
SAMSUNG

Data Book

Linear IC VOL. 2, 1989

•Telecom •Industrial

Copyright 1989 by Samsung

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo copying, recording, or otherwise, without the prior written permission of Samsung.

The information contained herein is subject to change without notice. Samsung assumes no responsibility for the use of any circuitry other than circuitry embodied in a Samsung product.

No other circuit patent licenses are implied.

SAMSUNG DATA BOOK LIST

I. Semiconductor Product Guide

II. Transistor Data Book

Vol. 1: Small Signal TR Vol. 2: Bipolar Power TR Vol. 3: TR Pellet

III. Linear IC Data Book

Vol. 1: Audio/Video Vol. 2: Telecom/Industrial Vol. 3: Data Converter IC

- IV. CMOS Consumer IC Data Book
- V. High Speed CMOS Logic Data Book
- VI. MOS Memory Data Book
- VII. SFET Data Book
- VIII. MPR Data Book
 - IX. CPL Data Book

X. Dot Matrix Data Book

ം പെറ്റെ പ്രത്തിയ പെറ്റ് പ്രത്തിയില് പ്രത്തിയ പ്രത്തിയ പ്രത്തിയ പ്രത്തിയ പ്രത്തിയ പ്രത്തിയ പ്രത്തിയ പ്രത്തിയയാണ പ്രത്തിയ പ്ര പ്രത്തിയ പ്ര പ്രത്തിയ പ്രത പ്രത്തിയ പ്രത

LINEAR IC DATA BOOK

VOLUME 1.

AUDIO ICs VIDEO ICs TOY RADIO CONTROL ACTUATOR

VOLUME 2.

TELECOM ICs VOLTAGE REGULATORS VOLTAGE REFERENCES OPERATIONAL AMPLIFIERS COMPARATORS TIMERS

VOLUME 3.

DATA CONVERTER ICs

TABLE OF CONTENTS (VOLUME 2)

١.	QUALITY and RELIABILITY
11.	PRODUCT GUIDE
	1. Function Guide 61 2. Cross Reference Guide 72 3. Ordering Information 78
111.	TELECOMMUNICATION ICs
IV.	INDUSTRIAL ICs
-	1. Voltage Regulators3132. Voltage References4583. Operational Amplifiers4724. Comparators5455. Timers577
V.	MISCELLANEOUS ICs
VI.	PACKAGE DIMENSIONS
VII.	SALES OFFICES and MANUFACTURER'S REPRESENTATIVES

ALPHANUMERIC INDEX

Device	Function	Package	Page
KA33V	Silicon Monolithic Bipolar Integrated Circuit Voltage Stabilizer for Electronic Tuner	TO-92	603
KA201A	Single Operational Amplifier	8 DIP/3 SOP	472
KA219	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545
KA301A	Single Operational Amplifier	8 DIP/8 SOP	472
KA319	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545
KA331	Voltage to Frequency Converter	8 DIP/8 SOP	607
KA336-5.0/2.5	Voltage Reference Diode	TO-92	458
KA337	1A Negative Adjustable Voltage Regulator	TO-220	313
KA340	1A Positive Voltage Regulator	TO-220	317
KA350	3 AMP Adjustable Positive Voltage Regulator	TO-3P	329
KA431	Programmable Precision Reference	TO-92/8 DIP/8 SOP	466
KA710C/I	High Speed Voltage Comparator	14 DIP/14 SOP	550
KA711C/I	Dual High-Speed Differential Comparator	14 DIP/14 SOP	554
KA733C	Differential Video Amplifier	14 DIP/14 SOP	477
KA1222	Dual Low Noise Equalizer AMP	8 SIP	Vol. 1
KA2101	TV Sound IF AMP	14 DIP	Vol. 1
KA2102A	TV Sound System	14 DIP H/S	Vol. 1
KA2103L	Sound Mute System for TV	8 SIP	Vol. 1
KA2104	Auto Power off and Sound Mute System for TV	9 SIP	Vol. 1
KA2105	Limiter AMP and Detector for a TV SIF	9 SIP	Vol. 1
KA2106	Dual Sound Multiplex for a TV SIF	16 DIP	Vol. 1
KA2107	DC Volume, Tone Control Circuit	12 SIP	Vol. 1
KA2130A	TV Vertical Deflection System	10 SIP H/S	Vol. 1
KA2131	TV Vertical Output Circuit	10 SIP H/S	Vol. 1
KA2133	1 Chip Deflection System	16 DIP H/S	Vol. 1
KA2134	Color TV Deflection Signal Processing IC	18 DIP	Vol. 1
KA2135	Horizontal Signal Processing IC	12 SIP	Vol. 1
KA2136	Low Noise TV Vertical Deflection System	12 ZDIP/F	Vol. 1
KA2130	TV Horizontal Processor	16 DIP	Vol. 1
KA2153	Video-Chroma Deflection System for a Color TV	42 DIP	Vol. 1
KA2155	Video-Chroma Deflection System for a Color TV	42 DIP	Vol. 1
KA2181	Remote Control Pre-AMP	8 SIP	Vol. 1
KA2181	Remote Control Pre-AMP	8 SIP	Vol. 1
KA2183	Remote Control Pre-AMP	8 SIP	Vol. 1
KA2201B	0.5W Audio Power AMP	8 DIP	Vol. 1
KA2201B KA2201/N	1.2W Audio Power AMP	8 DIP	Vol. 1
KA2201/IN	2.3W Dual Audio Power AMP	12 DIP/F	Vol. 1
KA22062	4.3W Dual Power AMP	12 DIP/F	Vol. 1
KA22002 KA2209		8 DIP	Vol. 1
KA2209 KA2210	Dual Low Voltage Power AMP 5.5W Dual Power AMP	12 SIP H/S	Vol. 1 Vol. 1
KA2211	5.8W Dual Power AMP	12 SIP H/S 9 SIP	Vol. 1 Vol. 1
KA2212	0.5W Audio Power AMP		
KA2213	One Chip Tape Recorder System	14 DIP H/S	Vol. 1
KA22131	Dual Pre-Power AMP for Auto Reverse	24 SOP	Vol. 1
KA22135	Dual Pre-Power AMP and DC Motor Speed Controller	22 SDIP	Vol. 1
KA2214	1W Dual Power AMP	14 DIP H/S	Vol. 1
KA2220	Equalizer AMP with ALC	9 SIP	Vol. 1
KA2221	Dual Low Noise Equalizer AMP	8 SIP	Vol. 1

Device	Function	Package	Page
KA22211	Dual Low Noise Equalizer AMP	8 SIP	Vol. 1
KA2223	5 Band Graphic Equalizer AMP	16 DIP	Vol. 1
KA22233	3 Band Dual Graphic Equalizer AMP	22 DIP	Vol. 1
KA22235	5 Band Graphic Equalizer AMP	18 ZIP	Vol. 1
KA2224	Dual Equalizer AMP with ALC	14 DIP	Vol. 1
KA22241	Dual Equalizer AMP with ALC	9 SIP	Vol. 1
KA2225/D	Dual Pre-AMP for 3V Using	16 DIP/16 SOP	Vol. 1
KA22261	Dual Equalizer AMP with REC AMP	16 DIP	Vol. 1
KA2230	9-Program Music Selector	22 DIP	Vol. 1
KA22421/D	AM 1 Chip Radio	16 DIP/16 SOP	Vol. 1
KA22424	AM/FM 1 Chip Radio	16 DIP	Vol. 1
KA2243	AM/FM IF System	16 DIP	Vol. 1
KA2244	FM IF System for Car Radio	9 SIP	Vol. 1
KA22441	FM IF System for Car Stereo	16 ZIP	Vol. 1
KA2245	FM IF System for Car Radio	7 SIP	Vol. 1
KA22461	Electronic Tuning AM Radio Receiver for Car Stereo	19 ZIP	Vol. 1
KA2247	FM IF/AM Tuner System	16 DIP	Vol. 1
KA22471	FM IF/AM Tuner System	16 DIP	Vol. 1
KA2248A/D	3V FM IF/AM Tuner System	16 DIP/16 SOP	Vol. 1
KA2249/D	FM Front End for Portable Radio	7 SIP/8 SOP	Vol. 1
KA2261	FM Stereo Multiplex Decoder	16 DIP	Vol. 1
KA2262	FM Stereo Multiplex Decoder	16 ZIP	Vol. 1
KA2263	FM Stereo Multiplex Decoder	9 SIP	Vol. 1
KA2264/D	FM Stereo Multiplex Decoder	9 SIP/16 SOP	Vol. 1
KA2265	VCO Non-Adjusting FM Stereo Multiplex Decoder	16 DIP	Vol. 1
KA22682	1 Chip TV MPX Demodulator	28 DIP	Vol. 1
KA2268N	1 Chip TV Sound MPX	28 DIP	Vol. 1
KA2281	5 DOT Dual LED Level Meter Driver	16 DIP	Vol. 1
KA2283	5 DOT Dual LED Level Meter Driver	16 DIP	Vol. 1
KA2284	5 DOT LED Level Meter Driver	9 SIP	Vol. 1
KA2285	5 DOT LED Level Meter Driver	9 SIP	Vol. 1
KA2286	5 DOT LED Linear Level Meter Driver	9 SIP	Vol. 1
KA2287	5 DOT LED Linear Level Meter Driver	9 SIP	Vol. 1
KA2288	7 DOT LED Level Meter Driver	16 DIP	Vol. 1
KA2303	Toy Radio Control Actuator	9 SIP	Vol. 1
KA2304	Toy Radio Control Actuator	9 SIP	Vol. 1
KA2401	DC Motor Speed Controller	8 DIP	Vol. 1
KA2402	Low Voltage DC Motor Speed Controller	8 DIP	Vol. 1
KA2404	DC Motor Speed Controller	TO-92L	Vol. 1
KA2407	DC Motor Speed Controller	TO-126	Vol. 1
KA2410	Tone Ringer	8 DIP	81
KA2411	Tone Ringer	8 DIP	81
KA2412A	Telephone Speech Circuits	14 DIP	87
KA2413	Dual Tone Multi Frequency Generator	16 DIP	95
KA2418	Tone Ringer with Bridge Diode	8 DIP	101
KA2415 KA2425A/B	Telephone Speech Network with Dialer Interface	18 DIP	101
KA2580A	8-Channel Source Drivers	18 DIP	611
KA2588A	8-Channel Source Drivers	20 DIP	611
KA2605	SYNC Separator	9 SIP	Vol. 1
KA2605	SYNC Separator	9 SIP	Vol. 1
1/12000			

Device	Function	Package	Page
KA2615	LED and Lamp Driver	9 SIP	Vol. 1
KA2616	LED and Lamp Driver	9 SIP	Vol. 1
KA2617	LED and Lamp Driver	9 SIP	Vol. 1
KA2618	LED and Lamp Driver	9 SIP	Vol. 1
KA2651	Fluorescent Display Drivers	18 DIP	616
KA2654	Line Transceiver	8 DIP	111
KA2655/6/7/8/9	High Voltage, High Current Darlington Arrays	16 DIP/16 SOP	619
KA2803	Low Power Consumption Earth Leakage Detector	8 DIP	624
KA2804	Zero Voltage Switch	8 DIP	627
KA2807	Earth Leakage Detector	8 DIP	630
KA2911	Video IF System for Color TV	16 DIP	Vol. 1
KA2912	Video IF Processor for B/W TV	14 DIP H/S	Vol. 1
KA2913A	Video and Sound IF AMP for Monochrome TV Receivers	16 DIP	Vol. 1
KA2914A	Video IF + SIF System	24 DIP	Vol. 1
KA2915	TV VIF & SIF & Deflection System	28 DIP	Vol. 1
KA2916	Video IF System for Color TV	16 DIP	Vol. 1
KA2917	Video and Sound IF AMP for Monochrome TV Receivers	16 DIP	Vol. 1
KA2918	Video IF + SIF System	24 DIP	Vol. 1
KA2919	VIF + SIF System for Color TV	30 SSD	Vol. 1
KA2944	Write & Read AMP	28 DIP	Vol. 1
KA2945	Video AMP	28 DIP	Vol. 1
KA2983	Switchless Recording/Play Back AMP	18 DIP	Vol. 1
KA2988	Chroma Signal Processor	28 DIP	Vol. 1
KA3524	Regulator Pulse Width Modulator	16 DIP	337
KA6101	Analog Interface Circuit for Teletex System	18 DIP	Vol. 1
KA6102	Analog Interface Circuit for Teletex System	18 DIP	Vol. 1
KA7500	Switchmode PWM Control Circuits	16 DIP	345
KA78S40	Switching Regulator	16 DIP	349
KA78TXX	3A Positive Voltage Regulator	TO-220	355
KA8301	Driver for VTR	10 SIP H/S	Vol. 1
KA8302	Servo Control AMP	12 SIP	Vol. 1
KA8401	VTR Audio Switchless Recording/Play Back AMP	24 ZIP	Vol. 1
KA9256	Dual Power Operational Amplifier	10 SIP	484
KAD0808	8 Bit μp-Compatible A/D Converter with 8-Channel Multiplexer	28 DIP	Vol. 3
KAD0809	 8 Bit μp-Compatible A/D Converter with 8-Channel Multiplexer 	28 DIP	Vol. 3
KAD0820A/B	 8 Bit High Speed μp Compatible A/D Converter with Track/Hold Function 	20 DIP	Vol. 3
KDA0800	8 Bit D/A Converter	16 DIP	Vol. 3
KDA0801	8 Bit D/A Converter	16 DIP	Vol. 3
KDA0802	8 Bit D/A Converter	16 DIP	Vol. 3
KF347	Quad Operational Amplifier	14 DIP/14 SOP	486
KF351	Single Operational Amplifier	8 DIP/8 SOP	488

Device	Function	Package	Page
KF442	Dual Operational Amplifier	8 DIP/8 SOP	490
KS272	Dual Operational Amplifier	8 DIP/9 SIP	492
KS274	Quad Operational Amplifier	14 DIP	496
KS555	CMOS Timer	8 DIP/8 SOP	577
KS555H	CMOS Timer	8 DIP/8 SOP	582
KS556	CMOS Timer	14 DIP/14 SOP	586
KS5706	3 Line Drivers and 3 Line Receivers	16 DIP/16 SOP	115
KS5788	Quad CMOS Line Driver	14 DIP/14 SOP	119
KS5789A	Quad CMOS Line Receiver	14 DIP/14 SOP	122
KS5803A/B	Remote Control Transmitter	16 DIP/20 SOP	Vol. 1
KS5805A/B	Telephone Pulse Dialer with Redial	18 DIP	125
KS58C/D05	Telephone Pulse Dialer with Redial	18 DIP	131
KS58E05	Telephone Pulse Dialer with Redial	16 DIP	136
KS5808	Dual Tone Multi Frequency Dialer	16 DIP	140
KS5809	DTMF Dialer	16 DIP	146
KS5810	DTMF Dialer with Redial	16 DIP	146
KS5811	DTMF Dialer with Redial	16 DIP	146
KS5812	Quad Universial Asychronous Receiver and Transmitter	40 DIP	150
KS58A/B/C/D19	Tone/Pulse Dialer with Redial	22 DIP/SDIP	160
KS58A/B/C/D20	Tone/Pulse Dialer with Redial	18 DIP	170
KS5822	10 Memory Tone/Pulse Repertory Dialer	22 DIP	178
KS58A/B/C/D23	10 Memory Tone/Pulse Repertory Dialer	18 DIP	186
KS5824	Universial Asychronous Receiver and Transmitter	24 DIP	194
KS7126	3 1/2 Digit A/D Converter	40 DIP	Vol. 3
KS25C02	8 Bit CMOS Successive Approximation Register	16 DIP/24 SDIP	Vol. 3
KS25C03	8 Bit CMOS Successive Approximation Register	16 DIP/24SDIP	Vol. 3
KS25C04	12 Bit CMOS Successive Approximation Register	24 DIP/24SDIP	Vol. 3
KSV3100A	High-Speed A/D-DA Converter	40 DIP	Vol. 3
KSV3110	High-Speed A/D-DA Converter	40 DIP 40 DIP	Vol. 3
KSV3208	High-Speed A/D Converter	28 DIP	Vol. 3
KT3040/A	PCM Monolithic Filter	16 CERDIP	205
KT3040/A	DTMF Receiver	18 DIP	205
KT5116	μ-Law Companding CODEC	16 CERDIP	217
KT8520		24 CERDIP	240
KT8521	μ-Law Companding CODEC A-Law Companding CODEC	22 CERDIP 22 CERDIP	240
KT8554		16 CERDIP	240
KT8555		20 CERDIP	249
	Time Slot Assignment Circuit		
KT8557	A-Law COMBO CODEC	16 CERDIP	249 268
KT8564	μ-Law COMBO CODEC	20 CERDIP	
KT8567	A-Law COMBO CODEC	20 CERDIP	268
LM224/A	Quad Operational Amplifier	14 DIP/14 SOP	500
LM239/A	Quad Differential Comparator	14 DIP/14 SOP	557
LM248	Quad Operational Amplifier	14 DIP/14 SOP	509
LM258/A	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	515

Device	Function	Package	Page
LM293/A	Dual Differential Comparator	8 DIP/8 SOP	565
LM311	Voltage Comparator	8 DIP/8 SOP	572
LM317	3-Terminal Positive Adjustable Regulator	TO-220	366
LM323	3-Terminal Positive Adjustable Regulator	TO-3P	371
LM324/A	Quad Operational Amplifier	14 DIP/14 SOP	500
LM339/A	Quad Differential Comparator	14 DIP/14 SOP	557
LM348	Quad Operational Amplifier	14 DIP/14 SOP	509
LM358/A	Quad Operational Amplifier	8 DIP/8 SOP/9 SIP	515
LM386/S/D	Low Voltage Audio Power AMP	9 SIP/8 DIP/8 SOP	634
LM393/A	Dual Differential Comparator	8 DIP/8 SOP	565
LM567C	Tone Decoder	8 DIP/8 SOP	278
LM567L	Micropower Tone Decoder	8 DIP/8 SOP	286
LM723	Precision Voltage Regulator	14 DIP/14 SOP	376
LM741C/E/I	Single Operational Amplifier	8 DIP/8 SOP	523
LM2901	Quad Differential Comparator	14 DIP/14 SOP	557
LM2902	Quad Operational Amplifier	14 DIP/14 SOP	500
LM2903	Dual Differential Comparator	8 DIP/8 SOP	565
LM2904	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	515
LM3302	Quad Differential Comparator	14 DIP/14 SOP	557
MC1458/C/I	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	529
MC1488	Quad Line Driver	14 DIP/14 SOP	296
MC1489/A	Quad Line Receiver	14 DIP/14 SOP	301
MC3303	Quad Operational Amplifier	14 DIP/14 SOP	533
MC3361	Low Power Narrow Band FM IF	16 DIP/16 SOP	305
MC3403	Quad Operational Amplifier	14 DIP/14 SOP	533
MC4558/C/A/I	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	540
MC78XX	3-Terminal 1A Positive Voltage Regulator	TO-220	382
MC78LXX	3-Terminal 0.1A Positive Voltage Regulator	TO-92	413
MC78MXX	3-Terminal 0.5A Positive Voltage Regulator	TO-220	424
MC79XX	3-Terminal 1A Negative Voltage Regulator	TO-220	437
MC79LXX	3-Terminal 0.1A Neagtive Voltage Regulator	TO-92	447
MC79MXX	3-Terminal 0.5A Negative Voltage Regulator	TO-220	452
NE555	Single Timer	8 DIP/8 SOP	590
NE556	Dual Timer	14 DIP/14 SOP	594
NE558	Quad Timer	16 DIP/16 SOP	597

PRODUCT INDEX

1. Audio Application

Device	Function	Package	Page
KA1222	Dual Low Noise Equalizer AMP	8 SIP	Vol. 1
KA2201B	0.5W Audio Power AMP	8 DIP	Vol. 1
KA2201/N	1.2W Audio Power AMP	8 DIP	Vol. 1
KA2206	2.3W Dual Audio Power AMP	12 DIP/F	Vol. 1
KA22062	4.5W Dual Power AMP	12 SIP H/S	Vol. 1
KA2209	Dual Low Voltage Power AMP	8 DIP	Vol. 1
(A2210	5.5W Dual Power AMP	12 SIP H/S	Vol. 1
(A2211	5.8W Dual Power AMP	12 SIP H/S	Vol. 1
(A2212	0.5W Audio Power AMP	9 SIP	Vol. 1
KA2213	One Chip Tape Recorder System	14 DIP H/S	Vol. 1
KA22131	Dual Pre-Power AMP for Auto Reverse	24 SOP	Vol.
KA22135	Dual Pre-Power AMP and DC Motor Speed Controller	22 SDIP	Vol.
KA2214	1W Dual Power AMP	14 DIP H/S	Vol.
KA2220	Equalizer AMP with ALC	9 SIP	Vol.
KA2220		8 SIP	Vol.
	Dual Low Noise Equalizer AMP		
KA22211	Dual Low Noise Equalizer AMP	8 SIP	Vol.
KA2223	5 Band Graphic Equalizer AMP	16 DIP	Vol.
KA22233	3 Band Dual Graphic Equalizer AMP	22 DIP	Vol.
KA22235	5 Band Graphic Equalizer AMP	18 ZIP	Vol.
KA2224	Dual Equalizer AMP with ALC	14 DIP	Vol. 1
KA22241	Dual Equalizer AMP with ALC	9 SIP	Vol.
KA2225/D	Dual Pre-AMP for 3V Using	16 DIP/16 SOP	Vol.
KA22261	Dual Equalizer AMP with REC AMP	16 DIP	Vol.
KA2230	9-Program Music Selector	22 DIP	Vol. 1
KA22421/D	AM 1 Chip Radio	16 DIP/16 SOP	Vol.
KA22424	AM/FM 1 Chip Radio	16 DIP	Vol.
KA2243	AM/FM IF System	16 DIP	Vol.
KA2244	FM IF System for Car Radio	9 SIP	Vol. 1
KA22441	FM IF System for Car Stereo	16 ZIP	Vol. 1
KA2245	FM IF System for Car Radio	7 SIP	Vol. 1
KA22461	Electronic Tuning AM Radio Receiver for Car Stereo	19 ZIP	Vol.
KA2247	FM IF/AM Tuner System	16 DIP	Vol. 1
KA22471	FM IF/AM Tuner System	16 DIP	Vol.
KA2248A/D	3V FM IF/AM Tuner System	16 DIP/16 SOP	Vol.
<a>2249/D	FM Front End for Portable Radio	7 SIP/8 SOP	Vol.
KA2261	FM Stereo Multiplex Decoder	16 DIP	Vol.
KA2262	FM Stereo Multiplex Decoder for Car Stereo	16 ZIP	Vol.
<a2263< td=""><td>FM Stereo Multiplex Decoder</td><td>9 SIP</td><td>Vol. 1</td></a2263<>	FM Stereo Multiplex Decoder	9 SIP	Vol. 1
KA2264/D	FM Stereo Multiplex Decoder	9 SIP/16 SOP	Vol.
KA2265	VCO Non-Adjusting FM Stereo Multiplex Decoder	16 DIP	Vol. 1
KA2281	5 DOT Dual LED Level Meter Driver	16 DIP	386
<a2283< td=""><td>5 DOT Dual LED Level Meter Driver</td><td>16 DIP</td><td>Vol. 1</td></a2283<>	5 DOT Dual LED Level Meter Driver	16 DIP	Vol. 1
KA2284	5 DOT LED Level Meter Driver	9 SIP	Vol.
KA2285	5 DOT LED Level Meter Driver	9 SIP	Vol.
KA2286	5 DOT LED Liver Meter Driver	9 SIP	Vol.
KA2287	5 DOT LED Linear Level Meter Driver	9 SIP	Vol. 1
KA2288	7 DOT LED Level Meter Driver	16 DIP	Vol.
LM386/S/D	Low Voltage Audio Power AMP	9 SIP/8 DIP/8 SOP	634
KA2303	Toy Radio Control Actuator	9 SIP/6 DIP/6 SOP	Vol. 1
KA2304	Toy Radio Control Actuator	9 SIP	Vol. 1
KA2401	DC Motor Speed Controller	8 DIP	Vol. 1

1. Audio Application (Continued)

Device	Function	Package	Page
KA2402	Low Voltage DC Motor Speed Controller	8 DIP	Vol. 1
KA2404	DC Motor Speed Controller	TO-92L	Vol. 1
KA2407	DC Motor Speed Controller	TO-126	Vol. 1

2. Video Application

Device	Function	Package	Page
KA2101	TV Sound IF AMP	14 DIP	Vol.
KA2102A	TV Sound System	14 DIP H/S	Vol.
KA2103L	Sound Mute System for TV	8 SIP	Vol.
KA2104	Auto Power off and Sound Mute System for TV	9 SIP	Vol.
KA2105	Limiter AMP and Detector for a TV SIF	9 SIP	Vol.
KA2106	Dual Sound Multiplex for a TV SIF	16 DIP	Vol.
KA2107	DC Volume Tone Control Circuit	12 SIP	Vol.
KA2130A	TV Vertical Deflection System	10 SIP H/S	Vol.
KA2131	TV Vertical Output Circuit	10 SIP H/S	Vol.
KA2133	1 Chip Deflection System	16 DIP H/S	Vol.
KA2134	Color TV Deflection Signal Processing IC	18 DIP	Vol.
KA2135	Horizontal Siganl Processing IC	12 SIP	Vol.
KA2136	Low Noise TV Vertical Deflection System	12 ZDIP/F	Vol.
KA2137	TV Horizontal Processor	16 DIP	Vol.
KA2153	Video-Chroma Deflection System for a Color TV	42 DIP	Vol.
KA2154	Video-Chroma-Deflection System for a Color TV	42 DIP	Vol.
KA2181	Remote Control Pre-AMP	8 SIP	Vol.
KA2182	Remote Control Pre-AMP	8 SIP	Vol.
KA2183	Remote Control Pre-AMP	8 SIP	Vol.
<a22682< td=""><td>1 Chip TV MPX Demodulater</td><td>28 DIP</td><td>Vol.</td></a22682<>	1 Chip TV MPX Demodulater	28 DIP	Vol.
KA2268N	1 Chip TV Sound MPX	28 DIP	Vol.
KA2605	SYNC Separator	9 SIP	Vol.
KA2606	SYNC Separator	9 SIP	Vol.
KA2615	LED and Lamp Driver	9 SIP	Vol.
KA2616	LED and Lamp Driver	9 SIP	Vol.
KA2617	LED and Lamp Driver	9 SIP	Vol.
<a2618< td=""><td>LED and Lamp Driver</td><td>9 SIP</td><td>Vol.</td></a2618<>	LED and Lamp Driver	9 SIP	Vol.
<a2911< td=""><td>Video IF System for Color TV</td><td>16 DIP</td><td>Vol.</td></a2911<>	Video IF System for Color TV	16 DIP	Vol.
<a2912< td=""><td>Video IF Processor for B/W TV</td><td>14 DIP H/S</td><td>Vol.</td></a2912<>	Video IF Processor for B/W TV	14 DIP H/S	Vol.
(A2913A	Video and Sound IF AMP for Monochrome TV Receivers	16 DIP	Vol.
(A2914A	Video IF + SIF System	24 DIP	Vol.
<a2915< td=""><td>TV VIF & SIF & Deflection System</td><td>28 DIP</td><td>Vol.</td></a2915<>	TV VIF & SIF & Deflection System	28 DIP	Vol.
<a2916< td=""><td>Video IF System for Color TV</td><td>16 DIP</td><td>Vol.</td></a2916<>	Video IF System for Color TV	16 DIP	Vol.
(A2917	Video and Sound IF AMP for Monochrome TV Receivers	16 DIP	Vol.
(A2918	Video IF + SIF System	24 DIP	Vol.
(A2919	VIF + SIF System for Color TV	30 SSD	Vol.
<a2944< td=""><td>Write & Read AMP</td><td>28 DIP</td><td>Vol.</td></a2944<>	Write & Read AMP	28 DIP	Vol.
<a2945< td=""><td>Video AMP</td><td>28 DIP</td><td>Vol.</td></a2945<>	Video AMP	28 DIP	Vol.
<a2983< td=""><td>Switchless Recording/Play Back AMP</td><td>18 DIP</td><td>Vol.</td></a2983<>	Switchless Recording/Play Back AMP	18 DIP	Vol.
<a2988< td=""><td>Chroma Signal Processor</td><td>28 DIP</td><td>Vol.</td></a2988<>	Chroma Signal Processor	28 DIP	Vol.
KA6101	Analog Interface Circuit for Teletex System	18 DIP	Vol.
KA6102	Analog Interface Circuit for Teletex System	18 DIP	Vol.
KA8301	Driver for VTR	10 SIP H/S	Vol.
KA8302	Servo Control AMP	12 SIP	Vol.
KA8401	VTR Audio Switchless Recording/Play Back AMP	24 ZIP	Vol.
KS5803A/B	Remote Control Transmitter	16 DIP/20 SOP	Vol.

3. Telecommunication Application

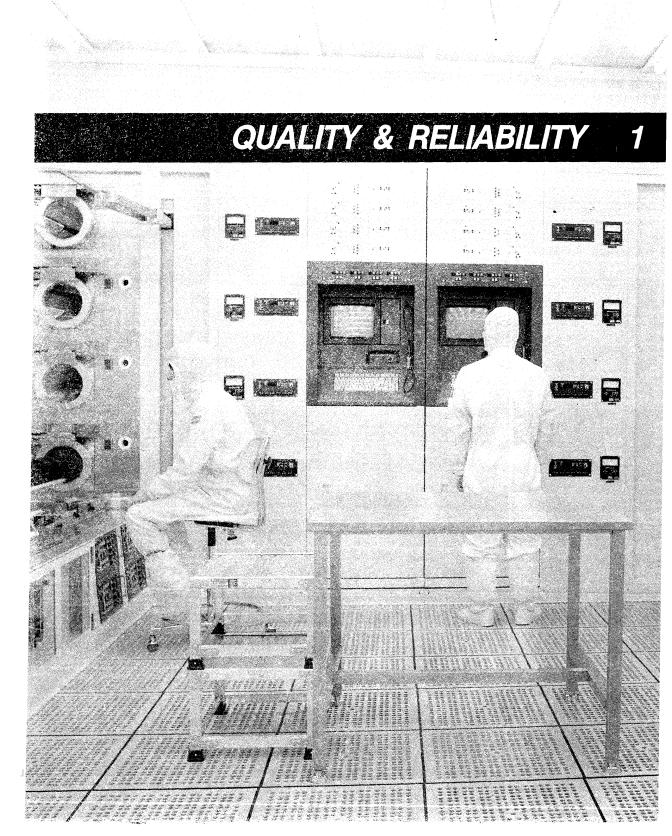
Device	Function	Package	Page
KA2410	Tone Ringer	8 DIP	81
KA2411	Tone Ringer	8 DIP	81
KA2412A	Telephone Speech Circuits	14 DIP	87
KA2413	Dual Tone Multi Frequency Generator	16 DIP	95
KA2418	Tone Ringer with Bridge Diode	8 DIP	101
KA2425A/B	Telephone Speech Network with Dialer Interface	18 DIP	104
KA2654	Line Transceiver	8 DIP	111
KS5706	3 Line Drivers and 3 Line Receivers	16 DIP/SOP	115
KS5788	Quad CMOS Line Driver	14 DIP/SOP	119
KS5789A	Quad CMOS Line Receiver	14 DIP/SOP	122
KS5805A/B	Telephone Pulse Dialer with Redial	18 DIP	125
KS58C/D05	Telephone Pulse Dialer with Redial	18 DIP	131
KS58E05	Telephone Pulse Dialer with Redial	16 DIP	136
KS5808	Dual Tone Multi Frequency Dialer	16 DIP	140
KS5809	DTMF Dialer	16 DIP	146
KS5810	DTMF Dialer with Redial	16 DIP	146
KS5811	DTMF Dialer with Redial	16 DIP	146
KS5812	Quad Universial Asychronos Receiver and Transmitter	40 DIP	150
KS58A/B/C/D19	Tone/Pulse Dialer with Redial	22 DIP	160
KS58A/B/C/D20	Tone/Pulse Dialer with Redial	18 DIP	170
KS5822	10 Memory Tone/Pulse Repertory Dialer	22 DIP	178
KS58A/B/C/D23	10 Memory Tone/Pulse Repertory Dialer	18 DIP	186
KS5824	Universial Asychronous Receiver and Transmitter	24 DIP	194
KT3040/A	PCM Monolithic Filter	16 CERDIP	205
KT3170	DTMF Receiver	18 DIP	217
KT5116	μ-Law Companding CODEC	16 CERDIP	227
KT8520	μ-Law Companding CODEC	24 CERDIP	240
KT8521	A-Law Companding CODEC	22 CERDIP	240
KT8554	μ-Law COMBO CODEC	16 CERDIP	240
KT8555	Time Slot Assignment Circuit	20 CERDIP	249
KT8557	A-Law COMBO CODEC	16 CERDIP	200
KT8564		20 CERDIP	249
KT8567	A-Law COMBO CODEC	20 CERDIP	268
LM567C	Tone Decoder	8 DIP/SOP	278
LM567L	Micropower Tone Decoder	8 DIP/SOP	286
MC1488	Quad Line Driver	14 DIP/SOP	200
MC1489/A	Quad Line Receiver	14 DIP/SOP	301
MC1469/A MC3361	Low Power Narrow Band FM IF	16 DIP/SOP	301
KA2580A	8-Channel Source Drivers	18 DIP/SOP	611
KA2588A	8-Channel Source Drivers	20 DIP	611
		20 DIP 18 DIP	
KA2651	Fluorescent Display Drivers		616
KA2655/6/7/8/9	High Voltage, High Current Darlingtor Arrays	16 DIP/SOP	619

4. Industrial Application

Device	Function	Package	Page
KA33V	Silicon Monolithic Bipolar Integrated Circuit Voltage Stabilizer for Electronic Tuner	TO-92	603
KA201A	Single Operational Amplifier	8 DIP/8 SOP	472
KA219	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545
KA301A	Single Operational Amplifier	8 DIP/8 SOP	472
KA319	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545
KA331	Voltage to Frequency Converter	8 DIP/8 SOP	607
KA336-5.0/2.5	Voltage Reference Diode	TO-92	458
KA337	1A Negative Adjustable-Voltage Regulator	TO-220	313
KA340	1A Positive Voltage Regulator	TO-220	317
KA350	3A Adjustable Positive Voltage Regulator	TO-3P/TO-220	329
KA431	Programmable Precision Reference	TO-92/8 DIP/8 SOP	466
KA710C/I	High Speed Voltage Comparator	14 DIP/14 SOP	550
KA711C/I	Dual High-Speed Differential Comparator	14 DIP/14 SOP	554
KA733C	Differential Video Amplifier	14 DIP/14 SOP	477
KA2807	Earth Leakage Detector	8 DIP	630
KA3524	PWM Control Circuits	16 DIP	337
KA7500	Switchmode PWM Control Circuits	16 DIP	345
KA78S40	Switching Regulator	16 DIP	349
KA78TXX	3A Positive Voltage Regulator	TO-220	355
KA9256	Dual Power Operational Amplifier	10 SIP	484
KF351	Single Operating Amplifier	8 DIP/8 SOP	488
KF347	Quad Operational Amplifier	14 DIP/14 SOP	486
KF442	Dual Operational Amplifier	8 DIP/8 SOP	490
KS272	Dual Operational Amplifier	8 DIP	492
KS274	Quad Operational Amplifier	14 DIP/9 SIP	496
KS555	CMOS Timer	8 DIP/8 SOP	577
KS555H	CMOS Timer	8 DIP/8 SOP	582
KS556	CMOS Timer	14 DIP/14 SOP	586
LM224/A	Quad Operational Amplifier	14 DIP/14 SOP	500
LM239/A	Qual Differential Comparator	14 DIP/14 SOP	557
LM248	Quad Operational Amplifier	14 DIP/14 SOP	500
LM258/A	Quad Operational Amplifier	8 DIP/8 SOP/9 SIP	515
LM293/A	Dual Differential Comparator	8 DIP/8 SOP	565
LM311	Voltage Comparator	8 DIP/8 SOP	572
LM317	3-Terminal Positive Voltage Regulator	TO-220	366
LM323	3-Terminal Positive Voltage Regulator	TO-3P	371
LM324/A	Quad Operational Amplifier	14 DIP/14 SOP	500
LM339/A	Quad Differential Comparator	14 DIP/14 SOP	557
LM348	Qual Operational Amplifier	14 DIP/14 SOP	509
LM358/A	Quad Operational Amplifier	8 DIP/8 SOP/9 SIP	515
LM393/A	Dual Differential Comparator	8 DIP/8 SOP	565
LM723	Precision Voltage Regulator	14 DIP/14 SOP	376
LM741C/E/I	Single Operational Amplifier	8 DIP/8 SOP	523
LM2901	Qual Differential Comparator	14 DIP/14 SOP	557

4. Industrial Application (Continued)

Device	Function	Package	Page
LM2902	Quad Operational Amplifier	14 DIP/14 SOP	500
LM2903	Dual Differential Comparator	8 DIP/8 SOP	565
LM2904	Quad Operational Amplifier	S DIP/8 SOP/8 SIP	515
LM3302	Quad Differential Comparator	14 DIP/14 SOP	557
MC1458/C/I	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	529
MC3303	Quad Operational Amplifier	14 DIP/14 SOP	533
MC3403	Quad Operational Amplifier	14 DIP/14 SOP	533
MC4558/C/A/I	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	540
MC78XX	3-Terminal 1A Positive Voltage Regulator	TO-220	382
MC78LXX	3-Terminal Positive Voltage Regulator	TO-92	413
MC78MXX	3-Terminal 0.5A Positive Voltage Regulator	TO-220	424
MC79XX	3-Terminal Negative Voltage Regulator	TO-220	437
MC79LXX	0.1A Negative Voltage Regulator	TO-92	447
MC79MXX	3-Terminal 0.5A Negative Voltage Regulator	TO-220	452
NE555	Timer	8 DIP/8 SOP	590
NE556	Dual Timer	14 DIP/14 SOP	594
NE558	Quad Timer	16 DIP/16 SOP	597

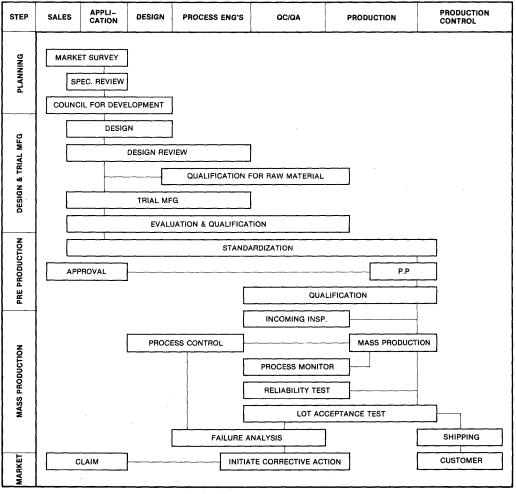

5. Data Converter Application

Device	Function	Package	Page
KSV3100A	8 Bit A/D Converter + 10 Bit D/A Converter	40 DIP	Vol. 3
*KSV3110	8 Bit A/D Converter + 10 Bit D/A Converter	40 DIP	Vol. 3
*KSV3208	8 Bit A/D Converter	28 DIP	Vol. 3
**KAD0206	6 Bit A/D Converter (20 MSPS)	32SOIC/30 SDIP	Vol. 3
KAD0808/09	8 Bit up-Compatible A/D Converter (8 CH)	28 DIP	Vol. 3
*KAD0817	8 Bit up-Compatible A/D Converter (16 CH)	40 DIP	Vol. 3
KAD0820	8 Bit up-Compatible A/D Converter	20 DIP	Vol. 3
KS7126	3 1/2 Digit A/D Converter	40 DIP	Vol. 3
**KDA0406	Tripple 6 Bit D/A Converter (20 MSPS)	28SOIC/28 SDIP	Vol. 3
*KDA3310	10 Bit D/A Converter	28 CERDIP	Vol. 3
KDA0800/08	8 Bit D/A Converter	16 DIP	Vol. 3
KS25C02	8 Bit CMOS Successive Approximation Register	16 DIP	Vol. 3
KS25C03	8 Bit CMOS Successive Approximation Register	16 DIP	Vol. 3
KS25C04	12 Bit CMOS Successive Approximation Register	16 DIP	Vol. 3

*: New Product

**: Under Development

Quality & Reliability	1
Product Guide	2
Telecom ICs	3
Industrial ICs	4
Miscellaneous ICs	5
Package Dimensions	6
Sales Offices and Manufacturer's Representatives	7

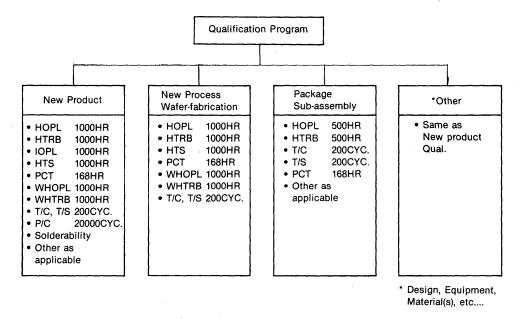

INTRODUCTION

Samsung's linear IC products are among the most reliable in the industry. Samsung has always made a commitment to achieve the highest possible quality, reliability, and customer satisfaction with its products.

Extensive qualification, monitor and outgoing programs are used to scrutinize product quality and reliability. Stringent controls are applied to every wafer fabrication and assembly lot to achieve reproducibility, and therefore maintain product reliability.

In this chapter, the quality and reliability programs established at Samsung will be discussed. In addition, a description of reliability theory, reliability tests and various support efforts provides a broad framework from which to comprehend Samsung quality and reliability.

To better understand the Quality Department's role in product develoment and manufacturing, a detailed diagram is listed below. As can be noted, Quality Engineering is involved in all phases, save that of initial product planning.



Quality Assurance During Development

QUALIFICATION

Procedures to qualify devices are listed below. There are both general and product-specific requirements. Procedures are detailed for new products, die-only qualifications, and package-only qualifications. The latter two are for products and/or packages already qualified, but where there is room for further product optimization.

Qualification Programs.

A) New Product Qualification Test Items

NI	Tool Nom	Tool Condition		Part		LTPD	ACC.	Reference	Note
No.	Test Item	Test Condition	L-IC	Discrete	Size	LIPD	No	Method	Note
1	High Temperature Reverse Bias (HTRB)	$Ta = T_i(max)$ $V_{CB} = 0.8 \times V_{CBO}$ 1000HRS	-	YES	45	10	1		48HR for PRT
2	High Temperature Operating Life (HOPL)	$Ta = T_{opr}(max)$ $V_{CC} = V_{CC} (max)$ Static, Dynamic 1000HRS	YES	_	45	10	1	MIL-STD-883 1005	48HR for PRT
3	High Temperature Storage (HTS)	Ta = T _i (max) 1000HRS	YES	YES	45	10	1		
4	Operating Life (OPL)	Ta = 25°C Pc = Pc(max) 1000HRS	-	YES	45	10	1	MIL-STD-750 1026.3	for Small- Signal Device
5	Intermittent OPL (IOPL)	Ta = 25°C Pc = Pc(max) 2min/2min On/Off 1000HRS		YES	45	10	1	MIL-STD-750 1036.3	
6	Power Cycle (P/C)	∆T _i = 125°C 45Sec/90Sec On/Off 20000CYC.	YES	YES	45	10	1		For PWR TR, PWR IC
7	Pressure Cooker Test (PCT)	Ta = 121°C ± 2°C RH = 100% 15PSIG 168HRS	YES	YES	45	10	1		48HR for PRT
8	Wet High Temperature Reverse Bias (WHTRB)	Ta = 85°C, RH = 85% $V_{CB} = 0.8 \times V_{CBO}$ 1000HRS	-	YES	45	10	1		
9	Wet High Temperature Operating Life (WHOPL)	$Ta = 85^{\circ}C, RH = 85\%$ $V_{cc} = V_{cc}(opr), P_{dmin}$ 1000HRS	YES	_	45	10	1		
10	Thermal Shock (T/S)	- 65°C→150°C (Liquid) 5min<10Sec, 5min 200 Cycles	YES	YES	45	10	1	MIL-STD-883 1011	1
11	Temperature Cycle (T/C)	- 65°C→25°C→150°C 10min, 5min, 10min 200 Cycles	YES	YES	45	10	1	MIL-STD-883 1011	

Na	No. Test Item	Test Ora dition	Part Sample		Sample	mple LTPD		Reference	
NO.		Test Condition	L·IC	Discrete	Size LIPD	No	Method	Note	
12	Solder Heat Resistance (S/H)	$Ta = 260^{\circ}C \pm 5^{\circ}C$ $t = 10 \pm 0.5sec$	YES	YES	10	N/A	0	MIL-STD-750 2031	
13	Solderability	Ta = 245°C ± 5°C t = 10 ± 1SEc	YES	YES	10	N/A	0	MIL-STD-883 2003	
14	Salt Atmosphere	Ta = 35°C, 5% NaCl 24HRS	YES	YES	10	N/A	0	MIL-STD-883 1009A	
15	Mechanical Shock	1500G, 0.5ms 3 Times each direction of X, Y and Z Axis	YES	YES	10	N/A	0	MIL-STD-750 2016	For Hermetic
16	Vibration	20G, 3Axis f = 20 to 2000 cps for 4min, 4 cycles	YES	YES	10	N/A	0	MIL-STD-883 2007	For Hermetic
17	Constant Acceleration	2000G X, Y, Z Axis 1min for each Axis	YES	YES	10	N/A	0	MIL-STD-883 2001	For Hermetic
18	ESD (Human Body (Model)	$R = 1.5K\Omega$ C = 100pF 5 Discharge V $\geq \pm$ 1000V	YES	YES	5	N/A	0	MIL-STD-883 3015	
19	Latch-up Test		YES	_	5	N/A	0		For CMOS
20	Fine Leak Gross Leak	Helium Fluoro carbon	YES	YES	45	10	1	MIL-STD-883 1014	For Hermetic

A) New Products Qualification Test Item (Continued)

Note) • N/A: Not available

• SOT-23, TO-92S PKG: PCT 48HR

• PRT: Process Reliability Test (all outgoing Lots)

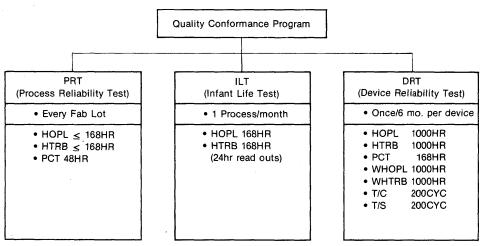
B) New Process, Wafer Fabrication Qualification

No	Test Item	Test Condition	Pa	ackage	Sample	LTPD	ACC
NO	rest item	rest condition	L-IC	Discrete	Size	LIFU	No
1	High Temperature Operating Life (HOPL)	$Ta = T_{opt}(max)$ $V_{CC} = V_{CC}(max)$ STATIC, DYNAMIC 1000HRS	YES	_	45	10	1
2	High Temperature Reverse Bias (HTRB)	$Ta = T_j(max)$ $V_{CB} = 0.8 \times V_{CBO}$ 1000HRS	-	YES	45	10	. 1
3	High Temperature Storage (HTS)	Ta = T _i (max) 1000HRS	YES	YES	45	10	1
4	Pressure Cooker Test (PCT)	Ta = 121°C ± 2°C RH = 100% 15 PSIG 168HRS	YES	YES	45	10	1
5	Wet High Temperature Operating Life (WHOPL)	Ta = 85°C, RH = 85% $V_{CC} = V_{CC(opt)}$ 1000HRS	YES	_	45	10	1
6	Wet High Temperature Reverse Bias (WHTRB)	Ta = 85°C, RH = 85% $V_{CB} = 0.8 \times V_{CBO}$ 1000HRS	_	YES	45	10	1
7	Thermal Shock (T/S)	-65°C→150°C(Liquid) 5min<10sec, 5min 200 Cycles	YES	YES	45	10	1
8	Temperature Cycle (T/C)	– 65°C→25°C→150°C 10min, 5min, 10min 200 Cycles	YES	YES	45	10	1

C) Package Sub-Assembly Qualification

No	Test Here	Test Condition	Pa	ckage	Sample	LTPD	ACC	Notes	
NO	No Test Item	lest Condition	Plastic	Hermetic	Size	LIPD	No	Notes	
1	High Temperature Reverse Bias (HTRB)	$Ta = T_j(max)$ $V_{CB} = V_{CBO} \times 0.8$ 500HRS	YES	YES	45	10	1	For Discrete	
2	High Temperature Operating Life (HOPL)	$Ta = Topr(max)$ $V_{cc} = V_{cc}(max)$ Static, Dynamic 500HRS	YES	YES	45	10	1	For L-IC	
3	Temperature Cycle (T/C)	- 65°C→25°C→150°C 10min, 5min, 10min 200 Cycles	YES	YES	45	10	1		
4	Pressure Cooker Test (PCT)	Ta = 121°C ± 2°C RH = 100%, 15PSIG 168HRS	YES	_	45	10	1		
5	Thermal Shock (T/S)	– 65°C→150°C (Liquid) 5min≺10sec, 5min 200 Cycles	YES	YES	45	10	1		
6	Solder Heat Resistance (S/H)	260°C±5°C 10±1 sec	YES	YES	10	N/A	0		
7	Vibration (Variable- Frequency)	100 – 200 – 100Hz 20G, 5min, 5Times, X, Y, Z	_	YES	10	N/A	0	For Discrete, others as applicable	
8	Mechanical Shock (M/S)	1500G, 0.5ms 3 Times, X, Y, Z	_	YES	10	N/A	0	same as above	
9	Constant Acceleration	20000G X, Y, Z Axis 1 min for each Axis	_	YES	10	N/A	0	same as above	

Note) • N/A: not available



Product Reliability (Quality Conformance) Monitors

Samsung implements periodic testing to monitor the ongoing reliability of its products. A subset of stresses used for qualification are run; they are seen as most critical for basic device reliability. Formally this is known as the Device Reliability Test System, or simply as DRT.

Lot-by-lot infant mortality reliability testing is also accomplished at Samsung. The purpose of this is to verify process integrity in a full QA step. Formally this is known as Process Reliability Testing, or more simply as PRT. Normally a short term accelerated lifetest and package reliability test are done, although exceptions are made in the case of special devices.

Although Samsung scrupulously utilizes statistical controls throughout it's production process, DRT and PRT serve as confirmation that indeed the customer does receive only high-grade units. The tables on the following give details of DRT and PRT processing.

Note: Test descriptions given on following pages.

Quality Conformance Program

DESCRIPTION

Samsung has established a comprehensive reliability program to monitor and ensure the ongoing reliability of the linear IC family. This program involves not only reliability data collection and analysis on existing parts, but also rigorous in-line quality controls for all products.

Listed below are details of tests performed to ensure that manufactured product continues to meet Samsung's stringent quality standards. In line quality controls are reviewed extensively in later sections.

The tests run by the quality department are accelerated tests, serving to model "real world" applications through boosted temperature, voltage, and/or humidities. Accelerated conditions are used to derive device knowledge through means quicker than that of typical application situations. These accelerated conditions are then used to assess differing failure rate mechanisms that correlate directly with ambient conditions. Following are summaries of various stresses (and their conditions) run by Samsung on linear IC products.

HIGH TEMPERATURE OPERATING LIFE TEST (HOPL)

$(T_j = 125^{\circ}C, V_{CC} = V_{CC} max, static)$

High temperature operating life test is performed to measure actual field reliability. Life tests of 1000HR to 2000HR durations are used to accelerate failure mechanisms by operating the device at an elevated ambient temperature (125°C). Data obtained from this test are used to predict product infant mortality, early life, and random failure rates. Data are translated to standard operating temperatures via failure analysis to determine the activation energy of each of the observed failures, using the Arrhenius relationship as previously discussed.

WET HIGH TEMPERATURE OPERATING LIFE TEST (WHOPL)

$(Ta = 85^{\circ}C, R.H. = 81\%, V_{CC} = V_{CC} opt, static)$

Wet high temperature operating life test is performed to evaluate the moisture resistance characteristics of plastic encapsulated components. Long time testing is performed under static bias conditions at 85°C/81 percent relative humidity with nominal voltages. To maximize metal corrosion, the biasing configuration utilizes low power levels.

INTERMITTENT OPERATING LIFE (IOPL)

(Pmax, 25°C, 2min on/2 min off)

This test is normally applied to scrutinize die bond thermal fatigue. A stressed device undergoes an "ON" cycle, where there is thermal heating due to power dissipation, and an "OFF" cycle, where there is thermal cooling due to lack of inputted power. Die attach (between die and package) and bond attach (between wire and die) are the critical areas of concern.

HIGH TEMPERATURE STORAGE TEST (HTS)

(Ta=125°C, UNBIASED)

High temperature storage is a test in which devices are subjected to elevated temperatures with no applied bias. The test is used to detect mechanical instabilities such as bond integrity, and process wearout mechanisms.

PRESSURE COOKER TEST (PCT)

(121°C, 15PSIG, 100% R.H., UNBIASED)

The pressure cooker test checks for resistance to moisture penetration. A highly pressurized vessel is used to force water (thereby promoting corrosion) into packaged devices located within the vessel.

TEMPERATURE CYCLING (T/C)

(-65°C to +150°C, AIR, UNBIASED)

This stess uses a chamber with alternating temperatures of -65° C and $+150^{\circ}$ C (air ambient) to thermally cycle devices within it. No bias is applied. The cycling checks for mechanical integrity of the packaged device, in particular bond wires and die attach, along with metal/polysilicon microcracks.

THERMAL SHOCK (T/S)

(-65°C to +150°C, LIQUID, UNBIASED)

This stress uses a chamber with alternting temperatures of -65° C to $+150^{\circ}$ C (liquid ambient) to thermally cycle devices within it. No bias is applied. The cycling is very rapid, and primarily checks for die/package compatibility.

ž

RESISTANCE TO SOLDER HEAT

(Unbiased, 260°C, 10 sec)

Solder Heat Resistance is performed to establish that devices can withstand the thermal effects of solder dip, soldering iron, or solder wave operations.

MECHANICAL SHOCK

(Unbiased, 1500g, Pulse = 0.5msec)

This test determines the suitability of a device to be used in equipment where mechanical "shocks" may occur. Such shocks result from sudden or abrupt changes produced by rough (non-standard) handling, transportation, or field operations.

VARIABLE FREQUENCY VIBRATION

(Unbiased, Range = 100 to 2000Hz)

Variable Frequency Vibration is done to model the effects of differential vibration in the specified range. Die attach and bonding integrity are particularly stressed, testing the mechanical soundness of device packaging.

CONSTANT ACCELERATION

(Unbiased, 10kg to 20kg)

This is an accelerated test designed to indicate types or modes of structural and mechanical weaknesses not necessarily detectable in Mechanical Shock and Variable Frequency Vibration stressing.

RELATIVE STRESS COMPARISONS

Many stresses are run at Samsung on many different devices. Through both theoretical and actual results, it was clearly determined which stresses were most effective. Also established were the stresses which weren't fully effective.

Comparisons have been made on the basis of defects able to be determined, efficiency in detection, and cost. For the reader's benefit, Samsung provides the results of its conclusions on the following pages.

COMPARISON OF RELIABILITY TEST METHODS

Test Method	Defect	Effectiveness	Cost	Remarks
Internal Visual Inspection	Lead Structure Metalization Oxide Film Foreign Particles Die Bond Wire Bond Contamination Corroded Substrate	Good	Slightly Inexpensive to Moderate	This method of screening must be performed for high reliability devices. Cost is affected by the degree of visual inspection
Infrared ray	Design (thermal)	Very Good	Expensive	For use in design evaluation only
Radiography	Die Bond Lead Structure (Gold) Foreign Particles Manufacturing (Gross Error) Seal Package Contamination	Extremely Good Good Good Good Good Good Good	Moderate	Advantage to using this screening method lies in the ability t test die frame/ header bonding, and to be able to perform inspection after sealing. However, some materials being transparent to X-rays (for example, AI and Si) are not able to be analyzed. The use of the complex test system results in cost six times that of visual inspection.
High Temperature Storage	Electrical stability Metalization Bulk Silicon Corrosion	Good	Very Inexpensive	This is a highly desirable screening method
Temperature Cycling	Package Seal Die Bond Wire Bond Cracked Substrate Thermal Mismatching	Good	Very Inexpensive	This screening method is one of the most effective for use
Thermal Shock	Package Seal Die Bond Wire Bond Cracked Substrate Thermal Mismatching	Good	Inexpensive	While this screening method is similar to temperature cycling, it enables high stress levels as well. It is probably equal to the temperature cycling method.
Constant Acceleration	Lead Structure Die Bond Wire Bond Cracked Substrate	Good	Moderate	Doubt exists as to the effectiveness of screening aluminum wires with stress levels in the range of 0-20,000 G

COMPARISON OF RELIABILITY TEST METHODS (Continued)

Test Method	Defect	Effectiveness	Cost	Remarks
Shock (Without Monitoring)	Lead Structure	Fairly Poor	Moderate	Drop shock testing is thought to be inferior to constant acceleration methods. However, the pneupactor shock test is more effective. Shock test is a destructive test method.
Shock (With Monitoring)	Particles Intermittent Short Intermittent Open	Fairly Poor Fairly Good Fairly Good	Expensive	Visual inspection or radiography is more desirable for detection of particles
Vibration Fatigue	Lead Structure Package Die Bond Wire Bond Cracked Substrage	Fairly Poor	Expensive	This test is destructive and without merit.
Variable Frequency Vibration (Without Monitoring)	Package Die Bond Wire Bond Substrate	Fairly Poor	Expensive	
Variable Frequency Vibration (Without Monitoring)	Foreign Particles Lead Structure Intermittent Open	Fairly Good Good Good	Very Expensive	The effectiveness of the method for detecting particles depends on the type of particle
Random Vibration (Without Monitoring)	Package Die Bond Wire Bond Substrate	Good	Expensive	This screening method is more effective than variable frequency vibration (without monitoring), when used with equipment intended for space vehicle operation, although it is more expensive
Random Vibration (Without Monitoring)	Foreign Particle Lead Structure Intermittent Open	Fairly Good Good Good	Very Expensive	This is one of the most expensive screening methods
Vibrational Noise	Foreign Particles	Good	Expensive	
Radioisotope Leak Test	Package Seal	Good	Moderate	This screening method is effective for detecting leakage in the range 10E6 – 10E12 atm. ml/sec

COMPARISON OF RELIABILITY TEST METHODS (Continued)

Test Method	Defect	Effectiveness	Cost	Remarks
Helium Leak Test	Package Seal	Good	Moderate	This screening method is effective for detecting leak in the range 10E6 – 10E12 atm. ml/sec
Gross Leak Test	Package Seal	Good	Inexpensive	Effectiveness is dependent upon volume. Testing is possible for detecting leaks above 10E-3 atm. ml/sec.
High Voltage Test	Oxide Film	Good	Inexpensive	Effectiveness Depends on Structure
Insulation Resistance	Lead Structure Metallization Contamination	Fairly Good	Inexpensive	
Intermittent Operation	Metallization Bulk Silicon Oxide Film Inversion/Channeling Design Parmeter Drift Contamination	Good	Expensive	Probably about the same as AC operating life
AC Operation	Metallization Bulk Silicon Oxide Film Inversion/Channeling Design Parmeter Drift Contamination	Very Good	Expensive	
DC Operation	Basically the Same as Intermittent Operation	Good	Expensive	The AC operation life method is more effective for any failure mechanism
High Temperature AC Operation	Same as AC Operation Life Test	Extremely Good	Very Expensive	Failures are accelerated by temperature. This is probably the most expensive and one of the most effective screening methods.
High Temperature Reverse Bias	Inversion /Channeling	Fairly Poor	Expensive	

RELIABILITY TEST RESULTS

This section is divided into two parts-actual and predicted test results. Actual test results are those derived via accelerated stressing done by the QA department. Predicted results are calculated by taking actual test results and derating them using statistical and mathematical models to determine device performance in "real-time" user conditions.

ACTUAL TEST RESULTS

Stress	Conditions	Number of Devices	Number of Hours/Cycles	Number of Device Hours/Cycles	Number of Failures	% Failures per 1000HRS (Cycles) (60% UCL)
HOPL	$T_j = 125^{\circ}C$ $V_{CC} = V_{CC} max$	180	1,000	180,000	0	0.51%/1K HR
WHOPL	85°C/81% R.H. V _{cc} = V _{cc} opt	180	1,000	180,000	0	0.51%/1K HR
IOPL	$Ta = 25^{\circ}C$ $V_{CC} = V_{CC} max$	180	1,000	180,000	0	0.51%/1K HR
HTS	Ta = 125°C Unbiased	135	1,000	135,000	0	0.67%/1K HR
PCT	121°C 15 PSIG	225	168	37,800	1	0.89%/168 HR
T/C	-65°C to 150°C Air to Air	180	200	36,000	0	0.51%/200 CL
T/S	– 65°C to 150°C Liquid to Liquid	135	200	27,000	0	0.67%/200 CL

PREDICTED TEST RESULTS

The Arrhenius equation, which is reviewed in another section of this chapter, can be applied to derive typical "usercondition" device failure rates.

55°C Operation

Equivalent

Device Hours

% Failures Per

1000 Hours

(60% UCL)

0.0010

**MTTF

(Years)

11447

35

*FITs

10

STESS: HOPL

180,000 Device Hours at 125°C Average Activation Energy: 1.0 eV. De-Rating to User Conditions Yields:

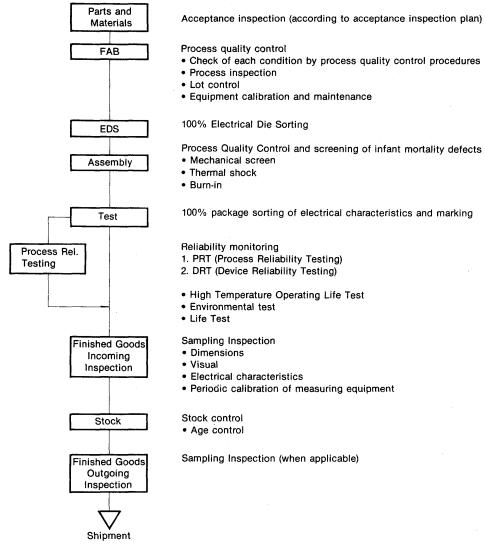
70°C Operation

Equivalent Device Hours	% Failures Per 1000 Hours (60% UCL)	*FITs	**MTTF (Years)
1.93 × 10 ⁷	0.0047	47	2435

$1.93 \times 10^{\prime}$ 0.0047 47 2435 9.07×10^{7} * FIT : Failure in time or failure unit. Represents the

number of failures expected for 10⁹ (one billion) device hours.

** MTTF: Mean time to failures.



1

PROCESS CONTROL

GENERAL PROCESS CONTROL

The general process flow in Samsung is shown in Figure 8. This illustration contains the standard process flow from incoming parts and materials to customer shipment.

... General Process Flow Chart

WAFER FABRICATION

Process Controls

The Quality Control program utilizes the following methods of control to achieve its previously stated objectives: process audits, environmental monitors, process monitors, lot acceptance inspections, and process integrity audits.

Definitions

The essential method of the Quality Control Program is defined as follows:

- 1. Process Audit-Performed on all operations critical to product quality and reliability.
- 2. Environmental Monitor-Monitors concerning the process environment, *i.e.*, water purity, temperature, humidity, particle counts.
- 3. Process Monitor-Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variable data.
- Lot Acceptance-Lot-by-lot sampling. This sampling method is reserved for those operations deemed as critical, and require special attention.

Environmental Monitor

Process	Control Item	Spec. Limit	Insp. Frequency
Clean Room	Temperature	Individual Spec.	24 Hrs.
	Humidity	Individual Spec.	24 Hrs.
	Particle	Individual Spec.	24 Hrs.
	 Air Velocity 	 Individual Spec. 	24 Hrs.
D.I. Water	Particle	 5 ea/50ml (0.8μ) 	24 Hrs.
	 Bacteria 	 50 colonies/100ml (0.45μ) 	Weekly
	 Resistivity 	Main (Line): More than 16 Mohm-cm	24 Hrs.
		 Using point: More than 14 Mohm-cm 	24 Hrs.

* Instruments

- FMS (Facility Monitoring System) HIAC/ROYCO
- CPM (Central Particle Monitoring System-Dan Scientific)
- Liquid Dust Counter Etch Rate
- · Filtration System for Bacterial check
- Air Particle counter
- · Air Velocity meter

Process Monitor

Process	Control Item	Spec. Limit	Insp. Frequency
Photo	• Aligner N ₂ Flow Rate	Individual Spec.	Once/Shift
	 Aligner Vacuum 	 Individual Spec. 	Once/Shift
	Aligner Air	 Individual Spec. 	Once/Shift
	 Aligner Pressure 	 Individual Spec. 	Once/Shift
	Aligner Intensity	 Individual Spec. 	Once/Shift
	 Coater Soft Bake 	 Individual Spec. 	Once/Shift
	Temperature	 Individual Spec. 	Once/Shift
	Vacuum	 Individual Spec. 	Once/Shift
Etch	Etchant Temp.	 Individual Spec. 	Once/Shift
	Etch Rate	 Individual Spec. 	Once/Shift
	 Spin Dryer N₂ Flow 	 Individual Spec. 	Once/Shift
	RPM	 Individual Spec. 	Once/Shift
	 Hard Bake Temp. 	 Individual Spec. 	Once/Shift
	N ₂ Flow	 Individual Spec. 	Once/Shift

Process Monitor (Continued)

Process	Control Item	Spec. Limit	Insp. Frequency
Thin Film	 Cooling Water Temp. Thickness 	• 26±3°C • Individual Spec.	Once/Shift Once/Shift
CVD	 Pin Hole Thickness	 Individual Spec. Individual Spec. 	Once/Shift Once/Shift
Diffusion	Tube Temp. C-V Plot Run Tube Check Designments	Individual Spec. Individual Spec. Individual Spec. Individual Spec.	Once/Shift Once/Shift Once/I0days
	 Sheet Resistance Thickness 	 Individual Spec. Individual Spec. 	Once/Shift Once/Shift

Raw Material Incoming Inspection

1. Mask Inspection

Defect Detection	 Pinhole & Clear-extension Opaque Projections & Spots Scratch/Particle/Stain Substrate Crack/Glass-chip Others 	All Masks	 Defect Size ≤ 1.5µm Defect Density ≤0.124EA/cm²
Registration	 Run-out (X-Y Coordinate) Orthogonality Drop-in Accuracy Die Fit/Rotation 	20% • All New Masks	± 0.75μm ± 0.75μm ± 0.50μm ± 0.50μm
Critical Dimension	Critical Dimension	All Masks	Purchasing Spec.

* Instrument

• Auto mask inspection system for defect-detection (NJS 5MD-44)

• Comparator for registration (MVG 7X7)

• Automatic linewidth measuring system for CD (MPV-CD)

2. Wafer Inspection

Purpose	Insp. Items	Sample	Remarks
Structural	Crystallographic Defect	All Lots	Sirtl Etch
Electrical	 Resistivity Conductivity	All Lots	Monitor Water
Dimensional	 Thickness Diameter Orientation Flatness 	All Lots	TTV, NTV, Epi-thickness TIR (FPD) Local Slope
Visual	Surface QualityCleanliness	All Lots	Purchasing Spec.

* Instrument

• 4 point probe for resistivity (Kokusai VR-40A, Tencor sonogage, ASM AFPP)

• Flatness measuring system (Siltec)

• Epi. layer thickness gauge (Digilab FTG-12, Qualimatic S-100)

• Automatic Surface Insp. System (Aeronca Wis-150)

Non-contact thickness gauge (ADE6034)

In-Process Quality Inspection (FAB)

1. Manufacturing Section

Process Step	Process Control Insp.	Frequency
Oxidation	Oxide Thickness	All Lots
Diffusion	Oxide Thickness Sheet Resistance Visual	All Lots All Lots All Lots
Photo	Critical Dimension Visual Mask Clean Inspection	All Lots (MOS) All Lots All Masks with Spot Light (MOS) or Microscope (BIP)
Etch	Critical Dimension Visual	All Lots All Wafers
Thin Film	Metal Thickness Visual	All Lots All Lots
ion implant	Sheet Resistance	All Lots (Test Wafer)
Low Temp.	Thickness	All Lots
Oxide	Visual	All Lots
E-Test	Electrical Characteristics	All Lots
Fab. Out	Visual	All Wafers

2. FAB, QC Monitor/Gate

Process Step	FAB, QC insp.	Frequency
Oxidation	Oxide Thickness C-V Test on Tubes Visual	Once/Shift Once/10 Days and After CLN Once/Shift
Diffusion	Oxide Thickness C-V Test on Tubes Visual	Once/Shift Once/10 Days and After CLN Once/Shift
Photo	Critical Dimension Visual Mask CLN Inspection	All Lots (MOS) Once/Shift All Masks After 10 Times Use
Etch	Critical Dimension Visual	All Lots (MOS) All Lots
Thin Film	C-V Test on Tubes on Lots Reflectivity	Once/10 Days and After CLN Once/Shift Once/Shift
Low Temp. Oxide	Refractive Index, Wt% of Phosphorus Visual	1 Test Wafer/Lot 1 Test Wafer/Lot 1 Test Wafer/Lot
E-Test	Measuring Data	All Lots
Calibration	Instrument for Thickness and C.D. Measuring	Once/week

3.	Photo/Etch	process	quality	control
----	------------	---------	---------	---------

Process Flow	Process Step	MFG. Control Item	QC Monitor/Gate
\bigcirc	Prebake	Oven PM, Temperature Time	Oven Particle Temp. N₂ Flow Rate
ϕ	Photo Resist (PR) —spin	Thickness Machine PM	
Q	Soft Bake	Oven PM, Temperature Time	Temp. N₂ Flow Rate
\bigcirc	Align/Expose	Light Uniformity Alignment, Focus Test Mask Clean Inspection Mask Clean Exposure Light Intensity	Light Intensity Mask Clean Insp.
\diamond	Develop	Equipment PM Solution Control	Vacuum
	Develop Check	PR/C.D.'S Alignment Particles Mask and Resist Defects	
\sim	QC Inspection		Critical Dimension (CD)
Ó	Hard Bake	Oven PM, Temperature Time	Temp. N₂ Flow Rate
	Etch	Etch rate, Equipment PM & Settings, Etch Time to Clear	Etchant Temp. Etch Rate
	Inspection	Over/Under	
\bigcirc	PR Strip	Machine-PM	
	Final Check	C.D.'S Over and under Etch, Particles, PR Residue, Defects, Scratches	
\diamond	QC Inspection		Same as Final Check, However, More Intense on limited Sample Basis. (AQL 6.5%)

Note: PM represents Preventive Maintenance

4. Reliability-related Interlayer Dielectric, Metallization, and Passivation Process Quality Control Monitor

Item	Frequency
Wt% Phosphorus Content of the Dielectric Glass	1/Shift
Metallization Interconnect	1/Month
Al Step Coverage	1/Month
Metallization Reflectivity	1/Shift
Passivation Thickness and Composition	1/Shift
Thin Film Defect Density	1/Shift

Figure 9. General Wafer Fabri	cation Flow
-------------------------------	-------------

Process Flow	Process Step	Major Control Item
\bigtriangledown	Wafer and Mask Input	
\Diamond	Starting Material Incoming Inspection	Mask: (See mask Inspection) Wafer: (See wafer Inspection)
\diamond	Wafer Sorting and Labelling	Resistivity
\diamond	Initial Oxidation	Oxide Thickness
	Photo	 (See manufacturing section) (See FAB, QC Monitor/gate)
	Inspection	Critical Dimension Visual/Mech — Major: AQL 1.0% — Minor: AQL 6.5%
	QC Gate	Critical Dimension
Diff'n Metal	Etch	 (See manufacturing section) (See FAB, QC Monitor/gate)
	Inspection	 Critical Dimension Visual/Mech — Major: AQL 1.0% — Minor: AQL 6.5%
	QC Gate	 Critical Dimension Visual/Mech
	Diffusion Metalization	• (See in-process Quality Inspection)
\bigcirc	E-test	• Electrical Characteristics

QC Gate • Electrical Characteristics Back-Lap. • Thickness Back Side Evaporation • Thickness, Time Evaporation Rate Final Inspection • All Wafers Screened (Visual/Mech) QC Fab. Final Gate • Visual/Mech. • Major: AQL 6.5% EDS (Electrical Die Sorting) • Function Monitor QC Gate • Function Monitor Sawing • Chip Screen QC Final Inspection • AQL 10%	Process Flow	Process Step	Major Control Item
Back Side Evaporation • Thickness, Time Evaporation Rate Final Inspection • All Wafers Screened (Visual/Mech) QC Fab. Final Gate • Visual/Mech. — Major: AQL 1.0% - Minor: AQL 6.5% EDS (Electrical Die Sorting) QC Gate QC Gate • Function Monitor Sawing Inspection QC Final Inspection • AQL 1.0%	$\langle \cdot \rangle$	QC Gate	• Electrical Characteristics
Final Inspection • All Wafers Screened (Visual/Mech) QC Fab. Final Gate • Visual/Mech. - Major: AQL 1.0% - Minor: AQL 6.5% EDS (Electrical Die Sorting) • QC Gate • Function Monitor Sawing • Inspection • Chip Screen QC Final Inspection • AQL 1.0%	ϕ	Back-Lap	• Thickness
QC Fab. Final Gate • Visual/Mech. QC Fab. Final Gate • Visual/Mech. — Major: AQL 1.0% EDS (Electrical Die Sorting) QC Gate • Function Monitor Sawing Inspection • Chip Screen QC Final Inspection • AQL 1.0%	ϕ	Back Side Evaporation	 Thickness, Time Evaporation Rate
		Final Inspection	
(Electrical Die Sorting) QC Gate Sawing Inspection OC Final Inspection AQL 1.0%		QC Fab. Final Gate	— Major: AQL 1.0%
Sawing Inspection • Chip Screen QC Final Inspection • AQL 1.0%	\bigcirc		
QC Final Inspection • AQL 1.0%		QC Gate	Function Monitor
QC Final Inspection • AQL 1.0%		Sawing	
		Inspection	Chip Screen
Die Attach		QC Final Inspection	Fab. DefectTest Defect

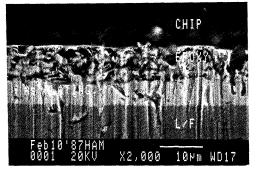
Figure 9. General Wafer Fabrication Flow (Continued)

QUALITY and RELIABILITY

ASSEMBLY

The process control and inspection points of the assembly operation are explained and listed below:

1. Die Inspection:


Following 100% inspection by manufacturing, in-process Quality Control samples each lot according to internal or customer specifications and standards.

2. Die Attach Inspection:

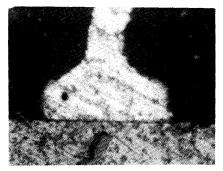
Visual inspection of samples is done periodically on a machine/operator basis. Die Attach techniques are monitored and temperatures are verified.

3. Die Shear Strength:

Following Die Attach, Die Shear Strength testing is performed periodically on a machine/operator basis. Either manual or automatic die attach is used.

DIE ADHESIVE THICKNESS MONITOR RESULTS. (JEOL SEM, JSM IC845)

4. Wire Bond Inspection:

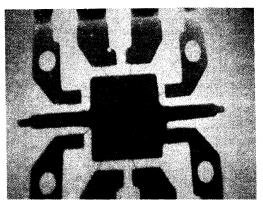

Visual inspection of samples is complemented by a wire pull test done periodically during each shift. These checks are also done on a machine/operator basis and XR data is maintained.

5. Pre-Seal/Pre-Encapsulation Inspection:

Following 100% inspection of each lot, samples are taken on a lot acceptance basis and are inspected according to internal or customer criteria.

WIRE LOOP MONITOR RESULTS.

CROSS SECTION INSPECTION FOR BALL BOND.



6. Seal Inspection:

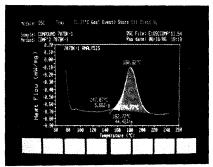
Periodic monitoring of the sealing operation checks the critical temperature profile of the sealing oven for both glass and metal seals.

7. Post-Seal Inspection:

Subsequent to a 100% visual inspection, In-Process Quality Control samples each for conformance to visual criteria.

X-RAY MONITOR RESULT. (PHILIPS MG161)

8. General Assembly Flow is shown in Figure 11.


Sampling Plans

- 1. Sampling plans are based on an AQL (Acceptable Quality Level) concept and are determined by internal or by customer specifications.
- 2. Raw Material Incoming Inspection. (confinued)

Material	Inspection Item	Acceptable Quality Level
Lead Frame	1) Visual Inspection 2) Dimension Inspection 3) Function Test 4) Work Test	LTPD 10%, C = 2 LTPD 20%, C = 0 LTPD 20%, C = 0 LTPD 20%, C = 0
Wafer	1) Visual Inspection	AQL 0.65%
Au/Al Wire	 1) Visual Inspection 2) Bond Pull Strength Test 3) Bondability Test 4) Chemical Composition Analysis 	n:5, C = 0 n: 13, C = 0 Critical Defect: 0.65% Major Defect: 1.0% Minor Defect: 1.5% n: 5, C = 0
Molding Compound	 1) Visual Inspection 2) Moldability Test 3) Chemical Composition Analysis 	n: 5, C = 0 Critical Defect: 0.15% Major Defect: 1.0% Minor Defect: 1.5% n: 5, C = 0

QUALITY and RELIABILITY

MOLDING COMPOUND INCOMING INSPECTION (THERMAL ANALYSER, DUPONT 9900)

(Continued)

Material	Inspection Item	Acceptable Quality Level
Packing Tube & Pin	 1) Visual Inspection 2) Dimension Inspection 3) Electro-Static Inspection 4) Hardness Test 	LTPD 15%, C=2 LTPD 15% C=2 n: 5, C=0 n: 5, C=0
Solder	1) Visual Inspection 2) Weight Inspection 3) Chemical Composition Analysis	LTPD 20% C=0 LTPD 20% C=0 LTPD 20% C=0
Flux	1) Acidity Test 2) Specific Gravity Test 3) Chemical Composition Analysis	LTPD 20% C=0 LTPD 20% C=0 LTPD 20% C=0
Solder Preform	1) Visual Inspection 2) Work Test 3) Chemical Composition Analysis	AQL 1.0% AQL 1.0% AQL 1.0%
Coating Resin	1) Visual Inspection 2) Work Test 3) Chemical Composition Analysis	AQL 1.0% AQL 1.0% AQL 1.0%
Marking Ink	1) Work Test 2) Mark Permanency Test	Critical Defect: 0.15% Major Defect: 1.0% Minor Defect: 1.5% n: 5, C=0
Chip Carrier 2) Dimension Inspection 3) Electro-Static Inspection 4) Hardness Test		LTPD 15% C=2 LTPD 15% C=0 n: 5, C=0 n: 5, C=0
Vinyl Pack	1) Visual Inspection 2) Work Test 3) Electro-Static Inspection	
Ag Epoxy	1) Work Test 2) Chemical Composition Analysis	n:8, C = 0 n:8, C = 0
Letter Marking	1) Visual Inspection 2) Work Test	
Spare Parts & Others	1) Dimension Inspection 2) Visual Inspection	n:5, C=0 n:5, C=0

3. In-Process Quality Inspection

- A. Assembly Lot Acceptance Inspection
- (1) Acceptance quality level for wire bond gate inspection

Defect Class	Inspection Level	Type of Defect	
Critical Defect	AQL 0.65%	 Missing Metal Chip Crack No Probe Epoxy on Die Mixed Device Wrong Bond Missing Bond 	 Diffusion Defect Ink Die Exposed Contact Bond Short Die Lift Broken Wire
Major Defect	AQL 1.0%	 Metal Missing Metal Adhesion Pad Metal Discolored Tilted Die Die Orientation Partial Bond 	 Oxide Defect Probe Damage Metal Corrosion Incomplete Wetting Weakened Wire
Minor Defect	AQL 1.5%	 Adjacent Die Passivation Glass Die Attach Defect Wire Loop Height Extra Wire 	 Contamination Ball Size Wire Clearance Bond Deformation

(2) Acceptance quality level for Mold/Trim gate inspection

Defect Class	Inspection Level	Kind of Defect	
Critical Defect	AQL 0.15%	 Incomplete Mold Void, Broken Package Misalignment 	 Deformation No Plating Broken Lead
Major Defect	AQL 0.4%	 Ejector Pin Defect Package Burr Flash on Lead 	 Crack, Lead Burr Rough Surface Squashed Lead
Minor Defect	AQL 0.65%	 Lead Contamination Poor Plating Package Contamination 	Bent Lead

B. In-process monitor inspection

Inspection Item	Frequency	Reference
Die Shear Test	Each Lot	MIL-STD-883C, 2019-2
 Bond Strength Test 	Each Lot	MIL-STD-883C, 2011-4
 Solderability Test 	Weekly	MIL-STD-883C, 2003-3
 Mark Permanency Test 	Weekly	MIL-STD-883C, 2015-4
 Lead Integrity Test 	Weekly	MIL-STD-883C, 2004-4
In-Process Monitor Inspection for Product	4 Times/Shift/Each Process	Identify for Each Control Limit
X-Ray Monitor Inspection for Molding	2 Times/Shift/Mold Press	Identify for Each Control Limit
Monitor Inspection for Production Equipment	2 Times/Shift/Each Unit of Equipment	Identify for Each Control Limit

4. Outgoing quality inspection plan (LTPD)

Defec	ct Class	Discrete	LSI	Kind of Defect
Critical	Defect electrical visual	1%	2%	Open, short Wrong configuration, no marking
Major	Defect electrical visual	1.5%	3%	Items which affect reliability most strongly
Minor	Defect electrical visual	2%	5%	Items which minimally or do not affect reliability at all (cosmetic, appearance, etc.)

Figure 10. General Assembly Flow

Process Flow	Process Step	Major Control Item	
$\bigtriangledown \bigtriangledown$	Wafer		
	Wafer Incoming Inspection	Q.C. Wafer Incoming Inspection AQL 4.0%	
ϕ	Tape Mount		
	Sawing Q.C. Monitor	Q.C. Monitoring: — Chip-out — Scratch — Crack — Sawing Discoloration — Sawing-speed — Cut Count — D.I. Purity — CO ₂ Bubble Purity	
	Visual Inspection	100% Screen: — FAB Defect — EDS Test Defect — Sawing & Scratch Defect	
\diamond	Q.C. Gate	1st AQL 1.0% Reinspection AQL: 0.65%	
	Lead Frame (L/F)		
	Lead Frame Incoming	*Q.C.L/F Incoming Inspection 1. Acceptance Quality Level — Dimension LTPD 20%, C=0 — Visual & Mechanical: LTPD 10%, C=2 — Functional Work Test: LTPD 10%, C=2	
	Die Attach (D/A)		
	Q.C. Monitor	*Q.C.D/A Monitor Inspection 1. Bond force 2. Frequency: 4 Times/Station/Shift 3. Sample: 24 ea Time 4. Acceptance Criteria	
		Defect Acceptance Reject	
		Critical 0 1	
		Major 1 2	
\frown	Cure		

Figure 10. General	Assembly	Flow	(Continued)
--------------------	----------	------	-------------

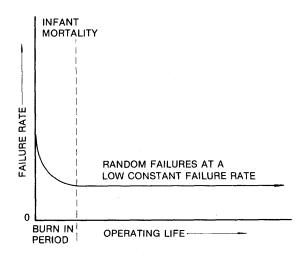
Process Flow	Process Step	Major Control Item
	Q.C. Monitor	*Q.C. Cure Monitor Inspection 1. Control Item — Temperature — In/out Time 2. Frequency — 1 Time/Shift
$ $ ∇	Au Wire	
	Bonding Wire Incoming Inspection	*Q.C Au Wire Incoming Inspection 1. Visual Inspection: N = 5, C = 0 2. Bond Pull Test Strength Test: N = 13, C = 0 3. Bondability Test
	Wire Bonding (W/B)	
	100% Visual Inspection	
	Q.C. Monitor	*Q.C. W/B Monitor Inspection 1. Frequency: 6 Times/Mach/Shift
	Q.C. Gate	1. Q.C. Acceptance Quality Level — Critical Defect: AQL 0.65% — Major Defect: AQL 1.0% — Minor Defect: AQL 1.5%
	Mold Compound	
	Incoming Inspection Mold	*Moldability Test — Critical Defect: AQL 0.15% — Major Defect: AQL 1.0% — Minor Defect: AQL 1.5%
	Mold	
	Q.C. Monitor	*Q.C. Mold Monitor Inspection 1. In-Process Monitor Inspection — Frequncy: 4 Times/Station/Shift — Sample: 200 Units/Time 2. Acceptance Quality Level — Critical Defect: AQL 0.25% — Major Defect: AQL 0.4%

Process Flow	Process Step	Major Control Item
	Cure	
	Q.C. Monitor	*Q.C. Cure Monitor Inspection 1. Control Item — Temperature — In/out Time 2. Frequency — 1 Time/shift
ϕ	Deflash	
	Q.C. Monitor	*Q.C. Deflash Monitor Inspection 1. Control Item — Pressure — Belt Speed — Visual/Mechanical Inspection 2. Frequency: 4 Times/Mach/Shift 3. Identify each Defect Control Limit
φ	TRIM/BEND	
	Q.C. Monitor	*Q.C. Trim/Bend Monitor Inspection 1. Visual Inspection 2. Frequency: 4 Times/Station/Shift
Q - 1	Solder	100% Visual Inspection
	Q.C. Monitor	*Q.C. Solder Monitor Inspection 1. Frequency: 4 Times/Mach/Shift 2. Criteria — Critical Defect: AQL 0.65% — Major Defect: AQL 1.0%
$\left \begin{array}{c} \\ \end{array} \right $	Q.C. Gate	*Q.C. Mold Gate — Acceptance Criteria Critical Defect: AQL 0.15% Major Defect: AQL 0.4% Minor Defect: AQL 0.65%
	Test	100% Electrical Test
	Q.C. Monitor	Correlation Sample Reading for Initial Device Test
	Mark	100% Visual Inspection

Figure 10. General Assembly Flow (Continued)

Process Flow	Process Step	Major Control Item		
$\left \right\rangle$	PRT Monitoring (Process Reliability Testing)	1. PRT — HOPL (168 HRS), PCT (48 HRS) — Other (when applicable) 2. Acceptance Criteria: LTPD 10%		
	Q.C. Monitor	*Q.C. Marking Monitor Inspection — Frequency: 4 Times/Station/Shift — Sample: 24 Units/Time — Identify for Each C.L. — Acceptance Criteria		
		Defect Acceptance Reject		
		Critical 0 1		
		Major 1 2		
	Q.C. Gate	*Q.C. Final Acceptance Level — Critical Defect: AQL 0.15% — Major Defect: AQL 0.4% — Minor Defect: AQL 0.65%		
Q.A. Gate		*Q.C. Incoming Inspection 1. Critical Defect: - Electrical Test: LTPD 2% (N = 116, C = 0) - Visual Test: LTPD 2% (N = 116, C = 0) 2. Major Defect: - Electrical Test: LTPD 3% (N = 116, C = 1) - Visual Test: LTPD 3% (N = 116, C = 1) 3. Minor Defect: - Electrical Test: LTPD 5% (N = 116, C = 2) - Visual Test: LTPD 5% (N = 116, C = 2)		
	Stock	*Age Control		
	Q.A. Gate	*Q.A. Outgoing Inspection 1. Quantity 2. Customer		
		 3. Packing 4. Sampling Inspection (when applicable) — Sampling plan is same as incoming Inspection 		
\bigtriangledown	Shipment			

Figure 10. General Assembly Flow (Continued)



SAMSUNG'S BEST PROGRAM

The SAMSUNG Best Program has been designed to offer the customer an alternative to standard off-the-shelf plastic encapsulated LINEAR circuits. The Best Program will significantly reduce incoming inspection requirements as well as early device failures (infant mortalify). These results are achieved by a tightened AQL inspection plan and a burn-in of each unit for 160 + 8, -0 hours at 125°C or equivalent conditions established from a time/temperature regression curve.

The AQL Plan. Acceptable Quality Levels (AQL) are a measure of the quality of outgoing LINEAR circuits. These levels are established by the manufacturer to show the process percent defective being produced and to ensure that the customer is receiving material that meets his requirements. The SST Best Program has tightened these AQL levels to a point at which incoming inspection by the customer is no longer a necessity. Best product quality is monitored significantly more closely than standard product; those lots which fall the AQL level are 100% reworked before resubmission to the AQL gate.

The Reliability Plan. Reliability is the statistical probability that a product will give satisfactory performance for a specified period of time when used under specified conditions. A typical rate curve is shown below:

eliability theory assumes that devices fail according to the above curve. When a group of devices is manufactured a small portion of the units will be inherently weaker than the average. These weak units will probably fail during the first few hours of operation—hence the term "infant mortality." If the units are burned-in however, thereby allowing the weak units to fail, there is a much lower probability that those finally put into system use will fail.

The SAMSUNG Best Flow. In order to achieve an extremely high quality unit and reduce infant mortality failures the following flow has been established:

QUALITY and RELIABILITY

Process Flow

FLOW CHART	DESCRIPTION
	WAFER FABRICATION LINEAR PROCESS CV PLOTS OXIDE THICKNESS MEASUREMENTS OPTICAL INSPECTIONS SEM ANALYSIS
	ENCAPSULATION MOLDING COMPOUND ULTRA PURE FOR LINEAR APPLICATIONS
	POST MOLD BAKE 6 HOURS AT 175 DEG. C. CURES PLASTIC STRESSES ALL WIRE BONDS AND DIE
	O/S FUNCTIONAL ELECTRICAL 100% TESTING OPENS/SHORTS AND INTERMITTENTS REMOVE
	HIGH TEMPERATURE BURN-IN 160 HOURS AT 125 DEG. C. OR EQUIVALENT CONDITIONS ESTABLISHED FROM A TIME/ TEMPERATURE REGRESSION CURVE. 0.96 eV
	FULL FUNCTIONAL AND PARAMETRIC ELECTRICAL TESTING 100% ELECTRICAL TESTING AC, DC 88 DEG. C.
	TIGHT AQL SAMPLING PLAN ELECTRICAL – 0.05% AQL AT 88 DEG. C. MECHANICAL – 0.01% AQL CRITICAL & MAJOR
	SHIP UNITS

RELIABILITY AND PREDICTION THEORY

RELIABILITY

Reliability can be loosely characterized as long term product quality.

There are two types of reliability tests: those performed during design and development, and those carried out in production. The first type is usually performed on a limited sample, but for long periods or under very accelerated conditions to investigate wearout mechanisms and determine tolerances and limits in the design process. The second type of tests is performed periodically during production to check, maintain, and improve the assured quality and reliability levels. All reliability tests performed by Samsung are under conditions more severe than those encountered in the field, and although accelerated, are chosen to simulate stresses that devices will be subjected to in actual operation. Care is taken to ensure that the failure modes and mechanisms are unchanged.

FUNDAMENTALS

A semiconductor device is very dependent on its conditions of use (e.g., junction temperature, ambient temperature, voltage, current, *etc.*). Therefore, to predict failure rates, accelerated reliability testing is generally used. In accelerated testing, special stress conditions are considered as parametrically related to actual failure modes. Actual operating life time is predicted using this method. Through accelerated stresses, component failure rates are ascertained in terms of how many devices (in percent) are expected to fail for every 1000 hours of operation. A typical failure rate versus time of activity graph is shown below (the so-called "bath tub curve")

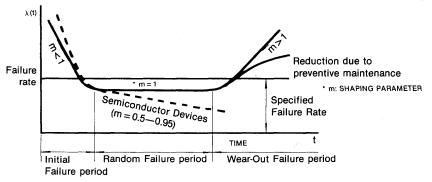
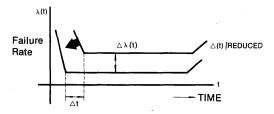



Figure 3. Failure Rate Curve ("Bath Tub Curve")

During their initial time period, products are affected by "infant mortality," intrinsic to all semiconductor technologies. End users are very sensitive to this parameter, which causes early assembly/operation failures in their own system. Periodically, Samsung reviews and publishes life time results. The goal is a steady shift of the limits as shown below.

ACCELERATED HUMIDITY TESTS

To evaluate the reliability of products assembled in plastic packages, Samsung performs accelerated humidity stressing, such as the Pressure Cooker Test (PCT) and Wet High Temperature Operating Life Test (WHOPL).

Figure 5 shows some results obtained with these tests, which illustrate the improvements in recent years. These improvements result mainly from the introduction of purer molding resins, new process methods, and improved cleanliness.

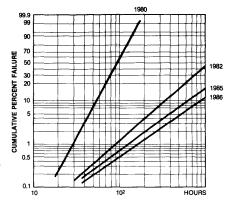
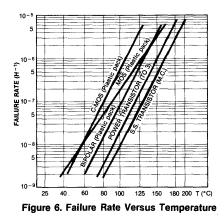



Figure 5. Improvement in Humidity Reliability

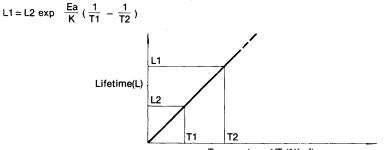
ACCELERATED TEMPERATURE TESTS

Accelerated temperature tests are carried out at temperatures ranging from 75°C to 200°C for up to 2000 hours. These tests allow Samsung to evaluate reliability rapidly and economically, as failure rates are strongly dependent on temperature.

The validity of these tests is demonstrated by the good correlation between data collected in the field and laboratory results obtained using the Arrhenius model. Figure 6 shows the relationship between failure rates and temperatures obtained with this model.

FUNDAMENTAL THEORY FOR ACCELERATED TESTING

Accelerated life testing is powerful because of its strong relation to failure physics. The Arrhenius model, which is generally used for failure modelling, is explained below.


1. Arrhenius model

This model can be applied to accelerated Operating Life Tests and uses absolute (Kelvin) temperatures.

 $L = A + Ea/K \cdot Tj$

- L : Lifetime
- A : Constant
- Ea : Activation Energy
- K : Boltzman's constant
- Tj : Absolute Junction temperature

If Lifetimes L1 and L2 correspond to Temperatures T1 and T2:

Temperature 1/T (°K-1)

Actual junction temperature should always be used, and can be computed using the following relationship.

 $T_j = Ta + (P \times \theta ja)$

Where Tj = Junction temperature

Ta = Ambient temperature

P = Actual power consumption

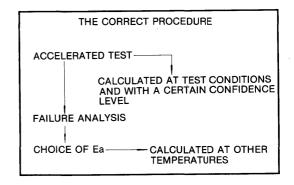
 θ ja = Junction to Ambient thermal resistance (typically 100 degrees celsius/watt for a 16-Pin PDIP).

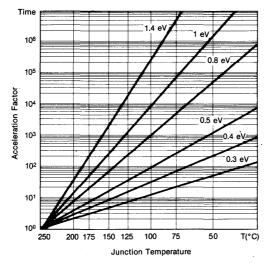
2. Activation Energy Estimate

Clearly the choice of an appropriate activation energy, Ea, is of paramount importance. The different mechanisms which could lead to circuit failure are characterized by specific activation energies whose values are published in the literature. The Arrhenius equation describes the rate of many processes responsible for the degradation and failure of electronic components. It follows that the transition of an item from an initially stable condition to a defined degraded state occurs by a thermally activated mechanism. The time for this transition is given by an equation of the form:

MTBF = B EXP (Ea/KT) MTBF = Mean time between failures B = Temperature-independent constant

MTBF can be defined as the time to suffer a device degradation. The dramatic effect of the choice of the Ea value can be seen by plotting the MTBF equation. The acceleration effect for a $125^{\circ}C$ device junction stress with respect to $70^{\circ}C$ actual device junction operation is equal to 1000 for Ea = 1eV and 7 for Ea = 0.3eV.




Some words of caution are needed about published values of Ea:

- A. They are often related to high-temp tests where a single Ea (with high value) mechanism has become dominant.
- B. They are specifically related to the devices produced by that supplier (and to its technology) for a given period of time
- C. They could be modified by the mutual action of other stresses (voltage, mechanical, etc.)
- D. Field device-application condition(s) should be considered.

(Activation energy for each failure mode)

Failure Mechanism	Ea
Contamination	1~1.4 eV
Polarization	1 eV
Aluminum Migration	0.5~1 eV
Trapping	1 eV
Oxide Breakdown	0.3 eV
Silicon Defects	0.3~0.5 eV

Failure Rate Prediction

Accelerated testing defines the failure rate of products. By derating the data at different conditions, the life expectancy at actual operating conditions can be predicted. In its simplest form the failure rate (at a given temperature) is:

$$FR = \frac{N}{DH}$$

Where FR = Failure Rate

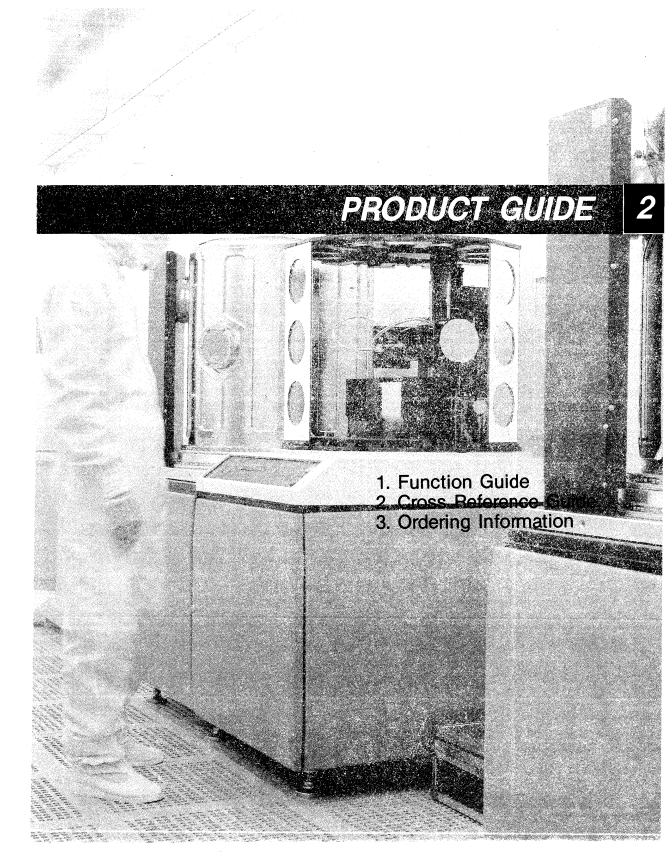
- N = Number of failures
- D = Number of components
- H = Number of testing hours

If we intend to determine the FR at different temperatures, an acceleration factor must be considered. Some failure modes are accelerated via temperature stressing based upon the accelerations of the Arrhenius Law.

For two different temperatures:

FR (T1) = FR (T2) exp
$$\frac{Ea}{K} (\frac{1}{T2} - \frac{1}{T1})$$

FR (T1) is a point estimate, but to evaluate this data for an interval estimate, we generally use a X^2 (chi square) distribution. An example follows:


Failure Rate Elaluation

Unit: %/1000HR

Dev. × Hours at 125°C	Fail	Failure Rate at 60% Confidence Level			
4 7 400	2	Point Estimate	85°C	70°C	55°C
1.7 × 10 ⁶	2	0.18	0.0068	0.0018	0.00036

The activation energy, from analysis, was chosen as 1.0 eV based upon test results. The failure rate at the lower operating temperature can be extrapolated by an Arrhenius plot.

•

1. TELECOMMUNICATION APPLICATION FUNCTION

Application	Туре	Package	Circuit Function
•Tone Ringer	KA2410 KA2411	8 DIP	Adjustable warbling and 2 frequency tone External triggering or ringer disable (KA2410) Adjustable supply initiating current (KA2411) Built-in hysteresis
Tone Ringer with Bridge Rectifier	KA2418	8 DIP	Protect against over voltage Low current consumption Allow the parallel operation of 4 devices Built-in hysteresis External component's are minimized High output voltage
DTMF Dialer	KS5808	16 DIP	Direct telephone line operation Standard 2 of 8 key board use Tone output: Bipolar output Mute output: N-CH open drain
	††KS5809	16 DIP	Low power dissipation Single contact key board use Tone output: Bipolar output Mute output: N-CH open drain
	††KS5810	16 DIP	Low power dissipation Single contact key board use 31 digit redial (Column 4 keys) Tone output: Bipolar output Mute output: N-CH open drain
	††KS5811	16 DIP	Low power dissipation Standard 2 of 8 key board use 31 digit redial (# key) Tone output: Bipolar output Mute output: N-CH open drain
	KA2413	16 DIP	Wide operating line voltage and current range Short start up time External components are minimized Internal protection of all inputs
Pulse Dialer with Redial	KS5805A/B	18 DIP	KS5805A: Pin 2; V _{ref} KS5805B: Pin 2; Tone output RC oscillator used as frequency reference DP out, 17 digit redial
	†KS58C/D05	18 DIP	KS58C05: Pin 2; V _{ref} KS58D05: Pin 2; Tone output RC oscillator used as frequency reference DP output, 32 digit redial
	†KS58E05	16 DIP	DP output RC oscillator used as frequency reference 32 digit redial

TELECOMMUNICATION APPLICATION (Continued)

Application	Туре	Package	Circuit Function
DTMF/Pulse Switchable Dialer	KS58A/B/C/D19 KS58A/B/C/D20	22 DIP 18 DIP	Tone/pulse switchable dialing, touch key or slide switch 32 digit redialing & PABX auto-pause time Make/break ratio pin selectable
DTMF/Pulse Switchable with 10 No Memory	†KS5822	†KS5822 22 DIP 10 No × 16 digit memory incl Including PABX auto pause t 10 pps/20 pps pin selectable Make/Break pin selectable On/Off hook memory	
	†KS58A/B/C/D23	18 DIP	10 No × 16 digit memory including a redial memory Including PABX auto pause time Make/Break pin selectable
Speech Network	KA2412A	14 DIP	Transmit/Receiver amplifier Side tone control On chip regulator
Low Voltage Speech Network with Dialer Interface	KA2425A/B	18 DIP	Low Voltage Operation (1.5V) Tx, Rx & side tone gain set by external resistor Loop length equalization for Tx, Rx & sidetone Provides regulated voltage for CMOS dialer DTMF level adjustable with a single resistor A: Mute active low B: Mute active high
DTMF Receiver	†KT3170	18 DIP	Full DTMF Receiver Provides DTMF high and low group filtering Dial tone suppression Adjustabe acquisition and release times Integrated bandsplit filter and digital decoder functions High quality and performance Single +5 Volt power supply
Tone Decoder	LM567C/L	8 DIP †8 SOP	Touch tone decoding Sequential tone decoding Communication paging High stable center frequency LM567L: Micropower (4mW at 5V) dissipation
FM IF Amplifier	MC3361	16 DIP †16 SOP	Small current dissipation (Typ. 3.5mA: V _{cc} 4.0V) Excellent input sensitivity Communication paging Used to cordless telephone parts required Work from 1.8V to 7.0V
Codec	KT5116 †KT8520	16 CERDIP 24 CERDIP	μ-Law: KT5116 μ-Law: KT8520 A-Law: KT8521 ±5V operation
	††KT8521	22 CERDIP	Low power consumption Synchronous or asynchronous operation

TELECOMMUNICATION APPLICATION (Continued)

Application	Туре	Package	Circuit Function
Codec Filter	КТ3040/А	16 CERDIP	Exceeds all D3/D4 and CCITT spec. ± 5V operation Low power consumption 20dB gain adjust range Sin X/X correction in receive filter TTL and CMOS compatible logic
Combo Codec	+KT8554 +KT8557 +KT8564 ++KT8567	16 CERDIP 16 CERDIP 20 CERDIP 20 CERDIP	Exceeds all D3/D4 and CCITT spec. Complete CODEC and filtering system including ±5V operation Low power consumption TTL and CMOS compatible logic Receive push-pull power amp (KT8564/7)
TSAC	†KT8555	20 CERDIP	Controls up to 8 COMBO CODEC/Filters Low power consumption Single 5V operation Up to 32 time slots per frame
Line Driver	MC1488 ††KS5788	14 DIP †14 SOP	Conformance EIA standard No. RS-232C & V28 (CCITT) Quad line driver Interface between data terminal equipment (DTE) and data communication equipment (DCE) Current limited output: ± 10mA typ. Power-off source impedance 300 ohms min. Compatible with DTL and TTL, HCTLS families Flexible operating supply range KS5788: Low power CMOS version
Line Receiver	MC1489/A ††KS5789A	14 DIP †14 SOP	Conformance EIA standard No. RS-232C & V28 (CCITT) Quad line receiver Interface between data terminal equipment (DTE) and data communication equipment (DCE) Input signal range ± 30 volts Input threshold hysteresis built in Response control a) Logic threshold shifting b) Input noise filtering KS5789A: Low Power CMOS version
Line Transceiver	††KA2654	8 DIP	Conformance EIA Standard No RS-232C & V28 (CCITT) One Driver & One Receiver on chip Wide supply voltage (±4.5V-±15V) Including reference regulator Response control provides TTL compatible
	††KS5706	16 DIP 16 SOP	Conformance EIA Standard No RS-232 & V28 (CCITT) Low power consumption (CMOS) 3 Drivers & 3 Receivers one chip

TELECOMMUNICATION APPLICATION (Continued)

Application	Туре	Package	Circuit Function	
Peripheral Driver Array	†KA2655/6/7/8/9	16 DIP 16 SOP	Including 7 NPN darlington-connected transistors These arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. High breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads	
Fluorescent Display Driver	KA2651	18 DIP	Consisting of 8 NPN darlington output stages and associated common-emitter input stages Digit or segment drivers Low input current, internal output pull-down resisto High output breakdown voltage Single or split supply operation	
8-Channel Source Driver	KA2580A	18 DIP	TTL, CMOS, PMOS, NMOS compatible High output current ratings Internal transient suppression Efficient input/output pin structure Drive telephone relays, incandescent lamps, and LEDS	
	KA2588A	20 DIP	KA2588A: Separated logic and driver supply line	
Universal Asynchronous Receiver and Transmitter (UART)	††KS5824 KS5812	24 DIP 40 DIP	The data formatting and control to interface serial asynchronous data communications between main system and subsystems. Low power, high speed CMOS process Serial/parallel conversion of data 8 and 9 bit transmission Programmable control register Optional + 1, + 16, and + 64 clock modes Peripheral/modem control functions Double buffered Included 4 UART in one chip (KS5812)	

† New Product

tt Under Development

2. VOLTAGE REGULATOR

A. 3-Terminal Fixed Positive Voltage Regulator

Function	Туре	Package	Features	Application
Very High Output	KA78T05 ††KA78TXX	TO-220 TO-3P	Output current in excess of 3A Internal thermal overload protection	5V, 6V, 8V, 12V, 15V, 18V and 24V fixed output voltage
Current (3A)	LM323	TO-3P	Internal short circuit current limiting	5V output voltage
High Output Current (I _o = 1A)	MC78XX series	TO-220	Maximum output current 1A External components are minimized Internal protection circuit for output short Positive voltage regulator Variable application control	5V, 5.2V, 6V, 8V, 8.5V, 9V, 10V, 11V, 12V, 15V, 18V and 24V fixed output voltage
	†KA340XX series	TO-220	Output current in excess of 1A Very low line regulation: 0.01% Very low load regulation: 0.3%	5V, 6V, 8V, 9V, 10V, 11V, 12V, 15V, 18V and 24V fixed output voltage
Medium Output Current (I _o = 500mA)	MC78MXX series	ТО-220	Maximum output current 500mA External components are minimized Internal protection circuit for output short Positive fixed output voltage regulator Variable application circuit	5V, 6V, 8V, 10V, 12V, 15V, 18V, 20V and 24V fixed output voltage
Low Output Current (I _o = 100mA)	MC78LXXAC series	TO-92	Output current in excess of 100mA External components minimized Internal protection circuit for output short Positive voltage regulator Variable application circuit	2.6V, 5V, 6.2V, 8V, 8.2V, 9V, 12V 15V, 18V and 24V fixed output voltage

B. 3-Terminal Fixed Negative Voltage Regulator

Function	Туре	Package	Features	Application
High Output Current (I _o = 1A)	MC79XX series	TO-220	Output current in excess of 1A Internal thermal overload protection Internal short circuit current limiting	
Medium Output Current (I ₀ = 500mA)	MC79MXX series	TO-220	Output current in excess of 500mA Internal thermal over load protection Internal short circuit current limiting	- 18V and - 24V fixed output
Low Output Current (I _o = 100mA)	MC79L05AC ††MC79LXXAC series		Output current in excess of 100mA Internal short circuit current limiting External components minimized	-5V, -12V, -15V, -18V and -24V fixed output voltage

† New Product

†† Under Development

C. Precision Voltage Regulator

Function	Туре	Package	Features	Application
Adjustable Regulator	LM723	14 DIP 14 SOP	Positive or negative supply operation Series, shunt, switching or floating operation 0.01% line and load regulation Output current up to 150mA without external pass transistor	Output voltage adjustable from 2 to 37V
Adjustable Regulator	LM317	TO-220	Output current in excess of 1.5A Positive output adjustable from 1.2V to 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
	KA337	TO-220	Output current in excess of 1.5A Negative output adjustable from - 1.2V to - 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
	†KA350	ТО-ЗР	Output current in excess of 3A Positive output adjustable from 1.2V to 33V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
	††KA7501	TO-92	Output current in excess of 100mA Positive output adjustable from 1.2V to 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
1	††KA7502	TO-220	Output current in excess of 500mA Positive output adjustable from 1.2V to 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
	††KA7503	TO-92	Output current in excess of 100mA Negative output adjustable from - 1.2V to - 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages
	††KA7504	TO-220	Output current in excess of 500mA Negative output adjustable from - 1.2V to 37V Internal short circuit current limiting	Floating operation for high voltage operation Eliminates stocking many fixed voltages

† New Product

†† Under Development

D. Switching Voltage Regulator

Function	Туре	Package	Features	Application
Adjustable 1.25V to 40V	KA78S40	16 DIP 16 SOP	Peak output current of 1.5A without external transistor. 80dB line and load regulation Operation from 25V to 40V	Step-down converter Step-up converter Inverter
Voltage Mode PWM Control IC	KA3524	16 DIP	Complete PWM power control circuitry Internal short circuit current limiting Complementary output Output current up to 100mA	Flyback converter Voltage inverter Voltage step-down Voltage step-up
	KA7500	16 DIP	Complete PWM power control circuitry Dead-time control Complementary output Output current up to 200mA	Voltage inverter Voltage step-down Voltage step-up
	KA7506	16 DIP	Adjustable dead-time control Internal soft-start Separate oscillator sync terminal Pulse-by-pulse shutdown Input undervoltage lockout with hysteresis	Flyback coverter Voltage inverter Voltage step-down Voltage step-up
Current Mode PWM Control IC	KA7505	8 DIP	Automatic feed forward compensation Pulse-by-pulse current limiting Undervoltage lockout with hysteresis Double pulse suppression High current totem pole output	Flyback converter Voltage inverter Voltage step-down Voltage step-up
DC to DC Converter	KA7507	8 DIP	Low standby current Current Limiting Output switch current of 1.5A Output voltage adjustable from 1.25 to 40V	Voltage inverter Voltage step-down Voltage step-up

3. VOLTAGE REFERENCE

Function	Туре	Package	Features	Application	
Adjustable Reference	KA431	TO-92 8 DIP 8 SOP	Programmable output voltage from V_{ref} to 36V Voltage reference tolerance: $\pm 1.0\%$ Low output noise voltage	Switching regulator Constant current source Constant current sink	
Reference	KA336	TO-92	Adjustable 4V to 6V Low temperature coefficient 0.6Ω dynamic impedance Fast turn-on	Adjustable shunt regulator Precision power regulator	
33V Reference	КАЗЗV	TO-92	Low temperature coefficient Low dynamic resistance	Electronic tuning system	

4. OPERATIONAL AMPLIFIER

Function	Туре	Package	Features	Application
OP AMP	LM741	8 DIP 8 SOP	Internal frequency compensation Short circuit protection	Comparator, DC amp, Multivibrator, Summing amp, Integrator or differentiator, Narrow band or BPF
	LM301A	8 DIP 8 SOP	Short circuit protection External frequency compensation	Variable capacitance Multiplier Sine wave oscillator
	KF351	8 DIP 8 SOP	Internally trimmed offset Voltage: 10mV Low input bias current High input impedance: 10 ¹² Ω High slew rate: 13V/μs Wide gain bandwidth: 4MHz	Hi-Zin inverting amp Ultra low duty cycle pulse generator sample and Hold
Dual OP AMP	MC4558	8 DIP 8 SOP 9 SIP	Internal frequency compensation Low noise operation	Phone pre-amplifier Tape playback amplifier
LN LN	MC1458	8 DIP 8 SOP 9 SIP	Internal frequency compensation Short circuit protection	Filter Schmitt trigger Comparator Multivibrator
	LM358/A LM258/A LM2904	8 DIP 8 SOP 9 SIP	Internal frequency compensation for unit gain Large DC voltage gain Wide power supply range	DC summing amplifier Power amplification RC active bandpass filter Compatible with all forms of logic.
	††KA3000	8 DIP 8 SOP 9 SIP	Low input noise voltage High gain bandwidth: 10MHz High slew rate: 10V/µs Large supply voltage range: ±3 to ±20V	DC Amp Telephone channel amplifiers Audio equipment
	KA9256	10 SIP H/S	Internal current limiting: $I_{sc} = 350$ mA Internal frequency compensation Minimal cross over distortion	High power amplifier CD motor driver
	†KF442	8 DIP 8 SOP 9 SIP	Low supply current: 500µA (max) Low input bias current High input impedance High gain bandwidth: 1MHz High slew rate: 1V/µs	Active filter DC summing amplifier Oscillator
	KS272	8 DIP	Wide range of supply voltage : 3V ~ 16V Common mode input voltage including the negative rail	Battery-powered application Active filter Signal buffer

†† Under Development

† New Product

OPERATIONAL AMPLIFIER (Continued)

Function	Туре	Package	Features	Application
Quad OP AMP LM224/A LM2902 LM348 LM248 MC3403 MC3403 MC3303 †KF347 KS274	14 DIP 14 SOP	Internal frequency compensation Wide supply voltage range Single supply: DC 3V \sim 32V Dual supply: DC ± 1.5V \sim ± 16V	Audio power booster DC amp, Multivibrator Switch, Comparator Schmitt trigger	
		14 DIP 14 SOP	Each amplifier is functionally equivalent to the LM741C Pin compatible with LM324 Short circuit protection	Comparator with hysteresis Voltage reference
		14 DIP 14 SOP	Class AB output stage for minimal crossover distortion Single or split supply operation Internal frequency compensation	Comparator with hysteresis BI-Quad filter
	†KF347	14 DIP 14 SOP	Low bias current Wide gain bandwidth: 4MHz High slew rate: $13V/\mu s$ High input impedance	D/A converter Sample and hold Integrator
	KS274	14 DIP	Wide range of supply voltage : 3V ~ 16V Single supply operation Very low input bias current, Typ 1pA	Battery-powered application Energy-conserving application
	††KA3001	14 DIP 14 SOP	Low supply current: 200μ A Single supply operation: 5V to 30V Low input offset voltage	Remote line filters DC Amps Battery powered application

÷.

†New Product

†† Under Development

69

5. VOLTAGE COMPARATOR

Function	Туре	Package	Features	Application
Single Comparator	LM311	8 DIP 8 SOP	Operates from single 5V supply Maximum input current: 250nA Maximum offset current: 50nA Differential input voltage range: ± 30V	Multivibrator output is compatible with DTL and as well as MOS circuits voltage controlled oscillator
	KA710C	14 DIP	Low offset and thermal drift Compatible with practically all types of integrated logic	Line receiver A/D converter Memory sense amplifier
Dual Comparator	LM393/A LM2903 LM293/A	8 DIP 8 SOP 9 SIP	High precision comparators Reduced V _{os} drift over temperature Eliminates need for dual supply Allows sensing near ground Compatible with all form of logic Power drain suitable for battery operation Low input biasing current: 25nA Low output saturation voltage 250mA at 4mA	Output voltage compatible with TTL, DTL, ECL and CMOS logic system Basic comparator Pulse generator MOS clock driver
	LM319 LM219	14 DIP	Two independent comparators Operates from a single 5V High common mode slew rate	Relay driver Window detector
	KA711C	14 DIP 14 SOP	Separate differential input and single output Strobing each side	Sense amplifier for core memory Dual comparator with ORed output Double-ended limit detector
Quad Comparator	LM339/A LM2901 LM239/A LM3302	14 DIP 14 SOP	Wide single supply voltage range or dual supplies Very low supply current drain (0.8mA)-independent of supply voltage (2mW/Comparator at + 5V DC) Low input biasing current: 25nA Input common-mode voltage range included GND Low output saturation voltage 250mV at 4mA	Compatible with all forms of logic Bi-stable multivibrator One-shot multivibrator Time delay generator Square wave oscillator Pulse generator Limit comparator Crystal controlled oscillator

†† Under Development

6. TIMER

Function	Туре	Package	Features	Application
Single Timer	NE555	8 DIP 8 SOP	Maximum operating frequency: 500KHz Adjustable duty cycle	Precision timing Pulse generator
	KS555 KS555H	8 DIP 8 SOP	Low power consumption by using CMOS process High speed operation Wide operation supply voltage: 2 to 18 volts Pin compatible with NE555	Precision timing Pulse generator
Dual Timer	NE556	14 DIP 14 SOP	TTL Compatible Dual NE555	Time delay generation
	KS556	14 DIP 14 SOP	Low power consumption by using CMOS process Pin compatible with NE556	Time delay generation
Quad Timer	NE558	16 DIP	Wide supply voltage range: 4.5 to 16V 100mA output current per section Time period equal RC	Quad monostable Sequential timing Precision timing

7. MISCELLANEOUS ICs

Function	Туре	Package	Features	Application
Voltage to Frequency Converter	††KA331	8 DIP	V-F Conversion F-V Conversion Wide range of full scale frequency: 1Hz to 100KHz	Light intensity to frequency converter Temperature to frequency converter
Earth Leakage Detector	KA2803	8 DIP	Low power consumption Built-in voltage regulator 1mA output current pulse to trigger SCR's	Earth leakage detector
Zero Voltage Switch	KA2804	8 DIP	Very few external compontents Reference voltage output Supply voltage control	On-Off temperature control Time proportional temperature control
Earth Leakage	KA2807	8 DIP	Full advantage of the UL943 Direct interface to SCR Trim time in normal	Earth leakage detector
Video Amplifier	KA733C	14 DIP	120MHz bandwidth Selectable gains of 10000 and 400 No frequency compansation required	Video recorder systems Video amplifier Pulse amplifier in communications Magnetic memories

1. TELECOMMUNICATION ICs

A. Dialer

Application	SAMSUNG	MOSTEK	AMI	UMC	SHARP	Others
Pulse Dialer	KS5805A KS5805B †KS58C05 †KS58D05 †KS58E05	*MK50992 *MK50993 MK50981 MK50982 MK50991/2	S2560A/B	*T40992 *T40993 UM9151 UM9151-3	*LR40992 *LR40993	
DTMF Dialer	KS5808 ††KS5809 ††KS5810 ††KS5811 KA2413	*MK5089 MK5087 MK5380	*S25089	*UM95089 UM95087 UM9559	*LR4089 LR4087	*SBA5089 SBA5091 SBA5099 *PBD3535
DTMF/Pulse Switchable with Redial	KS5819 KS5820	MK5370		*UM91230 *UM91210	LR48081 LR48082	*S7230A/B S7235 *LC7360
DTMF/Pulse Switchable with 10 No. Memory	†KS5822 †KS5823	MK5375/6		*UM91261 *UM91260	LR4803	PCD3315

B. Tone Ringer

Application	SAMSUNG	MOTOROLA	SGS	MITEL	CHERRY	Others
Tone Ringer	KA2410 KA2411			*ML8204 *ML8205	*CS8204 *CS8205	*TA31001 *TA31002
1 Chip Tone Ringer	KA2418	MC34012 MC34017	*LS1240 LS3240			Included Bridge Diode

C. Speech Network

Application	SAMSUNG	SGS	RIFA	ІТТ	ERSO	Others
Subset Amplifier	KA2412A	*LS285/A	PBL3726	TEA1045	*CIC9185	
Speech Network with Dialer Interface	KA2425A KA2425B	LS356	PBL3781		- -	U4053/7 U4055/6 TP5700

D. Tone Decoder

Application	SAMSUNG	NATIONAL	SHARP	SIGNETICS	Others
Tone Decoder	LM567C	*LM567	*IR3N05	*NE567	*XR567 (EXAR)
	LM567L				*XRL567 (EXAR)

E. FM IF Amplifier

Application	SAMSUNG	MOTOROLA	SHARP	SPRAGUE	Others
FM IF Amplifier	MC3361	*MC3361	IR3N06	ULN3859	*LM3361

F. DTMF Receiver

Application	SAMSUNG	MITEL	GTE	Others
DTMF Receiver	†KT3170	*MT8870	*G8870	
New Product †† Under De	velopment * Direct Rep	placement		

Development * Direct Replace TT

G. CODEC, CODEC FILTER, COMBO CODEC

Application	SAMSUNG	N.S	FAIRCHILD	SGS	INTEL	MOTOROLA	THOMSON
μ-Law CODEC	KT5116	*TP5116	*μA5116	*M5116	2910		
CODEC FILTER	KT3040	*TP3040	*μA5912	*M5912	*2912		*ETC5040
μ-Law COMBO CODEC	†KT8564	*TP3064			2913	MC14400-5	*ETC5064
µ-Law COMBO CODEC	†KT8554	*TP3054	*μA3054		*2916		*ETC5054
A-Law COMBO CODEC	††KT8567	*TP3067					*ETC5067
A-Law COMBO CODEC	†KT8557	*TP3057	*μA3057		*2917		*ETC5057
μ-Law DODEC	†KT8520	*TP3020	μA5151	1	*2910		
A-Law CODEC	††KT8521	*TP3021			*2911		
TSAC	†KT8555	*TP3155					

H. INTERFACES

Ар	plication	SAMSUNG	MOTOROLA	TI	N/S	FAIRCHILD	SIGNETICS
	Line Driver	††KS5788		j	*DS14C88		
	Line Driver	MC1488	*MC1488	*SN75188	*DS1488	*μA1488	*MC1488
		MC1489	*MC1489	*SN75189	*DS1489	*μA1489	*MC1489
RS-232C	Line Receiver	MC1489A	*MC1489A	*SN75189A	*DS1489A	*μA1489A	*MC1489A
		††KS5789A			*DS14C89A		
		††KA2654		*SN751701			
	Transceiver	††KS5706	*MC145406				

I. Driver

Application	SAMSUNG	SPRAGUE	EXAR	MOTOROLA	ТІ	Others
Pak Causa Driver	KA2580A	*UDN2580A			1	
8ch Source Driver	KA2588A	*UDN2588A				
Flouscent Display Driver	KA2651	*UDN6118	*XR6118			
	†KA2655	*ULN2001		*MC1411	SN75476	
	. †KA2656	*ULN2002		*MC1412	SN75477	
Peripheral Driver Array	†KA2657	*ULN2003		*MC1413	SN75478	
	†KA2658	*ULN2004		*MC1416		
	†KA2659	*ULN2005				

J. UART

Application	SAMSUNG	HITACHI	MOTOROLA	Others
Single UART	††KS5824	*HD6350	*MC6850	
Quad UART	KS5812			

† New Product †† Under Development * Direct Replacement

2. VOLTAGE REGULATOR

A. 3-Terminal Fixed Positive Voltage Regulator

Description	SAMSUNG	MOTOROLA	FAIRCHILD	NEC	MATSUSHITA	Package
KA78TXX Series (I _o = 3A)	KA78T05 ††KA78T06 ††KA78T08 ††KA78T12 ††KA78T15 ††KA78T18 ††KA78T24	MC78T05 MC78T06 MC78T08 MC78T12 MC78T15 MC78T18 MC78T24				TO-220 TO-3P
LM323 ($I_0 = 3A$)	LM323	LM323				TO-3P
MC78XXAC/C Series (I _o = 1A)	MC7805AC/C MC7852C MC7806AC/C MC7808AC/C MC7885AC/C MC7809AC/C MC7810AC/C MC7811AC/C	MC7805AC/C MC7806AC/C MC7808AC/C	μΑ7805 μΑ7806 μΑ7808 μΑ7885	μPC7805 μPC7808	AN7805 AN7806 AN7808	TO-220
	MC7812AC/C MC7815AC/C MC7818AC/C MC7824AC/C	MC7812AC/C MC7815AC/C MC7818AC/C MC7824AC/C	μA7812 μA7815 μA7818 μA7824	μΡC7812 μΡC7815 μΡC7818 μΡC7824	AN7812 AN7815 AN7818 AN7824	
KA340XX Series (I _o = 1A)	†KA340T05 †KA340T06 †KA340T08 †KA340T09 †KA340T10 †KA340T11 †KA340T12 †KA340T15 †KA340T18 †KA340T24	LM340-5.0 LM340-6.0 LM340-8.0 LM340-12 LM340-15 LM340-18 LM340-24				TO-220
MC78MXXC Series $(I_0 = 0.5A)$	MC78M05C MC78M06C MC78M08C MC78M10C MC78M12C MC78M15C MC78M18C MC78M2C MC78M24C	MC78M05C MC78M06C MC78M08C MC78M12C MC78M15C MC78M18C MC78M20C MC78M24C	μΑ78M05C μΑ78M06C μΑ78M08C μΑ78M12C μΑ78M15C μΑ78M20C μΑ78M20C μΑ78M24C	μPC78M05 μPC78M08 μPC78M10 μPC78M12 μPC78M15 μPC78M18 μPC78M20 μPC78M24	AN78M05 AN78M06 AN78M08 AN78M10 AN78M12 AN78M15 AN78M15 AN78M18 AN78M20 AN78M24	TO-220
$\begin{array}{l} MC78LXXAC\\ (I_{O}=0.1A) \end{array}$	MC78L26AC MC78L05AC MC78L62AC MC78L08AC MC78L09AC MC78L12AC MC78L12AC MC78L18AC MC78L18AC	MC78L05AC MC78L08AC MC78L12AC MC78L15AC MC78L18AC MC78L24AC	μA78L05AC μA78L62AC μA78L82AC μA78L82AC μA78L09AC μA78L12AC μA78L15AC			TO-92

† New Product

†† Under Development

B. 3-Terminal Fixed Negative Voltage Regulator

Description	SAMSUNG	MOTOROLA	FAIRCHILD	NEC	MATSUSHITA	Package
MC79XXC	MC7902C					······································
Series	MC7905C	MC7905C	μA7905	μPC7905	AN7905	
(I _o = 1A)	MC7906C	MC7906C			AN7906	
	MC7908C	MC7908C	μA7908	μPC7908	AN7908	
	MC7912C	MC7912C	μ A7912	μPC7912	AN7912	
	MC7915C	MC7915C	μA7915	μPC7915	AN7915	
	MC7918C	MC7918C		μPC7918	AN7918	
	MC7924C	MC7924C	1	μPC7924	AN7924	
MC79MXXC	MC79M05C	MC79M05C	μA79M05			TO-220
(I _o = 0.5A)	MC79M06C					
	MC79M08C		μA79M08			
	MC79M12C	MC79M12	μA79M12			
	MC79M15C	MC79M15	μA79M15			
	MC79M18C					
	MC79M24C					
MC79LXXAC	MC79L05AC	MC79L05AC				TO-92
$(I_0 = 0.1A)$	††MC79L12AC	MC79L12AC				
	††MC79L15AC	MC79L15AC				
	††MC79L18AC	MC79L18AC				
	††MC79L24AC	MC79L24AC				

C. Precision Voltage Regulator

Description	SAMSUNG	MOTOROLA	FAIRCHILD	NEC	MATSUSHITA	Package
Adjustable	LM723	MC1723	μA723	LM723		14 DIP/14 SOP
Voltage	LM317	ĽM317	μA317	LM317		TO-220
	KA337	LM337		LM337		TO-220
33V Regulator	KA33V				μPC574	TO-92
Adjustable Voltage	†KA350 ††LM317L	LM350 LM317L	μA350	LM350		
C	††LM317M ††KA337L	LM317M LM337L		LM317M		
	††KA337M	LM337M		LM337M		

D. Switching Voltage Regulator

Description	SAMSUNG	MOTOROLA	FAIRCHILD	NEC	MATSUSHITA	Package
Adjustable 1.25V to 40V $(f_0 = 100 \text{KHz})$	KA78S40	μ A78S4 0	μA78S40			16 DIP
PWM	KA3524	SG3524		LM3524	SG3524	16 DIP
Controller IC	**KA7500	TL494			TL494	16 DIP

3. PRECISION VOLTAGE REFERENCE

Descripti	on	SAMSUNG	MOTOROLA	FAIRCHILD	N/S	TI	Package
Adjustable Reference (2.5V ~ 36)		KA431	TL431	μA431		TL431	TO-92 8 DIP 8 SOP
Reference	5V	KA336			LM336		TO-92
	2.5V	KA336			LM336		TO-92

4. OPERATIONAL AMPLIFIER

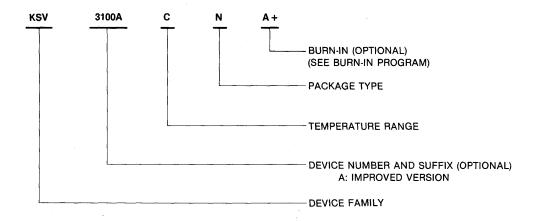
Description	SAMSUNG	MOTOROLA	NATIONAL	FAIRCHILD	JRC	Others
Single OP Amp	LM741 KA301 KÉ351	MC1741 LM301 LF351	LM741 LM301 LF351	μΑ741 μΑ301	NJM741	μΡC301A TL081
Dual OP Amp	LM358/A LM258/A LM2904 MC1458 MC4558 KA9256 †KF442 ††KA3000	LM358/A LM258 LM2904 MC1458 MC4558	LM358/A LM258/A LM2904 LM1458 LF442	μΑ1458 μΑ4558	NJM358 NJM2904 NJM458 NJM4558 NJM4558	TA75358 BA4558 TA7256 TLC272, ICL7621
Quad OP Amp	LM324/A LM224/A LM2902 LM348 LM248 MC3403 MC3303 †KF347 KS274 ††KA3001	LM324/A LM224 LM2902 LM348 LM3403 MC3303 LF347	LM324/A LM224/A LM2902 LM348 LM248 LF347	μA324 μA224 μA2902 μA348 μA248 μA3403 μA3303	NJM324 NJM2902 NJM340J	TA75324 CA224 μPC451 μPC3403 μPC452 TLC274, ICL7641 OP-420

5. VOLTAGE COMPARATOR

Description	SAMSUNG	MOTOROLA	NATIONAL	FAIRCHILD	JRC	Others
Single Comparator	LM311 KA710C	LM311 MC710C	LM311 LM710	LM311 μA710	NJM311	μPC311 MB4001
Dual Comparator	LM393/A LM2903 LM293 KA319 KA219 KA711C	LM393/A LM2903 LM293	LM393/A LM2903 LM293 LM319 LM219 LM219 LM711	μA393 μA711C	NJM2903 NJM2903 NJM319	TA75393 μΡC277
Quad Comparator	LM339/A LM2901 LM239 LM3302	LM339/A LM2901 LM239	LM339/A LM2901 LM239 LM3302	μΑ339 μΑ2901 μΑ239 μΑ3302	NJM2901	TA75339 μPC177 CA239 CA3302

LINEAR ICs

CROSS REFERENCE GUIDE


6. TIMER

Function	SAMSUNG	MOTOROLA	NATIONAL	SIGNETICS	TI	Others
Single Timer	NE555 KS555 KS5357	MC1455	LM555	NE555	TA75555 TLC555	ICM7555
Dual Timer	NE556 KS556		LM556	NE556	NE555 TLC556	ICM7556
Quad Timer	NE558			NE558		

7. MISCELLANEOUS ICs

Function	SAMSUNG	TOSHIBA	NATIONAL	MATSUSHITA	NEC	Others
Toy Radio	KA2303					3 Function
Control Actuator	KA2304					2 Function
	†KA2309	TA7657D			Turbo +	7 Function (RX)
	†KA2310	TA7330			Turbo +	7 Function (TX)
DC Motor Speed	KA2401				μPC1470H	
Controller	KA2402			AN6612		*LA5521D
	KA2404			AN6610		μPC1470H
	†KA2407			*AN6651		
Earth Leakage Detector	KA2803		LM1851			*M54123
Earth Leakage Detector	KA2807		LM1851			
Zero Voltage SW	KA2804				μPC1701C	
FDD Read AMP	KA6201					*HA16631P
Smoke Detector	KS3502					S566
Conventional Timer	KS8701	TD6347S				
Flasher Controller	KA8702	TA8027P				UAA1041
V/F Converter	KA331		LM331			•

TEMPERATURE RANGE

BLANK	SEE INDIVIDUAL SPEC
С	COMMERCIAL 0 ~ + 70°C
I	INDUSTRIAL - 25 ~ + 85°C - 40 ~ + 85°C
М	MILITARY - 55 ~ + 125°C

PACKAGE TYPE

CODE	PKG. TYPE
D	SOIC
J	CERAMIC DIP
N	PLASTIC DIP (300/600 mil)
S	SIP
Q	FQP
Έ	SD (400 mil)
В	SSD (Skinny Shrink DIP) (400 mil. Small Pitch)
Р	SHD (Shrink DIP) (300 mil. Small Pitch)
W	ZIP
U	PGA
L	LCC
PL	PLCC
M	TO-3
н	TO-3P
Z	TO-92
V	TO-92L
A	TO-126
Т	TO-220
X	TO-247
G	BARE CHIP

INTEGRATED CIRCUIT

LINEAR IC
CMOS IC
TELECOM IC
NATIONAL
MOTOROLA
SIGNETICS
A/D-D/A CONVERTER
A/D CONVERTER
D/A CONVERTER

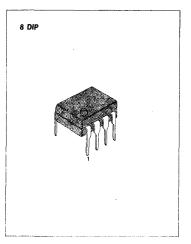
Telecommunication Application

Device	Function	Package	Page
KA2410	Tone Ringer	8 DIP	81
KA2411	Tone Ringer	8 DIP	81
KA2412A	Telephone Speech Circuits	14 DIP	87
KA2413	Dual Tone Multi Frequency Generator	16 DIP	95
KA2418	Tone Ringer with Bridge Diode	8 DIP	101
KA2425A/B	Telephone Speech Network with Dialer Interface	18 DIP	104
KA2654	Line Transceiver	8 DIP	111
KS5706	3 Line Drivers and 3 Line Receivers	16 DIP/SOP	115
KS5788	Quad CMOS Line Driver	14 DIP/SOP	119
KS5789A	Quad CMOS Line Receiver	14 DIP/SOP	122
KS5805A/B	Telephone Pulse Dialer with Redial	18 DIP	125
KS58C/D05	Telephone Pulse Dialer with Redial	18 DIP	131
KS58E05	Telephone Pulse Dialer with Redial	16 DIP	136
KS5808	Dual Tone Multi Frequency Dialer	16 DIP	140
KS5809	DTMF Dialer	16 DIP	146
KS5810	DTMF Dialer with Redial	16 DIP	146
KS5811	DTMF Dialer with Redial	16 DIP	146
KS5812	Quad Universial Asychronos Receiver and Transmitter	40 DIP	150
KS58A/B/C/D19	Tone/Pulse Dialer with Redial	22 DIP	160
KS58A/B/C/D20	Tone/Pulse Dialer with Redial	18 DIP	170
KS5822	10 Memory Tone/Pulse Repertory Dialer	22 DIP	178
KS58A/B/C/D23	10 Memory Tone/Pulse Repertory Dialer	18 DIP	186
KS5824	Universial Asychronous Receiver and Transmitter	24 DIP	194
KT3040/A	PCM Monolithic Filter	16 CERDIP	205
KT3170	DTMF Receiver	18 DIP	217
KT5116	μ-Law Companding CODEC	16 CERDIP	227
KT8520	μ-Law Companding CODEC	24 CERDIP	240
KT8521	A-Law Companding CODEC	22 CERDIP	240
KT8554	μ-Law COMBO CODEC	16 CERDIP	249
KT8555	Time Slot Assignment Circuit	20 CERDIP	260
KT8557	A-Law COMBO CODEC	16 CERDIP	249
KT8564	u-Law COMBO CODEC	20 CERDIP	268
KT8567	A-Law COMBO CODEC	20 CERDIP	268
LM567C	Tone Decoder	8 DIP/SOP	278
LM567L	Micropower Tone Decoder	8 DIP/SOP	286
MC1488	Quad Line Driver	14 DIP/SOP	296
MC1489/A	Quad Line Receiver	14 DIP/SOP	301
MC3361	Low Power Narrow Band FM IF	16 DIP/SOP	305
KA2580A	8-Channel Source Drivers	18 DIP	611
KA2588A	8-Channel Source Drivers	20 DIP	611
KA2651	Fluorescent Display Drivers	18 DIP	616
KA2655/6/7/8/9	High Voltage, High Current Darlingtor Arrays	16 DIP/SOP	619

LINEAR INTEGRATED CIRCUIT

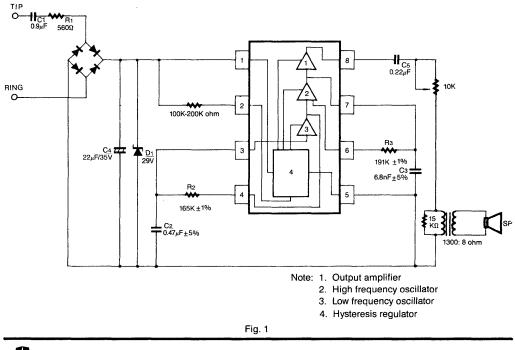
TONE RINGER

The KA2410/KA2411 is a bipolar integrated circuit designed for telephone bell replacement.


FUNCTIONS

- Two oscillators
- Output amplifier
- · Power supply control circuit

FEATURES


- · Designed for telephone bell replacement
- · Low current drain.
- Small size 'MINIDIP' package.
- Adjustable 2-frequency tone.
- · Adjustable warbling rate.
- Built-in hysteresis prevents false triggering and rotary dial 'CHIRPS'
- Extension tone ringer modules
- · Alarms or other alerting devices.
- External triggering or ringer disable (KA2410).
- Adjustable for reduced supply initiation current (KA2411)

APPLICATION CIRCUIT 1 (KA2410)

ORDERING INFORMATION

Device	Operating Temperature
KA2410N	45 . 05 . 0
KA2411N	- 45∼ + 65°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	30	v
Power Dissipation	PD	400	mW
Operating Temperature	Topr	– 45 to 65	°C
Storage Temperature	T _{stg}	- 65 to 150	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

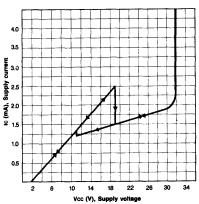
(All voltage referenced to GND unless otherwise specified)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage	V _{cc}		-		29.0	٧
Initiation Supply Voltage ¹	V _{SI}	See Fig. 2	17	19	21	v
Initiation Supply Current ¹	I _{SI}	KA2411-6.8K-Pin 2 to GND	1.4	2.5	4.2	mA
Sustaining Voltage ²	V _{SUS}	See Fig. 2	9.7	11.0	12.0	V
Sustaining Current ²	Isus	No Load V _{CC} =V _{SUS} , See Fig. 2	0.7	1.4	2.5	mA
Trigger Voltage ³	VTR	KA2410 Only V _{cc} = 15V	9.0	10.5	12.0	٧
Trigger Current ³	ITR	KA2410 Only		20.0	1000 ⁵	μA
Disable Voltage ⁴	V _{DIS}	KA2410 Only			0.5	V
Disable Current ⁴	IDIS	KA2410 Only	- 40	- 50		μA
Output Voltage High	V _{он}	$V_{CC} = 21V$, $I_8 = -15mA$ Pin 6=6V, Pin 7=GND	17.0	19.0	21.0	v
Output Voltage Low	V ₀₁	V _{cc} =21V, I ₈ =15mA Pin 6=GND, Pin 7=6V			1.6	v
I _{IN} (Pin 3)		Pin 3=6V, Pin 4=GND	-	-	500	nA
l _{IN} (Pin 7)		Pin 7=6V, Pin 6=GND			500	nA
High Frequency 1	f _{H1}	R ₃ =191K, C ₃ =6800pF	461	512	563	Hz
High Frequency 2	f _{H2}	R ₃ =191K, C ₃ =6800pF	576	640	704	Hz
Low Frequency	fL	R ₂ =165K, C ₂ =0.47µF	9.0	10	11.0	Hz

• NOTE (see electrical characteristics sheet)

1. Initiation supply voltage (Vs) is the supply voltage required to start the tone ringer oscillating.

2. Sustaining voltage (Vsus) is the supply voltage required to maintain oscillation.


3. V_{TR} and I_{TR} are the conditions applied to trigger in to start oscillation for $V_{SUS} \leq V_{CC} \leq V_{SI}$

4. V_{DIS} and I_{DIS} are the conditions applied to trigger in to inhibit oscillation for $V_{SI} \leq V_{CC}$

5. Trigger current must be limited to this value externally.

CIRCUIT CURRENT-SUPPLY VOLTAGE (No Load)

APPLICATION NOTE

The application circuit illustrates the use of the KA2410/KA2411 devices in typical telephone or extension tone ringer application.

The AC ringer signal voltage appears across the TIP and RING inputs of the circuit and is attenuated by capacitor C1 and resistor R1.

C1 also provides isolation from DC voltages (48V) on the exchange line.

After full wave rectification by the bridge diode, the waveform is filtered by capacitor C₄ to provide a DC supply for the tone ringer chip.

As this voltage exceeds the initiation voltage (V_{SI}),oscillation starts.

