

Semiconductor Products Division

MODEM PRODUCTS DATA BOOK

MODEM PRODUCTS DATA BOOK

Semiconductor Products Division

©Rockwell International Corporation 1987 All Rights Reserved Printed in U.S.A.

Order No. 1 February, 1987 Rockwell Semiconductor Products Division is headquartered in Newport Beach, California with Field Sales Offices located throughout the United States, Canada, Europe and the Far East. Their listings, plus those of domestic and international representatives and distributors, appear in Appendix A.

Document Type	Product Status	Definition
Product Preview	Formative or Development	The document type contains the general features and/or specifications for a product in definition or development. The features and/or specifications may change in any manner without notice.
Product Summary	Development or Production	This document type contains the general features and/or specifications of a product in development or in production. Additional information is usually available in a separate document, not contained in this book, such as a Designer's Guide.
Data Sheet (Preliminary)	Sampling or Pre-Production	This document type contains preliminary or design-to characteristic data for a product in pre-production. Additional and/or refined characteristic data will be released in subsequent revisions to the document.
Data Sheet	Production	This document type contains final specification information resulting from measured characteristics. This document type is subject to revision if characteristics are further refined during production.
Product Description	Production	This document type contains final specification information resulting from measured characteristics along with additional application aid information. This document type is subject to revision if characteristics are further refined during production.
Application Note	Development or Production	This document type contains application aids in the use of the subject product. Schematics included in an application note are intended to convey system design concepts only.

DEFINITION OF DOCUMENT TYPES

NOTICE

Information furnished by Rockwell International Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Rockwell International for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Rockwell International other than for circuitry embodied in a Rockwell product. Rockwell International reserves the right to change circuitry at any time without notice. All documents in this book are subject to change without notice.

TABLE OF CONTENTS

,

Par	t No./Data Book Page Index	iv
	lem Products— etting Standards in Connectivity	v
Pro	duct Index	vii
1	1200, 2400 bps Data Modems	1-1
	Product Family Overview	1-2
	R212DP Device Set Bell 212A Compatible R212AT Device Set "AT" Command Set Bell	1-3
	212A Compatible	1-5
	R1212 1200 bps Full-Duplex Modem	1-7
	R2424 2400 bps Full-Duplex Modem	1-36
	R201/26DP 2400/1200 bps Data Pump Modem	1-65
	RC1212 V.22 1200 bps Modem	1-82
	RC2424 V.22 bis 2400 bps Modem	1-84
	RDAA Rockwell Data Access Arrangement	
	Module	1-86
2	4800, 9600, 14400 bps Data Modems	2-1
	Product Family Overview	2-2
	R208/201 4800 bps Modem	2-3
	R48DP/208 4800 bps Data Pump Modem	2-25
	R48DP 4800 bps Data Pump Modem	2-47
	R96DP 9600 bps Data Pump Modem	2-68
	R96FT 9600 bps Fast Train Modem	2-90
	R96FT/SC 9600 bps Fast Train Modem with	
	Forward Secondary Channel	
	R144DP V.33 Ultra High Speed Modem	
	R9696DP V.32 Ultra High Speed Modem	2-122
	R1496MM V.33, V.32 Ultra High	
	Speed Modem	2-124
3	Imaging Modems	3-1
	Product Family Overview	3-2
	R24MFX 2400 bps MONOFAX [™] Modem	3-3
	R24BKJ 2400 bps V.26 bis Modem	3-19
	R48MFX 4800 bps MONOFAX Modem	3-35

	R48PCJ 4800 bps PC Communication Modem	3-51
	R24/48MEB Modern Evaluation Board	3-67
	R96PCJ 9600 bps PC Communication Modem	3-80
	R96F 9600 bps Facsimile Modem	3-93
	R96MD 9600 bps Facsimile Modem	
	R144HD 14400 bps Half-Duplex Modem	
	R96MFX 9600 bps MONOFAX Modem	3-144
4	Custom and Private Label Modems	4-1
4		4-1
	Product Line Overview	
	RG224EC 2400 bps Private Label Modem	4-3
	RG208 4800 bps Private Label Modem	4-5
	RGV29FT 9600 bps Private Label Modem	4-7
-	Anniliantian Matan	5-1
5	Application Notes	
	An R6500/11-R2424 Intelligent Modem Design	5-3
	Interfacing Rockwell Signal Processor-Based	
	Modems to an Apple Ile Computer	5-46
	2400/1200/300 bps International Modern Design .	5-50
	Quality of Received Data for Signal	
	Processor-Based Modems	5-83
	R2424 and R1212 Modems Auto Dial and Tone	
	Detection	5-104
	8088 Microprocessor to R1212/R2424 Modem	5-10-
	•	E 114
	Interface	
	High Speed Modems Filter Characteristics	
	R96F Modem Tone Detector Filter Tuning	5-121
	R96F Modem Recommended Receive	
	Sequence for Group 2 Facsimile	5-127
	DTMF Dialing for R24MFX, R48MFX, R24BKJ,	
	or R48BKJ	5-130
-		
A	SPD Regional Offices and U.S./Canada	. .
	Sales Reps	A-1
	SPD Industrial Distributers	A-3
	SPD International Distributers/Sales Reps	A-5
	Notes	A-6

PART NO./DATA BOOK PAGE INDEX

Page

Part No./Description

Part No./Description

Page

R48PCJ 4800 bps PC Communication Modem	3-51
R9696DP V.32 Ultra High Speed Modem	2-122
R96DP 9600 bps Data Pump Modem	2-68
R96F 9600 bps Facsimile Modem	3-93
R96FT 9600 bps Fast Train Modem	2-90
R96FT/SC 9600 bps Fast Train Modem with	
Forward Secondary Channel	2-105
R96MD 9600 bps Facsimile Modem	3-112
R96MFX 9600 bps MONOFAX Modem	3-144
R96PCJ 9600 bps PC Communication Modem	3-80
RC1212 V.22 1200 bps Modem	1-82
RC2424 V.22 bis 2400 bps Modem	1-84
RDAA Rockwell Data Access Arrangement Module	1-86
RG208 4800 bps Private Label Modem	4-5
RG224EC 2400 bps Private Label Modem	4-3
RGV29FT 9600 bps Private Label Modem	4-7

Modem Products Setting Standards in Connectivity

Rockwell International's OEM modem products offer a highly reliable, cost effective solution for your modem needs. Rockwell has been a driving force behind data communications technology for over 30 years. In the early 1950's we introduced our first modem product. We later pioneered the development of many digital signal processing techniques such as automatic adaptive equalization, digital filtering carrier recovery, phase lock loop and quadrature amplitude modulation. In addition to advanced signal processing technology, Rockwell engineers have developed sophisticated analog filtering techniques.

Today, Rockwell is a generation ahead of our competition with the first fully integrated VLSI modems. Whether communicating at 1200, 2400, 4800, 9600 or 14400 bps, we provide products for any dial-up or leased line modem requirement. High speed network control and multiplexers, personal computer and terminals, standalone and custom modems, facsimile and desktop publishing equipment are samples of end user equipment using Rockwell modems.

With the confidence borne of many years experience in the business, Rockwell offers a full five year warranty on all its standard modem modules and components. This guarantee to our customers reinforces Rockwell's commitment to quality and reliability.

Rockwell is the world's largest supplier of original equipment manufacturer (OEM) modems. We are uniquely positioned to provide the highest quality and performance at competitive prices. With extensive pre-and post-sale support from experienced application engineers, doing business with Rockwell combines the advantages of a large, stable supplier with the responsiveness and innovation of a small entrepreneurial firm.

MONOFAX is a trademark of Rockwell International. Microsoft is a registered trademark of Microsoft Corporation. HP and LaserJet are trademarks of Hewlett Packard. Smartcom II is a trademark of Hayes Microcomputer Products, Inc. Microcom Network Protocol and MNP are trademarks of Microcom, Inc CROSSTALK is a registered trademark of Digital Communications Associates, Inc

1200, 2400 bps Data Modems

4800, 9600, 14400 bps Data Modems

Custom and Private Label Modems

Applications Notes

Imaging	Modems	
---------	--------	--

2

PRODUCT INDEX

3

Λ

5

.

SECTION 1 1200, 2400 bps DATA MODEMS

	гауе
Product Family Overview	1-2
R212DP Device Set Bell 212A Compatible	1-3
R212AT Device Set "AT" Command Set Bell 212A Compatible	1-5
R1212 1200 bps Full-Duplex Modem	1-7
R2424 2400 bps Full-Duplex Modem	1-36
R201/26DP 2400/1200 bps Data Pump Modem	1-65
RC1212 V.22 1200 bps Modem	1-82
RC2424 V.22 bis 2400 bps Modem	1-84
RDAA Rockwell Data Access Arrangement Module	1-86

1200, 2400 bps DATA MODEMS Experience Makes a Difference

Rockwell's line of 1200 and 2400 bit-per-second (bps) modem products can easily be incorporated into products requiring high performance, quality and reliability while maintaining a competitive cost advantage. Whether the modem application is internal to a personal computer, or for installation in remote monitoring equipment, Rockwell has a product with the features, form factor and price to meet your requirement.

With the medium speed modem market moving so quickly, time to market is critical. For designers not wishing to develop a custom product, Rockwell offers a Bell 212A and 103 compatible, two-chip set modem with an RS-232-C interface. It also includes the standard "AT" command set in firmware. With minimal external components, such as the FCC-required phone line protection circuitry, a complete modem can be developed within a few weeks. For product designs requiring more flexibility and control, Rockwell offers a standard microprocessor bus (8088 compatible) interface along with user accessible, dual port scratch pad RAM. Together, they allow you to treat the Rockwell modem as a microprocessor peripheral device thus speeding design time. Also, the scratch pad RAM allows the modem to be easily controlled and configured for a wide variety of applications in markets worldwide.

Rockwell also maximizes the design option to develop a single host board and, by plugging in different Rockwell device sets or modules, have a variety of full- or half-duplex, 1200 or 2400 bps modems. Rockwell pioneered this concept with Eurosized modules incorporating DIN connectors. Now, the next generation form factor is available — a module only seven inches square with dual-in-line pins. This DIP module can be handled as any DIP-type integrated circuit during board assembly and wave soldering. Its small size is ideal for extremely dense designs, such as "1/2 card" modems for personal computers. What's more, all medium speed DIP module products are pin compatible and have the same external dimensions. System designers thereby have a smooth, economical upgrade path from the current R1212 and R2424 products to the new RC1212 and RC2424 families.

Model	Data Speed (bps)	PSTN/ Leased Line	2/4-Wire Half/Full-Duplex	Sync/Async	Compliance
R212AT	1200, 0-300	Р	2WFD	Async	Bell 212A, 103 "AT" Command Set
R212DP	1200, 0-300	Р	2WFD	Async	Bell 212A, 103
R1212	1200, 600, 0-300	P/L	2WFD	Sync, Async	CCITT V.22 A/B; Bell 212A, 103
R2424	2400, 1200, 600, 0-300	P/L	2WFD	Sync, Async	CCITT V.22 bis, V.22 A/B; Bell 212A, 103
R201/26DP	2400, 1200	P/L	2WHD, 4WFD	Sync	CCITT V.26, V.26 bis; Bell 201B/C
RC1212	1200, 600, 0-300	P/L	2WFD	Sync, Async	CCITT V.22 A/B, V.21; V.23; Bell 212A, 103
RC2424	2400, 1200, 600, 0-300	P/L	2WFD	Sync, Async	CCITT V.22 bis, V.22 A/B, V.21, V.23; Bell 212A, 103

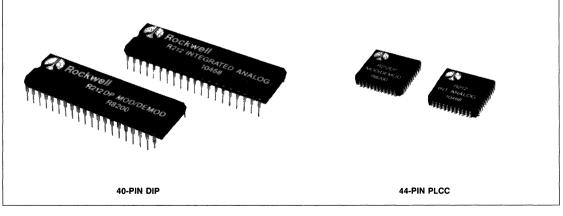
R212DP/DS and R212DP/EB

R212DP Modem Device Set Bell 212A Compatible

INTRODUCTION

The R212DP/DS Data Pump device set is a high performance 1200/300 bps modem. Using state-of-the-art VLSI technology, the R212DP provides the entire modulation/demodulation process, high and low band filtering, and complete auto dialing function in only two devices.

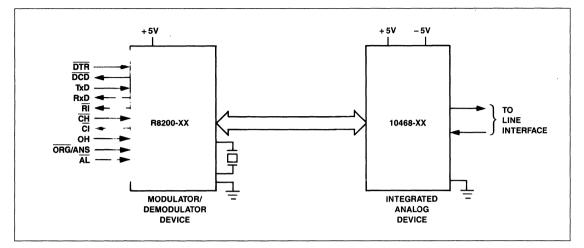
The R212DP is ideal for data transmission over the 2-wire dial-up network. Bell 212A and 103 compatible, the R212DP can handle virtually all applications for full-duplex 1200 bps and 0 to 300 bps asynchronous data transmission over the public switched telephone network (PSTN).


The RS-232-C compatible interface integrates easily into a personal computer, box modem, terminal or any other communications product. The added feature of an integral asynchronous serial auto dialer capable of dialing with DTMF tones or pulses from its 40-byte character buffer offers the user added flexibility in creating a 1200 bps modem customized for specific packaging and functional requirements.

An R212DP/EB Evaluation Board is also available to aid modem system design and evaluation. Included on the printed circuit board are the R212DP/DS modem device set, RS-232-C connector, power connector, an RJ-11 phone jack, six LED indicators, and four configuration switches. The evaluation board comes with an in-depth R212DP Device Set Designer's Guide (Order No. 678) and a wall-mount power supply. All that is required to use the R212DP/EB is an RS-232-C cable connected to a terminal or computer, and a phone cord.

FEATURES

- 2 Device Implementation
 - R8200 Modulator/Demodulator
 10468 Integrated Analog
- Bell 212A and 103 Compatible (2-Wire Full-Duplex)
 Asynchronous
 1200 bps DPSK (+1%, -2.5%)
 - 0-300 bps FSK Auto Fallback, Answer Mode
- DTE Interface


 Functionally: RS-232-C Compatible
 Electrically: TTI
 - Electrically: TTL
- Auto/Manual Answer
- Auto/Manual Dial
- --- DTMF or Pulses --- 0-9 # *, T P CR (ASCII)
- 40-Byte Character Buffer
- 10-Bit Character Length
- Break Generation/Detection
- Send/Receive Space Disconnect
- Automatic Adaptive Equalizer
- Analog Loopback
 0 to 300 bps, 1200 bps
- Packaging Options
 - 40-pin Plastic DIP
 - 44-pin PLCC

R212DP/DS Modem Device Set

R212DP

Data Pump Modem Device Set

R212DP/DS Modem Device Set Interface Diagram

SPECIFICATIONS

Power Consumption

+5 Vdc ±5% <300 mA -5 Vdc ±5% <40 mA 600 mW (typical)

Environmental

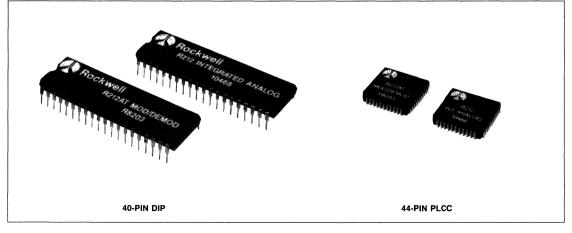
Temperature: Operating 0°C to 70°C Storage -55°C to +150°C Relative Humidity: Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R212AT Modem Device Set "AT" Command Set Bell 212A Compatible

1

INTRODUCTION

The R212AT/DS ("AT" Command Set Compatible) device set is a high performance 1200/300 bps modem. Using state-of-theart VLSI technology, the R212AT provides the entire modulation/ demodulation process, high and low band filtering, and an enhanced "AT" Command Set in only two devices.


The R212AT is ideal for data transmission over the 2-wire dial-up network. Bell 212A and 103 compatible, the R212AT can handle virtually all applications for full-duplex 1200 bps and 0 to 300 bps asynchronous data transmission over the public switched telephone network (PSTN).

The RS-232-C compatible interface integrates easily into a personal computer, box modem, terminal or any other communications product. The added features of the enhanced "AT" Command Set offer the user added flexibility in creating a 1200 bps modem customized for specific packaging and functional requirements. The R212AT can be readily used with industry standard communication software packages.

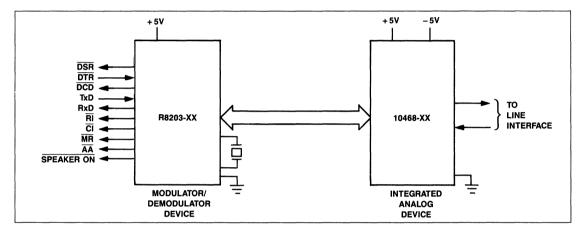
An R212AT/EB Evaluation Board is also available to aid modem system design and evaluation. Included on the printed circuit board are the R212AT/DS modem device set, RS-232-C connector, power connector, two RJ-11 phone jacks, 11 LED indicators, four configuration switches, and a speaker with volume control. The evaluation board comes with a detailed R212AT Device Set Designer's Guide (Order No. 686), and a wall-mount power supply. All that is required to use the R212AT/EB is an RS-232-C cable connected to a terminal or computer, and a phone cord.

FEATURES

- 2 Device Implementation
 - R8203 Modulator/Demodulator
 - 10468 Integrated Analog
- · Bell 212A and 103 Compatible (2-Wire Full-Duplex)
 - 1200 bps DPSK (+1%, -2.5%) asynchronous
 - 0-300 bps FSK asynchronous
 - Auto Fallback, Answer Mode
- Auto/Manual Answer
- Auto/Manual Dial
- "AT" Command Set (see reverse side)
- DTE Interface
 - Functionally: RS-232-C Compatible
 - Electrically: TTL
- Data Format
 - 7 Data Bits; 1 or 2 Stop Bits; Even, Odd, or Fixed Parity
 - 8 Data Bits; 1 or 2 Stop Bits; No Parity
- Automatic Adaptive Equalizer
- Packaging Options
 - 40-pin Plastic DIP
 - 44-pin PLCC

R212AT/DS Modem Device Set

Document No. 29220N83


Order No. 683 Rev. 2, February 1987

R212AT

"AT" Compatible Modem Device Set

Command	Function	Command	Function	Command	Function
AT	Attention Code	Sr=n	Set Register	н	On/Off Hook
A/	Repeat Last Command	V V	Verbal/Numeric		Returns Product Code
Α	Answer		Result Code	M	Speaker On/Off
D	Dial		Pause	0	On Line
R	Reverse Dial		Return to Command	Q	Quiet On/Off
т	Tone Dial		State After Dialing	l z	Reset
Р	Pulse Dial	E	Echo On/Off	+++	Escape Code
Sr?	Read Register				

R212AT/DS Modem Device Set Interface Diagram

Environmental

SPECIFICATIONS Power Consumption +5 Vdc ±5% <300 mA

-5 Vdc $\pm 5\%$ < 300 mA -5 Vdc $\pm 5\%$ < 40 mA 600 mW (typical) Temperature: Operating 0°C to 70°C Storage - 55°C to + 150°C Relative Humidity: Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R1212 Integral Modems

R1212 1200 bps Full-Duplex Modem

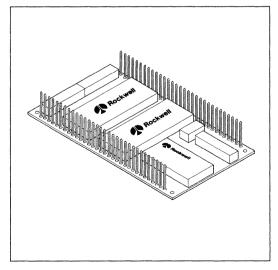
INTRODUCTION

The Rockwell R1212 is a high performance full-duplex 1200 bps modem. Using state-of-the-art VLSI and signal processing technology, the R1212 provides enhanced performance and reliability. The modem is assembled as a small module with a DIN connector (R1212M and R1212DC) or a new, smaller module (seven square inches) with a dual-in-line pin (DIP) interface.

Being CCITT V.22 A, B compatible, as well as Bell 212A and 103 compatible, the R1212 fits most applications for full-duplex 1200 bps (synchronous and asynchronous) and 0 to 300 bps asynchronous data transmission over the general switched telephone network, and over point-to-point leased lines.

The direct-connect, auto dial/answer features are specifically designed for remote and central site computer applications. The bus interface allows easy integration into a personal computer, box modem, microcomputer, terminal or any other communications product that demands the utmost in reliability and performance.

The R1212/DM, with its small form factor and DIP connection, can be automatically installed and soldered onto a host module. Its small size is ideal for internal "1/2-card" PC modem applications. Moreover, the R1212/DM is pin and firmware compatible with the R2424/DM and pin compatible with Rockwell's next generation of medium speed modems, the RC2424 and RC1212.



R1212M Modem

Document No. 29200N10

FEATURES

- CCITT V.22 A, B Compatible
- Bell 212A and 103 Compatible
- Synchronous: 1200 bps, 600 bps ± 0.01%
- Asynchronous: 1200 bps, 600 bps + 1%, -2.5%, 0-300 bps
- Character Length 8, 9, 10, or 11 bits
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C) (Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 - Electrical: TTL Compatible
- 2-wire Full-Duplex Operation
- Adaptive and Fixed Compromise Equalization
- Test Configurations:
 - Local Analog Loopback
 - Remote Digital Loopback
 - Self Test
- Auto/Manual Answer
- Auto/Manual Dial—DTMF Tone or Pulse Dial
- Power Consumption: 2.3 Watts Typical
- Power Requirements: +5 Vdc, ±12 Vdc
- Three Functional Configurations:
- R1212DC (Direct Connect): DIN connector module with FCC approved DAA Part 68 Interface
- R1212M: DIN connector module without DAA
- R1212/DM: DIP connection module without DAA

R1212/DM Modem

Order No. MD10 Rev. 4, February 1987

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER AND SIGNALING FREQUENCIES

The transmitter and signaling frequencies supported in the R1212 are listed in Table 1.

Table 1. Transmitter Carrier and Signaling Frequencies Specifications

Mode	Frequency (Hz ±0.01%)
V.22 low channel, Originate Mode	1200
V.22 high channel, Answer Mode	2400
Bell 212A high channel Answer Mode	2400
Bell 212A low channel Originate Mode	1200
Bell 103/113 Originating Mark	1270
Bell 103/113 Originating Space	1070
Bell 103/113 Answer Mark	2225
Bell 103/113 Answer Space	2025

TONE GENERATION

The specifications for tone generation are as follows:

- Answer Tones: The R1212 generates echo disabling tones for both the CCITT and Bell configurations, as follows:
 a. CCITT: 2100 Hz ± 15 Hz.
 - b. Bell: 2225 Hz ± 10 Hz.
- 2. Guard Tones: If GTS (see Interface Memory Definitions) is low, an 1800 Hz guard tone frequency is selected; if GTS is high, a 553.846 Hz tone is employed. In accordance with the CCITT V.22 Recommendation, the level of transmitted power for the 1800 Hz guard tone is 6 ± 1 dB below the level of the data power in the main channel. The total power transmitted to the line is the same whether or not a guard tone is enabled. If a 553.846 Hz guard is used, its transmitted power is 3 ± 1 dB below the level of the main channel power, and again the overall power transmitted to the line will remain constant whether or not a guard tone is enabled. The device accomplishes this by reducing the main channel transmit path gain by .97 dB and 1.76 dB for the cases of the 1800 Hz and 553.846 Hz guard tones respectively.

1200 bps Full-Duplex Modem

3. DTMF Tones: The R1212 generates dual tone multifrequency tones. When the transmission of DTMF tones are required, the CRQ and DTMF bits (see Interface Memory Definitions)must be set to a 1. When in this mode, the specific DTMF tones generated are decided by loading the dial digit register with the appropriate digit as shown in Table 2.

T-1-1- A

Dial				
Hex	Digits	Tone Pairs		
00	0	941	1336	
01	1	697	1209	
02	2	697	1336	
03	3	697	1477	
04	4	770	1209	
05	5	770	1336	
06	6	770	1477	
07	7	852	1209	
08	8	852	1336	
09	9	852	1477	
0A	*	941	1209	
0B	Spare (B)	697	1633	
0C	Spare (C)	770	1633	
0D	Spare (D)	852	1633	
0E	#	941	1477	
0F	Spare (F)	941	1633	
10	1300 Hz Calling Tone			

TONE DETECTION

The R1212 detects tones in the 340 \pm 5 Hz to 640 \pm 5 Hz band. Detection Level. -10 dBm to -43 dBm Response Time: 17 \pm 2 ms

SIGNALING AND DATA RATES

The signaling and data rates for the R1212 are defined in Table 3.

Operating Mode	Signaling Rate (Baud)	Data Rate
V.22 (Alternative A)		
Mode i	600	1200 bps ±0.01% Synchronous
Mode III	600	600 bps ±0.01% Synchronous
(Alternative B) Mode i Mode III	600 600	1200 bps ±0.01% Synchronous 600 bps ±0 01% Synchronous
Mode ii		1200 bps Asynchronous, 8, 9, 10 or 11 Bits Per Character
Mode iv		600 bps Asynchronous, 8, 9, 10 or 11 Bits Per Character
Bell 212A;	600 0 to 300	1200 bps ±0.01%, Synchronous/Asynchronous 0 to 300 bps Asynchronous

Table 3. Signaling and Data Rates

1200 bps Full-Duplex Modem

DATA ENCODING

The specifications for data encoding are as follows:

- 1200 bps (V.22 and Bell 212A). The transmitted data is divided into groups of two consecutive bits (dibits) forming a four-point signal structure.
- 600 bps (V.22). Each bit is encoded as a phase change relative to the phase preceding signal elements.

EQUALIZERS

The R1212 provides equalization functions that improve performance when operating over low quality lines.

Automatic Adaptive Equalizer—An automatic adaptive equalizer is provided in the receiver circuit for V.22 and Bell 212A configurations.

Fixed Compromise Equalizer—A fixed compromise equalizer is provided in the transmitter.

TRANSMITTED DATA SPECTRUM

After making allowance for the nominal specified compromise equalizer characteristic, the transmitted line signal has a frequency spectrum shaped by the square root of a 75 percent raised cosine filter. Similarly, the group delay of the transmitter output is within \pm 150 microseconds over the frequency range 900 to 1500 Hz (low channel) and 2100 to 2700 Hz (high channel).

SCRAMBLER/DESCRAMBLER

The R1212 incorporates a self-synchronizing scrambler-/descrambler. In accordance with the CCITT V.22 and the Bell 212A recommendations.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R1212 can adapt to received frequency errors of up to \pm 7 Hz with less than a 0.2 dBm degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the R1212 satisfies all specified performance requirements for the received line signals from $-10 \, dBm$ to $-48 \, dBm$. The received line signal is measured at the receiver analog input RXA.

TRANSMIT LEVEL

The R1212M output control circuitry contains a variable gain buffer which reduces the modem output level. The R1212M can be strapped via the host interface memory to accomplish this.

PERMISSIVE/PROGRAMMABLE CONFIGURATIONS

The R1212M transmit level is +6 dBm to allow a Data Access Arrangement (DAA) to be used. The DAA then determines the permissive or programmable configuration.

The R1212DC transmit level is strapped in the permissive mode so that the maximum output level is $-10 \text{ dBm} \pm 1.0 \text{ dBm}$.

AUTOMATIC RECONFIGURATION

The R1212 is capable of automatically configuring itself to the compatibility of a remote modern. The R1212 can be in either the answer or originate mode for this to occur. The R1212 adaptation compatibilities are limited to V.22 A/B (1200 bps), Bell 212, and Bell 103. If the R1212 is to originate in a specific configuration, the MODE bits (see Interface Memory Definitions) must be set.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ). respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, DAA signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The column titled "Type" refers to designations found in the Hardware Circuits Interface Characteristics (Tables 5 and 6). The six groups of hardware circuits are described in the following paragraphs.

1200 bps Full-Duplex Modem

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modem to assume a valid operational state. The modem drives pin 13C to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modem is ready for normal use. The POR sequence is reinitiated anytime the \pm 5V supply drops below \pm 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 μ s. When an external low input is applied to pin 13C, the modem is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to com-

plete. The R1212 POR sequence leaves the modem configured as follows:

- 1200 bps
- Asynchronous
- 10-bit Character Length
- Constant Carrier
- Serial Mode
- Answer Mode
- Auto Answer Disabled
- RAM Access Code = 00

This configuration is suitable for performing high speed data transfer over the public switched telephone network using the serial data port. Individual features are discussed in subsequent paragraphs.

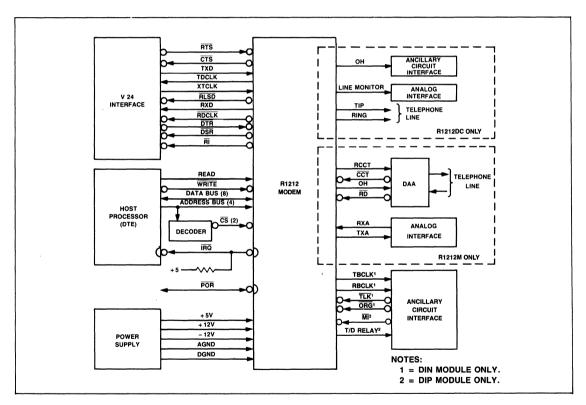


Figure 1. R1212 Modem Functional Interconnect Diagram

Name	Туре	DIN Pin No.	DIP Pin No.	Description
			Fin NO.	Description
A. OVERHE			·	
Ground (A)	AGND	31C, 32C	21, 26, 39	Analog Ground Return
Ground (D)	DGND	3C, 8C, 5A, 10A	20, 40, 51, 60	Digital Ground Return
+5 volts	PWR	19C, 23C, 26C, 30C	1, 19,	+5 volt supply
+ 12 volts	PWR	15A	22	+ 12 volt supply
- 12 volts	PWB	12A	25	- 12 volt supply
POR	I/OB	13C	13	Power-on-Reset
B. MICROPF	OCESSO	R INTERFAC	E SIGNALS	
D7	I/OA	1C	52	4
D6	I/OA	1A	53	
D5	I/OA	2C	54	
D4	I/OA	2A	55	•
D3	I/OA	3A	56	Data Bus (8-Lines)
D2	I/OA	4C	57	+
D1	I/OA	4A	58	
D0	I/OA	5C	59	+
RS3	IA	6C	45	Register Select
RS2	IA	6A	44	(4-Lines)
RS1	IA	7C	43	(+ Lines)
RS0	IA	7A	42	
CS0	IA	10C	48	Chip Select
				Receiver (Baud
				Rate Device)
CS1	IA	9C	41	Chip Select
				Transmitter
				(Sample Rate
				Device)
READ	IA	12C	47	Read Enable
WRITE	IA	11A	49	Write Enable
IRQ	OB	11C	50	Interrupt Request

				r			
Name	Туре	DIN Pin No.	DIP Pin No.	Description			
			Phi NO.	Description			
C. V.24 INTERI	FACE S	SIGNALS					
XTCLK	IB	22A	3	External Transmit			
	{			Clock			
TDCLK	OC	23A	7	Transmit Data Clock			
RDCLK	oc	21A	8	Receive Data Clock			
RTS	IB	25A	4	Request-to-Send			
CTS	OC	25C	5	Clear-to-Send			
TXD	IB	24C	6	Transmit Data			
RXD	00	22C	9	Receive Data			
RLSD	oc	24A	10	Received Line Signal Detector			
DTR	в	21C	12	Data Terminal Ready			
DSR	oc	20A	11	Data Set Ready			
RI	oc	18A	2	Ring Indicator			
D. ANALOG SI	GNALS						
	· · · · ·						
RXA (M)	IB OC	32A 31A	23	Receive Analog Input			
TXA (M)	00	31A	24	Transmit Analog			
TIP/RING (DC)	AE	RJ11 Jacks		Output Phone Line Interface			
LINE		HUTT Jacks	_	Filone Line Internace			
MONITOR (DC)	AD	30A	_	Analog Line Monitor			
E. DAA INTER	ACE S	SIGNALS					
RD (M)	IB	27A	35	Ding Datast			
RCCT (M)	OC	27A 28A	35	Ring Detect Request Coupler Cut			
	00	204	_	Through			
CCT (M)	в	29C	_	Coupler Cut Through			
OH (III)	oc	29A	36	Off-Hook Relay Status			
T/D Relay	oc		37	Talk/Data Relay			
MI	IC	_	38	Manual Input			
F. ANCILLARY	INTER	FACE SIGNA	LS				
	r			Treasure in David Olasti			
TBCLK RBCLK		27C 26A	_	Transmit Baud Clock Receive Baud Clock			
TLK		28A 28C	_	Talk (TLK = Data)			
ORG	IB	26C 16C	_	Originate (ORG =			
ond	10	100		Answer)			
			L				
(M) R1212M Only, (DC) R1212DC Only, = not applicable							

				Input/Ouput Type						
Symbol	Parameter	Units	IA	IB	IC	OA	OB	oc	1/O A	I/OB
VIH	Input Voltage, High	V	2.0 min.	2.0 min.	2.0 min.				2.0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	V	0.8 max.	0.8 max.	0.8 max.				0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	V				2.4 min.1			2.4 min. ²	2.4 min. ³
VoL	Output Voltage, Low	V				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max.⁵
I _{IN}	Input Current, Leakage	μA	±2.5 max.						±2.5 max.4	
I _{OH}	Output Current, High	mA				-0.1 max.				
IOL	Output Current, Low	mA			}	16 max.	1.6 max.	1.6 max.		
L L	Output Current, Leakage	μA]			±10 max.			
I _{PU}	Pull-up Current	μA		– 240 max	– 240 max	1	[- 240 max.		– 260 max.
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min.
CL	Capacitive Load	pF	5	5	20				10	40
C	Capacitive Drive	pF				100	100	100	100	100
-	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open-Drain	3 State	Open-Drain
				w/Pull-up	w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes:	1. I load = $-100 \ \mu A$ 2.	I load	= 16 mA	3. I load =	–40 μA 4.	$V_{\rm IN} = 0.4$ to	2.4 Vdc, V _{CC}	; = 5.25 Vdc	5 I load =	= 0.36 mA

1200 bps Full-Duplex Modem

Table 6. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output impedance is $604\Omega \pm 1\%$ with an output level of + 6 dBm. To obtain a 0 dBm output, a 600Ω load to ground is needed.
RXA	AB	The receiver input impedance is 23.7 K Ω ±1%. The receive level at RXA must be no greater than -9 dBm (or -6 dBm with the 3DB bit enabled).
LINE MONITOR	AD	The line monitor output impedance is 15 K Ω ±5%.
TIP/RING	AE	The impedance of TIP with respect to RING is 600 $\ensuremath{\Omega}.$

V.24 INTERFACE

Eleven hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, +5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Data Terminal Ready (DTR)

DTR prepares the modern to be connected to the communications channel, and maintains the connection established by the DTE (manual answering) or internal (automatic answering) means. DTR OFF places the modern in the disconnect state.

Data Set Ready (DSR)

Data Set Ready $(\overline{\text{DSR}})$ ON indicates that the modem is in the data transfer state. DSR OFF is an indication that the DTE is to

disregard all signals appearing on the interchange circuits except $\overline{\text{RI}}$. $\overline{\text{DSR}}$ will switch to the OFF state when in test state. The ON condition of $\overline{\text{DSR}}$ indicates the following:

- 1. The modem is not in the talk state, i.e., an associated telephone handset is not in control of the line.
- 2. The modem is not in the process of automatically establishing a call via pulse or DTMF dialing.
- 3. The modern has generated an answer tone or detected answer tone.
- After ring indicate (RI) goes ON, DSR waits at least two seconds before turning ON to allow the telephone company equipment to be engaged.

DSR will go OFF 50 ms after DTR goes OFF, or 50 ms plus a maximum of 4 seconds when the SSD bit is enabled.

Request To Send (RTS)

 $\overline{\text{RTS}}$ ON allows the modem to transmit data on TXD when $\overline{\text{CTS}}$ becomes active. In constant carrier mode, $\overline{\text{RTS}}$ can be wired to $\overline{\text{DTR}}$. In controlled carrier operation, independent operation of $\overline{\text{RTS}}$ turns the carrier ON and OFF. The responses to $\overline{\text{RTS}}$ are shown in Table 7 (assume the modem is in data mode).

I	able	7.	RTS	Responses

TS OFF	Carrier ON
	210 to 275 ms Scrambled <u>1 s</u> Transmitted <u>CTS</u> ON
TS OFF arrier ON crambled 1 s ransmitted	CTS ON Carrier ON Data Transmitted
1	rrier ON rambled 1 s

Clear To Send (CTS)

CTS ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. CTS response times from an ON or OFF condition of RTS are shown in Table 8.

Table 8. CTS Response Times

CTS Transition	Constant Carrier	Controlled Carrier
OFF to ON ON to OFF	<2 ms <20 ms*	210 to 275 ms <20 ms*
Note: *Programma		< 20 ms

1200 bps Full-Duplex Modem

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 1200 Hz or 600 Hz (±0.01%).
- 2. Duty Cycle. 50 ± 1%.

TDCLK is provided to the user in both asynchronous and synchronous communications. TDCLK is not necessary in asynchronous communication but it can be used to supply a clock for UART/USART timing (TDCLK is not valid in FSK). TDCLK is necessary for synchronous communication. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (RDCLK) output in the form of a 50 \pm 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a \pm .035% (relative) frequency error in the associated transmit timing source.

RDCLK is provided to the user in both asynchronous and synchronous communications. RDCLK is not necessary in asynchronous communication but it can be used to supply a clock for UART/USART timing (RDCLK is not valid in FSK). RDCLK is necessary for synchronous communication.

Received Line Signal Detector (RLSD)

The RLSD thresholds for both high and low channels are:

 $\frac{\overline{\text{RLSD}}}{\overline{\text{RLSD}}} \text{ ON } \ge -43 \text{ dBm}$ $\overline{\text{RLSD}} \text{ OFF } \le -48 \text{ dBm}$

RLSD will not respond to guard tones or answer tones.

When RLSD is active, it indicates to the terminal equipment that valid data is available on RXD.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Ring Indicator (RI)

The modem provides a Ring Indicator (\overline{RI}) output; its low state indicates the presence of a ring signal on the line. The low condition appears approximately coincident with the ON segment of the ring cycle (during rings) on the communication channel. (The ring signal cycle is typically two seconds ON, four seconds OFF.) The high condition of the \overline{RI} output is maintained during the OFF segment of the ring cycle (between rings) and at all other times when ringing is not being received. The operation of \overline{RI} is not disabled by an OFF condition on \overline{DTR} .

RI will respond to ring signals in the frequency range of 15.3 Hz to 68 Hz with voltage amplitude levels of 40 to 150 Vrms (applied across TIP and RING), with the response times given in Table 13.

This OFF-to-ON (ON-to-OFF) response time is defined as the time interval between the sudden connection (removal) of the ring signal across TIP and RING and the subsequent ON (OFF) transition of $\overline{\text{RI}}$.

Table 9. RI Response Time

RI Transition	Response Time				
OFF-to-ON* ON-to-OFF	110 ±50 ms (50% duty cycle) 450 ±50 ms				
ON-to-OFF 450 ± 50 ms Note: *The OFF-to-ON time is duty cycle dependent: 890 ms (15%) ≥ time ≥ 50 ms (100%)					

MICROPROCESSOR INTERFACE

Seventeen hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select ($\overline{CS0}$ and $\overline{CS1}$) and Register Selects (RS0-RS1)

The signal processor to be accessed is selected by grounding one of two unique chip select lines, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2^3) is RS3 while the least significant address bit (2^0) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2^7) is D7 while the least significant data bit (2^0) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single RM output from a 65XX series microprocessor to the separate READ and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of inter-

1200 bps Full-Duplex Modem

rupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their high impedance state. Because of the open-drain structure of IRQ, an external pull-up resistor to +5 volts is required at some point on the IRQ line. The resistor value should be small enough to pull the IRQ line high when all IRQ drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modem IRQ driver is used, a resistor value of 5.6K ohms $\pm 20\%$, 0.25 watt, is sufficient.

DAA INTERFACE

The R1212M provides a Data Access Arrangement (DAA) interface that is directly hardware and software compatible with the RDAA. Manual/automatic originate and answer are then controlled via the appropriate R1212M hardware ancillary circuits or software control bits. The modem provides the only interface with the microprocessor (MPU) bus, i.e., no RDAA interface signals must be directly controlled from the MPU bus.

Ring Detect (RD)

 $\overline{\text{RD}}$ indicates to the modem by an ON (low) condition that a ringing signal is present. The signal (a 4N35 optoisolator compatible output) into the $\overline{\text{RD}}$ input should not respond to momentary bursts of ringing less than 125 ms in duration, or to less than 40 Vrms, 15 to 68 Hz, appearing across TIP and RING with respect to ground. The ring is then reflected on $\overline{\text{RI}}$.

Request Coupler Cut Through (RCCT)

RCCT is used to request that a data transmission path through the DAA be connected to the telephone line. When RCCT goes OFF (low), the cut-through buffers are disabled and $\overline{\text{CCT}}$ should go OFF (high). RCCT should be OFF during dialing but ON for tone address signaling.

Coupler Cut Through (CCT)

An ON (low) signal to the CCT lead indicates to the modem that the data transmission path through the DAA is connected. This input can always be grounded if the two second billing delay squelch is desired. If CCT is user controlled, the billing delay squelch can only be 2 seconds or greater.

Off-Hook Relay Status (OH)

The modem provides an OH output which indicates the state of the OH relay. A high condition on OH implies the OH relay is closed and the modem is connected to the telephone line (offhook). A low condition on OH implies the OH relay is open (i.e., the modem is on-hook). The delay between the low-to-high or high-to-low transition of OH and the subsequent close-to-open or open-to-close transition of the OH relay is 8 ms maximum.

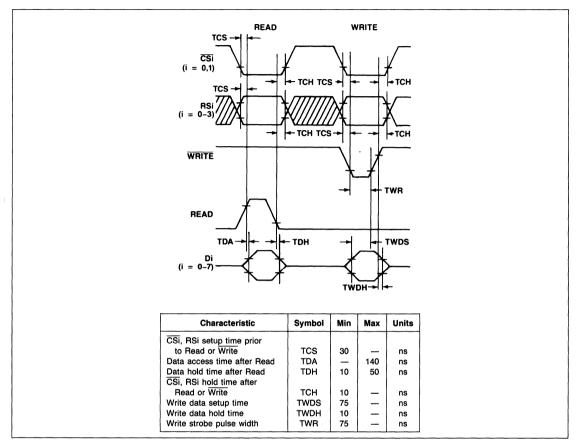


Figure 2. Microprocessor Interface Timing Diagram

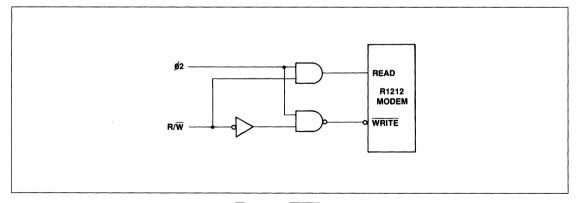


Figure 3. R/W to READ WRITE Conversion Logic

ANALOG SIGNALS (R1212M)

Two connections are devoted to analog audio signals: TXA and RXA.

Transmit Analog (TXA)

The TXA output is suitable for driving a data access arrangement for connection to either leased lines or the public switched telephone network. The transmitter output impedance is 604 ohms \pm 1% with an output level of +6 dBm \pm 1 dBm. To obtain a 0 dBm output, a 600 ohm load to ground is needed.

Receive Analog (RXA)

RXA is an input to the receiver from a data access arrangement. The input impedance is 23.7K ohms \pm 1%. The received level at RXA must be no greater than - 9 dBm (or - 6 dBm with the 3DB bit enabled).

ANALOG SIGNALS (R1212DC)

Three analog signals are output by the R1212DC: LINE MONI-TOR, TIP and RING.

Analog Line Monitor (LINE MONITOR)

The LINE MONITOR output is suitable for a speaker interface. It provides an output for all dialing signals, call progress signals, and the carrier signals. The output impedance is 15K ohms \pm 1%. The signals which appear on LINE MONITOR are approximately the same level as the signals would appear on the network (assuming a 1 dB loss attributed to the audio transformer).

Phone Line Interface (TIP and RING)

TIP and RING are the DAA analog outputs to the public switched telephone network. These outputs use two RJ11 jacks in parallel as the interface to the network (see Table 10 and Figure 4). The R1212DC, which contains the DAA TIP and RING interface, has been FCC Part 68 approved. The user need not apply for further Part 68 approval. The impedance of TIP with respect to RING is 600 ohms.

Table 10. R1212DC Network Interface

Connector Type	Pin Number	Name	Function
RJ11 Jack	3	RING	One Side of TELCO Line
	4	TIP	One Side of TELCO Line

1200 bps Full-Duplex Modem

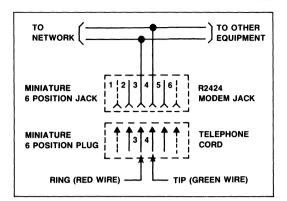


Figure 4. RJ11 Telephone Jack

ANCILLARY CIRCUITS

Transmit Baud Clock (TBCLK) and Received Baud Clock (RBCLK)

TBCLK and RBCLK are provided to the user at the baud rate (600 Hz).

Talk (TLK) (DIN Module Only)

 \overline{TLK} is an input which manually places the modem on-hook (relay open, $\overline{TLK} = 0$) or off-hook (relay closed, $\overline{TLK} = 1$). The on-hook condition is referred to as TALK mode and the off-hook condition is referred to as DATA mode. \overline{TLK} is used with \overline{ORG} to manually originate or answer a call. \overline{TLK} should be 0 at power-on or reset to prevent the modem from inadvertently entering the data mode.

Originate (ORG)

 \overline{ORG} is an input which manually places the modem in the originate mode ($\overline{ORG} = 0$) or the answer mode ($\overline{ORG} = 1$). To manually originate a call, $\overline{ORG} = 0$ and $\overline{TLK} = 0$. Dial the number using the telephone. When the other modem answers and sends answer tone switch the \overline{TLK} input from 0 to 1 placing the modem off-hook.

To manually answer a call \overline{ORG} = 1 and \overline{TLK} = 0. When the phone rings switch the \overline{TLK} input from 0 to 1 placing the modem off-hook.

Off-Hook Relay Status (OH)

The modem provides an OH output which indicates the state of the OH relay. A high condition on OH implies the OH relay is closed and the modem is connected to the telephone line (offhook). A low condition on OH implies the OH relay is open (i.e., the modem is on-hook). The delay between the low-to-high or high-to-low transition of OH and the subsequent close-to-open or open-to-close transition of the OH relay is 8 ms maximum.

T/D Relay. (DIP Module Only)

The T/D Relay signal may be used as a second relay control when the parallel control mode of operation is selected (BUS bits 0 and 1 = 1). If the serial control mode is selected (BUS bits 0 and 1 = 0) the T/D relay follows the status of the OH output signal which is controlled by the Mi signal. In the parallel control mode the OH output signal is controlled by the status of the DATA bit, while independent control of the T/D relay is provided by the Mi signal. During pulse dialing the OH signal reflects the pulse signals being dialed. It is therefore possible to use the T/D Relay signal to control the off-hook relay and use the OH signal to perform pulse dialing on a separate, independent relay.

Manual Input (MI) (DIP Module Only)

 $\overline{\text{MI}}$ is an input which manually places the modem on-hook (relay open, $\overline{\text{MI}} = 0$) or off-hook (relay closed, $\overline{\text{MI}} = 1$). The on-hook condition is referred to as TALK mode and the off-hook condition is referred to as DATA mode. $\overline{\text{MI}}$ is used with $\overline{\text{ORG}}$ to manually originate or answer a call. $\overline{\text{MI}}$ should be 0 at power-on or reset to prevent the modem from inadvertently entering the data mode.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load-/drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on two special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into two areas. These areas are partitioned into receiver and transmitter devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called

1200 bps Full-Duplex Modem

interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 32 addressable registers in the modem receiver (CS0) and transmitter (CS1) interface memory are shown in Figures 5 and 6, respectively. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Figures 7 and 8 show the registers according to the overall function they perform in the receiver and transmitter, respectively. Figures 9 and 10 show the power-on configuration for the R1212 modem receiver and transmitter devices, respectively.

Table 11 defines the individual bits in the interface memory. In the Table 11 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

Bit Register	7	6	5	4	3	2	1	0
F	RAM Access R							
Е	IRQ	ENSI	NEWS	-	NEWC	-	1	-
D	BUS	CRQ	-	-	-	LCD	RSD	-
С	1	-	-	СН	AR	I	-	-
В	-	-	-	-	-	-	-	AL
A	ERDL	RDL	DL	ST		мо	DE	
9	-	-	SPE	ED	-	I	-	—
8	TONE	ATD	-	—	-	-	тм	RLSD
7	-	-	-	-	-	—	-	+
6	-		-	-	-	-	Ŀ	-
5			RAM D	ata YR	M (YRA	MRM)		
4			RAM (Data YF	RL (YRA	MRL)		
3			RAM D	ata XR	M (XRA	MRM)		
2			RAM (Data XF	RL (XRA	MRL)		
1	-	_	-	-	-	-	-	—
0	-	-	-	-	-	-	-	-
	Note (—) Indicates reserved for modem use only.							

Figure 5. Receiver (CSO) Interface Memory Map

Bit Register	7	6	5	4	3	2	1	0
F		DI	AGNO	DSTI	c co	NTR	OL	
E			н	ANDS	В Н А К	E		
D			CON	FIGU	JRAT	ION		
C			CON	I FI G U	RAT	ION		
В			CON	FIGL	JRAT	ION		
A		CONFIGURATION						
9		STATUS						
8		STATUS						
7		RESERVED						
6		RESERVED						
5			D	AGN	OST	С		
4			D	AGN	OST	С		
3		DIAGNOSTIC						
2		DIAGNOSTIC						
1		RESERVED						
0		RESERVED						
Register Bit	7	6	5	4	3	2	1	0

Figure 7. Receiver (CSO) Interface Memory Functions

Bit	7	6	5	4	3	2	1	0
Register	'	0	5	4	3	2		U
F			F	RAM Ac	ccess T			
Ε	IRQ	ENSI	NEWS	-	NEWC	DDEI	-	DDRE
D	BUS	CRQ	DATA	AAE	DTR	-	-	SSD
С	DSRA	тхо	CLK	СН	AR	-	-	DLSF ¹
В	TX LEVEL			GTE	GTS	3DB	DTMF	AL
A	ERDL RDL DL			ST	MODE			
9	NAT ¹	-	ORG	LL	RTS	сс	EF	NTS
8	DLO	CTS	DSR	RI	-	-	-	-
7	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
5			RAM D	ata YT	M (YRA	MTM)		
4			RAM (Data Y1	TL (YRA	MTL)		
3			RAM D	ata XT	M (XRA	MTM)		
2			RAM (Data X1	rl (XRA	MTL)		
1	-	-	-	_	-	-	-	-
0			Dia	al Digit	Regist	er		
	Notes							
	 Not valid before R5312-16 (—) Indicates reserved for modem use only. 							

Figure 6. Transmitter (CS1) Interface Memory Map

Bit Register	7	6	5	4	3	2	1	0
F		DI	AGNO	DSTI	c co	NTR	OL	
E			н	ANDS	В Н А К	E		
D			CON	FIGL	I R A T	1 O N		
С			CON	IFIGU	RAT	ION		
В			CON	FIGL	JRAT	ION		
A		CONFIGURATION						
9		CONFIGURATION						
8	STATUS							
7		RESERVED						
6		RESERVED						
5			D	AGN	оѕт	C		
4			D	AGN	OST	C		
3		DIAGNOSTIC						
2		DIAGNOSTIC						
1		RESERVED						
0		DIAL DIGIT REGISTER						
Register Bit	7	6	5	4	3	2	1	0

Figure 8. Transmitter (CS1) Interface Memory Functions

Bit Register	7	6	5	4	3	2	1	o
F	0	0	0	RAM AG	cess R	0	0	0
E	IRQ	ENSI	NEWS	-	NEWC	-	_	_
D	BUS	CRQ	-	-	-	LCD	RSD	-
с	-	-	_	СН	AR	-	-	-
в	-	-	-	_	-	-	-	AL 0
A			DL 0	ST 0	0	MO	DE 1	1
9	-	-	SPE	ED	-	-	-	-
8			-	-	-		TM	
7	-		-	-	-		-	-
6	-	-	-	-	-	_	-	-
5			RAM	Data YF	RM (Rand	dom)		
4			RAM	Data YF	RL (Ranc	lom)		
3			RAM	Data XF	RM (Rand	dom)		
2			RAM	Data XF	RL (Ranc	lom)		
1	-	-	-	-	-		-	-
0	-	-	-	-	-		-	-
Register Bit	7	6	5	4	3	2	1	0
	(—) li	ndicates	reserve	ed for m	nodem u	se only		

Figure 9. R1212 Receiver (CS0) Interface Memory Power On Configuration

8	P		r					·····
Bit Register	7	6	5	4	3	2	1	o
F	0	0	0	RAM A	cess T 0	0	0	0
E		ENSI 0	NEWS	-	NEWC		-	
D	BUS 0		DATA 0			-	-	SSD 0
с		0	CLK	1	IAR 0	-	-	DLSF 0
В	O T		Lo	GTE 0	GTS	3DB 0		AL 0
A					o	0MO	DE 1	1
9	NAT 0	-	ORG	LL 0	RTS 0	CC 0	EF 0	NTS 0
8	DLO	CTS		Ri 0	-	-	-	-
7	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
5			RAM	Data Y1	'M (Rano	dom)		
4			RAM	Data Y	rL (Ranc	iom)		
3			RAM	Data X1	M (Rand	dom)		
2			RAM	Data X	L (Ranc	lom)		
1	-	_	-		-		-	-
0		Dial	Digit Re	gister (\	Write-On	ly Regi	ster)	
Register Bit	7	6	5	4	3	2	1	0
	(—) lı	ndicates	reserve	ed for m	nodem u	se only	•	

Figure 10. R1212 Transmitter ($\overline{\text{CS1}}$) Interface Memory Power On Configuration

1200 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description
AAE	Auto Answer Enable	1:D:4	When configuration bit AAE is a 1, the modem will automatically answer when a ringing signal is present on the line. When AAE is set to a 1, the modem will answer after one ring and go into data mode.
			The modem goes off-hook 1 second after the on-to-off transition of the ring. The \overline{ORG} pin or ORG bit need not to be set to the answer polarity. If it is desired to answer after more than one ring, then the user must use the alternative answer method described under the DATA bit. The \overline{DTR} pin or the DTR bit must also be set before the modem will auto answer. Writing a 0 into the AAE bit will cause the modem to go on-hook. This will occur only when the modem auto answers using the AAE bit
AL	Analog Loopback	(0,1):B:0	When configuration bits AL are a 1, the modem is in local analog loopback (V.54 Loop 3). In this loop, the transmitter's analog output is coupled to the receiver's analog input at a point near the modem's telephone line interface. An attenuator is introduced into the loop such that the signal level coupled into the receive path is attenuated 14 ± 1 dBm. The modem may be placed into analog loopback in either the idle mode or the data mode. However, in the data mode, setting the AL bits to a 1 will terminate the connection. Analog loopback will only function in the high speed modes (1200, or 600 bps).
			The DTE may be tested when the modem is in analog loopback. Also, all parts of the modem except the line interface are checked. If no DTE is connected, the modem integrity may be verified by use of the self test function. When entering analog loopback, set AL in the receiver to a 1 before setting AL in the transmitter to a 1.
		2	When exiting analog loopback, reset AL in the transmitter to a 0 before reset- ting AL in the receiver to a 0.
ATD	Answer Tone Detected	0:8:6	When status bit ATD is a 1, it signifies that the modem receiver detected the answer tone. The bit is 1 set 75 ms after the answer tone is first detected, and is cleared to a 0 when the modem goes on-hook. The user may clear ATD manually after CTS is active.
BUS	Bus Select	(0,1):D:7	When configuration bits BUS are a 1, the modem is in the parallel control mode; and when 0, the modem is in the serial control mode. BUS can be in either state to configure the modem.
			Serial Control Mode
			The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. The control signals used in serial control mode are DTR, RTS, TLK, and ORG. Outputs such as RLSD and DSR are reflected both in the interface memory and the V.24 interface. Once the bus bits have been set to a 0, the state of the DTR, RTS, DATA, and ORG bits are ignored.
			Parallel Control Mode
			The modem has the capability of modem control via the microprocessor bus. Data transfer is maintained over the serial V.24 channel. The control bits used in parallel control are DTR, RTS, ORG, and DATA
			The modem automatically defaults to the serial mode at power-on.
			If the parallel control mode is to be used, it is recommended that the \overline{TLK} pin be tied to ground. A floating \overline{TLK} pin will assume a logic 1 which will immediately put the modem into the data mode before the BUS bits are set.
			In either mode, the modem is configured by the host processor via the microprocessor bus

Table 11. Interface Memory Definitions

Mnemonic	Name	Memory Location	Description			
сс	Controlled Carrier	1:9·2	When configuration bit CC is a 1, the modem operates in controlled carrier; when 0, the modem operates in constant carrier.			
			Controlled carrier allows the modem transmitter to be controlled by the $\overline{\text{RTS}}$ pin or the RTS bit. Its effect may be seen in the RTS and CTS descriptions.			
CHAR	Character Length Select	(0,1):C:(3,4)	These character length bits select either 8, 9, 10, or 11 bit characters (includes data, stop, and start bits) as shown below:			
			Configuration Word Configuration			
			0 0 8 bits			
			0 1 9 bits			
			1 0 10 bits			
			1 1 1 11 bits			
			It is possible to change character length during the data mode. Errors in the data will be expected between the changeover and the resynchronization (which occurs on the next start bit after the change is implemented).			
CRQ	Call Request	(0,1):D:6	When configuration bit CRQ in chip 1 (the transmitter) is a 1, it places the transmitter in auto dial mode. The data then placed in the Dial Digit Registe is treated as digits to be dialed. The format for the data should be a hex representation of the number to be dialed (if a 9 is to be dialed then an 09_{16} should be loaded in DDR). CRQ in chip 1 should be a 1 for the duration of the data mode. If CRQ in chip 1 is changed to a 0, the modem will go on-hook. Also, see DDRE bit.			
			When configuration bit CRQ in chip 0 (the receiver) is a 1, the receiver goes into tone detect mode. Any energy above threshold and in the 345 to 635 Hz bandwidth is reflected by the TONE bit. CRQ in chip 0 must be reset to a 0 (after the last digit was dialed and tone detection completed) before the answer tone is sent by the answering modem (after ringback is detected). CRQ in chip 0 need not be used during auto dialing, but may be used to provide call progress information as part of an intelligent auto dialing routine An example flowchart is given in Figure 11.			
			FF (hex) should be loaded into the Dial Digit Register after the last digit is dialed and tone detection is completed. This action also puts the modem in data mode and starts a 30 second abort timer. If the handshake has not been completed in 30 seconds the modem will go on-hook.			
CTS	Clear-to-Send	1:8:6	When status bit CTS is a 1, it indicates to the terminal equipment that the modem will transmit any data which are present at TXD.			
			CTS response times from an ON or OFF condition of RTS are shown below:			
			CTS Transition Constant Carrier Controlled Carrier OFF to ON ≤2 ms 210 to 275 ms ON to OFF ≤20 ms* ≤20 ms*			
DATA	Talk/Data	1:D:5	When control bit DATA is a 1, the modem is in the data state (off-hook); and when 0, the modem is in the talk state (on-hook). This bit allows the modem to go off-hook after a programmable number of rings by counting the required number of RI bit transitions and then setting the DATA bit (assuming ORG = 0).			
DDEI	Dial Digit Empty Interrupt	1:E:2	When handshake bit DDEI is a 1, an interrupt will occur when the Dial Digit Register (1:0) is empty (DDRE = 1). This is independent of the state of the ENSI bit. The interrupt will set the IRQ bit and also assert the IRQ signal. Loading the Dial Digit Register with a new digit will clear the interrupt condition.			

Table 11. Interface Memory Definitions (Continued)

Mnemonic	Name	Memory Location	Description
DDR	Dıal Dıgıt Register	1 0:(0–7)	DDR is used to load the digits to be dialed. Example: If a 4 is to be dialed, an 04 (hex) should be loaded. This action also causes the interrupt to be cleared. The modem automatically accounts for the interdigit delay. Note. DDR is a write-only register.
DDRE	Dial Digit Register Empty	1 [.] E:0	When handshake bit DDRE is a 1, it indicates that the dial digit register is empty and can be loaded with a new digit to be dialed. If the DDEI bit is set, the IRQ bit will be set when the DDRE bit is set. Also, the IRQ signal will be generated.
			After the DDR is loaded, DDRE goes to a 0 and the interrupts are automatically cleared.
DL	Digital Loopback (Manual)	(0,1):A·5	When configuration bits DL are set to a 1, the modem is manually placed in digital loopback. DL should only be set during the data mode. The DSR and CTS bits will be reset to a 0. The local modem can then be tested from the remote modem end by looping a remotely generated test pattern. At the remote modem, all interface circuits behave normally as in the data mode.
			At the conclusion of the test, DL must be reset to a 0. The local modem will then return to the normal data mode with control reverting to the DTEs, DTR.
			DL does not function in 300 bps.
DLO	Dial Line Occupied	1:8:7	When status bit DLO is a 1, it indicates that the modem is in the auto dial state, i.e., CRQ in the transmitter is a 1 and the modem is off-hook and ready to dial.
DLSF	Disable Low Speed Fallback	1:C:0	When configuration bit DLSF is a 1, the modem will not automatically fallback to the 300 bps operating mode if it is configured for another data rate. This bit is valid in originate mode only.
DSR	Data Set Ready	1:8:5	The ON condition of the status bit DSR indicates that the modem is in the data transfer state. The OFF condition of DSR is an indication that the DTE is to disregard all signals appearing on the interchange circuits — except RI. DSR will switch to the OFF state when in test state. The ON condition of DSR indicates the following:
			The modem is not in the talk state, i.e., an associated telephone handset is not in control of the line.
			The modem is not in the process of automatically establishing a call via pulse or DTMF dialing.
			The modem has generated an answer tone or detected answer tone.
			After ring indicate goes ON, DSR waits at least two seconds before turning ON to allow the telephone company equipment to be engaged.
	,		DSR will go OFF 50 msec after DTR goes OFF, or 50 msec plus a maximum of 4 sec when the SSD bit is enabled.
DSRA	Data Set Ready in Analog Loopback	1:C:7	When configuration bit DSRA is a 1, it causes DSR to be ON during analog loopback.

Table 11. Inter	ace Memory	Definitions	(Continued)
-----------------	------------	-------------	-------------

1200 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description
DTMF	Touch Tones/Pulse Dialing	1:B·1	When configuration bit DTMF is a 1, it tells the modem to auto dial using tones; and when 0, the modem will dial using pulses.
			The timing for the pulses and tones are as follows (power-on timing):
			Pulses — Relay open 64 ms Relay closed 36 ms Interdigit delay 750 ms
			Tones — Tone duration 95 ms Interdigit delay 70 ms
			The DTMF bit can be changed during the dialing process to allow either tone or pulse dialing of consecutive digits. The output power level of the DTMF tones is as follows:
			\pm 15 dBm \pm 1 measured at TXA for the R1212M - 1 dBm \pm 1 measured at TIP/RING for the R1212DC
DTR	Data Terminal Ready	1:D:3	Control bit DTR must be a 1 for the modem to enter the data state, either manually or automatically. DTR must also be a 1 in order for the modem to automatically answer an incoming call.
			During the data mode, DTR must remain at a 1, otherwise the connection will be terminated if DTR resets to a 0 for greater than 50 ms.
EF	Enable Filters	1:9:1	Setting CRQ in the transmitter to a 1 disables the high and low band filters used in data mode so that call progress tone detection can be done. Setting CRQ in the receiver to a 1 inserts a passband filter in the receive path which passes energy in the 345 Hz to 635 Hz bandwidth. The high and low band filters must be enabled and the passband filter disabled for the answer tone and carrier to be detected. This occurs automatically during the auto dial process when EF is set to a 0. In this case, the high and low band filters are disabled when CRQ in the transmitter is set to a 1. If tone detection is required, CRQ in the receiver should be set to a 1. After dialing and call progress tone detection, CRQ in the receiver is set to a 0 and FF is loaded into the dial digit register. (Loading FF enables the high and low band filters). At this time, the answer tone can be detected. To re-enable the high and low band filters disabled by setting CRQ in the transmitter, set EF to a 1. After CRQ in the transmitter and receiver is set to a 1 and tone detection is completed, it may be necessary to detect the answer tone before loading FF into the dial digit register (see the section on sending 1300 Hz calling tone). At that point, EF can be set to a 1 and CRQ in the receiver set to a 0 so the answer tone can be detected (using the ATD bit) and the 1300 Hz calling tone can still be sent. Once the answer tone is detected, FF should be loaded into the dial digit register and the EF bit set to a 0.
ENSI	Enable New Status Interrupt	(0,1):E:6	When handshake bit ENSI is a 1, it causes an interrupt to occur when the status bits in registers (0:[8,9]) and (1:8) are changed by the modem. (NEWS = 1). The IRQ bit will be set to a 1 and the IRQ signal will be generated. The interrupt is cleared by writing a 0 into the NEWS bit.
ERDL	Enable Response to Remote Digital Loopback	(0,1):A:7	When configuration bits ERDL are a 1, it enables the modem to respond to another modem's remote digital loopback request, thus going into loopback. When this occurs, the modem clamps RXD to a mark; resets the CTS, DSR and RLSD bits to a 0 and turns the CTS, DSR and RLSD signals to a logic 1. The TM bit is set to inform the user of the test status. When the ERDL bits are a 0, no response will be generated.
GTE	Guard Tone Enable	1:B:4	When configuration bit GTE is a 1, it causes the specified guard tone to be transmitted (CCITT configurations only), according the state of the GTS bit. Note: The guard tone will only be transmitted by the answering modem.

Table 11. Interface Memory Definitions (Continued)

	Location	Description					
Guard Tone Select	1:B:3	When configuration bit GTS is a 0, it selects the 1800 Hz tone; when GTE is a 1 it selects the 550 Hz tone. The selected guard tone will be transmitted only when GTE is enabled.					
Interrupt	(0,1):E:7	When status bit IRQ is a 1, it indicates that an interrupt has been generated. The IRQ hardware signal is generated following the setting of the IRQ bit. IRQ is cleared when either the NEWS bit is reset to a 0 or the DDR is loaded with a number.					
Loss of Carrier Disconnect	0:D:2	When configuration bit LCD is a 1, the modem terminates a call when a loss of received carrier energy is detected after 400 ms. After the first 40 ms of loss of carrier, RLSD goes off. 360 ms later, if no carrier is detected, CTS goes off, and the modem goes on-hock. If energy above threshold is detected during the 360 ms period, RLSD will be set to a 1 again. If further loss of energy occurs, the 400 ms time frame is restarted.					
		If LCD is set to a 0, RLSD will be set to a 1 when energy is above threshold but will not force the modem on-hook when energy falls below threshold. In this case, it is necessary to re-enable LCD in order to put the modem on-hool					
		LCD is not automatically disabled in leased line operation. The user must write a 0 into LCD bits for this to occur.					
Leased Line	1:9:4	When configuration bit LL is a 1, the modem is in leased line operation; when 0, the modem is in switched line operation. When LL is set to a 1, the modem immediately goes off-hook and into data mode.					
Mode Select	(0,1):A:(0,3)	These bits select the compatibility at which the modem is to operate, as shown below:					
		Configuration Word					
		<u>3</u> <u>2</u> <u>1</u> <u>0</u> Configuration					
		0 0 1 0 Bell 212A 1200 Sync. 0 0 1 1 Bell 212A 1200 Async.					
		0 0 1 1 Bell 212A 1200 Async. 0 1 0 0 Bell 212A 0 to 300 Async.					
		1 0 0 0 V.22A 1200 Sync.					
		1 0 0 1 V.22B 1200 Async.					
		1 0 1 0 V.22A 600 Sync.					
		1 0 1 1 V.22B 600 Async.					
		NOTE: The Mode bits in both chips should be set exclusively of all other bits, followed immediately by the setting of the NEWC bits. This will ensure proper modem configuration.					
		Automatic Reconfiguration					
		The modem is capable of automatically falling back during the handshake to the compatibility of a remote modem. The modem can be in either the answer or originate mode for this to occur. The compatibilities that the modem are limited to adapt to are V.22 A/B (1200 bps), Bell 212 and Bell 103. If the R1212 is to originate in a specific configuration, the MODE bits must be set.					
		When the answer modem is configured for Bell 300 asynchronous and is called by a 1200 bps modem, the handshake will be completed at 1200 bps.					
No Answer Tone	1:9:7	When configuration bit NAT is a 1, the modem will not transmit the 2100 Hz CCITT answer tone. This bit is only valid for CCITT configurations. With this bit enabled in answer mode, when the modem goes off-hook it will remain silent for 75 ms and then transmit unscrambled ones.					
	Interrupt Loss of Carrier Disconnect Leased Line Mode Select	Interrupt (0,1):E:7 Loss of Carrier Disconnect 0:D:2 Leased Line 1:9:4 Mode Select (0,1):A:(0,3)					

Table 11.	Interface	Memory	Definitions	(Continued)
-----------	-----------	--------	-------------	-------------

1200 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description
NEWC	New Configuration	(0,1):E:3	When the NEWC bit is a 1, it tells the modem that a new configuration has been written into the configuration registers. The modem will then read the configuration registers and then reset NEWC to a 0. NEWC must be set to a 1 after a new configuration has been written into the following registers: (0:[A–D]) and (1:[9–D]). The remaining registers do not require the use of NEWC to tell the modem that new data was written into them.
NEWS	New Status	(0,1):E:5	When handshake bit NEWS is a 1, it tells the user that there has been a change of status in the status registers. The user must write a 0 into NEWS to reset it. This action also causes the interrupt to be cleared.
NTS	No Transmitter Scrambler	1:9:0	When configuration bit NTS is a 1, when the modem is off-hook it will transmit all data in an unscrambled form. This bit should be disabled if the normal modem handshake is desired.
ORG	Originate/Answer	1:9:5	When configuration bit ORG is a 1, the modem is in originate mode; and when a 0 the modem is in answer mode. (This is only valid in manual originate/answer and analog loopback). If ORG is a 1 in analog loopback, the modem will transmit in the high band and receive in the low band. If ORG is a 0 in analog loopback, the modem will transmit in the low band and receive in the high band.
(None)	RAM Access R	0:F:0-7	Contains the RAM access code used in reading RAM locations in chip 0 (receiver device).
(None)	RAM Access T	1:F:0-7	Contains the RAM access code used in reading RAM locations in chip 1 (transmitter device).
XRAMRL	RAM Data XRL	0:2:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 0.
XRAMRM	RAM Data XRM	0:3:0–7	Most significant byte of 16-bit word X used in reading RAM locations in chip 0.
XRAMTL	RAM Data XTL	1:2:0–7	Least significant byte of 16-bit word X used in reading RAM locations in chip 1.
XRAMTM	RAM Data XTM	1:3:0-7	Most significant byte of 16-bit word X used in reading RAM locations in chip 1.
YRAMRL	RAM Data YRL	0:4:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 0.
YRAMRM	RAM Data YRM	0:5:0-7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 0.
YRAMTL	RAM Data YTL	1:4:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 1.
YRAMTM	RAM Data YTM	1:5:0–7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 1.
RDL	Remote Digital Loopback	(0,1):A:6	When configuration bits RDL are a 1, it causes the modem to initiate a request for the remote modem to go into digital loopback. RXD is clamped to a mark and the CTS bit and CTS signal will be reset until the loop is established. The TM bit is not set in this case, since the local modem initiated the request. RDL does not function in 300 bps.
RI	Ring Indicator	1:8:4	When status bit RI is a 1, it indicates that a ringing signal is being detected. The RI bit follows the ringing signal with a 1 during the on time and a zero during the off time coincident with the $\overline{\text{RI}}$ signal. The following are the RI bit response times:
			RI Bit Transition Response OFF-to-ON* 110 ± 50 ms (50% duty cycle) ON-to-OFF 450 ± 50 ms
			*The OFF-to-ON time is duty cycle dependent. 890 ms (15%) \geq time \geq 50 ms (100%)
			This OFF-to-ON (or ON-to-OFF) response time is defined as the time interval between the sudden connection (removal) of the ring signal across TIP and BING and the subsequent transition of the BI bit.

Table 11. Interface Memory Definitions (Continued)

RING and the subsequent transition of the RI bit.

Mnemonic	Name	Memory Location		Descriptio	n	
RLSD	Received Line Signal Detector	0:8:0	When status bit RLSD is a 1, it indicates that the carrier has successfully been received. RLSD will not respond to the guard tones or answer tones. RLSD response times are given below:			
				Constant Carrier	Controlled Carrier	
			RLSD ¹ OFF-to-ON ON-to-OFF	105 to 205 m 10 to 24 ms	s 105 to 205 ms 10 to 24 ms	
			Note: 1. After handshake has o	ccurred.		
RSD	Receive Space Disconnect	0:D:1	When configuration bit RS approximately 1.6 seconds		dem goes on-hook after receiving paces.	
RTS	Request-to-Send 1:9:3 When control bit RTS is a 1, the mod CTS becomes active. In constant carr time as DTR and then left ON. In con operation of RTS turns the carrier ON shown (assume the modem is in data)		onstant carrier mo ON. In controlled carrier ON and	ode, RTS should be set the sam I carrier operation, independent OFF. The responses to RTS are		
			Leased or Dial Line ¹	RTS Off	RTS On	
			Controlled Carrier	CTS OFF Carrier OFF	Carrier ON 210 to 275 ms Scrambled 1's Transmitted CTS ON	
			Constant Carrier	CTS OFF Carrier ON Scrambled 1's Transmitted	CTS ON Carrier ON Data Transmitted	
			Note: 1. After handshake is con	•		
			For ease of use in constant same time as DTR.	nt carrier mode, F	TS should be turned ON the	
SPEED	Speed Indication	0:9:(4,5)	The SPEED status bits reflect the speed at which the modem is operating. The SPEED bit representations are shown.			
				<u>4 5</u>	Speed	
				0 0 0 1	0–300 600	
				10	1200	
			Note: The SPEED bits are not active in analog loopback and leased line mode.			
		× .				

Table 11.	Interface	Memory	Definitions	(Continued)
-----------	-----------	--------	-------------	-------------

1200 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description
SSD	Send Space Disconnect	1:D:0	When configuration bit SSD is a 1, it causes the modem to transmit approximately 4 seconds of spaces before disconnecting, when DTR goes from active to inactive state.
ST	Self Test	(0,1):A:4	When configuration bit ST is a 1, self test is activated. ST must be a 0 to end the test. It is possible to perform self test in analog loopback with or without a DTE connected. During any self test, TXD and RTS are ignored. Self test does not test asynchronous-to-synchronous converter circuits in either the transmitter or receiver.
			Error detection is accomplished by monitoring the self test error counter in the RAM. If the counter increments during the self test, an error was made. The counter contents are available in the diagnostic register when the RAM access code 00 is loaded in the diagnostic control register (0:F).
			Self Test End-to-End (Data Mode)
			Upon activation of self test an internally generated data pattern of alternate binary ones and zeros (reversals) at the selected bit rate are applied to the scrambler. An error detector, capable of identifying errors in a stream of reversals are connected to the output of the descrambler.
			Self Test with Loop 3
			Loop 3 is applied to the modern as defined in Recommendation V.54. Self test is activated and DCE operation is as in the end-to-end test, In this test DTR is ignored.
			Self Test with Loop 2 (Data Mode)
			The modem is conditioned to instigate a loop 2 at the remote modem as specified in recommendation V.54. Self test is activated and DCE operation is as in the end-to-end test.
			ST does not function in 300 bps.
3DB	3 dB Loss to Receive Signal	1:B:2	When configuration bit 3DB is a 1, it attenuates the received signal 3 dB. This is only used if the modem will see 0 dBm or greater line signal at the receiver input. Insertion of the 3 dB loss will then prevent saturation.
тм	Test Mode	0:8:1	When status bit TM is a 1, it indicates that the modem has completed the handshake and is in one of the following test modes: AL or RDL.
TONE	Tone Detect	0:8:7	TONE follows the energy detected in the 340 to 640 Hz frequency band. The user must determine which tone is present on the line by determining the duty cycle of the TONE bit. TONE is active only when CRQ in chip 0 is a 1.
			Detection Range: -10 to -43 dBm Response Time: 17 ±2 ms
TXCLK	Transmit Clock Select	1:C:(5,6)	TXCLK allows the user to designate the origin of the transmitter data clock, as shown below:
			Configuration Word Transmit Clock <u>6</u> 5
			Internal 0 0
			External 1 0
			Slave 1 1 If external clock is chosen the user clock must be input at XTCLK. The clock characteristics must be the same as TDCLK. The external clock will be reflected by TDCLK.
			If slave clock is chosen the transmitter is slaved to the receive clock. This is also reflected by TDCLK.

Table 11. Interface Memory Definitions (Continued)

1200 bps Full-Duplex Modem

Mnemonic	Name	Memory Location				Description
TX LEVEL	Transmit Level	1:B:(5–7)				hange the transmit level at TIP and RING n attenuation in the transmit path).
			Cor	nfigura Word		Transmit Level (± 1.0 dBm)
			<u>7</u>	<u>6</u>	5	(at TIP and RING)
			0	0	0	– 10 dBm
			0	0	1	– 12 dBm
			0	1	0	– 14 dBm
			0	1	1	– 16 dBm
			1	0	0	– 18 dBm
			1	0	1	– 20 dBm
			1	1	0	– 22 dBm
			1	1	1	– 24 dBm

Table 11. Interface Memory Definitions (Continued)

Internal Modem Timing

In a microprocessor environment it is necessary to know how long various functions last or what the response times of certain functions are. Since the modem is a part of the microprocessor environment its timing and response times are necessary. Table 12 provides the timing relationships between interface memory bits and modem functions.

Table 12.	Internal	Modem	Timing
-----------	----------	-------	--------

Parameter	Time Interval			
NEWC bit checked Transmitter Receiver	Once per sample ¹ Once per baud ²			
NEWC bit set by host until modem action.e Transmitter Receiver	≤ One baud time One baud time			
Control, Configuration bits read Transmitter Receiver	Only after NEWC is set ST, RSD—every sample, all others after NEWC set			
Status bits updated Transmitter Receiver	Once per sample Once per baud			
Status change reflected by NEWS, IRQ Transmitter Receiver	MIN < one sample time MAX one sample time MIN one sample time MAX one baud time			
Memory status reflected to modem pin Transmitter Receiver	33.33 μs 33.33 μs			
1. Sample Time = 7200 Hz	2. Baud Time = 600 Hz			

AUTO DIAL SEQUENCE

The following flow chart defines the auto dial sequence via the microprocessor interface memory.

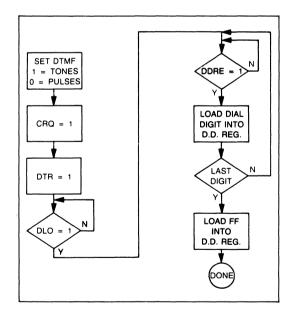


Figure 11. Auto Dial Sequence Flow Diagram

Note: The modem timing for the auto dialer accounts for interdigit delay for pulses and tones.

SIGNAL PROCESSOR RAM ACCESS

RAM AND DATA ORGANIZATION

Each signal processor contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16-bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.

Interface Memory Locations

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit normally transfers a word from RAM to interface memory once each clock cycle of the SP device. In the transmitter, a word is transferred from SP RAM to the interface memory every sample time. In the receiver, a word is transferred from RAM to the interface memory every sample time as well. Each RAM word transferred to the interface memory is 32-bits long. These bits are written by the SP logic unit into interface memory registers 5, 4, 3, and 2. Registers 3 and 2 contain the most significant byte and least significant byte, respectively, of the XRAM data. Registers 5 and 4 contain the most and least significant bytes of YRAM data, respectively.

RAM Access Codes

The SP logic unit determines the SP RAM address to read from, or write to, by the code stored in the RAM Access bits of interface memory register F (RAM Access R in the receiver 0:F and RAM Access T in the transmitter 1:F).

Only the transmitter (chip 1) allows data to be transferred from interface memory to SP RAM. When set to a 1, bit 1:F:7 signals the SP logic unit to disable transfer of SP RAM data to the interface memory, and instead, to transfer data from interface memory to SP RAM. When writing into SP RAM, 32 bits of data in the XRAM and YRAM registers will be written into the appropriate SP RAM location as specified by the RAM access code (82-86) in register 1:F (Table 13). Once the data is written into the RAM

1200 bps Full-Duplex Modem

access register 1:F, the XRAM registers 1:2 and 1:3 or the YRAM registers 1:4 and 1:5, set the NEWC bit 1:E:3 to a 1. This action causes the information to be transferred from interface memory into SP RAM. Bit 7 of register 1:F is cleared to a 0 by the modern after the RAM is read. New data can be written into the SP RAM after the NEWC bit is reset to a 0 by the SP.

Note:

Any transmitter RAM Write operation must always be preceded by a RAM read from the desired location. This is to guarantee that the correct information is written into the 16 unchanged bits, since all transmitter RAM operations are 32 bit transfers with typically only 16 of the bits used.

Both the transmitter and receiver (chips 1 and 0, respectively) allow data to be transferred from SP RAM into the interface memory. A 0 in transmitter bit 1:F:7 enables the SP to transfer 32 bits of data from SP RAM to the XRAM and YRAM registers (16 bits each) in the interface memory as specified by the RAM access code in register 1:F. A 0 in receiver bit 0:F:7 enables the SP to transfer 32 bits of data from SP RAM to the XRAM and YRAM registers (16 bits each) in the interface memory as specified by the access code in register 0:F. To read the SP RAM in chip 1 (transmitter), load into 1:F the RAM access code which identifies the 32 bits of data to transfer to the XRAM and YRAM registers. Next, set the NEWC bit 1:E:3 to a 1. After transferring the data from RAM to the XRAM or YRAM registers, the NEWC bit is reset to a 0 by the SP. Chip 0 (receiver), on the other hand, will provide the XRAM and YRAM data one sample time following the loading of the RAM access code into register 0:F, and will continue to provide the same data at one sample time intervals until a new RAM access code is loaded.

When reading from or writing into RAM, no bits are provided for handshaking or interrupt functions. The NEWC bit can be used as a mechanism to provide sample and baud intervals. Since the NEWC bit is checked, once per baud in chip 0 and once per sample in chip 1, the user can set the NEWC bit and wait for it to be cleared. Depending on which chip the NEWC bit was set, the time interval from the setting to the clearing of the NEWC bit will be either one sample or one baud time. This, however, will not guarantee that the action of reading and writing the XRAM and YRAM will occur in the middle of an actual sample or baud time.

1200 bps Full-Duplex Modem

		RAM Acc	ess Code		
Node	Function	RAM Read	RAM Write	Chip	Reg. No.
1	Demodulator Output	56	-	0	2, 3, 4, 5
2	Low Pass Filter Output	40	-	0	2, 3, 4, 5
3	Input Signal to Equalizer Taps	41–4D	-	0	2, 3, 4, 5
4	AGC Gain Word	14	-	0	2, 3
5	Equalizer Tap Coefficients	010D	-	0	2, 3, 4, 5
6	Equalizer Output	53	-	0	2, 3, 4, 5
7	Rotated Equalizer Output (Received Point Eye Pattern)	11	-	0	2, 3, 4, 5
8	Decision Points (Ideal Eye Pattern)	51	-	0	2, 3, 4, 5
9	Rotated Error	52	-	0	2, 3, 4, 5
10	Rotation Angle	12	-	0	4, 5
11	Phase Error	10	-	0	2, 3
12	Self Test Error Counter	00	-	0	2, 3
	DTMF Tone Duration	02	82	1	4, 5
	DTMF Interdigit Delay	03	83	1	2, 3
	Pulse Interdigit Delay	03	83	1	4, 5
	Pulse Relay Make Time	04	84	1	2, 3
	Pulse Relay Break Time	04	84	1	4, 5
	Handshake Abort Counter	05	85	1	4, 5
	Handshake Abort Timer	06	86	1	2, 3
	CTS Off-Time	07	87	1	2, 3
	All the chip 1 access codes are not valid be Access codes are hexadecimal.	fore R5312-13.			
	Only chip 1 RAM can be written.				
	CTS Off-Time is not valid before R5312-16.				

Table 13. RAM Access Codes

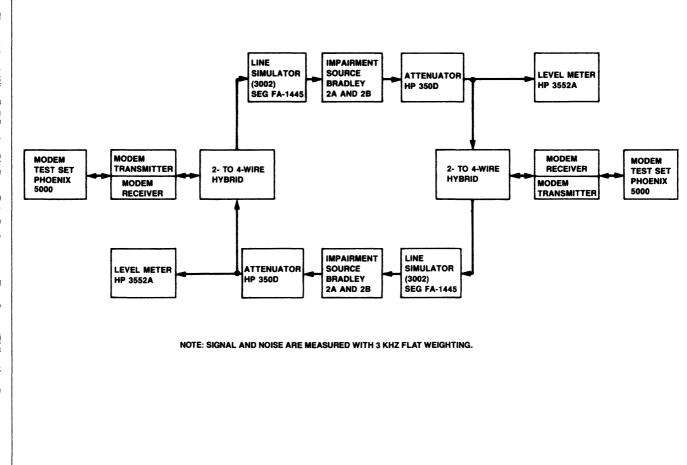
ERROR RATES

Bit error rate (BER) is a measure of the throughput of data on the communication channel. It is the ratio of the number of received bits in error to the number of transmitted bits. This number increases with decreasing signal-to-noise ratio (SNR). The type of line disturbance and the modem configuration affect the BER.

Tables 14 through 16 summarize the BERs for various conditions. Figure 12 shows the BER measurement setup.

Table 14. BER Summa	BER Summarv
---------------------	-------------

R1212		Signal to Noise Ratio		
Data Rate Bit Error Rate		Originate Mode	Answer Mode	
1200 bps	1 × 10 ⁻⁵	8.2 dB	7.9 dB	
600 bps	1 × 10 ⁻⁵	5.0 dB	5.0 dB	
300 bps	1 × 10 ⁻⁵	9.2 dB	7.0 dB	
Test Condition: Signal Level = -30 dBm, Sync for 1200 bps, 600 bps, Async for 300 bps, With 3002 Unconditioned Line.				


Table 15. BER Summary

R1212		Signal to Noise Ratio			
Data Rate Bit Error Rate		Originate Mode	Answer Mode		
1200 bps	1 × 10 ⁻⁵	8.3 dB	8.1 dB		
600 bps	1 × 10 ⁻⁵	5.0 dB	5.0 dB		
300 bps	1 × 10 ⁻⁵	10.4 dB	7.2 dB		
Test Condition: Signal Level = -43 dBm, Sync for 1200 bps, 600 bps, Async for 300 bps, With 3002 Unconditioned Line.					

Table	16.	BER	Summary
-------	-----	-----	---------

R1212		Signal to Noise Ratio			
Data Rate Bit Error Rate		Originate Mode	Answer Mode		
1200 bps	1 × 10 ⁻⁵	7.7 dB	7.9 dB		
600 bps	1 × 10 ⁻⁵	4.6 dB	4.5 dB		
300 bps	1 × 10 ⁻⁵	9.3 dB	6.2 dB		
Test Condition: Signal Level = -40 dBm, Sync for 1200 bps, 600 bps, Async for 300 bps, Back-To-Back.					

1200 bps Full-Duplex Modem

4

1200 bps Full-Duplex Modem

Voitage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	±5%	390 mA	<455 mA
+ 12 Vdc	± 5%	25 mA	< 30 mA
- 12 Vdc	±5%	4 mA	< 5 mA

Table 17. Modem Power Requirements

Table 18. Modem Environmental Restrictions

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	– 40°C to + 80°C (– 40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity:	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.
Altitude	-200 feet to +10,000 feet

Parameter	Specification
DIN Connector Version Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical mating receptacle: Winchester 965-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
PCB Dimensions:	
DC Version	
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Height	0.75 in. (19 mm)
M Version	
Width	3.937 in. (100 mm)
Length	3.328 in. (82 mm)
Height	0.40 in. (10.2 mm)
Weight (max):	0.45 lbs. (0.20 kg.)
Lead Extrusion (max.):	0.100 in. (2.54 mm)
DIP Connector Version	
Board Structure	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions	
Width	2.0 in. (50.8 mm)
Length	3.5 in. (88.9 mm)
Height	0.2 in. (5.08 mm) above, 0.13 in. (3.30 mm) below
Weight (max.)	2.6 oz. (73g)
Pin Length (max.)	0.53 in. (13.5 mm) above

1200 bps Full-Duplex Modem

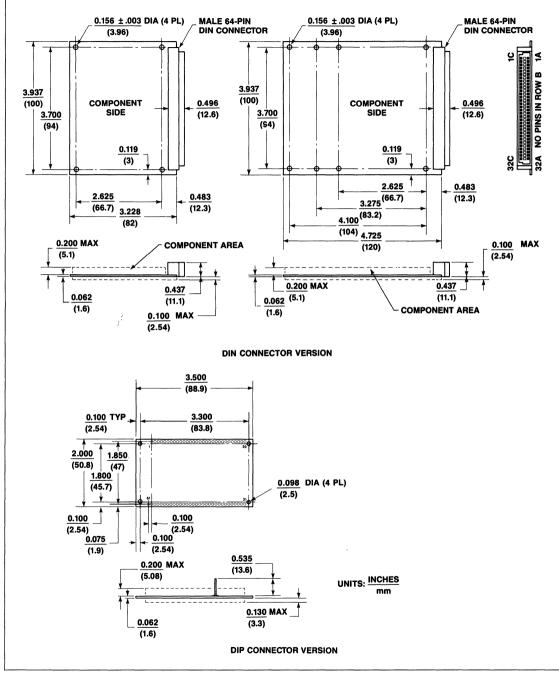


Figure 13. Modem Printed Circuit Board Dimensions

R1212

1200 bps Full-Duplex Modem

R1212 MODEM INSTALLATION AND MAINTENANCE

This section contains installation instructions and maintenance procedures for the Rockwell R1212DC Modem. It also contains a special notice from the Canadian Department of Communications (DOC) for Canadian operation and from the Federal Communications Commission (FCC) for United States operation.

GENERAL DESCRIPTION

The Rockwell R1212DC modem is designed to be used with the United States or Canadian Telephone Switched Networks in 2wire full-duplex dial-up operation. The modem requires protective circuitry registered with the Federal Communications Commission (FCC) Part 68 which allows direct connection to the U.S. switched telephone network. This circuitry also complies with the Canadian Department of Communications (DOC) Terminal Attachment Program (TAP) which similarly defines their switched telephone network requirements.

The R1212DC features automatic dial and answer capabilities along with surge suppression and hazardous voltage and longitudinal balance protection. Its maximum output signal level at the telephone interface is set at $-10 \text{ dBm} \pm 1 \text{ dBm}$ (permissive mode of operation).

Two standard telephone jack connectors (RJ11s) are mounted side by side on one edge of the board and are wired in parallel. One is for connection to the telephone line network and the other for the telephone headset connection.

INSTALLATION AND SIGNAL ROUTING INSTRUCTIONS

PHYSICAL MOUNTING

The modem module may be physically incorporated into the customer's end product by utilizing the four corner 0.156" diameter mounting holes (for the self-hooking plastic type standoffs or for bolting it down to some rigid structure) or by installing the module into card guides.

ELECTRICAL INTERFACING INSTRUCTIONS

The electrical interfacing is accomplished via the DIN (Euro) connector (for external power inputs and digital logic signals) and the telco connectors (for the telephone network connection). Note that the telephone interface connectors are physically separated from the modem interface control connector and extreme care must be taken in routing the telephone interface leads from the modem to the telephone network (line connector jack in the wall).

FCC RULES PART 68 REQUIREMENTS

The FCC Rules Part 68 requires that the telephone interface leads shall:

 Be reasonably physically separated and restrained from; not routed in the same cable as; nor use the same connector as leads or metallic paths connecting to power connections.

Note

Power connections are defined as the connections between commercial power and any transformer, power supply rectifier, converter or other circuitry associated with the modem. The connections of the interface pins (including the + 12 Vdc, - 12 Vdc and + 5 Vdc) are not considered power connections.

2. Be reasonably physically separated and restrained from; not routed in the same cable as; nor use adjacent pins on the same connector as metallic paths that lead to unregistered equipment, when specification details provided to the FCC do not show that the interface voltages are less than nonhazardous voltage source limits in Part 68.

Note

All the DIN connector interface voltages to the modem have been established as non-hazardous.

ROUTING OF TELEPHONE INTERFACE LINES

In routing the telephone interface leads from the modem telephone connector jacks to the telephone line network connection, the following precautions should be strongly considered for safety.

- 1. The telephone interface routing path should be as direct and as short as possible.
- Any cable used in establishing this path should contain no signal leads other than the modem telephone interface leads.
- 3. Any connector used in establishing this path shall contain not commercial power source signal leads, and adjacent pins to the TIP and RING (T and R) pins in any such connector shall not be utilized by any signals other than those shown in this document.

MAINTENANCE PROCEDURE

Under the FCC Rules, no customer is authorized to repair modems. In the event of a Rockwell modem malfunctioning, return it for repair to an authorized ROCKWELL INTERNA-TIONAL distributor (if in Canada) or send it directly to the Semiconductor Products Division, Rockwell International Corporation, El Paso, Texas 79906.

SPECIAL INSTRUCTION TO USERS

If the Rockwell modem has been registered with the Federal Communications Commission (FCC), you must observe the following to comply with the FCC regulations:

- A. All direct connections to the telephone lines shall be made through standard plugs and telephone company provided jacks.
- B. It is prohibited to connect the modem to pay telephones or party lines.
- C. You are required to notify the local telephone company of the connection or disconnection of the modem, the FCC registration number, the ringer equivalence number, the particular line to which the connection is made and the telephone number to be associated with the jack.

Note

If the proper jacks are not available, you must order the proper type of jacks to be installed by the telephone company (VSOC RJ11 for permissive mode of operation).

D. You should disconnect the modem from the telephone line if it appears to be malfunctioning. Reconnect it only if it can be determined that the telephone line and not the modem is the source of trouble. If the Rockwell modem needs repair, return it to the ROCKWELL INTERNATIONAL CORPORATION. This applies to the modem whether it is in or out of warranty. Do not attempt to repair the unit as this is a violation of the FCC rules and may cause danger to persons or to the telephone network.

TELEPHONE COMPANY RIGHTS AND RESPONSIBILITIES

- A. The Rockwell modem contains protective circuitry to prevent harmful voltages to be transmitted to the telephone network. If such harmful voltages do occur, then the telephone company may temporarily discontinue service to you. In this case, the telephone company should:
 - 1. Promptly notify you of the discontinuance.
 - Afford you the opportunity to correct the situation which caused the discontinuance.
 - Inform you of your right to bring a complaint to the FCC concerning the discontinuance.
- B. The telephone company may make changes in its facilities and services which may affect the operation of your equipment. It is, however, the telephone company's responsibility to give you adequate notice in writing to allow you to maintain uninterrupted service.

LABELING REQUIREMENTS

A. The FCC requires that the following label be prominently displayed on the outside surface of the customer's end product and that the size of the label should be such that all the required information is legible without magnification.

Sample label below:

Unit contains Registered Protective Circuitry which complies with Part 68 of FCC Rules.

1200 bps Full-Duplex Modem

FCC Registration Number: AMQ9SQ-14211-DM-E

Ringer Equivalence: 0.9B

Note

The Rockwell modem module has the FCC registration number and ringer equivalence number permanently affixed to the solder side of the PCB and any unit containing this modem shall use this information for the label requirements.

SPECIAL NOTICE FROM THE CANADIAN DEPARTMENT OF COMMUNICATIONS

The Canadian Department of Communications label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements. The Department does not guarantee the equipment will operate to the user's satisfaction.

Before installing this equipment, users should insure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an approved method of connection. In some cases, the company's inside wiring associated with a single line individual service may be extended by means of a certified jack-plug-cord ensemble (telephone extension cord). The customer should be aware that the compliance with the above conditions may not prevent degradation of service in some situations. Existing telecommunications company requirements do not permit their equipment to be connected to customer-provided jacks except where specified by individual telecommunications company tariffs.

The Department of Communications requires the Certificate Holders to identify the method of network connection in the user literature provided with the certified terminal equipment.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions may give the telecommunications company cause to request the user to disconnect the equipment.

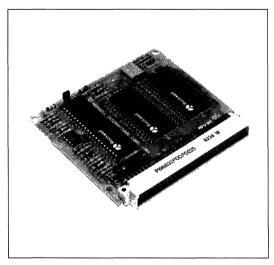
Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

CAUTION

Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or electrician, as appropriate.

R2424 Integral Modems

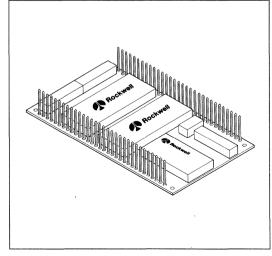
R2424 2400 bps Full-Duplex Modem


INTRODUCTION

The Rockwell R2424 is a high performance full-duplex 2400 bps modem. Using state-of-the-art VLSI and signal processing technology, the R2424 provides enhanced performance and reliability. The modem is assembled as a small module with a DIN connector (R2424M and R2424DC) or a new, smaller module (seven square inches) with a dual-in-line pin (DIP) interface.

Being CCITT V.22 bis, V.22 A, B compatible, as well as Bell 212A and 103 compatible, the R2424 fits most applications for fullduplex 2400 and 1200 bps fallback (synchronous and asynchronous) and 0 to 300 bps asynchronous data transmission over the general switched telephone network, and over point-to-point leased lines.

The direct-connect, auto dial/answer features are specifically designed for remote and central site computer applications. The bus interface allows easy integration into a personal computer, box modem, microcomputer, terminal or any other communications product.


The R2424/DM, with its small form factor and DIP connection, can be automatically installed and soldered onto a host module. Its small size is ideal for internal "1/2-card" PC modem applications. Moreover, the R2424/DM is pin and firmware compatible with the R1212/DM and pin compatible with Rockwell's next generation of medium speed modems, the RC2424 and RC1212.

R2424M Modem

FEATURES

- CCITT V.22 bis, V.22 A, B Compatible
- Bell 212A and 103 Compatible
- Synchronous: 2400 bps, 1200 bps, 600 bps $\pm 0.01\%$
- Asynchronous: 2400 bps, 1200 bps, 600 bps + 1%, -2.5%, 0-300 bps
 - Character Length 8, 9, 10, or 11 bits
 - DTE Interface — Functional: CCITT V.24 (RS-232-C) (Data/Control) and Microprocessor Bus (Data/Configuration/Control) — Electrical: TTL Compatible
- 2-wire Full-Duplex Operation
- Adaptive and Fixed Compromize Equalization
- Test Configurations:
 - Local Analog Loopback
 - Remote Digital Loopback
- Self Test
- Auto/Manual Answer
 Auto/Manual Dial—DTMF Tone or Pulse Dial
- Power Consumption: 2.3 Watts Typical
- Power Requirements: +5 Vdc, ±12 Vdc
- Three Module Configurations:
 - R2424DC (Direct Connect): DIN connector module with FCC approved DAA Part 68 Interface
 - R2424M: DIN connector module without DAA
 - R2424/DM: DIP connection module without DAA
- Two Functional Versions
 - R2424/US All data rates specified except 600 bps
 - R2424/INT All data rates specified except 0–300 bps

R2424/DM Modem

Data Sheet

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER AND SIGNALING FREQUENCIES

The transmitter and signaling frequencies supported in the R2424 are listed in Table 1.

Table 1	Transmitter Carrier and Signaling
	Frequencies Specifications

Mode	Frequency (Hz ±0.01%)
V 22 bis low channel, Originate Mode	1200
V 22 low channel, Originate Mode	1200
V.22 bis high channel, Answer Mode	2400
V 22 high channel, Answer Mode	2400
Bell 212A high channel Answer Mode	2400
Bell 212A low channel Originate Mode	1200
Bell 103/113 Originating Mark	1270
Bell 103/113 Originating Space	1070
Bell 103/113 Answer Mark	2225
Bell 103/113 Answer Space	2025

TONE GENERATION

The specifications for tone generation are as follows:

- 1. **Answer Tones:** The R2424 generates echo disabling tones for both the CCITT and Bell configurations, as follows:
 - a. CCITT: 2100 Hz ± 15 Hz.
 - b. Bell: 2225 Hz ± 10 Hz.
- 2. Guard Tones: If GTS (see Interface Memory Definitions) is low, an 1800 Hz guard tone frequency is selected; if GTS is high, a 553.846 Hz tone is employed. In accordance with the CCITT V.22 Recommendation, the level of transmitted power for the 1800 Hz guard tone is 6 ± 1 dB below the level of the data power in the main channel. The total power transmitted to the line is the same whether or not a guard tone is enabled. If a 553.846 Hz guard is used, its transmitted power is 3 ± 1 dB below the level of the main channel power, and again the overall power transmitted to the line will remain constant whether or not a guard tone is enabled. The device accomplishes this by reducing the main channel transmit path gain by .97 dB and 1.76 dB for the cases of the 1800 Hz and 553.846 Hz guard tones respectively.

2400 bps Full-Duplex Modem

3. DTMF Tones: The R2424 generates dual tone multifrequency tones. When the transmission of DTMF tones are required, the CRQ and DTMF bits (see Interface Memory Definitions)must be set to a 1. When in this mode, the specific DTMF tones generated are decided by loading the dial digit register with the appropriate digit as shown in Table 2.

Table 2.	Dial	Digits/Tone	Pairs
----------	------	--------------------	-------

Hex	Dial Digits	Tone	Pairs
	Digits	10110	1 41 3
00	0	941	1336
01	1	697	1209
02	2	697	1336
03	3	697	1477
04	4	770	1209
05	5	770	1336
06	6	770	1477
07	7	852	1209
08	8	852	1336
09	9	852	1477
0A	*	941	1209
0B	Spare (B)	697	1633
OC	Spare (C)	770	1633
0D	Spare (D)	852	1633
0E	#	941	1477
0F	Spare (F)	941	1633
10	1300) Hz Calling To	ne

TONE DETECTION

The R2424 detects tones in the 340 ±5 Hz to 640 ±5 Hz band. Detection Level: -10 dBm to -43 dBm Response Time: 17 ±2 ms

SIGNALING AND DATA RATES

The signaling and data rates for the R2424 are defined in Table 3.

Operating Mode	Signaling Rate (Baud)	Data Rate	
V.22 bis	600	Synchronous/Asynchronous, 2400 bps ±0.01%	
V.22 bis [.]	600	Synchronous/Asynchronous, 1200 bps ±0.01%	
V.22: (Alternative A) Mode I	600	1200 bps ±0.01% Synchronous	
Mode III	600	600 bps ± 0.01% Synchronous	
(Alternative B) Mode i Mode ii	600 600	1200 bps $\pm 0.01\%$ Synchronous 600 bps $\pm 0.01\%$ Synchronous	
Mode ii		1200 bps Asynchronous, 8, 9, 10 or 11 Bits Per Character	
Mode iv		600 bps Asynchronous, 8, 9, 10 or 11 Bits Per Character	
Bell 212A;	600 0 to 300	1200 bps ±0.01%, Synchronous/Asynchronous 0 to 300 bps Asynchronous	

1-37

Table 3. Signaling and Data Rates

DATA ENCODING

The specifications for data encoding are as follows:

- 1. 2400 bps (V.22 bis). The transmitted data is divided into groups of four consecutive bits (quad bits) forming a 16-point signal structure.
- 2. 1200 bps (V.22 and Bell 212A). The transmitted data is divided into groups of two consecutive bits (dibits) forming a four-point signal structure.
- 3. 600 bps (V.22). Each bit is encoded as a phase change relative to the phase preceding signal elements.

EQUALIZERS

The R2424 provides equalization functions that improve performance when operating over low quality lines.

Automatic Adaptive Equalizer—An automatic adaptive equalizer is provided in the receiver circuit for V.22 bis, V.22 and Bell 212A configurations.

Fixed Compromise Equalizer—A fixed compromise equalizer is provided in the transmitter.

TRANSMITTED DATA SPECTRUM

After making allowance for the nominal specified compromise equalizer characteristic, the transmitted line signal has a frequency spectrum shaped by the square root of a 75 percent raised cosine filter. Similarly, the group delay of the transmitter output is within \pm 150 microseconds over the frequency range 900 to 1500 Hz (low channel) and 2100 to 2700 Hz (high channel).

SCRAMBLER/DESCRAMBLER

The R2424 incorporates a self-synchronizing scrambler-/descrambler. In accordance with the CCITT V.22 bis, V.22 and the Bell 212A recommendations.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R2424 can adapt to received frequency errors of up to \pm 7 Hz with less than a 0.2 dBm degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the R2424 satisfies all specified performance requirements for the received line signals from $-10 \, dBm$ to $-48 \, dBm$. The received line signal is measured at the receiver analog input RXA.

TRANSMIT LEVEL

The R2424M output control circuitry contains a variable gain buffer which reduces the modem output level. The R2424M can be strapped via the host interface memory to accomplish this.

PERMISSIVE/PROGRAMMABLE CONFIGURATIONS

The R2424M transmit level is +6 dBm to allow a Data Access Arrangement (DAA) to be used. The DAA then determines the permissive or programmable configuration. The R2424DC transmit level is strapped in the permissive mode so that the maximum output level is $-10 \text{ dBm} \pm 1.0 \text{ dBm}$.

AUTOMATIC RECONFIGURATION

The R2424 is capable of automatically configuring itself to the compatibility of a remote modem. The R2424 can be in either the answer or originate mode for this to occur. The R2424 adaptation compatibilities are limited to V.22 bis, V.22 A/B (1200 bps), Bell 212, and Bell 103. If the R2424 is to originate in a specific configuration, the MODE bits (see Interface Memory Definitions)must be set.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ), respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, DAA signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The column titled "Type" refers to designations found in the Hardware Circuits Interface Characteristics (Tables 5 and 6). The six groups of hardware circuits are described in the following paragraphs.

2400 bps Full-Duplex Modem

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modem to assume a valid operational state. The modem drives pin 13C to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modem is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 μ s. When an external low input is applied to pin 13C, the modem is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence requires 50 ms to 350 ms to com-

plete. The R2424 POR sequence leaves the modem configured as follows:

- 2400 bps
- Asynchronous
- 10-bit Character Length
- Constant Carrier
- Serial Mode
 Answer Mode
- Answer Mode
 Auto Answer Disabled
- Auto Aliswei Disabled
- RAM Access Code = 00

This configuration is suitable for performing high speed data transfer over the public switched telephone network using the serial data port. Individual features are discussed in subsequent paragraphs.

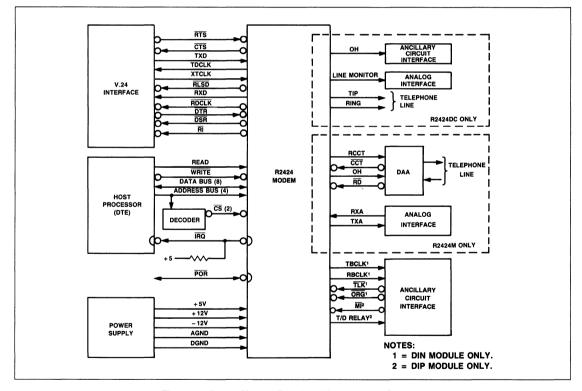


Figure 1. R2424 Modem Functional Interconnect Diagram

		DIN	DIP		
Name	Туре	Pin No.	Pin No.	Description	
A. OVERHE	AD SIGNA	LS			
Ground (A)	AGND	31C, 32C	21, 26,	Analog Ground	
Ground (D)	DGND	3C, 8C,	39 20, 40,	Return Digital Ground	
Ground (D)	DGIND	5A, 10A	51, 60	Return	
+ 5 volts	PWR	19C, 23C, 26C, 30C	1, 19, 61	+5 volt supply	
+ 12 volts	PWR	15A	22	+ 12 volt supply	
– 12 volts	PWR	12A	25	- 12 volt supply	
POR	I/OB	13C	13	Power-on-Reset	
B. MICROPROCESSOR INTERFACE SIGNALS					
D7	I/OA	1C	52	≜	
D6	I/OA	1A	53		
D5	I/OA	2C	54		
D4	I/OA	2A	55		
D3	I/OA	3A	56	Data Bus (8-Lines)	
D2	I/OA	4C	57		
D1	I/OA	4A	58		
D0	I/OA	5C	59	†	
RS3	IA	6C	45	l î	
RS2	IA	6A	44	Register Select	
RS1	IA	7C	43	(4-Lines),	
RS0	IA	7A	42	l` ¥	
CSO	IA	10C	48	Chip Select	
				Receiver (Baud	
				Rate Device)	
CS1	IA	90	41	Chip Select	
				Transmitter	
				(Sample Rate	
		100		Device)	
READ	IA	12C	47	Read Enable	
WRITE	IA	11A	49	Write Enable	
IRQ	OB	11C	50	Interrupt Request	

Table 4. Hardware Circuits

Name	Туре	DIN Pin No.	DIP Pin No.	Description	
C. V.24 INTERI	C. V.24 INTERFACE SIGNALS				
XTCLK	IB	22A	3	External Transmit	
				Clock	
TDCLK	OC	23A	7	Transmit Data Clock	
RDCLK	oc	21A	8	Receive Data Clock	
RTS	IB	25A	4	Request-to-Send	
CTS	oc	25C	5	Clear-to-Send	
TXD	IB	24C	6	Transmit Data	
RXD	oc	22C	9	Receive Data	
RLSD	oc	24A	10	Received Line Signal Detector	
DTR	IB	21C	12	Data Terminal Ready	
DSR	oc	20A	11	Data Set Ready	
RI	oc	18A	2	Ring Indicator	
D. ANALOG SIGNALS					
RXA (M)	IB	32A	23	Receive Analog Input	
TXA (M)	ос	31A	24	Transmit Analog Output	
TIP/RING (DC)	AE	RJ11 Jacks	-	Phone Line Interface	
MONITOR (DC)	AD	30A	_	Analog Line Monitor	
E. DAA INTERFACE SIGNALS					
RD (M)	IB	27A	35	Ring Detect	
RCCT (M)	oc	28A	-	Request Coupler Cut	
	[Through	
CCT (M)	IB	29C	-	Coupler Cut Through	
ОН	oc	29A	36	Off-Hook Relay Status	
T/D Relay	oc	_	37	Talk/Data Relay	
MI	IC	-	38	Manual Input	
F. ANCILLARY	INTER	FACE SIGNA	LS		
TBCLK	oc	27C	_	Transmit Baud Clock	
RBCLK	oc	26A	_	Receive Baud Clock	
TLK	IC	28C	-	Talk (TLK = Data)	
ORG	IB	16C	-	Originate (ORG =	
				Answer)	
(M) R2424M Or	(M) R2424M Only, (DC) R2424DC Only, - = not applicable				

Table 5. Digital Interface Characteristics

						Input/Ou	iput Type			
Symbol	Parameter	Units	IA	IB	IC	OA	OB	oc	I/O A	I/OB
VIH	Input Voltage, High	v	2.0 min.	2.0 min.	2.0 min.				2.0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.	0.8 max.				0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	v				2.4 min.1			2.4 min. ²	2.4 min. ³
V _{OL}	Output Voltage, Low	v				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ⁵
I _{IN}	Input Current, Leakage	μA	±2.5 max.						±2.5 max 4	
I _{он}	Output Current, High	mA				-0.1 max.				
I _{OL}	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.		
I,	Output Current, Leakage	μA					±10 max.			
I _{PU}	Pull-up Current	μA		– 240 max.	– 240 max.			- 240 max.		– 260 max.
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min.
CL	Capacitive Load	pF	5	5	20				10	40
C _D	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open-Drain	3 State	Open-Drain
				w/Pull-up	w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes:	1.1 load = $-100 \ \mu A$ 2.	I load	= 1.6 mA	3. I load =	–40 μA 4.	$V_{IN} = 0.4$ to	2.4 Vdc, V _{CC}	5 = 5 25 Vdd	5. I load =	= 0.36 mA

1-41

2400 bps Full-Duplex Modem

Table 6. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output impedance is $604\Omega \pm 1\%$ with an output level of +6 dBm. To obtain a 0 dBm output, a 600Ω load to ground is needed.
RXA	АВ	The receiver input impedance is 23.7 K Ω ± 1%. The receive level at RXA must be no greater than -9 dBm (or -6 dBm with the 3DB bit enabled).
LINE MONITOR	AD	The line monitor output impedance is 15 K Ω ±5%.
TIP/RING	AE	The impedance of TIP with respect to RING is 600 Ω .

V.24 INTERFACE

Eleven hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, +5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Data Terminal Ready (DTR)

DTR prepares the modem to be connected to the communications channel, and maintains the connection established by the DTE (manual answering) or internal (automatic answering) means. DTR OFF places the modem in the disconnect state.

Data Set Ready (DSR)

Data Set Ready ($\overline{\text{DSR}}$) ON indicates that the modem is in the data transfer state. $\overline{\text{DSR}}$ OFF is an indication that the DTE is to

disregard all signals appearing on the interchange circuits except $\overline{\text{RI}}$. $\overline{\text{DSR}}$ will switch to the OFF state when in test state. The ON condition of $\overline{\text{DSR}}$ indicates the following:

- 1. The modem is not in the talk state, i.e., an associated telephone handset is not in control of the line.
- 2. The modem is not in the process of automatically establishing a call via pulse or DTMF dialing.
- 3. The modem has generated an answer tone or detected answer tone.
- After ring indicate (RI) goes ON, DSR waits at least two seconds before turning ON to allow the telephone company equipment to be engaged.

 $\overline{\text{DSR}}$ will go OFF 50 ms after $\overline{\text{DTR}}$ goes OFF, or 50 ms plus a maximum of 4 seconds when the SSD bit is enabled.

Request To Send (RTS)

RTS ON allows the modem to transmit data on TXD when **CTS** becomes active. In constant carrier mode, **RTS** can be wired to <u>DTR</u>. In controlled carrier operation, independent operation of **RTS** turns the carrier ON and OFF. The responses to **RTS** are shown in Table 7 (assume the modem is in data mode).

Table	7.	RTS	Responses

Leased or Dial Line ¹	RTS OFF	RTS ON
Controlled Carrier	CTS OFF Carrier OFF	Carrier ON 210 to 275 ms Scrambled 1s Transmitted CTS ON
Constant Carrier	CTS OFF Carrier ON Scrambled 1s Transmitted	CTS ON Carrier ON Data Transmitted

Clear To Send ($\overline{\text{CTS}}$)

 $\overline{\text{CTS}}$ ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. $\overline{\text{CTS}}$ response times from an ON or OFF condition of $\overline{\text{RTS}}$ are shown in Table 8.

Table 8. CTS Response Times

lled Carri	t Carrier	Constan	Transition	CTS Tra
o 275 ms 20 ms*	ms) ms*	1	F to ON to OFF	- · · ·
	ms) ms*	<20		ON to

2400 bps Full-Duplex Modem

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 2400 Hz, 1200 Hz or 600 Hz (±0.01%).
- 2. Duty Cycle. 50 ± 1%.

TDCLK is provided to the user in both asynchronous and synchronous communications. TDCLK is not necessary in asynchronous communication but it can be used to supply a clock for UART/USART timing (TDCLK is not valid in FSK). TDCLK is necessary for synchronous communication. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (RDCLK) output in the form of a 50 \pm 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a \pm .035% (relative) frequency error in the associated transmit timing source.

RDCLK is provided to the user in both asynchronous and synchronous communications. RDCLK is not necessary in asynchronous communication but it can be used to supply a clock for UART/USART timing (RDCLK is not valid in FSK). RDCLK is necessary for synchronous communication.

Received Line Signal Detector (RLSD)

The RLSD thresholds for both high and low channels are:

 $\frac{\overline{\text{RLSD}}}{\overline{\text{RLSD}}} \text{ON} \ge -43 \text{ dBm}$ $\overline{\text{RLSD}} \text{OFF} \le -48 \text{ dBm}$

RLSD will not respond to guard tones or answer tones.

When RLSD is active, it indicates to the terminal equipment that valid data is available on RXD.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Ring Indicator (RI)

The modem provides a Ring Indicator (\overline{RI}) output; its low state indicates the presence of a ring signal on the line. The low condition appears approximately coincident with the ON segment of the ring cycle (during rings) on the communication channel. (The ring signal cycle is typically two seconds ON, four seconds OFF.) The high condition of the \overline{RI} output is maintained during the OFF segment of the ring cycle (between rings) and at all other times when ringing is not being received. The operation of \overline{RI} is not disabled by an OFF condition on \overline{DTR} .

RI will respond to ring signals in the frequency range of 15.3 Hz to 68 Hz with voltage amplitude levels of 40 to 150 Vrms (applied across TIP and RING), with the response times given in Table 13.

This OFF-to-ON (ON-to-OFF) response time is defined as the time interval between the sudden connection (removal) of the ring signal across TIP and RING and the subsequent ON (OFF) transition of $\overline{\text{RI}}$.

Table 9. RI Response Time

RI Transition	Response Time
OFF-to-ON*	110 ±50 ms (50% duty cycle)
ON-to-OFF	450 ±50 ms
	time is duty cycle dependent: ≥ time ≥ 50 ms (100%)

MICROPROCESSOR INTERFACE

Seventeen hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select (CS0 and CS1) and Register Selects (RS0-RS1)

The signal processor to be accessed is selected by grounding one of two unique chip select lines, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2^3) is RS3 while the least significant address bit (2^0) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2^7) is D7 while the least significant data bit (2^0) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single RW output from a 65XX series microprocessor to the separate READ and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of inter-

2400 bps Full-Duplex Modem

rupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their high impedance state. Because of the open-drain structure of IRQ, an external pull-up resistor to + 5 volts is required at some point on the IRQ line. The resistor value should be small enough to pull the IRQ line high when all IRQ drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modem IRQ driver is used, a resistor value of 5.6K ohms $\pm 20\%$, 0.25 watt, is sufficient.

DAA INTERFACE

The R2424M provides a Data Access Arrangement (DAA) interface that is directly hardware and software compatible with the RDAA. Manual/automatic originate and answer are then controlled via the appropriate R2424M hardware ancillary circuits or software control bits. The modem provides the only interface with the microprocessor (MPU) bus, i.e., no RDAA interface signals must be directly controlled from the MPU bus.

Ring Detect (RD)

 $\overline{\text{RD}}$ indicates to the modem by an ON (low) condition that a ringing signal is present. The signal (a 4N35 optoisolator compatible output) into the $\overline{\text{RD}}$ input should not respond to momentary bursts of ringing less than 125 ms in duration, or to less than 40 Vrms, 15 to 68 Hz, appearing across TIP and RING with respect to ground. The ring is then reflected on $\overline{\text{RI}}$.

Request Coupler Cut Through (RCCT)

RCCT is used to request that a data transmission path through the DAA be connected to the telephone line. When RCCT goes OFF (low), the cut-through buffers are disabled and $\overline{\text{CCT}}$ should go OFF (high). RCCT should be OFF during dialing but ON for tone address signaling.

Coupler Cut Through (CCT)

An ON (low) signal to the CCT lead indicates to the modem that the data transmission path through the DAA is connected. This input can always be grounded if the two second billing delay squelch is desired. If CCT is user controlled, the billing delay squelch can only be 2 seconds or greater.

Off-Hook Relay Status (OH)

The modem provides an OH output which indicates the state of the OH relay. A high condition on OH implies the OH relay is closed and the modem is connected to the telephone line (offhook). A low condition on OH implies the OH relay is open (i.e., the modem is on-hook). The delay between the low-to-high or high-to-low transition of OH and the subsequent close-to-open or open-to-close transition of the OH relay is 8 ms maximum.

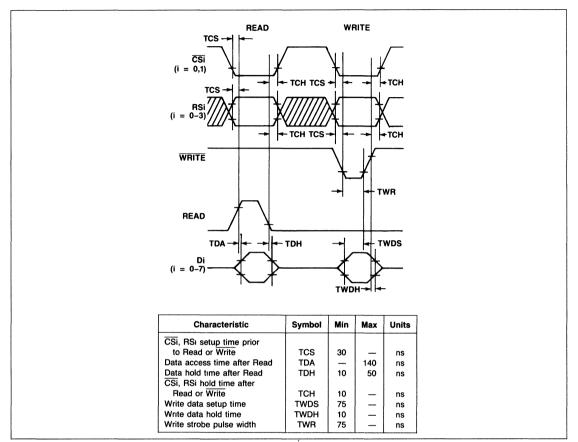


Figure 2. Microprocessor Interface Timing Diagram

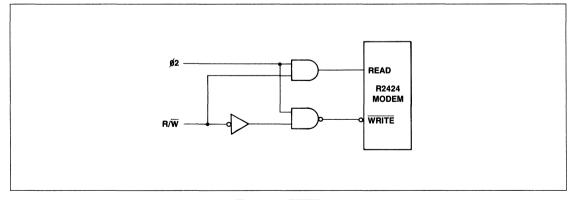


Figure 3. R/W to READ WRITE Conversion Logic

ANALOG SIGNALS (R2424M)

Two connections are devoted to analog audio signals: TXA and RXA.

Transmit Analog (TXA)

The TXA output is suitable for driving a data access arrangement for connection to either leased lines or the public switched telephone network. The transmitter output impedance is 604 ohms ±1% with an output level of +6 dBm ±1 dBm. To obtain a 0 dBm output, a 600 ohm load to ground is needed.

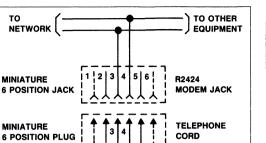
Receive Analog (RXA)

RXA is an input to the receiver from a data access arrangement. The input impedance is 23.7K ohms ±1%. The received level at RXA must be no greater than -9 dBm (or -6 dBm with the 3DB bit enabled).

ANALOG SIGNALS (R2424DC)

Three analog signals are output by the R2424DC; LINE MONI-TOR, TIP and RING.

Analog Line Monitor (LINE MONITOR)


The LINE MONITOR output is suitable for a speaker interface. It provides an output for all dialing signals, call progress signals, and the carrier signals. The output impedance is 15K ohms ±1%. The signals which appear on LINE MONITOR are approximately the same level as the signals would appear on the network (assuming a 1 dB loss attributed to the audio transformer).

