyser is essential. A new approach (see Technical Note 143) applied by SGS to monolithic amplifiers measurement is fast cheapit requires nothing more sophisticated than an oscilloscope - and sensitive - and it can be used down to the values as low as 0.002% in high power amplifiers.
The "inverting-sawtooth" method of measurement is based on the response of an amplifier to a 20 KHz sawtooth waveform. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will follow the upper line in Fig. 23 cutting of the shaded area and thus increasing the mean level. If this output signal is filtered to remove the sawtooth, direct voltage remains which indicates the amount of TIM distortion, although it is difficult to measure because it is indistinguishable from the DC offset of the amplifier. This problem is neatly avoided in the IS-TIM method

Fig. 23-20KHz sawtooth waveform

by periodically inverting the sawtooth waveform at a low audio frequency as shown in Fig. 24. In the case of the sawtooth in Fig. 25 the mean level was increased by the TIM distortion, for a sawtooth in the other direction the opposite is true.

Fig. 24 - Inverting sawtooth waveform

$=M W W M W M M$

The result is an AC signal at the output whole peak-to-peak value is the TIM voltage, which can be measured easily with an oscilloscope. If the peak-to-peak value of the signal and the peak-to-peak of the inverting sawtooth are measured, the TIM can be found very simply from:

$$
\mathrm{TIM}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {sawtooth }}} \cdot 100
$$

In Fig. 25 the experimental results are shown for the 30W amplifier using the TDA2030A as a driver and a low-cost complementary pair. A simple RC filter on the input of the amplifier to limit the maximum signal slope (SS) is an effective way to reduce TIM.

Fig. 25 - TIM distortion vs. output power

The diagram of Fig. 26 originated by SGS can be used to find the Slew-Rate (SR) required for a given output power or voltage and a TIM design target.
For example if an anti-TIM filter with a cutoff at 30 KHz is used and the max. peak-to-peak output voltage is 20 V then, referring to the diagram, a Slew-Rate of $6 \mathrm{~V} / \mu \mathrm{s}$ is necessary for 0.1\% TIM.

As shown Slew-Rates of above $10 \mathrm{~V} / \mu \mathrm{s}$ do not contribute to a further reduction in TIM.
Slew-Rates of $100 / \mu \mathrm{s}$ are not only useless but also a disadvantage in $\mathrm{Hi}-\mathrm{Fi}$ audio amplifiers because they tend to turn the amplifier into a radio receiver.

Fig. 26 - TIM design diagram ($\mathrm{f}_{\mathrm{C}}=30 \mathrm{KHz}$)

Power supply

Using monolithic audio amplifier with nonregulated supply voltage it is important to design the power supply correctly. In any working case it must provide a supply voltage less than the maximum value fixed by the IC breakdown voltage.
It is essential to take into account all the working conditions, in particular mains fluctuations and supply voltage variations with and without load. The TDA2030A ($\mathrm{V}_{\mathrm{s} \text { max }}=44 \mathrm{~V}$) is particularly suitable for substitution of the standard IC power amplifiers (with $\mathrm{V}_{\mathrm{s} \text { max }}=36 \mathrm{~V}$) for more reliable applications.
An example, using a simple full-wave rectifier followed by a capacitor filter, is shown in the table and in the diagram of Fig. 27.

A regulated supply is not usually used for the power output stages because of its dimensioning must be done taking into account the power to supply in the signal peaks. They are only a small percentage of the total music signal, with consequently large overdimensioning of the circuit.
Even if with a regulated supply higher output power can be obtained (V_{s} is constant in all working conditions), the additional cost and power dissipation do not usually justify its use. Using non-regulated supplies, there are fewer designe restriction. In fact, when signal peaks are present, the capacitor filter acts as a flywheel supplying the required energy.
In average conditions, the continuous power supplied is lower. The music power/continuous power ratio is greater in this case than for the case of regulated supplied, with space saving and cost reduction.

Fig. 27 - DC characteristics of 50 W non-regulated supply

Mains (220V)	Secondary voltage	DC output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$		
		$\mathbf{I}_{0}=\mathbf{0}$	$\mathbf{I}_{0}=\mathbf{0 . 1 \mathbf { A }}$	$\mathbf{I}_{\mathbf{0}}=\mathbf{1 A}$
$+20 \%$	28.8 V	43.2 V	42 V	37.5 V
$+15 \%$	27.6 V	41.4 V	40.3 V	35.8 V
$+10 \%$	26.4 V	39.6 V	38.5 V	34.2 V
-	24 V	36.2 V	35 V	31 V
-10%	21.6 V	32.4 V	31.5 V	27.8 V
-15%	20.4 V	30.6 V	29.8 V	26 V
-20%	19.2 V	28.8 V	28 V	24.3 V

Application suggestion

The recommended values of the components are those shown on application circuit of Fig. 14.

Different values can be used. The following table can help the designer.

Component	Recommended value	Purpose	Larger than recommended value	Smeller than recommended value
R1	$22 \mathrm{~K} \Omega$	Closed loop gain setting.	Increase of gain.	Decrease of gain. *
R2	680Ω	Closed loop gain setting.	Decrease of gain. *	Increase of gain.
R4	$22 \mathrm{~K} \Omega$	Non inverting input biasing.	Increase of input impedance.	Decrease of input impedance.
R5	$\cong 3 \mathrm{R} 2$	Upper frequency cutoff.	Poor high frequencies attenuation.	Danger of oscillation.
C 1	$1 \mu \mathrm{~F}$	Input DC decoupling.		Danger of oscillation at ingh frequencies with
C 2	$22 \mu \mathrm{~F}$	Inverting DC decoupling.		Increase of low frequencies cutoff.
$\mathrm{C} 3, \mathrm{C} 4$	$0.1 \mu \mathrm{~F}$	Supply voltage bypass.		Increase of low frequencies cutoff.
$\mathrm{C} 5, \mathrm{C} 6$	$100 \mu \mathrm{~F}$	Supply voltage bypass.		Danger of oscillation.
C 7	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
C 8	$\cong \frac{1}{2 \pi} \mathrm{~B}$ R1	Upper frequency cutoff.	Smaller bandwidth.	Larger bandwidth.
D1, D2	1 N 4001	To protect the device against output voltage spikes.		

* The value of closed loop gain must be higher than 24 dB .

SHORT CIRCUIT PROTECTION

The TDA2030A has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. It reduces the possibility that the device gets damaged during an accidental short circuit from $A C$ output to ground.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1. An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2. The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

20W Hi-Fi AUDIO POWER AMPLIFIER

The TDA2040 is a monolithic integrated circuit in Pentawatt ${ }^{\circledR}$ package, intended for use as an audio class $A B$ amplifier. Typically it provides 22 W output power ($\mathrm{d}=0.5 \%$) at $\mathrm{V}_{\mathrm{s}}=32 \mathrm{~V} / 4 \Omega$. The TDA2040 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a patented short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating
area. A thermal shut-down system is also included.

Pentawatt

ORDERING NUMBER: TDA2040V TDA2040H

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 20	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	V_{s}	
V_{i}	Differential input voltage	± 15	V
I_{o}.	Output peak current (internally limited)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	25	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	$3 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{s}}= \pm 16 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		± 2.5		± 20	V
I_{d}	Quiescent drain current	$\mathrm{V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}$			30	mA
		$\mathrm{V}_{\mathrm{s}}= \pm 20 \mathrm{~V}$		45	100	mA
I_{b}	Input bias current			0.3	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage			± 2	± 20	mV
$\mathrm{I}_{\text {os }}$	Input offset current				± 200	$n \mathrm{~A}$
P_{0}	Output power	$\begin{array}{ll} d=0.5 \% & T_{\text {case }}=60^{\circ} \mathrm{C} \\ f=1 \mathrm{KHz} & R_{L}=4 \Omega \\ & R_{L}=8 \Omega \end{array}$	20	$\begin{aligned} & 22 \\ & 12 \end{aligned}$		W
		$\mathrm{f}=15 \mathrm{KHz} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	15	18		W
BW	Power bandwidth	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$		100		KHz
G_{v}	Open loop voltage gain	$f=1 \mathrm{KHz}$		80		dB
G_{v}	Closed loop voltage gain	f	29.5	30	30.5	dB
d	Total harmonic distortion	$\begin{array}{ll} P_{O}=0.1 \text { to } 10 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \\ & f=40 \text { to } 15000 \mathrm{~Hz} \\ & f=1 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.08 \\ & 0.03 \end{aligned}$		\%
e_{N}	Input noise voltage	$B=$ curve A		2		$\mu \mathrm{V}$
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		3	10	
i_{N}	Input noise current	$B=$ curve A		50		pA
		$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		80	200	
R_{i}	Input resistance (pin 1)		0.5	5		$\mathrm{M} \Omega$
SVR	Supply voltage rejection	$\begin{array}{lr} R_{\mathrm{L}}=4 \Omega & \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{g}}=22 \mathrm{~K} \Omega & \mathrm{f}=100 \mathrm{~Hz} \\ \mathrm{r}_{\text {ripple }}=0.5 \mathrm{~V}_{\text {rms }} & \end{array}$	40	50		dB
η	Efficiency	$\begin{array}{ll} \mathrm{f}=1 \mathrm{KHz} & \\ \mathrm{P}_{\mathrm{O}}=12 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{P}_{\mathrm{O}}=22 \mathrm{~W} & \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array}$		$\begin{aligned} & 66 \\ & 63 \end{aligned}$		\%
T_{j}	Thermal shut-down junction temperature			145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Output power vs. supply voltage

Fig. 4 - Distortion vs. frequency

Fig. 7 - Quiescent drain current vs. supply voltage

Fig. 8 - Open loop gain vs. frequency

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Supply voltage rejection vs. voltage gain

Fig. 9 - Power dissipation vs. output power

APPLICATION INFORMATION

Fig. 10 - Amplifier with split power supply (*)

$$
\begin{aligned}
& V_{S}= \pm 16 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=4 \Omega \\
& \mathrm{P}_{\mathrm{O}} \geqslant 15 \mathrm{~W}(\mathrm{~d}=0.5 \%)
\end{aligned}
$$

Fig. 12 - Amplifier with single supply (${ }^{*}$)

* In the case of highly inductive loads protection diodes may be necessary.

Fig. 11 - P.C. board and components layout of the circuit of fig. 10 ($1: 1$ scale)

Fig. 13 - P.C. board and components layout of the circuit of fig. 12 ($1: 1$ scale)

APPLICATION INFORMATION (continued)

Fig. 14-30W Bridge amplifier with split power supply

Fig. 15 - P.C. board and components layout for the circuit of fig. 14 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 16 - Two way Hi-Fi system with active crossover

Fig. 17 - P.C. board and component layout of the circuit of fig. 16 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 18 - Frequency response

Multiway speaker systems and active boxes

Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two, three or four bands.
To maintain a flat frequency response over the $\mathrm{Hi}-\mathrm{Fi}$ audio range the bands covered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segment of the audio spectrum. In this respect it is also important to know the energy distribution of the music spectrum determine the cutoff frequencies of the crossover filters (see Fig. 19). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50 W for the woofer, 35W for the midrange unit and 15W for the tweeter.
Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using aircored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters:

- power loss
- increased impedance seen by the loudspeaker (lower damping)
- difficulty of precise design due to variable loudspeaker impedance

Fig. 19 - Power distribution vs. frequency

Fig. 20 - Active power filter

Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks ($6 \mathrm{~dB} /$ octave) can be recommended.
The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion.
The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion.
A more effective solution, named "Active Power Filter" by SGS is shown in Fig. 20.
The proposed circuit can realize combined power amplifiers and $12 \mathrm{~dB} /$ octave or 18 dB /octave highpass or low-pass filters.

APPLICATION INFORMATION (continued)

In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation.
The impedance at the pin (-) is of the order of 100Ω, while that of the pin (+) is very high, which is also what was wanted.
The component values calculated for $\mathrm{f}_{\mathrm{c}}=900 \mathrm{~Hz}$ using a Bessel 3rd order Sallen and Key structure are:

$\mathbf{C 1}=\mathbf{C 2}=\mathbf{C 3}$	R1	R2	R3
22 nF	$8.2 \mathrm{~K} \Omega$	$5.6 \mathrm{~K} \Omega$	$33 \mathrm{~K} \Omega$

In the block diagram of Fig. 21 is represented an active loudspeaker system completely realized using power integrated circuit, rather than the traditional discrete transistors on hybrids, very high quality is obtained by driving the audio spectrum into three bands using active crossovers (TDA2320A) and a separate amplifier and loudspeakers for each band.
A modern subwoofer/midrange/tweeter solution is used.

SHORT CIRCUIT PROTECTION

The TDA2040 has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. The TDA2030A is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time the thermal shut down protection keeps the junction temperature within safe limits.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_{j} cannot be higher than $150^{\circ} \mathrm{C}$.
2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increase up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply reduces the power dissipation and the current consumption.

Fig. 21 - High power active loudspeaker system using TDA2030A and TDA2040

SGS-THOMSON

PRACTICAL CONSIDERATION

Printed circuit board

The layout shown in Fig. 11 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the gorund return of the output in which a high current flows.

Assembly suggestion

No electrical isolation is needed between the package and the heatsink with single supply voltage configuration.

Application suggestions

The recommended values of the components are those shown on application circuit of Fig. 10. Different values can be used. The following table can help the designer.

Component	Recomm. value	Purpose	Larger than recommended value	Smaller than recommended value
R1	$22 \mathrm{~K} \Omega$	Non inverting input biasing	Increase of input impedance	Decrease of input impedance
R2	680Ω	Closed loop gain setting	Decrease of gain (*)	Increase of gain
R4	$22 \mathrm{~K} \Omega$	Closed loop gain setting	Increase of gain	Decrease of gain (*)
C1	$1 \mu \mathrm{~F}$	Input DC decoupling	Frequency stability at high of oscillation with inductive loads	
C 2	$22 \mu \mathrm{~F}$	Inverting DC decoupling		Increase of low fre- quencies cutoff
$\mathrm{C} 3, \mathrm{C} 4$	$0.1 \mu \mathrm{~F}$	Supply voltage bypass		Increase of low fre- quencies cutoff
$\mathrm{C} 5, \mathrm{C} 6$	$220 \mu \mathrm{~F}$	Supply voltage bypass		Danger of oscillation
C 7	$0.1 \mu \mathrm{~F}$	Frequency stability		Danger of oscillation

(*) The value of closed loop gain must be higher than 24 dB .

AM/FM RADIO

- VERY WIDE RANGE OF SUPPLY VOLTAGE 3 to 16V
- HIGH RECOVERED AUDIO SIGNAL (100 $\mathrm{mV}, \Delta f= \pm 22.5 \mathrm{KHz}$ or $\mathrm{m}=0.3$)
- DESIGNED FOR USE WITH EXTERNAL RATIO DETECTOR OR INTERNAL QUADRATURE DETECTOR
- VERY GOOD AM SIGNAL HANDLING (1V; $m=0.8$)
- VERY SIMPLE DC SWITCHING OF AM-FM SECTIONS
- SUITABLE FOR CAPACITANCE, VARICAP AND INDUCTIVE TUNING
- VERY LOW TWEET
- COMMON (AM-FM) FIELD STRENGTH METER OUTPUT PIN

The TDA 2220 is a high performance AM/FM radio IC designed for use in a wide range of car radio, portable radio and home radio applications, operating on a supply voltage from 3 to 16 V . A special feature of this device is that it may be used with an internal quadrature detector or an external ratio detector. The TDA 2220 is supplied in a 20 pin plastic DIP package.

DIP-20 Plastic
(0.4)

ORDERING NUMBER: TDA 2220

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	
$P_{\text {tot }}$	Total power dissipation at $T_{a m b} \leqslant 70^{\circ} \mathrm{C}$	8	
$T_{\text {op }}$	Operating temperature	800	mW
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(top view)

THERMAL DATA

LOCAL
OSCILLATOR
OSCILLATOR
CONSTANT

| $R_{\text {th j-amb }} \quad$ Thermal resistance junction ambient | $\max 100{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}$, unless otherwise specified)

Parameter	Test conditions	Min.	Typ.	Max.	Unit	
V_{s}	Supply voltage		3	9	16	V
I_{d}	Current drain	AM Section	10	16	21	mA
		FM Section	10	14	21	

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		12	25	$\mu \mathrm{V}$
$\frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}$	Signal to noise ratio	$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{m}=0.3$	45			dB
V_{i}	AGC range	$\Delta V_{\text {out }}=10 \mathrm{~dB}$	$\mathrm{m}=0.8$	100			dB
V_{0}	Recovered audio signal (pin 10)	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	75	120	170	mV
d	Distortion				0.5		\%
d	Distortion	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.8$		2	3	\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d < 10\%	1			V
R_{i}	Input resistance between pins 3 and 5	$\mathrm{m}=0$			7.5		$K \Omega$
C_{i}	Input capacitance between pins 3 and 5	$\mathrm{m}=0$			18		pF
R_{o}	Output resistance ($\operatorname{pin} 10$)			4.5	7	9.5	$K \Omega$
	Tweet 2 IF	$\mathrm{m}=0.3$	$V_{i}=1 \mathrm{mV}$		38		dB
	Tweet 3 IF				55		dB
$\mathrm{V}_{\mathrm{m}}\left({ }^{*}\right)$	Meter output	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$.	130		mV

${ }^{*}$) Meter resistance $=1.3 \mathrm{~K} \Omega$.

ELECTRICAL CHARACTERISTICS (Continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)
(RATIO DETECTOR)

V_{i}	Input limiting voltage	-3 dB limiting point			25	36	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & V_{i}=3 \mathrm{mV} \end{aligned}$	$m=0.3$	50	60		dB
$\frac{S+N}{N}$	Signal to noise ratio	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz}$	$V_{i}=10 \mathrm{mV}$	55	65		dB
d	Distortion	$\Delta f= \pm 75 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.4	0.7	\%
d	Distortion	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.2		\%
Vo	Recovered audio signal (pin 10)	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	75	120	170	mV
R_{i}	Input resistance between pin 20 and ground	$\Delta f=0$			6.5		$K \Omega$
C_{i}	Input capacitance between pin 20 and ground	$\Delta f=0$			14		pF
R_{0}	Output resistance (pị 10)			4.5	7	9.5	$K \Omega$
$\mathrm{V}_{\mathrm{m}}{ }^{(*)}$	Meter output	$V_{i}=1 \mathrm{mV}$	$\Delta f= \pm 22.5 \mathrm{KHz}$		110		mV

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)
(QUADRATURE DETECTOR)

V_{i}	Input limiting voltage	-3dB limiting point			25	36	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & V_{i}=3 \mathrm{mV} \end{aligned}$	$m=0.3$	35	44		dB
$\frac{S+N}{N}$	Signal to noise ratio	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=10 \mathrm{mV}$	55	65		dB
d	Distortion	$\Delta f= \pm 75 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.7	1.5	\%
d	Distortion	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.25		\%
d	Distortion (double tuned)				0.1		\%
V_{0}	Recovered audio signal (pin 10)	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	60	90	130	mV
R_{i}	Input resistance between pin 20 and ground	$\Delta f=0$			6.5		$K \Omega$
C_{i}	Input capacitance between pin 20 and ground	$\Delta f=0$			14		pF
R_{0}	Output resistance (pin 10)			4.5	7	9.5	$\mathrm{K} \Omega$
$V_{m}{ }^{(*)}$	Meter output	$V_{i}=1 \mathrm{mV}$	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz}$		110		mV

(*) Meter resistance $=1.3 \mathrm{~K} \Omega$.

Fig. 1 - Test circuit with FM ratio detector

Fig. 2 - P.C. board and component layout of the circuit of fig. 1 (1:1 scale)

Fig. 3 - Test circuit with FM quadrature detector

Fig. 4 - P.C. board and component layout of the circuit of fig. 3 (1:1 scale)

L1-455kHz IF Coil

$\mathrm{C}_{\mathrm{o}}(\mathrm{pF})$	$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	O_{0}	TURNS		
1-3		1-3	1-2	2-3	4-6
180	455	70	57	116	24

TOKO AM3 $-10 \times 10 \mathrm{~mm}$
RLC $-4 A 7525 \mathrm{~N}$

L2 - AM Detector Coil

$C_{0}(\mathrm{pF})$	$\stackrel{f}{(K H z)}$	O_{0}	TURNS		
1-3		1-3	1-2	2-3	4-6
180	455	70	173	94	9

TOKO AM2 $-10 \times 10 \mathrm{~mm}$. RLC - 4A 7524EK

L3 - AM Oscillator Coil

f $(k H z)$	L (μH)	\mathbf{o}_{0}	TURNS		
	$1-3$	$1-3$	$1-2$	$2-3$	$4-6$
796	220	80	2	75	8

TOKO - $10 \times 10 \mathrm{~mm}$. RWO - 6A6574N

L4 - FM Detector Coil

$\mathrm{C}_{\mathrm{o}}(\mathrm{pF})$	$\stackrel{f}{(M H z)}$	O_{0}	TURNS		
1-3		1-3	1-3	-	-
82	10.7	100	12	-	-

TOKO $-10 \times 10 \mathrm{~mm}$
KACS - K586 HM

L5 - Ratio Detector

Fig． 5 －AM／FM car radio receiver

Note－The transistor $\mathbf{Q 1}$ can be eliminated using the tuner of fig． 7.

Fig. 6 - P.C. board and component layout of the circuit of fig. 5 (1:1 scale)

PREAMPLIFIER FOR INFRARED REMOTE CONTROL SYSTEMS

The TDA2320 is a monolithic integrated circuit in Minidip package specially designed to amplify the IR signal in remot controlled TV or radio sets. It directly interfaces with the digital control circuitry.
The TDA 2320 incorporates a two stages amplifier with excellent sensitivity and high noise immunity. It can work with a single 5 V supply voltage and flash or carrier transmission modes as provided for example by the M709/M710C/ MOS transmitter.

The TDA2320 is particularly intended to be used in conjunction with the M104 and M206 + M3870 remote control receivers.

ORDERING NUMBER: TDA2320

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$T_{\text {stg, } j}$	Storage and Junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	400	mW

APPLICATION CIRCUIT (Flash mode preamplifier)

CONNECTION AND BLOCK DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

THERMAL DATA

$R_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	$\max \quad 200$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, single amplifier, unless otherwise specified)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		4		20	V
I_{5}	Total supply current	$\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$		0.8	2	mA
I_{b}	Input bias current			100	500	$n \mathrm{~A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}}<10 \mathrm{~K} \Omega$		0.5		mV
Ios	Input offset current			15		$n \mathrm{~A}$
G_{v}	Open loop voltage gain	$\mathrm{f}=1 \mathrm{KHz}$	64	70		dB
		$\mathrm{f}=100 \mathrm{KHz}$		30		dB
B	Gain bandwidth product	$\mathrm{f}=40 \mathrm{KHz}$	1.5	3		MHz
SR	Slew rate	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		1.5		$\mathrm{V} / \mathrm{\mu s}$
e_{N}	Total input noise voltage	$\begin{aligned} & f=40 \mathrm{KHz} \\ & \mathrm{Rg}=10 \mathrm{~K} \Omega \end{aligned}$		20		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
V_{0}.	DC output voltage swing			2.5		Vpp
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$		80		dB

APPLICATION INFORMATION

Fig. 1 - Application circuit for carrier transmission mode

APPLICATION INFORMATION (continued)

Fig. 2 - Flash mode preamplifier

Fig. 3 - P.C. and components layout of the circuit of fig. 2 (1:1 scale)

Fig. 4 - IR transmitter using M709 or M710

Fig. 5-MMC II - PLL TV Frequency synthesizer

APPLICATION INFORMATION (continued)

Fig. 6 - IR Preamplifier and Remote Control receiver for 32 channel voltage synthesizer (EPM - M293)

MINIDIP STEREO PREAMPLIFIER

- WIDE SUPPLY VOLTAGE RANGE (3 TO 36V)
- SINGLE OR SPLIT SUPPLY OPERATION
- very low current consumption (0.8 mA)
- VERY LOW DISTORTION
- NO POP-NOISE
- SHORT CIRCUIT PROTECTION

The TDA2320A is a stereo class A preamplifier intended for application in portable cassette
players and high quality audio systems.
The TDA2320A is a monolithic integrated circuit a 8 lead minidip.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	36	V
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	400	mW
$\mathrm{~T}_{\text {stg, }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATION:

Stereo preamplifier for cassette players

CONNECTION AND BLOCK DIAGRAM

(top view)

SCHEMATIC DIAGRAM

(one section)

TEST CIRCUITS

Fig. 1

Fig. 2

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

(*) Test circuit of fig. 1.
(**) Test circuit of fig. 2.

Fig. 3 - Supply current vs. supply voltage

Fig. 6 - Power bandwidth

Fig. 9 - Noise density vs. frequency

Fig. 4 - Supply current vs. ambient temperature

Fig. 7 - Total harmonic distortion vs. output voltage

Fig. 10 - RIAA preamplifier response (circuit of fig. 12)

Fig. 5-Output voltage swing vs. load resistance

Fig. 8 - Total input noise vs. source resistance

Fig. 11 - Tape preamplifier frequency response (circuit of fig. 14)

APPLICATION INFORMATION

Fig. 12 - Stereo RIAA preamplifier

Fig. 13 - P.C. board and components layout of the circuit of fig. 12

APPLICATION INFORMATION (continued)

Fig. 14 - Stereo preamplifier for Walkman cassette players

Fig. 15 - Second order 2 KHz Butterworth crossover filter for $\mathrm{Hi}-\mathrm{Fi}$ active boxes

Fig. 16 - Frequency response (circuit of fig. 15)

APPLICATION INFORMATION (continued)

Fig. 17 - Third order 2.8 KHz Bessel crossover filter for $\mathrm{Hi}-\mathrm{Fi}$

s-4663/2

Fig. $19-200 \mathrm{~Hz}$ to 2 KHz Active Bandpass Filter for midrange speakers

Fig. 20 - Subsonic filter

$\mathbf{f}_{\mathbf{c}}(\mathrm{Hz})$	$\mathbf{C}(\mu \mathrm{F})$
15	0.68
22	0.47
30	0.33
55	0.22
100	0.1

Fig. 21 - High-cut filter

$\mathbf{f}_{\mathbf{c}}(\mathbf{K H z})$	$\mathbf{C 1}(\mathbf{n F})$	$\mathbf{C 2}(\mathbf{n F})$
3	3.9	6.8
5	2.2	4.7
10	1.2	2.2
15	0.68	1.5

APPLICATION INFORMATION (continued)

Fig. 22 - Fifth order 3.4 KHz low-pass Butterworth filter

For $\mathrm{f}_{\mathrm{c}}=3.4 \mathrm{KHz}$ and $\mathrm{R}_{\mathrm{i}}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=10 \mathrm{~K} \Omega$, we obtain:
$\mathrm{C} 1=1.354 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=6.33 \mathrm{nF}$
$\mathrm{C} 1=0.421 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=1.97 \mathrm{nF}$
$\mathrm{C} 2=1.753 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi \mathrm{f}_{\mathrm{c}}}=8.20 \mathrm{nF}$
$\mathrm{C} 3=0.309 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2 \pi f_{\mathrm{c}}}=1.45 \mathrm{nF}$
$\mathrm{C} 4=3.325 \cdot \frac{1}{\mathrm{R}} \cdot \frac{1}{2, \pi \mathrm{f}_{\mathrm{c}}}=15.14 \mathrm{nF}$
The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz .

Fig. 23 - Sixth-pole 355 Hz low-pass filter (Chebychev type)

This is a 6- pole Chebychev type with $\pm 0.25 \mathrm{~dB}$ ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz . The in band attenuation is limited in practice to the $\pm 0.25 \mathrm{~dB}$ ripple and does not exceed $1 / 2 \mathrm{~dB}$ at 0.9 fc .

APPLICATION INFORMATION (continued)

Fig. 24 - Three band tone control

Fig. 25 - Frequency response of the circuit of fig. 24.

A : all controls flat
B : bass \& treble boost, mid flat
C : bass \& treble cut, mid flat
D : mid boost, bass \& treble flat
E : mid cut, bass \& treble flat

DUAL POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 3V
- LOW CROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- bRIDGE OR STEREO CONFIGURATION

The TDA2822 is a monolithic integrated circuit in $12+2+2$ powerdip, intended for use as dual audio power amplifier in portable radios and TV sets.

Powerdip Plastic
$(12+2+2)$

ORDERING NUMBER: TDA2822

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	15	V
I_{o}	Output peak current	1.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1.25	W
	at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	4	W
$\mathrm{~T}_{\text {stg }}$,	T_{j}	Storage and junction temperature	

TYPICAL APPLICATION CIRCUIT (STEREO)

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	$\max 80$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } j \text {-case }}$	Thermal resistance junction-pins	$\max 20$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Parameter | Test Conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | Unit | U |
| :--- |

STEREO (Test circuit of Fig. 1)

V_{5}	Supply voltage		3		15	V
V_{c}	Quiescent output voltage	$\begin{aligned} & V_{s}=9 \mathrm{~V} \\ & V_{s}=6 \mathrm{~V} \end{aligned}$		$\begin{gathered} 4 \\ 2.7 \end{gathered}$		V
I_{d}	Quiescent drain current			6	12	mA
I_{b}	Input bias current			100		nA
P_{0}	Output power (each channel)	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{s}=9 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=6 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=4.5 \mathrm{~V} & R_{L}=4 \Omega \end{array}$	$\begin{gathered} 1.3 \\ 0.45 \end{gathered}$	$\begin{gathered} 1.7 \\ 0.65 \\ 0.32 \end{gathered}$		W w w
G_{v}	Closed loop voltage gain	$\mathrm{f}=1 \mathrm{KHz}$	36	39	41	dB
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	100			$K \Omega$
e_{N}	Total input noise	$R_{\mathbf{s}}=10 \mathrm{~K} \Omega \frac{\mathrm{~B}=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}}{\text { Curve } A}$		$\frac{2.5}{2}$		$\mu \mathrm{V}$
SVR	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz}$	24	30		dB
CS	Channel separation	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \quad \mathrm{f}=1 \mathrm{KHz}$		50		dB

BRIDGE (Test circuit of Fig. 2)

$V_{\text {s }}$	Supply voltage		3		15	V
l_{d}	Quiescent drain current	$\mathrm{R}_{\mathrm{L}}=\infty$		6	12	mA
$\mathrm{V}_{\text {os }}$	Output offset voltage	$R_{L}=8 \Omega$		10	60	mV
I_{b}	Input bias current			100		$n \mathrm{~A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{s}=9 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=6 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=4.5 \mathrm{~V} & R_{L}=4 \Omega \end{array}$	$\begin{aligned} & 2.7 \\ & 0.9 \end{aligned}$	$\begin{gathered} 3.2 \\ 1.35 \\ 1 \end{gathered}$		W W W
d	Distortion ($\mathrm{f}=1 \mathrm{KHz}$)	$\mathrm{R}_{\mathrm{L}}=8 \Omega \quad \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2		\%
G_{v}	Closed loop voltage gain	$\mathrm{f}=1 \mathrm{KHz}$		39		dB
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	100			$K \Omega$
e_{N}	Total input noise	$\mathrm{R}_{\mathrm{s}}=10 \mathrm{~K} \Omega \quad \mathrm{~B}=22 \mathrm{~Hz}$ to 22 KHz		3		$\mu \mathrm{V}$
				2.5		
SVR	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz}$		40		dB

Fig. 1 - Test circuit (STEREO)

Fig. 2 - P.C. board and components layout of the circuit of Fig. 1 (1:1 scale)

Fig. 3 - Test circuit (BRIDGE)

Fig. 4 - P.C. board and components layout of the circuit of Fig. 3 (1: 1 scale)

Fig. 5 - Output power vs. supply voltage (Stereo)

Fig. 8 - Distortion vs. output power (Bridge)

Fig. 11 - Total power dissipation vs. output power (Stereo)

SGS-THOMSON
MACROELECTRONUCS

Fig. 7 - Distortion output power (Bridge)

Fig. 10 - Quiescent current vs. supply voltage
Id
(mA
6
6
4
2
0

Fig. 13 - Total power dissipation vs. output power (Bridge)

Fig. 14 - Application circuit for portable radios

$5-6289 / 1$

MOUNTING INSTRUCTION

The $R_{\text {th } j \text {-amb }}$ of the TDA2822 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 15 or to an external heatsink (Fig. 16).
The diagram of figure 17 shows the maximum dissipable power $\mathrm{P}_{\text {tot }}$ and the $\mathrm{R}_{\text {th } j \text {-amb }}$ as a function of the side " ℓ " of two equal square copper

Fig. 15 - Example of P.C. board copper area which is used as heatsink.

COPPER AREA 35μ THICKNESS

areas having a thickness of 35μ (1.4 mils).
During soldering the pins temperature must not exceed $260^{\circ} \mathrm{C}$ and the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

Fig. 16 - External heatsink mounting example

SGS-THOMSON

TDA2822

MOUNTING INSTRUCTION (continued)

Fig. 6 - Maximum dissipable power and junction to ambient thermal resistance vs. side " $\ell^{\prime \prime}$

Fig. 7 - Maximum allowable power dissipation vs. ambient temperature

DUAL LOW-VOLTAGE POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 1.8 V
- LOW CROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

The TDA2822M is a monolithic integrated circuit in 8 lead Minidip package. It is intended for use as dual audio power amplifier in portable cassette players and radios.

Minidip Plastic

ORDERING NUMBER: TDA2822M

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	15	V
I_{o}	Peak output current	1	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1	W
	at $\mathrm{T}_{\text {case }}=50^{\circ} \mathrm{C}$	1.4	W
$\mathrm{~T}_{\text {stg }}, T_{\mathrm{j}}$	Storage and junction temperature		

TEST CIRCUIT

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance junction-ambient	\max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th j-case }}$	Thermal resistance junction-pin (4)	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

STEREO APPLICATION

Fig. 1 - Test circuit

Fig. 2 - P.C. board and component layout of the circuit of Fig. 1 (1: 1 scale)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

STEREO (Test circuit of Fig. 1)

$\mathrm{V}_{\text {s }}$	Supply voltage			1.8		15	V
V_{0}	Quiescent output voltage				2.7		V
		$V_{s}=3 V$			1.2		V
I_{d}	Quiescent drain current				6	9	mA
I_{b}	Input bias current				100		nA
P_{0}	Output power (each channel) (f $=1 \mathrm{KHz}, d=10 \%$)	$R_{L}=32 \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 15 \end{aligned}$	$\begin{gathered} 300 \\ 120 \\ 60 \\ 20 \\ 5 \end{gathered}$		mW
		$R_{L}=16 \Omega$	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$	170	220		mW
		$R_{L}=8 \Omega$	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=6 V \end{aligned}$	300	$\begin{gathered} 1000 \\ 380 \end{gathered}$		mW
		$R_{L}=4 \Omega$	$\begin{aligned} V_{\mathrm{s}} & =6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}} & =4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{s}} & =3 \mathrm{~V} \end{aligned}$	450	650 320 110		mW
d	Distortion$(f=1 K H z)$	$\mathrm{R}_{\mathrm{L}}=32 \Omega$	$\mathrm{P}_{\mathrm{o}}=40 \mathrm{~mW}$		0.2		\%
		$\mathrm{R}_{\mathrm{L}}=16 \Omega$	$\mathrm{P}_{\mathrm{O}}=75 \mathrm{~mW}$		0.2		\%
		$R_{L}=8 \Omega$	$\mathrm{P}_{\mathrm{O}}=150 \mathrm{~mW}$		0.2		\%
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$		36	39	41	dB
ΔG_{v}	Channel balance					± 1	dB
R_{i}	Input resistance	$f=1 \mathrm{KHz}$		100			$K \Omega$
${ }^{e_{N}}$	Total input noise	$\mathrm{R}_{\mathrm{s}}=10 \mathrm{~K} \Omega$	$B=$ Curve A		2		$\mu \mathrm{V}$
			$\mathrm{B}=22 \mathrm{~Hz}$ to KHz		2.5		
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$	$\mathrm{C} 1=\mathrm{C} 2=100 \mu \mathrm{~F}$	24	30		dB
C_{s}	Channel separation	$f=1 \mathrm{KHz}$			50		dB

BRIDGE APPLICATION

Fig. 3 - Test circuit

Fig. 4 - P.C. board and components layout of the circuit of Fig. 3 (1: 1 scale)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

BRIDGE (Test circuit of Fig. 3)

Fig. 5 - Quiescent current vs. supply voltage

Fig. 8 - Distortion vs. output power (Stereo)

Fig. 11 - Distortion output power (Bridge)

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 9 - Distortion vs. output power (Stereo)

Fig. 12 - Total power dissipation vs. output power (Bridge)

Fig. 7 - Output power vs. supply voltage (THD $=10 \%$, $\mathrm{f}=1 \mathrm{KHz}$ Stereo)

Fig. 10 - Output power vs. supply voltage (Bridge)

Fig. 13 - Total power dissipation vs. output power (Bridge)

7/10

Fig. 14 - Total power dissipation vs. output power (Bridge)

Fig. 15 - Total power dissipation vs. output power (Bridge)

Fig. 16 - Typical application in portable players

Fig. 18 - Portable radio cassette players

S-613012

Fig. 19 - Portable stereo radios

TYPE	SUPPLY VOLTAGE
TDA 7220	1.5 V to 6 V
TDA 7211A	1.2 V to 6 V
TEA 1330	3 V to 15 V
TDA 2822M	1.8 V to 15 V

Fig. 20 Low cost application for portable players (using only one $100 \mu \mathrm{~F}$ output capacitor)

Fig. 21 - 3V Stereo cassette player with motor speed control

DUAL POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 3V
- HIGH SVR
- LOW CROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- bRIDGE OR STEREO CONFIGURATION

The TDA2824S is a monolithic integrated circuit assembled in single line 9 pins package (SIP. 9), intended for use as dual audio power amplifier in portable radios and TV sets.