With the components shown, the output frequency chops between 512 (fn1) and 640Hz (fn2) at a 10Hz (fL) rate.

The loudspeaker load is coupled through a 1300 Ω to 80 transformer.

The output coupling capacitor C₅ is required with transformer coupled loads.

When driving a piezo-ceramic transducer type load, the coupling C_5 and transformer (1300 Ω : 8 Ω) are not required. However, a current limiting resistor is required.

The low frequency oscillator oscillates at a rate (fL) controlled by an external resistor (R2) and capacitor (C2).

The frequency can be determined using the relation $f_L = 1/1.289 R_2$. C_2 . The high frequency oscillates at a f_{H1} , f_{H2} controlled by an external resistor (R₃) and capacitor (C₃). The frequency can be determined using the relation $f_{H1} = 1/1.504 R_3$. C_3 . $f_{H2} = 1/1.203 R_3$, C_3 .

Pin 2 of the KA2411 allows connection of an external resistor R_{SL} , which is used to program the slope of the supply current vs supply voltage characteristics (see Fig 4), and hence the supply current up to the initiation voltage (Vsi). This initiation voltage remains constant independent of R_{SL} .

The supply current drawn prior to triggering varies inversely with R_{SL} . decreasing for increasing value of resistance. Thus, increasing the value of R_{SL} , will decrease the amount of AC ringing current required to trigger the device. As such, longer sucribser loops are possible since less voltage is dropped per unit length of loop wire due to the lower current level. R_{SL} can also be used to compensated for smaller AC coupling capacitors (C₅ on Fig 3) (higher impedance) to the line which can be used to alter the ringer equivalence number of a tone ringer circuit.

The graph in Fig. 4 illustrates the variation of supply current with supply voltage of the KA2411. Three curves are drawn to show the variation of initiation current with R_{SL} . Curve B ($R_{SL} \neq 6.8K$) shows the I-V characteristic for the KA2411 tone ringer. Curve A is a plot with $R_{SL} < 6.8K\Omega$ and shows an increase in the current drawn up to the initiation voltage Vsi. The I-V characteristic after initiation remains unchanged. Curve C illurates the effect of increasing RSL above 6.8K Initiation current decreases but again current after triggering is unchanged.

APPLICATION CIRCUIT 2 (KA2411)

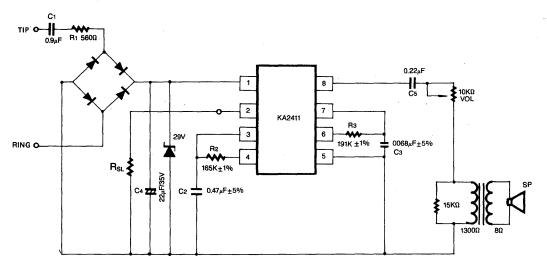
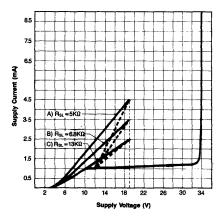



Fig. 3

LINEAR INTEGRATED CIRCUIT

KA2411 Supply Current (No Load) Vs. Supply Voltage

INHIBITING OSCILLATION

EQUIVALENT CIRCUIT (Pin 2 Input)

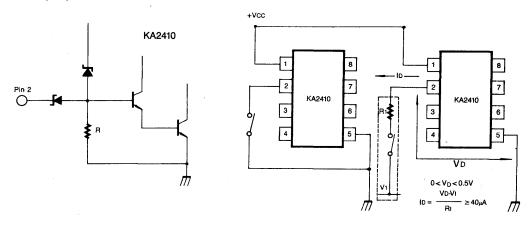


Fig. 5

Fig. 6

PROGRAMMING THE KA2410 INITIATION SUPPLY VOLTAGE

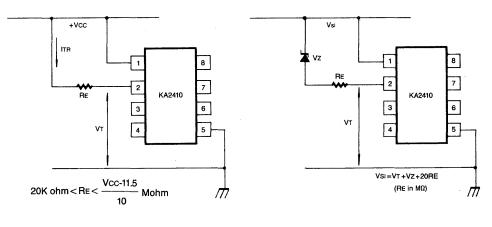
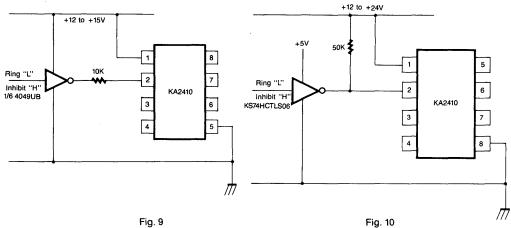
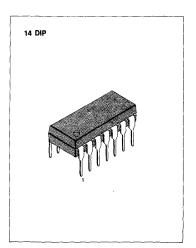



Fig. 7

TRIGGERING KA2410 FROM CMOS OR TTL LOGIC

Fig. 9


TELEPHONE SPEECH CIRCUITS

The KA2412 A is designed for replacement of the hybrid circuit ($2 \sim 4$ wire interface) in conventional telephone.

FEATURES

BLOCK DIAGRAM

- Adjustable sending and receiving gain to compensate for line attenuation by sensing the line current.
- The same type of transducer can be used for both transmitter and receiver, usually a 350Ω dynamic type.
- Output impedance can be matched to the line, independent of transducer impedance.
- Minimum number of external parts required

ORDERING INFORMATION

Device	Operating Temperature
KA2412AN	- 20 ∼ + 70°C

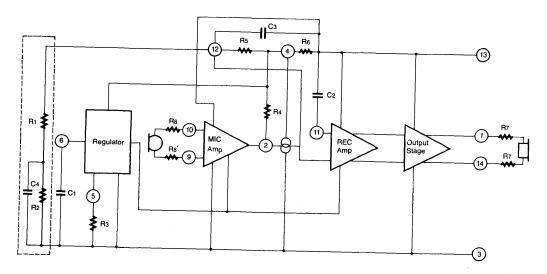


Fig. 1

3

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

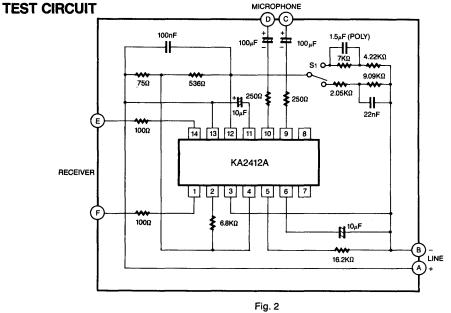
Characteristic	Symbol	Value	Unit
Line Voltage (3 msec pulse duration)	VL	22	v
Forword Line Current	ILF	120	mA
Reverse Line Current	ILR	- 150	mA
Power Dissipation	Po	1.0	w
Operating Temperature	Topr	-20~+70	℃
Storage Temperature	T _{stg}	-55 ~ +150	°C

ELECTRICAL CHARACTERISTICS

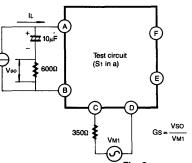
 $(T_a = -15^{\circ}C \sim +45^{\circ}C, f = 300$ Hz ~ 3400 Hz unless otherwise specified. Refer to the test circuit.)

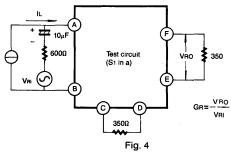
Characteristic	Symbol	Test Circuit	Test Conditions	Min	Тур	Мах	Unit
Line Voltage	VL	Fig 2	$I_L = 80mA$ $I_L = 20mA$ $I_L = 10mA$	9.5 4.8 3.2		11.0 5.6 4.5	v
Sending Gain	Gs	Fig 3	$ \begin{array}{l} T_{a} = 25^{\circ}\text{C}, \ f = 1\text{KHz} \\ I_{L} = 10\text{mA} \\ I_{L} = 20\text{mA} \\ I_{L} = 60\text{mA} \\ I_{L} = 80\text{mA} \end{array} $	46.0 46.0 38.5 38.5		50.0 50.0 42.5 42.5	dB
Sending Gain Variation vs Temp	∆G _{ST}	Fig 3	- 15°C <tamb< +="" 45°c<="" td=""><td></td><td>± 0.8</td><td></td><td>dB</td></tamb<>		± 0.8		dB
Sending Gain Flatness	△G _{SF}	Fig 3	$G_s = 0dB$ at $f = 1KHz$ $I_L = 10$ 80mA			± 0.5	dB
Sending Distortioin	THDs	Fig 3	$I_{L} = 20 \text{mA}$ $V_{SO} = 1 V_{PP}$ $I_{L} = 80 \text{mA}$ $V_{SO} = 400 \text{mV rms}$			2.0 2.0	% %
Sending Noise	VNS		$V_{MI} = 0, I_L = 60 m A$			130	μV
Maximum Sending Output	V _s (max)	Fig 3	I _L = 10 V _{MI} = 707mVrms			6.0	V _{p-p}
Receiving Gain	G _R	Fig 4	$T_a = 25 ^{\circ}C, f = 1 \text{KHz}$ $I_L = 10 \text{mA}$ $I_L = 20 \text{mA}$ $I_L = 60 \text{mA}$ $I_L = 80 \text{mA}$	12.1 12.1 19.8 21.4	 	- 9.9 - 9.9 - 17.2 - 18.8	dB
Receiving Gain Variation vs Temp	∆G _{RT}	Fig 4	- 15°C <tamb<45°c< td=""><td></td><td>± 0.8</td><td> </td><td>dB</td></tamb<45°c<>		± 0.8		dB
Receiving Gain Flatness	∆G _{RF}	Fig 4	$G_R = 0$ dB at f = 1KHz I _L = 10 80mA			±0.5	dB

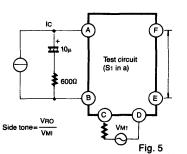
ELECTRICAL CHARACTERISTICS (Continued) $(T_a = -15^{\circ}C \sim +45^{\circ}C, f = 300$ Hz ~ 3400 Hz, unless otherwise specified refer to the test circuit)

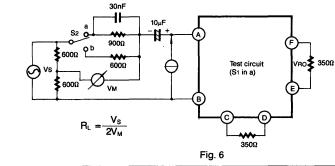

Characteristic	Symbol	Test Circuit	Test Conditions	Min	Тур	Max	Unit
Receiving Distortion	THD _R	Fig 4	I _L =20mA ~80mA V _{RO} =200mVrms			2.0	%
Receiving Noise	V _{NR}	Fig 4	$V_{RI} = OV, I_L = 60mA$ Posphometric			75	μV
Max Receiving Output Current		l _{om}	I∟=10mA V _{RI} =707mVrms			2.0	* mA
Side Tone	ST	Fig 5	$f=1KHz$, $T_a=25^{\circ}C$ $I_L=20mA$ $I_L=60mA$		7.0 0.0		dB
Return Loss	R∟	Fig 6	S2 in a S2 in b		14 14		dB

PIN DESCRIPTION


- 1. PIN 1, PIN 14 : Recevier output
- 2. PIN 2: Line impedance adjust
- 3. PIN 3 : Ground
- 4. PIN 4 : DC regulator
- 5. PIN 5 : Bias
- 6. PIN 6 : AC loop opening
- 7. PIN 7 : No connection
- 8. PIN 8 : No connection 9. PIN 9, PIN 10 : Mic input
- 10. PIN 11 : Input receive Amp (-)
- 11. PIN 12 : Input receive Amp (+)
- 12. PIN 13 : Vcc


KA2412A


Sending Gain



Receiving Gain

Return Loss

90

APPLICATION INFOMRATION

The following table shows the recommended for the Fig 1. Different values can be used and notes are added in order to help designer.

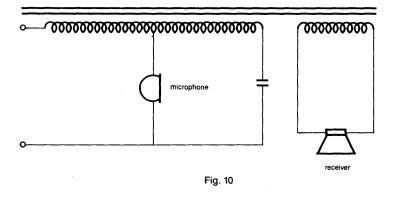
Component	Recommended Value	Purpose	Note
R ₁	2.05K	Balance network	In order to optimize the sidetone
R₂	9.09K		it is possible to change R ₁ and R ₂ values. In any case: $\frac{Z_B}{Z_L} = \frac{R_5}{R_6} \text{ where } Z_B = R_1 + R_2 //C_4$
R₃	16.2K	Bias resistor	Changing R₃ value, it is possible to shift the gain characteristics. The value can be chosen from 15K to 20K. The recommended value assures the maximum swing
R ₅	536	Bridge resistors	The ratio R_5/R_6 fixes the amount of
R ₆	75	Druge resisions	the signal delivered to the line.
R7, R7'	100	Receiver impedance matching	R_7 and R_7' must be equal; 100 Ω is a typical value for dynamic capsules
R ₈ , R ₈ ′	250	Microphone impedance matching	$\begin{array}{l} R_{8} \mbox{ and } R_{8}' \mbox{ must be equal; } 250\Omega \mbox{ is a} \\ \mbox{ typical value for dynamic capsules.} \\ \mbox{ Furthermore, they determine a sending} \\ \mbox{ gain variation according to;} \\ G_{8} = 20 \mbox{ log } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
C ₁	10uF	AC loop opening	Ensures a high regulator impedance for AC signals (=20KΩ). This capacitor should not be higher than 10uF in order to have a short response time of the system.
C2	1uF	DC decoupling for receiving input	
C ₃	82nF	High frequency roll-off	C_3 determines the high frequency response of the circuit. It also acts as RF by pass.
C4	22nF	Balance network	See note for R ₁ and R ₂

DESCRIPTION

1. Circuit Description:

The KA2412A is based on a bridge configuration. The KA2412A contains a regulator block, a sending amplifier and a receiving amplifier. The regulator monitors the line current and adjusts the amplifier gain to compensate for the line length.

The transmit/receiver amplifiers are connected to the line via an external bridge to provide side tone attenuation. When the subscriber is talking, A controlled amount of the sending signal is allowed to reach the receiver to give a feedback to the subscriber. The phenomenon is caused by mismatching of the wheastone bridge and is called the signal of side tone.


The line current compensation ensures that when the subscriber is talking, the signal delivered to the line is increased in according to the line length. When he is hearing, the signal level on the receiver capsule is constant.

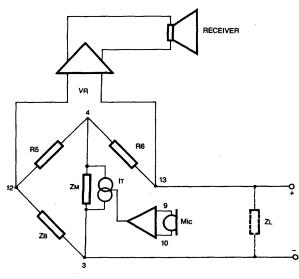
Gain variation over the operating temperature range is less than ± 1 dB. The impedance to the line can be adjusted; without any change in circuit parameters; by changing an external resistor (6.8K Ω at Pin 2).

The KA2412A works with the same type of transducers for both transmitter and receiver (typically 350Ω Dynamic units).

2. Two to four wires conversion

1) In the case of the traditional telephone set:

A traditional speech circuit is equivalently equal to the circuit as described in Fig. 7. The microphone is composed of carbon powder. It converts the sound presure into the variation of resistance and so a AC signal is generated when the bias current flows through the microphone and a subscriber is talking. The current actuated by microphone does not affect receiver because it is compensated by the coil polarity.


But the incoming signal is transferred to receiver, so and this circuit is called 2 — 4 wires conversion, which is incoming 2 wires and Mic, Receivers 4 wires.

LINEAR INTEGRATED CIRCUIT

2) In the case of the KA2412 A

KA2412A performs the two wires (Telephone line) to four wires (Microphone, Receiver) conversion by means of a wheastone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see Fig. 8)

For a perfect balancing of the bridge $\frac{Z_B}{Z_L} = \frac{R5}{R6}$

* In sending mode;

The AC signal from the microphone is sent to one diagonal of the bridge (pin 3 and pin 4). A small percentage of the signal power is lost on Z_B (being $Z_B > > Z_L$); the main part is sent to the line Via R6. The impedance A_M is defined as $\frac{V_{+3}}{2}$

$$V_{R} = \frac{(R6+Z_{B})/(R5+Z_{L})}{Z_{M} + (R6+Z_{B})/(R5+Z_{L})} (\frac{Z_{L}}{R6+Z_{L}} - \frac{Z_{B}}{R5+Z_{B}}) Z_{M}I_{T}$$

To reduce the receiving input signal,

$$\frac{Z_{L}}{R6+Z_{L}} = \frac{Z_{B}}{R5+Z_{B}} \rightarrow \frac{R6}{Z_{L}} = \frac{R5}{Z_{B}}$$

also, In order to reduce power loss in R5 & Z_B and to transfer the maximum power to the line via R6.

 $R5+Z_B > > R6+Z_L$ $R6+Z_M = Z_L$

Then the line impedance Z_L grows from 600 ohm up to 900 ohm when the line length increases. The voltage driven to the line is

$$V_{L} = \frac{Z_{L}}{R6 + Z_{M} + Z_{L}} \times Z_{MIT}$$

In order to maximize sending Gain $Z_L > > R6$

Therefore, in the case of the KA2412 test circuit: R6=75, $Z_M \approx 6.8 K/11$, $Z_L \approx 600$

$$V_{L} = \frac{Z_{L}}{Z_{M} + R6 + Z_{L}} \times Z_{M}I_{T} = 286.82I_{T}$$

* In receiving mode:

The AC signal coming from the line is sensed across the second diagonal of the wheastone bridge (pin 11 and pin 13). After amplification it is applied to the receiver.

$$V_{R} = \frac{V_{I}}{Z_{L} + R_{6} + (R_{5} + Z_{B}) / / Z_{M}} (R_{6} + R_{5} + Z_{B}) / / Z_{M} (1 - \frac{Z_{B}}{Z_{B} + R_{5}}))$$
$$= \frac{V_{I}}{Z_{L} + R_{6} + (R_{5} + Z_{B}) / / Z_{M}} (R_{6} + \frac{Z_{M} R_{5}}{Z_{M} + R_{5} + R_{6}})$$

To avoid the reflection $Z_L = R_6 + Z_M$, 10 $Z_M = R_5 + Z_B$

Therefore

$$V_{\rm R} = \frac{V_{\rm I}}{2 \, {\rm R}_{\rm 6} + 1.91 \, {\rm Z}_{\rm M}} ({\rm R}_{\rm 6} + \frac{{\rm Z}_{\rm B}}{11})$$

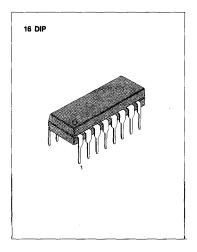
In the case of the KA2412A test circuit $Z_L = 600\Omega$, $R_6 = 75\Omega$, $Z_M = 6.8K\Omega/11 = 6.8\Omega$ $R_5 = 536\Omega$, $Z_B = 6.076K\Omega$ (f_{REF} = 1KHz)

 $\frac{V_R}{V_1} = 0.093$

3. Automatic Gain Control.

The KA2412A automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation Maximum gain is reached for a line current of range 10 - 20mA and minimum gain can also be reached for a line current of range 60 - 100mA.

DUAL TONE MULTI FREQUENCY GENERATOR


The KA2413 is a monolithic integrated DTMF generator designed for use in a telephone set in parallel with an electronic speech circuit. The DC characteristic to the line is set by the speech circuit.

FEATURES

- · Wide operating line voltage and current range
- Operates with a standard crystal at 3.58MHz
- · Operates with a single contact or matrix key-board
- Levels from the high and low frequency group can be adjusted separately.
- · No individual level adjustment is necessary for every circuit
- The signal levels are stabilized against variations in temperature and line voltage.
- Short start-up time
- All tones can be generated separately for testing.
- Easy PCB layout; all keyboard connections on one side of the chip
- · Internal protection of all inputs

BLOCK DIAGRAM

• Minimum number of external parts required.

ORDERING INFORMATION

Device	Operating Temperature
KA2413N	-20 ~ +70°C

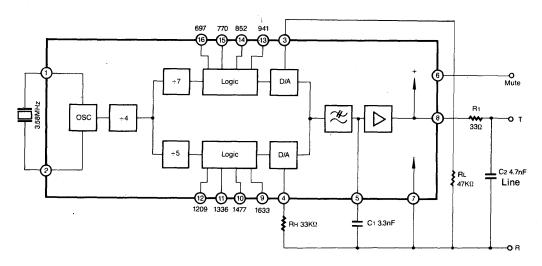
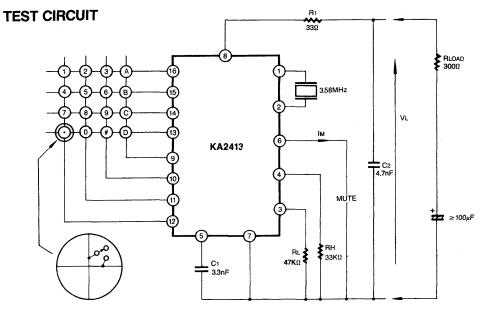


Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Line Voltage (Peak) t _P = 2 sec	V _L (peak)	20	v
t _P =20m sec	VL (peak)	22	v
Line Voltage (Conditions)	V _L (cont)	15	V
Power Dissipation	PD	400	mW
Operating Temperature	Topr	-20~+70	°C
Storage Temperature	Tstg	- 55 ~ + 150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)


($V_L = 4.3 \sim 9V$, unless otherwise specified)

Cha	racteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Line Voltage		V _L (opr)	Tone Generation 1.3 V _P Signal	4.3		9.0	v
Stand-By Line Voltage		V _L (std)	Stand-By 2.0 V _P Signal	4.3		9.0	v
Operating Line	Current	IL (opr)	V _L =4.3V			10.0	mA
Stand-By Line Current		I _L (std)	No Key Pressed V _L =4.3V			250	μA
Mute Current		IM	One or More Keys Pressed	125.0			μA
Key Resistance		Rκ	Key Circuit Closed			1.0	kΩ
Tone Output F	requency						
	f ₁ = 697 Hz			- 1.0	-0.32	+ 1.0	%
Low	f ₂ =770 Hz	-		- 1.0	+0.02	+ 1.0	%
(Row)	f ₃ =852 Hz			- 1.0	+0.03	+ 1.0	%
	f ₄ =941 Hz	Δf	f _{osc} = 3.5795 MHz	- 1.0	-0.11	+ 1.0	%
	f ₅ =1209 Hz	1		- 1.0	-0.03	+ 1.0	%
High	f ₆ =1336 Hz	-		- 1.0	- 0.03	+ 1.0	%
(Column)	f ₇ =1477 Hz	1		- 1.0	- 0.68	+ 1.0	%
	f ₈ =1633 Hz	-1		- 1.0	-0.36	+1.0	%

ELECTRICAL CHARACTERISTICS (Continued)

Ch	aracteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
	High	V _H	R _H =46.4KΩ		- 9.0		
	Low	VL	$R_L = 69.8 K\Omega$		- 11.0		dBm
Signal	High	V _H	$R_{\rm H} = 33.0 \text{K}\Omega$ $R_{\rm L} = 47.0 \text{K}\Omega$	- 8.0	- 6.0	- 4.0	40
level	Low	VL		- 10.0	- 8.0	- 6.0	dBm
	High	V _H	R _H =26.1KΩ		- 4.0		ID
	Low	VL	R _L =39.2KΩ		- 6.0		dBm
Ratio Signal	Level	V _H /V _L		1.0	2.0	3.0	dB
Impedance to	o Line	ZL	Tone Generation Stand-By	6.0 50.0			KΩ
Total Harmor	nic Distortion	THD	Tone Generation			- 31.0	dBm
Output Noise	•	V _{NO}	Stand-By			- 80.0	dBm
			300 — 3400Hz			- 33.0	dBm
Harmonics			3.4 — 50KHz			- 33.0	dBm
			≥50KHz			80.0	dBm
Start-up Time		ts	Output level within 1dB from final level		3	5	mS

- KA2413 can also be controlled by a microprocessor (see Fig 5). The negative branch of the microprocessor voltage supply is connected to pin 7 of KA2413 and the inputs (8) are connected with resistors.
- For tone-generating one input of the low group (pin 13 16) is connected to the positive voltage and one input of the high group (pin 9 12) is connected to the negative voltage, then KA2413 is activated and the mute output is put in High state.

Microcomputer interface

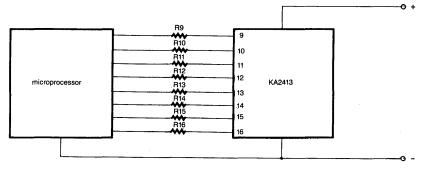
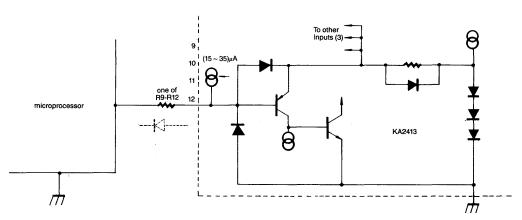


Fig. 5


1) R9, R10, R11, R12 (60K - 80K)

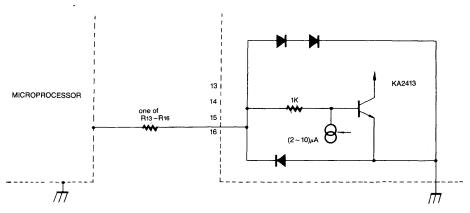
The resistors have two functions are:

- To raise the OFF/ON voltage

- To limit the current when the input levels are high. Too high current will interfere with the functions of the other three inputs (the resistors can be exchanged with diodes directly away from KA2413)

High-frequency group resistors to microcomputer

LIENAR INTEGRATED CIRCUIT


Low-frequency group resistors for microcomputer

2) R13, R14, R15, R16 (20K - 30K)

The two functions of the resistors are:

- To raise the OFF/ON voltage

- To limit the current when the input levels are high.

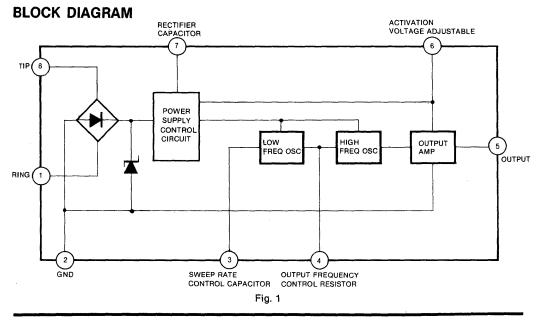
3

TELEPHONE TONE RINGER WITH BRIDGE DIODE

The KA2418 is monolithic integrated circuit telephone tone ringer with bridge diode, when coupled with an appropriate transducer, replace the electromechanical bell. This device is designed for use with either a piezo transducer or an inexpensive transformer coupled speaker to produce a pleasing tone composed of a high frequency ($f_{\rm H}$) alternating with a low frequency ($f_{\rm L}$) resulting in a warble frequency. The supply voltage is obtained from the AC ring signal and the circuit is designed so that noise on the line or variations of the ringing signal cannot affect correct operation of the device.

FEATURES

- · On chip high voltage full wave diode bridge rectifier
- Low current consumption, in order to allow the parallel operation of the 4 devices
- Low external component count
- Tone and switching frequencies adjustable by
- external components
- High noise immunity due to built-in voltagecurrent hysteresis
- Activation voltage adjustable
- Internal zener diodes to protect against over voltages
- Ringer impedance adjustable with external components.


8 DIP

ORDERING INFORMATION

Device	Operating Temperature
KA2418N	-20 ~ +70°C

APPLICATIONS

- · Electronic telephone ringers
- Extension ringers

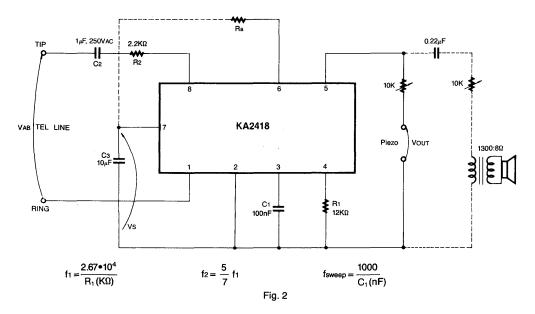
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Calling Voltage (f=50Hz) Continuous	V _{AB}	120	Vrms
Calling Voltage (f=50Hz) 5 Sec ON/10 Sec OFF	V _{AB}	200	Vrms
Supply Current	lcc	22	mA
Operating Temperature	TOP	- 20~ + 70	°C
Storage and Junction Temperature	T _{stg}	- 65~ + 150	°C

Absolute maximum ratings are those values beyond which peramanent damage to the device may occur. These are stress ratings only and functional operation of the device at or beyond them is not implied. Long exposure to these conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS

(T_a = 25°C unless otherwise specified)


Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage	V _{cc}				26	v
Current Consumption without Load	Icc	V _S = 8.8 to 26V		1.5	1.8	mA
Activiation Voltage	V _{ON}		12.2		13	v
Activiation Voltage Range	VONR	$R_A = 1k\Omega$	8		10	V
Sustaining Voltage	V _{sus}		8		8.8	V
Differential Resistance in Off Condition	R _D		6.4			kΩ
Output Voltage Swing	Vout			V _{cc} -3		V
Short Circuit Current	I _{OUT}	$V_s = 26V$		35		mA

AC OPERATION

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Output Frequencies f _{H1} f _{H2}	f _{H1} f _{H2}	$V_{CC} = 26V, R_1 = 14k\Omega$ $V_{CC} = 0V$ $V_{CC} = 6V$		1,900 1,300		Hz Hz
f _{H1} Range		$R_1 = 27$ kΩ to 1.7kΩ	0.1		15	KHz
Sweep Frequency	fL	$R_1 = 14k\Omega, C_1 = 100nF$		10		Hz

TEST AND APPLICATION CIRCUIT

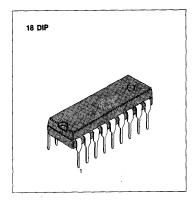
DESCRIPTION

The KA2418 tone ringer derive its power supply by rectifying the AC ringing signal. It uses this power to activate two tone generators. The two tone frequencies generated are switched by an internal oscillator in a fast sequence and made audible across an output amplifier in the loudspeaker; both tone frequencies and the switching frequency can be externally adjusted.

The device can drive either directly a piezo ceramic converter (buzzer) or small loudspeaker. In case of using a loudspeaker, a transformer is needed.

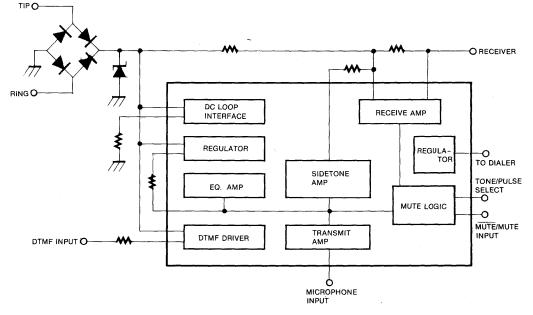
An internal shunt voltage Regulator provides DC voltage to output stage, low frequency oscillator, an High frequency oscillator. To protect the IC from telephone line transients, a zener Diode is included.

LINEAR INTEGRATED CIRCUIT


SPEECH NETWORK WITH DIALER INTERFACE

The KA2425A/B is a telephone speech network integrated circuit which includes transmit amp, receive amp, sidetone amp, DC loop interface function, DTMF input, voltage regulator for speech, a regulated output voltage for a dialer, and equalization circuit.

FEATURES


- Low voltage operation (1.5V: speech)
- Transmit, receive, side tone and DTMF level are controled by external resistors
- Regulated voltage for dialer
- Loop length equalization
- MUTE: KA2425A MUTE: KA2425B
- Linear interface for DTMF

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Function	Operating Temperature
KA2425AN	18 DIP	MUTE	- 20 ~ + 60°C
KA2425BN	18 DIP	MUTE	-20~+00 C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Value	Unit
V ₊ Voltage	- 1.0 ~ + 18	V
$V_{DD} (V_{+} = 0)$	- 1.0 ~ + 6	V
$\frac{V_{DD}}{MT}$ (V ₊ = 0) MT, MT, MS Inputs	$-1.0 \sim V_{DD} + 1$	v
V _{LR}	- 1.0 ~V ₊ - 3.0	v
Storage Temperature	- 65 ~ + 150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Value	Unit
ITXO (Instantaneous)	0~10	mA
V ₊ Voltage: Speech Mode	+ 1.5 ~ + 15	v
Tone Dialing Mode	+ 3.3 ~ + 15	v
Operating Temperature	- 20 ~ + 60	°C

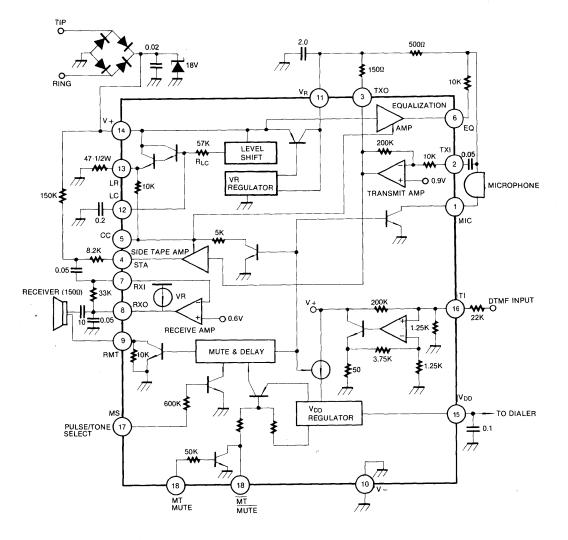
ELECTRICAL CHARACTERISTICS (Ta=25°C, Refer to Fig. 1)

Characteristic	Test Conditions	Min	Тур	Мах	Unit		
SYSTEM SPECIFICATIONS (Refer to Fig. 1	Fig. 4)						
Tip-Ring Voltage (including polarity guard bridge drop of 1.4V) (Speech Mode)	$I_{L} = 5.0 \text{mA}$ $I_{L} = 10 \text{mA}$ $I_{L} = 20 \text{mA}$ $I_{L} = 40 \text{mA}$ $I_{L} = 60 \text{mA}$		2.4 3.9 4.6 5.6 6.6		V _{dc}		
Transmit Gain from V _s to V + Gain Change Distortion Output Noise	Figure 3 (I _L = 20mA) I _L = 60mA	28 - 6.0 	29.5 4.5 2.0 11	31 - 3.6 	dB dB % dBmc		
Receive V _{RXO} /V _S Receive Gain Change Distortion	$f = 1.0 \text{KHz}$, $I_L = 20 \text{mA}$ (See Figure 4) $I_L = 60 \text{mA}$	- 16 - 5.0	15 3.0 2.0	- 13 - 2.0	dB dB %		
Sidetone Level V _{RXO} /V + (Figure 3)	$I_L = 20 \text{mA}$ $I_L = 60 \text{mA}$	_	36 21	-	dB		
Sidetone Cancellation $\{\frac{V_{RXO}}{V+}(Figure 4)\}dB - \{\frac{V_{RXO}}{V+}(Figure 3)\}dB$	I _L = 20mA	20	26		dB		
DTMF Driver V + V _{IN} (Figure 2)	I _L = 20mA	3.2	4.8	6.2	dB		
AC Impedance Speech mode (incl. C_6 , See Figure 4) $Z_{ac} = (600)V + /(V_S - V +)$ Tone Mode (including C_6)	$I_{L} = 20mA$ $I_{L} = 60mA$ $20mA < I_{L} < 60mA$		750 300 1650		Ω		

Note: Typicals are not tested or guaranteed.

ELECTRICAL CHARACTERISTICS (Continued)

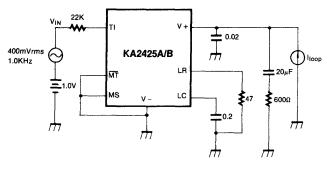
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
SPEECH AMPLIFIERS		<u> </u>	L	I	L	
Transmit Amplifier						
Gain	A _{TXO}	TXI to TXO	22	24	26	dB
TXO Bias Voltage	VTXOSP	Speech/Pulse Mode	0.45	0.52	0.60	×Vя
TXO Bias Voltage	VTXCOL	Tone Mode	VR – 25	VR – 5.0		mV
TXO High Voltage	VTXCH	Speech/Pulse Mode	VR – 25	VR – 5.0		mV
TXO Low Voltage	VTXCL	Speech/Pulse Mode		125	250	mV
TXI Input Resistance	R _{TXI}			10	-	KΩ
Receive Amplifier						
RXO Bias Voltage	V _{RXO}	All Mode	0.45	0.52	0.60	×Vя
RXO Source Current	IRXOSP	Speech Mode	1.5	2.0		mΑ
RXO Source Current	RXOCL	Pulse/Tone Mode	200	400	-	μA
RXO High Voltage	VRXCH	All Mode	VR – 100	VR - 50		m۷
RXO Low Voltage	VRXOL	All Mode		50	150	mV
SIDETONE AMPLIFIER						
Gain (TXO to STA)	A _{STA}					dB
Speech Mode		$@V_{LR} = 0.5V$	-	- 15		
Speech Mode		$@V_{LR} = 2.5V$	_	- 21		
Pulse Mode		$@V_{LR} = 0.2V$		- 15		
Pulse Mode		@V _{LR} = 1.0V	_	- 21		
STA Bias Voltage	V _{STA}	All Modes	0.65	0.8	0.9	×V _R
MICROPHONE, RECEIVER C	ONTROLS					
MIC Saturation Voltage	VOLMIC	Speech Mode, I = 500μ A	-	50	125	mV
MIC Leakage Current	IMICLK	Dialing Mode, Pin 1 = 3.0V	—	0	5.0	μA
RMT Resistance	R _{RMTSP}	Speech Mode	_	8.0	15	Ω
	RRMTDL	Dialing Mode	5.0	10	18	KΩ
RMT Delay	t _{RMT}	Dialing to Speech	2.0	4.0	20	ms
EQUALIZATION AMPLIFIER						
Gain (V + to EQ)	A _{EQ}					dB
Speech Mode		$@V_{LR} = 0.5V$	-	- 12		
Speech Mode		@V _{LR} = 2.5V	-	- 2.5	-	
Pulse Mode		$@V_{LR} = 0.2V$	-	- 12		
Pulse Mode		@V _{LR} = 1.0V	-	- 2.5		
EQ Bias Voltage	V _{EQ}					V _{dc}
Speech Mode		$@V_{LR} = 0.5V$	-	0.66		
Pulse Mode		$@V_{LR} = 0.5V$	-	1.3		
Speech, Pulse Mode		$@V_{LR} = 2.5V$	—	3.3		


ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
DIALING INTERFACE	LI.					
MT Input Resistance	Н _{мт}		50	100		KΩ
MT Input Resistance			_	50	-	KΩ
MT, MT Input High Voltage	V _{IHMI}		V _{DD} - 0.3	_		V _{dc}
MT, MT Input Low Voltage	VILMT			_	1.0	V _{dc}
MS Input Resistance	R _{MS}		280	600		KΩ
MS Input High Voltage	VIHMS		2.0			V _{dc}
MS Input Low Voltage TI Input Resistance	V _{ILMS} R _{TI}			1.25	0.3	V _{dc} KΩ
DTMF Gain	ADTMF	See Figure 2 (V + /V _{IN})	3.2	4.8	6.2	dB
LINE INTERFACE	L					<u> </u>
V + Current (Pin 12 Grounded) Speech Mode Speech/Pulse Modes Tone Mode	1+	V + = 1.7V V + = 12V V + = 12V	4.5 5.5 6.0	7.1 8.4 8.8	9.0 12.5 14.0	mA
V + Voltage Speech/Pulse Mode Speech/Pulse Mode Speech/Pulse Mode Tone Mode Tone Mode	V +	$I_{L} = 20mA$ $I_{L} = 30mA$ $I_{L} = 120mA$ $I_{L} = 20mA$ $I_{L} = 30mA$	2.6 3.0 7.0 4.1 4.5	3.2 3.7 8.2 4.9 6.4	3.8 4.4 9.5 5.7 6.2	V _{dc}
LR Level Shift Speech/Pulse Mode Tone Mode	∆V _{LR}	$V + - V_{LR}$	_	2.7 4.3	_	V _{dc}
LC Terminal Resistance	RLC		36	57	94	KΩ
VOLTAGE REGULATORS			······		-	
VR Voltage Load Regulation Line Regulation	V_{R} $\triangle V_{RLD}$ $\triangle V_{RLE}$	(V + = 1.7V) 0mA< I_{R} <6.0mA 2.0V <v +="" <6.5v<="" td=""><td>1.1 — —</td><td>1.2 20 25</td><td>1.3 — —</td><td>V_{dc} mV mV</td></v>	1.1 — —	1.2 20 25	1.3 — —	V _{dc} mV mV
V _{DD} Voltage Load Regulation (Dialing Mode) Line Regulation (All Modes) Max. Output Current Max Output Current	V _{DD} \triangle V _{DDLD} \triangle V _{DDLM} I _{DDSM} I _{DDOL}	(V + = 4.5V) $0 < I_{DD} < 1.6mA$ 4.0V < V + < 9.0V Speech Mode Dialing Mode	3.0 — — 375 1.6	3.3 0.25 50 550 2.0	3.8 1000 3.6	V _{dd} V _{dd} mV μA mA
V _{DD} Leakage Current	IDDLK	$V + = 0, V_{DD} = 3.0V$		_	1.5	μA

LINEAR INTEGRATED CIRCUIT

Fig. 1 Test Circuit



PIN DESCRIPTION (See Fig. 1)

No.	Name	Description
· 1	MIC	Microphone negative supply pin
2	ТХІ	Transmit amplifier input. Input impedance is $10K\Omega$
3	тхо	Transmit amplifier output. The AC signal current from this output flows through the V_R series pass transistor via R_9 to drive the line at V + . Increasing R_9 will decrease the signal at V + .
4	STA	Sidetone amplifier output. The signal level at STA increases with loop length.
5	CC	Compensation capacitor. In most application, CC remains open. A capacitor from CC to GND will compensate the loop length equalization circuit when additional stability is required.
6	EQ	Equalization amplifier output. A portion of the V + signal is present on this pin to provide negative feed back around the transmit amplifier. The feedback decreases with increasing loop length, causing the AC impedance of the circuit to increase.
7	RXI	Receive amplifier input. Input impedance is>100KΩ.
8	RXO	Receive amplifier output.
9	RMT	Receiver mute.
10	V -	Negative supply.
11	VR	Regulated voltage output. The VR voltage is regulated at 1.2V.
12	LC	AC load capacitor.
13	LR	DC load resistor. This resistor determines the DC resistance of the telephone, and removes power dissipation from the chip.
14	V +	Positive supply.
15	V _{DD}	V_{DD} regulator. V_{DD} is the output of a shunt type regulator with a nomina voltage of 3.3V.
16	TI	DTMF input. Increasing R ₇ will reduce the DTMF output levels.
17	MS	Mode select. A logic "l" (>2.0V) selects the pulse dialing mode. A logic "O" (<1.0V) selects the tone dialing mode.
18	MT	Mute input for KA2425A. $\overline{\text{MT}}$ is connected through an internal 100K Ω resistor to the base of an NPN transistor, with the emitter at V _{DD} . A logic "O" (<1.0V) will mute the network for dialing. A logic "I" (>V _{DD} - 0.3V) puts the KA2425A into the speech mode.
	MT	Mute input for KA2425B. MT is connected through an internal 50K Ω to the base of a NPN transistor, with the collector to the base of a PNP transistor. A logic "I" (>V _{DD} - 0.3V) will mute the network for dialing. A logic "O" (<1.0V) puts the KA2425B into the speech mode.

Fig. 2 DTMF Driver Test

Fig. 3 Transmit and Sidetone Level Test

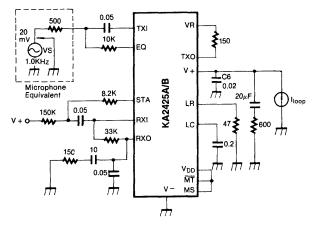
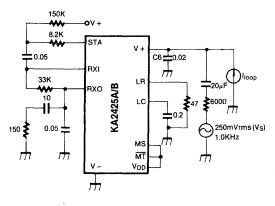



Fig. 4 AC Impedance, Receive and Sidetone Cancellation Test

LINE DRIVER AND RECEIVER

The KA2654 is a monolithic one line driver and one line receiver designed to interface DTE (Data Terminal Equipment) with DCE (Data Communication Equipment) in conformance with the specifications of EIA standard No.RS-232C.

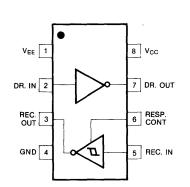
The driver is similar to the MC1488. The receiver is similar to the MC1489 and that a separate response control terminal is provided for.

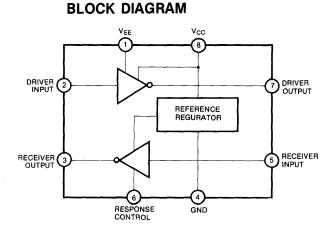
A resistor or a resistor and bias voltage can be connected between this terminal and ground to shift the input threshold voltage level. An external capacitor can be connected from terminal to ground to provide input noise filtering.

FEATURES

- Meet specifications of EIA RS-232C
- Current limited output: 12mA (Typ)
- Wide supply voltage: ±4.5 ~ ±15V
- Low power consumption: 117mW
- Power off source impedance: 300 ohms
- Response Control Provides

PIN CONFIGURATION

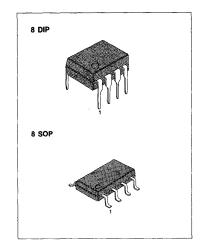

• Receiver output compatible with TTL


,

Device

KA2654N

KA2654D


ORDERING INFORMATION

Package

8 DIP

8 SOP

Operating Temperature

-20 ~ +85°C

-20 ~ +70°C

Characteristic Positive Supply Voltage Negative Supply Voltage Input Voltage Range of Driver Input Voltage Range of Receiver Output Voltage Range of Receiver Output Voltage Range of Receiver Output Current of Driver Response Control Current		Symbol	Value	Unit
Positive Supply Voltage	······	V _{cc}	-0.4 ~ + 18	V
Negative Supply Voltage		V _{EE}	0.4 ~ - 18	v
Input Voltage Range of Driver		V _{ird}	-5~18	V
		V _{irr}	$-30 \sim 30$	V
Output Voltage Range of Driver		V _{ord}	- 25 ~ 25	v
		V _{orr}	-0.4 ~ 7	V
Output Current of Driver		I _{cd}	50	mA
Response Control Current		I _{res}	- 10 ~ 10	mA
output Voltage Range of Receiver output Current of Driver	DIP	Pd	762	mW
Power Dissipation	SOP	Pd	543	m٧
Occurring Temperature Decar	DIP	T _a	- 20 ~ 85	°C
Operating Temperature Range	SOP	Ta	- 20 ~ 70	°C
Storage Temperature Range	<u> </u>	T _{sta}	- 65 ~ 150	°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value	Unit
Positive Supply Voltage	V _{cc}	4.5 ~ 15	v
Negative Supply Voltage	VEE	-4.5 ~ -15	V
Response Control Current	IRES	- 5.5 ~ 5.5	mA
Input Voltage of Driver	V _{ID}	15	v
Input Voltage of Receiver	V _{IB}	<i>−</i> 25 ~ 25	V
Output Current of Receiver	I _{OR}	24	mA

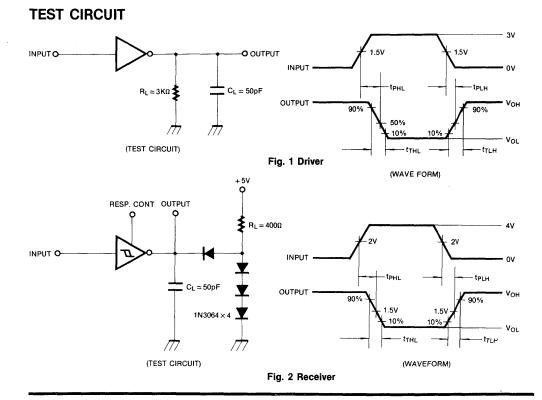
ELECTRICAL CHARACTERISTICS

(V_{CC} = 12V, V_{EE} = -12V, Ta = $-20^{\circ}C \sim 85^{\circ}C$, unless otherwise noted)

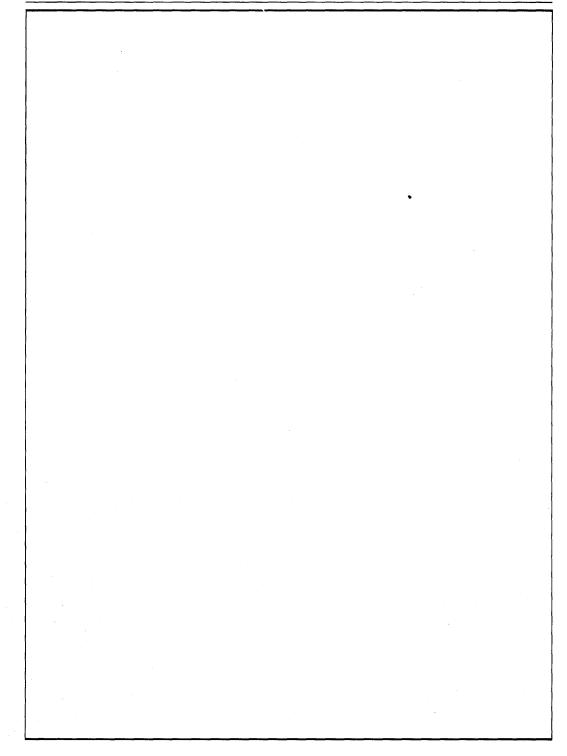
Charact	eristic	Symbol	Test Condition	Min	Тур	Max	Unit
Pasitius Supply Current	$V_{cc} = 5V$ $V_{cc} = 9V$ $V_{cc} = 12V$	I _{CC1}	V _{ID} = 2.0V V _{IR} = 2.3V No Load		6.3 9.1 10.4	8.1 11.9 14.0	
Positive Supply Current	$V_{CC} = 5V$ $V_{CC} = 9V$ $V_{CC} = 12V$	I _{CC2}	V _{ID} = 0.8V V _{IR} = 0.6V No Load		2.5 3.7 4.1	8.7 5.1 .1 5.6	•
	$V_{EE} = -5V$ $V_{EE} = -9V$ $V_{EE} = -12V$	I _{EE1}	$V_{ID} = 2.0V$ $V_{IR} = 2.3V$ No Load		- 2.4 - 3.9 - 4.8	- 3.1 - 4.9 - 6.1	mΑ
Negative Supply Current	$V_{EE} = -5V$ $V_{EE} = -9V$ $V_{EE} = -12V$	I _{EE2}	V _{ID} = 0.8V V _{IR} = 0.6V No Load		- 0.20 - 0.25 - 0.27	- 0.35 - 0.40 - 0.45	
Positive Supply Current	$V_{CC} = 5V$ $V_{CC} = 12V$	I _{CC3}	$V_{ID} = 0V, V_{IR} = 2.3V$ $V_{EE} = 0V, No Load$		4.8 6.7	6.4 9.1	

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic		Symbol	Test Condition	Min	Тур	Max	Unit
DRIVER		I	<u></u>	L	I	I	L
Input Voltage High		ViH		2.0			v
Input Voltage Low		VIL				0.8	•
	$V_{CC} = 5V, \ V_{EE} = -5V$			3.2	3.7		
Output Voltage High	$V_{CC} = 9V, V_{EE} = -9V$	V _{он}	$V_{1D} = 0.8V, R_L = 3K\Omega$	6.5	7.1		v
	$V_{cc} = 12V, V_{EE} = -12V$			8.9	9.8]
	$V_{CC} = 5V, \ V_{EE} = -5V$				- 3.6	- 3.2	
Output Voltage Low	$V_{CC} = 9V, V_{EE} = -9V$	VOL	$V_{1D} = 2.0V, R_L = 3K\Omega$		- 7.1	- 6.4	v
	$V_{6C} = 12V, V_{EE} = -12V$	1			- 9.7	- 8.8	1
Input Current High		Гін	V _{ID} = 7.0V			5	μA
Input Current Low		I _{IL}	$V_{iD} = 0.0V$		- 0.73	- 1.2	mA
Output Short Circuit Current (Positive)		I _{озн}	$V_{1D} = 0.8V, V_0 = 0.0V$	- 7.0	- 12.0	- 14.5	mA
Output Short Circuit Cu	irrent (Negative)	IOSL	$V_{1D} = 2.0V, V_0 = 0.0V$	6.5	11.5	14.0	mA
Output Impedance		Ro	$V_{CC} = V_{EE} = 0V, V_0 = \pm 2V$	300			Ω
RECEIVER				,			
Input Threshold Voltage	e (Positive)	V _{T+}		1.2	1.9	2.3	v
Input Threshold Voltage	e (Negative)	V _T _		0.6	0.95	1.2	
Input Hysteresis		V _{HYS}		0.6			V
	$V_{CC} = 5V, \ V_{EE} = -5V$	V _{он}	$V_{IB} = 0.6V, I_{OH} = -10\mu A$	3.7	4.1	4.5	
Output Valtage Lich	$V_{CC} = 12V, V_{EE} = -12V$	- VOR		4.4	4.7	5.2	v
Output Voltage High	$V_{CC} = 5V, \ V_{EE} = -5V$	Voit	$V_{IR} = 0.6V, I_{OH} = 0.4mA$	3.1	3.4	3.8	
	$V_{CC}=12V,\ V_{EE}=-12V$	- VOH		3.6	4.0	4.5	
Output Voltage Low		Vol	$V_{IR} = 2.3V, I_{OL} = 24mA$		0.2	0.3	v
			V _{IR} = 25V	3.6	6.7	8.3	-
Input Current High		Iн	$V_{IR} = 3V$	0.43	0.67	1.0	mA
Input Current Low			V _{IR} = - 25V	- 3.6	- 6.7	- 8.3	-
Input Current Low		In.	$V_{IR} = -3V$	- 0.43	- 0.74	- 1.0	mA
Output Short Circuit Cu	irrent	los	$V_{IR} = 0.6V$		- 2.8	- 3.7	mA



SWITCHING CHARACTERISTICS

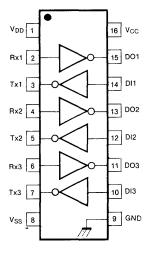

 $(V_{CC} = 12V, V_{EE} = -12V, Ta = -25^{\circ}C, unless otherwise noted)$

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
DRIVER		· ·		l	L.,	
Propagation Delay Time Low to High	pagation Delay Time Low to High t _{PLH}					
Propagation Delay Time High to Low	t _{PHL}	R _L = 3KΩ		100	150	ns
Transition Time Low to High	t _{TLH}	$C_L = 50 pF$		120	180	ns
Transition Time High to Low	t _{THL}			105	160	ns
Transition Time Low to High	t _{TLH}	$R_{L} = 3K\Omega \sim 7K\Omega$		2.1	3.0	μS
Transition Time High to Low	t _{THL}	C _L = 2500pF		2.1	3.0	μS
RECEIVER		1			L	±
Propagation Delay Time Low to High	t _{PLH}			150	240	ns
Propagation Delay time High to Low	t _{PHL}	$B_{L} = 400\Omega$ $C_{L} = 50pF$		50	Ì00	ns
Transition Time Low to High	t _{TLH}			250	360	ns
Transition Time High to Low	t _{THL}	1		18	35	ns

Note: Measured between +3V and -3V points on the output waveform.

KS5706

CMOS INTEGRATED CIRCUIT

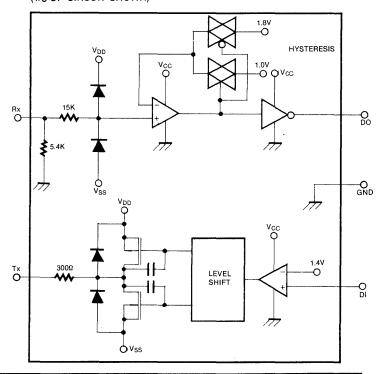

3 LINE DRIVERS AND 3 LINE RECEIVERS

The KS5706 is a CMOS 3 line drivers and 3 line receivers in a single chip designed to interface data terminal equipment with data communications equipment in conformance with the electrical specifications of EIA standard RS-232-C and CCITT V.28.

FEATURES

- Current limited output
- Power-off source impedance: 300 Ohms
- Compatible with TTL
- Flexible operating supply range (± 5 to $\pm 12V$)
- Output voltage swing selectable
- Input resistance (3 to 7 KΩ)
- Input voltage range: ±25V
- · Input threshold hysteresis built in

PIN CONFIGURATION

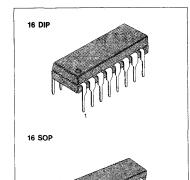


SCHEMATIC DIAGRAM (1/3 OF CIRCUIT SHOWN)

Device

KS5706N

KS5706D


ORDERING INFORMATION

Package

16 DIP

16 SOP

Operating Temperature

-40 ~ +85°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Value	Unit
Power Supply Voltage ($V_{DD} \ge V_{CC}$)	V _{DD} V _{SS} V _{CC}	- 0.5 ~ 13.5 + 0.5 ~ - 13.5 - 0.5 ~ 6.0	V _{dc}
Input Voltage Range Receiver Input (Rx1-3) Driver Input (DI1-3)	V _{IR}	- 25 ~ 25 ~ 0.5 ~ V _{DD} + 0.5	V _{dc}
Maximum Current Per Pin	I _{max}	± 60	mA
Power Dissipation	P₀	1.0	W
Operating Temperature	Ta	- 40 ~ 85	°C
Storage Temperature	T _{stg}	- 85 ~ 150	°C

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5 \text{ to } + 12V, V_{SS} = -5 \text{ to } -12V, V_{DD} \ge V_{CC}, Ta = -40^{\circ} \text{ to } 85^{\circ}C, unless otherwise noted)$

Characteristic		Symbol	Test Condition	Min	Тур	Max	Unit
RECOMMENDED OPERATIN	G CONDITI	ONS	I	L	· · · · · · · · ·		
Power Supply Voltage	V _{DD} V _{SS} V _{CC}	V _{DD} V _{SS} V _{CC}	V _{DD} ≧V _{CC}	4.5 4.5 4.5	5 to 12 -5 to - 12 5.0	13.2 - 13.2 5.5	V _{dc}
Quiescent Current (Inputs ti outputs unloaded)	ed to GND,		$V_{DD} = + 12.0V$ $V_{SS} = - 12.0V$ $V_{CC} = + 5.0V$		140 340 300	400 600 450	μΑ
DRIVER ($V_{cc} = +5V \pm 5\%$)							
Input Voltage (DI1-3)		V _{IL} VIH	Low High	2.0		0.8	V _{dc}
Input Leakage Current (DI1-3	\$)	l _{in}	$DI1-3 = V_{CC}$			± 1.0	μA
Output Voltage High (DI1-3 = $R_L = 3.0 K\Omega$), Tx1-3	= 0.8V,	Vон	$\begin{split} V_{DD} &= 5.0V, \ V_{SS} = -5.0V \\ V_{DD} &= 6.0V, \ V_{SS} = -6.0V \\ V_{DD} &= 12.0V, \ V_{SS} = -12.0V \end{split}$	3.5 4.3 9.2	3.9 4.7 9.5		V _{dc}
Output Voltage Low (DI1-3 = $R_L = 3.0K\Omega$), Tx1-3	2.0V,	V _{OL}	$\begin{split} V_{DD} &= 5.0V, \ V_{SS} = -5.0V \\ V_{DD} &= 6.0V, \ V_{SS} = -6.0V \\ V_{DD} &= 12.0V, \ V_{SS} = -12.0V \end{split}$	- 4.0 - 4.5 - 10.0	- 4.3 - 5.2 - 10.3		V _{dc}
Output Short Circuit Current		I _{SC}	$(V_{DD} = 12.0V, V_{SS} = -12.0V)$ Tx1-3 shorted to Gnd Tx1-3 shorted to ± 15.0V	-	± 10 ± 40	± 20 ± 60	mA
Power Off Source Resistanc	e (Tx1-3)	R _n	$V_{DD} = V_{SS} = Gnd = 0V,$ Tx1-3 = ±2.0V	300			Ω

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
RECEIVER	L	4		J		
Input Turn-On Threshold Voltage, Rx1-3	ViH	$DO1-3 = V_{OL},$ $V_{CC} = 5.0 \sim 6.0V$	1.35	1.80	2.35	V _{dc}
Input Turn-Off Threshold Voltage, Rx1-3	VIL	DO1-3 = V_{OH} , $V_{CC} = 5.0 \sim 6.0V$	0.75	1.00	1.25	V _{dc}
Input Threshold Hysteresis, Rx1-3	V _{HY}	VIH - VIL	0.6	0.8		V _{dc}
Input Resistance, Rx1-3	R _{IN}	$Rx1-3 = \pm 3 \sim \pm 25V$	3.0	5.4	7.0	ΚΩ
Output Voltage High, DO1-3 (Rx1-3 = $-3 \sim -25V$)	V _{он}	$I_{OUT} = -20\mu A, V_{CC} = 5.0V$ $I_{OUT} = -1mA, V_{CC} = 5.0V$	4.9 3.8	4.3		V _{dc}
Output Voltage Low, DO1-3 (Rx1-3 = 3 ~ 25V)	V _{OL}	$\begin{split} I_{\text{OUT}} &= 20 \mu \text{A}, \ V_{\text{CC}} = 5.0 \text{V} \\ I_{\text{OUT}} &= 2 \text{mA}, \ V_{\text{CC}} = 5.0 \text{V} \\ I_{\text{OUT}} &= 4 \text{mA}, \ V_{\text{CC}} = 5.0 \text{V} \end{split}$		0.01 0.2 0.5	0.1 0.5 0.7	V _{dc}
SWITCHING CHARACTERISTICS (Vcc =	5V±5%,	$V_{DD} = 6V \sim 12V, \ V_{SS} = -6V \sim$	– 12V. F	ig 2)		
Drivers Propagation Delay Time, Tx1-3	t _{PLH} t _{PHL}	$R_L = 3K\Omega$, $C_L = 50pF$, Low to High $R_L = 3K\Omega$, $C_L = 50pF$, High to Low		200 200	325 325	nS
Drivers Output Slew Rate, Tx1-3	SR	$R_L = 3K\Omega, C_L = 50pF$		±6	± 30	V/µS
Receivers Propagation Delay Time, DO1-3	t _{PLH} t _{PHL}	$C_L = 50 pF$, Low to High $C_L = 50 pF$, High to Low		150 150	300 300	nS
Receivers Output Rise Time, DO1-3	tr	C _L = 50pF		250	400	nS
Receivers Output Fall Time DO1-3	t _f	C _L = 50pF		40	80	nS

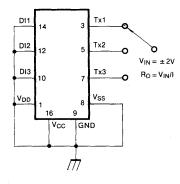
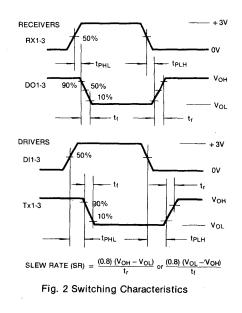
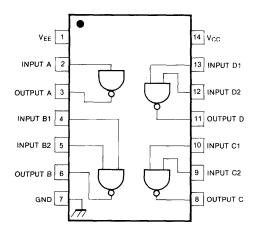



Fig. 1 Power Off Source Resistance

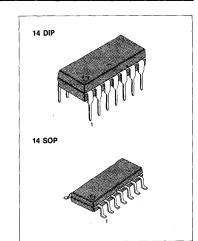
3

PIN DESCRIPTION

Pin	Name	Functions
1	V _{DD}	Positive power supply. Typically 5 to 12V
8	V _{SS}	Negative power supply. Typically -5 to -12V
16	V _{CC}	Digital power supply. This pin is connected to the logic power supply (Max. 5.5V). $V_{\rm CC}$ must be less than or equal to $V_{\rm DD}$
9	GND	Ground. All voltage levels are referenced to this pin
10, 12, 14	DI1, DI2, DI3	Driver data input. These are the high impedance digital input pins. These input levels are compatible with TTL
3, 5, 7	Tx1, Tx2, Tx3	Transmit data output. These are the RS-232-C transmit signal output pins. A logic "0" causes the output to swing to V_{DD} and a logic "1" causes the output to swing to V_{SS}
2, 4, 6	Rx1, Rx2, Rx3	Receive data input. These are the RS-232-C receive signal input pins which swing from $+25$ to $-25V$. A voltage between $+3$ and $+25V$ causes the correspanding DO pin to swing to GND and a voltage between -3 and $-25V$ causes the DO pin to swing to V _{cc}
11, 13, 15	DO1, DO2, DO3	Receive data output. Swing from V_{CC} to GND. Each output pin is capable of driving TTL input load


CMOS INTEGRATED CIRCUIT

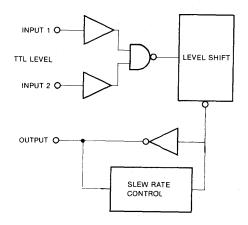
QUAD CMOS LINE DRIVER


The KS5788 is designed to interface data terminal equipment (DTE) with data communications equipment (DCE) in conformance with the specifications of EIA RS-232-C, CCITT V.24 standards. The KS5788 is direct replacement for the bipolar device (MC1488).

FEATURES

- · Low power consumption & low delay slew
- Pin for pin equivalent to MC1488
- Power-off source impedance: 300 Ω (min)
- Compatible with TTL and HCTLS families
- Flexible operating supply range: 4.5~12.6V

PIN CONFIGURATION



ORDERING INFORMATION

Device	Package	Operating Temperature		
KS5788N	14 DIP	-40 ~ +85°C		
KS5788D	14 SOP	-40 ~ +85°C		

BLOCK DIAGRAM

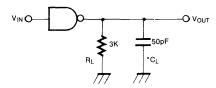
(1/4 OF CIRCUIT SHOWN)

119

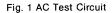
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	- 0.5 ~ 13.5 0.5 ~ - 13.5	V _{dc}
Input Voltage (Any Input Pin)	V _{IN}	$-0.3 \sim V_{\rm CC} + 0.3$	V _{dc}
Output Voltage (Any Output Pin)	Vout	- 25 ~ 25	V _{dc}
Power Dissipation	PD	1.0	W
Operating Temperature	Ta	- 40 ~ 85	°C
Storage Temperature	T _{stg}	- 65 ~ 150	°C

ELECTRICAL CHARACTERISTICS


(V_{CC} = 4.5 to 12V, V_{EE} = -4.5 to -12V, GND = 0V, Ta = -40° to 85°C, unless otherwise noted)

Characteristic		Symbol	Test Condition	Min	Тур	Мах	Unit
RECOMMENDED OPERATIN	IG CONDITI	ONS	<u>.</u>		<u> </u>		L
Power Supply Voltage	V _{CC} V _{EE}	V _{CC} · V _{EE}		4.5 - 4.5		12.6 12.6	V _{dc}
DC ELECTRICAL CHARACT	ERISTICS		<u> </u>				
Input Current 1		In.	V _{IN} = GND	- 10		10	μA
Input Current 2		1 _{IH}	$V_{IN} = V_{CC}$	- 10		10	μA
Positive Supply Current 1 ($V_{IN} = V_{IL}$, $R_L = \infty$, per package	ge)	I _{CC1}				10 30 60	μΑ μΑ μΑ
Positive Supply Current 2 $(V_{IN} = V_{IH}, R_L = \infty, \text{ per package})$	ge)	I _{CC2}				30 190 425	μΑ μΑ μΑ
Negative Supply Current 1 $(V_{IN} = V_{IL}, R_L = \infty, per package$	je)	I _{EE1}				- 10 - 10 - 10	μΑ μΑ μΑ
Negative Supply Current 2 ($V_{IN} = V_{IH}, R_L = \infty$, per packa	ge)	I _{EE2}	$ \begin{array}{l} V_{\rm CC} = 4.5V, \ V_{\rm EE} = -4.5V \\ V_{\rm CC} = 9.0V, \ V_{\rm EE} = -9.0V \\ V_{\rm CC} = 12.0V, \ V_{\rm EE} = -12.0V \end{array} $			- 30 - 30 - 60	μΑ μΑ μΑ
Input Voltage High		VIH		2.0		V _{DD}	V _{dc}
Input Voltage Low		VIL		GND GND		0.8 0.6	V _{dc}



ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage High $(V_{IN} = V_{IL}, R_L = 3K\Omega \sim 7K\Omega)$	V _{он}	$ \begin{array}{l} V_{CC} = 4.5 V, \ V_{EE} = - \ 4.5 V \\ V_{CC} = 9.0 V, \ V_{EE} = - \ 9.0 V \\ V_{CC} = 12 V, \ V_{EE} = - \ 12 V \end{array} $	3.0 6.5 9.0			V _{dc}
Output Voltage Low $(V_{IN} = V_{IH}, R_L = 3K\Omega \sim 7K\Omega)$	V _{OL}				- 3.0 - 6.5 - 9.0	V _{dc}
Output Short Circuit Current $V_{IN} = V_{IL}$ $V_{IN} = V_{IL}$	- 105	$V_o = GND$ $V_{cc} = 12V$, $V_{EE} = -12V$			45 - 45	mA
Power Off Output Resistance	Ro	$V_{CC} = V_{EE} = 0V, V_{OUT} = \pm 2V$	300			Ω
SWITCHING CHARACTERISTICS (Vcc	= 4.5V to 12	$V, V_{EE} = -4.5V$ to $-12V$, Ta	= - 40°C	~ 85°C	, Fig. 1)	
Propagation Delay	t _{pd}				6.0 5.0 4.0	μS
Output Rise Time	tr	$V_{OUT} = $ from $-3V$ to $3V$	0.2			μS
Output Fall Time	tf	$V_{OUT} = $ from 3V to $-3V$	0.2			μS
Output Slew Rate	S _R	$R_L = 3K\Omega$ to $7K\Omega$ 15pF > C _L > 2.5nF			30	V/µS
Typical Propagation Delay Skew	t _{sk}	$V_{\rm CC} = 12V, V_{\rm EE} = -12V$		400		nS

 $^{\ast}\text{C}_{\text{L}}$ includes probe and jig capacitance

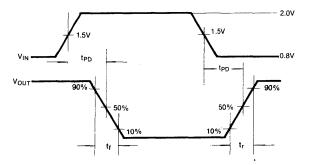
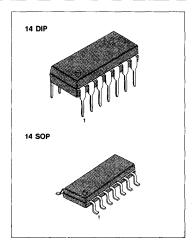


Fig. 2 Switching Waveforms

QUAD CMOS LINE RECEIVER

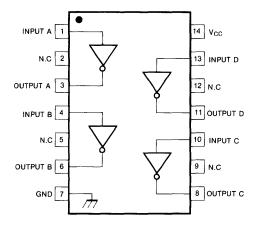

The KS5789A is designed to interface data terminal equipment (DTE) with data communications equipment (DCE) in conformance with the specifications of EIA RS-232-C, CCITT V.24 standards. The KS5789A is direct replacement for the bipolar device (MC1489/A).

FEATURES

- Low power consumption & low delay slew
- Pin for pin equivalent to MC1489/A
- Inputs withstand ± 30V
- · Fail-safe operating mode

PIN CONFIGURATION

- Internal noise filter
- Internal input threshold with hysteresis



ORDERING INFORMATION

ſ	Device	Package	Operating Temperature
ſ	KS5789AN	14 DIP	-40 ~ +85°C
	KS5789AD	14 SOP	-40 ~ +65 C

BLOCK DIAGRAM

(1/4 OF CIRCUIT SHOWN)

INPUT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V _{cc}	- 0.5 ~ 7.0	V _{dc}
Input Voltage	V _{IN}	- 30 ~ 30	V _{dc}
Output Voltage	Vout	$-0.3 \sim V_{\rm CC} + 0.3$	V _{dc}
Power Dissipation (85°C)	P _D	500	mW
Operating Temperature	Ta	- 40 ~ 85	°C
Storage Temperature	T _{stg}	- 65 ~ 150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V \pm 0.5V, Ta = -40° to 85°C, unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
DC ELECTRICAL CHARACTERISTICS			L	L	1	
Input Voltage High	VIH		1.3		2.5	V _{dc}
Input Voltage Low	VIL		0.5		1.7	V _{dc}
Input Hysteresis Voltage	V _H	$V_{IH} - V_{IL}$		1.0		V _{dc}
Input Current	l _{iN}	$ \begin{array}{l} V_{\text{IN}}=3V\\ V_{\text{IN}}=-3V\\ V_{\text{IN}}=25V\\ V_{\text{IN}}=-25V \end{array} $	0.43 - 0.43 3.6 - 3.6		1.0 - 1.0 8.3 - 8.3	mA
Output Voltage High	V _{OH}	$V_{IN} = V_{IL(min)}, \ I_{OUT} = -3.2mA$	2.8			V _{dc}
Output Voltage Low	V _{OL}	$V_{IN} = V_{IH(max)}, I_{OUT} = 3.2 \text{mA}$			0.4	V _{dc}
Supply Current	lcc	$R_L = \infty$, $V_{IN} = V_{IL(min)}$ to $V_{IH(max)}$			600	μA
SWITCHING CHARACTERISTICS (Vcc	= 4.5V to 5.	5V, Ta = $-40^{\circ} \sim 85^{\circ}$ C, C _L = 50	pF, Note	e 1)	I	
Propagation Delay Output Rise Time Output Fall Time Pulse Width Assumed to be Noise	t _p t _r t _f t _{nw}	Input pulse width≧10µS			6.5 300 300 1.0	μS nS nS μS
Propagration Delay Skew	t _{sk}			400	l	nS

Note 1: Test waveform $t_f = t_f = 200$ ns, $V_{IH} = + 3V$, $V_{IL} = - 3V$, f = 20KHz

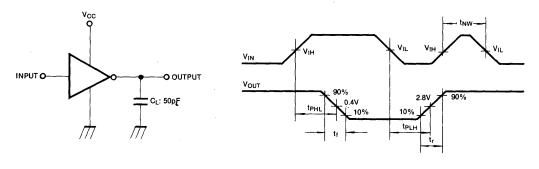
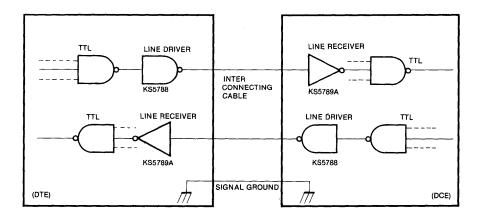



Fig. 1 AC Test Circuit

Fig. 2 Switching Waveforms

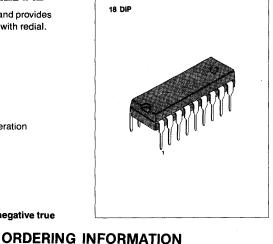
TYPICAL APPLICATION

RS-232-C Data Transmission

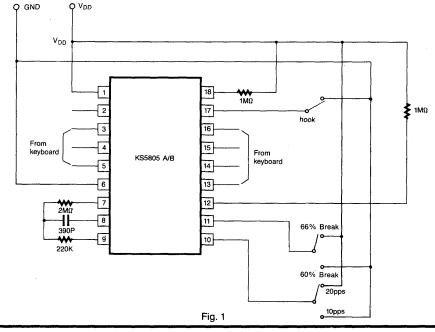
CMOS INTEGRATED CIRCUIT

TELEPHONE PULSE DIALER WITH REDIAL

The KS5805A/B is a monolithic CMOS integrated circuit and provides all the features required for implementing a pulse dialer with redial.


FUNCTIONS

- Mute output logic "0"
- Pulse output logic "0"
- RC oscillation for reference frequency
- · Designed to operate directly from the telephone line
- Used CMOS technology for low voltage, low power operation
- · Power up clear circuitry
- KS5805A pin 2: VREF
- KS5805B pin 2: Tone out


FEATURES

- Uses either a standard 2 of 7 matrix keyboard with negative true common or the inexpensive form A-type keyboard
- Make/Break ratio can be selected
- Redial with * or #
- Continuous MUTE
- Tone signal output or on-chip reference Voltage by bonding option on chip
- 10 pps/20 pps can be selected

TEST CIRCUIT

DevicePackageFunctionOperating TemperatureKS5805AN18 DIPPin 2 =
Vref-30 ~ +60°CKS5805BN18 DIPPin 2 =
Tone Out-30 ~ +60°C

3

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
DC Supply Voltage	VDD	6.2	v
Voltage on Any Pin	V _{IN}	V _{DD} +0.3, Gnd-0.3	v
Power Dissipation	PD	500.0	mW
Operating Temperature	Topr	-30~+60	°C
Storage Temperature	Tstg	-65~+150	°C

DC ELECTRICAL CHARACTERISTICS

(T_a=25°C unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	Notes
Supply Voltage	V _{DD}		2.5		6.0	V	
Key Contract Resistance	Rĸı				1	KΩ	
Keyboard Capacitance	Скі				30	pF	1
Kay Janut Valtaga	Кін	2 of 7 input	0.8V _{DD}		V _{DD}	v	1
Key Input Voltage	KIL	mode	Gnd		0.2V _{DD}	v	
Key Pull-Up Resistance	KIRU	$V_{DD} = 6.0V$		100		KΩ	
Key Pull-Down Resistance	KIRD	$V_{IN} = 4.8V$		4.0		KΩ	
Mute Sink Current	I _M	$V_{DD} = 2.5V$ $V_0 = 0.5V$	500			μΑ	2
Pulse Output Sink Current	l _P	$V_{DD} = 2.5V$ $V_0 = 0.5V$	1.0			mA	3
Tone Output Sink Current	İ _{TL}	$V_{DD} = 2.5V$ $V_{O} = 0.5V$	250			μΑ	4
Tone Output Source Current	Ітн	$V_{DD} = 2.5V$ $V_{O} = 0.5V$	250			μΑ	4
Memory Retention Current	I _{MR}	All outputs under no load		0.7		μΑ	6
Operating Current	I _{OP}	All outputs under no load		100	150	μΑ	
Mute or Pulse Off Leakage	I _{lkg}	$V_{DD} = 6.0V$ $V_{O} = 6.0V$		0.001	1.0	μΑ	2.3
VREF Output Source Current	IREF	$V_{DD} - V_{REF} = 6.0V$	1.0	7.0		mA	5

Note 1) Applies to key input pin. (R₁-R₄, C₁-C₃)

2) Applies to MUTE output in.

3) Applies to PULSE output pin.

- 4) Applies to TONE pin (KS5805B)
- 5) Applies to V_{REF} pin (KS5805A)

6) Current necessary for memory to be maintained. All outputs unloaded.

* Typical values are to be used as a design aid are not subject to production testing.

AC ELECTRICAL CHARACTERISTICS (Ta=25°C)

Charactistic	Symbol	Min	Тур	Max	Unit	Notes
Oscilator Frequency	Fosc	<u> </u>	4		KHz	1
Key Input Debounce Time	T _{DB}		10		ms	3,4
Key Down Time for Valid Entry	Т _{КD}	40			ms	4,5
Key Down Time During Two-Key Roll Over	t _{KR}	5		· · · · · · · · · · · · · · · · · · ·	ms	4
Oscillator Stat-Up Time ($V_{DD} = 2.5V$)	t _{os}		1		ms	
Mute Valid After Last Outpulse	t _{MO}		5		ms	3,4
Pulse Output Pulse Rate	PR		10		PPS	2
On-Hook Time Required to Clear Memory	t _{он}	300			ms	4
Pre-Digital Pause	T _{PDP}		800		ms	3,4
Inter-Digital Pause	TIDP		800		ms	3,4
Frequency Stability V _{DD} = 2.5 ~ 3.5V	Δf		±4		%	
Frequency Stability $V_{DD} = 3.5 \sim 6.0 V$	Δf		±4		%	
Tone Output Frequency	FTONE		1		KHz	4,6

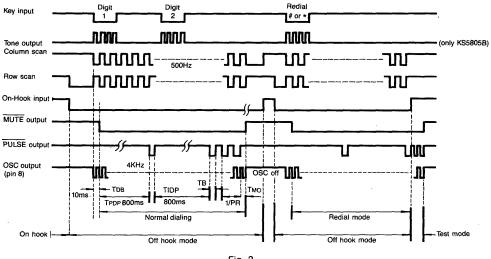
Note: 1) $R_s = 2M\Omega$, $R = 220K\Omega$, C = 390pF.

2) If pin 10 is tied to V_{CC} , the output pulse rate will be 20pps.

3) If the 20pps option is selected, the time will be 1/2 these shown.

4) These times are directly proportional to the oscillator frequency.

5) Debounce plus oscillator start-up time \leq 40ms.


6) If the 20pps option is selected, the tone output frequency will be 2KHz. (KS5805B ONLY)

PIN CONNECTIONS

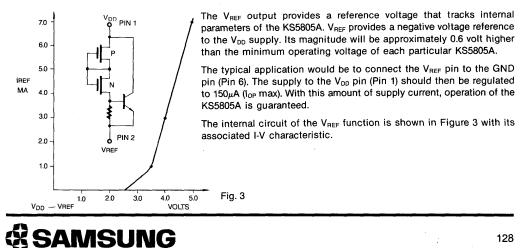
 $\begin{array}{l} \mbox{Pin 1: } V_{DD} \\ \mbox{Pin 2: } V_{ret} (KS5805A)/Pacifier tone (KS5805B) \\ \mbox{Pin 3: } \hline Column 1 \\ \mbox{Pin 4: } \hline Column 2 \\ \mbox{Pin 5: } \hline Column 3 \\ \mbox{Pin 6: } GND \\ \mbox{Pin 7: } RC \mbox{Oscillator} \\ \mbox{Pin 8: } RC \mbox{Oscillator} \\ \mbox{Pin 9: } RC \mbox{Oscillator} \\ \mbox{Pin 9: } RC \mbox{Oscillator} \end{array}$

Pin 10: 10/20pps Select Pin 11: Make/Break Select Pin 12: Mute Output Pin 13: ROW 4 Pin 14: ROW 3 Pin 15: ROW 2 Pin 16: ROW 1 Pin 17: On-Hook/Test Pin 18: Pulse Output

TIMING CHARACTERISTICS

PIN DESCRIPTIONS

1. V_{DD} (Pin 1)

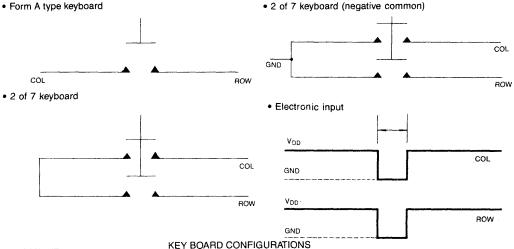

Electronics

This is positive supply pin. The voltage on this pin is measured relative to Pin 6 and is supplied from a 150μ A current source. This voltage should be regulated to less than 6.0 volts using on external form or regulation.

2. Tone signal output/V_{REF} (Pin 2)

Tone signal out pin is CMOS comperementaly output and drives external bipolar transistor. This pin generates a tone signal when a key is depressed. Tone signal frequency is 1KHz when 10pps pulse rate is selected. (the frequency is 2KHz when 20pps pulse rate is selected). Only the pin 2 of KS5805A is V_{REF} (on-chip reference voltage).

TYPICAL I-V CHARACTERISTICS



3. Keyboard inputs (Pin 3, 4, 5, 13, 14, 15, 16,)

The KS5805A/B incorporates an innovative keyboard scheme that allows either the standard 2-of-7 keyboard with negative common or the inexpensive single contact (form A) keyboard to be used.

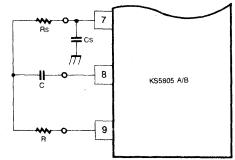
A valied key entry is defined by either a single row being connected to a single column or GND being simultaneously presented to both a single row and column. When in the on-hook mode, the row and column inputs are held high and no keyboard inputs are accepted.

When off-hook, the keyboard is completely static until the initial valid key input is sensed. The oscillator is then enabled and the rows and columns are scanned alternately (pulled high, then low) to verify the varied input. The input must remain valid for 10msec of debounce time to be accepted.

4. GND (Pin 6)

This is the negative supply pin and is connected to the common part in the general applications.

5. OSCILLATOR (Pins 7, 8, 9)


The KS5805A/B contains on-chip inverters to provide oscillator which will operate with a minimum external components. Following figure shows the on-chip configuration with the necessary external components. Optimum stability occurs with the ratio K=R_s/R equal to 10.

The oscillator period is given by:

 $T = RC (1.386 + (3.5KC_S)/C - (\pm K/(K+1)) ln (K/(1.5K+0.5)))$

Where Cs is the stray capacitance on Pin 7.

Accuracy and stability will be enhanced with this capacitance minimized.

6. 20/10 pps (Pin 10)

Connecting this pin to GND (pin 6) will select an output pulse rate of 10pps. Connecting the pin V_{DD} (pin 1) will select an output pulse rate of 20pps.

7. MAKE/BREAK (Pin 11)

The MAKE/BREAK pin controls the MAKE/BREAK ratio of the pulse output. The MAKE/BREAK ratio is controlled by connection V_{DD} or GND to this pin as shown in the following table.

Input	Make	Break
V _{DD} (Pin 1)	34%	66%
GND (Pin 6)	40%	60%

8. MUTE OUTPUT (Pin 12)

The mute output is an open-drain N-channel transistor designed to drive external bipolar transistor. This circuitry is usually used to mute the receiver during outpulsing. As shown in Fig. 2 the KS5805 mute output turns on (pulls to the V_{GND}-supply) at the beginning of the predigital pause and turns off (goes to an open circuit) following the last break.

The delay from the end of the last break until the mute output turns off is mute overlap and is specified as t_{MO}.

9. ON-HOOK/TEST (Pin 17)

The "ON-HOOK" or "Test" input of the KS5805A/B has a 100K Ω pull-up to the positive supply. A V_{cc} input or allowing the pin to float sets the circuit in its on-hook or test mode while a V_{GND} input sets it in the off-hook or normal mode. When off-hook the KS5805A/B will accept key inputs and outputs the digits in normal fashion. Upon completion of the last digit, the oscillator is disabled and the circuit stands by for additional inputs.

Switching the KS5805A/B to on-hook while it is outpulsing causes the remaining digits to be outpulsed at 100x the normal rate (M/B ratio is then 50/50).

This feature provides a means of rapidly testing the device and is also on efficient method by which the circuitry is reset. When the outpulsing in this mode, which can be up to 300msec, is completed, the circuit is deactivated and will require current only necessary to sustain the memory and power-up-clear detect circuity (refer to the electrical specifications).

Upon retuning off-hook, a negative transistion on the mute output will insure the speech network is connected to the line. If the first key entry is eithr a * or #, the number sequence stored on-chip will be outpulsed. Any other valid key entries will clear the memory and outpulse the new number sequence.

10. PULSE OUTPUT (Pin 18)

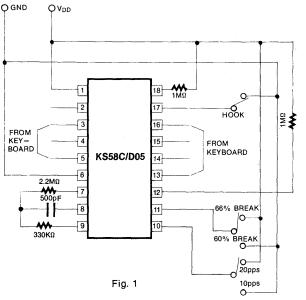
The pulse output is an open drain N-channel transistor designed to drive external bipolar transistor. These transistor would normally be used to pulse the telephone line by disconnecting and connecting the network. The KS58A/B05 pulse output is an open circuit during make and pulls to the GND supply during break.

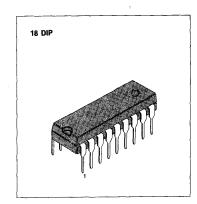
KS58C05/KS58D05

CMOS INTEGRATED CIRCUIT

PULSE DIALER WITH REDIAL

The KS58C/D05 is a monolithic CMOS integrated circuit which uses an inexpensive RC oscillator for its frequency reference and provides all the features required for implementing a pulse dialer with 32 digit redial.


FUNCTIONS


- Mute output logic "0"
- Pulse output logic "0"
- · RC oscillation for reference frequency
- · Designed to operate directly from the telephone line
- Used CMOS technology for low voltage, low power operation

FEATURES

- Wide operating voltage range (2.0 ~ 6.0V)
- Low power dissipation
- Use either a standard 2 of 7 matrix keyboard with ORDERING INFORMATION negative true common or the inexpensive form A-type keyboard
- · Make/Break ratio can be selected
- Redial with * or #
- Continuous MUTE
- · Power up clear circuitry on chip
- KS58C05 pin 2: Vref. KS58D05 pin 2: Tone output
- 10 pps/20 pps can be selected

TEST CIRCUIT

Device	Package	Function	Operating Temperature	
KS58C05N	18 DIP	Pin 2= V _{ref}	$-20 \sim +70^{\circ}$ C	
KS58D05N	18 DIP	Pin 2= Tone Out	20 110 0	

PIN CONNECTIONS

Pin 1: V_{DD} Pin 2: Vret (KS58C05)/Pacifier tone (KS58D05) Pin 3: Column 1 Pin 4: Column 2 Pin 5: Column 3 Pin 6: GND Pin 7: RC Oscillator Pin 8: RC Oscillator Pin 9: RC Oscillator Pin 10: 10/20pps Select Pin 11: Make/Break Select Pin 12: Mute Output Pin 13: ROW 4 Pin 14: ROW 3 Pin 15: ROW 2 Pin 16: ROW 1 Pin 17: On-Hook/Test Pin 18: Pulse Output

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{DD}	6.2	v
Input Voltage	Vin	Gnd – 0.3, V _{DD} + 0.3	V
Output Voltage	Vout	Gnd $- 0.3$, $V_{pp} + 0.3$	ν
Power Dissipation	Pp	500	mW
Operating Temperature	Ta	- 20 ~ + 70	٥°
Storage Temperature	T _{stg}	- 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.5V, f_{OSC} = 2.4 \text{KHz}, Ta = 25^{\circ}\text{C}, unless otherwise specified})$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		2.0		6.0	V
Memory Retention Voltage	VDR		1.0			V
Input High Voltage	VIH		0.8V _{DD}		V _{DD}	V
Input Low Voltage	V _{IL}	$\overline{R_1} \sim \overline{R_4}, \overline{C_1} \sim \overline{C_4}, \overline{HS}, DRS, M/B$	Gnd		0.2V _{DD}	V
Operating Current	lop	All output under no load		100	150	μA
Output Leakage Current	IOL	$V_{CC} = 6.0V$, MUTE, PULSE = 6.0V		0.001	1	μA
	I ₀₁	$V_0 = 0.4V, V_{DD} = 2.5V$	0.5	1.5		mA
Output Current (MUTE, PULSE)	I ₀₂	$V_0 = 0.4V, V_{DD} = 3.5V$	1.7	5.0		mA
Oscillator Frequency	f _{osc}			2.4		KHz
Valid Key Entry Time	T _{KD}		14		20	mS
On Hook Time Required to Clear Memory	Тон		300			mS
Inter Digital Pause	TiDP			800		mS
Frequency Stability	Δf	$V_{DD} = 2.0 \sim 6.0 V$		± 10		%
Tone Output Frequency	f TONE			1.2		KHz

FUNCTION DESCRIPTION

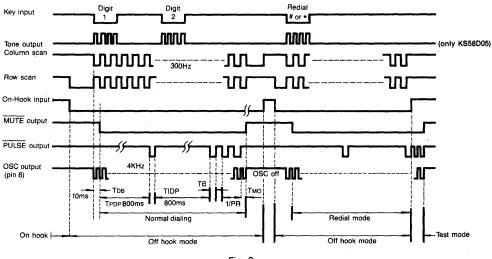
1. "ON-HOOK" MODE

When "ON-HOOK," key inputs will not be recognized because the oscillator is disabled which prevents the circuit from drawing excessive current.

2. "DIAL" MODE

When "OFF-HOOK," the device senses key down condition by detecting one key input and enters the key's code into an on-chip memory.

The memory can be store up to 32 digits, and it allows key strobes to be entered at rates comparable to tone dialing telephone. Output pulsing will continue until all entered digits have been dialed. To implement the pulse dialer function, two outputs, one to pulse the telephone line and one to mute the receiver, are provided.


3. "REDIAL" MODE

The first 32 digits entered will be stored in the on-chip redial memory and can be redialed by pressing either * or #, provided that the receiver is "ON-HOOK" for minimum T_{OH} (on hook time required to clear memory).

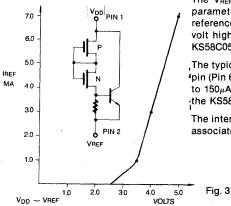
4. POWER UP CLEAR

The on-chip "POWER UP CLEAR" circuit reliable operation of the device. If the supply to the circuit is not sufficient to retain data in the memory, a "POWER UP CLEAR" will help regaining a proper supply level. This function will prevent the "Redial" or spontaneous outputing of incorrect data.

TIMING CHARACTERISTICS

Fig. 2

PIN DESCRIPTIONS


1. V_{DD} (Pin 1)

This is positive supply pin. The voltage on this pin is measured relative to Pin 6 and is supplied from a 150μ A current source. This voltage should be regulated to less than 6.0 volts using on external form or regulation.

2. Tone signal output/VREF (Pin 2)

Tone signal out pin is CMOS complementally output and drives external bipolar transistor. This pin generates a tone signal when a key is depressed. Tone signal frequency is 1.2KHz when 10pps pulse rate is selected.

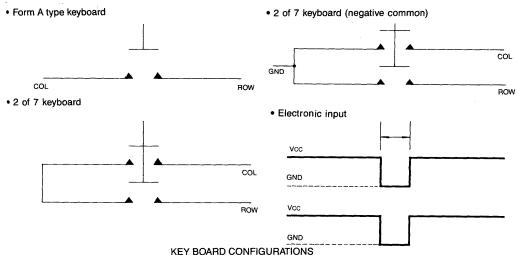
TYPICAL I-V CHARACTERISTICS

The V_{REF} output provides a reference voltage that tracks internal parameters of the KS58C05. V_{REF} provides a negative voltage reference to the V_{DD} supply. Its magnitude will be approximately 0.6 volt higher than the minimum operating voltage of each particular KS58C05.

,The typical application would be to connect the V_{REF} pin to the GND (pin (Pin 6). The supply to the V_{DD} pin (Pin 1) should then be regulated to 150 μ A (I_{OP} max). With this amount of supply current, operation of the KS58C05 is guaranteed.

The internal circuit of the V_{REF} function is shown in Figure 3 with its associated I-V characteristic.

3



3. Keyboard inputs (Pin 3, 4, 5, 13, 14, 15, 16)

The KS58C/D05 incorporates an innovative keyboard scheme that allows either the standard 2-of-7 keyboard with negative common or the inexpensive single contact (form A) keyboard to be used.

A valied key entry is defined by either a single row being connected to a single column or GND being simultaneously presented to both a single row and column. When in the on-hook mode, the row and column inputs are held high are no keyboard inputs are accepted.

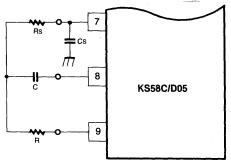
When off-hook, the keyboard is completely static until the initial valid key input is sensed. The oscillator is then enabled and the rows and columns are scanned alternately (pulled high, then low) to verify the varied input. The input must remain valid for 14-20 msec of debounce time to be accepted.

4. GND (Pin 6)

This is the negative supply pin and is connected to the common part in the general applications.

5. OSCILLATOR (Pin 7, 8, 9)

The KS58C/D05 contains on-chip inverters to provide oscillator which will operate with a minimum external components.


Following figure shows the on-chip configuration with the necessary external components. Optimum stability occurs with the ratio $K = R_s/R$ equal to 6.67.

The oscillator period is given by:

 $T = RC \{1.386 + (3.5K_{CS})/C - (2K/CK + 1) In CK/(1.5K + 0.5)\}$

Where C_s is the stray capacitance on Pin 7.

Accuracy and stability will be enhanced with this capacitance minimized.

6. 20/10 pps (Pin 10)

Connecting this pin to GND (pin 6) will select an output pulse rate of 10pps. Connecting the pin V_{DD} (pin 1) will select an output pulse rate of 20pps.

7. MAKE/BREAK (Pin 11)

The MAKE/BREAK pin controls the MAKE/BREAK ratio of the pulse output. The MAKE/BREAK ratio is controlled by connection V_{DD} or GND to this pin as shown in the following table.

Input	Make	Break
V _{DD} (Pin 1)	33.4%	66.6%
GND (Pin 6)	40%	60%

8. MUTE OUTPUT (Pin 12)

The mute output is an open-drain N-channel transistor designed to drive external bipolar transistor.

This circuitry is usually used to mute the receiver during outpulsing. As shown in Fig. 2 the KS58C/D05 mute output turns on (pulls to the V_{GND}-supply) at the beginning of the predigital pause and turns off (goes to an open circuit) following the last break.

The delay from the end of the last break until the mute output turns off is mute overlap and is specified as t_{MO}.

9. ON-HOOK/TEST (Pin 17)

This pin detects the state of the hook switch contact "OFF HOOK" corresponds to V_{ss} condition. "ON HOOK" corresponds to V_{DD} condition. When outpulsing in this mode, which can be up to 300msec, is completed, the circuit is deactivated and will require current only necessary to sustain the memory and power-up-clear detect circuitry (refer to the electrical specifications).

Upon retuning off-hook, a negative transistion on the mute output will insure the speech network is connected to the line. If the first key entry is either a * or #, the number sequence stored on-chip will be outpulsed. Any other valid key entries will clear the memory and outpulse the new number sequence.

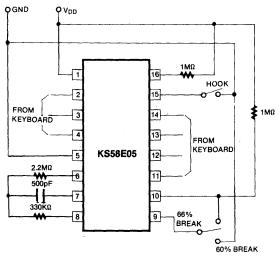
10. PULSE OUTPUT (Pin 18)

The pulse output is an open drain N-channel transistor designed to drive external bipolar transistor. These transistor would normally be used to pulse the telephone line by disconnecting and connecting the network. The KS58C/D05 pulse output is an open circuit during make and pulls to the GND supply during break.

135

PULSE DIALER WITH REDIAL

The KS58E05 is a monolithic CMOS integrated circuit which uses an inexpensive RC oscillator for its frequency reference and provides all the features required for implementing a pulse dialer with 32 digit redial.


FUNCTIONS

- Mute output logic "0"
- · Pulse output logic "0"
- · RC oscillation for reference frequency
- Designed to operate directly from the telephone line
- Used CMOS technology for low voltage, low power operation

FEATURES

- Wide operating voltage range (2.0 6.0V)
- Low power dissipation
- Use either a standard 2 of 7 matrix keyboard with negative true common or the inexpensive form A-type keyboard
- Make/Break ratio can be selected
- · Redial with * or #
- Continuous MUTE
- Power up clear circuitry on chip
- 10 pps only.

TEST CIRCUIT

i	16 DIP
	l

ORDERING INFORMATION

Device	Package	Operating Temperature		
KS58E05N	16 DIP	-20 ~ +70°C		

PIN CONNECTIONS

$\begin{array}{l} \mbox{Pin 1: } V_{\text{DD}} \\ \mbox{Pin 2: } \hline \mbox{Column 1} \\ \mbox{Pin 3: } \hline \mbox{Column 2} \\ \mbox{Pin 4: } \hline \mbox{Column 3} \\ \mbox{Pin 5: } \mbox{GND} \\ \mbox{Pin 6: } \mbox{RC Oscillator} \\ \mbox{Pin 7: } \mbox{RC Oscillator} \\ \mbox{Pin 7: } \mbox{RC Oscillator} \\ \mbox{Pin 8: } \mbox{RC Oscillator} \\ \mbox{Pin 9: } \mbox{Make/Break Select} \\ \mbox{Pin 10: } \mbox{Mute Output} \\ \mbox{Pin 11: } \mbox{ROW 3} \\ \mbox{Pin 13: } \mbox{ROW 2} \end{array}$
Pin 12: ROW 3
· · · · · · · · · · · · · · · · · · ·

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{DD}	6.2	V
Input Voltage	VIN	$GND - 0.3, V_{DD} + 0.3$	V
Output Voltage	Vout	$GND - 0.3, V_{DD} + 0.3$	V
Power Dissipation	P _D	500	mW
Operating Temperature	Ta	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	- 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.5V, f_{OSC} = 2.4 KHz, Ta = 25^{\circ}C, unless otherwise specified)$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		2.0		6.0	V
Memory Retention Voltage	VDR		1.0			V
Input High Voltage	V _{IH}	$\overline{R_1} \sim \overline{R_4}, \overline{C_1} \sim \overline{C_4}, \overline{HS}, M/B$	0.8V _{DD}		V _{DD}	V
Input Low Voltage	VIL	$R_1 \sim R_4, C_1 \sim C_4, HS, W/B$	GND		$0.2V_{DD}$	V
Operating Current	IDD	All output under no load		100	150	μA
Output Leakage Current	IOL	$V_{CC} = 6.0V, MUTE, PULSE = 6.0V$		0.001	1	μA
	l ₀₁	$V_0 = 0.4V, V_{DD} = 2.5V$	0.5	1.5		mA
Output Current (MUTE, PULSE)	1 ₀₂	$V_0 = 0.4V, V_{DD} = 3.5V$	1.7	5.0		mA
Oscillator Frequency	fosc			2.4		KHz
Valid Key Entry Time	T _{KD}		14		20	mS
On Hook Time Required to Clear Memory	Тон		300			mS
Inter Digital Pause	T _{IDP}			800		mS
Frequency Stability	∆f	$V_{DD} = 2.0 \sim 6.0 V$		± 10		%
Tone Output Frequency	f _{tone}			1.2		KHz

FUNCTION DESCRIPTION

1. "ON-HOOK" MODE

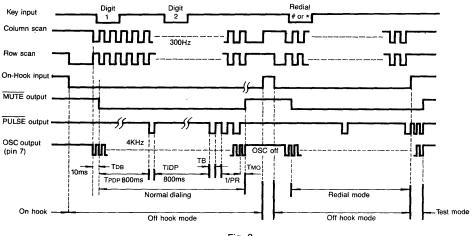
When "ON-HOOK," key inputs will not be recognized because the oscillator is disabled which prevents the circuit from drawing excessive current.

2. "DIAL" MODE

When "OFF-HOOK," the device senses key down condition by detecting one key input and enters the key's code into at on-chip memory.

The memory can be store up to 32 digits, and it allows key strobes to be entered at rates comparable to tone dialing telephone. Output pulsing will continue until all entered digits have been dialed. To implement the pulse dialer function, two outputs, one to pulse the telephone line and one to mute the receiver, are provided.

3. "REDIAL" MODE


The first 32 digits entered will be stored in the on-chip redial memory and can be redialed by pressing either * or #, provided that the receiver is "ON-HOOK" for minimum ton (on hook time required to clear memory).

4. POWER UP CLEAR

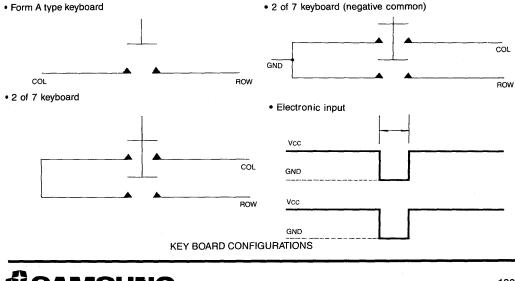
The on-chip "POWER UP CLEAR" circuit reliable operation of the device. If the supply to the circuit is not sufficient to retain data in the memory, a "POWER UP CLEAR" will help regaining a proper supply level. This function will prevent the "Redial" or sportaneous outputing of incorrect data.

TIMING CHARACTERISTICS

1. VDD (Pin 1)

Electronics

Fig. 2


This is positive supply pin. The voltage on this pin is measured relative to Pin 6 and is supplied from a 150μ A current source. This voltage should be regulated to less than 6.0 volts using on external form or regulation.

2. Keyboard inputs (Pin 2, 3, 4, 11, 12, 13, 14)

The KS58E05 incorporates an innovative keyboard scheme that allows either the standard 2-of-7 keyboard with negative common or the inexpensive single contact (form A) keyboard to be used.

A valied key entry is defined by either a single row being connected to a single column or GND being simultaneously presented to both a single row and column. When in the on-hook mode, the row and column inputs are held high and no keyboard inputs are accepted.

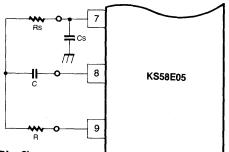
When off-hook, the keyboard is completely static until the initial valid key input is sensed. The oscillator is then enabled and the rows and columns are alternately scanned (pulled high, then low) to verify the input is varied. The input must remain valid continuously for 14-20 msec of debounce time to be accepted.

3. GND (Pin 5)

This is the negative supply pin and is connected to the common part in the general applications.

4. OSCILLATOR (Pin 6, 7, 8)

The KS58E05 contains on-chip inverters to provide oscillator which will operate with a minimum external components.


Following figure shows the on-chip configuration with the necessary external components. Optimum stability occurs with the ratio $K = R_s/R$ equal to 6.67.

The oscillator period is given by:

 $T = RC \{1.386 + (3.5K_{CS})/C - (2K/CK + 1) \text{ In } CK/(1.5K + 0.5)\}$

Where Cs is the stray capacitance on Pin 6.

Accuracy and stability will be enhanced with this capacitance minimized.

5. MAKE/BREAK (Pin 9)

The MAKE/BREAK pin controls the MAKE/BREAK ratio of the pulse output. The MAKE/BREAK ratio is controlled by connection V_{DD} or GND to this pin as shown in the following table.

Input	Make	Break
V _{DD} (Pin 1)	33.4%	66.6%
GND (Pin 5)	40%	60%

6. MUTE OUTPUT (Pin 10)

The mute output is an open-drain N-channel transistor designed to drive external bipolar transistor.

This circuitry is usually used to mute the receiver during outpulsing. As shown in Fig. 2 the KS58E05 mute output turns on (pulls to the V_{GND}-supply) at the beginning of the predigital pause and turns off (goes to an open circuit) following the last break.

The delay from the end of the last break until the mute output turns off is mute overlap and is specified as t_{MO}.

7. ON-HOOK/TEST (Pin 15)

This pin detects the state of the hook switch contact "OFF HOOK" corresponds to V_{SS} condition. "ON HOOK" corresponds to V_{DO} condition. When outpulsing in this mode, which can be up to 300msec, is completed, the circuit is deactivated and will require current only necessary to sustain the memory and power-up-clear detect circuitry (refer to the electrical specifications).

Upon retuning off-hook, a negative transistion on the mute output will insure the speech network is connected to the line. If the first key entry is either a * or #, the number sequence stored on-chip will be outpulsed. Any other valid key entries will clear the memory and outpulse the new number sequence.

8. PULSE OUTPUT (Pin 16)

The pulse output is an open drain N-channel transistor designed to drive external bipolar transistor. These transistor would normally be used to pulse the telephone line by disconnecting and connecting the network. The KS58E05 pulse output is an open circuit during make and pulls to the GND supply during break.

DUAL TONE MULTI FREQUENCY DIALER

The KS5808 is a monolithic integrated circuit fabricated using CMOS process and is designed specifically for integrated tone dialer applications.

FUNCTIONS

- · Fixed supply operation
- · Negative-true keyboard input
- Tone disable input
- Stable-output level

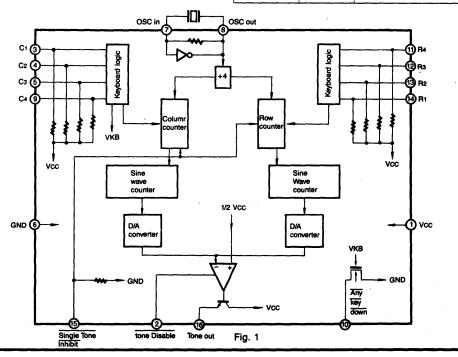
FEATURES

- · Minimum number of external parts required.
- · High accuracy tones.
- Digital divider logic, resistive ladder network and CMOS operational amplifier on single chip.
- Uses inexpensive 3.579545 MHz television color burst crystal.
- Invalid key entry can result in either single tone or no tone.
- · Tone disable allows any key down output to function from keyboard input without generating tones.

16 DIP

Operating Temperature

 $-30 \sim +60^{\circ}C$


ORDERING INFORMATION Package

16 DIP

Device

KS5808N

BLOCK DIAGRAM

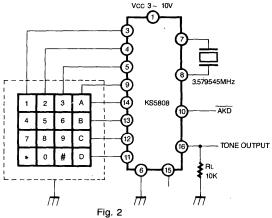
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	10.5	v
Any Input Relative to V _{CC} (Except Pin 10)	V _N	0.3	v
Any Input Relative to GND (Except Pin 10)	V _N	- 0.3	v
Power Dissipation	PD	500	mW
Operating Temperature	Topr	-30~+60	°C
Storage Temperature	Tstg	-65~+150	°C

ELECTRICAL CHARACTERISTICS

(-30°C < Ta < 60°C unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}		3		10	V
Input "O"	ViL		0		0.3V _{CC}	V
Input "1"	VIH		0.7V _{cc}		V _{cc}	V
Input Pull-Up Resister	R,		20		100	KΩ
Tone Disable	TD	Note 4	0		0.3V _{cc}	V
Tone Output	VOUT	Note 1	- 10		-7	dBm
Preemphasis, High Band			2.4	2.7	3	dB
Output Distortion, Measured in Terms of Total Out-of-Band Power Relative to RMS sum of Row and Column fundamental Power		Note 2			- 20	dB
Rise Time	T _{RISE}	Note 3		2.8	5	mS
Any Key Down Sink Current to GND	IAKD	At V _{OUT} = 0.5V	500			uA
ADK Off Leakage Current	IAKDO	At V _{OUT} =5V			2	uA
Supply Current Operating	Iso	At V _{CC} =3.5V Note 6			2	mA
Supply Current Standby	I _{SST}	At V _{CC} =10V Note 5			200	uA
Tone Output-No Key Down	NKD				- 80	dBm


Note: 1. Single-tone, low-group. Any V_{CC} between 3.4V and 3.6V, odBm=0.775V, R_{LOAD} =10K see test circuit Fig 2.

- 2. Any dual-tone. Any V_{CC} between 3.4V to 10.0V.
- 3. Time from a valid keystroke with no bounce to allow the waveform to go from min to 90% of the final magnitude of either frequency. Crystal parameters defined as R_s=100Ω L=96mH, C=0.02pF, and C_h=5pF, V_{CC}≥3.4V, f=3.57954MHz±0.02%.
- Only tones will be disabled when TD is taken to logical "0". Other chip functions may activate. Pull-up resistor on TD input will meet same spec as other inputs. Logic 0=GND
- 5. Stand-by condition is defined as no keys activated, TD=Logical 1, Single Tone Inhibit=Logical 0.
- 6. One key depressed only. Outputs unloaded.

PIN CONNECTIONS

Tone Output Test Circuit

FUNCTION DESCRIPTION

1. Oscillator

The network contains an on-board inverter with sufficient loop gain to provide oscillation when used with a low cost television color-burst crystal. The inverter's input is osc in (pin 7) and output is osc out (pin 8). The circuit is designed to work with a crystal cut to 3.579545MHz to give the frequencies in table 1. The oscillator is disabled whenever a keyboard input is not sensed.

ltem f Key		Standard DTMF Hz	Tone Output Frequency using 3.57954MHz Crystal Hz	Deviation from Standard %
ROW	f1 f2 f3 f4	697 770 852 941	701.3 771.4 857.2 935.1	+ 0.62 + 0.19 + 0.61 - 0.63
COL		1209 1336 1477 1633	1215.9 1331.7 1471.9 1645.0	+ 0.57 - 0.32 - 0.35 + 0.73

Table 1: Standard DTMF and output frequencies of the KS5808

Most crystals don't vary more than 0.02%. Any crystal frequency deviation from 3.5795MHz will be reflected in the tone output frequency.

2. Output Waveform

The row and column output waveforms are shown in Figure 3. These waveforms are digitally synthesized using on-chip D/A converters. Distortion measurement of these unfiltered waveforms will show a typical distortion of 7% or less. The on-chip operational amplifier of the KS5808 mixes the row and column tones together to result in a dual-tone waveform.

Spectral analysis of this waveform will show that typically all harmonic and intermodulation distortion components will be -- 30dB down when referenced to the strongest fundamental (column tone). Figures 6 and 7 show a typical dual tone waveform and its spectral analysis.

Typical Sinewave Output

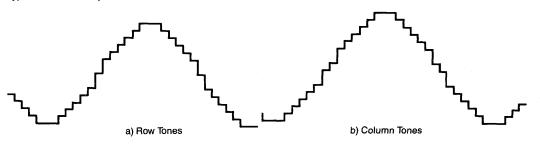


Fig. 3

3. Output Tone Level

The output tone level of the KS5808 is proportional to the applied DC supply voltage. Operation will normally be with a requlated supply. This results in enhanced temperature stability, since the supply voltage may be made temperature stable.

4. Keyboard Configuration

Each keyboard input is standard CMOS with a pull-up resistor to V_{cc}. These inputs may be controlled by a keyboard or electronic means. Open collector TTL or standard CMOS (operated off same supply as the KS5808) may be used for electronic control.

The switch contacts used in the keyboards may be void of precious metals, due to the CMOS network's ability to recognize resistance up to $1K\Omega$ as a valid key closure.

Electronic Input Pulses

2 of 8 DTMF keyboard

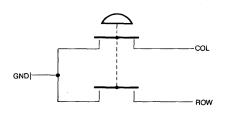
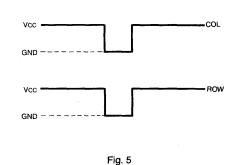
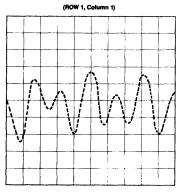




Fig. 4

TYPICAL DUAL TONE WAVEFORM

SPECTRAL ANALYSIS OF WAVEFORM

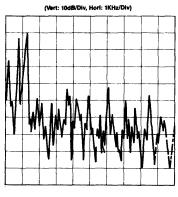
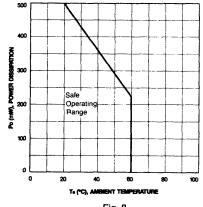



Fig. 7

POWER DISSIPATION VERSUS TEMPERATURE

Fig. 6

PIN DESCRIPTIONS

1. Row and Column Input (Pin 3, 4, 5, 9, 11, 12, 13, 14)

With Single Tone Inhibit at V_{CC} , connection of GND to a single column will cause the generation of that column tone. Connection of GND to more than one column will result in no tones being generated. The application of GND to only a row pin or pins has no effect on the circuit. There must always be at least one column connected to GND for row tones to be generated. If a single row tone is desired, it mey be generated by tying any two column pins and the desired row pin to GND. Dual tones will be generated if a single row pin and a single column pin are connected to GND.

2. Any Key Down Output (Pin10)

The any key down output is used for electronic control of receiver and/or transmitter switching and other desired functions. It switches to GND when a keyboard button is pushed and is open circuited when not. The AKD output switches regardless of the tone disable and single tone inhibit inputs.

3. Tone Disable Input (Pin 2)

The Tone Disable input is used to defeat tone generation when the keyboard is used for other functions besides DTMF signaing. It has a pull-up to V_{cc} and when tied to GND tones are inhibited. All other chip functions operate normally.

4. Single Tone Inhibit Input (Pin 15)

The Single Tone Inhibit input is used to inhibit the generation of other than dual tones. It has a pull-down to GND and when floating or tied to GND, any input situation that would normally result in a single tone will now result in no tone, with all other chip functions operating normally.

When forced to V_{CC} single or dual tones may be generated as described in the paragraph under row and column inputs.

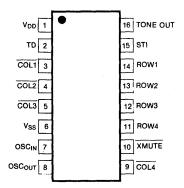
5. Tone Output (Pin 16)

The tone output pin is connected internally in the KS5808 to the emitter of an NPN transistor whose collector is tied to V_{cc} . The input to this transistor is the on-chip operational ampifier which mixes the row and column tones together and provides output level regulation.

145

CMOS INTEGRATED CIRCUIT

DTMF DIALER WITH REDIAL


The KS5809/KS5810/KS5811 are monolithic CMOS Integrated circuit which use an 3.579545MHz oscillator for its frequency reference and provides all the features required for implementing a tone dialer.

The required sinusoidal wave form for each individual tone is digitally synthesized on the chip. The wave form so generated has very low total harmonic distortion (7% Max). A voltage reference is generated on the chip.

FEATURES

- Wide supply voltage range (2.0~5.5V)
- · Low power dissipation
- Use inexpensive TV crystal (3.579545MHz)
- Tone disable input
- · Low standby current
- Continuous mute
- Uses either the inexpensive Form A type keyboard or the standard 2 of 7 matrix keyboard with negative common

PIN CONFIGURATION

16 DIP

ORDERING INFORMATION

Device	Redial Function	Operating Temperature
KS5809N	No Redial	
KS5810N	Column 4 Key (A, B, C, D) Redial	−20 ~ +70°C
KS5811N	# Key Redial].

ARRANGEMENT OF KEYBOARD

1	2	3	Α
4	5	6	в
7	8	9	С
¥	0	#	D

DTMF FREQUENCIES

Input	Specified	Actual	% Error
R ₁	697	699.1	+ 0.31
R ₂	770	766.2	- 0.49
R ₃	852	847.4	- 0.54
R₄	941	948.0	+ 0.74
C ₁	1209	1215.7	+ 0.57
C ₂	1336	1331.7	- 0.32
C₃	1477	1471.9	- 0.35
C₄	1633	1645.0	+ 0.73

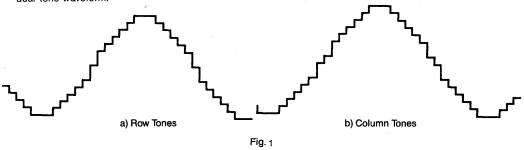
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{DD}	6.0	V
Input Voltage	V _{IN}	$V_{ss} - 0.3, V_{DD} + 0.3$	V
Output Voltage	Vout	$V_{SS} = 0.3, V_{DD} = 0.3$	v
Operating Temperature	Та	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	- 40 ~ + 125	°C
Power Dissipation	Pp	500	mW

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.5V, V_{SS} = 0V, f_{osc} = 3.579545MHz, Ta = 25^{\circ}C, unless otherwise specified)$

Characteristic	Symbol	Tes	t Condition	Min	Тур	Max	Unit
Supply Voltage	V _{DD}			2.0		5.5	V
Memory Retention Voltage	V _{DR}			1.0			٧
Key Input High Voltage	ViH	$R_1 \sim R_4, C_1 \sim C_4$		0.8 V _{DD}		VDD	v
Key Input Low Voltage	VIL			V _{SS}		0.2 V _{DD}	V
Operating Current	IDD	All outputs u		1.0	2.0	mA	
Output Leakage Current	IOL	$V_{DD} = 5.5V$				1.0	μA
Oscillator Frequency	f _{osc}				3.57954		MHz
Valid Key Entry Time	T _{KD}		•	23		25.3	mS
T		ROW TONE	$V_{DD} = 2.5V, R_L = 5K$	- 16.0		- 12.0	dBV
Tone Output	V _{or}	ONLY	$V_{DD} = 3.5V, R_L = 5K$	- 14.0		- 11.0	dBV
Ratio of Column to Row Tone	dB _{cr}		•••• <u>•</u> •••••••••••••••••••••••••••••••	1.0	2.0	3.0	dB
Distortion	% DIS				1.2	7	%


FUNCTION DESCRIPTION

1. Oscillator

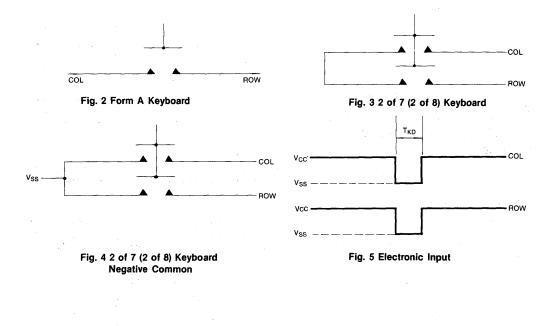
When Tone Disable is connect V_{ss} oscillator is disable. This oscillator inhibit prevent the circuit from drawing excessive current. The circuit is designed to work with a crystal out to 3.579545MHz to tone frequency.

2. Output Waveform

The Row and Column output waveform are shown in Fig. 1. These waveform are digitally synthesized using on-chip D/A converter. Distortion measurement of these unfiltered waveform will show a typical distortion 7% or less. The on-chip OP AMP of the KS5809/5810/5811 mix the Row and Column tones together to result in a dual tone waveform.

PIN DESCRIPTION

1. V_{DD} (Pin 1)


This is the positive supply Pin. The voltage on this Pin is measured relative to V_{ss} (Pin 6).

2. Tone Disable (Pin 2)

When tone disable input is connected to V_{SS} , key input and oscillator is disable. When this pin is connected to V_{DD} , key input is sensed.

3. Keyboard Inputs (Pin 3, 4, 5, 9, 11, 12, 13, 14)

The KS5809/5810 can use inexpensive Form A keyboard, standard 2-of-7 keyboard or standard 2-of-7 keyboard with negative common. The KS5811 can use standard 2-of-8 keyboard or standard 2-of-8 keyboard with negative common (refer to Fig. 2, Fig. 3, Fig. 4). A valid key entry is defined by either a single Row being connected to a single column or V_{ss} being simulateneously presented to both a single Row and Column. When tone disable $-V_{ss}$, the Row and Column inputs are held high and no keyboard inputs are accepted. When tone disable $-V_{DD}$ the keyboard is completly static until the initial valid key input is sensed. The oscillator is then enable and the Rows and Columns are alternately scanned to verify the input is varied (refer to Fig. 5).

CMOS INTEGRATED CIRCUIT

4. Vss (Pin 6)

This is negative supply pin and is connected to the common part in the general application.

5. Oscillator In (Pin 7), Oscillator Out (Pin 8)

The network contains an on-board inverter with sufficient loop gain to provides oscillation. The inverter input is Oscillator In, output is Oscillator Out.

6. XMUTE (Pin 10)

The XMUTE output is a N-channel open drain.

Tone-Dis Key-in	Connected to V _{SS}	Connected to V _{DD}
Key is senced	ON	ON
Key is no senced	ON	OPEN

ON: XMUTE is connected to V_{ss} OPEN: XMUTE is opened

7. Single Tone Enable (Pin 15)

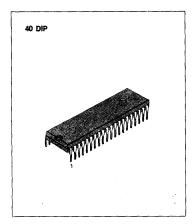
The single tone enable input is used to generation single tone for test. It has pull down to V_{ss} and when floating or tied to V_{ss} , single tone is inhibited. When tied to V_{DD} , single tone is enable.

8. Tone Output (Pin 16)

The tone out is connected internally in the KS5809/5810/5811 to the emitter of an NPN transistor whose collector is tied to V_{DD} . The input to this transistor is the on-chip OP AMP which mixes the Row and Column tones together and provides output level regulation.

149

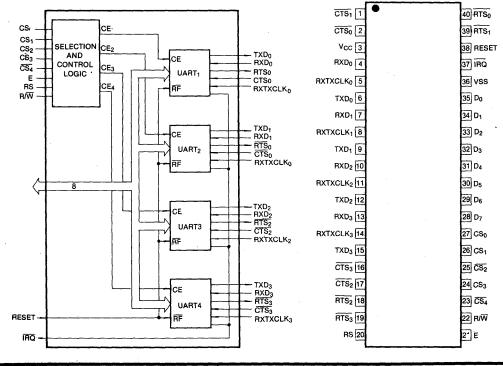
QUAD UNIVERSIAL ASYNCHRONOUS RECEIVER AND TRANSMITTER


The KS5812, QUAD-UART, is a Si-Gate CMOS IC which provides the data formatting and control to interface serial asynchronous data communications between main system and subsystems.

The parallel data of the bus system is serially transmitted and by the asynchronous data interface with proper formatting and error checking. The KS5812 includes Transmit part, Receive part, Programmable control part, Status check part, and Select part. The control register that is programmed via the data bus during system initialization, provides variable word lengths, clock division ratios, transmit control, receive control, and interrupt control.

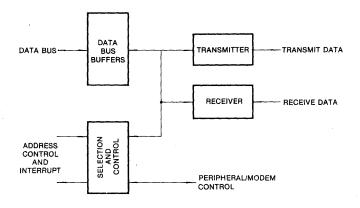
FEATURES

- · Low power, High speed CMOS process.
- Serial/Parallel conversion of Data
- 8-and 9-bit Transmission
- Optional Even and Odd Parity
- Parity, Overrun and Framing Error Checking
- Programmable Control Register
- Optional ÷ 1, ÷ 16, and ÷ 64 Clock Modes
- Peripheral/Modern Control Functions
- Double Buffered
- One-or Two-Stop Bit Operation


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KS5812N	40 DIP	-20 ~ +75°C


PIN CONFIGURATION

KS5812

UART BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage*	V _{cc} *	-0.3 to +7.0	V
Input Voltage*	Vin*	-0.3 to +7.0	V
Maximum Output Current**	1 _c **	10	mA
Operating Temperature	T _{opr}	-20 to +75	°C
Storage Temperature	T _{stg}	– 55 to + 150	°C

*With respect to Vss (System GND)

**Maximum output current is the maximum current which can flow out from one output terminal or I/O common terminal ($D_0 \sim D_7$, \overline{RTS} , Tx Data, \overline{IRQ})

(Note) Permanent IC damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions are exceeded, it could affect reliability of IC.

RECOMMENDED OPERATING CONDITIONS

	Characteristic	Symbol	Min	Тур	Max	Unit
Supply Voltage		V _{cc} *	4.5	5.0	5.5	V
Input "Low" Vo	Itage	V _{1L} *	0	-	0.8	
Input "High"	$D_0 \sim D_7$, RS, $\overline{CTS_i}$, RxD _i		2.0	-	Vcc	
Voltage	CS ₀ , CS ₂ , CS ₁ R/W, E, CS ₃ , CS ₄ , RXTXCLK _i	∨⊪*	2.2	-	Vcc	V
Operating Temp	perature	T _{opr}	- 20	25	75	°C

* With respect to V_{ss} (System GND)

DC CHARACTERISTICS ($V_{cc} = +5V \pm 5\%$, $V_{ss} = 0V$, $Ta = -20 \sim +75^{\circ}C$, unless otherwise noted.)

Ch	paracteristic	Symbol	Test Conditions	Min	Тур	Max	Uni
	$D_0 \sim D_7$, RS, CTSi,			2.0	-	V _{cc}	
Input "High" Voltage	CS_0 , CS_2 , CS_1 , R/\overline{W} , E, CS_3 , $\overline{CS_4}$ RXTXCLKi	ViH		2.2	-	V _{cc}	V
Input "Low" Voltage	All inputs	VIL		- 0.3	-	0.8	V
Input Leakage Current	R/\overline{W} , CS_0 , CS_1 , CS_2 , E, CS_3 , $\overline{CS_4}$	l _{in}	$V_{IN} = 0 \sim V_{CC}$	- 2.5	-	2.5	μA
Three-State (Off State) Input Current	$D_0 \sim D_7$	I _{TSI}	$V_{\rm IN}=0.4 \sim V_{\rm CC}$	- 10	-	10	μA
	$D_0 \sim D_7$		$I_{OH} = -400 \mu A$	4.1	-	-	
Output "High" Voltage	$D_0 \sim D_7$	N.	I _{он} <u>≤</u> ~ 10µА	V _{cc} -0.1	-		v
Output "High" Voltage	TXDi, RTSi	V _{он}	I _{он} = - 400	4.1	-	-	•
			I _{он} <u>≤</u> – 10µА	V _{cc} -0.1	-	-	
Output "Low" Voltage	All outputs	Vol	I _{он} = 1.6mA	-	-	0.4	V
Output Leakage Current (off state)	ĪRO	1 _{LOH}	$V_{OH} = V_{CC}$	-	-	10	μΑ
	$D_0 \sim D_7$	C _{IN}	N 01 T 0500		-	12.5	
Input Capacitance	E, RXTXCLKI, R/\overline{W} , RS, RXDI, CS ₀ , CS ₁ , CS ₂ , CTS, CS ₃ , $\overline{CS_4}$		V _{IN} = 0V, Ta = 25°C f = 1.0 MHz	-	-	7.5	pF
Output Consoltones	RTS, TXDI		$V_{IN} = 0V$, $Ta = 25^{\circ}C$		-	10	DF
Output Capacitance	ĪRQ	C _{out}	f = 1.0 MHz	-		5.0	pr
	Under transmitting and		E = 1.0 MHz		-	3	
	Receiving operation500 kbps		E = 1.5 MHz	-	-	4	mA
	• Data bus in R/W operation		E = 2.0 MHz	1 -	-	5	1
Supply Current	Chip is not selected500 kbps	Icc	E = 1.0 MHz	-	-	200	
	 Under non transmitting and receiving operation Input level (Except E) 		E = 1.5 MHz	-	-	250	μA
	$V_{\rm H}$ min = $V_{\rm CC} - 0.8V$ $V_{\rm L}$ max = 0.8V		E=2.0 MHz		1 <u>-</u> 1	300	1 1. 5.

AC CHARACTERISTICS (V_{cc} = 5.0V \pm 5%, V_{ss} = 0V, Ta = $-20 \sim +75^{\circ}$ C, unless otherwise noted.)

1. TIMING OF DATA TRANSMISSION

			T	KS5812			
Characteristi	С	Symbol	Test Conditions	Min	Max	Unit	
• • • • • • • • • • • • • • • •	÷1 Mode			900		ns	
Minimum Clock Pulse Width	÷ 16, ÷ 64 Modes	PW _{CL}	Fig. 1	600	-	ns	
Minimum Clock Pulse Width	÷1 Mode	PW _{CH}	Fig. 2	900	-	ns	
	÷ 16, ÷ 64 Modes		Fig. 2	600		ns	
	÷1 Mode	4		-	500	KHz	
Clock Frequency	÷16, ÷64 Modes	f _C		-	800	KHz	
Clock-to-Data Delay for Transm	itter	t _{TDD}	Fig. 3	-	600	ns	
Receive Data Setup Time	÷1 Mode	t _{RDSU}	Fig. 4	250		ns	
Receive Data Hold Time	÷1 Mode	t _{RDH}	Fig. 5	250	-	ns	
IRQ Release Time		t _{iR}	Fig. 6		1200	ns	
RTS Delay Time	RTS Delay Time		Fig. 6		560	ns	
Rise Time and Fall Time	Except E	tr, tf		_	1000*	ns	

* 1.0 μ s or 10% of the pulse width, whichever is smaller.

2. BUS TIMING CHARACTERISTICS

1) READ

Other states in the			KS5	812	
Characteristic	Symbol	Test Conditions	Min	Max	Unit
Enable Cycle Time	t _{cyc} E	Fig. 7	1000	_	ns
Enable "High" Pulse Width	PWEH	Fig. 7	450		ns
Enable "Low" Pulse Width	PWEL	Fig. 7	430	_	ns
Setup Time, Address and R/W Valid to Enable Positive Transition	t _{AS}	Fig. 7	80	_	ns
Data Delay Time	t _{DDR}	Fig. 7	_	290	ns
Data Hold Time	t _∺	Fig. 7	20	100	ns
Address Hold Time	t _{AH}	Fig. 7	10		ns
Rise and Fall Time for Enable Input	t _{Er} , t _{Ef}	Fig. 7	_	25	ns

2) WRITE

		T	KS	5812	
Characteristic	Symbol	Test Conditions	Min	Max	Unit
Enable Cycle Time	t _{cyc} E	Fig. 8	1000	_	ns
Enable "High" Pulse Width	PWEH	Fig. 8	450	_	ns
Enable "Low" Pulse Width	PW _{EL}	Fig. 8	430		ns
Setup Time, Address and RIW Valid to Enable Positive Transition	t _{AS}	Fig. 8	80	_	ns
Data Setup Time	t _{DSW}	Fig. 8	165	-	ns
Data Hold Time	tн	Fig. 8	10	-	ns
Address Hold Time	t _{AH}	Fig. 8	10	-	ns
Rise and Fall Time for Enable Input	t _{Er} , t _{Ef}	Fig. 8	-	25	ns

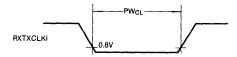


Fig. 1 Clock Pulse Width, "Low" State

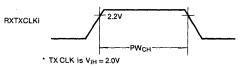


Fig. 2 Clock Pulse Width, "High" State

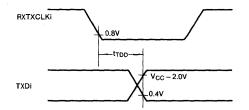


Fig. 3 Transmit Data Output Delay



Fig. 5 Receive Data Hold Time (+1 Mode)

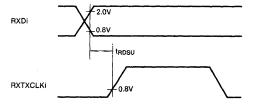
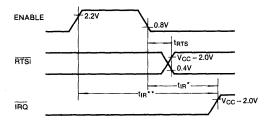
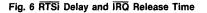
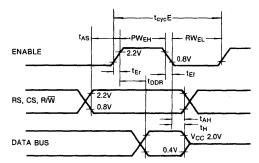



Fig. 4 Receive Data Setup Time (+1 Mode)

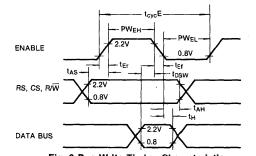
KS5812

CMOS INTERGRATED CIRCUIT




* (1) IRQ Release Time applied to R_xDi Register read operation

(2) \overline{IRQ} Release Time applied to $T_{\boldsymbol{X}} Di$ Register write operation


(3) \overline{IRQ} Release Time applied to control Register write TIE = 0, RIE = 0 operation.

- ** \overline{IRQ} Release Time applied to R_x Data Register read operation right after read status register, when \overline{IRQ} is asserted by DCD rising edge.
- Note: Note that following take place when IRQ is asserted by the detection of transmit data register empty status. IRQ is released to "High" asynchronously with E signal when CTSi goes "High". (Refer to Figure 14)

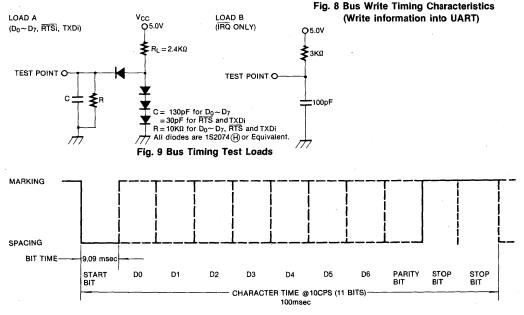


Fig. 10 110 Baud Serial ASCII Data Timing

DEVICE OPERATION

At the bus interface, the UARTi appears as two addressable memory locations. Internally, there are four registers: two read-only and two write-only registers. The read-only registers are Status and Receive Data; the write-only registers are Control and Transmit Data. The serial interface consists of serial input and output lines with independent clocks, and three peripheral/modem control lines.

POWER ON/MASTER RESET

The master reset (CR0, CR1) should be set during system initialization to insure the reset condition and prepare for programming the UARTi functional configuration when the communications channel is required. During the first master reset, the IRQ and RTSi outputs are held at level 1. On all other master resets, the RTSi output can be programmed high or low with the IRQ output held high. Control bits CR5 and CR6 should also be programmed to define the state of RTSi whenever master reset is utilized. The UARTi also contains internal power-on reset logic to detect the power line turn-on transition and hold the chip in a reset state to prevent erroneous output transitions prior to initialization. This circuitry depends on clean power turn-on transitions. The power-on reset is released by means of the busprogrammed master reset which must be applied prior to operating the UARTi. After master resetting the UARTi, the programmable Control Register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none), etc.

TRANSMIT

A typical transmitting sequence consists of reading the UARTI. Status Register either as a result of an interrupt or in the UARTi's turn in a polling sequence. A character may be written into the Transmit Data Register if the status read operation has indicated that the Transmit Data Register is empty. This character is transferred to Shift Register where it is serialized and transmitted from the Transmit Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the Data Register, the Status Register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the Register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted (because of double buffering). The second

character will be automatically transferred into the Shift Register when the first character transmission is completed. This sequence continues until all the characters have been transmitted.

RECEIVE

Data is received from a peripheral by means of the Receive Data input. A divide-by-one clock ratio is provided for an externally synchronized clock (to its data) while the divide by-16 and 64 ratios are provided for internal synchronization. Bit synchronization in the divide-by-16 and 64 modes is initiated by the detection of 8 or 32 low samples on the receive line in the divideby-16 and 64 modes respectively. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the Status Register along with framing error, overrun error, and Receive Data Register full. In a typical receiving sequence, the Status Register is read to determine if a character has been received from a peripheral. If the Receiver Data Register is full, the character is placed on the 8-bit UARTi bus when a Read Data command is received from the MPU. When parity has been selected for a 7-bit word (7 bits plus parity), the receiver strips the parity bit (D7 = 0) so that data alone is transferred to the MPU. This feature reduces MPU programming. The Status Register can continue to be read to determine when another character is available in the Receive Data Register. The receiver is also double buffered so that a character can be read from the data register as another character is being received in the shift register. The above sequence continues until all characters have been received.

INPUT/OUTPUT FUNCTIONS

UART INTERFACE SIGNALS FOR MPU

The KS5812 interfaces to the MPU with an 8-bit bidirectional data bus, five chip select lines, a register select line, an interrupt request line, read/write line, and enable line. These signals permit the MPU to have complete control over the KS5812.

UART Bidirectional Data (D0-D7) — The bidirectional data lines (D0-D7) allow for data transfer between the KS5812 and the MPU. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs an UARTi read operation.

UART Enable (E) — The Enable signal, E, is a highimpedance TTL-compatible input that enables the bus

input/output data buffers and clocks data to and from the KS5812.

Read/Write (R/W) — The Read/Write line is a highimpedance input that is TTL compatible and is used to control the direction of data flow through the UARTi's input/output data bus interface. When Read/Write is high (MPU Read cycle), KS5812 output drivers are turned on and a selected register is read. When it is low, the KS5812 output drivers are turned off and the MPU writes into a selected register. Therefore, the Read/Write signal is used to select read-only or write-only registers within the KS5812.

Chip Select (CS0, CS1, CS2, CS3, $\overline{CS4}$) — These five high-impedance TTL-compatible input lines are to select and address the KS5812. Each UART can be enabled when CS2 and CS3 are high and $\overline{CS4}$ is low. CS0 and CS1 are used to select individual UART.

CS0	CS1	CS2	CS3	CS4	UARTI
0	0	1	1	0	UART1
0	1	1	1	0	UART2
1	0	1	1	0	UART3
1	1	1	1	0	UART4

Register Select (RS) — The Register Select line is a high-impedance input that is TTL compatible. A high level is used to select the Transmit/Receive Data Registers and a low level the Control/Status Registers. The Read/Write signal line is used in conjunction with Register Select to select the read-only or write-only register in each register pair.

Interrupt Request (IRQ) — Interrupt Request is a TTLcompatible, open-drain (no internal pullup), active low output that is used to interrupt the MPU. The IRQ output remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the KS5812 is set. The IRQ status bit, when high, indicates the IRQ output is in the active state.

Interrupts result from conditions in both the transmitter and receiver sections of the UARTi. The transmitter and receiver sections of the UARTi. The transmitter section causes an interrupt when the Transmitter Interrupt Enabled condition is selected (CR5•CR6), and the Transmit Data Register Empty (TDRE) status bit is high. The TDRE status bit indicates the current status of the Transmitter Data Register except when inhibited by Clear-to-Send (CTSi) being high or the UARTi being maintained in the Reset condition. The interrupt is cleared by writing data into the Transmit Data Register. The interrupt is masked by disabling the Transmitter Interrupt via CR5 or CR6 or by the loss of \overline{CTSi} which inhibits the TDRE status bit.

Receiver Interrupt Enable is set and the Receive Data Register Full (RDRF) status bit is high, an Overrun has occurred. An interrupt resulting from the RDRF status bit can be cleared by reading data or resetting the UARTI. Interrupts caused by Overrun is cleared by reading the status register after the error condition has occurred and then reading the Receive Data Register or resetting the UARTI. The receiver interrupt is masked by resetting the Receiver Interrupt Enable.

CLOCK INPUTS

High-impedance TTL-compatible inputs is provided for clocking of transmitted and received data. Clock frequencies of 1, 16, or 64 times the data rate may be selected.

RECEIVE AND TRANSMITTER CLOCK (RXTXCLKi)

-The RXTXCLKi input are both used for the clocking of transmitted data and for synchronization of received data. (In the /1 mode, the clock and data must be synchronized extenally.) The transmitter initiates data on the negative transition of the clock and the receiver samples the data on the positive transition of the clock.

SERIAL INPUT/OUTPUT LINES

Receive Data (RXDi) — The Receive Data line is a high-impedance TTL-compatible input through which data is received in a serial format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used.

Transmit Data (TXDi) — The Transmit Data output line transfers serial data to a modem or other peripheral.

PERIPHERAL/MODEM CONTROL

The UARTi includes several functions that permit limited control of a peripheral or modem. The functions included are Clear-to-Send, Request-to-Send and Data Carrier Detect.

Clear-to-Send (CTSi) — This high-impedance TTLcompatible input provides automatic control of the transmitting end of a communications link via the modem Clear-to-Send active low output by inhibiting the Transmit Data Register Empty (TDRE) status bit.

Request-to-Send (RTSi) — The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The \overline{RTSi} output corresponds to the state of the Control Register bits CR5 and CR6. When CR6 = 0 or both CR5 and CR6 = 1, the \overline{RTSi} output is low (the active state). This output can also be used for Data Terminal Ready (DTR).

TRANSMIT DATA REGISTER (TDR)

Data is written in the Transmit Data Register during the negative transition of the enable (E) when the UARTi has been addressed with RS high and R/W low. Writing data into the register causes the Transmit Data Register Empty bit in the Status Register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within 1-bit time of the trailing edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDRE) bit to indicate empty.

