

MOS Memory Data Book

1988

Copyright 1988 by Samsung Semiconductor

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo copying, recording, or otherwise, without the prior written permission of Samsung Semiconductor.

The information contained herein is subject to change without notice. Samsung assumes no responsibility for the use of any circuitry other than circuitry embodied in a Samsung product.

No other circuit patent licenses are implied.

SAMSUNG SEMICONDUCTOR DATA BOOK LIST

- I. Semiconductor Product Guide
- II. Transistor Data Book
 - Vol. 1: Small Signal TR
 - Vol. 2: Bipolar Power TR
 - Vol. 3: TR Pellet
- III. Linear IC Data Book
 - Vol. 1: Audio/Video
 - Vol. 2: Telecom/Industrial/Data Converter IC
- IV. MOS Product Data Book
- V. High Performance CMOS Logic Data Book
- VI. MOS Memory Data Book
- VII. SFET Data Book

TABLE OF CONTENTS

I. PRODUCT GUIDE

1.	Introduction	11	1
2.	Product Guide	12	1
3.	Ordering Information	17	7

II. DRAM DATA SHEETS

	- ·
1. KIVI4104D	21
2. KM41256A/KM41257A	
3. KM41464A	
4. KM41C1000	47
5 KM41C1001	
6 KM41C1002	
0. 1(1)4101002	
7. KM44C256	
8. KM44C258	
9. KMM4(5)8256/KMM4(5)8257	
10. KMM4(5)9256/KMM4(5)9257	
11. KMM4(5)81000/KMM4(5)81001	
12 KMM4(5)91000/KMM4(5)91001	120

III. SRAM DATA SHEETS

2 KM62256AP/KM62256ALP	149
	156
3. KM6165	
4. KM6465	157
5. KM6865	158
6. KM61257	159
7. KM64257	160
8. KM68257	161

IV. EEPROM DATA SHEETS

1.	(M2816A	165
2.	(M2817A	
3	(M28C16	
4	(M28C17	
5	(M2864A/KM2864AH	
6.	(M2865A/KM2865AH	
7	(M28C64/KM28C65	
à.	(M28C256	205
υ.	(11200230)	

۷.	SALES OFFICES and MANUFACTURER'S	
	REPRESENTATIVES	219

Product Guide	1
DRAM Data Sheets	2
SRAM Data Sheets	3
EEPROM Data Sheets	4
Sales Offices and Manufacturer's Representatives	5

· ·

•

•

PRODUCT GUIDE

1. INTRODUCTION

1.1 Dynamic RAM

† New Product
* Preliminary Product
†† Under Development
(TBA): To Be Announced

PRODUCT GUIDE

1.2 Static RAM

* Preliminary Product ††Under Development (TBA): To Be Announced

PRODUCT GUIDE

1.3 EEPROM

2. PRODUCT GUIDE

2.1 Dynamic RAM

Capacity	Part Number	Organization	Speed (ns)	eed s) Technology Features		Packages	Remark
ANK LA	KM4164B-12	64K×1	120	NMOS	Page Mode	16-Pin DIP	Now
64K DIT	KM4164B-15	64K × 1	150	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AP-12	256K × 1	120	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AP-15	256K × 1	150	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AJ-12	256K × 1	120	NMOS	Page Mode	18-Pin PLCC	Now
	KM41256AJ-15	256K × 1	150	NMOS	Page Mode	18-Pin PLCC	Now
	KM41256AZ-12	256K × 1	120	NMOS	Page Mode	16-Pin ZIP	Now
	KM41256AZ-15	256K × 1	150	NMOS	Page Mode	16-Pin ZIP	Now
	KM41257AP-12	256K × 1	120	NMOS	Nibble Mode	16-Pin DIP	Now
	KM41257AP-15	256K × 1	150	NMOS	Nibble Mode	16-Pin DIP	Now
256K bit	KM41257AJ-12	256K × 1	120	NMOS	Nibble Mode	18-Pin PLCC	Now
	KM41257AJ-15	256K × 1	150	NMOS	Nibble Mode	18-Pin PLCC	Now
	KM41257AZ-12	256K × 1	120	NMOS	Nibble Mode	16-Pin ZIP	Now
	KM41257AZ-15	256K × 1	150	NMOS	Nibble Mode	16-Pin ZIP	Now
	KM41464AP-12	64K×4	120	NMOS	Page Mode	18-Pin DIP	Now
	KM41464AP-15	$64K \times 4$	150	NMOS	Page Mode	18-Pin DIP	Now
	KM41464AJ-12	64K×4	120	NMOS	Page Mode	18-Pin PLCC	Now
	KM41464AJ-15	$64K \times 4$	150	NMOS	Page Mode	18-Pin PLCC	Now
	KM41464AZ-12	$64K \times 4$	120	NMOS	Page Mode	20-Pin ZIP	Now
	KM41464AZ-15	64K×4	150	NMOS	Page Mode	20-Pin ZIP	Now
	KM41C1000P-10	1M × 1	100	CMOS	Fast Page Mode	18-Pin DIP	Now
	KM41C1000P-12	1M × 1	120	CMOS	Fast Page Mode	18-Pin DIP	Now
	KM41C1000J-10	1M × 1	100	CMOS	Fast Page Mode	20-Pin SOJ	Now
	KM41C1000J-12	1M × 1	120	CMOS	Fast Page Mode	20-Pin SOJ	Now
1M bit	KM41C1000Z-10	1M × 1	100	CMOS	Fast Page Mode	20-Pin ZIP	Now
	KM41C1000Z-12	1M × 1	120	CMOS	Fast Page Mode	20-Pin ZIP	Now
	KM41C1002P-10	1M × 1	100	CMOS	S. Column Mode	18-Pin DIP	Now
	KM41C1002P-12	1M×1	120	CMOS	S. Column Mode	18-Pin DIP	Now
	†KM44C256J-10	256K × 4	100	CMOS	Fast Page Mode	20-Pin SOJ	Now
	†KM44C256J-12	256K×4	120	CMOS	Fast Page Mode	20-Pin SOJ	Now

* KM41C1001 (Nibble Mode) and KM44C258 (Static Column Mode) are available in Q4,'88.

2.2 Dynamic RAM MODULE

Part Number	Orgạnization	Speed (ns)	Technology	Features	Packages	Remark
KMM48256-12 KMM48256-15 KMM58256-12 KMM58256-15	256K × 8 256K × 8 256K × 8 256K × 8	120 150 120 150	NMOS NMOS NMOS NMOS	Page Mode Page Mode Page Mode Page Mode	30-Pin SIP 30-Pin SIP 30-Pin SIMM (Edge Connector) 30-Pin SIMM	Call Factory Call Factory Call Factory Call Factory
					(Edge Connector)	
KMM49256-12 KMM49256-15 KMM59256-12 KMM59256-15	256K × 9 256K × 9 256K × 9 256K × 9	120 150 120 150	NMOS NMOS NMOS	Page Mode Page Mode Page Mode Page Mode	30-Pin SIP 30-Pin SIP 30-Pin SIMM (Edge Connector) 30-Pin SIMM	Call Factory Call Factory Call Factory Call Factory
					(Edge Connector)	

† New Product

Part Number	Organization	Speed (ns)	Technology	Features	Packages	Remark
KMM481000-10 KMM481000-12 KMM581000-10	1M × 8 1M × 8 1M × 8	100 120 100	CMOS CMOS CMOS	Fast Page Mode Fast Page Mode Fast Page Mode	30-Pin SIP 30-Pin SIP 30-Pin SIMM (Edge Connector)	Call Factory Call Factory Call Factory
KMM581000-12	TIVI X 8	120	CMUS	Fast Page Mode	(Edge Connector)	Call Factory
KMM491000-10 KMM491000-12 KMM591000-10 KMM591000-12	1M × 9 1M × 9 1M × 9 1M × 9	100 120 100 120	CMOS CMOS CMOS CMOS	Fast Page Mode Fast Page Mode Fast Page Mode Fast Page Mode	30-Pin SIP 30-Pin SIP 30-Pin SIMM (Edge Connector) 30-Pin SIMM (Edge Connector)	Call Factory Call Factory Call Factory Call Factory

2.2 Dynamic RAM MODULE (Continued)

2.3 Static RAM

			C		Cu	rrent		
Capacity	Part Number	Organization (ns)		Technology	Active, mA Typ (max)	Standby, μA Typ (max)	Packages	Remark
	†KM6264A-7	8K×8	70	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
	KM6264A-10	8K×8	100	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
CAK hit	KM6264A-12	8K×8	120	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
64K DI	†KM6264AL-7	8K×8	70	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
	KM6264AL-10	8K×8	100	CMOS	35 (70)	2 (0.1mA)	28-Pin DIP	Now
	KM6264AL-12	8K×8	120	CMOS	35 (70)	2 (0.1mA)	28-Pin DIP	Now
	††KM6165-25	64K×1	25	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6165-35	64K × 1	35	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6165-45	64K × 1	45	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6465-25	16K × 4	25	CMOS	(100)	(100)	22-Pin SDIP	under development
64K bit	KM6465-35	16K × 4	35	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6465-45	16K × 4	45	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6865-35	8K×8	35	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM6865-45	8K×8	45	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM6865-55	8K×8	55	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM62256P-10	32K × 8	100	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
	KM62256P-12	32K × 8	120	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
1	KM62256P-15	32K × 8	150	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
	KM62256LP-10	32K × 8	100	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	KM62256LP-12	32K×8	120	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	KM62256LP-15	32K × 8	150	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	††KM61257-25	256K × 1	25	CMOS	(100)	(100)	24-Pin SDIP	under development
256K bit	KM61257-35	256K × 1	35	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM61257-45	256K × 1	45	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM64257-25	$64K \times 4$	25	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM64257-35	$64K \times 4$	35	CMOS	(100)	(100)	24-Pin SDIP	under development
1	KM64257-45	$64K \times 4$	45	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM68257-35	32K × 8	35	CMOS	(100)	(100)	28-Pin DIP	under development
	KM68257-45	32K × 8	45	CMOS	(100)	(100)	28-Pin DIP	under development
	KM68257-55	32K × 8	55	CMOS	(100)	(100)	28-Pin DIP	under development

† New Product

tt Under Development

2.4 EEPROM

Capacity	Part Number	Organization	Speed (ns)	Technology	Write Cycle Time (min) (ms)	Features	Packages	Remark
	KM2816A-25	2K × 8	250	NMOS	10	_	24-Pin DIP	Now
	KM2816A-30	2K × 8	300	NMOS	10	_	24-Pin DIP	Now
	KM2816A-35	2K×8	350	NMOS	10	_	24-Pin DIP	Now
	KM2817A-25	2K × 8	250	NMOS	10	Ready/Busy	28-Pin DIP	Now
	KM2817A-30	2K × 8	300	NMOS	10	Ready/Busy	28-Pin DIP	Now
ACK PH	KM2817A-35	2K×8	350	NMOS	10	Ready/Busy	28-Pin DIP	Now
ION DI	†KM28C16-15	2K × 8	150	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C16-20	2K × 8	200	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C16-25	2K × 8	250	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C17-15	2K × 8	150	CMOS	2	Ready/Busy	28-Pin DIP	under development
	†KM28C17-20	2K × 8	200	CMOS	2	Ready/Busy	28-Pin DIP	under development
	†KM28C17-25	2K × 8	250	CMOS	2	Ready/Busy	28-Pin DIP	under development
	KM2864A-20	8K × 8	200	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2864A-25	8K × 8	250	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2864A-30	8K×8	300	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2865A-20	8K × 8	200	NMOS	10	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2865A-25	8K × 8	250	NMOS	10	Data Polling,	28-Pin DIP	Now
	1					Ready/Busy		
	KM2865A-30	8K × 8	300	NMOS	10	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2864AH-20	8K × 8	200	NMOS	2	Data Polling	28-Pin DIP	Now
	KM2864AH-25	8K × 8	250	NMOS	2	Data Polling	28-Pin DIP	Now
	KM2864AH-30	8K × 8	300	NMOS	2	Data Polling	28-Pin DIP	Now
CAK hit	KM2865AH-20	8K × 8	200	NMOS	2	Data Polling,	28-Pin DIP	Now
64K DI						Ready/Busy		
	KM2865AH-25	8K × 8	250	NMOS	2	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2865AH-30	8K × 8	300	NMOS	2	Data Polling,	28-Pin DIP	Now
						Ready/Busy	1	
	KM28C64-20	8K × 8	200	CMOS	5	Data Polling,	28-Pin DIP	Now
						Page Mode		
	KM28C64-25	8K × 8	250	CMOS	5	Data Polling,	28-Pin DIP	Now
						Page Mode		
	KM28C65-20	8K × 8	200	CMOS	5	Ready/Busy,	28-Pin DIP	Now
						Page Mode		
	KM28C65-25	8K × 8	250	CMOS	5	Ready/Busy,	28-Pin DIP	Now
						Page Mode		
	++KM28C256-15	32K × 8	130	CMOS	5	Data Polling	28-Pin DIP	under development
		SERVE O				Toggle hit		andor development
1	++KM28C256-20	32K × 8	200	CMOS	5	Data Polling	28-Pin DIP	under development
256K	11111200200-20	0211.7.0	200	0		Toggle bit	LUT IN DI	under development
	++KM28C256-25	32K × 8	250	CMOS	5	Data Polling	28-Pin DIP	under development
			200	000		Toggle hit		
1				1	1	i oggie bit	1	

† New Product

††Under Development

3. ORDERING INFORMATION

NOTES

-

DRAM DATA SHEETS 2

- 1.: KM4164B
- 2. KM41256A/KM41257A
- 3. KM41464A
- 4. KM41C1000
- 5, KM41C1001
- 6. KM41C1002
- 7. KM44C256
- 8. KM44C258
- 9. KMM4(5)8256/KMM4(5)8257
- 10. KMM4(5)9256/KMM4(5)9257
- 11. KMM4(5)81000/KMM4(5)81001
- 12. KMM4(5)91000/KMM4(5)91001

Dynamic RAM

Capacity Part Number		Organization	Speed (ns)	Technology	Features	Packages	Remark
CAK hit	KM4164B-12	64K × 1	120	NMOS	Page Mode	16-Pin DIP	Now
64K DIL	KM4164B-15	64K × 1	150	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AP-12	256K × 1	120	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AP-15	256K × 1	150	NMOS	Page Mode	16-Pin DIP	Now
	KM41256AJ-12	256K × 1	120	NMOS	Page Mode	18-Pin PLCC	Now
	KM41256AJ-15	256K × 1	150	NMOS	Page Mode	18-Pin PLCC	Now
	KM41256AZ-12	256K × 1	120	NMOS	Page Mode	16-Pin ZIP	Now
	KM41256AZ-15	256K × 1	150	NMOS	Page Mode	16-Pin ZIP	Now
	KM41257AP-12	256K × 1	120	NMOS	Nibble Mode	16-Pin DIP	Now
	KM41257AP-15	256K × 1	150	NMOS	Nibble Mode	16-Pin DIP	Now
256K bit	KM41257AJ-12	256K × 1	120	NMOS	Nibble Mode	18-Pin PLCC	Now
	KM41257AJ-15	256K × 1	150	NMOS	Nibble Mode	18-Pin PLCC	Now
	KM41257AZ-12	256K × 1	120	NMOS	Nibble Mode	16-Pin ZIP	Now
	KM41257AZ-15	256K × 1	150	NMOS	Nibble Mode	16-Pin ZIP	Now
	KM41464AP-12	$64K \times 4$	120	NMOS	Page Mode	18-Pin DIP	Now
	KM41464AP-15	$64K \times 4$	150	NMOS	Page Mode	18-Pin DIP	Now
	KM41464AJ-12	$64K \times 4$	120	NMOS	Page Mode	18-Pin PLCC	Now
	KM41464AJ-15	$64K \times 4$	150	NMOS	Page Mode	18-Pin PLCC	Now
	KM41464AZ-12	64K×4	120	NMOS	Page Mode	20-Pin ZIP	Now
	KM41464AZ-15	64K×4	150	NMOS	Page Mode	20-Pin ZIP	Now
	KM41C1000P-10	1M × 1	100	CMOS	Fast Page Mode	18-Pin DIP	Now
	KM41C1000P-12	1M × 1	120	CMOS	Fast Page Mode	18-Pin DIP	Now
	KM41C1000J-10	1M × 1	100	CMOS	Fast Page Mode	20-Pin SOJ	Now
	KM41C1000J-12	1M × 1	120	CMOS	Fast Page Mode	20-Pin SOJ	Now
1M bit	KM41C1000Z-10	1M×1	100	CMOS	Fast Page Mode	20-Pin ZIP	Now
	KM41C1000Z-12	1M × 1	120	CMOS	Fast Page Mode	20-Pin ZIP	Now
	KM41C1002P-10	1M × 1	100	CMOS	S. Column Mode	18-Pin DIP	Now
	KM41C1002P-12	1M × 1	120	CMOS	S. Column Mode	18-Pin DIP	Now
	†KM44C256J-10	256K × 4	100	CMOS	Fast Page Mode	20-Pin SOJ	Now
	†KM44C256J-12	256K × 4	120	CMOS	Fast Page Mode	20-Pin SOJ	Now

* KM41C1001 (Nibble Mode) and KM44C258 (Static Column Mode) are available in Q4,'88.

64K×1 Bit Dynamic RAM with Page Mode

FEATURES

Performance range

	tRAC	t _{CAC}	t _{RC}
KM4164B-10	100ns	55ns	190ns
KM4164B-12	120ns	60ns	220ns
KM4164B-15	150ns	75ns	260ns

- · Page Mode capability
- Single +5V ±10% power supply
- Common I/O using early write
- TTL compatible inputs and output
- · Schmitt Triggers on all input control lines
- RAS-only and Hidden Refresh capability
- 128 cycle/2ms refresh
- Jedec standard pinout in 16-pin DIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM4164B is a fully decoded NMOS Dynamic Random Access Memory organized as 65,536 one-bit words. The design is optimized for high speed, high performance applications such as computer memory, peripheral storage and environments where low power dissipation and compact layout are required.

The KM4164B features page mode which allows high speed random access of up to 256-bits within the same row. Multiplexed row and column address inputs permit the KM4164B to be housed in a standard 16-pin DIP.

The KM4164B is fabricated using Samsung's advanced silicon gate NMOS process. This process, coupled with single transistor memory storage cells, permits maximum circuit density and minimal chip size.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

PIN CONFIGURATION

Pin Name	Pin Function
A ₀ -A ₇	Address inputs
D	Data In
Q	Data Out
\overline{W}	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
V _{cc}	Power (+5V)
V _{SS}	Ground

21

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN} , V _{OUT}	- 2.0 to + 7.0	V
Voltage on V_{cc} supply relative to V_{ss}	V _{cc}	-1 to +7.5	V
Storage Temperature	T _{stg}	-65 to +150	°C
Power Dissipation	PD	1.0	W
Short Circuit Output Current	l _{os}	50	mA

*Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{ss}	0	0	0	v
Input High Voltage	VIH	2.4	-	V _{cc} + 1	v
Input Low Voltage	VIL	- 2.0	-	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter			Min	Max	Units
Operating Current* (RAS and CAS cycling; $@t_{RC} = min.$)	KM4164B-10 KM4164B-12 KM4164B-15	I _{CC1}		60 50 45	mA mA mA
Standby Current (RAS = $CAS = V_{H}$ after 8 RAS cycles min.)		I _{CC2}	_	4	mA
\overline{RAS} -Only Refresh Current* ($\overline{CAS} = V_{IH}$, \overline{RAS} cycling; $@t_{RC} = min.$)	KM4164B-10 KM4164B-12 KM4164B-15	I _{CC3}		50 40 35	mA mA mA
Page Mode Current* (RAS = V _{IL} , CAS cycling; @t _{Pc} = min.)	KM4164B-10 KM4164B-12 KM4164B-15	I _{CC4}		45 35 30	mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 5.5V$, $V_{CC} = 5.5V$, $V_{SS} = 0V$, all other pins not under test = 0 volts.)		l _{IL}	- 10	10	μΑ
Output Leakage Current (Data out is disabled, $0 \le V_{out} \le 5.5V$, $V_{cc} = 5.5V$, $V_{ss} = 0V$)		lòL	- 10	10	μΑ
Output High Voltage Level (I _{OH} = - 5mA)		V _{OH}	2.4	-	V
Output Low Voltage Level (I _{oL} = 4.2mA)		Vol	_	0.4	V

*Note: I_{cc} is dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{cc} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Мах	Unit
Input capacitance (A ₀ -A ₇ , D)	CIN1	—	5	pF
Input capacitance (RAS, CAS, W)	C _{IN2}	—	7	pF
Output Capacitance (Q)	Cout		6	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V \pm 10%. See notes 1,2.)

Beremeter		KM4164B-10		KM4164B-12		2 KM4164B-15		11-14	Natas
Parameter	Symbol	Min	Max	Min	Max	Min	Мах	Unit	Notes
Random read or write cycle time	t _{RC}	190		220		260		ns	
Read-modify-write cycle time	t _{RWC}	215		255		300		ns	
Access time from RAS	t _{RAC}		100		120		150	ns	3, 4
Access time from CAS	t _{CAC}		55		60		75	ns	3, 5
Output buffer turn-off delay time	t _{OFF}	0	25	0	30	0	35	ns	6
Transition time (rise and fall)	tT	3	100	3	100	3	100	ns	
RAS precharge time	t _{RP}	80		90		100		ns	
RAS pulse width	t _{RAS}	100	10,000	120	10,000	150	10,000	ns	
RAS hold time	t _{RSH}	55		60		75		ns	
CAS pulse width	t _{CAS}	55	10,000	60	10,000	75	10,000	ns	
CAS hold time	t _{CSH}	100		120		150		ns	
RAS to CAS delay time	t _{RCD}	15	45	20	60	25	75	ns	4
CAS to RAS precharge time	t _{CRP}	0		0		0		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	15		18		20		ns	
Column address set-up time	t _{ASC}	0		0		0		ns	
Column address hold time	t _{CAH}	25		30		35		ns	
Column address hold time referenced to RAS	t _{AR}	70		90		110		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		0		ns	
Read command hold time referenced to RAS	t _{RRH}	0		0		0		ns	
Write command set-up time	t _{wcs}	0		0		0		ns	7
Write command hold time	t _{wcH}	30		35		45		ns	
Write command pulse width	t _{WP}	30		35		45		ns	
Write command to RAS lead time	t _{RWL}	25		35		45		ns	
Write command to CAS lead time	t _{CWL}	25		35		45		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	
Data-in hold time	t _{DH}	30		35		40		ns	
CAS to write enable delay time	t _{CWD}	50		55		65		ns	7

AC CHARACTERISTICS (Continued)

Baramatar		KM4164B-10		KM4164B-12		KM4164B-15		Unite	Natas
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
RAS to write enable delay time	t _{RWD}	95		115		140		ns	7
Write command hold time referenced to RAS	t _{WCR}	75		95		120		ns	
Data-in hold time referenced to RAS	t _{DHR}	75		95		115		ns	
Page mode cycle time	t _{PC}	105		120		145		ns	
CAS precharge time (page mode only)	t _{CP}	40	and dates - Adams - Adams	45		60		ns	
CAS precharge time (all cycles except page mode)	t _{CPN}	-25		25		30		ns	
Refresh period	t _{REF}		2		2		2	ms	

NOTES

- An initial pause of 100μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- V_{IH}(min) and V_{IL}(mas) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH}(min) and V_{IL}(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the T_{RCD}(max) limit insures that T_{RAC}(max) can be met. t_{RCD}(max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD}(max) limit, then access time is controlled exclusively by T_{CAC}.
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 7. t_{CWD} and t_{RWD} are restrictive operating parameters for the read-modify-write cycle only. If t_{WCS}≥t_{WCS}(min), the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle. If t_{CWD}≥t_{CWD}(min) and t_{RWD}>t_{RWD}(min), the cycle is a late write cycle and the data output will contain data read from the selected cell. If neither of the above conditions are met, the condition of the data out (at access time until CAS goes back to V_{IH}) is indeterminate.

TIMING DIAGRAMS

READ CYCLE

READ-WRITE/READ-MODIFY-WRITE CYCLE

PAGE MODE READ CYCLE

DON'T CARE

PAGE MODE WRITE CYCLE

RAS-ONLY REFRESH CYCLE

Note: $\overline{CAS} = V_{IH} \overline{W}, D = Don't care$

2

HIDDEN REFRESH CYCLE

KM4164B OPERATION

Device Operation

The KM4164B contains 65,536 memory locations. Sixteen address bits are required to address a particular memory location. Since the KM4164B has only 8 address input pins, time multiplexed addressing is used to input 8 row and 8 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid address inputs.

Operation of the KM4164B begins by strobing in a valid row address with \overline{RAS} while \overline{CAS} remains high. Then the address on the 8 address input pins is changed from a row address to a column address and is strobed in by \overline{CAS} . This is the beginning of any KM4164B cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both \overline{RAS} and \overline{CAS} have returned to the high state. Another cycle can be initiated after \overline{RAS} remains high long enough to satisfy the \overline{RAS} precharge time ($t_{\rm RP}$) requirement.

RAS and CAS Timing

The minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse width are specified by $t_{\text{RAS}}(\text{min})$ and $t_{\text{CAS}}(\text{min})$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing $\overline{\text{RAS}}$ low, it must not be aborted prior to satisfying the minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths. In addition, a new cycle must not begin until the minimum $\overline{\text{RAS}}$ precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM4164B begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input (W) high during a RAS/CAS cycle. The output of the KM4164B remains in the Hi-Z state until valid data appears at the output. If CAS goes low before t_{RCD} (max), the access time to valid data is specified by t_{RAC} . If CAS goes low after t_{RCD} (max), the access time is measured

DEVICE OPERATION (Continued)

from CAS and is specified by t_{CAC} . In order to achieve the minimum access time, t_{RAC} (min), it is necessary to bring CAS low before t_{RCD} (max).

Write

The KM4164B can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Data-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin (D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{FWD} and t_{CWD} , are not necessarily met. The state of data-out is indeterminate since the output could be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM4164B has a tri-state output buffer which is controlled by \overrightarrow{CAS} (and \overrightarrow{W} for early write).

Whenever \overline{CAS} is high (V_{IH}), the output is in the high impedance (Hi-Z) state, In any cycle in which valid data appears at the output, the output first remains in the Hi-Z state until the data is valid and then the valid data appears at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM4164B operating cycles are listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Page Mode Read, Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Page Mode write, CAS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM4164B is stored on a tiny capacitor within each memory cell. Due to leakage, the data will leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 2 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CAS** remains high.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and strobing in a refresh row address with \overline{RAS} .

Other Refresh Methods: It is also possible to refresh the KM4164B by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only refresh is the preferred method.

Page Mode

Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed it is possible to mix these cycles in any order. A page mode cycle begins with a normal cycle. While RAS is kept low to maintain the row address, \overline{CAS} is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Power-up

If $\overline{RAS} = V_{SS}$ during power-up the KM4164B might begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

An initial pause of 100μ sec is required after power-up followed by 8 initialized cycles before proper device

DEVICE OPERATION (Continued)

operation is assured. Eight initialization cycles are also required after any 2 ms period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM4164B inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM4164B input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used. Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMS.

Decoupling

The importance of proper decoupling cannot be over emphasized. Excessive transient noise or voltage droop on the V_{CC} line can cause loss of data integrity (soft errors). The total combined voltage changes over time in the V_{CC} to V_{SS} voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.1μ F ceramic decoupling capacitor should be connected between the V_{CC} and ground pins of each KM4164B using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM4164B and they supply much of the current used by the KM4164B during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to recharge the 0.1μ F capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor throughout the memory array.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (millimeters)

256K × 1 Bit Dynamic RAM with Page/Nibble Mode

FEATURES

Performance range

	t _{RAC}	t _{CAC}	t _{RC}
KM41256/7A-10	100ns	50ns	200ns
KM41256/7A-12	120ns	60ns	230ns
KM41256/7A-15	150ns	75ns	260ns

- Page Mode capability-KM41256A
- Nibble Mode capability KM41257A
- CAS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and output
- Common I/O using early write
- Single +5V±10% power supply
- 256 cycle/4ms refresh
- Jedec standard pinout in 16-pin plastic DIP, 18 lead PLCC and 16-pin plastic ZIP.

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

The KM41256/7A is a fully decoded NMOS Dynamic Random Access Memory organized as 262,144 one-bit words. The design is optimized for high speed, high performance applications such as computer memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout are required.

The KM41256/A features page mode which allows high speed random access of memory cells within the same row. The KM41257A features nibble mode which allows high speed serial access of up to 4 bits of data. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. Multiplexed row and column address inputs permit the KM41256/7A to be housed in a JEDEC standard 16-pin DIP.

The KM41256/7A is fabricated using Samsung's advanced silicon gate NMOS process. This process, coupled with single transistor memory storage cells, permits maximum circuit density and minimal chip size.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

PIN CONFIGURATIONS

• KM41256/7AP

•KM41256/7AJ •KM41256/7AZ

Pin Name	Pin Function
A ₀ -A ₈	Address Inputs
D	Data In
Q	Data Out
W	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
V _{cc}	Power (+5V)
V _{SS}	Ground

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN} , V _{OUT}	- 1 to + 7.0	V
Voltage on V_{cc} supply relative to V_{ss}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	1.0	w
Short Circuit Output Current	los	50	mA

*Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	V
Input High Voltage	VIH	2.4		V _{cc} + 1	v
Input Low Voltage	VIL	-1		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
	KM41256/7A-10 KM41256/7A-12 KM41256/7A-15	I _{CC1}		85 75 65	mA mA mA
$\frac{\text{Standby Current}}{(\text{RAS} = \text{CAS} = \text{V}_{\text{IH}})}$		I _{CC2}		4.5	mA
$\frac{RAS-Only Refresh Current^*}{(CAS = V_{IH}, RAS cycling; @t_{RC} = min.)}$	KM41256/7A-10 KM41256/7A-12 KM41256/7A-15	I _{CC3}		70 65 60	mA mA mA
Page Mode Current* (RAS = V _{IL} , CAS cycling; @t _{PC} = min.)	KM41256A-10 KM41256A-12 KM41256A-15	I _{CC4}		65 55 45	mA mA mA
Nibble Mode Current* ($\overline{RAS} = V_{IL}$, \overline{CAS} cycling; $@t_{NC} = min.$)	KM41257A-10 KM41257A-12 KM41257A-15	I _{CC5}		65 55 45	mA mA mA
CAS-Before-RAS Refresh Current* (RAS cycling @t _{RC} = min.)	KM41256/7A-10 KM41256/7A-12 KM41256/7A-15	I _{CC6}		70 65 60	mA mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 5.5V$, $V_{CC} = 5.5V$, $V_{SS} = 0V$, all other pins not under test = 0 volts.)		l _{iL}	- 10	10	μΑ

DC AND OPERATING CHARACTERISTICS (Continued)

Parameter	Symbol	Min	Max	Units
Output Leakage Current (Data out is disabled, $0V \le V_{OUT} \le 5.5V$, $V_{CC} = 5.5V$, $V_{SS} = 0V$)	I _{OL}	- 10	10	μΑ
Output High Voltage Level ($I_{OH} = -5mA$)	V _{он}	2.4	—	v
Output Low Voltage Level (I _{oL} = 4.2mA)	V _{OL}		0.4	v

*Note: I_{cc} is dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{cc} is specified as an average current.