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	16	V
I_{0}	Output peak current	1.5	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$	1.3	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATION CIRCUIT (Stereo)

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$\mathbf{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathbf{R}_{\text {th j-pins }}$	Thermal resistance junction-pins	\max	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

STEREO (Test circuit of Fig. 1)

$\mathrm{V}_{\text {s }}$	Supply voltage			3		15	V
V_{c}	Quiescent output voltage	$\begin{aligned} & V_{s}=9 V \\ & V_{s}=6 \mathrm{~V} \end{aligned}$			$\begin{gathered} 4 \\ 2.7 \end{gathered}$		V
I_{d}	Quiescent drain current				6	12	mA
I_{b}	Input bias current				100		nA
P_{0}	Output power (each channel)	$\begin{aligned} & d=10 \% \\ & V_{s}=9 \mathrm{~V} \\ & V_{s}=6 \mathrm{~V} \\ & V_{s}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{L}}=4 \Omega \\ & R_{L}=4 \Omega \\ & R_{L}=4 \Omega \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.45 \end{aligned}$	$\begin{gathered} 1.7 \\ 0.65 \\ 0.32 \end{gathered}$		W W W
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$		36	39	41	dB
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$f=1 \mathrm{KHz}$		100			$K \Omega$
e_{N}	Total input noise	$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$	$B=22 \mathrm{~Hz}$ to 22 KHz		2.5		$\mu \mathrm{V}$
			Curve A		2		
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$		40	50		dB
CS	Channel separation	$\mathrm{Rg}_{\mathrm{g}}=10 \mathrm{~K} \Omega$	$f=1 \mathrm{KHz}$		50		dB

BRIDGE (Test circuit of Fig. 3)

V_{5}	Supply voltage		3		15	V
l_{d}	Quiescent drain current	$\mathrm{R}_{\mathrm{L}}=\infty$		6	12	mA
$\mathrm{V}_{\text {os }}$	Output offset voltage	$R_{L}=8 \Omega$		10	60	mV
I_{b}	Input bias current			100		$n \mathrm{~A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{s}=9 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=6 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=4.5 \mathrm{~V} & R_{L}=4 \Omega \end{array}$	$\begin{aligned} & 2.5 \\ & 0.9 \end{aligned}$	3.2 1.35 1		W w w
d	Distortion	$f=1 \mathrm{KHz} ; \quad R_{L}=8 \Omega ; \quad P_{0}=0.5 \mathrm{~W}$		0.2		\%
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$		39		dB
R_{i}	Input resistance	$f=1 \mathrm{KHz}$	100			$K \Omega$
e_{N}	Total input noise	$R_{g}=10 \mathrm{~K} \Omega \quad \frac{B=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}}{\text { Curve } A}$		3		$\mu \mathrm{V}$
				2.5		
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$	48	60		dB

Fig. 1 - Test circuit (STEREO)

Fig. 2 - P.C. board and components layout of the circuit of Fig. 1 (1: 1 scale)

Fig. 3 - Test circuit (BRIDGE)

Fig. 4 - P.C. board and components layout of the circuit of the Fig. 3 (1: 1 scale)

Fig. 5 - Output power vs. supply voltage (Stereo)

Fig. 8 - Distortion
VS. output power (Bridge)

Fig. 11 - Quiescent current vs. supply voltage

Fig. 6 - Output power vs. supply voltage (Bridge)

Fig. 9 - Supply voltage rejection vs. supply voltage (Stereo)

Fig. 12 - Total power dissipation vs. output power (Stereo)

Fig. 7 - Distortion
vs. output power (Bridge)

Fig. 10 - Supply voltage rejection vs. frequency (Stereo)

Fig. 13 - Total power dissipation vs. output power (Bridge)

DUAL LOW NOISE TAPE PREAMPLIFIER WITH AUTOREVERSE

The TDA3410 is a dual preamplifier with tape autoreverse facility for the amplification of low level signals in applications requiring very low noise performance, as stereo cassette players. Each channel consists of two independent amplifiers. The first has a fixed gain of 30 dB while the second one is an operational amplifier optimized for high quality audio application.
The TDA3410 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package and its main features are:

- Very low noise
- High gain
- Low distortion
- Single supply operation
- Wide supply range
- SVR $=120 \mathrm{~dB}$
- Large output voltage swing
- Tape autoreverse facility
- Short circuit protection

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	36	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=60^{\circ} \mathrm{C}$	600	mW
$T_{j}, T_{\text {stg }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

Stereo preamplifier for autoreverse cassette players

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT (Flat Gain $-\mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}$)

* Mylar or polycarbonate capacitors.

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}\right.$, refer to the test circuit, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{5}	Supply current	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$ to 30 V		10		mA
10	Output current (pins 1-15)	Source $V_{s}=8 \mathrm{~V} \text { to } 30 \mathrm{~V}$ Sink		10 1		mA mA
G_{v}	Closed loop gain	$f=20 \mathrm{~Hz}$ to 20 KHz		60		dB
$\mathrm{R}_{\mathbf{i}}$	Input resistance	$f=1 \mathrm{KHz}$	50	80		$K \Omega$
R_{0}	Output resistance (pins 1-15)	$\mathrm{f}=1 \mathrm{KHz}$		50		Ω
THD	Total harmonic distortion	$\begin{array}{ll} V_{o}=300 \mathrm{mV} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%

SGS-THOMSON

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
v_{0}	Output voltage swing (pins 1-15)	Peak to Peak	$\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V}$		$\begin{aligned} & 12 \\ & 28 \end{aligned}$. V
V_{0}	Output voltage (pins 1-15)	$\begin{aligned} & d=0.5 \% \\ & f=1 K H z \end{aligned}$	$\begin{aligned} & V_{\mathrm{s}}=14.4 \mathrm{~V} \\ & V_{\mathrm{s}}=30 \mathrm{~V} \end{aligned}$		4 8		$\begin{aligned} & V_{r m s} \\ & V_{r m s} \end{aligned}$
e_{n}	Total input noise (${ }^{\circ}$)	$\begin{aligned} & R_{\mathrm{g}}=50 \Omega \\ & \mathrm{R}_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=5 \mathrm{~K} \Omega \end{aligned}$			$\begin{gathered} 0.25 \\ 0.4 \\ 1.3 \end{gathered}$	0.6	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
S/N	Signal to noise ratio (${ }^{\circ}$)	$\begin{aligned} & V_{\mathrm{in}}=0.3 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{in}}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & R_{\mathrm{g}}=600 \Omega \\ & \mathrm{R}_{\mathrm{g}}=0 \end{aligned}$		$\begin{aligned} & 57 \\ & 73 \end{aligned}$		dB dB
CS	Channel separation	$f=1 \mathrm{KHz}$			60		dB
CT($\left(^{(000}\right)$	Cross-talk (differential input)	$f=1 \mathrm{KHz}$			80		dB
SVR	Supply voltage rejection (${ }^{\circ}$)	$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		120		dB
$\operatorname{SVR}\left({ }^{\circ}{ }^{\circ}\right)$	Of reference voltage (Pin 4)	$\begin{aligned} & f=1 \mathrm{KHz} \\ & R_{\mathrm{g}}=600 \Omega \end{aligned}$			100		dB
$\mathrm{V}_{\text {ref }}$	Reference voltage (pin 4)				55		mV
$\mathrm{R}_{\text {ref }}$	Ref. voltage output resistance (pin 4)				100		Ω
$\frac{\Delta V_{\text {ref }}}{\Delta T}$	Voltage temperature coefficient				10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

$\left({ }^{\circ}\right)$ The weighting filter used for the noise measurement has a curve A frequency response.
$\left({ }^{\circ}\right)$ Referred to the input.
$\left({ }^{\circ 00}\right)$ Between a disabled input and an input ON.

ELECTRICAL CHARACTERISTICS (Refer test circuit, $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$)
AMPLIFIER ${ }^{\circ} 1$

	Parameter	Test conditions	Min.	Tур.	Max.	Unit
Gv	Gain (pins 6 to 5)		29	30	30.5	dB
d	Distortion	$\begin{array}{ll} V_{O}=300 \mathrm{mV} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{g}}=600 \Omega$		0.4		$\mu \mathrm{V}$
Z_{0}	Output impedance (pin 5)	$f=1 \mathrm{KHz}$		100		Ω
I_{0}	Output current (pin 5)			1		mA
V_{5}	DC output voltage (pin 5)	$\mathrm{V}_{5}=10 \mathrm{~V}$	1.3	2	2.7	V

AMPLIFIER ${ }^{\circ} 2$

AUTOREVERSE

$P_{\text {in }}$	$V_{12}<2 \mathrm{~V}$	$V_{12}>4.5 \mathrm{~V}$
$6-10$	OFF	ON
$7-9$	ON	OFF

$\left({ }^{\circ}\right)$ The weighting filter used for the noise measurement has a curve A frequency response.

Fig. 1 - Total input noise vs. source resistance (curve A)

Fig. 2 - Total input noise vs. source resistance ($\mathrm{BW}=$ 22 Hz to 22 KHz)

Fig. 4 - Very low noise stereo preamplifier for car cassette players (with Gap Loss Correction and autoreverse function)

$$
\text { s- } 404912
$$

Fig. 3 - Total harmonic distortion vs. output voltage

Fig. 5 - Frequency response

Fig. 6 - P.C. board and component lay-out (1:1 scale) for the circuit of fig. 4

Fig. 7 - Stereo preamplifier for car cassette players, with low value capacitors (Autoreverse function)

Fig. 8 - Frequency response

-

DUAL VERY LOW NOISE PREAMPLIFIER

The TDA 3420 is a dual preamplifier for applications requiring very low noise performance, as stereo cassette players and quality audio systems. Each channel consists of two independent amplifiers.
The first one has a fixed gain while the second one is an operational amplifier for audio application.
The TDA 3420 is available in two packages: 16 -lead dual in-line plastic and 16 lead micropackage.
Its main features are:

- Very low noise
- High gain
- Low distortion
- Single supply operation
- Large output voltage swing
- Short circuit protection

DIP-16 Plastic
(0.4)

SO-16J

ORDERING NUMBER: TDA3420 (DIP-16)
TDA3420D (SO-16)

BLOCK DIAGRAM(Pin numbers refer to the DIP)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	Dip-16	550
		mW	
		SO-16	400
$T_{j}, T_{\text {stg }}$.	Storage and junction temperature		-40 to 150

CONNECTION DIAGRAMS

THERMAL DATA	DIP	SO-16
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$150^{\circ} \mathrm{C} / \mathrm{W}$

* The thermal resistance is measured with the device mounted on a ceramic substrate ($25 \times 16 \times 0.6 \mathrm{~mm}$).

Fig. 1 - Test circuit

Note: Pin numbers refer to DIP.

Fig. 2 - Test circuit without input capacitors

Note: Pin numbers refer to the DIP.

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=60 \mathrm{~dB}\right.$ refer to the test circuit of fig. 1, unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
I_{s}	Supply current	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$ to 20 V			8		mA
Io	Output current	Source	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$ to 20 V		10		mA
		Sink			1		mA
G_{v}	Gain	$\mathrm{f}=1 \mathrm{KHz}$			60		dB
R_{i}	Input resistance			50	100		$K \Omega$
R_{0}	Output resistance				50		Ω
THD	Total harmonic distortion without noise	$\mathrm{V}_{\mathrm{o}}=300 \mathrm{mV}$	$\mathrm{f}=1 \mathrm{KHz}$		0.05		\%
			$\mathrm{f}=10 \mathrm{KHz}$		0.05		\%
V_{0}	Peak to peak output voltage	$\mathrm{f}=40 \mathrm{~Hz}$ to 15 KHz			12		V
e_{n}	Total input noise (${ }^{\circ}$)	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=50 \Omega \\ & \mathrm{R}_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=5 \mathrm{~K} \Omega \end{aligned}$			$\begin{gathered} 0.25 \\ 0.4 \\ 1.3 \end{gathered}$	0.7	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
S/N	Signal to noise ratio (\circ) $(\circ \circ)$	$\begin{aligned} & V_{\text {in }}=0.3 \mathrm{mV} \\ & V_{\text {in }}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & R_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=0 \end{aligned}$		$\begin{aligned} & 57 \\ & 73 \end{aligned}$		dB
		$\begin{aligned} & V_{i n}=0.3 \mathrm{mV} \\ & V_{i n}=1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=600 \Omega \\ & \mathrm{R}_{\mathrm{s}}=0 \end{aligned}$		$\begin{aligned} & 55 \\ & 71 \end{aligned}$		dB
CS	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$			60		dB
SVR	Supply voltage rejection	$\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{R}_{\mathrm{s}}=600 \Omega$		110		dB

AMPLIFIER ${ }^{\circ} 1$

G_{v}	Gain (pin 6 to pin 5)		27.5	28.5	29	dB
d	Distortion	$V_{o}=300 \mathrm{mV}$$\quad \begin{aligned} & f=1 \mathrm{KHz} \\ & \mathrm{f}=10 \mathrm{KHz}\end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		\%
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{S}}=600 \Omega$		0.4		$\mu \mathrm{V}$
z_{0}	Output impedance (pin 5)	$\mathrm{f}=1 \mathrm{KHz}$		100		Ω
I_{0}	Output current (pin 5)			1		mA
V5	DC output voltage (pin 5)	Test circuit fig. 2		2.8		V
		Test circuit fig. 1	1.0	1.5		

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test conditions | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | Unit | (|
| :--- |

AMPLIFIER ${ }^{\circ} 2$

G_{v}	Open loop voltage gain			100	
I_{B}	Input bias current			0.2	
$\mathrm{~V}_{\mathrm{OS}}$	Input offset voltage			$\mu \mathrm{A}$	
I_{Os}	Input offset current			50	mV
e_{n}	Total input noise (${ }^{\circ}$)	$\mathrm{R}_{\mathrm{s}}=600 \Omega$		nA	
R_{i}	Input impedance	$\mathrm{f}=1 \mathrm{KHz}$ (open loop)	150	500	

(0) Weighting filter: curve A.
$\left({ }^{\circ}\right)$ Weighting filter: Dolby CCIR/ARM.
(000) Referred to the input.

Fig. 3 - Total input noise vs. source resistance (curve A)

Fig. 6 - Output voltage vs. frequency

Fig. 4 - Total input noise vs. source resistance ($\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz)

Fig. 7 - Distortion vs. input level (test circuit of fig. 1)

Fig. 5 - Total harmonic distortion vs. output voltage

Fig. 8 - Frequency response of the circuit of fig. 10

LOW VOLTAGE FM FRONT END

- LOW OSCILLATOR RADIATION
- OPERATING SUPPLY VOLTAGE: 1.3V TO 6V
- EXCELLENT GAIN STABILITY VS. SUPPLY VOLTAGE
- HIGH SIGNAL HANDLING
- FEW EXTERNAL COMPONENTS
- BUILT-IN VARICAP FOR AFC
- MINIDIP PACKAGE PERMITS RATIONAL LAYOUT AND LOW PROFILE
- COVERS JAPANESE, US AND EUROPEAN BANDS

The TDA7211A is a monolithic FM turner suitable for portable radio and radio/cassette
player applications where a very low supply voltage is used and compactness is an important design consideration. It contains an RF amplifier, balanced mixer, one-pin local oscillator and a varicap diode for AFC. Very few external components are required. Mounted in a Minidip or SO-8 package, the TDA7211A is particularly suitable for slimline cassette-type radios.

Minidip Plastic

SO-8J

ORDERING NUMBER: TDA7211A (Minidip) TDA7211D (SO-8J)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	$\mathbf{7}$	V
$\mathbf{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}<70^{\circ} \mathrm{C}$	400	mW
$\mathrm{~T}_{\text {op }}$	Operating temperature	-20 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{J}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {th J-amb }}$	Thermal resistance junction-ambient	\max	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(V_{s}=3 V\right.$, test circuit of fig. $1, T_{a m b}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage			1.3	3	6	V
$\mathrm{V}_{\text {osc }}$	Local oscillator voltage					330	mV rms
I_{s}	Supply current	$V_{5}=1.5$ to		2	3	4.5	mA
$\mathrm{C}_{\text {AFC }}$	AFC diode capacitance	$\mathrm{V}_{\text {AFC }}=1 \mathrm{~V}$			4		pF
K(*)	AFC diode variation	$\mathrm{V}_{\text {AFC }}=1 \mathrm{t}$			0.24		
$\mathrm{G}_{\mathrm{C}}\left({ }^{* *}\right)$	Conversion gain	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$	$\begin{aligned} & f=83 \mathrm{MHz} \\ & f=98 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \end{aligned}$		dB
		$\mathrm{V}_{\mathrm{s}}=1.6 \mathrm{~V}$	$\begin{aligned} & f=83 \mathrm{MHz} \\ & \mathrm{f}=98 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \end{aligned}$		dB
$V_{\text {STP }}$	Local oscillator stop voltage				1.2		V

(*) $K=\frac{C(1 V)-C(3 V)}{C(3 V)} \quad$ (**) $R_{i}=75 \Omega ; R_{L}=300 \Omega$

TYPICAL DC VOLTAGES (test circuit)

Pin	1	2	3	4	5	6	7	8
(V)	2.3	3	3	0	3	2.9	0	3

Fig. 1 - Test circuit

BPF1 $=$ TAIYO YUDEN - B10861
$C_{V}=C 2, C 3, C 11, C 12=20+20 p F$
$\mathrm{L} 1=\mathrm{RF}$ coil -5 turns $-0.6 \mathrm{~mm} / 4 \mathrm{~mm}$.
L2 $=$ OSC. coil -4 turns $-0.6 \mathrm{~mm} / 4 \mathrm{~mm}$.

Fig. 2 - P.C. board and components layout of the test circuit (1:1 scale)

APPLICATION INFORMATION

Fig. 3 - Typical application for portable AM/FM radio

Fig. 4 - P.C. board and components layout of the circuit of fig. 3 (1:1 scale)

APPLICATION INFORMATION(continued)
PARTS LIST (Radioreceiver of fig. 3)

Code number	Value	Description
PVC 1	FM $20 \mathrm{pF} \times 2$ AM 140/82 pF	TOKO POLYVARICON QT 22124
L1	¢ 4 mm . - 5 T \# 0.6 mm .	FM RF COIL
L2	$\phi 4 \mathrm{~mm} .-4 \mathrm{~T} \# 0.6 \mathrm{~mm}$.	FM OSC. COIL
L3	$600 \mu \mathrm{H}$ PRIMARY SEC. - 7 TURNS	AM ANT. COIL with ferrite bar $\phi 10 \mathrm{~mm} . \times 80 \mathrm{~mm}$.
L4	$22 \mu \mathrm{H}$ INDUCTOR	TOKO 144LY - 220K
D1	AA 119	GE DIODE
F1	TAIYO YUDEN BPF10861K	FM BAND PASS FILTER
F2	TOKO FM1 - 154 AN - 7A5965R	FM IFT
F3	SFE 10.7 MA	CERAMIC FILTER
F4	TOKO CF2 455C	AM IFT WITH CERAMIC FILTER
F5	TOKO AM2 RLC - 4A7524EK	AM DET. COIL
F6	TOKO RWO - 6A6574N	AM OSC. COIL
F7	TOKO KACS - K586HM	FM DIS. COIL

Typical performance of the radio receiver of fig. 3

Parameter		Test conditions		$V_{s}=3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{s}}=1.6 \mathrm{~V}$
WAVEBANDS	FM			87 to 109 MHz	
	AM			523 to 1620 KHz	
SENSITIVITY	FM	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\Delta f= \pm 22.5 \mathrm{KHz}$	$1.8 \mu \mathrm{~V}$	$2 \mu \mathrm{~V}$
	AM	$\mathrm{S} / \mathrm{N}=20 \mathrm{~dB}$	$\mathrm{m}=0.3$	$400 \mu \mathrm{~V}$	$400 \mu \mathrm{~V}$
AUDIO SIGNAL OUT	FM	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz}$		70 mV	55 mV
	AM	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} / \mathrm{m} \quad \mathrm{m}=0.3$		80 mV	75 mV
DISTORTION ($\mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)	FM	$V_{i}=1 \mathrm{mV}$	$\Delta f= \pm 22.5 \mathrm{KHz}$	0.35\%	0.5\%
			$\Delta f=75 \mathrm{KHz}$	0.7\%	0.75\%
	AM	$5 \mathrm{mV} / \mathrm{m}$	$\mathrm{m}=0.3$	0.8\%	0.8\%
		$100 \mathrm{mV} / \mathrm{m}$	$\mathrm{m}=0.8$	2\%	1.9\%
SIGNAL TO NOISE$\left(f_{m}=1 \mathrm{KHz}\right)$	FM	$\mathrm{V}_{1}=1 \mathrm{mV}$	$\Delta f= \pm 22.5 \mathrm{KHz}$	50 dB	5 CdB
	AM	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV} / \mathrm{m}$	$\mathrm{m}=0.3$	33 dB	32 dB
AMPLITUDE MODULATION REJECTION	FM	$V_{i}=1 \mathrm{mV}$	$\Delta \mathrm{f}=22.5 \mathrm{KHz} \mathrm{m}=0.3$	32 dB	31 dB
TWEET	2nd H.	$\mathrm{f}=911 \mathrm{KHz}$		1\%	1\%
	3rd H.	$\mathrm{f}=1370 \mathrm{KHz}$		0.2\%	0.2\%
QUIESCENT CURRENT				13.5 mA	12.5 mA

APPLICATION INFORMATION (continued)

Inversion of "S" shaped curve in quadrature discriminators

In FM receivers, the frequency used for the local oscillator is usually greater than the receiving frequency.
Anyway, in some cases it may be required to work with a local oscillator showing a frequency lower than the frequency of the received signal. According to this choice, the " S " shaped curve of the discriminator is therefore either positive or negative (the output d.c. voltage either increases or decreases as the input frequency increases) and the varicap diode of the AFC will have to be referred either to ground or to a reference voltage. The additional reference voltage may be circuitally unsuitable, besides increasing the costs. In the case of circuits using the monolithic tuner TDA7211 (internal varicap diode, with a side already connected to ground) the things would get still more complicated.
To overcome the problem, figure 5 shows a
simple circuit solution to perform the inversion. The traditional diagram is shown in figure 6 for comparision.
This solution may be used with all the SGS radio circuits (TDA7220, TDA1220B, etc.) with performance equal to that achieved through the conventional circuitry.
In the diagram shown, the inversion of the curve is obtained through the replacement of the inductive reactance (normally $22 \mu \mathrm{H}$) with a capacitance (12 pF) and the recovery of the d.c. voltages through L3.
L3, which is forced to resonance and strongly smoothed by R1, also performs the function of resistive load across the collector of the output transistor in IF limiter.
The described circuit doesn't modify the ease of calibration of the quadrature discriminators, makes the amplitude modulation rejection (AMR) more continuous and significantly reduces the harmonic radiation from the last limiter stage.

Fig. 5

Fig. 6

VERY LOW VOLTAGE AM-FM RADIO

- OPERATING SUPPLY VOLTAGE: 1.5 to 6 V
- HIGH SENSITIVITY AND LOW NOISE
- LOW BATTERY DRAIN
- VERY LOW TWEET
- HIGH SIGNAL HANDLING
- VERY SIMPLE DC SWITCHING OF AM-FM - AM SECTION OPERATES UP TO 30 MHz

The TDA 7220 is a monolithic integrated circuit in a 16 -lead dual in-line plastic package designed for use in $3 \mathrm{~V}, 4.5 \mathrm{~V}$ and 6 V portable $\mathrm{AM}-\mathrm{FM}$ radio receivers.
The functions incorporated are:

AM SECTION

- Preamplifier and double balanced mixer with AGC
- On pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		6.5
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}<110^{\circ} \mathrm{C}$	(DIP-16)	400
$T_{\text {op }}$	Operating temperature	mW	
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-20 to	85

TYPICAL APPLICATION

CONNECTION DIAGRAM

BLOCK DIAGRAM

THERMAL DATA	DIP-16	SO-16		
$R_{\text {th } j-a m b}$ Thermal resistance junction-ambient	\max	100	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{s}}=3 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{d}	Drain current	AM section		11	18
	FM section	mA			

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		12	25	$\mu \mathrm{V}$
S / N	Signal to noise	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	40	50		dB
ΔV_{i}	AGC range	$\Delta \mathrm{V}_{\text {out }}=10 \mathrm{~dB}$	$m=0.8$	90			dB
V_{0}	Recovered audio signal (pin 9)	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	40	80	110	mV
d	Distortion				0.6		\%
V_{H}	Max input signal handling capability	$\mathrm{m}=0.8$	d<10\%	0.5			V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		K Ω
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{o}	Output resistance (pin 9)				4.5		$K \Omega$
	Tweet 2 IF	$\mathrm{m}=0.3$	$V_{i}=1 \mathrm{mV}$		40		dB
	Tweet 3 IF				55		dB

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB limiting point			33	80	$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} & \Delta f= \pm 22.5 \mathrm{KHz} \\ & V_{i}=3 \mathrm{mV} \end{aligned}$	$m=0.3$		40		dB
S/N	Signal to noise	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	50	65		dB
d	Distortion	$\Delta \mathrm{f}= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$		0.3		\%
		$\Delta f= \pm 75 \mathrm{KHz}$			1.1	1.5	\%
v_{0}	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz}$	$V_{i}=1 \mathrm{mV}$	40	70	90	mV
R_{1}	Input resistance between pin 16 and ground				6.5		$K \Omega$
C_{i}	Input capacitance between pin 16 and ground				14		pF
R_{0}	Output resistance (pin 9)				4.5		$\mathrm{K} \Omega$

TDA7220

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{s}}=1.6 \mathrm{~V}\right.$ unless otherwise specified, refer to test circuit)

Parameter		Test conditions	Min.	Typ.	Max.
I_{d}	Unit				

AM SECTION ($\mathrm{f}_{\mathrm{o}}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input sensitivity	$\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	$\mathrm{m}=0.3$		15	25	$\mu \mathrm{V}$
S/N	Signal to noise	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$	$\mathrm{m}=0.3$	40	48		dB
V_{i}	AGC range	$\Delta V_{\text {out }}=10 \mathrm{~dB}$	$\mathrm{m}=0.8$	90			dB
V_{0}	Recovered audio signal (pin 9)	$V_{i}=1 \mathrm{mV}$	$m=0.3$	40	75		mV
d	Distortion				0.5		\%
V_{H}	Max input signal handling capability	$m=0.8$	d < 10\%	0.5			V
R_{i}	Input resistance between pins 2 and 4	$\mathrm{m}=0$			7.5		$K \Omega$
C_{i}	Input capacitance between pins 2 and 4	$\mathrm{m}=0$			18		pF
R_{0}	Output resistance (pin 9)				4.5		$K \Omega$
	Tweet 2 IF	$\mathrm{m}=0.3$	$V_{i}=1 \mathrm{mV}$		40		dB
	Tweet 3 IF				55		dB

FM SECTION ($\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz}$)

V_{i}	Input limiting voltage	-3 dB limiting point		50		$\mu \mathrm{V}$
AMR	Amplitude modulation rejection	$\begin{aligned} \Delta f & = \pm 22.5 \mathrm{KHz} \quad m=0.3 \\ V_{i} & =3 \mathrm{mV} \end{aligned}$		34		dB
S/N	Ultimate quieting	$\Delta f= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		55		dB
d	Distortion	$\Delta f= \pm 22.5 \mathrm{KHz} \quad V_{i}=1 \mathrm{mV}$		0.6		\%
V_{0}	Recovered audio signal (pin 9)	$\Delta f= \pm 22.5 \mathrm{KHz} \quad \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$		55		mV
$\mathbf{R}_{\mathbf{i}}$	Input resistance between pin 16 and ground			6.5		K Ω
C_{i}	Input capacitance between pin 16 and ground			14		pF
R_{o}	Output resistance (pin 9)			4.5		$K \Omega$

Fig. 1 - Test circuit

Fig. 2 - PC board and component layout (1:1 scale) of the test circuit

AM-FM SWITCHING

AM-FM switching is achieved by applying a DC voltage at pin 13 , to switch the internal reference.
Typical DC voltage (refer to the test circuit)

Pins	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	12	13	14	15	16	Unit
AM	3	1.1	3	1.1	1.1	2.5	3	0.7	1.2	3	0	2.1	2.1	2.9	3	2.9	V
FM	3	0	3	0	0	2.4	3	0	0.9	3	0	3	3	2.7	2.7	2.7	V

APPLICATION SUGGESTION

Recommended values referred to the test circuit of Fig. 1

$\begin{array}{c}\text { Part } \\ \text { number }\end{array}$	$\begin{array}{c}\text { Recommended } \\ \text { value }\end{array}$	Purpose	$\begin{array}{c}\text { Smaller than } \\ \text { recommended value }\end{array}$	$\begin{array}{c}\text { Larger than } \\ \text { recommended value }\end{array}$
C1	$100 \mu \mathrm{~F}$	AGC bypass	$\begin{array}{l}\text { Increase of the distortion } \\ \text { at low audio frequency }\end{array}$	$\begin{array}{l}\text { Increase of the AGC time } \\ \text { constant }\end{array}$
C2 (*)	100 nF	$\begin{array}{l}\text { AM input } \\ \text { DC cut }\end{array}$		
C3 (*)	10 nF	$\begin{array}{l}\text { FM input } \\ \text { DC cut }\end{array}$	FM amplifier bypass	Reduction of sensitivity

C4 Higher noise\end{array}\right]\)| C5 |
| :--- |

(*) Only for test circuit.

Fig. 3 - Audio output and noise vs. input signal (AM section) $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$

Fig. 6 - Distortion vs. input signal (AM section) $\mathrm{V}_{5}=1.6 \mathrm{~V}$

Fig. 9 - Audio output and noise vs. input signal (FM section) $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$

Fig. 4 - Audio output and noise vs. input signal (AM section) $\mathrm{V}_{\mathrm{s}}=1.6 \mathrm{~V}$

Fig. 7 - Audio output vs. supply voltage (AM section)

Fig. 10 - Audio output and noise vs. input signal (FM section) $V_{s}=1.6 \mathrm{~V}$

Fig. 5 - Distortion vs. input signal (AM section) $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$

Fig. 8 - Amplified AGC voltage (pin 4) vs. input signal (AM section)

Fig. 11 - Distortion vs. input signal (FM section) $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$

Fig. 12 - Distortion vs. input signal (FM section) $\mathrm{V}_{\mathrm{s}}=1.6 \mathrm{~V}$

Fig. 15 - DC output voltage (pin 9) vs. supply voltage (FM section)

Fig. 13 - Audio output vs. supply voltage (FM section)

Fig. 16 - AFC output voltage (pin 9) vs. frequency deviation (FM section)

Fig. 14 - Amplitude modulation rejection vs. input signal (FM section)

Fig. 17 - Drain current vs. supply voltage

APPLICATION INFORMATION (continued)

Typical performance of the radio receiver of fig. $18\left(\mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega\right)$

STEREO DECODER AND HEADPHONE AMPLIFIER

- OPERATING SUPPLY VOLTAGE RANGE:
1.8 to 6 V
- LED DRIVING FOR STEREO INDICATION
- STEREO/MONO SWITCH
- ONLY OSCILLATOR FREQUENCY ADJUSTMENT NECESSARY
- LOW DISTORTION AND LOW NOISE
- VERY LOW POP ON/OFF NOISE
- FEW EXTERNAL COMPONENTS
- SOFT CLIPPING

The TDA7230A is a monolithic integrated circuit in 16 pin plastic package designed for stereo decoder and headphone amplifier applications in portable radio.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	9	V
I_{L}	LED current	8	mA
I_{O}	Peak output current	200	mA
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W

CONNECTION DIAGRAM

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction to ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz}$)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		1.8		6	V
I_{s}	Supply current	LED on		9.5		mA

AUDIO STEREO AMPLIFIER

P_{0}	Output power	$V_{S}=3 V$,	$R_{L}=32 \Omega$,	$d=10 \%$	27	30		mW
		$V_{S}=3 V$,	$R_{L}=16 \Omega$,	$d=10 \%$	45	48		mW
	$V_{S}=1.8 \mathrm{~V}$,	$R_{L}=32 \Omega$,	$d=10 \%$	6	7		mW	
d	Distortion	$P_{0}=10 \mathrm{~mW}, \quad f=1 \mathrm{KHz}, \quad R_{L}=32 \Omega$		0.2	1	$\%$		

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test Conditions	Min.	Typ.	Max.	Unit
G_{v}	Voltage gain		28	30	32	dB
R_{i}	Input resistance		15	20		$K \Omega$
	Cross talk	$f=1 \mathrm{KHz}$	40			dB
SVR	Supply voltage rejection	$\mathrm{C}_{14}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega, \mathrm{f}=100 \mathrm{~Hz}$		40		dB
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega \\ & \text { Bandwidth: } 22 \mathrm{~Hz}-22 \mathrm{KHz} \end{aligned}$		2	5	$\mu \mathrm{V}$

STEREO DECODER

R_{i}	Input resistance					6	10		$K \Omega$
R_{0}	Output resistance						5		$K \Omega$
V_{i}	Max. Input signal (composite)		$\begin{aligned} & L+R \\ & f_{m}=1 \end{aligned}$		$\begin{aligned} & P=10 \% \\ & T H D=5 \% \end{aligned}$	200			mVrms
S_{c}	Channel separation		$L+R$	0 mVrms	$f_{m}=1 \mathrm{KHz}$	25	35		dB
d	Total harmonic distortion (Out pin 13, pin 14)		Mono Stereo	$\begin{aligned} & V_{i}=100 \mathrm{mVrms} \\ & L+R=90 \mathrm{mVrms} \\ & f_{m}=1 \mathrm{KHz} \\ & P=10 \mathrm{mVrms} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	\%
G	Voltage gain		$\mathrm{V}_{\mathrm{i}}=100 \mathrm{mVrms}$			-3		+3	dB
	Channel balance		$\mathrm{V}_{\mathrm{i}}=100 \mathrm{mVrms}$			-1	0	+1	dB
	LED on		Pilot input				8	11	mVrms
	LED off						6		mVrms
	LED Hysteresis		Turn OFF from Turn ON				3		mVrms
	Capture range		$\mathrm{P}=10 \mathrm{mVrms}$				± 3		\%
S/N	Carrier leak	$\begin{aligned} & 19 \mathrm{KHz} \\ & 38 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & P=10 \mathrm{mVrms} \\ & L+R=90 \mathrm{mVrms} \end{aligned}$			$\begin{aligned} & -25 \\ & -40 \end{aligned}$	$\begin{aligned} & -32 \\ & -48 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
S/N	Signal to noise		$V_{i}=1$	mVrms	$\mathrm{R}_{\mathrm{G}}=600 \Omega$		82		dB

1.6W AUDIO AMPLIFIER

- OPERATING VOLTAGE 1.8 TO 15V
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION
- SOFT CLIPPING

The TDA7231 is a monolithic integrated circuit in $4+4$ lead minidip package. It is intended for use as class $A B$ power amplifier with wide range
of supply voltage in portable radios, cassette recorders and players, etc.
 Powerdip
$(4+4)$

ORDERING NUMBER: TDA7231

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		16
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$	1.25	V
	at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	4	W
I_{o}	Output peak current		1
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	${ }^{\circ} \mathrm{A}$	

CONNECTION DIAGRAM

(Top view)

Fig. 1 - Test and application circuit

S-9196

Fig. 2 - P.C. board and components layout

THERMAL DATA

$R_{\text {th } j \text {-amb }}$	Thermal resistance juction ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } j-\mathrm{pins}}$	Thermal resistance junction-pins	\max	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		1.8		15	V
Vo	Quiescent out voltage	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$		2.7		V
		$V_{S}=3 \mathrm{~V}$		1.2		
I_{d}	Quiescent drain current			3.6	9	mA
I_{b}	Input bias current			100		$n \mathrm{~A}$
P_{0}	Output power	$\begin{array}{ll} d=10 \% & f=1 \mathrm{KHz} \\ V_{s}=12 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=9 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=6 \mathrm{~V} & R_{L}=8 \Omega \\ V_{s}=6 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=3 \mathrm{~V} & R_{L}=4 \Omega \\ V_{s}=3 \mathrm{~V} & R_{L}=8 \Omega \end{array}$		$\begin{gathered} 1.8 \\ 1.6 \\ 0.4 \\ 0.7 \\ 110 \\ 70 \end{gathered}$		$\begin{gathered} W \\ W \\ W \\ W \\ \mathrm{~mW} \\ \mathrm{~mW} \end{gathered}$
d	Distortion	$\begin{array}{ll} P_{\mathrm{O}}=0.2 \mathrm{~W} & R_{L}=8 \Omega \\ f=1 \mathrm{KHz} & \end{array}$		0.3		\%
G_{v}	Closed loop voltage gain			38		dB
$\mathrm{R}_{\text {in }}$	Input resistance	$f=1 \mathrm{KHz}$	100			$K \Omega$
e_{N}	Total input noise	$\mathrm{R}_{\mathrm{s}}=10 \mathrm{~K} \Omega \quad$$\mathrm{B}=$ Curve A $\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		2		$\mu \mathrm{V}$
				3		
SVR	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz} \quad \mathrm{Rg}=10 \mathrm{~K} \Omega$	24	33		dB

Fig. 3 - Output power versus supply voltage

Fig. 5 - Quiescent output voltage versus supply voltage

Fig. 4 - Quiescent current versus supply voltage

Fig. 6 - Supply voltage rejection versus frequency

LOW NOISE PREAMPLIFIER COMPRESSOR

- SINGLE SUPPLY OPERATION (10 to 30V)
- HIGH SUPPLY VOLTAGE REJECTION
- COMPRESSOR FACILITY
- VERY LOW NOISE AND DISTORTION
- HIGH COMMON MODE REJECTION
- SHORT CIRCUIT PROTECTION

The TDA 7232 is a preamplifier mainly intended for car-radio applications, requiring very low noise and distortion performance.
It consists of a unity gain differential input amplifier with a very high common mode rejection, a compressor wich avoids the output
clipping and three multipurpose operational amplifiers.
A high stability voltage regulator is also included. The TDA 7232 is assembled in a 20 lead dual in line plastic package.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	30	V
V_{s}	Peak supply voltage (for 50 ms)	40	V
$\mathrm{~V}_{\mathrm{i}}$	Input voltage	$\pm \mathrm{V}_{\mathrm{s}}$	
$T_{\text {op }}$	Operating temperature	-25 to	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	1	W

CONNECTION DIAGRAM

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}\right.$, refer to test circuit amplifier fig. 1)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage		10		30	V
I_{s}	Supply current			10	16	mA
G_{v}	Closed toop gain	Pin 1-2 to pin 15	29	30	31	dB
d	Total harmonic distortion	$f=1 \mathrm{KHz}$ out of compression $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{RMS}}$		0.03	0.12	\%
		in compression $\quad V_{i}=0.7 \mathrm{~V}_{\text {RMS }}$		0.15	0.5	\%
V_{0}	Output volt. swing		7.5	8.4		V
e_{N}	Total output noise	$\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		160		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=50 \Omega \quad$ Curve A		120		$\mu \mathrm{V}$
SVR	Supply volt. rejection (*)	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned} \quad \mathrm{f}=100 \mathrm{~Hz}$	90	110		dB

INPUT DIFFERENTIAL AMPLIFIER

$\mathrm{V}_{\mathrm{OS}} \quad$ Input offset voltage			1	7	mV
$\mathrm{G}_{\mathrm{v}} \quad$ Voltage gain	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 KHz	0.98	1	1.02	$\mathrm{~V} / \mathrm{V}$
N_{N} Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=50 \Omega ; \mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		1.5		$\mu \mathrm{~V}$
	$\mathrm{R}_{\mathrm{g}}=50 \Omega ;$ curve A		1.1		$\mu \mathrm{~V}$
d	Distortion	$R_{\mathrm{L}}=2 \mathrm{~K} \Omega$ $\mathrm{f}=1 \mathrm{KHz}$	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{RMS}}$		0.01
$\mathrm{~V}_{\mathrm{o}}$	Output swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		$\%$	
SR	Slew rate		7.5	8.4	
CMR	Common mode reject.	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 KHz	V_{pp}		

COMPRESSOR

I_{b}	Input bias current				60	300	nA
V os	Input offset voltage	$R_{g} \leqslant 10 \mathrm{~K} \Omega$ out of compression			1	3.5	mV
$\mathrm{V}_{\text {os }}$	Output offset voltage	in compression	$\mathrm{V}_{\text {pin.17 }}=0.7 \mathrm{~V}$			350	mV
e_{N}	Total input noise volt.	$\mathrm{R}_{\mathrm{g}}=50 \Omega ; \mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz			1.8		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=50 \Omega$; curve A			1.3		$\mu \mathrm{V}$
d	Distortion	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{~K} \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & V_{\mathrm{O}}=1 \mathrm{~V} \mathrm{RMS} \\ & \mathrm{G}_{\mathrm{V}}=20 \mathrm{~dB} \end{aligned}$		0.01		\%
SVR	Supply voltage rejection	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=$	$\mathrm{Hz}, \quad \mathrm{R}_{\mathrm{g}}=50 \Omega$	86			dB

(*) Referred to the input.

