
hyperSPARC:
The Next-Generation SPARC

Introduction

Several years ago, ROSS Technology set itself a goal: to develop the highest-performance
microprocessor in the industry. T his microprocessor had t o have t he f ol lowing: a h igh
degree of manufacturability, upgradeability from prior generation SP ARC CPU modules, and
100% binary compatibility with existing SP ARC software.

The result of this ambitious endeavor is hyperSPARC TM.The hyperSPARC program achieved
every aspect of i ts s tated objectives:

•3 to 5 times the performance of prior-generation SP ARC implementations

•Completely SPARC compatible (V ersion 8 Architecture, Reference Memory Management
Unit (MMU), Level 2 MBus)

•Manufactured using proven CMOS technology and offered in Multi-Die Pa ckaging
(MDP) form

•Implemented as a SPARC-standard MBus module and interchangeable with existing
modules

But hyperSPARC is more than a new microprocessor: hyperSPA RC i s a mi lestone. I t enables
the manufacturers of SPARC systems and boards to continue their market-leading
price/performance pace, while providing software writers with a vehicle for exploiting mul-
ti level paral lel processing. h yperSPARC’s archi tecture a l lows i t t o be used i n a wide r ange
of machines, from mainframes to minicomputers, servers to desktops, laptops to note-
books, making i ts i mpact i n t he SPARC world s igni fi cant.

General Description of Product

hyperSP ARC is designed as a tightly coupled chip set and implemented as a SP ARC MBus
module using Multi-Die Packaging (MDP). Each hyperSPA RC CPU s upports e i ther 256, 512, or
1024 Kbytes of second-level cache, and each module contains one or two CPUs. The chip
set is comprised of the RT620 Central Processing Unit (CPU), the RT625 or RT626 Cache
Control ler, Memory Management, and Tag Unit (CMTU), and four RT627 Cache Data Units
(CDUs) for 256 Kbytes of second-level cache, four RT628 CDUs for 512 Kbytes of second-
level cache, or eight RT628 CDUs for 1 Mbyte second-level cache. The chip set can be con-
figured f or uniprocessing (Level 1 MBus) or mul tiprocessing (Level 2 MBus). F igure 1 i s a
block diagram of the hyperSPA RC c hip s et.

1hyperSPARC: The Next-Generation SPARC

W H I T E
P A P E R

The RT620 is the primary processing unit in hyperSPA RC. T his c hip i s c omprised of an i nte-
ger uni t, a f l oating-point uni t, and an 8-Kbyte, t wo-way, s et-associative i nstruction c ache.
The integer unit contains the ALU and a separate Load/Store data path, constituting two of
the c hip’s f our execution uni ts. T he RT620 a lso i ncludes t he f loating-point uni t and a
branch/cal l uni t (for processing c ontrol t ransfer i nstructions). Two instructions are fetched
every c lock c ycle. I n general , as l ong as t hese t wo i nstructions r equi re d i fferent execution
units and have no data dependencies, they can be launched simultaneously. (It is also pos-
sible t o f etch and d ispatch t wo f loating-point adds or t wo f loating-point mul tipl ies at a
time.) The RT620 c ontains t wo r egister f i les: 136 i nteger r egisters c onfigured as 8 r egister
windows, and 32 s eparate f loating-point r egisters i n t he f loating-point uni t (see Figure 1).

hyperSP ARC’s second-level cache is built around the RT625 or RT626 CMTU, a combined
cache controller and memory management unit that supports shared-memory and symmet-
ric multiprocessing. The RT625 cache controller portion supports 256 Kbytes of cache,
made up of four RT627 CDUs. The RT626 CMTU supports 512 Kbytes or 1 Megabyte of cache
(four or eight RT628 CDUs, respectively). The cache is direct-mapped with 4K tags (RT625)
or 16K t ags (RT626). T he c ache i s physical l y t agged and v i rtual l y i ndexed s o t hat t he
CMTU’s cache coherency logic can quickly determine snoop hits and misses without stalling
the RT620's access to the cache. Both copy-back and write-through caching modes are
supported.