CAPACITANCE (T_A = 25°C)

Parameter	Symbol	Min	Мах	Unit
Input Capacitance (A ₀ -A ₈ , D)	C _{IN1}		7	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	_	10	pF
Output Capacitance (Q)	C _{OUT}		7	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC}=5.0V \pm 10%. See notes 1,2)

KM41256/7A STANDARD OPERATION

Parameter	Symbol	КМ41 КМ41	256'A-10 257A-10	КМ41 КМ41	256A-12 257A-12	КМ41 КМ41	256A-15 257A-15	Unit	Notes
		Min	Max	Min	Max	Min	Max		
Random read or write cycle time	t _{RC}	200		230		260		ns	
Read-modify-write cycle time	t _{RWC}	245		265		310		ns	
Access time from RAS	t _{RAC}		100		120		150	ns	3.4
Access time from CAS	t _{CAC}		50		60		75	ns	3.5
Output buffer turn-off delay time	t _{OFF}	0	25	0	30	0	40	ns	6
Transition time (rise and fall)	t⊤	3	50	3	50	3	50	ns	
RAS precharge time	t _{RP}	90		100		100		ns	
RAS pulse width	t _{RAS}	100	10,000	120	10,000	150	10,000	ns	
RAS hold time	t _{RSH}	50		60		75		ns	
CAS precharge time (all cycles except page mode)	t _{CPN}	45		50		60		ns	
CAS pulse width	t _{CAS}	50	10,000	60	10,000	75	10,000	ns	
CAS hold time	t _{CSH}	110		120		150		ns	
RAS to CAS delay time	t _{RCD}	20	50	25	60	25	75	ns	4
CAS to RAS precharge time	t _{CRP}	10		10		10		ns	
Row address set-up time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	15		15		15		ns	
Column address set-up time	t _{ASC}	0		0		0		ns	
Column address hold time	t _{CAH}	15		20		25		ns	

KM41256/7A STANDARD OPERATION (Continued)

Parameter	Symbol	KM41256A-10 KM41257A-10) KM41256A-12) KM41257A-12		KM41256A-15 KM41257A-15		Units	Notes
		Min	Max	Min	Max	Min	Max		
Column address hold time referenced to RAS	t _{AR}	65		80		100		ns	
Read command set-up time	t _{RCS}	0		0		0		ns	
Read command hold time referenced to \overline{CAS}	t _{RCH}	0		0		0		ns	
Read command hold time referenced to RAS	t _{RRH}	20		20		20		ns	
Write command set-up time	t _{wcs}	0		0		0		ns	7
Write command hold time	t _{wCH}	35		40		45		ns	
Write command pulse width	t _{wP}	35		40		45		ns	
Write command to RAS lead time	t _{RWL}	40		40		45		ns	
Write command to CAS lead time	t _{CWL}	40		40		45		ns	
Data-in set-up time	t _{DS}	0		0		0		ns	
Data-in hold time	t _{DH}	35		40		45		ns	
CAS to write enable delay time	t _{CWD}	50		60		75		ns	7
RAS to write enable delay time	t _{RWD}	100		120		150		ns	7
Write command hold time referenced to RAS	t _{WCR}	90		100		120		ns	
Data-in hold time referenced to RAS	t _{DHR}	85		100		120		ns	
Refresh period (256 cycles)	t _{REF}		4		4		4	ms	

KM41256/7A CAS-BEFORE-RAS REFRESH

CAS setup time (CAS-before-RAS refresh)	t _{CSR}	20	25	30	ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	50	55	60	ns	
Refresh counter test cycle time	t _{RTC}	330	375	430	ns	
Refresh counter test CAS precharge time	t _{CPT}	50	60	70	ns	
Refresh counter test RAS pulse width	t _{TRAS}	230	265	320	ns	
RAS Precharge to CAS hold time	t _{RPC}	20	20	20	ns	

KM41257A NIBBLE MODE

Nibble mode read/write cycle time	t _{NC}	50		60		75		ns	
Nibble mode read-write cycle time	t _{NRWC}	75		90		105		ns	
Nibble mode access time	t _{NCAC}		20		30		40	ns	
Nibble mode CAS pulse width	t _{NCAS}	20		30		40		ns	
Nibble mode CAS precharge time	t _{NCP}	20		25		30		ns	
Nibble mode RAS hold time	t _{NRSH}	30		40		50		ns	
Nibble mode CAS hold time referenced to RAS	t _{RNH}	20		20		20		ns	
Nibble mode \overline{CAS} to \overline{W} delay time	t _{NCWD}	30		30		35		ns	
Nibble mode W to CAS lead time	t _{NCWL}	25		25		30		ns	

KM41256A PAGE MODE (Continued)

Parameter	Symbol	KM41	256A-10	KM41	256A-12	KM41	256A-15	Unit	Notos
		Min	Max	Min	Мах	Min	Max		Notes
Page mode cycle time	t _{PC}	100		120		145		ns	
CAS precharge time (page mode only)	t _{CP}	45		50		60		ns	

NOTES

- An initial pause of 100μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH}(min)$ and $V_{IL}(max)$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD}(max) limit insures that t_{RAC}(max) can be met. t_{RCD}(max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD}(max) limit, then access time is controlled exclusively by t_{CAC}.
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 7. t_{CWD} and t_{RWD} are restrictive operating parameters for the read-modify-write cycle only. If t_{WCS}≥t_{WCS}(min), the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle. If t_{CWD}≥t_{CWD}(min) and t_{RWD}>t_{RWD}(min), the cycle is a late write cycle and the data output will contain data read from the selected cell. If neither of the above conditions are met, the condition of the data out (at access time until CAS goes back to V_{iH}) is indeterminate.

TIMING DIAGRAMS

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

PAGE MODE READ CYCLE (KM41256A)

NIBBLE MODE READ CYCLE (KM41257A)

NIBBLE MODE WRITE CYCLE (KM41257A)

NIBBLE MODE READ-WRITE CYCLE (KM41257A)

RAS-ONLY REFRESH CYCLE

NOTE: $\overline{CAS} = V_{IH}$, \overline{W} , D = Don't Care

HIDDEN REFRESH CYCLE

CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address, \overline{W} , D = Don't Care

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

KM41256/7A OPERATION

Device Operation

The KM41256/7A contains 262,144 memory locations. Eighteen address bits are required to address a particular memory location. Since the KM41256/7A has only 9 address input pins, time multiplexed addressing is used to input 9 row and 9 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid address inputs.

Operation of the KM41256/7A begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 9 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41256/7A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and CAS Timing

The minimum RAS and CAS pulse width are specified by $t_{RAS}(min)$ and $t_{CAS}(min)$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CAS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41256/7A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input (\overline{W}) high during a RAS/CAS cycle. The output of the KM41256/7A remains in the Hi-Z state until valid data appears at the output. If CAS goes low before t_{RCD}(max), the access time to valid data is specified by t_{RAC}. If CAS goes low after t_{RCD}(max), the access time is measured from CAS and is specified by t_{CAC}. In order to achieve the minimum access time, t_{RAC}(min), it is necessary to bring CAS low before t_{RCD}(max).

Write

The KM41256/7A can perform early write, late write and read-modify-write cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Data-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin (D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, t_{RWD} and t_{CWD} , are not necessarily met. The state of data-out is indeterminate since the output could be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41256/7A has a tri-state output buffer which is controlled by \overline{CAS} (and \overline{W} for early write).

Whenever \overline{CAS} is high (V_{IH}), the output is in the high impedance (Hi-Z) state, In any cycle in which valid data appears at the output, the output first remains in the Hi-Z state until the data is valid and then the valid data appears at the output. The valid data remains at the output until \overline{CAS} returns high. This is true even if a new

RAS cycle occurs (as in hidden refresh). Each of the KM41256/7A operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Page Mode Read, Page Mode Read-Modify-Write. Nibble Mode Read, Nibble Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Page Mode Write, Nibble Mode Write, CAS-before-RAS Refresh, CAS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41256/7A is stored on a tiny capacitor within each memory cell. Due to leakage, the data will leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 4 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CAS** remains high.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41256/7A|has \overline{CAS} before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addressed. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs and the onchip refresh address counter is internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and strobing in a refresh row address with \overline{RAS} . The KM41256/7A hidden refresh cycle is actually a \overline{CAS} before \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required in hidden refresh cycles by DRAMS that do not have \overline{CAS} -before \overline{RAS} refresh capability.

Other Refresh Methods: It is also possible to refresh the KM41256/7A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only refresh is the preferred method.

Page Mode (KM41256A)

The KM41257A has page mode capability. Page mode memory cycles provide faster access and lower power dissipation than normal memory cycles. In page mode, it is possible to perform read, write or read-modify-write cycles. As long as the applicable timing requirements are observed it is possible to mix these cycles in any order. A page mode cycle begins with a normal cycle. While RAS is kept low to maintain the row addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Nibble Mode (KM41257A)

The KM41257A has nibble mode capability. Nibble mode operation allows high speed serial read, write or read-modify-write access of 4 consecutive bits. The first of 4 bits is accessed in the usual manner. The remaining nibble bits are accessed by toggling $\overline{\text{CAS}}$ high then low while $\overline{\text{RAS}}$ remains low.

The 4 bits of data that may be accessed during nibble mode are determined by the lower 8 row address bits (RA₀-RA₇) and 8 column address bits (CA₀-CA₇). The two address bits, RA₈and CA₈, are used to select 1 of the

4 nibble bits for initial access. The remaining nibble bits are accessed by toggling \overline{CAS} with \overline{RAS} held low. Each high-low \overline{CAS} transition will internally increment the nibble address (RA_8 , CA_8) as shown in the following diagram.

If more than 4 bits are accessed during nibble mode, the address sequence will begin to repeat. If any bit is written during nibble mode, the new data will be read on any subsequent access. If the write operation is executed again on a subsequent access, the new data will be written into the selected cell location.

A nibble cycle can be a read, write, or read-modify-write cycle. Any combinations of reads and writes or read-modify-writes are allowed.

CAS-before-RAS Refresh Counter test cycle

A special timing sequence using the CAS-before-RAS counter test cycle provides a convenient method of verifying the functionality of the CAS-before-RAS refresh activated circuitry.

After the CAS-before-RAS refresh operation, if CAS goes high and then low again while RAS is held low, the read and write operations are enabled.

This is shown in the \overline{CAS} -before- \overline{RAS} counter test cycle timing diagram. A memory cell can be addressed with 9 row address bits and 9 column address bits defined as follows:

Row Address—Bits A0 through A7 are supplied by the on-chip refresh counter. The A8 bit is set high internally.

Column Address — Bits A0 through A8 are strobed-in by the falling edge of \overline{CAS} as in a normal memory cycle.

Suggested CAS-before-RAS Counter Test Procedures

The CAS-before-RAS refresh counter test cycle timing is used in each of the following steps:

- 1. Initialize the internal refresh counter by performing 8 cycles.
- Write a test pattern of "lows" into the memory cells at a single column address and 256 row addresses. (The row addresses are supplied by the on-chip refresh counter.)
- 3. Using read-modify-write cycles, read the "lows" written during step 2 and write "highs" into the same memory locations. Perform this step 256 times so that highs are written into the 256 memory cells.
- 4. Read the "highs" written during step 3.
- 5. Compliment the test pattern and repeat steps 2, 3 and 4.

Power-up

If $\overline{RAS}=V_{SS}$ during power-up the KM41256/7A might begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

An initial pause of 100μ sec is required after power-up followed by 8 initialized cycles before proper device operation is assured. Eight initialization cycles are also required after any 4 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM41256/7A inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be us-

ed, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM41256/7A input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMS.

Decoupling

The importance of proper decoupling cannot be over emphasized. Excessive transient noise or voltage droop on the V_{CC} line can cause loss of data integrity (soft errors). The total combined voltage changes over time in the V_{CC} to V_{SS} voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.3μ F ceramic decoupling capacitor should be connected between the V_{CC} and ground pins of each KM41256/7A using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM41256/7A and they supply much of the current used by the KM41256/7A during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to recharge the 0.3μ F capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor throughout the memory array.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

PACKAGE DIMENSIONS (Continued)

18- LEAD PLASTIC CHIP CARRIER

Units: Inches (millimeters)

16-LEAD PLASTIC ZIG-ZAG IN-LINE PACKAGE

64K × 4 Bit Dynamic RAM with Page Mode

FEATURES

• Performance range

	t _{RAC}	t _{CAC}	t _{RC}
KM41464A-12	120ns	60ns	220ns
KM41464A-15	150ns	75ns	260ns

- · Page Mode capability
- CAS-before-RAS Refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- · Early Write or Output Enable Controlled Write
- Single +5V±10% power supply
- 256 cycle/4ms refresh

A0

•

•

•

.

.

A7

ADDRESS BUFFERS

DECODER

ROW

• JEDEC standard pinout in 18-pin DIP, 18-lead PLCC and 20-pin ZIP.

RAS CONTROL & DATA IN CLOCKS DATA IN W CLOCKS DATA IN BUFFER REFRESH CONTROL & DATA ADDRESS COUNTER DATA UDTA BUFFER DATA IN BUFFER DATA IN DA

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM41464A is a fully decoded $65,536 \times 4$ NMOS Dynamic Random Access Memory. The design is optimized for high speed, high performance applications such as computer memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout are required.

The KM41464A features page mode which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only refresh. Multiplexed row and column address inputs permit the KM41464A to be housed in standard packages.

The KM41464A is fabricated using Samsung's advanced silicon gate NMOS process. This process, coupled with single transistor memory storage cells, permits maximum circuit density and minimal chip size.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and outputs are TTL complible.

PIN CONFIGURATION

• KM41464AP • KM41464AJ KM41464AZ <u>OE</u> Vss DQ⊿ ğ DQ₃1 OE 1 18 Vss CAS 2 DQ1 2 17 DQ4 DQ4 3 4 Vss OE 5 6 16 CAS DQ₂3 DQ₁ DQ₂7 15 DQ3 DQ2 16 CAS 8 w W 4 RAS 9 ΨĒ 15 DQ3 10 NC RAS 5 14 A0 NC 11 14 A0 RAS 5 12 **A**6 13 A1 A6 6 A5 13 13 A1 A6 [6 14 A4 12 A2 VCC 15 12 A2 A5 [7 16 A7 A3 17 11 A3 18 A2 6 9 E 19 A1 10 A7 20 A0 00 Α7

Pin Name	Pin Function
A ₀ -A ₇	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
W	Read/Write Input
ŌĒ	Output Enable
DQ ₁ -DQ ₄	Data In/Out
V _{cc}	Power (+5V)
V _{SS}	Ground

COLUMN DECODER SENSE AMPS & I/O GATINGS MEMORY ARRAY 262,144 MEMORY CELLS

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN} , V _{OUT}	-1 to +7.0	v
Voltage on V_{CC} supply relative to V_{SS}	V _{cc}	- 1 to + 7.0	v
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	1.0	w
Short Circuit Output Current	l _{os}	50	mA

*Note: Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{ss}	0	0	0	v
Input High Voltage	VIH	2.4	_	V _{cc} + 1	v
Input Low Voltage	VIL	- 1.0		0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
OPERATING CURRENT* (RAS and CAS cycling; @t _{RC} = min.)	KM41464A-12 KM41464A-15	I _{CC1}	_	75 65	mA mA
STANDBY CURRENT (RAS = CAS = V _{IH} after 8 RAS cycles min.)		I _{CC2}	—	4.5	mA
\overline{RAS} -ONLY REFRESH CURRENT* ($\overline{CAS} = V_{H}$, \overline{RAS} cycling; $@t_{RC} = min.$)	KM41464A-12 KM41464A-15	I _{CC3}	_	65 60	mA mA
PAGE MODE CURRENT* (RAS = V _{IL} , CAS cycling; @t _{PC} = min.)	KM41464A-12 KM41464A-15	I _{CC4}	_	55 45	mA mA
\overline{CAS} -BEFORE-RAS REFRESH CURRENT (RAS cycling; $@t_{RC} = min.$)	KM41464A-12 KM41464A-15	I _{CC5}	_	65 60	mA mA
INPUT LEAKAGE CURRENT (Any input $0 \le V_{IN} \le 5.5V$, $V_{cc} = 5.5V$, $V_{ss} = 0V$, all other pins not under test = 0 volts.)		In_	- 10	10	μA
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{out} \le 5.5V$		I _{DQL}	- 10	10	μA
OUTPUT HIGH VOLTAGE LEVEL (I _{OH} = - 5mA)		V _{OH}	2.4	-	v
OUTPUT LOW VOLTAGE LEVEL (I _{OL} = 4.2mA)		V _{OL}	_	0.4	V

*Note: I_{cc} is dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{cc} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Мах	Unit
Input Capacitance (A ₀ -A ₇)	CIN1		7	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		10	pF
Output Capacitance (DQ1-DQ4)	C _{DQ}	_	7	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC}=5.0V \pm 10%. See notes 1,2)

KM41464A STANDARD OPERATION

Duranta	0	KM41464A-12		KM41464A-15			Netes
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	220		260		ns	
Read-modify-write cycle time	t _{RWC}	305		355		ns	
Access time from RAS	t _{RAC}		120		150	ns	3, 4
Access time from CAS	t _{CAC}		60		75	ns	3, 5
Output buffer turn-off delay time	toff	0	30	0	40	ns	6
Transition time (rise and fall)	tT	3	50	3	50	ns	
RAS precharge time	t _{RP}	90		100		ns	
RAS pulse width	t _{RAS}	120	10,000	150	10,000	ns	
RAS hold time	t _{RSH}	60		65		ns	
CAS precharge time (all cycles except page mode)	t _{CPN}	30		35		ns	
CAS pulse width	t _{CAS}	60	10,000	75	10,000	ns	
CAS hold time	t _{сsн}	120		150		ns	
RAS to CAS delay time	t _{RCD}	25	60	25	75	ns	4
CAS to RAS precharge time	t _{CRP}	10		10		ns	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	t _{RAH}	15		15		ns	
Column address set-up time	t _{ASC}	0		0		ns	
Column address hold time	t _{сан}	20		25		ns	
Column address hold time referenced to RAS	t _{AR}	80		100		ns	
Read command set-up time	t _{RCS}	0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		ns	
Read command hold time referenced to RAS	t _{RRH}	20		20		ns	
Write command set-up time	t _{wcs}	0		0		ns	7
Write command hold time	t _{wcн}	40		45		ns	
Write command pulse width	t _{WP}	40		45		ns	
Write command to RAS lead time	t _{RWL}	40		45		ns	
Write command to CAS lead time	t _{CWL}	40		45		ns	

KM41464A STANDARD OPERATION (Continued)

Devementer	Symbol	KM41464A-12		KM41464A-15		Unite	Notos
Falameter	Symbol	Min	Мах	Min	Max	Units	Notes
Data-in set-up time	t _{DS}	0		0		ns	
Data-in hold time	t _{DH}	40		45		ns	
CAS to write enable delay time	t _{CWD}	100		120		ns	7
RAS to write enable delay time	t _{RWD}	160		195		ns	7
Write command hold time referenced to RAS	t _{WCR}	100		120		ns	
Data-in hold time referenced to RAS	t _{DHR}	100		120		ns	
Access time from OE	t _{OEA}		30		40	ns	
OE to Data in delay time	t _{OED}	30		40		ns	
Output Buffer turn off delay from OE	t _{OEZ}	0	30	0	40	ns	
\overline{OE} hold time referenced to \overline{W}	t _{OEH}	25		25		ns	
OE to RAS inactive setup time	t _{OES}	0		0		ns	
Din to CAS delay time	t _{DZC}	0		0		ns	8
Din to OE delay time	t _{DZO}	0		0		ns	8
Refresh period (256 cycles)	t _{REF}		4		4	ms	

KM41464A CAS-BEFORE-RAS REFRESH

CAS setup time (CAS-before-RAS Refresh)	t _{CSR}	25	30	ns	
CAS hold time (CAS-before-RAS Refresh)	t _{CHR}	55	60	ns	
RAS precharge to CAS hold time	t _{PRC}	20	20	ns	

KM41464A PAGE MODE

Page mode cycle time	t _{PC}	120	145	ns	
CAS precharge time (page mode only)	t _{CP}	50	60	ns	

NOTES

- An initial pause of 100μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH}(min)$ and $V_{IL}(max)$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .

- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 7. t_{CWD} and t_{RWD} are restrictive operating parameters for the read-modify-write cycle only. If t_{WCS}≥t_{WCS}(min), the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle. If t_{CWD}≥t_{CWD}(min) and t_{RWD}>t_{RWD}(min), the cycle is a late write cycle and the data output will contain data read from the selected cell. If neither of the above conditions are met, the condition of the data out (at access time until CAS goes back to V_{IH}) is indeterminate.
- 8. Either t_{DZC} or t_{DZO} must be satisfied for all cycles.

5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.

TIMING DIAGRAMS

READ CYCLE

WRITE CYCLE (EARLY WRITE)

 $\overline{OE} = Don't Care$

PAGE MODE READ CYCLE

DON'T CARE

PAGE MODE READ-MODIFY-WRITE CYCLE

XX DON'T CARE

RAS-ONLY REFRESH CYCLE

NOTE: $\overline{CAS} = V_{IH}$; \overline{W} , \overline{OE} , D = Don't Care

CAS-BEFORE-RAS REFRESH CYCLE

NOTE: Address, \overline{W} , \overline{OE} , D = Don't Care tRC tRP tRAS VIH-RAS VILtCPN tRPC tose tснв VIH-XXXX CAS VILtOFE DATA Vон-HIGH-Z (OUT) VOL-

HIDDEN REFRESH CYCLE

KM41464A OPERATION

Device Operation

The KM41464A contains 262,144 memory locations organized as $65,536 \times 4$ -bit words. Sixteen address bits are required to address a particular 4-bit word in the memory array. Since the KM41464A has only 8 address input pins, time multiplexed addressing is used to input 8 row and 8 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid address inputs.

Operation of the KM41464A begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 8 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41464A cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (t_{RP}) requirement.

RAS and **CAS** Timing

The minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse width are specified by $t_{\text{RAS}}(\text{min})$ and $t_{\text{CAS}}(\text{min})$ respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing $\overline{\text{RAS}}$ low, it must not be aborted prior to satisfying the minimum $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ pulse widths. In addition, a new cycle must not begin until the minimum $\overline{\text{RAS}}$ precharge time, t_{RP} , has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41464A begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input (\overline{W}) high during a RAS/CAS cycle. The four outputs of the KM41464A remains in the Hi-Z state until valid data appears at the output. The KM41464A has common data I/O pins. For this reason an output enable control input (\overline{OE}) has been provided so the output buffer can be precisely controlled. For data to appear at the outputs, \overline{OE} must be low for the period of time defined by t_{OEA} and t_{OEZ}. If \overline{CAS} goes low before t_{RCD}(max), the access time to valid data is specified by t_{RAC}. If CAS goes low after t_{RCD}(max), the access time is measured from \overline{CAS} and is specified by t_{CAC}. In order to achieve the minimum access time, t_{RAC}(min), it is necessary to bring \overline{CAS} low before t_{RCD}(max).

Write

The KM41464A can perform early write, and read-modifywrite cycles. The difference between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} , \overline{OE} and \overline{CAS} . In any type of write cycle, Data-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The 4-bit wide data at the data input pins is written into the addressed memory cells. Throughout the early write cycle the outputs remain in the Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the outputs before and during the time that data is being written into the same cell locations. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. The output enable input (\overline{OE}) must be low during the time defined by t_{OEA} and t_{OEZ} for data to appear at the outputs. If t_{CWD} and t_{RWD} are not met the output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM41464's DQ pins.

Data Output

The KM41464A has tri-state output buffers which are controlled by \overline{CAS} and \overline{OE} . When either \overline{CAS} or \overline{OE} is high (V_{IH}), the output are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the outputs, the outputs first remains in the Hi-Z state until the data is valid and then the valid data appears at the outputs. The valid data remains at the outputs until \overline{CAS} or \overline{OE} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41464A operating cycles are listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Page Mode Read, Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Page Mode write, CAS-only cycle.

Indeterminate Output State: Delayed Write ($t_{\text{CWD}} \text{ or } t_{\text{RWD}}$ are not met)

Refresh

The data in the KM41464A is stored on a tiny capacitor within each memory cell. Due to leakage, the data will leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 4 ms. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method

KM41464A OPERATION (Continued)

for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CAS} remains high. This must be performed on each of the 256 row addresses $(A_0\text{-}A_7)$ every 4ms.

 \overline{CAS} -Before- \overline{RAS} Refresh: The KM41464A has \overline{CAS} -before- \overline{RAS} on-chip refreshing capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (t_{CSR}) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs and the on-chip refresh address counter is internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM41464A hidden refresh cycle is actually a \overline{CAS} -before-RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required in hidden refresh cycles by DRAMS that do not have \overline{CAS} -before-RAS refresh capability.

Other Refresh Methods: It is also possible to refresh the KM41464A by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CAS-before-RAS refresh are the preferred methods.

Page Mode

Page mode memory cycles provide faster access and lower power dissipaton than normal memory cycles. In page mode, it is possible to perform read, write or readmodify-write cycles. As long as the applicable timing requirements are observed, it is possible to mix these cycles in any order. A page mode cycle begins with a normal cycle. While RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Power-up

If \overline{RAS} =V_{ss} during power-up the KM41464A|might begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{cc} during power-up or be held at a valid V_{IH} in order to minimize the power-up current.

An initial pause of 100µsec is required after power-up

followed by 8 initialization cycles before proper device operation is assured. Eight initialization cycles are also required after any 4 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM41464A inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM41464A input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMs.

Decoupling

The importance of proper decoupling cannot be over emphasized. Excessive transient noise or voltage droop on the V_{cc} line can cause loss of data integrity (soft errors). The total combined voltage changes over time in the V_{cc} to V_{ss} voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.3μ F ceramic decoupling capacitor should be connected between the V_{cc} and ground pins of each KM41464A using the shortest possible traces.

KM41464A OPERATION (Continued)

These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM41464A and they supply much of the current used by the KM41464A during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to

recharge the 0.3μ F capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor around the memory array.

PACKAGE DIMENSIONS

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (millimeters)

PACKAGE DIMENSIONS (Continued)

18-PIN PLASTIC LEADED CHIP CARRIER

Units: Inches (millimeters)

20-PIN PLASTIC ZIGZAG-IN-LINE PACKAGE

1M×1 Bit Dynamic RAM with Fast Page Mode

FEATURES

• Performance range:

	t _{RAC}	tCAC	t _{RC}
KM41C1000-10	100ns	25ns	190ns
KM41C1000-12	120ns	30ns	220ns

- Fast Page Mode operation
- CAS-before-RAS refresh
- RAS-only and Hidden Refresh
- TTL compatible inputs and output
- · Common I/O using early write
- Single + 5V ± 10% power supply
- · 512 cycle/8ms refresh
- · 256K × 4 fast test mode
- JEDEC standard pinout available in Plastic DIP, SOJ, ZIP packages.

FUNCTIONAL BLOCK DIAGRAM

RAS DATA CONTROL & CAS CLOCKS IN D w BUFF. REFRESH CONTROL & DATA ADDRESS COUNTER OUT Q BUFF. COLUMN DECODER SENSE AMPS & I/O GATINGS A0 ADD BUFFERS DECODER . . MEMORY ARRAY . 1,048,576 CELLS . ROW . Vcc Vss Α9

GENERAL DESCRIPTION

The Samsung KM41C1000 is a CMOS high speed 1,048,576 \times 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C1000 features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before RAS Refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C1000 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION

KM41C1000P KM41C1000J KM41C1000Z 18) Vss D 1 \mathbf{C} 20 Vss Α9 Dr 1 CAS 2 Ŵ 19 Q 18 CAS 34 17) Q W 2 Q RAS Vss 3 5 6 D 16) CAS RAS 3 T.F. 17 N.C RAS 7 8 Ŵ 16 A9 T.F 4 15) A9 N.CE 5 T.F N.C 9 A0 5 14) A8 10 N.L A0 🛛 6 15 A8 14 A7 A0 11 12 A1 13) A7 A1 1 A1 6 A2 13 13 A6 A2 [14 8 A3 12) A6 A2 7 12 A5 Vcc 15 A3 🛛 9 16 Α4 11 A5 11 A4 A3 8 Vcc[10 A5 17 18 A6 10) A4 19 Vcc 9 Α7 20 A8

Pin Name	Pin Function					
A ₀ -A ₉	Address Inputs					
RAS	Row Address Strobe					
D	Data In					
Q	Data Out					
CAS	Column Address Strobe					
W	Read/Write Input					
V _{cc}	Power (+5V)					
V _{ss}	Ground					
T.F.	Test Function					
N.C.	No Connection					
N.L.	No Lead					

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	VIN, VOUT	- 1 to + 7.0	v
Voltage on V_{cc} supply relative to V_{ss}	V _{cc}	-1 to +7.0	v
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	0.6	w
Short Circuit Output Current	l _{os}	50	mA

*Note: Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{ss} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.4		6.5	V
Input Low Voltage	VIL	- 1.0	—	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Units	
OPERATING CURRENT*	KM41C1000-10	las.	—	60	mA
(FAS and CAS cycling; @t _{RC} = min.)	KM41C1000-12	1001	_	50	mA
STANDBY CURRENT ($\overline{RAS} = \overline{CAS} = V_{H}$)		I _{CC2}		2	mA
RAS-ONLY REFRESH CURRENT*	KM41C1000-10	laas	—	60	mA
$(\overline{CAS} = V_{H}, \overline{RAS} \text{ cycling}; @t_{RC} = min.)$	KM41C1000-12	1003	_	50	mA
FAST PAGE MODE CURRENT*	KM41C1000-10	1	_	40	mA
$(\overline{RAS} = V_{IL}, \overline{CAS} \text{ cycling}; @t_{PC} = min.)$	KM41C1000-12	ICC4		30	mA
STANDBY CURRENT ($\overline{RAS} = \overline{CAS} = V_{CC}$ -0.2V)		I _{CC5}	—	1	mA
CAS-BEFORE-RAS REFRESH CURRENT*	KM41C1000-10	laas	<u> </u>	60	mA
(RAS and CAS cycling @t _{RC} =min.)	KM41C1000-12	1006	-	50	mA
INPUT LEAKAGE CURRENT (Any input, $0 \le$ all other pins not under test = 0 volts.)	I	- 10	10	μA	
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$, Vcc:	IoL	- 10	10	μA	
OUTPUT HIGH VOLTAGE LEVEL (IOH = -5	V _{он}	2.4	_	V	
OUTPUT LOW VOLTAGE LEVEL (I _{OL} = 4.2m	V _{OL}		0.4	V	

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

CAPACITANCE (T_A = 25°C)

Parameter	Symbol	Min	Max	Unit
Input Capacitance (D)	C _{IN1}	-	5	pF
Input Capacitance (A ₀ – A ₉)	C _{IN2}		6	pF
Input Capacitance (RAS, CAS, W)	CIN3		7	pF
Output Capacitance (Q)	Соит		7	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{cc}=5.0V ± 10%. See notes 1,2)

STANDARD OPERATION

Parameter S		KM41C1000-10		KM41C1000-12		Unit	Notec
		Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	190		220		ns	
Read-modify-write cycle time	t _{RWC}	220		255		ns	
Access time from RAS	t _{RAC}		100		120	ns	3, 4, 10
Access time from CAS	t _{CAC}		25		30	ns	3, 4, 5
Access time from column address	t _{AA}		50		60	ns	3, 10
Access time from CAS precharge	t _{CPA}		55		65	ns	3
CAS to output in Low-Z	t _{CLZ}	5		5		ns	3
Output buffer turn-off delay time	t _{OFF}	0	30	0	35	ns	6
Transition time (rise and fall)	t _T	3	50	3	50	ns	2
RAS precharge time	t _{RP}	80		. 90		ns	
RAS pulse width	t _{RAS}	100	10,000	120	10,000	ns	
RAS hold time	t _{RSH}	25		30		ns	
CAS precharge time (except fast page mode cycle)	t _{CPN}	15		20		ns	
CAS pulse width	t _{CAS}	25	10,000	30	10,000	ns	
CAS hold time	t _{CSH}	100		120		ns	
RAS to CAS delay time	t _{RCD}	25	75	25	90	ns	4
CAS to RAS precharge time	t _{CRP}	10		10		ns	
Row address set-up time	t _{ASR}	0	r	0		ns	
Row address hold time	t _{RAH}	15		15		ns	
Column address set-up time	t _{ASC}	0		0		ns	
Column address hold time	t _{сан}	20		25		ns	
Column address hold time referenced to RAS	t _{AR}	95		115		ns	
Column Address to RAS lead time	t _{RAL}	50		60		ns	
RAS to column address delay time	t _{RAD}	20	50	20	60	ns	10
Read command set-up time	t _{RCS}	0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		ns	8

STANDARD OPERATION (Continued)

Perameter		KM41	(M41C1000-10 KM		KM41C1000-12		Natas
Parameter	Symbol	Min	Мах	Min	Мах	Unit	Notes
Read command hold time referenced to RAS	t _{RRH}	0		0		ns	8
Write command set-up time	t _{wcs}	0		0		ns	7
Write command hold time	t _{wch}	20		25		ns	
Write command pulse width	t _{WP}	20		25		ns	
Write command to RAS lead time	t _{RWL}	25		30		ns	
Write command to CAS lead time	t _{CWL}	25		30		ns	
Data-in set-up time	t _{DS}	0		0		ns	9
Data-in hold time	t _{DH}	20		25		ns	9
CAS to write enable delay time	t _{CWD}	25		30		ns	7
RAS to write enable delay time	t _{RWD}	100		120		ns	7
Column address to \overline{W} delay time	t _{AWD}	50		60		ns	7
Write command hold time referenced to RAS	t _{WCR}	95		115		ns	
Data-in hold time referenced to RAS	t _{DHR}	95		115		ns	
Refresh period (512 cycles)	t _{REF}		8		8	ms	

FAST PAGE MODE

Page mode cycle time	t _{PC}	60		70		ns	
CAS precharge time (fast page mode)	t _{CP}	10		15		ns	
Fast page mode read-modify-write	t _{PRWC}	90		105		ns	
RAS pulse width (Fast page mode)	t _{RASP}	100	100,000	120	100,000	ns	

CAS-BEFORE-RAS REFRESH

CAS setup time (CAS-before-RAS refresh)	t _{CSR}	10	10	ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	30	30	ns	
RAS precharge to CAS hold time	t _{RPC}	10	10	ns	
Refresh counter test CAS precharge time	t _{CPT}	50	60	ns	

NOTES

- 1. An initial pause of 200μ s is required after power up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH}(min)$ and $V_{IL}(max)$, and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS}(min) the cycle is an early write cycle and

SAMSUNG SEMICONDUCTOR

the data output will remain open circuit throughout the entire cycle. If $t_{CWD} \ge t_{CWD}(min)$ and $t_{RWD} \ge t_{RWD}(min)$ and $t_{RWD} \ge t_{RWD}(min)$, then the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- 8. Either t_{RCH} or t_{RRH} must be satisfied a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled by t_{AA} .
- 11. Normal operation requires the "T.F" pin to be connected to V_{ss} or TTL logic low level or left unconnected on the printed wiring board.
- 12. When the "T.F" pin is connected to a defined positive voltage, the internal test function may be activated. Contact Samsung Semiconductor for specific operational details of the "test function".