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{0} \quad$ DC output voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	7.5	8.4		V
SR \quad Slew rate			0.7		$\mathrm{~V} / \mu \mathrm{S}$

1st AND 3rd OPERATION AMPLIFIER

$I_{\text {b }}$	Input bias current			60	300	nA
los	Input offset current			20	50	nA
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{R}_{\mathrm{g}} \leqslant 10 \mathrm{~K} \Omega$		1	3.5	mV
CMR	Common mode rejection		86			dB
SVR	Supply volt. rejection	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \quad \mathrm{f}=100 \mathrm{~Hz}, \quad \mathrm{R}_{\mathrm{g}}=50 \Omega$	86			dB
e_{N}	Total inp. noise volt.	$\mathrm{R}_{\mathrm{g}}=50 \Omega ; \mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		1.4		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=50 \Omega$; curve A		1.1		$\mu \mathrm{V}$
V_{0}	Output volt. swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	7.5	8.4		$V_{p p}$
d	Total harmonic distortion	$\begin{array}{ll} R_{\mathrm{L}}=2 \mathrm{~K} \Omega & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ \mathrm{f}=1 \mathrm{KHz} & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \end{array}$		0.01		\%
G_{v}	Open loop gain	$R_{L}=2 \mathrm{~K} \Omega$	86	100		dB
SR	Slew rate	$R_{L}=2 \mathrm{~K} \Omega$		1		Vius

2nd OPERATIONAL AMPLIFIER ($\mathrm{G}_{\mathrm{v}}=12 \mathrm{~dB}$ internally set)

$\mathrm{V}_{\text {os }}$	Output offset voltage			4	15	mV
SVR	Supply voltage rejection	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} \quad \mathrm{f}=100 \mathrm{~Hz}$	86			dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{g}}=50 \Omega ; \mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz		2.2		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=50 \Omega$; curve A		1.4		$\mu \mathrm{V}$
V_{0}	DC output volt. swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	7.5	8.4		V
d	Total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{RMS} \end{aligned}$		0.01		\%
G_{v}	Voltage gain	$f=20 \mathrm{~Hz}$ to 20 KHz	11.5	12	12.5	dB
SR	Slew rate	$R_{L}=2 \mathrm{~K} \Omega$		1		$\mathrm{V} / \mu \mathrm{S}$

VOLTAGE REGULATOR

V_{0}	Output voltage	Pin 19	Isink' source from 0 to 12 mA	4.6	5	5.4
I_{0}	Output max. current	$I_{\text {source }}$		12		mA
		$I_{\text {sink }}$		12		mA

Fig. 1 - Test circuit

Fig. 2 - P.C. board and components layout of the test circuit of fig. 1 (1:1 scale)

Fig. 3 - Supply current vs. supply voltage (complete

Fig. 6 - Distortion vs. input signal level (complete test circuit)

G-621914

Fig. 9 - Distortion vs. frequency (input differ. ampli-

Fig. 4 - Compression characteristics

Fig. 7-Supply voltage rejection vs. frequency (complete test circuit)

Fig. 10 - Distortion vs. output voltage (compressor)

Fig. 5 - Distortion vs. frequency (complete test cir-

Fig. 8 - Distortion vs. output voltage (input differ. amplifier)

Fi. 11 - Distortion vs. frequency (compressor)

SGS-THOMSON

Fig. 12 - Distortion vs. output voltage (Op. Amp. 1\&3)

Fig. 13 - Distortion vs. frequency (Op. Amp. 1 \& 3)

Fig. 14 - Open loop frequency and phase response (Op. Amp. 1 \& 3)

Fig. 15 - Distortion vs. output voltage (Op. Amp. 2)

Fig. 16 - Distortion vs. frequency (Op. Amp. 2)

APPLICATION INFORMATION

The devices TDA 7232 and TDA 7260 realize with four external POWER MOS an exclusive audio system for car radio, thanks to their unique features as:

- 25 W output power ($d=0.3 \%$) without heatsink, thanks to the extra-high efficiency (85% typ. at rated output power) of the power stage, which operates in class "D" (pulse width modulation).
- In-car frequency response compensation, thanks to the availability of several operational amplifiers for the necessary equalization.
- High-quality sound at all listening levels, thanks to an appropriate compressor circuit that avoids clipping in the system.
- Low distortion, low noise, fully protected operation of the whole system.

Fig. 17 - Suggested application using the TDA 7260 audio PWM amplifier

Fig. 18 - 25 W application circuit using the TDA 7260 audio PWM

COMPONENT LIST
$\mathrm{R} 1=39 \Omega$
$R 2=25 K \Omega$
$R 3=25 \mathrm{~K} \Omega$
$R 4=100 \mathrm{~K} \Omega$
$R 5=1 \mathrm{~K} \Omega$
$R 6=100 \mathrm{~K} \Omega$
$R 7=470 \mathrm{~K} \Omega$
$R 8=2.7 \Omega$ $R 9=1 \mathrm{~K} \Omega$ $R 10=0.025 \Omega$
$R 11=20 \Omega$ $R 12=20 \Omega$ $R 13=20 \Omega$ $R 14=20 \Omega$ R15 = (Jumper) R16 = (Jumper)

R17 $=$ (Jumper R18 = (Jumper $R 19=10 \mathrm{~K} \Omega$
$R 20=10 \mathrm{~K} \Omega$ $R 20=10 \mathrm{~K} \Omega$ $R 21=10 \mathrm{~K} \Omega$ $R 22=47 \mathrm{~K} \Omega$ $R 23=10 \mathrm{~K} \Omega$ $R 24=10 \mathrm{~K} \Omega$ $R 25=39 \mathrm{~K} \Omega$ $R 26=7.5 \mathrm{~K} \Omega$ $R 27=3.9 \mathrm{~K} \Omega$ R28 = t.b.d.
$\mathrm{C} 1=390 \mathrm{pF}$ $\mathrm{C} 2=390 \mathrm{pF}$ $\mathrm{C} 3=150 \mathrm{pF}$ $\mathrm{C4}=2.2 \mu \mathrm{~F}-16 \mathrm{~V}$ $C 5=47 \mu \mathrm{~F}-16 \mathrm{~V}$ $\mathrm{C} 6=100 \mathrm{nF}$ pol $\mathrm{C7}=470 \mu \mathrm{~F}-25 \mathrm{~V}$ $\mathrm{C} 8=470 \mu \mathrm{~F}-25 \mathrm{~V}$ $\mathrm{C9}=390 \mathrm{pF}$ $\mathrm{C} 10=470 \mathrm{nF}$ $\mathrm{C} 11=390 \mathrm{pF}$ $\mathrm{C} 12=100 \mathrm{nF}$ $\mathrm{C} 13=390 \mathrm{pF}$ C14 $=100 \mathrm{nF}$ $\mathrm{C} 15=100 \mathrm{nF}$ $\mathrm{C} 16=390 \mathrm{pF}$
$\mathrm{C} 17=4.7 \mu \mathrm{~F}-16 \mathrm{~V}$
$C 18=100 \mathrm{nF}$
$\mathrm{C} 19=10 \mu \mathrm{~F}-16 \mathrm{~V}$ $\mathrm{C} 20=10 \mu \mathrm{~F}-16 \mathrm{~V}$ $\mathrm{C} 21=100 \mathrm{nF}$ $\mathrm{C} 22=1 \mu \mathrm{~F}-16 \mathrm{~V}$ $\mathrm{C} 23=100 \mathrm{nF}$
$\mathrm{C} 24=10 \mu \mathrm{~F}-25 \mathrm{~V}$ $\mathrm{C} 25=330 \mathrm{pF}$ $\mathrm{C} 26=220 \mathrm{nF}$ $\mathrm{C} 27=10 \mu \mathrm{~F}-25$ $\mathrm{C} 28=100 \mathrm{nF}$ $\mathrm{C} 29=4.7 \mu \mathrm{~F}-16 \mathrm{~V}$ $\mathrm{C} 30=100 \mathrm{nF}$ $\mathrm{C} 31=100 \mathrm{nF}$
$L 1=150 u H$ $L 2=15 u \mathrm{H}$ $L 3=15 u H$

NOTE

O1 = P321 (SGS)
$\begin{array}{ll}\text { Q1 } & =\text { P321 (SGS) } \\ 2=\text { P321 (SGS) }\end{array}$ Q2 $=$ P321 (SGS)
Q3 $=$ P321 (SGS) 23 = P321 (SGS)

WITH NO EQUALIZATION FLAT RESPONSE, $\mathbf{G}_{\mathrm{v} \text { tot }}=42 \mathrm{~dB}$
(A) = OPEN
$(\mathrm{B})=O P E N$
(D) $=R=2.2 \mathrm{~K} \Omega$
(E) $=R=2.2 \mathrm{~K} \Omega$
$(\mathrm{E})=\mathrm{R}=2.2 \mathrm{R}$
(F) $=$ OPEN
$(\mathrm{G})=$ JUMPER
(1) $=$ OPEN
(1) $=$ OPEN
$(\mathrm{L})=$ OPEN
$(M)=J U M P E R$
$(\mathrm{N})=$ OPEN
OPEN
(P) $=\mathrm{R}=2.2 \mathrm{~K} \Omega$
(Q) $=R=2.2 \mathrm{~K} \Omega$
$(\mathrm{Q})=\mathrm{R}=2.2 \mathrm{~K} \Omega$
$(R)=O P E N$

Fig. 19 - P.C. board and components layout of the circuit of fig. 18 (1:1 scale)
(5)

6
SDNNOฆన2

TDA7232

Fig. 21 - P.C. and components layout of the circuit of Fig. 20 (1: 1 scale)

Fig. 22 - Frequency response of the five bands equalizer circuit

1W AUDIO AMPLIFIER WITH MUTE

- OPERATING VOLTAGE 1.8 TO 15V
- external mute or power down FUNCTION
- IMPROVED SUPPLY VOLTAGE REJECTION
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION

The TDA7233 is a monolithic integrated circuit in 8 pin Minidip or SO-8 package, intended for
use as class $A B$ power amplifier with a wide range of supply voltage from 1.8 V to 15 V in portable radios, cassette recorders and players.

Minidip Plastic
ORDERING NUMBER: TDA7233 (Minidip) TDA7233D (SO-8)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	16	V
I_{o}	Output peak current	1	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	${ }^{\circ} \mathrm{C}$	

APPLICATION CIRCUIT

CONNECTION DIAGRAMS

(Top view)

Minidip

SO-8

Fig. 1 - Test and application circuit

THERMAL DATA	SO-8	Minidip	
$R_{\text {th j-amb }}$ Thermal resistance junction-ambient	\max	$200^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise speficied)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			1.8		15	V
V_{0}	Quiescent out voltage				2.7		V
		$\begin{aligned} & V_{s}=3 V \\ & V_{s}=9 V \end{aligned}$			$\begin{aligned} & 1.2 \\ & 4.2 \end{aligned}$		$\begin{aligned} & V \\ & v \end{aligned}$
I_{d}	Quiescent drain current	MUTE HIGH			3.6	9	mA
		MUTE LOW			0.4		
I_{b}	Input bias current				100		$n \mathrm{~A}$
P_{0}	Output power	$d=10 \%$ $f=1 \mathrm{KHz}$ $V_{s}=12 \mathrm{~V}$ $R_{L}=8 \Omega$ $V_{s}=9 \mathrm{~V}$ $R_{L}=4 \Omega$ $V_{S}=9 \mathrm{~V}$ $R_{L}=8 \Omega$ $V_{s}=6 \mathrm{~V}$ $R_{L}=8 \Omega$ $V_{s}=6 \mathrm{~V}$ $R_{L}=4 \Omega$ $V_{s}=3 V$ $R_{L}=4 \Omega$ $V_{S}=3 \mathrm{~V}$ $R_{L}=8 \Omega$			$\begin{gathered} 1.9 \\ 1.6 \\ 1 \\ 0.4 \\ 0.7 \\ 110 \\ 70 \end{gathered}$		$\begin{gathered} W \\ W \\ W \\ W \\ W \\ m W \\ m W \end{gathered}$
d	Distortion	$\begin{aligned} & P_{\mathrm{O}}=0.5 \mathrm{~W} \\ & f=1 \mathrm{KHz} \end{aligned}$			0.3		\%
G_{v}	Closed loop voltage gain	$f=1 \mathrm{KHz}$			39		dB
$\mathrm{R}_{\text {IN }}$	Input resistance	$f=1 \mathrm{KHz}$		100			$K \Omega$
e_{N}	Total input noise$\left(R_{s}=10 K \Omega\right)$	$B=$ Curve A			2		$\mu \mathrm{V}$
		$B=22 \mathrm{~Hz}$ to 22 KHz			3		
SVR	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz}, \mathrm{Rg}=10 \mathrm{~K} \Omega$			45		dB
	MUTE attenuation	$V_{0}=1 \mathrm{~V}$	$f=100 \mathrm{~Hz}$		70		dB
MUTE threshold					0.6		V
I_{M}	MUTE current				0.4		$m A$

Fig. 2 - Output power vs. supply voltage

Fig. 3 - Supply voltage rejection vs. frequency

Fig. 4 - DC output voltage vs. supply voltage

Fig. 5 - Quiescent current vs. supply voltage

Fig. 6 - Total dissipated power vs. supply voltage

VERY LOW VOLTAGE AUDIO BRIDGE

ADVANCE DATA

The TDA7236 is a monolithic bridge audio amplifier in minidip and SO-8J package intended for use as audio power amplifier in telephone sets, mono radio receivers, etc.. Its main features are: minimum working supply voltage of 0.9 V and low quiescient current.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	1.8	V
I_{o}	Output power current	50	mA
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=50^{\circ} \mathrm{C}$	0.5	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

Fig. 1 - Test and Application circuit

TDA7236

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

| $R_{\text {th j-amb }}$ | Thermal resistance junction-ambient | \max | 200 |
| :--- | :--- | :--- | :--- |${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit $\mathrm{V}_{\mathrm{s}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {s }}$	Supply voltage range		0.9		1.6	V
V_{0}	Quiescent output voltage			0.62		V
	Total quiescent drain current			1	3	mA
G_{v}	Voltage gain			31		dB
R_{i}	Input resistance			10		$K \Omega$
P_{0}	Output power	$R_{L}=32 \Omega ; \quad f=1 \mathrm{KHz} ; \quad \mathrm{d}=10 \%$	13	17		mW
d	Distortion	$R_{L}=32 \Omega ; \quad f=1 \mathrm{KHz} ; \quad P_{0}=5 \mathrm{~mW}$		1		\%
B	Bandwidth		200 Hz to 10 KHz			
${ }^{\text {en }}$	Total input noise voltage (curve A)			2		$\mu \mathrm{V}$
Vos	Output DC offset voltage			30		mV

Fig. 2 - Output power vs. supply voltage

Fig. 3 - Drain current vs. supply voltage referred to Fig. 2

Fig. 4 - P.C. board and components layout of the circuit of Fig. 1 (1:1 scale)

TYPICAL APPLICATION CIRCUIT

Fig. 5 - Telephone listening amplifier

20W BRIDGE AMPLIFIER FOR CAR RADIO

- COMPACT HEPTAWATT PACKAGE
- FEW EXTERNAL COMPONENTS
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION / LOW NOISE

The TDA7240A is a 20W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7240A occupies little space on the printed circuit board.

Reliable operation is guaranteed by a comprehensive array of on-chip protection features. These include protection against $A C$ and DC output short circuits (to ground and across the load), load dump transients, and junction overtemperature. Additionally, the TDA7240A protects the loudspeaker when one output is short-circuited to ground.

TYPICAL APPLICATION CIRCUIT

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Operating supply voltage	18	V
V_{s}	DC supply voltage	28	V
V_{s}	Peak supply voltage (for 50 ms)	40	V
10 (${ }^{*}$)	Peak output current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms}$)	4.5	A
$\mathrm{l}_{0}\left({ }^{*}\right)$	Peak output current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	3.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	20	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

(*) Internally limited

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the circuit of Fig. $1, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{th}}$ (heatsink) $\left.=4^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}\right)$

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage				18	V
$\mathrm{V}_{\text {os }}$	Output offset voltage				150	mV
I_{d}	Total quiescent current	$R_{L}=4 \Omega$		65	120	mA
P_{0}	Output power	$f=1 \mathrm{KHz}$	18	20		W
		$d=10 \% \quad R_{L}=8 \Omega$	10	12		
d	Distortion	$\begin{aligned} & R_{L}=4 \Omega \quad f=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 12 \mathrm{~W} \end{aligned}$		0.1	0.5	\%
		$\begin{aligned} & R_{\mathrm{L}}=8 \Omega \quad f=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \end{aligned}$		0.05	0.5	
G_{v}	Voltage gain	$\mathrm{f}=1 \mathrm{KHz}$	39.5	40	40.5	dB
SVR	Supply voltage rejection	$\mathrm{f}=100 \mathrm{~Hz} \mathrm{Rg}=10 \mathrm{~K} \Omega$	35	40		dB
E_{n}	Total input noise	(*) $\mathrm{R}^{\text {(}}$ ($=10 \mathrm{~K} \Omega$		2	4	$\mu \mathrm{V}$
		$(* *)$		3		
η	Efficiency	$\begin{array}{ll} R_{L}=4 \Omega & f=1 K H z \\ P_{O}=20 W & \end{array}$		65		\%
$l_{\text {sb }}$	Stand-by current			200		$\mu \mathrm{A}$
R_{i}	Input resistance	$\mathrm{f}=1 \mathrm{KHz}$	70			$K \Omega$
V_{i}	Input sensitivity	$\begin{array}{ll} f=1 \mathrm{KHz} & \\ P_{\mathrm{O}}=2 \mathrm{~W} & R_{\mathrm{L}}=4 \Omega \end{array}$		28		mV
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$			30	Hz
${ }^{\mathrm{f}} \mathrm{H}$	High frequency roll off (-3dB)	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	25			KHz
A_{5}	Stand-by attenuation	$\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{rms}}$	70	90		dB
$V_{\text {TH }}$ (pin 2)	Stand-by threshold				1	V

Bandwidth
(*) $B=$ Curve A
(**) $B=22 \mathrm{~Hz}$ to 22 KHz

Fig. 1 - Test and application circuit

Fig. 2 - P.C. board and components layout of the circuit of Fig. 1 (1:1 scale)

CS-251/2

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of Fig. 1. Different values can be used, the following table can help the designer.

Component	Recommended Value	Purpose	Larger than	Smaller than
R1, R2	2.2Ω	Frequency stability.	Danger of high frequency oscillation.	
C1	$1 \mu \mathrm{~F}$	Input DC decoupling.	Higher turn 'ON' and stand-by delay.	Higher turn 'ON' pop. Higher low frequency cutoff.
C2	$22 \mu \mathrm{~F}$	Ripple rejection.	Increase of SVR. Increase of the turn 'ON' delay.	Degradation of SVR.
C3	$22 \mu \mathrm{~F}$	Feedback low frequency cutoff		Higher low frequency cutoff
C6, C7	$0.22 \mu \mathrm{~F}$	Frequency stability.		Danger of oscillation.
C4	$220 \mu \mathrm{~F}$	Supply filter.		Danger of oscillation.
C5	$0.1 \mu \mathrm{~F}$	Supply by pass.		Danger of oscillation.

Fig. 3 - Output power vs. supply voltage

Fig. 6 - Distortion vs. output power

Fig. 9 - Output offset voltage vs. supply voltage

Fig. 4 - Distortion vs. output power

Fig. 7 - Distortion vs. frequency

Fig. 10 - Power dissipation and efficiency vs. output power

Fig. 5 - Output power vs. supply voltage

Fig. 8 - Supply voltage rejection vs. frequency

Fig. 11 - Power dissipation and efficiency vs. output power

20W BRIDGE AMPLIFIER FOR CAR RADIO

- VERY LOW STAND-BY CURRENT
- GAIN $=26 \mathrm{~dB}$
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD
- COMPACT HEPTAWATT PACKAGE
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION / LOW NOISE

The TDA7241 is a 20 W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7241 occupies little space on the printed circuit board.

Reliable operation is guaranteed by a comprehensive array of on-chip protection features.

These include protection against AC and DC output short circuits (to ground and across the load), load dump transients, and junction overtemperature. Additionally, the TDA7241 protects the loudspeaker when one output is short-circuited to ground.

TEST CIRCUIT

CONNECTION DIAGRAM

(Top view)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
V_{s}	DC supply voltage	28	V
V_{s}	Peak supply voltage (for 50 ms)	40	V
$\mathrm{I}_{0}\left({ }^{*}\right)$	Peak output current (non repetitive $t=0.1 \mathrm{~ms}$)	4.5	A
$\mathrm{I}_{0}\left({ }^{*}\right)$	Peak output current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	3.5	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	20	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature		-40 to 150

(*) Internally limited

THERMAL DATA

$R_{\text {th J-case }}$	Thermal resistance junction-case	\max	4

ELECTRICAL CHARACTERISTICS (Refer to the circuit of Fig. $1, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{tt}}($ heatsink $)=$ $4^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage				18	V
$\mathrm{V}_{\text {os }}$	Output offset voltage				150	$m V$
l_{d}	Total quiescent current	$\mathrm{R}_{\mathrm{L}}=4 \Omega$		65	120	mA
P_{0}	Output power	$\begin{aligned} & f=1 \mathrm{KHz} \\ & d=10 \% \end{aligned}$	18	20		W
			10	12		
d	Distortion	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} \text { to } 12 \mathrm{~W} \end{aligned}$		0.1	0.5	\%
		$\begin{aligned} & R_{L}=8 \Omega \quad f=1 \mathrm{KHz} \\ & P_{O}=50 \mathrm{~mW} \text { to } 6 \mathrm{~W} \end{aligned}$		0.05	0.5	
G_{v}	Voltage gain	$\mathrm{f}=1 \mathrm{KHz}$		26		dB
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$	45	52		dB
E_{n}	Total input noise	$\left(^{*}\right)$		2	4	$\mu \mathrm{V}$
		$(* *)$		3		
η	Efficiency	$\begin{array}{ll} R_{L}=4 \Omega & f=1 \mathrm{KHz} \\ P_{O}=20 \mathrm{~W} & \end{array}$		65		\%
$I_{\text {sb }}$	Stand-by current			1		$\mu \mathrm{A}$
R_{i}.	Input resistance	$f=1 \mathrm{KHz}$	70			$K \Omega$
V_{i}	Input sensitivity	$\begin{array}{ll} f=1 \mathrm{KHz} & \\ P_{O}=2 W & R_{L}=4 \Omega \end{array}$		140		mV
f_{L}	Low frequency roll off (-3 dB)	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$			30	Hz
f_{H}	High frequency roll off (-3 dB)	$\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W} \quad \mathrm{R}_{\mathrm{L}}=4 \Omega$	25			KHz
$\mathrm{A}_{\mathbf{s}}$	Stand-by attenuation	$\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{rms}}$	70	90		dB
V_{TH} (pin. 2)	Stand-by threshold				1	V

Bandwidth
(*) $B=$ Curve A
(**) $B=22 \mathrm{~Hz}$ to 22 KHz
-

60W HI-FI DUAL AUDIO DRIVER

ADVANCE DATA

- WIDE SUPPLY VOLTAGE RANGE: 20 TO $90 \mathrm{~V}(\pm 10 \mathrm{TO} \pm 45 \mathrm{~V})$
- VERY LOW DISTORTION
- AUTOMATIC QUIESCENT CURRENT CONTROL FOR THE POWER TRANSISTORS WITHOUT TEMPERATURE SENSE ELEMENTS
- OVERLOAD CURRENT PROTECTION FOR THE POWER TRANSISTORS
- MUTE/STAND-BY FUNCTIONS
- LOW POWER CONSUMPTION
- OUTPUT POWER 60W/8 Ω AND $100 \mathrm{~W} / 4 \Omega$

The TDA7250 stereo audio driver is designed to drive two pair of complementary output transistor in the Hi-Fi power amplifiers.

DIP-20 Plastic (0.4)

ORDERING NUMBER: TDA7250

APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	100	V
$P_{\text {tot }}$	Power dissipation at $T_{\text {amb }}=60^{\circ} \mathrm{C}$	1.4	W
$T_{j}, T_{\text {stg }}$	Storage and junction temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	65

PIN FUNCTIONS

N°	NAME	FUNCTION
1	V_{s} - POWER SUPPLY	Negative supply voltage.
2	NON-INV. INP. CH. 1	Channel 1 input signal.
3	QUIESC. CURRENT CONTR. CAP. CH 1	This capacitor works as an integrator, to control the quiescent current to output devices in no-signal conditions on channel 1.
4	SENSE (-) CH. 1	Negative voltage sense input for overload protection and for automatic quiescent current control.
5	ST. BY / MUTE / PLAY	Three-functions terminal. For $\mathrm{V}_{1 \mathrm{~N}}=1$ to 3 V , the device is in MUTE and only quiescent current flows in the power stages;- for $\mathrm{V}_{\mathrm{IN}}<1 \mathrm{~V}$, the device is in STAND-BY mode and no quiescent current is present in the power stages; - for $\mathrm{V}_{\mathrm{IN}}>3 \mathrm{~V}$, the device is fully active.
6	CURRENT PROGRAM	High impedance power-stages monitor.
7	SENSE (-) CH. 2	Negative voltage sense input for overload protection and for automatic quiescent current control.
8	QUIESC. CURRENT CONTR. CAP. CH. 2	This capacitor works as an integrator, to control the quiescent current to output devices in no-signal conditions on channel 2. If the voltage at its terminals drops under 250 mV , it also resets the device from high-impedance state of output stages.
9	NON-INV. INP. CH. 2	Channel 2 input signals.
10	V_{5} - POWER SUPPLY	Negative supply voltage.
11	INVERT. INP. CH. 2	Feedback from output (channel 2).
12	OUT (-) CH. 2	Out signal to lower driver transistor of channel 2.
13	OUT (+) CH. 2	Out signal to higher driver transistor of channel 2.
14	SENSE (+) CH. 2	Positive voltage sense input for overload protection and for automatic quiescent current control.
15	COMMON AC GROUND	AC input ground in MUTE condition.
16	$\mathrm{V}_{\mathrm{s}}+$ POWER SUPPLY	Positive supply voltage.
17	SENSE (+) CH. 1	Positive voltage sense input for overload protection and for automatic quiescent current control.
18	OUT (+) CH. 1	Out signal to high driver transistor of channel 1.
19	OUT (-) CH. 1	Out signal to low driver transistor of channel 1.
20	INVERT. INP. CH. 1	Feedback from output (channel 1).

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 35 \mathrm{~V}\right.$, play mode, unless otherwise specified)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
V_{s}	Supply voltage			± 10		± 45	V
I_{d}	Quiescent drain current	Stand-by mode			8		mA
		Play mode			10	14	
I_{b}	Input bias current				0.2	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Input offset voltage				1	± 10	mV
los	Input offset current				100	200	$n \mathrm{~A}$
G_{v}	Open loop voltage gain	$\mathrm{f}=100 \mathrm{~Hz}$			90		dB
		$f=10 \mathrm{KHz}$			60		
e_{N}	Input noise voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{G}}=600 \Omega \\ & \mathrm{~B}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$			3		$\mu \mathrm{V}$
SR	Slew rate				10		$\mathrm{V} / \mu \mathrm{s}$
d	Total harmonic distortion	$\begin{aligned} & \mathrm{G}_{\mathrm{v}}=26 \mathrm{~dB} \\ & \mathrm{P}_{\mathrm{O}}=40 \mathrm{~W} \end{aligned}$	$f=1 \mathrm{KHz}$		0.004		\%
			$\mathrm{f}=20 \mathrm{KHz}$		0.03		
$V_{\text {opp }}$	Output voltage swing				60		V_{pp}
P_{0}	Output power (*)	$\begin{aligned} & V_{\mathrm{s}}= \pm 35 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{L}=8 \Omega \\ & R_{L}=8 \Omega \\ & R_{L}=4 \Omega \end{aligned}$		$\begin{aligned} & 60 \\ & 40 \\ & 100 \end{aligned}$		W
10	Output current				± 5		mA
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$			75		dB
C_{5}	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$			75		dB

MUTE / STANDBY / PLAY FUNCTIONS

I_{i}	Input current (pin 5)			0.1		$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{th}}$	Comparator standby/mute threshold (**)		1.0	1.25	1.5	V
H	Hysteresis standby/mute			200		mV
V_{th}	Comparator mute/play threshold (**)		2.4	3.0	3.6	V
H	Hysteresis mute/play			300		mV
	Mute attenuation	$\mathrm{f}=1 \mathrm{KHz}$		60		dB
$\mathrm{~V}_{\mathrm{i}}$	Input voltage max. (Pin 5)		$12(* *)$		V	

(*) Application circuit of fig. $1 \quad f=1 \mathrm{KHz} ; \quad d=0.1 \% ; \quad G_{v}=26 \mathrm{~dB}$
(**) Referred to $-V_{S}$

ELECTRICAL CHARACTERISTICS (continued)

CURRENT SURVEY CIRCUITRY

	Comparator reference	to $+V_{S}$ to $-V_{S}$	0.8 0.8	1	1.4	V
1		10			$\mu \mathrm{~s}$	
t_{d}	Delay time					

QUIESCENT CURRENT CONTROL

Capacitor current	Charge Discharge	30 250	60 500	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
Comparator reference	to $+V_{S}$ to $-V_{S}$	10	20	25	mV
		10	mV		

Fig. 1 - Application circuit with Power Darlingtons

NOTE: Q1/Q2 = Q3/Q4 = TIP 142/TIP 147
$G V=1+R 1 / R 2$

Fig. 2 - Output power vs. supply voltage

Fig. 5 - Supply voltage rejection vs. frequency

Fig. 8 - Total dissipated power vs. output power (${ }^{*}$)

(*) Complete circuit

Fig. 3 - Distortion vs. output power (${ }^{*}$)

Fig. 6 - Quiescent current vs. supply voltage

Fig. 9 - Efficiency vs. output power (${ }^{*}$)

Fig. 4 - Channel separation

Fig. 7 - Quiescent current vs. $\mathrm{T}_{\text {amb }}$

Fig. 10 - Play-mute standby operation

Fig. 11 - Application circuit using power transistors

Fig. 12 - Suggested transistor types for various loads and powers.
$\mathrm{R}_{\mathrm{L}}=8 \Omega$

$15 W$	$30 W$	$50 W$	$70 W$
BDX $53 / 54 A$	BDX $53 / 54 B$	BDW $93 / 94 B$	TIP $142 / 147$

22W FRONT REAR OR BRIDGE FULLY PROTECTED CAR RADIO AMPLIFIER

- HIGH OUTPUT POWER
- POP FREE SWITCHING
- SHORT CIRCUIT PROTECTIONS: RL SHORT - OUT TO GROUND - OUT TO VS
- mUTING μ P COMPATIBLE
- VERY LOW CONSUMTION STANDBY
- PROGRAMMABLE TURN ON DELAY
- LOW DISTORTION AND LOW NOISE
- DIFFERENTIAL INPUT

Other Protections:

- LOAD DUMP VOLTAGE SURGE
- LOUDSPEAKER DC CURRENT
- VERY INDUCTIVE LOAD
- overrating temperature
- OPEN GROUND

The TDA7255 a class B dual fully protected power amplifier designed for car radio applications. The device can be switched from FrontRear to Bridge configuration by changing only the loudspeaker connection. An input fader for Front-Rear control is available. A high current capability allows to drive low impedance loads (up to 1.6Ω).

Multiwatt-15

BLOCK DIAGRAM

TDA7255

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for 50 ms)	40	V
I_{0}	Output peak current (non repetitive $\mathrm{t}=0.1 \mathrm{~ms}$)	4.5	A
I_{0}	Output peak current (repetitive $\mathrm{f} \geqslant 10 \mathrm{~Hz}$)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $T_{\text {case }}=60^{\circ} \mathrm{C}$	30	W
$\mathrm{~T}_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient		${ }^{\circ}$	

ELECTRICAL CHARACTERISTICS $\left(V_{s}=14.4 V, R_{L}=4 \Omega, f=1 \mathrm{KHz}, T_{a m b}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

	Paremeter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		8		18	V
I_{d}	Total quiescent drain current			80		mA
R_{i}	Input resistance			70		$\mathrm{~K} \Omega$
$\mathrm{~V}_{\mathrm{i}}$	Input saturation voltage		300			mV
T_{j}	Thermal shut down junction temperature			145		${ }^{\circ} \mathrm{C}$

FRONT REAR APPLICATIONS (Fig. 2)

P_{0}	Output power	$\begin{array}{ll} \mathrm{THD}=10 \% & R_{L}=4 \Omega \\ & R_{L}=2 \Omega \\ & R_{L}=1.6 \Omega \end{array}$	5.5	$\begin{gathered} 6.5 \\ 11 \\ 12.5 \end{gathered}$		W W W
d	Distortion	$\mathrm{P}_{\mathrm{o}}=0.1 \mathrm{~W}$ to 4 W		0.05	0.5	\%
G_{v}	Voltage gain			28		dB
e_{N}	Input noise voltage	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega$		$\begin{array}{cc} 2.51^{* *} \\ 2 & (*) \end{array}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{G}}=100 \mathrm{~K} \Omega \quad \mathrm{~V}_{\mathrm{r}}=1 \mathrm{~V} \\ & \mathrm{f}=300 \mathrm{~Hz} \end{aligned}$	36	45		dB
CMR	Common mode rejection			55		dB
η	Efficiency	$\mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}+6.5 \mathrm{~W}$		70		\%

BRIDGE APPLICATION (Fig. 1)

$\mathrm{V}_{\text {os }}$	Output offset voltage				250	mV
P_{0}	Output power	$\begin{array}{ll} \mathrm{THD}=10 \% & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{R}_{\mathrm{L}}=3.2 \Omega \end{array}$	18	22		W
d	Distortion	$\mathrm{P}_{\mathrm{O}}=0.1 \mathrm{~W}$ to 2 W		0.05		\%
G_{v}	Voltage gain (C_{L})			36		dB
e_{N}	Total input noise voltage	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega$		$\begin{aligned} & 2.5\left(^{* *}\right) \\ & 2.0\left({ }^{*}\right) \end{aligned}$	10	$\mu \vee$
η	Efficiency	$\mathrm{P}_{\mathrm{O}}=20 \mathrm{~W}$		66		\%
SVR	Supply voltage rejection	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega, \quad \mathrm{~V}_{\mathrm{r}}=1 \mathrm{~V}, \mathrm{f}=300 \mathrm{~Hz}$	45	58		dB

MUTING AND STAND-BY FUNCTIONS

Muting attenuation	$V_{\text {ref }}=1 \mathrm{~W} \quad \mathrm{f}=100 \mathrm{~Hz}$ to 10 KHz	60			dB
Muting-on threshold voltage	Pin. 1	2.4			V
Muting-off threshold voltage	Pin. 1			0.8	V
Stand-by attenuation	$\mathrm{V}_{\text {ref }}=1 \mathrm{~V} \quad \mathrm{f}=100 \mathrm{~Hz}$ to 10 KHz	60			dB
Stand-by quiescent drain current				100	$\mu \mathrm{~A}$

[^14]Fig. 1 - Test and application circuit

Fig. 2 - Test and application circuit (F/R amplifier)

- Two high impedance inputs available for balanced or unbalanced operation.
- The fader function is automatically inserted in front/rear configuration and allows the distribution of the power between the front and the rear. An external potentiometer must be connected between pins 4 and 7 with the control terminal connected to pin 5 through a decoupling capacitor. In bridge applications the pins 4-5-7 must be left open.
- Turn on delay. The output stages are muted during the turn on transient and start rising after the charge of the capacitor connected between pin 9 and ground. The capacitor also avoids pops during bridge F/R switching.