The MMU is a SP ARC Reference MMU with a 64-entry, ful ly set-associative Translation
Lookaside Buffer (TLB) that supports 4096 contexts. The RT625 contains a read buffer (32
bytes deep) and a wri te buffer (64 bytes deep) f or buffering t he 32-byte c ache l i nes i n and

2 hyperSPARC: The Next-Generation SPARC

Figure 1. hyperSPARC Chipset

RT625/
RT626
CMTU

RT620
CPU

RT627/
RT628
CDU

256K, 512K
or 1024K of

Second-Level
Cache

out of t he s econd-level c ache. I t a lso c ontains s ynchronization l ogic f or i nterfacing t he v i r-
tual Intra-Module Bus (IMB) to the SP ARC MBus for asynchronous operation (see Figure 3).

The RT627 is a 16K x 32 SRAM that is custom-designed for hyperSP ARC’s cache requirements
(256-Kbyte c onfiguration). I t i s organized as f our arrays of 16-Kbyte s tati c memory wi th
byte-wri te l ogic, r egistered i nputs, and data-in and data-out l atches (see Figure 4). The
RT628, used in 512-Kbyte and 1-Mbyte cache versions, is organized as four arrays of 32
Kbtyes each. The RT627 and RT628 provide a zero-wait-state cache to the CPU with no
pipel ine penal ty (i .e., s tal ls) f or l oads and s tores t hat hi t t he c ache. T he RT627 i s designed
speci fical ly f or hyperSPARC, s o i t doesn’ t r equi re g lue l ogic f or i nterfacing t o t he RT620
(CPU) and the RT625 (CMTU). The RT628 requires no glue logic to interface to the RT620
and RT626.

The microarchitecture of hyperSP ARC boasts classic RISC and superscalar features for
improving instruction processing throughput. hyperSPARC also employs architectural fea-
tures that differentiate it from other next-generation microprocessor designs. The follow-
ing sections highlight some of hyperSPARC’s most important attributes.

3hyperSPARC: The Next-Generation SPARC

Figure 2. RT620 CPU - Major Functional Blocks

Multilevel Parallelism

hyperSP ARC’s high performance is mainly due to its parallel program execution, which is
based on t he i dea t hat s oftware t asks c an be d issected i nto p ieces a t s everal l evels, and
can run concurrently. Hardware can be designed to take advantage of the parallelism
offered by software. hyperSPARC was designed with this in mind, taking advantage of the
nature o f s oftware.

At t he t op l evel o f hyperSPARC’s paral lel processing model i s t he i ndustry’s most e ffi cient
use of shared-memory multiprocessing support. This VLSI hardware support for connecting
mul tiple CPUs provides a c ost-effecti ve s olution f or c reating a t i ghtl y c oupled mul ti pro-
cessing system. Combining this configuration with a symmetric, multi-threading operating
system provides users with a powerful computing node that has many times the perfor-
mance of a single-CPU system.

Applying the parallel processing model to the microprocessor leads to today’s most sophis-
ticated approach to microprocessor architecture: superscalar. J ust as mul tiple CPUs c an
work i n paral l el t o t ackle s everal t asks a t t he s ame t ime, t he mul ti ple processing e lements
within each of these CPUs can simultaneously execute several instructions. This concept
of dupl i cating p ipel ine and o ther processing l ogic wi thin t he I C, which a l lows mul ti ple
instructions t o be f etched and l aunched, i s wel l s ui ted t o t he s impler RISC design s truc-
tures.

4 hyperSPARC: The Next-Generation SPARC

Figure 3. RT625 CMTU

The combination of parallel program execution at both the process and instruction level is
at t he heart o f t he hyperSPARC architecture. The highly pipelined processing paths for
both the integer and floating-point units add additional processing power to the
hyperSP ARC architecture.

