
4M DRAM The

SAMSUNG

PRINTED IN KOREA

¢

Circuit diagrams utilizing SAMSUNG products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein any license under the patent rights of SAMSUNG or others. SAMSUNG reserve the right to change device specifications.

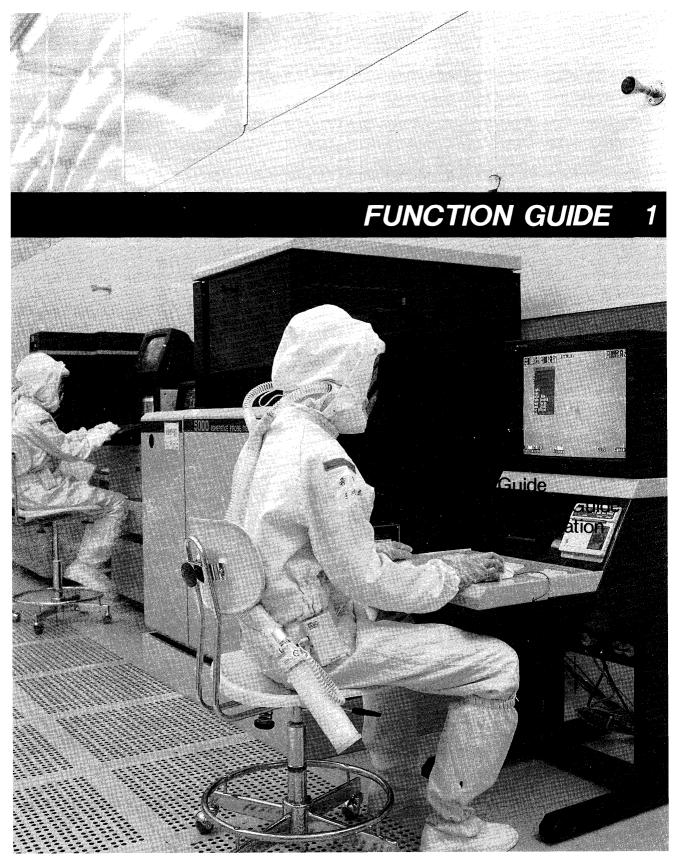
TABLE OF CONTENTS

I. FUNCTION GUIDE

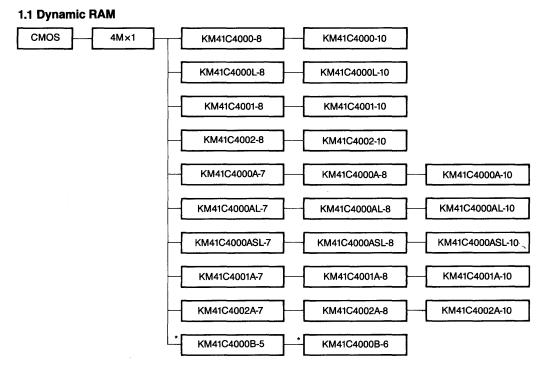
1.	Introduction	11
2.	Product Guide ······	14
З.	Cross Reference Guide	16
4.	Ordering Information	17

II. 4M DRAM DATA SHEETS

4M X 1

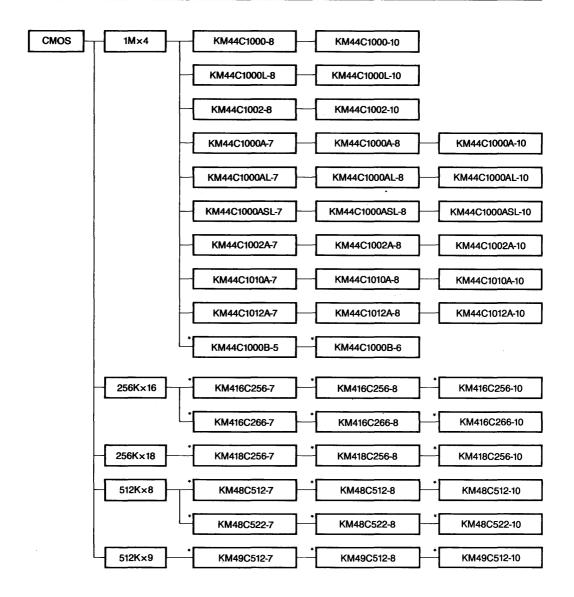

1.	KM41C4000 ······21
2.	KM41C1000L
З.	KM41C4001
4.	KM41C4002
5.	KM41C4000A
6.	KM41C4000AL
7.	KM41C4000ASL
8.	KM41C4001A
9.	KM41C4002A
1M	
10.	КМ44С1000 ······ 155
11.	KM44C1000L155
12.	KM44C1002 ······ 171
13.	KM44C1000A
14.	KM44C1000AL
15.	KM44C1000ASL
16.	KM44C1002A242
17.	KM44C1010A
18.	KM44C1012A
256	K X 16
	KM416C256
256	K X 18
	KM418C256 ······ 284
512	KX8
	KM48C512
	K X 9
22.	KM49C512 ······320

III. 4M DRAM MODULES DATA SHEETS

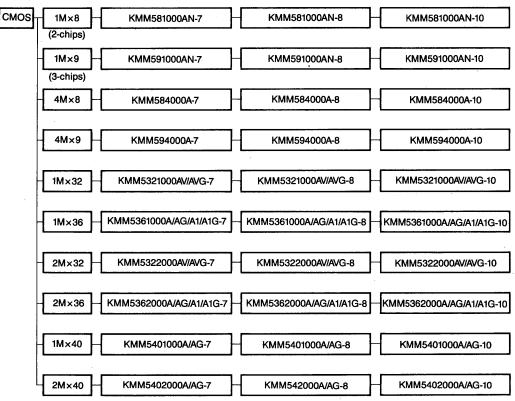

	1. KMM581000AN 2. KMM591000AN 3. KMM584000A 4. KMM594000A 5. KMM5321000AV/AVG 6. KMM5361000A/AG/A1/A1G 7. KMM5322000AV/AVG 8. KMM5362000A/AG/A1/A1G 9. KMM5401000A/AG 10. KMM5402000A/AG	
IV.	SALES OFFICES AND MANUFACTURER'S	

REPRESENTATIVES	447
-----------------	-----

Function Guide	1
4M DRAM Data Sheets	2
4M DRAM MODULES Data Sheets	3
Sales Offices and Manufacturer's Representatives	4



1. Introduction



1

* New Product

1.2 Dynamic RAM Module

2. Product Guide

2.1 Dynamic RAM

Generation	Part Number	Organization	Speed (ns)	Technology	Feature	Package	Remark
1st Gen.	KM41C4000J	4M × 1	80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM41C4000Z	4M × 1	80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM41C4000LJ	4M×1	80/100	CMÓS	Fast Page	20 Pin SOJ	Now
	KM41C4000LZ	4M × 1	80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM41C4001J	4M × 1	80/100	CMOS	Nibble	20 Pin SOJ	Now
	KM41C4001Z	4M × 1	80/100	CMOS	Nibble	20 Pin ZIP	Now
	KM41C4002J	4M × 1	80/100	CMOS	Static Column	20 Pin SOJ	Now
	KM41C4002Z	4M × 1		CMOS			
		411/1 X 1	80/100	CMUS	Static Column	20 Pin ZIP	Now
	KM44C1000J	1M × 4	80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM44C1000Z	1M × 4	80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM44C1000LJ	1M×4	80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM44C1000LZ	1M×4	80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM44C1002J	1M×4	80/100	CMOS	Static Column	20 Pin SOJ	Now
	KM44C1002Z	1M×4	80/100	CMOS	Static Column	20 Pin ZIP	Now
2nd Gen.	KM41C4000AJ	4M × 1	70/80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM41C4000AP	4M × 1	70/80/100	CMOS	Fast Page	18 Pin DIP	Now
	KM41C4000AZ	4M × 1	70/80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM41C4000AT	4M × 1	70/80/100	CMOS	Fast Page	20 Pin TSOP	Now
	KM41C4000ALJ/ASLJ	4M × 1	70/80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM41C4000ALP/ASLP	4M × 1	70/80/100	CMOS	Fast Page	18 Pin DIP	Now
	KM41C4000ALZ/ASLZ						
	KM41C4000ALZ/ASLZ	4M×1 4M×1	70/80/100 70/80/100	CMOS CMOS	Fast Page Fast Page	20 Pin ZIP 20 Pin TSOP	Now Now
	KM41C4001AJ	4M × 1	70/80/100	CMOS	Nibble	20 Pin SOJ	Now
	KM41C4001AP	4M × 1	70/80/100	CMOS	Nibble	18 Pin DIP	Now
	KM41C4001AZ	4M × 1	70/80/100	CMOS	Nibble	20 Pin ZIP	Now
	KM41C4002AJ	4M × 1	70/80/100	CMOS	Static Column	20 Pin SOJ	Now
	KM41C4002AP	4M × 1	70/80/100	CMOS	Static Column	18 Pin DIP	Now
	KM41C4002AZ	4M × 1	70/80/100	CMOS	Static Column	20 Pin ZIP	Now
	KM44C1000AJ	1M×4	70/80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM44C1000AP	1M×4	70/80/100	CMOS	Fast Page	20 Pin DIP	Now
	KM44C1000AZ	1M×4	70/80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM44C1000AT	1M×4	70/80/100	CMOS	Fast Page	20 Pin TSOP	Now
	KM441000ALJ/ASLJ	1M×4	70/80/100	CMOS	Fast Page	20 Pin SOJ	Now
	KM441000ALP/ASLP	1M×4	70/80/100	CMOS	Fast Page	20 Pin DIP	Now
	KM44C1000ALZ/ASLZ	1M×4	70/80/100	CMOS	Fast Page	20 Pin ZIP	Now
	KM44C1000ALT/ASLT	1M×4					
			70/80/100	CMOS	Fast Page	20 Pin TSOP	Now
	KM44C1002AJ	1M×4	70/80/100	CMOS	Static Column	20 Pin SOJ	Now
	KM44C1002AP	1M×4	70/80/100	CMOS	Static Column	20 Pin DIP	Now
	KM44C1002AZ	1M×4	70/80/100	CMOS	Static Column	20 Pin ZIP	Now
	KM44C1010AJ	1M×4	70/80/100	CMOS	Fast Page with WPB	20 Pin SOJ	Now
	KM44C1010AP	1M×4	70/80/100	CMOS	Fast Page with WPB	20 Pin DIP	Now
	KM44C1010AZ	1M×4	70/80/100	CMOS	Fast Page with WPB	20 Pin ZIP	Now
	KM44C1012AJ	1M×4	70/80/100	CMOS	Static Column with WPB	20 Pin SOJ	Now
	KM44C1012AP	1M×4	70/80/100	CMOS	Static Column with WPB	20 Pin DIP	Now
	KM44C1012AZ	1M×4	70/80/100	CMOS	Static Column with WPB	20 Pin ZIP	Now
3rd Gen.	*KM41C4000B	4M × 1	50/60	CMOS	Fast Page	20 Pin SOJ	2Q, '92
S.G.Gom	*KM44C1000B	1M×4	50/60	CMOS	Fast Page	20 Pin SOJ 20 Pin SOJ	2Q, 92 2Q, '92
	*KM416C256J	256K×16	70/80/100	CMOS	Fast Page	40 Pin SOJ	2Q, '92
		256K × 16	70/80/100	CMOS			, 02

Dynamic	RAM	(Continued)
---------	-----	-------------

Generation	Part Number	Organization	Speed (ns)	Technology	Feature	Package	Remark
	*KM416C266J	256K×16	70/80/100	CMOS	Fast Page with WPB	40 Pin SOJ	2Q, '92
	*KM416C266Z	256K × 16	70/80/100	CMOS	Fast Page with WPB	40 Pin ZIP	2Q, '92
	*KM418C256J	256K × 18	70/80/100	CMOS	Fast Page	40 Pin SOJ	2Q, '92
	*KM418C256Z	256K × 18	70/80/100	CMOS	Fast Page	40 Pin ZIP	2Q, '92
	*KM48C512J	512K × 8	70/80/100	CMOS	Fast Page	28 Pin SOJ	2Q, '92
	*KM48C512Z	512K x 8	70/80/100	CMOS	Fast Page	28 Pin ZIP	2Q, '92
	*KM48C522J	512K × 8	70/80/100	CMOS	Fast Page with WPB	28 Pin SOJ	2Q, '92
	*KM48C522Z	512K×8	70/80/100	CMOS	Fast Page with WPB	28 Pin SOJ	2Q, '92
	*KM49C512J	512K×9	70/80/100	CMOS	Fast Page	28 Pin SOJ	2Q, '92
	*KM49C512Z	512K×9	70/80/100	CMOS	Fast Page	28 Pin ZIP	2Q, '92

2.2 Dynamic RAM Module

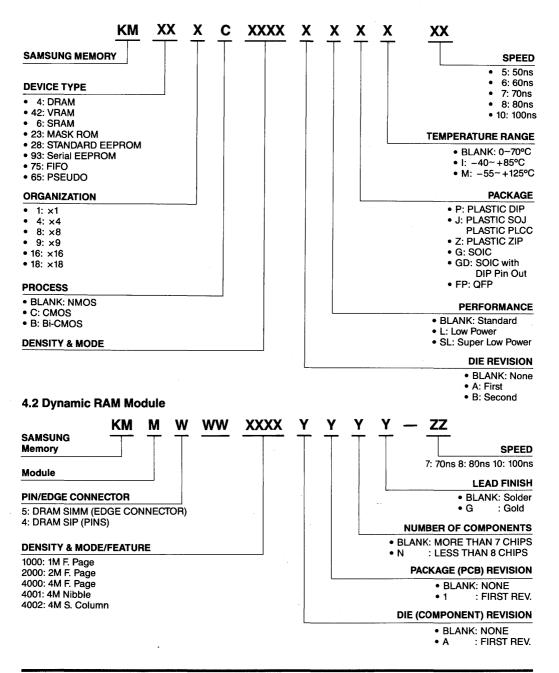
*S: Single Side *D: Double Side

Part Number	Organization	Speed (ns)	Technology	Feature	Package	PCB Height [ln]
KMM581000AN	1M×8	70/80/100	CMOS	Fast Page Mode	*S, 30 Pin SIMM	0.65
KMM591000AN	1M×9	70/80/100	CMOS	Fast Page Mode	*S, 30 Pin SIMM	0.65
KMM584000A	4M × 8	70/80/100	CMOS	Fast Page Mode	*S, 30 Pin SIMM	0.805
KMM594000A	4M × 9	70/80/100	CMOS	Fast Page Mode	*S, 30 Pin SIMM	0.805
KMM5321000AV/AVG	1M × 32	70/80/100	CMOS	Fast Page Mode	*S, 72 Pin SIMM	0.855
KMM5361000A/AG/A1/A1G	1M × 36	70/80/100	CMOS	Fast Page Mode	A/AG: *D, 72 Pin A1/A1G: *S, 72 Pin	A/AG: 1.25 A1/A1G: 1.0
KMM5322000AV/AVG	2M × 32	70/80/100	CMOS	Fast Page Mode	*D, 72 Pin SIMM	0.855
KMM5362000A/AG/A1/A1G	2M × 36	70/80/100	CMOS	Fast Page Mode	*D, 72 Pin SIMM	A/AG: 1.25 A1/A1G: 1.0
KMM5401000A/AG	1M × 40	70/80/100	CMOS	Fast Page Mode	*S, 72 Pin SIMM	1.0
KMM5402000A/AG	2M × 40	70/80/100	CMOS	Fast Page Mode	*D, 72 Pin SIMM	1.0

3. Cross Reference

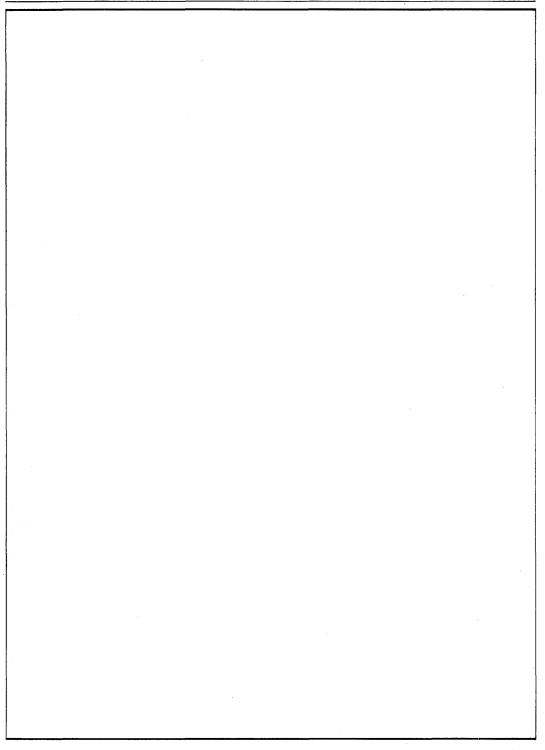
3.1 Dynamic RAM

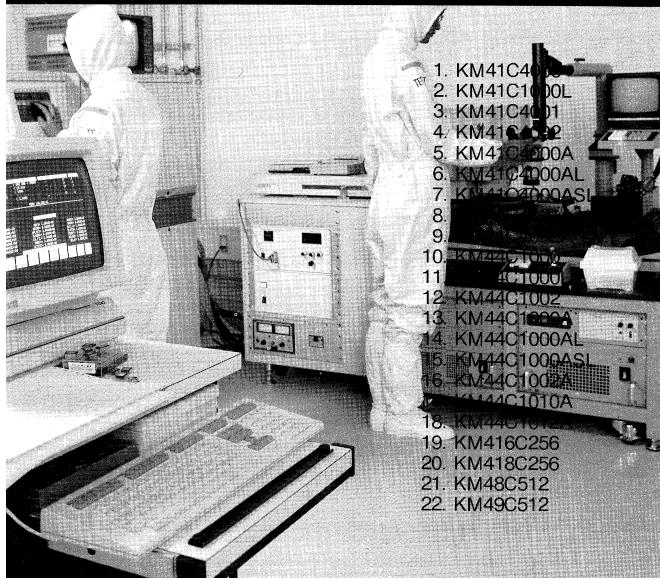
Org.	Mode	Samsung	Toshiba	Hitachi	Fujitsu	NEC	Oki
X1	F. Page	KM41C4000	TC514100	HM514100	MB814100	MPD424100	MSM514100
	Nibble	KM41C4001	TC514101	HM514101	MB814101	MPD424101	MSM514101
	S. Column	KM41C4002	TC514102	HM514102	MB814102	MPD424102	MSM514102
X4	F. Page	KM44C1000	TC514400	HM514400	MB814400	MPD424400	MSM514400
	S. Column	KM44C1002	TC514402	HM514402	MB814402	MPD424402	MSM514402


3.2 Dynamic RAM Module

Density	Organization	Samsung	Toshiba	Hitachi	NEC
8M bit	1M × 8 (2C)	KMM581000AN		HB56G18	
9M bit	1M×9 (3C)	KMM591000AN	-	HB56G19	
32M bit	4M × 8	KMM584000	THM84000	HB56A48	MC-424100A8
36M bit	4M × 9	KMM594000	THM94000	HB56A49	MC-424100A9
32M bit	1M × 32	KMM5321000	THM321000	HB56D132	
36M bit	1M×36	KMM5361000	THM5361020	HB56D136	MC-421000A36
64M bit	2M × 32	KMM5322000	THM322020	HB56D232	
72M bit	2M × 36	KMM5362000	THM362020	HB56D236	MC-422000A36
40M bit	1M × 40	KMM5401000	THM401020	HB56A140	
80M bit	2M × 40	KMM5402000	THM402020		

4. Ordering Information


4.1 Dynamic RAM



17

2

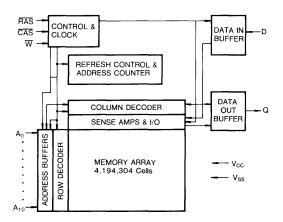
4M DRAM DATA SHEETS 2

. 1

4M×1 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

• Performance range:


	tRAC	tCAC	tRC
KM41C4000/L- 8	80ns	20ns	150ns
KM41C4000/L-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- Common I/O capability using Early Write
- Single + 5V ± 10% power supply
- Refresh Cycles: -1024 cycles/16ms
 - -1024 cycles/128ms (L-Version)
- Power dissipation — Standby: 5.5mW

1.7mW (L-Version) —Active : 550mW (80ns) 468mW (100ns)

- JEDEC standard pinout
- Available in Plastic SOJ/ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM41C4000/L is a high speed CMOS 4,194,304 bit \times 1 dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4000/L features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C4000/L is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM41C4000Z/LZ KM41C4000J/LJ 10 20 Vss D Ag 1 2 CAS ₩ 🛛 2 19 🗖 Q 3 Q 4 V_{SS} 18 🗖 CAS RAS 3 D 5 6 \overline{W} N.C. 🗖 17 🗖 N.C. 4 RAS 7 A₁₀ 8 A10 05 16 🗋 A₉ N.C. 9 10 N.C. Ao 11 12 A₁ A₀ [] 6 15 🗋 A₈ A_2 13 14 A₃ 7 14 A7 Vcc 15 16 A4 A₂ 13 🗖 A₆ A_5 17 18 Ae A₃ **9** 12 A5 A; 19 20 11 A₄ A_8 Vcc 🗖 10

Pin Name	Pin Function	
A0-A10	Address Inputs	
D	Data In	
Q	Data Out	
W	Read/Write Input	
RAS	Row Address Strobe	
CAS	Column Address Strobe	
Vcc	Power (+5V)	
V _{SS}	Ground	
N.C.	No connection	

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<TA<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4000/L- 8 KM41C4000/L-10	Icc1	_	100 85	mA mA
Standby Current (RAS=CAS=V _{IH})		lcc2	_	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KM41C4000/L- 8 KM41C4000/L-10	Іссз	_	100 85	mA mA
Fast Page Mode Current* (RAS=VIL, CAS Cycling @ t _{PC} =min.)	KM41C4000/L- 8 KM41C4000/L-10	Icc4		60 50	mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)	KM41C4000-8/10 KM41C4000L-8/10	lcc5		1 300	mA μA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM41C4000/L- 8 KM41C4000/L-10	Icce	_	100 85	mA mA
Battery Back Up Current Average Power Supply Current, Battery Back Up Mode Input High Voltage (V_{IH})=V _{CC} -0.2V Input Low Voltage (V_{IL})=0.2V CAS=CAS Before RAS Cycling or 0.2V D _{IN} =Don't Care T _{RC} =125 μ s, T _{RAS} =t _{RAS} min. \sim 1 μ s	KM41C4000L- 8 KM41C4000L-10	Icc7	—	400	μΑ
Stand Current (RAS=V _{IH} , CAS=V _{IL} Dout Enable)		Іссв	-	5	mA

DC AND OPERATING CHARACTERISTICS (Continued)

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts)	lıL	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)	l _{OL}	-10	10	μΑ
Output High Voltage Level $(I_{OH} = -5mA)$	V _{OH}	2.4		v
Output Low Voltage Level (I _{OL} =4.2mA)	Vol	_	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6} Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Мах	Unit
Input Capacitance (A _O -A ₁₀ , D)	C _{IN1}		5	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	_	7	pF
Output Capacitance (Q)	Cout		7	pF

AC CHARACTERISTICS (0°C≤Ta≤70°C, V_{CC}=5.0V±10%, See notes 1,2)

Parameter	Symbol	KM4	C4000/L-8	8 KM41C4000/L-10		Unit	Notes
Falameter	e je.	Min	Max	Min	Max	onn	NUCES
Random read or write cycle time	t _{RC}	150		180		ns	
Read-modify-write cycle time	t _{RWC}	175		210		ns	
Fast Page mode cycle time	tPC	55		60		ns	
Fast Page mode read-modify-write cycle time	t _{PRWC}	80		90		ns	
Access time from RAS	t _{RAC}		80		100	ns	3,4
Access time from CAS	tCAC		20		25	ns	3,4
Access time from column address	t _{AA}		40		50	ns	3,10
Access time from CAS precharge	t _{CPA}		50		55	ns	
CAS to output in Low-Z	t _{CLZ}	5		5		ns	З
Output buffer turn-off delay	tOFF	0	15	0	20	ns	6
Transition time (rise and fall)	t⊤	3	50	3	50	ns	2
RAS precharge time	t _{RP}	60		70		ns	
RAS pulse width	t _{RAS}	80	10,000	100	10,000	ns	
RAS pulse width (Fast page mode)	tRASP	80	200,000	100	200,000	ns	
RAS hold time	t _{RSH}	20		25		ns	
CAS hold time	tcsн	80		100		ns	
CAS pulse width	tCAS	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	60	25	75	ns	4,5
RAS to column address delay time	t _{RAD}	15	40	20	50	ns	10
CAS to RAS precharge time	t _{CRP}	5		10		ns	

23

AC CHARACTERISTICS (Continued)

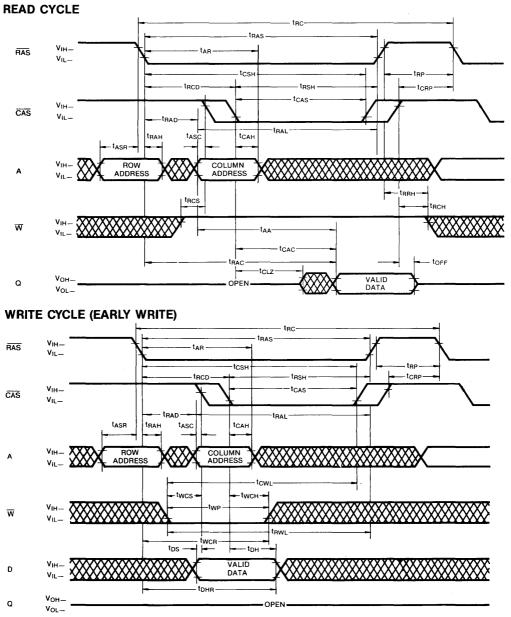
Parameter	Symbol	KM41	C4000/L-8	KM41	C4000/L-10	Unit	Notes
Farameter	Symbol	Min	Max	Min	Max	Unit	
CAS precharge time	t _{CP}	10		10		ns	
Row address set-up time	tASR	0		0		ns	
Row address hold time	t _{RAH}	10		15		ns	
Column address set-up time	tASC	0		0		ns	
Column address hold time	t _{CAH}	15		20		ns	
Column address hold referenced to RAS	t _{AR}	60		75		ns	12
Column Address to RAS lead time	tRAL	40		50		ns	
Read command set-up time	tRCS	0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		ns	8
Read command hold referenced to RAS	t _{RRH}	0		0		ns	8
Write command hold time	twcH	15		20		ns	
Write command hold referenced to RAS	twcr	60		75		ns	12
Write command pulse width	twp	15		20		ns	
Write command to RAS lead time	t _{RWL}	20		25		ns	
Write command to CAS lead time	tcwL	20		25	-	ns	
Data-in set-up time	t _{DS}	0		0		ns	9
Data-in hold time	t _{DH}	15		20		ns	9
Data-in hold referenced to RAS	tDHR	60		75		ns	12
Refresh period (1024 cycles)	tREF		16		16	ms	
Refresh period (only for L-version, 1024 cycles)	t _{REF}		128		128	ms	i
Write command set-up time	twcs	0		0		ns	7
\overline{CAS} to \overline{W} delay time	tcwD	20		25		ns	7
\overline{RAS} to \overline{W} delay time	t _{RWD}	80		100		ns	7
Column address to W delay time	t _{AWD}	40		50		ns	7
CAS setup time (CAS before RAS refresh)	t _{CSR}	10		10		ns	
CAS hold time (CAS before RAS refresh)	t _{CHR}	30		30		ns	
RAS to CAS precharge time	t _{RPC}	0		0		ns	
CAS precharge time (CAS before RAS counter test)	t _{CPT}	40		50		ns	
Write command set-up time (Test mode in)	twrs	10		10		ns	
Write command hold time (Test mode in)	twrн	10		10		ns	
W to RAS precharge time (CAS before RAS cycle)	t _{WRP}	10		10		ns	
W to RAS hold time (CAS before RAS cycle)	twRH	10		10		ns	
RAS hold time from CAS precharge	t RHCP	50		55		ns	

(Note. 11)

TEST MODE CYCLE

Parameter	Symbol	KM41	C4000/L-8	C4000/L-8 KM41C4000/L-10		Unit	Notes
Falameter	Symbol	Min	Max	Min	Max	Unit	NULES
Random Read or Write Cycle Time	t _{RC}	155		185		ns	
Read-Write Cycle Time	tRWC	180	_	215	—	ns	
Fast Page Mode Cycle Time	tPC	60	_	65		ns	
Fast Page Mode Read-Write Cycle Time	tPRWC	85		95	_	ns	
Access Time from RAS	tRAC	_	85	-	105	ns	3,4
Access Time from CAS	tCAC	-	25		30	ns	3,4
Access Time from Column Address	t _{AA}	-	45	_	55	ns	3,10
Access Time from CAS Precharge	t _{CPA}	_	55	-	60	ns	
RAS Pulse Width	tras	85	10,000	105	10,000	ns	
RAS Pulse Width (Fast Page Mode)	trasp	85	200,000	105	200,000	ns	
RAS Hold Time	t _{RSH}	25	_	30	_	ns	
CAS Hold Time	t _{CSH}	85	_	105	-	ns	
CAS Pulse Width	tCAS	25	10,000	30	10,000	ns	
Column Address to RAS Lead Time	t _{RAL}	45	_	55	_	ns	
CAS to W Delay Time	t _{CWD}	25	_	30	—	ns	7
RAS to W Delay Time	tRWD	85	_	105		ns	7
Column Address to \overline{W} Time	tAWD	45		55	_	ns	7

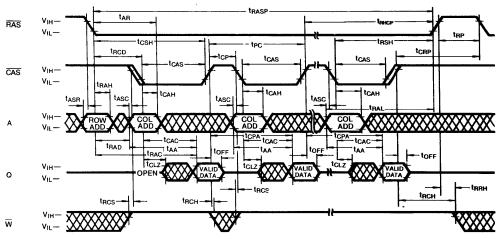
NOTES


- An initial pause of 200µs is required after powerup followed by any 8 CBR or ROR cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data

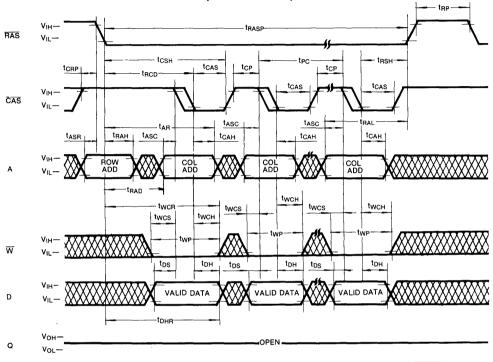
sheet as electrical characteristics only. If twcs>twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD}>t_{CWD}(min)$ and $t_{RWD}>t_{RWD}(min)$ and $t_{AWD}>t_{AWD}(min)$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 9. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 10. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, twcR, tDHR are refrerenced to tRAD(max).

TIMING DIAGRAMS

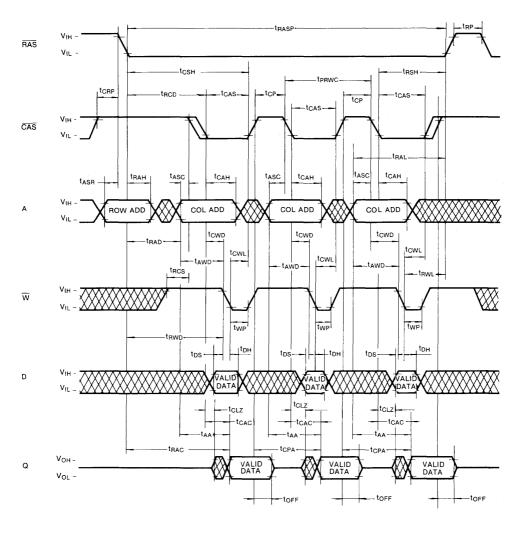


tawc TRAS VIHtAR RAS VIL--tcs+tee -tRCD - trsh -tcaptCAS VIH-CAS RAD VILtASR tas **t**RAH **tCAH** TRAL $\infty \infty$ COLUMN ADDRESS ∞ ADDRESS ∞ \bigotimes ∞ Α - trwDtown tecs -tcwD tewn -tawdw taa VILtCAC twp torr tcLz Vон---VALID DATA Q ορεν Vol-TRAC tos tон VALID D VIL-


TIMING DIAGRAMS (Continued)

READ-WRITE/READ-MODIFY-WRITE CYCLE

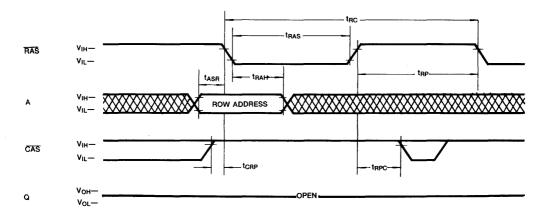
FAST PAGE MODE READ CYCLE

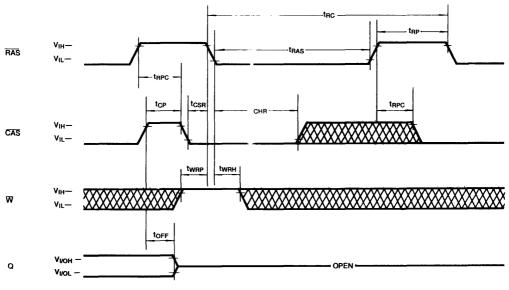


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

DON'T CARE

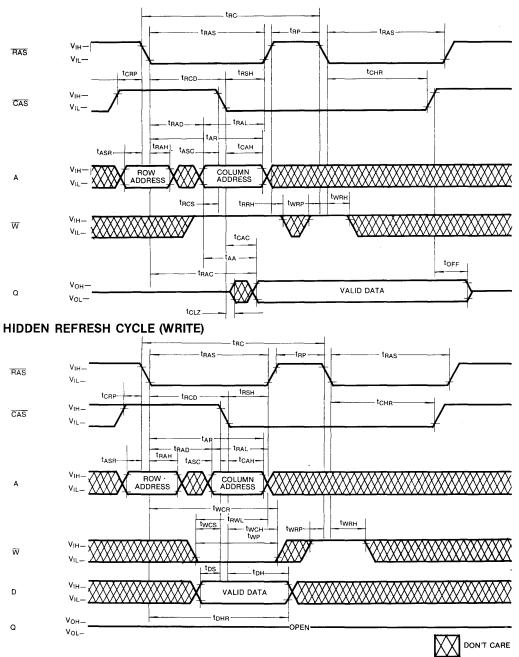
FAST PAGE MODE READ-WRITE CYCLE

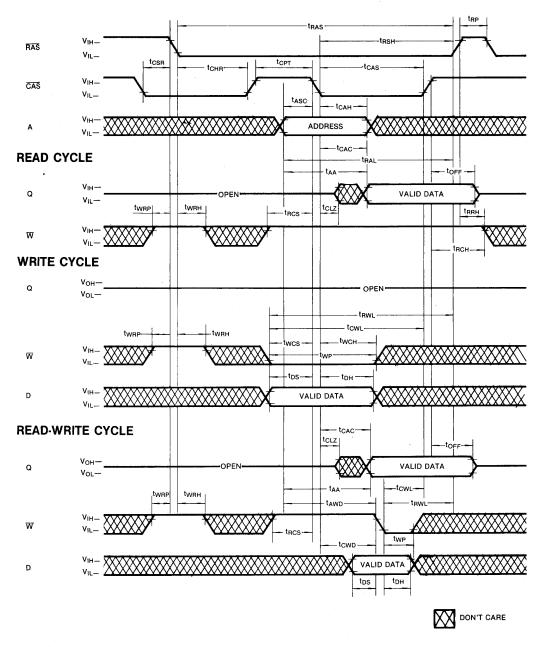



RAS-ONLY REFRESH CYCLE

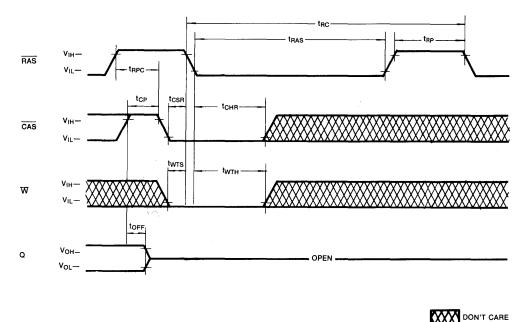
Note: \overline{W} , D, A₁₀ = Don't Care

CAS-BEFORE-RAS REFRESH CYCLE


NOTE: Address = Don't Care



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: D. Address=Don't Care

TEST MODE DESCRIPTION

The KM41C4000L is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R}. A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1".

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM W, CAS Before RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And "CAS Before RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

DEVICE OPERATION

Device Operation

The KM41C4000/L contains 4,194,304 memory locations Twenty two address bits are required to address a particular memory location. Since the KM41C4000/L has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column address. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM41C4000/L begins by strobing in a valid row address with $\overline{\text{RAS}}$ while $\overline{\text{CAS}}$ remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by $\overline{\text{CAS}}$. This is the beginning of any KM41C4000/L cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ have returned to the high state. Another cycle can be initiated after $\overline{\text{RAS}}$ remains high long enough to satisfy the $\overline{\text{RAS}}$ precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum RAS and CAS pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CAS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4000/L begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM41C4000/L can perform early write late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4000/L has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C4000/L operating cycles is listed below after the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C4000/L is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every

DEVICE OPERATION (Continued)

 $16/128 \ (\mbox{L-version})\mbox{ms}.$ There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C4000/L has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4000/L hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4000/L by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before.RAS refresh is the preferred method.

Fast Page Mode

The KM41C4000/L has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS

counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

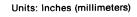
Column Address—Bits A_0 through A_{10} are strobedin by the falling edge of \overrightarrow{CAS} as in a normal memory cycle.

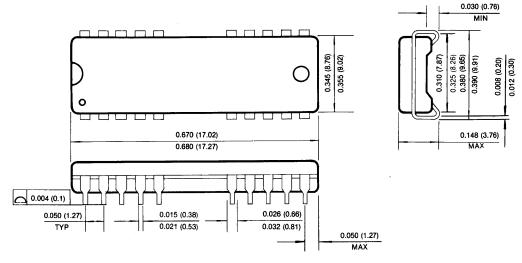
Suggested CAS-Before-RAS Counter Test Procedure

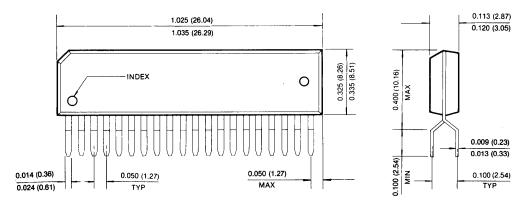
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up


If \overline{RAS} =V_{SS} during power-up, the KM41C4000/L could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

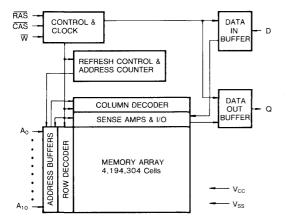

An initial pause of $200\mu s$ is required after power-up followed by any 8 CBR or ROR cycles before proper device operation is achieved.


PACKAGE DIMENSIONS

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

4M×1 Bit CMOS Dynamic RAM with Nibble Mode


FEATURES

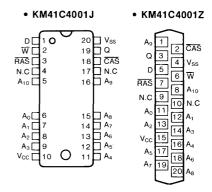
• Performance range:

	tRAC	tCAC	t _{RC}
KM41C4001- 8	80ns	20ns	150ns
KM41C4001-10	100ns	25ns	180ns

- Nibble Mode operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- · TTL compatible inputs and output
- · Common I/O using Early Write
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic SOJ, ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION


The Samsung KM41C4001 is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4001 features Nibble Mode operation which allows high speed serial access of up to 4 bits of data.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and output are fully TTL compatible.

The KM41C4001 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function		
A0-A10	Address Inputs		
D	Data In		
Q	Data Out		
W	Read/Write Input		
RAS	Row Address Strobe		
CAS	Column Address Strobe		
Vcc	Power (+5V)		
V _{SS}	Ground		
N.C.	No connection		

ABSOLUTE MAXIMUM RATINGS*

Item	n Symbol Rating		Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter			Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4001- 8 KM41C4001-10	Icc1		100 85	mA mA
Standby Current (RAS=CAS=V _{IH})		Icc2	_	2	mA
RAS-Only Refresh Current* (RAS Cycling, CAS=V _{IH} , @ t _{RC} =min)	KM41C4001- 8 KM41C4001-10	Іссз	_	100 85	mA mA
Nibble Mode Current* (RAS=V _{IL} , CAS, Address cycling: @ t _{NC} =min.)	KM41C4001- 8 KM41C4001-10	ICC4	_	60 50	mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		Icc5		1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS cycling @ t _{RC} =min.)	KM41C4001- 8 KM41C4001-10	Icc6	_	100 85	mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} Dout=Enable)			_	5	mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts.)		lı_	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0V≼V _{OUT} ≼5.5V)			-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)			2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)			-	0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Icc is specified as an average current. Specified value are obtained with the output open. Icc1, Icc3, Icc6 Address can be changed maximum two times while $\overline{RAS} = V_{IL}$. Icc4, Address can be changed maximum once while $\overline{CAS} = V_{IH}$.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀ , D)	C _{IN1}		5	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}		7	pF
Output Capacitance (Q)	Cout	_	7	pF .

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Symbol	KM41C4001-8		KM41C4001-10		Unit	
	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	150		180		ns	
Read-modify-write cycle time	t _{RWC}	175		210		ns	
Nibble Mode Cycle Time	t _{NC}	40		45		ns	
Nibble Mode Read-Write Cycle Time	t _{NRWC}	65		70		ns	
Access time from RAS	tRAC		80		100	ns	3,4
Access time from CAS	tCAC		20		25	ns	3,4
Nibble Mode Access Time	t _{NCAC}		20		25	ns	
Access time from column address	t _{AA}		40		50	ns	3,10
CAS to output in Low-Z	tcLZ	5		5		ns	3
Output buffer turn-off delay	toff	0	15	0	20	ns	6
Transition time (rise and fall)	tT	3	50	3	50	ns	2
RAS precharge time	t _{RP}	60		70		ns	
RAS pulse width	t _{RAS}	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		25		ns	
CAS hold time	tcsн	80		100		ns	
CAS pulse width	tCAS	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	60	25	75	ns	4,5
RAS to column address delay time	t _{RAD}	15	40	20	50	ns	10
CAS to RAS precharge time	tCRP	5		10		ns	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	tRAH	10		15		ns	
Column address set-up time	t _{ASC}	0		0		ns	
Column address hold time	tсан	20		20		ns	
Column address hold referenced to RAS	t _{AR}	60		75		ns	12
Column Address to RAS lead time	tRAL	40		50		ns	
Read command set-up time	t _{RCS}	0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		ns	8
Read command hold referenced to RAS	t _{RRH}	0		0		ns	8
Write command hold time	twcн	15		20		ns	1
Write command hold referenced to RAS	twcr	60		75		ns	12
Write command pulse width	twp	15		20		ns	

AC CHARACTERISTICS (Continued)

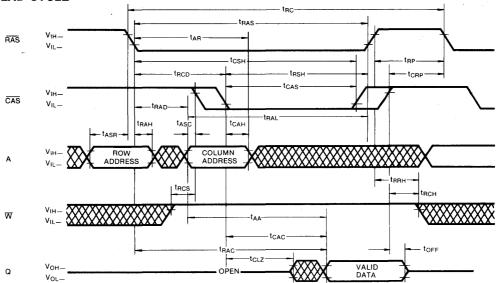
Standard Operation	Symbol	KM41C4001-8		KM41C4001-10		Unit	Notes
		Min	Max	Min	Max	onit	NOLES
Write command to RAS lead time	t _{RWL}	20		25		ns	
Write command to CAS lead time	tcw∟	20		25		ns	
Data-in set-up time	t _{DS}	0		0		ns	9
Data-in hold time	t _{DH}	15		20		ns	9
Data-in hold referenced to RAS	t _{DHR}	60		75		ns	12
Refresh period (1024 cycles)	t _{REF}		16		16	ms	
Write command set-up time	twcs	0		0		ns	. 7
CAS to write enable delay	tcwp	20		25		ns	7
RAS to write enable delay	tRWD	80		100	0. M. MIROL	ns	7
Column address to \overline{W} delay time	tAWD	40		50		ns	7
CAS setup time (C-B-R refresh)	tCSR	10		10		ns	
CAS hold time (C-B-R refresh)	tCHR	30		30		ns	
RAS percharge to CAS hold time	tRPC	0		0		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	40		50		ns	
Nibble mode CAS pulse width	t _{NCAS}	20		25		ns	
Nibble mode CAS precharge time	t _{NCP}	10		10		ns	
Nibble mode RAS hold time	t _{NRSH}	20		25		ns	
Nibble mode CAS to W delay time	t _{NCWD}	20		25		ns	
Nibble mode \overline{W} to \overline{RAS} lead time	t _{NRWL}	20		25		ns	
Nibble mode W to CAS lead time	tNCWL	20		25		ns	
Write command set-up time (Test mode In)	twrs	10		10		ns	
Write command hold time (Test mode In)	twrн	10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		ns	

TEST MODE CYCLE

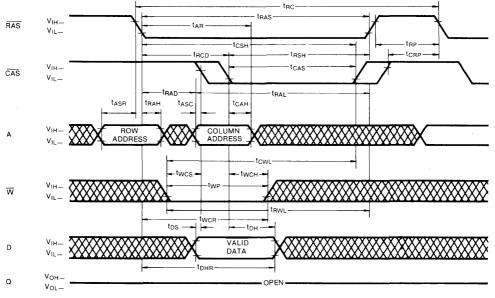
Parameter	Symbol	KM41C4001-8		KM41C4001-10		Unit	Notes
		Min	Max	Min	Max		Notes
Random read or write cycle time	tRC	155		185		ns	
Read-modify-write cycle time	tRWC	180		215		ns	
Access time from RAS	tRAC		85		105	ns	3,4
Access time from CAS	tCAC		25		30	ns	3,4
Access time from column address	t _{AA}		45		55	ns	3,10
RAS pulse width	tRAS	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	30	10,000	ns	
RAS hold time	trsh	25		30		ns	
CAS hold time	tсsн	85		105		ns	
Column address to RAS lead time	tRAL	45		55		ns	
CAS to W delay time	tcwp	25		30		ns	7
RAS to W delay time	tRWD	85		105		ns	7
Column address to \overline{W} delay time	tawd	45		55		ns	7

NOTES

- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 CAS-before-RAS or RAS only refresh before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF $\,$
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- 7. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data

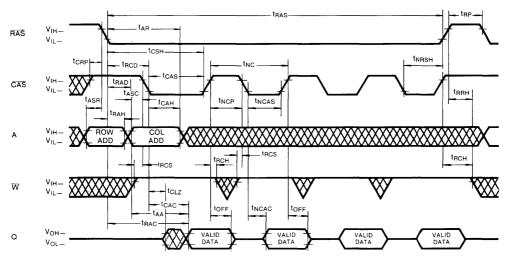

sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS}(min)$ the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$ and $t_{RWD} \ge t_{RWD(min)}$ and $t_{AWD} \ge t_{AWD(min)}$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, twcR, tDHR are refrerenced to tRAD(max).

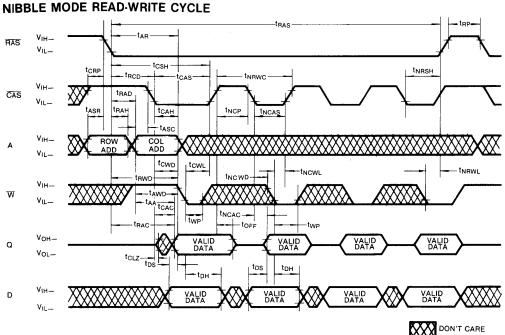


TIMING DIAGRAMS

WRITE CYCLE (EARLY WRITE)



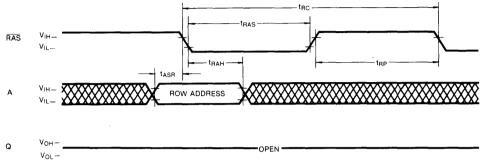
NIBBLE MODE READ CYCLE

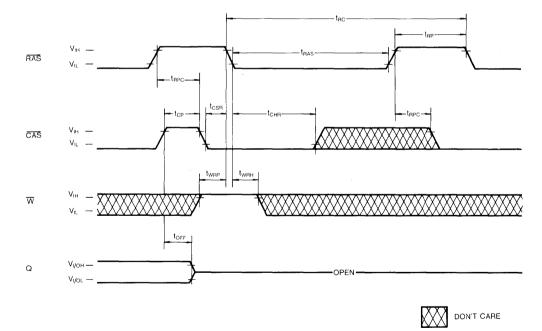


43

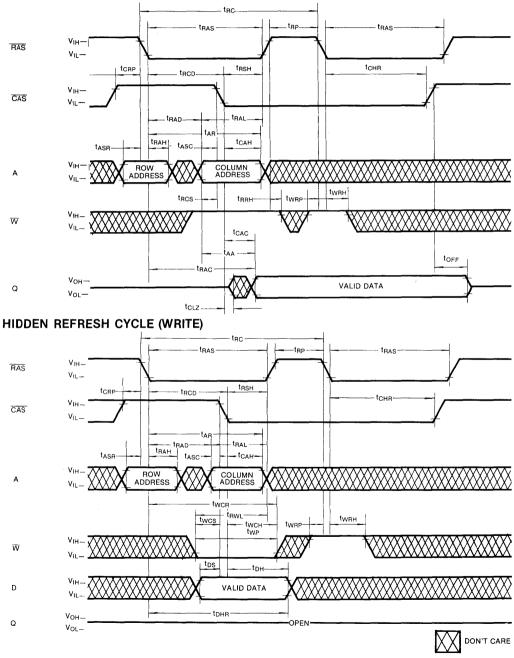
tras -t_{RP} tAR VIH-RAS VILtcsHtCRP **t**NRSH tRCD**t**NC tCAS VIH-CAS tRAD VILtasr trah **t**CAH **t**NCP **t**NCAS -tasc ROW COL Α $\times\!\!\times\!\!\times$ ADD ADD twcн twch - t_{NRWL} twics -tNCWL twcs twp XXXXX Ŵ \sim $\langle XX \rangle$ ton I twp tos tbs tон VALID DATA VALID VIH-XXXX VALID VALID D XXXXXXXXX 883 VIL--tdhr . V_{OH} – Q OPEN Vol-

TIMING DIAGRAMS (Continued) NIBBLE MODE WRITE CYCLE (EARLY WRITE)

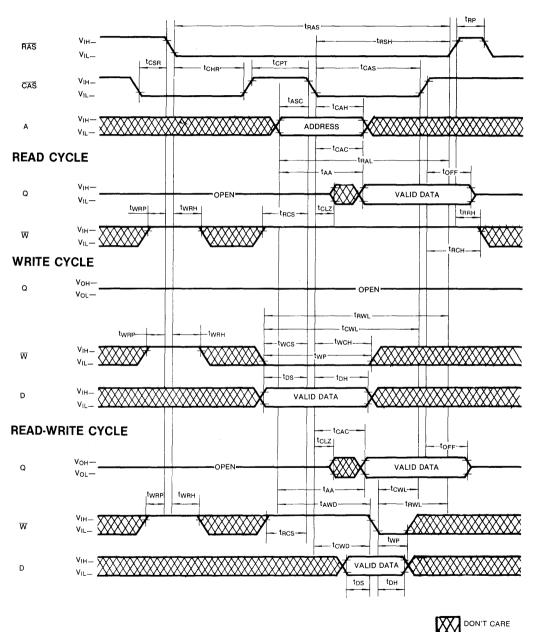


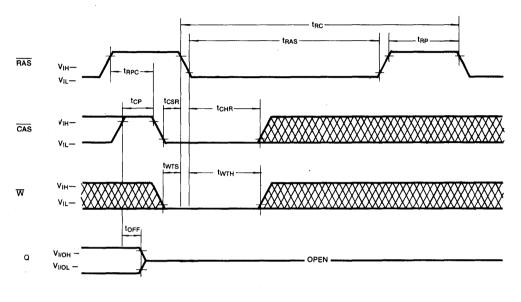

RAS-ONLY REFRESH CYCLE

Note: CAS=VIH, W,D, A10=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care




CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: D, Address = Don't Care

DON'T CARE

TEST MODE DESCRIPTION

The KM41C4001 is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R} . A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1".

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CAS} Beofre RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And "CAS Before RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

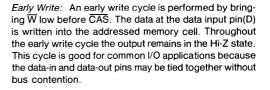
DEVICE OPERATION

Device Operation

The KM41C4001 contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4001 has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column address. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM41C4001 begins by strobing in a valid row address with $\overline{\text{RAS}}$ while $\overline{\text{CAS}}$ remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by $\overline{\text{CAS}}$. This is the beginning of any KM41C4001 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ have returned to the high state. Another cycle can be initiated after $\overline{\text{RAS}}$ remains high long enough to satisfy the $\overline{\text{RAS}}$ precharge time (t_{\text{RP}}) requirement.

RAS and CAS Timing


The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS(min)}$ and $t_{CAS(min)}$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4001 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a RAS/CAS cycle. If CAS goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If CAS goes low after $t_{RCD}(max)$, the access time is measured from CAS and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(max)$, it is necessary to bring CAS low before $t_{RCD}(max)$.

Write

The KM41C4001 can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4001 has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM41C4001 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Nibble Mode Read, Nibble Mode Read-Modify-Write.

Hi-Z Output State: Early Write, <u>RAS</u>-only Refresh, Nibble Mode Write, <u>CAS</u>-before-RAS Refresh, <u>CAS</u>-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C4001 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity

DEVICE OPERATION (Continued)

it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C4001 has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4001 hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4001 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Nibble Mode

The KM41C4001 has Nibble mode capability. Nibble mode operation allows high speed serial read, write or read-modify-write access of 4 consecutive bits. The first of 4 bits is accessed in the usual manner. The remaining nibble bits are accessed by toggling \overline{CAS} high then low while \overline{RAS} remains low.

The 4 bits of data that may be accessed during Nibble mode are determined by the lower 10 row address bits (R_{A0} - R_{A9}) and 10 column address bits (C_{A0} - C_{A9}). The two address bits, C_{A10} and R_{A10} are used to select 1 of the 4 nibble bits for initial access. The remaining nibble bits are accessed by toggling \overline{CAS} with \overline{RAS} held low. Each high-low \overline{CAS} transition will internally increment the nibble address (C_{A10} R_{A10}) as shown in the following diagram with R_{A10} being the least significant bit.

If more than 4 bits are accessed during Nibble mode, the address sequence will wrap around and repeat. If any bit is written during Nibble mode, the new data will be read on any subsequent access. If the write operation is executed again on a subsequent access, the new data will be written into the selected cell location.

A nibble mode cycle can be a read, write or read-modifywrite cycle. Any combinations of reads and writes or readmodify-write be allowed.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobed-in by the falling edge of \overline{CAS} as in a normal memory cycle.

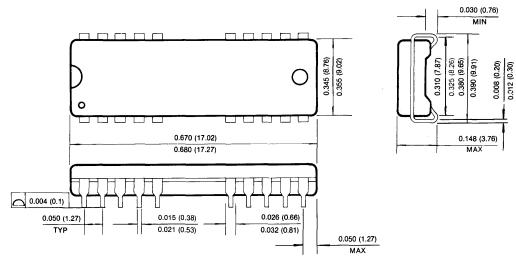
Suggested CAS-Before-RAS Counter Test Procedure

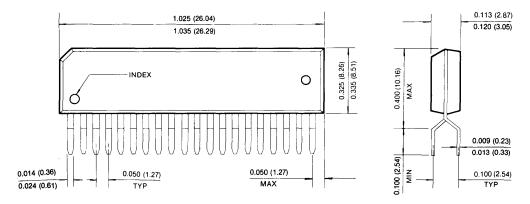
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If \overline{RAS} =V_{SS} during power-up, the KM41C4001 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.


An initial pause of $200\mu s$ is required after power-up followed by any 8 CAS-before-RAS or RAS only refresh before proper device operation is achieved.

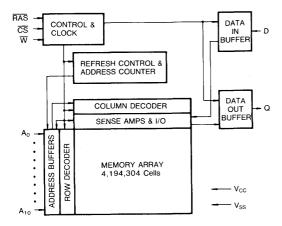

Units: Inches (millimeters)

PACKAGE DIMENSIONS

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

4M×1 Bit CMOS Dynamic RAM with Static Column Mode


FEATURES

• Performance range:

	trac	tcac	tRC
KM41C4002-8	80ns	20ns	150ns
KM41C4002-10	100ns	25ns	180ns

- Static Column Mode operation
- CS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- · Common I/O using Early Write
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- · Available in Plastic SOJ, ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM41C4002 is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4002 features Static Column Mode operation which allows high speed random or sequential access within a row. Static Column Mode operation offers high performance while relaxing many critical system timing requirements for fast usable speed.

CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and output are fully TTL compatible.

The KM41C4002 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

 KM41C4002J KM41C4002Z DD 20 □vss A₉ CS ŴΓ 19 🗖 Q 2 12 Q 3 RAS 3 Vss 4 D 5 N.C 4 17 🗋 N.C 6 w A10 🗖 5 16 🗖 A₉ RAS 7 8 A₁₀ 9 N.C N.C 10 A_0 11 A₀ 15 A₈ 14 A₇ 12 A. A1 17 A_2 13 A_3 14 A₂ 🗌 8 13 A6 Vcc 15 A₄ 16 A3 🗌 9 12 🗖 A5 A₅ 17 Ο Vcc 🗖 10 11 ם A4 18 A_6 Α. 19 Aa

Pin Name	Pin Function		
A0-A10	Address Inputs		
D	Data In		
Q	Data Out		
W	Read/Write Input		
RAS	Row Address Strobe		
CS	Chip Select Input		
Vcc	Power (+5V)		
V _{SS}	Ground		
N.C.	No connection		

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Мах	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CS, Address Cycling @ t _{RC} =min)	KM41C4002- 8 KM41C4002-10	Icc1	_	100 85	mA mA
Standby Current (RAS=CS=V _{IH})		ICC2	_	2	mA
RAS-Only Refresh Current* (RAS Cycling, CS=V _{IH} , @ t _{RC} =min)	KM41C4002- 8 KM41C4002-10	I _{CC3}	_	100 85	mA mA
Static Column Mode Current* (RAS=CS=VIL, Address cycling: @ t _{SC} =min.)	KM41C4002- 8 KM41C4002-10	I _{CC4}		60 50	mA mA
Standby Current (RAS=CS=V _{CC} -0.2V)		ICC5	_	1	mA
CS-Before-RAS Refresh Current* (RAS and CS cycling @ t _{RC} =min.)	KM41C4002- 8 KM41C4002-10	I _{CC6}	_	100 85	mA mA
Standby Current (RAS=V _{IH} , CS=V _{IL} Dout=Enable)		Icc7		5	mA
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts.)		lı_	10	10	μΑ
Output Leakage Current (Data out is disabled, 0V≼V _{OUT} ≼5.5V)		I _{OL}	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	—	V
Output Low Voltage Level (I _{OL} =4.2mA)		VOL		0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Icc is specified as an average current. Specified value are obtained with the output open. Icc1, Icc3, Icc6, Address can be changed maximum two times while $\overline{RAS} = V_{IL}$. Icc4, Address can be changed maximum once while $\overline{CAS} = V_{IH}$.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀ , D)	C _{IN1}	—	5	pF
Input Capacitance (RAS, CS, W)	CIN2	_	7	pF
Output Capacitance (Q)	Соит	-	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC} =5.0V±10%, See notes 1,2)

Standard Operation	Symbol	KM4	1C4002-8	KM41	M41C4002-10		Natas
Standard Operation	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	150		180		ns	
Read-modify-write cycle time	tRWC	175		210		ns	
Static column mode cycle time	tsc	45		55		ns	
Static column mode read-write cycle time	tsrwc	80		100		ns	
Access time from RAS	tRAC		80		100	ns	3,4,11
Access time from CS	tCAC		20		25	ns	3,4,5
Access time from column address	taa		40		50	ns	3,11
Access time from last write	t _{ALW}		75		95	ns	3,12
CS to output in Low-Z	tcLZ	5		5		ns.	3,12
Output buffer turn-off delay	tOFF	0	15	0	20	ns	7
Output data hold time from column address	t _{AOH}	5		5		ns	
Output data enable time from \overline{W}	tow		50		70	ns	
Output data hold time from \overline{W}	twoн	0		0		ns	
Transition time (rise and fall)	tT	3	50	3	50	ns	2
RAS precharge time	t _{RP}	60		70		ns	
RAS pulse width	tRAS	80	10,000	100	10,000	ns	
RAS pulse width (static column mode)	tRASC	80	100,000	100	100,000	ns	
RAS hold time	t _{RSH}	20		25		ns	
CS hold time	tсsн	80		100		ns	
CS pulse width	tcs	20	10,000	25	10,000	ns	
CS pulse width (static column mode)	tcsc	20	100,000	25	100,000	ns	
RAS to CS delay time	t _{RCD}	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	40	20	50	ns	11
CS to RAS precharge time	tCRP	5		10		ns	
CS precharge time (static column mode)	tCP	10		10		กร	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	tRAH	10		15		ns	
Column address set-up time	tASC	0		0		ns	
Column address hold time	tCAH	15		20		ns	
Write address hold time referenced to RAS	t _{AWR}	60		75		ns	6
Column address hold referenced to RAS	t _{AR}	95		115		ns	

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM41	1C4002-8	KM41	C4002-10	Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Unit	notes
Column Address to RAS lead time	t _{RAL}	40		50		ns	
Column address hold time referenced to RAS rise	t _{AH}	5		10		ns	
Last write to column address delay time	tLWAD	20	35	25	45	ns	
Last write to column address hold time	t _{AHLW}	75		95		ns	
Read command set-up time	tRCS	0		0		ns	
Read command hold referenced to CS	tRCH	0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		ns	9
Write command hold time	twcн	15		20		ns	
Write command hold referenced to RAS	twcr	60		75		ns	6
Write command pulse width	twp	15		20		ns	
Write command inactive time	twi	10		10		ns	
Write command to RAS lead time	t _{RWL}	20		25		ns	
Write command to CS lead time	t _{CWL}	20		25		ns	
Data-in set-up time	t _{DS}	0		0		ns	10
Data-in hold time	t _{DH}	15		20		ns	10
Data-in hold referenced to RAS	tDHR	60		75		ns	6
Refresh period (1024 cycles)	tREF		16	•	16	ms	
Write command set-up time	twcs	0		0		ns	8
$\overline{\text{CS}}$ to $\overline{\text{W}}$ delay time	tcwD	20		25	· · · · · · · · · · · · · · · · · · ·	ns	8
RAS to W delay time	tRWD	80		100		ns	8
Column address to \overline{W} delay time	tawd	40		50		ns	8
CS setup time (C-B-R refresh)	tCSR	10		10		ns	
CS hold time (C-B-R refresh)	tCHR	30		30		ns	
RAS percharge to CS hold time	tRPC	0		0		ns	
CS precharge (C-B-R counter test)	t _{CPT}	40		50		ns	
Write command set-up time (Test mode In)	twrs	10		10		ns	1.10
Write command hold time (Test mode In)	twrн	10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		ns	

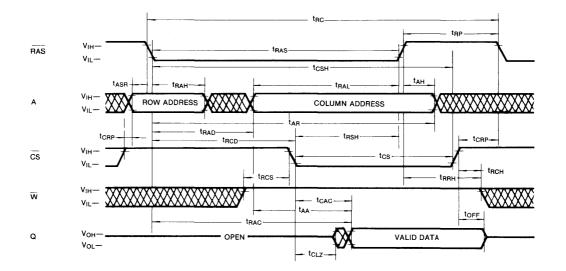
(Note. 13)

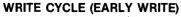
TEST MODE CYCLE

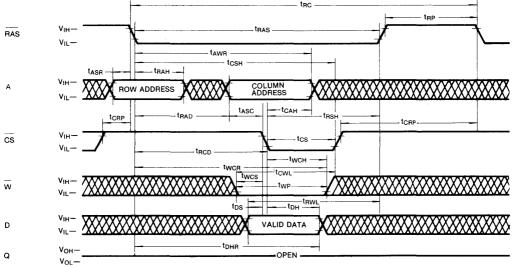
KM41C4002-8 KM41C4002-10 Parameter Symbol Unit Notes Min Max Min Max Random read or write cycle time 155 185 ns t_{RC} Read-modify-write cycle time 180 tRWC 215 ns Access time from RAS tRAC 85 105 ns 3,4,11 Access time from CS 25 30 3,4,5 tCAC ns Access time from column address 45 55 3,11 t_{AA} ns RAS pulse width 10,000 t_{RAS} 85 105 10.000 ns CS pulse width 25 10,000 30 10,000 tcs ns RAS hold time 25 30 t_{RSH} ns CS hold time 85 105 t_{CSH} ns Column address to RAS lead time 45 55 tRAI ns CS to W delay time 25 30 tcwp ns 8 RAS to W delay time tRWD 85 105 ns 8 Column address to W delay time 45 55 8 tawd ns Static column mode cycle time 50 tsc 60 ns 85 Static column mode read-modefy-write tsewc 95 ns RAS pulse width (Static column mode) 85 100.000 105 100.000 ns tRASC Access time from last write 80 100 3,12 tALW ns CS pulse width (static column mode) 25 100.000 30 100.000 ns tcsc

NOTES

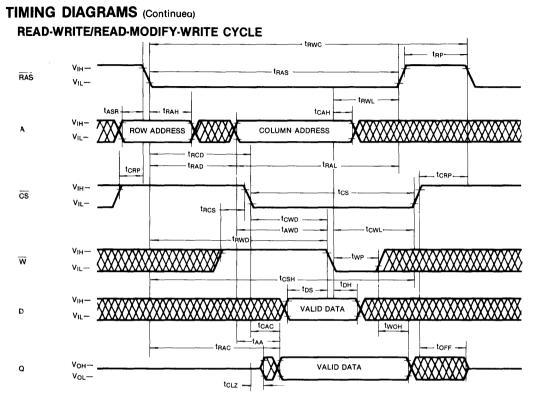
- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 \overline{CS} -before- \overline{RAS} or \overline{RAS} only refresh before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and $100 \mbox{pF}$
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAWR, tWCR, tDHR are referenced to tRAD(max)
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If

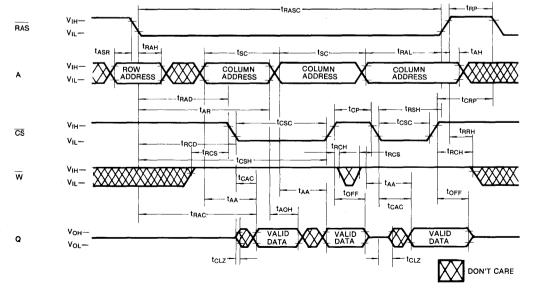

twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If tcwD≥tcwD(min) and tRwD≥tRwD(min) and tAwD≥tAwD(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

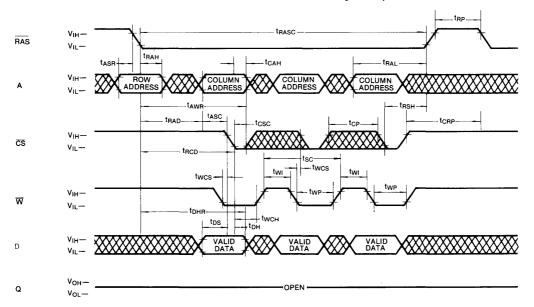

- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 12. Operation within the $t_{LWAD(max)}$ limit insures that $t_{ALW(max)}$ can be met. $t_{LWAD(max)}$ is specified as a reference point only. If t_{LWAD} is greater than the specified $t_{LWAD(max)}$ limit, then access time is controlled by t_{AA} .
- 13. These specifications are applied in the test mode.