Fig. 3 - P.C. board and component layout of the circuits of Fig. 1 and 2 (1: 1 scale)

FRONT/REAR CHARACTERISTICS

Fig. 4 - Quiescent drain current vs. supply voltage

Fig. 7 - Distortion vs. frequency

Fig. 10 - Output signal vs. fader control position

Fig. 5 - Quiescent output voltage vs. supply voltage

Fig. 8 - Supply voltage rejection vs. capacitor values (C2)

Fig. 11 - Power dissipation and efficiency vs. output power

Fig. 6 - Output power vs. supply voltage

Fig. 9 - Supply voltage rejection vs. capacitor values (C1)

Fig. 12 - Power dissipation and efficiency vs. output power

SGS-THOMSON
NUCROELECTRONOCS

Fig. 13 -- Output power
vs. supply voltage

Fig. 15 - Supply voltage rejection vs. frequency

Fig. 14 - Distortion vs. frequency

Fig. 16 - Power dissipation and efficiency vs. output power

22W BRIDGE FULLY PROTECTED CAR RADIO AMPLIFIER

- NO AUDIBLE POP DURING MUTE AND STANDBY OPERATIONS
- MUTING TTL COMPATIBLE
- VERY LOW CONSUMPTION STANDBY
- PROGRAMMABLE TURN ON DELAY
- DIFFERENTIAL INPUT
- SHORT CIRCUIT PROTECTIONS:

RL SHORT - OUT TO GROUND - OUT TO V_{s}

- OTHER PROTECTIONS:
- Load dump voltage surge
- Loudspeaker DC current
- Very inductive load
- Overrating temperature
- Open ground

The TDA7256 is a class B dual fully protected bridge power amplifier, designed for car radio applications. A high current capability allows to drive low impedance loads (up to 2Ω).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for 50 ms)	40	V
I_{o}	Output peak current (no repetitive $\mathrm{t}=0.1 \mathrm{~ms}$)		
	Output peak current repetitive $\mathrm{f}>10 \mathrm{~Hz}$	Internally limited	
$P_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	5.5	A
$\mathrm{~T}_{\mathrm{st}}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	36	W

PIN CONNECTION

THERMAL DATA

| $R_{\text {th j-case }}$ | Thermal resistance junction-case | \max |
| :--- | :--- | :--- | $2.2_{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{f}=1 \mathrm{KHz}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$ (unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		8		18	V
I_{O}	Total quiescent drain current			80		mA
R_{i}	Input resistance			70		$\mathrm{~K} \Omega$

MUTING FUNCTION

	Muting attenuation	$\begin{aligned} & V_{\text {ref }}=1 \mathrm{Vrms} \\ & \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{KHz} \end{aligned}$	60			dB
	Muting-on threshold voltage	Pin 1	2.4			V
	Muting-off threshold voltage	Pin 1			0.8	V
	Stand-by attenuation	$\begin{aligned} & V_{\text {ref }}=1 \mathrm{Vrms} \\ & f=100 \mathrm{~Hz} \text { to } 10 \mathrm{KHz} \end{aligned}$	60			dB
	Stand-by quiescent drain current				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {os }}$	Output offset voltage				150	mV
P_{0}	Output power	$\begin{array}{ll} d=10 \% & R_{L}=4 \quad \Omega \\ & R_{L}=3.2 \Omega \\ & R_{L}=2 \Omega \end{array}$		22 26 28		w w W
THD	Distortion	$\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$ to 13 W		0.05		\%
G_{v}	Voltage gain (CL)			36		dB
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ & \mathrm{~B}=22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \end{aligned}$		3	10	$\mu \mathrm{V}$
SVR	Supply voltage rejection (closed loop)	$\begin{array}{ll} R_{\mathrm{g}}=10 \mathrm{~K} \Omega \\ \mathrm{f}=300 \mathrm{~Hz} \end{array} \quad \mathrm{~V}_{\mathrm{r}}=1 \mathrm{Vrms}$	45	58		dB
$\mathrm{T}_{\text {SD }}$	Thermal shut down junction temperature			145		${ }^{\circ} \mathrm{C}$

Fig. 1 - Test and application circuit

Fig. 2 - Output power vs. supply voltage

Fig. 5 - Supply voltage rejection vs. frequency

Fig. 3 - Distortion vs. output power

Fig. 6 - Common mode rejection vs. frequency

Fig. 4 - Distortion vs. frequency

Fig. 7 - Quiescent current vs. supply voltage

Fig. 8 - P.C. and layout of the fig. 1 (1:1 scale)

HIGH EFFICIENCY AUDIO PWM DRIVER

- HIGH EFFICIENCY
- $P_{0}=30 W$ WITH POWER MOS BRIDGE
- LOW DISTORTION
- SINGLE SUPPLY OPERATION
- MUTING FACILITY
- THERMAL AND SHORT-CIRCUIT PROTECTION
- DUMP PROTECTION

The TDA7260 is a new type of audio driver mainly intended for use in car radio applications. In conjunction with four POWER MOS in bridge configuration it can deliver 30W ($\mathrm{d}<3 \% \mathrm{R}_{\mathrm{L}}=$ 2Ω). The device acts in "class D " as a pulse
width modulation circuit. That permits a very high efficiency ($>80 \%$ at rated output power) so no heatsinks are needed. Moreover, a built-in limiter reduces the clipping effects.
The TDA7260 is a monolithic integrated circuit in a 20 lead dual in line plastic package.

DIP-20 Plastic (0.4)

ORDERING NUMBER: TDA7260

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		
V_{s}	Peak supply voltage (50 ms)	30	V
$V_{\text {IN }}$	Input voltage	40	V
V_{D}	Differential input voltage	10	V
I_{p}	Peak output current	± 6	V
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	300	mA
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	1	W

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUITS

Fig. 1 -

Fig. 2 -

Fig. 4

Fig. 6

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$ unless otherwise specified, refer to test circuit)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.

OP AMP

$V_{\text {os }}$	Input offset voltage					± 4	mV	1
I_{b}	Input bias current				120	300	nA	1
$\mathrm{l}_{\text {of }}$	Input offset current					± 50	$n \mathrm{~A}$	1
G_{v}	Open loop voltage gain			80			dB	1
d	Total harmonic distortion	$\mathrm{f}=1 \mathrm{KHz}$	$A_{v}=1$		0.005		\%	1
BW	Unity gain bandwith			0.8	1.8		MHz	1
CMRR	Common mode rejection	$V_{\text {IN }}=1 \mathrm{~V}$	$f=1 \mathrm{KHz}$	70	90		dB	1
SVR	Supply voltage rejection	$\mathrm{V}_{\mathrm{r}}=1 \mathrm{~V}$	$f=1 \mathrm{KHz}$	80	100		dB	1
E_{n}	Input noise voltage	$\mathrm{B}=20 \mathrm{KHz}$			1		mV	1
I_{n}	Input noise current	$\mathrm{B}=20 \mathrm{KHz}$			20		$n \mathrm{~A}$	1
SR	Slew rate				0.8		V / ms	1
V_{0}	Output swing	$R_{L}=2 \mathrm{~K} \Omega$	$A_{v}=1$	± 2.6		± 3.2	V	2
$\mathrm{R}_{\text {IN }}$					100		$\mathrm{K} \Omega$	1
I_{7}	Overload indicator current				240		mA	2

INTEGRATOR

$\mathrm{V}_{\text {os }}$	Input offset voltage				± 4	mV	3
I_{b}	Input bias current			0.5	2.5	$\mu \mathrm{A}$	3
$\mathrm{I}_{\text {of }}$	Input offset current				± 250	$n \mathrm{~A}$	3
I_{0}	Output current swing sink source	$\begin{aligned} & \Delta V_{I N}= \pm 1 \mathrm{~V} \\ & R_{L}=0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\mathrm{mA}_{\mathrm{mA}}$	3
V_{0}	Output voltage swing	$\begin{aligned} & \Delta V_{I N}= \pm 1 \mathrm{~V} \\ & R_{L}=5 K \Omega \end{aligned}$	± 3			V	3
CMRR	Common mode rejection	$V_{\text {IN }}=1 \mathrm{~V} \quad f=1 \mathrm{KHz}$	70	90		dB	3
SVR	Supply voltage rejection	$V_{r}=1 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{KHz}$	80	100		dB	3
$\mathrm{R}_{\text {IN }}$			100			K Ω	3
BW	Unity gain bandwidth			4		MHz	3
G_{n}	Forward transconductance			30		mA/V	3

REGULATORS

V_{o}	Output stabilized voltage			10		V	4
SVR	Supply voltage rejection	$f=1 \mathrm{KHz} \quad V_{r}=1 \mathrm{~V}$	60	70		$d B$	4
V_{1}	Ground voltage			4.5		V	4

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.

SYSTEM SPECIFICATION

V_{5}	Operating supply voltage range	See fig. 24		(10.5 to 16)		V	
I_{s}	Supply current	$V_{1 N}=0$		30	60	mA	4
V_{tm}	Mute threshold voltage (*)	$V_{\text {IN }}=0$	3	4	5.5	V	6
$\mathrm{V}_{\mathrm{tmh}}$	Mute threshold hysteresis	$V_{\text {IN }}=0$		0.5		V	6
V OH	Output swing $(\mathrm{QH}, \overline{\mathrm{OH}})$,	$\mathrm{I}=70 \mathrm{~mA}$	25			V	6
V_{OH}	Output swing (QL, QL)	$1=70 \mathrm{~mA}$	10.8			V	6
$\mathrm{V}_{\mathrm{O}} \mathrm{L}$	Output swing (QH, QH)	$\mathrm{I}=70 \mathrm{~mA}$			2.8	V	6
$V_{0} \mathrm{~L}$	Output swing (QL, QL)	$1=70 \mathrm{~mA}$			2.8	V	6
$\mathrm{V}_{\text {st }}$	Overload sense threshold		0.2		0.4	V	6
$\mathrm{V}_{\text {om }}$	Muted outputs	$I=70 \mathrm{~mA}$ Mute or overload condition			2.8	V	6
V_{x}	Gate crossover voltage	$\mathrm{f}=1 \mathrm{KHz}$		2		V	5

COMPLETE SYSTEM

I_{0}	Supply current	$V_{\text {IN }}=0$	$\mathrm{R}_{\mathrm{L}}=\infty$		90		mA	7
$V_{\text {of }}$	Output offset voltage	$V_{\text {IN }}=0$			5		mV	7
CMRR	Common mode ripple rejection	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$			60		dB	7
SVR	* Supply voltage ripple rejection	$\begin{aligned} & \Delta V_{R}=0.5 V \\ & f=100 \mathrm{~Hz} \end{aligned}$			60		dB	7
G_{v}	Voltage gain	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$\mathrm{f}=1 \mathrm{KHz}$		12		dB	7
E_{n}	Output noise voltage	$B=20 \mathrm{KHz}$	$V_{1 N}=0$		150		$\mu \mathrm{V}$	7
P_{0}	Output power	$d=2 \%$	$f=1 \mathrm{KHz}$		32		W	7
d	Total harmonic distortion	$f=1 \mathrm{KHz}$	$\mathrm{V}_{0}=2 \mathrm{~V}$		0.4		\%	7
f_{5}	Switching frequency	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$	$\mathrm{V}_{10}=\mathrm{V}_{8}$	70	125		KHz	7
f_{d}	Dither frequency				20		Hz	7
η	Efficiency	$\mathrm{P}_{\mathrm{o}}=32 \mathrm{~W}$	$f=1 \mathrm{KHz}$		85		\%	7

(*) Device on for $V_{\text {pin } 20}$ higher than $V_{t m}$

Fig. 7a - P.C. board and components layout of the circuits of fig. 7 (1:1 scale)

Fig. 8 - Quiescent current vs. supply voltage

Fig. 11 - Frequency response

Fig. 14 - Power dissipation vs. output power

Fig. 9 - Distortion vs. output power

Fig. 12 - Dither frequency versus $\mathrm{C}_{\text {(PIN 10) }}$

Fig. 13 - Efficiency vs. output power

Fig. 15 - Suggested application circuit using the TDA7232

COMPONENT LIST
R1 $=39 \Omega$
$R 2=25 \mathrm{~K} \Omega$
$R 3$
$R 2=25 \mathrm{~K} \Omega$
$R 4=100 \mathrm{~K} \Omega$
$R 4=1 \mathrm{~K} \Omega$
$R 5=100 \mathrm{~K} \Omega$
$R 5=1 \mathrm{~K} \Omega$
$R 6=100 \mathrm{~K} \Omega$
$R 7=470 \mathrm{~K} \Omega$
$R 7$
$R 7=470 \mathrm{~K} \Omega$
$R 8=2.7 \Omega$
$R 9=1 \mathrm{~K} \Omega$
$R 10=0.025 \Omega$
$R 11=20 \Omega$
$R 12=20 \Omega$
$R 13=20 \Omega$
R14 $=20 \Omega$
R15 $=$ (Jumper) R16 $=$ (Jumper)

R17 $=$ (Jumper
R18 R18 $=$ (Jumper $R 19=10 \mathrm{~K} \Omega$
$\mathrm{R} 20=10 \mathrm{~K} \Omega$ $R 20=10 \mathrm{~K} \Omega$
$R 21=10 \mathrm{~K} \Omega$ $R 21=10 \mathrm{~K} \Omega$
$R 22=47 \mathrm{~K} \Omega$ $R 22=47 \mathrm{~K} \Omega$
$R 23=10 \mathrm{~K} \Omega$ $R 23=10 \mathrm{~K} \Omega$
$R 24=10 \mathrm{~K} \Omega$ $R 24=10 \mathrm{~K} \Omega$
$\mathrm{R} 25=39 \mathrm{~K} \Omega$ $R 25=39 \mathrm{~K} \Omega$
R26 $=7.5 \mathrm{~K} \Omega$ $\mathrm{R} 26=7.5 \mathrm{~K} \Omega$
$\mathrm{R} 27=3.9 \mathrm{~K} \Omega$ R28 = t.b.d.

$\mathrm{C} 17=4.7 \mu \mathrm{~F}-16 \mathrm{~V}$	$\mathrm{L} 1=150 \mathrm{uH}$
$C 18=100 \mathrm{nF}$	$\mathrm{L} 2=15 \mathrm{uH}$
$\mathrm{C} 19=10 \mu \mathrm{~F}-16 \mathrm{~V}$	$L 3=15 u H$
$\mathrm{C} 20=10 \mu \mathrm{~F}-16 \mathrm{~V}$	
$\mathrm{C} 21=100 \mathrm{nF}$	$\mathrm{L} 1=33$ turns
$\mathrm{C} 22=1 \mu \mathrm{~F}-16 \mathrm{~V}$	$\phi 0.6 \mathrm{~mm}$.
$\mathrm{C} 23=100 \mathrm{nF}$	$L 2, L 3=14$ turns
$\mathrm{C} 24=10 \mu \mathrm{~F}-25 \mathrm{~V}$	- $\dagger 0.8 \mathrm{~mm}$
$\mathrm{C} 25=330 \mathrm{pF}$	$\phi 0.8 \mathrm{~mm}$
$\mathrm{C} 26=220 \mathrm{nF}$	
$\mathrm{C} 27=10 \mu \mathrm{~F}-25 \mathrm{~V}$	NOTE
$\mathrm{C} 28=100 \mathrm{nF}$	Q1 = P321 (SGS)
$\mathrm{C} 29=4.7 \mu \mathrm{~F}-16 \mathrm{~V}$	$\mathrm{Q} 2=\mathrm{P} 321$ (SGS)
$\mathrm{C} 30=100 \mathrm{nF}$	Q3 = P321 (SGS)
$\mathrm{C} 31=100 \mathrm{nF}$	Q4 P321 (SGS)

WITH NO EQUALIZATION FLAT RESPONSE, $\mathrm{G}_{\mathrm{v} \text { tot }}=42 \mathrm{~dB}$
(A) = OPEN
$(\mathrm{B})=\mathrm{OPEN}$
$(\mathrm{C})=\mathrm{OPEN}$
(D) $=R=2.2 \mathrm{~K} \Omega$
$(E)=R=2.2 \mathrm{~K} \Omega$
(F) $=$ OPEN
(G) = JUMPER
$(H)=O P E N$
(I) = OPEN
(L) = OPEN
$(M)=$ JUMPER
$(N)=O P E N$
(O) = OPEN
(P) $=R=2.2 \mathrm{~K} \Omega$
$(R)=O P E N$

Fig. 17 - P.C. board and components layout of the circuit of fig. 16 (1:1 scale)

APPLICATION INFORMATION

Fig. 18 - Block diagram

CIRCUIT DESCRIPTION

BLOCK DIAGRAM

Fig. 18 shows the circuit block diagram. Following are described the single circuit blocks and their functions.

VOLTAGE REGULATOR

It generates two values of reference voltage, accessible even on external pins. 10 V is the voltage that supplies all the analogic internal blocks. $4,5 \mathrm{~V}$ (V1) is the voltage value which stands for ground of the signal inside the chip.

INPUT AMPLIFIER, INTEGRATOR, COMPARATOR WITH HYSTERESIS, N-FET BLOCK DRIVER
These components implement the control system main loop, together with the external four power
devices. The TSM (two state modulation) system is used.
The input amplifier is utilized in differential configuration, and refers the input signal to V 1 voltage; in such way the chip turns to general use. On the input amplifier acts a dynamic limiter circuit, with intervention proportional to supply voltage avoiding overload and aliasing at lower V_{5} (Fig. 19).
Fig. 19 - Duty cycle input dynamic limitation.

Fig. 20 - Free running oscillator principle

APPLICATION INFORMATION (continued)

A signal for supplying an external compressor stage (i.e. TDA7232) is available.
For the effective control loop the feedback signal is taken from switched points of external power bridge (before LC output demodulation
filter) and sent to the integrator (see Fig. 20).
The triangle waveform at the integrator output drives the comparator with a hysteresis, and this supplies the correct time-intervals to the driving stages (Fig. 21).

Fig. 21

When an audio signal is introduced to the integrator, it generates an offset which varies the duty cycle and frequency of the switching output (with no audio signal the duty cycle is $50 \%)$. The bridge POWER MOS with the drain connected to the supply voltage, are driven in boostrap. The choice of MOS device is suggested by the high commutation speed and in order to reduce the chip dissipation. The Mosfets SGSP321 can be succesfully used. The LC filter on the bridge output demodulates the signal and reconstructs the sine wave on the speaker (see Fig. 22).

Fig. 22

APPLICATION INFORMATION (continued)

SWITCHING FREQUENCY STABILIZER

It consists of a block which stabilizes the switching frequency of the system; it receives the supply voltage and the input signal amplitude as inputs, and accomplishes its function by varying the histeresis thresholds of the comparator. The purpose of such stabilizer is to reduce the range of the switching frequency $\left(40 \mathrm{KHz}<\mathrm{F}_{\text {sw }}\right.$ $<200 \mathrm{KHz}$) avoiding greather variations versus supply voltage, input signal, output current. (Fig. 23).

Fig. 23

DITHER OSCILLATOR

It is a low-frequency oscillator. Its frequency (20 Hz typ.) is set by an external capacitor; at this value it determines a frequency switching modulation of about 10% around its nominal value, in order to minimize the problem of the spurious irradiations of the harmonics at the switching frequency (EMI).

MUTE

It is a protection circuit which shuts the system off when the supply voltage is lower than 10.5 V and higher than 16 V . The switching-on is further delayed by an external capacitor. In mute condition the outputs are low (Figs. 24, 25).

SHORT CIRCUIT PROTECTION

It is a comparator having an offset which senses the current drawn by the power stage by a voltage drop across an external resistor (internal $\mathrm{V}_{\mathrm{TH}}=250 \mathrm{mV}$): it acts on the mute circuit.

Fig. 24

Fig. 25

THERMAL AND DUMP PROTECTIONS

It shuts the device off when the junction temperature rises above $150^{\circ} \mathrm{C}$, and it has a hysteresis of above $20^{\circ} \mathrm{C}$ typ. It acts on the mute circuit.

The device is protected against supply overvoltages ($\mathrm{V}_{\mathrm{S}}=40 \mathrm{~V}, \mathrm{t}=50 \mathrm{~ms}$).

MULTIFUNCTION SYSTEM FOR TAPE PLAYERS

The TDA7270S is a multifunction monolithic integrated circuit in a 16 -lead dual in-line plastic package specially designed for use in car radios cassette players, but suitable for all applications requiring tape playback.

It has the following functions:

- Motor speed regulator
- Automatic stop
- Manual stop
- Pause
- Cassette ejection
- Radio - Playback automatic switching.

The circuit incorporates also:

- Thermal protection
- Short circuit protection to ground (all the pins).

Powerdip
(8+8)

ORDERING NUMBER: TDA7270S

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{1}	Sink peak current at pin 1	2	A
I_{5}	Sink peak current at pin 5	2	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }} \leqslant 80^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {stg }} ; \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature		-40 to 150

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

| $\mathrm{R}_{\text {th }}$ j-amb |
| :--- | :--- | :--- | :--- | :--- |
$\mathrm{R}_{\text {th }}$ j-ase	\quad	Thermal resistance junction-ambient		
Thermal resistance junction-pins	\quad	\max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
:---:	:---:	:---:		

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=14 \mathrm{~V} ; \mathrm{S}_{7}$ at B, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage		6		18	V
I_{d}	Quiescent drain current	Automatic stop- S_{3} at B ; S_{4} at B		5	10	mA
		Pause - S_{3} at $A ; S_{4}$ at A		9	15	
I_{5}	Maximum output current for relay driving		150			mA
$\mathrm{T}_{\text {sd }}$	Thermal shut-down case temperature	$\begin{aligned} & P_{\text {tot }}=1 W \\ & \left(\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}=-5 \%\right) \end{aligned}$	105	125		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test conditions	Min.	Typ.	Max.	Unit

MOTOR SPEED CONTROL

IMS Starting current (pin 1)		1			A
$\mathrm{V}_{\text {ref }} \quad$ Reference voltage (pin 2-3)	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$	1.15	1.25	1.35	\checkmark
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta V_{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=8 \text { to } 18 \mathrm{~V} \end{aligned}$		0.1	0.4	\%/V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta i_{M}$	$\mathrm{I}_{\mathrm{M}}=50$ to 400 mA		0.01	0.03	\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T$	$\begin{aligned} & I_{M}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{2} \quad$ Operating voltage	$I_{M}=100 \mathrm{~mA} \quad \frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}=-5 \%$	2.4			V
$K \quad$Reflection coeff. $\left(K=I_{M} / I_{T}\right.$ see fig. 12)	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$	18	20	22	-
$\frac{\Delta K}{K} / \Delta V_{s}$	$\begin{aligned} & I_{M}=100 \mathrm{~mA} \\ & V_{S}=8 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{aligned}$		0.3	1	\%/V
$\frac{\Delta K}{K} / \Delta I_{M}$	$\mathrm{I}_{\mathrm{M}}=50$ to 400 mA		0.005	0.02	\%/mA
$\frac{\Delta K}{K} / \Delta T$	$\begin{aligned} & I_{M}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		0.01		$\% /{ }^{\circ} \mathrm{C}$

PAUSE

I_{3} Current consumption	S_{4} at A	1.4			mA
$\mathrm{~V}_{8-1}$	$\mathrm{~S}_{4}$ at A			0.2	V

EJECTION

I_{7}		$\mathrm{~S}_{2}$ in A	20			$\mu \mathrm{~A}$
$\mathrm{~V}_{5-8}$	Saturation voltage	$\mathrm{I}_{5}=100 \mathrm{~mA}$		2.1	3	V
$\mathrm{~V}_{5}$	Saturation voltage	$\mathrm{I}_{5-8}=1.5 \mathrm{~A}$		2.2	3	V
$\mathrm{~V}_{4}$	(Pause condition)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{A} \quad \mathrm{S}_{4}$ at A	6			V
$\mathrm{~V}_{4}$	(Radio)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{B} \quad \mathrm{S}_{4}$ at B	6	9		V
$\mathrm{~V}_{4}$	(Tape)	S_{1} at $\mathrm{A} \quad \mathrm{S}_{3}$ at $\mathrm{A} \quad \mathrm{S}_{4}$ at B			1.7	V
R_{0}	Output impedance at pin 4	$\mathrm{~S}_{3}$ at B		16	22	$\mathrm{~K} \Omega$

AUTOMATIC STOP

V_{8-1}	Saturation voltage	S_{1} at $B \quad S_{2}$ at $B \quad S_{3}$ at B			1	μA	
I_{6}	Minimum current to avoid stop	S_{1} at C			1	μA	
I_{7-8}	Load current for delay circuit	$I_{6}=0$	S_{7} at $A \quad S_{2}$ at B	10.5	15	19.5	μA

TDA7270S

APPLICATION INFORMATION

The TDA7270S incorporates four different functional blocks:

1) Motor speed control.
2) Autostop circuit.
3) Radio/Playback switching
4) Relay driver.

The motor speed control is a conventional circuit providing correction for the internal looses of the motor. Fig. 1 shows the external circuit.
The values of R_{T}, R_{S} and R_{K} determine the regulation characteristics and motor speed.

$$
R_{T}=K \cdot R_{M}
$$

where $K=$ the IC regulator reflection coefficient and $R_{M}=$ motor internal resistance.
The following condition must be always satisfied

$$
R_{S} \leqslant 4 R_{T}
$$

Fig. 1

The voltage applied across the motor is given by

$$
V_{8-1}=V_{r e f}\left[1+\frac{R_{T}}{R_{S}}\left(1+\frac{1}{K}\right)+\frac{R_{K}}{R_{S}}\right]
$$

and this is proportional to \mathbf{R}_{K} which therefore adjust the speed.
The voltage between pin 2 and the supply must not fall below 0.3 V and so

$$
\left[V_{\text {ref } \min }\left(\frac{R_{T}}{R_{S}}\right)+I_{M \min }\left(\frac{R_{T}}{K_{\max }}\right)\right]>0.3 V
$$

The "pause" condition corresponds to $\mathrm{V}_{3}<$ 50 mV ; in this condition the motor will stop $\left(\mathrm{V}_{1-8}<0.2 \mathrm{~V}\right)$, the capacitor C_{2} on the autostop circuit (see below) will no longer be charged and the pin 4 (cassette/radio switch output) will be pulled high.

The autostop circuit is shown in Fig. 2
In normal operation the capacitor $\mathrm{C}_{2}(22 \mu \mathrm{~F})$ is slowly charged by a constant current drawn by pin 7 of $15 \mu \mathrm{~A}$, and each time the pulser (a switch on the cassette take-up speed shaft) closes, C_{2} is discharged. If the cassette stops, and the pulse stops, the voltage on pin 7 falls.
This switches the power amplifier state and pin 5 goes low. Pin 5 can be used for one of two purposes:

1) to drive a stop warning light connected from pin 5 supply V_{s};
2) to actuate a solenoid wired either to ground (to release the cassette) or to supply (to eject the cassette).

Fig. 2

The pause and/or cassette/radio switching shown in Fig. 3 has an input/output on pin 4. If pin 4 is not used it should be grounded.

Fig. 3

This pin has the following logic.

Cass IN	Pause	Pin 4	Function
Open	Open	$>6 \mathrm{~V}$	motor off/radio on
Open	Close	$>6 \mathrm{~V}$	motor off/radio on
Close	Open	$<1.7 \mathrm{~V}$	motor on/cass. on
Close	Close	$>6 \mathrm{~V}$	pause/radio on

HIGH PERFORMANCE MOTOR SPEED REGULATOR

- TACHIMETRIC SPEED REGULATION WITH NO NEED FOR AN EXTERNAL SPEED PICK-UP
- V/I SUPPLEMENTARY PREREGULATION
- digital control of direction and MOTOR STOP
- SEPARATE SPEED ADJUSTMENT
- 5.5V TO 18V OPERATING SUPPLY VOLTAGE
- 1A PEAK OUTPUT CURRENT
- OUTPUT CLAMP DIODES INCLUDED
- SHORT CIRCUIT CURRENT PROTECTION
- THERMAL SHUT DOWN WITH HYSTERESIS
- DUMP PROTECTION (40V)

TDA7272 is an high performance motor speed controller for small power DC motors as used in cassette players.
Using the motor as a digital tachogenerator itself the performance of true tacho controlied systems is reached.
A dual loop control circuit provides long term stability and fast settling behaviour.

Powerdip $(16+2+2)$

ORDERING NUMBER: TDA7272

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$V_{\text {S }}$	DC supply voltage	24	V
V_{s}	Dump voltage (300 ms)	40	V
I_{0}	Output current	internally	
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {pins }}=90^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	4.3 1	W
T	Operating junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-pins }}$	Thermal resistance junction-pins	\max	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

S1

ELECTRICAL CHARACTERISTICS ($T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V}$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Operating supply voltage		5.5		18	V
IS	Supply current	No load		5	12	mA

OUTPUT STAGE

I_{0}	Output current pulse		1			A
I_{0}	Output current continuous		250			mA
$\mathrm{~V}_{10-9,12}$	Voltage drop	$\mathrm{I}_{0}=250 \mathrm{~mA}$		1.2	1.5	V
$\mathrm{~V}_{11-9,12}$	Voltage drop	$\mathrm{I}_{0}=250 \mathrm{~mA}$		1.7	2	V

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit	
MAIN AMPLIFIER	Input resistance		100			
R_{14}	Bias current			50		
I_{D}	Offset voltage			1	5	mV
$\mathrm{V}_{\text {OFF }}$	Reference voltage	Internal at non inverting input		2.3		V
$\mathrm{~V}_{\mathrm{R}}$						

CURRENT SENSE AMPLIFIER V/I LOOP

R_{8}	Input resistance		100			$\mathrm{~K} \Omega$
G_{L}	Loop gain			9		

TRIGGER AND MONOSTABLE STAGE

$\mathrm{V}_{\text {IN } 1}$	Input allowed voltage		-0.7		3	V
$\mathrm{R}_{1 \times 1}$	Input resistance			500		Ω
$\mathrm{V}_{\text {T Low }}$	Trigger level			0		V
$V_{\text {TB }}$	Bias voltage (pin 1)		15	20	25	mV
V_{TH}	Trigger histeresis			10		mV
$V_{2 \text { REF }}$	Reference voltage		750	800	850	mV

SPEED PROGRAMMING, DIRECTION CONTROL LOGIC AND CURRENT SOURCE PROGRAMMING

$\mathrm{V}_{18,19}$ Low \quad Input Low level			0.7	V	
$\mathrm{~V}_{18,19 \text { High }}$ Input High level		2			V
$\mathrm{I}_{18,19}$	Input current	$0<\mathrm{V}_{18,19}<\mathrm{V}_{\mathrm{S}}$		2	
$\mathrm{~V}_{17,20 \text { REF }}$ Reference voltage		735	800	865	mV

OPERATING PRINCIPLE

The TDA7272 novel applied solution is based on a tachometer control system without using such extra tachometer system. The information of the actual motor speed is extracted from the motor itself. A DC motor with an odd number of poles generates a motor current which contains a fixed number of discontinuities within each rotation. (6 for the 3 pole motor example on Fig. 1)
Deriving this inherent speed information from the motor current, it can be used as a replacement of a low resolution AC tachometer system. Because the settling time of the control loop is
limited on principle by the resolution in time of the tachometer, this control principle offers a poor reaction time for motors with a low number of poles. The realized circuit is extended by a second feed forward loop in order to improve such system by a fast auxiliary control path.

This additional path senses the mean output current and varies the output voltage according to the voltage drop across the inner motor resistance. Apart from a current averaging filter, there is no delay in such loop and a fast settling behaviour is reached in addition to the long term speed motor accuracy.

Fig. 1 - Equivalent of a 3 pole DC motor (a) and typical motor current waveform (b)

S-9494

BLOCK DESCRIPTION

The principle structure of the element is shown in Fig. 2. As to be seen, the motor speed information is derived from the motor current sense drop across the resistors R_{s}; capacitor CD together with the input impedance of 500Ω at pin 1 realizes a high pass filter.
This pin is internally biased at 20 mV , each negative zero transition switches the input comparator. A 10 mV hysteresis improves the noise immunity.
The trigger circuit is followed by an internal delay time differentiator.
Thus, the system becomes widely independent of the applied waveform at pin 1, the differentiator triggers a monostable circuit which provides a constant current duration. Both, output
current magnitude and duration T , are adjustable by external elements CT and RT.
The monostable is retriggerable; this function prevents the system from fault stabilization at higher harmonics of the nominal frequency. The speed programming current is generated by two separate external adjustable current sources. A corresponding digital input signal enables each current source for left or right rotation direction. Resistor RP1 and RP2 define the speed, the logical inputs are at pin 18 and 19.
At the inverting input (pin 14) of the main amplifier the reference current is compared with the pulsed monostable output current.

For the correct motor speed, the reference current matches the mean value of the pulsed monostable current. In this condition the charge of the feedback capacitor becomes constant.

Fig. 2 - Block diagram

The speed n of a k pole motor results :

$$
n=\frac{10,435}{C_{T} K R_{P}}
$$

and becomes independent of the resistor RT which only determines the current level and the duty cycle which should be 1:1 at the nominal speed for minimum torque ripple.

The second fast loop consists of a voltage to current converter which is driven at pin 8 by the low pass filter $\mathrm{R}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}}$. The output current at this stage is injected by a PNP current mirror into the inner resistor \mathbf{R}_{B}. So the driving voltage of the output stage consists of the integrator output voltage plus the fast loop voltage contribution across R_{B}.
The power output stage realizes different modes depending on the logic status at pin 18 and 19.

- Normal operation for left and right mode: each upper TR of the bridge is used as voltage follower whereas the lower, acts as a switch.
- Stop mode where the upper half is open and the lower is conductive.
- High impedance status where all power elements are switched-off.
The high impedance status is also generated when the supply voltage overcomes the 5 V to 20 V operating range or when the chip temperature exceeds $150^{\circ} \mathrm{C}$.

A short circuit protection limits the output current at 1.5A. Integrated diodes clamp spikes from the inductive load both at V_{cc} and ground.
The reference voltages are derived from a common bandgap reference. All blocks are widely supplied by an internal 3.5 V regulator which provides a maximum supply voltage rejection.

PIN FUNCTION AND APPLICATION INFORMATION

Pin 1

Trigger input. Receives a proper voltage which contains the information of the motor speed. The waveform can be derived directly by the motor current (Fig. 3). The external resistor generates a proper voltage drop. Together with the input resistance at pin 1 [$\mathrm{R}_{\mathrm{IN}}(1)=500 \Omega$] the external capacitor C_{D} realize a high pass filter which differentiates the commutation spikes of the motor current. The trigger level is OV.

Fig. 3

The biasing of the pin 1 is 20 mV with a hysteresis of 10 mV . So the sensing resistance must be chosen high enough in order to obtain a negative spike of the least 30 mV on pin 1 , also with minimum variation of motor current:

$$
\mathrm{R}_{\mathrm{S}} \geqslant \frac{30 \mathrm{mV}}{\Delta I_{\text {MOT }} \min .}
$$

Such value can be too much high for the preregulation stage $\mathrm{V}-\mathrm{I}$ and it could be necessary to split them into 2 series resistors $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{S} 1}+\mathrm{R}_{\mathrm{S} 2}$ (see fig. 4) as explained on pin 8 section.

Fig. 4

The information can be taken also from an external tachogenerator. Fig. 5 shows various sources connections:
the input signal mustn't be lower than -0.7 V .

Fig. 5

Pin 2

Timing resistor. An internal reference voltage ($\mathrm{V} 2=0.8 \mathrm{~V}$) gives possibility to fix by an external resistor (R_{T}), from this pin and ground, the output current amplitude of the monostable circuit, which will be reflected into the timing capacitor (pin 3); the typical value would be about $50 \mu \mathrm{~A}$.