Phone Line Interface (TIP and RING)

TIP and RING are the DAA analog outputs to the public switched telephone network. These outputs use two RJ11 jacks in parallel as the interface to the network (see Table 10 and Figure 4). The R2424DC, which contains the DAA TIP and RING interface, has been FCC Part 68 approved. The user need not apply for further Part 68 approval. The impedance of TIP with respect to RING is 600 ohms.

Connector Type	Pin Number	Name	Function
RJ11 Jack	3	RING	One Side of TELCO Line
	4	TIP	One Side of TELCO Line

2400 bps Full-Duplex Modem

TIP (GREEN WIRE)

Figure 4. RJ11 Telephone Jack

ANCILLARY CIRCUITS

RING (RED WIRE

тο

NETWORK

MINIATURE

MINIATURE

Transmit Baud Clock (TBCLK) and Received Baud Clock (RBCLK)

TBCLK and RBCLK are provided to the user at the baud rate (600 Hz).

Talk (TLK) (DIN Module Only)

TLK is an input which manually places the modem on-hook (relay open, $\overline{TLK} = 0$) or off-hook (relay closed, $\overline{TLK} = 1$). The on-hook condition is referred to as TALK mode and the off-hook condition is referred to as DATA mode. TLK is used with ORG to manually originate or answer a call. TLK should be 0 at power-on or reset to prevent the modern from inadvertently entering the data mode.

Originate (ORG)

ORG is an input which manually places the modem in the originate mode ($\overline{ORG} = 0$) or the answer mode ($\overline{ORG} = 1$). To manually originate a call, $\overline{ORG} = 0$ and $\overline{TLK} = 0$. Dial the number using the telephone. When the other modem answers and sends answer tone switch the TLK input from 0 to 1 placing the modem off-hook.

To manually answer a call $\overline{ORG} = 1$ and $\overline{TLK} = 0$. When the phone rings switch the TLK input from 0 to 1 placing the modem off-hook.

Off-Hook Relay Status (OH)

The modem provides an OH output which indicates the state of the OH relay. A high condition on OH implies the OH relay is closed and the modem is connected to the telephone line (offhook). A low condition on OH implies the OH relay is open (i.e., the modem is on-hook). The delay between the low-to-high or high-to-low transition of OH and the subsequent close-to-open or open-to-close transition of the OH relay is 8 ms maximum.

T/D Relay. (DIP Module Only)

The T/D Relay signal may be used as a second relay control when the parallel control mode of operation is selected (BUS bits 0 and 1 = 1). If the serial control mode is selected (BUS bits 0 and 1 = 0) the T/D relay follows the status of the OH output signal which is controlled by the \overline{M} signal. In the parallel control mode the OH output signal is controlled by the status of the DATA bit, while independent control of the T/D relay is provided by the \overline{M} signal. During pulse dialing the OH signal reflects the pulse signal to control the off-hook relay and use the OH signal to perform pulse dialing on a separate, independent relay.

Manual Input (MI) (DIP Module Only)

 $\overline{\text{MI}}$ is an input which manually places the modem on-hook (relay open, $\overline{\text{MI}} = 0$) or off-hook (relay closed, $\overline{\text{MI}} = 1$). The on-hook condition is referred to as TALK mode and the off-hook condition is referred to as DATA mode. $\overline{\text{MI}}$ is used with $\overline{\text{ORG}}$ to manually originate or answer a call. $\overline{\text{MI}}$ should be 0 at power-on or reset to prevent the modem from inadvertently entering the data mode.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load-/drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on two special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into two areas. These areas are partitioned into receiver and transmitter devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called

2400 bps Full-Duplex Modem

interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 32 addressable registers in the modem receiver (CS0) and transmitter (CS1) interface memory are shown in Figures 5 and 6, respectively. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Figures 7 and 8 show the registers according to the overall function they perform in the receiver and transmitter, respectively. Figures 9 through 12 show the power on configurations of the interface memory bits for the R2424/US and the R2424/INT versions.

Table 11 defines the individual bits in the interface memory. In the Table 11 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

Bit Register	7	6	5	4	3	2	1	0		
F		RAM Access R								
E	IRQ	ENSI	NEWS	_	NEWC		_	_		
D	BUS	CRQ	-	-	-	LCD	RSD			
С	_	-	-	СН	AR		_	-		
В	-	1	-	-	-	—	-	AL		
Α	ERDL RDL DL ST MODE									
9	-	-	SPE	SPEED -		—	-	-		
8	TONE	ATD	-		-	-	тм	RLSD		
7	-	-	-	-	-		-	-		
6	-	_	-	-	-	-	-	-		
5			RAM)ata YR	M (YRA	MRM)				
4			RAM (Data YF	RL (YRA	MRL)				
3			RAM C)ata XR	M (XRA	MRM)				
2			RAM I	Data XF	RL (XRA	MRL)				
1	-		-	_	-	-	-	_		
0	-	-	-	-	-	-	-	-		
	(—) Inc	dicates		lote ed for r	nodem	use on	ly.			

Figure 5. Receiver (CS0) Interface Memory Map

Bit Register	7	6	5	4	3	2	1	0		
F		DIAGNOSTIC CONTROL								
E			н	ANDS	S Н А К	E				
D			CON	FIGU	JRAT	ION				
С			CON	I FI G U	IRAT	ION				
В			CON	FIGU	JRAT	ION				
A			CON	FIGU	JRAT	ION				
9				STA	TUS					
8				STA	TUS					
7			F	RESE	RVEC)				
6			F	RESE	RVEC)				
5			D	AGN	OST	С				
4			DI	AGN	OSTI	С				
3			D	AGN	ост	С				
2			D	AGN	ост	С				
1			F	RESE	RVE)				
0			F	RESE	RVEC)				
Register Bit	7	6	5	4	3	2	1	0		

Figure 7. Receiver (CSO) Interface Memory Functions

2400 bps Full-Duplex Modem

Bit										
Register	7	6	5	4	3	2	1	0		
F		RAM Access T								
E	IRQ	ENSI	NEWS	-	NEWC	DDEI	-	DDRE		
D	BUS	CRQ	DATA	AAE	DTR	-	-	SSD		
С	DSRA	тхо	CLK	СН	AR	-	-	DLSF ¹		
В	T	X LEVE	L	GTE	GTS	3DB	DTMF	AL		
A	ERDL	RDL	DL	ST		MODE				
9	NAT ¹	RTRN	ORG	LL	RTS	СС	EF	NTS		
8	DLO	CTS	DSR	RI	-	1	-	—		
7	-	-		-	_	-	-	-		
6	-	-	-	-	-		-	-		
5			RAM D	ata YT	M (YRA	MTM)				
4			RAM (Data Y1	L (YRA	MTL)				
3			RAM D	ata XT	M (XRA	MTM)				
2			RAM (Data X1	L (XRA	MTL)				
1	-	-	-	-	-	_	-	-		
0			Dia	al Digit	Regist	er				
			N	otes						
		t valid l			22 1odem	use on	ly.			

Figure 6. Transmitter (CS1) Interface Memory Map

Bit Register	7	6	5	4	3	2	1	0			
F		DIAGNOSTIC CONTROL									
E		HANDSHAKE									
D			CON	FIGL	JRAT	ION					
С			CON	I FI G U	RAT	1 O N					
В			CON	FIGL	JRAT	ION					
A			CON	FIGL	JRAT	ION					
9			CON	FIGL	JRAT	1 O N					
8		STATUS									
7			F	RESE	RVEC)					
6			F	RESE	RVEC)					
5			D	IAGN	озт	С					
4			D	IAGN	OST	С					
3			D	IAGN	оѕт	С					
2			D	IAGN	OST	С					
1			F	RESE	RVE)					
0		DI	AL D	IGIT	REC	IST	ER				
Register Bit	7	6	5	4	3	2	1	0			

Figure 8. Transmitter (CS1) Interface Memory Functions

Bit Register	7	6	5	4	3	2	1	0
F	0	RAM Access R						0
E	IRQ 0	ENSI 0	NEWS	-	NEWC	-	-	-
D	BUS	CRQ	-	-	-	LCD	RSD	-
С	-	-	-	1 CH	AR 0	-	—	-
В	-	-	-	-	-	-	-	AL 0
A			DL 0	ST 0	0	°WO	DE ₀	1
9	-	-	SPE	ED	-	-	-	-
8			-	-	-	-	TM 0	
7	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
5			RAM	Data YF	RM (Ran	dom)		
4			RAM	Data Yi	RL (Rand	tom)		
3			RAM	Data XF	RM (Ran	dom)		
2			RAM	Data XF	RL (Rand	lom)		
1	_	-	-	-	-	-	_	-
0	-	-	-	-	-	-	-	-
Register Bit	7	6	5	4	3	2	1	0
	(—) lı	ndicates	reserve	ed for m	nodem u	se only	•	

Figure 9. R2424/US Receiver (CS0) Interface Memory

Power On Configuration

Dii Register	7	6	5	4	3	2	1	0
F	0	0	0	RAM Ac	cess R	0	0	0
E		ENSI 0	NEWS 0	-	NEWC	-	-	-
D	BUS		-	-	-	LCD	RSD 0	-
С	-	-	-	1 CH	AR 0		-	-
В	-	-	-	-	-	-	-	AL 0
A				ST 0	1	MO 1	DE ₀	1
9	-	-	SPE	ED	-	-	-	-
8			-	-	-	-	TM 0	RLSD 0
7	-	-	-	-	-	-	-	-
6	-	1	-	-	-	-	-	-
5			RAM	Data YF	RM (Ran	dom)		
4			RAM	Data YF	RL (Rand	iom)		
3			RAM	Data XF	RM (Ran	dom)		
2			RAM	Data XF	RL (Rand	iom)		
1	-	-	-	-	-	1		-
0	-	-	-	-	-		-	
Register Bit	7	6	5	4	3	2	1	0
	(—) lı	ndicates	s reserve	ed for m	nodem u	se only	•	

Figure 11. R2424/INT Receiver (CS0) Interface Memory Power On Configuration

2400 bps Full-Duplex Modem

Bit Register	7	6	5	4	3	2	1	0
F	0	0	0	RAM AC	cess T	0	0	0
E	IRQ 0	ENSI	NEWS	_	NEWC	DDEI	-	DDRE
D	BUS	CRQ				-		SSD
С	DSRA 0	TX 0	CLK	1 CH	AR 0	-	-	DLSF
В	0 T		0	GTE	GTS	3DB 0		AL 0
A	ERDL RDL DL			ST 0	1	MO	DE ₀	1
9		RTRN 0	ORG 0	LL 0	RTS	CC 0	EF 0	NTS
8	DLO	CTS	DSR 0	RI 0	-	-	-	-
7	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
5			RAM	Data Y1	'M (Ran	dom)		
4			RAM	Data Y	L (Rand	dom)		
3		4	RAM	Data X1	M (Ran	dom)		
2			RAM	Data X	L (Rand	dom)	_	
1	-	-	-	-	-	-	-	-
0		Dial	Digit Re	gister (Nrite-Or	ily Regi	ster)	
Register Bit	7	6	5	4	3	2	1	0
	(—) li	ndicates	reserv	ed for m	nodem u	se only		

Figure 10. R2424/US Transmitter (CS1) Interface Memory Power On Configuration

Bit	7	6	5	4	3	2	1	0
Register		L	l	RAM Ac				
•	0	0	0	0	0	0	0	0
E			NEWS	-	NEWC		-	
D	BUS	CRQ	DATA	AAE 0	DTR 0	-	-	SSD 0
С	DSRA 0	TX 0	CLK	, СН 1	AR 0	-	-	DLSF
В	0 T		L o	GTE	GTS	3DB	DTMF	AL 0
	ERDL	RDL	DL	ST		MO	DE	
A	0	0	0	0	1	1	~_ o	1
9			ORG	LL	RTS	СС 0	EF 0	NTS
8	DLO	CTS	DSR 0			-	-	-
7	-	-	-	-	-	-	-	
6	-	-	-	-	-		-	-
5			RAM	Data Y1	M (Ran	dom)		
4			RAM	Data Y	「L (Rand	dom)		
3			RAM	Data X1	M (Ran	dom)		
2			RAM	Data X	TL (Rand	(mot		
1	-	—	-	-	-		-	-
0		Dial	Digit Re	gister (Write-Or	ly Regi	ster)	
Register Bit	7	6	5	4	3	2	1	0
	(—) k	ndicates	reserv	ed for n	nodem u	ise only		

Figure 12. R2424/INT Transmitter (CS1) Interface Memory Power On Configuration

Mnemonia	Name	Memory Location	Description
AAE	Auto Answer Enable	1:D:4	When configuration bit AAE is a 1, the modem will automatically answer when a ringing signal is present on the line. When AAE is set to a 1, the modem will answer after one ring and go into data mode
			The modem goes off-hook 1 second after the on-to-off transition of the ring The ORG pin or ORG bit need not to be set to the answer polarity. If it is desired to answer after more than one ring, then the user must use the alternative answer method described under the DATA bit. The DTR pin or the DTR bit must also be set before the modem will auto answer. Writing a 0 into the AAE bit will cause the modem to go on-hook. This will occur only when the modem auto answers using the AAE bit.
AL	Analog Loopback	(0,1):B:0	When configuration bits AL are a 1, the modem is in local analog loopback (V.54 Loop 3). In this loop, the transmitter's analog output is coupled to the receiver's analog input at a point near the modem's telephone line interface An attenuator is introduced into the loop such that the signal level coupled into the receive path is attenuated 14 ± 1 dBm. The modem may be placed into analog loopback in either the idle mode or the data mode. However, in the data mode, setting the AL bits to a 1 will terminate the connection Analog loopback will only function in the high speed modes (2400, 1200, or 600 bps).
			The DTE may be tested when the modem is in analog loopback. Also, all parts of the modem except the line interface are checked. If no DTE is connected, the modem integrity may be verified by use of the self test function. When entering analog loopback, set AL in the receiver to a 1 before setting AL in the transmitter to a 1.
			When exiting analog loopback, reset AL in the transmitter to a 0 before resetting AL in the receiver to a 0.
ATD	Answer Tone Detected	0:8:6	When status bit ATD is a 1, it signifies that the modem receiver detected the answer tone. The bit is 1 set 75 ms after the answer tone is first detected, and is cleared to a 0 when the modem goes on-hook The user may clear ATD manually after CTS is active.
BUS	Bus Select	(0,1):D:7	When configuration bits BUS are a 1, the modem is in the parallel control mode; and when 0, the modem is in the serial control mode BUS can be in either state to configure the modem.
			Serial Control Mode
			The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. The control signals used in serial control mode are $\overline{\text{DTR}}$, $\overline{\text{RTS}}$, $\overline{\text{TLK}}$, and $\overline{\text{ORG}}$. Outputs such as $\overline{\text{RLSD}}$ and $\overline{\text{DSR}}$ are reflected both in the interface memory and the V.24 interface. Once the bus bits have been set to a 0, the state of the DTR, RTS, DATA, and ORG bits are ignored.
			Parallel Control Mode
			The modem has the capability of modem control via the microprocessor bus Data transfer is maintained over the serial V.24 channel The control bits used in parallel control are DTR, RTS, ORG, and DATA.
			The modem automatically defaults to the serial mode at power-on.
			If the parallel control mode is to be used, it is recommended that the \overline{TLK} pin be tied to ground. A floating \overline{TLK} pin will assume a logic 1 which will immediately put the modem into the data mode before the BUS bits are set
			In either mode, the modem is configured by the host processor via the microprocessor bus

Table 11. Interface Memory Definitions

Mnemonic	Name	Memory Location	Description
сс	Controlled Carrier	1:9:2	When configuration bit CC is a 1, the modem operates in controlled carrier; when 0, the modem operates in constant carrier.
			Controlled carrier allows the modem transmitter to be controlled by the $\overline{\text{RTS}}$ pin or the RTS bit. Its effect may be seen in the RTS and CTS descriptions.
CHAR	Character Length Select	(0,1):C:(3,4)	These character length bits select either 8, 9, 10, or 11 bit characters (includes data, stop, and start bits) as shown below:
			Configuration Word Configuration
			0 0 8 bits
			0 1 9 bits
			1 0 10 bits
			1 1 11 bits
			It is possible to change character length during the data mode. Errors in the data will be expected between the changeover and the resynchronization (which occurs on the next start bit after the change is implemented).
transmitter in auto di is treated as digits to representation of the should be loaded in I the data mode. If CR			When configuration bit CRQ in chip 1 (the transmitter) is a 1, it places the transmitter in auto dial mode. The data then placed in the Dial Digit Register is treated as digits to be dialed. The format for the data should be a hex representation of the number to be dialed (if a 9 is to be dialed then an 09_{16} should be loaded in DDR) CRQ in chip 1 should be a 1 for the duration of the data mode. If CRQ in chip 1 is changed to a 0, the moder will go on-hook. Also, see DDRE bit.
			When configuration bit CRQ in chip 0 (the receiver) is a 1, the receiver goes into tone detect mode. Any energy above threshold and in the 345 to 635 Hz bandwidth is reflected by the TONE bit. CRQ in chip 0 must be reset to a 0 (after the last digit was dialed and tone detection completed) before the answer tone is sent by the answering modem (after ringback is detected). CRQ in chip 0 need not be used during auto dialing, but may be used to pro- vide call progress information as part of an intelligent auto dialing routine. Ar example flowchart is given in Figure 13.
			FF (hex) should be loaded into the Dial Digit Register after the last digit is dialed and tone detection is completed. This action also puts the modem in data mode and starts a 30 second abort timer. If the handshake has not been completed in 30 seconds the modem will go on-hook.
стѕ	Clear-to-Send	1:8:6	When status bit CTS is a 1, it indicates to the terminal equipment that the modem will transmit any data which are present at TXD.
			CTS response times from an ON or OFF condition of RTS are shown below:
			CTS Transition Constant Carrier Controlled Carrier OFF to ON ≤2 ms 210 to 275 ms ON to OFF ≤20 ms* ≤20 ms* *Programmable ≤20 ms* ≤20 ms*
DATA	Talk/Data	1'D:5	When control bit DATA is a 1, the modem is in the data state (off-hook); and when 0, the modem is in the talk state (on-hook). This bit allows the modem to go off-hook after a programmable number of rings by counting the require number of RI bit transitions and then setting the DATA bit (assuming ORG = 0).
DDEI	Dial Dıgıt Empty Interrupt	1:E:2	When handshake bit DDEI is a 1, an interrupt will occur when the Dial Digit Register (1:0) is empty (DDRE = 1). This is independent of the state of the ENSI bit. The interrupt will set the IRQ bit and also assert the IRQ signal. Loading the Dial Digit Register with a new digit will clear the interrupt condition.

Table 11. Interface Memory Definitions (Continued)

2400 bps Full-Duplex Modem

1

Mnemonic	Name	Memory Location	Description
DDR	Dial Digit Register	1:0:(0–7)	DDR is used to load the digits to be dialed. Example: If a 4 is to be dialed, an 04 (hex) should be loaded. This action also causes the interrupt to be cleared. The modem automatically accounts for the interdigit delay. Note: DDR is a write-only register
DDRE	Dial Digit Register Empty	1:E:0	When handshake bit DDRE is a 1, it indicates that the dial digit register is empty and can be loaded with a new digit to be dialed. If the DDEI bit is set, the IRQ bit will be set when the DDRE bit is set. Also, the IRQ signal will be generated.
			After the DDR is loaded, DDRE goes to a 0 and the interrupts are automatically cleared.
DL	Digital Loopback (Manual)	(0,1):A:5	When configuration bits DL are set to a 1, the modem is manually placed in digital loopback. DL should only be set during the data mode. The DSR and CTS bits will be reset to a 0. The local modem can then be tested from the remote modem end by looping a remotely generated test pattern. At the remote modem, all interface circuits behave normally as in the data mode.
			At the conclusion of the test, DL must be reset to a 0. The local modern will then return to the normal data mode with control reverting to the DTEs, DTR.
			DL does not function in 300 bps.
DLO	Dial Line Occupied	1:8:7	When status bit DLO is a 1, it indicates that the modern is in the auto dial state, i.e., CRQ in the transmitter is a 1 and the modern is off-hook and ready to dial.
DLSF	Disable Low Speed Fallback	1:C:0	When configuration bit DLSF is a 1, the modem will not automatically fallback to the 300 bps operating mode if it is configured for another data rate. This bit is valid in originate mode only.
DSR	Data Set Ready	1:8:5	The ON condition of the status bit DSR indicates that the modern is in the data transfer state. The OFF condition of DSR is an indication that the DTE is to disregard all signals appearing on the interchange circuits — except RI DSR will switch to the OFF state when in test state. The ON condition of DSR indicates the following:
			The modem is not in the talk state, i.e., an associated telephone handset is not in control of the line.
		,	The modem is not in the process of automatically establishing a call via pulse or DTMF dialing.
			The modem has generated an answer tone or detected answer tone.
			After ring indicate goes ON, DSR waits at least two seconds before turning ON to allow the telephone company equipment to be engaged
			DSR will go OFF 50 msec after DTR goes OFF, or 50 msec plus a maximum of 4 sec when the SSD bit is enabled.
DSRA	Data Set Ready in Analog Loopback	1:C:7	When configuration bit DSRA is a 1, it causes DSR to be ON during analog loopback.

Table 11. Interface Memory Definitions (Continued)

- 10 Mar

408621

1.114 0

Mnemonic	Name	Memory Location	Description				
DTMF	Touch Tones/Pulse Dialing	1:B:1	When configuration bit DTMF is a 1, it tells the modem to auto dial using tones; and when 0, the modem will dial using pulses.				
			The timing for the pulses and tones are as follows (power-on timing):				
			Pulses — Relay open 64 ms Relay closed 36 ms Interdigit delay 750 ms				
			Tones — Tone duration 95 ms Interdigit delay 70 ms				
			The DTMF bit can be changed during the dialing process to allow either ton or pulse dialing of consecutive digits. The output power level of the DTMF tones is as follows:				
		*	\pm 15 dBm \pm 1 measured at TXA for the R2424M -1 dBm \pm 1 measured at TIP/RING for the R2424DC				
DTR	Data Terminal Ready	1:D:3	Control bit DTR must be a 1 for the modem to enter the data state, either manually or automatically. DTR must also be a 1 in order for the modem to automatically answer an incoming call.				
			During the data mode, DTR must remain at a 1, otherwise the connection w be terminated if DTR resets to a 0 for greater than 50 ms.				
EF	Enable Filters	1:9:1	Setting CRQ in the transmitter to a 1 disables the high and low band filters used in data mode so that call progress tone detection can be done. Setting CRQ in the receiver to a 1 inserts a passband filter in the receive path whice passes energy in the 345 Hz to 635 Hz bandwidth The high and low band filters must be enabled and the passband filter disabled for the answer tone and carrier to be detected. This occurs automatically during the auto dial process when EF is set to a 0. In this case, the high and low band filters are disabled when CRQ in the transmitter is set to a 1. If tone detection is required, CRQ in the receiver should be set to a 1. After dialing and call progress tone detection, CRQ in the receiver is set to a 0 and FF is loaded into the dial digit register. (Loading FF enables the high and low band filters disabled by setting CRQ in the transmitter, set EF to a 1. After CRQ in the transmitter and receiver is set to a 1 and tone detection is completed, it may be necessary to detect the answer tone before loading Ff into the dial digit register (see the section on sending 1300 Hz calling tone). At that point, EF can be set to a 1 and CRQ in the receiver set to a 0 so th answer tone can be detected. To the cal ad so that so the cal be detected (using the ATD bit) and the 1300 Hz calling tone).				
ENSI	Enable New Status Interrupt	(0,1):E:6	When handshake bit ENSI is a 1, it causes an interrupt to occur when the status bits in registers (0:[8,9]) and (1:8) are changed by the modern. (NEWS = 1). The IRQ bit will be set to a 1 and the IRQ signal will be generated. The interrupt is cleared by writing a 0 into the NEWS bit.				
ERDL	Enable Response to Remote Digital Loopback	(0,1):A:7	When configuration bits ERDL are a 1, it enables the modem to respond to another modem's remote digital loopback request, thus going into loopback. When this occurs, the modem clamps RXD to a mark; resets the CTS, DSR and RLSD bits to a 0 and turns the CTS, DSR and RLSD signals to a logic The TM bit is set to inform the user of the test status. When the ERDL bits ar a 0, no response will be generated.				
GTE	Guard Tone Enable	1:B:4	When configuration bit GTE is a 1, it causes the specified guard tone to the transmitted (CCITT configurations only), according the state of the GTS bit. Not The guard tone will only be transmitted by the answering modem.				

Ta	ble	11.	Interface	Memory	Definitions	(Continued)	,
----	-----	-----	-----------	--------	-------------	-------------	---

Table 11.	Interface	Memory	Definitions	(Continued)
-----------	-----------	--------	-------------	-------------

Mnemonic	Name	Memory Location	Description					
GTS	Guard Tone Select	1:B:3	When configuration bit GTS is a 0, it selects the 1800 Hz tone; when GTE is a 1 it selects the 550 Hz tone. The selected guard tone will be transmitted only when GTE is enabled.					
IRQ	Interrupt	(0,1):E:7	When status bit IRQ is a 1, it indicates that an interrupt has been generated. The IRQ hardware signal is generated following the setting of the IRQ bit. IRQ is cleared when either the NEWS bit is reset to a 0 or the DDR is loaded with a number.					
LCD	Loss of Carrier Disconnect	0:D:2	When configuration bit LCD is a 1, the modem terminates a call when a loss of received carrier energy is detected after 400 ms. After the first 40 ms of loss of carrier, RLSD goes off. 360 ms later, if no carrier is detected, CTS goes off, and the modem goes on-hook. If energy above threshold is detected during the 360 ms period, RLSD will be set to a 1 again. If further loss of energy occurs, the 400 ms time frame is restarted.					
			If LCD is set to a 0, RLSD will be set to a 1 when energy is above thresho but will not force the modem on hook when energy falls below threshold. I this case, it is necessary to re-enable LCD in order to put the modem on ho					
			LCD is not automatically disabled in leased line operation. The user must write a 0 into LCD bits for this to occur.					
LL	Leased Line	1:9:4	When configuration bit LL is a 1, the modem is in leased line operation; when 0, the modem is in switched line operation. When LL is set to a 1, the modem immediately goes off-hook and into data mode.					
MODE	Mode Select	(0,1):A:(0,3)	These bits select the compatibility at which the modem is to operate, as shown below:					
			Configuration Word <u>3 2 1 0</u> Configuration					
			0 0 0 0 Bell 2400 2400 Sync. 0 0 0 1 Bell 2400 2400 Async.					
			0 0 1 0 Bell 2400 2400 Async.					
			0 0 1 1 Bell 212A 1200 Sync.					
			0 1 0 0 Bell 212A 0 to 300 Async.					
			1 0 0 0 V.22A 1200 Sync.					
			1 0 0 1 V.22B 1200 Async.					
			1 0 1 0 V.22A 600 Sync.					
			1 0 1 1 V.22B 600 Async.					
			1 1 0 0 V.22 bis 2400 Sync.					
			1 1 0 1 V.22 bis 2400 Async.					
			1 1 1 0 V.22 bis 1200 Sync.					
			1 1 1 1 V.22 bis 1200 Async.					
			NOTE: The Mode bits in both chips should be set exclusively of all other bits, followed immediately by the setting of the NEWC bits. This will ensure proper modem configuration.					
			Automatic Reconfiguration					
			The modem is capable of automatically falling back during the handshake to the compatibility of a remote modem. The modem can be in either the answer or originate mode for this to occur. The compatibilities that the modem are limited to adapt to are V.22 bis, V.22 A/B (1200 bps), Bell 212 and Bell 103. If the R2424 is to originate in a specific configuration, the MODE bits must be set.					
			When the answer modem is configured for Bell 300 asynchronous and is called by a 1200 bps modem, the handshake will be completed at 1200 bps.					
NAT	No Answer Tone	1:9:7	When configuration bit NAT is a 1, the modern will not transmit the 2100 Hz CCITT answer tone. This bit is only valid for CCITT configurations. With this bit enabled in answer mode, when the modern goes off-hook it will remain silent for 75 ms and then transmit unscrambled ones.					

Mnemonic	Name	Memory Location	Description		
NEWC	New Configuration	(0,1) [.] E:3	When the NEWC bit is a 1, it tells the modem that a new configuration has been written into the configuration registers. The modem will then read the configuration registers and then reset NEWC to a 0. NEWC must be set to a 1 after a new configuration has been written into the following registers: (0:[A-D]) and (1:[9-D]). The remaining registers do not require the use of NEWC to tell the modem that new data was written into them.		
NEWS	New Status	(0,1):E:5	When handshake bit NEWS is a 1, it tells the user that there has been a change of status in the status registers. The user must write a 0 into NEWS to reset it. This action also causes the interrupt to be cleared.		
NTS	No Transmitter Scrambler	1:9:0	When configuration bit NTS is a 1, when the modem is off-hook it will transmit all data in an unscrambled form. This bit should be disabled if the normal modem handshake is desired.		
ORG	Originate/Answer	1:9:5	When configuration bit ORG is a 1, the modem is in originate mode; and when a 0 the modem is in answer mode. (This is only valid in manual originate/answer and analog loopback). If ORG is a 1 in analog loopback modem will transmit in the high band and receive in the low band. If OF a 0 in analog loopback, the modem will transmit in the low band and rec in the high band.		
(None)	RAM Access R	0:F:0-7	Contains the RAM access code used in reading RAM locations in chip 0 (receiver device).		
(None)	RAM Access T	1:F:0-7	Contains the RAM access code used in reading RAM locations in chip 1 (transmitter device).		
XRAMRL	RAM Data XRL	0:2:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 0.		
XRAMRM	RAM Data XRM	0:3:0–7	Most significant byte of 10-bit word X used in reading RAM locations in chip 0		
XRAMTL	RAM Data XTL	1:2:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 1		
XRAMTM	RAM Data XTM	1:3:0-7	Most significant byte of 16-bit word X used in reading RAM locations in chip 1		
YRAMRL	RAM Data YRL	0:4:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 0		
YRAMRM	RAM Data YRM	0:5:0-7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 0		
YRAMTL	RAM Data YTL	1:4:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 1		
YRAMTM	RAM Data YTM	1:5:0-7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 1		
RDL ,	Remote Digital Loopback	, (0,1):A:6	When configuration bits RDL are a 1, it causes the modem to initiate a request for the remote modem to go into digital loopback. RXD is clamped to a mark and the CTS bit and CTS signal will be reset until the loop is established. The TM bit is not set in this case, since the local modem initiated the request. RDL does not function in 300 bps.		
RI ,	Ring Indicator	1:8:4	When status bit RI is a 1, it indicates that a ringing signal is being detected. The RI bit follows the ringing signal with a 1 during the on time and a zero during the off time coincident with the $\overline{\text{RI}}$ signal. The following are the RI bit response times:		
	** *		RI Bit Transition Response OFF-to-ON* 110 ±50 ms (50% duty cycle) ON-to-OFF 450 ±50 ms		
			*The OFF-to-ON time is duty cycle dependent: 890 ms (15%) \geq time \geq 50 ms (100%)		
	۶. <u>،</u>		This OFF-to-ON (or ON-to-OFF) response time is defined as the time interval between the sudden connection (removal) of the ring signal across TIP and RING and the subsequent transition of the RI bit.		

Table 11. Interface Memory Definitions (Continued)

2400 bps Full-Duplex Modem

Mnemonic	Name	Memory Location		Descriptio	on		
RLSD	Received Line Signal Detector	0:8:0	When status bit RLSD is a 1, it indicates that the carrier has successfully been received. RLSD will not respond to the guard tones or answer tones RLSD response times are given below:				
				Constant Carrier	Controlled Carrier		
			RLSD ¹ OFF-to-ON	40 to 65 m	s 40 to 65 ms		
			ON-to-OFF	40 to 65 m			
			Note: 1. After handshake has c	occurred.			
RSD	Receive Space Disconnect	0:D:1	When configuration bit RSD is a 1, the modem goes on-hook after receiving approximately 1.6 seconds of continuous spaces.				
RTRN	Retrain (2400 bps only)	1:9:6	When configuration bit RTRN is a 1, the modem sends the training se- quence. It resets when the training sequence from the remote modem has successfully been received. If the sequence has not been successfully receiv- ed from the remote modem, CTS will remain OFF. In order to put the modem back in the data mode, it is necessary to write a 0 into the RTRN bit, then repeat the retrain sequence.				
RTS	Request-to-Send	1:9 3	3 When control bit RTS is a 1, the modem transmits any data on TXD CTS becomes active. In constant carrier mode, RTS should be set th time as DTR and then left ON. In controlled carrier operation, indepe operation of RTS turns the carrier ON and OFF. The responses to R shown (assume the modem is in data mode).				
			Leased or Dial Line ¹	RTS Off	RTS On		
			Controlled Carrier	CTS OFF Carrier OFF	Carrier ON 210 to 275 ms Scrambled 1's Transmitted CTS ON		
			Constant Carrier	CTS OFF Carrier ON Scrambled 1's Transmitted	CTS ON Carner ON Data Transmitted		
			Note: 1. After handshake is cor	nplete.			
			For ease of use in constant same time as DTR.	nt carrier mode, F	RTS should be turned ON the		
SPEED	Speed Indication	0:9:(4,5)	The SPEED status bits re The SPEED bit represent		which the modem is operating.		
			4	5 Spee			
			-	0 0-30	0		
			1	0 1200			
			1	1 2400			
			Note: The SPEED bits are not a	active in analog lo	opback and leased line mode.		

Table 11. Interface Memory Definitions (Continued)

2400 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description
SSD	Send Space Disconnect	1.D:0	When configuration bit SSD is a 1, it causes the modern to transmit approximately 4 seconds of spaces before disconnecting, when DTR goes from active to inactive state.
ST	Self Test	(0,1) [.] A:4	When configuration bit ST is a 1, self test is activated. ST must be a 0 to end the test. It is possible to perform self test in analog loopback with or without a DTE connected During any self test, TXD and RTS are ignored. Self test does not test asynchronous-to-synchronous converter circuits in either the transmitter or receiver.
			Error detection is accomplished by monitoring the self test error counter in the RAM. If the counter increments during the self test, an error was made. The counter contents are available in the diagnostic register when the RAM access code 00 is loaded in the diagnostic control register (0:F).
			Self Test End-to-End (Data Mode)
			Upon activation of self test an internally generated data pattern of alternate binary ones and zeros (reversals) at the selected bit rate are applied to the scrambler. An error detector, capable of identifying errors in a stream of reversals are connected to the output of the descrambler.
			Self Test with Loop 3
			Loop 3 is applied to the modem as defined in Recommendation V.54. Self test is activated and DCE operation is as in the end-to-end test, In this test DTR is ignored.
			Self Test with Loop 2 (Data Mode)
			The modem is conditioned to instigate a loop 2 at the remote modem as specified in recommendation V.54. Self test is activated and DCE operation is as in the end-to-end test
			ST does not function in 300 bps.
3DB	3 dB Loss to Receive Signal	1:B.2	When configuration bit 3DB is a 1, it attenuates the received signal 3 dB. This is only used if the modem will see 0 dBm or greater line signal at the
			receiver input. Insertion of the 3 dB loss will then prevent saturation.
тм	Test Mode	0:8:1	When status bit TM is a 1, it indicates that the modem has completed the handshake and is in one of the following test modes: AL or RDL.
TONE	Tone Detect	0:8:7	TONE follows the energy detected in the 340 to 640 Hz frequency band. The user must determine which tone is present on the line by determining the duty cycle of the TONE bit. TONE is active only when CRQ in chip 0 is a 1.
			Detection Range: -10 to -43 dBm Response Time: 17 ±2 ms
TXCLK	Transmit Clock Select	1:C:(5,6)	TXCLK allows the user to designate the origin of the transmitter data clock, as shown below
			Configuration Word Transmit Clock <u>6</u> 5
			Internal 0 0 External 1 0
			Slave 1 1
			If external clock is chosen the user clock must be input at XTCLK. The clock characteristics must be the same as TDCLK. The external clock will be reflected by TDCLK.
			If slave clock is chosen the transmitter is slaved to the receive clock. This is also reflected by TDCLK.

Table 11. Interface Memory Definitions (Continued)

2400 bps Full-Duplex Modem

Mnemonic	Name	Memory Location	Description			
TX LEVEL	Transmit Level	1·B:(5–7)				hange the transmit level at TIP and RING n attenuation in the transmit path).
				figura Word		Transmit Level (±1.0 dBm)
			<u>7</u>	<u>6</u>	5	(at TIP and RING)
			0	0	0	–10 dBm
			0	0	1	–12 dBm
			0	1	0	–14 dBm
			0	1	1	–16 dBm
			1	0	0	–18 dBm
			1	0	1	–20 dBm
			1	1	0	–22 dBm
			1	1	1	–24 dBm

Table 11.	Interface	Memory	Definitions	(Continued)
-----------	-----------	--------	-------------	-------------

Internal Modem Timing

In a microprocessor environment it is necessary to know how long various functions last or what the response times of certain functions are. Since the modem is a part of the microprocessor environment its timing and response times are necessary. Table 12 provides the timing relationships between interface memory bits and modem functions.

Table	12.	Internal	Modem	Timina
1 0010		meena	modern	

Table 12. Interna	i modelli i lilling
Parameter	Time Interval
NEWC bit checked Transmitter Receiver	Once per sample ¹ Once per baud ²
NEWC bit set by host until modem action Transmitter Receiver	≤ One baud time One baud time
Control, Configuration bits read Transmitter Receiver	Only after NEWC is set ST, RSD—every sample, all others after NEWC set
Status bits updated Transmitter Receiver	Once per sample Once per baud
Status change reflected by NEWS, IRQ Transmitter Receiver	MIN < one sample time MAX one sample time MIN one sample time MAX one baud time
Memory status reflected to modem pin Transmitter Receiver	33.33 μs 33.33 μs
1. Sample Time = 7200 Hz	2. Baud Time = 600 Hz

AUTO DIAL SEQUENCE

The following flow chart defines the auto dial sequence via the microprocessor interface memory.

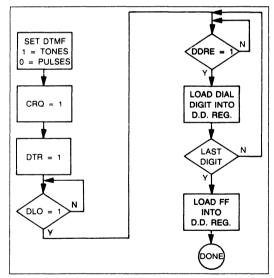


Figure 13. Auto Dial Sequence Flow Diagram

Note: The modem timing for the auto dialer accounts for interdigit delay for pulses and tones.

SIGNAL PROCESSOR RAM ACCESS

RAM AND DATA ORGANIZATION

Each signal processor contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16-bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.

Interface Memory Locations

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit normally transfers a word from RAM to interface memory once each clock cycle of the SP device. In the transmitter, a word is transferred from SP RAM to the interface memory every sample time. In the receiver, a word is transferred from RAM to the interface memory every sample time as well. Each RAM word transferred to the interface memory is 32-bits long. These bits are written by the SP logic unit into interface memory registers 5, 4, 3, and 2. Registers 3 and 2 contain the most significant byte and least significant byte, respectively, of the XRAM data. Registers 5 and 4 contain the most and least significant bytes of YRAM data, respectively.

RAM Access Codes

The SP logic unit determines the SP RAM address to read from, or write to, by the code stored in the RAM Access bits of interface memory register F (RAM Access R in the receiver 0:F and RAM Access T in the transmitter 1:F).

Only the transmitter (chip 1) allows data to be transferred from interface memory to SP RAM. When set to a 1, bit 1:F:7 signals the SP logic unit to disable transfer of SP RAM data to the interface memory, and instead, to transfer data from interface memory to SP RAM. When writing into SP RAM, 32 bits of data in the XRAM and YRAM registers will be written into the appropriate

2400 bps Full-Duplex Modem

SP RAM location as specified by the RAM access code (82-86) in register 1:F (Table 13). Once the data is written into the RAM access register 1:F, the XRAM registers 1:2 and 1:3 or the YRAM registers 1:4 and 1:5, set the NEWC bit 1:E:3 to a 1. This action causes the information to be transferred from interface memory into SP RAM. Bit 7 of register 1:F is cleared to a 0 by the modem after the RAM is read. New data can be written into the SP RAM after the NEWC bit is reset to a 0 by the SP.

Note:

Any transmitter RAM Write operation must always be preceded by a RAM read from the desired location. This is to guarantee that the correct information is written into the 16 unchanged bits, since all transmitter RAM operations are 32 bit transfers with typically only 16 of the bits used.

Both the transmitter and receiver (chips 1 and 0, respectively) allow data to be transferred from SP RAM into the interface memory. A 0 in transmitter bit 1:F:7 enables the SP to transfer 32 bits of data from SP RAM to the XRAM and YRAM registers (16 bits each) in the interface memory as specified by the RAM access code in register 1:F. A 0 in receiver bit 0:F:7 enables the SP to transfer 32 bits of data from SP RAM to the XRAM and YRAM registers (16 bits each) in the interface memory as specified by the access code in register 0:F. To read the SP RAM in chip 1 (transmitter), load into 1:F the RAM access code which identifies the 32 bits of data to transfer to the XRAM and YRAM registers. Next, set the NEWC bit 1:E:3 to a 1. After transferring the data from RAM to the XRAM or YRAM registers, the NEWC bit is reset to a 0 by the SP. Chip 0 (receiver), on the other hand, will provide the XRAM and YRAM data one sample time following the loading of the RAM access code into register 0:F, and will continue to provide the same data at one sample time intervals until a new RAM access code is loaded.

When reading from or writing into RAM, no bits are provided for handshaking or interrupt functions. The NEWC bit can be used as a mechanism to provide sample and baud intervals. Since the NEWC bit is checked, once per baud in chip 0 and once per sample in chip 1, the user can set the NEWC bit and wait for it to be cleared. Depending on which chip the NEWC bit was set, the time interval from the setting to the clearing of the NEWC bit will be either one sample or one baud time. This, however, will not guarantee that the action of reading and writing the XRAM and YRAM will occur in the middle of an actual sample or baud time.

2400 bps Full-Duplex Modem

		RAM Acc	ess Code		
Node	Function	RAM Read	RAM Write	Chip	Reg. No.
1	Demodulator Output	56	_	0	2, 3, 4, 5
2	Low Pass Filter Output	40	-	0	2, 3, 4, 5
3	Input Signal to Equalizer Taps	41–4D	-	0	2, 3, 4, 5
4	AGC Gain Word	14	-	0	2, 3
5	Equalizer Tap Coefficients	01-0D	-	0	2, 3, 4, 5
6	Equalizer Output	53	-	0	2, 3, 4, 5
7	Rotated Equalizer Output	11	-	0	2, 3, 4, 5
	(Received Point Eye Pattern)		-		
8	Decision Points	51	- 1	0	2, 3, 4, 5
	(Ideal Eye Pattern)				
9	Rotated Error	52] -	0	2, 3, 4, 5
10	Rotation Angle	12	-	0	4, 5
11	Phase Error	10	-	0	2, 3
12	Self Test Error Counter	00	-	0	2, 3
	DTMF Tone Duration	02	82	1	4, 5
	DTMF Interdigit Delay	03	83	1	2, 3
	Pulse Interdigit Delay	03	83	1	4, 5
	Pulse Relay Make Time	04	84	1	2, 3
	Pulse Relay Break Time	04	84	1	4, 5
	Handshake Abort Counter	05	85	1	4, 5
	Handshake Abort Timer	06	86	1	2, 3
	CTS Off-Time	07	87	1	2, 3
NOTE: 1.	All the chip 1 access codes are not valid be	efore R5310-18.			
2.	Access codes are hexadecimal.				
3.	Only chip 1 RAM can be written				
4.	CTS Off-Time is not valid before R5310-22.				

Table 13. RAM Access Codes

ERROR RATES

Bit error rate (BER) is a measure of the throughput of data on the communication channel. It is the ratio of the number of received bits in error to the number of transmitted bits. This number increases with decreasing signal-to-noise ratio (SNR). The type of line disturbance and the modem configuration affect the BER.

Tables 14 through 16 summarize the BERs for various conditions. Figure 14 shows the BER measurement setup.

Tal	ole	14.	BER	Summarv
-----	-----	-----	-----	---------

R2424		Signal to Noise Ratio	
Data Rate	Bit Error Rate	Originate Mode	Answer Mode
2400 bps	1 × 10 ⁻⁵	16.6 dB	16.2 dB
1200 bps	1 × 10 ⁻⁵	8.2 dB	7.9 dB
600 bps	1×10^{-5}	5.0 dB	5.0 dB
300 bps	1 × 10 ⁻⁵	9.2 dB	7.0 dB

Test Condition: Signal Level = -30 dBm,

Sync for 2400 bps, 1200 bps, 600 bps, Async for 300 bps, With 3002 Unconditioned Line. Table 15. BER Summary

		•	
R2424 Signal to Noise Ratio		oise Ratio	
Data Rate	Bit Error Rate	Originate Mode	Answer Mode
2400 bps	1 × 10 ⁻⁵	19.0 dB	17.3 dB
1200 bps	1 × 10 ⁻⁵	8.3 dB	8.1 dB
600 bps	1 × 10 ⁻⁵	5.0 dB	5.0 dB
300 bps	1 × 10 ⁻⁵	10.4 dB	7.2 dB
Test Condition: Signal Level = - 43 dBm.			

Sync for 2400 bps, 1200 bps, 600 bps, Async for 300 bps, With 3002 Unconditioned Line.

Table 16. BER Summary

2424	Signal to Noise Ratio	
Bit Error Rate	Originate Mode	Answer Mode
1 × 10 ⁻⁵	17.0 dB	16.6 dB
1 × 10 ⁻⁵	7.7 dB	7.9 dB
1 × 10 ⁻⁵	4.6 dB	4.5 dB
1 × 10 ⁻⁵	9.3 dB	6.2 dB
Test Condition: Signal Level = -40 dBm, Sync for 2400 bps, 1200 bps, 600 bps, Async for 300 bps, Back-To-Back.		
	$\frac{1 \times 10^{-5}}{1 \times 10^{-5}}$ $\frac{1 \times 10^{-5}}{1 \times 10^{-5}}$ $\frac{1 \times 10^{-5}}{1 \times 10^{-5}}$ tion: Signal Level Sync for 240 Async for 30	Bit Error Rate Originate Mode 1×10^{-5} 17.0 dB 1×10^{-5} 7.7 dB 1×10^{-5} 4.6 dB 1×10^{-5} 9.3 dB tion: Signal Level = -40 dBm, Sync for 2400 bps, 1200 bps, 60 Async for 300 bps,

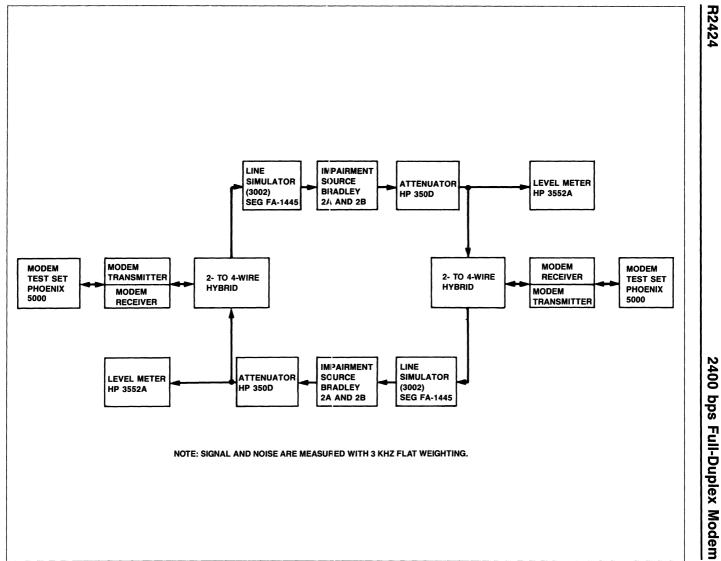


Figure 14. 2-Wire Full-Duplex Bit Error Rate Performance Test Setup (Bidirectional)

1-60

R2424

2400 bps Full-Duplex Modem

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	±5%	390 mA	<455 mA
+ 12 Vdc	±5%	25 mA	< 30 mA
- 12 Vdc	±5%	4 mA	< 5 mA

Table 17. Modem Power Requirements

Table 18. Modem Environmental Restrictions

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	– 40°C to + 80°C (– 40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity:	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.
Altitude	-200 feet to +10,000 feet

Parameter	Specification
DIN Connector Version Board Structure.	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical mating receptacle: Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
PCB Dimensions:	
DC Version	
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Height	0.75 in. (19 mm)
M Version	
Width	3.937 in. (100 mm)
Length	3.328 in. (82 mm)
Height	0.40 in. (10.2 mm)
Weight (max):	0.45 lbs. (0.20 kg.)
Lead Extrusion (max.):	0.100 in. (2.54 mm)
DIP Connector Version	
Board Structure	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions	
Width	2.0 in. (50.8 mm)
Length	3.5 in. (88.9 mm)
Height	0.2 in. (5.08 mm) above, 0.13 in. (3.30 mm) below
Weight (max.)	2.6 oz. (73g)
Pin Length (max.)	0.53 in. (13.5 mm) above

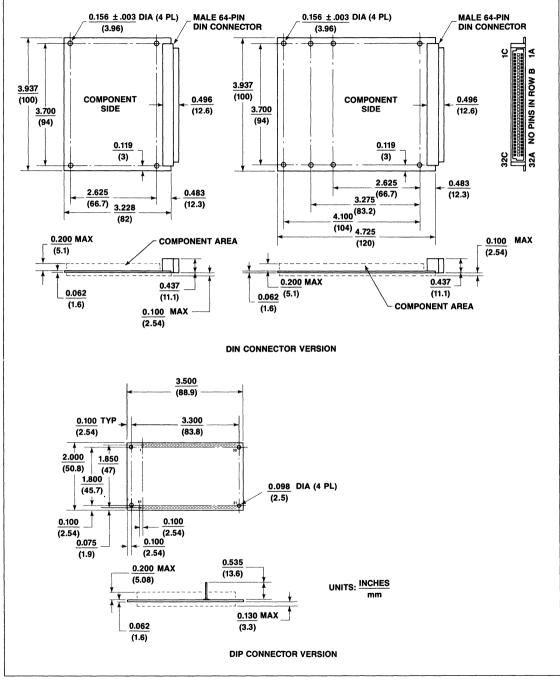


Figure 15. R2424 Modem Dimensions and Pin Locations

2400 bps Full-Duplex Modem

R2424 MODEM INSTALLATION AND MAINTENANCE

This section contains installation instructions and maintenance procedures for the Rockwell R2424DC Modem. It also contains a special notice from the Canadian Department of Communications (DOC) for Canadian operation and from the Federal Communications Commission (FCC) for United States operation.

GENERAL DESCRIPTION

The Rockwell R2424DC modem is designed to be used with the United States or Canadian Telephone Switched Networks in 2-wire full-duplex dial-up operation. The modem requires protective circuitry registered with the Federal Communications Commission (FCC) Part 68 which allows direct connection to the U.S. switched telephone network. This circuitry also complies with the Canadian Department of Communications (DOC) Terminal Attachment Program (TAP) which similarly defines their switched telephone network requirements.

The R2424DC features automatic dial and answer capabilities along with surge suppression and hazardous voltage and longitudinal balance protection. Its maximum output signal level at the telephone interface is set at $-10 \text{ dBm} \pm 1 \text{ dBm}$ (permissive mode of operation).

Two standard telephone jack connectors (RJ11s) are mounted side by side on one edge of the board and are wired in parallel. One is for connection to the telephone line network and the other for the telephone headset connection.

INSTALLATION AND SIGNAL ROUTING INSTRUCTIONS

PHYSICAL MOUNTING

The modem module may be physically incorporated into the customer's end product by utilizing the four corner 0.156" diameter mounting holes (for the self-hooking plastic type standoffs or for bolting it down to some rigid structure) or by installing the module into card guides.

ELECTRICAL INTERFACING INSTRUCTIONS

The electrical interfacing is accomplished via the DIN (Euro) connector (for external power inputs and digital logic signals) and the teleo connectors (for the telephone network connection). Note that the telephone interface connectors are physically separated from the modem interface control connector and extreme care must be taken in routing the telephone interface leads from the modem to the telephone network (line connector jack in the wall).

FCC RULES PART 68 REQUIREMENTS

The FCC Rules Part 68 requires that the telephone interface leads shall:

 Be reasonably physically separated and restrained from; not routed in the same cable as; nor use the same connector as leads or metallic paths connecting to power connections.

Note

Power connections are defined as the connections between commercial power and any transformer, power supply rectifier, converter or other circuitry associated with the modem. The connections of the interface pins (including the + 12 Vdc, -12 Vdc and + 5 Vdc) are not considered power connections.

2. Be reasonably physically separated and restrained from; not routed in the same cable as; nor use adjacent pins on the same connector as metallic paths that lead to unregistered equipment, when specification details provided to the FCC do not show that the interface voltages are less than nonhazardous voltage source limits in Part 68.

Note

All the DIN connector interface voltages to the modem have been established as non-hazardous.

ROUTING OF TELEPHONE INTERFACE LINES

In routing the telephone interface leads from the modem telephone connector jacks to the telephone line network connection, the following precautions should be strongly considered for safety.

- 1. The telephone interface routing path should be as direct and as short as possible.
- Any cable used in establishing this path should contain no signal leads other than the modem telephone interface leads.
- Any connector used in establishing this path shall contain not commercial power source signal leads, and adjacent pins to the TIP and RING (T and R) pins in any such connector shall not be utilized by any signals other than those shown in this document.

MAINTENANCE PROCEDURE

Under the FCC Rules, no customer is authorized to repair modems. In the event of a Rockwell modem malfunctioning, return it for repair to an authorized ROCKWELL INTERNA-TIONAL distributor (if in Canada) or send it directly to the Semiconductor Products Division, Rockwell International Corporation, El Paso, Texas 79906.

R2424

SPECIAL INSTRUCTION TO USERS

If the Rockwell modern has been registered with the Federal Communications Commission (FCC), you must observe the following to comply with the FCC regulations:

- A. All direct connections to the telephone lines shall be made through standard plugs and telephone company provided jacks.
- B. It is prohibited to connect the modem to pay telephones or party lines.
- C. You are required to notify the local telephone company of the connection or disconnection of the modem, the FCC registration number, the ringer equivalence number, the particular line to which the connection is made and the telephone number to be associated with the jack.

Note

If the proper jacks are not available, you must order the proper type of jacks to be installed by the telephone company (VSOC RJ11 for permissive mode of operation).

- D. You should disconnect the modem from the telephone line if it appears to be malfunctioning. Reconnect it only if it can be determined that the telephone line and not the modem is the source of trouble. If the Rockwell modem needs repair, return it to the ROCKWELL INTERNATIONAL CORPORATION. This applies to the modem whether it is in or out of warranty. Do not
- attempt to repair the unit as this is a violation of the FCC rules and may cause danger to persons or to the telephone network.

TELEPHONE COMPANY RIGHTS AND RESPONSIBILITIES

- A. The Rockwell modem contains protective circuitry to prevent harmful voltages to be transmitted to the telephone network. If such harmful voltages do occur, then the telephone company may temporarily discontinue service to you. In this case, the telephone company should:
 - 1. Promptly notify you of the discontinuance.
 - 2. Afford you the opportunity to correct the situation which caused the discontinuance.
 - Inform you of your right to bring a complaint to the FCC concerning the discontinuance.
- B. The telephone company may make changes in its facilities and services which may affect the operation of your equipment. It is, however, the telephone company's responsibility to give you adequate notice in writing to allow you to maintain uninterrupted service.

LABELING REQUIREMENTS

A. The FCC requires that the following label be prominently displayed on the outside surface of the customer's end product and that the size of the label should be such that all the required information is legible without magnification. Sample label below:

Unit contains Registered Protective Circuitry which complies with Part 68 of FCC Rules.

FCC Registration Number: AMQ9SQ-14211-DM-E

Ringer Equivalence: 0.9B

Note

The Rockwell modem module has the FCC registration number and ringer equivalence number permanently affixed to the solder side of the PCB and any unit containing this modem shall use this information for the label requirements.

SPECIAL NOTICE FROM THE CANADIAN DEPARTMENT OF COMMUNICATIONS

The Canadian Department of Communications label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational and safety requirements. The Department does not guarantee the equipment will operate to the user's satisfaction.

Before installing this equipment, users should insure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an approved method of connection. In some cases, the company's inside wiring associated with a single line individual service may be extended by means of a certified jack-plug-cord ensemble (telephone extension cord). The customer should be aware that the compliance with the above conditions may not prevent degradation of service in some situations. Existing telecommunications company requirements do not permit their equipment to be connected to customer-provided jacks except where specified by individual telecommunications company tariffs.

The Department of Communications requires the Certificate Holders to identify the method of network connection in the user literature provided with the certified terminal equipment.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

CAUTION

Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or electrician, as appropriate.

2400 bps Full-Duplex Modem

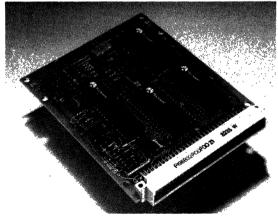
Integral Modems

R201/26DP 2400/1200 bps Data Pump Modem

INTRODUCTION

The Rockwell R201/26DP is a synchronous, 2400/1200 bits per second (bps) modem. It is designed for half duplex operation over the public switched telephone network or (PSTN) full duplex operation over unconditioned leased lines.

The modem satisfies the telecommunications requirements specified in CCITT Recommendation V.26 bis Alternate A or B, and Bell Specification 201B/C.


The R201/26DP is optimized for point-to-point applications and is suitable for network applications where the optimum in data transfer is needed. Its small size and low power consumption offer the user flexibility in creating a 2400/1200 bps modem customized for specific packaging and functional requirements.

Data can be transferred between the host computer either serially over the CCITT V.24 (RS-232-C) interface or in parallel over an 8-bit microprocessor bus.

The R201/26DP is a member of Rockwell's family of plug compatible integral modems.

FEATURES

- Configurations:
 CCITT V.26, V.26 bis
- Bell 201B/C
- Full-duplex (4-wire) over Leased Lines
- Half-duplex (2-wire) over PSTN
- Ideal for point-to-point applications
- Synchronous Operation:
 2400 bps (with fall-back) ±.01%
 1200 bps ±.01%
- Dual Tone Multi-Frequency (DTMF) Generation
- Programmable Tone Generation
- Call Progress Tone Detection
- Programmable Output Level: -1 dBm to -15 dBm
- Equalization
- Automatic Adaptive
- Compromise Cable and Link (Selectable)
- DTE Interface:
 Microprocessor Bus
 CCITT V.24 (RS-232-C Compatible)
- Local and Remote Test Configurations
- Selectable Scrambler/Descrambler (V.27 bis)
- Dynamic Range: 0 dBm to 43 dBm
- Diagnostic Capability
- Provides Telephone Line Quality Monitoring Statistics
- Small Size: 100 mm × 120 mm (3.94 in. × 4.73 in.)
- Low Power Consumption: 3W (Typical)
- TTL and CMOS Compatible

R201/26DP Modem

Document No. 29200N23

Data Sheet

Order No. MD23 Rev. 1, January 1987

1-65

2400/1200 bps Data Pump Modem

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER AND SIGNALING FREQUENCIES

The transmitter carrier and signaling frequencies of the R201/26DP are listed in Table 1.

Table 1. Transmitter Carrier and Signaling Frequency Specifications

Function	Frequency (Hz ±0.01%)
Carrier frequency	1800
CCITT Echo Suppression and Answering Tone Frequencies	2100
BELL Echo Suppression and Answering Tone Frequencies	2025

DTMF GENERATION

The R201/26DP is capable of generating Dual Tone Multifrequency (DTMF) signals. The duration of the DTMF signal is 95 ms and the interdigit delay is 70 ms. The amplitude of the lower frequency is -5.8 dBM and of the higher frequency is -3.8 dBM.

Table 2 lists the Dial Digit Register (DDR) codes necessary for DTMF dialing and the corresponding tone pairs.

Dial Digit Register (DDR) Hexadecimal Code	Dial Digit		e Pair Iz)
00	0	941	1336
01	1	697	1209
02	2	697	1336
03	3	697	1477
04	4	770	1209
05	5	770	1336
06	6	770	1477
07	7	852	1209
08	8	852	1336
09	9	852	1477
0A	*	941	1209
OB	#	941	1477

Table 2. Dial Digits/Tone Pairs

TONE GENERATION

Under control of the host processor, the R201/26DP can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

TONE DETECTION

The R201/26DP features a Tone Detector receiver configuration. The tone detector responds to energy in the 345 \pm 10 Hz to 650 \pm 10 Hz frequency range. The presence of a tone is indicated by the zero state of a status bit. The tone detector response time is 10 \pm 5 ms.

SIGNALING AND DATA RATES

The data signaling and modulation rates for normal and fallback operation are listed in Table 3.

Table 3. Signaling/Data Rates

Parameter	Specification (±0.01%)
Signaling Rate: Normal Operation	1200 Baud
Data Rate:	2400 bps
Signaling Rate: Fallback Operation	1200 Baud
Data Rate:	1200 bps

DATA ENCODING

At either 2400 bps or 1200 bps the R201/26DP operates at 1200 baud.

At 2400 bps the data stream is encoded into dibits. Two different methods of coding are used in accordance with CCITT Recommendation V.26 A/B. The V.26B method is compatible with Bell 201 B/C modems.

At 1200 bps the data stream is encoded into single bits in accordance with CCITT Recommendation V.26 bis.

EQUALIZERS

The modem provides equalization functiuons that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

The transmitted spectrum occupies the bandwidth between 800 Hz and 2800 Hz and is shaped by a square root of 90% raised cosine filter.

SCRAMBLER/DESCRAMBLER

The R201/26DP incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with CCITT Recommendation V.27 bis and V.27 ter. The scrambler/descrambler is optionally enabled by interface memory bits.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R201/26DP can adapt to received frequency errors of up to \pm 10 Hz with less than 0.5 dB degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

The R48DP/208 provides a data derived Receive Data Clock (RDCLK) output in the form of a squarewave. The low to high transitions of this output coincide with the centers of received data bits. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. RDCLK duty cycle is 50% \pm 1%.

TRANSMIT LEVEL

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

TRANSMIT TIMING

The R201/26DP provides a Transmit Data Clock (TDCLK) output with the following characteristics:

Frequency. Selected data rate of 2400 or 1200 Hz (±0.01%).
 Duty Cycle. 50% ±1%

Input data presented on TXD is sampled by the R201/26DP at the low to high transition of TDCLK. Data on TXD must be stable for at least one microsecond prior to the rising edge of TDCLK and remain stable for at least one microsecond after the rising edge of TDCLK.

EXTERNAL TRANSMIT CLOCK

The R201/26DP is capable of tracking an external transmit clock signal on input XTCLK. This input signal must equal the desired data rate $\pm 0.01\%$ with a duty cycle of 50% $\pm 20\%$.

TRAIN ON DATA

When train on data is enabled, the receiver trains on data in less than 3.5 seconds.

TURN-ON SEQUENCE

A total of 13 selectable turn-on sequences can be generated by the R201/26DP. These are listed in Table 4. The Turn-on Sequence data are written to the Turn On Sequence select field in chip 0.

Table 4. Turn-On Sequences

onse
ns) Comments
7
3
Scrambler inserted

*NOTE: The scrambler bits, DDIS and SDIS must also be set to insert or disable the scrambler.

TURN-OFF SEQUENCE

The R201/26DP turn-off sequence consists of a maximum of 6 ms of remaining data and scrambled ones at 1200 baud.

CLAMPING

The Received Data (RXD) signal is clamped to a constant mark (one) whenever the Received Line Signal Detector (RLSD) is off.

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of Request-To-Send (\overline{RTS}) and the off-to-on transition of \overline{CTS} is determined by the modem configuration and its associated turn-on sequence.

These times are listed in Table 4. If training is not enabled $\overline{\text{RTS}/\text{CTS}}$ delay is less than 2 baud times.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

2400/1200 bps Data Pump Modem

RECEIVED LINE SIGNAL DETECTOR (RLSD)

The off-to-on (on-to-off) response time of the RLSD signal and the CDET bit is defined as the time period between the sudden connection (removal) of the received line signal to (from) the modem's receiver, and the subsequent on (off) transition of carrier detect. Table 5 shows the carrier detect response times.

Table 5	5. Carrie	Detect R	esponse	Times
	7. Outrici	Delectin	caponac	111163

Response Time (ms)	
14±1	
8±3	

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Four threshold options are provided for carrier detect and are selected by writing to the Receiver Threshold (RTH) bits in the interface memory. Table 6 shows the relationship betweeen the setting of the RTH bits and the carrier detect thresholds.

Table 6.	Carrier	Detect	Levels
----------	---------	--------	--------

RTH	RLSD On	RLSD Off
00	> - 43 dBm	< – 48 dbm
01	> – 33 dBm	< - 30 dbm
10	> – 26 dBm	<-31 dbm
11	> 16 dBm	< - 21 dbm

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The R201/26DP is capable of being operated in either a serial or a parallel mode of operation.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device shown in the Functional Interconnect Diagram (Figure 1) illustrates this capability.

PARALLEL MODE

The R201/26DP has the capability of transferring channel data up to eight bits at a time via the microprocessor bus.

MODE SELECTION

Selection of either the serial or parallel mode of operation is by means of a control bit. To enable the parallel mode, the control bit must be set to a 1. The modem automatically defaults to the serial mode at power-on. In either mode the R201/26DP is configured by the host processor via the microprocessor bus.

2400/1200 bps Data Pump Modem

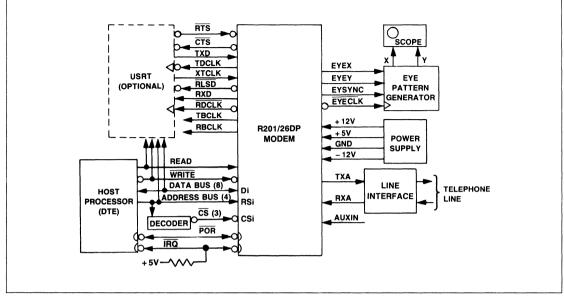


Figure 1. R201/26DP Functional Interconnect Diagram

FULL/HALF DUPLEX MODES

The R201/20DP receiver can be configured for either full duplex operation over four-wire leased lines or for half duplex operation over the switched telephone network. Full duplex or half duplex operation is selected by writing the appropriate configuration code into the receiver configuration register. When configured for half duplex operation, the receiver is squelched and unsquelched by setting and resetting of a control bit. When the receiver is squelched, RLSD is turned off and RXD is clamped to the marking state. When the receiver is unsquelched, it searches for a 20 ms period of silence before entering the training state. This prevents line echoes from interfering with the proper reception of training sequence.

INTERFACE CRITERIA

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 64-pin DIN connector. Software circuits are assigned to specific bits in a 48-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in Table 7. In the table, the column titled 'Type' refers to designations found in the Hardware Circuit Characteristics. Figure 2 shows the Microprocessor Interface Timing Diagram. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 68000, or 68000 microprocessors. Table 8 lists the timing parameters of the microprocessor interface.

Table 7. R201/20DP Hardware Circuits								
Name	Name Type Pin No. Description							
A. OVERHEAD:								
Ground (A) Ground (D) + 5 volts + 12 volts - 12 volts POR	AGND DGND PWR PWR PWR I/OB	31C,32C 3C,8C,5A,10A 19C,23C,26C,30C 15A 12A 13C	Analog Ground Return Digital Ground Return + 5 volt supply + 12 volt supply - 12 volt supply Power-on-reset					
B. MICROP	ROCES	SOR INTERFACE:	L					
D7 D6 D5 D4 D3 D2 D1 D0 RS3 RS2 RS1 RS0	I/OA I/OA I/OA I/OA I/OA I/OA I/OA I/OA	1C 1A 2C 2A 3A 4C 4A 5C 6C 6A 7C 7A	Data Bus (8 Bits) Register Select (4 Bits)					
CS0	IA	10C	Chip Select Transmitter Device					
CS1	IA	9C	Chip Select Receiver Sample Rate Device					
CS2	IA	9A	Chip Select Receiver Baud Rate Device					
READ	IA	12C	Read Enable					
WRITE	IA	11A	Write Enable					
IRQ	OB	11C	Interrupt Request					

Table 7. R201/26DP Hardware Circuits

Table 7. R201/26DP Hardware Circuits (Cont.)							
Туре	Pin No.	Description					
C. V.24 INTERFACE:							
OC	21A	Receive Data Clock					
OC	23A	Transmit Data Clock					
IB	22A	External Transmit Clock					
IB	25A	Request-to-Send					
OC	25C	Clear-to-Send					
IB	24C	Transmitter Data					
OC	22C	Receiver Data					
oc	24A	Received Line Signal Detector					
RY CIR	CUITS:						
OC	26A	Receiver Baud Clock					
oc	27C	Transmitter Baud Clock					
SIGNA	LS:						
AA	31A	Transmitter Analog Output					
AB	32A	Receiver Analog Input					
AC	30A	Auxiliary Analog Input					
STIC:							
OC	15C	Eye Pattern Data—X Axis					
OC	14A	Eye Pattern Data—Y Axis					
OA	14C	Eye Pattern Clock					
OA	13A	Eye Pattern Synchronizing Signal					
	Type ERFACE OC OC IB OC IB OC IB OC OC OC SIGNAI AA AB AC OC OC OC OC	Type Pin No. ERFACE 0C 21A OC 23A 1B IB 22A 1B IB 25A 0C OC 25C 1B IB 24C 0C OC 22C 0C OC 24A 31A RY CIRCUTS: 0C 26A OC 26A 27C SIGNALS: 31A AB AA 31A 30A STIC: 0C 15C OC 14A 0A					

Table 7. R201/26DP Hardware Circuits (Cont.)

2400/1200 bps Data Pump Modem

MICROPROCESSOR TIMING

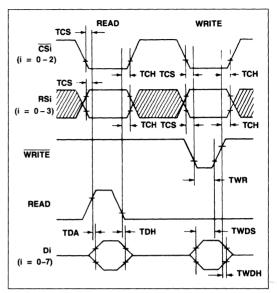


Figure 2. Microprocessor Interface Timing Diagram

EYE PATTERN GENERATION

The four hardware diagnostic circuits, identified in Table 7, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words are shifted out most significant bit first, clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Table 8. Critical Timing Requirements

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	TCS	30	_	nsec
Data access time after Read	TDA	-	140	nsec
Data hold time after Read	TDH	10	50	nsec
CSi, RSi hold time after Read or Write	тсн	10	_	nsec
Write data setup time	TWDS	75	-	nsec
Write data hold time	TWDH	10	-	nsec
Write strobe pulse width	TWR	75	í. <u> </u>	nsec

2400/1200 bps Data Pump Modem

HARDWARE CIRCUIT CHARACTERISTICS

Digital Interface Characteristics

Table 9 lists the parameters associated with the digital interface provided by the R201/26DP.

				Input/Output Type						
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	ос	I/O A	I/O B
V _{IH}	Input Voltage, High	v	2.0 Min.	2.0 Min.	2.0 Min.				2.0 Min.	5.25 Max 2 0 Mın.
VIL	Input Voltage, Low	v	0.8 Max.	0.8 Max.	0.8 Max.				0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.4 Min. ¹	2.4 Min. ³
V _{OL}	Output Voltage, Low	v				0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ⁵
I _{IN}	Input Current, Leakage	μA	±2.5 Max.						±2.5 Max.4	
I _{ОН}	Output Current, High	mA				-0.1 Max.	•			
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.		
١L	Output Current, Leakage	μA					±10 Max.			
I _{PU}	Pull-up Current (Short Cırcuit)	μA		– 240 Max. – 10 Mın.	– 240 Max. – 10 Min.			–240 Max. –10 Min.		– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Cırcuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	3-State Transceiver	Open-Draın w/Pull-up
	**************************************				Notes	•			•••••••	
	1. Load = -100μ	A		Load = -40	,			5. I Load	= 036 mA	
	2. I Load = 1.6 mA 4. $V_{IN} = 0.4$ to 2.4 Vdc, $V_{CC} = 5.25$ Vdc									

Table	9.	Digital	Interface	Characteristics
1 abic	J .	Digitai	micinace	onaraotonatioa

Analog interface Characteristics

Table 10 lists the parameters associated with the analog interface provided by the R201/26 DP.

Table 10. Analog Interface Characteristics

Name	Туре	Characteristics				
ТХА	AA	The transmitter output is 604 ohms $\pm 1\%$.				
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.				
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is the TLVL setting ± 0.6 dB ± 1.4 dB. If unused, this input must be grounded near the modem connector. If used, it must be driven from a low impedance source.				

SOFTWARE CIRCUITS

The R201/26DP comprises three signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 1 update at half the modem sample rate (2400 bps). Registers in chip 0 and 2 update at the baud rate (1200 bps).

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0-2), the register by Z(0-F), and the bit by Q(0-7, 0=LSB).

Status Control Bits

The operation of the R201/26DP is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory tables (tables 12-14). Bits designated by a dash (—) are reserved for modem use only and must not be changed by the host. Table 15 describes the function of each bit in the interface memory.

RAM Data Access

The R201/26DP provides the user with access to much of the data stored in the modem's memories. This data is useful for performing certain diagnostic functions.

Two RAM access registers in chip 1 allow user access to RAM locations via the X word registers (1:3 and 1:2) and the Y word registers (1:1 and 1:0). Comparable registers in chip 2 provide access to chip 2 RAM locations. The access code stored in RAM ACCESS XS (1:5) selects the source of data for RAM DATA XSM and RAM DATA XSL (1:3 and 1:2). Similarly, the access code stored in RAM ACCESS YS (1:4) selects the source of data for RAM DATA YSM and RAM DATA YSM and RAM DATA YSL (1:1 and 1:0). Chip 2 registers are associated in the same way.

Reading of RAM data is performed by storing the necessary access codes in 1:5 and 1:4 (or 2:5 and 2:4), reading 1:0 (or 2:0) to reset the associated data available bit (1:E:0 or 2:E:0), then waiting for the data available bit to return to a one. Data is now valid and may be read from 1:3 through 1:0 (or 2:3 through 2:0). The contents of registers 2:3 and 2:1 are also available serially on outputs EYEX and EYEY, respectively, unless the IFIX bit

2400/1200 bps Data Pump Modem

(1:6:7) is set to a one. When IFIX is a one, EYEX and EYEY remain fixed on the rotated equalizer output.

AUTO DIAL SEQUENCE

The flowchart shown in Figure 3 defines the auto dial sequence via the microprocessor interface memory.

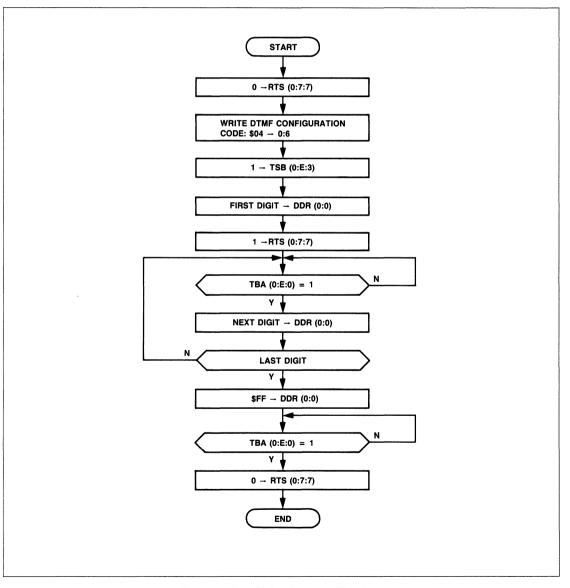


Figure 3. Auto Dialing Sequence Flowchart

RAM Access Codes

The RAM access codes defined in Table 11 allow the host processor to read diagnostic information within the modem.

No.	Function	Chip	X Access	Y Access	Register
1	Received Signal Samples	1	C0	Not Used	2,3
2	Demodulator Output	1	C2	42	0,1,2,3
3	Low Pass Filter Output	1	D4	54	0,1,2,3
4	Average Energy	1	DC	Not Used	2,3
5	AGC Gain Word	1	81	Not Used	2,3
6	Equalizer Input	2	C0	40	0,1,2,3
7	Equalizer Tap Coefficients	2	81 – 90	01 – 10	0,1,2,3
8	Unrotated Equalizer				
	Output	2	E1	61	0,1,2,3
9	Rotated Equalizer Output (Received Points)	2	A2	22	0,1,2,3
10	Decision Points (Ideal Data Points)	2	E2	62	0,1,2,3
11	Error	2	E3	63	0,1,2,3
12	Rotation Angle	2	Not Used	00	0,1
13	Frequency Correction	2	AA	Not Used	2,3
14	EQM	2	A7	Not Used	2,3
15	Dual Point	2	AE	2E	0,1,2,3

Table 11. RAM Access Codes

NOTE

In the interface memory tables that follow, those columns marked by a dash (--) indicate reserved and are for modem use *only*.

Bit Register	7	6	5	4	3	2	1	0
F			R	AM AC	CESS X	Т		
E	TIA		-		TSB	TIE	-	тва
D	-	-	-	-		_	—	—
С	-	-	_	-	-	-		—
В	-		-	-	-			
A	-	-	-					
9	-	-	-	-	-	-		-
8		-		-	-		-	
7	RTS	TTDIS	SDIS	MHLD	DWTR	TPDM	XCEN	DTMF
6	TTONE	-	TV26	TBPS	TURN-C	N SEQU	JENCE	SELECT
5	—	—	CI	Q	LAEN	LDEN	A3L	D3L
4	L3ACT	L4ACT	L4HG		TLVL		-	LCEN
3				FRE	QM			
2				FRE	EQL			
1			f	RAM DA	TA XTN	1		
0		RAM D	data Xt	L/TRAN	ISMITT	ER DAT	A/DDR	
Register Bit	7	6	5	4	3	2	1	0

Table 12. Transmitter Interface Memory Chip 0 (CSO)

2400/1200 bps Data Pump Modem

Table 13. Receiver Interface Memory Chip 1 (CS1)

	10.		01 11.10	Jiiuoo	Memo	.,	p : (0	•.,
Bit Register	7	6	5	4	3	2	1	0
F	RTSD	SQH	SQHT	_				-
E	RSIA	-	-		RSB	RSIE		RSDA
D	—	—	-	—		—		—
С	-	-	—	_	-		-	—
В	-	-	-	-	-	-	-	CDET
A	TODF	-	-	-	-	-	-	-
9	-	FED	-	-	-	TONE	-	-
8	-	-	-	-	-	-	-	-
7	R	ГН	DDIS	RPDM	WSRD	WBRD	T2	RTDIS
6	IFIX	TOD	RV26	1	TDET	HD2W	RLRT	RBPS
5			F	RAM AC	CESS X	3		
4			F	RAM AC	CESS YS	3		
3				RAM DA	TA XSM			
2				RAM DA	ata XSL			
1				RAM DA	ta ysm			
0			RAM DA	TA YSL/	RECEIVE	er data		
Register Bit	7	6	5	4	3	2	1	0

Table 14. Receiver Interface Memory Chip 2 (CS2)

Bit Register	7	6	5	4	3	2	1	0
F	-		—	-		-	-	-
E	RBIA		—	-		RBIE		RBDA
D	-			-				-
C	-	—	-	-	-		_	-
В	—			—				
A	-			—			-	-
9	-		—	-	-		-	-
8	—						-	-
7				-		-	_	-
6		-			_	-	-	
5			R	AM AC	CESS >	в		
4			R	AM AC	CESS Y	′B		
3			F	RAM DA	TA XB	٨		
2			1	RAM D	ATA XB	<u> </u>		
1			F	RAM DA	TA YB	A		
0			1	RAM D	ATA YBI	_		
Register Bit	7	6	5	4	3	2	1	0

2400/1200 bps Data Pump Modem

		Memory						
Mnemonic	Name	Location			Description		_	
A3L	Amplitude 3-Link Select	0:5:1			LAEN. When A3L is a one zero the U.S. Survey Long	e the Japanese 3 link equal link equalizer is selected	izer	
CDET	Carrier Detector	1:B:0	When zero, status bit $\overline{\text{CDET}}$ indicates that passband energy is being detected, and that a training sequence is not in process. $\overline{\text{CDET}}$ goes to a zero at the start of the data state, and returns to a one at the end of the received signal. $\overline{\overline{\text{CDET}}}$ activates up to 1 baud time before RLSD and deactivates within 2 baud times after RLSD.					
CEQ	Cable Equalizer Field	0:5:4,5	the tran		The following tables list th	compromise equalizers in bo e possible cable equalizer	oth	
	-			CEQ	Cable Length (0.4 mm diameter)		
				0	0.	0		
				1	1.	8 km		
				2		6 km		
				3	7.	2 km		
	· .			C -	ble Equalizer Nominal Ga	i		
	5			CEQ CODE 1	Die Equalizer Nominal Ga			
				r	Coin Polotive to			
	·			Frequency	Gain Relative to	·····		
				(Hz)	Transmitter	Receiver		
				700 1500	- 0.99	- 0.94 - 0.24		
				2000	+ 0.15	+0.31		
		-		3000	+ 1.43	+ 1.49		
				CEQ CODE 2 Frequency	Gain Relative to	1700 Hz (dB)		
-				(Hz)	Transmitter	Receiver		
-				700	- 2.39	- 2.67		
				1500	- 0.65	-0.74		
				2000	+ 0.87	+ 1.02		
				3000	+ 3.06	+3.17		
				CEQ CODE 3				
				Frequency	Gain Relative to	1700 Hz (dB)		
				(Hz)	Transmitter	Receiver		
				700	- 3.93	- 3.98		
				1500	- 1.22	- 1.20		
	1			2000	+ 1.90	+ 1.81		
-				3000	+ 4.58	+ 4.38		
DDIS	Descrambler Disable Dual Tone Multi- frequency Select	1:7:5 0:7:0	When or remove When t generat R201/2	o successfully with no ca control bit DDIS is a one d from the data path. his bit is set to a one, th tion, the TSB bit must be 6DP will perform a 95 m	ble equalizer selected. , and at device reset the re ne DTMF mode is selected e set to a one for each ton s timeout on the tone pair,	countered, most applications aceiver descrambler circuit i . To initiate DTMF tone e pair desired. Although the it does not notify the host s own 95 ms timeout to kno	s	
	 -				DTMF is reset to zero by			

Table 15. R201/26DP Interface Memory Definitions

2400/1200 bps Data Pump Modem

Mnemonic	Name	Memory Location				De	scription				
DWTR	Diagnostics Write to RAM	0:7:3	To write data DWTR bit is u (important bed address). DW	ised. Not ause RA	e that set M DATA	ting DWT XTL and	R to a on TRANSM	e takes ti	ne modem	out of da	ata mod
			The proper op	erational	l sequenc	e for DW	e for DWTR is given below:				
	, , ,		1. Set DWT 2. Load RAI 3. Load new 4. Set TBA 5. Wait for 6. Repeat s 7. Set DWT	M ACCES data int bit to zer FBA bit to teps 2, 3	SS CODE to RAM D ro to actua o return to , 4, and 5	ATA XTM ally write b a one to	and RAM data. b insure th	I DATA X nat the ne	TL Regist	ers.	
D3L	Delay 3-Link Select	0:5:0	D3L is used in conjunction with LDEN. When D3L is a one the Japanese 3 link equalizer is selected and when D3L is a zero the U.S. Survey Long link equalizer is selected.								
FED	Fast Energy Detector	1:9:6	When status bit FED is a zero, it indicates that energy above the receiver threshold is present in the passband.								
(0:2:0-7, 0:3:0-7	The host proc data word to t shown below:	he FREC	QL and FF							
			FREQM Reg	·	· · · · · · · · · · · · · · · · · · ·		r				
		Bit: Data Word:	7 2 ¹⁵	6 2 ¹⁴	5 2 ¹³	4 2 ¹²	3 2 ¹¹	2 2 ¹⁰	1 2 ⁹	0 2 ⁸	
			FREQL Regi	ster (0:2	2)	L	I				
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	26	2 ⁵	24	2 ³	2 ²	21	20
		i									
			The frequency F = (0.14648 Hexadecimal	6) (N) Hz	±0.01%					nerated to	nes are
			F = (0.14648 Hexadecimal given below:	6) (N) Hz	±0.01% y number) for com		erated to	nes are
			F = (0.14648 Hexadecimal given below:	6) (N) Hz frequenc j uency (I 462	±0.01% y number		, FREQM FREQ 0C) for com		FREQL	nes are
			F = (0.14648 Hexadecimal given below:	6) (N) Hz frequenc j uency (I 462 1100	±0.01% y number		, FREQM FREQ 0C 1D) for com		FREQL 52 55	nes are
			F = (0.14648 Hexadecimal given below:	6) (N) Hz frequenc j uency (l 462 1100 1650	±0.01% y number		, FREQM FREQ 0C 1D 2C) for com		FREQL 52 55 00	nes are
			F = (0.14648 Hexadecimal given below:	6) (N) Hz frequenc j uency (I 462 1100	±0.01% y number		, FREQM FREQ 0C 1D) for com		FREQL 52 55	nes are
HD2W	Half Duplex (Two Wire)	1:6:2	F = (0.14648 Hexadecimal given below:	6) (N) Hz frequenc: Juency (I 462 1100 1650 1850 2100 bit HD2V	: ±0.01% y number Hz) V is a zer	s (FREQL	, FREQM FREQ 0C 1D 2C 31 38 device re:) for com M	monly ger uplex (4-w	FREQL 52 55 00 55 00	

Table 15. R201/26DP Interface Memory Definitions (Continued)

2400/1200 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description	
LAEN	Link Amplitude Equalizer Enable	0:5:3	The link amplitude equaliz equalizer in the receive pa		control an amplitude compromise ng table:
			LAEN	A3L	Curve Matched
			0	х	No Equalizer
			1	Ô	U.S. Survey Long
			1	1	Japanese 3-Link
			The link amplitude equaliz	er responses are given in	the following table.
			Link Amplitude Equalizer		
			Frequency	Gain Relati	ive to 1700 Hz (dB)
			(Hz)	U.S. Survey Long	Japanese 3-Link
			1000	- 0.27	- 0.13
			1400	-0.16	- 0.08
			2000	- 0.33	+0.16
			2400	- 1.54	+0.73
			2800	- 5.98	- 2.61
			3000	- 8.65	+ 3.43
LDEN Link Delay Equalizer Enable	0:5:2	The link delay equalizer er the receive path according		ol a delay compromise equalizer i	
			LDEN	D3L	Curve Matched
			0	x	No Equalizer
			1	0	U.S. Survey Long
			1	1	Japanese 3-Link
			The link delay equalizer re Link Delay Equalizer	sponses are given in the f	ollowing table.
					y Relative to
			Frequency		(Microseconds)
			(Hz)	U.S. Survey Long	Japanese 3-Link
			800	- 498.1	- 653.1
			1200	- 188.3	- 398.5
			1600	- 15.1	- 30.0
			1700	+ 0.0	+ 0.0
			2000	- 39.8	+ 11.7
			2400	- 423.1	- 117.1
			2800	- 672.4	- 546.3
L3ACT L4ACT	Local Analog Loopback Activate Remote Analog Loopback Activate	0:4:7 0:4:6	receiver analog input throu V.54 loop 3. L3ACT is rese When control bit L4ACT is	igh an attenuator in accord at to 0 by device reset. a one, the receiver analog	alog output is coupled to the dance with CCITT recommendation g input is connected to the trans- r in a manner similar to recommen
L4HG	Loop 4 High Gain	0:4:5	dation V.54 loop 4. L4ACT	is reset to 0 by device res	
	-	1	and when at zero the gain		

Table 15. R201/26DP Interface Memory Definitions (Continued)

F

2400/1200 bps Data Pump Modem

	Tab	ble 15. R20	1/26DP Interface Memory Definitions (Continued)
Mnemonic	Name	Memory Location	Description
MHLD	Mark Hold	0:7:4	When control bit MHLD is a one, the transmitter input data stream is forced to all marks (ones). MHLD is reset to 0 by device reset.
(None)	RAM Access XB	2:5:0-7	Contains the RAM access code used in reading chip 2 RAM locations via word X (2:3 and 2:2).
(None)	RAM Access XS	1:5:0-7	Contains the RAM access code used in reading chip 1 RAM locations via word X (1:3 and 1:2).
(None)	RAM Access XT	0:F:0-7	Contains the RAM access code used in reading chip 0 RAM locations via word (0:1 and 0:0).
(None)	RAM Access YB	2:4:0-7	Contains the RAM access code used in reading chip 2 RAM locations via word Y (2:1 and 2:0).
(None)	RAM Access YS	1:4:0-7	Contains the RAM access code used in reading chip 1 RAM locations via word Y (1:1 and 1:0).
(None)	RAM Data XBL	2:2:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 2.
(None)	RAM Data XBM	2:3:0-7	Most significant byte of 16-bit word X used in reading RAM locations in chip 2.
(None)	RAM Data XSL	1:2:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 1.
(None)	RAM Data XSM	1:3:0-7	Most significant byte of 16-bit word X used in reading RAM locations in chip 1.
(None)	RAM Data XTL	0:0:0-7	Least significant byte of 16-bit word X used in reading RAM locations in chip 0.
(None)	RAM Data XTM	0:1:0-7	Most significant byte of 16-bit word X used in reading RAM locations in chip 0.
(None)	RAM Data YBL	2:0:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 2.
(None)	RAM Data YBM	2:1:0-7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 2.
(None)	RAM Data YSL	1:0:0-7	Least significant byte of 16-bit word Y used in reading RAM locations in chip 1. Shared by parallel data mode for presenting channel data to the host microprocessor bus. See 'Receiver Data.'
(None)	RAM Data YSM	1:1:0-7	Most significant byte of 16-bit word Y used in reading RAM locations in chip 1.
RBDA	Receiver Baud Data Available	2:E:0	Status bit RBDA goes to a one when the receiver writes data into register 2:0. The bit goes to a zero when the host processor reads data from register 2:0.
RBIA	Receiver Baud Interrupt Active	2:E:7	This status bit is a one whenever the receiver baud rate device is driving $\overline{\text{IRQ}}$ low.
RBIE	Receiver Baud Interrupt Enable	2:E:2	When the host processor writes a one in the RBIE control bit, the IRQ line of the hardware interface is driven to zero when status bit RBDA is a one.
RBPS	Receiver Data Rate (bps)	1:6:0	When control bit RBPS is a one and at device reset, the receiver data rate is set to 2400 bps. When control bit RBPS is a zero, the receiver data rate is set to 1200 bps.
(None)	Receiver Configuration	1:6:0-5	The host processor configures the receiver by writing a control code into the receiver configuration field in the interface memory space (see RSB).
			The bits included in this field and their initial values are RBPS (1: 2400 bps), RLRT (0: RLSD Response Time = 6 ms), RV26 (0: V.26 Alternate B), HD2W (0: Full Duplex, 4-Wire), and TDET (0: Tone Detector Off).
(None)	Receiver Data	1:0:0-7	The host processor obtains channel data from the receiver in the parallel data mode by reading a data byte from the receiver data register. The data is divided on baud boundaries as is the transmitter data. When using receiver parallel data mode, the registers 1:3 through 1:0 can not be used for reading the chip 1 RAM.
RLRT	RLSD Response Time	1:6:1	When control bit RLRT is a zero and at device reset, the RLSD Response Time is set to 6 ms. When control bit RLRT is a one, the RLSD Response Time is set to 14 ms.

Table 15. R201/26DP Interface Memory Definitions (Continued)

2400/1200 bps Data Pump Modem

1

Mnemonic	Name	Memory Location	Description					
RPDM	Receiver Parallel Data Mode	1:7:4	When control bit RPDM is a one, the receiver supplies channel data to the receiver data register (1:0) as well as to the hardware serial data output. (See Receiver Data). RPDM is reset to 0 by device reset.					
RSB	Receiver Setup Bit	1:E:3	When the host processor changes the receiver configuration field or writes a one in the SQH or SQHT control bits, the host processor must write a one in the RSB control bit. RSB goes to zero when the changes become effective. Worst case setup time is 2 baud times.					
RSDA	Receiver Sample Data Available	1:E:0	Status bit RSDA goes to a one when the receiver writes data to register 1:0. RSDA goes to a zero when the host processor reads data from register 1:0.					
RSIA	Receive Sample Interrupt Active	1:E:7	This status bit is a one whenever the receiver sample rate device is driving $\overline{\text{IRQ}}$ to zero.					
RSIE	Receiver Sample Interrupt Enable	1:E:2	When the host processor writes a one in the RSIE control bit, the \overline{IRQ} line of the hardware interface is driven to zero when status bit RSDA is a one.					
RTDIS	Receiver Training Disable	1:7:0	When control bit RTDIS is a one, the receiver is prevented from recognizing a training sequence and entering the training state. RTDIS is reset to 0 by device reset.					
RTH	Receiver Threshold Field	1:7:6,7	The receiver energy detector threshold is set by the RTH field according to the following codes (see RSB):					
			RTH RLSD On RLSD Off					
			00 > -43 dBm < -48 dBm 01 > -33 dBm < -38 dBm					
			11 > -16 dBm < -21 dBm The RTH bits are reset to 00 by device reset.					
RTS	Request-to-Send	0:7:7	When control bit RTS is set to a one, the modem begins a transmit sequence. It continues to transmit until RTS is reset to zero, and the turn-off sequence has been completed. This input bit parallels the operation of the hardware RTS control input. These inputs are ORed by the modem. RTS is reset to 0 by device reset.					
RTSD	Request-to-Send/ Disable Receiver	1:F:7	When control bit RTSD is a zero and at device reset, the receiving circuits are enabled. When control bit RTSD is a one, the receiving functions are put in an idle mode. This function is intended to be used for half duplex (2-wire) modem operation and gives the user the ability to turn off the receiver when transmitting.					
RV26	Receiver V.26 Alt. A/Alt. B Select	1:6:5	When control bit RV26 is a zero and at device reset, V.26 Alternate B is selected. Wher control bit RV26 is a one, V.26 Alternate A is selected.					
SDIS	Scrambler Disable	0:7:5	When control bit SDIS is a one, and at device reset, the transmitter scrambler circuit is removed from the data path. This bit must match the selection in the turn-on sequence selection field (see table 4) i.e. the scrambler must be either enabled or disabled in both.					
SQH	Receiver Squeich	1:F:6	When control bit SQH is set to a one, the receiver is squelched, RLSD is turned off and RXD is clamped to all marks. SQH only affects the receiver operation when a half duplex receiver configuration has been selected. (see RSB.)					
SQHT	Receiver Squelch Time	1:F:5	This bit controls the duration of the squelch clamping (see SQH). If SQHT is a zero, the squelch lasts for 100 ms, but if it is a one, the squelching lasts for 148 ms. SQHT is reset to zero by device reset.					
ТВА	Transmitter Buffer Available	0:E:0	This status bit resets to zero when the host processor writes data to transmitter data register 0:0. When the transmitter empties register 0:0, this bit sets to a one.					
TBPS	Transmitter Data Rate (bps)	0:6:4	When control bit TBPS is a one and at device reset, the transmitter data rate is set to 2400 bps. When control bit TBPS is a zero, the transmitter data rate is set to 1200 bps.					
TIA	Transmitter Interrupt Active	0:E:7	This status bit is a one whenever the transmitter is driving $\overline{\text{IRQ}}$ to a zero.					

Table 15. R201/26DP Interface Memory Definitions (Continued)

2400/1200 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description
TIE	Transmitter Interrupt Enable	0:E:2	When the host processor writes a one in control bit TIE, the IRQ line of the hardware interface is driven to zero when status bit TBA is at a one.
TDET	Tone Detector Enable	1:6:3	When control bit TDET is a one, the tone detector is disabled. TDET is reset to zero by device reset.
TLVL	Transmitter Level Field	0:4:2-4	The transmitter analog output level is determined by eight TLVL codes, as follows:
	neiu		TLVL Transmitter Analog Output*
			000 – 1 dBm ± 1 dB
			001 – 3 dBm ±1 dB
			010 – 5 dBm ±1 dB
			011 – 7 dBm ±1 dB
			100 – 9 dBm ±1 dB
			101 – 11 dBm ±1 dB
			110 – 13 dBm ±1 dB
			111 – 15 dBm ±1 dB
			*Each step above is a 2 \pm 0.2 dB change
			The TLVL bits are reset to 000 by device reset.
TOD	Train-on Data	1:6:6	When control bit TOD is a one, it enables the train-on-data algorithm to converge the equalizer if the signal quality degrades sufficiently. When TOD is a one, the modern still recognizes a training sequence and enters the force train state. A BER of approximately 10^{-3} for 0.5 seconds initiates train-on data. TOD is reset to 0 by device reset.
TODF	Train-On Data Flag	1:A:7	Indicates Train On Data in process.
TONE	Tone Detect	1:9:2	$\overline{\text{TONE}}$ indicates with a zero the presence of energy in the 345–650 \pm 10 Hz frequency range. For call progress purposes, the user may determine which tone is present by determining the duty cycle of the $\overline{\text{TONE}}$ bit.
TPDM	Transmitter Parallel Data Mode	0:7:2	When control bit TPDM is a one, the transmitter accepts data for transmission from the transmitter data register (0:0) rather than the serial hardware data input. TPDM is reset to 0 by device reset.
(None)	Transmitter Configuration	0:6:0-7	The host processor configures the transmitter by writing a control byte into the transmitter configuration register in its interface memory space. (See TSB)
			The bits included in this field and their initial values are DTMF (0: DTMF Generation = Off TTONE (0: Transmit Tone = Off), TV26 (0: V.26 Alternate B), TBPS (1: Transmitter Data Rate = 2400 bps, and Turn-on Sequence Selector (2: see Table 4).
(None)	RAM DATA XTL/ Transmitter	0:0:0-7	The host processor conveys output data to the transmitter in the parallel mode by writin a data byte to the transmitter data register.
	Data/DDR		When the transmitter is configured for DTMF dialing, this register becomes the Dial Dig Register (DDR). Refer to figure 3 for the proper Auto Dialing Procedure.
TSB	Transmitter Setup Bit	0:E:3	When the host processor changes the transmitter configuration field (DTMF, TTONE, TV26, TBPS, or the Turn-on sequence selector field), the host must write a one in this control bit. TSB resets to zero when the change becomes effective. Worst case setup time is 2 baud + turnoff sequence + training (if applicable).
TTDIS	Transmitter Train Disable	0:7:6	When control bit TTDIS is a one, the transmitter does not generate a training sequence at the start of transmission. With training disabled, RTS/CTS delay is less than two bauc times. TTDIS is reset to 0 by device reset.

Table 15.	R201/26DP	Interface	Memory	Definitions	(Continued)
-----------	-----------	-----------	--------	-------------	-------------

2400/1200 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description
TTONE	Transmit (Single) Tone Output Select	0:6:7	When this bit is set to a one, the single tone output mode is selected. To initiate a tone, the TSB bit must be set to a one for each tone desired. The R201/26DP does not perform a timeout on the tone; thus the host must perform its own timeout to know when to start the next tone. TTONE is reset to zero by device reset.
			The proper operational sequence to generate a tone is given below
			 Set the TTONE bit. Load the desired value into FREQM/FREQL (see FREQL/FREQM) Set the TSB bit. Wait for desired timeout. Repeat steps 2, 3, and 4 until all desired tones have been generated. Reset the TTONE bit.
(None)	Turn-on Sequence Selector Field	0:6:3–0	Selects the turn-on sequence timing and whether or not the scrambler is in the circuit. See 'SDIS' and Table 4. This field is set to 0010 (Turn-on sequence number 2) by device reset.
TV26	Transmitter V.26 Alt. A/Alt. B Select	1:6:5	When control bit TV26 is a zero and at device reset, V.26 Alternate B is selected. When control bit TV26 is a one, V.26 Alternate A is selected.
Т2	T/2 Equalizer Select	1:7:1	When control bit T2 is a one, an adaptive equalizer with two taps per baud is used. When T2 is a zero, the equalizer has one tap per baud. The total number of taps remains the same for both cases. T2 is reset to 0 by device reset.
WBRD	Write to Baud Rate Device (Receiver #2)	1:7:2	When control bit WBRD is a one, data is written into receiver device 2. WBRD is reset to zero by device reset.
WSRD	Write to Sample Rate Device (Receiver #1)	1:7:3	When control bit WSRD is a one, data is written into receiver device 1. WSRD is reset to zero by device reset.
XCEN	External Clock Enable	0:7:1	When control bit XCEN is a one, the transmitter timing is established by the external clock supplied at the hardware input XTCLK, pin 22A. XCEN is reset to 0 by device reset.

Table 15. R201/26DP Interface Memory Definitions (Continued)

POWER-ON INITIALIZATION

When power is applied to the R201/26DP, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (POR) remains low during this period. Approximately 10 ms after the low to high transition of POR, the modem is ready to be configured, and RTS may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 msec, the POR cycle is generated.

At \overrightarrow{POR} time the modem defaults to the following configuration: V.26B/Bell 201B/C, short train, full-duplex, T, no echo protector tone, serial data mode, internal clock, transmitter output level set to -1 dBm ± 1 dB, receiver threshold set to -43 dBm, eye pattern selectable, train-on data disabled, the tone generator is off, RLSD response time set to 6 ms, the tone detector is off, no extended squelch, and squelch clamping set to 100 ms.

POR can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or more applied to the POR pin causes the modem to reset. The modem is ready to be configured 10 msec after POR is removed.

PERFORMANCE

Functioning as either a Bell 201 or a V.26/V.26 bis type modem, the R201/26DP provides the user with excellent, reliable performance.

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated in Figures 4 & 5. Figure 6 shows the BER test equipment set up.

TYPICAL PHASE JITTER

At 2400 bps (V.26 Alternate A or B), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler not inserted), equalizer

2400/1200 bps Data Pump Modem

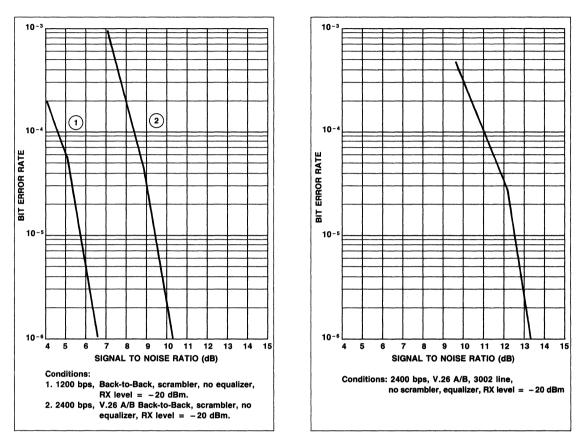


Figure 4. Typical BER Performance Back-to-Back.

Figure 5. Typical BER Performance 3002 Unconditioned Line.

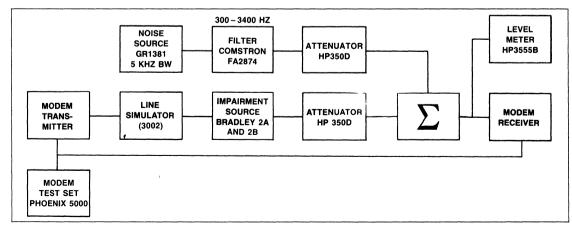
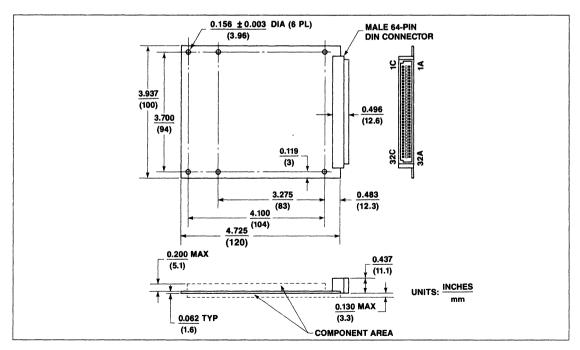


Figure 6. BER Performance Test Set-up


2400/1200 bps Data Pump Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	± 5%	550 mA	<700 mA
+ 12 Vdc	±5%	5 mA	< 10 mA
- 12 Vdc	±5%	25 mA	< 50 mA

Modem Environmental Restrictions				
Parameter	Specification			
Temperature Operating Storage Relative Humidity: Altitude	0°C to +60°C (32°F to 140°F) - 40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container) Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less. - 200 feet to + 10,000 feet			

Parameter	Specification
DIN Connector Version Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector: Dimensions:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical mating receptacle: Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Height	0.40 in. (10.2 mm)
Weight (max):	3.6 oz. (100 g)
Lead Extrusion (max.):	0.100 in. (2.54 mm)

R201/26DP Board Dimensions and Pin Locations

1-81

Integral Modems

RC1212

RC1212 1200 bps Full-Duplex Modem Family

INTRODUCTION

The RC1212 is Rockwell's new 1200 bps, full-duplex OEM modem family. The RC1212 operates over the public switched telephone network, as well as on point-to-point leased lines. The RC1212 is available in a dual-in-line (DIP) module (RC1212/DM and RC1212/DME), or as a two-device set (RC1212/DS).

The basic RC1212 modem meets the requirements specified in CCITT V.22 A/B, and V.21, as well as Bell 212A and Bell 103. The RC1212/DME includes a V.23/Bell 202 device to provide asynchronous, full-duplex operation at 1200 bps with backwards channel up to 150 bps.

The RC1212/DM and RC1212/DME modern modules contain additional circuitry to interface the modern to a Data Access Arrangement (DAA). The DIP module (about seven square inches) can be handled by automated manufacturing equipment for installation and soldering onto a host board.

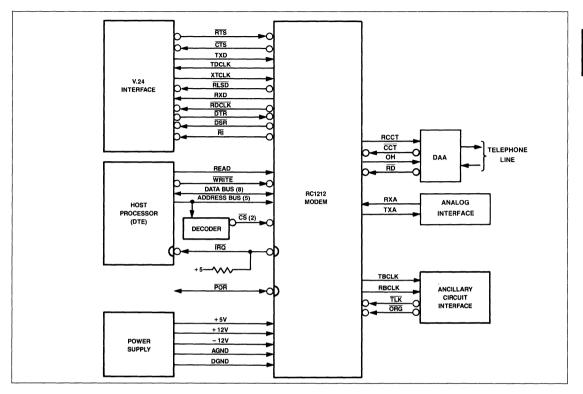
A high performance modem engine, the RC1212/DS is the functional and performance equivalent of Rockwell's R1212 device set with the following enhancements: 2-device solution, fully CMOS, V.21 mode, and data transfer over the microprocessor bus interface.

Data may be transferred to and from the modem either serially or in parallel over the microprocessor bus interface. These options, combined with a user accessible, dual port scratch pad RAM (via the microprocessor bus), provide the designer maximum flexibility in customizing the RC1212 for a wide variety of functional requirements.

COMPATIBILITY

Product	Pin and Firmware Compatible with	Pin Compatible with
RC1212/DS	RC2424/DS	and the second secon
RC1212/DM	RC1212/DME, RC2424/DM and RC2424/DME	R1212/DM and R2424/DM
RC1212/DME	RC1212/DM, RC2424/DME and RC2424/DM	R1212/DM and R2424/DM

FEATURES


- Compatibilities
 - All Models: CCITT V.22A/B and V.21 and Bell 212A and 103
 - RC2424/DME: Above Modes Plus CCITT V.23 and Bell 202
- Synchronous: 1200 bps, 600 bps
- Asynchronous: 1200 bps, 600 bps (+1%, +2.3%, -2.5%);
 0-300 bps
- Character Length: 8, 9, 10, or 11 bits
- Dynamic Receive Range: 0 dBm to 48 dBm
- Facilitates Auto Speed Recognition
- Fallback Capability
- Programmable Call Progress Tone Detection
- DTE Interface
 - Functional: Microprocessor Bus (Data/Configuration/ Control) and CCITT V.24 (RS-232-C) (Data/Control)
 - Electrical: TTL and CMOS compatible
- Equalization
- Auto Adaptive (Receive)
- Fixed Compromise (Transmit)
- Auto/Manual Answer
- Programmable Pulse and DTMF Tone Generation
- Selectable Guard Tone Generation (1800 Hz or 550 Hz)
- Test Modes
 - Local Analog Loopback
 - Remote Digital Loopback
 - Digital Loopback
- Self Test
- Low Power Consumption
- --- RC1212/DS and RC1212/DM: 400 mW (Typical)
- RC1212/DME: 500 mW (Typical)
- Packaging
 - RC1212/DS 2-Device Set: Digital Signal Processor (DSP): 64-pin QUIP, 68-pin PLCC Analog Filter: 40-pin DIP, 44-pin PLCC
 - RC1212/DM and RC1212/DME Modules
 - 50.8 mm × 88.9 mm (2.0 in. × 3.5 in.)

Document No. 29300N04

Order No. 804 February 1987

1200 bps Full Duplex Modem

RC1212 Modem Functional Interconnect Diagram

RC2424

Integral Moderns

RC2424 2400 bps Full-Duplex Modem Family

INTRODUCTION

The RC2424 is Rockwell's new 2400 bps; full-duplex OEM modern family. The RC2424 operates over the public switched telephone network, as well as on point-to-point leased lines. The RC2424 is available in a dual-in-line (DIP) module (RC2424/DM and RC2424/DME), or as a two-device set (RC2424/DS).

The basic RC2424 modern meets the requirements specified in CCITT V.22 bis, V.22 A/B, and V.21, as well as Bell 212A and Bell 103. The RC2424/DME includes a V.23/Bell 202 device to provide asynchronous, full-duplex operation at 1200 bps with backwards channel up to 150 bps.

The RC2424/DM and RC2424/DME modem modules contain additional circuitry to interface the modem to a Data Access Arrangement (DAA). The DIP module (about seven square inches) can be handled by automated manufacturing equipment for installation and soldering onto a host board.

A high performance modern engine, the RC2424/DS is the functional and performance equivalent of Rockwell's R2424 device set with the following enhancements: 2-device solution, fully CMOS, V.21 mode, and data transfer over the microprocessor bus interface.

Data may be transferred to and from the modem either serially or in parallel over the microprocessor bus interface. These options, combined with a user accessible, dual port scratch pad RAM (via the microprocessor bus), provide the designer maximum flexibility in customizing the RC2424 for a wide variety of functional requirements.

COMPATIBILITY

and always	Pin and Firmware Compatible
Product	Compatible with with
RC2424/DS	RC1212/DS
RC2424/DM	RC2424/DME, RC1212/DM R2424/DM and and RC1212/DME R1212/DME
RC2424/DME	RC2424/DM, RC1212/DME R2424/DM and and RC1212/DM R1212/DM

FEATURES

- Compatibilities
 - All Models: CCITT V.22 bis, V.22A/B and V.21 and Bell 212A and 103
 - RC2424/DME: Above Modes Plus CCITT V.23 and Bell 202
- Synchronous: 2400 bps, 1200 bps, 600 bps
- Asynchronous: 2400 bps, 1200 bps, 600 bps (+1%, +2.3%, -2.5%); 0-300 bps
- · Character Length: 8, 9, 10, or 11 bits
- Dynamic Receive Range: 0 dBm to 48 dBm
- Facilitates Auto Speed Recognition
- Fallback Capability
- Programmable Call Progress Tone Detection
- DTE Interface
 - Functional: Microprocessor Bus (Data/Configuration/ Control) and CCITT V.24 (RS-232-C) (Data/Control)
 - Electrical: TTL and CMOS compatible
- Equalization
- Auto Adaptive (Receive)
- Fixed Compromise (Transmit)
- Auto/Manual Answer
- Programmable Pulse and DTMF Tone Generation
- Selectable Guard Tone Generation (1800 Hz or 550 Hz)
- Test Modes
 - Local Analog Loopback
 - Remote Digital Loopback
 - Digital Loopback
- Self Test
- Low Power Consumption
- RC2424/DS and RC2424/DM: 400 mW (Typical)
- RC2424/DME: 500 mW (Typical)
- · Packaging
 - RC2424/DS 2-Device Set:
 - Digital Signal Processor (DSP): 64-pin QUIP, 68-pin PLCC Analog Filter: 40-pin DIP, 44-pin PLCC
 - RC2424/DM and RC2424/DME Modules
 - 50,8 mm × 88.9 mm (2.0 in. × 3.5 in.)

1-84

2400 bps Full Duplex Modem

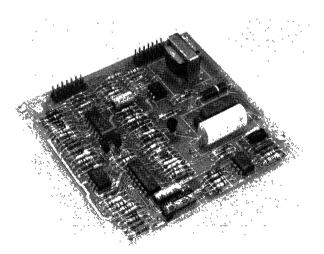
RC2424

RC2424 Modem Functional Interconnect Diagram

RDAA ROCKWELL DATA ACCESS ARRANGEMENT MODULE

SECTION 1 — INTRODUCTION

This document is an aide to customers installing, operating and troubleshooting the Rockwell Data Access Arrangement (RDAA) Module designed and manufactured by Rockwell International.


THE RDAA MODULE

The RDAA Module enables the modem user to make direct connections of their modems to the domestic switched telephone network. The RDAA is completely registered with the Federal Communications Commission under Rules Part 68. Therefore, *no* user re-registration of OEM data communication equipment is necessary when used with the RDAA. This means a definite cost-savings for the OEM equipment designer.

In addition to establishing your desired data transmission path, the RDAA also features an automatic answering function, line surge and hazardous voltage protection, switch hook status indication, ringing indication and automatic signal level control. Automatic dialing can be performed by pulsing the OH relay or by transmitting tone pairs.

FEATURES

- Pre-registered (under FCC Rules, Part 68) for direct connection to dial telephone network
- Integral Data Access Arrangement (DAA)
- Automatic dialing-pulse or tone
- Establishes data transmission path
- Automatic answering function
- · Surge and hazardous voltage protection
- Switch hook status indication
- Ringing indication
- · Automatic line signal output limiting
- Programmable or Permissive (strap selectable) connection arrangements
- Small size (approximately 3.95" by 3.94") (100 mm. by 100 mm.)

RDAA Module

Rockwell Data Access Arrangement Module

The RDAA is easily incorporated into the users end product by either using the provided mounting holes, and/or using the cardguides without card-edge connector. The small size of the RDAA makes it ideal for piggyback type mounting.

The Rockwell RDAA printed circuit board is 3.94 inches (100 mm.) in width and 3.94 inches (100 mm.) in depth.

SELECTABLE CONFIGURATIONS

As a prerequisite, telephone companies require that the signal level received at their local central office not exceed -12 dBm. Several different connection arrangements have been established (as documented in the FCC Rules, Part 68) to meet this requirement.

By jumper selection (Figure 1) the RDAA can be configured to operate in either the Programmable (PG) or Permissive (PM) connection arrangement. This is accomplished by placing the jumper in either the W2 or W1 locations for the desired mode. W1 jumper in, W2 jumper out for the permissive mode. W2 jumper in, W1 jumper out for the programmable mode.

When the Permissive connection arrangement is employed, the maximum signal output level across T and R is fixed at -9 dBm. The Permissive jacks (RJ11C) used for line connections are the same jacks used for standard voice installations. Therefore, this arrangement provides for greater mobility of user equipment.

RDAA DIMENSIONS

The dimensions for the RDAA Module are given in Figure 2.

MATING CONNECTORS

The mating connectors of the RDAA are as follows:

1. Two row (14 pins) ribbon type connectors .1" spacing between pins.

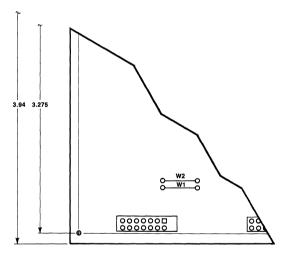


Figure 1. RDAA Module Jumper Selection Location

When using the Programmable connection arrangement, the maximum signal level allowed to be transmitted across T and R is set by a resistor installed by the telephone company in their wall jack (RJ45S or RJ41S) at the customer location. The resistor interacts with the RDAA through the leads PR and PC to program the maximum output level in one dB steps between -12 dBm and 0 dBm. Selection of the resistor from thirteen possible values is based on loop loss measurements performed by the telephone jack installer. The Programmable arrangement provides for the transmission of the maximum allowable amount of power. Therefore, this arrangement offers optimum performance over long loops.

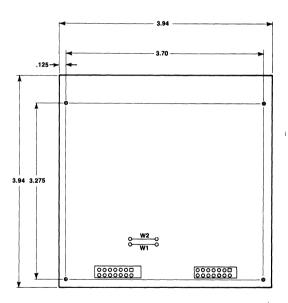


Figure 2. RDAA Module Dimensions

SECTION 2 — INTERFACE DESCRIPTION

INTERFACE CIRCUIT DESCRIPTION

The following paragraphs describe in detail the RDAA interface circuits shown in the block diagram (Figure 3) and the interface circuits listing (Table 2-1).

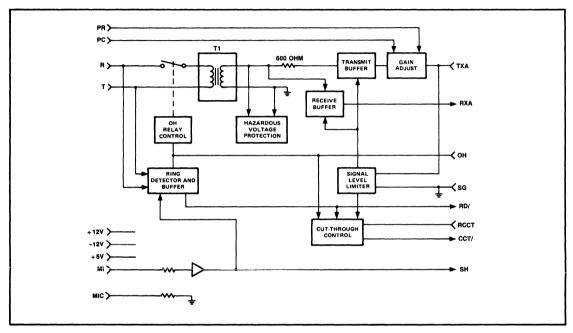


Figure 3. RDAA Functional Block Diagram

Table 2-1. RDAA Interface Ci

	Signal Direction To:		:	
Lead Designation	User	RDAA	Both	Function
R, T MI, MIC PR, PC			× × ×	Transmission leads for data signals. Leads to telephone set switch hook. Leads to programming resistor.
+5V, +12V, -12V	<i>y</i> .	x		DC power required.
SG RD/ RCCT OH SH CCT/ TXA RXA	x x x x	x x x	×	Signal ground required. Ringing signal present indication. To request data transmission path cut through. To control Off-Hook relay. Status of telephone set switch hook. Transmission path cut through indication. Lead to modem output. Lead to modem input.

Rockwell Data Access Arrangement Module

SG

The SG (Signal Ground) is the common reference for all modem interface signals.

RD/

RD/ (Ring Detect) indicates to the user by an ON (Low) condition that a ringing signal is present. The RD/ signal will not respond to momentary bursts of ringing less than 125 ms in duration, or to less than 40V rms, 15 to 68 Hz appearing across Tip and Ring with respect to ground. RD/ is also used to disable the transmission path. The electrical characteristics of the RD/ signal are shown in Table 2-2.

> Table 2-2. Output Signals RD/ SH and CCT/ Characteristics

Output Logic State	Output Levels
LOW HIGH	0.0 to 0.4V while sınkıng $<$ 1.6 ma 2 4 to 5.0V while sourcing $<$ 40 μA

RCCT

RCCT (Request Coupler Cut-Through) is used to request that a data transmission path through the RDAA be connected to the telephone line. When RCCT goes OFF (Low), the cut-through buffers are disabled and CCT will go OFF (High) within 1 millisecond. RCCT must be OFF (Low) during dial pulsing but ON (High) for tone address signaling. The electrical characteristics of the RCCT signal are shown in Table 2-3.

Table 2-3. Input Signals RCCT and OH Characteristics

Input Logic State	Input Levels
OFF or LOW ON or HIGH	0.0 to 0.8V, load current \leq 0.36 ma RCCT = 2.0 to 5.0V, load current \leq 20 μ a OH = 2.0V, load current \leq 100 μ a 5.0V, load current \leq 250 μ a

ОН

OH controls the OFF-HOOK relay. Applying an ON (High) signal to OH closes the OH relay and establishes a DC path between T and R. Maximum delay between the ON signal to OH and the close of the OH relay is 10 ms. When originating a call, an ON (High) signal is used to request dial tone. After detecting dial tone, OH can be pulsed to generate the dial pulses corresponding to the number of the called station (see Section 4.2). On incoming calls, an ON (High) signal to the OH lead initiates the answering sequence (see Section 4.1). The characteristics of the OH signal is shown in Table 2-3.

NOTE

WARNING. If OH is asserted to a logic high before the incoming call ring signal is completed, the OH reed relay switch contacts may suffer degradation.

SH

An ON (High) signal on the SH lead indicates to the user that the associated telephone (if used) is in the talk mode i.e., a contact closure exists between MI and MIC. The characteristics of the SH signal are shown in Table 2-2.

CCT/

CCT/ is the Coupler Cut Through. An ON (Low) signal to the CCT/ lead indicates to the user that the data transmission path through the RDAA is connected. The ON (Low) state does not indicate the status of the telephone line or connection. The characteristics of the CCT/ signal are shown in Table 2-2.

TXA

TXA (Transmit Analog) is the lead from modem transmitter output. This lead should be tied to GND when the modem is in the receive only mode.

RXA

RXA (Receive Analog) is the lead to modem receiver input. This lead may be left open when the modem is in the transmit-only mode.

POWER REQUIREMENTS

The following power must be provided at the RDAA interface.

- A. + 12 VDC \pm 5% @ 15 ma with a maximum ripple of 50 mv peak-to-peak
- B. +5 VDC \pm 5% @ 20 ma with a maximum ripple of 100 mv peak-to-peak
- C. -12 VDC \pm 5% @ 15 ma with a maximum ripple of 50 mv peak-to-peak.

HAZARDOUS VOLTAGE PROTECTION

Lightning induced surge voltages and other hazardous voltages are limited to 10.0 volts peak between the secondary leads of the coupling transformer T1. The isolation between the relay contacts and coils provides the protection of the telephone line from hazardous voltages appearing on any control lead.

Rockwell Data Access Arrangement Module

RING DETECTOR AND TIMER

When the Ring Detector detects the presence of a ringing signal ranging from 15.3 to 68 Hz with voltage levels of 40 to 150 VRMS across Tip and Ring (T and R) leads, after a delay of 125 ms to 500 ms, it will send an RD/ (Ring Detect) signal to the user's data terminal equipment (DTE). If the DTE is conditioned for answering, the DTE will return an ON signal on OH and RCCT. The OH signal closes the OH relay and starts a timer. The timer is used to provide a quiet interval of more than two seconds between the closing of OH relay and the connection of data transmission path. This allows the telephone company to properly engage their billing equipment. After this delay the CCT/ interface lead goes ON (Low) and data transmission may begin.

RD/ will go OFF (High) in less than 400 MSEC after the ringing signal is stopped. The ring detector is disabled when OH is ON (High) or SH is ON (High).