TIMING DIAGRAMS READ CYCLE

TIMING DIAGRAMS (Continued)

READ-WRITE/READ-MODIFY-WRITE CYCLE

2

TIMING DIAGRAMS

DON'T CARE

FAST PAGE MODE READ-WRITE CYCLE

HIDDEN REFRESH CYCLE

DON'T CARE

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

DON'T CARE

KM41C1000 OPERATION

Device Operation

The KM41C1000 contains 1,048,576 memory locations. Twenty address bits are required to address a particular memory location. Since the KM41C1000 has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid row and column address inputs.

Operation of the KM41C1000 begins by strobing in a valid row address with RAS while CAS remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by CAS. This is the beginning of any KM41C1000 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both RAS and CAS have returned to the high state. Another cycle can be initiated after RAS remains high long enough to satisfy the RAS precharge time (tRP) requirement.

RAS and CAS Timing

The minimum RAS and CAS pulse widths are specified by tRAS(min) and tCAS(min) respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CAS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, tRP, has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C1000 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a RAS/CAS cycle. The access time is normally specified with respect to the falling edge of RAS. But the access time also depends on the falling edge of CAS and on the valid column address transition.

If CAS goes low before tRCD(max) and if the column address is valid before tRAD(max) then the access time to valid data is specified by tRAC(min). However, if CAS goes low after tRCD(max) or if the column address becomes valid after tRAD(max), the access time is specified by tCAC or tAA. In order to achieve the minimum access time, tRAC(min), it is necessary to meet both tRCD(max) and tRAD(max).

Write

The KM41C1000 can perform early write, late write and read-modify-write cycles. The differece between these cycles is in the state of data-out and is determined by the timing relationship between \overline{W} and \overline{CAS} . In any type of write cycle, Data-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing \overline{W} low before \overline{CAS} . The data at the data input pin (D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CAS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, tRWD, tCWD and tAWD, are not necessarily met. The state of data-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C1000 has a tri-state output buffer which is controlled by CAS. Whenever CAS is high (VIH) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by tCLZ after the falling edge of CAS. Invalid data may be present at the output during the time after tCLZ and before the valid data appears at the output. The timing parameters tCAC, tRAC and tAA specify when the valid data will be present at the output. The valid data remains at the output until CAS returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C1000 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-before-RAS Refresh, CAS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C1000 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 8 ms. Either a burst refresh or distributed refresh may be used. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a

row address with RAS while CAS remains high. This cycle must be repeated for each of the 512 row addresses, (A0-A8). The state of address A9 is ignored during refresh.

 \overline{CAS} -before- \overline{RAS} Refresh: The KM41C1000 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (tCSR) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the CAS active time and cycling RAS. The KM41C1000 hidden refresh cycle is actually a CASbefore RAS refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C1000 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CASbefore-RAS refresh is the preferred method.

CAS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} refresh counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry. The cycle begins as a \overline{CAS} -before- \overline{RAS} refresh operation. Then, if \overline{CAS} is brought high and then low again while \overline{RAS} is held low, the read and write operations are enabled. In this mode, the row address bits A0 through A8 are supplied by the on-chip refresh counter. The A9 bit is set high internally.

Fast Page Mode

The KM41C1000 has Fast Page mode capability which provides high speed read, write or read-modify-write access to all memory cells within a selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Power-up

If $\overline{RAS} = V_{SS}$ during power-up, the KM41C1000 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{cc} during power-up or be held at a valid VIH in order to minimize the power-up current.

An initial pause of 200 μ sec is required after powerup followed by 8 initialization cycles before proper device operation is assured. Eight initialization cycles are also required after any 8 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM41C1000 inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM41C1000 input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Lavout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMS.

18-LEAD PLASTIC DUAL IN-LINE PACKAGE

Decoupling

The importance of proper decoupling can not be over emphasized. Excessive transient noise or voltage droop on the Vcc line can cause loss of data integrity (soft errors). It is recommended that the total combined voltage changes over time in the VCC to VSS voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.3µF ceramic decoupling capacitor should be connected between the Vcc and ground pins of each KM41C1000 using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM41C1000 and they supply much of the current used by the KM41C1000 during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to recharge the 0.3µF capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor around the memory array.

10 0.300 (7.62) μ 060 R1.0 6 7 8 0.860 (21.84) 0.875 (22.23) 0.008 (0.20) 0.012 (0.30) 0.020 (0.51) MIN 0.197 (5.00) MAX 0.135 (3.43) 0.118 (3.00) 1,145 (3.68) MIN 0.032 (0.81) 0.047 (1.19) 0.100 (2.54) 0.040 (1.02) 0.059 (1.49) TYP 0.016 (0.41)

PACKAGE DIMENSIONS

Units: Inches (millimeters)

PACKAGE DIMENSIONS

20/26-PIN PLASTIC SMALL OUT-LINE J-LEAD

Unit: Inches (millimeters)

20-LEAD PLASTIC ZIGZAG-IN-LINE PACKAGE

Units: Inches (millimeters)

1M × 1 Bit Dynamic RAM with Nibble Mode

FEATURES

• Performance range:

	t _{RAC}	t _{CAC}	t _{RC}
KM41C1001-10	100ns	25ns	190ns
KM41C1001-12	120ns	30ns	220ns

- Nibble Mode Operation
- CAS-before-RAS Refresh
- RAS-only and Hidden Refresh
- · TTL compatible inputs and output
- · Common I/O using early write
- Single + 5V ± 10% power supply
- 512 cycle/8ms refresh
- 256K × 4 fast test mode
- JEDEC standard pinout available in Plastic DIP, SOJ, ZIP packages.

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM41C1001 is a CMOS high speed 1,048,576 × 1 Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM41C1001 features Nibble Mode operation which allows high speed random access of up to 4-bits of data.

CAS-before-RAS Refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C1001 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION

KM41C1001P

Dĺ

w

A0

A1

A2 A3

1 2 3 4 5 6 7		18 Vss 17 Q 16 CAS 15 A9 14 A8 13 A7 12 A6	D [1 0 W 2 RAS 3 T.F. 4 N.C. 5 A0 [6 A1] 7 A2 [8 A3] 9	0	20 VSS 19 Q 18 CAS 17 N.C. 16 A9 15 A8 14 A7 13 A6 12 A5	A9 Q D RAS NC A0 A2 VCC		CAS Vss W T.F. A1 A3
6 7 8 9	o	13 A7 12 A6 11 A5 10 A4	A1 0 7 A2 0 8 A3 0 9 Vcc 0 10	0	14] A7 13] A6 12] A5 11] A4	A0 A2 VCC A5 A7	12 14 16 18 20 13 15 17 19 20	A1 A3 A4 A6 A8

• KM41C1001J

KM41C1001Z

Pin Name	Pin Function			
A ₀ -A ₉	Address Inputs			
RAS	Row Address Strobe			
D	Data In			
Q	Data Out			
CAS	Column Address Strobe			
W	Read/Write Input			
V _{cc}	Power (+5V)			
V _{SS}	Ground			
T.F.	Test Function			
N.C.	No Connection			
N.L.	No Lead			

1M × 1 Bit Dynamic RAM with Static Column Mode

FEATURES

• Performance range:

	t _{RAC}	tcac	t _{RC}
KM41C1002-10	100ns	25ns	190ns
KM41C1002-12	120ns	30ns	220ns

- Static Column Mode operation
- CS-before-RAS refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and output
- Common I/O using 'Early Write'
- Single + 5V ± 10% power supply
- 512 cycles/8ms refresh
- JEDEC standard pinout
- Available in Plastic DIP, SOJ and ZIP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KM41C1002 is a CMOS high speed 1,048,576 \times 1 dynamic Random Access Memory. Its design is optimized for high performance applications such as cache based mainframes and mini computers, graphics, digital signal processing and high performance microprocessor systems.

Static Column Mode Operation allows high speed random or Sequential access within a row. The KM41C1002 offers high performance while relaxing many critical system timing requirements for fast usable speed.

CS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM41C1002 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION

• •	(M41C1002	P	•	(M 4	1C10	02J	•	KM4	410	:10	02Z
D 1 W 2 RAS 3 T.F 4 A0 5 A1 6 A2 7 A3 8 Vcc 9	°	18 V ₅₅ 17 Q 16 CS 15 A9 14 A8 13 A7 12 A6 11 A5 10 A4	A0 [A1 [A3] Vcc]	1 2 3 4 5 6 7 8 9 10	0	20 19 18 17 16 15 14 13 12 11] Vss] Q] CS] N.C] A9] A8] A7] A6] A5] A4	A9 Q D RAS NC A0 A2 VCC A5 A7	1307012252	2468224682	CS Vss T.F. N.L. A1 A3 A4 A6 A8
		-							•	-	

Pin Name	Pin Function
A ₀ -A ₉	Address Inputs
RAS	Row Address Strobe
CS	Chip Select Input
\overline{W}	Read/Write Input
D	Data In
Q	Data Out
T.F.	Test Function
V _{cc}	Power (+5V)
V _{SS}	Ground
N.C.	No Connection
N.L.	No Lead

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Value	Units
Voltage on Any Pin Relative to V _{SS}	V _{IN} , V _{OUT}	- 1 to + 7.0	v
Voltage on V_{cc} Supply Relative to V_{ss}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	los	50	mA

Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{ss}, T_A = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	v
Input High Voltage	V _{IH}	2.4		6.5	v
Input Low Voltage	VIL	- 1.0		0.8	Υ.

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS and CS Cycling @t _{RC} = min)	KM41C1002-10 KM41C1002-12	I _{CC1}	_	60 50	mA mA
Standby Current (RAS = CS = V _{IH})		I _{CC2}		2	mA
\overline{RAS} -Only Refresh Current* ($\overline{CS} = V_{IH}$, \overline{RAS} Cycling $@t_{RC} = min$)	KM41C1002-10 KM41C1002-12	I _{CC3}	_	60 50	mA mA
Static Column Mode Current* ($\overline{RAS} = V_{IL}$, $\overline{CS} = V_{IL}$ @t _{sc} = min)	KM41C1002-10 KM41C1002-12	I _{CC4}	_	40 30	mA mA
Standby Current ($\overline{RAS} = \overline{CS} = V_{CC} - 0.2V$)		I _{CC5}	-	1	mA
$\overline{\text{CS}}$ -Before- $\overline{\text{RAS}}$ Refresh Current* ($\overline{\text{RAS}}$ and $\overline{\text{CS}}$ Cycling $@t_{\text{sc}} = \min$)	KM41C1002-10 KM41C1002-12	I _{CC6}	_	60 50	mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test = 0 volts)		l _{iL}	- 10	10	μΑ
Output Leakage Current (Data out is disabled, 0≤V _{out} ≤5.5V		Iol	- 10	10	μA
Output High Voltage Level (I _{он} = - 5mA)		V _{он}	2.4	_	v
Output Low Voltage Level (I _{OL} = 4.2mA)		Vol	_	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Input Capacitance (D)	C _{IN1}	-	5	pF
Input Capacitance (A ₀ -A ₉)	C _{IN2}		6	pF
Input Capacitance (RAS, CS, W)	C _{IN3}		7	pF
Output Capacitance (Q)	Cout		7	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V \pm 10%. See notes 1.2) STANDARD OPERATION

		KM41C1002-10		KM41C1002-12		Unite	Notos
Parameter	Symbol Min Max Min Max		Max	Units	NOIGS		
Random Read or Write Cycle Time	t _{RC}	190		220		ns	
Read-modify-write Cycle Time	t _{RWC}	220		255		ns	
Static Column Mode Cycle Time	t _{sc}	55		65		ns	
Static Column Mode Read-write Cycle Time	t _{SRWC}	100		120		ns	
Access Time from RAS	t _{RAC}		100		120	ns	3, 4, 10
Access Time from CS	t _{CAC}		25		30	ns	3, 4, 5
Access Time from Column Address	t _{AA}		50		60	ns	3, 10
Access Time from Last Write	t _{ALW}		95		115	ns	3, 11
CS to Output in Low-Z	t _{CLZ}	5		5		ns	3
Output Buffer Turn-off Delay Time	t _{OFF}	0	30	0	35	ns	6
Output Data Hold Time from Column Address	t _{AOH}	5		5		ns	
Output Data Enable Time from W	tow		70		85	ns	
Output Data Hold Time from \overline{W}	t _{woн}	0		0		ns	
Transition Time (rise and fall)	t⊤	3	50	3	50	ns	2
RAS Precharge Time	t _{RP}	80		90		ns	
RAS Pulse Width	t _{RAS}	100	10,000	120	10,000	ns	
RAS Pulse Width (static column mode)	t _{RASC}	100	100,000	120	100,000	ns	
CS to RAS Hold Time	t _{RSH}	25		30		ns	
RAS to CS Hold Time	t _{сsн}	100		120		ns	
CS Pulse Width	t _{cs}	25		30		ns	
RAS to CS Delay Time	t _{RCD}	25	75	25	90	ns	4
RAS to Column Address Delay Time	t _{RAD}	20	50	20	60	ns	10
CS to RAS Precharge Time	t _{CRP}	10		10		ns	
CS Precharge Time (static column mode)	t _{CP}	10		15		ns	
Row Address Set-up Time	t _{ASR}	0		0		ns	
Row Address Hold Time	t _{RAH}	15		15		ns	
Column Address Set-up Time	t _{ASC}	0		0		ns	
Column Address Hold Time	t _{CAH}	20		25		ns	
Write Address Hold Time Referenced to RAS	t _{AWR}	95		115		ns	

STANDARD OPERATION (Continued)

		KM41C1002-10		KM41C1002-12			Nataa
Parameter	Symbol	Min	Мах	Min	Max	Units	Notes
Column Address Hold Time Referenced to RAS	t _{AR}	115		140		ns	
Column Address to RAS Lead Time	t _{RAL}	50		60		ns	
Column Address Hold Time Referenced to RAS Rise	t _{AH}	10		15		ns	
Write Command to CS Lead Time	t _{CWL}	25		30		ns	
Last Write to Column Address Delay Time	tLWAD	25	45	30	55	ns	
Last Write to Column Address Hold Time	t _{AHLW}	95		115		ns	
Read Command Set-up Time Referenced to RAS	t _{RCS}	0		0		ns	
Read Command Hold Time Referenced to CS	t _{RCH}	0		0		ns	8
Read Command Hold Time Referenced to RAS	t _{RRH}	0		0		ns	8
Write Command Hold Time	t _{wcн}	20		25		ns	
Write Command Hold Time Referenced to RAS	t _{WCR}	95		115		ns	
Write Command Pulse Width	t _{WP}	20		25		ns	
Write Command Inactive Time	t _{wi}	10		15		ns	
Write Command to RAS Lead Time	t _{RWL}	25		30		ns	
Data-in Set-up Time	t _{DS}	0		0		ns	9
Data-in Hold Time	t _{DH}	20		25		ns	9
Data-in Hold Time Referenced to RAS	t _{DHR}	95		115		ns	and a second
Refresh Period (512 cycles)	t _{REF}		8		8	ms	
Write Command Set-up Time	t _{wcs}	0		0		ns	7
CS to Write Enable Delay Time (read-write cycle)	t _{CWD}	25		30		ns	7
RAS to Write Enable Delay Time (read-write cycle)	t _{RWD}	100		120		ns	7
Column Address to W Delay Time	t _{AWD}	50		60		ns	7
CS Setup Time (CS-before-RAS refresh)	t _{CSR}	10		10		ns	
CS Hold Time (CS-before-RAS refresh)	t _{CHR}	30		30		ns	
RAS Precharge to CS Hold Time	t _{RPC}	10		10		ns	
CS Precharge Time (refresh counter test)	t _{CPT}	50		60		ns	
CS Precharge Time	t _{CPN}	15		20		ns	

NOTES

- An initial pause of 200μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH}(min) and V_{IL}(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{\text{RCD}}(\text{max})$ limit insures that $t_{\text{RAC}}(\text{max})$ can be met. $t_{\text{RCD}}(\text{max})$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{\text{RCD}}(\text{max})$ limit, then access time is controlled exclusively by t_{CAC} .

NOTES (Continued)

- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 7. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}>t_{WCS}(min) the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD} t_{CWD}(min), t_{RWD} t_{AWD}(min) and t_{AWD} t_{AWD}(min), then the cycle is a read-write cycle and the data output will contain the data read from the selected address. If neither of the data out is indeterminate.
- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 9. These parameters are referenced to the $\overline{\text{CS}}$ leading edge in early write cycles and to the $\overline{\text{W}}$ leading edge in read-write cycles.

- 10. Operation within the $t_{RAD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .
- 11. Operation within the $t_{LWAD}(max)$ limit insures that $t_{ALW}(max)$ can be met. $t_{LWAD}(max)$ is specified as a reference point only. If t_{LWAD} is greater than the specified $t_{LWAD}(max)$ limit, then access time is controlled by t_{AA} .
- 12. Normal operation requires the "T.F." pin to be connected to V_{SS} or TTL logic low level or left unconnected on the printed wiring board.
- 13. When the "T.F." pin is connected to a defined positive voltage, the internal test function may be activated. Contact Samsung Semiconductor for specific operational details of the "test function".

TIMING DIAGRAMS

READ CYCLE

TIMING DIAGRAMS (Continued)

WRITE CYCLE (EARLY WRITE)

2

TIMING DIAGRAMS (Continued)

STATIC COLUMN MODE WRITE CYCLE (W controlled early write)

TIMING DIAGRAMS (Continued) STATIC COLUMN MODE WRITE CYCLE (CS controlled early write)

STATIC COLUMN MODE READ-WRITE CYCLE

82

TIMING DIAGRAMS (Continued) STATIC COLUMN MODE MIXED CYCLE

SAMSUNG SEMICONDUCTOR

TIMING DIAGRAMS (Continued)

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

DON'T CARE

KM41C1002 OPERATION

Device Operation

The KM41C1002 contains 1,048,576 memory locations. Twenty address bits are required to address a particular memory location. Since the KM41C1002 has only 10 address input pins, time multiplexed addressing is used to input 10 row and 10 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (\overline{RAS}), the column address strobe (\overline{CS}) and the valid row and column address inputs.

Operation of the KM41C1002 begins by strobing in a valid row address with $\overline{\text{RAS}}$ while $\overline{\text{CS}}$ remains high. Then the address on the 10 address input pins is changed from a row address to a column address and is strobed in by $\overline{\text{CS}}$. This is the beginning of any KM41C1002 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both $\overline{\text{RAS}}$ and $\overline{\text{CS}}$ have returned to the high state. Another cycle can be initiated after $\overline{\text{RAS}}$ remains high long enough to satisfy the RAS precharge time (tRP) requirement.

RAS and CS Timing

The minimum RAS and CS pulse widths are specified by tRAS(min) and tCAS(min) respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, tRP, has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM41C1002 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a RAS/ \overline{CS} cycle. The access time is normally specified with respect to the falling edge of RAS. But the access time also depends on the falling edge of \overline{CS} and on the valid column address transition.

If CS goes low before tRCD(max) and if the column address is valid before tRAD(max) then the access time to valid data is specified by tRAC(min). However, if CS goes low after tRCD(max) or if the column address becomes valid after tRAD(max), access is specified by tCAC or tAA. In order to achieve the minimum access time, tRAC(min), it is necessary to meet both tRCD(max) and tRAD(max).

Write

The KM41C1002 can perform early write, late write and read-modify-write cycles. The differece between these cycles is in the state of data-out and is determined by the timing relationship between W and \overline{CS} . In any type of write cycle, Data-in must be valid at or before the falling edge of W or \overline{CS} , whichever is later.

Early Write: An early write cycle is performed by bringing W low before \overline{CS} . The data at the data input pin (D) is written into the addressed memory cell. Throughout the early write cycle the output remains in the Hi-Z state. This cycle is good for common I/O applications because the data-in and data-out pins may be tied together without bus contention.

Read-Modify-Write: In this cycle, valid data from the addressed cell appears at the output before and during the time that data is being written into the same cell location. This cycle is achieved by bringing \overline{W} low after \overline{CS} and meeting the data sheet read-modify-write cycle timing requirements. This cycle requires using a separate I/O to avoid bus contention.

Late Write: If \overline{W} is brought low after \overline{CS} , a late write cycle will occur. The late write cycle is very similar to the read-modify-write cycle except that the timing parameters, tRWD, tCWD and tAWD, are not necessarily met. The state of data-out is indeterminate since the output can be either Hi-Z or contain data depending on the timing conditions. This cycle requires a separate I/O to avoid bus contention.

Data Output

The KM41C1002 has a tri-state output buffer which is controlled by \overline{CS} . Whenever \overline{CS} is high (VIH) the output is in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by tCLZ after the falling edge of \overline{CS} . Invalid data may be present at the output during the time after tCLZ and before the valid data appears at the output. The timing parameters tCAC, tRAC and tAA specify when the valid data will be present at the output. The valid data remains at the output until \overline{CS} returns high. This is true even if a new RAS cycle occurs (as in hidden refresh). Each of the KM41C1002 operating cycles is listed below after the corresponding output state produced by the cycle.

DEVICE OPERATION (Continued)

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write, Nibble Mode Read, Nibble Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, Nibble Mode Write, CS-before-RAS Refresh, CS-only cycle.

Indeterminate Output State: Delayed Write

Refresh

The data in the KM41C1002 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 8 ms. Either a burst refresh or distributed refresh may be used. There are several ways to accomplish this.

 \overline{RAS} -Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with \overline{RAS} while \overline{CS} remains high. This cycle must be repeated for each of the 512 row addresses, (A0-A8). The state of address A9 is ignored during refresh.

 \overline{CS} -before- \overline{RAS} Refresh: The KM41C1002 has \overline{CS} -before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If CS is held low for the specified set up time (tCSR) before \overline{RAS} goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CS} active time and cycling \overline{RAS} . The KM41C1002 hidden refresh cycle is actually a \overline{CS} before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM41C1002 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CSbefore-RAS refresh is the preferred method.

CS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the CS-before-RAS refresh counter test cycle provides a convenient method of verifying the functionality of the CS-before-RAS refresh activated circuitry. The cycle begins as a CSbefore-RAS refresh operation. Then, if CS is brought high and then low again while RAS is held low, the read and write operations are enabled. In this mode, the row address bits A0 through A8 are supplied by the on-chip refresh counter. The A9 bit is set high internally.

Static Column Mode

Static column mode allows high speed read, write or read-modify-write random access to all the memory cells within a selected row. Operation within a selected row is similar to a static RAM. The read, write or read-modifywrite cycles may be mixed in any order.

A static column mode read cycle starts as a normal cycle. Additional cells within the selected row are read by applying a new column address while \overline{W} = VIH and \overline{RAS} = VIL.

A static column mode write cycle starts as a normal cycle. Additional cells within the selected row are written by applying a new column address while $\overrightarrow{RAS} = VIL$ and toggling either \overrightarrow{W} or \overrightarrow{CS} . The data is written into the cell triggered by the latter falling edge of W or \overrightarrow{CS} .

A static column mode read-modify-write cycle starts as a normal cycle. Additional cells within the selected row are accessed by applying a new column address while $\overline{\text{RAS}} = \text{VIL}$ and toggling \overline{W} . The data and column address are strobbed and latched by the latter falling edge of \overline{W} .

Power-up

If $\overline{RAS} = V_{SS}$ during power-up, the KM41C1002 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

An initial pause of 200 μ sec is required after powerp up followed by 8 initialization cycles before proper device operation is assured. Eight initialization cycles are also required after any 8 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM41C1002 inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel ter-

DEVICE OPERATION (Continued)

mination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM41C1002 input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMS.

Decoupling

The importance of proper decoupling can not be over emphasized. Excessive transient noise or voltage droop on the V_{CC} line can cause loss of data integrity (soft errors). It is recommended that the total combined voltage changes over time in the VCC to VSS voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.3μ F ceramic decoupling capacitor should be connected between the V_{cc} and ground pins of each KM41C1002 using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated by the KM41C1002 and they supply much of the current used by the KM41C1002 during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to recharge the 0.3μ F capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor around the memory array.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

units: inches (millimeters)

20-PIN PLASTIC ZIGZAG-IN-LINE PACKAGE

256K × 4 Bit CMOS Dynamic RAM with Fast Page Mode

FEATURES

• Performance range:

	t _{RAC}	tCAC	t _{RC}
KM44C256-10	100ns	25ns	190ns
KM44C256-12	120ns	30ns	220ns

- Fast Page Mode operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and output
- Early Write or output Enable Controlled Write

FUNCTIONAL BLOCK DIAGRAM

- Single + 5V ± 10% power supply
- 512 cycles/8ms refresh
- JEDEC standard pinout
- Available in Plastic DIP, SOJ and ZIP

GENERAL DESCRIPTION

The Samsung KM44C256 is a CMOS high speed 262,144 \times 4 dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C256 features Fast Page Mode operation which allows high speed random access of memory cells within the same row.

CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RAS-only Refresh. All inputs and output are fully TTL compatible.

The KM44C256 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Value	Units
Voltage on Any Pin Relative to $V_{\mbox{ss}}$	V _{IN} , V _{OUT}	- 1 to + 7.0	v
Voltage on V_{CC} Supply Relative to V_{SS}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	600	mW
Short Circuit Output Current	l _{os}	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage reference to Vss, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	. V
Input High Voltage	V _{IH}	2.4		6.5	v
Input Low Voltage	VIL	- 1.0		0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Units
Operating Current* (RAS and CAS Cycling @t _{RC} = min)	KM44C256-10 KM44C256-12	I _{CC1}	-	70 60	mA mA
Standby Current (RAS = CAS = V _{IH})		I _{CC2}	_	2	mA
\overline{RAS} -Only Refresh Current* ($\overline{CAS} = V_{H}$, \overline{RAS} Cycling @t _{RC} = min)	KM44C256-10 KM44C256-12	I _{CC3}	_	70 60	mA mA
Fast Page Mode Current* (RAS = V_{IL} , CAS Cycling @ t_{PC} = min)	KM44C256-10 KM44C256-12	I _{CC4}	_	50 40	mA mA
Standby Current $(RAS = CAS = V_{CC} - 0.2V)$		I _{CC5}	_	1	mA
CAS-Before-RAS Refresh Current* (RAS and CAS Cycling @t _{RC} = min)	KM44C256-10 KM44C256-12	I _{CC6}	_	70 60	mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test = 0 volts)		I _{IL}	- 10	10	μA
Output Leakage Current (Data out is disabled, 0≤V _{out} ≤5.5V		l _{o∟}	- 10	10	μΑ
Output High Voltage Level (I _{OH} = - 5mA)		V _{он}	2.4		v
Output Low Voltage Level (I _{oL} = 4.2mA)		V _{OL}	_	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Мах	Unit
Input Capacitance (A ₀ -A ₈)	C _{IN1}	_	6	pF
Input Capacitance (RAS, CAS, W, OE)	C _{IN2}		7	pF
Output Capacitance (DQ1-DQ4)	C _{IN/OUT}		7	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V ± 10%. See notes 1, 2)

		KM44C256-10		KM44C256-12		11	
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Random Read or Write Cycle Time	t _{RC}	190		220		ns	
Read-modify-write Cycle Time	t _{RWC}	255		295		ns	
Fast Page Mode Cycle Time	t _{PC}	60		70		ns	
Fast Page Mode Read-modify-write Cycle Time	t _{PRWC}	110		130		ns	
Access Time from RAS	t _{RAC}		100		120	ns	3, 4, 10
Access Time from CAS	t _{CAC}		25		30	ns	3, 4, 5
Access Time from Column Address	t _{AA}		50		60	ns	3, 10
Access Time from CAS Precharge	t _{CPA}		55		65	ns	3
CAS to Output in Low-Z	t _{CLZ}	5		5		ns	3
Output Buffer Turn-off Delay	t _{OFF}	0	30	0	35	ns	6
Transition Time (rise and fall)	t⊤	3	50	3	50	ns	2
RAS Precharge Time	t _{RP}	80		90		ns	
RAS Pulse Width	t _{RAS}	100	10,000	120	10,000	ns	
RAS Pulse Width (fast page mode)	tRASP	100	100,000	120	100,000	ns	
RAS Hold Time	t _{RSH}	25		30		ns	
CAS Hold Time	t _{CSH}	100		120		ns	
CAS Pulse Width	t _{CAS}	25	10,000	30	10,000	ns	
RAS to CAS Delay Time	t _{RCD}	25	75	25	90	ns	4
RAS to Column Address Delay Time	t _{RAD}	20	50	20	60	ns	10
CAS to RAS Precharge Time	t _{CRP}	10		10		ns	
CAS Precharge time	t _{CPN}	15		20			
CAS Precharge Time (fast page mode)	t _{CP}	10		15		ns	
Row Address Set-up Time	t _{ASR}	0		0	,	ns	
Row Address Hold Time	t _{RAH}	15		15		ns	
Column Address Set-up Time	t _{ASC}	0		0		ns	
Column Address Hold Time	t _{CAH}	20		25		ns	
Column Address Hold Time Reference to RAS	t _{AR}	95		115		ns	
Column Address to RAS Lead Time	t _{RAL}	50		60		ns	

.