Fig. 6

Pin 3

Timing capacitor. A constant current, determined by the pin 2 resistor, flowing into a capacitor between pin 3 and ground provides the output pulse width of the monostable circuit, the max voltage at pin 3 is fixed by an internal threshold: after reaching this value the capacitor is rapidly discharged and the pulse width is fixed to the value:

$$
T_{o n}=2.88 \mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}} \quad \text { (Fig. 6) }
$$

Pin 4

Not connected.

Pin 5

Ground. Connected with pins 6, 15, 16.

Pin 6

Ground. Connected with pins 5, 15, 16.

Pin 7

Not connected.

Pin 8

Input V/I loop. Receives from pin 10, through a low pass filter, the voltage with the information of the current flowing into the motor and produces a negative resistance output:

$$
R_{\text {out }}=-9 R_{S} \text { (Fig. 7) }
$$

Fig. 7

For compensating the motor resistance and avoiding instability:

$$
\mathrm{R}_{\mathrm{S}} \leqslant \frac{\mathrm{R}_{\text {MOTOR }}}{9}
$$

The optimization of the resistor R_{S} for the tachometric control must not give a voltage too high for the V / I stage: one solution can be to divide in two parts, as shown in Fig. 8, with:

$$
\begin{aligned}
& R_{S 2}=\frac{R_{M}}{10} \text { and } R_{S 1}+R_{S 2} \geqslant \\
\geqslant & \frac{30 \mathrm{mV}}{\Delta I \operatorname{mot} \min } \text { (see pin } 1 \text { sect.) }
\end{aligned}
$$

Fig. 8

The low pass filter R_{L}, C_{L} must be calculated in order to reduce the ripple of the motor commutation at least 20 dB . Another example of possible pins $10-8$ connections is showed on Fig. 9. A choke can be used in order to reduce the radiation.

Fig. 9

Pin 9

Output motor left. The four power transistors are realized as darlington structures. The arrangement is controlled by the logic status at pins 18 and 19.
As before explained (see block description), in the normal left or right mode one of the lower darlington becomes saturated whereas the other remains open. The upper half of the bridge operates in the linear mode.
In stop condition both upper bridge darlingtons are off and both lower are on. In the high output impedance state the bridge is switched completely off.
Connecting the motor between pins 9 and 12 both left or right rotation can be obtained. If only one rotation sense is used the motor can be connected at only one output, by using only the upper bridge half. Two motors can be connected each at the each output: in such case they will work alternatively (See Application Section).
The internal diodes, together with the collector substrate diodes, protect the output from inductive voltage spikes during the transition phase (Fig. 10)

Fig. 10

Pin 10
Common sense output. From this pin the output current of the bridge configuration (motor current) is fed into R_{S} external resistor in order to generate a proper voltage drop.
The drop is supplied into pin 1 for tachometric control and into pin 8 for V/I control (See pin 1 and pin 8 sections).

Pin 11

Supply voltage.

Pin 12

Output motor right. (See pin 9 section)

Pin 13

Output main amplifier. The voltage on this pin results from the tachometric speed control and feeds the output stage.
The value of the capacitor C_{F} (Fig. 11), connected from pins 13 and 14 , must be chosen low enough in order to obtain a short reaction time of the tachometric loop, and high enough in order to reduce the output ripple.
A compromise is reached when the ripple voltage (peak-to-peak) $\mathrm{V}_{\mathrm{ROP}}$ is equal to $0.1 \mathrm{~V}_{\text {MOTOR }}$:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{F}} & =2.3 \frac{\mathrm{C}_{\mathrm{T}}}{\mathrm{~V}_{\mathrm{RIP}}}\left(1-\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{P}}}\right) \\
\text { with } \mathrm{V}_{\mathrm{RIP}} & =\frac{\mathrm{V}_{\mathrm{FEM}}+\mathrm{I}_{\mathrm{MOT}} \cdot \mathrm{R}_{\text {MOT }}}{10} \text { and }
\end{aligned}
$$

with duty cycle $=50 \%$. (See pin 2-3 section)
Fig. 11

Fig. 12

In order to compensate the behaviour of the whole system regulator-motor-load (considering axis friction, load torque, inertias moment of the motor of the load. etc.) a RC series network is also connected between pins 13 and 14 (Fig. 12). The value of C_{A} and R_{A} must been chosen experimentally as follows:

- Increase of 10% the speed with respect to the nominal value by connecting in parallel to $\mathbf{R}_{\mathbf{p}}$ a resistor with value about 10 time larger.
- Vary the R_{A} and C_{A} values in order to obtain at pin 13 a voltage signal with short response time and without oscillations. Fig. 13 shows the step response at pin 13 versus R_{A} and C_{A} values.

Fig. 13

Fig. 14

Pin 14

Inverting input of main amplifier. In this pin the current reference programmed at pins 20, 17 is compared with the current from the monostable (stream of rectangular pulses).
In steady-state condition (constant motor speed) the values are equal and the capacitor C_{F} voltage is constant.
This means for the speed $\mathrm{n}(\min -1)$:

$$
n=\frac{10.435}{C_{T} k R_{P}}
$$

where " k " is the number of collector segments. (poles)
The non inverting input of the main amplifier is internally connected to a reference voltage (2.3 V).

Pin 15
Ground.
Pin 16
Ground.

Pin 17

Left speed adjustment. The voltage at this pin is fixed to a reference value of 0.8 V . A resistor from this pin and ground (Fig. 14) fixes the reference current which will be compared with the medium output current of the monostable in order to fix the speed of the motor at the programmed value. The correct value of R_{p} would be:
$R_{P}=\frac{10.435}{C_{T} \cdot k \cdot n}=\begin{aligned} & n=\text { motor speed, }(\min -1) \\ & k=\text { poles number }\end{aligned}$

Fig. 15

Fig. 16

Fig. 17

Fig. 18

The control of speed can be done in different way:

- speed separately programmed in two senses of rotation (Figg. 14-15);
- only one speed for the two senses of rotation (Fig. 16);
- speeds of the two senses a bit different (i.e. for compensating different pulley effects) (Fig. 17);
- speed programmed with a DC voltage (Fig. 18) i.e. with DA converter;
- fast forward, by putting a resistor. In this case it is necessary that also at the higher speed for the duty cycle to be significatively less than 1 (see value of $\mathrm{R}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}$ on pin 2, pin 3 sections).

Fig. 19 shows the function controlled with a $\mu \mathrm{P}$.

Fig. 19

Pin 18

Right function control. The voltages applied to this pin and to pin 19 determine the function, as showed in the table.

The typical value of the threshold ($\mathrm{L}-\mathrm{H}$) is 1.2 V .

CONDITION		OUTPUT FUNCTION		OUTPUT VOLTAGE	
PIn 18	Pin 19		Pin 12	Pin 9	
L	L	STOP	LOW	LOW	
H	L	LEFT	LOW	REG	
L	H	RIGHT	REG	LOW	
H	H	OPEN	HIGH IMPEDANCE		

Pin 19
Left function control. (See pin 18 sect).

Pin 20
Right speed adjustment. (See pin 17 sect).

Fig. 20 - Typical application

Fig. 21 - Tacho only speed regulation

Fig. 22 - One direction reg. of one motor, or alternatively of two motors

Fig. 23 - P.C. board and components layout of the circuits of Figg. 20, 21, 22

APPLICATION SUGGESTION (Fig. 20, 21, 22) - (For a 2000 r.p.m. 3 pole DC motor with $R_{M}=16 \Omega$)

Comp.	Recommended value	Purpose	If larger	If smaller	Allowed range	
					Min.	Max.
$\mathrm{R}_{\text {S } 1}$	1Ω	Current sensing tacho loop.		Tacho loop do not regulate.	0	
$\mathrm{R}_{\text {S2 }}$	1.5Ω	Curr. sensing V/I loop.	Instability may occur.	Motor regulator; undercompens.	0	$\mathrm{R}_{\text {MOT/9 }}$
$R_{L} ; C_{L}$	$22 \mathrm{~K} \Omega-68 \mathrm{nF}$	Spike filtering.	Slow V / I regulator response.	High output ripple.		
C_{D}	68 nF	Pulse transf.			33nF	100 nF
$\mathrm{R}_{\mathrm{T}} ; \mathrm{C}_{\text {T }}$	$15 K \Omega-47 \mathrm{nF}$	Current source programming to obtain a 50\% duty cycle.			$6 K \Omega$	$30 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{P} 1} ; \mathrm{R}_{\mathrm{P} 2}$	$47 \mathrm{~K} \Omega$ trim.	Set of speed.	Low speed.	High speed.	0	
C_{F}	Polyester 100 nF	Optimization of integrator ripple and loop response time.	Lower ripple, slower tachoregulator response.	Higher ripple, faster response.	10 nF	470nF
$\mathrm{R}_{\mathrm{A}} ; \mathrm{C}_{\mathrm{A}}$	220Kת-220nF	Fast response with no overshoot.	Depending on electromechanical system.		$\begin{aligned} & 10 \mathrm{~K} \Omega \\ & 10 \mathrm{nF} \end{aligned}$	$\begin{gathered} 10 \mathrm{M} \Omega \\ 1 \mu \mathrm{~F} \end{gathered}$

Fig. 24 - Speed regulation versus supply voltage
(Circuit of Fig. 20)

Fig. 25 - High current TDA7272 $+2 \times$ L149 application

Fig. 26 - In connection with a presettable counter and I/O peripheral the TDA7272 controls the speed through a D/A converter

LOW-VOLTAGE DC MOTOR SPEED CONTROLLER

- WIDE OPERATING VOLTAGE RANGE (1.8 to 6 V)
- BUILT-IN LOW-VOLTAGE REFERENCE (0.2V)
- LINEARITY IN SPEED ADJUSTMENT
- HIGH STABILITY VS. TEMPERATURE
- LOW NUMBER OF EXTERNAL PARTS

The TDA 7274 is a monolithic integrated circuit DC motor speed controller intended for use in
microcassettes, radio cassette players and other consumer equipment. It is particulary suitable for low-voltage applications.

Minidip Plastic

ORDERING NUMBER: TDA 7274

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		6
I_{M}	Motor Current		700
mA			
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		1.25
$\mathrm{~T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Storage and junction temperature		

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	100
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

Fig. 1 - Test circuit

$5-9555 / 1$

ELECTRICAL CHARACTERISTICS (Refer to test circuit, $\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {s }}$	Supply voltage range		1.8		6	\checkmark
$\mathrm{V}_{\text {ref }}$	Reference voltage	$I_{M}=100 \mathrm{~mA}$	0.18	0.20	0.22	\checkmark
$I_{\text {a }}$	Qiescent current			2.4	6.0	mA
$l_{\text {d }}(\operatorname{Pin} 6)$	Quiescent current			120		$\mu \mathrm{A}$
K	Shunt ratio	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$	45	50	55	-
$\mathrm{V}_{\text {sat }}$	Residual voltage	$\mathrm{I}_{\mathrm{M}}=100 \mathrm{~mA}$		0.13	0.3	V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta V_{s}$	Line regulation	$\begin{aligned} & I_{\mathrm{M}}=100 \mathrm{~mA} \\ & V_{\mathrm{s}}=1.8 \text { to } 6 \mathrm{~V} \end{aligned}$		0.20		\%/V
$\frac{\Delta K}{K} / \Delta V_{s}$	Voltage characteristic of shut ratio	$\begin{aligned} & I_{\mathrm{M}}=100 \mathrm{~mA} \\ & V_{\mathrm{s}}=1.8 \text { to } 6 \mathrm{~V} \end{aligned}$		0.80		\%/V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta I_{M}$	Load regulation	$\mathrm{I}_{\mathrm{M}}=20$ to 200 mA		0.004		\%/mA
$\frac{\Delta K}{K} / \Delta I_{M}$	Current characteristic of shut ratio	$I_{M}=20$ to 200 mA		-0.03		\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T_{\text {amb }}$	Temperature characteristic of reference voltage	$\begin{aligned} & I_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-20 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$		0.04		\%/ ${ }^{\circ} \mathrm{C}$
$\frac{\Delta K}{K} / \Delta \mathrm{T}_{\mathrm{amb}}$	Temperature characteristic of shut ratio	$\begin{aligned} & I_{\mathrm{M}}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=20 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$

Fig. 2 - Quiescent current vs. supply voltage

Fig. 5 - Reference voltage vs. load current

Fig. 8 - Saturation voltage
vs. load current

Fig. 3 - Reference voltage vs. supply voltage

Fig. 6 - Shunt ratio vs. load current

Fig. 9 - Quiescent current vs. ambient temperature

Fig. 4 - Shunt ratio vs. supply voltage

Fig. 7 - Minimum supply voltage (typical) vs. load current

Fig. 10 - Reference voltage vs. ambient temperature

Fig. 11 - Application circuit

Fig. 12 - P.C. board and components layout of the circuit of fig. 11 (1: 1 scale)

Fig. 13 - Speed variations
vs. supply voltage

Fig. 14 - Speed variations
vs. motor current

Fig. 15 - Speed variations vs. ambient temperature

APPLICATION INFORMATION

Fig. 16

$$
E_{g}=R_{T} I_{d}+I_{M}\left(\frac{R_{T}}{K}-R_{M}\right)+V_{\text {ref }}
$$

$$
\left[1+\frac{R_{B}}{R_{S}}+\frac{R_{T}}{R_{S}}\left(1+\frac{1}{K}\right)\right]
$$

R_{S} has to be adjusted so that the applied voltage V_{M} is suitable for a given motor, the speed is then linearly adjustable varing R_{B}.

The value of R_{T} is calculated so that

$$
\mathrm{R}_{\mathrm{T}(\text { max. })}<\mathrm{K}_{(\text {min. })} \cdot \mathrm{R}_{\mathrm{M}(\text { min. })}
$$

If $\mathrm{R}_{\mathrm{T} \text { (max.) }}>\mathrm{K} \cdot \mathrm{R}_{\mathrm{M}}$, instability may occur. The values of C_{1} ($4.7 \mu \mathrm{~F}$ typ.) and $\mathrm{C}_{2}(1 \mu \mathrm{~F}$ typ.) depend on the type of motor used. C_{1} adjusts WOW and flutter of the system. C_{2} suppresses motor spikes.

Fig. 17-3V stereo cassette miniplayer with motor speed control

MOTOR SPEED REGULATOR

ADVANCE DATA

- excellent versatility in use
- HIGH OUTPUT CURRENT (UP TO 1.5A)
- LOW QUIESCENT CURRENT
- LOW REFERENCE VOLTAGE (1.32V)
- EXCELLENT PARAMETERS STABILITY VERSUS AMBIENT TEMPERATURE
- START/STOP FUNCTION (TTL LEVELS)
- DUMP PROTECTION

The TDA7275A is a linear integrated circuit in minidip plastic package. It is intended for use as speed regulator for DC motors of record players, tape and cassette recorders.
The dump protection make it particularly suitable for car radio applications.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {s }}$	Supply voltage	19	V
$\mathrm{~V}_{\text {s }}$	Peak supply voltage (for 50ms)	45	V
I_{M}	Maximum output current	1.5	A
$\mathrm{~T}_{\text {op }}$	Operating temperature range	-30 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W
	$\mathrm{~T}_{\text {pins }}=70^{\circ} \mathrm{C}$	4	W

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-pins }}$	Thermal resistance junction-pins	\max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 1 - Test circuit

ELECTRICAL CHARACTERISTICS ($T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$ unless otherwise specified, refer to test circuit)

Parameter		Test Conditions	Min.	Typ.	Max.	Unit
V_{5}	Supply voltage range		8		18	V
$\mathrm{V}_{\text {ref }}$	Reference voltage	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	1.05	1.22	1.35	v
$I_{\text {q }}+I_{\text {d }}$	Total quiescent current	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~mA}$		2		mA
$l_{\text {d }}$	Quiescent current	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~mA}$		1		mA
$I_{\text {ms }}$	Starting motor current	$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}=-50 \%$	1			A
V_{4}	Saturation voltage	$\mathrm{I}_{\mathrm{M}}=0.5 \mathrm{~A}$		1.7	2	v
$K=I_{M} / I_{T}$	Reflection coefficient	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	18	20	22	
$\frac{\Delta K / \Delta V_{s}}{K}$		$\begin{aligned} & I_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{aligned}$		0.5		\%/V
$\frac{\Delta K / \Delta I_{M}}{K}$		$\mathrm{I}_{\mathrm{M}}=25$ to 200 mA		-0.05		\%/mA
$\frac{\Delta K / \Delta T}{K}$		$\begin{aligned} & I_{M}=0.1 \mathrm{~A} \\ & T_{o p}=-30 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$
$\frac{\Delta v_{\text {ref }} / \Delta V_{s}}{V_{\text {ref }}}$	Line regulation	$\begin{aligned} & V_{\mathrm{s}}=8 \mathrm{~V} \text { to } 16 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \end{aligned}$		0.04		\%/V
$\frac{\Delta v_{\text {ref }} / \Delta I_{\mathrm{M}}}{v_{\text {ref }}}$	Load regulation	$\mathrm{I}_{\mathrm{M}}=25$ to 200 mA		-0.01		\%/mA
$\frac{\Delta V_{\text {ref }} / \Delta T}{V_{\text {ref }}}$	Temperature coefficient	$\begin{aligned} & \mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{op}}=-30 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$
v_{2}	Motor "Stop" (Acc. Following data or grounded)			1		v
I_{2}	Motor "Stop"	$\mathrm{V}_{2}=1 \mathrm{~V}$		-0.05		mA
v_{2}	Motor "Run" (Acc. following data or open			1.5		v
I_{2}	Motor "Run"	$\mathrm{V}_{2}=1.5 \mathrm{~V}$		-0.1		mA

Fig. 2 - Application circuit

$-R_{\text {Ttyp. }}=K_{\text {typ. }} . \quad R_{\text {Mtyp. }} . \quad$ if $R_{T}>K_{\text {min }} R_{\text {Mmin }}$ instability may accur.

- A diode across the motor could be necessary with certain kind of motor.

Fig. 3 - Quiescent current vs. supply voltage

0

Fig. 4 - Speed variation vs. supply voltage

Fig. 5 - Speed variation vs. torque ($\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$)

SPEED REGULATOR FOR SMALL DC MOTOR

PRELIMINARY DATA

The TDA7276 is a monolithic integrated circuit in $4+4$ lead minidip plastic package designed for DC motors speed regulation in tape and cassette recorders, toys, etc.
It offers speed regulation versus supply voltage temperature and load changes better than conventional circuits built with discrete components.
Main features are:

- Excellent versatility in use
- High output current (up to 1A)
- Low reference voltage (1.25V)
- High temperature stability
- High power capability
- Low number of external parts

Minidip
(4+4)

ORDERING NUMBER: TDA7276

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	20	V
I_{o}	Output current	1.2	A
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {pins }}=70^{\circ} \mathrm{C}$	4	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to	150

APPLICATION CIRCUIT

TDA7276

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-pins }}$	Thermal resistance junction-pins	\max	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$)

Parameter		Test Conditions		Min.	Typ.	Max.	Unit
$v_{\text {in }}$	Supply voltage range	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$	$\Delta V_{\text {ref }} / V_{\text {ref }}=-5 \%$	2.5		18	\checkmark
$\mathrm{V}_{\text {ref }}$	Reference voltage (between pins 1 and 4)	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		1.1	1.25	1.35	v
l_{d}	Quiescent drain current	$\mathrm{I}_{\mathrm{M}}=100 \mu \mathrm{~A}$			1.1	2.1	mA
$I_{\text {ms }}$	Starting current	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$	$\Delta V_{\text {ref }} / V_{\text {ref }}=-50 \%$	0.5	0.8		A
$\mathrm{I}_{\text {MS }}$	Starting current	$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$	$\Delta V_{\text {ref }} / V_{\text {ref }}=-50 \%$	1.0			A
$\mathrm{K}=\mathrm{I}_{\mathrm{M}} / \mathrm{I}_{\mathrm{T}}$	Reflection coefficient	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		18	20	22	-
$\frac{\Delta K}{K} / \Delta V_{s}$		$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$ to 18 V	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.45		\%/V
$\frac{\Delta K}{K} / \Delta l_{M}$		$\mathrm{I}_{\mathrm{M}}=25$ to 400 m			0.005		\%/mA
$\frac{\Delta K}{K} / \Delta T$		$\mathrm{T}_{\text {amb }}=-20$ to 7	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$
$\frac{\Delta V_{\text {ref }}}{\mathrm{V}_{\text {ref }}} / \Delta \mathrm{V}_{\mathrm{s}}$	Line regulation	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$ to 18 V	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.02		\%/V
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta I_{M}$	Load regulation	$I_{M}=25$ to 400 m			0.009		\%/mA
$\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}} / \Delta T$	Temperature coefficient	$\mathrm{T}_{\text {amb }}=-20$ to 7	$\mathrm{I}_{\mathrm{M}}=0.1 \mathrm{~A}$		0.02		\%/ ${ }^{\circ} \mathrm{C}$

PRINCIPLE OF OPERATION

The device acts an emf speed regulator providing correction for the internal losses of the motor. The voltage across R_{S} is kept constant by the IC and equal to $\mathrm{V}_{\text {ref }}=1.25 \mathrm{~V}$ typ. (see application circuit).
The current through the resistance R_{T} is:

$$
I_{R T}=I_{R S}+I_{d}+\frac{I_{M}+I_{R S}}{K}
$$

where:

$$
I_{\mathrm{RS}}=\frac{V_{\text {ref }}}{R_{\mathrm{S}}}
$$

$I_{d}=$ quiescent drain current (1.1 mA typ.)
$\mathrm{I}_{\mathrm{M}}=$ motor current
$\mathrm{K}=$ reflection coefficient (20 typ.)
E_{g} being the motor's back electromotive force and R_{M} its internal resistance; the voltage across the motor itself will be:

$$
E_{g}+R_{M} I_{M}=R_{T} I_{R T}+V_{\text {ref }}
$$

therefore:

$$
\begin{aligned}
& E_{g}=I_{M}\left(\frac{R_{T}}{K}-R_{M}\right)+V_{\text {ref }} \\
& \cdot\left[\frac{R_{T}}{R_{S}}\left(1+\frac{1}{K}\right)+1\right]+R_{T} I_{d}
\end{aligned}
$$

Motor's speed will be independent from resisting torque if E_{g} doesn't depend on I_{M}, then will do:

$$
R_{T}=K R_{M} \text { (if } R_{T}>K_{\min } R_{M \min } \text { oscil- }
$$ lations may occur) - Back emf rated to the wanted speed can be selected acting to R_{S} R_{S} variations will lead to an hyperbolic adjustment of the speed:

$$
R_{S}=R_{T} \frac{V_{\text {ref }}(1+1 / K)}{E_{g}-V_{\text {ref }}-R_{T} I_{d}}
$$

STEREO LOW VOLTAGE CASSETTE PREAMPLIFIER

- LOW ON/OFF POP NOISE
- LOW OPERATING VOLTAGE
- VERY LOW DISTORTION

The TDA7282 is a monolithic integrated circuit intended for stereo cassette players.
The TDA7282 is assembled in 8 leads plastic minidip.

Minidip Plastic ORDERING NUMBER: TDA7282 (Minidip) TDA7282D (SO.8)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	10	V
$T_{\text {stg }}, T_{j}$	Storage and junction temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	Total power dissipation at $T_{\text {amb }}=70^{\circ} \mathrm{C}$	400	mW

STEREO PREAMPLIFIER FOR CASSETTE PLAYERS

CONNECTION AND BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	200

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{KHz}, \mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=\right.$ $10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{s}}=600 \Omega$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		1.8		9	V
I_{d}	Supply current			1.5	3	mA
I_{b}	Input bias current			280	500	$n \mathrm{~A}$
$\mathrm{I}_{\text {os }}$	Input offset current			20		$n /$
$V_{\text {os }}$	Input offset voltage			0.5		mV
$V_{\text {O DC }}$	Quiescent voltage			1.1		V
Vo	Output voltage	THD $=1 \%$	550	650		mV
THD	Total harmonic distortion $\begin{aligned} & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{aligned}$	$\mathrm{V}_{\mathrm{o}}=300 \mathrm{mV}$		$\begin{gathered} 0.08 \\ 0.07 \\ 0.1 \end{gathered}$	0.5	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
G_{v}	Open loop voltage gain	$f=1 \mathrm{KHz}$	68	80		dB
G_{v}	Closed loop gain			40		dB
	Channel balance			0.5		dB
e_{N}	Total input noise voltage	$B_{W}=22 \mathrm{KHz}$ to 22 KHz		1.5		$\mu \mathrm{V}$
$\mathrm{C}_{\text {S }}$	Channel separation	$\begin{aligned} & f=1 K H z \\ & v_{0}=30 \mathrm{mV} \end{aligned}$		65		dB
SVR	Supply voltage rejection	$f=100 \mathrm{~Hz}$	36	45		dB
$\mathrm{R}_{1 \mathrm{~N}}$	Input resistance			100		$K \Omega$
R_{0}	Output resistance			15		Ω

APPLICATION INFORMATION

Fig. 1 - Stereo preamplifier for cassette players

Fig. 2 - P.C and components layout of the circuit of Fig. 1 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 3 - Quiescent current
vs. supply voltage

Fig. 4 - DC output voltage
vs. supply voltage

Fig. 5 - Input bias current vs. supply voltage

Fig. 6 - Distortion versus output level

Fig. 8 - NAB response of the circuit of Fig. 1

Fig. 7 - Distortion vs. frequency

Fig. 9 - Supply voltage rejection vs. frequency

TDA7282

Fig. 10 - Stereo cassette player with motor speed control

DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

PRELIMINARY DATA

- SINGLE SUPPLY OPERATION
- FOUR STEREO INPUT SOURCE SELECTION
- MONO INPUT
- TREBLE, BASS, VOLUME AND BALANCE CONTROL
- Four independent speaker conTROL (FRONT/REAR)
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL BUS
- VERY LOW NOISE AND VERY LOW DISTORTION
- POP FREE SWITCHING

The TDA 7300 is a volume, tone (bass and treble) and fader (front/rear) processor for high quality audio applications in car radio and $\mathrm{Hi}-\mathrm{Fi}$ systems.

Control is accomplished by serial bus microprocessor interface.
The AC signal setting is obtained by resistor networks and analog switches combined with operational amplifiers.
The results are: low noise, low distortion and high dynamic range.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	18	V
$P_{\text {tot }}$	Total power dissipation $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$	2	W
$T_{\text {amb }}$	Operating ambient temperature	-40 to	85
$T_{\text {stg }}$	Storage temperature	${ }^{\circ} \mathrm{C}$	

BLOCK DIAGRAM

CONNECTION DIAGRAM

THERMAL DATA

$R_{\text {th j-pins }}$	Thermal resistance junction-pins	\max.	65
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s} 1}=12 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{s} 2}=8.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$; and $R_{g}=600 \Omega ; f=1 \mathrm{KHz}$ unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

SUPPLY ${ }^{(1)}$

$V_{s 1}$	Supply voltage $V_{s 1}$		10	12	16	V
$V_{s 2}$	Supply voltage $V_{s 2}$		6	8.5	10	V
I_{s}	Supply current		20	30	40	mA
$V_{\text {ref }}$	Reference voltage (pin 7)		3.5	4.3	5	V
SVR	Ripple rej. at $V_{s 1}$	$\mathrm{f}=300 \mathrm{~Hz}$ to 10 KHz	80	100		dB
SVR	Ripple rej. at $\mathrm{V}_{\mathrm{s} 2}$	$\mathrm{f}=300 \mathrm{~Hz}$ to 10 KHz	50	60		dB

INPUT SELECTORS

R_{i}	Input resistance		30	45		$K \Omega$
VINMAX	Input signal	$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB} ; \quad \mathrm{d}=0.3 \%$	1.5	2.2		VRMS
$\mathrm{C}_{\text {s }}$	Channel separation	$f=1 \mathrm{KHz}$	90	100		dB
		$f=10 \mathrm{KHz}$	70	80		dB
V_{i} (DC)	DC Voltage level		3.5	4.3	5	V

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

VOLUME CONTROLS

Control range			78		$d B$
$\mathrm{G}_{\text {max }}$ Max gain			10		dB
Max attenuation		64	68		dB
Step resolution	$\mathrm{G}_{\mathrm{v}}=-50$ to 10 dB		2	3	dB
Attenuator set error				2	dB
Tracking error				2	dB

SPEAKER ATTENUATORS

Control range		35	38	41	$d B$
Step resolution			2	3	$d B$
Attenuator set error				2	$d B$
Tracking error				2	$d B$

BASS AND TREBLE CONTROL ${ }^{(2)}$

Control range			± 15		$d B$
Step resolution			2.5	3.5	dB

AUDIO OUTPUT

V_{O}	Output voltage	$\mathrm{d}=0.3 \%$	1.5	2.2		VRMS
R_{L}	Output load resistance		2			$\mathrm{~K} \Omega$
C_{L}	Output load capacitance	-			1	nF
R_{O}	Output resistance			70	150	Ω
$\mathrm{~V}_{\mathrm{O}}$ (DC)	DC voltage level		3.5	3.8	4.5	V

GENERAL

ELECTRICAL CHARACTERISTICS (continued)

| Parameter | Test Conditions | Min. | Typ. | Max. |
| :---: | :---: | :--- | :--- | :--- | Unit | U |
| :--- |

BUS INPUTS

V_{iL}	Input LOW voltage				0.8	V
$\mathrm{~V}_{\mathrm{iH}}$	Input HIGH voltage		2			V
$\mathrm{~V}_{0}$	Output voltage SDA acknowledge	$\mathrm{I}=1.6 \mathrm{~mA}$			0.4	V

Notes:

1) The circuit can be supplied either at $\mathrm{V}_{\mathrm{s} 1}$ or at $\mathrm{V}_{\mathrm{s} 2}$ without the use of the internal voltage regulator. The circuit alsc operates at a supply voltage $\mathrm{V}_{\mathrm{s} 1}$ lower than 10 V . In this case the ripple rejection of $\mathrm{V}_{\mathrm{s} 2}$ is valid, because the voltage regulator saturates to about 0.8 V .
2) Bass and Treble response see attached diagram. The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network.

Fig. 1 - Test circuit

APPLICATION INFORMATION

Fig. 2 - P.C. board and component layout of the circuit in Fig. 11 (1:1 scale)

Fig. 3 - Total output noise vs. volume setting

Fig. 6 - Distortion vs. output voltage

Fig. 9 - Channel separation (L1-L2) vs. frequency

Fig. 4 - Signal to noise ratio vs. volume setting

Fig. 7 - Distortion vs. load resistance

Fig. 10 - Supply voltage rejection ($\mathrm{V}_{\mathrm{S} 1}$) vs. frequency

Fig. 5 - Distortion + noise
vs. frequency

Fig. 8 - Channel separation (L1 - R1) vs. frequency

Fig. 11 - Supply voltage rejection ($\mathrm{V}_{\mathrm{S} 2}$) vs. frequency

Fig. 12 - Supply voltage rejection versus $\mathrm{V}_{\mathrm{S} 1}$

Fig. 15 - Quiescent current
vs. supply voltage

Fig. 16 - Quiescent current
vs. temperature

Fig. 13 - Supply voltage rejection versus $\mathrm{V}_{\mathrm{S} 2}$

Fig. 14 - Clipping level ($\mathrm{V}_{\mathrm{rms}}$) vs. supply voltage

Fig. 17 - Typical tone response

TDA7300

APPLICATION INFORMATION (continued)

Fig. 18 - Complete car-radio system using digital controlled audio processor.

SERIAL BUS INTERFACE

S-BUS Interface and I2CBUS Compatibility

Data transmission from microprocessor to the TDA7300 and viceversa takes place thru the 3 -wire S-BUS interface, consisting of the three lines SDA, SCL, SEN. If SDA and SEN inputs are short-circuited together, then the TDA7300 appears as a standard I2CBUS slave.

In this case the $\mathrm{S} 6040 \mu \mathrm{P}$ can be programmed to generate the two different transmission systems: the S-BUS using the three lines of the serial bus, and the 12CBUS using the SCL and SDA lines only.

Fig. 19 - Timing Diagram of S-BUS and I2CBUS

SCL

APPLICATION INFORMATION (continued)

Interface Protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte, containing the TDA7300 address and the direction of the transmission on the BUS (this information is given in the 8 th bit of the byte: " 0 " means "write", that is from the master to the slave, while " 1 " means "read"). The TDA7300 must always acnowledge at the end of each transmitted byte.
- A sequence of data (N -bytes + acknowledge)
- A stop condition (P)

Fig. 20 - System with Mixed S-BUS Peripherals

SOFTWARE SPECIFICATION

Chip address (TDA7300 address)

```
1
MSB LSB
```


DATA BYTES

MSB					LSB	FUNCTION		
0	0	B2	B1	B0	A2	A1	A0	Volume control
1	1	0	B1	B0	A2	A1	A0	Speaker ATT LR
1	1	1	B1	B0	A2	A1	A0	Speaker ATT RR
1	0	0	B1	B0	A2	A1	A0	Speaker ATT LF
1	0	1	B1	B0	A2	A1	A0	Speaker ATT RF
0	1	0	X	X	S2	S1	S0	Audio switch
0	1	1	0	C3	C2	C1	C0	Bass control
0	1	1	1	C3	C2	C1	C0	Treble control

$X=$ don't care	$B x=10 \mathrm{~dB}$ steps
$A x=2 \mathrm{~dB}$ steps	$C x=2.5 \mathrm{~dB}$ steps

$B x=10 \mathrm{~dB}$ steps
$C x=2.5 d B$ steps

Status after power-on-reset

Volume	-68 dB
Speaker	-38 dB
Audio switch	Mono
Bass	+2.5 dB
Treble	+2.5 dB

NOTE - Using S6 is it necessary an external EPROM (M2716 F6X) previously programmed. Further information is available in $\mathrm{S} 6 \mu \mathrm{P}$ data sheet.

TDA7300

SOFTWARE SPECIFICATION (continued)

DATA BYTES (detailed description)

Volume

MSB				LSB				
0	0	B2	B1	B0	A2	A1	AO	Volume 2dB steps
				0	0	0	0	
					0	0	1	-2
				0	1	0	-4	
				1	1	1	-6	
				1	0	0	-8	
				1	1	0	Not allowed	
				1	1	1	Not allowed	
0	0	B2	B1	B0	A2	A1	A0	Volumed 10dB steps
	0	0	0				+10	
	0	0	1				0	
	0	1	0				-10	
	0	1	1				-20	
	1	0	0				-30	
	1	0	1				-40	
	1	1	0				-50	
	1	1	1				-60	

For example if you want setting the volume at -32 dB the 8 bit string is : 00100001

Speaker attenuators

MSB	LSB						
10	0	B1	BO	A2	A1	AO	Speaker LF
10	1	B1	B0	A2	A1	AO	Speaker RF
11	0	B1	BO	A2	A1	A0	Speaker LR
	1	B1	B0	A2	A1	A0	Speaker RR
				0	0	0	0
				0	0	1	-2
				0	1	0	-4
				0	1	1	-6
				1	0	0	-8
					0	1	Not allowed
					1	0	Not allowed
				1	1	1	Not allowed
			0				0
			1				-10
			0				-20
			1				-30

For example attenuation of 24 dB on speaker RF is giving by : 10110010

Audio Switch-Select the input channel to activate

MSB						LSB		
0	1	0	X	X	S 2	S1	S0	Audio Switch
			X	X	0	0	0	Stereo 1
			X	X	0	0	1	Stereo 2
		X	X	0	1	0	Stereo 3	
		X	X	0	1	1	Stereo 4	
		X	X	1	0	0	Mono	
		X	X	1	0	1	Not allowed	
		X	X	1	1	0	Not allowed	
		X	X	1	1	1	Not allowed	

$X=$ don't care
For example to set the stereo 2 channel the 8 bit string may be: 01000001

Bass and Treble - Control range of $\pm 15 \mathrm{~dB}$ (boost and cut) steps of 2.5 dB

$\begin{array}{llll} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & \text { C3 } \\ & \text { C3 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	Co co	Bass Treable
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \\ & -12.5 \\ & -10 \\ & -7.5 \\ & -5 \\ & -2.5 \\ & -0 \\ & +0 \\ & +2.5 \\ & +5 \\ & +7.5 \\ & +10 \\ & +12.5 \\ & +15 \\ & +15 \\ & \hline \end{aligned}$

$C 3=$ Sign
For example Bass at -12.5 dB is obtained by the following 8 bit string: 01100010

DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

- INPUT AND OUTPUT PINS FOR EXTERNAL EQUALIZER
- THREE STEREO INPUT SOURCE SELECTION PLUS MONO INPUT
- TREBLE, BASS, VOLUME AND BALANCE CONTROL
- FOUR INDEPENDENT SPEAKER CONTROL (FRONT/REAR)
- SINGLE SUPPLY OPERATION
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL BUS
- VERY LOW NOISE AND VERY LOW DISTORTION
- POP FREE SWITCHING

The TDA7302 is a volume, tone (bass and treble) and fader (front/rear) processor for
high quality audio applications in car radio and $\mathrm{Hi}-\mathrm{Fi}$ systems.
Control is accomplished by serial bus microprocessor interface.
The AC signal setting is obtained by resistor networks and analog switches combined with operational amplifiers.
The results are: low noise, low distortion and high dynamic range.