SIGNAL LEVEL LIMITER AND GAIN CONTROL CIRCUITRY

The limiter monitors the signal level applied to the RDAA input lead TXA and is unaffected by the level of receive signal. When the applied signal amplitude becomes greater than +7 dBm for a period of 1.3 to 3 seconds, the transmission path is disconnected via the transmit and receive buffers, and the output signal CCT/ will go OFF (High).

NOTE

The off-hook relay is not affected by the limiting function, therefore, so triggering the limiting function need not result in call termination.

Reducing the input signal amplitude to less than +7 dBm will reset the limiter in less than 4 milliseconds, restore the data transmission path, and cause the signal CCT to go ON (Low).

In order not to activate the limiter during normal operation, care must be taken to ensure that the maximum signal amplitude into the RDAA input TXA never exceeds +6 dBm. If the modem output has a tolerance of \pm 1 dB, then it is recommended to set the modem output to +5 dBm (\pm 1 dB), so that the maximum signal amplitude into TXA is 6 dBm.

The output control circuitry contains a variable gain buffer which reduces the RDAA output to the maximum allowed level across T and R. When the RDAA is jumpered to operate in the Programmable mode, the resistor in the telephone company wall jack sets the output level to one of thirteen possible values. If the RDAA is jumpered to operate in the Permissive mode, then an internal resistor will set the output to a fixed value. The relationship between the RDAA input amplitude (in dBm) across TXA and GND and the nominal RDAA output level across T and R is given below:

- A. For Programmable mode: output level across T and R = (input amplitude at TXA 7 dB + (Programmed level set by wall jack resistor).
- B. For Permissive mode: output level across T and R = (input amplitude at TXA) 16 dB.

IMPEDANCE SPECIFICATIONS

On-Hook DC:	The DC resistance between T and R, and between either T or R and signal ground are greater than 10 megohms for DC voltages up to 100 volts.
On-Hook AC:	The on-hook AC impedance measured between T and R is less than 40K ohms (15.3 Hz minimum).
Off-Hook DC:	Less than 100 ohms.
Off-Hook AC:	600 ohms nominal when measured between T and R.
TXA and GND:	2 megohms typical (operational amplifier voltage follower input impedance).
RXA and GND:	75 ohms typical (operational amplifier voltage follower output impedance).

INSERTION LOSS

There is no insertion loss for the RDAA. The RDAA contains a receive buffer which compensates for transformer insertion loss. For this reason, additional receive buffering is not necessary.

SECTION 3 — INSTALLATION/CHECKOUT

RDAA CONNECTION TO TELEPHONE LINE

Connection of the telephone line interface pins of the RDAA to the network shall be made via standard jacks and plugs as shown in Figure 4. Cable color codes are also shown in Figure 4. A number of telephone line cord manufacturers produce the standard plugs and cables (Meyer Wire Co., Hamden, CT; Virginia Plastics, Roanoke, VA, etc.)

TELEPHONE SET AND JACK ORDERING INFORMATION

If it is desirable to have manual call origination or alternate voice capability, an exclusion key telephone set may be ordered from a local telephone company. The telephone line may be transferred to the telephone set by lifting both the handset and the exclusion key, if the telephone is configured as Data Set Controls Line. This operation is for manual origination or alternate voice transfer (refer to paragraph 4.4 for manual origination procedure). A call may be terminated by replacing the handset in its cradle and taking OH low if OH is not already low.

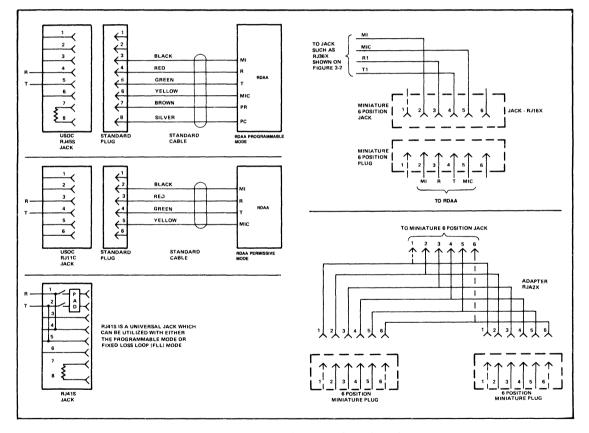


Figure 4. Standard Jacks, Plugs and Cable Color Codes

Rockwell Data Access Arrangement Module

The ringer of the telephone set may be disconnected by the telephone company to prevent the bell from ringing.

The telephone company provides an exclusion key telephone under the Universal Service Order Code (USOC) RTC. This telephone set has the following customer options:

- A. A1 Telephone set controls line
- B. A2 Data set controls line
- C. B3 Aural monitoring not provided
- D. B4 Aural monitoring provided (See Note 1)
- E. C5 Touch tone dial
- F. C6 Rotary dial
- G. D7 Switch hook indication
- H. D8 Voice mode indication only (See Note 2)

NOTES

- 1. The aural monitoring feature allows the telephone handset to be used for listening to line signals without interfering with data transmission.
- In this option the make contact of the exclusion key and a make contact on the switchhook are connected in series and to the mode indication leads MI and MIC of the data jack. Therefore, the SH signal of the RDAA goes ON only when the exclusion key is lifted.

When ordering this telephone, specify the USOC number RTC and the following options:

A. A2 - Data set controls line

or

- B. B3 Aural monitoring not provided
 - B4 Aural monitoring provided
- C. C5 Touch tone dial telephone (503C)
 - C6 Rotary dial telephone (2503C)
- D. D8 Voice mode indication only

Another telephone set provided by the telephone company is the Model 502 with exclusion key. To order this telephone set, specify the following:

- A. Modem 502 with exclusion key
- B. Data set controls line

A summary of the information for ordering telephone and jacks is given in Table 3-1. Examples of typical installation are given in Figure 3-2.

Output Configuration	Optional Telephone Set	FCC Reg. No.	Ringer Equivalent	Telephone Jack USOC No.	Telephone Set USOC No.
•	With Telephone Set	AMQ9SQ 67943 DP-E	.8B	¹ RJ36X and ^{2.3} RJ45S	RTC or 502 with exclusion key
	Without Telephone Set	AMQ9SQ 67943 DP-E	.8B	^{2 3} RJ45S	N.A.
Permissive	With Telephone Set	AMQ9SQ 67943 DP-E	.8B	¹ RJ36X and RJ16X or ⁴ RJA2X and RJ11C	RTC or 502 with exclusion key
	Without Telephone Set	AMQ9SQ 67943 DP-E	.8B	RJ11C	N.A.

Table 3-1. Telephones and Jacks Ordering Information

Notes:

 RJ36X is an 8 position miniature jack into which the telephone plugs. Rather than using an RJ36X jack, the telephone company may use a connecting block to connect the telephone set and data jack to the telephone line.

 RJ41S is a universal data jack. It may be used for either Programmable or Fixed-Loss Loop mode The RJ45S jack is preferred, because it costs less

For multiple connections, the RJ45M jack should be ordered. The letter M indicates multiple single line jack for up to 8 lines. Specify the number of lines required when ordering.

4. RJA2X is the adapter shown in Figure 3-1. The use of the RJ36X and RJ16X jacks is recommended.

Rockwell Data Access Arrangement Module

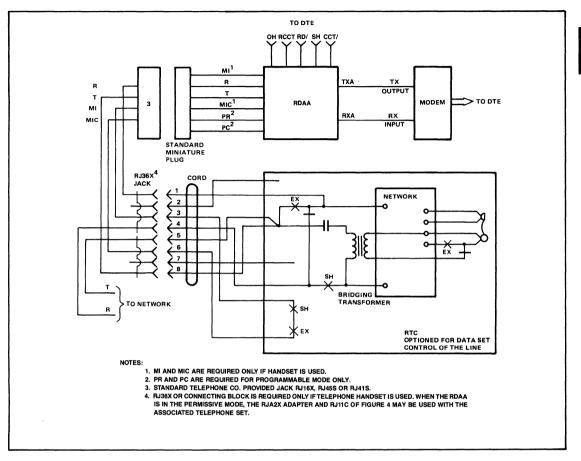


Figure 5. Transmit and Receive (Half Duplex) and (Full Duplex)

MODEM INTERFACE

There are 4 possible two-wire modes of operation configurations: receive-only, transmit-only, and receive and transmit (half duplex) and full-duplex (using two different frequencies simultaneously) as described below:

- A. For the half-duplex and full-duplex configurations, the interface connection circuitry could be as shown in Figure 5.
- B. For the receive-only configuration, the connection circuitry is the same as that shown in Figure 5, except that the RDAA input lead TXA is grounded rather than connected to the modem transmitter output.
- C. For the transmit-only configuration, the RDAA lead RXA is left open rather than connected to the modem receiver as shown in Figure 5.

For a 4-wire full-duplex configuration, 2 RDAA modules and 2 telephone lines are required. The connection circuitry consists of one 2-wire receive-only connection, and one 2-wire transmit-only connection.

Rockwell Data Access Arrangement Module

RDAA

MODULE MOUNTING AND SECURING

The RDAA may be physically incorporated into the OEM's end product by using the four corner (0.156 inch diameter) mounting holes and self-locking plastic standoffs, or by bolting the RDAA module to a rigid structure. The RDAA module may also be mounted using card guides without card edge connector.

A number of manufacturers such as Richlock Corporation, Chicago, IL., produce plastic standoffs (Part Number CBS-3N).

ELECTRICAL INTERFACE

Electrical connection to the RDAA module is made through ribbon type connectors. The connector(s) interface pins (Figure 2) are contained on the component side of the board. There are two test points brought out to the interface connector of the board. Therefore care must be taken to prevent shorting test points with any of the other interface signals.

The RDAA telephone line interface connector pins are physically separated from the RDAA DTE interface connector pins, as shown in Figure 2 and described in Table 3-2.

Type Interface Circuit	RDAA Connectors/ Pin No.	Interface Circuit/Signal					
DTE Interface Connections	P2-1 P2-2 P2-3 P2-4 P2-5 P2-6 P2-7 P2-8 P2-9 P2-9 P2-10 P2-11 P2-12 P2-13 P2-14	CCT/ RXA TXA OH RCCT RD/ -12V SH GND TP2 EXCESSIVE POWER DETECT +12V +5V N/U TP1 BILLING DELAY TIME					
Telephone Line Interface Connections	P1-4 P1-3 P1-1 P1-2 P1-(5-8) & (11-12) P1-9, 10 P1-13, 14	PC PR MIC (Not Used) R T					

Table 3-2. RDAA Telephone and Modem Interface

Care must be taken in routing the telephone interface pins to the telephone jack. The FCC (Rules, Part 68) requires that the telephone interface leads shall be separated from the leads or metallic paths connecting to power connections.

NOTE

Power connections are those connections between commercial power and any transformer, power supply rectifier, converter, or other circuitry associated with the RDAA. The connection of the interface pins (including the $\pm 12V$ and $\pm 5V$) shown in Figure 2 are not power connections.

The telephone interface leads shall not be routed in the same cable (or use the same connector) as leads or metallic paths connecting to commercial power.

FCC (Rules, Part 68) also requires that the telephone leads T and R be separated from metallic paths to leads connecting to non-registered equipment, when specification details provided to FCC do not show that the interface voltages are less than non-hazardous voltage source limits in Part 68. T and R shall not be routed in the same cable (or use adjacent pins on the same connector) as metallic paths to leads which are not considered non-hazardous. All DTE interface connector signals shown in Table 3-2 have been established as non-hazardous.

Therefore, in routing the telephone interface leads from the RDAA P1 connector to the telephone jack, the following precautions must be strictly adhered to. The telephone jack interface routing path should be as direct as possible. Any cable used in establishing this path should contain no signal leads other than possibly the (previously established as non-hazardous) DTE interface signals shown in Table 3-2. Any connector used in establishing this path should contain no commercial power source signal leads, and adjacent pins to the T and R (Tip and Ring) pins in any such connector should not be utilized by any signals other than possibly those shown in Table 3-2. Also the DTE interface routing path should be made as short as possible.

INSTALLATION PROCEDURE

- A. Check the telephone line interface cable(s) plug(s) and jack(s) (Figure 4). If the USOC RJ41S jack is used for the Programmable mode, ensure that the jumper W2 is installed and W1 jumper is removed for the programmable mode of operation.
- B. Make sure the telephone company installer has measured the loop loss correctly and has selected the proper programming resistor in the RJ45S or RJ41S jack.

NOTE

You have the right to know the method used by the installer for measuring loop loss and selecting the programming resistor.

Rockwell Data Access Arrangement Module

- C. Check the power supplies to see if they meet the proper requirements specified in paragraph 2.2.
- D Insert the telephone cable plug into the jack, and make the DTE interface connection. Then switch on the power supplix s.

OPERATIONAL CHECKOUT PROCEDURE

The following procedures check out the RDAA in association with a modem, a data terminal, a telephone set and an automatic dialer. The telephone set is required only in the manual origination mode (refer to paragraph 4.4) or if alternate voice communication is desired. The automatic dialer is required only in the automatic dial mode (refer to paragraph 4.3).

AUTOMATIC ANSWER MODE

- A. Set the modem transmitted output level to +5 dBm.
- B. Call the local modem from a remote station.
- C. Follow the instructions given in Figure 6.
- D. Transmit data from the local terminal to the remote terminal and monitor the CCT/ signal. It should stay low.
- E. Terminate the call sequence and verify the received data.

AUTOMATIC ORIGINATE MODE

- A. Set the modem transmitted output level to +5 dBm.
- B. Follow the procedure of Figure 8 for touch tone origination or Figure 7 for pulse dial origination.
- C. Transmit data from the local terminal and monitor the CCT/ signal. It should stay low.
- D. Terminate the call sequence and verify the received data.

MANUAL OPERATION MODE

- A. Set the modem transmitted output level to +5 dBm.
- B. Follow the instructions given in paragraph 4.4.
- C. Transmit data from the local terminal. CCT should stay low.
- D. Terminate the call sequence and verify the received data.

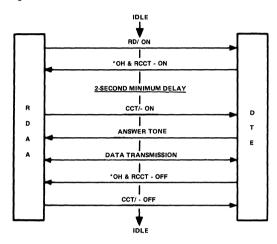
SPECIAL INSTRUCTIONS TO USER

Your Rockwell Data Access Arrangement has been registered with the Federal Communications Commission (FCC). To comply with the FCC regulations you are requested to observe the following:

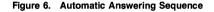
- A. All direct connections to the telephone lines shall be made through standard plugs and jacks as specified in Figure 4 and Table 3-1.
- B. It is prohibited to connect the RDAA to pay telephones or party lines.
- C. You are required to notify the local telephone company of the connection or disconnection of the RDAA, the make, the modem number, the FCC registration number, the ringer equivalence number (refer to Table 3-1) and the particular line to which the connection is made. If the proper jacks are not available, you must order the type of jacks to be used from the telephone company. (Refer to Table 3-1 for the proper jacks and telephones.)
- D. You should disconnect the RDAA from the telephone line if it appears to be malfunctioning. If the RDAA needs repair, return it to Rockwell International. This applies to equipment both in and out of warranty. Do not attempt to repair the unit as this will violate the FCC rules.
- E. The RDAA contains protective circuitry to prevent harmful voltages being transmitted to the telephone network. If however, such harmful voltages do occur, then the telephone company has the right to temporarily discontinue your service. In this case, the telephone company shall:
 - 1. Promptly notify you of the discontinuance.
 - 2. Afford you the opportunity to correct the situation that caused the discontinuance.
 - 3 Inform you of your right to bring a complaint to the FCC concerning the discontinuance.
- F. The telephone company also has the right to make changes in their facilities and services which may affect the operation of your equipment. However, you shall be given notice in writing by the telephone company adequate to allow you to maintain uninterrupted service.
- G. Labeling Requirements:
 - The FCC requires that the following label be prominently displayed on an outside surface of the OEM's end product:

Unit contains Registered Protective Circuitry which complies with Part 68 FCC Rules

FCC Registration Number:


Ringer Equivalence: .8B

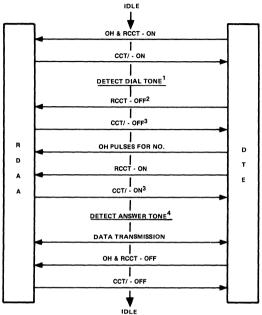
2. The size of the label should be such that all the required information is legible without magnification.


SECTION 4 — OPERATING INSTRUCTIONS

AUTOMATIC ANSWER

The connection of the data transmission path for automatic answer is as described in paragraph 2.4. To disconnect the data transmission path, just turn off OH and/or DA, as shown in Figure 6.

*DA MAY BE ON PERMANENTLY FOR AUTOMATIC ANSWER.

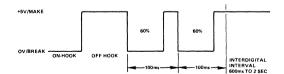


AUTOMATIC DIAL

DIAL PULSE ORIGINATION

The DTE must provide the logic to turn ON the OH and DA leads, detect dial tone (or time for 3 seconds to ensure dial tone present), then turn OFF the DA lead and generate the dial pulses corresponding to the called number (Figure 7). The 2-second delay period between OH and DA going ON and the response of CCT going ON will not be invoked in the origination mode. The DTE should monitor for call progress indication (dial tone, busy tone, answer tone, and call intercept).

Requirements for proper call establishment exist on the pulse repetition rate (8 to 11 pulses per second), off duty cycle (60 percent nominal), interdigital delay timing (600 ms to 2 seconds) and chatter and spurious makes and breaks. The RDAA off-hook relay is a Reed relay designed to long life. Bell System requirements for pulse and touch-tone dialing are described in their Communications reference "Electrical Characteristics of Bell System Network Facilities at the Inter-


NOTES

- DIAL TONE DETECTION IS NOT PROVIDED WITHIN THE RDAA. ALTERNATIVELY, DTE MAY START FROM DLE, TURN ON OH, THEN TIME FOR 3 SECONDS TO ENSURE DIAL TONE PRESENT AND PULSE OH FOR NUMBER.
- 2. DA MUST BE OFF DURING DIAL PULSING. DA MAY BE ON AT ALL OTHER TIMES.
- 3. THE DA TO CCT RESPONSE TIME IS LESS THAN 1 MS. 4. ANSWER TONE DETECTION CIRCUITRY IS NOT PROVIDED WITHIN THE RDAA.

Figure 7. Dial Pulse Origination Sequence

face with Voiceband Ancillary and Data Equipment'' (PUB 47001).

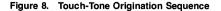
The following is an example for pulse dialing the digit #2 through the OH lead.



The OH lead can be pulsed directly via microprocessor port, or a commercially available "binary to dial pulse" LSI device such as the Rockwell CRC 8000, the General Instrument AY-5-9151 series, or the Motorola MC 14408. These devices can accept 4-bit binary digital inputs, buffer these digits, and output the OH dial pulses upon command. Also available from numerous semiconductor manufacturers (National, Mostek, General Instrument, Motorola, etc.) are LSI devices capable of interfacing directly to a key board and producing suitable dial pulses.

TOUCH-TONE ORIGINATION

The user's terminal must provide the logic to turn ON the OH and RCCT signals, detect the dial tone (or time for 3 seconds to ensure dial tone present) and transmit the tone-address signals via the TXA lead (Figure 8). The 2-second delay period between OH and RCCT going ON and CCT/ going ON is not invoked in the origination mode. The DTE should monitor for call progress indications (dial tone, busy tone, answer tone, and call intercept).


It should be noted that tone address signaling method is significantly more complicated in terms of hardware requirements than simple pulse dialing. The necessary tone pair generators must be added by the user. A number of semiconductor manufacturers produce monolithic LSI tone generators (AMI, Mostek, Motorola, National, General Instrument, Intersii, etc.). These tone pair generators are designed to interface with keyboards or digital ports and may require varying degrees of additional low pass filtering to reduce harmonic distortion. Touch-tone dialing is significantly faster than pulse dialing, but it may not be available in some locations.

*DA MAY BE PERMANENTLY ON **ALTERNATIVELY, USER MAY TIME FOR 3 SECONDS TO

ENSURE DIAL TONE PRESENT

**ANSWER TONE DETECTION CIRCUITRY IS NOT PROVIDED WITHIN THE RDAA

Bell System requirements exist on minimum and maximum tone pair transmit power for proper call address signaling. When the RDAA is in the programmable mode, the gain of the RDAA transmit leg is set by a programming resistor in the telephone jack (over thirteen possible values). This makes establishment of the tone pair signal level to be input to the RDAA (at TXA) which meets the Bell System requirements difficult. It is therefore necessary to operate the RDAA in the Permissive mode for touch-tone origination. In this event the proper input power level (per frequency pair) to the RDAA (at TXA) would be + 15 dBM (nominal). This level is well above the RDAA automatic limiter threshold. But the RDAA limiter activates (cuts off transmission path) only if threshold power level is continuously exceeded for about one second minimum, and quickly resets itself if the power level drops below threshold. If the tone pair duration time is restricted to significantly under one second (the minimum duration requirement is only 50 milliseconds) and the minimum interdigital time requirement (45 milliseconds) is observed, the limiter will not be activated. These requirements are easily met if the tone pair generation is under logic control. If the generation is controlled via keyboard input, the limiter will be activated if a key is depressed and held for more than a second, but will recover during the interval between key closures. However, the possibility exists that transients occurring at limiter activation and resetting may endanger proper call origination.

AUTOMATIC CALLING UNIT

Automatic dialing capability may also be added to a data transmission system simply by purchasing or leasing a separate box termed an "Automatic Calling Unit" (ACU). Such units are available from a variety of manufacturers. ACU's are available utilizing pulse or tone dialing. Connections of ACU to the data transmission system may be different for different ACUs. The standard protocol involved in interfacing between the user's data terminal equipment and an ACU is documented in CCITT Recommendation V.25 and also in EIA Standard RS-366. "Interface Between Data Terminal Equipment and Automatic Calling Equipment for Data Communication." It should be reemphasized that a separate ACU is not necessarily required for automatic dial capability. The RDAA and some external hardware and/or software (as previously described) can suffice.

MANUAL ORIGINATION

For manual origination a telephone set with an exclusion key must be ordered from the local telephone company (refer to Table 3-1). After lifting both the handset and the exclusion key, a call may be originated or answered in the same manner as normal telephone service. When the handset and the exclusion key are lifted (MI is shorted to MIC), the signal SH is turned ON. If the user's data terminal is ready, it may respond with OH and RCCT. The RDAA will then turn ON the CCT/ signal. When answer tone is heard, the operator replaces the handset in its cradle. the SH signal will go Low and the data transmission path is connected. When data transmission is completed, the terminal turns OFF the OH signal and returns to the idle state.

SECTION 5 — FAULT ISOLATION


CUSTOMER REPAIR LIMITATIONS

Under the FCC Rules, no customer is authorized to repair an RDAA module. In the event of an RDAA malfunction, return the faulty RDAA to Rockwell International. It is recommended that the following fault isolation instructions provided in this section be performed prior to returning a suspected RDAA module. A periodic check of the DC power supplies is also recommended.

FAULT ISOLATION

The fault isolation flow chart (Figure 9) has been prepared specifically as an aid to the user for locating possible network and/ or RDAA module malfunctions.

SECTION 2 4800, 9600, 14400 bps DATA MODEMS

	Page
Product Family Overview	2-2
R208/201 4800 bps Modem	2-3
R48DP/208 4800 bps Data Pump Modem	2-25
R48DP 4800 bps Data Pump Modem	2-47
R96DP 9600 bps Data Pump Modem	2-68
R96FT 9600 bps Fast Train Modem	2-90
R96FT/SC 9600 bps Fast Train Modem with Forward Secondary Channel	2-105
R144DP V.33 Ultra High Speed Modem	2-120
R9696DP V.32 Ultra High Speed Modem	2-122
R1496MM V.33, V.32 Ultra High Speed Modem	2-124

4800, 9600, 14400 bps DATA MODEMS Leading the Industry with High Performance and Quality

Rockwell's broad line of 4800, 9600 and 14400 bit-persecond (bps) modem products can easily be incorporated into standalone or system level products at a minimal cost while offering the end user high performance, quality and reliability. This line of modems uses the latest technology to provide customers with the smallest, most integrated designs available on the market.

Our high and ultra-high speed modems are designed to meet the Bell standard as well as the rigid CCITT recommendations. Whether operating at 4800 bps or 14400 bps, and transmitting data across the street or across the world, customers can be assured that Rockwell modems have been designed, built and tested to ensure operation over world-wide phone lines.

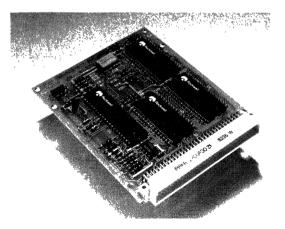
Rockwell offers these products in the Euro-size DIN connector modules. Additionally, a Euro-card module that utilizes surface mount technology (SMT) and dual in-line pins is available. This DIP module can be handled like any DIP type integrated circuit during board assembly and wave soldering. Its small size is ideal for integration into personal computers and work-stations as well as the traditional standalone or rack mount applications.

Model	Data Speed (bps)	PSTN/ Leased Line	2/4-Wire Half/Full-Duplex	Sync/Async	Compliance
R208/201	4800, 2400, 1200	P/L	2WHD, 4WFD	Sync	Bell 201B/C, 208A/B CCITT V.27 bis/ter, V.26, V26 bis
R48DP/208	4800, 2400	P/L	2WHD, 4WFD	Sync	Bell 208A/B CCITT V.27 bis/ter
R48DP	4800, 2400	P/L	2WHD, 4WFD	Sync	CCITT V.27 bis/ter
R96DP	9600, 7200, 4800, 2400	P/L	2WHD, 4WFD	Sync	CCITT V.29, V.27 bis/ter
R96FT	9600, 7200, 4800, 2400	P/L	2WHD, 4WFD	Sync	CCITT V.29, V.27 bis/ter, V.21 Channel 2, Proprietary Fast Train
R96FT/SC	9600, 7200, 4800, 2400, 75	P/L	2WHD, 4WFD	Sync	CCITT V.29, V.27 bis/ter, V.21 Channel 2, Proprietary Fast Train, Secondary Channel
R144DP	14400, 12000, 9600, 7200, 4800	P/L	2WHD, 4WFD	Sync	CCITT V.33, V.29
R9696DP	9600, 4800, 2400, 1200, 300	P/L	2WFD	Sync/Async	CCITT V.32, V.22 bis, V.22, V.21; Bell 212A, 103
R1496MM	14400, 12000, 9600, 4800, 2400, 1200, 300	P/L	2WFD, 4WFD	Sync/Async	CCITT V.33, V.32, V.29;

Integral Modems

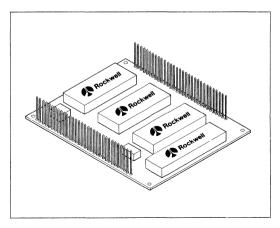
R208/201 Bell 208A/B and Bell 201C Modem

INTRODUCTION


The Rockwell R208/201 is a synchronous 4800 and 2400 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) as well as leased lines through the appropriate line termination.

The modem satisfies the telecommunications requirements specified in Bell 208A/B, Bell 201C, CCITT V.27, and CCITT V.26. The R208/201 can operate at speeds of 4800 and 2400 bps. Employing advanced signal processing techniques, the R208/201 can transmit and receive data even under extremely poor line conditions.

User programmable features allow the R208/201 to be tailored to support a wide variety of functional requirements. The modem's small size, low power consumption, and serial/parallel host interface simplify system design and allow installation in a compact enclosure. The modem module is available with a DIN connector for connection to a mating connector or with dual-in-line pins (DIP) for direct plug-in installation onto a host module.


FEATURES

- Compatible with
 - Bell 208A/B, Bell 201C
- Automatic Configuration during Synchronizing Sequence
- 2-Wire Half-Duplex, 4-Wire Full-Duplex
- Programmable Tone Generation
- Programmable DTMF Tone Dialer
- Dynamic Range: 43 dBm to 0 dBm
- Equalization
- Automatic Adaptive
- Compromise Cable and Link (Selectable)
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C)(Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 Electrical: TTL and CMOS Compatible
 - Diagnostic Capability
- Programmable Transmit Output Level
- Loopbacks
 - Local and Remote Analog
 - Remote Digital
- Small Size
 - DIN Connector Version:
 - 100 mm × 120 mm (3.94 in. × 4.73 in.) – DIP Connector Version:
 - 82 mm × 100 mm (3.23 in. × 3.94 in.)
- Power Consumption: 3 W (Typical)

R208/201 DIN Connector Version

Document No. 29200N26

R208/201 DIP Connector Version

Order No. MD26 February 1987

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

The supported transmitter carrier frequencies are listed in Table 1.

Function	Frequency (Hz ±0.01%)		
Bell 208A/B and Bell 201C	1800		
CCITT V.27 and V.26	1800		

TONE GENERATION

Under control of the host processor, the modem can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated. DTMF tone transmission capability is provided to allow the modem to operate as a programmable DTMF tone dialer.

SIGNALING AND DATA RATES

The supported signaling and data rates are listed in Table 2.

Table 2. Signaling/Data Rates

Specification	Baud Rate (Symbols/sec.)	Bits Per Baud	Data Rate (bps)(±0.01%)	Symbol Points
Bell 208A/B	1600	3	4800	8
CCITT V.27	1600	3	4800	8
Bell 201C	1200	2	2400	4
CCITT V.26	1200	2	2400	4
CCITT V.26	1200	1	1200	2

DATA ENCODING

The modem data encoding conforms to Bell 208A/B, Bell 201C, CCITT V.27, and CCITT V.26.

EQUALIZERS

The modem provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent
- 2. 1600 Baud. Square root of 50 percent

Bell 208A/B and Bell 201C Modem

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The modem incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with V.27 bis/ter.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The modem receiver circuit can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

RECEIVE LEVEL

The modem receiver circuit satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

TRANSMIT LEVEL

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

TRAIN ON DATA

When train on data is enabled, the receiver typically trains on data in less than 3.5 seconds.

TURN-ON SEQUENCE

Selectable turn-on sequences can be generated as defined in Table 3.

Table 3.	Turn-On	Sequences
----------	---------	-----------

	RTS-CTS Turn-On Time				
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled*			
Bell 208A/B Long	150	355			
Bell 208A/B Short	50	255			
Bell 201C 26.4 ms Sync. Seq.	26.4	231.4			
Bell 201C 148.3 ms Sync. Seq.	148.3	353.3			
Bell 201C 220 ms Sync. Seq.	220	425			
V.27 4800 Long	708	913			
V.27 4800 Short	50	255			
V.27 2400 Long	943	1148			
V.27 2400 Short	67	272			
V.26A 2400 90 ms Sync. Seq.	90	295			
V.26 1200 90 ms Sync. Seq.	90	295			
* For short echo protector tone, subtract 155 ms from RTS-CTS turn-on time.					

TURN-OFF SEQUENCE

For Bell 208A/B and CCITT V.27, the turn-off sequence consists of approximately 7 ms and 10 ms, respectively, of remaining data and scrambled ones. For Bell 201C and CCITT V.26, the turn-off sequence consists of approximately 6 ms of remaining data and scrambled ones.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) whenever the Received Line Signal Detector (RLSD) is off.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ). respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

Bell 208A/B and Bell 201C Modem

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, diagnostic signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The six groups of hardware circuits are described in the following paragraphs. Table 5 lists the digital interface characteristics.

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modem to assume a valid operational state. The modem drives pin 13C to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modem is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 us. When an external low input is applied to pin 13C, the modern is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to complete. The modem POR sequence leaves the modem configured as follows:

- Bell 208 Short
- Serial channel data
- T/2 equalizer
- Standard echo protector tone
- 43 dBm threshold
- Cable and link equalizers disabled
- Train-On-Data disabled

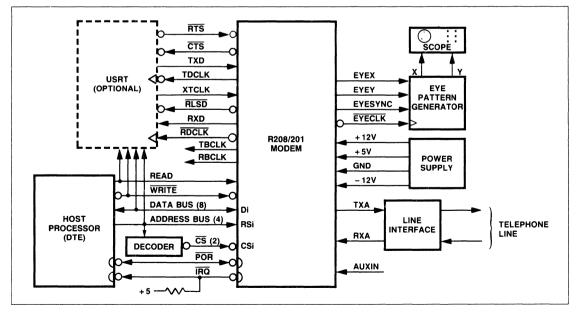


Figure 1. R208/201 Functional Interconnect Diagram

Bell 208A/B and Bell 201C Modem

Name	Turnel	DIN Pin No.	DIP ² Pin No.	Description			
		Pin No.	Pin No.	Description			
A. OVERHEAD:							
Ground (A)	AGND	31C,32C	30,31	Analog Ground Return			
Ground (D)	DGND	3C,8C,	29,37,53	Digital Ground Return			
		5A,10A					
+5 volts	PWR	19C,23C, 26C,30C	1,45,61	+ 5 volt supply			
+ 12 volts	PWR	15A /	32	+ 12 volt supply			
- 12 volts	PWR	12A	36	- 12 volt supply			
POR	I/OB	13C	2	Power-on-reset			
B. MICROPH	ROCESSO	R INTERF	ACE:				
D7	1/OA	1C	3	1			
D6	I/OA	1A	4				
D5	I/OA	2C	5				
D4	I/OA	2A	6	Data Bus (8 Bits)			
D3	I/OA	ЗA	7				
D2	I/OA	4C	8				
D1	I/OA	4A	9				
D0	I/OA	5C	10	J			
RS3	IA	6C	16	ו			
RS2	IA	6A	17	Register Select			
RS1	IA	7C	18	(4 Bits)			
RS0	IA	7A	19	J			
CS0	IA	10C	20	Chip Select Transmitter Device			
CS1	IA	9C	21	Chip Select Receiver			
CS2	IA	9A	13	Sample Rate Device Chip Select Receiver			
0.02		50		Baud Rate Device			
READ	IA	12C	14	Read Enable			
WRITE	IA	11A	12	Write Enable			
IRQ	OB	11C	11	Interrupt Request			

Table 4. R208/201 Hardware Circuits

Name	Turnet	DIN	DIP ² Pin No.	Description			
Name	Type	Pin No.	PIN NO.	Description			
C. V.24 INTERFACE:							
RDCLK	OC	21A	23	Receive Data Clock			
TDCLK	OC	23A	46	Transmit Data Clock			
XTCLK	IB	22A	51	External Transmit Clock			
RTS	IB	25A	50	Request-to-Send			
CTS	oc	25C	49	Clear-to-Send			
TXD	IB	24C	48	Transmitter Data			
RXD	OC	22C	26	Receiver Data			
RLSD	OC	24A	27	Received Line Signal			
				Detector			
D. ANCILLA	ARY CIF	CUITS:					
RBCLK	oc	26A	22	Receiver Baud Clock			
TBCLK	oc	27C	47	Transmitter Baud Clock			
E. ANALOG	SIGNA	LS:					
TXA	AA	31A	34	Transmitter Analog Output			
RXA	AB	32A	33	Receiver Analog Input			
AUXIN	AC	30A	-	Auxiliary Analog Input			
F. DIAGNO	STIC:						
EYEX	oc	15C	56	Eye Pattern Data—X Axis			
EYEY	oc	14A	55	Eye Pattern Data—Y Axis			
EYECLK	OA	14C	57	Eye Pattern Clock			
EYESYNC	OA	13A	58	Eye Pattern Synchronizing			
				Signal			
Notes:							
				terface characteristics and characteristics.			
2. Pins not used on the DIP Version: 15, 24, 25, 28, 35, 38, 39, 40, 41, 42, 43, 44, 52, 54, 59, 60							
40, 41, 42, 43, 44, 52, 54, 59, 60							

Table 5. Digital Interface Characteristics

				Input/Output Type						
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ос	I/O A	I/O B
VIH	Input Voltage, High	v	2.0 Min.	2.0 Min.	2.0 Min.				2.0 Min.	5.25 Max. 2.0 Min.
VIL	Input Voltage, Low	v	0.8 Max	0.8 Max.	0.8 Max.				0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.4 Min. ¹	2.4 Min. ³
V _{OL}	Output Voltage, Low	v				0.4 Max.2	0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ⁵
I _{IN}	Input Current, Leakage	μA	±2.5 Max.						± 2.5 Max.4	
Юн	Output Current, High	mA				-0.1 Max.				
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.		
IL.	Output Current, Leakage	μA					± 10 Max.			
I _{PU}	Pull-up Current (Short Cırcuit)	μA		– 240 Max. – 10 Min.	– 240 Max. – 10 Min.			– 240 Max. – 10 Min.		– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	3-State Transceiver	Open-Drain w/Pull-up
	Notes									
	$1 \mid \text{Load} = -1$			I Load = -4	•			I Load = 0.	36 mA	
l	2. I Load = 1.6 mA 4. V_{IN} = 0.4 to 2.4 Vdc, V_{CC} = 5.25 Vdc									

This configuration is suitable for performing high speed data transfer using the serial data port. Individual features are discussed in subsequent paragraphs.

V.24 INTERFACE

Eight hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, + 5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within standalone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Request To Send (RTS)

RTS ON allows the modem to transmit data on TXD when CTS becomes active. The responses to RTS are shown in Table 6.

Clear To Send (CTS)

CTS ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. CTS response times from an ON condition of RTS are shown in Table 6.

The time between the on-to-off transition of **RTS** and the on-to-off transition of **CTS** in data state is a maximum of 2 band times for all configurations.

Table 6.	RTS-CTS	Response	Times
----------	---------	----------	-------

	RTS-CTS Turn-On Time			
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled*		
Bell 208A/B Long	150	355		
Bell 208A/B Short	50	255		
Bell 201C 26.4 ms Sync Seq	26.4	231.4		
Bell 201C 148.3 ms Sync Seq	148.3	353.3		
Bell 201C 220 ms Sync. Seq.	220	425		
V.27 4800 Long	708	913		
V.27 4800 Short	50	255		
V.27 2400 Long	943	1148		
V.27 2400 Short	67	272		
V.26A 2400 90 ms Sync. Seq.	90	295		
V.26 1200 90 ms Sync. Seq	90	295		
* For short echo protector tone, subtract 155 ms from RTS-CTS turn-on time.				

Received Line Signal Detector (RLSD)

For Bell 208A/B and CCITT V.27, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. For Bell 201C, RLSD turns on in 10 \pm 5 ms after the detection of energy above threshold. The RLSD on-to-off response time for Bell 208A/B, CCITT V.27 and Bell 201C is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on the threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Four threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 49 dBm (RLSD off)
- 2. Greater than 33 dBm (RLSD on) Less than - 38 dBm (RLSD off)
- Greater than 26 dBm (RLSD on) Less than – 31 dBm (RLSD off)
- 4. Greater than 16 dBm (RLSD on) Less than - 21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than - 43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold level and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 4800 or 2400 Hz ($\pm\,0.01\%$).
- 2. Duty Cycle. 50 \pm 1%.

TDCLK is provided to the user in synchronous communications for USRT timing. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (RDCLK) output in the form of a 50 \pm 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. RDCLK is provided to the user in synchronous communications for USRT timing. The timing recovery circuit is capable of tracking a \pm .01% frequency error in the associated transmit timing source.

MICROPROCESSOR INTERFACE

Eight hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select (CS0-CS2) and Register Selects (RS0-RS3)

The signal processor to be accessed is selected by grounding one of three unique chip select lines, $\overline{CS2}$, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2³) is RS3 while the least significant address bit (2⁰) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2⁷) is D7 while the least significant data bit (2⁰) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single R/W output from a 65XX series microprocessor to the separate READ . and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of interrupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their high impedance state. Because of the open-drain structure of IRQ, an external pull-up resistor to +5 volts is required at some point on the IRQ line. The resistor value should be small enough to pull the IRQ line high when all IRQ drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modern \overline{IRQ} driver is used, a resistor value of 5.6K ohms $\pm 20\%$, 0.25 watt, is sufficient.

ANALOG SIGNALS

The analog signal characteristics are described in Table 7.

Table 7. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output is 604 ohms $\pm 1\%$.
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is the TLVL setting $+0.6$ dB -1.4 dB.

Transmitter Analog (TXA)

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the public switched telephone network. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

Receiver Analog (RXA)

RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm \pm 1% resistor is satisfactory.

Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may take the form of back-to-back zener diodes across the transformer or a varistor across the transformer.

Auxiliary Input (AUXIN)

AUXIN provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit at a rate of 9600 samples-persecond. Any signal above 4800 Hz on the AUXIN line will be aliased back into the passband as noise. The input impedance of AUXIN is 1K ohm. The gain from AUXIN to TXA is the same as the selected transmit level +0.6 dB - 1.4 dB. AUXIN must be grounded if not used.

Bell 208A/B and Bell 201C Modem

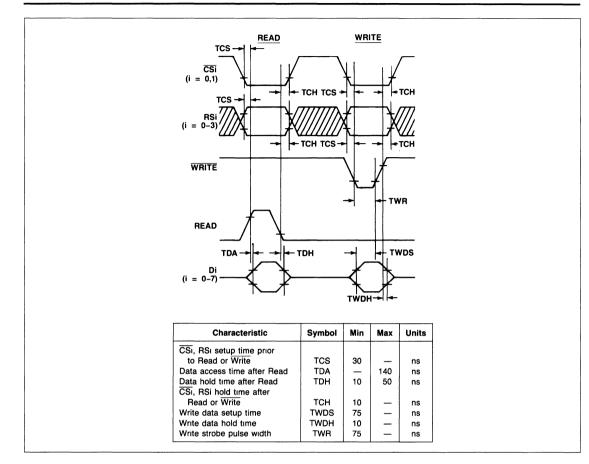


Figure 2. Microprocessor Interface Timing Diagram

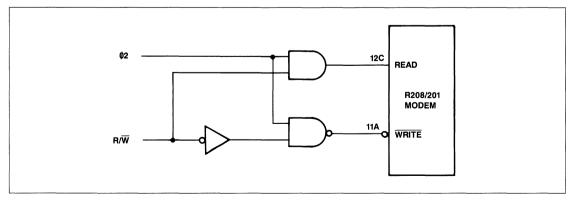


Figure 3. R/W to READ WRITE Conversion Logic

Bell 208A/B and Bell 201C Modem

DIAGNOSTIC SIGNALS EYEX, EYEY, EYECLK, and EYESYNC

Four card edge connections provide the timing and data necessary to create an oscilloscope quadrature eye pattern. The eye pattern is simply a display of the received baseband constellation. By monitoring this constellation, an observer can often identify common line disturbances as well as defects in the modulation/ demodulation process.

The outputs EYEX and EYEY provide two serial bit streams containing data for display on the oscilloscope X axis and Y axis, respectively. Since this data is in serial digital form it must first be converted to parallel digital form by two serial-to-parallel converters and then to analog form by two D/A converters. A clock for use by the serial-to-parallel converters is furnished by signal EYECLK. A strobe for loading the D/A converters is furnished by signal EYESYNC. Timing of these signals is illustrated in Figure 4. The EYEX and EYEY outputs furnish 9-bit serial words. Since most serial to parallel conversion logic is designed for 8-bit words, an extra storage flip-flop is required for 9-bit resolution. However, the ninth bit is not generally needed for eyepattern generation, and eight-bit hardware can be used if data is copied on the rising edge of EYECLK rather than the falling edge.

ANCILLARY SIGNALS

Transmitter Baud Clock (TBCLK) and Receiver Baud Clock (RBCLK)

Two clock signals called TBCLK and RBCLK are provided at the modem connector. These signals have no counterpart in the V.24

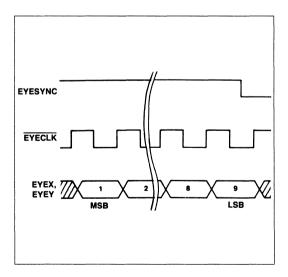


Figure 4. Eye Pattern Timing

or RS-232 recommendations since they mark the baud interval for the transmitter and receiver rather than the data rate. The baud clocks can be useful in identifying the order of data bits in a baud (e.g., for multiplexing data, etc.). Both signals are high active, meaning the baud boundaries occur on falling edges. The first bit in each baud begins with the falling edge of the corresponding baud clock.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load/ drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on three special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into areas. These areas are partitioned into transmitter, baud rate, and sample rate devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 48 addressable registers in the modem are shown in Figure 5. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Table 8 defines the individual bits in the interface memory. In the Table 8 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

Tr	Transmitter Interface Memory Chip 0 (CS0)										
Bit Register	7	6	5	4	3	2	1	0			
F		RAM ACCESS T									
E	TIA	-	-	-	TSB	TIE		TBA			
D		-	-	-	—	-	-	-			
С	-	-	-		-			-			
В	-	-	-	-	_	_	-	-			
A	-	-	_		-	-	-	—			
9	—	-	-	-	—	-	-	-			
8	-	-	_	-	_	_	_	_			
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT			
6		1	RANSN	ITTER C	ONFIG	URATION	J				
5	—	—	CE	EQ	LAEN	LDEN	A3L	D3L			
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN			
3				FRE	QM						
2				FRE	QL						
1				RAM DA	TA YTM						
0		RAM	data yt	L, TRAN	ISMITTE	er data	, DDR				
Register Bit	7	6	5	4	3	2	1	0			
	(_)	ndicates	s reserv	ed for m	nodem u	ise only					

Receiver Interface Memory Chip 1 (CS1)

Bit Register	7	6	5	4	3	2	1	0
F	SQH	_	-	_	_	_	_	_
E	RSIA	-	_	-	RSB	RSIE	-	RSDA
D	1	-	_		_	-	_	-
С	-	-	-	—	_	—	-	_
В	—	PNDET	-	—	-	—	-	CDET
A	_	-	_	_	-	—	—	-
9	_	FED	-	—	USMD	TONE	-	-
8		-	_	-	_	P2DET	-	-
7	R	гн	DDIS	RPDM	SWRT	BWRT	T2	RTDIS
6	IFIX	TOD		RECEI	VER CC	NFIGUF	RATION	
5			F	RAM AC	CESS X	S		
4			F	RAM AC	CESS Y	S		
3				RAM DA	TA XSM			
2				RAM D	ATA XSL			
1				RAM DA	TA YSM			
0		F	ram da	TA YSL,	RECEIV	ER DATA	<u>م</u>	
Register Bit	7	6	5	4	3	2	1	0
	()	ndicates	s reserv	ed for m	nodem u	ise only		

Bell 208A/B and Bell 201C Modem

Bit Register	7	6	5	4	3	2	1	0
F	_	-	_	_	_	_	_	_
E	RBIA	_	-	-	-	RBIE	-	RBDA
D		-	_	-	-	_	-	_
с	-	_	-	-	-	_	-	_
В	-	-	-	_	-	-	-	_
A		_	-	_		-	-	_
9		_	_	_	-	-	-	_
8	—	-	-	_	-	_	-	
7	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
5			F	RAM AC	CESS XI	3		
4			F	RAM AC	CESS YI	3		
3				RAM DA	ТА ХВМ			
2				RAM DA	ATA XBL			
1				RAM DA	TA YBM			
0				RAM DA	ATA YBL			
Register Bit	7	6	5	4	3	2	1	0
	()	ndicate	s reserv	ed for m	nodem u	se only	•	
Momory N								

Receiver Interface Memory Chip 2 (CS2)

Figure 5. Interface Memory Map

2-11

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location		Description				
A3L	Amplitude 3-Link Select	0:5:1	A3L is used in conjunction with equalizer is selected and when selected.					
BWRT	Baud Write	1:7:2	When control bit BWRT is a on	ne, the RAM write operation	is enabled for Chip 2.			
CEQ	Cable Equalizer Field	0:5:(4.5)	The CEQ Control field simultaneously controls amplitude compromise equalizers in both the transmit and receive paths. The following tables list the possible cable equalizer selection codes and responses.					
			CEQ	Cable Length (0.4 mm diameter)			
			0	0.	-			
			1		8 km			
			23		6 km 2 km			
			5	7.				
				able Equalizer Nominal Ga	in			
			CEQ CODE 1					
			Frequency	Gain Relative to				
			(Hz)	Transmitter	Receiver			
			700	- 0.99	- 0.94			
			1500	- 0.20	- 0.24			
			2000	+0.15	+ 0.31			
			3000	+ 1.43	+ 1.49			
			CEQ CODE 2					
			Frequency	Gain Relative to	T			
			(Hz)	Transmitter	Receiver			
			700	- 2.39	- 2.67			
			1500	- 0.65	-0.74			
			3000	+ 0.87 + 3.06	+ 1.02 + 3.17			
			CEQ CODE 3	Osia Dalativa ta				
			Frequency (Hz)	Gain Relative to Transmitter	Receiver			
			700	- 3.93	- 3.98			
			1500	- 1.22	- 1.20			
			2000	+ 1.90	+ 1.81			
			3000	+ 4.58	+ 4.38			
CDET	Carrier Detector	1:B:0	Unless a problem with training operate successfully with no ca When zero, status bit CDET ind that a training sequence is not data state, and returns to a onu up to 1 baud time before RLSE FED bit goes to a zero and no within 5 to 25 ms indicating that	able equalizer selected. dicates that passband ener in process. CDET goes to e at the end of the received and deactivates within 2 f P2 sequence is detected, t	gy is being detected, and a zero at the start of the d signal. CDET activates baud times after RLSD. If t the CDET bit goes to zero			
DDIS	Descramble Disable	1:7:5	training sequence. When control bit DDIS is a one data path.	e, the receiver descrambler	circuit is removed from the			
DDR	Dial Digit Register	0:0:0-7	DDR is used to tell the modem	which DTMF digit to trans	mıt (see Transmitter Data).			
D3L	Delay 3-Link Select	0:5:0	D3L is used in conjunction with equalizer is selected and when I					

Table 8. R208/201 Interface Memory Definitions

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location			De	scription				
EPT	Echo Protector Tone	0.7 3	When control bit EPT is (optionally 30 ms) follow							
FED	Fast Energy Detector	196	When status bit FED is present in the passban							
(None)	FREQL/FREQM	0·2:0-7, 0·3 0-7	The host processor cor data word to the FREQ shown below:							
			FREQM Register (0:3	2)						
	ļ			<u></u> r						
			Bit: 7 Data Word: 2 ¹⁵	6 214	2 ¹³	4 212	3 2 ¹¹	2 2 ¹⁰	29	0 2 ⁸
			Data Word. 218	2	2.0	2	2	2.0	20	20
			FREQL Register (0:2					T		1
			Bit: 7	6	5	4	3	2	1	0
			Data Word: 27	2 ⁶	25	24	2 ³	22	21	20
			The frequency number (N) determines the frequency (F) as follows: $F = (0.146486)$ (N) Hz $\pm 0.01\%$ Hexadecimal frequency numbers (FREQL, FREQM) for commonly generated tones a given below:							
		FREQM	F	REQL			Freque	ncy (Hz)		
		00		52			. 4	62		
		1D		55		1100				
			2C 00					16	50	
			31		55 1850					
			38		00			21	00	
IFIX	Eye Fix	1:6:7	When control bit IFIX is equalizer output and do ACCESS YB.							
			The link amplitude equalizer enable and select bits control an amplitude compromise equalizer in the receive path according to the following table:							
LAEN	Lınk Amplıtude Equalızer Enable	0:5:3							ude comp	romise
LAEN		0:5:3						ə:	ude comp Matched	romise
LAEN		0:5:3	equalizer in the receive		ording to A3L X			ə:	Matched	romise
LAEN		0:5:3	equalizer in the receive LAEN 0 1		ording to A3L X 0			Curve I No Equa U.S. Sur	Matched Ilizer vey Long	
LAEN		0:5:3	equalizer in the receive LAEN 0		ording to A3L X			e: Curve I No Equa	Matched Ilizer vey Long	
LAEN		0:5:3	equalizer in the receive LAEN 0 1	path acc	ording to A3L X 0 1	the follow	wing table	Curve I No Equa U.S. Sur Japanes	Matched alizer vey Long e 3-Link	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1	path acc alızer resp	ording to A3L X 0 1	the follow	wing table	Curve I No Equa U.S. Sur Japanes	Matched alizer vey Long e 3-Link	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1 The link amplitude equa Link Amplitude Equali	path acc alizer resp zer	ording to A3L X 0 1 ponses a	the follow re given u Gain Rela	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched Ilizer vey Long e 3-Link le. dB)	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1 The link amplitude equa	path acc alizer resp zer	ording to A3L X 0 1 ponses a	the follow	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched Ilizer vey Long e 3-Link le.	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1 The link amplitude equali Link Amplitude Equali Frequency (Hz) 1000	path acc alizer resp zer	ording to A3L X 0 1 bonses a J.S. Sur	the follow re given u Gain Rela	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched Nizer vey Long e 3-Link le. dB) intese 3-L - 0.13	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 The link amplitude equalities Link Amplitude Equalities Frequency (Hz) 1000 1400	path acc alizer resp zer	A3L X 0 1 Doonses a J.S. Surn - -	re given u Gain Rela rey Long 0.27 0.16	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched lizer vey Long e 3-Link le. dB) mese 3-L no.13 -0.08	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1 The link amplitude equal Link Amplitude Equali Frequency (Hz) 1000 1400 2000	path acc alizer resp zer	ording to A3L X 0 1 soonses a J.S. Sur - +	re given II Gain Rela /ey Long 0.27 0.16 0.33	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched Ilizer vey Long e 3-Link le. dB) inese 3-L n 0.13 - 0.08 + 0.16	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 The link amplitude equal Link Amplitude Equali Frequency (Hz) 1000 1400 2000 2400	path acc alizer resp zer	A3L X 0 1 bonses a J.S. Surr - + +	re given II Gain Rela rey Long 0.27 0.16 0.33 1.54	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched lizer vey Long e 3-Link le. dB) nese 3-L nese 3-L - 0.13 - 0.08 + 0.16 + 0.73	
LAEN		0:5:3	equalizer in the receive LAEN 0 1 1 The link amplitude equal Link Amplitude Equali Frequency (Hz) 1000 1400 2000	path acc alizer resp zer	ording to A3L X 0 1 bonses a J.S. Sur - - + + + + +	re given II Gain Rela /ey Long 0.27 0.16 0.33	n the follo	Curve I No Equa U.S. Sur Japanes owing tabl	Matched Ilizer vey Long e 3-Link le. dB) inese 3-L n 0.13 - 0.08 + 0.16	

Table 8. R208/201 Interface Memory Definitions (Continued)

2-13

2

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location	Description					
LCEN	Loop Clock Enable	0:4:0	When control bit LCEN is	a one, the transmitter clock ti	racks the receiver clock			
LDEN	Link Delay Equalızer Enable	0:5:2	The link delay equalizer e the receive path according		a delay compromise equalizer in			
			LDEN	D3L	Curve Matched			
			о	х	No Equalizer			
			1 1	0 1	U.S. Survey Long Japanese 3-Link			
			The link delay equalizer n	esponses are given in the follo	owing table.			
			Link Delay Equalizer					
			Frequency		lelative to licroseconds)			
			(Hz)	U.S. Survey Long	Japanese 3-Link			
			800	- 498.1	- 653.1			
		1	1200	- 188.3	- 398.5			
		1	1600	- 15.1	- 30.0			
		1	1700	+ 0.0	+ 0.0			
			2000	- 39.8	+ 11.7			
			2400	- 423.1	- 117.1			
			2800	- 672.4	546.3			
L3ACT L4ACT	Local Analog Loopback Activate Remote Analog Loopback Activate	0:4:7	receiver analog input thro V.54 loop 3. When control bit L4ACT is	-	ce with CCITT recommendation			
L4HG	Loop 4 High Gain		When control bit L4HG is a one, the loop 4 variable gain amplifier is set for +16 dB, and when at zero the gain is zero dB.					
		0:4:5						
MHLD	Mark Hold	0:4:5	and when at zero the gair	n is zero dB.	n amplifier is set for + 16 dB,			
MHLD			and when at zero the gair When control bit MHLD is (ones).	n is zero dB. s a one, the transmitter input o s a zero, it indicates a PN seq				
	Mark Hold	0:7:4	and when at zero the gain When control bit MHLD is (ones). When status bit PNDET is bit sets to a one at the er When status bit P2DET is	n is zero dB. a one, the transmitter input of a zero, it indicates a PN seq ad of the PN sequence.	n amplifier is set for +16 dB, lata stream is forced to all mark			
PNDET	Mark Hold Period N Detector Period Two	0:7:4 1:B:6	and when at zero the gain When control bit MHLD is (ones). When status bit PNDET is bit sets to a one at the er When status bit P2DET is This bit sets to a one at th	n is zero dB. a one, the transmitter input c s a zero, it indicates a PN seq nd of the PN sequence. a zero, it indicates that a P2	n amplifier is set for +16 dB, lata stream is forced to all mark uence has been detected. This sequence has been detected.			
PNDET P2DET	Mark Hold Period N Detector Period Two Detector	0:7:4 1:B:6 1:8:2	and when at zero the gain When control bit MHLD is (ones). When status bit PNDET is bit sets to a one at the er When status bit P2DET is This bit sets to a one at th Contains the RAM access word Y (0:1 and 0:0).	n is zero dB. a one, the transmitter input of a zero, it indicates a PN seq d of the PN sequence. a zero, it indicates that a P2 he start of the PN sequence.	n amplifier is set for +16 dB, lata stream is forced to all mark uence has been detected. This sequence has been detected. ng chip 0 RAM locations via			
PNDET P2DET (None)	Mark Hold Period N Detector Period Two Detector RAM Access T	0:7:4 1:B:6 1:8:2 0:F:0-7	and when at zero the gain When control bit MHLD is (ones). When status bit PNDET is bit sets to a one at the er When status bit P2DET is This bit sets to a one at th Contains the RAM access word Y (0:1 and 0:0). Contains the RAM access word X (2:3 and 2:2).	n is zero dB. a one, the transmitter input of a zero, it indicates a PN seq d of the PN sequence. a zero, it indicates that a P2 he start of the PN sequence. code used in reading or writi	n amplifier is set for +16 dB, lata stream is forced to all mark uence has been detected. This sequence has been detected. ng chip 0 RAM locations via ng chip 2 RAM locations via			

Table 8. R208/201 Interface Memory Definitions (Continued)
--

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location	C	Description				
(None)	RAM Access YS	1 4 0-7	Contains the RAM access code used in word Y (1 1 and 1.0)	reading or writing chip 1 RAM locations via				
(None)	RAM Data XBL	2 2.0-7	Least significant byte of 16-bit word X u	sed in reading or writing RAM locations in chip 2				
(None)	RAM Data XBM	2 3 0-7	Most significant byte of 16-bit word X u	sed in reading or writing RAM locations in chip 2				
(None)	RAM Data XSL	1.2 0-2	Least significant byte of 16-bit word X u	sed in reading or writing RAM locations in chip 1				
(None)	RAM Data XSM	1:3.0-7	Most significant byte of 16-bit word X u	sed in reading or writing RAM locations in chip 1				
(None)	RAM Data YBL	200-7	Least significant byte of 16-bit word Y u	sed in reading or writing RAM locations in chip 2				
(None)	RAM Data YBM	2:1.0-7	Most significant byte of 16-bit word Y u	sed in reading or writing RAM locations in chip 2.				
(None)	RAM Data YSL	1.0.0-7	Least significant byte of 16-bit word Y u chip 1. Shared by parallel data mode fo microprocessor bus. See 'Receiver Dat					
(None)	RAM Data YSM	1.1.0-7	Most significant byte of 16-bit word Y u	sed in reading or writing RAM locations in chip 1.				
(None)	RAM Data YTL	0:0:0-7	Least significant byte of 16-bit word Y used in reading or writing RAM locations in chip 0. It is shared by parallel data mode and DTMF dialing (see Transmitter Data)					
(None)	RAM Data YTM	0:1:0-7	Most significant byte of 16-byte word Y used in reading or writing locations in chip 0					
RBDA	Receiver Baud Data Available	2'E:0	Status bit RBDA goes to a one when the receiver writes data into register 2:0. The bit goes to a zero when the host processor reads data from register 2:0.					
RBIA	Receiver Baud Interrupt Active	2·E:7	This status bit is a one whenever the receiver baud rate device is driving \overline{IRQ} low. In idle mode the interrupts from chip 2 occur at half the baud rate. During diagnostic access in data mode, the interrupts occur at the baud rate.					
RBIE	Receiver Baud Interrupt Enable	2:E.2	When the host processor writes a or hardware interface is driven to zero who	he in the RBIE control bit, the $\overline{\text{IRQ}}$ line of the en status bit RBDA is a one.				
(None)	Receiver Configuration	1.6.0–5	The host processor configures the rec configuration field in the interface mem	eiver by writing a control code into the receiver ory space (see RSB).				
			Receiver Configuration Control Codes					
			Control codes for the modem receiver of	configuration are:				
			Configuration Code (Hex)	Receiver Configuration				
			18	Bell 208/201 Auto. Configuration*				
			16	Bell 208A/B HDX				
			12 34	Bell 208A/B FDX Bell 201C HDX 26.4 ms Sync. Seq.				
			30	Bell 201C FDX 26.4 ms Sync. Seq.				
			35	Bell 201C HDX 148.3 ms Sync. Seq.				
			31	Bell 201C FDX 148 3 ms Sync Seq				
			14	Bell 201C HDX 220 ms Sync Seq.				
			10	Bell 201C FDX 220 ms Sync. Seq				
			26	V 27 4800 HDX Long				
			22	V.27 4800 FDX Long				
			25 21	V.27 2400 HDX Long V.27 2400 FDX Long				
			21	V.27 2400 FDX Long V.27 4800 HDX Short				
			02	V.27 4800 FDX Short				
			05	V.27 2400 HDX Short				
			01	V.27 2400 FDX Short				
			15	V.26A 2400 FDX 90 ms Sync. Seq.				
			11	V 26 1200 FDX 90 ms Sync Seq				
			08	Tone Detector				
			*When this configuration is selected, the and configure itself accordingly.	receiver will detect a Bell 208 or 201C handshake				

Table 8. R208/201 Interface Memory Definitions (Continued)

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location		Description	
(None)	Receiver Data	1:0:0-7	by reading a data byte fr boundaries as is the tran	ns channel data from the receiv om the receiver data register. T smitter data. When using receiv) can not be used for reading th	he data is divided on baud er parallel data mode, the
RPDM	Receiver Parallel Data Mode	1.7:4		s a one, the receiver supplies c to the hardware serial data outp	hannel data to the receiver data ut. (See Receiver Data)
RSB	Receiver Setup Bit	1:E:3	processor must write a o	changes the receiver configura ne in the RSB control bit. RSB case setup time is 2 baud times	goes to zero when the changes
RSDA	Receiver Sample Data Available	1:E:0		a one when the receiver writes host processor reads data from	
RSIA	Receiver Sample Interrupt Active	1:E:7	This status bit is a one w	henever the receiver sample ra	te device is driving IRQ to zero.
RSIE	Receiver Sample Interrupt Enable	1:E:2		writes a one in the RSIE contro ven to zero when status bit RSD	
RTDIS	Receiver Training Disable	1:7:0	When control bit RTDIS i sequence and entering the	s a one, the receiver is prevent ne training state.	ed from recognizing a training
RTH	Receiver Threshold Field	1:7:6,7	The receiver energy dete codes (see RSB):	ctor threshold is set by the RTH	I field according to the following
			RTH	RLSD On	RLSD Off
			0	> – 43 dBm	< - 48 dBm
			1	> - 33 dBm	< – 38 dBm < – 31 dBm
			2 3	> – 26 dBm > – 16 dBm	< – 21 dBm
RTS	Request-to-Send	0:7:7	continues to transmit unt	es to a one, the modem begins il RTS is reset to zero, and the parallels the operation of the h y the modem.	turn-off sequence has been
SDIS	Scrambler Disable	0:7:5	When control bit SDIS is data path.	a one, the transmitter scramble	r circuit is removed from the
SEPT	Short Echo Protector Tone	0:7:0	When control bit SEPT is	a one, the echo protector tone is	s 30 ms long rather than 185 ms
SQH	Receiver Squelch	1:F:7		set to a one, the receiver is squ arks. SQH only affects the recei tion has been selected.	
SWRT	Sample Write	1:7:3	When control bit SWRT i	s a one, the RAM write operatic	on is enabled for chip 1.
ТВА	Transmitter Buffer Available	0:E:0	register 0:0. When the tr RAM access in chip 0, w	ero when the host processor w ansmitter empties register 0:0, hen TBA is a one the host can tate of bit 0:6:3 (see Transmitt	this bit sets to a one. During a perform either a RAM read or
ΤΙΑ	Transmitter Interrupt Active	0:E [.] 7	This status bit is a one w	henever the transmitter is drivir	ng IRQ to a zero
TIE	Transmitter Interrupt Enable	0:E·2		writes a one in control bit TIE, when status bit TBA is at a or	

lable 8.	R208/201 Interface	e Memory Definitions	(Continued)
----------	--------------------	----------------------	-------------

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location	Description						
TLVL	Transmitter Level	0 4 2-4	The transm	itter analog output level is determi	ined by eight Tl	VL codes, as follows			
	Field		TLVL	Transmitter Analog Output*	TLVL T	ransmitter Analog Output*			
			0	-1 dBm ±1 dB	4	-9 dBm ±1 dB			
			1	−3 dBm ±1 dB	5	– 11 dBm ±1 dB			
			2	$-5 \text{ dBm} \pm 1 \text{ dB}$	6	-13 dBm ±1 dB			
			3	-7 dBm ±1 dB	7	– 15 dBm ±1 dB			
				*Each step above is a 2 dB cl	-				
TOD	Train-on-Data	1.6:6	equalizer if recognizes	ol bit TOD is a one, it enables the the signal quality degrades suffici a training sequence and enters th 5 seconds initiates train-on-date.	ently. When TC	D is a one, the modem still			
TONE	Tone Detect	1.9.5	range. For	ates with a zero the presence of e call progress purposes, the user n the duty cycle of the TONE bit.					
TPDM	Transmitter Parallel Data Mode	0.2.5	transmitter	ol bit TPDM is a one, the transmit data register (0:0). When TPDM is s accepted and the chip 0 RAM a	a zero channel o	data from the serial hardware			
(None)	Transmitter Configuration*	0.6:0-2		ocessor configures the transmitter in register in its interface memory					
			Transmitter	Configuration Control Codes					
			Control cod	es for the modem transmitter cont	figurations are:				
			Configuration Code (Hex)* Configuration						
				32	Bell 208A/B	3 Long			
				12	Bell 208A/				
				30		26.4 ms Sync Seq.			
				31		148.3 ms Sync Seq.			
		1		10		220 ms Sync. Seq			
				22					
				02 21	V.27 4800 V.27 2400				
				01	V.27 2400 V.27 2400				
				15		90 ms Sync Seq			
				13		90 ms Sync. Seq.			
				80	Tone Trans				
				08	DTMF Ton				
			chip 0 Wł and when	e transmitter configuration register nen 0:6.3 is a one, a RAM write o 0:6.3 is a zero, a RAM read ope	operation will or	cur when TPDM is a zero,			
			Configurati	on Definitions					
			 Definitions of the eight Transmitter Configurations are: 1. Bell 208. When any of the Bell 208 configurations are selected, the modem operates as specified in the Bell 208A/B Standard. 2. Bell 201C. When any of Bell 201C configurations are selected, the modem operates as specified in the Bell 201C Standard. 						
			3. V.27. WI specified	nen any of the V.27 configurations I in CCITT Recommendation V.27	ter.				
			specified 5 Tone Tra transmit memory in the Ff register generate 6. DTMF To to transmin the D	hen any of the V.26 configurations in CCITT Recommendation V.26 <i>unsmit.</i> In this configuration, activa a tone at a single frequency spec space containing the frequency c REQM register (0·3). The least sign (0:2). The least significant bit repre- dis: f = 0.146486 (256 FREQM + <i>one Transmit.</i> In this configuration, mit a Dual Tone Multi-Frequency (1 al Digit Register (DDR, 0·0). The pairs are as follows:	ting signal RTS infied by two reg ode. The most i gnificant bits are essents 0 146486 FREQL) Hz ± , activating sign DTMF) tone spe	causes the modem to significant bits are specified especified in the FREQL HZ ±0 01%. The frequency 0 01%. al RTS causes the modem ecified by the code loaded			

Table 8. R208/201 Interface Memory Definitions (Continued)

2

Bell 208A/B and Bell 201C Modem

Mnemonic	Name	Memory Location	Description							
			Dial Digit Regis Hexadecima		Dial Dig	it	т	one Pair (Hz)		
			00		0		94	1 1336		
			01	1		69				
			02		2		69			
			03		3		69			
			04		4		770			
			05		5		770	0 1336		
			06		6		770			
			07		7		852	2 1209		
			08	08			852	2 1336		
			09				852	2 1477		
			A		*		94	1 1209		
			OB		#		94	1 1477		
(None)	Transmitter; DDR; 0:0:0 RAM Data YTL		Figure 6 shows the util dialing application. 1. The host processor t transmitter data regi	transmits data in	the parallel mod	le by wri	ting a da	ata byte to the		
			transmitter data register. The data is divided on baud boundaries, as follows: NOTE							
			Data is transmitted bit zero first.							
					B	its				
			Configuration	76	5 4	3	2	1 0		
		Bell 208A/B V.27 4800	Not Used	Baud 1	.		Baud 0			
			Bell 201C, V26, V.27 2400	Baud 3 Baud 2		Bau	ıd 1	Baud 0		
			 Register 0:0 is used the DTMF tone trans Register 0:0 is a R/ byte of the 16-bit Y transmission is occu 	smit mode. AM data register word in Chip 0 w	used for reading	or writir	ng the le	ast significant		
TSB	Transmitter Setup Bit	0:E:3	When the host process one in this control bit. case setup time is 2 ba	TSB goes to a z	ero when the ch	ange beo	comes ef	fective Worst		
TTDIS	Transmitter Train Disable	0:7:6	When control bit TTDIS at the start of transmis baud times.							
Т2	T/2 Equalizer Select	1:7:1	When control bit T2 is When T2 is a zero, the remains the same for t	equalizer has o						
USMD	Unscrambled Mark Detection	1:9:3	When status bit USMD detected. The response		ambled mark as	defined	by Bell 2	01C has beer		
	1									

Table 8. R208/201 Interface Memory Definitions (Continued)

SIGNAL PROCESSOR RAM ACCESS

RAM and Data Organization

Each signal processor contains 128 words of random access memory (RAM). Each word is 32 bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16 bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. In the sample rate and baud rate devices the entire contents of XRAM and YRAM may be read from or written into by the host processor via the microprocessor interface. Access to the YRAM is possible only in the transmitter device.

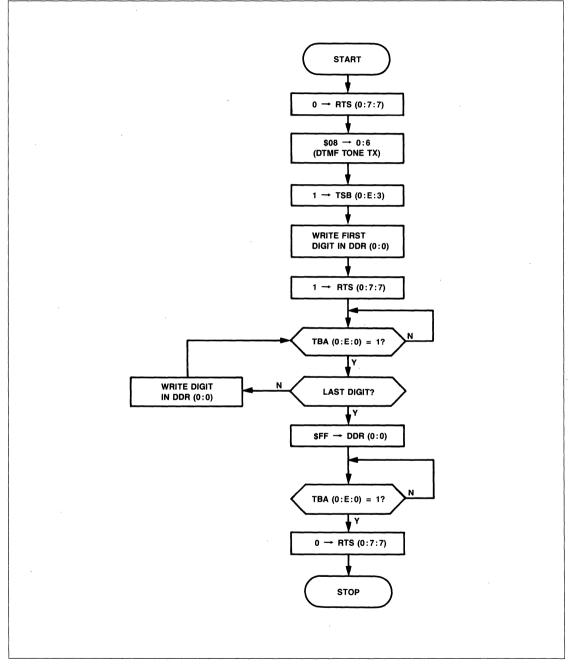
Interface Memory

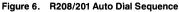
The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit determines the RAM address to read from or write into by the code stored in the RAM ACCESS bits of interface memory registers. The SP logic unit normally transfers a word from RAM to interface memory once each cycle of the device code. Each RAM word transferred to the interface memory is 32 bits long (16 bits in the transmitter). These bits are written by the SP logic unit into interface memory registers 3, 2, 1, and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data, respectively. As previously described for parallel data mode, the data available bits set to a one when register 0 of the respective signal processor is written into by the device and resets to a zero when register 0 is read from by the host. Since the parallel data mode transmitter and receiver data register shares register 0 with the YRAM data, chip 0 and 1 RAM access are disabled in parallel data mode. However, chip 2 RAM access remains active in receiver parallel data mode.

The transmitter, sample rate device and the baud rate device allow data to be transferred from interface memory to RAM. When set to a one, bit SWRT (1:7:3) signals the chip 1 SP logic unit to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. Bit BWRT (1:7:2) performs the same function for chip 2 RAM. When writing into the RAM, 32 bits are transferred. The 16 bits written into XRAM come from registers 3 and 2, with register 3 being the more significant byte. The 16 bits written into YRAM come from registers 1 and 0, with register 1 being the more significant byte. When only 16 bits of data are to be written, FF (a dummy RAM location) must be stored in RAM ACCESS XS or RAM ACCESS YS to prevent writing the insignificant 16 bits of registers 1:3 through 1:0 into a valid RAM location. When the host processor writes into register 1:0 the RSDA bit (1:E:0) is reset to zero. When the SP logic unit reads data from register 1:0, the RSDA bit (1:E:0) is set to a one. In a similar manner, bit RBDA (2:E:0) resets

Bell 208A/B and Bell 201C Modem

to zero when the host processor writes into register 2:0 and sets to a one when the SP logic unit reads data from register 2:0.


When reading from RAM, or writing into RAM, the bits in registers 0:E, 1:E, 2:E can be used for handshaking or interrupt functions as in parallel data mode. When not in parallel data mode, the bits in register 1:E perform the handshake and interrupt functions for RAM access. In both serial and parallel data modes, the bits in register 2:E perform handshake and interrupt functions for RAM access. When set to one, bit RBIE (2:E:2) enables RBDA to drive the IRQ connector signal to zero volts when RBDA is a one. Bit RBIA (2:E:7) identifies chip 2, the baud rate device, as a source of IRQ interrupt. Bit RBIA is a one when both RBIE and RBDA are set to one. In the event that other system elements may cause IRQ to be driven low, the host must determine if modem chip 2 is causing an interrupt by reading RBIA.


Table 9 provides the available RAM access functions, codes, and registers.

Auto Dial Sequence

The Figure 6 flowchart defines the auto dial sequence via the microprocessor interface memory. The modem timing for the auto dialer accounts for DTMF tone duration and interdigit delay. The default tone duration is 95 ms and the default interdigit delay is 71 ms. The default amplitudes for the high and low frequencies are -4 dBm and -6 dBm, respectively. The above four parameters can be changed by performing a RAM write.

			X Access Code	Y Access Code	
No.	Function	Chip	(Hex)	(Hex)	Register
1	DTMF Low Frequency Amplitude ¹	0	-	88	0,1
2	DTMF High Frequency Amplitude ¹	0	-	08	0,1
3	Interdigit Delay ¹	0	_	89	0,1
4	DTMF Tone Duration ¹	0	—	09	0,1
5	Received Signal Samples	1	CO	Not Used	2,3
6	Demodulator Output	1	C2	42	0,1,2,3
7	Low Pass Filter Output	1	D4	54	0,1,2,3
8	Average Energy	1	DC	Not Used	2,3
9	AGC Gain Word	1	81	Not Used	2,3
10	Equalizer Input	2	CO	40	0,1,2,3
11	Equalizer Tap Coefficients	2	81 – A0	01 – 20	0,1,2,3
12	Unrotated Equalizer				
	Output	2	E1	61	0,1,2,3
13	Rotated Equalizer Output (Received Points)	2	A2	22	0,1,2,3
14	Decision Points Ideal Points	2	62	0,1,2,3	
15	Error	2	E3	63	0,1,2,3
16	Rotation Angle	2	Not Used	00	0,1
17	Frequency Correction	2	AA	Not Used	2,3
18	EQM	2	A7	Not Used	2,3
19	Dual Point	2	AE	2E	0,1,2,3

Bell 208A/B and Bell 201C Modem

PERFORMANCE

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56, except with regard to the placement of the filter used to bandlimit the white noise source. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

Typical BER performance is shown in Figure 7. Figure 8 shows a typical test setup to measure BER.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps, the modem exhibits a bit error rate of 10⁻⁶ or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

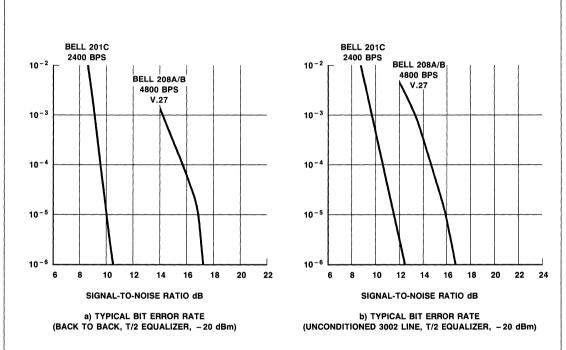


Figure 7. R208/201 BER versus SNR

Bell 208A/B and Bell 201C Modem

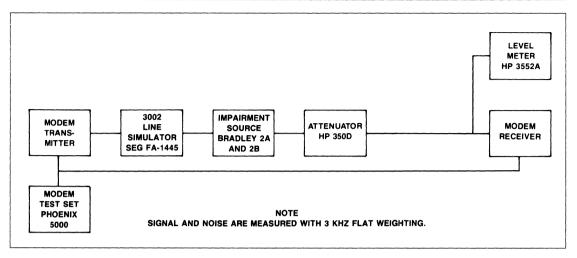


Figure 8. BER Performance Test Set-up

Bell 208A/B and Bell 201C Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	±5%	550 mA	<700 mA
+ 12 Vdc	±5%	5 mA	< 10 mA
– 12 Vdc	±5%	25 mA	< 50 mA

Table 10. Modem Power Requirements

Table 11. Modem Environmental Restrictions

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	- 40°C to + 80°C (- 40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity:	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.
Altitude	- 200 feet to + 10,000 feet

Parameter	Specification
DIN Connector Version	
Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated.
	The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female,
	64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical receptacle:
	Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Dimensions:	
Width	3.94 in. (100 mm)
Length	4.725 in. (120 mm)
Connector Height	0.437 in. (11.1 mm)
Component Height	
Top (max.)	0.200 in. (5.1 mm)
Bottom (max.)	0.130 in. (3.3 mm)
Weight (max):	3.6 oz. (100 g)
Lead Extrusion (max.):	0.100 in. (2.54 mm)
DIP Connector Version	
Board Structure:	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions:	
Width	3.228 in. (82 mm)
Length	3.937 in. (100 mm)
Component Height	
Top (max.)	0.200 in. (5.1 mm)
Bottom (max.)	0.130 in. (3.3 mm)
Weight (max.):	3.6 oz. (100 g)
Pin Length (max.)	0.53 in. (13.5 mm)

Table 12. Modem Mechanical Considerations

Bell 208A/B and Bell 201C Modem

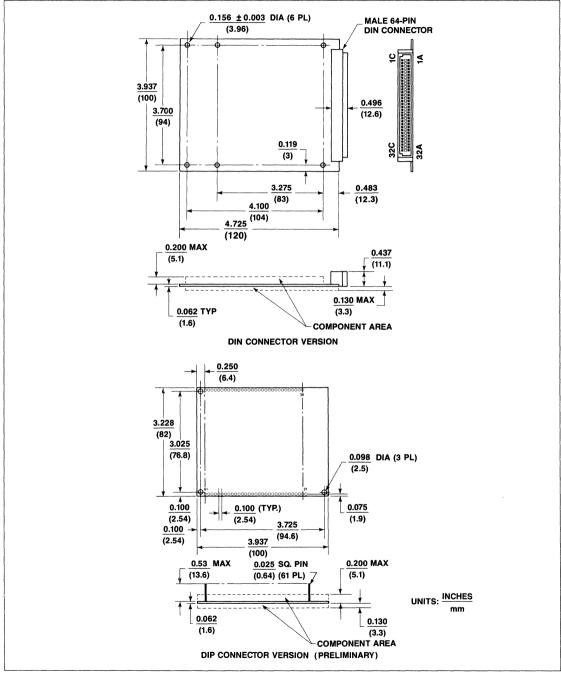
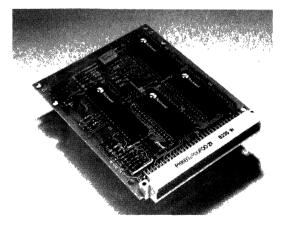


Figure 9. R208/201 Modem Dimensions and Pin Locations

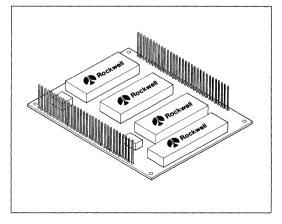
Integral Modems


R48DP/208 4800 bps Data Pump Modem

INTRODUCTION

The Rockwell R48DP/208 is a synchronous 4800 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) as well as leased lines through the appropriate line termination.

The modem satisfies the telecommunications requirements specified in CCITT Recommendation V.27 bis/ter and Bell 208A/B. The R48DP/208 can operate at speeds of 4800 and 2400 bps. Employing advanced signal processing techniques, the R48DP/208 can transmit and receive data even under extremely poor line conditions.


The R48DP/208 is designed for use in point-to-point environments. User programmable features allow the modem operation to be tailored to support a wide variety of functional requirements. The modem's small size, low power consumption, and serial/parallel host interface simplify system design and allow installation in a compact enclosure. The modem module is available with a DIN connector for connection to a mating connector or with dual-in-line pins (DIP) for direct plug-in installation onto a host module.

R48DP/208 DIN Connector Version

FEATURES

- CCITT V.27 bis/ter and Bell 208A/B Compatible
- Point-to-Point Applications
- 2-Wire Half-Duplex, 4-Wire Full-Duplex
- Programmable Tone Generation
- Programmable DTMF Tone Dialer
- Dynamic Range: 43 dBm to 0 dBm
- Equalization
 - Automatic Adaptive
 - Compromise Cable and Link (Selectable)
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C)(Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 - Electrical: TTL and CMOS Compatible
- Diagnostic Capability
- Programmable Transmit Output Level
- Loopbacks
 - Local and Remote Analog
- Remote Digital
- Small Size
 - DIN Connector Version: 100 mm × 120 mm (3.94 in. × 4.73 in.) DIP Connector Version:
 - $82 \text{ mm} \times 100 \text{ mm} (3.23 \text{ in.} \times 3.94 \text{ in.})$
 - Power Consumption: 3 W (Typical)

R48DP/208 DIP Connector Version

Document No. 29200N14

Order No. MD14 Rev. 4, February 1987

4800 bps Data Pump Modem

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

The supported transmitter carrier frequencies are listed in Table 1.

Function	Frequency (Hz ±0.01%)
V.27 bis/ter and Bell 208 Carrier	1800

TONE GENERATION

Under control of the host processor, the modem can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated. DTMF tone transmission capability is provided to allow the modem to operate as a programmable DTMF tone dialer.

SIGNALING AND DATA RATES

The supported signaling and data rates are listed in Table 2.

Table 2. Signaling/Data Rates

	-	-		
Specification	Baud Rate (Symbols/sec.)	Bits Per Baud	Data Rate (bps)(±0.01%)	Symbol Points
V.27	1600	3	4800	8
Bell 208	1600	3	4800	4
V.27	1200	2	2400	4

DATA ENCODING

The data encoding conforms to CCITT Recommendation V.27 bis/ter and Bell 208A/B.

EQUALIZERS

The modem provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent
- 2. 1600 Baud. Square root of 50 percent

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The R96DP incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 bis/ ter or Bell 208A/B depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

TRANSMIT LEVEL

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

TRAIN ON DATA

When train on data is enabled, the receiver typically trains on data in less than 3.5 seconds.

TURN-ON SEQUENCE

Selectable turn-on sequences can be generated as defined in Table 3.

Table 3. Turn-On Sequences

	RTS-CTS Turn-On Time				
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled*			
Bell 208 4800 bps long	150 ms	355 ms			
Bell 208 4800 bps short	50 ms	255 ms			
V.27 4800 bps long	708 ms	913 ms			
V.27 4800 bps short	50 ms	255 ms			
V.27 2400 bps long	943 ms	1148 ms			
V.27 2400 bps short	67 ms	272 ms			
* For short echo protector	tone, subtract 155 r	ns from RTS-CTS			

For short echo protector tone, subtract 155 ms from RIS-CIS turn-on time.

TURN-OFF SEQUENCE

For V.27 ter and Bell 208, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) whenever the Received Line Signal Detector (RLSD) is off.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ), respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

4800 bps Data Pump Modem

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, diagnostic signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The six groups of hardware circuits are described in the following paragraphs. Table 5 lists the digital interface characteristics.

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modern to assume a valid operational state. The modern drives pin 13C to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modem is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 µs. When an external low input is applied to pin 13C, the modern is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to complete. The modem POR sequence leaves the modem configured as follows:

- Bell 208 4800 bps Short Train
- Serial channel data
- T/2 equalizer
- Standard echo protector tone
- - 43 dBm threshold
- Cable and link equalizers disabled
- Train-On-Data disabled

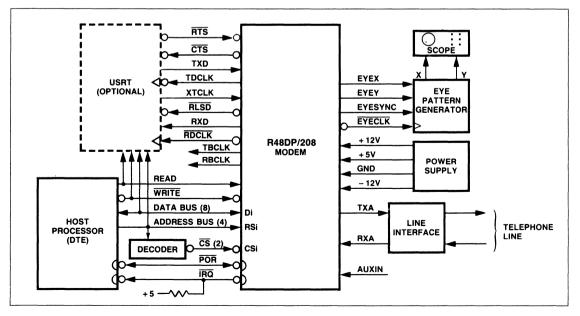


Figure 1. R48DP/208 Functional Interconnect Diagram

2

4800 bps Data Pump Modem

Name	Tunel	DIN Pin No.	DIP ² Pin No.	Description
	Type ¹	PIN NO.	PIN NO.	Description
A. OVERHE	AD:			
Ground (A)	AGND	31C,32C	30,31	Analog Ground Return
Ground (D)	DGND	3C,8C,	29,37,53	Digital Ground Return
		5A,10A		
+ 5 volts	PWR	19C,23C,	1,45,61	+5 volt supply
		26C,30C		
+ 12 volts	PWR	15A	32	+ 12 volt supply
- 12 volts	PWR	12A	36	- 12 volt supply
POR	I/OB	13C	2	Power-on-reset
B. MICROPI	ROCESSO	DR INTERF	ACE:	
D7	I/OA	1C	3	٦
D6	I/OA	1A	4	
D5	I/OA	2C	5	
D4	I/OA	2A	6	Data Bus (8 Bits)
D3	I/OA	ЗA	7	
D2	I/OA	4C	8	
D1	I/OA	4A	9	
DO	I/OA	5C	10	J
RS3	IA	6C	16	ר
RS2	IA	6A	17	Register Select
RS1	IA	7C	18	(4 Bits)
RS0	IA	7A.	19	J
CS0	IA	10C	20	Chip Select
				Transmitter Device
CS1	IA	9C	21	Chip Select Receiver
				Sample Rate Device
CS2	IA	9A	13	Chip Select Receiver
DEAD	IA	100		Baud Rate Device
WRITE		12C 11A	14 12	Read Enable Write Enable
	OB	11A 11C	12	
INU	UB		1	Interrupt Request

Table 4. R48DP/208 Hardware Circuits

		DIN	DIP ²	
Name	Type ¹	Pin No.	Pin No.	Description
C. V.24 INT	ERFAC	E:		
RDCLK	oc	21A	23	Receive Data Clock
TDCLK	oc	23A	46	Transmit Data Clock
XTCLK	IB	22A	51	External Transmit Clock
RTS	IB	25A	50	Request-to-Send
CTS	OC	25C	49	Clear-to-Send
TXD	IB	24C	48	Transmitter Data
RXD	oc	22C	26	Receiver Data
RLSD	oc	24A	27	Received Line Signal
				Detector
D. ANCILL/	ARY CIF	CUITS:		
RBCLK	OC	26A	22	Receiver Baud Clock
TBCLK	OC	27C	47	Transmitter Baud Clock
E. ANALOG	SIGNA	LS:		ч.
ТХА	AA	31A	34	Transmitter Analog Output
RXA	AB	32A	33	Receiver Analog Input
AUXIN	AC	30A		Auxiliary Analog Input
F. DIAGNO	STIC:			
EYEX	oc	15C	56	Eye Pattern Data—X Axis
EYEY	oc	14A	55	Eye Pattern Data-Y Axis
EYECLK	OA	14C	57	Eye Pattern Clock
EYESYNC	OA	13A	58	Eye Pattern Synchronizing Signal
Table 7 f	or analo	g circuit i	interface of	terface characteristics and haracteristics. 15, 24, 25, 28, 35, 38, 39,

40, 41, 42, 43, 44, 52, 54, 59, 60

Table 5. Digital Interface Characteristics

				Input/Output Type						
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	ос	I/O A	I/O B
VIH	Input Voltage, High	v	2.0 Min.	2.0 Min.	2.0 Min.				2.0 Min.	5.25 Max. 2.0 Min.
VIL	Input Voltage, Low	v	0.8 Max.	0.8 Max.	0.8 Max.				0.8 Max	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.4 Min. ¹	2.4 Min ³
V _{OL}	Output Voltage, Low	v				0.4 Max.2	0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ⁵
I _{IN}	Input Current, Leakage	μA	±25 Max.						± 2.5 Max 4	
I _{OH}	Output Current, High	mA				-0.1 Max.				
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.		
IL IL	Output Current, Leakage	μA					± 10 Max.			
I _{PU}	Pull-up Current (Short Circuit)	μA		– 240 Max. – 10 Min.	– 240 Max. – 10 Min.			– 240 Max. – 10 Min.		– 260 Max – 100 Mın.
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	3-State Transceiver	Open-Drain w/Pull-up
					Notes	•••••••••••••••••••••	* • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••		
	1. I Load = $-100 \ \mu A$ 3. I Load = $-40 \ \mu A$ 5. I Load = $0.36 \ m A$ 2. I Load = $1.6 \ m A$ 4. $V_{IN} = 0.4 \ to 2.4 \ Vdc, \ V_{CC} = 5.25 \ Vdc$									

4800 bps Data Pump Modem

This configuration is suitable for performing high speed data transfer using the serial data port. Individual features are discussed in subsequent paragraphs.

V.24 INTERFACE

Eight hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, + 5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within standalone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Request To Send (RTS)

 $\overline{\text{RTS}}$ ON allows the modem to transmit data on TXD when $\overline{\text{CTS}}$ becomes active. The responses to $\overline{\text{RTS}}$ are shown in Table 6.

Clear To Send (CTS)

 $\overline{\text{CTS}}$ ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. $\overline{\text{CTS}}$ response times from an ON condition of $\overline{\text{RTS}}$ are shown in Table 6.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in data state is a maximum of 2 band times for all configurations.

Table 6.	RTS-CTS	Response	Times
----------	---------	----------	-------

Protector Disabled	Echo Protector Tone Enabled* 355 ms 255 ms
50 ms	255 ms
	+
708 me	A / A
00 1113	913 ms
50 ms	255 ms
943 ms	1148 ms
67 ms	272 ms
	943 ms

Received Line Signal Detector (RLSD)

For V.27 bis/ter or Bell 208, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on the threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Four threshold options are provided:

- Greater than 43 dBm (RLSD on) Less than - 49 dBm (RLSD off)
- Greater than 33 dBm (RLSD on) Less than – 38 dBm (RLSD off)
- 3. Greater than 26 dBm (RLSD on) Less than - 31 dBm (RLSD off)
- 4. Greater than 16 dBm (RLSD on) Less than - 21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold level and hysteresis action are measured with an unmodulated 2400 Hz tone applied to the receiver's audio input (RXA).

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 4800 or 2400 Hz ($\pm 0.01\%$).
- 2. Duty Cycle. 50 ± 1%.

TDCLK is provided to the user in synchronous communications for USRT timing. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (RDCLK) output in the form of a 50 \pm 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. RDCLK is provided to the user in synchronous communications for USRT timing. The timing recovery circuit is capable of tracking a \pm .01% frequency error in the associated transmit timing source.

MICROPROCESSOR INTERFACE

Eight hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select (CS0-CS2) and Register Selects (RS0-RS3)

The signal processor to be accessed is selected by grounding one of three unique chip select lines, $\overline{CS2}$, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2³) is RS3 while the least significant address bit (2⁰) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2⁷) is D7 while the least significant data bit (2⁰) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single R/W output from a 65XX series microprocessor to the separate READ and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of interrupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their IRQ, an external pull-up resistor to +5 volts is required at some point on the IRQ line. The resistor value should be small enough

to pull the \overline{IRQ} line high when all \overline{IRQ} drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modern \overline{IRQ} driver is used, a resistor value of 5.6K ohms \pm 20%, 0.25 watt, is sufficient.

ANALOG SIGNALS

The analog signal characteristics are described in Table 7.

Table 7. Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output is 604 ohms $\pm 1\%$.
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is the TLVL setting $+0.6$ dB -1.4 dB.

Transmitter Analog (TXA)

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the public switched telephone network. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

Receiver Analog (RXA)

RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm $\pm 1\%$ resistor is satisfactory.

Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may take the form of back-to-back zener diodes across the transformer or a varistor across the transformer.

Auxiliary Input (AUXIN)

AUXIN provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit at a rate of 9600 samples-persecond. Any signal above 4800 Hz on the AUXIN line will be aliased back into the passband as noise. One application for AUXIN is to inject dual-tone multifrequency (DTMF) touch-tone signals for dialing, however, the source of these tones must be well filtered to eliminate components above 4800 Hz. The input impedance of AUXIN is 1K ohm. The gain from AUXIN to TXA is the same as the selected transmit level + 0.6 dB - 1.4 dB.

4800 bps Data Pump Modem

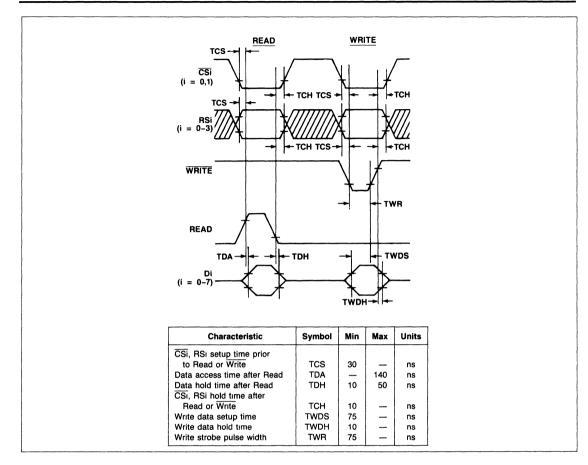


Figure 2. Microprocessor Interface Timing Diagram

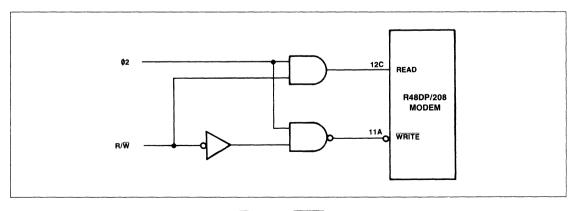


Figure 3. R/W to READ WRITE Conversion Logic

4800 bps Data Pump Modem

DIAGNOSTIC SIGNALS EYEX, EYEY, EYECLK, and EYESYNC

Four card edge connections provide the timing and data necessary to create an oscilloscope quadrature eye pattern. The eye pattern is simply a display of the received baseband constellation. By monitoring this constellation, an observer can often identify common line disturbances as well as defects in the modulation/ demodulation process.

The outputs EYEX and EYEY provide two serial bit streams containing data for display on the oscilloscope X axis and Y axis, respectively. Since this data is in serial digital form it must first be converted to parallel digital form by two serial-to-parallel converters and then to analog form by two D/A converters. A clock for use by the serial-to-parallel converters is furnished by signal EYECLK. A strobe for loading the D/A converters is furnished by signal EYESYNC. Timing of these signals is illustrated in Figure 4. The EYEX and EYEY outputs furnish 9-bit serial words. Since most serial to parallel conversion logic is designed for 8-bit words, an extra storage flip-flop is required for 9-bit resolution. However, the ninth bit is not generally needed for eyepattern generation, and eight-bit hardware can be used if data is copied on the rising edge of EYECLK rather than the falling edge.

ANCILLARY SIGNALS

Transmitter Baud Clock (TBCLK) and Receiver Baud Clock (RBCLK)

Two clock signals called TBCLK and RBCLK are provided at the modem connector. These signals have no counterpart in the V.24

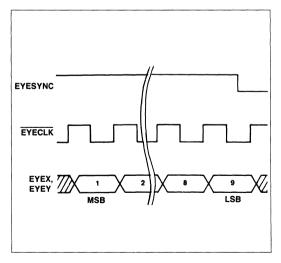


Figure 4. Eye Pattern Timing

or RS-232 recommendations since they mark the baud interval for the transmitter and receiver rather than the data rate. The baud clocks can be useful in identifying the order of data bits in a baud (e.g., for multiplexing data, etc.). Both signals are high active, meaning the baud boundaries occur on falling edges. The first bit in each baud begins with the falling edge of the corresponding baud clock.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load/ drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on three special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into areas. These areas are partitioned into transmitter, baud rate, and sample rate devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 48 addressable registers in the modem are shown in Figure 5. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Table 8 defines the individual bits in the interface memory. In the Table 8 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

Transmitter Interface Memory Chip 0 ($\overline{CS0}$)								
Bit Register	7	6	5	4	3	2	1	0
F				RAM AC	CESS T			
E	TIA	-	-	-	TSB	TIE	-	тва
D	-	-	-	-	-	-	-	-
С	-	-	-	_	-	-	-	-
в	-	-	-	-	-	_	_	-
Α	-	-	-	-	-	_	—	-
9	-	_	-	-	_	_	-	-
8	-	_	-	-	-	-	-	-
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT
6	TRANSMITTER CONFIGURATION							
5	-	-	CE	EQ	LAEN	LDEN	A3L	D3L
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN
3				FRE	QM			
2	FREQL							
1				RAM DA	ТА ҮТМ			
0		RAM	data yt	L; TRAN	ISMITTE	er data	, DDR	
Register Bit	7	6	5	4	3	2	1	0
	(—)	ndicates	s reserv	ed for n	nodem u	ise only	•	

Receiver Interface Memory Chip 1 (CSI)

Bit						[
Register	7	6	5	4	3	2	1	0
F	SQH	-	_	-	-	-	-	_
E	RSIA	-	-	—	RSB	RSIE	-	RSDA
D	—	—	_	-	-	-	-	-
С	—	-		-	-		-	-
В	-	PNDET	_	-	—	-	-	CDET
Α	-	-	-	-		-	_	—
9	-	FED	—	-		TONE	-	-
8	_	-	-	-	—	P2DET	_	-
7	R	гн	DDIS RPDM SWRT BWRT T2 R				RTDIS	
6	IFIX	TOD	D RECEIVER CONFIGURATION					
5			F	RAM AC	CESS X	S		
4	RAM ACCESS YS							
3	RAM DATA XSM							
2	RAM DATA XSL							
1	RAM DATA YSM							
0	RAM DATA YSL, RECEIVER DATA							
Register Bit	7	6	5	4	3	2	1	0
	()	Indicates	s reserv	ed for m	nodem u	ise only		

4800 bps Data Pump Modem

F E RBIA D C B A 9 7 6	-	-	- RBIE	-	_					
D C B A 9 8 7	-	-	RBIE	-						
C B A 9 8 7	-	_	_		RBDA					
B A 9 8 7			_		-					
A 9 8 7	-		-	-	-					
9 8 7		_	-	-	-					
8 — — — 7 — — —		-	-	-	-					
7	-	-	-	-	-					
	-	—	_	_	-					
6	-	-	-	-	-					
		-	-							
5 F	RAM AC	CESS XI	3							
4 F	RAM ACO	CESS YI	З							
3	RAM DA	ATA XBM								
2	RAM DATA XBL									
1	RAM DATA YBM									
0	RAM DATA YBL									
Register 7 6 5 Bit 5	4	3	2	1	0					
() Indicates reserve	(

Figure 5. Interface Memory Map

Receiver Interface Memory Chip 2 (CS2)

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description					
A3L	Amplitude 3-Link Select	0:5:1	A3L is used in conjunction with equalizer is selected and when selected.					
BWRT	Baud Write	1:7:2	When control bit BWRT is a one, the RAM write operation is enabled for Chip 2					
CEQ	Cable Equalizer Field	0:5:4,5	The CEQ Control field simultan the transmit and receive paths. selection codes and responses.	The following tables list th				
			CEQ	Cable Length (0.4 mm diameter)			
			0	0.0	0			
			1	1.8	3 km			
			2		6 km			
			3	7.1	2 km			
			Са	ble Equalizer Nominal Ga	in			
			CEQ CODE 1					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
		, in the second s	700	- 0.99	0.94			
			1500	- 0.20	-0.24			
			2000	+ 0.15	+ 0.31			
			3000	+ 1.43	+ 1.49			
			CEQ CODE 2					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
	1		700	- 2.39	-2.67			
			1500	- 0.65	- 0.74			
			2000	+ 0.87	+ 1.02			
			3000	+ 3.06	+ 3.17			
			CEQ CODE 3					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
			700	- 3.93	- 3.98			
			1500	- 1.22	- 1.20			
			2000	+ 1.90	+ 1.81			
			3000 Unless a problem with training operate successfully with no ca		+ 4.38			
CDET	Carrier Detector	1:B:0	When zero, status bit CDET inc that a training sequence is not data state, and returns to a one up to 1 baud time before RLSD FED bit goes to a zero and no within 5 to 25 ms indicating tha training sequence.	dicates that passband energing process. CDET goes to a the end of the received and deactivates within 2 the P2 sequence is detected, the sequence is detected.	a zero at the start of the d signal. CDET activates baud times after RLSD If th he CDET bit goes to zero			
DDIS	Descramble Disable	1:7:5	When control bit DDIS is a one data path.	, the receiver descrambler	circuit is removed from the			
DDR	Dial Digit Register	0:0:0-7	DDR is used to tell the modem	which DTMF digit to trans	mit (see Transmitter Data).			
D3L	Delay 3-Link Select	0:5:0	D3L is used in conjunction with LDEN. When D3L is a one the Japanese 3 link equalizer is selected and when D3L is a zero the U.S. Survey Long link equalizer is selected					

Table 8. R48DP/208 Interface Memory Definitions

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location			De	escription				
EPT	Echo Protector Tone	0:7.3	When control bit EPT is a one, an unmodulated carrier is transmitted for 185 ms (optionally 30 ms) followed by 20 ms of no transmitted energy at the start of transmission.							
FED	Fast Energy Detector	1.9.6	When status bit present in the p							
(None)	FREQL/FREQM	0 2:0-7, 0.3 0-7								
			FREQM Regist	ter (0:3)						
			Bit:	7 6	5	4	3	2	1	0
			Data Word:	2 ¹⁵ 2 ¹⁴	2 ¹³	2 ¹²	211	210	2 ⁹	28
			FREQL Regist	er (0:2)						
			Bit:	7 6	5	4	3	2	1	0
			Data Word:	27 26	25	24	2 ³	2 ²	2 ¹	20
			The frequency r F = (0 146486) Hexadecimal fre given below	(N) Hz ±0.019	/o	·			nerated to	nes are
			FRE	ом	FREQL			Frequer	ncv (Hz)	
			00		52		462			
		1	11		55			11		
			20		00			16		
			3		55 00			18 21		
IFIX	Eye Fıx	1 6:7	When control br equalizer output ACCESS YB.							
LAEN	Lınk Amplıtude Equalızer Enable	0:5·3	The link amplitu equalizer in the						ide compi	romise
			LAEN		A3L			Curve M	latched	
			o		х			No Equa	lizer	
			1		0 1			U.S. Sur Japanese	vey Long e 3-Link	
			The link amplitu	de equalizer re	esponses a	ire given ir	n the follo	owing tabl	e.	
			Link Amplitude	Equalizer						
			Eromuon			Gain Rela	tive to 1	700 Hz (c	IB)	
			Frequence (Hz)			vey Long			nese 3-Li	ink
			1000			0.27			-0.13	
			1400			0.16			- 0.08	
			2000			0.33			+0.16	
			2400 2800			1 54 5.98	1		+ 0.73 + 2.61	
1			3000			8.65			+ 3 43	

Table 8. R48DP/208 Interface Memory Definitions (Continued)

2

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description				
LCEN	Loop Clock Enable	0:4:0	When control bit LCEN is a one, the transmitter clock tracks the receiver clock.					
LDEN	Link Delay Equalizer Enable	0:5:2	The link delay equalizer of the receive path according		a delay compromise equalizer in			
			LDEN	D3L	Curve Matched			
			о	x	No Equalizer			
			1	0 1	U.S. Survey Long Japanese 3-Link			
			The link delay equalizer i	responses are given in the follo	owing table.			
			Link Delay Equalizer	Delew 6				
			Frequency		telative to licroseconds)			
			(Hz)	U.S. Survey Long	Japanese 3-Link			
			800	- 498.1	- 653.1			
			1200	- 188.3	- 398.5			
			1600	- 15.1	- 30.0			
			1700	+ 0.0	+ 0.0			
			2000	- 39.8	+ 11.7			
			2400	- 423.1	- 117.1			
		1	2800	- 672.4	- 546.3			
		1.1	2000	-072.4				
L3ACT L4ACT	Loopback Activate Local Analog Loopback Activate Remote Analog Loopback Activate	0:4:7	When control bit L3ACT i receiver analog input thro V.54 loop 3. When control bit L4ACT i	s a one, the receiver analog in				
L4HG	Loop 4 High Gain	0:4:5	V.54 loop 4.	a one, the loop 4 variable ga				
MHLD	Mark Hold	0:7:4			lata stream is forced to all mark			
PNDET	Period N Detector	1:B:6	When status bit PNDET i bit sets to a one at the e		uence has been detected. This			
P2DET	Period Two Detector	1:8:2		s a zero, it indicates that a P2 the start of the PN sequence.	sequence has been detected.			
(None)	RAM Access T	0:F:0-7	Contains the RAM access code used in reading or writing chip 0 RAM locations via word Y (0:1 and 0:0).					
(None)	RAM Access XB	2:5:0-7	Contains the RAM access word X (2:3 and 2:2).	s code used in reading or writi	ng chip 2 RAM locations via			
	RAM Access XS	1.5:0-7	Contains the RAM access code used in reading or writing chip 1 RAM locations via word X (1:3 and 1:2).					
(None)			word X (1:3 and 1:2).					

Table 8.	R48DP/208	Interface	Memory	Definitions	(Continued)
----------	-----------	-----------	--------	-------------	-------------

4800 bps Data Pump Modem

2

Mnemonic	Name	Memory Location	Desci	ription			
(None)	RAM Access YS	1.4.0-2	Contains the RAM access code used in reading or writing chip 1 RAM locations via word Y (1.1 and 1 0).				
(None)	RAM Data XBL	2 2.0-7	Least significant byte of 16-bit word X used in reading or writing RAM locations in chip 2.				
(None)	RAM Data XBM	2:3:0-7	Most significant byte of 16-bit word X used in reading or writing RAM locations in chip 2				
(None)	RAM Data XSL	1.5.0-2	Least significant byte of 16-bit word X used chip 1.	in reading or writing RAM locations in			
(None)	RAM Data XSM	1:3:0–7	Most significant byte of 16-bit word X used i chip 1	n reading or writing RAM locations in			
(None)	RAM Data YBL	2:0 0-7	Least significant byte of 16-bit word Y used chip 2.	in reading or writing RAM locations in			
(None)	RAM Data YBM	2:1.0-7	Most significant byte of 16-bit word Y used i chip 2.	n reading or writing RAM locations in			
(None)	RAM Data YSL	1:0.0-2	Least significant byte of 16-bit word Y used in reading or writing RAM locations in chip 1. Shared by parallel data mode for presenting channel data to the host microprocessor bus. See 'Receiver Data.'				
(None)	RAM Data YSM	1:1:0-7	Most significant byte of 16-bit word Y used in reading or writing RAM locations in chip 1.				
(None)	RAM Data YTL	0:0:0-7	Least significant byte of 16-bit word Y used in reading or writing RAM locations in chip 0 It is shared by parallel data mode and DTMF dialing (see Transmitter Data).				
(None)	RAM Data YTM	0:1 0-7	Most significant byte of 16-byte word Y used	d in reading or writing locations in chip 0.			
RBDA	Receiver Baud Data Avaılable	2:E:0	Status bit RBDA goes to a one when the rea goes to a zero when the host processor read				
RBIA [·]	Receiver Baud Interrupt Active	2:E:7	This status bit is a one whenever the receive idle mode the interrupts from chip 2 occur a access in data mode, the interrupts occur at	t half the baud rate During diagnostic			
RBIE	Receiver Baud Interrupt Enable	2:E:2	When the host processor writes a one in the hardware interface is driven to zero when st				
(None)	Receiver Configuration	1:6.0-2	The host processor configures the receiver a configuration field in the interface memory s				
			Receiver Configuration Control Codes				
			Control codes for the modem receiver config	guration are:			
			Configuration Code (Hex)	Receiver Configuration			
			16	Bell 208A/B HDX			
			12 26	Bell 208A/B FDX V 27 4800 HDX Long			
			20	V.27 4800 FDX Long			
			25	V.27 2400 HDX Long			
			21	V.27 2400 FDX Long			
			06 05	V 27 4800 HDX Short V.27 2400 HDX Short			
			02	V 27 4800 FDX Short			
			01	V.27 2400 FDX Short			
			08	Tone Detector			

Table 8. R48DP/208 Interface Memory Definitions (Continued)

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description	
(None)	Receiver Data	1:0:0-7	by reading a data byte f boundaries as is the tra	ins channel data from the receiv rom the receiver data register. T Ismitter data When using receiv 0 can not be used for reading th	he data is divided on baud ver parallel data mode, the
RPDM	Receiver Parallel Data Mode	1:7:4	When control bit RPDM is a one, the receiver supplies channel data to the receiver data register (1:0) as well as to the hardware serial data output (See Receiver Data)		
RSB	Receiver Setup Bit	1:E:3	processor must write a o	r changes the receiver configura one in the RSB control bit. RSB case setup time is 2 baud times	goes to zero when the changes
RSDA	Receiver Sample Data Available	1:E:0		a one when the receiver writes host processor reads data from	
RSIA	Receiver Sample Interrupt Active	1:E:7	This status bit is a one	whenever the receiver sample ra	te device is driving IRQ to zero.
RSIE	Receiver Sample Interrupt Enable	1:E:2		r writes a one in the RSIE contr ven to zero when status bit RSE	
RTDIS	Receiver Training Disable	1:7:0	When control bit RTDIS sequence and entering t	is a one, the receiver is prevent he training state.	ed from recognizing a training
RTH	Receiver Threshold Field	1:7:6,7	The receiver energy det codes (see RSB):	ector threshold is set by the RTH	H field according to the following
			RTH	RLSD On	RLSD Off
			0 1 2 3	> - 43 dBm > - 33 dBm > - 26 dBm > - 16 dBm	< – 48 dBm < – 38 dBm < – 31 dBm < – 21 dBm
RTS	Request-to-Send	0:7:7	continues to transmit un	bes to a one, the modem begins til RTS is reset to zero, and the t parallels the operation of the h by the modem.	turn-off sequence has been
SDIS	Scrambler Disable	0:7:5	When control bit SDIS is data path.	a one, the transmitter scramble	er circuit is removed from the
SEPT	Short Echo Protector Tone	0:7:0	When control bit SEPT i 185 ms.	s a one, the echo protector tone	e is 30 ms long rather than
SQH	Receiver Squelch	1:F:7	RXD is clamped to all m	set to a one, the receiver is squarks. SQH only affects the rece ation has been selected.	uelched, RLSD is turned off and iver operation when a half
SWRT	Sample Write	1:7:3	When control bit SWRT	is a one, the RAM write operation	on is enabled for chip 1.
ТВА	Transmitter Buffer Available	0:E:0	register 0:0. When the t RAM access in chip 0, v	zero when the host processor w ransmitter empties register 0:0, when TBA is a one the host can state of bit 0:6·3 (see Transmitt	this bit sets to a one. During a perform either a RAM read or
TIA	Transmitter Interrupt Active	0.E:7	This status bit is a one	whenever the transmitter is drive	ng IRQ to a zero
TIE	Transmitter Interrupt Enable	0:E·2		r writes a one in control bit TIE, o when status bit TBA is at a or	

Table 8. R48DP/208 Interface Memory Definitions (Continued)

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description		
TLVL	Transmitter Level	0.4:2-4	The transmitter analog output lev	rel is determined by eight TLVL codes, as follows.		
	Field		TLVL	Transmitter Analog Output*		
			0	-1 dBm ±1 dB		
			1	$-3 \text{ dBm} \pm 1 \text{ dB}$		
			2	$-5 \text{ dBm} \pm 1 \text{ dB}$		
			3	7 dBm ±1 dB 9 dBm ±1 dB		
			5	$-9 \text{ dBm} \pm 1 \text{ dB}$ -11 dBm ±1 dB		
			6	$-13 \text{ dBm} \pm 1 \text{ dB}$		
			7	– 15 dBm ±1 dB		
			*Each step above	e is a 2 dB change ±0.2 dB.		
TOD	Train-on-Data	1:6:6	equalizer if the signal quality deg	t enables the train-on-data algorithm to converge the grades sufficiently. When TOD is a one, the modem still and enters the force train state. A BER of approximately in-on-date.		
TONE	Tone Detect	1:9:2		presence of energy in the 345–650 \pm 10 Hz frequency s, the user may determine which tone is present by TONE bit.		
TPDM	Transmitter Parallel Data Mode	0:7 2		the transmitter accepts data for transmission from the nen TPDM is a zero channel data from the serial hardware hip 0 RAM access is enabled.		
(None)	Transmitter Configuration*	0:6:0-7	The host processor configures the configuration register in its interfa	e transmitter by writing a control byte into the transmitter ace memory space (See TSB.)		
			Transmitter Configuration Control Codes			
			Control codes for the modem trai	nsmitter configurations are:		
			Configuration Code (He	x)* Transmitter Configuration		
			32	Bell 208A/B Long		
			12	Bell 208A/B Short		
			22	V.27 4800 Long		
			21	V.27 2400 Long		
			02	V.27 4800 Short V.27 2400 Short		
			80	Tone Transmit		
			04	DTMF Tone Transmit		
			chip 0. When 0.6.3 is a one, a	ation register is used in the RAM access operation for RAM write operation will occur when TPDM is a zero, AM read operation will occur when TPDM is a zero		
			Configuration Definitions			
			specified in Bell 208A/B.	nfiguration has been selected, the modem operates as		
			specified in CCITT Recommer	ion has been selected, the modem operates as ndation V.27 ter. ration, activating signal RTS causes the modem to		
			transmit a tone at a single free memory space containing the in the FREQM register (0·3). register (0.2). The least signifi- generated is: f = 0.146486 (25	quency specified by two registers in the host interface frequency code. The most significant bits are specified The least significant bits are specified in the FREQL cant bit represents 0.146486 Hz \pm 0.01%. The frequency i6 FREQM + FREQL) Hz \pm 0.01%.		
				onfiguration when the hex value of a DTMF digit is F tone will be transmitted if RTS is enabled.		

Table 8. R48DP/208 Interface Memory Definitions (Continued)

2

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description								
(None)	Transmitter; DDR; RAM Data YTL	0:0:0-7	1. The host processor tra transmitter data registe								to the
						NOTE					
				Data	is trans	mitted	bit zero f	first.			
							Bi	its			
			Configuration	7	6	5	4	3	2	1	0
			Bell 208 4800 bps	Not	Used		Baud 1	L		Baud 0	
			V.27 4800 bps	Not	Used		Baud 1			Baud 0	
			V.27 2400 bps	Bau	ud 3	Ba	ud 2	Bau	ud 1	Ba	ud 0
			the DTMF tone transm 3. Register 0:0 is a RAM byte of the 16-bit Y wo transmission is occurri	l data re ord in Cl	gister u						
TSB	Transmitter Setup Bit	0:E:3	3. Register 0:0 is a RAM	l data re ord in Cl ng. • change SB goes	egister u nip 0 wh es the tra to a zer	en TPD ansmitte o when	DM is a z er configu a the cha	ero and uration, nge bec	no tone the hos omes e	e or DTN at must w ffective.	IF ton
TSB TTDIS		0:E:3 0:7:6	 Register 0:0 is a RAM byte of the 16-bit Y wo transmission is occurri When the host processor one in this control bit. TS 	l data re ord in Cl ng. change SB goes d + turi s a one	egister u nip 0 wh es the tra to a zer noff sequ	ansmitte o when uence +	DM is a z er configu h the chai + training r does no	ero and uration, nge bec g (if app ot genera	no tone the hos omes e licable) ate a tra	e or DTM at must w ffective.	IF ton rrite a Worst
	Bit Transmitter Train		 Register 0:0 is a RAM byte of the 16-bit Y wo transmission is occurri When the host processor one in this control bit. TS case setup time is 2 bau When control bit TTDIS i at the start of transmission 	I data re ord in Cl ng. c change B goes d + turi s a one, on. With one, an qualizer	egister u nip 0 wh es the tra to a zer noff sequ , the training adaptive has one	en TPD ansmitte o when uence + nsmitter i disable e equali	DM is a z er configu the chain + training r does no ed, RTS/(izer with	ero and uration, nge bec g (if app ot genera CTS del two tapa	no tone the hos omes e licable) ate a tra ay is le s per ba	e or DTN t must w ffective. aining se ss than t aud is us	IF tone rrite a Worst quenc wo

Table 8. R48DP/208 Interface Memory Definitions (Continued)

SIGNAL PROCESSOR RAM ACCESS

RAM and Data Organization

Each signal processor contains 128 words of random access memory (RAM). Each word is 32 bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16 bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. In the sample rate and baud rate devices the entire contents of XRAM and YRAM may be read from or written into by the host processor via the microprocessor interface. Access to the YRAM is possible only in the transmitter device.

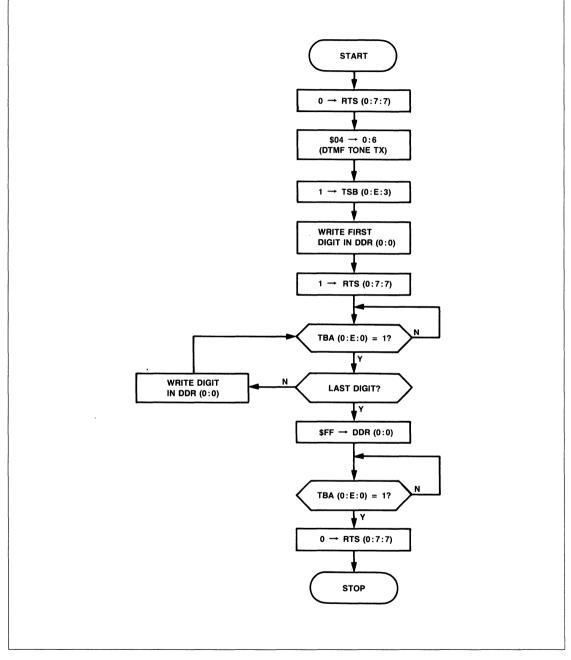
Interface Memory

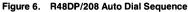
The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit determines the RAM address to read from or write into by the code stored in the RAM ACCESS bits of interface memory registers. The SP logic unit normally transfers a word from RAM to interface memory once each cycle of the device code. Each RAM word transferred to the interface memory is 32 bits long (16 bits in the transmitter). These bits are written by the SP logic unit into interface memory registers 3, 2, 1, and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data, respectively. As previously described for parallel data mode, the data available bits set to a one when register 0 of the respective signal processor is written into by the device and resets to a zero when register 0 is read from by the host. Since the parallel data mode transmitter and receiver data register shares register 0 with the YRAM data, chip 0 and 1 RAM access are disabled in parallel data mode. However, chip 2 RAM access remains active in receiver parallel data mode.

The transmitter, sample rate device and the baud rate device allow data to be transferred from interface memory to RAM. When set to a one, bit SWRT (1:7:3) signals the chip 1 SP logic unit to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. Bit BWRT (1:7:2) performs the same function for chip 2 RAM. When writing into the RAM, 32 bits are transferred. The 16 bits written into XRAM come from registers 3 and 2, with register 3 being the more significant byte. The 16 bits written into YRAM come from registers 1 and 0, with register 1 being the more significant byte. When only 16 bits of data are to be written, FF (a dummy RAM location) must be stored in RAM ACCESS XS or RAM ACCESS YS to prevent writing the insignificant 16 bits of registers 1:3 through 1:0 into a valid RAM location. When the host processor writes into register 1:0 the RSDA bit (1:E:0) is reset to zero. When the SP logic unit reads data from register 1:0, the RSDA bit (1:E:0) is set to a one. In a similar manner, bit RBDA (2:E:0) resets to zero when the host processor writes into register 2:0 and sets to a one when the SP logic unit reads data from register 2:0.

4800 bps Data Pump Modem

When reading from RAM, or writing into RAM, the bits in registers 0:E, 1:E, 2:E can be used for handshaking or interrupt functions as in parallel data mode. When not in parallel data mode, the bits in register 1:E perform the handshake and interrupt functions for RAM access. In both serial and parallel data modes, the bits in register 2:E perform handshake and interrupt functions for RAM access. When set to one, bit RBIE (2:E:2) enables RBDA to drive the IRQ connector signal to zero volts when RBDA is a one. Bit RBIA (2:E:7) identifies chip 2, the baud rate device, as a source of IRQ interrupt. Bit RBIA is a one when both RBIE and RBDA are set to one. In the event that other system elements may cause IRQ to be driven low, the host must determine if modem chip 2 is causing an interrupt by reading RBIA.


Table 9 provides the available RAM access functions, codes, and registers.


Auto Dial Sequence

The Figure 6 flowchart defines the auto dial sequence via the microprocessor interface memory. The modem timing for the auto dialer accounts for DTMF tone duration and interdigit delay. The default tone duration is 95 ms and the default interdigit delay is 71 ms. The default amplitudes for the high and low frequencies are -4 dBm and -6 dBm, respectively. The above four parameters can be changed by performing a RAM write.

