

S3 Vision868 Multimedia Accelerator

53 Incorporated

Mono Pattern Case 2 (Source = CPU, Color Pixels)

This command transfers a rectangular image from the CPU to the display memory through the plane.
It is identical to the Color Pattern Case 2 described earlier except that the Pattern Foreground and
Background Colors registers are programmed, the Bitplane Read Mask register is programmed to select
the same bitplane enabled by the Bitplane Write Mask register when the pattern is written to memory
and the mono pattern flag is set in the ROPMIX register. "through the plane" means the complete color
index is transferred for each pixel, e.g., in 8 bits/pixel mode, one byte is required to transfer one pixel
to memory. The image is stored as an array of pixels arranged in row major fashion (consecutively
increasing memory addresses). The Pixel Control register must be set to AOOOH to select the Fore­
ground Mix register to specify the color source. The color source must be specified as the CPU. ROP
codes without a source operand must not be used. The 8x8 mono pattern must be copied to off-screen
memory on an 8-bit horizontal boundary and its location specified. Bit 12 of the Command register
must be set to 1 (swap ON) for Intel-type architectures. Bit 8 of the Command register must be set to
1 (wait for CPU data) and bits 6 and 5 must also be setto 1 to specify X asthe major axis and a left-to-right
drawing direction. For this example, x1,y1 is the top left corner of the rectangle on the screen. The
height and width of the rectangle (in pixels) are HEIGHT and WIDTH. Doublword CPU writes are
supported by setting bits 10-9 of the Command register to 10b.

Setup:

ES:[PIXEL_CNTL) <= AOOOH
ES:[FRGD_MIX) <= 004XH
ES:[ROPMIX] <= 01XXH
ES:[PAT _FG_COLOR) <= 00000004H
ES:[PAT_BG_COLOR) <= OOOOOOOOH
ES:[RD_MASK) <= 00000001H

Drawing Operation:

; FRGD_MIX is the source for color source
; color source is the CPU, mix type is ignored
; mono pattern flag, XX = ROP code
; foreground color index 4
; background color index 0
; bitplane 0 enabled for reading

31 15 0

ES:[ALT_PAT] <=1 Patx Paty l ; set starting coordinates for pattern

31 15 0

ES:[AL T _STEP) <= 1 x1 y1 l ; set destination starting coordinates

31 15 0

ES:[AL T _PC NT) <=1 WIDTH-1 1 HEIGHT-1l ; rectangle width

Wait for Graphics Engine not busy
ES:[CMD) <= 11001101D0110001b

; loop till bit 9 of 9AE8H register is 0
; ROPBLT (bits 15-13, 11), swap ON (bit 12),
; 32-bit transfers (bits 10-9), wait for CPU data (bit 8),
; always X Major (bit 6) & X Positive (bit 5), draw (bit 4)

COUNT (of image pixel data to transfer) = (See Note)
PIX_TRANS <= IMAGEDATA; Output image data to the Pixel Data Transfer registers for COUNT dwords.

Note

The COUNT of the number of writes required by the CPU is a function of the number of pixels to be
transferred, the width ofthe transfer (8,16 or 32 bits as specified by bits 10-9 ofthe Drawing Command
register (9AE8H)) and the color depth (bits/pixel). The number of pixels transferred per line must be an
even multiple of the transfer width. If this is not the case, the last write per line must be padded with
one or more dummy pixels to meet this requirement. For example, at 4 bits/pixel, each byte holds two

ENHANCED MODE PROGRAMMING 5-41

S3 Vision868 Multimedia Accelerator

53 Incorporated

pixels. If the transfer width is one byte and three pixels are to be transferred per line, two bytes must
be written per line, with the upper nibble of the second byte a dummy pixel. Ifthe transfer width is 16
bits, from one to three dummy pixels may be required to make the number of pixels per line an even
multiple of 16. The number of word writes required per line can be determined from the formula n =
{W+3)/4, with n being truncated to an integer if the result contains a fraction. Thus a six pixel transfer
requires (6+3)/4 = 2.25 = 2 words. This is then multiplied by the height of the the image (in pixels) to
determine the COUNT of words to be transferred. Similar procedures apply to every other combination
of the variables affecting the COUNT. The formulas for all cases are given below, where W is the width
of the image and H is the height of the image, both in pixels.