AC CHARACTERISTICS (Continued)

		KM44C256-10		KM44C256-12		11-14-	Natas
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Read Command Set-up Time	t _{RCS}	0		0		ns	
Read Command Hold Time	t _{RCH}	0		0		ns	8
Read Command Hold Time Reference to RAS	t _{RRH}	0		0		ns	8
Write Command Hold Time	t _{wcн}	20		25		ns	
Write Command Hold Time Referenced to RAS	t _{WCR}	95		115		ns	
Write Command Pulse Width	t _{WP}	20		25		ns	
Write Command to RAS Lead Time	t _{RWL}	25		30		ns	
Write Command to CAS Lead Time	t _{CWL}	25		30		ns	
Data Set-up Time	t _{DS}	0		0		ns	9
Data Hold Time	t _{DH}	20		25		ns	9
Data Hold Time Referenced to RAS	t _{DHR}	95		115		ns	
Refresh Period	t _{REF}		8		8	ms	
Write Command Set-up Time	t _{wcs}	0		0		ns	7
CAS to W Delay Time	t _{CWD}	60		70		ns	7
RAS to W Delay Time	t _{RWD}	135		160		ns	7
Column Address to \overline{W} Delay Time	t _{AWD}	85		100		ns	7
CAS Set-up Time (CAS before RAS cycle)	t _{CSR}	10		10		ns	
CAS Hold Time (CAS before RAS cycle)	t _{CHR}	30		30		ns	
RAS to CAS Precharge Time	t _{RPC}	10		10		ns	
CAS Precharge Time (CAS before RAS counter test cycle)	t _{CPT}	50		60		ns	
RAS Hold Time Reference to OE	t _{ROH}	20		20		ns	
OE Access Time	t _{OEA}		25		30	ns	
OE to Data Delay	t _{OED}	25		30		ns	
Output Buffer Turn Off Delay Time from OE	t _{OEZ}	0	25	0	30	ns	
OE Command Hold Time	t _{OEH}	25		30		ns	

NOTES

- An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{\rm H}(min)$ and $V_{\rm IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{\rm H}(min)$ and $V_{\rm IL}(max)$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .

NOTES (Continued)

- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 7. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}>t_{WCS}(min) the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If t_{CWD}≥ t_{CWD}(min), t_{RWD}≥t_{RWD}(min) and t_{AWD}≥t_{AWD}(min), then the cycle is a read-write cycle and the data output will contain the data read from

the selected address. If neither of the above conditions are satisfied, the condition of the data out is indeterminate.

- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD}(max)$ limit insures that $t_{RCD}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .

READ CYCLE

TIMING DIAGRAMS (Continued)

READ-MODIFY-WRITE

FAST PAGE MODE READ CYCLE

DON'T CARE

TIMING DIAGRAMS (Continued)

RAS-ONLY REFRESH CYCLE

Note: \overline{W} , \overline{OE} = Don't care

CAS-BEFORE-RAS REFRESH CYCLE

Note: \overline{W} , \overline{OE} , A = Don't care

TIMING DIAGRAMS (Continued) CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

KM44C256 OPERATION

Device Operation

The KM44C256 contains 1,048,576 memory locations organized as 262,144 four-bit words. Eighteen address bits are required to address a particular 4-bit word in the memory array. Since the KM44C256 has only 9 address input pins, time multiplexed addressing is used to input 9 row and 9 column addresses. The multiplexing is controlled by the timing relationship between the row address strobe (RAS), the column address strobe (CAS) and the valid address inputs.

Operation of the KM44C256 begins by strobing in a valid row address with \overline{RAS} while \overline{CAS} remains high. Then the address on the 9 address input pins is changed from a row address to a column address and is strobed in by \overline{CAS} . This is the beginning of any KM44C256 cycle in which a memory location is accessed. The specific type of cycle is determined by the state of the write enable pin and various timing relationships. The cycle is terminated when both \overline{RAS} and \overline{CAS} have returned to the high state. Another cycle can be initiated after \overline{RAS} remains high long enough to satisfy the \overline{RAS} precharge time (tRP) requirement.

RAS and CAS Timing

The minimum RAS and CAS pulse widths are specified by tRAS(min) and tCAS(min) respectively. These minimum pulse widths must be satisfied for proper device operation and data integrity. Once a cycle is initiated by bringing RAS low, it must not be aborted prior to satisfying the minimum RAS and CAS pulse widths. In addition, a new cycle must not begin until the minimum RAS precharge time, tRP, has been satisfied. Once a cycle begins, internal clocks and other circuits within the KM44C256 begin a complex sequence of events. If the sequence is broken by violating minimum timing requirements, loss of data integrity can occur.

Read

A read cycle is achieved by maintaining the write enable input(\overline{W}) high during a $\overline{RAS}/\overline{CAS}$ cycle. The access time is normally specified with respect to the falling edge of \overline{RAS} . But the access time also depends on the falling edge of \overline{CAS} and on the valid column address transition.

If CAS goes low before tRCD(max) and if the column address is valid before tRAD(max) then the access time to valid data is specified by tRAC(min). However, if CAS goes low after tRCD(max) or if the column address becomes valid after tRAD(max), access is specified by tCAC or tAA. In order to achieve the minimum access time, tRAC(min), it is necessary to meet both tRCD(max) and tRAD(max).

The KM44C256 has common data I/O pins. For this reason an output enable control input (\overline{OE}) has been provided so the output buffer can be precisely controlled. For data to appear at the outputs, \overline{OE} must be low for the period of time defined by tOEA and tOEZ.

Write

The KM44C256 can perform early write and readmodify-write cycles. The differece between these cycles is in the state of data-out and is determined by the timing relationship between W, \overline{OE} and \overline{CAS} . In any type of write cycle Data-in must be valid at or before the falling edge of \overline{W} or \overline{CAS} , whichever is later.

Early Write: An early write cycle is performed by bringing W low before CAS. The 4-bit wide data at the data input pins is written into the addressed memory cells. Throughout the early write cycle the outputs remain in the Hi-Z state. In the early write cycle the output buffers remain in he Hi-Z state regardless of the state of the \overline{OE} input.

Read-Modify-Write: In this cycle, valid data from the addressed cells appears at the outputs before and during the time that data is being written into the same cell locations. This cycle is achieved by bringing \overline{W} low after \overline{CAS} and meeting the data sheet read-modify-write timing requirements. This output enable input (\overline{OE}) must be low during the time defined by tOEA and tOEZ for data to appear at the outputs. If tCWD and tRWD are not met the output may contain invalid data. Conforming to the \overline{OE} timing requirements prevents bus contention on the KM44C256's DQ pins.

Data Output

The KM44C256 has a tri-state output buffers which are controlled by \overline{CAS} and \overline{OE} . When either \overline{CAS} or \overline{OE} is high (VIH) the output are in the high impedance (Hi-Z) state. In any cycle in which valid data appears at the output the output goes into the low impedance state in a time specified by tCLZ after the falling edge of \overline{CAS} . Invalid data may be present at the output during the time after tCLZ and before the valid data appears at the output. The timing parameters tCAC, tRAC and tAA specify when the valid data will be present at the output. This is true even if a new \overline{RAS} cycle occurs (as in hidden refresh). Each of the KM44C256 operating cycles is listed below after the corresponding output state produced by the cycle.

Valid Output Data: Read, Read-Modify-Write, Hidden Refresh, Fast Page Mode Read, Fast Page Mode Read-Modify-Write.

Hi-Z Output State: Early Write, RAS-only Refresh, Fast Page Mode Write, CAS-only cycle.

Indeterminate Output State: Delayed Write (tCWD or tRWD are not met)

DEVICE OPERATION (Continued)

Refresh

The data in the KM44C256 is stored on a tiny capacitor within each memory cell. Due to leakage the data may leak off after a period of time. To maintain data integrity it is necessary to refresh each of the rows every 8 ms. Either a burst refresh or distributed refresh may be used. There are several ways to accomplish this.

RAS-Only Refresh: This is the most common method for performing refresh. It is performed by strobing in a row address with **RAS** while **CAS** remains high. This

cycle must be repeated for each of the 512 row addresses, (A0-A8).

 \overline{CAS} -before- \overline{RAS} Refresh: The KM44C256 has \overline{CAS} before- \overline{RAS} on-chip refresh capability that eliminates the need for external refresh addresses. If \overline{CAS} is held low for the specified set up time (tCSR) before RAS goes low, the on-chip refresh circuitry is enabled. An internal refresh operation automatically occurs. The refresh address is supplied by the on-chip refresh address counter which is then internally incremented in preparation for the next \overline{CAS} -before- \overline{RAS} refresh cycle.

Hidden Refresh: A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the \overline{CAS} active time and cycling \overline{RAS} . The KM44C256 hidden refresh cycle is actually a \overline{CAS} before- \overline{RAS} refresh cycle within an extended read cycle. The refresh row address is provided by the on-chip refresh address counter.

Other Refresh Methods: It is also possible to refresh the KM44C256 by using read, write or read-modify-write cycles. Whenever a row is accessed, all the cells in that row are automatically refreshed. There are certain applications in which it might be advantageous to perform refresh in this manner but in general RAS-only or CASbefore-RAS refresh is the preferred method.

CAS-before-RAS Refresh Counter Test Cycle

A special timing sequence using the \overline{CAS} -before- \overline{RAS} refresh counter test cycle provides a convenient method of verifying the functionality of the \overline{CAS} -before- \overline{RAS} refresh activated circuitry. The cycle begins as a \overline{CAS} -before- \overline{RAS} refresh operation. Then, if \overline{CAS} is brought high and then low again while \overline{RAS} is held low, the read and write operations are enabled. In this mode, the row address bits A0 through A8 are supplied by the on-chip refresh counter.

Fast Page Mode

Fast page mode provides high speed read, write or read-modify-write access to all memory cells within a

selected row. These cycles may be mixed in any order. A fast page mode cycle begins with a normal cycle. Then, while RAS is kept low to maintain the row address, CAS is cycled to strobe in additional column addresses. This eliminates the time required to set up and strobe sequential row addresses for the same page.

Power-up

If $\overline{RAS} = V_{SS}$ during power-up, the KM44C256 could begin an active cycle. This condition results in higher than necessary current demands from the power supply during power-up. It is recommended that \overline{RAS} and \overline{CAS} track with V_{CC} during power-up or be held at a valid VIH in order to minimize the power-up current.

An initial pause of 200 μ sec is required after powerup followed by 8 initialization cycles before proper device operation is assured. Eight initialization cycles are also required after any 8 msec period in which there are no RAS cycles. An initialization cycle is any cycle in which RAS is cycled.

Termination

The lines from the TTL driver circuits to the KM44C256 inputs act like unterminated transmission lines resulting in significant positive and negative overshoots at the inputs. To minimize overshoot it is advisable to terminate the input lines and to keep them as short as possible. Although either series or parallel termination may be used, series termination is generally recommended since it is simple and draws no additional power. It consists of a resistor in series with the input line placed close to the KM44C256 input pin. The optimum value depends on the board layout. It must be determined experimentally and is usually in the range of 20 to 40 ohms.

Board Layout

It is important to lay out the power and ground lines on memory boards in such a way that switching transient effects are minimized. The recommended methods are gridded power and ground lines or separate power and ground planes. The power and ground lines act like transmission lines to the high frequency transients generated by DRAMS. The impedance is minimized if all the power supply traces to all the DRAMS run both horizontally and vertically and are connected at each intersection or better yet if power and ground planes are used.

Address and control lines should be as short as possible to avoid skew. In boards with many DRAMS these lines should fan out from a central point like a fork or comb rather than being connected in a serpentine pattern. Also the control logic should be centrally located on large memory boards to facilitate the shortest possible address and control lines to all the DRAMS.

DEVICE OPERATION (Continued)

Decoupling

The importance of proper decoupling can not be over emphasized. Excessive transient noise or voltage droop on the V_{cc} line can cause loss of data integrity (soft errors). It is recommended that the total combined voltage changes over time in the VCC to VSS voltage (measured at the device pins) should not exceed 500mV.

A high frequency 0.3μ F ceramic decoupling capacitor should be connected between the V_{cc} and ground pins of each KM44C256 using the shortest possible traces. These capacitors act as a low impedance shunt for the high frequency switching transients generated

by the KM44C256 and they supply much of the current used by the KM44C256 during cycling.

In addition, a large tantalum capacitor with a value of 47μ F to 100μ F should be used for bulk decoupling to recharge the 0.3μ F capacitors between cycles, thereby reducing power line droop. The bulk decoupling capacitor should be placed near the point where the power traces meet the power grid or power plane. Even better results may be achieved by distributing more than one tantalum capacitor around the memory array.

PACKAGE DIMENSIONS

20-LEAD PLASTIC DUAL IN-LINE PACKAGE

Units: Inches (millimeters)

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC SMALL OUT-LINE J-LEAD

units: inches (millimeters)

20-PIN PLASTIC ZIGZAG-IN-LINE PACKAGE

256K×4 Bit CMOS Dynamic RAM with Static Column Mode

FEATURES

• Performance range:

	t _{RAC}	tCAC	t _{RC}
KM44C258-10	100ns	25ns	190ns
KM44C258-12	120ns	35ns	220ns

- Static Column Mode operation
- CS-before-RAS refresh
- RAS-only and Hidden refresh
- TTL compatible inputs and output
- Early Write or Output Enable Controlled Write
- Single + 5V ± 10% power supply
- 512 cycles/8ms refresh
- JEDEC standard pinout
- Available in Plastic 20-pin DIP, SOJ and ZIP

FUNCTIONAL BLOCK DIAGRAM

RAS DATA CONTROL & CS CLOCKS IN W DQ1 BUFF • to DO4 REFRESH CONTROL & ADDRESS COUNTER DATA OUT BUFF COLUMN DECODER SENSE AMPS & I/O GATING OF Δ٥ BUFFERS DECODER MEMORY ARRAY 1,048,576 CELLS ROW ADD Vcc A8 Vss

GENERAL DESCRIPTION

The Samsung KM44C258 is a CMOS high speed $262,144 \times 4$ bit Dynamic Random Access Memory. Its design is optimized for high performance applications such as mainframes and mini computers, graphics and high performance microprocessor systems.

The KM44C258 features Static Column Mode which allows high speed random access of memory cells within the same row. CAS-before-RAS refresh capability provides on-chip auto refresh as an alternative to RASonly Refresh. All inputs and outputs are fully TTL compatible.

The KM44C258 is fabricated using Samsung's advanced CMOS process.

PIN CONFIGURATIONS

Pin Name	Pin Function
A ₀ -A ₈	Address Inputs
RAS	Row Address Strobe
CS	Column Address Strobe
DQ ₁ -DQ ₄	Data In/Data Out
W	Read/Write Input
ŌĒ	Data Output Enable
V _{cc}	Power (+5V)
Vss	Ground
N.C.	No Connection
N.L.	No Lead

256K × 8 Bit DRAM Memory Modules SIP/SIMM

FEATURES

262,144 × 8-bit Organization

Performance range:

	t _{RAC}	t _{CAC}	t _{RC}
KMM48256/7-12	120ns	60ns	230ns
KMM58256/7-12	120ns	60ns	230ns
KMM48256/7-15	150ns	75ns	260ns
KMM58256/7-15	150ns	75ns	260ns

- Page Mode capability: KMM48256 and KMM58256
- Nibble Mode capability: KMM48257 and KMM58257
- CAS-before-RAS Refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single $+5V \pm 10\%$ power supply
- · 256 cycle/4ms refresh

FUNCTIONAL BLOCK DIAGRAM

PART NUMBERS

KMM48256-12	120ns	SIP	Page Mode
KMM48256-15	150ns	SIP	Page Mode
KMM58256-12	120ns	SIMM	Page Mode
KMM58256-15	150ns	SIMM	Page Mode
KMM48257-12	120ns	SIP	Nibble Mode
KMM48257-15	150ns	SIP	Nibble Mode
KMM58257-12	120ns	SIMM	Nibble Mode
KMM58257-15	150ns	SIMM	Nibble Mode

Pin Name	Pin Function
A ₀ -A ₈	Address Inputs
DQ	Data In/Out
\overline{W}	Read/Write Input
RAS	Row Address Strobe
CAS	Column Address Strobe
V _{cc}	Power (+5V)
V _{ss}	Ground
N.C.	No Connection

The Samsung KMM48256, KMM48257, KMM58256 and KMM58257 are 256K \times 8 dynamic RAM high density memory modules. Samsung's 256K \times 8 memory modules consists of eight KM41256/7 DRAMs in 18-pin PLCC packages mounted on a 30 pin glass-epoxy substrate. A 0.22 μ F decoupling capacitor is mounted under each DRAM.

The 256K \times 8 DRAM modules are available in two package styles. The KMM48256 and KMM48257 are SIPs with leads suitable for through hole mounting or for mounting in a socket. The KMM58256 and KMM58257 are SIMMs with edge connections and are intended for mounting into 30 pin edge connector sockets.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN} , V _{OUT}	- 1 to + 7.0	v
Voltage on V_{CC} supply relative to V_{SS}	V _{cc}	- 1 to + 7.0	v
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	8	W
Short Circuit Output Current	los	50	mA

*Note: Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{ss} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	v
Input High Voltage	ViH	2.4		V _{cc} + 1	v
Input Low Voltage	Vil	-1		0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Max	Units
OPERATING CURRENT*	KMM48256/7-12, KMM58256/7-12	I	_	600	mA
(\overline{RAS} and \overline{CAS} cycling; $@t_{RC} = min$)	KMM48256/7-15, KMM58256/7-15	CCI		520	mA
STANDBY CURRENT ($\overline{RAS} = \overline{CAS} = V_{IH}$ after 8 \overline{RAS} cycles min)		. Icc2	_	36	mA
RAS-ONLY REFRESH CURRENT*	S-ONLY REFRESH CURRENT* KMM48256/7-12, KMM58256/7-12		—	520	mA
$(\overline{CAS} = V_{IH}, \overline{RAS} \text{ cycling}; @t_{RC} = min)$	KMM48256/7-15, KMM58256/7-15	1003	-	480	mA
PAGE MODE CURRENT*	KMM48256-12, KMM58256-12	I _{CC4}	—	440	mA
$(RAS = V_{IL}, CAS cycling; @t_{PC} = min)$	KMM48256-15, KMM58256-15			360	mA
NIBBLE MODE CURRENT*	KMM48257-12, KMM58257-12	l	—	440	mA
NIBBLE MODE CURRENT* ($\overline{RAS} = V_{IL}$, \overline{CAS} cycling; $@t_{NC} = min$)	KMM48257-15, KMM58257-15	ICC5	_	360	mA
CAS-BEFORE-RAS REFRESH CURRENT*	KMM48256/7-12, KMM58256/7-12	lass	—	520	mA
(RAS cycling; @t _{RC} = min)	KMM48256/7-15, KMM58256/7-15	1006		480	mA
INPUT LEAKAGE CURRENT (Any input, $0 \le V_{IN} \le 5.5V$, Vcc = 5.5V, V _{ss} = 0V, all other pins not under test = 0 volts.)		I _{IL}	- 80	80	μΑ
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$, $V_{cc} = 5.5V$, $V_{ss} = 0V$)		Iol	- 10	10	μΑ
OUTPUT HIGH VOLTAGE LEVEL ($I_{OH} = -5$	īmA)	V _{OH}	2.4	-	V
OUTPUT LOW VOLTAGE LEVEL (IoL = 4.2n	nA)	Vol	-	0.4	v

*NOTE: I_{cc1}, I_{cc3}, I_{cc4}, I_{cc5} and I_{cc6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{cc} is specified as average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Input capacitance (A ₀ – A ₉)	CA		56	pF
Input capacitance (RAS)	CRAS		64	pF
Input capacitance (CAS)	C _{CAS}	-	64	pF
Input capacitance (W)	Cw	_	64	pF
Input capacitance (DQ1 – DQ8)	C _{DQ}	_	17	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V \pm 10%. See notes 1,2.) STANDARD OPERATION

Parameter	Symbol	KMM48256/7-12 KMM58256/7-12		KMM48256/7-15 KMM58256/7-15		Unit	Notes
		Min	Max	Min	Max	1	
Random read or write cycle time	t _{RC}	230		260		ns	
Access time from RAS	t _{RAC}		120		150	ns	3,4
Access time from CAS	t _{CAC}		60		75	ns	3,5
Output buffer turn-off delay time	t _{OFF}	0	30	0	40	ns	6
Transition time (rise and fall)	tT	3	50	3	50	ns	
RAS precharge time	t _{RP}	100		100		ns	
RAS pulse width	t _{RAS}	120	10,000	150	10,000	ns	
RAS hold time	t _{RSH}	60		75		ns	
CAS precharge time (all cycles except page mode)	t _{CPN}	50		60		ns	
CAS pulse width	t _{CAS}	60	10,000	75	10,000	ns	
CAS hold time	t _{CSH}	120		150		ns	
RAS to CAS delay time	t _{RCD}	25	60	25	75	ns	4
CAS to RAS precharge time	t _{CRP}	10		10		ns	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	t _{RAH}	15		15		ns	
Column address set-up time	t _{ASC}	0		0		ns	
Column address hold time	t _{CAH}	20		25		ns	
Column address hold time referenced to RAS	t _{AR}	80		100		ns	
Read command set-up time	t _{RCS}	0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		ns	
Read command hold time referenced to RAS	t _{RRH}	20		20		ns	
Write command set-up time	t _{wcs}	0		0		ns	
Write command hold time	t _{wcн}	40		45		ns	
Write command pulse width	t _{WP}	40		45		ns	

STANDARD OPERATION (Continued)

Parameter	Symbol	KMM48256/7-12 KMM58256/7-12		KMM48256/7-15 KMM58256/7-15		Units	Notes
		Min	Мах	Min	Мах		
Write command to RAS lead time	t _{RWL}	40		45		ns	
Write command to CAS lead time	t _{CWL}	40		45		ns	
Data-in set-up time	t _{DS}	0		0		ns	
Data-in hold time	t _{DH}	40		45		ns	
Write command hold time referenced to RAS	t _{WCR}	100		120		ns	
Data-in hold time referenced to RAS	t _{DHR}	100		120		ns	
Refresh period (256 cycles)	t _{REF}		4		4	ms	
CAS setup time (CAS-before-RAS refresh)	t _{CSR}	25		30		ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	55		60		ns	
RAS precharge to CAS active time	t _{RPC}	20		20		ns	

PAGE MODE (KMM48256/KMM58256)

Page mode cycle time	t _{PC}	120	145	ns	
CAS precharge time (page mode only)	t _{CP}	50	60	ns	

NIBBLE MODE (KMM48257/KMM58257)

Nibble mode read or write cycle time	t _{NC}	60		75		ns	
Nibble mode access time	t _{NCAC}		30		40	ns	
Nibble mode CAS pulse width	t _{NCAS}	30		40		ns	
Nibble mode CAS precharge time	t _{NCP}	25		30		ns	
Nibble mode RAS hold time	t _{NRSH}	40		50		ns	
Nibble mode CAS hold time referenced to RAS	t _{RNH}	20		20		ns	
Nibble Mode \overline{CAS} to \overline{W} delay	t _{NCWD}	30		35		ns	
Nibble Mode \overline{W} to \overline{CAS} lead time	t _{NCWL}	25		30		ns	

NOTES

- An initial pause of 100μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. Before using the internal refresh counter, 8 CAS-before-RAS refresh initialization cycles are required (instead of 8 RAS cycles).
- 2. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} (min) and V_{IL} (max), and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

TIMING DIAGRAMS

READ CYCLE

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

NIBBLE MODE READ CYCLE

NIBBLE MODE WRITE CYCLE

2

RAS-ONLY REFRESH CYCLE

CAS-BEFORE-RAS REFRESH CYCLE

HIDDEN REFRESH CYCLE tRC tor TRAS tRF TRAS tRP VIHt A R RAS VIL-TRSF tCHR tCRP tRCD tcas VIH-CAS VIL**t**RAH TASR **t**CAH tasc Vін- **XX** ROW ADDRESS COLUMN ***** Α ADDRESS $v_{\text{IL}-}$ **TRCS** VIHw \otimes VILtRRH -torr TRAC -tcac Von-DQ VALID DATA OPEN VOL-DON'T CARE

PACKAGE DIMENSIONS

KMM58256 and KMM58257 (256K × 8 SIMM)

Units: Inches (millimeters)

KMM48256 and KMM48257 (256K × 8 SIP)

2

256K × 9 Bit DRAM Memory Modules SIP/SIMM

FEATURES

- 262,144 × 9-bit Organization
- Ninth device has separate D.Q and CAS for Parity applications.
- Performance range:

	tRAC	t _{CAC}	t _{RC}
KMM49256/7-12	120ns	60ns	230ns
KMM59256/7-12	120ns	60ns	230ns
KMM49256/7-15	150ns	75ns	260ns
KMM59256/7-15	150ns	75ns	260ns

- Page Mode capability: KMM49256 and KMM59256
- Nibble Mode capability: KMM49257 and KMM59257
- CAS-before-RAS Refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single $+5V \pm 10\%$ power supply
- 256 cvcle/4ms refresh

FUNCTIONAL BLOCK DIAGRAM

PART NUMBERS

KMM49256-12	120ns	SIP	Page Mode
KMM49256-15	150ns	SIP	Page Mode
KMM59256-12	120ns	SIMM	Page Mode
KMM59256-15	150ns	SIMM	Page Mode
KMM49257-12	120ns	SIP	Nibble Mode
KMM49257-15	150ns	SIP	Nibble Mode
KMM59257-12	120ns	SIMM	Nibble Mode
KMM59257-15	150ns	SIMM	Nibble Mode

GENERAL DESCRIPTION

The Samsung KMM49256, KMM49257, KMM59256 and KMM59257 are 256K × 9 dynamic RAM high density memory modules. The ninth bit is generally used for parity and is controlled by CAS₉. Samsung's 256K × 9 memory modules consists of nine KM41256/7 DRAMs in 18-pin PLCC packages mounted on a 30 pin glassepoxy substrate. A 0.22μ F decoupling capacitor is mounted under each DRAM.

The 256K × 9 DRAM modules are available in two package styles. The KMM49256 and KMM49257 are SIPs with leads suitable for through hole mounting or for mounting in a socket. The KMM59256 and KMM59257 are SIMMs with edge connections and are intended for mounting into 30 pin edge connector sockets

PIN CONFIGURATION

Pin Name

An-As

D₉

Qa

DQ

W

RAS

CAS

CAS

 V_{cc}

 V_{SS}

N.C.

Data In

Data Out

Data In/Out

Power (+5V)

Ground

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{SS}	V _{IN} , V _{OUT}	- 1 to + 7.0	v
Voltage on V_{cc} supply relative to V_{ss}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	9	W
Short Circuit Output Current	l _{os}	50	mA

*Note: Permanent device damage may occur of ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V_{ss}, T_A = 0 to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{ss}	0	0	0	V
Input High Voltage	V _{IH}	2.4		V _{cc} + 1	v
Input Low Voltage	V _{IL}	- 1		0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Paramete	r	Symbol	Min	Мах	Units
OPERATING CURRENT*	KMM49256/7-12, KMM59256/7-12	1		675	mA
(\overline{RAS} and \overline{CAS} cycling; $@t_{RC} = min$)	KMM49256/7-15, KMM59256/7-15	ICCI	-	585	mA
STANDBY CURRENT ($\overline{RAS} = \overline{CAS} = V_{IH}$ after 8 \overline{RAS} cycles min)		I _{CC2}	—	41	mA
RAS-ONLY REFRESH CURRENT*	KMM49256/7-12, KMM59256/7-12	laas		585	mA
$(\overline{CAS} = V_{H}, \overline{RAS} \text{ cycling}; @t_{RC} = min)$	KMM49256/7-15, KMM59256/7-15	1003		540	mA
PAGE MODE CURRENT*	KMM49256-12, KMM59256-12	l		495	mA
$(\overline{RAS} = V_{IL}, \overline{CAS} \text{ cycling}; @t_{PC} = min)$	KMM49256-15, KMM59256-15	1004		405	mA
NIBBLE MODE CURRENT*	KMM49257-12, KMM59257-12	1		495	mA
$(\overline{RAS} = V_{1L}, \overline{CAS} \text{ cycling}; @t_{NC} = min)$	KMM49257-15, KMM59257-15	I _{CC5}		405	mA
CAS-BEFORE RAS-REFRESH CURRENT*	KMM49256/7-12, KMM59256/7-12	lass	—	585	mA
(RAS cycling; @t _{RC} = min)	KMM49256/7-15, KMM59256/7-15	ICC6	_	540	mA
INPUT LEAKAGE CURRENT (D ₉ , \overline{CAS}_9 inp Vcc = 5.5V, Vss = 0V, all other pins not unc	ut, $0 \le V_{IN} \le 5.5V$, ler test = 0 volts.)	l _{IL1}	- 10	10	μA
INPUT LEAKAGE CURRENT (A, \overline{RAS} , \overline{CAS} , \overline{W} inputs, $0 \le V_{IN} \le 5.5V$, Vcc = 5.5V, Vss = 0V, all other pins not under test = 0 volts.)			- 90	90	μΑ
OUTPUT LEAKAGE CURRENT (DQ, Q ₉ , Data out is disabled, $0V \le V_{OUT} \le 5.5V$, Vcc = 5.5V, Vss = 0V,)		I _{OL}	- 10	10	μA
OUTPUT HIGH VOLTAGE LEVEL (I _{OH} =-5mA)		V _{он}	2.4		ν
OUTPUT LOW VOLTAGE LEVEL ($I_{OL} = 4.2r$	nA)	V _{OL}	—	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, I_{CC5} and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as average current.

1

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Мах	Unit
Input capacitance (A ₀ – A ₈)	C _A	_	63	pF
Input capacitance (RAS)	CRAS	_	72	pF
Input capacitance (CAS)	C _{CAS}	_	64	pF
Input capacitance (W)	. C _w		72	pF
Input capacitance (CAS ₉)	C _{CAS9}	_	10	pF
Input capacitance (D ₉)	C _{D9}	-	7	pF
Input capacitance (DQ1-DQ8)	C _{DQ}	_	17	pF
Output capacitance (Q ₉)	C _{Q9}	·	10	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V \pm 10%. See notes 1,2.) STANDARD OPERATION

Parameter		KMM49256/7-12 KMM59256/7-12		KMM49256/7-15 KMM59256/7-15		Unit	Notes
	-,	Min	Max	Min	Max		
Random read or write cycle time	t _{RC}	230		260		ns	
Access time from RAS	t _{RAC}		120		150	ns	3,4
Access time from CAS	t _{CAC}		60		75	ns	3,5
Output buffer turn-off delay time	t _{OFF}	0	30	0	40	ns	6
Transition time (rise and fall)	tT	3	50	3	50	ns	
RAS precharge time	t _{RP}	100		100		ns	
RAS pulse width	t _{RAS}	120	10,000	150	10,000	ns	
RAS hold time	t _{RSH}	60		75		ns	
CAS precharge time (all cycles except page mode)	t _{CPN}	50		60		ns	
CAS pulse width	t _{CAS}	60	10,000	75	10,000	ns	
CAS hold time	t _{сsн}	120		150		ns	
RAS to CAS delay time	t _{RCD}	25	60	25	75	ns	4
CAS to RAS precharge time	t _{CRP}	10		10		ns	
Row address set-up time	t _{ASR}	0		0		ns	
Row address hold time	t _{RAH}	15		15		ns	
Column address set-up time	t _{ASC}	0		0		ns	
Column address hold time	t _{CAH}	20		25		ns	
Column address hold time referenced to RAS	t _{AR}	80		100		ns	
Read command set-up time	t _{RCS}	0		0		ns	
Read command hold time referenced to CAS	t _{RCH}	0		0		ns	
Read command hold time referenced to RAS	t _{RRH}	20		20		ns	

STANDARD OPERATION (Continued)

Parameter	Symbol	KMM49256/7-12 KMM59256/7-12		KMM49256/7-15 KMM59256/7-15		Units	Notes
		Min	Max	Min	Max		
Write command set-up time	t _{wcs}	0		0		ns	
Write command hold time	t _{wcн}	40		45		ns	
Write command pulse width	t _{WP}	40		45		ns	
Write command to RAS lead time	t _{RWL}	40		45		ns	
Write command to CAS lead time	t _{CWL}	40		45		ns	
Data-in set-up time	t _{DS}	0		0		ns	
Data-in hold time	t _{DH}	40		45		ns	
Write command hold time referenced to RAS	t _{WCR}	100		120		ns	
Data-in hold time referenced to RAS	t _{DHR}	100		120		ns	
Refresh period (256 cycles)	t _{REF}		4		4	ms	
CAS setup time (CAS-before-RAS refresh)	t _{CSR}	25		30		ns	
CAS hold time (CAS-before-RAS refresh)	t _{CHR}	55		60		ns	
RAS precharge to CAS active time	t _{RPC}	20		20		ns	

PAGE MODE (KMM49256/KMM59256)

Page mode cycle time	t _{PC}	120	145	ns	
CAS precharge time (page mode only)	t _{CP}	50	60	ns	

NIBBLE MODE (KMM49257/KMM59257)

Nibble mode read or write cycle time	t _{NC}	60		75		ns	
Nibble mode access time	t _{NCAC}		30		40	ns	
Nibble mode CAS pulse width	t _{NCAS}	30		40		ns	
Nibble mode CAS precharge time	t _{NCP}	25		30		ns	
Nibble mode RAS hold time	t _{NRSH}	40		50		ns	
Nibble mode CAS hold time referenced to RAS	t _{RNH}	20		20		ns	
Nibble mode \overline{CAS} to \overline{W} delay time	t _{NCWD}	30		35		ns	
Nibble mode \overline{W} to \overline{CAS} lead time	t _{NCWL} .	25		30		ns	

NOTES

- An initial pause of 100µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. Before using the internal refresh counter, 8 CAS-before-RAS refresh initialization cycles are required (instead of 8 RAS cycles).
- 2. $V_{\rm IH}$ (min) and $V_{\rm IL}$ (max) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\rm IH}$ (min) and $V_{\rm IL}$ (max), and are assumed to be 5ns for all inputs.
- Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .

KMM49256/KMM49257 KMM59256/KMM59257

MEMORY MODULES

TIMING DIAGRAMS

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

.

NIBBLE MODE READ CYCLE

NIBBLE MODE WRITE CYCLE

۰.

DON'T CARE

RAS-ONLY REFRESH CYCLE

PACKAGE DIMENSIONS

KMM59256 and KMM59257 (256K × 9 SIMM)

Units: Inches (millimeters)

KMM49256 and KMM49257 (256K × 9 SIP)

1M×8 DRAM SIP and SIMM Memory Modules

FEATURES

- 1.048.576 × 8-bit Organization
- Performance range:

	t _{RAC}	t _{CAC}	t _{RC}
KMM481000-10	100ns	25ns	190ns
KMM581000-10	100ns	25ns	190ns
KMM481000-12	120ns	30ns	220ns
KMM581000-12	120ns	30ns	220ns

- · Fast Page Mode capability
- CAS-before-RAS Refresh capability
- · RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single + 5V ± 10% power supply
- 512 cycles/8ms refresh
- JEDEC standard pinout

A0-A9 O

RAS O

CAS O

w o

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The Samsung KMM481000 and KMM581000 are 1M × 8 dynamic RAM high density memory modules. Samsung 1M×8 memory modules consist of eight KM41C1000 DRAMS in 20-pin SOJ packages mounted on a 30 pin glass-epoxy substrate. A 0.22µF decouping capacitor is mounted under each DRAM.

The 1M × 8 DRAM modules are available in two package styles. The KMM481000 is SIP with leads suitable for through hole mounting or for mounting in a socket. The KMM581000 is SIMM with edge connections and is intended for mounting into 30 pin edge connector socket.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to V _{ss}	V _{IN} , V _{OUT}	- 1 to + 7.0	V
Voltage on V_{cc} Supply Relative to V_{ss}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	– 55 to + 150	°C
Power Dissipation	Po	4.8	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{ss}, T_A = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	v
Input High Voltage	ViH	2.4	-	6.5	v
Input Low Voltage	ViL	- 1.0	-	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter			Min	Max	Unit
Operating Current* (RAS and CAS Cycling @t _{RC} = min)	KMM481000-10, KMM581000-10 KMM481000-12, KMM581000-12	I _{CC1}	_	480 400	mA mA
Standby Current (RAS = CAS = V _{IH})		I _{CC2}	_	. 16	mA
\overline{RAS} -Only Refresh Current* ($\overline{CAS} = V_{IH}$, \overline{RAS} Cycling $@t_{RC} = min$)	KMM481000-10, KMM581000-10 KMM481000-12, KMM581000-12	I _{CC3}		480 400	mA mA
Fast Page Mode Current* (RAS = V _{IL} , CAS Cycling @t _{PC} = min)	KMM481000-10, KMM581000-10 KMM481000-12, KMM581000-12	I _{CC4}	-	320 240	mA mA
Standby Current ($\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V$)		I _{CC5}	-	8	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (\overline{RAS} and \overline{CAS} Cycling $@t_{RC} = min$)	KMM481000-10, KMM581000-10 KMM481000-12, KMM581000-12	I _{CÇ6}		480 400	mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test = 0 volts)		I _{IL}	- 80	80	μA
Output Leakage Current (Data out is disabled, $0 \le V_{OUT} \le 5.5V$		Iol	- 10	10	μA
Output High Voltage Level $(I_{OH} = -5mA)$		V _{OH}	2.4	-	v
Output Low Voltage Level $(I_{OL} = 4.2mA)$		Vol		0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Input Capacitance (A ₀ -A ₉)	C _{IN1}		50	pF
Input Capacitance (RAS, CAS, W)	C _{IN2}	_	60	pF
Output Capacitance (DQ1-DQ8)	C _{DQ}		15	pF

AC CHARACTERISTICS ($0^{\circ}C \leq T_{A} \leq 70^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$. See notes 1, 2)

		KMM4(5)81000-10		KMM4(5)81000-12			
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Random Read or Write Cycle Time	t _{RC}	190		220		ns	
Access Time from RAS	t _{RAC}		100		120	ns	3, 4, 10
Access Time from CAS	t _{CAC}		25		30	ns	3, 4, 5
Access Time from Column Address	t _{AA}		50		60	ns	3, 10
Access Time from CAS Precharge	t _{CPA}		55		65	ns	3
CAS to Output in Low-Z	t _{CLZ}	5		5		ns	3
Output Buffer Turn-off Delay Time	toff	0	30	0	35	ns	6
Transition Time (rise and fall)	tT	3	50	3	50	ns	2
RAS Precharge Time	t _{RP}	80		90		ns	
RAS Pulse Width	t _{RAS}	100	10,000	120	10,000	ns	
RAS Hold Time	t _{RSH}	25		30		ns	
CAS Precharge time (except fast page)	t _{CPN}	15		20		ns	
CAS Hold Time	tсsн	100		120		ns	
CAS Pulse Width	t _{CAS}	25	10,000	30	10,000	ns	
RAS to CAS Delay Time	t _{RCD}	25	75	25	90	ns	4
RAS to Column Address Delay Time	t _{RAD}	20	50	20	60	ns	10
CAS to RAS Precharge Time	t _{CRP}	10		. 10		ns	
Row Address Set-up Time	t _{ASR}	0		0		ns	
Row Address Hold Time	t _{RAH}	15		15		ns	
Column Address Set-up Time	t _{ASC}	0		0		ns	
Column Address Hold Time	t _{CAH}	20		25		ns	
Column Address Hold Time Reference to RAS	t _{AR}	95		115		ns	
Column Address to RAS Lead Time	t _{RAL}	50		60		ns	
Read Command Set-up Time	t _{RCS}	0		0		ns	
Read Command Hold Time Referenced to CAS	t _{RCH}	0		0		ns	8
Read Command Hold Time Reference to RAS	t _{RRH}	0		0		ns	8
Write Command Hold Time	t _{WCH}	20		25		ns	

AC CHARACTERISTICS (Continued)

Proventer	0 mb al	KMM4(5)81000-10		KMM4(5)81000-12		Unito	Nataa
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Write Command Hold Time Referenced to RAS	t _{WCR}	95		115		ns	
Write Command Pulse Width	t _{WP}	20		25		ns	
Write Command to RAS Lead Time	t _{RWL}	25		30		ns	
Write Command to CAS Lead Time	t _{CWL}	25		30		ns	
Data-in Set-up Time	t _{DS}	0		0 ·		ns	9
Data-in Hold Time	t _{DH}	20		25		ns	9
Data-in Hold Time Referenced to RAS	t _{DHR}	95		115		ns	
Refresh Period (512 cycles)	t _{REF}		8		8	ms	
Write Command Set-up Time	t _{wcs}	0		0		ns	7
CAS Set-up Time (CAS before RAS refresh)	t _{CSR}	10		10		ns	
CAS Hold Time (CAS before RAS refresh)	t _{CHR}	30		30		ns	
RAS Precharge to CAS Hold Time	t _{RPC}	10		10		ns	
Fast Page Mode Cycle Time	t _{PC}	60		70		ns	
CAS Precharge Time (fast page mode)	t _{CP}	10		15		ns	
RAS Pulse Width (fast page mode)	t _{RASP}	100	100,000	120	100,000	ns	

NOTES

- An initial pause of 200μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH}(min)$ and $V_{IL}(max)$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL}.
- 7. t_{WCS} is non restrictive operating parameters. It is included in the data sheet as electrical characteristics only. If $t_{WCS} > t_{WCS}$ (min) the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle.

- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 9. These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD}(max)$ limit insures that $t_{RCD}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .
- 11. Normal operation requires the "T.F." pin to be connected to V_{SS} or TTL logic low level or left unconnected on the printed wiring board.
- 12. When the "T.F." pin is connected to a defined positive voltage, the internal test function may be activated. Contact Samsung Semiconductor for specific operational details of the "test function".

KMM481000/KMM581000

MEMORY MODULES

TIMING DIAGRAMS

READ CYCLE

WRITE CYCLE (EARLY WRITE)

127

FAST PAGE MODE READ CYCLE

SAMSUNG SEMICONDUCTOR

PACKAGE DIMENSIONS

KMM581000 (1M × 8 SIMM)

Units: Inches (millimeters)

TOLERÁNCES: ± 0.005 (0.13) UNLESS OTHERWISE SPECIFIED

1M × 9 DRAM SIP and SIMM Memory Modules

FEATURES

- 1.048.576 × 9-bit Organization
- Ninth device has separate D. Q and CAS for Parity applications.
- Performance range:

	t _{RAC}	t _{CAC}	t _{RC}
KMM491000-10	100ns	25ns	190ns
KMM591000-10	100ns	25ns	190ns
KMM491000-12	120ns	30ns	220ns
KMM591000-12	120ns	30ns	220ns

- Fast Page Mode capability
- CAS-before-RAS Refresh capability
- RAS-only and Hidden Refresh capability
- TTL compatible inputs and outputs
- Single $+5V \pm 10\%$ power supply
- 512 cvcles/8ms refresh
- JEDEC standard pinout

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

SIP Pag	100ns	KMM491000-10
SIP Pag	120ns	KMM491000-12
SIMM Pag	100ns	KMM591000-10
SIMM Pag	120ns	KMM591000-12

GENERAL DESCRIPTION

The Samsung KMM491000 and KMM591000 are 1M × 9 dynamic RAM high density memory modules. The ninth bit is generally used for parity and is controlled by $\overline{CAS9}$. Samsung 1M \times 9 memory modules consist of nine KM41C1000 DRAMS in 20-pin SOJ packages mounted on a 30 pin glass-epoxy substrate. A 0.22µF decouping capacitor is mounted under each DRAM.

The $1M \times 9$ DRAM modules are available in two package styles. The KMM491000 is SIP with leads suitable for through hole mounting or for mounting in a socket. The KMM591000 is SIMM with edge connections and is intended for mounting into 30 pin edge connector socket.

TEST FUNCTION ON PIN 24 ALSO WILL BE AVAILABLE BY OPTION

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol Value		Unit
Voltage on Any Pin Relative to V _{ss}	V _{IN} , V _{OUT}	- 1 to + 7.0	V
Voltage on V_{cc} Supply Relative to V_{ss}	V _{cc}	- 1 to + 7.0	V
Storage Temperature	T _{stg}	- 55 to + 150	°C
Power Dissipation	PD	5.4	mW
Short Circuit Output Current	los	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{ss}, T_A = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	V
Input High Voltage	ViH	2.4		6.5	v
Input Low Voltage	ViL	- 1.0	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Operating Current* (RAS and CAS Cycling @t _{RC} = min)	KMM491000-10, KMM591000-10 KMM491000-12, KMM591000-12	I _{CC1}	_	540 450	mA mA
Standby Current (RAS = CAS = V _{IH})		I _{CC2}	_	18	mA
\overline{RAS} -Only Refresh Current* ($\overline{CAS} = V_{IH}$, \overline{RAS} Cycling $@t_{RC} = min$)	KMM491000-10, KMM591000-10 KMM491000-12, KMM591000-12	I _{CC3}		540 450	mA mA
Fast Page Mode Current* (RAS = V _{IL} , CAS Cycling @t _{PC} = min)	KMM491000-10, KMM591000-10 KMM491000-12, KMM591000-12	I _{CC4}	_	360 270	mA mA
Standby Current (RAS = CAS = $V_{CC} - 0.2V$)		I _{CC5}	·	9	mA
\overline{CAS} -Before- \overline{RAS} Refresh Current* (RAS and \overline{CAS} Cycling $@t_{RC} = min$)	KMM491000-10, KMM591000-10 KMM491000-12, KMM591000-12	I _{CC6}	-	540 450	mA mA
Input Leakage Current (Any input $0 \le V_{IN} \le 6.5V$, all other pins not under test = 0 volts)		I _{IL}	- 90	90	μA
Output Leakage Current (Data out is disabled, 0≤V _{OUT} ≤5.5V		Iol	- 10	10	μA
Output High Voltage Level $(I_{OH} = -5mA)$		V _{OH}	2.4	-	v
Output Low Voltage Level $(I_{OL} = 4.2 \text{mA})$		Vol	_	0.4	v

*NOTE: I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC6} are dependent on output loading and cycle rates. Specified values are obtained with the output open. I_{CC} is specified as an average current.

CAPACITANCE $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min	Мах	Unit
Input Capacitance (A ₀ -A ₉ , W, CAS, RAS)	C _{IN1}	-	60	pF
Input Capacitance (D ₉ , CAS ₉)	C _{IN2}	_	7	pF
Input Capacitance (DQ ₁ -DQ ₈)	C _{DQ}		15	pF
Output Capacitance (D ₉)	C _{Q9}		10	pF

AC CHARACTERISTICS (0°C \leq T_A \leq 70°C, V_{CC} = 5.0V \pm 10%. See notes 1, 2)

	Gumbal	KMM4(5)91000-10		KMM4(5)91000-12			
Parameter	Symbol	Min	Max	Min	Max	Units	Notes
Random Read or Write Cycle Time	t _{RC}	190		220		ns	
Access Time from RAS	t _{RAC}		100		120	ns	3, 4, 10
Access Time from CAS	t _{CAC}		25		30	ns	3, 4, 5
Access Time from Column Address	t _{AA}		50		60	ns	3, 10
Access Time from CAS Precharge	t _{CPA}		55		65	ns	3
CAS to Output in Low-Z	t _{CLZ}	5		5		ns	3
Output Buffer Turn-off Delay Time	t _{OFF}	0	30	0	35	ns	6
Transition Time (rise and fall)	t⊤	3	50	3	50	ns	2
RAS Precharge Time	t _{RP}	80		90		ns	
RAS Pulse Width	t _{RAS}	100	10,000	120	10,000	ns	
RAS Hold Time	t _{RSH}	25		30		ns	
CAS Precharge time (except fast page)	t _{CPN}	15		20		ns	
CAS Hold Time	tcsн	100		120		ns	
CAS Pulse Width	t _{CAS}	25	10,000	30	10,000	ns	
RAS to CAS Delay Time	t _{RCD}	25	75	25	90	ns	4
RAS to Column Address Delay Time	t _{RAD}	20	50	20	60	ns	10
CAS to RAS Precharge Time	t _{CRP}	10		10		ns	
Row Address Set-up Time	t _{ASR}	0		0		ns	
Row Address Hold Time	t _{RAH}	15		15		ns	
Column Address Set-up Time	t _{ASC}	0		0		ns	
Column Address Hold Time	t _{CAH}	20		25		ns	
Column Address Hold Time Reference to RAS	t _{AR}	95		115		ns	
Column Address to RAS Lead Time	' t _{RAL}	50		60		ns	
Read Command Set-up Time	t _{RCS}	0		0		ns	
Read Command Hold Time Referenced to CAS	t _{RCH}	0		0		ns	8
Read Command Hold Time Reference to RAS	t _{RRH}	0		0		ns	8
Write Command Hold Time	t _{wcн}	20		25		ns	

AC CHARACTERISTICS (Continued)

Demotion	0	KMM4(5)91000-10		KMM4(5)91000-12		11-14-	Notos
Parameter		Min	Max	Min	Max	Units	notes
Write Command Hold Time Referenced to RAS	t _{WCR}	95		115		ns	
Write Command Pulse Width	t _{WP}	20		25		ns	
Write Command to RAS Lead Time	t _{RWL}	25		30		ns	
Write Command to CAS Lead Time	t _{CWL}	25		30		ns	
Data-in Set-up Time	t _{DS}	0		0		ns	9
Data-in Hold Time	t _{DH}	20		25		ns	9
Data-in Hold Time Referenced to RAS	t _{DHR}	95		115		ns	
Refresh Period (512 cycles)	t _{REF}		8		8	ms	
Write Command Set-up Time	t _{wcs}	0		0		ns	7
CAS Set-up Time (CAS before RAS refresh)	t _{CSR}	10		10		ns	
CAS Hold Time (CAS before RAS refresh)	t _{CHR}	30		30		ns	
RAS Precharge to CAS Hold Time	t _{RPC}	10		10		ns	
Fast Page Mode Cycle Time	t _{PC}	60		70		ns	
CAS Precharge Time (fast page mode)	t _{CP}	10		15		ns	
RAS Pulse Width (fast page mode)	t _{RASP}	100	100,000	120	100,000	ns	

NOTES

- 1. An initial pause of 200μ s is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 2. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{IH}(min)$ and $V_{IL}(max)$ and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the $t_{RCD}(max)$ limit insures that $t_{RAC}(max)$ can be met. $t_{RCD}(max)$ is specified as a reference point only. If t_{RCD} is greater than the specified $t_{RCD}(max)$ limit, then access time is controlled exclusively by t_{CAC} .
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
- 7. t_{WCS} is non restrictive operating parameters. It is included in the data sheet as electrical characteristics only. If t_{WCS} > t_{WCS} (min) the cycle is an early write cycle and the data output will remain open circuit throughout the entire cycle.

- 8. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-write cycles.
- 10. Operation within the $t_{RAD}(max)$ limit insures that $t_{RCD}(max)$ can be met. $t_{RAD}(max)$ is specified as a reference point only. If t_{RAD} is greater than the specified $t_{RAD}(max)$ limit, then access time is controlled by t_{AA} .
- Normal operation requires the "T.F." pin to be connected to V_{SS} or TTL logic low level or left unconnected on the printed wiring board.
- 12. When the "T.F." pin is connected to a defined positive voltage, the internal test function may be activated. Contact Samsung Semiconductor for specific operational details of the "test function".

TIMING DIAGRAMS

2

136

TIMING DIAGRAMS (Continued)

SAMSUNG SEMICONDUCTOR

2

KMM491000/KMM591000

PACKAGE DIMENSIONS

KMM591000 (1M × 9 SIMM)

Units: Inches (millimeters)

KMM491000 (1M × 9 SIP)

SRAM DATA SHEETS 3

8819

1. KM6264A/KM6264AL KM62256AP/KM62256ALP 8. KM6165

8. KM682

Static RAM

	-	Speed			Cu	rrent		
Capacity	Part Number	Organization	speed (ns)	Technology	Active, mA	Standby, µA	Packages	Remark
					Typ (max)	Typ (max)		
	†KM6264A-7	8K×8	70	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
	KM6264A-10	8K×8	100	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
GAK bit	KM6264A-12	8K×8	120	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
04K DIL	†KM6264AL-7	8K×8	70	CMOS	35 (70)	(1mA)	28-Pin DIP	Now
1	KM6264AL-10	8K×8	100	CMOS	35 (70)	2 (0.1mA)	28-Pin DIP	Now
	KM6264AL-12	8K×8	120	CMOS	35 (70)	2 (0.1mA)	28-Pin DIP	Now
	††KM6165-25	64K×1	25	CMOS	(100)	(100)	22-Pin SDIP	under development
1	KM6165-35	64K×1	35	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6165-45	64K × 1	45	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6465-25	16K × 4	25	CMOS	(100)	(100)	22-Pin SDIP	under development
64K bit	KM6465-35	16K×4	35	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6465-45	16K×4	45	CMOS	(100)	(100)	22-Pin SDIP	under development
	KM6865-35	8K×8	35 /	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM6865-45	8K×8	45	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM6865-55	8K×8	55	CMOS	(100)	(100)	28-Pin SDIP	under development
	KM62256P-10	32K × 8	100	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
	KM62256P-12	32K × 8	120	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
	KM62256P-15	32K × 8	150	CMOS	35 (60)	(1mA)	28-Pin DIP	Now
	KM62256LP-10	32K × 8	100	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	KM62256LP-12	32K × 8	120	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	KM62256LP-15	32K × 8	150	CMOS	35 (60)	(0.1mA)	28-Pin DIP	Now
	††KM61257-25	256K × 1	25	CMOS	(100)	(100)	24-Pin SDIP	under development
256K bit	KM61257-35	256K × 1	35	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM61257-45	256K x 1	45	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM64257-25	64K×4	25	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM64257-35	64K×4	35	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM64257-45	64K×4	45	CMOS	(100)	(100)	24-Pin SDIP	under development
	KM68257-35	32K × 8	35	CMOS	(100)	(100)	28-Pin DIP	under development
	KM68257-45	32K × 8	45	CMOS	(100)	(100)	28-Pin DIP	under development
	KM68257-55	32K × 8	55	CMOS	(100)	(100)	28-Pin DIP	under development

† New Product †† Under Development

8K×8 Bit Static RAM

FEATURES

- Fast Access Time 70, 100, 120ns (max.)
- Low Standby Current: 100μÅ (max.)
- Low Data Retention Current: 50μA (max.)
- Capability of Battery Back-up Operation
- Data Retention Voltage: 2.0V (min.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Pin compatible with 64K EPROMS
- Fully Static Operation
- Standard 28 pin DIP
- Common I/O, Tristate Output

GENERAL DESCRIPTION

PIN CONFIGURATION

The KM6264A/AL is a 65,538-bit high speed Static Random Access Memory organized as 8,192 words by 8 bits. This device is fabricated using Samsung's advanced CMOS process.

The KM6264A/AL has an output enable input for precise control of the data outputs. It also has chip enable inputs for the minimum current power down mode. The KM6264A/AL has been designed for high speed and low power applications. It is particularly well suited for battery backup non-volatile memory applications.

Two versions are available, the KM6264A and KM6264AL. The L-version is specified with lower standby and data retention currents than the standard version. Otherwise the two versions are identical.

FUNCTIONAL BLOCK DIAGRAM

CLOCK GEN PRECHARGE CIRCUIT Vcc A3 O Vss 19 A4 0-PRE-DECODER A5 Or9 ROW DEC 64×256 18 64×256 64×256 34×256 A6 O 19 ð A7 0 D A8 0 ROW I 19 A10 O b A12 O INPUT 1/010 I/O CIRCUIT DATA COLUMN SELECT 1/08 0 ONTROL CLOCK GEN CS20 CS1 O WEO OE O

	and the second se	
N.C 1	\cup	28 Vcc
A12 2		27) WE
A7 3		26 CS2
A6 4		25 A8
A5 5		24 A9
A4 6		23 A11
A3 7		22 ÒE
A2 8		21 A10
A1 9		20 CS1
Ao 10		19 I/O ₈
1/01 11		18 1/07
1/O2 12		17) I/O ₆
I/O3 [13		16 I/O ₅
Vss 14		15 I/O4

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
WE	Write Enable
CS_1, CS_2	Chip Select
OE	Output Enable
I/O1-I/O8	Data Inputs/Outputs
V _{cc}	Power (+5V)
V _{ss}	Ground
N.C.	No Connection

ABSOLUTE MAXIMUM RATINGS* (See Note)

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN} , V _{OUT}	- 0.3 to V _{cc} + 0.5	V
Voltage on V_{cc} supply relative V_{ss}	V _{cc}	- 0.5 to + 7.0	V
Power Dissipation	PD	1.0	w
Storage Temperature	T _{stg}	- 55 to + 125	°C
Operating Temperature	T _A	0 to +70	°C

*Note: Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{ss}	0	0	0	V
Input High Voltage	V _{IH}	2.2	_	$V_{\rm CC} + 0.3$	V
Input Low Voltage	VIL	- 0.3*		0.8	V

*Note: V_{IL} (min) = -3.0V for \leq 50ns pulse.

DC CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V ± 10%, unless otherwise specified)

Parameter	Symbol	Test Conditions	Device	Min	Тур	Max	Units
Input Leakage Current	۱ _u	$V_{IN} = V_{SS}$ to V_{CC}				2	μA
Output Leakage Current	ILO	$\frac{\overline{CS1} = V_{1H} \text{ or } CS2 = V_{1L} \text{ or}}{\overline{OE} = V_{1H}, V_{SS} \le V_{1/O} \le V_{CC}}$				2	μΑ
Operating Power Supply Current	I _{CC1}	$\overline{CS1} = V_{IL}, CS2 = V_{IH}, \\ I_{OUT} = 0mA$				40	mA
Average Operating Current	I _{CC2}	$\frac{\text{Min Cycle, 100\% Duty}}{\overline{\text{CS1}} = \text{V}_{\text{IL}}, \text{ CS2} = \text{V}_{\text{IH}}}$			35	70	mA
	I _{SB}	$\overline{CS1} = V_{IH}$ or $CS2 = V_{IL}$				3	mA
Standby Power Supply Current	I _{SB1}	$\overline{\text{CS1}} \ge V_{\text{CC}} - 0.2V$	KM6264A			1	mA
		-0.3V≤CS2≤0.2V	KM6264AL		2	100	μA
Output High Voltage	V _{OH}	I _{он} = – 1.0mA		2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 2.1mA				0.4	V

CAPACITANCE $(f = 1MHz, T_A = 25^{\circ}C)^{*}$

Parameter	Symbol	Test Conditions	Min	Max	Unit
Input Capacitance	C _{IN}	$V_{IN} = 0V$	-	6	pF
Input/Output Capacitance	Ci/o	$V_{I/O} = 0V$	-	8	pF

*Note: Capacitance is sampled and not 100% tested.

AC CHARACTERISTICS (Ta = 0°C to 70°C, V_{cc} = 5V ± 10%, unless otherwise specified.)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0.8 to 2.4V
Input Rise and Fall Times	5 ns
Input and Output Timing Reference Level	1.5V
Output Load	1 TTL Load and C _L * 100pF (including scope and jig capacitance)

 $C_{L} = 30 pF$ for KM6264A-7, KM6264AL-7

READ CYCLE

Parameter	Symbol	KM6264A-7 KM6264AL-7		KM6264A-10 KM6264AL-10		KM6264A-12 KM6264AL-12		Unit
	_	Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	70		100		120		ns
Address Cycle Time	t _{AA}		70		100		120	ns
Chip Select to Output	t _{CO1} , t _{CO2}		70		100		120	ns
Output Enable to Valid Output	t _{OE}		35		50		60	ns
Chip Enable to Low-Z Output	t_{LZ1}, t_{LZ2}	5		10		10		ns
Output Enable to Low-Z Output	toLz	5		5		5		ns
Chip Disable to High-Z Output	t _{HZ1} , t _{HZ2}	0	30	0	35	0	40	ns
Output Disable to High-Z Output	t _{онz}	0	30	0	35	0	40	ns
Output Hold from Address Change	t _{он}	10		10		15		ns

WRITE CYCLE

Parameter	Symbol	KM6264A-7 Symbol KM6264AL-7		KM6264A-10 KM6264AL-10		KM6264A-12 KM6264AL-12		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	t _{wc}	70		100		120		ns
Chip Select to End of Write	t _{cw}	60		80		85		ns
Address Set-up Time	t _{AS}	0		0		0		ns
Address Valid to End of Write	t _{AW}	60		80		85		ns
Write Pulse Width	t _{WP}	40		60		70		ns
Write Recovery from $\overline{CS1}$ or \overline{WE}	t _{wR1} , t _{wR}	0		5		5		ns
Write Recovery from CS2	t _{WR2}	10		15		15		ns
Write to Output High-Z	t _{wHZ}	0	30	0	35	0	40	ns
Data to Write Time Overlap	t _{DW}	30		40		50		ns
Data Hold from Write Time	t _{DH}	0		0		0		ns
End of Write to Output Low-Z	tow	5		5		10		ns

KM6264A/KM6264AL

- **NOTES:** 1. t_{HZ} AND t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to the V_{OH} or V_{OL} levels.
 - 2. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
 - 3. A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition among CS1 going low, CS2 going high and WE going low: A write ends at the earliest transition among CS1 going high, CS2 going low and WE going high. twp is measured from the beginning of write to the end of write.
 - 4. t_{cw} is measured from the later of CS1 going low or CS2 going high to the end of write.
 - 5. t_{AS} is measured from the address valid to the beginning of write.
 - 6. t_{WR} is measured from the end of write to the address change. t_{WR1} applied in case a write ends at $\overline{CS1}$, or \overline{WE} going high, t_{WR2} applied in case a write ends at CS2 going low.
 - 7. If OE, CS2 and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase to the outputs must not be applied because bus contention can occur.
 - 8. If CS1 goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
 - 9. D_{OUT} is the read data of the new address.
 - 10. If CS1 is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the output must not be applied to them.
 - 11. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
 - 12. When CS1 is low and CS2 is high, the address input must not be in the high impedance state.

TIMING DIAGRAMS

REAAD CYCLE ($\overline{WE} = V_{IH}$)

WRITE CYCLE (WE CONTROLLED)

TIMING DIAGRAMS (Continued)

WRITE CYCLE (CS2 CONTROLLED)

DATA RETENTION CHARACTERISTICS ($T_A = 0^{\circ}C$ to $+70^{\circ}C$)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
V _{cc} for Data Retention	V _{DR1}	$ \overline{CS1} \ge V_{CC} - 0.2V, \\ CS2 \ge V_{CC} - 0.2V \text{ or } CS2 \le 0.2V $	2.0		5.5	v
V _{DR2}		CS2≤0.2V	2.0		5.5	v
Data Retention	I _{DR1}	$V_{cc}53.0V, \overline{CS}1 \ge V_{cc} - 0.2V,$ $CS2 \ge V_{cc} - 0.2V \text{ or } CS2 \le 0.2V$	—	1	50*	μA
	I _{DR2}	$V_{cc} = 3.0V, CS2 \le 0.2V$	-	1	50*	μA
Data Retention Set-up Time	t _{SDR}	See Data Retention	0			ns
Recovery Time	t _{RDR}	Wave forms (below)	t _{RC} **			ns

* 20μ A max at T_A = 0 40°C, KM6264A: 1.0mA (MAX) .

** t_{RC} = Read Cycle Time

DATA RETENTION WAVEFORM (1) (CS1 Controlled)

DATA RETENTION WAVEFORM (2) (CS2 Controlled)

NOTE: In Data Retention Mode, CS2 controls the Address, WE, CS1, OE and Din buffer. If CS2 controls data retention mode, V_{IN} for these inputs can be in the high impedance state. If CS1 controls the data retention mode, CS2 must satisfy either CS2≥V_{CC} – 0.2V or CS2≤0.2V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.

FUNCTION TABLE

WE	CS1	CS2	ŌĒ	Mode	I/O Pin	V _{cc} Current
X	н	Х	Х	Power Down	High-Z	I _{SB}
Х	х	L	Х	Power Down	High-Z	I _{SB}
н	L	н	н	Output Disabled	High-Z	Icc
н	L	н	L	Read	Dout	Icc
L	L	Н	X	Write	D _{IN}	lcc

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

32K×8 Bit Static RAM

FEATURES

- Fast Access Time 80, 100, 120ns (max.)
- Low Power Dissipation Standby: 0.55mW (max.) Operating: 248mW (max.)
- Low Data Retention Current: 50μA (max.)
- Capability of Battery Back-up Operation
- Data Retention Voltage: 2.0V (min.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Pin compatible with 256K EPROMS
- Full Static Operation
 No clock or refresh required
- Standard 28 pin DIP
- Common I/O, Tristate Output

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM62256AP/ALP is a 262,144 bit high speed Static Random Access Memory organized as 32,768 words by 8 bits.