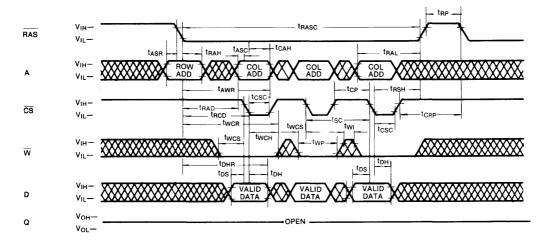
TIMING DIAGRAMS


READ CYCLE

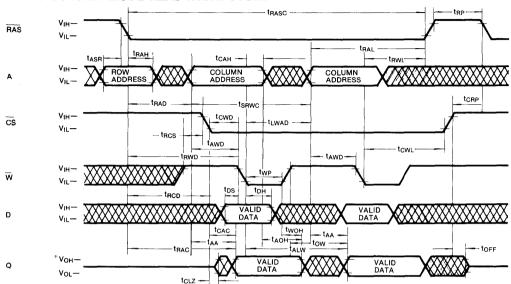


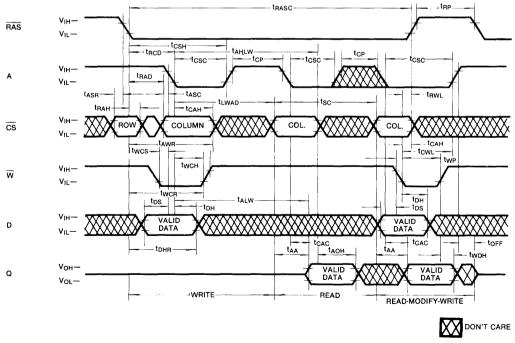


STATIC COLUMN MODE READ CYCLE

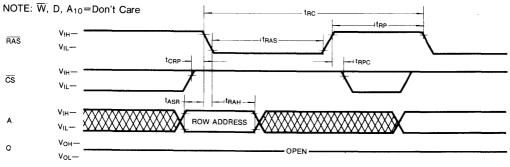


STATIC COLUMN MODE WRITE CYCLE (W controlled early write)

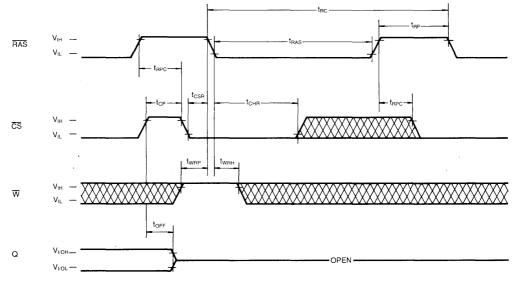

STATIC COLUMN MODE WRITE CYCLE (CS controlled early write)


DON'T CARE

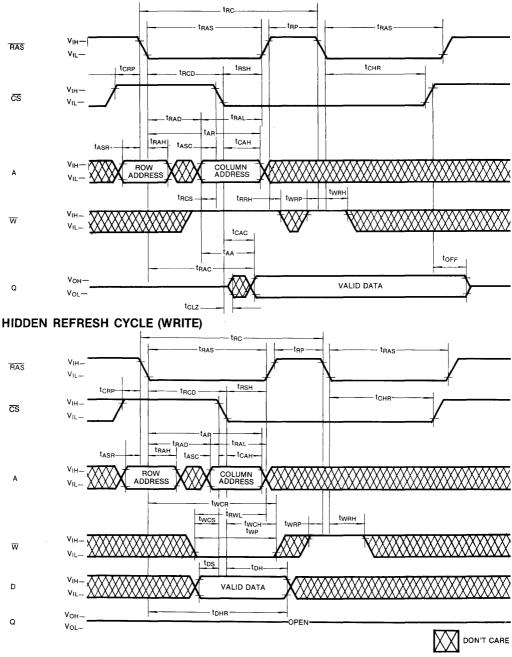
XХ


TIMING DIAGRAMS (Continued) STATIC COLUMN MODE READ-WRITE CYCLE

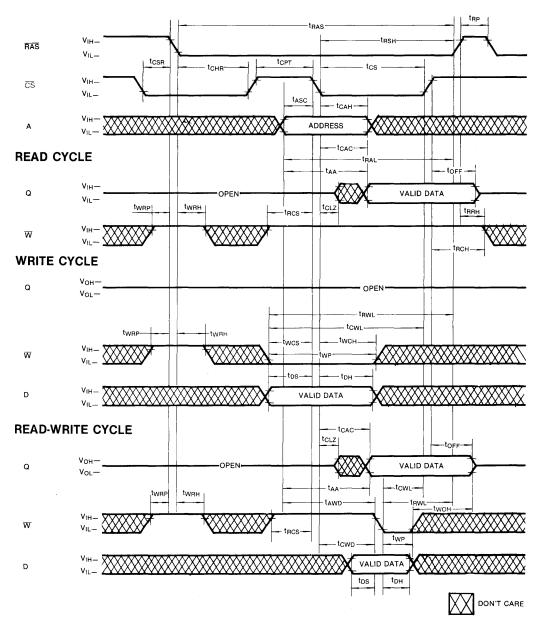
STATIC COLUMN MODE MIXED CYCLE

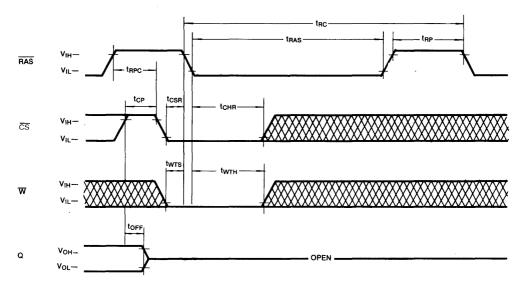


RAS-ONLY REFRESH CYCLE


CS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care




CS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: D, Address = Don't Care

DON'T CARE

TEST MODE DESCRIPTION

The KM41C4002 is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R} . A_{10C} and A_{0C} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1". If any of the bits differed, the data output pin would in-

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CS} Before \overline{RAS} Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CS} Before \overline{RAS} Refresh Cycle" or " \overline{RAS} only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

DEVICE OPERATION

Device Operation

The KM41C4002 contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4002 has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the chip sellect input (\overline{CS}) and the valid row and column address inputs

Operating of the KM41C4002 begins by strobing in a valid row address with RAS while \overline{CS} remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by \overline{CS} . This is the beginning of any KM41C4002 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and \overline{CS} have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and **CS** Timing

The minimum \overline{RAS} and \overline{CS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4002 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . But the access time also depends on the falling edge of \overline{CS} and on the valid column address transition.

If \overline{CS} goes low before $t_{RCD}(max)$ and if the column address is valid before $t_{RAD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CS} goes low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM41C4002 can perform early write, late write and

read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4002 has a three-state output buffer which is controlled by \overline{CS} . Whenever \overline{CS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data remains at the output until \overline{CS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C4002 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Static Column Mode Read, Staic Column Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Static Column Mode Write, CS-before-RAS Refresh, CS-only cycle.

Indeterminate Output State: Delayed Write

DEVICE OPERATION (Continued)

Refresh

The data in the KM41C4002 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CS} remains high. This cycle must be repeated for each row.

 \overline{CS} -before- \overline{RAS} Refresh: The KM41C4002 has \overline{CS} -before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CS} active time and cycling \overline{RAS} . The KM41C4002 hidden refresh cycle is actually a \overline{CS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4002 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or $\overline{\text{CS}}$ -before-RAS refresh is the preferred method.

Static Column Mode

Static Column Mode allows high speed read, write or read-modity-write random access to all the memory cells within a selected row. Operation within a selected row is similar to a static RAM. The read, write or readmodify-write cycles may be mixed in any order.

A Static Column mode read cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{W} = V_{IH}$ and $\overline{RAS} = V_{IL}$.

A Static Column mode write cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{RAS} = V_{IL}$ and toggiling either \overline{W} or \overline{CS} . The data is written into the cell trigered by the latter falling edge of \overline{W} or \overline{CS} .

CS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the \overline{CS} -before- \overline{RAS} refresh counter test cycle provides a convenient method of verifying the functionality of the \overline{CS} -before- \overline{RAS} refresh activated circuitry.

After the $\overline{\text{CS}}$ -before $\overline{\text{RAS}}$ refresh operation, is $\overline{\text{CS}}$ goes high and then low again while $\overline{\text{RAS}}$ is held low, the read and write operations are enabled.

This is shown in the \overline{CS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. The A_{10} bit is set high internally.

Column ADdress—Bits A_0 through A_{10} are strobed-in by the falling edge of \overline{CS} as in a normal memory cycle.

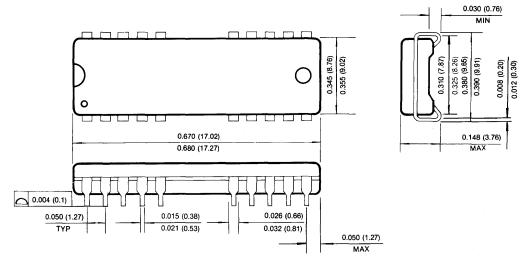
Suggested CS-before-RAS Counter Test Procedure

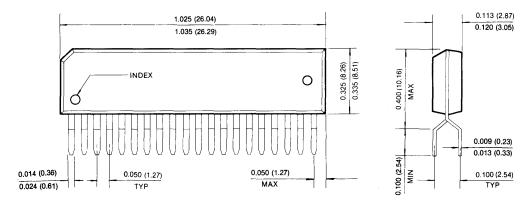
The CS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row address. (The row addresses are supplied by the on-chip refresh counter).
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 512 times so that highs are written into the 512 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If RAS=V_{SS} during power-up, the KM41C4002 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that RAS and CS track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.


An initial pause of $200\mu s$ is required after power-up followed by any 8 \overline{CS} -before RAS or RAS only refresh before proper device operation is achived.


Units: Inches (millimeters)

PACKAGE DIMENSIONS

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

4M×1 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

Performance range:

	tRAC	tcac	t _{RC}
KM41C4000A- 7	70ns	20ns	130ns
KM41C4000A- 8	80ns	20ns	150ns
KM41C4000A-10	100ns	25ns	180ns

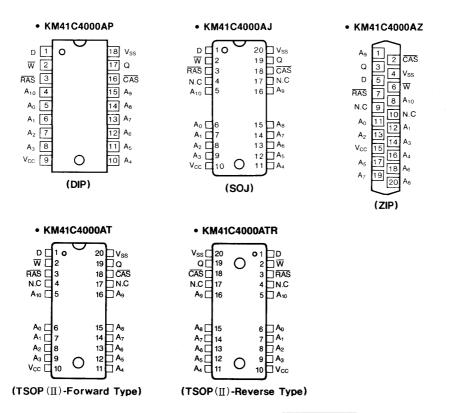
- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- · TTL compatible inputs and output
- Common I/O using Early Write
- Single $+5V \pm 10\%$ power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic DIP, SOJ, ZIP, and TSOP (II)

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM41C4000A is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4000A features Fast Page Mode operation which allows high speed random access of memory cells within the same row.


CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C4000A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function
A0-A10	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
Vss	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4	_	Vcc+1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%) (Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Мах	Unit	
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4000A- 7 KM41C4000A- 8 KM41C4000A-10	Icc1		105 95 85	mA mA mA
Standby Current (RAS=CAS=VIH)		ICC2	_	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	KM41C4000A- 7 KM41C4000A- 8 KM41C4000A-10	Іссз		105 95 85	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	KM41C4000A- 7 KM41C4000A- 8 KM41C4000A-10	ICC4		80 70 60	mA mA mA
Standby Current (RAS=CAS=W≥V _{CC} -0.2V)		ICC5		1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM41C4000A- 7 KM41C4000A- 8 KM41C4000A-10	Icc6		105 95 85	mA mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} , Dout Enable)		Icc7	_	5	mA
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts)		lıL.	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		IOL	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		VOH	2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)		V _{OL}		0.4	V

* Note: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀ , D)	C _{IN1}		6	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	_	7	pF
Output Capacitance (Q)	COUT		7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Symbol	KM41C4000A-7		KM41C4000A-8		KM41C4000A-10			
		Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180	KA	ns	
Read-modify-write cycle time	tRWC	155		175		210		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,10
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,10
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	6
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	10
CAS to RAS precharge time	tCRP	5		5	········	10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	12
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	⁺ RCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	8
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	8
Write command hold time	twcн	15		15		20	A MARK OF A MARK OF A MARK	ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	12
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	9

AC CHARACTERISTICS (Continued)

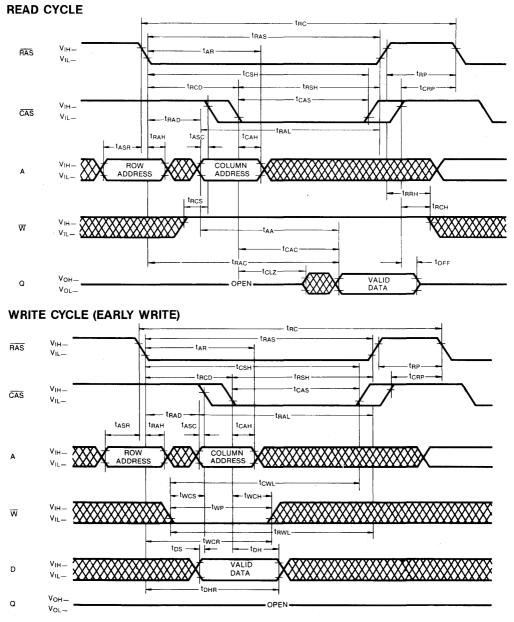
Standard Operation	Symbol	KM41C4000A-7		KM41C4000A-8		KM41C4000A-10		11-14	Natas
		Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	9
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	12
Refresh period (1024 cycles)	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	7
CAS to write enable delay	tcwp	20		20		25		ns	7
RAS to write enable delay	tRWD	70		80		100		ns	7
Column address to W delay time	tawd	35		40		50		ns	7
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Access time from CAS precharge	tCPA		45		45		55	ns	3
FAst Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page mode)	tCP	10		10		10		ns	
RAS hold time from CAS precharge	t RHCP	45		45		55		ns	
Fast page modered-modify-write	t _{PRWC}	75		75		90		ns	
RAS pulse width (Fast page mode)	tRASP	70	200,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
\overline{W} to \overline{RAS} precharge time $\overline{(C-B-R)}$ refresh)	twee	10		10.		10		ns	
W to RAS hold time (C-B-R refresh)	twrn	10		10		10		ns	

(Note. 11)

TEST MODE CYCLE

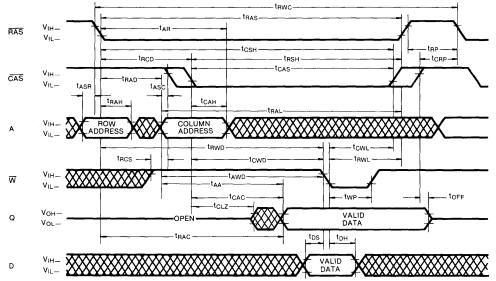
Standard Operation	Symbol	KM41C4000A-7		KM41C4000A-8		KM41C4000A-10		Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	tRC	135		155		185		ns	
Read-modify-write cycle time	tRWC	160		180		215		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,10
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	t _{AA}		40		45		55	ns	3,10
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	t _{RSH}	25		25		30		ns	
CAS hold time	tсsн	75		85		105		ns	
Column address to RAS lead time	tRAL	40		45		55		ns	
CAS to write enable delay	tcwp	25		25		30		ns	7
RAS to write enable delay	tRWD	75		85		105		ns	7
Column address to W delay time	tawd	40		45		55		ns	7
Fast mode cycle time	tPC	55		55		65		ns	
Fast page mode read-modefy-write	t PRWC	80		80		95		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	t _{CPA}		50		50		60	ns	3

NOTES

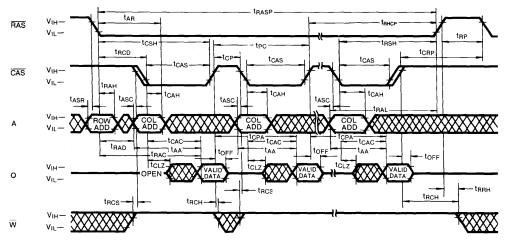

- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 \overline{CBR} or \overline{ROR} cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}>t_{RCD(max)}.
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If

twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD(min)} and t_{RWD}≥t_{RWD(min)} and t_{AWD}≥t_{AWD(min)}, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

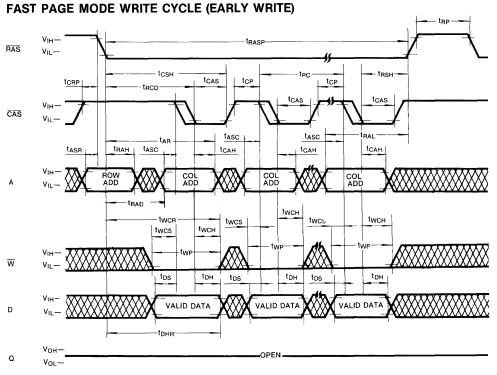
- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, tWCR, tDHR are refrerenced to tRAD(max).



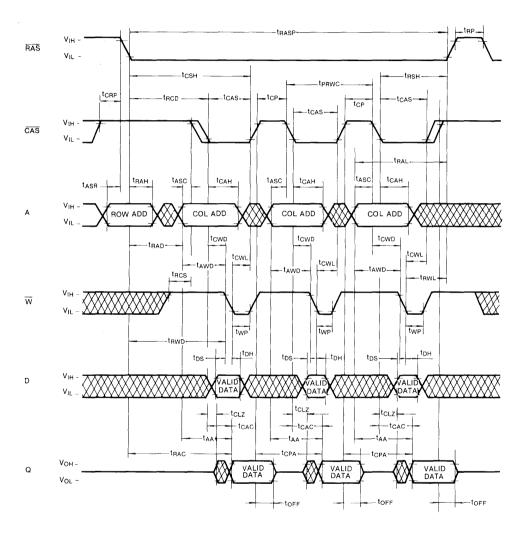
TIMING DIAGRAMS



READ-WRITE/READ-MODIFY-WRITE CYCLE

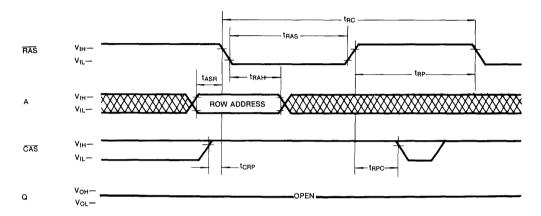


FAST PAGE MODE READ CYCLE

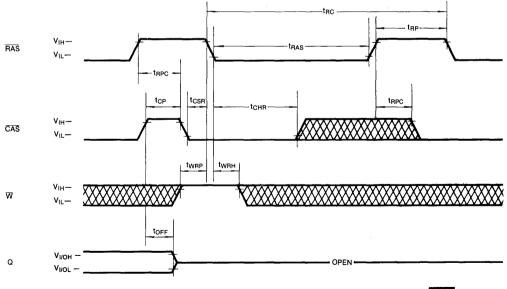


75

FAST PAGE MODE READ-WRITE CYCLE



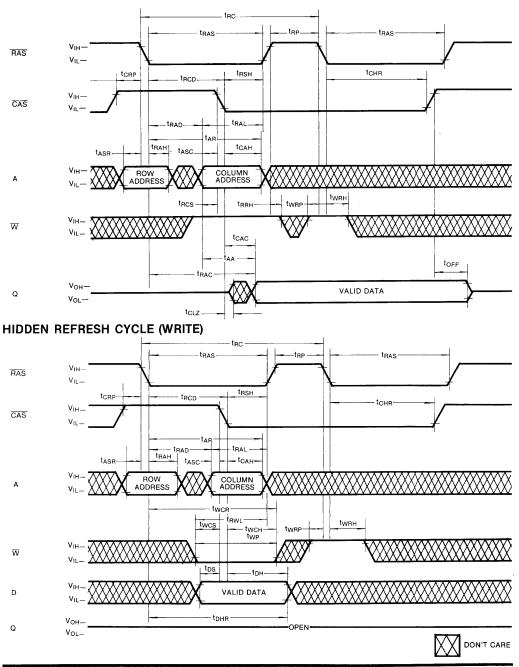
DON't CARE


RAS-ONLY REFRESH CYCLE

Note: \overline{W} , D, A₁₀ = Don't Care

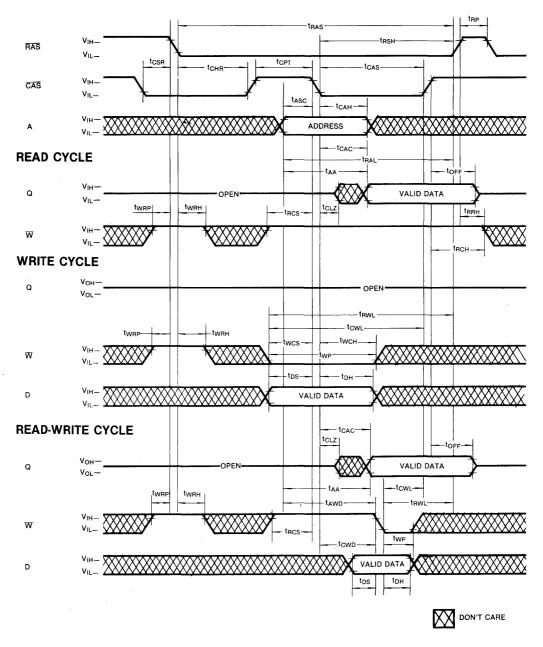
CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address = Don't Care

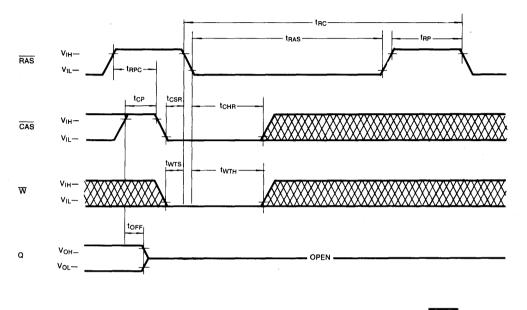


DON'T CARE

.



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: D, Address = Don't Care

TEST MODE DESCRIPTION

The KM41C4000A is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R} . A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1". If any of the bits differed, the data output pin would in

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CAS} Before RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CAS} Before RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

2

DEVICE OPERATION

Device Operation

The KM41C4000A contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4000A has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address inputs.

Operating of the KM41C4000A begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C4000A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths are specified by $t_{\text{RAS}}(\text{min})$ and $t_{\text{CAS}}(\text{min})$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing $\overline{\text{RAS}}$ low, it must not be aborted prior to satisfying the minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths. In addition, a new cycle must not begin until the minimum $\overline{\text{RAS}}$ precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4000A begin a complex sequence of events. If the sequence if broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM41C4000A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4000A has a three-state output buffer which which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C4000A operating cycles is listed below after the corresponding output state produced by the cycle.

Valid. Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, <u>RAS</u>-only Refresh, Fast Page Mode Write, <u>CAS</u>-before<u>RAS</u> Refresh, <u>CAS</u>-only cycle.

Indeterminate Output State: Delayed Write

DEVICE OPERATION (Continued)

Refresh

The data in the KM41C4000A is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CAS** remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C4000A has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4000A hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4000A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM41C4000A has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobedin by the falling edge of CAS as in a normal memory cycle.

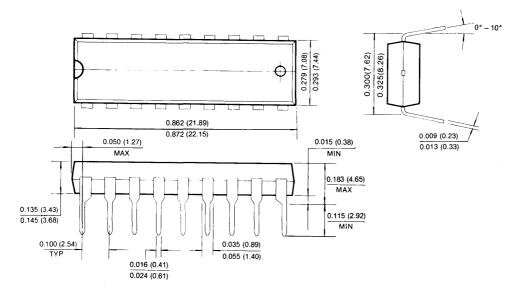
Suggested CAS-Before-RAS Counter Test Procedure

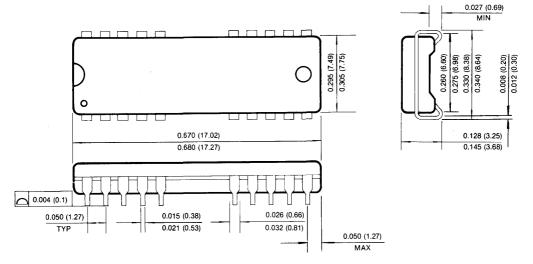
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If \overline{RAS} =V_{SS} during power-up, the KM41C4000A could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

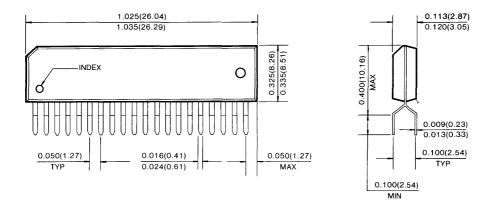

An initial pause of $200\mu s$ is required after power-up followed by any 8 CBR or ROR cycles before proper device operation is achieved.

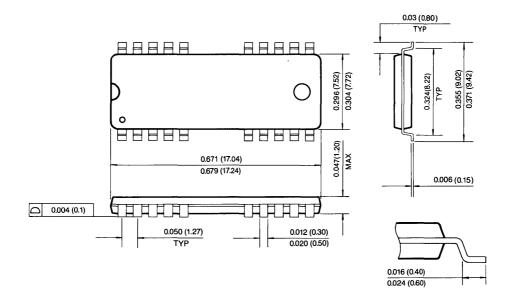

PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (Millimeters)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD




PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

4M×1 Bit CMOS Dynamic RAM with Fast Page Mode

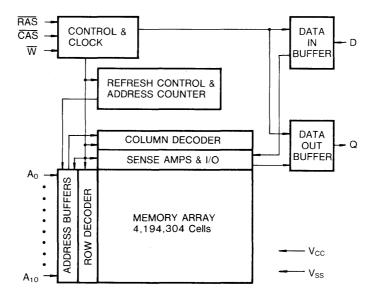
FEATURES

• Performance range:

	tRAC	tcac	t _{RC}
KM41C4000AL- 7	70ns	20ns	130ns
KM41C4000AL- 8	80ns	20ns	150ns
KM41C4000AL-10	100ns	25ns	180ns

- · Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- · Common I/O using Early Write
- Single + 5V ± 10% power supply
- 1024 cycles/128ms refresh
- Low power dissipation
- —Standby: 1.1mW —Active (70/80/100ns): 578/523/468mW
- -Active (70/80/100ns): 578/52
- JEDEC standard pinout
- Available in plastic DIP, SOJ, ZIP, and TSOP (II)

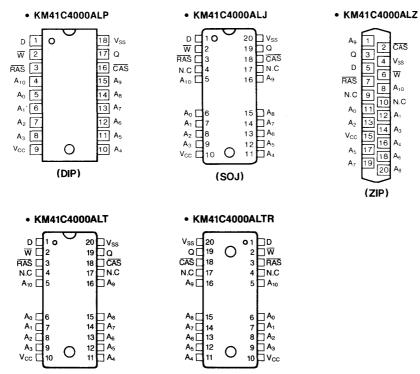
FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM41C4000AL is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4000AL features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.


The KM41C4000AL is fabricated using Samsung's advanced CMOS process.

KM41C4000AL

PIN CONFIGURATION (Top Views)

(TSOP (Ⅱ)-Forward Type)

(TSOP(II)-Reverse Type)

Pin Name	Pin Function
A ₀ -A ₁₀	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
Vss	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, Vcc=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4000AL- 7 KM41C4000AL- 8 KM41C4000AL-10	ICC1		105 95 85	mA mA mA
Standby Current (RAS=CAS=V _{IH})		Icc2	—	2	mA
RAS-Only Refresh Current [★] (CAS=V _{IH} , RAS Cycling @ t _{RC} ≃min.)	KM41C4000AL- 7 KM41C4000AL- 8 KM41C4000AL-10	ICC3	_	105 95 85	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	KM41C4000AL- 7 KM41C4000AL- 8 KM41C4000AL-10	ICC4		80 70 60	mA mA mA
Standby Current (RAS=CAS=W≥V _{CC} -0.2V)		Icc5	-	200	μA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM41C4000AL- 7 KM41C4000AL- 8 KM41C4000AL-10	Icc6		105 95 85	mA mA mA
Battery Back Up Current Average Power Suppl Battery Back Up Mode, Input High Voltage (V _{IL}) Input Low Voltage (V _{IL})=0.2V $\overline{CAS}=\overline{CAS}$ Beto 0.2V $D_{IN}=Don't Care T_{RC}=125\mu S, T_{RAS}=t_R$	=V _{CC} -0.2V ore RAS Cycling or	Icc7	_	300	μΑ
Standby Current (RAS=VIH, CAS=VIL, Dout Er	nable)	Icc8	-	5	mA
Input Leakage Current (Any input $0 \leq V_{IN} \leq 6.5V$, all other pins not under test=0 volts)		l _{IL}	-10	10	μA
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	_	v
Output Low Voltage Level (I _{OL} =4.2mA)		Vol		0.4	V

*Note: ICC1, ICC3, ICC4 and ICC6 are dependent on output loading and cycle rates. Specified value are obtained with the output open. Icc is specified as average current. Icc1, Icc3, Icc6, Address can be changed maximum two times while $\overline{RAS} = V_{IL}$. I_{CC4}, Address can be changed maximum once while $\overline{CAS} = V_{IH}$.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (Ao-A10, D)	CIN1	-	6	pĘ
Input Capacitance (RAS, CAS, W)	C _{IN2}	-	7	pF
Output Capacitance (Q)	Солт	-	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Symbol	KM410	C4000AL-7	KM41C4000AL-8 KM41C4000AL-10				Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	155		175		210		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,10
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	taa		35		40		50	ns	3,10
CAS to output in Low-Z	tc∟z	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	6
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	10
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tasr	0		0	-	0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	tar	55		60		75		ns	12
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	8
Read command hold referenced to RAS	tRRH	0		0		0		ns	8
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcn	55		60		75		ns	12
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	9

AC CHARACTERISTICS (Continued)

Standard Operation	Sumbol	KM41	C4000AL-7	KM41C4000AL-8		KM41C4000AL-10			Notos
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	9
Data-in hold referenced to RAS	t DHR	55		60		75		ns	12
Refresh period (1024 cycles)	tREF		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	7
CAS to write enable delay	tcwp	20		20		25		ns	7
RAS to write enable delay	tRWD	70		80		100		ns	7
Column address to \overline{W} delay time	tawd	35		40		50		ns	7
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Access time from CAS precharge	tCPA		45		45		55	ns	3
Fast Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	
RAS hold time from CAS precharge	TRHCP	45		45		55		ns	
Fast page modered-modify-write	t PRWC	75		75		90		ns	
RAS pulse width (Fast page mode)	tRASP	70	2,00,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	

KM41C4000AL

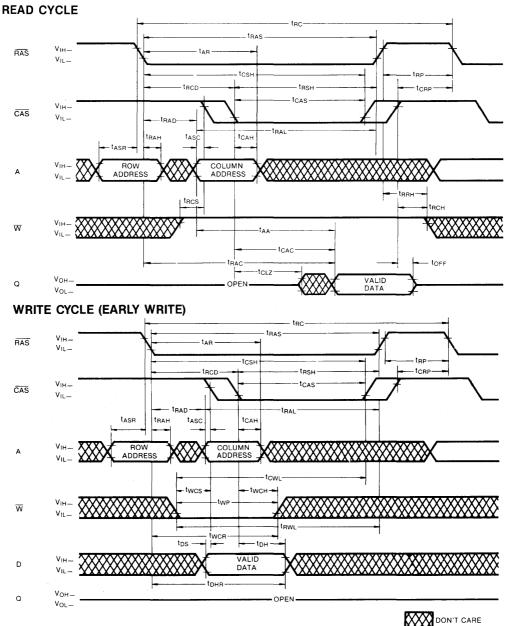
(Note. 11)

TEST MODE CYCLE

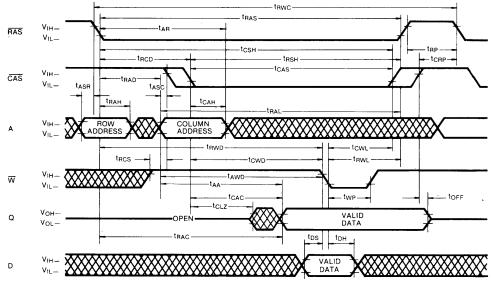
Standard Operation	Symbol	KM41	C4000AL-7	KM41C4000AL-8		KM41C4000AL-10		Unit	Notes
	Symbol	Min	Мах	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	135		155		185		nś	
Read-modify-write cycle time	tRWC	160		180		215		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,10
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	t _{AA}		40		45		55	ns	3,10
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tcas	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	t _{RSH}	25		25		30		ns	
CAS hold time	tсsн	75		85		105		ns	
Column address to RAS lead time	t _{RAL}	40		45		55		ns	
CAS to write enable delay	tcwp	25		25		30		ns	7
RAS to write enable delay	RWD	75		85		105		ns	7
Column address to W delay time	tawd	40		45		55		ns	7
Fast mode cycle time	t _{PC}	55		55		65		ns	
Fast page mode read-modefy-write	t PRWC	80		80		95		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	t _{CPA}		50		50		60	ns	3

NOTES

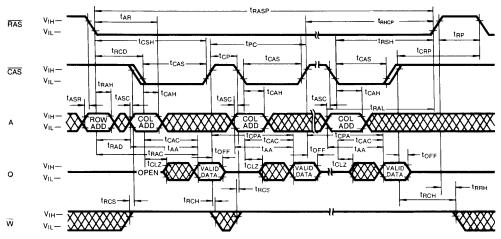
- 1. An initial pause of $200\mu s$ is required after powerup followed by and 8 \overline{CBR} or \overline{ROR} cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If


twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If tcwD≥tcWD(min) and tRWD≥tRWD(min) and tAWD≥tAWD(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

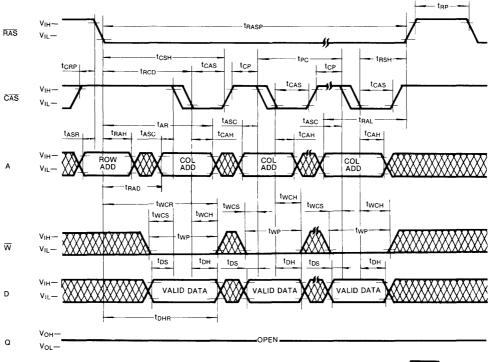
- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 9. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 10. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, tWCR, tDHR are refrerenced to tRAD(max).


KM41C4000AL

TIMING DIAGRAMS



READ-WRITE/READ-MODIFY-WRITE CYCLE

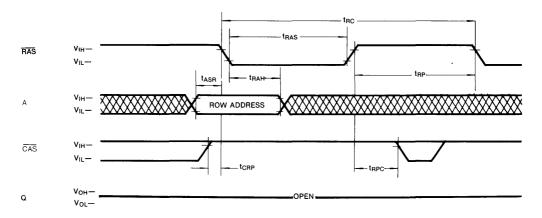

FAST PAGE MODE READ CYCLE

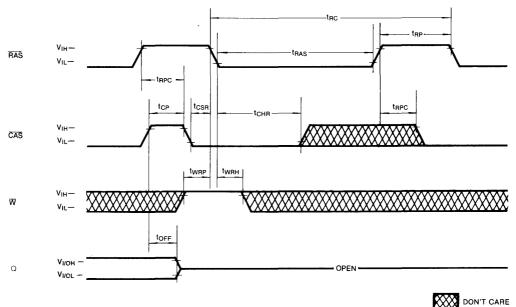
DON'T CARE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

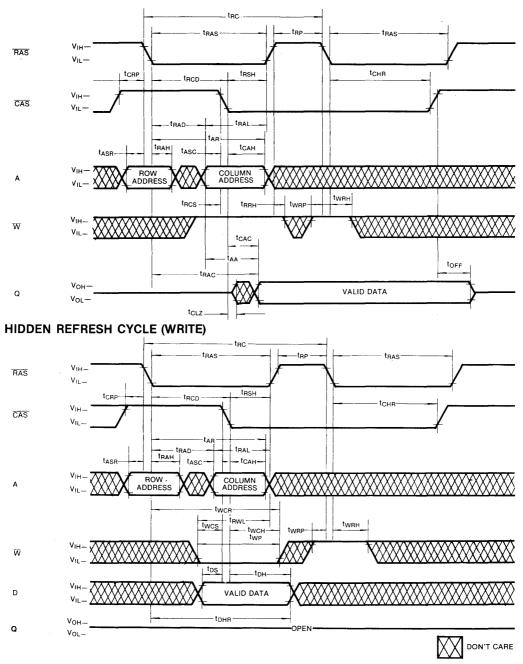
DON'T CARE

FAST PAGE MODE READ-WRITE CYCLE

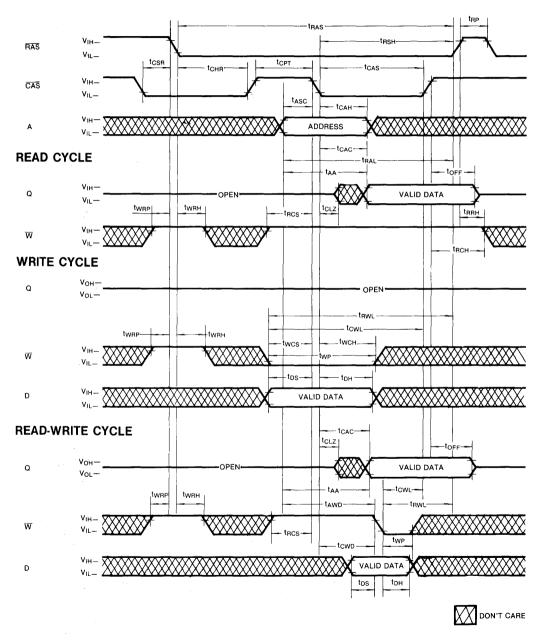



RAS-ONLY REFRESH CYCLE

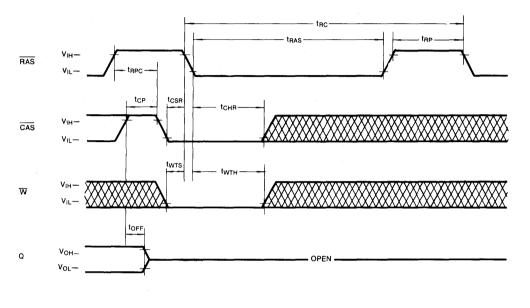
Note: \overline{W} , D, A₁₀ = Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address = Don't Care



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: D, Address= Don't care

TEST MODE DESCRIPTION

The KM41C4000AL is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R}. A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "O"s), the data output pin indicates a "1". If any of the bits differed the data output pin would in

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CAS} -Before \overline{RAS} -Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CAS} -Before- \overline{RAS} Refresh Cycle" or " \overline{RAS} only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

DEVICE OPERATION

Device Operation

The KM41C4000AL contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4000AL has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address trobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM41C4000AL begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C4000AL cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and CAS Timing

The minimum \overrightarrow{RAS} and \overrightarrow{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overrightarrow{RAS} low, it must not be aborted prior to satisfying the minimum \overrightarrow{RAS} and \overrightarrow{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overrightarrow{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4000AL begin a complex sequence of events. If the sequence if broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM41C4000AL can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after CAS and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4000AL has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C4000AL operating cycles is listed below after

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, <u>RAS</u>-only Refresh, Fast Page Mode Write, <u>CAS</u>-before-<u>RAS</u> Refresh, <u>CAS</u>-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C4000AL is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every

DEVICE OPERATION (Continued)

128 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CAS** remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C4000AL has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4000AL hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4000AL by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM41C4000AL has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of veri-

fying the functionality of the $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobed n by the falling edge of \overline{CAS} as in a normal memory cycle.

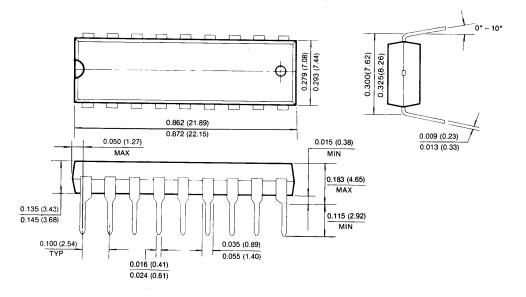
Suggested CAS-Before-RAS Counter Test Procedure

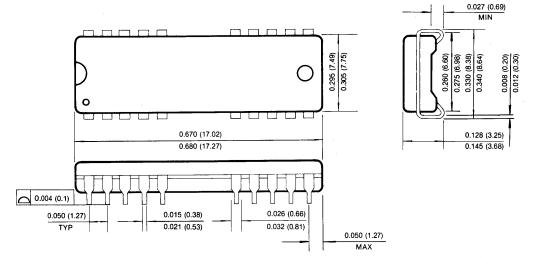
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" in the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If \overline{RAS} =V_{SS} during power-up, the KM41C4000AL could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

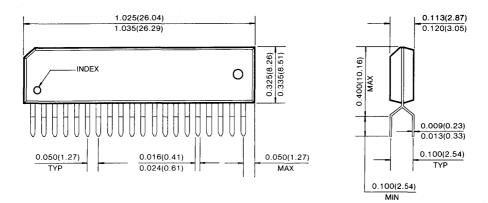

An initial pause of $200\mu s$ is required after power-up flowed by any 8 CAS-before-RAS or RAS only refresh cycles before proper device operation is achieved.

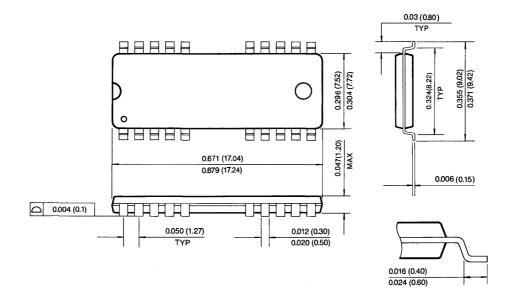

PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (Millimeters)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD




PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

4M×1 Bit CMOS Dynamic RAM with Fast Page Mode

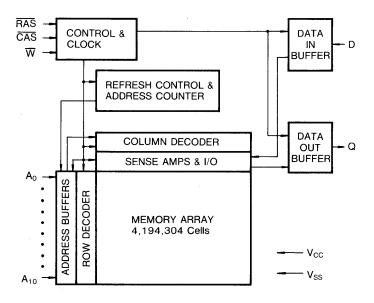
FEATURES

Performance range:

	tRAC	tcac	tRC
KM41C4000ASL- 7	70ns	20ns	130ns
KM41C4000ASL- 8	80ns	20ns	150ns
KM41C4000ASL-10	100ns	25ns	180ns

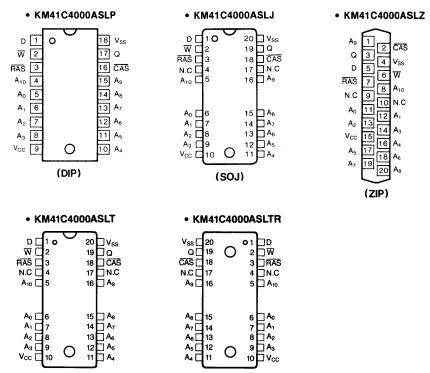
- Fast Page Mode operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- · Common I/O using Early Write
- Single +5V±10% power supply
- 1024 cycles/256ms refresh
- · Low power dissipation
- -Standby: 0.6mW
- -Active (70/80/100ns): 578/523/468mW
- JEDEC standard pinout
- Available in Plastic SOJ, DIP, ZIP, and TSOP (II)

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM41C4000ASL is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4000ASL features Fast Page Mode operation which allows high speed random access of memory cells within the same row.


CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C4000ASL is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

(TSOP (II)-Forward Type)

(TSOP(II)-Reverse Type)

Pin Name	Pin Function
A ₀ -A ₁₀	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{CC}	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	V _{IH}	2.4		Vcc+1	V
Input Low Voltage	VIL	-1.0	· _	0.8	V

DC AND OPERATING CHARACTERISTICS ($0^{\circ}C \le Ta \le 70^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$) (Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4000ASL- 7 KM41C4000ASL- 8 KM41C4000ASL-10	ICC1	-	105 95 85	mA mA mA
Standby Current (RAS=CAS=VIH)		ICC2	-	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	RAS-Only Refresh Current* KM41C4000ASL- 7 KM41C4000ASL- 8				mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	ICC4	-	80 70 60	mA mA mA	
Standby Current (RAS=CAS=W≥V _{CC} -0.2V)	Standby Current (RAS=CAS=W≥V _{CC} -0.2V)				μA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t _{RC} =min.)	KM41C4000ASL- 7 KM41C4000ASL- 8 KM41C4000ASL-10	ICC6		105 95 85	mA mA mA
Battery Back Up CurrentAverage Power Supply Current, Battery Back Up Mode, Input High Voltage (V_{IH})= V_{CC} -0.2V Input Low Voltage (V_{IL})=0.2V CAS=CAS Before RAS Cycling or 0.2V D _{IN} =Don't Care T _{RC} =250 μ S, T _{RAS} =t _{RAS} min.~1 μ S			_	150	μΑ
Standby Current (RAS=VIH, CAS=VIL, Dout E	nable)	ICC8	-	5	mA
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts)			-10	10	μA
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)			-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)			2.4		V
Output Low Voltage Level (I _{OL} =4.2mA)		Vol	_	0.4	V

*Note: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

ltem	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₁₀ , D)	C _{IN1}	_	6	pF
Input Capacitance (RAS, CAS, W)	. C _{IN2}	_	7	pF
Output Capacitance (Q)	COUT		7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Gumbal	KM41	C4000ASL-7	KM41C4000ASL-8		KM41C4000ASL-10		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180	· · · · ·	ns	
Read-modify-write cycle time	tRWC	155		175		210		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,10
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	tAA		35		40		50	ns	3,10
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	6
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	1.0
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	12
Column Address to RAS lead time	tRAL	35		- 40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tвсн	0		0		0		ns	8
Read command hold referenced to RAS	tRRH	0		0		0		ns	8
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	12
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	9

KM41C4000ASL

AC CHARACTERISTICS (Continued)

Chandered Onerrobion			KM41C4000ASL-8		KM41C4000ASL-10		Unit	Natas	
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	9
Data-in hold referenced to RAS	t _{DHR}	55		60		75	C.	ns	12
Refresh period (1024 cycles)	t _{REF}		256		256		256	ms	
Write command set-up time	twcs	0		0		0		ns	7
CAS to write enable delay	tcwp	20		20		25		ns	7
RAS to write enable delay	t _{RWD}	70		80		100		ns	7
Column address to \overline{W} delay time	tAWD	35		40		50		ns	7
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	tCPT	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
FAst Page mode cycle time	tPC	50		50		60		ns	1
CAS precharge time (Fast page mode)	tCP	10		10		10		ns	
RAS hold time from CAS precharge	t RHCP	45		45		55		ns	
Fast page mode read-modify-write	tPRWC	75		75		90		ns	
RAS pulse width (Fast page mode)	tRASP -	70	200,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twn	10		10		10		ns	

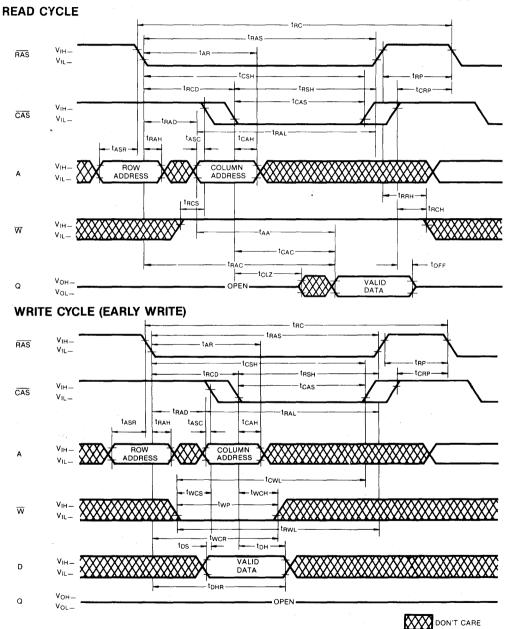
(Note. 11)

TEST MODE CYCLE

Standard Operation	Symbol	KM41	C4000ASL-7	KM41C4000ASL-8		KM41C4000ASL-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	135		155		185		ns	
Read-modify-write cycle time	tRWC	160		180		215		ns	
Access time from RAS	trac		75		85		105	ns	3,4,10
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	t _{AA}		40		45		55	ns	3,10
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	tRSH	25		25		30		ns	
CAS hold time	tсsн	75		85		105		ns	
Column address to RAS lead time	t _{RAL}	40		45		55		ns	
CAS to write enable delay	tcwp	25		25		30		ns	7
RAS to write enable delay	RWD	75		85		105		ns	7
Column address to \overline{W} delay time	tawd	40		45		55		ns	7
Fast mode cycle time	tPC	55		55		65		ns	
Fast page mode read-modefy-write	tPRWC	80		80		95		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	tCPA		50		50		60	ns	3

NOTES

- 1. An initial pause of $200\mu s$ is required after powerup followed by and 8 \overline{CBR} or \overline{ROR} cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{iL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{iL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.

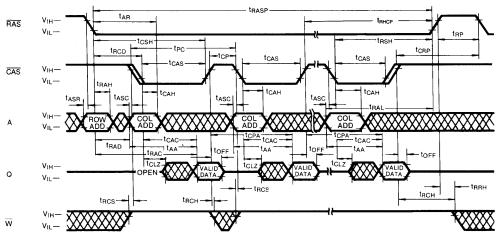

SAMSUNG

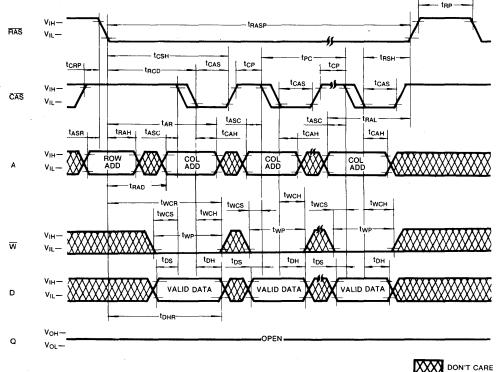
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If

twcs>twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD}>t_{CWD(min)}$ and $t_{RWD}>t_{RWD(min)}$ and $t_{AWD}>t_{AWD(min)}$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

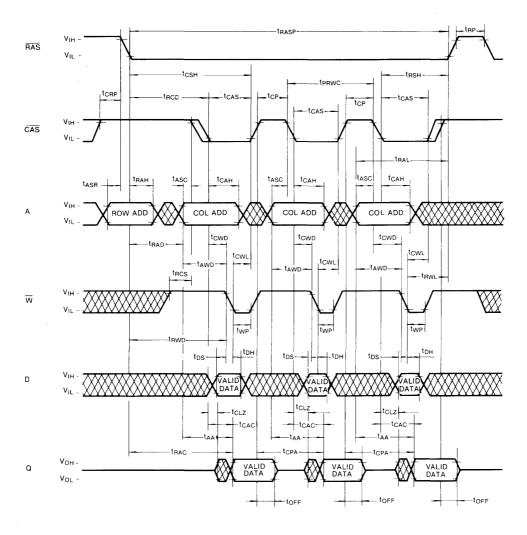
- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, twcR, tDHR are refrerenced to tRAD(max).

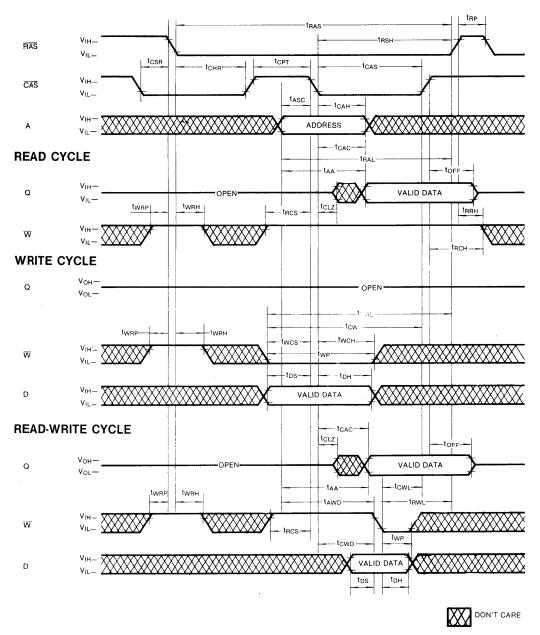
TIMING DIAGRAMS

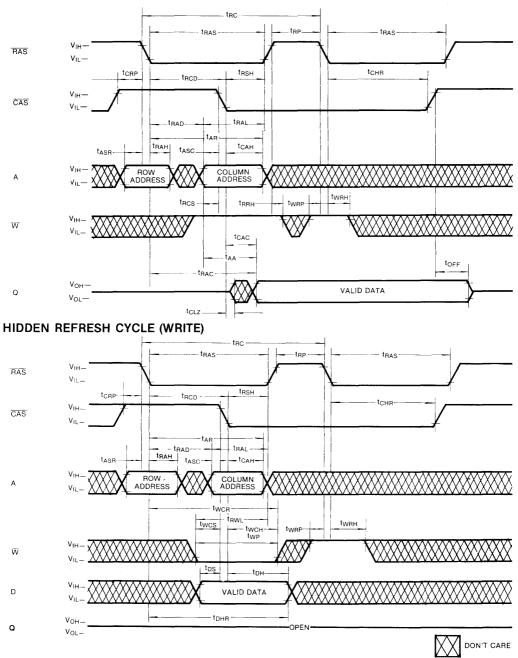



FAST PAGE MODE READ CYCLE

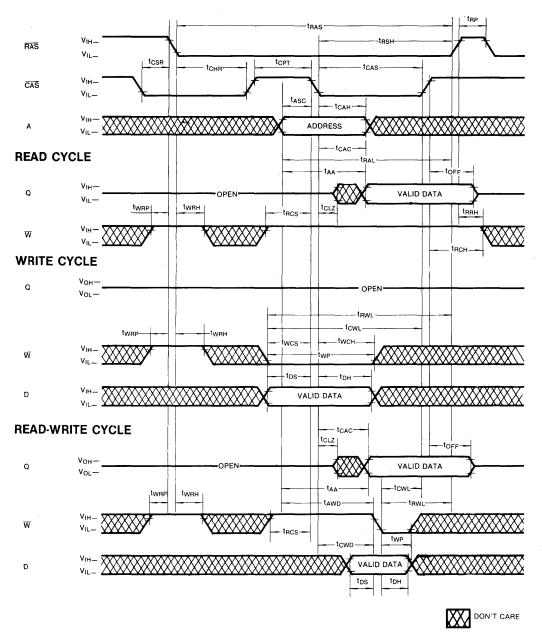
111


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


FAST PAGE MODE READ-WRITE CYCLE

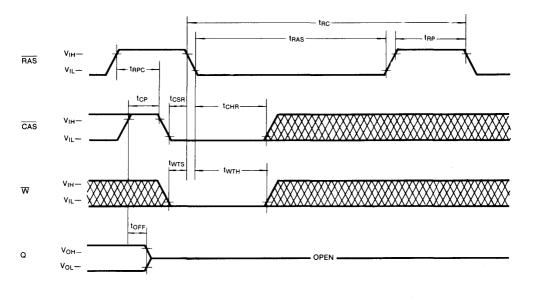


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



DON'T CARE

TIMING DIAGRAMS (Continued)

TEST MODE IN CYCLE

NOTE: D, Address=Don't Care

TEST MODE DESCRIPTION

The KM41C4000ASL is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R} . A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1".

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CAS} -Before-RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CAS} -Before-RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

117

DEVICE OPERATION

Device Operation

The KM41C4000ASL contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4000ASL has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address inputs.

Operating of the KM41C4000ASL begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C4000ASL cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4000ASL begin a complex sequence of events. If the sequence if broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM41C4000ASL can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4000ASL has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM41C4000ASL operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C4000ASL is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every

DEVICE OPERATION (Continued)

256 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{FAS} Refresh: The KM41C4000ASL has \overline{CAS} before- \overline{FAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{FAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{FAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4000ASL hidden refresh cycle is actually a \overline{CAS} before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4000ASL by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM41C4000ASL has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row addresse. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of veri-

fying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobed n by the falling edge of \overline{CAS} as in a normal memory cycle.

Suggested CAS-Before-RAS Counter Test Procedure

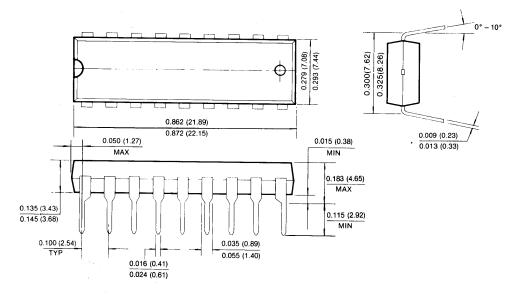
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

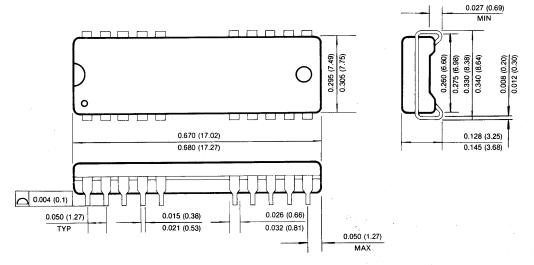
Power-up

If \overline{RAS} =V_{SS} during power-up, the KM41C4000ASL could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

An initial pause of $200\mu s$ is required after power-up followed by any 8 \overrightarrow{CBR} or \overrightarrow{ROR} cycles before proper device operation is achieved.



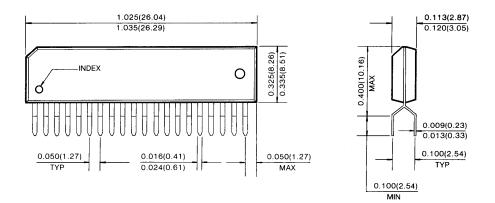
119

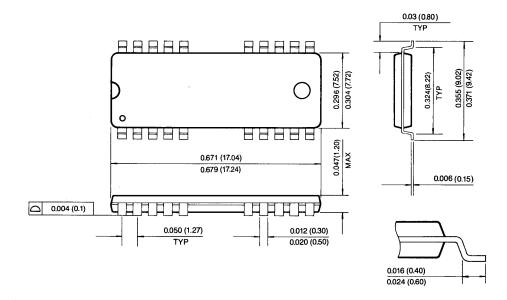

PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (Millimeters)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD




100

PACKAGE DIMENSIONS (Continued) 20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

4M×1 Bit CMOS Dynamic RAM with Nibble Mode

FEATURES

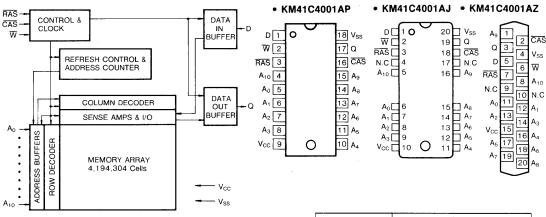
Performance range:

	tRAC	tCAC	t _{RC}
KM41C4001A-7	70ns	20ns	130ns
KM41C4001A- 8	80ns	20ns	150ns
KM41C4001A-10	100ns	25ns	180ns

- Nibble Mode operation
- CAS-before-RAS Refresh Capability
- RAS-only and Hidden Refresh Capability
- · 8-bit fast parallel test mode Capability
- TTL compatible inputs and output
- Common I/O using Early Write
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic SOJ, DIP, ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION


The Samsung KM41C4001A is a CMOS high speed 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C4001A features Nibble Mode operation which allows high speed serial access of up to 4 bits of data.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and outputs are fully TTL compatible.

The KM41C4001A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function
A ₀ -A ₁₀	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input 。
RAS	Row Address Strobe
CAS	Column Address Strobe
V _{CC}	Power (+5V)
V _{SS}	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{SS}, Ta=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<TA<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM41C4001A- 7 KM41C4001A- 8 KM41C4001A-10	ICC1		105 95 85	mA mA mA
Standby Current (RAS=CAS=V _{IH})		Icc2		2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	KM41C4001A- 7 KM41C4001A- 8 KM41C4001A-10	Іссз		105 95 85	mA mA mA
Nibble Mode Current* (RAS=VIL, CAS, Address Cycling: t _{NC} =min.)	KM41C4001A- 7 KM41C4001A- 8 KM41C4001A-10	I _{CC4}		80 70 60	mA mA mA
Standby Current (RAS=CAS=W≥V _{CC} ~0.2V)		ICC5		1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM41C4001A- 7 KM41C4001A- 8 KM41C4001A-10	Icc6		105 95 85	mA mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} , Dout Enable)		Icc7	_	5	mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts)		IIL	-10	10	μA
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		I _{OL}	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	—	V
Output Low Voltage Level (I _{OL} =4.2mA)		Vol	—	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while \overrightarrow{RAS} =V_{IL}. I_{CC4}, Address can be changed maximum once while \overrightarrow{CAS} =V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (Ao-A10, D)	CIN1	_	6	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	-	7	pF
Output Capacitance (Q)	Соит	_	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Cumbal	KM41	C4001A-7	KM41	KM41C4001A-8 KM41C4001A-10			Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	155		175		210		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,10
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,10
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	torr	0	15	0	15	0	20	ns	6
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsH	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	10
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tCAH	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	12
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	8
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	8
Write command hold time	twcH	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	12
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	t _{CWL}	20		20		25	-	ns	
Data-in set-up time	t _{DS}	0		0		0		ns	9

AC CHARACTERISTICS (Continued)

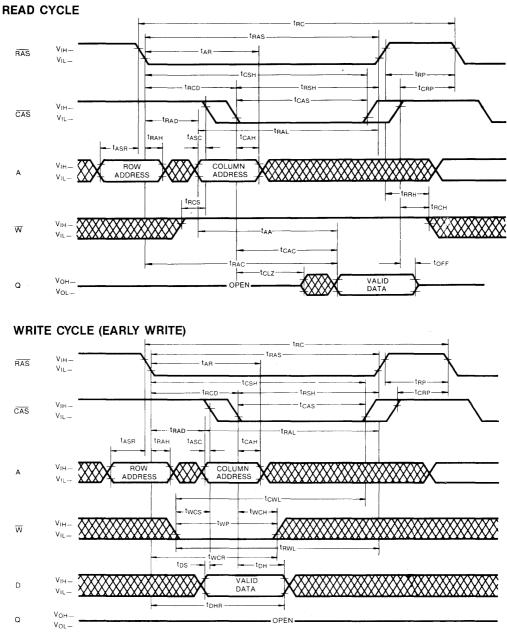
Chanderd Operation	Symbol	KM41	C4001A-7	KM41C4001A-8		KM41C4001A-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	9
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	12
Refresh period (1024 cycles)	tREF		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns.	7
CAS to write enable delay	tcwD	20		20		25		ns	7
RAS to write enable delay	tRWD	70		80		100		ns	7
Column address to W delay time	tawd	35		40		50		ns	7
CAS setup time (C-B-R refresh)	tcsR	10		10		10		ns	L
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Nibble mode cycle time	t _{NC}	40		40		45		ns	
Nibble mode read-write cycle time	t NRWC	65		65		70		ns	
Nibble mode access time	t NCAC		20		20		25	ns	
Nibble mode CAS pulse width	t _{NCAS}	20		20		25		ns	
Nibble mode CAS precharge time	t _{NCP}	10		10		10		ns	
Nibble mode RAS hold time	t _{NRSH}	20		20		25		ns	
Nibble mode \overline{CAS} to \overline{W} delay time	t _{NCWD}	20		20		25		ns	
Nibble mode \overline{W} to \overline{RAS} lead time	t _{NRWL}	20		20		25		ns	
Nibble mode \overline{W} to \overline{CAS} lead time	tNCWL	20		20		25		ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twrP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	

TEST MODE CYCLE

(Note. 11)

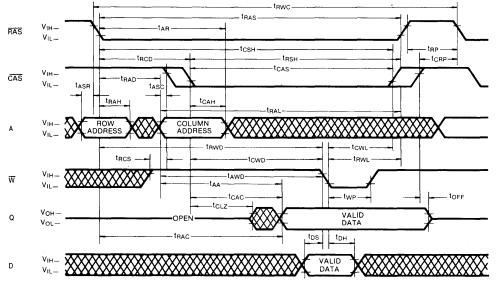
Standard Operation	Symbol	KM41	KM41C4001A-7		KM41C4001A-8		KM41C4001A-10		Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	135		155		185		ns	
Read-modify-write cycle time	tRWC	160		180		215		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,10
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	tAA		40		45		55	ns	3,10
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	-
RAS hold time	t _{RSH}	25		25		30		ns	
CAS hold time	tсsн	75		85		105		ns	
Column address to RAS lead time	tRAL	40		45		55		ns	
CAS to write enable delay	tcwp	25		25		30		ns	7
RAS to write enable delay	tRWD	75		85		105		ns	7
Column address to \overline{W} delay time	t _{AWD}	40		45		55		ns	7

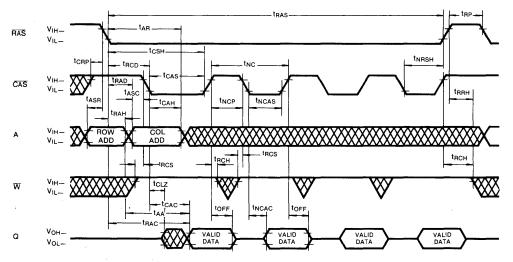
NOTES


- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 $\overline{\text{CBR}}$ or $\overline{\text{ROR}}$ cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If

twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD}(min) and t_{RWD}≥t_{RWD}(min) and t_{AWD}≥t_{AWD}(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

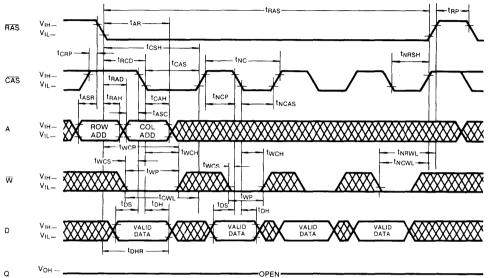
- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 11. These specifications are applied in the test mode.
- 12. tAR, twcR, tDHR are refrerenced to tRAD(max).