RECEIVE DATA REGISTER (RDR)

Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receive Data Register Full bit (RDRF) in the status buffer to go high (full). Data may then be read through the bus by addressing the UARTi and selecting the Receive Data Register with RS and R/W high when the UARTi is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receive Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

CONTROL REGISTER

The UARTi Control Register consists of eight bits of write-only buffer that are selected when RS and R/W are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CR0 and CR1) — The Counter Divide Select Bits (CR0 and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the UARTI. Additionally, these bits are used to provide a master reset for the UARTI which clears the Status Register (except for external conditions on CTSi and DCD) and initializes both the receiver and transmitter. Master reset does not affect other Control Register bits. Note that after power-on or a power fail/restart, these bits must be set high to reset the UARTI. After resetting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CRO	Function
0	0	÷1
0	1	÷ 16
1	0	÷ 64
1	• 1	Master Reset

Word Select Bits (CR2, CR3, and CR4) — The Word Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows;

CR4	CR3	CR2	Function
0	0	0	7 Bits + Even Parity + 2 Stop Bits
0	0	1	7 Bits + Odd Parity + 2 Stop Bits
0	1	0	7 Bits + Even Parity + 1 Stop Bit
0	1	1	7 Bits + Odd Parity + 1 Stop Bit
1	0	0	8 Bits + 2 Stop Bits
1	0	1.	8 Bits + 1 Stop Bit
1	1	0	8 Bits + Even Parity + 1 Stop Bit
1	1	1	8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6) — Two Transmitter Control bits provide for the control of the interrupt from the Transmit Data Register Empty condition, the Request-to-Send (RTSi) output, and the transmission of a Break level (space). The following encoding format is used:

CR6	CR5	Function
0	0	RTSi = low, Transmitting Interrupt Disabled.
0	1	RTSi = low, Transmitting Interrupt Enabled.
1	0	RTSi = high, Transmitting Interrupt Disabled.
1	1	RTS = low, Transmits a Break level on the Transmit Data Output. Transmitting Interrupt Disabled.

Receive Interrupt Enable Bit (CR7) — The following interrupts will be enabled by a high level in bit position 7 of the Control Register (CR7). Receive Data Register Full Overrun.

STATUS REGISTER

Information on the status of the UARTi is available to the MPU by reading the UARTi Status Register. This read only register is selected when RS is low and R/\overline{W} is high. Information stored in this register indicates the

KS5812

status of the Transmit Data Register, the Receive Data Register and error logic, and the peripheral/modem status inputs of the UARTi

Receive Data Register Full (RDRF), Bit 0 — Receive Data Register Full indicates that received data has been transferred to the Receive Data Register. RDRF is cleared after an MPU read of the Receive Data Register or by a master reset. The cleared or empty state indicates that the contents of the Receive Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 — The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.

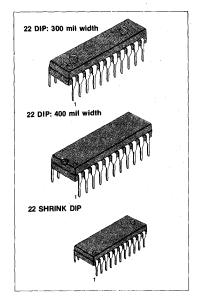
Clear-to-Send (CTS), Bit 3 — The Clear-to-Send bit indicates the state of the Clear-to-Send input from a modern. A low $\overline{\text{CTS}}$ indicates that there is a Clear-to-Send from the modern. In the high state, the Transmit Data Register Empty bit is inhibited and the Clear-to-Send status bit will be high. Master reset does not affect the Clear-to-Send status bit.

Framing Error (FE), Bit 4 — Framing error indicates that the received character is improperly framed by a start and a stop bit and is detected by the absence of the first stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receive data transfer time. Therefore, this error indicator is present throughout the time that the associated character is

available.

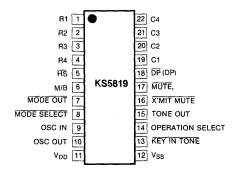
Receiver Overrun (OVRN), Bit 5 — Overrun is an error flag the indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receive Data Register (RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the HDR having occurred. The Overrun does not occur in the Status Register until the valid character prior to Overrun has been read. The RDRF bit remains set until the Overrun is reset. Character synchronization is maintained during the Overrun condition. The Overrun indication is reset after the reading of data from the Receive Data Register or by a Master Reset.

Parity Error (PE), Bit 6 — The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.


Interrupt Request (\overline{IRQ}), Bit 7 — The \overline{IRQ} bit indicates the state of the \overline{IRQ} output. Any interrupt condition with its applicable enable will be indicated in this status bit. Anytime the \overline{IRQ} output is low the \overline{IRQ} bit will be high to indicate the interrupt or service request status. \overline{IRQ} is cleared by a read operation to the Receive Data Register or a write operation to the Transmit Data Register.

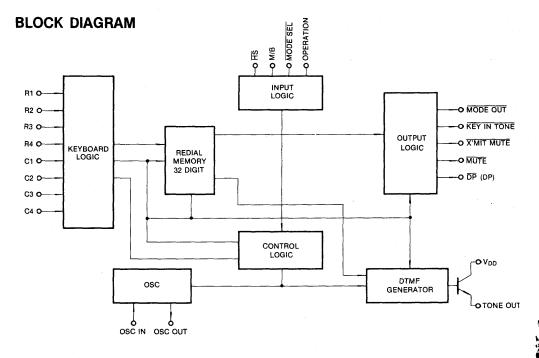
TONE/PULSE DIALER WITH REDIAL

FEATURES


- Tone/Pulse switchable (touch key or slide switch).
- 32 digit capacity for redial
- Automatic mix redialing (last number dial) of PULSE→DTMF with multiple auto access pause (3.5 sec)
- Key-in-tone output for valid key entry in pulse mode (Fkf = 1.75KHz, Tkf = 23mS).
- Low power CMOS process (2.0 to 5.5V)
- Numbers dialed manually after redial are cascadable and stored as additional numbers for next redialing
- Uses inexpensive TV crystal (3.579545MHz)
- Make/Break ratio (33 1/3~66 2/3 or 40/60) pin selectable
- Touch key hooking (604ms)
- · Low standby current
- 4 × 4 or (2 of 8) keyboard available

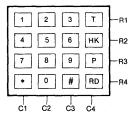
ORDERING INFORMATION

Device	Package	Dial Pulse	PPS
KS58A19N	300mil	DP	10
KS58B19N	Width	DP	20
KS58C19N	Size	DP	10
KS58D19N		DP	20
KS58A19E	400mil	DP	10
KS58B19E	Width	DP	20
KS58C19E	Size	DP	10
KS58D19E		DP	20
KS58A19P	Shrink	DP	10
KS58B19P	Package	DP	20
KS58C19P	Туре	DP	10
KS58D19P		DP	20


PIN CONFIGURATION

KS5819

CMOS INTEGRATED CIRCUIT


TONE DURATION & PAUSE IN REDIAL

Characteristic	Symbol	Тур	Unit
Tone Duration	To	110	mS
Minimum Pause	ITP	110	mS
Cycle Time	Tc	220	mS

TONE FREQUENCIES

Input	Specified	Actual	% Error
R1	697	699.1	+ 0.31
R2	770	766.2	- 0.49
R3	852	847.4	- 0.54
R4	941	948.0	+ 0.74
C1	1209	1215.7	+ 0.57
C2	1336	1331.7	- 0.32
C3	1477	1471.9	- 0.35

ARRANGMENT OF KEYBOARD

: PULSE-DTMF SWITCHING : HOOKING (604ms) : PAUSE (3.5 second)

: REDIAL

3

.

161

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristics	Symbol	Value	Unit
Supply Voltage	V _{DD}	6.0	v
Input Voltage	V _{IN}	$V_{\rm SS} - 0.3, V_{\rm DD} + 0.3$	v
Output Voltage	Vout	$V_{\rm SS} - 0.3, V_{\rm DD} + 0.3$	v
Output Voltage	Vout	$\leq V_{DD}$ (DP, MUTE, XMUTE)	V
Tone Output Current	ITONE	50	mA
Power Dissipation	Pp	500	mW
Operating Temperature	Topr	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	- 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

 $(V_{SS} = 0V, V_{DD} = 3.5V, fx'tal = 3.579545MHz, Ta = 25^{\circ}C, unless otherwise noted)$

Characteristic	Symbol	Test Co	ndition	S	Min	Тур	Max	Unit
Operating Voltage	V _{DD} P	Pulse Mode	All inp	uts connected	2.0		5.5	v
Range	V _{DD} T	Tone Mode	to	V _{DD} or V _{SS}	2.0		5.5	v
Memory Retention Voltage	VDR				1.0			V
One anti- a Guarda Guarda	IDDP	$\overline{\text{MODE}} = V_{\text{DD}}$	1	key selected		0.3	0.5	
Operating Supply Current	I _{DD} T	MODE = V _{ss}	1	ss. All outputs		0.5	1.0	mA
Others allow Ourses at	I _{SD} 1	$\overline{\text{HS}} = V_{\text{DD}} = 1.5 \text{V}$	1	ey selected.			0.05	
Standby Current	I _{SD} 2	HS = V _{ss}	1	outputs nloaded			50	μA
0.1	IoL1	DP, MUTE	0.04	$V_{DD} = 3.5V$	1.7	5.0		
Output Current	I _{OL} 2	XMUTE VOL:	= 0.4V	$V_{DD} = 2.5V$	0.5	1.5		mA
Output Leakage Current	IOFF	MODE OUT, KT	Vc	out = 2.5V			1.0	μA
1	VIH	R1-R4, C1-C3, HS, M/B			0.8V _{DD}		V _{DD}	v
Input Voltage	V _{IL}	OPERATION SELECT, MODE SELECT			V _{SS}		0.2V _{DD}	
Input Current	l _{in} 1	$V_{\text{DD}} = 3.5V \ V_{\text{IN}} = 0V$		R1-R4			116	
Input Current	I _{IN} 2	$V_{DD} = 2.5V V_{IN} = 0V$	1	R I-R4			50	μA
Valid Key Entry Time	T _{kd}				23		25.3	mS
Column and Row Scanning Frequency	F _{cr}					437		Hz
Key-In Tone Output Duration	T _{kt}					23		mS
Key-In Tone Frequency	F _{kt}					1.75		KHz
Auto Access Pause Time	T _{ap}					3.5		sec
Tono Output	N	$V_{DD} = 2.5V, R_L = 5K$	RC	W TONE	- 16.0		- 12.0	dBV
Tone Output	V_{or}	$V_{DD} = 3.5V R_L = 5K$]	ONLY	- 14.0		- 11.0	dBV
Ratio of Column to Row Tone	dB _{cr}	V _{DD} =	= 3.5V	·····	1.0	2.0	3.0	dB
Distortion	%DIS	V _{DD} =	: 3.5V				7	%
Tone Output Delay Time	T _{psd}					1.5		mS

PIN DESCRIPTION

Pin	Name				Description	
1-4 15-22	R1-R4 C1-C4	set to low at O are set to high Oscillator starts Scanning signa until the input l	an be inter n Hook (H at OFF H(s running v Is are pres key is relea	faced to S = high). OOK (HS vhen a ke ented at ased. Key	an XY matrix ke $C_1 \sim C_4$ key inputed by which en- easy press is detected both column and the transformation of transformation of the transformation of transformation of the transformation of tra	eyboard. $C_1 \sim C_4 \& R_1 \sim R_4$ are uts are set to low and R1-R4 ables the key-input operation cted. d row inputs (TYP: 437Hz) upatible with standard 2-of-8 ovided to avoid false entry
5	HS	Hook Switch This input deter "Off Hook" cor "On Hook" cor	responds t	o V _{ss} cor		ntact.
6	M/B	Make/Break Rat This input provi M/B is connect	des the se		f the Make/Brea	k ratio (33.3: 66.6/40:60) when
7	MODE OUT	Pulse/Tone mod	le correspo	onds to C	OFF/ON state (N	g in pulse or tone mode. channel open drain). Mode lect and T key inputs.
8	MODE SELECT		de is sele		hown in the foll going Off Hook	
		OPERATION	HODE			
		OPERATION SELECT	MODE SELECT	INITIAL MODE	SWITCHING ENTRY MODE	NOTES
		SELECT				NOTES MODE SELECT defines only initial mode
			SELECT	MODE	ENTRY MODE	MODE SELECT
		SELECT	SELECT V _{DD}	MODE Pulse	ENTRY MODE	MODE SELECT defines only initial mode after going Off Hook and is
		V _{DD}	SELECT V _{DD} V _{SS}	MODE Pulse Tone	ENTRY MODE T Key-In N/A MODE SELECT	MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under
		V _{DD} V _{SS}	VDD Vss VDD Vss Vss Vss	MODE Pulse Tone Pulse Tone	ENTRY MODE T Key-In N/A MODE SELECT input = V _{SS} N/A esired (either T	MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under
9	OSC IN	SELECT V _{DD} V _{SS} If choice of swi Operation selec operation. Oscillator Input	SELECT V _{DD} V _{SS} V _{DD} V _{SS} tching met t should b	MODE Pulse Tone Pulse Tone thod is de e connec	ENTRY MODE T Key-In N/A MODE SELECT input = V _{SS} N/A esired (either T ted to MODE SE	MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under this condition. key or MODE SELECT). ELECT in order to avoid false
9 10	OSC IN OSC OUT	SELECT V _{DD} V _{SS} If choice of swi Operation selec operation. Oscillator Input. These pins are	SELECT V _{DD} V _{SS} V _{DD} V _{SS} tching met t should b Output provided to	MODE Pulse Tone Pulse Tone thod is de connect	ENTRY MODE T Key-In N/A MODE SELECT input = V _{SS} N/A esired (either T ted to MODE SI t an external 3.5	MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under this condition. key or MODE SELECT). ELECT in order to avoid false
		SELECT V _{DD} V _{SS} If choice of swi Operation selec operation. Oscillator Input These pins are (at Off Hook) ar Power	SELECT V _{DD} Vss V _{DD} Vss Vss Vss Vortige Vortige <t< td=""><td>MODE Pulse Tone Pulse Tone thod is de e connect ined until</td><td>ENTRY MODE T Key-In N/A MODE SELECT input = V_{SS} N/A esired (either T ted to MODE SE t an external 3.5 pulse or DTMF</td><td>MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under this condition. key or MODE SELECT). ELECT in order to avoid false 8MHz crystal. Oscillator start</td></t<>	MODE Pulse Tone Pulse Tone thod is de e connect ined until	ENTRY MODE T Key-In N/A MODE SELECT input = V _{SS} N/A esired (either T ted to MODE SE t an external 3.5 pulse or DTMF	MODE SELECT defines only initial mode after going Off Hook and is latched at first key entry. T key is disabled under this condition. key or MODE SELECT). ELECT in order to avoid false 8MHz crystal. Oscillator start

163

KS5819

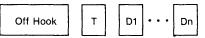
PIN DESCRIPTION (Continued)

Pin	Name	Description				
13	KEY IN TONE	Key In Tone Output Key in tone signal is provided only in pulse mode for all Key-ins except T key-in. No KEY IN TONE is generated in DTMF mode. Fkt: 1.75KHz, Tkt: 23mS. (N channel open drain)				
14	OPERATION SELECT	Operation Select Input Mode switching (from Pulse to DTMF) entry is selectable with this input, i.e. whether T key entry or MODE SELECT input entry is selectable.				
15	TONE OUT	DTMF Signal Output When a valid keypress is detected in DTMF mode appropriate low and high group frequencies are generated which hybrided the Dual Tone Output. Tone out is Off State in pulse mode.				
16	X'MIT MUTE	X'mit Mute Output				
		HS X'mit Mute Output				
		V _{DD} "ON"				
		V _{ss} Normally "OFF" "ON" during pulse and DTMF dialing				
		(N channel open drain)				
17	MUTE	Mute Output				
		HS MUTE OUTPUT				
		V _{DD} "ON"				
		V _{ss} Normally "OFF" in DTMF mode. "ON" during pulse dialing				
		(N channel open drain)				
18	DP, DP	Dial Pulse Out. DP: C/D, DP: A/B DP: The normal output will be "OFF" during break and "ON" during make at "OFF HOOK." The output will be "ON" at "ON HOOK," DP: The normal output will be "ON" during break and "OFF" during make at "OFF HOOK."				
		The output will be "OFF" at "ON HOOK."				

KEYBOARD OPERATION

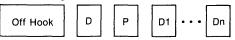
1. SINGLE MODE OPERATION

Pulse Mode Operation



Pulse mode is defined by the initial mode after going Off Hook and latched at $\boxed{D1}$ key entry. This is the condition under $\boxed{Mode Select = V_{DD}}$.

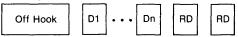
• Tone Mode Operation



Tone mode is defined by the initial mode after going Off Hook and latched at D1 key entry. This condition is under Mode Select = V_{ss} .

If initial mode is at pulse mode after going Off Hook and $\overline{\text{Mode Select}} = V_{\text{DD}}$, Operation Select = V_{DD} . Switching mode from pulse to tone can be done by [T] key entry and latched at [D1] key entry.

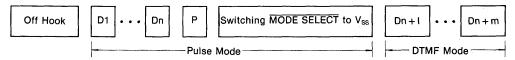
· Manual Dialing with Automatic Access Pause


Multiple Pause key entries can be accepted and stored in the redial memory, each as a digit. Each \mathbb{P} key provides 3.5 seconds pause time, but \mathbb{P} key entry as first digit after going Off Hook is ignored. * key can also be used as pause key in pulse mode. Pause (s) can be cancelled with \mathbb{P} , \mathbb{T} or \mathbb{RD} key during pause time in redialing. \mathbb{D} = Any numeric key.

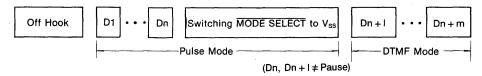
Redialing

Up to 32 digits can be dialed with RD key. RD key is disabled while pulse or DTMF signals are transmitted. When more then 32 digits are stored, redial is also inhibited. # key can be used as RD key in pulse mode.

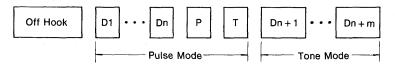
Inhibiting Redial



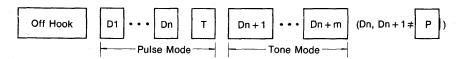
Redial can be inhibited by depressing RD RD keys after DTMF or pulse signals are transmitted.


2. PULSE/TONE SWITCHABLE OPERATION

• Mode Switching by MODE SELECT Input (OPERATION SELECT = V_{ss})


Pulse mode is initially defined $\overline{\text{MODE}}$ SELECT = V_{DD}, mode switching to DTMF can be accepted by $\overline{\text{MODE}}$ SELECT = V_{SS}, DTMF mode will be set up after pulse mode is finished. In this mode, digits $\overline{\text{Dn}+1}$... $\overline{\text{Dn}+\text{m}}$ are transmitted from Tone Out as DTMF signals by depressing corresponded keys.

If no \mathbb{P} key is contained serially before or after mode switching, following condition is obtained.



If digit $\boxed{Dn+1}$ is depressed after pulse mode is finished, DTMF mode will be set up after last pulse signal (\boxed{Dn}) is generated. In this mode, digits $\boxed{Dn+1}$... $\boxed{Dn+m}$ are transmitted from Tone Out as DTMF signals by depressing corresponded keys. If digit $\boxed{Dn+1}$ is depressed during dialing pulse signals, DTMF mode but in Hold State will be set up after last pulse signal \boxed{Dn} is finished. MODE OUT will flash to indicate this Hold State $\boxed{Dn+1}$... $\boxed{Dn+m}$ are stored in redial memory as DTMF data and not transmitted from Tone Out. When it is ready to transmit DTMF data are serially transmitted.

• Mode Switching by T key (OPERATION SELECT = V_{DD})

Pulse mode is initially defined with $\overline{\text{MODE SELECT}} = V_{DD}$. Mode switching to DTMF can be accepted by $\boxed{\Box}$ key. In DTMF mode, digits $\boxed{Dn+1}$... $\boxed{Dn+m}$ are transmitted from Tone Out as DTMF signals by depressing corresponding key. If no \boxed{P} key is contained serially before or after $\boxed{\Box}$ key.

It results the next condition:

If digit $\underline{Dn+1}$ is depressed after pulse mode is finished DTMF mode will be set up after last pulse signal \underline{Dn} is out. In this mode, digits $\underline{Dn+1}$... $\underline{Dn+m}$ are transmitted from TONE OUT as DTMF signals by depressing corresponded key

If digit Dn+1 is depressed during dialing pulse signal, the Hold State will be set up after last pulse signal Dn is finished. When DTMF MODE is set up. MODE OUT will flash to indicate this Hold State. Digits Dn+1 ... Dn+m are stored in redial memory as DTMF data and not transmitted from Tone Out. When it is ready to transmit DTMF data in redial memory, T, RD or P keys is depressed to reset this Hold State and Dn+1 ... Dn+m data are serially transmitted.

· Redial with Hold State Cancell

Pause can be cancelled with \mathbb{P} , \mathbb{T} or \mathbb{RD} keys in redialing. Any pause in series corresponding with pause is also cancelled. When no pause is stored before or after mode switching, chip will go into the Hold State when DTMF mode is set up. MODE OUT will flash to indicate this Hold State. DTMF data are stored in redial memory and not transmitted from tone out.

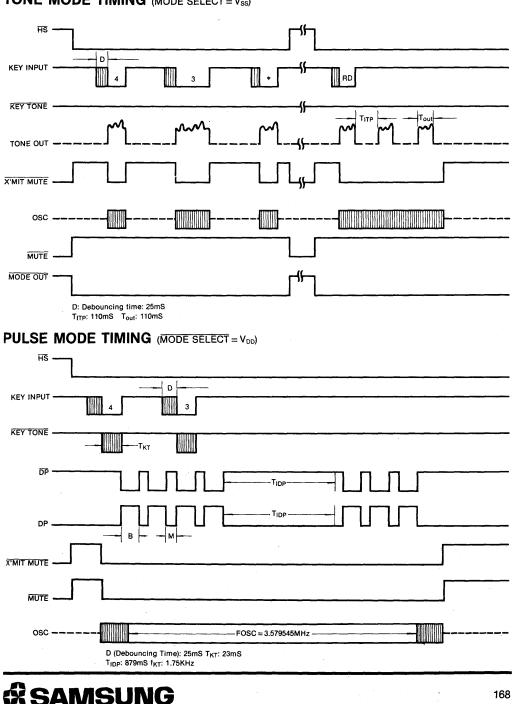
T, RD or P keys is depressed to reset this Hold State and DTMF data are serially transmitted.

Single Tone Operation in DTMF Mode (Test mode)

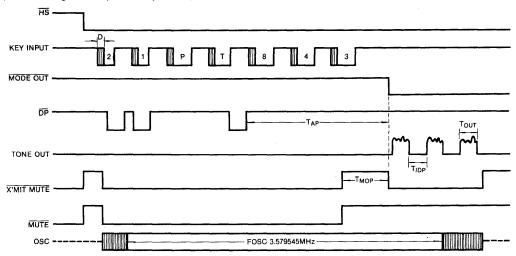
1. The M/B pin is used to trig the chip into test made by applying a positive or negative pulse after "Off Hook." Test mode is sustained until On Hook. The single tone is shown in the following table which contrast with normal mode.

Normal mode

Single tone mode



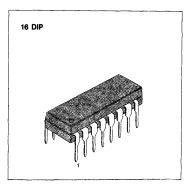
2. Single tone can be generated by simultaneously depressing two digit keys in the appropriate Row and Column. If two digit keys, not in the same Row or Column, the dual tone disabled and no output is provided.


Electronics

TONE MODE TIMING (MODE SELECT = Vss)

TIMING DIAGRAM

(for Switching Mode Operation by \boxed{T} key) (OPERATION SELECT, $\boxed{\text{MODE SELECT}} = = V_{\text{DD}}$)

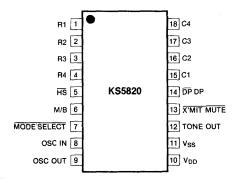

TIMING DIAGRAM

(for Switching Mode Operation by MODE SELECT Input) (OPERATION SELECT = V_{ss})

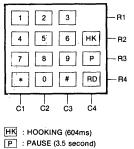
HS	}		
KEY INPUT	2 3 P	Switching MS = V _{SS}	
MODE OUT		······································	
X'MIT MUTE		Тмо	
MUTE			
MODE SELECT	····		
osc		FOSC=3.579MHz	
т	AP: 3.5sec		
	ISUNG		169

TONE/PULSE DIALER WITH REDIAL

The KS5820 is a DTMF/PULSE switchable dialer with a 32-digit redial memory. Through pin selection, switching from pulse to DTMF mode can be done using slide switch. All necessary dual-tone frequencies are derived from a 3.579545MHz TV crystal, providing very high accuracy and stability. The required sinusoidal wave form for each individual tone is digitally synthesized on the chip. The wave form so generated has very low total harmonic distortion (7% Max). A voltage reference is generated on the chip which is stable over the operating voltage and temperature range and regulates the single levels of the dual tone to meet telephone industry specifications. CMOS technology is applied to this device, for very low power requirements high noise immunity, and easy interface to a variety of telephones requiring external components.

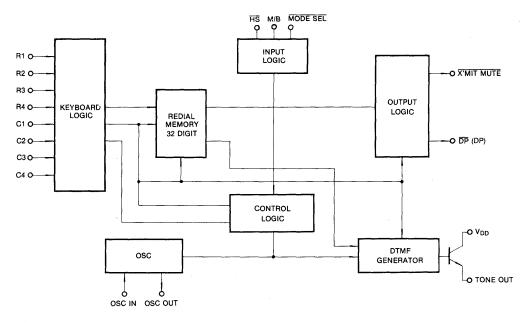

FEATURES

- Tone/Pulse switchable (slide switch).
- · 32 digit capacity for redial
- Automatic mix redialing (last number dial) of PULSE→DTMF with multiple auto access pause
- PABX auto-pause for 3.5 sec.
- 4 × 4 or (2 of 8) keyboard available
- Low power CMOS process (2.0 to 5.5V)
- Numbers dialed manually after redial are cascadable and stored as additional numbers for next redialing
- Uses inexpensive TV crystal (3.579545MHz)
- Make/Break ratio (33 1/3~66 2/3 or 40/60) pin selectable
- Touch key hooking (604ms)
- Low standby current


ORDERING INFORMATION

Device	Dial Pulse	PPS	Make/Break Ratio
KS58A20N	DP	10	V _{DD} : 33.3/66.6
KS58A2UN	DP		V _{ss} : 40/60
KOSODOONI	DP	20	V _{DD} : 33.3/66.6
KS58B20N			V _{ss} : 40/60
	DP	10	V _{DD} : 33.3/16.6
KS58C20N			V _{ss} : 40/60
Warabaahi	I DP	00	V _{DD} : 33.3/66.6
KS58D20N		20	V _{SS} : 40/60

PIN CONFIGURATION


ARRANGEMENT OF KEYBOARD

RD : REDIAL

BLOCK DIAGRAM

TONE DURATION & PAUSE IN REDIAL

Characteristic	Symbol	Тур	Unit
Tone Duration	TD	110	mS
Minimum Pause	ITP	110	mS
Cycle Time	Tc	220	mS

TONE FREQUENCIES

Input	Specified	Actual	% Error
R1	697	699.1	+ 0.31
R2	770	766.2	- 0.49
R3	852	847.4	- 0.54
R4	941	948.0	+ 0.74
C1	1209	1215.7	+ 0.57
C2	1336	1331.7	- 0.32
C3	1477	1471.9	- 0.35

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristics	Symbol	Value	Unit
Supply Voltage	V _{DD}	6.0	v
Input Voltage	V _{IN}	$V_{SS} - 0.3, V_{DD} + 0.3$	v
Output Voltage	Vout	$V_{SS} - 0.3, V_{DD} + 0.3$	1 V
Output Voltage	Vout	$\leq V_{DD}, (\overline{DP}, \overline{X'MITMUTE})$	V
Tone Output Current	I _{TONE}	50	mA
Power Dissipation	PD	500	mW
Operating Temperature	T _{opr}	-20~+70	°C
Storage Temperature	T _{stg}	- 40 ~ + 125	

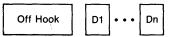
ELECTRICAL CHARACTERISTICS

 $(V_{SS} = 0V, V_{DD} = 3.5V, fx'tal = 3.579545MHz, Ta = 25°C, unless otherwise noted)$

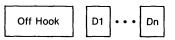
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit		
Operating Voltage	V _{DD} P	Pulse Mode		All inp	uts connected	2.0		5.5	v
Range	V _{DD} T	Tone Mod	le	to	V_{DD} or V_{SS}	2.0		5.5] •
Memory Retention Voltage	V _{DR}					1.0			
Operating Supply Current	IDDP	MODE = V	DD		key selected		0.3	0.5	
Operating Supply Current	IDDT	MODE = V	ss	1	/ _{ss} . All outputs nloaded		0.5	1.0	mA
Oton dhu. Ourrent	I _{SD} 1	$\overline{HS} = V_{DD} = 1$.5V	1	ey selected.			0.05	
Standby Current	I _{SD} 2	$\overline{HS} = V_{SS}$			l outputs nloaded			50	μA
Outrust Ourrest	IoL1	DP		0.04	$V_{DD} = 3.5V$	1.7	5.0		
Output Current	I _{OL} 2	X'MIT MUTE	V _{OL} =	$OL = 0.4V \qquad V_{DD} = 2.5V$		0.5	1.5		mA
	VIH	R1-R4. C1-C3. HS. M/B			$0.8V_{DD}$		V _{DD}	v	
Input Voltage	VIL	MODE SELECT			V _{SS}		0.2V _{DD}		
Input Current	I _{IN} 1	$V_{DD} = 3.5V V_{IN} = 0V$				116			
input Current	I _{IN} 2	$V_{DD} = 2.5 V V_{IN}$	= 0V	R1-R4				50	μΑ
Valid Key Entry Time	T _{kd}					23		25.3	mS
Column and Row Scanning Frequency	F _{cr}						437		Hz
Auto Access Pause Time	T _{ap}						3.5		sec
Tana Outnut		ROW TONE	Vc	_{DD} = 2.5	V R _L = 5K	- 16.0		- 12.0	
Tone Output	Vor	ONLY			- 14.0		- 11.0	dBV	
Ratio of Column to Row Tone	dB _{cr}	$V_{DD} = 3.5V$		3.5V		1.0	2.0	3.0	dB
Distortion	%DIS		$V_{DD} =$	3.5V				7	%
Tone Output Delay Time	T _{psd}						1.5		mS

PIN DESCRIPTION

.


Pin	Name		Description				
1-4 15-18	R1-R4 C1-C4	Keyboard (R1, R2, R3, R4, C1, C2, C3, C4) These inputs can be interfaced to an XY matrix keyboard. C1-C4 & R1-R4 are set to low at On Hook ($HS = high$). C1-C4 key inputs are set to low and R1-R4 are set to high at OFF HOOK ($HS = low$) which enables the key- input operation. Oscillator starts running when a keypress is detected. Scanning signals are presented at both column and row inputs (TYP: 437Hz) until the input key is released. Key inputs are compatible with standard 2of-8 form or single-contact keyboard. Debouncing is provided to avoid false entry (TYP: 25mS).					
5	ĦS		put detects t		e hook switch contact. Hook" corresponds to		
6	M/B	This in		the selection of the s	of the Make/Break ratic	9 (33.3: 66.6/40:60)	
7	MODE SELECT	Pulse/			shown in the following going Off Hook (ĦS→		
			MODE SELECT	INITIAL MODE	SWITCHING ENTRY MODE		
			V _{DD}	Pulse	MODE SELECT Input = V _{SS}		
			V _{SS}	Tone	N/A		
8-9	OSC IN OSC OUT	These		ided to connect	ct an external 3.58MHz ed until pulse or DTMF	-	
10-11	V_{DD}, V_{SS}	Power These 2.0V to	•	er supply inputs	s. The device is design	ed to be operated on	
12	TONE OUT	When group	DTMF Signal Output When a valid keypress is detected in DTMF mode appropriate low and high group frequencies are generated which hybrided the Dual Tone Output. Tone out is Off State in pulse mode.				
13	X'MIT MUTE	X'mit M	Mute Output				
			, HS	X'mit	Mute Output		
			V _{DD} "ON"				
		V _{ss} Normally "OFF" "ON" during pulse and DTMF dialing					
		(N channel o	pen drain)			
14	DP, DP	Dial Pulse Out DP: The normal output will be "OFF" during break and "ON" during make at "OFF HOOK." The output will be "ON" at "ON HOOK," DP: The normal output will be "ON" during break and "OFF" during make at "OFF HOOK." The output will be "OFF" at "ON HOOK."					

KEYBOARD OPERATION


1. SINGLE MODE OPERATION

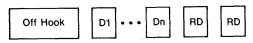
• Pulse Mode Operation

Pulse mode is defined by the initial mode after going Off Hook and latched at $\boxed{D1}$ key entry. This is the condition under $\boxed{Mode Select} = V_{DD}$.

• Tone Mode Operation

Tone mode is defined by the initial mode after going Off Hook and latched at D1 key entry. This condition is under Mode Select = V_{ss} .

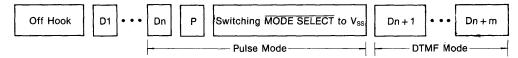
Manual Dialing with Automatic Access Pause


Multiple Pause key entries can be accepted and stored in the redial memory, each as a digit. Each P key provides 3.5 seconds pause time, but P key entry as first digit after going Off Hook is ignored. \blacksquare key can also be used as pause key in pulse mode. Pause (s) can be cancelled with P, or RD key during pause time in redialing. D = Any numeric key.

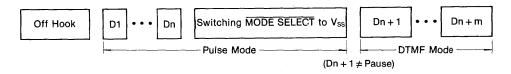
Redialing

Up to 32 digits can be dialed with \overline{RD} key. \overline{RD} key is disabled while pulse or DTMF signals are transmitted. When more then 32 digits are stored, redial is also inhibited. # key can be used as \overline{RD} key in pulse mode.

• Inhibiting Redial



Redial can be inhibited by depressing RD RD keys after DTMF or pulse signals are transmitted.


2. PULSE/TONE SWITCHABLE OPERATION

Mode Switching by MODE SELECT Input

Pulse mode is initially defined $\overline{\text{MODE SELECT}} = V_{DD}$, mode switching to DTMF can be accepted by $\overline{\text{MODE}}$ SELECT = V_{SS}, DTMF mode will be set up after pulse mode is finished. In this mode, digits $\overline{Dn+1}$... $\overline{Dn+m}$ are transmitted from Tone Out as DTMF signals by depressing corresponded keys.

If no P key is contained serially before or after mode switching, following condition is obtained.

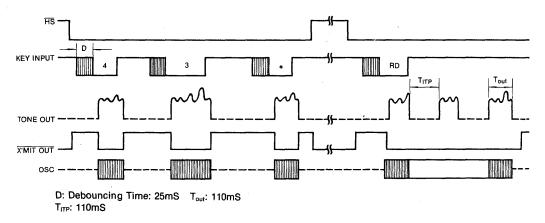
If digit $\underline{Dn+1}$ is depressed after pulse mode is finished, DTMF mode will be set up after last pulse signal (\underline{Dn}) is generated. In this mode, digits $\underline{Dn+1}$... $\underline{Dn+m}$ are transmitted from Tone Out as DTMF signals by depressing corresponded keys. If digit $\underline{Dn+1}$ is depressed during dialing pulse signals. When DTMF mode is set up Hold State will be set up after last pulse signal \underline{Dn} is finished. MODE OUT will flash to indicate this Hold State $\underline{Dn+1}$... $\underline{Dn+m}$ are stored in redial memory as DTMF DATA and not transmitted from Tone Out. When it is ready to transmit DTMF data in redial memory, RD or P keys is depressed to reset this Hold State and $\underline{Dn+1}$... $\underline{Dn+m}$ data are serially transmitted.

Single Tone Operation in DTMF Mode (Test mode)

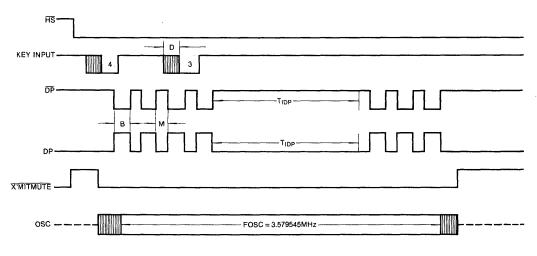
 The M/B pin is used to trig the chip into test made by applying a positive or negative pulse after "Off Hook." Test mode is sustained until On Hook. The single tone is shown in the following table which contrast with normal mode.

Normai mode

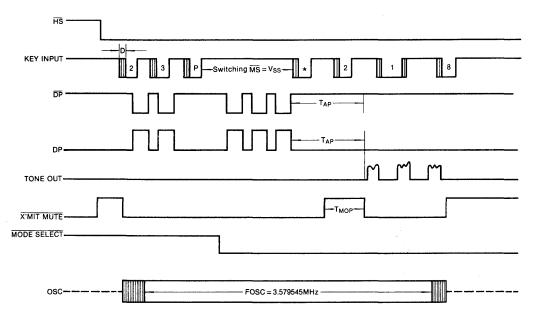
R1	1	2	3
R2	4	5	6
R3	7	8	9
R4	. *	0	#
	C1	C2	C3


Single tone mode

R1	R1	C2	C3
R2	C1	C2	R2
R3	R3	C2	C3
R4	C1	R4	C3
	C1	C2	C3


2. Single tone can be generated by simultaneously depressing two digit keys in the appropriate Row and Column. If two digit keys, not in the same Row or Column, the dual tone disabled and no output is provided.

TONE MODE TIMING (MODE SELECT = V_{ss})

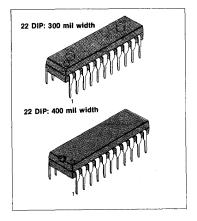


PULSE MODE TIMING (MODE SELECT = VDD)

D: Debouncing Time: 25mS T_{IDP}: Inter Digit Pause: 879mS

TIMING DIAGRAM (for Switching Mode Operation by MODE SELECT Input)

TAP: Auto Pause Time 3.5sec

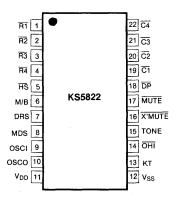


10 MEMORY TONE/ PULSE REPERTORY DIALER

The KS5822, a CMOS digital LSI, is a 10 number by 16 digit tone/pulse switchable dialer, with 32 digit redial memory. Through pin selection, switching from pulse to tone mode, 10 or 20pps and make/break ratio can be done.

FEATURES

- 32 digit redial memory with buffer
- 10 No × 16 digit repertory memory
- Tone/Pulse switchable via slide switch with multiple auto access pause (3.5 sec)
- Uses inexpensive TV crystal (3.579545MHz)
- Make/Break ratio pin selectable (1/2, 2/3)
- Dialing pulse rate pin selectable 10pps/20pps
- Two key single tone operation
- Redial memory cascadable with normal dialing
- Fully debounced 4 × 4 keyboard
- Low voltage operating: 2.0 ~ 5.5V
- · Low standby current
- · Includes power on reset function
- Minimum tone duration: 110mS
- Minimum interdigit tone pause time: 110mS



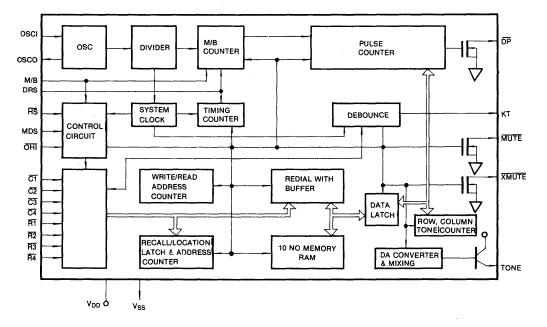
ORDERING INFORMATION

Device	Package	Operating Temperature
KS5822N	300 mil Width	00 70%0
KS5822E	400 mil Width	-20 ~ +70°C

PIN CONFIGURATION

ARRANGEMENT OF KEYBOARD

1	2	3	ST	ST : Store
4	5	6	R/L	R/L: Recall/Location
7	8	9	Ρ	P : Pause
*	0	#	RD	RD : Redial


PIN DESCRIPTION

Pin	Name	Description			
1-4 19-22	R1-R4 C1-C4	Keyboard Input These inputs can be interfaced to an XY matrix keyboard.			
5	ĦS	Hook Switch Input. $V_{DD} = On$ Hook, $V_{SS} = Off$ Hook			
6	M/B	Make/Break Ratio Select. $V_{DD} = 1:2$ (M/B), $V_{SS} = 2:3$ (M/B)			
7	DRS	Dial Pulse Ratio Select $V_{DD} = 20$ pps, $V_{SS} = 10$ pps			
8	MDS	Mode Select. $V_{DD} =$ Pulse mode, $V_{SS} =$ Tone mode			
9	OSC IN				
10	OSC OUT	Oscillator Input/Output			
11	V _{DD}	Power.			
12	V _{ss}	This device is designed to operate on 2.0V to 5.5V			
13	КТ	Key In Tone Output. (In Pulse & Tone Mode) $f_{KT} = 1.785$ KHz, $t_{KT} = 36.6$ mS			
14	ОНТ	On Hook Store Inhibitive Input. $V_{DD} =$ Store available, $V_{SS} =$ Inhibitive store function			
15	TONE	DTMF Signal Output			
16	XMUTE	XMUTE Output. This is a N-channel open drain output. Operating pulse and tone mode.			
17	MUTE	MUTE Output. Operating only pulse mode.			
18	DP	Dial Pulse Output. (N-chnanel open drain)			

E

BLOCK DIAGRAM

TONE DURATION & PAUSE

Characteristic	Symbol	Тур	Unit
Tone Duration	TD	110	mS
Minimum Pause	I _{TP}	110	mS

TONE FREQUENCIES

Input	Specified	Actual	% Error		
R1	697	699.1	+ 0.31		
R2	770	766.2	- 0.49		
R3	852	847.4	- 0.54		
R4	941	948.0	+ 0.74		
C1	1,209	1,215.9	+ 0.57		
C2	1,336	1,331.7	+ 0.32		
C3	1,477	1,471.8	- 0.35		

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristics	Symbol	Value	Unit	
Supply Voltage	V _{DD}	-0.3~6.0	V	
Input Voltage	V _{IN}	$-0.3 \sim V_{DD} + 0.3$	v	
Output Voltage	Vout	$-0.3 \sim V_{DD} + 0.3$	v	
Operating Temperature	Ta	- 20 ~ + 70	°C	
Storage Temperature	T _{stg}	- 55 ~ + 150	°C	
Power Dissipation	Po	500	mW	

ELECTRICAL CHARACTERISTICS

($V_{DD} = 3.5V$, $V_{SS} = 0V$, $f_{OSC} = 3.579545MHz$, Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Voltage	V _{DD}		2.0		5.5	v
Memory Retention Voltage	V,		1.0			V
	IDDP	Pulse Mode, all outputs unloaded			0.5	mA
Operating Supply Current	IDDT	Tone Mode, all outputs unloaded			1.0	mA
Oton dhu Ourrent	I _{DD1}	$\overline{H_s} = V_{DD} = 1.0V$, all outputs unloaded		0.03	0.05	μA
Standby Current	I _{DD2}	$H_s = V_{ss}$, all outputs unloaded		30	50	μA
Output Sink Current	loL1	$V_{OL} = 0.4V$	1.7	5.0		mA
(DP, XMUTE, MUTE)	I _{OL2}	$V_{OL} = 0.4V, V_{DD} = 2.5V$	0.5	1.5		mA
Koy In Tone Current	I _{онк}	V _{OH} = 0.4V	1.7	5.0		mA
Key In Tone Current	IOHL	V _{OL} = 3.0V	1.8	5.2		mA
Input Voltage (R1-R4, C1-C4,	ViH		0.8V _{DD}		V _{DD}	V
HS, MDS, M/B, DRS)	VIL		V _{ss}		$0.2V_{\text{DD}}$	V
Input Current	Iн	$V_{IN} = V_{SS}$			116	μA
(R1-R4, C1-C4)	h.	$V_{\rm IN} = V_{\rm SS}, \ V_{\rm DD} = 2.5 V$			50	μA
Row Tone Level	V _{TH}	$V_{DD} = 3.5V, R_L = 5K\Omega$	- 14		- 11	dBV
Now Tone Level	VTL	$V_{DD} = 2.5V, R_L = 5K\Omega$	- 16		- 12	
Ratio of Column to Row Tone	dB _{cr}		1	2	3	dB
Distortion	THD				7	%
Valid Key Entry Time	T _{KD}			9.1	19.1	mS
Pause Time	t _{pa}			3.51		sec

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min		Мах	Unit				
Dulas Interdigit Daviss Time	t _{iDP1}	DRS = V _{ss} , 10pps		805.6						
Pulse Interdigit Pause Time	t _{IDP2}	$DRS = V_{DD}$, 20pps		402.8		mS				
Tone Interdigit Pause Time	t _{IDT}			109.8		mS				
Minimum Tone Duration	t _{TD}			109.8		mS				
Minimum Key In Tone Duration	t _{кт}			36.6		mS				
Key In Tone Frequency	f _{кт}			1.785		KHz				
	t _{M/B}	DRS = V_{ss} , M/B = V_{DD} , 10pps		34.33 68.66		mS				
Make/Break Time		t _{M/B}	t _{M/B}	t _{M/B}	t _{M/B}	t _{M/B}	DRS = V _{ss} , M/B = V _{ss} , 10pps		41.19 61.79	
Make/Break Time	t _{M/B}	$DRS = V_{DD}, M/B = V_{DD}, 20pps$		17.17 34.33		mS				
		$DRS = V_{DD}, M/B = V_{SS}, 20pps$		20.60 30.90		mS				

KEY DESCRIPTION

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 KEYS

These are Tone/Pulse dialing signal keys in normal state but their entry right after store mode or recall mode provides store memory location.

• *, # KEYS

These are served as dialing signal at tone mode. But during pulse mode * key modulates pause and # key redials.

• PAUSE KEY

Pause key is stored in RAM as a digit and while this digit is processed no dialing can be operated. During the pause time (3.51 sec) no output is generated.

REDIAL KEY

The redial key is valid only when it is pressed as the 1st key after OFF-HOOK operation.

RECALL/LOCATION KEY

Location or recall number selection is enabled by detecting R/L key input.

STORE KEY

If the ST key is allowed when the dialer is set to the corresponding condition, pressing the ST key will change the dialer into the ST mode.

The ST mode is released after the memory transfer operation is executed. This pin is a master control key. The dialing sequence will be interrupted when the key is activated.

CMOS INTEGRATED CIRCUIT

OPERATION OF TONE/PULSE

SYMBOL DEFINITION

- T/p = Tone Mode t/P = Pulse Mode
- Dp = Pulse Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 Keys
- Dt = Tone Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, #
- Dm = Memory Location
- R/l = R/L Key for Recalling
- r/L = R/L Key for Location
- RD = Redial Key
- P = Pause Key
- ST = Store Key
- Conv = Conversation Mode

NORMAL DIALING IN PULSE MODE

Off Hook, t/P; Dp1, Dp2, Dpn; Conv; On Hook

NORMAL DIALING IN TONE MODE

Off Hook, T/p; Dt1, Dt2, Dtn; Conv; On Hook

NORMAL DIALING IN PULSE TO TONE MODE

Off Hook, t/P; Dp1, Dp2, Dpn; T/p; Dt1, Dt2, Dtn; Conv; On Hook

REDIALING

Off Hook; RD; Conv; On Hook Note: More than 33 digit in redial memory inhibits redial function and RD input after Off Hook is ignored.

STORING A NUMBER FOR PULSE MODE

1) OHI = Low

Off Hook, t/P; ST; Dp₁, Dp₂, Dpn; r/L; Dm; On Hook (Return to Normal Mode)

2) OHI = High

On Hook, t/P; ST; Dp₁, Dp₂, Dpn; r/L; Dm; (Return to Normal Mode)

STORING A NUMBER FOR PULSE-TO-TONE MIXED DIALING

On (Off) Hook (By Condition), t/P; ST; Dp₁, Dp₂, Dpn; T/p; Dt₁, Dt₂, Dtn; r/L; Dm; On Hook (Return to Normal Mode)

STORING A NUMBER FOR TONE MODE

On (Off) Hook (By Condition), T/p; ST; Dt₁, Dt₂, Dtn; r/L; Dm; On Hook (Return to Normal Mode) Note: The tone data is a one digit in tone mode and the device provides 31 digit redial memory and 15 digit storing memory in tone mode.

A NUMBER REPERTORY DIALING

Off Hook; R/I; Dm; Conv; On Hook

REPERTORY DIALING FOR CASCADED MEMORIES

Off Hook; R/l; Dm;; R/l, Dm; Conv; On Hook

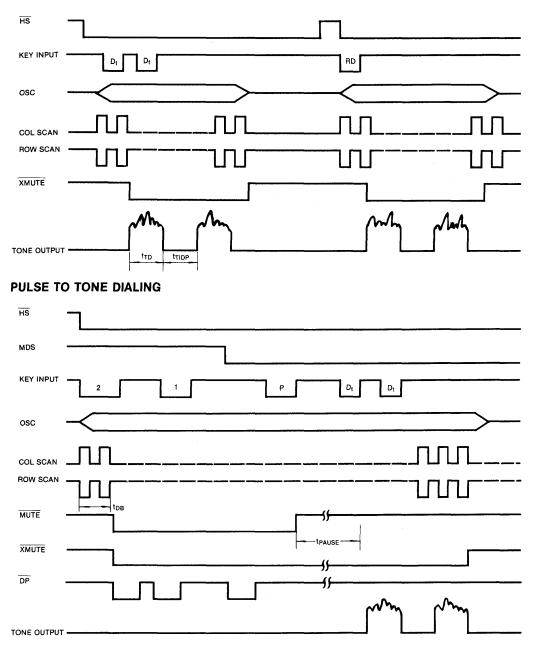
Note: If cascade number exceeds 32 digits, the next digit is ignored. The number cannot be redialed by being truncated.

TONE GENERATOR

Single tone generated consists of 14 level and 28 segments. It's column tone output is 2dB pre-emphasized than row tone output.

TIMING DIAGRAM

PULSE MODE



KS5822

CMOS INTEGRATED CIRCUIT

TONE MODE

.

10 MEMORY TONE/ PULSE REPERTORY DIALER

The KS5823 series, a CMOS digital LSI, is a 10 number by 16 digit tone/pulse switchable dialer, with 32 digit redial memory. Through pin selection, switching from pulse to tone mode and make/break ratio can be done.

FEATURES

- · 32 digit redial memory with buffer
- 10 No × 16 digit repertory memory
- Tone/Pulse switchable via slide switch with multiple auto access pause (3.5 sec)
- Uses inexpensive TV crystal (3.579545MHz)
- Make/Break ratio pin selectable (1/2, 2/3)
- Two key single tone operation
- · Redial memory cascadable with normal dialing
- Fully debounced 4 × 4 keyboard
- Low voltage operating: $2.0 \sim 5.5 V$
- · Low standby current
- Includes power on reset function
- Minimum tone duration: 110mS
- Minimum interdigit tone pause time: 110mS

ORDERING INFORMATION

Device	PPS	Storage Mode	Operating Temperature
KS58A23N	10pps	Off Hook Only	
KS58B23N	20pps	On/Off Hook	
KS58C23N	10pps	On/Off Hook	$-20 \sim +70^{\circ}C$
KS58D23N 20p	20pps	Off Hook Only	

PIN CONFIGURATION

ARRANGEMENT OF KEYBOARD

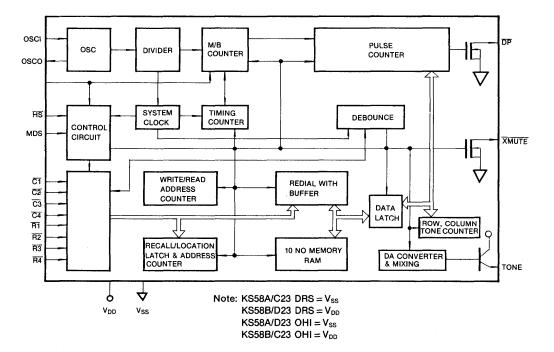
1	2	3	ST
4	5	6	R/L
7	8	9	Р
*	0	#	RD

ST : Store

R/L: Recall/Location

P : Pause RD : Redial

PIN DESCRIPTION


Pin	Name	Description
1-4 15-18	R1-R4 C1-C4	Keyboard Input These inputs can be interfaced to an XY matrix keyboard.
5	ĦŠ	Hook Switch Input. $V_{DD} = On Hook, V_{SS} = Off Hook$
6	M/B	Make/Break Ratio Select. $V_{DD} = 1:2$ (M/B), $V_{SS} = 2:3$ (M/B)
7	MDS	Mode Select. V _{DD} = Pulse mode, V _{SS} = Tone mode
8	OSC IN	
9	OSC OUT	- Oscillator Input/Output
10	V _{DD}	Power.
11	V _{ss}	This device is designed to operate on 2.0V to 5.5V
12	TONE	DTMF Signal Output.
13	XMUTE	XMUTE Output. This is a N-channel open drain output.
14	DP	Dial Pulse Output. (N-chnanel open drain)

KS5823

CMOS INTEGRATED CIRCUIT

BLOCK DIAGRAM

TONE DURATION & PAUSE

Characteristic	Symbol	Тур	Unit
Tone Duration	TD	110	mS
Minimum Pause	ITP	110	mS

TONE FREQUENCIES

Input	Specified	Actual	% Error
R1	697	699.1	+ 0.31
Ř2	770	766.2	- 0.49
R3	852	847.4	- 0.54
R4	941	948.0	+ 0.74
C1	1,209	1,215.9	+ 0.57
C2	1,336	1,331.7	+ 0.32
C3	1,477	1,471.8	- 0.35

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristics	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 ~ 6.0	V
Input Voltage	VIN	$-0.3 \sim V_{DD} + 0.3$	V
Output Voltage	VOUT	$-0.3 \sim V_{DD} + 0.3$	V
Operating Temperature	Ta	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	- 55 ~ + 150	°C
Power Dissipation	PD	500	mW

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.5V, V_{SS} = 0V, f_{OSC} = 3.579545MHz, Ta = 25$ °C, unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
Operating Voltage	V _{DD}		2.0		5.5	V
Memory Retention Voltage	V,		1.0			V
Opporting Supply Current	IDDP	Pulse Mode, all outputs unloaded			0.5	mA
Operating Supply Current	IDDT	Tone Mode, all outputs unloaded			1.0	mA
Standby Ourrant	I _{DD1}	$\overline{HS} = V_{DD} = 1.0V$, all outputs unloaded		0.03	0.05	μA
Standby Current	I _{DD2}	$\overline{HS} = V_{SS}$, all outputs unloaded		30	50	μA
Output Sink Current	I _{OL1}	V _{OL} = 0.4V	1.7	5.0		mA
(DP, XMUTE)	I _{OL2}	$V_{OL} = 0.4V, V_{DD} = 2.5V$	0.5	1.5		mA
Input Voltage (R1-R4, C1-C4,	VIH		$0.8V_{DD}$		V _{DD}	V
HS, MDS, M/B)	V _{IL}		Vss		$0.2V_{DD}$	V
Input Current	1 _{IH}	V _{IN} = V _{SS}			116	μA
(R1-R4, C1-C4)	I _{IL}	$V_{\rm IN} = V_{\rm SS}, \ V_{\rm DD} = 2.5 V$			50	μA
Dow Tono Loval	VTH	$V_{DD} = 3.5V, R_L = 5K\Omega$	- 14		- 11	ADV
Row Tone Level	VTL	$V_{DD} = 2.5V, R_L = 5K\Omega$	- 16		- 12	dBV
Ratio of Column to Row Tone	dB _{cr}		1	2	3	dB
Distortion	THD				7	%
Valid Key Entry Time	T _{KD}			9.1	19.1	mS
Pause Time	t _{pa}			3.51		sec

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Pulse Interdigit Pause Time	t _{IDP1}	(KS58A/C23)		805.6		
	t _{IDP2}	(KS58B/D23)		402.8		- mS
Tone Interdigit Pause Time	t _{IDT}			109.8		mS
Minimum Tone Duration	t _{TD}			109.8		mS
		M/B = V _{DD} , KS58A/C23		34.33 68.66		mS
Make/Break Time	t _{M/B}	M/B = V _{ss} , KS58A/C23		41.19 61.79		mS
Make/Break Time		$M/B = V_{DD}, KS58B/D23$		17.17 34.33		mS
	t _{M/B}	M/B = V _{SS} , KS58B/D23		20.60 30.90		mS

KEY DESCRIPTION

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 KEYS

These are Tone/Pulse dialing signal keys in normal state but their entry right after store mode or recall mode provides store memory location.

• *, # KEYS

These are served as dialing signal at tone mode. But during pulse mode * key modulates pause and # key redials.

PAUSE KEY

Pause key is stored in RAM as a digit and while this digit is processed no dialing can be operated. During the pause time (3.51 sec) no output is generated.

• REDIAL KEY

The redial key is valid only when it is pressed as the 1st key after OFF-HOOK operation.

RECALL/LOCATION KEY

Location or recall number selection is enabled by detecting R/L key input.

STORE KEY

If the ST key is allowed when the dialer is set to the corresponding condition, pressing the ST key will change the dialer into the ST mode.

The ST mode is released after the memory transfer operation is executed. This pin is a master control key. The dialing sequence will be interrupted when the key is activated.

OPERATION OF TONE/PULSE

• SYMBOL DEFINITION

- T/p = Tone Mode t/P = Pulse Mode
- Dp = Pulse Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 Keys
- Dt = Tone Data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, #
- Dm = Memory Location
- R/l = R/L Key for Recalling
- r/L = R/L Key for Location
- RD = Redial Key
- P = Pause Key
- ST = Store Key
- Conv = Conversation Mode

CMOS INTEGRATED CIRCUIT

• NORMAL DIALING IN PULSE MODE

Off Hook, t/P; Dp1, Dp2, Dpn; Conv; On Hook

NORMAL DIALING IN TONE MODE

Off Hook, T/p; Dt1, Dt2, Dtn; Conv; On Hook

• NORMAL DIALING IN PULSE TO TONE MODE

Off Hook, t/P; Dp₁, Dp₂, Dpn; T/p; Dt₁, Dt₂, Dtn; Conv; On Hook

• REDIALING

Off Hook; RD; Conv; On Hook Note: More than 33 digit in redial memory inhibits redial function and RD input after Off Hook is ignored.

STORING A NUMBER FOR PULSE MODE

 OHI = Low (KS58A/D23)
 Off Hook, t/P; ST; Dp₁, Dp₂, Dpn; r/L; Dm; On Hook (Return to Normal Mode)

2) OHI = High (KS58B/C23)

On Hook, t/P; ST; Dp₁, Dp₂, Dpn; r/L; Dm; (Return to Normal Mode)

STORING A NUMBER FOR PULSE-TO-TONE MIXED DIALING

On (Off) Hook (By Condition), t/P; ST; Dp₁, Dp₂, Dpn; T/p; Dt₁, Dt₂, Dtn; r/L; Dm; On Hook (Return to Normal Mode)

STORING A NUMBER FOR TONE MODE

On (Off) Hook (By Condition), T/p; ST; Dt₁, Dt₂, Dtn; r/L; Dm; On Hook (Return to Normal Mode) Note: The tone data is a one digit in tone mode and the device provides 31 digit redial memory and 15 digit storing memory in tone mode.

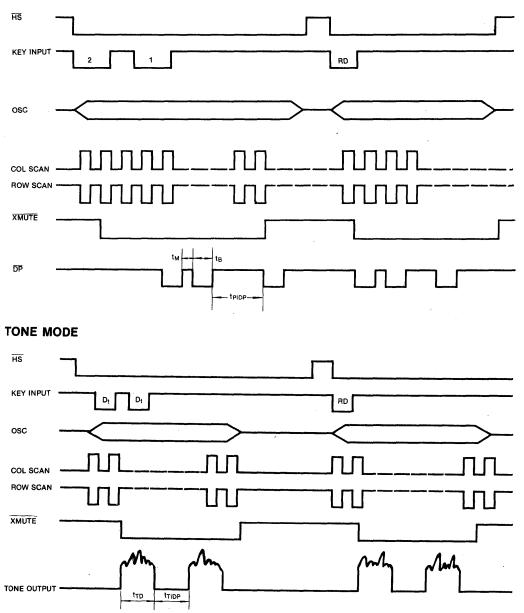
A NUMBER REPERTORY DIALING

Off Hook; R/I; Dm; Conv; On Hook

REPERTORY DIALING FOR CASCADED MEMORIES

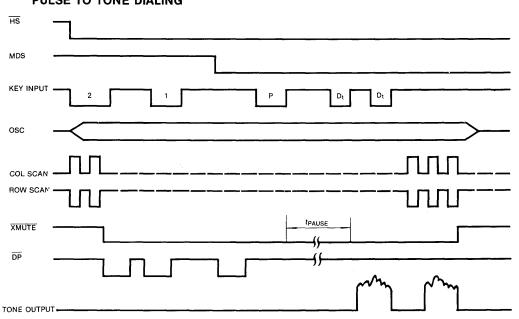
Off Hook; R/l; Dm;; R/l, Dm; Conv; On Hook Note: If cascade number exceeds 32 digits, the next digit is ignored. The number cannot be redialed by being truncated.

TONE GENERATOR


Single tone generated consists of 14 level and 28 segments. It's column tone output is 2dB pre-emphasized than row tone output.

KS5823

TIMING DIAGRAM


PULSE MODE

٠,

CMOS INTEGRATED CIRCUIT

PULSE TO TONE DIALING


3

.

UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER

The KS5824 UART, is a Si-gate CMOS IC which provides the data formatting and control to interface serial asynchronous data communications between main system and subsystems.

The bus interface of the KS5824 includes select, enable, read/write, interrupt and bus interface logic to allow data transfer over an 8-bit bidirectional data bus. The parallel data of the bus system is serially, transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the UART is programmed via the data bus during system initialization. A program mable control register provides variable word lengths, clock division ratios, transmit control, receive control, and interrupt control. For peripheral or modem operation, three control lines are provided. Exceeding Low Power dissipation is realized due to adopting CMOS process.

Operating Temperature

-20 ∼ +75°C

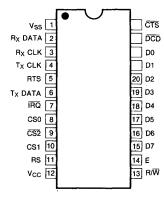
FEATURES

- · Low-power, high-speed, CMOS process
- · Serial/parallel conversion of data
- 8-and 9-bit transmission
- · Optional even and odd parity
- · Parity, overrun and framing error checking
- · Programmable control register
- Optional ÷ 1, ÷ 16, and ÷ 64 clock modes
- · Peripheral/modem control functions
- Double buffered
- One-or two-stop bit operation

BLOCK DIAGRAM

DATA TRANSMIT TRANSMITTER BUS DATA BUS DATA BUFFERS RECEIVE RECEIVER DATA ADDRESS SELECTION CONTROL AND CONTROL AND INTERRUPT PERIPHERAL/MODEM CONTROL

PIN CONFIGURATION


ORDERING INFORMATION

Package

24 DIP

Device

KS5824N

194

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc} *	-0.3 to +7.0	v
Input Voltage	V _{IN} *	-0.3 to +7.0	V
Maximum Output Current	lo**	10	mA
Operating Temperature	T _{oor}	– 20 to + 75	°C
Storage Temperature	T _{stg}	– 55 to + 150	°C

* With respect to V_{SS} (SYSTEM GND)

** Maximum output current is the maximum current which can flow out from one output terminal or I/O common terminal ($D_0 \sim D_7$, \overline{RTS} , T_X Data, \overline{IRQ}).

Note: Permanent IC damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions are exceeded, it could affect reliability of IC.

RECOMMENDED OPERATING CONDITIONS

	Characteristic	Symbol	Min	Тур	Max	Unit
Supply Voltage		V _{cc} *	4.5	5.0	5.5	V
Input "Low" Vo	oltage	V _{1L} *	0	_	0.8	v
Input "High"	$D_0 \sim D_7$, RS, T _X CLK, DCD, CTS, R _X Data		2.0	_	V _{cc}	
Voltage	CS_0 , $\overline{CS_2}$, CS_1 , R/\overline{W} , E, R_X CLK	$\frac{V_{IL}^{\star}}{\overline{S_{2}}, CS_{1}, R/\overline{W}, E, R_{X} CLK} \frac{V_{IL}^{\star}}{V_{IH}^{\star}} \frac{0}{2.2} - \frac{0.8}{V_{CC}}$	V _{cc}	V		
Operating Tem	perature	T _{opr}	- 20	25	75	°C

* With respect to Vss (SYSTEM GND)

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS ($V_{cc} = 5V \pm 5\%$, $V_{ss} = 0V$, $Ta = -20 \sim +75$ °C, unless otherwise noted.)

Charac	teristic	Symbol	Test Conditions	Min	Тур	Max	Unit
· · · · · · · · · · · ·	$D_0 \sim D_7$, RS, T _x CLK, DCD, CTS, R _x Data			2.0		V _{cc}	v
Input "High" Voltage	CS_0 , \overline{CS}_2 , CS_1 , R/\overline{W} , E, R_X CLK	ViH		2.2		V _{cc}	V
Input "Low" Voltage	All inputs	VIL		- 0.3		0.8	V
Input Leakage Current	R/\overline{W} , CS_0 , CS_1 , \overline{CS}_2 , E	l _{in}	$V_{IN} = 0 \sim V_{CC}$	- 2.5		2.5	μA
Three-State (Off State) Input Current	$D_0 \sim D_7$	I _{TSI}	$V_{\rm IN} = 0.4 \sim V_{\rm CC}$	- 10		10	μA
	$D_0 \sim D_7$	V	I _{он} = ~ 205µА	2.4			v
Output "High" Voltage	T _x data, RTS	V _{он}	$I_{OH} = -100\mu A$	2.4			
Output "Low" Voltage	All outputs	Vol	I _{он} = 1.6mA			0.4	V

DC CHARACTERISTICS (Continued)

Characteristic		Symbol	Test Conditions	Min	Тур	Max	Unit
Output Leakage Current (Off State)	ĪRQ	ILOH	V _{OH} = V _{CC}		-	10	μA
	$D_0 \sim D_7$			_	-	12.5	
Input Capacitance	pacitance $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$V_{IN} = 0V, Ta = 25^{\circ}C, f = 1.0MHz$	-	_	7.5	pF
RTS, T _x Data		0	$V_{1N} = 0V, Ta = 25^{\circ}C$			10	pF
Output Capacitance	IRQ	Cout	f = 1.0MHz	_	-	5.0	μr
	 Under transmitting and receiving operation 500 kbps 		E = 1.0MHz	_	-	3	
			E = 1.5MHz	_	-	4	mA
	• Data bus in R/W operation		E = 2.0MHz	_	-	5	1
Supply Current	Chip is not selected 500 kbps	Icc	E = 1.0MHz	_	-	200	
	 Under non transmitting and receiving operation Input level (Except E) 		E = 1.5MHz	-		250	μA
	V_{IH} min = $V_{CC} - 0.8V$ V_{IL} max = 0.8V		E = 2.0MHz		_	300	

AC CHARACTERISTICS ($V_{cc} = 5.0V \pm 5\%$, $V_{ss} = 0V$, $Ta = -20 \sim +75$ °C, unless otherwise noted.)

1. TIMING OF DATA TRANSMISSION

Characteristic		Symbol	Test Conditions	Min	Max	Unit
	÷1 Mode			900		ns
Minimum Clock Pulse Width	÷ 16, ÷ 64 Modes	PW _{CL}	Fig. 1	600	-	ns
	÷1 Mode	DIA	E E La O	900	_	ns
	÷ 16, ÷ 64 Modes	PW _{CH}	Fig. 2	600	_	ns
	÷1 Mode	f _c			500	KHz
Clock Frequency	÷ 16, ÷ 64 Modes			-	800	KHz
Clock-to-Data Delay for Transm	hitter	t _{TDD}	Fig. 3	_	600	ns
Receive Data Setup Time	÷1 Mode	t _{RDSU}	Fig. 4	250	_	ns
Receive Data Hold Time	÷1 Mode	t _{RDH}	Fig. 5	250	—	ns
IRQ Release Time		t _{iR}	Fig. 6	_	1200	ns
RTS Delay Time		t _{RTS}	Fig. 6	-	560	ns
Rise Time and Fall Time Except E		t _r , t _f		_	1000*	ns

* 1.0 μ s or 10% of the pulse width, whichever is smäller.

2. BUS TIMING CHARACTERISTICS

1) READ

Characteristic	Symbol	Test Conditions	Min	Max	Unit
Enable Cycle Time	t _{cyc} E	Fig. 7	1000		ns
Enable "High" Pulse Width	PWEH	Fig. 7	450		ns
Enable "Low" Pulse Width	PWEL	Fig. 7	430		ns
Setup Time, Address and R/\overline{W} Valid to Enable Positive Transition	t _{AS}	Fig. 7	80	-	ns
Data Delay Time	t _{DDR}	Fig. 7	_	290	ns
Data Hold Time	t _H	Fig. 7	20	100	ns
Address Hold Time	t _{AH}	Fig. 7	10		ns
Rise and Fall Time for Enable Input	t _{Er} , t _{Ef}	Fig. 7	_	25	ns

2) WRITE

Characteristic	Symbol	Test Conditions	Min	Max	Unit	
Enable Cycle Time	t _{cyc} E	Fig. 8	1000		ns	
Enable "High" Pulse Width	PWEH	Fig. 8	450		ns	
Enable "Low" Pulse Width	PW _{EL}	Fig. 8	430	_	ns	
Setup Time, Address and R/W Valid to Enable Positive Transition	t _{AS}	Fig. 8	80	_	ns	
Data Setup Time	t _{DSW}	Fig. 8	165	_	ns	
Data Hold Time	t _H	Fig. 8	10	_	ns	
Address Hold Time	t _{AH}	Fig. 8	10	_	ns	
Rise and Fall Time for Enable Input	t _{Er} , t _{Ef}	Fig. 8		25	ns	

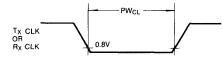


Fig. 1 Clock Pulse Width, "Low" State

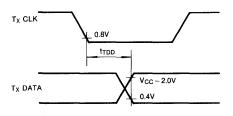


Fig. 3 Transmit Data Output Delay

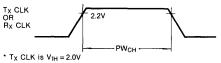


Fig. 2 Clock Pulse Width, "High" State

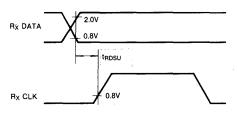


Fig. 4 Receive Data Setup Time (+1 Mode)

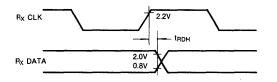


Fig. 5 Receive Data Hold Time (+1 Mode)

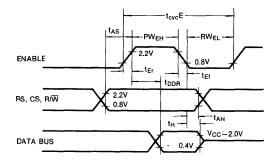
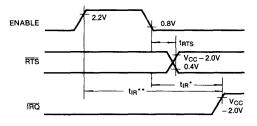



Fig. 7 Bus Read Timing Characteristics (Read information from UART)

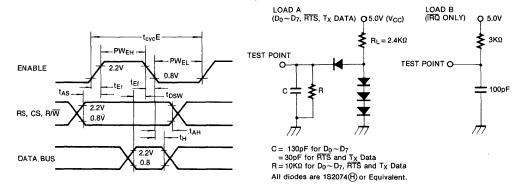
* (1) \overline{IRQ} Release Time applied to R_{X} Data Register read operation.

(2) \overline{IRQ} Release Time applied to $T_{\boldsymbol{X}}$ Data Register write operation

(3) \overline{IRQ} Release Time applied to control Register write TIE = 0, RIE = 0 operation.

- ** IRQ Release Time applied to R_x Data Register read operation right after read status register, when IRQ is asserted by DCD rising edge.
- Note: Note that following take place when IRQ is asserted by the detection of transmit data register empty status. IRQ is released to "High" asynchronously with E signal when CTS goes "High". (Refer to Figure 14)

Fig. 6 RTS Delay and IRQ Release Time



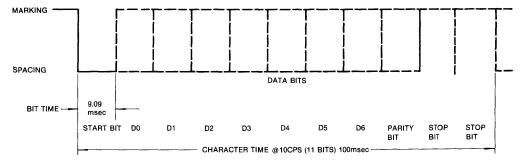
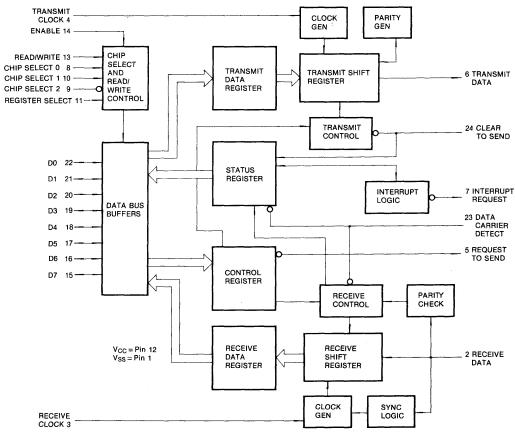

Fig. 8 Bus Write Timing Characteristics (Write information into UART)

Fig. 9 Bus Timing Test Loads



CMOS INTERGRATED CIRCUIT

DEVICE OPERATION

At the bus interface, the UART appears as two addressable memory locations. Internally, there are four registers: two read-only and two write-only registers. The read-only registers are Status and Receive Data; the write-only registers are Control and Transmit Data. The serial interface consists of serial input and output lines with independent clocks, and three peripheral/modem control lines.

POWER ON/MASTER RESET

The master reset (CR0, CR1) should be set during system initialization to insure the reset condition and prepare for programming the UART functional configuration when the communications channel is required. During the first master reset, the IRQ and RTS outputs are held at level 1. On all other master resets, the RTS output can be programmed high or low with the IRQ output held high. Control bits CR5 and CR6 should also be programmed to define the state of RTS whenever master reset is utilized. The UART also contains internal power-on reset logic to detect the power line turn-on transition and hold the chip in a reset state to prevent erroneous output transitions prior to initialization. This circuitry depends on clean power turn-on transitions. The power-on reset is released by means of the busprogrammed master reset which must be applied prior to operating the UART. After master resetting the UART, the programmable Control Register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none), etc.

TRANSMIT

A typical transmitting sequence consists of reading the UART. Status Register either as a result of an interrupt or in the UART's turn in a polling sequence. A character may be written into the Transmit Data Register if the status read operation has indicated that the Transmit Data Register is empty. This character is transferred to a Shift Register where it is serialized and transmitted from the Transmit Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the Data Register, the Status Register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted (because of double buffering). The second character will be automatically transferred into the Shift Register when the first character transmission is completed. This sequence continues until all the characters have been transmitted.

RECEIVE

Data is received from a peripheral by means of the Receive Data input. A divide-by-one clock ratio is provided for an externally synchronized clock (to its data) while the divide-by-16 and 64 ratios are provided for internal synchronization. Bit synchronization in the divide-by-16 and 64 modes is initiated by the detection of 8 or 32 low samples on the receive line in the divideby-16 and 64 modes respectively. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the Status Register along with framing error, overrun error, and Receive Data Register full. In a typical receiving sequence, the Status Register is read to determine if a character has been received from a peripheral. If the Receiver Data Register is full, the character is placed on the 8-bit UART bus when a Read Data command is received from the MPU. When parity has been selected for a 7-bit word (7 bits plus parity), the receiver strips the parity bit (D7 = 0) so that data alone is transferred to the MPU. This feature reduces MPU programming. The Status Register can continue to be read to determine when another character is available in the Receive Data Register. The receiver is also double buffered so that a character can be read from the data register as another character is being received in the shift register. The above sequence continues until all characters have been received.

INPUT/OUTPUT FUNCTIONS

UART INTERFACE SIGNALS FOR MPU

The KS5824 interfaces to the MPU with an 8-bit bidirectional data bus, three chip select lines, a register select line, an interrupt request line, read/write line, and enable line. These signals permit the MPU to have complete control over the KS5824.

UART Bidirectional Data (D0-D7) — The bidirectional data lines (D0-D7) allow for data transfer between the KS5824 and the MPU. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs an UART read operation.

UART Enable (E) — The Enable signal, E, is a highimpedance TTL-compatible input that enables the bus input/output data buffers and clocks data to and from the KS5824.

Read/Write (R (\overline{W}) — The Read/Write line is a highimpedance input that is TTL compatible and is used to control the direction of data flow through the UART's input/output data bus interface. When Read/Write is high (MPU Read cycle), KS5824 output drivers are turned on and a selected register is read. When it is low, the KS5824 output drivers are turned off and the MPU writes into a selected register. Therefore, the Read/Write signal is used to select read-only or write-only registers within the KS5824.

Chip Select (CS0, CS1, \overline{CS2}) — These three highimpedance TTL-compatible input lines are used to address the KS5824. The KS5824 is selected when CS0 and CS1 are high and $\overline{CS2}$ is low. Transfers of data to and from the KS5824, are then performed under the control of the Enable Signal, Read/Write, and Register Select.

Register Select (RS) — The Register Select line is a high-impedance input that is TTL compatible. A high level is used to select the Transmit/Receive Data Registers and a low level the Control/Status Registers. The Read/Write signal line is used in conjunction with Register Select to select the read-only or write-only register in each register pair.

Interrupt Request (IRQ) — Interrupt Request is a TTLcompatible, open-drain (no internal pullup), active low output that is used to interrupt the MPU. The IRQ output remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the UART is set. The IRQ status bit, when high, indicates the IRQ output is in the active state.

Interrupts result from conditions in both the transmitter and receiver sections of the UART. The transmitter section causes an interrupt when the Transmitter Interrupt Enabled condition is selected (CR5•CR6), and the Transmit Data Register Empty (TDRE) status bit is high. The TDRE status bit indicates the current status of the Transmitter Data Register except when inhibited by Clear-to-Send (CTS) being high or the UART being maintained in the Reset condition. The interrupt is cleared by writing data into the Transmit Data Register. The interrupt is masked by disabling the Transmitter Interrupt via CR5 or CR6 or by the loss of CTS which inhibits the TDRE status bit. The Receiver section causes an interrupt when the Receiver Interrupt Enable is set and the Receive Data Register Full (RDRF) status bit is high, an Overrun has occurred, or Data Carrier Detect (DCD) has gone high. An interrupt resulting from the RDRF status bit can be cleared by

reading data or resetting the UART. Interrupts caused by Overrun or loss of DCD are cleared by reading the status register after the error condition has occurred and then reading the Receive Data Register or resetting the UART. The receiver interrupt is masked by resetting the Receiver Interrupt Enable.

CLOCK INPUTS

Separate high-impedance TTL-compatible inputs are provided for clocking of transmitted and received data. Clock frequencies of 1, 16, or 64 times the data rate may be selected.

Transmit Clock (T_x CLK) —The Transmit Clock input is used for the clocking of transmitted data. The transmitter initiates data on the negative transition of the clock.

Receive Clock (R_x CLK) — The Receive Clock input is used for synchronization of received data. (In the \div 1 mode, the clock and data must be synchronized externally.) The receiver samples the data on the positive transition of the clock.

SERIAL INPUT/OUTPUT LINES

Receive Data (R_x Data) — The Receive Data line is a high-impedance TTL-compatible input through which data is received in a serial format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used.

Transmit Data (T_x Data) — The Transmit Data output line transfers serial data to a modem or other peripheral.

PERIPHERAL/MODEM CONTROL

The UART includes several functions that permit limited control of a peripheral or modem. The functions included are Clear-to-Send, Request-to-Send and Data Carrier Detect.

Clear-to-Send (CTS) — This high-impedance TTLcompatible input provides automatic control of the transmitting end of a communications link via the modem Clear-to-Send active low output by inhibiting the Transmit Data Register Empty (TDRE) status bit.

Request-to-Send (RTS) — The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The RTS; output corresponds to the state of the Control Register bits CR5 and CR6. When CR6 = 0 or both CR5 and CR6 = 1, the RTS output is low (the active state). This output can also be used for Data Terminal Ready (DTR).

Data Carrier Detect (\overline{DCD}) — This high-impedance TTL-compatible input provides automatic control, such as in the receiving end of a communications link by means of a modem Data Carrier Detect output. The \overline{DCD} input inhibits and initializes the receiver section of the UART when high. A low-to-high transition of the Data Carrier Detect initiates an interrupt to the MPU to indicate the occurrence of a loss of carrier when the Receive Interrupt Enable bit is set. The Rx CLK must be running for proper \overline{DCD} operation.

UART REGISTERS

The expanded block diagram for the UART indicates the internal registers on the chip that are used for the status, control, receiving, and transmitting of data. The content of each of the registers is summarized in Table 1.

TRANSMIT DATA REGISTER (TDR)

Data is written in the Transmit Data Register during the negative transition of the enable (E) when the UART has been addressed with RS high and R/\overline{W} low. Writing data into the register causes the Transmit Data Register Empty bit in the Status Register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within 1-bit time of the training edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDRE) bit to indicate empty.

RECEIVE DATA REGISTER (RDR)

Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receive Data Register Full bit (RDRF) in the status buffer to go high (full). Data may then be read through the bus by addressing the UART and selecting the Receive Data Register with RS and R/W high when the UART is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receive Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

			Buffer Address			
Data Bus Line Number	RS • RIW Transmit Data Register	RS • R/W RS • R/W Receive Data Control Register Register		Transmit Receive Data Data Control		RS • R/W Status Register
	(Write Only)	(Read Only)	(Write Only)	(Read Only)		
0	Data Bit 0*	Data Bit 0	Counter Divide Select 1 (CR0)	Receive Data Register Full (RDRF)		
1	Data Bit 1	Data Bit 1	Counter Divide Select 2 (CR1)	Transmit Data Register Empty (TDRE)		
2	Data Bit 2	Data Bit 2	Word Select 1 (CR2)	Data Carrier Detect (DCD)		
3	Data Bit 3	Data Bit 3	Word Select 2 (CR3)	Clear-to-Send (CTS)		
4	Data Bit 4	Data Bit 4	Word Select 3 (CR4)	Framing Error (FE)		
5	Data Bit 5	Data Bit 5	Transmit Control 1 (CR5)	Receiver Overrun (OVRN)		
6	Data Bit 6	Data Bit 6	Transmit Control 2 (CR6)	Parity Error (PE)		
7	Data Bit 7***	Data Bit 7**	Receive Interrupt Enable (CR7)	Interrupt Request (IRQ)		

DEFINITION OF UART REGISTER CONTENTS

* Leading bit = LSB = Bit 0

** Data bit will be zero in 7 bit plus parity modes

*** Data bit is "don't care" in 7 bit plus parity modes.

CONTROL REGISTER

The UART Control Register consists of eight bits of write-only buffer that are selected when RS and $R\overline{W}$ are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CR0 and CR1) — The Counter Divide Select Bits (CR0 and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the UART. Additionally, these bits are used to provide a master reset for the UART which clears the Status Register (except for external conditions on CTS and \overline{DCD}) and initializes both the receiver and transmitter. Master reset does not affect other Control Register bits. Note that after power-on or a power fail/restart, these bits must be set high to reset the UART. After resetting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CRO	Function
0	0	÷1
0	1	÷ 16
1	0	÷ 64
1	1	Master Reset

Word Select Bits (CR2, CR3, and CR4) — The Word Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows;

CR4	CR3	CR2	Function
0	0	0	7 Bits + Even Parity + 2 Stop Bits
0	0	1	7 Bits + Odd Parity + 2 Stop Bits
0	1	0	7 Bits + Even Parity + 1 Stop Bit
0	1	1	7 Bits + Odd Parity + 1 Stop Bit
1	0	0	8 Bits + 2 Stop Bits
1	0	1	8 Bits + 1 Stop Bit
1	1	0	8 Bits + Even Parity + 1 Stop Bit
1	1	1	8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and Stop Bit changes are not buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6) — Two Transmitter Control bits provide for the control of the interrupt from the Transmit Data Register Empty condition, the Request-to-Send (RTS) output, and the transmission of a Break level (space). The following encoding format is used:

CR6	CR5	Function
0	0	RTS = low, Transmitting Interrupt Disabled.
0	1	RTS = low, Transmitting Interrupt Enabled.
1	0	RTS = high, Transmitting Interrupt Disabled.
1	1	RTSi: low. Transmits a Break level on the Transmit Data Output. Transmitting Interrupt Disabled.

Receive Interrupt Enable Bit (CR7) — The following interrupts will be enabled by a high level in bit position 7 of the Control Register (CR7): Receive Data Register Full Overrun or a low-to-high transition on the Data Carrier Detect (DCD) signal line.

STATUS REGISTER

Information on the status of the UART is available to the MPU by reading the UART Status Register. This readonly register is selected when RS is low and $R\overline{W}$ is high. Information stored in this register indicates the status of the Transmit Data Register, the Receive Data Register and error logic, and the peripheral/modem status inputs of the UART.

Receive Data Register Full (RDRF), Bit 0 — Receive Data Register Full indicates that received data has been transferred to the Receive Data Register. RDRF is cleared after an MPU read of the Receive Data Register or by a master reset. The cleared or empty state indicates that the contents of the Receive Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 — The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.

Data Carrier Detect (\overline{DCD}), Bit 2 — The Data Carrier Detect bit will be high when the \overline{DCD} input from a modem has gone high to indicate that a carrier is not present. This bit going high causes and Interrupt Request to be generated when the Receive Interrupt Enable is set. It remains high after the \overline{DCD} input is returned low until cleared by first reading the Status Register and then the Data Register or until a master reset occurs. If the \overline{DCD} input remains high after read

status and read data or master reset has occurred, the interrupt is cleared, the DCD status bit remains high and will follow the DCD input.

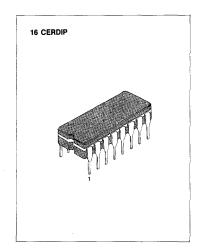
Clear-to-Send (CTS), Bit 3 — The Clear-to-Send bit indicates the state of the Clear-to-Send input from a modem. A low CTS indicates that there is a Clear-to-Send from the modem. In the high state, the Transmit Data Register Empty bit is inhibited and the Clear-to-Send status bit will be high. Master reset does not affect the Clear-to-Send status bit.

Framing Error (FE), Bit 4 — Framing error indicates that the received character is improperly framed by a start and a stop bit and is detected by the absence of the first stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receive data transfer time. Therefore, this error indicator is present throughout the time that the associated character is available.

Receiver Overrun (OVRN), Bit 5 — Overrun is an error flag the indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receive Data Register (RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the RDR having occurred. The Overrun does not occur in the Status Register until the valid character prior to Overrun has been read. The RDRF bit remains set until the Overrun is reset. Character synchronization is maintained during the Overrun condition. The Overrun indication is reset after the reading of data from the Receive Data Register or by a Master Reset.

Parity Error (PE), Bit 6 — The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.

Interrupt Request (\overline{IRQ}), Bit 7 — The \overline{IRQ} bit indicates the state of the \overline{IRQ} output. Any interrupt condition with its applicable enable will be indicated in this status bit. Anytime the \overline{IRQ} output is low the \overline{IRQ} bit will be high to indicate the interrupt or service request status. \overline{IRQ} is cleared by a read operation to the Receive Data Register or a write operation to the Transmit Data Register.

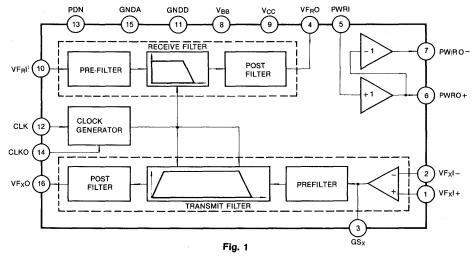

CMOS INTEGRATED CIRCUIT

PCM TRANSMIT/RECEIVE FILTER

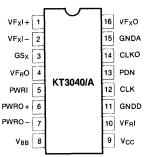
The KT3040 PCM CODEC Filter is a monolithic circuit that provides the transmit and receive filtering necessary to interface a voice telephone circuit to a time division multiplexed application in 8KHz sampling system. The device consists of two switched capacitor filters, transmit and receive, and power amplifiers which may be used to drive a transformer hybrid (2 to 4 wire converter) or an electronic hybrid (SLIC). If an electronic hybrid is used, the power amplifiers are not needed and may be deactivated to minimize power dissipation. The transmit filter is a fifth order low pass filter in series with a fourth order high pass filter. It provides a flat band pass filter which will pass frequencies between 200Hz and 3400Hz and provides rejection of the 50/60Hz power line frequency as well as the anti aliasing needed in an 8KHz sampling system. The receive filter is a low pass filter which smooths the voltage steps present in the CODEC output waveform and provides the sin x/xcorrection necessary to give unity gain in the passband for the CODEC-decoder-and-receive-filter pair.

FEATURES

- Exceeds all D3/D4 and CCITT specifications
- Low power consumption: 45 mW (0 dBm0 into 600Ω)
- 30 mW (power amps disabled)
- Power down mode: 0.5 mW
- External gain adjustment, both transmit and receive filters.
- Transmit filter includes 50/60Hz rejection
- · Receive filter includes sin x/x compensation
- Direct interface with transformer or electronic telephone hybrids
- TTL and CMOS compatible logic
- Power supplies: + 5V, 5V
- All inputs protected against static discharge due to handling
- 300 mil ceramic package available



ORDERING INFORMATION


Device	Package	Operating Temperature					
KT3040N	Plastic						
KT3040AN	Plastic	05 405%0					
KT3040J	Ceramic	– 25 ∼ + 125°C					
KT3040AJ	Ceramic						

BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit	
Supply Voltages	V _{CC} , V _{BB}	±7	v	
Power Dissipation	PD	1	W/PKG	
Input Voltage	Vin	±7	V	
Output Short-Circuit Duration	T _{S.C OUT}	Continuous	sec	
Operating Temperature Range	Та	- 25 to + 125	°C	
Storage Temperature	T _{stg}	-65 to +150	°C	
Lead Temperature (Soldering 10 seconds)	ΤL	300	°C	

DC ELECTRICAL CHARACTERISTICS

(Ta=0°C to 70°C, V_{CC}= + 5V ± 5%, V_{BB}= - 5V ± 5%, f_C= 2.048MHz, GNDA = 0V, GNDD = 0V; unless otherwise specified)

0		Tool Conditions	KT3040			1			
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
POWER CONSUMPTION			h						
V _{cc} Standby Current	Icc	PDN = High		50	400		50	100	μA
V _{BB} Standby Current	I _{BB}	PDN = High		50	400		50	100	μA
V _{cc} Operating Current	I _{CC1}	PWRI = V _{BB} , Power amp inactive		3	4		3	4	mA
V _{BB} Operating Current	I _{BB1}	PWRI = V _{BB} , Power amp inactive		3	4		3	4	mA
V _{cc} Operating Current	I _{CC2}	$R_L = 600\Omega$ connected between PWRO + and PWRO - , Input Level = 0 dBm0 (Note 1)		4.6	6.4		4.6	6.4	mA
V _{BB} Operating Current	I _{BB2}	(Note 1)		4.6	6.4		4.6	6.4	mA
DIGITAL INTERFACE									
CLK Input Current	IINC	$V_{BB} \leq V_{IN} \leq V_{CC}$	- 10		10	- 10		10	μA
PDN Input Current	I _{INP}	$V_{BB} \leq V_{IN} \leq V_{CC}$	- 100			- 100			μA
CLKO Input Current	lino	$V_{BB} \leq V_{IN} \leq V_{CC} - 0.5$	- 10		0.1	- 10		0.1	μA
High Level Input Voltage	VIH	Except CLKO	2.2		V _{cc}	2.2		V _{cc}	V
Low Level Input Voltage	V _{1L}	Except CLKO	0		0.8	0		0.8	V
High Level Input Voltage	VIHO	CLKO Pin	$V_{CC} - 0.5$		V _{cc}	$V_{\rm CC} - 0.5$		V _{cc}	v
Low Level Input Voltage	VILO	CLKO Pin	V _{BB}		V _{BB} + 0.5	V _{BB}		$V_{BB} + 0.5$	٧
Input Intermediate Voltage	Viio	CLKO Pin	~ 0.8		0.8	- 0.8		0.8	V

207

DC ELECTRICAL CHARACTERISTICS (Continued)

Characteristic				КТ3040 КТ30			KT3040A		
	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	– Unit
TRANSMIT FILTER GAIN SETT	ING AMPL	IFIER							1
V _{FXI} Input Leakage Current	IB _x I	V _{BB} ≤ V _{FXI} ≤ V _{CC}	- 100		100	- 100		100	nA
V _{FXI} Input Resistance	RI _x I	V _{BB} ≤ V _{FXI} ≤ V _{CC}	10			10			MΩ
V _{FXI} Input Offset Voltage	VOS _x I	$-2.5V \leq V_{IN} \leq +2.5V$	- 20		20	- 20		20	mV
V _{FXI} Common Mode Range	V _{CM}		- 2.5		2.5	- 2.5		2.5	V
Common Mode Rejection Ratio	CMRR	$-2.5V \le V_{IN} \le 2.5V$	60			60			dB
Power Supply Rejection Ratio of V _{CC} or V _{BB}	PSRR		60			60 [°]			dB
Open Loop Output Resistance of GS _x	R _{ol}			1			1		KΩ
Minimum Load Resistance of GS _x	RLXI		10			10			KΩ
Maximum Load Capacitance of GS _x	Col				100			100	pF
Output Voltage Swing of GS _x	Voxi	R _L ≥10KΩ	± 2.5			± 2.5			V
Open Loop Voltage Gain of GS _x	A _{VOL}	R∟≥10KΩ	5,000			5,000			V/V
Open Loop Unity Gain Bandwidth of GS _x	fc			2			2		MHz

AC ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $Ta \approx 25^{\circ}$ C. All parameters are specified for a signal level of 0dBm0 at 1KHz. The 0dBm0 level is assumed to be 1.54V_{ms} measured at the output of the transmit or receive filter)

Ob second as in the			KT3040			KT3040A			11-14
Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Min	Тур	Max	Unit
TRANSMIT FILTER (Transmit	filter input	OP amp set to the non-invert	ing unity g	ain mode	, with V _{FX}	1 = 1.09V _{rm}	s unless	otherwise	e noted)
Minimum Load Resistance of V _{FXO}	RLx	-2.5V <v<sub>OUT<2.5V -3.2V<v<sub>OUT<3.2V</v<sub></v<sub>	3 10			3 10			ΚΩ ΚΩ
Load Capacitance V _{FXO}	CLx				100	ľ		100	pF
Power Supply Rejection Ratio, V _{FXO}	PSRR1	$f = 1 KHz, V_{FXI} = 0 V_{rms}, V_{CC} Pin$	30			30			dB
Power Supply Rejection Ratio, V _{Fxo}	PSRR2	$f = 1 KHz, V_{FXI} = 0 V_{rms}, V_{BB} Pin$	35			35			dB
Absolute Gain	G _{AX}	f = 1KHz	2.875	3.0	3.125	2.9	3.0	3.1	dB
Gain Relative to G _{AX}	G _{RX}	Below 50Hz 50Hz 60Hz 200Hz 300Hz to 3KHz 3.3KHz 3.4KHz 4.0KHz 4.6KHz and above	- 1.5 - 0.15 - 0.35 - 0.7	- 41 - 35 - 15	- 35 - 35 - 30 0.05 0.15 0.03 - 0.1 - 14 - 32	- 1.5 - 0.125 - 0.35 - 0.7	- 41 - 35 - 15	- 35 - 35 - 30 0 0.125 0.03 - 0.1 - 14 - 32	dB dB dB dB dB dB dB dB dB dB
Absolute Delay at 1KHz	D _{AX}				230			230	μS
Differential Envelope Delay from 1KHz to 2.6KHz	D _{Dx}				60			60	μS
Single Frequency Distortion Products	D _{PX1}				- 48			- 48	dB
Distortion at Maximum Signal Level	D _{PX2}	Gain = 20dB, R _L = 10K 0.16V _{rms} , 1KHz Signal Applied to V _{FXI}			- 45			- 45	dB
Total C Message Noise at V _{FXO}	N _{CX2}	Gain setting OP amp at 20dB Gain		3	6		2	5	dB _{mco}
Total C Message Noise at V _{FXO}	N _{CX2}	Gain setting OP amp at 20dB Gain		3	6		3	6	dB _{rnco}
Temperature Coefficient of 1KHz Gain	G _{AXT}			0.0004			0.0004		dB/°C
Supply Voltage Coefficient of 1KHz Gain	G _{AXS}	$V_{CC} = 5.0V \pm 5\%$ $V_{BB} = -5.0V \pm 5\%$		0.01			0.01		dB/V

AC ELECTRICAL CHARACTERISTICS (Continued)

			KT3040			KT3040A			
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Crosstalk, Rx to Tx 20 log V_{FX0} V_{FR0}	CT _{RX}	Rx filter output = $2.2V_{rms}$ V _{FXI} = $0V_{rms}$, f = $0.2KHz$ to 3.4KHz measure V _{FXO}			- 70			- 70	dB
Gain Tracking Relative to G _{AX}	G _{RXL}	Output Level = + 3dBm0 + 2dBm0 to - 40dBm0 - 40dBm0 to - 55dBm0	- 0.1 - 0.05 - 0.1		0.1 0.05 0.1	- 0.1 - 0.05 - 0.1		0.1 0.05 0.1	dB dB dB
RECEIVE FILTER (Unless othe	rwise not	ed, the receive filter is preced	ed by a sir	nx/x filte	r with an	input sigr	nal level	of 1.54V,	
Input Leakage Current, VFRI	IBR	$-3.2V \le V_{IN} \le 3.2V$	- 100		100	- 100		100	nA
Input Resistance, V _{FRI}	RIR		10			10			MΩ
Output Resistance, VFRO	Ror			1	3		1	3	Ω
Load Capacitance, V _{FRO}	CLR				100			100	pF
Load Resistance, V _{FRO}	RLR		10			10			KΩ
Power Supply Rejection of V_{CC} or V_{BB} , V_{FRO}	PSRR3	V _{FRI} connected to GNDA, f = 1KHz	35			35			dB
Output DC Offset, VFRO	Vos	VFRI connected to GNDA	- 200		200	- 200		200	m٧
Absolute Gain	G _{AR}	f = 1KHz	- 0.125		0.125	-0.1		0.1	dB
Gain Relative to Gain at 1KHz	G _{RR}	Below 300Hz 300Hz to 3.0KHz 3.3KHz 3.4KHz 4.0KHz 4.6KHz and above	- 0.15 0.35 - 0.7		0.125 0.15 0.03 - 0.1 - 14 - 32	- 0.125 0.35 - 0.7		0.125 0.125 0.03 - 0.1 - 14 - 32	dB dB dB dB dB dB
Absolute Delay at 1KHz	DAR				100			100	μS
Differential Envelope Delay 1KHz to 2.6KHz	D _{DR}	,			100			100	μS
Single Frequency Distortion Products	D _{PR1}	f = 1KHz			- 48			- 48	dB
Distortion at Maximum Signal Level	D _{PR2}	$2.2V_{rms}$ Input sinx/x filter, f = 1KHz, R _L = 10K			- 45			- 45	dB
Total C Message Noise at V _{FRO}	N _{CR}			3	5		3	5 ·	dB _{rnco}
Temperature Coefficient of 1KHz Gain	Gart			0.0004			0.0004		dB/°C
Supply Voltage Coefficient of 1KHz Gain	Gars			0.01			0.01		dB/V

AC ELECTRICAL CHARACTERISTICS (Continued)

a	Symbol Test Conditions	KT3040			KT3040A				
Characteristic	Characteristic Symbol		Min	Тур	Max	Min	Тур	Max	Unit
Crosstalk, Transmit to Receive 20 log $\frac{V_{FRO}}{V_{FXO}}$	CT _{XR}	Transmit filter output ≈ 2.2V _{rms} , V _{FRI} = 0V _{rms} , f = 0.3KHz to 3.4KHz measure V _{FRO}			- 70			- 70	dB
Gain Tracking Relative to G _{AR}	Grrl	Output level = + 3dBmO + 2dBmO to - 40dBmO - 40dBmO to - 55dBmO (Note 5)	0.1 0.05 0.1		0.1 0.05 0.1	- 0.1 - 0.05 - 0.1		0.1 0.05 0.1	dB dB dB
RECEIVE OUTPUT POWER AM	PLIFIER								
Input Leakage Current, PWRI	I _{BP}	$-3.2V \leq V_{IN} \leq 3.2V$	0.1		3	0.1		3	μA
Input Resistance, PWRI	R _{IP}		10			10			MΩ
Output Resistance, PWRO + , PWRO –	R _{OP1}	Amplifier Active		1			1		Ω
Load Capacitance, PWRO + , PWRO –	CLP				500			500	pF
Gain, PWRI to PWRO + Gain, PWRI to PWRO –	G _{ap +} G _{ap -}	$R_L = 600\Omega$ connected between PWRO + and PWRO -, input Level = 0dBm0 (Note 4)		1 -1			1 -1		·V/V V/V
Gain Tracking Relative to 0dBm0 Output Level. Including Receive Filter	GRPL	$V = 2.05 V_{rms}, R_{L} = 600 \Omega$ (Note 4, 5) $V = 1.75 V_{rms}, R_{L} = 300 \Omega$	-0.1 -0.1		0.1 0.1	- 0.1 - 0.1		0.1 0.1	dB
Signal/Distortion	S/D _P	$V = 2.05V_{rms}, R_{L} = 600\Omega$ V = 1.75V_{rms}, R_{L} = 300\Omega (Note 4, 5)			- 45 - 45			45 45	dB dB
Output DC Offset PWRO + , PWRO	V _{OSP}	PWRI connected to GNDA	- 50		50	- 50		50	mV
Power Supply Rejection Ratio of V_{CC} or V_{BB}	PSRR5	PWRI connected to GNDA	45			45			dB

Note 1: Maximum power consumption will depend on the load impedance connected to the power Amplifier. This specification listed assumes 0dB_m is delivered to 600Ω connected from PWRO + to PWRO -.

Note 2: Voltage input to receive filter at 0V. V_{FRO} connected to PWRI, 600 Ω from PWRO + to PWRO - . Output measured from PWRO + to PWRO - .

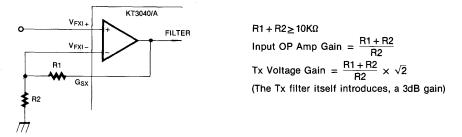
Note 3: The 0dBm0 level for the filter is assumed to be 1.54V_{ms} measured at the output of the XMT or RCV filter.

Note 4: The 0dBm0 level for the power amplifiers is load dependent. For $R_L = 600\Omega$ to GNDA, the 0dBm0 level is $1.43V_{rms}$ measured at the amplifier output for $R_L = 300\Omega$ the 0dBm0 level is $1.22V_{rms}$.

Note 5: V_{FRO} connected to PWRI, input signal applied to V_{FRI}.

PIN DESCRIPTION

Pin No.	Designation	Function			
1	V _{FXI+}	The non-inverting input of the gain adjustment OP amp in the transmit filter. The signal applied to this pin typically comes from the 2 to 4 wire hybrid in the case of a 2 wire line and goes through the frequency rejection and antialiasing filters before being sent to the CODEC for encoding.			
2	V _{FX!} -	Inverting input of the gain adjustment operational amplifier on the transmit filter.			
3	G _{sx}	Output of the gain adjustment operational amplifier on the transmit filter. Used for gain setting of the transmit filter.			
4	V _{FRO}	Analog output of the receive filter. This output is capable of driving high impedance electronic hybrids. The gain of the receive signal may be attenuated by using a resister divider. For a transformer hybrid application, V_{FRO} is tied to PWRI and a dual balanced output is provided on pins PWRO + and PWRO			
5	PWRI	Input to the power driver amplifiers on the receive side for interface to transformer hybrids. High impedance input. When tied to V_{BB} , the power amplifiers are powered down.			
6	PWRO +	Non-inverting side of the power amplifiers. Power driver output capable of directly driving transformer hybrids.			
7	PWRO –	Inverting side of the power amplifiers. Power driver output capable of directly driving transformer hybrids.			
8	V _{BB}	The negative power supply pin. The recommended input is -5V.			
9	V _{cc}	The positive power supply pin. The recommended input is 5V.			
10	V _{FRI}	Analog input of the receive filter, interface to the CODEC analog output for PCM applications. The receive filter provides the sinx/x correction needed for sample and hold types CODEC outputs to give unity gain.			
11	GNDD	Digital ground return for internal clock generator.			
12	CLK	The master clock input. Three clock frequencies can be used: 1.536MHz, 1.544MHz or 2.048MHz. For proper operation this clock should be tied to the receive clock of the CODEC.			
13	PDN	Control input for the stand-by power down mode. Power down occurs when the signal on this input is pulled high. An internal pull up to the positive supply is provided.			
14	CLK0	Master clock (pin 12, CLK) frequency selection. If tied to V _{BB} , CLK should be 1.536MHz. If tied to GNDD, CLK should be 1.544MHz. If tied to V _{ss} , CLK should be 2.048MHz. An internal pull up is provided.			
15	GNDA	Analog return common to the transmit and receive analog circuits. Not internally connected to GNDD.			
16	V _{FXO}	The analog output of the transmit filter. The output voltage range is $\pm 3.2V$.			



FUNCTIONAL DESCRIPTION

¹ The KT3040/A provides the transmit and receive filters found on the analog termination of a PCM line or trunk. The transmit filter performs the anti-aliasing function needed for an 8KHz sampling system, and the 50/60Hz rejection. The receive filter has a low pass transfer characteristic and also provides the sinx/x correction necessary to interface μ -Law and A-Law CODECs which have a non-return-to zero output of the digital to analog conversion. Gain adjustment is provided in the receive and transmit directions. The KT3040/A can interface directly with a transformer hybrid (2 to 4 wire conversion) or with electronic hybrids.

Transmit Filter

The input stage provides gain adjustment in the passband. The CMOS operational amplifier has a common mode range of $\pm 2.5V$, a DC offset of less than $\pm 20mV$, a voltage gain greater than 5,000 and a unity gain bandwidth of 2MHz. The load impedance connected to the amplifier output (G_{sx}) must be greater than 10K Ω in parallel with 25pF. The input operational amplifier can also be used in the inverting mode of differential amplifier mode. It can be connected to provide a gain of 20dB without degrading the overall filter performance.

The Tx input stage is followed by a prefilter which is a two-pole RC active low pass filter designed to attenuate high frequency noise before the input signal enters the switched capacitor band pass filter. A band pass filter provides rejection of 200Hz or lower noise which may exist in the signal path, and stopband attenuation which exceeds the D3 and D4 specifications as well as the CCITT G712 recommendations.

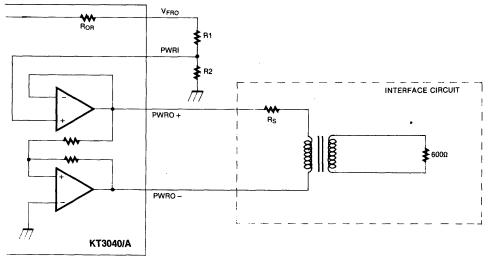
The output stage of the transmit filter, the post filter is also a two pole RC active low pass filter which attenuate clock frequency noise by at least 40dB. The output of the transmit filter is capable of driving a $\pm 3.2V_{pp}$ signal into a 10K Ω load in parallel with up to 25pF.

Receive Filter

The Rx input stage is a prefilter which is similar to the Tx prefilter. The prefilter attenuates high frequency noise that may be present on the receive input signal. A switched capacitor low pass filter provides stopband rejection, sinx/x gain correction and passband flatness.

The receive filter output V_{FRO} lead is capable of driving high impedance electronic hybrids. The gain of the receive section from V_{FRI} to V_{FRO} is (π /18000)/Sin (π /18000).

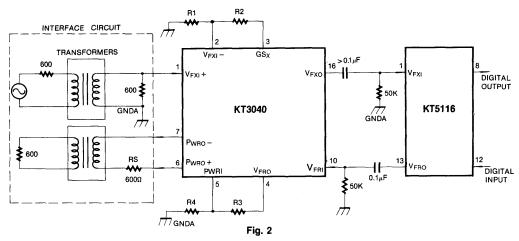
The filter gain can be adjusted downward by a resistor voltage divider as shown below. The total load impedance R_T connected to the filter output (V_{FRO}) must be greater than 10K Ω .



Receive Filter Output Gain Adjustment

Receive Filter Power Amplifier

A balanced power amplifier is provided in order to transformer coupled line circuits. The receive filter output V_{FRO} is connected through gain setting resistors R1 and R2 to the amplifier input PWRI. The input voltage range on PWRI is $\pm 3.2V$. The series combination of R_s and the hybrid transformer must present a minimum AC load resistance of 600 Ω to the amplifier in the bridge configuration. A typical connection of the output driver amplifier is shown below.


Typical Connection of Output Driver Amp

The power amps can be deactivated, when not required, by connecting the power amplifier input (pin 5) to the negative power supply V_{BB} . This reduces the total filter power consumption by approximately 10mW-20mW depending on output signal amplitude.

Power Down Mode

Pin 13 (PDN) provides the power down control. When the level on this pin is high, the KT3040/A goes into standby, power down mode. The total filter power consumption will reduce to less than 1mW. This feature allows multiple KT3040/A to drive the same analog bus on a time shared basis. Connect PDN to GNDD for normal operation.

APPLICATION INFORMATION

Note 1: Transmit voltage gain = $\frac{R_1 + R_2}{R_2} \times \sqrt{2}$ (The filter itself introduces a 3dB gain), (R₁ + R₂ ≥ 10K)

Note 2: Receive Gain = $\frac{R_4}{R_3 + R_4}$ (R₃ + R₄ ≥ 10K)

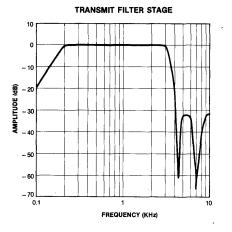
Note 3: In the configuration shown, the receive filter amplifiers will drive a 600Ω T to R termination to a maximum signal level of 8.5dBm. An alternative arrangement, using a transformer winding ratio equivalent to 1.414:1 and 300Ω lesistor, R_s, will provide a maximum signal level of 10.1dBm across a 600Ω termination impedance.

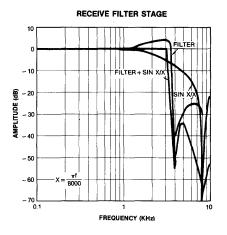
Gain Adjust

Fig. 2 shows the signal path interconnections between the KT3040 and KT5116 single-channel CODEC. The transmit RC coupling components have been chosen both for minimum passband droop and to present the correct impedance to the CODEC during sampling.

Optimum noise and distortion performance will be obtained from the KT3040 filter when operated with system peak overload voltages of ± 2.5 to $\pm 3.2V$ at V_{FXO} and V_{FRO}. When interfacing to a PCM CODEC with a peak overload voltage outside this range, further gain or attenuation may be required.

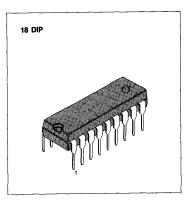
For example, the KT3040 filter can be used with the KT3000 series CODEC which has a 5.5V peak overload voltage. A gain stage following the transmit filter output and an attenuation stage following the CODEC output are required.


Decoupling Recommendations


PC board decoupling should be sufficient to prevent power supply transients from exceeding the absolute maximum rating of the device. A minimum of 1μ F is recommended for each power supply.

A 0.05μ F bypassing capacitor should also be connected from each power supply to GNDA. However, this decoupling may be reduced depending on board design and performance. Ground loops should be avoided.

TYPICAL PERFORMANCE CURVE



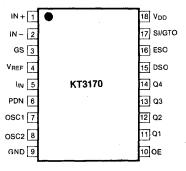
LOW POWER DTMF RECEIVER

The KT3170 is a complete Dual Tone Multiple Frequency (DTMF) receiver which is fabricated by the low power CMOS and the Switched-Capacitor Filter technology. This LSI consists of band split filters, which separates the high and low group tones, followed by a digital counting section which verifies the frequency and duration of the received tones before passing the corresponding code to the output bus. It decodes all 16 DTMF tone pairs into a 4bits digital code.

The externally required components are minimized by on chip provision of a differential input AMP, clock oscillator and latched three state interface. The on chip clock generator requires only a low cost TV crystal as an external component.

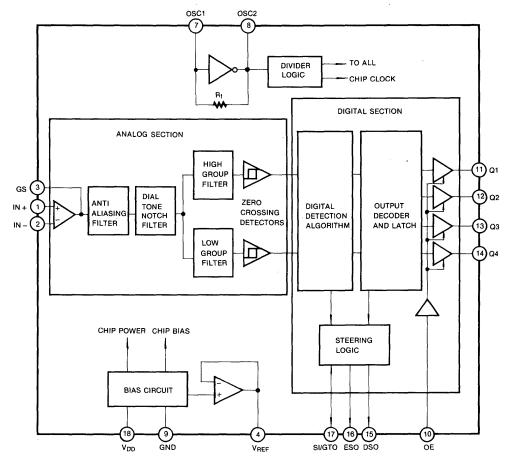
FEATURES

- Detects all 16 standard tones.
- Low power consumption: 15mW (Typ)
- Single power supply: 5V
- Uses inexpensive 3.58MHz crystal
- Three state outputs for microprocessor interface
- Good quality and performance for using in exchange system
- Package options include standard plastic and ceramic 300 mil DIPs
- Power down mode/input inhibit


APPLICATIONS

- PABX
- Central Office
- · Paging Systems
- Remote Control
- Credit Card Systems
- Key Phone System
- Answering Phone
- Home Automation System
- Mobile Radio
- Remote Data Entry

ORDERING INFORMATION


Device	Package	Operating Temperature			
KT3170N	Plastic	-40 ~ +85°C			
KT3170J	Ceramic	-40 ~ +85 C			

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Power Supply Voltage	V _{DD}	6	v
Analog Input Voltage Range	VINA	$-0.3 \sim V_{DD} + 0.3$	v
Digital Input Voltage Range	VIND	$-0.3 \sim V_{DD} + 0.3$	v
Output Voltage Range	Vo	$-0.3 \sim V_{DD} + 0.3$	v
Current On Any Pin	IIN	10	mA
Operating Temperature	Ta	- 40 ~ + 85	°C
Storage Temperature	T _{stg}	-60 ~ + 150	°C

*Absolute Maximum Ratings are these value beyond which permanent damage to the device may occur. These are stress rating only and functional operation of the device at or beyond them is not implied. Long exposure to these condition may affect device reliability.

CMOS INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS ($V_{DD} = 5V$, $Ta = 25^{\circ}C$, unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage	V _{DD}		4.75		5.25	V
Operating Supply Current	IDD			3.0	9.0	mA
Power Dissipation	Po			15	45	mW
Input Voltage Low	ViL				1.5	V
Input Voltage High	ViH		3.5			V
Input Leakage Current	I _{IH} /IiL	$V_{IN} = GND \text{ or } V_{DD}$		0.1		μA
Pull Up Current On OE Pin	leu	OE = GND		7.5	15	μA
Analog Input Impedance	R _{IN}	f _{IN} = 1KHz	8	10		MΩ
Steering Input Threshold Voltage	V _{TS}		2.2		2.5	V
Output Voltage Low	V _{OL}	No Load			0.03	V
Output Voltage High	V _{он}	No Load	4.97			V
Output Current	I _{sink}	V _{OL} = 0.4V	1	2.5		mA
Output Current	Isource	V _{OH} = 4.6V	0.4	0.8		mA
V _{ref} Output Voltage	V _{ref}		2.4		2.8	V
V _{ref} Output Resistance	R _{ref}			10		KΩ
Analog Input Offset Voltage	Vos			25		mW
Power Supply Rejection Ratio	PSRR	Gain Setting Amp at 1KHz		60		dB
Common Mode Rejection Ratio	CMRR	$-3.0V < V_{IN} < 3.0V$		60		dB
Open Loop Voltage Gain	Av	Gain Setting Amp at 1KHz		65		dB
Open Loop Unit Gain Bandwidth	BW			1.5		MHz
Analog Output Voltage Swing	VAO	R _L = 100K		4.5		V _{p-p}
Acceptable Capacitive Load	CL	GS		100		pF
Acceptable Resistive Load	RL	GS		50	-	KΩ
Analog Input Common Mode Voltage Range	V _{CM}	No Load		3.0		V _{p-p}

AC	ELECTRICAL	CHARACTERISTICS	$(V_{DD} = 5V, Ta = 25^{\circ}C, f_{C} = 3.579545MHz)$
----	------------	------------------------	--

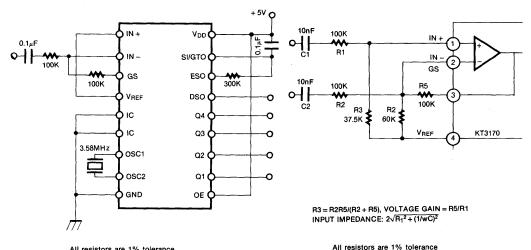
Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Valid Input Signal Range (each tone of composite signal)	Vina		- 29		1.0	dBm
Dual Tone Twist Accept	TW			± 10		dB
Acceptable Frequency Deviation	FDA				± 1.5% ± 2Hz	
Frequency Deviation Reject	FDR		± 3.5%			
Third Tone Tolerance	Т3		- 25	- 16		dB
Noise Tolerance	NT			- 12		dB
Dial Tone Tolerance	DT		18	22		dB
Crystal Clock Frequency	f _c		3.5759	3.5795	3.5831	MHz
Maximum Clock Input Rise Time	tr	External Clock			110	nS
Maximum Clock Input Fall Time	t _f	External Clock			110	nS
Acceptable Clock Input Duty Cycle	DC	External Clock	40	50	60	%
Acceptable Capacitive Load	CLO	OSC2 PIN			30	pF
Tone Present Detect Time	TDP	````````	5	11	14	mS
Tone Absent Detect Time	TDA		0.5	4	8.5	mS
Minimum Tone Duration Accept	TUA	User Adjustable			40	mS
Maximum Tone Duration Reject	TUR	User Adjustable	20			mS
Acceptable Interdigit Pause	TAID	User Adjustable			40	mS
Rejectable Interdigit Pause	TRID	User Adjustable	20			mS
Propagation Delay Time SI to Q	TPSQ	OE = High		8	11	μS
Propagation Delay Time SI to DSO	T _{psds}	OE = High		12		μS
Output Data Setup Q to DSO	TSU	OE = High		3.4		μS
Propagation Delay Time OE to Q (Enable)	TPEQ	$R_L = 10K, C_L = 50pF$		50	60	nS
Propagation Delay Time OE to Q (Disable)	TPDQ	$R_L = 10K, C_L = 50pF$		300		nS

Notes: 1. Digit sequence consists of all 16 DTMF tones.

- 2. Tone duration = 40mS, Tone pause = 40mS.
- 3. Nominal DTMF frequencies are used.
- 4. Both tones in the composite signal have an equal amplitude.
- 5. Tone pair is deviated by $\pm 1.5\% \pm 2Hz$.
- 6. Bandwidth limited (3KHz) Gaussian Noise.
- 7. The precise dial tone frequencies are (350Hz and 440Hz) $\pm\,2\%.$
- 8. For an error rate of better than 1 in 10000.
- 9. Referenced to lowest level frequency component in DTMF signal.
- 10. Minimum signal acceptance level is measured with specified maximum frequency deviation.
- 11. This item also applies to a third tone injected onto the power supply.
- 12. Referenced to Fig. 1 Input DTMF tone level at 28dBm.

PIN DESCRIPTION

Pin	Name	Description
1	IN +	Non inverting Input of the op amp.
2	IN	Inverting Input of the op amp.
3	GS	Gain Select. The output used for gain adjustment of analog input signal with a feedback resistor.
4	V _{ref}	Reference Voltage output ($V_{DD}/2$, Typ) can be used to bias the op amp input of $V_{DD}/2$.
5	l _{iN}	Input inhibit. High input states inhibits the detection of tones. This pin is pulled down internally.
6	P _{DN}	Control input for the stand-by power down mode. Power down occurs when the signal on this input is high states. This pin is pulled down internally.
7, 8	OSC1 OSC2	Clock input/output. A inexpensive 3.579545MHz crystal connected between these pins completes internal oscillator. Also, external clock can be used.
9	GND	Ground pin.
10	OE	Output Enable input. Outputs Q1-Q4 are CMOS push pull when OE is High and open circuited (High impedence) when disabled by pulling OE low. Internal pull up resistor built in.
11-14	Q1-Q4	Three state data output. When enabled by OE, these digital outputs provide the hexadecimal code corresponding to the last valid tone pair received.
15	DSO	Delayed Steering Output. Indicates that valid frequencies have been present for the required guard time, thus constituting a valid signal. Presents a logic high when a received tone pair has been registered and the output latch is updated. Returns to logic low when the voltage on SI/GTO falls below $V_{\text{Ts.}}$.
16	ESO	Early Steering Outputs. Indicates detection of valid tone outputs a logic high immediately when the digital algorithm detects a recognizable tone pair. Any momentary loss of signal condition will cause ESO to return to low.
17	SI/GTO	Steering Input/Guard Time Output. A voltage greater than V_{TS} detected at SI causes the device to register the detected tone pair and update the output latch. A voltage less than V_{TS} frees the device to accept a new tone pair. The GTO output acts to reset the external steering time constant, and its state is a function of ESO and the voltage on SI.
18	Vpp	Power Supply (+5V, Typ)



APPLICATION INFORMATION

The KT3170 is complete Touch-Tone detection system. It combines high precision active filter with analog circuits and digital control logic on a monolithic CMOS chip. This application information describes device operation of each block, performance and typically application circuit.

ANALOG INPUT CONFIGURATION

The KT3170 is designed to accept sinusoidal input waveforms but will operate satisfactorily with any input that has the correct fundamental frequency. The input arrangement provides a differential input op amp, bias source (reference voltage V_{REP}) which is used to bias the inputs at mid-rail. Connection of a feedback resistor to the op amp output (GS) makes gain of op amp adjust. The signal level at the input must be operated in power supply range on the data sheet. In a single ended configuration, the input pins are connected as shown in application circuit with unity gain and V_{REP} biasing. In a differential ended configuration the input pins are connected as shown in Fig. 2 with voltage gain (R5/R1).

All resistors are 1% tolerance All capacitors are 5% tolerance

Fig. 1 Single Ended Input Configuration

All capacitors are 5% tolerance Fig. 2 Differential Ended Input Configuration

FILTER SECTION

After analog signal is passed op amp, separation of the low group and high group tones is achieved by applying the DTMF signal to the inputs of two 9th-order switched capacitor band pass filter, the bandwidths of which correspond to the low and high group frequencies. The band split filters are actually rejecting all frequencies except the 16 DTMF tone pairs. The filter section also incorporates notches at 350 and 440Hz for exceptional dial tone rejection as shown below. Each filter output is followed by a single order switched capacitor section which smoothes the signals prior to limiting. Limiting is performed by high-gain comparator which are provided with hysteresis to prevent detection of unwanted low level signals. The outputs of the comparators provide full-rail logics swing at the frequencies of the incoming DTMF signals.

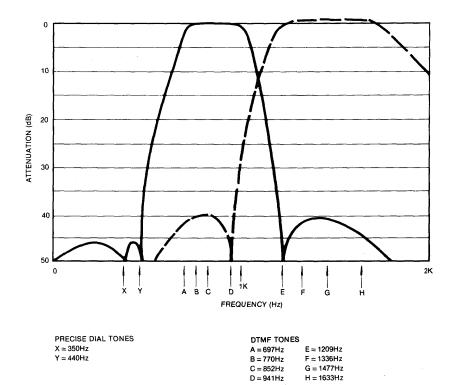
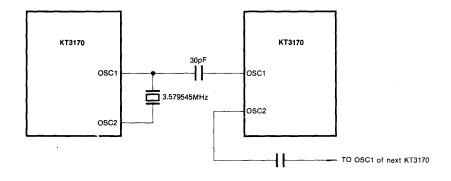


Fig. 3 Typical Filter Characteristics

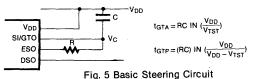

DECODER SECTION

Following the filter section is a decoder employing digital counting techniques to determine the frequencies of the incoming tones and to verify that they correspond to standard DTMF frequencies. A complex averaging algorithm protects against tone simulation by extraneous signals such as voice while providing tolerance to small frequency deviations and variations.

The averaging algorithm has been developed to ensure an optimum combination of immunity to "talk-off" and tolerance to the presence of interfering signals (third tones) and noise. When the detector recognizes the simultaneous presence of two valid tones (known as "signal condition"), it raises the "Early Steering" flag (ESO). Any loss of signal condition will cause ESO to fall.

OSCILLATOR SECTION

The KT3170 contains an on chip inverter with sufficient gain a feedback resistor Rf to provide oscillation when connected to a low cost television "color-burst" crystal. The oscillator circuit is connected as shown in application circuit. It is possible to operate several KT3170 devices employing only a single crystal oscillator. The oscillator output of the first devices in the chain is coupled through a 30pF capacitor to the oscillator input (OSC1) of the next device, subsequent devices are connected in a simuliar fashion as shown Fig. 4. The problems for unbalanced loading are not a concern with the arrangement shown, i.e., balancing capacitors are not required.



STEERING CIRCUIT

Before registration of a decoded tone pair, the receiver checks for a valid signal duration. This check is performed by an external RC time constant driven by ESO. A logic high on ESO causes V_c (see Fig. 5) to rise as the capacitor discharges. Providing signal condition is maintained (ESO remains high) for the validation period (t_{GTP}), V_c reaches the threshold (V_{TST}) of the steering logic to register the tone pair, thus latching its corresponding 4bits code (see Table 1) into the output latch. At this point, the GTO output is activated and drives V_c to V_{DD} . GTO continues to drive high as long as ESO remains high, finally after a short delay to allow the output latch to settle, the "delayed steering" output flag (STO) goes high, signalling that a received tone pair has been registered. The contents of the output latch are made available on the 4-bit output bus by raising the three-state control input (OE) to a logic high. The steering circuit works in reverse to validate the interdigit pause between signals. Thus as well as rejecting signals too short to be considered valid, the receiver will tolerate signal interruption (drop outs) too short to be considered a valid pause. This capability, together with the capability of selecting the steering time constants externally, allows the designer to tailor performance to meet a wide variety of system requirements.

DIGITAL OUTPUT

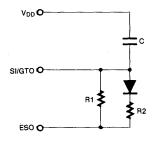
Outputs Q1-Q4 are CMOS push pull when enabled (EO = High) and open circuited (high impedance) when disabled by pulling EO = Low. These digital outputs provide the hexadecimal code corresponding to the DTMF signals. The table below describes the hexadecimal.

NO	LOW FREQUENCY	HIGH FREQUENCY	OE	Q4	Q3	Q2	Q1
1.	697	1209	н	0	0	0	1
2	697	1336	Н	0	0	1	0
3	697	1477	н	0	0	1	1
4	770	1209	н	0	1	0	0
5	770	1336	н	0	1	0	1
6	770	1477	н	0	1	1	0
7	852	1209	н	0	1	1	1
8	852	1336	н	1	0	0	0
9	852	1477	н	1	0	0	1
0	941	1336	н	1	0	1	0
*	941	1209	н	1	0	1	1
#	941	1477	н	1	1	0	0
Α	697	1633	н	1	1	0	1
В	770	1633	н	1	1	1	0
С	852	1633	н	1	1	1	1
D	941	1633	н	0	0	0	0
ANY	_		L	Z	Z	Z	Z

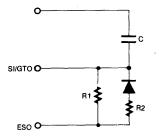
Z: High Impedance

H: High Logic Level

L: Low Logic Level



GUARD TIME ADJUSTMENT


In a situations which do not require independent selection of receive and pause, the simple steering of Fig. 5 is applicable. Component values are chosen according to the following formula:

$t_{REC} = t_{DP} + t_{GTP}, t_{GTP} = 0.63RC$

The value of t_{DP} is a parameter of the device and t_{REC} is the minimum signal duration to be recognized by the receiver. A value for C of 0.1μ F is recommended for most application, leaving R to be selected by the designer. For example, a suitable value of R for a t_{REC} of 40 miliseconds would be 300K. A typical circuit using this steering configuration is shown in Figure 1. The timing requirements for most telecommunication application are satisfied with this circuits. Different steering arrangements may be used to select independently the guard times for tone-present (t_{GTP}) and tone-absent (t_{GTA}). This may be necessary to meet system specifications which place both tone duration and interdigit pause. Guard time adjustment also allows the designer to tailor system parameter such as talk-off and noise immunity. Increasing t_{REC} improves talk-off performance since it reduces the probability that tones simulated by speech will maintain signal condition for long enough to be registered. On the other hand, a relatively short t_{REC} with a long t_{DO} would be appropriate for extremely noisy environments where fast acquisition time and immunity to drop-outs would be requirements. Design information for guard time adjustments is shown in Figure 6.

$$\begin{split} t_{GTP} = (R1C) In(V_{DD}/V_{DD} - V_{TST}) \\ t_{GTA} = (RpC) In(V_{DD}/V_{TST}) \\ Rp = R1R2/(R1 + R2) \\ (a) \ Decreasing \ t_{GTA}(t_{GTP} > t_{GTA}) \end{split}$$

$$\begin{split} t_{GTP} &= (RpC) In(V_{DD}/V_{DD} - V_{TST}) \\ t_{GTA} &= (R1C) In(V_{DD}/V_{TST}) \\ Rp &= R1R2/(R1 + R2) \\ (a) \ Decreasing \ t_{GTP}(t_{GTP} < t_{GTA}) \end{split}$$

CMOS INTEGRATED CIRCUIT

μ -LAW COMPANDING CODEC

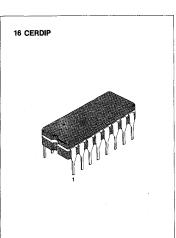
The KT5116 is a monolithic CMOS companding CODEC which contains two parts: (1) an analog-to-digital converter (2) a digital to-analog converter which have transfer characteristics conforming to the μ -Law companding code.

These two parts form a coder-decoder function designed to meet the needs of the telecommunications industry for per-channel voice-frequency codes used in telephone digital switching and transmission systems.

Digital input and output are in serial format using sign-plus-amplitude coding.

A sync pulse input is provided for reception of multichannel information being multiplexed and synchronizing transmission over a single transmission line.

Practical transmission and reception of 8bit data words which contain the analog information is done from 64Kb/s to 2.1Mb/s rate with analog signal sampling occuring at an 8KHz rate.


FEATURES

- The simple ±5V power supply operation
- Typically 30mW low power dissipation
- Follows the μ-255 companding law
- Synchronous and asynchronous operation
- On-chip offset null circuit eliminates long term drift, drift error and need for trimming
- Minimum external circuitry required
- Separate analog and digital grounding pins reduce system noise problems
- On-chip sample and hold.

TRANSMIT (ENCODE) CONTROL RECEIVE (DECODE) S/⊦ 13-BIT 13-BIT 13-BIT 8-13 AND 13-BIT DAC LATCH LATCH DAC BIŤ ANALOG DIGITAL COMPAN INPUT DER BUF ANALOG A-Z OUTPUT ENC/DEC SWITCHES 8-BIT SHIFT REGISTER 8-BIT сомі SAR DIGITAL INPUT nt d ENC/DEC 8-BIT CONTROL SHIF1 REGISTER DIGITAL MASTER SEO CONTROL 6 9 TRANSMIT , TRANSMIT RECEIVE MASTER RECEIVE CLOCK SYNC CLOCK CLOCK SYNC

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KT5116N	Plastic	0 708.0
KT5116J	Ceramic	0 ~ 70°C

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
DC Power Supply	V+ (V-)	+6 (-6)	v
Ambient Operating Temperature	Ta	0 to 70	°C
Storage Temperature	Ts	- 55 to 125	°C
Package Dissipation at 25°C	PD	500	mW
Digital Input Voltage	V _{DI}	-0.5 to 6	V
Analog Input Voltage	V _{AI}	-6 to 6	v
Positive Reference Voltage	V _{ref +}	-0.5 to 6	v
Negative Reference Voltage	V _{ref -}	-6 to 0.5	v

DIGITAL OUTPUT CODE μ -LAW

No	lo Chord Code Chord Value		Step Value
1	000	0.0mV	0.613mV
2	001	10.11mV	1.226mV
3	010	30.3mV	2.45mV
4	011	70.8mV	4.90mV
5	100	151.7mV	9.81mV
6	101	313mV	19.61mV
7	110	637mV	39.2mV
8	111	1284mV	78.4mV


EXAMPLE;

 $1 011 0010 = +70.8 \text{mV} + (2 \times 4.90 \text{mV})$

sign bit chord step bit = 80.6mV

If the sign bit were a zero, then both plus signs would be changed to minus signs

PIN CONFIGURATION

DC CHARACTERISTICS

(Condition; $V^+ = 5V$, $V^- = -5V$, $V_{ref+} = 2.5V$, $V_{ref-} = -2.5V$)

Parameter	Symbol	Min	Тур	Max	Unit
Analog Input Resistance During Sampling	R _{inas}		2		κΩ
Analog Input Resistance Non-Sampling	Rinans		100		MΩ
Analog Input Capacitance	Cina		150	250	pF
Analog Input Offset Voltage	Voffina		±1	±8	mV
Analog Output Resistance	ROUTA		1	10	Ω
Analog Output Current	I _{out/A}	0.25	0.5		mA
Analog Output Offset Voltage	V _{off/O}		± 20	± 850	mV
Logic Input Low Current (V _{IN} = 0.8V) Digital Input, Clock Input, SYNC Input	l _{iL}		±0.1	± 10	μA
Logic Input High Current (V _{IN} = 2.4V)	fin		- 0.25	-0.8	mA
Digital Output Capacitance	C _{D/O}		8	12	pF
Digital Output Leakage Current	IDOL		±0.1	± 10	μΑ
Digital Output Low Voltage	Vol			0.4	v
Digital Output High Voltage	V _{он}	3.9			V
Positive Supply Current	1+		4	10	mA
Negative Supply Current	1-		2	6	mA
Positive Reference Current	I _{ref +}		4	20	μΑ
Negative Reference Current	I _{ref}		4	20	μA

3

AC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Мах	Unit
Master Clock Frequency	fm	1.5	1.544	2.1	MHz
RCV, XMIT Clock Frequency	f _r , f _x	0.064	1.544	2.1	MHz
Clock Pulse Width (MASTER, XMIT, RCV)	PWCLK	200			ns
Clock Rise, Fall Time (MASTER, XMIT, RCV)	t _{rc} , t _{fc}			25% of PW _{cLK}	ns
SYNC Rise, Fall Time (XMIT, RCV)	t _{rs} , t _{fs}			25% of PW _{сLK}	ns
SYNC Pulse Width (XMIT, RCV)			$\frac{8}{fx (fr)}$		μS
Data Input Rise, Fall Time	t _{DIR} , t _{DIF}			25% of РW _{с∟к}	ns
SYNC Pulse Period (XMIT, RCV)	t _{ps}		125		μS
XMIT Clock-to-XMIT SYNC Delay	t _{xcs}	50% of t _{fc} (t _{rs})			ns
XMIT Clock-to-XMIT SYNC (Negative Edge) Delay	t _{xcsn}	200			ns
XMIT SYNC Set-Up Time	t _{xss}	200			ns
XMIT Data Delay	t _{xdd}	0		200	ns
XMIT Data Present	t _{xdp}	0		200	ns
XMIT Data Three State	t _{xdt}			150	ns
Digital Output Fall Time	t _{dof}		50	100	ns
Digital Output Rise Time	t _{dor}		50	100	ns
RCV SYNC-to-RCV Clock Delay	t _{src}	50% t _{rc} (t _{fs})			ns
RCV Data Set-Up Time	t _{rds}	50			ns
RCV Data Hold Time	t _{rdh}	200			ns
RCV Clock-to-RCV SYNC Delay	t _{rcs}	200			ns
RCV SYNC Set-Up Time	t _{rss}	200			ns
RCV SYNC-to-Analog Output Delay	t _{sao}		7		μS
Analog Output Positive Slew Rate	Slew +		1		V/μs
Analog Output Negative Slew Rate	Slew -		1		V/µs
Analog Output Drop Rate	Droop		25		μV/μs

POWER SUPPLY REQUIREMENTS

Parameter	Symbol	Min	Тур	Max	Unit
Positive Supply Voltage	V+	4.75	5.0	5.25	v
Negative Supply Voltage	V-	- 5.25	- 5.0	- 4.75	V
Positive Reference Voltage	V _{ref}	2.375	2.5	2.625	v
Negative Reference Voltage	Vref	- 2.625	- 2.5	- 2.375	v

SYSTEM CHARACTERISTICS

Parameter	Parameter Test Condition		Min	Тур	Max	Unit
Signal-to-Distortion	Analog Input: $0 \sim -30$ dBm0 Analog Input: -40 dBm0 Analog Input: -45 dBm0	S/D	35 29 24	39 34 29		dB dB dB
Gain Tracking	Analog Input: $+3 \sim -37$ dBm0 Analog Input: $-37 \sim -50$ dBm0 Analog Input: $-50 \sim -55$ dBm0	GT		± 0.1 ± 0.1 ± 0.2	± 0.4 ± 0.8 ± 2.5	dB dB dB
Idle Channel Noise	Analog Input = 0V	Nic		10	18	dBrnc0
Transmission Level Point	600Ω	TLP		+ 4		dB

PIN DESCRIPTION

1. Analog Input (Pin 1)

At this pin, employs voice-frequency analog signals which are bandwidth-limited to 4KHz. Then, they are sampled at an 8KHz rate. The Analog Input must remain between V_{ref} (+) and V_{ref} (-) for accurate conversion.

2. Positive Supply Voltage and Negative Supply Voltage (Pin 2, 3)

Pin 2, 3 is a pin which employs supply voltage. Typically, the voltages of these pins are $\pm 5V$.

3. NC (Pin 4)

This pin is a pin of non-connection.

4. Master Clock (Pin 5)

This signal provides the basic timing and control signals required for all internal conversions. It is not necessary for synchronizing with RCV SYNC, RCV Clock, XMIT SYNC or XMIT Clock. It is not internally related to them.

5. XMIT SYNC (Pin 6)

This input is synchronized with XMIT Clock. If XMIT SYNC goes High, the Digital Output is activated and the A/D conversion begins on the next positive edge of Master Clock. Otherwise, if XMIT SYNC goes Low, the Digital Output become 3 state. XMIT SYNC must go Low for at least 1 Master Clock prior to the transmission of the next digital word.

6. XMIT Clock (Pin 7)

The on-chip 8-bit output shift register of the KT5116 is unloaded at the clock rate present on this pin. Clock rates of 64KHz to 2.1MHz can be used for XMIT Clock. When the positive edge of XMIT SYNC occurs after the positive edge of XMIT Clock, XMIT SYNC will determine when the first positive edge of the internal clock will occur. In this event, the hold time for the first clock pulse is measured from the positive edge of XMIT SYNC.

7. Digital Output (Pin 8)

The Digital Output is composed of a sign bit, 3 chord bits and 4 step bits. The sign bit indicates the polarity of the Analog Input while the chord and step bits indicate the magnitude. The KT5116 output register stores the 8 bit encoded sample of the Analog Input. The 8 bit-word is shifted out under control of XMIT SYNC and XMIT CLOCK. If XMIT SYNC is Low, the Digital Output is an open circuit, otherwise when XMIT SYNC is High, the state of the Digital Output is determined by the value of the output bit in the serial shift register.

8. RCV SYNC (Pin 9): Refer to Figure 3

This input is synchronized with RCV CLOCK, and serial data is clocked in by RCV CLOCK. Duration of the RCV pulse is approximately eight RCV Clock periods. The conversion from digital to analog starts after the negative edge of RCV SYNC pulse (see Fig. 6). The negative edge of RCV SYNC should occur before the 9th positive clock edge to insure that only eight bits are clocked in. RCV SYNC must stay low for 17 Master Clocks (minimum) before the digital word is to be received (see Fig. 11).

9. RCV Clock (Pin 10): Refer to Figure 3

Valid data should be applied to the digital input before the positive edge of the internal clock. (refer to Fig. 3) This SYNC pulse is approximately eight RCV CLOCK periods. The conversion from digital to analog starts after the negative the internal clock transfers the data to the slave of the master-slave flip-flop. A hold time, t_{rdh}, is required to complete this transfer. If the rising edge of RCV SYNC occurs after the first rising edge of RCV occurs after the first rising edge of RCV OCCK, RCV SYNC will determine when the first positive edge of internal clock will occur. In this event, the set-up and hold times for the first clock pulse should be measured from the positive edge of RCV SYNC.

10. Digital Ground (Pin 11)

11. Digital Input (Pin 12)

The KT5116 input register accepts the 8-bit sample of an analog value and loads it under control of RCV SYNC and RCV CLOCK (refer to Figure 3). When RCV SYNC goes High, the KT5116 uses RCV CLOCK to clock to clock the serial data into its input register RCV SYNC goes Low to indicate the end of serial input data. The eight bits of the input data have the same functions described for the Digital Output.

12. Analog Output (Pin 13)

The Analog Output is in the form of voltage steps (100% duty cycle) having amplitude equal to the analog sample which was encoded. This wave form is then filtered with an external low-pass filter with sin x/x correction to recreate the sample voice signal.

13. Analog Ground (Pin 14)

14. Positive and Negative Reference Voltages, (Pin 15, 16) V_{ref} (-), V_{ref} (+)

These inputs provide the conversion reference for the digital-to-analog converter in the KT5116. $V_{ref}(+)$ and $V_{ref}(-)$ must maintain 100ppm/°C regulation over the operating temperature. Variation of the reference directly affects system again.

RECOMMENDED ANALOG INPUT CIRCUIT

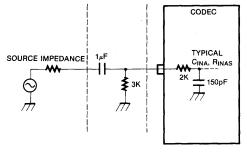


Fig. 1

TRANSMITTER SECTION TIMING

RECEIVER SECTION TIMING

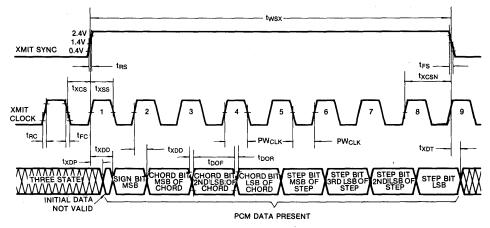
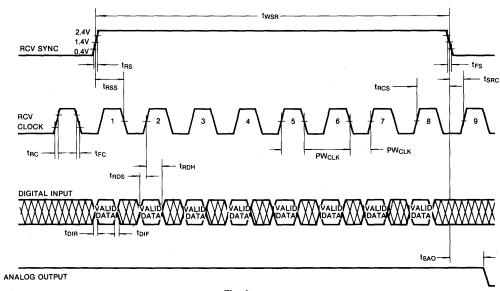



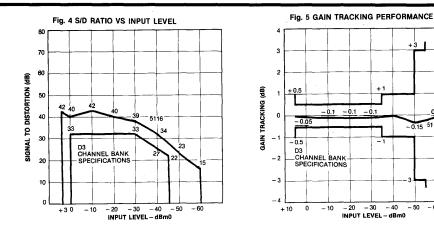
Fig. 2

Fig. 3

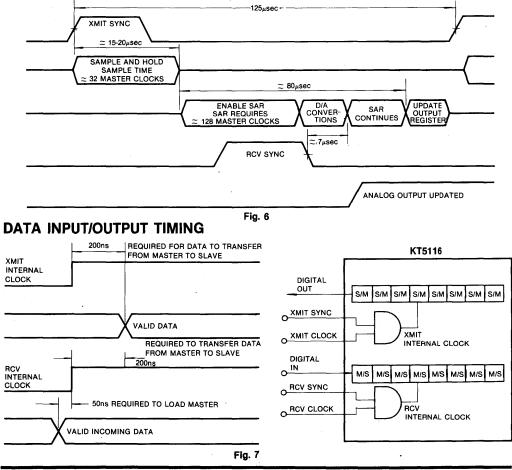
Note: All rise and fail times are measured from 0.4V and 2.4V. All delay times are measured from 1.4V.