High Frequency of Operation

Fundamentally, hyperSPARC i s bui l t f or s peed. I n order t o f aci l i tate high-clock f requencies,
parti cular attention i s paid t o t he f i ve-stage i nteger and f loating-point p ipel ines, k eeping
them s imple and wel l -balanced. E ach s tage of t he p ipel ine i s c areful l y parti ti oned s o t hat
the number o f gates per s tage are s imi lar, making i t easier t o do process s hrinks f or s cal ing
to higher c lock r ates. I n addi tion, only a s ingle r ising c lock edge i s used t o propagate
instructions through the pipeline stages, because using both clock edges creates more com-
plex timing issues, especial ly for cri tical paths.

hyperSP ARC’s performance scales independently of the external bus (MBus). The
hyperSP ARC chip set is partitioned to allow synchronous or asynchronous operation
through synchronization logic contained in the RT625 and RT626. This decoupling of the
CPU bus from the external bus allows scaling of hyperSP ARC's clock frequency independent
of the memory and I/O subsystems. This provides for longer product life cycles because
upgrades to higher-performance hyperSPARC modules do not require hardware changes to
the underlying system design.

5hyperSPARC: The Next-Generation SPARC

Figure 4. RT627/RT628 Logic Block Diagram

Instruction Scheduling

Instruction s chedul ing and d ispatching i s a c ri ti cal portion of any s uperscalar design.
Optimal instruction scheduling includes minimizing both pipeline stalls and minimizing
conditions that prevent simultaneous instruction launching. These problems are costly for
any RISC machine, but even more so when multiple instructions are being held.

Al l s uperscalar processors are not t he s ame. T he abi l i ty t o f etch and l aunch mul ti ple
instructions i s only a v aluable asset i f i t i s f requently used. C ompi lers c an help r educe t he
occurrences of instructions that can’t be launched together by being aware of hardware
implementation. However, t he s oftware c an only optimize f or t he hardware; i t i s s ti l l t he
job of the microprocessor to reduce the occurrence of sequential instruction launches.

hyperSPARC i s parti tioned i nto f our execution uni ts i n order t o f aci l i tate paral lel process-
ing of major i nstruction t ypes. T hese execution uni ts are t he l oad/store uni t, branch/cal l
uni t, i nteger uni t, and f loating-point uni t. T he f loating-point uni t i s actual ly c omprised of a
queue and two parallel pipelines: an adder and multiplier.

hyperSP ARC fetches two instructions every clock cycle and evaluates them for simultane-
ous launch. hyperSPARC's primary scheduler is invoked for this evaluation and determines
the hardware resources required for processing the instructions, as well as any data
dependencies. This critical juncture in the instruction processing path exposes the
strengths and weaknesses of the microarchitecture.

Poorl y archi tected designs r equi re more f requent s pl i ts o f i nstruction groupings. I nternal
constraints, such as bus design/bandwidth and number of read/write register ports, some-

6 hyperSPARC: The Next-Generation SPARC

Figure 5. Floating-Point Instruction Launching and Its Effect on the Integer Pipeline

FP MUL
INST 4

FP SQRT
FP ADD

INST 5
INST 6

INST 7
INST 8

FP SQRT
FP ADD

FP MUL
INST 4

INST 5
INST 6

INST 4
INST 5
INST 6

INST 4
INST 5
INST 6

INST 4
INST 5
INST 6

FP SQRT to FP Unit
FP ADD to FP Queue

FP MUL to FP Queue
INST 4 to Other Ex Unit

times make it impossible to schedule multiple-instruction launches. These design con-
straints manifest themselves in many ways, most often by restricting simultaneous launch-
es based on t he t ypes o f i nstructions, and/or order o f t he i nstructions, wi thin groupings.
The r esul t i s f requent s equential (i nstead o f s imul taneous) i nstruction l aunches.

hyperSPARC’s abi l i ty t o l aunch mul tiple i nstructions s imul taneously i s not r estri cted by t he
order and type of instructions within groupings. Sequential launch is required when there
are resource conflicts or data dependencies. But, unlike other superscalar designs, any
instruction can occupy any position in the grouping and still be considered for simultane-
ous launch.

hyperSP ARC also provides special support for launching floating-point instructions. The
hyperSP ARC floating-point unit employs two queues: a pre-queue and post-queue.