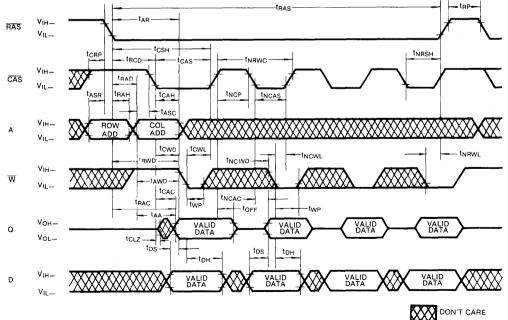

TIMING DIAGRAMS



DON'T CARE

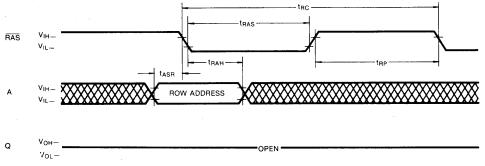
READ-WRITE/READ-MODIFY-WRITE CYCLE

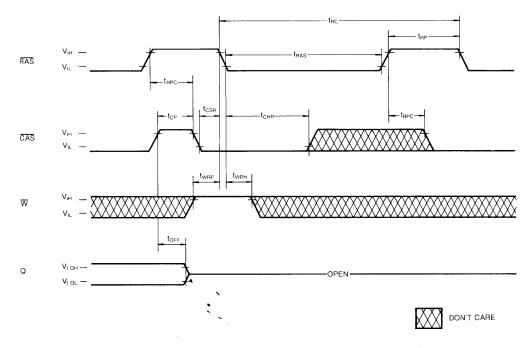

NIBBLE MODE READ CYCLE


DON'T CARE

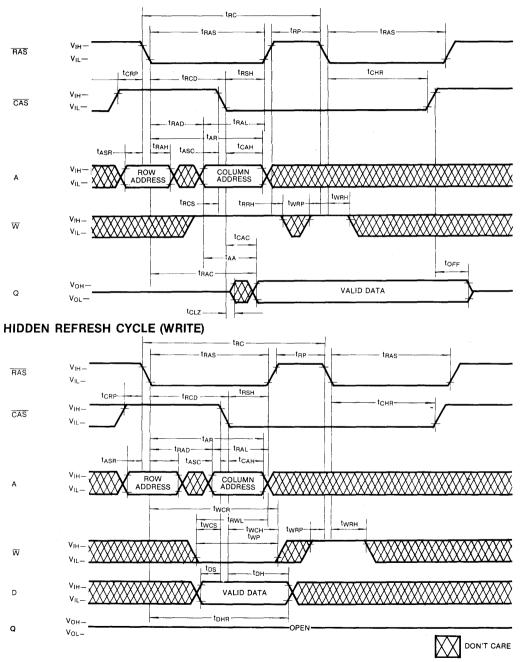
TIMING DIAGRAMS (Continued) NIBBLE MODE WRITE CYCLE (EARLY WRITE)

V_{OL}-

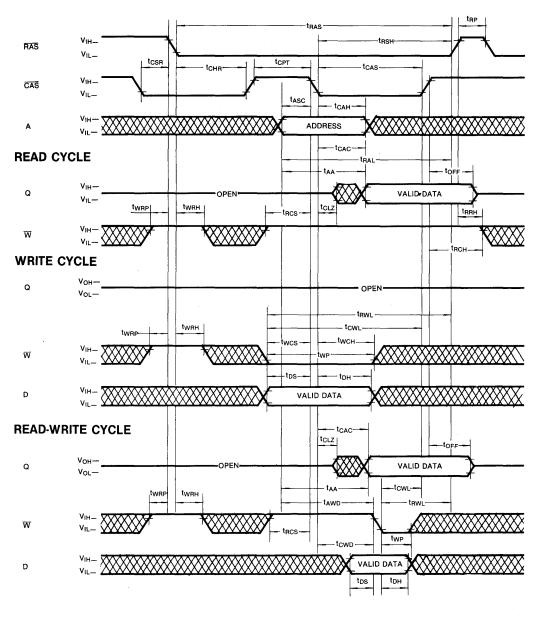

NIBBLE MODE READ-WRITE CYCLE


RAS-ONLY REFRESH CYCLE

Note: CAS=VIH, W,D, A10=Don't Care

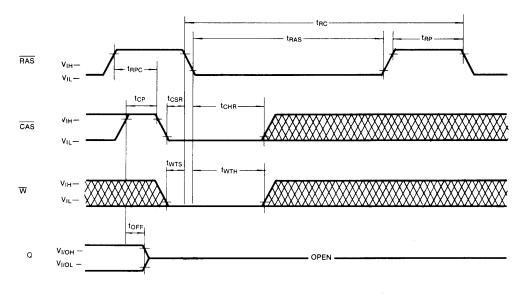

CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



DON'T CARE

TEST MODE IN CYCLE

NOTE: D, Address=Don't Care

TEST MODE DESCRIPTION

The KM41C4001A is the RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R}. A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1".

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CAS} -Before- \overline{RAS} Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CAS} -Before- \overline{RAS} Refresh Cycle" or " \overline{RAS} only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

DEVICE OPERATIONS

The KM41C4001A contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4001A has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address inputs.

Operating of the KM41C4001A begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C4001A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and **CAS** Timing

The minimum \overrightarrow{RAS} and \overrightarrow{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for porper device operation and data integrity. Once a cycle is initiated by bringing \overrightarrow{RAS} low, it must not be aborted prior to satisfying the minimum \overrightarrow{RAS} and \overrightarrow{CAS} pulse widths. In addition a new cycle must not begin until the minimum \overrightarrow{RAS} precharge time, t_{RP} has been satisfied. Once a cycle begins internal clocks and other circuits within the KM41C4001A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM41C4001A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D)

is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after CAS and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4001A has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C4001A operating cycles is listed below after

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Nibble Mode Read, Nibble Mode Read-Modify-Write.

Hi-Z Output State: Early Write, <u>RAS</u>-only Refresh, Nibble Mode Write, <u>CAS</u>-before-RAS Refresh, <u>CAS</u>-only cycle.

Indeterminate Output State: Delayed Write

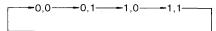
Refresh

The data in the KM41C4001A is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each row.

DEVICE OPERATIONS (Continued)

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C4001A has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.


Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41C4001A hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4001A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Nibble Mode

The KM41C4001A has Nibble mode capability. Nibble mode operation allows high speed serial read, write or read-modify-write access of 4 consecutive bits. The first of 4 bits is accessed in the usual manner. The remaining nibble bits are accessed by toggling CAS high then low while RAS remains low.

The 4 bits of data that may be accessed during Nibble mode are determined by the lower 10 row address bits (R_{A0} - R_{A9}) and 10 column address bits (C_{A0} - C_{A9}). The two address bits, C_{A10} and R_{A10} are used to select 1 of the 4 nibble bits for initial access. The remaining nibble bits are accessed by toggling \overline{CAS} with \overline{RAS} held low. Each high-low \overline{CAS} transition will internally increment the nibble address (C_{A10} , R_{A10}) as shown in the following diagram with R_{A10} being the least significant bit.

If more than 4 bits are accessed during Nibble mode, the address sequence will wrap around and repeat. If any bit is written during Nibble mode, the new data will be read on any subsequent access. If the write operation is executed again on a subsequent access, the new data will be written into the selected cell location.

A nibble mode cycle can be a read, write or read-modifywrite cycle. Any combinations of reads and writes or readmodify-write be allowed.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. This A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobedin by the falling edge of \overline{CAS} as in a normal memory cycle.

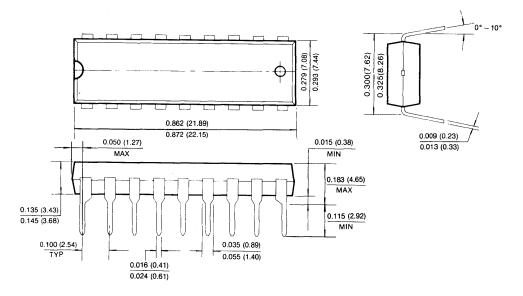
Suggested CAS-Before-RAS Counter Test Procedure

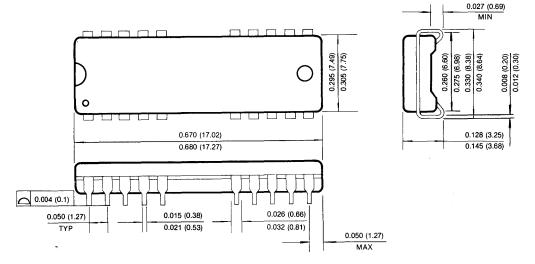
The CAS-before RAS refresh counter test cycle timing is used in each of the following steps:

- Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If $\overline{RAS} = V_{SS}$ during power-up, the KM41C4001A could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

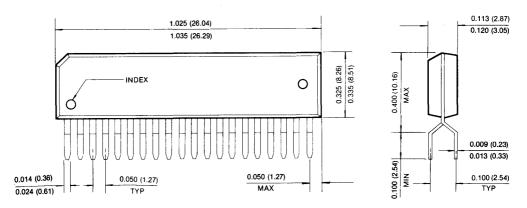

An initial pause of 200μ s is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.


PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (Millimeters)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

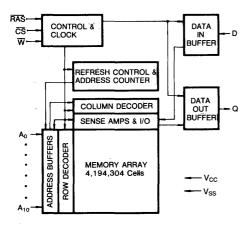


PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

4M×1 Bit CMOS Dynamic RAM with Static Column Mode


FEATURES

• Performance range:

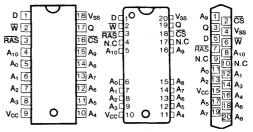
	trac	tCAC	tRC
KM41C4002A- 7	70ns	20ns	130ns
KM41C4002A- 8	80ns	20ns	150ns
KM41C4002A-10	100ns	25ns	180ns

- Static Column Mode operation
- CS-before-RAS Refresh Capability
- RAS-only and Hidden Refresh Capability
- 8-bit fast parallel test mode Capability
- TTL compatible inputs and output
- Common I/O using Early Write
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- · Available in Plastic SOJ, DIP, ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM41C4002A is a high speed CMOS 4,194,304 bit \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.


The KM41C4002A features Static Column Mode operation which allows high speed random or sequential access within a row. Static Column Mode operation offers high performance while relaxing many critical system timing requirements for fast usable speed.

CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and output are fully TTL compatible.

The KM41C4002A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM41C4002AP • KM41C4002AJ • KM41C4002AZ

Pin Name	Pin Function
A0-A10	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CS	Chip Select Input
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	v
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	v
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{cc} +1	V
Input Low Voltage	VIL	-1.0		0.8	v

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CS, Address Cycling @ t _{RC} =min)	=min) KM41C4002A- 7 KM41C4002A- 8 KM41C4002A-10			105 95 85	mA mA mA
Standby Current (RAS=CS=V _{IH})	Standby Current (RAS=CS=V _{IH})				
RAS-Only Refresh Current* (RAS Cycling, CS=V _{IH} , @ t _{RC} =min)	KM41C4002A- 7 KM41C4002A- 8 KM41C4002A-10	Іссз		105 95 85	mA mA mA
Static Column Mode Current* (RAS=CS=V _{IL} , Address Cycling @t _{SC} =min)	KM41(:4002A- 8				mA mA mA
Standby Current (RAS=CS=W≥V _{CC} -0.2V)		ICC5	—	1	mA
$\overline{\text{CS}}$ -Before- $\overline{\text{RAS}}$ Refresh Current* (RAS and $\overline{\text{CS}}$ Cycling @ t _{RC} =min.)	I _{CC6}		105 95 85	mA mA mA	
Standby Current (RAS=VIH, CS=VIL, DOUT=En	able)	ICC7	_	5	mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)	lιL	-10	10	μΑ	
Output Leakage Current (Data out is disabled, (IOL	-10	10	μA	
Output High Voltage Level (I _{OH} =-5mA)	V _{OH}	2.4		v	
Output Low Voltage Level (I _{OL} =4.2mA)		VOL	—	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current.I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀ , D)	C _{IN1}		6	pF
Input Capacitance (RAS, CS, W)	C _{IN2}		7	pF
Output Capacitance (Q)	Соит	—	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

	Symbol	KM41	C4002A-7	KM41C4002A-8		KM41C4002A-10			Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	notes
Random read or write cycle time	tRC	130		150		180		ns	
Read-modify-write cycle time	tRWC	155		175		210		ns	
Access time from RAS	t _{RAC}		70		80		100	ns	3,4,11
Access time from CS	tCAC		20		20		25	ns	3,4,5
Access time from column address	tAA		35		40		50	ns	3,11
CS to output in Low-Z	tcLz	5		5		5		ns	3,12
Output buffer turn-off delay	torr	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tŢ	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CS hold time	tcsH	70		80		100		ns	
CS pulse width	tcs	20	10,000	20	10,000	25	10,000	ns	
RAS to CS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tсан	15	-	15		20		ns	
Column address hold referenced to RAS	tar	55		60		75		ns	
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CS	tясн	0		0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcr	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM41	C4002A-7	KM41C4002A-8		KM41C4002A-10			Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max		
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	tDH	15		15		20		ns	10
Data-in hold referenced to RAS	t DHR	55		60		75		ns	6
Refresh period (1024 cycles)	tREF		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CS to write enable delay time	tcwp	20		20		25		ns	8
RAS to write enable delay time	tRWD	70		80		100		ns	8
Column address to W delay time	tawd	35		40		50		ns	8
CS set-up time (C-B-R refresh)	tCSR	10		10		10		ns	
CS hold time (C-B-R refresh)	tCHR	20		30		30		ns	
RAS precharge to CS hold time	tRPC	10		10		10		ns	
CS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Static column mode cycle time	tsc	40		45		55		ns	
Static column mode read-write cycle time	tSRWC	70		80		100		ns	
Access time from last write	talw		65		75		95	ns	3,12
Output data hold time from column address	t _{AOH}	5		5		5		ns	
Output data enable time from \overline{W}	tow		45		50		70	ns	
Output data hold time from \overline{W}	twoн	0		0		0		ns	
RAS pulse width (static column mode)	TRASC	70	100,000	80	100,000	100	100,000	ns	
CS pulse width (static column mode)	tcsc	20	100,000	20	100,000	25	100,000	ns	
CS precharge time (static column mode)	tCP	10		10		10		ns	
Write address hold time reference to RAS	tawr	55		60		75		ns	6
Column address hold time referenced to RAS rise	tан	5		5		10		ns	
Last write to column address delay time	tLWAD	20	30	20	35	25	45	ns	
Last write to column address hold time	tahlw	65		75		95		ns	
Write command inactive time	twi	10		10		10		ns	
Write command set-up time (Test mode In)	twrs	10		10		10		ns	
Write command hold time (Test mode In)	twrн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twre	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	

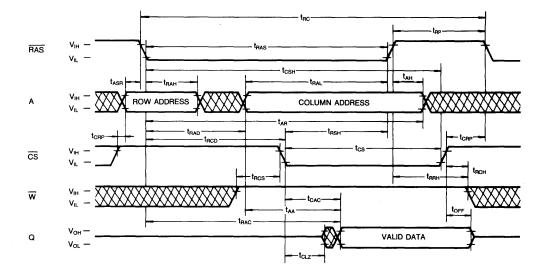
(Note. 13)

TEST MODE CYCLE

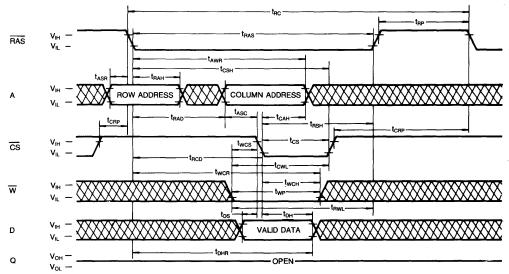
Standard Operation	Symbol	KM41	C4002A-7	KM41C4002A-8		KM41C4002A-10		Unit	Notes
Stanuaru Operation	Symbol	Min Max	Max	Min	Max	Min	Max	Unit	NULUS
Random read or write cycle time	tRC	135		155		185		ns	
Read-modify-write cycle time	tRWC	160		180		215		ns	
Access time from RAS	TRAC		75		85		105	ns	3,4,11
Access time from CS	tCAC		25		25		30	ns	3,4,5
Access time from column address	tAA		40		45		55	ns	3,11
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CS pulse width	tcs	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	trsh	25		25		30	}	ns	
CS hold time	tcsн	75		85		105		ns	
Column Address to RAS lead time	tRAL	40		45		55		ns	
CS to write enable delay	tcwD	25		25		30		ns	8
RAS to write enable delay	trwD	75		85		105		ns	8
Column address to \overline{W} delay time	tawd	40		45		55		ns	8
Static column mode cycle time	tsc	45		50		60		ns	
Static column mode read-modefy-write	tSRWC	75		85		105		ns	
RAS pulse width (Static column mode)	tRASC	75	100,000	85	100,000	105	100,000	ns	
Access time from last write	talw		70		80		100	ns	3,12
CS pulse width (static column mode)	tcsc	25	100,000	25	100,000	30	100,000	ns	

NOTES

- An initial pause of 200µs is required after powerup followed by any 8 RAS cycle before proper device operation is achieved.
- 2. V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)}, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that tRCD>tRCD(max).
- 6. tAWR, tWCR, tDHR are referenced to tRAD(max)
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If


twcs \geq twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If tcwD \geq tcwD(min) and tRWD \geq tRWD(min) and tAWD \geq tAWD(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

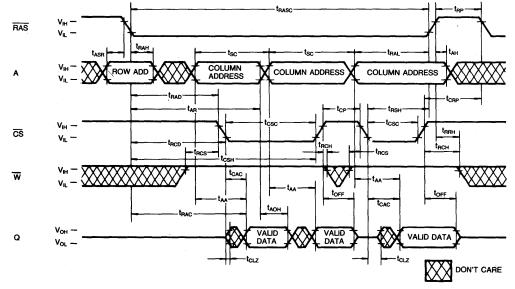
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD(max)} limit insures that t_{RAC(max)} can be met. t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then access time is controlled by t_{AA}.
- 12. Operation within the t_{LWAD(max}) limit insures that t_{ALW(max}) can be met. t_{LWAD(max}) is specified as a reference point only. t_{LWAD} is greater than the specified t_{LWAD(max}) limit, then access time is controlled by t_{AA}.
- 13. These specifications are applied in the test mode.



CMOS DRAM

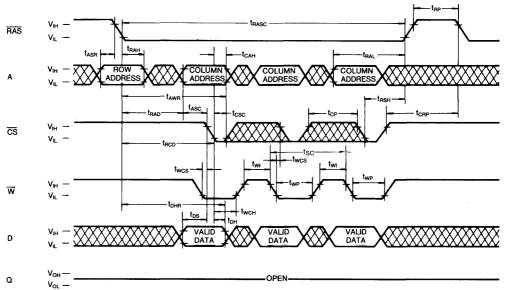
TIMING DIAGRAMS READ CYCLE

WRITE CYCLE (EARLY WRITE)

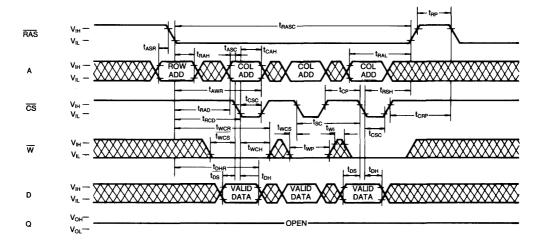

143

DON'T CARE

TIMING DIAGRAMS (Continued) READ-WRITE/READ-MODIFY-WRITE CYCLE

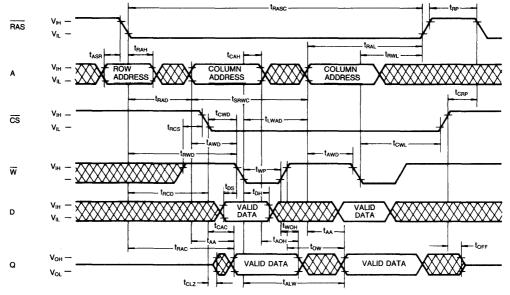


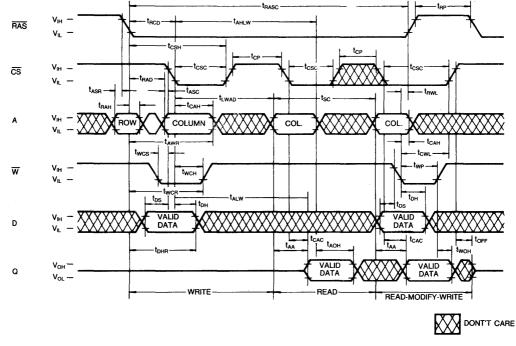
STATIC COLUMN MODE READ CYCLE



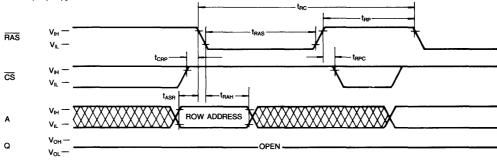
TIMING DIAGRAMS (Continued) STATIC COLUMN MODE WRITE CYCLE (W CONTROLLED EARLY WRITE)

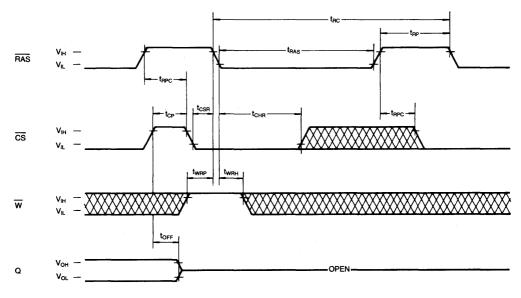
STATIC COLUMN MODE WRITE CYCLE (CS CONTROLLED EARLY WRITE)



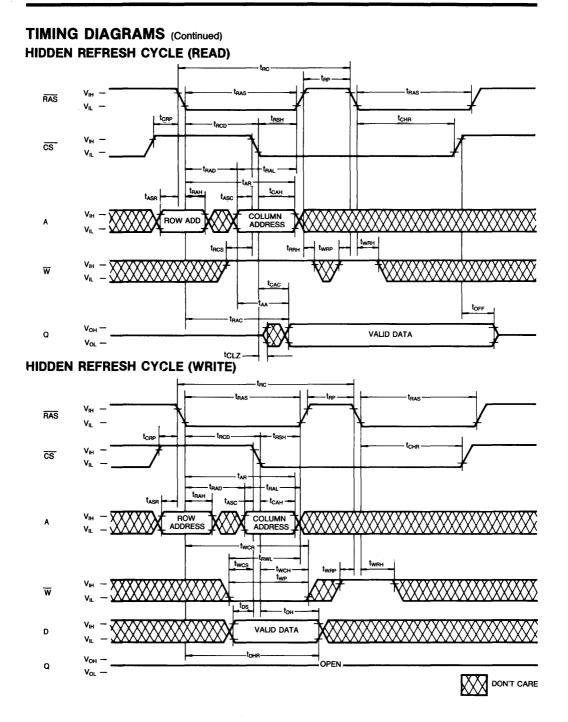


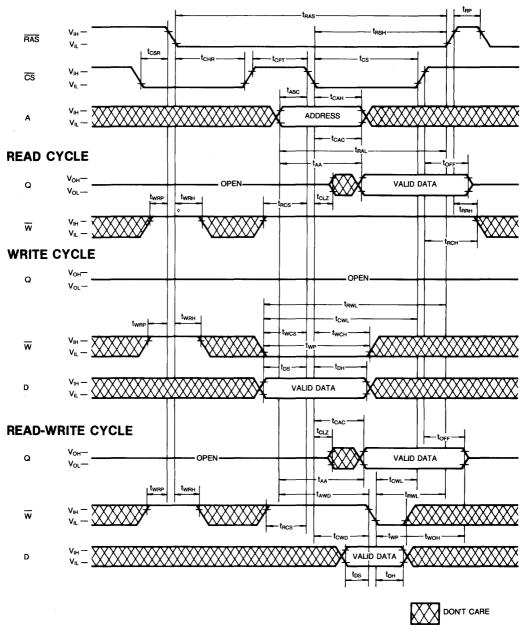
STATIC COLUMN MODE READ-WRITE CYCLE


STATIC COLUMN MODE MIXED CYCLE


RAS-ONLY REFRESH CYCLE

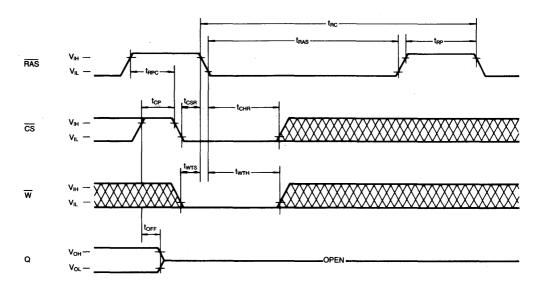
CS-BEFORE-RAS REFRESH CYCLE


NOTE: Address=Don't Care


DON'T CARE

 \mathbb{K}

TIMING DIAGRAMS (Continued) CS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



2

TEST MODE IN CYCLE

NOTE: D, Address=Don't Care

TEST MODE DESCRIPTION

The KM41C4002A is true RAM organized 4,194,304 words by 1 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. A_{10R} . A_{10C} and A_{OC} are not used. If, upon reading, all bits are equal (all "1"s or "0"s), the data output pin indicates a "1". If any of the bits differed, the data output pin would in-

dicate a "0" In "Test Mode", the 4M DRAM can be tested as if it were a 512K DRAM. \overline{W} , \overline{CS} Before RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CS} Before RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/8 in cases of N test pattern).

DEVICE OPERATIONS

Device Operation

The KM41C4002A contains 4,194,304 memory locations. Twenty-two address bits are required to address a particular memory location. Since the KM41C4002A has only 11 address input pins, time multiplexed addressing is used to input 11 row and 11 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the chip select input (\overline{CS}) and the valid row and column address inputs.

Operating of the KM41C4002A begins by strobing in a valid row address with \overline{RAS} while \overline{CS} remains high. Then the address on the 11 address input pins is changed from a row address to a column address and is strobed in by \overline{CS} . This is the beginning of any KM41C4002A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both \overline{RAS} and \overline{CS} have returned to the high state. Another cycle can be initiated after \overline{RAS} remains high long enough to satisfy the \overline{RAS} precharge time (t_{RP}) requirement.

RAS and CS Timing

The minimum RAS and CS pulse widths are specified by $t_{RAS}(min)$ and $t_{CS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C4002A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a RAS/ \overline{CS} cycle. The access time is normally specified with respect to the falling edge of RAS. But the access time also depends on the falling edge of \overline{CS} and on the valid column address transition.

If \overline{CS} goes low before $t_{RCD}(max)$ and if the column address is valid before $t_{RAD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CS} goes low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM41C4002A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD}, t_{CWD} and t_{AWD}, are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C4002A has a three-state output buffer which is controlled by \overline{CS} . Whenever \overline{CS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM41C4002A operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Static Column Mode Read, Static Column Mode Read-Modify-Write.

Hi-Z Output Static: Early Write, RAS-only Refresh, Static Column Mode Write, CS-Before-RAS Refresh, CS-only cycle.

Indeterminate Output State: Delayed Write.

DEVICE OPERATIONS (Continued)

Refresh

The data in the KM41C4002A is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CS** remains high. This cycle must be repeated for each row.

 \overline{CS} -before- \overline{RAS} Refresh: The KM41C4002A has \overline{CS} -before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CS active time and cy^ling RAS. The KM41C4002A hidden refresh cycle is actually a CSbefore-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C4002A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CS-before-RAS refresh is the preferred method.

Static Column Mode

Static Column Mode allows high speed read, write or read-modity-write random access to all the memory cells within a selected row. Operation within a selected row is similar to a static RAM. The read, write or readmodify-write cycles may be mixed in any order.

A Static Column mode read cycle starts as a normal cycle. Additional cells within the selected row are written by by applying a new column address while $\overline{W}=V_{IH}$ and $\overline{RAS}=V_{IL}$.

A Static Column mode write cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{RAS} = V_{IL}$ and toggiling either \overline{W} or \overline{CS} . The data is written into the cell trigered by the latter fallin edge of \overline{W} or \overline{CS} .

CS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the CS-before-RAS refresh counter test cycle provides a convenient method of verifying the functionality of the CS-before-RAS refresh activated circuitry.

After the \overline{CS} -before- \overline{RAS} refresh operation, is \overline{CS} goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the \overline{CS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 11 row address bits and 11 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter. The A_{10} bit is set high internally.

Column Address—Bits A_0 through A_{10} are strobed-in by the falling edge of \overline{CS} as in a normal memory cycle.

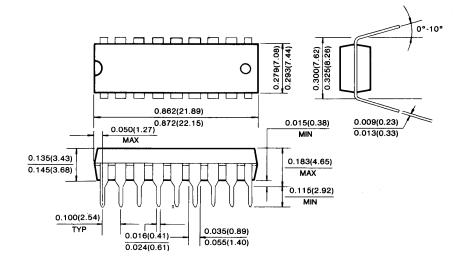
Suggested CS-before-RAS Counter Test Procedure

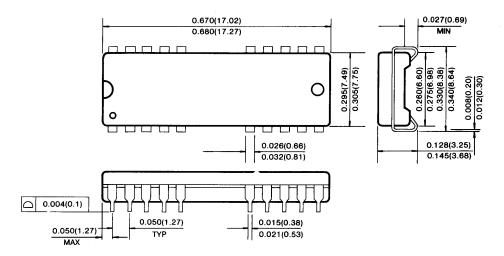
The \overline{CS} -before- \overline{RAS} refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row address. (The row addresses are supplied by the on-chip refresh counter).
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 512 times so that highs are written into the 512 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

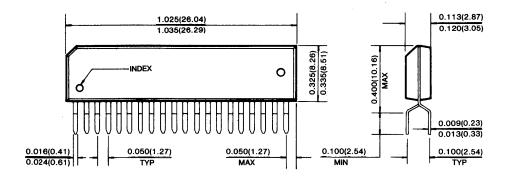
If \overline{RAS} =V_{SS} during power-up, the KM41C4002A could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.


An initial pause of 200μ s is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.


PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Unit: Inches (Millimeters)


20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

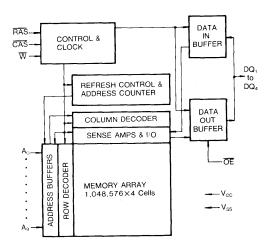
PACKAGE DIMENSIONS (Continued) 20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

1M×4 Bit CMOS Dynamic RAM with Fast Fast Page Mode

FEATURES

Performance range:

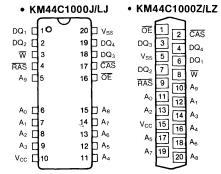

	tRAC	tCAC	tRC
KM44C1000/L- 8	80ns	20ns	150ns
KM44Ç1000/L-10	100ns	25ns	180ns

- Fast Page Mode operation
- · CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- · Early Write or output enable controlled wirte
- Single + 5V ± 10% power supply
- Refresh cycles:
 - —1024 cycles/16ms
 - -1024 cycles/128ms (L-Version)
- Low Power:
 - -Standby: 5.5mW

1.7mW (L-Version) —Active: 550mW (80ns)

- 468mW (100ns)
- JEDEC standard pinout
- Available in Plastic SOJ/ZIP

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM44C1000/L is a high speed CMOS 1,048,576 bit \times 4 dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1000/L features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM44C1000/L is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function				
A ₀ -A ₉	Address Inputs				
DQ1-4	Data In/Out				
\overline{W}	Read/Write Input				
ŌĒ	Data Output Enable				
RAS	Row Address Strobe				
CAS	Column Address Strobe				
Vcc	Power (+5V)				
V _{SS}	Ground				

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	Vin, Vout	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	۷
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<TA<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Мах	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM44C1000/L- 8 KM44C1000/L-10	I _{CC1}	-	100 85	mA mA
Standby Current (RAS=CAS=V _{IH})		I _{CC2}	_	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KM44C1000/L- 8 KM44C1000/L-10	Іссз	_	100 85	mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	KM44C1000/L- 8 KM44C1000/L-10	ICC4	-	70 60	mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)	KM44C1000-8/10 KM44C1000L-8/10	ICC5	-	1 300	mA μA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM44C1000/L- 8 KM44C1000/L-10	I _{CC6}	-	100 85	mA mA
Battery Back Up Current Average Power Supply Current, Battery Back Up Mode Input High Voltage (V_{IH})= V_{CC} -0.2V Input Low Voltage (V_{IL})=0.2V CAS=CAS-Before-RAS Cycling or 0.2V DQ1~4=Don't Care T _{RC} =125 μ s, T _{RAS} =t _{RAS} min.~1 μ s	KM44C1000L- 8 KM44C1000L-10	lcc7	_	400	μΑ
Standby Current (RAS=V _{IH} , CAS=V _{IL} Dout Enable)		ICC8	_	5	mA

DC AND OPERATING CHARACTERISTICS (Continued)

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts)	կլ	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)	lou	-10	10	μΑ
Output High Voltage Level (I _{OH} <i>=</i> − 5mA)	V _{OH}	2.4		V
Output Low Voltage Level (I _{OL} =4.2mA)	V _{OL}	_	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current. In I_{CC1}, I_{CC3}, I_{CC6}. Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}		5	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ4)	Соит		7	pF

AC CHARACTERISTICS (0°C≤Ta≤70°C, V_{CC}=5.0V±10%. See notes 1.2)

Standard Operation	Symbol	КМ44	C1000/L-8	KM44C1000/L-10		Unit	Notes
Standard Operation	, - ,	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	150		180		ns	
Read-modify-write cycle time	t _{RWC}	205		245		ns	
Access time from RAS	trac		80		100	ns	3,4
Access time from CAS	tCAC		20		25	ns	3,4
Access time from column address	t _{AA}		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		ns	3
Output buffer turn-off delay	torr	0	15	0	20	ns	7
Transition time (rise and fall)	tī	3	50	3	50	ns	2
RAS precharge time	t _{RP}	60		70		ns	
RAS pulse width	tras	80	10,000	100	10,000	ns	
RAS hold time	trsh	20		25		ns	
CAS hold time	tcsн	80		100		ns	
CAS pulse width	tCAS	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	40	20	50	ns	11
CAS to RAS precharge time	t _{CRP}	5		10		ns	
Row address set-up time	tasr	0		0		ns	
Row address hold time	t _{RAH}	10		15		ns	

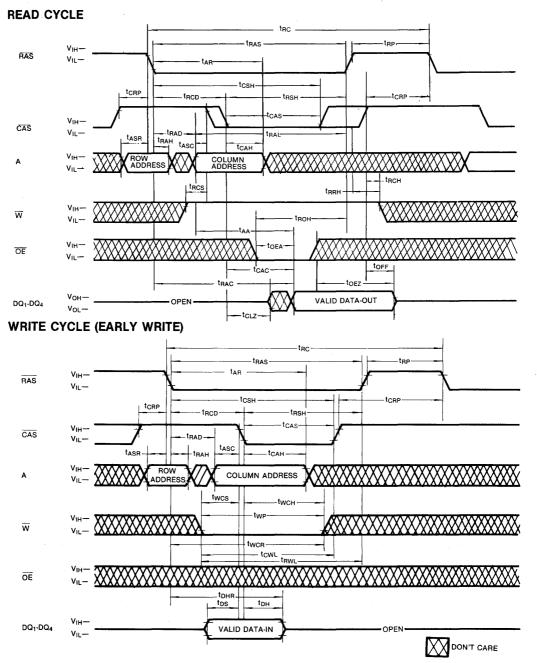
AC CHARACTERISTICS (Continued)

Standard Oneration	Symbol	KM44	C1000/L-8	KM44C1000/L-10		Ilnit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Unit	notes
Column address set-up time	tASC	0		0		ns	
Column address hold time	tсан	15		20		ns	
Column address hold referenced to RAS	t _{AR}	60		75		ns	6
Column Address to RAS lead time	tRAL	40		50		ns	
Read command set-up time	tRCS	0		0		ns	
Read command hold referenced to CAS	t RCH	0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		ns	9
Write command hold time	twcH	15		- 20		ns	
Write command hold referenced to RAS	twcR	60		75		ns	6
Write command pulse width	twp	15		20		ns	
Write command to RAS lead time	tRWL	20		25		ns	
Write command to CAS lead time	tcwL	20		25		ns	
Data-in set-up time	t _{DS}	0		0		ns	10
Data-in hold time	t _{DH}	15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	60		75		ns	6
Refresh period (1024 cycles)	t _{REF}		16		16	ms	
Refresh period (for L-Version, 1024 cycles)	t _{REF}		128		128	ms	
Write command set-up time	twcs	0		0		ns	8
CAS to write enable delay	tcwD	50		60		ns	8
RAS to write enable delay	tRWD	110		135		ns	8
Column address to \overline{W} delay time	tawd	70		85		ns	8
CAS setup time (CAS before RAS refresh)	tcsR	10		10		ns	
CAS hold time (CAS before RAS refresh)	tCHR	30		30		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
Refresh counter test CAS precharge time	tCPT	40		50		ns	
Access time from CAS precharge	tCPA		50		60	ns	3
Fast Page mode cycle time	t _{PC}	55		65		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		ns	
RAS hold time from CAS precharge	t RHCP	50		60		ns	
Fast page mode read-modify-write	tPRWC	105		125		ns	
RAS pulse width (Fast page mode)	trasp	80	100,000	100	100,000	ns	
Write command set-up time (Test mode in)	twтs	10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		ns	
W to RAS precharge time (CAS before RAS refresh)	twRP	10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{CAS} before \overline{RAS} refresh)	twRH	10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		ns	
OE access time	t _{OEA}		20		25	ns	
OE to data delay	tOED	20		25		ns	
Output buffer turn off delay time from OE	t _{OEZ}	0	20	0	25	ns	
OE command hold time	tоен	20		25		ns	

KM44C1000/L

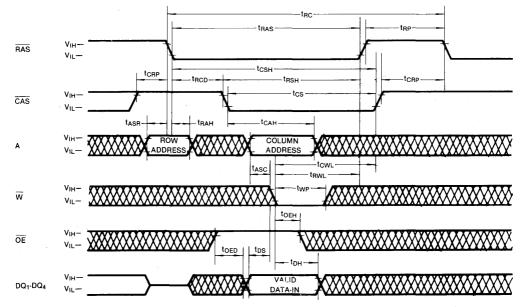
TEST MODE CYCLE

Standard Operation	Symbol	KM44	IC1000/L-8	1000/L-8 KM44		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Omit	Notes
Random read or write cycle time	t _{RC}	155		185		ns	
Read-modify-write cycle time	t _{RWC}	210		250		ns	
Access time from RAS	tRAC		85		105	ns	3,4
Access time from CAS	tcac		25		30	ns	3,4,5
Access time from column address	t _{AA}		45		55	ns	3,11
RAS pulse width	tras	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	30	10,000	ns	
RAS hold time	trsh	25		30		ns	
CAS hold time	tсsн	85		105		ns	
Column address to RAS lead time	tRAL	45		55		ns	
CAS to write enable delay	tcwp	55		65		ns	8
RAS to write enable delay	t _{RWD}	115		140		ns	8
Column address to \overline{W} delay time	tawd	75		90		ns	8
Fast Page mode cycle time	tPC	60		65		ns	
Fast page mode read-modify-write	tprwc	110		130		ns	
RAS pulse width (Fast page mode)	trasp	85	100,000	105	100,000	ns	
Access time from CAS precharge	topa	1	55		65	ns	3
OE access time	toea		25		30	ns].
OE to data delay	tOED	25		30		ns	
OE command hold time	tоен	25		30		ns	

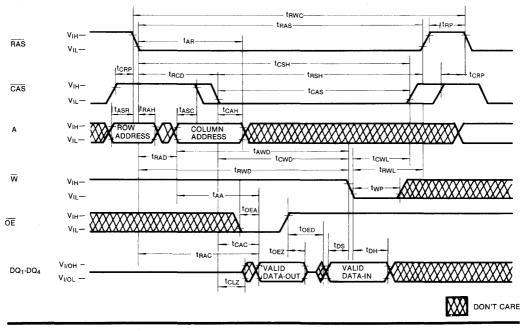

NOTES

- An initial pause of 200µs is required after powerup followed by any 8 CAS-before-RAS or RAS only refresh cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD} (max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL} .

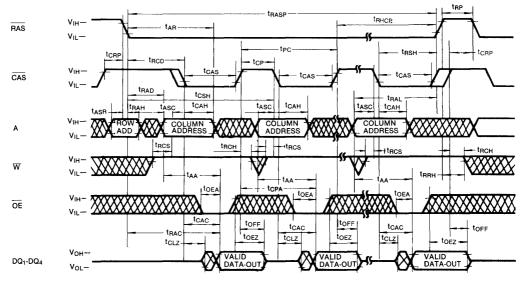
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD}(min) and t_{RWD}≥t_{RWD}(min) and t_{AWD}≥t_{AWD}(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- Operation within the t_{RAD}(max) limit insures that t_{RAC}(max) can be met. t_{RAD}(max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD}(max) limit, then access time is controlled by t_{AA}.
- 12. These specifications are applied in the test mode.

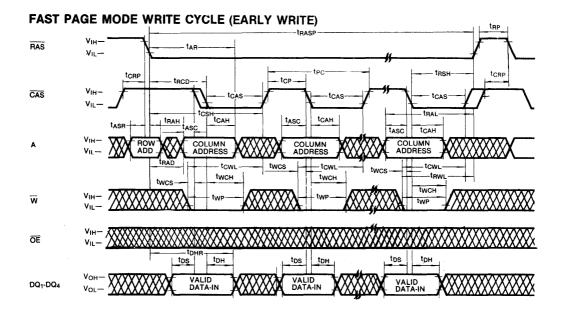


TIMING DIAGRAMS

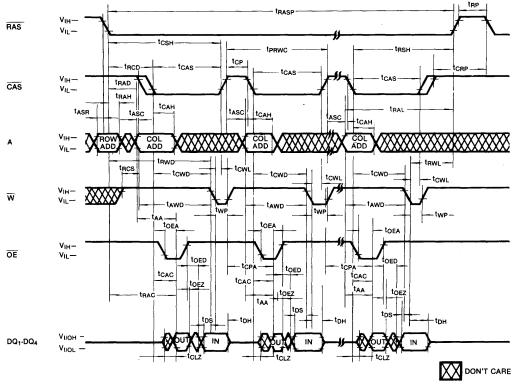


WRITE CYCLE (OE CONTROLLED WRITE)



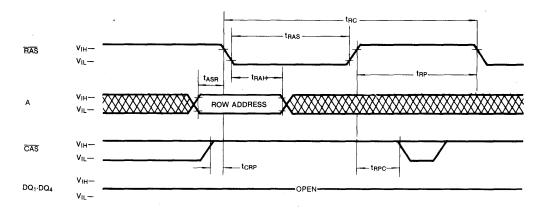

READ-MODIFY-WRITE CYCLE

FAST PAGE MODE READ CYCLE

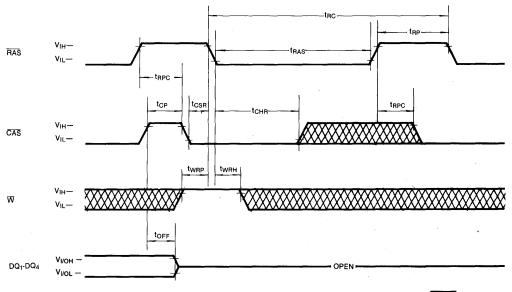


DON'T CARE

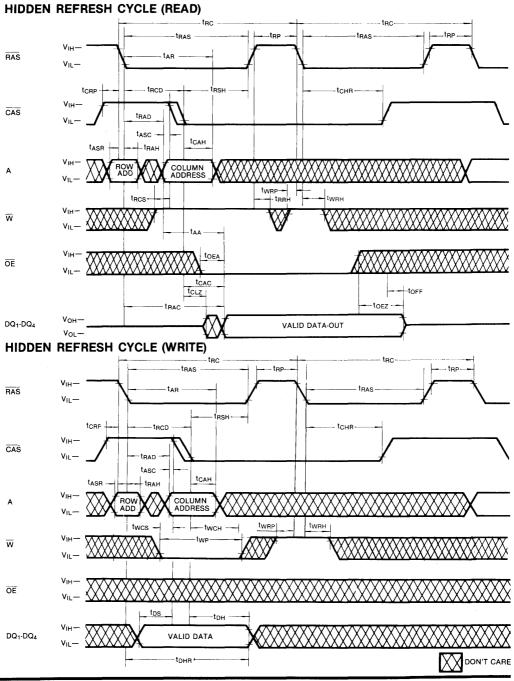
2


TIMING DIAGRAMS (Continued) FAST PAGE MODE READ-MODIFY-WRITE

163

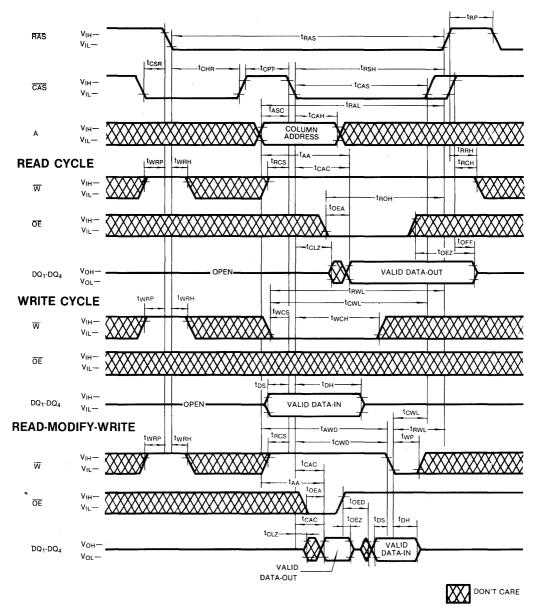

RAS-ONLY REFRESH CYCLE

Note: W, OE=Don't Care

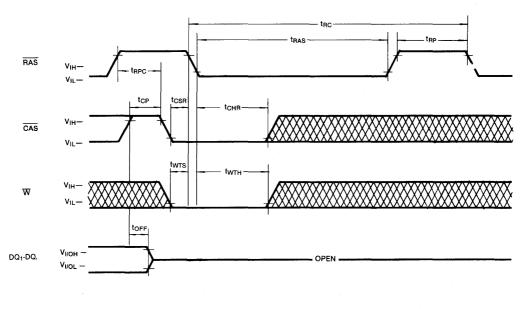

CAS-BEFORE-RAS REFRESH CYCLE

NOTE: OE, Address = Don't Care

DON'T CARE



TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: OE, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1000/L is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A0 is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin indicates a "1". If they were not equal, the I/O pin would indicate a "0". In "Test Mode", the 1M×4 DRAM can be tested as if it were a 512K×4 DRAM.

" \overline{W} , \overline{CAS} -Betore- \overline{RAS} Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CAS} -Before- \overline{RAS} Refresh Cycle" or " \overline{RAS} only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test times (1/2 in case of N test pattern).

2

DON'T CARE

DEVICE OPERATION

Device Operation

The KM44C1000/L contains 4,194,304 memory locations. Twenty address bits are required to address a particular memory location. Since the KM44C1000/L has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column address. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM44C1000/L begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM44C1000/L cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths are specified by $t_{\text{RAS}}(\text{min})$ and $t_{\text{CAS}}(\text{min})$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing $\overline{\text{RAS}}$ low, it must not be aborted prior to satisfying the minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths. In addition, a new cycle must not begin until the minimum $\overline{\text{RAS}}$ precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1000/L begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM44C1000/L can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM44C1000/L has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM44C1000/L operating cycles is listed below after the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, <u>RAS</u>-only Refresh, Fast Page Mode Write, <u>CAS</u>-before-<u>RAS</u> Refresh, <u>CAS</u>-only cycle. <u>OE</u> controlled write.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM44C1000/L is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every

DEVICE OPERATION (Continued)

 $16/128\ \mbox{(L-version)ms}.$ There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with RAS while \overline{CAS} remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM44C1000/L has \overline{CAS} -before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CAS active time and cycling RAS. The KM44C1000/L hidden refresh cycle is actually a CAS before-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1000/L by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM44C1000/L has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS

counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the \overline{CAS} -before- \overline{RAS} refresh operation, if \overline{CAS} goes high and then low again while \overline{RAS} is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter.

Column Address—Bits A_0 through A_9 are strobed in by the falling edge of \overline{CAS} as in a normal memory cycle.

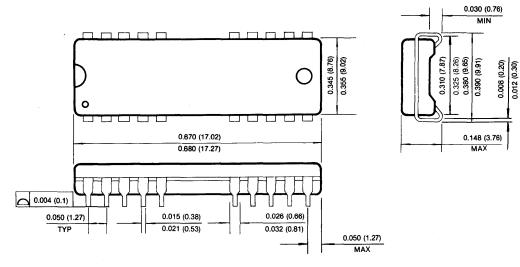
Suggested CAS-Before-RAS Counter Test Procedure

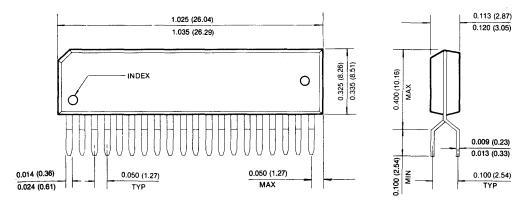
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 CAS-before RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

If $\overline{\text{RAS}}$ =V_{SS} during power-up, the KM44C1000/L could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.


An initial pause of $200\mu s$ is required after power-up flowed by any 8 CAS-before-RAS or RAS only refresh cycles before proper device operation is achieved.


Units: Inches (millimeters)

PACKAGE DIMENSIONS

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

1M×4 Bit CMOS Dynamic RAM with Static Column Mode

FEATURES

Performance range:

	tRAC	tCAC	t _{RC}
KM44C1002-8	80ns	20ns	150ns
KM44C1002-10	100ns	25ns	180ns

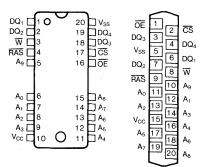
- Static Column Mode operation
- CS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- · TTL compatible inputs and output
- · Early Write or Output Enable Controlled Write
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- · Available in Plastic SOJ, ZIP

RAS CONTROL & DATA \overline{CS} CLOCK IN 10/ BUFFER **REFRESH CONTROL &** DQ₁ ADDRESS COUNTER - to DQ₄ DATA COLUMN DECODER OUT BUFFEF SENSE AMPS & I/O BUFFERS DECODER OE . MEMORY ARRAY 1,048,576×4 Cells ADDRESS ROW V_{CC} V_{SS}

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM44C1002 is a high speed CMOS 1,048,576 bit \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.


The KM44C1002 features Static Column Mode operation which allows high speed random or sequential access within a row. Static Column Mode operation offers high performance while relaxing many critical system timing requirements for fast usable speed.

CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and output are fully TTL compatible.

The KM44C1002 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM44C1002J • KM44C1002Z

Pin Name	Pin Function
A0-A9	Address Inputs
DQ1-DQ4	Data In/Out
W	Read/Write Input
ŌĒ	Data Output Enable
RAS	Row Address Strobe
CS	Chip Select Input
Vcc	Power (+5V)
V _{SS}	Ground

2

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol Rating		
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	٧

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CS, Address Cycling @ t _{RC} =min)	KM44C1002- 8 KM44C1002-10	Icc1		100 85	mA mA
Standby Current (RAS=CS=V _{IH})		I _{CC2}		, 2	mA
RAS-Only Refresh Current* (RAS Cycling, CS=V _{IH} , @ t _{RC} =min)	KM44C1002- 8 KM44C1002-10	Іссз	=	100 85	mA mA
Static Column Mode Current* (RAS=CS=VIL, Address cycling: @ t _{SC} =min.)	KM44C1002- 8 KM44C1002-10	I _{CC4}	_	70 60	mA mA
Standby Current (RAS=CS=V _{CC} -0.2V)		I _{CC5}		1	mA
CS-Before-RAS Refresh Current* (RAS and CS cycling @ t _{RC} =min.)	KM44C1002- 8 KM44C1002-10	Icc6	_	100 85	mA mA
Standby Current (RAS=V _{IH} , CS=V _{IL} Dout=Enable)		I _{CC7}	_	5	mA
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under test=0 volts.)		hL	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0V <v<sub>OUT<5.5V)</v<sub>		IOL	-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)		Voh	2.4	—	V
Output Low Voltage Level (I _{OL} =4.2mA)		VOL	_	0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Icc is specified as an average current. Specified value are obtained with the output open. Icc1, Icc3, Icc6, Address can be changed maximum two times while RAS=VIL. Icc4, Address can be changed maximum once while CAS=VIH.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	• Max	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}	_	5	pF
Input Capacitance (RAS, CS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ4)	Соит	_	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Onerstinn	Symbol	KM4	KM44C1002-8		4C1002-10	linia	Nator
Standard Operation	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	150		180		ns	
Read-modify-write cycle time	trwc	205		245		ns	
Static column mode cycle time	tsc	45		55		ns	
Static column mode read-write cycle time	tsrwc	110		135		ns	
Access time from RAS	trac		80		100	ns	3,4,11
Access time from CS	tCAC		20		25	ns	3,4,5
Access time from column address	t _{AA}		40		50	ns	3,11
Access time from last write	t _{ALW}		75		95	ns	3,12
CS to output in Low-Z	tc∟z	5		5		ns	3,12
Output buffer turn-off delay	tOFF	0	15	0	20	ns	7
Output data hold time from column address	taoh	5		5		ns	
Output data enable time from \overline{W}	tow		50		70	ns	
Transition time (rise and fall)	tT	3	50	3	50	ns	2
RAS precharge time	t _{RP}	60		70		ns	
RAS pulse width	tRAS	80	10,000	100	10,000	ns	
RAS pulse width (static column mode)	tRASC	80	100,000	100	100,000	ns	
RAS hold time	t _{RSH}	20		25		ns	
CS hold time	tсsн	80		100		ns	
CS pulse width	tcs	20	10,000	25	10,000	ns	
CS pulse width (static column mode)	tcsc	20	100,000	25	100,000	ns	
RAS to CS delay time	tRCD	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	40	20	50	ns	11
CS to RAS precharge time	tCRP	5		10		ns	
CS precharge time (static column mode)	t _{CP}	10		10		ns	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	t _{RAH}	10		15		ns	
Column address set-up time	tASC	0		0		ns	
Column address hold time	t _{CAH}	15		20		ns	
Write address hold time referenced to RAS	t _{AWR}	65		75		ns	6
Column address hold referenced to RAS	t _{AR}	60		75		ns	

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM44C1002-8		KM44C1002-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Unit	NULES
Column Address to RAS lead time	t _{RAL}	40		50		ns	
Column address hold time referenced to RAS rise	tan	10		10		ns	
Last write to column address delay time	tLWAD	25	35	25	45	ns	
Last write to column address hold time	tAHLW	75		95		ns	
Read command set-up time	tRCS	0		0		ns	
Read command hold referenced to CS	tRCH	0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		ns	9
Write command hold time	twcH	15		20		ns	
Write command hold referenced to RAS	twcr	60		75		ns	6
Write command pulse width	twp	15		20		ns	
Write command inactive time	twi	10		10		ns	
Write command to RAS lead time	tRWL	20		25		ns	1
Write command to CS lead time	tcwL	20		25		ns	
Data-in set-up time	t _{DS}	0		0		ns	10
Data-in hold time	t _{DH}	15		20		ns	10
Data-in hold referenced to RAS	tDHR	60		75		ns	6
Refresh period (1024 cycles)	tREF		16		16	ms	1
Write command set-up time	twcs	0		0		ns	8
\overline{CS} to \overline{W} delay time	tcwp	50		60		ns	8
RAS to W delay time	tRWD	110		135		ns	8
Column address to \overline{W} delay time	tawd	70		85		ns	8
CS setup time (C-B-R refresh)	tCSR	10		10		ns	
CS hold time (C-B-R refresh)	t _{CHR}	30		30		ns	
RAS percharge to CAS hold time	tRPC	0		0		ns	
CS precharge (C-B-R counter test)	tсрт	40		50		ns	
Write command set-up time (Test mode In)	twrs	10		10		ns	
Write command hold time (Test mode In)	twrн	10		10		ns	
W to RAS precharge time (C-B-R refresh)	twee	10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		ns	1
RAS hold time referenced to OE	tROH	20		20		ns	
OE access time	tOEA		20		25	ns	
OE to data delay	tOED	20		25		ns	
Output buffer turn off delay time fron OE	tOEZ	· 0	20	0	25	ns	
OE command hold time	tOEH	20		25		ns	

(Note. 13)

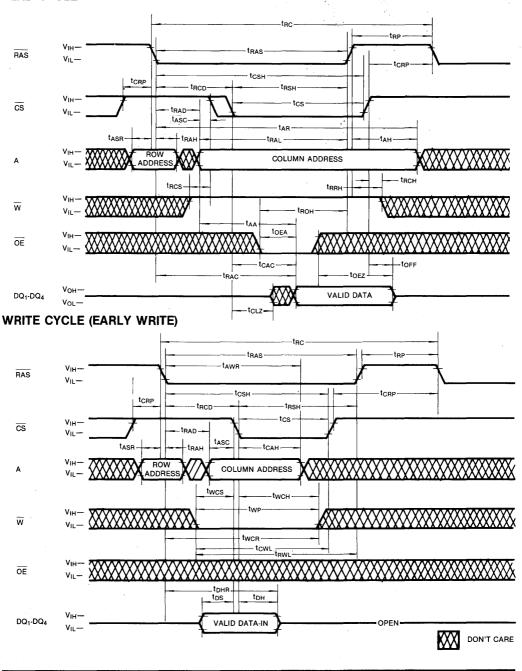
TEST MODE CYCLE

Parameter	Symbol	KM44C1002-8		KM44C1002-10		Unit	Notes
Falanielei	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	155		185		ns	
Read-modify-write cycle time	tRWC	210		250		ns	
Access time from RAS	t _{RAC}		85		105	ns	3,4,11
Access time from CS	tCAC		25		30	ns	3,4,5
Access time from column address	t _{AA}		45		55	ns	3,11
RAS pulse width	tRAS	85	10,000	105	10,000	ns	
CS pulse width	tcs	25	10,000	30	10,000	ns	
RAS hold time	t _{RSH}	25		30		ns	
CS hold time	tсsн	85		105		ns	
Column address to RAS lead time	t _{RAL}	45		55		ns	
$\overline{\text{CS}}$ to $\overline{\text{W}}$ delay time	t _{CWD}	25		30		ns	8
\overline{RAS} to \overline{W} delay time	t _{RWD}	115		140		ns	8
Column address to W delay time	tAWD	75		90		ns	8
Static column mode cycle time	tsc	50		60		ns	
Static column mode read-modefy-write	tsrwc	115		140		ns	
RAS pulse width (Static column mode)	tRASC	85	100,000	105	100,000	ns	
Access time from last write	t _{ALW}		80		100	ns	3,12
CS pulse width (static column mode)	tcsc	25	100,000	30	100,000	ns	

NOTES

- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 CS-before-RAS or RAS only refresh cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}>t_{RCD(max)}.
- 6. tAWR, tWCR, tDHR are referenced to tRAD(max)
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If

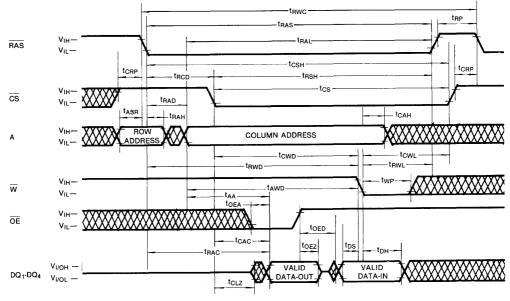
twcs \geq twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If tcwD \geq tcwD(min) and tRWD \geq tRWD(min) and tAWD \geq tAWD(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.


- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- Operation within the t_{RAD(max)} limit insures that t_{RAC(max)} can be met. t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then access time is controlled by t_{AA}.
- 12. Operation within the t_{LWAD(max}) limit insures that t_{ALW(max}) can be met. t_{LWAD(max}) is specified as a reference point only. If t_{LWAD} is greater than the specified t_{LWAD(max}) limit, then access time is controlled by t_{AA}.
- 13. These specifications are applied in the test mode.

TIMING DIAGRAMS READ CYCLE

MSUNG

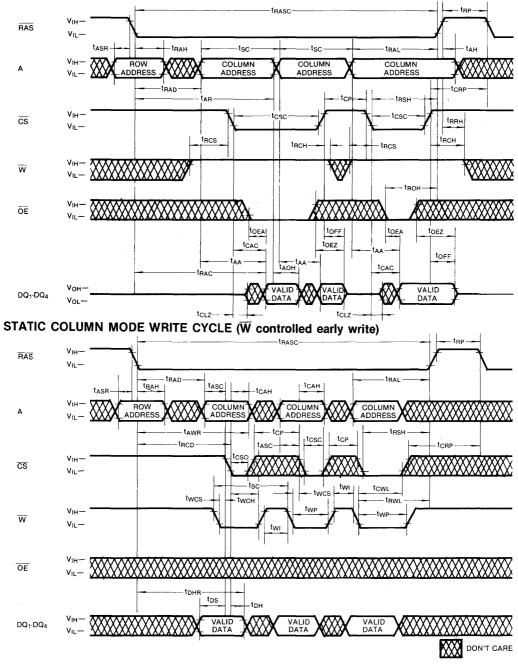
Electronics

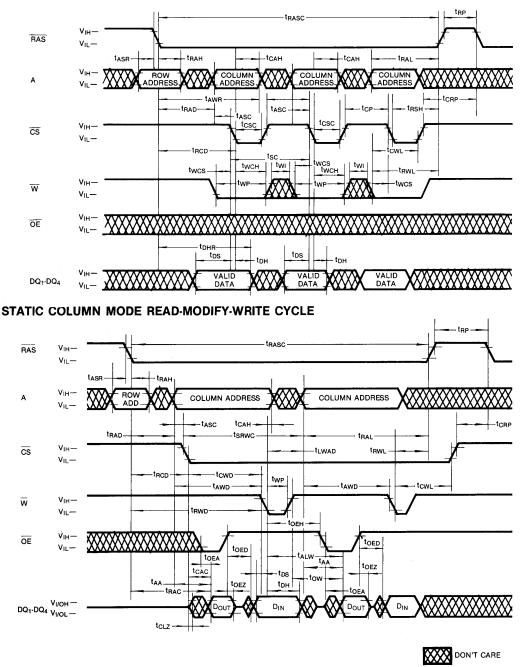


176

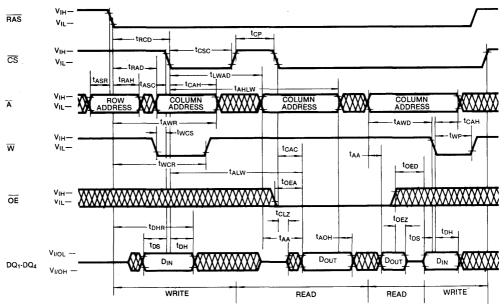
WRITE CYCLE (OE CONTROLLED WRITE) tRC TRAS t_{RP} VIHtAR RAS VILt_{CSH} tCRP **t**CRP teco tesh VIH---CS tcs V_{1L}. + trad **t**ASR TRAH tR∆I tasc - tCAH. VIH- $\overline{}$ COLUMN ADDRESS ROW Α VIL tcwL TRWL Vir w twr Vu tоен VIH ŌĒ toed ViL t_{DS} t_{DH} --VIH-VALID DATA-IN DQ1-DQ4 VIL-

TIMING DIAGRAMS (Continued)

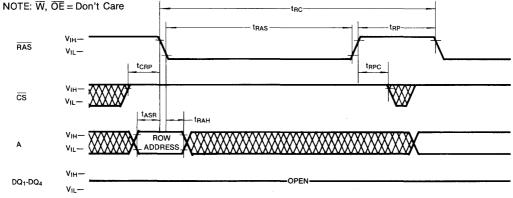

READ-WRITE/READ-MODIFY-WRITE CYCLE

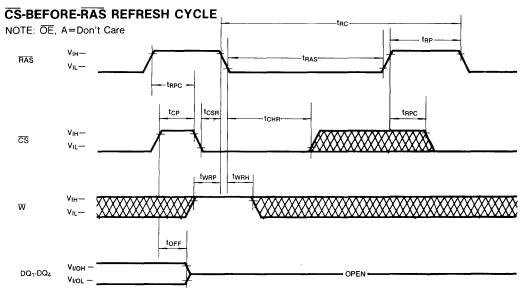

177

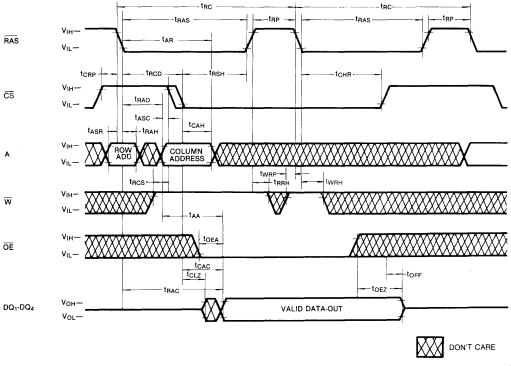
DON'T CARE

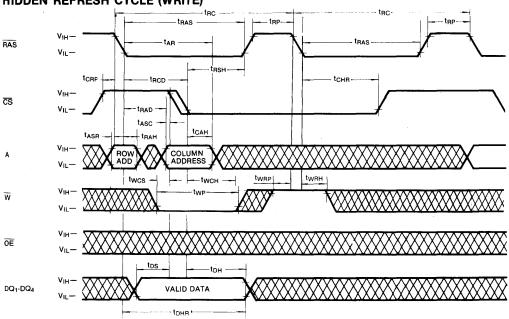

TIMING DIAGRAMS (Continued) STATIC COLUMN MODE READ CYCLE

STATIC COLUMN MODE WRITE CYCLE (CS controlled early write)



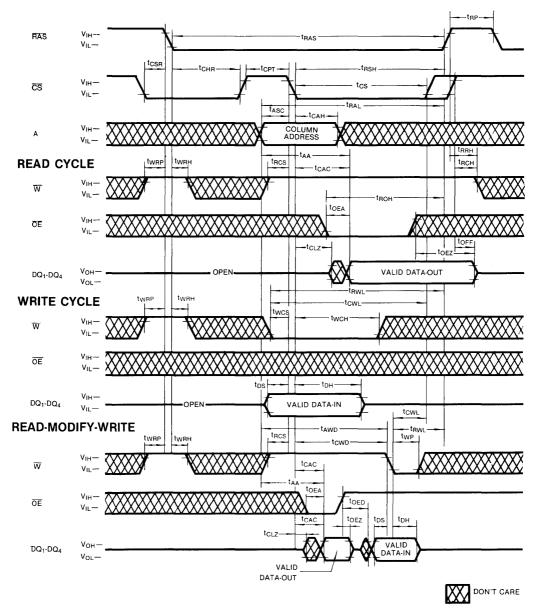

TIMING DIAGRAMS (Continued) STATIC COLUMN MODE MIXED CYCLE





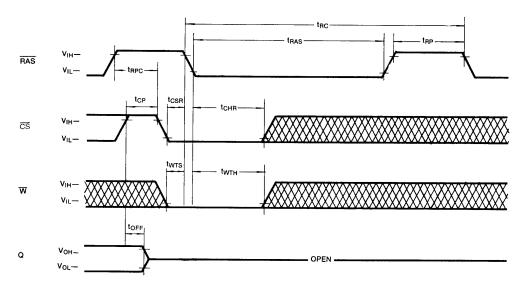
181

TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (WRITE)



KM44C1002

TIMING DIAGRAMS (Continued)


CS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: OE, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1002 is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A₀ is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin indicates a "1". If they were not equal, the I/O pin would

indicate a "0". In "Test Mode", the 1M×4 DRAM can be tested as if it were a $512K\times4$ DRAM. \overline{W} , \overline{CS} Before RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CS} Before RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/2 in cases of N test pattern).

DEVICE OPERATION

Device Operation

The KM44C1002 contains 4,194,304 memory locations organized as 1,048,576 four-bit words. Twenty address bits are required to address a particular 4-bit word in the memory array. Since the KM44C1002 has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the chip select input (\overline{CS}) and the valid row and column address inputs.

Operating of the KM44C1002 begins by strobing in a valid row address with RAS while CS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CS. This is the beginning of any KM44C1002 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and **CS** Timing

The minimum \overline{RAS} and \overline{CS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1002 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . But the access time also depends on the falling edge of \overline{CS} and on the valid column address transition.

If \overline{CS} goes low before $t_{RCD}(max)$ and if the column address is valid before $t_{RAD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CS} goes low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

The KM44C1002 has common data I/O pins. For this

reason and output enable control input (\overline{OE}) has been provided so the output buffer can be precisely controlled. For data to appear at the outputs, \overline{OE} must be low for the period of time defined by t_{OEA} and t_{OEZ}.

Write

The KM44C1002 can perform early write and readmodify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} , \overline{OE} and \overline{CS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CS} . The 4-bit wide data at the data input pins is written into the addressed memory cells. Throughout the early write cycle the outputs remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CS} and meeting the data sheet read-modify-write cycle timing requirements. The output enable input (\overline{OE}) must be low during the time defined by to_{EA} and to_{EZ} for data to appear at the outputs. If t_{CWD} and t_{RWD} are not met the output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM44C1002's DQ pins.

Data Output

The KM44C1002 has a three-state output buffer which is controlled by \overline{CS} and \overline{OE} . Whenever \overline{CS} or \overline{OE} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM44C1002 operating cycle is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Static Column Mode Read, Static Column Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Static Column Mode Write, CS-before-RAS Refresh, CS-only cycle. \overline{OE} controlled write.