KT5116

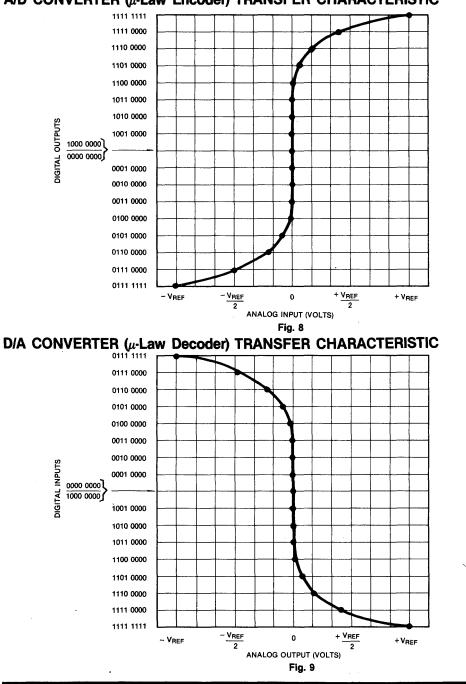
CMOS INTEGRATED CIRCUIT


0.

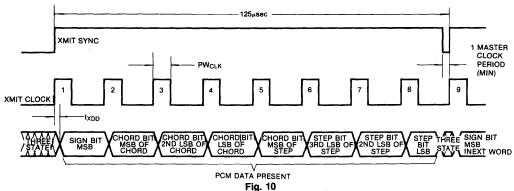
- 60

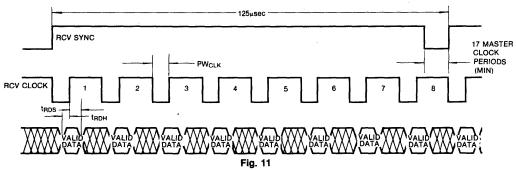

- 70

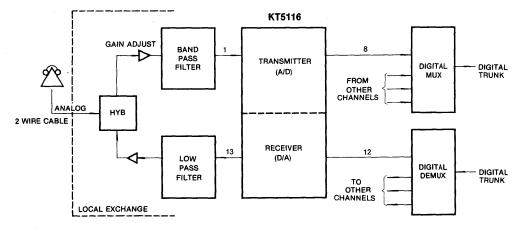
- 50


- 0.15 5115

A/D, D/A CONVERSION TIMING




A/D CONVERTER (u-Law Encoder) TRANSFER CHARACTERISTIC


64KHz OPERATION, TRANSMITTER SECTION TIMING

Note: All rise and fail times are measured from 0.4V and 2.4V. All delay times are measured from 1.4V. 64KHz OPERATION, RECEIVER SECTION TIMING

Note: All rise and fail times are measured from 0.4V and 2.4V. All delay times are measured from 1.4V.

PCM SYSTEM BLOCK DIAGRAM

SYSTEM CHARACTERISTICS TEST CONFIGURATION

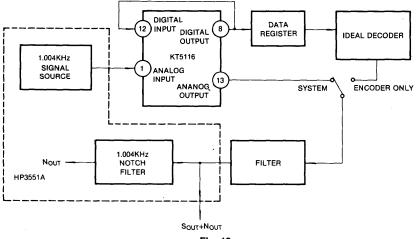


Fig. 12

Note: The ideal decoder consists of a digital decomponder and a 13-bit precision DAC.

PERFORMANCE EVALUATION

The equipment connections shown in Figure 12 can be used to evaluate the performance of the KT5116. An analog signal provided by the HP3551 a transmission test set is connected to the Analog Input (Pin 1) of the KT5116. The Digital Output of the CODEC is tied back to the Digital Input and the Analog Output is fed through a low-pass filter to the HP3551A.

Remaining pins of the KT5116 are connected as follows:

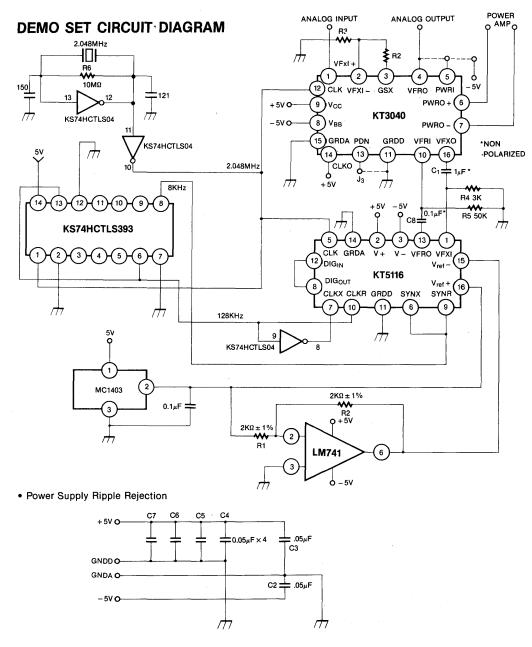
1. RCV SYNC is tied to XMIT SYNC.

2. XMIT CLOCK is tied to Master CLOCK. The signal is inverted and tied to RCV clock.

The following timing signals are required:

1. Master CLOCK=2.048MHz

2. XMIT SYNC repetition rate=8KHz

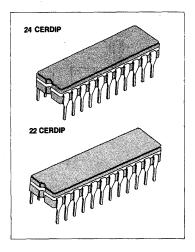

3. XMIT SYNC width=8 XMIT CLOCK periods.

when all the above requirements are met, the set-up of Figure 12 permits the measurement of synchronous system performance over a wide range of Analog Inputs.

The data register and ideal decoder provide a means of checking the encoder portion of the KT5116 independently of the decoder section. To test the system in the asynchronous mode, Master CLOCK should be separated from RCV CLOCK. XMIT CLOCK and RCV CLOCK are separated also.

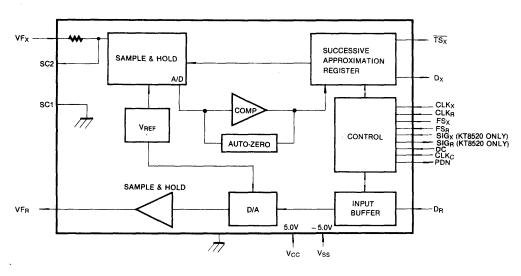
CMOS INTEGRATED CIRCUIT

NOTE: All unused input connected to GNDD or V_{CC}, only in HCT series.


MONOLITHIC CODECS

The devices are monolithic PCM CODECs implemented with high reliability CMOS technology. The KT8520 is intended for μ -law applications and the KT8521 is intended for A-law applications.

Integrated into the CODECs are circuits for signaling interface, PCM time-slot control logic, analog-to-digital (A/D) conversion, and digital-to-analog (D/A) conversion. The devices are intended to be used with the KT3040 monolithic PCM filter which provides the input antialiasing function for the encoder and smoothes the output of the decoder and corrects for the sinx/x distortion introduced by the decoder sample and hold output.


FEATURES

- Low power consumption: 45 mW (operation)
- 1 mW (standby)
- ± 5V power supplies.
- TTL compatible digital inputs and outputs
- Optional programmable time slot selection
- Internal sample and hold capacitors, auto zero circuit
- KT8520: µ-law, 24 DIP
- KT8521: A-law, 22 DIP
- Synchronous or asynchronous operation

ORDERING INFORMATION

Device	Package	Operating Temperatur				
KT8520N	Plastic					
KT8521N	Plastic	05 1 10500				
KT8520J	Ceramic	- 25 ~ + 125°C				
KT8521J	Ceramic					

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
V _{cc}	V _{cc}	7	V
V _{BB}	V _{BB}	-7	V
Any Analog Input or Output	Analog I/O	$V_{BB} - 0.3$ to $V_{CC} + 0.3$	V
Any Digital Input or Output	Digital I/O	GND - 0.3 to V _{cc} + 0.3	V
Operating Temperature Range	Та	- 25 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C
Lead Temperature (Soldering, 10 secs)	TL	300	°C

DC ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, $Ta = 0^{\circ}C$ to 70°C, typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $Ta = 25^{\circ}C$. All signals referenced to GND.)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
POWER DISSIPATION	4			I	L	L
Operating Current, V _{cc}	I _{CC1}			4.5	8.0	mA
Operating Current, V _{BB}	I _{BB1}			4.5	8.0	mA
Standby Current, V _{cc}	Icco			0.1	0.4	mA
Standby Current, V _{BB}	IBBO			0.03	0.1	mA
DIGITAL INTERFACE		Anno - ann ann ann ann ann ann ann ann ann a				
Input Current	l,	0 < V _{IN} < V _{CC}	- 10		10	μA
Input Low Voltage	VIL				0.6	v
Input High Voltage	VIH		2.2			V
Output Low Voltage	V _{OL}	$\begin{array}{c} D_{X},\ I_{OL}=4.0mA\\ SIG_{R},\ I_{OL}=0.5mA\\ \hline TS_{X},\ I_{OL}=3.2mA,\ Open\ Drain\\ PDN,\ I_{OL}=1.6mA \end{array}$			0.4 0.4 0.4 0.4	V V V V
Output High Voltage	V _{OH}	D _x , I _{OH} = 6.0mA SIG _R , I _{OH} = 0.6mA	2.4 2.4			V V
ANALOG INTERFACE						
VFX Input Impedance when Sampling	Zı	Resistance in series with 70pF	2.0			KΩ
Output Impedance at VFR	Zo	-3.1V <vfr<3.1v< td=""><td></td><td>10</td><td>20</td><td>Ω</td></vfr<3.1v<>		10	20	Ω
Output Offset Voltage at VFR	Vos	DR = PCM Zero Code (KT8520) or Alternating ± 1 Code (KT8521)	- 25		25	mV
Analog Input Bias Current	l _{in}	$V_{IN} = 0V$	- 0.1		0.1	μA
DC Blocking Time Constant	R1·C1		4.0			mS
Input Bias Resistor	R1				160	KΩ
DC Blocking Capacitor	C1		0.1			μF

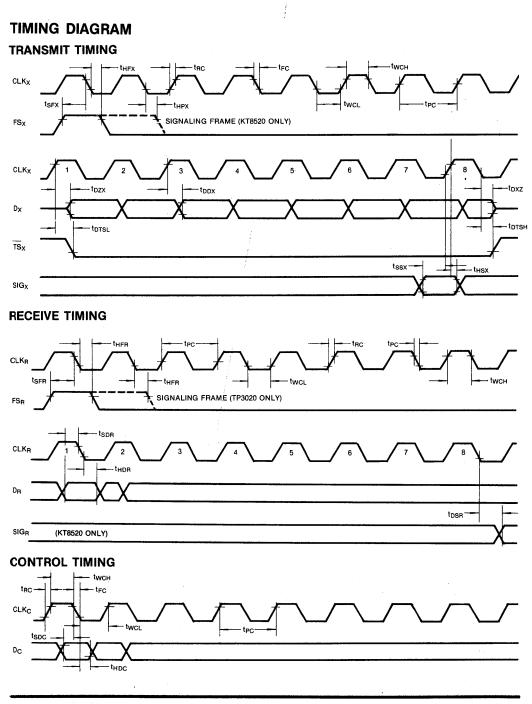
AC ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, the analog input is a 0dBm0, 1.02KHz sine wave. $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, $Ta = 0^{\circ}C$ to 70°C, typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $Ta = 25^{\circ}C$. All signals referenced to GND.)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Absolute Transmit Gain	G _{XA}	$V_{CC} = 5V, V_{BB} = -5V, T = 25^{\circ}C$	- 0.375		- 0.025	dB
Absolute Transmit Gain Variation with Temperature	G _{XAT}	T=0°C to 70°C	- 0.05		0.05	dB
Absolute Transmit Gain Variation with Supply Voltage	G _{XAV}	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$	- 0.07		0.07	dB
Absolute Receive Gain	G _{RA}	$V_{CC} = 5V, V_{BB} = -5V, T = 25^{\circ}C$	- 0.175		0.175	dB
Absolute Receive Gain Variation with Temperature	G _{RAT}	T=0°C to 70°C	- 0.05		0.05	dB
Absolute Receive Gain Variation with Supply Voltage	G _{RAV}	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$	- 0.07		0.07	dB
Absolute Receive & Transmit Gain Variation with Level	Gral Gxal	CCITT Method 2 Relative to - 10dBm0 0dBm0 to 3dBm0 - 40dBm0 to 0dBm0 - 50dBm0 to - 40dBm0 - 55dBm0 to - 50dBm0	- 0.3 - 0.2 - 0.4 - 1.0		0.3 0.2 0.4 1.0	dB dB dB dB
Receive & Transmit Signal to Distortion Ratio	S/D _R S/D _X	Sinusoidal Test Method Input Level – 30dBm0 to 0dBm0 – 40dBm0 – 45dBm0	35 29 25			dBc dBc dBc
Idle Channel Noise, Receive	N _R	DR = Steady State PCM Code			6	dB _{mc} 0
Idle Channel Noise, Transmit	Nx	No Signaling (KT8520) Note 1 (KT8521)			13 - 66*	dB _{rnc} 0 dBnOp
Receive & Transmit Harmonic Distortion	HD _R HD _X	2nd or 3rd Harmonic			- 47	dB
Transmit Positive Power Supply Rejection	PPSRx	Input Level = $0V$, $V_{CC} = 5.0V_{dc}$ + $300mV_{ms}$, f = $1.02KHz$	50			dĖ
Receive Positive Power Supply Rejection	PPSR ₈	$\label{eq:DR} \begin{array}{l} D_{R} = Steady \ PCM \ \ Code \\ V_{CC} = 5.0 V_{dc} + 300 mV_{rms}, \ f = 1.02 KHz \end{array}$	40			dB
Transmit Negative Power Supply Rejection	NPSR _x	Input Level = 0V, V_{BB} = -5.0V _{dc} + 300mV _{rms} , f = 1.02KHz	50			dB

AC ELECTRICAL CHARACTERISTICS (Continued)

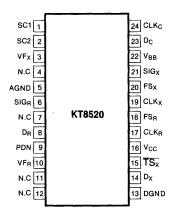
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Receive Negative Power Supply	NPSR _R	$\begin{split} D_{\text{R}} &= \text{Steady PCM Code} \\ V_{\text{BB}} &= -5.0 V_{\text{dc}} + 300 m V_{\text{rms}} \\ f &= 1.02 \text{KHz} \end{split}$	45			dB
Transmit to Receive Crosstalk	CT _{XR}	D _B = Steady PCM Code			- 75	dB
Receive to Transmit Crosstalk	CTR _x	Transmit Input Level = 0V KT8520 KT8521 (Note 2)			70 65	dB dB


Note 1: Measured by extrapolation from the distortion test result at - 50dBm0 level.

Note 2: Theoretical worst-case for a perfectly zeroed encoder with alternating sign bit, due to the decoding law.

TIMING CHARACTERISTICS (Unless otherwise noted, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $Ta = 0^{\circ}C$ to 70°C, typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $Ta = 25^{\circ}C$. All signals referenced to GND. All timing parameters are measured at $V_{OH} = 2.0V, V_{OL} = 0.7V.)$

Characteristic	Symbol	Test Condition		Тур	Max	Unit
Clock Period	t _{PC}	CLK _c , CLK _R , CLK _X	485			nS
Clock Rise and Fall Time	t _{RC} , t _{FC}	CLK _c , CLK _R , CLK _X			30	nS
Clock Pulse Width (High, Low)	t _{WCH/L}	CLK _C , CLK _R , CLK _X	165			nS
A/D Conversion Time	t _{A/D}	From end of encoder time Slot to completion of conversion			16	Time Slots
D/A Conversion Time	t _{D/A}	From end of decoder time Slot to transition of VF _R			2	Time Slots
D _c to CLK _c Set-Up Time	t _{SDG}		100			nS
CLK _c to D _c Hold Time	t _{HDC}		100			nS
FS _x to CLK _x Set-Up Time	t _{SFX}		100			nS
CLK _x to FS _x Hold Time	t _{HFX}		100			nS
Delay Time to Enable D _X on TS Entry	t _{DZX}	C _L = 150pF	25		125	nS
Delay Time, CLK _x to D _x	t _{DDX}	$C_L = 150 pF$			125	nS
Delay Time, D _x to High Impedance State on TS Exit	t _{DXZ}	$C_L = 0 p F$	50		165	nS
Delay to TS _x Low	t _{DTSL}	0≤CL≤150pF	30		185	nS
Delay to TS _x Off	t _{DTSH}	$C_L = 0 p F$	30		185	nS
Delay Time, CLK _R to SIG _R	t _{DSR}	$C_L = 100 pF$			300	nS
SIG _x to CLK _x Set-Up Time	t _{ssx}		100			nS
CLK _x to SIG _x Hold Time	t _{HSX}		100			nS
FS _R to CLK _R Set-Up Time	t _{SFR}		100			nS
CLK _R to FS _R Hold Time	t _{HFR}		100			nS
D _R to CLK _R Set-Up Time	t _{SDR}		40			nS
CLK _R to D _R Hold Time	t _{HDR}		30			nS



KT8520/KT8521

CMOS INTEGRATED CIRCUIT

SC1 1	22 CLK _C
SC2 2	21 D _C
VF _X 3	20 V _{BB}
N.C 4	19 FS _X
AGND 5	18 CLK _X
N.C 6	17 FS _R
DR 7	16 CLK _R
PDN 8	15 V _{CC}
VF _R 9	14 TS _X
N.C 10	13 D _X
N.C 11	12 DGND

PIN DESCRIPTION

Name	Function					
SC1	Internally connected to GNDA.					
SC2	Connects VF _x to an external sample/hold capacitor if fitted for use with pin- compatible NMOS CODECs. Ensures gain compatibility.					
VFx	Analog input to be encoded into a PCM word. The signal in this pin is sampled at the end of the encoder time slot and the resulting PCM code will be shifted out during the subsequent encode time slot.					
NC	No connect. Recommended practice is to strap the NC pin to GND.					
A/D GND	Analog & Digital ground. All analog & digital signals are referenced to this pin.					
SIG _R	Receive signaling bit output. During receive signaling frames the LSB (Least Significant Bit) shifted into D_R is internally latched and appears at this output-SIG _R will then remain valid until changed during a subsequent receive signaling frame or reset by a power-down command.					
D _R	Serial PCM data input to the decoder. During the decoder time slot, PCM data is shifted into D_R , MSB (most significant bit) first, on the falling edge of CLK _R .					
PDN	Power down output is active high when the CODEC is in the power down state. The open drain output is capable of sinking one TTL load.					
VFR	Analog output.					
D _x	Serial PCM output from the encoder (Three-state output). During the encoder time slot, the PCM code for the previous sample of VF_x is shifted out, MSB first, on the rising edge of CLK _x .					
TSx	Time slot output. (TTL compatible open drain). This output pulses low during the encoder time slot.					
V _{cc}	$+5V \pm 5\%$, referenced to GND.					
CLK _R	Master decoder clock input. This input used to shift in the PCM data on D_R and to operate the decoder sequencer. Operating at 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with CLK _x or CLK _c .					

PIN DESCRIPTION (Continued)

Name	Function
FS _R	Decoder frame synchronous pulse. Normally occurring at an 8KHz rate, this pulse is nominally one CLK _R cycle wide. Extending the width of FS _R to two or more cycles of CLK _R signifies a receive signaling frame.
CLKx	Master encoder clock input. This input used to shift out the PCM data on D_X and to operate the encoder sequencer. Operating at 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with CLK _R or CLK _C .
FS _x	Encoder frame synchronous pulse. Normally occurring at an 8KHz rate, this pulse is nominally one CLK_x cycle wide. Extending the width of FS _R to two or more cycles of CLK_x signifies a transmit signaling frame.
SIGx	Transmit signaling input. During a transmit signaling frame, the signal at SIG _x is shifted out of D_x in place of the last bit of PCM data.
V _{BB}	$-5V \pm 5\%$, referenced to GND.
DC	Serial control data input. Serial data on D_c is shifted into the CODEC on the falling edge of CLK _c . In the fixed time slot mode, D_c doubles as a power down input.
CLKc	Control clock input used to shift serial control data into D_c . CLK _c must pulse 8 times during a period of time less than or equal to one frame time, although the 8 pulses may overlap a frame boundary. CLK _c need not be synchronous with CLK _x or CLK _R . Connecting this pin continuously high, the CODEC, into the fixed time slot mode.

FUNCTIONAL DESCRIPTION

The CODECs are capable of operating as transmitters and receivers in any of the 64 channels of a PCM system. The receive and transmit sections can be assigned to the same channel (time slot) or to different channels, and assignments can be changed under microcomputer control to meet changing system needs. Table 1 shows the control options.

Control	Signals		Operation								
CLKc	DC										
L	Х	Undef	ined ope	eration		·					
V _{cc}	н	Power	r-down o	r standb	y operatí	onal sta	tus				
V _{cc}	L	Direct	-control	operatio	n. Receiv	e and ti	ransmit i	n the fir	st time slot.		
Ļ	Х		Microcomputer-control operation. Clock in one of 8 bits of the control at the D_c input.								
			B1	B2			Acti	ion			
			0 0 1 1	0 1 0 1	Assign time slot to encoder & decod Assign time slot to encoder Assign time slot to decoder Power-down CODEC			decoder			
			B3	B4	B 5	B6	B7	B8	Time Slot		
		numbe	ers equa	l one mo		the deci	mal equi		1 2 3 4		

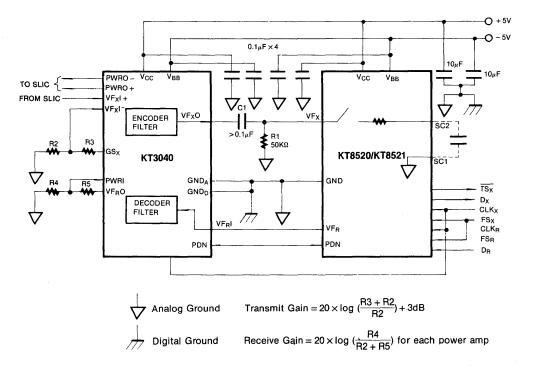
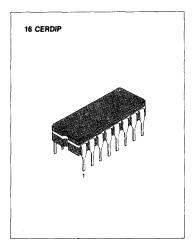

Note: H = High Level, L = Low Level, X = Irrelevant, \downarrow = From V_{CC} to Low Transition

TABLE 1. OPERATION CONTROL CONFIGURATIONS

3

APPLICATION CIRCUIT (TYPICAL)


CMOS INTEGRATED CIRCUIT

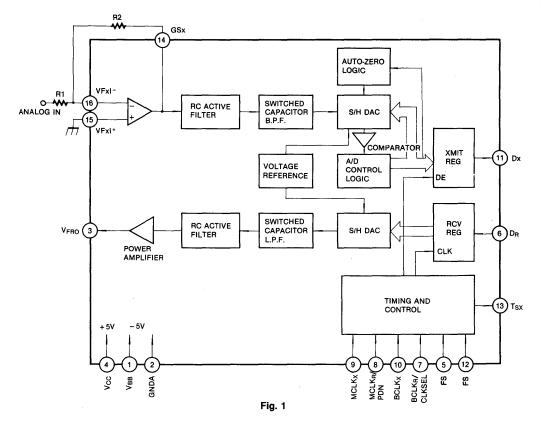
COMBO CODECS

The KT8554 and KT8557 are single-chip PCM encoders and decoders (PCM CODECs) and PCM line filters. These devices provide all the functions required to interface a full-duplex voice telephone circuit with a timedivision-multiplexed (TDM) system.

These devices are designed to perform the transmit encoding and receive decoding as well as the transmit and receive filtering functions in PCM system. They are intended to be used at the analog termination of a PCM line or trunk.

These devices provide the bandpass filtering of the analog signals prior to encoding and after decoding. These combination devices perform the encoding and decoding of voice and call progress tones as well as the signaling and supervision information.

FEATURES


- · Complete CODEC and filtering system
- Meets or exceeds AT&T D3/D4 and CCITT specifications
 - μ·Law: KT8554, A·Law: KT8557
- On-chip auto zero, sample and hold, and precision voltage references
- Low power dissipation: 60mW (operating) 3mW (standby)
- ±5V operation
- TTL or CMOS compatible
- Automatic power down

ORDERING INFORMATION

Device	Package	Operating Temperature
KT8554N	Plastic	
KT8557N	Plastic	05 40580
KT8554J	Ceramic	-25 ~ +125°C
KT8557J	Ceramic	

BLOCK DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Characteristic.	Symbol	Value	Unit
V _{cc} to GNDA	V _{cc}	7	v
V _{BB} to GNDA	V _{BB}	-7	V
Voltage at Any Analog Input or Output	AI/O	$V_{CC} + 0.3$ to $V_{BB} - 0.3$	V
Voltage at Any Digital Input or Output	DI/O	V _{cc} + 0.3 to GNDA - 0.3	V
Operating Temperature Range	Та	- 25 to + 125	°C
Storage Temperature Range	T _{sta}	- 65 to + 150	°C
Lead Temperature (Soldering, 10 secs)	TL	300	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, GNDA = 0V, Ta = 0°C to 70°C; typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, Ta = 25°C; all signals referenced to GNDA.)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Power Dissipation	I	<u> </u>	L		L	
Power-Down Current	I _{cc} 0	No Load		0.5	1.5	mA
Power-Down Current	I _{BB} O	No Load		0.05	0.3	mA
Active Current	l _{cc} 1	No Load		6.0	9.0	mA
Active Current	I _{BB} 1	No Load		6.0	9.0	mA
Digital Interface	£	· · · · · · · · · · · · · · · · · · ·	<u> </u>		•	
Input Low Voltage	VIL				0.6	V
Input High Voltage	VIH		2.2			٧
Input Low Current	l _{iL}	GNDA≤V _{IN} ≤V _{IL} , all digital inputs	- 10		10	μA
Input High Current	1 _{IH}	$V_{iH} \leq V_{iN} \leq V_{CC}$	- 10		10	μA
Output Low Voltage	V _{ol}	$\begin{array}{l} D_{X,} \ I_{L} = 3.2 m A \\ SIG_{R}, \ I_{L} = 1.0 m A \\ \overline{TS}_{X,} \ I_{L} = 3.2 m A, \ open \ drain \end{array}$			0.4 0.4 0.4	V V V
Output High Voltage	V _{он}	$ \begin{array}{l} D_{x},\ I_{H}=-3.2mA\\ SIG_{R},\ I_{H}=-1.0mA \end{array} $	2.4 2.4			v v
Output Current in High Impedance State (TRI-STATE)	l _{oz}	D_x , $GNDA \leq V_0 \leq V_{cc}$	- 10		10	μA
Analog Interface with Receive Filter	r					
Output Resistance	RoRF	Pin VF _R O		1	3	Ω
Load Resistance	RLRF	$VF_{B}O = \pm 2.5V$	600			Ω
Load Capacitance	C∟RF				500	pF
Output DC Offset Voltage	VOS _R O		- 200		200	m۷
Analog Interface with Transmit Input	t Amplifier					
Input Leakage Current	I¦XA	$-2.5V \le V \le +2.5V$, VF _x I + or VF _x I -	- 200		200	nA
Input Resistance	R _I XA	$-2.5V \le V \le +2.5V$, VF _x I + or VF _x I -	10			MΩ
Output Resistance	R₀XA	Closed loop, unity gain		1	3	Ω
Load Resistance	R _L XA	GS _x	10			KΩ
Load Capacitance	C∟XA	GS _x			50	pF
Output Dynamic Range	VoXA	$GS_X, R_L \leq 10K\Omega$	± 2.8			V
Voltage Gain	A _v XA	VF _x I + to GS _x	5,000			V/V
Unity Gain Bandwidth	F _u XA		1	2		MH:
Offset Voltage	V _{os} XA		- 20		20	m۷
Common-Mode Voltage	V _{CM} XA	CMRRXA>60dB	- 2.5		2.5	V
Common-Mode Rejection Ratio	CMRRXA	DC Test	60			dB
Power Supply Rejection Ratio	PSRRXA	DC Test	60			dB

TIMING CHARACTERISTICS

(Unless otherwise noted, $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, GNDA = 0V, Ta = 0°C to 70°C; typical characteristics specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, Ta = 25°C; all signals referenced to GNDA.)

Characteristic	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency of Master Clocks	1/t _{РМ}	Depends on the device used and the $BCLK_{R}/CLKSEL$ Pin. $MCLK_{X}$ and $MCLK_{R}$		1.536 1.544 2.048		MHz MHz MHz
Rise Time of Bit Clock	t _{RB}	t _{PB} = 488ns			50	ns
Fall Time of Bit Clock	t _{FB}	t _{PB} = 488ns			50	ns
Holding Time from Bit Clock Low to Frame Sync	t _{HBFL}	Long frame only	0			ns
Holding Time from Bit Clock High to Frame Sync	t _{HOLD}	Short frame only	0			ns
Set-Up Time from Frame Sync to Bit Clock Low	t _{SFB}	Long frame only	80			ns
Delay Time from BCLK _x High to Data Valid	t _{DBD}	Load = 150pF plus 2 LSTTL loads	0		180	ns
Delay Time to TSx Low	t _{XDP}	Load = 150pF plus 2 LSTTL loads			140	ns
Delay Time from BCLK _x Low to Data Output Disabled	t _{DZC}		50		165	ns
Delay Time to Valid Data from FS _x or BCLK _x , Whichever Comes Later	t _{DZF}	$C_L = 0 pF$ to 150pF	20		165	ns
Set-Up Time from D _R Valid to BCLK _{R/X} Low	t _{SDB}		50			ns
Hold Time from $BCLK_{R/X}$ Low to D_R Invalid	t _{нво}		50			ns
Delay Time from $BCLK_{R/X}$ Low to SIG_R Valid	t _{DFSSG}	Load = 50pF plus 2 LSTTL loads			300	ns
Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	t _{sF}	Short frame sync pulse (1 or 2 bit clock periods long) (Note 1)	50			ns
Width of Master Clock High	t _{wмн}	MCLK _x and MCLK _R	160			ns
Width of Master Clock Low	t _{WML}	MCLK _x and MCLK _R	160			ns
Rise Time of Master Clock	t _{RM}	MCLK _x and MCLK _R			50	ns
Fall Time of Master Clock	t _{FM}	MCLK _x and MCLK _R			50	ns
Set-Up Time from BCLK _x High (and FS _x In Long Frame Sync Mode) to MCLK _x Falling Edge	t _{sbfm}	First bit clock after the leading edge of FS_x				
Period of Bit Clock	t _{РВ}		485	488	15,725	ns
Width of Bit Clock High	t _{wвн}	V _{IH} = 2.2V	160			ns
Width of Bit Clock Low	t _{WBL}	$V_{IL} = 0.6V$	160			ns

TIMING CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Hold Time from $BCLK_{X/R}$ Low to $FS_{X/R}$ Low	t _{HF}	Short frame sync pulse (1 or 2 bit clock periods long) (Note 1)	100			ns
Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _x or FS _R)	t _{HBFI}	Long frame sync pulse (from 3 to 8 bit clock periods long)	100			ns
Minimum Width of the Frame Sync Pulse (Low Level)	twFL	64K bit/s operating mode	160			ns

Note 1: For short frame sync timing, FS_x and FS_R must go high while their respective bit clocks are high.

TIMING DIAGRAM

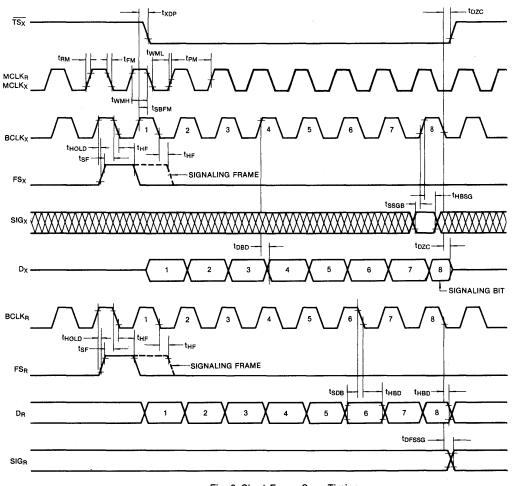


Fig. 2. Short Frame Sync Timing

TIMING DIAGRAM (Continued)

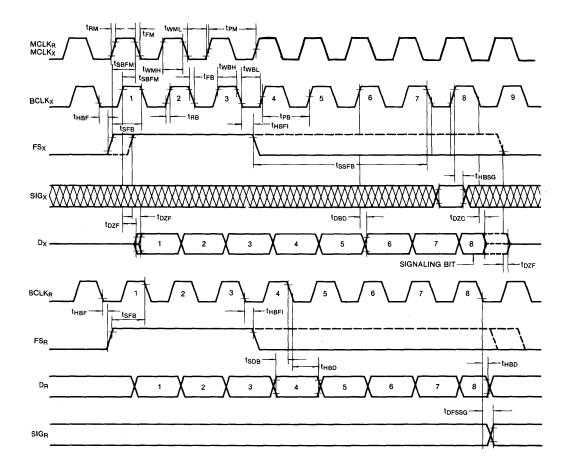


Fig. 3 Long Frame Sync Timing

TRANSMISSION CHARACTERISTICS

(Unless otherwise specified: Ta = 0°C to 70°C, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDA = 0V, f = 1.02KHz, $V_{IN} = 0dBm0$, transmit input amplifier connected for unity-gain non-inverting.)

Characteristic	Symbol	Symbol Test Condition		Тур	Max	Unit
Amplitude Response	L	L		L	L	
Receive Gain, Absolute	G _{RA}	Ta = 25°C, V_{CC} = 5V, V_{BB} = -5V Input = Digital code sequence for 0dBm0 signal at 1020Hz			0.15	dB
Receive Gain, Relative to G_{RA}	G _{RR}	f = 0Hz to 3000Hz f = 3300Hz f = 3400Hz f = 4000Hz	- 0.15 - 0.35 - 0.7		0.15 0.05 0 - 14	dB dB dB dB
Absolute Receive Gain Variation with Temperature	G _{rat}	Ta=0°C to 70°C			±0.1	dB
Absolute Receive Gain Variation with Supply Voltage	G _{RAV}	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$			± 0.05	dB
Receive Gain Variations with Level	G _{rrl}	Sinusoidal test method; reference input PCM code corresponds to an Ideally encoded – 10dBm0 signal PCM level = – 40dBm0 to + 3dBm0 PCM level = – 50dBm0 to – 40dBm0 PCM level = – 55dBm0 to – 50dBm0	- 0.2 - 0.4 - 1.2		0.2 0.4 1.2	dB dB dB
Receive Output Drive Level	V _{RO}	$R_L = 600\Omega$	- 2.5		2.5	V
Absolute Levels	AL	Nominal 0dBm0 level is 4dBm (600Ω) 0dBm0		1.2276		Vms
Max Overload Level	t _{MAX}	Max overload level (3.17dBm0): KT8554 Max overload level (3.14dBm0): KT8557		2.501		V _{PK}
Transmit Gain, Absolute	Gxa	Ta = 25 °C, V_{CC} = 5V, V_{BB} = -5V Input at GS _X = 0dBm0 at 1020Hz	- 0.15		0.15	dB
Transmit Gain, Relative to G_{XA} G_{XI}			- 1.8 - 0.15 - 0.35 - 0.7		- 40 - 30 - 26 - 0.1 0.15 0.05 0 - 14 - 32	dB dB dB dB dB dB dB dB
Absolute Transmit Gain Variation with Temperature	G _{XAT}	Ta=0°C to 70°C			±0.1	dB
Absolute Transmit Gain Variation with Supply Voltage	G _{XAV}	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$			±0.05	dB
Transmit Gain Variations with Level	G _{XRL}	Sinusoldal test method Reference level = $-10dBm0$ VF _x I + = $-40dBm0$ to $+3dBm0$ VF _x I + = $-50dBm0$ to $-40dBm0$ VF _x I + = $-55dBm0$ to $-50dBm0$	- 0.2 - 0.4 - 1.2		0.2 0.4 1.2	dB dB dB

TRANSMISSION CHARACTERISTICS (Continued)

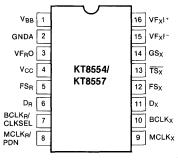
Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Envelope Delay Distortion with Fr	equency				· · · · ·	
Receive Delay, Absolute	D _{RA}	f = 1600Hz		180	200	μS
Receive Delay, Relative to D _{RA}	D _{RR}	f = 500Hz - 1000Hz f = 1000Hz - 1600Hz f = 1600Hz - 2600Hz f = 2600Hz - 2800Hz f = 2800Hz - 3000Hz	- 40 - 30	- 25 - 20 70 100 145	90 125 175	μS μS μS μS μS
Transmit Delay, Absolute	D _{XA}	f = 1600Hz		290	315	μS
Transmit Delay, Relative to D_{XA}	D _{XR}	f = 500Hz - 600Hz f = 600Hz - 800Hz f = 800Hz - 1000Hz f = 1000Hz - 1600Hz f = 1600Hz - 2600Hz f = 2600Hz - 2800Hz f = 2800Hz - 3000Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μS μS μS μS μS μS μS
Noise						
Receive Noise, C Message Weighted	N _{RC}	PCM code equals alternating positive and negative zero, KT8554		8	11	dBrnc0
Receive Noise, P Message Weighted	N _{PP}	PCM code equals, positive zero, KT8557		- 82	- 79	dBmOp
Transmit Noise, C Message Weighted	N _{xc}	KT8554		12	15	dBrnc0
Transmit Noise, P Message Weighted	N _{XP}	KT8557		- 74	- 67	dBmOp
Noise, Single Frequency	N _{RS}	f = 0KHz to 100KHz, loop around measurement, $VF_xI + = 0V_{rms}$			53	dBm0
Positive Power Supply Rejection, Transmit	PPSRx	$ \begin{array}{l} VF_xI+=0V_{ms},\\ V_{CC}=5.0V_{DC}+100mV_{ms}\\ f=0KHz-50KHz \end{array} $	40			dBC
Negative Power Supply Rejection, Transmit	NPSRx	$ \begin{array}{l} VF_{x}I+=0V_{ms},\\ V_{BB}=-5.0V_{DC}+100mV_{ms}\\ f=0KHz-50KHz \end{array} $	40			dBC
Positive Power Supply Rejection, Receive	PPSR _R	$\begin{array}{l} \text{PCM code equals positive zero} \\ V_{\text{CC}} = 5.0V_{\text{DC}} + 100\text{mV}_{\text{rms}} \\ \text{f} = 0\text{Hz} - 4000\text{Hz} \\ \text{f} = 4\text{KHz} - 25\text{KHz} \\ \text{f} = 25\text{KHz} - 50\text{KHz} \end{array}$	40 40 36			dBC dB dB
Negative Power Supply Rejection, Receive	NPSR _R	$\begin{array}{l} PCM \mbox{ code equals positive zero} \\ V_{BB} = -5.0V_{DC} + 100mV_{ms} \\ f = 0Hz - 4000Hz \\ f = 4KHz - 25KHz \\ f = 25KHz - 50KHz \end{array}$	40 40 36			dBC dB dB

TRANSMISSION CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Spurious Out-of-Band Signals at the Channel Output	SOS	Loop around measurement, 0dBm0, 300Hz – 3400Hz input applied to VF _x I + , Measure individual image signals at VF _R O 4600Hz – 7600Hz 7600Hz – 8400Hz 8400Hz – 100,000Hz			- 32 - 40 - 32	dB dB dB
Distortion	I					
Signal to Total Distortion	STDx	Sinusoidal test method				
Transmit or Receive S Half-Channel		Level = 3.0dBm0 = 0dBm0 to 30dBm0 = - 40dBm0 XMT RCV = - 55dBm0 XMT RCV	33 36 29 30 14 15			dBC dBC dBC dBC dBC dBC
Single Frequency Distortion, Transmit	SFDx				- 46	dB
Single Frequency Distortion, Receive	SFD _R				- 46	dB
Intermodulation Distortion	IMD	Loop around measurement, VF _x + = $-4dBm0$ to $-21dBm0$, two frequencies in the range 300Hz - 3400Hz			- 41	dB
Crosstalk						
Transmit to Receive Crosstalk, 0dBm0 Transmit Level	CT _{X-R}	f = 300Hz - 3400Hz $D_R = Steady PCM code$		- 90	- 75	dB
Receive to Transmit Crosstalk, 0dBm0 Receive Level	CT _{R-X}	f = 300Hz - 3400Hz, VF _x I = 0V		- 90	- 70 (Note 1)	dB

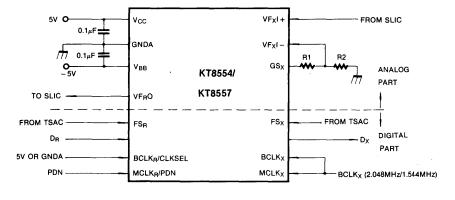
Note 1. $CT_{R,X}$ is measured with a -40dBm0 activating signal applied at VF_XI +

ENCODING FORMAT AT DX OUTPUT


	μ-Law KT8554	A-Law KT8557
V_{iN} (at GS_x) = + Full - Scale	1000000	10101010
V_{IN} (at GS_X) = 0V	11111111 01111111	1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
V_{IN} (at GS_X) = - Full - Scale	00000000	00101010

PIN DESCRIPTION

Pin No.	Symbol	Description
1	V _{BB}	Negative power supply. $V_{BB} = -5V \pm 5\%$.
2	GNDA	Analog ground. All signals are referenced to this pin.
3	VF _R O	Analog output of the receive filter.
4	V _{cc}	Positive power supply. $V_{cc} = +5V \pm 5\%$.
5	FS _R	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into $D_R.$ FS_R is an 8KHz pulse train.
6	D _R	Receive data input. PCM data is shifted into D_R following the FS_R leading edge.
7	BCLK _R / CLKSEL	The bit clock which shifts data into D_R after the FS _R leading edge. Many vary from 64KHz to 2.048MHz. Alternatively, may be a logic input which selects either 1.536MHz/1.544MHz or 2.048MHz for master clock in synchronous mode and BCLK _x is used for both transmit and receive directions.
8	MCLK _R / PDN	Receive master clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with MCLK _x , but should be synchronous with MCLK _x for best performance. When MCLK _B is connected continously low, MCLK _R is selected for all internal timing. When MCLK _B is connected continuously high the device is powered down.
9	MCLK _x	Transmit master clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with MCLK _B .
10	BCLK _x	The bit clock which shifts out the PCM data on D_x . May vary from 64KHz to 2.048MHz, but must be synchronous with MCLK _x .
11	Dx	The TRI-STATE PCM data output which is enabled by FS _x .
12	FSx	Transmit frame sync pulse input which enables $BCLK_x$ to shift out the PCM data on D_x . FS $_x$ is an 8KHz pulse train.
13	TSx	Open drain ouptut which pulses low during the encoder time slot.
14	GS _x	Analog output of the transmit input amplifier. Used to externally set again.
15	V _{FXI} –	Inverting input of the transmit input amplifier.
16	V _{FXI} +	Non-inverting input of the transmit input amplifier.


PIN CONNECTION

KT8554/KT8557

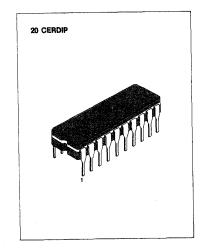
APPLICATION CIRCUITS

Note : XMIT gain = $20 \times \log(\frac{R1 + R2}{R2})$, (R1 + R2) > 10K Ω .

Fig. 4

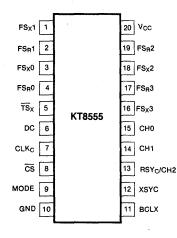
CMOS INTEGRATED CIRCUIT

TIME SLOT ASSIGNMENT CIRCUIT (TSAC)


The KT8555 is a per channel Time Slot Assignment Circuit (TSAC) that produces 8-bit receive and transmit time slots for 4 COMBO CODEC/Filters.

Each frame synchronization pulse may be independently assigned to a time slot in a frame of up to 64 time slots.

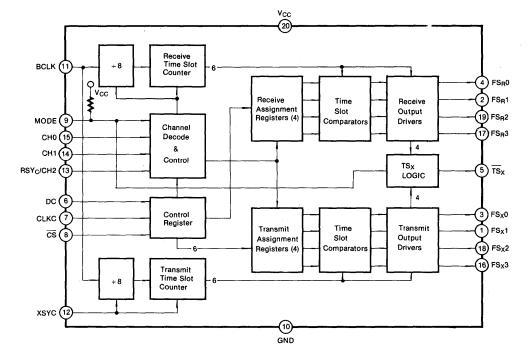
FEATURES


- Single, 5V operation
- Low power consumption: 5mW
- Controls 4 COMBO CODEC/Filters
- Independent transmit and receive frame syncs and enables
- 8 channel unidirectional mode
- Up to 64 time slots per frame
- Compatible with KT8554/7, KT8564/7, KT8520/1 CODECs
- TTL and CMOS compatible

PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Operating Temperature
KT8555N	20 Plastic DIP	-20 ~ +125°C
KT8555J	20 Ceramic DIP	-20 ~ + 125 °C


PIN DESCRIPTION

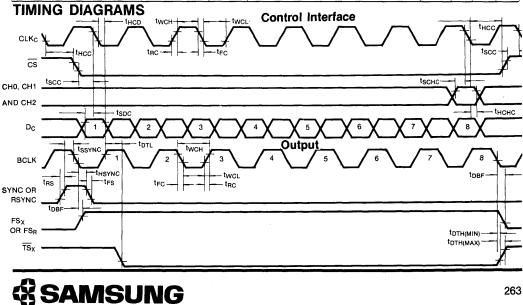
Pin	Name	Function
3 1 18 16	FS _x 0 FS _x 1 FS _x 2 FS _x 3	A frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid transmit time slot assignment is made.
4 2 19 17	_{FSR} 0 FS _R 1 FS _R 2 FS _R 3	A frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid receive time slot assignment is made.
5	TSx	This pin pulls low during any active transmit time slot. (N-channel open drain)
6	Dc	The input for an 8 bit serial control word. \overline{X} is the first bit clocked in.
7	CLKc	The clock input for the control interface.
8	CS	The active-low chip select for the control interface.
9	MODE	Mode 1 = Open or V_{cc} Mode 2 = Gnd
10	GND	Ground
11	BCLK	The bit clock input
12	XSYC	The transmit TSO sync pulse input. Must be synchronous with BCLK.
13	RSY _c /CH2	This input function is determined by the MODE input (Pin 9). In mode 1 this input is the receive TSO sync pulse, RSY _c , which must be synchronous with BCLK. In mode 2 this is the CH2 input for the MSB of the channel select word.
14	CH1	The input for the NSB (next significant bit) of the channel select word.
15	CH0	The input for the LSB (last significant bit) of the channel select word, which defines the frame sync output affected by the following control word.
20	V _{cc}	Power supply pin. 5V±5%

261

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
V _{cc} to GND	Vcc	7.0	v
Any Input Voltage	i v	$V_{cc} + 0.3 \sim -0.3$	v
Any Output Voltage	Vo	$V_{cc} + 0.3 \sim -0.3$	v
Operating Temperature Range	Та	- 25 ~ 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ 150	°C
Lead Temperature (Soldering, 10 secs)	T _L	300	°C



Electronics

CMOS INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Unless otherwise noted; V_{cc} = 5.0V ± 5%, Ta = 0°C ~ 70°C)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Current	Icc	BCLK = 4.096MHz, All outputs open		1	1.5	mA
Input Voltage High	ViH		2.0			v
Input Voltage Low	Vil				0.7	V
Input Current 1	1,1	All Inputs Except Mode, VIL < VIN < VIH	-1		1	μA
Input Current 2	I ₁₂	Mode, $V_{1N} = 0V$	- 100			μA
Output Voltage High	V _{он}	FS_X and FS_R Ouputs, $I_{OH} = 3mA$	2.4			V
		FS_x and FS_B Outputs, $I_{OL} = 3mA$			0.4	V
Output Voltage Low	V _{oL}	TS_x output, $I_{OL} = 3mA$			0.4	v
Rise and Fall Time of Clock	t _{RC} , t _{FC}	BCLK, CLKC			50	nS
Delay to T _{sx} Low	t _{DTL}	$C_L = 50 pF$			140	nS
Delay to T _{sx} High	t _{DTH}	$R_L = 1K\Omega$ to V_{CC}	30		100	nS
Hold Time from BCLK to Frame Sync	t _{нs}		50			nS
Set-Up Time from Frame Sync to BLCK	t _{ss}		30			nS
Delay Time from BLCK Low to S _{X/R} 0-3 High or Low	t _{DBF}	$C_L = 50 pF$			50	nS
Hold Time from Channel Select to CLKC	t _{нсн}		50			nS
Set-Up Time from Channel Select to CLKC	t _{scн}		30			nS
Period of Clock	t _{PC}	BCLK, CLKC	240			nS
Width of Clock High	t _{wcн}	BCLK, CLKC	50			nS
Width of Clock Low	twcL	BCLK, CLKC	50			nS
Set-Up Time from Dc to CLKC	t _{SDC}		30			nS
Hold Time from CLKC to Dc	tнср		50			nS
Set-Up Time from CS to CLKC	t _{scc}		30			nS
Hold Time from CLKC to CS	t _{HCC}		100			nS

FUNCTION DESCRIPTION

Operating Modes

The KT8555 is a control interface which requires an 8 bit serial control word. The device is compatible with KT8520/KT8521 CODECs. Either one of the frame sync output group, FS_x0 to FS_x3 or FS_n0 to FS_n3 , affected by the control word is defined by the two bits, \overline{X} and \overline{R} . Time slot selected from 0 to 63 is specified. A frame sync output is highly active for one time slot which is equivalent to 8 cycles of BLCK. Up to 64 time slots are allowed to form a frame. There are two operational mode. In mode 1, each channel of transmit and receive direction has different time slot assigned. This mode can be selected by either leaving pin 9 (MODE) opened or connecting it with V_{cc}. In such a case, pin 13 is RSYNC input defining the start of each transmit frame is defined by XSYNC input by which output FS_x0 to FS_x3 , are assigned. XSYNC and RSYNC can be phase related. Channels from 0-3 are selected by the input CH0 and CH1 (refer to the table 1). In mode 2, all 8 frame sync outputs can be assigned with respect to XSYNC input. The mode 2, selected by connecting pin 9 (MODE) to GND, enables the KT8555 TSAC suitable for an 8-channel undirectional controller and for a system where both transmit and receive direction of each channel have same time slot assigned. For instance, FS_x and FS_n input of COMBO CODEC/FILTER are hard wired together. The channel assigned has its channel selected by CH0, CH1 and CH2 (refer to table 2).

X	Ř	T5	T4	Т3	T2	T1	то	
-								

Xis	the	first	bit	clocked	into	DC	input
-----	-----	-------	-----	---------	------	----	-------

CONTROL DATA FORMAT

	T5	T 4	Т3	T2	T1	TO	Time Slot
	0	0	0	0	0	0	0
	0	0	0	0	0	1	1
	0	0	0	0	1	0	2
1							•
							•
							•
	0	1	1	1	1	0	30
	0	1	1	1	1	1	31
	1	0	0	0	0	0	32
	1	0	0	0	0	1	33
	,						•
							•
							•
	1	1	1	1	1	1	63

	CH1 CH0		CH0	Channel Selected			
	0		· 0	Assign to FS _x 0 and/or FS _B 0			
	0		1	Assign to FS _x 1 and/or FS _R 1			
1			0	Assign to FS _x 2 and/or FS _R 2			
	1		1	Assign to FS _x 3 and/or FS _R 3			
Ī	R		Action				
0	0	As	sign time :	slot to both selected FS_x and FS_B			
0	1	As	Assign time slot to seleced FSx only -				
1	0	As	Assign time slot to selected FS _R only				
1	1	Dis	able both	selected FS _x and FS _R			

TABLE 1. CONTROL MODE 1

CH2	CH1	CH0	Channel Selected
0	0	0	Assign to FS _x 0
0	0	1	Assign to FS _x 1
0	1	0	Assign to FS _x 2
0	. 1	1	Assign to FS _x 3
1	0	0	Assign to FS _R 0
1	. 0	1	Assign to FS _R 1
1	1	0	Assign to FS _R 2
1	1	1	Assign to FS _R 3

X	R	Action
0	0	Assign time slot to selected output
0	1	Assign time slot to selected output
1	0	Assign time slot to selected output
1	1	Disable selected output

TABLE 2. CONTROL MODE 2

Loading Control Data

While control data is loaded, the binary cord for the selected channel should be set on inputs CH0 and CH1 (and CH2 in mode 2). Please refer table 1 and table 2.

Control data is clocked into the DC input on the falling edges of CLKC with low \overline{CS} . A newly assigned time slot is transferred to the assignment register, selected on the high going of \overline{CS} , and it is re-synchronized to the system clock. As a result the newly generated FS output pulse will start at the next complete valid time slot after the rising edge of \overline{CS} .

Power Up Initialization

All frame sync outputs, FS_x0-FS_x3 and FS_n0-FS_n3, are inhibited and held low during power-up period. Therefore no output is active until a valid time slot is assigned.

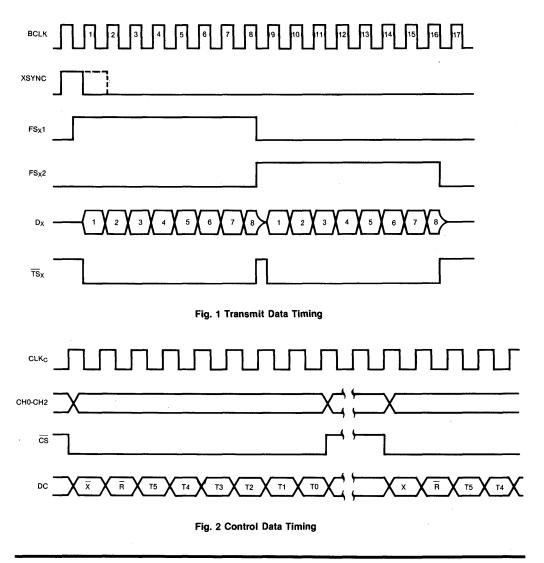
Time Slot Counter Operation

As TSO of each transmit frame starts, defined by the first falling edge of BCLK after XSYNC goes high, the transmit time slot counter is reset to 000000. Then it starts increasing once every 8 cycles of BLCK. When a match is found by comparing each count with the 4 transmit assignment register, a frame sync pulse is generated at the FS_x output.

Like wise the start of the receive TSO is defined by the falling edge of BCLK after RSYNC goes high. The output, FS_R0-FS_R3, are generated with respect to TSO when the receive time counter is matched with an appropriate receive assignment register.

TS_x Output

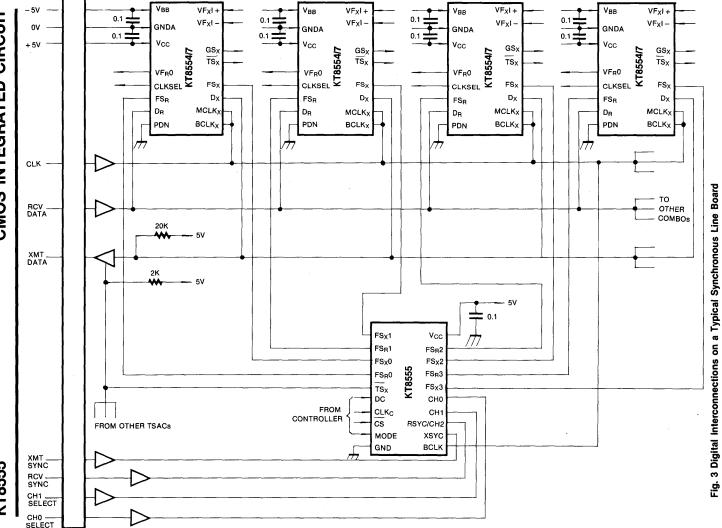
In mode 1, where there are separate transmit and receive assignments, the output is pulled low of FS_x output pulse is detected. During the mode 2, the output is pulled low if either of FS_x or FS_R is generated. Other than such cases, it is an open circuit allowing \overline{TS}_x outputs of TSACs to be wire-ANDed together with a common pull-up resistor. The output can control the TRI-STATE enable input of a line driver to buffer the transmit PCM bus provided from the CODEC/Filter to the backplane.


APPLICATION CIRCUIT

The KT8555 TSAC combined with any kind of COMBO from KT8554/7 or KT8564/7 series can obtain data timing as illustrated in Fig. 1. Even though FS_X output goes high before BCLK gets high, the D_X output of the combo remains in the TRI-STATE mode until both outputs are high. The eight bit period is shortened to avoid a bus clash as on the KT8520/1 CODECs.

Alternatively, full 8 bits can be obtained by inverting the BCLK to the combo devices, thereby rising edges of BLCK and FS_{XPR} are aligned.

Fig. 2 is typical timing of the control data interface.


Fig. 3 is the digital interconnections of a typical line card application.

CMOS INTEGRATED CIRCUIT

3

267

SAMSUNG Electronics

KT8564/KT8567

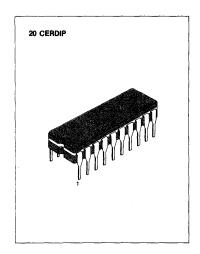
CMOS INTEGRATED CIRCUIT

COMBO CODECS

The KT8564 and KT8567 are single-chip PCM encoders and decoders (PCM CODECs), PCM line filter and receive power amp.

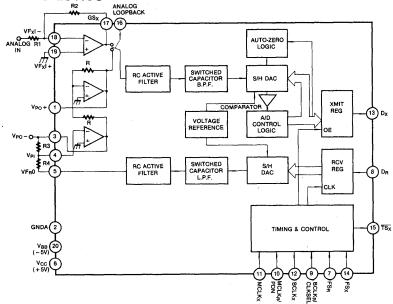
These devices provide all the functions required to interface a full-duplex voice telephone circuit with a timedivision-multiplexed (TDM) system.

These devices are designed to perform the transmit encoding and decoding as well as the transmit and receive filtering functions in PCM system.


They are intended to be used at the analog termination of a PCM line or trunk.

These devices provide the bandpass filtering of the analog signals prior to encoding and after decoding. These combination devices perform the encoding and decoding of voice and call progress tones as well as the signalling and supervision information.

FEATURES


- Complete CODEC and filtering system
- Meets or exceeds D3/D4 and CCITT specifications. $\mu\text{-Law: KT8564 A-Law: KT8567}$
- On-chip auto zero, sample and hold and precision voltage references.
- · Receive push-pull power amplifiers
- Low power dissipation: 70mW (operating)
 - 3mW (standby)
- ± 5V operation
- TTL or CMOS compatible
- Automatic power down

TYPICAL I-V CHARACTERISTICS

ORDERING INFORMATION

Device	Package	Operating Temperature				
KT8564N	Plastic					
KT8567N	Plastic	- 25 ~ + 125°C				
KT8564J	Ceramic	-25 ~ +125°C				
KT8567J	Ceramic					

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
V _{cc} to GNDA	V _{cc}	7	v
V _{BB} to GNDA	V _{BB}	-7	V
Voltage at Any Analog Input or Output	1/0	$V_{CC} + 0.3$ to $V_{BB} - 0.3$	V
Voltage at Any Digital Input or Output	1/0	V_{cc} + 0.3 to GNDA – 0.3	V
Operating Temperature Range	Ta	- 25 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C
Lead Temperature (Soldering 10 secs)	TL	300	°C

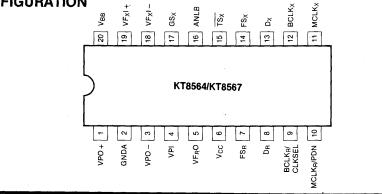
ELECTRICAL CHARACTERISTICS

(Unless otherwise noted: $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDA = 0V, Ta = 0°C to 70°C; typical characteristics specified at $V_{CC} = 5.0V$, Ta = 25°C; all signals are referenced to GNDA)

Characteristic	Symbol	Test Condition	Min	Тур	Мах	Unit
Power Dissipation			1			· .
Active Current	Icc1	Power amplifiers active, VPI = 0V		7.0	10.0	mA
Active Current	I _{BB} 1	Power amplifiers active, VPI = 0V		7.0	10.0	mA
Power-Down Current	Icco			0.5	1.5	mA
Power-Down Current	I _{BBO}			0.05	0.3	mA
Digital Interface						•
Input Low Current	h _L	GNDA≤V _{IN} ≤V _{IL} , All digital inputs	- 10		10	μA
Input High Current	1 _{iH}	$V_{\rm IH} \leq V_{\rm IN} \leq V_{\rm CC}$	- 10		10	μA
Output Current in High Impedance State (TRI-STATE)	l _{oz}	D_x , $GNDA \leq V_0 \leq V_{CC}$	- 10		10	μΑ
Input Low Voltage	VIL				0.6	V
Input High Voltage	VIH		2.2			V
Output Low Voltage	Vol	$\begin{array}{l} D_{X_1}, \ l_L = 3.2 m A \\ SIG_R, \ l_L = 1.0 m A \\ \overline{TS}_{X_1} l_L = 3.2 m A, \ Open \ Drain \end{array}$			0.4 0.4 0.4	v
Output High Voltage	V _{он}	D_x , $I_H = -3.2mA$ SIG _R , $I_H = -1.0mA$	2.4 2.4			v
Analog Interface with Transmit	Input Ampl	ifier				
Input Leakage Current	I _I XA	$-2.5V \le V \le +2.5V$, VF _x I + or VF _x I -	- 200		200	nA
Input Resistance	R _i XA	$-2.5V \le V \le +2.5V$, VF _x I + or VF _x I -	10			MΩ
Output Resistance	R _o XA	Closed loop, unity gain		1	3	Ω
Load Resistance	R∟XA	GS _x	10			KΩ
Load Capacitance	C _L XA	GS _x			50	pF
Output Dynamic Range	V _o XA	GS _x , R _L ≥10KΩ	± 2.8			V

ELECTRICAL CHARACTERISTICS (Continued)

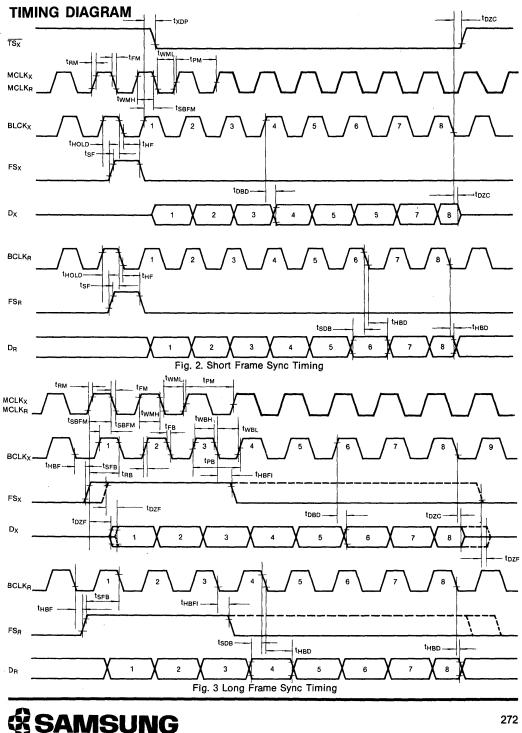
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Voltage Gain	A _v XA	VF _x I + to GS _x	5000			V/V
Unity-Gain Bandwidth	F _u XA		1	2		MHz
Offset Voltage	VosXA		- 20		20	mV
Common-Mode Voltage	V _{CM} XA	CMRRXA>60dB	- 2.5		2.5	V
Common-Mode Rejection Ratio	CMRRXA	DC Test	60			dB
Power Supply Rejection Ratio	PSRRXA	DC Test	60			dB
Analog Interface with Receive F	ilter	•				
Output Resistance	R _o RF	Pin VF _R O		1	3	Ω
Output DC Offset Voltage	VOS _R O	Measure from VF _R O to GND A	- 200		200	mV
Load Resistance	RLRF	$VF_{B}O = \pm 2.5V$	10		/	KΩ
Load Capacitance	C⊾RF	Connect from VF _R O to GND A			25	pF
Analog Interface with Power An	plifiers					
Input Leakage Current	IPI	-1.0V≤VP1≤1.0V≤VP1≤1.0V	- 100		100	nA
Input Resistance	RIPI	- 1.0V ≤ VPI ≤ 1.0V	10			MΩ
Input Offset Voltage	VIos		- 25		25	mV
Output Resistance	ROP	Inverting unity gain at VPO + or VPO -		1		Ω
Unity-Gain Bandwidth	Fc	Open loop (VPO –)		400		KHz
Load Capacitance	CLP	$ \begin{array}{ll} R_L \geq 1500\Omega & VPO + \mbox{ or } \\ R_L = 600\Omega & VPO - \mbox{ to } \\ R_L = 300\Omega & GNDA \end{array} $			100 500 1000	pF pF pF
Gain from VPO- to VPO+	GA _P +	$R_L = 300\Omega \text{ VPO} + \text{ to GNDA level at}$ VPO - = - 1.77Vrms (+ 3dBmo)		-1		V/V
Power Supply Rejection of V_{CC} or V_{BB}	PSRR₽	VPO – connected to VPI 0KHz – 4KHz 0KHz – 50KHz	60 36			dB dB
Frequency of Master Clock	l/t _{PM}	Depends on the device used and the BCLK _R /CLKSEL Pin MCLK _x and MCLK _R		1.536 1.544 2.048		MHz MHz MHz
Width of Master Clock High	t _{wмн}	MCLK _x and MCLK _R	160			ns
Width of Master Clock Low	t _{WML}	MCLK _x and MCLK _R	160			ns
Rise Time of Master Clock	t _{RM}	MCLK _x and MCLK _R			50	ns
Fall Time of Master Clock	t _{FM}	MCLK _x and MCLK _R		_	50	ns
Set-Up Time from $BCLK_X$ High (and FS_X in Long Frame Sync Mode) to $MCLK_X$ Falling Edge	t _{sbfm}	First bit clock after the leading edge of FS _x	100			ns
Period of Bit Clock	t _{PB}		485	488	15,725	ns
Width of Bit Clock High	t _{wвн}	V _{IH} = 2.2V	160			ns
Width of Bit Clock Low	t _{WBL}	V _{IL} = 0.6V	160			ns
Rise Time of Bit Clock	t _{RB}	t _{PB} = 480ns			50	ns
Fall Time of Bit Clock	t _{FB}	t _{PB} = 488ns			50	ns



ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Holding Time from Bit Clock Low to Frame Sync	t _{HBF}	Long frame only	0			ns
Holding Time from Bit Clock High to Frame Sync	t _{HOLD}	Short frame only	0			ns
Set-Up Time for Frame Sync to Bit Clock Low	t _{SFB}	Long Frame Only	80			ns
Delay Time from BCLK _x High to Data Valid	t _{DBD}	Load = 150pF plus 2 LSTTL loads	0		180	ns
Delay Time to TS _x Low	t _{XDP}	Load = 150pF plus 2 LSTTL loads			140	ns
Delay Time from BCLK _x Low to Data Output Disabled	t _{DEC}		50		165	ns
Delay Time to Valid Data from FS_x or $BCLK_x$, whichever Comes Later	t _{DZF}	$C_L = 0pF$ to 150pF	20		165	ns
Set-Up Time from D_R Valid to $BCLK_{R/X}$ Low	t _{SDB}		50			ns
Hold Time from $BCLK_{R/x}$ Low to D_R Invalid	I _{HBD}		50			ns
Delay Time from BCLK _{R/X} Low to SIG _R Valid	t _{DFSSF}	Load = 50pF plus 2 LSTTL loads			300	ns
Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	t _{SF}	Short frame sync pulse (1 or 2 bit clock periods long)(Note 1)	50			ns
Hold Time from $BCLK_{X/R}$ Low to $FS_{X/R}$ Low	t _{HF}	Short frame sync pulse (1 or 2 bit clock periods long)(Note 1)	100			ns
Hold Time from 3rd Period of Bit Clock Low to Frame Sync $(FS_x \text{ of } FS_R)$	t _{HBFI}	Long frame sync pulse (from 3 to 8 bit clock periods long)	100			ns
Minimum Width of the Frame Sync Pulse (Low Level)	t _{WFL}	64K bit/s operating mode	160			ns

Note 1: For short frame sync timing, FS_x and FS_R must go high while their respective bit clocks are high.


PIN CONFIGURATION

KT8564/KT8567

Δ Electronics

PIN DESCRIPTION

Pin	Name	Function
1	VPO+	The non-inverted output of the receive power amplifier.
2	GNDA	Analog ground. All signals are referenced to this pin.
3	VPO-	The inverted output of the receive power amplifier.
4	VPI	Inverting input to the receive power amplifier. Also powers down both amplifiers when connected to $V_{\mbox{\tiny BB}}.$
5	VF _R O	Analog output of the receive filter.
6	V _{cc}	Positive power supply pin $V_{cc} = +5V \pm 5\%$.
7	FS _R	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into D_R , FS _R is an 8KHz pulse train. (refer to Fig 2 and 3 for timing details)
8	D _R	Receive data input. PCM data is shifted into D_R following the FS_R leading edge.
9	BCLK _R / CLKSEL	The bit clock which shifts data into D_R after the FS _R leading edge. May vary from 64KHz to 2.048MHz. Alternatively, may be a logic input which selects either 1.536MHz/1.544MHz or 2.048MHz for master clock in synchronous mode and BCLK _x is used for both transmit and receive directions. (see Table 1)
10	MCLK _R / PDN	Receive master clock. Must be 1.536MHz or 2.048MHz. May be asynchronous with MCLK _x , but should be synchronous with MCLK _x for best performance. When MCLK _R is connected continuously low, MCLK _x is selected for all internal timing. When MCLK _R is connected continuously high, the device is powered down.
11	MCLKx	Transmit master clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with MCLK _B .
12	BCLK _x	The bit clock which shifts out the PCM data on D _x . May vary from 64KHz to 2.048MHz, but must be synchronous with MCLK _x .
13	Dx	The TRI-STATE PCM data output which is enabled by FS _x .
14	FS _x	Transmit frame sync pulse input which enables $BCLK_x$ to shift out the PCM data a on D _x , FS _x is an 8KHz pulse train. (refer to Fig 2, 3)
15	TSx	Open drain output which pulses low during the encoder time slot.
16	ANLB	Analog loopback control input. Must be set to logic '0' for normal operation. When pulled to logic '1', the transmit filter input is dis connected from the output of the preamplifier and connected to the VPO ⁺ output of the receive power, amplifier.
17	GS _x	Analog output of the transmit input amplifier. Used to externally set again.
18	VF _x I ⁻	Inverting input of the transmit input amplifier.
19	VF _x I+	Non-inverting input of the transmit input amplifier.
20	V _{BB}	Negative power supply pin $V_{BB} = -5V \pm 5\%$.

TRANSMISSION CHARACTERISTICS

(Unless otherwise specified: Ta = 0 °C to 70 °C, $V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDA = 0V, f = 1.02KHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting.)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
AMPLITUDE RESPONSE						
Receive Gain, Absolute	G _{RA}	$Ta = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital code sequence for 0dBm0 signal at 1020Hz	- 0.15		0.15	dB
Receive Gain, Relative to G_{RA}	G _{RB}	f = 0Hz to 3000Hz f = 3300Hz f = 3400Hz f = 4000Hz	- 0.15 - 0.35 - 0.7		0.15 0.05 0 - 14	dB dB dB dB
Absolute Receive Gain Variation with Temperature	G _{RAT}	Ta=0°C to 70°C			± 0.1	dB
Absolute Receive Gain Variation with Supply Voltage	G _{RAV}	$V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$			±0.05	dB
Receive Gain Variations with Level	G _{rrl}	Sinusoidal test method; reference input PCM code corresponds to an Ideally encoded – 10dBm0 signal PCM level = – 40dBm0 to + 3dBm0 PCM level = – 50dBm0 to – 40dBm0 PCM level = – 55dBm0 to – 50dBm0	0.2 0.4 1.2		0.2 0.4 1.2	dB dB dB
Receive Filter Output at VF _R O	VRO	$R_L = 10\Omega$	- 2.5		2.5	V
Absolute Levels	AL	Nominal 0dBm0 level is 4dBm (600Ω) 0dBm0		1.2276		Vrms
Max Transmit Overload Level	t _{max}	Max transmit overload level KT8564(3.17dBm0), KT8567(3.14dBm0)		2.501 2.492		VPK
Transmit Gain, Absolute	G _{XA}	Ta = 25°C, V_{CC} = 5V, V_{BB} = -5V Input at GS _X = 0dBm0 at 1020Hz	- 0.15		0.15	dB
Transmit Gain, Relative to G_{XA}	G _{XR}	f = 16Hz f = 50Hz f = 60Hz f = 200Hz f = 300Hz - 3000Hz f = 3300Hz f = 3400Hz f = 4000Hz f = 4600Hz and up, measure Response from 0Hz to 4000Hz	- 1.8 - 0.15 - 0.35 - 0.7		- 40 - 30 - 26 - 0.1 0.15 0.05 0 - 14 - 32	dB dB dB dB dB dB dB dB
Absolute Transmit Gain Variation with Temperature	Gxat	Ta=0°C to 70°C			± 0.1	dB
Absolute Transmit Gain Variation with Supply Voltage	G _{XAV}	$V_{CC} = 5V \pm 5\%, \ V_{BB} = -5V \pm 5\%$			±0.05	dB
Transmit Gain Variations with Level	G _{XRL}	Sinusoldal test method Reference level = $-10dBm0$ VF _x I + = $-40dBm0$ to $+3dBm0$ VF _x I + = $-50dBm0$ to $-40dBm0$ VF _x I + = $-55dBm0$ to $-50dBm0$	- 0.2 - 0.4 - 1.2		0.2 0.4 1.2	dB dB dB

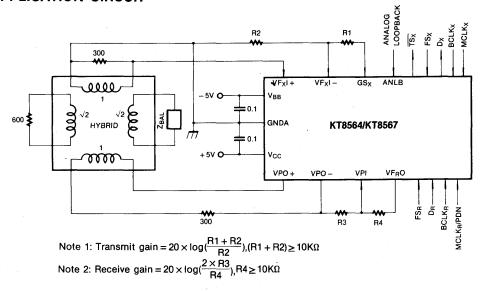
TRANSMISSION CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
ENVELOPE DELAY DISTORTION	WITH FR	EQUENCY	1	L.,		
Transmit Delay, Absolute	D _{XA}	f = 1600Hz		290	315	μS
Transmit Delay, Relative to D_{XA}	D _{XR}	f = 500Hz - 600Hz f = 600Hz - 800Hz f = 800Hz - 1000Hz f = 1000Hz - 1600Hz f = 1600Hz - 2600Hz f = 2600Hz - 2800Hz f = 2800Hz - 3000Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μS μS μS μS μS μS μS
Receive Delay, Absolute	D _{RA}	f = 1600Hz		180	200	μS
Receive Delay, Relative to D_{RA}	D _{RR}	f = 500Hz - 1000Hz f = 1000Hz - 1600Hz f = 1600Hz - 2600Hz f = 2600Hz - 2800Hz f = 2800Hz - 3000Hz	- 40 - 30	- 25 - 20 70 100 145	90 125 175	μS μS μS μS μS
NOISE					,	
Transmit Noise, C Message Weighted	N _{xc}	VF _x I + = 0V, KT8564	·	12	15	dBrnc0
Transmit Noise, P Message Weighted	N _{XP}	VF _x I + = 0V, KT8567		- 74	- 67	dBmOp
Receive Noise, C Message Weighted	N _{RC}	PCM code equals alternating positive and negative zero, KT8564		8	11	dBrnc0
Receive Noise, P Message Weighted	N _{RP}	PCM code equals positive zero, KT8567		- 82	- 79	dBmOp
Noise, Single Frequency	N _{RS}	f = 0KHz to 100KHz, loop around measurement, VF _x I + = 0V _{rms}			- 53	dBm0
Positive Power Supply Rejection, Transmit	PPSRx	$ \begin{array}{l} VF_{x}I+=0V_{rms},\\ V_{CC}=5.0V_{DC}+100mV_{rms}\\ f=0KHz-50KHz \end{array} $	40			dBC
Negative Power Supply Rejection, Transmit	NPSRx	$ \begin{array}{l} VF_X I + = 0 V_{rms}, \\ V_{BB} = -5.0 V_{DC} + 100 m V_{rms} \\ f = 0 KHz - 50 KHz \end{array} $	40			dBC
Positive Power Supply Rejection, Receive	PPSR _R	$\label{eq:VCC} \begin{array}{l} \text{PCM code equals positive zero} \\ V_{\text{CC}} = 5.0V_{\text{DC}} + 100\text{mV}_{\text{rms}} \\ \text{f} = 0\text{Hz} - 4000\text{Hz} \\ \text{f} = 4\text{KHz} - 4000\text{Hz} \\ \text{f} = 25\text{KHz} - 50\text{KHz} \end{array}$	40 40 36			dBC dB dB
Negative Power Supply Rejection, Receive	NPSR _R	$\begin{array}{l} PCM \ code \ equals \ positive \ zero \\ V_{BB} = -5.0V_{DC} + 100mV_{rms} \\ f = 0Hz - 4000Hz \\ f = 4KHz - 25KHz \\ f = 25KHz - 50KHz \end{array}$	40 40 36			dBC dB dB

TRANSMISSION CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Spurious Out-of-Band Signals at the Channel Output	SOS	Loop around measurement, 0dBm0, 300Hz – 3400Hz input applied to $VF_xI +$, measure individual image signals at VF_RO 4600Hz – 7600Hz 7600Hz – 8400Hz 8400Hz – 100,000Hz			- 32 - 40 - 32	dB dB dB
Distortion						
Signal to Total Distortion	STDx	Sinusoidal test method				
Transmit or Receive Half-Channel	STD _R	Level = 3.0dBm0 = 0dBm0 to 30dBm0 = - 40dBm0 XMT RCV = - 55dBm0 XMT RCV	33 36 29 30 14 15			dBC dBC dBC dBC dBC dBC dBC
Single Frequency Distortion, Transmit	SFDx				- 46	dB
Single Frequency Distortion, Receive	SFD _R				- 46	dB
Intermodulation Distortion	IMD	Loop around measurement, VF _x + = $-4dBm0$ to $-21dBm0$, two frequencies in the range 300Hz - 3400Hz			- 41	dB
Crosstalk						
Transmit to Receive Crosstalk	CT _{X-R}	f = 300Hz - 3400Hz $D_R = Steady PCM code$		- 90	- 75	dB
Receive to Transmit Crosstalk	CT _{R-X}	f = 300Hz – 3000Hz, VF _x I = 0V		90	- 70 (Note 1)	dB
Power Amplifiers						
Maximum 0dBm0 Level for Better than ± 0.1 dB Linearity Over the Range - 10dBm0 to ± 3 dBm0	V _{oL}	Balanced load, R_L connected between VPO + and VPO - $R_L = 600\Omega$ $R_L = 1200\Omega$ $R_L = 30K\Omega$	3.3 3.5 4.0			Vrms Vrms Vrms
Signal/Distortion	S/Dp	$R_L = 600\Omega$, 0dBm0	50			dB

Note 1. $CT_{B,X}$ is measured with a -50dBm0 activating signal applied at $VF_XI + ...$


SELECTION OF MASTER CLOCK FREQUENCIES

	MASTER CLOCK FREQUENCY SELECTED			
BCLK _R /CLKSEL	KT8564	KT8567		
Clocked	1.536MHz or 1.544MHz	2.048MHz		
0	2.048MHz	1.536MHz or 1.544MHz		
1 (or open circuit)	1.544MHz	2.048MHz		

ENCODING FORMAT AT Dx OUTPUT

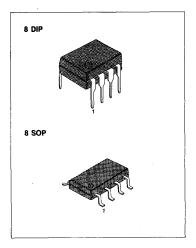
	KT8564 (μ-Law)	KT8567 (A-Law, Includes Even Bit Inversion)
V _{IN} = + Full Scale	1000000	10101010
V _{IN} = 0V	11111111 01111111	1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
V _{IN} = - Full Scale	00000000	00101010

LM567C

LINEAR INTEGRATED CIRCUIT

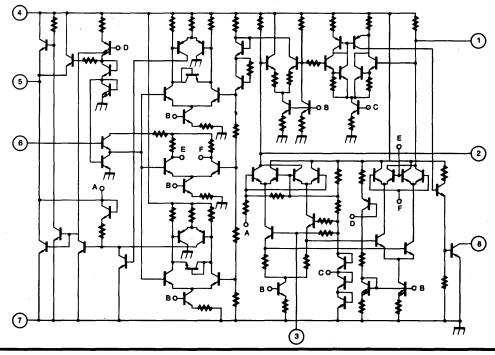
TONE DECODER

The LM567C is a monolithic phase locked loop system designed to provide a saturated transistor switch to GND, when an input signal is present within the passband. External components are used to independently set center frequency bandwidth and output delay.


FEATURES

- Wide frequency range (0.01Hz 500kHz).
- Bandwidth adjustable from 0 to 14%
- Logic compatible output with 100mA current sinking capability.
- Inherent immunity to false signals.
- High rejection of out-of-band signals and noise.
- Frequency range adjustable over 20:1 range by an external resistor.

APPLICATIONS


- Touch Tone Decoder
- · Wireless Intercom.
- · Communications paging decoders
- Frequency monitoring and control.
- Ultrasonic controls (remote TV etc.)
- Carrier current remote controls.
- Precision oscillator.

SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature	
LM567CN	8 DIP	0 ~ + 70°C	
LM567CD	8 SOP	0~+70°C	

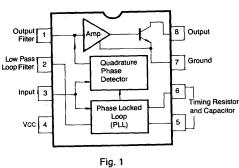
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Operating Voltage	V _{cc}	10	v
Input Voltage	V _{IN}	$-10 \sim V_{cc} + 0.5$	v
Output Voltage	Vo	15	v
Power Dissipation	Pd	300	mW
Operating Temperature	Topr	0~+70	°C
Storage Temperature	Tstg	-65~+150	°C

ELECTRICAL CHARACTERISTICS

($V_{CC} = 5.0V$, $T_a = 25^{\circ}C$ unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Voltage Range Supply Current Quiescent Supply Current Activated Quiescent Power Dissipation	V _{cc} I _{cc} -1 I _{cc} -2 P _{QD}	R _L =20K	4.75	5.0 7 12 35	9.0 10 15	V mA mA mW
Highest Center Frequency Center Frequency Stability Center Frequency Shift With Supply Voltage	H _{FO} F _{SE} F _{CS}	R _L =20K 0°C to 70°C	100	500 ±60 0.7	2	KHz ppm/ºC %/V
Largest Detection Bandwidth Largest Detection B.W Skew Largest Detection Bandwidth Variation With Supply Voltage Largest Detection Bandwidth Variation With Temperature	B.W B.Ws B.Wv B.Wt		10	14 2 ±2 ±0.1	18 3 ±5	% of fo % of fo %/V %/°C
Input Resistance	R _{IN}			20		Kohm
Smallest Detectable Input Voltage Largest No Output Input Voltage	V _{IN} -1 V _{IN} -2	l∟=100mA, fi=fo	10	20 15	25	mVrms mVrms
Greatest Simultaneous Outband Signal To Inband Signal Ratio Minimum Input Signal to Wideband Noise Ratio	S1/Sd` S2/Sd	$R_{L} = 20k$ $V_{IN} = 300mV_{RMS}$ fi=fo=100KHz $fi_{1} = 140KHz$ $fi_{2} = 60KHz$		+6 -6		dB dB
Fastest On-Off Cycling Rate Output Leakage Current	F _{our} I _{co}	$R_L = 20K$ $V_{IN} = 25mV_{RMS}$		fo/20 0.01	25	μA
Output Saturaton Voltage	V _{SAT} -1 V _{SAT} -2	$I_L = 30mA, V_{IN} = 25mVrms$ $I_L = 100mA, V_{IN} = 25mVrms$		0.2 0.6	0.4 1.0	V V
Output Fall Time Output Rise Time	T _F T _R	$R_{L} = 50$ $R_{L} = 50$		30 150		nS nS



BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The LM567C monolithic tone decoder consists of a phase detector, low pass filter, and current controlled oscillator which comprise the basic phase-locked loop, plus an additional low pass filter and quadrature detector enabling detection on in-band signals. The device has a normally high open collector output capable of sinking 100 mA.

The input signal is applied to Pin 3 (20 k Ω nominal input resistance). Free running frequency is controlled by an RC network at Pins 5 and 6 and can typically reach 500 kHz. A capacitor on Pin 1 serves as the output filter and eliminates out-of-band triggering. PLL filtering is accomplished with a capacitor on Pin 2; bandwidth and skew are also dependant upon the circuitry here. Bandwidth is adjustable from 0% to 14% of the center frequency. Pin 4 is +V_{cc} (4.75 to 9V nominal, 10V maximum); Pin 7 is ground; and Pin 8 is open collector output, pulling low when an in-band signal triggers the device.

DEFINITION OF LM567C PARAMETERS

CENTER FREQUENCY fo

 f_0 is the free-running frequency of the C_L controlled oscillator with no input signal. It is determined by resistor R₁ between pins 5 and 6, and capacitor C₁ from pin 6 to ground f_0 can be approximated by

 $f_0 \approx \frac{1}{R_1 C_1}$

where R1 is in ohms and C1 is in farads.

LARGEST DETECTION BANDWIDTH

The largest detection bandwidth is the largest frequency range within which an input signal above the threshold voltage will cause a logical zero state at the output. The maximum detection bandwidth corresponds to the lock range of the PLL.

DETECTION BANDWIDTH (BW)

The detection bandwidth is the frequency range centered about f_0 , within which an input signal larger than the threshold voltage (typically 20mVrms) will cause a logic zero state at the output. The detection bandwidth corresponds to the capture range of the PLL and is determined by the low-pass bandwidth filter. The bandwidth of the filter, as a percent of f_0 , can be determined by the approximation

BW=1070 $\sqrt{\frac{V_i}{f_0C_0}}$

where V_i is the input signal in volts, rms, and C₂ is the capacitance at pin 2 in μ F.

DETECTION BAND SKEW

The detection band skew is a measure of how accurately the largest detection band is centered about the center frequency, f_0 . It is defined as $(f_{max} + f_{min} - 2f_0)/f_0$, where f_{max} and f_{min} are the frequencies corresponding to the edges of the detection band. If necessary, the detection band skew can be reduced to zero by an optional centering adjustment.

÷.

PIN DESCRIPTION

OUTPUT FILTER — C₃ (Pin 1)

Capacitor C₃ connected from pin 1 to ground forms a simple low-pass post detection filter to eliminate spurious outputs due to out-of-band signals. The time constant of the filter can be expressed as $T_3 = R_3C_3$, where R_3 (4.7k Ω) is the internal impedance at pin 1.

The precise value of C_3 is not entical for most applications. To eliminate the possibility of false triggering by spurious signals, it is recommended that C_3 be $\geq 2 C_2$, where C_2 is the loop filter capacitance at pin 2.

If the value of C_3 becomes too large, the turn-on or turn-off time of the output stage will be delayed until the voltage change across C_3 reaches the threshold voltage. In certain applications, the delay may be desirable as a means of suppressing spurious outputs. Conversely, if the value of C_3 is too small, the beat rate at the output of the quadrature detector may cause a false logic level change at the output. (Pin 8)

The average voltage (during lock) at pin 1 is a function of the inband input amplitude in accordance with the given transfer characteristic.

LOOP FILTER — C₂ (Pin 2)

Capacitor C₂ connected from pin 2 to ground serves as a single pole, low-pass filter for the PLL portion of the LM567C The filter time constant is given by $T_2 = R_2C_2$, where R_2 (10 k Ω) is the impedance at pin 2.

The selection of C_2 is determined by the detection bandwidth requirements. For additional information see section on "Definition of LM567C Parameters".

The voltage at pin 2, the phase detector output, is a linear function of frequency over the range of 0.95 to 1.05 f_o, with a slope of approximately 20 mV/% frequency deviation.

INPUT (Pin 3)

The input signal is applied to pin 3 through a coupling capacitor. This terminal is internally biased at a dc level 2 volts above ground, and has an input impedance level of approximately 20 k Ω

TIMING RESISTOR R1 AND CAPACITOR C1 (Pins 5 and 6)

The center frequency of the decoder is set by resistor R₁ between pins 5 and 6, and capacitor C₁ from pin 6 to ground, as shown in Figure 3.

Pin 5 is the oscillator squarewave output which has a magnitude of approximately V_{cc} — 1.4V and an average dc level of $V_{cc}/2$. A 1 k Ω load may be driven from this point. The voltage at pin 6 is an exponential triangle waveform with a peak-to-peak amplitude of 1 volt and an average dc level of $V_{cc}/2$. Only high impedance loads should be connected to pin 6 avoid disturbing the temperature stability or duty cycle of the oscillator.

LOGIC OUTPUT (Pin 8)

Terminal 8 provides a binary logic output when an input signal is present within the pass-band of the decoder. The logic output is an uncommitted, "base-collector" power transistor capable of switching high current loads. The current level at the output is determined by an external load resistor, R_L , connected from pin 8 to the positive supply.

When an in-band signal is present, the output transistor at pin 8 saturates with a collector voltage less than 1 volt (typically 0.6V) at full rated current of 100 mA. If large output voltage swings are needed, R_L can be connected to a supply voltage, V+, higher than the V_{CC} supply. For safe operation, V+ \leq 20 volts.

3

OPERATING INSTRUCTIONS

SELECTION OF EXTERNAL COMPONENTS

A typical connection diagram for the LM567C is shown in Figure 3. For most applications, the following procedure will be sufficient for determination of the external components R_1 , C_1 , C_2 , and C_3 .

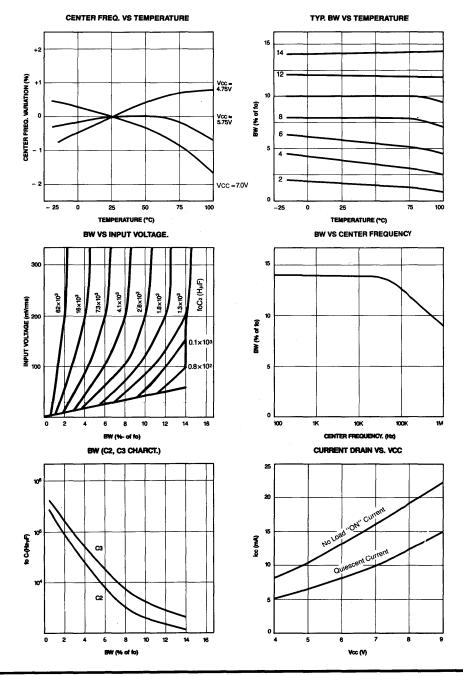
- R₁ and C₁ should be selected for the desired center frequency by the expression f₀=1/R₁C₁. For optimum temperature stability, R₁ should be selected such that 2kΩ, and the R₁C₁ product should have sufficient stability over the projected operating temperature range.
- 2. Low-pass capacitor, C₂, can be determined from the Bandwidth versus Input Signal Amplitude graph of Figure 7. One approach is to select an area of operation from the graph, and then adjust the input level and value of C₂ accordingly. Or, if the input amplitude variation is known, the required f₀C₂ product can be found to give the desired bandwidth. Constant bandwidth operation requires V₁>200mV rms. Then, as noted on the graph, bandwidth will be controlled solely by the f₀C₂ product.
- 3. Capacitor C₃ sets the band edge of the low-pass filter which attenuates frequencies outside of the detection band and thereby eliminales spurious outputs. If C₃ is too small, frequencies adjacent to the detection band may switch the output stage off and on at the beat frequency, or the output may pulse off and on during the turn-on transient. a typical minimum value of C₃ is 2 C₂.

Conversely, if C_3 is too large, turn-on and turn-off of the output stage will be delayed until the voltage across C_3 passes the threshold value.

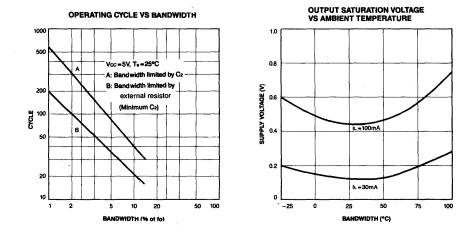
PRINCIPLE OF OPERATION

The LM567C is a frequency selective tone decoder system based on the phase-locked loop (PLL) principle. the system is comprised of a phase-locked loop, a quadrature AM detector, a voltage comparator, and an output logic driver. The four sections are internally interconnected as shown in Figure 1.

When an input tone is present within the pass-band of the circuit, the PLL synchronizes or "locks" on the input signal. The quadrature detector serves as a lock indicator: when the PLL is locked on an input signal, the dc voltage at the output of the detector is shifted. This dc level shift is then converted to an output logic pulse by the amplifier and logic driver. The logic driver is a "bare collector" transistor stage capable of switching 100 mA loads.


The logic output at pin 8 is normally in a "high" state, until a tone that is within the capture range of the decoder is present at the input. When the decoder is locked on an input signal, the logic output at pin 8 goes to a "low" state.

The center frequency of the detector is set by the free-running frequency of the current-controlled oscillator in the PLL. This free-running frequency, f_0 , is determined by the selection of R_1 and C_1 connected to pins 5 and 6, as shown in Figure 3. The detection bandwidth is determined by the size of the PLL filter capacitor, C_2 ; and the output response speed is controlled by the output filter capacitor, C_3



LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS

AC TEST CIRCUIT

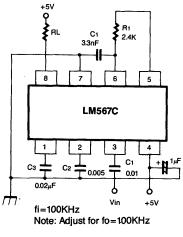
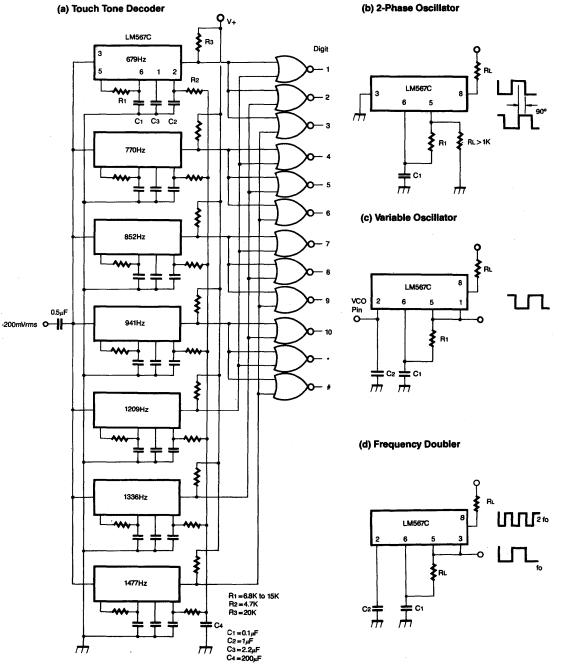



Fig. 2

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT

3

MICROPOWER TONE DECODER

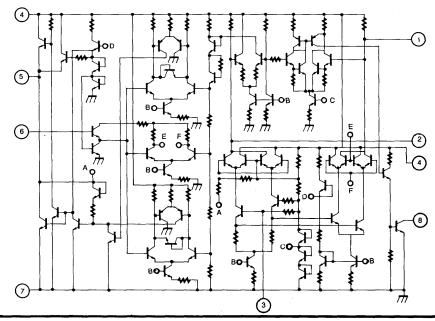
The LM567L is a micropower phase-locked loop (PLL) circuit designed for general purpose tone and frequency decoding. In applications requiring very low power dissipation, the LM567L can replace the popular 567 type decoder with only minor component value changes. The LM567L offers approximately 1/10th the power dissipation of the conventional 567 type tone decoder, without sacrificing its key features such as the oscillator stability, frequency selectivity, and detection threshold. Typical quiescent power dissipation is less than 4mW at 5 volts.

FEATURES

- Very low power dissipation (4mW at 5V)
- · Bandwidth adjustable from 0 to 14% of fo
- Logic compatible output with 10mA current sinking capability.
- Highly stable center frequency.
- Center frequency adjustable from 0.01Hz to 60KHz.
- · Inherent immunity to false signals.
- High rejection of out-of-band signals and noise.
- Frequency range adjustable over 20:1 range by external resistor.

APPLICATIONS

- Battery-operated tone detection Touch-tone decoding
- Sequential tone decoding
- Ultrasonic remote-control
- Communications paging


SCHEMATIC DIAGRAM

- Telemetric decoding

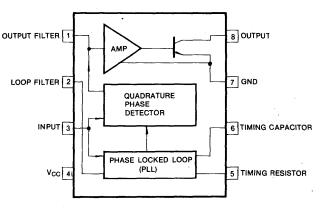
8 DIP 8 SOP

ORDERING INFORMATION

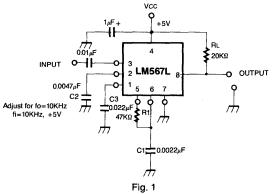
Device	Package	Operating Temperature	
LM567LN	8 DIP	0 ~ + 70°C	
LM567LD	8 SOP	0~+70 C	

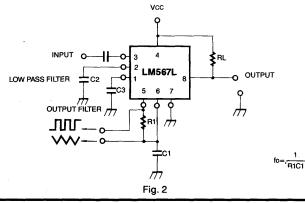
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Uniț
Power Supply Power Dissipation	V _{cc}	10	ν.
Plastic Package	Pd	300	mW
Derate Above +25°C Operating Temperature	Topr	2.5 0 ~ +70	mW/°C °C
Storage Temperature	Tstg	-65 ~ +150	°C


ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, T_a = 25^{\circ}C, unless otherwise specified)$


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage Range	V _{cc}		4.75		8.0	v
Supply Current/Quiescent Supply Current/Activated	I _{CC-1} I _{CC-2}			0.6 0.8	1.0 1.4	mA mA
Highest Center Frequency	H _{to}	$R1 = 3K\Omega - 5K\Omega$	10	60		KHz
Center Frequency Drift Temperature 0 <t<sub>a<70°C Supply Voltage</t<sub>		See Figures 15 and 16 $f_o = 10$ KHz, $V_{CC} = 4.75$ 5.75V		- 150 0.5	3.0	ppm/°C %/V
Largest Detection Bandwidth	B.W	$f_{o} = 10 \text{KHz}, V_{\text{IN}} = 300 \text{mV}_{\text{rms}}$ $R_{\text{L}} = 20 \text{K} \Omega$	10	14	18	% of f_{o}
Largest Detection Bandwidth Skew	B.Ws	See Figure 4 for Definition		2	3	% of f _o
Largest Detection Bandwidth Variation With Temperature	B.Wt	$V_{IN} = 300 m V_{rms}, \ R_L = 20 K \Omega$		± 0.1		%/°C
Largest Detection Bandwidth Variation With Spply Voltage	B.Wv	$V_{IN} = 300 m V_{rms}, R_L = 20 K \Omega$		±2		%/V
Input Resistance	R _{IN}			100		KΩ
Smallest Detectable Input Voltage	V _{IN-1}	$I_{L} = 10mA, f_{i} = f_{o} = 10KHz$		20	25	mV _{ms}
Largest No-Output Input Voltage	VIN-2	$I_{L} = 10mA, f_{i} = f_{o} = 10KHz$	10	15		mV _{ms}
Greatest Simultaneous Outband Signal to Inband Signal Ratio	S ₁ /S _d	$V_{IN} = 300 mV_{rms}, f_i' 1 = 6 KHz$ $f_i = f_o = 10 KHz$		+6		dB
Minimum Input Signal to Wideband Noise Ratio	S ₂ /S _d	$V_{IN} = 300 m V_{ms}, f_i^2 = 14 K H z$ $f_i = f_o = 10 K H z$		-6		dB
Outrut Saturation Valtage	VSAT-1	$I_L = 2mA, V_{IN} = 25mV_{rms}$		0.2	0.4	v
Output Saturation Voltage	VSAT-2	$I_L = 10mA, V_{IN} = 25mV_{rms}$		0.3	0.6	v
Output Leakage Current	Ico			0.01	25	μA
Fastest On/Off Cycling Rate	Fout	$f_i = f_o = 10 \text{KHz}$	f₀/20			
Output Rise Time	Tr	$R_L = 1K\Omega$		150		nS
Output Fall Time	Tt	$R_L = 1K\Omega$		30		nS


BLOCK DIAGRAM

TEST CIRCUIT

TYPICAL APPLICATION CIRCUIT

CIRCUIT DESCRIPTION

The LM567L monolithic circuit consists of a phase detector, low pass filter, and current controlled oscillater which comprise the basic phase-locked loop, plus an additional low pass filter and quadrature detector enabling detection of in-band signals. The device has a normally high open collector output.

The input signal is applied to Pin 3 (100K Ω nominal input resistance). Free running frequency is controlled by an RC network at pins 5 and 6. A capacitor on pin 1 serves as the output filter and eliminates out-of-band triggering. PLL filtering is accomplished with a capacitor on Pin 2; band-width and skew are also dependent upon the circuitry here. Pin 4 is $+V_{cc}$ (4.75 to 8V nominal, 10V maximum); Pin 7 is ground; and Pin 8 is the open collector output, pulling low when an in-band signal triggers the device.

The LM567L is pin-for-pin compatible with the standard LM567-type decoder. Internal resistors have been scaled up by a factor of ten, thereby reducing power dissipation and allowing use of smaller capacitors for the same applications compared to the standard part. This scaling also lowers maximum device center frequency and load current sinking capabilities.

PRINCIPLES OF OPERATION

The LM567L is a frequency selective tone decoder system based on the phase-locked loop (PLL) principle. The system is comprised of a phase-locked loop, a quadrature detector, a voltage comparator, and an output logic driver.

When an input tone is present within the pass-band of the circuit, the PLL synchronizes or "locks" on the input signal. The quadrature detector serves as a lock indicator: when the PLL is locked on an input signal, the DC voltage at the output of the detector is shifted. This DC level shift is then converted to an output logic pulse by the amplifier and logic driver. The logic output at Pin 8 is an "open-collector" NPN transistor stage capable of switching 10mA current loads.

The logic output at Pin 8 is normally in a "high" state, until a tone that is within the capture range of the decoder is present at the input. When the decoder is locked on an input signal, the logic output at Pin 8 goes to a "low" state.

Fig 3 shows the typical output response of the circuit for a tone-burst applied to the input, within the detection band. The center frequency of the detector is set by the free-running frequency of the current-controlled oscillator in the PLL.

This free-running frequency, f_0 , is determined by the selection of R1 and C1 connected to Pins 5 and 6, as shown in Fig 2. The detection bandwidth is determined by the size of the PLL filter capacitor, C2 (see Fig 10); and the output response speed is controlled by the output filter capacitor, C3.

DEFINITION OF DEVICE PARAMETERS

CENTER FREQUENCY fo

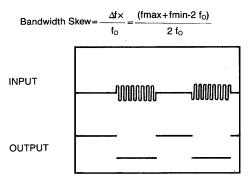
 f_0 is the free-running frequency of the current-controlled oscillator with no input signal. It is determined by resistor R1 between Pins 5 and 6, and capacitor C1 from Pin 6 to ground, f_0 can be approximated by

 $f_0 = \frac{1}{B1C1}$ Hz where R1 is in ohms and C1 is in farads.

DETECTION BANDWIDTH (BW)

The largest detection bandwidth is the frequency range centered about f_0 , within which an input signal larger than the threshold voltage (typically 20mV_{rms}) will cause a logic zero state at the output. The detection bandwidth corresponds to the capture range of the PLL and is determined by the low-pass loop filter at Pin 2. Typical dependence of detection bandwidth on the filter capacitance and the input signal amplitude is shown in Figs 10 and 11, or may be calculated by the approximation.

B·W (%)=338
$$\sqrt{\frac{V_i \text{ (RMS)}}{f_0 \text{ (Hz)-}C_2 (\mu F)}}$$


LARGEST DETECTION BANDWIDTH

The largest detection bandwidth is the largest frequency range within which an input signal above the threshold voltage will cause a logical zero state at the output. The maximum detection bandwidth corresponds to the lock range of the PLL.

DETECTION BANDWIDTH SKEW

The detection bandwidth skew is a measure of how accurately the largest detection band is centered about the center frequency f_o . This parameter is graphically illustrated in Fig 4. In the figure, f_{min} and f_{max} correspond to the lower and the upper ends of the largest detection band, and f1 corresponds to the apparent center of the detection band, and is defined as the arithmetic average of fmin and fmax and f_0 is the free running frequency of the LM567L oscillator section. The bandwidth skew Δf_X is the difference between these frequencies. Normalized to f_o , this bandwidth skew can be expressed as:

Response to $100 \text{mV}_{\text{rms}}$ tone burst. R_L = 1K Ω

Fig. 3. Typical Output Response to 100mV Input Tone-Burst

If necessary, the detection bandwidth skew can be reduced to zero by an optional centering adjustment. (see optional controls.)

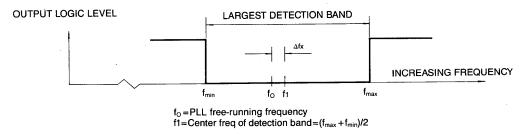


Fig. 4. Definition of Bandwidth Skew

PIN DESCRIPTION AND EXTERNAL COMPONENTS

PIN 3: INPUT

The input signal is applied to Pin 3 through a coupling capacitor. This terminal is internally biased at a DC level 2 volts above ground, and has an input impedance level of approximately $100K\Omega$.

PIN 5 and 6: TIMING RESISTOR R1 and CAPACITOR C1

The center frequency of the decoder is set by resistor R1 between Pins 5 and 6, and capacitor C1 from Pin 6 to ground, as shown in Fig 2.

Pin 5 is the oscillator squarewave output which has a magnitude of approximately V_{cc}-1.4V and an average DC level of V_{cc}/2.A 5KΩ load may be driven from this point. The voltage at pin 6 is an exponential triangle waveform with a peak-to-peak amplitude of=(V_{cc}-1.3)/3.5 volts and an average DC level of V_{cc}/2. Only high impedance loads should be connected to Pin 6 to avoid disturbing the temperature stability or duty cycle of the oscillator.

PIN 2: LOOP FILTER-C2

Capacitor C2 connected from Pin 2 to ground serves as a single pole, low-pass filter for the PLL portion of the LM567L. The filter time constant is given by T2=R2C2, where R2 (100K Ω) is the impedance at Pin 2.

The selection of C2 is determined by the detection bandwidth requirements, as shown in Fig 10. For additional information see section on "Definition of Device Parameters."

The voltage at Pin 2, the phase detector output, is a linear function of frequency over the range of 0.95 f_0 to 1.05 f_0 , with a slope of approximately 20mV/% frequency deviation.

PIN 1: OUTPUT FILTER-C3

Capacitor C3 connected from Pin 1 to ground forms a simple low-pass post detection filter to eliminate spurious outputs due to out-of-band signals. The time constant of the filter can be expressed as T3=R3C3, where R3 ($47K\Omega$) is the internal impedance at Pin 1.

If the value of C3 becomes too large, the turn-on or turn-off time of the output stage will be delayed until the voltage change across C3 reaches the threshold voltage. In certain applications, the delay may be desirable as a means of suppressing spurious outputs. Conversely, if the value of C3 is too small, the beat rate at the output of the quadrature detector may cause a false logic level change at the output (Pin 8).

The average voltage (during lock) at Pin 1 is a function of the in-band input amplitude in accordance with the given transfer characteristic.

PIN 8: LOGIC OUTPUT

Terminal 8 provides a binary logic output when an input signal is present within the pass-band of the decoder. The logic output is an uncommitted, open-collector power transistor capable of switching high current loads. The current level at the output is determined by an external load resistor, RL, connected from Pin 8 to the positive supply.

When an in-band signal is present the output transistor at Pin 8 saturates with a collector voltage of less than 0.6V at full rated output current of 10mA. If large output voltage swings are needed, RL can be connected to a supply voltage, V+, higher than the V_{CC} supply. For safe operation, V+ \leq 15 volts.

OPERATING INSTRUCTIONS

SELECTION OF EXTERNAL COMPONENTS

A typical connection diagram for the LM567L is shown in Fig 2. For most applications, the following procedure will be sufficient for determination of the external components R1, C1, C2, and C3.

- R1 and C1 should be selected for the desired center frequency by the expression f₀ ≈ 1/R1C2. For optimum temperature stability, R1 should be selected such that 20KΩ ≤ R1 ≤200KΩ, and the R1C1 product should have sufficient stability over the projected operating temperature range.
- 2. Low-pass capacitor, C2, | can be determined from the bandwidth versus input signal amplitude graph of Fig 10. One approach is to select an area of operation from the graph, and then adjust the input level and value of C2 accordingly. Or if the input amplitude variation is known, the required f₀ C2 product can be found to give the desired bandwidth. Constant bandwidth operation requires V_i > 200mV_{rms}. Then, as noted on the graph, bandwidth will be controlled solely by the f₀ C2 product.
- 3. Capacitor C3 sets the band edge of the low-pass filter which attenuates frequencies outside of the detection band and thereby eliminates spurious outputs. If C3 is too small, frequencies adjacent to the detection band may switch the output stage off and on at the beat frequency, or the output may pulse off and on during the turn-on transient. A typical minimum value for C3 is 2 C2.

Conversely, if C3 is too large, turn-on and turn-off of the output stage will be delayed until the voltage across C3 passes the threshold value.

PRECAUTIONS

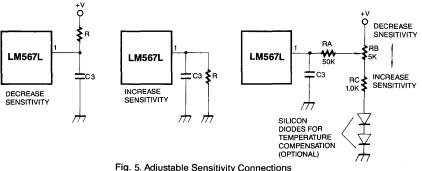
- The LM567L will lock on signals near (2n+1) f₀ and produce an output for signals near (4n+1) f₀, for n=0, 1, 2 etc. Signals at 5 f₀ and 9 f₀ can cause an unwanted output and should, therefore, be attenuated before reaching the input of the circuit.
- Operating the LM567L in a reduced bandwidth mode of operation at input levels less than 200mV_{rms} results in maximum immunity to noise and out-band signals. Decreased loop damping, however, causes the worst-case lock-up time to increase, as shown by the graph of Fig 13.

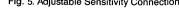
- 3. Bandwidth variations due to changes in the in-band signal amplitude can be eliminated by operating the LM567L in the high input level mode, above 200mV_{ms}. The input stage is then limiting, however, so that out-band signals or high noise levels can cause an apparent bandwidth reduction as the in-band signal is suppressed. In addition, the limited input stage will create in-band components from subharmonic signals so that the circuit becomes sensitive to signals at f₀/3, f₀/5 etc.
- 4. Care should be exercised in lead routing and lead lengths should be kept as short as possible. Power supply leads should be properly bypassed close to the integrated circuit and grounding paths should be carefully determined to avoid ground loops and undesirable voltage variations. In addition, circuits requiring heavy load currents should be provided by a separate power supply, or filter capacitors increased to minimize supply voltage variations.

OPTIONAL CONTROLS

PROGRAMMING

Varying the value of resistor R1 and/or capacitor C1 will change the center frequency. The value of R1 can be changed either mechanically or by solid state switches. Additional C1 capacitors can be added by grounding them through saturated npn transistors.


SPEED OF RESPONSE


The minimum lock-up time is inversely related to the loop frequency. As the natural loop frequency is lowered, the turn-on transients becomes greater. Thus maximum operating speed is obtained when the value of capacitor C2 is minimum. At the instant an input signal is applied, its phase may drive the oscillator away from the incoming frequency rather than toward it. Under this condition, the lock-up transient is in a worst case situation, and the minimum theoretical lock-up time will not be achievable.

The following expressions yield the values of C2 and C3, in microfarads, which allow the maximum operating speeds for various center frequencies where f_0 is Hz.

$$C2 = \frac{13}{f_0}$$
, $C3 = \frac{26}{f_0} \mu F$

The minimum rate that digital information may be detected without losing information due to turn-on transient or output chatter is about 10 cycles/bit, which corresponds to an information transfer rate of f₀/10 baud. In situations where minimum turn-off is of less importance than fast turn-on, the optional sensitivity adjustment circuit of Fig 5 can be used to bring the quiescent C3 voltage closer to the threshold voltage. Sensitivity to beat frequencies, noise, and extraneous signals, however, will be increased.

CHATTER

When the value of C3 is small, the lock transient and ac components at the lock detector output may cause the output stage to move through its threshold more than once, resulting in output chatter.

Although some loads, such as lamps and relays will not respond to chatter, logic may interpret chatter as a series of output signals. Chatter can be eliminated by feeding a portion of the output back to the input (Pin 1) or, by increasing the size of capacitor C3. Generally, the feedback method is preferred since keeping C_3 small will enable faster operation. Three alternate schemes for chatter prevention are shown in Fig 6. Generally, it is only necessary to assure that the feedback time constant does not get so large that it prevents operation at the highest anticipated speed.

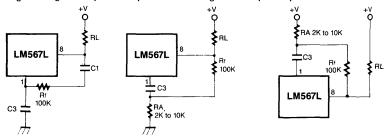


Fig. 6. Methods of Reducing Chatter

SKEW ADJUSTMENT

The circuits shown in Fig 7 can be used to change the position of the detection band (capture range) within the largest detection band (lock range). By moving the detection band to either edge of the lock range, input signal variations will expand the detection band in one direction only, since R_3 also has a slight effect on the duty cycle, this approach may be useful to obtain a precise duty cycle when the circuit is used as an oscillator.

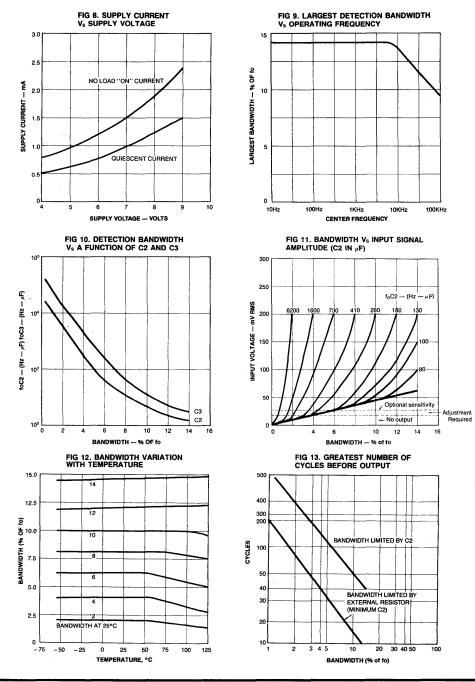
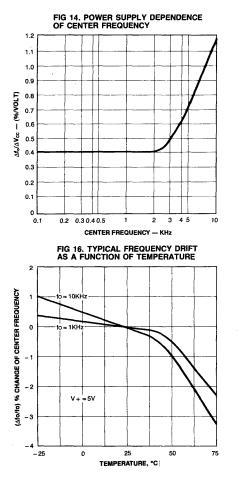
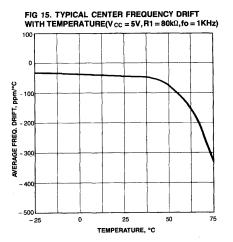



Fig. 7 Detection Band Skew Adjustment



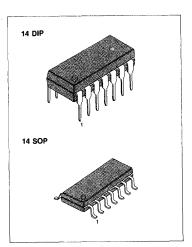


LM567L

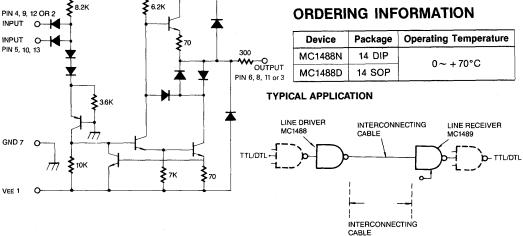
LINEAR INTEGRATED CIRCUIT

.

QUAD LINE DRIVER


The MC1488 is a monolithic guad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

FEATURES


VCC 14 O

- Current Limited Output: ± 10mA typ
- Power-Off Source Impedance: 300 Ohms (min)
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with DTL and TTL, HCTLS Families

SCHEMATIC DIAGRAM (1/4 of Circuit Shown)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+ 15 - 15	V _{DC}
Input Voltage Range	VIR	–15≤V _{IR} ≤7.0	V _{DC}
Output Signal Voltage	VD	± 15	V _{DC}
Power Dissipation	Po	1000	mW
Derate Above T _a = + 25°C	1/Rθ _{JA}	6.7	mW/ºC
Operating Temperature Range	Ta	0~+70	°C
Storage Temperature Range	Tstg	-65~+150	°C

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 9.0 \pm 1\%V, V_{EE} = -9.0 \pm 1\%V, T_a = 0 \sim 70^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	Fig
Input Current 1	l _{it}	Low Logic State (V _{IL} =0)		1.0	1.6	mA	1
Input Current 2	l _{in}	High Logic State (V _{IH} = 5.0V)			10	μA	1
		$V_{1L} = 0.8V, R_L = 3.0K\Omega$ $V_{CC} = 9.0V, V_{EE} = -9.0V$	6	7		v	
Output Voltage-High Logic State	V _{он}	$V_{IL} = 0.8V, R_L = 3.0K\Omega$ $V_{CC} = 13.2V, V_{EE} = -13.2V$	9	10.5			2
		$V_{IH} = 1.9V, R_L = 3.0K\Omega$ $V_{CC} = 9.0V, V_{EE} = -9.0V$	- 6	-7	<u> </u>		
Output Voltage-Low Logic State	Vol	$V_{IH} = 1.9V, R_{L} = 3.0K\Omega$ $V_{CC} = 13.2V, V_{EE} = -13.2V$	- 9	- 10.5		V	2
Output Short Circuit Current	I _{OS+}	Positive	- 6	- 10	- 12	mA	З
Output Short Circuit Current	I _{OS-}	Negative	6	10	12	mA	3
Output Resistance	Ro	$V_{CC} = V_{EE} = 0, V_O = \pm 2.0V$	300			Ω	
		$V_{IH} = 1.9V, V_{CC} = +9.0V$		15	20		
		$V_{IL} = 0.8V, V_{CC} = +9.0V$		4.5	6		
Pasitive Supply Supprt/DL as)		$V_{IH} = 1.9V, V_{CC} = +12V$		19	25		~
Positive Supply Current(RL=∞)	lcc	$V_{IL} = 0.8V, V_{CC} = +12V$		5.5	7	mA	5
		$V_{IH} = 1.9V, V_{CC} = +15V$			34		[
		$V_{IL} = 0.8V, V_{CC} = +15V$			12	1	
		V _{IH} = 1.9V, V _{EE} = -9.0V		- 13	- 17	mA	
		$V_{IL} = 0.8V, V_{EE} = -9.0V$			- 15	μA	
Negative Supply Quarter (D)		$V_{IH} = 1.9V, V_{EE} = -12V$		- 18	- 23	mA	5
Negative Supply Current (RL=∞)	IEE	$V_{iL} = 0.8V, V_{EE} = -12V$			- 15	μA	5
		$V_{IH} = 1.9V, V_{EE} = -15V$			- 34	mA	
		$V_{IL} = 0.8V, V_{EE} = -15V$			- 2.5	mA	
Power Consumption	Pc	$V_{CC} = 9.0V, V_{EE} = -9.0V$			333	mW	•
· · · · · · · · · · · · · · · · · · ·		$V_{CC} = 12V, V_{EE} = -12V$			576		

* Maximum package power dissipation may be exceeded if all outputs are shorted simultaneously.

SWITCHING CHARACTERISTICS

 $(V_{CC} = 9.0 \pm 1\%V, \ V_{EE} = -9.0 \pm 1\%V, \ T_a = 0 \qquad 25^{\circ}C)$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	Fig
Propagation Delay Time	t _{PLH}	$Z_L = 3.0K$ and $15pF$		275	350	nS	6
Fall Time	t _{THL}	$Z_L = 3.0K$ and $15pF$		45	75	nS	6
Rise Time	t _{TLH}	Z _L = 3.0K and 15pF		55	100	nS	6
Propagation Delay Time	t _{PHL}	$Z_L = 3.0K$ and $15pF$		110	175	∽ nS	6

DC TEST CIRCUIT

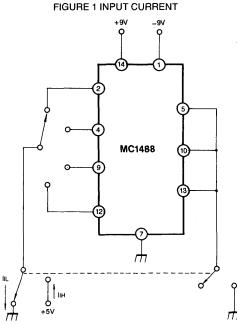


FIGURE 2 OUTPUT VOLTAGE +9V -9V +1.9V Q VIHÓ MC1488 зк VILØ π 6 +0.8V VOH/VOL ΠĪ m

Π

FIGURE 3 OUTPUT SHORT CIRCUIT CURRENT

MC1488

Π

MSUNG

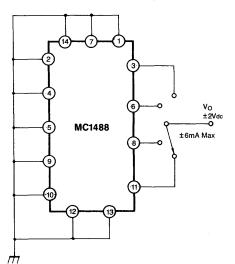
los±

ſП

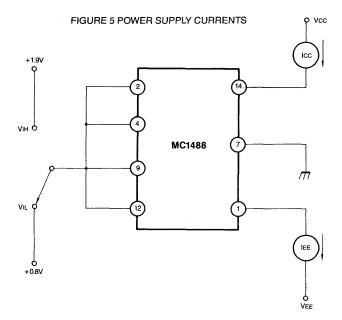
VEE

Vcc

+1.9V


6 VIH

¢νι∟


ċ +0.8V

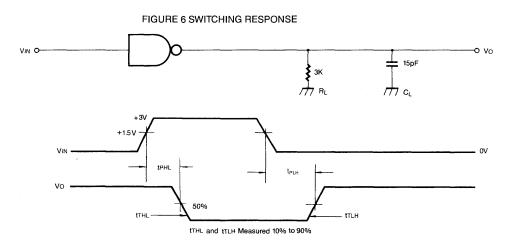
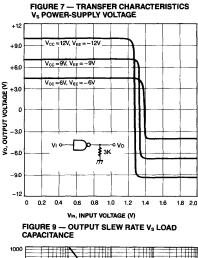
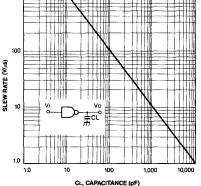
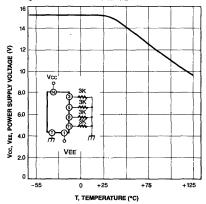
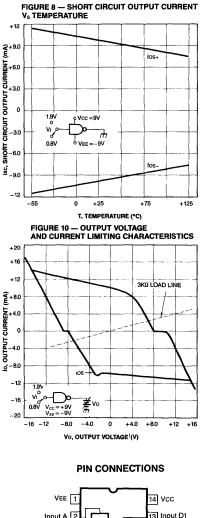

Electronics

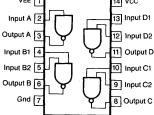
FIGURE 4 OUTPUT RESISTANCE (POWER OFF)


298






TYPICAL PERFORMANCE CHARACTERISTICS

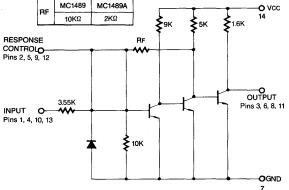


LINEAR INTEGRATED CIRCUIT

14 DIP

14 SOP

QUAD LINE RECEIVER


The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

FEATURES

- Input Resistance: 3.0KΩ to 7.0KΩ
- Input Signal Range: ± 30 Volts
- Response Control a) Logic Threshold Shifting b) Input Noise Filtering
- Input Threshold Hysteresis Built in

SCHEMATIC DIAGRAM

(1/4 OF CIRCUIT SHOWN)

ORDERING INFORMATION

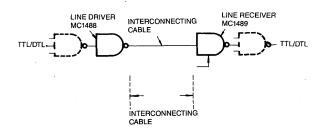
Device	Package	Operating Temperature
MC1489N		
MC1489AN	14 DIP	0 7080
MC1489D	14.000	0 ~ + 70°C
MC1489AD	14 SOP	

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

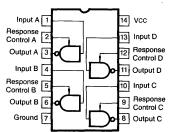
Characteristic	Symbol	Value	Unit
Power Supply Voltage	Vcc	10	VDC
Input Voltage Range	V _{IR}	±30	V _{DC}
Output Load Current	IL I	20	mA
Power Dissipation Derate Above $T_a = +25^{\circ}C$	Ρ _D 1/θ _{JA}	1000 6.7	mW mW/°C
Operating Temperature	Ta	0 to +70	°C
Storage Temperature	Tstg	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = $5.0V \pm 10\%$, T_a = $0 \sim 70$ °C unless otherwise noted)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
De sitting lange 4 Orange at		V _{IH} =25Vdc	3.6		8.3	A
Positive Input Current	Тін	V _{IH} =3.0Vdc	0.43			mA
		$V_{IL} = -25 V dc$	- 3.6	,	- 8.3	A
Negative Input Current	11	$V_{\rm HL} = -3.0 \rm V dc$	- 0.43			mA
Input Turn-On Thereshold Voltage MC1489 MC1489A	V _{IH}	$T_a = 25^{\circ}C, V_{OL} \le 0.45V$ $I_L = 10mA$	1.0 1.75	1.95	1.5 2.25	Vdc
Input Turn-Off Threshold Voltage	Vu	$T_a = 25^{\circ}C, V_{OH} \ge 2.5V,$ $I_L = -0.5mA$	0.75		1.25	Vdc
Output Voltage High	V _{OH}	$V_{IN} = 0.75V, I_L = -0.5mA$	2.5	4.0	5.0	Vdc
	∨он	Input Open, $I_L = -0.5mA$	2.5	4.0	5.0	vuc
Output Voltage Low	VOL	$V_{IN} = 3.0V, I_L = 10mA$		0.2	0.45	Vdc
Output Short Circuit Current	los	V _{IN} = 0.75V		- 3.0	- 4.0	mA
Power Supply Current	Icc	All gates "on", $I_{OUT} = 0mA$, $V_{IH} = 5.0V$		16	26	mA
Power Consumption	Pc	V _{IH} =5.0V		80	130	mW

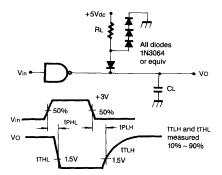
SWITCHING CHARACTERISTICS


 $(V_{cc} = 5.0V \pm 1\%, T_a = 25^{\circ}C, \text{See Fig. 1})$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Propagation Delay Time	t _{PLH}	R _L = 3.9KΩ		25	85	nS
Rise Time	t _{TLH}	$R_L = 3.9 K\Omega$		120	175	nS
Propagation Delay Time	t _{PHL}	R _L =390Ω		25	50	nS
Fall Time	t _{THL}	R _L =390Ω		10	20	nS

TYPICAL APPLICATION

PIN CONNECTIONS



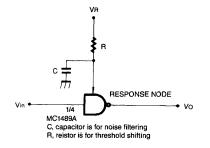

LINEAR INTEGRATED CIRCUIT

Fig 2 - RESPONSE CONTROL NODE

TEST CIRCUIT

Fig 1 — SWITCHING RESPONSE

 $CL\!=\!15pF\!=\!total$ parasitic capacitance, which includes probe and wiring capacitances

TYPICAL PERFORMANCE CHARACTERISTICS

(Vcc = 5.0 Vdc Ta = +25°C unless otherwise noted)

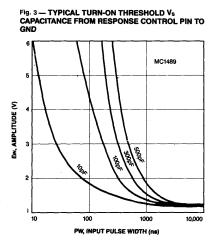
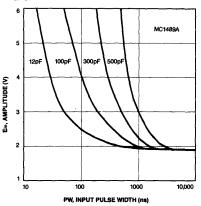



Fig. 4 — TYPICAL TURN-ON THRESHOLD $V_{\rm S}$ CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

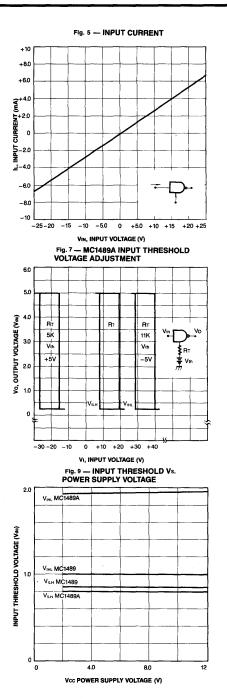
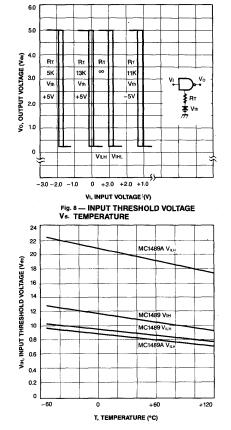
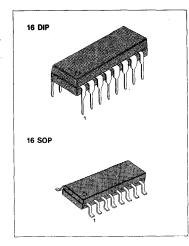



Fig. 6 — MC1489 INPUT THRESHOLD VOLTAGE ADJUSTMENT

LINEAR INTEGRATED CIRCUIT

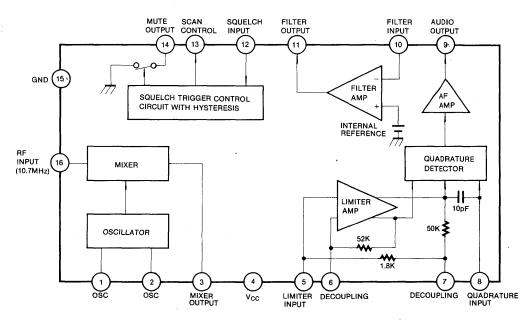
LOW VOLTAGE/POWER NARROW BAND FM IF

The MC3361 is designed for use in FM dual conversion communication. It contains a complete narrow band FM demodulation system operable to less than 2.5V supply voltage. This low-power narrow-band FM IF system provides the second converter, second IF, demodulator. Filter Amp and squelch circuitry for communications and scanning receivers.

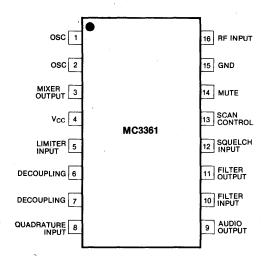

FEATURES

- Stable operation with wide supply voltage (2.5V to 7.0V)
- Low power consumption (4.0mA typ. at $V_{cc} = 4.0V$)
- Excellent input sensitivity (- 3dB limiting, 2.0µV_{ms} typ)
- Minimum number of external components required.

APPLICATION


- · Cordless phone (for home use)
- FM dual conversion communications equipment

BLOCK DIAGRAM


ORDERING INFORMATION

Device	Package	Operating Temperature
MC3361N	16DIP	00 . 70%0
MC3361D	·16 SOP	−20 ~ + 70°C

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc} (max)	10	ν
Operating Voltage Range	Vcc	2.5 to 7.0	V
Detector Input Voltage	V ₈	1.0	V _{p-p}
RF Input Voltage (V _{cc} ≥4.0V)	V ₁₆	1.0	Vrms
Mute Function	V14	-0.5 - +5.0	Vpeak
Operating Temperature	Topr	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C ·

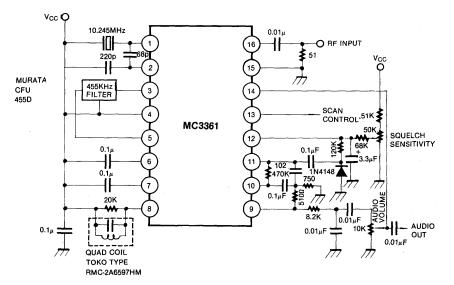
Absolute maximum ratings are those values beyond which permanent damage to the device may occur. These are stress ratings only and functional operation of the device at or beyond them is not implied. Long exposure to these conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS

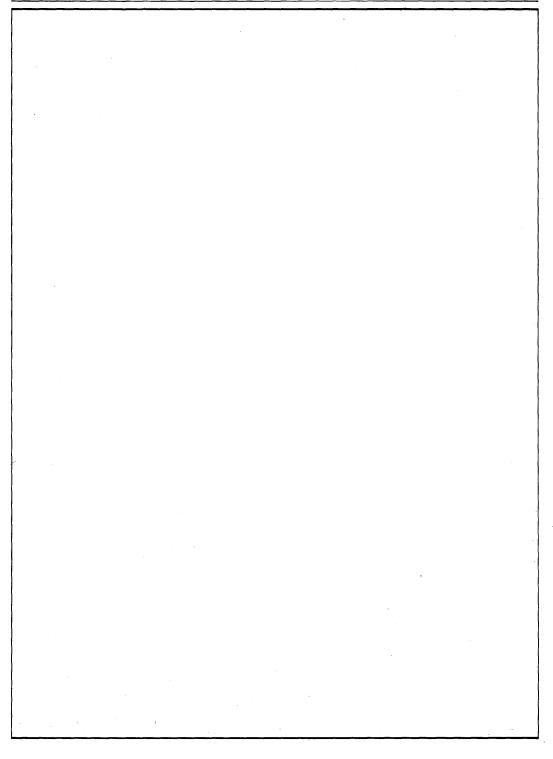
(V_{CC} = 4.0V, fo = 10.7MHz, $\triangle f = \pm 3$ KHz, f_{MOD} = 1KHz, Ta = 25°C, unless otherwise specified)

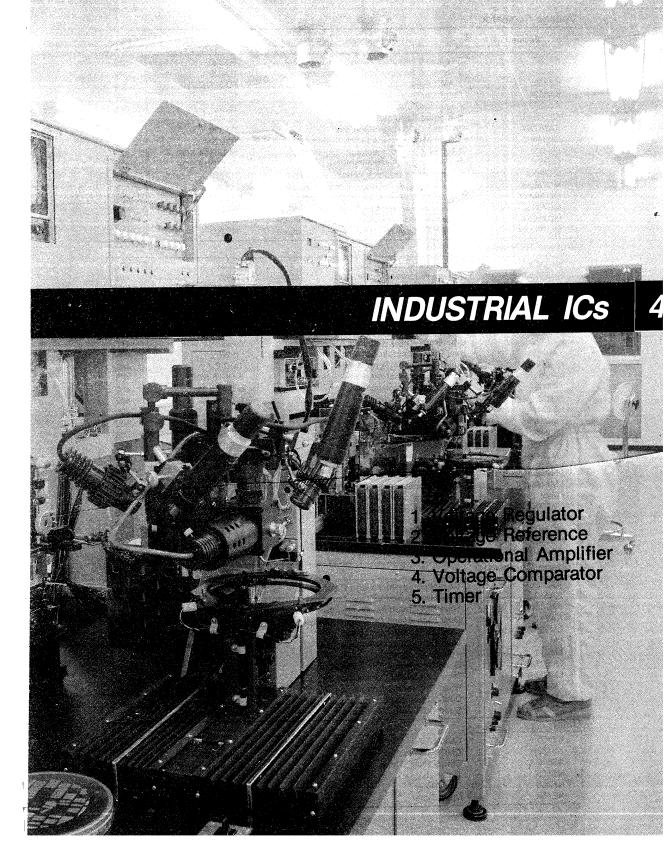
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supplý Current	I _{cc}	Squelch off ($V_{12} = 2V$) Squelch on ($V_{12} = GND$)		4.0 6.0		mA mA
Input Limiting Voltage	VINL	- 3.0dB limiting		2.0		μV
Detector Output Voltage	V ₉			2.0		V _{dc}
Detector Output Impedance	Z _{OD}			400		Ω
Audio Output Voltage	Vo	$V_{in} = 10 m V$	100	160		mV _{ms}
Filter Gain	AVF	$f = 10 KHz, V_{in} = 5 mV$	40	48		dB
Filter Output DC Voltage	Vof			1.5		V _{dc}
Trigger Hysteresis of Filter	V _{TH}			50		mV
Mute Switch-on Resistance	Ron	Mute "Low"		10		Ω
Mute Switch-off Resistance	ROFF	Mute "High"		10		MΩ
Scan Control "Low" Output	V _{13L}	Mute off $(V_{12} = 2V)$			0.5	V _{dc}
Scan Control "High" Output	V _{13H}	Mute on (V ₁₂ =GND)	3.0			V _{dc}
Mixer Conversion Gain	AVM			24		dB
Mixer Input Resistance	R _{IM}			3.3		KΩ
Mixer Input Capacitance	Сім			2.2		pF

PIN DESCRIPTION


Pin No.	Name	Function			
1, 2	OSC	The crystal oscillator terminals for mixer conversion. The colpitts oscillator is internally biased with a regulated current source which assures proper operation over a wide supply range. The collector, base and emitter terminals are at pins 4, 1, and 2 respectively. The crystal which is used in the parallel resonant mode, may be replaced with an appropriate inductor if the application does not require the stability of a crystal oscillator.			
3, 16	Mixer Input, (RF Input) Mixer Output	The mixer input/output terminals. The mixer converts the input frequency (10.7MHz) down to 455KHz. The mixer is double balanced to reduce spurious response. The mixer output impedance will properly match the input impedance of a ceramic filter which is used as a bandpass filter coupling the mixer output to the IF limiting amplifier. Following the mixer, a ceramic bandpass filter is recommended. The 455KHz types come in bandwidth from ± 2 KHz to ± 15 KHz.			
4	V _{cc}	Power supply pin.			
5, 6, 7	Limiter Amp Input, Decoupling	Limiter Amp inputs and decoupling terminals. The IF limiter amplifier consists of five differential gain stages, with the input impedance set by $1.8K\Omega$ resistor to properly terminate the ceramic filter driving the IF. The IF output is connected to the external quad coil at pin 8 via an internal 10pF capacitor. The frequency limitation is due to the high resistance values in the IF, which were necessary to meet the low power requirement. The output of the limiter is internally connected to the quadrature detector.			
8, 9	Quadrature Input, Audio Output	Quadrature detector input and output terminals. A conventional quadrature detector is used to demodulate the FM signal. The Q of the quad coil, which is determined by the external resistor placed across it, has multiple affects on the audio output. (Q \ll R) Increasing the Q increases audio output level but because of non- linearities in the tank phase characteristic, also increases distortion. For proper operation, the voltage swing on pin 9 should be adequate to prevent distortion (160mV _{ms} typ). The detector output is amplified and buffered to the audio output pin 9, which has an output impedance of approximately 4000.			

PIN DESCRIPTION (Continued)


Pin No.	Name	Function
10, 11	Filter Input/ Output	Filter Amp input/output terminals. The inverting OP Amp is provided with an output at pin 11 providing dc bias (externally) to the input at pin 10 which is referred internally to 0.7V. The OP Amp is normally utilized as either a bandpass filter to extract a specific frequency from the audio output, such as a ring or dial tone, or as a high pass filter to detect noise due to no input at the mixer.
12, 13, 14	Squeich In, Scan Control, Mute Output	Squelch control input, scan control output, mute output terminals. A low bias to pin 12 sets up the squelch trigger circuit such that pin 13 is high, and the audio mute (pin 14) is internally short circuited to ground (typically 10 Ω to GND). If pin 12 is raised above mute threshold (0.7V) by the noise or tone detector, pin 13 (scan control output) will become low level output and the audio mute will be an open circuit. There is 50mV of hysteresis at pin 12 which effectively prevents jitter.
15	GND	GND pin.