COUNT for 4 bits/pixel modes

8-bit transfers: COUNT = {W+1)/2 * H bytes
16-bit transfers: COUNT = {W+3)/4 * H words
32-bit transfers: COUNT = {W+7)/8 * H dwords

COUNT for 8 bits/pixel modes

8-bit transfers: COUNT = W * H bytes
16-bit transfers: COUNT = {W+1)/2 * H words
32-bit transfers: COUNT = {W+3)/4 * H dwords

COUNT for 16 bits/pixel modes

8-bit transfers: Do not use this combination
16-bit transfers: COUNT = W * H words
32-bit transfers: COUNT = {W+ 1)/2 * H dwords

COUNT for 32 bits/pixel modes

8-bit transfers: COUNT = Do not use this combination
16-bit transfers: COUNT = 2W * H words
32-bit transfers: COUNT = W * H dwords

5-42 ENHANCED MODE PROGRAMMING

83 Vision868 Multimedia Accelerator

S3 Incorporated

Mono Pattern Case 3 (Source = CPU, Mono Pixels)

This command transfers a rectangular image from the CPU to the display memory across the plane. It
is identical to the Color Pattern Case 3 described earlier except that the Pattern Foreground and
Background Colors registers are programmed, the Bitplane Read Mask register is programmed to select
the same bitplane enabled by the Bitplane Write Mask register when the pattern is written to memory
and the mono pattern flag is set in the ROPMIX register. "across the plane" means that each bit sent
by the CPU is stored in display memory as a single pixel. These pixels are arranged in rowmajorfashion
(consecutively increasing memory addresses). An "across the plane" transfer is created by (1) setting
bits 7-6 of the Pixel Control register to A080H to specify the CPU as the source of the mask bit selecting
the mix register, (2) specifying a background and foreground color, (3) setting bit 8 of the Command
register (9AE8H) to 1 (wait for CPU data) and (4) setting bit 1 ofthe Command register to 1 (multi-pixel).
ROP codes without a source operand must not be used. The 8x8 mono pattern must be copied to
off-screen memory on an 8-bit horizontal boundary and its location specified. When the pattern bit sent
by the CPU is a 1, the Foreground Mix register specifies the the color source and mix. When the bit is
a 0, the Background Mix register specifies the color source and mix. For this example, x1.y1 is the top
left corner of the rectangle on the screen. The height and width of the rectangle (in pixels) are HEIGHT
and WIDTH. The monochrome image is translated so that pixels corresponding to a 1 in the bit image
are given color index 4 and pixels corresponding to a 0 in the bit image are given color index O. This
example uses word transfers from the CPU as specified by setting bits 10-9 of the Command register
to 01 b for a 16-bit bus width.

Setup:
31 15 0

ES:[AL T _MIX] ¢= 1'---0-0-2X-H---''---0-00-X-H-] ; FRGD_COLOR is color source
; BKGD_COLOR is color source

; foreground color index 4 ES:[FRGD_COLOR] ¢= 00000004H
ES:[BKGD_COLOR] ¢= OOOOOOOOH
ES:[PIXEL_CNTL] ¢= A080H
ES:[ROPMIX) ¢= 01XXH
ES:[PAT_FG_COLOR) ¢= 00000004H
ES:[PAT_BG_COLOR) ¢= OOOOOOOOH
ES:[RD_MASK) ¢= 00000001H

Drawing Operation:

; background color index 0
; selection of mix register is based on data from the CPU
; mono pattern flag, XX = ROP code
; foreground color index 4
; background color index 0
; bitplane 0 enabled for reading