2

DEVICE OPERATION (Continued)

Indeterminate Output State: Delayed Write

Refresh

The data in the KM44C1002 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CS} remains high. This cycle must be repeated for each row.

 \overline{CS} -before- \overline{RAS} Refresh: The KM44C1002 has \overline{CS} -before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CS} active time and cycling \overline{RAS} . The KM44C1002 hidden refresh cycle is actually a \overline{CS} -before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1002 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CS-before.RAS refresh is the preferred method.

Static Column Mode

Static Column Mode allows high speed read, write or read-modity-write random access to all the memory cells within a selected row. Operation within a selected row is similar to a static RAM. The read, write or readmodify-write cycles may be mixed in any order.

A Static Column mode read cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{W} = V_{IH}$ and $\overline{RAS} = V_{IL}$.

A Static Column mode write cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{RAS} = V_{IL}$ and tog-

giling either \overline{W} or \overline{CS} . The data is written into the cell trigered by the latter falling edge of \overline{W} or \overline{CS} .

CS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the CS-before-RAS refresh counter test cycle provides a convenient method of verifying the functionality of the CS-before-RAS refresh activated circuitry.

After the \overline{CS} -before- \overline{RAS} refresh operation, is \overline{CS} goes high and then low again while \overline{RAS} is held low, the read and write operations are enabled.

This is shown in the \overline{CS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter.

Column ADdress—Bits A_0 through A_9 are strobed-in by the falling edge of \overline{CS} as in a normal memory cycle.

Suggested CS-before-RAS Counter Test Procedure

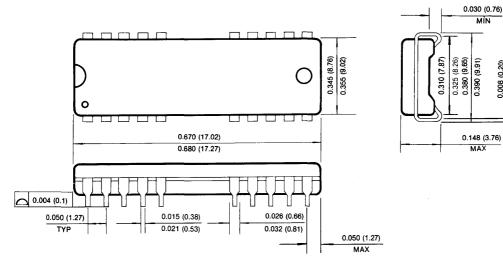
The CS-before RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row address. (The row addresses are supplied by the on-chip refresh counter).
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 512 times so that highs are written into the 512 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

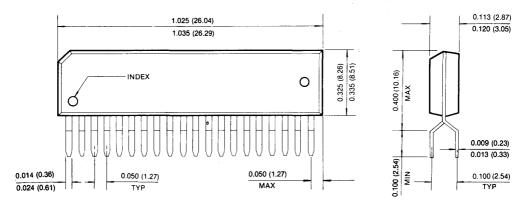
Power-up

IF \overline{RAS} =V_{SS} during power-up, the KM44C1002 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

An initial pause of 200μ s is required after power-up followed by any 8 $\overline{\text{CS}}$ -before-RAS or RAS only refresh cycles before proper device operation is achieved.



0.008 (0.20) 0.012 (0.30)


Units: Inches (millimeters)

PACKAGE DIMENSIONS

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

1M×4 Bit CMOS Dynamic RAM with Fast Page Mode

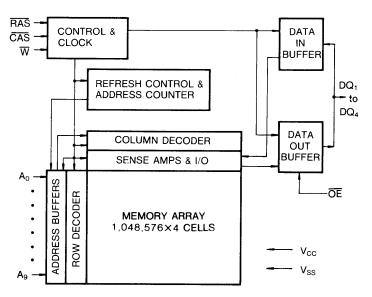
FEATURES

• Performance range:

	tRAC	tCAC	tRC
KM44C1000A- 7	70ns	20ns	130ns.
KM44C1000A- 8	80ns	20ns	150ns
KM44C1000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- · 8-bit fase parallel test mode capability
- TTL compatible inputs and output
- · Early Write or output enable controlled write
- Single +5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in plastic DIP, SOJ, ZIP, and TSOP (II)

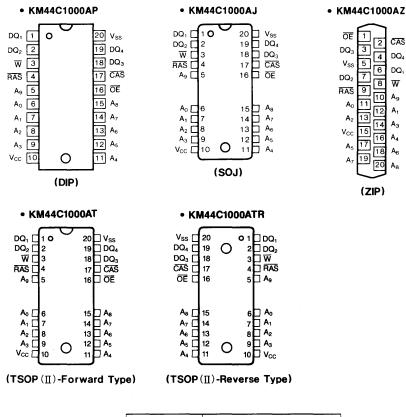
FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM44C1000A is a high speed CMOS 1,048,576 bit \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1000A features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.


The KM44C1000A is fabricated using Samsung's advanced CMOS process.

KM44C1000A

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function				
A ₀ -A ₉	Address Inputs				
DQ1-4	Data In/Out				
W	Read/Write Input				
ŌĒ	Data Output Enable				
RAS	Row Address Strobe				
CAS	Column Address Strobe				
Vcc	Power (+5V)				
V _{SS}	Ground				

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	v
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM44C1000A- 7 KM44C1000A- 8 KM44C1000A-10	ICC1	-	105 95 85	mA mA mA
Standby Current (RAS=CAS=V _{IH})		ICC2	_	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	KM44C1000A- 7 KM44C1000A- 8 KM44C1000A-10	ICC3	-	105 95 85	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	KM44C1000A- 7 KM44C1000A- 8 KM44C1000A-10	ICC4		80 70 60	mA mA mA
Standby Current (RAS=CAS=W≽V _{CC} -0.2V)		Icc5		1	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t _{RC} =min.)	KM44C1000A- 7 KM44C1000A- 8 KM44C1000A-10	Icc6		105 95 85	mA mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} , Dout Enable)		ICC7	_	5	mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts)		lı_	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4		V
Output Low Voltage Level (I _{OL} =4.2mA)		VOL		0.4	v

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified value are obtained with the output open. Icc is specified as average current. Icc1, Icc3, Icc6, Address can be changed maximum two times while $\overline{RAS} = V_{IL}$. Icc4 Address can be changed maximum once while $\overline{CAS} = V_{IH}$.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}		6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ4)	COUT		7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Symbol	KM44	C1000A-7	KM44C1000A-8		КМ44	(M44C1000A-10		Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	tRC	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns.	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	t RCH	0		0	-	0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twch	15		15		20		ns	
Write command hold referenced to RAS	twcr	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM44	IC1000A-7	KM44C1000A-8		KM44C1000A-10		Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period (1024 cycles)	tREF		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS to write enable delay	tcwp	50		50		60		ns	8
RAS to write enable delay	tRWD	100		110		135		ns	8
Column address to \overline{W} delay time	tAWD	65		70		85		ns	8
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	tCHR	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
FAst Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page mode)	tCP	10		10		10		ns	
RAS hold time from CAS precharge	t RHCP	45		45		55		ns	
Fast page modered-modify-write	tPRWC	105		105		125		ns	
RAS pulse width (Fast page mode)	tRASP	70	200,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twrн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
RAS hold time referenced to OE	tROH	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer tum off delay time from \overline{OE}	tOEZ	0	20	0	20	0	25	ns	
OE command hold time	tоен	20		20		25		ns	

KM44C1000A

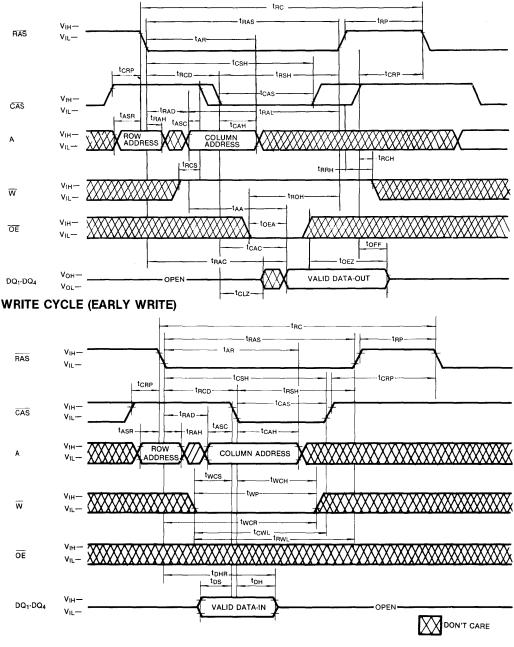
(Note. 12)

TEST MODE CYCLE

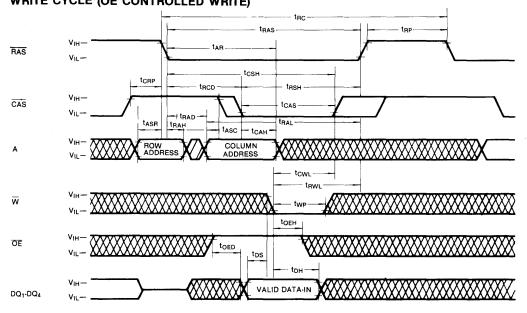
Standard Operation	Symbol	KM4	4C1000A-7	KM44C1000A-8		KM44C1000A-10		Unit	Nata
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	135		155		185		ns	
Read-modify-write cycle time	tRWC	190		210		250		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,11
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	t _{AA}		40		45		55	ns	3,11
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	t _{RSH}	25		25		30		ns	
CAS hold time	tсsн	75		85		105		ns	
Column address to RAS lead time	t _{RAL}	40		45		55		ns	
CAS to write enable delay	tcwp	55		55		65		ns	8
RAS to write enable delay	t _{RWD}	105		115		140		ns	8
Column address to \overline{W} delay time	tAWD	70		75		90		ns	8
Fast mode cycle time	tPC	55		55		65		ns	
Fast page mode read-modefy-write	t PRWC	110		110		130		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	t _{CPA}		50		50		60	ns	3
OE access time	tOEA		25		25		30	ns	
OE to data delay	tOED	25		25		30		ns	
OE command hold time	tоен	25		25		30		ns	

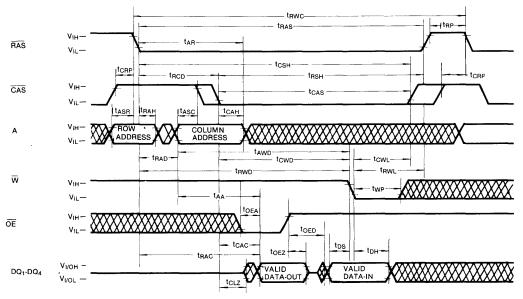
NOTES

- An initial pause of 200μs is required after powerup followed by any 8 CBR or ROR cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max)
- This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL}.
- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data

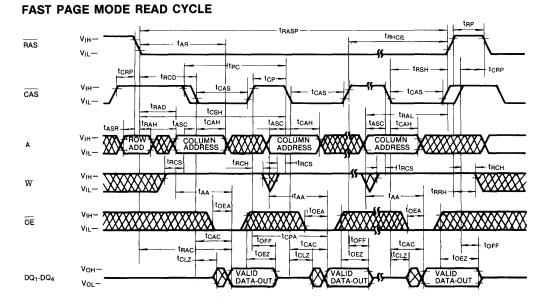

sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS(min)}$ the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$ and $t_{RWD} \ge t_{RWD(min)}$ and $t_{AWD} \ge t_{AWD(min)}$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 12. These specifications are applied in the test mode.

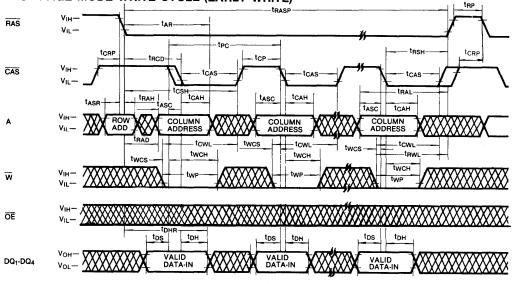

TIMING DIAGRAMS



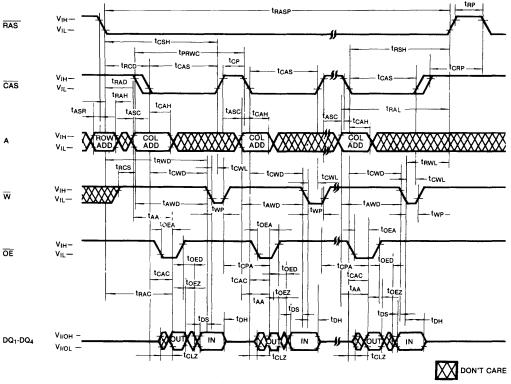
TIMING DIAGRAMS (Continued) WRITE CYCLE (OE CONTROLLED WRITE)



READ-MODIFY-WRITE CYCLE

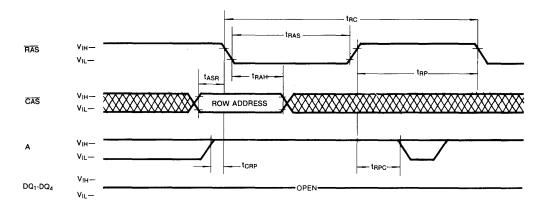


DON'T CARE

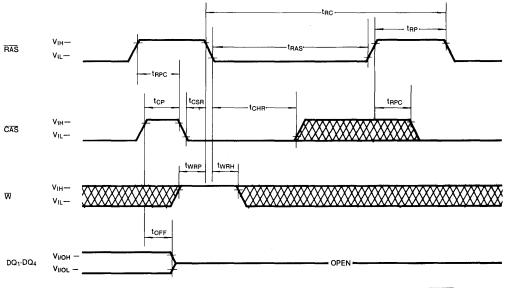


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

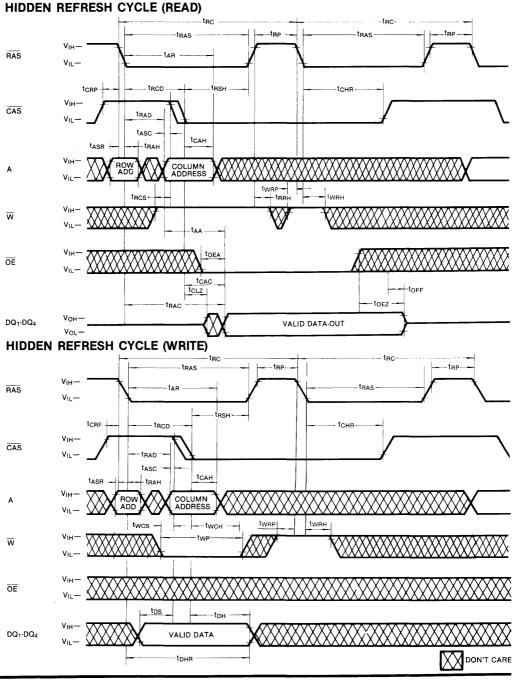
DON'T CARE



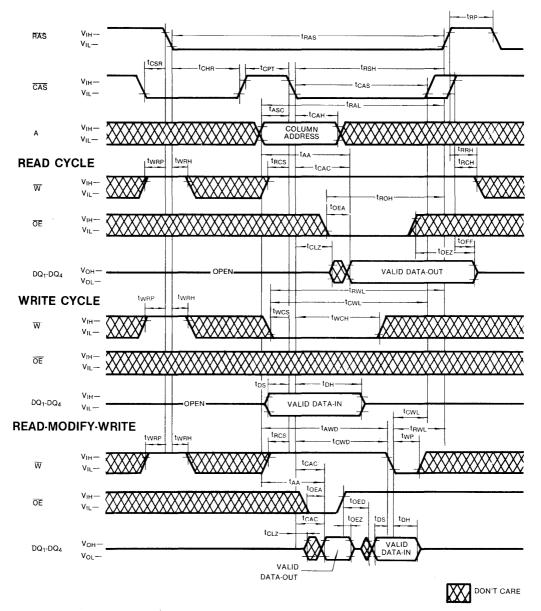
FAST PAGE MODE READ-MODIFY-WRITE

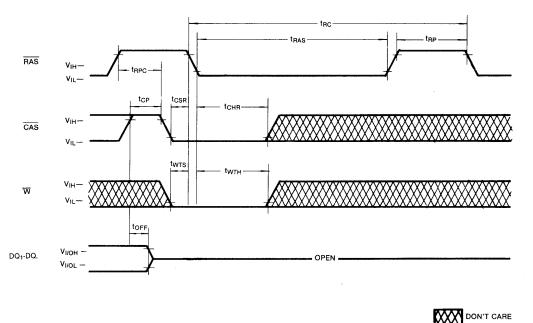

RAS-ONLY REFRESH CYCLE

Note: W, OE=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: OE, Address = Don't Care




CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: OE, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1000A is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A₀ is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin indicates a "1". If they were not equal, the I/O pin would

indicate a "0". In "Test Mode", the 1M×4 DRAM can be tested as if it were a 512K×4 DARM. W, CAS-Before-RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And "CAS-Before-RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/2 in cases of N test pattern).

DEVICE OPERATION Device Operation

The KM44C1000A contains 4,194,304 memory locations. Twenty address bits are required to address a particular memory location. Since the KM44C1000A has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM44C1000A begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM44C1000A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and CAS Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1000A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM44C1000A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{AWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM44C1000A has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM44C1000A operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cycle. OE controlled write.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM44C1000A is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

DEVICE OPERATION (Continued)

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with RAS while CAS remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM44C1000A has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM44C1000A hidden refresh cycle is actually a \overline{CAS} before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1000A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM44C1000A has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of veri-

fying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter.

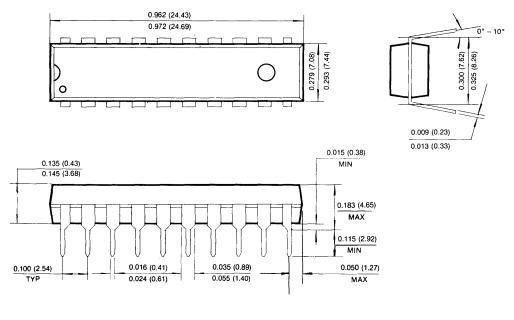
Column Address—Bits A_0 through A_9 are strobedin by the falling edge of \overline{CAS} as in a normal memory cycle.

Suggested CAS-Before-RAS Counter Test Procedure

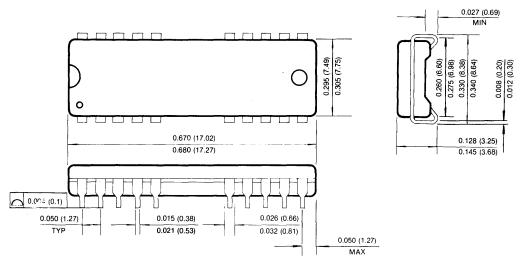
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up


If \overline{RAS} =V_{SS} during power-up, the KM44C1000A could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

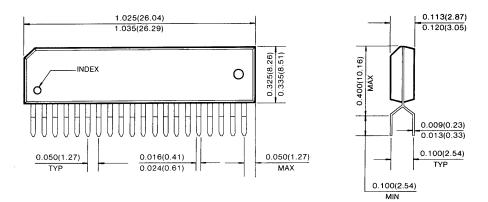
An initial pause of $200\mu s$ is required power-up followed by any 8 CBR or ROR cycles before proper device operation is achieved.

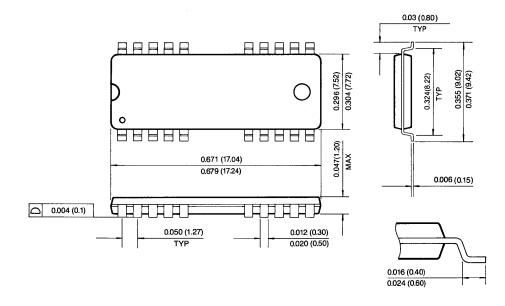


PACKAGE DIMENSIONS

20-LEAD PLASTIC DUAL IN-LINE PACKAGE

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD




PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

2

1M×4 Bit CMOS Dynamic RAM with Fast Page Mode

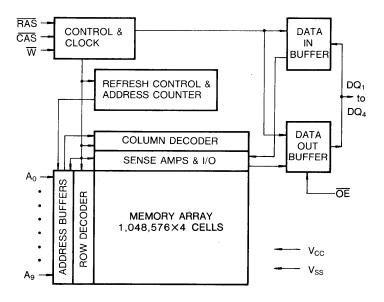
FEATURES

• Performance range:

	tRAC	tCAC	tRC
KM44C1000AL- 7	70ns	20ns	130ns
KM44C1000AL- 8	80ns	20ns	150ns
KM44C1000AL-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- · Early Write or output enable controlled write
- Single $+5V \pm 10\%$ power supply
- 1024 cycles/128ms refresh
- Low power dissipation
- JEDEC standard pinout
- Available in Plastic SOJ, DIP, ZIP, and TSOP (II)

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM44C1000AL is a high speed CMOS 1,048,576 bit \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1000AL features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM44C1000AL is fabricated using Samsung's advanced CMOS process.

CAS

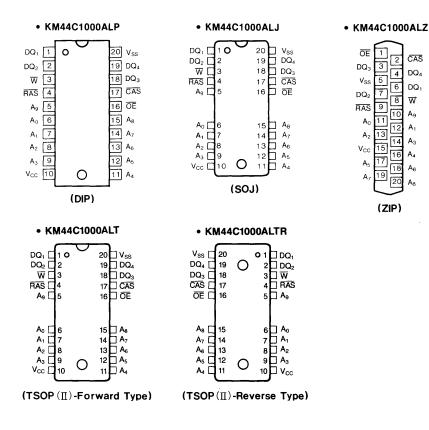
DQ₄

DQ,

 $\overline{\mathsf{W}}$

A₉

 A_1


 A_3

A4

 A_6

 A_8

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ1-4	Data In/Out
W	Read/Write Input
ŌĒ	Data Output Enable
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
V _{SS}	Ground

ABSOLUTE MAXIMUM RATINGS*

item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, Vcc=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM44C1000AL- 7 KM44C1000AL- 8 KM44C1000AL-10	ICC1		105 95 85	mA mA mA
Standby Current (RAS=CAS=VIH)		ICC2	—	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	ICC3	·	105 95 85	mA mA mA	
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	ICC4	_	80 70 60	mA mA mA	
Standby Current (RAS=CAS=W≥V _{CC} -0.2V)	I _{CC5}	-	200	μA	
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	Icc6	 	105 95 85	mA mA mA	
Battery Back Up Current Average Power Supp Battery Back Up Mode, Input High Voltage (V_{IL} Input Low Voltage (V_{IL})=0.2V CAS=CAS -Beft 0.2V DQ _{1.4} =Don't Care T _{RC} =125 μ S, T _{RAS} =)=V _{CC} -0.2V ore-RAS Cycling or	Icc7	_	300	μΑ
Standby Current (RAS=VIH, CAS=VIL, Dout En	able)	Icc8	—	5	mA
Input Leakage Current (Any input 0≼V _{IN} ≼6.5V, all other pins not under	Ι _{ΙL}	-10	10	μA	
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)			-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)			2.4		v
Output Low Voltage Level (IoL=4.2mA)	VoL		0.4	v	

*Note: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}		6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ4)	Соит	_	7	pF -

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Cumbal	KM440	C1000AL-7	KM44C1000AL-8		KM44C1000AL-10		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	tRC	130		150	_	180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		- 70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	tAA		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	tRP	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM44	C1000AL-7	KM44	C1000AL-8	8 KM44C1000AL-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	UIII	Notes
Data-in hold time	tрн	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period (1024 cycles)	tREF		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS to write enable delay	tcwp	50		50		60		ns	8
RAS to write enable delay	t _{RWD}	100		110		135		ns	8
Column address to \overline{W} delay time	tAWD	65		70		85		ns	8
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t CHR	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
FAst Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page mode)	tCP	10		10		10		ns	
RAS hold time from CAS precharge	t RHCP	45		45		55		ns	
Fast page modered-modify-write	t PRWC	105		105		125		ns	
RAS pulse width (Fast page mode)	tRASP	70	200,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twrн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
RAS hold time referenced to OE	tвон	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	toed	20		20		25		ns	
Output buffer tum off delay time from $\overline{\text{OE}}$	tOEZ	0	20	0	20	0	25	ns	
OE command hold time	t _{OEH}	20		20		25		ns	

.

(Note. 12)

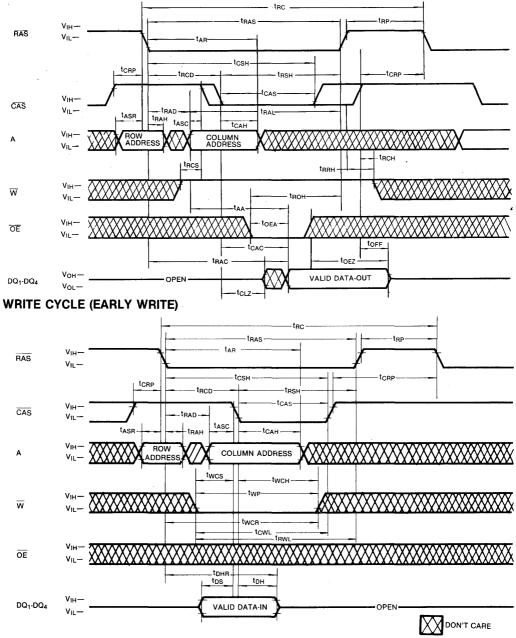
TEST MODE CYCLE

Standard Operation	Sumbol	KM44C1000AL-7		KM44C1000AL-8		KM44C1000AL-10		Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max		Notes
Random read or write cycle time	tRC	135		155		185		ns	
Read-modify-write cycle time	tRWC	190		210		250		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,11
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	t _{AA}		40		45		55	ns	3,11
RAS pulse width	tRAS	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	tRSH	25		25		30		ns	
CAS hold time	tcsн	75		85		105		ns	
Column address to RAS lead time	tRAL	40		45		55		ns	
CAS to write enable delay	tcwp	55		55		65		ns	8
RAS to write enable delay	tRWD	105		115		140		ns	8
Column address to \overline{W} delay time	tawd	70		75	}	90		ns	8
Fast mode cycle time	tPC	55		55		65		ns	
Fast page mode read-modefy-write	tPRWC	110		110		130		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	tCPA		50		50		60	ns	3
OE access time	tOEA		25		25		30	ns	
OE to data delay	tOED	25		25		30		ns	
OE command hold time	tOEH	25		25		30		ns	

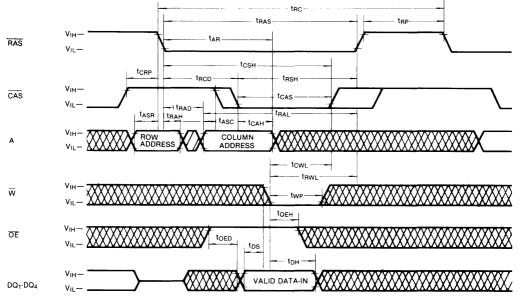
NOTES

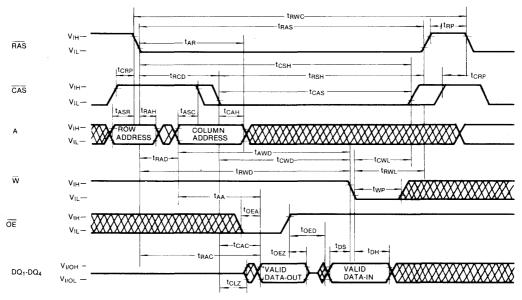
- An initial pause of 200μs is required after powerup followed by and 8 CBR or ROR cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max)
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL} .
- 8. twcs, $t_{RWD}, \ t_{CWD}$ and t_{AWD} are non restrictive operating parameters. They are included in the data

sheet as electrical characteristics only. If twcs>twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If tcwD>tcwD(min) and tRwD>tRwD(min) and tAwD>tAwD(min), then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.


- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 12. These specifications are applied in the test mode.

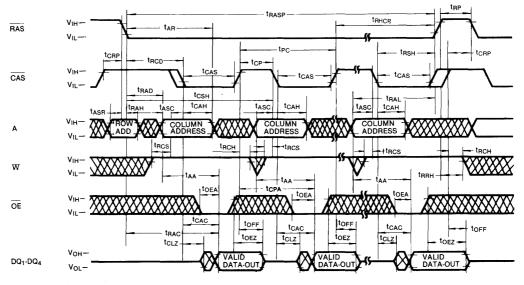
KM44C1000AL

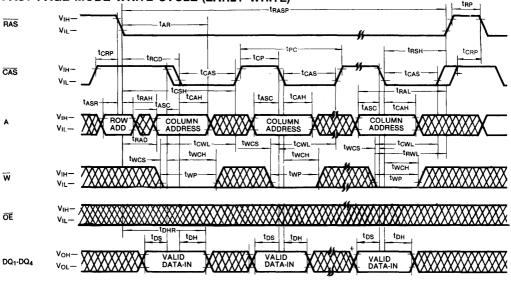

TIMING DIAGRAMS



WRITE CYCLE (OE CONTROLLED WRITE)

READ-MODIFY-WRITE CYCLE



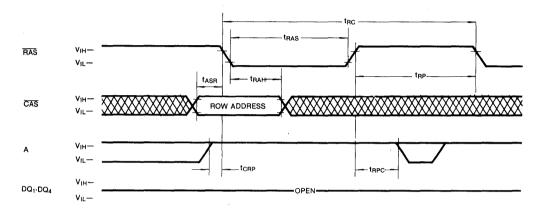


2

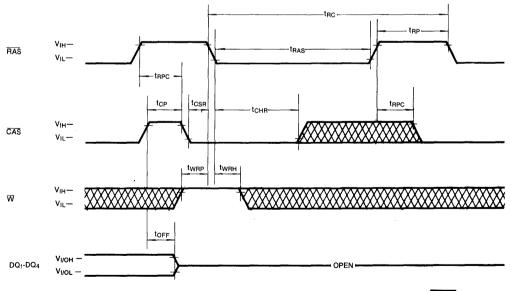
FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

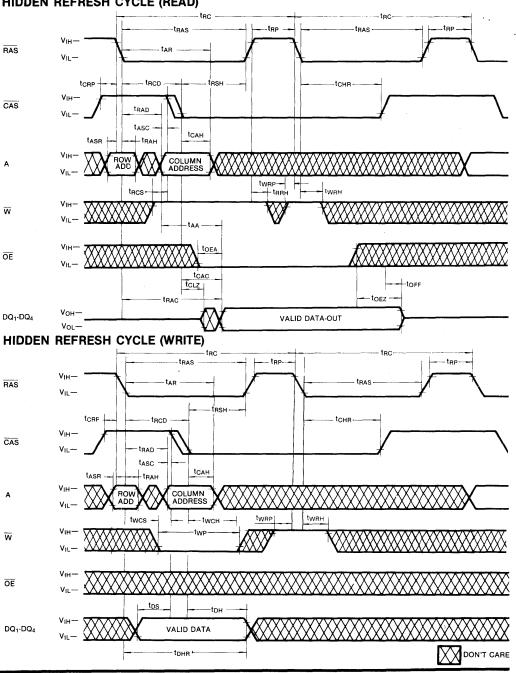
DON'T CARE



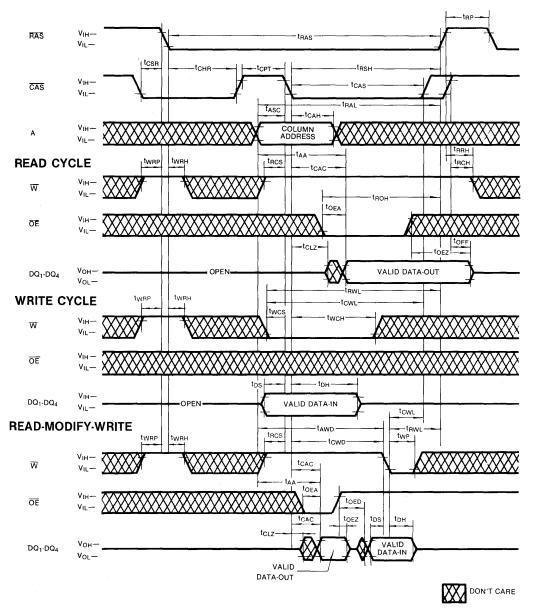
TIMING DIAGRAMS (Continued) FAST PAGE MODE READ-MODIFY-WRITE


RAS-ONLY REFRESH CYCLE

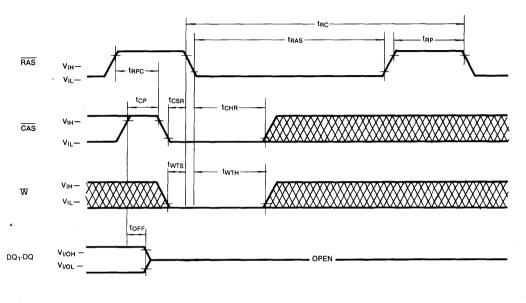
Note: W, OE=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: OE, Address = Don't Care



HIDDEN REFRESH CYCLE (READ)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

SAMSUNG

TEST MODE IN CYCLE

NOTE: OE, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1000AL is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A_0 is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin indicates a "1". If they were not equal, the I/O pin would

indicate a "0". In "Test Mode", the 1M×4 DRAM can be tested as if it were a 512K×4 DRAM. \overline{W} , CAS-Before-RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And "CAS-Before-RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/2 in cases of N test pattern).

DEVICE OPERATION Device Operation

The KM44C1000AL contains 4,194,304 memory locations. Twenty address bits are required to address a particular memory location. Since the KM44C1000AL has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{GAS}) and the valid row and column address inputs.

Operating of the KM44C1000AL begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM44C1000AL cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1000AL begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM44C1000AL can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM44C1000AL has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM44C1000AL operating cycles is listed below after

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, \overline{RAS} -only Refresh, Fast Page Mode Write, \overline{CAS} -before- \overline{RAS} Refresh, \overline{CAS} -only cycle. \overline{OE} controlled write.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM44C1000AL is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 128 ms. There are several ways to accomplish this.

DEVICE OPERATION (Continued)

RAS-Only Refresh. This is the most common method for performing refresh. It is performed by strobing in a row address with RAS while CAS remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM44C1000AL has \overline{CAS} -before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CAS active time and cycling RAS. The KM44C1000AL hidden refresh cycle is actually a CAS before-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1000AL by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM44C1000AL has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS

counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS before RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter.

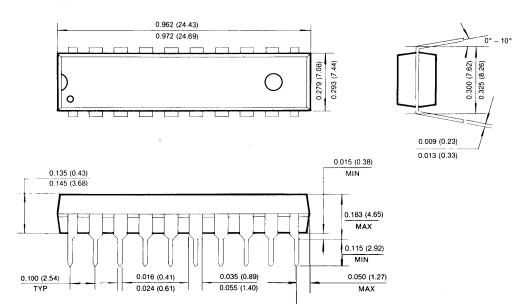
Column Address—Bits A_0 through A_9 are strobedin by the falling edge of \overline{CAS} as in a normal memory cycle.

Suggested CAS-Before-RAS Counter Test Procedure

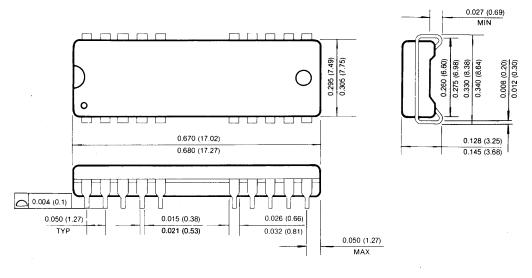
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- Initialize the internal refresh counter by performing 8 CAS-before-RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

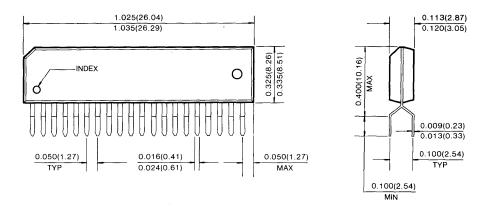

If \overline{RAS} =V_{SS} during power-up, the KM44C1000AL could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

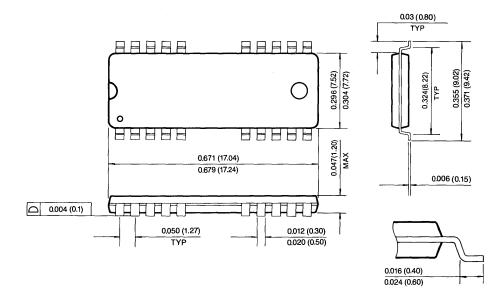
An initial pause of $200\mu s$ is required after power-up flowed by any 8 CAS-before-RAS or RAS only refresh cycles before proper device operation is achieved.



PACKAGE DIMENSIONS

20-LEAD PLASTIC DUAL IN-LINE PACKAGE


20-LEAD PLASTIC SMALL OUT-LINE J-LEAD



PACKAGE DIMENSIONS (Continued) 20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

1M×4 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

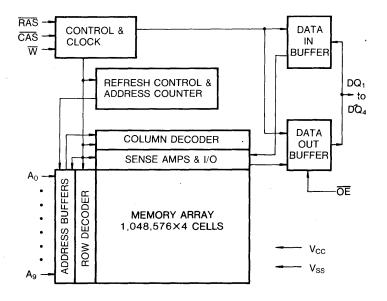
• Performance range:

	trac	tcac	tRC
KM44C1000ASL- 7	70ns	20ns	130ns
KM44C1000ASL- 8	80ns	20ns	150ns
KM44C1000ASL-10	100ns	25ns	180ns

- · Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- 8-bit fast parallel test mode capability
- TTL compatible inputs and output
- Early Write or output enable controlled write
- Single + 5V ± 10% power supply
- 1024 cycles/256ms refresh
- Low power dissipation

 Standby: 0.6mW
 Active (70/80/100ns): 578/523/468mW
- JEDEC standard pinout

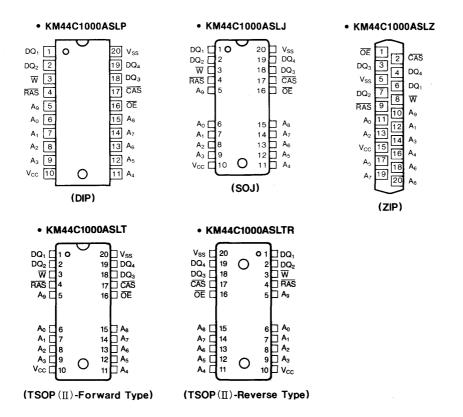
• Available in Plastic SOJ, DIP, ZIP, and TSOP (II) FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM44C1000ASL is a high speed CMOS 1,048,576 bit \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1000ASL features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.


The KM44C1000ASL is fabricated using Samsung's advanced CMOS process.

KM44C1000ASL

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ1-4	Data In/Out
W	Read/Write Input
ŌĒ	Data Output Enable
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
V _{SS}	Ground

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	· · · V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		Vcc+1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%) (Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min)	KM44C1000ASL- 7 KM44C1000ASL- 8 KM44C1000ASL-10	ICC1		105 95 85	mA mA mA
Standby Current (RAS=CAS=VIH)		ICC2	_	2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min.)	KM44C1000ASL- 7 KM44C1000ASL- 8 KM44C1000ASL-10	Іссз		105 95 85	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling @ t _{PC} =min.)	KM44C1000ASL- 7 KM44C1000ASL- 8 KM44C1000ASL-10	ICC4	-	80 70 60	mA mA mA
Standby Current (RAS=CAS=W≥V _{CC} -0.2V)		lcc5	— .	100	μA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KM44C1000ASL- 7 KM44C1000ASL- 8 KM44C1000ASL-10	I _{CC6}		105 95 85	mA mA mA
Battery Back Up CurrentAverage Power Supply Battery Back Up Mode, Input High Voltage (VII Input Low Voltage (VIL)=0.2V CAS=CAS Befo 0.2V DQ1-4=Don't Care T _{RC} =250µS, T _{RAS} =t _F	i)=V _{CC} -0.2V re RAS Cycling or	ICC7		150	μΑ
Standby Current (RAS=VIH, CAS=VIL, Dout Er	nable)	Icc8	—	5	mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts)		Ι _Ι	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4		V
Output Low Voltage Level (IOL=4.2mA)		VOL	-	0.4	V

*Note: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}	-	6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}	-	7	pF
Output Capacitance (DQ1-DQ4)	Соит	_	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Cumbel	KM440	C1000ASL-7	KM44	KM44C1000ASL-8		KM44C1000ASL-10		.
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180	-	ns	
Read-modify-write cycle time	trwc	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcr	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM44	C1000ASL-7	KM44C1000ASL-8		KM44C1000ASL-10		Unit	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period (1024 cycles)	tREF		256		256		256	ms	
Write command set-up time	twcs	0		0		. 0		ns	8
CAS to write enable delay	tcwD	50		50		60		ns	8
RAS to write enable delay	tRWD	100		110		135		ns	8
Column address to \overline{W} delay time	tAWD	65		70		85		ns	8
CAS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10	د	10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
FAst Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page mode)	tCP	10		10		10		ns	
RAS hold time from CAS precharge	t RHCP	45		45		55		ns	
Fast page mode read-modify-write	t PRWC	105		105		125		ns	
RAS pulse width (Fast page mode)	tRASP	70	200,000	80	200,000	100	200,000	ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	
Write command hold time (Test mode in)	twтн	10		10		10		ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer tum off delay time from \overline{OE}	tOEZ	0	20	0	20	0	25	ns	
OE command hold time	tоен	20		20		25		ns	

KM44C1000ASL

TEST MODE CYCLE

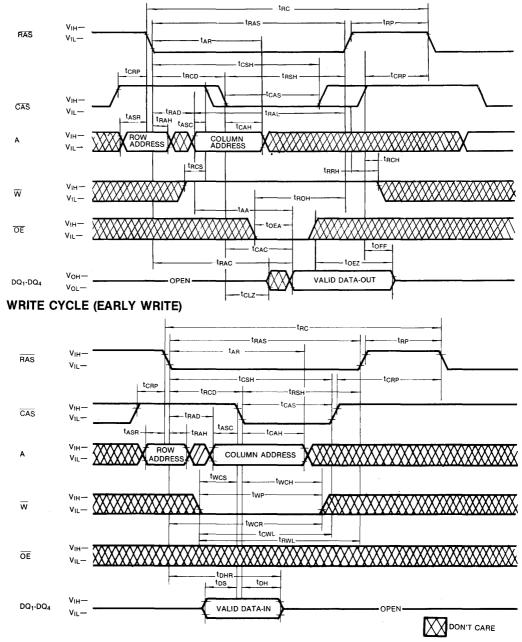
Standard Operation	Sumbol	KM44	C1000ASL-7	KM44C1000ASL-8		KM44C1000ASL-10		11-14	Natas
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	135		155		185		ns	
Read-modify-write cycle time	tRWC	190		210		250		ns	
Access time from RAS	tRAC		75		85		105	ns	3,4,11
Access time from CAS	tCAC		25		25		30	ns	3,4,5
Access time from column address	tAA		40		45		55	ns	3,11
RAS pulse width	tras	75	10,000	85	10,000	105	10,000	ns	
CAS pulse width	tCAS	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	trsh	25		25		30		ns	
CAS hold time	tcsн	75		85		105		ns	
Column address to RAS lead time	tRAL	40		45		55		ns	
CAS to write enable delay	tcwp	55		55		65		ns	8
RAS to write enable delay	tRWD	105		115		140		ns	8
Column address to \overline{W} delay time	tawd	70		75		90		ns	8
Fast mode cycle time	tPC	55		55		65		ns	
Fast page mode read-modefy-write	t PRWC	110		110		130		ns	
RAS pulse width (Fast page mode)	tRASP	75	200,000	85	200,000	105	200,000	ns	
Access time from CAS precharge	tCPA		50		50		60	ns	3
OE access time	tOEA		25		25		30	ns	
OE to data delay	tOED	25		25		30		ns	
OE command hold time	tOEH	25		25		30		ns	

NOTES

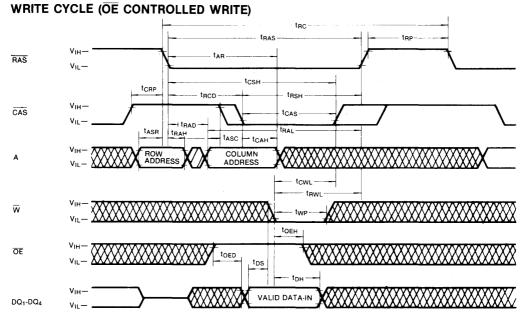
- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 \overline{CBR} or \overline{ROR} cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max)
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL} .
- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data

sheet as electrical characteristics only. If $t_{WCS} \ge t_{WCS(min)}$ the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$ and $t_{RWD} \ge t_{RWD(min)}$ and $t_{RWD} \ge t_{AWD(min)}$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

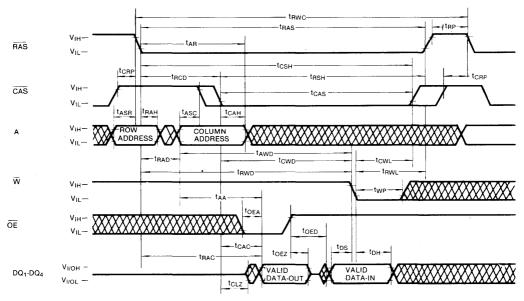
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .
- 12. These specifications are applied in the test mode.



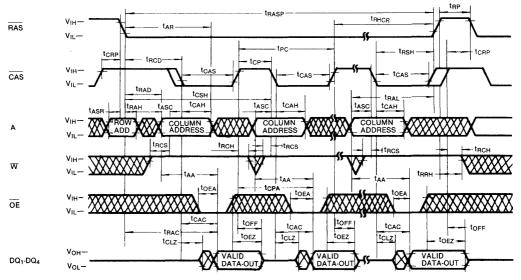
(Note. 12)


KM44C1000ASL

TIMING DIAGRAMS



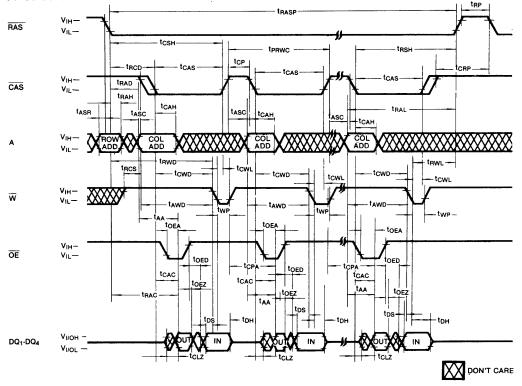
READ-MODIFY-WRITE CYCLE



2

DON'T CARE

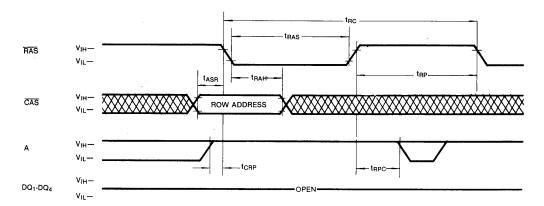
FAST PAGE MODE READ CYCLE



FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

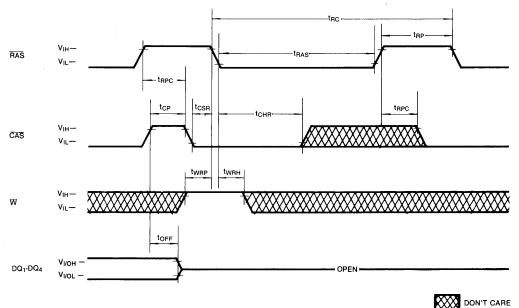
DON'T CARE

FAST PAGE MODE READ-MODIFY-WRITE

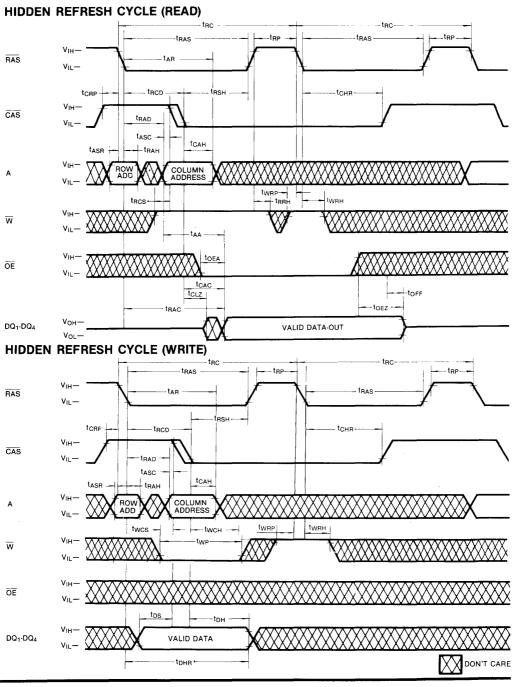


KM44C1000ASL

TIMING DIAGRAMS (Continued)

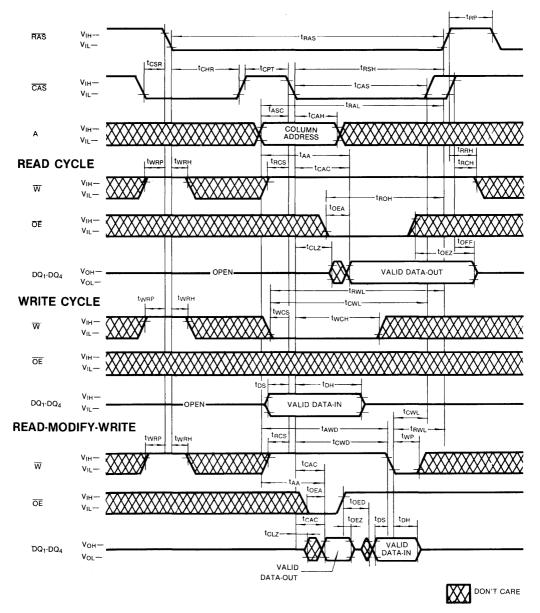

RAS-ONLY REFRESH CYCLE

Note: W, OE=Don't Care



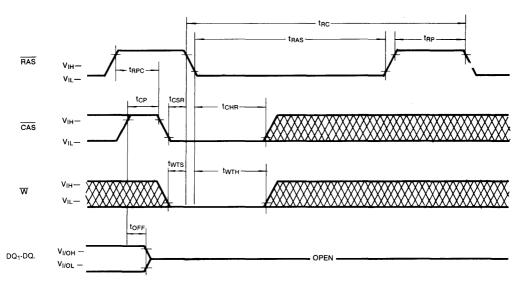
CAS-BEFORE-RAS REFRESH CYCLE

NOTE: OE, Address = Don't Care



KM44C1000ASL

TIMING DIAGRAMS (Continued)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

TEST MODE IN CYCLE

NOTE: OE, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1000ASL is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A₀ is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin indicates a "1". If they were not equal, the I/O pin would

indicate a "O". In "Test Mode", the 1M×4 DRAM can be tested as if it were a 512K×4 DRAM. \overline{W} , CAS-Before-RAS Cycle (Test Mode in Cycle) puts the device into "Test Mode". And "CAS-Before-RAS Refresh Cycle" or "RAS only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/2 in cases of N test pattern).

2

DEVICE OPERATION Device Operation

The KM44C1000ASL contains 4,194,304 memory locations. Twenty address bits are required to address a particular memory location. Since the KM44C1000ASL has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CAS}) and the valid row and column address inputs.

Operating of the KM44C1000ASL begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM44C1000ASL cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and CAS Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1000ASL begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. If \overline{CAS} goes low before $t_{RCD}(max)$, the access time to valid data is specified by t_{RAC} . If \overline{CAS} goes low after $t_{RCD}(max)$, the access time is measured from \overline{CAS} and is specified by t_{CAC} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to bring \overline{CAS} low before $t_{RCD}(max)$.

Write

The KM44C1000ASL can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later. *Early Write:* An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin(D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} , t_{CWD} and t_{AWD} , are not necessarily met. The state of date-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM44C1000ASL has a three-state output buffer which is controlled by \overline{CAS} . Whenever \overline{CAS} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM44C1000ASL operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cycle. OE controlled write.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM44C1000ASL is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 256 ms. There are several ways to accomplish this.

DEVICE OPERATION (Continued)

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with RAS while \overline{CAS} remains high. This cycle must be repeated for each row.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM44C1000ASL has \overline{CAS} -before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuity is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM44C1000ASL hidden refresh cycle is actually a \overline{CAS} before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1000ASL by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. These are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh is the preferred method.

Fast Page Mode

The KM44C1000ASL has Fast Page mode capability. Fast Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In Fast Page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A Fast Page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row addresse. This eliminates the time required to set up and strobe sequential row address for the same page. Up to 2048 memory cells can be accessed with the same row address.

CAS-Before-RAS Refresh Counter Test Cycle

A special timing sequence using the CAS-before-RAS

counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the CAS-before-RAS counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A_0 through A_9 are supplied by the on-chip refresh counter.

Column Address—Bits A_0 through A_9 are strobed in by the falling edge of \overline{CAS} as in a normal memory cycle.

Suggested CAS-Before-RAS Counter Test Procedure

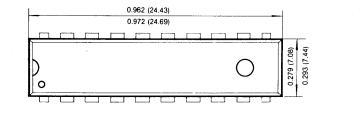
The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

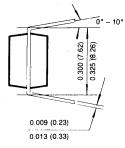
- Initialize the internal refresh counter by performing 8 CAS-before RAS cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 1024 times so that highs are written into the 1024 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

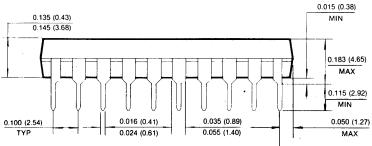
Power-up

If \overline{RAS} =V_{SS} during power-up, the KM44C1000ASL could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

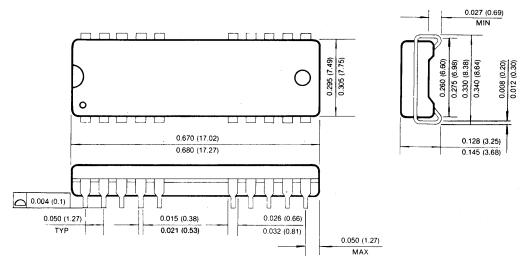
An initial pause of 200μ s is required after power-up followed by 8 CBR or ROR cycles before proper device operation is achieved.

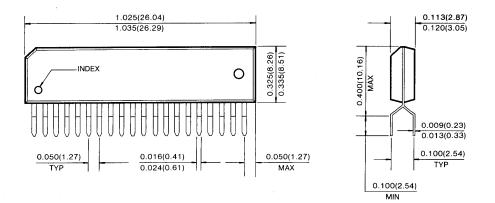


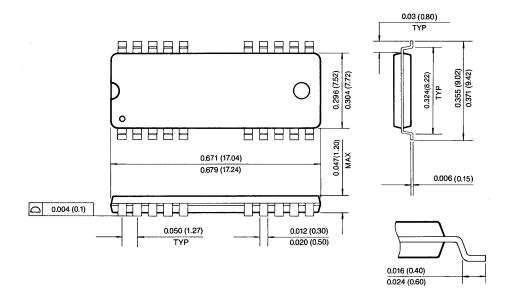



KM44C1000ASL

PACKAGE DIMENSIONS


20-LEAD PLASTIC DUAL IN-LINE PACKAGE


20-LEAD PLASTIC SMALL OUT-LINE J-LEAD



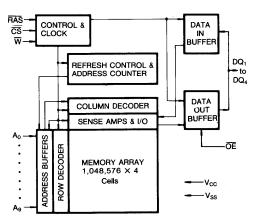
PACKAGE DIMENSIONS (Continued) 20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

20-LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE (Forward and Reverse Type)

2

1M×4 Bit CMOS Dynamic RAM with Static Column Mode


FEATURES

• Performance range:

	t RAC	tCAC	tRC
KM44C1002A-7	70ns	20ns	130ns
KM44C1002A- 8	80ns	20ns	150ns
KM44C1002A-10	100ns	25ns	180ns

- Static Column Mode operation
- CS-before-RAS Refresh Capability
- RAS-only and Hidden Refresh Capability
- · 8-bit fast parallel test mode Capability
- TTL compatible inputs and output
- Early Write or Output Enable Controlled Write
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic SOJ, DIP, ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM44C1002A is a high speed CMOS 1,048,576 bit \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1002A features Static Column Mode operation which allows high speed random or sequential access within a row. Static Column Mode operation offers high performance while relaxing many critical system timing requirements for fast usable speed.

CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and output are fully TTL compatible.

The KM44C1002A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM44C1002AP • KM44C1002AJ KM44C1002AZ ŌĒ 20 V_{SS} 10 1 DQ₁1 Vas <u>cs</u> DQ₄ 3 DQ₃ DQ₂2 19 DQ⊿ [4] DQ₄ 5DQ₃ w 56 Vss 18 DQ₃ ₩<u></u>3 DQ1 RAS <u>7</u>]8 DQ₂ JÕE w 17 CS RAS 4 Ag RAS 9 fio A9 A₉ 5 16 ŌĒ 11/12 A A1 A₀ 6 15 A₈ A₂ 13 Ant 14 A₃ v∞1516 A1 7 14 A7 A٩ ٦A7 A۵ 13 A6 A21 17 A₂ 8 A₅ 18 A₃ 19 12 A₅ A₃9 0 A 10 Vcc 🗖 0 11 A4 V_{cc} 10

Pin Name	Pin Function
A0-A9	Address Inputs
DQ1-DQ4	Data In/Out
W	Read/Write Input
ŌĒ	Data Output Enable
RAS	Row Address Strobe
CS	Chip Select Input
Vcc	Power (+5V)
V _{SS}	Ground

ABSOLUTE MAXIMUM RATINGS*

ltem	Item Symbol		Unit
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation * should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{cc} +1	v
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS (0°C<Ta<70°C, Vcc=5.0V±10%)

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	
Operating Current* (RAS, CS, Address Cycling @ t _{RC} =min)	KM44C1002A- 7 KM44C1002A- 8 KM44C1002A-10	ICC1		105 95 85	mA mA mA
Standby Current (RAS=CS=VIH)	Standby Current (RAS=CS=V _{IH})				mA
RAS-Only Refresh Current* (RAS Cycling, CS=V _{IH} , @ t _{RC} =min)	KM44C1002A- 7 KM44C1002A- 8 KM44C1002A-10	Іссз	-	105 95 85	mA mA mA
Static Column Mode Current* (RAS=CS=VIL, Address Cycling @t _{SC} =min)	KM44C1002A- 7 KM44C1002A- 8 KM44C1002A-10	ICC4	_	80 70 60	mA mA mA
Standby Current (RAS=CS=W≥V _{CC} -0.2V)		Icc5	_	1	mA
CS-Before-RAS Refresh Current* (RAS and CS Cycling @ t _{RC} =min.)	ICC6		105 95 85	mA mA mA	
Standby Current (RAS=VIH, CS=VIL, DOUT=Ena	able)	ICC7	_	5	mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts.)	hL	-10	10	μA	
Output Leakage Current (Data out is disabled, 0	V≼V _{OUT} ≼5.5V)	lol	-10	10	μA
Output High Voltage Level (IOH=-5mA)		V _{OH}	2.4	—	v
Output Low Voltage Level (IOL=4.2mA)		VOL		0.4	v

*NOTE: ICC1, ICC3, ICC4, ICC6 are dependent on output loading and cycle rates. Specified value are obtained with the output open. Icc is specified as average current. Icc1, Icc3, Icc6, Address can be changed maximum two times while RAS=VIL. ICC4, Address can be changed maximum once while CS=VIH.

CAPACITANCE (T_A=25°C)

item	Symbol	Min	Max	Unit
Input Capacitance (A0-A9)	C _{IN1}	-	6	pF
Input Capacitance (RAS, CS, W, OE)	CiN2	_	7	pF
Output Capacitance (DQ1-DQ4)	Соит	_	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

	Cumbel.	KM44C1002A-7		KM44C1002A-8		KM44C1002A-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	υπιτ	Notes
Random read or write cycle time	tRC	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	trac		70		80		100	ns	3,4,11
Access time from \overline{CS}	tCAC		20		20		25	ns	3,4,5
Access time from column address	taa		35		40		50	ns	3,11
CS to output in Low-Z	tcLZ	5		5		5		ns	3,12
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	-3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	trish	20		20		25		ns	
CS hold time	tcsH	70		80		100		ns	
CS pulse width	tcs	20	10,000	20	10,000	25	10,000	ns	
RAS to CS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	tCAH	15		15		20		ns	
Column address hold referenced to RAS	tar	55		60		75		ns	
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcr	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	

AC CHARACTERISTICS (Continued)

Standard Operation	Symbol	KM44	C1002A-7	KM44C1002A-8		KM44C1002A-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max		140185
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CS lead time	tcwL	20		20		25		ns	
Data-in set-up time	tos	0		0		0		ns	10
Data-in hold time	tон	15		15		20		ns	10
Data-in hold referenced to RAS	t DHR	55		60		75		ns	6
Refresh period (1024 cycles)	tREF		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CS to write enable delay time	tcwD	50		50		60		ns	8
RAS to write enable delay time	tRWD	100		110		135		ns	8
Column address to \overline{W} delay time	tawd	65		70		85		ns	8
CS setup time (C-B-R refresh)	tCSR	10		10		10		ns	
CS hold time (C-B-R refresh)	t CHR	20		30		30		ns	
RAS precharge to CS hold time	t _{RPC}	10		10		10		ns	
CS precharge (C-B-R counter test)	tсрт	35		40		50		ns	
Static column mode cycle time	tsc -	40		45		55		ns	
Static column mode read-write cycle time	tSRWC	100		110		135		ns	
Access time from last write	talw		65		75		95	ns	3,12
Output data hold time from column address	t AOH	5		5		5		ns	
Output data enable time from \overline{W}	tow		45		50		70	ns	
RAS pulse width (static column mode)	tRASC	70	100,000	80	100,000	100	100,000	ns	
CS pulse width (static column mode)	tcsc	20	100,000	20	100,000	25	100,000	ns	
CS precharge time (static column mode)	tCP	10		10		10		ns	
Write address hold time reference to RAS	tawr	55		60		75		ns	6
Column address hold time referenced to $\overline{\text{RAS}}$ rise	t _{AH}	5		5		10		ns	
Last write to column address delay time	tLWAD	20	30	20	35	25	45	ns	
Last write to column address hold time	tAHLW	65		75		95		ns	
Write command inactive time	twi	10		10		10		ns	
Write command set-up time (Test mode In)	twтs	10		10		10		ns	
Write command hold time (Test mode In)	twтн	10		10		10		ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twRP	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer turn off delay time from OE	toez	0	20	0	20	0	25	ns	
OE command hold time	toeh	20		20		25		ns	

(Note. 13)

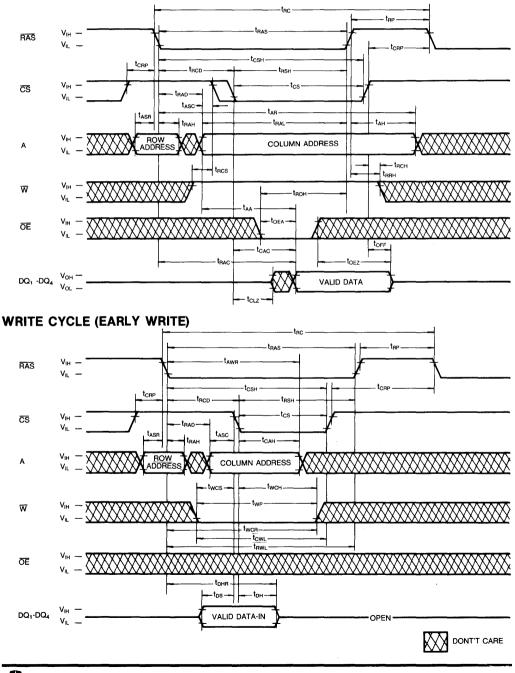
TEST MODE CYCLE

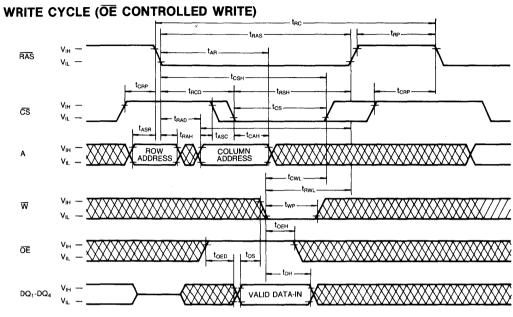
Standard Operation	Symbol	KM44	C1002A-7	KM44C1002A-8		KM44C1002A-10		Ilait	Notes
	Symbol	Min	Max	Min	Max	Min	Max	Unit	110103
Random read or write cycle time	tRC	135		155		185		ns	
Read-modify-write cycle time	tRWC	185		210		250		ns	
Access time from RAS	TRAC		75		85		105	ns	3,4,11
Access time from CS	tCAC		25		25		30	ns	3,4,5
Access time from column address	tAA		40		45		55	ns	3,11
RAS pulse width	tras	75	10,000	85	10,000	105	10,000	ns	
CS pulse width	tcs	25	10,000	25	10,000	30	10,000	ns	
RAS hold time	tRSH	25		25		30		ns	
CS hold time	tcsH	75		85		105		ns	
Column Address to RAS lead time	tRAL	40		45		55		ns	
CS to write enable delay	tcwp	55		55		65		ns	8
RAS to write enable delay	tRWD	105		115		140		ns	8
Column address to \overline{W} delay time	tAWD	70		75		90		ns	8
Static column mode cycle time	tsc	45		50		60		ns	
Static column mode read-modefy-write	tsrwc	105		115		135		ns	
RAS pulse width (static column mode)	TRASC	75	100,000	85	100,000	105	100,000	ns	
Access time from last write	tALW		70		80		100	ns	3,12
CS pulse width (static column mode)	tcsc	25	100,000	25	100,000	30	100,000	ns	
OE access time	tOEA		25		25		30	ns	
OE to data delay	tOED	25		25		30		ns	
OE command hold time	tOEH	25	_	25		30		ns	

NOTES

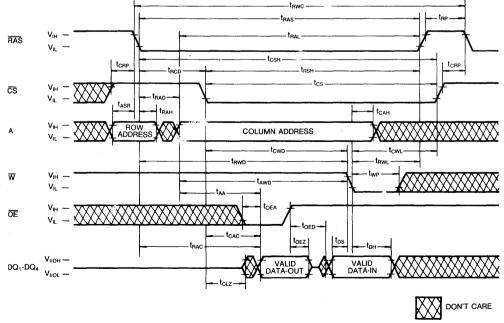
- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 $\overline{\text{CBR}}$ or $\overline{\text{ROR}}$ cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that tRCD>tRCD(max).
- 6. tAWR, tWCR, tDHR are referenced to tRAD(max)
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not refernced to V_{OH} or V_{OL} .
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle

and the data out pin will remain high impedance for the duration of the cycle. If $t_{CWD} \ge t_{CWD(min)}$ and $t_{RWD} \ge t_{AWD(min)}$ and $t_{AWD} \ge t_{AWD(min)}$, then the cycle is a read-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

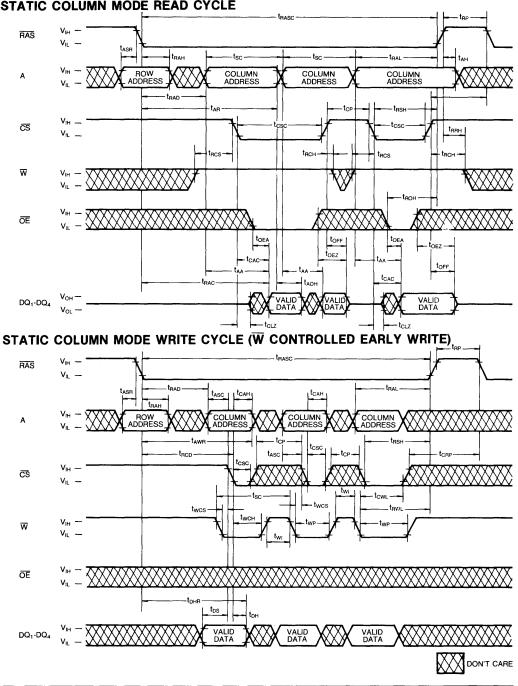

- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CS leading edge in early write cycles and to the W leading edge in read-write cycles.
- Operation within the t_{RAD(max)} limit insures that t_{RAC(max)} can be met. t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then access time is controlled by t_{AA}.
- 12. Operation within the t_{LWAD(max)} limit insures that t_{ALW(max)} can be met. t_{LWAD(max)} is specified as a reference point only. t_{LWAD} is greater than the specified t_{LWAD(max)} limit, then access time is controlled by t_{AA}.
- 13. These specifications are applied in the test mode.