TYPICAL APPLICATION CIRCUIT

In the above typical application, the audio signal is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitered by an active filter and a detector. A squelch trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

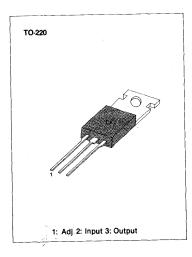
Voltage Regulator

Device	Function	Package	Page	
KA337	3-Terminal Negative Adjustable Regulator	TO-220	313	
KA340	3-Terminal Positive Voltage Regulator	TO-220	317	
KA350	3 AMP Adjustable Positive Voltage Regulator	TO-3P/TO-220	329	
KA3524	Regulator Pulse Width Modulator	16 DIP	337	
KA7500	Regulator Pulse Width Modulator	16 DIP	345	
KA78S40	Switching Regulator	16 DIP	349	
KA78TXX	3A Positive Voltage Regulator	TO-220	1	
			355	
LM317	3-Terminal Positive Adjustable Regulator	TO-220	366	
LM323	3-Terminal Positive Voltage Regulator	14 DIP/14 SOP	. 371	
LM723	Precision Voltage Regulator	14 DIP/14 SOP	376	
MC78XX	3-Terminal 1A Positive Voltage Regulator	TO-220	382	
MC78LXX	3-Terminal 0.1A Positive Voltage Regulator	TO-92	413	
MC78MXX	3-Terminal 0.5A Positive Voltage Regulator	TO-220	424	
MC79XX	3-Terminal 1A Negative Voltage Regulator	TO-220	437	
MC79LXX	3-Terminal 0.1A Negative Voltage Regulator	TO-92	447	
MC79MXX	3-Terminal 0.5A Negative Voltage Regulator	TO-220	452	
ltage Reference		10 220	402	
		TO 92	458	
KA336-2.5	Voltage Reference Diode	TO-92	1	
KA336-5.0	Voltage Reference Diode	TO-92	462	
KA431	Programmable Precision Reference	TO-92/8 DIP/8 SOP	466	
perational Ampli	· · · · · · · · · · · · · · · · · · ·		,	
KA201A	Single Operational Amplifier	8 DIP/8 SOP	472	
KA301A	Single Operational Amplifier	8 DIP/8 SOP	472	
KA733C	Differential Video Amplifier	14 DIP/14 SOP	477	
KA9256	Dual Power Operational Amplifier	10 SIP	484	
KF347	Quad Operational Amplifier	14 DIP	486	
	Single Operational Amplifier	8 DIP/8 SOP	488	
KF351		8 DIP	1	
KF442	Dual Operational Amplifier		490	
KS272	Dual Operational Amplifier	8 DIP	492	
KS274	Quad Operational Amplifier	14 DIP	496	
LM224/A	Quad Operational Amplifier	14 DIP/14 SOP	500	
LM248	Quad Operational Amplifier	14 DIP/14 SOP	509	
LM258/A	Quad Operational Amplifier	8 DIP/8 SOP/9 SIP	515	
LM324/A	Quad Operational Amplifier	14 DIP/14 SOP	500	
	Quad Operational Amplifier	14 DIP/14 SOP	509	
M348 EM358/A	Quad Operational Amplifier	8 DIP/8 SOP/9 SIP	515	
LM741C/E/I	Single Operational Amplifier	8 DIP/8 SOP	523	
LM2902	Quad Operational Amplifier	14 DIP/14 SOP		
LM2904	Dual Operational Amplifier		500	
MC1458AC/C/S/I		8 DIP/8 SOP/9 SIP	515	
MC3303	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	529	
	Quad Operational Amplifier	14 DIP/14 SOP	533	
MC3403	Quad Operational Amplifier	14 DIP/14 SOP	533	
MC4558C/AC/I	Dual Operational Amplifier	8 DIP/8 SOP/9 SIP	540	
oltage Comparat				
KA219	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545	
KA319	Dual High Speed Voltage Comparator	14 DIP/14 SOP	545	
KA710C/I	High Speed Voltage Comparator	14 DIP/14 SOP	550	
KA711C/I	Dual High Speed Differential Comparator	14 DIP/14 SOP	554	
LM239/A	Quad Differential Comparator	14 DIP/14 SOP	557	
LM293/A	Dual Differential Comparator	8 DIP/8 SOP/9 SIP		
LM311	Voltage Comparator		565	
LM339/A		8 DIP/8 SOP	572	
	Quad Differential Comparator	14 DIP/14 SOP	557	
LM393/A	Dual Differential Comparator	8 DIP/8 SOP/9 SIP	565	
LM2901	Quad Differential Comparator	14 DIP/14 SOP	557	
LM2903	Dual Differential Comparator	8 DIP/8 SOP	565	
LM3302	Quad Differential Comparator	14 DIP/14 SOP	557	
ner				
KS555	CMOS Timer	8 DIP/8 SOP	577	
KS555H	CMOS Timer	8 DIP/8 SOP	582	
KS556	CMOS Dual Timer			
NE555	Timer	14 DIP/14 SOP	586	
		8 DIP/8 SOP	590	
NE556				
NE556 NE558	Dual Timer Quad Timer	14 DIP/14 SOP 16 DIP/16 SOP	594 597	

KA337

LINEAR INTEGRATED CIRCUIT

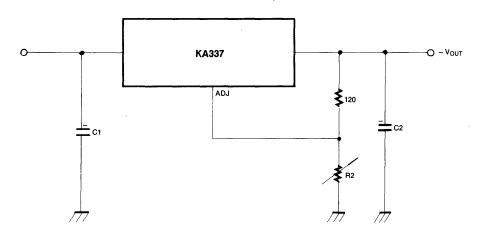
3-TERMINAL NEGATIVE ADJUSTABLE REGULATOR


The KA337 is a 3-terminal negative adjustable regulator. It supply in excess of -1.5A over an output voltage range of -1.2V to -37V.

This regulator requires only two external resistor to set a output voltage and 1 capacitor to compensate frequency.

FEATURES

- Output current in excess of 1.5A
- Output voltage adjustable between 0.2V & 37V
- Internal thermal-overload protection
- Internal short-circuit current-limiting constant with temperature
- Output transistor safe-area compensation
- Floating operation for high-voltage applications
- Standard 3-pin, TO-220 package


APPLICATION CIRCUIT

ORDERING INFORMATION

Device	Package	Operation Temperature
KA337T	TO-220	0 ~ + 125°C
**KA237T	TO-220	-25 ~ +150°C

** Under development

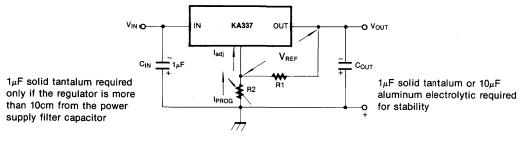
* $-V_{OUT} = -1.25V (1 + R2/120\Omega) + (-I_{adj} * R2)$

* Output current depends on maximum power dissipation

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input-Output Voltage Differential	VIN-VOUT	40	v
Power Dissipation	PD	Internally limited	
Operating Temperature Range	Topr	0 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS


 $(V_{in} - V_{out} = 5V, I_{out} = -0.5A, 0^{\circ}C \le T_j \le 125^{\circ}C, P_{max} = 20W$, unless otherwise specified)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Line Regulation	Vo	Ta = 25°C 40V ≤ V _{OUT} V _{IN} ≤ - 3V		0.01	0.04	%/V
		$-40V < V_{OUT} - V_{IN} \le -3V$		0.02	0.07	
Load Regulation	Vo	Ta=25°C 10mA≤l _{out} ≤1.5A		15	50	mV ·
-		10mA≤l _{out} ≤1.5A		15	150	
Adjustable Pin Current	l _{adj}			50	100	μΑ
Adjustable Pin Current Change		$Ta = 25^{\circ}C$ $10mA \le I_{OUT} \le 1.5A$ $-40V \le V_{OUT} - V_{IN} \le -3V$		2	5	μΑ
		Ta=25°C	- 1.213	- 1.250	- 1.287	
Reference Voltage	V _{ref}	$-40V \leq V_{OUT} - V_{IN} \leq -3V$ $10mA \leq I_{OUT} \leq 1.5A$	- 1.200	- 1.250	- 1.300	v
Temperature Stability	Ts			0.6		%
Minimum Load Current		$-40V \leq V_{OUT} - V_{IN} \leq -3V$		2.5	10	
to Maintain Rejection	l _i (min)	$-10V \leq V_{OUT} - V_{IN} \leq -3V$		1.5	6	mA
Output Noise 🖌	en	Ta = 25°C 10Hz <i>≤f≤</i> 10KHz		$30 \times V_{OUT}$		V/10 ⁶
Dinala Deigetian	BB	$V_{OUT} = -10V, f = 120Hz$		60		dB
Ripple Rejection	КК	$C_{adj} = 10 \mu F$	66	77		uв
Long Term Stability		T _j = 125°C, 1000 hours		0.0003	0.001	%/H _{OUT}
Thermal Resistance Junction to Case	Rejc			4		°C/W

TYPICAL APPLICATION

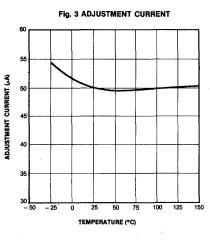
FIG. 2 ADJUSTABLE VOLTAGE REGULATOR

R1 is 1200 Typical

R2 = R1 (
$$\frac{V_{OUT}}{V_{REF}}$$
 - 1) where V_{REF} = - 1.25V Typical

The KA337 is a 3-terminal floating regulator. In operation, the KA337 develops and maintains a nominal -1.25 volt reference V_{REF} between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see FIG. 2), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1}\right) + I_{adj} R2$$


Since the current into the adjustment terminal (I_{adj}) represents an error term in the equation, the KA337 was designed to control I_{adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the KA337 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

LOAD REGULATION

The KA337 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

Fig. 5 LOAD REGULATION

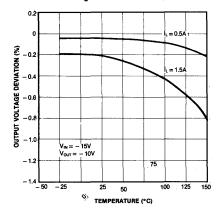
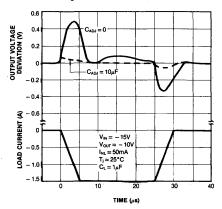
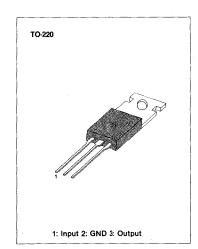



Fig. 4 CURRENT LIMIT 3 T₁ = 25°C △Vour = 100mV 2.5 OUTPUT CURRENT (A) 2 1.5 .5 ů 5 10 15 20 25 30 35 INPUT-OUTPUT DIFFERENTIAL (V)

LINEAR INTEGRATED CIRCUIT

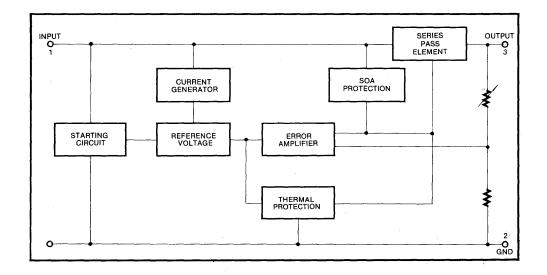
3-TERMINAL POSITIVE VOLTAGE REGULATORS

The KA340XX series of three-terminal positive voltage regulators are available in TO-220 package and with several fixed output voltages, providing better performance than 78XX series regulators. These are designed to have outstanding ripple rejection, superior line and load regulation in high power applications (over 15W). Each type employs internal current limiting, thermal shutdown and safe area protection.

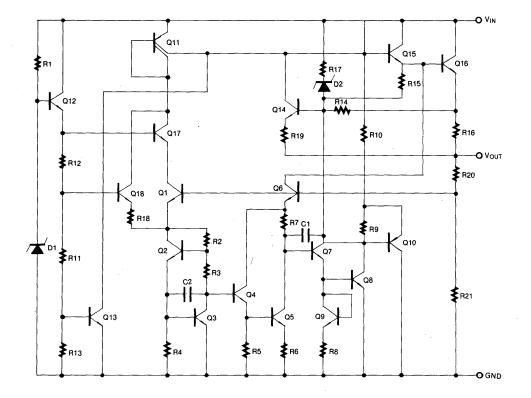

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

FEATURES

- Maximum output current: 1.5A
- Output voltage of 5, 6, 8, 9, 10, 11, 12, 15, 18, 24V
- Superior line and load regulation than 78XX series
- Output transistor SOA protection
- Internal short-circuit current limit
- Thermal overload protection


BLOCK DIAGRAM

• Output voltage tolerances of ±4% at 25°C and ±5% over the temperature range


ORDERING INFORMATION

Device	Package	Operating Temperature
KA340TXX	TO-220	0 ~ + 125°C

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input Voltage (for $V_0 = 5V$)	Vi	35	v
Thermal Resistance Junction-Cases	θjc	5	°C/W
Thermal Resistance Junction-Air	θja	65	°C/W
Junction Operating Temperature	Topr	$0 \sim +150$	°C
Storage Temperature	T _{stg}	-65 ~ +150	°C

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$, $V_{i} = 10V$, $I_{0} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		T _j = 25°C, 4	5mA≤I₀≤1.0A	4.80	5.00	5.20		
Output Voltage	Vo		$5mA \le I_0 \le 1.0A$, PD $\le 15W$ V _i = 7.5V to 20V		_	5.25	V	
		T _j = 25°C, 1	V _i = 7V to 25V		3	50		
		$V_i = 8V$ to	20V	_	_	50		
Line Regulation	∆V₀		$V_i = 8V$ to $12V$	-	_	25	mV	
		l _{o≤} 1A	$V_i = 7.5V$ to 20V $T_j = 25^{\circ}C$	-	-	50		
		T 05%0	5mA≤l₀≤1.5A	_	10	50		
Load Regulation	∆V₀	$T_j = 25^{\circ}C$	0.25A≤I₀≤0.75A		_	25	mV	
		5mA≤l₀≤	1A	_	_	50		
0	۱ _d	l _a l _c	1 44	T _j = 25°C	_	-	8	
Quiescent Current			I_d $I_o = 1A$	0°C≤Tj≤125°C	-		8.5	mA
	∆l _d	5mA≤lo≤	1A	-	-	0.5		
Quiescent Current Change		$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 7.5V to 20V		. —	1.0	mA	
		$V_i = 7V$ to 25V		_	_	1.0		
Output Noise Voltage	Vn	$T_{a} = 25^{\circ}C,$	f = 10Hz to 100KHz	-	40	_	μV	
Direla Deiestian	D D	f = 120Hz, T _j = 25°C	$V_i = 8V$ to $18V$	62 -	80	_		
Ripple Rejection	RR	f = 120Hz, $0^{\circ}C \le T_{i} \le 1$	V _i = 8V to 18V 25°C	62	_	_	dB	
Dropout Voltage	Vd	$I_0 = 1A, T_j =$	= 25°C	-	2.0	_	v	
Peak Output Current	I _{peak}	T _j = 25°C		· _	2.2		A	
Short-Circuit Current	Isc	$V_i = 35V, T_j$	=25°C		250	_	mA	
Average TC of V _{out}	∆V₀/∆T	$I_0 = 5 m A$	· · ·	_	- 0.6	_	mV/°C	
Output Resistance	Ro	f = 1KHz		· _	17	_	mΩ	

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$, $V_{i} = 11V$, $I_{0} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		$T_{j} = 25^{\circ}C,$	5mA≤l₀≤1.0A	5.75	6.00	6.26		
Output Voltage	Vo		$5mA \le I_0 \le 1.0A$, PD $\le 15W$ V _i = 8.5V to 21V		-	6.30	V	
		T _j = 25°C,	$V_i = 8V$ to $25V$	_	3	60		
		$V_i = 9V$ to	21V	—	-	60		
Line Regulation	∆Vo		$V_i = 9V$ to $13V$	_	_	30	mV	
		l₀≤1A	$V_i = 8.5V$ to 21V $T_j = 25^{\circ}C$		_	60		
		T 0500	5mA≤l₀≤1.5A		10	60		
Load Regulation	∆V₀	T _j = 25°C	0.25A≤I₀≤0.75A	_	_	30	mV	
		5mA≤l₀≤	1A		_	60	1	
Quiescent Current	l _d	1	1 14	T _j = 25°C	-	-	8	
		$I_0 = 1A$	0°C≤Tj≤125°C		-	8.5	mA	
	۵ld	5mA≤l₀≤	1A	—	_	0.5		
Quiescent Current Change		$\triangle \mathbf{I}_{d}$	$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 8.5V to 22V	_	_	1.0	mA
		$V_i = 8V$ to	25V			1.0		
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$,	f = 10Hz to 100KHz	-	45		μV	
Dimete Deitection	RR	$f = 120Hz, T_j = 25^{\circ}C$	$V_i = 9V$ to 19V	59	75	_	- 10	
Ripple Rejection		f = 120Hz, 0°℃≤Tj≤1	V _i = 9V to 19V 25°C	59	-	_	dB	
Dropout Voltage	V _d	$I_0 = 1A, T_j =$	= 25°C		2.0	_	v	
Peak Output Current	I _{peak}	$T_j = 25^{\circ}C$			2.2		A	
Short-Circuit Current	I _{sc}	V _i = 35V, T	= 25°C	_	250		mA	
Average TC of Vout	∆V₀/∆T	$I_0 = 5 mA$			- 0.7	—	mV/°C	
Output Resistance	Ro	f = 1KHz			18	_	mΩ	

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_i = 14V$, $I_0 = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		T _j = 25°C, 4	5mA≤l₀≤1.0A	7.70	8.00	8.30		
Output Voltage	Vo		$5mA \le I_0 \le 1.0A$, PD $\le 15W$ V _i = 10.5V to 23V			8.40	V	
		T _j = 25°C,	V _i = 10.5V to 25V	-	3	80		
		$V_i = 11V$ to	23V	_		80	1	
Line Regulation	∆Vo		V _i = 11.5V to 17V	_	-	40	mV	
		l₀≤1A	$V_i = 10.5V$ to 23V $T_j = 25^{\circ}C$		-	80		
		T 0510	5mA≤I₀≤1.5A	_	10	80		
Load Regulation	۵Vo	$T_j = 25^{\circ}C$	0.25A≤l₀≤0.75A	_		40	mV	
	5	5mA≤l₀≤	1A	-	_	80	1	
	I_d $I_o = 1A$			T _j = 25°C		-	8	
Quiescent Current		$I_0 = IA$	0°C≤Tj≤125°C	_	_	8.5	mA	
		5mA≤lo≤	1A	—		0.5		
Quiescent Current Change	∆la	$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 10.5V to 23V	-	_	1.0	mA	
		V _i = 10.5V to 25V		_	-	1.0	1	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$,	f = 10Hz to 100KHz		52	_	μV	
D'anta Deiratian		f = 120Hz, T _j = 25°C	V _i = 11.5V to 21.5V	56	72			
Ripple Rejection	RR	$f = 120Hz$, $V_i = 11.5V$ to 21.5V 0°C \leq T _i \leq 125°C		56	_	_	dB	
Dropout Voltage	Vď	$I_0 = 1A, T_j =$	= 25°C	_	2.0		v	
Peak Output Current	I _{peak}	$T_j = 25^{\circ}C$			2.2	-	A	
Short-Circuit Current	l _{sc}	$V_i = 35V, T_j$	= 25°C	-	250		mA	
Average TC of Vout	∆V₀/∆T	$l_0 = 5mA$		—	- 0.9		mV/°C	
Output Resistance	Ro	f = 1KHz		_	20	_	mΩ	

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_i = 15V$, $I_0 = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		$T_i = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		8.65	9.00	9.35		
Output Voltage	Vo		$5mA \le l_0 \le 1.0A$, PD $\le 15W$ V _i = 11.5V to 24V		-	9.40	V	
·		T _j = 25°C, 1	V _i = 11.5V to 25V		3	90	1	
		$V_i = 12V$ to	24V			90		
Line Regulation	∆Vo		$V_i = 12V$ to 19V	—	_	45	mV	
		l _o ≤1A	$V_i = 11.5V \text{ to } 24V$ $T_j = 25^{\circ}C$	_	_	90		
Load Regulation		T 0500	$5mA \le I_0 \le 1.5A$	_	10	90		
	∆V₀	T _j = 25°C	0.25A≤I₀≤0.75A	_	_	45	mV	
		5mA≤l₀≤1A		_	_	90		
Quiescent Current	ĺ	i	1 14	$T_j = 25^{\circ}C$	_	-	8	
		$I_0 = 1A$	0°C≤Tj≤125°C		-	8.5	mA	
		5mA≤l₀≤1A			_	0.5		
Quiescent Current Change	ΔI_d	$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 11.5V to 24V	_	_	1.0	mA	
		V _i = 11.5V to 25V		-	-	1.0	1	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C,$	f = 10Hz to 100KHz	_	58		μV	
Dianta Datastian	00	f = 120Hz, T _j = 25°C	V _i = 12.5V to 22.5V	56	72	_		
Ripple Rejection	RR		$f = 120Hz$, $V_i = 12.5V$ to 22.5V 0°C $\leq T_i \leq 125$ °C		-	_	dB	
Dropout Voltage	Vd	$I_0 = 1A, T_i =$	= 25°C	_	2.0		ν	
Peak Output Current	I _{peak}	T _j = 25°C			2.2	-	Α	
Short-Circuit Current	I _{sc}	$V_i = 35V, T_j$	= 25°C	_	250		mA	
Average TC of Vout	∆V₀/∆T	I _o = 5mA	Ultradia di Alamana di Alama	_	- 1.0		mV/°C	
Output Resistance	Ro	f = 1KHz			22	_	mΩ	

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_i = 16V$, $I_0 = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		$T_i = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		9.60	10.00	10.40		
Output Voltage	Vo	$5mA \le I_0 \le V_i = 12.5V$	1.0A, PD≤15W to 25V	9.50	_	10.50	v	
		T _i = 25°C,	V _i = 12.5V to 25V	_	3	100		
		$V_i = 13V$ to	25V	-	-	100		
Line Regulation	∆V₀		$V_i = 13V$ to 20V	_	_	50	mV .	
		l₀≤1A	$V_i = 12.5V$ to 25V $T_j = 25^{\circ}C$	_	_	100		
······································			$5mA \le l_0 \le 1.5A$	-	10	100		
Load Regulation	∆V₀	T _j = 25°C	0.25A≤I₀≤0.75A	_	-	50	mV	
		5mA≤l₀≤	1A	_		100	1	
				$T_j = 25^{\circ}C$		-	8	
Quiescent Current	la	$I_0 = 1A$	0°C≤Tj≤125°C	-	-	8.5	mA	
		5mA≤l₀≤	1A	_		0.5		
Quiescent Current Change	∆Id	$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 12.6V to 25V	_	_	1.0	mA	
		V _i = 12.6V to 25V		-	_	1.0		
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$,	f = 10Hz to 100KHz	_	58	_	μV	
		f = 120Hz, T _j = 25°C	V _i = 13V to 23V	56	72			
Ripple Rejection	RR	· · ·	$f = 120Hz$, $V_i = 13V$ to 23V 0°C $\leq T_j \leq 125$ °C		_	_	dB	
Dropout Voltage	V _d	$I_0 = 1A, T_j =$	= 25°C	-	2.0	-	v	
Peak Output Current	I _{peak}	$T_j = 25^{\circ}C$		-	2.2	—	Α	
Short-Circuit Current	Isc	$V_i = 35V, T_j$	= 25°C	_	250	-	mA	
Average TC of Vout	∆V₀/∆T	$I_0 = 5mA$			- 1.1	-	mV/°C	
Output Resistance	Ro	f = 1KHz		_	24	·	mΩ	

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$, $V_{i} = 18V$, $I_{0} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit	
		$T_i = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		11.60	11.00	11.40		
Output Voltage	Vo		$5mA \le I_0 \le 1.0A$, PD $\le 15W$ V _i = 13.5V to 26V		_	11.50	V	
	and the second sec	T _i = 25°C, 1	V _i = 13.5V to 25V		3	110		
		$V_i = 14V$ to	26V			110	1	
Line Regulation	∆V₀		$V_i = 14V$ to 21V	-	_	55	mV	
		l _o ≤1A	$V_i = 13.5V$ to 26V $T_j = 25^{\circ}C$	_	_	110		
Load Regulation			5mA≤l₀≤1.5A	-	10	110		
	∆Vo	T _j = 25°C	0.25A≤I₀≤0.75A	-	-	55	mV	
		5mA≤l₀≤1A		-	_	110		
Quiescent Current			$T_j = 25^{\circ}C$		_	8	mA	
	l _d lo	l _o = 1A	0°C≤Tj≤125°C	-	_	8.5		
		5mA≤l₀≤	1A		_	0.5		
Quiescent Current Change	$\triangle I_d$	$ riangle I_d$	$T_j = 25^{\circ}C$ $I_0 \le 1A, V_i =$	= 13.7V to 26V	-	_	1.0	mA
		V _i = 13.5V to 25V			_	1.0	1	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C,$	f = 10Hz to 100KHz		70	_	μV	
Dianta Data di a		f = 120Hz, T _i = 25°C	V _i = 14V to 24V	55	72	_	-10	
Ripple Rejection	RR	f = 120Hz, $0^{\circ}C \le T_j \le 1$	V _i = 14V to 24V 25°C	55	_	_	dB	
Dropout Voltage	Vd	$I_0 = 1A, T_j =$	= 25°C	-	2.0	-	V	
Peak Output Current	I _{peak}	T _j = 25°C		-	2.2	_	Α	
Short-Circuit Current	I _{sc}	$V_i = 35V, T_j$	= 25°C		250		mA	
Average TC of Vout	∆V₀/∆T	$I_0 = 5mA$		-	- 1.3		mV/°C	
Output Resistance	Ro	f = 1KHz	· · · · · · · · · · · · · · · · · · ·		26	_	mΩ	

(Refer to test circuit, $0^{\circ}C \le T_{i} \le 125^{\circ}C$, $V_{i} = 19V$, $I_{O} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage	vo	$T_j = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		11.50	12.00	12.50	v
		$5mA \le I_0 \le 1.0A$, PD $\le 15W$ V _i = 14.5V to 27V		11.40		12.60	
Line Regulation	∆Vo	$T_i = 25^{\circ}C, V_i = 14.5V$ to 30V			4	120	
		V _i = 15V to 27V		—		120	
		l _{o≦} 1A	$V_i = 16V$ to 22V	_		60	mV
			$V_i = 14.6V$ to 27V $T_j = 25^{\circ}C$	_		120	
Load Regulation	۵Vo	T _j = 25°C	5mA≤l₀≤1.5A	_	12	120	mV
			0.25A≤l₀≤0.75A	-	_	60	
		$5mA \le l_0 \le 1A$		_	-	120	
Quiescent Current	l _d	$I_0 = 1A$	$T_j = 25^{\circ}C$	_		8	mA
			0°C≤Tj≤125°C	-		8.5	
Quiescent Current Change	۵ld	5mA≤l₀≤1A		_	_	0.5	mA
		$T_i = 25^{\circ}C$ $I_0 \le 1A, V_i = 14.8V$ to 27V		-		1.0	
		V _i = 14.5V to 30V		_	_	1.0	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$, f = 10Hz to 100KHz		_	75		μV
Ripple Rejection	RR	$f = 120Hz, V_i = 15V \text{ to } 25V$ $T_i = 25^{\circ}C$		55	72	_	dB
		$f = 120Hz, V_i = 15V \text{ to } 25V$ 0°C \leq T _i \leq 125°C		55	-	_	
Dropout Voltage	V _d	$I_0 = 1A, T_j = 25^{\circ}C$		_	2.0		v
Peak Output Current	I _{peak}	T _j = 25°C		-	2.2	-	Α
Short-Circuit Current	l _{sc}	$V_i = 35V, T_j = 25^{\circ}C$		-	250		mA
Average TC of Vout	∆V₀/∆T	l _o = 5mA		_	- 1.5		mV/°C
Output Resistance	Ro	f = 1KHz		_	28		mΩ

ELECTRICAL CHARACTERISTICS KA340T15

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C$, $V_{i} = 23V$, $I_{O} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Мах	Unit
		$T_j = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		14.40	15.00	15.60	
Output Voltage	Vo	$5mA \le I_0 \le V_i = 17.5V$	1.0A, PD≤15W to 30V	14.25	_	15.75	. v
		T _j = 25°C, '	V _i = 17.5V to 30V		4	150	
		V _i = 18.5V	to 30V		_	150	
Line Regulation	∆V₀		V _i = 20V to 26V	-	-	60	mV
		l₀≤1A	$V_i = 17.7V$ to 30V $T_j = 25^{\circ}C$	_		120	
	۵Vo	T 0500	$5mA \le I_0 \le 1.5A$	_	12	150	
Load Regulation		T _j = 25°C	0.25A≤l₀≤0.75A	—	—	75	mV
		$5mA \le I_0 \le 1A$			_	150	
0	I _d	I _d I ₀ = 1A	$T_j = 25^{\circ}C$	-	_	8	
Quiescent Current			0°C≤Tj≤125°C	-		8.5	mA
	∆اd	5mA≤l₀≤1A		-	-	0.5	
Quiescent Current Change		$T_i = 25^{\circ}C$ $I_0 \le 1A, V_i = 17.9V$ to 30V		-	_	1.0	mA
		V _i = 17.5V to 30V		_	_	1.0	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$,	f = 10Hz to 100KHz	. —	90	-	μV
Diaula Dalastian	00	$f = 120Hz$, $V_i = 18.5V$ to 28.5V $T_j = 25^{\circ}C$		54	70	_	dB
Ripple Rejection	RR	$f = 120Hz$, $V_i = 15V$ to 25V 0°C $\leq T_i \leq 125$ °C		54	-	-	
Dropout Voltage	V _d	$I_0 = 1A, T_j = 25^{\circ}C$		_	2.0	-	v
Peak Output Current	I _{peak}	T _j = 25°C		-	2.2		A
Short-Circuit Current	Isc	$V_i = 35V, T_j = 25^{\circ}C$		-	250	-	mA
Average TC of Vout	∆V₀/∆T	$I_0 = 5 m A$	- TTANINAN - TTANIANO - SUTTANIN - MANAGAMATA - T	-	- 1.8		mV/°C
Output Resistance	Ro	f = 1KHz		_	29	-	mΩ

* Load and line regulation are specified at a constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS KA340T18

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_i = 27V$, $I_0 = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit	
······································		$T_i = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		17.30	18.00	18.70		
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 21V$ to	1.0A, PD≤15W 33V	17.10		18.90	V	
		$T_1 = 25^{\circ}C,$	$V_i = 21V$ to 33V	_	5	180		
		$V_i = 22V$ to	33V	-		180	1	
Line Regulation	∆Vo		$V_i = 24V$ to $30V$	-	_	90	mV	
		l₀≤1A	$V_i = 21V$ to 33V $T_j = 25^{\circ}C$	_	_	180		
	⊔ ∆V₀	7 0500	5mA≤lo≤1.5A	_	12	180		
Load Regulation		T _j = 25°C	0.25A≤I₀≤0.75A	_		90	mV	
		$5mA \le I_0 \le 1A$		-		180		
Outersant Ourreat	l _d		1 10	T _i = 25°C		_	8	
Quiescent Current		$I_0 = 1A$	0°C≤Tj≤125°C	_	_	8.5	mA	
		$5mA \le I_0 \le 1A$ $T_i = 25^{\circ}C$ $I_0 \le 1A, V_i = 21.5V \text{ to } 33V$		_	_	0.5		
Quiescent Current Change	ΔI_d			_	_	1.0	mA	
		V _i = 21V to 33V		_	_	1.0	1	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C,$	f = 10Hz to 100KHz	_	110		μV	
Dinula Deiesties		$f = 120Hz, T_j = 25^{\circ}C$	$V_i = 22V$ to 32V	53	69	-	-0	
киррие кејестион			$f = 120Hz$, $V_i = 22V$ to $32V$ 0°C $\leq T_i \leq 125$ °C		_		dB	
Dropout Voltage	Vd	$I_0 = 1A, T_j = 25^{\circ}C$			2.0		v	
Peak Output Current	I _{peak}	T _j = 25°C		—	2.2		А	
Short-Circuit Current	Isc	$V_i = 35V, T_j = 25^{\circ}C$		_	250		mA	
Average TC of Vout	∆V₀/∆T	I _o = 5mA		_	- 2.2		mV/°C	
Output Resistance	Ro	f = 1KHz		_	32		mΩ	

* Load and line regulation are specified at a constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

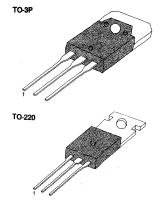
ELECTRICAL CHARACTERISTICS KA340T24

(Refer to test circuit, $0^{\circ}C \le T_{i} \le 125^{\circ}C$, $V_{i} = 33V$, $I_{0} = 0.5A$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j = 25°C, 5	$T_i = 25^{\circ}C, 5mA \le I_0 \le 1.0A$		24.00	25.00	
Output Voltage	Vo	$5mA \le I_0 \le V_i = 27V$ to	1.0A, PD≤15W 38V	22.80	_	25.20	V
		T _j = 25°C, 1	$V_i = 27V$ to 38V	_	5	240	
		$V_i = 28V$ to	38V	_	_	240	
Line Regulation	∆V₀		$V_i = 30V$ to 36V	-	_	120	mV
		l₀≤1A	$V_i = 27V$ to 38V $T_j = 25^{\circ}C$	-	_	240	
		T 0500	5mA≤lo≤1.5A	_	12	240	
Load Regulation	∆V₀	T _j = 25°C	0.25A≤l₀≤0.75A	_		120	mV
		$5mA \le l_0 \le 1A$		_	-	240	
0	۱ _d	I_d $I_o = 1A$	T _j = 25°C	_	_	8	
Quiescent Current			0°C≤Ti≤125°C	_	_	8.5	mA
	∆ld	5mA≤l₀≤1A		-	_	0.5	
Quiescent Current Change		$T_i = 25^{\circ}C$ $I_0 \le 1A, V_i = 28V \text{ to } 38V$		-	_	1.0	mA
		$V_i = 27V$ to $38V$			—	1.0	
Output Noise Voltage	Vn	$T_a = 25^{\circ}C$,	f = 10Hz to 100KHz	_	170	_	μV
Dianta Daiastian		$f = 120Hz, V_i = 28V \text{ to } 38V$ $T_i = 25^{\circ}C$		50	66		-10
Ripple Rejection	RR	f = 120Hz, V _i = 28V to 38V 0°C≤T _i ≤125°C		50	_	_	dB
Dropout Voltage	V _d	$I_0 = 1A, T_j = 25^{\circ}C$		_	2.0	_	v
Peak Output Current	I _{peak}	T _i = 25°C		_	2.2	_	A
Short-Circuit Current	l _{sc}	$V_i = 35V, T_j = 25^{\circ}C$		_	250	_	mA
Average TC of Vout	∆V₀/∆T	$I_0 = 5 \text{mA}$			- 2.8	_	mV/°C
Output Resistance	Ro	f = 1KHz		_	37		mΩ

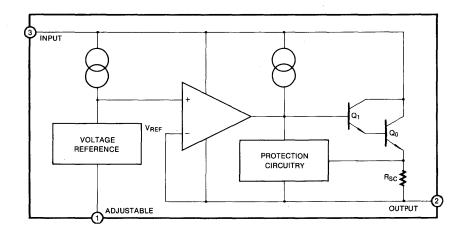
* Load and line regulation are specified at a constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LINEAR INTEGRATED CIRCUIT


3A ADJUSTABLE POSITIVE VOLTAGE REGULATOR

The KA350 is adjustable 3-terminal positive voltage regulator capable of supplying in excess of 3.0A over an output voltage range of 1.2V to 33V. This voltage regulator is exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. All overload protection circuitry remains fully functional even if the adjustment terminal is accidentally disconnected.

FEATURES


- Output adjustable between 1.2V and 33V
- · Guaranteed 3A output current
- · Internal thermal overload protection
- Load regulation typically 0.1%
- Line regulation typically 0.005%/V
- Internal short-circuit current limiting constant with temperature.
- Output transistor safe-area compensation
- Floating operation for high voltage application
- Standard 3-lead transistor package
- Eliminates stocking many fixed voltages

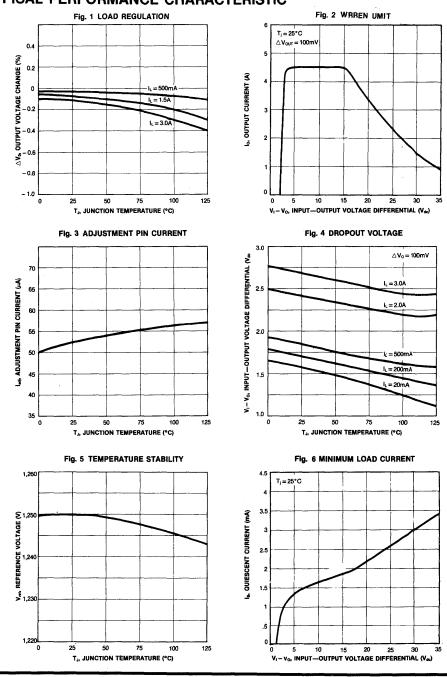
BLOCK DIAGRAM

1: Adj 2: Output 3: Input

Device	Package	Operating Temperature
KA350H	TO-3P	0~125°C
KA350T	TO-220	U~125 C

ABSOLUTE MAXIMUM RATINGS

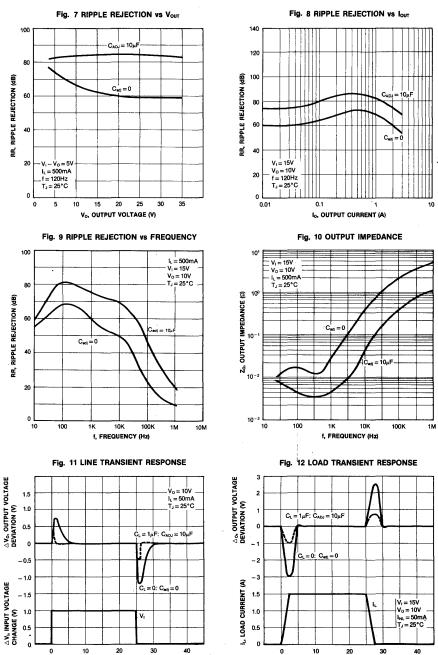
Characteristic	Symbol	Value	Unit
Input-Output Voltage Differential		35	V _{DC}
Lead Temperature (Soldering, 10 sec)	T _{lead}	300	°C
Power Dissipation	PD	Internally limited	
Operating Junction Temperature Range	T _{opr}	0 ~ + 125	°C
Storage Temperature Range	T _{stg}	-65~ +150	°C


ELECTRICAL CHARACTERISTICS

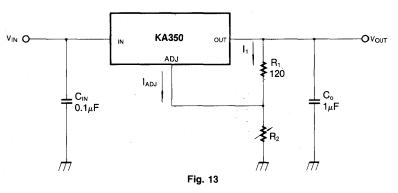
 $(V_{IN} - V_{OUT} = 5V, I_{OUT} = 1.5A, T_i = 0^{\circ}C$ to 125°C; P_{max} , unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
Line Regulation	∆V₀	Ta=25°C, 3V≤V⊦V₀≤35V (Note 1)		0.005	0.03	%/V
Load Regulation	∆V₀	Ta=25°C, 10mA≤l₀≤3A V₀≤5V (Note 1) V₀≥5V (Note 1)		5 0.1	25 0.5	mV %
Adjustment Pin Current	l _{adj}			50	100	μA
Adjustment Pin Current Change	∆l _{adj}	$3V \leq V_i - V_o \leq 35V,$ $10mA \leq I_L \leq 3A, P_D \leq P_{MAX}$		0.2	5.0	μA
Thermal Regulation	REG _{therm}	Pulse = 20mS, Ta = 25°C		0.002		%/W
Reference Voltage	VREF	$3V \le V_1 - V_0 \le 35V$, $10mA \le I_0 \le 3A$, $P \le 30W$	1.2	1.25	1.30	v
Line Regulation	∆V₀	$3.0V \le V_1 - V_0 \le 35V$		0.02	0.07	%/V
Load Regulation	۵V₀	10mA≤l₀≤3.0A V₀≤5.0V V₀≥5.0V		20 0.3	70 1.5	mV %
Temperature Stability	Ts	T _i = 0°C to 125°C		1.0		%
		$V_{I} - V_{o} \leq 10V, P_{D} \leq P_{MAX}$	3.0	4.5		А
Maximum Output Current	IMAX	$V_1 - V_0 = 30V, P_D \le P_{MAX}, Ta = 25^{\circ}C$	0.25	1.0		Α
Minimum Load Current	IMIN	$V_1 - V_0 = 35V$		3.5	10	mA
RMS Noise, % of Vout	V _N	10Hz≤f≤10KHz, Ta=25°C		0.003		%
Ripple Rejection	RR	$\label{eq:constraint} \begin{array}{l} V_o = 10V, \ f = 120Hz, \\ C_{adj} = 0 \\ C_{adj} = 10 \mu F \end{array}$	66	65 80		dB dB
Long-Term Stability	S	$T_j = 125$ °C		0.3	1	%

Note 1: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.



TYPICAL PERFORMANCE CHARACTERISTIC


KA350

f, TIME (µs)

f, TIME (µs)

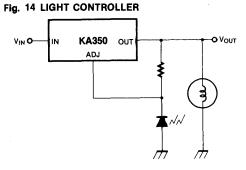
APPLICATION INFORMATION STANDARD APPLICATION

C_{in}: C_{in} is required if regulator is located an appreciable distance from power supply filter.

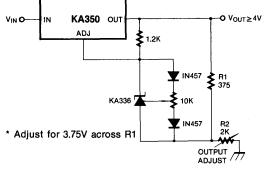
 C_o : Output capacitors in the range of 1μ F to 100μ F of aluminum or tantalum electrontic are commonly used to provide improved output impedance and rejection of transients.

In operation, KA350 develops a nominal 1.25V reference voltage, V_{ref} , between the output and adjustment terminal. The reference voltage is impressed across program resistor R_1 and, since the voltage is constant, a constant current I_1 then flows through the output set resistor R_2 , giving an output voltage of

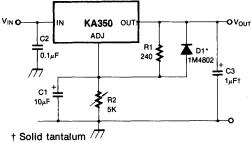
$$V_{out} = 1.25V (1 + \frac{R_2}{R_1}) + I_{ADJ} R_2$$


Since I_{ADJ} current (less than 100µA) from the adjustment terminal represents an error term, the KA350 was designed to minimize I_{ADJ} and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output voltage will rise.

Since the KA350 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltage with respect to ground is possible.



KA350


TYPICAL APPLICATIONS

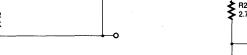


Fig. 15 PRECISION POWER REGULATOR WITH LOW TEMPERATURE COEFFICIENT

VINO

OUT

-0

* Discharges C1 if output is shorted to ground

KA350

ADJ

LM113 1.2V

₿ R3 680

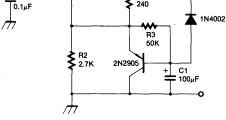
- 10V

C1 0.1μF

Π

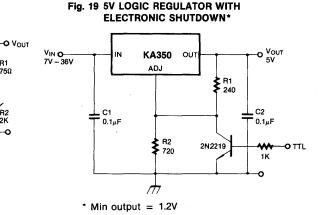
VIN 35V

77 ₩


ADJ

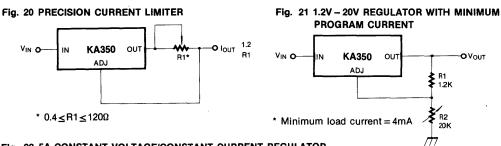
١N

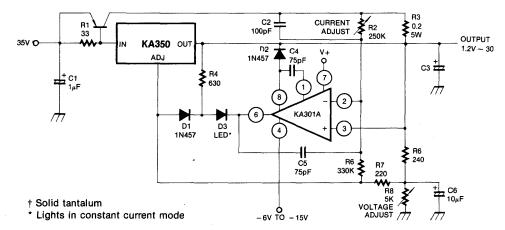
C2


Fig. 17 SLOW TURN-ON 15V REGULATOR

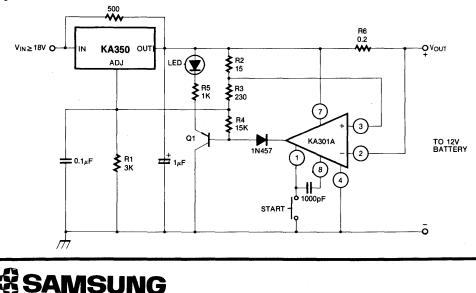
KA350 OUT

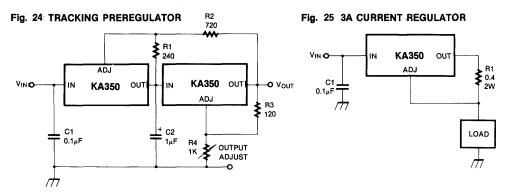
R1 ≩


240


о ^Vоит 15V

KA350





Electronics

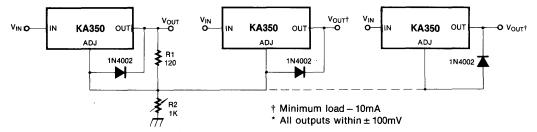
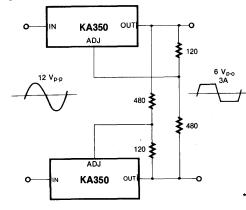
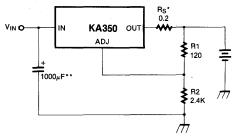
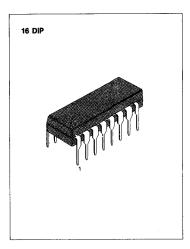




Fig. 27 AC VOLTAGE REGULATOR

KA350

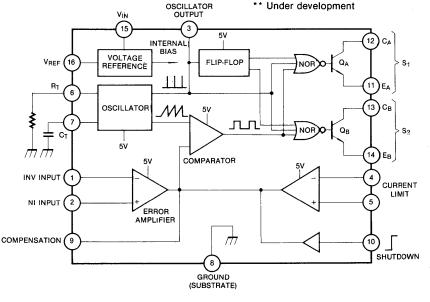
Fig. 28 SIMPLE 12V BATTERY CHARGER

- * R_s sets output impedance of charger $Z_{OUT} = R_s (1 + \frac{R_2}{R_1})$ Use of R_s allows low charging rates with fully charged battery.
- ** 1000µF is recommended to filter out any input transients.


REGULATOR PULSE WIDTH MODULATOR

The KA3524 regulating pulse width modulator contains all of the control circuitry necessary to implement switching regulators of either polarity, transformer coupled DC to DC converters, transformerless polarity converters and voltage doublers, as well as other power control applications. This device includes a 5V voltage regulator capable of supplying up to 50mA to external circuitry, a control amplifier, an oscillator, a pulse width modulator, a phase splitting flip-flop, dual alternating output switch transistors, and current limiting and shut-down circuitry. Both the regulator output transistor and each output switch are internally current limiting and, to limit junction temperature, an internal thermal shutdown circuit is employed.

FEATURES


- Complete PWM power control circuitry
- Operation beyond 100KHz
- 2% frequency stability with temperature
- Total quiescent current less than 10mA
- Single ended or push-pull outputs
- Current limit amplifier provides external component protection
- On-chip protection against excessive junction temperature and output current
- 5V, 50mA linear regulator output available to user

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
KA3524N	16 DIP	0~70°C
**KA2524N	16 DIP	– 25 ~ 85°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V _{cc}	40	V
Reference Output Current	I _{REF}	50	mA
Output Current (Each Output)	lo	100	mA
Oscillator Changing Current (pin 6 or 7)	Icharge	5	mA
Lead Temperature (Soldering, 10 sec)	T _{lead}	300	°C
Power Dissipation	PD	1000	mW
Operating Temperature	T _{opr}	0~+70	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

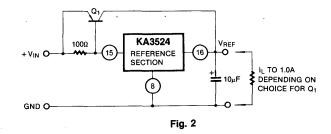
($V_{IN} = 20V$, f = 20KHz, Ta = 0 to 70°C unless otherwise specified)

Characteristic	Symbol	Test Conditions		Тур	Max	Unit
REFERENCE SECTION	I		L		L	L
Output Voltage	Vo		4.6	5.0	5.4	V
Line Regulation	ΔVo	$V_{IN} = 8 \sim 40V$		10	30	mν
Load Regulation	∆V₀	$I_L = 0 \sim 20 \text{mA}$		20	50	mV
Ripple Rejection	RR	f = 120Hz, Ta = 25°C		66		dB
Short-Circuit Output Current	I _{SC}	$V_{ref} = 0$, $Ta = 25^{\circ}C$		100		mA
Temperature Stability	Ts			0.3	1	%
Long Term Stability	S	• Ta=25°C		20		mV/Khr
OSCILLATOR SECTION		· · · · · · · · · · · · · · · · · · ·				
Maximum Frequency	f _{MAX}	$CT = 0.001 \mu F, RT = 2K\Omega$		350		KHz
Initial Accuracy		RT and CT constant		5		%
Frequency Change with Voltage	∆f	$V_{IN} = 8 \sim 40V, Ta = 25^{\circ}C$			1	%
Frequency Change with Temperature	∆f	Over operating temperature range			2	%
Output Amplitude (Pin 3)	VA3	Ta = 25°C		3.5		v
Output Pulse Width (Pin 3)	V3PW	$CT = 0.01 \mu F$, $Ta = 25^{\circ}C$		0.5		μS
ERROR AMPLIFIER SECTION	•	· · ·				
Input Offset Voltage	Vio	VCM = 2.5V		2	10	mV
Input Bias Current	I _{IB}	VCM = 2.5V		2	10	μA
Open Loop Voltage Gain	Avo	60		80		dB
Common-Mode Input Voltage Range	V _{CR}	Ta=25°C			3.4	v
Common-Mode Rejection Ratio	CMRR	Ta = 25°C		70		dB
Small Signal Bandwidth	BW	$A_V = 0$ dB, Ta = 25°C		3		MHz
Output Voltage Swing	Vosw	Ta = 25°C	0.5		3.8	v

ELECTRICAL CHARACTERISTICS (Continued)

 $(V_{IN} = 20V, f = 20KHz, Ta = 0 \sim 70^{\circ}C$ unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
COMPARATOR SECTION	I		I	i	I	
Maximum Duty Cycle	DCmax	% Each output on	45			%
Input Threshold (Pin 9)	V _{TH1}	Zero duty cycle		1		v
Input Threshold (Pin 9)	V _{TH2}	Maximum duty cycle		3.5		٧
Input Bias Current	l _B			1		μA
CURRENT LIMITING SECTION				• • • • • • • • • • • • • • • • • • • •		
Sense Voltage	Vsense	V(Pin 2) – V(Pin 1)≥50mV Pin 9=2V, Ta=25°C	180	200	220	mV
Sense Voltage T.C.				0.2	1	mV/°C
Common-Mode Voltage			0.7		1	Ň
OUTPUT SECTION (EACH OUTP	UT)					
Collector-Emitter Voltage	V _{CEO}		40			v
Collector Leakage Current	I _{LKg}	$V_{CE} = 40V$		0.1	50	μA
Saturation Voltage	V _{SAT}	IC = 50mA		1	2	V
Emitter Output Voltage	VE	$V_{IN} = 20V,$	17	18		V
Rise Time (10% to 90%)	tr	$RC = 2K\Omega$, $Ta = 25^{\circ}C$		0.2		μS
Fall Time (90% to 10%)	tf	$RC = 2K\Omega$, $Ta = 25^{\circ}C$		0.1		μS
Total Standby Current	I _{std}	V _{IN} = 40V, PINS 1, 4, 7, 8, 11 and 14 are grounded, Pin 2 = 2V All other inputs and outputs open		5	10	mA


APPLICATION INFORMATION

Voltage Reference

An internal series regulator provides a nominal 5 volt output which is used both to generate a reference voltage and is the regulated source for all the internal timing and controlling circuitry. This regulator may be bypassed for operation from a fixed 5 volt supply by connecting pins 15 and 16 together to the input voltage. In this configuration, the maximum input voltage is 6.0 volts.

This reference regulator may be used as a 5 volt source for other circuitry. It will provide up to 50mA of current itself and can easily be expanded to higher current with an external PNP as shown in Figure 2.

EXPANDED REFERENCE CURRENT CAPABILITY

Oscillator

The oscillator in the KA3524 uses an external resistor (R_T) to establish a constant charging current into an external capacitor (C_T). While this uses more current than a series connected RC, it provides a linear ramp voltage on the capacitor which is also used as a reference for the comparator. The charging current is equal to $3.6V + R_T$ and should be kept within the range of approximately $30\mu A$ to 2mA, i.e., $1.8K < R_T < 100K$. The range of values for C_T also has limits as the discharge time of C_T determines the pulse width of the oscillator output pulse. This pulse is used (among other things) as a blanking pulse to both outputs to insure that there is no possibility of having both outputs on simultaneously during transitions. This output dead time relationship is shown in Figure 6. A pulse width below approximately 0.5 microseconds may allow faise triggering of one output by removing the blanking pulse prior to the flip-flops reaching a stable state. If small values of C_T must be used, the pulse width the oscillator output is a convenient oscilloscope sync input, the cable and input capacitance may increase the blanking pulse width slightly.) Obviously, the upper limit to the pulse width is determined by the maximum duty cycle acceptable. Practical values of C_T fall between .001 and 0.1 microfarad.

The oscillator period is approximately $t = R_T C_T$ where t is in microseconds when $R_T =$ ohms and $C_T =$ microfarads. The use of Figure 7 will allow selection of R_T and C_T for a wide range of operating frequencies. Note that for series regulator applications, the two outputs can be connected in parallel for an effective 0-90% duty cycle and the frequency of the oscillator is the frequency of the output. For push-pull applications, the outputs are separated and the flip-flop divides the frequency such that each outputs duty cycle is 0-45% and the overall frequency is one-half that of the oscillator.

External Synchronization

If it is desired to synchronize the KA3524 to an external clock, a pulse of = +3 volts may be applied to the oscillator output terminal with $R_T C_T$ set slightly greater than the clock period. The same considerations of pulse width apply. The impedance to ground at this point is approximately 2K ohms.

If two or more KA3524s must be synchronized together, one must be designated as master with its $R_T C_T$ set for the correct period. The slaves should each have an $R_T C_T$ set for approximately 10% longer period than the master with the added requirement that C_T (slave) = one-half C_T (master). Then connecting Pin 3 on all units together will insure that the master output pulse—which occurs first and has a wider pulse width—will reset the slave units.

Error Amplifier

This circuit is a simple differential-input, transconductance amplifier. The output is the compensation terminal, pin 9, which is a high impedance node ($R_L = 5M\Omega$). The gain is

$$A_{v} = gmR_{L} = \frac{8I_{C}R_{L}}{2K_{T}} = .002 R_{L}$$

and can easily be reduced from a nominal of 10,000 by an external shunt resistance from pin 9 to ground, as shown in Figure 8.

In addition to DC gain control, the compensation terminal is also the place for AC phase compensation. The frequency response curves of Figure 5 show the uncompensated amplifier with a single pole at approximately 200Hz and a unity gain cross-over at 5MHz.

Typically, most output filter designs will introduce one or more additional poles at a significantly power frequency. Therefore, the best stabilizing network is a series R-C combination between pin 9 and ground which introduces a zero to cancel one of the output filter poles. A good starting point is $50K\Omega$ plus .001 microfarad.

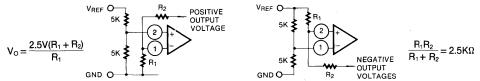
One final point on the compensation terminal is that this is also a convenient place to insert any programming signal which is to override the error amplifier. Internal shutdown and current limit circuits are connected here, but any other circuit which can sink 200μ A can pull this point to ground thus shutting off both outputs.

While feedback is normally applied around the entire regulator, the error amplifier can be used with conventional operational amplifier feedback and is stable in either the inverting or non-inverting mode. Regardless of the connections, however, input common-mode limits must be observed or output signal inversions may result. For conventional regulator applications, the 5 volt reference voltage must be divided down as shown in Figure 3. The error amplifier may also be used in fixed duty cycle applications by using the unity gain configuration shown in the open loop test circuit.

Current Limiting

The current limiting circuitry of the KA3524 is shown in Figure 4.

By matching the base-emitter voltages of Q1 and Q2, and assuming negligible voltage drop across R₁:


$$\label{eq:linear_state} \begin{split} Threshold &= V_{BE}(Q1) + I_1R_2 - V_{BE}(Q2) \\ &= I_1R_2 = 200mV \end{split}$$

Although this circuit provides a relatively small threshold with a negligible temperature coefficient, there are some limitations to its use, the most important of which is the ± 1 volt common mode range which requires sensing in the ground line. Another factor to consider is that the frequency compensation provided by R₁C₁ and Q1 provides a roll-off pole at approximately 300Hz.

Since the gain of this circuit is relatively low, there is a transition region as the current limit amplifier takes over pulse width control from the error amplifier. For testing purposes, threshold is defined as the input voltage to get 25% duty cycle with the error amplifier signaling maximum duty cycle.

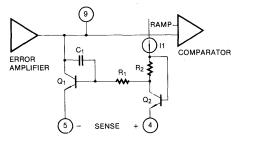
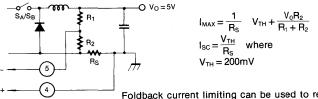

In addition to constant current limiting, pins 4 and 5 may also be used in transformer-coupled circuits to sense primary current and shorten an output pulse, should transformer saturation occur. Another application is to ground pin 5 and use pin 4 as an additional shutdown terminal: i.e., the output will be off with pin 4 open and on when it is grounded. Finally, foldback current limiting can be provided with the network of Figure 5. This circuit can reduce the shortcircuit current (I_{SC}) to approximately onethird the maximum available output current (I_{MAX}).

Fig. 3 ERROR AMPLIFIER BIASING CIRCUITS



Note change in input connections for opposite polarity outputs.

Fig. 4 CURRENT LIMITING CIRCUITRY OF THE KA3524

Fig. 5 FOLDBACK CURRENT LIMITING

Foldback current limiting can be used to reduce power dissipation under shorted output conditions

TYPICAL PERFORMANCE CHARACTERISTICS

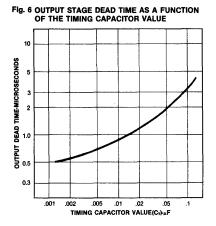
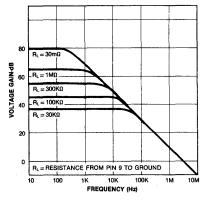
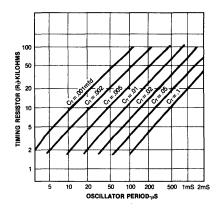
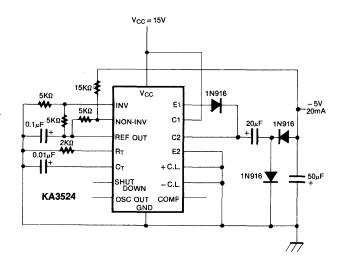
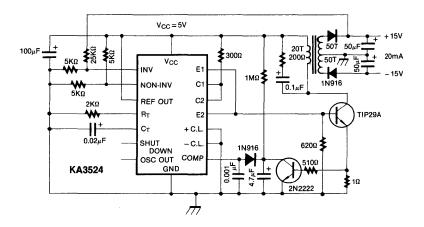


Fig. 8 AMPLIFIES OPEN-LOOP GAIN AS A FUNCTION OF FREQUENCY AND LOADING ON PIN 9


Fig. 7 OSCILLATOR PERIOD AS A FUNCTION OF RT AND CT



TYPICAL APPLICATION

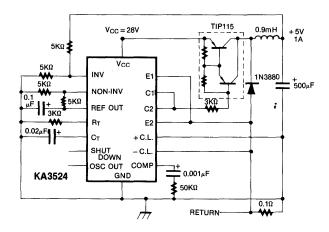

Fig. 9 CAPACITOR-DIODE OUTPUT CIRCUIT

Fig. 10 FLYBACK CONVERTER CIRCUIT

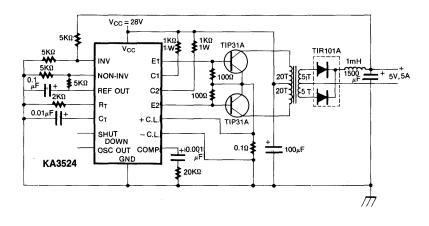


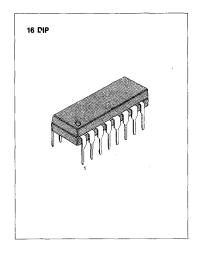
Fig. 11 SINGLE-ENDED LC CIRCUIT

Fig. 12 PUSH-PULL TRANSFORMER-COUPLED CIRCUIT

LINEAR INTEGRATED CIRCUIT

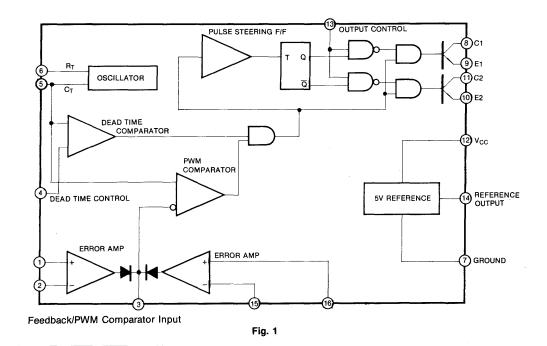
KA7500

REGULATOR PULSE WIDTH MODULATOR


The KA7500 is used for control circuit of pulse width modulation switching regulator. KA7500 consists of 5V reference voltage circuit, two error amplifiers, flip-flop, output control circuit, PWM comparator, dead time comparator, and oscillator. This device can be operated in the range of switching frequency, 1KHz to 300KHz.

FEATURES

- Internal regulator provides a stable 5V reference supply trimmed to 1%
- Uncommitted output TR for 200mA sink or source current
- Output control for push-pull or single-ended operation
- Variable duty cycle by dead time control (pin 4)
- Complete PWM control circuitry


BLOCK DIAGRAM

- · On-chip oscillator with master or slave operation
- Internal circuitry prohibits double pulse at either output

ORDERING INFORMATION

Device	Package	Operation Temperature
KA7500	16 DIP	0~70°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	42	v
Collector Output Voltage	V _{co}	42) v -
Collector Output Current	Ico	250	mA
Amplifier Input Voltage	VIN	V _{cc} + 0.3	v
Power Dissipation	Pd	1	w
Operating Temperature Range	Topr	$0 \sim +70$	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTIC

(V_{CC} = 20V, f = 10KHz, Ta = 25°C, unless otherwise specified)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
REFERENCE SECTION	L	l	I	L		
Reference Output Voltage	Vo	I _{ref} = 1mA	4.75	5.0	5.25	V
Line Regulation	∆V₀	$V_{\rm CC} = 7V$ to $40V$		2.0	25	mV
Temperature Coefficient		Ta=0°C to 70°C		0.01	0.03	%/°C
Load Regulation	∆V₀	I _{ref} = 1mA to 10mA		1.0	15	mV
Short-Circuit Output Current	I _{SC}	V _{ref} = 0	10	35	50	mA
OSCILLATOR SECTION					<u> </u>	
Oscillation Frequency	Fosc	$C_T = 0.01 \mu F, R_T = 12K$		10		KHz
Frequency Change with Temperature	F _{osc} /T	$C_T = 0.01 \mu F, R_T = 12K$			2	%
DEAD TIME CONTROL SECTION		· · · · · · · · · · · · · · · · · · ·				
Input Bias Current	l _B	$V_{cc} = 15V, 0 < V_4 < 5.25V$		-2.0	- 10	μA
Maximum Duty Cycle	DC _{max}	$V_{cc} = 15V$, Pin 4 = 0V O.C Pin = V _{ref}	45			%
		Zero Duty Cycle		3.0	3.3	
Input Threshold Voltage	V _{TH}	Max. Duty Cycle	0			V
ERROR AMP SECTION	L.,		A			
Input Offset Voltage	V _{IO}	$V_3 = 2.5V$		2.0	10	mV
Input Offset Current	lio	$V_3 = 2.5V$		25	250	mA
Input Bias Current	I _B	V ₃ = 2.5V		0.2	1.0	μA
Common Mode Input Voltage	VOR	7V <v<sub>cc<40V</v<sub>	- 0.3		V _{cc}	V
Open-Loop Voltage Gain	Avo	0.5V <v<sub>3<3.5V</v<sub>	70	95		dB
Unit-Gain Bandwidth	BW			650		KHz

ELECTRICAL CHARACTERISTIC (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
PWM COMPARATOR SECTION			_	L		
Input Threshold Voltage	VTH	Zero Duty Cycle		4	4.5	v
Input Sink Current	lıs	$V_3 = 0.7V$	- 0.3	- 0.7		mA
OUTPUT CONTROL SECTION	<u></u>					
Single-Ended Operation	V _{OCL}		1		0.4	v
Push-Pull Operation	V _{OCH}		2.4			v
OUTPUT SECTION				L		
Output Saturation Voltage Commen Emitter	V _{CE} (sat)	$V_{E} = 0, I_{C} = 200 \text{mA}$		1.1	1.3	v
Commen Collector	V _{cc} (sat)	$V_{c} = 15V, I_{E} = -200mA$		1.5	2.5	
Collector Off-State Current	I _c (off)	$V_{CC} = 40V, V_{CE} = 40V$		2	100	
Emitter Off-State Current	I _E (off)	$V_{CC} = V_C = 40V, V_E = 0$			- 100	μA
TOTAL DEVICE						
Standby Supply Current	lcc	Pin $6 = V_{ref}$, $V_{CC} = 15V$		6	10	mA
OUTPUT SWITCHING CHARACTE	ERISTIC	· · ·				
Rise Time	T _R					
Commen Emitter				100	200	-0
Commen Collector				100	200	nS
Fall Time	T _F	· · ·				
Commen Emitter		аланын талан та Талан талан тала		25	100	-0
Commen Collector				40	100	nS

TYPICAL APPLICATION

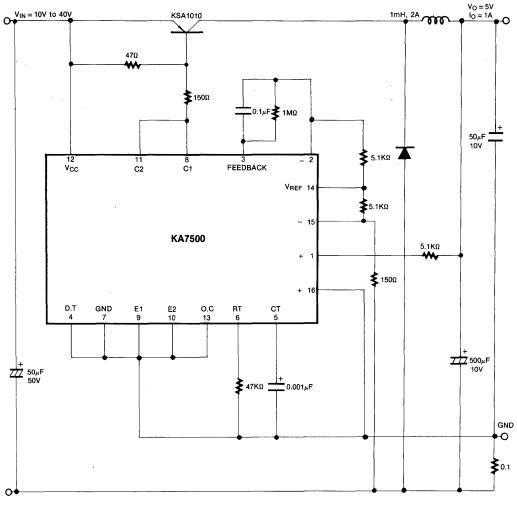
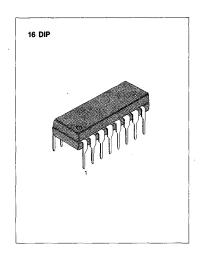


Fig. 1 PULSE WIDTH MODULATED STEP-DOWN CONVERTER

LINEAR INTEGRATED CIRCUIT

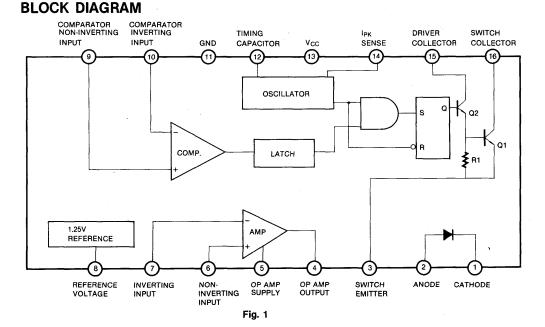
SWITCHING REGULATOR


The KA78S40 is a monolithic switching regulator subsystem consisting of all the active building blocks necessary for switching regulator systems.

FUNCTIONS

- High-current, high-voltage output switch a power transistor and a diode
- A temperature compensated voltage reference
- A comparator
- A duty cycle controllable oscillator with an active current limit circuit
- Independent operational amplifier.

FEATURES


- · Step-up, step-down or inverting switching regulators
- Output current to 1.5A without external transistors
- Output adjustable from 1.3 to 40V
- Operation from 2.5 to 40V input
- 80dB line and load regulation
- · Low standby current drain
- High gain, high current independent OP Amp.

ORDERING INFORMATION

Device	Package	Operation Temperature
KA78S40N	16 DIP	0~70°C
**KA78S40IN	16 DIP	- 25 ~ 85°C

** Under development

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	v
OP Amp Power Supply Voltage	V _{OP}	40	V
Common Mode Input Voltage Range	VICM	$-0.3 - V_{CC}$	v
Differential Input Voltage Range (Note)	V _{ID}	- 30 ~ 30	v
Output Short Circuit Duration (OP Amp)	lsc	Continuous	
Current from V _{REF}	I _{REF}	10	mA
Voltage from Switch Collector to GND	V _{CG}	40	v
Voltage from Switch Emitter to GND	V _{EG}	40	v
Voltage from Switch Collector to Emitter	V _{CE}	40	v
Voltage from Power Diode to GND	V _{DG}	40	V
Reverse Power Diode Voltage	V _{DR}	40	v
Current Through Power Switch	Isw	1.5	A
Current Through Power Diode	Ι _D	1.5	A
Power Dissipation	PD	1.5	w
Lead Temperature (Soldering, 10 Sec)	Tlead	260	°C
Operating Temperature Range	T _{opr}	0 + 70	°C
Storage Temperature Range	T _{stg}	- 65 + 150	°C

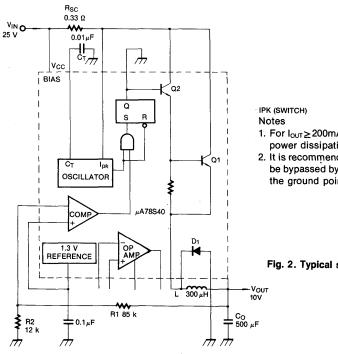
NOTE: For supply voltage less than 30V, the absolute maximum voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{OP Amp} = 5.0V, 0^{\circ} < Ta < 70^{\circ}$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
General Characteristic						L
Supply Voltage	Vcc		2.5		40	v
Supply Current Disconnected OP Amp		$V_{CC} = 5.0V$		2.2	3.5	
	I _{CC1}	$V_{\rm CC} = 40V$		3.5	5.0	mA
Supply Current Connected OR Amn		$V_{\rm CC} = 5.0 V$			4.0	
Supply Current Connected OP Amp	I _{CC2}	$V_{\rm CC} = 40V$			5.5	mA
Reference Section						
Reference Voltage	VREF	I _{REF} = 1.0mA	1.180	1.245	1.310	V
Reference Voltage Line Regulation	∆V _{REF}	$V_{CC} = 3.0V$ to 40V I _{REF} = 1.0mA, Ta = 25°C		0.04	0.2	mV/V
Reference Voltage Load Regulation	∆V _{REF}	$I_{REF} = 1.0 \text{mA}$ to 10mA Ta = 25°C		0.2	0.5	mV/mA
Oscillation Section						
		$V_{cc} = 5.0V, Ta = 25^{\circ}C$	20		50	μA
Charging Current	CHG	V _{cc} = 40V, Ta = 25°C	20		70	μA
Discharging Current		V _{cc} = 5.0V, Ta = 25°C	150		250	μΑ
Discharging Current	IDCH	$V_{cc} = 40V$, Ta = 25°C	150		350	μA

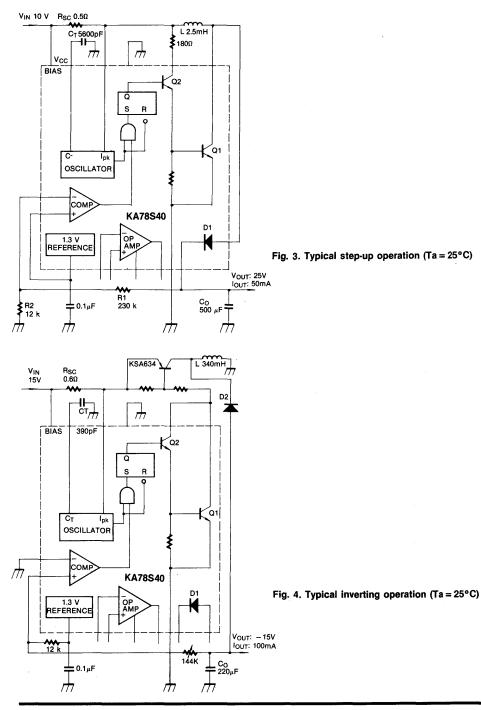
ELECTRICAL CHARACTERISTICS (Continued)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Oscillator Voltage Swing	Vosc	$V_{cc} = 5.0V, Ta = 25^{\circ}C$		0.5		v
ton/tott	tr			6.0		μS/μS
Current Limit Section		• · · ·				
Current Limit Sense Voltage	VSEN	Ta=25°C	250		350	mV
Output Switch Section		1				
		I _{sw} = 1.0A, step-down		1.1	1.3	V
Output Saturation Voltage	VSAT	I _{sw} = 1.0A, step-up		0.45	0.7	V
Output Transistor h _{FE}	h _{FE}	$I_{C} = 1.0A, V_{CE} = 5.0V,$ Ta = 25°C		70		
Output Leakage Current	lieak	V _{OUT} = 40V, Ta = 25°C		10		nA
Power Diode						
Forward Voltage Drop	VD	I _D = 1.0A		1.25	1.5	٧
Diode Leakage Current	lieak	$V_{D} = 40V, Ta = 25^{\circ}C$		10		nA
Comparator	I	<u> </u>	1		1	
Input Offset Voltage	Vio	$V_{CM} = V_{REF}$		1.5	15	mV
Input Bias Current	l _B	V _{CM} = V _{REF}		35	200	nA
Input Offset Current	lio			5.0	75	nA
Common Mode Voltage Range	V _{CM}	Ta=25°C	0		V _{cc} -2	٧
Power Supply Rejection Ratio	PSRR	$V_{cc} = 3.0V$ to 40V, Ta = 25°C	70	96		dB
Operational Amplifier	L	1	<u> </u>		·	
Input Offset Voltage	Vio	$V_{CM} = 2.5V$		4.0	15	mV
Input Bias Current	I _{IB}	$V_{CM} = 2.5V$		30	200	nA
Input Offset Current	lio	$V_{CM} = 2.5V$	1	5.0	75	nA
Voltage Gain (Positive)	A _{VOL+}	$R_L = 2.0$ kΩ to GND, V ₀ = 1.0 to 2.5V, Ta = 25°C	25	250		V/mV
Voltage Gain (Negative)	V _{VOL-}	$R_L = 2.0 \text{ k}\Omega \text{ to } V_+ \text{ OP Amp}$ $V_0 = 1.0 \text{ to } 2.5\text{V}, \text{ Ta} = 25^{\circ}\text{C}$	25	250		V/mV
Common Mode Voltage Range	V _{CM}	Ta=25°C	0		V _{cc} -2	٧
Common Mode Rejection Ratio	CMRR	V _{CM} = 0 to 3.0V, Ta = 25°C	76	100		dB
Power Supply Rejection Ratio	PSRR	$V_{op} = 3.0$ to 40V, Ta = 25°C	76	100		dB
Output Source Current	ISOUR	Ta=25°C	75	100		mA
Output Sink Current	I _{SINK}	Ta=25°C	10	35		mA
Slew rate	S.R	Ta=25°C		0.6		V/µS
Output Low Voltage	V _{OL}	I _L = - 5.0mA, Ta = 25°C			1.0	V
Output High Voltage	V _{он}	$I_{L} = 50 \text{mA}, \text{Ta} = 25^{\circ}\text{C}$	$V_{op} - 3.0$			v

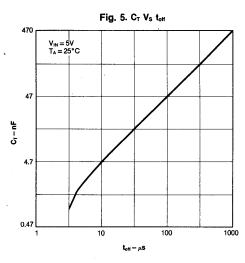
APPLICATION INFORMATION

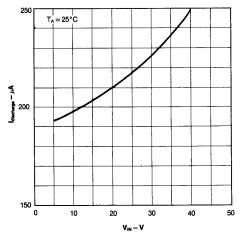
Design Formulas

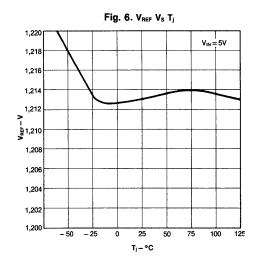
Characteristic	Step Down	Step Up	Inverting	Unit
l _{pk}	2 I _{OUT(Max)}	$2 I_{OUT(Max)} \bullet \frac{V_{OUT} + V_D - V_{sat}}{V_{IN} - V_{sat}}$	$2I_{OUT(Max)} \bullet \frac{V_{IN} + V_{OUT} + V_D - V_{sat}}{V_{IN} - V_{sat}}$	A
R _{SC}	0.33/l _{pk}	0.33/I _{pk}	0.33/I _{pk}	Ω
ton toff	$\frac{V_{OUT} + V_D}{V_{IN} - V_{sat} - V_{OUT}}$	$\frac{V_{OUT} + V_D - V_{IN}}{V_{IN} - V_{sat}}$	$\frac{ V_{OUT} + V_D}{V_{IN} - V_{sat}}$	
Ĺ	$\frac{V_{OUT} + V_D}{I_{pk}} \bullet t_{off}$	VOUT + VD - VIN Ipk • toff	$\frac{ V_{OUT} + V_D}{I_{Pk}} \bullet t_{off}$	μН
toff	I _{pk} • L V _{OUT} + V _D	$\frac{I_{pk} \bullet L}{V_{OUT} + V_D - V_{IN}}$		μs
C _T (μF)	$45 \times 10^{-5} t_{off} (\mu s)$	45×10 ⁻⁵ t _{off} (μs)	$45 \times 10^{-5} t_{off} (\mu s)$	μF
Co	lpk ● (t _{on} + t _{off}) 8 V _{ripple}	(I _{pk} − I _{OUT}) ² • t _{off} 2 I _{pk} • V _{ripple}	(I _{pk} − I _{OUT}) ² • t _{off} 2 I _{pk} • V _{ripple}	μF
Efficiency	$\frac{V_{IN} - V_{sat} + V_D}{V_{IN}} \bullet \frac{V_{OUT}}{V_{OUT} + V_D}$	$\frac{V_{\text{IN}} - V_{\text{sat}}}{V_{\text{IN}}} \bullet \frac{V_{\text{OUT}}}{V_{\text{OUT}} + V_{\text{D}} - V_{\text{sat}}}$	$\frac{V_{IN} - V_{sat}}{V_{IN}} \bullet \frac{ V_{OUT} }{V_{OUT} + V_D}$	
I _{IN} (Avg) (Max load condition)	$\frac{I_{pk}}{2} \bullet \frac{V_{OUT} + V_D}{V_{IN} - V_{sat} + V_D}$	<u>l_{pk} 2</u>	$\frac{I_{pk}}{2} \bullet \frac{ V_{OUT} + V_D}{ V_{IN} + V_{OUT} + V_D - V_{sat}}$	A

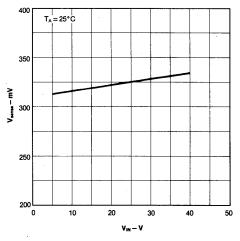

 For I_{OUT}≥200mA use external diode to limit on chip power dissipation.

2. It is recommended that the internal reference (pin 8) be bypassed by a 0.1μ F capacitor directly to (pin 11) the ground point of the KA78S40.


Fig. 2. Typical step-down operation ($Ta = 25^{\circ}C$)


KA78S40





KA78TXXC/KA78TXXAC SERIES LINEAR INTEGRATED CIRCUIT

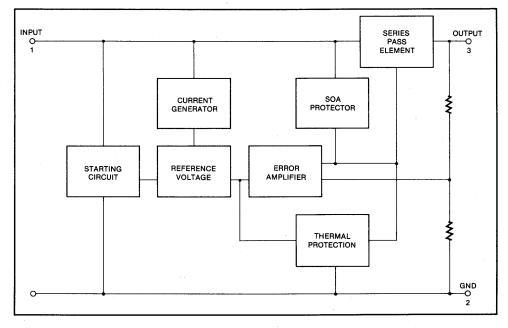
3A POSITIVE VOLTAGE REGULATOR

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 3.0 amperes. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a 2% output voltage tolerance on AC – suffix 5, 12 and 15 volts device types.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

FEATURES

. .


- · Output current in excess of 3.0 ampere
- Output transistor safe-area compensation
- Power dissipation: 25W (To-220)
- · Internal short-circuit current limiting
- Internal thermal overload protection
- Output voltage offered in 2% and 4% tolerance (2% regulators are available in 5, 12 and 15 volt devices)
- No external components required
- Thermal regulation is specified
- Output voltage of 5; 6; 8; 12; 15; 18; 24V
- Mass production: KA78T05

BLOCK DIAGRAM

TO-220

ORDERING INFORMATION

Device	Package	Operating Temperature
KA78TXXCT	TO 000	
KA78TXXACT	TO-220	0∼125°C
KA78TXXCH	TO OD	0~125°C
KA78TXXACH	TO-3P	

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input Voltage (5.0V – 12V) (15V – 24V)	V _{IN}	35 40	V V
Power Dissipation	Po	Internally limited	
Thermal Resistance, Junction to Air Tc = 25°C	θ _{JA}	65	°C/W
Thermal Resistance, Junction to Case	θ _{JC}	2.5	°C/W
Operating Temperature Range	T _{opr}	0 to + 125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

KA78T05C, KA78T05AC ELECTRICAL CHARACTERISTICS ($V_{IN} = 10V$, $I_0 = 3.0A$, $T_j = 0^{\circ}C$ to $125^{\circ}C$, $P_o \leq P_{max}$, unless otherwise specified)

Observatoria	0	ymbol Test Conditions		78T05	AC	κ			
Characteristic	Symbol			Тур	Max	Min	Тур	Max	Unit
Output Voltage	Vo	5mA≤I₀≤3.0A, Tj=25°C 5mA≤I₀≤3A; 7.3V≤V⊪≤20V, 5mA≤I₀≤2A	4.9 4.8	5 5	5.1 5.2	4.8 4.75	5.0 5.0	5.2 5.25	V _{DC}
Line Regulation	∆V₀	$\begin{array}{l} 7.2V \leq V_{1N} \leq 35V, \ I_{o} = 5mA, \ T_{i} = 25^{\circ}C \\ 7.2V \leq V_{1N} \leq 35V, \ I_{o} = 1.0A, \ T_{i} = 25^{\circ}C \\ 7.5V \leq V_{1N} \leq 20V, \ I_{o} = 2.0A \\ 8.0V \leq V_{1N} \leq 12V, \ I_{o} = 3.0A \end{array}$		3.0	10		3.0	25	mV
Load Regulation	∆V₀	5mA≤I₀≤3.0A, Tj = 25°C 5mA≤I₀≤3.0A		10 15	25 50		10 15	30 80	mV mV
Thermal Regulation	REG _{therm}	Pulse = 10ms, P = 20W, Ta = 25°C		0.001	0.01		0.002	0.03	%V₀/W
Quiescent Current	l _d	5mA≤I₀≤3A, Tj=25°C 5mA≤I₀≤3A		3.5 4.0	5.0 6.0		3.5 4.0	5.0 6.0	mA mA
Quiescent Current Change	∆l _d	7.2 $V \le V_{IN} \le 35V$, $I_0 = 5mA$, $T_j = 25^{\circ}C$; 7.5 $V \le V_{IN} \le 20V$, $I_0 = 2A$; $5mA \le I_0 \le 3A$		0.1	0.5		0.1	0.8	mA
Ripple Rejection	RR	$8V \le V_{IN} \le 18V$, f = 120Hz, I _o = 2.0A	68	75		65	75		dB
Dropout Voltage	VD	$I_o = 3A, T_j = 25^{\circ}C$		2.2	2.5		2.2	2.5	V _{DC}
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz, T_j = 25^{\circ}C$		10			10		$\mu V/V_{o}$
Output Resistance	R₀	f = 1.0KHz		2.0			2.0		mΩ
Short Circuit Current Limit	I _{SC}	$V_{IN} = 35V, T_j = 25^{\circ}C$		1.5	2.5		1.5	2.5	A
Peak Output Current	I _{peak}	T _j = 25°C		5.0			5.0		Α
Average Temperature Coefficient of Output Voltage	∆ v₀ /∆t	I _o = 5.0mA		0.2			0.2		mV/°C

KA78T06C ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 11V, I_o = 3.0V, T_j = 0^{\circ}C$ to $125^{\circ}C, P_o \leq P_{max}$, unless otherwise specified)

Characteristic		Symbol Test Conditions		KA78T06C			
	Symbol			Тур	Max	Unit	
Output Voltage	Vo	5.0mA \leq I _o \leq 3A, T _i = + 25°C 5.0mA \leq I _o \leq 3A; 8.3V \leq V _{IN} \leq 21V, 5mA \leq I _o \leq 2A	5.75 5.7	6.0 6.0	6.25 6.3	v	
Line Regulation	۵V₀	$\begin{array}{l} 8.25V \leq V_{\text{IN}} \leq 35V \ \text{I}_{\text{o}} = 5.0\text{mA}, \ \text{T}_{\text{j}} = +25^{\circ}\text{C}; \\ 8.25V \leq V_{\text{IN}} \leq 35V \ \text{I}_{\text{o}} = 1.0\text{A}, \ \text{T}_{\text{j}} = +25^{\circ}\text{C}; \\ 8.6V \leq V_{\text{IN}} \leq 21V \ \text{I}_{\text{o}} = 2.0\text{A} \\ 9.0V \leq V_{\text{IN}} \leq 13V \ \text{I}_{\text{o}} = 3.0\text{A} \end{array}$		4.0	30	mV	
Load Regulation	∆V₀	$5mA \le I_o \le 3A$, $T_j = +25°C$ $5mA \le I_o \le 3A$		10 15	30 80	mV	
Thermal Regulation	REG _{therm}	Pulse = 10ms, P = 20W, Ta = 25°C		0.002	0.03	%V₀/W	
Quiescent Current	l _d	$5mA \leq I_o \leq 3A$, $T_j = +25^{\circ}C$ $5mA \leq I_o \leq 3A$		3.5 4.0	5.0 6.0	mA	
Quiescent Current Change	∆l _d	$\begin{array}{l} 8.25V \leq V_{IN} \leq 35V, \ I_{o} = 5mA, \ T_{j} = +25^{\circ}C; \\ 8.6V \leq V_{IN} \leq 21V, \ I_{o} = 2A; \\ 5mA \leq I_{o} \leq 3.0A \end{array}$		0.1	0.8	mA	
Ripple Rejection	RR	$9V \le V_{IN} \le 19V$, f = 120Hz, I _o = 2A	61	71		dB	
Dropout Voltage	VD	$I_0 = 3A, T_j = +25^{\circ}C$		2.2	2.5	v	
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz, T_j = +25^{\circ}C$		10		$\mu V/V_{o}$	
Output Resistance	R _o	f = 1.0KHz		2.0		mΩ	
Short Circuit Current Limit	I _{sc}	$V_{IN} = 35V, T_j = +25^{\circ}C$		1.5	2.5	А	
Peak Output Current	Ipeak	$T_j = +25^{\circ}C$		5.0		А	
Average Temperature Cofficient of Output Voltage	∆V₀/∆T	l₀ = 5.0mA		0.3		mV/°C	

KA78T08C ELECTRICAL CHARACTERISTICS

(V_{IN} = 14V, I_o = 3.0V, T_j = 0°C to 125°C, P_o \leq Pmax, unless otherwise specified)

Characteristic		Test Ore fillers	ĸ			
	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	5.0mA≤I₀≤3A, Tj = +25°C 5.0mA≤I₀≤3A; i 10.4V≤Vi№≤23V, 5mA≤I₀≤2A	7.7 7.6	8.0 8.0	8.3 8.4	V _{DC}
Line Regulation	۵V。	$\begin{array}{l} 10.3V \leq V_{IN} \leq 35V, \ I_{o} = 5mA, \ T_{j} = +25^{\circ}C \\ 10.3V \leq V_{IN} \leq 35V, \ I_{o} = 1.0A, \ T_{j} = +25^{\circ}C \\ 10.7V \leq V_{IN} \leq 23V, \ I_{o} = 2.0A \\ 11V \leq V_{IN} \leq 17V, \ I_{o} = 3.0A \end{array}$		4.0	35	mV
Load Regulation	∆V₀	$5mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_o \le 3A$		10 15	30 80	mV
Thermal Regulation	REG _{therm}	Pulse = 10ms, $P = 20W$, $Ta = 25^{\circ}C$		0.002	0.03	%V₀/W
Quiescent Current	l _d	$5mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_o \le 3A$		3.5 4.0	5.0 6.0	mA
Quiescent Current Change	∆l _d	$10.3V \le V_{IN} \le 35V$, $I_0 = 5mA$, $T_j = +25^{\circ}C$ $10.7V \le V_{IN} \le 23V$, $I_0 = 2A$ $5mA \le I_0 \le 3A$		0.1	0.8	mA
Ripple Rejection	RR	$11V \le V_{IN} \le 21V$, f = 120Hz, I _o = 2A	61	71		dB
Dropout Voltage	VD	$I_o = 3A, T_i = +25^{\circ}C$		2.2	2.5	V _{DC}
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz, T_j = +25^{\circ}C$		10		$\mu V/V_{o}$
Output Resistance	R₀	f = 1.0KHz		2.0		mΩ
Short Circuit Current Limit	I _{sc}	$V_{IN} = 35V, T_j = +25^{\circ}C$		1.5	2.5	Α
Peak Output Current	Ipeak	$T_j = +25^{\circ}C$		5.0		Α
Average Temperature Cofficient of Output Voltage	∆V₀/∆T	I _o = 5.0mA		0.3		mV/°C

KA78T12C, KA78T12AC ELECTRICAL CHARACTERISTICS ($V_{IN} = 19V$, $I_0 = 3.0A$, $T_j = 0^{\circ}C$ to $125^{\circ}C$, $P_0 \leq P_{max}$, unless otherwise noted)

Characteristic	Symbol		KA78T12AC			KA78T12C			
		Test Conditions		Тур	Max	Min	Тур	Max	Unit
Output Voltage	Vo	$5mA \le I_o \le 3A$, $T_j = 25^{\circ}C$ $5mA \le I_o \le 3A$; $5mA \le I_o \le 2A$, $14.5V \le V_{IN} \le 27V$	11.75 11.5	12 12	12.25 12.5		1	12.5 12.6	V _{DC}
Line Regulation	∆V₀	$\begin{array}{l} 14.5 V_{DC} \leq V_{IN} \leq 35 V_{DC}, \ I_{o} = 5 mA, \ T_{i} = +25 \ ^{\circ}C; \\ 14.5 V_{DC} \leq V_{IN} \leq 35 V_{DC}, \ I_{o} = 1.0A, \ T_{i} = +25 \ ^{\circ}C; \\ 14.9 V_{DC} \leq V_{IN} \leq 27 V_{DC}, \ I_{o} = 2.0A; \\ 16 V_{DC} \leq V_{IN} \leq 22 V_{DC}, \ I_{o} = 3.0A \end{array}$		6.0	18		6.0	45	mV
Load Regulation	∆V₀	5mA≤I₀≤3A, Tj = + 25°C 5mA≤I₀≤3A		10 15	25 50		10 15	30 80	mV
Thermal Regulation	REG _{therm}	Pulse = $10ms$, P = $20W$, Ta = $25^{\circ}C$		0.001	0.01		0.002	0.03	% V₀/W
Quiescent Current	la	$5mA \leq I_o \leq 3A$, $T_j = +25^{\circ}C$ $5mA \leq I_o \leq 3A$		3.5 4.0	5.0 6.0		3.5 4.0	5.0 6.0	mA
Quiescent Current Change	∆l _d	$\begin{array}{l} 14.5 V_{DC} \leq V_{IN} \leq 35 V_{DC}, \ I_{o} = 5 mA, \ T_{j} = 25^{\circ}C; \\ 14.9 V_{DC} \leq V_{IN} \leq 27 V_{DC}, \ I_{o} = 2A; \\ 5.0 mA \leq I_{o} \leq 3.0A \end{array}$		0.1	0.5		0.1	0.8	mA
Ripple Rejection	RR	$15V_{DC} \le V_{IN} \le 25V_{DC},$ f = 120Hz, I _o = 2.0A	61	67		57	67		dB
Dropout Voltage	VD	$I_0 = 3A, T_j = +25^{\circ}C$		2.2	2.5		2.2	2.5	V _{DC}
Output Noise Voltage	VN	$10Hz \le f \le 100KHz, T_j = +25^{\circ}C$		10			10		$\mu V/V_{o}$
Output Resistance	R₀	f = 1.0KHz		2.0			2.0		mΩ
Short Circuit Current Limit	I _{sc}	$V_{IN} = 35V, T_j = +25^{\circ}C$		1.5	2.5		1.5	2.5	Α
Peak Output Current	I _{peak}	$T_j = +25^{\circ}C$		5.0			5.0		Α
Average Temperature Coefficient of Output Voltage	∆ V ₀/∆T	I _o = 5.0mA		0.5			0.5		mV/°C

KA78T15C, KA78T15AC ELECTRICAL CHARACTERISTICS (V_{IN} = 23V, I_0 = 3.0A, T_j = 0°C to 125°C, $P_0 \le P_{max}$, unless otherwise noted)

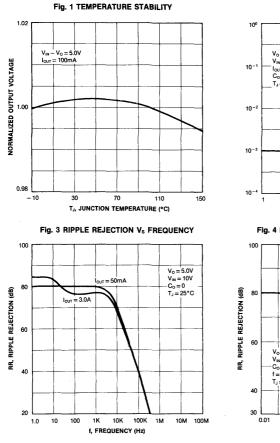
Characteristic	Symbol		KA78T15AC			KA78T15C			
		Test Conditions		Тур	Max	Min	Тур	Max	Unit
Output Voltage	Vo	$\begin{array}{l} 5mA \leq I_o \leq 3A, \ T_j = +25^{\circ}C\\ 5mA \leq I_o \leq 3A;\\ 17.5V_{DC} \leq V_{IN} \leq 30V_{DC}, \ 5mA \leq I_o \leq 2A \end{array}$	14.7 14.4	15 15	1.0.0	14.4 14.25	15 15	15.6 15.75	V _{DC}
Line Regulation	∆V₀	$\begin{array}{l} 17.6V \leq \!V_{IN} \leq \! 40V, \ I_{o} = 5mA, \ T_{j} = +25^{\circ}C \\ 17.6V \leq \!V_{IN} \leq \! 40V, \ I_{o} = 1A, \ T_{j} = +25^{\circ}C; \\ 18V \leq \!V_{IN} \leq \! 30V, \ I_{o} = 2.0A; \\ 20V \leq \!V_{IN} \leq \! 26V, \ I_{o} = 3.0A \end{array}$		7.5	22	-	7.5	55	mV
Load Regulation	∆V₀	5mA≤I₀≤3A, Tj= +25°C 5mA≤I₀≤3A		10 15	25 50		10 15	30 80	mV
Thermal Regulation	REG _{therm}	Pulse = 10ms, $P = 20W$, $Ta = 25^{\circ}C$		0.001	0.01		0.002	0.03	%v₀/W
Quiescent Current	l _d	5mA≤I₀≤3A, Tj = +25°C 5mA≤I₀≤3A		3.5 4.0	5.0 6.0		3.5 4.0	5.0 6.0	mA
Quiescent Current Change	۵ld	$\begin{array}{l} 17.6V \leq V_{IN} \leq 40V, \ I_{o} = 5mA, \ T_{j} = +25^{\circ}C; \\ 18V \leq V_{IN} \leq 30V, \ I_{o} = 2A; \\ 5mA \leq I_{o} \leq 3A \end{array}$		0.1	0.5		0.1	0.8	mA
Ripple Rejection	RR	$18.5V_{DC} \le V_{IN} \le 28.5V_{DC},$ f = 120Hz, I _o = 2.0A	60	65		55	65		dB
Dropout Voltage	VD	$I_0 = 3A, T_j = +25^{\circ}C$		2.2	2.5		2.2	2.5	V _{DC}
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz$, $T_j = +25^{\circ}C$		10			10		$\mu V/V_{o}$
Output Resistance	Ro	f = 1.0KHz		2.0			2.0		mΩ
Short Circuit Current Limit	Isc	$V_{iN} = 40V, T_j = +25^{\circ}C$		1.0	2.0		1.0	2.0	А
Peak Output Current	I _{peak}	$T_i = +25^{\circ}C$		5.0			5.0		Α
Average Temperature Coefficient of Output Voltage	∆V₀/∆T	I _o = 5.0mA		0.6			0.6		mV/°C

KA78T18C ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 27V, I_o = 3.0V, T_j = 0^{\circ}C \text{ to } 125^{\circ}C, P_o \leq P_{max}, \text{ unless otherwise specified})$

Characteristic	Cumber - I	Test Conditions		KA78T18C			
Characteristic	Symbol			Тур	Max	Unit	
· · · · · · · · · · · · · · · · · · ·	Vo	5.0mA \leq I _o \leq 3A, T _j = +25°C		18	18.7		
Output Voltage		5.0mA \leq I _o \leq 3A; 20.6V \leq V _{IN} \leq 33V, 5mA \leq I _o \leq 2A	17.1	18	18.9	V _{DC}	
Line Regulation	∆V₀	$\begin{array}{l} 20.7V \leq V_{IN} \leq 40V, \ I_{o} = 5mA, \ T_{j} = +25^{\circ}C; \\ 20.7V \leq V_{IN} \leq 40V, \ I_{o} = 1A, \ T_{j} = +25^{\circ}C; \\ 21.2V \leq V_{IN} \leq 33V, \ I_{o} = 2.0A \\ 24V \leq V_{IN} \leq 30V, \ I_{o} = 3A \end{array}$		9.0	80	mV	
Load Regulation	∆V₀	$5mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_o \le 3A$		10 15	30 80	mV	
Thermal Regulation	REG _{therm}	$Pulse = 10ms, P = 20W, Ta = 25^{\circ}C$		0.002	0.03	% V ₀/W	
Quiescent Current	la	$5mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_o \le 3A$		3.5 4.0	5.0 6.0	mA	
Quiescent Current Change	∆l _d	$\begin{array}{l} 20.7V \leq V_{IN} \leq 40V, \ I_{o} = 5mA, \ T_{j} = \ + \ 25^{\circ}C; \\ 21.2V \leq V_{IN} \leq 33V, \ I_{o} = 2.0A; \\ 5mA \leq I_{o} \leq 3.0A \end{array}$		0.1	0.8	mA	
Ripple Rejection	RR	$22V \le V_{IN} \le 32V$, f = 120Hz, I _o = 2.0A	54	64		dB	
Dropout Voltage	VD	$I_o = 3A, T_j = +25^{\circ}C$		2.2	2.5	V _{DC}	
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz, T_j = +25^{\circ}C$		10		μ V/V _o	
Output Resistance	Ro	f = 1.0KHz		2.0		mΩ	
Output Circuit Current Limit	I _{sc}	$V_{IN} = 40V, T_j = +25^{\circ}C$		1.0	2.0	А	
Peak Output Current	I _{peak}	$T_j = +25^{\circ}C$		5.0		Α	
Average Temperature Coefficient of Output Voltage	∆V₀/∆T	I _o = 5.0mA		0.7		mV/°C	

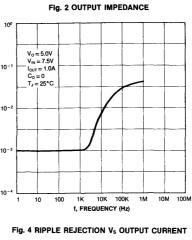
KA78T24C ELECTRICAL CHARACTERISTICS


 $(V_{IN} = 33V, I_o = 3.0A, T_j = 0^{\circ}C$ to $125^{\circ}C, P_o \le P_{max}$, unless otherwise specified)

A		Sumbal Test Conditions			KA78T24C				
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit			
Output Voltage	Vo	$5.0mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5.0mA \le I_o \le 3A$;	23 22.8	24 24	25 25.2	V _{DC}			
Line Regulation	∆V₀	$\begin{array}{l} 27.3V \leq V_{\text{IN}} \leq 39V, \ 5\text{mA} \leq I_o \leq 2A \\ 27V \leq V_{\text{IN}} \leq 40V, \ I_o = 5\text{mA}, \ T_i = +25^{\circ}\text{C}; \\ 27V \leq V_{\text{IN}} \leq 40V, \ I_o = 1.0A, \ T_i = +25^{\circ}\text{C}; \\ 27.5V \leq V_{\text{IN}} \leq 39V, \ I_o = 2.0A; \\ 30V \leq V_{\text{IN}} \leq 36V, \ I_o = 3.0A \end{array}$		12	90	mV			
Load Regulation	∆V₀	$5mA \le I_0 \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_0 \le 3A$		10 15	30 80	mV			
Thermal Regulation	REG _{therm}	Pulse = 10mS, P = 20W, Ta = 25°C		0.002	0.03	%V₀/W			
Quiescent Current	l _d	$5mA \le I_o \le 3A$, $T_j = +25^{\circ}C$ $5mA \le I_o \le 3A$		3.5 4.0	5.0 6.0	mA			
Quiescent Current Change	∆l _d	$\begin{array}{l} 27V \leq \! V_{1N} \leq \! 40V, \ I_{o} = 5mA, \ T_{j} = + 25^{\circ}C; \\ 27.5V \leq \! V_{1N} \leq \! 39V, \ I_{o} = 2A; \\ 5mA \leq \! I_{o} \leq \! 3A \end{array}$		0.1	0.8	mA			
Ripple Rejection	RR	$28V \le V_{IN} \le 38V$, f = 120Hz, I _o = 2.0A	51	61		dB			
Dropout Voltage	VD	$I_{o} = 3A, T_{j} = +25^{\circ}C$		2.2	2.5	V _{DC}			
Output Noise Voltage	V _N	$10Hz \le f \le 100KHz, T_i = +25^{\circ}C$		10		$\mu V/V_{o}$			
Output Resistance	Ro	f = 1.0KHz		2.0		mΩ			
Short Circuit Current Limit	I _{sc}	$V_{IN} = 40V, T_j = +25^{\circ}C$		1.0	2.0	Α			
Peak Output Current	I _{peak}	$T_j = +25^{\circ}C$		5.0		Α			
Average Temperature Coefficient of Output Voltage	∆V₀/∆T	I _o = 5.0mA		1.0		. mV/°C			

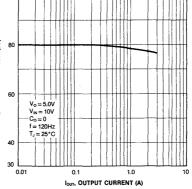
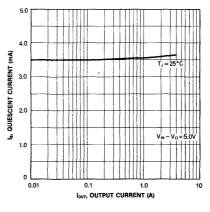
ţ.

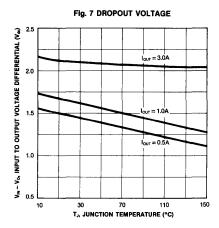
TYPICAL PERFORMANCE CHARACTERISTICS

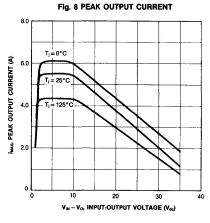


UNG

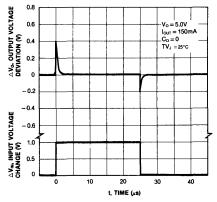
Electronics


Fig. 6 QUIESCENT CURRENT Vs OUTPUT CURRENT



363


4

KA78TXXC/KA78TXXAC SERIES LINEAR INTEGRATED CIRCUIT

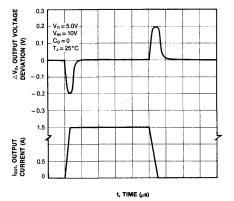
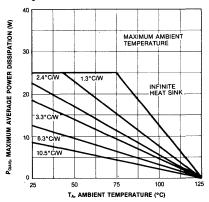
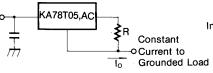



Fig. 11 MAXIMUM AVERAGE POWER DISSIPATION



APPLICATION INFORMATIONS

The KA78T00, A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provided good high-frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Fig. 12—CURRENT REGULATOR

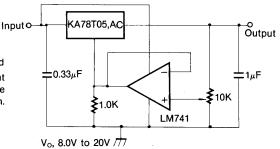
The KA78T05 regulator can also be used as a current source when connected as above. In order to minimize dissipation, the KA78T05 is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5.0V}{R} + I_{B}$$

 $\triangle I_B = 0.7mA$ over line, load and temperature changes $I_B = 3.5mA$

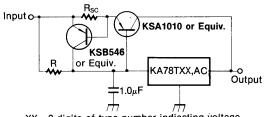
For example, a 2-ampere current source would require R to be a 2.5 ohm, 15W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

Fig. 14—CURRENT BOOST REGULATOR



XX = 2 digits of type number indicating voltage.

The KA78T00,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Inputout put differential voltage minimum is increased by the V_{BE} of the pass transistor.


Fig. 13—ADJUSTABLE OUTPUT REGULATOR

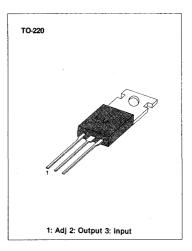
 $V_{IN} - V_0 \ge 2.5V$

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

Fig. 15—CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

XX = 2 digits of type number indicating voltage.

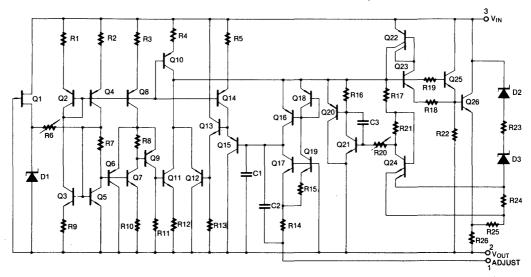
The circuit of Figure 18 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{sc} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.


3-TERMINAL POSITIVE ADJUSTABLE REGULATOR

The LM317 is a 3-terminal adjustable positive voltage regulator capable of supplying in excess of 1.5A over an output voltage range of 1.2V to 37V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current-limiting, thermal-shutdown and safe area compensation, making it essentially blow-out proof. The LM317 serves a wide variety of applications including local, on-card regulation. This device also makes an especially simple adjustable switching regulator, and a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317 can be used as a precision current regulator.

FEATURE

- Output current in excess of 1.5A
- Output adjustable between 1.2V and 37V
- · Internal thermal-overload protection
- Internal short-circuit current-limiting constant with temperature
- Output transistor safe-area compensation
- Floating operation for high-voltage applications
- Standard 3-pin transistor packages


SCHEMATIC DIAGRAM

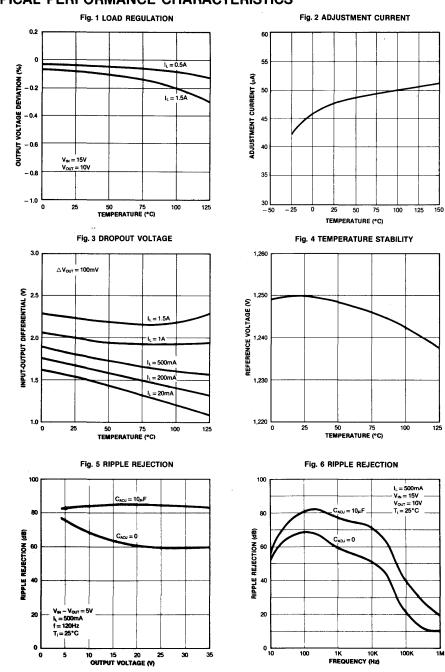
ORDERING INFORMATION

Device	Package	Operation Temperature
LM317T	TO-220	0~125°C
**LM217T	TO-220	-25 ~ +150°C

** Under development

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input-Output Voltage Differential	V _{IN} - V _{OUT}	40	V _{DC}
Lead Temperature	T _{lead}	230	°C
Power Dissipation	PD	Internally limited	
Operating Temperature Range	T _{opr}	0 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C


ELECTRICAL CHARACTERISTICS

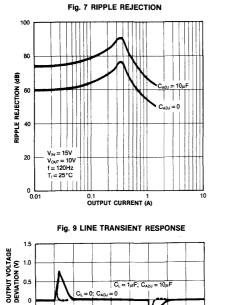
 $(V_{\text{IN}} - V_{\text{OUT}} = 5V, \ I_{\text{OUT}} = 0.5A, \ 0^{\circ}C \le T_{j} \le 125^{\circ}C, \ I_{\text{max}} = 1.5A, \ P_{\text{max}} = 20W, \ unless \ otherwise \ specified)$

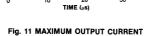
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Line Regulation	۵V。	$T_{a} = 3V \leq V_{IN} - V_{OUT} \leq 40V$			0.01	0.04	%/V
Line negulation		25°C	$3V \leq V_{IN} - V_{OUT} \leq 40V$		0.02	0.07	%/V
Load Regulation	∆V₀	Ta=2 V _{out} ≤ V _{out} ≥			5 0.1	25 0.5	mV %V。
		10mA≤I _{OUT} ≤I _{MAX} V _{OUT} ≤5V V _{OUT} ≥5V			20 0.3	70 1.5	mV %V₀
Adjustable Pin Current	l _{adj}				50	100	μA
Adjustable Pin Current Change	∆l _{adj}	$2.5V \leq V_{IN} - V_{OUT} \leq 40V$ $10mA \leq I_{OUT} \leq I_{MAX}$ $P \leq P_{MAX}$			0.2	5	μΑ
Reference Voltage	V _{REF}	$3V \leq V_{IN} - V_{OUT} \leq 40V$ $10mA \leq I_{OUT} \leq I_{MAX}$ $P_D \leq P_{MAX}$		1.20	1.25	1.30	v
Temperature Stability	Ts				0.7		%Vo
Minimum Load Current to Maintain Regulation	I _{MIN}	V _{IN} – V	V _{OUT} = 40V		3.5	10	mA
Maximum Output Current	IMAX		$V_{OUT} \leq 15V, P_D \leq P_{MAX}$ $V_{OUT} = 40V, P_D \leq P_{MAX}$	1.5 0.15	2.2 0.4		А
RMS Noise, % of V _{OUT}	e _N	Ta = 2	5°C, 10Hz≤f≤10KHz		0.003		%V。
Ripple Rejection	RR	$V_{OUT} = 10V$, f = 120Hz without C_{ADJ} $C_{ADJ} = 10\mu F$		66	65 80		dB
Long-Term Stability, T _j = T _{high}	S	Ta = 25°C for end point measurements, 1000HR			0.3	1	%
Thermal Resistance Junction to Case	R₅JC				5,		°C/W

TYPICAL PERFORMANCE CHARACTERISTICS

0

 $V_{OUT} = 10V$ $I_L = 50mA$ $T_i = 25^{\circ}C$

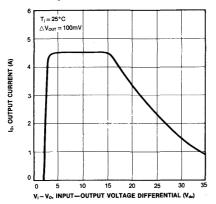

- 0.5


- 1.0

-1.5 CHANGE (V) 0.5 0.5 - 1.5

0

0



20

30

40

10

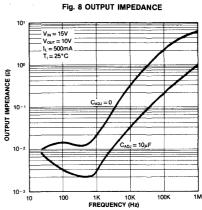
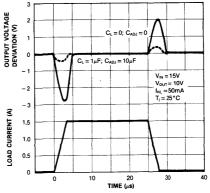



Fig. 10 LOAD TRANSIENT RESPONSE

TYPICAL APPLICATIONS

Fig. 12 AC Voltage Regulator

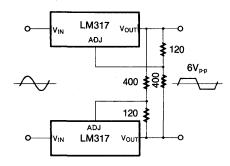
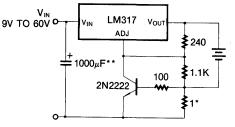
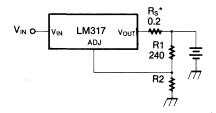




Fig. 13 Current Limited 6V Charger

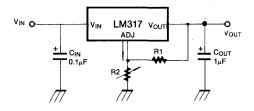

- * Sets peak current (0.6A for 1Ω)
- ** The 1000µF is recommended to filter out input transients

Fig. 14 12V Battery Charger

* R_s—sets output impedance of charger $Z_{OUT} = R_s (1 + \frac{R2}{R1})$ Use of R_s allows low charging rates with fully charged battery.

Fig. 15 Programmable Regulator

 $V_{OUT} = 1.25V \ (1 + \frac{R_2}{R_1}) + I_{adj} \ R_2$

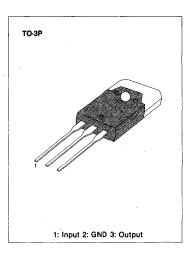
 C_{IN} is required when regulator is located an appreciable distance from power supply filter. C_{OUT} is not need for stability, however it does improve transient response

Since I_{adj} is controlled to less than 100 μA , the error|associated with this term is negligible in most applications.

3-TERMINAL POSITIVE VOLTAGE REGULATOR

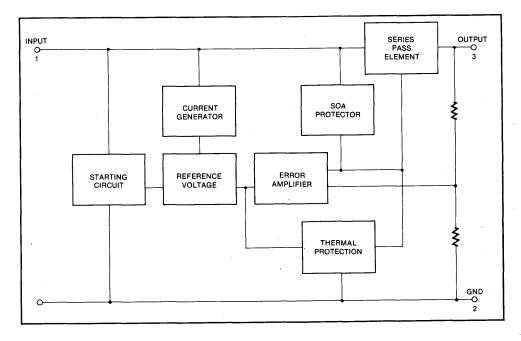
The LM323 is a three-terminal positive regulator with a preset 5V output and a load driving capability of 3 Amps.

New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.


The LM323 can be used with a external transistor to supply up to 15A at 5 Volts.

FEATURES

- 3 Amp output current
- Internal current and thermal limiting

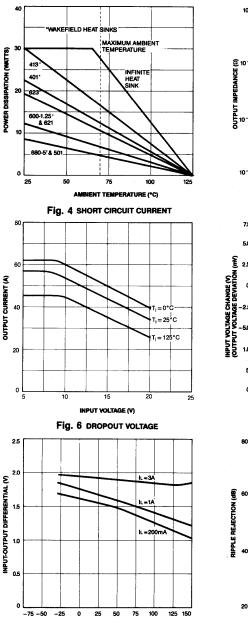

SCHEMATIC DIAGRAM

- 0.01 Ω typical output impedance
- 7.5V minimum input voltage
- Output transistor safe area compensation

ORDERING INFORMATION

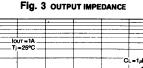
Device	Package	Operation Temperature
LM323H	TO-3P	0 ~125°C
LM323T	TO-220	0 ~125°C

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Value	Unit
Input Voltage	ViN	20	v
Operating Temperature Range	T _{opr}	0 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(0°C \leq T_J \leq 125°C unless otherwise specified)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
0		$T_J = 25^{\circ}C$ $V_{IN} = 7.5V, I_{OUT} = 0$	4.8	5	5.2V	
Output Voltage	Vo	$7.5V \le V_{IN} \le 15V$ $0 \le I_{OUT} \le 3A, P \le 30W$	4.75		5.25	v
Line Regulation	ΔVo	$T_J = 25^{\circ}C$ 7.5V $\leq V_{IN} \leq 15V$		5	25	mV
Load Regulation	ΔVo	$T_J = 25^{\circ}C, V_{IN} = 7.5V$ $0 \le I_{OUT} \le 3A$		25	100	mV
Quiescent Current	la	$7.5V \le V_{IN} \le 15V$ $0 \le I_{OUT} \le 3A$		3	20	mA
Output Noise Voltage	V _N	T _J =25°C, 10Hz≤f≤100KHz		40		μV _{rms}
		T _J =25°C, V _{IN} =15V		4.5		A
Short Circuit Current	I _{SC}	T _J =25°C, V _{IN} =7.5V		5.5		A
Thermal Resistance Junction to Case	Өлс			3		°C/W

JUNCTION TEMPERATURE (°C)

Fig. 2 MAXIMUM AVERAGE POWER DISSIPATION

VIN = 15V _____

751

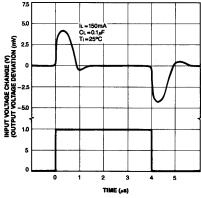
10

CL = 10µ SOLID

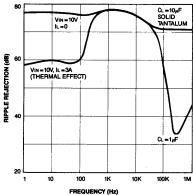
100K 1M

10

10-3

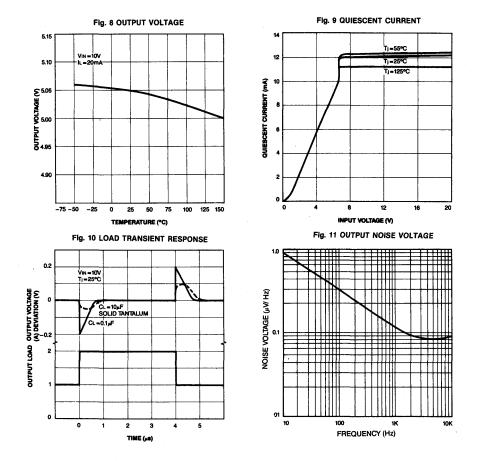

1

FREQUENCY (Hz) Fig. 5 RIPPLE REJECTION

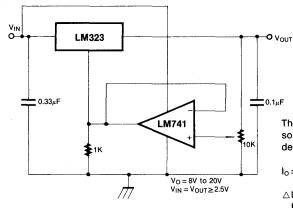

1K

10K

100



LINEAR INTEGRATED CIRCUIT



TYPICAL APPLICATION

The LM323 fixed voltage regulator is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

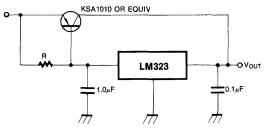
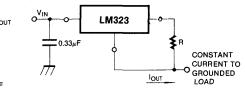

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIG. 13 ADJUSTABLE OUTPUT REGULATOR



The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

FIG. 15 CURRENT BOOST REGULATOR

FIG. 14 CURRENT REGULATOR

The LM323 regulator can also be used as a current source when connected as above. Resistor R determines the current as follows:

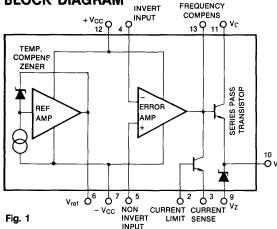
$$o = \frac{5.0V}{B} + I_B$$

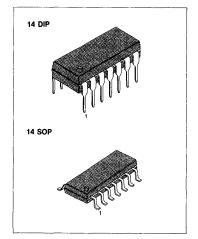
 $\triangle I_B = 0.7 mA$ over line, load and temperature changes $I_B = 3.5 mA$

For example, a 2-ampere current source would require R to be a 2.5 ohm, 15W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

The LM323 can be current boosted with a PNP transistor. The KSA1010 provides current to 15 amperes. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Inputout differential voltage minimum is increased by the V_{BE} of the pass transistor.

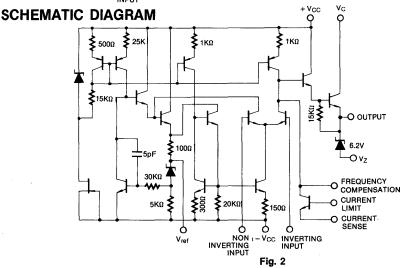
PRECISION VOLTAGE REGULATOR


The LM723C/LM723I are monolithic integrated circuit voltage regulator featuring high ripple rejection, excellent output and load regulation, excellent temperature stability, and low standby current.


The LM723C/LM723I are also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller. LM723C is characterized for operation from 0°C to 70°C, and LM723I from -25° C to $+85^{\circ}$ C.

FEATURES

- Positive or Negative Supply Operation.
- 0.01% line and load regulation
- Output voltage adjustable from 2 to 37 volts.
- Output current to 150mA without external pass transistor


BLOCK DIAGRAM

ORDERING INFORMATION

	Device	Package	Operating Temperature
	LM723CN	14 DIP	0 . 70%0
	LM723CD	14 SOP	0∼+70°C
/o	LM723IN	14 DIP	05
	LM723ID	14 SOP	– 25 ~ + 85°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Pulse Voltage from V + to V - (50ms)	V _{IN(P)}	50	V _{peak}
Continus Voltage from V + to V -	Vin	40	V
Input-Output Voltage Differential	VIN - VOUT	40	v
Maximum Output Current	lo	150	mA
Differential Input Voltage	V _{ID}	±5	. V
Voltage Between Non-Inverting Input and V-	VIE	8	v
Current from Vz	lz	25	mA
Current from V _{REF}	I _{REF}	15	mA
Power Dissipation	P _D	1000	mW
Operating Temperature Range LM7231 LM723C	T _{opr}	$\begin{array}{c} -25 \sim +85 \\ 0 \sim +70 \end{array}$	°C °C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(unless otherwise specified, Ta = 25°C, V_I = V_{CC} = V_C = 12V, V_O = + 5V, I_L = 1.0mA, R_{SC} = 0, C_I = 100pF, C_{ref} = 0 and devider impedance as seen by error Amplifier ≤ 10 K Ω connected as shown in figure 3)

			LM7231/LM723C				
Characteristic	Symbol	Test Conditions	Min	in Typ Max		Unit	
		$V_1 = 12V$ to 15V $V_1 = 12V$ to 40V		0.01 0.1	0.1 0.5		
Line Regulation	∆Vo	$T_{MIN} \leq T_A \leq T_{MAX}$ V ₁ = 12V to 15V			0.3	%	
		I _o = 1mA to 50mA		0.03	0.2		
Load Regulation	∆Vo	$T_{MIN} \le T_A \le T_{MAX}$ $I_0 = 1 \text{ to } 50\text{mA}$			0.6	%	
Binda Bainaking		$f = 100Hz$ to 10KHz, $C_{REF} = 0$		74			
Ripple Rejection	RR	f = 100Hz to 10KHz, $C_{REF} = 5\mu F$		86		dB	
Average Temperature Coefficient of Output Voltage	∆V₀/∆T	$\Delta V_0 / \Delta T$ $T_{MIN} \leq T_A \leq T_{MAX}$		0.003	0.015	%/°C	
Short Circuit Current Limit	I _{sc}	$R_{SC} = 10\Omega, V_O = 0$		65		mA	
Reference Voltage	V _{REF}		6.80	7.15	7.50	v	
Output Noise Voltage	VN	$f = 100$ Hz to 10KHz, $C_{REF} = 0$	20			μV _{rms}	
	V N	$f = 100Hz$ to 10KHz, $C_{REF} = 5\mu F$		2.5		µµ v rms	
Long-term Stability	V _o /T			0.1		%/1000HR	
Standby Current Drain	Ι _D	$I_L = 0, \ V_{IN} = 30V$		2.0	4.0	mA	
Input Voltage Range	Vi		9.5		40	v	
Output Voltage Range	Vo		2.0		37	v	
Input-Output Voltage Differential	VD		3.0		38	v	

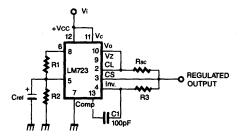
* Note: $T_{MIN} = 0^{\circ}C$ for LM723C = $-25^{\circ}C$ for LM723I $T_{MAX} = 70$ °C for LM723C = 85 °C for LM723I

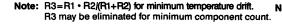
Output	Applicable	Fixed Output ± 5%		Output Adjustable ± 10%			Output Applicable		ş	Output 5%	Outpu	ıt Adju ± 10%	
Voltage	Figures	R ₁	R ₂	R ₁	P ₁	R ₂	Voltage Figures	R ₁	R ₂	R ₁	P 1	R ₂	
+3	3, 6	4.12	3.01	1.8	0.5	1.2	-6*	5	3.57	2.43	1.2	0.5	0.75
+5	3,6	2.15	4.99	0.75	0.5	2.2	-9	5	3.48	5.36	1.2	0.5	2
+6	3,6	1.15	6.04	0.5	0.5	2.7	- 12	5	3.57	8.45	1.2	0.5	3.3
+9	4,6	1.87	7.15	0.75	1	2.7	15	5	3.65	11.5	1.2	0.5	4.3
+ 12	4,6	4.87	7.15	2	2	3	- 28	5	3.57	24.3	1.2	0.5	10
+ 15	4,6	7.87	7.15	3.3	1	3				· ·			
+ 28	4,6	21	7.15	5.6	1	2							

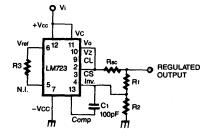
Table 1 — Resistor values (K Ω) for standard output voltage

Note: *V_{cc} must be connected to a +3V or greater supply.

Table II — Formulae for intermediate output voltages


Outputs from +2 to +7 volts Fig. 3 $V_o = [V_{ref} \times \frac{R_2}{R_1 + R_2}]$	Foldback Current Limiting $I_{\text{KNEE}} = \left[\frac{V_{\text{o}}}{R_{\text{sc}}}\frac{R_3}{R_4} + \frac{V_{\text{SENSE}}}{R_{\text{sc}}}\frac{(R_3 + R_4)}{R_{\text{sc}}}\right]$ $I_{\text{SHORT CKT}} = \left[\frac{V_{\text{SENSE}}}{R_{\text{sc}}} \times \frac{R_3 + R_4}{R_4}\right]$	Current Limiting $I_{\text{LIMIT}} = \frac{V_{\text{SENSE}}}{R_{sc}}$
$\begin{array}{l} \text{Outputs from +7 to +37 volts} \\ \text{Fig. 4, 6} \\ \text{V}_{o} = [\text{V}_{\text{ref}} \times \frac{\text{R}_{1} + \text{R}_{2}}{\text{R}_{2}}] \end{array}$	Output from - 6 to - 250 volts Fig. 5 $V_0 = [\frac{V_{ref}}{2} \times \frac{R_1 + R_2}{R_1}]; R_3 = R_4$	




Fig. 4 Basic high voltage regulator ($V_0 = 7$ to 37V)

APPLICATION INFORMATION

Fig. 3 Basic low voltage regulator ($V_0 = 2$ to 7V)

Note: R1•R2/(R1+R2)for minimum temperature drift. R3 may be eliminated for minimum component count.

Typical performance

Regulated Output Voltage	5V
Line Regulation ($\Delta V_i = 3V$)	0.5mV
Load Regulation (Alo=50mA)	1.5mV

Typical performance

Regulated Output Voltage	15V
Line Regulation ($\Delta V_i = 3V$)	
Load Regulation (Δlo=50mA)	

Fig. 5 Negative voltage regulator

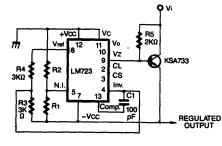
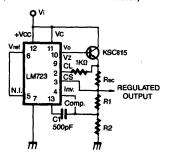



Fig. 6 Positive voltage regulator

(Extenal NPN Pass Transistor)

Typical performance

Regulated Output Voltage	+15V
Line Regulation ($\Delta V_i = 3V$)	1.5mV
Load Regulation ($\Delta l_0 = 1A$)	15mV

4

Fig. 7 MAXIMUM OUTPUT CURRENT VS. VOLTAGE DROP

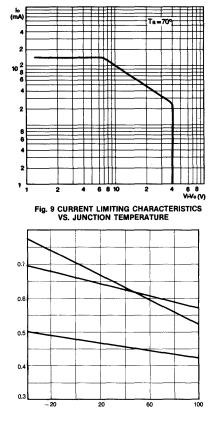
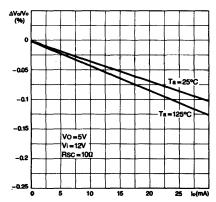



Fig. 11 LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

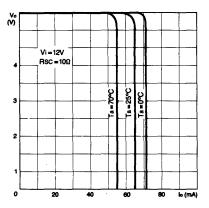


Fig. 10 LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

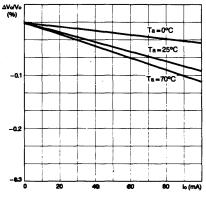
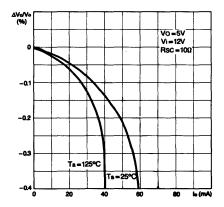
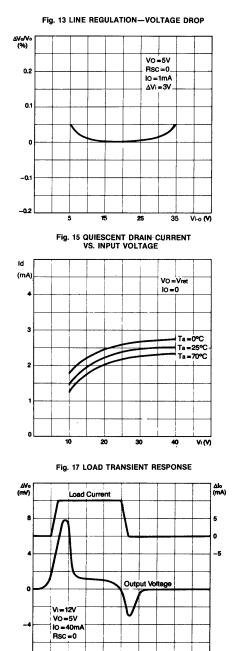
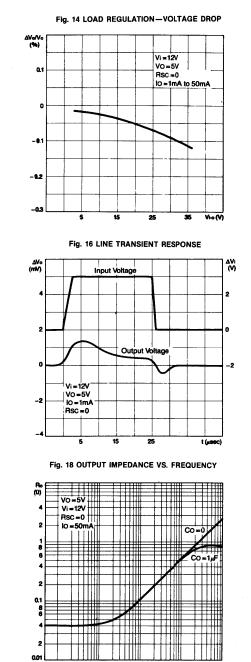





Fig. 12 LOAD REGULATION CHARACTERISTIC WITH CURRENT LIMITING

5

15

25

35 t(µaec)

100

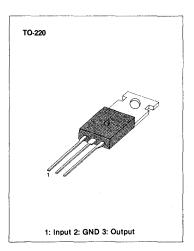
1K

10K

f (Hz)

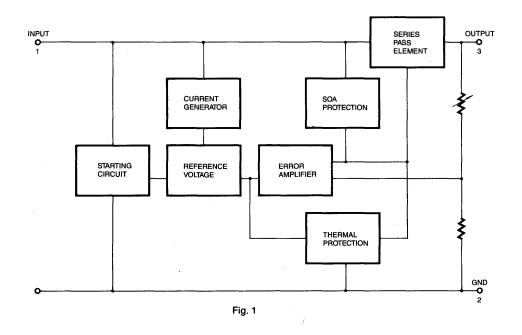
100K

3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

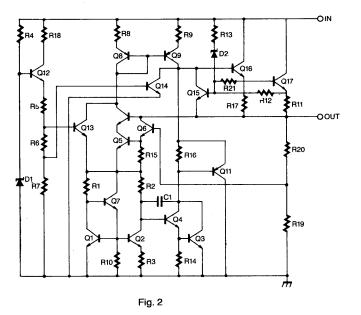

The MC78XX/MC78XXA series of three-terminal positive regulators are available in TO-220 package and with several fixed output voltages, making it useful in a wide range of applications. These Regulators can provide local oncard regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

MC78XXI is characterized for operation from -40° C to $+125^{\circ}$ C, and MC78XXC from 0°C to $+125^{\circ}$ C.

FEATURES


- Output Current up to 1.5A
- Output voltages of 5; 6; 8; 8.5; 9; 10; 11; 12; 15; 18; 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection
- No external components required
- Output current in excess of 1A
- · Industrial and commercial temperature range

BLOCK DIAGRAM


ORDERING INFORMATION

Device	Package	Operating Temperature
MC78XXIT	TO-220	- 40 ∼ + 125°C
MC78XXCT	TO-220	0 . 10540
MC78XXACT	TO-220	0 ~ + 125°C

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit	
Input Voltage (for $V_0 = 5V$ to 18V) (for $V_0 = 24V$)	V _{IN} V _{IN}	35 40	v v	
Thermal Resistance Junction-Cases	θ _{JC}	5	°C/W	
Thermal Resistance Junction-Air	θ _{JA}	65	°C/W	
Operating Temperature Range MC78XXI MC78XXC/AC	T _{opr}	- 40 ~ + 125 0 ~ + 125	0° 0°	
Storage Temperature Range	T _{sta}	- 65 ~ + 150	°C	

(Refer to test circuit, $T_{min} < T_i < T_{max}$, $I_o = 500$ mA, $V_i = 10V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

	0	-	est Conditions	N	1C780	51	M	Unit		
Characteristic	Symbol		Min	Тур	Max	Min	Тур	Max	Unit	
			T _j = 25°C	4.8	5.0	5.2	4.8	5.0	5.2	
Output Voltage	Vo	$5.0mA \le I_o \le 1.0A$, $P_D \le 15W$ $V_i = 7V$ to 20V $V_i = 8V$ to 20V		4.75	5.0	5.25	4.75	5.0	5.25	v
Line Description		T 05%0	$V_i = 7V$ to 25V		5.0	100		5.0	100	
Line Regulation	∆V₀	T _j = 25°C	V _i = 8V to 12V		1.5	50		1.5	50	mV
Lood Pogulation	۵Va	T _ 25°C	$I_0 = 5.0 \text{mA}$ to 1.5A		9	100		9	100	mV
Load Regulation	ΔVο	T _j = 25°C	$I_o = 250 \text{mA}$ to 750 mA		3	50		3	50	mv
Quiescent Current	١ _d		$T_j = 25^{\circ}C$		5.0	8		5.0	8	mA
		١o	= 5mA to 1.0A			0.5			0.5	
Quiescent Current Change	∆ld	١	/ _i = 7V to 25V						1.3	mA
		١	√ _i = 8V to 25V			1.3				
Output Voltage Drift	$\triangle V_o / \triangle T$		$I_o = 5 m A$		- 0.8			- 0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		40			40		μV
Ripple Rejection	RR	f = 120Hz V _i = 8 to 18V		62	78		62	78		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		V
Output Resistance	Ro		f = 1KHz		17			17		mΩ
Short Circuit Current	I _{SC}	V _i :	= 35V, T _j = 25°C		250			250		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		2.2			2.2		Α

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to test circuit, $T_{min} < T_i < T_{max}$, $I_o = 500$ mA, $V_i = 11V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

		-		N	AC780	61	м	Unit		
Characteristic	Symbol		Test Conditions			Max	Min	Тур	Max	Unit
	1		$T_j = 25^{\circ}C$	5.75	6.0	6.25	5.75	6.0	6.25	
Output Voltage	Vo	$5.0mA \le I_o \le 1.0A, P_D \le 15W$ $V_i = 8.0V \text{ to } 21V$ $V_i = 9.0V \text{ to } 21V$		5.7	6.0	6.3	5.7	6.0	6.3	v
			$V_i = 8V$ to 25V		5	120		5	120	
Line Regulation	∆V₀	T _j = 25°C	$V_i = 9V$ to 13V		1.5	60		1.5	60	mV
Land Danidation		T 0500	$I_o = 5mA$ to 1.5A		9	120		9	120	mV
Load Regulation	∆V₀	T _j = 25°C	$I_o = 250 \text{mA}$ to 750 mA		3	60		3	60	mv
Quiescent Current	l _d		$T_j = 25^{\circ}C$		5.0	8		5.0	8	mA
		I,	₀=5mA to 1A			0.5			0.5	
Quiescent Current Change	∆l _d	١	$V_i = 8V$ to 25V						1.3	mA
		١	/ _i = 9V to 25V			1.3				
Output Voltage Drift	∆V₀/∆T		I _o = 5mA		- 0.8			- 0.8		mV/°C
Output Noise Voltage	VN	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		45			45		μV
Ripple Rejection	RR	f = 120Hz V _i = 9 to 19V		59	75		59	75		dB
Dropout Voltage	VD	$I_{o} = 1A, T_{j} = 25^{\circ}C$			2			2		v
Output Resistance	Ro		f = 1KHz		19			19		mΩ
Short Circuit Current	Isc	V _i :	= 35V, T _j = 25°C		250			250		mA
Peak Current	Ipeak		$T_j = 25^{\circ}C$		2.2			2.2		Α

2

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$ MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500$ mA, $V_i = 14V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

		_		N	AC780	BI	M	Unit		
Characteristic	Symbol	Test Conditions			Тур	Max	Min	Тур	Max	Unit
4			T _j = 25°C	7.7	8.0	8.3	7.7	8.0	8.3	
Output Voltage	Vo	$V_i = 10.5V$ to 23V	5.0mA \leq I _o \leq 1.0A, P _D \leq 15W V _i = 10.5V to 23V V _i = 11.5V to 23V		8.0	8.4	7.6	8.0	8.4	v
			$V_i = 10.5V$ to 25V		6.0	160		6.0	160	
Line Regulation	∆V₀	$T_j = 25^{\circ}C$	V _i = 11.5V to 17V		2.0	80		2.0	80	mV
· · - · · ·			$l_0 = 5.0 \text{mA}$ to 1.5A	1	12	160		12	160	
Load Regulation	∆V₀	T _i = 25°C	$I_{o} = 250 \text{mA}$ to 750 mA	1	4.0	80		4.0	80	mV
Quiescent Current	ld		T _j = 25°C		5.0	8		5.0	8	mA
		I.	= 5mA to 1.0A			0.5			0.5	
Quiescent Current Change	∆ld	Vi	= 10.5V to 25V						1.0	mA
		V _i = 11.5V to 25V				1.0				
Output Voltage Drift	∆V₀/∆T		l _o = 5mA		- 0.8			- 0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		52			52		μV
Ripple Rejection	RR	$f = 120$ Hz, $V_i = 11.5$ V to 21.5		56	72		56	72		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		V
Output Resistance	Ro		f = 1KHz		16			16		mΩ
Short Circuit Current	I _{sc}	V _i :	= 35V, T _j = 25°C		250			250		mA
Peak Current	I _{peak} .		$T_j = 25^{\circ}C$		2.2			2.2		Α

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to test circuit $T_{min} < T_j < T_{max}$, $I_o = 500$ mA, $V_i = 14.5$ V, $C_i = 0.33 \mu$ F, $C_o = 0.1 \mu$ F, unless otherwise specified)

		-		N	IC788	51	N	Unit				
Characteristic	Symbol	Test Conditions			Тур	Max	Min	Тур	Max	Unit		
	Τ _j = 25°C 8		8.15	8.5	8.85	8.15	8.5	8.85				
Output Voltage	Vo	$V_i = 11V$ to	$I_0 = 5mA$ to 1.0A, $P_D \le 15W$ $V_i = 11V$ to 23.5V $V_i = 12V$ to 23.5V		8.5	8.9	8.1	8.5	8.9	v		
			V _i = 11V to 25V		6	170		6	170			
Line Regulation	∆V₀	T _j = 25°C	V _i = 11.5V to 18V		2	85		2	85	mV		
Lood Degulation		T 05%0	$I_o = 5 \text{mA}$ to 1.5A		12	170		12	170 mV			
Load Regulation	∆V₀	T _j = 25°C	$I_0 = 250 \text{mA}$ to 750 mA		4	85		4	85	mv		
Quiescent Current	l _d	T _j = 25°C			5.0	8.0		5.0	8.0	mA		
	∆l _d	$I_o = 5mA$ to 1.0A				0.5			0.5			
Quiescent Current Change		∆ld	∆l _d	∆ld	$V_i = 11V tc$	V _i = 11V to 25V						1.0
		$V_i = 12V$ to	o 25V			1.0						
Output Voltage Drift	∆V₀/∆T	$I_o = 5 mA$			- 1.0			- 1.0		mV/°C		
Output Noise Voltage	V _N	f = 10Hz to	o 100KHz, Ta = 25°C		55			55		μV		
Ripple Rejection	RR	f = 120Hz,	$V_i = 12V$ to 22V	56	72		56	72		dB		
Dropout Voltage	VD	I₀ = 1.0A, 1	Г _і = 25°С		2.0			2.0		٧		
Output Resistance	R ₀	f = 1KHz			17			17		mΩ		
Short Circuit Current	l _{sc}	$V_i = 35V, T$	j=25°C		250			250		mA		
Peak Current	I _{peak}	T _j = 25°C			2.2			2.2		Α		

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC: T_{min} = 0°C, T_{max} = 125°C

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500$ mA, $V_i = 15V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

Characteristic	Cumbal	-	est Conditions	N	IC780	91	M	Unit		
Characteristic	Symbol		rest conditions			Max	Min	Тур	Max	Unit
			T _j = 25°C	8.65	9	9.35	8.65	9	9.35	
Output Voltage	Vo	$5.0\text{mA} \le I_o \le 1.0\text{A}, P_D \le 15\text{W}$ V _i = 11.5V to 24V V _i = 12.5V to 24V		8.6	9	9.4	8.6	9	9.4	v
Line Degulation		T 05%0	V _i = 11.5V to 25V		6	180		6	180	mV
Line Regulation	∆V₀	T _j = 25°C	$V_i = 12V$ to 25V		2	90		2	90	mv
Load Regulation	ΔVo	T _i = 25°C	$I_o = 5 \text{mA}$ to 1.5A		12	180		12	180	mV
	ΔVο	1j=25 C	$I_o = 250 \text{mA}$ to 750 mA		4	90		4	90	1110
Quiescent Current	I _d ≅		$T_j = 25^{\circ}C$		5.0	8		5.0	8.0	mA
		١o	= 5mA to 1.0A			0.5			0.5	
Quiescent Current Change	∆l _d	Vi	= 11.5V to 26V						1.3	mA
		Vi	V _i = 12.5V to 26V			1.3				
Output Voltage Drift	∆V₀/∆T		$I_o = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		58			58		μV
Ripple Rejection	RR	f = 120Hz Vi = 13V to 23V		56	71		56	71		dB
Dropout Voltage	VD	$I_o = 1A, T_j = 25^{\circ}C$			2			2		V
Output Resistance	Ro		f = 1KHz		17			17		mΩ
Short Circuit Current	I _{sc}	Vi	$= 35V, T_{j} = 25^{\circ}C$		250			250		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		2.2			2.2		A

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

* Load and line regulation are specified at constant junction temperature changes in V_o due to heating effects must be taken into account separately pulse testing with low duty is used.