31 15 0

ES:[ALT_PAT) ¢=I Patx Paty I ; set starting coordinates for pattern

31 15 0

ES:[AL LSTEP) ¢= I x1 y1 I ; set destination starting coordinates

31 15 0

ES:[ALT_PCNT) ¢=I WIDTH-1 I HEIGHT-1 I ; rectangle width

Wait for Graphics Engine not busy
CMD ¢= 11001011D0110011b

; loop till bit 9 of 9AE8H register is 0
; ROPBLT (bits 15-13, 11), swap ON (bit 12),
; 16-bit transfers (bits 10-9), wait for CPU data (bit 8),
; always X Major (bit 6) & X Positive (bit 5), draw (bit 4),
; mUlti-pixel (bit 1)

COUNT (of image pixel data to transfer) = ((WIDTH +15)/16)*HEIGHTwords
PIX_TRANS ¢= IMAGEDATA; Output image data to Pixel Transfer register for COUNT words

ENHANCED MODE PROGRAMMING 5-43

,I. S3 Vision868 Multimedia Accelerator

S3 Incorporated

Notes

The COUNT of the number of writes required by the CPU is a function of the number of pixels to be
transferred and the width of the transfer (B, 16 or 32 bits as specified by bits 10-9 of 9AEBH). Except for
the case where bits 10-9 of 9AEBH are 11b, the number of pixels transferred per line must be an even
multiple of the transfe·r width. If this is not the case, the last write per line must be padded with one or
more dummy pixels to meet this requirement. For example, if the transfer width is B bits and nine
pixels are to be transferred per line, two bytes must be written per line, with the upper 7 bits of the
second byte padded. In general, the number of padding bits per line will vary from 0 to (n-1), where n
is the transfer width in bits.

With a transfer width of B bits, the number of byte writes required per line can be determined from the
formula n = (W+7)/B, with n being truncated to an integer if the result contains a fraction. Thus a 13-bit
pixel transfer requires (13+7)/B = 2.5 = 2 bytes. This is then multiplied by the height of the image (in
pixels) to determine the COUNT of bytes to be transferred. Similar procedures apply to every other
combination of the variables affecting the COUNT. The formulas for all cases are given below, where
W is the width of the image and H is the height of the image, both in pixels.

B-bit transfers: COUNT = (W+7)/B * H bytes (9AEBH_10-9 = OOb)
16-bit transfers: COUNT = (W+ 15)/16 * H words (9AEBH_10-9 = 01b)
32-bit transfers: COUNT = (W+31)/32 * H dwords (9AEBH_10-9 = 10b)
New 32-bit transfers: COUNT = (((W+7)/B*Hl+3)/4 dwords (9AEBH_10-9 = 11b)

The differences between the two 32-bit transfer options are:

1. For 9AEBH_10-9 set to 10b, every line of the transfer must start with a fresh doubleword. In other
words, all unneeded bits in a doubleword transfer for a given line are discarded. After a rectan­
gular image is transferred, the current drawing position is a the bottom left, meaning the next
rectangle, if drawn, will be below the previous rectangle.

2. For 9AEBH_10-9 set to 11 b, only bits from the end of the line width to the next byte boundary are
discarded. Data for the next line begins with the next byte. After a rectangular image is trans­
ferred, the current drawing position is a the top right, meaning the next rectangle, if drawn,
will be to the right of the previous rectangle.

To write to a single plane, setthe foreground mix to 'logical one' (0002H), the background mixto 'logical
zero' (0001H), and the Write Mask register (AAEBH) to select the desired (single) plane for updates.

5-44 ENHANCED MODE PROGRAMMING

S3 Vision868 Multimedia Accelerator

S3 Incorporated

5.4.3.19 Programmable Hardware Cursor

A programmable cursor is supported which is compatible with the Microsoft Windows (bit 4 of CR55
~ 0) and Xll (bit 4 of CR55 ~ 1) cursor definitions. The cursor size is 64 pixels wide by 64 pixels high,
with the cursor pattern stored in an off-screen area of display memory. Two monochrome images 64
bits wide by 64 bits high (512 bytes per image) define the cursor shape. The first bit image is an AND
mask and the second bit image is an XOR mask. The following is the truth table for the cursor display
logic.