This device is fabricated using Samsung's advanced CMOS technology with polysilicon resistors.

The KM62256AP/ALP has an output enable for precise control of the data output.

It also has a chip enable for the minimum current power down mode. The KM62256AP/ALP has been designed for high speed and low power applications. It is particularly well suited for battery backup non-volatile memory applications.

Two versions are available the KM62256ALP and KM62256ALP. The L-version is specified with lower standby and data retention currents than the standard version.

Otherwise the two versions are identical.

PIN CONFIGURATION

A14 1	28	Vcc
A12 2	27	WE
A7 3	26	A ₁₃
A6 4	25	A ₈
A5 5	24	A9
A4 6	23	A ₁₁
A3 7	22	ŌĒ
A2 8	21	A10
A1 9	20	CS
Aø 10	19	I/O ₈
I/O1 [11	18	1/07
1/O2 12	17	1/06
I/O ₃ [13	16	I/O 5
V _{SS} [14	15	I/O₄

Pin Name	Pin Function
A ₀ —A ₁₄	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O1I/O8	Data Inputs/Outputs
Vcc	+ 5V Power Supply
Vss	Ground

ABSOLUTE MAXIMUM RATINGS (See Note)*

Rating	Symbol	Value	Units
Voltage on any Pin Relative to V_{ss}	V _{IN} , V _{OUT}	-0.3 to V _{cc} + 0.5	v
Voltage on V _{cc} Supply Relative V _{cc}	Vcc	-0.5 to +7.0	v
Power Dissipation	Po	1.0	w
Storage Temperature	T _{stg}	- 55 to + 125	°C
Operating Temperature	T _A	0 to +70	°C

*Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

(1A=	0.0	10 70	°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	V
Input High Voltage	ViH	2.2		$V_{cc} + 0.5$	V
Input Low Voltage	ViL	- 0.3*		0.8	V

Note: $V_{IL}(min) = -3.0V$ for ≤ 50 ns pulse

DC AND OPERATING CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V \pm 10%, unless otherwise specified)

Parameter	Symbol	Test Conditions	Device	Min	Тур	Max	Units
Input Leakage Current	l _u	$V_{IN} = V_{SS}$ to V_{CC}				1	μA
Output Leakage Current	ILO	$\overline{CS} = V_{IH}$ or $\overline{OE} = V_{IH}$ $V_{I/O} = V_{SS}$ to V_{CC}				1	μA
Operating Power Supply Current	I _{CC1}	$\overline{CS} = V_{IL},$ $I_{OUT} = 0mA$				45	mA
Average Operating Current	I _{CC2}	Min Cycle, 100% Duty $\overline{CS} = V_{IL}$, $I_{OUT} = 0mA$			35	60	mA
	I _{SB}	CS = V _{IH}				2	mA
Standby Power Supply			KM62256AP			1	mA
	ISB1	CS≥V _{CC} -0.2V	KM62256ALP		2	100	μA
Output Low Voltage	VoL	I _{OL} = 2.1mA				0.4	v
Output High Voltage	V _{он}	I _{он} = – 1.0mA		2.4			٧

CAPACITANCE ($T_A = 25$ °C, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Max	Unit	
Input Capacitance	Cin	$V_{iN} = 0V$	-	6	pF	
Input/Output Capacitance	C _{i/O}	V _{1/0} = 0V		8	pF	

Note: Capacitance is periodically sampled and not 100% tested.

AC CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 10\%$, unless otherwise specified)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0.8 to 2.4V
Input Rise and Fall Times	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	1 TTL Load and $C_L = 100 \text{ pF}$ (including scope and jig capacitance)

READ CYCLE

Parameter	Symbol	KM62256AP-8 KM6264ALP-8		KM62256AP-10 KM6264ALP-10		KM62256AP-12 KM6264ALP-12		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	80		100		120		ns
Address Access Time	t _{AA}		80		100		120	ns
Chip Select to Output	t _{ACS}		80		100		120	ns
Output Enable to Valid Output	toE		40		50		60	ns
Chip Enable to Low-Z Output	t _{CLZ}	5		10		10		ns
Output Enable to Low-Z Output	toLZ	5		5		5		ns
Chip Disable to High-Z Output	t _{CHZ}	0	30	0	35	0	40	ns
Output Disable to High-Z Output	t _{онz}	0	30	0	35	0	40	ns
Output Hold from Address Change	t _{он}	5		10		15		ns

WRITE CYCLE

Parameter	Symbol	KM62256AP-8 KM62256ALP-8		KM62256AP-10 KM62256ALP-10		KM62256AP-12 KM62256ALP-12		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	t _{wc}	80		100		120		ns
Chip Select to End of Write	t _{cw}	70		80		85		ns
Address Set-up Time	t _{AS}	0		0		0		ns
Address Valid to End of Write	t _{AW}	70		80	1	85		ns
Write Pulse Width	t _{WP}	55		60		70		ns
Write Recovery Time	t _{WR}	0		5		5		ns
Write to Output High-Z	t _{WHZ}	0	30	0	35	0	40	ns
Data to Write Time Overlap	t _{DW}	30		40		50		ns
Data Hold from Write Time	t _{DH}	0		0		0		ns
End of Write to Output Low-Z	tow	5		10		10		ns

NOTES: 1. t_{CHZ} and t_{OHZ} are definded as the time at which the outputs achieve the open circuit condition and are not referenced to the V_{OH} or V_{OL} level.

- 2. At any given temperature and voltage condition, t_{CHZ} max is less then t_{CLZ} min both for a given device and from device to device.
- 3. WE is high for read cycle.
- 4. Address valid prior to or coincident with \overline{CS} transition low.
- 5. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} .
- 6. During this period, I/O pins are in the output state. The input signals out of phase must not applied.
- 7. CS or WE must be high during address transition.
- 8. If OE is high, I/O pins remain in a high-impedance state.
- 9. \overline{OE} is continuously <u>low</u>. ($\overline{OE} = V_{IL}$)
- 10. When Chip Select (CS) is low, the address input must not be in the high impedance state.

TIMING DIAGRAMS

TIMING DIAGRAMS (Continued)

WRITE CYCLE 1 (WE CONTROLLED) (NOTE 5,6,7,8)

WRITE CYCLE 2 (CS CONTROLLED) (NOTE 5,6,7,8,9)

DATA RETENTION CHARACTERISTICS $(T_A = 0 \degree C \text{ to } + 70 \degree C)$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
V _{cc} for Data Retention	V _{DR}	<u>CS</u> ≥V _{cc} −0.2V	2.0		5.5	v
Data Retention Current	I _{DR}	$\frac{V_{cc} = 3.0V}{\overline{CS} \ge V_{cc} - 0.2V}$		1	50	μA
Data Retention Set-up Time	t _{SDR}	See Data Retention	0			ns
Recovery Time	t _{RDR}	Wave forms (below)	t _{RC} *			ns

* t_{RC} = Read Cycle Time

DATA RETENTION WAVEFORM

Note: The Other inputs (Address, OE, WE, I/O) can be in a high impedance state

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

64K x 1 Bit Static RAM

FEATURES

- Fast Access Time 25, 35, 45ns (max.)
- Low Power Dissipation Standby (TTL): 2mA (max.) (CMOS): 100µA (max.) Operating : 100mA (max.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Full Static Operation
- -No clock or refresh required
- Tristate Output
- Low Data Retention Current: 50μA (max.)
- Battery Back-up Operation -2V (min.) Data Retention
- Standard 24-pin DIP (300 mil)

GENERAL DESCRIPTION

The KM6165 is a 65,538-bit high speed Static Random Access Memory organized as 65,538 words by 1 bit. The device is fabricated using Samsung's advanced CMOS process.

The KM6165 has a chip enable input for the minimum current power down mode.

The KM6165 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

22 Vcc 21 A15 20 A14 19 A13 18 A12 17 A11 16 A10 15 A9 14 A8 13 DIN 12 CS

PIN NAMES

Pin Name	Pin Function
A ₀ -A ₁₅	Address Inputs
WE	Write Enable
CS	Chip Select
D _{IN} /D _{OUT}	Data Input /Output
V _{cc}	+ 5V Power Supply
V _{SS}	Ground

16K × 4 Bit Static RAM

FEATURES

- Fast Access Time 25, 35, 45ns (max.)
- Low Power Dissipation Standby (TTL): 2mA (max.) (CMOS): 100µA (max.) : 100mA (max.) Operating
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Full Static Operation
- -No clock or refresh required
- Common I/O, Tristate Output
- Low Data Retention Current: 50µA (max.)
- Battery Back-up Operation -2V (min.) Data Retention
- Standard 22-pin DIP (300 mil)

GENERAL DESCRIPTION

The KM6465 is a 65,538-bit high speed Static Random Access Memory organized as 16,384 words by 4 bits. The device is fabricated using Samsung's advanced CMOS process.

The KM6465 has a chip enable input for the minimum current power down mode.

The KM6465 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Pin Name	Pin Function
A ₀ -A ₁₃	Address Inputs
WE	Write Enable
CS	Chip Select
1/O ₁ -1/O ₄	Data Inputs/Outputs
V _{cc}	+ 5V Power Supply
V _{SS}	Ground

8K × 8 Bit Static RAM

FEATURES

- Fast Access Time 35, 45, 55ns (max.)
- Low Power Dissipation Standby (TTL): 2mA (max.) (CMOS): 100μA (max.)
 Operating : 100mA (max.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Full Static Operation
- -No clock or refresh required
- Common I/O, Tristate Output
- Low Data Retention Current: 50μA (max.)
- Battery Back-up Operation —2V (min.) Data Retention
- Standard 28-pin DIP (300 mil)

13

D

D

19

19

19

A3 6

A4 a

A5 •

A6 o

A7 0

A8 0

1/01 ¢

1/O8

CS1 CS2

)

GENERAL DESCRIPTION

The KM6865 is a 65,538-bit high speed Static Random Access Memory organized as 8,192 words by 8 bits. The device is fabricated using Samsung's advanced CMOS process.

The KM6865 has an output enable input for precise control of the data outputs. It also has chip enable inputs for the minimum current power down mode.

The KM6865 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

FUNCTIONAL BLOCK DIAGRAM

DECODER

NOF

INPUT

ONTRO

CLOCK GEN

Å0

DATA

PRECHARGE CIRCUIT

MEMORY ARRAY

512 Columns

128 Rows

I/O CIRCUIT

COLUMN SELECT

CLOCK GEN

PIN CONFIGURATION

N.C. 1	28	Vcc
A12 2	27	WE
A7 3	26	CS 2
A6 4	25	A 8
A5 5	24	A9
A4 6	23	A11
A3 7	22	ŌĒ
A2 8	21	A10
A1 9	20	CS1
A0 10	19	I/O ₈
1/01 11	18	1/07
1/02 12	17	1/06
I/O₃ [13	16	1/05
V _{SS} 14	15	1/04

PIN NAMES

Vcc

Vee

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
WE	Write Enable
\overline{CS}_1 , CS_2	Chip Select
ŌĒ	Output Enable
I/O1-I/O8	Data Inputs/Outputs
V _{cc}	+ 5V Power Supply
V _{SS}	Ground
N.C.	No Connection

256K × 1 Bit Static RAM

FEATURES

- Fast Access Time 25, 35, 45ns (max.)
- Low Power Dissipation Standby (TTL): 2mA (max.) (CMOS): 100μA (max.)
 Operating : 100mA (max.)
- Single 5V ± 10% supply
- TTL compatible inputs and output
- Full Static Operation
- -No clock or refresh required
- Tristate Output

A17 0

A0 0

A1 0

A2 0

- Low Data Retention Current: 50μA (max.)
- Battery Back-up Operation —2V (min.) Data Retention
- Standard 24-pin DIP (300 mil)

CLOCK

ß

₽

Þ

⊅

GENERAL DESCRIPTION

The KM61257 is a 262,144-bit high speed Static Random Access Memory organized as 262,144 words by 1 bit. The device is fabricated using Samsung's advanced CMOS process.

The KM61257 has a chip enable input for the minimum current power down mode.

The KM61257 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

FUNCTION BLOCK DIAGRAM

GEN

DECODER

PRECHARGE

MEMORY ARRAY

256 Rows

CIRCUIT

PIN CONFIGURATION

PIN NAMES

Vcc

Vss

Pin Name	Pin Function
A ₀ -A ₁₇	Address Inputs
WE	Write Enable
CS	Chip Select
D _{IN} /D _{OUT}	Data Inputs/Outputs
V _{cc}	+ 5V Power Supply
V _{SS}	Ground

3

64K × 4 Bit Static RAM

FEATURES

- Fast Access Time 25, 35, 45ns (max.)
- Low Power Dissipation Standby (TTL) : 2mA (max.) (CMOS): 100μA (max.)
 Operating : 100mA (max.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Full Static Operation
- -No clock or refresh required
- Common I/O, Tristate Output
- Low Data Retention Current: $50\mu A$ (max.)

FUNCTIONAL BLOCK DIAGRAM

- Battery Back-up Operation —2V (min.) Data Retention
- Standard 24-pin DIP (300 mil)

GENERAL DESCRIPTION

The KM64257 is a 262,144-bit high speed Static Random Access Memory organized as 65,538 words by 4 bits. The device is fabricated using Samsung's advanced CMOS process.

The KM64257 has a chip enable input for the minimum current power down mode.

The KM64257 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

CLOCK GEN PRECHARGE CIRCUIT 18 A15 o 18 A0 o DECODER Þ A1 0 MEMORY ARRAY A2 0 19 256 Rows 19 A3 o 1024 Columns Ň ⊅ A4 o A5 o ₽ A6 c 1/010 INPUT 1/0 CIRCUIT DATA 1/O4 o ONTROL COLUMN SELECT CLOCK GEN CSo A11 A12 A13 A14 Ă8 Ă9 A10 WE

PIN CONFIGURATION

- 1			
40 1	\smile	24	Vcc
A1 2		23	A15
42 3		22	A14
43 4		21	A13
44 5		20	A12
45 6		19	A11
46 7		18	A10
A7 8		17	I/O4
A8 9		16	I/O3
A9 10		15	I/O2
CS 11		14	I/O1
ss 12		13	WE
	1		

PIN NAMES

Vcc

Vss

Pin Name	Pin Function
A ₀ -A ₁₅	Address Inputs
WE	Write Enable
CS	Chip Select
I/O1-I/O4	Data Inputs/Outputs
V _{cc}	+ 5V Power Supply
V _{ss}	Ground

32K × 8 Bit Static RAM

FEATURES

- Fast Access Time 35, 45, 55ns (max.)
- Low Power Dissipation Standby (TTL) : 2mA (max.) (CMOS): 100µA (max.) Operating : 100mA (max.)
- Single 5V ± 10% supply
- TTL compatible inputs and outputs
- Full Static Operation
- -No clock or refresh required
- Common I/O, Tristate Output
- Low Data Retention Current: 50 μ A (max.)
- Battery Back-up Operation —2V (min.) Data Retention
- Standard 28-pin DIP (600 mil)

GENERAL DESCRIPTION

The KM68257 is a 262,144-bit high speed Static Random Access Memory organized as 32,767 words by 8 bits. The device is fabricated using Samsung's advanced CMOS process.

The KM68257 has an output enable input for precise control of the data outputs. It also has a chip enable input for the minimum current power down mode.

The KM68257 has been designed for high speed applications. It is particularly well suited for the use in high speed and low power applications in which battery back up for nonvolatility is required.

FUNCTIONAL BLOCK DIAGRAM

CLOCK GEN PRECHARGE CIRCUIT 13 A3 o Ð A4 0 VCG DECODER A5 • 13 MEMORY ARRAY Vss 13 A6 💁 19 512 Rows A7 0 512 Columns A8 o rs ROW D A12 0 A13 0 A14 C 1/O1 o INPUT 1/O CIRCUIT DATA) CONTROL COLUMN SELECT I/O8 0 CLOCK GEN CS o 6 6 A9 à ΑŌ A1 Ă2 A10 A11 WE . OE .

PIN CONFIGURATION

A14 1	\smile	28 Vcc
A12 2		27 WE
A7 3		26 A13
A6 4		25 A8
A5 5		24 A9
A4 6		23 A11
A3 🛛		22 OE
A2 8		21 A10
A1 9		20 CS
A0 10		19 I/O ₈
I/O1 [1]		18 1/07
1/O2 12		17 1/06
1/O3 13		16 I/O ₅
Vss 14		15 I/O4

PIN NAMES

Pin Name	Pin Function
A ₀ -A ₁₄	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O1-I/O8	Data Inputs/Outputs
V _{cc}	+ 5V Power Supply
V _{SS}	Ground

EEPROM

Consolity	Port Number	Organization	Speed	Technology	Write Cycle	Feeturee	Deekeese	Domorik
Capacity	Part Number	Organization	(ns)	rechnology	(ms)	reatures	Fackages	Remark
	KM2816A-25	2K × 8	250	NMOS	10	_	24-Pin DIP	Now
	KM2816A-30	2K × 8	300	NMOS	10	_	24-Pin DIP	Now
	KM2816A-35	2K × 8	350	NMOS	10		24-Pin DIP	Now
	KM2817A-25	2K × 8	250	NMOS	10	Readv/Busv	28-Pin DIP	Now
	KM2817A-30	2K × 8	300	NMOS	10	Ready/Busy	28-Pin DIP	Now
1016 1-14	KM2817A-35	2K × 8	350	NMOS	10	Ready/Busy	28-Pin DIP	Now
IOK DIT	†KM28C16-15	2K × 8	150	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C16-20	2K × 8	200	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C16-25	2K × 8	250	CMOS	2	Ready/Busy	24-Pin DIP	under development
	†KM28C17-15	2K × 8	150	CMOS	2	Ready/Busy	28-Pin DIP	under development
	†KM28C17-20	2K × 8	200	CMOS	2	Ready/Busy	28-Pin DIP	under development
	†KM28C17-25	2K × 8	250	CMOS	2	Ready/Busy	28-Pin DIP	under development
	KM2864A-20	8K × 8	200	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2864A-25	8K × 8	250	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2864A-30	8K × 8	300	NMOS	10	Data Polling	28-Pin DIP	Now
	KM2865A-20	8K × 8	200	NMOS	10	Data Polling,	28-Pin DIP	Now
						Ready/Busy		I
	KM2865A-25	8K × 8	250	NMOS	10	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2865A-30	8K × 8	300	NMOS	· 10	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2864AH-20	8K × 8	200	NMOS	2	Data Polling	28-Pin DIP	Now
	KM2864AH-25	8K × 8	250	NMOS	2	Data Polling	28-Pin DIP	Now
	KM2864AH-30	8K × 8	300	NMOS	2	Data Polling	28-Pin DIP	Now
64K bit	KM2865AH-20	8K × 8	200	NMOS	2	Data Polling,	28-Pin DIP	Now
04IC DI						Ready/Busy		
	KM2865AH-25	8K × 8	250	NMOS	2	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM2865AH-30	8K × 8	300	NMOS	2	Data Polling,	28-Pin DIP	Now
						Ready/Busy		
	KM28C64-20	8K × 8	200	CMOS	5	Data Polling,	28-Pin DIP	Now
						Page Mode		
	KM28C64-25	8K × 8	250	CMOS	5	Data Polling,	28-Pin DIP	Now
						Page Mode		
	KM28C65-20	8K × 8	200	CMOS	5	Ready/Busy,	28-Pin DIP	Now
					_	Page Mode		
	KM28C65-25	8K × 8	250	CMOS	5	Ready/Busy,	28-Pin DIP	Now
				*		Page Mode		
	††KM28C256-15	32K × 8	130	CMOS	5	Data Polling,	28-Pin DIP	under development
						Toggle bit		
256K	††KM28C256-20	32K × 8	200	CMOS	5	Data Polling,	28-Pin DIP	under development
2000						Toggle bit		
1	††KM28C256-25	32K × 8	250	CMOS	5	Data Polling,	28-Pin DIP	under development
						Toggle bit		

† New Product

††Under Development

2K × 8 Bit EEPROM with Latches and Auto-Write

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-before-Write - Automatic Write Timing
- Enhanced Write Protection
- Single 5 volt Supply
- · Byte Write: 10ms max
- Fast Access Time: 250ns
- Power: 50mA—Standby (max)
- 110mA-Operating (max)
- Two Line Control-Eliminates Bus Contention
- 10.000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

GENERAL DESCRIPTION

The KM2816A is a 16,384 bit Electrically Erasable and Programmable Read-Only-Memory organized as 2.048 words by 8-bits. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM2816A is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the 10ms (max) write period.

The KM2816A is fabricated with the well defined floating gate NMOS technology using Fowler-Nordheim tunneling for erasing and programming.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

A7 1	$\overline{\mathbf{U}}$	24	Vcc
A ₆ 2		23	A ₈
A5 3		22	A9
A4 4		21	WÊ
A3 5		20	OE
A2 6		19	A ₁₀
A1 7		18	CE
A ₀ 8		17	1/O8
I/O ₁ 9		16	1/07
I/O ₂ 10		15	1/06
I/O3 [11		14	/05
V _{SS} 12		13	/04

Pin Name	Pin Function			
A ₀ -A ₁₀	Address Inputs			
I/O1-I/O8	Data Inputs/Outputs			
CE	Chip Enable			
ŌĒ	Output Enable			
WE	Write Enable			
V _{cc}	Power (+5V)			
V _{SS}	Ground			

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V _{ss}	V _{IN}	- 1 to + 7.0	v
Temperature Under Bias	T _{bias}	- 40 to + 85	°C
Storage Temperature	T _{stg}	- 65 to + 125	°C
Short Circuit Output Current	I _{OS}	5	mA

*NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{ss}	0	0	0	V
Input High Voltage	ViH	2.0	_	V _{cc} + 1	V
Input Low Voltage	VIL	- 1	-	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Max	Units
Operating Current	I _{cc}	$\overline{CE} = \overline{OE} = V_{IL}$ All I/O's = OPEN Other Inputs = V _{CC}	-	110	mA
Standby Current	I _{SB}	$\overline{CE} = V_{IH}$ All I/O's = OPEN Other Inputs = V _{CC}	-	50	mA
Input Leakage Current	l _u	$V_{IN} = 0$ to 5.5V		10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to 5.5V		10	μA
Output High Voltage Level	V _{OH}	I _{OH} = - 400 μA	2.4		V
Output Low Voltage Level	Vol	I _{OL} = 2.1 mA		0.4	v
Write Inhibit V _{cc} Level	V _{WI}		3.5	-	V

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit
Input/Output Capacitance	C _{I/O}	V _{1/0} = 0V		10	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	-	6	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	ŌĒ	WE	Mode	I/O	Power
L	L	н	Read .	, D _{OUT}	Active
L	н	L	Write	D _{IN}	Active
н	Х	Х	Standby and Write Inhibit	High-Z	Standby
х	L	Х	Write Inhibit	_	_
Х	Х	н	Write Inhibit	_	

AC CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value		
Input Pulse Levels	0 to 3.0V		
Input Rise and Fall Times	10 ns		
Input and Output Timing Levels	1.5V		
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$		

READ CYCLE

Parameter	0h.al	KM2816A-25		KM2816A-30		KM2816A-35		
Parameter	Symbol	Min	Мах	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	250		300		350		ns
Chip Enable Access Time	t _{CE}		250		300		350	ns
Address Access Time	t _{AA}		250		300		350	ns
Output Enable Access Time	toE		120		120		120	ns
Chip Enable to Output in Low-Z	t _{LZ}	10		1.0		10		ns
Chip Disable to Output in High-Z	t _{HZ}	10	100	10	100	10	100	ns
Output Enable to Output in Low-Z	t _{oLZ}	50		50		50		ns
Output Disable to Output in High-Z	t _{онz}	10	60	10	80	10	100	ns
Output Hold from Address Change	t _{он}	20		20		20		ns

WRITE CYCLE

Parameter	Symbol	Min	Max	Units
Write Cycle Time	t _{wc}	10		ms
Address Set-up Time	t _{AS}	10		ns
Address Hold Time	t _{AH}	70		ns
Write Set-up Time	t _{cs}	0		ns
Write Hold Time	t _{сн}	0		ns
Chip Enable to End of Write Input	t _{cw}	100		ns
Output Enable Set-up Time	toes	10	•	ns
Output Enable Hold Time	t _{OEH}	10		ns
Write Pulse Width	t _{WP}	100		ns
Data Latch Time	t _{DL}	50		ns
Data Valid Time	t _{DV}		1	μS
Data Set-up Time	t _{DS}	50		ns
Data Hold Time	t _{DH}	15		ns

TIMING DIAGRAMS

READ CYCLE

4

 $\overline{WE} = V_{IH}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

ČE CONTROLLED WRITE CYCLE

DEVICE OPERATION

Read

Reading data from the KM2816A is similar to reading data from a static RAM. A read cycle occurs when \overline{WE} is high and both \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{CE} or \overline{OE} is high.

Write

Writing data into the KM2816A is very easy. Only a single 5V supply and TTL level signals are required. The onchip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a static RAM.

A write cycle occurs when \overline{OE} is high and both \overline{CE} and \overline{WE} are low. The address is latched by the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the rising edge of \overline{CE} or \overline{WE} , whichever occurs first. Address and data are conveniently latched in less than 200ns during a write operation. Once a byte write cycle is initiated it will automatically continue to completion within 10 ms or less. The existing data at the selected address is automatically erased and the new data is automatically written.

Standby

Power consumption may be reduced about 60% by deselecting the device with a high input on \overline{CE} .

Whenever \overline{CE} is high, the device is in the standby mode and $I/O_1 - I/O_8$ are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

Data Protection

Features have been designed into the KM2816A that prevent unwanted write cycles during power supply transitions and system noise periods.

Write cycles are inhibited when V_{cc} is less than $V_{WI} = 3.5$ volts, the Write Inhibit V_{cc} level. During powerup the KM2816A automatically prevents any write operation for a period of 9 ms (Typical) after V_{cc} reaches the V_{wI} level. This will provide the system with sufficient time to bring \overline{WE} or \overline{CE} to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either \overrightarrow{OE} low or \overrightarrow{WE} high or \overrightarrow{CE} high during power-on and power-off with inhibit inadvertent writes.

Endurance and Data Retention

The KM2816A is designed for applications requiring, up to 10,000 write cycles per E²PROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation, and that the data in the byte will remain valid after its last write operation for ten years with or without power applied.

PACKAGE DIMENSIONS

24 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

2K×8 Bit EEPROM with Ready/Busy Function

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-before-Write
 - Automatic Write Timing
 - Ready/Busy Output Pin
- Enhanced Write Protection
- Single 5 volt Supply
- Byte Write: 10ms (max)
- Fast Access Time: 250ns
- Power: 50mA—Standby (max) 110mA—Operating (max)
- Two Line Control-Eliminates Bus Contention
- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM2817A is a 16,384 bit Electrically Erasable and Programmable Read-Only-Memory organized as 2,048 words by 8-bits. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM2817A is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the 10ms (max) write period.

The KM2817A has an open-drain Ready/Busy output on pin 1 which signals when the write operation is complete. This device is fabricated with the well defined floating gate NMOS technology using Flowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

E

RDY/BSY 1		28 V _{CC}
N.C. 2		27 WE
A7 3		26 N.C.
A6 4		25 A ₈
A5 5		24 A9
A4 6		23 N.C.
A3 7		22 OE
A2 8	1	21 A ₁₀
A1 9		20 CE
A ₀ 10		19 I/O ₈
1/O ₁ 11		18 I/O7
1/O ₂ 12		17 I/O ₆
I/O ₃ 13		16 I/O ₅
V _{SS} 14		15 I/O4
	the second se	

Pin Name	Pin Function			
A ₀ -A ₁₀	Address Inputs			
I/O1I/O8	Data Inputs/Outputs			
ĈĒ	Chip Enable			
ŌĒ	Output Enable			
WE	Write Enable			
RDY/BSY	Ready/Busy Output			
N.C.	No Connection			
V _{cc}	Power (+5V)			
V _{SS}	Ground			

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to V_{SS}	V _{IN}	- 1 to + 7.0	V
Temperature Under Bias	T _{bias}	- 40 to + 85	°C
Storage Temperature	T _{stg}	-65 to +125	°C
Short Circuit Output Current	los	5	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{SS}	0	0	0	v
Input High Voltage	ViH	2.0		V _{cc} + 1	V
Input Low Voltage	VIL	- 1	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Мах	Units
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{IL}$ All I/O's = OPEN Other Inputs = V _{CC}	_	110	mA
Standby Current	I _{SB}	$\overline{CE} = V_{IH}$ All I/O's = OPEN Other Inputs = V _{CC}	_	50	mA
Input Leakage Current	1 _{L1}	$V_{IN} = 0$ to 5.5V	_	10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to 5.5V		10	μA
Output High Voltage Level	V _{он}	I _{он} = - 400 µА	2.4	-	v
Output Low Voltage Level	Vol	I _{OL} = 2.1 mA	-	0.4	v
Write Inhibit V _{cc} Level	Vwi		3.5		V

CAPACITANCE ($T_A = 25$ °C, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit
Input/Output Capacitance	C _{I/O}	$V_{I/O} = 0V$	_	10	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	-	6	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	ŌĒ	WE	Mode	I/O	Power
L	L	Н	Read	D _{OUT}	Active
L	Н	L	Write	D _{IN}	Active
н	Х	Х	Standby and Write Inhibit	High-Z	Standby
Х	L	Х	Write Inhibit	_	-
Х	х	н	Write Inhibit	-	-

AC CHARACTERISTICS

(T_A = 0°C to 70°C, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0 to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$

READ CYCLE

Devempler	Symbol KM2817A-25		KM2817A-30		KM2817A-35		11-14	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	250		300		350		ns
Chip Enable Access Time	t _{CE}		250		300		350	ns
Address Access Time	t _{AA}		250		300		350	ns
Output Enable Access Time	t _{OE}		120		120		120	ns
Chip Enable to Output in Low-Z	t _{LZ}	10		10		10		ns
Chip Disable to Output in High-Z	t _{HZ}	10	100	10	100	10	100	ns
Output Enable to Output in Low-Z	toLZ	50		50		50		ns
Output Disable to Output in High-Z	t _{онz}	10	60	10	80	10	100	ns
Output Hold from Address Change	t _{он}	20		20		20		ns

WRITE CYCLE

Parameter	Symbol	Min	Max	Units
Write Cycle Time	t _{wc}	10		ms
Address Set-up Time	t _{AS}	10		ns
Address Hold Time	t _{AH}	70		ns
Write Set-up Time	t _{cs}	0		ns
Write Hold Time	t _{CH}	0		ns
Chip Enable to End of Write Input	t _{cw}	100		ns
Output Enable Set-up Time	t _{OES}	10		ns
Output Enable Hold Time	t _{оен}	10		ns
Write Pulse Width	t _{WP}	100		ns
Data Latch Time	t _{DL}	50		ns
Data Valid Time	t _{DV}		1	μS
Data Set-up Time	t _{DS}	50		ns
Data Hold Time	t _{DH}	15		ns
Time to Device Busy	t _{DB}		120	ns
Busy to Write Recovery Time	t _{BWR}	50		ns

TIMING DIAGRAMS

READ CYCLE

 $\overline{\mathsf{WE}}=\mathsf{V}_{\mathsf{IH}}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

CE CONTROLLED WRITE CYCLE

DEVICE OPERATION

Read

Reading data from the KM2817A is similar to reading data from a static RAM. A read cycle occurs when \overline{WE} is high and both \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{CE} or \overline{OE} is high.

Write

Writing data into the KM2817A is very easy. Only a single 5V supply and TTL level signals are required. The onchip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a static RAM.