/

(Refer to test circuit, $T_{min} < T_i < T_{max}$, $I_o = 500$ mA, $V_i = 16V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

Ohanaatariatia	Question	-	Test Conditions			01	M	Unit		
Characteristic	Symbol					Max	Min	Тур	Max	Unit
,			T _j = 25°C	9.6	10	10.4	9.6	10	v	
Output Voltage	Vo	Vi	≤I₀≤1.0A, P₀≤15W = 12.5V to 25V = 13.5V to 25V	9.5	10	10.5	9.5	10		
		T 0500	$V_i = 12.5V$ to 25V		10	200		10	200	
Line Regulation	∆V₀	$T_j = 25^{\circ}C$	$V_i = 13V$ to $20V$		3	100		3	100	mV
Lood Regulation	ΔVo	T - 25°C	$I_o = 5mA$ to 1.5A		12	200		12	200	mV
Load Regulation	ΔVο	T _j = 25°C	$I_o = 250 \text{mA}$ to 750 mA		4	100		4	100	111V
Quiescent Current	la		$T_j = 25^{\circ}C$		5.1	8		5.1	8	mA
		١o	=5mA to 1.0A			0.5			0.5	
Quiescent Current Change	∆ld	Vi	= 12.5V to 29V						1.0	mA
		V _i = 13.5V to 29V				1.0				
Output Voltage Drift	∆V₀/∆T		$I_o = 5mA$		- 1			- 1		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		58			58		μV
Ripple Rejection	RR	f = 120Hz V _i = 14V to 23V		56	71		56	71		dB
Dropout Voltage	VD	$I_o = 1A, T_j = 25^{\circ}C$			2			2		V
Output Resistance	Ro		f = 1KHz		17			17		mΩ
Short Circuit Current	Isc	V _i :	= 35V, T _j = 25°C		250			250		mA
Peak Current	Ipeak		$T_j = 25^{\circ}C$		2.2			2.2		Α

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0$ °C, $T_{max} = 125$ °C

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500 mA$, $V_i = 18V$, $C_i = 0.33 \mu$ F, $C_o = 0.1 \mu$ F, unless otherwise specified)

0		Test Conditions			IC781	11	M			
Characteristic	Symbol		rest conditions			Max	Min	Тур	Max	Unit
			T _j = 25°C	10.6	11	11.4	10.6	11	11.4	
Output Voltage	V₀	V,	5.0mA \leq I _o \leq 1.0A, P _o \leq 15W V _i = 13.5V to 26V V _i = 14.5V to 26V		11	11.5	10.5	11	11.5	v
		T 05%0	V _i = 13.5 to 25V		10	220		10	220	
Line Regulation	∆V₀	T _j = 25°C	V _i = 14 to 21V		3.0	110		3.0	110	mV
Load Regulation	ΔVo	T _i = 25°C	$I_o = 5.0 \text{mA}$ to 1.5A		12	220		12	220	mV
	ΔVο	1 _j =25 C	$I_o = 250 \text{mA}$ to 750 mA		4	110		4	110	
Quiescent Current	la		T _j = 25°C		5.1	8		5.1	8	mA
		l,	= 5mA to 1A			0.5			0.5	
Quiescent Current Change	∆l _d	Vi	V _i = 13.5V to 29V						1.0	mA
		V _i = 14.5V to 29V				1.0				
Output Voltage Drift	∆V₀/∆T		l _o = 5mA		- 1			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		70			70		μV
Ripple Rejection	RR	f = 120Hz V _i = 14V to 24V		55	71		55	71		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		v
Output Resistance	Ro		f = 1KHz		18			18		mΩ
Short Circuit Current	I _{sc}	V _i :	= 35V, T _i = 25°C		250			250		mA
Peak Current	_{peak}		$T_j \approx 25^{\circ}C$		2.2			2.2		A

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to test circuit, $T_{min} < T_i < T_{max}$, $I_o = 500$ mA, $V_i = 19V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

Characteristic	0	Test Osediliens			IC781	21	M				
	Symbol		Test Conditions			Max	Min	Тур	Мах	Unit	
			$T_j = 25^{\circ}C$	11.5	12	12.5	11.5	12	12.5		
Output Voltage	Vo	Vin	5.0mA \leq I _o \leq 1.0A, P _D \leq 15W V _{in} = 14.5V to 27V V _i = 15.5V to 27V		12	12.6	11.4	12	12.6	v	
			V _i = 14.5 to 30V		10	240		10	240		
Line Regulation	∆V₀	T _j = 25°C	V _i = 16 to 22V		3.0	120		3.0	120	mV	
Lead Deculation		T _j = 25°C	$I_o = 5 \text{mA}$ to 1.5A		12	240		12	240	mV	
Load Regulation	∆V₀		$I_o = 250 \text{mA}$ to 750 mA		4.0	120		4.0	120	mv	
Quiescent Current	la	$T_j = 25^{\circ}C$			5.1	8		5.1	8	mA	
	∆l _d	$l_o = 5mA \text{ to } 1.0A$ $V_i = 14.5V \text{ to } 30V$				0.5			0.5		
Quiescent Current Change									1.0	mA	
		$V_i = 15V$ to $30V$				1.0					
Output Voltage Drift	∆V₀/∆T		$I_o = 5 m A$		- 1			- 1		mV/°C	
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		75			75		μV	
Ripple Rejection	RR	f = 120Hz V _i = 15V to 25V		55	71		55	71		dB	
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		V	
Output Resistance	Ro	f = 1KHz			18			18		mΩ	
Short Circuit Current	Isc	V _i =	= 35V, T _j = 25°C		250			250		mA	
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		2.2			2.2		Α	

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0$ °C, $T_{max} = 125$ °C

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_0 = 500$ mA, $V_i = 23V$, $C_i = 0.33\mu$ F, $C_0 = 0.1\mu$ F, unless otherwise specified)

Characteristic	o	-	N	IC781	51	м	11			
	Symbol		Test Conditions			Max	Min	Тур	Max	Unit
•			$T_j = 25^{\circ}C$	14.4	15	15.6	14.4	15	15.6	
Output Voltage	Vo	V _i	5.0mA \leq I _o \leq 1.0A, P _D \leq 15W V _i = 17.5V to 30V V _i = 18.5V to 30V		15	15.75	14.25	15	15.75	v
			V _i = 17.5 to 30V		11	300		11	300	
Line Regulation	∆V₀	T _j = 25°C	V _i = 20 to 26V		3	150		3	150	mV
Lood Deculation	∆V₀	T 05%C	l _o = 5.0mA to 1.5A		12	300		12	300	mV
Load Regulation		$T_j = 25^{\circ}C$	I _o = 250mA to 750mA		4	150		4	150	mv
Quiescent Current	ld	$T_j = 25^{\circ}C$			5.2	8		5.2	8	mA
	∆l _d	$I_o = 5 \text{mA}$ to 1.0A				0.5			0.5	
Quiescent Current Change		V _i = 17.5V to 30V							1.0	mA
		V _i = 18.5V to 30V				1.0]
Output Voltage Drift	∆V₀/∆T		l _o = 5mA		- 1			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		90			90		μV
Ripple Rejection	RR	f = 120Hz V _i = 18.5V to 28.5V		54	70		54	70		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		v
Output Resistance	Ro	f = 1KHz			19			19		mΩ
Short Circuit Current	I _{sc}	Vi	= 35V, T _i = 25°C		250			250		mA
Peak Current	I _{peak}		T _i = 25°C		2.2			2.2		Α

* $T_{min} < T_j < T_{max}$

MC78XXI: $T_{min} = -40$ °C, $T_{max} = 125$ °C

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500$ mA, $V_i = 27V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

Characteristic		Test Oseditions			/IC781	81	м			
	Symbol	. II	Test Conditions			Max	Min	Тур	Мах	Unit
			$T_j = 25^{\circ}C$	17.3	18	18.7	17.3	18	18.7	
Output Voltage	V₀	v	$\leq I_0 \leq 1.0A$, $P_D \leq 15W$ $Y_1 = 21V$ to 33V $Y_1 = 22V$ to 33V	17.1	18	18.9	17.1	18	18.9	V
Live Deer letter		T 0500	$V_i = 21$ to 33V		15	360		15	360	
Line Regulation	· ∆V₀	T _j = 25°C	V _i = 24 to 30V		5	180		5	180	mV
Lood Regulation	∆V₀	$T_j = 25^{\circ}C$	$I_o = 5 \text{mA}$ to 1.5A		15	360		15	360	mV
Load Regulation			$I_o = 250 \text{mA}$ to 750 mA		5.0	180		5.0 [,]	180	IIV
Quiescent Current	l _d	$T_j = 25^{\circ}C$			5.2	8		5.2	8	mA
	۵ld	$I_o = 5mA$ to 1A $V_i = 21V$ to 33V				0.5			0.5	
Quiescent Current Change									1	mA
		$V_i = 22V$ to 33V				1				
Output Voltage Drift	∆V₀/∆T		$I_o = 5 m A$		-1			- 1		mV/°C
Output Noise Voltage	V _N	$f = 10Hz$ to 100KHz $T_i = 25^{\circ}C$			110			110		μV
Ripple Rejection	RR	f = 120Hz V _i = 22V to 32V		53	69		53	69		dB
Dropout Voltage	VD	$I_o = 1A, T_j = 25^{\circ}C$			2			2		V
Output Resistance	Ro	f = 1KHz			22			22		mΩ
Short Circuit Current	I _{SC}	V _i :	$= 35V, T_j = 25^{\circ}C$		250			250		mA
Peak Current	I _{peak}		T _j = 25°C		2.2			2.2		Α

* T_{min} < T_j < T_{max}

MC78XXI: $T_{min} = -40^{\circ}$ C, $T_{max} = 125^{\circ}$ C MC78XXC, $T_{min} = 0^{\circ}$ C, $T_{max} = 125^{\circ}$ C

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500$ mA, $V_i = 33V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F, unless otherwise specified)

Characteristic		Test Ornditions			MC7824I			MC7824C			
	Symbol		Test Conditions			Max	Min	Тур	Max	Unit	
······································			T _j = 25°C	23	24	25	23	24	25		
Output Voltage	Vo	v	5.0mA \leq I _o \leq 1.0A, P _D \leq 15W V _i = 27V to 38V V _i = 28V to 38V 2		24	25.2	22.8	24	25.2	V	
		T 0510	$V_i = 27V$ to 38V		18	480		18	480		
Line Regulation	∆V₀	T _j = 25°C	$V_i = 30V$ to 36V		6	240		6	240	mV	
Lood Degulation		$T_j = 25^{\circ}C$	$I_o = 5mA$ to 1.5A		15	480		15	480	mV	
Load Regulation	∆V₀		$I_o = 250 \text{mA}$ to 750 mA		5.0	240		5.0	240		
Quiescent Current	l _d	$T_j = 25^{\circ}C$			5.2	8		5.2	8	mA	
,	۵ld	I _o = 5mA to 1A V _i = 27V to 38V				0.5			0.5		
Quiescent Current Change									1	mA	
		$V_i = 28V$ to 38V				1]	
Output Voltage Drift	∆V₀/∆T	$I_o = 5 m A$			- 1.5			- 1.5		mV/°C	
Output Noise Voltage	V _N	f = 10Hz	to 100KHz $T_j = 25^{\circ}C$		170			170		μV	
Ripple Rejection	RR	f = 120Hz Vi = 28V to 38V		50	66		50	66		dB	
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2			2		V	
Output Resistance	Ro	f = 1KHz			- 28			28		mΩ	
Short Circuit Current	I _{SC}	V, :	= 35V, T _j = 25°C		250			250		mA	
Peak Current	Ipeak		$T_j = 25^{\circ}C$		2.2			2.2		Α	

* T_{min}<T_i<T_{max}

MC78XXI: $T_{min} = -40^{\circ}C$, $T_{max} = 125^{\circ}C$

MC78XXC, $T_{min} = 0^{\circ}C$, $T_{max} = 125^{\circ}C$

(Refer to the test circuits, $T_j = 0$ to 125°C, $I_o = 1A$, $V_i = 10V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol	Test (Conditions	Min	Тур	Max	Unit
Output Voltage		T _j =25°C		4.9	5	5.1	
	Vo	$I_o = 5mA \text{ to } 1A, P_D \le 15W$ V _i = 7.5 to 20V		4.8	5	5.2	V
		$V_i = 7.5 \text{ to}$ $I_o = 500 \text{ m}$			5	50	
*Line Regulation	ΔVo	V _i =8 to 12	2V		3	50	mV
		T ₁ =25°C	$V_i = 7.3$ to 25V		5	50	1
		1 _j =25°C	V _i =8 to 12V		1.5	25	
*Load Regulation	ΔVo	$T_j = 25^{\circ}C$ $I_o = 5mA$ to 1.5A			9	100	
		$I_0 = 5$ mA to 1A			9 4	100	mV
		I₀ = 250 to 750mA				50	
Quiescent Current	l _d	T _j =25°C			5.0	6	mA
Quiescent Current Change	Δl _d	$I_o = 5 \text{mA}$ to 1A				0.5	
		$V_i = 8$ to 25V, $I_o = 500$ mA				0.8	mA
		V _i =7.5 to 20V, T _j =25°C				0.8	1
Output Voltage Drift	$\frac{\Delta V_o}{\Delta T}$	I _o =5mA			- 0.8	<u></u>	mV/°C
Output Noise Voltage	V _N	f=10Hz to 100KHz: T _a =25°C			10		$\frac{\mu V}{V_o}$
Ripple Rejection	RR	f=120Hz, I _o =500mA V _i =8 to 18V			68		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2		V
Output Resistance	R。	f=1KHz			17		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V, T_a = 25^{\circ}C$			250		mA
Peak Current	Ipeak	T _i =25°C			2.2		A

(Refer to the test circuits, $T_j = 0$ to 150°C, $I_o = 1A$, $V_i = 11V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		T _j =25°C		5.88	6	6.12	
	Vo	$I_o = 5mA t$ $V_i = 8.6 tc$	o 1A, P _D ≤15W o 21V	5.76	6	6.24	V
			$V_i = 8.6 \text{ to } 25V,$ $I_o = 500 \text{mA}$		5	60	
*Line Regulation	ΔVo	V _i =9 to 1	3V		3	60	mV
		T,=25℃	V _i =8.3 to 21V		5	60	
		1j=25°C	V _i =9 to 13V		1.5	30	-
*Load Regulation	Δ٧٥	$T_j = 25^{\circ}C$ $I_o = 5mA$ to 1.5A			9	100	
		I _o =5mA to 1A			4	100	mV
		$I_0 = 250$ to 750mA			5.0	50	1
Quiescent Current	la	T _j =25°C			4.3	6	mA
	Δl _d	l₀=5mA t	o 1A			0.5	
Quiescent Current Change		$V_i = 9$ to 25V, $I_o = 500$ mA				0.8	mA
		$V_i = 8.6$ to 21V, $T_j = 25^{\circ}C$				0.8	
Output Voltage Drift	$\frac{\Delta V_o}{\Delta T}$	I _o =5mA			- 0.8		mV/ºC
Output Noise Voltage	V _N	f=10Hz to 100KHz T _a =25°C			10		V
Ripple Rejection	RR	f=120Hz, I _o =500mA V _i =9 to 19V			65		dB
Dropout Voltage	V _d	$I_0 = 1A, T_j = 25^{\circ}C$			2		v
Output Resistance	Ro	f=1KHz			17		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V, T_a = 25^{\circ}C$			250		mA
Peak Current	Ipeak	T _i =25°C			2.2		A

(Refer to the test circuits, $T_j = 0$ to 150°C, $I_o = 1 \text{ A}$, $V_i = 14V$, $C_i = 0.33 \mu$ F, $C_o = 0.1 \mu$ F unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit	
		T _j =25°C		7.84	8	8.16		
Output Voltage	Vo	$I_o = 5mA \text{ to } 1A, P_D \le 15W$ $V_i = 10.6 \text{ to } 23V$		7.7	8	8.3	V	
		$V_i = 10.6 t$ $I_o = 500 m$			6	80		
*Line Regulation	ΔVo	$V_i = 11$ to	17V		3	80	mV	
		T ₁ =25°C	$V_i = 10.4$ to 23V		6	80		
		1j=25°C	V _i =11 to 17V		2	40		
		$T_j = 25^{\circ}C$ $I_o = 5mA$ to 1.5A			12	100		
*Load Regulation	ΔVο	I _o =5mA to 1A			12	100	mV	
		$I_{o} = 250 \text{ to}$	750mA		5	50		
Quiescent Current	l _d	T _j =25°C			5.0	6	mA	
	Δl _d	l₀=5mA t	o 1A			0.5		
Quiescent Current Change		V _i = 11 to 2	25V, I _o =500mA			0.8	mA	
		V _i = 10.6 to	23V, T _j =25°C			0.8		
Output Voltage Drift	<u>ΔV_o</u> ΔT	l _o =5mA			- 0.8		mV/°C	
Output Noise Voltage	V _N	f=10Hz to 100KHz T _a =25°C			10	,	$\frac{\mu V}{V_o}$	
Ripple Rejection	RR	$f=120Hz$, $I_0=500mA$ $V_i=11.5$ to 21.5V			62		dB	
Dropout Voltage	Vp	$I_0 = 1A, T_j = 25^{\circ}C$			2		v	
Output Resistance	R。	f=1KHz			18		mΩ	
Short Circuit Current	Isc	$V_i = 35V, T_a = 25^{\circ}C$			250		mA	
Peak Current	I _{peak}	T _i =25°C			2.2		A	

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

4

ELECTRICAL CHARACTERISTICS MC7885AC

(Refer to the test circuits, $T_j = 0$ to 125°C, $I_o = 1A$, $V_i = 14V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol		Test Conditions	Min	Тур	Мах	Unit
		T _j = 25°C	······································	8.33	8.5	8.67	
Output Voltage	Vo	$I_o = 5mA to$ $V_i = 11.2V$	o 1.0A, P _D ≤15W to 23.5V	8.15	8.5	8.85	v
		$V_i = 11.2V$ $I_o = 500mA$			6	85	
Line Degulation		$V_i = 11.5V$			3	43	
Line Regulation	∆V₀	T 05%0	$V_i = 11V$ to 23.5V		6	85	mV
		$I_j = 25^{\circ} C$	V _i = 11.5V to 18V		2	43	
· · · -		T _j = 25°C I _o = 5mA t	= 5mA to 1.5A		12	100	
Load Regulation	∆V₀	l₀=5mA t	o 1.0A		12	100	mV
		l₀ = 250mA	to 750mA		5	50	
Quiescent Current	۱ _d	$T_j = 25^{\circ}C$	T _i = 25°C		5.0	6.0	mA
	∆ld	$I_o = 5 mA t$			0.5		
Quiescent Current Change		$V_i = 11.5V$			0.8	mA	
		$V_i = 11.2V$			0.8		
Output Voltage Drift	∆V₀∕∆T	l₀ = 5mA			- 1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to	o 100KHz, Ta=25°C		10		μV/V _o
Ripple Rejection	RR	$f = 120Hz, V_i = 12V \text{ to } 22V$ $I_o = 500mA$			62		dB
Dropout Voltage	VD	I _o = 1.0A, ⁻		2.0		v	
Output Resistance	Ro	f = 1KHz		17		m	
Short Circuit Current	I _{short}	$V_i = 35V, 1$	「₄=25°C		250		mA
Peak Current	Ipeak	T _j = 25°C			2.2		А

ELECTRICAL CHARACTERISTICS MC7809AC

(Refer to the test circuits, $T_j = 0$ to 125°C, $I_o = 1A$, $V_i = 15V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		$T_j = 25^{\circ}C$		8.82	9.0	9.18	
Output Voltage	Vo	$I_o = 5mA t$ $V_i = 11.2V$	o 1.0A, P _D ≤15W to 24V	8.65	9.0	9.35	v
		$V_i = 11.7V$ $I_o = 500mA$			6	90	
Line Deviation	in	$V_i = 12.5V$	to 19V		4	45	
Line Regulation	∆V₀	T 05%0	V _i = 11.5V to 24V		6	90	mV
		T _j = 25°C	$V_i = 12.5V$ to 19V		2	45	
		$T_j = 25^{\circ}C$ $I_o = 5mA t$	= 5mA to 1.0A		12	100	
Load Regulation	∆V₀	$I_o = 5mA t$	o 1.0A		12	100	mV
		I₀ = 250mA	to 750mA		5	50	
Quiescent Current	l _d	$T_j = 25^{\circ}C$			5.0	6.0	mA
	∆ld	$V_{i} = 11.7V$			0.8		
Quiescent Current Change		$V_i = 12V$ to 25V, $I_o = 500mA$				0.8	mA
		$I_o = 5 mA t$			0.5		
Output Voltage Drift	∆V₀/∆T	$I_o = 5 mA$			- 1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to	o 100KHz, Ta=25°C		10		$\mu V/V_{o}$
Ripple Rejection	RR	f = 120Hz, I _o = 500mA	$V_i = 12V$ to 22V		62		dB
Dropout Voltage	VD	$I_o = 1.0A, T_j = 25^{\circ}C$			2.0		v
Output Resistance	R。	f = 1KHz	f = 1KHz		17		m
Short Circuit Current	Ishort	$V_i = 35V, 1$	j = 25°C		250		mA
Peak Current	I _{peak}	$T_j = 25^{\circ}C$			2.2		A

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

÷¢.

399

ELECTRICAL CHARACTERISTICS MC7811AC

(Refer to the test circuits, $T_j = 0$ to 125°C, $I_o = 1A$, $V_i = 18V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit	
		T _j = 25°C		10.8	11.0	11.2		
Output Voltage	Vo	$l_o = 5mA t$ $V_i = 13.8V$	o 1.0A, P _D ≤15W to 26V	10.6	11.0	11.4	v	
		$V_i = 13.8V$ $I_o = 500mA$			10	110		
Line Degulation		$V_i = 15V tc$	o 21V		4	55		
Line Regulation	∆V₀	T OF CO	V _i = 13.5V to 26V		10	110	mV	
		T _j = 25°C	$V_i = 15V$ to 21V		3	5.5		
		$T_j = 25^{\circ}C$ $I_o = 5mA t_i$	= 5mA to 1.5A		12	100		
Load Regulation	∆V₀	$l_o = 5mA t$	o 1.0A		12	100	mV	
		l₀ = 250mA	A to 750mA 🕠		5	50		
Oulesset Ourset		T _j = 25°C			5.1	6.0		
Quiescent Current	l _d					6.0	mA	
	∆l _d	$V_i = 13.8V$			0.8			
Quiescent Current Change		$V_i = 14V$ to 27V, $I_o = 500$ mA				0.8	mA	
		l₀=5mA t	o 1.0A			0.5	1	
Output Voltage Drift	∆V₀/∆T	l₀=5mA			- 1.0		mV/°C	
Output Noise Voltage	V _N	f = 10Hz to	o 100KHz, Ta=25°C		10		μV/V _o	
Ripple Rejection	RR	· · ·	$f = 120Hz$, $V_i = 14V$ to 24V $I_o = 500mA$		61		dB	
Dropout Voltage	VD	$I_o = 1.0A, T_j = 25^{\circ}C$			2.0		v	
Output Resistance	Ro	f = 1KHz			18		m	
Short Circuit Current	I _{short}	V _i = 35V, 1	Γ _j = 25°C		250		mA	
Peak Current	Ipeak	T _j = 25°C			2.2		A	

ELECTRICAL CHARACTERISTICS MC7812AC

(Refer to the test circuits, $T_i = 0$ to 150°C, $I_o = 1 A$, $V_i = 19V$, $C_i = 0.33 \mu$ F, $C_o = 0.1 \mu$ F unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
		T _j =25°C		11.75	12	12.25	
Output Voltage	V _o	$I_o = 5mA \text{ to } 1A, P_D \le 15W$ $V_i = 14.8 \text{ to } 27V$		11.5	12	12.5	V
			$V_i = 14.8 \text{ to } 30V,$ $I_o = 500 \text{mA}$		10	120	
*Line Regulation	ΔVo	V _i = 16 to 2	22V		4	120	mV
		T _i =25°C	$V_i = 14.5 \text{ to } 27 \text{V}$		10	120	1
		1 _j =25°C	$V_i = 16 \text{ to } 22V$		3	60	
			o 1.5A		12	100	
*Load Regulation	ΔV _o	l₀=5mĂ to 1A			12	100	mV
		I _o = 250 to 750mA			5	50	
Quiescent Current	ld	T _j =25°C			5.1	6	mA
· · · · ·	Δl _d	I₀=5mA to 1A				0.5	
Quiescent Current Change		$V_i = 15$ to 30V, $I_0 = 500$ mA				0.8	mA
		$V_i = 14.8$ to 27V, $T_j = 25^{\circ}C$				0.8	
Output Voltage Drift	$\frac{\Delta V_{\circ}}{\Delta T}$	l₀=5mA			-1		mV/°C
Output Noise Voltage	V _N	f=10Hz to T _a =25°C	o 100KHz		10		$\frac{\mu V}{V_o}$
Ripple Rejection	RR	$f=120Hz, I_0=500mA$ V _i =15 to 25V			60		dB
Dropout Voltage	VD	I₀=1A, Tj≈25°C			2		V
Output Resistance	R。	f=1KHz			18		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V_i$	T _a = 25°C		250		mA
Peak Current	Ipeak	T _j =25°C			2.2		А

ELECTRICAL CHARACTERISTICS MC7815AC

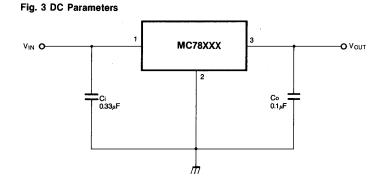
(Refer to the test circuits, $T_j = 0$ to 150°C, $I_0 = 1A$, $V_i = 23V$, $C_i = 0.33\mu$ F, $C_0 = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol	Test (Conditions	Min	Тур	Max	Unit
		T _j =25°C		14.7	15	15.3	
Output Voltage	Vo	$l_o = 5mA \text{ to } 1A, P_D \le 15W$ V _i = 17.7 to 30V		14.4	15	15.6	V
		$V_i = 17.9 \text{ to } 30V,$ $I_o = 500 \text{mA}$			10	150	
*Line Regulation	ΔVo	$V_i = 20$ to 2	26V		5	150	mV
		Ti=220°C	V _i =17.5 to 30V		11	150	
		1j=25°C	V _i =20 to 26V		3	75	
		$T_j = 25^{\circ}C$ $I_o = 5mA to$	o 1.5A		12	100	
*Load Regulation	ΔV。	I _o =5mA to 1A			12	100	mV
		$I_{o} = 250 \text{ to}$	750mA		5	50	
Quiescent Current	la	T _j =25°C			5.2	6	mA
	Δl _d	I _o =5mA to 1A				0.5	
Quiescent Current Change		$V_i = 17.5$ to 30V, $I_0 = 500$ mA				0.8	mA
		V _i =17.5 to 30V, T _j =25°C				0.8	
Output Voltage Drift		l₀=5mA			- 1		mV/°C
Output Noise Voltage	V _N	f =10Hz t T _a =25°C	o 100KHz		10		$\frac{\mu V}{V_{o}}$
Ripple Rejection	RR	f=120Hz, V _i =18.5 to	l _o =500mA o 28.5V		58		dB
Dropout Voltage	VD	$I_0 = 1A, T_j = 25^{\circ}C$			2		v
Output Resistance	R₀	f=1KHz			19		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V_i$	$T_a = 25^{\circ}C$		250		mA
Peak Current	Ipeak	T _i =25°C			2.2		A

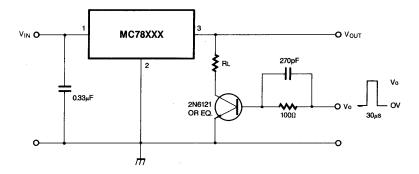
ELECTRICAL CHARACTERISTICS MC7818AC

(Refer to the test circuits, $T_i = 0$ to 150°C, $I_o = 1A$, $V_i = 27V$, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
		T _j =25°C		17.64	18	18.36	
Output Voltage	Vo	$l_o = 5mA$ to 1A, $P_D \le 15W$ V _i = 21 to 33V		17.3	18	18.7	. V
<u></u>			$V_i = 21 \text{ to } 33V,$ $I_o = 500 \text{mA}$		15	180	
*Line Regulation	ΔVo	$V_i = 24$ to	30V		5	180	mV
	1	T _i =25°C	$V_i = 20.6 \text{ to } 33V$		15	180	
		1j=25*0	V _i =24 to 30V		5	90	
· · · · · · · · · · · · · · · · · · ·		$T_j = 25^{\circ}C$ $I_o = 5mA terms$	o 1.5A		15	100	
*Load Regulation	ΔV _o	I _o =5mA to 1A			15	100	M
		I _o = 250 to 750mA			7	50	
Quiescent Current	ld	T _j =25°C			5.2	6	mA
	Δl _d	$I_0 = 5mA$ to 1A				0.5	
Quiescent Current Change		V _i =21 to 33V, I _o =500mA				0.8	mA
		V _i =21 to 33V, T _j =25°C				0.8	-
Output Voltage Drift	$\frac{\Delta V_o}{\Delta T}$	l₀=5mA			- 1		mV/°C
Output Noise Voltage	V _N	f = 10Hz t $T_a = 25^{\circ}C$	o 100KHz		10		$\frac{\mu V}{V_{o}}$
Ripple Rejection	RR	$f=120Hz, I_o=500mA$ V _i =22 to 32V			57		dB
Dropout Voltage	VD	I _o =1A, T _j =25°C			2		v
Output Resistance	R₀	f=1KHz			19		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V_i$	T _a =25°C		250		mA
Peak Current	Ipeak	T _i =25°C			2.2		A


ELECTRICAL CHARACTERISTICS MC7824AC

(Refer to the test circuits, $T_j=0$ to 150°C, $I_o=1A$, $V_i=33V$, $C_i=0.33\mu$ F, $C_o=0.1\mu$ F unless otherwise specified)


Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit
		T _j =25°C		23.5	24	24.5	
Output Voltage	Vo	$I_0 = 5mA t$ $V_i = 27.3 t$	o 1A, P _D ≤15W to 38V	23	24	25	V
		$V_i = 27 \text{ to } 38V,$ $I_o = 500 \text{mA}$			18	240	
*Line Regulation	ΔVo	$V_i = 30$ to	36V		6	240	mV
		T 0500	$V_i = 26.7$ to 38V		18	240	
		T _j =25°C	V _i =30 to 36V		6	120	
		$T_j = 25^{\circ}C$ $I_o = 5mA to$	o 1.5A		15	100	
*Load Regulation	ΔVo	I _o =5mA to 1A			15	100	mV
		l _o = 250 to 750mA			7	50	
Quiescent Current	ld	T _j =25°C		- mu	5.2	6	mA
	Δl _d	I _o =5mA t	o 1A			0.5	
Quiescent Current Change		$V_i = 27.3$ to 38V, $I_o = 500$ mA				0.8	mA
		V _i =27.3 to 38V, T _j =25°C		•	0.8		1
Output Voltage Drift	$\frac{\Delta V_o}{\Delta T}$	l₀=1mA			- 1.5		mV/ºC
Output Noise Voltage	V _N	f =10Hz t T _a =25°C	o 100KHz		10		$\frac{\mu V}{V_{o}}$
Ripple Rejection	RR	f=120Hz, I _o =500mA V _i =28 to 38V			54		dB
Dropout Voltage	VD	$I_o = 1A, T_j = 25^{\circ}C$			2		v
Output Resistance	R。	f=1KHz			20		mΩ
Short Circuit Current	I _{sc}	$V_i = 35V_i$	T _a =25°C		250	t drake t	mA
Peak Current	I _{peak}	T _j =25°C			2.2		A

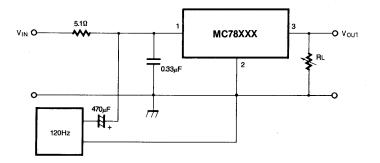
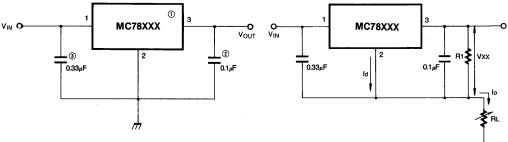

TEST CIRCUIT

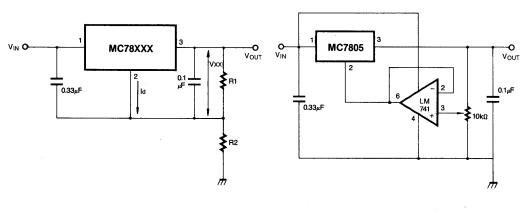
Fig. 4 Load Regulation



APPLICATION CIRCUIT

Fig. 6 Fixed Output Regulator

Fig. 7 Constant Current Regulator

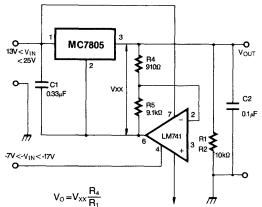

Notes:

- (1) To specify an output voltage, substitute voltage value for "XX." A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C_{IN} is required if regulator is located an appreciable distance from power supply filter.
- (3) C_{OUT} improves stability and transient response.

Fig. 8 Circuit for Increasing Output Voltage

Fig. 9 Adjustable Output Regulator (7 to 30V)

 $lo = \frac{Vxx}{R1} + Id$


 $I_{R1} \ge 5I_d$ $V_0 = V_{XX} (1 + R_2/R_1) + I_d R_2$

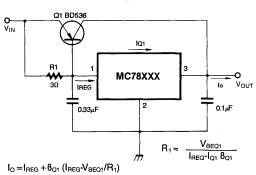
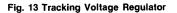
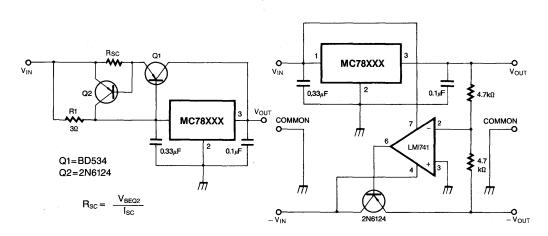
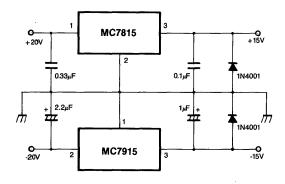


Fig. 11 High Current Voltage Regulator


APPLICATION CIRCUIT (continued)


Fig. 10 0.5 to 10V Regulator



407

Fig. 14 Split Power Supply (±15V-1A)

Fig. 15 Negative Output Voltage Circuit

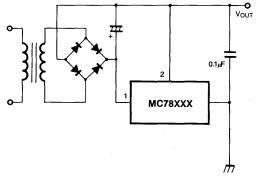
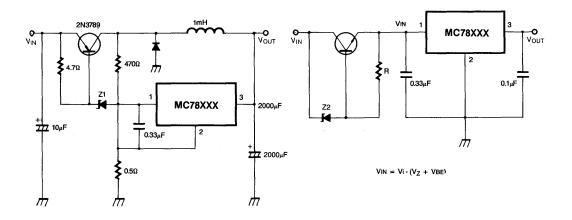



Fig. 16 Switching Regulator

Fig. 17 High Input Voltage Circuit

APPLICATION CIRCUIT (continued)

Fig. 18 High Input Voltage Circuit

Fig. 19 High Output Voltage Regulator

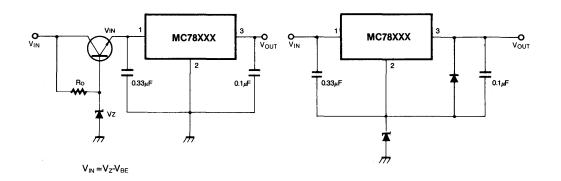
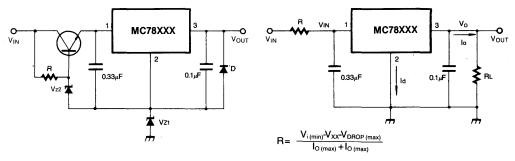
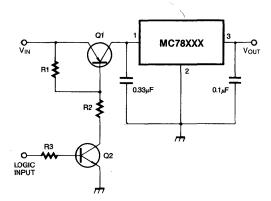
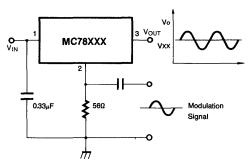



Fig. 20 High Input and Output Voltage

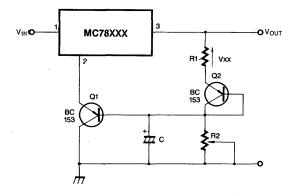
Fig. 21 Reducing Power Dissipation with Dropping Resitor


 $V_0 = V_{XX} + V_{Z1}$



APPLICATION CIRCUIT (continued)

Fig. 22 Remote Shuntdown


Fig. 23 Power AM Modulator

Note: The circuit performs well up to 100 KHz.

Fig. 24 Adjustable Output Voltage with Temperature Compensation

Note: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the temperature. C allows a slow rise-time of the V_0

$$V_0 = V_{XX} \left(1 + \frac{R_2}{R_1}\right) + V_{BE}$$

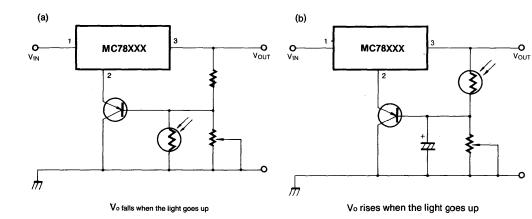
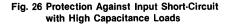
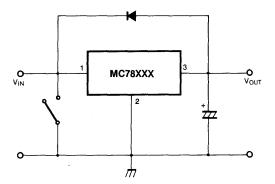
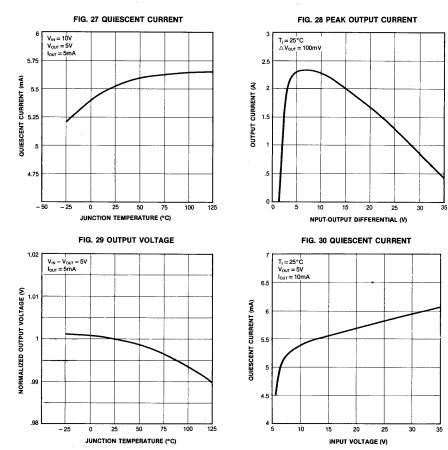




Fig. 25 Light Controllers (Vo min = VXX + VBE)

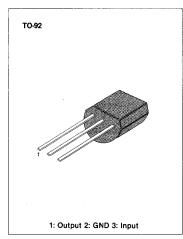


Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 26) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

4

TYPICAL PERFRMANCE CHARACTERISTIC

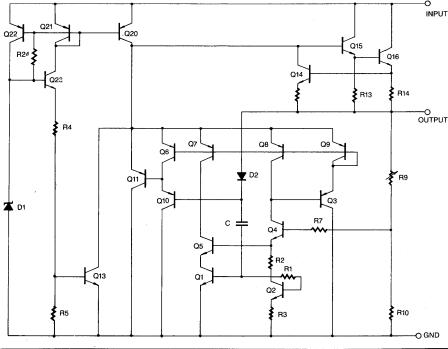
LINEAR INTEGRATED CIRCUIT


3-TERMINAL POSITIVE VOLTAGE REGULATORS

These regulators employ internal current-limiting and thermal-shutdown, making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 100mA output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high-current voltage regulators. The MC78LXXAC used as a Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

FEATURES

- Output current up to 100mA.
- No external components required
- Internal thermal overload protection.
- Internal short circuit current limiting.
- Output voltage of 2.6V, 5V, 6.2V, 8V, 8.2V, 9V, 12V, 15V, 18V, and 24V.
- Output voltage tolerances of ±5% over the temperature range.
- Complementary negative regulators offered (MC79LXXAC)


SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
S78LXXACZ	TO-92	0 ~ + 125°C
** S78LXXAIZ	TO-92	- 40 ∼ + 125°C

** Under Development

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Input Voltage (for $V_0 = 2.6V$ to 9V) (for $V_0 = 12V$ to 18V) (for $V_0 = 24V$)	V _{IN}	30 35 40	v v v
Operating Junction Temperature Range	T _{opr}	0~+125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

MC78L26AC ELECTRICAL CHARACTERISTICS

 V_{IN} =9V, I_{OUT} =40mA, 0°C ≤Tj ≤ 125°C, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F, unless otherwise specified. (Note 1)

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		2.5	2.6	2.7	V
			T 0500	$4.75V \le V_{IN} \le 20V$		40	100	mV
Line Regulation		ΔVo	T _j =25℃	$5V \le V_{IN} \le 20V$	30	75		mV
			T 0500	1mA≤I _{OUT} ≤100mA		10	50	mV
Load Regulation ΔV_0		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		4.0	25	mV
A			$4.75V \le V_{IN} \le 20V$	1mA≤l _{OUT} ≤40mA	2.45		2.75	V
Output Voltage		Vo	4.75V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	2.45		2.75	v
Quiescent Current		la	T _j =25°C			2.0	5.5	mA
Quiescent Current	with line	Δl _d	$5V \le V_{IN} \le 20V$				2.5	mA
Change	with load	Δl _d	1mA≤I _{out} ≤	40mA			0.1	mA
Output Noise Voltage)	V _N	$T_a=25^{\circ}C$, 10Hz $\leq f \leq 100$ KHz			30		μV
Temperature Coefficient of Vout		$\frac{\Delta V_0}{\Delta T}$	I _{OUT} = 5mA			-0.4		mV/°C
Ripple Rejection		RR	f=120Hz, 6V≤V _{IN} ≤16V, Tj=25°C		43	51		dB
Dropout Voltage		VD	T _i =25°C			1.7		V
Peak Output/Short-C	ircuit Current	Isc	T _i =25℃			140		mA

MC78L05AC ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 10V, I_{\text{OUT}} = 40\text{mA}, 0^{\circ}\text{C} \le Tj \le 125^{\circ}\text{C}, C_{\text{IN}} = 0.33\mu\text{F}, C_{\text{OUT}} = 0.1\mu\text{F}, \text{ unless otherwise specified. (Note 1)}$

Character	ristic	Symbol	Test	Conditions	Min	Тур	Мах	Unit
Output Voltage		Vo	T _j =25°C		4.8	5.0	5.2	V
Line Degulation		41/		$7V \le V_{IN} \le 20V$		55	150	mV
Line Regulation		ΔVo	T _j =25°C	$8V \le V_{IN} \le 20V$		45	100	mV
Load Regulation			T 0500	$1mA \le l_{OUT} \le 100mA$		11	60	mV
		ΔVo	T _j =25°C	1mA≤l _{OUT} ≤40mA		5.0	30	mV
			$7V \le V_{IN} \le 20V$	1mA≤I _{OUT} ≤40mA	4.75		5.25	v
Output Voltage		Vo	7V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	4.75		5.25	v
Quiescent Current		ld	T _j =25°C			2.0	5.5	mA
Quiescent Current	with line	Δl _d	$8V \le V_{IN} \le 20$	o∨			1.5	mA
Change	with load	Δl _d	1mA≤l _{OUT} ≤	40mA			0.1	mA
Output Noise Voltage)	VN	T _a =25°C, 10)Hz≤f≤100KHz		40		μV
Temperature Coeffic	emperature Coefficient of V_{OUT} $\frac{\Delta V_{O}}{\Delta T}$ $I_{OUT} = 5mA$				- 0.65		mV/°C	
Ripple Rejection	-	RR	$f=120Hz, 8V \le V_{IN} \le 18V, Tj=25^{\circ}C$		41	49		dB
Dropout Voltage		VD	T _j =25°C			1.7		V
Peak Output/Short-C	ircuit Current	I _{sc}	T _j =25°C			140		mA

MC78L62AC ELECTRICAL CHARACTERISTICS

 $V_{IN} = 12V$, $I_{QUT} = 40$ mA, $0^{\circ}C \le Tj \le 125^{\circ}C$, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F, unless otherwise specified. (Note 1)

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		5.95	6.2	6.45	v
			T 0500	$8.5V \le V_{IN} \le 20V$		65	175	mV
Line Regulation		ΔVο	T _j =25°C	$9V \leq V_{IN} \leq 20V$		55	125	mV
Load Regulation Δ			T 0500	$1mA \le I_{OUT} \le 100mA$		13	80	mV
		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		6.0	40	mV
Output Voltage			$8.5V \le V_{IN} \le 20V$	1mA≤I _{OUT} ≤40mA	5.90		6.5	V
		Vo	85V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	5.90		6.5	v
Quiescent Current		ld	T _j =25℃		_	2.0	5.5	mA
Quiescent Current	with line	Δl _d	$8V \le V_{IN} \le 20$	$8V \le V_{IN} \le 20V$			1.5	mA
Change	with load	Δl _d	1mA≤I _{out} ≤	40mA			0.1	mA
Output Noise Voltage))	V _N	T _a =25°C, 10	Hz≤f≤100KHz .	_	50		μV
Temperature Coefficient of VOUT		$\frac{\Delta V_{O}}{\Delta T}$	I _{OUT} = 5mA			- 0.75		mV/°C
Ripple Rejection		RR	f=120Hz, 10V≤V _{IN} ≤20V, Tj=25°C		40	46		dB
Dropout Voltage		VD	T _j =25°C			1.7		v
Peak Output/Short-C	ircuit Current	Isc	T _j =25°C			140		mA

415

MC78L08AC ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 14V, I_{\text{OUT}} = 40\text{mA}, 0^{\circ}\text{C} \le Tj \le 125^{\circ}\text{C}, C_{\text{IN}} = 0.33\mu\text{F}, C_{\text{OUT}} = 0.1\mu\text{F}, \text{unless otherwise specified. (Note 1)}$

Characteris	stic	Symbol	Test C	onditions	Min .	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		7.7	8.0	8.3	V
Line Deculation			т обес	$10.5 \le V_{IN} \le 23V$		80	17.5	mV
Line Regulation		ΔVo	T _j =25°C	$1_{j} = 25^{\circ}C$ $11V \le V_{IN} \le 23V$		70	125	mV
	1mA≤I _{OUT} ≤100m/		1mA≤I _{OUT} ≤100mA		15	80	mV	
Load Regulation		ΔVo	T _j =25°C	1mA≤i _{out} ≤40mA		8.0	40	mV
			$10.5V \le V_{IN} \le 23V$	1mA≤I _{out} ≤40mA	7.6		8.4	V
Output Voltage		Vo	$10.5V \le V_{IN} \le V_{max}$ (Note 2)	1mA≤I _{out} ≤70mA	7.6		8.4	v
Quiescent Current		l _d	T _j =25°C			2.0	5.5	mA
Quiescent Current	with line	Δl _d	$11V \le V_{IN} \le 23V$				1.5	mA
Change	with load	Δl _d	1mA≤I _{OUT} ≤40m/	Α			0.1	mA
Output Noise Voltag	e	VN	T _a =25°C, 10Hz≤	f≤100KHz		60		μV
Temperature Coeffic	ient of V _{out}	$\frac{\Delta V_0}{\Delta T}$	I _{OUT} =5mA			- 0.8		mV/ºC
Ripple Rejection		RR	$f=120Hz, 11V \le V_{IN} \le 21V, T_j = 25^{\circ}C$		39	45		dB
Dropout Voltage		VD	Tj=25°C			1.7		v
Peak Output/Short-C Current	Circuit	I _{SC}	Tj=25°C			140		mA

MC78L82AC ELECTRICAL CHARACTERISTICS

 $V_{IN} = 14V$, $I_{OUT} = 40$ mA, $0^{\circ}C \le Tj \le 125^{\circ}C$, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F, unless otherwise specified. (Note 1)

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		7.87	8.2	8.53	v
Line Deculation		· • • •	T 05%C	$11V \leq V_{IN} \leq 23V$		80	175	mV
Line Regulation		ΔV _o	T _j =25°C	$12V \le V_{IN} \le 23V$		70	125	mV
Load Population			11			15	80	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		8.0	40	mV
			11V≤V _{IN} ≤23V	1mA≤i _{OUT} ≤40mA	7.8		8.6	V
Output Voltage		Vo	11V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	7.8		8.6	v
Quiescent Current		la	T _j =25°C			2.0	5.5	mA
Quiescent Current	with line	Δl _d	$12V \leq V_{IN} \leq 2$	23V			1.5	mA
Change	with load	Δl _d	1mA≤l _{OUT} ≤	40mA			0.1	mA
Output Noise Voltage		V _N	T _a =25°C, 10)Hz≤f≤100KHz		60		μV
Temperature Coefficient of V_{OUT} $\frac{\Delta^{1}}{\Delta}$		$\frac{\Delta V_0}{\Delta T}$	I _{OUT} = 5mA			- 0.8		mV/°C
Ripple Rejection		RR	f≕120Hz, 12V≤	V _{IN} ≤22V, Tj=25°C	39	45		dB
Dropout Voltage		VD	T _j =25°C			1.7		v
Peak Output/Short-C	ircuit Current	I _{SC}	T _j =25°C			140		mA

MC78L09AC ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 15V, \text{ I}_{\text{OUT}} = 40\text{mA}, \text{ } 0^{\circ}\text{C} \leq \text{Tj} \leq 125^{\circ}\text{C}, \text{ } C_{\text{IN}} = 0.33\mu\text{F}, \text{ } C_{\text{OUT}} = 0.1\mu\text{F}, \text{ unless otherwise specified.} \text{ (Note 1)}$

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		8.64	9.0	9.36	v
Line Degulation			T - 050C	$11.5V \le V_{IN} \le 24V$		90	200	mV
Line Regulation		ΔVo	T _j =25°C	$13V \le V_{IN} \le 24V$		100	150	lm∨
	1		T 0500	1mA≤I _{OUT} ≤100mA		20	90	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		10	45	mV
			11.5V≤V _{IN} ≤24V	1mA≤I _{OUT} ≤40mA	8.55		9.45	V
Output Voltage		Vo	11.5V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	8.55		9.45	v
Quiescent Current		łd	T _j =25°C			2.1	6.0	mA
Quiescent Current	with line	Δl _d	13V≤V _{IN} ≤2	24V			1.5	mA
Change	with load	Δl _d	1mA≤I _{OUT} ≤	40mA			0.1	mA
Output Noise Voltage	•	V _N	T _a =25°C, 10	Hz≤f≤100KHz		70		μV
Temperature Coeffic	ient of V _{out}	$\frac{\Delta V_0}{\Delta T}$	I _{оυт} = 5mA			- 0.9		mV/°C
Ripple Rejection		RR	f =120Hz,12V	$\leq V_{iN} \leq 22V, T_j = 25^{\circ}C$	38	44		dB
Dropout Voltage		VD	T _j =25°C			1.7		V
Peak Output/Short-C	ircuit Current	I _{SC}	T _j =25°C			140		mA

MC78L12AC ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 19V, \ I_{\text{OUT}} = 40\text{mA}, \ 0^{\circ}\text{C} \le Tj \le 125^{\circ}\text{C}, \ C_{\text{IN}} = 0.33\mu\text{F}, \ C_{\text{OUT}} = 0.1\mu\text{F}, \ \text{unless otherwise specified.} \ (\text{Note 1})$

Character	istic	Symbol	Test (Conditions	Min	Тур	Max	Unit
Output Voltage	## <u></u> ##4	Vo	T _j =25°C		11.5	12	12.5	V
			T 0500	$14.5V \le V_{IN} \le 27V$		120	250	mV
Line Regulation		ΔVo	T _j =25℃	$16V \le V_{IN} \le 27V$		100	200	mV
Lead Devideries			T 0590	1mA≤l _{OUT} ≤100mA		20	100	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		10	50	mV
			14.5V≤V _{IN} ≤27V	1mA≤I _{OUT} ≤40mA	11.4		12.6	v
Output Voltage		Vo	14.5V≤V _{IN} ≤V _{max} (Note 2)	1mA≤l _{o∪1} ≤70mA	11.4		12.6	v
Quiescent Current		la	T _j =25°C			2.1	6.0	mA
Quiescent Current	with line	Δl _d	$16V \le V_{IN} \le 2$	7V			1.5	mA
Change	with load	Δl _d	1mA≤I _{out} ≤	40mA			0.1	mA
Output Noise Voltage	;	V _N	T _a =25°C, 10	Hz≤f≤100KHz		80		μV
Temperature Coeffic	ient of V _{out}	$\frac{\Delta V_0}{\Delta T}$	I _{OUT} = 5mA			- 1.0		mV/°C
Ripple Rejection		RR	f=120Hz, 15V≤\	/ _{IN} ≤25V, Tj=25°C	37	42		dB
Dropout Voltage		VD	T _j =25°C			1.7		v
Peak Output/Short-C	ircuit Current	Isc	T _j =25°C			140		mA

MC78L15AC ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = 23V, \ I_{\text{OUT}} = 40 \text{mA}, \ 0^{\circ}\text{C} \le Tj \le 125^{\circ}\text{C}, \ C_{\text{IN}} = 0.33 \mu\text{F}, \ C_{\text{OUT}} = 0.1 \mu\text{F}, \ \text{unless otherwise specified.} \ (\text{Note 1})$

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C	T _i =25°C		15	15.6	V
			T 059C	$17.5V \le V_{\rm IN} \le 30V$		130	300	mV
Line Regulation		ΔVo	T _j =25°C	$20V \leq V_{IN} \leq 30V$		110	250	nV
Lood Permittion			T 0500	1mA≤l _{OUT} ≤100mA		25	150	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤l _{OUT} ≤40mA		12	75	mV
			17.5V≤V _{IN} ≤30V	1mA≤I _{OUT} ≤40mA	14.25		15.75	V
Output Voltage		Vo	17.5V≤V _{IN} ≤V _{max} (Note 2)	1mA≤l _{OUT} ≤ 70mA	14.25		15.75	v
Quiescent Current		la	T _j =25°C			2.2	6.0	mA
Quiescent Current	with line	Δl _d	$20V \le V_{IN} \le 3$	80V			1.5	mA
Change	with load	Δl _d	1mA≤l _{out} ≤	40mA			0.1	mA
Output Noise Voltage)	VN	T _a =25°C, 10	Hz≤f≤100KHz		90		μV
Temperature Coeffic	ient of V _{OUT}	<u>ΔVo</u> ΔT	I _{OUT} = 5mA			- 1.3		mV/°C
Ripple Rejection		RR	f=120Hz, 18.5V≤	≤V _{IN} ≤28.5V, Tj=25°C	34	39		dB
Dropout Voltage		VD	T _j =25°C			1.7		V
Peak Output/Short-C	ircuit Current	I _{sc}	T _j =25°C			140	<u> </u>	mA

MC78L18AC ELECTRICAL CHARACTERISTICS

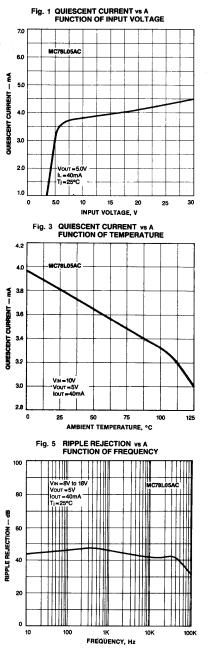
 $V_{IN} = 27V$, $I_{OUT} = 40$ mA, $0^{\circ}C \le Tj \le 125^{\circ}C$, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F, unless otherwise specified. (Note 1)

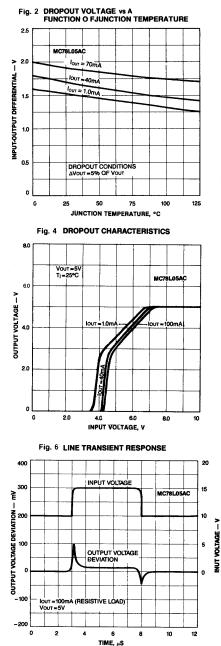
Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage	······································	Vo	T _j =25°C	T _j =25°C		18	18.7	V
··· ···			T 0500	$21V \leq V_{IN} \leq 33V$		145	300	mV
Line Regulation		ΔVo	T _j =25°C	$22V \le V_{IN} \le 33V$		135	250	mV
	an A 18 Million		T 0500	1mA≤I _{OUT} ≤100mA		30	170	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤l _{OUT} ≤40mA		15	85	mV
· · · · · · · · · · · · · · · · · · ·			21V≤V _{IN} ≤33V	1mA≤I _{OUT} ≤40mA	17.1		18.9	V
Output Voltage		° Vo	21V≤V _{IN} ≤V _{max} (Note 2)	1mA≤l _{out} ≤70mA	17.1		18.9	v
Quiescent Current		ld	T _j =25°C			2.2	6.0	mA
Quiescent Current	with line	Δl _d	21V≤V _{IN} ≤3	33V			1.5	mA
Change	with load	Δl _d	1mA≤I _{OUT} ≤	40mA			0.1	mA
Output Noise Voltage)	V _N	T _a =25°C, 10	Hz≤f≤100KHz		150		μV
Temperature Coeffic	ient of V _{out}	<u>ΔV₀</u> ΔT	I _{OUT} = 5mA			- 1.8		mV/°C
Ripple Rejection		RR	f=120Hz, 23V≤	V _{IN} ≤33V, Tj=25°C	34	48		dB
Dropout Voltage		VD	T _j =25°C			1.7		V
Peak Output/Short-C	ircuit Current	Isc	T _i =25°C			140		mA

MC78L24AC ELECTRICAL CHARACTERISTICS

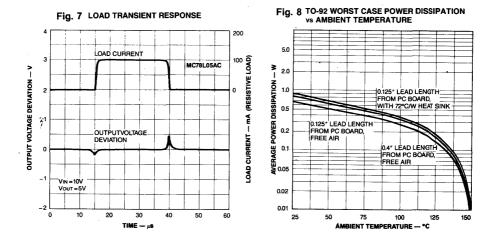
 V_{IN} = 33V, I_{OUT} = 40mA, 0°C \leq Tj \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified. (Note 1)

Character	istic	Symbol	Test	Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j =25°C		23	24	25	V
Line Deculation			T 0500	$27V\!\le\!V_{\text{IN}}\!\le\!38V$		160	300	mV
Line Regulation		ΔVo	T _j =25°C	$28V\!\le\!V_{\text{IN}}\!\le\!38V$		150	250	mV
			T 0500	$1\text{mA} \le I_{OUT} \le 100\text{mA}$		40	200	mV
Load Regulation		ΔVo	T _j =25°C	1mA≤I _{OUT} ≤40mA		20	100	mV
			$27V \le V_{IN} \le 38V$	1mA≤I _{OUT} ≤40mA	22.8		25.2	V
Output Voltage		Vo	27V≤V _{IN} ≤V _{max} (Note 2)	1mA≤I _{OUT} ≤70mA	22.8		25.2	v
Quiescent Current		la	'T _j =25°C			2.2	6.0	mA
Quiescent Current	with line	Δl _d	$28V \le V_{iN} \le 3$	8V			1.5	mA
Change	with load	Δl _d	1mA≤l _{out} ≤	40mA			0.1	mA
Output Noise Voltage)	V _N	T _a =25°C, 10	Hz≤f≤100KHz		200		μV
Temperature Coeffic	ient of V _{OUT}	<u>ΔV₀</u> ΔT	I _{OUT} = 5mA			- 2.0		mV/°C
Ripple Rejection		RR	f=120Hz, 28V≤'	$V_{IN} \le 38V, Tj = 25^{\circ}C$	34	45		dB
Dropout Voltage		VD	T _j =25°C			1.7		V
Peak Output/Short-C	ircuit Current	I _{SC}	T _j =25°C			140		mA


Notes


1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The date above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.

2. Power dissipation ≤ 0.75 W.



TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATION INFORMATION

The MC78LXXAC series regulators have thermal overload protection from excessive power, internal short-circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Thermal Considerations

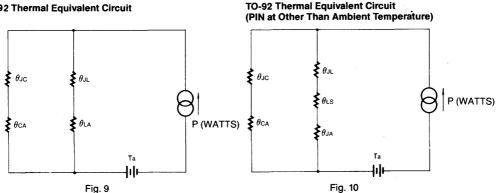
The TO-92 molded package manufactured by SST is capable of unusually high power dissipation due to the lead frame design. However, its thermal capabilities are generally overlooked because of a lack of understanding of the thermal paths from the semiconductor junction to ambient temperature. While thermal resistance is normally specified for the device mounted 1cm above an infinite heat sink, very little has been mentioned of the options available to improve on the conservatively rated thermal capability.

An explanation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress he is applying in any given application.

The TO-92 Package

The TO-92 package thermal paths are complex. In addition to the path through the molding compound to ambient temperature, there is another path through the pins, in parallel with the case path, to ambient temperature, as shown in Figure 9.

The total thermal resistance in this model is then:


$$\theta_{JA} = \frac{\left(\theta_{JC} + \theta_{CA}\right)\left(\theta_{JL} + \theta_{LA}\right)}{\theta_{JC} + \theta_{CA} + \theta_{JL} + \theta_{LA}}$$

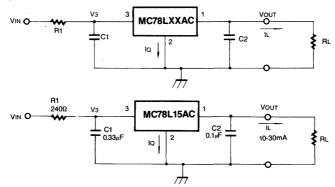
Where: θ_{JC} = thermal resistance of the case between the regulator die and a point on the case directly above the die location.

- θ_{CA} = thermal resistance between the case and air at ambient temperature.
- θ_{JL} = thermal resistance from transistor die through the collector lead to a point 1/16 inch below the regulator case.
- θ_{LA} = total thermal resistance of the collector-base-emitter pins to ambient temperature.
- θ_{JA} = junction to ambient thermal resistance.

TO-92 Thermal Equivalent Circuit

Methods of Heat Sinking

With two external thermal resistances in each leg of a parallel network available to the circuit designer as variables, he can choose the method of heat sinking most applicable to his particular situation. To demonstrate, consider the effect of placing a small 72°C/W flag type heat sink, such as the Staver F1-7D-2, on the 78LXX molded case. The heat sink effectively replaces the θ_{CA} (Figure 10) and the new thermal resistance, $\theta_{JA} = 145^{\circ}$ C/W (assuming, 0.125 inch led length).


The net change of 15°C/W increases the allowable power dissipation to 0.86W with an inserted cost of 1-2 cents. A still further decrease in the function of the second by using a heat sink rated at 46°C/W, such as the Staver FS-7A. Also, if the case sinking does not provide an adequate reduction in total θ_{JA} , the other external thermal resistance, θ_{LA} , may be reduced by shortening the lead length from package base to mounting medium. However, one point must be kept in mind. The lead thermal path includes a thermal resistance, θ_{SA} , from the pins at the mounting points to ambient, that is, the mounting medium, θ_{LA} is then equal to $\theta_{LS} + \theta_{SA}$. The new model is shown in Figure 10.

In the case of a socket, θ_{SA} could be as high as 270°C/W, thus causing a net increase in θ_{JA} and a consequent decrease in the maximum dissipation capability. Shortening the lead length may return the net θ_{JA} to the original value, but pin sinking would not be accomplished.

In those cases where the regulator is inserted into a copper clad printed circuit board, it is advantageous to have a maximum area of copper at the entry points of the pins. While it would be desirable to rigorously define the effect of PC board copper, the real world variables are too great to allow anything more than a few general observations.

The best analogy for PC board copper is to compare it with parallel resistors. Beyond some point, additional resistors are not significantly effective; beyond some point, additional copper area is not effective.

High Dissipation Applications

MC78LXXAC SERIES

LINEAR INTEGRATED CIRCUIT

When it is necessary to operate a MC78LXXAC regulator with a large input-output differential voltage, the addition of series resistor R1 will extend the output current range of the device by sharing the total power dissipation between R1 and the regulator.

$$R1 = \frac{V_{IN (MIN)} - V_{OUT} - 2.0V}{I_{L (MAX)} + I_{Q}}$$

Where I_o is the regulator quiescent current.

Regulator power dissipation at maximum input voltage and maximum load current is now

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{V}_3 - \mathsf{V}_{\mathsf{OUT}}) \mathsf{I}_{\mathsf{L}(\mathsf{MAX})} + \mathsf{V}_3 \mathsf{I}_{\mathsf{Q}}$

where $V_3 = V_{\text{IN}(\text{MAX})} - (I_{C(\text{MAX})} + I_Q) R_1$

The presence of R1 will affect load regulation according to the equation: load regulation (at constant V_{IN})

=load regulation (at constant V_N)

+(line regulation, mV per V)

 \times (R1) \times (Δ IL).

As an example, consider a 15V regulator with a supply voltage of $30\pm5V$, required to supply a maximum load current of 30mA. I₀ is 4.3mA, and minimum load current is to be 10mA.

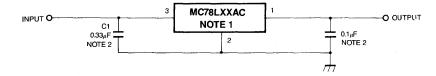
$$\mathsf{R}_1 = \frac{25 - 15 - 2}{30 + 4.3} = \frac{34.3}{8} = 240\Omega$$

 $V_3 = 35 - (30 + 4.3) \times 0.24 = 35.82 = 26.8V$

 $P_{D(MAX)} = (26.8 - 15) 30 + 26.8 (4.3)$

= 354 + 115

=470mW, which permit operation up to 70°C


in most applications.

Line regulation of this circuit is typically 110mV for an input range of $25 \sim 35V$ at a constant load current; i.e. 11mV/V Load regulation=constant V₁ load regulation (typically 10mV, $10 \sim 30mA I_L$)

+(11mV/V×0.24×20mA (typically 53mV)

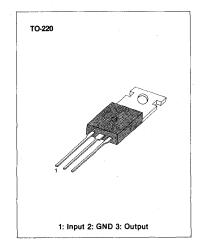
=63mV for a load current change of 20mA at a constant V_{IN} of 30V.

Typical Application

Notes

- 1. To specify an output voltage, substitute voltage value for "xx".
- Bypass Capacitors are recommended for optimum stability and transient response and should be locate as close as possible to the regulator.

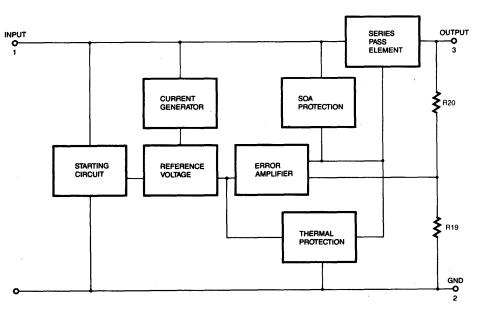
LINEAR INTEGRATED CIRCUIT


3-TERMINAL 0.5A POSITIVE VOLTAGE REGULATOR

TheMC78MXXC series of three-terminal positive regulators are available TO-220 package with several fixed output voltages, making it useful in a wide range of applications. These reglators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

MC78MXXC is characterized for operation from 0°C to 125°C, and MC78MXXI from -40°C to 125°C.

FEATURES


- Output Current up to 0.5A
- Output Voltages of 5; 6; 8; 10; 12; 15; 18; 20; 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection
- · Industrial and commercial temperature range

ORDERING INFORMATION

Device	Package	Operating Temperature
**MC78MXXIT	TO-220	- 40 ~ + 125°C
MC78MXXCT	TO-220	0 ~ + 125°C

** Under Development

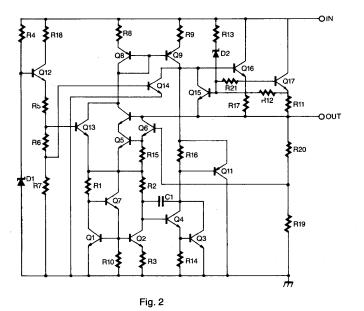


Fig. 1

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input Voltage (for $V_0 = 5V$ to 18V) (for $V_0 = 24V$)	V _i V _i	35 40	v v
Thermal Resistance Junction-Cases	0 _{JC}	5	°C/W
Thermal Resistance Junction-Air	0 _{JA}	65	°C/W
Operating Temperature Range MC78XXI MC78XXC/AC	T _{opr}	- 40 ~ + 125 0 ~ + 125	0° 0°
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS MC78M05C

(Refer to the test circuits, $T_{min} \leq T_i \leq 125$ °C, $I_o = 350$ mA, $V_i = 10V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Con	ditions	Min	Тур	Max	Unit
		T _j =25°C		4.8	5	5.2	
Output Voltage	Vo		$I_o = 5 \text{ to } 350\text{mA}$ $V_i = 7 \text{ to } 20\text{V}$		5	5.25	. v
			V _i = 7 to 25V			100	
Line Regulation	∆V₀	$I_o = 200 \text{mA}$ $T_j = 25^{\circ}\text{C}$	V _i = 8 to 25V			50	mV
Load Degulation	A.V/	I _o = 5mA to 0.5/	A, T _j = 25°C			100	mV
Load Regulation	ΔV₀	$I_o = 5mA$ to 200	0mA, T _j = 25°C			50	
Quiescent Current	la	T _j = 25°C			4.0	6	mA
		I _o =5mA te	o 350mA			0.5	
Quiescent Current Change	∆ld	$I_{o} = 200 m_{e}$ $V_{i} = 8 \text{ to } 25$				0.8	mA
Output Voltage Drift	∆V₀ ∆T	$I_o = 5mA$ $T_j = 0$ to 12	25°C		- 0.5		mV/ºC
Output Noise Voltage	V _N	f = 10Hz to	100KHz		40		μV
Ripple Rejection	RR	f = 120Hz V _i =8 to 18V	-	62			dB
Dropout Voltage	VD	T _j = 25°C, I _c	, = 500mA		2		v
Short Circuit Current	I _{sc}	$T_{j} = 25^{\circ}C, V$	V _i = 35V		300		mA
Peak Current	I _{peak}	T _j =25°C			700		mA

* T_{min}

 $\begin{array}{l} \text{MC78MXXI: } T_{\text{min}} = -40^{\circ}\text{C} \\ \text{MC78MXXC: } T_{\text{min}} = 0^{\circ}\text{C} \end{array}$

ELECTRICAL CHARACTERISTICS MC78M06C

(Refer to the test circuits, $T_{min} \le T_j \le 125^{\circ}$ C, $I_o = 350$ mA, $V_i = 11$ V, unless otherwise specified, $C_i = 0.33 \mu$ F, $C_o = 0.1 \mu$ F)

Characteristic	Symbol	Test Con	ditions	Min	Тур	Max	Unit	
		$T_{j} = 25^{\circ}C$ V_{o} $I_{o} = 5 \text{ to } 350\text{mA}$ $V_{i} = 8 \text{ to } 21\text{V}$		5.75	6	6.25		
Output Voltage	Vo			5.7	6	6.3	V	
			V _i = 8 to 25V			100		
Line Regulation	∆V₀	$l_{\delta} = 200 \text{mA}$ $T_j = 25^{\circ}\text{C}$	V _i = 9 to 25V			50	mV	
Load Posulation	∆V₀	$I_o = 5$ mA to 0.5A, $T_j = 25^{\circ}$ C				120	mV	
Load Regulation	ΔV_{o}	$I_o = 5mA$ to 200mA, $T_j = 25^{\circ}C$				60		
Quiescent Current	la	T _j = 25°C			4.0	6	mA	
		l₀=5mA to	o 350mA			0.5		
Quiescent Current Change	∆l _d	$l_0 = 200 m/$ $V_i = 9 \text{ to } 25$				0.8	mA	
Output Voltage Drift	∆V₀ ∆T	$I_0 = 5mA$ $T_j = 0 \text{ to } 12$	25°C		- 0.5		mV/ºC	
Output Noise Voltage	V _N	f = 10Hz to	100KHz		45		μV	
Ripple Rejection	RR	$f = 120Hz$ $I_o = 300mA$ $V_i = 9$ to 19V		59			dB	
Dropout Voltage	VD	T _j = 25°C, 1	_o = 500mA		2		v	
Short Circuit Current	l _{sc}	$T_i = 25^{\circ}C, V_i = 35V$			300		mA	
Peak Current	Ipeak	T _i = 25°C			700		mA	

* T_{min}

MC78MXXI: $T_{min} = -40^{\circ}C$ MC78MXXC: $T_{min} = 0^{\circ}C$

4

ELECTRICAL CHARACTERISTICS MC78M08C

(Refer to the test circuits, $T_{min} \le T_j \le 125^{\circ}$ C, $I_o = 350$ mA, $V_i = 14V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
· · · · · · · · · · · · · · · · · · ·		T _j =25°C	7.7	8	8.3	
Øutput Voltage	Vo	$I_0 = 5 \text{ to } 350\text{mA}$ $V_i = 10.5 \text{ to } 23\text{V}$	7.6	8	8.4	V
		V _i = 10.5 to 25V			100	
Line Regulation	∆V₀				50	mV
Load Regulation	∆V₀	$I_o = 5$ mA to 0.5A, $T_j = 25$ °C			160	mV'
Load Regulation		$I_o = 5$ mA to 200mA, $T_j = 25$ °C			80	
Quiescent Current	۱ _d	$T_i = 25^{\circ}C$		4.0	6	mA
······································		I _o =5mA to 350mA			0.5	
Quiescent Current Change	∆l _d	l _o = 200mA V _i = 10.5 to 25V			0.8	mA
Output Voltage Drift	<u> </u>	$I_o = 5mA$ $T_j = 0$ to 125°C		- 0.5		mV/ºC
Output Noise Voltage	V _N	f = 10Hz to 100KHz		52		μV
Ripple Rejection	RR	$f = 120Hz$ $I_0 = 300mA$ $V_i = 11.5$ to 21.5V	56			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C, I_o = 500mA$		2		v
Short Circuit Current	I _{sc}	$T_i = 25^{\circ}C, V_i = 35V$		300		mA
Peak Current	I _{peak}	T _i =25°C		700		mA

* T_{min}

 $\begin{array}{l} MC78MXXI: \ T_{min} = -40^{\circ}C \\ MC78MXXC: \ T_{min} = 0^{\circ}C \end{array}$

ELECTRICAL CHARACTERISTICS MC78M10C

(Refer to the test circuits, $T_{min} \leq T_j \leq 125$ °C, $I_o = 350$ mA, $V_i = 17V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
	Vo	T _j = 25°C	9.6	10	10.4	v	
Output Voltage		$I_o = 5$ to 350mA $V_i = 12.5$ to 25V		9.5	10		10.5
	۵Vo	l _o = 200mA T _j = 25°C	V _i = 12.5 to 25V			100	
Line Regulation			V _i = 13 to 25V			50	mV
Lood Devident's s	∆V₀	$I_o = 5$ mA to 0.5A, $T_j = 25$ °C				200	mV
Load Regulation		$I_o = 5mA$ to 200mA, $T_j = 25^{\circ}C$				100	
Quiescent Current	l _d	T _j = 25°C			4.1	6	mA
	∆I _{d.}	$I_o = 5 \text{mA}$ to 350mA				0.5	mA
Quiescent Current Change		l _o = 200mA V _i = 12.5 to 25V				0.8	
Output Voltage Drift	∆V₀ ∆T	$I_o = 5mA$ $T_i = 0 \text{ to } 125^{\circ}C$			- 0.5		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz			65		μV
Ripple Rejection	RR	f = 120Hz, 1 _o = 300mA V _i = 13 to 23V		55			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C, I_o = 500 \text{mA}$			2		v
Short Circuit Current	l _{sc}	$T_j = 25^{\circ}C, V_i = 35V$			300		mA
Peak Current	Ipeak	T _i = 25°C			700		mA

* T_{min}

MC78MXXI: $T_{min} = -40$ °C MC78MXXC: $T_{min} = 0$ °C

ELECTRICAL CHARACTERISTICS MC78M12C

(Refer to the test circuits, $T_{min} \le T_j \le 125^{\circ}C$, $I_o = 350 \text{mA}$, $V_i = 19V$, unless otherwise specified, $C_i = 0.33 \mu F$, $C_o = 0.1 \mu F$)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
		$T_j = 25^{\circ}C$		11.5	12	12.5	
Output Voltage	Vo	-	l _o = 5 to 350mA V _i = 14.5 to 27V		12	12.6	V
Line Regulation	∆V₀	l _o = 200mA T _j = 25°C	V _i = 14.5 to 30V			100	.,
			$V_i = 16 \text{ to}$ 30V			50	mV
Land Damilation	∆V₀	$I_0 = 5mA$ to 0.5A, $T_j = 25^{\circ}C$				240	
Load Regulation		I _o = 5mA to 200mA, T _j = 25°C				120	mV
Quiescent Current	la	T _j = 25°C			4.1	6	mA
		$I_o = 5 \text{mA}$ to 350 mA				0.5	
Quiescent Current Change	∆ld	I _o = 200mA V _i = 14.5 to 30V				0.8	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	$I_o = 5mA$ $T_j = 0$ to 125°C			- 0.5		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz			75		μV
Ripple Rejection	RR	$f = 120Hz, I_o = 300mA$ V _i = 15 to 25V		55			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C, I_o = 500mA$			2		v
Short Circuit Current	I _{sc}	$T_j = 25^{\circ}C, V_i = 35V$			300		mA
Peak Current	I _{peak}	T _i = 25°C			700		mA

* T_{min} MC78MXXI: $T_{min} = -40$ °C MC78MXXC: T_{min} = 0°C

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC78M15C

(Refer to the test circuits, $T_{min} \leq T_i \leq 125^{\circ}$ C, $I_o = 350$ mA, $V_i = 23V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
	Vo	T _i =25°C		14.4	15	15.6	v
Output Voltage		I _o = 5 to 350mA ^I V _i = 17.5 to 30V		14.25	15	15.75	
Line Regulation	∆V₀	l _o = 200mA T _j = 25°C	V _i = 17.5 to 30V			100	
			V _i = 20 to 30V			50	mV
	∆V₀	$1_0 = 5$ mA to 0.5A, $T_j = 25^{\circ}$ C				300	mV
Load Regulation		$I_o = 5$ mA to 200mA, $T_i = 25$ °C				150	niv
Quiescent Current	l _d	$T_j = 25^{\circ}C$			4.1	6	mA
an daga dan sama san ang kanang k		$I_0 = 5 \text{mA to } 350 \text{mA}$				0.5	
Quiescent Current Change	∆l₀	$I_o = 200 \text{mA}$ $V_i = 17.5 \text{ to } 30 \text{V}$		-		0.8	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	$I_o = 5mA$ $T_j = 0$ to 125°C			- 1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz			90		μV
Ripple Rejection	RR	$f = 120Hz I_o = 300mA$ V _i = 18.5 to 28.5V		54			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C, I_o = 500mA$			2		v
Short Circuit Current	I _{sc}	$T_i = 25^{\circ}C, V_i = 35V$			300		mA
Peak Current	Ipeak	T ₁ =25°C			700		mA

* T_{min}

 $\begin{array}{l} \mbox{MC78MXXI: } T_{min} = - \ 40 \ ^\circ \mbox{C} \\ \mbox{MC78MXXC: } T_{min} = 0 \ ^\circ \mbox{C} \end{array}$

ELECTRICAL CHARACTERISTICS MC78M18C

(Refer to the test circuits, $T_{min} \leq T_j \leq 125$ °C, $I_o = 350$ mA, $V_i = 26V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage	Vo	T _j = 25°C		17.3	18	18.7	v
		$I_o = 5 \text{ to } 350 \text{mA}$ $V_i = 20.5 \text{ to } 33 \text{V}$		17.1	18	18.9	
Line Regulation	∆V₀	I _o = 200mA T _j = 25°C	V _i = 21 to 33V			100	
			V _i = 24 to 33V			50	mV
	∆V₀	$I_o = 5$ mA to 0.5A, $T_j = 25$ °C				360	mV
Load Regulation		$I_o = 5mA$ to 200mA, $T_j = 25^{\circ}C$				180	
Quiescent Current	la	$T_j = 25^{\circ}C$			4.2	6	mA
· ·		I _o =5mA to 350mA				0.5	mA
Quiescent Current Change	∆l₀	I _o =200mA V _i =21 to 33V				0.8	
Output Voltage Drift	<u>∆V₀</u> ∆T	$I_o = 5mA$ $T_j = 0$ to 125°C			- 1.1		mV/ºC
Output Noise Voltage	V _N	f = 10Hz to 100KHz			100		μV
Ripple Rejection	RR	$f = 120Hz I_o = 300mA$ V _i = 22 to 32V		53			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C, I_o = 500mA$			2		v
Short Circuit Current	I _{sc}	$T_j = 25^{\circ}C, V_i = 35V$			300		mA
Peak Current	Ipeak	T _i =25°C			700		mA

* T_{min}

 $\begin{array}{l} MC78MXXI: \ T_{min} = - \ 40 \ ^{\circ}C \\ MC78MXXC: \ T_{min} = 0 \ ^{\circ}C \end{array}$

ELECTRICAL CHARACTERISTICS MC78M20C

(Refer to the test circuits, $T_{min} \leq T_j \leq 125^{\circ}$ C, $I_o = 350$ mA, $V_i = 29V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j =25°C		19.2	20	20.8	v
Output Voltage	Vo	$I_o = 5 \text{ to } 350 \text{mA}$ $V_i = 23 \text{ to } 35 \text{V}$		19	20	21	
Line Regulation	∆V₀	I _o = 200mA T _j = 25°C	V _i = 23 to 35V			100	
			V _i = 24 to 35V			50	mV
Load Regulation	ΔVo	$t_o = 5$ mA to 0.5A, $T_j = 25$ °C				400	mV
Load Hegulation		$I_o = 5mA$ to 200mA, $T_j = 25^{\circ}C$				200	
Quiescent Current	l _d	T _j = 25 °C			4.2	6	mA
		I _o =5mA to 350mA				0.5	1
Quiescent Current Change	∆l _d	l _o = 200mA V _i = 23 to 35V				0.8	mA
Output Voltage Drift	<u> </u>	l₀ = 5mA Tj =0 to 125°C			- 1.1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz			110		μV
Ripple Rejection	RR	$f = 120Hz I_o = 300mA$ V _i = 24 to 34V		53			dB
Dropout Voltage	VD	$T_{j} = 25^{\circ}C, I_{o} = 500mA$			2		v
Short Circuit Current	I _{sc}	$T_i = 25^{\circ}C, V_i = 35V$			300		mA
Peak Current	Ipeak	T _i =25°C			700		mA

* T_{min}

MC78MXXI: $T_{min} = -40$ °C MC78MXXC: $T_{min} = 0$ °C

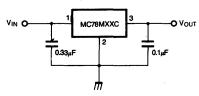
433

ELECTRICAL CHARACTERISTICS MC78M24C

(Refer to the test circuits, $T_{min} \leq T_i \leq 125^{\circ}$ C, $I_o = 350$ mA, $V_i = 33V$, unless otherwise specified, $C_i = 0.33\mu$ F, $C_o = 0.1\mu$ F)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	
		T _j =25°C	Tj = 25°C		24	25	
Output Voltage	Vo	$I_0 = 5 \text{ to } 350\text{mA}$ $V_i = 27 \text{ to } 38\text{V}$		22.8	24	25.2	V
			V _i = 27 to 38V			100	
Line Regulation		$\Delta V_{o} \qquad \begin{vmatrix} I_{o} = 200 \text{mA} \\ T_{j} = 25^{\circ} \text{C} \end{vmatrix} \qquad V_{i} = 2$	V _i = 28 to 38V			50	mV
Load Regulation	۵V。	$I_o = 5mA$ to 0.5A, $T_j = 25^{\circ}C$			480	mV	
Load Regulation		$I_o = 5mA$ to 200mA, $T_j = 25^{\circ}C$				240	
Quiescent Current	la	T _j = 25°C			4.2	6	mA
· · · · · · · · · · · · · · · · · · ·		I _o =5mA to 350mA				0.5	1
Quiescent Current Change	Δld	$I_0 = 200 m$ $V_i = 27 to$	1			0.8	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	$I_o = 5mA$ $T_j = 0 \text{ to } 1$			- 1.2		mV/ºC
Output Noise Voltage	V _N	f = 10Hz to	0 100KHz	÷	170		μV
Ripple Rejection	RR	f = 120Hz I _o = 300mA V _i = 28 to 38V		50			dB
Dropout Voltage	VD	$T_j = 25^{\circ}C$,	1 _o = 500mA		2		v
Short Circuit Current	l _{sc}	V _i =35V		. ·	300		mA
Peak Current	I _{peak}	T ₁ = 25°C			700		mA

* T_{min}


MC78MXXI: $T_{min} = -40$ °C MC78MXXC: $T_{min} = 0$ °C

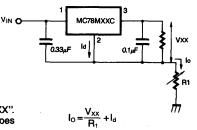
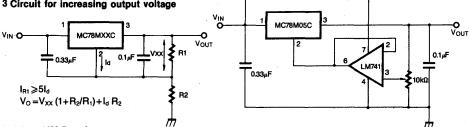
LINEAR INTEGRATED CIRCUIT

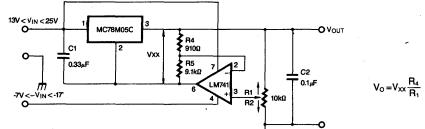
APPLICATION CIRCUIT

Fig. 1 Fixed output regulator

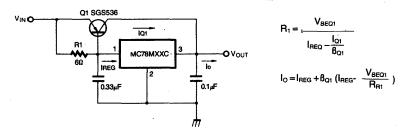
Notes:

- (1) To specify an output voltage, substitute voltage value for "XX".
- (2) Although no output capacitor is needed for stability, it does improve transient response.
- (3) Required if regulator is located an appreciable distance from power supply filter.


Fig. 2 Constant current regulator





ħ

APPLICATION CIRCUIT (continued)

Fig. 7 High output current with short circuit protection

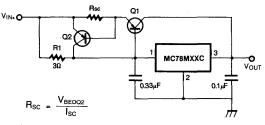
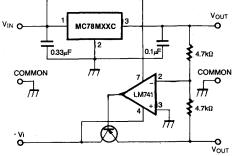
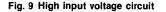
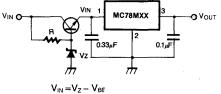
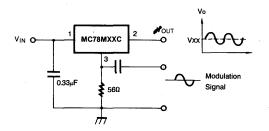
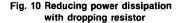





Fig. 8 Tracking voltage regulator





(unity voltage gain, $l_0 \le 0.5$)

Note: The circuit performs well up to 100 KHz.

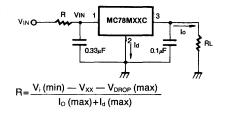
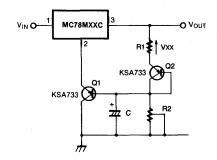
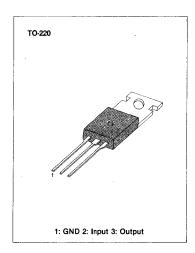



Fig. 12 Adjustable output voltage with temperature compensation

Note: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the temperature. C allows a slow rise-time of the Vo

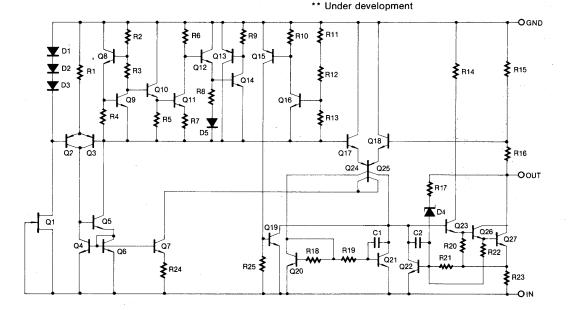
$$V_0 = V_{XX} (1 + \frac{R_2}{R_1}) + V_{BE}$$

3-TERMINAL NEGATIVE VOLTAGE REGULATOR


The MC79XXC series of three-terminal negative regulators are available in TO-220 package and with several output voltages. They canprovides local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage options as the MC78XXC positive standard series, they are particularly suited for split power supplies.

If adequate heat sinking is provided, the MC79XXC series can deliver an output current in excess of 1.5A. Although designed primarily as fixed viltage regulators, these devices can be used with external components t obtain adjustable voltages and currents.

FEATURES


- Output current in excess of 1A
- Output voltages of -2V, -5V, -6V, -8V, -12V, -15V, -18V, -24V
- Internal thermal overload protection
- Short circuit protection
- Output transistor safe-area compensation

SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
MC79XXCT	TO-220	0~125°C
**MC79XXIT	TO-220	- 40 ∼125°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit	
Input Voltage (for $V_o = -2$ to $-18V$) (for $V_o = -24V$)	V _{IN}	- 35 - 40	- V	
Thermal Resistance Junction-Case Junction-Air	O _{JC} O _{JA}	5 65	°C/W °C/W	
Operating Temperature Range	T _{opr}	0 ~ + 125	°C	
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C	

ELECTRICAL CHARACTERISTICS MC7902C

($C_i = 2.2\mu F$, $C_o = 1\mu F$, $T_j = 0$ to $125^{\circ}C$, $I_o = 500mA$, $V_i = 10V$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j =25°	c	- 1.92	-2	- 2.08	
Output Voltage	V _o	$I_o = 5mA$ to 1A $P_D \le 15W$ $V_i = -7$ to $-20V$		- 1.9	. –2	- 2.1	v
			$V_i = -7 \text{ to}$ - 25V		10	40	
Line Regulation	∆V₀	$\triangle V_{o}$ $T_{j} = 25^{\circ}C$	$V_i = -8 \text{ to}$ -12V		5	20	mV
		$T_j = 25^\circ$ $I_o = 5m/$	PC A to 1.5A		10	120	
Load Regulation $ riangle V_o$	ΔV₀	$T_j = 25^{\circ}C$ $I_o = 250$ to 750mA			3	60	mV
Quiescent Current	la	T _j =25°C			3	6	mA
		I _o =5mA to 1A				0.5	
Quiescent Current Change	Δl _d	V _i = -7	to - 25V			1.3	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	I _o = 5m/	A		-0.4		mV/ºC
Output Noise Voltage	V _N	. f = 10Hz to 100KHz Tj=25℃			40		μV
Ripple Rejection	RR	f=120Hz ∆V _i =10V		54	60		dB
Dropout Voltage	VD	T _j =25° I _o =1A	с		3.5		v
Short Circuit Current	l _{sc}	T _j = 25°C	$V_i = -35V$		300		mA
Peak Current	I _{peak}	T _i =25°	с		2.2		A

ELECTRICAL CHARACTERISTICS MC7905C

(C_i = 2.2 μ F, C_o = 1 μ F, T_i = 0 to 125 °C, I_o = 500 mA, V_i = 10V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
- 1.		T _j =25°C		-5	- 5.2	
Output Voltage	Vo	$I_o = 5mA$ to 1A, $P_o \le 15V$ $V_i = -8$ to $-20V$	N -4.75	- 5	- 5.25	• V
Line Regulation	∆V₀.	$V_i = -7 \text{ to}$ -25V $T_j = 25^{\circ}C$)	10	100	mV
Line Regulation		$V_i = -8 \text{ to}$ - 12V		5	50	
Load Regulation	∆V₀	T _j = 25°C I₀ =5mA to 1.5A		10	100	mV
	a Regulation Δv_o			3	50	IIIV
Quiescent Current	la	T _j =25°C		3	6	mA
		$I_0 = 5 \text{mA}$ to 1A			0.5	mA
Quiescent Current Change	∆l _d	$V_i = -8 \text{ to } -25 \text{V}$		ļ	1.3	
Output Voltage Drift	<u>_∆V₀</u> _∆T	l₀ = 5mA		-0.4		mV/ºC
Output Noise Voltage	V _N	f = 10Hz to 100KH T _i =25°C	lz	100		μV
Ripple Rejection	RR	f=120Hz ∆Vi=10V	54	60		dB
Dropout Voltage	. V D	$T_j = 25^{\circ}C$ $I_o = 1A$		2		v
Short Circuit Current	l _{sc}	$T_i = 25^{\circ}C, V_i = -35V$		300		mA
Peak Current	Ipeak	T _i =25°C		2.2		A

439

1.152.**11**0.

ELECTRICAL CHARACTERISTICS MC7906C

($C_i = 2.2\mu F$, $C_o = 1\mu F$, $T_j = 0$ to $125^{\circ}C$, $I_o = 500mA$, $V_i = 11V$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		$T_{i} = 25^{\circ}C$ $I_{o} = 5mA \text{ to } 1A, P_{o} \le 15W$ $V_{i} = -9 \text{ to } -21V$		- 5.75	- 6	- 6.25	
Output Voltage	Vo			- 5.7	- 6	- 6.3	V
		T 0500	$V_i = -8$ to -25V		10	120	
Line Regulation		T _i =25°C	$V_i = -9 \text{ to} \\ -13V$		5	60	mV
Load Regulation		$T_j = 25^{\circ}C$ $I_o = 5mA \text{ to } 1.5A$			10	120	mV
Load Regulation △ V₀	T _j =25°C I₀ =250 to 750mA			3	60 .	1114	
Quiescent Current	l _d	T _i =25°C			3	6	mA
		$I_o = 5 \text{mA} \text{ to } 1 \text{A}$				0.5	
Quiescent Current Change	∆l _d	V _i = -9	to - 25V			1.3	mA
Output Voltage Drift	<u> </u>	I _o = 5m/	A		- 0.5		mV/ºC
Output Noise Voltage	V _N	f = 10H T _j =25°	lz to 100KHz C		130		μV
Ripple Rejection	RR	f=120Hz ∆Vi=10V		54	60		dB
Dropout Voltage	VD	$T_j = 25^{\circ}C$ $I_o = 1A$			2		v
Short Circuit Current	I _{sc}	$T_j = 25^{\circ}C$	C, V _i = − 35V		300		mA
Peak Current	Ipeak	T _j =25°	С		2.2		A

ELECTRICAL CHARACTERISTICS MC7908C

(C_i = 2.2 μ F, C_o = 1 μ F, T_i = 0 to 125°C, I_o = 500mA, V_i = 14V, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j =25°C		- 7.7	- 8	-8.3	v
Output Voltage	Vo	$l_o = 5mA$ to 1A, $P_o \le 15W$ V _i = -11.5 to -23V		- 7.6	- 8	-8.4	
			$V_i = -10.5 \text{ to} -25V$		10	160	
Line Regulation	∆V₀	1 _j =25°C	$V_i = -11 \text{ to} -17 \text{V}$		5	80	mV
Load Regulation	∆V₀	$T_{j} = 25^{\circ}C$ $I_{o} = 5mA \text{ to } 1.5A$			12	160	m)(
	ΔVo	T _j =25°C I₀ =250 to 750mA			4	80	mV
Quiescent Current	ta	T _j =25°C			3	6	mA
		l₀≕5mA to 1A				0.5.	
Quiescent Current Change	∆l _d	$V_i = -1^{-1}$	1.5 to – 25V			1	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	I _o = 5m/	A		-0.6		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _j =25°C			175		μV
Ripple Rejection	RR	f=120Hz ∆Vi=10V		54	60		dB
Dropout Voltage	VD	$T_j = 25^{\circ}C$ $I_o = 1A$			2		· v
Short Circuit Current	I _{sc}	$T_{j} = 25^{\circ}C_{j}$	C, $V_i = -35V$		300		mA
Peak Current	I _{peak}	T _j =25°	C		2.2		Α

ELECTRICAL CHARACTERISTICS MC7912C

($C_i = 2.2\mu F$, $C_o = 1\mu F$, $T_j = 0$ to 125°C, $I_o = 500$ mA, $V_i = 18V$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j =25°	с	- 11.5	- 12	- 12.5	
Output Voltage	V₀	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ $V_i = -15.5 \text{ to } -27V$		- 11.4	- 12	- 12.6	v
	۵Va		V _i = - 14.5 to - 30V		12	240	
Line Regulation		T _j = 25°C	V _i = - 16 to - 22V		6	120	- mV
		$T_j = 25^{\circ}$ $I_o = 5m/$	°C A to 1.5A		12	240	
Load Regulation $ riangle V_0$	∆ V₀	T _j =25°C I₀=250 to 750mA			· 4	120	mV
Quiescent Current	la	T _j =25°C			3	6	mA
		I _o =5mA to 1A				0.5	
Quiescent Current Change	∆ld	V _i = -1	5 to - 30V			1	mA
Output Voltage Drift	<u>_∆V₀</u> _∆T	l _o = 5m	A		- 0.8		mV/°C
Output Noise Voltage	V _N	f = 10H T _j =25°	lz to 100KHz C		200		μV
Ripple Rejection	RR	f=120Hz △V _i =10V		54	60		dB
Dropout Voltage	VD	T _j =25° I _o =1A	c		2		v
Short Circuit Current	I _{sc}	$T_{j} = 25^{\circ}C_{j}$	$V_{i} = -35V$		300		mA
Peak Current	I _{peak}	T _i =25°	С		2.2		A

ELECTRICAL CHARACTERISTICS MC7915C

($C_i = 2.2\mu F$, $C_o = 1\mu F$, $T_i = 0$ to $125^{\circ}C$, $I_o = 500 \text{mA}$, $V_i = 23V$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
		T _j =25°C	- 14.4	- 15	- 15.6		
Output Voltage	Vo	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ $V_i = -18 \text{ to } -30V$	- 14.25	- 15	- 15.75	V	
		$T_{i} = 25^{\circ}C \frac{V_{i} = -17.5 \text{ to}}{-30V}$ $V_{i} = -20 \text{ to}$		12	300		
.ine Regulation △V₀	$V_i = -20 \text{ to}$ -26 V		6	150	mV		
Lood Dogulation		T _j = 25°C I₀ =5mA to 1.5A		12	300	m)/	
Load Regulation	∆V₀	T _i =25°C I₀=250 to 750mA		4	150	mV	
Quiescent Current	la	T _j =25°C		3	6	mA	
		I₀=5mA to 1A			0.5		
Quiescent Current Change	∆ld	$V_i = -18.5 \text{ to } -30 \text{V}$			1	mA	
Output Voltage Drift	∆V₀ ∆T	I _o = 5mA		- 0.9		mV/⁰C	
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _j =25°C		250		μV	
Ripple Rejection	RR	f=120Hz ∆Vi=10V	54	60		dB	
Dropout Voltage	VD	T _j =25°C I₀=1A		2		v	
Short Circuit Current	l _{sc}	$T_i = 25^{\circ}C, V_i = -35V$		300		mA	
Peak Current	peak	T _j =25°C		2.2		A	

ELECTRICAL CHARACTERISTICS MC7918C

($C_i = 2.2 \mu F$, $C_o = 1 \mu F$, $T_j = 0$ to 125°C, $I_o = 500 mA$, $V_i = 27V$, unless otherwise specified) .

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
· · · · · · · · · · · · · · · · · · ·		T _j =25°C		- 17.3	- 18	- 18.7	
Output Voltage	Vo	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ $V_i = -22.5 \text{ to } -33V$		- 17.1	- 18	18.9	
		T 0500	$V_i = -21 \text{ to}$ -33 V		15	360	
Line Regulation	∆V₀	V_o $T_j = 25^{\circ}C$	$V_i = -24 \text{ to}$ -30 V		8	180	mV
Load Degulation	∆V₀	T _j = 25° I _o = 5mA	C A to 1.5A		15	360	//
Load Regulation		$T_j = 25^{\circ}C$ $I_{\circ} = 250$ to 750mA			5	180	mV
Quiescent Current	la	T _i =25°C			3	6	mA
		$I_0 = 5mA$ to 1A		1		0.5	<u> </u>
Quiescent Current Change	∆l _d	V _i = -2	2 to - 33V	1	1	1	mA
Output Voltage Drift		l _o = 5m/	4	· .	-1		mV/ºC
Output Noise Voltage	V _N	f = 10H T _j =25°	z to 100KHz C		300		μV
Ripple Rejection	BR	f=120Hz ∆Vi=10V		54	60		dB
Dropout Voltage	V _D	$T_j = 25^{\circ}C$ $I_o = 1A$			2		v
Short Circuit Current	l _{sc}	$T_{i} = 25^{\circ}C$	$V_{i} = -35V$		300		mA
Peak Current	I _{peak}	T _j =25°	с		2.2		A

ELECTRICAL CHARACTERISTICS MC7924C

($C_i = 2.2\mu F$, $C_o = 1\mu F$, $T_j = 0$ to 125°C, $I_o = 500mA$, $V_i = 33V$, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
		T _j =25°	с	- 23	- 24	- 25	
Output Voltage	Vo	$I_o = 5mA \text{ to } 1A, P_o \le 15W$ $V_i = -27 \text{ to } -38V$		- 22.8	- 24	- 25.2	V
Line Demulation		T 0500	$V_i = -27 \text{ to}$ -38V		15	480	
Line Regulation	∆V₀	T _j = 25°C	$V_i = -30 \text{ to} \\ -36V$		8	240	- mV.
Load Regulation			C A to 1.5A		15	480	
	∆V₀	$T_j = 25^{\circ}C$ $l_o = 250$ to 750mA			5	240	mV
Quiescent Current	la	Tj=25°C			3	6	mA
		I _o =5mA to 1A		1		0.5	
Quiescent Current Change	∆l _d	V _i = -2	7 to – 38V			1	mA
Output Voltage Drift	<u>∆V₀</u> ∆T	l _o = 5m/	A		° –1		mV/ºC
Output Noise Voltage	V _N	f = 10H T _j =25°	z to 100KHz C		400		μV
Ripple Rejection	RR	f≈120Hz ∆Vi=10V		54	60		dB
Dropout Voltage	VD	T _i =25°C I _o =1A			2		v
Short Circuit Current	l _{sc}	T _j = 25°	C, $V_i = -35V$		300		mA
Peak Current	Ipeak	T _j =25%	c		2.2		Α

APPLICATION INFORMATION

Fig. 1 --- Fixed output regulator

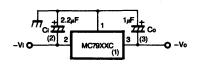
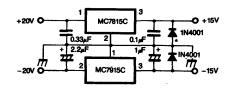
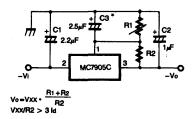



Fig. 2 - Split power supply (±15V/1A)



* Against potential latch-up problems.

Notes:

- To specify an output voltage, substitute voltage value for "XXC".
- (2) Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolitics are used, at least ten times value shown should be selected. Ci is required if regulator is located an appreciable distance from power supply filter.
- (3) To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

Fig. 3 --- Circuit for increasing output voltage

- * C3 optional for improved transient response and ripple rejection.
- Fig. 4 High current negative regulator (-5V/4A with 5A current limiting)

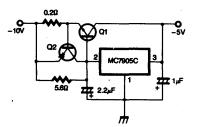
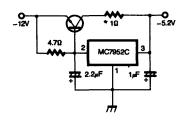
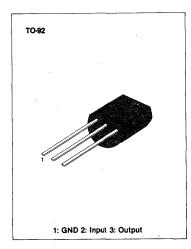



Fig. 5 --- Typical ECL system power supply (-5.2V/4A)

* Optional dropping resistor to reduce the power dissipated in the boost transistor.

446

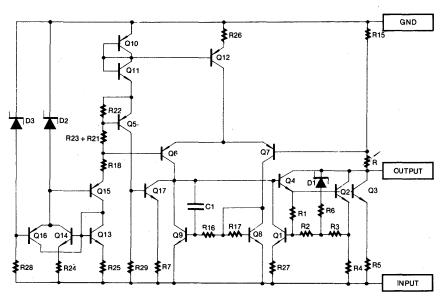
LINEAR INTEGRATED CIRCUIT


3-TERMINAL NEGATIVE VOLTAGE REGULATOR

These regulators employ internal current limiting and thermal—shutdown, making them essentially indestructible. The are intended as fixed voltage regulators in a wide range of application including local regulator for eliminatation of noise and distribution problems associated with single—point regulation.

FEATURES

- Output current up to 100mA
- No external components
- Internal thermal over load protection
- · Internal short circuit current limiting
- Available in JEDEC TO-92
- Mass production: MC79L05
- Under development: 12; 15; 18; 24V


SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
S 79LXXACZ	TO-92	0~125°C
** S79LXXAIZ	TO-92	- 40 ~ 125°C

** Under development

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Input Voltage (- 5V) (- 12V to - 18V) (- 24V)	Vi	- 30 - 35 - 40	V _{DC}
Operating Temperature Range	T _{opr}	0~+125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

MC79L05AC ELECTRICAL CHARACTERISTICS

 $(V_i = -10V, I_o = 40mA, C_i = 0.33\mu F, C_o = 0.1\mu F, 0^{\circ}C \le T_j \le +125^{\circ}C, unless otherwise specified)$

Character	istic	Symbol	Te	st Conditions	Min	Тур	Max	Unit		
Output Voltage	<u>- a</u> nna	V _o	T _j = 25°C		- 4.8	- 5.0	- 5.2	v		
			T 05%0	$-7.0V \ge V_i \ge -20V$	· · ·		150			
Line Regulation		∆V₀ .	$T_i = 25^{\circ}C$	$-8.0V \ge V_i \ge -20V$			100	mV		
Lood Degulation		A.V.	T 05%0	1.0mA≤I₀≤100mA			60	mV		
Load Regulation		∆V₀	$T_j = 25^{\circ}C$	1.0mA≤I₀≤40mA			30			
Output Voltone		v.	V	$-7.0V > V_i > -20V, 1.0mA \le I_o \le 40mA$		$-7.0V > V_i > -20V, 1.0mA \le I_o \le 40mA$	- 4.75		- 5.25	v
Output vonage	Output Voltage		$V_i = -1.0V, 1.0mA \le I_o \le 70mA$		- 4.75		- 5.25	•		
0		Id	$T_j = +25^{\circ}C$				6.0			
Quiescent Currer	זנ		T _i = + 125°C				5.5	mA		
Quiescent	With Line		$-8V \ge V_i \ge -$	20V			1.5			
Current Change	With Load	١a	1.0mA≤I₀≤4	0mA			0.1	mA		
Output Noise Vo	Itage	V _N	$Ta = 25^{\circ}C$, $10Hz \le f \le 100KHz$			40		μV		
Ripple Rejection		RR	$f = 120Hz, -8.0 \ge V_i \ge -18V$ $T_i = 25^{\circ}C$		41	49		dB		
Dropout Voltage		VD	T _j = 25°C			1.7		v		

MC79L12AC ELECTRICAL CHARACTERISTICS

(V_i = - 19V, I_o = 40mA, C_i = 0.33μ F, C_o = 0.1μ F, 0°C \leq T_i \leq + 125°C, unless otherwise specified)

Character	istic	Symbol	Te	est Conditions	Min	Тур	Max	Unit
Output Voltage		V _o	T _j = 25°C	······································	- 11.5	- 12.0	- 12.5	V
Line De sulation			T 0500	$-14.5V \ge V_i \ge -27V$			250	
Line Regulation		∆V₀	T _j = 25°C	$-16V \ge V_i \ge -27V$			200	mV
			T 0500	1.0mA≤I₀≤100mA			100	
Load Regulation		△V₀	$T_j = 25^{\circ}C$	$1.0mA \le I_o \le 40mA$			50	mV
		V.	$-14.5V > V_i >$	$-14.5V > V_i > -27V, 1.0mA \le I_o \le 40mA$			- 12.6	v
Output voltage	Output Voltage		$V_i = -19V, 1.0mA \le I_o \le 70mA$		- 11.4		- 12.6	
Outerset O	-4	l _d	$T_j = +25^{\circ}C$				6.5	
Quiescent Curre	nt		T _i = + 125°C				6.0	mA
Quiescent	With Line		- 16V≥Vi≥ ·	– 27V			1.5	
Current Change	With Load	t _a	1.0mA≤I₀≤4	0mA			0.1	mA
Output Noise Vo	Itage	VN	Ta=25°C, 10Hz≤f≤100KHz			80		μV
Ripple Rejection		RR	$f = 120Hz, -15V \ge V_i \ge -25V$ $T_j = 25^{\circ}C$		37	42		dB
Dropout Voltage		VD	T _j = 25°C			1.7		V.

MC79L15AC ELECTRICAL CHARACTERISTICS

 $(V_i = -23V, \ I_o = 40 \text{mA}, \ C_i = 0.33 \mu\text{F}, \ C_o = 0.1 \mu\text{F}, \ 0^\circ\text{C} \le T_j \le +125^\circ\text{C}, \ \text{unless otherwise specified})$

Character	istic	Symbol	Τe	est Conditions	Min	Тур	Max	Unit
Output Voltage		Vo	T _j = 25°C	······································	- 14.4	- 15.0	- 15.6	v
			т осно	- 17.5V≥Vi≥ - 30V		1	300	
Line Regulation		∆V₀	T _j = 25°C	$-27V \ge V_i \ge -30V$			250	mV
Land Desulation		ΔVa	T 05%0	1.0mA≤I₀≤100mA			150	
Load Regulation	Load Regulation		T _j = 25 °C	$1.0 \text{mA} \le 1_{\circ} \le 40 \text{mA}$			75	mV
Output Voltage		Vo H	$-17.5V > V_i >$	$-17.5V > V_i > -30V, 1.0mA \le I_o \le 40mA$			-15.75	v
			$V_i = -23V, 1.0mA \le I_o \le 70mA$		-14.25		-15.75	,
0.1		l _d	$T_j = +25^{\circ}C$				6.5	
Quiescent Curre	nt		$T_{j} = + 125^{\circ}C$				6.0	mA
Quiescent	With Line		$-20V \ge V_i \ge -$	- 30V			1.5	
Current Change	With Load	Id	1.0mA≤l₀≤4	.0mA			0.1	mA
Output Noise Vo	Itage	V _N	Ta = 25°C, 10)Hz≤f≤100KHz		90		μV
Ripple Rejection		RR	$f = 120Hz, -18.5V \ge V_i \ge -28.5V$ $T_i = 25^{\circ}C$		34	39		dB
Dropout Voltage		VD	T ₁ = 25°C			1.7		v

MC79L18AC ELECTRICAL CHARACTERISTICS

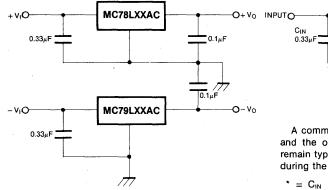
(V_i = -27V, I_o = 40mA, C_i = 0.33μ F, C_o = 0.1μ F, $0^{\circ}C \le T_{j} \le +125^{\circ}C$, unless otherwise specified)

Character	istic	Symbol	Те	st Conditions	Min	Тур	Max	Unit
Output Voltage		V _o	$T_j = 25^{\circ}C$		- 17.3	- 18.0	<u> </u>	V
Line Desulation			τ ος ο	$-20.7V \ge V_i \ge -33V$			325	mV
Line Regulation		∆V₀	T _j = 25°C	$-21V \ge V_i \ge -33V$			275	
			τ ος «Ο	1.0mA≤I₀≤100mA			170	mν
Load Regulation		∆V₀	T _j = 25°C	1.0mA≤l₀≤40mA			85	
Outent Maltana	Output Voltage Vo $-20.7V > V_i > -33V$, $1.0mA \le I_o \le 40m$ V_o $V_i = -27V$, $1.0mA \le I_o \le 70mA$		$-33V$, 1.0mA $\leq I_{\circ} \leq 40$ mA	- 17.1		- 18.9	v	
Output voltage			$V_i = -27V, 1.0mA \le I_o \le 70mA$		- 17.1		- 18.9	V
Outers and Outers		ld	$T_j = +25^{\circ}C$				6.5	-
Quiescent Currer	11		$T_{j} = + 125^{\circ}C$				6.0	mA
Quiescent	With Line		-21V≥Vi≥-	- 33V			1.5	
Current Change	With Load	l _a	1.0mA≤l₀≤4	0mA			0.1	mA
Output Noise Vo	Itage	V _N	Ta=25°C, 10Hz≤f≤100KHz			150		μV
Ripple Rejection		RR	$f = 120Hz, -23V \ge V_i \ge -33V$ $T_i = 25^{\circ}C$		33	48		dB
Dropout Voltage		[™] V _D	T _i = 25°C	· · · · · · · · · · · · · · · · · · ·		1.7		v

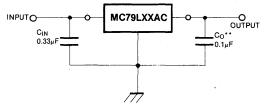
MC79L24AC ELECTRICAL CHARACTERISTICS

 $(V_i=-33V,\ l_o=40mA,\ C_i=0.33\mu F,\ C_o=0.1\mu F,\ 0^\circ C \leq T_j \leq +125^\circ C,\ unless \ otherwise \ specified)$

Character	istic	Symbol	Te	st Conditions	Min	Тур	Max	Unit
Output Voltage	· <u></u> · ·	V _o	T _j = 25°C		- 23	- 24	- 25	V
Line Regulation			T 05+0	$-27V \ge V_i \ge -38V$			350	
		∆V₀	$T_j = 25^{\circ}C$	$-28V \ge V_i \ge -38V$			300	mV
Load Regulation		T 05 00	1.0mA≤I₀≤100mA			200		
		∆V₀	$T_j = 25 °C$	1.0mA≤l₀≤40mA			100	mV
Output Maltana		$V_{o} = -27V > V_{i} > -38V, 1.0mA \le I_{o} \le 40mA$		- 22.8		- 25.2	v	
Output Voltage		V o	$V_i = -33V, 1.0mA \le I_o \le 70mA$		- 22.8		- 25.2	V
0.1		l _d	$T_j = +25^{\circ}C$				6.5	
Quiescent Curre	nt		$T_{j} = + 125^{\circ}C$				6.0	mA
Quiescent	With Line		$-28V \ge V_i \ge -$	- 38V			1.5	
Current Change	With Load	۱ _a	$1.0 \text{mA} \le I_0 \le 40$	OmA			0.1	mA
Output Noise Vo	ltage	V _N	Ta=25°C, 10Hz≤f≤100KHz			200		μV
Ripple Rejection		RR	$f = 120Hz, -29V \ge V_i \ge -35V$ $T_i = 25^{\circ}C$		31	47		dB
Dropout Voltage		VD	T ₁ = 25°C			1.7		v


TYPICAL APPLICATION

Design Considerations


The MC79L00AC Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good highfrequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended,

Fig. 1 POSITIVE AND NEGATIVE REGULATOR FIG.

Fig. 2 TYPICAL APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

- * = C_{\rm IN} is required if regulator is located an appreciable distance from power supply filter.
- $** = C_0$ improves stability and transient response.

LINEAR INTEGRATED CIRCUIT

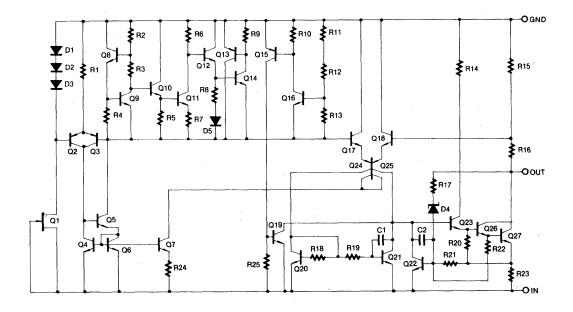
3-TERMINAL 0.5A NEGATIVE VOLTAGE REGULATOR


The MC79MXX series of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe-area compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 500mA output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

FEATURES

- No external components required
- Output current in excess of 0.5A

SCHEMATHIC DIAGRAM


- Internal thermal-overload protection
- Internal short circuit current limiting
- Output transistor safe-area compensation
- Available in JEDEC TO-220
- Output voltages of -5V, -6V, -8V, -12V, -15V, -18V, -24V

ORDERING INFORMATION

Device	Package	Operation Temperature
MC79MXXCT	TO-220	0~125°C
**MC79MXXIT	TO-220	- 40 ~ 125°C

** Under development

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Input Voltage (for $V_o = -5$ to $-1.8V$) (for $V_o = 24V$)	V _{IN}	35 40	v v
Thermal Resistance Junction-Case Junction-Air	O _{JC} O _{JA}	5 65	°C/W °C/W
Operating Temperature Range	T _{opr}	0 ~ + 125	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS MC79M05C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350mA$, $V_i = -10V$, unless otherwise specified)

Characteristic	Symbol	Те	est Conditions	Min	Тур	Max	Unit
			T _j = 25°C		- 5.0	- 5.2	
Output Voltage	V。		mA≤l₀≤350mA = -7V to -25V	- 4.75	- 5.0	- 5.25	V
Line Deculation		T 0500	$V_i = -7V$ to $-25V$		7.0	50	
Line Regulation	∆V₀	T _j = 25°C	$V_i = -8V \text{ to } -18V$		2.0	30	mV
Load Regulation	∆V₀	T _j = 25°C	$I_o = 5.0$ mA to 500mA		30	100	mV
Quiescent Current	ld	$T_j = 25^{\circ}C$			3	6	mA
Quiesest Current Change	. 1	$I_o = 5.0 \text{mA}$ to 350mA				0.4	A
Quiescent Current Change	$\Delta \mathbf{I}_{d}$	$V_i = -8V \text{ to } -25V$				0.4	mA
Output Voltage Drift	∆V₀∕∆T		I _o = 5mA		0.2		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		40		μV
Ripple Rejection	RR	f = 120	$Hz, V_i = -8 \text{ to } -18V$	54	60		dB
Dropout Voltage	VD	l _o = !	500mA, T _j = 25°C		1.1		v
Short Circuit Current	I _{sc}	V. =	$-35V, T_j = 25^{\circ}C$		140		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		650		mA

5

453

ELECTRICAL CHARACTERISTICS MC79M06C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350mA$, $V_i = -11V$, unless otherwise specified)

Characteristic	Symbol	т	est Conditions	Min	Тур	Max	Unit
			T _j = 25°C	- 5.75	- 6.0	- 6.25	v
Output Voltage	Vo		mA≤l₀≤350mA -8.0V to -25V	- 5.7	- 6.0	- 6.3	
Line Degulation	A. Y.	T - 05%C	$V_i = -8V$ to $-25V$		7.0	60	mV
Line Regulation	∆V₀	T _j = 25°C	$V_i = -9V \text{ to } -19V$		2.0	40	
Load Regulation	∆V₀	T _j = 25°C	$I_o = 5.0$ mA to 500mA		30	120	mV
Quiescent Current	l _d	$T_j = 25^{\circ}C$			3	6	mĄ
Outenant Current Change		1 ₀ =	5.0mA to 350mA			0.4	
Quiescent Current Change	∆l _d	$V_i = -8.0V$ to $-25V$				0.4	mA
Output Voltage Drift	∆V₀∕∆T		l₀ = 5mA		0.4		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		50		μV
Ripple Rejection	RR	f = 120	Hz, $V_1 = -9$ to $-19V$	54	60		dB
Dropout Voltage	VD	l _o = 500mA, T _i = 25°C			1.1		v
Short Circuit Current	I _{sc}	V, =	$-35V, T_j = 25^{\circ}C$		140		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		650		mA

* Load and line regulation are specified at constant junction temperature changes in V_o due to heating effects must be taken into account separately pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M08C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350$ mA, $V_i = -14V$, unless otherwise specified)

Characteristic	Symbol	Т	est Conditions	Min	Тур	Мах	Unit _.
			T _j = 25°C	- 7.7	- 8.0	- 8.3	
Output Voltage	V。		mA _≤ I₀≤350mA – 10.5V to – 25V	- 7.6	- 8.0	- 8.4	- V
Line Regulation	<u></u>	T 0510	$V_i = -10.5V$ to $-25V$		7.0	80	mV
Line Regulation	∆V₀	T _j = 25°C	$V_i = -11V$ to $-21V$		2.0	50	
Load Regulation	∆V₀	$T_j = 25^{\circ}C$	$I_o = 5.0$ mA to 500mA		30	160	mV
Quiescent Current	l _d .	$T_i = 25^{\circ}C$			3	6	mA
		I _o = 5.0mA to 350mA				0.4	mA
Quiescent Current Change	Δld	$V_i = -10.5V$ to $-25V$				0.4	
Output Voltage Drift	∆V₀/∆T	М.	$I_o = 5 m A$		- 0.6		mV/°C
Output Noise Voltage	VN	f = 10Hz	to 100KHz T _j = 25°C		60		μV
Ripple Rejection	RR	f = 120Hz,	$V_i = -11.5V$ to $-21.5V$	54	59		dB
Dropout Voltage	VD	$I_0 = 500 \text{mA}, T_1 = 25^{\circ}\text{C}$			1.1		v
Short Circuit Current	I _{sc}	V _i =	- 35V, T _j = 25°C		140		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		650		mA

454

ELECTRICAL CHARACTERISTICS MC79M12C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350mA$, $V_i = -19V$, unless otherwise specified)

Characteristic	Symbol	T	est Conditions	Min	Тур	Max	Unit
			T _j = 25°C	- 11.5	- 12	- 12.5	v
Output Voltage	Vo		mA≤I₀≤350mA - 14.5V to - 30V	- 11.4	- 1.2	- 12.6	
Line Degulation	A. 1/	T 05%C	$V_i = -14.5V \text{ to } -30V$		8.0	80	mV
Line Regulation	∆V₀	T _j = 25°C	$V_i = -15V \text{ to } -25V$		3.0	50	
Load Regulation	∆V₀	T _j = 25°C	$I_o = 5.0$ mA to 500mA		30	240	mV
Quiescent Current	ld	$T_j = 25^{\circ}C$			3	6	mA
Ouissant Ourset Change		$I_o = 5.0 \text{mA}$ to 350mA				0.4	
Quiescent Current Change	∆l _d	$V_i = -14.5V \text{ to } -30V$				0.4	mA
Output Voltage Drift	∆V₀/∆T		l₀=5mA		- 0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		75		μV
Ripple Rejection	RR	f = 120Hz	$z_i, V_i = -15V \text{ to } -25V$	54	60		dB
Dropout Voltage	VD	$I_0 = 500 \text{mA}, T_1 = 25^{\circ} \text{C}$			1.1		V
Short Circuit Current	I _{SC}	V _i =	$-35V, T_j = 25^{\circ}C$		140		mA
Peak Current	I _{peak}		$T_j = 25^{\circ}C$		650		mA

* Load and line regulation are specified at constant junction temperature changes in V_o due to heating effects must be taken into account separately pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M15C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350mA$, $V_i = -23V$, unless otherwise specified)

Characteristic	Symbol	т	Min	Тур	Max	Unit	
. " <u></u>			T _j = 25°C		- 15	- 15.6	
Output Voltage	Vo		$\begin{array}{c c} T_{j} = 25^{\circ}C \\ \hline 5.0mA \leq I_{o} \leq 350mA \\ V_{i} = -17.5V \ to \ -30V \\ \hline \\ T_{j} = 25^{\circ}C \\ \hline V_{i} = -17.5V \ to \ -30V \\ \hline V_{i} = -18V \ to \ -28V \\ \hline \\ T_{j} = 25^{\circ}C \\ \hline \\ I_{o} = 5.0mA \ to \ 500mA \\ \hline \\ T_{j} = 25^{\circ}C \\ \hline \\ I_{o} = 5.0mA \ to \ 350mA \\ \hline \\ V_{i} = -17.5V \ to \ -28V \\ \hline \\ I_{o} = 5mA \\ \hline \\ f = 10Hz \ to \ 100KHz \ T_{j} = 25^{\circ}C \\ \hline \end{array}$			- 15.75	V
		T 05%0	$V_i = -17.5V$ to $-30V$		9.0	80	
Line Regulation	∆V₀	$I_j = 25^{\circ}C$	$V_i = -18V \text{ to } -28V$		5.0	50	mV
Load Regulation	∆V₀	T _j = 25°C	$I_o = 5.0$ mA to 500mA		30	240	mV
Quiescent Current	ld		$T_1 = 25^{\circ}C$		3	6	mA
Outer and Outer at Observe		I _o =	5.0mA to 350mA			0.4	
Quiescent Current Change	∆l _d	$V_i = -17.5V \text{ to } -28V$			0.4	mA	
Output Voltage Drift	∆V₀/∆T		$I_o = 5 m A$		- 1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		90		μV
Ripple Rejection	RR	f = 120Hz,	$V_i = -18.5V$ to $-28.5V$	54	59		dB
Dropout Voltage	VD	I ₀ = 1	500mA, T _i = 25°C		1.1		V
Short Circuit Current	I _{sc}	$V_i = -35V, T_j = 25^{\circ}C$			140		mA
Peak Current	Ipeak		T _j = 25°C		650		mA

ELECTRICAL CHARACTERISTICS MC79M18C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_o = 350mA$, $V_i = -27V$, unless otherwise specified)

Characteristic	Symbol	Те	Min	Тур	Max	Unit	
		T _j = 25°C		- 17.3	18	- 18.7	
Output Voltage	Vo		$5.0mA \le I_o \le 350mA$ $V_1 = -21V$ to $-33V$			- 18.9	v
Line Desulation		т осно	$V_i = -21V \text{ to } -33V$		9.0	80	
Line Regulation	∆V₀	$T_j = 25^{\circ}C$	$V_i = -24V \text{ to } -30V$		5.0	60	mV
Load Regulation	∆V₀	$T_{j} = 25^{\circ}C$ $I_{o} = 5.0mA$ to 500mA			30	360	mV
Quiescent Current	١ _d	T _j = 25°C			3	6	mA
Outersat Ourset Observe		· I _o = 5	.0mA to 350mA			0.4	
Quiescent Current Change	∆ld	$V_i = -21V \text{ to } -33V$			0.4	mA	
Output Voltage Drift	∆V₀∕∆T		I _o = 5mA		- 1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		110		μV
Ripple Rejection	RR	f = 120Hz,	$V_i = -22V$ to $-32V$	54	59		dB
Dropout Voltage	V _D	$I_0 = 500 \text{mA}, T_1 = 25^{\circ}\text{C}$			1.1		v
Short Circuit Current	I _{SC}	$V_i = -35V, T_i = 25^{\circ}C$			140		mA
Peak Current	Ipeak		$T_i = 25^{\circ}C$		650		mА

* Load and line regulation are specified at constant junction temperature changes in V_o due to heating effects must be taken into account separately pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M24C

(Refer to test circuit, $0^{\circ}C < T_j < 125^{\circ}C$, $I_0 = 350$ mA, $V_i = -33V$, unless otherwise specified)

Characteristic	Symbol	Те	Min	Тур	Max	Unit	
		T _i = 25°C		- 23	- 24	- 25	
Output Voltage	٧o		mA≤l₀≤350mA 27V to38V	-22.8 -24 -25.2 9.0 80 5.0 70 30 300 3 6 0.4 0.4 -1.0 -1.0			V
		T 0510	$V_i = -27V \text{ to } -38V$		9.0	80	
Line Regulation	ΔV_{o}	T _j = 25°C	$V_i = -30V \text{ to } -36V$		5.0	70	mV
Load Regulation	∆V₀	T _i = 25°C	$I_o = 5.0$ mA to 500mA		30	300	mV
Quiescent Current	l _d	$T_j = 25^{\circ}C$			3	6	mA
0. i		$l_0 = 5.0 \text{mA}$ to 350 mA				0.4	
Quiescent Current Change	ΔI_d	V _i =	-27V to -38V			0.4	mA
Output Voltage Drift	∆V₀/∆T		$I_o = 5 m A$		- 1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz	to 100KHz T _j = 25°C		180		μV
Ripple Rejection	RR	f = 120H	z, $V_i = -28V$ to $-38V$	54	58		dB
Dropout Voltage	VD	I ₀ = 5	500mA, T _j = 25°C		1.1		V
Short Circuit Current	I _{SC}	$V_i = -35V, T_j = 25^{\circ}C$			140		mA
Peak Current	Ipeak		$T_j = 25^{\circ}C$		650		mA

TYPICAL APPLICATION

Bypass capacitors are recommended for stable operation of the MC79MXXC series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

The bypass capacitors, (2,:F on the input, 1,#F on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10,#F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Fig. 1 Fixed Output Regulator

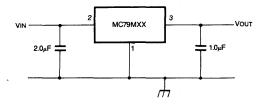
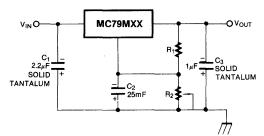



Fig. 2 Variable Output

Note

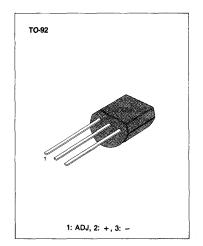
- 1. Required for stability. For value given, capacitor must be solid tantalum. $25\mu F$ aluminum electrolytic may be substituted.
- 2. C_2 improves transient response and ripple rejection. Do not increase beyond $50\mu F.$

$$V_{\text{OUT}} = V_{\text{SET}} \left(\frac{R_1 + R_2}{R_1} \right)$$

Select R₂ as follows MC79M05: 300 Ω , MC79M12: 750 Ω , MC79M15: 11 Ω

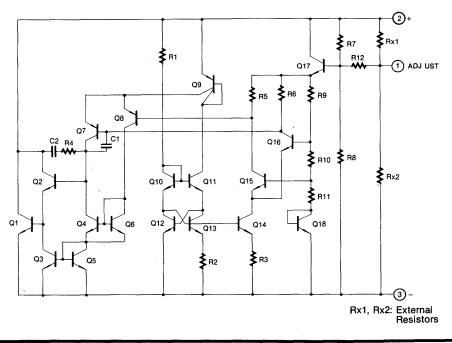
VOLTAGE REFERENCE DIODE

The KA336-2.5 integrated circuit is precision 2.5V shunt regulator. The monolithic IC voltage references operates as a low temperature coefficient 2.5V zener with 0.2Ω dynamic impedance.


A third terminal on the KA336-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.

KA336-2.5 is useful as a precision 2.5V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5V make it convenient to obtain a stable reference from low voltage supplies.

Further, since the KA336-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.


FEATURE

- Low temperature coefficient
- Guaranteed temperature stability 4mV typical
- 0.2Ω dynamic impedance
- ± 1.0% initial tolerance available.
- Easily trimmed for minimum temperature drift.

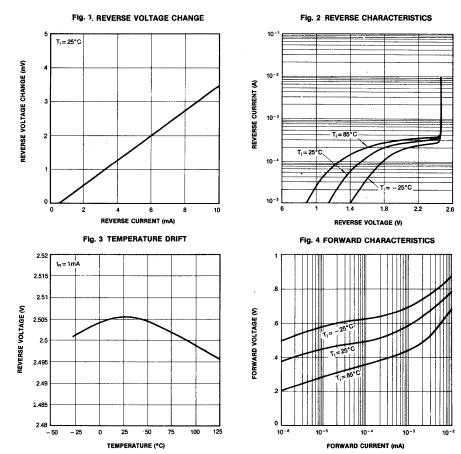
ORDERING INFORMATION

Device	Package	Operating Temperature				
KA336Z-2.5	TO-92	0~70°C				
KA236Z-2.5	10-92	– 25 ~ + 85°C				

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Reverse Current	l _R	15	mA
Forward Current	l _F	10	mA
Operating Temperature Range KA236-2.5 KA336-2.5	T _{opr}	- 25 ~ + 85 0 ~ + 70	ပံ့
Storage Temperature Range	T _{stg}	- 60 ~ + 150	°C


ELECTRICAL CHARACTERISTICS ($T_{min} < Ta < T_{max}$, unless otherwise specified)

	Comball Tool Condition		KA336/236			КА	36B	linit	
Characteristic	Symbol	Test Condition	Min	Тур	Max	Min	Тур	Max	Unit
Reverse Breakdown Voltage	V _R	Ta = 25°C I _B = 1mA	2.44	2.49	2.54	2.465	2.49	2.515	V
Reverse Breakdown Change with Current	∆V _R	Ta=25°C 400µA≤I _R ≤10mA		2.6	6		2.6	10	mV
Reverse Dynamic Impedance	Z _D	Ta = 25°C I _B = 1mA		0.2	0.6		0.2	1	Ω
Temperature Stability	$\triangle V_{R}T_{1}$	I _R = 1mA T _{min} ≤Ta≤T _{max}		1.8	6		1.8	6	mV
Reverse Breakdown Change with Current	$\Delta V_R T_2$	T _{min} ≤Ta≤T _{max} 400µA≤I _R ≤10mA		3	10		3	12	mV
Reverse Dynamic Impedance	Z _{DT}	I _R = 1mA T _{min} ≤Ta≤T _{max}		0.4	1		0.4	1.4	Ω
Long Term Stability	S	I _R = 1mA T _{min} ≤Ta≤T _{max}		20			20		ppm

* T_{min}≤Ta≤T_{max}

KA236: $T_{min} = -25^{\circ}C$, $T_{max} = 85^{\circ}C$ KA336: $T_{min} = 0^{\circ}C$, $T_{max} = 70^{\circ}C$

TYPICAL PERFORMANCE CHARACTERISTIC

TYPICAL APPLICATIONS

Fig. 5 2.5V REFERENCE

.

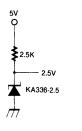


Fig. 6 2.5V Reference with minimum temperature coefficient

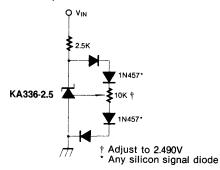
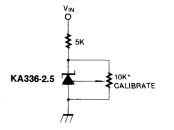
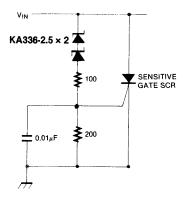




Fig. 7 Trimmed 4V to 6V reference with temperature coefficient of breakdown voltage independent


* Does not affect temperature coefficient

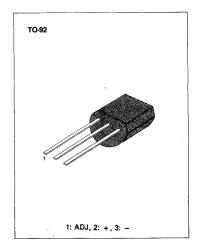
Fig. 9 5V Crowbar

Fig. 8 Precision power regulator with low temperature coefficient

LINEAR INTEGRATED CIRCUIT

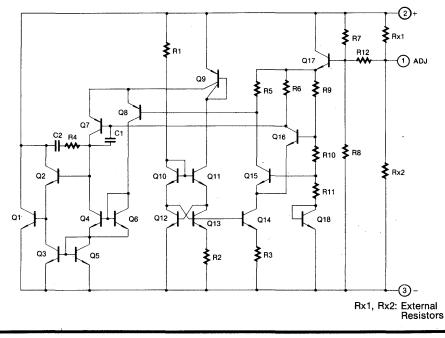
VOLTAGE REFERENCE DIODE

The KA236/KA336-5.0 integrated circuit is precision 5.0V shunt regulator. The monolithic IC voltage references operate as a low temperature coefficient 5.0V zener with 0.6 ohm dynamic impedance. A third terminal on the KA236/KA336-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.


KA236/KA336-5.0 is useful as a precision 5.0V low voltage references for digital voltmeters, power supplies or op amp circuitry. The 5.0V make it convenient to obtain a stable reference from low voltage supplies. Further, since the KA236/KA336-5.0 operates as a shunt regulators, it can be used as either a positive or negative voltage reference.

KA236 is characterized for operation from -25° C to 85° C, and KA336 from 0°C to 70°C.

FEATURES


- · Low temperature coefficient
- · Adjustable 4V to 6V
- Wide operating range current of $400 \mu A$ to 10 m A
- Three lead transistor package (To-92)
- 0.6 ohm dynamic impedance
- ± 1.0% initial tolerance available
- Guaranteed temperature stability
- · Easily trimmed for minimum temperature drift
- Fast turn on

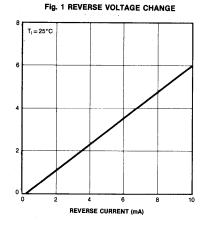
SCHEMATIC DIAGRAM

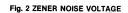
ORDERING INFORMATION

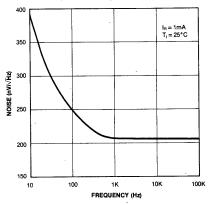
Device	Package	Operation Temperature
S 336Z-5.0	TO 00	0~70°C
S 236Z-5.0	TO-92	– 25 ~ 85°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Reverse Current	l _e	15	mA
Forward Current	lF	10	mA
Operating Temperature Range KA236-5.0 KA336-5.0	T _{opr}	$\begin{array}{c} -25 \sim +85 \\ 0 \sim +70 \end{array}$	°C
Storage Temperature Range	T _{stg}	-60 ~ +150	°C

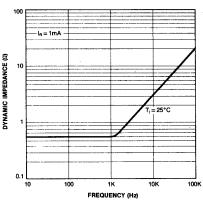

ELECTRICAL CHARACTERISTICS

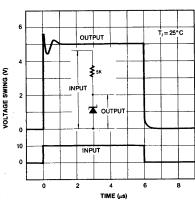

 $(T_{min} \leq T_a \leq T_{max}, unless otherwise specified)$


01	o	Test Ore division	к	KA336/236		KA336B/236B			
Characteristic	Symbol	ol Test Conditions Min Typ Max		Мах	Min Typ Max		Unit		
Reverse Breakdown Voltage	V _R	$T_a = 25^{\circ}C, I_R = 1mA$	4.8	5.0	5.2	4.9	5.0	5.1	v
Reverse Breakdown Change with Current	∆V _R	$T_a = 25^{\circ}C$ $600\mu A \le I_{B} \le 10mA$	-	6	20	_	6	20	mV
Reverse Dynamic Impedance	ZD	$T_a = 25^{\circ}C, I_R = 1mA$	-	0.6	2	_	0.6	2	Ω
Temperature Stability	$\triangle V_R T_1$	$I_R = 1mA$ $T_{min} \le T_a \le T_{max}$	_	4	12		4	12	mV
Reverse Breakdown Change with Current	$\triangle V_R T_2$	$600\mu A \leq I_{R} \leq 10mA$ $T_{min} \leq T_{a} \leq T_{max}$		6	24	_	6	24	mV
Reverse Dynamic Impedance	Z _{DT}	$I_R = 1mA$ $T_{min} \le T_a \le T_{max}$	_	0.8	2.5		0.8	2.5	Ω
Long Term Stability	S	$I_R = 1mA$ $T_{min} \le T_a \le T_{max}$	_	20	_	_	20	_	ppm

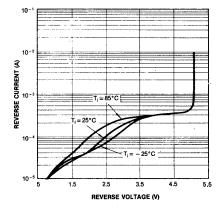
 $\begin{array}{l} T_{min} \! \leq \! T_{a} \! \leq \! T_{max} \\ \text{KA236: } T_{min} \! = \! -25\,^{\circ}\text{C}, \ T_{max} \! = \! 85\,^{\circ}\text{C} \\ \text{KA336: } T_{min} \! = \! 0\,^{\circ}\text{C}, \ T_{max} \! = \! 70\,^{\circ}\text{C} \end{array}$

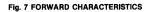
TYPICAL PERFORMANCE CHARACTERISTICS

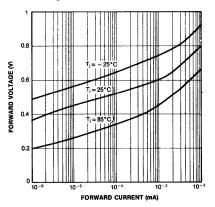




TYPICAL PERFORMANCE CHARACTERISTICS




Fig. 4 RESPONSE TIME



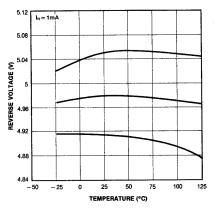
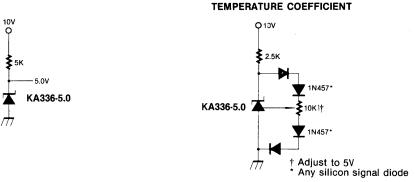



Fig. 9 5.0V REFERENCE WITH MINIMUM

TYPICAL APPLICATIONS

Fig. 10 TRIMMED 4V TO 6V REFERENCE WITH TEMPERATURE COEFFICIENT INDEPENDENT OF BREAKDOWN VOLTAGE

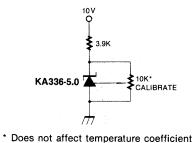
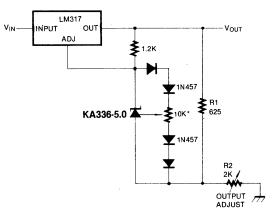
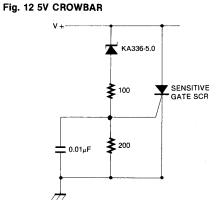
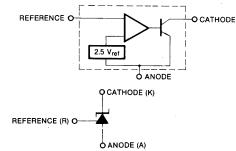
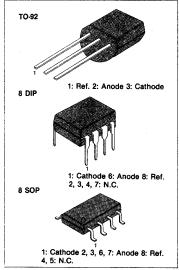




FIGURE 10

Fig. 11 PRECISION POWER REGULATOR WITH LOW TEMPERATURE COEFFICIENT

·

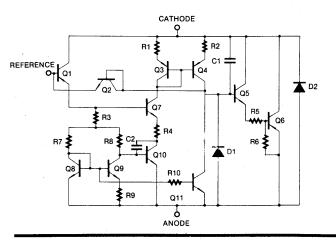

PROGRAMMABLE PRECISION REFERENCES


The KA431 is a three-terminal adjustable regulator series with guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between V_{ref} (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replancement for zener diodes in many applications. KA4311 is characterized for operation from -40° C to $+85^{\circ}$ C, and KA431C from 0°C to 70°C.

FEATURES

- Programmable output voltage to 36 volts
- Low dynamic output impedance 0.2Ω typical
- Sink current capability of 1.0 to 100mA
- Equivalent full-range temperature coefficient of 50ppm/°C typical
 Temperature compensated for operation over full rated operating
- Temperature compensated for operation over full rated temperature range
- Low output noise voltage
- Fast turn on response

BLOCK DIAGRAM



ORDERING INFORMATION

Device	Operating Temperature	Package
\$431CZ	0 ~+70°C	TO-92
KA431CN	0 ~ + 70°C	8 DIP
KA431CD	0~+70°C	8 SOP
S431IZ	- 40 ~ + 85°C	TO-92
KA431IN	- 40 ~ + 85°C	8 DIP

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operating temperature range applies unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Cathode Voltage	VKA	37	v
Cathode Current Range (Continuous)	l _K	- 100 ~ + 150	mA
Reference Input Current Range	IREF	0.05 ~ + 10	mA
Power Dissipation D, Z Suffix Package N Suffix Package	P₀	770 1000	mW mW
Operating Temperature Range KA431CZ, KA431CN, KA431CD KA431IZ, KA431IN	T _{opr}	0 ~ + 70 , - 40 ~ + 85	ې٠ ۲۰
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

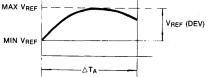
RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Cathode Voltage	V _{KA}	V _{REF}		36	v
Cathode Current	· I _K	1.0		100	mA

ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit	*T/C
Reference Input Voltage	V _{REF}	$V_{KA} = V_{REF}$ $I_K = 10 \text{mA}$	Ta = 25°C	2.440	2.495	2.550	v	1
			Ta≃0°C to 70°C	2.423		2.567		
Deviation of Reference Input Voltage Over Temperature 1	V _{REF(dev)}	$V_{KA} = V_{REF}, I_K = 10mA$ Ta = 0°C to 70°C			8	17	mV	1
Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage	V _{ref} V _{ka}	l _κ = 10mA	$V_{KA} = V_{REF}$ to 10V		- 1.4	- 2.7	mV/V	2
			V _{ка} = 10V to 36V		- 1.0	- 2.0		
Reference Input Current	I _{REF}	I _K = 10mA R1 = 10KΩ R2 =∞	Ta = 25°C		2.0	4.0		
			Ta≃0°C to 70°C			5.2	μΑ	2
Reference Input Current Deviation Over Temperature Range	(_{REF}	$I_{K} = 10 \text{mA}, \text{ R1} = 10 \text{K}\Omega$ $\text{R2} = \infty$ $\text{Ta} = 0^{\circ}\text{C} \text{ to } 70^{\circ}\text{C}$			0.4	1.2	μA	2
Minimum Cathode Current for Regulation	I _{Kmin}	V _{KA} = V _{REF}			0.5	1.0	mA	1
Off-State Cathode Current	I _{Koff}	$V_{KA} = 36V, V_{REF} = 0V.$			2.6	1000	nA	3
Dynamic Impedance 2	Zka	$V_{KA} = V_{REF}$ $I_{K} = 1.0$ to 100mA $f \le 1.0$ KHz			0.22	0.5	Ω	1

* Test Circuit



4

Note: 1. The deviation parameters V_{REF(dev)} and I_{REF(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The equivalent full-range temperature coefficient of the reference input voltage, *a*V_{REF} is defined as:

Max
$$V_{REF}$$
 Min $V_{REF} riangle T_A V_{REF(dev)}$

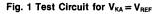
$${}^{\alpha}V_{\text{REF}} \quad (\frac{\text{ppm}}{{}^{\circ}C}) \ = \ \frac{(\frac{V_{\text{REF}}(\text{dev})}{V_{\text{REF}}@25{}^{\circ}C}) \times 10^6}{\triangle T_{\text{A}}}$$

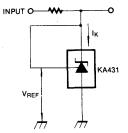
where $\triangle T_A$ is the rated operating free-air temperature range of the device. αV_{REF} can be positive or negative depending on whether minimum V_{REF} or maximum V_{REF} respectively, occurs at the lower temperature

Example: Max $V_{\text{REF}} = 2500 \text{mV} @ 30 \degree \text{C}$, Min $V_{\text{REF}} = 2492 \text{mV} @ 0 \degree \text{C}$, $V_{\text{REF}} = 2495 \text{mV} @ 25 \degree \text{C}$, $\triangle T_{\text{A}} = 70 \degree \text{C}$ for KA431C

$$\alpha V_{\text{REF}} = \frac{(\frac{8mV}{2495mV}) \times 10^6}{70^{\circ}\text{C}} = 46\text{ppm/}^{\circ}\text{C}$$

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.