AND Bit XOR Bit Displayed (Microsoft Windows) Displayed (X11)

0 0 Cursor Background Color Current Screen Pixel
0 1 Cursor Foreground Color Current Screen Pixel

1 0 Current Screen Pixel Cursor Background Color
1 1 NOT Current Screen Pixel Cursor Foreground Color

The hardware cursor color is taken from the Hardware Graphics Cursor Foreground Stack (CR4A) and
the Hardware Graphics Cursor Background Stack (CR4B) registers. Each ofthese is a stack ofthree 8-bit
registers. The stack pointers are reset to 0 by reading the Hardware Graphics Cursor Mode register
(CR45). The color value is then programmed by consecutive writes (low byte, second byte, third byte)
to the appropriate (foreground or background) register.

Enabling/Disabling the Cursor

The hardware cursor is disabled when a VGA-compatible mode is in use. It can be enabled or disabled
when in Enhanced mode (bit 0 of 4AE8H ~ 1), as follows.

CR39 <=AOH
CR45_0 <= 1
CR45_0 <= 0
CR39 <= OOH

Positioning the Cursor

; Unlock System Control registers
; Enable hardware cursor
; Disable hardware cursor
; Lock System Control registers

The cursor can be positioned at any point on the display, with the X,Y coordinates ranging from 0 to
2047. This enables the full cursor images to be displayed on the screen and partial cursor images to
be displayed at the right edge and the bottom edge of the screen. The cursor offset OX,OY has to be
set to 0,0 for a 1024x768 resolution. If X is > (1024 - 64) or Y is > (768 - 64), then a partial cursor is
visible at the right edge or top edge of the screen respectively. Note that if Y ~ 768 then the cursor is
not visible; it is residing in the off-screen area.

A partial cursor image can be displayed at the left edge or the top edge of the screen. To enable partial
cursor display at the top edge of the screen, Y is set to 0 and the Y offset register is set to OY (range
from 0 to 63). This displays the bottom 64-0Y rows of the cursor image at the currently set X position
and the top edge ofthe screen. Similarly, a partial cursor can be displayed at the left edge of the screen
by setting X to 0 and the X offset register to OX (range from 0 to 63). This displays the right 64-0X
columns of the cursor image at the currently set X and the left edge of the screen. The following
pseudocode illustrates cursor positioning.

CR39 <= AOH
CR46_10-8 <= MS 3 bits of X cursor position
CR47 _7-0 <= LS 8 bits of X cursor position

; Unlock System Control registers

ENHANCED MODE PROGRAMMING 5-45

S3 Incorporated

CR49_7-0 <= LS 8 bits of Y cursor position
CR4E_5-0 <= Cursor Offset X position
CR4F _5-0 <= Cursor Offset Y position
CR48_10-8 <= MS 3 bits of Y cursor position
CR39 <= OOH

S3 Vision868 Multimedia Accelerator

; Lock System Control registers

The cursor position is updated by the hardware once each frame. Therefore, the programmer should
ensure that the position is re-programmed no more than once for each vertical sync period.

Programming the Cursor Shape

The AND and the XOR cursor image bitmaps are 512 bytes each. These are stored in consecutive bytes
of off-screen display memory, 512 AND bytes followed by 512 XOR bytes. The starting location must
be on a 1024-byte boundary. This location is programmed into the Hardware Graphics Cursor Start
Address registers (CR4C and CR4D) as follows:

CR39 <= AOH ; Unlock System Control registers
CR4C_5-8 <= MS 4 bits of the cursor storage start 1024-byte segment.
CR4D <= LS 8 bits ofthe cursor storage start 1024-byte segment
CR39 <= 0 ; Lock System Control,registers

The value programmed is the 1024-byte segment of display memory at which the beginning of the
hardware cursor bit pattern is located. For example, for an 800x600x8 mode on a 1 MByte system,
there are 10241 K segments. Programming CR4C_11-8with 3H and CR4D with FEH specifies the starting
location as the 1022nd (O-based) 1 K segment. The cursor pattern is programmed (using linear
addressing) at FF800H offset from the base address of the frame buffer.

Note

If the cursor is not 64 bits by 64 bits, the given images should be padded to make the cursor image 64
bits by 64 bits. The padded area should be made transparent by padding the extra AND mask bits with
'1's and the extra XOR bits by'O's.