The post-queue maintains information on instructions currently in execution in either the
floating-point adder or mul tipl ier uni ts. T his i nformation i ncludes t he i nstruction t ype,
address, and s tage of t he p ipel ine f or any g iven c lock, and i t i s r equi red f or exception han-
dl ing t o r ecover t he i nstructions aborted when t he f l oating-point p ipel ine i s f l ushed due t o
a t rap. T his principle i s extended t o a f l oating-point pre-queue, which holds t he s ame
information for up to four instructions aborted when the floating-point instructions are
pending execution (a f loating-point buffer of s orts). The s igni fi cance of t his pre-queue i s
that i t a l lows f loating-point i nstructions t o be s ent o ff t o t he pre-queue f rom t he normal
integer (i .e., l oad/store) i nstruction s tream. T he hyperSPARC scheduler is capable of fetch-
ing and d ispatching any t wo f loating-point i nstructions a t a t ime, s ending both t o t he pre-
queue i n t he s ame c lock c ycle. (If t he f loating-point uni t i s not busy, one of t he i nstructions
actually bypasses the pre-queue and begins final decode and execution immediately; the
other is placed in the pre-queue.) The integer pipeline proceeds uninterrupted to fetch,
decode, and execute more instructions in the next clock cycle. For example, in Figure 5,
the FP MUL, which requires the multiplier occupied by the FP SQRT, is offloaded to the FP
pre-queue s o t hat t he i nteger uni t c an c ontinue i nstruction f etching and l aunching. T his i s
made possible by hyperSPA RC’s dual -level i nstruction decoding, which o ffl oads f inal
instruction decode t o t he f loating-point uni t i tsel f.

Integer mul tipl i cation/division i s new t o SPARC (Version 8). Some next-generation CPUs
offload t his i nteger processing t o t he f loating-point uni t. T his r esul ts i n more c ontention
for t his execution uni t, f urther l imi ting t he c ases i n which s imul taneous i nstruction l aunch
is possible, and imposing an added burden on the compiler and assembly-level program-
mers who wish to write software for optimum performance. In hyperSPA RC, i nteger mul ti-
plies and divides are executed in the integer ALU, removing this workload from the float-
ing-point unit. As more and more applications take advantage of these functions,
hyperSP ARC will not compromise floating-point performance.

hyperSPARC: The Next-Generation SPARC 7

8 hyperSP ARC: The Next-Generation SP ARC

Multiprocessing

Multiprocessing is the key to dramatically higher performance from existing silicon tech-
nology. hyperSPARC provides a glueless, standard interface for tightly coupled multipro-
cessing s ystem archi tectures.

Snoop Mechanism

hyperSP ARC provides a high-performance snoop mechanism to facilitate efficient data
transfers between processors. In a write-invalidate protocol, such as the one implemented
in Level 2 MBus, caches residing on a shared bus must check or “snoop” each address
request to shared memory space. If a cache owns the cache line at the address being
requested, it can respond to the request by copying the data to memory (which will later
forward t he data t o t he r equesting c ache) or i t c an s upply t he data d i rectl y t o t he r equest-
ing processor (cal led d i rect data i ntervention). I n t he c ase of a d i rect data i ntervention
transfer, the cache supplying the data must prevent memory from obtaining the bus and
responding t o t he r equest.

The SP ARC architecture allows a window of MBus clock cycles within which a cache must
assert t he Memory I nhibi t (MIH) s ignal i f i t owns t he r equested c ache l ine (i .e., t here i s a
snoop hi t). T hat window i s A + 2 c ycles t o A + 7 c ycles; t he “ A” r epresenting t he c ycle i n
which the address of the cache line being requested is placed on the MBus. hyperSPARC,
implementing this second-generation multiprocessing design, responds on snoop hits with
MIH i n t he A + 3 c ycle. T his means t hat memory i s f ree t o r espond beginning A + 4 . U sing
the full window allowed by MBus would impose a three-cycle penalty for every memory
access. Responding quickly—even though the MBus specification offers more relaxed tim-
ing—enables a very high-performance memory subsystem to be built around hyperSP ARC.

Cache Architecture

hyperSPARC i s designed as a c hip s et t o t ake advantage o f t he f act t hat processors and
caches perform best when they are tightly coupled. Our designers’ understanding of the
CPU’s relationship with the cache is demonstrated in the RT620’s design, which imposes
only a one-cycle primary cache miss penalty. A pipel ine s tage i s al lotted i n t he RT620 f or
accessing t he s econd-level c ache s o t hat no s tal l i n CPU t hroughput i s r eal i zed i f t he on-
chip c ache i s missed and t he s econd-level c ache i s h i t.