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	14	V	
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\left(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right)$	2	W	
$\mathrm{~T}_{\text {amb }}$	Operating ambient temperature	-40 to	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$	

BLOCK DIAGRAM

THERMAL DATA

| $R_{\text {th j-pins }}$ | Thermal resistance junction-pins | \max. |
| :--- | :--- | :--- |${ }^{65} \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=8.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega\right.$; and $\mathrm{R}_{\mathrm{g}}=600 \Omega$;
$f=1 \mathrm{KHz}$ unless otherwise specified)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

SUPPLY

$\mathrm{V}_{\text {s }}$	Supply voltage		6	8.5	14	V
I_{5}	Supply current		20	30	40	mA
SVR	Ripple rejection	$f=300 \mathrm{~Hz}$ to 10 KHz	50	60		dB
INPUT SELECTORS						
R_{i}	Input resistance		30	45		K Ω
VINMAX	Input signal	$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB} \quad \mathrm{~d}=0.3 \%$	1.8	2.2		$\mathrm{V}_{\text {RMS }}$
C_{5}	Channel separation	$\mathrm{f}=1 \mathrm{KHz}$	90	96		dB
		$f=10 \mathrm{KH}$	70			
R_{L}	Output load resistance		5			K Ω
$V_{i}(D C)$	Input DC voltage		3.5	4.3	5	V

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.	Unit

VOLUME CONTROLS

$\mathrm{R}_{\text {in }}$ Input resistance		7	10		$\mathrm{~K} \Omega$
Control range			78		dB
$\mathrm{G}_{\max }$ Max gain			10		dB
Max attenuation		64	68		dB
Step resolution			2	3	dB
Attenuator set error	$\mathrm{G}_{\mathrm{v}}=-50$ to 10 dB			2	dB
Tracking error				2	dB

SPEAKER ATTENUATORS

Control range		35	38	41	$d B$
Step resolution			2	3	$d B$
Attenuator set error				2	$d B$
Tracking error				2	$d B$

BASS AND TREBLE CONTROL (1)

Control range			± 15		$d B$
Step resolution			2.5	3.5	dB

AUDIO OUTPUT

V_{o}	Output voltage	$\mathrm{d}=0.3 \%$	1.8	2.2		$\mathrm{~V}_{\mathrm{RMS}}$
R_{L}	Output load resistance		2			$\mathrm{~K} \Omega$
C_{L}	Output load capacitance				1	nF
R_{O}	Output resistance			70	150	Ω
$\mathrm{~V}_{\mathrm{O}}$ (DC)	DC voltage level		3	1.8	4.5	V

GENERAL

${ }^{\text {e }}$ No	Output noise	$\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz	$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$			6		$\mu \mathrm{V}$
			Out atten. $\geqslant 20 \mathrm{~dB}$			3.5		
		$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$	Curve A			4		
S/N	Signal to noise ratio	All gain $=0 \mathrm{~dB}$ $V_{0}=1 V_{R M S}$	$\mathrm{BW}=22 \mathrm{~Hz}$ to 22 KHz			105		dB
d	Distortion	$f=1 \mathrm{KHz}$	1 V	$\mathrm{G}_{\mathrm{v}}=0$		0.01	0.1	\%
	Frequency response (-1dB)	$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$		High Low	20		20	$\underset{\mathrm{Kz}}{\mathrm{KHz}}$
S_{c}	Channel separation left/right	$\begin{aligned} & f=1 K H z \\ & f=10 K H z \end{aligned}$				100 82		dB dB

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	Min.	Typ.	Max.

BUS INPUTS

$V_{1 L}$	Input LOW voltage				0.8	V
$\mathrm{~V}_{1 \mathrm{H}}$	Input HIGH voltage		2			V
$\mathrm{~V}_{0}$	Output voltage SDA acknowledge	$1=1.6 \mathrm{~mA}$			0.4	V
	Digital input current		-5		+5	$\mu \mathrm{~A}$

Notes: (1) Bass and Treble response see attached diagram. The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network.

Fig. 1 - Test circuit

Fig. 2 - Total output noise vs. volume setting

Fig. 5 - Distortion vs. output voltage

Fig. 8 - Channel separation
(L1 - L2) vs. frequency

Fig. 3 - Signal to noise ratio vs. volume setting

Fig. 6 - Distortion vs. load resistance

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 4 - Distortion + noise vs. frequency

Fig. 7 - Channel separation
(L1 - R1) vs. frequency

Fig. 10 - Quiescent current vs. temperature

5/10

APPLICATION INFORMATION

VOLUME CONTROL CONCEPT

Traditional electronic volume control circuits use a multiplier technique with all the disadvantages of high noise and distortion.
The used concept, as shown in Fig. 11 with digital switched resistor dividers, provides extremely low noise and distortion. The multiplexing of the resistive dividers is realized with a multiple-input operational amplifier.

BASS AND TREBLE CONTROL

The principle operation of the bass control is shown in Fig. 12. The external filter together with the internal buffer allows a flexible filter design according to the different requirements in car radios. The function of the treble is similar to the bass.
A typical filter curve is shown in Fig. 13.

OUTPUTS

A special class-A output amplifier with a modulated sink current provides low distortion and ground compatibility with low current consumption.

Fig. 11 - Volume control

Fig. 12 - Bass control

Fig. 13 - Typical tone response

APPLICATION INFORMATION (continued)

Fig. 14 - Complete car-radio system using digital controlled audio processor

SERIAL BUS INTERFACE

S-BUS Interface and I^{2} CBUS Compatibility

Data transmission from microprocessor to the TDA7302 and viceversa takes place thru the 3 -wire S-BUS interface, consisting of the three lines SDA, SCL, SEN. If SDA and SEN inputs are short-circuited together, then the TDA7302 appears as a standard I^{2} CBUS slave.

In this case the $\mathrm{S} 6040 \mu \mathrm{P}$ can be programmed to generate the two different transmission systems: the S-BUS using the three lines of the serial bus, and the 1^{2} CBUS using the SCL and SDA lines only.

Fig. 15 - Timing Diagram of S-BUS and I^{2} CBUS

SCL

SDA

SEN

SCL

APPLICATION INFORMATION (continued)

Interface Protocol

The interface protocol comprises:

- A start conditions (S)
- A chip address byte, containing the TDA7302 address and the direction of the transmission on the BUS (this information is given in the 8th bit of the byte: " 0 " means "write", that is from the maste r to the slave, while " 1 " means "read"). The TDA7302 must always acknowledge at the end of each transmitted byte.
- A sequence of data (N -bytes + acknowledge)
- A stop condition (P)

Fig. 16 - System with Mixed S-BUS Peripherals

SOFTWARE SPECIFICATION

Chip address (TDA7302 address)

1	0	0	0	1	0	0	0
$M S B$							

DATA BYTES

MSB					LSB			FUNCTION
0	0	B2	B1	B0	A2	A1	A0	Volume control
1	1	0	B1	B0	A2	A1	A0	Speaker ATT LR
1	1	1	B1	B0	A2	A1	A0	Speaker ATT RR
1	0	0	B1	B0	A2	A1	A0	Speaker ATT LF
1	0	1	B1	B0	A2	A1	A0	Speaker ATT RF
0	1	0	X	X	S2	S1	A0	Audio switch
0	1	1	0	C3	C2	C1	C0	Bus control
0	1	1	1	C3	C2	C1	C0	Treble control

$X=$ don't care	$B x=10 \mathrm{~dB}$ steps
$A x=2 d B$ steps	$C x=2.5 d B$ steps

$B x=10 \mathrm{~dB}$ steps
$\mathrm{Ax}=2 \mathrm{~dB}$ steps
$C x=2.5 \mathrm{~dB}$ steps

Status after power-on-reset

Volume	-68 dB
Speaker	-38 dB
Audio switch	Mono
Bass	+2.5 dB
Treble	+2.5 dB

NOTE - Using S6 is it necessary an external EPROM (M2716 F6X) previously programmed. Further information is available in S6 $\mu \mathrm{P}$ data sheet.

SOFTWARE SPECIFICATION (continued)

DATA BYTES (detailed description)
Volume

MSB							
0	0	B2	B1	B0	A2	A1	AO
				0	0	0	Volume 2dB steps
				0	0	1	-2
				0	1	0	-4
				0	1	1	-6
				1	0	0	-8
				1	0	1	Not allowed
				1	1	0	Not allowed
				1	1	1	Not allowed
0	0	B2	B1	B0	A2	A1	A0
	0	0	0				Volume10dB steps
	0	0	1				0
	0	1	0				-10
	0	1	1				-20
	1	0	0				-30
	1	0	1				-40
	1	1	0				-50
	1	1	1				-60

For example if you want setting the colume at -32 dB the 8 bit string is : 00100001

Speaker attenuators

MSB	LSB						
10	0	B1	B0	A2	A1	AO	Speaker LF
10	1	B1	B0	A2	A1	AO	Speaker RF
11	0	B1	B0	A2	A1	AO	Speaker LR
11	1	B1	B0	A2	A1	AO	Speaker RR
				0	0	0	0
						1	-2
					1	0	-4
						1	-6
					0	0	-8
						1	Not allowed
					1	0	Not allowed
					1	1	Not allowed
			0				0
							-10
			0				-20
			1				-30

For example attenuation of 24 dB on speaker RF is given by: 10110010

SOFTWARE SPECIFICATION (continued)

Audio Switch - Select the input channel to activate

MSB	LSB					
010	X	X	S2	S1	SO	Audio Switch
	X	X	0	0	0	Stereo 1
	X	X	0	0	1	Stereo 2
	X	X	0	1	0	Stereo 3
	X	X	0	1	1	Mute Input
	X	X	1	0	0	Mono
	X	X	1	0	1	Not allowed
	X	X	1	1	0	Not allowed
	X	X	1	1	1	Not allowed

$X=$ don't care
For example to set the stereo 2 channel the 8 bit string may be: $\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$

Bass and Treble - Control range of $\pm 15 \mathrm{~dB}$ (boost and cut) steps of 2.5 dB

0	1	1	0	C	C 2	C 1	C 0	Bass Treable
	1	1	1	C	C 2	C 1	CO	
				0	0	0	0	-15
				0	0	0	1	-15
				0	0	1	0	-12.5
				0	0	1	1	-10
				0	1	0	0	-7.5
				0	1	0	1	-5
			0	1	1	0	-2.5	
					1	-0		
			1	1	1	1	+0	
			1	1	1	0	+25	
			1	1	0	1	+5	
			1	0	0	0	+7.5	
			1	0	1	0	+10	
			0	0	1	+12.5		
			1	0	0	0	+15	

$\mathrm{C} 3=\mathrm{Sign}$
For example Bass at -12.5 dB is obtained by the forlowing 8 bit string: $\quad \begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$

AM/FM CAR RADIO SYSTEM

ADVANCE DATA

The TDA7320 is high performance AM/FM radio IC designed for use in a wide range of car radio and home radio applications, operating with a supply voltage from 7 to 14 V . The TDA7320 is supplied in a 20 pin plastic DIP package.

AM SECTION

- WB balanced RF amplifier
- Double balanced mixer
- Balanced detector
- Level controlled oscillator
- Oscillator booster for digital tuning
- Field strength meter

FM SECTION

- IF balanced amplifier and limiter
- Quadrature detector
- Field strength meter and AFC outputs
- Adjustable interstation noise mute

FEATURES

- Soft AM/FM switching μ P compatible
- High recovered audio signal
- Very good AM signal handling
- Suitable for capacitance, varicap and inductive tuning (SW included)
- Low crossmodulation
- Very low tweet

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	14	V
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}<85^{\circ} \mathrm{C}$	0.8	W
$\mathrm{~T}_{\mathrm{op}}$	Operating temperature	-30 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DATA (Top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 1 - Test circuit

AM/FM CAR RADIO SYSTEM

ADVANCE DATA

The TDA7322 is high performance $A M / F M$ radio IC designed for use in a wide range of car radio and home radio applications, operating with a supply voltage from 7 to 14 V . The TDA7322 is supplied in a 20 pin plastic DIP package.

AM SECTION

- WB balanced RF amplifier
- Double balanced mixer
- Balanced detector
- Level controlled oscillator
- Oscillator booster for digital tuning
- Field strength meter

FM SECTION

- IF balanced amplifier and limiter
- Quadrature detector
- Field strength meter and AFC outputs
- Adjustable interstation noise mute
- Stop station function

FEATURES

- Soft AM/FM switching $\mu \mathrm{P}$ compatible
- High recovered audio signal
- Very good AM signal handling
- Suitable for capacitance, varicap and inductive tuning (SW included)
- Low crossmodulation
- Very low tweet

DIP-20 Plastic

ORDERING NUMBER: TDA7322

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	14	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}<85^{\circ} \mathrm{C}$	0.8	W
$\mathrm{~T}_{\text {op }}$	Operating temperature	-30 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{j}$	Storage and junction temperature	-56 to 150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	80

Fig. 1 - Test circuit

PLL RADIO TUNING SYNTHESIZER

ADVANCE DATA

- ON-CHIP PRESCALER WITH UP TO 150 MHz INPUT FREQUENCY.
- ON-CHIP AM AND FM INPUT AMPLIFIERS WITH HIGH SENSITIVITY (30 mV).
- LOW CURRENT DRAIN (TIPICALLY 20 mA FOR AM AND 25 mA FOR (FM) OVER A WIDE SUPPLY VOLTAGE RANGE (4V TO 10V).
- ON-CHIP AMPLIFIER FOR LOOP FILTER FOR BOTH AM AND FM (UP TO 25V TUNING VOLTAGE).
- ON-CHIP/PROGRAMMABLE CURRENT AMPLIFIER (CHARGE PUMP) TO ADJUST THE LOOP GAIN
- ONLY ONE REFERENCE FREQUENCY FOR BOTH AM AND FM
- HIGH SIGNAL PURITY DUE TO A SAMPLE AND HOLD PHASE DETECTOR FOR THE IN-LOCK CONDITION.
- HIGH TUNING SPEED DUE TO A POWERFUL DIGITAL MEMORY PHASE DETECTOR DURING THE OUT-LOCK CONDITION
- TUNING STEPS FOR AM ARE: 1 kHz OR 1.25 kHz FOR A VCO FREQUENCY RANGE OF 512 kHz TO 32 MHz
- TUNING STEPS FOR FM ARE: 10 kHz OR 12.5 kHz FOR A VCO FREQUENCY RANGE OF 150 MHz TO 80 MHz
- SERIAL 3-LINE BUS INTERFACE TO A MICROCOMPUTER
- TEST OUTPUT PIN

The TDA 7325 is a single chip frequency synthesizer IC in $I^{2} L$ technology, which performs all the tuning functions of a PLL radio tuning system. The IC is applicable to all types of radio receivers, e.g. car radios, hi-fi radios and portable radios.

APPLICATION CIRCUIT

CONNECTION DIAGRAM

PINNING

1	TR	resistor/capacitors
2	TCA	for sample and
3	TCB	hold circuit
4	DCS	decoupling of supply
5	IN	input of output amplifier
6	OUT	output of output amplifier
7	VCC3	positive supply voltage of output amplifier
8	FFM	FM signal input
9	VCC1	positive supply voltage of high frequency logic part
10	DCA	decoupling of input amplifiers
11	FAM	AM signal input
12	DATA	
13	DLEN	BUS
14	CLB	
15	VEE	ground
16	VCC2	positive supply voltage of low frequency logic part
17	XTAL	and analogue part
18	TEST	resence oscillator input

ABSOLUTE MAXIMUM RATINGS

$V_{c C 1} ; V_{c C 2}$	Supply voltage; logic and analogue part	-0.3 to 13.2	V
$V_{\text {cc3 }}$	Supply voltage; output amplifier	$\mathrm{V}_{\mathrm{cc} 2}$ to +30	V
$\mathrm{P}_{\text {tot }}$	Total power dissipation	max. 800	mW
$\mathrm{~T}_{\mathrm{amb}}$	Operating ambient temperature range	-25 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-40 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC} 3}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=\right.$ $25^{\circ} \mathrm{C}$; unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {CC1 }}$	Supply voltages		4	5	10	V
$\mathrm{V}_{\mathrm{CC} 2}$			4	5	10	V
$\mathrm{V}_{\mathrm{Cc} 3}$			$\mathrm{V}_{\mathrm{CC} 2}$	-	25	V
	Supply currents*					
$I_{\text {tot }}$	AM mode	$I_{\text {tot }}=I_{\text {ccl }}+I_{\text {cce }}$	-	20	-	mA
$I_{\text {tot }}$	FM mode	in-lock; BRM $=1$ '	-	25	-	mA
Icc3		IOUT $=0$			1	mA

[^15]
ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
	RF inputs (FAM, FFM)					
${ }_{\text {fram }}$	AM input frequency		512 kHz	-	32	MHz
$\mathrm{f}_{\text {FFM }}$	FM input frequency		80	-	150	MHz
$V_{i(r m s)}$	Input voltage at FAM		30	-	500	mV
$V_{i}(\mathrm{rms})$	Input voltage at FFM		30	-	500	mV
R_{i}	Input resistance at FAM		-	2	-	k Ω
R_{i}	Input resistance at FFM		-	135	-	Ω
C_{i}	Input capacitance at FAM		-	3.5	-	pF
C_{i}	Input capacitance at FFM		-	3	-	pF
$\mathrm{V}_{5} / \mathrm{V}_{\mathrm{ns}}$	Voltage ratio allowed between selected and non-selected input		-	-30	-	dB
	Crystal oscillator (XTAL)	see note 1				
$\begin{aligned} & \mathrm{f}_{\mathrm{XTAL}} \\ & \mathrm{R}_{\mathrm{s}} \end{aligned}$	Maximum input frequency Crystal series resistance		4	-	$\overline{150}$	$\begin{gathered} \mathrm{MHz} \\ \Omega \end{gathered}$
	BUS inputs (DLEN, CLUB, DATA)					
$\mathrm{V}_{1} \mathrm{~L}$	Input voltage LOW		0	-	0.8	v
V_{1+}	Input voltage HIGH		2.4	-	$\mathrm{V}_{\mathrm{cc1}}$	v
$-_{\text {- }}^{\text {IL }}$	Input current LOW	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	Input current HIGH	$\mathrm{V}_{\text {IH }}=2.4 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
	BUS inputs timing (DLEN, CLB, DATA)	see also Fig. 2 and note 2				
${ }^{\text {t CLB }}$ lead	Lead time for CLB to DLEN		1	-	-	$\mu \mathrm{s}$
${ }^{\text {tread }}$	Lead time for DATA to the first CLB pulse		0.5	-	-	$\mu \mathrm{s}$
${ }^{\text {t CLBlag } 1}$	Set-up time for DLEN to CLB		5	-	-	$\mu \mathrm{s}$
${ }^{\text {t CLBH }}$	CLB pulse width HIFH		5	-	-	$\mu \mathrm{s}$
${ }^{\text {t cLbl }}$	CLB pulse width LOW		5	-	-	$\mu \mathrm{s}$
${ }^{\text {t datalead }}$	Set-up time for DATA to CLB		8	-	-	$\mu \mathrm{s}$
t DATAhold	Hold time for DATA to CLB		0	-	-	$\mu \mathrm{s}$
${ }^{\text {t DLENhold }}$	Hold time for DLEN to CLB		2	-	-	$\mu \mathrm{s}$
${ }^{\text {t CLBlag2 }}$	Set-up time for DLEN to CLB load pulse		2	-	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ IST	Busy time from load pulse to next start to transmission	next transmission after word ' B ' to other device	5	-	-	$\mu \mathrm{s}$
${ }^{\text {t }}$ IST	Busy time	or	0.3	-	-	ms
	asy nchronous mode	next transmission to SAA 1057 after word ' A '	1.3	-	-	ms
	Sample and hold circuit (TR, TCA, TCB)	see also notes 3; 4				
$V_{\text {tca, }}$ Vtcb	Minimum output voltage		-	1.3	-	v
$V_{\text {TCA }}, V_{\text {TCB }}$	Maximum output voltage		-	$\mathrm{v}_{\mathrm{cc} 2}-0.7$		v
${ }^{\text {CTACA }}$	Capacitance at TCA (external)	$\begin{aligned} & \text { REFH }={ }^{\prime} 1^{\prime} \\ & \text { REFH }=0^{\prime} \end{aligned}$	-	-	$\begin{aligned} & 2.2 \\ & 2.7 \end{aligned}$	${ }_{\mathrm{nF}}^{\mathrm{nF}}$
${ }^{\text {t DIS }}$	Discharge time at TCA	$\begin{aligned} & \text { REFH }='^{\prime} \prime \\ & \text { REFH }={ }^{\prime} \end{aligned}$	-	$\begin{gathered} 5 \\ 6.25 \end{gathered}$		${ }_{\mu \mathrm{s}}$

ELECTRICAL CHARACTERISTICS (continued)

NOTES

1. Pin 17 ($X T A L$) can also be used as an input for an external clock.
The values given in Fig. 1 are a typical application example.
2. See BUS information in section 'operation description.
3. The output voltage at TCB and TCA is typically $1 / 2 \mathrm{~V}_{\mathrm{CC} 2}+0.3 \mathrm{~V}$ when the tuning system is in-lock via the sample and hold phase detector. The control voltage at TCB is defined as the difference between the actual voltage at TCB and the value calculated from the formula $1 / 2 \mathrm{~V}$ CC2 +0.3 V .
4. Crystal oscillator frequency $\mathrm{f}^{\mathrm{XTAL}}=4 \mathrm{MHz}$.

Fig. 1 - Circuit configuration showing external 4 MHz clock

GENERAL DESCRIPTION

The TDA 7325 performs the entire PPL synthesizer function (from frequency inputs to tuning voltage output) for all types of radios with the AM and FM frequency ranges.
The circuit comprises the following:

- Separate input amplifiers for the AM and FM VCO-signal.
- A divider-by-10 for the FM channel.
- A multiplexer which selects the AM or FM input
- A sample and hold phase detector for the in-lock condition, to achieve the high spectral purity of the VCO signal.
- A digital memory frequency/phase detector, which operates at a 32 times higher frequency than the sample and hold phase detector, so fast tuning can be achieved.
- An-in-lock counter detects when the system is in-lock. The digital phase detector is switchedoff automatically when an in-lock condition is detected.
- A reference frequency oscillator followed by a reference divider. The frequency is generated by a 4 MHz quartz crystal. The reference frequency can be chosen either 32 kHz or 40 kHz for the digital phase detector (that means 1 kHz and 1.25 kHz for the sample and hold phase detector), which results in tuning steps of 1 kHz and 1.25 kHz for $A M$, and 10 kHz and 12.5 kHz for FM .
- A programmable current amplifier (charge pump), which controls the output current of both the digital and the sample/hold phase detector in a range of 40 dB . It also allows the loop gain of the runing system to be adjusted by the microcomputer.
- A tuning voltage amplifier, which can deliver a tuning voltage of up to 25 V .
- BUS; this circuitry consists of a format control part, a 16 -bit shift register and two 15 -bit latches. Latch A contains the to be tuned frequency information in a binary code. This binary-coded number, multiplied by the tuning spacing, is equal to the synthesized frequency. The programmable divider (without the fixed divide-by-10 prescaler for FM) can be programmed in a range between 512 and 32767 (see Fig. 3). Latch B contains the control information.

OPERATION DESCRIPTION

Control information

The following functions can be controlled with the data word bits in latch B, For data word format and bit position see Fig. 3.
FM FM/AM selection; ' 1 ' $=F M$, ${ }^{\prime} 0$ ' $=A M$
REFH reference frequency selection; ' 1 ' $=1.25$ $\mathrm{kHz},{ }^{\prime} \mathrm{O}^{\prime}=1 \mathrm{kHz}$ (sample and hold phase (detector)

CP3
enables last 8 bits (SLA to TO) of data word B;
' 1 ' enables ' 0 ' $=$ disables; when programmed ' 0 ', the last 8 bits of data word B will be set to ' 0 ' automatically
SLA load mode of latch $A ;{ }^{\prime} 1^{\prime}=$ synchronous, ' 0 ' asynchronous

PDM1 phase detector mode
PDMO

PDM1	PDM0	digital phase detector
0	X	automatic on/off on off
1	0	1

BRM bus receiver mode bit; in this mode the supply current of the BUS receiver will be switched-off automatically after a data transmission (current-draw is reduced); ${ }^{\prime} 1$ ' $=$ current switched; ' 0 ' $=$ current always on
T3 test bit; must be programmed always ' 0 '
T2 test bit; selects the reference frequency (32 or 40 kHz) to the TEST pin
test bit; must be programmed always ' 0 '
test bit; selects the output of the programmable counter to the TEST pin

T3	T2	T1	T0	TEST (pin 18)
0	0	0	0	1
0	1	0	0	reference frequency
0	0	0	1	output progrrammable counter
0	1	0	1	ountput in-lock counter $0^{\prime}=$ out-lock $1^{\prime}=$ in-lock

SGS-THOMSON

Fig. 2-BUS format
DLEN
CLB

(1) During the zero set-up time ($t_{L Z s u}$) CLB can be LOW or HIGH, but no transient of the signal is permitted. This can be of use when an $1^{2} \mathrm{C}$ bus is used for other devices on the same data and clock lines

Fig. 3 - Bit organization of data words A and B

DATA WORD B

1 FM
M REFH
$3 \mathrm{CP}_{2}$

CPO	SB2	SLA	PDM1	PDMO	BRM

| M | T3 |
| :--- | :--- | :--- |

T2
\square то

APPLICATION INFORMATION

Initialize procedure

Either a train of at least 10 clock pulses should be applied to the clock input (CLB) or word B should be transmitted, to achieve proper initialization of the device.
For the complete initialization (defining all control bits) a transmission of word B should follow. This means that the IC is ready to accept word A.

Synchronous/asynchronous operation

Synchronous loading of the frequency word into the programmable counter can be achieved when bit 'SLA' of word B is set to ' 1 '. This mode should be used for small frequency steps where low tuning noise is important (e.g. search and manual
tuning). This mode should not be used for frequency changes of more than 31 tuning steps. In this case asynchronous loading is necessary. This is achieved by setting bit 'SLA' to ' 0 '. The in-lock condition will then be reached more quickly, because the frequency information is loaded immediately into the divider.

Restrictions to the use of the programmable current amplifier

The lowest current gain (0.023) must not be used in the in-lock condition when the supply voltage $\mathrm{V}_{\mathrm{CC} 2}$ is below 5 V (CP3, CP2, CP1 and CPO are all set to ' 0 '). This is to avoid possible instability of the loop due to a too small range of the sample and hold phase detector in this condition (see also section 'Electrical Characteristics').

BRIDGE-STEREO AMPLIFIER FOR CAR RADIO

ADVANCE DATA

- VERY FEW EXTERNAL COMPONENTS
- NO BOUCHEROT CELLS
- NO BOOTSTRAP CAPACITORS
- HIGH OUTPUT POWER
- NO SWITCH ON/OFF NOISE
- VERY LOW STAND-BY CURRENT $(100 \mu \mathrm{~A})$
- FIXED GAIN
- PROGRAMMABLE TURN-ON DELAY

Protections :

- OUTPUT AC-DC SHORT CIRCUIT TO GROUND AND TO SUPPLY VOLTAGE
- VERY INDUCTIVE LOADS
- OVERRATING CHIP TEMPERATURE
- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GROUND

The TDA7350 is a new technology class AB Audio Power Amplifier in the Multiwatt ${ }^{\circledR}$ package designed for car radio applications. Thanks to the fully complementary PNP/NPN output configuration the high power performance of the TDA7350 are obtained without bootstrap capacitors.
A delayed turn-on mute circuit eliminates audible on/off noise, and a novel short circuit protection system prevents spurious intervention with highly inductive loads.

Multiwatt-11

ORDERING NUMBER: TDA7350

APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

V_{S}	Operating supply voltage	18	V
$V_{\text {S }}$	DC supply voltage	28	V
V_{S}	Peak supply voltage ($\mathrm{for} \mathrm{t}=50 \mathrm{~ms}$)	40	V
10	lout peak (non rep. $\mathrm{t}=100 \mu \mathrm{~s}$)	5	A
10	lout peak (rep. freq. $>10 \mathrm{~Hz}$)	4	A
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=80^{\circ} \mathrm{C}$	40	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-case }} \quad$ Thermal resistance junction-case	\max	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V}$, $\mathrm{f}=1 \mathrm{KHz}$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Supply voltage		8		18	V
I_{d}	Total quiescent drain current	stereo configuration			120	mA
$\mathrm{~A}_{\text {SB }}$	Stand-by attenuation		60	80		dB
$\mathrm{I}_{\text {SB }}$	Stand-by current				100	$\mu \mathrm{~A}$

STEREO

BRIDGE

P_{0}	Output power	$\begin{array}{ll} d=10 \% & R_{L}=4 \Omega \\ & R_{L}=3.2 \Omega \end{array}$	16	$\begin{aligned} & 20 \\ & 22 \end{aligned}$		W
		$d=0.5 \% \quad R_{L}=4 \Omega$		18		
d	Distortion	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=0.1 \mathrm{~W} \text { to } 10 \mathrm{~W} \end{aligned}$		0.15	1	\%
Vos	Output offset voltage				250	mV
SVR	Supply voltage rejection	$\begin{aligned} & \mathrm{R}_{\mathrm{s}}=0 \text { to } 10 \mathrm{~K} \Omega \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$	45	50		dB
$\mathrm{R}_{\mathbf{i}}$	Input resistance			50		$K \Omega$
G_{v}	Voltage gain		33	35	37	dB
EIN	Input noise voltage	$\mathrm{R}_{\mathrm{g}}=50 \Omega$		2.0		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$		2.5		
		$\mathrm{R}_{\mathrm{g}}=50 \Omega$		2.7		$\mu \mathrm{V}$
		$\mathrm{R}_{\mathrm{g}}=10 \mathrm{~K} \Omega$		3.2		

[^16]Fig. 1 - STEREO test and application circuit

Fig. 2 - P.C. and layout (STEREO) of the fig. 1 (1:1 scale)

Fig. 3 - BRIDGE test and application circuit

Fig. 4 - P.C. and layout (BRIDGE) of the fig. 3 (1:1 scale)

Fig. 5 - Output power versus V_{S} (STEREO)

Fig. 8 - Crosstalk vs. frequency (STEREO)

Fig. 11 - Quiescent current versus V_{S}

Fig. 6 - Pout versus frequency (STEREO)

Fig. 9 - SVR versus $C_{S V R}$ (STEREO)

Fig. 12 - Dissipated power \& efficiency vs. P_{O}

Fig. 7 - Pout versus frequency (STEREO)

Fig. 10 - Output power versus V_{S} (BRIDGE)

Fig. 13 - Dissipated power \& efficiency vs. P_{O}

LOW VOLTAGE NBFM IF SYSTEM

- OPERATION FROM 1.8V TO 9V
- LOW DRAIN CURRENT (4mA, $\mathrm{V}_{\mathrm{s}}=4 \mathrm{~V}$)
- HIGH SENSITIVITY (3dB INPUT LIMITING AT $3 \mu \mathrm{~V}$)
- $8 \mu \mathrm{~V}$ INPUT FOR 20 dB S/N
- AFC OUTPUT
- LOW EXTERNAL FAIR COUNT

The TDA7359 is a low-power narrow band FM IF demodulation system operable to less than 2 V supply voltage.
The device includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Op. Amp., Squelch, Scan Control and Mute Switch.

The TDA7359 is designed for use in NBFM dual conversion communication equipments using a 455 KHz ceramic filter like cordless telephones, walkie-talkies, scan receivers, etc.

BLOCK DIAGRAM (PIN. NUMBERS are for DIP-18)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage		
V_{1}	RF input voltage (pin 18)	9	V
V_{8}	Detector input voltage	1	$\mathrm{~V}_{\text {rms }}$
V_{14}	Mute function voltage	1	$\mathrm{~V}_{\text {PP }}$
$T_{\text {op }}$	Operating ambient temperature	-0.5 to	5
T_{j}	Junction temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	Storage temperature	150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAMS

(Top view)

DIP-18

SO-20L

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	DIP-18	SO-20L

PIN FUNCTION (DIP-18)

${ }^{\circ}$	NAME	FUNCTION
1-2	XTAL OSCILLATOR	Connections for the Colpitts XTAL oscillator. The XTAL may be replaced by an inductor (see fig. 5) if the application does not require high stability.
3	MIXER OUT	The Mixer is double balanced to reduce spurious products. The output impedance is $1.8 \mathrm{~K} \Omega$ to match the input impedance of a 455 KHz ceramic filter.
4	SUPPLY VOLTAGE	Must be well decoupled with a 100 nF ceramic capacitor.
5	IF LIMITER INPUT	Input pin of the six stages amplifier with about $50 \mu \mathrm{~V}$ limiting sensitivity and $1.8 \mathrm{~K} \Omega$ input impedance. The if output is connected to the external quadrature coil (pin 8) via an internal 10 pF capacitor.
6-7	DECOUPLING	Good quality 100 nF ceramic capacitors and a suitable layout are important.
8	QUADRATURE COIL	A quadrature detector is used to demodulate the 455 KHz FM signal. The O of the quad coil has direct effect on output level and distortion (see fig. 6). For proper operation the voltage should be $100 \mathrm{mV}_{\mathrm{rms}}$.
10	AUDIO OUTPUT	The Audio signal after detection and deemphasis is buffered by an internal emitter follower.
11	AFC OUT	AFC output, with high gain and high output impedance. If not needed, it should be grounded or connected to pin 9 (to double the recovered audio).
12 13	OP AMP. INPUT OP AMP. OUTPUT	Because of the low DC bias, the swing on the operational amplifier output is limited to 550 mV rms. This can be increased by adding a resistor from the operational amplifier input to ground.
14	SQUELCH INPUT	The Squelch trigger circuit with a low bias on the input (pin 14) will force pin 15 high; and pin 16 Low.
15	SCAN CONTROL	Pulling pin 14 above mute threshold (0.65 V) will force pin 15 to an impedance of about $60 \mathrm{~K} \Omega$ to ground and pin 16 will be an open circuit.
16	MUTE	An hysteresis of about 50 mV at pin 12 will effectively prevent jitter.
17	GND	Ground connection.
18	10.7MHz MIXER INPUT	Input of the wide-band mixer. Normally used as 10.7 MHz / 455 KHz converter, it can be also used with input frequencies up to 60 MHz .

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=4 \mathrm{~V} ; \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \mathrm{f}= \pm 3 \mathrm{KHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} ; \mathrm{T}_{\mathrm{amb}}=\right.$ $25^{\circ} \mathrm{C}$; unless otherwise noted)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$v_{\text {s }}$	Supply voltage range		1.8	4	9	V
I_{s}	Supply current	Squelch OFF Squelch ON		$\begin{aligned} & 3.8 \\ & 4.7 \end{aligned}$		mA
V_{i}	Input quieting voltage	$S / N=20 d B$		8		$\mu \mathrm{V}$
v_{i}	Input limiting voltage	-3dB limiting		3		$\mu \mathrm{V}$
V_{0}	Recovered audio output	$V_{i}=10 \mathrm{mV}$		150		$\mathrm{m} \mathrm{V}_{\mathrm{rms}}$
V_{10}	Detector output voltage			1.5		$V_{D C}$
R_{10}	Detector output impedance			400		Ω
	Detector center frequency slope			150		$\mathrm{mV} / \mathrm{KHz}$
G_{v}	Operating amplifier gain	$\mathrm{f}=10 \mathrm{KHz} \quad \mathrm{G}_{\mathrm{v}}=\mathrm{V}_{13} / \mathrm{V}_{12}$	40	55		dB
V_{13}	Operating amplifier output voltage			1.5		$V_{D C}$
I_{B}	Op. Amp. input bias current	Pin 10		20		nA
V_{T}	Trigger hysteresis			50		mV
R_{m}	Mute switching impedance	LOW		50		Ω
		HIGH		10		$\mathrm{M} \Omega$
V_{15}	Scan voltage	pin 14 HIGH (2V) pin 14 LOW (OV)	3.0	$\begin{gathered} 0 \\ 3.4 \end{gathered}$	0.5	$V_{D C}$
G_{c}	Mixer converter gain			30		dB
R_{i}	Input resistance			3.3		$K \Omega$
C_{i}	Input capacitance			2.2		pF

Fig. 2 - Test circuit

Fig. 3 - Supply current vs. supply
voltage

Fig. 4 - FM IF characteristics

Fig. 5 - Colpitts XTAL oscillator

Fig. 6 - Effect of quadrature coil " Q " on audio level and distortion

STEREO/ BRIDGE AMPLIFIER WITH CLIPPING DETECTOR

Main features:

- VERY FEW EXTERNAL COMPONENTS
- NO BOUCHEROT CELLS
- NO BOOTSTRAP CAPACITORS
- HIGH OUTPUT POWER
- NO SWITCH ON/OFF NOISE
- VERY LOW STAND-BY CURRENT
- FIXED GAIN
- PROGRAMMABLE TURN-ON DELAY
- CLIPPING DETECTION

Protections:

- OUTPUT AC-DC SHORT CIRCUIT TO GROUND AND TO SUPPLY VOLTAGE
- VERY INDUCTIVE LOADS
- OVERRATING CHIP TEMPERATURE
- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GROUND

The TDA7360 is a new technology class AB Audio Power Amplifier in Multiwatt package designed for car radio applications. Thanks to the fully complementary PNP/NPN output configuration the high power performances of the TDA7360 are obtained without bootstrap capacitors.
A delayed turn-on mute circuit eliminates audible on/off noise, and a novel short circuit protection system prevents spurious intervention with highly inductive loads.
The device provides a circuit for the detection of clipping in the output stages. The output, an open collector, is able to drive systems with automatic volume control.