5.5 RECOMMENDED READING

Graphics Programming for the 8514/A by Jake Richter and Bud Smith (M&T Publishing, Inc) provides
extensive explanations and examples for programming most of the bits in the S3 Enhanced Registers.

Although not released at the time this data book was printed, the 3rd edition of Programming Guide
to the EGA and VGA Cards by Richard F. Ferraro (Addison-Wesley Publishing Company, Inc) is
scheduled to include a section on programming for S3 accelerator chips.

5-46 ENHANCED MODE PROGRAMMING

S3 Vision868 Multimedia Accelerator

53 Incorporated

Section 6: Video Engine

This section describes the Video Engine provided
by the VisionS6S. The Video Engine registers are
described in Section 2.

6.1 VIDEO ENGINE OVERVIEW

The Video Engine obtains pixel data either from
video memory or the CPU, operates on it and
then writes to display memory. Particular pixels
in memory can be masked off from being up­
dated by the video data. The operations the Video
Engine can perform are scaling (both horizontal
and vertical), color space conversion (YUV to
RGB) and dithering (reduce color depth from 24
bits/pixel to 16, 15 or S bits/pixel). The legal input
output combinations are listed in Table 6-1. The

input and output bit settings are for SOSSH_22-20
and SOSSH_1S-16 respectively.

The Video Engine processes one pixel per MCLK
regardless of the pixel depth. Input and output
FIFOs allow burst/block transfers from and to
memory to improve throughput.

New MMIO operation (bits 4-3 of CR53 set to 11 b)
is required for Video Engine access. If big endian
addressing is required, bits 2-1 of CR53 control
byte swapping.

The Video Engine cannot be used when the Vi­
sionS6S is being operated in packed 24 bits/pixel
mode (bits 5-4 ofCR50 set to 10b).ltdoes not take
advantage of 1-cycle EDO or burst mode memory
operation if one of these is specified (bits 3-2 of

Table 6-1 Video Engine Input/Output Combinations

Output
Width

Input Format

000 8 RGB332
011 32 RGB888
100 16 VC/VUV

422

101 16 raw

110 16 RGB555
111 16 RGB565

S = Scaling
C = Color Space Conversion
D = Dithering

000 011
8 32

RGB332 RGB888

S No

SID S

S/C/D SIC

No No

SID S

SID S

100 101 110 111

16 16 16 16

VC/ raw RGB555 RGB565
VUV442
No No No No

No No SID SID
S No S/C/D S/C/D

No S No No

No No S S

No No S 5

VIDEO ENGINE 6-1

53 Incorporated

CR36 set to 10b or 11 b. Instead, it will use stand­
ard fast page or EDO cycles.

The Video Engine and the Graphics Engine must
not be in use at the same time. To ensure this,
the Video Engine NOP register (SOSOH) must be
written to after all Video Engine data/commands
have been written. Similarly, a Graphics Engine
NOP must be executed after a Graphics Engine
access before the Video Engine can be written to
again.

6.2 SCALING

Bit 31 of SOSCH is cleared to 0 to specify a stretch
and set to 1 to specify a shrink. Bit 30 of SOSCH is
cleared to 0 to specify display memory as the
data source and set to 1 to specify the CPU as the
data source. If display memory is the data source,
the starting address for the data is specified in
S09SH. The amount of stretch or shrink is speci­
fied by programming source and destination
steps in S090H and also programming the follow­
ing DDA parameters.

The internal digital differential analyzer (DDA) is
programmed by specifying the DDA accumulator
initial value in bits 11-0 of SOSSH and the K1 and
K2 constants via bits 10-0 and 26-16 of SOSCH.

The input data format is specified via bits 22-20
of SOSSH. If 100b is specified, bit 19 of SOSSH is
cleared to 0 to specify YCbCr and set to 1 to
specify YUV.

A single pass through the Video Engine produces
a one-dimensional stretch or shrink (horizontal or
vertical). This can be written directly to on-screen
memory. A two-dimensional scaling requires
two passes. The first pass writes the one-dimen­
sionally scaled data to off-screen memory. The
second pass BitBl Ts the off-screen image to on­
screen memory while performing the scaling in
the other dimension. Both the amount of scaling
and the dimension (horizontal or vertical) are
controlled by the step constants programmed
into S090H.