A write cycle occurs when \overline{OE} is high and both \overline{CE} and WE are low. The address is latched by the falling edge of \overline{CE} or WE, whichever occurs last. The data is latched by the rising edge of \overline{CE} or WE, whichever occurs first. Address and data are conveniently latched in less than 200ns during a write operation. Once a byte write cycle is initiated, it will automatically continue to completion within 10 ms or less. The existing data at the selected address is automatically erased and the new data is automatically written.

Standby

Power consumption may be reduced about 60% by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and $I/O_1 - I/O_8$ are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

Data Protection

Features have been incorporated into the KM2817A design that prevent unwanted write cycles during power supply transitions and system noise periods.

Write cycles are inhibited when V_{CC} is less than 3.5 volts, the Write Inhibit V_{CC} level. During power-up the KM2817A automatically prevents any write operation for a period of 9 ms (Typical) after V_{CC} reaches the V_{WI} level. This will provide the system with sufficient time to bring WE or CE to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either \overline{OE} low or \overline{WE} high or \overline{CE} high during power-on and power-off with inhibit inadvertent writes.

Ready/Busy

The KM2817A has a Ready/Busy output pin that indicates when the write cycle is complete. The pin is normally high except when a nonvolatile write cycle is in progress, in which case the pin is low.

The Ready/Busy output is configured as open-drain driver there-by allowing two or more Ready/Busy output to be or-tied. This pin requires an appropriate pullup register for proper operation. The pull-up resistor value for the Ready/Busy output maybe calculated as follows:

$$R_{p} = \frac{V_{CC} (MAX) - V_{OL} (MAX)}{I_{OL} + I_{L}} = \frac{5.1V}{2.1mA + I_{L}}$$

Where I_{L} is the sum of the input currents of all devices tied to the Ready/Busy pin.

Endurance and Data Retention

The KM2817A is designed for applications requiring, up to 10,000 write cycles per E²PROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation, and that the data in the byte will remain valid after its last rewrite operation for ten years with or without power applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

2K×8 CMOS Electrically Erasable PROM

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-Before-Write
 - Automatic Write Timing
 - DATA Polling and Verification
- 32-byte page Write 2ms max
- Effective 62.5µs/byte write
- Enhanced Write Protection
- Single 5 volt Supply
- Fast Access Time: 150ns
- Power: 100μA—Standby (max) 30mA—Operating (max)
- Two Line Control-Eliminates Bus Contention

FUNCTIONAL BLOCK DIAGRAM

- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinput

Page Buffers Buffers Latches 16,384 Bit and E²PROM Decoder Memory Arrav Buffers Latches I/O Buffers and and Latches Decoder I/O1-I/O8 ĈĒ Control Logic WE and Timina ŌĒ

GENERAL DESCRIPTION

The KM28C16 is a $2,048 \times 8$ bit electrically erasable and programmable read-only-memory. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM28C16 is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the 2ms (max) write period.

A 32-byte page write enables an entire chip written in 128ms.

The KM28C16 features $\overline{\text{DATA}}$ -polling, which enables the EEPROM to signal the processor that a write operation is complete without requiring the use of any external hardware.

The KM28C16 is fabricated with the well defined floating-gate CMOS technology using Fowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

A7 1	\mathbf{U}	24 Vcc
A6 2		23 A8
A5 3		22 A9
A4 4		21 WE
A3 5		20 OE
A2 6		19 A10
A1 7		18 CE
A0 8		17 1/08
I/O1 9		16 1/07
I/O2 10		15 1/06
I/O3 [11		14 1/05
V\$\$ 12		13 1/04

PIN NAMES

Pin Name	Pin Function
A ₀ -A ₁₀	Address Inputs
I/O ₁ -I/O ₈	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
V _{cc}	+ 5V
V _{ss}	Ground

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{ss}	V _{IN}	-0.3 to 7.0	V
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Storage Temperature	T _{stg}	-65 to +125	°C
Short Circuit Output Current	l _{os}	5	mA

* Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{ss} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Supply Voltage	V _{ss}	0	0	0	V
Input High Voltage, all Inputs	ViH	2.0	-	$V_{\rm CC} + 0.3$	v
Input Low Voltage, all Inputs	ViL	- 0.3	_	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$ All I/O's = OPEN All Addresses* (note 1)	_	30	mA
Standby Current (TTL)	I _{SB1}	CE = V _{IH} All I/O's = OPEN		1	mA
Standby Current (CMOS)	I _{SB2}	$\overline{CE} \ge V_{CC} - 0.2$ All I/O's = OPEN	_	100	μΑ
Input Leakage Current	l _u	$V_{IN} = 0$ to V_{CC}	-	10	μA
Output Leakage Current	I _{LO}	$V_{OUT} = 0$ to V_{CC}	-	10	μA
Output High Voltage Level	V _{он}	$I_{OH} = -400 \mu A$	2.4	_	v
Output Low Voltage Level	Vol	$I_{OL} = 2.1 \text{mA}$	-	0.4	v
Write Inhibit V _{cc} Level	V _{wi}		3.5	-	v

* Note 1. All addresses toggling from V_{IL} to V_{IH} at 5MHz

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit	
Input/Output Capacitance	C _{I/O}	V _{1/0} = 0V	-	6	pF	
Input Capacitance	C _{IN}	$V_{IN} = 0V$	—	10	pF	

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

ĊĒ	ŌĒ	WE	Mode	1/0	Power	
L	L	Н	Read	D _{out}	Active	
L	н	L	Write	D _{IN}	Active	
L	L	Н	DATA-Polling	$1/O_8 = \overline{D}_8$	Active	
н	Х	x	Standby & Write Inhibit	High-Z	Standby	
х	L	Х	Write Inhibit	_	-	
х	Х	н	Write Inhibit	-	-	

AC CHARACTERISTICS ($T_A \pm 0^{\circ}C$ to 70°C V_{CC} = 5V \pm 10%, unless otherwise noted). TEST CONDITIONS

Parameter	Value				
Input Pulse Levels	0.45 to 2.4V				
Input Rise and Fall Times	20 ns				
Input and Output Timing Levels	0.8V and 2.0V				
Output Load	1 TTL Gate and $C_L = 100 pF$				

READ CYCLE

Baramatar	Symbol	KM28C16-15		KM28C16-20		KM28C16-25		11-14
Parameter		Min	Max	Min	Max	Min	Max	UNIC
Read Cycle Time	t _{RC}	150		200		250		ns
Chip Enable Access Time	t _{CE}		150		200		250	ns
Address Access Time	t _{AA}		150		200		250	ns
Output Enable Access Time	t _{OE}		60		80		100	ns
Chip Enable to Output in Low-Z	t _{LZ}	0		0		0		ns
Chip Disable to Output in High-Z	t _{HZ}	5	50	5	70	5	90	ns
Output Enable to Output in Low-Z	toLZ	5		5		5		ns
Output Disable to Output in High-Z	t _{онz}	5	50	5	70	5	90	ns
Output Hold from Address Change	t _{он}	10		10		10		ns

WRITE CYCLE

Parameter	Symbol	Min	Мах	Unit
Write Cycle Time	t _{wc}	2		ms
Address Set-Up Time	t _{AS}	0		ns
Address Hold Time	t _{AH}	80		ns
Write Set-Up Time	t _{cs}	0		ns
Write Hold Time	t _{сн}	0		ns
Chip Enable to End of Write Input	t _{cw}	100		ns
Output Enable Set-Up Time	t _{OES}	10		ns
Output Enable Hold Time	t _{оен}	10		ns
Write Pulse Width	t _{WP}	100		ns
Data Set-Up Time	t _{DS}	50		ns
Data Hold Time	t _{DH}	10		ns
Byte Load Cycle	t _{BLC}	0.2	100	μS

Note: The timer for t_{BLC} is reset at a falling edge of \overline{WE} and starts at a rising edge of \overline{WE} .

TIMING DIAGRAMS

READ CYCLE $WE = V_{H}$

TIMING DIAGRAMS (Continued)

CE CONTROLLED WRITE

TIMING DIAGRAMS (Continued) PAGE MODE WRITE (WE CONTROLLED WRITE CYCLE)

PAGE MODE WRITE (CE CONTROLLED WRITE CYCLE)

*NOTE 1. Tristate for I/O1-I/O7, DOUTN for I/O8 if the chip is read. (See Data-polling)

DEVICE OPERATION

READ

Reading data from the KM28C16 is similar to reading data from a SRAM. A read cycle occurs when \overline{WE} is high and \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data *I/O* pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

WRITE

Writing data into the KM28C16 is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a SRAM.

**** BYTE WRITE MODE ****

The byte write mode of the KM28C16 is only a part of the page write mode. A single byte data loading followed by a t_{BLC} time-out and by a nonvolatile write cycle will complete a byte mode write. In this mode, the write is exactly identical to that of the KM2816A.

**** PAGE WRITE MODE ****

The KM28C16 allows up to 32 byte to be written in a single page write cycle. A page write cycle consists of a data loading period, in which from 1 to 32 byte data are loaded into the KM28C16 internal registers and a nonvolatile write period, in which the loaded data in the registers are written to the EEPROM cells of the selected page.

Data are loaded into the KM28C16 by sequentially pulsing \overline{WE} with \overline{CE} low and \overline{OE} high. ON each \overline{WE} , address is latched on the falling edge of the \overline{WE} and data is latched on the rising edge of the \overline{WE} . The data can be loaded in any "Y" address order and can be renewed in a data loading period.

Since the timer for the data loading period (t_{BLC}) is reset at the falling edge of WE and starts at every rising edge of WE, the only requirement on WE to continue the data loading is that the interval between WE pulses does not exceed the maximum t_{BLC} (100µs). If OE goes Low during the data loading period, further attempt to load the data will be ignored because the external WE signal is blocked by OE signal internally. Consequently, the t_{BLC} timer is not reset by the external WE pulse if OE is low.

The page address for the nonvolatile write is the "X" address (A5-A10) latched on the last \overline{WE} . The nonvolatile write period consists of an erase cycle and a program cycle. During the erase cycle, the existing data of the locations being addressed are erased. The new

data latched at the register are written into the locations during the program cycle. Note that only the addressed location in a page are rewritten during a page write cycle.

The KM28C16 also supports \overline{CE} controlled write cycle. That means \overline{CE} can be used to latch address and data as well as \overline{WE} .

STANDBY

Power consumption is reduced to less than $100\mu A$ by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and I/O_1 - I/O_8 are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

DATA PROTECTION

Features have been designed into the KM28C16 that prevent unwanted write cycles during power supply transitions and system noise periods.

The KM28C16 has a protection feature against \overline{WE} noises: a \overline{WE} noise the width shorter than 20ns (typ.) will not start any unwanted write cycle.

Write cycles are also inhibited when V_{CC} is less than V_{WI} = 3.5 volts, the Write Inhibits V_{CC} level.

During power-up, the KM28C16 automatically prevents any write operation for a period of 2ms (typ.) after V_{CC} reaches the V_{WI} level. This will provide the system with sufficient time to bring WE and CE to a high level before a write can occur. Read cycles can be executed during this initialization period. Holding either OE low or WE high or CE high during power-on and power-off will inhibit inadvertent writes.

DATA POLLING

The KM28C16 features DATA-Polling at I/O₈ to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not require any external hardware. Reading the device at any time during a write operation will produce, at I/O₈, an inverted vale of last data loaded in to the EEPROM (I/O₁-I/O₇ are at the high impedance state). True data will be produced at all I/O's once the write cycle has been completed.

ENDURANCE AND DATA RETENTION

KM28C16 is designed for applications requiring up to 10,000 write cycles per EEPROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation and that the data in the byte will remain valid after its last write operation for ten years with or without power er applied.

PACKAGE DIMENSIONS

24 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

2K × 8 CMOS Electrically Erasable PROM

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-Before-Write
 - Automatic Write Timing
 - DATA Polling and Verification
 - Ready/Busy Output Pin (KM28C17)
- 32-byte page Write 2ms max
- Effective 62.5µs/byte write
- Enhanced Write Protection
- Single 5 volt Supply
- Fast Access Time: 150ns
- Power: 100µA—Standby (max) 30mA—Operating (max)
- Two Line Control-Eliminates Bus Contention
- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinput

GENERAL DESCRIPTION

The KM28C17 is a 2,048 \times 8 bit electrically erasable and programmable read-only-memory. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM28C17 is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the 2ms (max) write period.

A 32-byte page write enables an entire chip written in 128ms.

The KM28C17 features DATA-polling, which enables the EEPROM to signal the processor that a write operation is complete without requiring the use of any external hardware. Ready/Busy is a hardware scheme in which Pin 1 is used to signal the status of the write operation and is especially useful in interrupt driven systems.

The KM28C17 is fabricated with the well defined floating-gate CMOS technology using Fowler-Nordheim tunneling for erasing and programming.

Page Buffers RDY /BSY 1 28 V_{CC} Buffers 27 WE N.C. 2 Latches A7 3 26 N.C. 16.384 Bit and 25 A8 A6 4 Decoder F²PROM 24 A9 Memory A5 5 Arrav 23 N.C. A4 6 $A_0 - A_{10}$ v 22 OE A3 7 Buffers 21 10 Latches A2 8 and A1 9 20 CE I/O Buffers Decoder A0 10 19 1/08 and Latches 1/01 11 18 1/07 1/02 12 17 1/06 1/01 - 1/08 1/03 13 16 1/05 15 I/O4 Vss 14 Pin Name **Pin Function** CE Control Address Inputs A₀-A₁₀ Logic and WE-Timing 1/O1-1/O8 Data Inputs/Outputs OE RDY/BSY ĈĒ Chip Enable ŌĒ **Output Enable** WE Write Enable RDY/BSY Ready/Busy Output N.C. No Connection V_{cc} + 5V V_{ss} Ground

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Rating	Unit
Voltage on Any Pin Relative to V _{ss}	V _{IN}	– 0.3 to 7.0	v
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Storage Temperature	T _{stg}	-65 to +125	°C
Short Circuit Output Current	l _{os}	5	mA

* Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to V_{ss} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Supply Voltage	V _{ss}	0	0	0	v
Input High Voltage, all Inputs	ViH	2.0		$V_{\rm cc}$ + 0.3	V
Input Low Voltage, all Inputs	ViL	- 0.3	_	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Max	Unit
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$ All I/O's = OPEN All Addresses* (note 1)	_	30	mA
Standby Current (TTL)	I _{SB1}	CE = V _{IH} All I/O's = OPEN		1	mA
Standby Current (CMOS)	I _{SB2}	CE≥V _{CC} – 0.2 All I/O's = OPEN	-	100	μA
Input Leakage Current	l _u	$V_{IN} = 0$ to V_{CC}	—	10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to V_{CC}	-	10	μA
Output High Voltage Level	V _{он}	$I_{OH} = -400 \mu A$	2.4	_	v
Output Low Voltage Level	V _{OL}	I _{OL} = 2.1mA	_	0.4	v
Write Inhibit V _{cc} Level	V _{wi}		3.5	—	v

* Note 1. All addresses toggling from V_{IL} to V_{IH} at 5MHz

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit
Input/Output Capacitance	C _{1/O}	$V_{I/O} = 0V$		6	pF
Input Capacitance	C _{IN}	$V_{iN} = 0V$	-	10	рF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	ŌĒ	WE	Mode	1/0	Power
L	L	н	Read	D _{OUT}	Active
L	Н	L	Write	D _{IN}	Active
L	L	н	DATA-Polling	$I/O_8 = \overline{D}_8$	Active
н	Х	x	Standby & Write Inhibit	High-Z	Standby
х	L	х	Write Inhibit		
X	Х	н	Write Inhibit		_

AC CHARACTERISTICS ($T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted).

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0.45 to 2.4V
Input Rise and Fall Times	20 ns
Input and Output Timing Levels	0.8V and 2.0V
Output Load	1 TTL Gate and $C_L = 100 pF$

READ CYCLE

B	0 mb cl	KM28C17-15		KM28C17-20		KM28C17-25		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	υπιτ
Read Cycle Time	t _{RC}	150	<u></u>	200		250		ns
Chip Enable Access Time	t _{CE}		150		200		250	ns
Address Access Time	t _{AA}		150		200		250	ns
Output Enable Access Time	t _{OE}		60		80		100	ns
Chip Enable to Output in Low-Z	t _{LZ}	0		0		0		ns
Chip Disable to Output in High-Z	t _{HZ}	5	50	5	70	5	90	ns
Output Enable to Output in Low-Z	t _{oLZ}	5		5		5		ns
Output Disable to Output in High-Z	t _{онz}	5	50	5	70	5	90	ns
Output Hold from Address Change	t _{он}	10		10		10		ns

WRITE CYCLE

Parameter	Symbol	Min	Мах	Unit
Write Cycle Time	t _{wc}	2		ms
Address Set-Up Time	t _{AS}	0		ns
Address Hold Time	t _{AH}	80		ns
Write Set-Up Time	t _{CS}	0		ns
Write Hold Time	t _{сн}	0		ns
Chip Enable to End of Write Input	t _{cw}	100		ns
Output Enable Set-Up Time	t _{OES}	10		ns
Output Enable Hold Time	t _{оен}	10		ns
Write Pulse Width	twe	100		ns
Data Set-Up Time	t _{DS}	50		ns
Data Hold Time	t _{DH}	10		ns
Time to Device Busy	t _{DB}		100	ns
Busy to Write Recovery Time	t _{BWR}	50		ns
Byte Load Cycle	t _{BLC}	0.2	100	μS

Note: The timer for t_{BLC} is reset at a falling edge of \overline{WE} and starts at a rising edge of \overline{WE} .

TIMING DIAGRAMS

READ CYCLE $\overline{WE} = V_{IH}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

CE CONTROLLED WRITE

TIMING DIAGRAMS (Continued) PAGE MODE WRITE (WE CONTROLLED WRITE CYCLE)

PAGE MODE WRITE (CE CONTROLLED WRITE CYCLE)

*NOTE 1. Tristate for I/O1-I/O7, DOUTH for I/O8 if the chip is read. (See Data-polling)

DEVICE OPERATION

READ

Reading data from the KM28C17 is similar to reading data from a SRAM. A read cycle occurs when \overline{WE} is high and \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

WRITE

Writing data into the KM28C17 is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a SRAM.

**** BYTE WRITE MODE ****

The byte write mode of the KM28C17 is only a part of the page write mode. A single byte data loading followed by a t_{BLC} time-out and by a nonvolatile write cycle will complete a byte mode write. In this mode, the write is exactly identical to that of the KM2817A.

**** PAGE WRITE MODE ****

The KM28C17 allows up to 32 byte to be written in a single page write cycle. A page write cycle consists of a data loading period, in which from 1 to 32 byte data are loaded into the KM28C17 internal registers and a nonvolatile write period, in which the loaded data in the registers are written to the EEPROM cells of the selected page.

Data are loaded into the KM28C17 by sequentially pulsing \overline{WE} with \overline{CE} low and \overline{OE} high. ON each \overline{WE} , address is latched on the falling edge of the \overline{WE} and data is latched on the rising edge of the \overline{WE} . The data can be loaded in any "Y" address order and can be renewed in a data loading period.

Since the timer for the data loading period (t_{BLC}) is reset at the falling edge of \overline{WE} and starts at every rising edge of \overline{WE} , the only requirement on \overline{WE} to continue the data loading is that the interval between \overline{WE} pulses does not exceed the maximum t_{BLC} (100 μ s). If \overline{OE} goes Low during the data loading period, further attempt to load the data will be ignored because the external \overline{WE} signal is blocked by \overline{OE} signal internally. Consequently, the t_{BLC} timer is not reset by the external \overline{WE} pulse if \overline{OE} is low.

The page address for the nonvolatile write is the "X" address (A5-A10) latched on the last \overline{WE} . The nonvolatile write period consists of an erase cycle and a program cycle. During the erase cycle, the existing data of the locations being addressed are erased. The new

data latched at the register are written into the locations during the program cycle. Note that only the addressed location in a page are rewritten during a page write cycle.

The KM28C17 also supports \overline{CE} controlled write cycle. That means \overline{CE} can be used to latch address and data as well as \overline{WE} .

STANDBY

Power consumption is reduced to less than $100\mu A$ by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and I/O_1 - I/O_8 are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

DATA PROTECTION

Features have been designed into the KM28C17 that prevent unwanted write cycles during power supply transitions and system noise periods.

The KM28C17 has a protection feature against \overline{WE} noises: a \overline{WE} noise the width shorter than 20ns (typ.) will not start any unwanted write cycle.

Write cycles are also inhibited when $V_{\rm CC}$ is less than $V_{WI}\!=\!3.5$ volts, the Write Inhibits $V_{\rm CC}$ level.

During power-up, the KM28C17 automatically prevents any write operation for a period of 2ms (typ.) after V_{CC} reaches the V_{WI} level. This will provide the system with sufficient time to bring WE and CE to a high level before a write can occur. Read cycles can be executed during this initialization period. Holding either OE low or WE high or CE high during power-on and power-off will inhibit inadvertent writes.

DATA POLLING

The KM28C17 features DATA-Polling at I/O₈ to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not require any external hardware. Reading the device at any time during a write operation will produce, at I/O₈, an inverted value of last data loaded in to the EEPROM (I/O₁-I/O₇ are at the high impedance state). True data will be produced at all I/₂'s once the write cycle has been completed.

DEVICE OPERATION

READY/BUSY

The KM28C17 has a Ready/Busy output on pin 1 that indicates when the write cycle is complete. The pin is normally high except when a write cycle is in progress in which case the pin is low.

The Ready/Busy output is configured as open-drain driver there-by allowing two or more Ready/Busy output to be OR-tied. This pin requires an appropriate pullup resistor for proper operation. The pull-up resistor value maybe calculated as follows.

 $RP = \frac{V_{CC}(max) - V_{OL}(max)}{I_{OL} + I_{L}} = \frac{5.1V}{2.1mA + I_{L}}$

where I_{L} is the sum of the input currents of all devices tied to the Ready/Busy pin.

ENDURANCE AND DATA RETENTION

KM28C17 is designed for applications requiring up to 10,000 write cycles per EEPROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation and that the data in the byte will remain valid after its last write operation for ten years with or without power er applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

8K x 8 Bit EEPROM with Latches and Auto-Write

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-before-Write
 - Automatic Write Timing
 - DATA Polling and Verification
- Enhanced Write Protection
- Single 5 volt Supply
- Byte Write: 10ms (max)—KM2864A 2ms (max)-KM2864AH
- · Fast Access Time: 200ns
- Power: 50mA—Standby (max) 120mA-Operating (max)
- Two Line Control-Eliminates Bus Contention
- 10.000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM2864A/AH is a 65,536 bit Electrically Erasable and Programmable Read-Only-Memory organized as 8,192 words by 8-bits. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM2864A/AH is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the write period which is 10ms (max) for the KM2864A or 2ms (max) for the KM2864AH.

The KM2864A/AH features DATA Polling, a software scheme to detect the early completion of a write cycle without requiring the use of any additional external hardware. The KM2864A/AH is fabricated with the well defined floating gate NMOS technology using Fowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

N.C. 1	28	Vcc
A ₁₂ 2	27	WĒ
A7 3	26	N.C.
A ₆ 4	25	A8
A5 5	24	A9
A4 6	23	A11
A ₃ 7	22	OE
A ₂ 8	21	A ₁₀
A1 9	20	CE
A ₀ 10	19	1/08
1/01 [1]	18	I/O7
I/O ₂ 12	17	1/06
1/03 13	16	1/05
Vss 14	15	I/O4

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
I/O1I/O8	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
N.C.	No Connection
V _{cc}	Power (+5V)
V _{ss}	Ground

ABSOLUTE MAXIMUM RATINGS*

Pårameter	Symbol	Rating	Units
Voltage on any pin relative to $V_{\mbox{\scriptsize SS}}$	V _{IN}	- 1 to + 6.0	v
Temperature Under Bias	T _{bias}	- 40 to + 85	°C
Storage Temperature	T _{stg}	- 65 to + 125	°C
Short Circuit Output Current	los	5	mA

£,

*NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Ground	V _{SS}	0	0	0	V
Input High Voltage	ViH	2.0		$V_{cc} + 0.3$	V
Input Low Voltage	VIL	- 1		0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Мах	Units
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{IL}$ All I/O's = OPEN Other Inputs = V_{CC}	_	120	mA
Standby Current	I _{SB}	$\overline{CE} = V_{IH}$ All I/O's = OPEN Other Inputs = V _{CC}	_	50	mA
Input Leakage Current	lu	$V_{IN} = 0$ to 5.5V		10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to 5.5V	-	10	μA
Output High Voltage Level	V _{OH}	$I_{OH} = -400 \ \mu A$	2.4	_	v
Output Low Voltage Level	Vol	$I_{OL} = 2.1 \text{ mA}$		0.4	v
Write Inhibit V _{cc} Level	V _{wi}		3.5		V

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit
Input/Output Capacitance	C _{I/O}	$V_{I/O} = 0V$	-	10	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	-	6	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	ŌĒ	WE	Mode	I/O	Power
L	L	н	Read	D _{out}	Active
L	н	L	Write	D _{IN}	Active
н	X	х	Standby and Write Inhibit	High-Z	Standby
X	L	X	Write Inhibit	-	
X	X	н	Write Inhibit	-	_

AC CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0 to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$

READ CYCLE

Parameter	Symbol	KM28 KM286	KM2864A-20 KM2864AH-20		KM2864A-25 KM2864AH-25		KM2864A-30 KM2864AH-30	
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	200		250		300		ns
Chip Enable Access Time	t _{CE}		200		250		300	ns
Address Access Time	t _{AA}		200		250		300	ns
Output Enable Access Time	t _{OE}		100		120		150	ns
Chip Enable to Output in Low-Z	t _{LZ}	10		10		10		ns
Chip Disable to Output in High-Z	t _{HZ}	10	100	10	100	10	100	ns
Output Enable to Output in Low-Z	t _{oLZ}	50		50		50		ns
Output Disable to Output in High-Z	t _{онz}	10	60	10	80	10	100	ns
Output Hold from Address Change	t _{он}	20		20		20		ns

KM2864A/KM2864AH

WRITE CYCLE

Paramet	Parameter		Min	Мах	Units
Write Quele Time	KM2864A	•	10		
while Cycle Time	KM2864AH	twc	2		
Address Set-up Time		t _{AS}	10		ns
Address Hold Time		t _{AH}	120		ns
Write Set-up Time	Write Set-up Time		0		ns
Write Hold Time	Write Hold Time		0		ns
Chip Enable to End of	Chip Enable to End of Write Input		150		ns
Output Enable Set-up	Time	t _{OES}	10		ns
Output Enable Hold Ti	me	t _{оен}	10		ns
Write Pulse Width		t _{WP}	150		ns
Data Latch Time	Data Latch Time		50		ns
Data Valid Time	Data Valid Time			1	μS
Data Set-up Time	Data Set-up Time		50		ns
Data Hold Time		t _{DH}	10		ns

TIMING DIAGRAMS

READ CYCLE

 $\overline{\mathsf{WE}}=\mathsf{V}_{\mathsf{IH}}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

CE CONTROLLED WRITE CYCLE

199

DEVICE OPERATION

Read

Reading data from the KM2864A/AH is similar to reading data from a static RAM. A reading cycle occurs when WE is high and both \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high, the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

Write

Writing Data into the KM2864A/AH is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a static RAM.

A write cycle occurs when \overline{OE} is high and both \overline{CE} and WE are low. The address is latched by the falling edge of \overline{CE} or WE, whichever occurs last. The data is latched by the rising edge of \overline{CE} or WE, whichever occurs first. Address and data are conveniently latched in less than 200ns during a write operation. Once a byte write cycle is initiated, it will automatically continue to completion within 10ms (max) for the KM2864A or 2ms (max) for the KM2864AH. The existing data at the selected address is automatically erased and the new data is automatically written.

Standby

Power consumption may be reduced about 60% by deselecting the device with a high input on \overrightarrow{CE} . Whenever \overrightarrow{CE} is high, the device is in the standby mode and $I/O_1 - I/O_8$ are in the high impedance state, regardless of the state of \overrightarrow{OE} or \overrightarrow{WE} .

Data Protection

Features have been designed into the KM2864A/AH that prevent unwanted write cycles during power supply transitions and system noise periods.

Write cycles are inhibited when V_{CC} is less than $V_{\text{WI}}\!=\!3.5$ volts, the Write Inhibit V_{CC} level.

During power-up the KM2864A/AH automatically prevents any write operaion for a period of 9ms for the KM2864A or 2ms for the KM2864AH after V_{CC} reaches the V_{WI} level. This will provide the system with sufficient time to bring WE or CE to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either OE low or WE high or CE high during power-on and power-off will inhibit inadvertent writes.

Data Polling

The KM2864A/AH features DATA Polling to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not required any external hardware. During a write cycle the most significant bit of the byte written to the KM2864A/AH is inverted and routed to the output buffer. The I/O pins, $I/O_1-I/O_7$, remain in a high impedance state until a read command is initiated. Reading the device during the write operation will produce this inverted bit at I/O_8 (I/O₁-I/O₇ are indeterminate). True data will be produced at I/O_8 once the write cycle has been completed.

Endurance and Data Retention

The KM2864A/AH is designed for applications requiring, up to 10,000 write cycles per E²PROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation, and that the data in the byte will remain valid after its last rewrite operation for ten years with or without power applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

8K × 8 Bit EEPROM with Latches and Auto-WriteFEATURESGENERAL

Simple Byte Write

- Fast Byte Write Time
- Single TTL Level Write Signal
- Latched Address and Data
- Automatic Internal Erase-before-Write
- Automatic Write Timing
- DATA Polling and Verification
- Ready/Busy Output Pin
- Enhanced Write Protection
- Single 5 volt Supply
- Byte Write: 10ms (max)—KM2865A 2ms (max)—KM2865AH
- Fast Access Time: 200ns
- Power: 50mA—Standby (max)
- 120mA—Operating (max)
- Two Line Control-Eliminates Bus Contention
- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The KM2865A/AH is a 65,536 bit Electrically Erasable and Programmable Read-Only-Memory organized as 8,192 words by 8-bits. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM2865A/AH is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the write period which is 10ms (max) for the KM2865A or 2ms (max) for the KM2865AH.

The KM2865A/AH features two end of write detection schemes to provide maximum design flexibility while enhancing the system performance. DATA Polling is a software scheme to detect the early completion of a write cycle without using any additional hardware. Ready/Busy is a hardware scheme in which Pin 1 is used to signal the status of the write operation and is especially useful in interrupt driven systems.