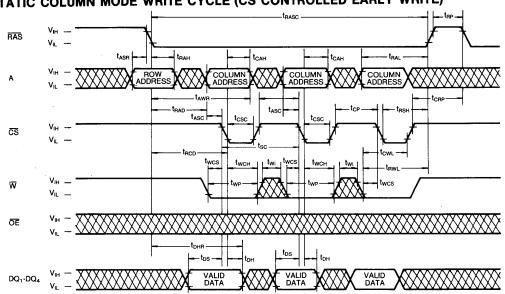


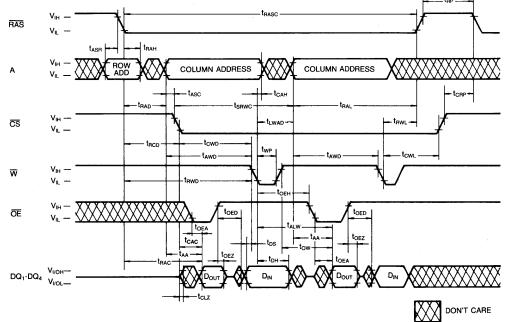
TIMING DIAGRAMS READ CYCLE


SAMSUNG

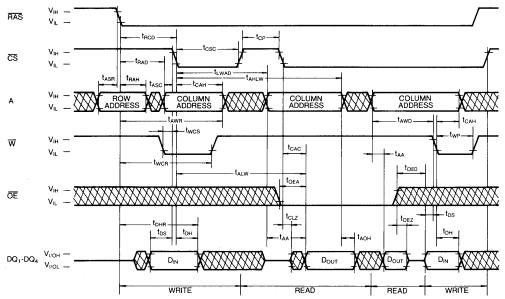
Electronics




READ-WRITE/READ-MODIFY-WRITE CYCLE

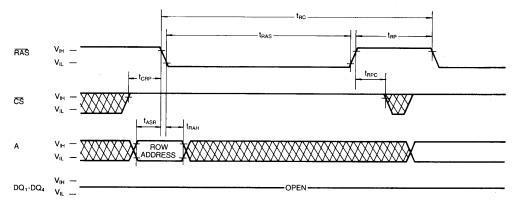


TIMING DIAGRAMS (Continued) STATIC COLUMN MODE READ CYCLE



STATIC COLUMN MODE WRITE CYCLE (CS CONTROLLED EARLY WRITE)

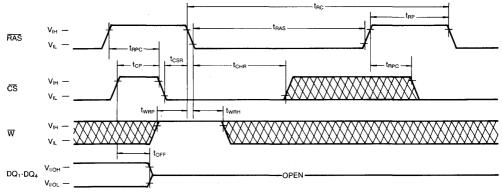
STATIC COLUMN MODE READ-WRITE CYCLE

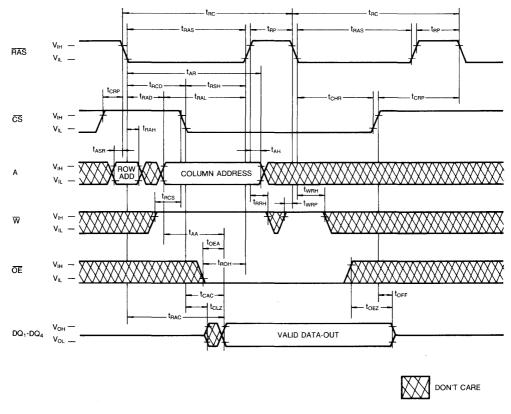


TIMING DIAGRAMS (Continued) STATIC COLUMN MODE MIXED CYCLE

RAS-ONLY REFRESH CYCLE

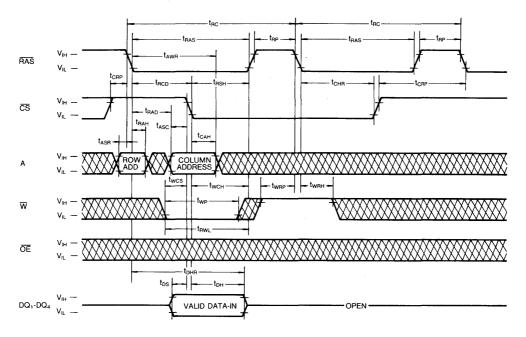
NOTE: \overline{W} , \overline{OE} = = Don't Care





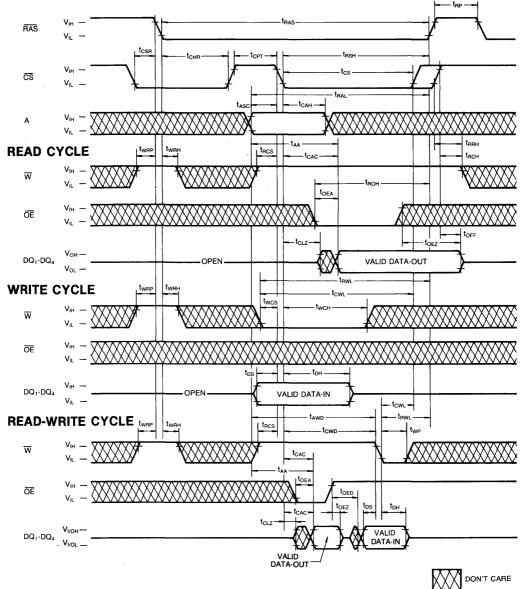
CS-BEFORE-RAS REFRESH CYCLE

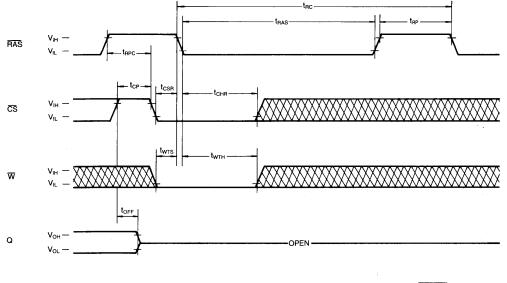
NOTE: OE, A=Don't Care



HIDDEN REFRESH CYCLE (READ)




TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (WRITE)



TEST MODE IN CYCLE

NOTE: D, Address=Don't Care

TEST MODE DESCRIPTION

The KM44C1002A is the RAM organized 1,048,576 words by 4 bit, it is internally organized 524,288 words by 8 bits. In "Test Mode", data are written into 8 sectors in parallel and retrieved the same way. Column address bit A_0 is not used. If, upon reading, two bits on one I/O pin are equal (all "1"s or "0"s), the I/O pin undicates a "1". If they were not equal, the I/O pin would

indicate a "0". In "Test Mode", the 1M×4 DRAM can be tested as if it were a $512K\times4$ DRAM. \overline{W} , \overline{CS} Before \overline{RAS} Cycle (Test Mode in Cycle) puts the device into "Test Mode". And " \overline{CS} Before \overline{RAS} Refresh Cycle" or " \overline{RAS} only Refresh Cycle" puts it back into "Normal Mode". The "Test Mode" function reduces test time (1/2 in cases of N test pattern).

DEVICE OPERATIONS

Device Operation

The KM44C1002A contains 4,194,304 memory locations organized as 1,048,576 four-bit words. Twenty address bits are required to address a particular 4-bit word in the memory location. Since the KM44C1002A has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the chip select input (\overline{CS}) and the valid row and column address inputs.

Operating of the KM44C1002A begins by strobing in a valid row address with \overline{RAS} while \overline{CS} remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by \overline{CS} . This is the beginning of any KM44C1002A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both \overline{RAS} and \overline{CS} have returned to the high state. Another cycle can be initiated after \overline{RAS} remains high long enough to satisfy the \overline{RAS} precharge time (t_RP) requirement.

RAS and **CS** Timing

The minimum \overline{RAS} and \overline{CS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C1002A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . But the access time also depends on the falling edge of \overline{CS} and on the valid column address transition.

If \overline{CS} goes low before $t_{RCD}(max)$ and if the column address is valid before $t_{RAD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CS} goes low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

The KM44C1002A has common data I/O pins. For this reason and output enable control input (\overline{OE}) has been

proviced so the output buffer can be precisely controlled. For data to appear at the outputs, \overline{OE} must be low for the period of time defined by t_{OEA} and t_{OEZ}.

Write

The KM44C1002A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} , \overline{OE} and \overline{CS} . In any type of write cycle, Date-in must be valid at or before the falling edge of \overline{W} or \overline{CS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CS} . The 4-bit wide data at the data input pins is written into the addressed memory cells. Throughout the early write cycle the output remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CS} and meeting the data sheet read-modify-write cycle timing requirements. The output enable input (\overline{OE}) must be low during the time defined by toEA and toEz for data to appear at the output. If tcwD and tRWD are not met the output may contain invalid data. Conforming to the \overline{OE} KM44C1002A's DQ pins.

Data Output

The KM44C1002A has a three-state output buffer which is controlled by \overline{CS} and \overline{OE} . Whenever \overline{CS} or \overline{OE} is high (V_{IH}) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by t_{CLZ} after the falling edge of \overline{CS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM44C1002A operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Static Column Read, Static Column Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Static Column Mode Write, CS-before-RAS Refresh, CS-only cycle. OE Controlled write. *Indeterminate Output State:* Delayed Write

DEVICE OPERATIONS (Continued)

Refresh

The data in the KM44C1002A is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 16 ms. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CS} remains high. This cycle must be repeated for each row.

 \overline{CS} -before- \overline{RAS} Refresh: The KM44C1002A has \overline{CS} -before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CS active time and cycling RAS. The KM44C1002A hidden refresh cycle is actually a CS-before-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C1002A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CS-before-RAS refresh is the preferred method.

Static Column Mode

Static Column Mode allows high speed read, write or read-modity-write random access to all the memory cells within a selected row. Operation within a selected row is similar to a static RAM. The read, write or readmodify-write cycles may be mixed in any order.

A Static Column mode read cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while \overline{W} =V_{IH} and \overline{RAS} =V_{IL}.

A Static Column mode write cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overline{RAS}=V_{IL}$ and toggling either \overline{W} or \overline{CS} . The data is written into the cell trigered by the latter fallin edge of \overline{W} or \overline{CS} .

CS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the CS-before-RAS refresh counter test cycle provides a convenient method of verifying the functionality of the CS-before-RAS refresh activated circuitry.

After the \overline{CS} -before \overline{RAS} refresh operation, is \overline{CS} goes high and then low again while \overline{RAS} is held low, the read and write operations are enabled.

This is shown in the \overline{CS} -before-RAS counter test cycle timing diagram. A memory cell can be addressed with 10 row address bits and 10 column address bits defined as follows:

Row Address—Bits A₀ through A₉ are supplied by the on-chip refresh counter.

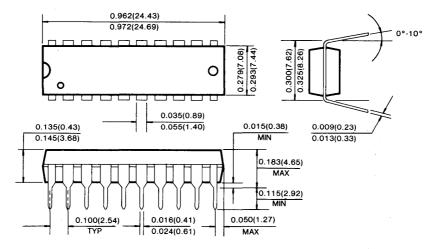
Column Address—Bits A_0 through A_9 are strobed-in by the falling edge of \overline{CS} as in a normal memory cycle.

Suggested CS-before-RAS Counter Test Procedure

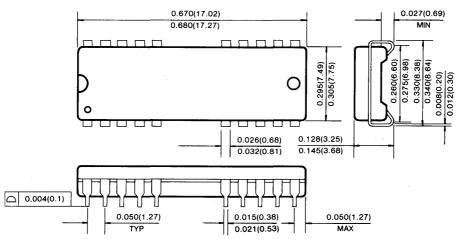
The CS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 1024 row address. (The row addresses are supplied by the on-chip refresh counter).
- Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 512 times so that highs are written into the 512 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Complement the test pattern and repeat steps 2, 3 and 4.

Power-up

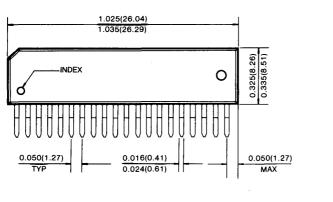

If \overline{RAS} =V_{SS} during power-up, the KM44C1002A could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

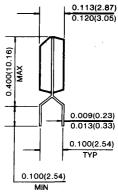
An initial pause of $200\mu s$ is required after power-up followed by any 8 RAS cycle before proper device operation is achieved.



PACKAGE DIMENSIONS 20-LEAD PLASTIC DUAL IN-LINE PACKAGE

Unit: Inches (Millimeters)


20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

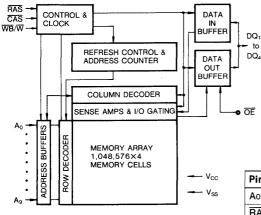


PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

1M×4 Bit CMOS Dynamic RAM with Fast Page Mode (Write Per Bit Mode)


FEATURES

• Performance range:

	t rac	tCAC	tRC
KM44C1010A- 7	70ns	20ns	130ns
KM44C1010A- 8	80ns	20ns	150ns
KM44C1010A-10	100ns	25ns	180ns

- Fast Page Mode operation
- Write Per Bit Mode Capability
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- 8-bit fast parallel test mode capability
- TTL compatible inputs and outputs
- · Early write or Output Enable Controlled Write
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic DIP, SOJ and ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM44C1010A is a high speed CMOS 1,048,576 \times 4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C1010A features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

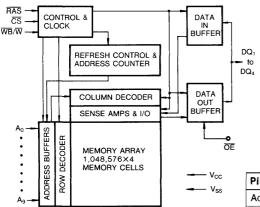
The KM44C1010A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM44C1010AP KM44C1010AJ W1/DQ1 W1/DQ1 10 20 V_{SS} 200 Vss 19 W₄/DQ₄ 18 W₃/DQ₃ 17 CAS W2/DQ2 2 W2/DQ2222 19 W₄/DQ₄ WB/WC 3 WB/W 3 18 W₃/DQ₃ RAS 04 A9 🗆 RAS 4 17 CAS 5 16 D DE 16 OE A₉ 5 15 A₈ A₀6 A₀⊡ 15 A1 C A₁ 7 14 A7 7 14 A7 A₂ 8 A₂8 13 A₆ 13 A3 🗆 q ⊐A∈ 12 12 A5 A₃9 0 V_{cc} [10 11 0 11 A4 V_{cc} 10

Pin Name	Pin Function
A0-A9	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WB/W	Write Per Bit/Read/ Write Input
ŌĒ	Data Output Enable
$W_1/DQ_1 \sim W_4/DQ_4$	Write Select/Data In, Out
Vcc	Power (+5V)
V _{SS}	Ground

1M×4 Bit CMOS Dynamic RAM with Static Column Mode (Write Per Bit Mode)


FEATURES

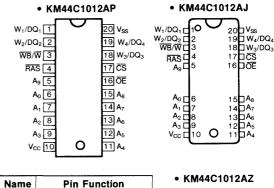
• Performance range:

	tRAC	tCAC	tRC		
KM44C1012A- 7	70ns	20ns	130ns		
KM44C1012A- 8	80ns	20ns	150ns		
KM44C1012A-10	100ns	25ns	180ns		

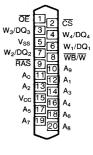
- Static Column Mode operation
- Write Per Bit Mode Capability
- CS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- · 8-bit fast parallel test mode capability
- · TTL compatible inputs and outputs
- · Early write or Output Enable Controlled Write
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout
- Available in Plastic DIP, SOJ and ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION


The Samsung KM44C1012A is a high speed CMOS 1,048,576×4 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

Static Column Mode Operation allows high speed random or sequential access within a row. The KM44C1012A offers high performance while relaxing many critical system timing requirements for fast usable speed.


CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM44C1012A is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

Pin Name	Pin Function
Ao-A9	Address Inputs
RAS	Row Address Strobe
CS	Chip Select Input
WB/W	Write Per Bit/Read/ Write Input
ŌĒ	Data Output Enable
$W_1/DQ_1 \sim W_4/DQ_4$	Write Select/Data In, Out
Vcc	Power (+5V)
Vss	Ground

256K×16 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

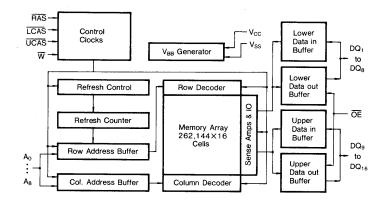
• Performance range:

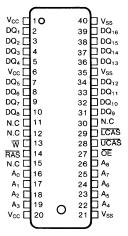
	trac	tcac	tRC	
KM416C256-7	70ns	20ns	130ns	
KM416C256-8	80ns	20ns	150ns	
KM416C256-10	100ns	25ns	180ns	

- Fast Page Mode operation
- 2 CAS Byte/Word Read/Write operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- · Early Write or output enable controlled write
- Triple $+5V \pm 10\%$ power supply
- 512 cycles/8ms refresh
- JEDEC Standard pinout
- Available in Plastic SOJ

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION


The Samsung KM416C256 is a CMOS high speed 262,144 bit \times 16 Dynamic Random Access Memory. Its design is optimized for high performance applications such as personal computer, graphics and high performance portable computes.


The KM416C256 features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and outputs are fully TTL compatible.

The KM416C256 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

• KM416C256J

Pin Name	Pin Function	Pin Name	Pin Function
A ₀ -A ₈	Address Inputs	LCAS	Lower Column
DQ1-16	Data In/Out		Address Strobe
V _{SS}	Ground	₩ 	Read/Write Input
RAS	Row Address Strobe	ŌĒ	Data Output Enable
UCAS	Upper Column	Vcc	Power (+5V)
•	Address Strobe	N.C.	No Connection

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units		
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	<pre></pre>		
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	1 to +7.0	V		
Storage Temperature	T _{stg}	-55 to +150	°C		
Power Dissipation	PD	700	mW		
Short Circuit Output Current	los	50	mA		

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current*	KM416C256-7		_	145	mA
(RAS, UCAS, or LCAS,	KM416C256-8	Icc1	_	125	mA
Address Cycling @ t _{BC} =min)	KM416C256-10			105	mA
Standby Current (RAS=UCAS=LCAS)		Icc2	_	2	mA
RAS-Only Refresh Current*	KM416C256-7		_	145	mA
(UCAS=LCAS, RAS Cycling @ t _{BC} =min)	KM416C256-8	Іссз	—	125	mA
	KM416C256-10		—	105	mA
Fast Page Mode Current*	KM416C256-7		—	90	mA
$(\overline{RAS} = V_{IL}, \overline{UCAS} \text{ or } \overline{LCAS},$	KM416C256-8	ICC4	i —	80	mA
Address Cycling @ t _{PC} =min)	KM416C256-10		—	70	mA
Standby Current (RAS=UCAS=LCAS≥Vcc-0.2V	,	Icc5		1	mA
CAS-Before-BAS Befresh Current*	KM416C256-7		-	145	mA
(RAS, UCAS or LCAS Cycling @ t _{RC} =min)	KM416C256-8	Icc6	—	125	mA
	KM416C256-10		—	105	mA
Standby Current (RAS=VIH, UCAS or LCAS=VII	Dout=Enable)	Icc7	—	5	mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		ľι∟	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0V≼V _{OUT} ≼5.5V)			-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)		VOL	_	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is spedified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}, I_{CC4}, Address can be changed maximum once while UCAS and LCAS =V_{IH}.

CAPACITANCE (T_A=25°C)

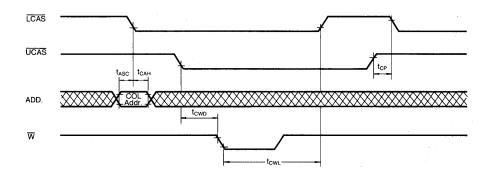
Parameter	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₈)	C _{IN1}	_	6	pF
Input Capacitance (RAS, LCAS, UCAS, W, OE)	C _{IN3}		7	pF
Output Capacitance (DQ1-DQ16)	C _{DQ}	—	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

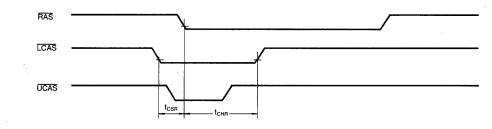
Devementer	Symbol	KM4	KM416C256-7		KM416C256-8		-8 KM416C256-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		45	ns	3,11
CAS to output in Low-Z	tc∟z	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	1 <u>,</u> 5	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	З	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsH	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold time referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold time referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold time referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	10		10		20		ns	
Write command to RAS lead time	t _{RWI}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

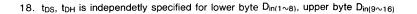
Parameter	Symbol		16C256-7	KM416C256-8		KM416C256-10			Notes
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
data-in hold time referenced to RAS	tDHR	55		60		75		ns	6
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS to W delay time	tcwD	50		50		60		ns	8
RAS to W delay time	tRWD	100		110		135		ns	8
Column address to \overline{W} delay time	t _{AWD}	65		70		85		ns	8
CAS set-up time (CAS-before-RAS refresh)	tCSR	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	t CHR	20		25		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
CAS precharge time (C-B-R counter test cycle)	tсрт	35		40		50		ns	
Access time from CAS precharge	tCPA		40		45		50	ns	3
Fast page mode cycle time	tPC	45		50		55		ns	
Fast Page mode read-modify-write cycle time	t PRWC	100		105		120		ns	
RAS pulse width (Fast page mode)	tRASP	70	100K	80	100K	100	100K	ns	
RAS hold time from CAS precharge	t RHCP	40		45		50		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	toea		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer turn off delay time from OE	toez	0	20	0	20	0	25	ns	
OE command hold time	tоен	20		20		25		ns	

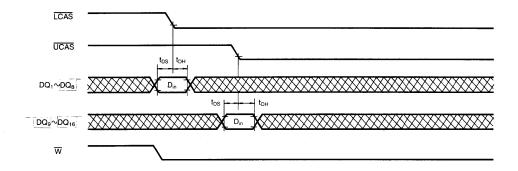

KM416C256 Truth Table

RAS	LCAS	UCAS	W	ŌĒ	DQ1∼8	DQ _{9~16}	State
н	Н	Н	Н	н	Hi-Z	Hi-Z	Standby
L	н	н	Н	н	Hi-Z	Hi-Z	Refresh
L	L	н	н	L	DQ-OUT	Hi-Z	Lower Byte Read
L	н	L	н	L	Hi-Z	DQ-OUT	Upper Byte Read
L	L	L	н	L	DQ-OUT	DQ-OUT	Word Read
L	L	н	L	н	DQ-In	Don't Care	Lower Byte Write
L	н	L	L	н	Don't Care	DQ-IN	Upper Byte Write
Ľ	L	L	L	н	DQ-IN	DQ-IN	Word Write
L	L	L	Н	н	Hi-Z	Hi-Z	—

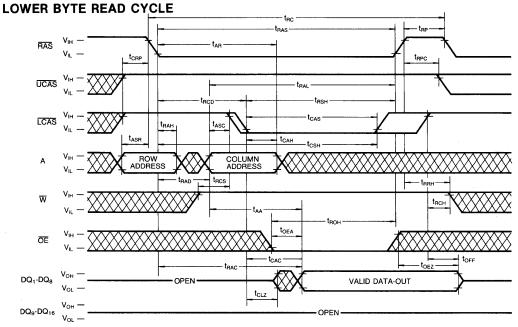


NOTES

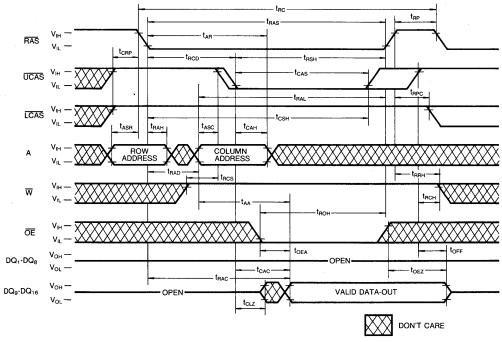

- 1. An initial pause of 200μs is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycles before proper device operation is achieved.
- V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)} and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met..t_{RCD(max)} is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. t_{OFF(max)} defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating aprameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS(min)} the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD(min)}, t_{RWD}≥t_{RWD(min)}, t_{AWD}≥t_{AWD(min)}, t_{AWD}≥t_{AWD(min)}, the the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD(max}) limit insures that t_{RAC(max}) can be met. t_{RAD(max}) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max}) limit, then access time is controlled by t_{AA}.
- 12. t_{ASC} , t_{CAH} are referenced to the earlier \overline{CAS} falling edge.
- 13. t_{CP} is specified from the last CAS rising edge in the previous cycle to the first CAS falling edge in the next cycle.
- 14. t_{CWD} is referenced to the later CAS falling edge at word read-modify-write cycle.
- 15. t_{CWL} is specified from \overline{W} falling edge to the earlier \overline{CAS} rising edge.

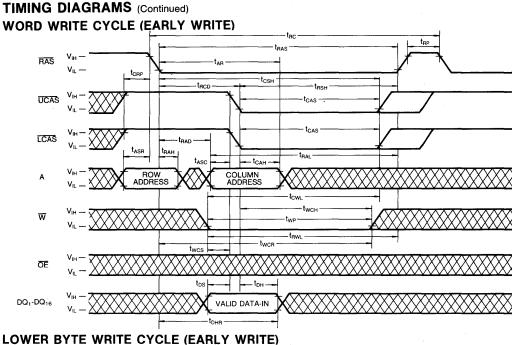


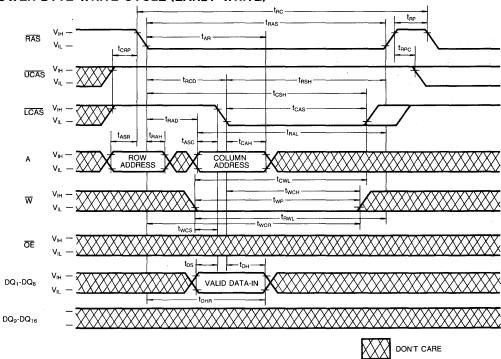
- 16. t_{CSR} is referenced to earlier \overline{CAS} falling low before \overline{RAS} transition low.
- 17. t_{CHR} is referenced to the later \overline{CAS} rising high after \overline{RAS} transition low.



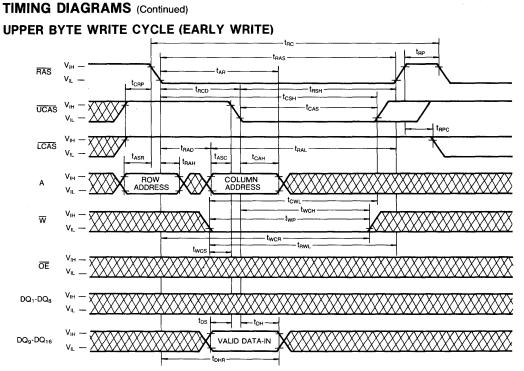
TIMING DIAGRAMS WORD READ CYCCLE

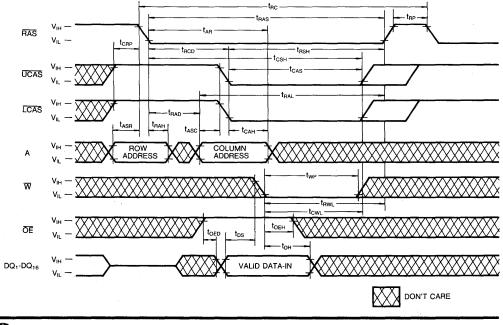


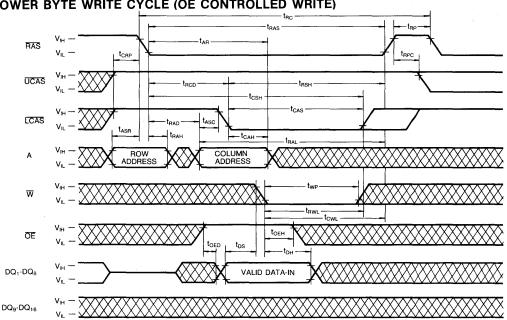



TIMING DIAGRAMS (Continued)

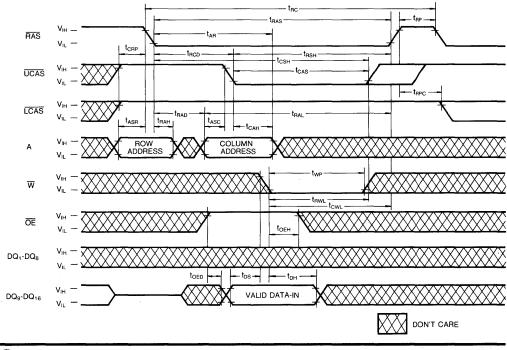
UPPER BYTE READ CYCLE

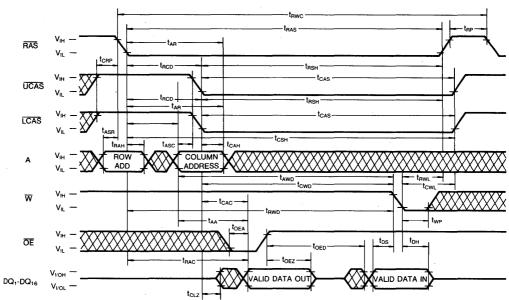





2

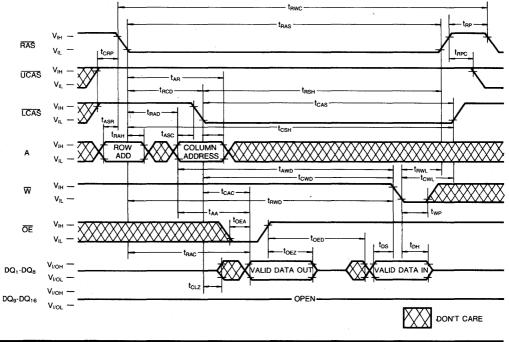
WORD WRITE CYCLE (OE CONTROLLED WRITE)

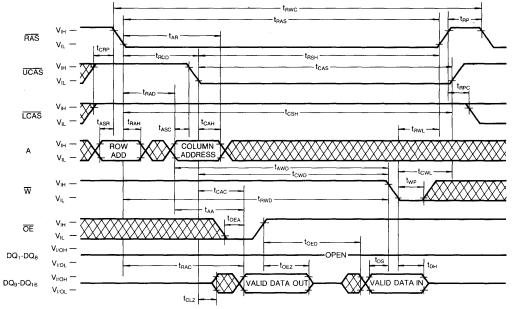




TIMING DIAGRAMS (Continued) LOWER BYTE WRITE CYCLE (OE CONTROLLED WRITE)

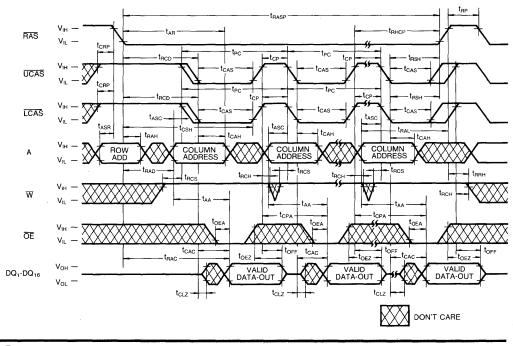
UPPER BYTE WRITE CYCLE (OE CONTROLLED WRITE)



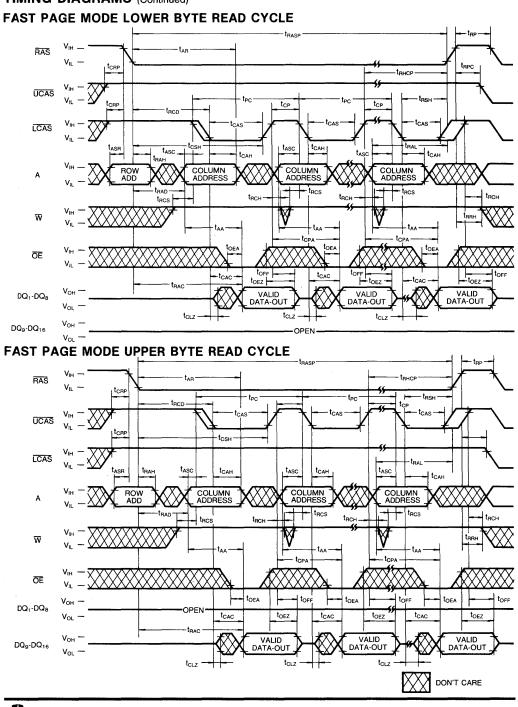

TIMING DIAGRAMS (Continued) WORD READ-MODIFY-WRITE CYCLE

READ-MODIFY-LOWER-BYTE-WRITE CYCLE

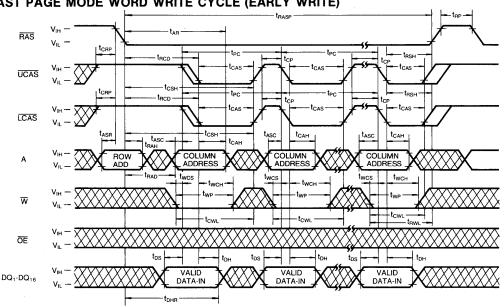
TIMING DIAGRAMS (Continued)


READ-MODIFY-UPPER-BYTE-WRITE CYCLE

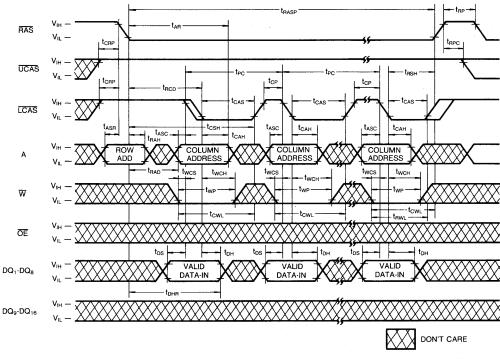
FAST PAGE MODE WORD READ CYCLE

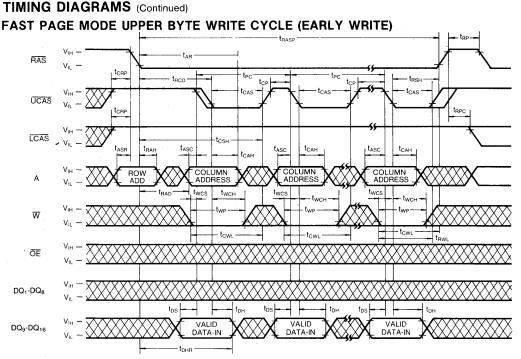

SAMSUNG

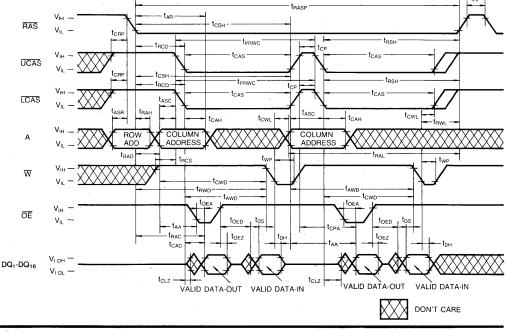
Electronics


SAMSUNG

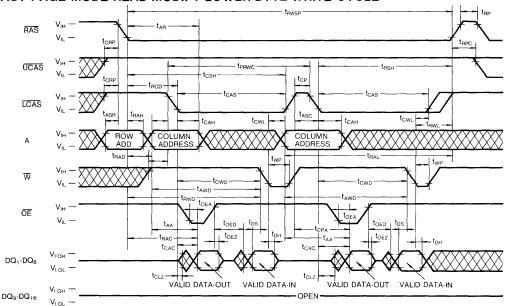
Electronics


TIMING DIAGRAMS (Continued)

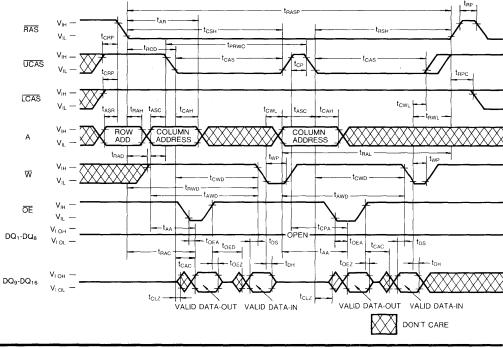

TIMING DIAGRAMS (Continued)


FAST PAGE MODE WORD WRITE CYCLE (EARLY WRITE)

FAST PAGE MODE LOWER BYTE WRITE (EARLY WRITE)



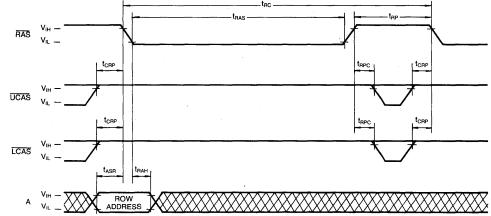
FAST PAGE MODE WORD READ-MODIFY-WRITE CYCLE



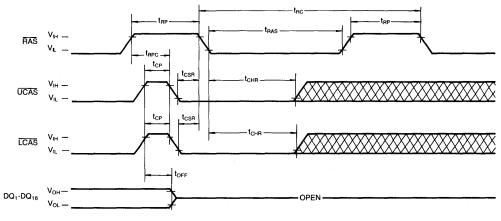
TIMING DIAGRAMS (Continued)

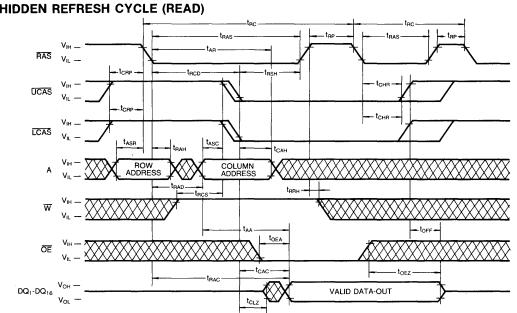
FAST PAGE MODE READ-MODIFY-LOWER-BYTE-WRITE CYCLE

FAST PAGE MODE READ-MODIFY-UPPER-BYTE-WRITE CYCLE

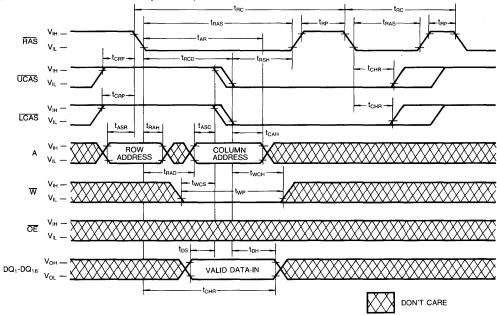


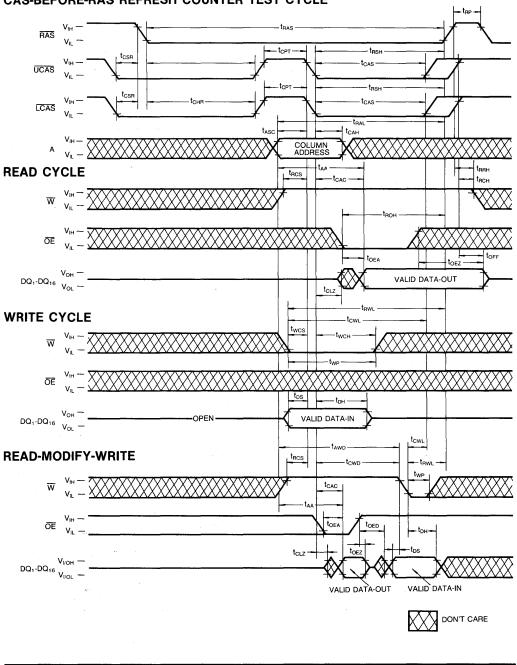
TIMING DIAGRAMS (Continued)


RAS ONLY REFRESH CYCLE


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: W=VIH, OE, A=Don't Care




TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

DEVICE OPERATION

Device Operation

The KM416C256 contains 4,194,304 memory locations arranged in 16 groups of 262,144×1 bit each. Eighteen address bits are required to address a particular memory location. Since the KM416C256 has only 9 address input pins, time multiplexed addressing is used to input 9 row and 9 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (LCAS, UCAS) and the valid row and column address inputs.

Operation of the KM416C256 begins by strobing in a valid row address with RAS while LCAS (UCAS) remains high. Then the address on the 9 address input pins is changed from a row address to a column address and is strobed in by LCAS (UCAS). This is the beginning of any KM416C256 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and LCAS (UCAS) have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and **CAS** Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM416C256 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{xCAS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . Additionally the access time also depends on the falling edge of \overline{CAS} and on the valid column address transition. If \overline{xCAS} transitions to a low before $t_{RCD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{xCAS} transitions low after $t_{RCD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM416C256 can perform early write, late write and

read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between W, OE, LCAS and UCAS. In any type of write cycle, Data-in must be valid at or before the falling edge of W or xCAS, whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{xCAS} . The 16 Bit wide data at the data I/O pins is written into the addressed memory cells. Throughout the early write cycle the output remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cells appears at the output before and during the time that data is being written into the same cells. This cycle is achieved by bringin \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. The \overline{OE} input must be low during the time defined by to_{EA} for data to appear at the outputs. If tc_{WD} and t_{RWD} are not met output may contain invalid-data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM416C256 DQ pins.

Data Output

The KM416C256 has a three-state output buffers which are controlled by \overline{CAS} and \overline{OE} . Whenever either \overline{CAS} or \overline{OE} is high (V_{IH}), the outputs are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the outputs, the outputs enter into the low impedance state in the time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM416C256 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, \overline{RAS} -only Refresh, Fast Page Mode Write, \overline{CAS} -Before- \overline{RAS} Refresh, \overline{OE} controlled write, \overline{CAS} -only cycle.

Indeterminate Output State: Delayed Write (t_{CWD} or t_{RWD} times are not met)

Refresh

The data in the KM416C256 is stored as a charge on microscopic capacitor within each memory cell. The stored charge tends to dissipate over time and will af-

DEVICE OPERATION (Continued)

fect data integrity if the charge is not periodically refreshed. Refresh of the individual storage cells is accomplished by accessing all rows within the refresh period (t_{REF}) of within 8ms. There are several ways to accomplish this:

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each of the 512 row address (A0-A8).

 \overline{CAS} -before- \overline{RAS} Refresh: The KM416C256 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If either \overline{LCAS} or \overline{UCAS} input is held low for the specified set up time (t_{CSR}) before \overline{RAS} transitions low, the onchip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending either LCAS or UCAS input active time and cycling RAS. The hidden refresh cycle is actually a CAS-before-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM416C256 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in the row are automatically refreshed. There are certain ap-

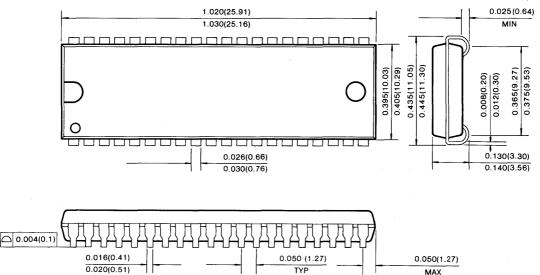
plications in which it might be advantageous to perform refresh in this manner but in general \overline{RAS} -only or \overline{CAS} -before- \overline{RAS} refresh is the preferred method.

Fast Page Mode

The KM416C256 has Fast page mode capability provides high speed read, write or read-modify-write access to all memory locations within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is held low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

CAS-before-RAS Refresh Counter test cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry. The cycle begins as a CAS-before-RAS refresh operation. Then, if CAS is asserted high and then low again while RAS is asserted low, the read and write operations are enabled. In this method, the row address bits A0 through A8 are supplied by on chip refresh counter.


Power-Up

If $\overline{\text{RAS}}$ =V_{SS} during power-up, the KM416C256 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ track with V_{CC} during power-up or be held a valid V_{IH} in order to minimize power-up current.

Units: Inches (millimeters)

PACKAGE DIMENSION 40-LEAD PLASTIC SMALL OUT-LINE J-LEAD

2

256K×18 Bit CMOS Dynamic RAM with Fast Page Mode

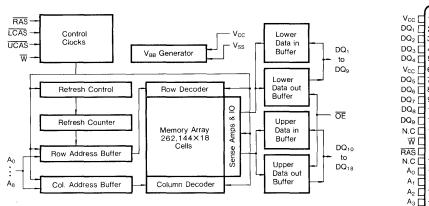
FEATURES

Performance range:

	tRAC	tCAC	t _{RC}
KM418C256-7	70ns	20ns	130ns
KM418C256-8	80ns	20ns	150ns
KM418C256-10	100ns	25ns	180ns

- Fast Page Mode operation
- 2 CAS Byte/Word Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL and CMOS compatible inputs and outputs
- Early Write or output enable controlled write
- Triple $+5V \pm 10\%$ power supply
- 512 cycles/8ms refresh
- JEDEC Standard pinout
- · Available in Plastic SOJ

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM418C256 is a CMOS high speed 262,144 bit X 18 Dynamic Random Access Memory. Its design is optimized for high performance applications such as personal computer, graphics and performance portable computers.

The KM418C256 features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and outputs are fully TTL compatible.

The KM418C256 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

	_			
Vcc [DQ ₁ [DQ ₂ [DQ ₂ [DQ ₄ [DQ ₅ [DQ ₆ [DQ ₇ [DQ ₈ [DQ ₉ [N.C [RAS [N.C [10 2 3 4 5 6 7 8 9 10 11 12 13 14 15		40 39 38 37 36 35 34 33 32 31 30 29 28 27 26	V _{SS} DQ18 DQ17 DQ16 DQ15 DQ15 DQ14 DQ13 DQ14 DQ13 DQ12 DQ10 DQ10 DQ16 DQ16 DQ16 DQ16 DQ16 DQ16 DQ16 DQ16
DQ ₉	11		30	
DQ ₉	11		30	
WC	13		28	UCAS
	17 18		24 23	☐ A ₆ ☐ A ₅
	19 20	0	22 21	□ A₄ □ V _{SS}
	_		_	

KM418C256J

Pin Name	Pin Function	Pin Name	Pin Function		
A ₀ -A ₈	Address Inputs	LCAS	Lower Column		
DQ1-18	Data In/Out		Address Strobe		
Vss	Ground	W	Read/Write Input		
RAS	Row Address Strobe	ŌĒ	Data Output Enable		
UCAS	Upper Column	Vcc	Power (+5V)		
00,10	Address Strobe	N.C.	No Connection		

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	700	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{CC} +1	V
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	
Operating Current*	KM418C256-7			150	mA
(RAS, UCAS or LCAS,	KM418C256-8	ICC1		130	mA
Address Cycling @ t _{RC} =min)	KM418C256-10			110	mA
Standby Current (RAS=UCAS=LCAS=V _{IH})		I _{CC2}	_	2	mA
RAS Only Defrech Current*	KM418C256-7		_	150	mA
RAS-Only Refresh Current* (UCAS=LCAS=V _{IH} , RAS Cycling @ t _{BC} =min)	KM418C256-8	Іссз	-	130	mA
	KM418C256-10			110	mA
Fast Page Mode Current*	KM418C256-7		—	90	mA
(RAS=VIL, UCAS or LCAS,	KM418C256-8	ICC4	_	80	mA
Address Cycling @ t _{PC} =min.)	KM418C256-10		_	70	mA
Standby Current (RAS=UCAS=LCAS≥V _{CC} -0.2)	/)	Icc5	_	1	mA
CAS-Before-BAS Befresh Current*	KM418C256-7		_	150	mA
$(\overline{RAS}, \overline{UCAS} \text{ or } \overline{LCAS} \text{ Cycling } @ t_{RC} = min)$	KM418C256-8	lcce		130	mA
(RAS, UCAS of LCAS Cycling @ (RC-IIIII)	KM418C256-10	_	-	110	mA
Standby Currnet (RAS=VIH, UCAS or LCAS=VIL	Dout=Enable)	lcc7	—	5	mA
Input Leakage Current (Any input 0 <v<sub>IN<6.5V, all other pins not under test=0 volts.)</v<sub>	hL -	-10	10	μA	
Output Leakage Current (Data out is disabled, 0	Output Leakage Current (Data out is disabled, 0V≤V _{OUT} ≤5.5V)				μA
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)	Output Low Voltage Level (I _{OL} =4.2mA)				V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is spedified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}. I_{CC4} address can be changed maximum once while UCAS and LCAS=V_{IH}.

CAPACITANCE (T_A=25°C)

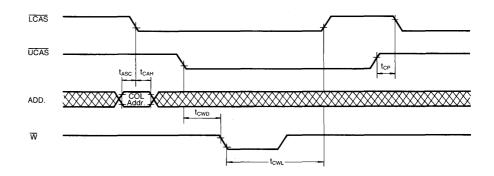
Parameter	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₈)	C _{IN1}	_	6	pF
Input Capacitance (RAS, LCAS, UCAS, W, OE)	C _{IN2}	_	7	pF
Output Capacitance (DQ1-DQ18)	C _{DQ}	_	7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

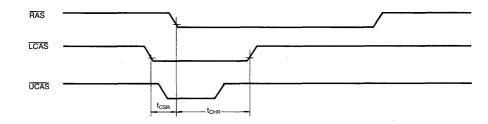
Deservation	Cumbel	KM4	8C256-7			B KM418C256-10		Units	Notes
Parameter	Symbol	Min	Max			Min	Min Max		
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		45	ns	3,11
CAS to output in Low-Z	tCLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	t⊤	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold time referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold time referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twch	15		15		20		ns	ĺ
Write command hold time referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	10	-	10		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Parameter	Symbol	KM41	8C256-7	KM418C256-8		KM418C256-10		Unite	Notes
Falametei	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
data-in hold time referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
Write command set-up time	twcs	0		0		0		ns	8
\overline{CAS} to \overline{W} delay time	tcwD	50		50		60		ns	8
\overline{RAS} to \overline{W} delay time	t _{RWD}	100		110		า35		ns	8
Column address to \overline{W} delay time	tawd	65		70		85		ns	8
CAS set-up time (CAS-before-RAS refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	20		25		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
\overline{CAS} precharge time (\overline{C} -B- \overline{R} counter test cycle)	t _{CPT}	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		40		45		50	ns	3
Fast page mode cycle time	tPC	45		50		55		ns	
Fast Page mode read-modify-write cycle time	t PRWC	100		105		120		ns	
RAS pulse width (Fast page mode)	tRASP	70	100K	80	100K	100	100K	ns	
RAS hold time from CAS precharge	t RHCP	40		45		50		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer turn off delay time from OE	toez	0	20	0	20	0	25	ns	
OE command hold time	tоен	20		20		25		ns	

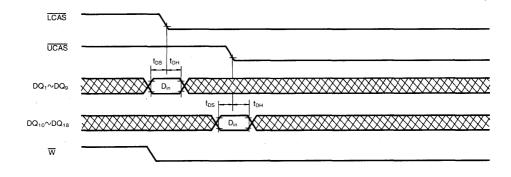

KM418C256 Truth Table

RAS	LCAS	UCAS	w	ŌĒ	DQ _{1∼9}	DQ 10∼18	State
Н	Н	Н	н	н	Hi-Z	Hi-Z	Standby
L	Н	н	н	н	Hi-Z	Hi-Z	Refresh
L	L	Н	н	L	DQ-OUT	Hi-Z	Lower Byte Read
L	Н	L	н	L	Hi-Z	DQ-OUT	Upper Byte Read
L	L	L	н	L	DQ-OUT	DQ-OUT	Word Read
L.	L	н	L	н	DQ-In	Don't Care	Lower Byte Write
L	н	L	L	н	Don't Care	DQ-IN	Upper Byte Write
L	L	L	L	н	DQ-IN	DQ-IN	Word Write
L	L	L	Н	н	Hi-Z	Hi-Z	_

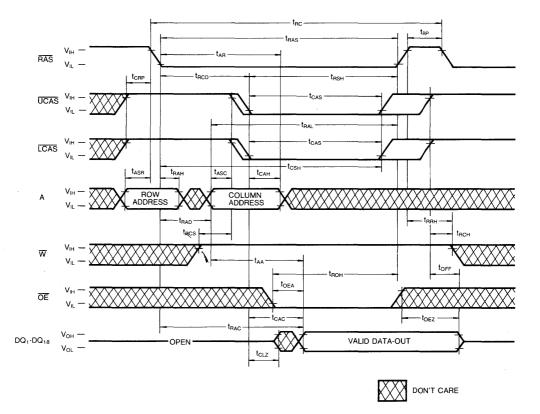


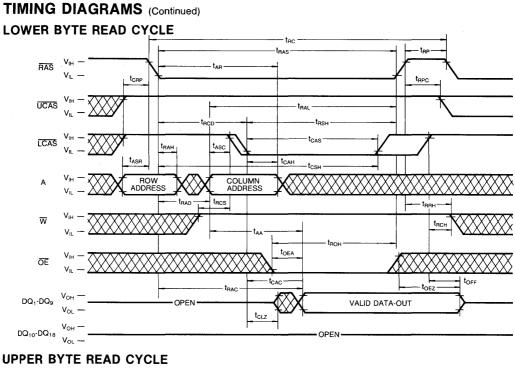
NOTES

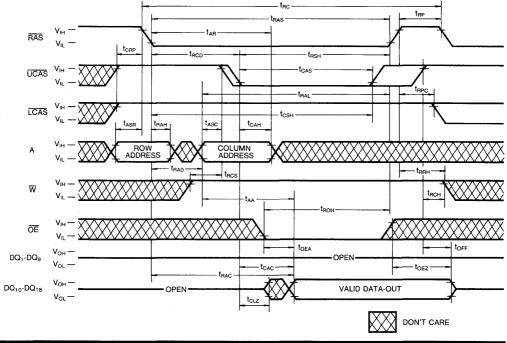
- 1. An initial pause of 200μs is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycles before proper device operation is achieved.
- V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)} and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD(max}) limit insures that t_{RAC(max}) can be met. t_{RCD(max}) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD(max}) limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, tWCR, tDHR are referenced to tRAD(max).
- 7. t_{OFF(max)} defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating aprameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS(min)} the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD(min)}, t_{RWD}≥t_{RWD(min)}, t_{AWD}≥t_{AWD(min)}, t_{AWD}≥t_{AWD(min)}, the the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD(max)} limit insures that t_{RAC(max)} can be met. t_{RAD(max)} is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD(max)} limit, then access time is controlled by t_{AA}.
- 12. tASC, tCAH are referenced to the earlier CAS falling edge.
- 13. t_{CP} is specified from the last CAS rising edge in the previous cycle to the first CAS falling edge in the next cycle.
- 14. t_{CWD} is referenced to the later CAS falling edge at word read-modify-write cycle.
- 15. t_{CWL} is specified from \overline{W} falling edge to the earlier \overline{CAS} rising edge.

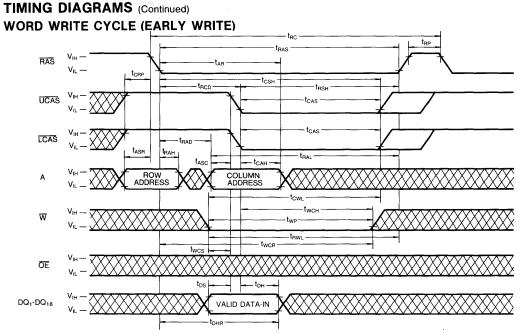


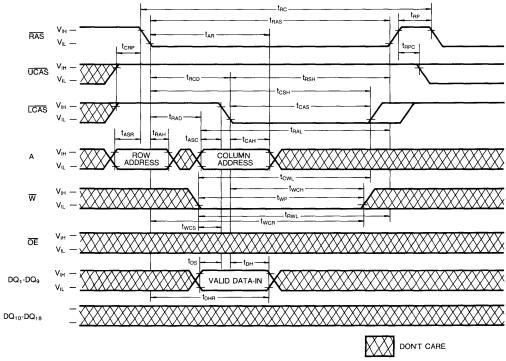
- 16. t_{CSR} is referenced to earlier \overline{CAS} falling low before \overline{RAS} transition low.
- 17. t_{CHR} is referenced to the later \overline{CAS} rising high after \overline{RAS} transition low.

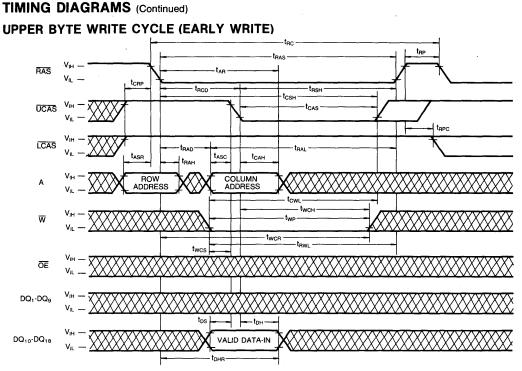


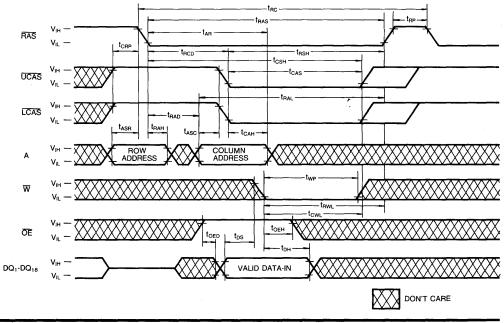

18. t_{DS} , t_{DH} is independetly specified for lower byte $D_{in(1 \sim 9)}$, upper byte $D_{in(1 \sim 18)}$.



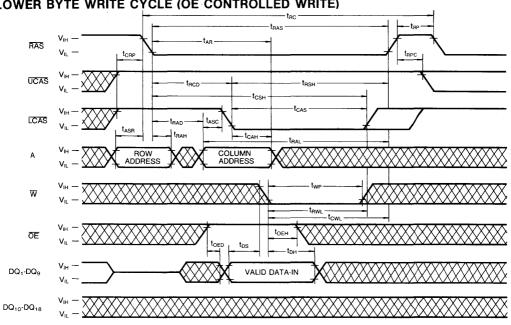

TIMING DIAGRAMS WORD READ CYCCLE



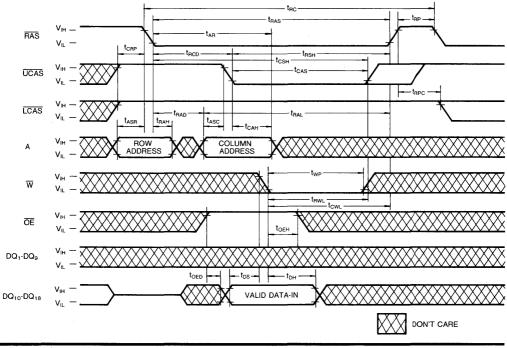


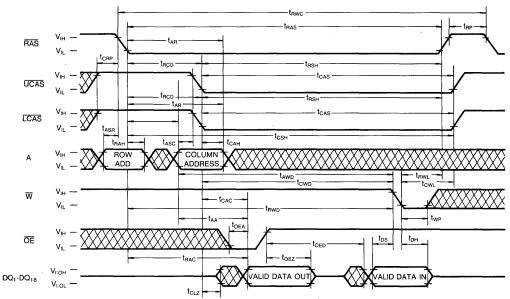


LOWER BYTE WRITE CYCLE (EARLY WRITE)

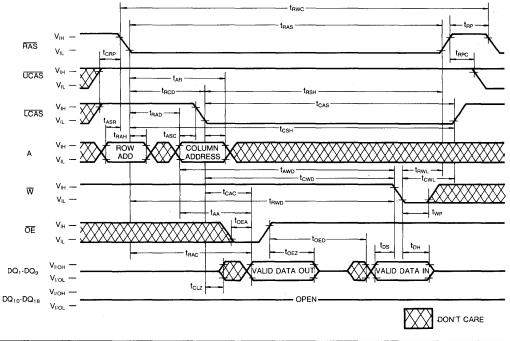


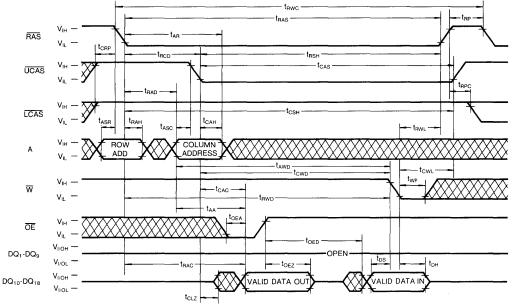
WORD WRITE CYCLE (OE CONTROLLED WRITE)



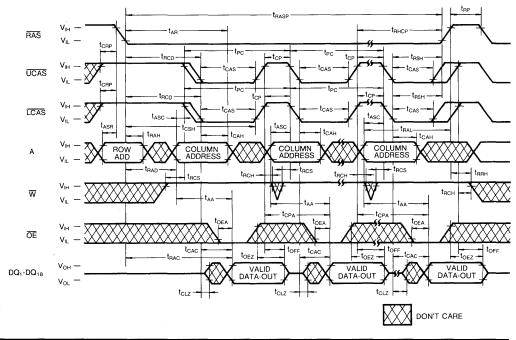


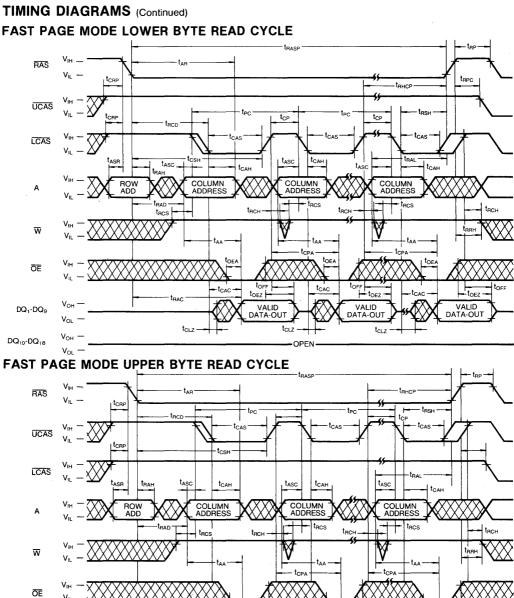
TIMING DIAGRAMS (Continued) LOWER BYTE WRITE CYCLE (OE CONTROLLED WRITE)


UPPER BYTE WRITE CYCLE (OE CONTROLLED WRITE)



TIMING DIAGRAMS (Continued) WORD READ-MODIFY-WRITE CYCLE


READ-MODIFY-LOWER-BYTE-WRITE CYCLE


READ-MODIFY-UPPER-BYTE-WRITE CYCLE

FAST PAGE MODE WORD READ CYCLE

tOEA

t_{CAC}

OPEN

tRAC

t_{CLZ}

tOFF

tCAC

t_{OEZ}

t_{CLZ}

VALID DATA-OUT

tOEA

toez

t_{CLZ}

VALID

DATA-OUT

MSUNG S Electronics

V.,

Vон

VOL

V_{он} -

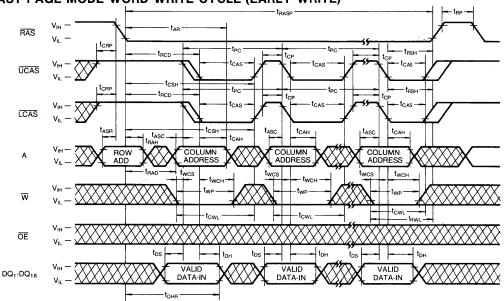
VOL -

DQ1-DQ9

DQ10-DQ18

torr

toez

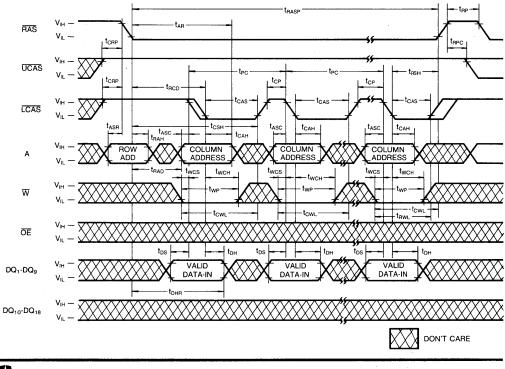

VALID DATA-OUT

DON'T CARE

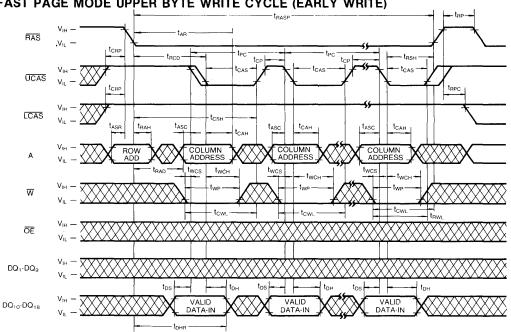
tOEA

tCAC

 \mathbb{X}

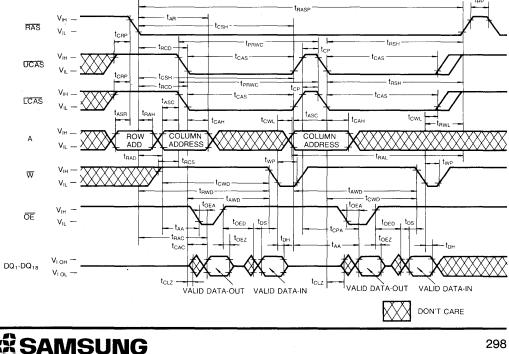


TIMING DIAGRAMS (Continued) FAST PAGE MODE WORD WRITE CYCLE (EARLY WRITE)

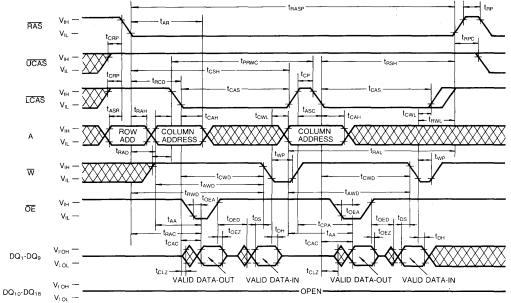

FAST PAGE MODE LOWER BYTE WRITE (EARLY WRITE)

ISUNG

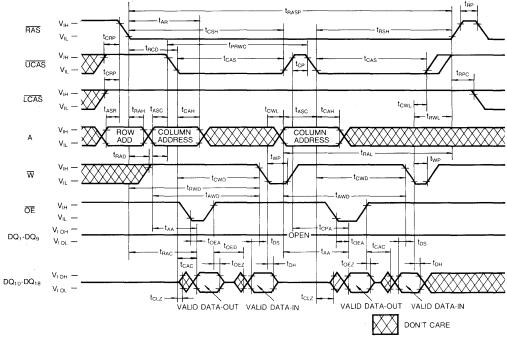
Electronics

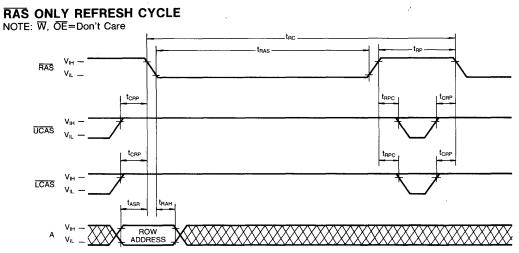


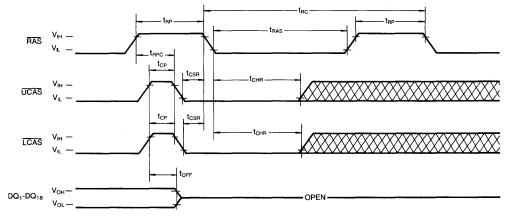
Electronics

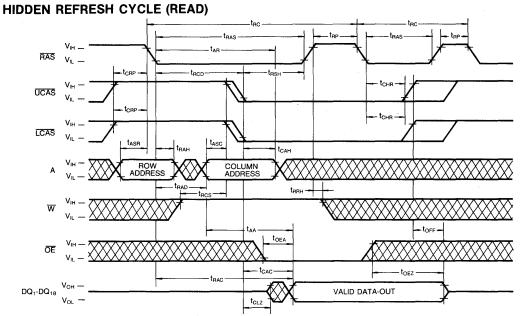


TIMING DIAGRAMS (Continued) FAST PAGE MODE UPPER BYTE WRITE CYCLE (EARLY WRITE)

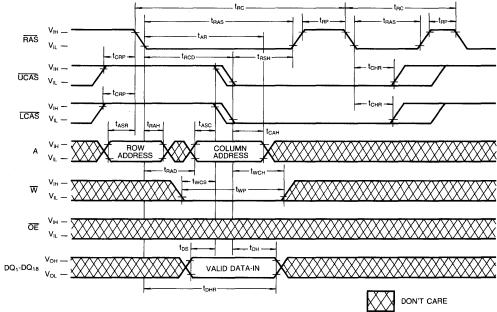

FAST PAGE MODE WORD READ-MODIFY-WRITE CYCLE

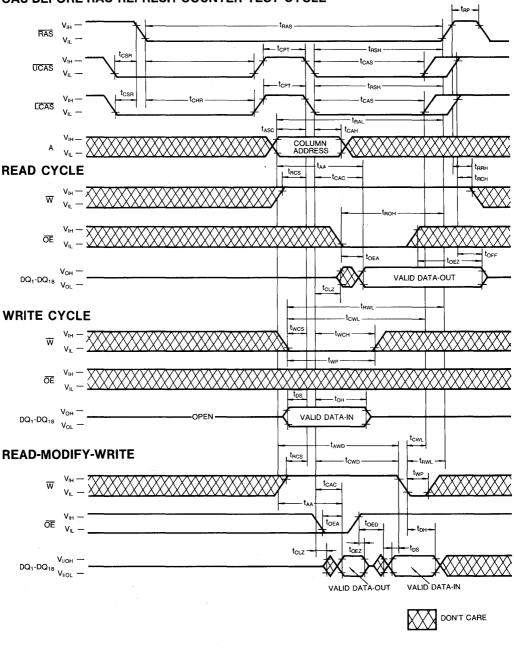





CAS-BEFORE-RAS REFRESH CYCLE

NOTE: W=VIH, OE, A=Don't Care





HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

DEVICE OPERATION

Device Operation

The KM418C256 contains 4,718,592 memory locations arranged in 18 groups of 262,144×1 bit each. Eighteen address bits are required to address a particular memory location. Since the KM418C256 has only 9 address input pins, time multiplexed addressing is used to input 9 row and 9 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (LCAS, UCAS) and the valid row and column address inputs.