Vertical scaling requires much more bandwidth
than horizontal scaling. Therefore, vertical scal­
ing should be done during the first pass and
horizontal scaling during the second pass for

6-2 VIDEO ENGINE

S3 Vision868 Multimedia Accelerator

stretching. The reverse is true for shrinking the
image.

If filtering is required, it is enabled via bit 31 of
SOSSH. The type of filtering is specified via bits
15-14 of SOSCH.

The output data format is specified via bits 1S-16
ofSOSSH.lfthe output is S bits/pixel RGB, setting
bit 2S of SOSSH to 1 palettizes the data, i.e., each
byte is a color look up table (lUT) address. This
output protects the upper and lower 10 lUTslots,
which are used for system colors. Therefore, it
maps certain adjacent pairs of data values to the
same lUT address so that all 256 values generate
a non-protected color.

The output can be cropped by specifying a start
value and length in S094H. Alternately, the output
can be masked against a mask pattern stored in
main (system) memory. This is enabled by set­
ting bit 26 of SOSSH to 1. The mask contains one
bitforeach pixel in on-screen memory. The mask
data must be sent by the CPU just prior to proc­
essing ofthe relevant screen pixels.

If bit 29 of SOSCH is cleared to 0, a bit value of 1
in the mask allows the video to overwrite the
graphics pixel and a value of 0 protects the graph­
ics pixel from being overwritten. If this bit is set
to 1, the effect is reversed.

6.3 COLOR SPACE CONVERSION

Either YUV or YCbCr 4-4-2 input can be converted
to RGB format. YUV/YCbCr input is selected by
setting bits 22-20 ofSOSSH to 100b. YUVorYCbCr
is selected via bit 19 of SOSSH (YUV = 1; YCbCr =
0). The output data format is selected via bits
1S-16 of SOSSH. This can be RGB-S (=OOOb), RGB-
15 (=110b), RGB-16 (=111 b) or RGB-32 (=011 b).

YUV/YCbCr data can be scaled before it is con­
verted. If two pass scaling is being performed,
color space conversion should be done during
the horizontal pass.

6.4 DITHERING

Ifthe bits/pixel (color depth) ofthe data in display
memory is less than the input data (or the gener-

S3 Incorporated

ated output of a color space conversion), the data
must have its color depth reduced to match that
used in display memory. This is called dithering.
24 bits/pixel can be dithered to 16, 15 or 8
bits/pixel. 16 or 15 bits/pixel can be dithered to 8
bits/pixel.

When the final output is 8 bits/pixel, the pixel
value is an index into a 256 position color look up
table (LUT). Windows uses the top and bottom
10 colors for its system colors. To avoid overwrit­
ing these colors, the Video Engine maps its 256
color values into the 236 LUT positions not used
by Windows. The lost color values are spread
evenly over the range to minimize the effect.

Dithering is enabled by setting bit 29 of 8088H to
1. The dithering matrix index must be pro­
grammed via bits 25-23 of 8088H.

Dithering is done after scaling and color space
conversion. As with color space conversion, it
should be done in the horizontal pass of a two
pass scaling operation.

6.5 STATUS

Bit 31 of B09CH is read-only. When set to 1, it
indicates the Video Engine is in use.

S3 Vision868 Multimedia Accelerator

VIDEO ENGINE 6-3

II· S3 Vision868 Multimedia Accelerator

S3 Incorporated

S3 Vision868 Multimedia Accelerator

53 Incorporated

Appendix A: Listing of Raster Operations

The Vision868 supports all 256 triadic raster op­
erations (ROPs) for BitBl Ts as defined by
Microsoft for Windows. The coding for these is
found on the following pages.

The HEX value in the first column is the ROP
code. This value must be programmed into bits
7-0 of D2E8H atthe time that a ROPBl T command
is executed.

The effect of the ROP is shown in reverse Polish
notation in the second column. This is interpreted
as follows:

S = Source bitmap

P = Pattern

D = Destination bitmap

The source bitmap can be either the CPU or the
current screen, as selected via bits 6-5 of either
A2E8H or A6E8H. A CPU source can be either
monochrome or color. A screen source is always
color.