APPLICATION CIRCUIT (BRIDGE)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Operating supply voltage	18	V
$\mathrm{~V}_{\mathrm{s}}$	DC supply voltage	28	V
$\mathrm{~V}_{\mathrm{s}}$	Peak supply voltage (for $\mathrm{t}=50 \mathrm{~ms}$)	40	V
I_{0}	IOUT peak (non rep. $\mathrm{t}=100 \mathrm{\mu s}$) $^{\mathrm{I}_{\mathrm{o}}}$	IOUT peak (rep. freq. $>10 \mathrm{~Hz}$	4.5
$\mathrm{P}_{\text {tot }}$	Power dissipation at $\mathrm{T}_{\text {case }}=80^{\circ} \mathrm{C}$	3.5	A
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and junction temperature	40	W

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th j-case }}$	Thermal resistance junction-case	\max	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=14.4 \mathrm{~V}$,
$f=1 \mathrm{KHz}$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage		8		18	V
I_{d}	Total quiescent drain current	stereo configuration		60		mA
ASB	Stand-by attenuation		60	80		dB
I_{SB}	Stand-by current				100	$\mu \mathrm{~A}$
I_{CO}	Clip detector current average	$\mathrm{d}=1 \%$		-1		mA
$\mathrm{dt}_{\mathrm{co}}$	Distortion threshold for Clip Detect. output		0.5		$\%$	

STEREO

P_{0}	Output power (each channel)	$\begin{array}{ll} & R_{L}=1.6 \Omega \\ d=10 \% & R_{\mathrm{L}}=2 \Omega \\ & R_{\mathrm{L}}=3.2 \Omega \\ & R_{\mathrm{L}}=4 \Omega \end{array}$	7	$\begin{gathered} 12 \\ 11 \\ 8 \\ 6.5 \end{gathered}$		$\begin{aligned} & W \\ & W \\ & W \\ & W \end{aligned}$
d	Distortion	$\begin{aligned} & f=1 \mathrm{KHz} 4 \Omega \\ & 100 \mathrm{~mW} \text { to } 4 \mathrm{~W} \end{aligned}$		0.05		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{s}}=0 \text { to } 10 \mathrm{~K} \Omega \\ & f=100 \mathrm{~Hz} \end{aligned}$		55		dB
CT	Crosstalk	$\begin{aligned} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{aligned}$		$\begin{aligned} & 60 \\ & 55 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
R_{i}	Input resistance			50		$K \Omega$
G_{v}	Voltage gain			20		dB
G_{v}	Voltage gain match.				1	dB
$E_{i n}$	Input noise voltage	$\begin{array}{ll} 22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} & R_{\mathrm{g}}=50 \Omega \\ & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{array}$		$\begin{gathered} 3 \\ 3.5 \end{gathered}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$

BRIDGE

vos	Output offset voltage				250	mV
P_{0}	Output power	$\begin{array}{ll} d=10 \% & R_{L}=4 \Omega \\ & R_{L}=3.2 \Omega \end{array}$	16	$\begin{aligned} & 20 \\ & 22 \end{aligned}$		$\begin{aligned} & w \\ & w \end{aligned}$
		$d=0.5 \% \quad R_{L}=4 \Omega$		18		W
d	Distortion	$\begin{aligned} & R_{\mathrm{L}}=4 \Omega \quad \mathrm{f}=1 \mathrm{KHz} \\ & \mathrm{P}_{\mathrm{O}}=0.1 \text { to } 10 \mathrm{~W} \end{aligned}$		0.05		\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{\mathrm{s}}=0 \text { to } 10 \mathrm{~K} \Omega \\ & \mathrm{f}=300 \mathrm{~Hz} \text { to } 3.5 \mathrm{KHz} \end{aligned}$		55		dB
R_{i}	Input resistance			50		$K \Omega$
G_{v}	Voltage gain			26		dB
$E_{\text {in }}$	Input noise voltage	$\begin{array}{ll} 22 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} & R_{\mathrm{g}}=50 \Omega \\ & R_{\mathrm{g}}=10 \mathrm{~K} \Omega \end{array}$		6 7		$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$

APPLICATION INFORMATION

The TDA7360 is equipped with an internal circuit able to detect the output stage saturation providing a proper current sinking into a proper open collector out. (pin 2) when a certain dis-
tortion level is reached on each output.
This particular function allows compression facility whenever the amplifier is overdriven, obtaining high quality sound at all listening levels.

Fig. 1 - Dual channel distortion threshold detector

Fig. 2 - Output from the clipping detector Pin. versus signal distortion

Fig. 3 - Stereo test and application circuit

Fig. 4 - P.C. and layout (STEREO) of the Fig. 3 (1:1 scale)

Fig. 5 - Bridge test and application circuit

Fig. 6 - P.C. and layout (BRIDGE) of the Fig. 5 (1:1 scale)

LOW VOLTAGE NBFM IF SYSTEM

- OPERATION FROM 1.8 V TO 9 V
- LOW DRAIN CURENT ($4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{s}}=4 \mathrm{~V}$)
- HIGH SENSITIVITY(-3dB INPUT LIMITING AT $3 \mu \mathrm{~V}$)
- $8 \mu \mathrm{~V}$ INPUT FOR 20dB S/N
- LOW EXTERNAL FAIR COUNT

The TDA7361 is a low-power narrow band FM IF demodulation system operable to less than 2 V supply voltage.

The device includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Op. Amp. Squelch, Scan Control and Mute Switch.

The TDA7361 is designed for use in NBFM dual conversion communication equipments using a 455 KHz ceramic filter like cordless telephones, walkie-talkies, scan receivers, etc.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$\mathbf{V}_{\mathbf{s}}$	Supply voltage	9	V
$\mathrm{~V}_{1}$	RF input voltage (pin 16)	1	$\mathrm{~V}_{\text {rms }}$
V_{8}	Detector input voltage	1	$\mathrm{~V}_{\mathrm{pp}}$
V_{14}	Mute function voltage	-0.5 to 5	$\mathrm{~V}^{2}$
$\mathrm{~T}_{\text {op }}$	Operating ambient temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(Top view)

THERMAL DATA	DIP-16	SO-16	
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	$100^{\circ} \mathrm{C} / \mathrm{W}$

N ${ }^{\text {}}$	NAME	FUNCTION
1-2	XTAL OSCILLATOR	Connections for the Colpitts XTAL oscillator. The XTAL may be replaced by an inductor (see fig. 5) if the application does not require high stability.
3	MIXER OUT	The Mixer is double balanced to reduce spurious products. The output impedance is $1.8 \mathrm{~K} \Omega$ to match the input impedance of a 455 KHz ceramic filter.
4	SUPPLY VOLTAGE	Must be well decoupled with a 100 nF ceramic capacitor.
5	IF LIMITER INPUT	Input pin of the six stages amplifier with about $50 \mu \mathrm{~V}$ limiting sensitivity and $1.8 \mathrm{~K} \Omega$ input impedance. The if output is connected to the external quadrature coil (pin 8) via an internal 10 pF capacitor.
6-7	DECOUPLING	Good quality 100 nF ceramic capacitors and a suitable layout are important.
8	QUADRATURE COIL	A quadrature detector is used to demodulate the 455 KHz FM signal. The Q of the quad coil has direct effect on output level and distortion (see fig. 6). For proper operation the voltage should be 100 mV rms .
9	AUDIO OUTPUT SIGNAL	The audio Output signal is buffered by an internal emitter follower.
10	OP AMPLIFIER INPUT	Because of the Low DC bias, the swing on the operational amplifier output is limited to 500 mV rms .
11	OP AMPLIFIER OUTPUT	This can be increased by adding a resistor from the operational amplifier input to ground.
12	SQUELCH INPUT	The squelch trigger circuit with a Low bias on the input (pin 12) will force pin 13 high; and pin 14 Low.
13	SCAN CONTROL	Pulling pin 12 above mute threshold (0.65 V) will force pin 13 to an impedance of about $60 \mathrm{~K} \Omega$ to ground and pin 14 will be an open circuit.
14	MUTE	An hysteresis of about 50 mV at pin 12 will effectively prevent jitter.
15	GND	Ground connection.
16	10.7MHz MIXER INPUT	Input of the wide-band mixer. Normally used as 10 MHz / 455 KHz converter, it can be also used with input frequencies up to 60 MHz .

SGS-THOMSON

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=4 \mathrm{~V} ; \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 3 \mathrm{KHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{KHz} ; \mathrm{T}_{\mathrm{amb}}=\right.$ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage range		1.8	4	9	V
I_{s}	Supply current	Squelch OFF Squelch ON		$\begin{aligned} & 3.8 \\ & 4.7 \end{aligned}$		mA
V_{i}	Input quieting voltage	$S / N=20 d B$		8		$\mu \mathrm{V}$
V_{i}	Input limiting voltage	-3dB limiting		3		$\mu \mathrm{V}$
V_{0}	Recovered audio output	$V_{i}=10 \mathrm{mV}$		150		$\mathrm{mV}_{\mathrm{rms}}$
V_{9}	Detector output voltage			1.5		$V_{D C}$
R_{9}	Detector output impedance			400		Ω
	Detector center frequency slope			150		$\mathrm{mV} / \mathrm{KHz}$
G_{v}	Operational amplifier gain	$\mathrm{f}=10 \mathrm{KHz} \quad \mathrm{G}_{\mathrm{v}}=\mathrm{V}_{11} / \mathrm{V}_{10}$	40	55		dB
V_{11}	Operational amplifier output voltage			1.5		$V_{D C}$
I_{B}	Operational amplifier input bias current	Pin 10		20		nA
V_{T}	Trigger hysteresis			50		mV
R_{m}	Mute switching impedance	LOW		50		Ω
		HIGH		10		$\mathrm{M} \Omega$
V_{13}	Scan voltage	Pin 12 HIGH (2V) Pin 12 LOW (0V)	3.0	$\begin{gathered} 0 \\ 3.4 \end{gathered}$	0.5	$V_{D C}$
G_{c}	Mixer converter gain			30		dB
R_{i}	Input resistance			3.3		$K \Omega$
C_{i}	Input capacitance			2.2		pF

Fig. 2 - Test circuit

Fig. 3 - Supply current vs. supply
voltage

Fig. 4 - FM IF characteristics

Fig. 5 - Colpitts XTAL oscillator

Fig. 6 - Effect of quadrature coil " Q " on audio level and distortion

Fig. 7 - Application information (49MHz cordless receiver)

INFRARED REMOTE CONTROL RECEIVER

ADVANCE DATA

- LOW SUPPLY VOLTAGE $\left(\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}\right)$
- LOW CURRENT CONSUMPTION $\left(I_{S}=6 \mathrm{~mA}\right)$
- INTERNAL 5.5V SHUNT REGULATOR
- PHOTODIODE DIRECTLY COUPLED WITH THE I.C.
- INPUT STAGE WITH GOOD REJECTION AT LOW FREQUENCY
- LARGE INPUT DYNAMIC RANGE
- FEW EXTERNAL COMPONENTS

The TDA 8160 is a monolithic integrated circuit in -lead minidip plastic package specially de-
signed to amplify the infrared signals in remote controlled TV, Radio or VCR sets. It can be used in flash transmission mode in conjunction with dedicated remote control circuits (for example: M491-494).

Minidip Plastic

ORDERING NUMBER: TDA8160

TEST CIRCUIT

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$V_{\mathbf{S}}$	Supply voltage	16	V
$\mathrm{~T}_{\text {stg-j }}$	Storage and junction temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	Total power dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	400	mW

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

$R_{\text {th J-amb }}$ Thermal resistance junction-ambient	\max	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz}, \mathrm{T}_{\mathrm{amb}}=$ $25^{\circ} \mathrm{C}$, unless otherwise specified)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage	Applied between pin 3 and 6	4	5	5.25	V
I_{s}	Supply current (pin 3)			6		mA
V_{3}	Stabilized voltage at pin 3	$\mathrm{I}_{3}=8 \mathrm{~mA}$		5.5		V
G_{v} 1st	Voltage gain (1st stage)			28		dB
gm_{m} 2nd	Transconductance (2nd stage)			15		mA/V
$V_{\text {in }}$	Input voltage sensitivity (pin 5)	For full swing at the output pin 1 $R_{\text {gen }}=600 \Omega$		2		$m V_{p}$
$l_{\text {in }}$	Input current sensitivity (pin 5)	For full swing at the output pin 1		10		$n A_{p}$
$\mathrm{R}_{\text {In }}$	Input impedance			200		$K \Omega$
$L_{f} R$	Low frequency rejection at the input stage	$C 1=100 \mathrm{pF} \quad \mathrm{f}=100 \mathrm{~Hz}$		30		dB
N	Noise signal at pin 7	C4 missing		200		$m V_{p p}$

CIRCUIT DESCRIPTION (See the block diagram)

The infrared light received from D1 generates an AC signal that comes in to the device at pin 5. The capacitor C 1 and the integrated $10 \mathrm{~K} \Omega$ resistor (pin 4) filter out the low frequency noise.

The first stage shows a voltage gain of about

28 dB ; the second stage is a voltage to current converter of $50 \mathrm{~mA} / \mathrm{V}\left(\mathrm{R}_{2}=\right.$ Zero). A sensitive peak detector detects the amplifier signal; one open collector output (pin 1) gives out the recovered pulses.

Fig. 1 - Recommended application circuit for the drive of the IC M491 by means of a Flash Mode IR Transmitter only, in a TV 16 station memory Remote Control subsystem.
The above shown IR receiver application must be housed inside a metal can shield.

FM STEREO DECODER

- REQUIRES NO INDUCTORS
- LOW EXTERNAL PART COUNT
- ONLY OSCILLATOR FREQUENCY ADJUSTMENT NECESSARY
- INTEGRAL STEREO/MONAURAL SWITCH WITH HIGH LAMP DRIVING CAPABILITY
- WIDE SUPPLY RANGE: 3V TO 14V
- excellent channel separation MAINTAINED OVER ENTIRE AUDIO FREQUENCY RANGE
- LOW DISTORTION: TYPICALLY 0.3\% AT 150 mV (RMS) COMPOSITE INPUT SIGNAL
- EXCELLENT SCA REJECTION (76dB TYP.)

The TEA1330 is a monolithic decoder circuit for FM stereo transmissions. Packaged in a 16 -pin DIP, it functions with very few external components and requires no inductors.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$V_{\text {s }}$	Supply voltage	16	V
I_{L}	Lamp current	75	mA
$P_{\text {tot }}$	Power dissipation $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {op }}$	Operating temperature	-25 to 75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

(top view)

THERMAL DATA

$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	$100 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{i}}=300$ $m V-R M S(L+R=90 \%$, Pilot $10 \%), f_{m}=1 \mathrm{KHz}$, unless otherwise specified)

	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{s}	Supply voltage range		3		14	V
l_{d}	Current drain	Lamp "OFF"		18		mA
V_{i}	Max standard composite input signal	$d=1 \%$	300			$\underset{(\mathrm{RMS})}{\mathrm{mV}}$
v_{i}	Max mono input signal	$d=1 \%$	300			$\underset{\mathrm{mV}}{\mathrm{~m} V}$
R_{i}	Input resistance			40		$K \Omega$
Sep	Stereo channel separation	$\mathrm{R} 2=$ variable (${ }^{*}$)	35	50		dB
		$\mathrm{R} 2=270 \Omega$	25	40		dB
V_{0}	Audio output voltage			265		mV
CB	Mono channel balance	Pilot tone "OFF"	-2	0	+2	dB
d	Total harmonic distortion	$\mathrm{V}_{\mathrm{in}}=150 \mathrm{mV}$ (RMS)		0.3		\%
UR	Ultrasonic frequency rejection	$\mathrm{f}=19 \mathrm{KHz}$		32		dB
		$f=38 \mathrm{KHz}$		48		dB
SCA-R	SCA rejection (**)	$\mathrm{f}=67 \mathrm{KHz}$		76		dB
S/N	Signal to noise ratio			80		dB
v_{th}	Muting threshold voltage (pin 9)	ON (VCO stop)		1		V
		OFF		0.8		V
Lon	Pilot input level for lamp ON	$\mathrm{f}=19 \mathrm{KHz}$	4	6	9	mV
Hys	Pilot input level hysteresis for lamp turn ON-OFF	$\mathrm{f}=19 \mathrm{KHz}$		3		dB
CR	Capture range			± 7		\%

(*) R2 has to be adjusted for best figure of channel separation.
$\left(^{* *}\right)$ SCA = AUX. SUB. CARRIER.

Fig. 1 - Test circuit

Typical DC Voltages

Pins	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
(V)	6	1.9	1.3	3	3		0	0.18		1.4	1.4	1.2	1.4	1.4	1.4	2.2

Fig. 2 - P.C. board and components layout of the test circuit of fig. 1 (1:1 scale)

Fig. 3 - Channel separation vs. modulation frequency

Fig. 6 - Distortion vs. input level

Fig. 4 - Distortion vs. modulation frequency

Fig. 5 - Channel separation vs. input level

Fig. 7 - Channel separation
vs. supply voltage

Fig. 8 - Distortion vs. supply voltage

APPLICATION SUGGESTION (see test circuit of fig. 1)

Component	Recommended value	Purpose	Smaller than recommended value	Larger than recommended value
C1	$3.3 \mu \mathrm{~F}$	Input coupling	Poor low frequency response and separation	
C2	$1 \mu \mathrm{~F}$	LPF for stereo switch level detector	Shorter time to switch mono to stereo	Longer time to switch mono to stereo
C3 (*) R3 R4	680 pF $15 \mathrm{~K} \Omega$ $5 \mathrm{~K} \Omega$	Set VCO free ranning frequency	- High VCO jitter - Wide capture range	Narrower capture range

[^17]
APPLICATION SUGGESTION (continued)

Component	Recommended value	Purpose	Smaller than recommended value	Larger than recommended value
$\begin{gathered} \mathrm{C4} \\ \mathrm{R} 5\left({ }^{(* *)}\right. \end{gathered}$	$\begin{gathered} 15 \mathrm{nF} \\ 3.9 \mathrm{~K} \Omega \end{gathered}$	Load and deemphasis right channel	Low output voltage	Higher distortion for low V_{s}
$\begin{gathered} C 5 \\ R 6\left(^{* *}\right) \end{gathered}$	$\begin{gathered} 15 \mathrm{nF} \\ 3.9 \mathrm{~K} \Omega \end{gathered}$	Load and deemphasis left channel	Low output voltage	Higher distortion for low V_{s}
C6	47 nF	Input PLL coupling	Poor low frequency response and separation	
$\begin{aligned} & \mathrm{C} 7 \\ & \text { C8 } \\ & \text { R1 } \end{aligned}$	220 nF 470 nF $1 \mathrm{~K} \Omega$	Loop filter	High stereo distortion	Narrower capture range
D1		Stereo indicator		
R7		Sets lamp current	Excess IC dissipation	Dim lamp
R2 (***)	270Ω	Channel separation		

(**) Deemphasis $=50 \mu \mathrm{~s}$.
$\left(^{* * *}\right)$ Separation can be improved by trimmer adjustement (470 Ω).

Fig. 9 - Application circuit for portable stereo radio receivers

STEREO AUDIO AMPLIFIER

- DUAL OR BRIDGE CONNECTION MODES
- FEW EXTERNAL COMPONENTS
- WORKS WITH LOW SUPPLY VOLTAGE: 3V
- HIGH CHANNEL SEPARATION
- NO SHOCK NOISE WHEN SWITCH ON OR OFF
- MAXIMUM VOLTAGE GAIN OF 45dB (ADJUSTABLE WITH EXTERNAL RESISTOR)
- SOFT CLIPPING
- THERMAL PROTECTION
- $3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 12 \mathrm{~V}$
- $\mathrm{P}=2 \times 1 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$
$\mathrm{P}=2 \times 2.3 \mathrm{~W}, \mathrm{~V}_{\mathrm{Cc}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$
$\mathrm{P}=2 \times 0.1 \mathrm{~W}, \mathrm{~V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$

Powerdip

$12+2+2$

ORDERING NUMBER: TEA 2025B

MAXIMUM RATINGS

V_{s}	Supply voltage	15	V
I_{O}	Output peak current	1.5	A
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN CONNECTION

SCHEMATIC DIAGRAM

THERMAL DATA

$R_{\text {tn }(j-c)}$	Junction-case thermal resistance	15
$R_{\text {th(ja) }}$	Junction-ambient thermal resistance (See note)	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: The $R_{\text {th }(\mathrm{j}-\mathrm{a})}$ is measured on devices bonded on a $10 \times 5 \times 0.15 \mathrm{~cm}$ glass-epoxy substrate with a $35 \mu \mathrm{~m}$ thick copper surface of $5 \mathrm{~cm}^{2}$.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$, Stereo unless otherwise specified)

	Parameter	Test Conditions	Min	Typ	Max	Unit
V_{S}	Supply voltage		3	-	12	V
I_{Q}	Quiescent current		-	40	50	mA
V_{0}	Quiescent output voltage		-	4.5	-	V
Av	Voltage gain	$\frac{\text { Stereo }}{\text { Bridge }}$	$\frac{43}{49}$	45 51	47	dB
ΔA_{V}	Voltage gain difference		-	-	± 1	dB
R_{j}	Imput impedance		-	30	-	$k \Omega$
PO_{0}	Output power	$f=1 K H z ; d=10 \%$ Stereo - per channel $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}: \begin{array}{l} \mathrm{R}_{\mathrm{L}}=4 \Omega \\ \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}: \\ \mathrm{R}_{\mathrm{CC}}=4 \Omega \\ \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \mathrm{R}_{\mathrm{L}}=4 \Omega \end{array} \end{aligned}$ Bridge $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}: \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}: \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\begin{gathered} 1.7 \\ - \\ \hline 0.7 \\ - \\ \hline- \\ - \\ - \end{gathered}$	2.3 1.3 1 0.6 0.1 4.7 2.8	$\begin{aligned} & - \\ & - \\ & \hline- \\ & - \\ & - \\ & - \end{aligned}$	W
d	Distortion	$\begin{aligned} & V_{\mathrm{Cc}}=9 \mathrm{~V} ; R_{\mathrm{L}}=4 \Omega \\ & \mathrm{f=1KHz;P}_{\mathrm{o}}=250 \mathrm{~mW} \\ & \frac{\text { Stereo }}{\text { Bridge }} \end{aligned}$	-	0.3 0.5	1.5 -	\%
SVR	Supply voltage rejection	$\begin{aligned} & R_{G}=0, A_{V}=45 \mathrm{~dB}, \\ & V_{\text {ripple }}=150 \mathrm{mV} \mathrm{RMS}, \\ & \mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz} \end{aligned}$	40	46	-	dB
V_{n}	Input noise voltage	$A_{V}=200,$ Bandwidth: 20 Hz to 20 KHz $\begin{aligned} & R_{G}=0 \\ & R_{G}=10 \mathrm{k} \Omega \end{aligned}$	-	$\begin{gathered} 1.5 \\ 3 \end{gathered}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\mu \mathrm{V}$
CT	Cross-talk	$\begin{aligned} & \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega ; \\ & \mathrm{f}=1 \mathrm{KHz} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} \end{aligned}$	40	55	-	dB

Fig. 1 - Distortion versus output power

Fig. 3 - Distortion versus output frequency

Fig. 5 - Bridge application

Fig. 2 - Distortion versus output power

Fig. 4 - Output power/versus supply voltage

Fig. 6 - Stereo application

LOW NOISE JFET-INPUT DUAL OPERATIONAL AMPLIFIERS

- HIGH SLEW-RATE . . . $13 \mathrm{~V} / \mu \mathrm{s}$ TYP.
- LOW-NOISE
- LOW INPUT BIAS AND OFFSET CURRENTS
- HIGH INPUT IMPEDANCE . . .JFET-INPUT STAGE
- LOW POWER CONSUMPTION
- WIDE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- OUTPUT SHORT-CIRCUIT PROTECTION
- INTERNAL FREQUENCY COMPENSATION
- LATCH-UP-FREE OPERATION

The TL072 JFET-input operational amplifiers are designed to offer low-noise high slew-rate, low input bias and offset current, and low offset
voltage temperture coefficient. Each JFET-input operational amplifjer incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

Devices with an " 1 " suffix are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and those with a "C" suffix are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM

(one section)

ABSOLUTE MAXIMUM RATINGS

	Supply voltage	± 18	V
$\mathrm{~V}_{\mathrm{s}}$	Differential input voltage	± 30	V
$\mathrm{~V}_{\text {is }}$	Input voltage	± 15	${ }^{\circ} \mathrm{V}$
V_{1}	Operating temperature	(TLO72I)	-25 to 85
$\mathrm{~T}_{\text {op }}$	(TLO72C)	0 to 70	${ }^{\circ} \mathrm{C}$
		150	${ }^{\circ} \mathrm{C}$
T_{j}	Junction temperature		-55 to 150
$\mathrm{~T}_{\text {stg }}$	Storage temperature		

CONNECTION DIAGRAM AND ORDERING NUMBERS

(Top view)

0 to $70^{\circ} \mathrm{C}$	$-25+85^{\circ} \mathrm{C}$	Package
TL072CJG	TLO72IJG	Ceramic Minidip
TL072ACJG	-	-
TL072BCJG	-	Plastic Minidip
TL072CP	TL072IP	-
TL072ACP	-	SO-8
TLOBCP	TL072ID	

TEST CIRCUITS

Unity gain amplifier

Gain of 10 inverting amplifier

THERMAL DATA

THERMAL DATA	Plastic Minidip	Ceramic Minidip	SO-8	
$R_{\text {th J-amb }}$ Thermal resistance junction-ambient	\max	$120^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, otherwise specified)

SGS-THOMSON

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		"1"			"C"			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
Cs	Channel separation			$\mathrm{G}_{\mathrm{V}}=100$			120			120		dB
SR	Slew-rate at	$\begin{aligned} & V_{1}=10 \mathrm{~V} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 K \Omega$		13			13		$\mathrm{V} / \mu \mathrm{s}$		
t_{r}	Rise time	$\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		0.1			0.1		$\mu \mathrm{s}$		
	Overshot factor	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			10			10		\%		
e_{N}	Total input noise voltage	$R_{S}=100 \Omega$	$\mathrm{F}=1 \mathrm{KHz}$		18			18		$\frac{n V}{\sqrt{H z}}$		
			$\mathrm{f}=10 \mathrm{~Hz}$ to 10 KHz		4			4		$\mu \mathrm{V}$		
${ }^{1} \mathrm{~N}$	Input noise current	$\mathrm{f}=1 \mathrm{KHz}$			0.01			0.01		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$		
d	Total harmonic distortion	$\begin{aligned} & \hline \mathrm{V}_{o}=10 \mathrm{~V}_{\mathrm{rms}} \\ & R_{s}<1 \mathrm{~K} \Omega \\ & R_{L}>2 \mathrm{~K} \Omega \\ & \hline \end{aligned}$	$\mathrm{f}=1 \mathrm{KHz}$		0.01			0.01		\%		

Fig. 1 - Maximum peak to peak output voltage vs. frequency.

Fig. 2 - Maximum peak to peak output voltage vs. frequency

Fig. 5 Supply current vs. ambient temperature

Fig. 3 - Maximum peak to peak output voltage vs. load resistance

Fig. 6 - Supply current vs. supply voltage

Fig. 7 - Input bias current vs. temperature

Fig. 10 - Equivalent input noise voltage vs. frequency

Fig. 8 - Voltage follower large signal pulse response

Fig. 11 - Total harmonic distortion vs. frequency

Fig. 9 - Output voltage vs. elapsed time

Fig. 12 Common mode rejection vs. temperature

APPLICATION INFORMATION

Fig. 13 - Low-Noise High Slew-Rate mike preamplifier ($\mathrm{G}_{\mathrm{v}}=40 \mathrm{~dB}$)

APPLICATION INFORMATION (continued)

Fig. 14 - Second order high Q band pass filter ($f_{o}=100 \mathrm{KHz}, Q=30$, gain $=4$)

Fig. 15 - Fourth-order subtractive Linkwitz-Riley crossover filter ($f=200 \mathrm{~Hz}$)

Fig. 16 - Frequency response of the 24 dB /octave crossover filter of fig. 15

APPLICATION INFORMATION (continued)

Fig. $\mathbf{1 7}-\mathbf{2 0 H z}$ to 200 Hz variable High-pass filter ($\mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}$)

Fig. 19 - Unity-gain absolute-value circuit

Fig. 18 - Frequency response of the high-pass filter of fig. 17

Fig. 20 - Single supply sample and hold

Fig. 21 - Output current to voltage transformation for a DA converter

(*) The value of C may be selected to minimize overshoot and ringing ($\mathrm{C} \approx 68 \mathrm{pF}$).

Settling time to within $1 / 2$ LSB $(\pm 19.5 \mathrm{mV})$ is approximately 4.0μ s from the time all bits are switched.
Theoretical V_{O} :
$V_{0}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R_{0} so that V_{o} with all digital inputs at high level is equal to 9.961 volts.
$V_{r e f}=2.0 V_{d c}$
$\mathrm{R} 1=\mathrm{R} 2 \approx 1.0 \mathrm{k} \Omega$
$R_{0}=5.0 \mathrm{k} \Omega$

$$
V_{o}=\frac{2 V}{1 k}(5 k)\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]
$$

$$
=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}
$$

LOW NOISE JFET-INPUT QUAD OPERATIONAL AMPLIFIERS

- LOW-NOISE
- LOW INPUT BIAS AND OFFSET CURRENTS
- HIGH INPUT IMPEDANCE ...JFET-INPUT STAGE
- LOW POWER CONSUMPTION
- WIDE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- OUTPUT SHORT-CIRCUIT PROTECTION
- INTERNAL FREQUENCY COMPENSATION
- LATCH-UP-FREE OPERATION
- HIGH SLEW-RATE . . . 13V/ $\mu \mathrm{S}$ TYP.

The TL074 JFET-input operational amplifiers are designed to offer low-noise high slew-rate, low input bias and offset current, and low offset voltage temperature coefficient. Each JFET-input
operational amplifier incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

Devices with an " 1 " suffix are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and those with a " C " suffix are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

DIP-14 (Plastic and Ceramic)

SO-14 J

SCHEMATIC DIAGRAM

(one section)

ABSOLUTE MAXIMUM RATINGS

V_{s}	Supply voltage	± 18	V
$V_{\text {is }}$	Differential input voltage	± 30	V
$\mathrm{~V}_{1}$	Input voltage	± 15	V
$\mathrm{~T}_{\text {op }}$	Operating temperature (TLO74I)	(TL074C)	-25 to 85
		${ }^{\circ} \mathrm{C}$	
T_{J}	Junction temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM AND ORDERING NUMBERS

(Top view)

0 to $70^{\circ} \mathrm{C}$	$-\mathbf{- 2 5 + 8 5}{ }^{\circ} \mathrm{C}$	Package
TL074CJ	TL074IJ	Ceramic DIP-14
TL074ACJ	-	Plastic TL074BCJ
TL074CN TL074ACN	TL074IN - TL074BCN	-

TEST CIRCUITS

Unity gain amplifier

Gain of 10 inverting amplifier

THERMAL DATA	Ceramic DIP-14	SO-14	Plastic DIP-14	
$R_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	$150^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, otherwise specified)

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions		" 1 "			"C"			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Cs	Channel separation	$\mathrm{G}_{\mathrm{V}}=100$			120			120		dB
SR	Slew-rate at unity gain	$\begin{aligned} & V_{i}=10 \mathrm{~V} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 \mathrm{~K} \Omega$		13			13		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise time	$\begin{aligned} & V_{i}=20 \mathrm{mV} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$			0.1			0.1		$\mu \mathrm{s}$
	Overshot factor				10			10		\%
e_{N}	Total input noise voltage	$R_{S}=100 \Omega$	$f=1 \mathrm{KHz}$		18			18		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
			$\mathrm{f}=10 \mathrm{~Hz}$ to 10 KHz		4			4		$\mu \mathrm{V}$
${ }^{\prime} \mathrm{N}$	Input noise current	$f=1 \mathrm{KHz}$			0.01			0.01		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
d	Total harmonic distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=10 \mathrm{Vrms}_{\mathrm{rm}} \\ & \mathrm{R}_{\mathrm{S}}<1 \mathrm{~K} \Omega \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{~K} \Omega \\ & \hline \end{aligned}$	$f=1 \mathrm{KHz}$		0.01			0.01		\%

Fig. 1 - Maximum peak to peak output voltage vs. frequency.

Fig. 4 - Large signal voltage gain and phase shift vs. frequency

Fig. 2 - Maximum peak to peak output voltage vs. frequency

Fig. 5 Supply current vs. temperature

Fig. 3 - Maximum peak to peak output voltage vs. load resistance

Fig. 6 - Supply current vs. supply voltage

Fig. 7 - Input bias current vs. temperature

Fig. 10 - Equivalent input noise voltage vs. frequency

Fig. 8 - Voltage follower large signal pulse response

Fig. 11 - Total harmonic distortion vs. frequency

Fig. 9 - Output voltage vs. elapsed time

Fig. 12 Common mode rejection vs. temperature

APPLICATION INFORMATION

Fig. 13 - Low-Noise high Slew-Rate mike preamplifier ($\mathrm{G}_{\mathrm{V}}=40 \mathrm{~dB}$)

APPLICATION INFORMATION (continued)

Fig. 14 - Second order high Q band pass filter ($f_{o}=100 K H z, Q=30$, gain $=4$)

Fig. $15-100 \mathrm{KHz}$ quadrature oscillator

Note A: these resistor values may be adjusted for a simmetrical output

Fig $16-20 \mathrm{~Hz}$ to 200 Hz variable High-pass filter $\left(\mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}\right)$

Fig. 17 - Frequency response fo the high-pass filter of fig. 16

APPLICATION INFORMATION (continued)

Fig. 18 - Unity-gain absolute-value circuit

Fig. 19 - Single supply sample and hold

Fig. 20 - Output current to voltage transformation for a DA converter

(*) The value of C may be selected to minimize overshoot and ringing ($C \approx 68 \mathrm{pF}$).

Settling time to within $1 / 2 \operatorname{LSB}(\pm 19.5 \mathrm{mV})$ is approximately 4.0μ s from the time all bits are switched.

Theoretical V_{o} :
$V_{o}=\frac{V_{\text {ref }}}{R 1}\left(R_{o}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64},+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R_{0} so that V_{0} with all digital inputs
$V_{o}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64},+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R_{o} so that V_{o} with all digital inputs at high level is equal to 9.961 volts.

$$
\begin{aligned}
& V_{r e f}=2.0 \mathrm{~V}_{\mathrm{dc}} \\
& R 1=R 2 \approx 1.0 \mathrm{k} \Omega \\
& R_{\mathrm{o}}=5.0 \mathrm{k} \Omega
\end{aligned}
$$

$$
\left.\left.\begin{array}{c}
V_{0}=\frac{2 V}{1 k}(5 k)[
\end{array} \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]\right] \text { } \quad=10 V\left[\frac{255}{256}\right]=9.961 V .
$$

JFET-INPUT DUAL OPERATIONAL AMPLIFIERS

- HIGH SLEW-RATE ... $13 \mathrm{~V} / \mu \mathrm{s}$ TYP.
- LOW.POWER CONSUMPTION
- WIDE COMMON-MIODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW INPUT BIAS AND OFFSET CURRENTS
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE ... JFET-INPUT STAGE
- INTERNAL FREQUENCY COMPENSATION
- LATCH-UP-FREE OPERATION

The TL082 JFET-input operational amplifiers are designed to offer high slew-rate, low input bias and offset current, and low offset voltage temperature coefficient. Each JFET-input oper-
ational amplifier incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

Devices with an " 1 " suffix are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and those with a " C " suffix are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The " M " devices are characterized for operation from -55 to $125^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM

(one section)

ABSOLUTE MAXIMUM RATINGS

V_{5}	Supply voltage	± 18	V
$\mathrm{V}_{\text {is }}$	Differential input voltage	± 30	V
V_{i}	Input voltage	± 15	V
$\mathrm{T}_{\text {op }}$	Operating temperature (TL082I)	-25 to 85	${ }^{\circ} \mathrm{C}$
	(TL082C)	0 to 70	${ }^{\circ} \mathrm{C}$
	(TL082M)	-55 to 125	${ }^{\circ} \mathrm{C}$
T_{j}	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM AND ORDERING NUMBERS

$\mathbf{0}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$	$\mathbf{- 2 5}$ to $\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$\mathbf{- 5 5}$ to $\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Package
TL082CJG	TL082IJG	TL082MJG	Ceramic
TL082ACJG	-	-	Minidip
TL082BCJG	-	-	
TL082CP	TL082IP	-	Plastic TL082ACP TL082BCP
TL082CD	-	-	Minidip

TEST CIRCUITS

Unity gain amplifier

Gain of 10 inverting amplifier

THERMAL DATA

		Plastic Minidip	Ceramic Minidip	SO-8	
$\mathrm{R}_{\text {th j-amb }}$	Thermal resistance junction-ambient	\max	$120^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$200^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, otherwise specified)

ELECTRICAL CHARACTERISTICS (Continued)

Parameter		Test Conditions		" 1 "			"C'			' $\mathrm{M}^{\prime \prime}$			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.					
CS	Channel separation			$G_{V}=100$			120			120			120		dB
SR	Slew-rate at unity gain	$\begin{aligned} & V_{i}=10 \mathrm{~V} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 \mathrm{~K} \Omega$		13			13		8	13		$\mathrm{V} / \mu \mathrm{s}$		
t_{r}	Rise time	$\begin{aligned} & V_{i}=20 \mathrm{mV} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 K \Omega$		0.1			0.1			0.1		$\mu \mathrm{s}$		
	Overshot factor				10			10			10		\%		
e_{N}	Total input noise voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$			25			25			25		$\frac{n V}{\sqrt{H z}}$		

Fig. 1 - Maximum peak to peak output voltage vs. frequency.