Table 9. RAM Access Codes

			X Access Code	Y Access Code	
No.	Function	Chip	(Hex)	(Hex)	Register
1	DTMF Low Frequency Amplitude	0	_	88	0,1
2	DTMF High Frequency Amplitude	0	-	08	0,1
3	Interdigit Delay	0		89	0,1
4	DTMF Tone Duration	0		09	0,1
5	Received Signal Samples	1	C0	Not Used	2,3
6	Demodulator Output	1	C2	42	0,1,2,3
7	Low Pass Filter Output	1	D4	54	0,1,2,3
8	Average Energy	1	DC	Not Used	2,3
9	AGC Gain Word	1	81	Not Used	2,3
10	Equalizer Input	2	CO	40	0,1,2,3
11 12	Equalizer Tap Coefficients Unrotated Equalizer	2	81 – A0	01 20	0,1,2,3
	Output	2	E1	61	0,1,2,3
13	Rotated Equalizer Output (Received Points)	2	A2	22	0,1,2,3
14	Decision Points Ideal Points	2	62	0,1,2,3	
15	Error	2	E3	63	0,1,2,3
16	Rotation Angle	2	Not Used	00	0,1
17	Frequency Correction	2	AA	Not Used	2,3
18	EQM	2	A7	Not Used	2,3
19	Dual Point	2	AE	2E	0,1,2,3

4800 bps Data Pump Modem

PERFORMANCE

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56, except with regard to the placement of the filter used to bandlimit the white noise source. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

Typical BER performance is shown in Figure 7. Figure 8 shows a typical test setup to measure BER.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

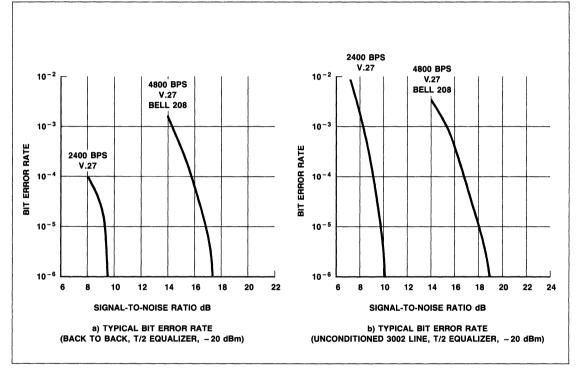


Figure 7. R48DP/208 BER versus SNR

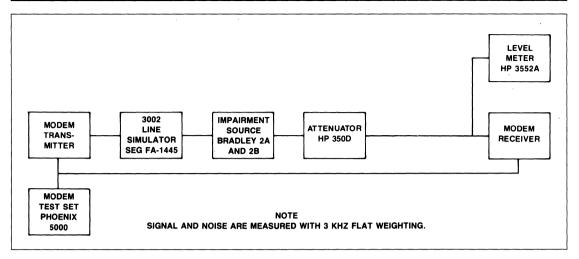


Figure 8. BER Performance Test Set-up

4800 bps Data Pump Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	± 5%	550 mA	<700 mA
+ 12 Vdc	± 5%	5 mA	< 10 mA
– 12 Vdc	± 5%	25 mA	< 50 mA

Table 10. Modem Power Requirements

Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak.

Table 11. Modem Environmental Restrictions

Parameter	Specification
Temperature Operating Storage Relative Humidity: Altitude	0°C to +60°C (32°F to 140°F) - 40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container) Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less. - 200 feet to + 10,000 feet

Parameter	Specification
DIN Connector Version	
Board Structure	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical receptacle: Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Dimensions:	
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Connector Height	0.437 in. (11.1 mm)
Component Height	
Top (max.)	0 200 ın. (5.1 mm)
Bottom (max)	0.130 in (3.3 mm)
Weight (max):	3 6 oz. (100 g)
Lead Extrusion (max.)	0 100 in. (2.54 mm)
DIP Connector Version	
Board Structure:	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions:	
Width	3 228 in. (82 mm)
Length	3.937 in. (100 mm)
Component Height	
Top (max.)	0 200 in. (5.1 mm)
Bottom (max)	0 130 in. (3.3 mm)
Weight (max.):	3 6 oz. (100 g)
Pin Length (max.)	0.53 in (13.5 mm)

Table 12. Modem Mechanical Considerations

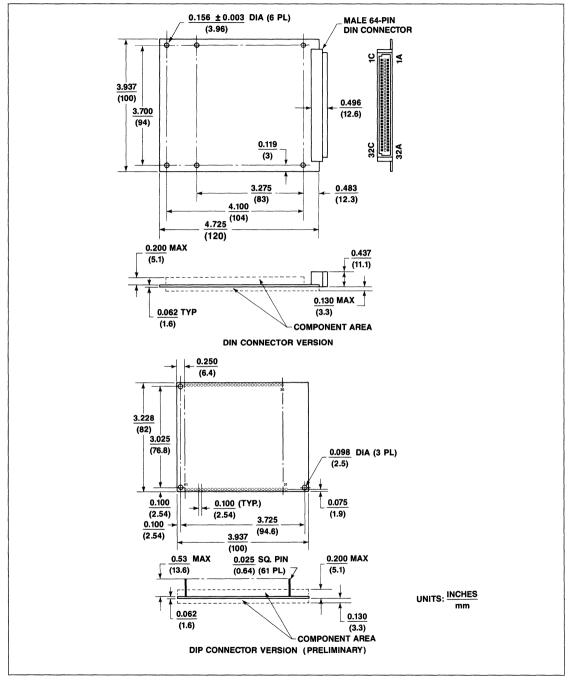
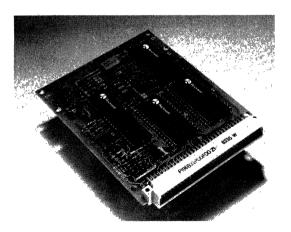


Figure 9. R48DP/208 Modem Dimensions and Pin Locations

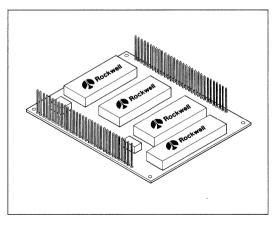
Integral Modems

R48DP 4800 bps Data Pump Modem

INTRODUCTION


The Rockwell R48DP is a synchronous 4800 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) as well as leased lines through the appropriate line termination.

The modem satisfies the telecommunications requirements specified in CCITT Recommendation V.27 bis/ter. The R48DP can operate at speeds of 4800 and 2400 bps. Employing advanced signal processing techniques, the R48DP can transmit and receive data even under extremely poor line conditions.


The R48DP is designed for use in point-to-point environments. User programmable features allow the modem operation to be tailored to support a wide variety of functional requirements. The modem's small size, low power consumption, and serial/parallel host interface simplify system design and allow installation in a compact enclosure. The modem module is available with a DIN connector for connection to a mating connector or with dual-inline pins (DIP) for direct plug-in installation onto a host module.

FEATURES

- CCITT V.27 bis/ter Compatible
- Point-to-Point Applications
- 2-Wire Half-Duplex, 4-Wire Full-Duplex
- Programmable Tone Generation
- Dynamic Range: 43 dBm to 0 dBm
- Equalization
 - Automatic Adaptive
 - Compromise Cable and Link (Selectable)
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C)(Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 - Electrical: TTL and CMOS Compatible
- Diagnostic Capability
- Programmable Transmit Output Level
- Loopbacks
 - Local and Remote Analog
 - Remote Digital
- Small Size
 - DIN Connector Version: 100 mm × 120 mm (3.94 in. × 4.73 in.)
 - DIP Connector Version:
 82 mm × 100 mm (3.23 in. × 3.94 in.)
- Power Consumption: 3 W (Typical)

R48DP DIN Connector Version

R48DP DIP Connector Version

Document No. 29200N08

Order No. MD08 Rev. 4, February 1987 2

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

The supported transmitter carrier frequencies are listed in Table 1.

Table	1.	Transmitter	Carrier	Frequencies
-------	----	-------------	---------	-------------

Function	Frequency (Hz ±0.01%)
V.27 bis/ter Carrier	1800

TONE GENERATION

Under control of the host processor, the modem can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

SIGNALING AND DATA RATES

The supported signaling and data rates are listed in Table 2.

Table 2. Signaling/Data Rates

Specification	Baud Rate (Symbols/sec.)	Bits Per Baud	Data Rate (bps)(±0.01%)	Symbol Points
V.27	1600	3	4800	8
V.27	1200	2	2400	4

DATA ENCODING

The data encoding conforms to CCITT Recommendation V.27 bis/ter.

EQUALIZERS

The modem provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent
- 2. 1600 Baud. Square root of 50 percent

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the

SCRAMBLER/DESCRAMBLER

The modem incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with V.27 bis/ter.

RECEIVED SIGNAL FREQUENCY TOLERANCE

requirements of foreign telephone regulatory bodies.

The receiver circuit can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

TRANSMIT LEVEL

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

TRAIN ON DATA

When train on data is enabled, the receiver typically trains on data in less than 3.5 seconds.

TURN-ON SEQUENCE

Selectable turn-on sequences can be generated as defined in Table 3.

Table 3. Turn-On Sequences

	RTS-CTS Turn-On Time			
Specification	Echo Protector Tone Disabled	Echo Protector* Tone Enabled		
V.27 4800 bps long	708 ms	913 ms		
V.27 4800 bps short	50 ms	255 ms		
V.27 2400 bps long	943 ms	1148 ms		
V.27 2400 bps short	67 ms	272 ms		

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) whenever the Received Line Signal Detector (RLSD) is off.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ), respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

4800 bps Data Pump Modem

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, diagnostic signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The six groups of hardware circuits are described in the following paragraphs. Table 5 lists the digital interface characteristics.

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modern to assume a valid operational state. The modem drives pin 13C to around during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modern is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 µs. When an external low input is applied to pin 13C, the modem is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to complete. The modem POR sequence leaves the modem configured as follows:

- V.27, 4800 bps Short Train
- Serial channel data
- T/2 equalizer
- Standard echo protector tone
- - 43 dBm threshold
- Cable and link equalizers disabled
- Train-On-Data disabled

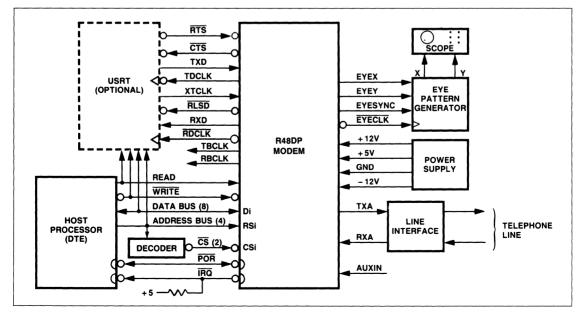


Figure 1. R48DP Functional Interconnect Diagram

Name	Type ¹	DIN Pin No.	DIP ² Pin No.	Description
A. OVERHE		Fill NO.	Fill NO.	Description
		010 000	00.04	
Ground (A) Ground (D)	AGND DGND	31C,32C 3C,8C,	30,31 29,37,53	Analog Ground Return
Ground (D)	Dand	5A.10A	29,37,55	Digital Ground Return
+ 5 volts	PWB	19C.23C.	1,45,61	+ 5 volt supply
10 1010		26C,30C	1,40,01	
+ 12 volts	PWB	15A	32	+ 12 volt supply
- 12 volts	PWR	12A	36	- 12 volt supply
POR	I/OB	13C	2	Power-on-reset
B. MICROPI	ROCESSO	OR INTERF	ACE:	
D7	I/OA	1C	3	`
D6	I/OA	1A	4	
D5	I/OA	2C	5	
D4	I/OA	2A	6	Data Bus (8 Bits)
D3	I/OA	ЗA	7	ſ
D2	I/OA	4C	8	
D1	I/OA	4A	9	
D0	I/OA	5C	10	J
RS3	IA	6C	16	ו
RS2	IA	6A	17	Register Select
RS1	IA	7C	18	(4 Bits)
RS0	IA	7A	19	J
CS0	IA	10C	20	Chip Select Transmitter Device
CS1	IA	9C	21	Chip Select Receiver
I				Sample Rate Device
CS2	IA	9A	13	Chip Select Receiver
				Baud Rate Device
READ	IA	12C	14	Read Enable
WRITE	IA	11A	12	Write Enable
IRQ	OB	11C	11	Interrupt Request

Table 4.	R48DP	Hardware	Circuits
----------	-------	----------	----------

		DIN	DIP ²	
Name	Type ¹	Pin No.	Pin No.	Description
C. V.24 INT	ERFAC	E:		
RDCLK	oc	21A	23	Receive Data Clock
TDCLK	oc	23A	46	Transmit Data Clock
XTCLK	IB	22A	51	External Transmit Clock
RTS	IB	25A	50	Request-to-Send
CTS	oc	25C	49	Clear-to-Send
TXD	IB	24C	48	Transmitter Data
RXD	oc	22C	26	Receiver Data
RLSD	oc	24A	27	Received Line Signal
				Detector
D. ANCILLA	RY CIF	CUITS:		
RBCLK	oc	26A	22	Receiver Baud Clock
TBCLK	oc	27C	47	Transmitter Baud Clock
E. ANALOG	SIGNA	LS:		
ТХА	AA	31A	34	Transmitter Analog Output
RXA	AB	32A	33	Receiver Analog Input
AUXIN	AC	30A		Auxiliary Analog Input
F. DIAGNOS	STIC:			
EYEX	oc	15C	56	Eye Pattern Data—X Axis
EYEY	OC	14A	55	Eye Pattern Data—Y Axis
EYECLK	OA	14C	57	Eye Pattern Clock
EYESYNC	OA	13A	58	Eye Pattern Synchronizing
				Signal
Notes:				
				terface characteristics and characteristics.
				5, 24, 25, 28, 35, 38, 39,
		1, 52, 54,		0, 24, 20, 20, 00, 00, 09,

Table 5	Digital	Interface	Characteristics
rable 5.	Digital	menace	Characteristics

						Input/Ou	tput Type			
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ос	I/O A	I/O B
VIH	Input Voltage, High	v	2.0 Min.	2.0 Min.	2.0 Min.				2.0 Min.	5.25 Max. 2.0 Min.
VIL	Input Voltage, Low	v	0.8 Max.	0.8 Max.	0.8 Max.				0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.4 Min.1	2.4 Min. ³
V _{OL}	Output Voltage, Low	v				0.4 Max. ²	0.4 Max. ²	0 4 Max. ²	0.4 Max ²	0.4 Max. ⁵
IIN	Input Current, Leakage	μA	±2.5 Max.						±2.5 Max.4	
Іон	Output Current, High	mA				-0.1 Max.				
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.		
1.	Output Current, Leakage	μA					± 10 Max.			
I _{PU}	Pull-up Current (Short Circuit)	μA		– 240 Max. – 10 Min.	– 240 Max. – 10 Min.			– 240 Max. – 10 Min.		– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	3-State Transceiver	Open-Drain w/Pull-up
					Notes					
	1. I Load = -1			I Load = -4		5 05 14		I Load = 0.	36 mA	
	2. Load = 1.6	i mA	4.	$V_{IN} = 0.4$ to	2 4 Vdc, V _{CC}	; = 5.25 Vd	c			

This configuration is suitable for performing high speed data transfer using the serial data port. Individual features are discussed in subsequent paragraphs.

V.24 INTERFACE

Eight hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, + 5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within standalone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Request To Send (RTS)

 $\overline{\text{RTS}}$ ON allows the modem to transmit data on TXD when $\overline{\text{CTS}}$ becomes active. The responses to $\overline{\text{RTS}}$ are shown in Table 6.

Clear To Send (CTS)

 $\overline{\text{CTS}}$ ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. $\overline{\text{CTS}}$ response times from an ON condition of $\overline{\text{PTS}}$ are shown in Table 6.

The time between the on-to-off transition of **RTS** and the on-to-off transition of **CTS** in data state is a maximum of 2 band times for all configurations.

Table 6. RTS-CTS Response Time

	RTS-CTS Turn-On Time					
Specification	Echo Protector Tone Disabled	Echo Protector* Tone Enabled				
V.27 4800 bps long	708 ms	913 ms				
V.27 4800 bps short	50 ms	255 ms				
V 27 2400 bps long	943 ms	1148 ms				
V.27 2400 bps short	67 ms	272 ms				

Received Line Signal Detector (RLSD)

For V.27 bis/ter RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on the threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Four threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 49 dBm (RLSD off)
- 2. Greater than 33 dBm (RLSD on) Less than - 38 dBm (RLSD off)
- 3. Greater than 26 dBm (RLSD on) Less than - 31 dBm (RLSD off)
- 4. Greater than 16 dBm (RLSD on) Less than - 21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold level and hysteresis action are measured with an unmodulated 2400 Hz tone applied to the receiver's audio input (RXA).

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 4800 or 2400 Hz (±0.01%).
- 2. Duty Cycle. 50 ±1%.

TDCLK is provided to the user in synchronous communications for USRT timing. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (\overline{RDCLK}) output in the form of a 50 ± 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. \overline{RDCLK} is provided to the user in synchronous communications for USRT timing. The timing recovery circuit is capable of tracking a ± .01% frequency error in the associated transmit timing source.

MICROPROCESSOR INTERFACE

Eight hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

4

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select (CS0-CS2) and Register Selects (RS0-RS3)

The signal processor to be accessed is selected by grounding one of three unique chip select lines, $\overline{CS2}$, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2³) is RS3 while the least significant address bit (2⁰) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2⁷) is D7 while the least significant data bit (2⁰) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single R/W output from a 65XX series microprocessor to the separate READ and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of interrupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their high impedance state. Because of the open-drain structure of IRQ, an external pull-up resistor to +5 volts is required at some point on the IRQ line. The resistor value should be small enough

to pull the \overline{IRQ} line high when all \overline{IRQ} drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modern \overline{IRQ} driver is used, a resistor value of 5.6K ohms $\pm 20\%$, 0.25 watt, is sufficient.

ANALOG SIGNALS

The analog signal characteristics are described in Table 7.

Table 7. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output is 604 ohms $\pm 1\%$.
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is the TLVL setting $+0.6 \text{ dB} - 1.4 \text{ dB}$.

Transmitter Analog (TXA)

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the public switched telephone network. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

Receiver Analog (RXA)

RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm \pm 1% resistor is satisfactory.

Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may take the form of back-to-back zener diodes across the transformer or a varistor across the transformer.

Auxiliary Input (AUXIN)

AUXIN provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit at a rate of 9600 samples-persecond. Any signal above 4800 Hz on the AUXIN line will be aliased back into the passband as noise. One application for AUXIN is to inject dual-tone multifrequency (DTMF) touch-tone signals for dialing, however, the source of these tones must be well filtered to eliminate components above 4800 Hz. The input impedance of AUXIN is 1K ohm. The gain from AUXIN to TXA is the same as the selected transmit level + 0.6 dB - 1.4 dB.

4800 bps Data Pump Modem

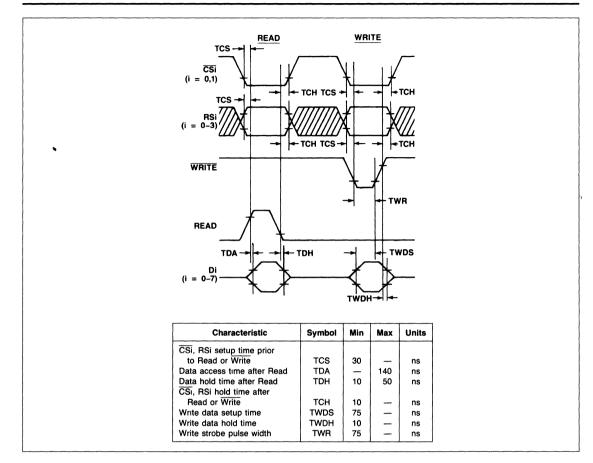


Figure 2. Microprocessor Interface Timing Diagram

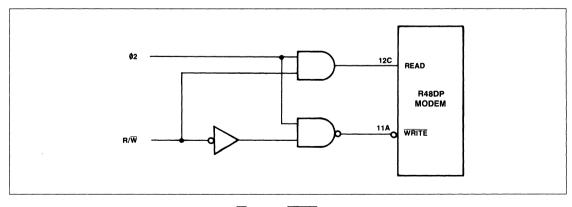


Figure 3. R/W to READ WRITE Conversion Logic

4800 bps Data Pump Modem

DIAGNOSTIC SIGNALS EYEX, EYEY, EYECLK, and EYESYNC

Four card edge connections provide the timing and data necessary to create an oscilloscope quadrature eye pattern. The eye pattern is simply a display of the received baseband constellation. By monitoring this constellation, an observer can often identify common line disturbances as well as defects in the modulation/ demodulation process.

The outputs EYEX and EYEY provide two serial bit streams containing data for display on the oscilloscope X axis and Y axis, respectively. Since this data is in serial digital form it must first be converted to parallel digital form by two serial-to-parallel converters and then to analog form by two D/A converters. A clock for use by the serial-to-parallel converters is furnished by signal EYECLK. A strobe for loading the D/A converters is furnished by signal EYESYNC. Timing of these signals is illustrated in Figure 4. The EYEX and EYEY outputs furnish 9-bit serial words. Since most serial to parallel conversion logic is designed for 8-bit words, an extra storage flip-flop is required for 9-bit resolution. However, the ninth bit is not generally needed for eyepattern generation, and eight-bit hardware can be used if data is copied on the rising edge of EYECLK rather than the falling edge.

ANCILLARY SIGNALS

Transmitter Baud Clock (TBCLK) and Receiver Baud Clock (RBCLK)

Two clock signals called TBCLK and RBCLK are provided at the modem connector. These signals have no counterpart in the V.24

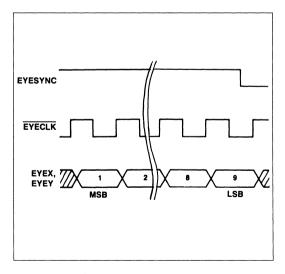


Figure 4. Eye Pattern Timing

or RS-232 recommendations since they mark the baud interval for the transmitter and receiver rather than the data rate. The baud clocks can be useful in identifying the order of data bits in a baud (e.g., for multiplexing data, etc.). Both signals are high active, meaning the baud boundaries occur on falling edges. The first bit in each baud begins with the falling edge of the corresponding baud clock.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load/ drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on three special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into areas. These areas are partitioned into transmitter, baud rate, and sample rate devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 48 addressable registers in the modem are shown in Figure 5. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Table 8 defines the individual bits in the interface memory. In the Table 8 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

4800 bps Data Pump Modem

Tr	Transmitter Interface Memory Chip 0 (CS0)												
Bit Register	7	6	5	4	3	2	1	0					
F	-	-		-	-	-	-	-					
E	TIA	-	-	-	TSB	TIE	-	TBA					
D		-	-	_		-	-	-					
С		-	-	-	-	-	-	-					
В	-	-		-		-	—	-					
A	-	-	-		-	-	-	-					
9			-		-		-	-					
8	-	-	-	-	_		-	-					
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT					
6		٦	RANSM		CONFIG	JRATION	١						
5	х	х	CE	EQ	LAEN	LDEN	A3L	D3L					
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN					
3				FRE	QМ								
2				FR	EQL								
1	-	-	-	-	_		-	-					
0			TRAN	ISMITTE	R DATA	DDR							
Register Bit	7	6	5	4	3	2	1	0					
	()	ndicate	s reserv	ed for n	lodem i	ise only							

Receiver Interface Memory Chip 1 (CS1)

Bit	7	6	5	4	3	2	1	0
Register								
F		-	_	-	-	-	_	-
E	RSIA	—	-	-	RSB	RSIE	-	RSDA
D	-	-	-	-	-	1	-	-
с		-	-	-	_	-	-	-
В	-	PNDET	I	-	-		-	CDET
A	-	-	-	-	—	-	-	-
9	-	FED	-	-	-	-	—	-
8	-		1	-	-	P2DET	-	-
7	R	ГН	DDIS RPDM SWRT BWRT T2 RTI					RTDIS
6	IFIX	TOD		RECEI	VER CO	NFIGUF	RATION	
5			F	RAM AC	CESS X	5		
4			F	RAM AC	CESS Y	5		
3				RAM DA	TA XSM			
2				RAM D	ATA XSL			
1				RAM DA	TA YSM			
0		F	RAM DA	TA YSL,	RECEIV	ER DATA	4	
Register	7	6	5	4	3	2	1	0
Bit	· '	3	3	-	3	2	•	
j	()	ndicates	s reserv	ed for m	nodem u	se only	•	

F	leceiv	er Inte	erface	Memo	ry Chi	p 2 (C	S2)
Bit er	7	6	5	4	3	2	1

Register	7	6	5	4	3	2	1	0
F		_	_	_	_	-	_	_
E	RBIA	_	-	_	_	RBIE	_	RBDA
D	-			-	-	-	-	-
с	-	-	_	-	-	-		-
В		-	-	-	-		-	-
A	_	-	—	-	-	-	-	-
9	-	-	-	-		-	-	—
8	_	-	-	-	-	—		-
7	—		-	-		-		_
6	-	-	—	—	-	_	—	-
5			F	RAM AC	CESS XI	3		
4			F	RAM AC	CESS YI	в		
3				RAM DA	TA XBM			
2				RAM D	ata XBL			
1				RAM DA	TA YBM			
0				RAM D	ATA YBL			
Register Bit	7	6	5	4	3	2	1	0
	()	ndicate	s reserv	ed for n	nodem u	ise only	•	

Figure 5. Interface Memory Map

 $\overline{}$

Mnemonic	Name	Memory Location			Description					
A3L	Amplitude 3-Link Select	0:5:1	equaliz	A3L is used in conjunction with LAEN. When A3L is a one the Japanese 3 link equalizer is selected and when A3L is a zero the U.S. Survey Long link equalizer is selected.						
BWRT	Baud Write	1:7:2	When	control bit BWRT is a one	e, the RAM write operation	is enabled for Chip 2.				
CEQ	Cable Equalizer Field	0:5:4,5	the tra	e CEQ Control field simultaneously controls amplitude compromise equalizers in both e transmit and receive paths. The following tables list the possible cable equalizer lection codes and responses.						
				CEQ	Cable Length (0.4 mm diameter)				
				0	0.0	0				
				1		8 km				
				2		6 km				
				3	7.1	2 km				
				Cat	ble Equalizer Nominal Ga	in				
				CEQ CODE 1						
				Frequency	Gain Relative to	1700 Hz (dB)				
				(Hz)	Transmitter	Receiver				
				700	- 0.99	- 0.94				
				1500	- 0.20	- 0.24				
				2000	+0.15	+ 0.31				
				3000	+ 1.43	+ 1.49				
				CEQ CODE 2						
				Frequency	Gain Relative to	1700 Hz (dB)				
				(Hz)	Transmitter	Receiver				
				700	- 2.39	- 2.67				
				1500	-0.65	- 0.74				
				2000	+0.87	+ 1.02				
				3000	+ 3.06	+ 3.17				
				CEQ CODE 3						
				Frequency	Gain Relative to	1700 Hz (dB)				
				(Hz)	Transmitter	Receiver				
				700	- 3.93	- 3.98				
				1500	- 1.22	- 1.20				
				2000 3000	+ 1.90 + 4.58	+ 1.81 + 4.38				
CDET	Carrier Detector	1:B:0	operate	a problem with training c successfully with no cab	or high bit error rate is end	countered, most applicat				
UDET		1.5.0	that a data st up to 1 FED bi within	training sequence is not in ate, and returns to a one baud time before RLSD t goes to a zero and no F	at the end of the received and deactivates within 2 I 22 sequence is detected, t the receiver has entered	a zero at the start of the d signal. CDET activates baud times after RLSD. the CDET bit goes to ze	e S If the ro			
DDIS	Descramble Disable	1:7:5	When data pa		the receiver descrambler	circuit is removed from	the			
DDR	Dial Digit Register	0:0:0–7	DDR is	used to tell the modem	which DTMF digit to trans	mit (see Transmitter Dai	ta).			
D3L	Delay 3-Link Select	0:5:0			LDEN. When D3L is a on 3L is a zero the U.S Survey		electe			

Table 8. R48DP Interface Memory Definitions

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location			De	scription				
EPT	Echo Protector Tone	0:7:3	When control bit E (optionally 30 ms) f							
FED	Fast Energy Detector	1.9:6	When status bit FE present in the pass							
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7	The host processon data word to the Fl shown below:							
			FREQM Register	(0:3)						
			Bit: 7	6	5	4	3	2	1	0
			Data Word: 215	i 2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸
			FREQL Register	(0:2)						
			Bit: 7	6	5	4	3	2	1	0
			Data Word: 27	26	2 ⁵	24	2 ³	2 ²	2 ¹	20
			F = (0.146486) (N) Hexadecimal freque given below:			., FREQM) fo	or commo	only gene	erated to	nes are
		FREQN	FREQM FREQL		F	Frequency (Hz)				
			00		52			462	2	
		1D		55			1100			
			2C		00			1650		
			31 38		55 00			1850 2100		
IFIX	Eye Fix	1:6:7	When control bit IF equalizer output ar ACCESS YB.							
LAEN	Link Amplitude Equalizer Enable	0:5:3	The link amplitude equalizer enable and select bits control an amplitude equalizer in the receive path according to the following table:						e compr	omise
			LAEN		A3L		c	Curve Ma	atched	
			0		х		N	o Equaliz	zer	
			1		0 1			.S. Surve apanese		
			The link amplitude	equalizer re		re given in t		•		
			Link Amplitude Ec	qualizer						
			Frequency			Gain Relativ	ve to 170			
			(Hz)			vey Long		Japan	ese 3-Li	nk
			1000			0.27			- 0.13 - 0.08	
		1	1400			0.16			-0.08 +0.16	
			0000							
			2000							
			2000 2400 2800		+	1.54 5.98			+ 0.73 + 2.61	

Table 8. R48DP Interface Memory Definitions (Continued)

2

:

Mnemonic	Name	Memory Location	Description				
LCEN	Loop Clock Enable	0:4:0	When control bit LCEN is	a one, the transmitter clock to	racks the receiver clock.		
LDEN	Link Delay Equalizer Enable	0:5-2	The link delay equalizer e the receive path accordin		a delay compromise equalizer in		
			LDEN	D3L	Curve Matched		
			0 1 1	X 0 1	No Equalizer U.S. Survey Long Japanese 3-Link		
				esponses are given in the follo	owing table.		
			Link Delay Equalizer	D.1.			
			Frequency		lelative to licroseconds)		
			(Hz)	U.S. Survey Long	Japanese 3-Link		
			800	- 498.1	- 653.1		
		1	1200	- 188.3	- 398.5		
			1600	- 15.1	30.0		
	1		1700	+ 0.0	+ 0.0		
			2000	- 39.8	+ 11.7		
			2400	- 423.1	- 117.1		
			2800	- 672.4	- 546.3		
L4ACT	Remote Analog Loopback Activate	0:4:6			but is connected to the transmitten nner similar to recommendation		
L4HG	Loop 4 High Gain	0:4:5	When control bit L4HG is and when at zero the gai	a one, the loop 4 variable gai n is zero dB.	n amplifier is set for +16 dB,		
MHLD	Mark Hold	0:7:4	When control bit MHLD is (ones).	s a one, the transmitter input c	lata stream is forced to all mark		
PNDET	Period N Detector	1:B:6					
			bit sets to a one at the ei	s a zero, it indicates a PN seq nd of the PN sequence.	uence has been detected. This		
P2DET	Period Two Detector	1:8:2	When status bit P2DET is				
P2DET (None)		1:8:2 2:5:0-7	When status bit $\overline{P2DET}$ is This bit sets to a one at t	nd of the PN sequence. s a zero, it indicates that a P2			
	Detector		When status bit P2DET is This bit sets to a one at t Contains the RAM access word X (2:3 and 2:2).	nd of the PN sequence. s a zero, it indicates that a P2 he start of the PN sequence.	sequence has been detected. ng chip 2 RAM locations via		

Table 8. R48DP Interface Memory Definitions (Continued)

4800 bps Data Pump Modem

r						
Mnemonic	Name	Memory Location	Description			
(None)	RAM Access YS	1 4 0-7	Contains the RAM access code used in reading or writing chip 1 RAM locations via word Y (1 1 and 1.0)			
(None)	RAM Data XBL	220-7	Least significant byte of 16-bit word X used in reading or writing RAM locations in chip 2			
(None)	RAM Data XBM	2:3.0-2	Most significant byte of 16-bit word X used in reading or writing RAM locations in chip 2.			
(None)	RAM Data XSL	1:2:0-7	Least significant byte of 16-bit word X used in reading or writing RAM locations in chip 1.			
(None)	RAM Data XSM	1 3:0-7	Most significant byte of 16-bit word X used in reading or writing RAM locations in chip 1			
(None)	RAM Data YBL	2:0 0-7	Least significant byte of 16-bit word Y used in reading or writing RAM locations in chip 2.			
(None)	RAM Data YBM	2:1 0-7	Most significant byte of 16-bit word Y used in reading or writing RAM locations in chip 2.			
(None)	RAM Data YSL	1.0:0-2	Least significant byte of 16-bit word Y used in reading or writing RAM locations in chip 1. Shared by parallel data mode for presenting channel data to the host microprocessor bus See 'Receiver Data'			
(None)	RAM Data YSM	1 1:0-7	Most significant byte of 16-bit word Y used in reading or writing RAM locations in chip 1			
RBDA	Receiver Baud Data Available	2 E:0	Status bit RBDA goes to a one when the receiver writes data into register 2.0. The bit goes to a zero when the host processor reads data from register 2:0.			
RBIA	Receiver Baud Interrupt Active	2·E:7	This status bit is a one whenever the receiver baud rate device is driving \overline{IRQ} low. In idle mode the interrupts from chip 2 occur at half the baud rate.			
RBIE	Receiver Baud Interrupt Enable	2:E:2	When the host processor writes a one in the RBIE control bit, the \overline{IRQ} line of the hardware interface is driven to zero when status bit RBDA is a one.			
(None)	Receiver Configuration	1.6:0–2	The host processor configures the receiver by writing a control code into the receiver configuration field in the interface memory space (see RSB)			
			Receiver Configuration Control Codes			
			Control codes for the modem receiver configuration are			
			Configuration Code (Hex) Receiver Configuration			
	1		22 V.27 4800 Long			
			21 V 27 2400 Long			
			02 V.27 4800 Short			
			01 V.27 2400 Short			

Table 8. R48DP Interface Memory Definitions (Continued)

2

Mnemonic	Name	Memory Location	Description
(None)	Receiver Data	1:0:0-7	The host processor obtains channel data from the receiver in the parallel data mode by reading a data byte from the receiver data register. The data is divided on baud boundaries as is the transmitter data. When using receiver parallel data mode, the registers 1:3 through 1:0 can not be used for reading the chip 1 RAM.
RPDM	Receiver Parallel Data Mode	1.7:4	When control bit RPDM is a one, the receiver supplies channel data to the receiver data register (1:0) as well as to the hardware serial data output. (See Receiver Data)
RSB	Receiver Setup Bit	1:E:3	When the host processor changes the receiver configuration or the RTH field, the host processor must write a one in the RSB control bit. RSB goes to zero when the changes become effective. Worst case setup time is 2 baud times.
RSDA	Receiver Sample Data Available	1:E:0	Status bit RSDA goes to a one when the receiver writes data to register 1:0 RSDA goes to a zero when the host processor reads data from register 1:0.
RSIA	Receiver Sample Interrupt Active	1:E:7	This status bit is a one whenever the receiver sample rate device is driving $\overline{\text{IRQ}}$ to zero.
RSIE	Receiver Sample Interrupt Enable	1:E:2	When the host processor writes a one in the RSIE control bit, the \overline{IRQ} line of the hardware interface is driven to zero when status bit RSDA is a one.
RTDIS	Receiver Training Disable	1:7:0	When control bit RTDIS is a one, the receiver is prevented from recognizing a training sequence and entering the training state.
RTH	Receiver Threshold Field	1:7:6,7	The receiver energy detector threshold is set by the RTH field according to the following codes (see RSB):
			RTH RLSD On RLSD Off
			0 > −43 dBm < −48 dBm 1 > −33 dBm < −38 dBm 2 > −26 dBm < −31 dBm
			3 > - 16 dBm < - 21 dBm
RTS	Request-to-Send	0:7:7	When control bit RTS goes to a one, the modem begins a transmit sequence. It continues to transmit until RTS is reset to zero, and the turn-off sequence has been completed. This input bit parallels the operation of the hardware RTS control input. These inputs are ORed by the modem.
SDIS	Scrambler Disable	0:7:5	When control bit SDIS is a one, the transmitter scrambler circuit is removed from the data path.
SEPT	Short Echo Protector Tone	0:7:0	When control bit SEPT is a one, the echo protector tone is 30 ms long rather than 185 ms.
SWRT	Sample Write	1.7:3	When control bit SWRT is a one, the RAM write operation is enabled for chip 1.
ТВА	Transmitter Buffer Available	0:E:0	This status bit resets to zero when the host processor writes data to transmitter data register 0:0. When the transmitter empties register 0:0, this bit sets to a one. During a RAM access in chip 0, when TBA is a one the host can perform either a RAM read or write depending on the state of bit 0:6:3 (see Transmitter Configuration).
TIA	Transmitter Interrupt Active	0:E:7	This status bit is a one whenever the transmitter is driving $\overline{\text{IRQ}}$ to a zero.
TIE	Transmitter Interrupt Enable	0:E:2	When the host processor writes a one in control bit TIE, the \overline{IRQ} line of the hardware interface is driven to zero when status bit TBA is at a one.

Table 8.	R48DP Interface	Memory Definitions	(Continued)

4800 bps Data Pump Modem

2

Mnemonic	Name	Memory Location		Description
TLVL	Transmitter Level Field	0.4:2-4	The transmitter analog output level i	s determined by eight TLVL codes, as follows:
			TLVL	Transmitter Analog Output*
			0	-1 dBm ±1 dB
			1	$-3 \text{ dBm} \pm 1 \text{ dB}$
			2	$-5 \text{ dBm} \pm 1 \text{ dB}$
			3	-7 dBm ±1 dB
			4	-9 dBm ±1 dB
			5	-11 dBm ±1 dB
			6	- 13 dBm ±1 dB
			7	$-15 \text{ dBm } \pm 1 \text{ dB}$
			*Each step above is	a 2 dB change ±0.2 dB.
TOD	Train-on-Data	1:6:6	equalizer if the signal quality degrad	hables the train-on-data algorithm to converge the les sufficiently. When TOD is a one, the modem still enters the force train state. A BER of approximately in-date.
TPDM	Transmitter Parallel Data Mode	0:7:2		e transmitter accepts data for transmission from the TPDM is a zero channel data from the serial hardware
(None)	Transmtter Configuration*	0:6·0–7	The host processor configures the tra configuration register in its interface	ansmitter by writing a control byte into the transmitter memory space. (See TSB.)
			Transmitter Configuration Control Cod	des
			Control codes for the modem transm	nitter configurations are:
			Configuration Code (Hex)	Transmitter Configuration
			22	V.27 4800 Long
			21	V.27 2400 Long
			02	V.27 4800 Short
			01	V.27 2400 Short
			80	Tone Transmit
			Configuration Definitions	
			specified in CCITT Recommendat 2. Tone Transmit. In this configurati transmit a tone at a single freque memory space containing the free in the FREQM register (0:3). The	has been selected, the modem operates as tion V.27 ter. on, activating signal RTS causes the modem to ency specified by two registers in the host interface quency code The most significant bits are specified least significant bits are specified in the FREQL t bit represents 0.146486 Hz \pm 0.01%. The frequency

Table 8. R48DP Interface Memory Definitions (Continued)

4800 bps Data Pump Modem

Mnemonic	Name	Memory Location				Descript	ion				
(None)	Transmitter, DDR	0:0:0-7	:0:0-7 The host processor transmits data in the parallel mod transmitter data register. The data is divided on baud								the
						NOTE					
			Data is transmitted bit zero first.								
							Bi	ts			*****
		Configuration	7	6	5	4	3	2	1	0	
			V.27 4800 bps	Not I	Jsed		Baud 1			Baud 0	
			V.27 2400 bps	Bau	d 3	Bau	id 2	Bau	d 1	Ba	ud 0
TTDIS	Transmitter Train	0:7:6	one in this control bit. TSB goes to a zero when the change becomes effective. Worst case setup time is 2 baud + turnoff sequence + training (if applicable). When control bit TTDIS is a one, the transmitter does not generate a training sequence at the start of transmission. With training disabled, RTS/CTS delay is less than two baud times.								
	Disabic			ssion. W							
T2	T/2 Equalizer Select	1:7:1		s a one, ne equaliz	ith traini an adapi zer has c	ng disab tive equa	led, RTS Ilizer with	6/CTS de	lay is le	ss than aud is u	two sed.

Table 8. R48DP Interface Memory Definitions (Continued)

SIGNAL PROCESSOR RAM ACCESS

RAM and Data Organization

Each signal processor contains 128 words of random access memory (RAM). Each word is 32 bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16 bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. In the sample rate and baud rate devices the entire contents of XRAM and YRAM may be read from or written into by the host processor via the microprocessor interface. No access to the RAM is possible in the transmitter device.

Interface Memory

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit determines the RAM address to read from or write into by the code stored in the RAM ACCESS bits of interface memory registers. The SP logic unit normally transfers a word from RAM to interface memory once each cycle of the device code. Each RAM word transferred to the interface memory is 32 bits long. These bits are written by the SP logic unit into interface memory registers 3, 2, 1, and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data, respectively. As previously described for parallel data mode, the data available bits set to a one when register 0 of the respective signal processor is written into by the device and resets to a zero when register 0 is read from by the host. Since the parallel data mode receiver data register shares register 0 with the YRAM data, chip 1 RAM access are disabled in parallel data mode. However, chip 2 RAM access remains active in receiver parallel data mode.

The sample rate device and the baud rate device allow data to be transferred from interface memory to RAM. When set to a one, bit SWRT (1:7:3) signals the chip 1 SP logic unit to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. Bit BWRT (1:7:2) performs the same function for chip 2 RAM. When writing into the RAM, 32 bits are transferred. The 16 bits written into XRAM come from registers 3 and 2, with register 3 being the more significant byte. The 16 bits written into YRAM come from registers 1 and 0, with register 1 being the more significant byte. When only 16 bits of data are to be written, FF (a dummy RAM location) must be stored in RAM ACCESS XS or RAM ACCESS YS to prevent writing the insignificant 16 bits of registers 1:3 through 1:0 into a

4800 bps Data Pump Modem

valid RAM location. When the host processor writes into register 1:0 the RSDA bit (1:E:0) is reset to zero. When the SP logic unit reads data from register 1:0, the RSDA bit (1:E:0) is set to a one. In a similar manner, bit RBDA (2:E:0) resets to zero when the host processor writes into register 2:0 and sets to a one when the SP logic unit reads data from register 2:0.

When reading from RAM, or writing into RAM, the bits in registers 1:E and 2:E can be used for handshaking or interrupt functions as in parallel data mode. When not in parallel data mode, the bits in register 1:E perform the handshake and interrupt functions for RAM access. In both serial and parallel data modes, the bits in register 2:E perform handshake and interrupt functions for RAM access. When set to one, bit RBIE (2:E:2) enables RBDA to drive the IRQ connector signal to zero volts when RBDA is a one. Bit RBIA (2:E:7) identifies chip 2, the baud rate device, as a source of IRQ interrupt. Bit RBIA is a one when both RBIE and RBDA are set to one. In the event that other system elements may cause IRQ to be driven low, the host must determine if modem chip 2 is causing an interrupt by reading RBIA.

Table 9 provides the available RAM access functions, codes, and registers.

Table 9. RAM	Access	Codes
--------------	--------	-------

No.	Function	Chip	X Access Code (Hex)	Y Access Code (Hex)	Register
1	Received Signal Samples	1	C0	Not Used	2,3
2	Demodulator Output	1	C2	42	0,1,2,3
3	Low Pass Filter Output	1	D4	54	0,1,2,3
4	Average Energy	1	DC	Not Used	2,3
5	AGC Gain Word	1	81	Not Used	2,3
6	Equalizer Input	2	C0	40	0,1,2,3
7	Equalizer Tap Coefficients	2	81 A0	01 – 20	0,1,2,3
8	Unrotated Equalizer				
	Output	2	E1	61	0,1,2,3
9	Rotated Equalizer Output (Received Points)	2	A2	22	0,1,2,3
10	Decision Points Ideal Points	2	62	0,1,2,3	
11	Error	2	E3	63	0,1,2,3
12	Rotation Angle	2	Not Used	00	0,1
13	Frequency Correction	2	AA	Not Used	2,3
14	EQM	2	A7	Not Used	2,3
15	Dual Point	2	AE	2E	0,1,2,3

4800 bps Data Pump Modem

PERFORMANCE

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56, except with regard to the placement of the filter used to bandlimit the white noise source. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

Typical BER performance is shown in Figure 6. Figure 7 shows a typical test setup to measure BER.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps, the modem exhibits a bit error rate of 10⁻⁶ or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

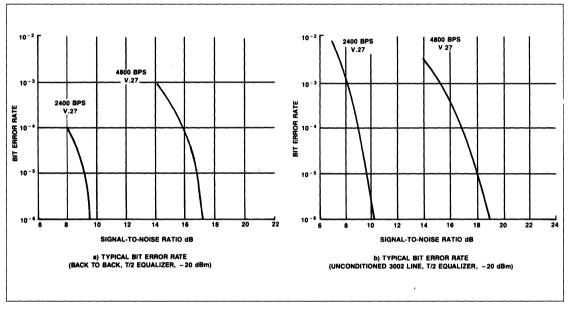
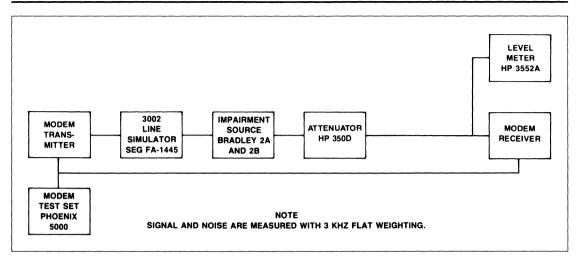



Figure 6. R48DP BER versus SNR

4800 bps Data Pump Modem

R48DP

2

4800 bps Data Pump Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	±5%	550 mA	<700 mA
+ 12 Vdc	±5%	5 mA	< 10 mA
– 12 Vdc	±5%	25 mA	< 50 mA

Table 10. Modem Power Requirements

Table 11. Modem Environmental Restrictions

Parameter	Specification
Temperature Operating Storage Relative Humidity: Altitude	0°C to $+60$ °C (32°F to 140°F) - 40°C to $+80$ °C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container) Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less. - 200 feet to $+10,000$ feet

Parameter	Specification
DIN Connector Version	
Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated.
	The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female,
	64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical receptacle
	Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Dimensions:	
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Connector Height	0.437 in. (11.1 mm)
Component Height	
Top (max.)	0.200 in. (5.1 mm)
Bottom (max.)	0.130 in. (3.3 mm)
Weight (max):	3.6 oz. (100 g)
Lead Extrusion (max.):	0.100 ın (2.54 mm)
DIP Connector Version	
Board Structure:	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions:	
Width	3.228 in. (82 mm)
Length	3.937 in. (100 mm)
Component Height	
Top (max.)	0.200 in. (5.1 mm)
Bottom (max.)	0.130 in. (3.3 mm)
Weight (max.):	3.6 oz. (100 g)
Pin Length (max.)	0.53 in. (13.5 mm)

Table 12. Modem Mechanical Considerations

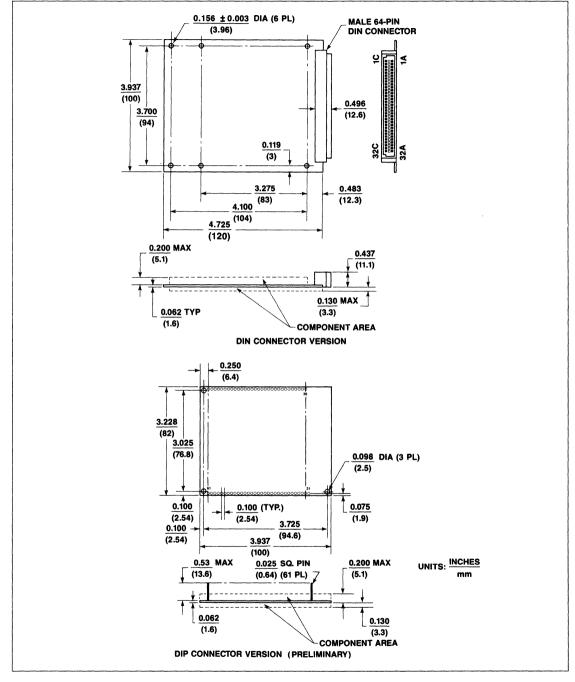


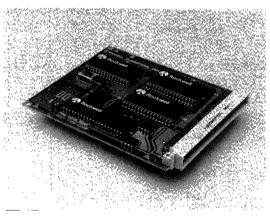
Figure 8. R48DP Modem Dimensions and Pin Locations

R96DP

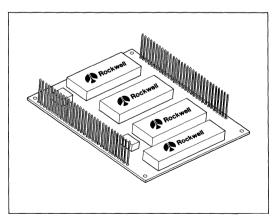
Integral Modems

R96DP 9600 bps Data Pump Modem

INTRODUCTION


The Rockwell R96DP is a synchronous 9600 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) as well as leased lines through the appropriate line termination.

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.29 and V.27 bis/ter. The R96DP can operate at speeds of 9600, 7200, 4800, and 2400 bps. Employing advanced signal processing techniques, the R96DP can transmit and receive data even under extremely poor line conditions.


The R96DP is designed for use in point-to-point environments. User programmable features allow the modem operation to be tailored to support a wide variety of functional requirements. The modem's small size, low power consumption, and serial/parallel host interface simplify system design and allow installation in a compact enclosure. The modem module is available with a DIN connector for connection to a mating connector or with dual-in-line pins (DIP) for direct plug-in installation onto a host module.

FEATURES

- CCITT V.29, V.27 bis/ter Compatible
- Point-to-Point Applications
- 2-Wire Half-Duplex, 4-Wire Full-Duplex
- Programmable Tone Generation
- Programmable DTMF Tone Dialer
- Dynamic Range: 43 dBm to 0 dBm
- Equalization
- Automatic Adaptive
 - Compromise Cable and Link (Selectable)
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C)(Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 - Electrical: TTL and CMOS Compatible
- Diagnostic Capability
- Programmable Transmit Output Level
- Loopbacks
 - Local and Remote Analog
 - Remote Digital
- Small Size
 - DIN Connector Version:
 - 100 mm \times 120 mm (3.94 in. \times 4.73 in.) — DIP Connector Version:
 - 82 mm × 100 mm (3.23 in. × 3.94 in.)
- Power Consumption: 3 W (Typical)

R96DP DIN Connector Version

R96DP DIP Connector Version

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

The transmitter carrier frequencies supported by the R96DP are listed in Table 1.

Table 1. Transmitter Carrie	Frequencies
-----------------------------	-------------

Function	Frequency (Hz ±0.01%)
V 27 bis/ter Carrier	1800
V 29 Carrier	1700

TONE GENERATION

Under control of the host processor, the R96DP can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated. DTMF tone transmission capability is provided to allow the modem to operate as a programmable DTMF tone dialer.

SIGNALING AND DATA RATES

The signaling and data rates supported by the R96DP are listed in Table 2.

Table	2	Signaling/Data Rates	
rapie	۷.	Signaling/Data hates	

Specification	Baud Rate (Symbols/sec.)	Bits Per Baud	Data Rate (bps)(±0.01%)	Symbol Points			
V.29	2400	4	9600	16			
V.29	2400	3	7200	8			
V.29	2400	2	4800	4			
V.27	1600	3	4800	8			
V.27	1200 .	2	2400	4			

DATA ENCODING

The R96DP data encoding conforms to CCITT recommendations V.29 and V.27 bis/ter.

EQUALIZERS

The R96DP provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

1. 1200 Baud. Square root of 90 percent

- 2. 1600 Baud. Square root of 50 percent
- 3. 2400 Baud. Square root of 20 percent

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

9600 bps Data Pump Modem

SCRAMBLER/DESCRAMBLER

The R96DP incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 bis/ ter or V.29 depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R96DP can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

TRANSMIT LEVEL

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

TRAIN ON DATA

When train on data is enabled, the receiver typically trains on data in less than 15 seconds for V.29 and 3.5 seconds for V.27.

TURN-ON SEQUENCE

Selectable turn-on sequences can be generated as defined in Table 3.

Table 3. Turn-On Sequences

	RTS-CTS Turn-On Time				
Specification	Echo Protector Tone Disabled	Echo Protector* Tone Enabled			
V.29 (All data rates)	253 ms	438 ms			
V.27 4800 bps long	708 ms	913 ms			
V.27 4800 bps short	50 ms	255 ms			
V.27 2400 bps long	943 ms	1148 ms			
V.27 2400 bps short	67 ms	272 ms			

* For short echo protector tone, subtract 155 ms from RTS-CTS turn-on time.

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy. For V.29, the turn-off sequence consists of approximately 5 ms of remaining data and scrambled ones.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) whenever the Received Line Signal Detector (RLSD) is off.

MODEM OPERATION

Because the modem is implemented in firmware executed by a specialized computer (the signal processor), operation can best be understood by dividing this section into hardware circuits and software circuits. Hardware circuits include all pins on the modem connector. Software circuits include configuration, control (soft strapping), status, and RAM access routines.

HARDWARE CIRCUITS

The functional interconnect diagram (Figure 1) shows the modem connected into a system. In this diagram, any point that is active when exhibiting the relatively more negative voltage of a two voltage system (e.g., 0 Vdc for TTL or -12 Vdc for RS-232-C) is called low active and is represented by association with a small circle at the signal point. The particular voltage levels used to represent the binary states do not change the logic symbol. Two types of I/O points that may cause confusion are edge-triggered inputs and open-collector (open-source or opendrain) outputs. These signal points include the additional notation of a small triangle or a small half-circle (see signal IRQ). respectively. Active low signals are named with an overscore (e.g., POR). In deciding whether a clock output is high active or low active, the convention followed is to assume that the clocking (activating) edge appropriate to the host hardware is a transition from the clocks active to its inactive state (i.e., a trailing edge trigger). A clock intended to activate logic on its rising edge is called low active while a clock intended to activate logic on its falling edge is called high active. When a clock input is associated with a small circle, the input activates on a falling edge. If no circle is shown, the input activates on a rising edge.

9600 bps Data Pump Modem

The interconnect signals on Figure 1 are organized into six groups of modem operation: overhead signals, V.24 interface signals, microprocessor interface signals, diagnostic signals, analog signals, and ancillary signals. Table 4 lists these groups along with their corresponding connector pin numbers. The six groups of hardware circuits are described in the following paragraphs. Table 5 lists the digital interface characteristics.

POWER-ON RESET

Basic modem operation can be understood most easily by beginning with the modem configured to default conditions. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modern to assume a valid operational state. The modem drives pin 13C to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 13C, the modern is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 13C low for at least 3 µs. When an external low input is applied to pin 13C, the modem is ready for normal use approximately 10 ms after the low input is removed. Pin 13C is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to complete. The R96DP POR sequence leaves the modern configured as follows:

- 9600 bps
- · Serial channel data
- T/2 equalizer
- Standard echo protector tone
- 43 dBm threshold
- Cable and link equalizers disabled
- Train-On-Data disabled

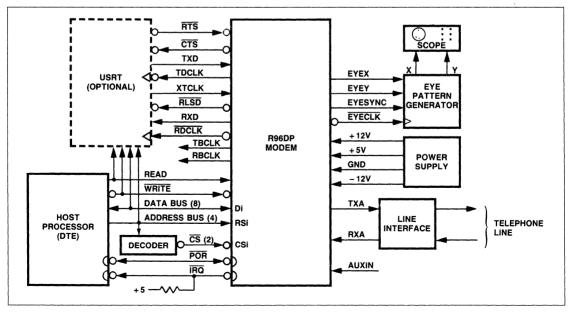


Figure 1. R96DP Functional Interconnect Diagram

9600 bps Data Pump Modem

DIAGNOSTIC SIGNALS EYEX, EYEY, EYECLK, and EYESYNC

Four card edge connections provide the timing and data necessary to create an oscilloscope quadrature eye pattern. The eye pattern is simply a display of the received baseband constellation. By monitoring this constellation, an observer can often identify common line disturbances as well as defects in the modulation/ demodulation process.

The outputs EYEX and EYEY provide two serial bit streams containing data for display on the oscilloscope X axis and Y axis, respectively. Since this data is in serial digital form it must first be converted to parallel digital form by two serial-to-parallel converters and then to analog form by two D/A converters. A clock for use by the serial-to-parallel converters is furnished by signal EYECLK. A strobe for loading the D/A converters is furnished by signal EYESYNC. Timing of these signals is illustrated in Figure 4. The EYEX and EYEY outputs furnish 9-bit serial words. Since most serial to parallel conversion logic is designed for 8-bit words, an extra storage flip-flop is required for 9-bit resolution. However, the ninth bit is not generally needed for eyepattern generation, and eight-bit hardware can be used if data is copied on the rising edge of EYECLK rather than the falling edge.

ANCILLARY SIGNALS

Transmitter Baud Clock (TBCLK) and Receiver Baud Clock (RBCLK)

Two clock signals called TBCLK and RBCLK are provided at the modem connector. These signals have no counterpart in the V.24

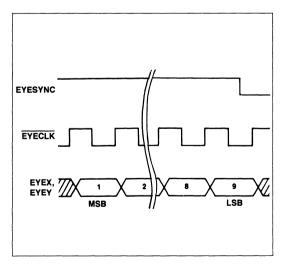


Figure 4. Eye Pattern Timing

or RS-232 recommendations since they mark the baud interval for the transmitter and receiver rather than the data rate. The baud clocks can be useful in identifying the order of data bits in a baud (e.g., for multiplexing data, etc.). Both signals are high active, meaning the baud boundaries occur on falling edges. The first bit in each baud begins with the falling edge of the corresponding baud clock.

SOFTWARE CIRCUITS

Operation of the microprocessor interface circuits was described in the hardware section from the standpoint of timing and load/ drive characteristics. In this section, operation of the microprocessor interface is described from a software standpoint.

The modem is implemented in firmware running on three special purpose signal processors. These signal processors share the computing load by performing tasks that are divided into areas. These areas are partitioned into transmitter, baud rate, and sample rate devices.

INTERFACE MEMORY

Each signal processor can communicate with the host processor by means of a specialized, dual-port, scratch-pad memory called interface memory. A set of sixteen 8-bit registers, labeled register 0 through register F, can be read from or written into by either the host processor or signal processor. The host communicates via the microprocessor interface lines shared between the two signal processors. The signal processor communicates via its internal I/O bus. Information transfer from SP RAM to interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. Two of the 16 addressable interface memory registers (i.e., register 0 and register E) have unique hardware connections to the interrupt logic. It is possible to enable a bit in register E to cause an interrupt each time it sets. This interrupt can then be cleared by a read or write cycle from the host processor to register 0. This operation is discussed in detail later in this section.

Memory maps of the 48 addressable registers in the modem are shown in Figure 5. These registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Table 8 defines the individual bits in the interface memory. In the Table 8 descriptions, bits in the interface memory are referred to using the format Y:Z:Q. The chip number is specified by Y (0 or 1), the register number by Z (0 through F), and the bit number by Q (0 through 7, with 0 = LSB).

R96DP

9600 bps Data Pump Modem

Name	Type ¹	DIN Pin No.	DIP ² Pin No.	Description	
A. OVERHE		1 11 110.	r in No.	Description	
Ground (A)	AGND	31C,32C	30,31	Analog Ground Return	
Ground (D)	DGND	3C,8C,	29,37,53	Digital Ground Return	
		5A,10A			
+5 volts	PWR	19C,23C,	1,45,61	+ 5 volt supply	
		26C,30C			
+ 12 volts	PWR	15A	32	+ 12 volt supply	
-12 volts	PWR	12A	36	- 12 volt supply	
POR	I/OB	13C	2	Power-on-reset	
B. MICROPROCESSOR INTERFACE:					
D7	I/OA	1C	3	ר י	
D6	I/OA	1A	4		
D5	I/OA	2C	5		
D4	I/OA	2A	6	Data Bus (8 Bits)	
D3	I/OA	3A	7		
D2	I/OA	4C	8		
D1	I/OA	4A	9		
D0	I/OA	5C	10	J .	
RS3	IA	6C	16	ו	
RS2	IA	6A	17	Register Select	
RS1	IA	7C	18	(4 Bits)	
RS0	IA	7A	19	J	
CS0	IA	10C	20	Chip Select	
CS1	IA	9C	21	Transmitter Device Chip Select Receiver	
031	14	90	21	Sample Rate Device	
CS2	IA	9A	13	Chip Select Receiver	
				Baud Rate Device	
READ	IA	12C	14	Read Enable	
WRITE	IA	11A	12	Write Enable	
IRQ	ОВ	11C	11	Interrupt Request	

	Table	4.	R96DP	Hardware	Circuits
--	-------	----	-------	----------	----------

TDCLK XTCLK RTS CTS		Pin No. E: 21A 23A 22A	Pin No. 23	Description Receive Data Clock
RDCLK TDCLK XTCLK RTS CTS	OC OC IB	21A 23A		Receive Data Clock
TDCLK XTCLK RTS CTS	OC IB	23A		Receive Data Clock
XTCLK RTS CTS	IB			I IOCOIVO DALA CIUCK
RTS CTS		224	46	Transmit Data Clock
CTS	IB	22A	51	External Transmit Clock
- · -		25A	50	Request-to-Send
T)/D	OC	25C	49	Clear-to-Send
TXD	IB	24C	48	Transmitter Data
RXD	oc	22C	26	Receiver Data
RLSD	oc	24A	27	Received Line Signal Detector
D. ANCILLA	RY CIF	CUITS:		
RBCLK	oc	26A	22	Receiver Baud Clock
TBCLK	oc	27C	47	Transmitter Baud Clock
E. ANALOG	SIGNA	LS:		
ТХА	AA	31A	34	Transmitter Analog Outpu
RXA	AB	32A	33	Receiver Analog Input
AUXIN	AC	30A	—	Auxiliary Analog Input
F. DIAGNOS	STIC:			
EYEX	oc	15C	56	Eye Pattern Data-X Axis
EYEY	oc	14A	55	Eye Pattern Data—Y Axis
EYECLK	OA	14C	57	Eye Pattern Clock
EYESYNC	OA	13A	58	Eye Pattern Synchronizing Signal
Notes:	Table 5	for digital	circuit in	terface characteristics and
				characteristics.
2. Pins not u	used on	the DIP	Version: 1	5, 24, 25, 28, 35, 38, 39,

40, 41, 42, 43, 44, 52, 54, 59, 60

						Input/Ou	Itput Type			
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	ос	I/O A	I/O B
$V_{\rm IH}$	Input Voltage, High	ν.	2.0 Min.	2.0 Min.	2.0 Min.				2.0 Min.	5.25 Max. 2.0 Min.
VIL	Input Voltage, Low	v	0.8 Max.	0.8 Max.	0.8 Max.				0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.4 Min.1	2.4 Min. ³
VOL	Output Voltage, Low	v				0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ²	0.4 Max. ⁵
I _{IN}	Input Current, Leakage	μA	±2.5 Max.						±2.5 Max.4	
I _{ОН}	Output Current, High	mA				-0.1 Max.				
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.		
ار	Output Current, Leakage	μA					± 10 Max.			
I _{PU}	Pull-up Current (Short Cırcuit)	μA		– 240 Max – 10 Min.	– 240 Max. – 10 Min.			– 240 Max. – 10 Min.		– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	3-State Transceiver	Open-Drain w/Pull-up
	**************************************		·	**************************************	Notes		·			
	1 Load = -			I Load = -4		\		I Load = 0.	36 mA	
	$2 \mid \text{Load} = 1.6$	5 mA	4.	$V_{\rm IN} = 0.4$ to	2.4 Vdc, V _{CC}	; = 5.25 Vo	IC			

Table 5. Digital Interface Characteristics

R96DP

This configuration is suitable for performing high speed data transfer using the serial data port. Individual features are discussed in subsequent paragraphs.

V.24 INTERFACE

Eight hardware circuits provide timing, data, and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0V, + 5V). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within standalone modem enclosures or equipment cabinets. For driving longer cables, the voltage levels and connector arrangement recommended by EIA standard RS-232-C are preferred.

The sequence of events leading to successful data transfer from transmitter to receiver is:

- 1. The transmitter is activated and a training sequence is sent.
- The receiver detects channel energy above the prescribed threshold level and synchronizes its operation to the transmitter.
- 3. Data transfer proceeds to the end of the message.
- 4. The transmitter turns off after insuring that all data has had time to be recovered at the receiver output.

Transmitted Data (TXD)

The modem obtains serial data from the local DTE on this input.

Received Data (RXD)

The modem presents received data to the local DTE on this output.

Request To Send (RTS)

 $\overline{\text{RTS}}$ ON allows the modem to transmit data on TXD when $\overline{\text{CTS}}$ becomes active. The responses to $\overline{\text{RTS}}$ are shown in Table 6.

Clear To Send (CTS)

CTS ON indicates to the terminal equipment that the modern will transmit any data which are present on TXD. CTS response times from an ON condition of RTS are shown in Table 6.

The time between the on-to-off transition of **RTS** and the on-to-off transition of **CTS** in data state is a maximum of 2 band times for all configurations.

Table	6.	RTS	-CTS	Response	Times

	RTS-CTS Turn-On Time				
Specification	Echo Protector Tone Disabled	Echo Protector* Tone Enabled			
V.29 (All data rates)	253 ms	438 ms			
V.27 4800 bps long	708 ms	913 ms			
V.27 4800 bps short	50 ms	255 ms			
V.27 2400 bps long	943 ms	1148 ms			
V.27 2400 bps short	67 ms	272 ms			

Received Line Signal Detector (RLSD)

For V.27 bis/ter or V.29, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms and for V.29 is 30 \pm 9 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on the threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Four threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 49 dBm (RLSD off)
- 2. Greater than 33 dBm (RLSD on) Less than - 38 dBm (RLSD off)
- 3. Greater than 26 dBm (RLSD on) Less than - 31 dBm (RLSD off)
- 4. Greater than 16 dBm (RLSD on) Less than - 21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than - 43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold level and hysteresis action are measured with an unmodulated 2400 Hz tone applied to the receiver's audio input (RXA).

Transmit Data Clock (TDCLK)

The modem provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 9600, 7200, 4800, or 2400 Hz (±0.01%).
- 2. Duty Cycle. 50 ± 1%.

TDCLK is provided to the user in synchronous communications for USRT timing. In this case Transmit Data (TXD) must be stable during the one μ s periods immediately preceding and following the rising edge of TDCLK.

External Transmit Clock (XTCLK)

In synchronous communication where the user needs to supply the transmit data clock, the input XTCLK can be used. The clock supplied at XTCLK must exhibit the same characteristics of TDCLK. The XTCLK input is then reflected at TDCLK.

Receive Data Clock (RDCLK)

The modem provides a Receive Data Clock (RDCLK) output in the form of a 50 \pm 1% duty cycle squarewave. The low-to-high transitions of this output coincide with the center of received data bits. RDCLK is provided to the user in synchronous communications for USRT timing. The timing recovery circuit is capable of tracking a \pm .01% frequency error in the associated transmit timing source.

MICROPROCESSOR INTERFACE

Eight hardware circuits provide address, data, control, and interrupt signals for implementing a parallel interface compatible with an 8080 microprocessor. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of soft strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in a later section devoted to software circuits. This section describes the operation of the interface from a hardware standpoint.

Chip Select (CS0-CS2) and Register Selects (RS0-RS3)

The signal processor to be accessed is selected by grounding one of three unique chip select lines, $\overline{CS2}$, $\overline{CS1}$ or $\overline{CS0}$. The selected chip decodes the four address lines, RS3 through RS0, to select one of sixteen internal registers. The most significant address bit (2³) is RS3 while the least significant address bit (2⁰) is RS0. Once the address bits have been decoded, the selected register can be read from or written into via an 8-bit parallel data bus, D7 through D0. The most significant data bit (2⁷) is D7 while the least significant data bit (2⁰) is D0.

Read Enable (READ) and Write Enable (WRITE)

Reading or writing is activated by pulsing either the READ line high or the WRITE line low. During a read cycle, data from the selected register is gated onto the data bus by means of threestate drivers. These drivers force the data lines high for a one bit or low for a zero bit. When not being read, the three-state drivers assume their off, high-impedance, state. During a write cycle, data from the data bus is copied into the selected register, with high and low bus levels representing one bits and zero bits, respectively. The timing required for correct read/write cycles is illustrated in Figure 2. Logic necessary to convert the single R/W output from a 65XX series microprocessor to the separate READ and WRITE signals required by the modem is shown in Figure 3.

Interrupt Request (IRQ)

The final signal on the microprocessor interface is Interrupt Request (IRQ). This signal may be connected to the host microprocessor interrupt request input in order to interrupt host program execution for modem service. The use of IRQ is optional and the method of software implementation is described in a subsequent section, Software Circuits. The IRQ output structure is an open-drain field-effect-transistor (FET). This form of output allows IRQ to be connected in parallel to other sources of interrupt. Any of these sources can drive the host interrupt input low, and the interrupt servicing process continues until all interrupts have been cleared and all IRQ sources have returned to their high impedance state. Because of the open-drain structure of IRQ, an external pull-up resistor to +5 volts is required at some point on the IRQ line. The resistor value should be small enough

to pull the IRQ line high when all IRQ drivers are off (i.e., it must overcome the leakage currents). The resistor value should be large enough to limit the driver sink current to a level acceptable to each driver. For the case where only the modem IRQ driver is used, a resistor value of 5.6K ohms $\pm 20\%$, 0.25 watt, is sufficient.

ANALOG SIGNALS

The analog signal characteristics are described in Table 7.

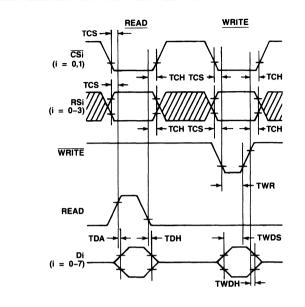
Table 7. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output is 604 ohms $\pm 1\%$.
RXA	AB	The receiver input impedance is 60K ohms ±23%.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is the TLVL setting $+0.6$ dB -1.4 dB.

Transmitter Analog (TXA)

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the public switched telephone network. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

Receiver Analog (RXA)


RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm $\pm 1\%$ resistor is satisfactory.

Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may take the form of back-to-back zener diodes across the transformer or a varistor across the transformer.

Auxiliary Input (AUXIN)

AUXIN provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit at a rate of 9600 samples-persecond. Any signal above 4800 Hz on the AUXIN line will be aliased back into the passband as noise. One application for AUXIN is to inject dual-tone multifrequency (DTMF) touch-tone signals for dialing, however, the source of these tones must be well filtered to eliminate components above 4800 Hz. The input impedance of AUXIN is 1K ohm. The gain from AUXIN to TXA is the same as the selected transmit level +0.6 dB -1.4 dB.

9600 bps Data Pump Modem

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior				
to Read or Write	TCS	30		ns
Data access time after Read	TDA	-	140	ns
Data hold time after Read	TDH	10	50	ns
CSi, RSi hold time after				
Read or Write	TCH	10		ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	-	ns
Write strobe pulse width	TWR	75	-	ns

Figure 2. Microprocessor Interface Timing Diagram

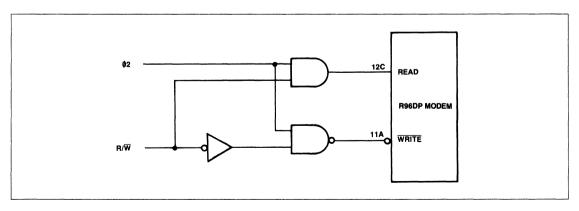


Figure 3. R/W to READ WRITE Conversion Logic

	anann				.,			
Bit Register	7	6	5	4	3	2	1	0
F				RAM AC	CESS T	-		
E	TIA	-	-	-	TSB	TIE	-	TBA
D	_	_	—		-	-	-	-
С	-	-	_	-	-		-	_
В	_	-	-	_	-	-	-	-
A	_	—	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-
8	-		-	-	1	-	-	-
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT
6		٦	RANSN	IITTER C	ONFIG	URATIO	N	
5	-	—	CE	EQ	LAEN	LDEN	A3L	D3L
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN
3				FRE	QM			
2				FRE	EQL			
1				RAM DA	TA YTM			
0		RAM	DATA YT	L, TRAN	ISMITTE	R DATA	, DDR	
Register Bit	7	6	5	4	3	2	1	0
	() I	ndicates	s reserv	ed for m	odem u	ise only	•	

Transmitter Interface Memory Chip 0 (CS0)

Receiver Interface Memory Chip 1 (CSI)

Bit Register	7	6	5	4	3	2	1	0
F	-	-	_	-	-	-	-	-
E	RSIA	-	-	-	RSB	RSIE	-	RSDA
D	-	-	-	-	-	_	_	-
С	-	-	-	_	_	-	_	-
В	_	PNDET	-	-	-	-	-	CDET
A		-	_	-	-		-	-
9	_	FED		-	—		_	-
8	_	-	_	-		P2DET	1	-
7	R	гн	DDIS	RPDM	SWRT	BWRT	T2	RTDIS
6	IFIX	TOD		RECEI	VER CO	NFIGUF	RATION	
5			F	RAM AC	CESS X	5		
4			F	RAM AC	CESS Y	S		
3				RAM DA	TA XSM			
2				RAM D	ata XSL			
1				RAM DA	ATA YSM			
0		F	RAM DA	TA YSL;	RECEIV	er data	4	
Register Bit	7	6	5	4	3	2	1	0
	()	ndicates	s reserv	ed for m	nodem u	se only		

Receiver Interface Memory Chip 2 (CS2)

Bit Register	7	6	5	4	3	2	1	0
F	-	-	-	-	-	_	-	-
E	RBIA	-	-	—	-	RBIE	-	RBDA
D	-	-	-	-	-	-	-	-
С	-	-	-	-	-	-	-	-
В	-	-	1	-	-	-	-	-
A	-	-	-		-	-	-	-
9	-	-	-	-	-	-	-	-
8	-	_	-	_	-	-	_	-
7	-	-	-	-	-	_	-	-
6	-	-		-	-	-	-	-
5			F	RAM AC	CESS X	в		
4			F	RAM AC	CESS Y	в		
3				RAM DA	ATA XBM			
2				RAM D	ata XBL			
1				RAM DA	ATA YBN	I		
0				RAM D	ata ybl			
Register Bit	7	6	5	4	3	2	1	0
	()	Indicate	s reserv	ed for n	nodem u	use only		

Figure 5. Interface Memory Map

9600 bps Data Pump Modem

9600 bps Data Pump Modem

		i able	8. R96DP Interface Memory	Definitions				
Mnemonic	Name	Memory Location		Description				
A3L	Amplitude 3-Link Select	0:5.1	A3L is used in conjunction with equalizer is selected and when a selected.					
BWRT	Baud Write	1:7:2	When control bit BWRT is a one, the RAM write operation is enabled for Chip 2					
CEQ	Cable Equalizer Field	0:5-4,5	The CEQ Control field simultane the transmit and receive paths. selection codes and responses	•				
			CEQ	Cable Length (0	.4 mm diameter)			
			0	0.0	H			
			1		km			
			2		km			
			3	7.2	! km			
			Cal	ble Equalizer Nominal Gai	n			
			CEQ CODE 1					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
			700	- 0.99	- 0.94			
			1500	- 0.20	- 0.24			
			2000	+ 0.15	+ 0.31			
			3000	+ 1.43	+ 1.49			
			CEQ CODE 2					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
			700	- 2.39	- 2.67			
			1500	- 0.65	-0.74			
			2000	+ 0.87	+ 1.02			
			3000	+ 3.06	+3.17			
			CEQ CODE 3					
			Frequency	Gain Relative to	1700 Hz (dB)			
			(Hz)	Transmitter	Receiver			
			700	- 3.93	- 3.98			
			1500	- 1.22	- 1.20			
			2000	+ 1.90	+ 1.81			
			3000 Unless a problem with training o operate successfully with no cat		+ 4.38			
CDET	Carrier Detector	1:B·0	When zero, status bit \overline{CDET} ind that a training sequence is not i data state, and returns to a one up to 1 baud time before \overline{RLSD} \overline{FED} bit goes to a zero and no F within 5 to 25 ms indicating that training sequence.	n process. CDET goes to a at the end of the received and deactivates within 2 b P2 sequence is detected, th	a zero at the start of the signal CDET activates aud times after RLSD. If the ne CDET bit goes to zero			
DDIS	Descramble Disable	1:7:5	When control bit DDIS is a one, data path.	the receiver descrambler	circuit is removed from the			
DDR	Dial Digit Register	0.0 0-2	DDR is used to tell the modem	which DTMF digit to transr	nıt (see Transmıtter Data)			
D3L	Delay 3-Link Select	0:5:0	D3L is used in conjunction with equalizer is selected and when D					

2

9600 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description							
EPT	Echo Protector Tone	0:7:3	When control bit EPT is a one, an unmodulated carrier is transmitted for 185 ms (optionally 30 ms) followed by 20 ms of no transmitted energy at the start of transmission This option is available in the V.27 and V.29 Configurations, although it is not specified in the CCITT V.29 recommendation.								
FED	Fast Energy Detector	1:9:6	When status i present in the								
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7	The host proc data word to shown below:	the FREC							
			FREQM Reg	ister (0:	3)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	2 ¹⁵	2 ¹⁴	213	212	211	210	2 ⁹	28
			FREQL Regi	ister (0::	2)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	26	25	24	2 ³	2 ²	21	20
			Hexadecimal given below:	·	-	·	., FREQM)	for com	, ,		nes are
			FI	REQM	I	REQL			Frequer	• • •	
				0C 1D		52 55			4 11	62	
				2C		55 00			16		
				31		55			18		
				38		00			21	00	
			When control		s a one, i	the serial					
IFIX	Eye Fix	1:6:7	equalizer outp ACCESS YB.	out and d		ow the da	ta selected				
IFIX LAEN	Eye Fix Link Amplitude Equalizer Enable	0:5:3	equalizer outp	itude equ	o not follo Jalizer en	able and	select bits	control a		ide compr	omise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl	itude equ ne receiv	o not follo Jalizer en	able and	select bits	control a	9:	ide compr /latched	omise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAR	itude equ ne receiv EN	o not follo Jalizer en	able and cording to A3L X	select bits	control a	Curve N No Equa	latched	omise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAI	itude equ ne receiv EN	o not follo Jalizer en	able and cording to A3L	select bits	control a	Curve N No Equa	latched lizer vey Long	romise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAI 0 1	itude equ ne receiv EN	o not folk ualizer en e path ac	able and cording to A3L X 0 1	select bits the follow	control a	Curve M No Equa U.S. Sur Japanese	latched lizer vey Long e 3-Link	romise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAR 0 1 1	itude equ re receivi EN itude equ	o not folk ualizer en: e path acc ualizer res	able and cording to A3L X 0 1	select bits the follow	control a	Curve M No Equa U.S. Sur Japanese	latched lizer vey Long e 3-Link	romise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAR 0 1 The link ampl Link Amplitue	itude equ ne receiv EN itude equ de Equa l	o not folk ualizer en: e path acc ualizer res	able and cording to A3L X 0 1 sponses a	select bits the follow	control a ving table	Curve M No Equa U.S. Sur Japanese	Matched lizer vey Long e 3-Link e.	romise
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAB 0 1 1 The link ampl	itude equ EN itude equ de Equal ency	o not folk ualizer en: e path acc ualizer res izer	able and cording to A3L X 0 1 sponses a	select bits the follow re given ir	control a ving table	Curve M No Equa U.S. Sur Japanese owing tabl	Matched lizer vey Long e 3-Link e.	
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAB 0 1 1 The link ampl Link Amplitue Freque (Hz 100	itude equ ne receiv EN itude equ de Equal ency :)	o not folk ualizer en: e path acc ualizer res izer	able and cording to A3L X 0 1 sponses a U.S. Sur	select bits o the follow re given ir Gain Rela vey Long 0.27	control a ving table	Curve M No Equa U.S. Sur Japanese owing tabl	Matched lizer vey Long a 3-Link e. HB) nese 3-Li -0.13	
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAI 0 1 The link ampl Link Amplitue Freque (Hz 100	itude equ re receiv EN itude equ de Equa ency c) 0	o not folk ualizer en: e path acc ualizer res izer	able and cording to A3L X 0 1 sponses a U.S. Sur	select bits o the follow re given ir Gain Rela vey Long 0.27 0.16	control a ving table	Curve M No Equa U.S. Sur Japanese owing tabl	Aatched lizer vey Long e 3-Link e. (1B) nese 3-Li nese 3-Li - 0.13 - 0.08	
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAR 0 1 1 The link ampl Link Amplitur Freque (Hz 100	itude equ itude equ itude equ de Equal ency) 0 0 0	o not folk ualizer en: e path acc ualizer res izer	able and cording to A3L X 0 1 sponses a U.S. Sur - +	select bits o the follow re given ir Gain Rela vey Long 0.27	control a ving table	Curve M No Equa U.S. Sur Japanese owing tabl	Matched lizer vey Long a 3-Link e. HB) nese 3-Li -0.13	
	Link Amplitude	×	equalizer outp ACCESS YB. The link ampl equalizer in th LAR 0 1 The link ampl Link Amplitur (Hz 100 140 200	itude equ EN itude equ de Equal ency 0 0 0 0 0 0 0 0 0	o not folk ualizer en: e path acc ualizer res izer	able and cording to A3L X 0 1 sponses a U.S. Sur - + +	select bits the follow re given ir Gain Rela vey Long 0.27 0.16 0.33	control a ving table	Curve M No Equa U.S. Sur Japanese owing tabl	Matched lizer vey Long e 3-Link e. IB) nese 3-Li – 0.13 – 0.08 + 0.16	

Table 8	R96DP	Interface	Memory	Definitions	(Continued)
		monave	moniory		(oomaaa)

9600 bps Data Pump Modem

2

Mnemonic	Name	Memory Location		Description	
LCEN	Loop Clock Enable	0:4 0	When control bit LCEN is	a one, the transmitter clock t	racks the receiver clock.
LDEN	Link Delay Equalızer Enable	0.2.5	The link delay equalizer e the receive path accordin		a delay compromise equalizer in
			LDEN	D3L	Curve Matched
		1	0	x	No Equalizer
			1	0	U.S Survey Long
			1	1	Japanese 3-Link
			The link delay equalizer r	esponses are given in the follo	owing table.
			Link Delay Equalizer		
					Relative to
			Frequency	1700 Hz (N	licroseconds)
			(Hz)	U.S. Survey Long	Japanese 3-Link
			800	- 498.1	- 653.1
			1200	- 188.3	- 398.5
			1600	- 15.1	- 30.0
		1	1700	+ 0.0	+ 0.0
			2000	- 39.8	+ 11.7
			2400	- 423.1	- 117.1
			2800	- 672.4	- 546.3
L3ACT L4ACT	Local Analog Loopback Activate Remote Analog Loopback Activate	0:4:7	receiver analog input thro V.54 loop 3. When control bit L4ACT is	a one, the receiver analog in	g output is coupled to the nee with CCITT recommendation put is connected to the transmitt nner similar to recommendation
L4HG	Loop 4 High Gain	0:4.5	V.54 loop 4.		in amplifier is set for +16 dB,
			and when at zero the gain	n is zero dB.	
MHLD	Mark Hold	0:7.4	When control bit MHLD is (ones).	a one, the transmitter input o	data stream is forced to all mark
PNDET	Period N Detector	1·B:6	When status bit PNDET is bit sets to a one at the er		uence has been detected. This
P2DET	Period Two Detector	1:8:2		a zero, it indicates that a P2 he start of the PN sequence.	sequence has been detected.
(None)	RAM Access T	0.F [.] 0-7	Contains the RAM access word Y (0.1 and 0 0)	code used in reading or writi	ng chip 0 RAM locations via
(None)	RAM Access XB	2:5.0-2	Contains the RAM access word X (2:3 and 2.2).	code used in reading or writi	ng chip 2 RAM locations via
(None)	RAM Access XS	1:5.0-2	Contains the RAM access word X (1.3 and 1.2)	code used in reading or writi	ng chip 1 RAM locations via
	RAM Access YB	2 4.0-7	Contains the RAM access		

9600 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description			
(None)	RAM Access YS	1:4:0-7	Contains the RAM access code used in reading or writing chip 1 RAN word Y (1:1 and 1:0).	locations via		
(None)	RAM Data XBL	2:2.0-7	Least significant byte of 16-bit word X used in reading or writing RAM chip 2.	locations in		
(None)	RAM Data XBM	2:3:0-7	Most significant byte of 16-bit word X used in reading or writing RAM chip 2.	locations in		
(None)	RAM Data XSL	1:2:0-7	Least significant byte of 16-bit word X used in reading or writing RAM locations in chip 1.			
(None)	RAM Data XSM	1:3:0-7	Most significant byte of 16-bit word X used in reading or writing RAM chip 1.	locations in		
(None)	RAM Data YBL	2:0:0-7	Least significant byte of 16-bit word Y used in reading or writing RAM chip 2.	locations in		
(None)	RAM Data YBM	2:1:0-7	Most significant byte of 16-bit word Y used in reading or writing RAM chip 2.	locations in		
(None)	RAM Data YSL	1:0:0-7	Least significant byte of 16-bit word Y used in reading or writing RAM chip 1. Shared by parallel data mode for presenting channel data to the microprocessor bus. See 'Receiver Data.'			
(None)	RAM Data YSM	1:1:0-7	Most significant byte of 16-bit word Y used in reading or writing RAM locations in chip 1.			
(None)	RAM Data YTL	0.0.0-7	Least significant byte of 16-bit word Y used in reading or writing RAM chip 0. It is shared by parallel data mode and DTMF dialing (see Tran			
(None)	RAM Data YTM	0:1:0-7	Most significant byte of 16-byte word Y used in reading or writing local	tions in chip 0.		
RBDA	Receiver Baud Data Available	2:E:0	Status bit RBDA goes to a one when the receiver writes data into regi goes to a zero when the host processor reads data from register 2:0.	ster 2:0. The bit		
RBIA	Receiver Baud Interrupt Active	2:E:7	This status bit is a one whenever the receiver baud rate device is driv idle mode the interrupts from chip 2 occur at half the baud rate. Durin access in data mode, the interrupts occur at the baud rate.			
RBIE	Receiver Baud Interrupt Enable	2:E:2	When the host processor writes a one in the RBIE control bit, the IRQ hardware interface is driven to zero when status bit RBDA is a one	line of the		
(None)	Receiver Configuration	1:6:0–5	The host processor configures the receiver by writing a control code in configuration field in the interface memory space (see RSB).	nto the receiver		
			Receiver Configuration Control Codes			
			Control codes for the modem receiver configuration are:			
			Configuration Code (Hex) Receiver Conf	iguration		
			14 V.29 9600			
			12 V.29 7200 11 V.29 4800			
			22 V.27 4800	Long		
			21 V.27 2400			
			02 V.27 4800 01 V.27 2400			
			V.27 2400			

Table 8. R96DP Interface Memory Definitions (Continued)

9600 bps Data Pump Modem

2

Mnemonic	Name	Memory Location	Description
(None)	Receiver Data	1.0:0-2	The host processor obtains channel data from the receiver in the parallel data mode by reading a data byte from the receiver data register. The data is divided on baud boundaries as is the transmitter data. When using receiver parallel data mode, the registers 1 3 through 1:0 can not be used for reading the chip 1 RAM
RPDM	Receiver Parallel Data Mode	174	When control bit RPDM is a one, the receiver supplies channel data to the receiver data register (1.0) as well as to the hardware serial data output (See Receiver Data)
RSB	Receiver Setup Bit	1 E:3	When the host processor changes the receiver configuration or the RTH field, the host processor must write a one in the RSB control bit. RSB goes to zero when the changes become effective. Worst case setup time is 2 baud times
RSDA	Receiver Sample Data Available	1.E:0	Status bit RSDA goes to a one when the receiver writes data to register 1:0 RSDA goes to a zero when the host processor reads data from register 1 0.
RSIA	Receiver Sample Interrupt Active	1:E 7	This status bit is a one whenever the receiver sample rate device is driving $\overline{\text{IRQ}}$ to zero
RSIE	Receiver Sample Interrupt Enable	1:E:2	When the host processor writes a one in the RSIE control bit, the $\overline{\text{IRQ}}$ line of the hardware interface is driven to zero when status bit RSDA is a one
RTDIS	Receiver Training Disable	1.7:0	When control bit RTDIS is a one, the receiver is prevented from recognizing a training sequence and entering the training state.
RTH	Receiver Threshold Field	1.7:6,7	The receiver energy detector threshold is set by the RTH field according to the followin codes (see RSB):
			RTH RLSD On RLSD Off
RTS	Request-to-Send	0.7.7	When control bit RTS goes to a one, the modem begins a transmit sequence. It continues to transmit until RTS is reset to zero, and the turn-off sequence has been completed. This input bit parallels the operation of the hardware RTS control input These inputs are ORed by the modem.
SDIS	Scrambler Disable	0:7.5	When control bit SDIS is a one, the transmitter scrambler circuit is removed from the data path.
SEPT	Short Echo Protector Tone	0:7.0	When control bit SEPT is a one, the echo protector tone is 30 ms long rather than 185 ms.
SWRT	Sample Write	1.7:3	When control bit SWRT is a one, the RAM write operation is enabled for chip 1.
ТВА	Transmitter Buffer Available	0:E 0	This status bit resets to zero when the host processor writes data to transmitter data register 0:0. When the transmitter empties register 0.0, this bit sets to a one During a RAM access in chip 0, when TBA is a one the host can perform either a RAM read or write depending on the state of bit 0:6 3 (see Transmitter Configuration).
ΤΙΑ	Transmitter Interrupt Active	0:E.7	This status bit is a one whenever the transmitter is driving $\overline{\text{IRQ}}$ to a zero
TIE	Transmitter Interrupt Enable	0:E·2	When the host processor writes a one in control bit TIE, the \overline{IRQ} line of the hardware interface is driven to zero when status bit TBA is at a one

9600 bps Data Pump Modem

Mnemonic	Name	Memory Location		Description
TLVL	Transmitter Level	0:4:2-4	The transmitter analog output leve	I is determined by eight TLVL codes, as follows:
	Field		TLVL	Transmitter Analog Output*
			o	- 1 dBm ± 1 dB
			1	-3 dBm ±1 dB
			2	~5 dBm ±1 dB
			3	-7 dBm ±1 dB
		1	4	-9 dBm ±1 dB
			5	– 11 dBm ±1 dB
			6	– 13 dBm ±1 dB
			7	– 15 dBm ±1 dB
			*Each step above i	is a 2 dB change ±0.2 dB.
TOD	Train-on-Data	1.6:6	equalizer if the signal quality degra	enables the train-on-data algorithm to converge the ades sufficiently. When TOD is a one, the modem still id enters the force train state. A BER of approximately -on-date.
TPDM	Transmitter Parallel Data Mode	0:7:2		the transmitter accepts data for transmission from the on TPDM is a zero channel data from the serial hardware p 0 RAM access is enabled.
(None)	Transmitter Configuration*	0:6:0-7	The host processor configures the configuration register in its interfact	transmitter by writing a control byte into the transmitter ce memory space. (See TSB.)
			Transmitter Configuration Control C	Codes
			Control codes for the modem trans	smitter configurations are:
			Configuration Code (Hex	:)* Transmitter Configuration
			14	V.29 9600
			12	V.29 7200
			11	V.29 4800
			22	V.27 4800 Long
			21	V.27 2400 Long
			02	V.27 4800 Short
			01	V.27 2400 Short
			80 04	Tone Transmit DTMF Tone Transmit
			used in the RAM access operation	vice, bit 3 of the transmitter configuration register is on for chip 0 When 0:6:3 is a one, a RAM write is a zero, and when 0:6:3 is a zero, a RAM read is a zero.
			Configuration Definitions	
			specified in the CCITT Recomm	on has been selected, the modem operates as nendation V.29.
			 V.27. When a V.27 configuration specified in CCITT Recommentor Transmit. In this configure transmit a tone at a single freq memory space containing the f in the FREQM register (0:3). The register (0:2). The least signific generated is: f = 0.146486 (256) DTMF Tone Transmit. In this contained in the second secon	on has been selected, the modem operates as

9600 bps Data Pump Modem

Mnemonic	Name	Memory Location	Description								
(None)	Transmitter; DDR, RAM Data YTL	0 0 0-7	7 1 The host processor transmits data in the parallel mode by writing a data transmitter data register. The data is divided on baud boundaries, as followed as the parallel mode of the parallel mo							e to the	
						NOTE					
				D	ata is tra	ansmitted	bit zero	first			
							Bit	ts			
			Configuration	7	6	5	4	3	2	1	0
			V.29 9600 bps		Bau	ud 1			Ba	ud 0	
			V 29 7200 bps	Not	Used		Baud 1			Baud ()
			V 29 4800 bps	Ba	ud 3	Bau	d 2	Bau	ud 1	Ba	ud 0
			V.27 4800 bps	Not	Used		Baud 1			Baud ()
			V.27 2400 bps	Bau	ud 3	Bau	d 2	Bau	Baud 1 Baud 0		ud 0
			 Register 0 0 is use the DTMF tone tra Register 0.0 is a F byte of the 16-bit \ transmission is occ 	nsmit mo RAM data / word in	ode. a register	used for	r reading	or writi	ng the le	east sigr	nificant
TSB	Transmitter Setup Bit	0 E:3	the DTMF tone tra 3. Register 0.0 is a F	nsmit mo RAM data (word in curring. ssor cha : TSB go	nges the post of a zero to	r used for when TPI transmitt zero whe	r reading DM is a : ter config n the cha	or writi zero and guration ange be	ng the lo d no ton , the hos comes e	east sign e or DT st must s effective	nificant MF tone write a
tsb ttdis		0 E:3 0:7 6	the DTMF tone tra 3. Register 0.0 is a F byte of the 16-bit N transmission is occ When the host proce one in this control bit	nsmit mo RAM data (word in curring. ssor cha TSB go baud + IIS is a o	ode. a register Chip 0 v nges the bes to a 2 turnoff se	r used for when TPI transmiti zero whe equence ransmitte	r reading DM is a t ter config n the cha + trainir er does n	or writi zero and guration, ange be ng (if ap not gene	ng the lo d no ton , the hos comes e plicable) rate a tr	east sign e or DT st must effective.	nificant MF tone write a Worst equence
	Bit Transmitter Train		the DTMF tone tra 3. Register 0.0 is a F byte of the 16-bit \u03c4 transmission is occ When the host proce one in this control bit case setup time is 2 1 When control bit TTE at the start of transm	nsmit mo RAM data (word in curring. ssor cha TSB go baud + IS is a o ission. W s a one, ne equali	ode. a register Chip 0 v pes to a z turnoff so ine, the t inth traini an adap zer has o	r used for when TPI transmitt zero whe equence ransmitte ng disab tive equa	r reading DM is a : ter config n the cha + trainir er does n led, RTS	or writi zero and guration, ange be ng (if ap lot gene /CTS de	ng the lo d no ton the hos comes e plicable) rate a tr elay is le	east sign e or DTi st must ffective aining s ass than aud is u	nificant MF tone write a Worst equence two

SIGNAL PROCESSOR RAM ACCESS

RAM and Data Organization

Each signal processor contains 128 words of random access memory (RAM). Each word is 32 bits wide. Because the signal processor is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16 bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. In the sample rate and baud rate devices the entire contents of XRAM and YRAM may be read from or written into by the host processor via the microprocessor interface. Access to the YRAM is possible only in the transmitter device.

Interface Memory

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. Information transfer between RAM and interface memory is accomplished by the signal processor logic unit moving data between the SP main bus and the SP I/O bus. The SP logic unit determines the RAM address to read from or write into by the code stored in the RAM ACCESS bits of interface memory registers. The SP logic unit normally transfers a word from RAM to interface memory once each cycle of the device code. Each RAM word transferred to the interface memory is 32 bits long (16 bits in the transmitter). These bits are written by the SP logic unit into interface memory registers 3, 2, 1, and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data, respectively. As previously described for parallel data mode, the data available bits set to a one when register 0 of the respective signal processor is written into by the device and resets to a zero when register 0 is read from by the host. Since the parallel data mode transmitter and receiver data register shares register 0 with the YRAM data, chip 0 and 1 RAM access are disabled in parallel data mode. However, chip 2 RAM access remains active in receiver parallel data mode.

The transmitter, sample rate device and the baud rate device allow data to be transferred from interface memory to RAM. When set to a one, bit SWRT (1:7:3) signals the chip 1 SP logic unit to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. Bit BWRT (1:7:2) performs the same function for chip 2 RAM. When writing into the RAM, 32 bits are transferred. The 16 bits written into XRAM come from registers 3 and 2, with register 3 being the more significant byte. The 16 bits written into YRAM come from registers 1 and 0, with register 1 being the more significant byte. When only 16 bits of data are to be written, FF (a dummy RAM location) must be stored in RAM ACCESS XS or RAM ACCESS YS to prevent writing the insignificant 16 bits of registers 1:3 through 1:0 into a valid RAM location. When the host processor writes into register 1:0 the RSDA bit (1:E:0) is reset to zero. When the SP logic unit reads data from register 1:0, the RSDA bit (1:E:0) is set to a one. In a similar manner, bit RBDA (2:E:0) resets to zero when the host processor writes into register 2:0 and sets to a one when the SP logic unit reads data from register 2:0.

When reading from RAM, or writing into RAM, the bits in registers 0:E, 1:E, 2:E can be used for handshaking or interrupt functions as in parallel data mode. When not in parallel data mode, the bits in register 1:E perform the handshake and interrupt functions for RAM access. In both serial and parallel data modes, the bits in register 2:E perform handshake and interrupt functions for RAM access. When set to one, bit RBIE (2:E:2) enables RBDA to drive the IRQ connector signal to zero volts when RBDA is a one. Bit RBIA (2:E:7) identifies chip 2, the baud rate device, as a source of IRQ interrupt. Bit RBIA is a one when both RBIE and RBDA are set to one. In the event that other system elements may cause IRQ to be driven low, the host must determine if modem chip 2 is causing an interrupt by reading RBIA.

Table 9 provides the available RAM access functions, codes, and registers.

Auto Dial Sequence

The Figure 6 flowchart defines the auto dial sequence via the microprocessor interface memory. The modern timing for the auto dialer accounts for DTMF tone duration and interdigit delay. The default tone duration is 95 ms and the default interdigit delay is 71 ms. The default amplitudes for the high and low frequencies are -4 dBm and -6 dBm, respectively. The above four parameters can be changed by performing a RAM write.

Table 9. RAM Access Codes

No.	Function	Chip	X Access Code (Hex)	Y Access Code (Hex)	Register
1	DTMF Low Frequency Amplitude ¹	0	-	88	0,1
2	DTMF High Frequency Amplitude ¹	0	-	08	0,1
3	Interdigit Delay ¹	0		89	0,1
4	DTMF Tone Duration ¹	0	-	09	0,1
5	Received Signal Samples	1	C0	Not Used	2,3
6	Demodulator Output	1	C2	42	0,1,2,3
7	Low Pass Filter Output	1	D4	54	0,1,2,3
8	Average Energy	1	DC	Not Used	2,3
9	AGC Gain Word	1	81	Not Used	2,3
10	Equalizer Input	2	C0	40	0,1,2,3
11 12	Equalizer Tap Coefficients Unrotated Equalizer	2	81 – A0	01 – 20	0,1,2,3
	Output	2	E1	61	0,1,2,3
13	Rotated Equalizer Output (Received Points)	2	A2	22	0,1,2,3
14	Decision Points Ideal Points	2	62	0,1,2,3	
15	Error	2	E3	63	0,1,2,3
16	Rotation Angle	2	Not Used	00	0,1
17	Frequency Correction	2	AA	Not Used	2,3
18	EQM	2	A7	Not Used	2,3
19	Dual Point	2	AE	2E	0,1,2,3
N	ote: 1. Added in transmitter	device	R5304-22.		

9600 bps Data Pump Modem

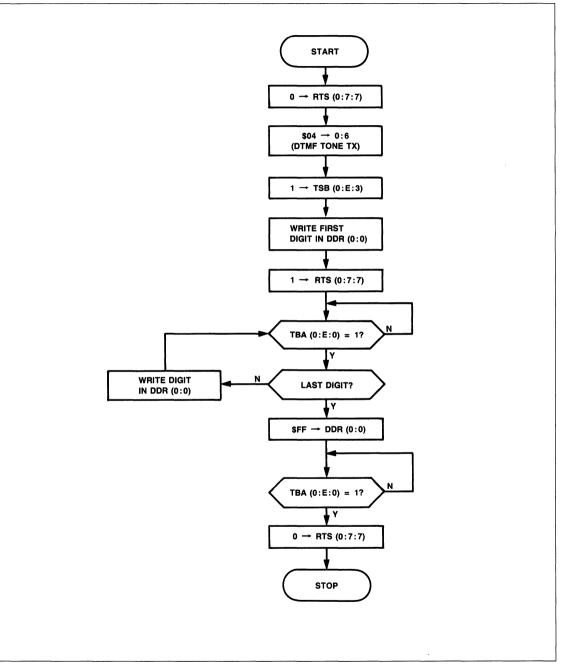


Figure 6. R96DP Auto Dial Sequence

9600 bps Data Pump Modem

PERFORMANCE

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56, except with regard to the placement of the filter used to bandlimit the white noise source. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

Typical BER performance is shown in Figure 7. Figure 8 shows a typical test setup to measure BER.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps (V.27 bis/ter), the modern exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.

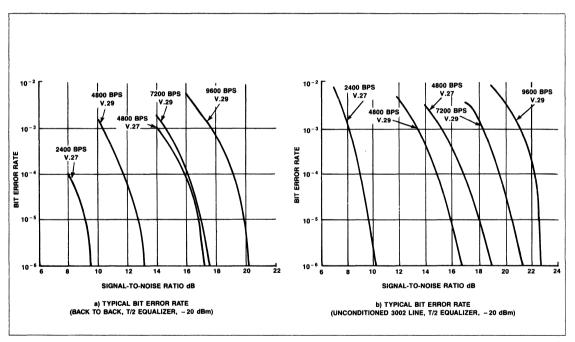
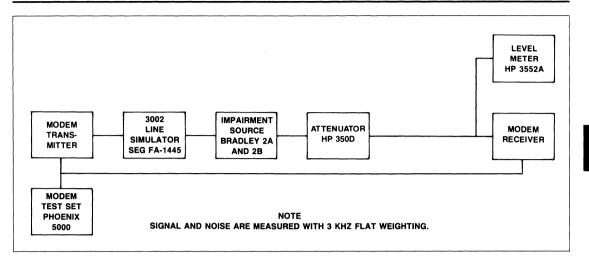



Figure 7. R96DP BER versus SNR

9600 bps Data Pump Modem

9600 bps Data Pump Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C				
+ 5 Vdc	±5%	550 mA	<700 mA				
+ 12 Vdc	±5%	5 mA	< 10 mA				
– 12 Vdc	± 5%	25 mA	< 50 mA				
Note: All voltages	Note: All voltages must have ripple ≤0.1 volts peak-to-peak.						

Table 10. Modem Power Requirements

Table 11. Modem Environmental Restrictions

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	- 40°C to + 80°C (- 40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity:	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.
Altitude	- 200 feet to + 10,000 feet

Table 12. Modem Mechanical Considerations

Parameter	Specification
DIN Connector Version	
Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated.
	The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female,
	64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical receptacle:
•	Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Dimensions:	
Width	3.937 in. (100 mm)
Length	4.725 in. (120 mm)
Connector Height	0.437 ın. (11.1 mm)
Component Height	
Top (max.)	0.200 in. (5.1 mm)
Bottom (max.)	0.130 in. (3.3 mm)
Weight (max):	3.6 oz. (100 g)
Lead Extrusion (max.):	0.100 in. (2.54 mm)
DIP Connector Version	
Board Structure:	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions:	
Width	3.228 in. (82 mm)
Length	3.937 in. (100 mm)
Component Height	
Top (max.)	0 200 ın. (5.1 mm)
Bottom (max.)	0 130 in. (3.3 mm)
Weight (max.):	3.6 oz. (100 g)
Pin Length (max.)	0.53 in. (13.5 mm)

9600 bps Data Pump Modem

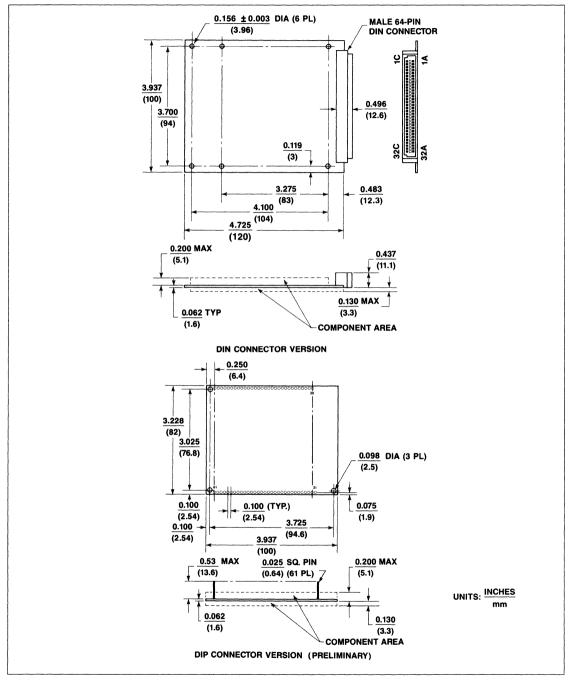


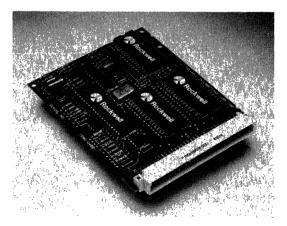
Figure 9. R96DP Modem Dimensions and Pin Locations

Integral Modems

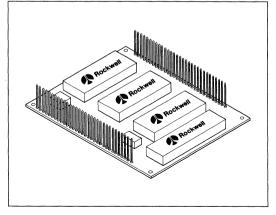
R96FT 9600 bps Fast Train Modem

INTRODUCTION

The Rockwell R96FT is a synchronous serial 9600 bps modem designed for multipoint and networking applications. The R96FT allows full-duplex operation over 4-wire dedicated unconditioned lines, or half-duplex operation over the public switched telephone network (PSTN).


Proprietary fast train configurations provide training times of 23 ms for V.29FT/9600/7200/4800, 22 ms for V.27FT/4800, and 30 ms for V.27FT/2400. A 2400/4800 bps Gearshift configuration provides a training time of 10 ms. For applications requiring operation with international standards, fallback configurations compatible with CCITT recommendations V.29 and V.27 bis/ter are provided. A 300 bps FSK configuration, compatible with CCITT V.21 Channel 2, is also provided.

The small size and low power consumption of the R96FT offer the user flexibility in formulating a 9600 bps modem design customized for specific packaging and functional requirements.


This data sheet corresponds to assembly number TR96-D400-061 and subsequent revisions.

FEATURES

- Proprietary Fast Train
- 2400/4800 bps Gearshift
- CCITT V.29, V.27 bis/ter and V.21 Channel 2 Compatible
- · Train on Data
- 2-Wire Half Duplex, 4-Wire Full Duplex
- Programmable Tone Generation
- Dynamic Range 43 dBm to 5 dBm
- Diagnostic Capability
- · Equalization:
 - Automatic Adaptive
 - Compromise Cable and Link (Selectable)
- DTE Interface: — Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Loopbacks
- Local Analog
 - Remote Analog and Digital
- Small Size
 - DIP Connector Version:
 120 mm × 100 mm (4.73 in. × 3.94 in.)
 - DIN Connector Version: 82 mm × 100 mm (3.23 in. × 3.94)
- Low Power Consumption: 3W (typical)
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R96FT DIN Connector Version

R96FT DIP Connector Version

Document No. 29200N09

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

Function	Frequency (Hz ±0.01%)
V.27 bis/ter Carrier	1800
V.27FT Carrier	1800
2400/4800 bps Gearshift	1800
V.29 Carrier	1700
V.29FT Carrier	1700/1800*
V.21 Channel 2:	
Mark	1650
Space	1850
*Selectable carrier frequency	

TONE GENERATION

Under control of the host processor, the R96FT can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

SIGNALING AND DATA RATES

Parameter	Specification
Signaling Rate:	2400 baud
Data Rate:	9600 bps
	7200 bps
]	4800 bps
Signaling Rate:	1600 baud
Data Rate:	4800 bps
Signaling Rate	1200 baud
Data Rate:	2400 bps
Gearshift Data Rate:	2400/4800 bps
Signaling Rate:	300 baud
Data Rate:	300 bps

DATA ENCODING

At 2400 baud, the data stream is encoded per CCITT V.29. At 9600 bps, the data stream is divided in groups of four-bits (quadbits) forming a 16-point structure. At 7200 bps, the data stream is divided into three bits (tribits) forming an 8-point structure. At 4800 bps, the data stream is divided into two bits (dibits) forming a 4-point structure.

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27 bis/ter.

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 bis/ter.

For the Gearshift configuration, the signaling rate is 1200 baud. The 2400 bps data stream is encoded into dibits forming a 4-point structure, and the 4800 bps data stream is encoded into quadbits forming a 16-point structure. The first 32 bauds of data are transmitted at 2400 bps and the remaining message is transmitted at 4800 bps.

At 300 baud, the 300 bps data stream is encoded per CCITT V.21 Channel 2 into a mark frequency of 1650 Hz and a space frequency of 1850 Hz.

EQUALIZERS

The R96FT provides equalization functions that improve performance when operating over low quality lines.

9600 bps Fast Train Modem

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive T equalizer is provided in the receiver circuit.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent.
- 2. 1600 Baud. Square root of 50 percent.
- 3. 2400 Baud. Square root of 20 percent.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The R96FT incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 bis/ter or V.29 depending on the selected configuration.

The scrambler/descrambler facilities for Gearshift can be selected to be in accordance with either V.27 bis/ter or V.29. The scrambler/descrambler selection is made by writing the appropriate configuration codes into the transmitter and receiver.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R96FT can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

During fast train polling, frequency offset must be less than ± 2 Hz for successful training.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from -5 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

The R96FT provides a data derived Receive Data Clock (RDCLK) output in the form of a squarewave. The low-to-high transitions of this output coincide with the centers of received data bits. For the Gearshift configuration, the first 32 bauds of data are at 2400 bps followed by 4800 bps data for the remaining message. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. RDCLK duty cycle is 50% $\pm 1\%$.

TRANSMIT LEVEL

The transmitter output level is accurate to \pm 1.0 dB and is programmable from - 1.0 dBm to - 15.0 dBm in 2 dB steps.

9600 bps Fast Train Modem

TRANSMIT TIMING

The R96FT provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 9600, 7200, 4800, 2400 or 300 Hz (±0.01%). For the Gearshift Configuration, TDCLK is a 2400 Hz clock for the first 32 bauds of data, and a 4800 Hz clock for the remaining message.
- 2. Duty Cycle. 50% ±1%

Input data presented on TXD is sampled by the R96FT at the low-to-high transition of TDCLK. Data on TXD must be stable for at least one microsecond prior to the rising edge of TDCLK and remain stable for at least one microsecond after the rising edge of TDCLK.

EXTERNAL TRANSMIT CLOCK

The transmitter data clock (TDCLK) can be phase locked to a signal on input XTCLK. This input signal must equal the desired data rate $\pm 0.01\%$ with a duty cycle of 50% $\pm 20\%$.

TRAIN ON DATA

When train on data is enabled (by setting a bit in the interface memory), the modern monitors the EQM signal. If EQM indicates a loss of equalization (i.e., BER approximately 10^{-3} for 0.5 seconds) the modern attempts to retrain on the data stream. The time for retrain is typically 3 to 15 seconds.

TURN-ON SEQUENCE

A total of 20 selectable turn-on sequences can be generated as defined in the following table:

	V.29	V.27 bis/ter	Gearshift	RTS-CTS Response Time	
No.	(bps)	(bps)	(bps)	(milliseconds)	Comments
1	FT/9600			23	
2	FT/7200			24	Proprietary
3	FT/4800			23	Fast Train
4		FT/4800		22	
5		FT/2400		30	
6	9600			253	
7	7200			253	
8	4800			253	
9		4800 long		708	
10		2400 long		943	
11		4800 short		50	
12		2400 short		67	
13			2400/4800	10	
14	9600			438	Preceded ¹
15	7200			438	by Echo
16	4800			438	Protector
17		4800 long		913	Tone for
18		2400 long		1148	lines using
19		4800 short		255	echo
20		2400 short		272	suppressors.
F	RTS-CTS	response tir	ne.	btract 155 ms fro	
2. \	/.21 (300	bps FSK) R	TS-CTS res	ponse time is <3	85 ms.

TURN-OFF SEQUENCE

For V.27 bis/ter, V.27FT and 2400/4800 bps Gearshift configurations, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy (V.27 bis/ter only). For V.29 and V.29FT, the turn-off sequence consists of approximately 8 ms of remaining data and scrambled ones.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) when the Received Line Signal Detector (RLSD) is off.

RESPONSE TIMES OF CLEAR TO SEND (CTS)

The time between the off-to-on transition of Request To Send (\overline{RTS}) and the off-to-on transition of Clear to Send (\overline{CTS}) is dictated by the length of the training sequence and the echo protector tone, if used. These times are given in the Turn-On Sequences table. If training is not enabled, $\overline{RTS/CTS}$ delay is less than 2 baud times.

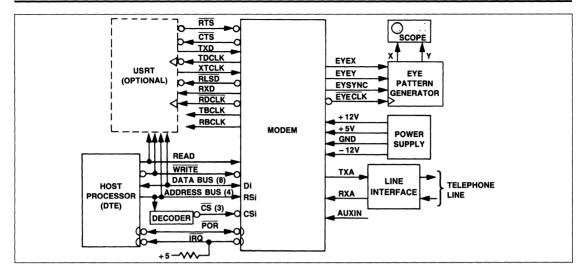
The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-tooff transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVE LINE SIGNAL DETECTOR (RLSD)

Response

For Fast Train and Gearshift configurations, the receiver enters the training state upon detecting a significant increase in the received signal power. If the received line signal power is greater than the selected threshold level at the end of the training state, the receiver enters the data state and RLSD is activated. If the received line signal power is less than the selected threshold level at the end of the training state, the receiver enters the data state, the receiver enters the data state and RLSD is activated. If the received line signal power is less than the selected threshold level at the end of the training state, the receiver returns to the idle state and RLSD is not activated.

Also, in Fast Train and Gearshift configurations, the receiver initiates the turn-off delay upon detecting a significant decrease in the received signal power. If the received signal power is less than the selected threshold at the end of the turn-off delay, the received signal power is greater than the selected threshold at the end of the turn-off delay, the received signal power is greater than the selected threshold at the end of the turn-off delay, the receiver returns to the data state and RLSD is left active.


For CCITT configurations, the receiver enters the training detection state when the received line signal power crosses the selected threshold level. RLSD is activated at the end of the training sequence. For V.21 Channel 2, a separate received line signal detector (FRLSD) is provided. FRLSD is activated when energy above -43 dBm is present at the receiver's audio input (RXA). The FRLSD off-to-on response time is 15 ±5 ms and the on-to-off response time is 25 ±5 ms.

The RLSD on-to-off response times are:

Configuration	RLSD On-To-Off Response Time (ms)
V.29 Fast Train	6.5 ± 1
V.27 Fast Train	8 ±1
Gearshift	6 ±1
V.29	30 ±9
V.27 bis/ter	10 ±5

RLSD response times are measured with a signal at least 3 dB above the actual \overline{RLSD} on threshold or at least 5 dB below the actual \overline{RLSD} off threshold.

9600 bps Fast Train Modem

R96FT Functional Interconnect Diagram

Threshold Options

Four threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 48 dBm (RLSD off)
- Greater than 33 dBm (RLSD on) Less than - 38 dBm (RLSD off)
- Greater than 26 dBm (RLSD on) Less than - 31 dBm (RLSD off)
- Greater than 16 dBm (RLSD on) Less than - 21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

For CCITT configurations, a minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The R96FT is capable of being operated in either a serial or a parallel mode of operation.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the Functional Interconnect Diagram) illustrates this capability.

PARALLEL MODE

The R96FT has the capability of transferring channel data (up to eight bits at a time) via the microprocessor bus.

MODE SELECTION

For the transmitter, a control bit determines whether the source of transmitted data is the V.24 interface (serial mode) or the parallel transmitter data register (parallel mode). The transmitter automatically defaults to the serial mode at power-on.

The receiver simultaneously outputs received data via the V.24 interface and the parallel receiver data register.

In either parallel or serial mode, the R96FT is configured by the host processor via the microprocessor bus.

INTERFACE CRITERIA

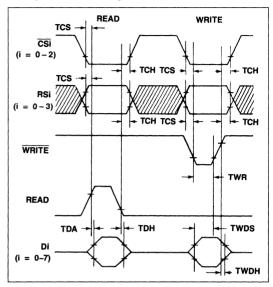
The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 64-pin DIN connector. Software circuits are assigned to specific bits in a 48-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R96FT Hardware Circuits table. In the table, the column titled 'Type' refers to designations found in the Hardware Circuit Characteristics. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 6800, or 68000 microprocessors.

Eye Pattern Generation

The four hardware diagnostic circuits, identified in the following table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words are shifted out most significant bit first, clocked by the


9600 bps Fast Train Modem

rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

R96FT Hardware Circuits

r			B 10				
Name	Туре	DIN Pin No.	DIP Pin No.	Description			
A. OVER	HEAD:						
Ground (A)	AGND	31C,32C	30,31	Analog Ground Return			
		3C,8C,5A,10A		Digital Ground Return			
+5 volts	PWR	19C,23C,	1,45,61	+ 5 Vdc Supply			
		26C,30C	.,,.	· • · • • • • • • • • • • • • • • • • •			
+ 12 volts	PWR	15A	32	+ 12 Vdc Supply			
- 12 volts	PWR	12A	36	- 12 Vdc Supply			
POR	I/OB	13C	2	Power-on-reset			
B. MICROPROCESSOR INTERFACE:							
D7	I/OA	1C	3]				
D6	1/OA	1A	4				
D5	I/OA	2C	5				
D4	I/OA	2A	6				
D3	I/OA	3A	77	Data Bus (8 Bits)			
D2	I/OA	4C	8				
D1	I/OA	4A	9				
D0	I/OA	5C	10				
RS3	IA	6C	16				
RS2	IA	6Ă	17				
RS1	IA	7C	18	Register Select (4 Bits)			
RS0	IA	7A	19				
CS0	IA	10C	20	Chip Salast			
0.50	IA	100	20	Chip Select—			
CS1	IA	9C	21	Transmitter Device Chip Select—Receiver			
031		90	21	Sample Rate Device			
CS2	IA	9A	13	Chip Select—Receiver			
0.52	IA	ЭA	13	Baud Rate Device			
READ	IA	12C	14	Read Enable			
WRITE	iA	120 11A	12	Write Enable			
IRQ	бв	11C	11	Interrupt Request			
C. V.24 IN				interrupt ricquest			
RDCLK				5			
	OC	21A	23	Receive Data Clock			
TDCLK	oc	23A	46	Transmit Data Clock			
XTCLK	IB IB	22A	51	External Transmit Clock			
RTS CTS	IB OC	25A	50	Request to Send			
TXD	IB	25C 24C	49 48	Clear to Send Transmitter Data			
RXD		24C 22C	48 26	Receiver Data			
RLSD		220 24A	20	Received Line Signal			
nL3D	00	244	21	Detector			
D. ANOU		DOLUTO		Detector			
D. ANCILL							
RBCLK	OC	26A	22	Receiver Baud Clock			
TBCLK	OC	27C	47	Transmitter Baud Clock			
FRXD	OD	16A	60	FSK Receiver Data			
				(inverted data)			
FRLSD	OD	17C	44	FSK Received Line			
				Signal Detector			
E. ANALO			·····				
TXA	AA	31A	34	Transmitter Analog			
				Output			
RXA	AB	32A	33	Receiver Analog Input			
AUXIN	AC	30A	_	Auxiliary Analog Input			
F. DIAGNO	STIC:		-				
EYEX	OC	15C	56	Eye Pattern Data—X Axis			
EYEY	ŌĊ	14A	55	Eye Pattern Data—Y Axis			
EYECLK	ŌĂ	14C	57	Eye Pattern Clock			
EYESYNC	OA	13A	58	Eye Pattern			
-				Synchronizing Signal			
NOTE: Pin	s not us	sed on the DIF	Version:	15, 24, 25, 28, 35,			
		54 and 59.		, ,,,,,			
	00 40, 02, 04 and 03.						

Microprocessor Timing

Microprocessor Interface Timing Diagram

Critical Timing Requirements

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	тсѕ	30		nsec
Data access time after Read	TDA	-	140	nsec
Data hold time after Read	TDH	10	50	nsec
CSi, RSi hold time after Read or Write	тсн	10	_	nsec
Write data setup time	TWDS	75		nsec
Write data hold time	TWDH	10	-	nsec
Write strobe pulse width	TWR	75	_	nsec

9600 bps Fast Train Modem

					0. <u></u>	I	nput/Output	Туре			
Symbol	Parameter	Units	IA	IB	IC	OA	OB	OC	OD	I/O A	I/O B
V _{IH}	Input Voltage, High	v	2.0 Min.	2.0 Mın	2.0 Min.					2 0 Min.	5.25 Max 2.0 Min.
V _{IL}	Input Voltage, Low	v	0 8 Max.	0.8 Max	0.8 Max.	ļ				0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2.2 Min 6	2 4 Min.1	2.4 Min. ³
V _{OL}	Output Voltage, Low	v				0.4 Max 2	0 4 Max ²	0.4 Max. ²	0.6 Max. ⁷	0.4 Max. ²	0.4 Max.5
I _{IN}	Input Current, Leakage	μA	±25 Max.							±25 Max.4	
I _{он}	Output Current, High	mA				-0.1 Max.					
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.			
<u>ا</u> ر	Output Current, Leakage	μA					±10 Max.				
I _{PU}	Pull-up Current (Short Cırcuıt)	μA		– 240 Max. – 10 Min.	– 240 Max. – 10 Min.			– 240 Max. – 10 Min.			– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20					10	40
CD	Capacitive Drive	pF				100	100	100		100	100
	Cırcuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	TTL	3-State Transceiver	Open-Drain w/Pull-up
Notes	1. Load = $-100 \mu A$ 2. Load = 1.6 mA	A		$i = -40 \ \mu R$ 0.4 to 2.4	Vdc, V _{CC} =	5.25 Vdc		oad = 0.36 oad = -40		Load = 2.0) mA

Digital Interface Characteristics

internace onaracteristics

Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output impedance is 604 ohms \pm 1%.
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is TLVL setting $+ 0.6 \text{ dB} - 1.4 \text{ dB}$. If unused, this input must be grounded near the modem connector. If used, it must be driven from a low impedance source.