The pattern, if present, is found at the off-screen
memory location specified by EAE8H and
EAEAH. The pattern may be either monochrome
or color, as specified by bit 8 of 02E8H. If the
pattern is monochrome, its background color is
specified by E6E8H and its foreground color by
EEE8H.

The destination bitmap is always the screen. It is
always color (as opposed to monochrome).

The boolean operators used as as follows:

o = bitwise OR

x = bitwise EXCLUSIVE OR

a = bitwise AND

n = bitwise NOT (inverse)

For example, ROP 16H is PSDPSanaxx. The pat­
tern is first ANDed with the source
[PSO(PaS}naxx). The result is inverted and then
AN Oed with the destination [PS((Oa(notPaS}}xx.
This result is EXCLUSIVE ORed with the source.
Finally, the result ofthis is EXCLUSIVE ORed with
the pattern.

Programming using ROPBl Ts is explained in En­
hanced Mode Programming section.

LISTING OF RASTER OPERATIONS A-1

•• r 53 Vision868 Multimedia Accelerator

S3 Incorporated

, HEX In Reverse Polish HEX In Reverse Polish

00 0 2C SPDSoax

01 DPSoon 2D PSDnox

02 DPSona 2E PSDPxox

03 PSon 2F PSDnoan

04 SDPona 30 PSna

05 DPon 31 SDPnaon

06 PDSxnon 32 SDPSoox

07 PDSaon 33 Sn

08 SDPnaa 34 SPDSaox

09 PDSxon 35 SPDSxnox

OA DPna 36 SDPox

08 PSDnaon 37 SDPoan

OC SPna 38 PSDPoax

OD PDSnaon 39 SPDnox

OE PDSonon 3A SPDSxox

OF Pn 38 SPDnoan

10 PDSona 3C PSx
, 11 DSon 3D SPDSonox

12 SDPxnon 3E SPDSnaox

13 SDPaon 3F PSan

14 DPSxnon 40 PSDnaa

15 DPSaon 41 DPSxon

16 PSDPSanaxx 42 SDxPDxa

17 SSPxDSxaxn 43 SPDSanaxn

18 SPxPDxa 44 SDna

19 SDPSanaxn 45 DPSnaon

1A PDSPaox 46 DSPDaox

, 18 SDPSxaxn 47 PSDPxaxn

1C PSDPaox 48 SDPxa

10 DSPDxaxn 49 PDSPDaoxxn

1E PDSox 4A DPSDoax

1F PDSoan 48 PDSnox

20 DPSnaa 4C SDPana

21 SDPxon 4D SSPxDSxoxn

22 DSna 4E PDSPxox

23 SPDnaon 4F PDSnoan

24 SPxDSxa 50 PDna

25 PDSPanaxn 51 DSPnaon

26 SDPSaox 52 DPSDaox

i 27 SDPSxnox 53 SPDSxaxn

28 DPSxa 54 DPSonon

29 PSDPSaoxxn 55 Dn

2A DPSana 56 DPSox

28 SSPxPDxaxn 57 DPSoan
,,,N. MN ... """~W.=,,,""'~ N'N' __ N" __ '·'_"""'''''''''M''',........,.=-M·

A-2 LISTING OF RASTER OPERATIONS

•• r S3 Vision868 Multimedia Accelerator

53 Incorporated

HEX In Reverse Polish HEX In Reverse Polish
58 PDSPoax 84 SDPxna
59 DPSnox 85 PDSPnoaxn
5A DPx 86 DSPDSoaxx
58 DPSDonox 87 PDSaxn
5C DPSDxox 88 DSa