The RT620’s p ipel ine i s a s ix-stage p ipel ine, as s hown i n Figure 6. T he f ourth s tage of t he
pipel ine i s t he Cache s tage, which i s a bui l t-in r ecogni tion of t he l atency of accessing t he
second-level cache. Load and Store instructions cause the RT620 to initiate two accesses:
one to the on-chip 8-Kbyte instruction cache and, at the same time, one to the second-
level c ache. I f t he address f or t he i nstruction i s f ound wi thin t he on-chip c ache, t he access
to t he s econd-level c ache i s c anceled and t he i nstruction i s avai lable a t t he Decode s tage
of t he pipel ine. I f t here i s a miss on t he i nternal c ache, and a hi t on t he s econd-level
cache, t he i nstruction wi l l be avai lable after a one-cycle miss penal ty t hat i s bui l t i nto t he
pipel ine. T he s igni ficance of t his design i s t hat i t a l lows t he pipel ine t o proceed uninter-

rupted as l ong as t he i nstruction accesses h i t e i ther t he on-chip c ache or t he s econd-level
cache, which is 90% and 98% of the time, respectively, f or t ypical workstation appl ications.
Since t he i nteger and f loating-point p ipel ines mi rror t hese f i ve s tages f or r easons of archi-
tectural balance and ease of exception handling, this design enables the RT620 to achieve
its high throughput rate at speeds that would not otherwise be possible.

Pipelining and Data Forwarding

The RT627 and RT628 cache data units (CDUs) borrowed from microprocessor architecture
by implementing data forwarding and a unique single-stage pipeline. This pipeline design
allows the CDUs to keep up with the clock rates of the processor, which i ncludes l atching
the data and wri ting i t i nto t he RAM c ore wi thin a period s horter t han 10 ns. A s c lock r ates
escalate, this task becomes increasingly difficult for an SRAM without moving to smaller,
lower-yielding s i l i con geometries.

For writes into the CDUs, however, only t he address and data are l atched during t he wri te
cycle. The RT620 is then free to continue normal instruction processing. The most time-
consuming portion of the transaction, the write into the RAM core, is delayed until the
next wri te access, where t here wi l l be a guaranteed c ycle avai lable f or t his action.

The obvious drawback of this implementation is the possibility of a read of the data being
held in the latches before the RAM core is updated. The RT627 and RT628 address this
using data forwarding. A comparator incorporated in the CDU compares the address of a
pending write with the incoming read address. If a match occurs, data will be forwarded
from t he i nput data l atches d i rectl y t o output p ins, bypassing t he RAM c ore. I n t hi s way,
the most recent data is always provided by the CDUs.

Special hyperSPARC Features

There are a number of subtle but clever design features implemented in hyperSPARC that
improve performance for common CPU functions. One such feature is the RT620 CPU’s
Fast Constant/Index/Branch capability.

9hyperSPARC: The Next-Generation SPARC

Figure 6. The hyperSPARC Pipeline

FETCH DECODE EXECUTE CACHE WRITE

10 hyperSPARC: The Next-Generation SPARC

Fast Constant and Fast Index

Fast Constant, for example, represents a commonly occurring combination of two ALU
instructions t hat are used t o generate 32-bi t c onstants. S peci fical ly, the SETHI and OR
instruction pai r i s used f requently t o c reate t he 22 h igh-order and 10 l ow-order b i ts,
respectively. (In fact, the current SPARC compilers generate these two instructions from
the pseudo-instruction SET for sufficiently large constants.) When hyperSPARC’s scheduler
encounters these two instructions used for generating a 32-bit constant, it launches them
for execution i n paral lel , as i f t hey were a s ingle i nstruction. T hus, an operation t hat nor-
mal ly t akes t wo c ycles (i .e., t he s etting of t he h igh- and l ow-order b i ts f or t he designated
register) i s r educed t o one c ycle. Fa st I ndex works s imi larl y, combining the SETHI and LD
instructions used t o generate a 32-bi t base address f or array i ndexing.