Operation of the KM418C256 begins by strobing in a valid row address with RAS while LCAS (UCAS) remains high. Then the address on the 9 address input pins is changed from a row address to a column address and is strobed in by LCAS (UCAS). This is the beginning of any KM418C256 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and LCAS (UCAS) have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_RP) requirement.

RAS and **CAS** Timing

The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM418C256 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/xCAS$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . Additionally the access time also depends on the falling edge of \overline{CAS} and on the valid column address transition. If $x\overline{CAS}$ transitions to a low before $t_{RCD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if $x\overline{CAS}$ transitions low after $t_{RCD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM418C256 can perform early write, late write and

read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} , \overline{OE} , \overline{CCAS} and \overline{UCAS} . In any type of write cycle, Data-in must be valid at or before the falling edge of \overline{W} or xCAS, whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before $\times \overline{CAS}$. The 18 Bit wide data at the data I/O pins is written into the addressed memory cells. Throughout the early write cycle the output remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cells appears at the output before and during the time that data is being written into the same cells. This cycle is achieved by bringin \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. The \overline{OE} input must be low during the time defined by to_{EA} for data to appear at the outputs. If tc_{WD} and tr_{RWD} are not met output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM418C256 DQ pins.

Data Output

The KM418C256 has a three-state output buffers which are controlled by \overline{CAS} and \overline{OE} . Whenever either \overline{CAS} or \overline{OE} is high (V_{IH}), the outputs are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the outputs, the outputs enter into the low impedance state in the time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM418C256 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, \overline{RAS} -only Refresh, Fast Page Mode Write, \overline{CAS} -Before- \overline{RAS} Refresh, \overline{OE} controlled write.

Indeterminate Output State: Delayed Write (t_{CWD} or t_{RWD} times are not met)

Refresh

The data in the KM418C256 is stored as a charge on microscopic capacitor within each memory cell. The stored charge tends to dissipate over time and will af-

DEVICE OPERATION (Continued)

fect data integrity if the charge is not periodically refreshed. Refresh of the individual storage cells is accomplished by accessing all rows within the refresh period (t_{REF}) of within 8ms. There are several ways to accomplish this:

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each of the 512 row address (A0-A8).

 \overline{CAS} -before- \overline{RAS} Refresh: The KM418C256 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If either \overline{LCAS} or \overline{UCAS} input is held low for the specified set up time (t_{CSR}) before \overline{RAS} transitions low, the onchip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending either LCAS or UCAS input active time and cycling \overrightarrow{RAS} . The hidden refresh cycle is actually a \overrightarrow{CAS} before- \overrightarrow{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM418C256 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in the row are automatically refreshed. There are certain ap-

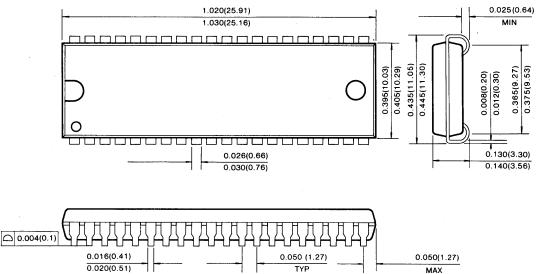
plications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CASbefore-RAS refresh is the preferred method.

Fast Page Mode

The KM418C256 has Fast page mode capability provides high speed read, write or read-modify-write access to all memory locations within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is held low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

CAS-before-RAS Refresh Counter test cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry. The cycle begins as a \overline{CAS} -before- \overline{RAS} refresh operation. Then, if \overline{CAS} is asserted high and then low again while \overline{RAS} is asserted low, the read and write operations are enabled. In this method, the row address bits A0 through A8 are supplied by on chip refresh counter.


Power-Up

If $\overline{RAS} = V_{SS}$ during power-up, the KM418C256 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held a valid V_{IH} in order to minimize power-up current.

Units: Inches (millimeters)

PACKAGE DIMENSION 40-LEAD PLASTIC SMALL OUT-LINE J-LEAD

512K×8 Bit CMOS Dynamic RAM with Fast Page Mode

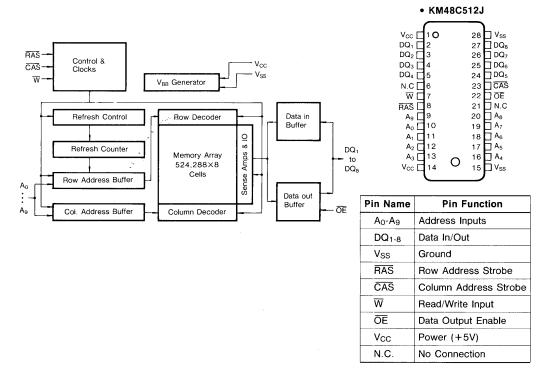
FEATURES

• Performance range:

	tRAC	tcac	t _{RC}
KM48C512-7	70ns	20ns	130ns
KM48C512-8	80ns	20ns	150ns
KM48C512-10	100ns	25ns	180ns

- Fast Page Mode operation
- · Byte Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Early Write or output enable controlled write
- Dual +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC Standard pinout
- · Available in Plastic SOJ

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The Samsung KM48C512 is a CMOS high speed 524,288 bit \times 8 Dynamic Random Access Memory. Its design is optimized for high performance applications such as personal computer, graphics and high performance portable computers.

The KM48C512 features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. All inputs and outputs are fully TTL compatible.

The KM48C512 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{CC} -1 to +7.0		V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation			mW
Short Circuit Output Current	los	los 50	

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	V _{CC} +1	V
Input Low Voltage	VIL	-1.0	_	0.8	· V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS and CAS Cycling @ t _{RC} =min)	KM48C512- 7 KM48C512- 8 KM48C512-10	Icc1	1	105 90 75	mA mA mA
Standby Current (RAS=CAS=VIH)		Icc2		2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KM48C512-7 KM48C512-8 KM48C512-10	Іссз		105 90 75	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS, Address Cycling @ t _{PC} =min.)	KM48C512- 7 KM48C512- 8 KM48C512-10	ICC4		85 75 65	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		ICC5		1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min)	KM48C512- 7 KM48C512- 8 KM48C512-10	Icc6		105 90 75	mA mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} Dout=Enable)		Icc7	-	5	mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		lı.	-10	10	μA
Output Leakage Current (Data out is disabled, 0V≼V _{OUT} ≼5.5V)		lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Voн	2.4	-	V
Output Low Voltage Level (I _{OL} =4.2mA)		V _{OL}	_	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is specified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while RAS=V_{IL}, I_{CC4}, Address can be changed maximum once while CAS=V_{IH}.

2

CAPACITANCE (T_A=25°C)

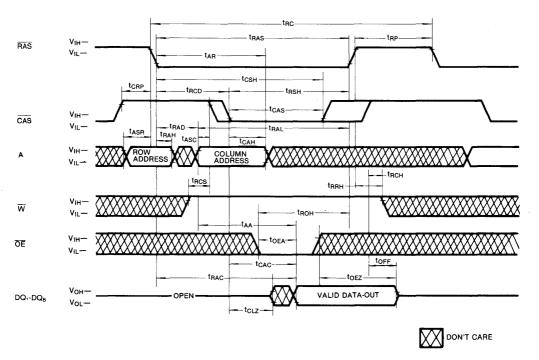
Parameter	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}	_	6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ8)	C _{DQ}	-	7	pF

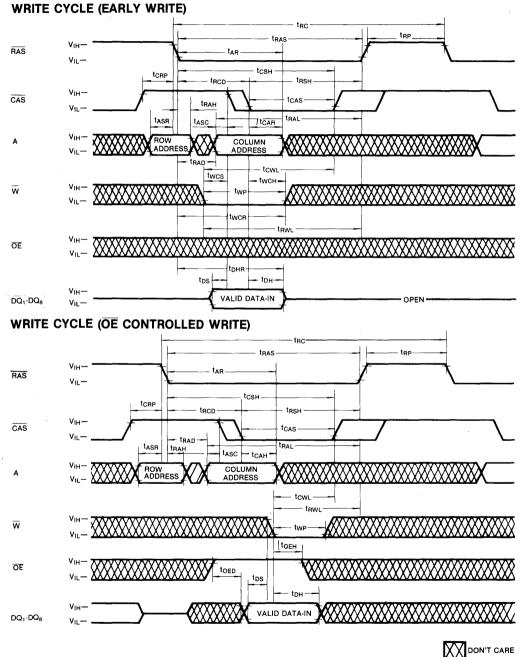
.

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Baramatan	Sumbol	KM4	8C512-7	KM4	8C512-8	8 KM48C512-10		Units	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		. 25	ns	3,4,5
Access time from column address	t _{AA}		35		40		45	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tasc	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold time referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	tRCH	0		0		0		ns	9
Read command hold time referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twch	15		15		20		ns	
Write command hold time referenced to RAS	twcn	55		60		75		ns	6
Write command pulse width	twp	10		10		20		ns	
Write command to RAS lead time	tRWI	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10

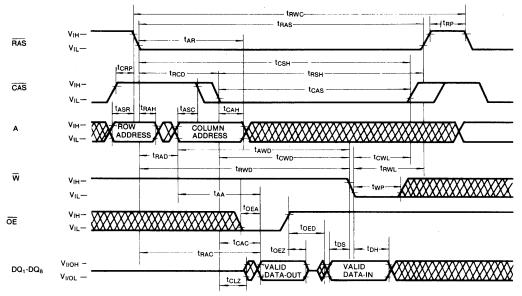
AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)


Parameter	Symbol	KM4	BC512-7	KM4	8C512-8	KM48	BC512-10	Unite	Notes
Falameter	Symbol		Max	Min	Max	Min	Max	Units	NOICES
Data-in hold time referenced to RAS	t _{DHR}	55	_	60		75		ns	6
Refresh period (1024 cycles)	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0	_	0		0		ns	8
\overline{CAS} to \overline{W} delay time	tcwD	50		50		60		ns	8
RAS to W delay time	t _{RWD}	100		110		135		ns	8
Column address to \overline{W} delay time	tawd	65		70		85		ns	8
CAS set-up time (CAS-before-RAS refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	20		25		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
CAS precharge time (C-B-R counter test cycle)	t _{CPT}	35		40		50		ns	
Access time from CAS precharge	t _{CPA}		40		45		50	ns	3
Fast page mode cycle time	t _{PC}	45		50		55		ns	
Fast Page mode read-modify-write cycle time	t PRWC	100		105		120		ns	
RAS pulse width (Fast page mode)	tRASP	70	100K	80	100K	100	100K	ns	
RAS hold time from CAS precharge	t RHCP	40		45		50		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
OE to data delay	tOED	20		20		25		ns	
Output buffer turn off delay time from OE	t _{OEZ}	0	20	0	20	0	25	ns	
OE command hold time	tOEH	20		20		25		ns	

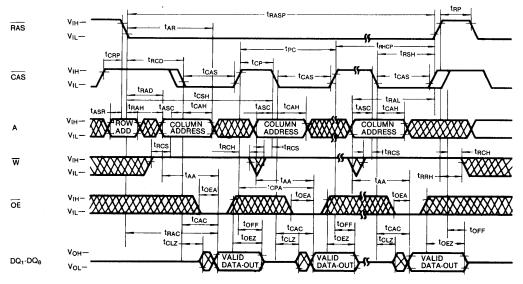

NOTES

- 1. An initial pause of 200μs is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycle before proper device operation is achieved.
- 2. V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH}(min) and V_{IL}(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- t_{OFF(max)} defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} to V_{OL}.
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electric characteristics only. If t_{WCS}≥t_{WCS}(min) the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD}(min), t_{RWD}≥t_{RWD}(min) and t_{AWD}≥t_{AWD}(min), then the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 9. Either t_{RCH} or r_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD}(max) limit insures that t_{RAC}(max) can be met. t_{RAD}(max) is specified as a reference point ony. If t_{RAD} is greater than the specified t_{RAD}(max) limit, then access time is controlled by t_{AA}.

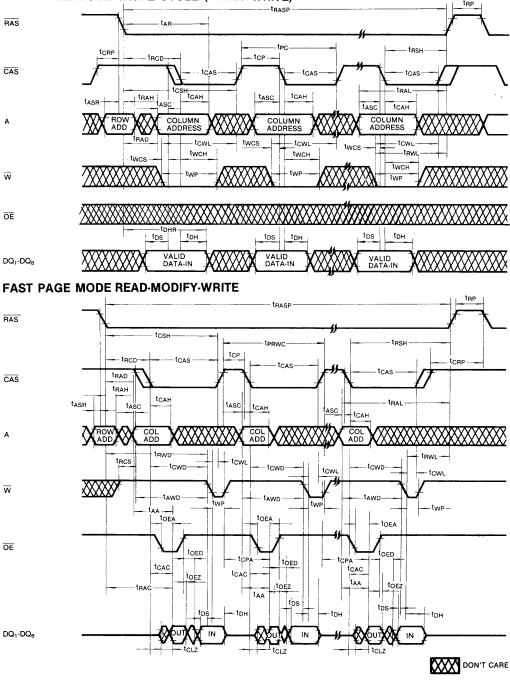
TIMING DIAGRAMS



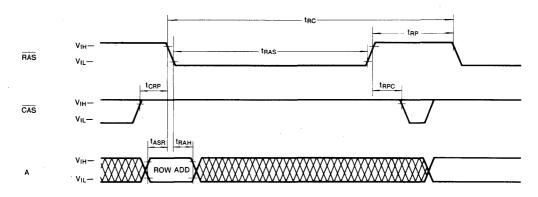
READ CYCLE



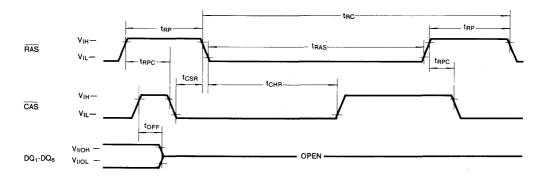
READ-MODIFY-WRITE CYCLE


FAST PAGE MODE READ CYCLE

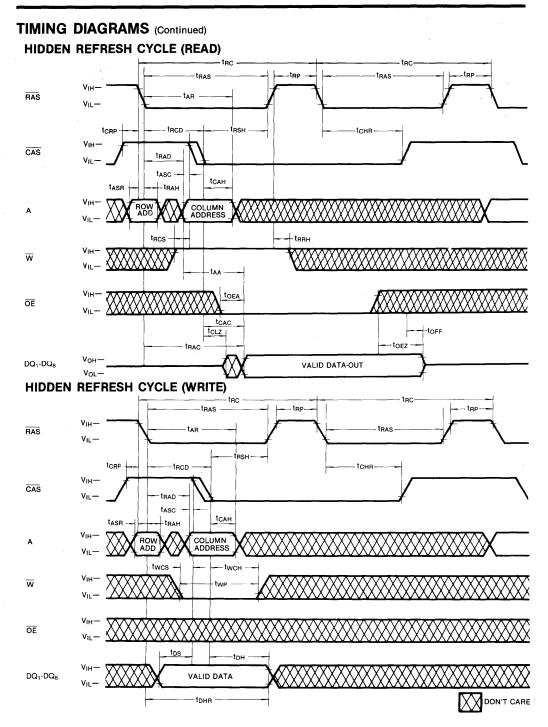
DON'T CARE



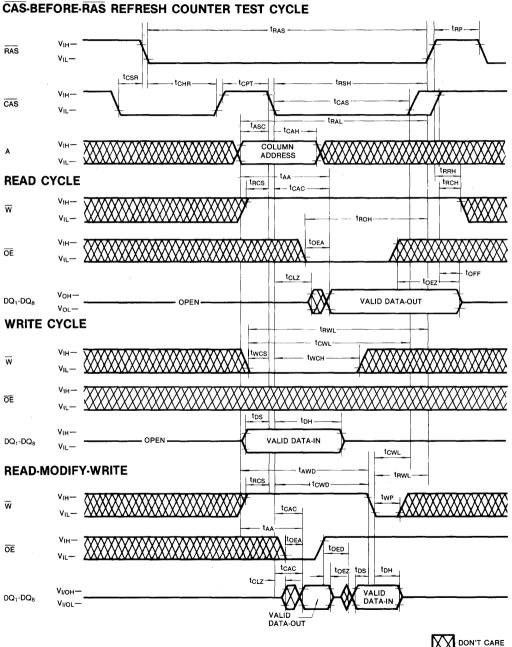
TIMING DIAGRAMS (Continued) FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS-ONLY REFRESH CYCLE

Note: \overline{W} , \overline{OE} = Don't care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: $\overline{W} = V_{IH}$, \overline{OE} , A=Don't Care



TIMING DIAGRAMS (Continued) CAS-BEFORE-RAS REFRESH COUNTER TEST CYCL

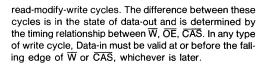
DEVICE OPERATION

Device Operation

The KM48C512 contains 4,194,304 memory locations arranged in 8 groups of 524,288×1 bit each. Twentyaddress bits are required to address a particular memory location. Since the KM48C512 has only 10 address input pins, time multiplexed addressing is used to input 10 row and 9 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (TAS), the column address strobe (TAS) and the valid row and column address inputs.

Operation of the KM48C512 begins by strobing in a valid row address with $\overline{\text{RAS}}$ while $\overline{\text{CAS}}$ remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by $\overline{\text{CAS}}$. This is the beginning of any KM48C512 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ have returned to the high state. Another cycle can be initiated after $\overline{\text{RAS}}$ remains high long enough to satisfy the $\overline{\text{RAS}}$ precharge time (t_{RP}) requirement.

RAS and CAS Timing


The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM48C512 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . Additionally the access time also depends on the falling edge of \overline{CAS} and on the valid column address transition. If \overline{CAS} transitions to a low before $t_{RCD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CAS} transitions low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM48C512 can perform early write, late write and

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The 8-bit wide data at the data I/O pins is written into the addressed memory cells. Throughout the early write cycle the output remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cells appears at the output before and during the time that data is being written into the same cells. This cycle is achieved by bringin \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. The \overline{OE} input must be low during the time defined by t_{OEA} for data to appear at the outputs. If t_{CWD} and t_{RWD} are not met output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM48C512 DQ pins.

Data Output

The KM48C512 has a three-state output buffers which are controlled by \overline{CAS} and \overline{OE} . Whenever either \overline{CAS} or \overline{OE} is high (V_{IH}), the outputs are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the outputs, the outputs enter into the low impedance state in the time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM48C512 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-Before-RAS Refresh, OE controlled write, CAS-only cycle.

Indeterminate Output State: Delayed Write (t_{CWD} or t_{RWD} times are not met)

Refresh

The data in the KM48C512 is stored as a charge on microscopic capacitor within each memory cell. The stored charge tends to dissipate over time and will af-

2

DEVICE OPERATION (Continued)

fect data integrity if the charge is not periodically refreshed. Refresh of the individual storage cells is accomplished by accessing all rows within the refresh period (t_{REF}) of within 16ms. There are several ways to accomplish this:

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each of the 1024 row address (A0-A9).

 \overline{CAS} -before- \overline{RAS} Refresh: The KM48C512 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If either \overline{CAS} input is held low for the specified set up time (t_{CSR}) before \overline{RAS} transitions low, the onchip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending either input active time and cycling \overline{RAS} . The hidden refresh cycle is actually a \overline{CAS} -before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM48C512 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in the row are automatically refreshed. There are certain applications in which it might be advantageous to perform

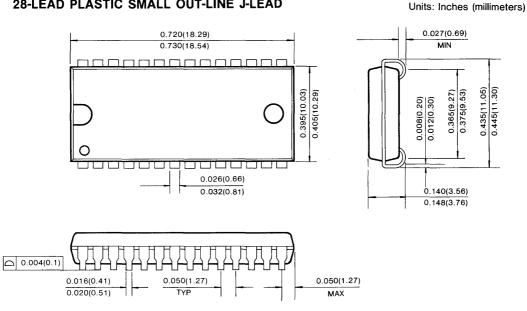
refresh in this manner but in general RAS-only or CASbefore RAS refresh is the preferred method.

Fast Page Mode

The KM48C512 has Fast page mode capability provides high speed read, write or read-modify-write access to all memory locations within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is held low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

CAS-before-RAS Refresh Counter test cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry. The cycle begins as a \overline{CAS} -before- \overline{RAS} refresh operation. Then, if \overline{CAS} is asserted high and then low again while \overline{RAS} is asserted low, the read and write operations are enabled. In this method, the row address bits A0 through A9 are supplied by on chip refresh counter.


Power-Up

If $\overline{\text{RAS}}=V_{\text{SS}}$ during power-up, the KM48C512 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ track with V_{CC} during power-up or be held a valid V_{IH} in order to minimize power-up current.

PACKAGE DIMENSION

28-LEAD PLASTIC SMALL OUT-LINE J-LEAD

28 🗖 V_{SS}

27 DQ₉ 26 DQ₈

25 DQ7

24 DQ6

23 CAS 22 OE 21 N.C

20 🗖 A8

19 A7

18 A6 17 A5

16 A4

15 □ v_{ss}

No Connection

512KX9 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

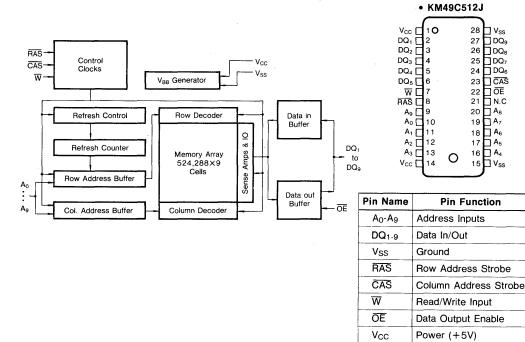
• Performance range:

	trac	tCAC	trc
KM49C512-7	70ns	20ns	130ns
KM49C512-8	80ns	20ns	150ns
KM49C512-10	100ns	25ns	180ns

- Fast Page Mode operation
- Byte Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- · Early Write or output enable controlled write
- Dual + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC Standard pinout ٠
- Available in Plastic SOJ

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION


The Samsung KM49C512 is a CMOS high speed 524,288 bit X 9 Dynamic Random Access Memory. Its design is optimized for high performance applications such as personal computer, graphics and high performance portable computers.

The KM49C512 features Fast Page Mode operation which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RASonly refresh. All inputs and outputs are fully TTL compatible.

The KM49C512 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION (Top Views)

N.C.

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation			mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS and CAS Cycling @ t _{RC} =min)	KM49C512- 7 KM49C512- 8 KM49C512-10	Icc1		110 95 80	mA mA mA
Standby Current (RAS=CAS=VIH)		lcc2		2	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KM49C512- 7 KM49C512- 8 KM49C512-10	Іссз		110 95 80	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS, Address Cycling @ t _{PC} =min.)	KM49C512- 7 KM49C512- 8 KM49C512-10	Icc4		85 75 65	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		lcc5		1	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t _{RC} =min)	KM49C512-7 KM49C512-8 KM49C512-10	ICC5		110 95 80	mA mA mA
Standby Current (RAS=V _{IH} , CAS=V _{IL} Dout=Enable)	.	Icc7		5	mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		l _{iL}	-10	10	μΑ
Output Leakage Current (Data out is disabled, 0V≼V _{OUT} ≼5.5V)		IOL	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4		V
Output Low Voltage Level (IoL=4.2mA)		V _{OL}	-	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC6} are dependent on output loading and cycle rates. Specified value are obtained with the output open. I_{CC} is spedified as average current. I_{CC1}, I_{CC3}, I_{CC6}, Address can be changed maximum two times while \overline{RAS} =V_{IL}, I_{CC4}, Address can be changed maximum once while \overline{CAS} =V_{IH}.

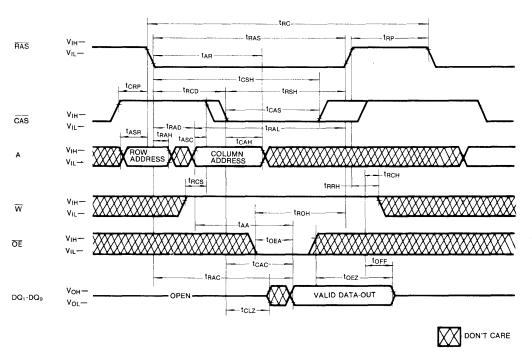
CAPACITANCE (T_A=25°C)

Parameter	Symbol	Min	Мах	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}		6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}	_	7	pF
Output Capacitance (DQ1-DQ9)	C _{DQ}		7	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Parameter	Symbol	KM49C512-7		KM49C512-8		KM49C512-10		linite	
		Min	Max	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Read-modify-write cycle time	tRWC	185		205		245		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4,11
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		45	ns	3,11
CAS to output in Low-Z	t _{CLZ}	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold time referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time referenced to CAS	tRCH	0		0		0		ns	9
Read command hold time referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold time referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	10		10		20		ns	
Write command to RAS lead time	t _{RWI}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	tDH	15		15		20		ns	10

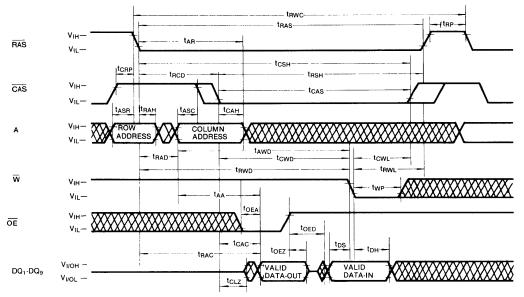
AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)


Parameter	Symbol	KM49C512-7		KM49C512-8		KM49C512-10		Units	Notes
		Min	Max	Min	Max	Min	Max	Units	Notes
Data-in hold time referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period (1024 cycles)	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
\overline{CAS} to \overline{W} delay time	tcwD	50		50		60		ns	8
RAS to W delay time	t _{RWD}	100		110		135		ns	8
Column address to \overline{W} delay time	tawd	65		70		85		ns	8
CAS set-up time (CAS-before-RAS refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (CAS-before-RAS refresh)	tCHR	20		25		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
CAS precharge time (C-B-R counter test cycle)	tсрт	35		40		50		ns	
Access time from CAS precharge	tCPA		40		45		50	ns	3
Fast page mode cycle time	t _{PC}	45		50		55		ns	
Fast Page mode read-modify-write cycle time	t PRWC	100		105		120		ns	
RAS pulse width (Fast page mode)	tRASP	70	100K	80	100K	100	100K	ns	
RAS hold time from CAS precharge	t RHCP	40		45		50		ns	
CAS precharge time (Fast page mode)	t _{CP}	10		10		10		ns	
RAS hold time referenced to OE	t _{ROH}	20		20		20		ns	
OE access time	tOEA		20		20		25	ns	
ÕĒ to data delay	tOED	20		20		25		ns	
Output buffer turn off delay time from OE	tOEZ	0	20	0	20	0	25	ns	
ÖE command hold time	t _{OEH}	20		20	-	25		ns	

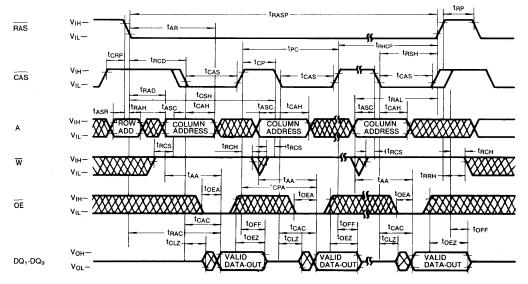
NOTES

- 1. An initial pause of 200μs is required after power-up followed by any 8 RAS-only or CAS-before RAS refresh cycle before proper device operation is achieved.
- V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH}(min) and V_{IL}(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD}(max) limit insures that t_{RAC}(max) can be met. t_{RCD}(max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD}(max) limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that t_{RCD}≥t_{RCD}(max).
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD}(max).
- 7. t_{OFF(max)} defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} to V_{OL}.
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electric characteristics only. If t_{WCS}≥t_{WCS}(min) the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD}≥t_{CWD}(min), t_{RWD}≥t_{RWD}(min) and t_{AWD}≥t_{AWD}(min), then the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.
- 9. Either t_{RCH} or r_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD}(max) limit insures that t_{RAC}(max) can be met. t_{RAD}(max) is specified as a reference point ony. If t_{RAD} is greater than the specified t_{RAD}(max) limit, then access time is controlled by t_{AA}.

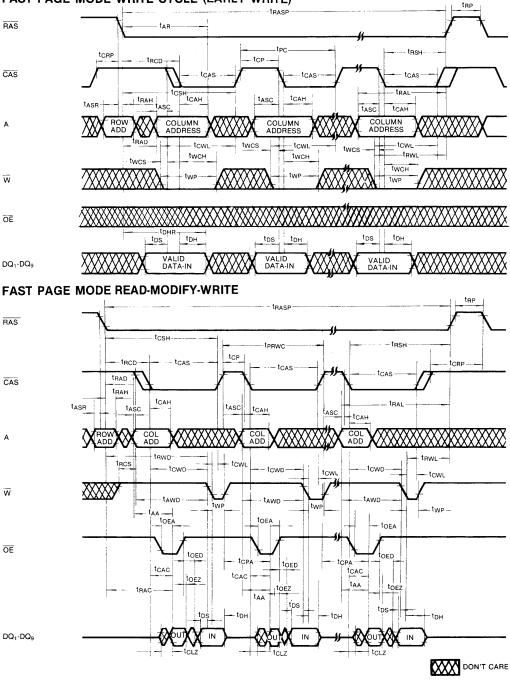
TIMING DIAGRAMS


READ CYCLE

TIMING DIAGRAMS (Continued) WRITE CYCLE (EARLY WRITE) t_{RC} t_{RP} tRAS V1H---RAS tAR-VILtcsн **t**CRP tRCD-– t_{RSH} V_{IH}-CAS tCAS tRAH VIL tear tASR tasc 7tCAH VIH-ROW COLUMN ADDRESS Α ADDRESS XY VIL-- tradtowL twcs - twch VIHw twp VILtwcr tRWI VIH-ŌĒ v_{ii} t_{DHR} tDS — tрн-VIH---VALID DATA-IN DQ1-DQ9 OPEN VIL-WRITE CYCLE (OE CONTROLLED WRITE) tec TRAS t_{RP}-V_{1H}t_{AR} RAS VILtcsHtCRP t_{RSH} · tRCD VIH-CAS tcas VIL HTRAD tRAL tasr traņ tasc - tCAH VIH-ROW COLUMN Α VIL ADDRESS tcwL tRWL VIH w twr VIL **tOEH** VIH-ŌĒ toed VIL t_{DS} - t_{DH} ViH-VALID DATA-IN ∞ DQ1-DQ9 VIL-

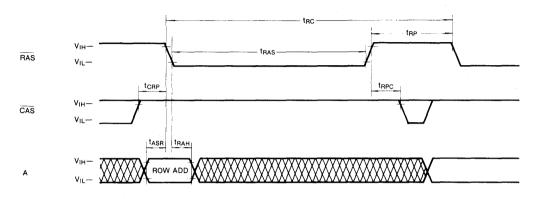


READ-MODIFY-WRITE CYCLE

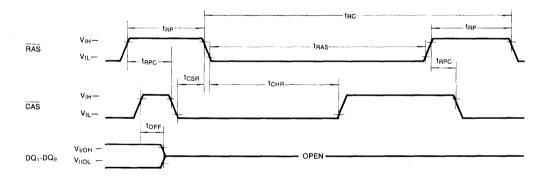

FAST PAGE MODE READ CYCLE

DON'T CARE

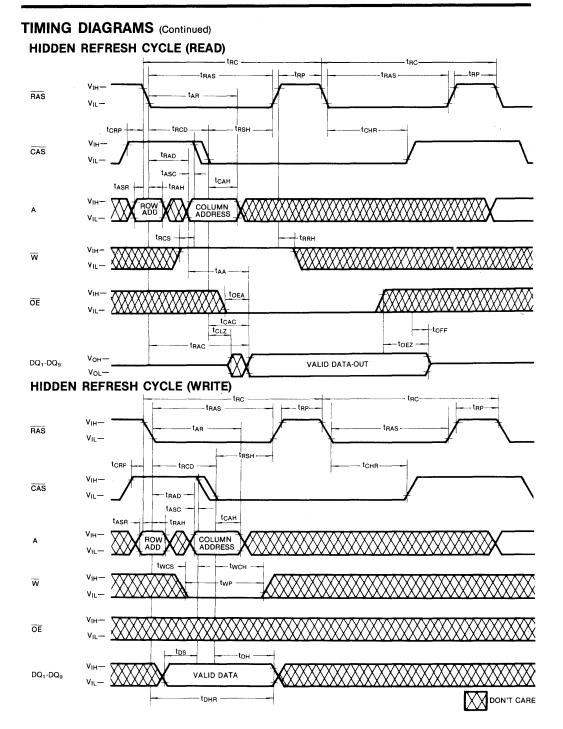
TIMING DIAGRAMS (Continued) FAST PAGE MODE WRITE CYCLE (EARLY WRITE)



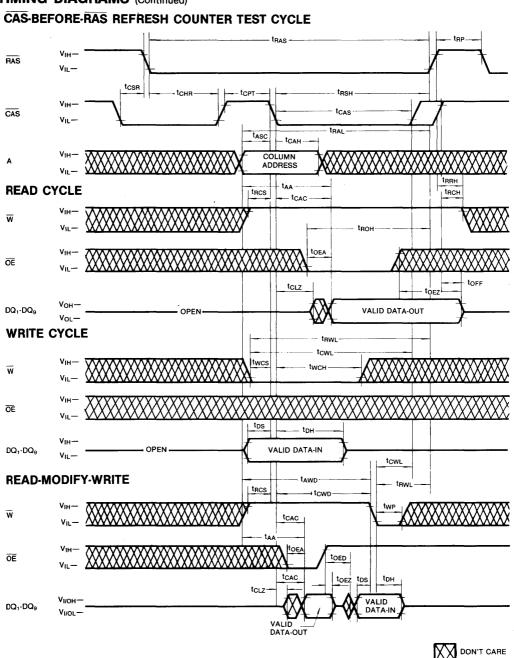
2


RAS-ONLY REFRESH CYCLE

Note: \overline{W} , \overline{OE} = Don't care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: $\overline{W} = V_{IH}$, \overline{OE} , A=Don't Care



2

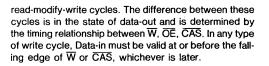
DEVICE OPERATION

Device Operation

The KM49C512 contains 4,718,592 memory locations arranged in 9 groups of 524,288×1 bit each. Twentyaddress bits are required to address a particular memory location. Since the KM49C512 has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address inputs.

Operation of the KM49C512 begins by strobing in a valid row address with \overline{RAS} while \overline{CAS} remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by \overline{CAS} . This is the beginning of any KM49C512 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both \overline{RAS} and \overline{CAS} have returned to the high state. Another cycle can be initiated after \overline{RAS} remains high long enough to satisfy the \overline{RAS} precharge time (t_{RP}) requirement.

RAS and CAS Timing


The minimum \overline{RAS} and \overline{CAS} pulse widths are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing \overline{RAS} low, it must not be aborted prior to satisfying the minimum \overline{RAS} and \overline{CAS} pulse widths. In addition, a new cycle must not begin until the minimum \overline{RAS} precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM49C512 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . Additionally the access time also depends on the falling edge of \overline{CAS} and on the valid column address transition. If \overline{CAS} transitions to a low before $t_{RCD}(max)$ then the access time to valid data is specified by $t_{RAC}(min)$. However, if \overline{CAS} transitions low after $t_{RCD}(max)$ or if the column address becomes valid after $t_{RAD}(max)$, access is specified by t_{CAC} or t_{AA} . In order to achieve the minimum access time, $t_{RAC}(min)$, it is necessary to meet both $t_{RCD}(max)$ and $t_{RAD}(max)$.

Write

The KM49C512 can perform early write, late write and

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The 9-bit wide data at the data I/O pins is written into the addressed memory cells. Throughout the early write cycle the output remains in the Hi-Z state. In the early write cycle the output buffers remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cells appears at the output before and during the time that data is being written into the same cells. This cycle is achieved by bringin \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. The \overline{OE} input must be low during the time defined by toEA for data to appear at the outputs. If tcwD and taWD are not met output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM49C512 DQ pins.

Data Output

The KM49C512 has a three-state output buffers which are controlled by \overline{CAS} and \overline{OE} . Whenever either \overline{CAS} or \overline{OE} is high (V_{IH}), the outputs are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the outputs, the outputs enter into the low impedance state in the time specified by t_{CLZ} after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after t_{CLZ} and before the valid data appears at the output. The timing parameters t_{CAC}, t_{RAC} and t_{AA} specify when the valid data will be present at the output. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM49C512 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-Before-RAS Refresh, OE controlled write, CAS-only cycle.

Indeterminate Output State: Delayed Write (t_{CWD} or t_{RWD} times are not met)

Refresh

The data in the KM49C512 is stored as a charge on microscopic capacitor within each memory cell. The stored charge tends to dissipate over time and will af-

DEVICE OPERATION (Continued)

fect data integrity if the charge is not periodically refreshed. Refresh of the individual storage cells is accomplished by accessing all rows within the refresh period (t_{REF}) of within 16ms. There are several ways to accomplish this:

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This cycle must be repeated for each of the 1024 row address (A0-A9).

 \overline{CAS} -before- \overline{RAS} Refresh: The KM49C512 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If either \overline{CAS} input is held low for the specified set up time (t_{CSR}) before \overline{RAS} transitions low, the onchip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending either input active time and cycling \overline{RAS} . The hidden refresh cycle is actually a \overline{CAS} -before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM49C512 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in the row are automatically refreshed. There are certain applications in which it might be advantageous to perform

refresh in this manner but in general RAS-only or CASbefore-RAS refresh is the preferred method.

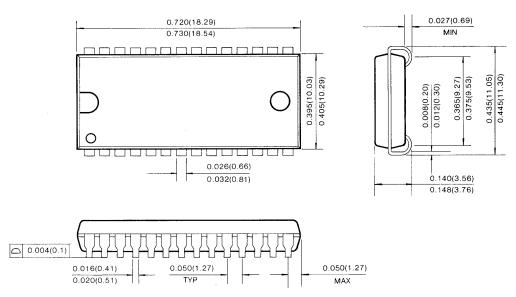
Fast Page Mode

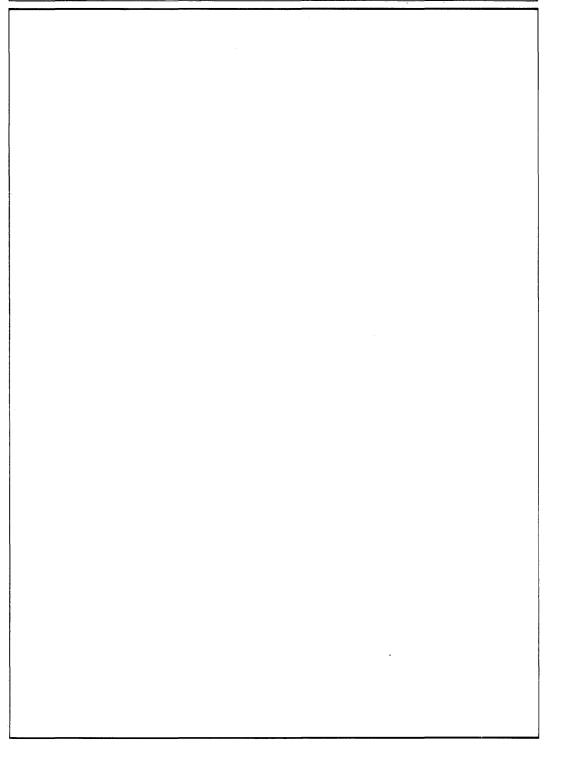
The KM49C512 has Fast page mode capability provides high speed read, write or read-modify-write access to all memory locations within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is held low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

CAS-before-RAS Refresh Counter test cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry. The cycle begins as a \overline{CAS} -before- \overline{RAS} refresh operation. Then, if \overline{CAS} is asserted high and then low again while \overline{RAS} is asserted low, the read and write operations are enabled. In this method, the row address bits AO through A9 are supplied by on chip refresh counter.

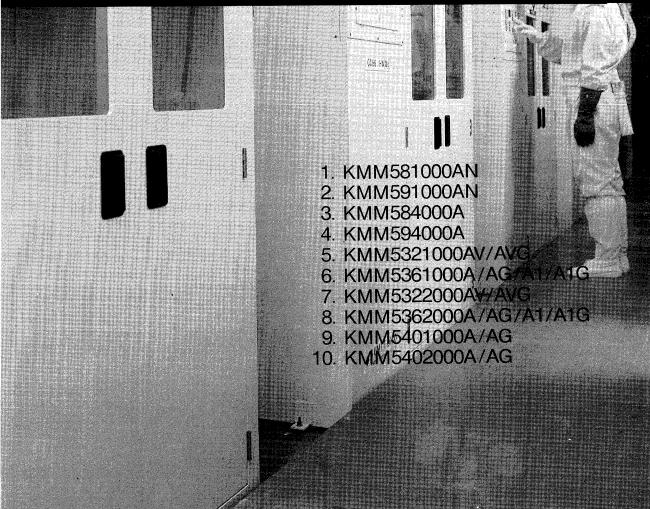
Power-Up


If \overline{RAS} =V_{SS} during power-up, the KM49C512 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held a valid V_{IH} in order to minimize power-up current.


PACKAGE DIMENSION

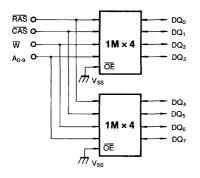
28-LEAD PLASTIC SMALL OUT-LINE J-LEAD

Units: Inches (millimeters)



4M DRAM MODULES DATA SHEETS 3

1M×8 DRAM SIMM Memory Module

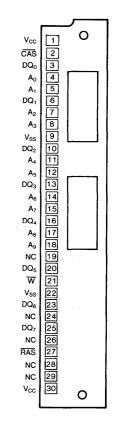

FEATURES

• Performance range:

	trac		tRC
KMM581000AN- 7	70ns	20ns	130ns
KMM581000AN- 8	80ns	20ns	150ns
KMM581000AN-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- · JEDEC standard pinout

FUNCTIONAL BLOCK DIAGRAM


Pin Name	Pin Function			
A0-A9	Address Inputs			
DQ ₀₋₇	Data In/Out			
W	Read/Write Input			
RAS	Row Address Strobe			
CAS	Column Address Strobe			
Vcc	Power (+5V)			
V _{SS}	Ground			
N.C.	No connection			

GENERAL DESCRIPTION

The Samsung KMM581000AN is a 1M bit \times 8 Dynamic RAM high density memory module. The Samsung KMM581000AN consist of two 4M bit DRAMs (KM44C1000AJ - 1M×4) in 20-pin SOJ package mounted on a 30-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted for each DRAM.

The KMM581000AN is a Single In-line Memory Module with edge connections and is intended for mounting into 30-pin edge connector sockets.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS*

Item	item Symbol		Units
Voltage on Any Pin Relative to Vss	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	1.2	W
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	٧
Input High Voltage	VIH	2.4	_	V _{CC} +1	V
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM581000AN- 7 KMM581000AN- 8 KMM581000AN-10	Icc1		210 190 170	mA mA mA
Standby Current (RAS=CAS=V _{IH})		Icc2	_	4	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM581000AN- 7 KMM581000AN- 8 KMM581000AN-10	Іссз	-	210 190 170	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM581000AN- 7 KMM581000AN- 8 KMM581000AN-10	ICC4	_	160 140 120	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		Icc5	_	2	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t_{RC} =min.)	KMM581000AN- 7 KMM581000AN- 8 KMM581000AN-10	ICC6	-	210 190 170	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		II.	-20	20	μΑ
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)	s.	I _{OL}	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	—	V
Output Low Voltage Level (I _{OL} =4.2mA)		VoL		0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

CAPACITANCE (T_A=25°C)

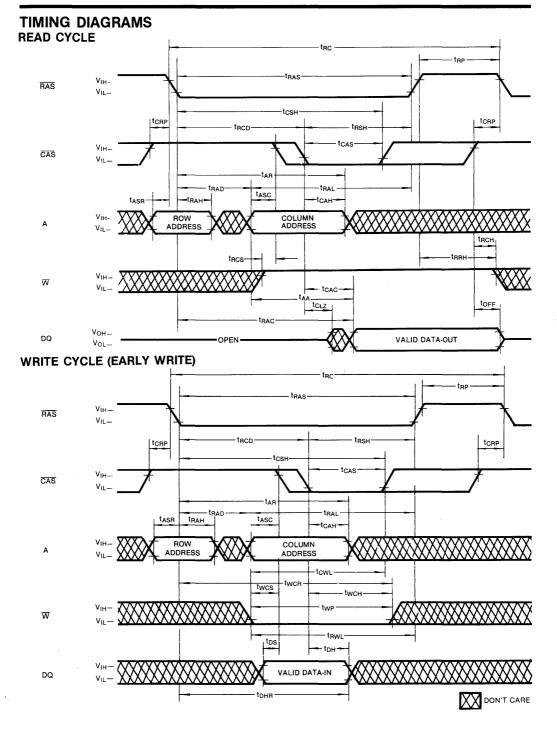
Item	Symbol	Min	Max	Unit
Input Capacitance (A0-A9, RAS, CAS, W)	C _{IN1}		25	pF
Input/Output Capacitance (DQ0-DQ7)	C _{DQ}	-	15	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Or station	Sumbal	KMM5	81000AN-7	KMM581000AN-8		KMM5	81000AN-10	Unit	
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	tRAC	,	70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	torr	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsH	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15	-	ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twch	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6

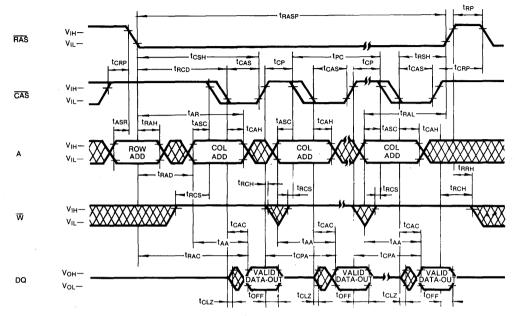
AC CHARACTERISTICS (Continued)

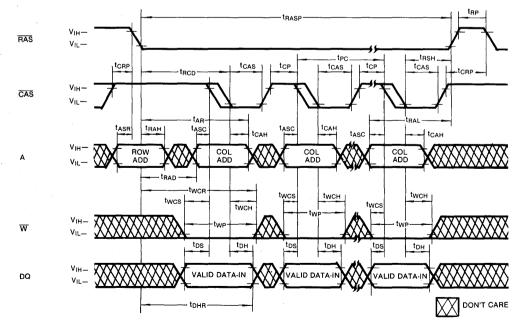
	0hal	KMM	581000AN-7	KMM581000AN-8		KMM581000AN-10			
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	t CHR	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS precharge	t _{CPA}	45		45		55		ns	3
Fast page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	tRASP	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twrp	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	


NOTES

- An initial pause of 200μs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH(\text{min})}$ and $V_{IL(\text{max})}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(\text{min})}$ and $V_{IL(\text{max})}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that tRCD>tRCD(max).
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

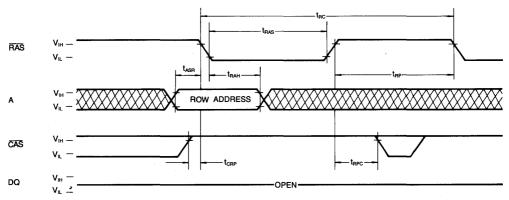
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

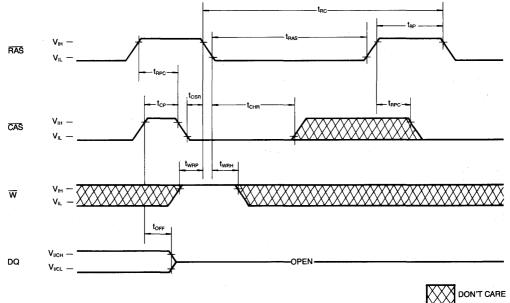

DRAM MODULES



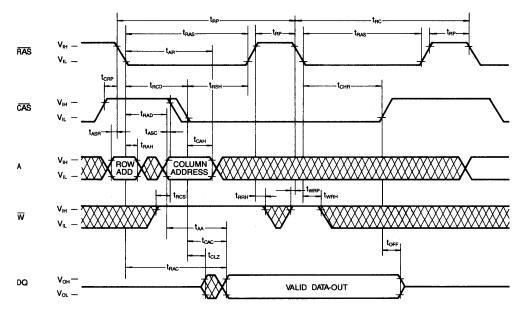
3

TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

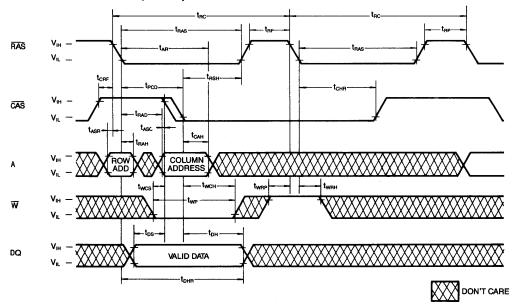

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS-ONLY REFRESH CYCLE

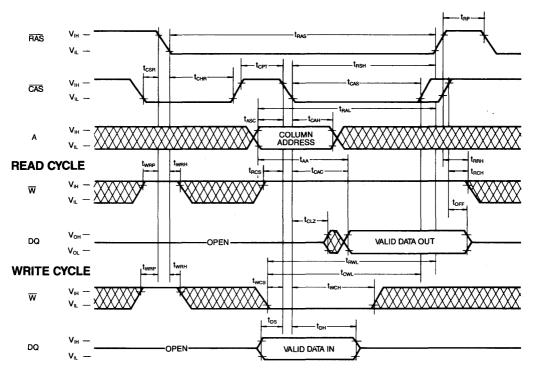
Note: W=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care

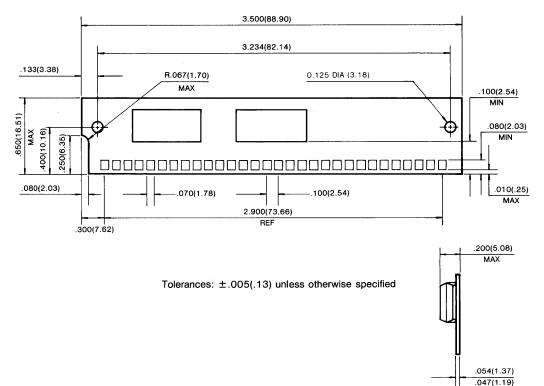


HIDDEN REFRESH CYCLE (READ)



HIDDEN REFRESH CYCLE (WRITE)

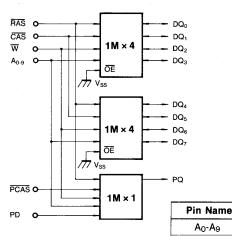
CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



PACKAGE DIMENSIONS

Units: Inches (millimeters)

1M×9 DRAM SIMM Memory Module


FEATURES

• Performance range:

	tRAC	tcac	t _{RC}
KMM591000AN- 7	70ns	20ns	130ns
KMM591000AN- 8	80ns	20ns	150ns
KMM591000AN-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden refresh capability
- TTL compatible inputs and outputs
- Single +5V±10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

FUNCTIONAL BLOCK DIAGRAM

GENERAL	DESCRIPTION

The Samsung KMM591000AN is a 1M bit \times 9 Dynamic RAM high density memory module. The Samsung KMM591000AN consist of two 4M bit DRAMs (KM44C1000AJ - 1M \times 4) in 20-pin SOJ package and 1M bit DRAM (KM41C1000BJ - 1M \times 1) in 20-pin SOJ package mounted on a 30-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted for each DRAM.

The KMM591000AN is a Single In-line Memory Module with edge connections and is intended for mounting into 30-pin edge connector sockets.

PIN CONFIGURATIONS

Pin Function

Address Inputs

Read/Write Input

CAS for Parity

Power (+5V)

No connection

Ground

Data In for Parity

Data Out for Parity

Row Address Strobe

Column Address Strobe

Data In/Out

DQ0-7

w

RAS

CAS

PCAS

PD

PQ

Vcc

Vss

N.C.

0 1 V_{CC} CAS 2 DQ₀ 3 A₀ 4 5 A_1 DQ₁ 6 7 A_2 8 A_3 9 Vss 10 DQ_2 11 A4 12 A₅ DQ_3 13 A_6 14 15 A7 16 DQ₄ 17 A₈ 18 A₉ NC 19 20 DQ₅ w 21 V_{SS} DQ₆ 23 NC 24 DQ₇ 25 26 PQ RAS 27 PCAS 28 PD 29 30 Vcc 0

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	v
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	v
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	1.8	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		Vcc+1	V
Input Low Voltage	ViL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM591000AN- 7 KMM591000AN- 8 KMM591000AN-10	ICC1	=	290 260 230	mA mA mA
Standby Current (RAS=CAS=V _{IH})		ICC2	-	6	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM591000AN- 7 KMM591000AN- 8 KMM591000AN-10	Іссз	_	290 260 230	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM591000AN- 7 KMM591000AN- 8 KMM591000AN-10	ICC4	-	220 190 160	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		ICC5	-	3	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t _{RC} =min.)	KMM591000AN- 7 KMM591000AN- 8 KMM591000AN-10	ICC6	-	290 260 230	mA∝ mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		կլ	-30	30	μA
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)		loL	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{он}	2.4	-	v
Output Low Voltage Level (I _{OL} =4.2mA)	·····	VOL	_	0.4	٧

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

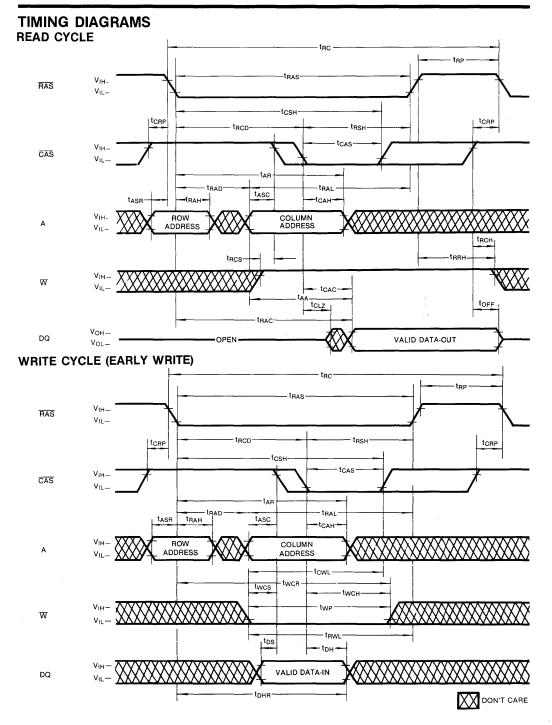
CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A0-A9, RAS, CAS, W)	C _{IN1}	-	25	pF
Input Capacitance (PD, PCAS)	C _{IN2}	_	10	pF
Input/Output Capacitance (DQ0-DQ7)	C _{DQ}		15	pF
Output Capacitance (PQ)	Cq	· _	10	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

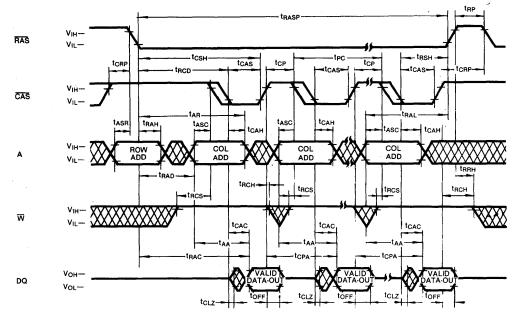
Standard Operation	Symbol	KMM5	91000AN-7	КММ	91000AN-8	KMM5	91000AN-10	11	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Umit	Notes
Random read or write cycle time	tRC	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsH	70	_	80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	. 75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twch	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcw∟	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10

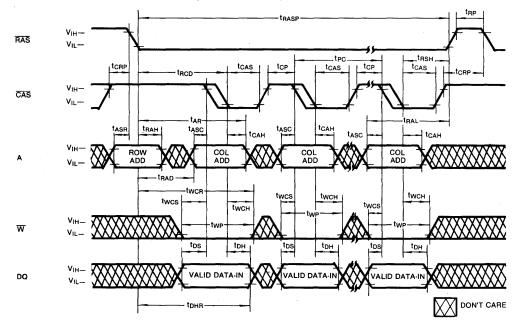
AC CHARACTERISTICS (Continued)


				KMM591000AN-8		KMM591000AN-10			
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold referenced to RAS	tohr	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set up time (C-B-R refresh)	tcsR	10		10		10		ns	
CAS hold time (C-B-R refresh)	tCHR	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS precharge	tCPA		45		45		55	ns	3
Fast Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twre	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

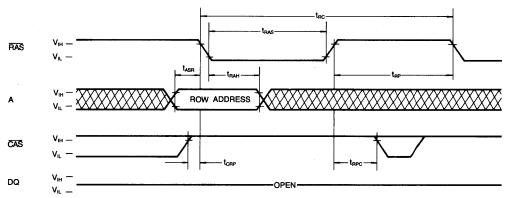
NOTES

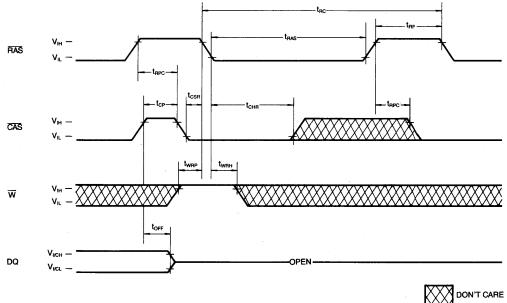
- An initial pause of 200μs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that tRCD>tRCD(max).
- 6. t_{AR} , t_{WCR} , t_{DHR} are referenced to $t_{RAD}(max)$.
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .


- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

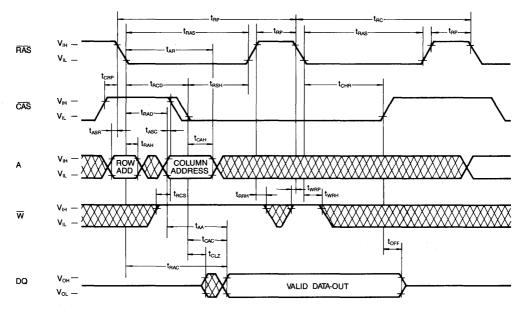


TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

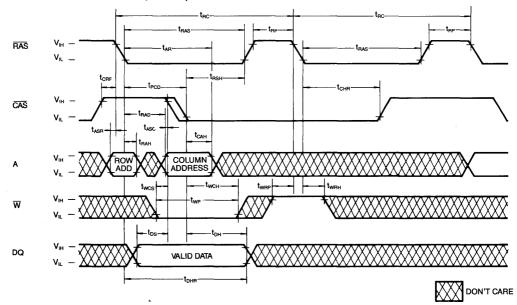

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS-ONLY REFRESH CYCLE

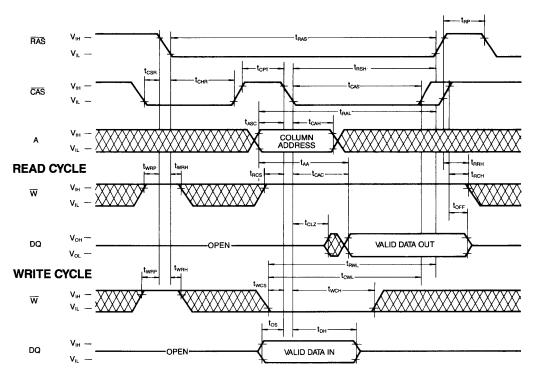
Note: W=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care

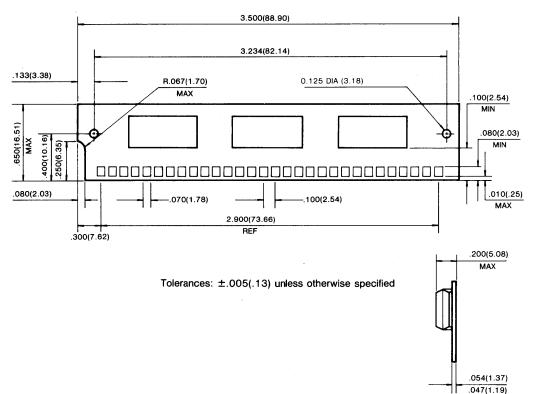


HIDDEN REFRESH CYCLE (READ)



HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

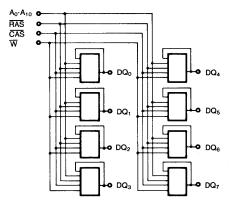

Don't CARE

3

PACKAGE DIMENSIONS

Units: Inches (millimeters)

4M×8 CMOS DRAM SIMM Memory Module

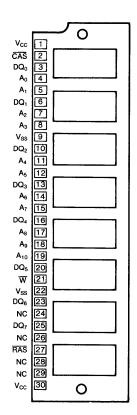

FEATURES

• Performance range:

	trac	tCAC	tRC
KMM584000A-7	70ns	20ns	130ns
KMM584000A- 8	80ns	20ns	150ns
KMM584000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- · RAS-only and Hidden refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

FUNCTIONAL BLOCK DIAGRAM


Pin Name	Pin Function
A0-A10	Address Inputs
DQ ₀₋₇	Data In/Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

GENERAL DESCRIPTION

The Samsung KMM584000A is a 4M bit \times 8 Dynamic RAM high density memory module. The Samsung KMM584000A consist of eight KM41C4000AJ DRAMs in 20-pin SOJ package mounted on a 30-pin glass-epoxy substrate. A 0.22 \mu F decoupling capacitor is mounted under each 4M Bit DRAM.