SOFTWARE CIRCUITS

The R96FT comprises three signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 1 update at half the modem sample rate (4800 bps). Registers in chip 0 and 2 update at the selected baud rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0–2), the register by Z(0–F), and the bit by Q(0–7, 0 = LSB).

Status Control Bits

The operation of the R96FT is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits designated by a dash (—) are reserved for modem use only and must not be changed by the host.

RAM Data Access

The R96FT provides the user with access to much of the data stored in the modem's memories. This data is useful for performing certain diagnostic functions.

Two RAM access registers in chip 2 allow user access to RAM locations via the X word registers (2:3 and 2:2) and the Y word register (2:1 and 2:0). The access code stored in RAM ACCESS X (2:5) selects the source of data for RAM DATA XM and RAM DATA XL (2:3 and 2:2). Similarly, the access code stored in RAM ACCESS Y (2:4) selects the source of data for RAM DATA YM and RAM DATA YL (2:1 and 2:0).

Reading of diagnostic RAM data is performed by storing the necessary access codes in 2:5 and 2:4, reading 2:0 to reset the associated data available bit (2:E:0), then waiting for the data available bit to return to a one. Data is now valid and may be read from 2:3 through 2:0.

An additional diagnostic is supplied by the sample rate processor (chip 1). Registers 1:2 and 1:3 supply a 16 bit AGC Gain Word. These two diagnostic data registers are updated at the sample rate during the data state and may be read by the host processor asynchronously.

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem.

Baud Rate Processor (Chip 2) RAM Access Codes

No.	Function	X Access	Y Access	Register
1	Equalizer Input	C0	40	0,1,2,3
2	Equalizer Tap Coefficients	81–A0	01-20	0,1,2,3
3	Unrotated Equalizer Output	E1	61	0,1,2,3
4	Rotated Equalizer Output	E2	62	0,1,2,3
5	Decision Points (Ideal Data Points)	E8	68	0,1,2,3
6	Error Vector	E5	65	0,1,2,3
7	Rotation Angle	A7	Not Used	2,3
8	Frequency Correction	A5	Not Used	2,3
9	Eye Quality Monitor (EQM)	AC	Not Used	2,3

9600 bps Fast Train Modem

Transmitter Interface Memory Chip 0 (CS0)

Bit Register	7	6	5	4	3	2	1	0				
F	_	_	-	-	-	—	—	_				
E	TIA	—	_	-	TSB	TIE	-	TBA				
D		-			-			-				
С	—	-			-			-				
В		-					-	-				
A			-			-	-	-				
9	FSKT	ASCR		—	TCF	DDEE	—					
8	-	-	-	-	-	_		—				
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT				
6		TR	ANSMI	TTER C	ONFIG	URATIO	NC					
5		-	CI	EQ	LAEN	LDEN	A3L	D3L				
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN				
3				FRE	QM							
2				FRE	QL			İ				
1		—		-	—	-	-	—				
0			TR	ANSMIT	TER D	ATA						
Register Bit	7	6	5	4	3	2	1	0				
(—) indi	cates re	eserved		NOTE dem us	e only.							

Receiver Interface Memory Chip 1 (CS1)

Bit	7	6	5	4	3	2	1	0
Register F								
E	RIA				RSB	RIE	—	RDA
D	—	-	—	-	-	—	—	—
С			-			-	—	
В	-	_	-	-	_		-	-
A	_	-	-	-		-	-	-
9	-	FED	-	-	-	CDET	-	-
8	—				P2DET	-	-	-
7	R	ГН	DDIS	-	-	RCF	RDIS	-
6	TOD		RECEIVER CONFIGURATION					
5		_		—	-	-	-	-
4		—	—		-		—	—
3			AGC	GAIN V	VORD (MSB)		
2			AGC	GAIN V	NORD (LSB)		
1		-			-			-
0			F	RECEIVE	ER DAT	A		
Register								
Bit	7	6	5	4	3	2	1	0
(—) indi	icates r	eserved		NOTE odem us	se only.			

Receiver Interface Memory Chip 2 (CS2)

Bit	7	6	5	4	3	2	1	0
Register		•	-	-				
F	_		—		-	-		-
E	RBIA		_	-	-	RBIE	-	RBDA
D			-	-	-	-	-	-
С	-	-	-	-	-	-	-	-
В			_	-	-	-	-	-
A	-	-				-		-
9	-		-	-	-	-	-	-
8	-	-	-	-	-	-	-	_
7			-	-	-	-	-	
6	-			-	-	_		-
5			F	RAM AC	CESS >	<		
4			F	RAM AC	CESS	(
3				RAM D	ata XM			
2				RAM D	ATA XL			
1				RAM D	ATA YM			
0				RAM D	ATA YL			
Register								
Bit	7	6	5	4	3	2	1	0
() ind	icates r	eserved		NOTE odem us	e only.			

9600 bps Fast Train Modem

R96FT Interface Memory Definitions

Mnemonic	Name	Memory Location				De	scription				
ASCR	Append Scrambled Ones	0:9:6	When control V.29FT and V. baud period w	27FT tra	aining seq	uences.					
A3L	Amplitude 3-Link Select	0:5:1	See LAEN.								
CDET	Carrier Detector	1:9:2	When zero, st that a training data state, and 1 baud time b	sequen d returns	ce is not i s to a one	n proces	s. CDET of the	goes to a received :	zero at th signal. CE	ne start of DET activa	the
CEQ	Cable Equalizer Field	0:5:(4,5)	The CEQ Cont the transmit and selection code	nd receiv							
			C	EQ			Cable Le	ength (0.4	4 mm dia	meter)	
				0				0.0			
		[1				1.8			
				2 3				3.6 7.2			
DDEE	Digital Delay Equalizer Enable	0:9:2	When control	When control bit DDEE is a one, a fourth order digital delay equalizer is inserted in the transmit path.							
DDIS	Descramble Disable	1:7:5		When control bit DDIS is a one, the receiver descrambler circuit is removed from the							
D3L	Delay 3-Link Select	0:5:0	See LDEN.								
EPT	Echo Protector Tone	0:7:3	When control bit EPT is a one, an unmodulated carrier is transmitted for 185 ms (optionally 30 ms) followed by 20 ms of no transmitted energy at the start of transmission. This option is available in the V.27 and V.29 configurations, although it is not specified in the CCITT V.29 Recommendation.								
FED	Fast Energy Detector	1:9:6	When status b present in the			t indicate	s that en	ergy abov	e the rec	eiver thre	shold is
(None)	FREQL/FREQM	0:2:0–7, 0:3:0–7	The host proce data word to the shown below:								
			FREQM Regi	ster (0:	3)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	2 ¹⁵	2 ¹⁴	2 ¹³	212	211	210	2 ⁹	28
			FREQL Regis	ter (0::	2)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	2 ⁶	25	24	2 ³	2 ²	21	20
			The frequency $F = (0.146486)$			mines the	e frequenc	cy (F) as t	follows:	L	J
			Hexadecimal fi given below:	equency	/ numbers	s (FREQL	, FREQM) for com	monly ger	nerated to	nes are
			Frequ	uency (H	łz)		FREQ	М		FREQL	
			462 OC					52			
				1100			1D			55	
				1650			2C			00	
				1850 2100			31 38			55 00	
				2100			30			00	
FSKT	FSK Transmitter Configuration	0:9:7	The V.21 Char setting the FSI rides the config be transmitted	<⊤ contr guration	ol bit to a selected	one (see by the co	TSB). W	hile set to e in regist	o a one, ti ter 0:6. Th	his contro	l bit ove

9600 bps Fast Train Modem

Mnemonic	Memory Name Location Description								
LAEN	Link Amplitude Equalizer Enable	0:5:3		izer enable and select bits bath according to the follow	control an amplitude compromise wing table:				
			LAEN	A3L	Curve Matched				
		1	0	x	No Equalizer				
			1	0	U.S. Survey Long				
			1	1	Japanese 3-Link				
LCEN	Loop Clock Enable	0:4:0	When control bit LCEN is	s a one, the transmitter clo	ock tracks the receiver clock.				
LDEN	Link Delay Equalizer Enable	0:5-2	The link delay equalizer the receive path according		trol a delay compromise equalizer in				
			LDEN	D3L	Curve Matched				
			0	х	No Equalizer				
			1	0	U.S. Survey Long				
			1	1	Japanese 3-Link				
L2ACT	Remote Digital Loopback Activate	0:4:1			al output is connected to the Recommendation V.54 loop 2.				
L3ACT	Local Analog Loop- back Activate	0:4:7	When control bit L3ACT is a one, the transmitter analog output is coupled to the receiver analog input through an attenuator in accordance with CCITT Recommendation V.54 loop 3.						
L4ACT	Remote Analog Loopback Activate	0:4:6		ugh a variable gaın amplifi	log input is connected to the trans- ier in a manner similar to CCITT				
L4HG	Loop 4 High Gain	0:4:5	When control bit L4HG is and when at zero the ga		e gaın amplifier is set for +16 dB,				
MHLD	Mark Hold	0:7:4	When control bit MHLD marks (ones).	is a one, the transmitter in	put data stream is forced to all				
P2DET	Period 2 Detector	1:8·3	detected. This bit sets to		a period 2 sequence has been period N sequence. This bit is only rations.				
(None)	RAM Access X	2:5.0–7	Contains the RAM acces and 2:2).	s code used in reading ch	ip 2 RAM locations via word X (2:3				
(None)	RAM Access Y	2:4:0-7	Contains the RAM acces and 2:0).	s code used in reading ch	ip 2 RAM locations via word Y (2:1				
(None)	RAM Data XL	2:2:0-7	Least significant byte of	16-bit word X used in read	ling RAM locations in chip 2.				
(None)	RAM Data XM	2:3:0-7	Most significant byte of	16-bit word X used in readi	ing RAM locations in chip 2.				
(None)	RAM Data YL	2:0.0-7	Least significant byte of	16-bit word Y used in read	ling RAM locations in chip 2.				
(None)	RAM Data YM	2:1:0-7	Most significant byte of	16-bit word Y used in readi	ing RAM locations in chip 2.				
RBDA	Receiver Baud Data Available	2:E:0		a one when the receiver whost processor reads data	writes data into register 2:0. The bit a from register 2:0.				
RBIA	Receiver Baud Interrupt Active	2:E:7	This status bit is a one w	whenever the receiver bauc	d rate device is driving IRQ low.				
RBIE	Receiver Baud Interrupt Enable	2:E:2		r writes a one in the RBIE to zero when status bit RB	control bit, the \overline{IRQ} line of the hard- DA is a one.				
RCF	Receiver Carrier Frequency	1.7:2	Control bit RCF selects t follows:	the demodulator carrier fre	equency for V.29FT configurations as				
		1	RCF	Demodulator C	arrier Frequency				
		1	0		00 Hz				
			1	180	00 Hz				

R96FT Interface Memory Definitions (Continued)

9600 bps Fast Train Modem

2

Mnemonic	Name	Memory Location		Description	
(None)	Receiver Configuration	1:6:0-6	configuration field in the in Note: The receiver must be Receiver Configuration Con-	terface memory space (see F e disabled prior to changing	configurations See RDIS.
		1			
			Config	guration	
			V29	V27 bis/ter	Configuration Code (Hex)
]	FT/9600		10
			FT/7200		1A
			FT/4800		19
				FT/4800	OA
				FT/2400	09
			9600		14
			7200		14
		1	4800		11
			4800	4800 long	22
				2400 long	21
				4800 short	02
			11	2400 short	01
				·····	
			2400/4800 bps Gearshif 2400/4800 bps Gearshif	t/V.29 descrambler t/V.27 bis/ter descrambler	61 ¹ 41 ¹
			V.21	Channel 2	See Note 2
			and FRXD, are supplied the Received Line Sign data. Timing extraction	tive at all times. Two ancillar d for FSK message reception al Detector section. FRXD p	y hardware circuits, FRLSD n. FRLSD is described under rovides inverted FSK received RXD signal externally as no
(None)	Receiver Data	1:0:0–7		ne receiver data register. The	iver in the parallel data mode by a data is divided on baud
RDA	Receiver Data Available	1:E:0		ne when the receiver writes ocessor reads data from regi	data to register 1:0. RDA goes ster 1:0.
RDIS	Receiver Disable	1:7:1	is clamped to all marks. Th		ed, RLSD is turned off and RXD h the receiver during half duplex one prior to changing the
RIA	Receiver Interrupt Active	1:E:7	This status bit is a one who	enever the receiver sample r	ate device is driving IRQ to zero.
RIE	Receiver Interrupt Enable	1:E:2		rites a one in the RIE contront to zero when status bit RD	
RSB	Receiver Setup Bit	1:E:3			ration or the RTH field, the host goes to zero when the changes
RTH	Receiver Threshold Field	1:7:6,7		or threshold is set by the RT	H field according to the
			RTH	RLSD On	RLSD Off
			0	> – 43 dBm	< - 48 dBm
			1	> – 33 dBm	< – 38 dBm
			2	> – 26 dBm	< – 31 dBm
			3	> – 16 dBm	< – 21 dBm
RTS	Request-to-Send	0:7:7	continues to transmit until	arallels the operation of the	turn-off sequence has been

R96FT Interface Memory Definitions (Continued)

9600 bps Fast Train Modem

Mnemonic	Name	Memory Location		Description					
SDIS	Scrambler Disable	0:7:5	When control bit SDIS is a data path.	one, the transmitter scram	bler circuit is removed from the				
SEPT	Short Echo Protector Tone	0:7:0	When control bit SEPT is a than 185 ms. (See TSB.)	a one, the echo protector di	sable tone is 30 ms long rather				
ТВА	Transmitter Buffer Available	0:E:0		ro when the host processor nsmitter empties register 0:	writes data to transmitter data 0, this bit sets to a one.				
TCF	Transmitter Carrier Frequency	0:9:3			or V.29FT configurations as follow				
	Frequency		0 1	Modulator Carrie 1700 H 1800 H	iz				
ΤΙΑ	Transmitter Interrupt Active	0:E:7	This status bit is a one who	enever the transmitter is dri	ving IRQ to a zero.				
TIE	Transmitter Interrupt Enable	0:E:2	When the host processor writes a one in control bit TIE, the IRQ line of the hardware interface is driven to zero when status bit TBA is at a one.						
TLVL	Transmitter Level	0:4:2-4	The transmitter analog out	put level is determined by e	ight TLVL codes, as follows:				
	Field		TLVL		tter Analog Output*				
			0		1 dBm ±1 dB				
			1		- 3 dBm ± 1 dB - 5 dBm ± 1 dB				
			3		- 5 dBm ± 1 dB - 7 dBm ± 1 dB				
			4						
			5		-9 dBm ±1 dB -11 dBm ±1 dB				
			6		13 dBm ±1 dB				
			7 – 15 dBm ±1 dB						
			*Each step al	bove is a 2 dB change ±0.					
TOD	Train-On-Data	1:6:7	When control bit TOD is a one, it enables the train-on-data algorithm to converge the equalizer if the signal quality degrades sufficiently. When TOD is a one, the modem st recognizes a training sequence and enters the force train state. A BER of approximate 10^{-3} for 0.5 seconds initiates train-on-data.						
TPDM	Transmitter Parallel Data Mode	0:7:2		a one, the transmitter accept: 0) rather than the serial ha	ots data for transmission from th ardware data input.				
(None)	Transmitter Configuration	0:6:0-7		ures the transmitter by writing gister in its interface memo					
			Transmitter Configuration C	ontrol Codes					
			Control codes for the mode	em transmitter configuration	s are:				
			Config	juration					
			V29	V27 bis/ter	Configuration Code (Hex)				
			FT/9600		1C				
			FT/7200		1A				
			FT/4800		19				
				FT/4800 FT/2400	0A 09				
			9600		14				
			7200		14				
			4800		11				
				4800 long	22				
				2400 long	21				
				4800 short	02				
				2400 short	01				
	1		2400/4800 bps Gearshi 2400/4800 bps Gearshi	ft/V.29 Scrambler ft/V.27 bis/ter Scrambler	61 41				
				hannel 2	See FSKT				
			V.21 Cl	hannel 2 transmit	See FSKT 80				

9600 bps Fast Train Modem

Mnemonic	Name	Memory Location			Des	cription	I				
(None)	Transmitter Data	0:0:0-7	The host processor conveys output data to the transmitter in the parallel mode by writing a data byte to the transmitter data register. The data is divided on baud boundaries, as follows: Note: Data is transmitted bit zero first								
							E	Bits			
			Configuration	7	6	5	4	3	2	1	0
			V.29 9600 bps		Baud	1			Ва	ud 0	
			V.29 7200 bps	Not	Used	Baud 1		1		Baud 0	
			V.29 4800 bps	Bai	ud 3	Baud 2		Bau	ud 1	Baud 0	
			V.27 4800 bps	Not	Used		Baud 1	1		Baud ()
			V.27 2400 bps	Baud 3		Bauc	12	Bau	ud 1	Ba	ud 0
			2400 bps Gearshift	Baud 3		Bauc	12	Bau	aud 1 Baud 0		ud 0
			4800 bps Gearshift		Baud	1			Baud 0		
TSB	Transmitter Setup Bit	0:E:3	When the host processor of FSKT bit, the host must w change becomes effective + training (if applicable).	rite a or	e in this	s control	bit. T	SB goe	s to a z	ero whe	n the
TTDIS	Transmitter Train Disable	0:7:6	When control bit TTDIS is at the start of transmission times.								
XCEN	External Clock Enable	0:7:1	When control bit XCEN is clock supplied at the hard				•	s establ	lished b	y the ex	ternal

R96FT Interface Memory Definitions (Continued)

POWER-ON INITIALIZATION

When power is applied to the R96FT, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (POR) remains low during this period. Approximately 10 ms after the low to high transition of POR, the modem is ready to be configured, and RTS may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 msec, the POR cycle is generated.

At POR time the modem defaults to the following configuration: fast train, V.29, 9600 bps, no echo protector tone, 1700 Hz carrier frequency, scrambled ones segment disabled, serial data mode, internal clock, cable equalizers disabled, transmitter digital delay equalizer disabled, link amplitude equalizer disabled, link delay equalizer disabled, transmitter output level set to $-1 \text{ dBm } \pm 1 \text{ dB}$, interrupts disabled, receiver threshold set to -43 dBm, and train-on-data enabled.

POR can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or more applied to the POR pin causes the modem to reset. The modem is ready to be configured 10 msec after POR is removed.

PERFORMANCE

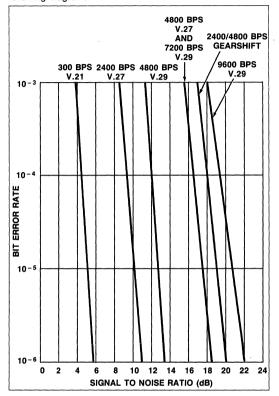
Whether functioning in V.27, V.29 or the proprietary fast train configurations, the R96FT provides the user with high performance.

POLLING SUCCESS

In the 9600 bps fast train configuration the modem approaches a 98% success rate over unconditioned 3002 lines for a signalto-noise ratio of 26 dB, with a received signal level of – 20 dBm.

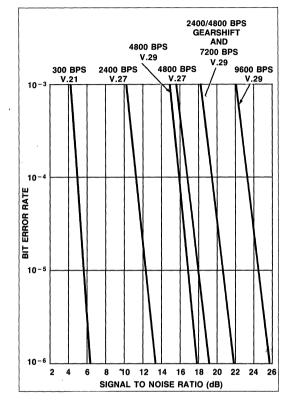
BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

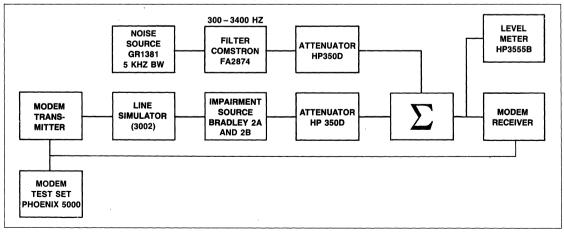

PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz, or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps (V.27 bis/ter), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.


At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.

9600 bps Fast Train Modem


An example of the BER performance capabilities is given in the following diagrams:

Typical BER Performance Back-to-Back, – 20 dBm Receive Signal Level

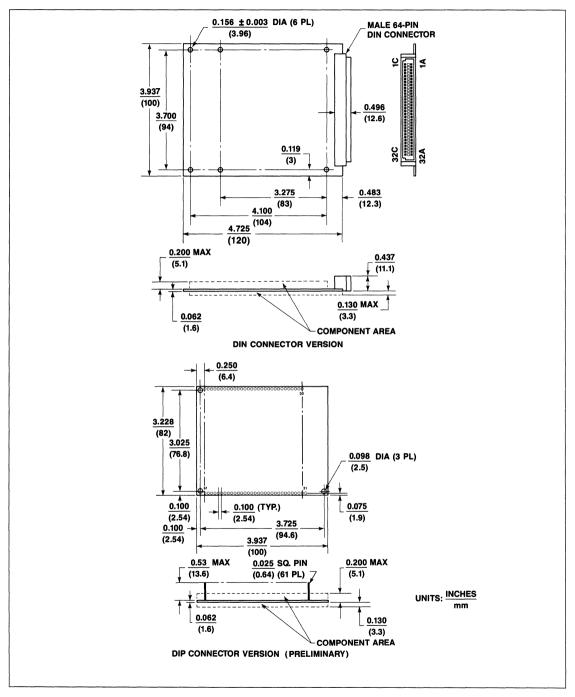
Typical BER Performance 3002 Unconditioned Line, – 20 dBm Receive Signal Level

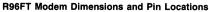
The BER performance test set-up is shown in the following diagram:

BER Performance Test Set-up

9600 bps Fast Train Modem

GENERAL SPECIFICATIONS


Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	±5%	550 mA	<700 mA
+ 12 Vdc	± 5%	20 mA	< 30 mA
- 12 Vdc	±5%	50 mA	< 80 mA


Modem Environmental Restrictions

Parameter	Specification				
Temperature Operating Storage Relative Humidity. Altitude	0°C to +60°C (32°F to 140°F) - 40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container) Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less - 200 feet to + 10,000 feet				

Modem Mechanical Considerations

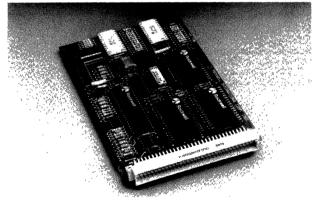
Parameter	Specification
DIN Connector Version	
Board Structure:	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male, or 6 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical mating connector Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
Dimensions:	
Width	3.937 in (100 mm)
Length	4.725 ın. (120 mm)
Height	0.40 in. (10.2 mm)
Weight (max):	3.6 oz (100 g)
Lead Extrusion (max):	0.100 in. (2 54 mm)
DIP Connector Version	
Board Structure	Single PC board with a row of 30 pins and a row of 31 pins in a dual in-line pin configuration.
Dimensions:	
Width	3.937 in (100 mm)
Length	3.228 in (82 mm)
Height	0 2 in. (5.08 mm) above, 0.13 in. (3.30 mm) below
Weight (max.):	3 6 oz (100 g)
Pin Length (max.)	0.53 in (13.5 mm)

Integral Modems

R96FT/SC 9600 bps Fast Train Modem with Forward Secondary Channel

INTRODUCTION

The Rockwell R96FT/SC is a synchronous serial 9600 bps modem containing a 75 bps asynchronous FSK forward channel. This modern is designed for multipoint and networking applications. The R96FT/SC allows full-duplex operation over 4-wire dedicated unconditioned lines, or half-duplex operation over the general switched telephone network.


Proprietary fast train configurations provide training times of 23 ms for V.29FT/9600/7200/4800, 22 ms for V.27FT/4800, and 30 ms for V.27FT/2400. A 2400/4800 bps Gearshift configuration provides a training time of 10 ms. For applications requiring operation with international standards, fallback configurations compatible with CCITT Recommendations V.29 and V.27 bis/ter are provided. A 300 bps FSK configuration, compatible with CCITT V.21 Channel 2, is also provided.

The small size and low power consumption of the R96FT/SC offer the user flexibility in formulating a 9600 bps modem design customized for specific packaging and functional requirements.

This data sheet corresponds to assembly number TR96-D500-021.

FEATURES

- Proprietary Fast Train
- 75 bps Forward Channel
- 2400/4800 bps Gearshift
 User Compatibility:
- CCITT V.29, V.27 bis/ter and V.21 Channel 2 Train on Data
- Full-Duplex (4-Wire)
- Half-Duplex (2-Wire)
- Programmable Tone Generation
- Dynamic Range –43 dBm to –5 dBm
- Diagnostic Capability
- Equalization:
 - Automatic Adaptive
 - Compromise Cable (Selectable)
 - Compromise Link (Selectable)
- DTE Interface:
 - Microprocessor Bus
 - --- CCITT V.24 (RS-232-C Compatible)
- Loopbacks
 - Local Analog (V.54 Loop 3)
 - Remote Analog (Locally Activated)
 - Remote Digital (Locally Activated V.54 Loop 2)
- Small Size
 - 100 mm × 160 mm (3.94 in. × 6.3 in.)
- Low Power Consumption — 4 watts, typical
- Programmable Transmit Output Levels for Primary Channel and Forward Channel
- TTL and CMOS Compatible

R96FT/SC Modem

Document No. 29200N13

Data Sheet 2-105

Order No. MD13 Rev. 2, February 1987

TECHNICAL SPECIFICATIONS

TRANSMITTER CARRIER FREQUENCIES

Function	Frequency (Hz ±0.01%)
V.27 bis/ter Carrier	1800
V 27 FT Carrier	1800
2400/4800 bps Gearshift	1800
V.29 Carrier	1700
V.29 FT Carrier	1700*
V 21 Channel 2:	
Mark	1650
Space	1850

*1800 when used in conjunction with 75 bps Forward Channel.

TONE GENERATION

Under control of the host processor, the R96FT/SC can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

SIGNALING AND DATA RATES

Parameter	Specification (±0.01%)
Signaling Rate: Data Rate:	2400 baud 9600 bps, 7200 bps, 4800 bps
Signaling Rate [.]	1600 baud
Data Rate:	4800 bps
Signalıng Rate:	1200 baud
Data Rate:	2400 bps
Gearshift Data Rate:	2400/4800 bps
Signaling Rate:	300 baud
Data Rate:	300 bps
Signaling Rate:	75 baud
Data Rate:	75 bps

DATA ENCODING

At 2400 baud, the data stream is encoded per CCITT V.29. At 9600 bps, the data stream is divided in groups of four-bits (quadbits) forming a 16-point structure. At 7200 bps, the data stream is divided into three bits (tribits) forming an 8-point structure. At 4800 bps, the data stream is divided into two bits (dibits) forming a 4-point structure.

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27 bis/ter.

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 bis/ter.

For the Gearshift Configuration, the signaling rate is 1200 baud. The 2400 bps data stream is encoded into dibits forming a 4-point structure, and the 4800 bps data stream is encoded into quadbits forming a 16-point structure. The first 32 bauds of data are transmitted at 2400 bps and the remaining message is transmitted at 4800 bps.

At 300 baud, the 300 bps data stream is encoded per CCITT V.21 channel 2 into a mark frequency of 1650 Hz and a space frequency of 1850 Hz.

At 75 baud, the 75 bps data stream is encoded to a mark frequency of 356 Hz and a space frequency of 300 Hz.

EQUALIZERS

The R96FT/SC provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers — Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

9600 bps Fast Train Modem

Link Equalizers — Selectable compromise link equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer — An automatic adaptive T equalizer is provided in the receiver circuit.

TRANSMITTED DATA SPECTRUM

If the cable equalizer is not enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent.
- 2. 1600 Baud. Square root of 50 percent.
- 3. 2400 Baud. Square root of 20 percent.

NOTE

When used with the 75 bps Forward Channel the 2400 Baud filter is narrower.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The R96FT/SC incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 bis/ter or V.29 depending on the selected configuration.

The scrambler/descrambler facilities for Gearshift can be selected to be in accordance with either V.27 bis/ter or V.29. The scrambler/descrambler selection is made by writing the appropriate configuration codes into the transmitter and receiver.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R96FT/SC can adapt to received frequency error of up to \pm 10 Hz with less than 0.2 dB degradation in BER performance.

During fast train polling, frequency offset must be less than ± 2 Hz for successful training.

RECEIVE LEVEL

The receiver circuit of the modem satisfies all specified performance requirements for received line signal levels from -5 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING (Synchronous Configurations)

The R96FT/SC provides a data derived Receive Data Clock (RDCLK) output in the form of a squarewave. The low-to-high transitions of this output coincide with the centers of received data bits. For the Gearshift Configuration, the first 32 bauds of data are at 2400 bps followed by 4800 bps data for the remaining message. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. RDCLK duty cycle is 50% $\pm 1\%$.

TRANSMIT LEVEL

The main channel output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2 dB steps.

The forward channel transmit level is set relative to the main channel as -6 dB, -10 dB, -14 dB, or -18 dB.

TRANSMIT TIMING (Synchronous Configurations)

The R96FT/SC provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 9600, 7200, 4800, 2400 or 300 Hz (±0.01%). For the Gearshift Configuration, TDCLK is a 2400 Hz clock for the first 32 bauds of data, and a 4800 Hz clock for the remaining message.
- 2. Duty Cycle. 50% ±1%

9600 bps Fast Train Modem

Input data presented on TXD is sampled by the R96FT/SC at the low-to-high transition of TDCLK. Data on TXD must be stable for at least one microsecond prior to the rising edge of TDCLK and remain stable for at least one microsecond after the rising edge of TDCLK.

EXTERNAL TRANSMIT CLOCK

The transmitter data clock (TDCLK) can be phase locked to a signal on input XTCLK. This input signal must equal the desired data rate $\pm 0.01\%$ with a duty cycle of 50% $\pm 20\%$.

TRAIN ON DATA

When train on data is enabled (by setting a bit in the interface memory), the modern monitors the EQM signal. If EQM indicates a loss of equalization (i.e., BER approximately 10^{-3} for 0.5 seconds) the modern attempts to retrain on the data stream. The time for retrain is typically 3 to 15 seconds.

TURN-ON SEQUENCE

A total of 20 selectable turn-on sequences can be generated as defined in the following table:

No.	V.29 (bps)	V.27 bis/ter (bps)	Gearshift (bps)	RTS-CTS Response Time (milliseconds)	Comments		
1	FT/9600			23			
2	FT/7200			24	Proprietary		
3	FT/4800			23	Fast Train		
4		FT/4800		22			
5		FT/2400		30			
6	9600			253			
7	7200			253			
8	4800			253			
9		4800 long		708			
10	1	2400 long	1	943			
11	}	4800 short		50			
12	1	2400 short		67			
13			2400/4800	10			
14	9600			438	Preceded ¹		
15	7200			438	by Echo		
16	4800			438	Protector		
17		4800 long		913	Tone for		
18		2400 long		1148	lines using		
19		4800 short		255	echo		
20		2400 short		272	suppressors.		
	1 For short echo protector tone, subtract 155 ms from values of RTS-CTS response time.						

2. V.21 (300 bps FSK) $\overline{\text{RTS-CTS}}$ response time is $<\!35$ ms

3. 75 bps forward channel SCRTS-SCCTS response time is <500 ms.

TURN-OFF SEQUENCE

For V.27bis/ter, V.27FT and 2400/4800 bps Gearshift configurations, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy (V.27 bis/ter only). For V.29 and V.29FT, the turn-off sequence consists of approximately 8 ms of remaining data and scrambled ones.

CLAMPING

Received Data (RXD) is clamped to a constant mark (one) when the Received Line Signal Detector (RLSD) is off.

RESPONSE TIMES OF CLEAR TO SEND (CTS)

The time between the off-to-on transition of Request To Send (\overline{RTS}) and the off-to-on transition of Clear to Send (\overline{CTS}) is dictated by the length of the training sequence and the echo protector tone, if used. These times are given in the Turn-On Sequences table. If training is not enabled, $\overline{RTS/CTS}$ delay is less than 2 baud times.

The time between the on-to-off transition of RTS and the on-tooff transition of CTS in the data state is a maximum of 2 baud times for all configurations.

RESPONSE TIMES <u>OF FO</u>RWARD CHANNEL CLEAR TO SEND (SCCTS)

SCRTS/SCCTS response times vary according to the transmit level set by the SCTLVL field.

SCTLVL (0:9:0-1)	TX Level Relative to Primary	SCCTS Response Time (ms)
0	– 6 dB	378
1	– 10 dB	238
2	– 14 dB	150
3	– 18 dB	95

RECEIVE LINE SIGNAL DETECTOR (RLSD) Response

For Fast Train and Gearshift configurations, the receiver enters the training state upon detecting a significant increase in the received signal power. If the received line signal power is greater than the selected threshold level at the end of the training state, the receiver enters the data state and RLSD is activated. If the received line signal power is less than the selected threshold level at the end of the training state, the receiver returns to the idle state and RLSD is not activated.

Also, in Fast Train and Gearshift configurations, the receiver initiates the turn-off delay upon detecting a significant decrease in the received signal power. If the received signal power is less than the selected threshold at the end of the turn-off delay, the receiver enters the idle state and RLSD is deactivated. If the received signal power is greater than the selected threshold at the end of the turn-off delay, the receiver enters the idle, the receiver returns to the data state and RLSD is left active.

For CCITT configurations, the receiver enters the training detection state when the received line signal power crosses the selected threshold level. RLSD is activated at the end of the training sequence. For V.21 Channel 2, a separate received line signal detector (FRLSD) is provided. FRLSD is activated when energy above –43 dBm is present at the receiver's audio input (RXA). The FRLSD off-to-on response time is 15 \pm 5 ms and the ont-o-off response time is 25 \pm 5 ms.

The RLSD on-to-off response times are:

Configuration	Response Time (ms)
V 29 Fast Train	6.5 ± 1
V.27 Fast Train	8 ± 1
Gearshift	6 ± 1
V.29	30 ±9
V.27 bis/ter	10 ±5

RLSD response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

Threshold Options

Four threshold options are provided:

- 1. Greater than 43 dBm (RLSD on)
- Less than 48 dBm (RLSD off) 2. Greater than - 33 dBm (RLSD on) Less than - 38 dBm (RLSD off)
- 3. Greater than -26 dBm (RLSD on)
- Less than 31 dBm (RLSD off) 4. Greater than - 16 dBm (RLSD on)
- Less than -21 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

For CCITT configurations, a minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

FORWARD CHANNEL SIGNAL DETECTOR (SCRLSD) Response

Signal Level	SCRLSD Turn-On (ms)	SCRLSD Turn-Off (ms)
– 7 dBm	140 ± 10	800±10
– 48 dBm	340 ± 10	550±10

9600 bps Fast Train Modem

Threshold

The $\overline{\text{SCRLSD}}$ Turn-On threshold is -54 dBm. The $\overline{\text{SCRLSD}}$ Turn-Off threshold is -58 dBm.

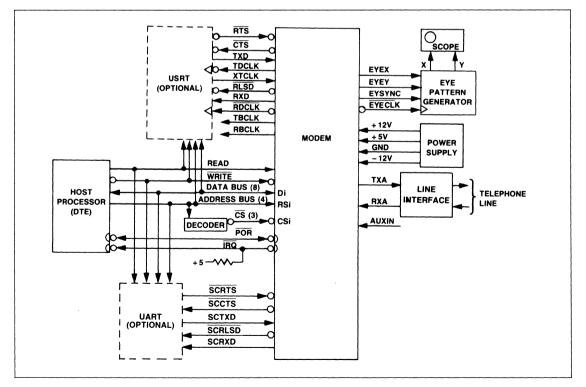
MODES OF OPERATION

The R96FT/SC is capable of being operated in either a serial or a parallel mode of operation.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the Functional Interconnect Diagram) illustrates this capability.

PARALLEL MODE


The R96FT/SC has the capability of transferring channel data (up to eight bits at a time) via the microprocessor bus.

MODE SELECTION

For the transmitter, a control bit determines whether the source of transmitted data is the V.24 interface (serial mode) or the parallel transmitter data register (parallel mode). The transmitter automatically defaults to the serial mode at power-on.

The receiver simultaneously outputs received data via the V.24 interface and the parallel receiver data register.

In either parallel or serial mode the R96FT/SC is configured by the host processor via the microprocessor bus.

R96FT/SC Functional Interconnect Diagram

INTERFACE CRITERIA

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 64-pin DIN connector. Software circuits are assigned to specific bits in a 48-byte interface memory.

HARDWARE CIRCUITS

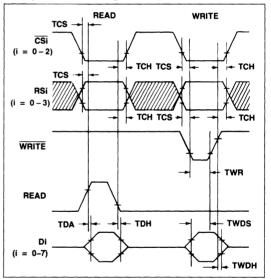
Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R96FT/SC Hardware Circuits table. In the table, the column titled 'Type' refers to designations found in the Hardware Circuit Characteristics. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 6800, or 68000 microprocessors.

p	п	96FT/SC Hardw					
Name	Туре	Pin No.	Description				
A. OVER	A. OVERHEAD:						
Ground (A) Ground (D) + 5 volts + 12 volts - 12 volts POR	AGND DGND PWR PWR PWR I/OB	31C,32C 3C,8C,5A,10A 19C,23C,26C,30C 15A 12A 13C	Analog Ground Return Digital Ground Return +5 Vdc supply + 12 Vdc supply - 12 Vdc supply Power-on-reset				
		ESSOR INTERFAC					
D7	I/OA						
D6 D5 D4 D3 D2 D1 D0	I/OA I/OA I/OA I/OA I/OA I/OA	1A 2C 2A 3A 4C 4A 5C	Data Bus (8 Bits)				
RS3 RS2 RS1 RS0	IA IA IA	6C 6A 7C 7A	Register Select (4 Bits)				
CS0	IA	10C	Chip Select— Transmitter Device				
CS1	IA	9C	Chip Select—Receiver Sample Rate Device				
CS2	IA	9A	Chip Select—Receiver Baud Rate Device				
READ WRITE IRQ	IA IA OB	12C 11A 11C	Read Enable Write Enable Interrupt Request				
C. V.24 IN	TERFA	CE:					
RDCLK TDCLK RTS CTS TXD RXD RLSD SCRTS SCCTS SCTXD SCRLSD SCRLSD SCRXD	ОСС В В С В С В С С В С В С С В С В С В	21A 23A 25A 25C 24C 22C 24A 21C 20A 19A 20C 18A	Receive Data Clock Transmit Data Clock External Transmit Clock Request to Send Clear to Send Transmitter Data Receiver Data Receiver Data Received Line Signal Detector Forward Channel <u>RTS</u> Forward Channel <u>TXD</u> Forward Channel <u>TXD</u> Forward Channel <u>RLSD</u> Forward Channel RLSD				
D. ANCILL							
RBCLK TBCLK FRXD FRLSD	OC OD OD	26A 27C 16A 17C	Receiver Baud Clock Transmitter Baud Clock FSK Receiver Data (inverted data) FSK Received Line Signal				
E. ANALO			Detector				
TXA	AA	31A 31A	Transmitter Analog Outsut				
RXA RXA AUXIN	AA AB AC	31A 32A 30A	Transmitter Analog Output Receiver Analog Input Auxiliary Analog Input				

R96FT/SC Hardware Circuits

9600 bps Fast Train Modem

R96FT/SC Hardware Circuits (Continued)


Name	Туре	Pin No.	Description
F. DIAGNOS	STIC:		
EYEX EYEY EYECLK EYESYNC	OC OC OA OA	15C 14A 14C 13A	Eye Pattern Data—X Axis Eye Pattern Data—Y Axis Eye Pattern Clock Eye Pattern Synchronizing Signal

Eye Pattern Generation

2

The four hardware diagnostic circuits, identified in the preceding table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words are shifted out most significant bit first, clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Microprocessor Timing

Microprocessor Interface Timing Diagram

Critical Timing Requirements

Characteristic	Symbol	Min	Max	Units
CSi, RSI setup time prior to Read or Write	TCS	30	_	nsec
Data access time after Read	TDA	_	140	nsec
Data hold time after Read	TDH	10	50	nsec
CSi, RSi hold time after Read or Write	тсн	10	_	nsec
Write data setup time	TWDS	75	—	nsec
Write data hold time	TWDH	10	—	nsec
Write strobe pulse width	TWR	75		nsec

Digital Interface Characteristics

						1	nput/Output	Туре			
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ос	OD	1/O A	I/O B
V _{IH}	Input Voltage, High	v	2.0 Min.	2.0 Min.	2.0 Min.					2.0 Min.	5 25 Max. 2.0 Min.
VIL	Input Voltage, Low	v	0.8 Max	0.8 Max.	0.8 Max.					0.8 Max.	0.8 Max.
V _{OH}	Output Voltage, High	v				2.4 Min.1			2 2 Min. 6	2.4 Min.1	2 4 Min. ³
VOL	Output Voltage, Low	v				0.4 Max. ²	0.4 Max ²	0.4 Max. ²	0.6 Max. ⁷	0.4 Max. ²	0.4 Max.5
I _{IN}	Input Current, Leakage	μA	±2.5 Max.							±2.5 Max.4	
I _{OH}	Output Current, High	mA				-0.1 Max.					
IOL	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.			
ار	Output Current, Leakage	μA					± 10 Max.				
I _{PU}	Pull-up Current (Short Circuit)	μA		– 240 Max. – 10 Min.	– 240 Max. – 10 Min			– 240 Max. – 10 Min.			– 260 Max. – 100 Min.
CL	Capacitive Load	pF	5	5	20					10	40
CD	Capacitive Drive	pF				100	100	100		100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open-Drain w/Pull-up	TTL	3-State Transceiver	Open-Drain w/Pull-up
Notes	s 1. Load = -100 μ	A				5. I	Load = 0.3	6 mA			
	2. I Load = 1.6 mÅ					6. I	Load = -4	400 μA			
	3. I Load = $-40 \ \mu A$					7	Load = 2.0	mA			
	4. $V_{iN} = 0.4$ to 2.4 V	۷dc, ۱	V _{CC} = 5.25	Vdc							

Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output impedance is 604 ohms $\pm 1\%$
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is TLVL setting $+ 0.6$ dB $- 1.4$ dB. If unused, this input must be grounded near the modem connector. If used, it must be driven from a low impedance source.

SOFTWARE CIRCUITS

The R96FT/SC comprises three signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 1 update at half the modem sample rate (4800 bps). Registers in chip 0 and 2 update at the selected baud rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0–2), the register by Z(0–F), and the bit by Q(0–7, 0 = LSB).

Status Control Bits

The operation of the R96FT/SC is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits designated by a dash (—) are reserved for modem use only and must not be changed by the host.

RAM Data Access

The R96FT/SC provides the user with access to much of the data stored in the modem's memories. This data is useful for performing certain diagnostic functions.

Two RAM access registers in chip 2 allow user access to RAM locations via the X word registers (2:3 and 2:2) and the Y word register (2:1 and 2:0). The access code stored in RAM ACCESS X (2:5) selects the source of data for RAM DATA XM and RAM DATA XL (2:3 and 2:2). Similarly, the access code stored in RAM ACCESS Y (2:4) selects the source of data for RAM DATA YM and RAM DATA YL (2:1 and 2:0).

Reading of diagnostic RAM data is performed by storing the necessary access codes in 2:5 and 2:4, reading 2:0 to reset the associated data available bit (2:E:0), then waiting for the data available bit to return to a one. Data is now valid and may be read from 2:3 through 2:0.

An additional diagnostic is supplied by the sample rate processor (chip 1). Registers 1:2 and 1:3 supply a 16 bit AGC Gain Word. These two diagnostic data registers are updated at the sample rate during the data state and may be read by the host processor asynchronously.

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem.

Baud Rate Processor (Chip 2) RAM Access Codes

No.	Function	X Access	Y Access	Register
1	Equalizer Input	CO	40	0,1,2,3
2	Equalizer Tap Coefficients	81–A0	01-20	0,1,2,3
3	Unrotated Equalizer Output	E1	61	0,1,2,3
4	Rotated Equalizer Output	E2	62	0,1,2,3
5	Decision Points	E8	68	0,1,2,3
	(Ideal Data Points)			
6	Error Vector	E5	65	0,1,2,3
7	Rotation Angle	A7	Not Used	2,3
8	Frequency Correction	A5	Not Used	2,3
9	Eye Quality Monitor (EQM)	AC	Not Used	2,3

N						1		
Bit Register	7	6	5	4	3	2	1	0
F		_	-	-	_	_	_	_
E	RIA	-	_	_	RSB	RIE	-	RDA
D	—	-		-			—	-
С	-	—	-	-	-	—	-	-
В	-	-	—	—	_	-		-
Α	—		_	_	_	—	—	-
9	—	FED	—	_	—	CDET	—	-
8	_	_		—	P2DET	—	—	
7	R	ГН	DDIS	-		SCEN	RDIS	—
6	TOD		REC	EIVER	CONFIC	BURAT	ON	
5	—	_		-	—	—	—	-
4	—	—	—	-	-	—		
3			AGC	GAIN V	Vord (I	MSB)		
2			AGC	GAIN V	NORD (LSB)		
1	—	_	—	—	—	-	—	-
0		P2DET RTH DDIS SCEN RDIS -						
Register Bit	7	6	5	4	3	2	1	0
(—) ındı	cates r	eserved		NOTE	e only			

Receiver Interface Memory Chip 1 (CSI)

9600 bps Fast Train Modem

Transmitter Interface Memory Chip 0 (CSO)

Bit Register	7	6	5	4	3	2	1	0
F	-	-	-	_	_	_	_	-
E	TIA	-	-	-	TSB	TIE		ТВА
D	-	-	-	-		-	—	—
С	-	—	1	-	_	-	_	1
В	-	—		-	-	-		—
Α	-	-	_	—	_	-	-	_
9	FSKT	ASCR	PCF	SCRTS	CF	DDEE	SCT	LVL
8	-	-	_	-	—	-	-	-
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT
6		TR	ANSM	TTER C	ONFIG	URATIO	DN	
5	_	-	C	EQ	LAEN	LDEN	A3L	D3L
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN
3				FRE	QM			
2				FRE	QL			
1	-	_	-	-	_		_	—
0			TR	ANSMIT	TER D	ATA		
Register Bit	7	6	5	4	3	2	1	0
(—) indi	cates re	eserved		NOTE dem us	e only.			

Receiver Interface Memory Chip 2 (CS2)

N												
Bit Register	7	6	5	4	3	2	1	0				
F	-	-	-	-	-	-	_	-				
E	RBIA	—	-	—		RBIE	-	RBDA				
D	-	1	—	-	-		—	-				
С	-	_			-	—	—	-				
В	-	-	-	-	-	—	—	-				
Α	-	-	-	—	-		-	-				
9		1	—	-		—	-	-				
8	1		—	_	-	—	-	-				
7		-	_	-	-	—	-	-				
6	-	—	-	-	1	—	-	-				
5			I	RAM AC	CESS >	(
4			F	RAM AC	CESS \	(
3				RAM D	ata XM							
2				RAM D	ata Xl							
1				RAM D	ata ym							
0				RAM D	ATA YL							
Register			_									
Bit	7	6	5	4	3	2	1	0				
(—) ındi	cates r	eservec		NOTE odem us	e only.							

9600 bps Fast Train Modem

R96FT/SC Interface Memory Definitions

Mnemonic	Name	Memory Location									
ASCR	Append Scrambled Ones	0:9:6	When control and V.27FT baud period v	training	sequence	s. The \overline{R}					
A3L	Amplitude 3-Lınk Select	0:5:1	See LAEN.								
CDET	Carrier Detector	1:9:2	When zero, st that a training data state, an 1 baud time b	sequend d returns	ce is not i to a one	n process at the en	d of the i	joes to a received s	zero at th signal. CD	e start of ET activa	the
CEQ	Cable Equalizer Field	0:5:(4,5)	The CEQ Con the transmit a selection code	nd receiv							
			c	EQ			Cable Le	ength (0.4	4 mm dia	meter)	
				0				0.0			
				1 2				1.8 I 3.6 I			
				3				7.2	ĸm		
CF	Carrier Frequency	0:9:3	When control 1700 Hz to 18		a one, th	ne transm	itter carrie	er frequer	ncy for V.2	29FT chai	nges from
DDEE	Digital Delay Equalizer Enable	0:9:2	When control bit DDEE is a one, a fourth order digital delay equalizer is inserted in the transmit path.								
DDIS	Descramble Disable	1:7:5	When control bit DDIS is a one, the receiver descrambler circuit is removed from the data path.								
D3L	Delay 3-Link Select	0:5:0	See LDEN.								
EPT	Echo Protector Tone	0:7:3	When control (optionally 30 transmission. not specified	ms) follo This opti	wed by 20 ion is avai) ms of ne lable in tl	o transmi he V.27 a	tted energ	gy at the s	start of	
FED	Fast Energy Detector	1:9:6	When status I present in the			t indicate	s that en	ergy abov	e the rece	eiver thre	shold is
(None)	FREQL/FREQM	0:2:0–7, 0:3:0–7	The host proc data word to t shown below:								
			FREQM Reg	ister (0:	3)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	215	214	2 ¹³	2 ¹²	211	210	2 ⁹	28
			FREQL Regi	ster (0:2	2)						
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	2 ⁶	25	24	2 ³	2 ²	21	20
			The frequency F = (0.14648				e frequen	cy (F) as	follows:		
			Hexadecimal given below:	•	•	s (FREQL	-	•	monly ger		
			Freq	uency (I	Hz)		FREQ	м		FREQL 52	
				462 1100			0C 1D			52 55	
				1650			2C			00	
				1850			31			55	
				2100			38			00	

9600 bps Fast Train Modem

Mnemonic	Name	Memory Location		Description					
FSKT	FSK Transmitter Configuration	0 9.7	setting the FSKT control overrides the configurati	bit to a one (see TSB). W	ansmitter configuration is selected b hile set to a one, this control bit code in register 0:6. The FSK data ode (see TPDM).				
LAEN	Link Amplitude Equalizer Enable	0.2:3		lizer enable and select bits path according to the follo	s control an amplitude compromise wing table:				
			LAEN	A3L	Curve Matched				
			0	X	No Equalizer				
			1	0 1	U.S. Survey Long Japanese 3-Link				
LCEN	Loop Clock Enable	0:4:0			ock tracks the receiver clock.				
LDEN	Link Delay	0:5.2			itrol a delay compromise equalizer in				
LDEN	Equalizer Enable	0.5 2		ng to the following table:	ator a delay compromise equalizer in				
			LDEN	D3L	Curve Matched				
			0	х	No Equalizer				
			1	0	U.S. Survey Long				
			1	1	Japanese 3-Link				
L2ACT	Remote Digital Loopback Activate	0.4:1	When control bit L2ACT is a one, the receiver digital output is connected to the transmitter digital input in accordance with CCITT Recommendation V.54 loop 2.						
L3ACT	Local Analog Loop- back Activate	0:4:7	When control bit L3ACT is a one, the transmitter analog output is coupled to the receiver analog input through an attenuator in accordance with CCITT Recommendatio V.54 loop 3.						
L4ACT	Remote Analog Loopback Activate	0.4:6	When control bit L4ACT is a one, the receiver analog input is connected to the trans- mitter analog output through a variable gain amplifier in a manner similar to CCITT Recommendation V.54 loop 4.						
L4HG	Loop 4 High Gain	0:4.5	When control bit L4HG a and when at zero the ga		e gain amplifier is set for +16 dB,				
MHLD	Mark Hold	0:7·4	When control bit MHLD marks (ones).	is a one, the transmitter in	put data stream is forced to all				
PCF	Primary Channel Filter	0.9:2	When control bit PCF is a narrower bandwidth th		nary channel transmitter filter is set				
P2DET	Period 2 Detector	1:8:3	detected. This bit sets to		a period 2 sequence has been period N sequence. This bit is only rations.				
(None)	RAM Access X	2:5:0-7	Contains the RAM acces and 2:2).	ss code used in reading ch	ip 2 RAM locations via word X (2:3				
(None)	RAM Access Y	2.4:0-7	Contains the RAM acces and 2:0).	ss code used in reading ch	ip 2 RAM locations via word Y (2:1				
(None)	RAM Data XL	2:2:0-7	Least significant byte of	16-bit word X used in read	ling RAM locations in chip 2.				
(None)	RAM Data XM	2:3:0-7	Most significant byte of	16-bit word X used in read	ing RAM locations in chip 2.				
(None)	RAM Data YL	2:0:0-7			ding RAM locations in chip 2.				
(None)	RAM Data YM	2:1:0-7			ing RAM locations in chip 2				
RBDA	Receiver Baud	2:E·0	Status bit RBDA goes to	a one when the receiver	writes data into register 2:0 The bit				
RBIA	Data Available Receiver Baud	2:E·7	-	host processor reads data whenever the receiver bau	a from register 2:0. d rate device is driving IRQ low.				
RBIE	Interrupt Active Receiver Baud	2:E:2			control bit, the \overline{IRQ} line of the hard				

R96FT/SC Interface Memory Definitions (Continued)

2

9600 bps Fast Train Modem

Mnemonic	Name	Memory Location								
(None)	Receiver Configuration	160–6	The host processor configures the receiver by writing a control code into the receiver configuration field in the interface memory space (see RSB)							
	_		Note: The receiver must be disabled prior to changing configurations See RDIS.							
			Receiver Configuration Control Codes							
			Control codes for the mode	em receiver configuration are:						
				guration						
			V29	V27 bis/ter	Configuration Code (Hex)					
			FT/9600		10					
			FT/7200 FT/4800		1A 19					
			F 1/4800	FT/4800	0A					
				FT/2400	09					
			9600		14					
			7200		12					
			4800		11					
				4800 long	22					
				2400 long	21					
				4800 short	02					
				2400 short	01					
			2400/4800 bps Gearshif 2400/4800 bps Gearshif	t/V.29 descrambler t/V.27 bis/ter descrambler	61 ¹ 41 ¹					
			V 21	Channel 2	See Note 2					
(None)	Receiver Data	1:0:0-7	the Received Line Sign data. Timing extraction FSK receiver data clock	must be performed on the F k is provided by the R96FT/S	ovides inverted FSK received RXD signal externally as no C.					
、 γ			reading a data byte from the daries as is the transmitter	ne receiver data register. The	The host processor obtains channel data from the receiver in the parallel data mode by reading a data byte from the receiver data register. The data is divided on baud boundaries as is the transmitter data.					
RDA	Receiver Data Available	1:E 0	Status bit RDA goes to a one when the receiver writes data to register 1:0. RDA goes							
				ne when the receiver writes o ocessor reads data from regis						
RDIS	Receiver Disable	1.7:1	to a zero when the host pro When control bit RDIS is is clamped to all marks. Th	ocessor reads data from regis a one, the receiver is disabl	ster 1:0. ed, RLSD is turned off and RX in the receiver during half duples					
RDIS	Receiver Disable Receiver Interrupt Active	1·7:1 1:E:7	to a zero when the host pro When control bit RDIS is a is clamped to all marks. Th transmissions over two wire receiver configuration.	ocessor reads data from regis a one, the receiver is disabl his bit can be used to squelcl es. This bit must be set to a	ster 1:0. ed, $\overline{\text{RLSD}}$ is turned off and RX in the receiver during half duples one prior to changing the					
	Receiver Interrupt		to a zero when the host pro When control bit RDIS is a is clamped to all marks. Th transmissions over two wird receiver configuration. This status bit is a one who When the host processor w	ocessor reads data from regis a one, the receiver is disabl his bit can be used to squelcl es. This bit must be set to a	ster 1:0. ed, RLSD is turned off and RX the receiver during half duples one prior to changing the ate device is driving IRQ to zero I bit, the IRQ line of the					
RIA	Receiver Interrupt Active Receiver Interrupt	1:E:7	to a zero when the host pro When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one who When the host processor w hardware interface is driven When the host processor c	ocessor reads data from regis a one, the receiver is disabl his bit can be used to squelcl es. This bit must be set to a enever the receiver sample ra- vrites a one in the RIE contro n to zero when status bit RD/ changes the receiver configur. ust write a one in the RSB co	ster 1:0. ed, RLSD is turned off and RX the receiver during half duples one prior to changing the ate device is driving IRQ to zero I bit, the IRQ line of the A is a one. ation, the FSKR bit or the RTH					
RIA RIE	Receiver Interrupt Active Receiver Interrupt Enable	1:E:7 1:E:2	to a zero when the host pro- When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one whe When the host processor we hardware interface is driven When the host processor of field, the host processor me when the changes become	occessor reads data from regis a one, the receiver is disabl his bit can be used to squelch es. This bit must be set to a enever the receiver sample ra- writes a one in the RIE contro in to zero when status bit RD/ shanges the receiver configur- ust write a one in the RSB co- e effective.	ster 1:0. ed, <u>RLSD</u> is turned off and RX to the receiver during half duples one prior to changing the ate device is driving <u>IRQ</u> to zero I bit, the <u>IRQ</u> line of the A is a one. ation, the FSKR bit or the RTH					
RIA RIE RSB	Receiver Interrupt Active Receiver Interrupt Enable Receiver Setup Bit Receiver Threshold	1:E:7 1:E:2 1:E:3	to a zero when the host pro- When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one whe When the host processor will hardware interface is driven When the host processor or field, the host processor million when the changes become The receiver energy detect	occessor reads data from regis a one, the receiver is disabl his bit can be used to squelch es. This bit must be set to a enever the receiver sample ra- writes a one in the RIE contro in to zero when status bit RD/ shanges the receiver configur- ust write a one in the RSB co- e effective.	ster 1:0. ed, $\overline{\text{RLSD}}$ is turned off and RX the receiver during half duples one prior to changing the ate device is driving $\overline{\text{IRQ}}$ to zero l bit, the $\overline{\text{IRQ}}$ line of the A is a one. ation, the FSKR bit or the RTH ontrol bit. RSB goes to zero					
RIA RIE RSB	Receiver Interrupt Active Receiver Interrupt Enable Receiver Setup Bit Receiver Threshold	1:E:7 1:E:2 1:E:3	to a zero when the host pro- When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one whe When the host processor we hardware interface is driven When the host processor or field, the host processor or field, the host processor or when the changes become The receiver energy detect ing codes (see RSB): RTH	occessor reads data from regis a one, the receiver is disabl his bit can be used to squelch es. This bit must be set to a enever the receiver sample ra- writes a one in the RIE contro in to zero when status bit RD/ shanges the receiver configur- ust write a one in the RSB co- e effective. For threshold is set by the RT RLSD On	ster 1:0. ed, <u>RLSD</u> is turned off and R) the receiver during half duple one prior to changing the ate device is driving <u>IRQ</u> to zero I bit, the <u>IRQ</u> line of the A is a one. ation, the FSKR bit or the RTH ontrol bit. RSB goes to zero H field according to the follow- <u>RLSD Off</u>					
RIA RIE RSB	Receiver Interrupt Active Receiver Interrupt Enable Receiver Setup Bit Receiver Threshold	1:E:7 1:E:2 1:E:3	to a zero when the host pro- When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one when When the host processor we hardware interface is driven. When the host processor or field, the host processor or when the changes become The receiver energy detect ing codes (see RSB): RTH 0	occessor reads data from regis a one, the receiver is disabl- his bit can be used to squelch es. This bit must be set to a enever the receiver sample ra- writes a one in the RIE contron in to zero when status bit RD/ changes the receiver configur- ust write a one in the RSB co- effective. Find the receiver configur- to threshold is set by the RT RLSD On > -43 dBm	ster 1:0. ed, <u>RLSD</u> is turned off and RX in the receiver during half duples one prior to changing the ate device is driving <u>IRQ</u> to zero I bit, the <u>IRQ</u> line of the A is a one. ation, the FSKR bit or the RTH ontrol bit. RSB goes to zero H field according to the follow- <u>RLSD</u> Off < - 48 dBm					
RIA RIE RSB	Receiver Interrupt Active Receiver Interrupt Enable Receiver Setup Bit Receiver Threshold	1:E:7 1:E:2 1:E:3	to a zero when the host pro- When control bit RDIS is a is clamped to all marks. The transmissions over two wire receiver configuration. This status bit is a one whe When the host processor we hardware interface is driven When the host processor or field, the host processor or field, the host processor or when the changes become The receiver energy detect ing codes (see RSB): RTH	occessor reads data from regis a one, the receiver is disabl his bit can be used to squelch es. This bit must be set to a enever the receiver sample ra- writes a one in the RIE contro in to zero when status bit RD/ shanges the receiver configur- ust write a one in the RSB co- e effective. For threshold is set by the RT RLSD On	ster 1:0. ed, <u>RLSD</u> is turned off and R) the receiver during half duple one prior to changing the ate device is driving <u>IRQ</u> to zero I bit, the <u>IRQ</u> line of the A is a one. ation, the FSKR bit or the RTH ontrol bit. RSB goes to zero H field according to the follow- <u>RLSD Off</u>					

R96FT/SC Interface Memory Definitions (Continued)

9600 bps Fast Train Modem

R96FT/SC Interface Memory Definitions (Cont	tinued)
---	---------

Mnemonic	Name	Memory Location	Description						
RTS	Request-to-Send	077	When control bit RTS goes to a one, the modem begins a transmit sequence It con- tinues to transmit until RTS is reset to zero, and the turn-off sequence has been com- pleted. This input bit parallels the operation of the hardware RTS control input. These inputs are ORed by the modem.						
SCEN	Forward Channel Enable	1.7:2	When control bit SCEN is a one, the forward channel demodulator is enabled and the primary channel receiver carrier frequency is changed from 1700 to 1800 Hz in V.29 FT configurations.						
SCRTS	Forward Channel Request-to-Send	0:9.4	When control bit SCRTS is a one, the modem begins a forward channel transmit se- quence. Transmission continues until SCRTS is a zero. SCRTS in the interface memory is ORed with signal SCRTS on the card connector.						
SCTLVL	Forward Channel Transmit Level	0:9:0-1	The forward channel transmit level is set relative to the main channel transmit level by the following SCTLVL codes:						
			SCTLVL Forward Channel Transmit Code Level Relative to Primary Channel						
			0 – 6 dB						
			1 – 10 dB						
			2 – 14 dB						
			3 – 18 dB						
SDIS	Scrambler Disable	0:7.5	When control bit SDIS is a one, the transmitter scrambler circuit is removed from the data path.						
SEPT	Short Echo Protector Tone	0 7:0	When control bit SEPT is a one, the echo protector disable tone is 30 ms long rather than 185 ms. (See TSB.)						
ТВА	Transmitter Buffer Available	0 E.0	This status bit resets to zero when the host processor writes data to transmitter data register 0:0. When the transmitter empties register 0:0, this bit sets to a one.						
TIA	Transmitter Inter-	0:E:7	This status bit is a one whenever the transmitter is driving $\overline{\text{IRQ}}$ to a zero.						
TIE	Transmitter Inter- rupt Enable	0:E:2	When the host processor writes a one in control bit TIE, the \overline{IRQ} line of the hardware interface is driven to zero when status bit TBA is at a one.						
TLVL	Transmitter Level	0:4:2-4	The transmitter analog output level is determined by eight TLVL codes, as follows:						
	Field		TLVL Transmitter Analog Output*						
			0 – 1 dBm ± 1 dB						
			1 – 3 dBm ±1 dB						
			2 – 5 dBm ±1 dB						
			3 – 7 dBm ±1 dB						
			4 – 9 dBm ±1 dB						
			5 – 11 dBm ±1 dB						
			6 – 13 dBm ±1 dB						
		1	7 – 15 dBm ± 1 dB						
			*Each step above is a 2 dB change ±0.2 dB.						
TOD	Train-On-Data	1:6:7	When control bit TOD is a one, it enables the train-on-data algorithm to converge the equalizer if the signal quality degrades sufficiently. When TOD is a one, the modem sti recognizes a training sequence and enters the force train state. A BER of approximatel 10^{-3} for 0.5 seconds initiates train-on-data						
TPDM	Transmitter Parallel Data Mode	0:7:2	When control bit TPDM is a one, the transmitter accepts data for transmission from the transmitter data register (0:0) rather than the serial hardware data input						

2

9600 bps Fast Train Modem

Mnemonic	Name	Memory Location		D	escription				
(None)	Transmitter Configuration	0:6:0-7	The host processor config ter configuration register i					into the	transmit-
			Transmitter Configuration	Control Codes					
			Control codes for the mod	lem transmitte	r configurati	ons are:			
			Confi	guration					
			V29	V27	Cont	Configuration Code (He			
			FT/9600				1	C	
			FT/7200					A	
			FT/4800	FT/4	200			19 DA	
				FT/2				09	
			9600				1	14	
			7200					12	
			4800	4900	long			11 22	
					long			21	
				4800	short			02	
				2400 short				D1	
			2400/4800 bps Gearsh 2400/4800 bps Gearsh					61 41	
			V.21 C		See FSKT				
			Tone	transmit			8	30	
				· ·		Bits			<u></u>
			Configuration	7 6	5	4 3	2	1	0
			V.29 9600 bps	Bau	d 1		Ва	ud 0	
			V.29 7200 bps	Not Used	Ba	ud 1		Baud C)
			V.29 4800 bps	Baud 3	Baud 2	2 Ba	ud 1	Ba	ud 0
			V.27 4800 bps	Not Used	Ba	ud 1		Baud C)
			V.27 2400 bps	Baud 3	Baud 2	2 Ba	ud 1	Ba	ud 0
			2400 bps Gearshift	Baud 3	Baud 2	2 Ba	ud 1	Ba	ud 0
			4800 bps Gearshift	Bau				ud 0	
TSB	Transmitter Setup Bit	0:E:3	When the host processor FSKT bit, the host must w change becomes effective training (if applicable).	changes the ti rrite a one in t	ransmitter co	it. TSB goe	, the SE es to a z	PT bit or	n the
TTDIS	Transmitter Train Disable	0:7.6	When control bit TTDIS is at the start of transmission baud times.						
XCEN	External Clock Enable	0:7:1	When control bit XCEN is clock supplied at the hard				olished b	by the ex	ternal

R96FT/SC Interface Memory Definitions (Continued)

9600 bps Fast Train Modem

The following is a list of the configurations that may be used with the forward channel and the states of the various control bits.

	Transmitt	er Control	Receiver Control		
Configuration	PCF 0:9:5	CF 0:9:3	SCEN 1:7:2		
FT/V.29/9600	1	1	1		
FT/V.29/7200	1	1	1		
FT/V.29/4800	1	1	1		
FT/V.27/4800	0	X	1		
FT/V.27/2400	0	X	1		
*V.27/4800	0	X	1		
*V.27/2400	0	X	1		
V.21 FSK	x	X	1		
*Both V.27 long and	*Both V.27 long and short train may be used. X = Don't care.				

Note that CCITT V.29 and Gearshift configurations cannot be used with the forward channel.

POWER-ON INITIALIZATION

When power is applied to the R96FT/SC, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (\overrightarrow{POR}) remains low during this period. Approximately 10 ms after the low to high transition of \overrightarrow{POR} , the modern is ready to be configured, and \overrightarrow{RTS} may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 msec, the POR cycle is generated.

At POR time the modem defaults to the following configuration: fast train, V.29, 9600 bps, no echo protector tone, 1700 Hz carrier frequency, scrambled ones segment disabled, serial data mode, internal clock, cable equalizers disabled, transmitter digital delay equalizer disabled, link amplitude equalizer disabled, link delay equalizer disabled, transmitter output level set to $-1 \text{ dBm } \pm 1 \text{ dB}$, interrupts disabled, receiver threshold set to -43 dBm, and train-on-data enabled.

 \overrightarrow{POR} can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or more applied to the \overrightarrow{POR} pin causes the modem to reset. The modem is ready to be configured 10 msec after \overrightarrow{POR} is removed.

PERFORMANCE

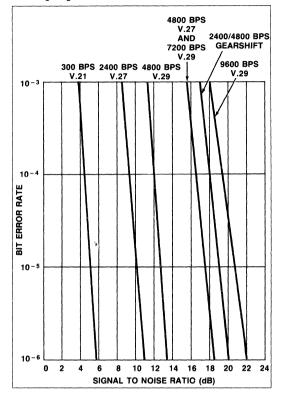
Whether functioning in V.27, V.29 or the proprietary fast train configurations, the R96FT/SC provides the user with high performance.

POLLING SUCCESS

In the 9600 bps fast train configuration the modem approaches a 98% success rate over unconditioned 3002 lines for a signalto-noise ratio of 26 dB, with a received signal level of -20 dBm. When used in conjunction with the 75 bps forward channel, 9600 bps main channel polling performance degrades by approximately 2 dB.

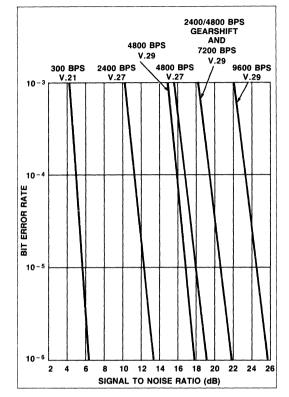
BIT ERROR RATES

The Bit Error Rate (BER) performance of the modern is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

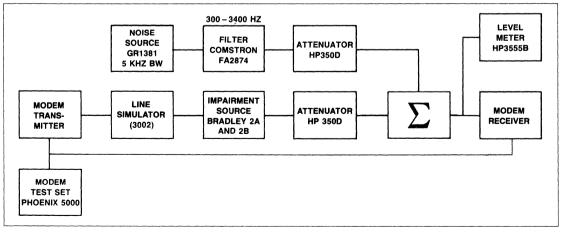

PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz, or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps (V.27 bis/ter), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.


At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.

9600 bps Fast Train Modem


An example of the BER performance capabilities is given in the following diagrams:

Typical BER Performance Back-to-Back, – 20 dBm Receive Signal Level

Typical BER Performance 3002 Unconditioned Line, – 20 dBm Receive Signal Level

The BER performance test set-up is shown in the following diagram:

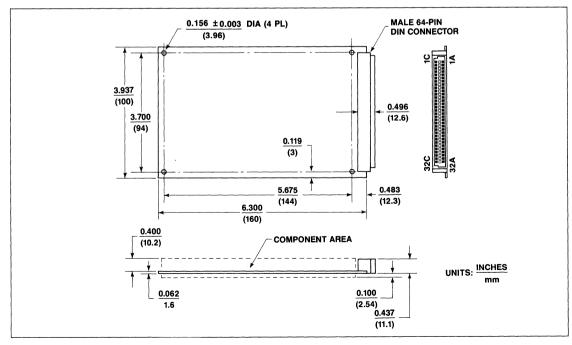
BER Performance Test Set-up

9600 bps Fast Train Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	±5%	650 mA	<820 mA
+ 12 Vdc	± 5%	50 mA	< 80 mA
- 12 Vdc	±5%	60 mA	< 90 mA

Modem Power Requirements


Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak.

Modem Environmental Restrictions

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	 - 40°C to + 80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity: Altitude	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less – 200 feet to $+$ 10,000 feet

Modem Mechanical Considerations

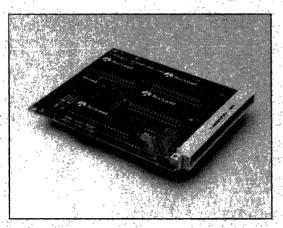
Parameter	Specification
Board Structure	Single PC board with a 3-row 64-pin right angle male DIN connector with rows A and C populated. The modem can also be ordered with the following DIN connector: 64-pin DIN right angle female, 64-pin DIN vertical male or 64-pin DIN vertical female.
Mating Connector:	Female 3-row 64-pin DIN receptacle with rows A and C populated. Typical mating receptacle: Winchester 96S-6043-0531-1, Burndy R196B32R00A00Z1, or equivalent.
PCB Dimensions:	
Width	3.937 ın. (100 mm)
Length	6.300 in. (160 mm)
Height	0.40 in. (10.2 mm)
Weight (max):	5.5 oz (156 g)
Lead Extrusion (max.)	0.100 in. (2.54 mm)

R96FT/SC Modem Dimensions and Pin Locations

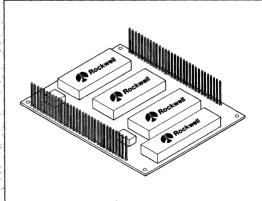
2

R144DP V.33 Ultra High Speed Modem

INTRODUCTION


The Rockwell R144DP is a synchronous CCITT V.33 modem, it is designed to operate over unconditioned or conditioned lines, through the appropriate line termination. It is packaged in a small module with a DIN connector, or a smaller module with dual-inline pin (DIP) connection.

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.33 and V.29. The R144DP can operate at speeds of 14400, 12000, 9600, 7200, and 4800 bps.

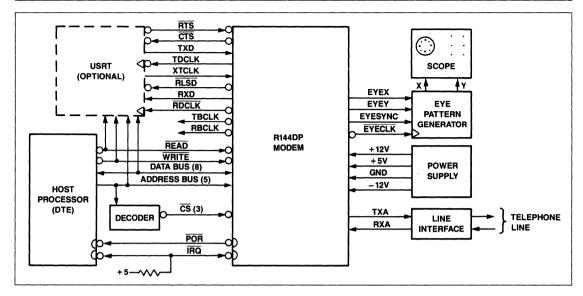

The R144DP is designed for use in ultra high speed data applications. User programmable features allow the modem operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, serial/parallel host interface simplify system development and reduce system production cost. The DIN connector version can be mated to a matching DIN receptacle on the host module, whereas the DIP connector version can be directly installed onto the host module.

FEATURES

- Compatibilities.
- CCITT: V.33 and V.29 Synchronous
- 4-Wire Full-Duplex
- Trellis Coded Modulation (TCM)
- DTE Interface
- Functional: CCITT V.24 (RS-232-C) (Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 Electrical: TTL and CMOS Compatible
- Dynamic Range: 43 dBm to 0 dBm
- Automatic Adaptive Equalizer
- Diagnostic Capability
- Loopback
 - Local and Remote Analog
 - Remote Digital
- Small Size
- 100 mm × 120 mm (3.94 in. × 4.73 in.) with DIN Connector - 82 mm × 100 mm (3.23 in. × 3.94 in.) with DIP Connection
- Power Consumption: 2 W (Typical)

R144DP DIN Connector Version

R144DP DIP Connector Version


Document No. 29300N12

Order No. 812 February 1987

R144DP

V.33 Ultra High Speed Modem

SPECIFICATIONS

Power Requirements

+5 Vdc $\pm 5\% < 650$ mA + 12 Vdc $\pm 5\% < 10$ mA -12 Vdc $\pm 5\% < 70$ mA

Environmental

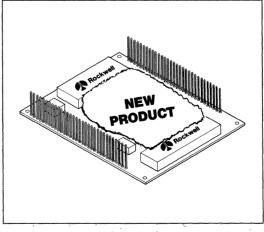
Temperature: Operating 0°C to 60°C Storage - 40°C to 80°C Relative Humidity: Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R9696DP

Integral Modems

R9696DP V.32 Ultra High Speed Modem

INTRODUCTION


The Rockwell R9696DP is a 2-wire full-duplex, synchronous/asynchronous CCITT V.32 and V.22 bis modem. It is designed to operate over the public switched telephone network, as well as leased lines, through the appropriate line termination. It is packaged in a small module with dual-in-line (DIP) connection for direct installation onto a host module.

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.32, V.22 bis, V.22 and V.21, as well as Bell 212A. The R9696DP can operate at speeds of 9600, 4800, 2400 and 300 bps.

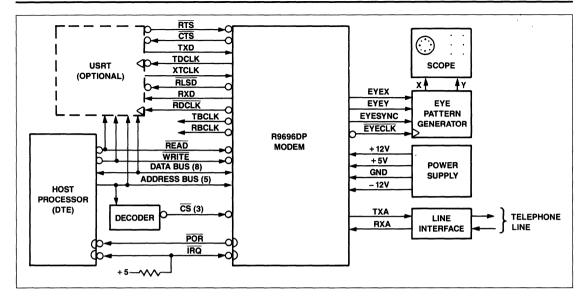
The R9696DP is designed for use in ultra high speed data applications. User programmable features allow the modern operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, serial/parallel host interface, and DIP connection simplify system development and reduce system production cost.

FEATURES

- Compatibilities — CCITT: V.32, V.22 bis, V.22, and V.21
- Bell: Bell 212A
- Synchronous/Asynchronous
- 2-Wire Full-Duplex
- Trellis Coded Modulation (TCM)
- Near and Far End Echo Cancellation
- Automatic Handshake Recognition
 Auto-Dial and Auto-Answer
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C) (Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 Electrical: TTL and CMOS Compatible
 - Electrical: 11L and CMOS Compatit
- Dynamic Range: 43 dBm to 0 dBm
- Automatic Adaptive Equalizer
 Diagnostic Capability
- Loopback
 - Local and Remote Analog
 - Remote Digital
- Small Size
 - 82 mm × 100 mm (3.23 in. × 3.94 in.) with DIP Connection
- Power Consumption: 2 W (Typical)

R9696DP Modem

Document No. 29300N07


Product Preview

Order No. 807 February 1987

2-122

R9696DP

V.32 Ultra High Speed Modem

SPECIFICATIONS

Power Requirements

+5 Vdc	±5%	<6	650	mΑ
+ 12 Vdc	±5%	<	10	mΑ
-12 Vdc	±5%	<	70	mΑ

Environmental

Temperature: Operating 0°C to 60°C Storage - 40°C to 80°C Relative Humidity: Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

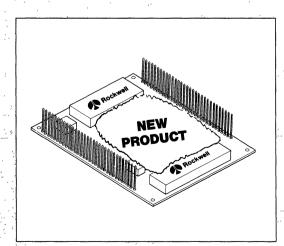
R1496MM

Integral Modems

R1496MM V.33, V.32 Ultra High Speed Modem

INTRODUCTION

The Rockwell R1496MM is a 2-wire full-duplex, synchronous/asynchronous CCITT V.33 and V.32 modem, it is designed to operate in a leased line environment where fallback to operation over the public switched telephone network is desired. It is packaged in a small module with dual-in-line (DIP) connection_ for direct installation onto a host module.


The modern satisfies the telecommunications requirements specified in CCITT recommendations V.33, V.32 and V.29. The R1496MM can operate at speeds of 14400, 12000, 9600, 7200, 4800 and 2400 bps.

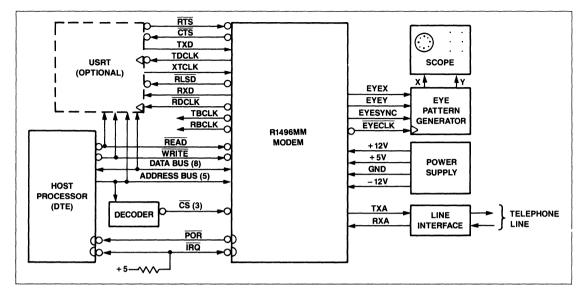
The R1496MM is designed for use in ultra high speed data applications. User programmable features allow the modern operation to be tailored to support a wide range of functional requirements. The modern's small size, low power consumption, serial/parallel host interface, and DIP connection simplify system development and reduce system production cost.

FEATURES

Compatibilities

- CCITT: V.33, V.32, V.29
- Synchronous/Asynchronous
- 2-Wire Half-Duplex, 2-Wire/4-Wire Full-Duplex
- Trellis Coded Modulation (TCM)
- Near and Far End Echo Cancellation
- Automatic Handshake Recognition
- Auto-Dial and Auto-Answer
- DTE Interface
 - Functional: CCITT V.24 (RS-232-C) (Data/Control) and Microprocessor Bus (Data/Configuration/Control)
 - Electrical: TTL and CMOS Compatible
- Dynamic Range: 43 dBm to 0 dBm
- Automatic Adaptive Equalizer
- Diagnostic Capability
- Loopback
 - Local and Remote Analog
- Remote Digital
- Small Size
- 82 mm × 100 mm (3.23 in. × 3.94 in.) with DIP Connection
- Power Consumption: 2 W (Typical)

R1496MM Modem


Product Preview

Order No. 808 February 1987

2-124

R1496MM

V.33, V.32 Ultra High Speed Modem

SPECIFICATIONS

Power Requirements

+5 Vdc $\pm 5\% < 650$ mA + 12 Vdc $\pm 5\% < 10$ mA -12 Vdc $\pm 5\% < 70$ mA

Environmental

Temperature: Operating 0°C to 60°C Storage - 40°C to 80°C Relative Humidity: Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

2-126

SECTION 3 IMAGING MODEMS

	Page
Imaging Modems	3-1
Product Family Overview	3-2
R24MFX 2400 bps MONOFAX Modem	3-3
R24BKJ 2400 bps V.26 bis Modem	3-19
R48MFX 4800 bps MONOFAX Modem	3-35
R48PCJ 4800 bps PC Communication Modem	3-51
R24/48MEB Modem Evaluation Board	3-67
R96PCJ 9600 bps PC Communication Modem	3-80
R96F 9600 bps Facsimile Modem	3-93
R96MD 9600 bps Facsimile Modem	3-112
R144HD 14400 bps Half-Duplex Modem	3-130
R96MFX 9600 bps MONOFAX Modem	3-144

3-1

IMAGING MODEMS Leading the World in Facsimile Modems

Rockwell is the world leader in the production and sale of highly integrated 9600 bps Group 3 facsimile modems. We are a major supplier to Japanese facsimile manufacturers and have been a key factor in "driving" signal processor (SP) and integrated analog (IA) technology.

Rockwell's R96F — a half-duplex, dial-up, 9600 bps, synchronous modem — is the industry standard for facsimile image transmission. Its compact size, unexcelled performance and proven reliability record have made it the choice of every major facsimile manufacturer since its introduction in 1984. The R96F is designed for use in Group 3 facsimile machines and is also compatible with Group 2 machines.

In response to market demands for smaller facsimile machines, Rockwell has introduced a line of single-package, 64-pin QUIP, facsimile modems. The R24 MONOFAX, operating at 2400 bps, and the R48 MONOFAX, operating at 4800 bps, are the world's first single-package modems designed for the emerging personal facsimile market.

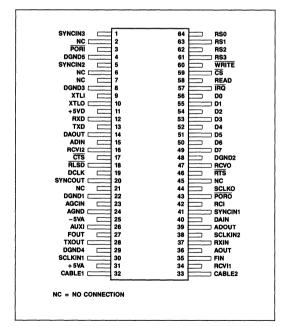
In addition, Rockwell offers single device modems for other imaging applications. The R48PCJ, a V.27 ter modem with both long and short training options, is designed for applications in personal computer communication, teletex and intelligent workstations. The R24BKJ, a V.26 bis modem, is designed for applications in banking terminals and intelligent workstations.

Continuing our digital communications leadership role, Rockwell has introduced a 14.4 Kbps half-duplex modem for general switched telephone line operation. This high performance, ultra high speed product introduction further establishes Rockwell as a leader in setting standards for the facsimile modem industry.

Model	Data Speed (bps)	PSTN/ Leased Line	2/4-Wire Half/Full-Duplex	Sync/Async	Compliance
R24MFX	2400, 300	P/L	2WHD	Sync	CCITT V.27 ter Fallback, V.21 Channel 2,
R24BKJ	2400	P/L	2WHD	Sync	CCITT V.26 bis, Bell 201C
R48MFX	4800, 2400, 300	P/L	2WHD	Sync	CCITT V.27 ter, V.21 Channel 2, T.4, T.30
R48PCJ	4800, 2400, 300	P/L	2WHD	Sync	CCITT V.27 ter Short Train, V.21 Channel 2, T.4, T.30
R96PCJ	9600, 7200, 4800, 2400 300	P/L	2WHD	Sync	CCITT V.29, V.27 ter Short Train, V.21 Channel 2, T.4, T.30
R96F	9600, 7200, 4800, 2400 300	P/L	2WHD	Sync	CCITT V.29, V.27 ter, V.21 Channel 2, T.3, T.4, T.30
R96MD	9600, 7200, 4800, 2400 300	P/L	2WHD	Sync	CCITT V.29, V.27 ter, V.21 Channel 2, T.3, T.4, T.30
R144HD	14400, 12000, 9600, 7200, 4800, 2400, 300	P/L	2WHD	Sync	CCITT V.33, V.29, V.27 ter, V.21 Channel 2, T.3, T.4, T.30
R96MFX	9600, 7200, 4800, 2400 300	P/L	2WHD	Sync	CCITT V.29, V.27 ter, V.21 Channel 2, T.4, T.30

R24MFX MONOFAX[™] Modems

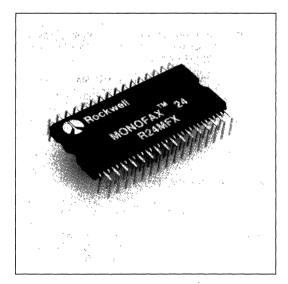
R24MFX 2400 bps MONOFAX[™] Modem


INTRODUCTION

The R24MFX MONOFAX 24 is a synchronous, serial/parallel, 2400 bps modem in a single 64-pin quad in-line package (QUIP). The modem is designed for operation over the public switched telephone network with appropriate line terminations, such as a data access arrangement, provided externally.

The R24MFX satisfies the telecommunications requirements specified in CCITT Recommendation V.27 ter fallback (2400 bps), T.4 and the binary signaling capabilities of Recommendation T.30.

The R24MFX is optimized for use in compact Group 3 facsimile machines. Its small size and low power consumption offer the user flexibility in creating a 2400 bps modem customized for specific packaging and functional requirements.


[™]MONOFAX is a trademark of Rockwell International

R24MFX Pin Assignments

FEATURES

- Single 64-Pin QUIP
- CCITT V.27 ter Fallback, T.30, V.21 Channel 2, T.4
- Group 3 Facsimile Transmission/Reception
- Half-Duplex (2-Wire)
- Programmable Dual Tone Generation
- Programmable Tone Detection
- Dynamic Range: 43 dBm to 0 dBm
- Diagnostic Capability
- Provides Telephone Line Quality Monitoring Statistics
- Equalization
 - Automatic Adaptive
 Compromise Cable (Selectable)
- DTE Interface: Two Alternate Ports
- Microprocessor Bus
- CCITT V.24 (RS-232-C Compatible)
- Low Power Consumption: 1W (Typical)
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R24MFX 2400 bps MONOFAX Modem

Document No. 29200N17

TECHNICAL CHARACTERISTICS

TONE GENERATION

Under control of the host processor, the R24MFX can generate single or dual frequency voice band tones up to 3600 Hz with a resolution of 0.11 Hz and an accuracy of 0.01%. The transmit level and frequency of each tone is independently programmable.

TONE DETECTION

Single frequency tones are detected by a programmable filter. The presence of energy at the selected frequency is indicated by a bit in the interface memory.

SIGNALING AND DATA RATES

Configuration	Parameter	Specification (±0.01%)
V.27	Signaling Rate Data Rate	1200 Baud 2400 bps
V.21	Signaling Rate Data Rate	300 Baud 300 bps

DATA ENCODING

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 ter.

At 300 baud, the data stream is 300 bps FSK per CCITT V.21 channel 2.

COMPROMISE CABLE EQUALIZERS

In addition to the adaptive equalizer, the R24MFX provides selectable compromise cable equalizers to optimize performance over three different lengths of non-loaded cable of 0.4 mm diameter (1.8 km, 3.6 km, and 7.2 km).

Cable Equalizer Nominal C	Gain
---------------------------	------

Frequency	Gain (dB) Relative to 1700 Hz		
(Hz)	1.8 km	3.6 km	7.2 km
700	- 0.99	- 2.39	- 3.93
1500	- 0.20	- 0.65	- 1.22
2000	+0.15	+ 0.87	+ 1.90
3000	+ 1.43	+ 3.06	+ 4.58

TRANSMITTED DATA SPECTRUM

When operating at 1200 baud, the transmitter spectrum is shaped by a square root of 90% raised cosine filer.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically meet the requirements of foreign telephone regulatory agencies.

SCRAMBLER/DESCRAMBLER

The R24MFX incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with CCITT V.27 ter.

2400 bps MONOFAX Modem

RECEIVE LEVEL

The receiver circuit of the R24MFX satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. An external input buffer and filter must be supplied between the receiver analog input (RXA) and the R24MFX RXIN pin. The received line signal level is measured at RXA.

RECEIVE TIMING

In the receive state, the R24MFX provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the centers of received data bits. The timing recovery circuit is capable of tracking a \pm 0.01% frequency error in the associated transmit timing source. DCLK duty cycle is 50% \pm 1%.

TRANSMIT LEVEL

The transmitter output level is programmable. An external output buffer and filter must be supplied between the R24MFX TXOUT pin and the transmitter analog output (TXA). The default level at TXA is $+5 \text{ dBm} \pm 1 \text{ dB}$. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide $-1 \text{ dBm} \pm 1 \text{ dB}$ to the load.

TRANSMIT TIMING

In the transmit state, the R24MFX provides a Data Clock (DCLK) output with the following characteristics:

- 1. Frequency: Selected data rate of 2400 or 300 Hz (±0.01%).
- 2. Duty Cycle: 50% ±1%.

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

TURN-ON SEQUENCE

Three turn-on sequences are generated by the R24MFX, as defined in the following table:

No.	Bit Rate.	RTS-CTS Time (ms)	Comments		
1	300 bps	<14	No Training Sequence		
2	2400 bps ²	943	No Echo Protector Tone		
3	2400 bps ²	1148	Preceded ¹ By Echo Protector Tone		
	Notes:				

Turn-On Sequences

Notes:

1. Turn-on sequence 3 is used on lines with protection against talker echo.

2. V.27 ter long training sequence only.

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud, followed by a 20 ms period of no transmitted energy. In V.21 the transmitter turns off within 7 ms after RTS goes false.

2400 bps MONOFAX Modem

CLAMPING

The following clamps are provided with the R24MFX:

- 1. *Received Data (RXD).* RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) whenever RTS is on.

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-to-on transition of $\overline{\text{CTS}}$ is dictated by the length of the training sequence. Response time is 943 ms for V.27 ter at 2400 bps. In V.21 $\overline{\text{CTS}}$ turns on in 14 ms or less.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

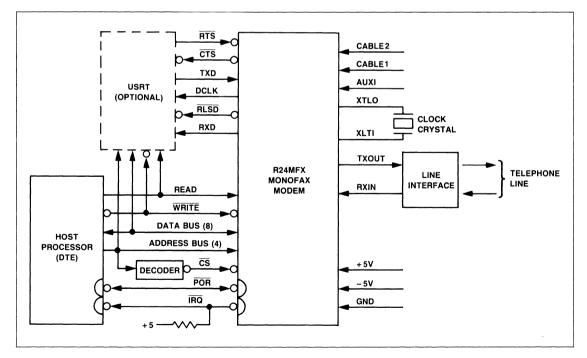
RECEIVED LINE SIGNAL DETECTOR (RLSD)

RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 674 \pm 10 ms. The RLSD on-to-off response time is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Receiver threshold is programmable over the range 0 dBm to -50 dBm, however, performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to RXA.


POWER

Voltage	Tolerance	Current (Max) @ 25°C	Current (Max) @ 60°C
+ 5 Vdc	± 5%	250 mA @ 5.0 Vdc	225 m A @ 50 Vdc
-5 Vdc	± 5%	25 mA @ -5 0 Vdc	25 mA @ -5.0 Vdc

Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak. If a switching supply is chosen, user may select any frequency between 20 kHz and 150 kHz so long as no component of the switching frequency is present outside of the power supply with an amplitude greater than 500 microvolts peak

ENVIRONMENTAL

Parameter	Specification
Temperature Operating Storage	0°C to +60°C (32°F to 140°F) -40°C to +80°C (-40°F to 176°F) (Stored in suitable antistatic container)
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R24MFX Functional Interconnect Diagram

3-5

2400 bps MONOFAX Modem

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins on the 64-pin QUIP. Software circuits are assigned to specific bits in a 16-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R24MFX Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital and Analog Interface Characteristics tables.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0-RS3), data (D0-D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (\overline{IRQ}) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Requirements table.) With the addition of a few external logic

gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

In applications where the modern is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

	-						
Name	Туре	Pin No.	Description	Name	Туре	Pin No.	Description
A. POWER:				E. ANALOG	SIGNAL	.S:	
AGND	GND	24	Connect to Analog Ground	TXOUT	AA	28	Connect to Output Op Amp
DGND1	GND	22	Connect to AGND Ground	RXIN	AB	37	Connect to Input Op Amp
DGND2	GND	48	Connect to Digital Ground	AUXI	AC	26	Auxiliary Analog Input
DGND3	GND	8	Connect to Digital Ground	F. OVERHE	A.D.		
DGND4	GND	29	Connect to Digital Ground				T
DGND5	GND	4	Connect to Digital Ground	PORO	I/OB	43	Power-On-Reset Output
+5 VA	PWR	31	Connect to Analog +5V Power	PORI	I/OB	3	Power-On-Reset Input
+5 VD	PWR	11	Connect to Digital + 5V Power	XTLO	R*	10	Connect to Crystal Circuit
-5 VA	PWR	25	Connect to Analog - 5V Power	XTLI	R*	9	Connect to Crystal Circuit
B. MICROP	ROCESS	OR INTERF	ACE:	RCVO	R*	47	Receive Mode Output
D7	I/OA	49)		RCVI1	R*	34	Connect to RCVO
D6	I/OA	50		RCVI2	R*	16	Connect to RCVO
D5	I/OA	51		SCLKO	R*	44	Switched Capacitor Clock Output
D4	I/OA	52		SCLKIN1	R*	30	Connect to SCLKO
D3	I/OA	53	Data Bus (8 Bits)	SCLKIN2	R*	38	Connect to SCLKO
D2	I/OA	54		AOUT	R*	36	Smoothing Filter Output
D1	I/OA	55		AGCIN	R*	23	AGC Input
DO	I/OA	56 J		DAOUT	R*	14	DAC/AGC Data Out
RS3	IA	61		DAIN	R*	40	Connect to DAOUT
RS2	IA	62	Register Select (4 Bits)	ADOUT	R*	39	ADC Output
RS1	IA	63	Select Reg. 0 – F	ADIN	R*	15	Connect to ADOUT
RSO	I IA	64	Select neg. U - F	FOUT	R*	27	Smoothing Filter Output
				FIN	B*	35	Connect to FOUT
CS	IA	59	Chip Select	SYNCOUT	B⁺	20	Sample Clock Output
READ	IA	58	Read Strobe	SYNCIN1	R*	41	Connect to SYNCOUT
WRITE	IA	60	Write Strobe	SYNCIN2	R⁺	5	Connect to SYNCOUT
IRQ	OB	57	Interrupt Request	SYNCIN3	R*	1	Connect to SYNCOUT
C. V.24 INT	ERFACE	•		RCI	B*	42	RC Junction for POR Time
DCLK	oc	19	Data Clock	11			Constant
RTS	IB	46	Request-to-Send	O DEOEDV		L	1
CTS	oc	17	Clear-to-Send	G. RESERV			
TXD	IB	13	Transmitter Data Signal	11	R*	2	Do Not Connect
RXD	oc	12	Receiver Data Signal	11	R*	6	Do Not Connect
RLSD	oc	18	Received Line Signal Detector	11	R*	7	Do Not Connect
	1	1	i nocenca cine cignal belector		R*	21	Do Not Connect
D. CABLE	EQUALIZ	ER:	F	1	R*	45	Do Not Connect
CABLE1	IC	32	Cable Select 1	*D - Dequir	od ovorh	and connect	ion: no connection to bost equipment
CABLE2	IC	33	Cable Select 2	n = nequir	eu overn	eau connect	ion; no connection to host equipment.

R24MFX Hardware Circuits

2400 bps MONOFAX Modem

Digital Interface Characteristics										
			Туре							
				Input			Output		Input/C	Dutput
Symbol	Parameter	Units	IA	IB	IC	OA	OB	oc	I/OA	I/OB
V _{IH}	Input Voltage, High	v	2.0 min.	2.0 min.	2.0 min				2.0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.	0.8 max.				0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	v				2.4 min.1	1		2.4 min. 1	2.4 min. ³
VOL	Output Voltage, Low	v				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max.5
IIN	Input Current, Leakage	μA	±2.5 max.						± 12.5 max.4	
Юн	Output Current, High	mA				-0.1 max.				
loL	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.		
۱ <u> </u>	Output Current, Leakage	μA					±10 max.			
IPU	Pull-up Current	μA		– 240 max.	– 240 max.			– 240 max.		– 260 max
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min
CL	Capacitive Load	pF	5	5	20	1			10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open Drain w/Pull-up	3 State Transceiver	Open-Drai w/Pull-up
Notes 3. I load = $-40 \ \mu A$ 1. I load = $-100 \ \mu A$ 4. $V_{IN} = 0.4 \ to 2.4 \ Vdc, V_{CC} = 5.25 \ Vdc$ 2. I load = 1.6 mA 5. I load = 0.36 mA										


Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics					
TXOUT	AA	The transmitter output can supply a maximum of ± 3.03 volts into a load resistance of 10k Ω minimum. In order to match to 600 Ω , an external smoothing filter with a transfer function of 15726.43/(S + 11542.44) and 604 Ω series resistor are required.					
RXIN	AB	The receiver input impedance is greater than 1M Ω . An external antialiasing filter with a transfer function of 19533.88/(S + 11542.44) is required.					
AUXI	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 3600 Hz will cause aliasing errors. The input impedance is 1M Ω , and the gain to transmitter output (TXA) is +5.6 dB ±1 dB.					
	Note: Absolute maximum voltage ratings for analog inputs are: $(-5 \text{ VA} - 0.3) \leq V_{ N } \leq (+5 \text{ VA} + 0.3)$						

Microprocessor Interface Timing Requirements

Characteristic	Symbol	Min	Max	Units
CS, RSi setup time prior to READ or WRITE	TCS	30	_	ns
Data Access time after READ	TDA	-	140	ns
Data hold time after READ	TDH	10	50	ns
CS, RSi hold time after READ or WRITE	тсн	10	_	ns
Write data setup time	TWDS	75	_	ns
Write data hold time	TWDH	10		ns
WRITE strobe pulse width	TWR	75	—	ns

Microprocessor Interface Timing Waveforms

3

2400 bps MONOFAX Modem

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

Cable Equalizer Selection

CABLE1	CABLE2	Length of 0.4mm Diameter Cable		
0	0	0.0		
0	1 1.8 km			
1	0	3.6 km		
1	1	7.2 km		

Analog Signals

Three analog signals provide the interface point for telephone company audio circuits and host audio inputs. Signals TXOUT and RXIN require buffering and filtering to be suitable for driving and receiving the communication channel. Signal AUXI provides access to the transmitter for summing host audio signals with the modern analog output.

The filters required for anti-aliasing on the receiver input and smoothing on the transmitter output have a single pole located at 11,542 radians. Although this pole is located within the modem passband, internal filters compensate for its presence and, therefore, the pole location must not be changed. Some variation from recommended resistor and capacitor values is permitted as long as the pole is not moved, overall gain is preserved, and the device is not required to drive a load of less than 10k Ω .

Notice that when reference is made to signals TXA, RXA, and AUXIN, these signals are not electrically identical to TXOUT, RXIN, and AUXI. The schematic of the recommended modem interface circuit illustrates the differences.

Overhead

Except for the power-on-reset signal PORO, the overhead signals are intended for internal use only. The various required connections are illustrated in the recommended modem interface circuit schematic. No host connections should be made to overhead signals other than PORO.

SOFTWARE CIRCUITS

The R24MFX contains 16 memory mapped registers to which an external (host) microprocessor has access. The host may read data out of or write data into these registers. Refer to the R24MFX Host Processor Interface figure.

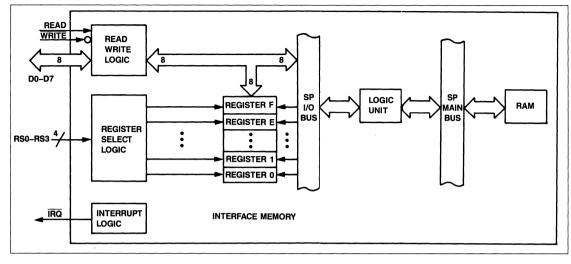
When information in these registers is being discussed, the format Z:Q is used. The register is specified by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a one (1) and "off" when reset to a zero (0).

Status/Control Bits

The operation of the R24MFX is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus.

All status and control bits are defined in the R24MFX Interface Memory Map table. Bits designated by ' — ' are reserved for modem use only and must not be changed by the host.

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.


Configuration Control

Three configurations are available in the R24MFX modem: V.27, V.21, and Tone. These three configurations are selected by writing an 8-bit binary code into the configuration field (CONF) of the interface memory. The configuration field consists of bits 7 through 0 of register D. The code for these bits is: 0 = V.21, 4 = V.27, and 8 = Tone. All other codes represent invalid states.

When the modem is initialized by power-on-reset, the configuration defaults to V.27. When the host wants to change configuration, the new code is written to the configuration field and the SETUP bit (E:3) is set to a one. Once the new configuration takes effect, the SETUP bit is reset to zero by the modem.

The information in the interface memory is serviced by the modern at either 1200 times per second or 7200 times per second depending on configuration. In V.21, the rate is 7200 times per second. In both V.27 and Tone configuration, the rate is 1200 times per second.

2400 bps MONOFAX Modem

R24MFX Host Processor Interface

		_						
Bit Register	7	6	5	4	3	2	1	0
F				RA	MA			
E	IA	CDIE	CDREQ		SETUP	DDIE	_	DDREQ
D				CC	NF			
С	RTSP	EPT	TPDM	TDIS	EQSV	EQFZ		RAMW
В	RX	FE	ED	GHIT	_	-	-	-
Α	TDET	-	—	—	-	_	-	—
9	_	-	_	_	-	_	_	-
8	-		CDET	-	PN	_	-	-
7		-	-		-	—	_	-
6		-	-	/	-	-		-
5				RX	CD			
4				ТΧ	CD			
3			/	DD	ХМ			
2				DD	XL			
1				DD	YM			
0		DDYL						
Register Bit	7	6	5	4	3	2	1	0

R24MFX Interface Memory Map

Channel Data Transfer

Data sent to or received from the data channel may be transferred between the modern and host processor in either serial or parallel form. The receiver operates in both serial and parallel mode simultaneously and requires no mode control bit selection. The transmitter operates in either serial or parallel mode as selected by mode control bit C:5 (TPDM). To enable the transmitter parallel mode, TPDM must be set to a 1. The modem automatically defaults to the serial mode (TPDM = 0) at power-on. In either transmitter serial or parallel mode, the R24MFX is configured by the host processor via the microprocessor bus.

Serial Mode—The serial mode uses a standard V.24 (RS-232-C) hardware interface (optional USRT) to transfer channel data. Transmitter data can be sent serially only when TPDM is set to a zero.

Parallel Mode—Parallel data is transferred via two registers in the interface memory. Register 5 (RXCD) is used for receiver channel data, and Register 4 (TXCD) is used for transmitter channel data. Register 5 is continuously written every eight bit times when in the receive state. Register 4 is used as the source of channel transmitter data only when bit C:5 (TPDM) is set to a one by the host. Otherwise the transmitter reads data from the V.24 interface. Both RTS and RTSP remain enabled, however, regardless of the state of TPDM.

When performing parallel data transfer of channel data, the host and modem can synchronize their operations by handshaking bits in register E. Bit E:5 (CDREQ) is the channel data request bit. This bit is set to a one by the modem when receiver data is available in RXCD or when transmitter data is required in TXCD. Once the host has finished reading RXCD or writing TXCD, the host processor must reset CDREQ by writing a zero to that bit location.

When set to a one by the host, Bit E:6 (CDIE) enables the CDREQ bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modem, bit E:7 (IA) is a one.

If the host does not respond to the channel data request within eight bit times, the RXCD register is over written or the TXCD register is sent again.

Refer to Channel Data Parallel Mode Control flow chart for recommended software sequence.

2400 bps MONOFAX Modem

R24MFX Interface Memory Definitions

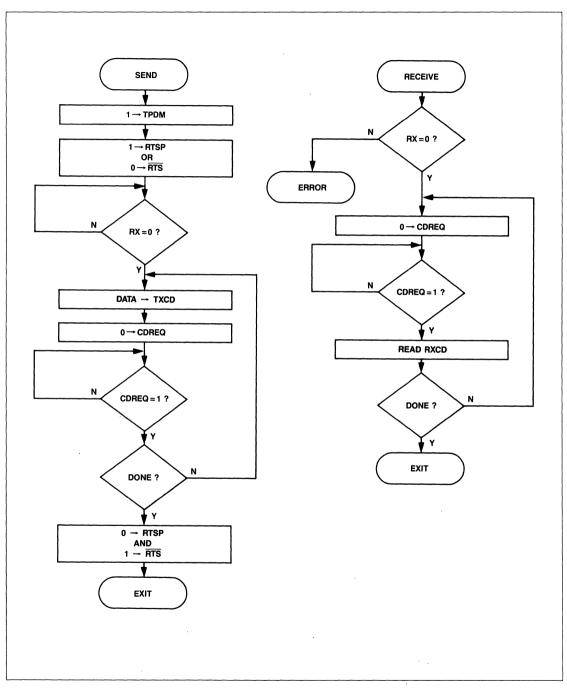
Mnemonic	Name	Memory Location		Description				
CDET	Carrier Detector	8:5	The one state of CDET indicates passband energy is being detected, and a training sequence is not present. CDET goes to one at the start of the data state, and returns to zero at the end of the received signal. CDET activates one baud time before $\overline{\text{RLSD}}$ and deactivates one baud time after $\overline{\text{RLSD}}$.					
CDIE	Channel Data Interrupt Enable	E:6	When set to a one, CDIE enables an \overline{IRQ} interrupt to be generated when the channel data request bit (CDREQ) is a one.					
CDREQ	Channel Data Request	E:5	Parallel data mode handshaking bit. Set to a one when the modem receiver writes data to RXCD or the modem transmitter reads data from TXCD. CDREQ must be reset to zero by the host processor when data service is complete.					
CONF	Configuration	D:0-7	The 8-bit field CONF controls the configu	uration of the modem according to the following table:				
			Hex Code	Configuration				
			0	V.21				
			4 8	V.27 Tone				
			All else	Invalid				
		1	Configuration Definitions					
				T.30 compatible 300 bps FSK modem having el 2 modulation system.				
			Tone—The modem sends single or dual frequency tones in response to the RTS or RTSP sign Tone frequencies and amplitudes are controlled by RAM locations written by the host. When transmitting tones the Tone configuration allows detection of single frequency tones by the TC bit. The tone detector frequency can be changed by the host by altering the contents of sever RAM locations.					
			V.27-The modem operates as specified i	in CCITT Recommendation V.27 for a 2400 bps data rate.				
DDIE	Diagnostic Data Interrupt Enable	E:2	When set to a one, DDIE enables an IRC request bit (DDREQ) is a one.	Q interrupt to be generated when the diagnostic data				
DDREQ	Diagnostic Data Request	E:0		reads from or writes to DDYL. DDREQ goes to a zero writes to DDYL. Used for diagnostic data handshaking bit.				
DDXL	Diagnostic Data X Least	2:0-7	Least significant byte of 16-bit word used	d in reading XRAM locations.				
DDXM	Diagnostic Data X Most	3:0-7	Least significant byte of 16-bit word used	t in reading XRAM locations.				
DDYL	Diagnostic Data Y Least	0:0-7	Least significant byte of 16-bit word used locations.	d in reading YRAM locations or writing XRAM and YRAM				
DDYM	Diagnostic Data Y Most	1:0-7	Most significant byte of 16-bit word used locations.	in reading YRAM locations or writing XRAM and YRAM				
EPT	Echo Protector Tone	C:6	When EPT is a one, an unmodulated can transmitted energy at the beginning of th	rrier is transmitted for 185 ms followed by 20 ms of no he training sequence.				
EQFZ	Equalizer Freeze	C:2	When EQFZ is a one, the adaptive equa	lizer taps stop updating and remain frozen.				
EQSV	Equalizer Save	C:3	When EQSV is a one, the adaptive equa or when entering the training state.	alizer taps are not zeroed when reconfiguring the modem				
FED	Fast Energy Detector	B:5,6	FED consists of a 2-bit field that indicate code.	es the level of received signal according to the following				
			Code	Energy Level				
			0	None				
			1 2	Invalid Above Turn-off Threshold				
			3	Above Turn-on Threshold				
			While receiving a signal, FED normally a					
				anomatos between obues 2 dilu 3.				

2400 bps MONOFAX Modem

Mnemonic	Name	Memory Location	Description
GHIT	Gain Hit	B:4	The gain hit bit goes to one when the receiver detects a sudden increase in passband energy faster than the AGC circuit can correct. GHIT returns to zero when the AGC output returns to normal.
IA	Interrupt Active	E:7	IA is a one when the modem is driving the interrupt request line ($\overline{IRQ})$ to a low TTL level.
PN	Period N	8:3	PN sets to a one at the start of the received PN sequence PN resets to zero at the start of the receiver data state. PN does not operate when EQFZ (C:2), EQSV (C:3) or TDIS (C:4) is set to one
RAMA	RAM Access	F:0-7	The RAMA register is written by the host when reading or writing diagnostic data. The RAMA code determines the RAM location with which the diagnostic read or write is performed.
RAMW	RAM Write	C:0	RAMW is set to a one by the host processor when performing diagnostic writes to the modem RAM. RAMW is set to a zero by the host when reading RAM diagnostic data.
RTSP	Request to Send Parallel	C:7	The one state of RTSP begins a transmit sequence. The modem continues to transmit until RTSP is turned off and the turn-off sequence has been completed. RTSP parallels the operation of the hardware $\overline{\text{RTS}}$ control input. These inputs are ORed by the modem.
RXCD	Receiver Channel Data	5:0-7	RXCD is written to by the modern every eight bit times. This byte of channel data can be read by the host when the receiver sets the channel data request bit (CDREQ).
RX	Receive State	B:7	RX is a one when the modem is in the receive state (i.e., not transmitting)
SETUP	Setup	E:3	The host processor must set the SETUP bit to a one when reconfiguring the modem, i.e., when changing CONF (D:0-7).
TDET	Tone Detected	A:7	The one state of TDET indicates reception of a tone. The filter can be retuned by means of the diagnostic write routine.
TDIS	Training Disable	C:4	If TDIS is a one in the receive state, the modem is prevented from entering the training phase. If TDIS is a one when RTS or RTSP go active, the generation of a training sequence is prevented at the start of transmission.
TPDM	Transmitter Parallel Data Mode	C:5	When control bit TPDM is a one, the transmitter accepts data for transmission from the TXCD register rather than the serial hardware data input.
TXCD	Transmitter Channel Data	4:0-7	The host processor conveys output data to the transmitter in parallel data mode by writing a data byte to the TXCD register when the channel data request bit (CDREQ) goes to a one Data is transmitted as single bits in V.21 or as dibits in V.27 starting with bit 0 or dibit 0,1.

R24MFX Interace Memory Definitions (continued)

Diagnostic Data Transfer


The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register F (RAMA). The R24MFX RAM Access Codes table lists 27 access codes for storage in register F and the corresponding diagnostic functions. The R24MFX Diagnostic Data Scaling table provides scaling information for these diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

These bits are written into interface memory registers 3, 2, 1 and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit C:0 (RAMW) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the more significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAMA bits of register F. When bit F:7 is set to one, the XRAM is selected. When F:7 equals zero, YRAM is selected.

When the host processor reads or writes register 0, the diagnostic data request bit E:0 (DDREQ) is reset to zero. When the modern reads or writes register 0, DDREQ is set to a one. When set to a one by the host, bit E:2 (DDIE) enables the DDREQ bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modern, bit E:7 (IA) goes to a one.

Channel Data Parallel Mode Control

R24MFX RAM Access Codes

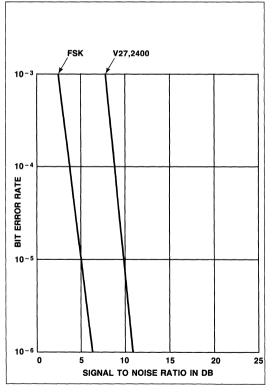
Node	Function	RAMA	Reg. No.
1	AGC Gain Word	B1	2,3
2	Average Power	F2	2,3
3	Receiver Sensitivity	F1	2,3
4	Receiver Hysteresis	84	2,3
5	Equalizer Input	5B	0,1,2,3
6	Equalizer Tap Coefficients	1B-2A	0,1,2,3
7	Unrotated Equalizer Output	6B	0,1,2,3
8	Rotated Equalizer Output	0A	0,1,2,3
9	Decision Points	6C	0,1,2,3
10	Error Vector	6D	0,1,2,3
11	Rotation Angle	87	2,3
12	Frequency Correction	8B	2,3
13	EQM	BO	2,3
14	Alpha (α)	36	0,1
15	Beta One (β_1)	37	0,1
16	Beta Two (β_2)	38	0,1
17	Alpha Prime (α')	39	0,1
18	Beta One Prime (β_1)	3A	0,1
19	Beta Two Prime (β_2')	3B	0,1
20	Alpha Double Prime (\alpha")	B6	2,3
21	Beta Double Prime (β'')	B7	2,3
22	Output Level	43	0,1
23	Tone 1 Frequency	8E	2,3
24	Tone 1 Level	44	0,1
25	Tone 2 Frequency	8F	2,3
26	Tone 2 Level	45	0,1
27	Checksum	02	0,1

R24MFX Diagnostic Data Scaling

Node	Parameter/Scaling
1	AGC Gain Word (16-bit unsigned).
	AGC Gain in dB = 50 - [(AGC Gain Word/64) × 0.098]
	Range: (16C0) ₁₆ to (7FFF) ₁₆ , For - 43 dBm Threshold
2.	Average Power (16-bit unsigned)
	Post-AGC Average Power in dBm = 10 Log (Average Power Word/2185)
	Typical Value = $(0889)_{16}$, corresponding to 0 dBm Pre-AGC Power in dBm
	= (Post-AGC Average Power-AGC Gain)
3	Receiver Sensitivity (16-bit twos complement)
	On-Number = 655.36 (52.38 + P _{ON})
	where: P _{ON} = Turn-on threshold in dB
	Convert On-Number to hexadecimal and store at access code F1
4	Receiver Hysteresis (16-bit twos complement)
	Off-Number = $[65.4 \ (10^{A})]^{2}/2$
	where: A = $(P_{OFF} - P_{ON} - 0.5)/20$ P_{ON} = Turn-on threshold in dB P_{OFF} = Turn-off threshold in dB
	Convert Off-Number to hexadecimal and store at access code 84.

2400 bps MONOFAX Modem

R24MFX Diagnostic Data Scaling


Node	Parameter/Scaling								
5,7–9	Unrotated and Decis	All base-band signal point nodes (i.e., Equalizer Input, Unrotated Equalizer Output, Rotated Equalizer Output, and Decision Points) are 32-bit, complex, twos complement numbers.							
	Point	x	Y		2	●1			
	1	1600	1600						
	2	EA00 EA00	1600 EA00			x			
	4	1600	EA00		•3	•4			
6	compleme	nt)		ts (32-bit, co		twos			
	•	ange: 0	000 to (FFFF) ₁₆ repr		g ± full scale			
10		number nary pa	with X rt.	plex, twos co = real part, o (7FFF) ₁₆	omplem	ent)			
11				gned, twos o (Rot. Angle	•	,			
12				6-bit signed					
	Frequency	correct	ion in H	•		. ,			
13	EQM (16-b Filtered so	it, unsig Juared r	gned) nagnitud	6 representin de of error vo ermined by p	ector.	75 Hz			
14–21	Filter Tuni Beta Two, Alpha Dou to instructi	ng Para Alpha F ble Prim ons in a	meters Prime, E e, and B pplicatio	(16-bit unsign leta One Prin eta Double Pr	ied) Alpl me, Bet rime are Use a s	ha, Beta One, a Two Prime, set according ample rate of			
22	Output Le			gned) 6 [10 ^(Po/20)]					
	Po = outp		er in dB	m with serie	s 600 o	hm resistor			
	Convert O access co		umber t	o hexadecim	al and	store at			
24 and 26	Tone 1 and Tone 2 Levels Calculate the power of each tone independently by using the equation for Output Number given at node 22. Convert these numbers to hexadecimal then store at access codes 44 and 45. Total power transmitted in tone mode is the result of both tone 1 power and tone 2 power.								
23 and 25	Tone 1 and 2 Frequency (16-bit unsigned) N = 9.1022 (Frequency in Hz) Convert N to hexadecimal then store at access code 8E or 8F.								
27	Checksun ROM chec			ed) determined b	oy revisi	on level.			

POWER-ON INITIALIZATION

When power is applied to the R24MFX, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (POR) remains low during this period. Approximately 10 ms after the low to high transition of POR, the modem is ready to be configured, and RTS may be activated. If the 5 Vdc power supply drops below approximately 3 Vdc for more than 30 msec, the POR cycle is repeated.

At POR time the modem defaults to the following configuration: V.27/2400 bps, serial mode, training enabled, echo protector tone enabled, interrupts disabled, RAM access code 0A, transmitter output level set for + 5 dBm at TXA, receiver turnon threshold set for -43.5 dBm, receiver turn-off threshold set for -47.0 dBm, tone 1 and tone 2 set for 0 Hz and 0 volts output, and tone detector parameters zeroed.

 $\overrightarrow{\text{POR}}$ can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or longer applied to the $\overrightarrow{\text{POR}}$ pin causes the modem to reset. The modem is ready to be configured 10 msec after the low active pulse is removed from $\overrightarrow{\text{POR}}$.

Typical Bit Error Rate (Back-to-Back, Level – 20 dBm)

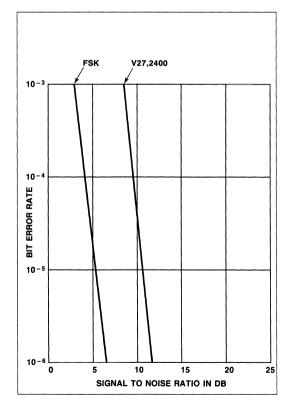
2400 bps MONOFAX Modem

PERFORMANCE

Whether functioning as a V.27 ter or V.21 type modem, the R24MFX provides the user with unexcelled high performance.

TYPICAL BIT ERROR RATES

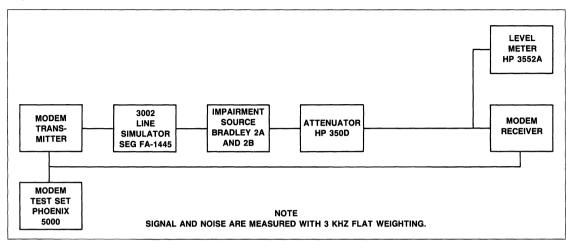
The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that illustrated in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm.


RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R24MFX can adapt to received frequency error of \pm 10 Hz with less than 0.2 dB degradation in BER performance.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).


An example of the BER performance capabilities is given in the following diagrams:

Typical Bit Error Rate (Unconditioned 3002 Line, Level – 20 dBm)

2400 bps MONOFAX Modem

The BER performance test set-up is show in the following diagram:

BER Performance Test Set-up

3

APPLICATION

Recommended Modem Interface Circuit

The R24MFX is supplied as a 64-pin QUIP device to be designed into original equipment manufacturer (OEM) circuit boards. The recommended modem interface circuit and parts list illustrate the connections and components required to connect the modem to the OEM electronics.

If the auxiliary analog input (pin 26) is not used, resistors R2 and R3 can be eliminated and pin 26 must be connected to analog ground (pin 24). When the cable equalizer controls CABLE1 and CABLE2 are connected to long leads that are subject to picking up noise spikes, a $3k \Omega$ series resistor should be used on each input (Pins 32 and 33) for isolation.

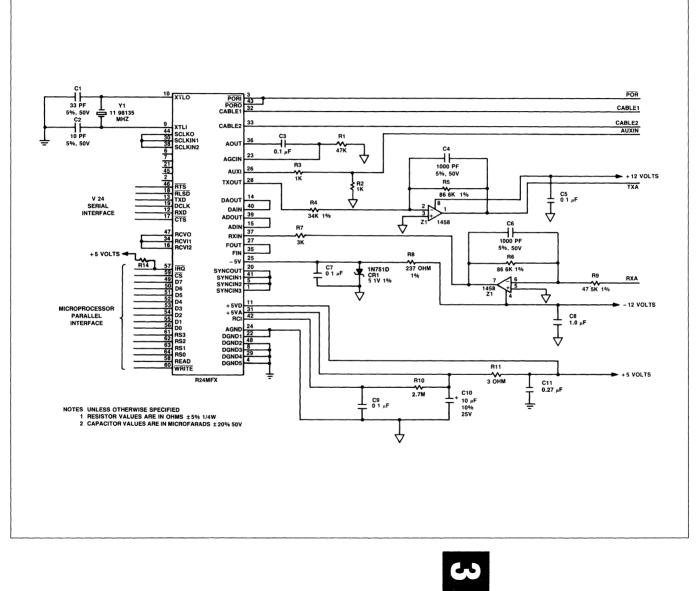
Resistors R4 and R9 can be used to trim the transmit level and receive threshold to the accuracy required by the OEM equipment. For a tolerance of ± 1 dB the 1% resistor values shown are correct for more than 99.8% of the units.