Fast Branch

Fast Branch is a feature that eliminates waiting for the outcome of a condition-code-setting
ALU i nstruction i n order t o i ni ti ate a branch t arget f etch, s o t hat a branch and associated
ALU instruction can be launched simultaneously. T his occurs when an i nteger branch i s
immediately preceded by an ALUcc instruction type in the instruction packet. In such a
case, the scheduler uses a branch prediction strategy to launch both instructions simulta-
neously (hyperSPARC predicts branch taken). This reduces the number of cycles between
branch r esolution and e i ther (1) t arget i nstruction f etch and execute, i f t he branch i s t aken,
or (2) c ontinued i nstruction processing, i f t he branch i s not t aken.

Block Copy and Block Fill

Block Copy/Block Fill are special features of the RT625 and RT626 CMTU. These are soft-
ware-ini ti ated operations (using t he STA i nstructions wi th s pecial ASIs) t o i ncrease t he per-
formance of data movement in and out of main memory. Taking f ul l advantage of t he
RT625 and RT626’s read and write buffers, these block manipulation functions allow data
to move to and from main memory without having to bring it into cache. This not only
saves t he l atency of f i l l i ng t he c ache, but a lso a l lows t he RT620 t o c ontinue processing at
the same time.

Block Copy copies an entire 32-byte block of data from a cache or main memory location to
another location in main memory. T his i s particularly useful when c opying f i les, databases,
or other large memory blocks to other memory locations. Although the transaction varies
depending on whether the data to be moved is in cache and if it is cacheable or non-
cacheable, t he basic principle i s t he s ame. I f t he data i s being c opied f rom one l ocation t o
another in main memory, f or example, i t i s f i rst r ead i nto t he r ead buffer and t hen t rans-
ferred t o t he wri te buffer, to be written to the specified memory location. While the RT620
must be held during t he r ead of t he 32-byte l ine, i t i s r eleased t o c ontinue processing dur-
ing the RT625 or RT626’s write back to main memory. T his r epresents t he r eal ization t hat
to bring this block into cache is superfluous—no operations are being performed on it.
Block Copy saves more than 10 clock cycles that would be encountered if the block were
read i nto, and t hen out of, c ache.

Block Fill copies into the specified memory location the doubleword embedded in the spe-
cial Block Fil l STA i nstruction. T he Block Fi l l works s imi lar t o t he Block Copy, except that
the read transaction is not required because the source data comes from the processor.
The specified doubleword pattern is written throughout the 32-byte block of memory and is
very useful i n i ni tial i zing l arge b locks of memory. If the Block Fi l l feature were not avai l-
able, this transaction would require the cache line in memory to be written, brought into
cache, modified with a series of instructions, and then written back out to main memory.

Manufacturing

From the beginning, hyperSP ARC was designed for cost-effective manufacturability. The
goal was to make small chips (for cost considerations) behave as if they were one chip (for
the performance r esul ti ng f rom h igh-integration). T he c hip s et was parti ti oned t o do j ust
that. A wel l -archi tected design l i ke hyperSPARC can remove interchip delays from critical
paths s o t hat t he c hip s et performs as wel l as a s ingle c hip, but wi thout t he manufacturing
and testing problems of one huge monolithic die.

hyperSP ARC was designed with very manageable die sizes, the largest (RT620) being less
than 1.5 mi l l i on t ransistors (the RT625 has about 800K t ransistors).

About ROSS Technology . . .

ROSS was i ncorporated i n August 1988 and i s an affi l i ate o f Fuj i tsu, L td. Functioning
autonomously within the Fujitsu corporate umbrella, ROSS is fully responsible for all oper-
ational aspects of i ts SPARC program. Our objective is to drive SPARC, the industry’s domi-
nant RISC architecture, to increased marketshare throughout the 1990’s. We wi l l accom-
plish this by continuing to produce the world’s most architecturally advanced SP ARC micro-
processor products, implemented in world-class CMOS technology, and s panning t he f ul l
performance and price range of computer applications.

SPARC is a registered trademark of SPARC International, Inc. hyperSPA RC i s l i censed exclusively t o ROSS Technology, Inc. SPARCstation and SP ARCserver are licensed exclu-
sively to Sun Microsystems, Inc. Products bearing SP ARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark of
USL, Inc. All other product names mentioned herein are trademarks of their respective owners.