5D DPSnoan 89 SDPSnaoxn
5E DPSDnaox 8A DSPnoa
5F DPan 88 DSPDxoxn
60 PDSxa 8C SDPnoa
61 DSPDSaoxxn 8D SDPSxoxn
62 DSPDoax 8E SSDxPDxax
63 SDPnox 8F PDSanan
64 SDPSoax 90 PDSxna
65 DSPnox 91 SDPSnoaxn
66 DSx 92 DPSDPoaxx
67 SDPSonox 93 SPDaxn
68 DSPDSonoxxn 94 PSDPSoaxx
69 PDSxxn 95 DPSaxn
6A DPSax 96 DPSxx
68 PSDPSoaxxn 97 PSDPSonoxx
6C SDPax 98 SDPSonoxn
6D PDSPDoaxxn 99 DSxn
6E SDPSnoax 9A DPSnax
6F PDSxnan 98 SDPSoaxn
70 PDSana 9C SPDnax
71 SSDxPDxaxn 9D DSPDoaxn
72 SDPSxox 9E DSPDSaoxx
73 SDPnoan 9F PDSxan
74 DSPDxox AO DPa
75 DSPnoan A1 PDSPnaoxn

1 76 SDPSnaox lA2 DPSnoa
77 DSan A3 DPSDxoxn
78 PDSax A4 PDSPonoxn
79 DSPDSoaxxn A5 PDxn
7A DPSDnoax A6 DSPnax
78 SDPxnan i A7 PDSPoaxn
7C SPDSnoax A8 DPSoa
7D DPSxnan A9 DPSoxn
7E SPxDSxo AA D
7F DPSaan A8 DPSono
80 DPSaa AC SPDSxax
81 SPxDSxon AD DPSDaoxn
82 DPSxna AE DSPnao

LISTING OF RASTER OPERATIONS A-3

S3 Vision868 Multimedia Accelerator

S3 Incorporated

HEX In Reverse Polish HEX In Reverse Polish
BO PDSnoa DC SPDnao
B1 PDSPxoxn DD SDno

l B2 SSPxDSxox DE SDPxo
B3 SDPanan DF SDPano
B4 PSDnax EO PDSoa

I B5 DPSDoaxn , E1 PDSoxn
B6 DPSDPaoxx E2 DSPDxax
B7 SDPxan E3 PSDPaoxn
B8 PSDPxax E4 SDPS ax x
B9 DSPDaoxn E5 PDSPaoxn
BA DPSnao \ E6 SDPSanax
BB DSno I E7 SPxPDxan
BC SPDSanax ! E8 SSPxDSxax
BD SDxPDxan E9 DSPDSanaxxn
BE DPSxo

,
EA DPSao l

BF DPSano EB DPSxno l

CO PSa EC SDPao
C1 SPDSnaoxn ED SDPxno
C2 SPDSonoxn EE DSo
C3 PSxn EF SDPnoo
C4 SPDnoa FO P
C5 SPDSxoxn F1 PDSono
C6 SDPnax F2 PDSnao
C7 PSDPoaxn F3 PSno
C8 SDPoa F4 PSDnao
C9 SPDoxn F5 PDno
CA DPSDxax F6 PDSxo
CB SPDSaoxn F7 PDSano
CC S F8 PDSao
CD SDPono
CE SDPnao
CF SPno

I F9 PDSxno
FA DPo

I FB DPSnoo
DO PSDnoa IFC PSo
D1 PSDPxoxn FD PSDnoo
D2 PDSnax j FE DPSoo
D3 SPDSoaxn I FF 1
D4 SSPxPDxax
D5 DPSanan
D6 PSDPSaoxx
D7 DPSxan
D8 PDSPxax
D9 SDPSaoxn

DA DPSDanax I
: DB SPxDSxan I '", '~_""~' ______ "'~_~"m~,~~_,--1

A-4 LISTING OF RASTER OPERATIONS

S3 Vision868 Multimedia Accelerator

S3 Incorporated

• .lJIj ,.-
53 Incorporatad

S3 Vision868 Multimedia Accelerator

S3lncorporated, 2770 San Tomas Expressway, Santa Clara, CA 95051-0968 Tel: 408-980-5400, Fax: 408-980-5444

Printed in USA DB015-A

S3 Incorporated

2770 San Tomas Expwy.

Santa Clara, CA 95051 -0968

Tel: (408) 980-5400

Fax: (408) 980-5444

Printed in U.S.A. on recycled paper
DBOI5-A