Typical Modem Interface Parts List

Component	Manufacturer's Part Number	Manufacturer	
C3,C5,C7,C9	592CX7R104M050B	Sprague	
C2	N511BY100JW	San Fernando/ Wescap	
C1	C114C330J2G5CA	Kemet	
C11	SA405C274MAA	AVX	
Y1	333R14-002	Uniden	
Z1	LM1458N	National	
R5,R6	CML 1/10		
	T86.6K ohm ±1%	Dale Electronics	
R4	5MA434.0K ±1%	Corning Electronics	
R11	5043CX3R000J	Mepco Electra	
R10	5043CX2M700J	Mepco Electra	
R1	5043CX47K00J	Mepco Electra	
R7	5043CX3K00J	Mepco Electra	
R2,R3	5043CX1K00J	Mepco Electra	
C10	ECEBEF100	Panasonic	
C8	SMC50T1R0M5X12	United Chem-Con	
C4,C6	C124C102J5G5CA	Kemet	
CR1	IN751D	I.T.T.	
R9	CRB ¹ / ₄ XF47K5	R-Ohm	
R8	ER025QKF2370	Matsushita Electric	
R14	Determined by IRQ		
	characteristics		

PC Board Layout Considerations

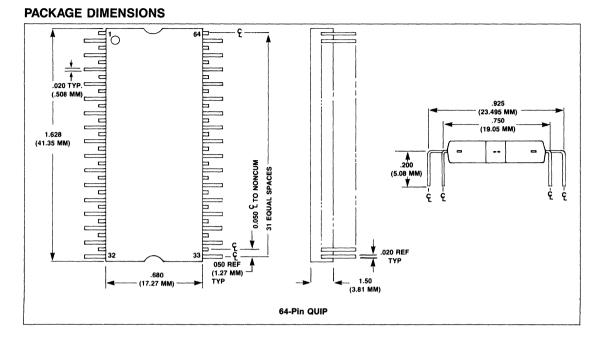
- The R24MFX and all supporting analog circuitry, including the data access arrangement if required, should be located on the same area of printed circuit board (PCB).
- 2. All power traces should be at least 0.1 inch width.
- If power source is located more than approximately 5 inches from the R24MFX, a decoupling capacitor of 10 microfarad or greater should be placed in parallel with C11 near pins 11 and 48.
- All circuitry connected to pins 9 and 10 should be kept short to prevent stray capacitance from affecting the oscillator.


2400 bps MONOFAX Modem

- 5. Pin 22 should be tied directly to pin 24 at the R24MFX package. Pin 24 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- An analog ground plane should be supplied beneath all analog components. The analog ground plane should connect to pin 24 and all analog ground points shown in the recommended circuit diagram.
- 7. Pins 4, 8, 29, and 48 should tie together at the R24MFX package. Pin 48 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 8. A digital ground plane should be supplied to cover the remaining allocated area. The digital ground plane should connect to pin 48 and all digital ground points shown in the recommended circuit diagram plus the crystal-can ground.
- The R24MFX package should be oriented relative to the two ground planes so that the end containing pin 1 is toward the digital ground plane and the end containing pin 32 is toward the analog ground plane.
- 10. As a general rule, digital signals should be routed on the component side of the PCB while analog signals are routed on the solder side. The sides may be reversed to match a particular OEM requirement.
- 11. Routing of R24MFX signals should provide maximum isolation between noise sources and sensitive inputs. When layout requirements necessitate routing these signals together, they should be separated by neutral signals. Refer to the table of noise characteristics for a list of pins in each category.

Noise Source			Noise Sensitive	
High	Low	Neutral	Low	High
1	6	3	26	23
2	7	4	28	27
5	9	8	32	35
14	10	11	33	36
15	12	16		37
20	13	22		l
21	17	24		
30	18	25		
38	19	29		
39	45	31		
40	46	34		
41	49	42		
44	50	43		
	51	47		
	52	48		
	53			
	54			
	55			
	56			
	57			
	58			
	59			
	60			
	61			
	62			
	63			
	64			

Pin Noise Characteristics

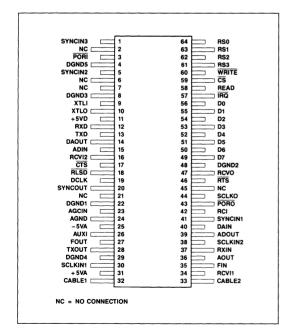

Recommended Modem Interface Circuit

R24MFX

2400 bps MONOFAX Modem

2400 bps MONOFAX Modem

R24BKJ

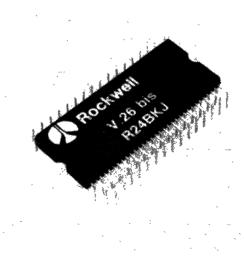

R24BKJ 2400 bps V.26 bis, Bell 201B/C Modem

INTRODUCTION

The R24BKJ is a synchronous, serial/parallel, 2400 bps modem in a single 64-pin quad in-line package (QUIP). The modem is designed for operation over the public switched telephone network with appropriate line terminations, such as a data access arrangement, provided externally.

The R24BKJ satisfies the telecommunications requirements specified in CCITT Recommendation V.26 bis Alternate A or B and Bell 201B/C.

The R24BKJ is optimized for use in compact original equipment manufacturer (OEM) systems. Its small size and low power consumption offer the user flexibility in creating a 2400 bps modem customized for specific packaging and functional requirements.



R24BKJ Pin Assignments

FEATURES

- Single 64-Pin QUIP
- CCITT V.26 bis Alternate A or B
- Bell 201B/C
- Half-Duplex (2-Wire)
- Programmable RTS/CTS Delay
- · Programmable Dual Tone Generation
- Programmable Tone Detection
- Dynamic Range: 43 dBm to 0 dBm
- Diagnostic Capability

 Provides Telephone Line Quality Monitoring Statistics
- Equalization
 - Automatic Adaptive
 - Compromise Cable (Selectable)
- DTE Interface: Two Alternate Ports
 - Microprocessor Bus
 - --- CCITT V.24 (RS-232-C Compatible)
- Low Power Consumption: 1W (Typical)
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R24BKJ 2400 bps V.26 bis/Bell 201B/C Modem

Document No. 29200N20

Order No. MD20 Rev. 1, February 1987

TECHNICAL CHARACTERISTICS

TONE GENERATION

Under control of the host processor, the R24BKJ can generate single or dual frequency voice band tones up to 3600 Hz with a resolution of 0.11 Hz and an accuracy of 0.01%. The transmit level and frequency of each tone is independently programmable.

TONE DETECTION

Single frequency tones are detected by a programmable filter. The presence of energy at the selected frequency is indicated by a bit in the interface memory.

SIGNALING AND DATA RATES

Parameter	Specification (±0.01%)
Signaling Rate Data Rate	1200 Baud 2400 bps

Signaling/Data Bates

DATA ENCODING

The 2400 bps data stream is encoded into dibits per CCITT V.26 bis Alternate A or B and Bell 201B/C.

COMPROMISE CABLE EQUALIZERS

In addition to the adaptive equalizer, the R24BKJ provides selectable compromise cable equalizers to optimize performance over three different lengths of non-loaded cable of 0.4 mm diameter (1.8 km, 3.6 km, and 7.2 km).

Cable	Equalizer	Nominal	Gain
-------	-----------	---------	------

Frequency	Gain	(dB) Relative t	elative to 1700 Hz		
(Hz)	1.8 km	3.6 km	7.2 km		
700	- 0.99	- 2.39	- 3.93		
1500	- 0.20	- 0.65	- 1.22		
2000	+ 0.15	+ 0.87	+1.90		
3000	+ 1.43	+ 3.06	+ 4.58		

TRANSMITTED DATA SPECTRUM

The transmitter spectrum is shaped by a square root of 90% raised cosine filter.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically meet the requirements of foreign telephone regulatory agencies.

SCRAMBLER/DESCRAMBLER

The R24BKJ incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with CCITT V.27 ter. The scrambler can be disabled by setting a bit in interface memory.

2400 bps V.26 bis, Bell 201B/C Modem

RECEIVE LEVEL

The receiver circuit of the R24BKJ satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. An external input buffer and filter must be supplied between the receiver analog input (RXA) and the R24BKJ RXIN pin. The received line signal level is measured at RXA.

RECEIVE TIMING

In the receive state, the R24BKJ provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the centers of received data bits. The timing recovery circuit is capable of tracking a \pm 0.01% frequency error in the associated transmit timing source. DCLK duty cycle is 50% \pm 1%.

TRANSMIT LEVEL

The transmitter output level is programmable. An external output buffer and filter must be supplied between the R24BKJ TXOUT pin and the transmitter analog output (TXA). The default level at TXA, when sending pseudorandom data, is +5 dBm ± 1 dB. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide -1 dBm ± 1 dB to the load.

TRANSMIT TIMING

In the transmit state, the R24BKJ provides a Data Clock (DCLK) output with the following characteristics:

- 1. Frequency: Data rate of 2400 Hz (±0.01%).
- 2. Duty Cycle: 50% ±1%.

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

SYNCHRONIZING SEQUENCE

The synchronizing sequence of the R24BKJ consists of two segments: a fixed segment of unscrambled ones, and an open segment which may be either unscrambled or scrambled ones, depending on the configuration selected. Both segments are programmable by allowing the synchronizing sequence to be varied for specific applications.

TURN-OFF SEQUENCE

The turn-off sequence consists of approximately 10 ms of remaining data and scrambled or unscrambled ones at 1200 baud.

CLAMPING

The following clamps are provided with the R24BKJ:

- 1. *Received Data (RXD).* RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) whenever RTS is on.

2400 bps V.26 bis, Bell 201B/C Modem

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-toon transition of $\overline{\text{CTS}}$ is dictated by the length of the synchronizing signal. The response time is programmable. The choice of response times depends upon the system application: a) limited protection against line echoes; b) protection given against line echoes.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-tooff transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

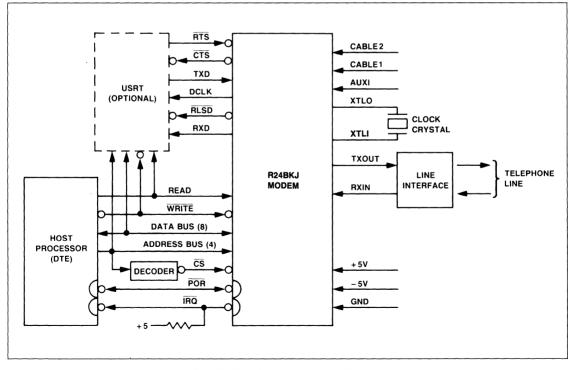
RECEIVED LINE SIGNAL DETECTOR (RLSD)

RLSD turns on whenever energy is detected on the line. The RLSD off-to-on response time is 10 ± 5 ms.

The $\overline{\text{RLSD}}$ on-to-off response time ensures that all valid data bits have appeared on RXD. The on-to-off response time is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual $\overline{\text{RLSD}}$ on threshold or at least 5 dB below the actual $\overline{\text{RLSD}}$ off threshold.

Receiver threshold is programmable over the range 0 dBm to -50 dBm, however, performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to RXA.


POWER

Voltage	Tolerance	Curre (Max) @	 Current (Max) @ 60°C				
+ 5 Vdc - 5 Vdc		250 mA @ 25 mA @	225 mA @ 25 mA @				

Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak. If a switching supply is chosen, user may select any frequency between 20 kHz and 150 kHz so long as no component of the switching frequency is present outside of the power supply with an amplitude greater than 500 microvolts peak.

ENVIRONMENTAL

Parameter	Specification
Temperature Operating Storage	0°C to +60°C (32°F to 140°F) -40°C to +80°C (-40°F to 176°F) (Stored in suitable antistatic container).
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R24BKJ Functional Interconnect Diagram

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins on the 64-pin QUIP. Software circuits are assigned to specific bits in a 16-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R24BKJ Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital and Analog Interface Characteristics tables.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0-RS3), data (D0-D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (\overline{IRQ}) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Requirements table.) With the addition of a few external logic

2400 bps V.26 bis, Bell 201B/C Modem

gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

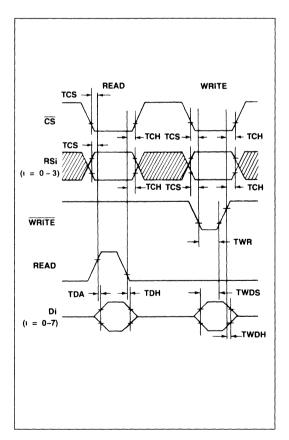
In applications where the modem is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

R24BKJ Hardware Circuits

Name	Туре	Pin No.	Description	Name	Туре	Pin No.	Description
A. POWER:				E. ANALOG	SIGNAL	.S:	1
AGND	GND	24	Connect to Analog Ground	TXOUT	AA	28	Connect to Output Op Amp
DGND1	GND	22	Connect to AGND Ground	RXIN	AB	37	Connect to Input Op Amp
DGND2	GND	48	Connect to Digital Ground	AUXI	AC	26	Auxiliary Analog Input
DGND3	GND	8	Connect to Digital Ground	F. OVERHE	A.D.		
DGND4	GND	29	Connect to Digital Ground			·····	
DGND5	GND	4	Connect to Digital Ground	PORO	I/OB	43	Power-On-Reset Output
+5 VA	PWR	31	Connect to Analog +5V Power	PORI	I/OB	3	Power-On-Reset Input
+5 VD	PWR	11	Connect to Digital +5V Power	XTLO	R*	10	Connect to Crystal Circuit
-5 VA	PWR	25	Connect to Analog - 5V Power	XTLI	R*	9	Connect to Crystal Circuit
B. MICROPROCESSOR INTERFACE:		RCVO	R*	47	Receive Mode Output		
D7	I/OA	49)	Γ	RCVI1	R*	34	Connect to RCVO
D7 D6	I/OA	50		RCVI2	R*	16	Connect to RCVO
D5	1/0A	51		SCLKO	R*	44	Switched Capacitor Clock Output
D3	1/0A	52		SCLKIN1	R*	30	Connect to SCLKO
D3	1/0A	53	Data Bus (8 Bits)	SCLKIN2	R*	38	Connect to SCLKO
D2	I/OA	54		AOUT	B*	36	Smoothing Filter Output
D1	I/OA	55		AGCIN	B*	23	AGC Input
DO	I/OA	56		DAOUT	R*	14	DAC/AGC Data Out
RS3				DAIN	R*	40	Connect to DAOUT
RS2	IA IA	61 62	Register Select (4 Bits)	ADOUT	R*	39	ADC Output
RS1	IA	62	Select Reg. 0 – F	ADIN	B*	15	Connect to ADOUT
RS0	IA	64	Select neg. U - F	FOUT	B*	27	Smoothing Filter Output
	1			FIN	B*	35	Connect to FOUT
CS	IA	59	Chip Select	SYNCOUT	R*	20	Sample Clock Output
READ	IA	58	Read Strobe	SYNCIN1	B*	41	Connect to SYNCOUT
WRITE	IA	60	Write Strobe	SYNCIN2	B*	5	Connect to SYNCOUT
IRQ	OB	57	Interrupt Request	SYNCIN3	B*	1	Connect to SYNCOUT
C. V.24 IN1	ERFACE	:		RCI	B*	42	RC Junction for POR Time
DCLK	oc	19	Data Clock	-11	1	76	Constant
RTS	IB	46	Request-to-Send		L		Constant
CTS	OC	40 17	Clear-to-Send	G. RESERV	ED		
TXD	IB	17			R*	2	Do Not Connect
RXD	OC	13	Transmitter Data Signal		R*	6	Do Not Connect
RLSD		12 18	Receiver Data Signal	11	R*	7	Do Not Connect
			Received Line Signal Detector	41	R*	21	Do Not Connect
D. CABLE	EQUALIZ	ER:			R*	45	Do Not Connect
CABLE1	IC	32	Cable Select 1	tD Dent			· · · · · · · · · · · · · · · · · · ·
CABLE2	IC	33	Cable Select 2	"H = Requir	ed overh	ead connect	ion; no connection to host equipment.

2400 bps V.26 bis, Bell 201B/C Modem

Digital Interface Characteristics											
			Туре								
				Input			Output		Input/Output		
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	ос	I/OA	I/OB	
VIH	Input Voltage, High	v	2.0 min.	2.0 min.	2.0 min				2.0 min.	5.25 max. 2.0 min.	
ViL	Input Voltage, Low	v	0.8 max.	0.8 max	0.8 max.	ł			0.8 max.	0.8 max.	
V _{OH}	Output Voltage, High	V				2.4 min.1	1		2.4 min. 1	2.4 min. ³	
Vol	Output Voltage, Low	V	r i i			0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ⁵	
I _{IN}	Input Current, Leakage	μA	±2.5 max.						± 12.5 max.4	-	
1 _{OH}	Output Current, High	mA				-0.1 max.					
IOL	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.			
ι, Έ	Output Current, Leakage	μA					± 10 max.				
IPU	Pull-up Current	μA		– 240 max.	– 240 max.			- 240 max.		– 260 max	
	(Short Circuit)			– 10 min.	- 10 min.			– 10 min.		– 100 min.	
C∟	Capacitive Load	pF	5	5	20				10	40	
CD	Capacitive Drive	pF				100	100	100	100	100	
	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open Drain w/Pull-up	3 State Transceiver	Open-Drair w/Pull-up	
	d = -100 μA d = 1.6 mA	1	4. V _{IN}	$pad = -40 \mu_{\rm H}$ = 0.4 to 2.4 pad = 0.36 m	A Vdc, V _{CC} =	5.25 Vdc	L		L		


Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXOUT	AA	The transmitter output can supply a maximum of ± 3.03 volts into a load resistance of 10k Ω minimum. In order to match to 600 Ω , an external smoothing filter with a transfer function of 15726.43/(S + 11542.44) and 604 Ω series resistor are required.
RXIN	AB	The receiver input impedance is greater than 1M Ω . An external antualiasing filter with a transfer function of 19533.88/(S + 11542.44) is required.
AUXI	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 3600 Hz will cause aliasing errors. The input impedance is 1M Ω , and the gain to transmitter output (TXA) is +5.6 dB ±1 dB.
		ximum voltage ratings for analog inputs are: $0.3) \leq V_{IN} \leq (+5 \text{ VA} + 0.3)$

Microprocessor Interface Timing Requirements

Characteristic	Symbol	Min	Max	Units
CS, RSI setup time prior to READ or WRITE	TCS	30		ns
Data Access time after READ	TDA		140	ns
Data hold time after READ	TDH	10	50	ns
CS, RSi hold time after READ or WRITE	тсн	10	_	ns
Write data setup time	TWDS	75		ns
Write data hold time	TWDH	10	-	ns
WRITE strobe pulse width	TWR	75		ns

Microprocessor Interface Timing Waveforms

3

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

Cable Equalizer Selection

CABLE2	ABLE2 CABLE1 Length of 0.4mm Diameter Cable					
0	0	0.0				
0	1	1.8 km				
1	0	3.6 km				
1	1	7.2 km				

Analog Signals

Three analog signals provide the interface point for telephone company audio circuits and host audio inputs. Signals TXOUT and RXIN require buffering and filtering to be suitable for driving and receiving the communication channel. Signal AUXI provides access to the transmitter for summing host audio signals with the modem analog output.

The filters required for anti-aliasing on the receiver input and smoothing on the transmitter output have a single pole located at 11,542 radians. Although this pole is located within the modern passband, internal filters compensate for its presence and, therefore, the pole location must not be changed. Some variation from recommended resistor and capacitor values is permitted as long as the pole is not moved, overall gain is preserved, and the device is not required to drive a load of less than 10k Ω .

Notice that when reference is made to signals TXA, RXA, and AUXIN, these signals are not electrically identical to TXOUT, RXIN, and AUXI. The schematic of the recommended modem interface circuit illustrates the differences.

Overhead

Except for the power-on-reset signal PORO, the overhead signals are intended for internal use only. The various required connections are illustrated in the recommended modem interface circuit schematic. No host connections should be made to overhead signals other than PORO.

SOFTWARE CIRCUITS

The R24BKJ contains 16 memory mapped registers to which an external (host) microprocessor has access. The host may read data out of or write data into these registers. Refer to the R24BKJ Host Processor Interface figure.

2400 bps V.26 bis, Bell 201B/C Modem

When information in these registers is being discussed, the format Z:Q is used. The register is specified by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a one (1) and "off" when reset to a zero (0).

Status/Control Bits

The operation of the R24BKJ is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus.

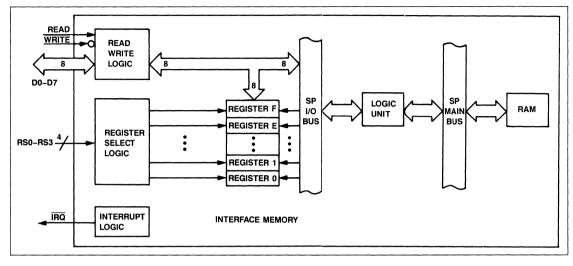
All status and control bits are defined in the R24BKJ Interface Memory Map table. Bits designated by '-' are reserved for modem use only and must not be changed by the host.

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Configuration Control

Five configurations are available in the R24BKJ modem. The configuration is selected by writing an 8-bit binary code into the configuration field (CONF) of the interface memory. The configuration field consists of bits 7 through 0 of register D. The code for these bits is shown in the following table. All other codes represent invalid states.

CONF Code	Configuration	Scrambler/ Descrambler						
04*	V.26B	disabled						
44	V.26A	disabled						
84	V.26B	enabled						
C4	V 26A	enabled						
0C	Tone	Not applicable						
*Default value a	*Default value at POB with 220 ms synchronizing sequence							


Configuration Codes

*Default value at POR with 220 ms synchronizing sequence

When the modem is initialized by power-on-reset, the configuration defaults to V.26B with scrambler disabled and 220 ms synchronizing signal. When the host wants to change configuration, the new code is written to the configuration field and the SETUP bit (E:3) is set to a one. Once the new configuration takes effect, the SETUP bit is reset to zero by the modem.

The information in the interface memory is serviced by the modem at 1200 times per second.

2400 bps V.26 bis, Bell 201B/C Modem

R24BKJ Host Processor Interface

					-			
Bit Register	7	6	5	4	3	2	1	0
F				RA	MA			
E	IA	CDIE	CDREQ	-	SETUP	DDIE	-	DDREQ
D				co	NF			
С	RTSP		TPDM	1	—	EQFZ	—	RAMW
В	RX	FE	ED	GHIT	-		-	-
A	TDET	_	_	_	-		_	_
9	_	-	—		—			_
8			CDET		—	_	_	_
7	—	_	_	—	_	—	_	_
6	-	—	_	_	-	_	_	-
5				RX	CD			
4				тх	CD			
3				DD	ХМ			
2				DD	XL			
1				DD	YM			
0		DDYL						
Register Bit	7	6	5	4	3	2	1	0

R24BKJ Interface Memory Map

Channel Data Transfer

Data sent to or received from the data channel may be transferred between the modem and host processor in either serial or parallel form. The receiver operates in both serial and parallel mode simultaneously and requires no mode control bit selection. The transmitter operates in either serial or parallel mode as selected by mode control bit C:5 (TPDM). To enable the transmitter parallel mode, TPDM must be set to a 1. The modem automatically defaults to the serial mode (TPDM = 0) at power-on. In either transmitter serial or parallel mode, the R24BKJ is configured by the host processor via the microprocessor bus.

Serial Mode—The serial mode uses a standard V.24 (RS-232-C) hardware interface (optional USRT) to transfer channel data. Transmitter data can be sent serially only when TPDM is set to a zero.

Parallel Mode—Parallel data is transferred via two registers in the interface memory. Register 5 (RXCD) is used for receiver channel data, and Register 4 (TXCD) is used for transmitter channel data. Register 5 is continuously written every eight bit times when in the receive state. Register 4 is used as the source of channel transmitter data only when bit C:5 (TPDM) is set to a one by the host. Otherwise the transmitter reads data from the V.24 interface. Both RTS and RTSP remain enabled, however, regardless of the state of TPDM.

When performing parallel data transfer of channel data, the host and modem can synchronize their operations by handshaking bits in register E. Bit E:5 (CDREQ) is the channel data request bit. This bit is set to a one by the modem when receiver data is available in RXCD or when transmitter data is required in TXCD. Once the host has finished reading RXCD or writing TXCD, the host processor must reset CDREQ by writing a zero to that bit location.

When set to a one by the host, Bit E:6 (CDIE) enables the CDREQ bit to cause an \overline{IRQ} interrupt when set. While the \overline{IRQ} line is driven to a TTL low level by the modem, bit E:7 (IA) is a one.

If the host does not respond to the channel data request within eight bit times, the RXCD register is over written or the TXCD register is sent again.

Refer to Channel Data Parallel Mode Control flow chart for recommended software sequence.

3-25

2400 bps V.26 bis, Bell 201B/C Modem

R24BKJ Interface Memory Definitions

Mnemonic	Name	Memory Location	Description			
CDET	Carrier Detector	8:5	The one state of CDET indicates passband energy is being detected, and a training sequence is not present. CDET goes to one at the start of the data state, and returns to zero at the end of the received signal. CDET activates one baud time before RLSD and deactivates one baud time after RLSD.			
CDIE	Channel Data Interrupt Enable	E:6		When set to a one, CDIE enables an $\overline{\rm IRQ}$ interrupt to be generated when the channel data request bit (CDREQ) is a one.		
CDREQ	Channel Data Request	E:5	Parallel data mode handshaking bit. Set to a one when the modem receiver writes data to RXCD, or the modem transmitter reads data from TXCD. CDREQ must be reset to zero by the host processor when data service is complete.			
CONF	Configuration	D:0-7	The 8-bit field CONF controls the configuration of the modem according		on of the modem according to the following table:	
			Hex Code		Configuration	
			04* 44 84 C4 0C	V.26A, Scrambler/des	Scrambler/descrambler enabled	
			*Default value	at POR with 220 ms	turn-on sequence.	
			or B, and Bell 201B/C, a <i>Tone</i> —The modem send Tone frequencies and a transmitting tones the T	em operates as specif at a 2400 bps data rat ds single or dual frequ Implitudes are controll Tone configuration allo	ied in CCITT Recommendation V.26 bis Alternate A e. ency tones in response to the $\overline{\text{RTS}}$ or RTSP signals. ed by RAM locations written by the host. When not ws detection of single frequency tones by the TDET ged by the host by altering the contents of several	
DDIE	Diagnostic Data Interrupt Enable	E:2	When set to a one, DDIE enables an IRQ interrupt to be generated when the diagnostic data request bit (DDREQ) is a one.			
DDREQ	Diagnostic Data Request	E:0	DDREQ goes to a one when the modem reads from or writes to DDYL. DDREQ goes to a zero when the host processor reads from or writes to DDYL. Used for diagnostic data handshaking bit.			
DDXL	Diagnostic Data X Least	2:0-7	Least significant byte o	f 16-bit word used in r	eading XRAM locations.	
DDXM	Diagnostic Data X Most	3:0-7	Least significant byte o	f 16-bit word used in r	eading XRAM locations.	
DDYL	Diagnostic Data Y Least	0:0-7	Least significant byte o locations.	f 16-bit word used in r	eading YRAM locations or writing XRAM and YRAM	
DDYM	Diagnostic Data Y Most	1:0-7	Most significant byte of locations.	16-bit word used in re	eading YRAM locations or writing XRAM and YRAM	
EQFZ	Equalizer Freeze	C:2	When EQFZ is a one, t	he adaptive equalizer	taps stop updating and remain frozen.	
FED	Fast Energy Detector	B:5,6	code.		e level of received signal according to the following	
				Code	Energy Level	
		1		0 1	None Invalid	
,				2	Above Turn-off Threshold	
				3	Above Turn-on Threshold	
			While receiving a signa	al, FED normally altern	nates between Codes 2 and 3.	
			1			

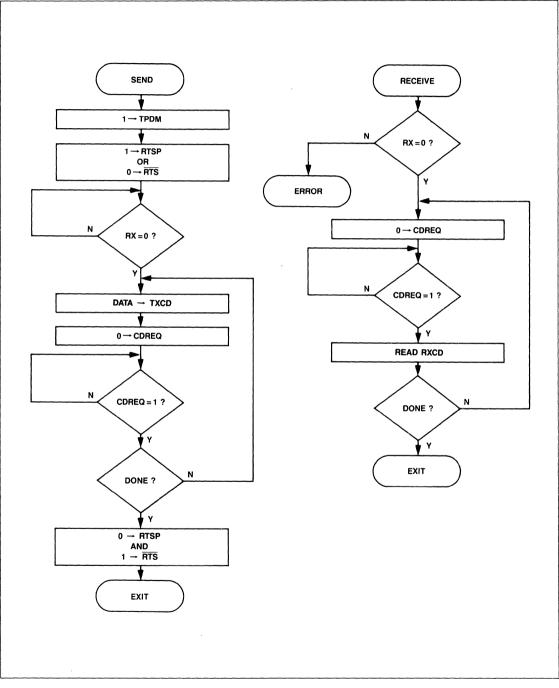
2400 bps V.26 bis, Bell 201B/C Modem

Mnemonic	Name	Memory Location	Description
GHIT	Gain Hit	B:4	The gain hit bit goes to one when the receiver detects a sudden increase in passband energy faster than the AGC circuit can correct. GHIT returns to zero when the AGC output returns to normal.
IA	Interrupt Active	E:7	IA is a one when the modem is driving the interrupt request line ($\overline{IRQ})$ to a low TTL level.
RAMA	RAM Access	F:0-7	The RAMA register is written by the host when reading or writing diagnostic data. The RAMA code determines the RAM location with which the diagnostic read or write is performed
RAMW	RAM Write	C:0	RAMW is set to a one by the host processor when performing diagnostic writes to the modem RAM. RAMW is set to a zero by the host when reading RAM diagnostic data.
RTSP	Request to Send Parallel	C:7	The one state of RTSP begins a transmit sequence. The modem continues to transmit until RTSP is turned off and the turn-off sequence has been completed. RTSP parallels the operation of the hardware $\overline{\text{RTS}}$ control input. These inputs are ORed by the modem.
RXCD	Receiver Channel Data	5:0-7	RXCD is written to by the modem every eight bit times. This byte of channel data can be read by the host when the receiver sets the channel data request bit (CDREQ).
RX	Receive State	B:7	RX is a one when the modem is in the receive state (i.e., not transmitting).
SETUP	Setup	E:3	The host processor must set the SETUP bit to a one when reconfiguring the modem, i.e., when changing CONF (D:0-7).
TDET	Tone Detected	A:7	The one state of TDET indicates reception of a tone. The filter can be retuned by means of the diagnostic write routine.
TPDM	Transmitter Parallel Data Mode	C:5	When control bit TPDM is a one, the transmitter accepts data for transmission from the TXCD register rather than the serial hardware data input.
TXCD	Transmitter Channel Data	4:0-7	The host processor conveys output data to the transmitter in parallel data mode by writing a data byte to the TXCD register when the channel data request bit (CDREQ) goes to a one. Data is transmitted as single bits in V.21 or as dibits in V.27 starting with bit 0 or dibit 0,1.

R24BKJ Interace Memory Definitions (continued)

Diagnostic Data Transfer

The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.


The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register F (RAMA). The R24BKJ RAM Access Codes table lists 27 access codes for storage in register F and the corresponding diagnostic functions. The R24BKJ Diagnostic Data Scaling table provides scaling information for these diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

These bits are written into interface memory registers 3, 2, 1 and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit C:0 (RAMW) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the more significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAMA bits of register F. When bit F:7 is set to one, the XRAM is selected. When F:7 equals zero, YRAM is selected.

When the host processor reads or writes register 0, the diagnostic data request bit E:0 (DDREQ) is reset to zero. When the modern reads or writes register 0, DDREQ is set to a one. When set to a one by the host, bit E:2 (DDIE) enables the DDREQ bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modern, bit E:7 (IA) goes to a one.

2400 bps V.26 bis, Bell 201B/C Modem

Channel Data Parallel Mode Control

2400 bps V.26 bis, Bell 201B/C Modem

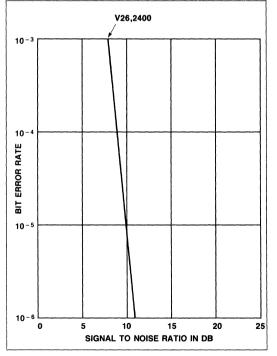
R24BKJ RAM Access Codes

Node	Function	RAMA	Reg. No.				
1	AGC Gain Word	B1	2,3				
2	Average Power	F2	2,3				
3	Receiver Sensitivity	F1	2,3				
4	Receiver Hysteresis	84	2,3				
5	Equalizer Input	5B	0,1,2,3				
6	Equalizer Tap Coefficients	1B-2A	0,1,2,3				
7	Unrotated Equalizer Output	6B	0,1,2,3				
8	Rotated Equalizer Output	0A	0,1,2,3				
9	Decision Points	6C	0,1,2,3				
10	Error Vector	6D	0,1,2,3				
11	Rotation Angle	87	2,3				
12	Frequency Correction	8B	2,3				
13	EQM	B0	2,3				
14	Alpha (α)	36	0,1				
15	Beta One (β ₁)	37	0,1				
16	Beta Two (β ₂)	38	0,1				
17	Alpha Prime (α')	39	0,1				
18	Beta One Prime (β_1')	3A	0,1				
19	Beta Two Prime (β_2')	3B	0,1				
20	Alpha Double Prime (α'')	B6	2,3				
21	Beta Double Prime (β")	B7	2,3				
22	Output Level	43	0,1				
23	Tone 1 Frequency	8E	2,3				
24	Tone 1 Level	44	0,1				
25	Tone 2 Frequency	8F	2,3				
26	Tone 2 Level	45	0,1				
27	Checksum	02	0,1				
28	Fixed Synchronizing	11	2,3				
	Segment						
29	Open Synchronizing	11	0,1				
	Segment						

R24BKJ Diagnostic Data Scaling

·····					
Node	Parameter/Scaling				
1	AGC Gain Word (16-bit unsigned).				
	AGC Gain in dB = 50 - [(AGC Gain Word/64) \times 0.098]				
	Range: (16C0) ₁₆ to (7FFF) ₁₆ , For -43 dBm Threshold				
2.	Average Power (16-bit unsigned)				
	Post-AGC Average Power in dBm = 10 Log (Average Power Word/2185)				
	Typical Value = $(0889)_{16}$, corresponding to 0 dBm Pre-AGC Power in dBm				
	= (Post-AGC Average Power-AGC Gain)				
3	Receiver Sensitivity (16-bit twos complement)				
	On-Number = 655.36 (52.38 + P _{ON})				
	where: P _{ON} = Turn-on threshold in dB				
	Convert On-Number to hexadecimal and store at access code F1				
4	Receiver Hysteresis (16-bit twos complement)				
	Off-Number = $[65.4 (10^{A})]^{2}/2$				
	where $A = (P_{OFF} - P_{ON} - 0.5)/20$ $P_{ON} =$ Turn-on threshold in dB $P_{OFF} =$ Turn-off threshold in dB				
	Convert Off-Number to hexadecimal and store at access code 84				

R24BKJ Diagnostic Data Scaling


Node			Paran	neter/Scaling	3	
5,7–9	Unrotated	l Equalız sion Poir	er Outp nts) are	int nodes (i. ut, Rotated E 32-bit, comp	Equalize	er Output,
	Value (hex)]	,	,
	Point X Y				2	
	1 2	1600 0000	1600 1F1C		•3	•1
	3	EA00	1600	4		8 x
	4	E0E4 EA00	0000 EA00			· · ·
	6 7	0000 1600	E0E4 EA00		●5	•7
	8	1600 1F1C	0000			6
6			efficien	ts (32-bit, co	omplex,	twos
	complem Complex		s with X	= real part,	Y = in	naginary part
	X and Y	range: 0	000 to (FFFF) ₁₆ repr		g ± full scale
10	in hexade			plement. plex, twos co	molor	(ent)
10	Complex	number	with X	= real part,	Subleu	ient)
	Y = Imag X and Y			to (7FFF) ₁₆		
11				igned, twos	complei	ment)
	1			(Rot. Angle		
12		-		6-bit signed	twos co	omplement)
	Frequency correction in Hz = (Freq. Correction Word/65,536) × Baud Rate					
				e representir	•	
13	EQM (16-	bit, unsi	gned)			
	Filtered squared magnitude of error vector. Proportionality to BER determined by particular application.					
14–21	Filter Tuning Parameters (16-bit unsigned) Alpha, Beta One, Beta Two, Alpha Prime, Beta One Prime, Beta Two Prime, Alpha Double Prime, and Beta Double Prime are set according to instructions in application note 668. Use a sample rate of 7200 samples per second for all calculations.					
22	Output L			gned) .6 [10 ^(Po/20)]		
	Po = ou		er in dB	m with serie	s 600 d	ohm resistor
		Dutput N		to hexadecim	nal and	store at
24	Tone 1 a	nd Tone				
and 26	Calculate the power of each tone independently by using the equation for Output Number given at node 22. Convert these numbers to hexadecimal then store at access codes 44 and 45. Total power transmitted in tone mode is the result of both tone 1 power and tone 2 power.					
23	Tone 1 a	nd 2 Fre	quency	(16-bit unsig		"
and 25	N = 9.1022 (Frequency in Hz) Convert N to hexadecimal then store at access code 8E or 8F.					
27	Checksum (16-bit unsigned) ROM checksum number determined by revision level.					
28,29	Fixed and	Open S	ynchro	nizing Segm	ents (16 Open + 1	-bit unsigned)]) baud times 1 baud time)
		7FFF ₁₆ : (baud	≥ Fixed time =	, Open baud 1/1200 = 0	times	≥ 0
	Fixed = u Open = u			s crambled on	es	Marana and Santa Sant

POWER-ON INITIALIZATION

When power is applied to the R24BKJ, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (\overrightarrow{POR}) remains low during this period. Approximately 10 ms after the low to high transition of \overrightarrow{POR} , the modem is ready to be configured, and \overrightarrow{RTS} may be activated. If the 5 Vdc power supply drops below approximately 3 Vdc for more than 30 msec, the \overrightarrow{POR} cycle is repeated.

At $\overrightarrow{\text{POR}}$ time the modem defaults to the following configuration: V.26B, scrambler disabled, serial mode, 90 ms synchronizing signal, interrupt disabled, RAM access code 0A, transmitter output level set for +5 dBm at TXA, receiver turn-on threshold set for -43.5 dBm, receiver turn-off threshold set for -47.0 dBm, tone 1 and tone 2 set for 0 Hz and 0 volts output, and tone detector parameters zeroed.

POR can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or longer applied to the POR pin causes the modem to reset. The modem is ready to be configured 10 msec after the low active pulse is removed from POR.

Typical Bit Error Rate (Back-to-Back, Level – 20 dBm)

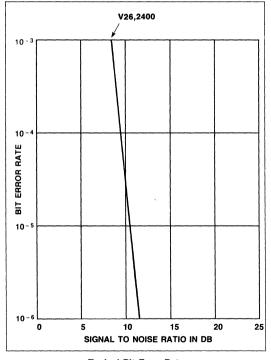
2400 bps V.26 bis, Bell 201B/C Modem

PERFORMANCE

The R24BKJ provides the user with unexcelled high performance.

TYPICAL BIT ERROR RATES

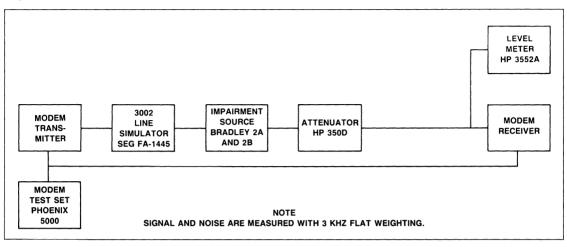
The Bit Error Rate (BER) performance of the modern is specified for a test configuration conforming to that illustrated in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm.


RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R24BKJ can adapt to received frequency error of \pm 10 Hz with less than 0.2 dB degradation in BER performance.

TYPICAL PHASE JITTER

The modern exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).


An example of the BER performance capabilities is given in the following diagrams:

Typical Bit Error Rate (Unconditioned 3002 Line, Level – 20 dBm)

2400 bps V.26 bis, Bell 201B/C Modem

The BER performance test set-up is show in the following diagram:

BER Performance Test Set-up

3

2400 bps V.26 bis, Bell 201B/C Modem

APPLICATION

Recommended Modem Interface Circuit

The R24BKJ is supplied as a 64-pin QUIP device to be designed into original equipment manufacturer (OEM) circuit boards. The recommended modem interface circuit and parts list illustrate the connections and components required to connect the modem to the OEM electronics.

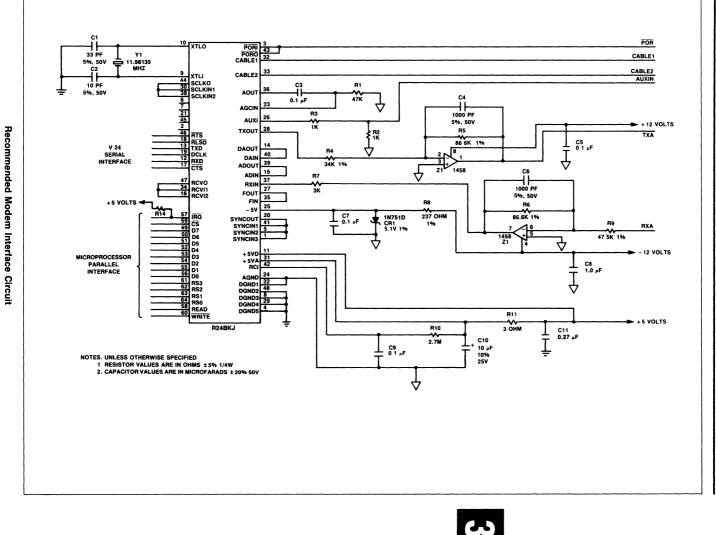
If the auxiliary analog input (pin 26) is not used, resistors R2 and R3 can be eliminated and pin 26 must be connected to analog ground (pin 24). When the cable equalizer controls CABLE1 and CABLE2 are connected to long leads that are subject to picking up noise spikes, a $3k \Omega$ series resistor should be used on each input (Pins 32 and 33) for isolation.

Resistors R4 and R9 can be used to trim the transmit level and receive threshold to the accuracy required by the OEM equipment. For a tolerance of ± 1 dB the 1% resistor values shown are correct for more than 99.8% of the units.

Typical Modem Interface Pa

Component	Manufacturer's Part Number	Manufacturer
C3,C5,C7,C9	592CX7R104M050B	Sprague
C2	N511BY100JW	San Fernando/ Wescap
C1	C114C330J2G5CA	Kemet
C11	SA405C274MAA	AVX
Y1	333R14-002	Uniden
Z1	LM1458N	National
R5,R6	CML 1/10	
	T86.6K ohm ±1%	Dale Electronics
R4	5MA434.0K ±1%	Corning Electronics
R11	5043CX3R000J	Mepco Electra
R10	5043CX2M700J	Mepco Electra
R1	5043CX47K00J	Mepco Electra
R7	5043CX3K00J	Mepco Electra
R2,R3	5043CX1K00J	Mepco Electra
C10	ECEBEF100	Panasonic
C8	SMC50T1R0M5X12	United Chem-Con
C4,C6	C124C102J5G5CA	Kemet
CR1	IN751D	I.T.T.
R9	CRB1/4XF47K5	R-Ohm
R8	ER025QKF2370	Matsushita Electric
R14	Determined by IRQ	
	characteristics	

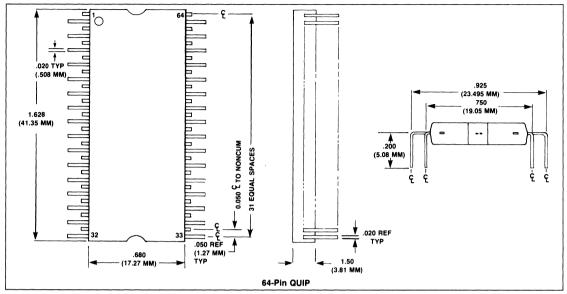
PC Board Layout Considerations


- The R24BKJ and all supporting analog circuitry, including the data access arrangement if required, should be located on the same area of printed circuit board (PCB).
- 2. All power traces should be at least 0.1 inch width.
- If power source is located more than approximately 5 inches from the R24BKJ, a decoupling capacitor of 10 microfarad or greater should be placed in parallel with C11 near pins 11 and 48.
- All circuitry connected to pins 9 and 10 should be kept short to prevent stray capacitance from affecting the oscillator.

- 5. Pin 22 should be tied directly to pin 24 at the R24BKJ package. Pin 24 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 6. An analog ground plane should be supplied beneath all analog components. The analog ground plane should connect to pin 24 and all analog ground points shown in the recommended circuit diagram.
- 7. Pins 4, 8, 29, and 48 should tie together at the R24BKJ package. Pin 48 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 8. A digital ground plane should be supplied to cover the remaining allocated area. The digital ground plane should connect to pin 48 and all digital ground points shown in the recommended circuit diagram plus the crystal-can ground.
- The R24BKJ package should be oriented relative to the two ground planes so that the end containing pin 1 is toward the digital ground plane and the end containing pin 32 is toward the analog ground plane.
- 10. As a general rule, digital signals should be routed on the component side of the PCB while analog signals are routed on the solder side. The sides may be reversed to match a particular OEM requirement.
- 11. Routing of R24BKJ signals should provide maximum isolation between noise sources and sensitive inputs. When layout requirements necessitate routing these signals together, they should be separated by neutral signals. Refer to the table of noise characteristics for a list of pins in each category.

Noise	Source		Noise S	ensitive
High	Low	Neutral	Low	High
1	6	3	26	23
2	7	4	28	27
5	9	8	32	35
14	10	11	33	36
15	12	16		37
20	13	22		
21	17	24		
30	18	25		
38	19	29		
39	45	31		
40	46	34		
41	49	42		
44	50	43		
	51	47		
	52	48		
	53			
	54			
	55			
	56			
	57			
	58			
	59			1
	60			
	61			
	62			
	63			
	64			1

Pin Noise Characteristics


2400 bps V.26 bis, Bell 201B/C Modem

3-33

2400 bps V.26 bis, Bell 201B/C Modem

PACKAGE DIMENSIONS

MONOFAX[™] Modems

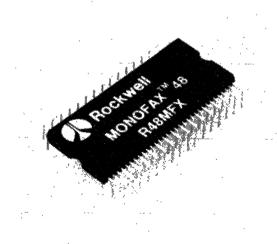
R48MFX 4800 bps MONOFAX[™] Modem

INTRODUCTION

The R48MFX MONOFAX 48 is a synchronous, serial/parallel, 4800 bps modem in a single 64-pin quad in-line package (QUIP). The modem is designed for operation over the public switched telephone network with appropriate line terminations, such as a data access arrangement, provided externally.

The R48MFX satisfies the telecommunications requirements specified in CCITT Recommendation V.27 ter, T.4 and the binary signaling capabilities of Recommendation T.30.

The R48MFX is optimized for use in compact Group 3 facsimile machines. Its small size and low power consumption offer the user flexibility in creating a 4800 bps modem customized for specific packaging and functional requirements.


[™]MONOFAX is a trademark of Rockwell International

SYNCIN3 64 RSO 63 RS1 NC POR 62 RS2 DGND5 61 60 RS3 SYNCIN2 WRITE 59 58 57 CS NC I NC READ IRQ DGND3 (56 XTL D0 XTLO (10 55 54 53 52 51 50 49 48 47 Di + 5VD 11 D2 RXD 12 D3 TXD 13 D4 DAOUT 14 D5 D6 ADIN **_** 15 RCV12 16 D7 DGND2 CTS E 17 RLSD D RCVO 18 RTS DCLK 19 46 45 NC SYNCOUT (20 44 21 SCLKO NC 43 42 41 DGND1 22 PORO AGCIN Г 23 RCI SYNCIN1 24 -5VA 25 40 39 38 DAIN ADOUT AUXI C 26 FOUT 27 SCLKIN2 TXOUT C 28 37 RYIN 36 AOUT DGND4 **___** 29 35 FIN SCLKIN1 30 34 RCVI1 + 5VA 31 CABLE1 32 33 CABLE2 NC = NO CONNECTION

R48MFX Pin Assignments

FEATURES

- Single 64-Pin QUIP
- CCITT V.27 ter, T.30, V.21 Channel 2, T.4
- Group 3 Facsimile Transmission/Reception
- Half-Duplex (2-Wire)
- · Programmable Dual Tone Generation
- Programmable Tone Detection
- Dynamic Range: 43 dBm to 0 dBm
- Diagnostic Capability
- Provides Telephone Line Quality Monitoring Statistics
- Equalization
 - Automatic Adaptive
 - Compromise Cable (Selectable)
- DTE Interface: Two Alternate Ports
 - Microprocessor Bus
- CCITT V.24 (RS-232-C Compatible)
- Low Power Consumption: 1W (Typical)
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R48MFX 4800 bps MONOFAX Modem

Order No. MD19 Rev.1, February 1987

TECHNICAL CHARACTERISTICS

TONE GENERATION

Under control of the host processor, the R48MFX can generate single or dual frequency voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. The transmit level and frequency of each tone is independently programmable.

TONE DETECTION

Single frequency tones are detected by a programmable filter. The presence of energy at the selected frequency is indicated by a bit in the interface memory.

Signaling/Data Rates

SIGNALING AND DATA RATES

Signaling/Data Hates				
Configuration	Parameter	Specification (±0.01%)		
V.27	Signaling Rate Data Rate	1600 Baud 4800 bps		
	Signaling Rate Data Rate	1200 Baud 2400 bps		
V.21	Signaling Rate Data Rate	300 Baud 300 bps		

DATA ENCODING

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27.

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 ter.

At 300 baud, the data stream is 300 bps FSK per CCITT V.21 channel 2.

COMPROMISE CABLE EQUALIZERS

In addition to the adaptive equalizer, the R48MFX provides selectable compromise cable equalizers to optimize performance over three different lengths of non-loaded cable of 0.4 mm diameter (1.8 km, 3.6 km, and 7.2 km).

Cable Equalizer Nominal Gain

Frequency	Gain	(dB) Relative t	o 1700 Hz
(Hz)	1.8 km	3.6 km	7.2 km
700	- 0.99	- 2.39	- 3.93
1500	- 0.20	- 0.65	- 1.22
2000	+ 0.15	+ 0.87	+ 1.90
3000	+ 1.43	+ 3 06	+ 4.58

TRANSMITTED DATA SPECTRUM

When operating at 1600 baud, the transmitter spectrum is shaped by a square root of 50% raised cosine filter.

When operating at 1200 baud, the transmitter spectrum is shaped by a square root of 90% raised cosine filter.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically meet the requirements of foreign telephone regulatory agencies.

4800 bps MONOFAX Modem

SCRAMBLER/DESCRAMBLER

The R48MFX incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with CCITT V.27 ter. The scrambler can be disabled by setting a bit in interface memory.

RECEIVE LEVEL

The receiver circuit of the R48MFX satisfies all specified performance requirements for received line signal levels from 0 dBm to - 43 dBm. An external input buffer and filter must be supplied between the receiver analog input (RXA) and the R48MFX RXIN pin. The received line signal level is measured at RXA.

RECEIVE TIMING

In the receive state, the R48MFX provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the centers of received data bits. The timing recovery circuit is capable of tracking a ±0.01% frequency error in the associated transmit timing source. DCLK duty cycle is 50% ±1%.

TRANSMIT LEVEL

The transmitter output level is programmable. An external output buffer and filter must be supplied between the R48MFX TXOUT pin and the transmitter analog output (TXA). The default level at TXA is +5 dBm ±1 dB. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide -1 dBm ±1 dB to the load.

TRANSMIT TIMING

In the transmit state, the R48MFX provides a Data Clock (DCLK) output with the following characteristics:

- 1. Frequency: Selected data rate of 4800, 2400 or 300 Hz $(\pm 0.01\%)$.
- 2. Duty Cycle: 50% ±1%.

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

TURN-ON SEQUENCE

Seven turn-on sequences are generated by the R48MFX, as defined in the following table:

No.	Bit Rate (bps)	RTS On- CTS On Time ¹ (ms)	Comments	
1	300	<14	No Training Sequence, No Echo Tone	
2	2400	943	Long Train, No Echo Tone	
3	2400	1148	Long Train, with Echo Tone ²	
4	2400	<10	Training Disabled	
5	4800	708	Long Train, No Echo Tone	
6	4800	913	Long Train, with Echo Tone ²	
7	4800	< 10	Training Disabled	
1.	Assumes	the receiver	Notes: is ın idle; if not, add receiver turn-off time.	

Turn-On Sequences¹

2. For use on lines with protection against talker echo.

TURN-OFF SEQUENCE

Five turn-off sequences are generated by the R48MFX:

Tuni-On Sequences					
No.	Bit Rate (bps)	RTS Off-Energy Off Time (ms)	Silence Time (ms)		
1	300	<7	0		
2	2400 serial	7.5	20		
3	2400 parallel	7.5-10	20		
4	4800 serial	5.4	20		
5	4800 parallel	5.4-6.7	20		

Turn-Off Sequences

CLAMPING

The following clamps are provided with the R48MFX:

- 1. *Received Data (RXD).* RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) whenever RTS is on.

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-toon transition of $\overline{\text{CTS}}$ is dictated by the bit rate, the length of the training sequence, and the presence of the echo tone. The Turn-On Sequences table on page 2 lists the $\overline{\text{CTS}}$ response times.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 801 bauds (V.27) or <10 ms (300 bps). The RLSD on-to-off

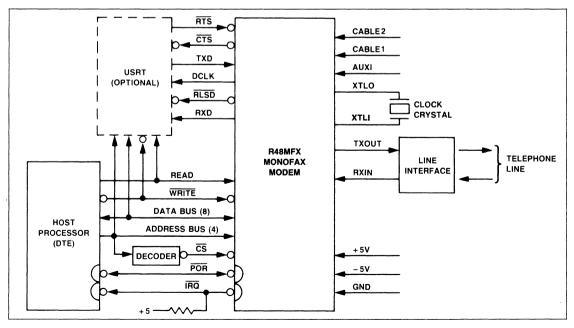
4800 bps MONOFAX Modem

response time is 10 \pm 5 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Receiver threshold is programmable over the range 0 dBm to -50 dBm, however, performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to RXA.


POWER

Voltage	Tolerance	Current (Max) @ 25°	Current (Max) @ 60°C
+5 Vdc	±5%	250 mA @ 5.0 Vdc	225 mA @ 5.0 Vdc
-5 Vdc	±5%	25 mA @ -5.0 Vdc	25 mA @ -5.0 Vdc

Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak. If a switching supply is chosen, user may select any frequency between 20 kHz and 150 kHz so long as no component of the switching frequency is present outside of the power supply with an amplitude greater than 500 microvolts peak.

ENVIRONMENTAL

Parameter	Specification
Storage	0°C to +60°C (32°F to 140°F) -40°C to +80°C (-40°F to 176°F) (Stored In suitable antistatic container).
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

R48MFX Functional Interconnect Diagram

3

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins on the 64-pin QUIP. Software circuits are assigned to specific bits in a 16-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R48MFX Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital and Analog Interface Characteristics tables.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0-RS3), data (D0-D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (\overline{IRQ}) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Requirements table.) With the addition of a few external logic

gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

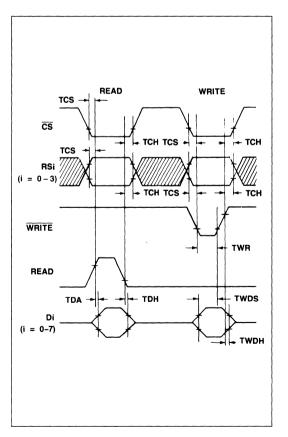
In applications where the modem is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

R48MFX Hardware Circuits

				dware Circuit			
Name	Туре	Pin No.	Description	Name	Туре	Pin No.	Description
A. POWER:				E. ANALOG	SIGNAL	.S:	
AGND	GND	24	Connect to Analog Ground	TXOUT	AA	28	Connect to Output Op Amp
DGND1	GND	22	Connect to AGND Ground	RXIN	AB	37	Connect to Input Op Amp
DGND2	GND	48	Connect to Digital Ground	AUXI	AC	26	Auxiliary Analog Input
DGND3 DGND4	GND GND	8 29	Connect to Digital Ground Connect to Digital Ground	F. OVERHE	AD		
DGND5	GND	4	Connect to Digital Ground	PORO	I/OB	40	Denne On Denne Ontent
+5 VA	PWR	31	Connect to Analog +5V Power	PORU		43	Power-On-Reset Output
+5 VD	PWB	11	Connect to Digital +5V Power		I/OB	3	Power-On-Reset Input
-5 VA	PWR	25	Connect to Analog – 5V Power	XTLO	R*	10	Connect to Crystal Circuit
	1			XTLI	R*	9	Connect to Crystal Circuit
B. MICROP	ROCESS	OR INTERF	ACE:	RCVO	R*	47	Receive Mode Output
D7	I/OA	49)		RCVI1	R*	34	Connect to RCVO
D6	I/OA	50		RCVI2	R*	16	Connect to RCVO
D5	I/OA	51		SCLKO	R*	44	Switched Capacitor Clock Output
D4	I/OA	52		SCLKIN1	R*	30	Connect to SCLKO
D3	I/OA	53	Data Bus (8 Bits)	SCLKIN2	R*	38	Connect to SCLKO
D2	I/OA	54		AOUT	R⁺	36	Smoothing Filter Output
D1	I/OA	55		AGCIN	R*	23	AGC Input
D0	I/OA	56		DAOUT	R*	14	DAC/AGC Data Out
RS3	IA	61 1		DAIN	R*	40	Connect to DAOUT
RS2	iA	62	Register Select (4 Bits)	ADOUT	R*	39	ADC Output
RS1	iA	63	Select Reg. 0 – F	ADIN	R⁺	15	Connect to ADOUT
RSO	iA	64	Celeti neg. t =1	FOUT	R⁺	27	Smoothing Filter Output
		-		FIN	R*	35	Connect to FOUT
CS	IA	59	Chip Select	SYNCOUT	R*	20	Sample Clock Output
READ	IA	58	Read Strobe	SYNCIN1	B*	41	Connect to SYNCOUT
WRITE	IA	60	Write Strobe	SYNCIN2	R*	5	Connect to SYNCOUT
IRQ	OB	57	Interrupt Request	SYNCIN3	R*	1	Connect to SYNCOUT
C. V.24 INT				RCI	R*	42	RC Junction for POR Time
DCLK	oc	19	Data Clock				Constant
RTS	IB	46	Request-to-Send	G. RESERV	ED		
CTS	OC	17	Clear-to-Send		R*	2	Do Not Connect
TXD	IB	13	Transmitter Data Signal		R*	6	Do Not Connect
RXD	oc	12	Receiver Data Signal		R*	7	Do Not Connect
RLSD	OC	18	Received Line Signal Detector		R*	21	Do Not Connect
D. CABLE E	QUALIZ	ER:		71	R*	45	Do Not Connect
CABLE1		20	Oable Oalast 1				
CABLE1 CABLE2		32 33	Cable Select 1	*R = Requir	ed overh	ead connect	ion; no connection to host equipment.
UABLE2		33	Cable Select 2	<u> </u> '			

4800 bps MONOFAX Modem

			Туре							
				Input			Output		Input/C	Dutput
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	oc	I/OA	I/OB
VIH	Input Voltage, High	v	2.0 min.	2.0 min.	2.0 min				2.0 min	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.	0.8 max.		1		0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	v				2.4 min.1	1		2.4 min. 1	2.4 min. ³
VOL	Output Voltage, Low	v				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max.5
IIN	Input Current, Leakage	μA	±2.5 max.						± 12.5 max.4	{
IOH	Output Current, High	mA				- 0.1 max.	1			
IOL	Output Current, Low	mA				16 max.	1.6 max.	1.6 max.		
1	Output Current, Leakage	μA					± 10 max.			
I _{PU}	Pull-up Current	μA		– 240 max.	– 240 max.	1	1	– 240 max.		– 260 max
	(Short Circuit)			– 10 min.	– 10 min.		1	– 10 min.		– 100 min
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open Drain	3 State	Open-Drai
				w/Pull-up	w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes	$d = -100 \ \mu A$			$pad = -40 \mu_{\rm s}$ $\mu_{\rm s} = 0.4 \text{ to } 2.4$						


Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXOUT	AA	The transmitter output can supply a maximum of ± 3.03 volts into a load resistance of 10k Ω minimum. In order to match to 600 Ω , an external smoothing filter with a transfer function of 15726.43/(S + 11542.44) and 604 Ω series resistor are required.
RXIN	AB	The receiver input impedance is greater than 1M Ω . An external antialiasing filter with a transfer function of 19533.88/(S + 11542.44) is required.
AUXI	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1M Ω , and the gain to transmitter output (TXA) is + 5.6 dB ± 1 dB.
		ximum voltage ratings for analog inputs are: $(-5 \le V_{IN} \le (+5 \text{ VA} + 0.3))$

Microprocessor Interface Timing Requirements

Characteristic	Symbol	Min	Max	Units
CS, RSi setup time prior to READ or WRITE	TCS	30	_	ns
Data Access time after READ	TDA	-	140	ns
Data hold time after READ	TDH	10	50	ns
CS, RSI hold time after READ or WRITE	тсн	10	_	ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	—	ns
WRITE strobe pulse width	TWR	75	_	ns

Microprocessor Interface Timing Waveforms

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

Cable Equalizer Selection

CABLE2	CABLE1	Length of 0.4mm Diameter Cable
0	0	0.0
0	1	1.8 km
1	0	3.6 km
1	1	7.2 km

Analog Signals

Three analog signals provide the interface point for telephone company audio circuits and host audio inputs. Signals TXOUT and RXIN require buffering and filtering to be suitable for driving and receiving the communication channel. Signal AUXI provides access to the transmitter for summing host audio signals with the modem analog output.

The filters required for anti-aliasing on the receiver input and smoothing on the transmitter output have a single pole located at 11,542 radians. Although this pole is located within the modem passband, internal filters compensate for its presence and, therefore, the pole location must not be changed. Some variation from recommended resistor and capacitor values is permitted as long as the pole is not moved, overall gain is preserved, and the device is not required to drive a load of less than 10k Ω .

Notice that when reference is made to signals TXA, RXA, and AUXIN, these signals are not electrically identical to TXOUT, RXIN, and AUXI. The schematic of the recommended modem interface circuit illustrates the differences.

Overhead

Except for the power-on-reset signal PORO, the overhead signals are intended for internal use only. The various required connections are illustrated in the recommended modem interface circuit schematic. No host connections should be made to overhead signals other than PORO.

SOFTWARE CIRCUITS

The R48MFX contains 16 memory mapped registers to which an external (host) microprocessor has access. The host may read

4800 bps MONOFAX Modem

data out of or write data into these registers. Refer to the R48MFX Host Processor Interface figure.

When information in these registers is being discussed, the format Z:Q is used. The register is specified by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a one (1) and "off" when reset to a zero (0).

Status/Control Bits

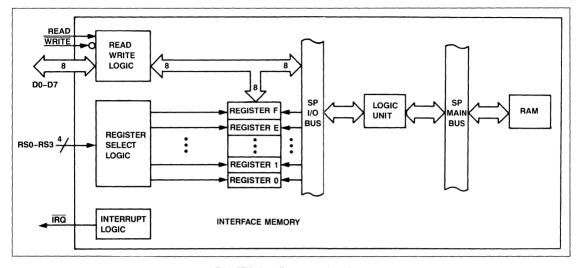
The operation of the R48MFX is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus.

All status and control bits are defined in the R48MFX Interface Memory Map table. Bits designated by '—' are reserved for modem use only and must not be changed by the host.

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Configuration Control

Four configurations are available in the R48MFX modem: V.27 4800/2400 bps long train, V.21, and Tone. The configuration is selected by writing an 8-bit binary code into the configuration field (CONF) of the interface memory. The configuration field consists of bits 7 through 0 of register D. The code for these bits is shown in the following table. All other codes represent invalid states.


configuration codes					
CONF Code	Configuration				
00	V.21				
04	V.27, 2400 Long Train				
06*	V.27, 4800 Long Train				
08	Tone Mode				
* Default value at POR.					

Configuration Codes

When the modem is initialized by power-on-reset, the configuration defaults to V.27 4800 bps. When the host wants to change configuration, the new code is written to the configuration field and the SETUP bit (E:3) is set to a one. Once the new configuration takes effect, the SETUP bit is reset to zero by the modem.

The information in the interface memory is serviced by the modem at the baud rate (V.27 and V.21), 9600 times per second (tone generator), or 1600 times per second (tone detector).

4800 bps MONOFAX Modem

R48MFX Host Processor Interface

Bit Register	7	6	5	4	3	2	1	0
F				RA	MA			
Е	IA	CDIE	CDREQ	-	SETUP	DDIE	—	DDREQ
D				CO	NF			
С	RTSP	EPT	TPDM	TDIS	EQSV	EQFZ	SDIS	RAMW
В	RX	FE	ED	GHIT	-	-	-	-
Α	TDET	_	-	_	-	-	-	-
9	_	-	-	-	-	-	1	-
8	—	_	CDET		PN		I	-
7		_			-	—		
6	ļ	—	-	_	_	-	_	
5				RX	CD			
4				ТΧ	CD			
3				DD	ХМ			
2				DD	XL			
1				DD	YM			
0				DD	YL			
Register Bit	7	6	5	4	3	2	1	0

R48MFX Interface Memory Map

Channel Data Transfer

Data sent to or received from the data channel may be transferred between the modern and host processor in either serial or parallel form. The receiver operates in both serial and parallel mode simultaneously and requires no mode control bit selection. The transmitter operates in either serial or parallel mode as selected by mode control bit C:5 (TPDM). To enable the transmitter parallel mode, TPDM must be set to a 1. The modem automatically defaults to the serial mode (TPDM = 0) at power-on. In either transmitter serial or parallel mode, the R48MFX is configured by the host processor via the microprocessor bus.

Serial Mode—The serial mode uses a standard V.24 (RS-232-C) hardware interface (optional USRT) to transfer channel data. Transmitter data can be sent serially only when TPDM is set to a zero.

Parallel Mode—Parallel data is transferred via two registers in the interface memory. Register 5 (RXCD) is used for receiver channel data, and Register 4 (TXCD) is used for transmitter channel data. Register 5 is continuously written every eight bit times when in the receive state. Register 4 is used as the source of channel transmitter data only when bit C:5 (TPDM) is set to a one by the host. Otherwise the transmitter reads data from the V.24 interface. Both RTS and RTSP remain enabled, however, regardless of the state of TPDM.

When performing parallel data transfer of channel data, the host and modem can synchronize their operations by handshaking bits in register E. Bit E:5 (CDREQ) is the channel data request bit. This bit is set to a one by the modem when receiver data is available in RXCD or when transmitter data is required in TXCD. Once the host has finished reading RXCD or writing TXCD, the host processor must reset CDREQ by writing a zero to that bit location.

When set to a one by the host, Bit E:6 (CDIE) enables the CDREQ bit to cause an \overline{IRQ} interrupt when set. While the \overline{IRQ} line is driven to a TTL low level by the modem, bit E:7 (IA) is a one.

If the host does not respond to the channel data request within eight bit times, the RXCD register is over written or the TXCD register is sent again.

Refer to Channel Data Parallel Mode Control flow chart for recommended software sequence.

4800 bps MONOFAX Modem

R48MFX Interface Memory Definitions

Mnemonic	Name	Memory Location	Description
CDET	Carrier Detector	8:5	The one state of CDET indicates passband energy is being detected, and a training sequence is not present. CDET goes to one at the start of the data state, and returns to zero at the end of the received signal. CDET activates one baud time before $\overline{\text{RLSD}}$ and deactivates one baud time after $\overline{\text{RLSD}}$.
CDIE	Channel Data Interrupt Enable	E:6	When set to a one, CDIE enables an \overline{IRQ} interrupt to be generated when the channel data request bit (CDREQ) is a one.
CDREQ	Channel Data Request	E:5	Parallel data mode handshaking bit. Set to a one when the modem receiver writes data to RXCD, or the modem transmitter reads data from TXCD. CDREQ must be reset to zero by the host processor when data service is complete.
CONF	Configuration	D:0-7	The 8-bit field CONF controls the configuration of the modem according to the following table:
			Hex Code Configuration 00 V.21
			04 V.27, 2400 Long Train
			06 V.27, 4800 Long Train (Default) 08 Tone
			All else Invalid
			Configuration Definitions <i>V.21</i> —The modem operates as a CCITT T.30 compatible 300 bps FSK modem having characteristics of the CCITT V.21 Channel 2 modulation system.
			Tone—The modem sends single or dual frequency tones in response to the RTS or RTSP signals. Tone frequencies and amplitudes are controlled by RAM locations written by the host. When not transmitting tones the Tone configuration allows detection of single frequency tones by the TDET bit. The tone detector frequency can be changed by the host by altering the contents of several RAM locations.
			V.27-The modem is compatible with CCITT Recommendation V.27 ter.
DDIE	Diagnostic Data Interrupt Enable	E:2	When set to a one, DDIE enables an IRQ interrupt to be generated when the diagnostic data request bit (DDREQ) is a one.
DDREQ	Diagnostic Data Request	E:0	DDREQ goes to a one when the modem reads from or writes to DDYL. DDREQ goes to a zero when the host processor reads from or writes to DDYL. Used for diagnostic data handshaking bit.
DDXL	Diagnostic Data X Least	2:0-7	Least significant byte of 16-bit word used in reading XRAM locations.
DDXM	Diagnostic Data X Most	3:0-7	Least significant byte of 16-bit word used in reading XRAM locations.
DDYL	Diagnostic Data Y Least	0:0-7	Least significant byte of 16-bit word used in reading YRAM locations or writing XRAM and YRAM locations.
DDYM	Diagnostic Data Y Most	1:0-7	Most significant byte of 16-bit word used in reading YRAM locations or writing XRAM and YRAM locations.
EPT	Echo Protector Tone	C:6	When EPT is a one, an unmodulated carrier is transmitted for 185 ms followed by 20 ms of no transmitted energy at the beginning of the training sequence. EPT is not active if TDIS is on.
EQFZ	Equalizer Freeze	C:2	When EQFZ is a one, the adaptive equalizer taps stop updating and remain frozen.
EQSV	Equalizer Save	C:3	When EQSV is a one, the adaptive equalizer taps are not zeroed when reconfiguring the modem or when entering the training state. Adaptive equalizer taps are also not updated during training.
FED	Fast Energy Detector	B:5,6	FED consists of a 2-bit field that indicates the level of received signal according to the following code.
			Code Energy Level 0 None
			1 Invalid
			2 Above Turn-off Threshold 3 Above Turn-on Threshold
			While receiving a signal, FED normally alternates between Codes 2 and 3.

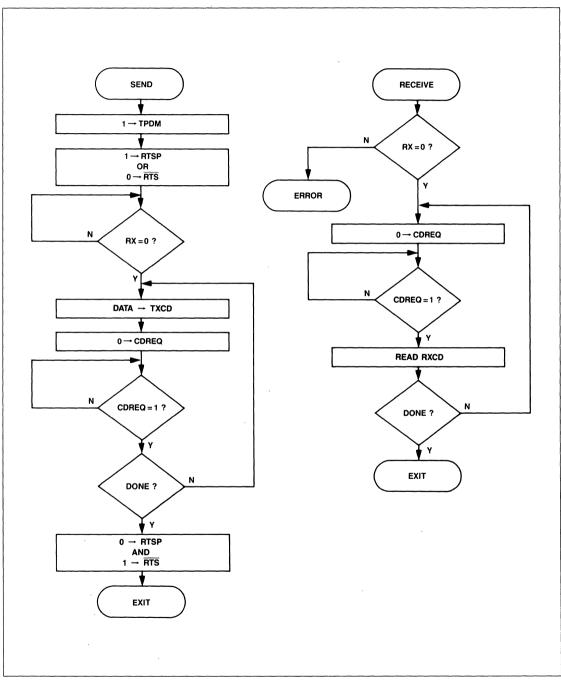
4800 bps MONOFAX Modem

Mnemonic	Name	Memory Location	Description
GHIT	Gain Hit	B [.] 4	The gain hit bit goes to one when the receiver detects a sudden increase in passband energy faster than the AGC circuit can correct. GHIT returns to zero when the AGC output returns to normal.
IA	Interrupt Active	E.7	IA is a one when the modem is driving the interrupt request line (\overline{IRQ}) to a low TTL level.
PN	Period N	8:3	PN sets to a one at the start of the received PN sequence. PN resets to zero at the start of the received scrambled ones. PN does not operate when TDIS is set to a one.
RAMA	RAM Access	F [.] 0-7	The RAMA register is written by the host when reading or writing diagnostic data. The RAMA code determines the RAM location with which the diagnostic read or write is performed.
RAMW	RAM Write	C:0	RAMW is set to a one by the host processor when performing diagnostic writes to the modem RAM. RAMW is set to a zero by the host when reading RAM diagnostic data.
RTSP	Request to Send Parallel	C·7	The one state of RTSP begins a transmit sequence. The modem continues to transmit until RTSP is turned off and the turn-off sequence has been completed. RTSP parallels the operation of the hardware RTS control input. These inputs are ORed by the modem.
RXCD	Receiver Channel Data	5.0-7	RXCD is written to by the modern every eight bit times. This byte of channel data can be read by the host when the receiver sets the channel data request bit (CDREQ).
RX	Receive State	B:7	RX is a one when the modem is in the receive state (i.e., not transmitting).
SDIS	Scrambler Disable	C:1	When SDIS is a one, the scrambler/descrambler is disabled. When SDIS is a zero, the scrambler/descrambler is enabled (default)
SETUP	Setup	E:3	The host processor must set the SETUP bit to a one when reconfiguring the modem, i.e., when changing CONF (D:0-7).
TDET	Tone Detected	A:7	The one state of TDET indicates reception of a tone. The filter can be retuned by means of the diagnostic write routine.
TDIS	Training Disable	C:4	If TDIS is a one in the receive state, the modem is prevented from entering the training phase. If TDIS is a one when RTS or RTSP go active, the generation of a training sequence is prevented at the start of transmission.
TPDM	Transmitter Parallel Data Mode	C:5	When control bit TPDM is a one, the transmitter accepts data for transmission from the TXCD register rather than the serial hardware data input.
TXCD	Transmitter Channel Data	4:0-7	The host processor conveys output data to the transmitter in parallel data mode by writing a data byte to the TXCD register when the channel data request bit (CDREQ) goes to a one. Data is transmitted as single bits in V.21 or as dibits in V.27 starting with bit 0 or dibit 0,1.

R48MFX Interace Memory Definitions (continued)

Diagnostic Data Transfer

The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.


The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register F (RAMA). The R48MFX RAM Access Codes table lists 27 access codes for storage in register F and the corresponding diagnostic functions. The R48MFX Diagnostic Data Scaling table provides scaling information for these diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

These bits are written into interface memory registers 3, 2, 1 and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit C:0 (RAMW) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the more significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAMA bits of register F. When bit F:7 is set to one, the XRAM is selected. When F:7 equals zero, YRAM is selected.

When the host processor reads or writes register 0, the diagnostic data request bit E:0 (DDREQ) is reset to zero. When the modern reads or writes register 0, DDREQ is set to a one. When set to a one by the host, bit E:2 (DDIE) enables the DDREQ bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modern, bit E:7 (IA) goes to a one.

3

Channel Data Parallel Mode Control

R48MFX RAM Access Codes

Node	Function	RAMA	Reg. No.
1	AGC Gain Word	87	2,3
2	Average Power	91	2,3
3	Receiver Sensitivity	47	0,1
4	Receiver Hysteresis	84	2,3
5	Equalizer Input	63	0,1,2,3
6	Equalizer Tap Coefficients	23-32	0,1,2,3
7	Unrotated Equalizer Output	73	0,1,2,3
8	Rotated Equalizer Output	0A	0,1,2,3
9	Decision Points	74	0,1,2,3
10	Error Vector	75	0,1,2,3
11	Rotation Angle	B3	2,3
12	Frequency Correction	8B	2,3
13	EQM	89	2,3
14	Alpha (α)	38	0,1
15	Beta One (β_1)	39	0,1
16	Beta Two (β_2)	3A	0,1
17	Alpha Prime (α')	3B	0,1
18	Beta One Prime (β_1)	3C	0,1
19	Beta Two Prime (β_2')	3D	0,1
20	Alpha Double Prime (a")	B8	2,3
21	Beta Double Prime (β'')	B9	2,3
22	Output Level	43	0,1
23	Tone 1 Frequency	8E	2,3
24	Tone 1 Level	44	0,1
25	Tone 2 Frequency	8F	2,3
26	Tone 2 Level	45	0,1
27	Checksum	02	0,1

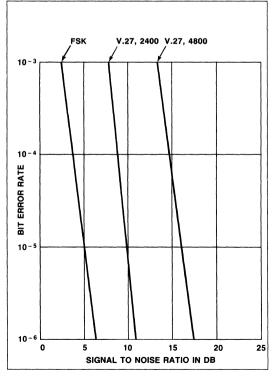
R48MFX Diagnostic Data Scaling

Node	Parameter/Scaling
1	AGC Gain Word (16-bit unsigned).
	AGC Gain in dB = $50 - [(AGC Gain Word/64) \times 0.098]$
	Range: (16C0) ₁₆ to (7FFF) ₁₆ , For - 43 dBm Threshold
2.	Average Power (16-bit unsigned)
	Post-AGC Average Power in dBm = 10 Log (Average Power Word/2185)
	Typical Value = (0889) ₁₆ , corresponding to 0 dBm Pre-AGC Power in dBm
	= (Post-AGC Average Power-AGC Gain)
3	Receiver Sensitivity (16-bit twos complement)
	On-Number = 655.36 (52.38 + P _{ON})
	where: P _{ON} = Turn-on threshold in dB
	Convert On-Number to hexadecimal and store at access code 47
4	Receiver Hysteresis (16-bit twos complement)
	Off-Number = $[65.4 \ (10^{A})]^{2}/2$
	where: $A = (P_{OFF} - P_{ON} - 0.5)/20$ $P_{ON} =$ Turn-on threshold in dB $P_{OFF} =$ Turn-off threshold in dB
	Convert Off-Number to hexadecimal and store at access code 84.

4800 bps MONOFAX Modem

R48MFX Diagnostic Data Scaling (Cont'd) Node Parameter/Scaling 5.7-9 All base-band signal point nodes (i.e., Equalizer Input, Unrotated Equalizer Output, Rotated Equalizer Output, and Decision Points) are 32-bit, complex, twos complement numbers. Value (Hex) Point х Y • 2 1D00 0000 1 0C00 1000 2 • 4 • 1 3 F400 1D00 ¥ 4 E300 0000 5 E300 F400 •5 . 8 F400 E300 6 .7 0C00 E300 7 8 1D00 F400 6 Equalizer Tap Coefficients (32-bit, complex, twos complement) Complex numbers with X = real part, Y = imaginary part X and Y range: 0000 to (FFFF)₁₆ representing ± full scale in hexadecimal twos complement. 10 Error Vector (32-bit, complex, twos complement) Complex number with X = real part, Y = imaginary part. X and Y range: (8000)16 to (7FFF)16 11 Rotation Angle (16-bit, signed, twos complement) Rotation Angle in deg. = (Rot. Angle Word/65,536) × 360 12 Frequency Correction (16-bit signed twos complement) Frequency correction in Hz = (Freq. Correction Word/65,536) × Baud Rate Range: (FC00)₁₆ to (400)₁₆ representing ± 18.75 Hz 13 EQM (16-bit, unsigned) Filtered squared magnitude of error vector. Proportionality to BER determined by particular application. 14-21 Filter Tuning Parameters (16-bit unsigned) Alpha, Beta One, Beta Two, Alpha Prime, Beta One Prime, Beta Two Prime, Alpha Double Prime, and Beta Double Prime are set according to instructions in application note 668. 22 Output Level (16-bit unsigned) Output Number = 27573.6 [10^(Po/20)] Po = output power in dBm with series 600 ohm resistor into 600 ohm load. Convert Output Number to hexadecimal and store at access code 43 24 Tone 1 and Tone 2 Levels and Calculate the power of each tone independently by using 26 the equation for Output Number given at node 22. Convert these numbers to hexadecimal then store at access codes 44 and 45. Total power transmitted in tone mode is the result of both tone 1 power and tone 2 power. 23 Tone 1 and 2 Frequency (16-bit unsigned) and N = 6.8267 (Frequency in Hz) 25 Convert N to hexadecimal then store at access code 8E or 8F. 27 Checksum (16-bit unsigned) ROM checksum number determined by revision level.

POWER-ON INITIALIZATION


When power is applied to the R48MFX, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (POR) remains low during this period. Approximately 10 ms after the low to high transition of POR, the modem is ready to be configured, and $\overline{\text{RTS}}$ may be activated. If the 5 Vdc power supply drops below approximately 3 Vdc for more than 30 msec, the $\overline{\text{POR}}$ cycle is repeated.

At POR time the modem defaults to the following configuration: V.27/4800 bps, serial mode, training enabled, echo protector tone enabled, interrupts disabled, RAM access code 0A, transmitter output level set for +5 dBm at TXA, receiver turnon threshold set for -43.5 dBm, receiver turn-off threshold set for -47.0 dBm, tone 1 and tone 2 set for 0 Hz and 0 volts output, and tone detector parameters zeroed.

 \overrightarrow{POR} can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or longer applied to the \overrightarrow{POR} pin causes the modem to reset. The modem is ready to be configured 10 msec after the low active pulse is removed from \overrightarrow{POR} .

PERFORMANCE

Whether functioning as a V.27 ter or V.21 type modem, the R48MFX provides the user with unexcelled high performance.

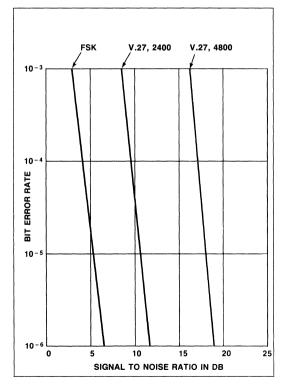
Typical Bit Error Rate (Back-to-Back, Level – 20 dBm)

4800 bps MONOFAX Modem

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that illustrated in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm.

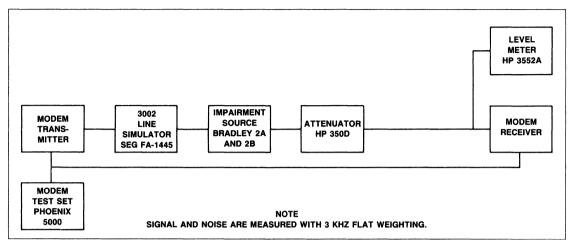
RECEIVED SIGNAL FREQUENCY TOLERANCE


The receiver circuit of the R48MFX can adapt to received frequency error of \pm 10 Hz with less than 0.2 dB degradation in BER performance.

TYPICAL PHASE JITTER

At 4800 bps, the modem exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

At 2400 bps, the modem exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).


An example of the BER performance capabilities is given in the following diagrams:

Typical Bit Error Rate (Unconditioned 3002 Line, Level – 20 dBm)

4800 bps MONOFAX Modem

The BER performance test set-up is show in the following diagram:

BER Performance Test Set-up

APPLICATION

Recommended Modem Interface Circuit

The R48MFX is supplied as a 64-pin QUIP device to be designed into original equipment manufacturer (OEM) circuit boards. The recommended modem interface circuit and parts list illustrate the connections and components required to connect the modem to the OEM electronics.

If the auxiliary analog input (pin 26) is not used, resistors R2 and R3 can be eliminated and pin 26 must be connected to analog ground (pin 24). When the cable equalizer controls CABLE1 and CABLE2 are connected to long leads that are subject to picking up noise spikes, a $3k \Omega$ series resistor should be used on each input (Pins 32 and 33) for isolation.

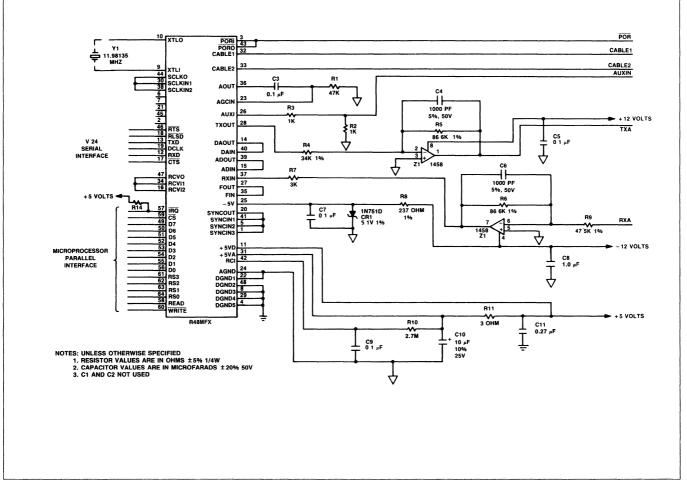
Resistors R4 and R9 can be used to trim the transmit level and receive threshold to the accuracy required by the OEM equipment. For a tolerance of ± 1 dB the 1% resistor values shown are correct for more than 99.8% of the units.

Component	Manufacturer's Part Number	Manufacturer
C3,C5,C7,C9	592CX7R104M050B	Sprague
C11	SA405C274MAA	AVX
Y1	333R14-002	Uniden
Z1	LM1458N	National
R5,R6	CML 1/10	
	T86.6K ohm ±1%	Dale Electronics
R4	5MA434.0K ±1%	Corning Electronics
R11	5043CX3R000J	Mepco Electra
R10	5043CX2M700J	Mepco Electra
R1	5043CX47K00J	Mepco Electra
R7	5043CX3K00J	Mepco Electra
R2,R3	5043CX1K00J	Mepco Electra
C10	ECEBEF100	Panasonic
C8	SMC50T1R0M5X12	United Chem-Con
C4,C6	C124C102J5G5CA	Kemet
CR1	IN751D	I.T.T.
R9	CRB1/4XF47K5	R-Ohm
R8	ER025QKF2370	Matsushita Electric
R14	Determined by IRQ	
	characteristics	

Typical Modem Interface Parts List

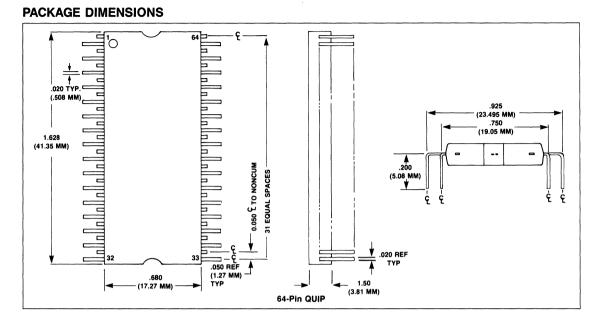
PC Board Layout Considerations

- The R48MFX and all supporting analog circuitry, including the data access arrangement if required, should be located on the same area of printed circuit board (PCB).
- 2. All power traces should be at least 0.1 inch width.
- If power source is located more than approximately 5 inches from the R48MFX, a decoupling capacitor of 10 microfarad or greater should be placed in parallel with C11 near pins 11 and 48.
- All circuitry connected to pins 9 and 10 should be kept short to prevent stray capacitance from affecting the oscillator.


4800 bps MONOFAX Modem

- Pin 22 should be tied directly to pin 24 at the R48MFX package. Pin 24 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 6. An analog ground plane should be supplied beneath all analog components. The analog ground plane should connect to pin 24 and all analog ground points shown in the recommended circuit diagram.
- 7. Pins 4, 8, 29, and 48 should tie together at the R48MFX package. Pin 48 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 8. A digital ground plane should be supplied to cover the remaining allocated area. The digital ground plane should connect to pin 48 and all digital ground points shown in the recommended circuit diagram plus the crystal-can ground.
- 9. The R48MFX package should be oriented relative to the two ground planes so that the end containing pin 1 is toward the digital ground plane and the end containing pin 32 is toward the analog ground plane.
- 10. As a general rule, digital signals should be routed on the component side of the PCB while analog signals are routed on the solder side. The sides may be reversed to match a particular OEM requirement.
- 11. Routing of R48MFX signals should provide maximum isolation between noise sources and sensitive inputs. When layout requirements necessitate routing these signals together, they should be separated by neutral signals. Refer to the table of noise characteristics for a list of pins in each category.

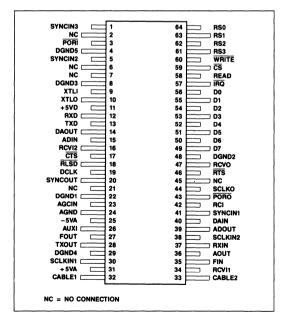
Noise	Source		Noise S	ensitive
High	Low	Neutral	Low	High
1	6	3	26	23
2 5	7 9	4	28	27
5		8	32	35
14	10	11	33	36
15	12	16		37
20	13	22		
21	17	24		
30	18	25		
38	19	29		
39	45	31		
40	46	34		
41	49	42		
44	50	43		
	51	47		
	52	48		
	53			
	54			
	55			
	56	1		
	57			
	58			
	59			
	60			
	61			
	62			
	63		1	
	64		1	


Pin Noise Characteristics

ω

4800 bps MONOFAX Modem

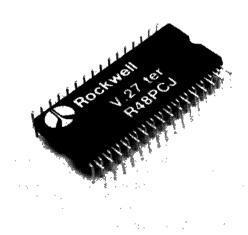
Integral Modems


R48PCJ 4800 bps PC Communication Modem

INTRODUCTION

The Rockwell R48PCJ is a synchronous 4800 bits per second (bps) modem in a single 64-pin quad in-line package (QUIP). It is designed for operation over the public switched telephone network through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.27 ter, T.4 and the binary signaling capabilities of T.30. The R48PCJ can operate at speeds of 4800, 2400 and 300 bps, and includes the V.27 ter short training sequence option. Employing advanced signal processing techniques, the R48PCJ can transmit and receive data even under extremely poor line conditions.


User programmable features allow the modem operation to be tailored to support a wide range of functional requirements. The R48PCJ is optimized for incorporation into an original equipment manufacturer (OEM) developed system. The modem's single device package, low power consumption, and serial/parallel host interface simplify system design and allow direct installation on the host module.

R48PCJ Pin Assignments

FEATURES

- Single 64-Pin QUIP
- CCITT V.27 ter, T.30, V.21 Channel 2, T.4
- Group 3 Facsimile Transmission/Reception
- Half-Duplex (2-Wire)
- Programmable Dual Tone Generation
- Programmable Tone Detection
- Dynamic Range: 43 dBm to 0 dBm
- Diagnostic Capability
- Provides Telephone Line Quality Monitoring Statistics
- Equalization
 - Automatic Adaptive
 - Compromise Cable (Selectable)
- DTE Interface: Two Alternate Ports
 - Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Low Power Consumption: 1W (Typical)
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R48PCJ 4800 bps Modem

Document No. 29200N19

Data Sheet 3-51

Order No. MD21 Rev. 1, February 1987

TECHNICAL CHARACTERISTICS

TONE GENERATION

Under control of the host processor, the R48PCJ can generate single or dual frequency voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. The transmit level and frequency of each tone is independently programmable.

TONE DETECTION

Single frequency tones are detected by a programmable filter. The presence of energy at the selected frequency is indicated by a bit in the interface memory.

SIGNALING AND DATA RATES

Signaling/Data Rates

Configuration	Parameter	Specification (±0.01%)
V.27	Signaling Rate Data Rate	1600 Baud 4800 bps
	Signaling Rate Data Rate	1200 Baud 2400 bps
V.21	Signaling Rate Data Rate	300 Baud 300 bps

DATA ENCODING

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27.

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 ter.

At 300 baud, the data stream is 300 bps FSK per CCITT V.21 channel 2.

COMPROMISE CABLE EQUALIZERS

In addition to the adaptive equalizer, the R48PCJ provides selectable compromise cable equalizers to optimize performance over three different lengths of non-loaded cable of 0.4 mm diameter (1.8 km, 3.6 km, and 7.2 km).

Γ	Frequency	Gain	(dB) Relative t	o 1700 Hz	
	(Hz)	1.8 km	3.6 km	7.2 km	
Γ	700	- 0.99	- 2.39	- 3.93	
	1500	- 0.20	- 0.65	- 1.22	
	2000	+ 0.15	+ 0.87	+ 1.90	

Cable Equalizer Nominal Gain

TRANSMITTED DATA SPECTRUM

+1.43

3000

When operating at 1600 baud, the transmitter spectrum is shaped by a square root of 50% raised cosine filter.

+ 3.06

+ 4.58

When operating at 1200 baud, the transmitter spectrum is shaped by a square root of 90% raised cosine filter.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically meet the requirements of foreign telephone regulatory agencies.

SCRAMBLER/DESCRAMBLER

The R48PCJ incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with CCITT V.27 ter. The scrambler can be disabled by setting a bit in interface memory.

4800 bps PC Communication Modem

RECEIVE LEVEL

The receiver circuit of the R48PCJ satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. An external input buffer and filter must be supplied between the receiver analog input (RXA) and the R48PCJ RXIN pin. The received line signal level is measured at RXA.

RECEIVE TIMING

In the receive state, the R48PCJ provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the centers of received data bits. The timing recovery circuit is capable of tracking a \pm 0.01% frequency error in the associated transmit timing source. DCLK duty cycle is 50% \pm 1%.

TRANSMIT LEVEL

The transmitter output level is programmable. An external output buffer and filter must be supplied between the R48PCJ TXOUT pin and the transmitter analog output (TXA). The default level at TXA is +5 dBm ± 1 dB. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide -1 dBm ± 1 dB to the load.

TRANSMIT TIMING

In the transmit state, the R48PCJ provides a Data Clock (DCLK) output with the following characteristics:

- 1. Frequency: Selected data rate of 4800, 2400 or 300 Hz (±0.01%).
- 2. Duty Cycle: 50% ±1%.

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

TURN-ON SEQUENCE

Eleven turn-on sequences are generated by the R48PCJ, as defined in the following table: Turn-On Sequences

No.	Bit Rate (bps)	RTS On- CTS On Time ¹ (ms)	Comments
1	300	<14	No Training Sequence, No Echo Tone
2	2400	66	Short Train, No Echo Tone
3	2400	271	Short Train, with Echo Tone ²
4	2400	943	Long Train, No Echo Tone
5	2400	1148	Long Train, with Echo Tone ²
6	2400	<10	Training Disabled
7	4800	50	Short Train, No Echo Tone
8	4800	255	Short Train, with Echo Tone ²
9	4800	708	Long Train, No Echo Tone
10	4800	913	Long Train, with Echo Tone ²
11	4800	<10	Training Disabled
			Notes:

1. Assumes the receiver is in idle; if not, add receiver turn-off time.

2. For use on lines with protection against talker echo.

TURN-OFF SEQUENCE

Five turn-off sequences are generated by the R48PCJ:

No.	Bit Rate (bps)	RTS Off-Energy Off Time (ms)	Silence Time (ms)						
1	300	<7	0						
2	2400 serial	7.5	20						
3	2400 parallel	7 5-10	20						
4	4800 serial	54	20						
5	4800 parallel	5.4-6.7	20						

Turn-Off Sequences

CLAMPING

The following clamps are provided with the R48PCJ:

- 1. *Received Data (RXD).* RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) whenever RTS is on.

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-toon transition of $\overline{\text{CTS}}$ is dictated by the bit rate, the length of the training sequence, and the presence of the echo tone. The Turn-On Sequences table on page 2 lists the $\overline{\text{CTS}}$ response times.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-tooff transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 801 bauds (V.27 long train), 481 bauds (V.27 short train), or

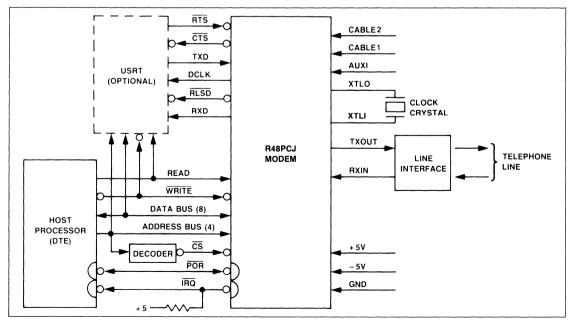
4800 bps PC Communication Modem

<10~ms (300 bps). The $\overline{\text{RLSD}}$ on-to-off response time is 10 $\pm5~\text{ms}$. Response times are measured with a signal at least 3 dB above the actual $\overline{\text{RLSD}}$ on threshold or at least 5 dB below the actual $\overline{\text{RLSD}}$ off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Receiver threshold is programmable over the range 0 dBm to -50 dBm, however, performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to RXA.


POWER

Voltage	Tolerance	Current (Max) @	25°C	Current (Max) @ 60°C		
+5 Vdc -5 Vdc		270 mA @ 5.0 25 mA @ -5.0		245 mA @ 5.0 Vdc 25 mA @ -5.0 Vdc		
Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak. If						

a switching supply is chosen, user may select any frequency between 20 kHz and 150 kHz so long as no component of the switching frequency is present outside of the power supply with an amplitude greater than 500 microvolts peak.

ENVIRONMENTAL

Parameter	Specification
Temperature Operating	0°C to +60°C (32°F to 140°F)
Storage	- 55°C to + 150°C (- 67°F to + 302°F) (Stored in suitable antistatic container).
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less

R48PCJ Functional Interconnect Diagram

3

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins on the 64-pin QUIP. Software circuits are assigned to specific bits in a 16-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R48PCJ Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital and Analog Interface Characteristics tables.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0-RS3), data (D0-D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (\overline{IRQ}) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Requirements table.) With the addition of a few external logic

4800 bps PC Communication Modem

gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

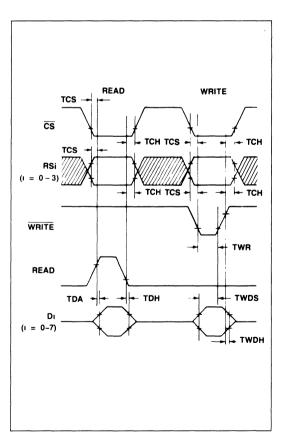
In applications where the modern is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

R48PCJ Hardware Circuits

Name	Туре	Pin No.	Description	Name	Туре	Pin No.	Description
A. POWER:				E. ANALOG	SIGNAL	.S:	
AGND	GND	24	Connect to Analog Ground	TXOUT	AA	28	Connect to Output Op Amp
DGND1	GND	22	Connect to AGND Ground	RXIN	AB	37	Connect to Input Op Amp
DGND2	GND	48	Connect to Digital Ground	AUXI	AC	26	Auxiliary Analog Input
DGND3	GND	8	Connect to Digital Ground	F. OVERHE	A D		
DGND4	GND	29	Connect to Digital Ground			·····	
DGND5	GND	4	Connect to Digital Ground	PORO	I/OB	43	Power-On-Reset Output
+5 VA	PWR	31	Connect to Analog +5V Power	PORI	I/OB	3	Power-On-Reset Input
+ 5 VD	PWR	11	Connect to Digital + 5V Power	XTLO	R*	10	Connect to Crystal Circuit
-5 VA	PWR	25	Connect to Analog - 5V Power	XTLI	R*	9	Connect to Crystal Circuit
B. MICROP	ROCESS	OR INTERF	ACE:	RCVO	R*	47	Receive Mode Output
D7	I/OA	49)		RCVI1	R*	34	Connect to RCVO
D6	I/OA	50		RCVI2	R*	16	Connect to RCVO
D5	I/OA	51		SCLKO	R*	44	Switched Capacitor Clock Output
D4	I/OA	52		SCLKIN1	R*	30	Connect to SCLKO
D3	I/OA	53	Data Bus (8 Bits)	SCLKIN2	R*	38	Connect to SCLKO
D2	I/OA	54		AOUT	R*	36	Smoothing Filter Output
D1	I/OA	55		AGCIN	R⁺	23	AGC Input
D0	I/OA	56		DAOUT	R*	14	DAC/AGC Data Out
RS3	IA	61		DAIN	R*	40	Connect to DAOUT
RS2	IA	62	Register Select (4 Bits)	ADOUT	R⁺	39	ADC Output
RS1	IA	63	Select Reg. 0 – F	ADIN	R*	15	Connect to ADOUT
RS0	IA	64	Geleet neg. 0-1	FOUT	R*	27	Smoothing Filter Output
				FIN	R⁺	35	Connect to FOUT
CS	IA	59	Chip Select	SYNCOUT	R*	20	Sample Clock Output
READ	IA	58	Read Strobe	SYNCIN1	B*	41	Connect to SYNCOUT
WRITE	IA OB	60 57	Write Strobe	SYNCIN2	B*	5	Connect to SYNCOUT
	L		Interrupt Request	SYNCIN3	R⁺	1	Connect to SYNCOUT
C. V.24 IN1	ERFACE	:		BCI	B*	42	RC Junction for POR Time
DCLK	oc	19	Data Clock				Constant
RTS	IB	46	Request-to-Send	G. RESERV		I	1
CTS	oc	17	Clear-to-Send	G. RESERV			
TXD	IB	13	Transmitter Data Signal		R*	2	Do Not Connect
RXD	oc	12	Receiver Data Signal		R*	6	Do Not Connect
RLSD	oc	18	Received Line Signal Detector		R*	7	Do Not Connect
				-11	R*	21	Do Not Connect
D. CABLE I	EQUALIZ	ER:			R*	45	Do Not Connect
CABLE1	IC	32	Cable Select 1	tD D			· · · · · · · · · · · · · · · · · · ·
CABLE2	IC	33	Cable Select 2	H = Hequir	ed overh	ead connect	ion; no connection to host equipment

4800 bps PC Communication Modem

						T	уре			
				Input			Output		Input/C	Dutput
Symbol	Parameter	Units	IA	IB	IC	OA	OB	oc	I/OA	I/OB
VIH	Input Voltage, High	v	2.0 min.	2.0 min.	2.0 min				2.0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max	0.8 max.	0.8 max.				0.8 max.	2.0 mm. 0.8 max.
V _{OH}	Output Voltage, High	v	0.0 1114	olo max.	0.0 max.	2.4 min.1			2.4 min. 1	2.4 min. ³
VOL	Output Voltage, Low	v				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0 4 max.5
IN	Input Current, Leakage	μA	± 2.5 max.			}			± 12.5 max.4	
I _{OH}	Output Current, High	mA				-0.1 max.				
IOL	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.		
IL I	Output Current, Leakage	μA					±10 max.			
IPU	Pull-up Current	μA		– 240 max.	- 240 max.	1		– 240 max.		– 260 max
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min
CL	Capacitive Load	pF	5	5	20				10	40
C _D	Capacitive Drive	pF				100	100	100	100	100
-	Circuit Type		TTL	TTL w/Pull-up	TTL w/Pull-up	TTL	Open-Drain	Open Drain w/Pull-up	3 State Transceiver	Open-Drain w/Pull-up
Notes	l		3. I Io	$ad = -40 \mu$	A	1				
1. I loa	$d = -100 \ \mu A$		4. V _{IN}	= 0.4 to 2.4	Vdc, V _{CC} =	5.25 Vdc				
2. I loa	d = 1.6 mÅ		5. I IC	bad = 0.36 m	A					


Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXOUT	AA	The transmitter output can supply a maximum of ± 3.03 volts into a load resistance of 10k Ω minimum. In order to match to 600 Ω , an external smoothing filter with a transfer function of 15726.43/(S + 11542.44) and 604 Ω series resistor are required.
RXIN	AB	The receiver input impedance is greater than 1M Ω . An external antialiasing filter with a transfer function of 19533.88/(S + 11542.44) is required.
AUXI	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1M Ω , and the gain to transmitter output (TXA) is +5.6 dB ± 1 dB.
		ximum voltage ratings for analog inputs are: $0.3) \le V_{IN} \le (+5 \text{ VA} + 0.3)$

Microprocessor Interface Timing Requirements

Characteristic	Symbol	Min	Max	Units
CS, RSI setup time prior to READ or WRITE	TCS	30	_	ns
Data Access time after READ	TDA	-	140	ns
Data hold time after READ	TDH	10	50	ns
CS, RSi hold time after READ or WRITE	тсн	10	_	ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	-	ns
WRITE strobe pulse width	TWR	75	-	ns

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

Cable Equalizer Selection

CABLE2	CABLE1	Length of 0.4mm Diameter Cable
0	0	0.0
0	1	1.8 km
1	0	3.6 km
1	1	7.2 km

Analog Signals

Three analog signals provide the interface point for telephone company audio circuits and host audio inputs. Signals TXOUT and RXIN require buffering and filtering to be suitable for driving and receiving the communication channel. Signal AUXI provides access to the transmitter for summing host audio signals with the modern analog output.

The filters required for anti-aliasing on the receiver input and smoothing on the transmitter output have a single pole located at 11,542 radians. Although this pole is located within the modem passband, internal filters compensate for its presence and, therefore, the pole location must not be changed. Some variation from recommended resistor and capacitor values is permitted as long as the pole is not moved, overall gain is preserved, and the device is not required to drive a load of less than 10k Ω .

Notice that when reference is made to signals TXA, RXA, and AUXIN, these signals are not electrically identical to TXOUT, RXIN, and AUXI. The schematic of the recommended modem interface circuit illustrates the differences.

Overhead

Except for the power-on-reset signal PORO, the overhead signals are intended for internal use only. The various required connections are illustrated in the recommended modem interface circuit schematic. No host connections should be made to overhead signals other than PORO.

SOFTWARE CIRCUITS

The R48PCJ contains 16 memory mapped registers to which an external (host) microprocessor has access. The host may read data out of or write data into these registers. Refer to the R48PCJ Host Processor Interface figure.

4800 bps PC Communication Modem

When information in these registers is being discussed, the format Z:Q is used. The register is specified by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a one (1) and "off" when reset to a zero (0).

Status/Control Bits

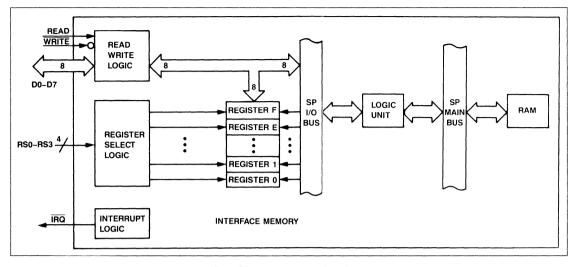
The operation of the R48PCJ is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus.

All status and control bits are defined in the R48PCJ Interface Memory Map table. Bits designated by '—' are reserved for modem use only and must not be changed by the host.

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

Configuration Control

Six configurations are available in the R48PCJ modem: V.27 4800/2400 bps long/short train (four variations), V.21, and Tone. The configuration is selected by writing an 8-bit binary code into the configuration field (CONF) of the interface memory. The configuration field consists of bits 7 through 0 of register D. The code for these bits is shown in the following table. All other codes represent invalid states.


CONF Code	Configuration	
00	V.21	
04	V.27, 2400 Long Train	
05	05 V.27, 2400 Short Train	
06*	V.27, 4800 Long Train	
07	V.27, 4800 Short Train	
08	Tone Mode	
* Default value at P	OR.	

Configuration Codes

When the modem is initialized by power-on-reset, the configuration defaults to V.27 4800 bps long train. When the host wants to change configuration, the new code is written to the configuration field and the SETUP bit (E:3) is set to a one. Once the new configuration takes effect, the SETUP bit is reset to zero by the modem.

The information in the interface memory is serviced by the modern at the baud rate (V.27 and V.21), 9600 times per second (tone generator), or 1600 times per second (tone detector).

4800 bps PC Communication Modem

R48PCJ Host Processor Interface

Bit Register	7	6	5	4	3	2	1	0
F		RAMA						
E	IA	CDIE	CDREQ	_	SETUP	DDIE	_	DDREQ
D				co	NF			
С	RTSP	EPT	TPDM	TDIS	EQSV	EQFZ	SDIS	RAMW
В	RX	Fl	ED	GHIT	-			_
Α	TDET		-		-	-	-	-
9		—	-	—	_	_	—	_
8		_	CDET	_	PN	—		_
7			-	_	_	-		
6	-			_	-	_	-	-
5				RX	CD			
4				ТΧ	CD			
3				DD	ХМ			
2				DD	XL			
1		DDYM						
0	DDYL							
Register Bit	7	6	5	4	3	2	1	0

R48PCJ Interface Memory Map

Channel Data Transfer

Data sent to or received from the data channel may be transferred between the modem and host processor in either serial or parallel form. The receiver operates in both serial and parallel mode simultaneously and requires no mode control bit selection. The transmitter operates in either serial or parallel mode as selected by mode control bit C:5 (TPDM). To enable the transmitter parallel mode, TPDM must be set to a 1. The modem automatically defaults to the serial mode (TPDM = 0) at power-on. In either transmitter serial or parallel mode, the R48PCJ is configured by the host processor via the microprocessor bus.

Serial Mode—The serial mode uses a standard V.24 (RS-232-C) hardware interface (optional USRT) to transfer channel data. Transmitter data can be sent serially only when TPDM is set to a zero.

Parallel Mode—Parallel data is transferred via two registers in the interface memory. Register 5 (RXCD) is used for receiver channel data, and Register 4 (TXCD) is used for transmitter channel data. Register 5 is continuously written every eight bit times when in the receive state. Register 4 is used as the source of channel transmitter data only when bit C:5 (TPDM) is set to a one by the host. Otherwise the transmitter reads data from the V.24 interface. Both RTS and RTSP remain enabled, however, regardless of the state of TPDM.

When performing parallel data transfer of channel data, the host and modem can synchronize their operations by handshaking bits in register E. Bit E:5 (CDREQ) is the channel data request bit. This bit is set to a one by the modem when receiver data is available in RXCD or when transmitter data is required in TXCD. Once the host has finished reading RXCD or writing TXCD, the host processor must reset CDREQ by writing a zero to that bit location.

When set to a one by the host, Bit E:6 (CDIE) enables the CDREQ bit to cause an \overline{IRQ} interrupt when set. While the \overline{IRQ} line is driven to a TTL low level by the modern, bit E:7 (IA) is a one.

If the host does not respond to the channel data request within eight bit times, the RXCD register is over written or the TXCD register is sent again.

Refer to Channel Data Parallel Mode Control flow chart for recommended software sequence.

4800 bps PC Communication Modem

R48PCJ In	nterface Memory	Definitions
-----------	-----------------	-------------

Mnemonic	Name	Memory Location	Description	
CDET	Carrier Detector	8:5	The one state of CDET indicates passband energy is being detected, and a training sequence is not present. CDET goes to one at the start of the data state, and returns to zero at the end of the received signal. CDET activates one baud time before $\overline{\text{RLSD}}$ and deactivates one baud time after $\overline{\text{RLSD}}$.	
CDIE	Channel Data Interrupt Enable	E:6	When set to a one, CDIE enables an $\overline{\text{IRQ}}$ interrupt to be generated when the channel data request bit (CDREQ) is a one.	
CDREQ	Channel Data Request	E:5	Parallel data mode handshaking bit. Set to a one when the modem receiver writes data to RXCD, or the modem transmitter reads data from TXCD. CDREQ must be reset to zero by the host processor when data service is complete.	
CONF	Configuration	D:0-7	The 8-bit field CONF controls the configuration of the modern according to the following table:	
			Hex Code Configuration 00 V.21 04 V.27, 2400 Long Train 05 V.27, 2400 Short Train 06 V.27, 4800 Long Train (Default) 07 V.27, 4800 Short Train 08 Tone All else Invalid	
			Configuration Definitions V.21—The modem operates as a CCITT T.30 compatible 300 bps FSK modem having characteristics of the CCITT V.21 Channel 2 modulation system.	
			<i>Tone</i> —The modem sends single or dual frequency tones in response to the $\overline{\text{RTS}}$ or RTSP signals. Tone frequencies and amplitudes are controlled by RAM locations written by the host. When not transmitting tones the Tone configuration allows detection of single frequency tones by the TDET bit. The tone detector frequency can be changed by the host by altering the contents of several RAM locations.	
			V.27—The modem is compatible with CCITT Recommendation V.27 ter.	
DDIE	Diagnostic Data Interrupt Enable	E:2	When set to a one, DDIE enables an IRQ interrupt to be generated when the diagnostic data request bit (DDREQ) is a one.	
DDREQ	Diagnostic Data Request	E:0	DDREQ goes to a one when the modem reads from or writes to DDYL. DDREQ goes to a zero when the host processor reads from or writes to DDYL. Used for diagnostic data handshaking bit.	
DDXL	Diagnostic Data X Least	2:0-7	Least significant byte of 16-bit word used in reading XRAM locations.	
DDXM	Diagnostic Data X Most	3:0-7	Least significant byte of 16-bit word used in reading XRAM locations.	
DDYL	Diagnostic Data Y Least	0:0-7	Least significant byte of 16-bit word used in reading YRAM locations or writing XRAM and YRAM locations.	
DDYM	Diagnostic Data Y Most	1:0-7	Most significant byte of 16-bit word used in reading YRAM locations or writing XRAM and YRAM locations.	
EPT	Echo Protector Tone	C:6	When EPT is a one, an unmodulated carrier is transmitted for 185 ms followed by 20 ms of no transmitted energy at the beginning of the training sequence. EPT is not active if TDIS is on.	
EQFZ	Equalizer Freeze	C:2	When EQFZ is a one, the adaptive equalizer taps stop updating and remain frozen.	
EQSV	Equalizer Save	C:3	When EQSV is a one, the adaptive equalizer taps are not zeroed when reconfiguring the modem or when entering the training state. Adaptive equalizer taps are also not updated during training.	
FED	Fast Energy Detector	B:5,6	FED consists of a 2-bit field that indicates the level of received signal according to the following code. Code Energy Level 0 None 1 Invalid 2 Above Turn-off Threshold 3 Above Turn-on Threshold While receiving a signal, FED normally alternates between Codes 2 and 3.	

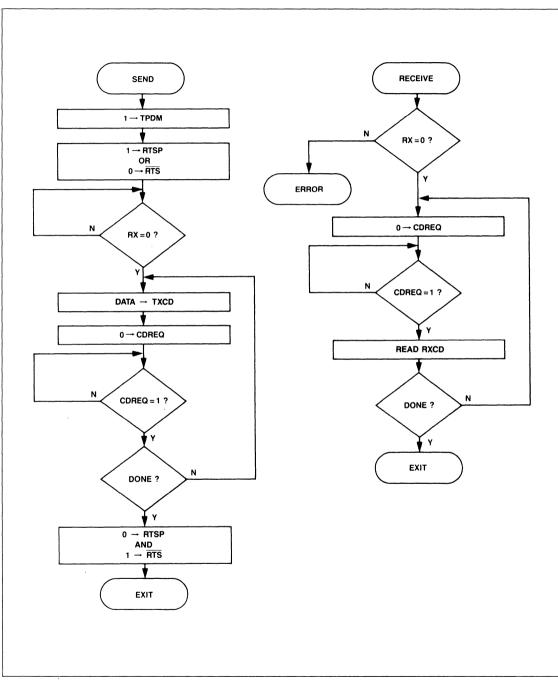
4800 bps PC Communication Modem

Mnemonic	Name	Memory Location	Description	
GHIT	Gain Hit	В·4	The gain hit bit goes to one when the receiver detects a sudden increase in passband energy faster than the AGC circuit can correct GHIT returns to zero when the AGC output returns to normal	
IA	Interrupt Active	E 7	IA is a one when the modem is driving the interrupt request line ($\overline{\text{IRQ}}$) to a low TTL level.	
PN	Period N	8:3	PN sets to a one at the start of the received PN sequence PN resets to zero at the start of the received scrambled ones PN does not operate when TDIS is set to a one.	
RAMA	RAM Access	F [.] 0-7	The RAMA register is written by the host when reading or writing diagnostic data The RAMA code determines the RAM location with which the diagnostic read or write is performed.	
RAMW	RAM Write	C:0	RAMW is set to a one by the host processor when performing diagnostic writes to the modem RAM. RAMW is set to a zero by the host when reading RAM diagnostic data.	
RTSP	Request to Send Parallei	C:7	The one state of RTSP begins a transmit sequence. The modem continues to transmit until RTSP is turned off and the turn-off sequence has been completed. RTSP parallels the operation of the hardware $\overline{\text{RTS}}$ control input. These inputs are ORed by the modem.	
RXCD	Receiver Channel Data	5:0-7	RXCD is written to by the modern every eight bit times. This byte of channel data can be read b the host when the receiver sets the channel data request bit (CDREQ)	
RX	Receive State	B:7	RX is a one when the modem is in the receive state (i.e., not transmitting).	
SDIS	Scrambler Disable	C:1	When SDIS is a one, the scrambler/descrambler is disabled When SDIS is a zero, the scrambler/descrambler is enabled (default).	
SETUP	Setup	E:3	The host processor must set the SETUP bit to a one when reconfiguring the modem, i.e., when changing CONF (D:0-7).	
TDET	Tone Detected	A:7	The one state of TDET indicates reception of a tone. The filter can be retuned by means of the diagnostic write routine.	
TDIS	Training Disable	C:4	If TDIS is a one in the receive state, the modem is prevented from entering the training phase I TDIS is a one when $\overline{\text{RTS}}$ or $\overline{\text{RTSP}}$ go active, the generation of a training sequence is prevented the start of transmission.	
TPDM	Transmitter Parallel Data Mode	C:5	When control bit TPDM is a one, the transmitter accepts data for transmission from the TXCD register rather than the serial hardware data input.	
TXCD	Transmitter Channel Data	4:0-7	The host processor conveys output data to the transmitter in parallel data mode by writing a data byte to the TXCD register when the channel data request bit (CDREQ) goes to a one. Data is transmitted as single bits in V.21 or as dibits in V.27 starting with bit 0 or dibit 0,1	

R48PCJ Interace Memory Definitions (continued)

Diagnostic Data Transfer

The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.


The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register F (RAMA). The R48PCJ RAM Access Codes table lists 27 access codes for storage in register F and the corresponding diagnostic functions. The R48PCJ Diagnostic Data Scaling table provides scaling information for these diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

These bits are written into interface memory registers 3, 2, 1 and 0 in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit C:0 (RAMW) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the more significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAMA bits of register F. When bit F:7 is set to one, the XRAM is selected. When F:7 equals zero, YRAM is selected.

When the host processor reads or writes register 0, the diagnostic data request bit E:0 (DDREQ) is reset to zero. When the modern reads or writes register 0, DDREQ is set to a one. When set to a one by the host, bit E:2 (DDIE) enables the DDREQ bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modern, bit E:7 (IA) goes to a one.

4800 bps PC Communication Modem

Channel Data Parallel Mode Control

4800 bps PC Communication Modem

	R48PCJ RAM Access Codes					
Node	Function	RAMA	Reg. No.			
1	AGC Gain Word	87	2,3			
2	Average Power	91	2,3			
3	Receiver Sensitivity	47	0,1			
4	Receiver Hysteresis	84	2,3			
5	Equalizer Input	63	0,1,2,3			
6	Equalizer Tap Coefficients	23-32	0,1,2,3			
7	Unrotated Equalizer Output	73	0,1,2,3			
8	Rotated Equalizer Output	0A	0,1,2,3			
• 9	Decision Points	74	0,1,2,3			
10	Error Vector	75	0,1,2,3			
11	Rotation Angle	B3	2,3			
12	Frequency Correction	8B	2,3			
13	EQM	89	2,3			
14	Alpha (α)	38	0,1			
15	Beta One (β ₁)	39	0,1			
16	Beta Two (β ₂)	3A	0,1			
17	Alpha Prime (α')	3B	0,1			
18	Beta One Prime (β_1')	3C	0,1			
19	Beta Two Prime (β_2')	3D	0,1			
20	Alpha Double Prime (α")	B8	2,3			
21	Beta Double Prime (β'')	B9	2,3			
22	Output Level	43	0,1			
23	Tone 1 Frequency	8E	2,3			
24	Tone 1 Level	44	0,1			
25	Tone 2 Frequency	8F	2,3			
26	Tone 2 Level	45	0,1			
27	Checksum	02	0,1			

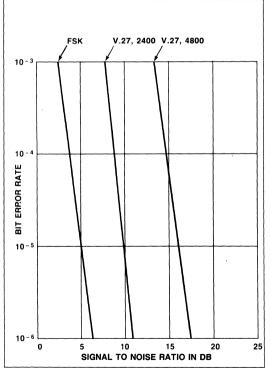
R48PCJ Diagnostic Data Scaling

Node	Parameter/Scaling
1	AGC Gain Word (16-bit unsigned).
	AGC Gain in dB = 50 - [(AGC Gain Word/64) \times 0.098]
	Range: (16C0) ₁₆ to (7FFF) ₁₆ , For -43 dBm Threshold
2.	Average Power (16-bit unsigned)
	Post-AGC Average Power in dBm = 10 Log (Average Power Word/2185)
	Typical Value = $(0889)_{16}$, corresponding to 0 dBm Pre-AGC Power in dBm
	= (Post-AGC Average Power-AGC Gain)
3	Receiver Sensitivity (16-bit twos complement)
	On-Number = 655.36 (52.38 + P _{ON})
	where: P _{ON} = Turn-on threshold in dB
	Convert On-Number to hexadecimal and store at access code 47
4	Receiver Hysteresis (16-bit twos complement)
	Off-Number = $[65.4 \ (10^{A})]^{2}/2$
	where: $A = (P_{OFF} - P_{ON} - 0.5)/20$ $P_{ON} =$ Turn-on threshold in dB $P_{OFF} =$ Turn-off threshold in dB
	Convert Off-Number to hexadecimal and store at access code 84.

R48PCJ Diagnostic Data Scaling (Cont'd)

Node	Parameter/Scaling					
5,7–9	All base-band signal point nodes (i.e., Equalizer Input, Unrotated Equalizer Output, Rotated Equalizer Output, and Decision Points) are 32-bit, complex, twos complement numbers.					
		Value	(Hex)		,	,
	Point	X	Y		•3	•2
	1	1D00	0C00			
	2	0C00 F400	1D00 1D00	•4		•1
	4	E300	0000			×
	5	E300	F400	•5		•8
	6	F400 0C00	E300 E300		•6	•7
	8	1D00	F400			
6	Equalizer Tap Coefficients (32-bit, complex, twos complement) Complex numbers with X = real part, Y = imaginary part X and Y range: 0000 to (FFFF) ₁₆ representing \pm full scale in hexadecimal twos complement.					
10	Error Vector (32-bit, complex, twos complement) Complex number with X = real part, Y = imaginary part. X and Y range: $(8000)_{16}$ to $(7FFF)_{16}$					
11	Rotation Angle (16-bit, signed, twos complement) Rotation Angle in deg. = (Rot. Angle Word/65,536) × 360					
12	Frequency Correction (16-bit signed twos complement)					
	Frequency correction in Hz = (Freq. Correction Word/65,536) × Baud Rate					
				6 representing	; ± 18.	75 Hz
13	EQM (16-bit, unsigned) Filtered squared magnitude of error vector. Proportionality to BER determined by particular application.					
14–21	Filter Tuning Parameters (16-bit unsigned) Alpha, Beta One, Beta Two, Alpha Prime, Beta One Prime, Beta Two Prime, Alpha Double Prime, and Beta Double Prime are set according to instructions in application note 668.					
22	Output Level (16-bit unsigned)					
				6 [10 ^(Po/20)]		
	Po = output power in dBm with series 600 ohm resistor into 600 ohm load.					
	Convert Output Number to hexadecimal and store at access code 43					
24 and 26	Tone 1 and Tone 2 Levels Calculate the power of each tone independently by using the equation for Output Number given at node 22. Convert these numbers to hexadecimal then store at access codes 44 and 45. Total power transmitted in tone mode is the result of both tone 1 power and tone 2 power.					
23 and 25	Tone 1 and 2 Frequency (16-bit unsigned) N = 6.8267 (Frequency in Hz) Convert N to hexadecimal then store at access code 8E					
27	or 8F. Checksur ROM che				revis	ion level.
	ROM checksum number determined by revision level.					