The KMM584000A is a Single In-line Memory Module with edge connections and is intended for mounting into 30-pin edge connector sockets.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	4.8	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	v v
Input High Voltage	ViH	2.4	-	V _{CC} +1	V
Input Low Voltage	VIL	-1.0	—	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM584000A- 7 KMM584000A- 8 KMM584000A-10	Icc1		840 760 680	mA mA mA
Standby Current (RAS=CAS=V _{IH})		lcc2		16	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM584000A- 7 KMM584000A- 8 KMM584000A-10	Іссз	-	840 760 680	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM584000A- 7 KMM584000A- 8 KMM584000A-10	ICC4	_ 	640 560 480	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		Icc5	_	8	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t_{RC} =min.)	KMM584000A- 7 KMM584000A- 8 KMM584000A-10	Icc6	_	840 760 680	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		ίιL	-80	80	μA
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)		IOL	-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	_	V
Output Low Voltage Level (I _{OL} =4.2mA)		VoL	—	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

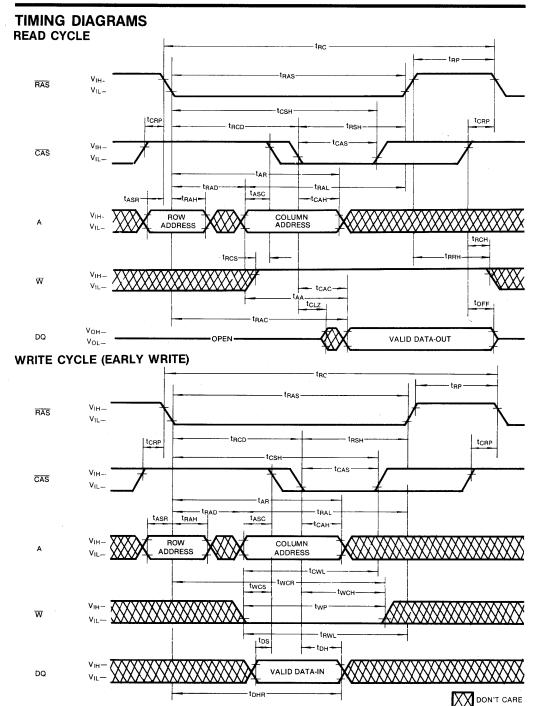
CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀)	C _{IN1}		50	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	_	55	pF
Input/Output Capacitance (DQ0-DQ7)	C _{DQ}	_	15	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Chandrad On suchian	O	KMM	584000A-7	KMM	584000A-8	KMM5	84000A-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	t _{CSH}	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	.11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	tRRH	0		0		0		ns	9
Write command hold time	twcH	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tcw∟	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10

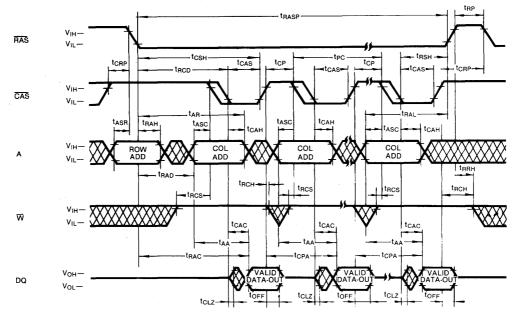
AC CHARACTERISTICS (Continued)

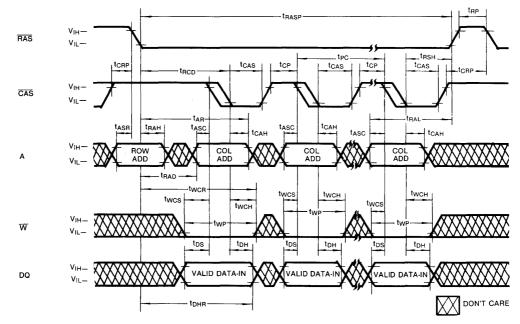

			584000A-7	KMM584000A-8		KMM584000A-10			
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period	tREF		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	tCSR	10		10		10		ns	
CAS hold time (C-B-R refresh)	tCHR	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS percharge	t _{CPA}		45		45		55	ns	3
Fast page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	tRASP	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twRP	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

NOTES

- An initial pause of 200µs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that tRCD>tRCD(max).
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

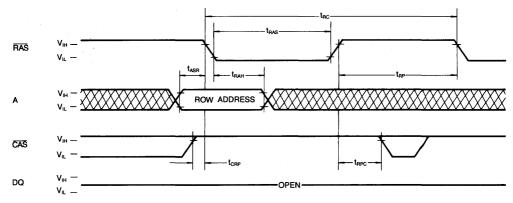
- twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

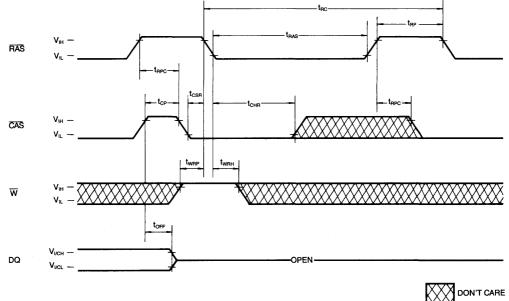




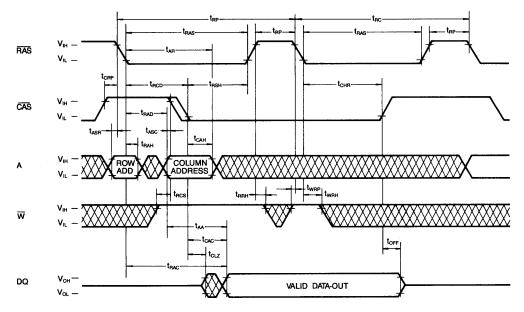
DRAM MODULES

TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

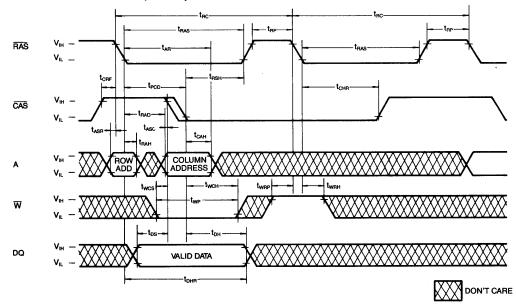

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)


RAS-ONLY REFRESH CYCLE

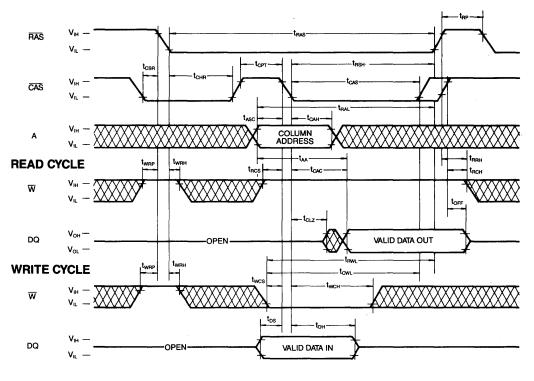
Note: W=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care

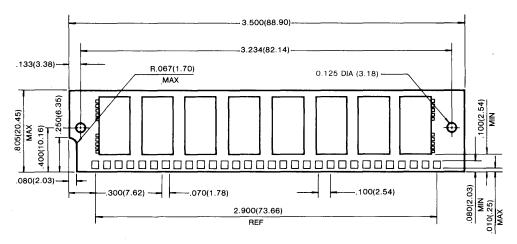


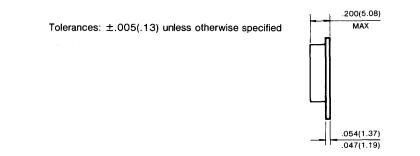
HIDDEN REFRESH CYCLE (READ)



HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

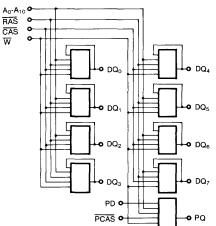



Don't CARE

PACKAGE DIMENSIONS

Units: Inches (millimeters)

4M×9 CMOS DRAM SIMM Memory Module

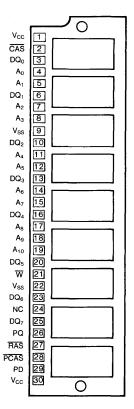

FEATURES

• Performance range:

	tRAC	tCAC	tRC
KMM594000A-7	70ns	20ns	130ns
KMM594000A- 8	80ns	20ns	150ns
KMM594000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

FUNCTIONAL BLOCK DIAGRAM


Pin Name	Pin Function
A0-A10	Address Inputs
DQ ₀₋₇	Data In/Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
PCAS	CAS for Parity
PD	Data In for Parity
PQ	Data Out for Parity
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

GENERAL DESCRIPTION

The Samsung KMM594000A is a 4M bit \times 9 Dynamic RAM high density memory module. The Samsung KMM594000A consist of nine KM41C4000AJ DRAMs in 20-pin SOJ package mounted on a 30-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each 4M Bit DRAM.

The KMM594000A is a Single In-line Memory Module with edge connections and is intended for mounting into 30-pin edge connector sockets.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to Vss	VIN, VOUT	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	о°С
Power Dissipation	PD	5.4	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	ViH	2.4	<u> </u>	V _{cc} +1	V
Input Low Voltage	VIL	-1.0		0.8	٧

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM594000A- 7 KMM594000A- 8 KMM594000A-10	lcc1	-	945 855 765	mA mA mA
Standby Current (RAS=CAS=V _{IH})		ICC2	_	18	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM594000A- 7 KMM594000A- 8 KMM594000A-10	Іссз	-	945 855 765	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM594000A- 7 KMM594000A- 8 KMM594000A-10	Icc4	-	720 630 540	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		ICC5	-	9	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (RAS and \overline{CAS} Cycling @ t _{RC} =min.)	KMM594000A- 7 KMM594000A- 8 KMM594000A-10	Icc6	-	945 855 765	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		· IL	-90	90	μA
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)		lol	-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	—	V
Output Low Voltage Level (I _{OL} =4.2mA)		VOL	_	0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₁₀)	C _{IN1}		55	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	. —	65	pF
Input Capacitance (PD, PCAS)	CIN3	_	10	рF
Input/Output Capacitance (DQ0-DQ7)	C _{DQ}	—	15	pF
Output Capacitance (PQ)	Cq	_	10	pF

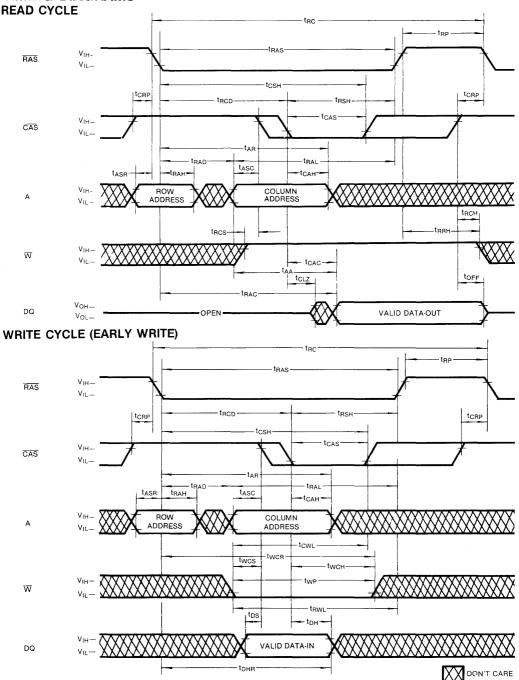
AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Sumbol	КММ	594000A-7	KMM594000A-8		KMM594000A-10		Unit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	tRC	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	tcsн	70	-	80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	t RCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcn	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcwL	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10

Electronics

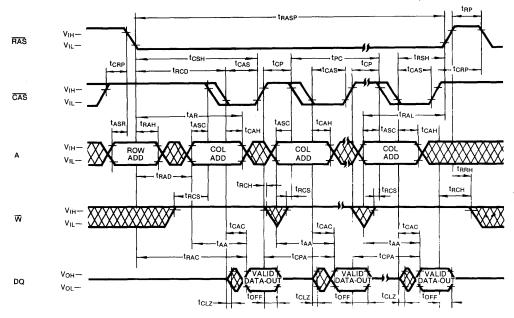
AC CHARACTERISTICS (Continued)

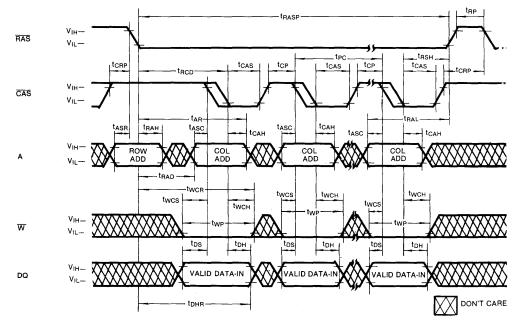
		KMM	594000A-7	KMM	594000A-8	KMM5	94000A-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast page mode cycle time	t _{PC}	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	tRASP	70	200,000	80	200,000	100	200,000	ns	
W to RAS precharge time (C-B-R refresh)	twrp	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	


NOTES

- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)}, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that tRCD≥tRCD(max).
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS}(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

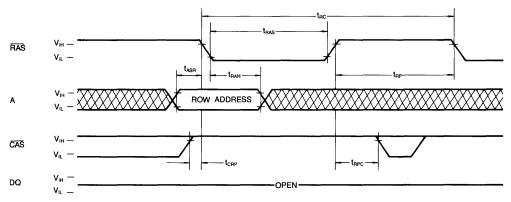

TIMING DIAGRAMS



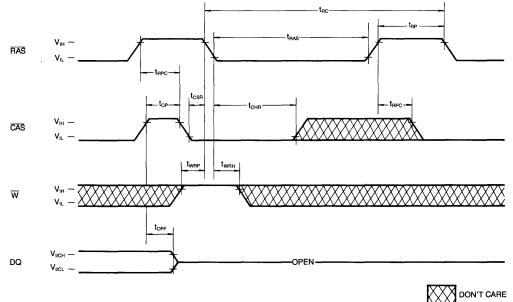
371

TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

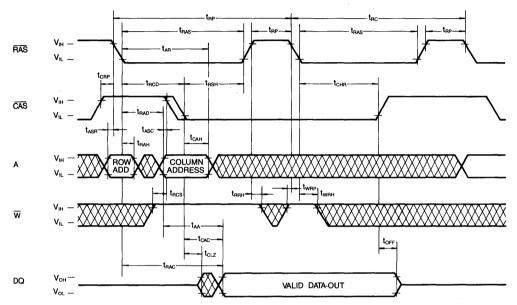


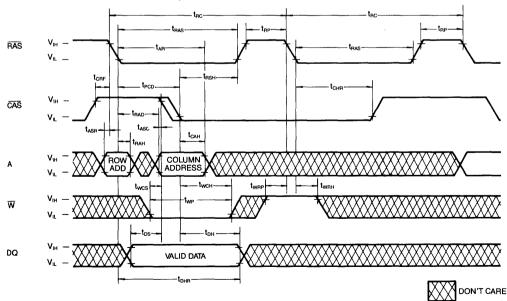
TIMING DIAGRAMS (Continued)


RAS-ONLY REFRESH CYCLE

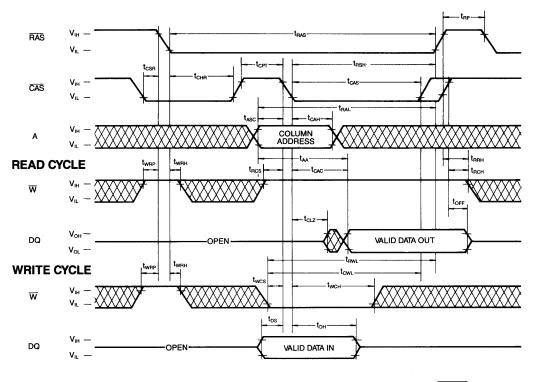
Note: W=Don't Care

CAS-BEFORE-RAS REFRESH CYCLE


NOTE: Address=Don't Care

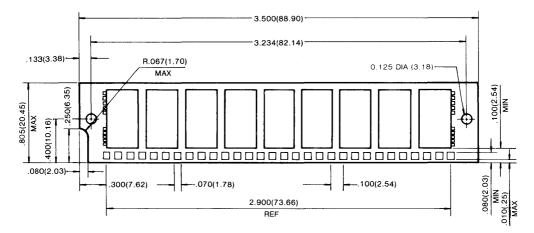


TIMING DIAGRAMS (Continued)

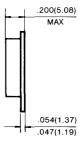


HIDDEN REFRESH CYCLE (WRITE)

TIMING DIAGRAMS (Continued) CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



Don't CARE



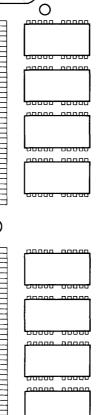
PACKAGE DIMENSIONS

Units: Inches (millimeters)

Tolerances: ±.005(.13) unless otherwise specified

1M×32 DRAM SIMM Memory Module

FEATURES


• Performance range:

	t _{RAC}	tcac	t _{RC}
KMM5321000AV- 7	70ns	20ns	130ns
KMM5321000AV- 8	80ns	20ns	150ns
KMM5321000AV-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single +5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

PIN CONFIGURATIONS (Front View)

Pin	Symbol	Pin	Symbol	,
		37		
1	V _{SS}		NC	
2	DQ ₀	38	NC	18
3	DQ ₁₈	39	V _{SS}	
4	DQ ₁	40	CAS ₀	
5	DQ ₁₉	41	CAS ₂	
6	DQ ₂	42	CAS ₃	
7	DQ ₂₀	43	CAS ₁	
8	DQ ₃	44	RAS ₀	
9	DQ ₂₁	45	NC NC	
10	Vcc	46	NC	
11	NC	47	$\overline{\mathbf{W}}$	
12	A ₀	48	NC	
13	A ₁	49	DQ ₉	
14	A ₂	50	DQ ₂₇	
15	A ₃	51	DQ ₁₀	
16	A ₄	52	DQ ₂₈	
17	A ₅	53	DQ ₁₁	36 🖾
18	A ₆	54	DQ ₂₉	1 L
19	NC	55	DQ ₁₂	
20	DQ ₄	56	DQ ₃₀	
21	DQ ₂₂	57	DQ ₁₃	37
22	DQ ₅	58	DQ ₃₁	
23	DQ ₂₃	59	V _{CC}	1 日
24	DQ ₆	60	DQ32	
25	DQ ₂₄	61	DQ ₁₄	
26	DQ ₇	62	DQ33	
27	DQ ₂₅	63	DQ ₁₅	
28	A ₇	64	DQ34	1 日
29	NC	65	DQ ₁₆	1 =
30	Vcc	66	NC	1 =
31	A ₈	67	PD ₁	1 1
32	A ₉	68	PD ₂	1 日
33	NC	69	PD ₃	
34	RAS ₂	70	PD ₄	
35	NC	71	NC	1 8
36	NC	72	V _{SS}	72
	• • • • • • • • • • • • • • • • • • • •			- L

וחתר

Ο

GENERAL DESCRIPTION

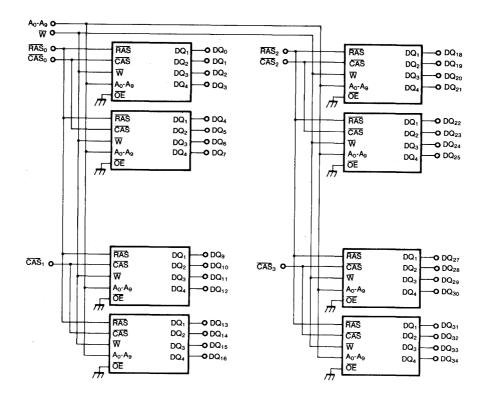
The Samsung KMM5321000AV is a 1M bits×32 Dynamic RAM high density memory module. The Samsung KMM5321000AV consist of eight CMOS 1M×4 bit DRAMs in 20-pin SOJ package mounted on a 72-pin glass-epoxy substrate. A 0.22μ F decoupling capacitor is mounted under each DRAM.

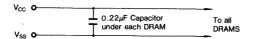
The KMM5321000AV is a Single in-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin Name	Pin Function
A ₀ A ₉	Address Inputs
DQ ₀ -DQ ₃₅ (except DQ _{8,} 17, 26, 35)	Data In/Out
W	Read/Write Input
RAS ₀ , RAS ₂	Row Address Strobe
CAS ₀ -CAS ₃	Column Address Strobe
PD ₁ -PD ₄	Presence Detect
V _{CC}	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)

Pin	70ns	80ns	100ns
PD ₁	Vss	Vss	V _{SS}
PD ₂	V _{SS}	Vss	Vss
PD ₃	V _{SS}	NC	V _{SS}
PD ₄	NC	V _{SS}	V _{SS}


* Pin Connection Changing Available



DRAM MODULES

KMM5321000AV/AVG

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	- 1 to + 7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	- 1 to + 7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	4.8	W
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage reference to V_{SS}, T_A =0 to 70°C)

Item	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	- 1.0		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5321000AV- 7 KMM5321000AV- 8 KMM5321000AV-10	I _{CC1}		840 760 680	mA mA mA
Standby Current (RAS=CAS=V _{IH})		I _{CC2}	_	16	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM5321000AV- 7 KMM5321000AV- 8 KMM5321000-10	I _{CC3}		840 760 680	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5321000AV- 7 KMM5321000AV- 8 KMM5321000AV-10	I _{CC4}	_	640 560 480	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		I _{CC5}	_	8	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling @ t_{RC} =min.)	KMM5321000AV- 7 KMM5321000AV- 8 KMM5321000AV-10	I _{CC6}	_	840 760 680	mA mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts.)		IIL.	- 80	80	μA
Output Leakage Current (Data out is disabled, $0 \le V_{OUT} \le 5.5V$)	······································	l _{OĽ}	- 10	10	μA
Output High Voltage Level (I _{OH} = -5mA)		V _{OH}	2.4	-	v
Output Low Voltage Level (I _{OL} = 4.2mA)		VOL	—	0.4	v

* NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

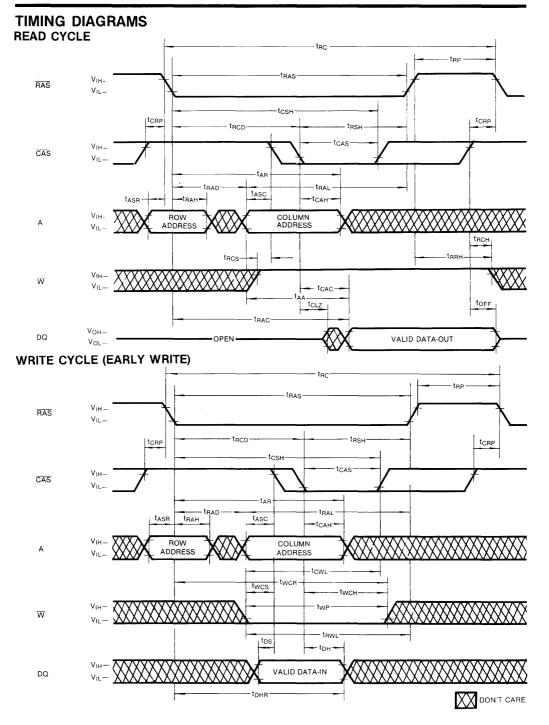
CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A0-A9)	C _{IN1}		64	pF
Input Capacitance (W)	C _{IN2}		70	pF
Input Capacitance (RAS0, RAS2)	CIN3	_	42	pF
Input Capacitance (CAS0-CAS3)	C _{IN4}		36	pF
Input/Output Capacitance (DQ0-7, 9-16, 18-25, 27-34)	CDQ ₁	_	17	pF

AC CHARACTERISTICS (0°C \leq Ta \leq 70°C, V_{CC}=5.0V \pm 10%, See notes 1, 2)

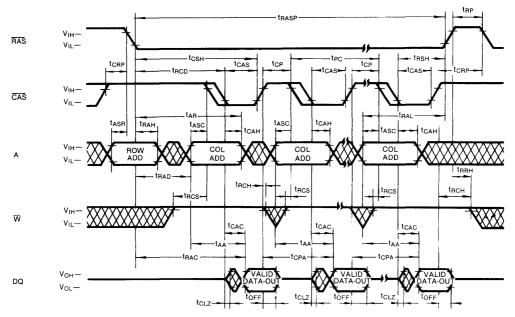
		KMM5321000AV-7		KMM5321000AV-8		KMM5321000AV-10			
Standard Operation	Symbol	Min	Max	Min	Max	Min Max		Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	t _{CSH}	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column addressdelay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up-time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55	-	60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcH	15		15		20		ns	
Write command hold referenced to RAS	twcn	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	

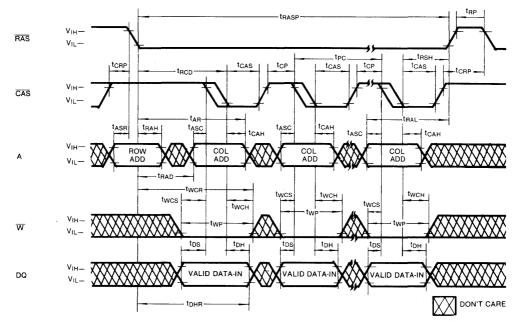
AC CHARACTERISTICS (Continued)


		KMM	5321000AV-7	KMM	5321000AV-8	KMMS	321000AV-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command to CAS lead time	t _{CWL}	20		25		20		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast page mode cycle time	t _{PC}	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	t _{WRP}	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

NOTES

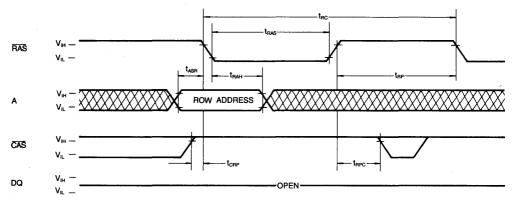
- An initial pause of 200μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- V_{IH(min)} and V_{IL (max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL (max)}, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD} ≥ t_{RCD (max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. This parameter defines the time at which the out-put achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .


- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS}(min) the cycle is an early write clcle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RAD(max)}$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD(max)}$ limit, then access time is controlled by t_{AA} .

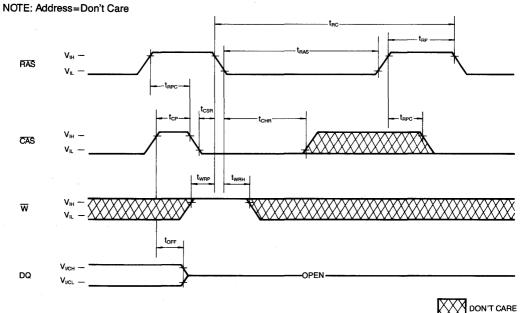


TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

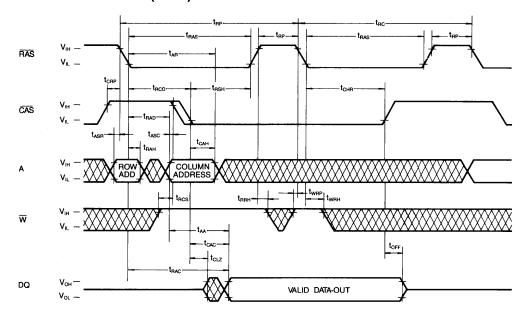


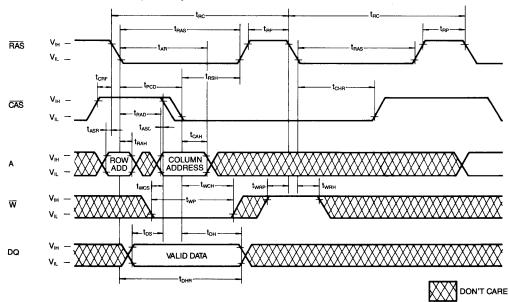
KMM5321000AV/AVG


TIMING DIAGRAMS (Continued)

RAS-ONLY REFRESH CYCLE

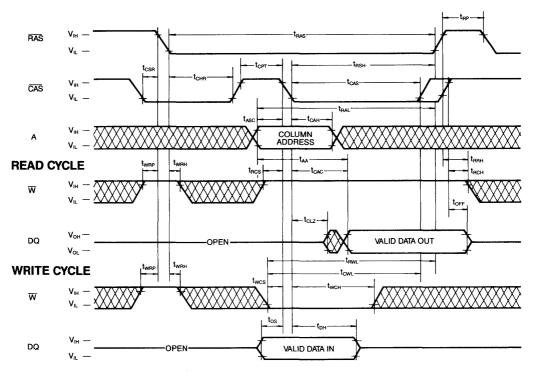
Note: W=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE



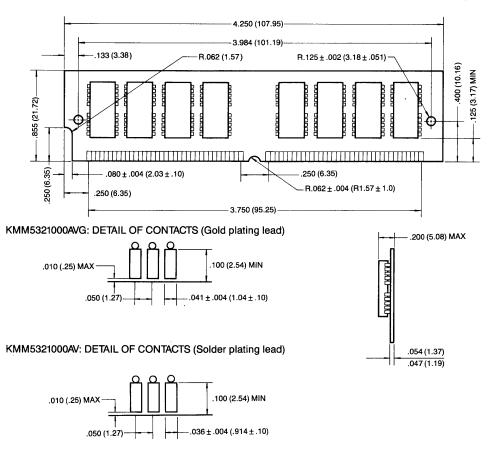
KMM5321000AV/AVG

TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)


HIDDEN REFRESH CYCLE (WRITE)

TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



KMM5321000AV/AVG

PACKAGE DIMENSIONS

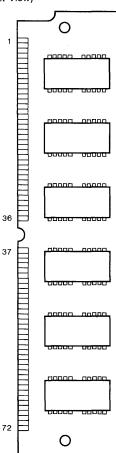
Units: Inches (millimeters)

Tolerances: ± .005 (.13) unless otherwise specified

3

1M×36 DRAM SIMM Memory Module

FEATURES


Performance range:

	tRAC	tCAC	t _{RC}
KMM5361000A- 7	70ns	20ns	130ns
KMM5361000A- 8	80ns	20ns	150ns
KMM5361000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

PIN CONFIGURATIONS (Front View)

Pin	Symbol	Pin	Symbol
1	Vss	37	DQ ₁₇
2	DQ ₀	38	DQ35
3	DQ ₁₈	39	Vss
4	DQ1	40	CAS ₀
5	DQ ₁₉	41	CAS ₂
6	DQ ₂	42	CAS ₃
7	DQ ₂₀	43	CAS ₁
8	DQ ₃	44	RAS ₀
9	DQ ₂₁	45	NC
10	Vcc	46	NC
11	NC	47	W
12	Ao	48	NC
13	A1	49	DQ ₉
14	A ₂	50	DQ27
15	A ₃	51	DQ ₁₀
16	A4	52	DQ ₂₈
17	A ₅	53	DQ ₁₁
18	A ₆	54	DQ ₂₉
19	NC	55	DQ ₁₂
20	DQ4	56	DQ30
21	DQ22	57	DQ ₁₃
22	DQ ₅	58	DQ ₃₁
23	DQ ₂₃	59	Vcc
24	DQ ₆	60	DQ32
25	DQ ₂₄	61	DQ ₁₄
26	DQ7	62	DQ33
27	DQ ₂₅	63	DQ ₁₅
28	A7	64	DQ34
29	NC	65	DQ ₁₆
30	Vcc	66	NC
31	A ₈	67	PD ₁
32	A ₉	68	PD ₂
33	NC	69	PD ₃
34	RAS ₂	70	PD ₄
35	DQ ₂₆	71	NC
36	DQ8	72	Vss

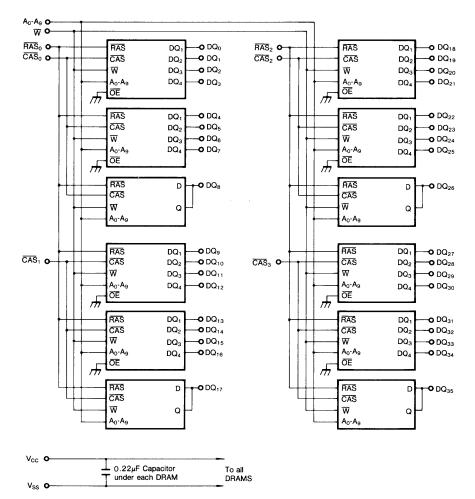
GENERAL DESCRIPTION

The Samsung KMM5361000A is a 1M bits×36 Dynamic RAM high density memory module. The Samsung KMM5361000A consist of eight CMOS 1M×4 bit DRAMs in 20-pin SOJ package and four CMOS 1M×1 bit DRAMs in 20-pin SOJ package mounted on a 72-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each DRAM.

The KMM5361000A is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ0-DQ35	Data In/Out
\overline{w}	Read/Write Input
RAS ₀ , RAS ₂	Row Address Strobe
CAS ₀ -CAS ₃	Column Address Strobe
PD ₁ -PD ₄	Presence Detect
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)


Pin	70ns	80ns	100ns
PD ₁	V _{SS}	V _{SS}	V _{SS}
PD ₂	V _{SS}	V _{SS}	V _{SS}
PD ₃	V _{SS}	NC	Vss
PD ₄	NC	V _{SS}	Vss

* Pin Connection Changing Available

KMM5361000A/AG/A1/A1G

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	Vin, Vout	-1 to +7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	ν.
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	7.2	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4		V _{cc} +1	V
Input Low Voltage	VIL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5361000A- 7 KMM5361000A- 8 KMM5361000A-10	Icc1	-	1160 1040 920	mA mA mA
Standby Current (RAS=CAS=V _{IH})		ICC2		24	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM5361000A- 7 KMM5361000A- 8 KMM5361000A-10	Іссз		1160 1040 920	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5361000A- 7 KMM5361000A- 8 KMM5361000A-10	ICC4	-	880 760 640	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		lcc5	_	12	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KMM5361000A- 7 KMM5361000A- 8 KMM5361000A-10	ICC6	_	1160 1040 920	mA _。 mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts.)		կլ	-120	120	μA
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)		IOL	-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4	_	V
Output Low Voltage Level (IoL=4.2mA)		Vol	_	0.4	v

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

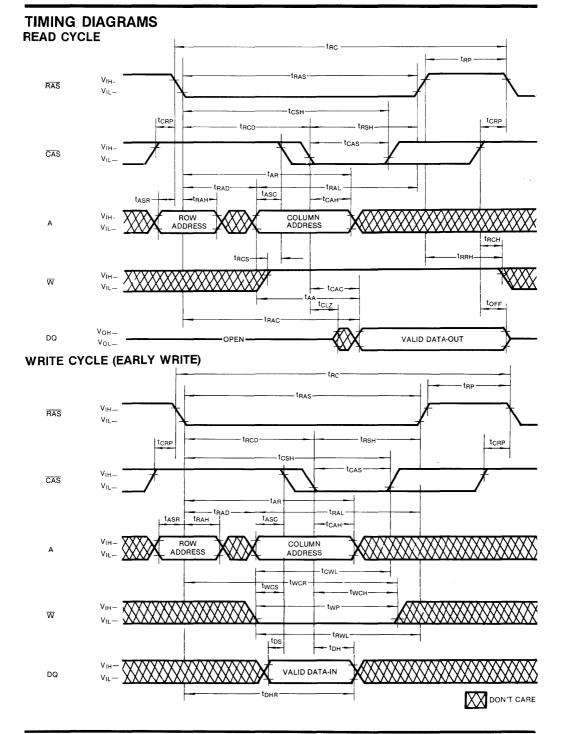
CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}	_	88	pF
Input Capacitance (W)	C _{IN2}		94	pF
Input Capacitance (RAS ₀ , RAS ₂)	CIN3		42	pF
Input Capacitance (CAS0-CAS3)	C _{IN4}	-	36	pF
Input/Output Capacitance (DQ0-7,9-16,18-25,27-34)	CDQ ₁	_	17	pF
Input/Output Capacitance (DQ _{8,17,26,35})	CDQ ₂		22	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

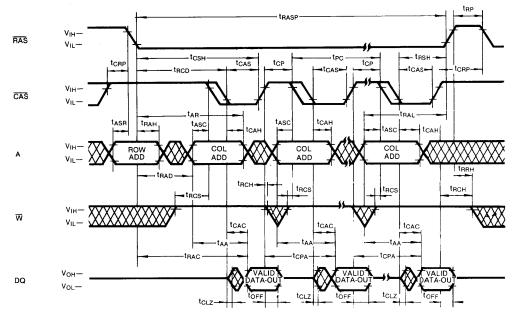
Standard Operation	Symbol	кмме	361000A-7	КММ	361000 A- 8	KMM5361000A-10		linit	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	NULES
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsн	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10	d alat a ann	ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0	_	0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	

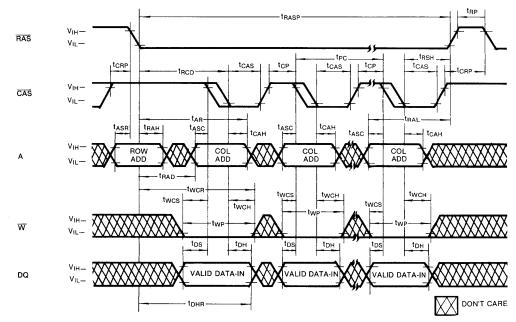
AC CHARACTERISTICS (Continued)


		KMM	5361000A-7	KMM	5361000A-8	KMM5	KMM5361000A-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command to CAS lead time	t _{CWL}	20		25		20		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	tDHR	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	tCHR	20		30		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast page mode cycle time	t _{PC}	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twnp	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

NOTES

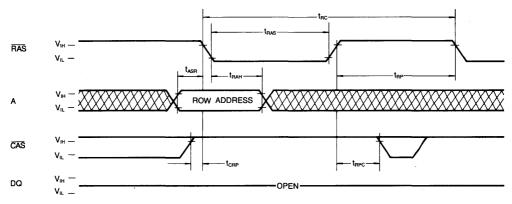
- 1. An initial pause of $200\mu s$ is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD≥tRCD(max)}.
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD}(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .


- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limi' insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

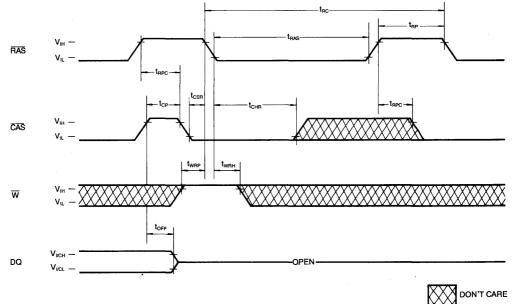


TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

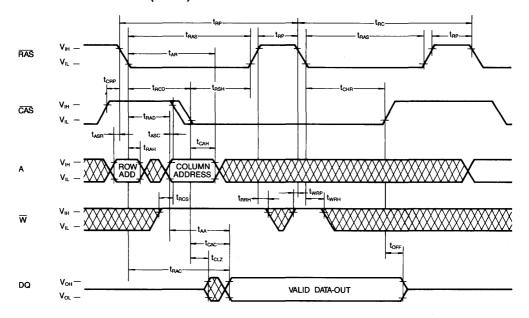
FAST PAGE MODE WRITE CYCLE (EARLY WRITE)



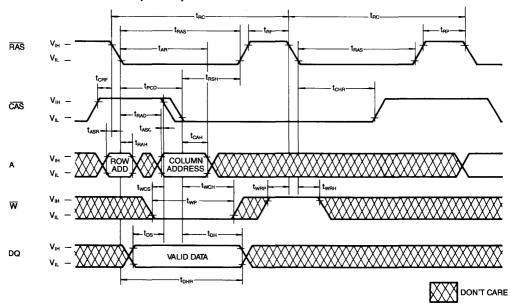
TIMING DIAGRAMS (Continued)


RAS-ONLY REFRESH CYCLE

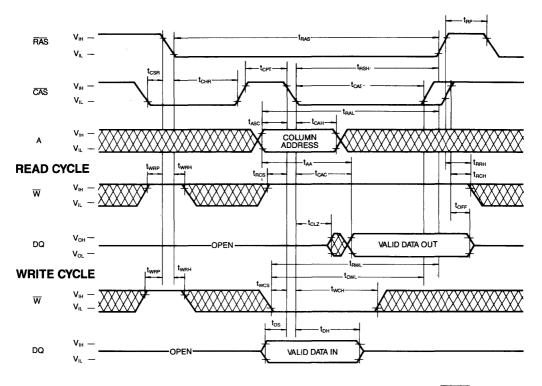
Note: W=Don't Care


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address=Don't Care



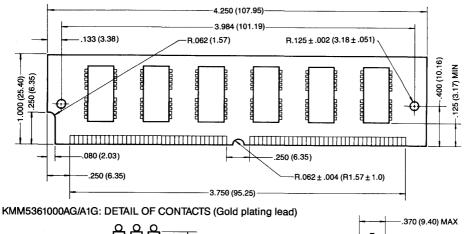
TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)

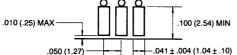

HIDDEN REFRESH CYCLE (WRITE)

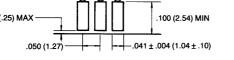
TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

Don't CARE

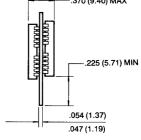


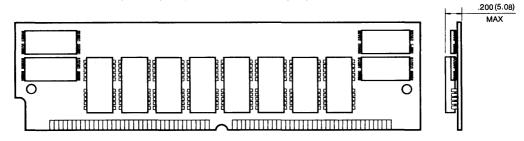

٩,


PACKAGE DIMENSIONS

KMM5361000A/AG (1M×4 (SOJ)* 8+1M×1 (SOJ) *4)


Units: Inches (millimeters)





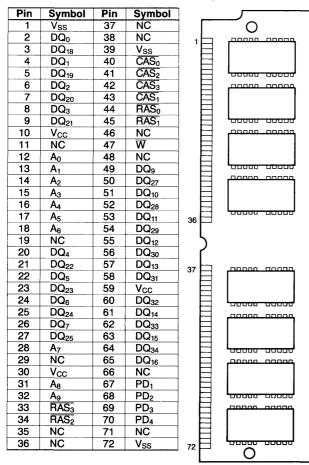
KMM5361000A/A1: DETAIL OF CONTACTS (Solder plating lead)

KMM5361000 A1/A1G (1M×4 (SOJ) *8+1M×1 (TSOPI) *4)

(The dimensions of this PCB are the same as those of the above one.)

Tolerances: ±.005 (.13) unless otherwise specified

2M×32 DRAM SIMM Memory Module


FEATURES

Performance range:

	t _{RAC}	t _{CAC}	t _{RC}
KMM5322000AV- 7	70ns	20ns	130ns
KMM5322000AV- 8	80ns	20ns	150ns
KMM5322000AV-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single +5V ± 10% power supply
- 1024 cycles/16ms refresh
- JEDEC standard pinout

PIN CONFIGURATIONS Front View)

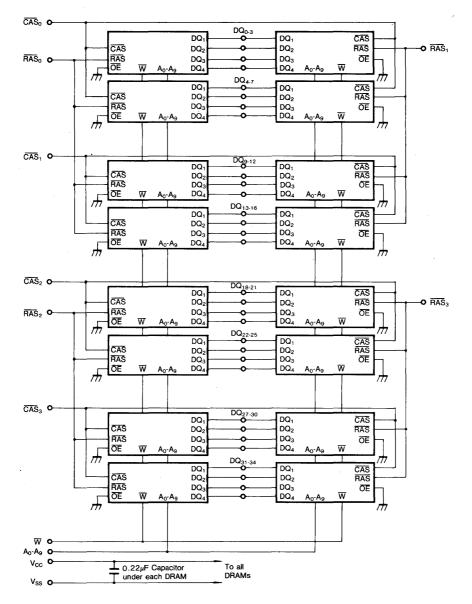
GENERAL DESCRIPTION

The Samsung KMM5322000AV is a 2M bits×32 Dynamic RAM high, density memory module. The Samsung KMM5322000AV consist of sixteen CMOS 1M×4 bit DRAMs in 20-pin SOJ package mounted on a 72-pin glass-epoxy substrate. A 0.22μ F decoupling capacitor is mounted under each DRAM.

The KMM5322000AV is a Single in-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin Name	Pin Function
A ₀ A ₉	Address Inputs
DQ ₀ -DQ ₃₅ except DQ ₈ , 17, 26, 35)	Data In/Out
W	Read/Write Input
RAS ₀ -RAS ₃	Row Address Strobe
CAS0-CAS3	Column Address Strobe
PD ₁ -PD ₄	Presence Detect
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)


Pin	70ns	80ns	100ns
PD ₁	NC	NC	NC
PD ₂	NC	NC	NC
PD ₃	Vss	NC	Vss
PD₄	NC	Vss	Vss

* Pin Connection Changing Available

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	V _{IN} , V _{OUT}	- 1 to + 7.0	V
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	- 1 to + 7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	9.6	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

ltem	Symbol	Min	Тур	Мах	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	v
Input High Voltage	VIH	2.4	_	V _{CC} +1	v
Input Low Voltage	VIL	- 1.0	_	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter			Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5322000AV- 7 KMM5322000AV- 8 KMM5322000AV-10	I _{CC1}	_	856 776 696	mA mA mA
Standby Current (RAS=CAS=V⊮)		I _{CC2}		32	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM5322000AV- 7 KMM5322000AV- 8 KMM5322000-10	I _{CC3}		856 776 696	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5322000AV- 7 KMM5322000AV- 8 KMM5322000AV-10	I _{CC4}		656 576 496	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		I _{CC5}	_	16	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KMM5322000AV- 7 KMM5322000AV- 8 KMM5322000AV-10	I _{CC6}		856 776 696	mA mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test=0 volts.)		I _{IL}	- 160	160	μA
Output Leakage Current (Data out is disabled, $0 \le V_{OUT} \le 5.5V$)		IOL	- 10	10	μA
Output High Voltage Level (I _{OH} = -5mA)		V _{он}	2.4		V
Output Low Voltage Level (IoL = 4.2mA)		Vol	—	0.4	V

* NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

3

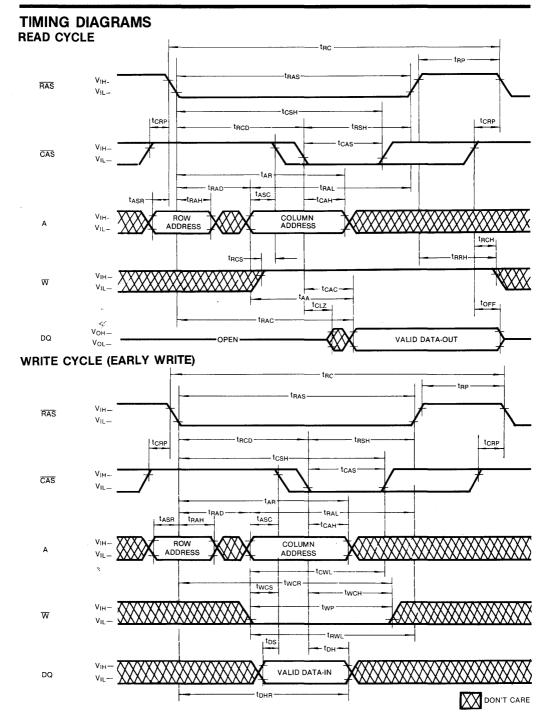
CAPACITANCE (T_A=2.5°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}	-	128	pF
Input Capacitance (W)	C _{IN2}		140	pF
Input Capacitance (RAS ₀ -RAS ₃)	CIN3	_	42	pF
Input Capacitance (CAS0-CAS3)	C _{IN4}		42	рF
Input/Output Capacitance (DQ0-7, 9-16, 18-25, 27-34)	CDQ ₁	-	29	pF

AC CHARACTERISTICS ($0^{\circ}C \leq Ta \leq 70^{\circ}C$, $V_{CC} = 5.0V \pm 10^{\circ}$, See notes 1, 2)

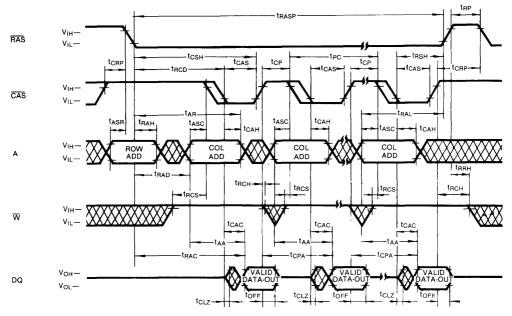
		KMM5	322000AV-7	KMM5	322000AV-8	KMM5	322000AV-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	t _{RAC}		70		80		100	ns	3, 4
Access time from CAS	tCAC		20		20		25	ns	3, 4, 5
Access time from column address	t _{AA}		35		40		50	ns	3, 11
CAS to output in Low-Z	t _{CLZ}	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	t _T	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	t _{CSH}	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address-delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	t _{CRP}	5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up-time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		. 0		0		ns	9
Write command hold time	t _{WCH}	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	

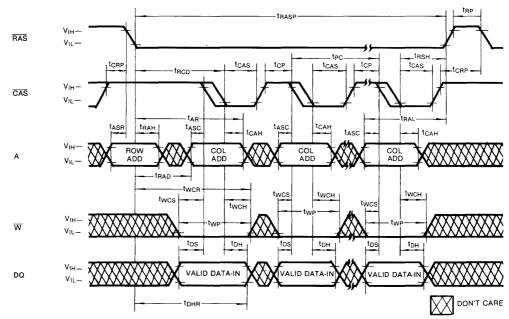
AC CHARACTERISTICS (Continued)


		KMM	5322000 AV- 7	KMM	5322000AV-8	KMM5	322000AV-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	tDHR	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
W to RAS Precharge time (C-B-R									
refresh)	twrP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

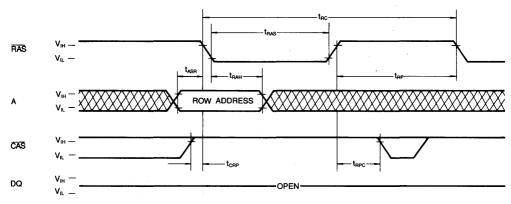
NOTES

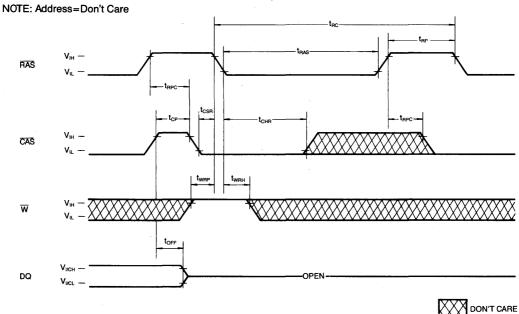
- 1. An initial pause of 200μ s is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH (min)}$ and $V_{IL (max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH (min)}$ and $V_{IL (max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the t_{BCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only. It t_{BCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD≤tRCD (max)}.
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD} (max).
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.


- 8. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≤t_{WCS} (min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 11. Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled by t_{AA} .



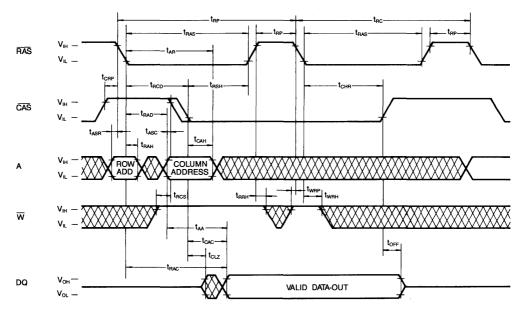
TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE


FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

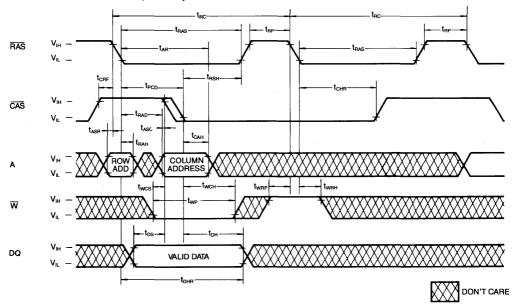


RAS-ONLY REFRESH CYCLE

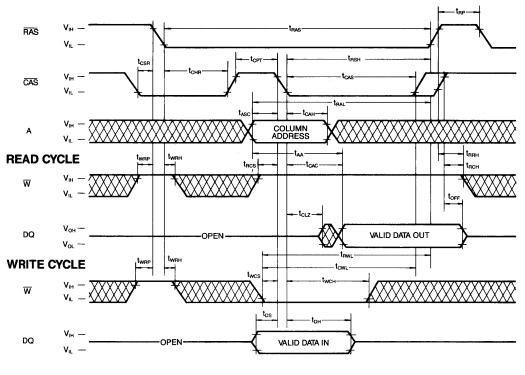
Note: W=Don't Care



CAS-BEFORE-RAS REFRESH CYCLE

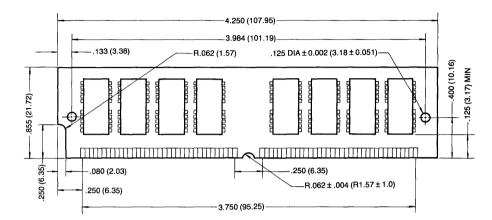


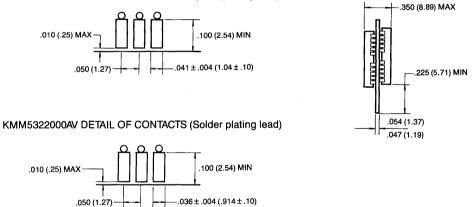
HIDDEN REFRESH CYCLE (READ)



HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE




KMM5322000AV/AVG

PACKAGE DIMENSIONS

Units: Inches (millimeters)

KMM5322000AVG DETAIL OF CONTACTS (Gold plating lead)

Tolerances: ± .005 (.13) unless otherwise specified

2MX36 DRAM SIMM Memory Module

FEATURES

• Performance range:

	tRAC	tcac	t _{RC}
KMM5362000A-7	70ns	20ns	130ns
KMM5362000A- 8	80ns	20ns	150ns
KMM5362000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cycles/16ms refresh
- · JEDEC standard pinout

PIN CONFIGURATIONS (Front View)

GENERAL DESCRIPTION

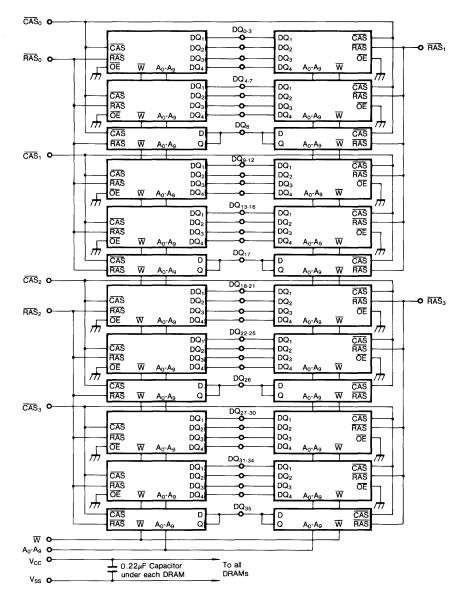
The Samsung KMM5362000A is a 2M bits×36 Dynamic RAM high density memory module. The Samsung KMM5362000A consist of sixteen CMOS 1M×4 bit DRAMs in 20-pin SOJ package and eight CMOS 1M×1 bit DRAMs in 20-pin SOJ package mounted on a 72-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each DRAM.

The KMM5362000A is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin	Symbol	Pin	Symbol				
1	V _{SS}	37	DQ ₁₇			0	
2	DQ ₀	38	DQ35	1			
3	DQ ₁₈	_ 39	V _{SS}		Ħ		
4	DQ ₁	40	CAS ₀				
5	DQ ₁₉	41	CAS ₂		Ħ,		
6	DQ ₂	42	CAS ₃		H8		
7	DQ20	43	CAS ₁			ממסקו	
8	DQ ₃	44	RAS ₀				
9	DQ ₂₁	45	RAS ₁				
10	Vcc	46	NC	i i		Ē	
11	NC	47	\overline{W}		╘╴╴		
12	Ao	48	NC		Ħ.		
13	A ₁	49	DQ ₉				
14	A ₂	50	DQ27			Ĕ	
15	A ₃	51	DQ ₁₀		日1		
16	A ₄	52	DQ ₂₈				
17	A5	53	DQ ₁₁	36		B	
18	A ₆	54	DQ ₂₉		ነ -		
19	NC	55	DQ ₁₂		ረ ሞ		
20	DQ4	56	DQ30	37		מססם	
21	DQ ₂₂	57	DQ ₁₃		日日	8	
22	DQ ₅	58	DQ ₃₁			L	
23	DQ23	59	Vcc				
24	DQ ₆	60	DQ32		日間	Ĕ	
25	DQ ₂₄	61	DQ ₁₄		Η-		
26	DQ7	62	DQ33		⊟ഹ	—Ъ	
27	DQ25	63	DQ ₁₅				
28	A ₇	64	DQ ₃₄		E9	ß	
29	NC	65	DQ ₁₆			Ь	
30	Vcc	66	NC				
31	A ₈	67	PD ₁]	日礼	Ĕ	
32	A ₉	68	PD ₂		H		
33	RAS ₃	69	PD ₃		E		1
34	RAS ₂	70	PD4		E		
35	DQ ₂₆	71	NC	72	Ľ	\sim	, <u>הההמת, ההממת</u> ,
36	DQ ₈	72	V _{SS}]		0	
				•	L		······

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ0-DQ35	Data In/Out
W	Read/Write Input
RAS0-RAS3	Row Address Strobe
CAS ₀ -CAS ₃	Column Address Strobe
PD ₁ -PD ₄	Presence Detect
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)


Pin	70ns	80ns	100ns
PD ₁	NC	NC	NC
PD ₂	NC	NC	NC
PD ₃	Vss	NC	V _{SS}
PD ₄	NC	V _{SS}	V _{SS}

^{*} Pin Connection Changing Available

DRAM MODULES

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	v
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	v
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	14.4	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	V
Input High Voltage	VIH	2.4	_	Vcc+1	V
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Units	
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5362000A- 7 KMM5362000A- 8 KMM5362000A-10	ICC1	=	1184 1064 944	mA mA mA
Standby Current (RAS=CAS=V _{IH})		ICC2	_	48	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM5362000A- 7 KMM5362000A- 8 KMM5362000A-10	Іссз		1184 1064 944	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5362000A- 7 KMM5362000A- 8 KMM5362000A-10	ICC4		904 784 664	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		Icc5	_	24	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @ t _{RC} =min.)	KMM5362000A- 7 KMM5362000A- 8 KMM5362000A-10	Icc6		1184 1064 944	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		l _{IL}	-240	240	μΑ
Output Leakage Current (Data out is disabled, 0≼V _{OUT} ≼5.5V)		IOL	-10	10	μΑ
Output High Voltage Level (I _{OH} =-5mA)		Vон	2.4	_	v
Output Low Voltage Level (IOL=4.2mA)		Vol	-	0.4	V

*NOTE: I_{CC1}, I_{CC3}, I_{CC4} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

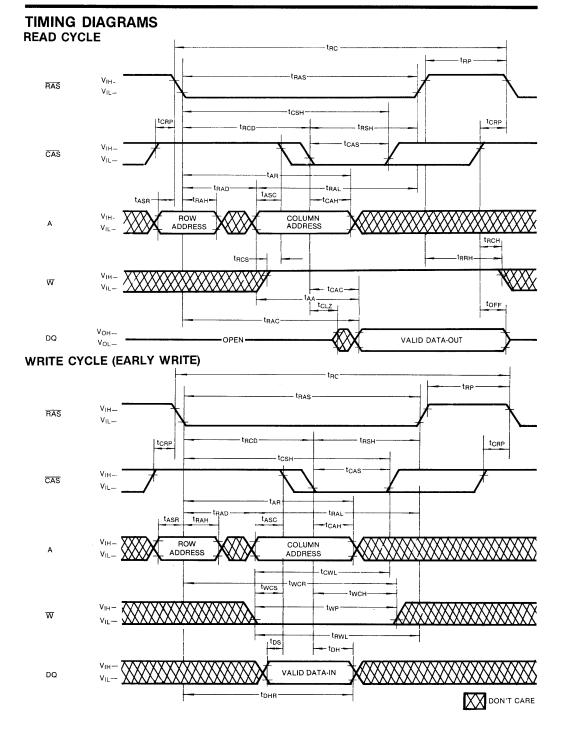
CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉)	CIN1	-	161	pF
Input Capacitance (W)	CIN2	_	168	pF
Input Capacitance (RAS ₀ -RAS ₃)	CIN3	_	42	pF
Input Capacitance (CAS0-CAS3)	C _{IN4}	_	42	pF
Input/Output Capacitance (DQ _{0-7,9-16,18-25,27-34})	CDQ ₁	—	29	pF
Input/Output Capacitance (DQ8,17,26,35)	CDQ ₂	-	39	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

Standard Operation	Sumbol	KMMS	362000A-7	KMM	5362000A-8	KMM5362000A-10		11-14	Natas
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	t _{RAC}		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	t _{CLZ}	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsH	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	t _{CRP}	- 5		5		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcr	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	

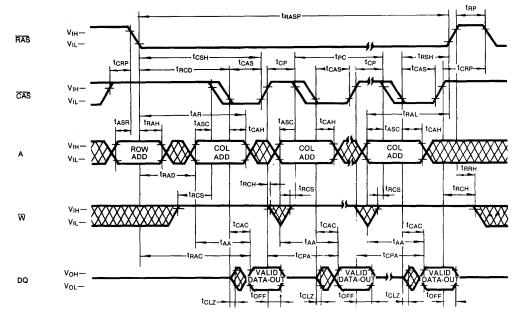
AC CHARACTEROSTOCS (Continued)

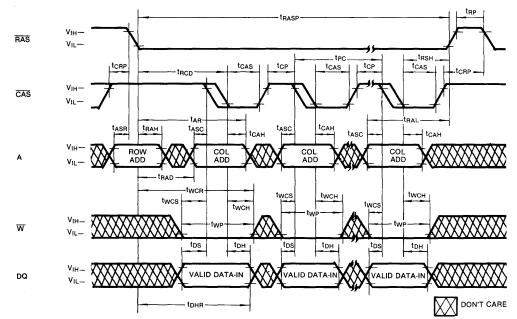

			5362000A-7	KMM5362000A-8		KMM5362000A-10			
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	t _{RPC}	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast page mode cycle time	t _{PC}	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twRP	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	t _{WRH}	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	

NOTES

- An initial pause of 200µs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)}, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. tAR, twcR, tDHR are referenced to tRAD(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

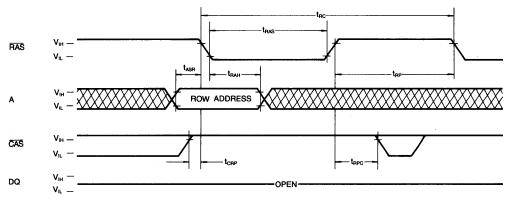
- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .





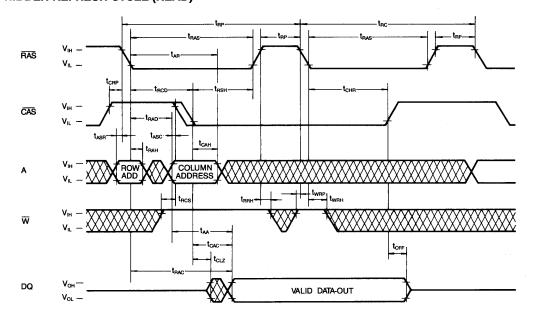
415

TIMING DIAGRAMS (Continued) FAST PAGE MODE READ CYCLE

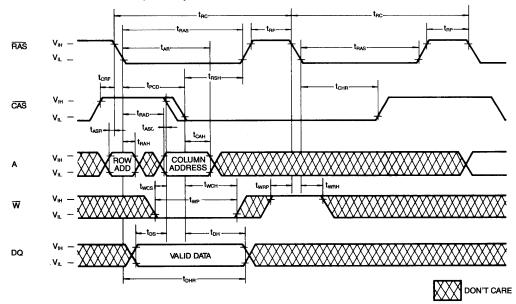

FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

RAS-ONLY REFRESH CYCLE

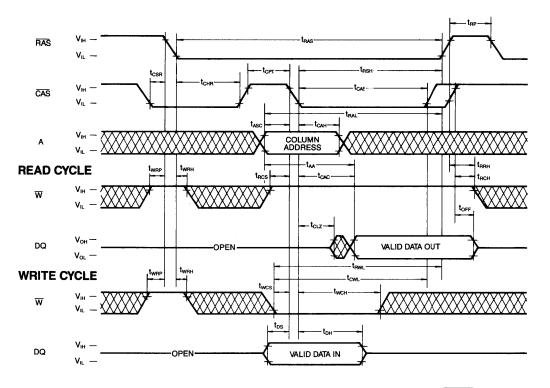
Note: W=Don't Care



CAS-BEFORE-RAS REFRESH CYCLE

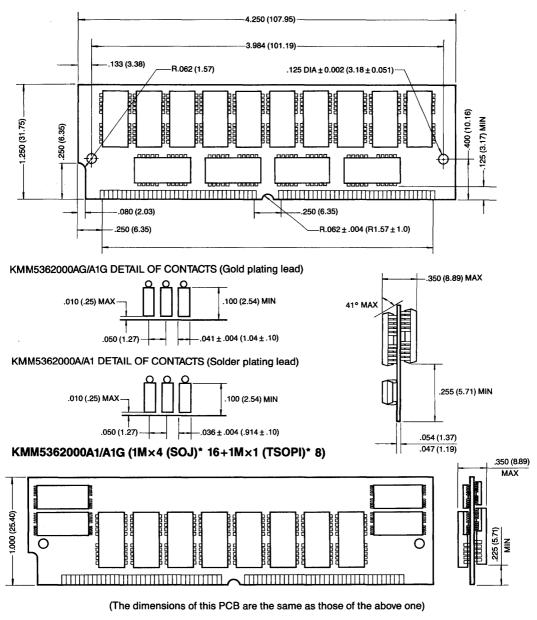

NOTE: Address=Don't Care RAS LCSF VIH CAS V_{IL} twre t_{wRH} w XXXX V.. toFF V_{I/CH} DQ -OPEN -VI/CL DON'T CARE

TIMING DIAGRAMS (Continued) HIDDEN REFRESH CYCLE (READ)



HIDDEN REFRESH CYCLE (WRITE)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE


Don't CARE

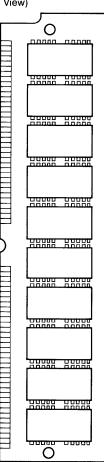
PACKAGE DIMENSIONS

KMM5362000A/AG (1M×4 (SOJ)*16+1M×1 (SOJ)*8)

Units: Inches (millimeters)

1M×40 DRAM SIMM Memory Module

FEATURES


• Performance range:

	tRAC	tCAC	tRC
KMM5401000A-7	70ns	20ns	130ns
KMM5401000A- 8	80ns	20ns	150ns
KMM5401000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cydes/16ms refresh
- JEDEC standard pinout

PIN CONFIGURATIONS (Front View)

	CONFIC			(Fron
Pin	Symbol	Pin	Symbol]
1	V _{SS}	37	DQ ₁₉	
2	DQ ₀	38	DQ ₂₀] 1
3	DQ ₁	39	V _{SS}]
4	DQ ₂	40	CAS ₀]
5	DQ ₃	41	NC	1
6	DQ4	42	NC	1
7	DQ ₅	43	NC	1
8	DQ ₆	44	RAS ₀	
9	DQ ₇	45	NC	
10	Vcc	46	DQ ₂₁]
11	NC	47	$ \overline{\mathbf{w}} $]
12	A ₀	48	V _{SS}	1
13	A1	49	DQ22	1
14	A ₂	50	DQ ₂₃	
15	A ₃	51	DQ ₂₄	1
16	A4	52	DQ ₂₅]
17	A ₅	53	DQ ₂₆	36
18	A ₆	54	DQ ₂₇	
19	ŌĒ	55	DQ ₂₈	
20	DQ ₈	56	DQ ₂₉	
21	DQ ₉	57	DQ30	37
22	DQ ₁₀	58	DQ ₃₁	
23	DQ ₁₁	59	Vcc	1
24	DQ ₁₂	60	DQ32	
25	DQ ₁₃	61	DQ33]
26	DQ ₁₄	62	DQ34	
27	DQ ₁₅	63	DQ35	
28	A7	64	DQ ₃₆	
29	DQ ₁₆	65	DQ37]
30	Vcc	66	DQ38	
31	A ₈	67	PD ₁	
32	A ₉	68	PD ₂]
33	NC	69	PD ₃	
34	NC	70	PD ₄	
35	DQ ₁₇	71	DQ ₃₉	
36	DQ ₁₈	72	V _{SS}	72
				-

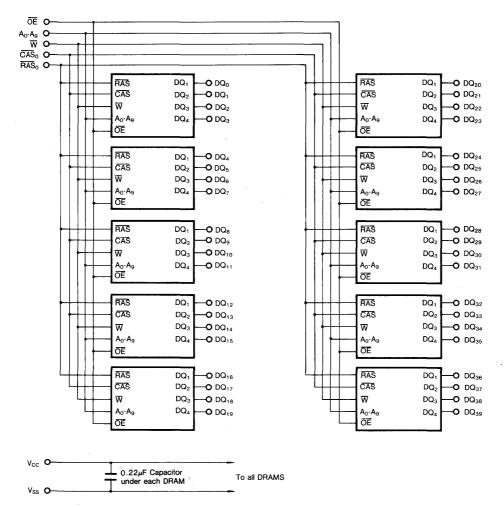
GENERAL DESCRIPTION

The Samsung KMM5401000A is a 1M bits \times 40 Dynamic RAM high density memory module. The Samsung KMM5401000A consist of ten CMOS 1M \times 4 bit DRAMs in 20-pin SOJ packages mounted on a 72-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each DRAM.