2. The dynamic impedance is defined as:


$$\left| Z_{KA} \right| = \frac{\bigtriangleup V_{KA}}{\bigtriangleup I_{K}}$$

When the device is operated with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

$$\left| Z' \right| = \frac{\bigtriangleup V}{\bigtriangleup 1} = \left| Z_{KA} \right| (1 + \frac{R1}{R2})$$

TEST CIRCUIT

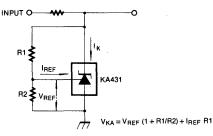
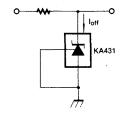
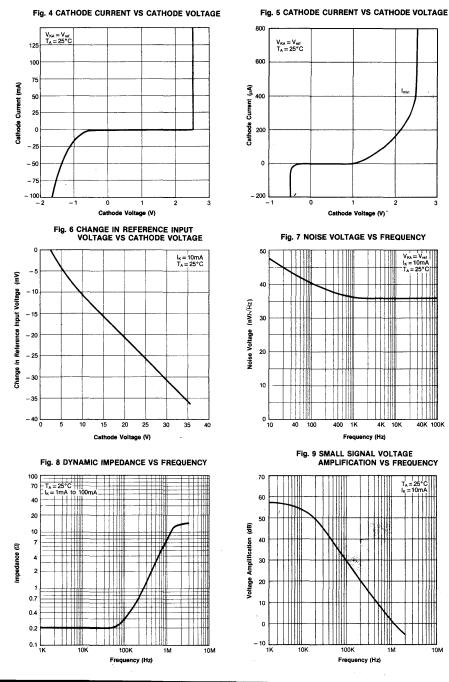
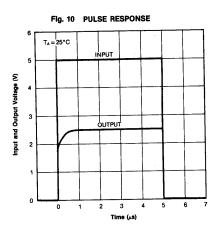
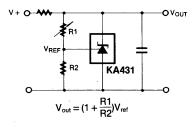
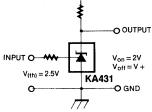




Fig. 3 Test Circuit for Ioff



TYPICAL PERFORMANCE CHARACTERISTICS



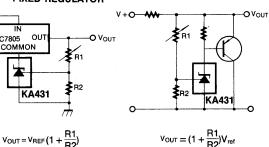


TYPICAL APPLICATIONS

FIGURE 11—SHUNT REGULATOR

FIGURE 13—SERIES REGULATOR

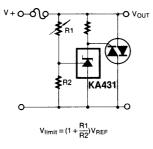
FIGURE 14-OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

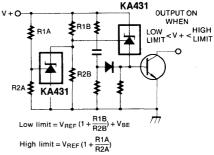

OUT

KA431

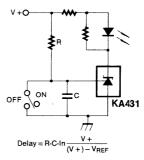
IÑ

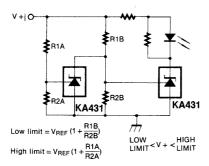
MC7805 OI COMMON

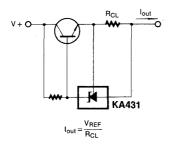

FIGURE 15—HIGHER-CURRENT SHUNT REGULATOR



TYPICAL APPLICATIONS (Continued)


FIGURE 16-CROWBAR


FIGURE 17—OVER-VOLTAGE/UNDER-VOLTAGE PROTECTION CIRCUIT


FIGURE 19—DELAY TIMER

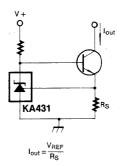

FIGURE 18-VOLTAGE MONITOR

FIGURE 20-CURRENT LIMITER OR CURRENT SOURCE

FIGURE 21—CONSTANT-CURRENT SINK

Electronics

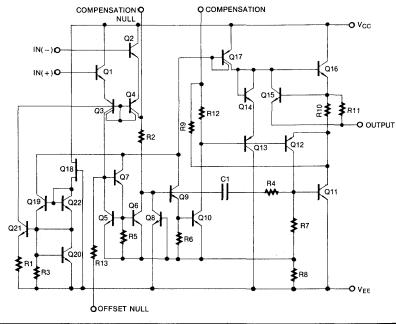
SINGLE OPERATIONAL AMPLIFIER

The KA201A and KA301A are general-purpose operational amplifiers which are externally phase compensated, permit a choice of operation for optimum high-frequency performance at a selected gain: unity-gain compensation can be obtained with a single capacitor.

FEATURES

- · Short-circuit protection and latch-free operation
- Slew rate of 10V/µs as a summing amplifier
- · Class AB output provides excellent linearity
- · Low bias current

BLOCK DIAGRAM



8 DIP A SOP

ORDERING INFORMATION

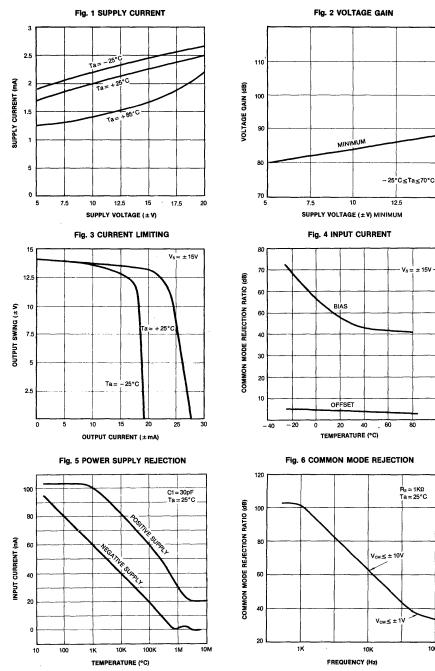
Device	Package	Operating Temperature
KA201AN	8 DIP	−25 ~ +85°C
KA301AN	8019	0 ~ + 70°C
KA201AD	8 SOP	-25 ~ +85°C
KA301AD	0 50P	0 ~ +70°C

SCHEMATIC DIAGRAM

Characteristic	Symbol	KA201A	KA301A	Unit
Supply Voltage	Vs	± 22	± 18	v
Differential Input Voltage	VID	± 30	± 30	V
Input Voltage	V _t	± 15	± 15	V
Output Short Circuit Duration		Continuous	Continuous	
Power Dissipation	Pp	500	500	mW
Operating Temperature Range	Topr	- 25 ~ + 85	0~+70	°C
Storage Temperature Range	T _{stg}	-65 ~ +150	-65 ~ +150	°C

ELECTRICAL CHARACTERISTICS

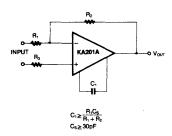
(Ta = +25°C, V_{cc} = +15V, V_{EE} = -15V, unless otherwise specified)


		Test Conditions			KA201A			KA301A		
Characteristic Symbol		Test Co	Min	Тур	Max	Min	Тур	Max	Unit	
· · · · · · · · ·		R _s ≤50KΩ			0.5	2.0		2.0	7.5	mV
Input Offset Voltage	Vio		NOTE 1			3			10	mV
					1.5	10		4.5	50	nA
Input Offset Current	I _{IO}		NOTE 1			20			70	nA
Innut Dies Current					40	75		60	250	nA
Input Bias Current	I _{IB}		NOTE 1			100			300	nA
		$V_S = \pm 20V$			2.0	3.0				mA
Supply Current	ls	$V_s = \pm 15V$						2.0	3.0	mA
		$V_s = \pm 20V, T_a = T_{amax}$		·	1.7	2.5				mA
	Av	$V_{CC} = \pm 15V, R_{L} \ge 2K\Omega, V_{o} = \pm 10V$		50	160		25	160		V/mV
Large Signal Voltage Gain	Av		NOTE 1	25			15			V/mV
Average Temperature Coefficient of Input Offset Voltage	∆V _{i0} /∆T	NOTE 1			3.0	15		6.0	30	μV/°C
Average Temperature		25°C≤Ta≤Tamax			0.01	0.1		0.01	0.3	nA/°C
Coefficient of Input Offset Current		T _{amin} ≤T _a ≤25°C			0.02	0.2		0.02	0.6	nA/°C
		$V_s = \pm 20V$	NOTE 1	± 15						V
Input Voltage Range	VICR	$V_s = \pm 15V$	NOTE 1				± 12			V
Common-Mode Rejection Ratio	CMRR	R _s ≤50KΩ	NOTE 1	80	100		70	95		dB
Power Supply Rejection Ratio	PSRR	R _s ≤50KΩ	NOTE 1	80	100		70	100		dB
Output Voltago Swing	V	$V_{-} + 15V_{-}$	$R_L = 10 K\Omega$	± 12	± 14		± 12	± 14		V
Output Voltage Swing	V _{OUT}	$V_s = \pm 15V$	$R_L = 2.0 K\Omega$	± 10	± 13		± 10	± 13		V
Input Resistance	Ri		1. 1997 au 1998	1.5	4.0		0.5	2.0		MΩ

NOTE 1 KA201A: -25≤T_a≤ +85°C KA301A: 0≤T_a≤ +70°C

15

TYPICAL PERFORMANCE CHARACTERISTICS



ISUNG Electronics

3

100K

Fig. 7 SINGLE POLE COMPENSATION

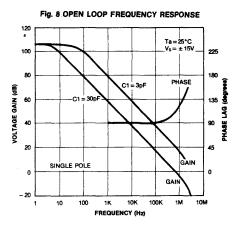
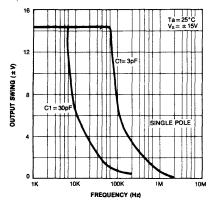



Fig. 9 LARGE SIGNAL FREQUENCY RESPONSE

Ş

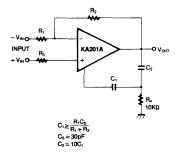
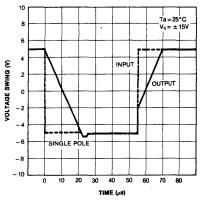
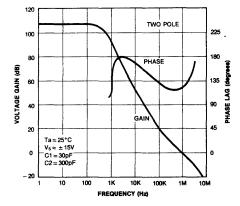




Fig. 10 VOLTAGE FOLLOWER PULSE RESPONSE

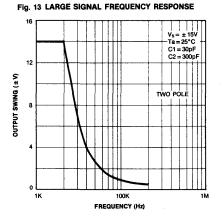


Fig. 15 FEEDFORWARD COMPENSATION

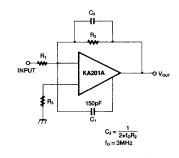


Fig. 14 VOLTAGE FOLLOWER PULSE RESPONSE

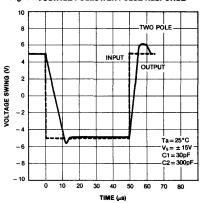


Fig. 16 OPEN LOOP FREQUENCY RESPONSE

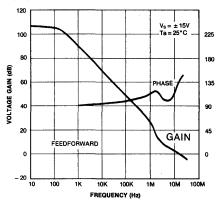


Fig. 17 LARGE SIGNAL FREQUENCY RESPONSE

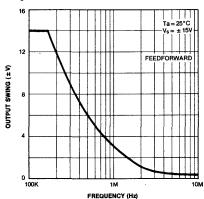
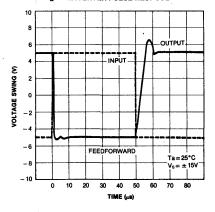
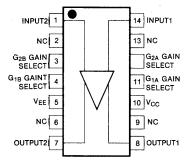
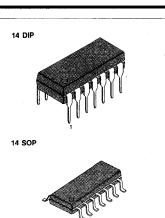



Fig. 18 INVERTER PULSE RESPOSE

DIFFERENTIAL VIDEO AMPLIFIER

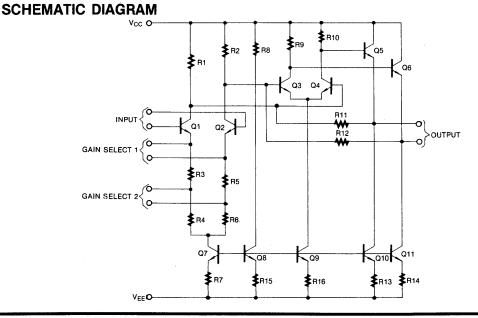
The KA733C is a monolithic differential input, differential output, wideband video amplifier.


The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability. The KA733C offers fixed gains 10,100,400 without external components, and adjustable gains from 10 to 400 by use of an external resistor.


The KA733C is intended for use as a high performance video and pluse amplifier in communications, magnetic memories, displays and video recorder systems.

FEATURES

- 120MHz bandwidth
- 250KΩ input resistance
- Selectable gains of 10,100,400
- No frequency compensation required


BLOCK DIAGRAM

ORDERING INFORMATION

	Device	Package	Operating Temperature
ĸ	A733CN	14 DIP	0 70%0
ĸ	A733CD	14 SOP	0∼+70°C

Characteristic	Symbol	Value	Unit
Differential Input Voltage	V _{iD}	±5	V
Common mode input Voltage	V _I	±6	V
Power Supply Voltage	Vs	±8	v
Output Current	lo	10	mA
Power Dissipation	Pp	500	mW
Operating Temperature Range	Topr	0~+70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

($V_{CC} = + 6V$, $V_{EE} = - 6V$, $Ta = 25^{\circ}C$, unless otherwise specified)

Characteristic	Test Figure	Symbol	Test Conditions	Min	Тур	Max	Unit
Differential Voltage Gain Gain 1 (Note 1) Gain 2 (" 2) Gain 3 (" 3)	1	Av	$R_L = 2K\Omega$, $V_{out} = 3V_{PP}$	250 80 8	400 100 10	600 120 12	v/v
Bandwidth Gain 1 (″ 1) Gain 2 (″ 2) Gain 3 (″ 3)	2	BW	$R_s = 50\Omega$		40 90 120		MHz
Rise Time Gain 1 (″ 1) Gain 2 (″ 2) Gain 3 (″ 3)	2	tr	$R_s = 50\Omega$ V _{OUT} = 1V _{PP}		10.5 4.5 2.5	12	ns
Propagation Delay Gain 1 (" 1) Gain 2 (" 2) Gain 3 (" 3)	2	t _{pd}	$R_s = 50\Omega$ V _{OUT} = 1V _{PP}		7.5 6.0 3.6	10	ns
Input Resistance Gain 1 (" 1) Gain 2 (" 2) Gain 3 (" 3)	3	Ri	V ₀₀ ≤1V	10	4.0 30 250		KΩ
Input Offset Current		lio	· · · · · · · · · · · · · · · · · · ·		0.4	5	μA
Input Bias Current		I _{IB}			9	30	μA
Input Voltage Range	1	VICR		± 1			V
Common Mode Rejection Ratio Gain 2 Gain 2	4	CMRR	V _{CM} = ± 1V, f≤100KHz V _{CM} = ± 1V, f=5MHz	60	86 60		dB dB
Power Supply Rejection Ratio Gain 2	1	PSRR	$\triangle V_s = \pm 0.5V$	50	70		dB
Output Offset Voltage Gain 1 Gain 2 and 3	1	Voo	R _L = ∞		0.6 0.35	1.5 1.5	V V
Input Capacitance			Gain 2		2.0		pF

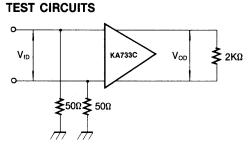
ELECTRICAL CHARACTERISTIC (Continued)

Characteristic	Test Figure	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Common Mode Voltage	1	V _{OCM}	R _L =∞	2.4	2.9	3.4	V
Output Voltage Swing	1	Vout	R _L = 2KΩ	3.0	4.0		V
Output Sink Current		Isink		2.5	3.6		mA
Power Supply Current	1	ls	R∟=∞		18	24	mA
Output Resistance		Ro			20		Ω

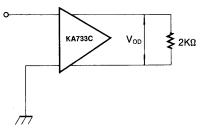
ELECTRICAL CHARACTERISTICS

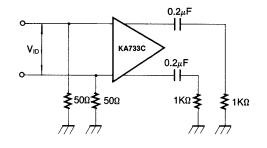
The following specifications apply over the range of $0^{\circ}C \le Ta \le 70^{\circ}C$ V_{CC} = +6V, V_{EE} = -6V

Characteristic	Test Figure	Symbol	Test Conditions	Min	Тур	Max	Unit
Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) Gain 3 (Note 3)	1	Av	$R_{L} = 2K\Omega$ $V_{out} = 3V_{pp}$	250 80 80		600 120 12	v/v
Input Bias Current		I _{IB}				40	μA
Input Offset Current		lio				6.0	μA
Input Voltage Range	1	VICR		± 1.0			V
Input Impedance (Gain 2)	3	Ri		8.0			KΩ
Common Mode Rejection Ratio Gain 2 (Note 2)	4	CMRR	$V_{CM} = \pm 1V$, f ≤ 100 KHz	50			dB
Power Supply Rejection Ratio Gain 2 (Note 2)	1	PSRR		50			dB
Output Offset Voltage Gain 1 (Note 1) Gain 2 and Gain 3 (Note 2, 3)	1	Voo				1.5 1.5	v
Output Voltage Swing	1	V _{OP}		2.8			v
Output Sink Current		Isink		2.5			mA
Power Supply Current		ls				27	mA


Notes 1. Gain select pins G_{1A} and G_{1B} connected together.

2. Gain select pins G_{2A} and G_{2B} connected together.


3. All gain select pins open.


PARAMETER MEASUREMENT INFORMATION

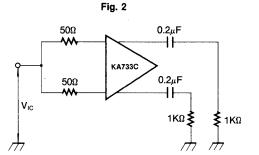


Fig. 4

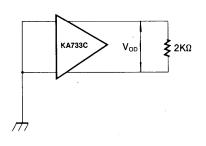
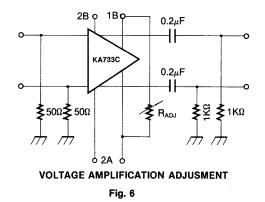
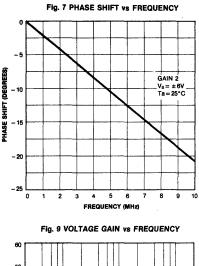
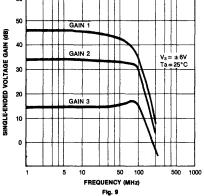
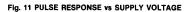
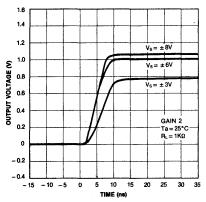


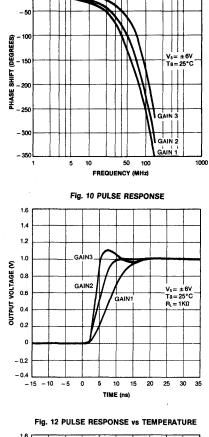
Fig. 5

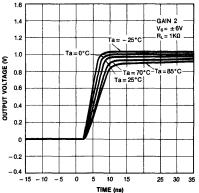



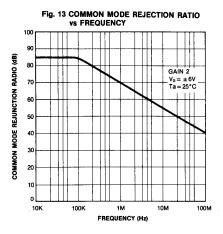


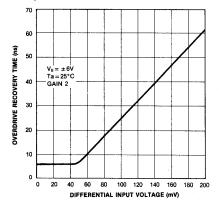

Fig. 8 PHASE SHIFT vs FREQUENCY

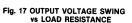

a

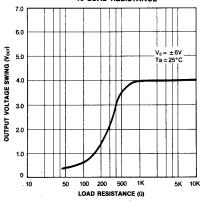

TYPICAL PERFORMANCE CHARACTERISTICS











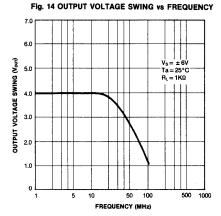
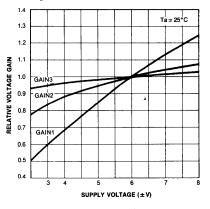
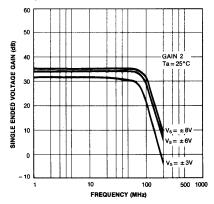
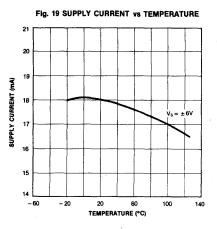


Fig. 16 VOLTAGE GAIN vs SUPPLY VOLTAGE


Fig. 18 GAIN vs FREQUENCY vs SUPPLY VOLTAGE



482

KA733C

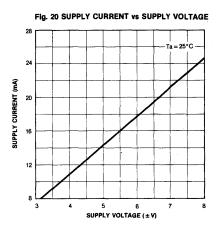
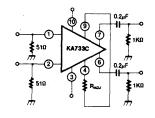
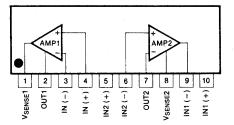
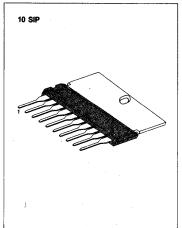



Fig. 22 VOLTAGE GAIN ADJUST CIRCUIT

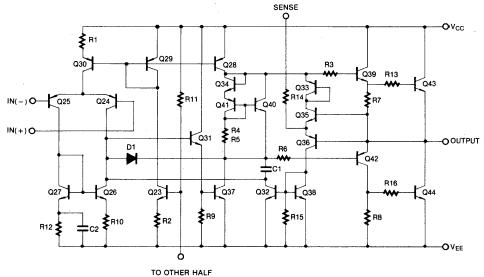

DUAL POWER OPERATIONAL AMPLIFIER


. The KA9256 is a dual power operational amplifier and it is output maximum current is 1.0A (V_s = \pm 15V). It can be used in arm driver for player, driver for brush motors forward and reverse rotation control and CD output driver for hole motor.

FEATURES

- Interal current limiting: I_{sc} = 350mA (R_{sc} = 2.2Ω)
- High output current: $I_0 = 500 \text{mA}$ max
- 10 SIP H/S package
- Internal phase compensated

BLOCK DIAGRAM



ORDERING INFORMATION

Device	Package	Operating Temperature
KA9256	10 SIP H/S	−20 ~ + 70°C

SCHEMATIC DIAGRAM

Characteristics	Symbol	Value	Unit
Supply Voltage	Vs	± 18	v
Output Current	I.	1.0	A
Power Dissipation	PD	12.5	W
Operating Temperature Range	T _{opr}	- 20 ~ + 70	O.
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

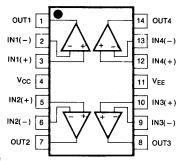
ELECTRICAL CHARACTERISTICS

($V_{CC} = +15V$, $V_{EE} = -15V$, $Ta = 25^{\circ}C$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}			2	6	mV
Input Offset Current	lio			10	200	nA
Input Bias Current	l _{iB}			100	700	nA
Supply Current	۱ _s			10	20	mA
Output Voltage Swing	VOUT	$R_L = 33\Omega$	± 12	± 13		v
Large Signal Voltage Gain	Av			100		dB
Input Voltage Range	VICR		± 12	± 14		v
Common Mode Rejection Ratio	CMRR		70	90		dB
Power Supply Rejection Ratio	PSRR			50	150	μV/V
Bandwidth	BW			1.0		MHz
Slew Rate	SR	$A_V = 1$, $R_L = 33\Omega$, $R = 10\Omega$, $C = 0.1\mu F$		0.15		V/μs
Limiting Current	l _{os}	$R_{sc} = 2.2\Omega$		0.35		A
Cross Talk	СТ	$R_{L} = 33\Omega, V_{o} = 1V_{p \cdot p}$		60		dB

485

LINEAR INTEGRATED CIRCUIT

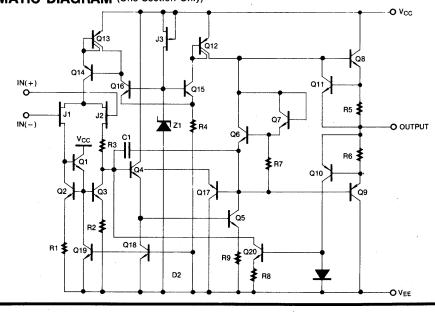

QUAD JFET INPUT OPERATIONAL AMPLIFIERS

The KF347 is a high speed quad JFET input operational amplifiers. This feature high impedance, wide bandwidth, high slew rate, and low input offset and bias currents. The KF347 may be used in circuits requiring high input impedance, high slew rate and wide bandwidth, low input bias current.

FEATURES

- . Low input bias
- High input impedance
- Wide bandwidth: 4 MHz (Typ)
- High slew rate: 13 V/ μ s (Typ)

BLOCK DIAGRAM



ORDERING INFORMATION

Device	Package	Operating Temperature
KF347CN KF347ACN		0 ~ + 70°C
KF347IN KF347AIN	14 DIP	25 ~ + 85°C

SCHEMATIC DIAGRAM (One Section Only)

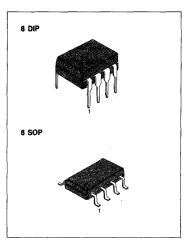
Characteristics	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18	V.
Differential Input Voltage	VID	± 30	v
Input Voltage Range	V,	± 15	v
Output Short Circuit Duration		Continuous	
Power Dissipation	Po	570	mV
Operating Temperature Range KF347C/AC KF347I/AI	T _{opr}	0 ~ + 70 - 25 ~ + 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

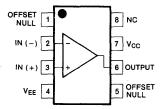
(V_{CC} = \pm 15V, V_{EE} = \pm 15V, Ta = 25°C, unless otherwise specified)

Oberesteriatio	Cumhal	Symbol Test Conditions		K	-347AC/	AI	ł	(F347C/	I						
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Unit					
Innut Offerst Methods		D 10K0	····		3	5		5	10	mν					
Input Offset Voltage	V _{io}	$R_s = 10K\Omega$	NOTE1			7			13						
Input Offset Voltage Drift	$\Delta V_{IO} / \Delta T$	$R_s = 10 K\Omega$			10				10	μV/°C					
					25	100		25	100	- 4					
Input Offset Current	lio		NOTE1			4			4	рА					
Input Bias Current I _{IB}			•		50	200		50	200	- 4					
	Iв		NOTE1			8			8	рА					
Lana Gianal Valtana Cain	Δ., Ι	Av	$R_L = 2K\Omega$		50	100		25	100		V/mV				
Large Signal Voltage Gain			Av	Av	Av	Av	Av	Av V	$V_0 = \pm 10V$	NOTE1	15			15	
Output Voltage Swing	V _{OUT}	$R_s = 10K\Omega$		±12	± 13.5		± 12	± 13.5		V					
Input Voltage Range	VICR			±11	+ 15 - 12		± 11	+ 15 - 12		v					
Common-Mode Rejection Ratio	CMRR	R _s ≤10KΩ		80	100		80	100		dB					
Power Supply Rejection Ratio	PSRR	R _s ≤10KΩ		80	100		80	100		dB					
Input Resistance	Rı				10 ¹²		10 ¹²			Ω					
Supply Current	ls				7.2	11		7.2	11	mA					
Slew Rate	SR				13		13			V/μs					
Gain Bandwidth Product	GBW				4		4			MHz					

NOTE 1. KF347C/AC: 0≤Ta≤+70°C 2. KF347I/AI: -25≤Ta≤+85°C

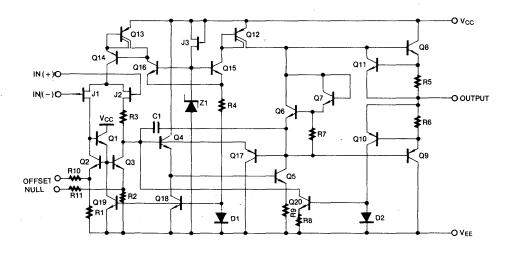


SINGLE OPERATIONAL AMPLIFIER


The KF351 is JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide bandwidth, low input bias currents and offset currents.

FEATURES

- Internally trimmed offset voltage: 10mV
- Low input bias current: 50pA
- Wide gain bandwidth: 4MHz
- High slew rate: 13V/μs
- Low supply current: 1.8mA
- High input impedance: 10¹²Ω


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature			
KF351N	8 DIP	0			
KF351D	8 SOP	0 ~ + 70°C			

SCHEMATIC DIAGRAM

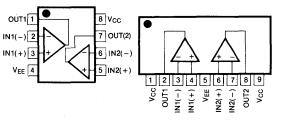
Characteristics	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18	v
Differential Input Voltage	VID	± 30	V
Input Voltage Range	V1	± 15	V
Output Short Circuit Duration		Continuous	
Power Dissipation	Po	500	mV
Operating Temperature Range	T _{opr}	0~+70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	. °C

ELECTRICAL CHARACTERISTICS

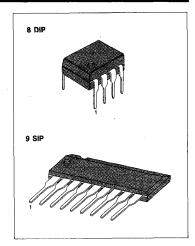
($V_{CC} = +15V$, $V_{EE} = -15V$, $Ta = 25^{\circ}C$, unless otherwise specified)

Characteristic	Symbol	Test	Min	Тур	Max	Unit		
	V	D 101/			5.0	10	mV	
Input Offset Voltage	V _{IO}	R _s = 10K	0°C≤Ta≤+70°C			13		
Input Offset Voltage Drift	∆V _{I0} /∆T	$R_s = 10K$	0°C≤Ta≤+70°C		10		μV/°C	
					25	100	рА	
Input Offset Current	lio		0°C≤Ta≤+70°C			4	nA	
					50	200	ρА	
Input Bias Current	I _{IB}		0°C≤Ta≤+70°C			8	nA	
Input Resistance	Ri				10 ¹²		Ω	
			$V_0 = \pm 10V$		25	100		
Large Signal Voltage Gain	Av	$R_L = 2K\Omega$	0≤Ta≤ + 70°C	15			V/mV	
Output Voltage Swing	Vout	$R_L = 10K\Omega$		± 12	± 13.5		٧	
Input Voltage Range	VICR		non, 11 anos, 11 anos,	±11	± 15		v	
Common Mode Rejection Ratio	CMRR	R _s ≤10KΩ		70	100		dB	
Power Supply Rejection Ratio	PSRR	R _s ≤10KΩ		70	100		dB	
Power Supply Current	Is	and the lat			2.3	3.4	mA	
Slew Rate	SR	A _v = 1			13		V/µs	
Gain-Bandwidth Product	GBW				4		MHz	

LINEAR INTEGRATED CIRCUIT

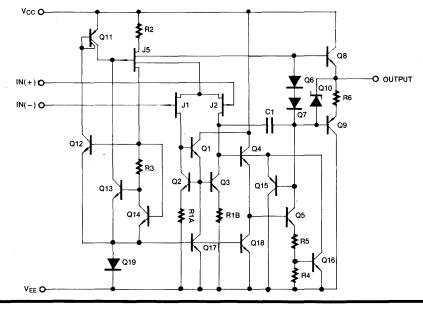

DUAL JFET INPUT OPERATIONAL AMPLIFIERS

The LF442 is dual low power operational amplifiers. The key feature of this op amp are low power, low input offset voltage, high slew rate, high gain bandwidth.


FEATURES

- Low supply current: $400\mu A$ MAX
- · Low input bias current: 50pA MAX
- · Low input offset voltage: 1mV MAX
- High slew rate: 1V/µs
- High gain bandwidth: 1MHz

BLOCK DIAGRAM



SCHEMATIC DIAGRAM (One Section Only)

ORDERING INFORMATION

Device	Package	Operating Temperature
KF442CN KF442ACN	8 DIP	0 ~ + 70°C
KF442CS KF442ACS	9 SIP	0~+70°C
KF442IN KF442AIN	8 DIP	
KF442CS KF442ACS	9 SIP	– 25 ~ + 85°C

Characteristics	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18	v
Differential Input Voltage	V _{ID}	± 30	v
Input Voltage Range	V	± 15	v
Output Short Circuit Duration		Continuous	
Power Dissipation	Po		mV
Operating Temperature Range KF442C/AC KF442I/AI	T _{opr}	0 ~ + 70 - 25 ~ + 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = \pm 15V, V_{EE} = \pm 15V, Ta = 25°C, unless otherwise specified)

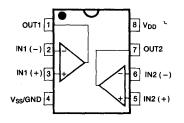
Oherneterietie	C	Combal Test Conditions		KF442AC/AI		KF442C/I														
Characteristic Symb		Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit										
Input Offect Voltage		D 10K0	<u> </u>		0.5	1.0	ê.	1.0	5.0											
Input Offset Voltage	V _{IO}	$R_s = 10K\Omega$	NOTE1		-				7.5	mV										
Input Offset Voltage Drift	∆V _{I0} /∆T	$R_s = 10K\Omega$			7	10		7		μV/°C										
Input Offset Current	,				5	25		5	50	pА										
input Onset Current	l _{io}		NOTE1			10			10	nA										
Input Biog Ourrent					10	50		10	100	pА										
Input Bias Current	I _{IB}	IB	IB	Iв	IВ	IВ	IВ	IВ	IB	IB	IB	IB	NOTE1			20			20	nA
Large Gianal Valtage Cain			$R_L = 10 K\Omega$	A	50	200		25	200		11									
Large Signal Voltage Gain	Av	$V_0 = \pm 10V$	NOTE1	25	200		15	200		V/mV										
Output Voltage Swing	Vout	$R_s = 10K\Omega$	J	±12	± 13		± 12	± 13		V										
Input Voltage Range	VICR			± 16	+ 18 - 17		± 11	+ 14 - 12		v										
Common-Mode Rejection Ratio	CMRR	R _s ≤10KΩ		80	100		70	95	1	dB										
Power Supply Rejection Ratio	PSRR	R _s ≤10KΩ		80	100		70	90		dB										
Input Resistance	R,				10 ¹²		10 ¹²		1											
Supply Current	ls				300	400		400	500	μA										
Slew Rate	SR			0.8	1		0.6	1		V/µs										
Gain Bandwidth Product	GBW			0.8	1		0.6	1		MHz										

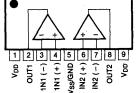
NOTE 1. KF442C/AC: 0≤Ta≤+70°C 2. KF442I/AI: -25≤Ta≤+85°C

CMOS INTEGRATED CIRCUIT

DUAL CMOS OPERATIONAL AMPLIFIER

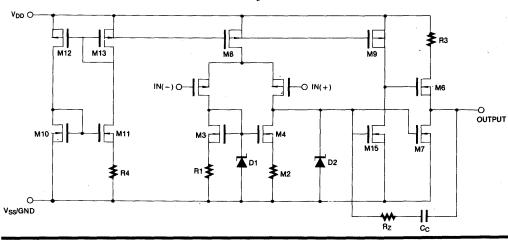
KS272 is CMOS operational amplifier designed to operate with single or dual supplies.

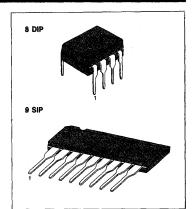

This device has extremely high input impedance, low input bias and offset current.


Application areas include transducer amplifier, amplifier blocks, active filters, signal buffers, and all the conventional OP Amp circuits which can be easily implemented in single power supply systems.

FEATURES

- Wide operating voltage range; 3V to 18V or or ± 1.5V to ± 8V
- High Input Impedance: 10¹²Ω
- Very low input bias current
- Common-mode input voltage range includes the negative rail
- · Single-supply voltage operation.


BLOCK DIAGRAM



(one section only)

Device	Package	Operating Temperature
KS272CN	8 DIP	
KS272ACN	ODIF	0∼ \$70°C
KS272CS	9 SIP	0~ \$70 C
KS272ACS	9 317	
KS272IN	8 DIP	
KS272AIN		-25 ~ +85°C
KS272IS	9 SIP	-25~+05°C
KS272AIS	9 3 IP	

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{DD}	18	v
Differential Input Voltage	V _{1D}	18	v
Input Voltage	V,	– 0.3 ~ + 18	v
Duration of Short Circuit (Note 1)		unlimited	
Power Dissipation	· Po	500	m₩
Operating Temperature Range KS272C/AC KS272I/AI	T _{opr}	0 ~ + 70 - 25 ~ + 85	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

(Note 1) The output may be shorted to ground or either supply, for V_{DD}≤14V. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 10V, Ta = 25^{\circ}C, unless otherwise specified)$

			Test Ossellations		2C/KS	2721	KS272	ACIKS	272AI		
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Мах	Unit	
		$V_0 = 1.4V$	<u></u>			10			5		
Input Offset Voltage	V _{IO}	$R_s = 50\Omega$	NOTE2			12			12	mV	
Innut Offerst Current		$V_{IC} = 5V$			1			1		- 4	
Input Offset Current	lio	$V_0 = 5V$	NOTE2			100			100	рА	
Innut Rice Current		$V_{IC} = 5V$			1			1			
Input Bias Current	I _{IB}	$V_0 = 5V$	NOTE2			150			150	рА	
Common-Mode Input Voltage Range	VICR			0.2 to 9			- 0.2 to 9			v	
Outrast Mathematica		$V_{ID} = 100 mV$		8	8.6		8	8.6		v	
Output Voltage Swing	Vout	NOTE2		7.8			7.8			v	
Lorge Cignel Veltage Coin		$V_0 = 1$ to 6V	$V_0 = 1$ to 6V		92		80	92		dB	
Large Signal Voltage Gain	Av	Av	$R_s = 50\Omega$	NOTE2	77.5			77.5			uв
Common-Mode Rejection Ratio	CMRR	$V_0 = 1.4V$ $V_{IC} = V_{ICB}$ min		70	88		70	88		dB	
Power Supply Rejection Ratio	PSRR	$V_{DD} = 5 \text{ to } 1$ $V_0 = 1.4 \text{V}$	0V	65	82		65	82		dB	
0.4-4.0.	I _{source}	$V_0 = 0V$ $V_{ID} = 100mV$			- 55			- 55			
Output Current	l _{sink}	$V_0 = V_{DD}$ $V_{ID} = -100n$	nV		15			15		mA	
Supply Current		No load, V ₁₀	c = 5V		1	2		1	2		
(each amplifier)	IDD	$V_0 = 5V$	NOTE2			2.2			2.2	mA	
Unity Gain Bandwidth	BW	$A_V = 40 dB, C_L = 10 pF$ $R_S = 50 \Omega$			4.5			4.5		MHz	
Slew Rate	SR	Unity Gain R∟≥2KΩ, C∟	= 100pF		2.3			2.3		V/µs	
Channel Seperation	CS	A _v = 100			120			120		dB	

NOTE 1. KS272C/A℃: 0≤Ta≤+70°C 2. KS272I/AI: -25≤Ta≤+85°C

TYPICAL APPLICATION INFORMATION

Latch Up Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure that can function as an SCR, and under certain conditions may be triggered into a low impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3V beyond the supply rails may be applied any pin. In general, the OP amp supplies should be established simultaneously with, or before any input signals are applied.

Output Stage Considerations

The amplifier's output stage consists of a source-follower connected pull up transistor and an open-drain pulldown transistor. The high-level output voltage (V_{OH}) is virtually independent of the I_{DD} selection, and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage (V_{OL}) decreases with reduced output current and higher input common-mode voltage. With no load, V_{OL} is essentially equal to the GND pin potential.

Circuit Layout Precaustions

The user is caustioned that, due to extremely high input impedance, care must be exercised in layout, construction board cleanliness, and supply filtering to avoid hum and noise pick up.

TYPICAL APPLICATIONS

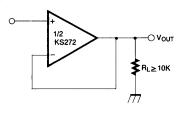
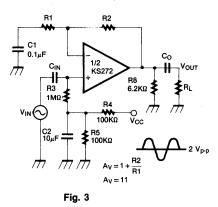
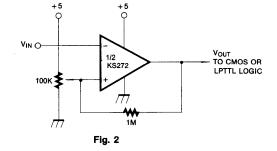




Fig. 1

AC Coupled Non-Inverting Amplifier

Pulse Generator

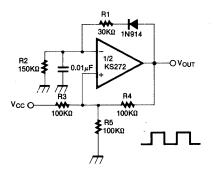


Fig. 4

TYPICAL APPLICATION

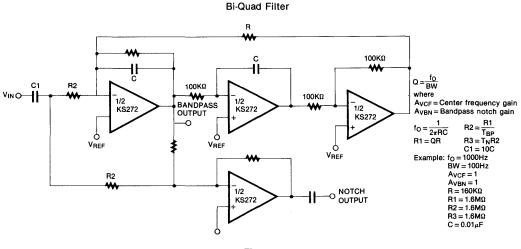
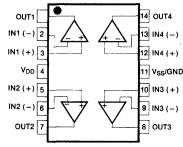


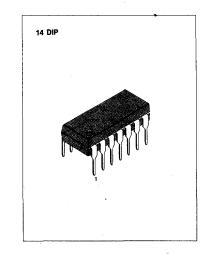
Fig. 5

CMOS INTEGRATED CIRCUIT

QUAD CMOS OPERATIONAL AMPLIFIER

KS274 is CMOS operational amplifier designed to operate with single or dual supplies.

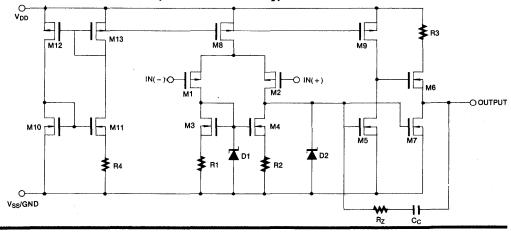

This device has extremely high input impedance, low input bias and offset current.


Application areas include translucer amplifier, amplifier blocks, active filters, signal buffers, and all the conventional OP Amp circuits which can be easily implemented in single power supply systems.

FEATURES

- Wide operating voltage range; 3V to 16V or or ± 1.5V to ± 8V
- High Input Impedance: 10¹²Ω
- Very low input bias current
- Common-mode input voltage range includes the negative rail
- · Single-supply voltage operation.

BLOCK DIAGRAM



ORDERING INFORMATION

Device Package		Operating Temperature					
KS274CN	14 DIP	0 70% 0					
KS274ACN	14 DIP	0 ~ + 70°C					
KS274IN		05 . 0580					
KS274AIN	14 DIP	– 25 ~ + 85°C					

SCHEMATIC DIAGRAM (One Section Only)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage		18	v
Differential Input Voltage	VID	18	v
Input Voltage	V	- 0.3 - + 18	. V
Duration of Short Circuit (Note 1)		unlimited	
Power Dissipation	PD	570	mW
Operating Temperature Range KS274C/AC KS274I/AI	T _{opr}	$0 \sim +70$ - 25 \sim + 85	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

(Note 1) The output may be shorted to ground or either supply, for V_{DD}≤14V. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 10V, Ta = 25^{\circ}C, unless otherwise specified)$

Characteristic		Test Conditions		KS27	4C/KS	2741	KS274	11-24		
Characteristic	Symbol	Test Cond	Test Conditions		Тур	Max	Min	Тур	Max	Unit
		$V_0 = 1.4V$				10			5 '	
Input Offset Voltage	V _{io}	$R_s = 50\Omega$	NOTE2			12			12	mV
In such Official Ourseast		$V_{IC} = 5V$			1			1		
Input Offset Current	l _{io}	$V_0 = 5V$	NOTE2			100			100	рА
Innut Dies Current	_	$V_{IC} = 5V$			1			1		- 4
Input Bias Current	I _{IB}	$V_0 = 5V$	NOTE2			150			150	рА
Common-Mode Input Voltage Range	V _{ICR}			- 0.2 to 9			– 0.2 to 9			v
Outrust Maltana Outra		V _{ID} = 100mV		8	8.6		8	8.6		
Output Voltage Swing	Vout		NOTE2	7.8			7.8			v
		$V_0 = 1$ to 6V		80	92		80	92		
Large Signal Voltage Gain	Av	$R_s = 50\Omega$	NOTE2	77.5		·	77.5			dB
Common-Mode Rejection Ratio	CMRR	$V_0 = 1.4V$ $V_{IC} = V_{ICR}$ min	n	70	88		70	88		dB
Power Supply Rejection Ratio	PSRR	$V_{DD} = 5 \text{ to } 10$ $V_0 = 1.4 \text{V}$	V	65	82		65	82		dB
0	I _{source}	$V_0 = 0V^{-1}$ $V_{1D} = 100 \text{mV}$			- 55			- 55		-
Output Current	I _{sink}	$V_0 = V_{DD}$ $V_{1D} = -100m$	۱V		15			15		mA
Supply Current		No load, V _{IC}	= 5V		1	2		1	2	
(each amplifier)	I _{DD}	$V_0 = 5V$	NOTE2			2.2			2.2	mA
Unity Gain Bandwidth	BW	$A_v = 40 dB, C$ $R_s = 50\Omega$	C _L = 10pF		2.3			2.3		MHz
Slew Rate	SR	Unity Gain R _L ≥2KΩ, C _L	= 100pF		4.5			4.5		V/µs
Channel Seperation	CS	A _v = 100			120			120		dB

NOTE 1. KS274C/AC: 0≤Ta≤ + 70°C

2. KS274I/AI: −25≤Ta≤+85°C

TYPICAL APPLICATION INFORMATION

Latch Up Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure that can function as an SCR, and under certain conditions may be triggered into a low impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3V beyond the supply rails may be applied any pin. In general, the OP amp supplies should be established simultaneously with, or before any input signals are applied.

Output Stage Considerations

The amplifier's output stage consists of a source-follower connected pull up transistor and an open-drain pulldown transistor. The high-level output voltage (V_{OH}) is virtually independent of the I_{DD} selection, and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage (V_{OL}) decreases with reduced output current and higher input common-mode voltage. With no load, V_{OL} is essentially equal to the GND pin potential.

Circuit Layout Precautions

The user is cautioned that, due to extremely high input impedance, care must be exercised in layout, construction board cleanliness, and supply filtering to avoid hum and noise pick up.

TYPICAL APPLICATIONS

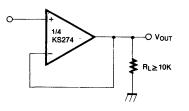
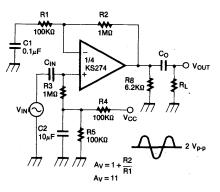



Fig. 1

AC Coupled Non-Inverting Amplifier

Pulse Generator

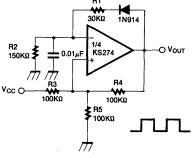
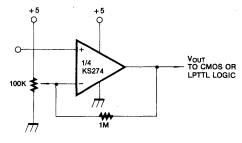
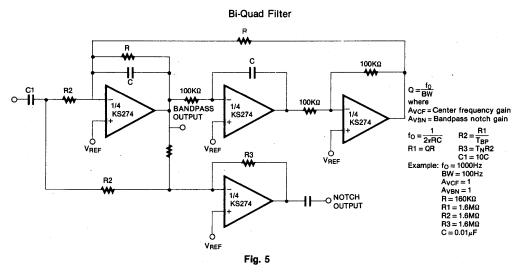



Fig. 4



498

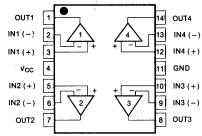
TYPICAL APPLICATION INFORMATION

÷

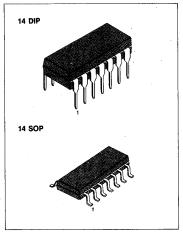
LINEAR INTEGRATED CIRCUIT

QUAD OPERATIONAL AMPLIFIERS

The LM224 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage.

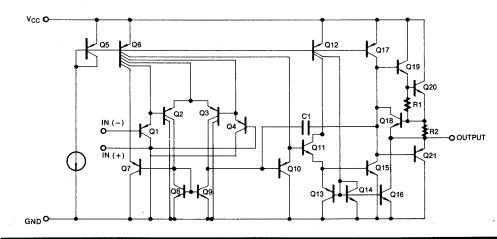

Operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts. voltage.

Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single power supply systems.


FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide power supply range: LM224/A, LM324/A: 3V \sim 32V (or \pm 1.5V \sim 16V) LM2902: 3V \sim 26V (or \pm 1.5V \sim 13V)
- Input common-mode voltage range includes ground
- Large output voltage swing: 0V DC to $V_{\text{CC}}\text{-}1.5\text{V}$ DC
- Power drain suitable for battery operation.

BLOCK DIAGRAM



SCHEMATIC DIAGRAM (One Section Only)

ORDERING INFORMATION

Device	Package	Operating Temperature
LM324N LM324AN	14 DIP	0 70% 0
LM324D LM324AD	14 SOP	0∼+70°C
LM224N LM224AN	14 DIP	05 0500
LM224D LM224AD	14 SOP	- 25 ~ + 85°C
LM2902	14 DIP	40 0510
LM2902D	14 SOP	- 40 ~ + 85°C

Characteristic	Symbol	LM224/LM224A	LM324/LM324A	LM2902	Unit
Power Supply Voltage	Vs	± 18 or 32	± 18 or 32	± 13 or 26	v
Differential Input Voltage	ViD	32	32	26	v
Input Voltage	V.	-0.3 to +32	-0.3 to $+32$	-0.3 to $+26$	V V
Output Short Circuit to GND $V_{cc} \le 15V$ Ta = 25°C (One Amp)		Continuous	Continuous	Continuous	
Power Dissipation	PD	570	570	570	mW
Operating Temperature Range	Topr	- 25 ~ + 85	0~+70	- 40 ~ + 85	°C
Storage Temperature Range	T _{stg}	-65~+150	-65 - + 150	-65~+150	°Č

ELECTRICAL CHARACTERISTICS

($V_{CC} = 5.0V$, $V_{EE} = GND$, $Ta = 25^{\circ}C$, unless otherwise specified)

Characteristic				LM2	24	LM324			LM2902			
Characteristic	Symbol	I Test Conditions Min Typ Max Min Typ Max Min Typ Max Min Typ Max		Max	Unit							
Input Offset Voltage	V _{io}	$\label{eq:V_CM} \begin{array}{l} V_{CM} = 0V \mbox{ to } V_{CC} - 1.5V \\ V_o = 1.4V, R_S = 0\Omega \end{array}$		1.5	5.0		1.5	7.0		1.5	7.0	mV
Input Offset Current	lio			2.0	30		3.0	50		3.0	50	nA
Input Bias Current	I _{IB}			40	150		40	250		40	250	nA
Input Common-Mode Voltage Range	V _{ICR}	$V_{cc} = 30V$ ($V_{cc} = 26V$ for LM2902)	0		V _{CC} -1.5	0	V _{cc} -1.5		0		V _{cc} -1.5	v
Supply Current	Icc	$R_L = \infty$, $V_{CC} = 30V$ (all Amp ($V_{CC} = 26V$ for LM2902)	os)	1.0	3		1.0	3		1.0	3	mA
		$R_L = \infty$, $V_{CC} = 5V$ (all Amp	s)	0.7	1.2		0.7	1.2		0.7	1.2	mA
Large Signal Voltage Gain	Av	$V_{cc} = 15V, R_{L} \ge 2K\Omega$ $V_{o} = 1V$ to $11V$	50	100		25	100			100		V/mV
		$V_{\rm CC} = 30V$ $R_{\rm L} = 2P$	1			26			22			V
Output Voltage Swing	V _{он} V _{oL}	$V_{CC} = 26V$ for 2902 $R_L = 10$	0ΚΩ 27	28		27	28		23	24		V
	• OL	$V_{CC} = 5V, R_L \ge 10K\Omega$		5	20		5	20		5	100	mV
Common-Mode Rejection Ratio	CMRR		70	85		65	75		50	75		dB
Power Supply Rejection Ratio	PSRR		65	100		65	100		50	100	}	dB
Channel Separation	CS	f = 1KHz to 20KHz		120			120			120		dB
Short Circuit to GND	l _{os}	······································		40	60		40	60		40	60	mA
	I _{source}	$V_{in+} = 1V, V_{in-} = 0V$ $V_{CC} = 15V, V_{o} = 2V$	20	40		20	40		20	40		mA
Output Current		$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_o = 2V$	10	13		10	13		10	13		mA
) _{sink}	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_o = 200mV$	12	45		12	45					μA
Differential Input Voltage	V _{1D}				Vcc			V _{cc}			Vcc	V

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified)$

The following specification apply over the range of $-25^{\circ}C \le Ta \le +85^{\circ}C$ for the LM224; and the $0^{\circ}C \le Ta \le +70^{\circ}C$ for the LM324; and the $-40^{\circ}C \le Ta \le +85^{\circ}C$ for the LM2902

Ohenesterietie	Ormhal	Task Osariki		1	_M22	24	1	LM324			LM2902					
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit			
Input Offset Voltage	V _{io}	$V_{CM} = 0V$ to V_{CC} -1.5V $V_O = 1.4V$, $R_S = 0\Omega$				7.0			9.0			10.0	mV			
Input Offset Voltage Drift	∆V _{io} /∆T				7.0			7.0	-		7.0		μV/°C			
Input Offset Current	lio					100			150			200	nA			
Input Offset Current Drift	∆I _{I0} /∆T				10			10			10		pA/°C			
Input Bias Current	I _{IB}					300			500			500	nA			
Input Common-Mode Voltage Range	V _{ICR}	$V_{cc} = 30V$ ($V_{cc} = 26V$ for LM2902)				V _{cc} -2.0	0		V _{cc} -2.0	0 .		V _{cc} -2.0	v			
Large Signal Voltage Gain	Av	$V_{CC} = 15V, R_L \ge 2.0K$ $V_0 = 1V$ to 11V	Ω	25			15			15			V/mV			
		$V_{\rm cc} = 30V$	$R_L = 2K\Omega$	26	e.		26			22			V			
Output Voltage Swing	VOH	V _{он}	∨он	∨он	$V_{cc} = 26V$ for 2902	$R_L = 10K\Omega$	27	28		27	28		23	24		V
	VOL	$V_{CC} = 5V, R_L \ge 10K\Omega$			5	20		5	20		5	100	mV			
0.4	Isource	$V_{in+} = 1V, V_{in-} = 0V$ $V_{CC} = 15V, V_0 = 2V$			20		10	20		10	20		mA			
Output Current	Isink	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_0 = 2V$,	10	13		5	8		5	8		mA			
Differential Input Voltage	Vid					Vcc			V _{cc}			V _{cc}	v			

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS

(V_{cc} = 5.0V, V_{EE} = GND, Ta = 25 °C, unless otherwise specified)

	0		L	M224	A	L	11			
Characteristic	Symbol	Test Condit	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}	$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O} = 1.4V$, $R_{S} = 0$			1.0	3.0		1.5	3.0	mV
Input Offset Current	lio				2	15		3.0	30	nA
Input Bias Current	I _{IB}				40	80		40	100	nA
Input Common-Mode Voltage Range	VICR	$V_{CC} = 30V$		0		V _{cc} -1.5	0		V _{cc} -1.5	v
Supply Current (All Ampo)		$R_{L} = ~, ~V_{CC} = 30V$			1.5	3		1.5	3	mA
Supply Current (All Amps)	Icc	$R_L = , V_{CC} = 5V$			0.7	1.2		0.7	1.2	mA
Large Signal Voltage Gain	Av	$V_{cc} = 15V, R_L \ge 2K\Omega$ $V_o = 1V$ to 11V		50	100		25	100		V/mV
	V _{он}	V _{cc} = 30V V _{cc} = 26V for 2902	$R_L = 2K\Omega$	26			26			V
Output Voltage Swing			$R_L = 10 K\Omega$	27	28		27	28		v
	VOL	$V_{\rm CC} = 5V, R_{\rm L} \ge 10 K\Omega$			5	20		5	20	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	85		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		dB
Channel Separation	CS	f = 1KHz to 20KHz			120			120		dB
Short Circuit to GND	los				40	60		40	60	mA
	Isource	$\begin{array}{l} V_{in+}=1V, \ V_{in-}=0V\\ V_{CC}=15V \end{array}$		20	40		20	40		mA
Output Current	1			10	20		10	20		mA
	l _{sink}	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_{O} = 2000$	mV	12	50		12	50		μA
Differential Input Voltage	VID	· · · · · · · · · · · · · · · · · · ·				V_{cc}			v_{cc}	v

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified)$

The following specification apply over the range of $-25^{\circ}C \le Ta \le +85^{\circ}C$ for the LM224A; and the $0^{\circ}C \le Ta \le +70^{\circ}C$ for the LM324A

Observation		Tool Conditions		LM224A			LM324A			
Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Min	Тур	Max	Unit	
Input Offset Voltage	V _{io}	$\label{eq:V_CM} \begin{array}{l} V_{CM} = 0V \mbox{ to } V_{CC}\mbox{-}1.5V \\ V_O = 1.4V R_S = 0\Omega \end{array}$			4.0			5.0	mV	
Input Offset Voltage Drift	∆V ₁₀ /∆ T			7.0	20		7.0	30	μV/°C	
Input Offset Current	l _{io}				30			75	nA	
Input Offset Current Drift	∆l _{io} /∆T			10	200	_	10	300	pA/°C	
Input Bias Current	I _{IB}			40	100		40	200	nA	
Input Common-Mode Voltage Range	VICR	$V_{cc} = 30V$	0		V _{cc} -2.0	0		V _{cc} -2.0	v	
Large Signal Voltage Gain	Av	$V_{CC} = 15V R_L \ge 2.0 K\Omega$	25			15			V/mV	
Output Voltage Swing	V _{OH}	$V_{CC} = 30V \frac{R_{L} = 2K\Omega}{R_{L} = 10K\Omega}$	26 27	28		26 27	28		v	
· · · ·	Vol	$V_{CC} = 5V R_{L} \le 10K\Omega$		5	20		5	20	mV	
Output Current	I _{source}	$V_{in+} = 1V V_{in-} = 0V$ $V_{CC} = 15V$	10	20		10	20		mA	
	l _{sink}	$V_{in+} = 0V V_{in-} = 1V$ $V_{CC} = 15V$	5	8		5	8		mA	
Differential Input Voltage	V _{ID}				V _{cc}			Vcc	V	

APPLICATION NOTE

The LM224 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC} . These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC} .

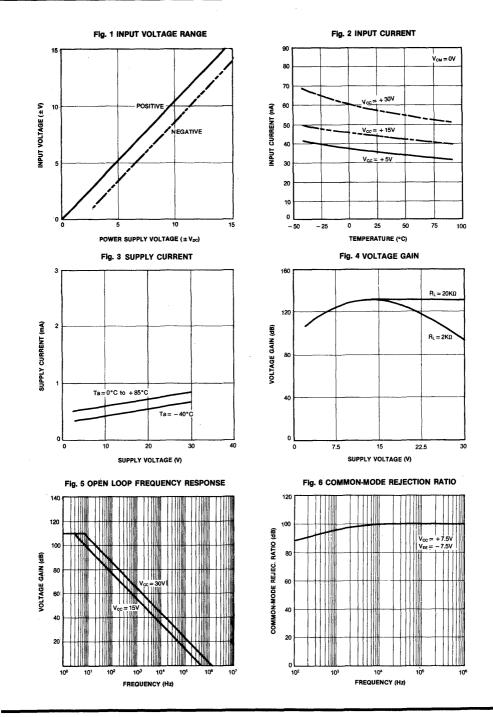
The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger the V_{CC} without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3V_{CC}$ (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

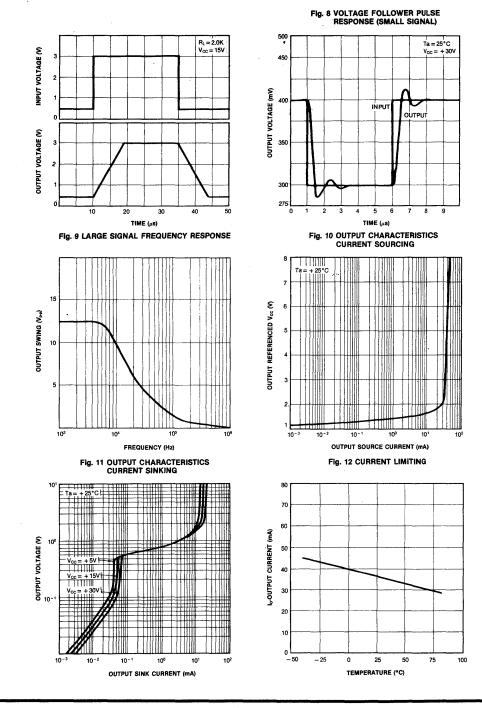
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.


Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM224 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 V_{Dc} to 30 V_{Dc} .

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. in general, introducing a pseudo-ground (a bias voltage reference of $V_{cc}/2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.



LM224/A, LM324/A, LM2902

LINEAR INTEGRATED CIRCUIT

507

TYPICAL APPLICATIONS (Vcc = 5.0V)

Fig. 13 Voltage Reference

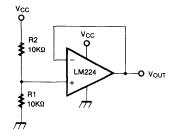
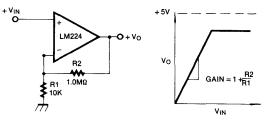
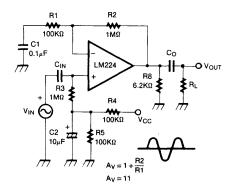




Fig. 14 Non-Inverting DC Gain

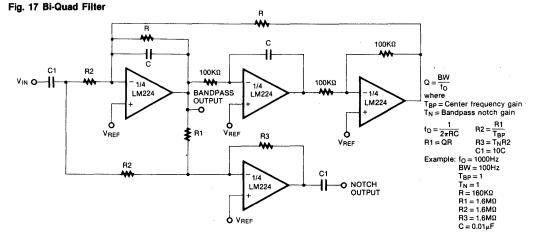
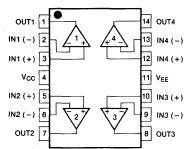
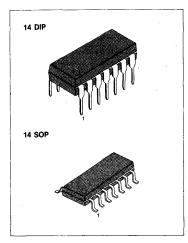

Fig. 16 Pulse Generator

Fig. 15 AC Coupled Non-Inverting Amplifier

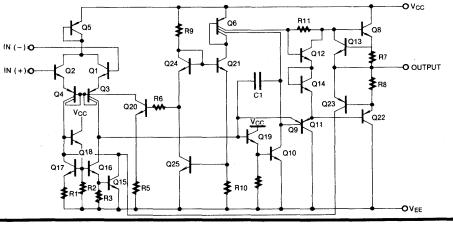

QUAD OPERATIONAL AMPLIFIERS

The LM248/LM348 is a true quad LM741. It consists^{*} of four independent, high-gain, internally compensated, low-power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar LM741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single LM741 type OP Amp. Other features include input offset currents and input bias current which are much less than those of a standard LM741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling.


FEATURES

- LM741 OP Amp operating characteristics
- · Low supply current drain
- · Class AB output stage-no crossover distortion
- Pin compatible with the LM324 & MC3403
- Low input offset voltage-1mV Typ.
- · Low input offset current-4nA Typ.
- · Low input bias current-30nA Typ.
- Gain bandwidth product for LM348 (unity gain)-1.0MHz Typ.
- High degree of isolation between amplifiers-120dB
- Overload protection for inputs and outputs

BLOCK DIAGRAM



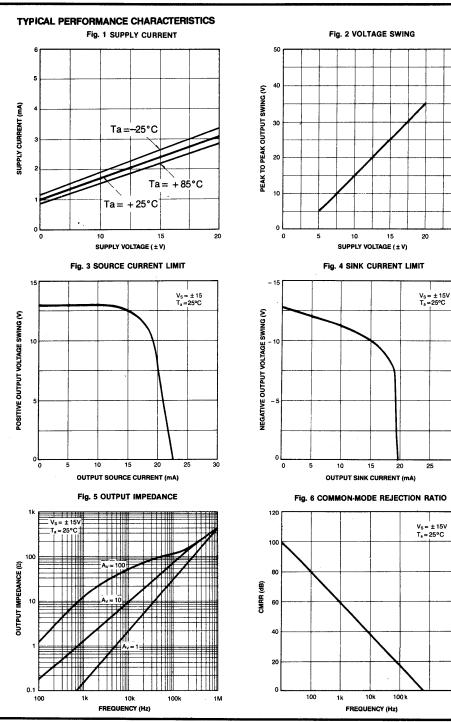
SCHEMATIC DIAGRAM (One Section Only)

ORDERING INFORMATION

Device	Package	Operating Temperature
LM348N	14 DIP	0~+70°C
LM348D	48D 14 SOP	0~+700
LM248N	14 DIP	05 05 00 0
LM248D	14 SOP	– 25 ~ + 85°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

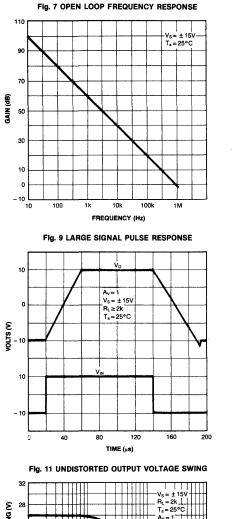
Characteristic	Symbol	Value	Unit
Supply Voltage	Vs	± 18	V
Differential Input Voltage	VID	± 36	V
Input Voltage	V ₁	± 18	v
Output Short Circuit Duration		Continuous	
Operating Temperature LM248	-	- 25 ~ + 85	°C
LM348	T _{opr}	0~+70	°C
Storage Temperature	T _{sta}	- 65 ~ + 150	°C

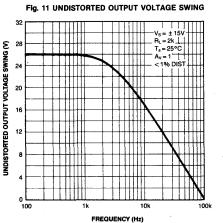

ELECTRICAL CHARACTERISTICS

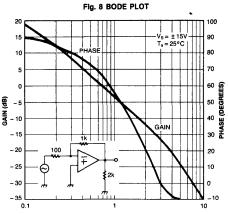
($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C, unless otherwise specified)

	0	-	0	1	LM248	3	1	Unit		
• Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
		D		-	1	6.0		1	6.0	
Input Offset Voltage	V _{IO}	R _s ≤10KΩ	NOTE 1			7.5			7.5	mV
			•		4	50		4	50	- 4
Input Offset Current	10		NOTE 1			125			100	nA
					30	200		30	200	
Input Bias Current	I _{IB}		NOTE 1			500	_		400	nA
Input Resistance	Ri			0.8	2.5		0.8	2.5		MΩ
Supply Current (all Amplifiers)	ls	· · · · · · · · · · · · · · · · · · ·			2.4	4.5		2.4	4.5	mA
		D 01/0		25	160		25	160		14-14
Large Signal Voltage Gain	Av	R _L ≥2KΩ	NOTE 1	15			15			V/mV
Channel Separation	CS	f = 1KHz to	20KHz		120			120		dB
Common Mode Input Voltage Range	VICR		NOTE 1	± 12			± 12			v
Small Signal Bandwidth	BW	A _v = 1			1.0			1.0		MHz
Phase Margin	Øm	A _v = 1			60			60		Degrees
Slew Rate	SR	A _v = 1			0.5			0.5		V/µs
Output Short Circuit Current	los		-		25			25		mA
Outrut Maltage Curing		R _L ≥10KΩ		± 12	± 13		± 12	± 13		v
Output Voltage Swing	Vout	R _L ≥2KΩ	NOTE 1	± 10	± 12		± 10	± 12		v
Common Mode Rejection Ratio	CMRR	R _s ≤10K	NOTE 1	70	90		70	90		dB
Supply Voltage Rejection Ratio	PSRR	Rs≤10K	NOTE 1	77	96	· · .	77	96		dB

* NOTE 1 LM348: 0≤T₂≤ + 70°C LM248: −25≤T₂≤ + 85°C






25

25

30

FREQUENCY (MHz)

Fig. 10 SMALL SIGNAL PULSE RESPONSE

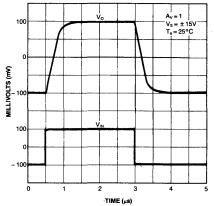
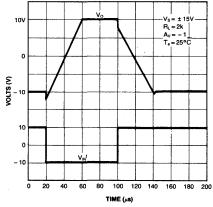
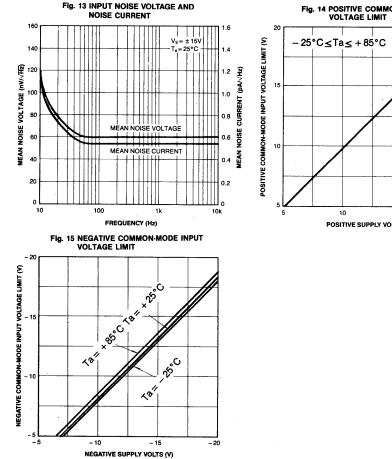
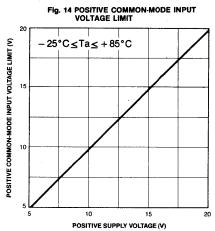
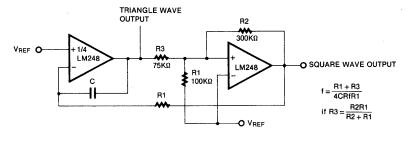
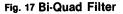





Fig. 12 INVERTING LARGE SIGNAL PULSE RESPONSE





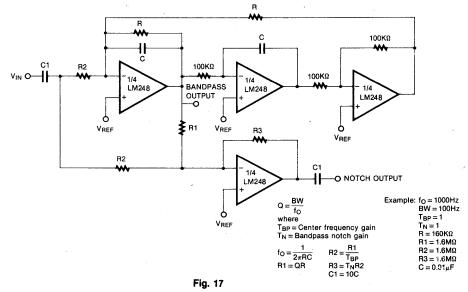
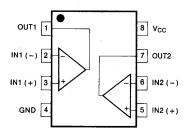

TYPICAL APPLICATIONS

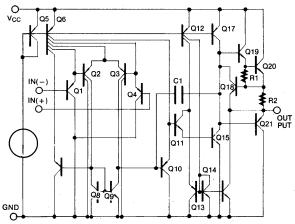
Fig. 16 Function Generator

DUAL OPERATIONAL AMPLIFIERS

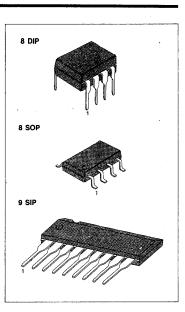
The LM258 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage.

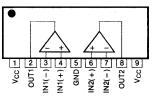

Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single power supply systems.


FEATURES

- · Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide power supply range: LM258/A, LM358/A: 3V ~ 32V
 - (or ± 1.5V ~ ± 16V)
 - LM2904: $3V \sim 26V$ (or $\pm 1.5V \sim \pm 13V$)
- Input common-mode voltage range includes ground
- Large output voltage swing: 0V DC to V_{cc} 1.5V DC
- Power drain suitable for battery operation.


BLOCK DIAGRAM



SCHEMATIC DIAGRAM (One section only)

ORDERING INFORMATION

Device	Package	Operation Temperature
LM358N LM358AN	8 DIP	
LM358S LM358AS	9 SIP	0 ~ + 70°C
LM358D LM358AD	8 SOP	
LM258N LM258AN	8 DIP	
LM258S LM258AS	9 SIP	25 ~ + 85°C
LM258D LM258AD	8 SOP	
LM2904N	8 DIP	
LM2904S	9 SIP	- 40 ∼ + 85°C
LM2904D	8 DIP	

** Under development

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	LM258/LM258A	LM358/LM358A	LM2904	Unit
Power Supply Voltage	Vs	± 16 or 32	± 16 or 32	± 13 or 26	v
Differential Input Voltage	VID	± 32	± 32	± 26	• V
Input Voltage	V.	-0.3 to +32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND $V_{cc} \le 15V$ Ta = 25°C (One Amp)		Continuous	Continuous	Continuous	
Operating Temperature Range	Topr	- 25 ~ + 85	0~+70	- 40 ~ + 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	-65 ~ +150	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, V_{EE} = GND, Ta = 25°C, unless otherwise specified)

	.			L	.M25	8	ι	.M35	8	ι ι	11-14		
Characteristic	Symbol	Test Conditi	ions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{CM} = 0V$ to $V_{CC} - 1$ $V_o = 1.4V$, $R_S = 0\Omega$.5V		2.9	5.0		2.9	7.0		2.9	7.0	mV
Input Offset Current	l _{io}				3	30		5	50		5	50	nA
Input Bias Current	I _{IB}				45	150		45	250		45	250	nA
Input Common-Mode Voltage Range	VICR	V _{cc} = 30V (LM2904, V _{cc} = 26\	/)	0		V _{cc} -1.5	0		V _{cc} -1.5	0		V _{cc} -1.5	v
Supply Current	Icc	$R_L = \infty, V_{CC} = 30V$ (LM2902, $V_{CC} = 26V$	')		0.8	2.0		0.8	2.0		0.8	2.0	mA
		$R_L = \infty$, over full temp	erature range		0.5	1.2		0.5	1.2		0.5	1.2	mΑ
Large Signal Voltage Gain	Av	$V_{CC} = 15V, R_L \ge 2K\Omega$ $V_0 = 1V$ to 11V		50	100		25	100		25	100		V/mV
		$V_{cc} = 30V$	$R_L = 2K\Omega$	26			26			22			v
Output Voltage Swing	V _{он} V _{oL}	$V_{cc} = 26V$ for 2904	$R_L = 10K\Omega$	27	28		27	28		23	24		٧
	• OL	$V_{CC} = 5V R_L \ge 10K\Omega$			5	20		5	20		5	100	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	80		50	80		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		50	100		dB
Channel Separation	CS	f = 1KHz to 20KHz			120			120			120		dB
Short Circuit to GND	l _{os}				40	60		40	60		40	60	mA
	I _{source}	$V_{in+} = 1V, V_{in-} = 0V$ $V_{CC} = 15V, V_o = 2V$	/	10	30		10	30		10	30		mA
Output Current		$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_o = 2V$	1	10	15		10	15		10	15		mA
	sink	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_o = 200$		12	100		12	100					μA
Differential Input Voltage	V _{ID}					Vcc			V _{cc}			V _{cc}	v

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified)$

The following specification apply over the range of $-25^{\circ}C \le Ta \le +85^{\circ}C$ for the LM258; and the $0^{\circ}C \le Ta \le +70^{\circ}C$ for the LM358; and the $-40^{\circ}C \le Ta \le +85^{\circ}C$ for the LM2904

		T	•	1	_M25	8	l	.M35	8	L	11-14		
Characteristic	Symbol	Test Condit	ions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{io}	$V_{CM} = 0V$ to V_{CC} -1.5 $V_{O} = 1.4V$, $R_{S} = 0\Omega$	v			7.0			9.0			10.0	mV
Input Offset Voltage Drift	∆V _{io} /∆T	$R_s = 0\Omega$			7.0			7.0			7.0	-	μV/°C
Input Offset Current	lio					100			150		45	200	nA
Input Offset Current Drift	∆I _ю /∆T				10	,		10			10		pA/°C
Input Bias Current	I _{IB}				40	300		40	500		40	500	nA
Input Common-Mode Voltage Range	VICR	$V_{cc} = 30V$ (LM2904, $V_{cc} = 26V$)	0		V _{cc} -2.0	0		V _{cc} -2.0	0		V _{cc} -2.0	v
Large Signal Voltage Gain	Av	$V_{cc} = 15V, R_L \ge 2.0K$ $V_0 = 1V$ to 11V	Ω	25			15			15	-		V/mV
		$V_{\rm CC} = 30V$	$R_L = 2K\Omega$	26			26			26			V
Output Voltage Swing	V _{он}	$V_{cc} = 26V$ for 2904	$R_L = 10K\Omega$	27	28		27	28		27	28		ν
	′ V _{OL}	$V_{CC} = 5V, R_L \ge 10K\Omega$			5	20		5	20		5	100	mV
Output Current	I _{source}	$V_{in+} = 1V, V_{in-} = 0V$ $V_{CC} = 15V, V_{O} = 2V$,	10	30		10	30		10	30		mA
Output Current	l _{sink}	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_{O} = 2V$,	5	8		5	9		5	9		mA
Differential Input Voltage	V _{ID}					V _{cc}			V _{cc}			V _{cc}	v

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, V_{EE} = GND, Ta = 25°C, unless otherwise specified)

Characteristic	o	Test Ossella		L	M258	A	L	Unit		
Characteristic	Symbol	Test Conditi	Test conditions			Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{CM} = 0V$ to V_{CC} -1.5 $V_0 = 1.4V, R_s = 0$	V		1.0	3.0		2.0	3.0	m۷
Input Offset Current	lio				2	15		5	30	nA
Input Bias Current	I _{IB}				40	80		45	100	nA
Input Common-Mode Voltage Range	VICR	V _{cc} = 30V		0		V _{cc} -1.5	0		V _{cc} -1.5	v
Supply Current		$R_L = \infty$, $V_{CC} = 30V$			0.8	2.0		0.8	2.0	mA
Supply Current	lcc	R _L =∞,over full temper	ature range		0.5	1.2		0.5	1.2	mA
Large Signal Voltage Gain	Av	$V_{cc} = 15V, R_L \ge 2K\Omega$ $V_0 = 1V$ to $11V$		50	100		25	100		V/mV
		$V_{cc} = 30V$	$R_L = 2K\Omega$	26			26			V
Output Voltage Swing	V _{он}	$V_{cc} = 26V$ for 2904	$R_L = 10K\Omega$	27	28		27	28		V
	VoL	$V_{CC} = 5V, R_L \ge 10K\Omega$			5	20		5	20	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	85		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		dB
Channel Separation	CS	f = 1KHz to 20KHz		1	120			120		dB
Short Circuit to GND	los				40	60		40	60	mA
	Isource	$V_{in+} = 1V, V_{in-} = 0V$ $V_{CC} = 15V, V_0 = 2V$		20	30		20	30		mA
Output Current		$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_0 = 2V$		10	15		10	15		mA
	I _{sink}	$V_{in+} = 0V, V_{in-} = 1V$ $V_0 = 200mV$		12	100		12	100		μA
Differential Input Voltage	VID					Vcc			Vcc	V

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $V_{EE} = GND$, unless otherwise specified) The following specification apply over the range of $-25^{\circ}C \le Ta \le +85^{\circ}C$ for the LM258A; and the $0^{\circ}C \le Ta \le +70^{\circ}C$ for the LM358A

Observatoriatio	Quertal	Test Oradia	•	ι	.M258	A	L	A	Unit	
Characteristic	Symbol	Test Condit	ions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V ₁₀	$V_{CM} = 0V$ to V_{CC} -1.5 $V_0 = 1.4V$, $R_S = 0\Omega$	V			4.0			5.0	mV
Input Offset Voltage Drift	∆V _{i0} /∆T				7.0	15		7.0	20	μV/°C
Input Offset Current	lio					30			75	nA
Input Offset Current Drift	∆1 _ю /∆T				10	200		10	300	pA/°C
Input Bias Current	l _{iB}				40	100		40	200	nA
Input Common-Mode Voltage Range	VICR	$V_{cc} = 30V$		0		V _{cc} -2.0	0		V _{cc} -2.0	v
· · · · · · · · · · · · · · · · · · ·		$V_{cc} = 30V$	$R_L = 2K\Omega$	26			26			v
Output Voltage Swing	V _{OH}	$V_{\rm CC} = 30V$	$R_L = 10 K\Omega$	27	28		27	28		v
	Vol	$V_{CC} = 5V, R_L \ge 10K\Omega$	-		5	20		5	20	mV
Large Signal Voltage Gain	Av	$V_{cc} = 15V, R_{L} \ge 2.0K$ $V_{o} = 1V$ to 11V	Ω	25			15			V/mV
Outout Ourset	1 _{source}			10	30		10	30		mA
Output Current	Isink	$V_{in+} = 0V, V_{in-} = 1V$ $V_{CC} = 15V, V_0 = 2V$		5	9		5	9		mA
Differential Input Voltage	V _{ID}					V _{cc}		,	V _{cc}	V

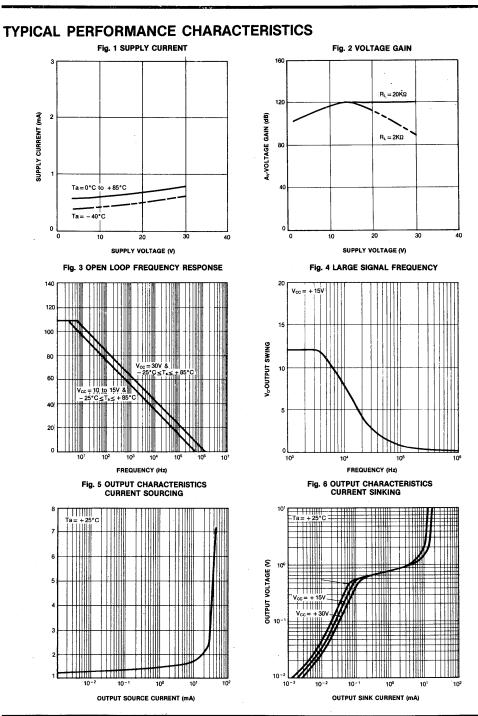
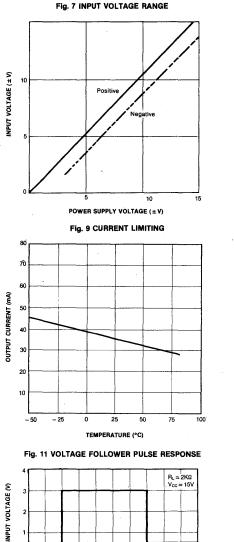
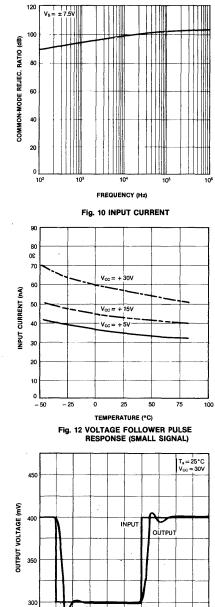



Fig. 8 COMMON-MODE REJECTION RATIO


30

40

50

20

TIME (µs)

275

0 1 2 3 4 8 7 6 9 10

TIME (µs)

10

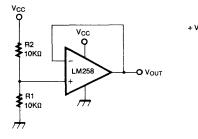
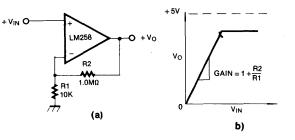
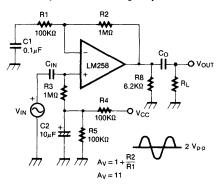
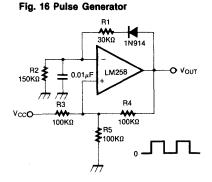
0

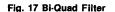
ō

OUTPUT VOLTAGE (V)

TYPICAL APPLICATIONS ($V_{cc} = 5.0V$)

Fig. 13 Voltage Reference


Fig. 14 Non-Inverting DC Gain

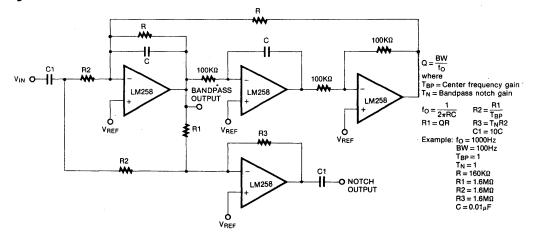
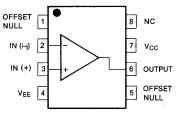
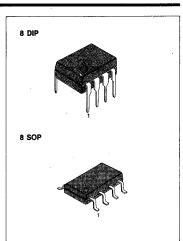


Fig. 15 AC Coupled Non-Inverting Amplifier

SINGLE OPERATIONAL AMPLIFIERS

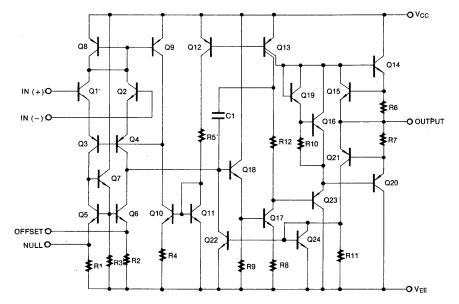

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. It is intended for a wide range of analog applications.

The high gain and wide range of operating voltage provide superior performance in intergrator, summing amplifier, and general feedback applications.


FEATURES

- Short circuit protection
- Excellent temperature stability
- · Internal frequency compensation
- High input voltage range
- Null of offset

BLOCK DIAGRAM



SCHEMATIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
LM741ECN LM741CN	8 DIP	0 ~ + 70°C
LM741ECD LM741CD	8 SOP	0~+70°C
LM741IN LM741EIN	8 DIP	
LM741ID LM741EID	8 SOP	−25 ~ +85°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	LM741C	LM741E	LM7411	Unit
Power Supply Voltage	Vs	± 18	± 22	± 18	v
Differential Input Voltage	Vip	± 30	± 30	± 30	V
Input Voltage	V,	± 15	± 15	± 15	V
Output Short Circuit Duration		Indefinite	Indefinite	Indefinite	
Power Dissipation	Pn	500	500	500	mW
Operating Temperature Range	T _{opr}	0~+70	0~+701	- 25~+85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	- 65 ~ + 150	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = 15V, V_{EE} = -15V, Ta = 25°C, unless otherwise specified)

			A 1911	L	M741		LM74	Unit		
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
		R _s ≤10KΩ						2.0	6.0	
Input Offset Voltage	Vio	R _s ≤50Ω	-		0.8	3.0				mV
Input Offset Voltage Adjustment Range	VIOR	$V_s = \pm 20V$		± 10				± 15		mV
Input Offset Current	lio				3.0	30		20	200	nA
Input Bias Current	I _{IB}				30	80		80	500	nA
Input Resistance	Ri	$V_s = \pm 20V$		1.0	6.0		0.3	2.0		MΩ
Input Voltage Range	VICR			± 12	± 13		± 12	± 13		V
		R∟≥2KΩ	$V_s = \pm 20V,$ $V_o = \pm 15V$	50					V/m	V/mV
Large Signal Voltage Gain	Av		$V_s = \pm 15V,$ $V_o = \pm 10V$				20	200		V/IIIV
Output Short Circuit Current	los			10	25	35		25		mA
		$V_s = \pm 20V$	R∟≥10KΩ	± 16						
Output Voltage Swing	Vout	$v_{\rm S} = \pm 20V$	R∟≥2KΩ	± 15						v
Output vonage Swing	VOUT	$V_s = \pm 15V$	R _L ≥10KΩ				± 12	± [.] 14		v
		$v_{\rm S} = \pm 15 v$	R _L ≥2KΩ				± 10	± 13		
Common Mode Rejection Ratio	CMRR	R _s ≤10KΩ,	$V_{CM} = \pm 12V$				70	90		dB
	OWINN	Rs≤50KΩ,	$V_{CM} = \pm 12V$	80	95					uВ
Power Supply Poinction Patio	PSRR	$V_s = \pm 20V$ $R_s \le 50\Omega$	to $V_s = \pm 5V$	86	96					dB
Power Supply Rejection Ratio	Fond	V _s = ± 15V R _s ≤10KΩ	to $V_s = \pm 5V$				77	96		uв

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic		Cumhal	Tool Conditions	1	LM741E			LM741C/LM7411			
		Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Transient	Rise Time	tr			0.25	0.8		0.3		μS	
Response	Overshoot	OS	Unity Gain		6.0	20		10		%	
Bandwidth	-	BW		0.43	1.5					MHz	
Slew Rate		SR	Unity Gain	0.3	0.7			0.5		V/µs	
Supply Current		Is	$R_L = \infty \Omega$					1.5	2.8	mA	
Power Consumption		_	$V_s = \pm 20V$		80	150					
		P _c	$V_s = \pm 15V$					50	85	mW	

ELECTRICAL CHARACTERISTICS

 $(-25^{\circ}C \le Ta \le 85^{\circ}C$ for the LM741I, $0^{\circ}C \le Ta \le 70^{\circ}C$ for the LM741C and LM741E, $V_{cc} = \pm 15V$, unless otherwise specified)

			o	L	M741	Ξ	LM74	11C/LN	17411	
Characteristic	Symbol	lest	Test Conditions		Тур	Max	Min	Тур	Max	Unit
		F	ls ≤ 50Ω			4.0				
Input Offset Voltage	V _{io}	R	R _s ≤10KΩ						7.5	mV
Input Offset Voltage Drift	∆V₀∕∆T				15					μV/°C
Input Offset Current	lio		<u> </u>			70			300	nA
Input Offset Current Drift	∆l _{i0} /∆T					0.5				nA/°C
Input Bias Current	I _{IB}					0.21			0.8	μA
Input Resistance	Ri	Vs	= ± 20V	0.5						MΩ
Input Voltage Range	VICR		<u> </u>	± 12	± 13		± 12	± 13		v
			R _L ≥10KΩ	± 16						v
				± 15						
Output Voltage Swing		$V_s = \pm 15V$	R _L ≥10KΩ				± 12	± 14		
		$v_{\rm S} = \pm 10v$	R _L ≥2KΩ				± 10	± 13	• •	
Output Short Circuit Current	los			10		40	10		40	mA
Common Mada Dejection Datio	CMRR	R _s ≤10KΩ,	$V_{CM} = \pm 12V$				70	90		dB
Common Mode Rejection Ratio	CMRR	R _s ≤50KΩ,	$V_{CM} = \pm 12V$	80	95					uв
Power Cupply Dejection Datio	PSRR	$V_s = \pm 20V$	R _s ≤50Ω	86	96					dB
Power Supply Rejection Ratio	Ponn	to±5V	R _s ≤10KΩ				77	96		uв
			$V_s = \pm 20V,$ $V_o = \pm 15V$	32						
Large Signal Voltage Gain	Av	12214	$V_s = \pm 15V,$ $V_o = \pm 10V$				15			V/mV
			$V_s = \pm 15,$ $V_o = 2V$	10						

600

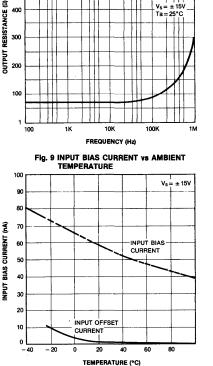
500

400

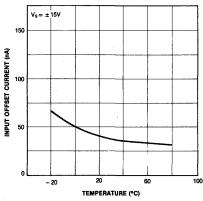
100

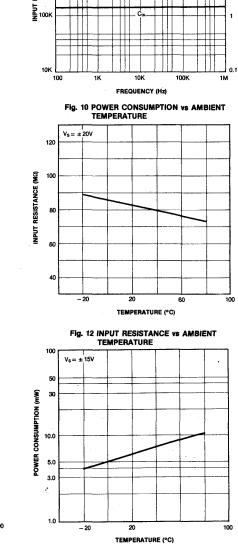
10

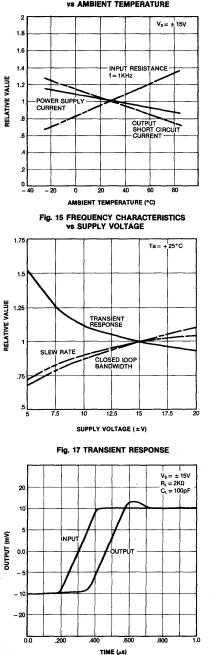
INPUT CAPACITANCE (pF)


TYPICAL PERFORMANCE CHARACTERISTICS

Vs = ± 15V


Ta = 25°C




Fig. 8 INPUT RESISTANCE AND INPUT CAPACITANCE vs FREQUENCY 10M ++RESISTANCE (D) 1N

MSUNG

 Δ Electronics

Fig. 14 FREQUENCY CHARACTERISTICS **vs AMBIENT TEMPERATURE** 1.75 $V_{s} = \pm 15V$ 1.5 RELATIVE VALUE TRANSIENT 1.25 SLEW RATE T.A CLOSED 100P BANDWIDTH .75 .5 - 40 - 20 0 20 an. 60 80 TEMPERATURE (°C) Fig. 16 OUTPUT SHORT CIRCUIT CURRENT **vs AMBIENT TEMPERATURE** 30 28 SHORT CIRCUIT CURRENT (mA) 28 24 22 20 18 10 20 30 40 50 60 TEMPERATURE (°C) Fig. 18 COMMON-MODE REJECTION RATIO vs FREQUENCY 120 110 $V_s = \pm 15V$ Ta 25° ٩Ð 100 COMMON-MODE REJECTION RATIO 90 80 70 60 50

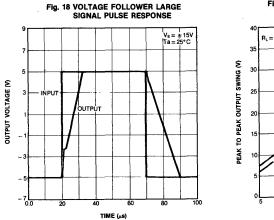
40 30

20

10 0

10 10 10 103 104 10 10 70

10


527

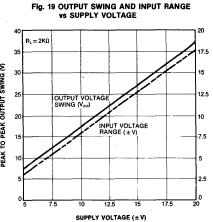

FREQUENCY (H2)

Fig. 13 NORMALIZED DC PARAMETERS vs AMBIENT TEMPERATURE

4

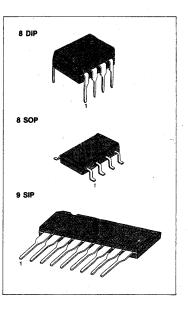
•

.

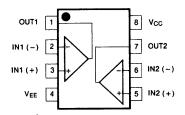
MC1458AC/MC1458C/MC1458I

LINEAR INTERGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIERS

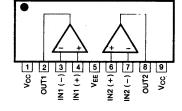

The MC1458 series is a dual general purpose operational amplifier. The MC1458 series is a short circuit protected and require no external components for frequency compensation.

High common mode voltage range and absence of "latch up" make the MC1458 ideal for use as voltage followers.


The high gain and wide range of operating voltage provides superior performance in intergrator, summing amplifier and general feedback applications.

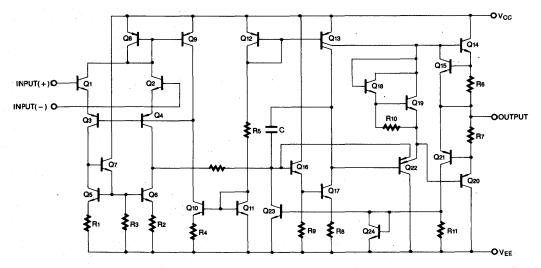
FEATURES

- Interal frequency compensation
- Short circuit protection
- · Large common mode and differential voltage range
- · No latch up
- · Low power consumption



BLOCK DIAGRAM

ORDERING INFORMATION


Device	Package	Operation Temperature
MC1458CN MC1458ACN	8 DIP	-
MC1458CS MC1458ACS	9 SIP	0 ~ + 70°C
MC1458CD MC1458ACD	8 SOP	
MC1458IN MC1458AIN	8 DIP	
MC1458IS MC1458AIS	9 SIP	- 25 ~ + 85°C
MC1458ID MC1458AID	8 SOP	

529

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

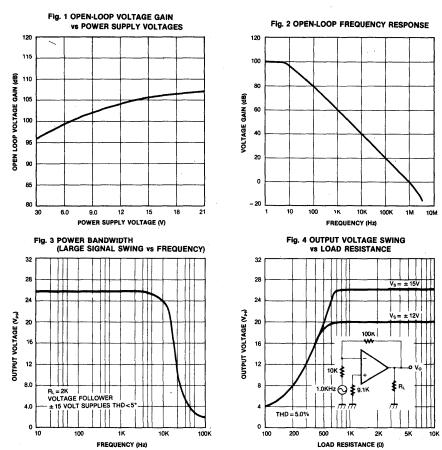
Characteristic	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18	v
Input Differential Voltage	Vip	± 30	v
Input Voltage	Vi	± 15	v
Operating Temperature Range MC1458	Topr	- 25 ~ + 85	°C
MC1458AC/C		0~+70	•C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +15V, V_{EE} = -15V, Ta = 25^{\circ}C, unless otherwise specified)$

			MC1	458/MC	14581	MC1458C			Unit
Characteristic	Symbol	Test Conditions	Min Typ Max		Max	Min	Тур	Max	
Input Offset Voltage	Vio	R _s ≤10KΩ		2.0	6.0		2.0	10	mV
Input Offset Current	l _{io}			20	200		20	300	nA
Input Bias Current	I _{IB}			80	500		80	700	nA
Large Signal Voltage Gain	Av	$V_o = \pm 10V, R_L \ge 2.0K\Omega$	20	200		. 20	200		V/mV
Input Voltage Range	VICR		± 12	± 13		±11	± 13		V
Input Resistance	R		0.3	1.0			1.0		MΩ
Common Mode Rejection Ratio	CMRR	R _s ≤10KΩ	70	90		60	90		dB
Power Supply Rejection Ratio	PSRR	R _s ≤10KΩ	77	90		77	90		dB
Supply Current (Both Amplifier)	ls			2.3	5.6		2.3	8.0	mA
		R _L = 10KΩ	± 12	± 14		±11	± 14	19 A	
Output Voltage Swing	VOUT	$R_L = 2K\Omega$	± 10	± 13		±9	±13		V
Output Short Circuit Current	los			20			20		mA
Power Consumption	Pc	$V_o = 0V$		70	170		70	240	mA
Transient Response (Unity Gain) Rise Time Overshoot Slew Rate	t, OS SR	$V_i = 20mV, R_L \ge 2K\Omega, C_L \le 100pF$ $V_i = 20mV, R_L \ge 2K\Omega, C_L \le 100pF$ $V_i = 10V, R_L \ge 2K\Omega, C_L \le 100pF$		0.3 15 0.5			0.3 15 0.5		μs % V/μs

ELECTRICAL CHARACTERISTICS

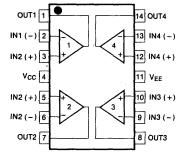

(V_{CC} = + 15V, V_{EE} = - 15V, NOTE 1, unless otherwise specified)

Oberneteriette	Symbol	Test Oraditions	MC1458/MC1458			MC1458C			11-14
Characteristic		Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	Vio	R _s ≤10KΩ			7.5			12	mV
Input Offset Current	lio				300			400	nA
Input Bias Current	I _{IB}			_	800			1000	nA
Large Signal Voltage Gain	Av	$V_{o} = \pm 10V, R_{L} \ge 2.0K$	15	-		15			V/mV
Common Mode Rejection Ratio	CMRR	R _s ≤10K	70	90		70	90		dB
Power Supply Rejection Ratio	PSRR	Rs≤10K	77	90		77	90		dB
0 · · · · · · · · · · · · · · · · · · ·		$R_L = 1.0K$	± 12	± 14		± 11	± 14		
Output Voltage Swing	Vout	$R_L = 2K$	± 10	±13		±9	± 13		V
Input Voltage Range	VICR		± 12			±12			V

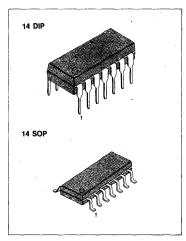
NOTE 1 MC1458AC/C: 0≤Ta≤70°C MC1458I: -25≤Ta≤+85°C

4

TYPICAL PERFORMANCE CHARACTERISTICS

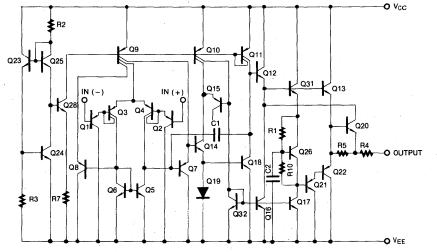

QUAD OPERATIONAL AMPLIFIER

The MC3303 series is a monolithic Quad operational amplifier consisting of four independent amplifiers. The device has high gain, internally frequency, compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common made input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications.


FEATURES

- · Output voltage can swing to GND or negative supply
- Wide power supply range; Single supply of 3.0V to 36V Dual supply of ± 1.5V to ± 18V
 - Dual supply of ± 1.50 to ± 100
- Electrical characteristics similar to the popular LM741
- CLASS AB output stage for minimal crossover distortion
- Short circuit protected output.

BLOCK DIAGRAM



SCHEMATHIC DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
MC3303N	14 DIP	- 40 ~ + 85°C
MC3303D	14 SOP	-40~+05 C
MC3403N	14 DIP	0 ~ + 70°C
MC3403D	14 SOP	0~+70°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	Vs	± 18 or 36	v
Differential Input Voltage	VID	± 36	v
Input Voltage	V _i	± 18	v
Output Short Circuit Duration		Continuous	
Power Dissipation	Po	670	mW
Operating Temperature MC3303	Topr	- 40 ~ + 85	°C
MC3403	- CP	0~+70	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +15V, V_{EE} = -15V)$ for MC3403, $V_{CC} = +14V, V_{EE} = GND$ for MC3303, Ta = 25°C, unless otherwise specified)

Observation			1	MC330	3 .		;	Unit		
Characteristic	Symbol	Test Con	ditions	Min	Тур	Max	Min	∙тур	Max	
Input Offact Voltage	v				1.5	8.0		1.5	10	mV
Input Offset Voltage	V _{io}		NOTE 1			10			12	mv
Input Offset Current	10				5	75		5	50	nA
	10		NOTE 1			150			100	
Input Bias Current	I _{IB}				30	200		30	200	nA
	18	·	NOTE 1			500			400	
Large Signal Voltage	Av	$V_o = \pm 10V$		20	200		20	200		V/mV
Gain	~	$R_L = 2K\Omega$	NOTE 1	15			15			VIIIV
Input Impedance	Ri			0.3	1		0.3	1.0		MΩ
•		$R_L = 10K\Omega$		12	12.5		± 12	± 13.5		• •
Output Voltage Swing	Vout	$R_L = 2K\Omega$		10	12		± 10	± 13) v [
		$R_L = 2K\Omega$	NOTE 1	10			10			
Input Common Mode Voltage Range	V _{ICR}			12V- V _{EE}	12.5V- V _{EE}		13V- V _{EE}	13.5V- V _{EE}		v
Common Mode Rejection Ratio	CMRR	R _s ≤10KΩ		70	90		70	90		dB
Power Supply Current	Is	$V_o = 0, R_L = \infty$			2.8	7.0		2.3	7.0	mA
Output Short Circuit Current	los	Each amplifier	· ·	± 10	± 30	± 45	± 10	± 20	± 45	mA
Positive Supply Rejection Ratio	PSRR+				30	150		30	150	μV/V
Negative Supply Rejection Ratio	PSRR-							30	150	μV/V
Average Temperature Coefficient of Input Offset Current	∆li₀/∆T				50			50		pA/°C

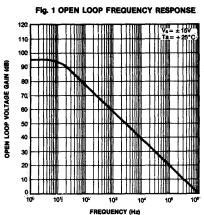
ELECTRICAL CHARACTERISTICS (Continued)

 $(V_{cc} = +15V, V_{EE} = -15V)$ for MC3403, $V_{cc} = +14V, V_{EE} = GND$ for MC3303, unless otherwise specified)

	0	Test Oraditions	MC3303			MC3403			Unit
Characteristic	Symbol	Test Conditions		Тур	Max	Min	Тур	Max	
Input Offset Voltage Drift	ΔΫισ/ΔΤ			10			10		μ́V/°C
Power Bandwidth	GBW	$A_V = 1$, $R_L = 2K\Omega$, $V_o = 20V_{PP}$, THD = 5%		9.0			9.0		KHz
Small Signal Bandwidth	BW	$A_V = 1$, $R_L = 10K\Omega$, $V_o = 50mV$		1.0			1.0		MHz
Slew Rate	SR	$A_V = 1$, $V_{IN} = -10V$ to $+10V$		0.4			0.4		V/µs
Rise Time	tr	$A_V = 1$, $R_L = 10K\Omega$, $V_o = 50mV$		0.35			0.35		μS
Fall Time	tr	$A_V = 1$, $R_L = 10K\Omega$, $V_o = 50mV$		0.35			0.35		μS
Over Shoot	OS	$A_{v} = 1, R_{L} = 10K\Omega, V_{o} = 50mV$		20			20		%
Phase Margin	Øm	$A_V = 1$, $R_L = 2K\Omega$, $C_L = 200pF$		60			60		Degrees
Crossover Distortion	CD	$V_{IN} = 30mV_{p-p}, V_o = 2.0V_{p-p}, f = 10KHz$		1.0			1.0		%

NOTE 1 MC3403: 0≤Ta≤ + 70°C MC3303: −25<Ta≤ + 85°C

ELECTRICAL CHARACTERISTICS


(V_{CC} = 5.0V, V_{EE} = GND, Ta = 25°C unless otherwise specified)

Oberestariatio	Cumhal	To al Oscalitions	٨	AC3303			Unit		
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	Vio				10		2.0	10	mV
Input Offset Current	lio				75		30	50	nA
Input Bias Current	l _{iB}				500		200	500	nA
Large Signal Open Loop Voltage Gain	Av	$R_L = 2.0 K\Omega$	10	200		10	200		V/mV
Power Supply Rejection Ratio	PSRR				150			150	μV/V
0		$R_L = 10K, V_{CC} = 5.0V$	3.3	3.5		3.3	3.5		
Output Voltage Range	Vout	$R_L = 10K, 5.0V \le V_{CC} \le 30V$	V _{cc} -2.0	V _{cc} -1.7		V _{cc} -2.0	V _{cc} -1.7		V
Supply Current	lcc			2.5	7.0		2.5	7.0	mA
Channel Separation	CS	f = 1KHz to 20KHz		120			120		dB

MC3303/MC3403

TYPICAL PERFORMANCE CHARACTERISTICS

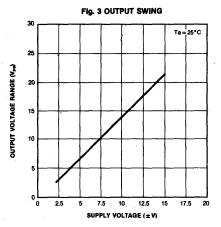
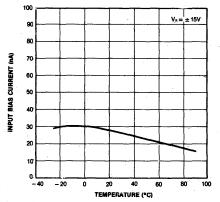



Fig. 5 INPUT BIAS CURRENT vs TEMPERATURE

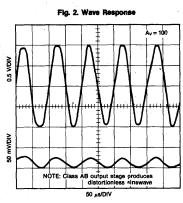
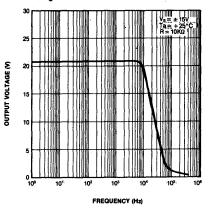
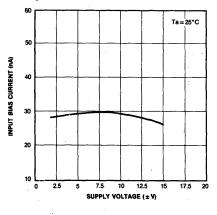
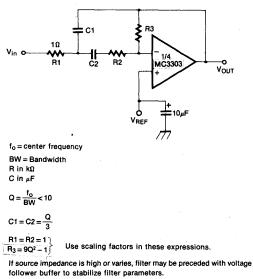
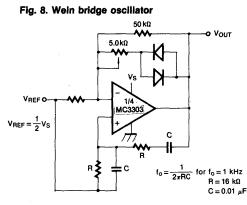




Fig. 4 OUTPUT VOLTAGE vs FREQUENCY





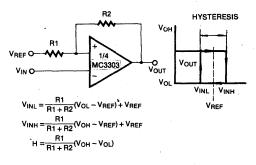
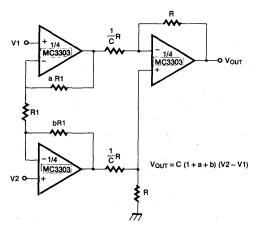

TYPICAL APPLICATIONS

Fig. 7. Multiple feedback bandpass filter



Design example: given: Q = 5, $f_0 = 1$ kHz Let R1 = R2 = 10 k Ω then $R3 = 9(5)^2 - 10$ R3 = 215 k Ω $C = \frac{5}{3} = 1.6$ nF

Fig. 10. High impedance differential amplifier

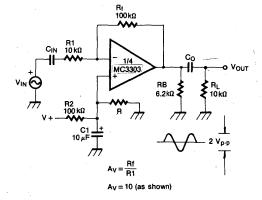
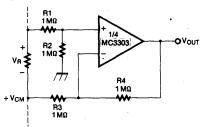
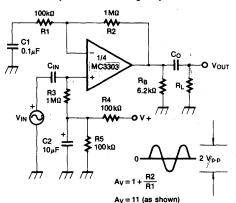
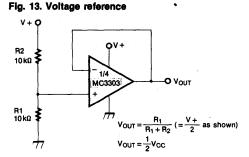


Fig. 12. Ground referencing a differential input signal

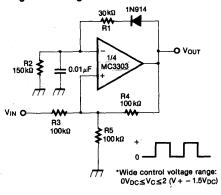
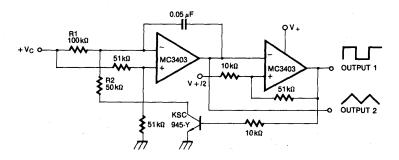

Fig. 14. AC Coupled non-inverting amplifier

Fig. 16. Bi-Quad filter

R ~ R ~~ с 100k0 *** łł C C1 R2 100kΩ ₽ VIN O ~~ - 1/4 100kΩ 1/4 MC3303 BANDPASS - 1/4 MC3303 OUTPUT MC3303 -0 ò ò VREF **≹** R1 VREF Ò R3 VREF R2 C1 1/4 O NOTCH OUTPUT MC3303 $Q = \frac{BW}{c}$ Example: fo = 1000 Hz BW = 100 Hz fo $T_{BP} = 1$ where ò $T_N = 1$ TBP = Center frequency gain VREF R = 160 kΩ T_N = Bandpass notch gain R1 = 1.6 MΩ R1 $R2 = 1.6 M\Omega$ R2=______ $f_0 = \frac{1}{2\pi RC}$ R3=1.6 MΩ $R3 = T_N R2$ R1 = QR $C = 0.001 \ \mu F$ C1 = 10C



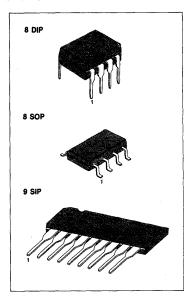
MC3303/MC3403


.

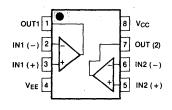
LINEAR INTEGRATED CIRCUIT

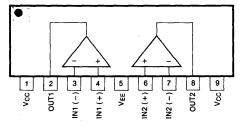
Fig. 17. Voltage controlled oscillator

Fig. 18. Function generator



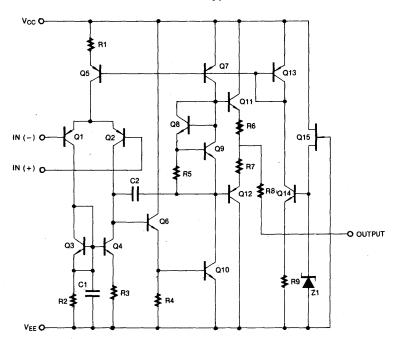
DUAL OPERATIONAL AMPLIFIER


The MC4558 series is a monolithic integrated circuit designed for dual operational amplifier.


FEATURES

- No frequency compensation required.
- No latch-up.
- Large common mode and differential voltage range.
- Parameter tracking over temperature range.
- Gain and phase match between amplifiers.
- Internally frequency compensated.
- Low noise input transistors.

BLOCK DIAGRAM



ORDERING INFORMATION

Device	Package	Operation Temperature
MC4558CN MC4558ACN	8 DIP	
MC4558CS MC4558ACS	9 SIP	0∼ +70°C
MC4558CD MC4558ACD	8 SOP	
MC4558IN MC4558AIN	8 DIP	
MC4558IS MC4558AIS	9 SIP	– 25 ~ + 85°C
MC4558ID MC4558AID	8 SOP	

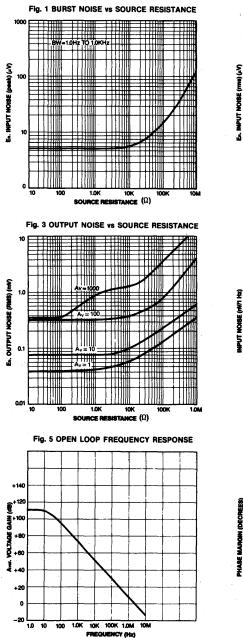
SCHEMATIC DIAGRAM (One Section Only)

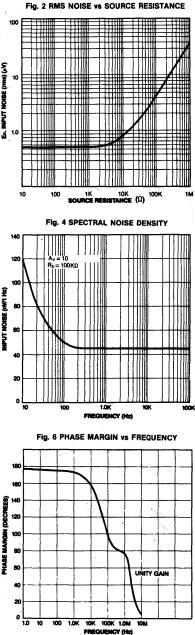
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Power Supply Voltage MC4558AC	Vs	± 22	v
MC4558C/I		± 18	v
Differential Input Voltage	ViD	± 30	v
Input Voltage	Vi	± 15	. ∧
Power Dissipation	Po	400	mW
Operating Temperature Range MC4558I	–	- 40 ~ + 85	°C
MC4558AC/MC4558C	T _{opr}	0~70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

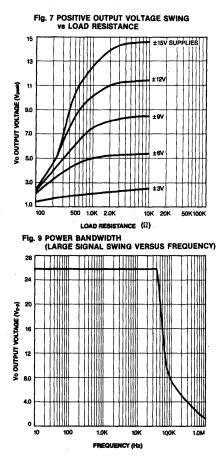
 $(V_{CC} = 15V, V_{EE} = -15V, Ta = 25^{\circ}C, unless otherwise specified)$


A		Test Candilians		MC455	81/MC4	C4558AC MC4558			BC	
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
					1	5		2	6	
Input Offset Voltage	Vio	R _s ≤10KΩ	NOTE 1		1	6			7.5	mν
		· · · · · · · · · · · · · · · · · · ·			5	200		5	200	
Input Offset Current	lio	•	$T_a = T_{max}$		3	200			300	nA
			$T_a = T_{min}$		20	500			300	
					30	500		30	500	
Input Bias Current	l _{iB}		$T_a = T_{max}$		20	500			800	nA
	l		$T_a = T_{min}$		100	1500			800	
Large Signal		V	·	50	200		20	200		
Voltage Gain	Av	$V_0 = \pm 10V R_L \ge 2.0 K\Omega$	NOTE 1	25			15			V/mV
Common Mode Input	V		•	± 12	± 13		± 12	± 13		v
Voltage Range	VICR		NOTE 1	± 12	• ± 13					v
Common Mode	01100	D 101/0		70	90		70	90		
Rejection Ratio	CMRR	R _s ≤10KΩ	NOTE 1	70	90					dB
Supply Voltage		D 40140		76	90		76	90		
Rejection Ratio	PSRR	R _s ≤10KΩ	NOTE 1	76	90		76	90		dB
		R _L ≥10KΩ	NOTE	± 12	± 14		± 12	± 14		
Output Voltage Swing	Vout	R _L ≥2KΩ	NOTE 1	± 10	±13		± 10	± 13		V
					3.5	5.0		3.5	5.6	
Supply Current (Both Amplifiers)	ls		$T_a = T_{max}$			4.5			5.0	mA
	-		$T_a = T_{min}$		· ·	6.0			6.7	
					70	150		70	170	
Power Consumption (Both Amplifiers)	Pc		$T_a = T_{max}$			135			150	mV
(both Ampinels)			$T_a = T_{min}$			180			200	l
Slew Rate	SR	$V_i = 10V, R_L \ge 2K\Omega$ $C_L \le 100 pF$		1.0			1.0	•		VIμs
Rise Time	tr	$V_i = 20mV, R_L \ge 2K\Omega, C_L \le 100pF$			0.3			0.3		μS
Overshoot	OS	$V_i = 20mV, R_L \ge 2K\Omega, C_L \le 100pF$			15			15		%


NOTE 1

 $\begin{array}{l} MC4558AC/C: \ T_{min} \leq Ta \leq T_{max} = 0 \leq Ta \leq + 70^{\circ}C \\ MC4558I: \ T_{min} \leq Ta \leq T_{max} = -25 \leq Ta \leq + 85^{\circ}C \end{array}$

TYPICAL PERFORMANCE CHARACTERISTICS



4

ſ

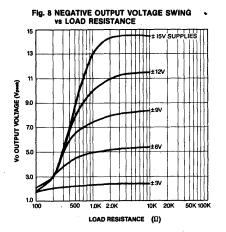
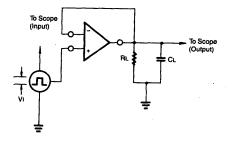
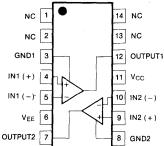
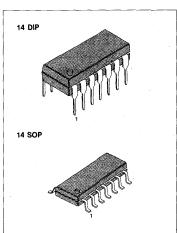



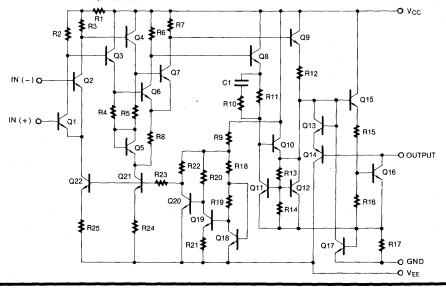
Fig. 10 TRANSIENT RESPONSE TEST CIRCUIT


DUAL HIGH SPEED VOLTAGE COMPARATOR

The KA219 is a dual high speed voltage comparator designed to operate from a single +5V supply up to \pm 15V dual supplies. Open collector of the output stage makes the KA219 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25mA. Typical response time of 80ns with \pm 15V power supplies makes the KA219 ideal for application in fast A/D converts, level shifters, oscillaters, and multivibrators.


FEATURES

- Operates form a single 5V supply
- Typically 80ns response time at ±15V
- Open collector outputs: up to +35V
- · High output drive current: 25mA
- · Inputs and outputs can be isolated from system ground
- Minimum fan-out of 2 (each side)
- Two independent compators


BLOCK DIAGRAM

SCHEMATIC DIAGRAM

Device	Package	Operating Temperature
KA319N	14 DIP	0 ~ + 70°C
KA319D	14 SOP	0~+70°C
KA219N	14 DIP	05 (0580
KA219D	14 SOP	−25 ~ + 85°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	acteristic Symbol		Unit
Supply Voltage	Vs	36	. V
Output to Negative Supply Voltage		36	· v
Ground to Negative Supply Voltage	GND - VEE	25	v
Ground to Positive Supply Voltage	GND - Vcc	18	· v
Differential Input Voltage	ViD	±5	v
Input Voltage	V ₁	± 15	v
Output Short Circuit Duration		10	sec
Power Dissipation	Po	500	mW
Operating Temperature Range 219 319	T _{opr}	$\begin{array}{r} -25 \sim +85 \\ 0 \sim +70 \end{array}$	°C
Storage Temperature Range	T _{stg}	-65 ~ +150	°C

ELECTRICAL CHARACTERISTICS

($V_{CC} = +15V$, $V_{EE} = -15V$, Ta = 25°C, unless otherwise specified)

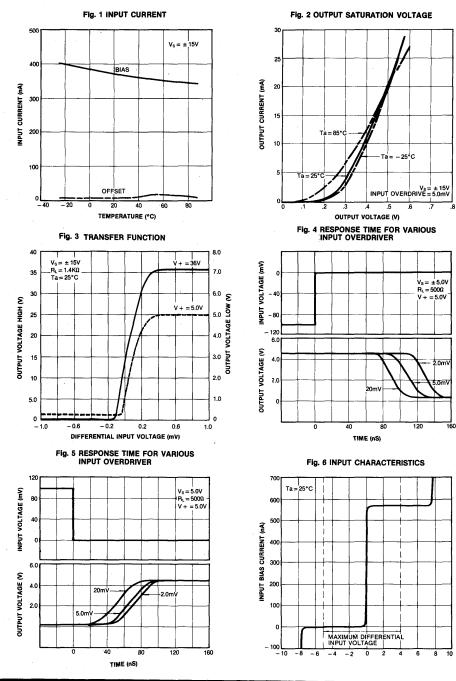
			O		KA219	9	1	KA319)	
Characteristic	Symbol	lest	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V V	R _s ≤5KΩ			0.7	4.0		2.0	8.0	mV
(Note 1)	V _{IO}		Note 3			7.0			10	
Input Offset Current					10	75		10	200	nA
(Note 1)	lio		Note 3			100			300	
Input Pige Current		•			150	500		250	1000	nA
Input Bias Current	I _{IB.}		Note 3			1000			1200	
Voltage Gain	Av			10	40		8	40		V/mV
Response Time (Note 2)	tr	$V_s = \pm 15V$			80			80		ns
		$V_{in} \leq -5mV$, $I_o = 25mA$			0.6	1.5				V
		$V_{in} \leq -10 mV$,	l _o = 25mA					0.6	1.5	V
Saturation Voltage	Vol	V _{cc} ≥4.5V, V _E V _{in} ≤ – 6mV, I			0.23	0.4				v
		$V_{CC} \ge 4.5V, V_{EI}$ $V_{in} \le -10mV,$						0.3	0.4	v
· · · · · · · · · · · · · · · · · · ·		V _{in} ≥5mV, Vo	= 35V		0.2	2				
Output Leakage Current	IoL		Note 3		1	10			-	μΑ
ounon		$V_{in} \ge 10 mV, V_0 = 35V$						0.2	10	μA
Innut Voltone Dense	V	Note 2	$\dot{V}_{s} = \pm 15V$		± 13			±13		v
Input Voltage Range	VICR	Note 3	$V_{cc} = 5V, V_{EE} = 0V$	1		3	1		3]. •

ELECTRICAL CHARACTERISTICS

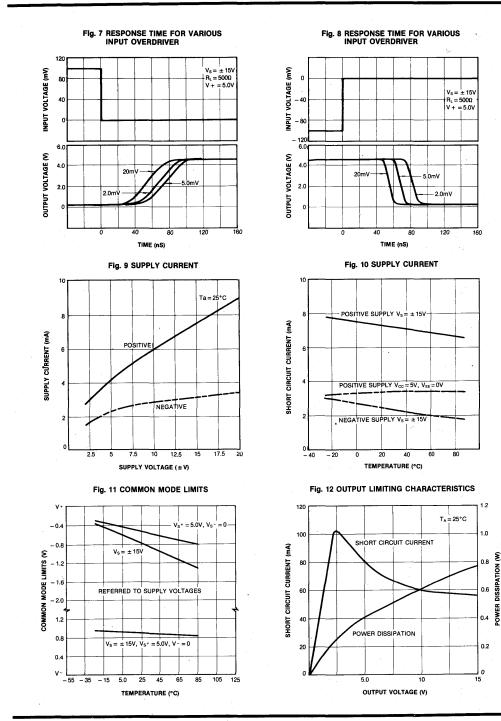
 $(V_{CC} = +15V, V_{EE} = -15V, Ta = 25^{\circ}C, unless otherwise specified)$

Characteristic	Cumb al	Test Conditions		KA219			KA319			
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Differential Input Voltage	V _{ID}		±5			±5			v	
Positive Supply Current	I _{CC1}	$V_{CC} = 5V, V_{EE} = 0V$		3.6			3.6		mA	
Positive Supply Current	I _{CC2}	$V_s = \pm 15V$		7.5	11.5		7.5	12.5	mA	
Negative Supply Current	ſ _{EE}	$V_s = \pm 15V$		3	4.5		3	5	mA	

Note: 1. The offset voltage and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impeance.


- 2. The response time specified is for a 100mV input step with 5mV overdrive.
- Note 3. KA319: 0≤Ta≤ + 70°C

KA219: -25≤Ta≤+85°C

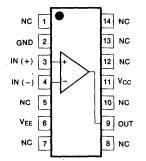


4

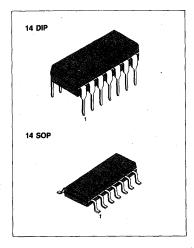
TYPICAL PERFORMANCE CHARACTERISTICS

HIGH SPEED VOLTAGE COMPARATOR

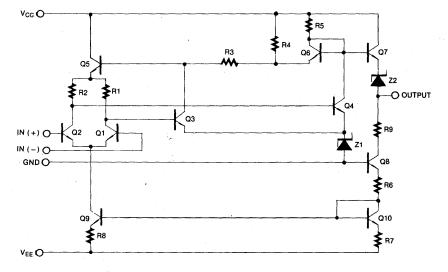
The KA710C/I is a high speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance.


The output of the comparator is compatible with all intergrated logic forms.

The KA710C/l is useful as pulse height disciminators, a variable threshold schmitt trigger, voltage comparators in high-speed A/D converters, a memory sense amplifier or a high noise immunity line receiver.


FEATURES

- · Low offset voltage: 5mV
- High gain: 1000 V/V
- · High speed: 40ns Typ


BLOCK DIAGRAM

SCHEMATIC DIAGRAM

Device	Package	Operation Temperature
KA710CN	14 DIP	0 + 70% C
KA710CD	14 SOP	0 ~ + 70°C
KA710IN	14 DIP	05 0510
KA710ID	14 SOP	−25 ~+85°C

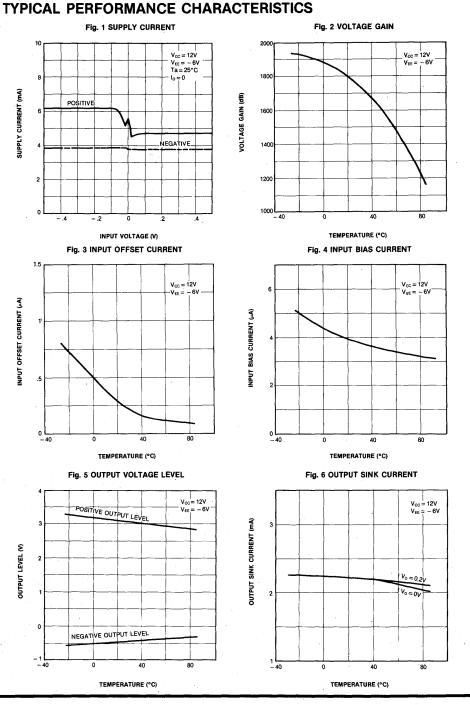
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Positive Supply Voltage	V _{cc}	+ 14	· v
Negative Supply Voltage	VEE	-7	v
Peak Output Current	Ipeak	10	mA
Output Short Circuit Duration		10	Sec
Differential Input Voltage	ViD	±5	V
Input Voltage	Vi	±7	v
Power Dissipation	Pp	300	mW
Operating Temperature Range KA710C KA710I	T _{opr}	0 ~ + 70 - 25 ~ + 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS ($V_{cc} = + 12V$, $V_{EE} = -6V$, $Ta = 25^{\circ}C$, unless otherwise specified)

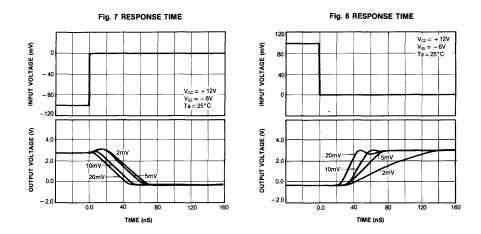
	0			1	KA710i		ł			
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
Innut Offert Velters	V	R _s ≤200Ω, NC	TE 1		0.6	2.0		1.6	5.0	mV
Input Offset Voltage	V _{io}	Note 2				3.0			6.5	mv
Input Offset Current		NOTE 1			0.75	3.0		1.8	5.0	
(Note 1)	I _{IO}		Note 2		1.8	7.0			7.5	μA
Janut Biog Current					5.0	20		7.0	25	
Input Bias Current	I _{IB}		Note 2		27	45		25	40	μA
Large Circal Veltage Cais				1250	1800		1000	1700		1.0
Large Signal Voltage Gain	Αv		Note 2							V/V
Input Voltage Range		$V_{\rm cc} = -7V$		± 5.0			± 5.0			V
Common Mode Rejection Ratio	CMRR	R _s ≤200Ω, NC	TE 2	80	95		70	94		dB
Differential Input Voltage Range				± 5.0			± 5.0			V
Positive Output Level	V _{он}	0≤l₀<5mA, \	V _{in} ≥5mV	2.5	2.9	4.0	2.5	2.9	4.0	v
Negative Output Level	VOL	V _{in} ≥5mV		- 1.0	- 0.5	0	- 1.0	- 0.5	0	V
Output Sink Current	Isink	V ₀ =0V V _{in} ≥5	ōmV	2.0	2.2		1.6	2.2		mA
Positive Supply Current	Icc	V _o ≤0V			4.7	9.0		4.7	9.0	mA
Negative Supply Current	IEE	$V_0 = 0V, V_{in} = +5mV$			4.0	7.0		4.0	7.Ņ	mA
Power Consumption	PD	$V_0 = 0V, V_{in} =$	10mV		80	150			150	mV
Response Time	t,	(Note 3)			.40			40		nS

Note 1: The input offset voltage and input offset current are specified for a logic threshold voltage as follows: For 710I, 1.65V at -25°C, 1.4V at +25°C, 1.15V at +85°C. For 710C, 1.5V at 0°C, 1.4V at +25°C, 1.2V at +70°C.


Note 2: KA710C: 0≤Ta≤ + 70°C

KA710I: *−*25<u>≤</u>Ta<u>≤</u> + 85°C

Note 3: The response time specified is a 100mV input step with 5mV overdrive (KA710I) or a 10mV overdrive (KA710C)



4

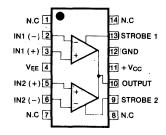
KA710C/I

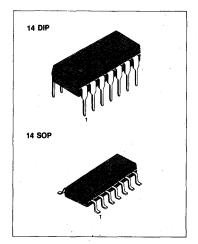
LINEAR INTEGRATED CIRCUIT

,

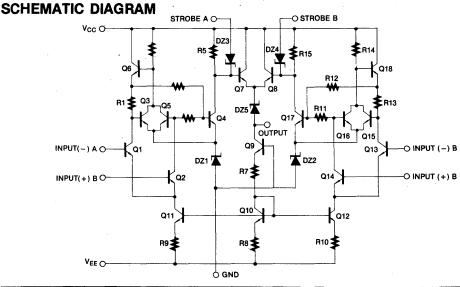
LINEAR INTEGRATED CIRCUIT

DUAL HIGH-SPEED DIFFERENTIAL COMPARATOR


The KA711C/I contain two voltage comparatorsth with separate differential inputs, a common output and provision for strobing each side independently. The device features high accuracy, fast response, low offset vol tage, a large input voltage range, low power consumption and compatibility with practically all integrated logic forms.


The KA711C/I can be used as a sense amplifier for e core memories, and a dual comparator with OR'ed outputs is required, such as a double-ended limit detector.

FEATURES


- Fast response time: 40ns (Typ)
- · Output compatible with most TTL circuits
- Independent strobing of each comparator
- · Low offset voltage

BLOCK DIAGRAM

Device	Package	Operating Temperature
KA711CN	14 DIP	0 . 70%0
KA711CD	14 SOP	0 ~ + 70°C
KA711IN	14 DIP	05 0510
KA711ID	14 SOP	– 25 ~ + 85°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Positive Supply Voltage	V _{cc}	+ 14	v
Negative Supply Voltage	VEE	-7	v v
Differential Input Voltage	V _{ID}	±5	v
Input Voltage	V,	±7	v
Strobe Voltage	V _{st}	0~6	v
Peak Output Current	I _{peak}	50	mA
Continuous Total Power Dissipation	Pp	500	mW
Operating Temperature Range KA711C KA711I	T _{opr}	0 - 70 - 65 - 150	°C
Storage Temperature Range	T _{stg}	-25~+85	°C

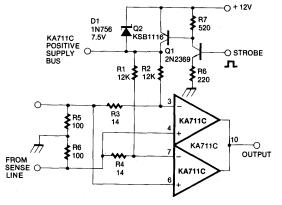
ELECTRICAL CHARACTERISTICS

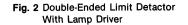
(V_{CC} = + 12V, V_{EE} = - 6V, Ta = 25°C, unless otherwise specified)

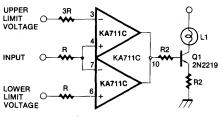
Ob any standard	0	Test Or		KA710I			KA711C			Unit
Characteristic	Symbol	Symbol Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit
Innut Offert Veltere		R _s ≤200Ω, V	с _м = 0V		1.0	3.5		. 1.0	5.0	mV
Input Offset Voltage	V _{IO}	V _{OUT} = 1.4V	NOTE 2			4.5			6.0	
Input Offset Current	lio	$V_{OUT} = 1.4V$. ^{0.5}	10.0		0.5	15	μA
	-010		NOTE 2			20			25	μ.
Input Bias Current	I _{IB}				25	75		25	100	μA
	18		Ta=0°C			150			150	<i>µ</i> ,
Large Signal Voltage Gain	Av			750	1500		700	1500		VN
	, .v		NOTE 2	500			500			
Input Voltage Range		$V_{EE} = -7.0V$		± 5.0			± 5.0			v
Differential Input Voltage Range	VIDR			± 5.0			± 5.0			V
Output Resistance	Ro				200			200		Ω
Output Voltage (High)	V _{OH}	V _{IN} ≥10mV			4.5	5.0		4.5	5.0	v
Output Voltage (Low)	Vol	V _{IN} ≤10mV		- 1.0		0	- 1.0	- 0.5	0	V
Loaded Output High Level	VLOM	$V_{IN} \ge 10 m V$,	l _o = 5mA	2.5	3.5		2.5	3.5		v
Strobed Output Level	Vso	V _{strobe} ≤0.3V		- 1.0		0	- 1.0		0	v
Output Sink Current	I _{sink}	$V_{iN} \ge 10 mV$,	V₀≥0V	0.5	0.8		0.5	0.8	•	mA
Positive Supply Current	Icc	$V_{\rm O}=0V,\;V_{\rm IN}$	= 10mV		8.6			8.6		mA
Negative Supply Current	I _{EE}	$V_0 = 0V, V_{IN} = 10mV$			3.9			3.9		mA
Strobe Current	l _{st}	V _{strobe} = 100mV			1.2	2.5		1.2	2.5	mA
Power Consumption	Po	$V_0 = 0V, \ V_{\rm IN}$	≥10mV		130	200		130	230	mW
Response Time	tr	(NOTE 1)			40			40		ns
Strobe Release Time	t _{rs}				12			12		ns

Note: 1. The response time specified is for a 100mV input step with 10mV overdrive (LM710) or 0.1mV overdriver (KA710C).

2. KA711C: 0≤Ta≤ + 70°C


KA711I: -25≤Ta≤+85°C


3. The input offset voltage and input offset current are specified for a logic threshold voltage of 7111, 1.65V at -25°C, 1.4V at +25°C, 1.15V at +85°C, for 711C, 1.5V at 0°C, 1.4V at +25°C, 1.2V at +70°C.



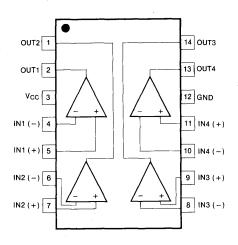
TYPICAL APPLICATIONS

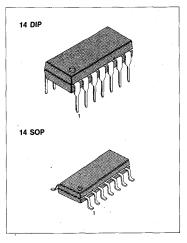
* Fig. 1 Sense Amplifier With Supply Strobing for Reduced Power Consumption*

* Stanby dissipation is about 40mW

QUAD DIFFERENTIAL COMPARATOR

The LM239 series consists of four independent voltage comparators that one designed to operate from single power supply over a wide range of voltage.

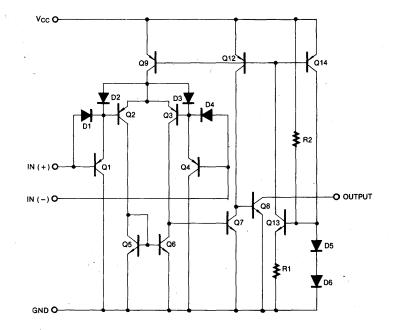

FEATURES


- Single or dual supply operation
- Wide range of supply voltages LM239/A, LM339/A: 2 ~ 36V

LM2901 ,(or ±1~±18V) LM3302:2~28V (or ±1~±14V)

- Low supply current drain 800µA Typ.
- Open collector outputs for wired and connectors
- · Low input bias current 25nA Typ.
- Low input offset current ± 2.3nA Typ.
- Low input offset voltage ± 1.4mV Typ.
- · Common mode input voltage range includes ground.
- · Low output saturation voltage
- Output compatible with TTL, DTL and MOS logic system

BLOCK DIAGRAM



Device	Package	Operating Temperature
LM239N LM239AN	14 DIP	- 25 ~ + 85°C
LM239D LM239AD	14 SOP	-23~+85°C
LM339N LM339AN	14 DIP	0 7010
LM339D LM339AD	14 SOP	0~70°C
LM2901N LM2901D LM3302N	14 DIP 14 SOP 14 DIP	- 45 ~ + 85°C

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18 or 36	v
Power Supply Voltage Only LM3302	Vs	±14 or 28	v
Differential Input Voltage	VID	36	V V
Differential Input Voltage Only LM3302	VID	28	v
Input Voltage	V ₁	-0.3 to +36	v
Input Voltage Only LM3302	Vi	-0.3 to +28	v
Output Short Circuit to GND		Continuous	
Power Dissipation	Po ·	570	mW
Operating Temperature LM239/LM239A	Topr	- 25 ~ + 85	°C
LM339/LM339A		0~+70	°C
LM2901/LM3302	1	- 40 ~ + 85	°C
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

LM239/A, LM339/A, LM2901, LM3302 LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS

 $(V_{cc} = 5V, Ta = 25^{\circ}C, unless otherwise specified)$

0h	Characteristic Symbol		Tool Conditions		39A/	LM339A	LN	11-14		
Characteristic	Symbol	Test Conditions			Тур	Max	Min	Тур	Max	Unit
		$V_{CM} = 0V$ to $V_{CC} -$	1.5V		±1	±2		±1.4	±5	
Input Offset Voltage	V _{io}	$V_0 = 1.4V, R_s = 0$	NOTE 1			± 4.0			± 9.0	mV
Input Offset Current					±2.3	± 50		±2.3	± 50	nA
input Onset Guneni	lio		NOTE 1			± 150			± 150	
Input Bias Current					57	250		57	500	- 4
Input bias Current	Ι _Β		NOTE 1			400			400	nA
Input Common Mode	V			0		V _{cc} -1.5	0		V _{cc} -1.5	v
Voltage Range	VICR		NOTE 1	0		V _{cc} -2	0		V _{cc} -2	v
Supply Current	lcc		$R_L = \infty$		1.1	2.0		1.1	2.0	mA
Voltage Gain	Avol	V _{cc} = 15V, R _L ≥15	KΩ (for large swing)	50	200		50	200		V/mV
Large Signal Response Time	t _{RES}	$V_{IN} = TTL Logic S$ $V_{ref} = 1.4V, V_{RL} = 5$			350			350		ns
Response Time	t _{RES}	$V_{RL} = 5V, R_L = 5.1k$	<Ω		1.4			1.4		μS
Output Sink Current	I _{sink}	$V_{1N} \sim \geq 1V, V_{1N} + = 0$)V, Vo≤1.5V	6	18		6	18		mA
Output Saturation	V	$V_{IN}^{-} \ge 1V, V_{IN}^{+} = 0$	V		140	400		140	400	
Voltage	V _{sat}	I _{sink} = 4mA	NOTE 1			700			700	mV
Output Leakage		V _{IN} - = 0	$V_0 = 5V$		0.1			0.1		nA
Current	l _{leak}	$V_{IN}^{+} = 1V$	$V_0 = 30V$			1.0			1.0	μA
Differential Voltage	VID	-	NOTE 1			36			36	V

* NOTE 1

LM339/A: $0 \le Ta \le +70^{\circ}C$ LM239/A: $-25 \le Ta \le +85^{\circ}C$ LM2901/3302: $-40 \le Ta < +85^{\circ}C$

ELECTRICAL CHARACTERISTICS

($V_{CC} = 5V$, Ta = 25°C, unless otherwise specified)

Characteristic Symbol		Test Conditions		LM2901				11-14		
				Min	Тур	Max	Min	Тур	Max	Unit
		$V_{CM} = 0V$ to $V_{CC} =$	1.5V		2	7	1	2	20	
Input Offset Voltage	Vio	$V_0 = 1.4V, R_s = 0$	NOTE 1		9	15			40	mV
Input Offect Current					2.3	50		3	100	nA
Input Offset Current	lio		NOTE 1		50	200			300	
Input Bias Current					57	250		57	500	nA
input bias current	l _Β		NOTE 1		200	500			1000	na NA
Input Common Mode	V			0		V _{cc} -1.5	0		V _{cc} -1.5	v
Voltage Range	VICR		NOTE 1	0		V _{cc} -2	0		V _{cc} -2	V
			$R_L = \infty$,		1.1	2.0		1.1	2.0	mA
Supply Current	Icc		$R_L = \infty$, $V_{CC} = 30V$		1.6	2.5				mA
Voltage Gain	A _{VOL}	$V_{CC} = 15V, R_{L} \ge 15$	KΩ (for large swing)	25	100		2	30		V/mV
Large Signal Response Time	t _{REST}	$V_{IN} = TTL Logic S$ $V_{ref} = 1.4V, R_{RL} = 5$	U U		350			350		ns
Response Time	t _{RES2}	$V_{RL} = 5V, R_L = 5.1k$	KΩ		1.4			1.4		μS
Output Sink Current	I _{sink}	$V_{IN-} \ge 1V, V_{IN+} = 0$)V, V ₀ ≤1.5V	6	18		6	18		mA
Output Saturation	V	$V_{IN-} \ge 1V, V_{IN+} = 0$)V		140	400		140	400	mV
Voltage	V _{sat}	I _{sink} = 4mA	NOTE 1			700			700	
Output Leakage		V _{IN +} = 0	$V_0 = 5V$		0.1			0.1		nA
Current	l _{leak}	$V_{IN+} = 1V$	$V_{\rm O} = 30V$			1.0			1.0	μA
Differential Voltage	VID	Mer telenin telenin	NOTE 1	0		36			28	V

NOTE 1 LM339/A: 0≤Ta≤ + 70°C LM239/A: -25≤Ta≤ + 85°C LM2901/3302: -40≤Ta< + 85°C

TYPICAL PERFORMANCE CHARACTERISTICS Fig. 2 INPUT CURRENT Fig. 1 SUPPLY CURRENT 120 2.2 Ta - 40% 110 $V_{IN}(cm) = 0V_{DC}$ $R_{IN}(cm) = 1G\Omega$ 2 100 1.8 T - _ 25 90 SUPPLY CURRENT (mA) 1,6 ta = - 40°C 80 = 25°C INPUT CURRENT (nA) 1.4 70 = + 25°C 1.2 Ta = 85°C 60 50 a = - 25°C .8 40 .е 30 a=+85°C .4 R_i = ∞ 20 .2 10 0 ° 0 0 5 10 15 20 25 30 35 40 10 15 20 25 30 5 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Fig. 4 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVE-NEGATIVE TRANSITION Fig. 3 OUTPUT SATURATION VOLTAGE 10 INPUT VOLTAGE (mV) Ta = 25°C OUT OF THE 10º 0 SATURATION VOLTAGE (V) -- 100 10 40 OUTPUT VOLTAGE (V) 6.0 10-4 4.0 INPUT OVERDRIVE 2.0 5.0m V 0m 10-3 L 0 10 10 10 10 0 0.4 0.8 1 OUTPUT SINK CURRENT (mA) TIME (usec) Fig. 5 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVE-POSITIVE TRANSITION INPUT VOLTAGE (mA) Ta=25°C 100 0

ISUNG Electronics

0

INPUT OVERDRIVE

0.4

TIME (usec)

0.81

6.0

2.0 a

OUTPUT VOLTAGE (V) 4.0 35 40

1.4

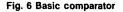
561

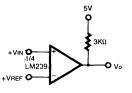
APPLICATION INFORMATION

The LM239 series includes four high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs during the output voltage transitions, when the comparator changes state.