POWER-ON INITIALIZATION


When power is applied to the R48PCJ, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (\overrightarrow{POR}) remains low during this period. Approximately 10 ms after the low to high transition of \overrightarrow{POR} , the modem is ready to be configured, and \overrightarrow{RTS} may be activated. If the 5 Vdc power supply drops below approximately 3 Vdc for more than 30 msec, the \overrightarrow{POR} cycle is repeated.

At $\overline{\text{POR}}$ time the modem defaults to the following configuration: V.27/4800 bps, serial mode, training enabled, echo protector tone enabled, interrupts disabled, RAM access code 0A, transmitter output level set for + 5 dBm at TXA, receiver turnon threshold set for -43.5 dBm, receiver turn-off threshold set for -47.0 dBm, tone 1 and tone 2 set for 0 Hz and 0 volts output, and tone detector parameters zeroed.

 \overrightarrow{POR} can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or longer applied to the \overrightarrow{POR} pin causes the modem to reset. The modem is ready to be configured 10 msec after the low active pulse is removed from \overrightarrow{POR} .

PERFORMANCE

Whether functioning as a V.27 ter or V.21 type modem, the R48PCJ provides the user with unexcelled high performance.

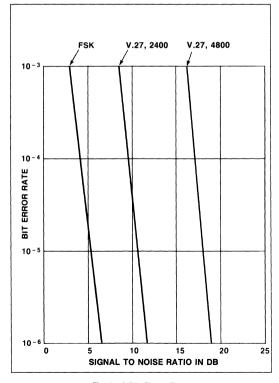
Typical Bit Error Rate (Back-to-Back, Level – 20 dBm)

4800 bps PC Communication Modem

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that illustrated in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm.

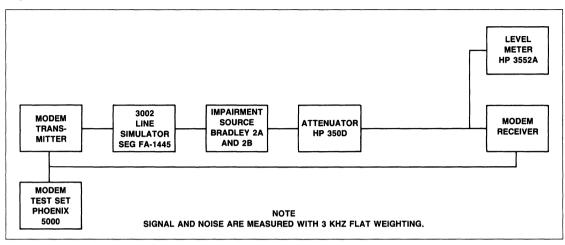
RECEIVED SIGNAL FREQUENCY TOLERANCE


The receiver circuit of the R48PCJ can adapt to received frequency error of \pm 10 Hz with less than 0.2 dB degradation in BER performance.

TYPICAL PHASE JITTER

At 4800 bps, the modem exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

At 2400 bps, the modem exhibits a BER of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).


An example of the BER performance capabilities is given in the following diagrams:

Typical Bit Error Rate (Unconditioned 3002 Line, Level – 20 dBm)

4800 bps PC Communication Modem

The BER performance test set-up is show in the following diagram:

BER Performance Test Set-up

4800 bps PC Communication Modem

APPLICATION

Recommended Modem Interface Circuit

The R48PCJ is supplied as a 64-pin QUIP device to be designed into original equipment manufacturer (OEM) circuit boards. The recommended modem interface circuit and parts list illustrate the connections and components required to connect the modem to the OEM electronics.

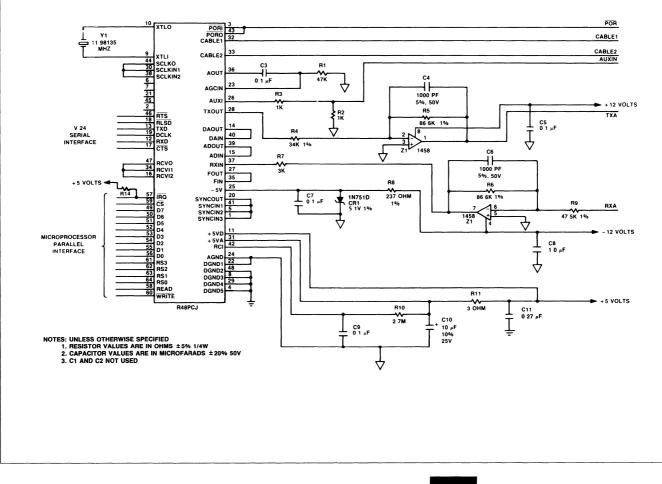
If the auxiliary analog input (pin 26) is not used, resistors R2 and R3 can be eliminated and pin 26 must be connected to analog ground (pin 24). When the cable equalizer controls CABLE1 and CABLE2 are connected to long leads that are subject to picking up noise spikes, a 3k Ω series resistor should be used on each input (Pins 32 and 33) for isolation.

Resistors R4 and R9 can be used to trim the transmit level and receive threshold to the accuracy required by the OEM equipment. For a tolerance of ± 1 dB the 1% resistor values shown are correct for more than 99.8% of the units.

Component	Manufacturer's Part Number	Manufacturer
C3,C5,C7,C9	592CX7R104M050B	Sprague
C11	SA405C274MAA	AVX
Y1	333R14-002	Uniden
Z1	LM1458N	National
R5,R6	CML 1/10	
	T86.6K ohm ±1%	Dale Electronics
R4	5MA434.0K ±1%	Corning Electronics
R11	5043CX3R000J	Mepco Electra
R10	5043CX2M700J	Mepco Electra
R1	5043CX47K00J	Mepco Electra
R7	5043CX3K00J	Mepco Electra
R2,R3	5043CX1K00J	Mepco Electra
C10	ECEBEF100	Panasonic
C8	SMC50T1R0M5X12	United Chem-Con
C4,C6	C124C102J5G5CA	Kemet
CR1	IN751D	I.T.T.
R9	CRB 1/4 XF47K5	R-Ohm
R8	ER025QKF2370	Matsushita Electric
R14	Determined by IRQ	
	characteristics	

Typical Modem Interface Parts List

PC Board Layout Considerations

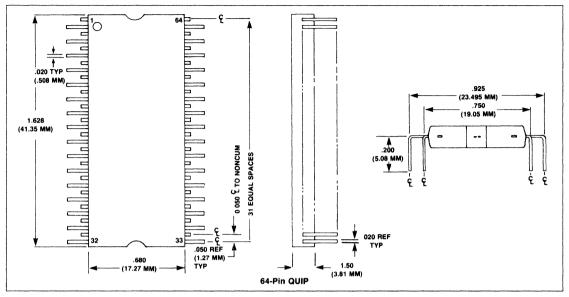

- The R48PCJ and all supporting analog circuitry, including the data access arrangement if required, should be located on the same area of printed circuit board (PCB).
- 2. All power traces should be at least 0.1 inch width.
- If power source is located more than approximately 5 inches from the R48PCJ, a decoupling capacitor of 10 microfarad or greater should be placed in parallel with C11 near pins 11 and 48.
- 4. All circuitry connected to pins 9 and 10 should be kept short to prevent stray capacitance from affecting the oscillator.

- 5. Pin 22 should be tied directly to pin 24 at the R48PCJ package. Pin 24 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 6. An analog ground plane should be supplied beneath all analog components. The analog ground plane should connect to pin 24 and all analog ground points shown in the recommended circuit diagram.
- 7. Pins 4, 8, 29, and 48 should tie together at the R48PCJ package. Pin 48 should tie directly, by a unique path, to the common ground point for analog and digital ground.
- 8. A digital ground plane should be supplied to cover the remaining allocated area. The digital ground plane should connect to pin 48 and all digital ground points shown in the recommended circuit diagram plus the crystal-can ground.
- 9. The R48PCJ package should be oriented relative to the two ground planes so that the end containing pin 1 is toward the digital ground plane and the end containing pin 32 is toward the analog ground plane.
- 10. As a general rule, digital signals should be routed on the component side of the PCB while analog signals are routed on the solder side. The sides may be reversed to match a particular OEM requirement.
- 11. Routing of R48PCJ signals should provide maximum isolation between noise sources and sensitive inputs. When layout requirements necessitate routing these signals together, they should be separated by neutral signals. Refer to the table of noise characteristics for a list of pins in each category.

Noise	Noise Source		Noise Sensitive	
High	Low	Neutral	Low	High
1	6	3	26	23
2 5	7	4	28	27
5	9	8	32	35
14	10	11	33	36
15	12	16		37
20	13	22		
21	17	24		
30	18	25		
38	19	29		
39	45	31		
40	46	34		
41	49	42		
44	50	43		
	51	47		
	52	48	1	1
	53			
	54			
	55			
	56			
	57			
	58			
	59			
1	60			
1	61			
	62			
	63			
	64		1	

Pin Noise Characteristics

4800 bps PC Communication Modem



Recommended Modem Interface Circuit

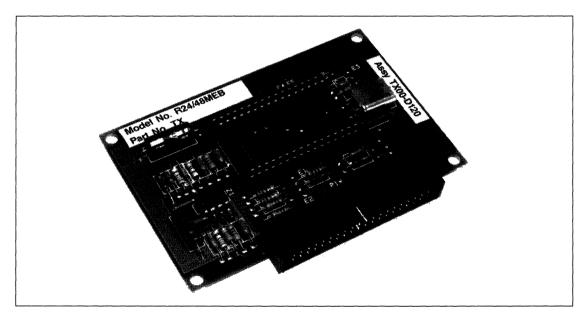
3-65

4800 bps PC Communication Modem

PACKAGE DIMENSIONS

Evaluation Board

R24/48MEB Modem Evaluation Board


INTRODUCTION

The Rockwell R24/48MEB Modem Evaluation Board (MEB) aids the original equipment manufacturer (OEM) during the evaluation and design in phases of product development. Modems supported by the R24/48MEB include the R24MFX, R24BKJ, R48MFX, and R48PCJ. The Modem Evaluation Board contains a socket (U1) for mounting the 64-pin quad in-line package (QUIP) of the selected modem, plus support circuitry to configure a complete data pump. For operation over the public switched telephone network (PSTN), an appropriate line termination, such as a data access arrangement (DAA), must be provided externally.

The R24/48MEB physical and electrical interface is compatible with the Rockwell R96FAX modem. For users of the R96FAX, this feature provides a rapid means of preparing to evaluate a 64-pin QUIP modem. Equipment previously developed for use with the R96FAX can be converted for use with the R24/48MEB by changing only the software.

FEATURES

- Convenient evaluation method for R24MFX R24BKJ R48MFX R48PCJ
- Exercises all modem functions
- · Easily integrated into a prototype system
- · Cost effective for low volume production applications
- Standard 40-pin flat ribbon connector
- · Backward compatible with R96FAX hardware
- · Low power consumption: 1.5W (typical)
- Small size: 100 mm × 65 mm (3.94 in. × 2.56 in.).

R24/48MEB Modem Evaluation Board

Document No. 29200N22

Data Sheet 3-67 Order No. MD22 Rev. 1, January 1987

TECHNICAL SPECIFICATION

For a description of the R24/48MEB characteristics with a 64-pin QUIP modem installed in socket U1, refer to the corresponding modem data sheet.

Modem Number	Data Sheet Order Number
R24MFX	MD17
R24BKJ	MD20
R48MFX	MD19
R48PCJ	MD21

CIRCUIT DESCRIPTION

INTERFACE CIRCUITS

The circuitry and design rules used to create the R24/48MEB follow the recommended modem interface and PC board layout considerations published in the associated 64-pin QUIP modem data sheet. The circuit card can be used as a guide in host PC board design.

Refer to the R24/48MEB schematic diagram (Figure 2) during the following description. The modem being evaluated is inserted in the 64-pin QUIP socket (U1). Various overhead connections between QUIP pins are completed by circuits on the evaluation board. Some of these overhead signals are connected to test points (E3, E4, E5) or connector pins (P1-11, P1-12, P1-22, P1-24) for use in Rockwell production test. These signals are not intended for use by the host equipment.

Modem signals that form the user interface on connector P1 (Table 1) are divided into five categories: Power, Microprocessor Interface, V.24 Interface, Cable Equalizer, and Analog Signals. The column titled "Type" refers to designations found in the digital and analog interface characteristics tables (Tables 2 and 3). The five categories are defined in the following paragraphs.

Power

Power signals include \pm 12 volts, +5 volts, ground and POR. The \pm 12 volt supplies provide power for analog circuits and should be free from switching transients normally associated with digital circuits. The +5 volt source provides power for digital circuits and can be driven by the host logic supply.

The common reference point for all signals, both digital and analog, is modem ground (pins 14 and 39). These pins provide the power supply return points for all voltages and should be used as reference for transmitter and receiver signals. To minimize noise problems, circuits that interface to the modem should maintain their ground references as close as possible to the same potential as modem pins 14 and 39. Digital signals and analog signals should be referenced to modem ground via separate connections to prevent digital noise from appearing on analog signals due to a common ground impedance.

In order to reduce the effect of noise coupled through direct current (DC) power lines, decoupling capacitors are recommended on all power inputs. Each supply input should be decoupled to

Modem Evaluation Board

Table 1.	R24/48MEB	Connector	Interface	Signals
----------	-----------	-----------	-----------	---------

Name	Туре	Pin No.	Description
A. POWER	:		
Ground + 5 volts + 12 volts - 12 volts POR	GND PWR PWR PWR I/OB	14, 39 3, 4 26 37 36	Power Supply Return + 5 volt supply + 12 volt supply - 12 volt supply Power-on-reset
B. MICROF	ROCES	SOR INTE	ERFACE:
D7 D6 D5 D4 D3 D2 D1 D0	I/OA I/OA I/OA I/OA I/OA I/OA I/OA	7 5 9 31 15 28 23 29	Data Bus (8 Bits)
RS3 RS2 RS1 RS0	IA IA IA IA	30 8 27 10	Register Select (4 Bits)
CS READ WRITE IRQ	IA IA IA OB	6 1 2 32	Chip Select Read Enable Write Enable Interrupt Request
C. V.24 IN	TERFAC	CE:	
DCLK RTS CTS TXD RXD RLSD	OC IB OC IB OC OC	13 19 17 20 21 16	Data Clock Request-to-Send Clear-to-Send Transmitter Data Receiver Data Receiver Line Signal Detector
D. CABLE	EQUAL	IZER:	
CABS1 CABS2	IC IC	33 34	Cable Select 1 Cable Select 2
E. ANALO		r	
TXA RXA AUXIN	AA AB AC	38 40 35	Transmitter Analog Output Receiver Analog Input Auxiliary Analog Input

signal ground (pins 14 and 39) by a parallel set of capacitors. A large value capacitor of 10 microfarads or greater should be paralleled by a low inductance small value capacitor of 0.1 microfarads.

Because the modem uses switched capacitor filters, the noise floor can be degraded as the result of high frequency noise aliased into the passband by beating with the switched capacitor clock. For this reason, use of linear power supplies, rather than switching power supplies, is recommended where low level reception (i.e., around -40 dBm) is anticipated. If switching power supplies are used, extra care must be taken to keep switching noise out of the modem. The following techniques have proven helpful in designing systems using switching supplies.

 In addition to the decoupling capacitors on all modem power inputs, the power supply output leads should be wrapped around a toroidal core to increase series inductance. This technique blocks the conducted high frequency noise from the switching supply.

Modem Evaluation Board

		Туре								
			Input		Output			Input/Output		
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ос	I/OA	I/OB
VIH	input Voltage, High	v	20 min.	2.0 min	20 min				2.0 min.	5.25 max. 20 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.	0.8 max.				0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	v				2.4 min.1			2.4 min. 1	2.4 min.3
VOL	Output Voltage, Low	v				0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max 5
IIN	Input Current, Leakage	μA	±2.5 max						± 12.5 max 4	
I _{OH}	Output Current, High	mA				-0.1 max.				
IOL	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.		
1	Output Current, Leakage	μA					± 10 max.			
IPU	Pull-up Current	μA		- 240 max.	– 240 max.			– 240 max.		– 260 max
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min
CL	Capacitive Load	pF	5	5	20				10	40
CD	Capacitive Drive	pF				100	100	100	100	100
	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open Drain	3 State	Open-Drail
				w/Pull-up	w/Pull-up		-	w/Puil-up	Transceiver	w/Pull-up
Notes	3. 1	load =	- 40 μA							
1. I load	$d = -100 \ \mu A$ 4. V	$'_{IN} = 0.$	4 to 2.4 Vdc	$V_{\rm CC} = 5.25$	Vdc					
2. I loa			0.36 mA							

Table 2. Digital Interface Characteristics

Table 3. Analog Interface Characteristics

Name	Туре	Characteristics
ТХА	AA	The transmitter output is a low impedance operational amplifier output. In order to match to 600 ohms, an external 604 ohm series resistor is required.
RXA	AB	The receiver input impedance is 47.5K ohms $\pm 1\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above half the sample rate will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is $-0.4 \text{ dB} \pm 1 \text{ dB}.$

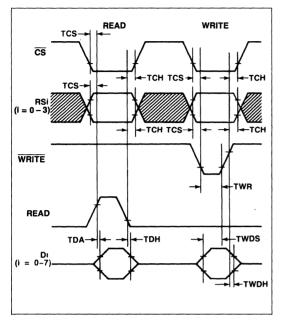
- A ground plane should be inserted between the modem and the power supply. This technique reduces radiated EMI pickup by modem circuits.
- Shield analog signals in coaxial wire. Signals TXA (pin 38), RXA (pin 40), and AUXIN (pin 35) should be shielded. Signal AUXIN should be tied to ground (pin 39) if not used.

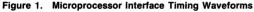
By following these procedures, satisfactory performance over the full dynamic range should be realized even when switching power supplies must be used.

When the modem is initially energized a signal called Power-On Reset (\overline{POR}) causes the modem to assume a valid operational state. The modem drives pin 36 to ground during the beginning of the POR sequence. Approximately 10 milliseconds after the low to high transition of pin 36, the modem is ready for normal use. The POR sequence is reinitialized anytime the +5 volt supply drops below +3.0 volts for more than 30 milliseconds, or an external device drives pin 36 low for at least 3 microseconds.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0–RS3), data (D0–D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (\overline{IRQ}) signals for implementing a parallel interface compatible with an 8080 microprocessor. The microprocessor interface timing waveforms are shown in Figure 1 and the microprocessor interface timing requirements are listed in Table 4. With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.


The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the referenced data sheet of each 64-pin QUIP modem.


V.24 Interface

Six hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels. These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

In applications where the modem is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

3-69

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modern includes three such equalizers designed to compensate for cable distortion. The low (0) and high (1) states of signals CABS1 and CABS2 that are necessary to select each of the cable equalizer options are defined in Table 5.

Analog Signals

Three connector pins are devoted to analog audio signals: TXA, RXA, and AUXIN. The TXA (transmitter analog) line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the public switched telephone network. The output structure of TXA is a low impedance amplifier. In order to match this output to a standard telephone load of 600 ohms, a series resistor is required. A value of 604 ohms $\pm 1\%$ is recommended.

The RXA (receiver analog) line is an input to the receiver from an audio transformer or data access arrangement. The input

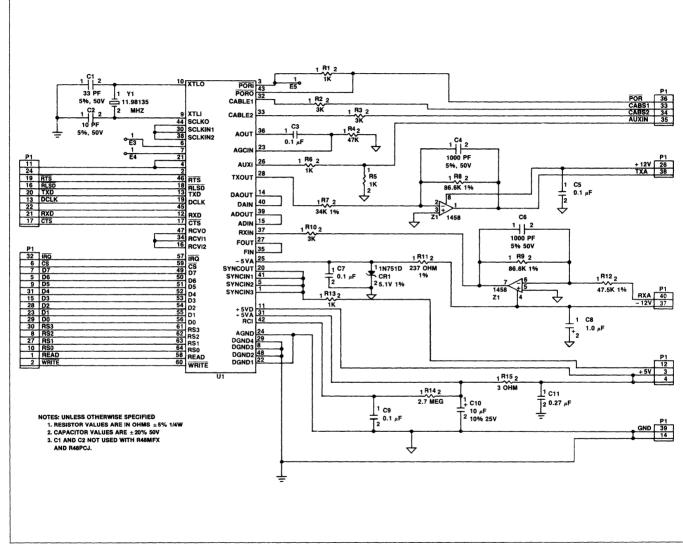
Modem Evaluation Board

Characteristic	Symbol	Min	Max	Units
CS, RSi setup time prior to Read or WRITE	TCS	30	_	NS
Data Access time after Read	TDA	-	140	NS
Data hold time after Read	TDH	10	50	NS
CS, RSi hold time after READ or WRITE	тсн	10	_	NS
Write data setup time	TWDS	75	_	NS
Write data hold time	TWDH	10	-	NS
WRITE strobe pulse width	TWR	75	-	NS

Table 4. Microprocessor Interface Timing Requirements

Table 5. Cable Equalizer Sele	ction
-------------------------------	-------

CABLE1	CABLE2	Length of 0.4mm Diameter Cable
0	0	0.0
0	1	1.8 km
1	0	3.6 km
1	1	7.2 km

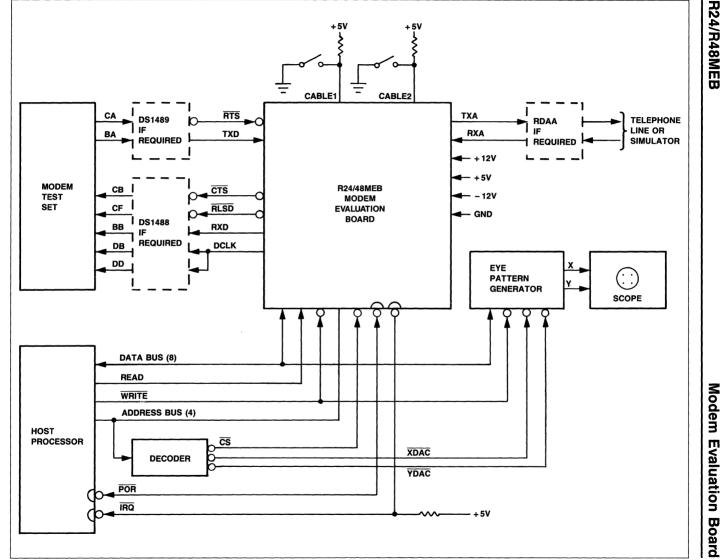

impedance is 47.5K ohms \pm 1%. The RXA input must be shunted by an external resistor in order to match a 600 ohms source. The 604 ohms \pm 1% resistor recommended for the transmitter is also suitable for the receiver.

The last analog connection is the input AUXIN. This line provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit. Any signal above half the sample rate on the AUXIN line will be aliased back into the passband as noise.

MEB SUPPORT CIRCUITS

The modem evaluation board with a 64-pin QUIP modem installed forms a complete data pump ready for interfacing to a host microprocessor (Figure 3). The host electronics must provide data and timing on the microprocessor interface pins to allow normal modem configuration and option selection plus status monitoring. Additional circuitry is recommended to allow generation of an eye pattern for diagnostic purposes (Figure 6). A commercially available modem test set (e.g., Phoenix 5000) can be connected directly to the V.24 serial interface (using TTL levels) or can be buffered with DS1488 and DS1489 type drivers and receivers for operation with standard RS-232 levels.

Schematic diagrams are provided for the RS-232 buffer circuit (Figure 4) and the microprocessor bus interface with eye pattern output (Figure 5). Note that the data clock signal must drive both the transmitter clock and the receiver clock and is therefore buffered to reduce the load on the R24/48MEB pin 13. Also note that an SN74121 is used to shorten the write pulse in order to meet data hold time requirements for the NE5018 devices. The 100 ohm resistors in series with modem signals are required only when driving several feet of cable where excessive ringing may require damping. The address decode logic places the modem registers between locations 9000 and 900F hexadecimal. The eye pattern DAC's are at locations 9071 and 9072. Figure 2. R24/48MEB Schematic Diagram



Modem

Evaluation

Board

3-72

R24/R48MEB

Modem Evaluation Board

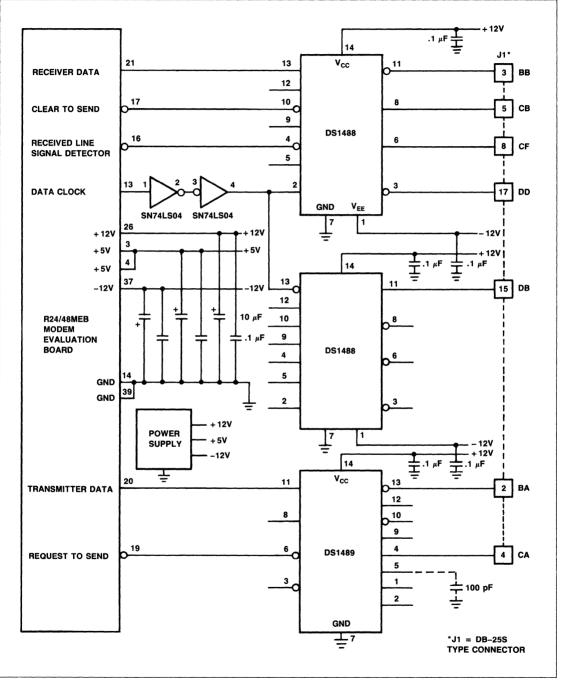


Figure 4. RS-232 Buffer Circuit

3-73

3

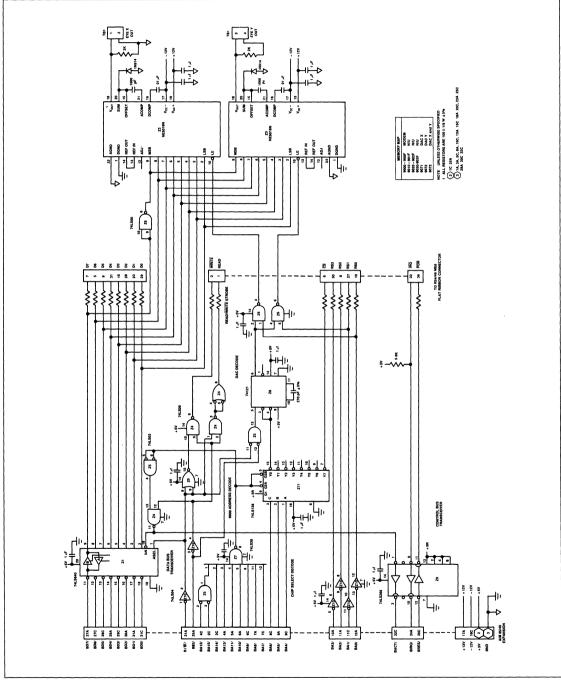


Figure 5. R24/48MEB Microprocessor Bus Interface with Eye Pattern Output

Modem Evaluation Board

MODEM EVALUATION

EYE PATTERN

The eye pattern is an oscilloscope display of the received baseband constellation. By monitoring this constellation, an observer can often identify common line disturbances as well as defects in the modulation/demodulation process.

In quadrature amplitude modulation (QAM), two multilevel amplitude modulated (AM) carriers are transmitted simultaneously. Interference between these two modulated carriers is minimized by using carriers of identical frequency with a constant 90° relative phase angle. After demodulation, the multilevel baseband signals can be displayed on an oscilloscope with the set of levels received on one carrier displayed on the X axis and the set of levels received on the other carrier displayed on the Y axis. Since these signals consist of discrete levels sent at high data rates, the resulting oscilloscope pattern appears to be a fixed set of points.

Figures 6a through 6d illustrate four examples of an eve pattern. Figure 6a shows the location of four ideal points corresponding to a signal structure using 0 and ± 1 for the three amplitude levels. One such signal structure is CCITT Recommendation V.27 at 2400 bits per second. The dashed lines superimposed on the eye pattern represent decision boundaries used by the receiver in deciding which ideal point corresponds to the actual received point. Although the transmitter sends ideal points, line impairments cause the received points to be misaligned. Figure 6b shows the effect of random noise. The received points cluster around the ideal location, but are randomly offset from the ideal point by the noise causing undesired signal modulation. The random offsets are a result of the random nature of the noise. If the line impairment is not random but periodic or is a function of the received signal itself (e.g., harmonic distortion) then the distribution of points around the ideal location is not random. Figure 6c illustrates the tangential smearing resulting from phase litter and Figure 6d shows the effect of amplitude distortion (either gain jitter or harmonic distortion). The magnitude of the spreading is directly proportional to the severity of the impairment, and represents the quality of the signal or the likelihood of errors in the received data.

Consult the Eye Pattern Generation Flowchart (Figure 7) for an example of eye pattern generation using the address structure indicated in the eye pattern output schematic.

BIT ERROR RATE

Bit Error Rate (BER) is a measure of the steady-state transfer of data on the communication channel. It is the ratio of the number of received bits in error to the number of transmitted bits. This number increases with decreasing signal-to-noise ratio (SNR). The type of line disturbance and the modem configuration also affect the BER.

The BER Performance Test Set-up (Figure 8) illustrates a method of measuring BER in accordance with CCITT Recommendation V.56. The band-limited noise level should be adjusted by the noise attenuator to give the desired signal to noise ratio for the selected received signal level. The modem transmitter is then caused to send a 511-bit pseudo random test pattern. The signal attenuator is set for a received signal level of -20 dBm to simulate leased line operation or -30 dBm to simulate switched network operation. In leased line testing the line simulator should be 3002-C1 or 3002-C2 conditioned.

Once the receiver has trained (as indicated by a stable eye pattern) the BER test can begin. A large enough number of bits should be sent to cause at least 10 bit errors to be recorded. BER is calculated by dividing the number of bits in error by the number of bits sent.

The impairment source can be adjusted to provide phase-jitter or frequency offset, etc. The BER tests can be repeated in the presence of these line impairments to determine the amount by which performance has degraded. All BER tests should be conducted under steady-state conditions; i.e., after the adaptive equalizer has stabilized.

Transient response can be measured by using very short polling messages and comparing the number of attempts to send a message with the number of error free messages received for a specific signal to noise ratio and line condition. This type of testing is called block-error-rate (BLER) and can be performed using the same test set-up as bit-error-rate.

Data throughput for a specific application is determined by a combination of bit-error-rate and block-error-rate. Depending on system architecture, line conditions, error control method used, etc., an optimum message length can be chosen to maximize throughput. As messages become shorter, block-error-rate becomes the limiting factor. As messages become longer, bit-error-rate becomes the limiting factor.

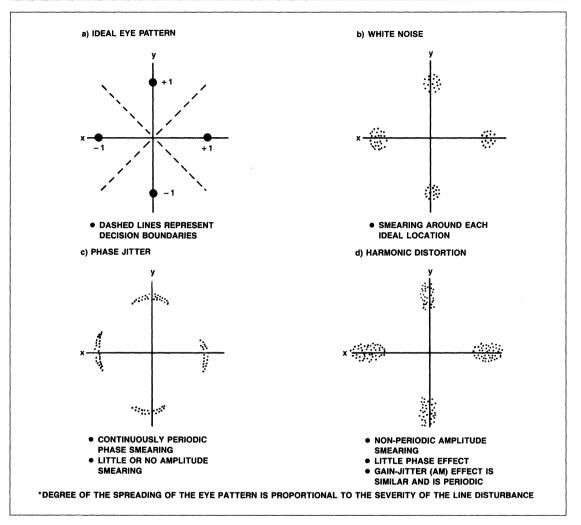


Figure 6. Four Point Eye Patterns

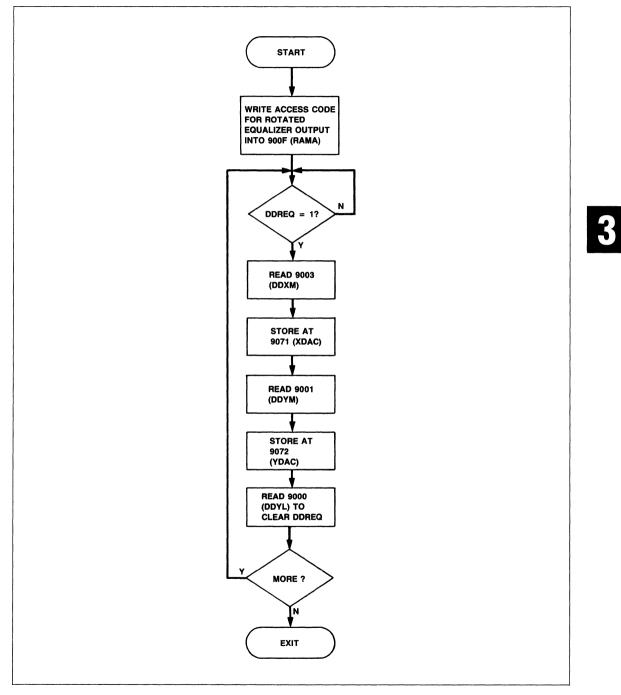


Figure 7. Eye Pattern Generation Flowchart

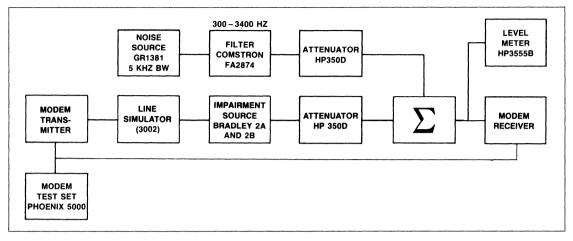


Figure 8. BER Performance Test Set-up

Modem Evaluation Board

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	±5%	200 mA	<300 mA
+ 12 Vdc	± 5%	5 mA	<10 mA
– 12 Vdc	±5%	30 mA	<50 mA

Note: All voltages must have ripple ≤0.1 volts peak-to-peak

Environmental

Parameter	Specification	
Temperature		
Operating	0°C to +60°C (32°F to 140°F)	
Storage	-40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)	
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.	

M	ec	ha	ni	ca	
---	----	----	----	----	--

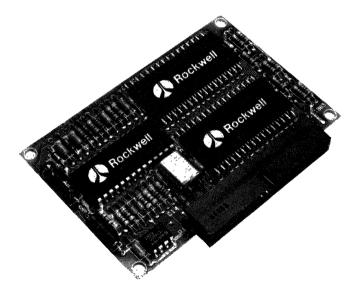
Parameter	Specification		
Board Structure	Single PC board with single right angle header with 40 pins. Burndy FRS 40BS8P or equivalent mating connector.		
Dimensions			
Width	3.937 in. (100 mm)		
Length	2.559 in. (65 mm)		
Height	0.40 in. (10.2 mm)		
Weight (max.)	2.6 oz. (73 g)		
Lead Extrusion (max)	0.100 in. (2.54 mm)		

R24/48MEB Dimensions and Pin Locations

Integral Modems

R96PCJ 9600 bps PC Communication Modem

INTRODUCTION


The Rockwell R96PCJ is a synchronous 9600 bits per second (bps) modem designed for operation over the public switched telephone network through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.29, V.27 ter, V.21, T.4 and the binary signaling capabilities of T.30. The R96PCJ can operate at speeds of 9600, 7200, 4800, 2400 and 300 bps, and includes the V.27 ter short training sequence option. Employing advanced signal processing techniques, the R96PCJ can transmit and receive data even under extremely poor line conditions.

User programmable features allow the modem operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, and serial/parallel host interface simplify system design and allow installation in a small enclosure.

FEATURES

- Ultimate User Compatibility:
- Half-Duplex (2-Wire)
- Programmable Tone Generation and Detection
- Dynamic Range: 47 dBm to 0 dBm
- Diagnostic Capability
- Equalization:
 - Automatic Adaptive
 - Compromise Cable (Selectable)
 - Compromise Link Amplitude (Selectable)
- DTE Interface:
 - Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Small Size: 100 mm × 65 mm (3.94 in. × 2.56 in.)
- · Low Power Consumption: 2W (typical)
- Transmit Output Level: +5 dBm ±1 dB
- TTL and CMOS Compatible

R96PCJ Modem

TECHNICAL SPECIFICATIONS

TRANSMITTER TONAL SIGNALING AND CARRIER FREQUENCIES

T.30 Tonal Signaling Frequencies

Function	Frequency (Hz ±0.01 Hz)
Calling Tone (CNG)	1100
Answer Tone (CED)	2100

Carrier Frequencies

Function	Frequency (Hz ±0.01 Hz)
V 27 ter Carrier	1800
V.29 Carrier	1700

TONE GENERATION

Under control of the host processor, the R96PCJ can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

TONE DETECTION

In the 300 bps FSK receive configuration, the presence of tones at preset frequencies is indicated by bits in the interface memory of the R96PCJ.

SIGNALING AND DATA RATES

Parameter	Specification (±0.01%)
Signaling Rate:	2400 baud
Data Rate:	9600 bps, 7200 bps,
	4800 bps
Signaling Rate:	1600 baud
Date Rate	4800 bps
Signaling Rate:	1200 baud
Data Rate	2400 bps

Signaling/Data Rates

DATA ENCODING

At 2400 baud, the data stream is encoded per CCITT V.29. At 9600 bps, the data stream is divided in groups of four-bits (quadbits) forming a 16-point structure. At 7200 bps, the data stream is divided into three bits (tribits) forming an 8-point structure. At 4800 bps, the data stream is divided into two bits (dibits) forming a 4-point structure.

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27 ter.

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 ter.

9600 bps PC Communication Modem

EQUALIZERS

The R96PCJ provides the following equalization functions which can be used to improve performance when operating over poor lines:

Cable Equalizers — Selectable compromise cable equalizers are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Amplitude Equalizer — The selectable compromise amplitude equalizer may be inserted into the transmit and/or receive paths under control of the transmit amplitude equalizer enable and the receive amplitude equalizer enable bits in the interface memory. The amplitude select bit controls which of two amplitude equalizers is selected.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit for V.27 and V.29 configurations. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If neither the link amplitude nor cable equalizer is enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent.
- 2. 1600 Baud. Square root of 50 percent.
- 3. 2400 Baud. Square root of 20 percent.

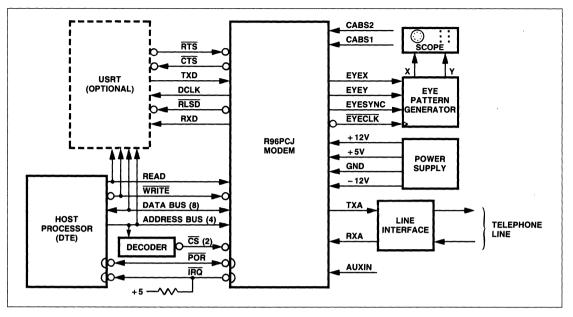
The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The R96PCJ incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 ter or V.29 depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R96PCJ can adapt to received frequency error of up to \pm 10 Hz with less than a 0.2 dB degradation in BER performance.


RECEIVE LEVEL

The receiver circuit of the R96PCJ satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

In the receive state, the R96PCJ provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. DCLK duty cycle is 50% $\pm 1\%$.

9600 bps PC Communication Modem

R96PCJ Functional Interconnect Diagram

Name

INTERFACE CRITERIA

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 40-pin ribbon connector. Software circuits are assigned to specific bits in a 32-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R96PCJ Hardware Circuits table; the table column titled 'Type' refers to designations found in the Hardware Circuit Characteristics. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 6800, or 68000 microprocessors.

R96PCJ	Hardware	Circuits
--------	----------	----------

Name	Туре	Pin No.	Description
A. OVERHI	EAD:		
Ground + 5 volts + 12 volts - 12 volts POR	GND PWR PWR PWR I/OA	14, 39 3, 4 26 37 36	Power Supply Return +5 Vdc Supply +12 Vdc Supply -12 Vdc Supply Power-on-reset

Hame	Type	Fin NO.	Description
B. MICROP	ROCES	SOR INTE	RFACE:
D7 D6 D5 D4 D3 D2 D1 D0	I/OA I/OA I/OA I/OA I/OA I/OA I/OA	7 5 9 31 15 28 23 29	Data Bus (8 Bits)
RS3 RS2 RS1 RS0	IA IA IA IA	30 8 27 10	Register Select (4 Bits) Select Reg. 0 – F
CS0 CS1 READ WRITE IRQ	IA IA IA OB	6 18 1 2 32	Chip Select Sample Rate Device Chip Select Baud Rate Device Read Enable Write Enable Interrupt Request
C. V.24 IN	TERFAC	CE:	
DCLK RTS CTS TXD RXD RLSD	OC IB OC IB OC OC	13 19 17 20 21 16	Data Clock Request-to-Send Clear-to-Send Transmitter Data Receiver Data Received Line Signal Detector
D. CABLE	EQUAL	IZER:	
CABS1 CABS2	IC IC	33 34	Cable Select 1 Cable Select 2

R96PCJ Hardware Circuits (Cont.)

Description

Type Pin No.

TRANSMIT LEVEL

The transmitter output level is fixed at +5 dBm \pm 1 dB. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide -1 dBm \pm 1 dB to the load.

TRANSMIT TIMING

In the transmit state, the R96PCJ provides a Data Clock (DCLK) output with the following characteristics:

- Frequency. Selected data rate of 9600, 7200, 4800, 2400, or 300 Hz (±0.01%).
- 2. Duty Cycle. 50 ±1%.

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

TURN-ON SEQUENCE

A total of 14 selectable turn-on sequences can be generated as defined in the following table:

No.	V.29	V.27 ter	CTS ² Response Time (milliseconds)	Comments				
1	9600 bps		253					
2	7200 bps		253					
3	4800 bps		253					
4		4800 bps long	708					
5		2400 bps long	943					
6		4800 bps short	50					
7		2400 bps short	67					
8	9600 bps		438	Preceded by 1				
9	7200 bps		438	Echo Protector				
10	4800 bps		438	Tone for lines				
11		4800 bps long	913	using echo				
12		2400 bps long	1148	suppressors				
13		4800 bps short	255					
14		2400 bps short	272					
.	tection against talker echo.							
2	V.21 (300 b	ops FSK) RTS-CT	S delay is 14 ms o	or less.				

Turn-On Sequences

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy. For V.29, the turn-off sequence consists of approximately 5 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy. In V.21 the transmitter turns off within 7 ms after $\overline{\text{RTS}}$ goes false.

CLAMPING

The following clamps are provided with the R96PCJ:

- 1. Received Data (RXD). RXD is clamped to a constant mark (1) whenever RLSD is off.
- 2. Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) during the time when RTS is on.

3. *Extended Squeich*. Optionally, RLSD remains clamped off for 130 ms after the turn-off sequence.

9600 bps PC Communication Modem

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-toon transition of $\overline{\text{CTS}}$ is dictated by the length of the training sequence. Response time is 253 ms for V.29, 708 ms for V.27 ter at 4800 bps, and 943 ms for V.27 ter at 2400 bps. In V.21 $\overline{\text{CTS}}$ turns on in 14 ms or less.

The time between the on-to-off transition of RTS and the on-tooff transition of CTS in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

For either V.27 ter or V.29, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms and for V.29 is 30 \pm 9 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

3

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Two threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 48 dBm (RLSD off)
- 2. Greater than 47 dBm (RLSD on) Less than - 52 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The R96PCJ is capable of being operated in either a serial or a parallel mode of operation.

SERIAL MODE

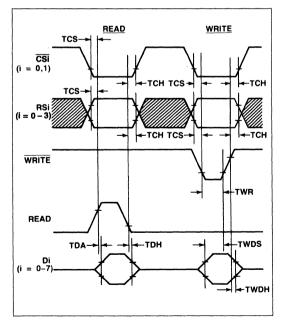
The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the R96PCJ Functional Interconnect Diagram) illustrates this capability.

PARALLEL MODE

The R96PCJ has the capability of transferring channel data eight bits at a time via the microprocessor bus.

MODE SELECTION

Selection of either the serial or parallel mode of operation is by means of a control bit. To enable the parallel mode, the control bit must be set to a 1. The modern automatically defaults to the serial mode at power-on. In either mode the R96PCJ is configured by the host processor via the microprocessor bus.


Name Type Pin No. Description E. ANALOG SIGNALS: TXA AA 38 Transmitter Analog Output RXA AB Receiver Analog Input 40 AUXIN AC 35 Auxiliary Analog Input F. DIAGNOSTIC: EYEX oc Eye Pattern Data - X Axis 24 Eve Pattern Data - Y Axis EYEY oc 25 EYECLK OA 11 Eye Pattern Clock EYESYNC OA 12 Eye Pattern Synchronizing Signal

R96PCJ Hardware Circuits (Cont.)

Eye Pattern Generation

The four hardware diagnostic circuits, identified in the preceding table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words obtained from registers 1:3 and 1:1 (see RAM Data Access) are shifted out most significant bit first clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Microprocessor Timing

Microprocessor Interface Timing Diagram

9600 bps PC Communication Modem

Critical Timing Requirements

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	TCS	30		ns
Data Access time after Read	TDA	-	140	ns
Data hold time after Read	TDH	10	50	ns
CSi, RSi hold time after Read or Write	тсн	10	_	ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	-	ns
Write strobe pulse width	TWR	75	-	ns

Cable Equalizer Selection

Cable Equalizer Selection

CABS 2	CABS 1	Length of 0.4mm Diameter Cable
0	0	0.0
0	1	1.8 km
1	0	3.6 km
1	1	7.2 km

Digital Interface Characteristics

The digital interface characteristics are listed in the table on the following page.

Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output is a low impedance operational amplifier output. In order to match to 600 ohms, an external 604 ohm series resistor is required.
RXA	AB	The receiver input impedance is 60K ohms ±23%.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is $-0.4 \text{ dB} \pm 1 \text{ dB}.$

SOFTWARE CIRCUITS

The R96PCJ comprises two signal processor chips. Each chip contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data from or write data to these registers. The registers are referred to as interface memory. Registers in chip 0 update at the modem sample rate (9600 bps). Registers in chip 1 update at the selected baud rate.

9600 bps PC Communication Modem

						itput Type				
Symbol	Parameter	Units	IA	IB	IC	OA	ОВ	ос	I/O A	I/O B
V _{IH}	Input Voltage, High	v	2.0 min.	2 0 min	2 0 min				2 0 min.	5.25 max. 2.0 min.
V _{IL}	Input Voltage, Low	V	0.8 max.	0.8 max	0 8 max.				0 8 max.	0.8 max
V _{OH}	Output Voltage, High	v				2.4 min. ¹			2.4 min 1	2 4 min ³
VOL	Output Voltage, Low	V				0.4 max. ²	0.4 max. ²	0 4 max. ²	0.4 max. ²	0.4 max.5
IIN	Input Current, Leakage	μA	±2.5 max						± 12 5 max.4	
I _{OH}	Output Current, High	mA				-0.1 max.				
IOL	Output Current, Low	mA				16 max	1.6 max.	1.6 max.		
۱Ľ	Output Current, Leakage	μA					± 10 max.			
IPU	Pull-up Current	μA		– 240 max	– 240 max.			- 240 max.		– 260 max.
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min.
CL	Capacitive Load	pF	5	5	20				10	40
C	Capacitive Drive	pF				100	100	100	100	100
5	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open Drain	3 State	Open-Drain
				w/Pull-up	w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes										
1 lioa	$d = -100 \ \mu A$		5. I load	1 = 0.36 mA						
2. I loa	d = 1.6 mA									
3. I loa	$d = -40 \ \mu A$									
4. V _{IN}	= 0.4 to 2.4 Vdc, V _{CC} $= 5$	5.25 Vd	с							

Digital Interface Characteristics

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0 or 1), the register by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a 1.

Status/Control Bits

The operation of the R96PCJ is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Bits designated by an 'X' are "Don't Care" inputs that can be set to either 1 or 0. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits designated by an '—' are reserved for modem use only and must not be changed by the host.

RAM Data Access

The R96PCJ provides the user with access to much of the data stored in the modem's memories. This data is a useful tool in performing certain diagnostic functions.

Two RAM access registers are provided in the interface memory to allow user access to various RAM locations within the modem. The access code stored in 0:F selects the source of data for the RAM data registers in chip 0 (0:0 through 0:3). Similarly, the access code stored in 1:F selects the source of data for registers 1:0 through 1:3. Reading is performed by storing the desired access code in register 0:F (or 1:F), performing a read of 0:0 (or 1:0) to reset 0:E:0 (or 1:E:0), then waiting for 0:E:0 (or 1:E:0) to return to a one. The data may now be read from 0:3 through 0:0 (or 1:3–1:0).

Data in registers 1:3 and 1:1 are presented serially on EYEX and EYEY, respectively.

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem.

Node	Function	Access	Chip	Reg. No.
1	Received Signal Samples	40	0	2,3
2	Demodulator Output	42	0	0,1,2,3
3	Low Pass Filter Output	54	0	0,1,2,3
4	Average Energy	5C	0	2,3
5	AGC Gain Word	01	0	2,3
6	Equalizer Input	40	1	0,1,2,3
7	Equalizer Tap Coefficients	01-20	1	0,1,2,3
8	Unrotated Equalizer Output	61	1	0,1,2,3
9	Rotated Equalizer Output	22	1	0,1,2,3
	(Received Point-Eye Pattern)			
10	Decision Points (Ideal)	62	1	0,1,2,3
11	Error Vector	63	1	0,1,2,3
12	Rotation Angle	00	1	0,1
13	Frequency Correction	A8	1	2,3
14	EQM	AB	1	,2,3

R96PCJ RAM Access Codes

R96PCJ Interface Memory Chip 0 (CSO)								
Bit								
	7	6	5	4	3	2	1	0
Register								
F	PDM			RA	M ACCE	SS S		
E	IA0		—		SETUP	IE0	-	MDAO
D	—		—	_	_		_	_
C		—	_	_	_	-		-
В	_	—	-	_				—
A	—	_	_	—		_	_	-
9	_	-	_	_				-
8		—	_	_		_	—	-
7	_	—	-	_		_	_	—
6	-	-		_	_	_		_
5	RTS	TDIS	х	Х	EPT	SQEXT	T2	LRTH
4		co	NFIGL	JRATIC	DN			
3		RA	m dat	A XSM	I; FREQI	N		
2		RA	M DAT	A XSL	; FREQL			
1		RA	m dat	A YSM	1			
0		RA	M DAT	A YSL	; TRANS	CEIVER	Data	
Register								
	7	6	5	4	3	2	1	0
Bit								
X = User available (not used by modem) — = Reserved (modem use only)								

9600 bps PC Communication Modem

R96PCJ Interface Memory Chip 1 (CS1)

Bit									
	7	6	5	4	3	2	1	0	
Register									
F			F	RAM A	CCES	SВ			
E	IA1	_	_	_		IE1		MDA1	
D	х	TLE	RLE	J3L	х	Χ.	х		
С	х	х	х	х	х	х	х	X	
В	FR3	FR2	FR1	-	-	_	-	-	
A	-	_	—	-	-	_	-	-	
9	-	_	_	-	_	-		-	
8	-	-	—	-	—	_	—	-	
7	_	PNDET	_	-		_	_	CDET	
6	_	-	—	—		_			
5	-	FED	-	-	-	-	-	_	
4	-	_		-	_	P2DET	-		
3	RAM DATA XBM								
2	RAM DATA XBL								
1	RAM DATA YBM								
0	RAM DATA YBL								
Register									
	7	6	5	4	3	2	1	0	
Bit								1	

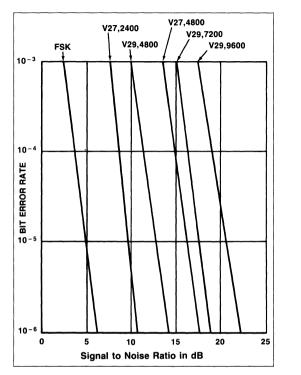
X = User available (not used by modern).

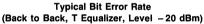
-- = Reserved (modem use only).

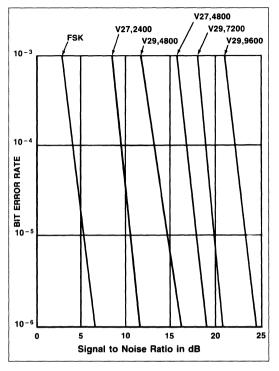
9600 bps PC Communication Modem

	·····	·····	R96PCJ Interfac	e wemory	Definitio	ons				
Mnemonic	Name	Memory Location								
CDET	Carrier Detector	1.70	The zero state of $\overrightarrow{\text{CDET}}$ indicates passband energy is being detected, and a training sequence is not present. $\overrightarrow{\text{CDET}}$ goes to zero at the start of the data state, and returns to one at the end of the received signal $\overrightarrow{\text{CDET}}$ activates up to 1 baud time before $\overrightarrow{\text{RLSD}}$ and deactivates within 2 baud times after $\overrightarrow{\text{RLSD}}$.							
(None)	Configuration	0.4:0-7	The host processor configures the R96PCJ by writing a control code into the configuration register in the interface memory space. (See SETUP.)							ation
			Configuration Control	Codes						
			Control codes for the for	our available	R96PCJ	configurati	ons are:			
			Cor	nfiguration		Co	onfiguratio	on Code (i	HEX)	
			V.29	9600				14		
				7200				12		
				4800				11		
				4800 Long				0A		
				2400 Long				09		
				4800 Short				4A 49		
				2400 Short Transmit				49 80		
			FSK	riansmit				20		
			Configuration Definition	ons						
			Definitions for the four		6PCJ con	figurations	are:			
			1. V.29. When any of th in CCITT Recommer		gurations	has been	selected,	the moder	n operates	as specified
			 V.27. When any of the in CCITT Recomment FSK. The modem op characteristics of the interval of the in	ndation V.27 erates as a	ter. CCITT T.3	0 compatil	ble 300 bp	s FSK mo		·
			 Tone Transmit. In thi at a single frequency contain the frequenc The least significant represents 0.146486 H Hz ±0.01%. 	y specified b y code. The bits are spe	y the user most sign cified in th	r. Two regis ifficant bits ne FREQL	aters in the are speci register (0	e host inter fied in the 0:2). The le	rface mem FREQM r east signifi	ory space egister (0:3). cant bit
EPT	Echo Protector Tone	0.5:3	If EPT is a one, an unmodulated carrier is transmitted for 185 ms followed by 20 ms of no transmitted energy at the beginning of the training sequence. This option is available in both the V.27 and V.29 configurations, although it is not specified in the CCITT V.29 Recommendation.							
ED	Fast Energy Detector	1:5.6	The zero state of FED indicates energy is present above the receiver threshold in the passband.							
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7	The host processor con the FREQL and FREQN	, ,						ata word to
			FREQM Register (0:3)							
			Bit: 7	6	5	4	3	2	1	0
			Data Word: 215	214	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	28
			FREQL Register (0:2)							
			Bit: 7	6	5	4	3	2	-	
			01.		5	4	0	2	1	0

3-87

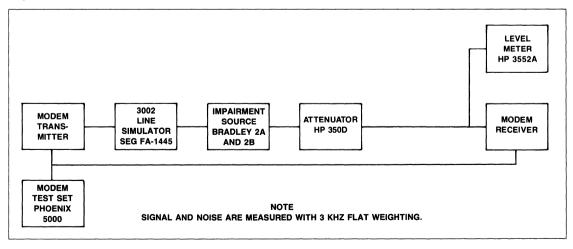

3


9600 bps PC Communication Modem


Memory Mnemonic Name Location Description									
			The frequency number $F = (0.146486) (N) Ha$	er (N) determines the fr $\pm 0.01\%$.	equency (F) as foll	ows:			
			Hexadecimal frequent	cy numbers (FREQM, F	REQL) for commo	nly generated tones are given	I		
				Frequency (Hz)	FREQM	FREQL			
				462	0C	52			
				1100	1D	55			
				1650 1850	2C 31	00 55			
				2100	38	00			
FR1 – FR3	Frequency 1,2,3	1:B:5,6,7	The one state of FR1, FR2 or FR3 indicates reception of the respective tonal frequency modem is configured for FSK. The default frequencies for FR1, FR2 and FR3 are:						
				Bit	Frequency	(Hz)			
				FR1	2100				
				FR2	1100				
				FR3	462				
iA1	Interrupt Active (One)	1:E:7	IA1 is a one when Ch	ip 1 is driving \overline{IRQ} to z	ero volts.				
IAO	Interrupt Active (Zero)	0:E:7	IAO is a one when Ch	ip 0 is driving IRQ to z	ero volts.				
IE0	Interrupt Enable (Zero)	0:E:2	The one state of IE0 causes the $\overline{\text{IRQ}}$ output to be low when the DA0 bit is a one.						
IE1	Interrupt Enable (One)	1:E:2	The one state of IE1 causes the \overline{IRQ} output to be low when the DA1 bit is a one.						
J3L	Japanese 3 Link	1:D:4	The one state of J3L selects this standard for link amplitude equalizer. The zero state of J3L selects U.S. survey long.						
LRTH	Lower Receive Threshold	0:5:0	The one state of LRTH lowers the receiver turn-on threshold from -43 dBm to -47 dBm. (See SETUP.)						
MDA0	Modem Data Available (Zero)	0:E:0	MDA0 goes to one when the modem reads or writes register 0:0. MDA0 goes to zero when the host processor reads or writes register 0:0. MDA0 is used for parallel mode as well as for diagnostic data retrieval.						
MDA1	Modem Data Available (One)	1:E:0	MDA1 goes to one when the modem writes register 1:0. MDA1 goes to zero when the host processor reads register 1:0.						
PDM	Parallel Data Mode	0:F:7	The one state of PDM places the modem in the parallel mode and inhibits the reading of Chip 0 diagnostic data.						
PNDET	Period 'N' Detector	1:7:6	The zero state of PNE end of the PN seque		uence has been de	etected. PNDET sets to a one a	at the		
P2DET	Period '2' Detector	1:4:2	The zero state of P2DET indicates a P2 sequence has been detected. P2DET sets to a one at the start of the PN sequence.						
(None)	RAM Access B	1:F:0-7	Contains the RAM access code used in reading or writing RAM locations in Chip 1 (baud rate device).						
(None)	RAM Access S	0:F:0-6	Contains the RAM ac	cess code used in read	ding RAM locations	s in Chip 0 (sample rate devic	e).		
(None)	RAM Data XBL	1:2:0-7	Least significant byte	of 16-bit word x used i	n reading RAM loc	ations in Chip 1 (baud rate de	evice)		
(None)	RAM Data XBM	1:3:0-7	Most significant byte	Most significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate device).					

R96PCJ Interface Memory Definitions (continued)

9600 bps PC Communication Modem



Typical Bit Error Rate (Unconditioned 3002 Line, T Equalizer, Level – 20 dBm)

The BER performance test set-up is shown in the following diagram:

BER Performance Test Set-up

3

9600 bps PC Communication Modem

Mnemonic	Name	Memory Location				Description				
(None)	RAM Data XSL	0:2:0-7	Least significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).							
(None)	RAM Data XSM	0:3:0-7	Most significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).							
(None)	RAM Data YBL	1:0:0-7	Least significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device). (See DA1.)							
(None)	RAM Data YBM	1:1:0-7	Most significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device).							
(None)	RAM Data YSL	0:0:0-7	device). Shar	ed by pa		r used in reading RAM locations in Chip 0 (sample rate e for presenting channel data to the host microprocessor				
(None)	RAM Data YSM	0:1:0-7	Most significa device).	int byte o	of 16-bit word y	used in reading RAM locations in Chip 0 (sample rate				
RLE	Receiver Lınk Equalizer	1:D:5	The one state of RLE enables the link amplitude equalizer in the receiver.							
RTS	Request-to-Send	0:5:7	The one state of RTS begins a transmit sequence. The modem will continue to transmit until RTS is turned off, and the turn-off sequence has been completed. RTS parallels the operation of the hardware RTS control input. These inputs are "ORed" by the modem.							
SETUP	Setup	0:E:3	register, and returns to zer	o assum o when a	e the options s acted on by the	modem to reconfigure to the control word in the configuration pecified for equalizer (0:5:1) and threshold (0:5:0). SETUP modem. The time required for the SETUP bit to cause a of the modem. The following table lists worst case delays.				
			Current State	V.21	High Speed Receiver	High Speed Transmitter				
			DELAY	14 ms	2 BAUD	2 BAUD + TURNOFF Sequence + Training (if applicable) + SQUELCH (if applicable)				
SQEXT	Squelch Extend	0:5:2	The one state of SQEXT inhibits reception of signals for 130 ms after the turn-off sequence.							
TDIS	Training Disable	0:5:6	If TDIS is a one in the receive state, the modem is prevented from entering the training phase. If TDIS is a one prior to $\overline{\text{RTS}}$ going on, the generation of a training sequence is prevented at the start of transmission.							
TLE	Transmitter Link Equalizer	1:D:6	The one state of TLE enables the link amplitude equalizer in the transmitter.							
(None)	Transceiver Data	0:0·0–7	In receive parallel data mode, the modem presents eight bits of channel data in register 0:0 for reading by the host microprocessor. After the eight bits have been accumulated in register 0:C they are transferred to 0:0 and bit 0:E:0 goes to a one. When the host reads 0:0, bit 0:E:0 resets to a zero. The first bit of received data is not necessarily located in bit 0:0:0. The host must frame the received data by searching for message sync characters. Bit 0:E:0 sets at one eighth the bit rate in parallel data mode rather than at the sample rate (9600 Hz) as it does when reading RAM locations.							
			reset to a 0.	When the	e modem trans	ost stores data at location 0:0. This action causes bit 0:E:0 to fers the data from 0:0 to 0:2 bit 0:E:0 sets to a 1. The data is				
			0:C from MS			least significant bit first. Received data is shifted into register				

R96PCJ Interface Memory Definitions (continued)

POWER-ON INITIALIZATION

When power is applied to the R96PCJ, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (POR) remains low during this period. Approximately 10 ms after the low-to-high transition of \overrightarrow{POR} , the modem is ready to be configured, and \overrightarrow{RTS} may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 ms, the \overrightarrow{POR} cycle is repeated.

At POR time the modem defaults to the following configuration: V.29/9600 bps, T/2 equalizer, serial mode, training enabled, echo protector tone on, no extended squelch, higher receive threshold, interrupts disabled, no link equalizer, and RAM access codes 00.

 \overrightarrow{POR} can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ s or longer applied to the \overrightarrow{POR} pin causes the modem to reset. The modem is ready to be configured 10 ms after the low active pulse is removed from \overrightarrow{POR} .

PERFORMANCE

Whether functioning as a V.27 ter or V.29 type modem, the R96PCJ provides the user with unexcelled high performance.

TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT

9600 bps PC Communication Modem

Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

TYPICAL PHASE JITTER

At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps (V.27 ter), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

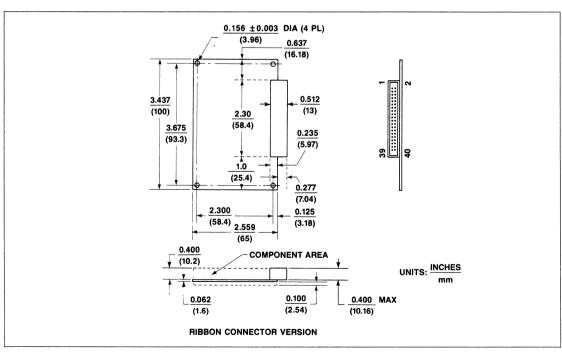
At 7200 bps (V.29), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 25 dB in the presence of 12° peak-to-peak phase jitter at 300 Hz.

At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.

An example of the BER performance capabilities is given in the following diagrams:

R96PCJ

9600 bps PC Communication Modem


GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	±5%	400 mA	<500 mA
+ 12 Vdc	± 5%	5 mA	<10 mA
– 12 Vdc	±5%	30 mA	<50 mA

-					
En	IVII	'n	۱m	er	ntal

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	-40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less

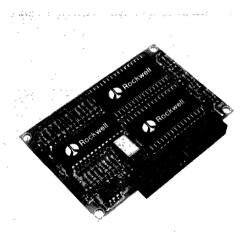
Mechanical					
Parameter	Specification				
Board Structure	Board Structure Single PC board with single right angle header with 40 pins. Burndy FRS 40BS8P or equivalent mating connector.				
Dimensions					
Width	3.937 in. (100 mm)				
Length	2.559 in. (65 mm)				
Height	0.40 in. (10.2 mm)				
Weight (max)	2.6 oz. (73 g)				
Lead Extrusion (max)	0.100 in. (2.54 mm)				

R96PCJ Dimensions and Pin Locations

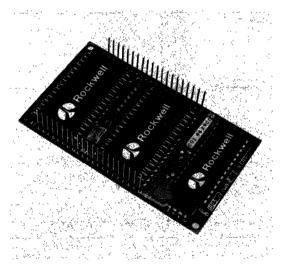
Integral Modems

R96F 9600 bps Facsimile Modem

INTRODUCTION


The Rockwell R96F is a synchronous 9600 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.29, V.27 ter, T.30, T.4 and T.3. The R96F can operate at speeds of 9600, 7200, 4800, 2400 and 300 bps. Employing advanced signal processing techniques, the R96F can transmit and receive data even under extremely poor line conditions.


The R96F is designed for use in Group 3 facsimile machines and is also compatible with Group 2 machines. User programmable features allow the modern operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, serial/parallel host interface, simplify system design. Two module versions are available: one with a ribbon connector for cable connection to a host, and one with dual in-line pins for direct connection onto a host module.

FEATURES

- Compatibility:
- CCITT V.29, V.27 ter, T.30, V.21 Channel 2, T.4, T.3
- Group 3 and Group 2 Facsimile Half-Duplex (2-Wire)
- Hall-Duplex (2-w
- Tone Detection
- Programmable Tone Generation and Detection
- Dynamic Range: -47 dBm to 0 dBm
- Diagnostic Capability
- Equalization:
 - Automatic Adaptive
 - Compromise Cable (Selectable)
 - Compromise Link Amplitude (Selectable)
- DTE Interface:
- Microprocessor Bus
- CCITT V.24 (RS-232-C Compatible)
- Small Size:
 - Ribbon cable connector version
 100 mm × 65 mm (3.94 in. × 2.56 in.)
 - Dual in-line pin (DIP) connector version 88.9 mm × 50.8 mm (3.5 in. × 2.0 in.)
- Low Power Consumption: 2 W (Typical)
- Transmit Output Level: +5 dBm ±1 dB
- TTL and CMOS Compatible

R96F Ribbon Connector Version

R96F DIP Connector Version

Document No. 29200N06

Data Sheet 3-93 Order No. MD06 Rev. 5, February 1987

TECHNICAL SPECIFICATIONS

TRANSMITTER TONAL SIGNALING AND CARRIER FREQUENCIES

T.30 Tonal Signaling Frequencies

Function	Frequency (Hz ±0.01%)
Calling Tone (CNG)	1100
Answer Tone (CED)	2100
Group 2 Identification (C12)	1850
Group 2 Command (GC2)	2100
Group 2 Confirmation (CFR2, MCF2)	1650
Line Conditioning Signal (LCS)	1100
End of Message (EOM)	1100
Procedure Interrupt (PIS)	462

Carrier Frequencies

Function	Frequency (Hz ±0.01%)
T.3 Carrier (Group 2)	2100
V.27 ter Carrier	1800
V.29 Carrier	1700

TONE GENERATION

Under control of the host processor, the modem can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

TONE DETECTION

In the 300 bps FSK receive configuration, the presence of tones at preset frequencies is indicated by bits in the interface memory of the modem.

SIGNALING AND DATA RATES

Signaling/Data Rates

Parameter	Specification (±0.01%)
Signaling Rate: Data Rate:	2400 baud 9600 bps, 7200 bps, 4800 bps
Signaling Rate:	1600 baud
Date Rate:	4800 bps
Signaling Rate:	1200 baud
Data Rate:	2400 bps

DATA ENCODING

At 2400 baud, the data stream is encoded per CCITT V.29. At 9600 bps, the data stream is divided in groups of four-bits (quadbits) forming a 16-point structure. At 7200 bps, the data stream is divided into three bits (tribits) forming an 8-point structure. At 4800 bps, the data stream is divided into two bits (dibits) forming a 4-point structure.

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27 ter.

9600 bps Facsimile Modem

At 1200 baud, the 2400 bps data stream is encoded into dibits per CCITT V.27 ter.

EQUALIZERS

The modem provides the following equalization functions which can be used to improve performance when operating over poor lines:

Cable Equalizers — Selectable compromise cable equalizers are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Amplitude Equalizer — The selectable compromise amplitude equalizer may be inserted into the transmit and/or receive paths under control of the transmit amplitude equalizer enable and the receive amplitude equalizer enable bits in the interface memory. The amplitude select bit controls which of two amplitude equalizers is selected.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit for V.27 and V.29 configurations. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

If neither the link amplitude nor cable equalizer is enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent.
- 2. 1600 Baud. Square root of 50 percent.
- 3. 2400 Baud. Square root of 20 percent.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The modem incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 ter or V.29 depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The modem receiver circuit can adapt to received frequency error of up to ± 10 Hz with less than a 0.2 dB degradation in BER performance. Group 2 carrier recovery capture range is 2100 ± 30 Hz. The Group 2 receiver operates properly when the carrier is varied by ± 16 Hz at a 0.1 Hz per second rate.

RECEIVE LEVEL

The modem receiver circuit satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

In the receive state, the modem provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. DCLK duty cycle is 50% $\pm 1\%$.

9600 bps Facsimile Modem

TRANSMIT LEVEL

The transmitter output level is fixed at +5 dBm \pm 1 dB. When driving a 600 ohm load the TXA output requires a 600 ohm series resistor to provide -1 dBm \pm 1 dB to the load.

TRANSMIT TIMING

In the transmit state, the modem provides a Data Clock (DCLK) output with the following characteristics:

- Frequency. Selected data rate of 9600, 7200, 4800, 2400, or 300 Hz (±0.01%). In Group 2, DCLK tracks an external 10368 Hz clock. If the external clock input (XCLK) is grounded, the Group 2 DCLK is 10372.7 Hz ±0.01%.
- 2. Duty Cycle. 50 ±1%

Transmit Data (TXD) must be stable during the 1 microsecond period immediately preceding and the 1 microsecond period immediately following the rising edge of DCLK.

TURN-ON SEQUENCE

A total of ten selectable turn-on sequences can be generated by the modem, as defined in the following table:

_	RTS-CTS Turn-On Time			
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled		
V.29	253 ms	438 ms		
V.27 4800 bps	708 ms	913 ms		
V.27 2400 bps	943 ms	1148 ms		
V.21 300 bps	≤14 ms	≤14 ms		
Group 2	≤400 μs	≤400 μs		

Turn-On Sequences

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy. For V.29, the turn-off sequence consists of approximately 5 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy. In V.21 the transmitter turns off within 7 ms after RTS goes false. In Group 2 the transmitter turns off within 200 μ s after RTS goes false.

CLAMPING

The following clamps are provided with the modem:

- Received Data (RXD). RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) during the time when RTS is on.
- Extended Squelch. Optionally, RLSD remains clamped off for 130 ms after the turn-off sequence.

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-to-on transition of $\overline{\text{CTS}}$ is dictated by the length of the training

sequence. Response time is 253 ms for V.29, 708 ms for V.27 ter at 4800 bps, and 943 ms for V.27 ter at 2400 bps. In V.21 $\overline{\text{CTS}}$ turns on in 14 ms or less. In Group 2 $\overline{\text{CTS}}$ turns on in 400 μs or less.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-tooff transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

For either V.27 ter or V.29, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms and for V.29 is 30 \pm 9 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Two threshold options are provided:

- 1. Greater than 43 dBm (RLSD on) Less than - 48 dBm (RLSD off)
- Greater than 47 dBm (RLSD on) Less than - 52 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

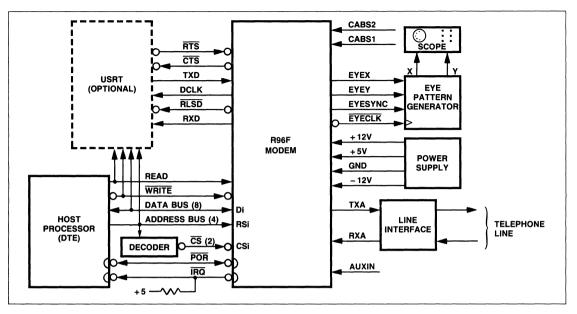
A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The modem operates in either a serial or a parallel mode.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the Modem Functional Interconnect Diagram) illustrates this capability.


PARALLEL MODE

The modem can transfer channel data eight bits at a time via the microprocessor bus.

MODE SELECTION

Selection of either the serial or parallel mode of operation is by means of a control bit. To enable the parallel mode, the control bit must be set to a 1. The modern automatically defaults to the serial mode at power-on. In either mode the modern is configured by the host processor via the microprocessor bus.

9600 bps Facsimile Modem

Modem Functional Interconnect Diagram

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 40-pin ribbon connector or in a 41-pin dual in-line pin connector. Software circuits are assigned to specific bits in a 32-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the Modem Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital or Analog Interface Characteristics.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0–RS3), data (D0–D7), control (CS, READ and WRITE) and interrupt (IRQ) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Requirements table.) With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

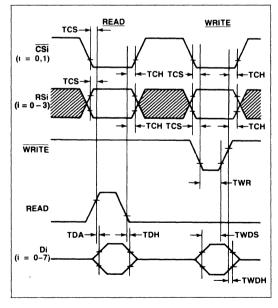
V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

In applications where the modem is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.


To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

Modem Hardware Circuits (Cont.)

Name	Туре	RC Pin No.	DIP Pin No.	Description				
E. ANALO	E. ANALOG SIGNALS:							
TXA RXA AUXIN	AA AB AC	38 40 35	23 22 20	Transmitter Analog Output Receiver Analog Input Auxiliary Analog Input				
F. DIAGNOSTIC:								
EYEY OC 25 4 EYECLK OA 11		35 40 36 37	Eye Pattern Data — X Axis Eye Pattern Data — Y Axis Eye Pattern Clock Eye Pattern Synchronizing Signal					
RC = Ribbon connector DIP = Dual in-line pins								

Diagnostic

The four hardware diagnostic circuits, identified in the preceding table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words are shifted out most significant bit first, clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Microprocessor Interface Timing Diagram

9600 bps Facsimile Modem

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	TCS	30		ns
Data Access time after Read	TDA	-	140	ns
Data hold time after Read	TDH	10	50	ns
CSI, RSi hold time after Read or Write	тсн	10	_	ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	-	ns
Write strobe pulse width	TWR	75	-	ns

Critical Timing Requirements

Analog Interface Characteristics

Name	Туре	Characteristics	
ТХА	AA	The transmitter output is a low impedance operational amplifier output. In order to match to 600 ohms, an external 604 ohm series resistor is required.	
RXA	AB	The receiver input impedance is $60K$ ohms $\pm 23\%$.	
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interfacing with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is -0.4 dB ± 1 dB.	

SOFTWARE CIRCUITS

The modem includes two signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 0 update at the modem sample rate (9600 bps). Registers in chip 1 update at the selected baud rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0 or 1), the register by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a 1.

Status/Control Bits

Modem operation is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and-control bits are defined in the Interface Memory table. Bits designated by a '--' are reserved for modem use only and must not be changed by the host.

Cable Equalizer Selection					
CABS2 CABS1 Length of 0.4mm Diameter Cable					
0	0	0.0			
0	1	1.8 km			
1	0	3.6 km			
1	1	7.2 km			

Analog Signals

Three analog signals provide the interface point for telephone company audio circuits and host audio inputs: TXA, RXA, and AUXIN.

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the PSTN. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm $\pm 1\%$ resistor is satisfactory.

Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may be back-to-back zener diodes across the transformer or a varistor across the transformer.

AUXIN provides a means of inserting audio signals into the modem output stage. Because this input is summed with the transmitter output prior to the transmitter low pass filter and compromise equalizers, the AUXIN signal is sampled by a compensated sample-and-hold circuit at a rate of 9600 samples-persecond. Any signal above 4800 Hz on the AUXIN line will be aliased back into the passband as noise. One application for AUXIN is to inject dual-tone multifrequency (DTMF) touch-tone signals for dialing, however, the source of these tones must be well filtered to eliminate components above 4800 Hz. The input impedance of AUXIN is 1K ohm. The gain from AUXIN to TXA is -0.4 dB ± 1 dB.

Overhead

Except for the power-on-reset signal POR, the overhead signals are dc power or ground points. When the modem is initially energized a signal called Power-On-Reset (POR) causes the modem to assume a valid operational state. The modem drives the POR pin to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of the POR pin, the modem is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below +3.5V for more than 30 ms, or an external device drives the POR pin low for at least 3 μ s. When an external low input is applied to the POR pin, the modem is ready for normal use approximately 10 ms after the low input is removed. The

9600 bps Facsimile Modem

POR pin is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence requires 50 ms to 350 ms to complete. The POR sequence leaves the modem configures as follows:

- V.29/9600 bps
- T/2 equalizer
- Serial mode
- Training enabled
- Echo protector tone enabled
- No extended squelch
- Higher receive threshold
- Interrupts disabled
- No link equalizer
- RAM access codes 00

This configuration is suitable for performing high speed data transfer on the PSTN with the serial data port selected as the input and output point for data terminal equipment (DTE).

		RC	DIP					
Name	Туре	Pin No.	Pin No.	Description				
A. OVER	HEAD							
Ground	GND	14, 39	17,18,	Power Supply Return				
			41*					
+5 volts	PWR	3, 4	33,34	+ 5 volt supply				
+ 12 volts	PWR	26	21	+ 12 volt supply				
- 12 volts	PWR	37	19	- 12 volt supply				
POR	I/OB	36	39	Power-on-reset				
B. MICROPROCESSOR INTERFACE:								
D7	I/OA	7	9	h				
D6	I/OA	5	8					
D5	I/OA	9	2					
D4	I/OA	31	3	Data Bug (8 Bita)				
D3	I/OA	15	4	Data Bus (8 Bits)				
D2	I/OA	28	5					
D1 ,	I/OA	23	6					
D0	I/OA	29	7	L				
RS3	IA	30	13	ר				
RS2	IA	8	14	Register Select (4 Bits)				
RS1	IA	27	15	Select Reg. 0 - F				
RS0	IA	10	16	J				
CS0	IA	6	11	Chip Select Sample Rate Device				
CS1	IA	18	38	Chip Select Baud Rate Device				
READ	IA	1	10	Read Enable				
WRITE	IA	2	12	Write Enable				
IRQ	OB	32	1	Interrupt Request				
C. V.24 I	NTERI	ACE:						
DCLK	oc	13	30	Data Clock				
XCLK	IB	22	31	External Clock for Group 2				
RTS	IB	19	32	Request-to-Send				
CTS	oc	17	28	Clear-to-Send				
TXD	IB	20	27	Transmitter Data				
RXD	oc	21	26	Receiver Data				
RLSD	oc	16	29	Received Line Signal Detector				
D. CABL	E EQU	ALIZER:						
CABS1	IC	33	24	Cable Select 1				
CABS2	IC	34	25	Cable Select 2				
*Pin 41 ac	ded fo	or connec	tor keyı	ng, not for use as a ground.				

Modem I	Hardware	Circuits
---------	----------	----------

9600 bps Facsimile Modem

						Input/Ou	Itput Type			
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ос	I/O A	I/O B
VIH	Input Voltage, High	v	2.0 min	2.0 min	2.0 min	1			20 min	5.25 max 2 0 min
VIL	Input Voltage, Low	V	0.8 max.	0.8 max.	08 max				0.8 max	08 max.
V _{OH}	Output Voltage, High	v				2.4 min ¹			24 min. 1	2 4 min. ³
VOL	Output Voltage, Low	V				0.4 max ²	0.4 max ²	0.4 max ²	04 max. ²	04 max.5
IIN	Input Current, Leakage	μA	±2.5 max.						± 12 5 max.4	
I _{OH}	Output Current, High	mA				-0.1 max				
IOL	Output Current, Low	mA				1.6 max.	1.6 max.	1.6 max.		
IL I	Output Current, Leakage	μA					± 10 max			
I _{PU}	Pull-up Current	μA		– 240 max.	– 240 max.			– 240 max		– 260 max
	(Short Circuit)			– 10 min.	– 10 min.			– 10 min.		– 100 min
CL	Capacitive Load	pF	5	5	20				10	40
C	Capacitive Drive	pF				100	100	100	100	100
-	Circuit Type		TTL	TTL	TTL	TTL	Open-Drain	Open Drain	3 State	Open-Drain
				w/Pull-up	w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes	1					· · · · · · · · · · · · · · · · · · ·				
1. I loa	$d = -100 \ \mu A$		5 I load	= 0.36 mA						
2. I loa	d = 1.6 mÅ									
3. I loa	$d = -40 \ \mu A$									
4. V _{IN}	= 0.4 to 2.4 Vdc, V _{CC} = 5.	25 Vdc								

Digital Interface Characteristics

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

RAM Data Access

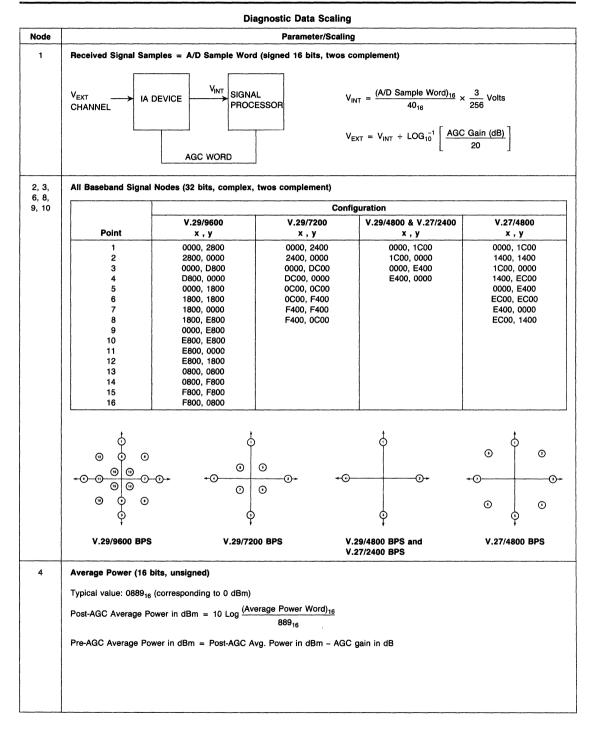
The user can access much of the data stored in the modem's memories. This data is a useful tool in performing certain diagnostic functions.

Two RAM access registers are provided in the interface memory to allow user access to various RAM locations within the modem. The access code stored in 0:F selects the source of data for the access code stored in 1:F selects the source of data for registers 1:0 through 1:3. Reading is performed by storing the desired access code in register 0:F (or 1:F), performing a read of 0:0 (or 1:0) to reset 0:E:0 (or 1:E:0), then waiting for 0:E:0 (or 1:E:0) to return to a one. The data may now be read from 0:3 through 0:0 (or 1:3-1:0).

Chip one also provides the capability to write data into RAM. When bit RAMW is set to a one, reading is suspended and a write cycle takes place once each time bit DA1 (1 \cdot E:0) is reset to zero.

Writing is performed by storing the desired access code in register 1:F, waiting for bit DA1 (1:E:0) to be a 1, setting bit RAMW (1:D:0) to a 1, then storing sixteen bits of data in registers

1:1 and 1:0. The eight bits in 1:1 are most significant. Writing to 1:0 resets bit 1:E:0 to a 0 and starts the write cycle, which ends by 1:E:0 returning to a 1. Bit RAMW (1:D:0) must remain set until the end of the cycle.


RAM Access Codes

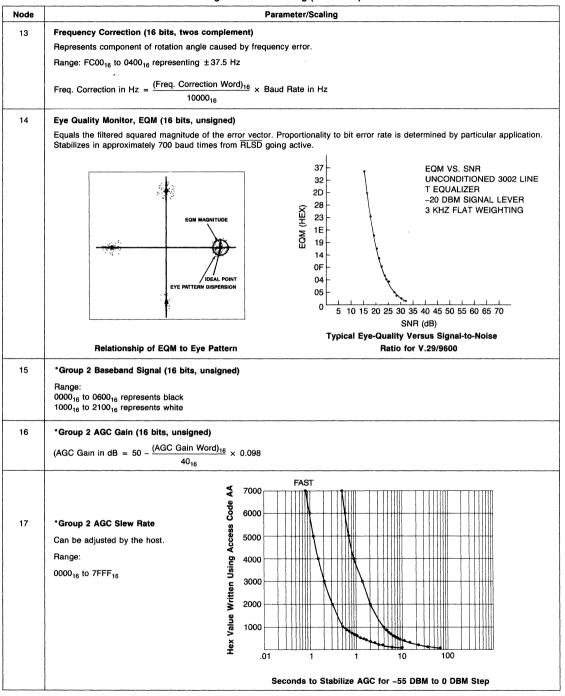
The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem. The access code stored in chip 1 (1:F) also selects the source of data for the serial outputs EYEX and EYEY. Diagnostic data is scaled as shown in the Diagnostic Data Scaling table.

Node	Function	Access	Chip	Reg. No.					
1	Received Signal Samples	40	0	2,3					
2	Demodulator Output	42	0	0,1,2,3					
3	Low Pass Filter Output	54	0	0,1,2,3					
4	Average Power	5C	0	2,3					
5	AGC Gain	01	0	2,3					
6	Equalizer Input	40	1	0,1,2,3					
7	Equalizer Tap Coefficients	01-20	1	0,1,2,3					
8	Unrotated Equalizer Output	61	1	0,1,2,3					
9	Rotated Equalizer Output	22	1	0,1,2,3					
	(Received Point—Eye Pattern)								
10	Decision Points (Ideal)	62	1	0,1,2,3					
11	Error Vector	63	1	0,1,2,3					
12	Rotation Angle	00	1	0,1					
13	Frequency Correction	A8	1	2,3					
14	Eye Quality Monitor (EQM)	AB	1	,2,3					
15	G2 Baseband Signal	C8	1	2,3					
16	G2 AGC Gain	AD	1	2,3					
17	G2 AGC Slew Rate	AA	1	2,3					
18	G2 PLL Frequency Correction	C2	1	2,3					
19	G2 PLL Slew Rate	F0	1	,2,3					
20	G2 Black/White Threshold	2A	1	0,1					
21	G2 Phase Limit*	F2	1	2,3					
*Adde	d in R5301-20								

RAM Access Codes

9600 bps Facsimile Modem

9600 bps Facsimile Modem


3

	Parameter/Scaling										
5	AGC Gain (16 bits, unsig	ned)									
	Range										
	$0FCO_{16}$ to 7FFF ₁₆ for LRTH = 0 (- 43 dBm Threshold)										
	0640 ₁₆ to 7FFF ₁₆ for LRTH										
	AGC Gain in dB = 50 - $\frac{1}{2}$	AGC Gain Word) ₁₆ × 0	098								
		AGC Gain in dB = $50 - \frac{(AGC Gain Word)_{16}}{40_{16}} \times 0.098$									
7	Equalizer Taps (32 bits, complex, twos complement) Node 7 is not a single point but is actually a set of RAM locations containing adaptive equalizer tap coefficients In V.29										
	configuration, access code	es 01 through 20 hexad	of RAM locations containing ecimal represent 32 complex ps, since the equalizer for V	taps. In V.27 configuration	, access codes 01						
	training sequence from the operations per tap, one for	e transmitter. Since the r the real part and one through A0. When wri	restoring modem operation equalizer tap coefficients an for the imaginary part. Wher ting the imaginary part, or wi	e complex numbers they rea n writing the real part, the a	quire two write ccess codes 01 throu						
	Registers 1:1 and 1:0 hold	the most and least sig	nificant bytes, respectively, o	of the 16 bits during a write	operation.						
	Frank Manhan (00 hits and										
11	Error Vector (32 bits, con	•		aal agint (B1)							
		between the received p	point (P2) and the nearest ide								
	Configuration	Bit Rate	Registers 3 and 2	Registers 1 and 0	Magnitude $\sqrt{Re^2 + Im^2}$						
	Configuration	(BPS)	Real Error	Imag. Error							
	V.29 V.29	9600 7200	<0C00 ₁₆ <2400 ₁₆	<0C00 ₁₆ <2400 ₁₆	<0E66 ₁₆ <1AD4 ₁₆						
		4800		<1C00 ₁₆	<1C00 ₁₆						
	V.29		< 100016								
	V.29 V.27	4800	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
	V.27	4800 2400	<1C00 ₁₆	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
	V.27 V.27 V.27	$4800 2400 xay = x_1 + 1y_1 = x_2 + 1y_2 - P_1 = (x_2 - x_1) + i(y_2) - (x_2 - x_1) + i(y_2) + i(y_2) + i(y_2) + i(y_2) + i(y_2) + i(y_$	<1C00 ₁₆ <1C00 ₁₆ Error Vector Maximum Valu	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
12	V.27 V.27 V.27	$4800 \\ 2400 \\ x_{RY} \\ = x_1 + 1y_1 \\ = x_2 + 1y_2 \\ - P_1 = (x_2 - x_1) + i(y_2 \\ = REAL ERROR \\ - BOUNDARY \\ b = 10 11 \\ x \\ twos complement)$	<1C00 ₁₆ <1C00 ₁₆ Error Vector Maximum Valu - y ₁) + IMAGINARY ERROR	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
12	V.27 V.27 V.27 P_1 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_1 P_2 P_2 P_2 P_2 P_1 P_2 P_2 P_2 P_2 P_2 P_1 P_2 P	$4800 \\ 2400 \\ x_{RY} \\ = x_1 + 1y_1 \\ = x_2 + 1y_2 \\ - P_1 = (x_2 - x_1) + i(y_2 \\ = REAL ERROR \\ - BOUNDARY \\ b = 10 11 \\ x \\ twos complement)$	<1C00 ₁₆ <1C00 ₁₆ Error Vector Maximum Valu - y ₁) + IMAGINARY ERROR	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
12	V.27 V.27 V.27	$4800 \\ 2400 \\ \\ = x_1 + iy_1 \\ = x_2 + iy_2 \\ - P_1 = (x_2 - x_1) + i(y_2 - y_1) + i(y_2 - y_1) \\ = REAL ERROR \\ - BOUNDARY \\ \\ = \frac{1}{10} \frac{1}{10} \frac{1}{10} x \\ \\ = \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} x \\ \\ = \frac{1}{10} 1$	<1C00 ₁₆ <1C00 ₁₆ Error Vector Maximum Valu - y ₁) + IMAGINARY ERROR	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						
12	V.27 V.27 V.27	$4800 \\ 2400 \\ \\ = x_1 + iy_1 \\ = x_2 + iy_2 \\ - P_1 = (x_2 - x_1) + i(y_2 - y_1) + i(y_2 - y_1) \\ = REAL ERROR \\ - BOUNDARY \\ \\ = \frac{1}{10} \frac{1}{10} \frac{1}{10} x \\ \\ = \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} x \\ \\ = \frac{1}{10} 1$	<1C00 ₁₆ <1C00 ₁₆ Error Vector Maximum Valu - y ₁) + IMAGINARY ERROR	<1C00 ₁₆ <1C00 ₁₆	<1C00 ₁₆						

9600 bps Facsimile Modem

Diagnostic Data Scaling (continued)

9600 bps Facsimile Modem

3

Node	Parameter/Scaling
18	*Group 2 PLL Frequency Correction (16 bits, twos complement) Range FC6A ₁₆ to 0346_{16} representing ± 140 Hz Frequency correction in Hz = Frequency correction number (0 167)
19	*Group 2 PLL Slew Rate Represents gain of first order term in phase locked loop. Range: 0010 ₁₆ to 7000 ₁₆ for stable operation Directly proportional to PLL slew rate
20	*Group 2 Black/White Threshold (16 bits, unsigned) Default value: (7800) ₁₆
21	*Group 2 Phase Limit (16 bits, twos complement) When phase error exceeds this limit, PLL updating is suspended. Default: 5000_{16} representing ± 67.5 degrees Phase limit = $180^{\circ} - \left[\frac{(Phase Limit)_{16}}{7FFF_{16}} \times 180^{\circ} \right]$. Once phasing is acquired, the limits may be narrowed to improve immunity to phase hits, etc.

	Interface Memory Chip 0 (CS0)										
Bit	7	6	5	4	3	2	1	0			
Register						-	•				
F	PDM		RAM ACCESS S								
E	IAO	_		—	SETUP	IE0	-	MDA0			
D		—	—	—	—			-			
С		—			-	—	_				
В								-			
A		-		_				-			
9				_							
8								-			
7			_					-			
6		-	_					_			
5	RTS	TDIS	_		- EPT SQEXT T2 LRT						
4		CO	NFIGL	IRATIC	DN						
3					I; FREQN						
2		RA	M DAT	A XSL	; FREQL						
1		RA	M DAT	A YSM	1						
0		RA	M DAT	A YSL	; TRANS	CEIVER	DATA				
Register											
	7	6	5	4	3	2	1	0			
Bit											
— = Rese	rved (r	nodem	use o	nly).							

9600 bps Facsimile Modem

Interface Memory Chip 1 (CS1)

	In	iterface	Mem	ory C	hip 1	(CS1)					
Bit Register	7	6	5	4	3	2	1	0			
F		RAM ACCESS B									
E	IA1	_	_	—	_	IE1		MDA1			
D	-	TLE	RLE	J3L	-	—	FRT*	RAMW			
C		—	1	1	-	—		G2FGC			
В	FR3	FR2	FR1	-			_				
A			-	_	_	_					
9			_	—				-			
8	_	_		_	_		—	-			
7	_	PNDET	_			_		CDET			
6	_	_		-	—		_				
5		FED	_	_	_		_				
4			_								
3			F	ram d	ata Xi	ЗМ					
2			F	RAM D	ata XI	3L					
1			F	RAM D	ata yi	зм					
0			F	RAM D	ata yi	3L					
Register											
Bit	7	6	5	4	3	2	1	0			
		modem u 301-20.	use on	ly).							

9600 bps Facsimile Modem

Interface Memory Definitions

Mnemonic	Name	Memory Location	De	escription
CDET	Carrier Detector	1:7:0	not present. CDET goes to zero at the start of	nergy is being detected, and a training sequence is f the data state, and returns to one at the end of the time before $\overline{\text{RLSD}}$ and deactivates within 2 baud
(None)	Configuration	0:4 0–7	The host processor configures the modem by in the interface memory space (See SETUP)	writing a control code into the configuration register
			Configuration Control Codes	
			Control codes for the five available modem co	onfigurations are:
			Configuration	Configuration Code (HEX)
			V.29 9600	14
			V.29 7200	12
			V.29 4800	11
			V 27 4800	0A
			V.27 2400	09
			FSK	20
			Group 2	40
			Tone Transmit	80
			Configuration Definitions	
			Definitions for the five available modem config	gurations are:
			1. V.29. When any of the V.29 configurations in CCITT Recommendation V.29.	has been selected, the modem operates as specified
			2. V.27. When any of the V.27 configurations I in CCITT Recommendation V.27 ter.	has been selected, the modem operates as specified
			3. FSK. The modem operates as a CCITT T.30 characteristics of the CCITT V21 channel 2	
			perform a coherent demodulation of the inc	vers the carrier of the remote transmitting modem to coming signal. This technique allows a baseband of iseband signal is available on the microprocessor
			The baseband signal is converted to black a preset threshold number. This number ma	or white by comparing the received signal level with ay be changed by the user
				but at a rate of 10368 samples per second. The user of the data clock (DCLK). A logical 1 level (high low voltage) represents black.
			at a single frequency specified by the user. contain the frequency code. The most signi The least significant bits are specified in th	Ing signal RTS causes the modem to transmit a tone Two registers in the host interface memory space dificant bits are specified in the FREQM register (0:3). The FREQL register (0:2) The least significant bit may generated is: f = 0 146486 (256 FREQM + FREQL)
EPT	Echo Protector Tone	0:5·3		nsmitted for 185 ms followed by 20 ms of no ining sequence. This option is available in both the at specified in the CCITT V.29 Recommendation.
FED	Fast Energy Detector	1.5 [.] 6	The zero state of FED indicates energy is prese FED is not used for Group 2 facsimile.	ent above the receiver threshold in the passband

Interface Memory Definitions (continued)

Mnemonic	Name	Memory Location	Description								
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7									data word
			FREQM Register (0:3)								
			Bit:	7	6	5	4 3		2 1		0
			Data Word:	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸
			FREQL Registe	r (0:2)							
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	2 ⁶	25	24	23	2 ²	21	20
			The frequency $F = (0.146486)$			ies the fre	equency (F)) as follow	'S:		
			Hexadecimal fr	equency r	numbers (Fl	REQM, FF	REQL) for c	ommonly	generated	tones are	given belov
				Fr	equency (l	Hz)	FREQ	M	FREQL		
					462 1100		0C 1D		52 55		
					1650		2C		00		
					1850		31		55		
					2100		38		00		
FRT	Freeze Taps		When FRT is a		• •				•	•	
FR1 – FR3	Frequency 1,2,3	1:B:5,6,7	7 The one state of FR1, FR2 or FR3 indicates reception of the respective ton modem is configured for FSK. The default frequencies for FR1, FR2 and Ff						cy when th		
					Bit		Freq	uency (H	z)		
					FR1 FR2			2100 1100			
					FR3			462			
G2FGC	Group 2 Fast Gain Control	1:C:0	The one state of	of G2FGC	selects a f	ast AGC	rate (8.6 tin	nes standa	ard) in Grou	up 2 Facsi	mile.
IA1	Interrupt Active (One)	1:E:7	IA1 is a one wi	nen Chip	1 is driving	IRQ to ze	ero volts.				
IA0	Interrupt Active	0:E:7									
	(Zero)	0.2.7	IAU IS a one wi	hen Chip	0 is driving	IRQ to z	ero volts.				
IEO	· ·	0:E:7	The one state of		_	_		hen the [DA0 bit is a	ı one.	
	(Zero) Interrupt Enable			of IE0 cau	ses the IR	ລັ output t	o be low w				
IE1	(Zero) Interrupt Enable (Zero) Interrupt Enable	0:E:2	The one state of	of IE0 cau of IE1 cau of J3L sel	ses the IRC ses the IRC ects this sta	ס output t ס output t	o be low w o be low w	hen the C	DA1 bit is a	one.	of J3L
IE1 J3L	(Zero) Interrupt Enable (Zero) Interrupt Enable (One)	0:E:2 1:E:2	The one state of the on	of IE0 cau of IE1 cau of J3L sel rvey long.	ses the IRC ses the IRC ects this sta	ב output t ס output t andard for	o be low w o be low w r link ampli	then the C	DA1 bit is a alizer. The :	one. zero state	
IEO IE1 J3L LRTH MDAO	(Zero) Interrupt Enable (Zero) Interrupt Enable (One) Japanese 3 Link Lower Receive	0:E:2 1:E:2 1:D:4	The one state of The one state of The one state of selects U.S. su The one state of	of IE0 cau of IE1 cau of J3L sel rvey long. of LRTH k one when reads or	ses the IRC ses the IRC ects this sta owers the moder writes regis	ג output t ס output t andard for eceiver tu n reads o	o be low w o be low w r link ampli rn-on thres r writes rea	then the C tude equa shold from gister 0:0.	DA1 bit is a alizer. The : - 43 dBm MDA0 goe	zero state 1 to - 47 d es to zero v	Bm. (See when the
IE1 J3L LRTH	(Zero) Interrupt Enable (Zero) Interrupt Enable (One) Japanese 3 Link Lower Receive Threshold Modem Data	0:E:2 1:E:2 1:D:4 0:5:0	The one state of The one state of Selects U.S. su The one state of SETUP) MDA0 goes to host processor	of IE0 cau of IE1 cau of J3L sel rvey long. of LRTH k one when reads or a retrieval. one when	ses the IRC ses the IRC ects this sta owers the m the moder the moder	ב סענקטע ז סענקטע נ andard for eceiver tu n reads o ster 0:0. M	o be low w o be low w r link ampli rn-on thres r writes ret IDA0 is use	tude equa tude equa shold from gister 0:0. ad for para	DA1 bit is a alizer. The ; 43 dBm MDA0 goe allel mode	zero state a to – 47 d es to zero a as well as	Bm. (See when the for

9600 bps Facsimile Modem

Mnemonic	Name	Memory Location				De	escription				
PNDET	Period 'N' Detector	1.7:6	The zero state end of the PN			ates a PN sequ	ence has been detected. PNDET sets to a one at the				
P2DET	Period '2' Detector	1:4·2	The zero state start of the Pl			ates a P2 sequ	ence has been detected. $\overrightarrow{P2DET}$ sets to a one at th				
(None)	RAM Access B	1:F:0-7	Contains the device).	RAM ac	cess cod	e used in readi	ng or writing RAM locations in Chip 1 (baud rate				
(None)	RAM Access S	0:F:0-6	Contains the	Contains the RAM access code used in reading RAM locations in Chip 0 (sample rate device)							
(None)	RAM Data XBL	1:2:0 - 7	Least significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate device								
(None)	RAM Data XBM	1:3:0 – 7	Most significa	Most significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate device)							
(None)	RAM Data XSL	0:2:0-7	Least significa device).	Least significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).							
(None)	RAM Data XSM	0:3:0 – 7	Most significa device).	nt byte	of 16-bit v	word x used in	reading RAM locations in Chip 0 (sample rate				
(None)	RAM Data YBL	1:0:0 – 7	Least significa rate device).			word y used in	reading or writing RAM locations in Chip 1 (baud				
(None)	RAM Data YBM	1:1:0 – 7	Most significa rate device).	nt byte	of 16-bit v	word y used in	reading or writing RAM locations in Chip 1 (baud				
(None)	RAM Data YSL	0:0:0 – 7		ed by pa	arallel dat	a mode for pre	reading RAM locations in Chip 0 (sample rate senting channel data to the host microprocessor				
(None)	RAM Data YSM	0:1:0 – 7	Most significa device).	nt byte	of 16-bit v	word y used in	reading RAM locations in Chip 0 (sample rate				
RAMW	RAM Write Chip 1 (baud rate device)	1:D:0					when performing diagnostic writes to the baud rate host when reading RAM diagnostic data from Chip				
RLE	Receiver Link Equalizer	1:D:5	The one state	of RLE	enables	the link amplite	ude equalizer in the receiver.				
RTS	Request-to-Send	0:5·7	is turned off,	and the	turn-off s	equence has b	ence. The modem will continue to transmit until RTS eeen completed RTS parallels the operation of the "ORed" by the modem.				
SETUP	Setup	0:E:3	register, and t returns to zer	o assum o when	ne the op acted on	tions specified by the modem	to reconfigure to the control word in the configuratio for equalizer (0:5:1) and threshold (0:5:0). SETUP . The time required for the SETUP bit to cause a nodem. The following table lists worst case delays.				
			Current State	V.21	G2	High Speed Receiver	High Speed Transmitter				
			DELAY	14 ms	400 μs	2 BAUD	2 BAUD + TURNOFF Sequence + Training (if applicable) + SQUELCH (if applicable)				
SQEXT	Squelch Extend	0:5:2	The one state	of SQE	XT inhibi	ts reception of	signals for 130 ms after the turn-off sequence.				
TDIS	Training Disable	0:5:6		prior to			em is prevented from entering the training phase. If eration of a training sequence is prevented at the				
TLE	Transmitter Link Equalizer	1·D:6	The one state	of TLE	enables	the link amplitu	de equalizer in the transmitter.				

3

9600 bps Facsimile Modem

Interface Memory Definitions (continued)

Mnemonic	Name	Memory Location	Description
(None)	Transceiver Data	0:0:0–7	In receive parallel data mode, the modem presents eight bits of channel data in register 0:0 for reading by the host microprocessor. After the eight bits have been accumulated in register 0:C they are transferred to 0:0 and bit 0:E:0 goes to a one. When the host reads 0:0, bit 0:E:0 resets to a zero. The first bit of received data is not necessarily located in bit 0:0:0. The host must frame the received data by searching for message sync characters. Bit 0:E:0 sets at one eighth the bit rate in parallel data mode rather than at the sample rate (9600 Hz) as it does when reading RAM locations.
			In transmit parallel data mode the host stores data at location 0:0. This action causes bit 0:E:0 to reset to a 0. When the modem transfers the data from 0:0 to 0:2 bit 0:E:0 sets to a 1. The data is serially transmitted from register 0:2 least significant bit first. Received data is shifted into register 0:C from MSB toward LSB.
T2	T/2 Equalizer Select	0:5:1	If T2 is a one, an adaptive equalizer with two taps per baud is used. If T2 is a zero, an adaptive equalizer with one tap per baud is used. The number of taps remains the same for both cases. (See SETUP)

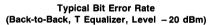
PERFORMANCE

Whether functioning in V.27 ter or V.29 configuration, the modem provides the user with unexcelled high performance.

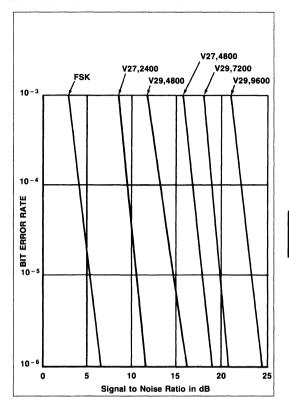
TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modern is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

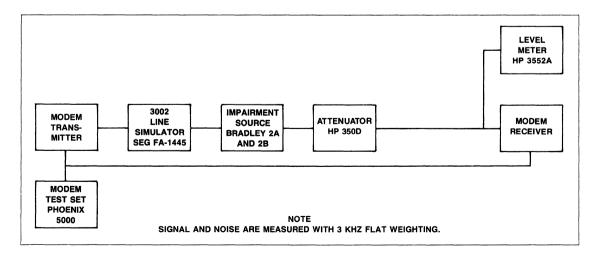
TYPICAL PHASE JITTER


At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted). At 4800 bps (V.27 ter), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

At 7200 bps (V.29), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 25 dB in the presence of 12° peak-to-peak phase jitter at 300 Hz.


At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.


An example of the BER performance capabilities is given in the following diagrams:

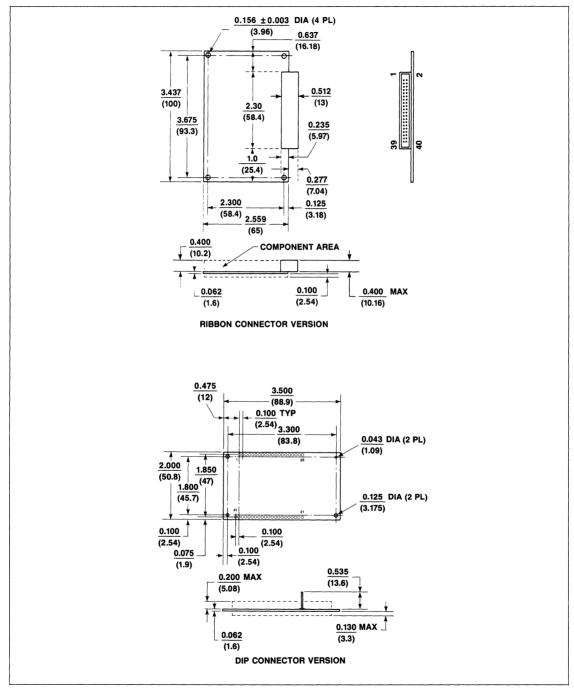

V27,4800 V27,2400 V29,7200 V29,4800 V29,9600 FSK 10-³ 10-4 **BIT ERROR RATE** 10-5 10-6 0 5 10 15 20 25 Signal to Noise Ratio in dB

BER Performance Test Set-up

9600 bps Facsimile Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+5 Vdc	± 5%	400 mA	<500 mA
+ 12 Vdc	± 5%	5 mA	< 10 mA
- 12 Vdc	± 5%	30 mA	< 50 mA


Environmental

Parameter	Specification			
Temperature				
Operating	0°C to +60°C (32°F to 140°F)			
Storage	-40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)			
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.			

Mechanical

Parameter	Specification				
DIP Connector Version					
Board Structure	Single PC board with a row of 20 pins and a row of 21 pins in a dual in-line pin configuration. Match with Berg 65780 or equivalent.				
Dimensions					
Width	2.0 in. (50.8 mm)				
Length	3.5 in. (88.9 mm)				
Component Height	0.2 in. (5.08 mm) above, 0.13 in. (3.30 mm) below.				
Weight (max.)	2.6 oz. (73 g)				
Pins					
Length (max.)	0.535 in. (13.6 mm) above.				
Thickness	0.025 in. (0.64 mm) square				
Ribbon Connector Version					
Board Structure	Single PC board with single right angle header with 40 pins. Burndy FRS 40BS8P or equivalent mating connector.				
Dimensions					
Width	3.94 in. (100 mm)				
Length	2.56 in. (65 mm)				
Height	0.40 in. (10.2 mm)				
Weight (max.)	2.6 oz. (73 g)				
Lead Extrusion (max.)	0.100 in. (2.54 mm)				

9600 bps Facsimile Modem

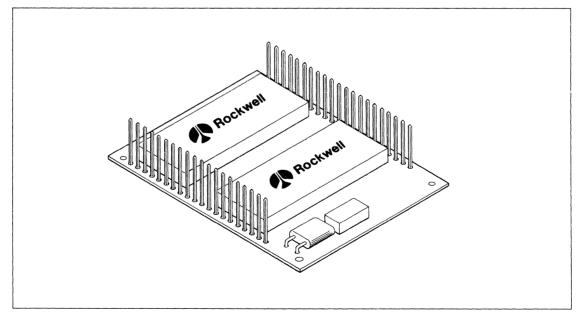
R96F Dimensions and Pin Locations

3

Integral Modems

R96MD 9600 bps Facsimile Modem

INTRODUCTION


The Rockwell R96MD is a synchronous 9600 bits per second (bps) modem. It is designed for operation over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.29, V.27 ter, T.30, T.4 and T.3. The R96MD can operate at speeds of 9600, 7200, 4800, 2400 and 300 bps. Employing advanced signal processing techniques, the R96MD can transmit and receive data even under extremely poor line conditions.

The R96MD is designed for use in Group 3 facsimile machines and is also compatible with Group 2 machines. User programmable features allow the modem operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, serial/parallel host interface, and dual in-line pin (DIP) interface simplify system design and allow direct installation on the host module.

FEATURES

- Compatible with:
- CCITT V.29, V.27 ter, T.30, V.21 Channel 2, T.4, T.3
- Group 3 and Group 2 Facsimile
- Half-Duplex (2-Wire)
- Programmable Tone Detection
- Programmable Dual/Single Tone Generation
- Dynamic Range: 47 dBm to 0 dBm
- Programmable Transmit Levels
- Diagnostic Capability
- Equalization:
- Automatic Adaptive
 - -- Compromise Cable (Selectable)
- DTE Interface:
 - Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Small Size: 50.8 mm × 65.4 mm (2.0 in. × 2.575 in.)
- Low Power Consumption: 2 W (Typical)
- Transmit Output Level: +5 dBm ±1 dB
- TTL and CMOS Compatible

R96MD Modem

TECHNICAL SPECIFICATIONS

TRANSMITTER TONAL SIGNALING AND CARRIER FREQUENCIES

T.30 Tonal Signaling Frequencies

Function	Frequency (Hz ±0.01%)
Calling Tone (CNG)	1100
Answer Tone (CED)	2100
Group 2 Identification (C12)	1850
Group 2 Command (GC2)	2100
Group 2 Confirmation (CFR2, MCF2)	1650
Line Conditioning Signal (LCS)	1100
End of Message (EOM)	1100
Procedure Interrupt (PIS)	462

Carrier Frequencies

Function	Frequency (Hz ±0.01%)
T.3 Carrier (Group 2)	2100
V.27 ter Carrier	1800
V.29 Carrier	1700

TONE GENERATION

Under control of the host processor, the modem can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

TONE DETECTION

In the 300 bps FSK receive configuration, the presence of tones at preset frequencies is indicated by bits in the interface memory.

SIGNALING AND DATA RATES

Signaling/Data Rates

Specification	Baud Rate (Symbols/Sec.)	Bits Per Baud	Data Rate (BPS) (±0.01%)	Symbol Points
V 29	2400	4	9600	16
V 29	2400	3	7200	8
V.27	1600	3	4800	8
V.27	1200	2	2400	4

DATA ENCODING

The modem data encoding conforms to CCITT recommendations V.29 and V.27 ter.

9600 bps Facsimile Modem

EQUALIZERS

The modem provides the following equalization functions which can be used to improve performance when operating over poor lines:

Cable Equalizers — Selectable compromise cable equalizers are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit for V.27 and V.29 configurations. The equalizer can be configured as either a T or a T/2 equalizer.

TRANSMITTED DATA SPECTRUM

The transmitter spectrum is shaped by the following raised cosine filter functions:

1.	1200 Baud.	Square root of 90 percent.
2.	1600 Baud.	Square root of 50 percent.

3. 2400 Baud. Square root of 20 percent.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The modem incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 ter or V.29 depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the modem can adapt to received frequency error of up to ± 10 Hz with less than a 0.2 dB degradation in BER performance. Group 2 carrier recovery capture range is 2100 \pm 30 Hz. The Group 2 receiver operates properly when the carrier is varied by ± 16 Hz at a 0.1 Hz per second rate.

RECEIVE LEVEL

The modem receiver circuit satisfies all specified performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

In the receive state, the modem provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. DCLK duty cycle is 50% $\pm 1\%$.

TRANSMIT LEVEL

The transmitter output level defaults to $+5 \text{ dBm} \pm 1 \text{ dB}$ at power on. When using the default transmit level and driving a 600 ohm load, the TXA output requires a 600 ohm series resistor to provide $-1 \text{ dBm} \pm 1 \text{ dB}$ to the load. The output level can be programmed over a 10 dB range by performing a RAM write operation.

TRANSMIT TIMING

In the transmit state, the modem provides a Data Clock (DCLK) output with the following characteristics:

- Frequency. Selected data rate of 9600, 7200, 4800, 2400, or 300 Hz (±0.01%). In Group 2, DCLK tracks an external 10368 Hz clock. If the external clock input (XCLK) is grounded the Group 2 DCLK is 10372.7 Hz ±0.01%.
- 2. Duty Cycle. 50 ±1%

Transmit Data (TXD) must be stable during the 1 microsecond period immediately preceding and the 1 microsecond period immediately following the rising edge of DCLK.

TURN-ON SEQUENCE

A total of ten selectable turn-on sequences can be generated by the modem, as defined in the following table:

	RTS-CTS Turn-On Time			
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled		
V.29	253 ms	438 ms		
V.27 4800 bps	708 ms	913 ms		
V.27 2400 bps	943 ms	1148 ms		
V.21 300 bps	≤14 ms	≤14 ms		
Group 2	≤400 μs	≤400 μs		

Turn-On Sequences

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy. For V.29, the turn-off sequence consists of approximately 5 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy. In V.21 the transmitter turns off within 7 ms after RTS goes false. In Group 2 the transmitter turns off within 200 μ s after RTS goes false.

CLAMPING

The following clamps are provided with the modem:

- 1. Received Data (RXD). RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD), RLSD is clamped off (squelched) during the time when RTS is on.
- 3. Extended Squelch. Optionally, RLSD remains clamped off for 130 ms after the turn-off sequence.

9600 bps Facsimile Modem

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-to-on transition of $\overline{\text{CTS}}$ is dictated by the length of the training sequence. Response time is 253 ms for V.29, 708 ms for V.27 ter at 4800 bps, and 943 ms for V.27 ter at 2400 bps. In V.21 $\overline{\text{CTS}}$ turns on in 14 ms or less. In Group 2 $\overline{\text{CTS}}$ turns on in 400 μs or less.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

For either V.27 ter or V.29, RLSD turns on at the end of the training sequence. If training is not detected at the receiver, the RLSD off-to-on response time is 15 \pm 10 ms. The RLSD on-to-off response time for V.27 is 10 \pm 5 ms and for V.29 is 30 \pm 9 ms. Response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB below the actual RLSD off threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD.

Two threshold options are provided:

- 1. Greater than 43 dBm (RLSD on)
- Less than 48 dBm (RLSD off) 2. Greater than - 47 dBm (RLSD on)
- Less than -52 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

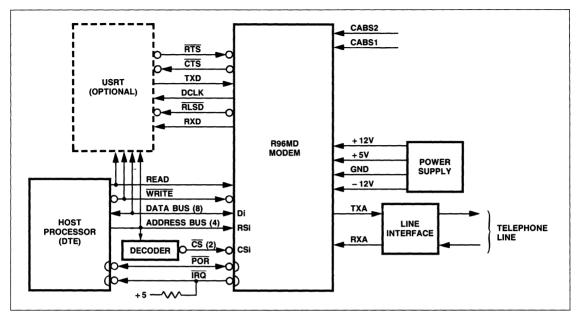
A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The modem operates in either a serial or a parallel mode.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the Modem Functional Interconnect Diagram) illustrates this capability.


PARALLEL MODE

The modem can transfer channel data eight bits at a time via the microprocessor bus.

MODE SELECTION

Selection of either the serial or parallel mode of operation is by means of a control bit. To enable the parallel mode, the control bit must be set to a 1. The modern automatically defaults to the serial mode at power-on. In either mode the modern is configured by the host processor via the microprocessor bus.

9600 bps Facsimile Modem

Modem Functional Interconnect Diagram

INTERFACE CHARACTERISTICS

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 40-pin dual in-line pin (DIP) connector. Software circuits are assigned to specific bits in a 32-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the Modern Hardware Circuits table; the table column titled 'Type' refers to designations found in the Digital or Analog Interface Characteristics.

Microprocessor Interface

Sixteen hardware circuits provide address (RS0–RS3), data (D0–D7), control (\overline{CS} , READ and \overline{WRITE}) and interrupt (IRQ) signals for implementing a parallel interface compatible with an 8080 microprocessor. (Refer to the Microprocessor Interface Timing Waveforms figure and Microprocessor Interface Timing Waveforms table.) With the addition of a few external logic gates, the interface can be made compatible with a wide variety of microprocessors such as 6500, 6800, or 68000.

The microprocessor interface allows a host microprocessor to change modem configuration, read or write channel data as well as diagnostic data, and supervise modem operation by means of software strappable control bits and modem status bits. The significance of the control and status bits and methods of data interchange are discussed in the Software Circuits section.

V.24 Interface

Seven hardware circuits provide timing, data and control signals for implementing a serial interface compatible with CCITT Recommendation V.24. These signals interface directly with circuits using TTL logic levels (0, +5 volt). These TTL levels are suitable for driving the short wire lengths or printed circuitry normally found within stand-alone modem enclosures or equipment cabinets.

In applications where the modem is operated in parallel data mode only (i.e., where the V.24 signals are unused), all V.24 pins may remain unterminated.

Cable Equalizers

Modems may be connected by direct wiring, such as leased telephone cable or through the public switched telephone network, by means of a data access arrangement. In either case, the modem analog signal is carried by copper wire cabling for at least some part of its route. The cable characteristics shape the passband response so that the lower frequencies of the passband (300 Hz to 1700 Hz) are attenuated less than the higher frequencies (1700 Hz to 3300 Hz). The longer the cable the more pronounced the effect.

To minimize the impact of this undesired passband shaping, a compromise equalizer with more attenuation at lower frequencies than at higher frequencies can be placed in series with the analog signal. The modem includes three such equalizers designed to compensate for cable distortion.

	Cable Equalizer Selection					
	CABS2	Length of 0.4mm Diameter Cable				
	0	0	0.0			
	0	1	1.8 km			
1	1	0	3.6 km			
	1	1	7.2 km			

Analog Signals

Two analog signals, TXA and RXA, provide the interface point for telephone company audio circuits.

The TXA line is an output suitable for driving an audio transformer or data access arrangement for connection to either leased lines or the PSTN. The output structure of TXA is a low impedance amplifier in series with an internal 604 ohm $\pm 1\%$ resistor to match a standard telephone load of 600 ohms.

RXA is an input to the receiver from an audio transformer or data access arrangement. The input impedance is nominally 60K ohms but a factory select resistor allows a variance of 23%. The RXA input must be shunted by an external resistor in order to match a 600 ohm source. A 604 ohm \pm 1% resistor is satisfactory.

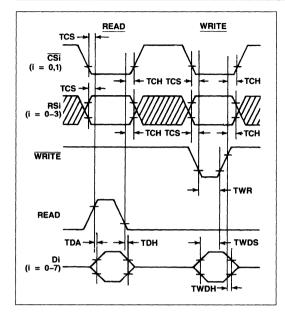
Some form of transient protection for TXA and RXA is recommended when operating directly into a transformer. This protection may be back-to-back zener diodes across the transformer or a varistor across the transformer.

Overhead

Except for the power-on-reset signal \overrightarrow{POR} , the overhead signals are dc power or ground points. When the modem is initially energized a signal called Power-On-Reset (\overrightarrow{POR}) causes the modem to assume a valid operational state. The modem drives pin 39 to ground during the beginning of the POR sequence. Approximately 10 ms after the low to high transition of pin 39, the modem is ready for normal use. The POR sequence is reinitiated anytime the +5V supply drops below + 3.5V for more than 30 ms, or an external device drives pin 39 low for at least 3 μ s. When an external low input is applied to pin 39, the modem is ready for normal use approximately 10 ms after the low input is removed. Pin 39 is not driven low by the modem when the POR sequence is initiated externally. In all cases, the POR sequence leaves the modem configures as follows:

- V.29/9600 bps
- T/2 equalizer
- · Serial mode
- Training enabled
- · Echo protector tone enabled

9600 bps Facsimile Modem


- No extended squeich
- · Higher receive threshold
- Interrupts disabled
- RAM Access S = 00
- RAM Access B = 22

This configuration is suitable for performing high speed data transfer on the PSTN with the serial data port selected as the input and output point for data terminal equipment (DTE).