The KMM5401000A is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ0-DQ39	Data In/Out
$\overline{\mathbf{w}}$	Read/Write Input
RAS ₀	Row Address Strobe
CAS ₀	Column Address Strobe
ÕĒ	Output Enable
PD ₁ -PD ₄	Presence Detect
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)


Pin	70ns	80ns	100ns
PD ₁	Vss	Vss	Vss
PD ₂	V _{SS}	V _{SS}	V _{SS}
PD ₃	V _{SS}	NC	Vss
PD4	NC	Vss	V _{SS}

^{*} Pin Connection Changing Available

KMM5401000A/AG

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

ltem	Symbol	Rating	Units
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V
Voltage on V_{CC} Supply Relative to V_{SS}	Vcc	-1 to +7.0	V
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation	PD	6	w
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		V _{CC} +1	V
Input Low Voltage	VIL	-1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5401000A- 7 KMM5401000A- 8 KMM5401000A-10	Icc1		1050 950 850	mA mA mA
Standby Current (RAS=CAS=VIH)		ICC2	-	20	mA
RAS-Only Refresh Current* (CAS=V _{IH} , RAS Cycling @ t _{RC} =min)	KMM5401000A- 7 KMM5401000A- 8 KMM5401000A-10	Іссз	=	1050 950 850	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5401000A- 7 KMM5401000A- 8 KMM5401000A-10	ICC4		800 700 600	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		I _{CC5}	-	10	mA
\overline{CAS} -Before-RAS Refresh Current* (RAS and \overline{CAS} Cycling @ t_{RC} =min.)	KMM5401000A- 7 KMM5401000A- 8 KMM5401000A-10	ICC6		1050 950 850	mA mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V_{IN}$ all other pins not under test=0 volts.)		ЦL	-100	100	μA
Output Leakage Current (Data out is disabled,	0≼V _{OUT} ≼5.5V)	lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		V _{OH}	2.4	_	V
Output Low Voltage Level (IOL=4.2mA)		Vol	_	0.4	V

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

CAPACITANCE (T_A=25°C)

Item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}		70	pF
Input Capacitance (W, OE)	C _{IN2}	—	80	pF
Input Capacitance (RAS ₀ , CAS ₀)	CIN3		80	pF
Input/Output Capacitance (DQ0-DQ39)	CDQ1	—	17	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

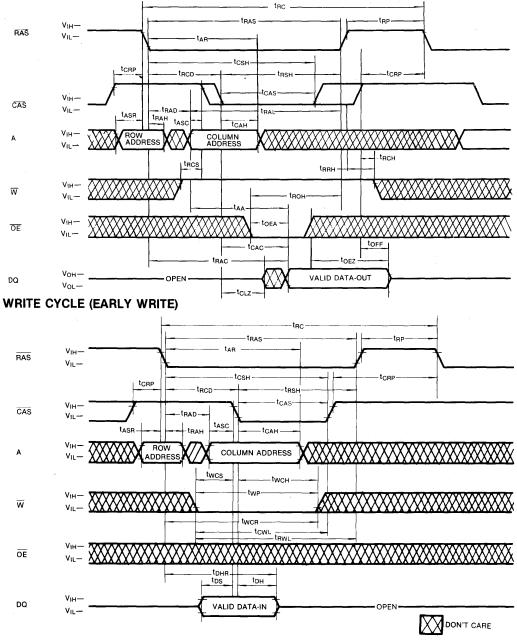
Standard On section	Cumbal	KMM5	401000A-7	KMM5401000A-8		KMM5401000A-10		Ilmia	Notes
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	tRC	130		150		180		ns	
Access time from RAS	tRAC		70		80		100	ns	3,4
Access time from CAS	tCAC		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tT	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	tRAS	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	tRSH	20		20		25		ns	
CAS hold time	t _{CSH}	70		80		100		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	4
RAS to column address delay time	tRAD	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	tRAL	35		40		50		ns	
Read command set-up time	tRCS	0		0		0		ns	
Read command hold referenced to CAS	tRCH	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	

AC CHARACTERISTICS (Continued)

	_	KMM	5401000A-7	KMM	5401000A-8	KMM	5401000A-10		
Standard Operation	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in set-up time	tos	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	tDHR	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	tcsn	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		, 55	ns	3
Fast Page mode cycle time	tPC	50		50		60		ns	
CAS precharge time (Fast page)	tcp	10		10		10		ns 🖻	
RAS pulse width (Fast page)	tRASP	70	200,000	80	200,000	100	200,000	ns	
W to RAS precharge time (C-B-R refresh)	twRP	10		10		10		ns	
W to RAS hold time (C-B-R refresh)	twRH	10		10		10		ns	
CAS precharge (C-B-R counter test)	tсрт	35		40		50		ns	

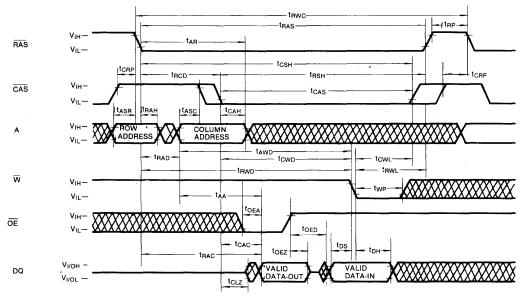
NOTES

- An initial pause of 200µs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH(min)}$ and $V_{IL(max)}$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH(min)}$ and $V_{IL(max)}$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that t_{RCD}>t_{RCD(max)}.
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD}(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .


- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAC}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

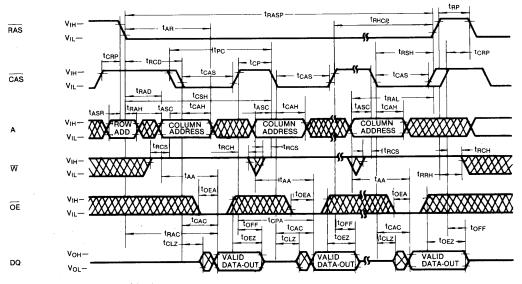
KMM5401000A/AG

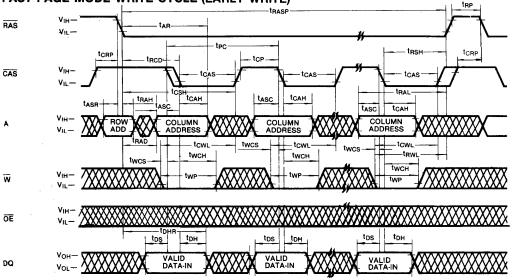

TIMING DIAGRAMS


TIMING DIAGRAMS (Continued) WRITE CYCLE (OE CONTROLLED WRITE)

READ-MODIFY-WRITE CYCLE

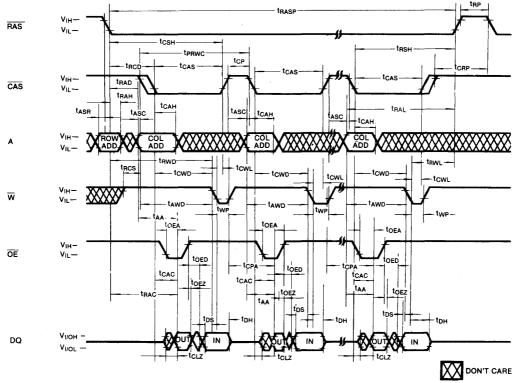
SUNG


Electronics



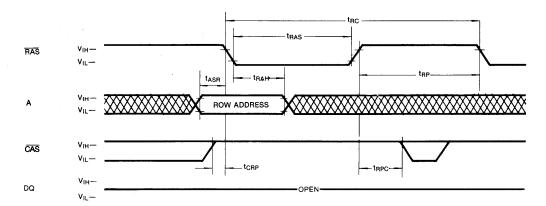
DON'T CARE

FAST PAGE MODE READ CYCLE

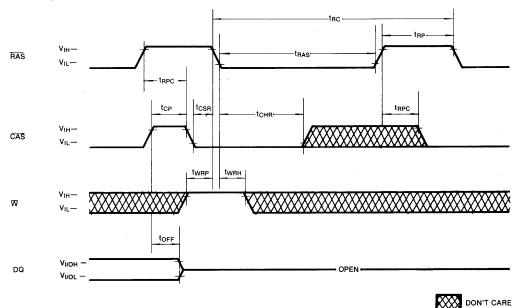


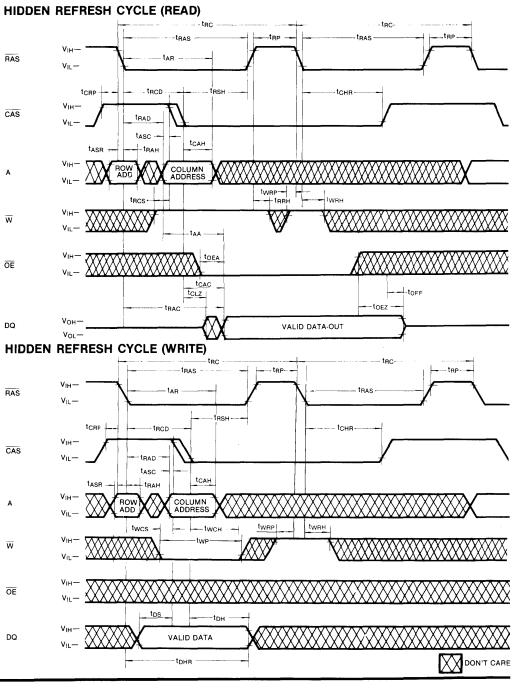
KMM5401000A/AG

TIMING DIAGRAMS (Continued)



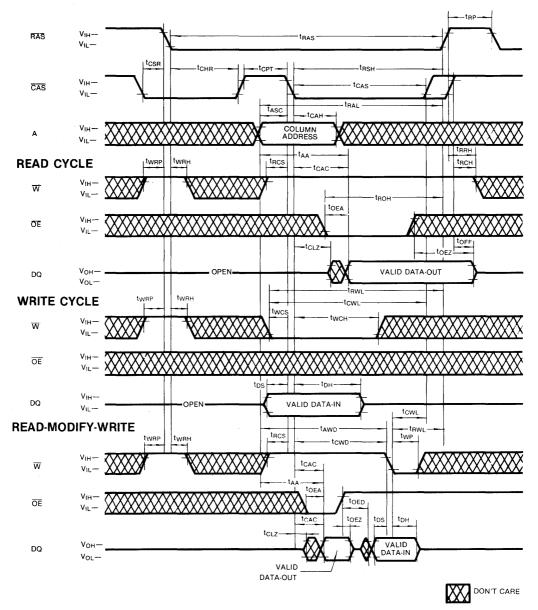
FAST PAGE MODE READ-MODIFY-WRITE


RAS-ONLY REFRESH CYCLE


Note: \overline{W} , \overline{OE} =Don't Care

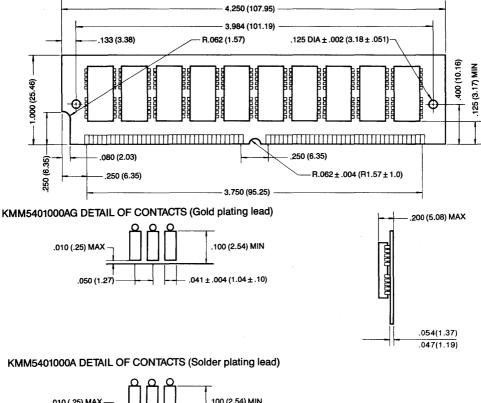
CAS-BEFORE-RAS REFRESH CYCLE

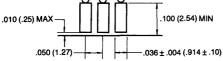
NOTE: OE, Address = Don't Care



KMM5401000A/AG

TIMING DIAGRAMS (Continued)


CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE



PACKAGE DIMENSIONS

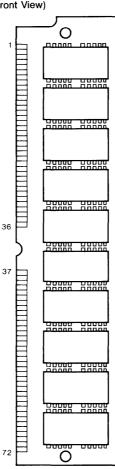
Units: Inches (millimeters)

Tolerances: ± .005 (.13) unless otherwise specified

433

2M×40 DRAM SIMM Memory Module

FEATURES


• Performance range:

	trac	tCAC	tRC
KMM5402000A- 7	70ns	20ns	130ns
KMM5402000A- 8	80ns	20ns	150ns
KMM5402000A-10	100ns	25ns	180ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 1024 cydes/16ms refresh
- JEDEC standard pinout

PIN CONFIGURATIONS (Front View)

Pin	Symbol	Pin	Symbol
1	V _{SS}	37	DQ ₁₉
2	DQ_0	38	DQ ₂₀
3	DQ ₁	39	V _{SS}
4	DQ ₂	40	CAS ₀
5	DQ ₃	41	NC
6	DQ4	42	NC
7	DQ ₅	43	CAS ₁
8	DQ ₆	44	RAS ₀
9	DQ7	45	RAS ₁
10	V _{CC}	46	DQ ₂₁
11	NC	47	\overline{W}
12	A ₀	48	V _{SS}
13	A1	49	DQ22
14	A ₂	50	DQ ₂₃
15	A ₃	51	DQ ₂₄
16	A4	52	DQ ₂₅
17	A ₅	53	DQ26
18	A ₆	54	DQ ₂₇
19	(द्	55	DQ ₂₈
20	L, 18	56	DQ ₂₉
21	DQ ₉	57	DQ30
22	DQ ₁₀	58	DQ ₃₁
23	DQ ₁₁	59	Vcc
24	DQ ₁₂	60	DQ32
25	DQ ₁₃	61	DQ33
26	DQ ₁₄	62	DQ34
27	DQ ₁₅	63	DQ35
28	A ₇	64	DQ ₃₆
29	DQ ₁₆	65	DQ ₃₇
30	V _{CC}	66	DQ ₃₈
31	A ₈	67	PD ₁
32	A ₉	68	PD ₂
33	NC	69	PD ₃
34	NC	70	PD ₄
35	DQ ₁₇	71	DQ39
36	DQ ₁₈	72	Vss

GENERAL DESCRIPTION

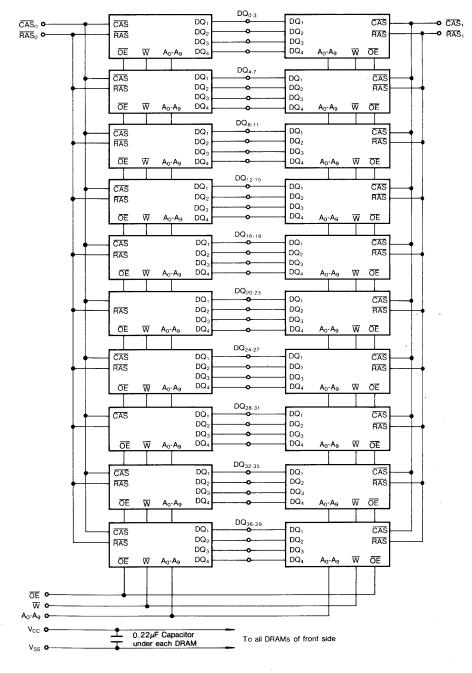
The Samsung KMM5402000A is a 2M bits \times 40 Dynamic RAM high density memory module. The Samsung KMM5402000A consist of twenty CMOS 1M \times 4 bit DRAMs in 20-pin SOJ packages mounted on a 72-pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each DRAM of front side.

The KMM5402000A is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
DQ0-DQ39	Data In/Out
W	Read/Write Input
RAS ₀₋₁	Row Address Strobe
CAS ₀₋₁	Column Address Strobe
ŌĒ	Output Enable
PD1-PD4	Presence Detect
Vcc	Power (+5V)
V _{SS}	Ground
N.C.	No connection

Presence Detect Pins (Optional)

Pin	70ns	80ns	100ns
PD ₁	NC	NC	NC
PD ₂	NC	NC	NC
PD ₃	Vss	NC	V _{SS}
PD4	NC	Vss	Vss


* Pin Connection Changing Available

DRAM MODULES

KMM5402000A/AG

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Units	
Voltage on Any Pin Relative to V _{SS}	VIN, VOUT	-1 to +7.0	V	
Voltage on V _{CC} Supply Relative to V _{SS}	Vcc	-1 to +7.0	V	
Storage Temperature	T _{stg}	-55 to +150	°C	
Power Dissipation	PD	12	W	
Short Circuit Output Current	los	50	mA	

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional Operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to V_{SS}, T_A=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		V _{CC} +1	V
Input Low Voltage	ViL	-1.0		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter			Min	Max	Units
Operating Current* (RAS, CAS, Address Cycling @ t _{RC} =min.)	KMM5402000A- 7 KMM5402000A- 8 KMM5402000A-10	Icc1		1070 970 870	mA mA mA
Standby Current (RAS=CAS=VIH)		Icc2	—	40	mA
RAS-Only Refresh Current* KMM5402000A-7 (CAS=VIH, RAS Cycling @ t _{RC} =min) KMM5402000A-8		Іссз		1070 970 870	mA mA mA
Fast Page Mode Current* (RAS=V _{IL} , CAS Cycling: t _{PC} =min.)	KMM5402000A- 7 KMM5402000A- 8 KMM5402000A-10	I _{CC4}		820 720 620	mA mA mA
Standby Current (RAS=CAS=V _{CC} -0.2V)		Icc5	_	20	mA
CAS-Before-RASRefresh Current*KMM5402000A-7(RAS and CAS Cycling @ t _{RC} =min.)KMM5402000A-8		Icc6		1070 970 870	mA mA mA
Input Leakage Current (Any input 0≤V _{IN} ≤6.5V, all other pins not under test=0 volts.)		հւ	-200	200	μA
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V)		lol	-10	10	μA
Output High Voltage Level (I _{OH} =-5mA)		Voh	2.4	_	v
Output Low Voltage Level (I _{OL} =4.2mA)		Vol	-	0.4	v

*NOTE: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as average current.

CAPACITANCE (T_A=25°C)

item	Symbol	Min	Max	Unit
Input Capacitance (A _O -A ₉)	C _{IN1}	_	130	pF
Input Capacitance (W, OE)	C _{IN2}	-	150	pF
Input Capacitance (RAS ₀₋₁ , CAS ₀₋₁)	CIN3	_	80	pF
Input/Output Capacitance (DQ0-DQ39)	CDQ1	_	29	pF

AC CHARACTERISTICS (0°C<Ta<70°C, V_{CC}=5.0V±10%, See notes 1,2)

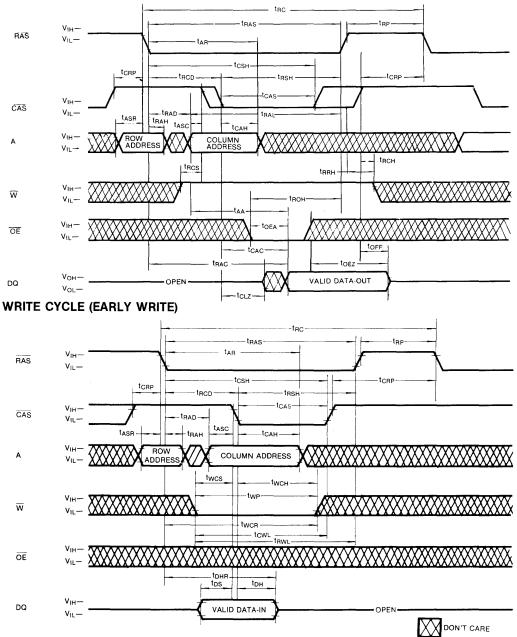
Ctandard Onerstian	Symbol	KMM5402000A-7		KMM5402000A-8		KMM5402000A-10		Unit	Notes
Standard Operation		Min	Max	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130		150		180		ns	
Access time from RAS	t _{RAC}		70		80		100	ns	3,4
Access time from CAS	tcac		20		20		25	ns	3,4,5
Access time from column address	t _{AA}		35		40		50	ns	3,11
CAS to output in Low-Z	tcLZ	5		5		5		ns	3
Output buffer turn-off delay	tOFF	0	15	0	15	0	20	ns	7
Transition time (rise and fall)	tī	3	50	3	50	3	50	ns	2
RAS precharge time	t _{RP}	50		60		70		ns	
RAS pulse width	t _{RAS}	70	10,000	80	10,000	100	10,000	ns	
RAS hold time	t _{RSH}	20		20		25		ns	
CAS hold time	tcsH	70		80		100		ns	
CAS pulse width	tcas	20	10,000	20	10,000	25	10,000	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	25	75	ns	4
RAS to column address delay time	t _{RAD}	15	35	15	40	20	50	ns	11
CAS to RAS precharge time	tCRP	5		5		10		ns	
Row address set-up time	tASR	0		0		0		ns	
Row address hold time	t _{RAH}	10		10		15		ns	
Column address set-up time	tASC	0		0		0		ns	
Column address hold time	tсан	15		15		20		ns	
Column address hold referenced to RAS	t _{AR}	55		60		75		ns	6
Column Address to RAS lead time	t _{RAL}	35		40		50		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold referenced to CAS	t _{RCH}	0		0		0		ns	9
Read command hold referenced to RAS	t _{RRH}	0		0		0		ns	9
Write command hold time	twcн	15		15		20		ns	
Write command hold referenced to RAS	twcR	55		60		75		ns	6
Write command pulse width	twp	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tcw∟	20		20		25		ns	

AC CHARACTERISTICS (Continued)

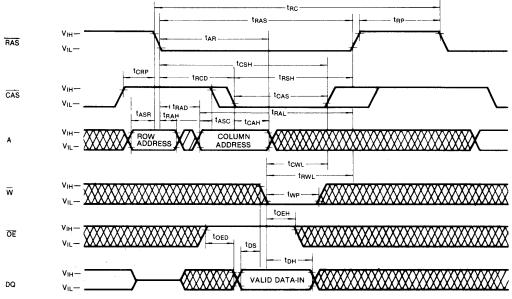
Standard Operation	Symbol	KMM5402000A-7		KMM5402000A-8		KMM5402000A-10			
		Min	Max	Min	Max	Min	Max	Unit	Notes
Data-in set-up time	t _{DS}	0		0		0		ns	10
Data-in hold time	t _{DH}	15		15		20		ns	10
Data-in hold referenced to RAS	t _{DHR}	55		60		75		ns	6
Refresh period	t _{REF}		16		16		16	ms	
Write command set-up time	twcs	0		0		0		ns	8
CAS set-up time (C-B-R refresh)	t _{CSR}	10		10		10		ns	
CAS hold time (C-B-R refresh)	t _{CHR}	20		30		30		ns	
RAS precharge to CAS hold time	tRPC	10		10		10		ns	
Access time from CAS precharge	t _{CPA}		45		45		55	ns	3
Fast Page mode cycle time	t _{PC}	50		50		60		ns	
CAS precharge time (Fast page)	t _{CP}	10		10		10		ns	
RAS pulse width (Fast page)	t _{RASP}	70	200,000	80	200,000	100	200,000	ns	
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twRP	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twen	10		10		10		ns	
CAS precharge (C-B-R counter test)	t _{CPT}	35		40		50		ns	

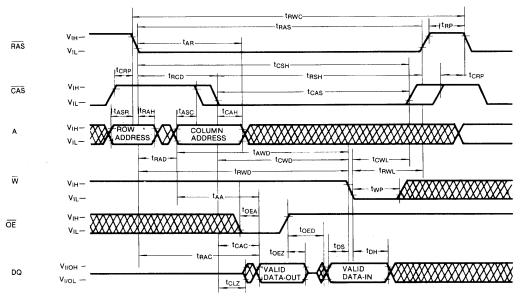
NOTES

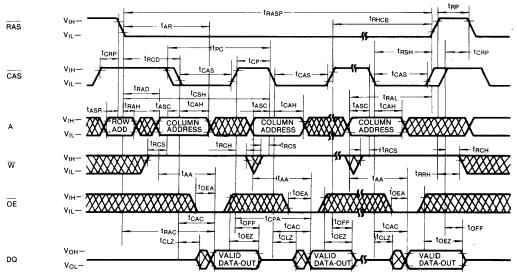
- An initial pause of 200µs is required after powerup followed by any 8 RAS cycles before proper device operation is achieved.
- 2. V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Transition times are measured between V_{IH(min)} and V_{IL(max)}, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF
- 4. Operation within the $t_{RCD(max)}$ limit insures that $t_{RAC(max)}$ can be met. $t_{RCD(max)}$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD(max)}$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that t_{RCD}≥t_{RCD(max)}.
- 6. t_{AR}, t_{WCR}, t_{DHR} are referenced to t_{RAD}(max).
- 7. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

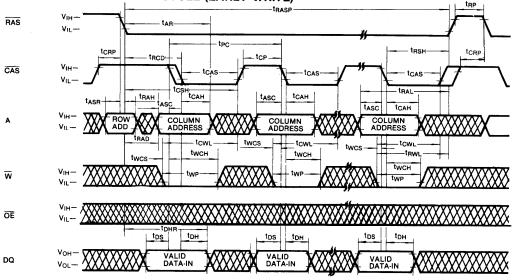

- 8. twcs, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min) the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 9. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10. These parameters are referenced to the \overline{CAS} leading edge in early write cycles and to the \overline{W} leading edge in read-write cycles.
- 11. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAC}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

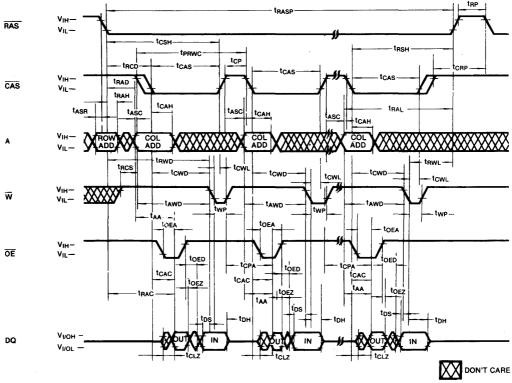
KMM5402000A/AG


TIMING DIAGRAMS




READ-MODIFY-WRITE CYCLE

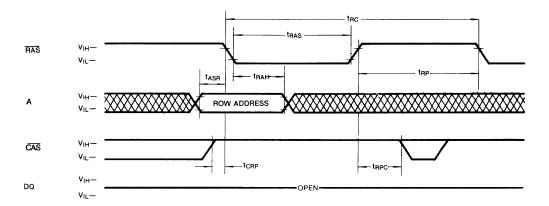


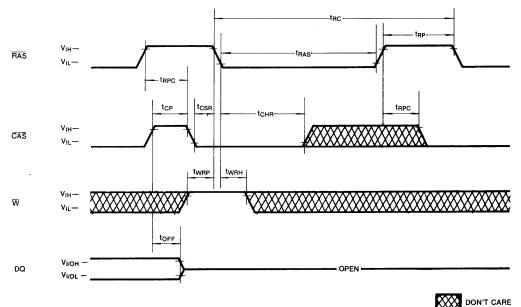


3

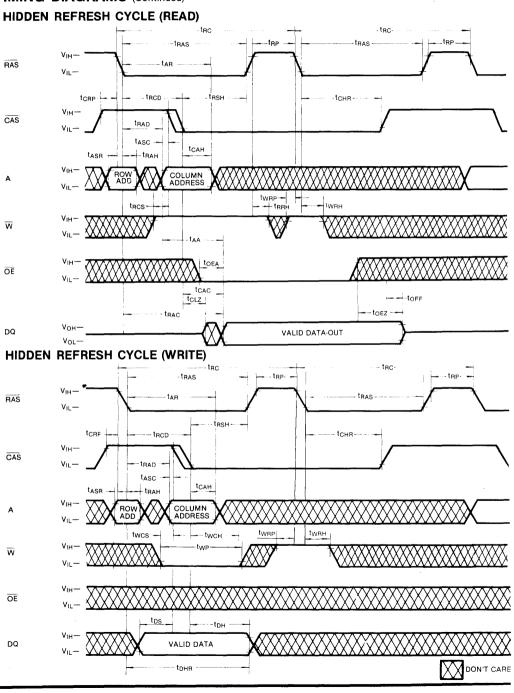
DON'T CARE

 \mathbb{X}



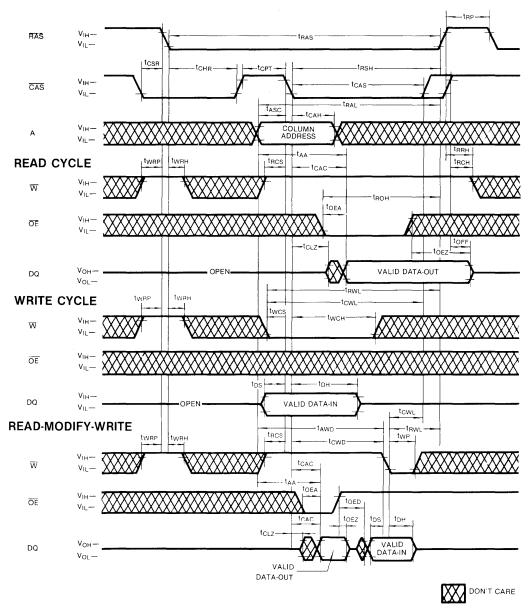

RAS-ONLY REFRESH CYCLE

Note: W, OE=Don't Care



CAS-BEFORE-RAS REFRESH CYCLE

NOTE: OE, Address = Don't Care

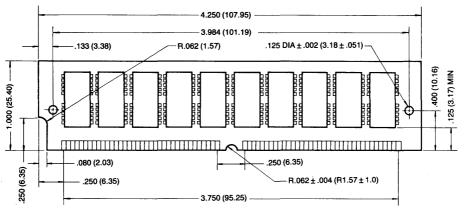


UNG

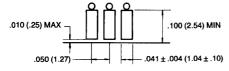
Electronics

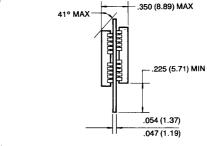
TIMING DIAGRAMS (Continued)

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

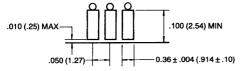


KMM5402000A/AG

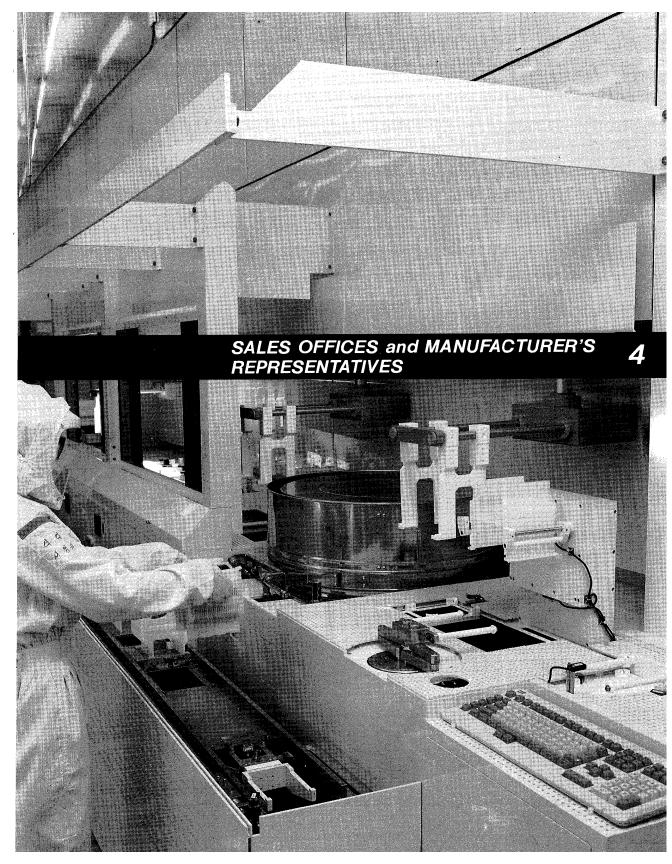

PACKAGE DIMENSIONS


Units: Inches (millimeters)

.



KMM5402000AG DETAIL OF CONTACTS (Gold plating lead)



KMM5402000A DETAIL OF CONTACTS (Solder plating lead)

Tolerances: ± .005 (.13) unless otherwise specified

SAMSUNG SEMICONDUCTOR SALES OFFICES - U.S.A.

Southwest

South Central

15851 Dallas Parkway

Dallas, TX 75248-3307

FAX: (214) 770-7971

Suite 840

(214) 770-7970

(Memory products) 22837 Ventura Blvd. Suite 305 Woodland Hills, CA 91367 (818) 346-6416 FAX: (818) 346-6621

North Central

901 Warrenville Road

Lisle, IL 60532-1359

FAX: (708) 852-3096

(708) 852-2011

Suite 120

Southwest (Microproducts) 2102 Business Center Drive Suite 169 Irvine, CA 92715 (714) 253-5795 FAX: (714) 252-8842

North East

20 Mall Road Suite 410 Burlington, MA 01803 (617) 273-4888 FAX: (617) 273-9363

Northwest

2700 Augustine Drive Suite 198 Santa Clara, CA 95054 (408) 727-7433 FAX: (408) 727-5071

Southeast

Battleground Corporate Park 3859 Battleground Ave. Suite 204 Greensboro, NC 27410 (919) 282-0665 FAX: (919) 282-0784

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

ALABAMA	
SOUTHERN COMPONENT	TEL: (205) 533-6500
SALES	FAX: (205) 533-6578
307 Clinton Ave. East #413	1,000 (200) 000 0070
Huntsville, AL 35801	
ARIZONA	
O'DONNELL ASSOCIATES	TEL: (602) 944-9542
2432 W. Peoria Ave. #1026	FAX: (602) 861-2615
Phoenix, AZ 85029	1 AA. (002) 001 2010
CALIFORNIA	
I-SQUARED	TEL: (408) 988-3400
3350 Scott Blvd.	FAX: (408) 988-3400
Building 10	FAA. (408) 988-2079
Santa Clara, CA 95054	
SPINNAKER SALES	TEL: (619) 792-4800
Del Mar Corp. Center	FAX: (619) 792-5803
990 Highland Drive	
Suite 105	
Solana Beach, CA 92075	
WESTAR REP COMPANY	TEL: (714) 832-3325
2472 Chambers Road	FAX: (714) 832-7894
Suite 100	
Tustin, CA 92680	
WESTAR REP COMPANY	TEL: (213) 539-2156
25202 Crenshaw Blvd.	FAX: (213) 539-2564
Suite 217	
Torrance, CA 90505	
WESTAR REP COMPANY	TEL: (818) 880-0594
26500 Agoura Rd.	FAX: (818) 880-5013
Suite 204 Calabasas, CA 91302	
Calabasas, CA 91302	
INTELATECH, INC.	TEL: (416) 629-0082
1115 Crestlawn Drive	FAX: (416) 629-0082
Suite 1	FAA. (416) 629-1795
Mississauga, Ontario L4W1A7	
INTELATECH, INC.	TEL: (514) 369-1317
3285 Cavendish Blvd.	FAX: (514) 369-1319
Suite 390	
Montreal, Quebec H4B 2L9	

COLORADO	
FRONT RANGE MARKETING	TEL: (303) 443-4780
3100 Arapahoe Road	FAX: (303) 447-0371
Suite 404	
Boulder, CO 80303	
CONNECTICUT	
PHOENIX SALES	TEL: (203) 496-7709
248 Main Street	FAX: (203) 496-0912
Torrington, CT 06790	
FLORIDA	
B/B TECH SALES	TEL: (305) 477-0341
3900 N.W. 79th Avenue #636	FAX: (305) 477-0343
Miami, FL 33166	
MEC	TEL: (305) 426-8944
700 W. Hillsboro Blvd.	(305) 426-8960
Bldg. 4, Suite 204	FAX: (305) 426-8799
Deerfield Beach, FL 33441	TEL (010) 000 5014
MEC	TEL: (813) 393-5011
10637 Harborside Drive, N	FAX: (813) 393-5202
Largo, FL 34643 GEORGIA	
SOUTH ATLANTIC COMPONEN	T CALES
3300 Holcomb Bridge Road	TEL: (404) 447-0154
Suite #210	FAX: (404) 447-6714
Norcross, GA 30092	
ILLINOIS	
DAVIX INTERNATIONAL LTD.	
1655 N. Arlington Heights Rd.	TEL: (708) 259-5300
	08) 259-5428
Arlington Heights, IL 60004	
INDIANA	
GEN II MARKETING, INC.	TEL: (317) 848-3083
3003 E. 96th Street	FAX: (317) 848-1264
Suite 201	
Indianapolis, IN 46240	
GEN II MARKETING, INC.	TEL: (219) 436-4485
4803 Oak Mast Trail	FAX: (219) 436-4485
Ft. Wayne, IN 46804	

SAMSUNG SEMICONDUCTOR REPRESENTATIVES (Continued)

IOWA

IOWA	
ASSOCIATED ELECTRONIC MA	RKETERS, INC.
4001 Shady Oak	TEL: (319) 377-1129
Marion, IA 52302	FAX: (319) 377-1539
KANSAS	
ASSOCIATED ELECTRONIC MA	
8843 Long St.	TEL: (913) 888-0022
Lenexa, KS 66215	FAX: (913) 888-4848
KENTUCKY	
GEN II MARKETING, INC.	TEL: (502) 491-5250
8819 Roman Court	FAX: (502) 491-5250
Louisville, KY 40291	. ,
MASSACHUSETTS	
NEW TECH SOLUTIONS, INC.	TEL: (617) 229-8888
111 South Bedford Street	FAX: (617) 229-1614
Suite 102	144. (017) 220 1014
Burlington, MA 01803	
MICHIGAN	
JENSEN C.B.	TEL: (313) 643-0506
2145 Crooks Rd.	FAX: (313) 643-4735
Troy, MI 48084	
MINNESOTA	
GP SALES, INC.	TEL: (612)831-2362
7600 Parklawn FAX: (61	2) 831-2619
Suite 315	_,
Edina, MN 55435	
MISSOURI	
ASSOCIATED ELECTRONIC MA	
11520 St. Charles Rock Rd.	TEL: (314) 298-9900
Bridgeton, MO 63044	FAX: (314) 298-8660
NEW JERSEY	
NEPTUNE ELEC.	TEL: (201) 461-2789
2460 Lemoine Avenue	FAX: (201) 461-3857
Ft. Lee,NJ 07024	
NEW MEXICO	
O'DONNELL ASSOCIATES	TEL: (505) 889-4522
3200 Carlisle Blvd, NE	
Suite 119	FAX: (505) 889-4598
Albuquerque, NM 87110	
NEW YORK	
NEPTUNE ELEC.	TEL: (516) 349-1600
255 Executive Dr.	FAX: (516) 349-1343
Suite 211	
Plainview, NY 11803	
T-SQUARED	TEL: (315) 463-8592
6443 Ridings Road	FAX: (315) 463-0355
Syracuse, NY 13206	. ,
T-SQUARED	TEL: (716) 924-9101
7353 Victor-Pittsford Road	FAX: (716) 924-4946
Victor, NY 14564	
NORTH CAROLINA	
SOUTH ATLANTIC COMPONENT	CALES
4904 Waters Edge Drive	TEL: (919) 859-9970
Suite 268	FAX: (919) 859-9974
	177. (212) 022-22/4
Raleigh, NC 27606	
OHIO	
J.N. BAILEY & ASSOCIATES	TEL: (513) 687-1325
129 W. Main Street	FAX: (513) 687-2930
New Lebanon,OH 45345	

OHIO (Continued)	
J.N. BAILEY & ASSOC.IATES	TEL: (614) 262-7274
2978 Findley Avenue	FAX: (614) 262-0384
Columbus,OH 43202	
J.N. BAILEY & ASSOCIATES	TEL: (216) 273-3798
1667 Devonshire Drive	FAX: (216) 225-1461
Brunswick,OH 44212	
OREGON	
ATMI	TEL: (503) 643-8307
6700 S.W. 105th Street Suite 303	FAX: (503) 643-4364
Beaverton, OR 97005	
PENNSYLVANIA	
CMS MARKETING	TEL: (215) 885-4424
715 Twining Road	FAX: (215) 885-3736
Dresher, PA 19025	. ,
BAILEY, J.N. & ASSOC.	TEL: (412) 568-1392
1660 Hancock Avenue	FAX: (412) 568-1479
Apollo, PA 15613	
PUERTO RICO	
DIGIT-TECH P.O. Box 1945	TEL: (809) 892-4260
Calle Cruz #2	FAX: (809) 892-3366
Bajos, San German 00753	
Puerto Rico	
SOUTH CAROLINA	
SOUTH ATLANTIC COMPONENT	
305 West Royal Tower Dr.	TEL: (803) 732-0816
Irmo, SC 29063 TENNESSEE	FAX: (803) 732-0816
SOUTH ATLANTIC COMPONEN	I SALES
740 Shady Springs Lane	TEL: (615) 693-6104
Knoxville, TN 37923	FAX: (615) 693-6104
TEXAS	
VIELOCK ASSOCIATES	TEL: (214) 881-1940
555 Republic Drive	FAX: (214) 423-8556
Suite102 Plano,TX 75074	
VIELOCK ASSOCIATES	TEL: (512) 345-8498
9430 Research Blvd.	FAX: (512) 346-4037
Echelon BLDG. 2, Suite 330	, , , , ,
Austin, TX 78759	
VIELOCK ASSOCIATES	TEL: (713) 586-9817
4606 FM 1960 West	FAX: (713) 586-9818
Suite 420 Houston, TX 77069	
UTAH	
ANDERSON & ASSOC.	TEL: (801) 292-8991
270 South Main, #108	FAX: (801) 298-1503
Bountiful, UT 84010	
WASHINGTON	
ATMI	TEL: (206) 869-7636
8521 154th Ave., NE	FAX: (206) 869-9841
Redmond, WA 98052	
WISCONSIN	
DAVIX INTERNATIONAL LTD.	TEL: (414) 255-1600
N91 W17194 Appleton Avenue Menomonee Falls, WI 53051	FAX: (414) 255-1863
MCHOINDING Fails, WI 03001	

SAMSUNG SEMICONDUCTOR SALES OFFICES-EUROPE

SAMSUNG SEMICONDUCTOR

EUROPE GmbH Mergenthaler Allee 38-40 6236 Eschborn(Germany) TEL: 0049-6196-90090 FAX: 0049-6196-900989 TLX: 4072678

MÜNCHEN

Carl-Zeiss-Ring 9 8045 Ismaning Bei München TEL : 0049-89-964838 FAX : 0049-89-964873 MILANO Viale G. Matteotti, 26 1-20095 Cusano Milanino TEL : 0039-2-66400181 FAX : 0039-2-6192279

LONDON

Samsung House 3 Riverbank Way Great West Road Brentford Middlesex TW8 9RE TEL: 0044-81-8629300 FAX: 0044-81-5680528 TLX: 25823 PARIS Centre d'Affaires La Boursidiere RN 186, Bat. Bourgogne, BP 202 92357 Le Plessis-Robinson TEL : 0033-1-40940700 FAX : 0033-1-40940216

STOCKHOLM

Bergkaellavaegen32 P. O. Box 319 S-19130 Sollentuna TEL : 0046-8-6269626 FAX : 0046-8-6268638 BARCELONA Diagonal 605, planta5 E-08028 Barcelona TEL : 0034-3-4107760 FAX : 0034-3-4108816

BELGIUM

Rue de Geneve10, B3 B-1140 Brussels TEL : 0032-2-2456510 FAX : 0032-2-2456313

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

EUROPE

AUSTRIA

 SATRON HANDELSGESELLSCHAFT mbH

 Hoffmeistergasse 8-10
 TEL : 0043-222-8123020

 A-1120 Wien
 FAX : 0043-222-859593

 TLX : 047-75311851

BELGIUM

 INELCO ELECTRONICS COMPONENTS DIVISION

 Oorlogknisenlaan 94
 TEL: 0032-22-2442911

 B-1120 Brussels
 FAX: 0032-22-164606

 TLX: 046-25820
 TLX: 046-25820

DENMARK

EXATEC A/S Dortheavej 1-3 DK-2400 Kopenhagen NV TLX : 07253

FINLAND

FINDIP P. O. Box 64, Vitikka 1 SF-02631 Espoo

TEL : 00358-0-5284325 FAX : 00358-0-5284333 TLX : 057-124426

FRANCE

ASIA MOS Bâtiment Evolic 1 165, Boulevard de Valmy F-92705 Colombes

SCAIB

6, Rue le Corbusier Silic 424 F-94583 Rungis, Cedex TEL: 0033-1-47601247 FAX: 0033-1-47601582 TLX: 042-613890

TEL : 0033-1-46868170 FAX : 0033-1-45605549 TLX : 042-206952

GERMANY

ASTRONIC GmbH Grünwalder Weg 30 D-8024 Deisenhofen	TEL:0049-89-6130303 FAX:0049-89-6131668 TLX:5216187
CANNING ELECTRONIC DIS	TRIPUTION O
Laatzener Str.19	TEL: 0049-511-865075
Postfach 721226	FAX: 0049-551-876004
D-3000 Hannover 72	TLX : 923509
MSC VERTRIEBS GmbH	
Industrie Str.16	TEL: 0049-7249-7580
Postfach 1380	FAX : 0049-7249-7993
D-7513 Stutensee 3	TLX: 465230
D-1313 Gluterisee 3	122 403230
MICRONETICS GmbH	
Weil Der Staedter Str.45	TEL: 0049-7159-6019
D-7253 Renningen1	FAX: 0049-7159-5119
D 7200 Heiningen	TLX: 724708
	TEX: 724708
SILCOM ELECTRONICS VE	RTRIFRS GmbH
Hindenburg Str.284	TEL: 0049-2161-15074
D-4050 Möenchengladbach	FAX: 0049-2161-183313
B 4000 Moenchenglaubach	TLX: 852189
	TEX: 032103
ITALY	
DIS. EL. SPA	
Via Orbetello 98	TEL: 0039-11-291930
I-10148 Torino	FAX: 0039-11-2919380
MOXEL S.R.L.	
Via C. Frova, 34	TEL: 0039-2-61290521
I-20092 Cinisello Balsamo	FAX: 0039-2-6172582
	TLX : 043-352045

FANTON SERVICE S.R.L Via O. Simoni, 5 I-40011 Anzola dell' Emilia

TEL: 0039-51-735015 FAX: 0039-51-735013

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

THE NETHERLANDS

MALCHUS BV HANDELMU Fokkerstraat 511-513

Postbus 48 NI-3125 BD Schiedam TEL: 0031-10-4277777 FAX: 0031-10-4154867 TLX: 044-21598

NORWAY

EXATECALS Solheimveien 50 Postbox 314 N-1473 Skarer

TEL: 0047-2-972950 FAX : 0047-2-972953

SPAIN

SEMICONDUCTORES S.A Burrel Road Industrial Estate FAX : 0044-480-496621 TEL: 0034-3-4332856 C. Provenza 159 3-1 ST. Ives Cambrige PE17_4WJ TLX : 329244 08025 Barcelona FAX: 0034-3-4331944 Spain ITT MULTICOMPONENTS LTD. TEL : 0044-753-824212 346 Edinburgh Avenue Slough Berkshire SL1 4TU FAX : 0044-753-824160 SWEDEN TLX: 849808 MIKO KOMPONENTS NELTRONIC LIMITED TEL: 0046-753-89080 Segersbyvaegen 3 John F. Kennedy Road TEL: 00353-1-503560 FAX : 0046-753-75340 P.O.Box 2001 TLX:054-15023 S-14502 Norsborg

SWITZERLAND

PANATEL AG Hard Str.72 5430 Wettingen Schweiz

TEL: 0041-56275500 FAX : 0041-56275511 TLX : 045-868763

UNITED KINGDOM

BYTECH COMPONENTS LIMITED

12a Cedarwood Chineham TEL: 0044-256-707107 Business Park Crockford Lane FAX : 0044-256-707162 Chineham Basingstroke Hampshire RG24 OWD

ICE ELECTRONICS LTD.

31-32 Stephenson Road TEL: 0044-480-496466

Naas Road Dublin 12 Ireland

FAX: 00353-1-552789

TLX: 93556

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

ASIA

HONG KONG

AV, CONCEPT LTD.

ROOM 802-804, Tower A, 8/Fl., TEL: 3629325 Hunghom Commercial Centre, 37-39 MA Tau Wai Road, Hunghom, Kowloon, Hong Kong

FAX: 7643108 TLX: 52362 ADVCC HX

PROTECH COMPONENTS LTD.

Unit 2, 3/F, Wah Shing Centre, TEL: 7930882 11 Shing Yip Street. FAX: 7930811 Kwun Tong, Kowloon, Hong Kong

WISEWORLD TECHNOLOGY CO.

Room 708, Tower A, 7/Fl., TEL: 7658923 Hunghom Commercial Centre, FAX: 3636203 37-39 Ma Tau Wai Road, Hunghom, Kowloon, Hong Kong

RIGHT SYSTEM CO., LTD.

Room A19, 6/Fl., TEL: 7566331 Proficient Ind. Centre, FAX: 7998985 Block A, 6 Wang Kwun Road, TLX: 52896 OSPCL HX Kowloon Bay, Kowloon, Hong Kong

SOLARI COMPUTER ENGINEERING LTD. (4 BIT/8 BIT ONE CHIP SOFTWARE HOUSE) Unit 703-4, 7/Fl., Jordan House, TEL: 7213318 6-8 Jordan Road, Kowloon, FAX: 7235288 Hong Kong

CENTRAL SYSTEMS DESIGN LTD. (ASIC DESIGN HOUSE)

Room 1704, Westlands Centre, 20 Westlands Road. Quarry Bay, Hong Kong

TEL: 5620248 FAX: 5658046 TLX: 73990 CSD HX

DATAWORLD INTERNATIONAL LTD. (MIYUKI ELECTRONICS (HK) LTD.) **ASIC DESIGN HOUSE**

Flat No. 3-4, 5/Fl., TEL: 7862611 Yuen Shing Ind. Bldg., FAX: 7856213 1033, Yee Kuk Street, West, TLX: 45876 MYK HX Kowloon, Hong Kong

TAIWAN

YOSUN INDUSTRIAL CORP.

TEL: (02) 788-1991 (Rep.) 7F, No. 76, Chern Kong Rd., Sec. 1, Nan Kang, Taipei, FAX: (02) 782-6120 Taiwan R.O.C.

KINREX CORP.

2nd. Fl., 514-3, Tun Hwa S. Rd., Taipei, Taiwan, R.O.C.

SANT SONG CORP. Room A, 8F No. 180, Sec-4,

Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.

TEL: 02-700-4686-9 FAX: 02-704-2482 TLX: 20402 KINREX

TEL: (02) 775-2506 FAX: (02) 771-8413

JAPAN

TOMEN ELECTRONICS CORP

1-1 Uchisaiwa-Cho 2 Chome TEL: (03) 3506-3654 Chiyoda-Ku Tokyo, 100 Japan FAX: (03) 3506-3497

RIKE

Nichimen Bldg., TEL: (06) 201-2081 2-2 Nakanojima 2 Chome Kita-Ku FAX: (06) 222-1185 Osaka, 530 Japan

DIA SEMICON SYSTEMS INCORPORATED

Flowerhill-Shinmachi 1-23-9 TEL: (03) 3439-1600 Shinmachi Setagaya-Ku Tokyo FAX: (03) 3439-1601 154 Japan

7F Sasage Bldg., 4-6 Sotokanda 2 Chome Chiyoda-Ku Tokyo, 101 Japan

MARUBUN

8-1 Nihombashi-Odenma-Cho TEL: (03) 3639-9897 Chuo-Ku Tokyo, 103 Japan FAX: (03) 3661-7433

SAMSUNG JAPAN

No.3108 Kasumigaseki Bldg., TEL: (03) 3581-7565 3-2-5 Kasumigaseki Tokyo, 100 FAX: (03) 3507-0923 Japan

SINGAPORE

GEMINI ELECTRONICS PTE LTD.

315, Outram Road #12-08, TEL: 65-2263066 Tan Boon Llat Building, FAX: 65-2262781 Singapore 0315 TLX: RS-42819

BOSTEX ELECTRONICS PTE LTD.

#05-14 Bylands Bldg., TEL: 65-3395713 135 Middle Road, FAX: 65-3389538 Singapore 0718

ASTINA ELECTRONICS (M) SDN BHD

23. Jalan Pantai Jeriak Satu TEL: 04-876697 11900 Bayan Lepas Penang, FAX: 04-876780 West Malaysia

ASTINA ELECTRONICS (S) PTE LTD.

TEL: 65-2232221 315, Outram Road, #11-02 Tan Boon Liat Bldg., FAX: 65-2213776 Singapore 0315

INDIA

COMPONENTS AND SYSTEMS MARKETING ASSOCIATES (INDIA) PVT. LTD. 100, Dadasaheb Phalke Road, TEL: TEL: 4114585 Dadar, Bombay 400 FAX: 4112546 014

TLX: 001-4605 PDT IN

TEL: (03) 3257-2600

FAX: (03) 3251-9705

TURKEY

ELEKTRO SAN. VE TIC. KOLL. STI.

Hasanpasa, Ahmet Rasim Sok TEL: 337-2245 No. 16 Kadikoy Istanbut, FAX: 336-8814 Turkey TLX: 29569 elts tr

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

THAILAND

VUTIPONG TRADING LTD., PART.

51-53 Pahurat Rd. (Banmoh) TEL: 221-9699-3641 Bangkok 10200 THAILAND

223-4608 FAX: 224-0861 TLX: 87470 Vutipong TH

KOREA

NAEWAE SEMICONDUCTOR CO., LTD.

Room 503, 22-dong, Sunin Bldg., 16-1, Hankangro-2ka, Yongsan-ku, Seoul, Korea Cable: ELECONAEWAE SEOUL C.P.O. Box 1409

TEL: 717-4065-7 702-4407-9 FAX: 702-3924 TLX: NELCO K27419

SAMSUNG LIGHT-ELECTRONICS CO., LTD.

4th Fl. Room 2-3, TEL: 718-0045 Electronics Main Bldg., 16-9, 718-9531-5 Hankangro-3ka, Yongsan-ku, FAX: 718-9536 Seoul, Korea

NEW CASTLE SEMICONDUCTOR CO., LTD.

4th Fl. Room 10-11. Electronics Main Bldg., 16-9, Hankangro-3ka, Yongsan-ku, Seoul, Korea

TEL: 718-8531-4 FAX: 718-8535

HANKOOK SEMICONDUCTOR &

TELECOMMUNICATIONS CO., LTD. 402 Suite, Sowon Bldg., TÉL: 338-2015-8 354-22, Seokyo-dong, FAX: 338-2983 Mapo-ku, Seoul, Korea

SEG YUNG INTERISE CORP.

21-301, Sunin Bldg., 16-1, Hankangro-2ka, Yongsan-ku, Seoul, Korea

TEL: 701-6811-6 701-6781-4 FAX: 701-6785

SEGYUNG ELECTRONICS

182-2, Jangsa-dong, Jongro-ku, Seoul, Korea

TEL: 273-6781-3 FAX: (02) 273-6597 TLX: K24950 SUKSEMT

SAMTEK

Room 704, Euylim Bldg., 16-96, Hankangro-3ka, Yongsan-ku, Seoul, Korea TEL: 703-9656-8 FAX: 703-9659

SUNIN INDUSTRIES CO., LTD.

Sunin Bldg., 7Fl., 16-1, Hankangro-2ka, Yongsan-ku, Seoul, Korea

TEL; 718-7113-6 702-1257-9 FAX: 715-1031

SAMSUNG SEMICONDUCTOR DISTRIBUTORS

ALABAMA HAMMOND 4411-B Evangel Circle, N.W. Huntsville, AL 35816 ARIZONA ADDED VALUE 7741 East Gray Road Suite #9 Scottsdale, AZ 85260 CALIFORNIA ADDED VALUE 3320 East Mineral King Unit D Visalia, CA 93291 ADDED VALUE 1582 Parkway Loop Unit G Tustin, CA 92680 ADDED VALUE 6397 Nancy Ridge Road San Diego, CA 92121 ALL AMERICAN 369 Van Ness Way #701 Torrance, CA 90501 ALL AMERICAN 2360 Qume Drive, Suite C San Jose, CA 95131 ALL AMERICAN 5625 Buffin Boad #3212 San Diego, CA 92123 I.E.C. 9940 Business Park Drive, #145 Sacramento, CA 95827 **ITT Components** 5 Jenner Street Irvine, CA 92718 **ITT Components** 1580 Oakland Road Suite #C102 San Jose, CA 95131 JACO 1541 Parkway Loop Suite A Tustin, CA 92680 JACO 2282 Townsgate Road Suite 100 Westlake Village, CA 91361 JACO 2880 ZANKER ROAD SUITE 202 SAN JOSE, CA 95134 CANADA ACTIVE 237 Hymus Boulevard Point Claire, Quebec H9R 5C7 ACTIVE 100 S.E. Marine Drive Vancouver, BC Y5X 2S3 ACTIVE 100 Lombard Street Toronto, Ontario M5C 1M3

(205) 830-4764 FAX:(205) 830-4287

(602) 951-9788 FAX: (602) 952-4182

(209) 734-8861 FAX: (209) 734-8865

(714) 259-8258 FAX: (714) 259-0828

(619) 558-8890 FAX: (619) 558-3018

(800) 669-8300 FAX: (213) 320-7207

(408) 943-1200 FAX: (408) 943-1393

(800) 831-8300 FAX: (619) 268-3836

(916) 363-6030 FAX: (916) 362-6926

(714) 727-4001 FAX: (714) 727-2109

(408) 453-1404 FAX: (408) 453-1407

(714) 258-9003 FAX: (714) 258-1909

(805) 495-9998 FAX: (805) 494-3864

(408) 432-9290 FAX: (408) 432-9298

(514) 694-7710 (514) 697-8112

(604) 324-7500 FAX: (604) 324-3100

(416) 367-2911 FAX: (416) 367-4706

ACTIVE 5651 Ferrier Street Montreal, Quebec H4AP 1N1 ACTIVE 3220 5th Avenue, N.E. Bay 2 Calgary, Alberta T2A 5N1 ACTIVE 106 King Edward St., E Winnepeg, Manitoba R3H 0N8 ACTIVE 1350 Matheson Blvd, Unit 2 Mississauga, Ontario L4W 4MI ACTIVE 6029 103rd St. Edmonton, Alberta T6H 2H3 ACTIVE 1990 Blvd. Charest O. Ste-Foy, Quebec G1N 4K8 ACTIVE 1023 Merivale Boad Ottawa, Ontario K1Z 6A6 ACTIVE 6080 Metropolitan Montreal, Quebec H1S 1A9 **G.B. MICRO ELECTRONICS** 9770 Henri Bourassa W. Ville St. Laurent, Quebec H4S 1R5 G.B. MICRO ELECTRONICS Box 207 RR2 Nepean, Ontario K2C 3H1 G.B. MICRO ELECTRONICS 2777 Thamesgate Dr. Mississauga, Ontario L4T 1G5 COLORADO ADDED VALUE 4090 Younafield Wheat Ridge, CO 80033 I.E.C. 420 East 58th Avenue Denver, CO 80216 I.E.C. 5750 North Logan Street Denver, CO 80216 CONNECTICUT GREENE-SHAW 65 So. Turnpike Rd. Wallingford, CT 06492 FLORIDA ALL AMERICAN 16251 N.W. 54th Avenue Miami, FL 33014 ALL AMERICAN 5009 Hiatus Road Sunrise, FL 33351 **GREENE-SHAW** 270 East Drive Melbourne, FL 32904 HAMMOND 6600 N.W. 21st, Avenue Fort Lauderdale, FL 33309 HAMMOND 1230 W. Central Blvd Orlando, FL 32802

(514) 731-7441 FAX: (514) 731-0129

(403) 235-5300 FAX: (403) 248-0750

(204) 786-3075 FAX: (204) 783-8133

(416) 238-8825 FAX: (416) 238-2817

(403) 438-5888 FAX: (403) 434-0812

(418) 682-5775 FAX: (418)682-8303

(613) 728-7900 FAX: (613) 728-3586

(514) 256-7538 FAX: (514) 256-4890

(514) 333-7373 FAX: (514) 334-7707

(613) 825-6380 FAX: (613) 825-0569

(416) 241-7000 FAX: (416) 241-4853

(303) 422-1701 FAX: (303) 422-2529

(303) 292-5537 FAX: (303) 292-0114

(303) 292-6121 FAX: (303) 297-2053

(203) 265-3333 FAX: (203) 265-3583

(305) 621-8282 FAX: (305) 620-7831

(800) 327-6237 FAX: (305) 749-9229

(407) 951-3636

(407) 973-7103 FAX: (407) 973-6010

(407) 849-6060 FAX: (407) 648-8584

SAMSUNG SEMICONDUCTOR DISTRIBUTORS (Continued)

FLORIDA (Continued) JACO 1060 Hollaed Drive Boca Raton, FL 33487 GEORGIA HAMMOND 5680 Oakbrook Parkway Suite 160 Norcross, GA 30093 JACO 6035 Atlantic Blvd. Suite J Norcross, GA 30071 ILLINOIS QPS 101 Commerce Dr. #A Schaumburg, IL 60173 I.E.C. 2200 N. Stronington Ave., #210 Hoffman Estates, IL 60195 MARYLAND ALL AMERICAN 14636 Rothgeb Dr. Rockville, MD 20850 JACO Rivers Center 10270 Old Columbia Road Columbia, MD 21046 MASSACHUSETS ALL AMERICAN 107 Audubon Road Wakefield, MA 01880 GREENE-SHAW 70 Bridge Street Newton, MA 02195 JACO 1053 East Street. Tewksbury, MA 01876 MINNESOTA ALL AMERICAN 11409 Valley View Road Eden Prairie, MN 55344 NEW YORK ALL AMERICAN 71102 Koehier Ave. Ronkonkoma, NY 11779 ALL AMERICAN 161 S. MACQUESTEN PKWY MOUNT VERNON, NY 10550 CAM/RPC 2975 Brighton Henrietta TL Road Rochester, NY 14623 JACO 145 Oser Avenue Hauppauge, NY 11788 NORTH CAROLINA JACO 3029-105 Stonybrook Drive Raleigh, NC 27604

(407) 241-7943 FAX: (407) 241-7950

(404) 449-1996 FAX: (404) 242-9834

(404) 449-9508 FAX: (404) 449-0275

(708) 884-6620 FAX: (708) 884-7573

(708) 843-2040 FAX: (708) 843-2320

(301) 251-1205 FAX: (301) 251-8574

(301) 995-6620 FAX: (301) 995-6032

(617) 246-2300 FAX: (617) 246-2305

(617) 969-8900 FAX: (617) 969-4712

(508) 640-0010 FAX: (508) 640-0755

(612) 944-2151

(516) 981-3935 FAX: (516) 981-3947

(914) 699-2224 FAX: (914) 699-1316

(716) 427-9999 FAX: (716) 427-7559

(516)-273-5500 FAX: (516) 273-5528

(919) 876-7767

HAMMOND 2923 Pacific Avenue Greensboro, NC 27420 **GREENE-SHAW** 6200 Falls of the Neuse Road Suite 200 Raleigh, NC 27609 OHIO CAM/RPC 749 Miner Road Cleveland, OH 44143 CAM/RPC 733 H. Lakeview Plaza Rd. Worthington, OH 43085 CAM/RPC 7956 Strawberry Hill Lane Meineville, OH 45039 OREGON I.E.C. 6850 S.W. 105th Ave., Ste. B Beaverton, Oregon 97005 PENNSYLVANIA CAM/RPC 620 Alpha Drive Pittsburgh, PA 15238 SOUTH CAROLINA HAMMOND 1035 Lowndes Hill Rd Greenville, SC 29607 HAMMOND 2923 PACIFIC AVENUE TEXAS ALL AMERICAN 1819 Firman Drive, #127 Richardson, TX 75081 JACO 1005 Industrial Blvd. Sugar Land, TX 77478 0241 2120-M Braker Lane Austin, TX 78758 UTAH ADDED VALUE 1836 Parkway Blvd. West Valley City, UT 84119 1.E.C. 2117 South 3600 West W. Valley City, UT 84119 WASHINGTON JACO 15014 N.E. 40th Street Bldg. "O", Unit 202 Redmond, WA 98052 I F C 1750 124th Avenue, N.E. Bellevue, WA 98005

(919) 275-6391 FAX: (919) 275-6391 x225

(919) 954-7138 FAX: (919) 954-7139

(216) 461-4700 FAX: (216) 461-4329

(614) 888-7777 FAX: (614) 888-9779

(513) 898-1111 FAX: (513) 433-6792

(503) 641-1690 FAX: (503) 646-3737

(412) 782-3770 FAX: (412) 963-6210

(803) 233-4121 FAX: (803) 233-4121x207

(919) 275-6391 FAX: (919) 275-6391X225

(214) 231-5300 FAX: (214) 437-0353

(713) 240-2255

(512) 835-0220

(801) 975-9500 FAX: (801) 977-0245

(801) 977-9750 FAX: (802) 975-1207

(206) 881-9700 FAX: (206) 881-9777

(206) 455-2727 FAX: (206) 453-2963

.

Semiconductor Business

HEAD OFFICE:

8/10FL., SAMSUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA C.P.O. BOX 8780

TELEX: KORSST K27970 TEL: (SEOUL) 727-7114 FAX: 753-0957

TELEX: KORSEM K28390

TELEX: KORSST K23813

TELEX: SSTGUMI K54371

TEL: (GUMI) 460-2169, 463-2570 FAX: (GUMI) 461-9258

TEL: (SEOUL) 760-7114

FAX: 741-4273

FAX: 741-0628

TEL: (SEOUL) 741-0066, 664-0066

BUCHEON PLANT:

82-3, DODANG-DONG, BUCHEON, KYUNGKI-DO, KOREA C.P.O. BOX 5779 SEOUL 100

KIHEUNG PLANT: SAN #24 NONGSUH-RI, KIHEUNG-MYUN YONGIN-GUN, KYUNGKI-DO, KOREA C.P.O. BOX 37 SUWON

GUMI BRANCH: 259, GONDAN-DONG, GUMI, KYUNGSANGBUK-DO, KOREA

SAMSUNG SEMICONDUCTOR INC .: 3725 NORTH FIRST STREET SANJOSE, CA 95134-1708, USA

HONG KONG BRANCH:

24FL., ADMIRALTY CENTER, TOWR 1, 18 HARCOURT ROAD, QUEENSWAY, HONG KONG

TAIWAN OFFICE:

RM. 2401, 24F, INT'L TRADE BLDG., 333, TEL: (2) 757-7292 KEE LUNG RD., SEC. 1, TAIPEI, TAIWAN, R.O.C.

FAX: (2) 757-7311

SAMSUNG ELECTRONICS JAPAN CO., LTD.

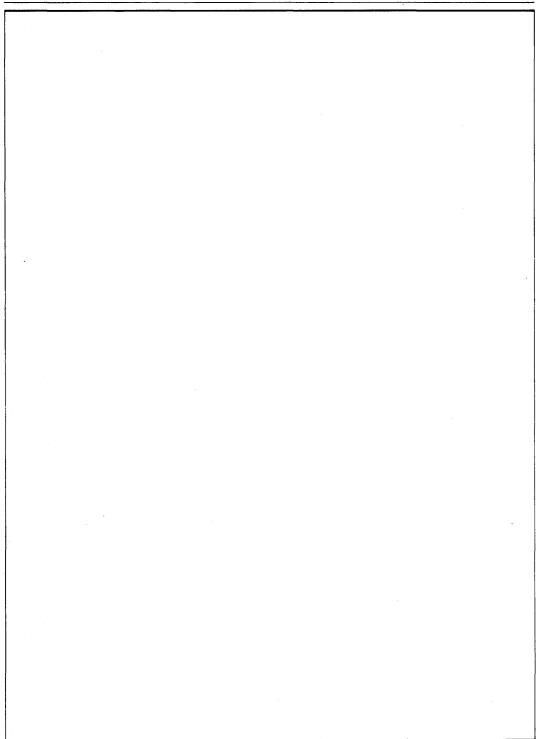
8F SUDACHO VERDE BLDG., 2-3 KANDA-SUDACHO CHIYODA-KU TOKYO, 101 JAPAN

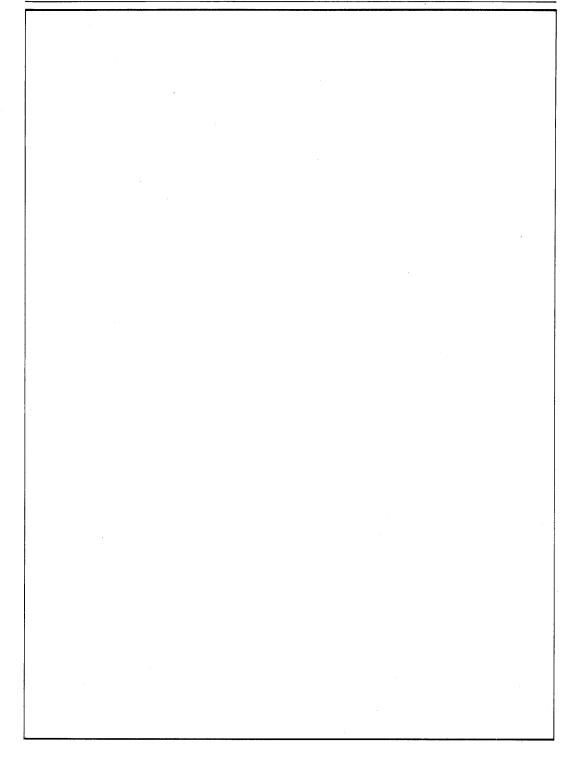
TELEX: 2225206 SECJPN J TEL: (03) 3258-9501 FAX: (03) 3258-9695

SAMSUNG SEMICONDUCTOR EUROPE GMBH:

MERGENTHALER ALLEE 38-40. D-6236 ESCHBORN, W/GERMANY TELEX: 4072678 SSED TEL: 0-6196-900920 FAX: 0-6196-900989

SAMSUNG ELECTRONICS SINGAPORE PTE LTD .:


10F., COLLYER QUAY #18-05/06	TEL: 535-2808
OCEAN BUILDING SINGAPORE 0104	FAX: 532-6452


PRINTED IN KOREA DECEMBER, 1991

TEL: (408) 954-7000 FAX: (408) 954-7873

TELEX: 80303 SSTC HX TEL: 862-6900

FAX: 866-1343

.

•

Semiconductor Business

HEAD OFFICE: 8/10FL., SAMSUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA C.P.O. BOX 8780

TELEX: KORSST K27970 TEL: (SEOUL) 727-7114 FAX: 753-0957