The KM2865A/AH is fabricated with the well defined floating gate NMOS technology using Fowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

RDY/BSY		28 V _{CC}
A ₁₂ 2		27 WE
A7 3	-	26 N.C.
A ₆ 4	1	25 A ₈
A ₅ 5		24) A9
A4 6		23 A ₁₁
A3 7	1	22) OE
A2 8		21 A ₁₀
A1 9		20 CE
A ₀ 10	5	19 I/O ₈
1/01-1-		18 1/07
1/O2 12	2	17, I/O ₆
1/03 13	3	16 I/O ₅
Vss 14	1	15 I/O4

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
I/O1-I/O8	Data Inputs/Outputs
CE	Chip Enable
OE	Output Enable
WE	Write Enable
RDY/BSY	Ready/Busy Output
N.C.	No Connection
V _{cc}	Power (+5V)
V _{SS}	Ground

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Units
Voltage on any pin relative to $V_{\mbox{\scriptsize SS}}$	V _{IN}	- 1 to + 6.0	V
Temperature Under Bias	T _{bias}	- 40 to + 85	°C
Storage Temperature	T _{stg}	-65 to +125	°C
Short Circuit Output Current	los	5	mA

*NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	V
Input High Voltage	VIH	2.0	_	$V_{cc} + 0.3$	V
Input Low Voltage	VIL	-1	—	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Мах	Units
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{IL}$ All I/O's = OPEN Other Inputs = V _{CC}	_	120	mA
Standby Current	I _{SB}	$\overline{CE} = V_{IH}$ All I/O's = OPEN Other Inputs = V _{CC}	_	50	mA
Input Leakage Current	۱u	$V_{IN} = 0$ to 5.5V	_	10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to 5.5V	_	10	μA
Output High Voltage Level	V _{OH}	I _{он} = - 400 µА	2.4		v
Output Low Voltage Level	V _{OL}	I _{oL} =2.1 mA	_	0.4	v
Write Inhibit V _{cc} Level	Vwi		3.5	_	V

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Max	Unit
Input/Output Capacitance	C _{I/O}	V _{1/0} = 0V	—	10	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	—	6	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	ŌĒ	WE	Mode	1/0	Power
L	L	н	Read	D _{OUT}	Active
L	Н	L	Write	D _{IN}	Active
н	Х	Х	Standby and Write Inhibit	High-Z	Standby
X	L	Х	Write Inhibit	_	_
X	Х	н	Write Inhibit		

AC CHARACTERISTICS

(T_A = 0°C to 70°C, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0 to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$

READ CYCLE

Parameter	Symbol	KM286 KM286	KM2865A-20 KM2865A-25 KM2 KM2865AH-20 KM2865AH-25 KM28		KM28 KM286	65A-30 5AH-30	Unit	
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	200		250		300		ns
Chip Enable Access Time	t _{CE}		200		250		300	ns
Address Access Time	t _{AA}		200		250		300	ns
Output Enable Access Time	t _{OE}		100		120		150	ns
Chip Enable to Output in Low-Z	t _{LZ}	10		10		10		ns
Chip Disable to Output in High-Z	t _{HZ}	10	100	10	100	10	100	ns
Output Enable to Output in Low-Z	toLZ	50		50		50		ns
Output Disable to Output in High-Z	t _{онz}	10	60	10	80	10	100	ns
Output Hold from Address Change	t _{он}	20		20		20		ns

WRITE CYCLE

Parameter		Symbol	Min	Max	Units
Write Ovele Time	KM2865A		10		
write Cycle Time	KM2865AH	t _{wc}	2		ms
Address Set-up Time		t _{AS}	10		ns
Address Hold Time		t _{AH}	120		ns
Write Set-up Time		t _{cs}	0		ns
Write Hold Time		t _{сн}	0		ns
Chip Enable to End of	Chip Enable to End of Write Input		150		ns
Output Enable Set-up	Output Enable Set-up Time		10		ns
Output Enable Hold Ti	me	t _{OEH}	10		ns
Write Pulse Width		t _{wP}	150		ns
Data Latch Time		t _{DL}	50		ns
Data Valid Time	Data Valid Time			1	μS
Data Set-up Time		t _{DS}	50		ns
Data Hold Time		t _{DH}	10		ns
Time to Device Busy		t _{DB}		120	ns
Busy to Write Recover	y Time	t _{BWR}	50		ns

TIMING DIAGRAMS

READ CYCLE

 $\overline{WE} = V_{IH}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

CE CONTROLLED WRITE CYCLE

DEVICE OPERATION

Read

Reading data from the KM2865A/AH is similar to reading data from a static RAM. A reading cycle occurs when WE is high and both \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high,the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

Write

Writing Data into the KM2865A/AH is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a static RAM.

A write cycle occurs when \overline{OE} is high and both \overline{CE} and WE are low. The address is latched by the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the rising edge of \overline{CE} or \overline{WE} , whichever occurs first. Address and data are conveniently latched in less than 200ns during a write operation. Once a byte write cycle is initiated it will automatically continue to completion within 10ms (max) for the KM2865A or 2ms (max) for the KM2865AH. The existing data at the selected address is automatically erased and the new data is automatically written.

Standby

Power consumption may be reduced about 60% by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and $I/O_1 - I/O_8$ are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

Data Protection

Features have been designed into the KM2865A/AH that prevent unwanted write cycles during power supply transitions and system noise periods.

Write cycles are inhibited when $V_{\rm CC}$ is less than $V_{WI}\!=\!3.5$ volts, the Write Inhibit $V_{\rm CC}$ level.

During power-up the KM2865A/AH automatically prevents any write operaion for a period of 9ms for the KM2865A or 2ms for the KM2865AH after V_{cc} reaches

the V_{WI} level. This will provide the system with sufficient time to bring \overline{WE} or \overline{CE} to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either \overline{OE} low or \overline{WE} high or \overline{CE} high during power-on and power-off will inhibit inadvertent writes.

Data Polling

The KM2865A/AH features DATA Polling to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not required any external hardware. During a write cycle the most significant bit of the byte written to the KM2865A/AH is inverted and routed to the output buffer. The I/O pins, I/O₁-I/O₇, remain in a high impedance state until a read command is initiated. Reading the device during the write operation will produce this inverted bit at I/O₈ (I/O₁-I/O₇ are indeterminate). True data will be produced at I/O₈ once the write cycle has been completed.

Ready/Busy

The KM2865AH has a Ready/Busy output pin that indicates when the write cycle is complete. The pin is normally high except when a write cycle is in progress, in which case the pin is low.

The Ready/Busy output is configured as open-drain driver there-by allowing two or more Ready/Busy output to be or-tied. This pin requires an appropriate pullup register for proper operation. The pull-up resistor value for the Ready/Busy output maybe calculated as follows:

$$R_{p} = \frac{V_{CC} (MAX) - V_{OL} (MAX)}{I_{OL} + I_{L}} = \frac{5.1V}{2.1mA + I_{L}}$$

Where I_L is the sum of the input currents of all devices tied to the Ready/Busy pin.

Endurance and Data Retention

The KM2865A/AH is designed for applications requiring, up to 10,000 write cycles per E²PROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation, and that the data in the byte will remain valid after its last rewrite operation for ten years with or without power applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

8K×8 Bit CMOS EEPROM

FEATURES

- Simple Byte Write
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-before-Write
 - Automatic Write Timing
 - DATA Polling and Verification
 - Ready/Busy Output Pin (KM28C65)
- 32-byte page write: 5ms max
- Effective 150µS/byte write
 Enhanced Write Protection
- Single 5 volt Supply
- Fast Access Time: 200ns
- Power: 100 μ A Standby (max)
 - 30 mA Operating (max)
- Two Line Control-Eliminates Bus Contention

FUNCTIONAL BLOCK DIAGRAM

- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

Page Buffers X Buffers Latches and 65.536 Bit Decoder F²PROM Memory -A12 Array Y Buffers Latches and I/O Buffers Decoder and Latches 1/01-1/08 ĈĒ Control Logic ÕĒ and Timing WE RDY/BSY

GENERAL DESCRIPTION

The KM28C64/C65 is a 65,536 bit electrically erasable and programmable Read-Only-Memory. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM28C64/C65 is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the 5ms (max) write period.

A 32-byte page write enables an entire chip written in 1.3 second.

The KM28C64/C65 features DATA-polling, which enables the EEPROM to signal the processor that a write operation is complete without requiring the use of any external hardware. Ready/Busy is a hardware scheme in which Pin 1 is used to signal the status of the write operation and is especially useful in interrupt driven systems.

The KM28C64/C65 is fabricated with the well defined floating gate CMOS technology using Fowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

N.C. or RDY/BSY	\cup	28 V _{CC}
A12 2		27 WE
A7 3		26 N.C.
A6 4		25 A8
A5 5		24 A9
A4 6		23 A11
A3 7		22 OE
A2 8		21 A10
A1 9		20 CE
A ₀ 10		19 I/O ₈
I/O1 11		18 1/07
1/O2 12		17 1/06
I/O ₃ [13		16 I/O ₅
V _{SS} [14		15 I/O₄

Pin Name	Pin Function
A ₀ —A ₁₂	Address Inputs
I/O1-I/O8	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RDY/BSY	Ready/Busy Output
N.C.	No Connection
V _{cc}	+ 5V
V _{ss}	Ground

ABSOLUTE MAXIMUM RATINGS*

Rating	Symbol	Value	Units
Voltage on any Pin Relative to V _{ss}	V _{IN}	-0.3 to 7.0	V
Temperature Under Bias	T _{bias}	– 10 to + 85	°C
Storage Temperature	T _{stg}	- 65 to + 125	°C
Short Circuit Output Current	l _{os}	5	mA

* Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Supply Voltage	V _{ss}	0	0	0	V
Input High Voltage, Inputs	VIH	2.0		$V_{CC} + 0.3$	V
Input Low Voltage, all Inputs	VIL	- 0.3	-	0.8	V

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Max	Units
Operating Current	Icc	$\overline{CE} = \overline{OE} = V_{1L}, \overline{WE} = V_{1H}$ all I/O's = open all addresses* (NOTE 1)		30	mA
Standby Current (TTL)	I _{SB1}	CE = V _{IH} all I/O's = open		1	mA
Standby Current (CMOS)	I _{SB2}	$\overline{CE} = V_{CC} - 0.2V$ all I/O's = open		100	μΑ
Input Leakage Current	lu	$V_{IN} = 0$ to V_{CC}		10	μΑ
Output Leakage Current	ILO	$V_{in} = 0$ to V_{CC}		10	μA
Output High Voltage Level	V _{он}	$I_{OH} = -400 \mu A$	2.4		V
Output Low Voltage Level	Vol	I _{oL} = 2.1mA		0.4	V
Write Inhibit V _{cc} Level	V _{WL}		3.5		V

* Note 1. All addresses toggling from V_{IL} to V_{IH} at 5MHz

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Мах	Unit
Input/Output Capacitance	C _{I/O}	$V_{I/O} = 0V$	_	8	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	_	8	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CE	OE	WE	Mode	I/O	Power
L	L	н	Read	D _{out}	Active
L	н	L	Write	D _{IN}	Active
н	Х	Х	Standby & Write Inhibit	High-Z	Standby
L	L	н	Data-Polling	$I/O_8 = \overline{D}_8$	Active
Х ′	L	Х	Write Inhibit	—	_
Х	Х	H	Write Inhibit	_	-

AC CHARACTERISTICS

(T_A = 0°C to 70°C, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value		
Input Pulse Levels	0.45V to 2.4V		
Input Rise and Fall Times	20 ns		
Input and Output Timing Levels	0.8V and 2.0V		
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$		

READ CYCLE

Parameter	Symbol	KM28C64-20 KM28C65-20		KM28C64-25 KM28C65-25		Units
		Min	Мах	Min	Max	-
Read Cycle Time	t _{RC}	200		250		ns
Chip Enable Access Time	t _{CE}		200		250	ns
Address Access Time	t _{AA}		80		100	ns
Output Enable Access Time	t _{OE}		80		100	ns
Chip Enable to Output in Low-Z	t _{LZ}	0		0		ns
Chip Disable to Output in High-Z	t _{HZ}	5	70	5	90	ns
Output Enable to Output in Low-Z	tolz	5		5		ns
Output Disable to Output in High-Z	t _{онz}	5	70	5	90	ns
Output Hold from Address Change	t _{он}	10		10		ns

WRITE CYCLE

Parameter	Symbol	Min	Max	Units
Write Cycle Time	t _{wc}	5		ms
Address Set-Up Time	t _{AS}	0		ns
Address Hold Time	t _{AH}	80		ns
Write Set-Up Time	t _{cs}	0		ns
Write Hold Time	t _{сн}	0		ns
Chip Enable to End of Write Input	t _{cw}	100		ns
Output Enable Set-Up Time	t _{OES}	10		ns
Output Enable Hold Time	t _{оен}	10		ns
Write Pulse Width	twp	100		ns
Data Set-Up Time	t _{DS}	50		ns
Data Hold Time	t _{DH}	10		ns
Time to Device Busy	t _{DB}		100	ns
Busy to Write Recovery Time	t _{BWR}	50		ns
Byte Load Cycle	t _{BLC}	0.2	30	μS

Note: The timer for t_{BLC} is reset at a falling edge of \overline{WE} and start at a rising edge of \overline{WE} .

TIMING DIAGRAMS

READ CYCLE $\overline{WE} = V_{H}$

TIMING DIAGRAMS (Continued) WE CONTROLLED WRITE CYCLE

TIMING DIAGRAMS (Continued)

PAGE MODE WRITE (WE CONTROLLED WRITE CYCLE)

PAGE MODE WRITE (CE CONTROLLED WRITE CYCLE)

*Note 1. Tristate for I/O₁-I/O₇, $\overline{D_{out^n}}$ for I/O₈ if the chip is read (see Data-polling)

DEVICE OPERATION

Read

Reading data from the KM28C64/C65 is similar to reading data from a SRAM. A read cycle occurs when \overline{WE} is high and \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

Write

Writing data into the KM28C64/C65 is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator and fully self-timed control logic make writing as easy as writing to a SRAM.

**** BYTE WRITE MODE ****

The byte write mode of the KM28C64/C65 is only a part of the page write mode. A single byte data loading followed by a t_{BLC} time out and by a write cycle will complete a byte mode write. In this mode, the write is exactly identical to that of the KM2864A/65A.

**** PAGE WRITE MODE ****

The KM28C64/C65 allows up to 32 bytes to be written in a single page write cycle. A page write cycle consists of a data loading period, in which from 1 to 32 bytes data are loaded into the KM28C64/C65 internal registers and a write period, in which the loaded datas in the registers are written to the EEPROM cells of the selected page.

Data are loaded into the KM28C64/C65 by sequentially pulsing \overline{WE} with \overline{CE} LOW and \overline{OE} HIGH. On each \overline{WE} , address is latched on the falling edge of the \overline{WE} and data is latched on the rising edge of the \overline{WE} . The data can be loaded in any "Y" address order and can be renewed in the data loading period.

Since the timer for the data loading period (t_{BLC}) is reset at the falling edge of \overline{WE} and starts at every rising edge of \overline{WE} , the only requirement on \overline{WE} to continue the data loading is that the interval between \overline{WE} pulses does not exceed the maximum t_{BLC} (30µs). If \overline{OE} goes LOW during the data loading period, further attempt to load the data will be ignored because the external \overline{WE} signal is blocked by \overline{OE} signal internally. Consequently, the t_{BLC} timer is not reset by the external \overline{WE} pulse if \overline{OE} is LOW.

The page address for the write is the "X" address (A5-A12) latched on the last \overline{WE} . The write period consists of an erase cycle followed by a program cycle. During the erase cycle the existing data of the locations being addressed are erased. The new data latched at

the registers are written into the locations during the program cycle. Note that only the addressed locations in a page are rewritten during a page write cycle.

The KM28C64/C65 also supports \overline{CE} controlled write cycle. That means \overline{CE} can be used to latch address and data as well as \overline{WE} .

Standby

Power consumption may be reduced to less than $100\mu A$ by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and I/O_1 - I/O_8 are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

Data Protection

Features have been designed into the KM28C64/C65 that prevent unwanted write cycles during power supply transitions and system noise periods.

The KM28C64/C65 has an protection feature against $\overline{\text{WE}}$ noises, a $\overline{\text{WE}}$ noise having width shorter than 20ns (typ.) will not start any unwanted write cycle.

Write cycles are also inhibited when V_{CC} is less than $V_{WI} = 3.5$ volts, the Write Inhibits V_{CC} level.

During power-up, the KM28C64/C65 automatically prevents any write operation for a period of 5ms (max.) after V_{CC} reaches the V_{WI} level. This will provide the system with sufficient time to bring \overline{WE} and \overline{CE} to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either \overline{OE} low or \overline{WE} high or \overline{CE} high during power-On and power-Off will inhibit inadvertent writes.

Data Polling

The KM28C64/C65 features $\overline{\text{DATA}}$ -Polling at I/O₈ to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not require any external hardware. Reading the device at any time during a write operation will produce, at I/O₈ an inverted value of Last data loaded into the EEPROM (I/O₁-I/O₇ are at the high impedance state). True data will be produced at I/O₈ once the write cycle has been completed.

Ready/Busy

The KM28C65 has a Ready/Busy output on pin 1 that indicates when the write cycle is complete. The pin is normally high except when a write cycle is in progress, in which case the pin is low.

DEVICE OPERATION (Continued)

The Read/Busy output is configured as open-drain driver there-by allowing two or more Ready/Busy output to be OR-tied. This pin requires an appropriate pullup resistor for proper operation. The pull-up resistor value maybe calculated as follows

$$\begin{split} R_{P} = & \frac{V_{CC}(max) - V_{OL}(max)}{I_{OL} + I_{L}} = \frac{5.1V}{2.1mA + I_{L}} \\ \text{where } I_{L} \text{ is the sum of the input currents of all devices} \\ \text{tied to the Ready/Busy pin.} \end{split}$$

Endurance and Data Retention

The KM28C64/C65 is designed for applications requiring up to 10,000 write cycles per EEPROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation and that the data in the byte will remain valid after its last write operation for ten years with or without power applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

256K CMOS EEPROM

FEATURES

- High Performance Advanced CMOS Technology
- 150 nsec maximum Access Time
- Low Power
 - 100µA Standby Current -60mA Active Current
- Fast Write Cycle times —Byte or Page Write Cycle: 5ms Typical
 - -64-Byte Page Write
 - -Effective 80µsec/Byte Write
- -Complete Memory Rewite: 2.5 sec
- Write Cycle Completion Indication
 - -Data Polling
 - Toggle bit
- Enhanced Write Protection
 —Software Write Protection
 - -Software Write Protection
 - Hardware Write Protection
- -Programmable Write Inhibit V_{cc} Level • High Endurance
 - -10,000 Cycle Endurance/Byte -10 Year Data Retention
- JEDEC Approved Byte-wide Pinout

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

The KM28C256 is a CMOS 5V Only $32K \times 8$ Electrically Erasable Programmable Read Only Memory. It is fabricated with the well defined floating gate CMOS technology using Fowler-Nordheim tunnelling for erasing and programming.

The KM28C256 provides easy of use features: The internally self-timed write cycle latches both address and data to give a free system bus during the 5ms(max) write period. A 64-byte page write enables an entire chip written in less than 2.5 seconds. The data polling scheme enables the EEPROM to signal the processor that a write operation is complete without requiring the use of any external hardware.

The KM28C256 is designed for applications up to 10,000 write cycles per byte and over 10 years of data retention. The chip, however, endures typically 50,000 write cycles per byte without any failure.

PIN CONFIGURATION

		_
A14 1	\bigcirc	28 V _{CC}
A12 2		27 WE
A7 3		26 A ₁₃
A6 4	KM28C256	25 A ₈
A5 5		24 Ag
A4 6		23 A11
A3 7		22 OE
A2 8		21 A10
A1 9		20 CE
A ₀ 10		19 1/07
I/O ₀ 11		18 1/06
I/O ₁ 12		17 1/05
I/O ₂ 13		16 1/O4
Vss 14		15 1/03

PIN NAMES

Pin Name	Pin Function
A ₀ -A ₁₄	Address Inputs
1/O ₀ -1/O ₇	Data Inputs/Outputs
ĈĒ	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
V _{cc}	+ 5V
V _{SS}	Ground

, . . .

1. U.S.A

SALES OFFICES CALIFORNIA

201 East Sandpoint Suite 220 Santa Ana 92707 714-662-3406

2700 Augustine Drive Suite 198 Santa Clara 95054 408-727-7433

MASSACHUSETTS

20 Burlington Mall Road Suite 205 Burlington 01803 617-273-4888

ILLINOIS

901 Warrenville Rd. Suite 120 Lisle, 60532-1359 312-852-2011

TEXAS

15851 Dallas Parkway Suite 745 Dallas 75248-3307 214-239-0754

NORTH CAROLINA

3200 Nothline Ave Suite 501G Forum VI Greensboro, 27408 919-294-5141

MANUFACTURER'S REPRESENTATIVES

ALABAMA

EMA

1200 Jordan Lane, Suite 4 Jordan Center Huntsville 35805 205-536-3044

ARIZONA

HAAS & ASSOC., INC.

7505 East Main Suite 300 Scottsdale 85252 602-994-3813

CALIFORNIA

SYN PAC

3945 Freedom Circle Suite 650 Santa Clara 95054 408-988-6988

WESTAR REP COMPANY

1801 Parkcourt Place Suite 103D Santa Ana 92701 714-835-4711

QUEST-REP, INC.

San Diego, CA. 619-546-1933

CANADA

TERRIER ELECTRONICS

145 The West Mall Etobicoke, Ontario M9C 1C2 416-622-7558

COLORADO

ELECTRODYNE

2620 S. Parker Road Suite 110 Aurora 80014 303-695-8903

CONNECTICUT

PHOENIX SALES

257 Main Street Torrington, 06790 203-476-7709

GEORGIA

EMA

6695 Peachtree Industrial Boulevard Suite 101 Atlanta 30360 404-448-1215

FLORIDA

MICRO ELECTRONIC COMPONENTS

989 Woodgade Dr Palm Harbor, 33563 813-784-8561

ILLINOIS

IRI

8430 Gross Pointe Road Skokie 60076 312-967-8430

SALES OFFICES/MANUFACTURER'S REPRESENTATIVES

INDIANA

STB & ASSOCIATES

3003 E. 96th Street Suite 102 Indianapolis 46240 317-844-9227

MICHIGAN

C.B. JENSEN & ASSOC. 2145 Crooks Road Troy 48084

313-643-0506 MARYLAND

ADVANCED TECHNOLOGY SALES

809 Hammonds Ferry Lithicum 21090 301-789-9360

MASSACHUSETTS

Contact local sales office

MINNESOTA COMSTRAND INC

2852 Anthong Lane South Minneapolis, 55418 612-788-9234

NEW JERSEY

NECCO

2460 Lemoine Avenue Ft. Lee 07024 201-4611-2789

NEW MEXICO

Contact local sales office

NORTH CAROLINA

Contact local sales office

OREGON

EARL & BROWN

7719 S. W. Capitol Highway Portland 97219 503-245-2283

NEW YORK

NECCO

2460 Lemoine Avenue Ft. Lee 07024 201-4611-2789

OHIO

J.N. BAILEY & ASSOCIATES

13071 Old Dayton Road New Lebanon 45345 513-687-1325 1667 Devonshire Drive

Brunswick⁴⁴²¹² 216-273-3798 2679 Indianola Avenue

Columbus 43202 614-262-7274

PENNSYLVANIA

RIVCO JANUARY, INC.

78 South Trooper Road Norristown 19403 215-631-1414

SOUTH CAROLINA

EMA

210 W. Stone Avenue , Greenville, 29609 803-233-4637

TEXAS

VIELOCK ASSOCIATES

720 E. Park Boulevard Suite 102 Plano 75074 214-881-1940

UTAH

ELECTRODYNE

2480 South Main Street 9uite 109 Salt Lake City 84115 801-486-3801

WISCONSIN

IRI 631 May

631 Mayfair Milwaukee 53226 414-259-0965

WASHINGTON

EARL & BROWN

2447-A 152nd Avenue, N.E. Redmond 98052 206-885-5064

2. EUROPE

W/GERMANY SILCOM ELEKTRONICS

Neusser Str. 336-338 D-4050 Müchengladbach Tel: (02161) 60752 Tlx: 852189

MICRONETICS VERTRIEBS-GESELLSCHAFT ELEKTRONISCHER BAUELEMENTE and SYSTEME GmbH

Weil der Städter Straße 45 7253 Renningen 1 Tel: (07159) 6019 Tlx: 724708

ING. THEO HENSKES GmbH

Laatzener Str. 19 Postfach 721226 30000 Hannover 72 Tel: (0511) 865075 Tlx: 923509 Fax: 876004

ASTRONIC GmbH

Winzerer Str. 47d 8000 München 40 Tel: (089) 309031 Tlx: 521687 Fax: (089) 3006001

FRANCE ASIAMOS

Batiment EVOLIC 1 155, Boulevard de Valmy 92705 Colombes, France Tel: (1) 47601255 Tlx: 613890F Fax: (1) 47601582

UNITED KINGDOM KORD DISTRIBUTION LTD.

Watchmoor Road, Camberley Surrey GU153AQ Tel: 0276 685741 Tlx: 859919 KORDIS G.

BYTECH LTD

2 The Western centre, Western Road. Bracknell Berkshire RG12 IRW. Tel: Sales 0344 482211, Accounts/Admin, 0344 424222 Tlx: 848215

RAPID SILICON

Rapid House Denmrak Street High Wycombe Buckinghamshire HP 11 2 ER Tel: 0494 26271; Sales hot line; 0494 442266 Tlx: 837931 Fax: 0494 21860

STEATITE ELECTRONICS LTD.

ZEPHYR HOUSE WARING STREET. WEST NORWOOD LONDON SE279 LH Tel: (01) 670-8663 TIx: 892425 HAGLEY HOUSE HAGLEY ROAD EDGBASTON BIRMINGHAM B168QW Tel: (021) 454-2655 TIx: 337046

SWEDEN NORDISK ELEKTRONIK AB

Huvudstagatan 1 Box 1409 5-17127 Solna Tel: (08) 7349770 Tlx: 10547 Fax: (08) 272204

SWITZERLAND PANATEL AG

Hardstraße72 CH-5430 Wettingen Zurich Tel: (056) 275275 Tix: 58068 Fax: (056) 271924

FIN LAND INSTRUMENTARIUM ELEKTRONIIKKA

P.O. Box 64, Vitikka SF-02631 Espoo, Helsinki Finland Tel: (358) 05284320 Tlx: 124426 Fax: (358) 0524986

SALES OFFICES/MANUFACTURER'S REPRESENTATIVES

AUSTRIA

ABRAHAMCZIK + DEMEL GesmbH & CO. KG

Eichenstraße 58-64/1 A-1120 Vienna Tel: (0222),857661 Tix: 134273 Fax: 833583

BELGIUM NEWTEC INTERNATIONAL

Chaussëe de Louvain 186 1940 Woluwe-St-Etienne Leuvensesteenweg 186 1940-Sint-Stevens-Woluwe Tel: (02) 7250900 Tix: 25820 Fax: (02) 7250813

NETHERI ANDS BV HANDELMIJ. MALCHUS

Fokkerstraat 511-513 Postbus 48 NL-3100 AA Schiedam Tel: (010) 373777 Tlx: 21598

ITALY

MOXEL S.P.A. 20092 Cinisello Balsamo (MI) Via C. Frova. 34 Tel: (02) 61290521 Tix: 352045 Fax: (02) 617,2582

DIS. EL S.R.L.

101.48 Torino Via Ala di Stura 71/18 Tel: (220) 1522345 Tlx: 215118

SPAIN

SEMICONDUCTORES S.A.

Ronda General Mitre, 240 Barcelona-6 Tel: (93) 2172340 Tlx: 97787 SMCD E Fax: 2175698

SANTOS DEL VALLE, S.A.

Galileo, 54, 56 28015 Madrid Tel: (91) 4468141/44 Tix: 42615 LUSA E.

3. ASIA

HONG KONG

OCEAN OFFICE AUTOMATION LTD.

UNITS 1&9 2ND FLOOR FOOK HONG INDUSTRIAL BUILDING 19 SHEUNG YUET ROAD, KOWLOON BAY KOWLOON, HONG KONG Tel: 3-7993723 (7 LINES) TIX: 52289 OCCOM HX Fax: 3-7992398, 3-7992082

TAIWAN

YOSUN INDUSTRIAL CORP.

MIN SHENG COMMERCIAL BUILDING 10F., No. 481, MIN-SHENG EAST RD., TAIPEI, TAIWAN, R.O.C. Tel: 501-0700 (10 LINES) Tix: 26777 YOSUNIND Fax: (02) 503-1278

SINGAPORE

GO UP

585 NORTH BRIDGE ROAD #12-12 BLANCO COURT, S'PORE 0718 Tel: 2940917/2941101 TIx: RS 37154 GOUP Fax: 2913979

JAPAN

ADO ELECTRONIC INDUSTRIAL CO., LTD.

7th FL., SASAGE BLDG. 4-6 SOTOKANDA 2-CHOME CHIYODA-KU, TOKYO 101, JAPAN Tel: 03-257-1618 Fax: 03-257-1579

INTERCOMPO INC.

IHI BLDG., 1-6-7, SHIBUYA, SHIBUYA-KU, TOKYO 150, JAPAN Tel: 03-406-5612 Fax: 03-409-4834

RIKEI CO.

SHINJUKU NOMURA BLDG. 1-26-2 NISHI-SHINJUKU, SHINJUKU-KU, TOKYO 163, JAPAN Tel: 03-345-1411 Fax: 03-344-3949

TOMEN ELECTRONICS CORP.

1-1, USCHISAIWAI-CHO, 2-CHOME CHIYODA-KU, TOKYO 100, JAPAN Tel: 03-506-3473 Fax: 03-506-3497

DIA SEMICON SYSTEMS INC.

WACORE 64 1-37-8 SANGENJAYA SETAGAYA-KU, TOKYO 154, JAPAN Tel: 03-487-0386 Fax: 03-487-8088

SALES OFFICES/MANUFACTURER'S REPRESENTATIVES

4. KOREA

NAEWAE ELECTRIC CO., LTD.

Room 403, 22Dong Sumin Bldg, #16-1, Hangangro-2ka, Yongsanku, Seoul Korea. Tel: 701-7341~5 Fax: 717-7246

SAMSUNG LIGHT-ELECTRONICS CO., LTD.

149-Jang Sa Dong Jongroku, Seoul Korea Tel: 744-2110, 269-6187/8 Fax: 744-4803

SEGYUNG ELECTRONICS

182-2 Jang Sa Dong Jongroku, Seoul Korea Tel: 272-6811~6 Fax: 273-6597

NEW CASTLE SEMICONDUCTOR CO., LTD.

123-1, Joo Kyo Dong Joongku, Seoul Korea Tel: 274-3220, 3458

HANKOOK SEMICONDUCTOR

1131-9 Kurodong, Kuroku, Seoul Korea Tel: 868-0277~9 Fax: 868-4604

HEAD OFFICE:

9/10FL. SAMSUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA C.P.O. BOX 8233

BUCHEON PLANT:

82-3, DODANG-DONG, BUCHEON, KYUNGKI-DO, KOREA C.P.O. BOX 5779 SEOUL 100

KIHEUNG PLANT: SAN #24 NONGSUH-RI, KIHEUNG-MYUN

YONGIN-GUN, KYUNGKI-DO, KOREA C.P.O. BOX 37 SUWON

GUMI BRANCH: 259, GONDAN-DONG, GUMI, KYUNGSANGBUK-DO, KOREA

SAMSUNG SEMICONDUCTOR INC.: 3725 NORTH FIRST STREET SANJOSE, CA 95134-1708, USA

HONG KONG BRANCH:

13FL. BANK OF AMERICA TOWER 12 HARCOURT ROAD, HONG KONG

TAIWAN OFFICE:

RM 1102, I.T. BLDG, NO. 385 TUN-HWA S, RD, TAIPEI, TAIWAN

SAMSUNG JAPAN CO .:

RM 3108, KASUMIGASEKI BLDG. 2-5, 3-CHOME KASUMIGASEKI CHIYODA-KU, TOKYO, 100 JAPAN TELEX: KORSST K27970 TEL: (SEOUL) 751-2114 FAX: 753-0967

TELEX: KORSEM K28390 TEL: (SEOUL) 741-0066, 662-0066 FAX: 741-4273

TELEX: KORSST K23813 TEL: (SEOUL) 741-0620/7 FAX: 741-0628

TELEX: SSTGUMI K54371 TEL: (GUMI) 2-2570 FAX: (GUMI) 52-7942

TEL: (408) 434-5400 TELEX: 339544 FAX: (408) 434-5650

TEL: (5) 21-0307/9, 21-0300, 23-7764 TELEX: 80303 SSTC HX FAX: (5) 84-50787

TEL: (2) 777-1044/5 FAX: (2) 777-3629

TEL: (03) 581-1816/7585 TELEX: J24244 FAX: (03) 581-7088

SAMSUNG SEMICONDUCTOR EUROPE GMBH: MERGENTHATER ALLEE 38-40 TEL : 0-6

6236 ESCHBORN, W/G.

TEL : 0-6196-90090 FAX: 0-6196-900989 TLX : 4072678 SSED

SAMSUNG (U.K.) LTD.: 6 FL. VICTORIA HOUSE SOUTHAMPTON ROW W.C. 1 LONDON. ENGLAND

TON TELEX: 297987 STARS LG TEL: 831-6951/5 FAX: (01) 430-0096

PRINTED IN KOREA JUNE, 1988