Fig. 4 - Large signal voltage gain and phase shift vs. frequency.

Fig. 2- Maximum peak to peak output voltage vs. frequency.

Fig. 5 - Supply current vs. temperature

Fig. 3 - Maximum peak to peak output voltage vs. load resistance.

Fig. 6 - Supply current vs. supply voltage.

Fig. 7 - Input bias current vs. temperature.

Fig. 10 - Equivalent input noise voltage vs. frequency.

Fig. 8 - Voltage follower large signal pulse response

Fig. 11 - Total harmonic distortion vs. frequency.

Fig. 9 - Output voltage vs. elapsed time.

Fig. 12 - Common mode rejection vs. temperature

APPLICATION INFORMATION

Fig. 13 - Second order high Q band pass filter ($f_{o}=100 \mathrm{KHz}, Q=30$, gain $=4$)

APPLICATION INFORMATION

Fig. $14-0.5 \mathrm{~Hz}$ square wave oscillator

$$
f=\frac{1}{2 \pi R_{F} C_{F}}
$$

Fig. 15 - High Q Notch filter

$$
\begin{aligned}
& \mathrm{R} 1=\mathrm{R} 2=2 \mathrm{R} 3=1.5 \mathrm{M} \Omega \\
& \mathrm{C} 1=\mathrm{C} 2=\frac{\mathrm{C} 3}{2}=110 \mathrm{pF} \\
& \mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1}=1 \mathrm{KHz}
\end{aligned}
$$

Fig. 16-100 KHz quadrature oscillator

Fig. $17-20 \mathrm{~Hz}$ to 200 Hz variable High-pass filter ($\mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}$)

Fig. 18 - Frequency response of the high-pass filter of fig. 17

APPLICATION INFORMATION (continued)

Fig. 19 - Unity-gain absolute-value circuit

Fig. 20 - Single supply sample and hold

Fig. 21 - Output current to voltage transformation for a DA converter

(*) The value of C may be selected to minimize overshoot and ringing ($C \approx 68 \mathrm{pF}$).

Settling time to within $1 / 2$ LSB $(\pm 19.5 \mathrm{mV})$ is approximately 4.0μ s from the time all bits are switched.

Theoretical V_{o} :
$V_{0}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R_{o} so that V_{o} with all digital inputs at high level is equal to 9.961 volts.

$$
\begin{aligned}
& V_{r e f}=2.0 V_{d c} \\
& R 1=R 2 \approx 1.0 \mathrm{k} \Omega \\
& R_{0}=5.0 \mathrm{k} \Omega
\end{aligned}
$$

$$
V_{o}=\frac{2 V}{1 k}(5 k)\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]
$$

$$
=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}
$$

JFET-INPUT QUAD OPERATIONAL AMPLIFIERS

- HIGH SLEW-RATE . . . 13V/ μ s TYP.
- LOW POWER CONSUMPTION
- WIDE CONNOM-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW INPUT BIAS AND OFFSET CURRENTS
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE ...JEFT-INPUT STAGE
- LATCH-UP-FREE OPERATION

The TL084 JFET-input operational amplifiers are designed to offer high slew-rate, low input bias and offset current, and low offset voltage temperature coefficient. Each JFET-input oper-
ational amplifier incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

Devices with an " 1 " suffix are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and those with a " C^{\prime} " suffix are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The " M " devices are characterized for operation from -55 to $125^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM

(one section)

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {s }}$	Supply voltage	± 18	V
$V_{\text {is }}$	Differential input voltage	± 30	V
V_{i}	Input voltage	± 15	V
$\mathrm{T}_{\text {op }}$	Operating temperature (TL084I)	-25 to 85	${ }^{\circ} \mathrm{C}$
	(TL084C)	0 to 70	${ }^{\circ} \mathrm{C}$
	(TL084M)	-55 to 125	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {J }}$	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM AND ORDERING NUMBERS

TEST CIRCUIT

Unity gain amplifier

Gain of 10 inverting amplifier
$\left.\begin{array}{ll|c|c|c}\text { THERMAL DATA } & \begin{array}{c}\text { Ceramic } \\ \text { DIP-14 }\end{array} & \text { SO-14 } & \begin{array}{c}\text { Plastic } \\ \text { DIP-14 }\end{array} \\ \hline R_{\text {th J-amb }} & \text { Thermal resistance junction-ambient } & \max & 150^{\circ} \mathrm{C} / \mathrm{W} & 165^{\circ} \mathrm{C} / \mathrm{W}\end{array}\right) 200^{\circ} \mathrm{C} / \mathrm{W}$.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, otherwise specified)

Parameter		Test Conditions		"1"			"C"			"M"			Unit		
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.					
Vos	Input offset voltage			$\mathrm{R}_{\mathrm{S}}=50 \Omega$	TL084		3	6		5	15		3	9	mV
		TL084A						3	6						
		TL084B						2	3						
		$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{amb}}=\text { full range } \end{aligned}$	TL084			9			20			15			
			TL084A						7.5						
			TL084B						5						
$\frac{\Delta V_{\mathrm{OS}}}{\Delta T}$	Input offset voltage drift	$\begin{aligned} & R_{\mathrm{s}}=50 \Omega \\ & \mathrm{~T}_{\mathrm{amb}}=\text { full range } \end{aligned}$			10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
los	Input offset current		TL084		5	100		5	200		5	100	pA		
			TL084A					5	100						
			TL084B					5	100						
		$\mathrm{T}_{\text {amb }}=$ full range	TL084			10			5			20	nA		
			TL084A						3						
			TL084B						3						
	Input bias current		TL084		30	200		30	400		30	200	pA		
			TL084A					30	200						
			TL084B					30	200						
		$\mathrm{T}_{\mathrm{amb}}=$ full range	TL084			20			10.			50	nA		
			TL084A						7						
			TL084B						7						
$\mathrm{V}_{\text {cm }}$	Common mode input voitage range		TL084	± 11	± 12		± 10	± 11		± 11	± 12		V		
			TL084A				± 11	± 12							
			TL084B				± 11	± 12							
V OPP	Large signal voltage gain	$\mathrm{T}_{\text {amb }}=$ full range	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$	24	27		24	27		24	27		v		
			$R_{L} \geqslant 10 \mathrm{~K} \Omega$	24			24			24					
			$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{~K} \Omega$	20	24		20	24		20	24				
Gv	Large signal voltage gain	$\begin{aligned} & R_{L} \geqslant 2 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	TL084	50	200		25	200					V / mV		
			TL084A				50	200							
			TL084B				50	200							
		$\begin{aligned} & R_{L} \geqslant 2 \mathrm{~K} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & T_{\mathrm{amb}}=\text { full range } \end{aligned}$	TL084	25			15			15					
			TL084A				25								
			TL084B				25								
B	Unity gain bandwidth				3			3			3		MHz		
R_{1}	Input resistance				10^{12}			10^{12}			10^{12}		Ω		
CMR	Common mode rejection	$\mathrm{R}_{\mathrm{s}} \geqslant 10 \mathrm{~K} \Omega$	TL084	80	86		70	76		80	86		dB		
			TL084A				80	86							
			TL084B				80	86							
SVR	Supply volage rejection	$\mathrm{R}_{\mathrm{s}} \geqslant 10 \mathrm{~K} \Omega$	TL084	80	86		70	76		80	86		dB		
			TL084A				80	86							
			TL084B				80	86							
Is	Supply current	$\mathrm{R}_{\mathrm{L}}=\infty$			5.6	11.2		5.6	11.2		5.6	11.2	mA		

ELECTRICAL CHARACTERISTICS (Continued)

.	Parameter	Test Conditions		" 1 "			"C"			"M"			Unit
				Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
CS	Channel separation	$\mathrm{G}_{\mathrm{V}}=100$			120			120			120		dB
SR	Slew-rate at unity gain	$\begin{aligned} & V_{1}=10 \mathrm{~V} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	$R_{L}=2 K \Omega$		13			12		8	13		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise time	$\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$		0.1			0.1			0.1		
	Overshot factor	$C_{L}=100 \mathrm{pF}$			10			10			10		\%
${ }^{\text {e }}$ N	Total input noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & f=1 \mathrm{KHz} \end{aligned}$			25			25			25		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

Fig. 1 - Maximum peak to peak output voltage vs. frequency.

Fig. 4 - Large signal voltage gain and phase shift vs. frequency

SGS-THOMSON
Mnceotlecrionucs

Fig. 7 - Input bias current vs. temperature

Fig. 10 - Equivalent input noise voltage vs. frequency

Fig. 8 - Voltage follower large signal pulse response

Fig. 11 Total harmonic distortion vs. frequency

Fig. 9 - Output voltage vs. elapset time.

Fig. 12 - Common mode rejection vs. temperature

APPLICATION INFORMATION

Fig. 13 - Second order high Q band pass filter ($f_{o}=100 \mathrm{KHz}, Q=30$, gain $=4$)

SCS-THOMSON

APPLICATION INFORMATION

Fig. $14-0.5 \mathrm{~Hz}$ square wave oscillator

$$
f=\frac{1}{2 \pi R_{F} C_{F}}
$$

Fig. 15 - High Q Notch filter

Fig. $16-100 \mathrm{KHz}$ quadrature oscillator

Fig. $17-20 \mathrm{~Hz}$ to 200 Hz variable High-pass filter ($\mathrm{G}_{\mathrm{v}}=3 \mathrm{~dB}$)

Fig. 18 - Frequency response of the high-pass filter of fig. 17

APPLICATION INFORMATION (continued)

Fig. 19 - Unity-gain absolute-value circuit

Fig. 20 - Single supply sample and hold

Fig. 21 - Output current to voltage transformation for a DA converter

(*) The value of C may be selected to minimize overshoot and ringing ($C \approx 68 \mathrm{pF}$).

Settling time to within $1 / 2$ LSB $(\pm 19.5 \mathrm{mV})$ is approximately $4.0 \mu \mathrm{~s}$ from the time all bits are switched.

Theoretical V_{o} :
$V_{0}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $V_{\text {ref }}, R 1$ or R_{0} so that V_{o} with all digital inputs

$$
\begin{aligned}
& V_{\mathrm{ref}}=2.0 \mathrm{~V}_{\mathrm{dc}} \\
& \mathrm{R} 1=\mathrm{R} 2 \approx 1.0 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{o}}=5.0 \mathrm{k} \Omega
\end{aligned}
$$

at high level is equal to 9.961 volts.

PACKAGES

DESIGNING WITH THERMAL IMPEDANCE

by T. Hopkins, C. Cognetti, R. Tiziani

REPRINT FROM "SEMITHERM PROCEEDINGS" S. DIEGO (U.S.A.) 1988.

Abstract

Power switching techniques used in many modern control systems are characterized by single or repetitive power pulses, which can reach several hundred watts each. In these applications where the pulse width is often limited to a few milliseconds, cost effective thermal design considers the effect of thermal capacitance. When this thermal capacitance is large enough, it can limit the junction temperature to within the ratings of the device even in the presence of high dissipation peaks. This paper discusses thermal impedance and the main parameters influencing it. Empirical measurements of the thermal impedance of some standard plastic packages showing the effective thermal impedance under pulsed conditions are also presented.

INTRODUCTION

Power switching applications are becoming very common in many industrial, computer and automotive ICs. In these applications, such as switching power supplies and PWM inductive load drivers, power dissipation is limited to short times, with single or repeated pulses. The normal description of the thermal performance of an IC package, Rth (j-a) (junction to ambient thermal resistance), is of little help in these pulsed applications and leads to a redundant and expensive thermal design.
This paper will discuss the thermal impedance and the main factors influencing it in plastic semiconductor packages. Experimental evaluations of the thermal performance of small signal, medium power, and high power packages will be presented as case examples. The effects of the thermal capacitance of the packages when dealing with low duty cycle power dissipation will be presented and evaluated in each of the example cases.

THERMAL IMPEDANCE MODEL FOR PLASTIC PACKAGES

The complete thermal impedance of a device can be modeled by combining two elements, the thermal resistance and the thermal capacitance.

The thermal resistance, Rth, quantifies the capability of a given thermal path to transfer heat. The general definition of resistance of the thermal path, which includes the three different modes of heat dissipation (conduction, convection and radiation), is the ratio between the temperature increase above the reference and the heat flow, $\Delta \mathrm{P}$, and is given by the equation:

$$
\mathrm{R}_{\mathrm{th}}=\frac{\Delta \mathrm{T}}{\Delta \mathrm{P}}=\frac{\Delta \mathrm{T}}{\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}}
$$

where: $\Delta Q=$ heat
$\Delta t=$ time
Thermal capacitance, $C_{\text {th }}$, is a measure of the capability of accumulating heat, like a capacitor accumulates a charge. For a given structural element, Cth depends on the specific heat, c , volume V , and density d , according to the relationship:

$$
C_{t h}=c d v
$$

The resulting temperature increase when the element has accumulated the heat Q , is given by the equation:

$$
\Delta \mathrm{T}=\Delta \mathrm{Q} / \mathrm{C}_{\mathrm{th}}
$$

The electrical analogy of the thermal behavior for a given application consisting of an active device, package, printed circuit board, external heat sink and external ambient is a chain of RC cells, each having a characteristic time constant:

$$
\tau=\mathrm{R} \mathrm{C}
$$

To show how each cell contributes to the thermal impedance of the finished device consider the simplified example shown in figure 1. The example device consists of a dissipating element (integrated circuit) soldered on a copper frame surrounded by a plastic compound with no external heat sink. Its equivalent electrical circuit is shown in figure 2.

Fig. 1 - Simplified Package Outline

Fig. 2 - Equivalent Thermal Circuit of Simplified Package

The first cell, shown in figure 2, represents the thermal characteristics of the silicon itself and is characterized by the small volume with a correspondingly low thermal capacitance, in the order of a few $\mathrm{mJ} /{ }^{\circ} \mathrm{C}$. The thermal resistance between the junction and the silicon/slug interface is of about 0.2 to $2^{\circ} \mathrm{C} / \mathrm{W}$, depending on die size and on the size of the dissipating elements existing on the silicon. The time constant of this cell is typically in the order of a few milliseconds.

The second cell represents the good conductive path from the silicon/frame interface to the frame periphery. In power packages, where the die is often soldered directly to the external tab of the package, the thermal capacitance can be large. The time constant for this cell is in the order of seconds.

From this point, heat is transferred by conduction to the molded block of the package, with a large thermal resistance and capacitance. The time constant of the third cell is in the order of hundreds of seconds.

After the plastic has heated, convection and radiation to the ambient starts. Since a negligible capacitance is associated with this phase, it is represented by a purely resistive element.

When power is switched on, the junction temperature increase is ruled by the heat accumulation in the cells, each following its own time constant according with the equation:
$\Delta T=R_{t h} P_{d}[1-e(t / \tau)]$
The steady state junction temperature, T_{j}, is a function of the $R_{\text {th }}(j-a)$ of the system, but the temperature increase is dominated by thermal impedance in the transient phase, as is the case in switching applications.

A simplified example of how the time constants of each cell contribute to the temperature rise is shown in figure 3 where the contribution of the ceils of figure 2 is exaggerated for a better understanding.

Fig. 3 - Time Constant Contribution of Each Thermal Cell (Qualitative Example)

When working with actual packages, it is observed that the last two sections of the equivalent circuit are not as simple as in this model and possible changes will be discussed later. However, with switching times shorter than few seconds, the model is sufficient for most situations.

EXPERIMENTAL MEASUREMENTS

When thermal measurements on plastic packages are performed, the first consideration is the lack of a standard method. At present, only draft specifications exist, proposed last year and not yet standardized (1).
The experimental method used internally for evaluations since 1984 has anticipated these preliminary recomen-
dations to some extent, as it is based on test patterns having, as dissipating element, two power transistors and, as measurement element, a sensing diode placed in the thermal plateau arising when the transistors are biased in parallel.
The method used has been presented elsewhere (2) for the pattern P432 (shown in figure 4), which uses two small (1000 sq mils) bipolar power transistors and has a maximum DC power capability of 40W (limited by second breakdown of the dissipating elements).
A similar methodology was followed with the new H 029 pattern, based on two D-Mos transistors (3) having a total size of 17,000 sq mils and a DC power capability of 300 W on an infinite heat sink at room temperature (limited by thermal resistance and by max operating temperature of the plastics).

Fig. 4

Using the thermal evaluation die, four sets of measurements were performed on an assortment of insertion and surface mount packages produced by SGS-Thomson Microelectronics. The complete characterization is available elsewhere (4). The four measurements taken were:

1) Junction to Case Thermal Resistance (Power Packages)
2) Junction to Ambient Thermal Resistance
3) Transient Thermal Impedance (Single Pulse)
4) Peak Transient Thermal Impedance (Repeated Pulses)

Fig. 5

SGS-THOMSON
MICROELEGTRONHCS

Fig. 6 - Set-up for $R_{\text {th (}}$ (-c) Measurement

The junction to case thermal resistance measurements were taken using the well known setup shown in figure 6 where the power device is clamped against a large mass of controlled temperature.

The junction to ambient thermal resistance in still air, was measured with the package soldered on standard test boards, described later, and suspensed in 1 cubic foot box, to prevent air movement.

The single pulse transient tinermal impedance was measured in still air by applying a single power pulse of duration t_{0} to the device. The exponential temperature rise in response to the power pulse is shown qualitetively in figure 7 . In the presence of one single power pulse the temperature, $\Delta T_{\max }$, reached at time t_{0}, is lower than the steady state temperature calculated from the junction to ambient thermal resistance. The transient thermal impedance R_{0}, is obtained from the ratio $\Delta T_{\max } / P_{d}$.

Fig. 7 - Transient Thermal Response for a Single Pulse
(s)

The peak transient thermal impedance for a series of repetitive pulses was measured by applying a string of power pulses to the device in free air. When power pulses of the same height, P_{d}, are repeated with a given duty cycle, DC, and the pulse length, t , is shorter than the total time constant of the system, the train of pulses is seen as a continuous source with mean power level given by the equation:

$$
P_{\text {davg }}=P_{d} D C
$$

Fig. 8 - Transient Thermal Response for Repetitive Pulses

On the other hand, the silicon die has a thermal time constant of 1 to 2 ms and the die temperature is able to follow frequencies of some kHz . The result is that T_{j} oscillates about the average value:

$$
\Delta T_{j a v g}=R_{\text {th }} P_{\text {davg }}
$$

The resulting die temperature excursions are shown qualitatively in figure 8 . The peak thermal impedance, $\mathrm{R}_{\text {thp }}$, corresponding to the peak temperature, $\Delta \mathrm{T}_{\text {max }}$, at the equilibrium can be defined:

$$
R_{\text {thp }}=\Delta T_{\max } / P_{d}=F\left(t_{p}, D C\right)
$$

The value of $R_{t h p}$ is a function of pulse width and duty cycle. Knowledge of Rthp is very important to avoid a peak temperature higher than specificed values (usually $150^{\circ} \mathrm{C}$).

EXPERIMENTAL RESULTS

The experimental measurements taken on several of the packages tested are summarized in the following sections.

MULTIWATT Package

The MULTIWATT (R) package, shown in figure 9a, is
a multileaded power package in which the die is attached directly to the tab of package using a soft solder $(\mathrm{Pb} / \mathrm{Sn})$ die attach. The tab of the package is a 1.5 mm thick copper alloy slug. The thermal model of the MULTIWATT, shown in figure 9b, is not much different from that shown in figure 2. The main difference being that when heat reaches the edge of the slug, two parallel paths are possible; conduction towards the molding compound, and convection and radiation towards the ambient. After a given time, convection and radiation taked place from the plastic.

Fig. 9

Using the two test die, the measured junction to case thermal resistance is:
$\begin{array}{ll}\text { P432 } & R_{\text {th }}(j-c)=2^{\circ} \mathrm{C} / \mathrm{W} \\ \text { H029 } & R_{\text {th }}(j-c)=0.4^{\circ} \mathrm{C} / \mathrm{W}\end{array}$
The measured time constant is approximately 1 ms for each of the two test patterns, but the two devices have a different steady state temperature rise.

The second cell shown in figure 9 is dominated by the large thermal mass of the slug. The thermal resistance of the slug, $\mathrm{R}_{\text {thslug }}$ is about $1^{\circ} \mathrm{C} / \mathrm{W}$ and the thermal time constant of the slug is in the order of 1 second.

The third RC cell in the model has a long time constant due to the mass of the plastic molding and its low thermal conductivity. For this cell the steady state is reached after hundreds of seconds.

For the MULTIWATT the DC thermal resistance of the
package in free air, $\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{a}$, is $36^{\circ} \mathrm{C} / \mathrm{W}$ with the P 432 die and $34.5^{\circ} \mathrm{C} / \mathrm{W}$ with the H 029 die.

Figure 10 shows the single pulse transient thermal impedance for the MULTIWATT with both the P432 and H029 test die. As can be seen on the graph, the package is capable of high dissipation for short periods of time. For a die like the H029 the power device is capable of 700 to 800 W for pulse widths in the range of 1 to 10 ms . For times up to a few seconds the effective thermal resistance for a single pulse is still in the range of 1 to $3^{\circ} \mathrm{C} / \mathrm{W}$.

Fig. 10 - Transient Thermal Response MULTIWATT Package

The peak transient thermal impedance for the MULTIWATT package containing the P432 die in free air is shown in figure 11.

Power DIP Package

The power DIP package is a derivative of standard small signal DIP packages with a number of leads connected to the die pad for heat transfer to external heat sinks. With this technique low cost heat sinks can be integrated on the printed circuit board as shown in figure 12a. The thermal model of the power DIP, shown in figure 12b accounts for the external heat sink on the circuit board by adding a second RC cell in parallel with the cell corresponding to the molding compound.

In this model, the second cell has a shorter time constant than for the MULTIWATT package, due in large part to the smaller quantity of copper in the frame (the frame thickness is 0.4 mm compared to 1.5 mm). Thus the capacitance is reduced and the resistance increased.

The increased thermal impedance due to the frame can partially be compensated by a better thermal exchange to the ambient by adding copper to the heat sink on the board. The DC thermal resistance between the junction and ambient can be reduced to the same range as the MULTIWATT package in free air, as shown in figure 13.

Fig. 11- Peak Thermal Resistance MULTIWATT Package

Fig. 12

Fig. 13 - Rth (j - a) vs. PCB Heat Sink Size $12+3+3$ Power Dip

As a comparison, figure 14 compares the thermal performance of the power DIP and the MULTIWATT package. It is clearly seen that even though the DC
thermal resistance may be simiiar, the MULTIWATT is superior in its performance for pulsed applications.

Fig. 14 - Transient Thermal Impedance for Single Pulses in Power DIP and MULTIWATT Packages

Standard Signal Packages

In standard, small signal, packages the easiest thermal path is from the die to the ambient through the molding compound. However, if a high conductivity frame, like a copper lead frame, is used another path exists in
parallel. Figure 15 shows the equivalent thermal model of such a package. The effectiveness of a copper frame in transferring heat to the board can be seen in the experimental results in DC conditions.

Fig. 15

Table 1 shows the thermal resistance of some standard signal packages in two different conditions; with the device floating in still air connected to the measurement circuit by thin wires and the same device soldered on a test board.

Table 1 - Thermal Resistance of Signal Packages

Package	Frame Thickness \& Material	Rth (j-a) floating	${ }^{\circ} \mathrm{C} / \mathrm{W}$ on board
DIP 8	(0.4 mm Copper)	125-165	78-90
DIP 14	(0.4 mm Copper)	98-128	64-73
DIP 16	(0.4 mm Copper)	95-124	62-71
DIP 20	(0.4 mm Copper)	85-112	58-69
DIP 14	(0.25 mm Copper)	115-147	84-95
DIP 20	(0.25 mm Copper)	100-134	76-87
DIP 24	(0.25 mm Copper)	67-84	61-68
DIP 20	(0.25 mm Alloy 42)	158-184	133-145
SO 14	(0.25 mm Copper)	218-250	105-180
PLCC 44	(0.25 mm Copper)	66-83	48-72

The transient thermal resistance for single pulses for the various packages are shown in figures 16 through 20.

The results of the tests, as shown in the preceding figures, show the true capabilities of the packages. For example, the DIP 20 with a Alloy 42 frame is a typical package used for signal processing applications and can dissipate only 0.5 to 0.7 W in steady state conditions. However, the transient thermal impedance for short pulses is low ($11^{\circ} \mathrm{C} / \mathrm{W}$ for $\mathrm{tp}_{\mathrm{p}}=100 \mathrm{~ms}$) and almost 7 Watts can be dissipated for 100 ms while keeping the junction temperature rise below $80^{\circ} \mathrm{C}$.
The packages using a 0.4 mm Copper frame have a low steady state thermal resistance, especially in the case of the DIP 20. The thicker lead frame increases the thermal capacitance of the die flag, which greatly improves the transient thermal impedance. In the case of the DIP 20, which has the largest die pad, the transient Rth for 100 ms pulses is about $4.3^{\circ} \mathrm{C} / \mathrm{W}$. This allows the device to dissipate an 18 Watt power pulse while keeping the temperature rise below $80^{\circ} \mathrm{C}$.
As with the previous examples the peak transient thermal impedance for repetitive pulses depends on the pulse length and duty cycle as shown in figure 14. With the signal package, however, the effect of the duty cycle becomes much less effective for longer pulses, due primarily to the lower thermal capacitance and hence lower time constant of the frame.

Fig. 16 - Transient Thermal Impedance DIP 20 (Alloy 42)

Fig. 17 - Transient Thermal Impedance 0.4 mm Copper Frame DIP Packages

Fig. 18 - Transient Thermal Impedance 0.25 mm Copper Frame DIP Packages

Fig. 19 - Transient Thermal Impedance 0.25 mm Frame PLCC Package

Fig. 20 - Transient Thermal Impedance $\mathbf{0 . 2 5} \mathbf{~ m m}$ Copper Frame SO14 Package

Fig. 21 - Peak Thermal Impedance 0.25 mm Copper Frame 14 Lead DIP

CONCLUSION

This paper has discussed a test procedure for measuring and quantifying the thermal characteristics of semiconductor packages. Using these test methods the thermal impedance of standard integrated circuit packages under pulsed and DC conditions were evaluated. From this evaluation two important considerations arise:

1) The true thermal impedance under repetitive pulsed conditions needs to be considered to maintain the peak junction temperature within the rating for the device. A proper evaluation will result in junction temperatures that do not exceed the specified limits under either steady state or pulsed conditions.
2) The proper evaluation of the transient thermal characteristics of an application should take into account the ability to dissipate high power pulses
allowing better thermal design and possibly reducing or eliminating expensive external heat sinks when they are oversized or useless.

REFERENCES

(1) SEMI Draft Specifications 1377 and 1449, 1986
(2) T. Hopkins, R. Tiziani, and C. Cognetti, "Improved thermal impedance measurements by means of a simple integrated structure", presented at SEMITHERM 1986
(3) C. Cini, C. Diazzi, D. Rossi and S. Storti, "High side monolithic switch in Multipower-BCD technology", Proceedings of Microelectronics Conference, Munchen, November 1986
(4) Application Notes 106 through 110, SGS-THOMSON Microelectronics, 1987
SO-8J

SO-14J

SO-20L
 SO-20 (12+4+4)

SO-16J

PACKAGES

8 lead Plastic Minidip $4+4$ lead Powerdip

8 lead Ceramic Minidip

P027. 83

14 lead Ceramic Dip

16 lead Plastic Dip (0.25)

PACKAGES

16 lead Plastic Dip (0.4)
$8+8$ lead Powerdip
$12+2+2$ lead Powerdip

P001-v8

18 lead Plastic Dip
$12+3+3$ lead Powerdip
$9+9$ lead Powerdip

20 lead Plastic Dip (0.25)

20 lead Plastic Dip (0.4)
$16+2+2$ Powerdip

48 lead Plastic Dip

SOT-32 (TO-126)

(1) Within this region the cross-section of the leads is uncontrolled

SIP-9

PENTAWATT

Horizontal Version

Vertical Version

HEPTAWATT

Horizontal Version

Vertical Version

MULTIWATT-11

PACKAGES

MULTIWATT-15

Horizontal Version

Vertical Version

NOTES

NOTES

NOTES

AUSTRALIA

NSW 2027 EDGECLIFF
Suite 211, Edgecliff centre 203-233, New South Head Road Tel. (61-2) 327.39.22
Telex: 071126911 TCAUS
Telefax: (61-2) 327.61 .76

CHINA

BEIJING
Room 5011, Beijing Hotel
Tel. (86-1) 507766
Telex: 201285 SGS BJ

DENMARK

2730 HERLEV

Herlev Torv, 4
Tel. (45-2) 94.85.33
Telex: 35411
Telefax: (45-2) 948694

FRANCE

94253 GENTILLY Cedex
7 - avenue Gallieni - BP. 93
Tel.: (33-1) 47.40.75.75
Telex: 632570 STMHQ
Telefax: (33-1) 47.40.79.10
67000 STRASBOURG
20, Place des Halles
Tel. (33) 88.25.49.90
Telex: 870001F
Telefax: (33) 88.22.29.32

HONG KONG

WANCHAI

22nd Floor - Hopewell centre 183 Queen's Road East Tel. (852-5) 8615788
Telex: 60955 ESGIES HX
Telefax: (852-5) 8656589

INDIA

NEW DELHI 110048
Liason Office
S114, Greater Kailash Part 2
Tel. (91) 6414537
Telex: 31-62000 SGSS IN

ITALY

20090 ASSAGO (MI)

V.le Milanofiori - Strada 4 - Palazzo A/4/A

Tel. (39-2) 8244131 (10 linee)
Telex: 330131-330141 SGSAGR
Telefax: (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)

Via R. Fucini, 12
Tel. (39-51) 591914
Telex: 226363
Telefax: (39-51) 591305

00161 ROMA

Via A. Torlonia, 15
Tel. (39-6) 8443341/2/3/4/5
Telex: 620653 SGSATE I
Telefax: (39-6) 8444474

JAPAN

TOKYO 141

Shinagawa-Ku, Nishi Gotanda
8-11-7, Collins Bldg 8
Tel. (81-3) 491-8611
Telefax: (81-3) 491-8735

KOREA

SEOUL 121

Rm 401, lljin Bldg
50-1, Dohwangdong Mapo
Tel. (82-2) 7167472/3
Telex: K 29998 SGS KOR
Telefax: (82-2) 7167409

NETHERLANDS

5612 AM EINDHOVEN
Dillenburgstraat 25
Tel.: (31-40) 550015
Telex: 51186
Telefax: (31-40) 528835

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park 2
Tel. (65) 4821411
Telex: RS 55201 ESGIES
Telefax: (65) 4820240

SPAIN

BARCELONA

Poligono Industrial Fontsanta Montilla 5
San Juan Despi
Tel. (34-3) 3733011
Telex: 53077 CSAE
Telefax: (34-3) 37339850

28027 MADRID

Calle Albacete, 5
Tel. (34-1) 4051615
Telex: 46033 TCCEE
Telefax: (34-1) 4031134

SWEDEN

S-16421 KISTA

Borgarfjordsgatan, 13 - Box 1094
Tel.: (46-8) 7939220
Telex: 12078 THSWS
Telefax: (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENÈVE)

Chemin François-Lehmann, 18/A
Tel. (41-22) 986462
Telex: 28895 STM CH
Telefax: (41-22) 984869

TAIWAN

KAOHSIUNG

7FL-2 No
5 Chung Chen 3Rd Road
Tel. (886-7) 2011702
Telefax: (886-7) 2011703

TAIPEI

6th Floor, Pacific Commercial Building
285 Chung Hsiao E. Road - SEC, 4
Tel. (886-2) 7728203
Telex: 10310 ESGIE TWN
Telefax: (886-2) 7413837

UNITED KINGDOM

MARLOW, BUCKS

Planar House, Parkway
Globe Park
Tel.: (44-628) 890800
Telex: 847458
Telefax: (44-628) 890391

U.S.A.

NORTH \& SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road
Phoenix, AZ 85022
(1)-(602) 867-6100

SALES \& REPS COVERAGE BY STATE

AL
Huntsville - (205) 533-5995
Huntsville (Rep) - (205) 881-9270

AZ

Phoenix - (602) 867-6340

CA

Fountain Valley (Rep) - (714) 545-3255
Irvine - (714) 250-0455
Los Angeles (Rep) - (213) 879-0770
San Diego (Rep) - (619) 693-1111
Santa Clara - (408) 970-8585
Santa Clara (Rep) - (408) 727-3406

CO

Longmont - (303) 449-9000
Wheat Ridge (Rep) - (303) 422-8957
FL
Altamonte Springs (Rep) - (305) 682-4800
Deerfield Beach (Rep) - (305) 426-4601
St. Petersburg (Rep) - (813) 823-6221

GA

Tucker (Rep) - (404) 938-4358
IL
Schaumburg - (312) 490-1890
IN
Fort Wayne (Rep) - (219) 436-3023
Greenwood (Rep) - (317) 881-0110
IA
Cedar Rapids (Rep) - (319) 362-2526
MD
Glen Burnie (Rep) - (301) 761-6000

MA

Waltham - (617) 890-6688
MI
Southfield - (313) 358-4250
Southfield (Rep) - (313) 358-4151

MN

Bloomington (Rep) - (612) 884-6515

MO
Florissant (Rep) - (314) 839-0033
Kansas City (Rep) - (816) 436-6445

NJ

Marlton - (609) 722-9200
NY
Binghamton (Rep) - (607) 772-0651
E. Rochester (Rep) - (716) 381-8500

Hauppauge - (516) 435-1050
Jericho (Rep) - (516) 935-3200
Pittsford (Rep) - (716) 381-3186
Poughkeepsie - (914) 454-8813
Skaneateles (Rep) - (315) 685-5703

NC

Charlotte (Rep) - (704) 563-5554
Morrisville (Rep) - (919) 469-9997

OH

Chagrin Falls (Rep) - (216) 247-6655
Dayton (Rep) - (513) 866-6699
OR
Beaverton (Rep) - (503) 627-0838

PA

Butler (Rep) - (412) 285-1313
Horsham (Rep) - (215) 441-4300

TN

Jefferson City (Rep) - (615) 475-9012
TX
Austin - (512) 451-4061
Carrollton - (214) 466-8844
UT
Salt Lake City (Rep) - (801) 269-0419

WA

Bellevue (Rep) - (206) 451-3500

CANADA

Burnaby (Rep) - (604) 421-9111
Mississauga (Rep) - (416) 673-0011
Nepean (Rep) - (613) 825-0545
Quebec (Rep) - (514) 337-5022
Winnipeg (Rep) - (204) 783-4387

BRAZIL

são Paulo - (551) 11-883-5455

COLUMBIA

Bogota (Rep) - (011) 57-1-257-8824

MEXICO

Mexico City (Rep) - (905) 577-1883

PUERTO RICO

Rio Piedras (Rep) - (809) 790-4090

URUGUARY

Montevideo (Rep) - (011) 598-2-594-888

WEST GERMANY

6000 FRANKFURT 71
Rennbahnstrasse 72-74
Tel. (49-69) 6708191
Telex: 176997689
Telefax: (49-69) 674377

8018 GRAFING BEI MUNCHEN

Haidling, 17
Tel. (49-8092) 690
Telex: 527378
Telefax: (49-8092) 3964

3000 HANNOVER 1

Eckenerstrasse 5
Tel. (49-511) 634191
Teletex: 175118418
Telefax: (49-511) 633552

MÜNCHEN 70

Perchtinger Str. 3
Postfach 70.19.09
Tel. (49-89) 78790
Telex: 522916
Telefax: (49-89) 7879145

8500 NÜRNBERG 20

Erlenstegenstrasse, 72
Tel.: (49-911) 597032
Telex: 626243
Telefax: (49-911) 5980701

5200 SIEGBURG

Frankfurter Str. 22a
Tel. (49-241) 660 84-86
Telex: 889510
Telefax: (49-241) 67584

7000 STUTTGART 1

Oberer Kirchhaldenweg 135
Tel. (49-711) 692041
Telex: 721718
Telefax: (49-711) 691408

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1988 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
® : Pentawatt and Multiwatt are registered marks of SGS-THOMSON - TM : Heptawatt is an Trade-Mark of SGS-THOMSON
SGS-THOMSON Microelectronics
Australia - Belgium - Brazil - Canada - China - Denmark - France - Hong Kong - India - Italy - Japan - Korea - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A. - West Germany

[^0]: NOSNOH-SDS 5

[^1]: * Thermal resistance junction-pin 4

[^2]: June 1988

[^3]: * Thermal resistance junction-pin 4.

[^4]: (*) Numbers referred to INPUT 1 or INPUT2 controlled outputs stages

[^5]: * V_{SS} is the lowest supply voltage
 ** $V_{D D}$ is the highest supply voltage

[^6]: * Repetitions
 \$ Exceptions

[^7]: * Repetitions
 \$ Exceptions

[^8]: * The complete matrix drive as shown above for SENON is also applicable for the matrix sense inputs SEN1N to SEN6N and the combined SEN5N/SEN6N.
 ** The C, B and A codes are identical to SENON as given above.

[^9]: Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^10]: Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^11]: * Obtained with tabs soldered to printed circuit with minimized copper area.

[^12]: * Obtained with tabs soldered to printed circuit with minimized copper area

[^13]: * Capacitor C 6 must be used when high ripple rejection is requested.

[^14]: (**) $\mathrm{B}=22 \mathrm{~Hz}$ to 22 KHz
 (*) $B=$ curve A

[^15]: * When the bus is in the active mode (see BRM in Control Information), 4.5 mA should be added to the figures given.

[^16]: (*) Curve A;
 (**) 22 Hz to 22 KHz

[^17]: (*) Polyester $\pm 5 \%$.