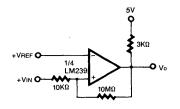
To minimize this problem, PC board layout should be designed to reduce stray input output coupling; reducing the input resistors to less than $10K\Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible.

It is good design practice to ground all unused pins.


The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative than -0.3V should not be used: an input clamping diode can be used as protection.


The output LM339 is the uncommitted collector of a NPN transistor with grounded emitter. This allows the device to be used like any open-collector gate providing the OR-wide facility.

The output sink current capability is approximately 16 mA; if this limit is exceeded, the output transistor will come out of saturation and the output voltage will rise very rapidly.


Under this limit, the output saturation voltageis limited by the approximatively 600 r_{sat} of the output transistor.

TYPICAL APPLICATIONS (V_{cc} = + 15V)

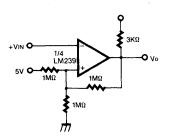
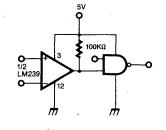
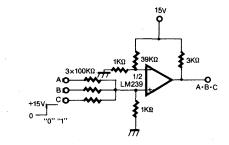
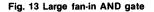


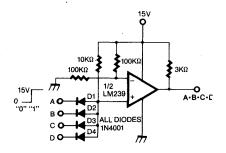
Fig. 7 Non-inverting comparator with Hysteresis

Fig. 8 Inverting comparator with Hysteresis




LINEAR INTEGRATED CIRCUIT


Fig. 9 Driving C/MOS


Fig. 10 Driving TTL

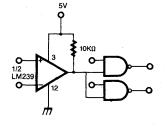


Fig. 12 OR gate

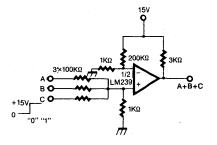


Fig. 14 Squarewave oscillator

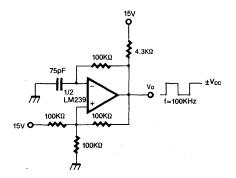
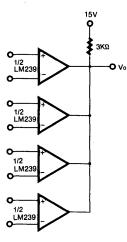



Fig. 15 ORing the outputs

Fig. 16 Peak audio level display

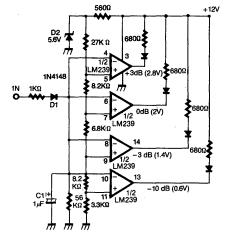
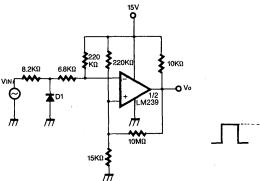
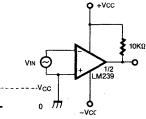
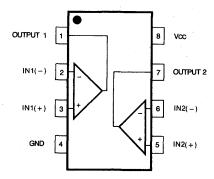




Fig. 17 Zero crossing detector (single supply)

Fig. 18 Zero crossing detector (split supplies) $V_{INmin} \approx 0.4V$ peak for 1% phase distortion ($\Delta \theta$)

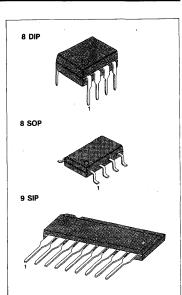
D1 prevents input from going negative by more than 0.6V: R1+R2=R3 $R3 \leq R5/10$ for smaller error in zero crossing

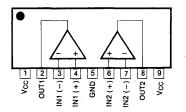
LINEAR INTEGRATED CIRCUIT


DUAL DIFFERENTIAL COMPARATOR

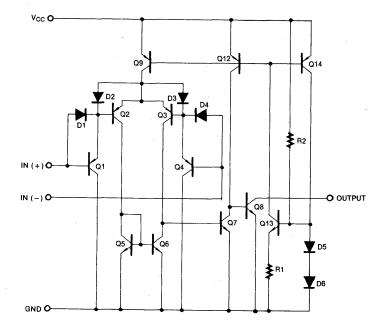
The LM293 series consists of two independent voltage comparators that one designed to operate from a single power supply over a wide range of voltage.

FEATURES


- Single Supply Operation: 2V to 36V
- Dual Supply Operation: ±1V to ±18V
- Allow Comparison of Voltages Near Ground Potential
- Low Current Drain 800µA Typ
- Compatible with all Forms of Logic
- Low Input Bias Current 25nA Typ
- Low Input Offset Current ± 5nA Typ
- Low Offset Voltage ± 1mV Typ


BLOCK DIAGRAM

Device	Package	Operation Temperature
LM293N LM293AN	8 DIP	
LM293S LM293AS	9 SIP	- 25 ~ + 85°C
LM293D LM293AD	8 SOP	
LM393N LM393AN	8 DIP	
LM393S M393AS	9 SIP	0 ~ + 75°C
LM393D LM393AD	8 SOP	
LM2903N	8 DIP	
LM2903D	8 SOP	-40 ~+85°C
LM2903S	9 SIP	



LINEAR INTEGRATED CIRCUIT

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

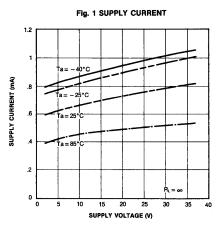
Characteristic	Symbol	Value	Unit
Power Supply Voltage	Vs	± 18 or 36	v
Differential Input Voltage	V _{ID}	36	v
Input Voltage	Vi	-0.3 to +36	v
Output Short Circuit to GND		Continuous	
Power Dissipation	PD	570	mW
Operating Temperature LM293/LM293A LM393/LM393A LM2903	T _{opr}	- 25 ~ + 85 0 ~ + 70 - 40 ~ + 85	0° 0° 0°
Storage Temperature	T _{stg}	- 65 ~ + 150	°C

	0	T		LM2	293A/LM393A		LM			
Characteristic	Symbol	I Test Conditions			Тур	Max	Min	Тур	Max	Unit
		$V_{CM} = 0V$ to $V_{CC} - T$	1.5V		±1	±2		± 1.	±5	
Input Offset Voltage	Vio	$V_o = 1.4V, R_s = 0$	NOTE 1			± 4.0			± 9.0	mV
Innut Offect Current		1			±5	± 50		±5	± 50	nA
Input Offset Current	I _{IO}		NOTE 1			± 150			± 150	
Innut Bion Current					65	250		65	250	- 4
Input Bias Current	IB		NOTE 1			400			400	nA
input Common Mode				0		V _{cc} -1.5	0		V _{cc} -1.5	v
Voltage Range	VICR	NOTE 1		0		V _{cc} -2	0		V _{cc} -2	V
0		R∟=∞			0.6	1		0.6	1	
Supply Current	Icc	$R_{L} = \infty$ $V_{CC} = 30V$			0.8	2.5		0.8	2.5	mA
Voltage Gain	Av	V _{cc} = 15V, R _L ≥15k	$\Omega(\text{for large } V_{\circ} \text{ swing})$	50	200		50	200		V/mV
Large Signal Response Time	t _{RES1}	$V_{IN} = TTL Logic Sv$ $V_{ref} = 1.4V, V_{RL} = 5V$	v		350			350		nS
Response Time	t _{RES2}	$V_{RL} = 5V, R_L = 5.1K$	Ω		1.4			1.4		μS
Output Sink Current	l _{sink}	$V_{IN}^{-} \ge 1V, V_{IN}^{+} = 0V, V_{o} \le 1.5V$		6	18		6	18		mA
Output Caturatian Valtana	V	$V_{1N}^{-} \ge 1V, V_{1N}^{+} = 0$	V		160	400		160	400	
Output Saturation Voltage	V _{sat}	I _{sink} = 4mA	NOTE 1			700			700	mV
Output Lookogo Current	-	$V_{iN}^{-} = 0,$	$V_o = 5V$		0.1			0.1		nA
Output Leakage Current	I _{leak}	$V_{in}^{+} = 1V$	$V_o = 30V$			1.0			1.0	μA

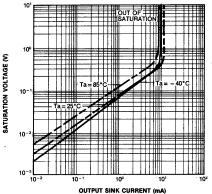
ELECTRICAL CHARACTERISTICS ($V_{cc} = 5V$, $Ta = 25^{\circ}C$, unless otherwise specified)

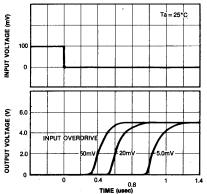
NOTE 1

LM293/A: $-25 \le Ta \le +85^{\circ}C$ LM393/A: $0 \le Ta \le +70^{\circ}C$ LM2903: $-40 \le Ta \le +85^{\circ}C$



01		Test Conditions			LM2903			
Characteristic	Symbol				Тур	Max	Unit	
	N N	$V_{CM} = 0V$ to $V_{CC} - 1.5V$			±1	±7		
Input Offset Voltage	Vio	$V_o = 1.4V, R_s = 0$	NOTE 1		±9	± 15	mV	
Input Offset Current					±5	± 50	nA	
	Ι _ю		NOTE 1		± 50	± 200		
Inout Bion Current					65	250	nA	
Input Bias Current	l _B		NOTE 1			500		
Input Common Mode	v			0		V _{cc} -1.5	v	
Voltage Range	VICR	NOTE 1		0		V _{cc} -2	v	
Supply Current		R _L =∞			0.6	1	mA	
Supply Current	Icc	$R_L = \infty V_{CC} = 30V$			1	2.5	IIIA	
Voltage Gain	Av	$V_{cc} = 15V, R_L \ge 15K\Omega$ (fo	r large V _o swing)	25	100		V/mV	
Large Signal Response Time	t _{RES1}	$V_{IN} = TTL$ Logic Swing $V_{ref} = 1.4V, V_{RL} = 5V, R_L$	= 5.1KΩ		350		nS	
Response Time	t _{RES2}	$V_{RL} = 5V, R_L = 5.1K\Omega$			1.5		μS	
Output Sink Current	Isink	$V_{iN}^- \ge 1V, V_{iN}^+ = 0V, V_o \le 1.5V$		6	16		mA	
Output Coturation Voltage		$V_{IN}^{-} \ge 1V, V_{IN}^{+} = 0V$			160	400		
Output Saturation Voltage	V _{sat}	$l_{sink} = 4mA$	NOTE 1			700	mV	
Output Lookana Current		$V_{IN}^{-} = 0,$	$V_o = 5V$		0.1		nA	
Output Leakage Current	l _{leak}	$V_{IN}^{-} = 0,$ $V_{in}^{+} = 1V$	$V_o = 30V$			1.0	μA	


ELECTRICAL CHARACTERISTICS ($V_{cc} = 5V$, $Ta = 25^{\circ}C$, unless otherwise specified)


TYPICAL PERFORMANCE CHARACTERISTICS

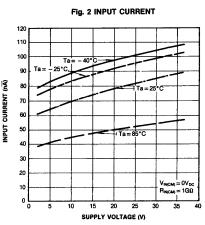
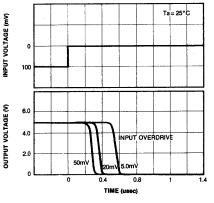



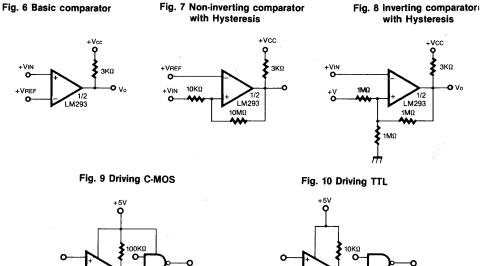
Fig. 4 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVE-NEGATIVE TRANSITION

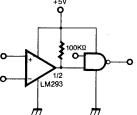
APPLICATION INFORMATION

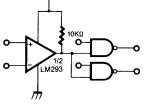
The LM293 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs during the output voltage transitions, when the comparator changes state.

To minimize this problem, PC board layout should be designed to reduce stray input-output coupling, reducing the input resistors to less than 10K Ω reduces the feedback signal levels and finally, adding even a small amount (1 to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible.

If is good design practice to ground all unused pins.

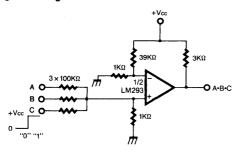

The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative than -0.3V should not used: an input clamping diode can be used as protection.


The output of the LM239 series is the uncommitted collector of a NPN transistor with grounded emitter. The allows the device to be used like any open-collector gate providing the OR-wide facility.


The output sink current capability is approximately 16mA; if this limit is exceeded, the output transistor will come out of saturation and the output voltate will rise very rapidly.

Under this limit, the output saturation voltage is limited by the approximatively 600 r_{sat} of the output transistor.

TYPICAL APPLICATIONS (Vcc = + 15V)



APPLICATION INFORMATION (continued)

Fig. 11 AND gate

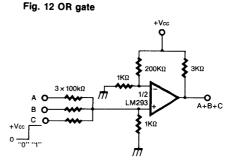
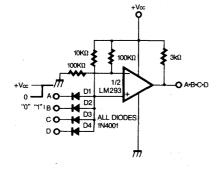



Fig. 14 Squarewave oscillator

Fig. 13 Large fan-in AND gate

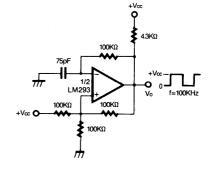


Fig. 15 Pulse generator

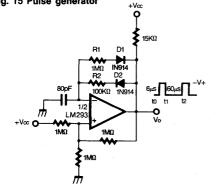
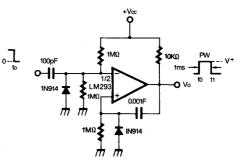
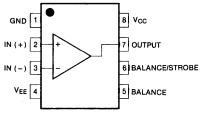
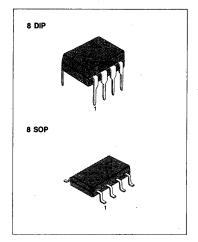



Fig. 16 One-shot multivibrator

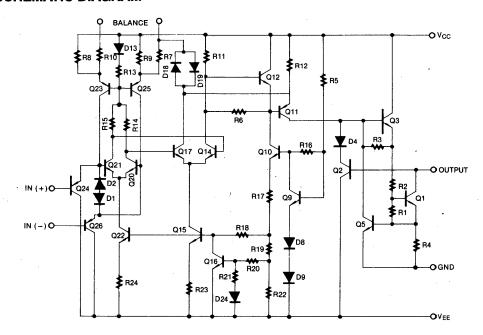
VOLTAGE COMPARATOR


The LM311 series is a monolithic, low input current voltage comparator.

The device is also designed to operate from dual or single supplies voltage.


FEATURE

- Low input bias current: 250nA (Max)
- Low input offset current: 50nA (Max)
- Differential Input Voltage: ± 30V.
- Power supply voltage: single 5.0V supply to ± 15V.
- Offset voltage null capability.
- Strobe capability.


BLOCK DIAGRAM

SCHEMATIC DIAGRAM

Device	Package	Operation Temperature
LM311N	8 DIP	0 . 70%0
LM311D	8 SOP	0 ~ + 70°C

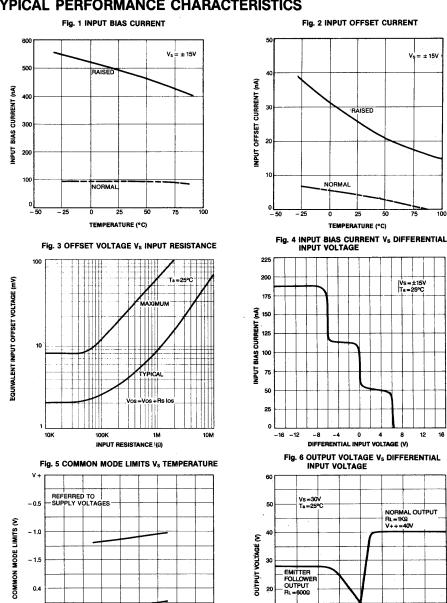
.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Total Supply Voltage	Vs	36	v
Output to Negative Supply Voltage LM311	$V_0 - V_{EE}$	40	v
Ground to Negative Supply Voltage	VEE	30	v
Differential Input Voltage	VID	± 30	V
Input Voltage	Vin	± 15	V
Output Short Circuit Duration		10	sec
Power Dissipation	PD	500	mW
Operating Temperature Range	Topr	0 ~ + 70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS ($V_{cc} = 15V$, $V_{EE} = -15V$, Ta = 25°C, unless otherwise specified)

Characteristic	Symbol	Test Cond	itions	Min	Тур	Max	Unit
		R _s ≤50KΩ			1.0	7.5	
Input Offset Voltage	V _{IO}		NOTE 1			10	mV
In nut Offerst Current	I				6	50	nA
Input Offset Current	l _{io}		NOTE 1			70	
Innut Bigg Current		· · · · ·			100	250	nA
Input Bias Current	IIB		NOTE 1			300	IA
Voltage Gain	Av			40	200		V/mV
Response Time	tr		NOTE 2		200		nS
		$I_0 = 50 mA, V_{IN} \le -10$	mV		0.75	1.5	
Saturation Voltage	V _{sat}	$V_{CC} \ge 4.5V, V_{EE} = 0V$ $I_{sink} \le 8mA, V_{IN} \le -10$	mV , NOTE 1		0.23	0.4	
Strove "ON" Current	ls				3		mA
Output Leakage Current	I _{leak}	$I_{strobe} = 3mA, V_{IN} \ge 10r$ $V_0 = 35V, V_{EE} = V_{GND} =$			0.2	50	nA
Input Voltage Range	VICR	NOTE 1		- 14.5 to 13.0	– 14.7 to 13.8		. v
Positive Supply Current	Icc				3.0	7.5	mA
Negative Supply Current	I _{EE}				- 2.2	- 5.0	mA
Strobe Current	I _{strobe}				3		mA


NOTE 1: $0 \le T_A \le +70^{\circ}C$

NOTE 2: The response time specified is for a 100mV input step with 5mV over drive

100

16

10

0

-1.0

-0.5

0

DIFFERENTIAL INPUT VOLTAGE (mV)

0.5

1.0

105 125

85

TYPICAL PERFORMANCE CHARACTERISTICS

SUNG Electronics

5 25 45 55

TEMPERATURE (°C)

-55 -35 -15

0.2

V -

 $\dot{V}_{s} = \pm 15V$

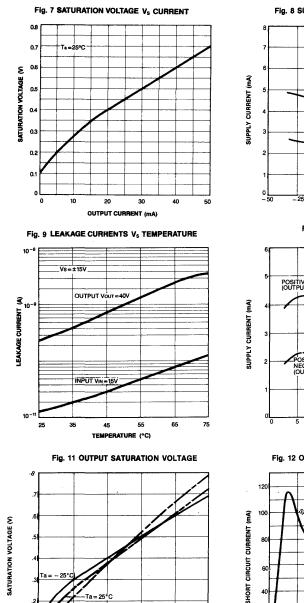
100

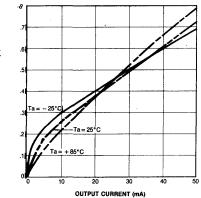
30

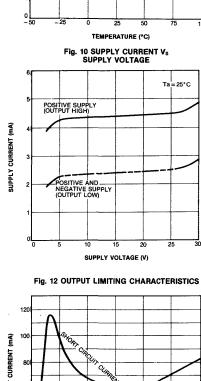
1.2

1.0

0.8


0.6


٨٨


0.2

0

15

5

10

OUTPUT VOLTAGE (V)

40

20

Fig. 8 SUPPLY CURRENT Vs TEMPERATURE

POSITIVE SUPPLY

POSITIVE AND NEGATIVE SUPPLY-OUTPUT HIGH

TYPICAL APPLICATIONS

Fig. 1 Switching Power Amplifier

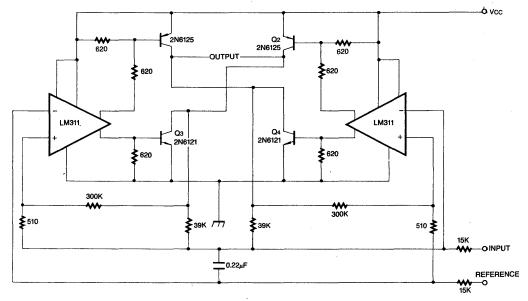
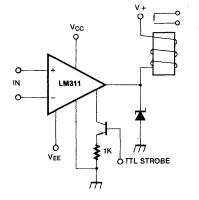
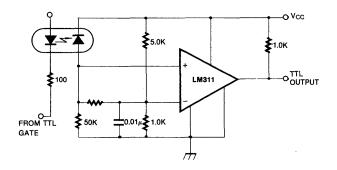
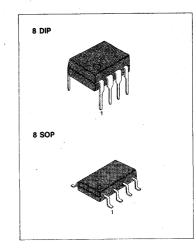




Fig. 2 Relay Driver with Strobe

Fig. 3 Digital Transmission Isolator

CMOS INTEGRATED CIRCUIT

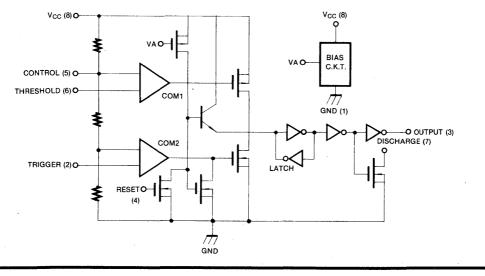
CMOS TIMER


The KS555 is CMOS timer with improved performance over the standard bipolar one. Due to its high-impedance inputs, it is capable of producing accurate time delays and oscillations with less expensive (smaller) timing capacitors than the standard bipolar timer.

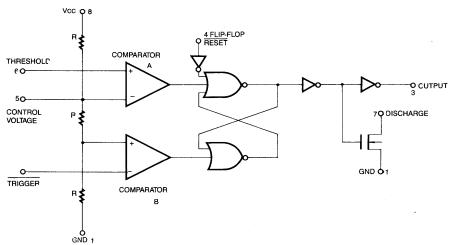
Its dramatic advantages over bipolar ones are very low power consumption and wide operating voltage range especially stable low voltage operations.

FEATURES

- Low power consumption
- Pin to pin operation with bipolar timer in most cases
- Extremely low trigger, threshold, and reset pin current
- High speed operation (500KHz)
- Stable low voltage operation
 (possible 1.5V operation with most samples)
- Wide operating voltage range: 2 to 18V
- High output source/sink driver meet TTL/CMOS
- Immunized to static charge with inner protection devices


SCHEMATIC DIAGRAM

APPLICATIONS


- Precision Timing
- · Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- · Pulse Position Modulation
- Missing Pulse Detector

Device	Package	Operating Temperature
KS555N	8 DIP	10 . 0510
KS555D	8 SOP	- 20 ~ + 85°C

BLOCK DIAGRAM

This block diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs. $R = 100K\Omega \pm 20\%$ Typ.

TRUTH TABLE

Threshold Voltage	Trigger Voltage	Reset	Output	Discharge Switch
Don't Care	Don't Care	Low	Low	On
>2/3 (V _{cc})	>1/3 (V _{cc})	High	Low	On
$< 1/3(V_{CC}) \sim 2/3(V_{CC})$	$> 1/3(V_{cc}) \sim 2/3(V_{cc})$	High	Stable	Stable
Don't Care	< 1/3 (V _{cc})	High	High	Off

Note: RESET will dominate all other input TRIGGER will dominate over THRESHOLD.

ABSOLUTE MAXIMUM RATINGS (Note 1)

 $p^{(i)}$

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	18	V
Input Volage (Trigger, Control Voltage, Threshold and Reset)	V _{IN}	-0.3 V _{cc} + 0.3	v
Power Dissipation	PD	200	mW
Operating Temperature Range	T _{opr}	- 20 ~ + 85	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

Note 1: Stresses above those listed under absolute maximum rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

(T_a=25°C, V_{CC}=2 to 15 Volts unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage Range	V _{cc}	-20°C <ta<+70°c< td=""><td>2</td><td></td><td>18</td><td>v</td></ta<+70°c<>	2		18	v
		$V_{CC} = 2V$		30		μA
Supply Current	Icc	$V_{\rm CC} = 18V$		60		μA
Timing Error Initial Accuracy	MT	$R_{a} = R_{b} = 1K\Omega \text{ to } 100K\Omega$ $C = 0.1\mu F,$ $5V \le V_{CC} \le 15V$		2.0	10.0	%
		$V_{\rm CC} = 5V$		50		ppm/°C
Drift With Temperature		V _{cc} = 10V		75		ppm/°C
		V _{cc} = 15V		100		ppm/°C
Drift With Supply Voltage		$V_{\rm CC} = 5V$		1.0	3.0	%/V
Threshold Voltage	VTH	$V_{cc} = 5V$		0.66		V _{cc}
Trigger Voltage	VTR	$V_{\rm CC} = 5V$		0.33		Vcc
Trigger Current	ITR	$V_{\rm CC} = 18V$		50		pА
		$V_{\rm CC} = 5V$		10		pА
		$V_{\rm CC} = 2V$		1		рА
· · · · · · · · · · · · · · · · · · ·	ł _{тн}	$V_{\rm CC} = 18V$		50		рА
Threshold Current		$V_{cc} = 5V$		10		рА
		$V_{\rm CC} = 2V$		1.		pА
Barrish Original		$V_{RST} = GND V_{CC} = 18V$		100		pА
Reset Current	IRE	$V_{RST} = GND V_{CC} = 5V$		20		pА
Desert Maltage		$V_{\rm CC} = 18V$	0.4	0.7	1.0	V
Reset Voltage	V _{RE}	$V_{CC} = 2V$	0.4	0.7	1.0	V
Control Voltage	Vc	$V_{CC} = 5V$		0.66		V _{cc}
	N	$V_{CC} = 18V, I_{SINK} = 3.2mA$	· .	0.1	0.4	v
Quitaut Valtaga Dran	VoL	$V_{CC} = 5V$, $I_{SINK} = 3.2mA$		0.15	0.4	v
Output Voltage Drop		$V_{CC} = 18V, I_{source} = 1.0mA$	17.25	17.8		V
	V _{он}	$V_{CC} = 5V, I_{source} = 1.0 mA$	4.0	4.5		v
Rise Time of Output	Tr	$R_{L} = 10M\Omega, C_{L} = 10pF,$	35	40	75	ns
Fall Time of Output	T _f	$V_{\rm CC} = 5V$	35	40	75	ns
Guaranteed Max Osc. Freq.	F _{max}	Astable Operation	500			KHz

APPLICATION NOTES

General Description

The KS555 is CMOS timer and in most cases, may replace bipolar timer such as NE555 or SE555. Beside it is possible to reduce component counts. Because the bipolar device can produce a large crowbar currents in the output driver, it is necessary to decouple the power supply lines with good capacitor close to the device. The KS555 device produces no such transients. (See Fig. 1).

The KS555 produces supply current spikes of only 2-3mA instead of 300mA to 400mA and supply decoupling is normally not necessary, in most cases, the CONTROL VOLTAGE decoupling capacitors are required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved by using the KS555.

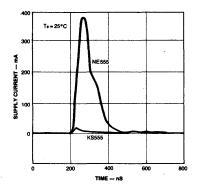
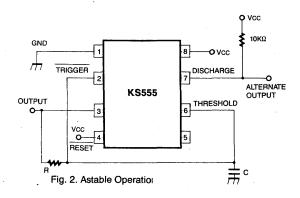
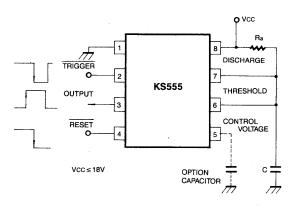



Fig 1. Supply current transient compared with a standard bipolar 555 during an output transition

Astable Operating


KS555 can free run as multi-vibrator by triggering itself. Refer to Fig. 2. The output can swing from V_{CC} to GND/ and have 50% duty cycle square wave. Less than 1% frequency deviation can be observed, over a voltage range of 2 to 5V, f = 1/1.4RC

Monostable Operation

KS555 can be used as a one-shot, i.e. monostable multivibrator. Initially, because inside discharge transistor is on state, external timing capacitor is held to GND potential. Upon application of a negative TRIGGER pulse to pin 2, internal discharge transistor is off state and the voltage across the capacitor increases with time constant t = RaC and OUTPUT goes to high state. When the voltage across the capacitor equals 2/3 V_{cc} the inner comparator is reset by THRESHOLD input and discharge transistor goes to on state, which in turn discharge the capacitor rapidly and also drives the OUTPUT to its low state.

581

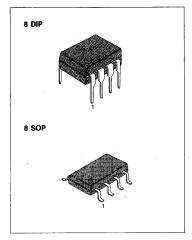
KS555H

CMOS INTEGRATED CIRCUIT

CMOS TIMER

The KS555H is monolithic integrated circuit fabricated using CMOS process. Due to its high impedance inputs (threshold, trigger, reset), it is capable of producing accurate time delay and oscillation using less expensive, smaller timing capacitors than NE555.

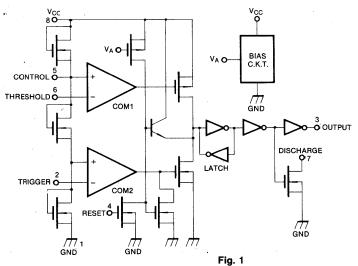
Another features are very low power consumption and high speed astable operation and very low voltage operation.


FEATURES

- Very low power consumption: 1.2mW
- Very high speed operation: 2MHz
- Complementary CMOS output capable of switching rail-to-rail
- Output fully CMOS-, TTL-, and MOS- compatible
- Exactly equivalent in most cases for NE555 or 556 (dual timer) or the 355
- Well behaved reset function
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- · Highly immuned to static charge

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature
KS555HN	8 DIP	0 ~ + 70°C
KS555HD	8 SOP	0~+70 C
**KS555HIN	8 DIP	- 25 ~ + 85°C
**KS555HID	8 SOP	-25~+65 C

** Under development

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	18	V
Input Voltage (Trigger, Reset, Threshold)	V _{IN}	-0.3 ~ V _{cc}	v
Lead Temperature (Soldering 10 sec)	T _{lead}	300	°C
Power Dissipation	PD	600	mW
Operating Temperature Range	T _{opr}	0~+70	°C
Storage Temperature Range	T _{stg}	-65 ~ +150	°C

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{cc} = 5V, refer to application circuit unless otherwise specified)

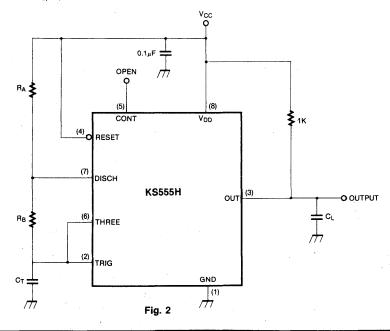
Characteristic	Symbol	Test Conditions	Min	Тур	' Max	Unit
Supply Voltage	V _{cc}		3		18	v
Supply Current	Icc	V _{cc} = 15V		140 180		μΑ μΑ
Control Voltage	Vc	V _{cc} = 15V		3.33 10		v v
Threshold Voltage	VTH	V _{cc} = 15V		3.33 10		V V
Threshold Current	Ітн	$V_{CC} = 5V$		50		PA
Trigger Voltage	VTR	V _{cc} = 15V		1.67 5		v v
Trigger Current	I _{TR}	,		50		PA
Reset Voltage	V _{RE}			0.7	1	v
Reset Current	IRE			50		PA
Low Level Output Voltage Vo		I _{OL} = 5mA I _{OL} = 8mA		0.1 0.15		v v
	V _{OL}	$V_{\rm CC}$ = 15V $\begin{split} I_{\rm OL} &= 10 mA \\ I_{\rm OL} &= 50 mA \\ I_{\rm OL} &= 100 mA \end{split}$		0.1 0.5 1		V V V
High Level Output Voltage		$I_{OH} = -1mA$ $I_{OH} = -2mA$		4.5 4		> >
	V _{он}	$V_{\rm CC}$ = 15V $\begin{split} I_{\rm OH} &= -1mA\\ I_{\rm OH} &= -5mA\\ I_{\rm OH} &= -10mA \end{split}$		14.8 14 12.7		V V V

10 ...

230 32

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Initial Error of Timing Interval	T _{EI}	$V_{cc} = 5$ to 15V, $R_A = R_B = 1$ to 100K		1		%
Timing Error Due to Supply Drift	T _{ES}	$C_T = 0.1 \mu F$		0.1		%/V
Rise Time of Output	T,			20		nS
Fall Time of Output	Tf	$R_i = 10M\Omega, C_i = 10pF$		20		nS
Maximum Astable Oscillation	FMAX	$R_A = 470\Omega, R_B = 200\Omega, C_T = 200 pF$		2		MHz

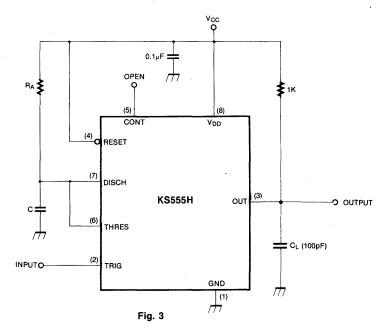

APPLICATION CIRCUIT

1) ASTABLE

The circuit can be connected to trigger itself and free run as multivibrator. The external capacitor charges through R_A and R_B and discharges through R_B only. Thus the duty cycle may be precisely set by the ratio of these two resistors. In this mode of operation, the capacitor charges and discharges between 1/3 V_{cc} and 2/3 V_{cc}. As in the trigger mode, the charging and discharging times, and therefore the frequency are essentially independently of the supply voltage.

The frequency of oscillation is given by

$$f = 1/T = 1.44/(R_A + 2 \times R_B)/C_T$$



2) MONOSTABLE

In this mode of operation, the timer functions as one shot. Initially, the external capacitor C is held discharged by a transistor inside timer. Upon application of negative trigger pulse to pin 2, the flip flop is set which releases the short circuit across the external capacitor and drives the output high.

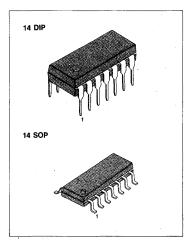
The voltage across the external capacitor now increases exponentially with a time constant $T = RA^*C$. When the voltage across the external capacitor equals $2/3^*V_{CC}$, the comparator resets the flip flop, which in turn discharges the capacitor repidly and also drives the output to its state.

KS556

CMOS TIMER

The KS556 is monolithic integrated circuit fabricated using C-MOS process. Due to high impedance inputs (Trigger, Threshold, Reset), it is capable of producing accurate time delay using less expensive, smaller timing capacitor than NE556.

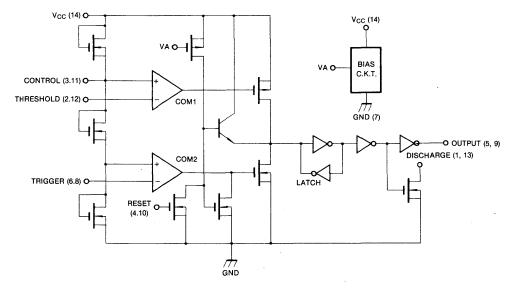
Another features are one very low power consumption and high speed astable operation and very low voltage operation.


FEATURES

- Very low power consumption: 2.4mW
- Very high speed operation: 2MHz
- Output fully CMOS, TTL, and MOS compatible
- Timing from microseconds through hours
- · Adjustable duty cycle

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- · Pulse Width Modulation


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operation Temperature			
KS556N	14 DIP	0 ~ + 70°C			
KS556D	14 SOP	0~+700			
**KS556IN	8 DIP	05 05 0			
**K\$556ID	8 SOP	25 ~ + 85°C			

** Under development

•

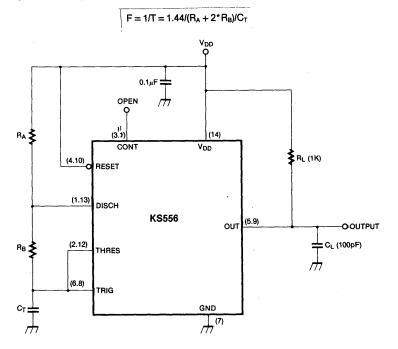
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	18	v
Input Voltage (Trigger, Reset, Threshold)	V _{IN}	-0.3~V _{cc}	v
Lead Temperature (Soldering 10 sec)	T _{lead}	300	°C
Power Dissipation	Po	600	mW
Operating Temperature Range	T _{opr}	0~+70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{cc} = 5V, refer to application circuit unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
Supply Voltage	V _{cc}		3		18	v	
Cumply Cumpet				240			
Supply Current	Icc	$V_{\rm CC} = 15V$		480		μA	
Control Voltage	V			3.33		v	
	Vc	$V_{\rm CC} = 15V$		10		v	
Threshold Voltage	V			3.33		v	
Threshold Voltage	V _{TH}	$V_{\rm CC} = 15V$		10		v	
Threshold Current	I _{тн}			50		pА	
Trigger Voltage	V _{TR}			1.67		v	
		$V_{\rm CC} = 15V$		5		V V	
Trigger Current	1 _{TR}			50		pА	
Reset Voltage	V _{RE}			0.7	1	v	
Reset Current	I _{RE}	· ·		50		pА	
		$I_{OL} = 5 mA$		0.1			
		I _{oL} = 8mA		0.15			
Low Level Output Voltage	Vol	$V_{CC} = 15V$ $I_{OL} = 10mA$		0.1		v	
		$V_{CC} = 15V I_{OL} = 50mA$		0.5			
		$V_{CC} = 15V$ $I_{OL} = 100mA$		1			
		I _{он} = — 1mA		4.5			
		I _{он} = – 2mA		4	÷		
High Level Output Voltage	V _{он}	$V_{CC} = 15V I_{OH} = -1mA$ $I_{OH} = -5mA$ $I_{OH} = -10mA$		14.8 14 12.7		V	

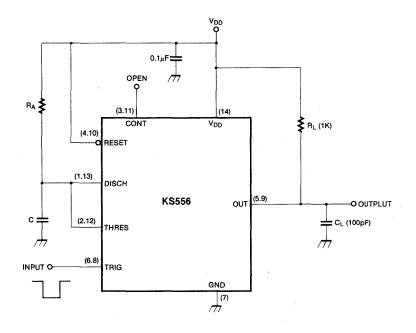

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Initial Error of Timing Interval	T _{EI}	$V_{CC} = 5$ to 15V $R_{A} = R_{B} = 1$ to 100K		1		%
Supply Voltage Sensitivity of Timing Interval	T _{ES}	$C_T = 0.1 \mu F$		0.1		%N
Rise Time	T,	$R_L = 10M\Omega$, $C_L = 10pF$	1	20		nS
Fall Time	T _f	$R_L = 10M\Omega$, $C_L = 10pF$		20		nS
Maximum Astable Oscillation	F _{max}	$\begin{array}{l} R_{A}=470\Omega, \ R_{B}=200\Omega\\ C_{T}=200pF \end{array}$		2		MHz

APPLICATION CIRCUIT

1) Astable

The circuit can be connected to trigger itself and free runs as multivibrator. The external capacitor chrages through R_A and R_B and discharges through R_B only. Thus the duty cycle may be precisely set by the ratio of these two resistors. In this mode of operation, the capacitor charges and discharges between 1/3 V_{CC} and 2/3 V_{CC}. As in the trigger mode, the charging and discharging times, and therefore the frequency, are essentially independently of the supply voltage. These frequency of oscillation is given by



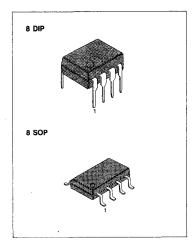
2) Monostable

In this mode of operation, the timer functions as one shot. Initially, the external capacitor (C) is held discharged by a transistor inside timer. Upon application of negative trigger pulse to trigger pin the flip flop is set which releases the short circuit across the external capacitor and drives the output high.

The voltage across the external capacitor now increases exponentially with time constant $T = R_A \times C$. When the voltage across the external capacitor equals $2/3 \times V_{CC}$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the output to its state.

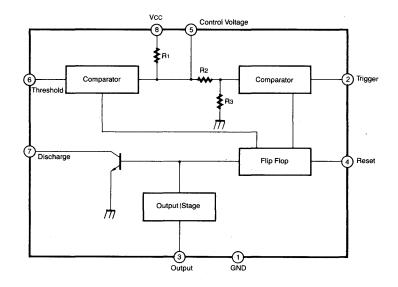
TIMER

The NE555 series are a monolithic integrated circuit and high stable device forgenerating accurate time delay or oscillation. NE5551 is characterized for operation from -40° C to $+85^{\circ}$ C, and NE555C from 0°C to 70°C.


FEATURES

- Turn off time less than 2µs
- Maximum operating frequency greater than 500KHz
- Timing from microseconds to hours
- Operates in both astable and monostable modes
- High output current
- Adjustable duty cycle
- Temperature stability of 0.005% per °C

APPLICATIONS


- Precision timing
- Time delay generation
- Pulse generation
- Pulse position modulation
- Sequential timing
- Missing pulse detector

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature	
NE555IN	8 DIP	- 40 ~ + 85°C	
NE555ID	8 SOP	-40~+05 C	
NE555CN	8 DIP	0 ~ + 70°C	
NE555CD	8 SOP	0~+70°C	

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	16	v
Lead Temperature (soldering 10 sec)	Tlead	300	°C
Power Dissipation	Pp	600	mW
Operating Temperature Range NE555I	Topr	- 40 ~ + 85	°C
NE555C		0~+70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

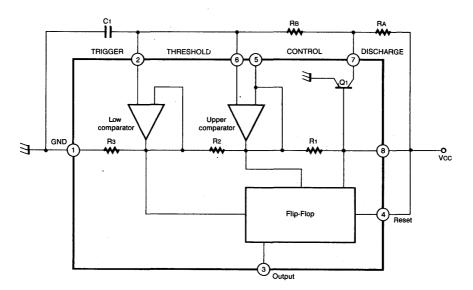
(T_a=25°C, V_{CC}=5~15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}		4.5		16	v
Supply Current		$V_{\rm CC} = 5V, R_{\rm L} = \infty$		3	6	mA
* ₁ (low stable)	lcc	$V_{CC} = 15V, R_L = \infty$		10	15	mA
*Timing Error (Monsotable) ² Initial Accurary Drift with Temperature Drift with Supply Voltage	MT ₁	R _A = 1KΩ to 100KΩ C = 0.1μF		1.0 50 0.1	3.0 0.5	% ppm/°C %/V
*Timing Error (astable) ² Initial Accurary Drift with Temperature Drift with Supply Voltage	MT ₂	$R_{A} = 1K \text{ to}$ $100K\Omega$ $C = 0.1\mu\text{F}$		2.25 150 0.3	· · · · ·	% ppm/°C %/V
Control Voltage	Vc	V _{CC} = 15V	9.0	10.0	11.0	V
	۷C	$V_{CC} = 5V$	2.6	3.33	4.0	<u>v</u>
Threshold Voltage	V _{TH}	$V_{CC} = 15V$		10.0		V
Theshold voltage	VTH	$V_{CC} = 5V$		3.33		v
* ³ Threshold Current	Ітн			0.1	0.25	μA
Trigger Voltage	VTR	$V_{\rm CC} = 5$	1.1	1.67	2.2	V
Trigger Voltage	VTR	$V_{\rm CC} = 15V$	4:5	5	5.6	V
Trigger Current	ITR	$V_T = 0V$		0.5	2.0	μA
Reset Voltage	VRE		0.4	0.7	1.0	V
Reset Current	I _{RE}			0.1	0.4	mA

ELECTRICAL CHARACTERISTICS

(T_a=25°C, V_{∞}=5~15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage (low)	Vot	$V_{CC} = 15V$ $I_{sink} = 10mA$ $I_{sink} = 50mA$		0.1 0.4	0.25 0.75	V V
	VOL .	$V_{CC} = 5V$ $I_{sink} = 5mA$		0.25	0.35	. v
Output Voltage (high) V _{OH}		$V_{CC} = 15V$ $I_{source} = 200mA$ $I_{source} = 100mA$	12.75	12.5 13.3		V V
	VOH	V _{CC} = 5V I _{source} = 100mA	2.75	3.3		γ,
Rise Time of Output	Tr			100		nsec
Fall Time of Output	Tf			100		nsec
Discharge Leakage Current	l _D			20	100	nA


Notes:

1. Supply current when output is high is typically 1mA less at V_{CC} =5V.

2. Tested at $V_{CC} = 5.0V$ and $V_{CC} = 15V$

 This will determine the maximum value of R_A+R_B for 15V operation, the max total R=20MΩ, and for 5V operation the max total R=6.7MΩ.

APPLICATION CIRCUIT

NE555C/I

APPLICATION NOTE

The application circuit shows astable mode.

The pin 6 (threshold) tied to the pin 2 (trigger) and pin 4 (reset) tied to V_{cc} (pin 8).

The external capacitor C1 of pin 6 and pin 2 charges through RA, RB and discharges through RB only.

In the internal circuit of the $NE555_1$ one input of upper comparator is the 2/3 V_{CC} (*R₁ = R₂ = R₃), another input of it connected pin 6.

As soon as charging C_1 is higher than 2/3 V_{cc} , discharge transistor Q_1 turn on and C_1 discharges to collector of transistor Q_1 . Therefore flip-flop circuit is reset and output is low.

One input of lower comparator is the 1/3 V_{CC} , discharge transistor Q_1 turn off and C_1 charges through R_A and R_B . Therefore flip-flop circuit is set and output is high.

So to say, when C₁ charges through R_A and R_B output is high and when C₁ discharges through R_b output is low The charge time (output is high) T₁ is 0.693 (R_A + R_B) C₁ and the discharge time (output is low) T₂ is 0.693 (R_B C₁).

$$(I_n \frac{V_{CC}-1/3V_{CC}}{V_{CC}-2/3V_{CC}} = 0.693)$$

Thus the total period time T is given by $T=T_1+T_2=0.693$ (R_A+2R_B). C_1 . Then the frequency of astable mode is given by

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C_1}$$

The duty cycle is given by

$$D.C = \frac{T_2}{T} = \frac{R_B}{R_A + 2R_B}$$

If you make use of the NE556 you can make two astable mode.

If you want another application note, request information on our timer IC application circuit designer.

DUAL TIMER

The NE556 series dual monolithic timing circuits are a highly stable controller capable of producing accurate time delays or oscillation.

The NE556 is a dual NE555. Timing is provided an external resistor and capacitor for each timing function.

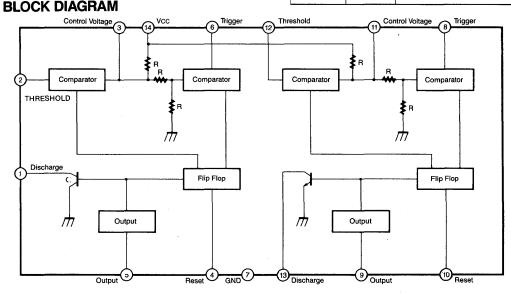
The two timers operate independently of each other, sharing only $V_{\mbox{\tiny CC}}$ and ground.

The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200mA.

NE556I is characterized for operation from -40° C to $+85^{\circ}$ C, and NE556C from 0°C to 70°C.

FEATURES

- Direct replacement for NE556
- Replaces two NE555 timers
- · Operates in both astable and monostable modes
- High output current
- TTL compatible
- · Timing from microsecond to hours
- · Adjustable duty cycle
- Temperature stability of 0.005% per °C


APPLICATIONS

- · Precision timing
- Pulse shaping
- Pulse width modulation
- Frequency division
- Traffic light control

14 DIP

ORDERING INFORMATION

Device	Package	Operating Temperature
NE556IN	14 DIP	-40~+85°C
NE5561D	14 SOP	-40~+65 C
NE556CN	14 DIP	0 ~ + 70°C
NE556CD	14 SOP	0~+70°C

Sequential timing

- · Pulse generator
- Time delay generator
- Touch tone encoder
 Tone burst generator
- iono bular generalor

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	16	v
Lead Temperature (soldering 10 sec)	Tlead	300	°C
Power Dissipation	PD	600	mW
Operating Temperature Range NE5561 NE556C	T _{opr}	- 40 ~ + 85 0 ~ + 70	0° 0°
Storage Temperature Range	T _{stg}	$-65 \sim +150$	°C

ELECTRICAL CHARACTERISTICS

($V_{CC} = +5V$ to +15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc		4.5		16	v
*1 Supply Current (Two timers) (low state)	lcc	$V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$		5 16	12 30	mA mA
*2 Timing Error (monostable) Initial Accuracy Drift with Temperature Drift with Supply Voltage	MT1	$ \begin{array}{l} R_{A} = 2 \mathrm{K} \Omega \ \text{to} \ 100 \mathrm{K} \Omega \\ C = 0.1 \mu F \\ T = 1.1 R_{C} \end{array} $		0.75 50 0.1		.% ppm/°C %/V
Control Voltage	Vc	V _{cc} =15V	9.0	10.0	11.0	v
	VC	$V_{CC} = 5V$	2.6	3.33	4.0	v
Threshold Voltage	V _{TH}	$V_{CC} = 15V$		10.0		v
	VTH	V _{cc} =5V		3.33		v
*3 Threshold Current	I _{TH}			30	250	nA
Tuinney Malana	V _{TR}	V _{CC} = 15V	4.5	5.0	5.6	V
Trigger Voltage		V _{CC} =5V	1.1	1.67	2.2	V
Trigger Current	I _{TR}	V _T = 0V		0.5	2.0	μΑ
*5 Reset Voltage	VRE		0.4	0.7	1.0	ν
Reset Current	I _{RE}			0.1	0.6	mA
Output Voltage Low	V _{OL}	$V_{CC} = 15V \\ I_{sink} = 10mA \\ I_{sink} = 50mA \\ I_{sink} = 100mA \\ I_{sink} = 200mA \\ V_{CC} = 5V \\ I_{sink} = 8mA \\ I_{sink} = 5mA \\ \label{eq:sink}$		0.1 0.4 2.0 2.5 0.25 0.15	0.25 0.75 3.2 (.3 0.25	V V V V V

ELECTRICAL CHARACTERISTICS

(V_{CC}=+5V to +15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage (high)	V _{он}	V _{cc} =15V I _{source} =200mA I _{source} =100mA	12.75	12.5 13.3		v v
		V _{CC} = 5V I _{source} = 100mA	2.75	3.3		v
Rise Time of Output	T,			100	300	nsec
Fall Time of Output	Tf			100	300	nsec
Discharge Leakage Current	ID			20	100	nA
*4 Matching Characteristics Initial Accuracy Drift with Temperature Drift with Supply Voltage	Мсн			1.0 10 0.2	2.0 0.5	% ppm/°C %/V
*2 Timing Error (astable) Initial Accuracy Drift with Temperature Drift with Supply Voltage	MT2	R_A , $R_B = 1k\Omega$ to 100kΩ $C = 0.1 \mu F$ $V_{CC} = 15V$		2.25 150 0.3		% ppm/°C %/V

Notes:

*1. Supply current when output is high is typically 1.0mA less at V_{CC} =5V.

*2. Tested at V_{CC} =5V and V_{CC} =15V

*3. This will determine the maximum value of $R_{\text{A}} + R_{\text{B}}$ for 15V operation.

The maximum total R=20M Ω , and for 5V operation the maximum total R=6.6M Ω .

- *4. Matching characteristic refer to the difference between performance characteristics of each timer section in the monostable mode.
- *5. As reset voltage lowers, timing is inhibited and then the output goes low.

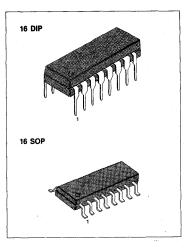
NE558C/I

LINEAR INTEGRATED CIRCUIT

QUAD TIMER

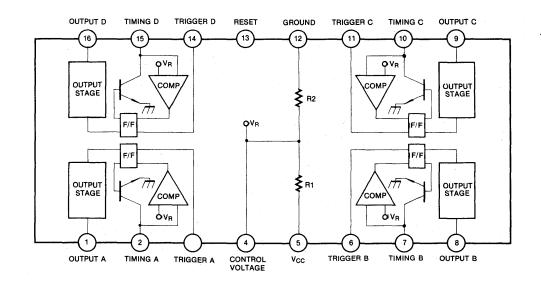
The NE558 series are a monolithic Quad Timers which can be used to produce four entirely independent timing functions. These highly stable, general purpose controllers can be used in a monostable mode to produce accurate time delays, from microseconds to hours. The time is precisely controlled by one external resistor and one capacitor in the time delay mode. A stable mode can be operated by using two of four timer sections.

NE558I is characterized for operation from -40° C to $+85^{\circ}$ C, and NE558C from 0°C to 70°C.


FEATURES

- Wide supply voltage range: 4.5V to 16V
- 100mA output current per section
- Edge triggered without coupling capacitor
- Time period equals RC
- Output independent of trigger conditions.

APPLICATIONS


- · Quad one-shot
- Sequential timing
- Precision timing
- Time delay generation

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature		
NE558IN	14 DIP	-40 ~ +85°C		
NE558CN	14 DIP	0 70%0		
NE558CD	14 SOP	0 ~ + 70°C		

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	16	V
Lead Temperature (soldering 10 sec)	Tlead	300	°C
Power Dissipation	PD	600	mW
Operating Temperature Range NE556	Topr	- 40 ~ + 85	°C
NE556C		0 ~ 70	°C
Storage Temperature Range	T _{stg}	- 65 ~ + 150	°C

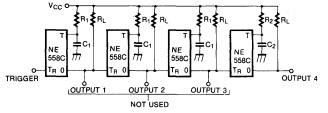
ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V ~ 15V, Ta = 25°C unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}		4.5		16	v
Supply Current	Icc	$V_{cc} = 15V$, reset voltage = 15V		16	36	mA
Timing Error (T = RC) Initial Accuracy				± 2	5	%
Drift with Temperature	Mτ	$R = 2K\Omega$ to 100KΩ, $C = 1\mu F$		30	150	PPM/°C
Drift with Supply Voltage				0.1	0.9	%/V
¹ Trigger Voltage	VTR	$V_{\rm CC} = 15V$	0.8	1.5	2.4	v
¹ Trigger Current	ITR	Trigger voltage = 0V		5.0	100	μΑ
² Reset Voltage	VRE	Reset	0.8	1.5	2.4	v
² Reset Current	IRE	Reset	1	50	500	μA
Threshold Voltage	V _{TH}			$0.63 \times V_{CC}$		V
Threshold Current	ITL			15		nA
2 Output Mallaga	v	I _L = 10mA		0.1	0.4	v
³ Output Voltage	Vout	I _L = 100mA		1.0	2.0	v
Output Leakage Current	IOL			10	500	nA
Propagation Delay Time	T _P			1.0		μS
Rise Time	T,	I _L = 100mA		100		nS
Fall Time	T _f	I_= 100mA		100		nS

NOTES: 1. The trigger functions only on the falling edge of the trigger pulse only after previously being high. After reset the trigger must be brought high and then low to implement triggering.

2. For reset below 0.8V, outputs set low and trigger inhibited.


3. Output structure is open collector which requires a pull up resistor to V_{cc} to sink current. The output is nomally low sinking current.

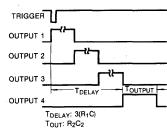


Fig. 2 Timing Chart

APPLICATIONS

Fig. 1 Long-Time Delay

Fig. 3 Ring Counter

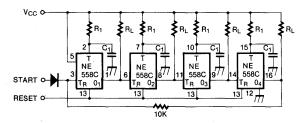
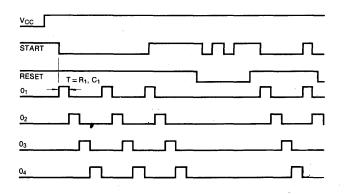
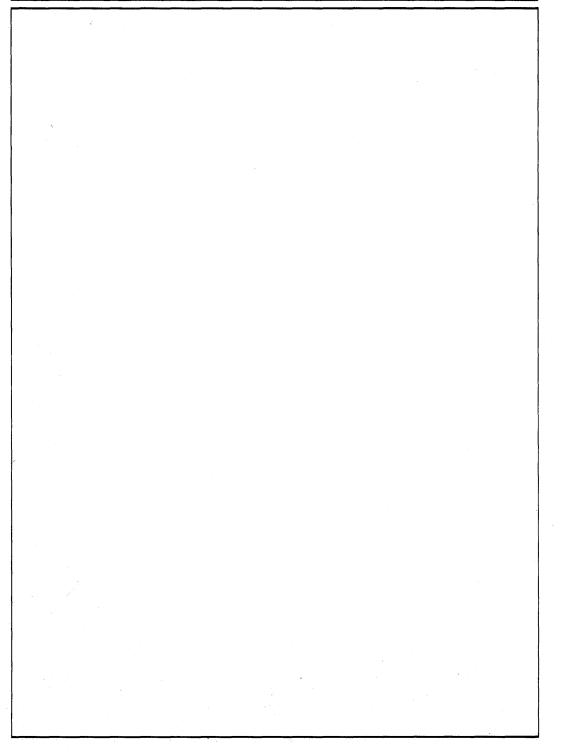




Fig. 4 Timing Chart

and the second
MISCELLANEOUS ICs

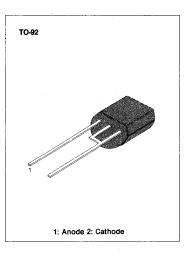
 \bigcirc

5

Device	Function	Package	Page
KA33V	Silicon Monolithic Bipolar Integrated Circuit Voltage Stabilizer for Electronic Tuner	TO-92	603
KA331	Precision Voltage-to-Frequency Converter	8 DIP/8 SOP	607
KA2580A	8-Channel Source Drives	18 DIP	611
KA2588A	8-Channel Source Drives	20 DIP	611
KA2651	Fluorescent Display Drivers	18 DIP	616
KA2655/6/7/8/9	High Voltage High Current Darlington Arrays	16 DIP/16 SOP	619
KA2803	Low Power Consumption Earth Leakage Detector	8 DIP	624
KA2804	Zero Voltage Switch	8 DIP	627
KA2807	Earth Leakage Detector	8 DIP/8 SOP	630
LH386/S/D	Low Voltage Audio Power Amplifier	8 DIP/8 SOP/9 SIP	634

. •

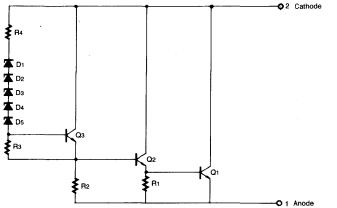
SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT VOLTAGE STABILIZAER FOR ELECTRONIC TUNER


The KA33V is a monolithic integrated voltage stabilizer especially designed as voltage supplier for electronic tuners.

FEATURES

- Low Temperature Coefficient
- Low Dynamic Resistance
- Typical Reference Voltage of 33V

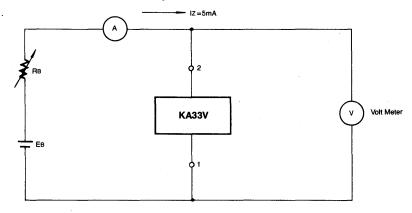
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

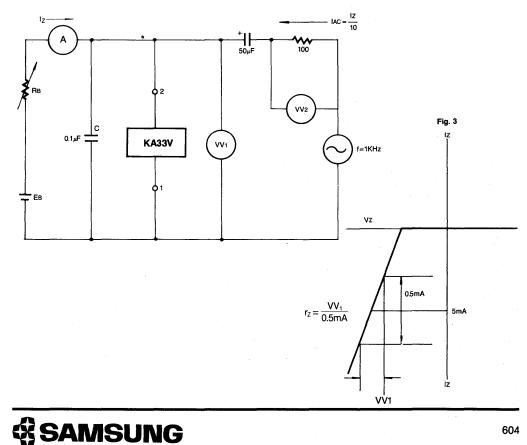

Characteristic	Symbol	Value	Unit
Zener Current Power Dissipation ($T_a = 75^{\circ}C$)	l _z P _D	10 200	mA mW
Operating Ambient Temperature- Range	T _{opr}	- 20 ~ 75	°C
Storage Temperature Range	T _{stg}	- 40 ~ 125.	۰C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Stabilized Voltage	Vz	Iz=5mA	31		35	v
Stabilized Voltage-Temperature Drift	∆V _z /∆T	$I_z = 5mA$ $T_a = -20$ to 75°C	- 1	0	1	mV/°C
Dynamic Resistance	r _z	l _z =5mA, f=1KHz		10	25	

SCHEMATIC DIAGRAM




MEASURING CIRCUITS

Electronics

Fig. 1 Measuring Circuit for Stabilized Voltage Vz

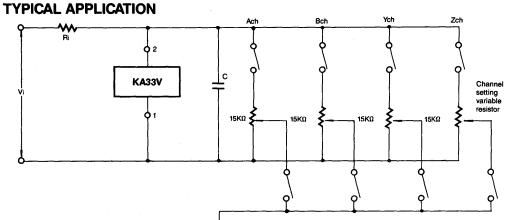
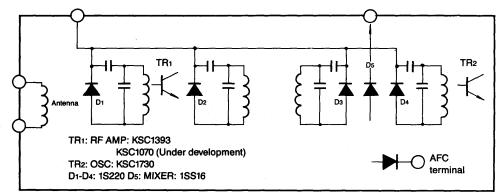
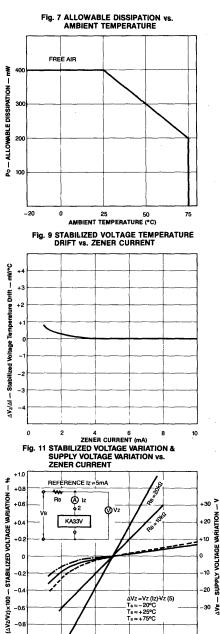


Fig. 2 Measuring Circuit for Dynamic Resistance

KA33V


LINEAR INTEGRATED CIRCUIT

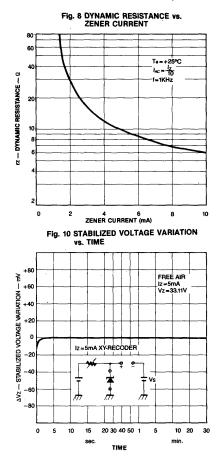
* to tuning diodes (varactor) in case of Ych on


(1) UHF TUNER

(2) VHF TUNER

ξ TRз TR₁ Dı D2 D3 D4 TR₂ ξ TR1: RM AMP : KSC1393 TR2: MIXER : KSC1394 -() : KSC1730 TR3: OSC AFC terminal D1, D4: 1S2209 Low/High Channel Switching terminal D2, D3: 1S2207

POWER-TEMPERATURE DERATING CURVE


2

SUP

ž

10

TYPICAL CHARACTERISTIC CURVES (Ta=25°C)

2

4 ZENER CURRENT (mA)

6

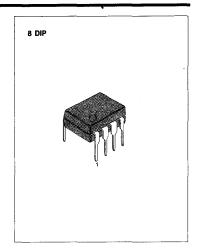
8

-1.0

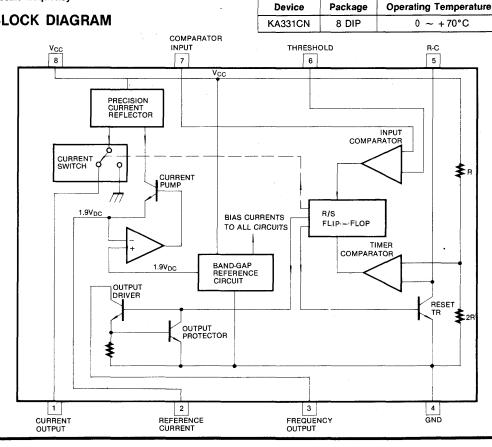
0

LINEAR INTEGRATED CIRCUIT

PRECISION VOLTAGE-TO-FREQUENCY CONVERTER


This voltage-to-frequency converter provides the output pulse train at a frequency precisely proportional to the applied input voltage. The KA331 can operate at power supplies as low as 4.0V and be changed output frequency from 1Hz to 100KHz.

It is ideally suited for use in simple low-cost circuit for analog-to-digital conversion, long-term integration, linear frequency modulation or demodulation, frequency-tovoltage conversion, and many other functions.


FEATURES

- Guaranteed linearity: 0.01% max
- Low power dissipation: 15mW at 5V
- · Wide range of full scale frequency: 1Hz to 100KHz
- · Pulse output compatible with all logic forms
- Wide dynamic range: 100dB min at 10KHz full scale frequency

BLOCK DIAGRAM

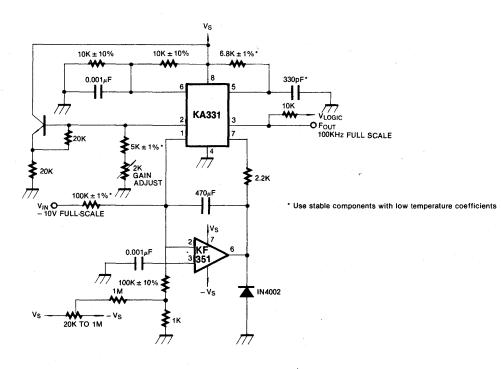
ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS (Ta = 0°C)

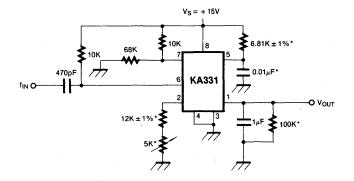
Characteristic	Symbol	Value	Unit
Supply Voltage	Vs	40	v
Input Voltage	V _{IN}	-0.2 to $+V_{s}$	l v
Operating Temperature Range	T _{opr}	0 to 70	°C
Power Dissipation	Po	500	mW

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit	
VFC Non-Linearity	VFCNL	4.5V ≤ V _s ≤ 20V	_	± 0.003	± 0.01	% Full-Scale	
Conversion Accuracy Scale Factor	ACCUR	$V_{\text{IN}} = -10V, \ R_{\text{S}} = 14K\Omega$	0.90	1.00	1.10	KHz/V	
Change of Coin With V	A	4.5V ≤ V _s ≤ 10V	-	0.01	0.1	%/V	
Change of Gain With Vs		$10V \le V_S \le 40V$		0.006	0.06	90/V	
Rated Full-Scale Frequency	Four	$V_{IN} = -10V$	10.0	_		KHz	
INPUT COMPARATOR		· <u>······</u> ·····························					
Offset Voltage	Vos	$T_{MIN} \leq T_A \leq T_{MAX}$	-	± 3	± 10	mV	
Bias Current	l _B		-	- 80	- 300	nA	
Offset Current	l _{os}			±8	± 100	nA	
Common-Mode Range	V _{см}	$T_{MIN} \leq T_A \leq T_{MAX}$	- 0.2	_	V _{cc} -2.0	V	
TIMER (PIN 5)	1	· · · · · · · · · · · · · · · · · · ·					
Timer Threshold Voltage	VTH		0.63	0.667	0.70	xVs	
	I _{B5}	$V_{s} = 15V, 0V \le V_{PIN 5} \le 9.9V$	-	± 10	± 100	nA	
Input Bias Current		$V_{PIN5} = 10V$	_	200	1000	nA	
Saturation Voltage	V _{SAT 5}	1 = 5mA	_	0.22	0.5	V	
CURRENT SOURCE (PIN 1)				L		,	
Output Current	loi	$R_s = 14K\Omega, V_{PIN1} = 0$	116	136	156	μA	
Change with Voltage	∆lo	$0V \leq V_{PIN1} \leq 10V$	-	0.2	1.0	μA	
Current Source Off Leakage	ես		_	0.02	10.0	nA	
REFERENCE VOLTAGE (PIN 2)	·			<u> </u>	·		
Reference Voltage	V _{ref}	ydd y y y y y y y y y y y y y y y y y y	1.70	1.89	2.08	V _{DC}	
Stability vs Temperature	VTEMP		_	± 60	-	ppm/°C	
Stability vs Time, 1000 Hours	VTIME			±0.1	-	%	



ELECTRICAL CHARACTERISTICS (Continued)


Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
LOGIC OUTPUT (PIN 3)		. *	L	.	L	
0-4	V _{SAT3}	l = 5mA	-	0.15	0.50	.,
Saturation Voltage		i = 3.2mA	-	0.10	0.40	_ V
Off Leakage	I _{L3}		-	± 0.05	1.0	μA
SUPPLY CURRENT		· · · · · · · · · · · · · · · · · · ·			l	
Supply Current	ls	$V_s = 5V$	1.5	3.0	6.0	
		$V_s = 40V$	2.0	4.0	8.0	mA

TYPICAL APPLICATIONS

Fig. 1 Precision Voltage-to-Frequency Converter, 100KHz Full-Scale

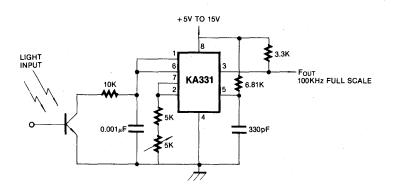
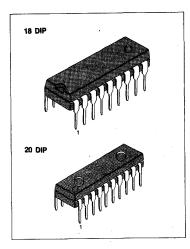


Fig. 2 Simple Frequency-to-Voltage Converter, 10KHz Full-Scale

Fig. 3 Light Intesity to Frequency Converter

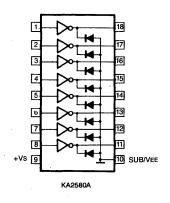

8-CHANNEL SOURCE DRIVERS

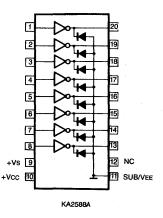
These integrated circuits, rated for operation with output voltages of up to 50V and designed to link NMOS logic with high-current inductive loads, will work with many combinations of logic-and load-voltage levels, meeting interface requirements beyond the capabilities of standard logic buffers.

KA2580A is a high current source driver used to switch the ground ends of loads that are directly connected to a negative supply. Typical loads are telephone relays, PIN diodes, and LEDs.

KA2588A is a high-current source driver similar to KA2580A, has separated logic and driver supply lines. Its eight drivers can serve as an interface between positive logic (TTL, CMOS, MOS) or negative logic (NMOS) and either negative or split-load supplies.

KA2580A is furnished in 18-pin dual in-line plastic package; KA2588A is supplied in a 20-pin dual in-line plastic package. All input connections are on one side of the packages, output pins on the other, to simplify printed wiring board layout.


FEATURES


- TTL, CMOS, PMOS, NMOS Compatible
- High Output Current Ratings
- Internal Transient Suppression
- Efficient Input/Output Pin Structure

ORDERING INFORMATION

Device	Package	Operating Temperature			
KA2580AN	18 DIP	- 20 ~ +85°C			
KA2588AN	20 DIP	-20~+85°C			

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

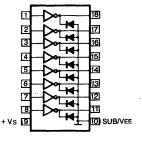
(T_a=25°C, for Any One Driver unless otherwise noted)

Characteristic	Symbol	Value	Unit
Output Voltage	V _{CE}	50	v
Supply Voltage (ref, sub)	Vs	50	v
Supply Voltage (ref, sub, KA2588A)	V _{cc}	50	v
Input Voltage (ref, Vs)	V _{iN}	- 30	v
Total Current	lcc+ls	- 500	mA
Substrate Current	I _{SUB}	3.0	Α
Power Dissipation (single output)	Pd	1.0	w
(total Package)*		2.2	w
Operating Temperature	Ta	-20~+85	°C
Storage Temperature	Tstg	- 65~ + 150	°C

* Derate at the rate of 18mW/°C above 25°C

TYPICAL OPERATING VOLTAGE

Vs	V _{IN} (on)	V _{IN} (off)	Vcc	V _{EE} (max)	DVC Type
ov	– 15V ~ – 3.6V	-0.5V~ 0V	NA	- 50V	KA2580A
+ 5V	0V~ +1.4V	+4.5V~ +5V	NA ≤5V	- 45V - 45V	KA2580A KA2588A
+ 12V	0V~ +8.4V	+ 11.5V~ + 12V	NA ≤12V	- 38V - 38V	KA2580A KA2588A
+ 15V	0V~+11.4V	+ 14.5V ~ + 15V	NA ≤15V	- 35V - 35V	KA2580A KA2588A


Notes

- For simplication, these devices are characterized to the above with specific voltages for inputs, logic supply (V_s), load supply (V_{EE}), and collector supply (V_{CC}).
- Typical use of the KA2580A is with negative referenced logic. The more common application of the KA2588A is with positive referenced logic supplies.
- 3) In application, the devices are capable of operation over a wide range of logic and supply voltage levels.
- 4) The substrate must be tied to the most negative point in the external circuit to maintain isolation drivers and to provide for normal circuit operation.

PARTIAL SCHEMATIC (KA2580A)

ELECTRICAL CHARACTERISTICS (KA2580A)

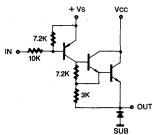
(T_a=25°C, V_S=0V, V_{EE} = -45V unless otherwise noted)

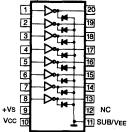
Characteristic	Symbol	Test Conditions	Min	Max	Unit
Output Leakage Current	I _{CEX}	$V_{in} = -0.5V,$ $V_{OUT} = V_{EE} = -50V$		50	μA
		$V_{IN} = -0.4V,$ $V_{OUT} = V_{EE} = -50V$ $T_a = 70^{\circ}C$		100	μA
Output Sustaining Voltage (Note 1, 2)	V _{CE} (sus)	$V_{IN} = -0.4V$, $I_{OUT} = -25mA$	35		v
		$V_{IN} = -2.4V, I_{OUT} = -100mA$		1.8	v
Output Saturation Voltage	V _{CE} (sat)	$V_{IN} = -3.0V$, $I_{OUT} = -225$ mA		1.9	v
		$V_{IN} = -3.6V, I_{OUT} = -350mA$		2.0	V
	I _{IN} (on)	$V_{IN} = -3.6V, I_{OUT} = -350mA$		- 500	μA
Input Current		$V_{IN} = -15V, I_{OUT} = -350mA$		-2.1	mA
	I _{IN} (off)	$I_{OUT} = -500\mu A, T_a = 70^{\circ}C$ (Note 3)	- 50		μA
	V _{IN} (on)	I _{OUT} = −100mA, V _{CE} ≤ 1.8V		-2.4	V
Input Voltage		I _{OUT} = -225mA, V _{CE} ≤1.9V		- 3.0	V
(Note 4)		$I_{OUT} \approx -350 \text{mA}, V_{CE} \le 2.0 \text{V}$	<u></u>	- 3.6	V
	V _{IN} (off)	$I_{OUT} = -500 \mu A, T_a = 70^{\circ}C$	0.2		V
Clamp Diode Leakage Current	l _R	V _R =50V, T _a =70°C		50	μA
Clamp Diode Forward Voltage	Vf	lf=350mA		2.0	V
Input Capacitance	C _{IN}			25	pF
Turn-On Delay	t _{PHL}	0.5 V _{IN} to 0.5 V _{OUT}		5.0	μS
Turn-Off Delay	t _{PLH}	0.5 V _{IN} to 0.5 V _{OUT}		5.0	μS

Notes

1) Pulsed test, tp \leq 300uS, duty cycle \leq 2%.

2) Negative current is defined as coming out of specified device pin.


3) The lin (off) current limit guarantees against partial turn-on of the output.


4) The Vin (on) voltage limit guarantees a minimum output source per the specified conditions.

5) The substrate must always be tied to the most negative point and must be at least 4.0V below Vs.

PARTIAL SCHEMATIC (KA2588A)

ELECTRICAL CHARACTERISTICS (KA2588A)

 $(T_a = 25^{\circ}C, V_S = V_{CC} = 5.0V, V_{EE} = -40V$ unless otherwise noted)

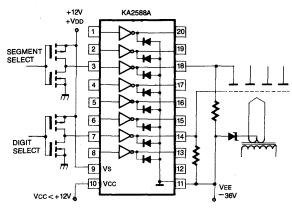
Characteristic	Symbol	Test Conditions	Min	Max	Unit
		$V_{IN} \ge 4.5V, V_{OUT} = V_{EE} = -45V$		50	μA
Output Leakage Current	ICEX	$V_{IN} \ge 4.6V, V_{OUT} = V_{EE} = -45V$ $T_a = 70^{\circ}C$		100	μA
Output Sustaining Voltage (Note 1, 2)	V _{CE} (sus)	$V_{IN} \ge 4.6V, I_{OUT} = -25mA$	35		v
		$V_{IN} = 2.6V, I_{OUT} = -100mA$ Ref. V _{CC}		1.8	v
Output Saturation Voltage	V _{CE} (sat)	$V_{IN} = 2.0V, I_{OUT} = -225mA$ Ref. V _{CC}		1.9	v
		$V_{IN} = 1.4V$, $I_{OUT} = -350$ mA Ref. V_{CC}		1.9 2.0 - 500 -2.1	v
		$V_{IN} = 1.4V, I_{OUT} = -350mA$		- 500	μA
Input Current	l _{iN} (on)	$V_{S} = 15V, V_{EE} = -30V,$ $V_{IN} = 0V, I_{OUT} = -350mA$		-2.1	mA
	I _{IN} (off)	$I_{OUT} = -500 \mu A, T_a = 70^{\circ}C$ (Note 3)	- 50		μA
		$I_{OUT} = -100 \text{mA}, V_{CE} \le 1.8 \text{V}$		2.6	ν
Input Voltage (Note 4)	V _{iN} (on)	$I_{OUT} = -225 \text{mA}, V_{CE} \le 1.9 \text{V}$		2.0	v
		$I_{OUT} = -350 \text{mA}, V_{CE} \le 2.0 \text{V}$		1.4	V
· · · · · · · · · · · · · · · · · · ·	V _{IN} (off)	$I_{OUT} = -500 \mu A, T_A = 70^{\circ} C$	4.8		v
Clamp Diode Leakage Current	l _R	$V_{\rm R} = 50V, T_{\rm a} = 70^{\circ}C$		50	μA
Clamp Diode Forward Voltage	Vf	lf=350mA		2.0	v
Input Capacitance	CIN			25	pF
Turn-On Delay	t _{PHL}	0.5 V _{IN} to 0.5 Vout	-	5.0	μS
Turn-Off Delay	t _{PLH}	0.5 V _{IN} to 0.5 Vout		5.0	μS

Notes

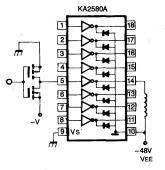
1) Pulsed test, tp \leq 300uS, duty cycle \leq 2%.

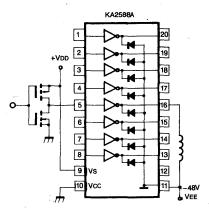
2) Negative current is defined as coming out of specified device pin.

3) The lin (off) current limit guarantees against partial turn-on of the output.


4) The Vin (on) voltage limit guarantees a minimum output source per the specified conditions.

5) The substrate must always be tied to the most negative point and must be at least 4.0V below Vs.


6) V_{cc} must never be more positive than V_s.

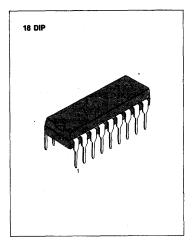

TYPICAL APPLICATIONS

Vacuum Fluorescent Display Driver (Split Supply)

Telecommunication Relay Driver (Negative Logic)

Telecommunicaiton Relay Driver (Positive Logic)

5


FLUORESCENT DISPLAY DRIVERS

Consisting of eight NPN Darlington output stages and the associated common-emitter input stages, these drivers are designed to interface between low-level digital logic and vacuum fluorescent displays. KA2651 is capable of driving the digits and/or segments of these displays and is designed to permit all outputs to be activated simultaneously. Pull-down resistors are incorporated into each output and no external components are required for most fluorescent display applications.

FEATURES

- Digit or Segment Drivers
- Low Input Current
- Internal Output Pull-Down Resistors
- High Output Breakdown Voltage
- Single or Split Supply Operation

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA2651N	18 DIP	-20 ~ +85°C

1 18 17 2 16 3 4 15 5 14 13 6 7 12 8 11 9 10 Vcc 'n

ABSOLUTE MAXIMUM RATINGS

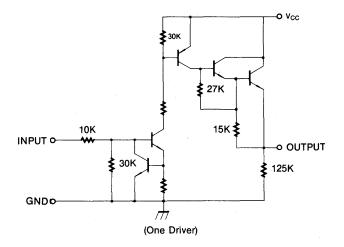
(Ta = 25°C, Voltages are with reference to ground unless otherwise noted)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	65	v
Input Voltage	VIN	20	V
Output Current	lout	- 40	mA
Operating Temperature	Ta	- 20 + 85	°C
Storage Temperature	T _{stg}	- 55 + 150	°C

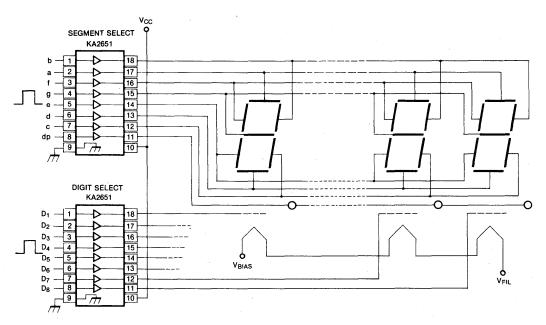
RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	5.0~50	v
Input ON Voltage	Vin	2.4~15	V
Output ON Current*	loutON	- 25	mA

* Positive (negative) current is defined as going into (coming out of) the specified device pin.


ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{cc} = 60V, unless otherwise noted.)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Leakage Current	IOUTLK	V _{IN} = 0.4V		1	15	μA
Output OFF Voltage	VOUTOFF	$V_{IN} = 0.4V$			1.0	v
Output Pull-Down Current	IOUTPD	Input Open, V _{OUT} = V _{CC}	350	550	775	μA
Output ON Voltage	VOUTON	$V_{IN} = 2.4V I_{OUT} = -25mA$	57	58		V
		$V_{IN} = 2.4V$		120	225	μA
Input ON Current	lin	V _{IN} = 5.0V		450	650	μA
		All Inputs Open	1	10	100	μA
Supply Current	Icc	All Inputs = 2.4V		5.5	8.0	πaA

PARTIAL SCHEMATIC

TYPICAL MULTIPLEXED FLUORESCENT DISPLAY

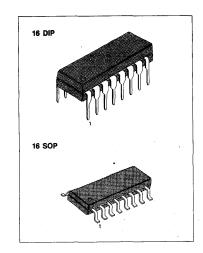
HIGH VOLTAGE, HIGH CURRENT DARLINGTON ARRAYS

The KA2655, KA2656, KA2657, KA2658 and KA2659 are comprised of seven high voltage, high current NPN darlington transistors arrays with common emitter, open collector outputs. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout. Peak inrush currents to 600mA permit them to drive incandescent lamps.

The KA2655 is a general purpose array for use with DTL, TTL, PMOS or CMOS logic directly.

The KA2656 version does away with the need for any external discrete resistors, since each unit has a resistor and a zener diode in series with the input. The KA2656 is designed for use with 14 to 25V PMOS devices. The zener diode also gives these devices excellent noise immunity.

The KA2657 has a series base resistor to each darlington pair, and thus allows operation directly with TTL or CMOS operating at supply voltages of 5V. The KA2657 will handle numerous interfaces needs-particularly those beyond the capabilities of standard logic buffers.


The KA2658 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating supply voltages of 6 to 15V.

The KA2659 is designed for use with standard TTL and Schottky TTL, with which higher output currents are required and loading of the logic output is not a concern. These devices will sink a minimum of 350mA when driven from a "totempole" logic output.

These versatile devices are useful for driving a wide range of loads including Solenoids, Relays, DC motors, LED displays, Filament lamps, thermal printheads and high power buffer. Applications requiring sink currents beyonds the capability of a single output may be accomodated by paralleling the outputs.

APPLICATIONS

- · Relay driver
- · DC motor driver
- · Solenoids driver
- · LED display driver
- · Filament lamp driver
- · High power buffer
- Thermal print head driver

ORDERING INFORMATION

Device	Package	Input Level	Operating Temperature
KA2655N	16 DIP	DTL, TTL,	
KA2655D	16 SOP	PMOS, CMOS	
KA2656N	16 DIP	PMOS	
KA2656D	16 SOP	FINIOS	
KA2657N	16 DIP	TTL, CMOS	-20 ~ +85°C
KA2657D	16 SOP	TTL, CIVIOS	-20 +00 0
KA2658N	16 DIP	CMOS, PMOS	
KA2658D	16 SOP	CINIOS, FINIOS	
KA2659N	16 DIP	TTL	
KA2659D	16 SOP		

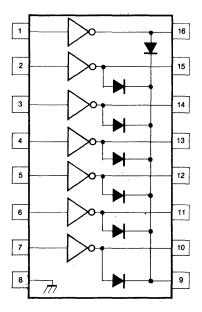
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Output Voltage	Vo	50	V
Input Voltage (KA2656/7/8)	N N	30	
(KA2659)	-V _{IN}	15	V
Continuous Collector Current	lc	500	mA
Continuous Input Current	l _{in}	25	mA
Power Dissipation	Po	1.0	W
Operating Temperature	Ta	- 20 ~ + 85	°C
Storage Temperature	T _{stg}	- 55 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

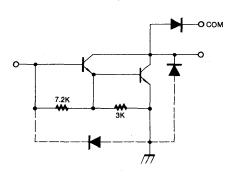
(Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
· · · · · · · · · · · · · · · · · · ·		$V_{CE} = 50V$, $Ta = 25^{\circ}C V_{IN} = open$			50	
Output Lookogo Current		V _{CE} = 50V, Ta = 70°C V _{IN} = open			100	
Output Leakage Current	I _{LK} —	$V_{CE} = 50V$, Ta = 70°C $V_{IN} = 6.0V$ (KA2656)			500	μA
		$V_{CE} = 50V$, Ta = 70°C $V_{IN} = 1.0V$ (KA2658)			500	
		$I_{\rm C} = 100 {\rm mA}, \ I_{\rm IN} = 250 {\mu}{\rm A}$		0.9	1.1	
Output Saturation Voltage	V _{sat}	$I_{\rm C} = 200 {\rm mA}, \ I_{\rm IN} = 350 {\mu}{\rm A}$		1.1	1.3	V
		$I_{C} = 350 \text{mA}, \ I_{IN} = 500 \mu \text{A}$		1.25	1.6	
Input Current 1 (Off Condition)	I _{IN} 1	$I_{\rm C} = 500 \mu A$, Ta = 70°C	50	65		μA
		$V_{IN} = 17V$ (KA2656), $V_0 = open$		0.85	1.3	mA
		$V_{IN} = 3.85V$ (KA2657), $V_0 = open$		0.93	1.35	
Input Current 2 (On Condition)	I _{IN} 2	$V_{IN} = 5V$ (KA2658), $V_0 = open$		0.35	0.5	
		V _{IN} = 12V (KA2658), V ₀ = open		1.0	1.45	
		V _{IN} = 3.0V (KA2659), V _o = open		1.5	2.4	
		$V_{CE} = 2.0V, I_{C} = 300mA$ (KA2656)			13	
		$V_{CE} = 2.0V, I_{C} = 200mA$ (KA2657)			2.4	1
		$V_{CE} = 2.0V, I_{C} = 250mA$ (KA2657)		-	2.7	1
		$V_{CE} = 2.0V, I_{C} = 300mA$ (KA2657)			3.0	
Input Voltage	Vin	V _{CE} = 2.0V, I _C = 125mA (KA2658)			5.0	v
		$V_{CE} = 2.0V, I_{C} = 200 \text{mA} (\text{KA2658})$			6.0	-
		$V_{CE} = 2.0V, I_C = 275mA$ (KA2658)			7.0	
· ·		$V_{CE} = 2.0V, I_{C} = 350mA$ (KA2658)			8.0	1
		V _{CE} = 2.0V, I _C = 350mA (KA2659)			2.4	1


LINEAR INTEGRATED CIRCUIT

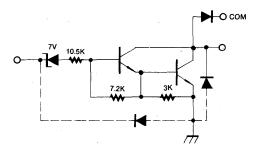
ELECTRICAL CHARACTERISTICS

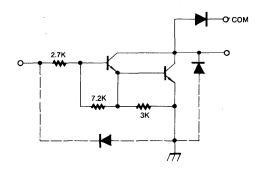
(Ta = 25°C, unless otherwise noted)

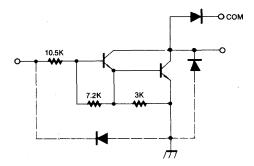

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
DC Current Gain	h _{FE}	$V_{CE} = 2.0V, I_C = 350mA$ (KA2655)	1000			
Input Capacitance	CIN			15	30	рF
Propagation Delay Time	ton	0.5 V _{IN} to 0.5 V _o		0.25	1.0	μS
	torr	0.5 V _{IN} to 0.5 V ₀		0.25	1.0	μS
		$V_{IN} = open, V_0 = GND, V_R = 50V, Ta = 25^{\circ}C$			50	μA
Clamp Diode Leakage Current	I _R	$V_{IN} = open, V_0 = GND, V_B = 50V, Ta = 70^{\circ}C$			100	μA
Clamp Diode Forward Voltage	VF	I _F = 350mA		1.7	2.0	v

PIN CONFIGURATION

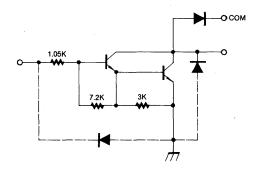
SCHEMATIC DIAGRAMS


KA2655 (each driver)




SCHEMATIC DIAGRAMS

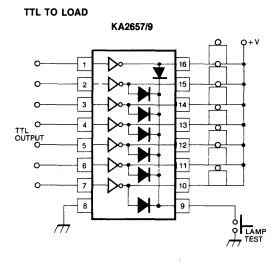
KA2656 (each driver)



KA2658 (each driver)

KA2659 (each driver)

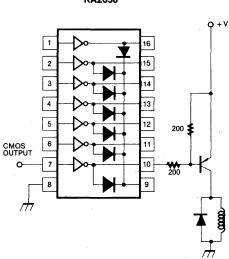
KA2657 (each driver)



PMOS TO LOAD

TYPICAL APPLICATIONS

KA2656 Q + V 1 16 2 15 з 4 13 5 12 g PMOS OUTPUT 6 0-7 10 9 8 177



USE OF PULL-UP RESISTORS

TO INCREASE DRIVE CURRENT

BUFFER FOR HIGH-CURRENT LOAD

5

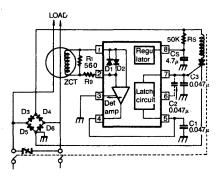
8 DIP

LOW POWER CONSUMPTION EARTH LEAKAGE DETECTOR

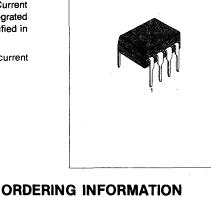
The KA2803 is designed for use in earth leakage circuit interrupters, for operation directly off the AC line in breakers. The input of the differential amplifier is connected to the secondary coil of ZCT (Zero Current Transformer). The amplified output of differential amplifier is integrated at external capacitor to gain adequate time delay that is specified in KSC4613.

The level comparator generates high level when earth leakage current is greater than some level.

FUNCTIONS


- Differential amplifier ¹
- Level camparator
- Latch circuit

FEATURES


- Low power consumption (P_d=5mW, 100V/200V)
- Built-in voltage regulator
- High gain differential amplifier (V_T = 13.5mV)
- 1mA output current pulse to trigger SCR'S
- Low external part count, economic
- Mini-dip package (8 Dip), high packing density
- High noise immunity, large surge margin
- · Super temperature characteristic of input sensitivity
- Wide operating temperature range (T_a = -25°C ~ +80°C)

APPLICATION CIRCUIT

1. Full Wave Application Circuit

Device	Package	Operating Temperature
KA2803N	8 DIP	20
KA2803D	8 SOP	-20 ~ +8∩°C

2. Half Wave Application Circuit

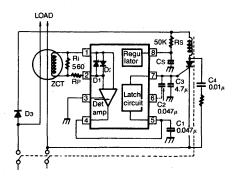


Fig. 2

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC} /V _{EE}	20	v
Supply Current	ls	8	mA
Power Dissipation	PD	300	mW
Lead Temperature (soldering 10 sec)	Tlead	260	°C
Operating Temperature	Topr	- 25~ + 80	°C
Storage Temperature	T _{stg}	-65~+150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current 1	I _{S1}	V _{CC} =12V (-25°C) V _R -V _I =300mV (25°C) (80°C)		400	580 530 480	μΑ μΑ μΑ
Trip Voltage		$V_{CC} = 16V (-25^{\circ}C \sim 80^{\circ}C)$ $V_{R}-V_{I} = X$	10	13.5	17	mVrms
Differential Amplifier Output Current 1	I _{TDI}	$V_{CC} = 16V (25^{\circ}C)$ $V_{R}V_{I} = 30mV$ $V_{OD} = 1.2V$	12		30	μΑ
Differential Amplifier Output Current 2	I _{TD2}	$V_{CC} = 16V (25^{\circ}C)$ $V_{OD} = 0.6V$ V_{R}, V_{1} short	17		37	μΑ
Output Current	lo	$V_{SC} = 1.4V V_{OS} = 0.8V V_{CC} = 12V (-25^{\circ}C) (+25^{\circ}C) (+80^{\circ}C)$	- 200 - 100 - 75			μΑ μΑ μΑ
Latch on Voltage	V _{scon}	$V_{\rm CC} = 16V(25^{\circ}C)$	0.7		1.4	v
Latch Input Current	Iscon	V _{CC} = 12V (25°C)			5	μA
Output Low Current	IOSL	$V_{CC} = 12V (-25 \sim 80^{\circ}C)$ $V_{OSL} = 0.2V$	200			μA
Diff. Input Clamp Voltage	VIDC	$I_{IDC} = 100 \text{mA} (-25 \sim 80^{\circ}\text{C})$	0.4		2	v
Maximum Current Voltage	V _{SM}	I _{SM} =7mA (-25°C)	20		28	v
Supply Current 2	I _{S2}	$V_{R}-V_{I} = X (25 \sim 80^{\circ}C)$ $V_{OS} = 0.6$			900	μA
Latch Off Supply Voltage	V _{soff}	V _{os} =high (25°C)	7.0		-	v
Response Time	Ton	$V_{CC} = 16V (25^{\circ}C)$ $V_{B}-V_{I} = 0.3V$	2		4	msec

APPLICATION NOTE

(refer to full wave application circult Fig. 1)

The Fig 1 shows the KA2803 connected in a typical leakage current detector system.

The power is applied to the V_{cc} terminal (Pin 8) of the KA2803 directly from the power line.

The resistor Rs and capacitor Cs are chosen so that pin 8 voltage is at least 12V.

The value of Cs is recommended above 1 µF at this time.

If the leakage current is at the load, it is detected by the zero current transformer (ZCT).

The output voltage signal of ZCT is amplified by the differential amplifier of the KA2803 internal circuit and appears as halfcycle sine wave signal referred to input signal at the output of the amplifier.

The amplifier closed loop gain is fixed about 1000 times with internal feedback resistor to compensate for zero current transformer (ZCT) Variations.

The resistor R_L should be selected so that the breaker satisfies the required sensing current.

The protection resistor R_P is not usually used put when the high current is injected at the breaker, this resistor should be used to protect the earth leakage detector IC the KA2803.

The range of R_P is from several hundred Ω to several k Ω .

The capacitor C_1 is for the noise canceller and standard value of C_1 is 0.047μ F. Also the capacitor C_2 is noise canceller capacitance but it is not usually used.

When high noise is only appeared at this system 0.047µF capacitor may be connected between pin 6 and pin 7.

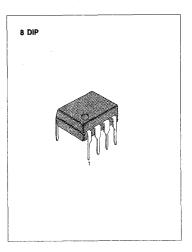
The amplified signal is finally appeared to the Pin 7 with pulse signal through the internal latch circuit of the KA2803. This signal drivies the gate of the external SCR which energizes the trip coil which opens the circuit breaker.

The trip time of breaker is decided by the capacitor C_3 and the mechanism breaker.

This capacitor should be selected under 1μ F for the required the trip time.

The full wave bridge supplies power to the KA2803 during both the positive and negative half-cycles of the line voltage. This allows the hot and neutral lines to be interchanged.

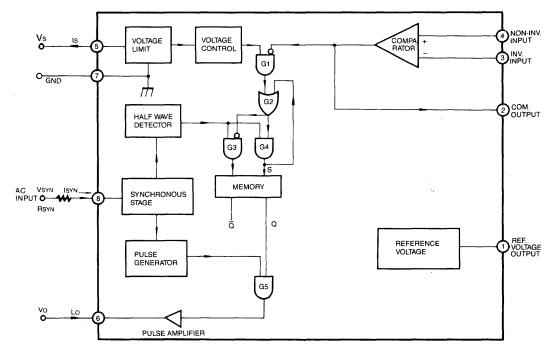
If your application want the detail information, request it on our application circuit designer of KA2803.


ZERO VOLTAGE SWITCH

The KA2804 is a TRIAC controller providing a complete solution for temperature controlled electric panel heaters, cookers, film processing baths etc.

Switching occurs at the zero voltage point in order to minimize radio frequency interference. The device is suitable for mains-on-line operation and requires minimal components.

FEATURES


- · Easy operation either through the AC line or a DC supply.
- Supply voltage control.
- Very few external components.
- Symmetrical burst control No DC current components in the load circuit.
- Negative output current pulse up to 250mA-short circuit protection.
- Reference voltage output.

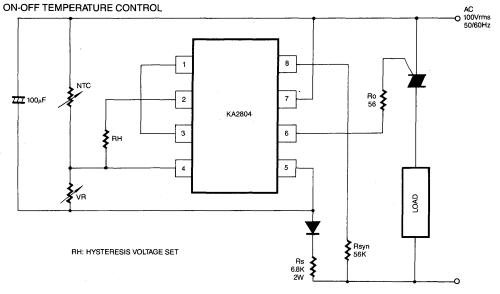
ORDERING INFORMATION

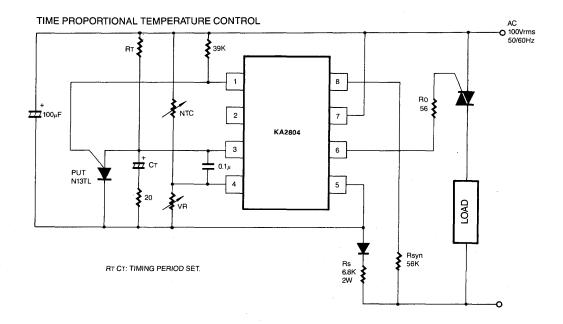
Device	Package	Operating Temperature
KA2804N	8 DIP	- 20 ~ + 70°C
KA2804D	8 SOP	-20 ~ +70 C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	-Vs	8.2	v
Supply Current	-ls	40 (average)	mA
Synchronous Current	I _{SYN}	5.0 (rms)	mA
Input Voltage	V	≤IVsI	v
Power Dissipation	PD	350	mW
Junction Temperature	TJ	125	°C
Operating Ambient Temperature	T _{opr}	- 20 ~ + 70	°C
Storage Temperature	T _{stg}	-65~+150	°C

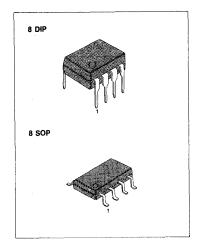

ELECTRICAL CHARACTERISTICS


(V_S=8.0V, V_{SYN}=100 to 115V_{rms}, T_a =25°C, f=50/60Hz, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Circuit Current	-ls	Pin 5, R _{SYN} =56K		2.0	2.5	mA
Supply Voltage 1	-V _s 1	Pin 5, I _s =2.5mA R _{SYN} =56K	7.2	_	8.4	v
Supply Voltage 2	-V _s 2	Pin 5, I _s =20mA R _{SYN} =56K	7.2	_	8.6	v
Synchronous Current	I _{SYN}	Pin 8	0.3	_	_	mA
Output Pulse Width	Τ _P	Pin 6, R _{SYN} =56K		200		μS
Output Voltage	Vo	Pin 6, I ₀ ≦200mA	4.2	5.2		v
Output Current	lo	Pin 6, R ₀ ≦ 25	200	250	-	mA
Output Leakage Current	ILO	Pin 6	_		2.0	μA
Input Offset Voltage	V _{IO}	Pin 3, 4	_	2.0	5.0	mV
Input Bias Current	lı lı	Pin 3, 4	-	0.5	1.0	μA
Common Mode Input Voltage Range	-V _{ICM}	Pin 3, 4	0		5.7	v
Output Leakage Current	ILC	Pin 2	-	-	0.2	μA
Reference Voltage	-V _R	Pin 1, I _R ≦1uA	_	3.6		v

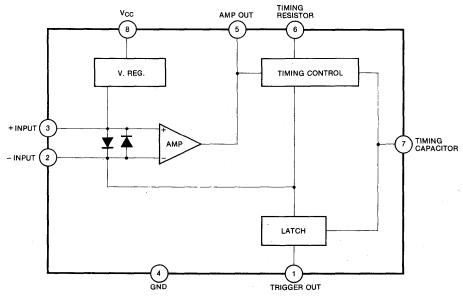
APPLICATIONS

EARTH LEAKAGE DETECTOR


The KA2807 is designed for use in earth circuit interrupters, for operation directly off the AC line interrupters.

Full advantage of the U.S. UL943 timing specification is taken to insure maximum immunity to false triggering due to line noise.

FEATURES

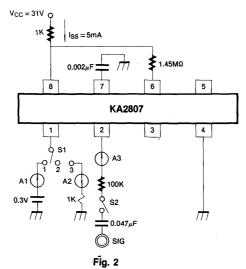

- Full advantage of the UL943
- · Externally programmable fault current threshold
- Direct interface to SCR
- Operates under line reversally both load V_{S} line and hot V_{S} neutral
- Power supply shunt regulator in chip
- Sense coil: 1000:1
- GND/Neutral coil: 200:1
- Normal fault sensitivity current is 5mA typical
- Trip time in normal fault and ground neutral fault is 18ms typical

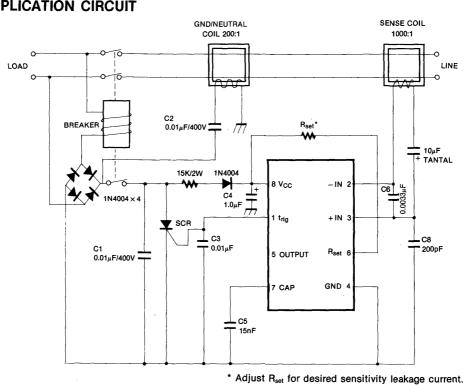
BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA2807N	8 DIP	- 40 → + 70°C
KA2807D	8 SOP	-40 ~ +70°C

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Value	Unit
Supply Current	I _{cc}	19	mA
Power Dissipation	Pp	1250	mW
Operating Temperature Range	T _{opr}	- 40 ~ + 70	°C
Storage Temperature Range	T _{stg}	- 55 ~ + 150	°C


ELECTRICAL CHARACTERISTICS (Ta = 25° C, I_{cc} = 5mA)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Shunt Regulator Voltage	V _{reg}	Pin 8, S1:2, S2:OFF	22	26	30	v
Amp Reference Voltage	V _{int}	Pin 3, S1:2, S2:OFF	9	10.5	12	V
Amp Output High Voltage	V _{он}	Pin 5, S1:3, S2:ON Sig: 800Hz, 3.0V _{p-p} Sinewave	17	19	21	v
Amp Output Low Voltage	Vol	Pin 5, S1:3, S2:ON Sig: 800Hz, 3.0V _{p-p} Sinewave	1	2.5	4	v
Amp Sensitivity Current	I _{SEN}	Pin 2, S1:3, S2:ON Sig: 800Hz, 1.0V _{PP} ~2.5V _{PP} Sinewave	3	5	7	μArms
Latch On Voltage	V _{on}	Pin 7, S1:3, S2:ON Sig: 800Hz, 3.0V _{PP} Sinewave	15	17.5	20	v
SCR Trigger Current	I _{TR}	Pin 1, S1:3, S2:ON Sig: 800Hz, 3.0V _{PP} Sinewave	0.5	1	2.4	mA
Output Low Voltage	V _s 1	Pin 1, S1:2, S2:OFF		100	240	mV
Output Impedance	Ro	Pin 1, S1:2, S2:OFF		100		Ω
Output Sink Current	I _{sink}	Pin 1, S1:2, S2:OFF	2.0	5		mA

TEST CIRCUIT

APPLICATION CIRCUIT

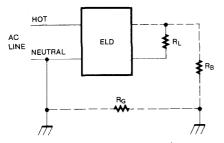
LINE

Typical earth leakage detector circuit is shown in Fig. 3. This is designed to operate on 120V AC line voltage with 5mA normal fault sensitivity. Full-wave rectifier diode and 15K/2W resistor are used to supply the DC power supply required by the KA2807 C4 (1 μ F) is used to filter the ripple of the supply voltage and peak current when fault current generate over 5mA typical, SCR is turned ON and a large current can flow through the breaker coil to pull the contact open. Once opened, the fault condition is removed and the discharge current 3 I_{th} reset both the timing capacitor and output latch causing the SCR to turn off.

A1000:1 Sense coil is used to detect the normal fault. The fault current generated is stepped down by 1000 and fed into the input pins of the OP amp through C7 (10μ F) capacitor.

C6 (0.0033 μ F) and C8 (200pF) are added to obtain better noise immunity. The normal fault sensitivity current is determined by discharging current of timing capacitor.

Discharging current I_{th} is $\frac{7V}{R_{set} \times 2}$ (1)


Because the average fault current just equals the threshold current Ith at the decision point.

$$I_{th} = \frac{I_{f(rms)} \times 0.91}{2}$$
 (2)

The factor 0.91 converts the rms value to an average value.

in (1) and (2)
$$R_{set} = \frac{7V}{I_{f(rms)} \times 0.91}$$
 (3)

The precision value of R_{set} depends on the specific sense coil used KA2807 tolerances in as much as UL943 specifies a sensitivity "window" of 4mA-6mA, provision should be made to adjust R_{set} on a per-product bisic. You can be obtained the desired integration time through proper selection of the timing capacitor C5. The sense amplifier is capacitively coupled to a 200-turn coil in order to detect the grounded neutral fault. In FIG. 3, grounded neutral detection is accomplished by feeding the neutral coil with 120Hz energy continuously and allowing some of this energy to couple into the sense coil during conditions of neutral fault.

Explain: An unintentional electrical path, R_B , between the load terminal of the hot line and the ground, as shown by the dashed lines.

Explain: An unintentional electrical path between the

as shown by the dashed lines.

load terminal of the neutral line and the ground,

FIG. 4 NORMAL FAULT

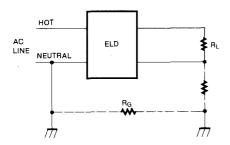
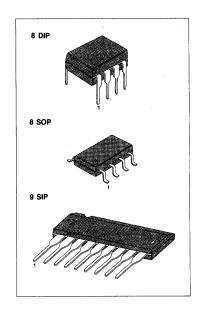


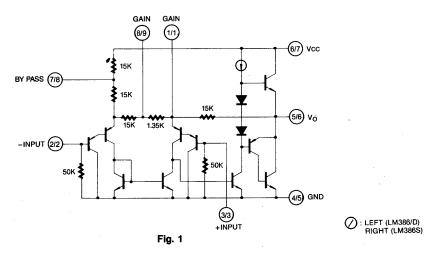
FIG. 5 GROUNDED NEUTRAL FAULT

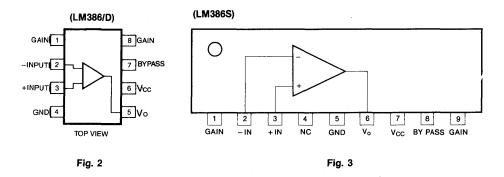

LOW VOLTAGE AUDIO POWER AMPLIFIER

The LM386/S/D is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.

The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 30 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

FEATURES


- Battery operation.
- Minimum external parts.
- Wide supply voltage range: 4V~12V (LM386)
 - 4V~9V (LM386S/D)
- Low quiescent current drain (4mA.)
- Voltage gains : 20 ~ 200.
- Ground referenced input.
- Self-centering output quiescent voltage.
- Low distortion.
- 3 kinds of package types
 LM386 (8 Dip), LM386S (9 Sip), LM386D (8 Sop)


ORDERING INFORMATION

Device	Package	Operating Temperature
LM386N	8 DIP	
LM386S	9 SIP	– 20°C ∼ + 70°C
LM386D	8 SOP	

SCHEMATIC DIAGRAMS

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

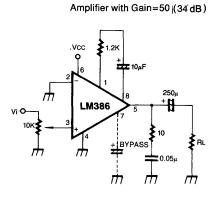
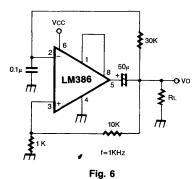
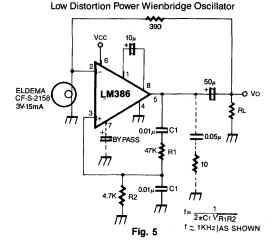
Characterist	ic	Symbol	Value	Unit	
Supply Voltage		V _{cc}	15	v	
	LM386		660		
Power Dissipation	LM386S	P₀	500	mW	
	LM386D		300		
Input Voltage Operating Temperature		V _i T	±0.4 - 20 ~ + 70	v °C	
Storage Temperature		T _{opr} T _{stg}	$-20 \sim +70$ - 40 ~ + 125	°C	

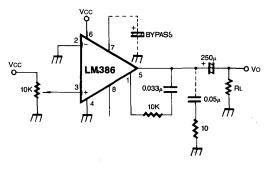
ELECTRICAL CHARACTERISTICS

(T_a=25°C, V_{CC}=6V, R_L=8\Omega, f=1KHz, unless otherwise specified)

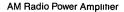
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescient Circuit Current	Icc	V _i = 0	1	4	8	mA
<u> </u>		$V_{CC} = 6V$, THD = 10%	250	325		mW
Output Power	Po	V _{CC} = 9V, THD = 10%	500	700		mW
Voltage Gain (D-Type)		Pins 1 and 8 Open		26		
	Av	10µF from Pin 1 to 8		46		dB
	5144	Pins 1 and 8 Open		300		
Bandwidth (D-Type)	BW	10µF from Pin 1 to 8		60		KHz
Total Harmonic Distortion (D-Type)	THD	$P_o = 125$ mW, Pins 1 and 8 Open		0.2		%
Input Resistance	Ri			50		KΩ
Input Bias Current	l _b	Pins 1 and 8 Open		250		nA

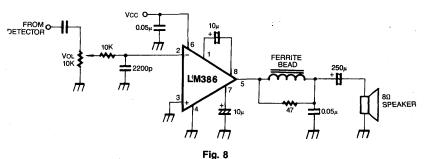
TYPICAL APPLICATIONS (LM386/D)

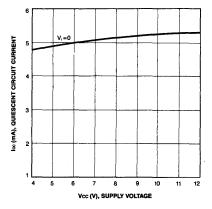

Fig. 4

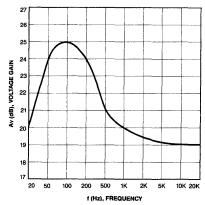
Square Wave Oscillator





Amplifier with Bass Boost

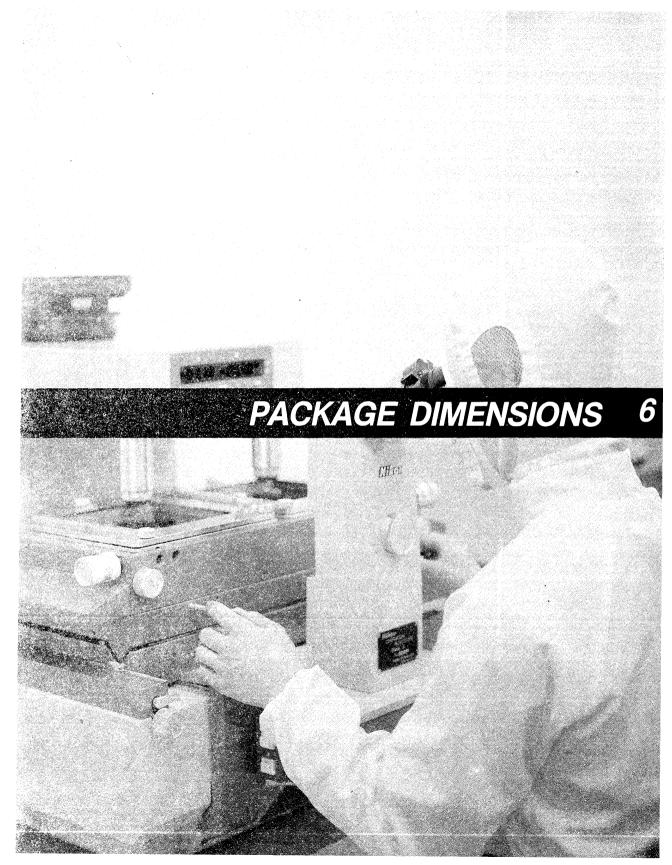




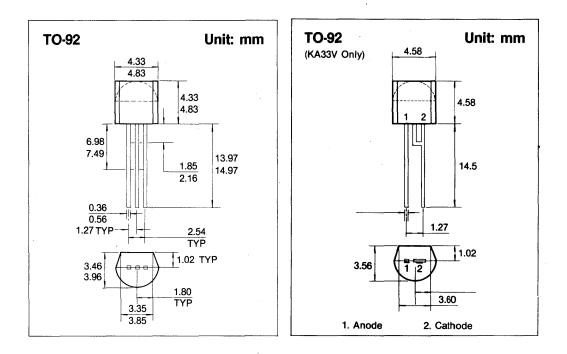
TOTAL HARMONIC DISTORTION-FREQUENCY 2.0 1.8 Vcc =6V RL =8Ω HARMONIC DISTORTION 1.6 Po=125mW Av=26dB (C1.8=0) 1.4 1.2 1.0 3.0 TOTAL 0.6 THD (%), 7 0.4 0.2 0 500 20 50 100 200 1K 2K 5K 10K 20K f (Hz), FREQUENCY

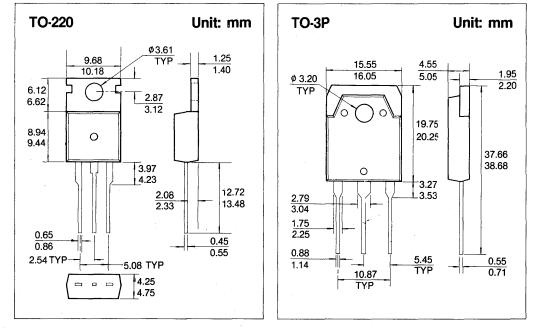
QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE

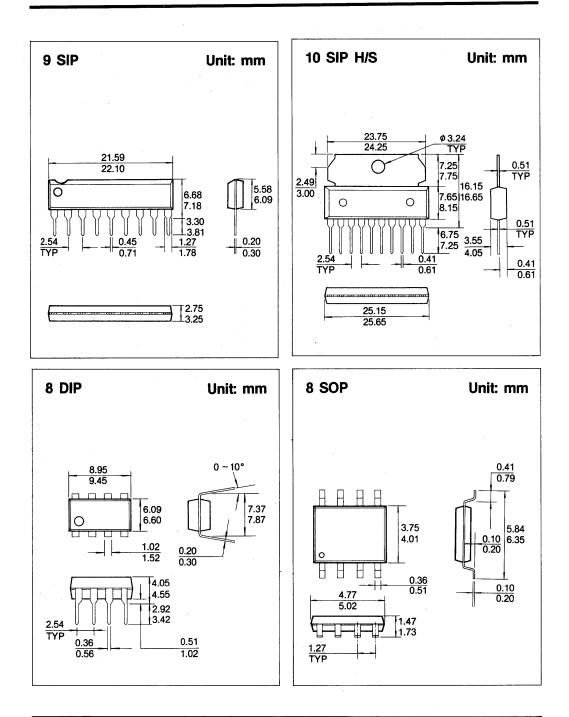
FREQUENCY RESPONSE WITH BASS BOOST



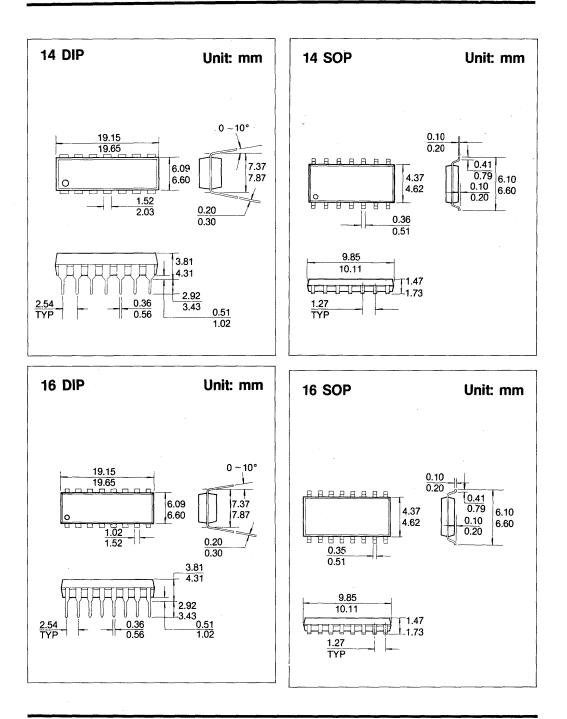
Vcc (V), SUPPLY VOLTAGE

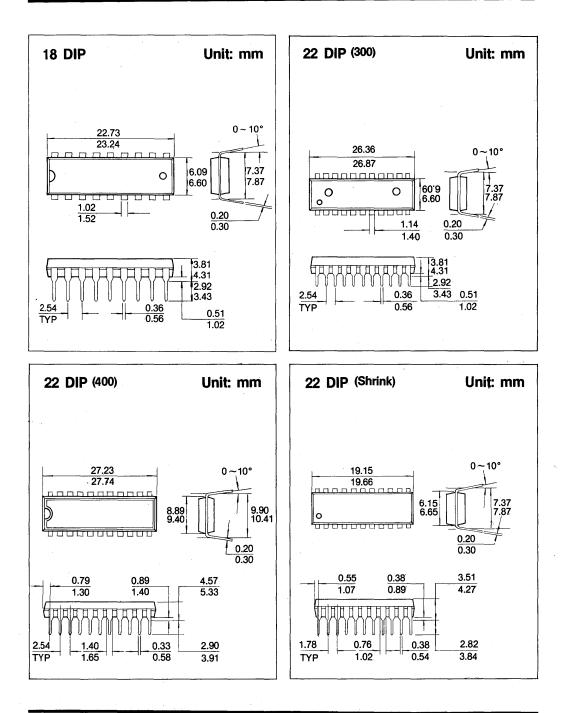

0

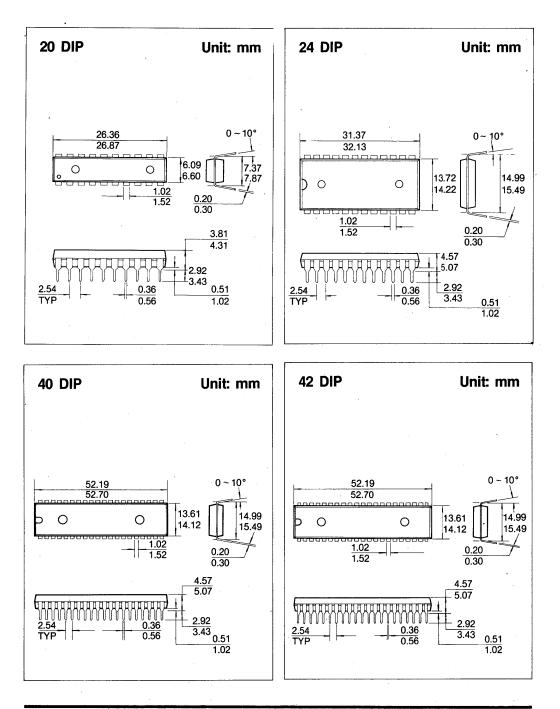

4 5 6 7 8 9 10 11 12

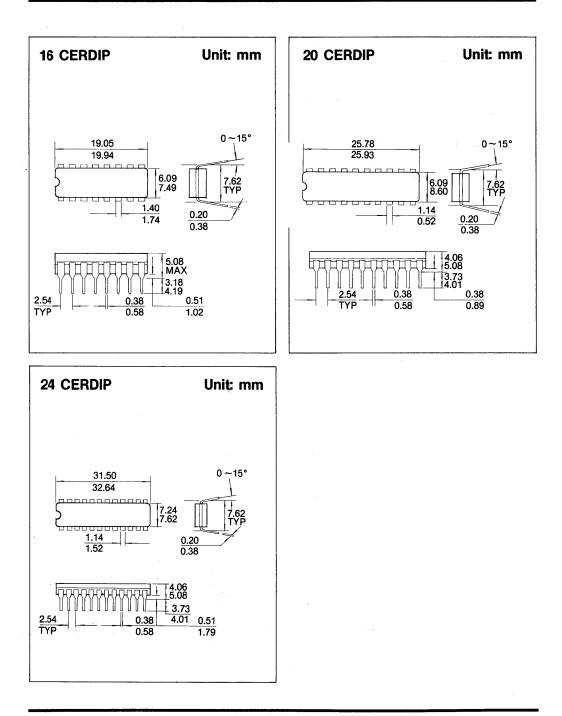


•









ŧ

SAMSUNG SEMICONDUCTOR SALES OFFICES - U.S.A.

CALIF	ORNIA	ILLINOIS	MASSACHUSETTS	TEXAS
22837 Ventura Blvd. Suite 305 Woodland Hills, CA 91367 (818) 346-6416 FAX: (818) 346-6621	Suite 198 Santa Clara, CA 95054 (408) 727-7433 FAX: (408) 727-5071	901 Warrenville Road Suite 120 Lisle, IL 60532-1359 (312) 852-2011 FAX:(312) 852-3096	20 Burlington Mall Road Suite 205 Burlington, MA 01803 (617) 273-4888 FAX:(617)273-9363	15851 Dallas Parkway Suite 745 Dallas, TX 75248-3307 (214) 239-0754 FAX:(214) 392-4624

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

TEL: (602) 998-7195

FAX: (602) 998-7869

TEL: (619) 565-8797

FAX: (619) 565-8990

TEL: (408) 988-6988

FAX: (408) 988-5041

TEL:(714) 832-3325

FAX: (714) 832-7894

TEL: (213) 539-2156

FAX: (213) 539-2564

U.S.A. and CANADA

ARIZONA

HAAS & ASSOC. INC. 77441 East Butherus Drive Suite 300 Scottsdale,AZ 85260

CALIFORNIA

QUEST REP INC. 9444 Famham St. Suite 107 San Diego,CA 92123

SYNPAC 3945 Freedom Circle Suite 650 Santa Clara,CA 95054

WESTAR REP COMPANY 2472 Chambers Road Suite 100 Tustin, CA 92680

WESTAR REP COMPANY 25202 Crenshaw Blvd. Suite 217 Torrance, CA 90505

CANADA

TERRIER ELEC. 145 The West Mall Etobicoke, Ontario, Canada M9C 1C2

TEL: (416) 622-7558 FAX: (416) 626-1035

TEL: (604) 433-0159 3700 Gilmore Way, 106A FAX: (604) 430-0144 Burnaby, B.C., Canada

TERRIER ELEC.

TERRIER ELEC.

V5G 4M1

6600 Transcanadienne Suite 750-17 Pointe Claire, Quebec, Canada H9R 452

TEL: (514) 695-4421 FAX: (514) 695-3295

COLORADO

CANDAL INC.	TEL: (303) 935-7128
7500 West Mississippi Ave.	FAX: (303) 935-7310
Suite A-2	
Lakewood, CO 80226	

CONNECTICUT

PHOENIX SALES	TEL: (203) 496-7709
257 Main Street	FAX: (203) 496-0912
Torrington, CT 06790	

FLORIDA

MEC 700 W. Hillsboro Blvd. Bldg. 4, Suite 204 Deerfield Beach, FL 33441

MEC TEL: (407) 332-7158 511 Carriage Road (407) 773-1100 Indian Harbour Beach, FL 32937 FAX: (407) 830-5436

MEC 830 North Atlantic Blvd. Suite B401 Cocoa Beach, FL 32931

MEC 1001 45th, N.E. St. Petersburg, FL 33703

FAX: (813) 522-3993

ILLINOIS

IRI	TEL: (312) 967-8430
8430 Gross Point Road	FAX: (312) 967-5903
Skokie,IL 60076	

INDIANA

STB & ASSOC. INC. 3003 E. 96th St. Suite102 Indianapolis, IN 46240

MARYLAND

ADVANCED TECH SALES 809 Hammonds Ferry Rd. Suite D Linthicum,MD 21090

TEL: (317) 844-9227

TEL: (305) 426-8944

FAX: (305) 426-8799

TEL: (407) 799-0820

FAX: (407) 799-0923

TEL: (813) 522-3433

TEL: (301) 789-9360 FAX: (301) 789-9364

MASSACHUSETTS		OREGON	
NEW TECH SOLUTIONS, INC. 111 South Bedford Street Suite 102 Burlington, MA 01803	TEL: (617) 229-8888 FAX: (617) 229-1614	EARL & BROWN CO. 9735 S.W. Sunshine Ct. Suite500 Beaverton,OR 97005	TEL: (503) 643-550 FAX: (503) 644-923
MICHIGAN		PENNSYLVANIA	
JENSEN C.B. 2145 Crooks Rd. Troy,MI 48084	TEL: (313) 643-0506 FAX: (313) 643-4735	RIVCO JANUARY INC. RJI Building 78 South Trooper Road Norristown,PA 19403	TEL: (215) 631-14 FAX: (215) 631-16
MINNESOTA			
IRI 1120 East 80th Street Bloomington, MN 55420 FAX:	TEL: (612) 854-1120 (612) 854-8312	PUERTO RICO DIGIT-TECH P.O. Boz 1945	TEL: (809) 892-42
NEW JERSEY		Calle Cruz #2	FAX: (809) 892-33
NECCO 2460 Lemoine Avenue Ft. Lee,NJ 07024	TEL: (201) 461-2789 FAX: (201) 461-3857	Bajos, San German 00753 TEXAS	
NEW MEXICO		S.W. SALES INC.	TEL: (915) 594-82
S.W. SALES, INC. 7137 Settlement Way, N.W.	TEL: (505) 899-9005	2267 Trawood, Bldg. E3 El Paso, TX 79935	FAX: (915) 592-02
Albuquerque, ŅM 87120 NEW YORK		VIELOCK ASSOC. 720 E. Park Blvd. Suite102	TEL: (214) 881-19 FAX: (214) 423-85
T-SQUARE 6443 Ridings Road Syracuse, NY 13206	TEL: (315) 463-8592 FAX: (315) 463-0355	Plano,TX 75074 VIELOCK ASSOC. 9600 Great Hills Trail Suite 150-W	TEL: (512) 345-84 FAX: (512) 346-40
T-SQUARE 7353 Victor-Pittsford Road Victor, NY 14564	TEL: (716) 924-9101 FAX: (716) 924-4946	Austin TX 78759 UTAH	
NORTH CAROLINA		ANDERSON & ASSOC.	TEL: (801) 292-89 FAX: (801) 298-15
GODWIN & ASSOC. 1100 Logger Ct. Suite B 102	TEL: (919) 878-8000 FAX: (919) 878-3923	270 South Main, #108 Bountiful, UT 84010	FMA. (001) 290-ju
Raleigh, NC 27609		VIRGINIA	•
GODWIN & ASSOCIATES 2812 Oak Leigh Delve Charlotte, NC 28213	TEL: (704)549-8500 FAX: (704) 549-9792	ADVANCED TECHNOLOGY 406 Grinell Drive Richmond, VA 23236	SALES, INC. TEL: (804) 320-87
OHIO		FAX: (804) 320-8761	
	TEL - (E12) 607 1005	WASHINGTON	
BAILEY, J.N. & ASSOC. 129 W. Main Street New Lebanon,OH 45345	TEL: (513) 687-1325 FAX: (513) 687-2930		TEL: (206) 885-50 FAX: (206) 885-23
BAILEY, J.N. & ASSOC. 2679 Indianola Avenue Columbus,OH 43202	TEL: (614) 262-7274 FAX: (614) 262-0384	WISCONSIN	
BAILEY, J.N. & ASSOC.	TEL: (216) 273-3798	IRI	TEL: (414) 259-09
1667 Devonshire Drive Brunswick,OH 44212	FAX: (216) 225-1461	631 Mayfair Milwaukee, WI 53226	FAX: (414) 259-0

SAMSUNG SEMICONDUCTOR SALES OFFICES-EUROPE

SAMSUNG SEMICONDUCTOR EUROPE GmbH Mergenthaler Allee 38-40 D6236 Eschborn (West Germany) Tel: 06196/9009-0 Fax: 0196/9009-89

PARIS Centre d'Affaires La Boursidiere RN 186, Bat. Bourgogne, BP 202 F-92357 Le Plessis-Robinson (France) Tel: 1/40 94 07 00 Fax: 1/40 94 02 16

MILANO Viale G. Matteotti, 26 I-20095 Cusano Milanino (Italy) Tel: 2/61 32 888 Fax: 2/61 92 279

MÜNCHEN

Carl-Zeiss-Ring 4, D-8045 Ismaning (West Germany) Tel: 089/96 48 30

+ 089/96 48 38 Fax:

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

EUROPE

AUSTRIA

SATRON HANDELSGES. Silic 424 FAX: 0033-1-45 60 55 49 MBH F-94583 Rungis Cedex TLX: 042-20 69 52 Hoffmeistergasse 8-10/1/5 TEL: 0043-222-87 30 20 A-1120 Wien FAX: 0043-222-83 35 83 GERMANY (WEST) TLX: 047-753 11 85 1 SILCOM ELECTRONICS BELGIUM VERTRIEBS GmbH Neusser Str 336-338 TEL: (49)-0-2161-6 07 52 C & S ELECTRONICS NV D-4050 Monchengladbach FAX: (49)-0-2161-65 16 38 TEL: 0032-2-7 25 09 00 Heembeekstraot 111 TLX: 85 21 89 D1100 FAX: 0032-2-7 25 08 13 TLX: 046-25820 TERMOTROL GmbH Pilotystr. 4 TEL: (49)-0-89-23 0 52 52 DENMARK D-8000 Munchen 22 FAX: (49)-0-89-23 0352 98 TLX: 17898453 MER-EL Ved Klaedebo 18 TEL: 0046-157 100 ING. THEO HENSKES FAX: 045-257 22 99 DK-2907 Horshiom GmbH TLX: 37360 MEDEL DK Laatzener Str. 19 TEL: (49)-0-511-86 50 75 Postfach 72 12 26 FAX: (49)-0-511-87 60 04 **FINLAND** D 3000 Hannover 72 TLX: 92 35 09 INSTRUMENTARIUM ELEKTRONIIKKA ASTRONIC GmbH P.O. Box 64, Vitikka 1 TEL: 00358-0-5 28 43 20 Grunwalder Weg 30 TEL: (49)-0-89-61 30 303 SF-02631-ESPOO FAX: 00308-0-502 10 73 D-8024 Deisenhofen FAX: (49)-0-89-61 31 66 8 TLX: 057-12 44 26 Helsinki TLX: 5 21 61 87 FRANCE

ASIA MOS (OMNITECH ELCCTRONIQUE)

Ratiment Evolic 1 165, Boulevard De Vaimy F-92705 Colombes

TEL: 0033-1-47 60 12 47 FAX: 0033-1-47 60 15 82 TLX: 042-61 38 90

SONEL-ROHE (SCAIB)

6, Rue Le Corbusier

TEL: 0033-1-46 86 81 70

MSC-MICROCOMPUTERS SYSTEMS COMPONENTS VERTRIEBS Gmbh

Industriestrabe 16 Postfach 1380 D-7513 Stutensee 3 TEL: (49)-0-7249-70 75 FAX: (49)-0-7249 79 93 TLX: 17 72 49 11

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

MICRONETICS GmbH

Wail Dur Stadtor Str. 45 D-7253 Renningen 1

ITALY

DIS. EL. SPA Via Aia Di Stura 71/18 I-10148 Torino

TEL: 0039-1-12201522/25 FAX: 0039-1-12165915 TLX: 043-215118

TEL: 0039-2-61 29 05 21

FAX: 0039-2-6 17 25 82 TLX: 043-35 20 45

TEL: (49)-0-7159-60 19

FAX: (49)-0-7 159 51 19

TLX: 72 47 08

MOXEL S.R.L.

Via C. Frova, 34 I-2092 Cinisello Balsamo

NETHERLANDS

 MALCHUS BV HANDEIMIJ.

 Fokkerstraat 511-513
 TEL: 0031-10-4 27 77 77

 Postbus 48
 FAX: 0031-10-4 15 48 67

 NL-3125 BD Schiedam
 TLX: 044-2 15 98

NORWAY

SEMI DEVICES A/S Aseņveien 1 N-1400 Ski

TEL: 0047-9-87 65 60

 PORTUGAL

 NIPOSOM-J. NABAIS LTD.

 R. Casimiro Freire 9A

 P-1900 Lisboa

 FAX: 00351-189-66 10

SPAIN

SEMITRONIC S.A. C/Maria Lombillo, 14 E 28077 Madrid

TEL: 0034-1-320 21 60 61 FAX: 0034-1-320 21 98

TLX: 0404-1 40 28

SEMICONDUCTORES S.A.

 Ronda General Mitre
 TEL:
 0034-3-2
 17
 23
 40

 240 Bjs
 FAX:
 0034-3-2
 17
 65
 98

 E-08006 Barcelona
 TLX:
 052-9
 77
 87

SWEDEN

MIKO KOMPONENT AB

Segersby Vagen 3 P.O. Box 2001 S-14502 Norsborg TEL: 0046-753-89 08 0 FAX: 0046-753-75 34 0 TLX: 054-150 23

SWITZERLAND

PANATEL AG Grundstr. 20 CH-6343 Rotkreuz

TEL: 0041-42 64 30 30 FAX: 0041-42 64 30 35 TLX: 045-86 87 63

UNITED KINGDOM

KORD DISTRIBUTION

LTD. Watchmoor Road. Camberley TEL: 0276 685741 Surrey GU153AQ. TLX: 859919 KORDIS G.

BYTECH LTD.

2 The Western Centre, Western Road, Bracknell Berkshire RG121RW TEL: Sales 0344 482211 Account/Admin 0344 424222 TLX: 848215

ITT MULTI COMPONENTS

346 Edinburgh Avenue Slough SL1 4TU TEL: 0753 824212 FAX: 0753 824160 TLX: 849804

NELTRONIC LIMITED

John F. Kennedy Road, Naas Road, Oublin 12, Ireland TEL: (01) 503560 FAX: (01) 552789 TLX: 93556 NELT EI

652

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

ASIA

HONG KONG

AV. CONCEPT LTD.

Rm. 802-804, Tower A, Hunghom Comm, Centre, 37-39 Ma Tau Wai Road Hunghom, Kln, H.K.

PROTECH COMPONENTS LTD.

Flat 3, 10/F., Wing Shing Ind. TEL: 3-3522181 Bldg., 26Ng Fong Street, San FAX: 3-3523759 Po Kong, Kowloon, Hong Kona

TLX: 38396 PTLD HX

TEL: 001-886-2-832-

5800/5802

FAX: 001-886-2-832-5521

TEL: 3-629325

FAX: 3-7643108

TLX: 52362 ADVCC HX

TAIWAN

YOSUN INDUSTRIAL COPR. TEL: 011-886-2-501-Min-Sheng Commercial Bldg., 0770~9 10F No. 481 Min-Sheng East FAX: 001-886-2-503-1278 Rd., Taipei, Taiwan, R.O.C. TLX: 26777 YOSUNIND

KENTOP ELECTRONCIS CO., LTD.

3/F, Nbr 22., Sec-2, Chung Cheng Rd., Shin-Lin, Taipei, Taiwan, R.O.C.

KINREX CORP

2nd. Fl., 514-3 TEL: 001-886-2-700-4686 Tun Hwa S.Rd., ~ 9 Taipei, Taiwan, R.O.C. FAX: 001-886-2-704-2482 TLX: 20402 KINREX

JAPAN

ADO ELECTRONIC INDUSTRIAL CO., LTD.

7th Fl., Sasage Bldg., 4-6 TEL: 03-257-1618 FAX: 03-257-1579 Sotokanda 2-Chome Chiyodaku, Tokyo 101, Japan

INTERCOMPO INC.

Ihi Bldg., 1-6-7, Shibuya, TEL: 03-406-5612 Shibuya-ku, Tokyo 150 Japan FAX: 04-409-4834

CHEMI-CON INTERNATIONAL COPR.

Mitauya Toranomon Bldg., 22-14, Toranomon 1 Chome Minato-ku, Tokyo 105, Japan

TEL: 03-508-2841 FAX: 03-504-0566

TOMEN ELECTRONICS COPR.

1-1. Uschisaiwai-cho 2 TEL: 03-506-3473 FAX: 03-506-3497 Chome Chiyoda-ku, Tokyo, 100

DIA SEMICON SYSTEMS INC.

Wacore 64 1-37-8. Sangenjaya, Setagaya-ku, Tokyo 154 Japan

TEL: 03-487-0386 FAX: 03-487-8088

RIKEI CORP.

Nichimen Bldg., 2-2-2, TEL: 06-201-2081 Nakanoshima, Kita-ku, Osaka FAX: 06-222-1185 530 Japan

SINGAPORE

GEMINI ELECTRONICS PTE LTD. 100, Upper Cross Street TEL: 65-5351777 #09-08 OG Bldg. Singapore FAX: 65-5350348 TLX: RS 42819 0105

INDIA

COMPONENTS AND SYSTEMS MARKETING ASSOCIATES (INDIA) PVT. LTD.

100, Dadasaheb Phalke Road, Dadar, Bombay 400 014

TURKEY

ELEKTRO SAN. VE TIC. KOLL. STI. Hasanpasa, Ahmet Rasim Sok TEL: 337-2245

No. 16 Kadiköy istanbul-Turkey

THAILAND

VUTIPONG TRADING LTD., PART. 51-53 Pahurat Rd. (Banmoh) Bangkok 10200 THAILAND

TEL: 4114585 FAX: 4112546 TLX: 001-4605 PDT IN

FAX: 336-8814 TLX: 29569 elts tr

TEL: 221-9699 3641 223-4608 FAX: 224-0861 TLX: 87470 Vutipong TH

SAMSUNG SEMICONDUCTOR REPRESENTATIVES

KOREA

NAEWAE ELECTRIC CO., LTD.

#751-33, Daelim-dong Youngdeungpo-ku, Seoul, Korea Cable: "ELECONAEWAE" Seoul

TEL: 646-9101-9 FAX: 844-3001 C.P.O. Box 1409 Sewoon Store: 277-0767 Pusan Branch: (051) 808-7425 Youngsan: 701-7341-5

SAMSUNG LIGHT-ELECTRONICS

Seoul, Korea

CO., LTD. 4th Fl. Room 2-3, Electroncis TEL: 718-0045, Main Bldg., #16-9,

718-9531-5 Hankangro-3ka, Yongsan-ku, FAX: 718-9536

NEW CASTLE SEMICONDUTOR CO., LTD.

4th Fl. Room 10-11, Electronics Main Bldg., #16-9, Hankangro-3ka, Yongsan-ku, Seoul, Korea

TEL: 718-8531-4 FAX: 718-8535

HANKOOK SEMICON-DUCTOR

#1054-9, Namhyung-dong,	TEL: 588-2981-4
Kwanak-ku, Seoul, Korea	FAX: 588-2980

SEG YUNG INTERISE CORP.


#21-301, Suninbldg, 16-1, Hankangro-2ka, Yongsan, ku, Seoul, Korea

TEL: 701-6811-6, 701-6781-4 FAX: 701-6785

Electronics

Semiconductor Business

HEAD OFFICE:

8/10FL. SAMSUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA C.P.O. BOX 8233

BUCHEON PLANT:

82-3, DODANG-DONG, BUCHEON, KYUNGKI-DO, KOREA C.P.O. BOX 5779 SEOUL 100

KIHEUNG PLANT:

SAN #24 NONGSUH-RI, KIHEUNG-MYUN YONGIN-GUN, KYUNGKI-DO, KOREA C.P.O. BOX 37 SUWON

GUMI BRANCH:

259, GONDAN-DONG, GUMI, KYUNGSANGBUK-DO, KOREA

SAMSUNG SEMICONDUCTOR INC.: 3725 NORTH FIRST STREET SANJOSE, CA 95134-1708, USA

HONG KONG BRANCH:

24FL. TOWER 1 ADMIRALTY CENTER 18 HARCOURT ROAD HONG KONG

TAIWAN OFFICE:

RM B. 4FL, NO 581 TUN-HWA S, RD, TAPIEI, TAIWAN

SAMSUNG ELECTRONICS JAPAN CO., LTD.

6F. SUDAMACHI BERDE BLDG. 2-3, KANDA-SUDAMACHI CHIYODA-KU, TOKYO 101, JAPAN TELEX : 2225206 SECJPN J TEL : (03) 258-9506 FAX : (03) 258-9695

SAMSUNG SEMICONDUCTOR EUROPE GMBH:

MERGENTHALER ALLEE 38-40 D-6236 ESCHBORN, W/G TEL: 0-6196-90090 FAX: 0-6196-900989 TELEX: 4072678 SSED

SAMSUNG (U.K.) LTD.: SAMSUNG HOUSE 3 RIVERBANK WAY

GREAT WEST ROAD BRENTFORD MIDDLESEX TW8 9RE TEL: 862-9312 (EXT)304 862-9323 (EXT)292 FAX: 862-0096, 862-0097 TELEX: 25823

PRINTED IN KOREA

TEL: (SEOUL) 751-2114 FAX: 753-0967

TELEX: KORSST K27970

TELEX: KORSEM K28390 TEL: (SEOUL) 741-0066, 662-0066 FAX: 741-4273

TELEX: KORSST K23813 TEL: (SEOUL) 741-0620/7 FAX: 741-0628

TELEX: SSTGUMI K54371 TEL: (GUMI) 2-2570 FAX: (GUMI) 52-7942

TEL: (408) 434-5400 TELEX: 339544 FAX: (408) 434-5650

TEL: 5-8626900 TELEX: 80303 SSTC HX

FAX: 5-8661343

TEL: (2) 706-6025/7 FAX: (2) 706-6028