Modem Hardware Circuits

Name Type Pin No.		Pin No.	Description			
A. OVERHEAD:						
Ground	GND	17,18	Power Supply Return			
+5 volts	PWR	33,34	+5 volt supply			
+ 12 volts	PWR	21	+ 12 volt supply			
-12 volts	PWR	19	- 12 volt supply			
POR	I/OB	39	Power-on-reset			
B. MICROF	ROCES	SOR INTE	RFACE:			
D7	I/OA	9	٦			
D6	I/OA	8				
D5	I/OA	2				
D4	I/OA	3	Data Bus (8 Bits)			
D3	I/OA	4				
D2	I/OA	5				
D1	I/OA	6				
D0	I/OA	7	5			
RS3	IA	13				
RS2	IA	14	Register Select (4 Bits)			
RS1	IA	15	Select Reg. 0 – F			
RS0	IA	16	5			
CS0	IA	11	Chip Select Sample Rate Device			
CS1	IA	38	Chip Select Baud Rate Device			
READ	IA	10	Read Enable			
WRITE	IA	12	Write Enable			
IRQ	OB	1	Interrupt Request			
C. V.24 IN	TERFAC	E:				
DCLK	oc	30	Data Clock			
XCLK	IB	31	External Clock for Group 2			
RTS	IB	32	Request-to-Send			
CTS	OC	28	Clear-to-Send			
TXD	IB	27	Transmitter Data			
RXD	OC	26	Receiver Data			
RLSD	oc	29	Received Line Signal Detector			
D. CABLE	EQUAL	IZER:				
CABS1	IB	24	Cable Select 1			
CABS2	IB	25	Cable Select 2			
E. ANALO	G SIGN	ALS				
ТХА	AA	23	Transmitter Analog Output			
RXA	RXA AB 22 Receiver Analog Input					
Pin 35 is removed for keying connector.						

3-116

Microprocessor Interface Timing Requirements

9600 bps Facsimile Modem

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	TCS	30	-	ns
Data Access time after Read	TDA	-	140	ns
Data hold time after Read	TDH	10	50	ns
CSI, RSI hold time after Read or Write	тсн	10	_	ns
Write data setup time	TWDS	75	-	ns
Write data hold time	TWDH	10	-	ns
Write strobe pulse width	TWR	75	-	ns

Analog Interface Characteristics

Name	Туре	Characteristics					
TXA	AA	The transmitter output is a low impedanc operational amplifier output. In order to match to 600 ohms, an external 604 ohm series resistor is required.					
RXA	AB	The receiver input impedance is 46.4K ohms ±23%.					

Microprocessor Interface Timing Diagram

Digital Interface Characteristics

					Ir	nput/Output T	уре		
Symbol	Parameter	Units	IA	IB	OA	ОВ	ос	I/O A	I/O B
V _{IH}	Input Voltage, High	v	2.0 min	2 0 min.				2 0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.				0.8 max.	0.8 max.
VOH	Output Voltage, High	v			2.4 min.1			2.4 min. 1	2.4 min. ³
VOL	Output Voltage, Low	v			0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ²	0.4 max. ⁵
IN	Input Current, Leakage	μA	±25 max.					±12.5 max.4	
IOH	Output Current, High	mA			-0.1 max.				
IOL	Output Current, Low	mA			1.6 max.	16 max	1.6 max		
IL.	Output Current, Leakage	μA				±10 max.			
IPU	Pull-up Current	μA		–240 max.		1	– 240 max.		–260 max
	(Short Circuit)			– 10 min.			– 10 min.		– 100 min.
CL	Capacitive Load	pF	5	5				10	40
CD	Capacitive Drive	pF			100	100	100	100	100
	Circuit Type		TTL	TTL	TTL	Open-Drain	Open Drain	3 State	Open-Drain
				w/Pull-up			w/Pull-up	Transceiver	w/Pull-up
Notes	•			L		1,	L	L	
1. I load	$= -100 \ \mu A$		5. I load = 0	.36 mA					
2. I load	= 16 mA								

3. I load = -40 μ A

4. V_{IN} = 0.4 to 2.4 Vdc, V_{CC} = 5.25 Vdc

3

SOFTWARE CIRCUITS

The modem includes two signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 0 update at the modem sample rate (9600 bps). Registers in chip 1 update at the selected baud rate except in Group 2 and FSK configurations when they update at the sample rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0 or 1), the register by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a 1.

Status/Control Bits

Modem operation is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits designated by a '-' are reserved for modem use only and must not be changed by the host.

Any one of the registers may be read or written on any host read or write cycle, but all eight bits of that register are affected. In order to read a single bit or a group of bits in a register, the host processor must mask out unwanted data. When writing a single bit or group of bits in a register the host processor must perform a read-modify-write operation. That is, the entire register is read, the necessary bits are set or reset in the accumulator of the host, then the original unmodified bits and the modified bits are written back into the register of the interface memory.

RAM Data Access

The user can access much of the data stored in the modem's memories. This data is a useful tool in performing certain diagnostic functions.

The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as XRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.

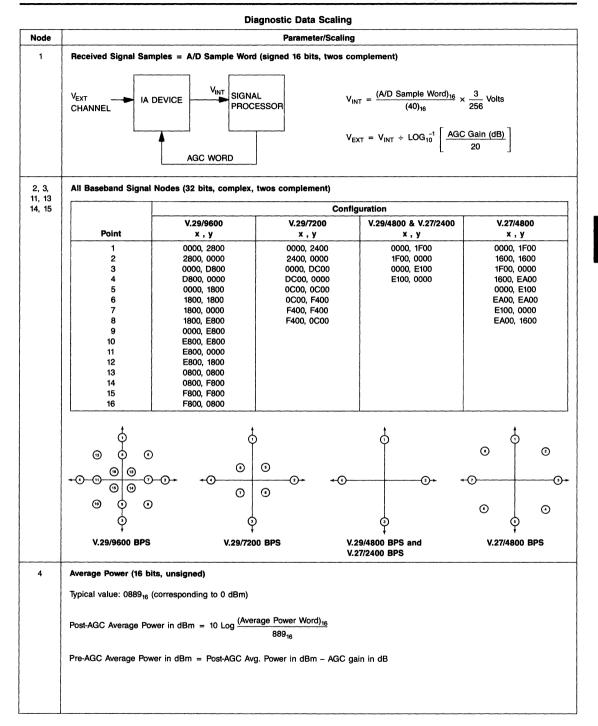
The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register 0:F (RAM ACCESS B) or 1:F (RAM ACCESS B). The RAM Access Codes table lists access codes for storage in registers 0:F or 1:F and the corresponding diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

9600 bps Facsimile Modem

These bits are written into interface memory registers 0:3, 0:2, 0:1 and 0:0, or 1:3, 1:2, 1:1 and 1:0, in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit 0:5:5 (RAMWS) or bit 1:D:0 (RAMWB) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM in chip 0 or in chip 1, respectively. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the most significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAM Access B bits of register 1:F for chip 1, or by means of 0:5:4 (RAE) and 0:F (RAM AcRAM S) for chip 0. When bit 1:F:7 or 0:5:4 equals zero, YRAM is selected.

When the host processor reads or writes register 0, the modem data available bit 0:E:0 or 1:E:0 (MDAi) is reset to zero. When the modem reads or writes register 0, MDAi is set to a one. When set to a one by the host, bit 0:E:2 or 1:E:1 (IEi) enables the MDAi bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modem, bit 0:E:7 or 1:E:7 (IAi) goes to a one.

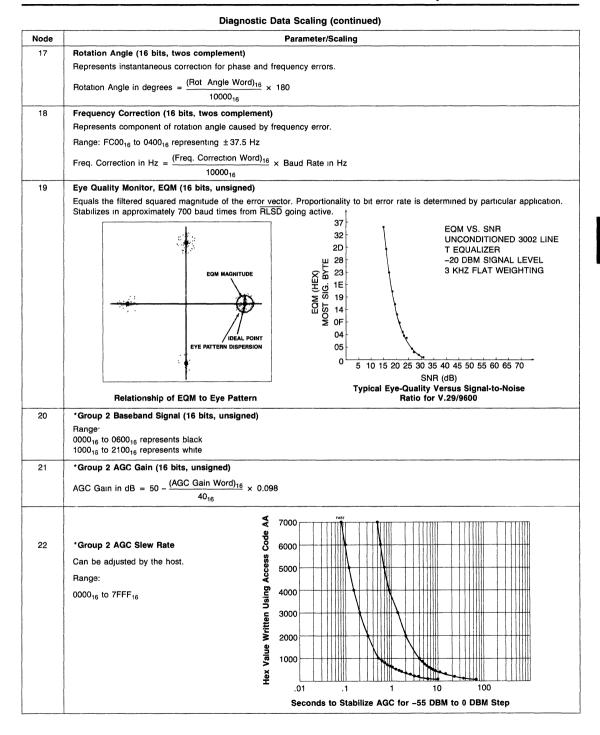

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem. This information is scaled as shown in the Diagnostic Data Scaling table.

Node	Function	Access	RAE	Chip	Read Reg. No.
1	Received Signal Samples	40	х	0	2,3
2	Demodulator Output	42	x	ŏ	0,1,2,3
3	Low Pass Filter Output	54	x	ō	0,1,2,3
4	Average Power	5C	X	0	2,3
5	AGC Gain	3C	X	0	2,3
6	Tone 1 Frequency	71	1	0	2,3
7	Tone 1 Level	72	1	0	2,3
8	Tone 2 Frequency	71	0	0	0,1
9	Tone 2 Level	72	0	0	0,1
10	Output Level	4C	0	0	0,1
11	Equalizer Input	40	N.A.	1	0,1,2,3
12	Equalizer Tap Coefficients	01-20	N.A.	1	0,1,2,3
13	Unrotated Equalizer Output	61	N.A.	1	0,1,2,3
14	Rotated Equalizer Output	22	N.A.	1	0,1,2,3
	(Received Point-Eye Pattern)				
15	Decision Points (Ideal)	62	N.A.	1	0,1,2,3
16	Error Vector	63	N.A.		0,1,2,3
17	Rotation Angle	00	N.A.		0,1
18	Frequency Correction	A8	N.A.		2,3
19	Eye Quality Monitor (EQM)	AB	N.A.		2,3
20	G2 Baseband Signal	C8	N.A.		2,3
21	G2 AGC Gain	AD	N.A.		2,3
22	G2 AGC Slew Rate	AA	N.A.		2,3
23	G2 PLL Frequency Correction	C2	N.A.		2,3
24	G2 PLL Slew Rate	F0	N.A.		2,3
25	G2 Black/White Threshold	2A	N.A.	1	0,1
26	G2 Phase Limit	F2	N.A.	1	2,3
27	Checksum	2D	N.A.	1	2,3
RAE	 X is don't care since this from, and not written to, by applicable since RAE is no 	the hos	t. N.A	. is no	
L					

RAM Access Codes

9600 bps Facsimile Modem


3

9600 bps Facsimile Modem

Diagnostic Data Scaling (continued)

Node		Para	neter/Scali	ing					
5	AGC Gain (16 bits, unsigned)								
	Range:								
	$0FC0_{16}$ to $7FFF_{16}$ for LRTH = 0 (- 43 dBm ⁻¹) 0640 ₁₆ to $7FFF_{16}$ for LRTH = 1 (- 47 dBm ⁻¹)								
	AGC Gain in dB = 50 - $\frac{(AGC Gain Word)_{16}}{40_{16}}$	² × 0.098							
6, 8	Tone 1 and 2 Frequency (16 bits, unsigned	d)							
	N = 6.8267 (Frequency in Hz) Convert N to hexadecimal then store in RAM.								
7, 9	Tone 1 and Tone 2 Level								
	Calculate the power of each tone independe numbers to hexadecimal then store in RAM. tone 2 power.								
10	Output Level (16 bits, unsigned)								
	Output Number = 27573.6 [10 ^(Po/20)]								
	Po = output power in dBm with series 600	ohm resistor into	600 ohm le	oad.					
	Convert Output Number to hexadecimal and	store in RAM.							
12	Equalizer Taps (32 bits, complex, twos complement)								
	Node 12 is not a single point but is actually figuration, access codes 01 through 20 hexa 10 hexadecimal represent 16 complex taps,	adecimal represer	nt 32 comp	lex taps. In V.27 confi	guration, access code	es 01 through			
	The equalizer tap access codes can be use ing sequence from the transmitter. Since the				ualization without req	uesting a train-			
	tap, one for the real part and one for the im changed to 81 through A0. When writing the 20 are correct.	aginary part. Wh	en writing t	he real part, the acce	ess codes 01 through	20 must be			
	changed to 81 through A0. When writing the	aginary part. When a imaginary part,	en writing t or when re	the real part, the acce ading the complex nu	ess codes 01 through umber, the access coo	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct.	aginary part. Whe imaginary part, st significant byte	en writing t or when re	the real part, the acce ading the complex nu	ess codes 01 through umber, the access coo	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea	aginary part. Whe bimaginary part, st significant byte blement)	en writing t or when re s, respectiv	the real part, the according the complex nurse to the complex nurse to the second the second to t to the second to	ess codes 01 through umber, the access coo	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp	aginary part. Whe bimaginary part, st significant byte blement)	en writing t or when re s, respectiv	the real part, the according the complex nurse to the complex nurse to the second the second to t to the second to	ess codes 01 through umber, the access coo	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp	aginary part. Whi b imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29	en writing t or when re is, respection d the near Bit Rate (BPS) 9600	the real part, the according the complex nurvely, of the 16 bits durest ideal point (P1). Registers 3 and 2 Real Error <0C0016	Registers 1 and 0 Imag. Error <000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp	aginary part. Who be imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29	en writing t or when re es, respection d the near Bit Rate (BPS) 9600 7200	the real part, the according the complex nurvely, of the 16 bits durest ideal point (P1). Registers 3 and 2 Real Error <0C0016	Registers 1 and 0 Imag. Error < 0C00 ₁₆ < 2400 ₁₆	20 must be des 01 through $\sqrt{\text{Re}^2 + \text{Im}^2}$ $< 0\text{E66}_{16}$ $< 1\text{AD4}_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the receind	aginary part. Who be imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29 V.29 V.29	en writing t or when re s, respection d the near Bit Rate (BPS) 9600 7200 4800	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error <0C00 ₁₆ <2400 ₁₆ <1C00 ₁₆	Registers 1 and 0 Imag. Error <000016 <240016 <100016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1CO0_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the receind	aginary part. Who be imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29	en writing t or when re es, respection d the near Bit Rate (BPS) 9600 7200	the real part, the accellation of the term of	Registers 1 and 0 Imag. Error <000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1C00_{16}$ $< 1C00_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos complex, twos complex, two complex) Represents the difference between the received by $P_1 = x_1 + iy_1$	aginary part. Whi b imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29 V.29 V.29 V.29 V.27	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error <0C00 ₁₆ <2400 ₁₆ <1C00 ₁₆	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1CO0_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos complex, twos complex, two complex) are consistent of the second seco	aginary part. Whi b imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29 V.29 V.29 V.27 V.27	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 2400	the real part, the acceleration of the real part, the acceleration of the real part, the acceleration of the real point (P1). Registers 3 and 2 Real Error < 0C0016	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1C00_{16}$ $< 1C00_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1C00_{16}$ $< 1C00_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. Whi b imaginary part, st significant byte blement) ived point (P2) ar Configuration V.29 V.29 V.29 V.29 V.27 V.27	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1C00_{16}$ $< 1C00_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $ \frac{Magnitude}{\sqrt{Re^2 + Im^2}} \\ < 0E66_{16} \\ < 1AD4_{16} \\ < 1C00_{16} \\ < 1C00_{16} $			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $ \frac{Magnitude}{\sqrt{Re^2 + Im^2}} \\ < 0E66_{16} \\ < 1AD4_{16} \\ < 1C00_{16} \\ < 1C00_{16} $			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_2 - P_1 = (x_2 - x_2)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos complex, twos complex, twos complex) Represents the difference between the received between the	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through $\frac{Magnitude}{\sqrt{Re^2 + Im^2}}$ $< 0E66_{16}$ $< 1AD4_{16}$ $< 1C00_{16}$ $< 1C00_{16}$			
16	changed to 81 through A0. When writing the 20 are correct. Registers 1:1 and 1:0 hold the most and lea Error Vector (32 bits, complex, twos comp Represents the difference between the received by $P_1 = x_1 + iy_1$ $P_2 = x_2 + iy_2$ $P_2 = P_1 = (x_2 - x)$	aginary part. When imaginary part, it significant byte blement) ived point (P2) ar Configuration V.29 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.27 V.29	en writing t or when re s, respectiv d the near Bit Rate (BPS) 9600 7200 4800 4800 4800 2400	he real part, the acce ading the complex nu- vely, of the 16 bits du est ideal point (P1). Registers 3 and 2 Real Error < 0C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ < 1C00 ₁₆ Error Vector Maximu	Registers 1 and 0 Imag. Error < 000016	20 must be des 01 through			

9600 bps Facsimile Modem

9600 bps Facsimile Modem

Diagnostic Data Scaling (continued)

Node									Param	eter/Scaling
23	*Group 2 Range: FC6A ₁₆ to Frequency	0346 ₁₆ re	epresei	nting ±	: 140 H	٠ Iz			-	
24	*Group 2 Represents Range: 0010 ₁₆ to 7 Directly pro	s gain of 1000 ₁₆ fo	first or r stable	rder ter e operat	tion	phase	e locke	od loop).	
25	Pequerage of a constraint of the second of t	7 8 0 0	O) ₁₆	7 2 0 HOLD V	7 0 0 0	6 F 0 0	6 C 0 0	6 A 0 0	6 8 0 0	NOTE: 1. 100 WHITE PIXELS SENT FOLLOWED BY 4 BLACK PIXELS SENT. 2. RESULTS OBTAINED AT 0 DBM, NO COMPROMISE EQUALIZERS IN BACK TO BACK CONNECTION.
26	*Group 2 When phas Default: 50 Phase limit	se error 100 ₁₆ rep t = 1809	exceed presenti ° - [ds this I ing ±67 (Phase (7F	limit, F 7.5 de <u>ELimit</u> FF) ₁₆	PLL u grees I) ₁₆	ipdatir × 180	ng is s N°	·	ed. ive immunity to phase hits.
27	Checksum ROM chec	•	-		ned b	y revi	ision le	evel.		
	*See Rock	well App	olication	n Note,	R96F	Mod	em Re	ecomn	nended	Receive Sequence for Group 2 Facsimile (Order No. 655, Rev. 3).

9600 bps Facsimile Modem

Interface Memory Chip 0 (CSO)											
Bit											
	7	6	5	4	3	2	1	0			
Register											
F	PDM		RAM ACCESS S								
E	IA0	—	—	_	SETUP	IE0	_	MDA0			
D	_		-		_	_	-	_			
C	—	-	-	-		—	-	—			
В	—	—	_	_	—		-	—			
A			—	—	—	—		—			
9	—	—	-	_			-	_			
8	_	-		-	_	—	-	—			
7	_	—		_			_	—			
6	—			-	—	—	-	—			
5	RTS	TDIS	RAMWS	RAE	EPT	SQEXT	T2	LRTH			
4		co	NFIGL	RATIC)N						
3		RA	M DAT	A XSN	; FREQN	Л					
2		RA	M DAT	A XSL	FREQL						
1		RA	M DAT	A YSN	1						
0		RA	M DAT	A YSL	; TRANS	CEIVER	DATA				
Register											
Bit	7	6	5	4	3	2	1	0			
r	rved (n	nodem	use o	nly).							

	Interface Memory Chip 1 (CS1)										
Bit Register	7	6	5	4	3	2	1	0			
F		RAM ACCESS B									
E	IA1 —			_	_	IE1		MDA1			
D	_			—	_		FRT	RAMWB			
С	I	—	-	—	-	—	_	G2FGC			
В	FR3 FR2		FR1	—	—	_	_	_			
A			_	_	_	—	—	_			
9			-	—	—			_			
8			_	—		—	_	-			
7	-	PNDET	-	-	—	—	-	CDET			
6	_	—		_	-			—			
5	_	FED	_		_						
4	_	_	_	_		P2DET		_			
3			F	RAM D	ata Xi	ЗМ					
2			F	RAM D	ata Xi	3L					
1			F	RAM D	ata yi	ЗМ					
0			F	RAM D	ata yi	3L					
Register											
Bit	7	6	5	4	3	2	1	0			
— = Rese	erved (modem ı	use on	ly).							

г

9600 bps Facsimile Modem

Interface Memory Definitions

Mnemonic	Name	Memory Location	Des	scription
CDET	Carrier Detector	1:7:0	not present. CDET goes to zero at the start of	ergy is being detected, and a training sequence is the data state, and returns to one at the end of the ime before RLSD and deactivates within 2 baud
(None)	Configuration	0:4:0-7	The host processor configures the modem by w in the interface memory space. (See SETUP)	writing a control code into the configuration register
			Configuration Control Codes	
			Control codes for the eight available modem co	onfigurations are:
			Configuration	Configuration Code (HEX)
			 Recommendation V.27 ter. 3. FSK. The modem operates as a CCITT T.30 characteristics of the CCITT V.21 channel 2 4. Group 2. The modem operates as a CCITT T 	elected, the modem operates as specified in CCIT compatible 300 bps FSK modem having modulation system. T3 compatible AM modem. This configuration Group 2 facsimile apparatus. A carrier frequency of d as no carrier. The phase of the carrier
			 perform a coherent demodulation of the inco 3400 Hz to be recovered. The recovered bas bus. The baseband signal is converted to black of a preset threshold number. This number may Receiver data is presented to the RXD output should strobe the data on the rising edge of voltage) represents white. A logical 0 level (k 5. Tone Transmit. In this configuration, activating tone at a single frequency specified by the u space contain the frequency code. The most register (0:3). The least significant bits are s significant bit represents 0.146486 Hz ± 0.010 f = 0.146486 (256 FREQM + FREQL) Hz ± 6. DTMF Transmit. In this configuration, activating 	ut at a rate of 10368 samples per second. The use the data clock (DCLK). A logical 1 level (high ow voltage) represents black. Ing signal RTS causes the modern to transmit a user. Two registers in the host interface memory t significant bits are specified in the FREQM pecified in the FREQL register (0:2). The least %. The frequency generated is:

9600 bps Facsimile Modem

Interface Memory Definitions (Continued)

Mnemonic	Name	Memory Location		Description							
EPT	Echo Protector Tone	0:5:3	If EPT is a one transmitted end V.27 and V.29	ergy at the	e beginning	g of the tra	uning sequ	ence. Thi	s option is	available	in both the
FED	Fast Energy Detector	1:5:6	The zero state FED is not use				ent above	the receiv	er threshol	ld in the p	assband.
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7	The host proce the FREQL and								ata word to
			FREQM Registe	ər (0:3)							
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	2 ¹⁵	214	2 ¹³	2 ¹²	211	210	29	2 ⁸
			FREQL Registe	r (0:2)							
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	26	2 ⁵		23	22	21	20
			The frequency number (N) determines the frequency (F) as follows: $F = (0.146486)$ (N) Hz $\pm 0.01\%$. Hexadecimal frequency numbers (FREQM, FREQL) for commonly generated tones are given be								
				F	requency (Hz)	FREQ	M	FREQL		
					462		00		52		
					1100 1650		1D 2C		55 00		
					1850		31		55		
					2100		38		00		
FRT	Freeze Taps		When FRT is a	one, ada	ptive equal	lization tap	s are preve	ented from	n changing		
FR1 – FR3	Frequency 1,2,3	1:B:5,6,7	The one state modem is conf								cy when the
					Bit		Freq	uency (H	z)		
					FR1			2100			
					FR2			1100			
					FR3			462			
G2FGC	Group 2 Fast Gain Control	1:C:0	The one state	of G2FGC	selects a	fast AGC r	ate (8.6 tim	ies standa	ard) in Gro	up 2 Facs	mile.
IA1	Interrupt Active (One)	1:E:7	IA1 is a one wi	nen Chip	1 is driving	IRQ to ze	ero volts.				
IAO	Interrupt Active (Zero)	0:E:7	IA0 is a one w	hen Chip	0 is driving	IRQ to ze	ero volts.				
IE0	Interrupt Enable (Zero)	0:E:2	The one state	of IEO cau	ises the \overline{IR}	Q output to	o be low w	hen the D	DA0 bit is a	a one.	
IE1	Interrupt Enable (One)	1:E:2	The one state	of IE1 cau	ises the IR	Q output to	o be low w	hen the D)A1 bit is a	i one.	
	(0110)	1	The one state of LRTH lowers the receiver turn-on threshold from -43 dBm to -47 dBm. (See SETUP)								
LRTH	Lower Receive Threshold	0:5:0	The one state (SETUP)	of LRTH I	owers the r	eceiver tu	rn-on thres	hold from	– 43 dBm	nto – 47 d	Bm. (See

9600 bps Facsimile Modem

Interface Memory Definitions (Continued)

Mnemonic	Name	Memory Location				De	escription			
MDA1	Modem Data Available (One)	1:E:0	MDA1 goes to processor rea			odem writes re	gister 1:0. MDA1 goes to zero when the host			
PDM	Parallel Data Mode	0:F:7	The one state diagnostic da		places t	he modem in t	he parallel mode and inhibits the reading of Chip 0			
PNDET	Period 'N' Detector	1:7:6	The zero state end of the PN			ites a PN seque	ence has been detected. PNDET sets to a one at the			
P2DET	Period '2' Detector	1:4:2	The zero state start of the Pl			ates a P2 seque	ence has been detected. P2DET sets to a one at the			
(None)	RAM Access B	1:F:0-7	Contains the device).	RAM ac	cess code	e used in readi	ng or writing RAM locations in Chip 1 (baud rate			
(None)	RAM Access S	0:F:0-6	Contains the device).	RAM ac	cess code	e used in readi	ng or writing RAM locations in Chip 0 (sample rate			
(None)	RAM Data XBL	1:2:0-7	Least significa	ant byte	of 16-bit	word x used in	reading RAM locations in Chip 1 (baud rate device).			
(None)	RAM Data XBM	1:3:0-7	Most significa	Most significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate device).						
(None)	RAM Data XSL	0:2:0-7	Least significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).							
(None)	RAM Data XSM	0:3:0-7	Most significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).							
(None)	RAM Data YBL	1:0:0 – 7	Least significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device). See DA1.							
(None)	RAM Data YBM	1:1:0 – 7	Most significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device).							
(None)	RAM Data YSL	0:0:0-7		Shared b	y paralle	I data mode for	reading or writing RAM locations in Chip 0 (sample presenting channel data to the host microprocessor			
(None)	RAM Data YSM	0:1:0 – 7	Most significa rate device).	nt byte o	of 16-bit v	vord y used in	reading or writing RAM locations in Chip 0 (sample			
RAE	RAM Address Extension	0:5:4					en RAMWS is a one. During a RAM write to Chip 0, vhen RAE is a 0 the YRAM is selected.			
RAMWB	RAM Write Chip 1 (baud rate device)	1:D [.] 0					r when performing diagnostic writes to the baud rate ne host when reading RAM diagnostic data from			
RAMWS	RAM Write Chip 0 (sample rate device)	0:5:5					when performing diagnostic writes to the sample by the host when reading RAM diagnostic data from			
RTS	Request-to-Send	0:5:7	is turned off,	and the	turn-off s	equence has b	ence. The modem will continue to transmit until RTS een completed. RTS parallels the operation of the "ORed" by the modem.			
SETUP	Setup	0:E:3	register, and t returns to zer	o assum o when a	ne the op acted on	tions specified by the modem.	o reconfigure to the control word in the configuration for equalizer (0:5:1) and threshold (0:5:0). SETUP . The time required for the SETUP bit to cause a nodem. The following table lists worst case delays.			
			Current State	V.21	G2	High Speed Receiver	High Speed Transmitter			
			DELAY	14 ms	400 μs	2 BAUD	2 BAUD + TURNOFF Sequence + Training (if applicable) + SQUELCH (if applicable)			

9600 bps Facsimile Modem

Interface Memor	y Definitions	(Continued)
-----------------	---------------	-------------

Mnemonic	Name	Memory Location	Description
SQEXT	Squelch Extend	0.2:2	The one state of SQEXT inhibits reception of signals for 130 ms after the turn-off sequence.
TDIS	Training Disable	0:5:6	If TDIS is a one in the receive state, the modern is prevented from entering the training phase. If TDIS is a one prior to RTS going on, the generation of a training sequence is prevented at the start of transmission.
(None)	Transceiver Data	0:0 0–7	In receive parallel data mode, the modem presents eight bits of channel data in register 0:0 for reading by the host microprocessor. After the eight bits have been accumulated in register 0:C they are transferred to 0:0 and bit 0:E:0 goes to a one. When the host reads 0:0, bit 0:E:0 resets to a zero. The first bit of received data is not necessarily located in bit 0:0:0. The host must frame the received data by searching for message sync characters. Bit 0:E:0 sets at one eighth the bit rate in parallel data mode rather than at the sample rate (9600 Hz) as it does when reading RAM locations.
			In transmit parallel data mode the host stores data at location 0:0. This action causes bit 0:E:0 to reset to a 0. When the modern transfers the data from 0:0 to 0:2 bit 0.E:0 sets to a 1. The data is serially transmitted from register 0:2 least significant bit first. Received data is shifted into register 0:C from MSB toward LSB.
T2	T/2 Equalizer Select	0:5:1	If T2 is a one, an adaptive equalizer with two taps per baud is used. If T2 is a zero, an adaptive equalizer with one tap per baud is used. The number of taps remains the same for both cases. (See SETUP)

PERFORMANCE

Whether functioning in V.27 ter or V.29 configuration, the modem provides the user with unexcelled high performance.

TYPICAL BIT ERROR RATES

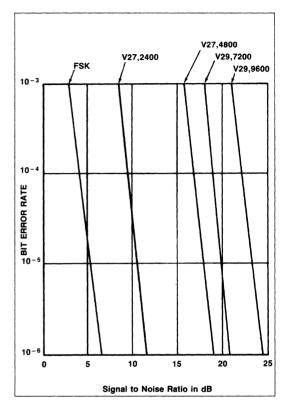
The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

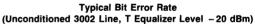
TYPICAL PHASE JITTER

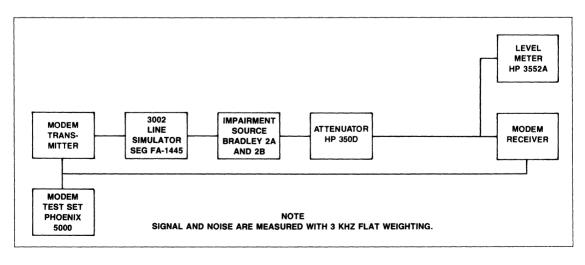
At 2400 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 12.5 dB in the presence of 15° peak-to-peak phase jitter at 150 Hz or with a signal-to-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted). At 4800 bps (V.27 ter), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

At 7200 bps (V.29), the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 25 dB in the presence of 12° peak-to-peak phase jitter at 300 Hz.

At 9600 bps, the modem exhibits a bit error rate of 10^{-6} or less with a signal-to-noise ratio of 23 dB in the presence of 10° peakto-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10^{-5} or less with a signal-to-noise ratio of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.


An example of the BER performance capabilities is given in the following diagrams:


R96MD


V27.4800 V27,2400 V29.7200 V29,9600 FSK 10-³ 10 - 4ERROR RATE BIT 10-5 10-6 0 5 10 15 20 25 Signal to Noise Ratio in dB

Typical Bit Error Rate (Back-to-Back, T Equalizer, Level – 20 dBm)

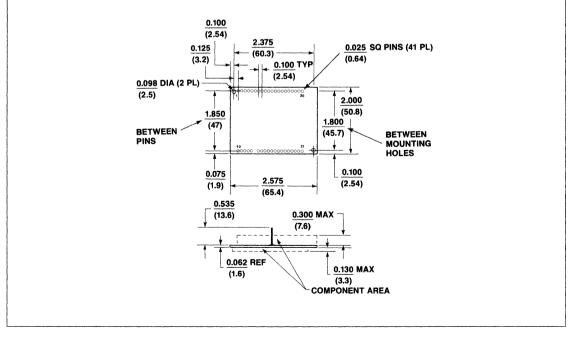
BER Performance Test Set-up

R96MD

9600 bps Facsimile Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	± 5%	350 mA	<500 mA
+ 12 Vdc	± 5%	5 mA	< 10 mA
- 12 Vdc	± 5%	30 mA	< 50 mA


Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak.

Environmental

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	- 40°C to + 80°C (- 40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less

Mechanical

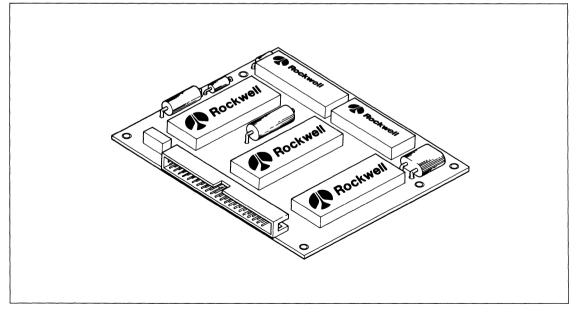
Parameter	Specification
Board Structure	Single PC board with a row of 20 pins and a row of 20 pins in a dual-in-line pin configuration.
	Mates with Berg 65780 or equivalent.
Dimensions	
Width	2.0 in. (50.8 mm)
Length	2.575 in. (65.4 mm)
Component Height	0.30 in. (7.6 mm) above, 0.13 in. (3 30 mm) below
Weight (max.)	2.6 oz. (73 g)
Pins	
Length (max.)	0.650 in. (16.5 mm) above (tin), 0.535 in. (13.6 mm) above (gold)
Thickness	0.025 in (0.64 mm) square

R96MD Dimensions and Pin Locations

Integral Modems

R144HD 14400 bps Half-Duplex Modem

INTRODUCTION


The Rockwell R144HD is a synchronous 14400 bits per second (bps) half-duplex modem. It is designed for operation over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.33, V.29, V.27 ter, T.30, T.4 and T.3. The R144HD can operate at speeds of 14400, 12000, 9600, 7200, 4800, 2400 and 300 bps.

The R144HD is designed for use in Group 3 facsimile machines and is also compatible with Group 2 machines. User programmable features allow the modem operation to be tailored to support a wide range of functional requirements. The modem's small size, low power consumption, serial/parallel host interface, and standard connector simplify system design and allow installation in a compact enclosure.

FEATURES

- · Compatibility:
 - CCITT V.33, V.29, V.27 ter, T.30, V.21 Channel 2, T.4, T.3
 Trellis Coded Modulation (TCM) at 14400, 12000, 9600 and 7200 bps
- Group 3 and Group 2 Facsimile
- Half-Duplex (2-Wire)
- Programmable Tone Detection
- Programmable Dual/Single Tone Generation.
- DTMF Tone Generation
- Dynamic Range: -43 dBm to -6 dBm
- Diagnostic Capability
- Equalization:
 - Automatic Adaptive
- Compromise Cable and Link (Selectable)
- DTE Interface:
- Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Transmit Output Level: +5 dBm ±1 dBm
- Small Size: 100 mm × 82 mm (3.94 in. × 3.23 in.)
- Low Power Consumption: 2.5W (Typical)
- TTL and CMOS Compatible

R144HD Modem

TECHNICAL SPECIFICATIONS

TRANSMITTER TONAL SIGNALING AND CARRIER FREQUENCIES

T.30 Tonal Signaling Frequencies

Function	Frequency (Hz ±0.01%)
Calling Tone (CNG)	1100
Answer Tone (CED)	2100
Group 2 Identification (C12)	1850
Group 2 Command (GC2)	2100
Group 2 Confirmation (CFR2, MCF2)	1650
Line Conditioning Signal (LCS)	1100
End of Message (EOM)	1100
Procedure Interrupt (PIS)	462
MF1 Confirmation (CFR)	1080
MF1 Procedure Interrupt (PIS)	462

Carrier Frequencies

Function	Frequency (Hz ±0.01%)
T.3 (Group 2)	2100
V.27 ter, V.33, TCM96, TCM72	1800
V.29, (V 33, TCM96, TCM72)1	1700
1. Selectable option	

TONE GENERATION

Under control of the host processor, the R144HD can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

TONE DETECTION

In the 300 bps FSK receive configuration, the presence of tones at preset frequencies is indicated by bits in the interface memory.

SIGNALING AND DATA RATES

Specification	Baud Rate pecification (Symbols/Sec.)		Data Rate (BPS) (±0.01%)	Symbol Points				
V.33	2400	6	14400	128				
V.33	2400	5	12000	64				
TCM96	2400	4	9600	32				
TCM72	2400	3	7200	16				
V.29	2400	4	9600	16				
V.29	2400	3	7200	8				
V.29	2400	2	4800	4				
V.27	1600	3	4800	8				
V 27	1200	2	2400	4				

Signaling/Data Rates

DATA ENCODING

The R144HD data encoding conforms to CCITT recommendations V.33, V.32 (TCM96, TCM72), V.29, and V.27 ter.

14400 bps Half-Duplex Modem

EQUALIZERS

The R144HD provides the following equalization functions which can be used to improve performance when operating over poor lines:

Cable Equalizers — Selectable compromise cable equalizers are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Amplitude Equalizer — The selectable compromise amplitude equalizer may be inserted into the transmit and/or receive paths under control of the transmit amplitude equalizer enable and the receive amplitude equalizer enable bits in the interface memory. The amplitude select bit controls which of two amplitude equalizers is selected.

Automatic Adaptive Equalizer — An automatic adaptive equalizer is provided in the receiver circuit for high speed data configurations.

TRANSMITTED DATA SPECTRUM

If neither the link amplitude nor cable equalizer is enabled, the transmitter spectrum is shaped by the following raised cosine filter functions:

- 1. 1200 Baud. Square root of 90 percent.
- 2. 1600 Baud. Square root of 50 percent.
- 3. 2400 Baud. Square root of 20 percent.

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's Rules, and typically exceed the requirements of foreign telephone regulatory bodies.

SCRAMBLER/DESCRAMBLER

The R144HD incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 ter, V.29, or V.33 depending on the selected configuration.

RECEIVED SIGNAL FREQUENCY TOLERANCE

The receiver circuit of the R144HD can adapt to received frequency error of up to \pm 10 Hz with less than a 0.2 dB degradation in BER performance. Group 2 carrier recovery capture range is 2100 \pm 30 Hz. The Group 2 receiver operates properly when the carrier is varied by \pm 16 Hz at a 0.1 Hz per second rate.

RECEIVE LEVEL

The receiver circuit of the R144HD satisfies all specified performance requirements for received line signal levels from -6 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

RECEIVE TIMING

In the receive state, the R144HD provides a Data Clock (DCLK) output in the form of a square wave. The low to high transitions of this output coincide with the center of received data bits. The timing recovery circuit is capable of tracking a $\pm 0.01\%$ frequency error in the associated transmit timing source. DCLK duty cycle is 50% $\pm 1\%$.

TRANSMIT LEVEL

The transmitter output level defaults to $\pm 5 \text{ dBm} \pm 1 \text{ dB}$ at power on. When using the default transmit level and driving a 600 ohm load, the TXA output requires a 600 ohm series resistor to provide $-1 \text{ dBm} \pm 1 \text{ dB}$ to the load. The output level can be programmed by performing a RAM write operation.

TRANSMIT TIMING

In the transmit state, the R144HD provides a Data Clock (DCLK) output with the following characteristics:

- Frequency. Selected data rate of 14400, 12000, 9600, 7200, 4800, 2400, or 300 Hz (±0.01%). In Group 2, DCLK tracks an external 10368 Hz clock. If the external clock input (XCLK) is grounded the Group 2 DCLK is 10372.7 Hz ±0.01%.
- 2. Duty Cycle. 50 ±1%

Transmit Data (TXD) must be stable during the 1 microsecond periods immediately preceding and following the rising edge of DCLK.

TURN-ON SEQUENCE

The selectable turn-on sequences of the R144HD are defined in the following table:

	RTS-CTS Turn-On Time			
Specification	Echo Protector Tone Disabled	Echo Protector Tone Enabled		
V.33	1393 ms	1598 ms		
TCM96	1393 ms	1598 ms		
TCM72	1393 ms	1598 ms		
V.29	253 ms	438 ms		
V.27 4800 bps	708 ms	913 ms		
V.27 2400 bps	943 ms	1148 ms		
V.27 4800 Short	50	255		
V.27 2400 Short	67	272		
V.21 300 bps	≤14 ms	≤14 ms		
Group 2	≤400 <i>μ</i> s	≤400 μs		

Turn-On Sequences

TURN-OFF SEQUENCE

For V.27 ter, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones at 1200 baud or approximately 7 ms of data and scrambled ones at 1600 baud followed by a 20 ms period of no transmitted energy. For V.33, TCM96, and V.29, the turn-off sequence consists of approximately 5 ms of remaining data and scrambled 1's followed by a 20 ms period of no transmitted energy. In V.21 the transmitter turns off within 7 ms after RTS goes false. In Group 2 the transmitter turns off within 200 μ seconds after RTS goes false.

CLAMPING

The following clamps are provided with the R144HD:

- 1. Received Data (RXD). RXD is clamped to a constant mark (1) whenever RLSD is off.
- Received Line Signal Detector (RLSD). RLSD is clamped off (squelched) during the time when RTS is on.
- 3. *Extended Squelch*. Optionally, RLSD remains clamped off for 130 ms after the turn-off sequence.

14400 bps Half-Duplex Modem

RESPONSE TIMES OF CLEAR-TO-SEND (CTS)

The time between the off-to-on transition of $\overline{\text{RTS}}$ and the off-to-on transition of $\overline{\text{CTS}}$ is dictated by the length of the training sequence. Response time is 1393 ms for V.33 and TCM96, 253 ms for V.29, 708 ms for V.27 ter at 4800 bps, and 943 ms for V.27 ter at 2400 bps. In V.21 $\overline{\text{CTS}}$ turns on in 14 ms or less. In Group 2 $\overline{\text{CTS}}$ turns on in 400 μ s or less.

The time between the on-to-off transition of $\overline{\text{RTS}}$ and the on-to-off transition of $\overline{\text{CTS}}$ in the data state is a maximum of 2 baud times for all configurations.

RECEIVED LINE SIGNAL DETECTOR (RLSD)

For V.33, TCM96, V.29 or V.27 ter, \overline{RLSD} turns on at the end of the training sequence. If training is not detected at the receiver, the \overline{RLSD} off-to-on response time is 15 ± 10 ms. The \overline{RLSD} on-to-off response time for V.27 is 10 ± 5 ms, V.29 is 30 ± 9 ms, and V.33 and TCM96 is 40 ± 10 ms. Response times are measured with a signal at least 3 dB above the actual \overline{RLSD} of threshold.

The RLSD on-to-off response time ensures that all valid data bits have appeared on RXD. The threshold levels are:

Greater than -43 dBm (RLSD on) Less than -48 dBm (RLSD off)

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

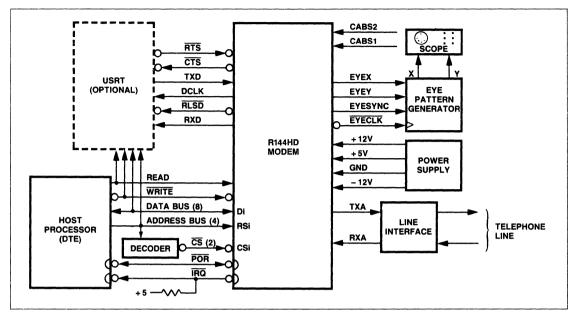
A minimum hysteresis action of 2 dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with an unmodulated 2100 Hz tone applied to the receiver's audio input (RXA).

MODES OF OPERATION

The R144HD is capable of being operated in either a serial or a parallel mode of operation.

SERIAL MODE

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the R144HD Functional Interconnect Diagram) illustrates this capability.


PARALLEL MODE

The R144HD has the capability of transferring channel data eight bits at a time via the microprocessor bus.

MODE SELECTION

Selection of either the serial or parallel mode of operation is by means of a control bit. To enable the parallel mode, the control bit must be set to a 1. The modern automatically defaults to the serial mode at power-on. In either mode the R144HD is configured by the host processor via the microprocessor bus.

14400 bps Half-Duplex Modem

R144HD Functional Interconnect Diagram

INTERFACE CRITERIA

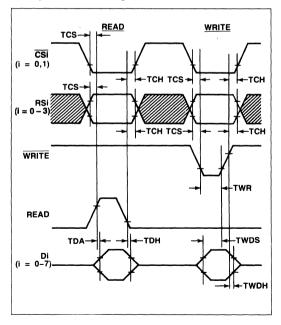
The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in two rows. One row contains 20 pins (1-20) and the other row contains 21 pins (21-41). Software circuits are assigned to specific bits in a 32-byte interface memory.

HARDWARE CIRCUITS

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R144HD Hardware Circuits table; the table column titled 'Type' refers to designations found in the Hardware Circuit Characteristics. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 6800, or 68000 microprocessors.

Name	Туре	Pin No.	Description		
A. OVERHI	EAD:				
Ground + 5 volts + 12 volts - 12 volts POR	GND PWR PWR PWR I/OB	14, 39 3, 4 26 37 36	Power Supply Return + 5 volt supply + 12 volt supply - 12 volt supply Power-on-reset		

R144HD Hardware Circuits (Continued)						
Name	Туре	Pin No.	Description			
B. MICROPROCESSOR INTERFACE:						
D7 D6 D5 D4 D3 D2 D1 D0	I/OA I/OA I/OA I/OA I/OA I/OA	7 5 9 31 15 28 23 29	Data Bus (8 Bits)			
RS3 RS2 RS1 RS0 CS0 CS1 READ WRITE IRQ	IA IA IA IA IA IA IA OB	30 8 27 10 6 18 1 2 32	Register Select (4 Bits) Select Reg. 0 – F Chip Select Sample Rate Device Chip Select Baud Rate Device Read Enable Write Enable Interrupt Request			
C. V.24 INTERFACE:			Interrupt nequest			
DCLK XCLK RTS CTS TXD RXD RLSD	OC IB IB OC IB OC OC	13 22 19 17 20 21 16	Data Clock External Clock for Group II Request-to-Send Clear-to-Send Transmitter Data Receiver Data Received Line Signal Detector			
D. CABLE		· · · · · · · · · · · · · · · · · · ·				
CABS1 IB 33 Cable Select 1 CABS2 IB 34 Cable Select 2						


Name	Туре	Pin No.	Description		
E. ANALOG SIGNALS:					
TXA AA 38 Transmitter Analog Output RXA AB 40 Receiver Analog Input					
F. DIAGNOSTIC:					
EYEX	OC	24	Eye Pattern Data — X Axis		
EYEY	OC OA	25 11	Eye Pattern Data — Y Axis Eye Pattern Clock		
EYESYNC	OA	12	Eye Pattern Synchronizing Signal		

R144HD Hardware Circuits (Continued)

Eye Pattern Generation

The four hardware diagnostic circuits, identified in the preceding table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8-bit data words are shifted out most significant bit first, clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Microprocessor Timing

Microprocessor Interface Timing Diagram

14400 bps Half-Duplex Modem

Critical Timing Requirements

Characteristic	Symbol	Min	Max	Units
CSi, RSi setup time prior to Read or Write	TCS	30	_	NS
Data Access time after Read	TDA		140	NS
Data hold time after Read	TDH	10	50	NS
CSI, RSi hold time after Read or Write	тсн	10	_	NS
Write data setup time	TWDS	75	-	NS
Write data hold time	TWDH	10	-	NS
Write strobe pulse width	TWR	75	-	NS

Cable Equalizer Selection

Cable Equalizer Selection

CABS 2	CABS 1	Length of 0.4mm Diameter Cable
0	0	0.0
0	1	1.8 km
1	0	3.6 km
1	1	7.2 km

Digital Interface Characteristics

The digital interface characteristics are listed in the table on the following page.

Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output is a low impedance operational amplifier output. In order to match to 600 ohms, an external 604 ohm series resistor is required.
RXA	AB	The receiver input impedance is $60K$ ohms $\pm 23\%$.

SOFTWARE CIRCUITS

The R144HD comprises three signal processor chips. Two of these chips contain 16 registers to which an external (host) microprocessor has access. Although these registers are within the modern, they may be addressed as part of the host processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Register in chip 0 update at the modern sample rate (9600 bps). Registers in chip 1 update at the selected baud rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0 or 1), the register by Z(0-F), and the bit by Q(0-7, 0 = LSB). A bit is considered to be "on" when set to a 1.

14400 bps Half-Duplex Modem

					Input/Output Type				
Symbol	Parameter	Units	IA	IB	OA	ОВ	oc	I/O A	I/O B
VIH	Input Voltage, High	v	2.0 min.	2.0 min.				2.0 min.	5.25 max. 2.0 min.
VIL	Input Voltage, Low	v	0.8 max.	0.8 max.				0.8 max.	0.8 max.
V _{OH}	Output Voltage, High	v		1	2.4 min.1			2.4 min. 1	2.4 min. ³
VOL	Output Voltage, Low	v		{	0.4 max. ²	0.4 max. ²	0.4 max ²	0.4 max. ²	0.4 max. ⁵
I _{IN}	Input Current, Leakage	μA	±2.5 max	1				± 12.5 max.4	
IOH	Output Current, High	mA			-0.1 max				
IOL	Output Current, Low	mA		{	1.6 max.	1.6 max.	1.6 max.		
۱ <u> </u>	Output Current, Leakage	μA				± 10 max.			
I _{PU}	Pull-up Current	μA		– 240 max.			– 240 max.		– 260 max
	(Short Circuit)	ĺ		– 10 min.			– 10 min.		– 100 min.
CL	Capacitive Load	pF	5	5	1			10	40
CD	Capacitive Drive	pF		1	100	100	100	100	100
-	Circuit Type		TTL	TTL w/Pull-up	TTL	Open-Drain	Open Drain w/Pull-up	3 State Transceiver	Open-Drair w/Pull-up
Notes		I							
1. I load	$= -100 \ \mu A$		5. I load = 0.	.36 mA					
2. I load	i = 1.6 mA								
3. I load	$= -40 \ \mu A$								

Divited Interface Characteristics

4. $V_{IN} = 0.4$ to 2.4 Vdc, $V_{CC} = 5.25$ Vdc

Status/Control Bits

The operation of the R144HD is affected by a number of software control inputs. These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits designated by a '-' are reserved for modem use only and must not be changed by the host.

RAM Data Access

The R144HD provides the user with access to much of the data stored in the modem's memories. This data is a useful tool in performing certain diagnostic functions.

The modem contains 128 words of random access memory (RAM). Each word is 32-bits wide. Because the modem is optimized for performing complex arithmetic, the RAM words are frequently used for storing complex numbers. Therefore, each word is organized into a real part (16 bits) and an imaginary part (16-bits) that can be accessed independently. The portion of the word that normally holds the real value is referred to as XRAM. The portion that normally holds the imaginary value is referred to as YRAM. The entire contents of XRAM and YRAM may be read by the host processor via the microprocessor interface.

The interface memory acts as an intermediary during these host to signal processor RAM data exchanges. The RAM address to be read from or written to is determined by the contents of register 0:F (RAM ACCESS S) or 1:F (RAM ACCESS B). The R144HD RAM Access Codes table lists access codes for storage in registers 0:F or 1:F and the corresponding diagnostic functions. The R144HD Diagnostic Data Scaling table provides scaling information for these diagnostic functions. Each RAM word transferred to the interface memory is 32 bits long.

These bits are written into interface memory registers 0:3, 0:2, 0:1 and 0:0, or 1:3, 1:2, 1:1 and 1:0, in that order. Registers 3 and 2 contain the most and least significant bytes of XRAM data, respectively, while registers 1 and 0 contain the most and least significant bytes of YRAM data respectively.

When set to a one, bit 0:5:5 (RAMWS) or bit 1:D:0 (RAMWB) causes the modem to suspend transfer of RAM data to the interface memory, and instead, to transfer data from interface memory to RAM in chip 0 or in chip 1, respectively. When writing into the RAM, only 16 bits are transferred, not 32 bits as for a read operation. The 16 bits written in XRAM or YRAM come from registers 1 and 0, with register 1 being the most significant byte. Selection of XRAM or YRAM for the destination is by means of the code stored in the RAM Access B bits of register 1:F for chip 1, or by means of 0:5:4 (RAE) for chip 0. When bit 1:F:7 or 0:5:4 is set to one, the XRAM is selected. When 1:F:7 or 0:5:4

When the host processor reads or writes register 0, the modem data available bit 0:E:0 or 1:E:0 (MDAi) is reset to zero. When the modem reads or writes register 0, MDAi is set to a one. When set to a one by the host, bit 0:E:2 or 1:E:1 (IEi) enables the MDAi bit to cause an IRQ interrupt when set. While the IRQ line is driven to a TTL low level by the modem, bit 0:E:7 or 1:E:7 (IAi) goes to a one.

The default access codes are 22 for 1:F and 00 for 0:F.

Data in registers 1:3 and 1:1 are presented serially on EYEX and EYEY, respectively.

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem.

	RAM Access Codes										
Node	Function	Access	RAE	Chip	Read Reg. No.						
1	Received Signal Samples	40	Х	0	2,3						
2	Demodulator Output	52	X	0	0,1,2,3						
3	Low Pass Filter Output	54	X	0	0,1,2,3						
4	Average Energy	5C	X	0	2,3						
5	AGC Gain Word	3C	X	0	2,3						
6	Tone 1 Frequency	7D	1	0	2,3						
7	Tone 1 Level	7E	1	0	2,3						
8	Tone 2 Frequency	7D	0	0	0,1						
9	Tone 2 Level	7E	0	0	0,1						
10	Output Level	4C	0	0	0,1						
11	Receiver Sensitivity			0							
12	Receiver Hysteresis			0							
13	Checksum	3F		0,1	0,1						
14	TX Level Attenuation	3E	1	0	2,3						
15	Equalizer Input	40		1	0,1,2,3						
16	Equalizer Tap Coefficients	01-20		1	0,1,2,3						
17	Unrotated Equalizer Output	61		1	0,1,2,3						

14400 bps Half-Duplex Modem

Ram Access Codes (Continued)

Node	Function	Access	RAE	Chip	Read Reg. No.				
18	Rotated Equalizer Output	22		1	0,1,2,3				
	(Received Point-Eye Pattern)			l					
19	Decision Points (Ideal)	62		1	0,1,2,3				
20	Error Vector	63		1	0,1,2,3				
21	Rotation Angle	00		1	0,1				
22	Frequency Correction	A8		1	2,3				
23	EQM	AB		1	2,3				
24	Group II Base Band Signal	C8		1	2,3				
25	G2 AGC Gain Word	AD		1	2,3				
26	G2 AGC Slew Rate	AA		1	2,3				
27	G2 PLL Frequency Correction	C2		1	2,3				
28	G2 PLL Slew Rate	F0		1	2,3				
29	G2 Black/White Threshold	2A		1	0,1				
30	G2 Phase Limit	F2		1	2,3				
RAE	= X is don't care since this from, and <i>not</i> written to, by			only	be read				

R144HD Interface Memory Chip 0 (CSO)

Bit									
	7	6	5	4	3	2	1	0	
Register									
F	PDM	RAM ACCESS S							
E	IA0			-	SETUP	IE0	_	MDA0	
D		-		I			-	—	
С	-	-	-	-		_			
В				-			—		
A					—	—			
9		-	-	1			-	-	
8	—	1		-	-	—	-	-	
7	—	-		-	—		-	-	
6	—	-				—			
5	RTS	TDIS	RAMWS	RAE	EPT	SQEXT			
4		co	NFIGL	IRATIC	N				
3		RA	M DAT	A XSM	I; FREQN	N			
2		RA	M DAT	A XSL	; FREQL				
1		RA	M DAT	A YSN	1				
0		RA	M DAT	A YSL	; TRANS	CEIVER	DATA		
Register					'				
	7	6	5	4	3	2	1	0	
Bit									
= Rese	rved (n	nodem	use o	nly).					

R144HD Interface Memory Chip 1 (CSI)

6 — TLE — FR2 — — — — — — — —	5 RLE FR1 	4 RAM A J3L 	3 CCESS 	2 5 B IE1 	1 	
TLE FR2 	 RLE 	 J3L			 FRT 	RAMWE
TLE FR2 	 RLE 	 J3L			 FRT 	RAMWE
TLE FR2 	-			IE1	 FRT 	RAMWE
 FR2 	-				FRT	
	 FR1 					G2FGC — — —
	FR1 			-	-	-
 NDET					-	
 NDET	-	-	-			
 NDET	-			_		
NDET	-					-
				_	_	CDET
		-	-	-	-	-
FED			_	-		
-	—		-	P2DET		_
	F	RAM D	ata Xe	зм		
	F	RAM D	ata Xi	3L		
	F	RAM D	ata yi	зм		
	F	RAM D	ata yi	3L		
6	5	4	3	2	1	0
	6	F	RAM D RAM D	RAM DATA YI RAM DATA YI	RAM DATA XBL RAM DATA YBM RAM DATA YBL 6 5 4 3 6 5 4 3	RAM DATA YBM RAM DATA YBL

14400 bps Half-Duplex Modem

			R144HD Interface	Memory Definition	15
Mnemonic	Name	Memory Location		Des	scription
CDET	Carrier Detector	1.70	not present CDET goes t	to zero at the start of	ergy is being detected, and a training sequence is the data state, and returns to one at the end of the ime before RLSD and deactivates within 2 baud
(None)	Configuration	0.4:0-2	The host processor config register in the interface m		writing a control code into the configuration ETUP)
			Configuration Control Co	odes	
			Control codes for the R14	4HD configurations a	re:
			Con	figuration	Configuration Code (HEX)
			V.33 144 V.33 120 TCM96 96 TCM72 72 V.33 144 V.33 120 TCM96 96 TCM72 72 V.29 960 V.29 960 V.29 960 V.29 480 V.27 240 V.27 480 V.27 240 V.27 480 V.27 240 V.27 480 V.27 240 V.27 480 V.27 240 T.27 480 V.27 240 T.27 240 T.2	0001 000	31 32 34 38 71 72 74 78 14 12 11 0A 09 8A 89 20 40 80 81 82 rd Mode or TCM72 is selected, the training sequence a coded is defined by V.32 (32 or 16 point elected, the modem operates as specified in CCITT elected, the modem operates as specified in CCITT elected, the modem operates as specified in CCITT compatible 300 bps FSK modem having modulation system. T3 compatible AM modem. This permits trans- mile apparatus. A carrier frequency of 2100 Hz is rrier. The phase of the carrier representing white is vers the carrier of the remote transmitting modem
			to be recovered. The re	ecovered baseband s	ncoming signal. This allows a baseband of 3400 Hz gnal is available on the microprocessor bus.
					or white by comparing the received signal level with y be changed by the user.

3

14400 bps Half-Duplex Modem

R144HD Interface Memory Definitions (C
--

Mnemonic	Name	Memory Location				0	escription				
			should strobe	Receiver data is presented to the RXD output at a rate of 10368 samples per second. The user should strobe the data on the rising edge of the data clock (DCLK). A logical 1 level (high voltage) represents white. A logical 0 level (low voltage) represents black.							
			a tone at a space conta register (0:3 nificant bit r	7. Single Tone Transmit. In this configuration, activating signal RTS causes the modem to transmit a tone at a single frequency specified by the user. Two registers in the host interface memory space contain the frequency code. The most significant bits are specified in the FREQM register (0:3). The least significant bits are specified in the FREQL register (0:2). The least significant bit represents 0.146486 Hz \pm 0.01%. The frequency generated is: f = 0.146486 (256 FREQM + FREQL) Hz \pm 0.01%.							
			tones at free	8. Dual Tone Transmit. In this configuration, activating RTS causes the modern to transmit two tones at frequencies and output levels specified by the user. By using the RAM Data Access routines, the user can program the tones and levels.							
			9. DTMF Transi 0:0, a DTMF						otmf digit	is stored	in register
EPT	Echo Protector Tone	0:5:3	mitted energy	If EPT is a one, an unmodulated carrier is transmitted for 185 ms followed by 20 ms of no trans- mitted energy at the beginning of the training sequence. This option is available in both the V.27 and V.29 configurations, although it is not specified in the CCITT V.29 recommendation.							
FED	Fast Energy Detector	1:5:6	The zero state of $\overline{\text{FED}}$ indicates energy is present above the receiver threshold in the passband. $\overline{\text{FED}}$ is not used for Group 2 Facsimile.								
(None)	FREQL/FREQM	0:2:0-7, 0:3:0-7	The host processor conveys tone generation data to the transmitter by writing a 16-bit data word to the FREQL and FREQM registers in the interface memory space, as shown below.								
			FREQM Registe	er (0:3)							
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	211	210	2 ⁹	2 ⁸
			FREQL Registe	r (0:2)							
			Bit:	7	6	5	4	3	2	1	0
			Data Word:	27	26	25	24	2 ³	2 ²	21	20
			The frequency F = (0.146486) Hexadecimal fr	(N) Hz ±	0.01%.					topos aro	aivan balaw
			nexadecimal in		requency		FREQ		FREQL		given below
					462	(12)	00		52		
					1100		1D		55		
					1650 1850		2C 31		00 55		
					2100		38		55 00		
FRT	Freeze Taps		When FRT is a	one, ada	aptive equa	lization tap	os are prev	ented fron	n changing	.	
FR1 – FR3	Frequency 1,2,3	1:B:5,6,7	The one state modem is cont								icy when the
					Bit		Free	quency (H	z)		
			1		FR1			2100			
					FR2 FR3			1100 462			
G2FGC	Group 2 Fast Gain Control	1:C:0	The one state	of G2FGC	selects a	fast AGC	rate (8.6 tir	nes stand	ard) in Gro	oup 2 Facs	imile.
IA1	Interrupt Active (One)	1:E:7	IA1 is a one w	hen Chip	1 is drivin	g ÎRQ to z	ero volts.				
IA0	Interrupt Active (Zero)	0:E:7	IA0 is a one w	hen Chip	0 is drivin	g IRQ to z	ero volts.				

14400 bpsHalf-Duplex Modem

R144HD Interface Memory Definitions (Continued)

Mnemonic	Name	Memory Location	Description	
IE0	Interrupt Enable (Zero)	0:E:2	The one state of IE0 causes the \overline{IRQ} output to be low when the DA0 bit is a one	
IE1	Interrupt Enable (One)	1.E:2	The one state of IE1 causes the \overline{IRQ} output to be low when the DA1 bit is a one.	
J3L	Japanese 3 Link	1.D:4	The one state of J3L selects this standard for link amplitude equalizer. The zero state of J3L selects U.S. survey long.	
MDA0	Modem Data Available (Zero)	0.E:0	MDA0 goes to one when the modem reads or writes register 0:0. MDA0 goes to zero when the host processor reads or writes register 0:0. MDA0 is used for parallel mode as well as for diag- nostic data retrieval.	
MDA1	Modem Data Available (One)	1:E:0	MDA1 goes to one when the modem writes register 1:0. MDA1 goes to zero when the host processor reads register 1.0.	
PDM	Parallel Data Mode	0:F:7	The one state of PDM places the modem in the parallel mode and inhibits the reading of Chip 0 diagnostic data.	
PNDET	Period 'N' Detector	1:7:6	The zero state of PNDET indicates a PN sequence has been detected. PNDET sets to a one at the end of the PN sequence.	
P2DET	Period '2' Detector	1:4 [.] 2	The zero state of $\overrightarrow{P2DET}$ indicates a P2 sequence has been detected. $\overrightarrow{P2DET}$ sets to a one at the start of the PN sequence.	
(None)	RAM Access B	1:F:0-7	Contains the RAM access code used in reading or writing RAM locations in Chip 1 (baud rate device).	
(None)	RAM Access S	0:F:0-6	Contains the RAM access code used in reading RAM locations in Chip 0 (sample rate device).	
(None)	RAM Data XBL	1:2:0 – 7	Least significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate device)	
(None)	RAM Data XBM	1:3:0 – 7	Most significant byte of 16-bit word x used in reading RAM locations in Chip 1 (baud rate	
(None)	RAM Data XSL	0:2:0-7	Least significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).	
(None)	RAM Data XSM	0:3:0-7	Most significant byte of 16-bit word x used in reading RAM locations in Chip 0 (sample rate device).	
(None)	RAM Data YBL	1:0:0-7	Least significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device). See DA1.	
(None)	RAM Data YBM	1.1:0 – 7	Most significant byte of 16-bit word y used in reading or writing RAM locations in Chip 1 (baud rate device).	
(None)	RAM Data YSL	0:0:0-7	Least significant byte of 16-bit word y used in reading RAM locations in Chip 0 (sample rate device). Shared by parallel data mode for presenting channel data to the host microprocessor bus. See Transceiver Data and DA0.	
(None)	RAM Data YSM	0:1:0 – 7	Most significant byte of 16-bit word y used in reading RAM locations in Chip 0 (sample rate device).	
RAE	RAM Address Extension	0:5:4	This bit is an extension of RAM Access S when RAMWS is a one. When RAE is a one, the XRAM in Chip 0 is selected for a RAM write operate, and when a zero the YRAM is selected.	
RAMWB	RAM Write Chip 1 (baud rate device)	1:D:0	RAMWB is set to a one by the host processor when performing diagnostic writes to the baud rate device (Chip 1). RAMWB is set to a zero by the host when reading RAM diagnostic data from Chip 1.	
RAMWS	RAM Write Chip 0 (sample rate device)	0:5.5	RAMWS is set to a one by the host processor when performing diagnostic writes to the sample rate device (Chip 0). RAMWS is set to a zero by the host when reading RAM diagnostic data from Chip 0.	
RLE	Receiver Lınk Equalızer	1:D [.] 5	The one state of RLE enables the link amplitude equalizer in the receiver.	
RTS	Request-to-Send	0:5 [.] 7	The one state of RTS begins a transmit sequence. The modem will continue to transmit until RTS is turned off, and the turn-off sequence has been completed. RTS parallels the operation of the hardware RTS control input. These inputs are "ORed" by the modem.	

14400 bps Half-Duplex Modem

Mnemonic	Name	Memory Location				De	escription		
SETUP	Setup	0:E:3	register, and when acted o	to assum on by the	ne the op modem.	tions specified The time requ	to reconfigure to the control word in the configuration for the equalizer (0:5:1). SETUP returns to zero irred for the SETUP bit to cause a change depends ving table lists worst case delays.		
			Current State	V.21	G11	High Speed Receiver	High Speed Transmitter		
			DELAY	14 ms	400 μs	2 BAUD	2 BAUD + TURNOFF Sequence + Training (if applicable) + SQUELCH (if applicable)		
SQEXT	Squelch Extend	0:5:2	The one state	e of SQE	XT inhibi	ts reception of	signals for 130 ms after the turn-off sequence.		
TDIS	Training Disable	0:5:6	If TDIS is a one in the receive state, the modem is prevented from entering the training phase. If TDIS is a one prior to $\overline{\text{RTS}}$ going on, the generation of a training sequence is prevented at the start of transmission.						
TLE	Transmitter Link Equalizer	1:D:6	The one state	e of TLE	enables	the link amplitu	ude equalizer in the transmitter.		
(None)	Transceiver Data	0:0:0-7	In receive parallel data mode, the modem presents eight bits of channel data in register 0:0 for reading by the host microprocessor. After the eight bits have been accumulated in register 0:C they are transferred to 0:0 and bit 0:E:0 goes to a one. When the host reads 0:0, bit 0:E:0 resets to a zero. The first bit of received data is not necessarily located in bit 0:0:0. The host must frame the received data by searching for message sync characters. Bit 0:E:0 sets at one eighth the bit rate in parallel data mode rather than at the sample rate (9600 Hz) as it does when reading RAM locations.						
			reset to a 0.	When the mitted fro	e modem om registe	transfers the c	a data at location 0:0. This action causes bit 0:E:0 to data from 0:0 to 0:2 bit 0:E:0 sets to a 1. The data is nificant bit first. Received data is shifted into register		

R144HD Interface Memory Definitions (Continued)

AUTO DIAL SEQUENCE

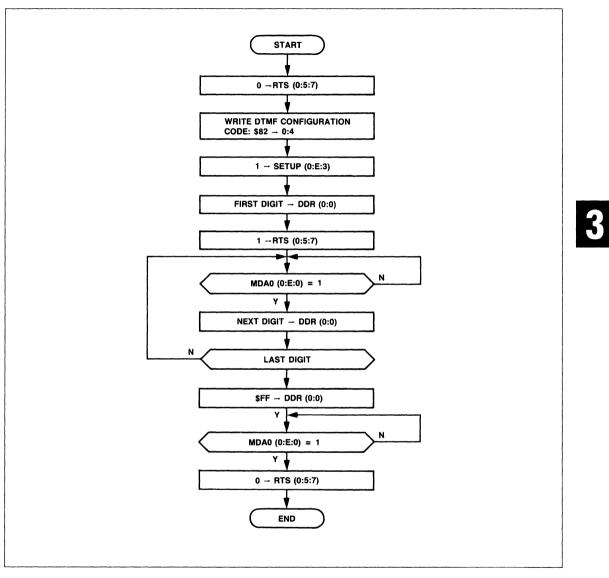
The modem features a Dual Tone Multifrequency transmitter configuration. The duration of the DTMF signal is 95 ms and the interdigit delay is 70 ms.

The table below lists the Dial Digit Register (DDR) codes necessary for DTMF dialing and the corresponding tone pairs.

Dial Digits/Tone Pairs

Dial Digit Register (DDR) Hexadecimal Code	Dial Digit	Tone Pair (Hz)	
00	0	941	1336
01	1	697	1209
02	2	697	1336
03	3	697	1477
04	4	770	1209
05	5	770	1336
06	6	770	1477
07	7	852	1209
08	8	852	1336
09	9	852	1477
0A	•	941	1209
0B	#	941	1477
	1 "	0.11	

POWER-ON INITIALIZATION

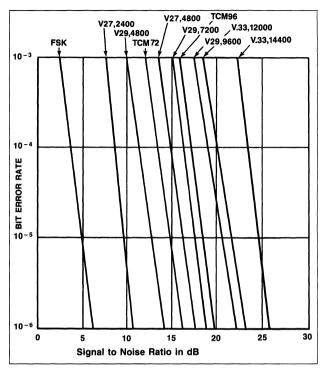

When power is applied to the modem, a period of 50 to 350 ms is required for power supply settling. The power-on-reset signal (\overrightarrow{POR}) remains low during this period. Approximately 10 ms after the low to high transition of \overrightarrow{POR} , the modem is ready to be configured, and \overrightarrow{RTS} may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 msec, the POR cycle is repeated.

At POR time the modem defaults to the following configuration: V.33/14400 bps, serial mode, training enabled, no echo protector tone on, no extended squelch, interrupts disabled, no link equalizer, RAM Access B code 22.

 \overrightarrow{POR} can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 μ sec or longer applied to the \overrightarrow{POR} pin causes the modem to reset. The modem is ready to be configured 10 msec after the low active pulse is removed from \overrightarrow{POR} .

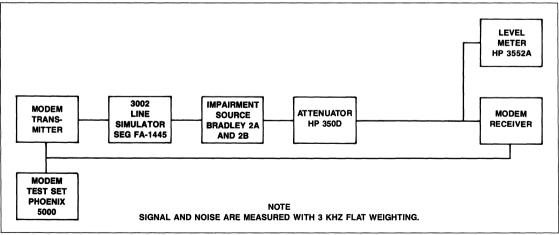
The following flowchart defines the auto dial sequence via the microprocessor interface memory.

14400 bpsHalf-Duplex Modem


Auto Dialing Sequence Flowchart

PERFORMANCE

Whether functioning as a V.27 ter, V.29, TCM96, TCM72, or V.33 type modem, the R144HD provides the user with unexcelled high performance.


TYPICAL BIT ERROR RATES

The Bit Error Rate (BER) performance of the modern is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated. An example of the BER performance capabilities is given in the following diagram.

Typical Bit Error Rate (Back-to-Back, Level – 20 dBm)

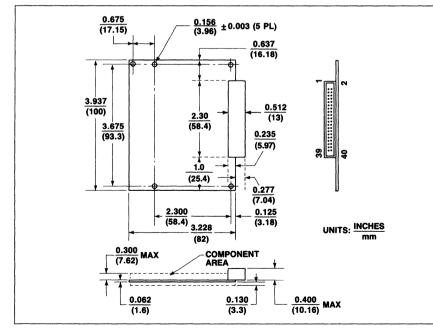
The BER performance test set-up is shown in the following diagram:

BER Performance Test Set-up

14400 bps Half-Duplex Modem

GENERAL SPECIFICATIONS

Voltage	Tolerance	Current (Typical) @ 25°C	Current (Max) @ 0°C
+ 5 Vdc	±5%	500 mA	<600 mA
+ 12 Vdc	± 5%	5 mA	< 10 mA
- 12 Vdc	± 5%	5 mA	< 10 mA


Note: All voltages must have ripple ≤ 0.1 volts peak-to-peak

Environmental

Parameter	Specification
Temperature	
Operating	0°C to +60°C (32°F to 140°F)
Storage	-40°C to +80°C (-40°F to 176°F) (Stored in heat sealed antistatic bag and shipping container)
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

Mechanical

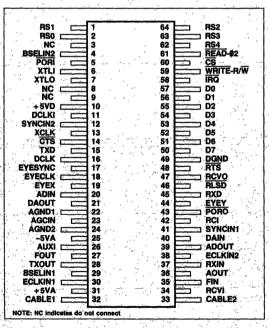
Parameter	Specification	
Board Structure	Single PC board with single right angle header with 40 pins. Burndy FRS 40BS8P or equivalent mating connector.	
Dimensions		
Width	3.937 in. (100 mm)	
Length	3.228 in. (82 mm)	
Component Height (max)	0.300 in. (7.62 mm) above, 0.130 in. (3.3 mm) below	
Connector Height	0.400 in. (10.16 mm)	
Weight (max)	3.6 oz. (100 g)	

R144HD Dimensions and Pin Locations

3

R96MFX

MONOFAX** Modems

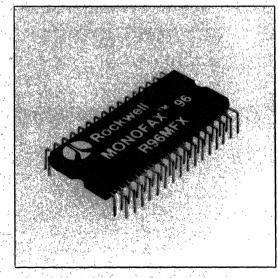

R96MFX 9600 bps MONOFAX™ Modem

INTRODUCTION

The Rockwell R96 MONOFAX" is a synchronous 9600 bits per second (bps) half-duplex modern in a single 64-pin quad-in-line package (QUIP). It is designed for operation over the public switched telephone network through line terminations provided by a data access arrangement (DAA).

The modem satisfies the telecommunications requirements specified in CCITT recommendations V.29, V.27 ter, V.21 and T.4, and the binary signaling requirements of T.30. The R96MFX can operate at speeds of 9600, 7200, 4800, 2400 and 300 bps.

The R96FAX is designed for use in Group 3 facsimile machines. The modem's small size and low power consumption allow the design of compact system enclosures for use in both office and home environments.



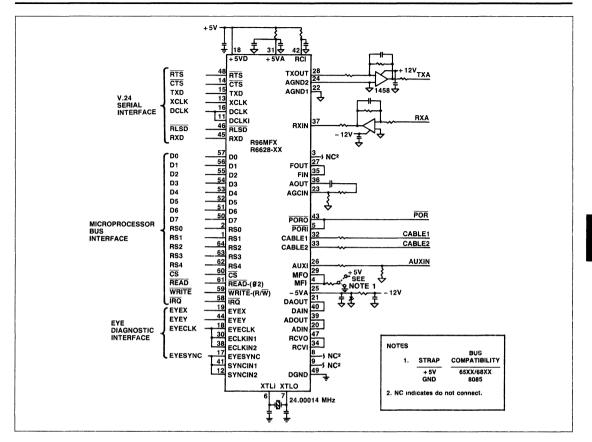
MONOFAX is a trademark of Rockwell International

R96MFX Pin Assignments

FEATURES

- Single 64-Pin QUIP
- CCITT V.29, V.27 ter, T.30, V.21 Channel 2, T.4
- Group 3 Facsimile Transmission/Reception
- Half-Duplex (2-Wire)
- Programmable Dual Tone Generation and Detection
- Programmable Tone Detection
- Programmable Turn-on and Turn-off Threshold
- Diagnostic Capability
 Provides Telephone Line Quality Monitoring Statistics
- Equalization
 Automatic Adaptive
 Compromise Cable (Selectable)
- DTE Interface: Two Alternate Ports — Selectable Microprocessor Bus (6500 or 8085 Compatible) — CCITT V.24 (RS-232-C Compatible)
- Low Power Consumption: 1W (Typical)
 +5 Vdc ±5% <250 mA
- Programmable Transmit Output Level
- TTL and CMOS Compatible

R96MFX 9600 bps MONOFAX Modem


Document No. 29300N02

Product Preview

3-144

R96MFX

9600 bps MONOFAX Modem

R96MFX Schematic Diagram

SECTION 4 CUSTOM AND PRIVATE LABEL MODEMS

	Page
Product Line Overview	4-2
RG224EC 2400 bps Private Label Modem	4-3
RG208 4800 bps Private Label Modem	4-5
RGV29FT 9600 bps Private Label Modem	4-7

CUSTOM AND PRIVATE LABEL MODEMS Customizing Products for OEM Requirements

Combining communications expertise with custom design capabilities and vertically integrated manufacturing capabilities, Rockwell offers fully customized or private label products to meet your communications requirements. Rockwell has an experience base of over ten years as a supplier of custom modems for major computer and data communications companies worldwide.

Continued advancements in VLSI modem and digital communications technology enable us to design and produce custom modems in a full range of speeds and compatibilities. In addition to Bell and CCITT compliance, custom modems can be designed specifically for your proprietary hardware or software compatibility requirements, including popular error correction protocols. Stand-alone, custom board, rack mount and PC card configurations are available to meet your form factor requirements.

For rapid market entry with minimum investment, Rockwell offers OEMs and resellers a growing line of private label modems. Full turn-key solutions, these stand-alone modems require only the addition of your company logo. Rockwell can also supply custom front panels and a selection of enclosure colors. PC card private label modems are also available. The chart below presents the current models of the private label modem product line.

Model	Data Speed (bps)	PSTN/ Leased Line	2/4-Wire Half/Full-Duplex	Sync/Async	Compliance	Error Correction
RG224	2400, 1200 300	Р	2WFD	Sync, Async	CCITT V.22 bis, V.22A/B; Bell 212, 103	
RG224EC	2400, 1200 300	Р	2WFD	Sync, Async	CCITT V.22 bis, V.22A/B; Bell 212, 103	MNP Class 3
RGV22BEC	2400, 1200 300	Р	2WFD	Sync, Async	CCITT V.22 bis, V.22A/B; Bell 212, 103	MNP Class 3
RG208	4800, 2400	P/L	2WHD, 4WFD	Sync	Bell 208A/B; CCITT V.27 bis/ter	
RGV29FT	9600, 7200, 4800, 2400	P/L	2WHD, 4WFD	Sync	CCITT V.29, V.27 bis/ter	

RG224EC and RGV22BEC

Private Label Modems

RG224EC and RGV22BEC 2400 bps Modems

DESCRIPTION

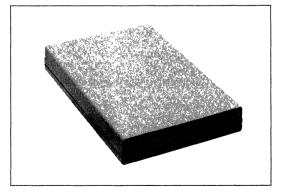
The RG224EC and RGV22BEC are advanced error correcting 2400/1200/300 bps modems for private labeling by OEMs and resellers. With Rockwell VLSI and digital signal processing technology, these modems offer high quality, low cost and a versatile array of features.

These Bell-compatible modems operate at 2400 bps, 1200 bps or 300 bps full-duplex, over the dial-up telephone network. Over shorter hauls, the RG224 works in half-duplex and fallback (synchronous and asynchronous) modes.

The RG224EC and RGV22BEC are packed with user convenience features. In answer mode, the modem automatically adapts to match the speed of the incoming signal. For outgoing calls, pulse or tone dialing can be selected, and communication software is no problem with "AT" command set compatibility. Rockwell's unique automatic adaptive equalization technique compensates for noise on the telephone line or weak incoming signals, delivering accurate and reliable data. A non-volatile memory stores up to ten frequently called numbers and command strings. The RG224 also features auto answer, a call progress speaker with volume control, and the ability to monitor another data transmission.

VIRTUALLY ERROR-FREE TRANSMISSION

Error detection is crucial at 2400 bps because so much data can be garbled by a single distortion in the line. Simple protocols are not equipped to handle the errors and delays inherent in the long-distance dial-up network.


The RG224EC corrects errors by employing Microcom's class 3 MNP protocol, which resides in firmware in the modem itself and is transparent to the user except for a few simple commands. The RGV22BEC further tailors this error correcting software to the country of operation. This protocol is bit-synchronous, which is 20% more efficient than asynchronous transmission. It has error detection based upon a 16-bit Cyclic Redundancy Check (CRC), error correction, and automatic retransmission. These error correction techniques create a reliable link of virtually error-free data transfer at both 2400 and 1200 bps when communicating with another MNP type modem.

INTERNATIONAL COMPATIBILITY

For global markets, the RG224EC and RGV22BEC are compatible with CCITT V.22A/B and V.22 bis standards. The RGV22BEC offers all the features of the RG224EC plus a telco interface and dialing protocol developed for specific country operation. Contact the Rockwell factory for information on available international versions.

CUSTOMIZING THE PRODUCT

The RG224EC and RGV22BEC are available with customized logos and enclosure colors. The standard enclosure color is bone, with other colors available on special order. Rockwell will silkscreen your own custom artwork or logo on the available on the front panel. For a true scale front drawing, request RG224EC brochure (Document No. D-4).

RG224EC Modem

Data Sheet

RG224EC and RGV22BEC

CUSTOMIZED DOCUMENTATION AND PACKAGING

The corrugated cardboard shipping box is blank, ready to slip on your sleeve. The text will be supplied to you on an industry compatible 5-1/4" diskette in Microsoft Word format. It can be directly output to an HP LaserJet printer, or easily converted for output to a different printer. Photostats of all artwork used in the manual complete the documentation kit. With this kit, you can easily paste up a manual for printing, or you can have it edited to your specific needs.

2400 bps Private Label Modems

FOR ADDITIONAL INFORMATION

For a color brochure on the RG224EC, request Document No. D-4. Additional 2400 bps private label modems are available, including a version without error correction, the RG224, and an internal PC halfcard. Contact the Rockwell factory for details.

TECHNICAL SPECIFICATIONS

- Compliance: Bell 212A and 103 CCITT V.22A/B and V.22 bis
- Data Format: Synchronous or asynchronous binary serial. Synchronous: 2400 or 1200 bps. Asynchronous: 2400, 1200 or 300 bps. Character lengths: 8, 9, 10 or 11 bits.
- Operation: Full or half duplex over 2-wire dial-up or leased lines.
- Modulation: QAM for V.22 bis; DPSK for V.22 and Bell 212A FSK for 0-300 bps.

Carrier Frequency: Specification

Frequency
1200
1200
2400
2400
2400
1200
1270
1070
2225
2025

Equalization: Automatic adaptive and fixed compromise.

Transit Level: - 10 dBm ±1 dB

Dial modes: Pulse or tone auto dialing. Non-volatile directory stores 10 numbers with 40 digits each.

Sensitive: 0 to -43 dBm

- Answer Modes: Manual or automatic, with automatic conversion to speed of incoming data.
- Telephone Interface: Connection to two-wire DDD network via USOC RJ11, RJ12 and RJ13 jack.
- DTE Interface: EIA RS-232-C, CCITT V.24/V.28
- Error Correction: Microcom Network Protocol (MNP) level 3
- Command Compatibility: Hayes "AT" command set compatible
- Software Compatibility: Crosstalk XVI and Smartcom II.
- Test Modes: Local analog loopback, remote digital loopback.
- Certification: FCC Parts 68 and 15 Class B. UL/CSA approved.
- Electrical: 120 VAC (104 VAC-128 VAC), 60 Hz, 0.2A external wallmount transformer

Environmental: Operating: - 10°C to 50°C Storage: - 20°C to 80°C Relative Humidity: 10% to 90%, noncondensing, or a wet bulb temperature of 35°C, whichever is less

Dimensions: Width 6.25 in. (15.88 cm) Height 1.375 in. (3.49 cm) Depth 10.50 in. (26.67 cm)

Weight: 3.75 lbs. (8.25 kg)

Warranty: Two-year, limited

Specification is subject to change without notice and shall not be regarded as a warranty

RG208

Private Label Modem

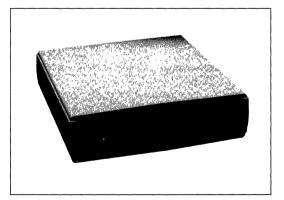
RG208 4800 bps Private Label Modem

DESCRIPTION

The RG208 4800 bps synchronous modem is designed for private labeling by OEMs and resellers. It incorporates advanced features such as auto-dial, four-wire dial backup and truly uncomplicated set-up. In addition, the RG208 is compatible with existing 208A/B modems as well as the CCITT V.27 bis/ter standard. The front panel liquid crystal display and touch sensitive keys make configuration easy, with menus, call progress and system status displays. Optimum data transfer over poor or changing lines is assured with Rockwell's Auto Adaptive Equalization.

JUST ADD YOUR LOGO

Add your logo to the area within the embossed border on the left side of the front panel. Or, simply send us the camera-ready art and we will do the rest.


You may customize the front panel with your choice of color and graphic designs. Rockwell will be happy to quote the additional cost for a custom front panel.

PERSONALIZED DOCUMENTATION

The RG208 user manual is stored on an industry compatible 5-1/4 in. diskette in Microsoft Word format. Edit the file to add your company name, model number and any application-specific instructions. Print the file directly on an HP LaserJet printer. Photostats of all artwork and photographs used in the manuals complete the documentation kit.

FEATURES

- · Self-contained modem with your customized logo
- 4800 or 2400 bps operation
- Bell 208A/B and CCITT V.27 bis/ter compatible
- · Compatible with industry standard 208A/B modems
- Full-duplex, synchronous operation over four-wire leased lines
- Full duplex over four-wire dial backup (dual, two-wire dual lines)
- Half-duplex operation over two-wire, dial-up or leased lines
- Auto/manual dial and answer
- LCD front panel displays user commands and system status for ease of use
- Easily configured via front panel touch-sensitive keys: no internal switches and registers to set
- Pulse or tone auto-dialing with automatic redial capability
- Call progress monitored on LCD display or internal speaker
- Non-volatile directory of 20 telephone numbers (35 digits each)
- Two year limited warranty; extended warranty plans are available

RG208 Modem

Data Sheet 4-5

RG208

RG208 PACKAGING

The RG208 is shipped to you in a blank corrugated cardboard box ready to slip into your branded sleeve. The modem, three cables (an RJ11C, RF45S and a standard telephone cable) and the power supply are packed in foam protectors and covered with a top tray that holds your customized documentation.

4800 bps Private Label Modem

FOR MORE INFORMATION

Request the RG208 brochure (Literature Order No. D-6).

TECHNICAL SPECIFICATIONS

Compliance: Bell 208 A/B and V.27 bis/ter

Data Rates: 4800 and 2400 bps

Data Format: Synchronous binary serial

Operation: Four-wire leased line, full duplex Two-wire leased line, half-duplex Two-wire dial-up line, half-duplex or pseudo fullduplex Four-wire dial backup, full-duplex (two 2-wire dial-up lines, half-duplex)

Modulation: Eight-phase DPSK

Carrier Frequency: 1800 ±1 Hz

- Line Requirement: Unconditioned
- Equalization: Automatic adaptive; selectable cable length equalization
- Transmit Clock: Internal or External
- Transmit Level: 0 to -14 dBm (Selectable in -2 dBm steps)
- Receiver Threshold: -43 dBm, -33 dBm, -26 dBm, -16 dBm (Selectable)
- RTS/CTS Delay: Bell 208: 50 ms or 150 ms (Selectable) V.27: 50 ms, 67 ms, 708 ms, or 943 ms (Selectabl)
- Telephone Interface: Leased Line: RJ14C Dial-up Lines: RJ11C and RF45S

DTE Interface: EIA RS-232-C, CCITT V.24/V.28

- Liquid Crystal Display: Two-line, 40-character LCD and four key system for menu driven operation and configuration from front panel. Configuration stored in nonvolatile memory. Displays call progress, error messages, line quality, signal strength, CD, RTS, CTS, DSR and test results
- Auto-dial: Automatic tone or pulse dialing; telephone directory stores 20 numbers with 35 digits each

Answer Modes: Manual or automatic

- Terminal Mode: May be controlled by terminal commands in SDLC eight-bit ASCII data format
- Test Modes: Local and remote analog loopback, digital loopback, and self-test
- Certification: FCC parts 68 and 15 Class A. UL/CSA certified
- Electrical: 120 VAC (104 VAC-128 VAC), 60 Hz, 0.25 A external wallmount transformer

Environmental: Operating Temperature: 5°C to 40°C Storage Temperature: -20°C to 70°C Relative Humidity: 10% to 90%, noncondensing, or a wet bulb temperature of 35°C, whichever is less

Dimensions: Width: 8.5 in. (21.6 cm) Height: 2.6 in. (6.7 cm) Depth: 9.3 in. (23.6 cm)

Weight: 4.6 lbs. (10.1 kg)

Warranty: Two-year, limited

RGV29FT

Private Label Modems

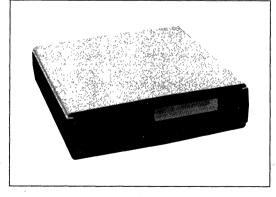
RGV29FT 9600 bps Private Label Modem

INTRODUCTION

The RGV29FT is a 9600 bps synchronous modem with fast training capability for leased line network applications. Designed for private labeling by OEMs and resellers, the RGV29FT also includes a four-wire dial line mode which may be used to back-up a four-wire leased circuit. The auto-dial/auto-answer features and convenient configuration from the front panel ensure easy operation for even the first-time user. The front panel liquid crystal display displays configuration menus, modem status, line quality, signal strength and the telephone number stored in the programmable telephone number directory.

The RGV29FT is compatible with CCITT V.22 and V.27 bis/ ter standards. The security option provides a choice of password and dialback security modes.

READY FOR PRIVATE LABELING


The front panel includes an embossed area ready to accept your company logo or may be customized to your design. Cost of custom front panel colors and graphic designs are available by quotation. The RGV29FT is shipped in a blank corrugated cardboard box ready for insertion in your branded outer sleeve.

CUSTOMIZE YOUR DOCUMENTATION

The user manual is supplied on an IBM PC-compatible 5 1/4 in. diskette in Microsoft Word format, ready for addition of your company name, model number. It is formatted for printout on an HP LaserJet printer. Photostats of artwork used in the manual complete your documentation kit.

FOR MORE INFORMATION

Request RGV29FT brochure (Literature Order No. D-9).

RGV29FT Modem

Data Sheet 4-7

4

RGV29FT

9600 bps Private Label Modem

TECHNICAL SPECIFICATIONS

Compliance: CCITT V.29 and V.27 bis/ter

Data Rates: V.29: 9600, 7200, and 4800 bps V.27: bis/ter: 4800 and 2400 bps

Data Format: Synchronous binary serial

Operation: Four-wire leased line, full duplex Two-wire leased line, half-duplex Two-wire dial-up line, half-duplex or pseudo fullduplex Four-wire dial backup, full-duplex (two 2-wire halfduplex dial-up lines)

Modulation: V.29: Quadrature Amplitude Modulation (QAM)

Carrier Frequency: 1700 \pm 1 Hz or 1800 \pm 1 Hz

Line Requirement: Unconditioned

Equalization: Automatic adaptive; selectable cable length equalization

Transmit Clock: Internal or External

- Transmit Level: 0 to -14 dBm (Selectable in -2 dBm steps)
- Receiver Threshold: -43 dBm, -33 dBm, -26 dBm, -16 dBm (Selectable)

RTS/CTS Delay: Fast Train: 23 ms (V.29 9600, 7200, 4800 bps) 22 ms (V.27 4800 bps) 30 ms (V.27 4800 bps) CCITT V.29: 253 ms

Telephone Interface: Leased Line: RJ14C Dial-up lines: RJ11C and RJ45S DTE Interface: EIA RS-232-C, CCITT V.24/V.28

- Liquid Crystal Display: Two-line, 40-character LCD and four key system for menu driven operation and configuration from front panel. Configuration stored in non-volatile memory. Displays call progress, error messages, line quality, signal strength, CD, RTS, CTS, DSR and test results
- Auto-dial: Automatic tone or pulse dialing; telephone directory stores 20 numbers with 35 digits each

Answer Modes: Manual or automatic

Security Mode Option: Password or dialback

- Test Modes: Local and remote analog loopback, digital loopback, and self-test Certification: FCC parts 68 and 15 Class A. Designed for UL and CSA certification
- Electrical: 120 VAC (104 VAC-128 VAC), 60 Hz, 0.25 A external wallmount transformer

Environmental: Operating Temperatures: 5°C to 40°C Storage Temperature: - 20°C to 70°C Relative Humidity: 10% to 90%, noncondensing, or a wet bulb temperature of 35°C, whichever is less

Dimensions: Width: 8.5 in. (21.6 cm) Height: 2.6 in. (6.7 cm) Depth: 9.3 in. (23.6 cm)

Weight: 4.6 lbs. (10.1 kg)

Warranty: Two-year, limited

Specification is subject to change without notice and shall not be regarded as a warranty.

SECTION 5 APPLICATION NOTES

	Page
An R6500/11-R2424 Intelligent Modem Design	5-3
Interfacing Rockwell Signal Processor-Based Modems to an Apple IIe Computer	5-46
2400/1200/300 bps International Modem Design	5-50
Quality of Received Data for Signal Processor-Based Modems	5-83
R2424 and R1212 Modems Auto Dial and Tone Detection	5-104
8088 Microprocessor to R1212/R2424 Modem Interface	5-114
High Speed Modems Filter Characteristics	5-119
R96F Modem Tone Detector Filter Tuning	5-121
R96F Modem Recommended Receive Sequence for Group 2 Facsimile	5-127
DTMF Dialing for R24MFX, R48MFX, R24BKJ, or R48BKJ	5-130

.....

An R6500/11 — R2424 Intelligent Modem Design

by Ron Collins and Joseph W. Hance Product Applications Engineers Semiconductor Products Division, Newport Beach, California

INTRODUCTION

The combination of single chip microcomputers and standard modems makes possible the implementation of sophisticated and flexible telecommunications systems. The intelligent modem has become the standard for personal microcomputers and provides access to many outside resources over standard telephone lines.

This application note describes the hardware and software design of a 300/1200/2400 bit-per-second (bps) modem based on the Rockwell R2424 single board modem and the R6500/11 singlechip microcomputer. The system design minimizes the number of devices used and provides the user adequate room for special features. The software implements the industry standard "AT" command set so that compatibility with commercial software packages is provided. This particular design is that of a standalone "Box Modem" but only minimal changes are needed in the configuration for a personal computer bus compatible modem.

HARDWARE DESIGN

The hardware used in this design (see the schematic in Figure 1) consists of an R6500/11 microcomputer (Z1), an R2424DC modem module (Z3), and a 16L8 type PAL (Z2). A complete parts list is tabulated in Table 1.

The R6500/11 controls the system and implements the high level command protocol. It has an internal UART which provides communications between the host computer and the modem. The R2424DC module is addressed as a peripheral on the abbreviated bus of the R6500/11. All modem configuration, dial, status, and commands are transmitted over the data bus. The serial interface to the R2424DC carries only the data transmitted or received over the telephone line.

Table 1. R6500/11-R2424 Intelligent Modem Parts List

Item	Part	Qty	Description
1	P1	1	RS-232C Connector, Female, DB-25
2	R1	1	4.7K Resistor, 5%
3	R2	1	3K Resistor, 5%
4	R3	1	3K Resistor, 5%
5	Y1	1	1.8432 MHz Crystal
6	Z1	1	R6500/11 Single-chip Microcomputer
7	Z2	1	PAL 16L8
8	Z3	1	R2424DC Modem Board
9	Z4	1	MC1488
10	Z5	1	MC1488
11	Z6	1	MC1489

The PAL* generates the proper bus control signals needed to interface the R2424DC to the R6500/11's bus. It also allows the R6500/11 to switch the serial data between the host and the line to accommodate the command and on-line modes. The 1488's (Z4, Z5) and the 1489 (Z6) provide a standard RS-232-C interface for the host computer. These devices would not be necessary in the design of a plug-in personal computer modem. Figure 2 shows the logic equivalent of the 16L8 PAL and Figure 3 shows the PALASM equations used to program the PAL.

SOFTWARE DESIGN

The Functional State diagram for the software is shown in Figure 4. An assembly listing of the program is included at the end of this application note. Notes are liberally included in the listing to assist the understanding of program operation. (Figure 7).

Note: In the discussion of the software and operation of this design, it is assumed the reader knows and understands the common "AT" commands. If not, refer to any of a number of source materials devoted to this subject.

There are five main sections to this program. In order of occurrance in the listing, they are:

Part 1: Baud rate and protocol determination	(\$F800\$F998)
Part 2: Reading in the command string	(\$F999-\$F9E8)
Part 3: Processing the command string	(\$F9E9-\$FA1B)
Part 4: Command definitions	(\$FB1E-\$FEBA)
Part 5: Interrupt Service Routine	(\$FF57-\$FF79)

Most of the software operates in the Command Mode, responding to inputs from the host system. The Command Mode section includes Parts 1–5, with the exception of the <CR> (Carriage Return) command in Part 4. The remaining sections of Figure 4 lie within the definition of the <CR> command. Figure 5 shows the flow chart of the Command Mode section.

After initialization, the software loops in Part 1, waiting for an attention code ("AT" or "A") or for the phone to ring. Any system designed to run the "AT" command set must be able to operate at either 300 or 1200 (or, in this case, 2400) baud, using 7 or 8 bits per word, with even, odd or no parity, switching from one mode to another automatically. The method used to do this is outlined on page 0004 of the software listing, Figure 7. Figure 6 diagrams the bit patterns of the characters "A", "T" and "/" and shows how the relationship of bits 8 and 9 of each character determine the characteristics of the serial protocol.

*PAL and PALASM are registered trademarks of Monolithic Memories, Inc.

Application Note

R6500/11 • R2424 Intelligent Modem Design

In Part 2 the serial communications protocol as been established. ASCII command characters are read in one at a time and stored in a buffer (INBUFF), excepting <SPACE> and non-<CR> control characters, until a <CR> character is entered. Should more than 40 characters be received, a flag (BUFFLG) is set, indicating an error condition.

When the program recognizes a <CR> character it stops accepting commands and goes directly to command execution (Part 3). It processes each command in sequence until an "A", "O", "Z" or <CR> command. "A" and "O" forces an attempt to go on-line (examine RSLD) for carrier signal and go on-line if present, otherwise it will go back to Command Mode.) "Z" performs a soft reset and returns to Command Mode. <CR> is the usual end to each command string. This is where error conditions are reported, on-line data are handled, and a return to Command Mode from Data Mode is made upon recognition of a valid escape code sequence.

This intelligent modem will recognize that it is being called only while it is waiting for an attention code (at label L1). If the PA0 flag goes high at this point, indicating the phone is "ringing", the program branches to RING then jumps to RINGNG, where a determination is made whether to answer the phone or not. If not ringing, it goes back to waiting for "AT" or "A/". If it is ringing, it then bypasses Part 2 and Part 3 and attempts to go to the Data Mode (depending on presence of a carrier signal) by executing the "A" (Answer) command.

When this modem is called, an assumption is made as to the proper baud rate and serial protocol, that the values determined by the most recent attention code are still valid. Should a call be received before the first attention code was entered, it defaults to 1200 baud, 8 bits, no parity. The call is not answered in this case, since S0 was not set to a non-zero value, however, the "RING" message is sent out to the host system at this rate.

Part 4 comprises the coding of each "AT" command. All but AAA, OOO, ZZZ and CR end in an RTS instruction, returning control back to the command string processor at NXTCMD. AAA and OOO transfer control directly to CR in an attempt to go on line. CR always returns to Part 1 of the program, and ZZZ always jumps to the Power-On-Reset address at RESET.

Part 5 is divided into two parts: signal processing and delay timing (execution of one or the other is determined by the value of the INTFLG flag). The signal processing takes place while waiting for an attention code, echoing (if enabled) the incoming bits back to the host system, and is described on page 0004 of Figure 7. Delay timing is selected just before Part 2 (or if a call is answered). The delay routine is designed to allow a variable number of precise time delays, where the actual time interval is determined by the routine needing the delay. For example, the "," (comma) command tells the modem to do nothing for S8 number of seconds, so one time interval is 1/10 second and the Escape Code Guard time interval is 20 ms, each requiring different values for CNTR-B and DELAYT.

General notes on the software:

Liberal use was made of the available RAM for 1-bit flags and variables, primarily because no premium is placed on RAM space in this design. These could be compressed into byte-sized entities should more space be required.

No attempt was made to provide status information via the S13, S14, S15 or S17 pseudo-registers. These could be added if necessary.

The S10 (Loss of Carrier) and S11 (Touch-Tone) delay times are limited to 400 ms and 70 ms, respectively, due to the design of the R2424 Modem.

The "H2" command does nothing additional to the "H1" command since the R2424 Modem does not have an auxiliary relay.

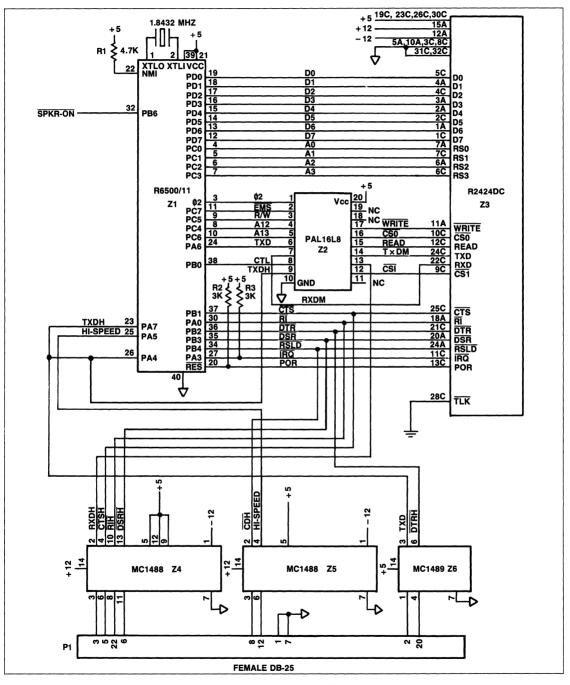
This program implements the concepts of modularity and structured programming as much as was practical for assembly-level code. This allows easy customization and tailoring for a particular application. There are deviations from this guideline, however, so modifications should be made with this in mind.

Expansion might include detection of Dial tone, Ringing and Busy signals using the TONE bit of RCV8. For example, if a Busy signal is detected, the program could automatically re-dial after a suitable delay time.

Unlike some commercial intelligent modems, no default switches or status LEDs were implemented in this design, nor was an actual speaker circuit included (though a control line for one, SPKR-ON/, is provided) in the interests of simplicity.

Finally, this design has not been thoroughly tested to meet the "AT" specifications. This application note is presented only as a guide on how to control a R2424 Modem with a R6500/11 single-chip microcomputer.

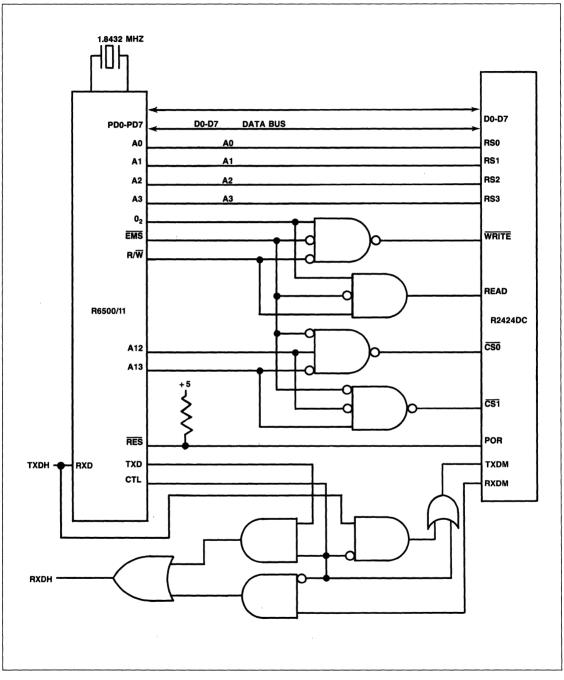
SERIAL INTERFACE

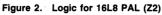

The modem system supports the following data rates and asynchronous serial protocols:

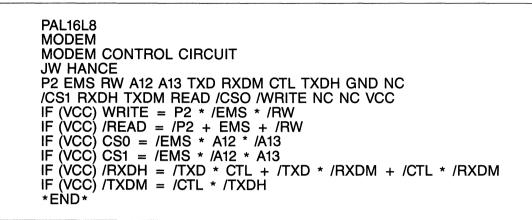
Baud: 300, 1200 or 2400 No. of data bits: 7 or 8 No. of stop bits: 1 or 2 Parity: Odd, even or none

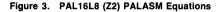
The baud rate is determined by the width of the start bit.

The number of data bits, the number of stop bits and parity type are determined by examining bit 8 and, sometimes, bit 9 in two consecutive data words comprising an "AT" or "A/" command. Figure 6 shows the serial stream waveforms for the "AT" or "A/" commands along with the message bits positions. Table 2 lists the six selectable protocol configurations.


R6500/11 • R2424 Intelligent Modem Design




5-5


R6500/11 • R2424 Intelligent Modem Design

R6500/11 • R2424 Intelligent Modem Design

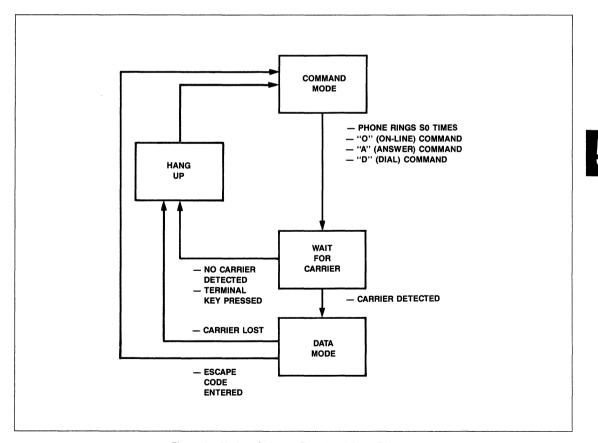


Figure 4. Modem Software Functional State Diagram

R6500/11 • R2424 Intelligent Modem Design

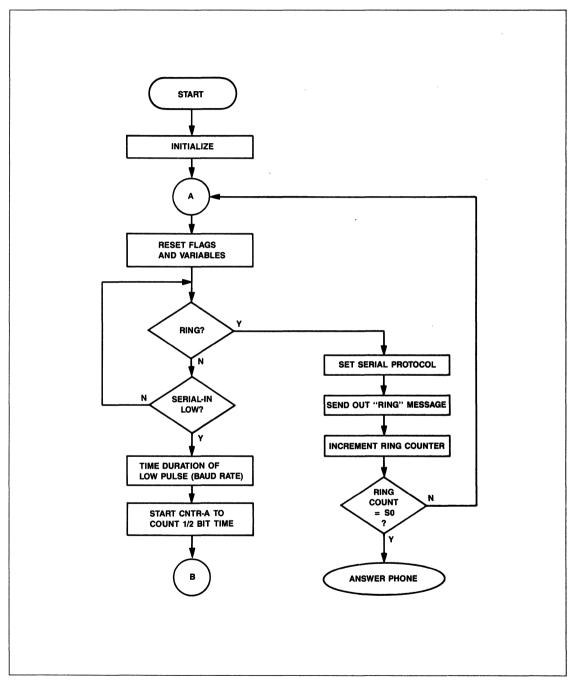


Figure 5. Command Mode Flowchart

R6500/11 • R2424 Intelligent Modem Design

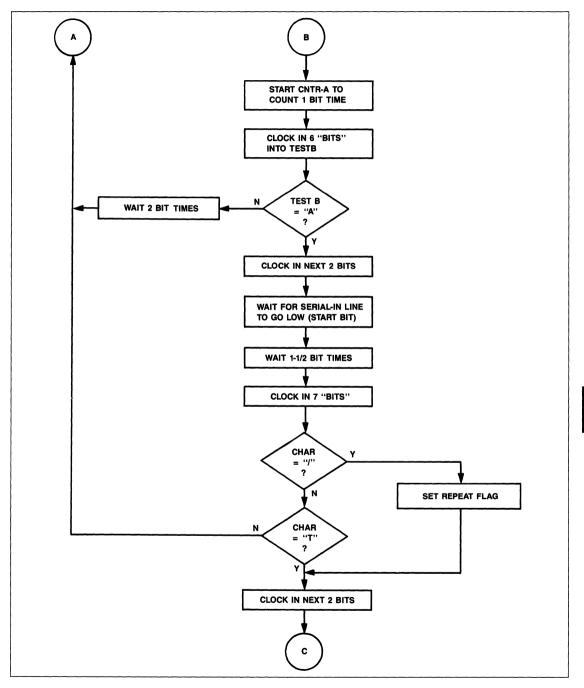


Figure 5. Command Mode Flowchart (Continued)

5-9

R6500/11 • R2424 Intelligent Modem Design

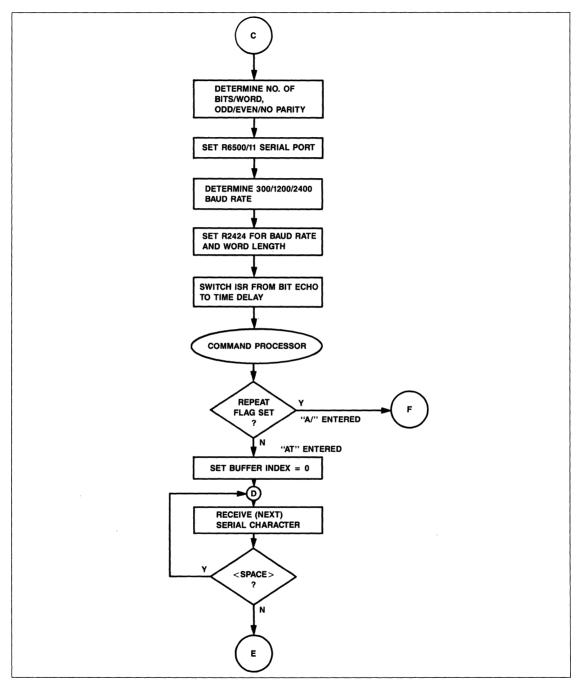


Figure 5. Command Mode Flowchart (Continued)

R6500/11 • R2424 Intelligent Modem Design

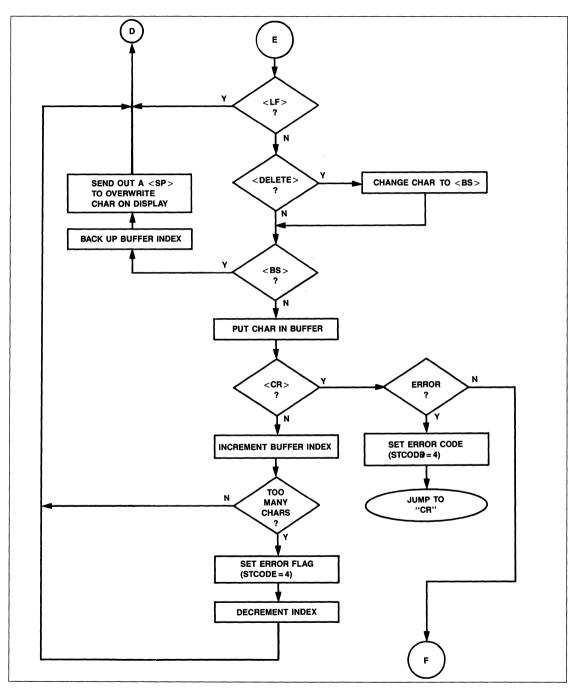


Figure 5. Command Mode Flowchart (Continued)

5-11

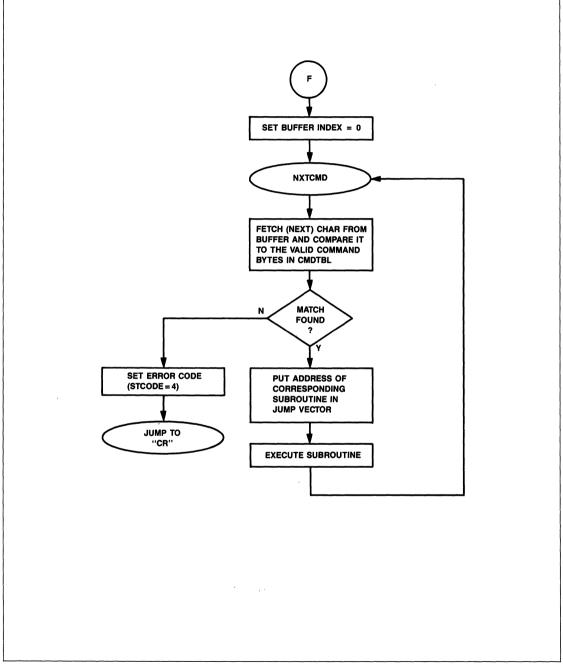
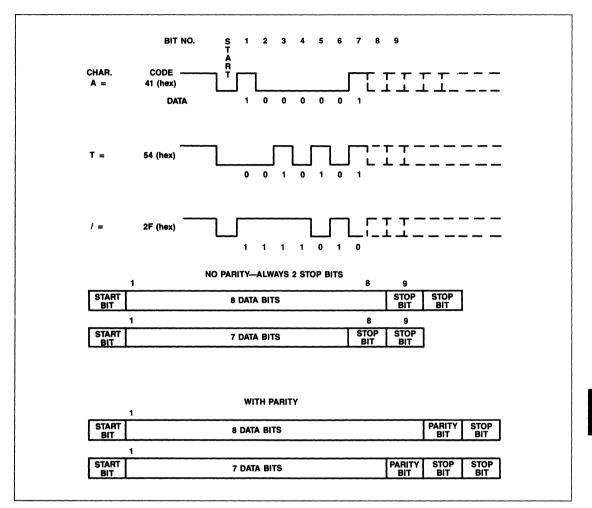
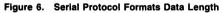




Figure 5. Command Mode Flowchart (Continued)

R6500/11 • R2424 Intelligent Modem Design

Table 2. Selectable	Serial Protocol	Configurations
---------------------	-----------------	----------------

Command Word No.	Command ASCII Char. (Bits 1-7)	Command Word Bit 8	Command Word Bit 9	Message Protocol
1 2	A T or /	1 0	_	Odd parity, 7 data bits, 2 stop bits
1 2	A T or /	0 1	=	Even parity, 7 data bits, 2 stop bits
1 2	A T or /	1	=	No parity, 7 data bits, 2 stop bits
1 2	A T or /	0 0	1 0	Odd parity, 8 data bits, 1 stop bit
1 2	A T or /	0	0 1	Even parity, 8 data bits, 1 stop bit
1 2	A T or /	0 0	1	No parity, 8 data bits, 2 stop bits

R6500/11 • R2424 Intelligent Modem Design

PAGE 0001

0001		; THIS	IS A PI	ROGRAM FOR AN R6500/11	ACTING AS AN INTERFACE		
0002		; BETWEEN A HOST COMPUTER WITH A SERIAL PORT AND AN R2424					
0003		MODEM. IT IS DESIGNED TO RUN THE "AT" COMMAND SET.					
0004							
0005		***************************************					
0006		,					
0007							
0008			.OPT	LLEN=132			
0009			.OPT	IVB			
0010			.001	IVD			
			*-**	`			
	0000		*=\$000()			
0012							
	0000	PA	#=#+1				
	0001	PB	*=*+1				
0015							
	0002		#=\$ 11				
0017							
001B		IFR	*=*+1				
	0012		#=#+2				
0020	0014	NCR	<u>*=*+1</u>				
0021	0015	SCCR	*=*+1				
0022	0016	SCSR	#=#+1				
0023	0017	STDR	*=*+1				
0024	0017	SRDR	=	STDR			
0025	0018	CNTACL	*=*+1				
0026	0019	CNTAH	*=*+1				
0027	001A	CNTAL	*=*+1				
0028							
0029	001B		#=#+1				
0030		CNTBCL	#=#+1				
0031		CNTBHC					
0032		CNTBHL	-		κ.		
0033			·•				
0034	001F		*	= \$40	; RAM VARIABLES		
0035	~~~		-	- +10			
0036	0040	DEFPRO	1		: DEFAULT SERIAL PROTOCOL FOR AUTO-ANSWER COMMUNICATIONS		
0038		BAUD			; INDICATOR OF PRESENT TERMINAL BAUD RATE (3/12/24)		
0037			-		·		
		BORATL			; LOW PART OF BAUD RATE, AS DETERMINED BY CNTR-A		
	0043	BDRATH			; HIGH PART OF BAUD RATE		
0040		DELAYC			; IRQ COUNTER: COUNTS NUMBER OF TIMES IRQ ROUTINE IS CALLED		
0041		DELAYT			; SET TO THE # OF TIMES THE IRQ ROUTINE IS TO BE CALLED		
0042		DELAYS			; SET TO THE NUMBER OF SECONDS TO WAIT FOR		
0043		TESTB	-		; CONTAINS THE 7 SAMPLE BITS FROM THE SERIAL-IN LINE		
0044		ABIT8			; WHEN THE 7 BITS CLOCKED INTO "TESTB" MATCH THE "A" CHAR,		
0045		ABIT9			; THE NEXT 2 BITS ARE CLOCKED IN AND STORED HERE.		
0046		TBIT8			; WHEN THE 7 SAMPLE BITS IN "TESTB" MATCH THE "T" CHAR, THE		
	004B	TBIT9	-		; NEXT 2 BITS ARE STORED IN "TBIT8" AND "TBIT9".		
0048		INBUFF			; CONTAINS THE COMMAND STRING AS ENTERED FROM THE HOST SYS.		
	0074	REPFLG			; WHEN "A/" IS ENTERED AS COMMAND, THIS FLAG IS SET.		
0050	0075	BUFFLG	*=*+1		; THIS FLAG IS SET WHEN TOD MANY COMMAND CHARS ARE ENTERED		
0051	0076	DILFLG	#=#+1		; IS SET TO INDICATE ANY FOLLOWING NUMBERS ARE DIAL DIGITS		
0052	0077	REVFLG	#=#+1		; NDRMAL (\$00) DR REVERSE (\$80) DIAL		
0053	007B	IRQFLG	¥=#+1		; \$00 ==> IRQ IS SERIAL-IN TIMER: \$80 ==> IRQ IS DELAY TIMER		
0054	0079	ECHOFG	#=#+ <u>1</u>		; \$00 ==> DD NOT ECHD COMMAND CHARS: \$80 ==> ECHD CHARS		

Figure 7. Software Assembly Listing

Application	Note		R6500/11 • R2424 Intelligent Modem Desi
0055 007A	DUPLEX *=	++1	; ECHO CHARS WHILE IN DATA MODE (DN-LINE) : 0=NO, \$80=YES
0056 007B	RSLTFG #=		; \$00 ==> SEND DUT RESULT PROMPT: \$80 ==> DON'T SEND IT DUT.
0057 007C	SPKRF6 *=	-	; USED TO CONTROL THE EXTERNAL SPEAKER
0058 0070	STCODE #=		•
0059 007E	VCODE *=	-	; RESULT (STATUS) CODE (0-4,5)
0060 007F	XCODE #=	-	; SEND RESULT PROMPT IN NUMERIC (\$00) OR VERBAL (\$80) FORM
0061 0080	WAITF6 *=	-	; ALLOW EXTENDED RESULT CODES ? (\$00 = NO / \$80 = YES) ; "WAIT-FOR-CARRIER ?" FLAG (0 = NO / \$80 = YES)
		1	PAGE 0002
0062 0081	WAITC #=	+1	; INDICATES "WAIT-FOR-CARRIER" TIME INTERVAL HAS ELAPSED
0063 0082	ESCONT #=		; ESCAPE CODE COUNTER
0064 0083	SSETFG #=		; INDICATES S-REG POINTER HAS BEEN SET TO SOME VALUE
0065 0084	SREGP +=		; CONTAINS THE INDIRECT POINTER TO ONE OF THE S-REGISTERS
0066		-	, CONTRARY THE INVIRENT TOTALER TO UNE OF THE STREDISTERS
0067			; THE FOLLOWING 17 BYTES CONTAIN THE VALUES FOR THE S-REBISTED
0069 0086	50 * =1	11	. DING TO ANGUED ON
		-	; RING TO ANSWER ON
0070 0087		-	; COUNTS THE NUMBER OF RINGS
0071 0088	52 #=1	-	; ESCAPE CODE CHARACTER
0072 0089	53 ¥=1	-	; CARRIAGE RETURN CHAR
0073 008A	54 1 =1	-	; LINE FEED CHAR
0074 008B	S5 #=1	-	; BACKSPACE CHAR
0075 00BC	56 * =1	-	; WAIT-TIME FOR DIAL TONE
0076 00BD	57 *=1	-	; WAIT-TIME FOR CARRIER (AFTER DIALING OR ANSWERING)
0077 00BE	S8 #=1		; PAUSE-TIME (USED BY "COMMA" COMMAND)
0078 008F	59 +=1	+1	; CARRIER-DETECT RESPONSE TIME
0079 0090	\$10 1 =4	+1	; DELAY-TIME BETWEEN LOSS OF CARRIER AND "HANS UP"
0080 0091	S11 #=#	+1	; DURATION AND SPACING OF TOUCH TONES
0081 0092	512 * =#	+1	; ESCAPE CODE GUARD-TIME
0082 0093	\$13 *= *	+1	; UART STATUS REGISTER
0083 0094	S14 #=#	+1	; OPTION REGISTER
0084 0095	S15 #=#	+1	FLAG REGISTER
0085 0096	S16 #=#	+1	1=ENTER SELF-TEST / 0=STOP SELF-TEST
0086 0097	S17 *=*	+1	; GENERAL SYSTEM STATUS
0087			,
0088 0098	NUM +=+	+3	; WORK AREA FOR ASCII-TO-HEX AND HEX-TO-ASCII CONVERSION
0089 009B	CMDVEC #=#	-	; INDIRECT POINTER TO THE NEXT COMMAND TO BE EXECUTED
0090 009D	TEMP +=+	+1	; TEMPDRARY STORAGE BYTE
			PAGE 0003
0092 1000	RCV =	\$1000	; BASE ADDRESS FOR RECEIVER REGISTERS
0093	-	00000	
0094 009E	#= 0003 8-*	RCV+2	
0095 1002	RCV2 #=#		
0096 1008	RCV8 #=#		
0097 1009	RCV9 #=#		
0098 100A	RCVA +=+		
0099 100B	RCVB +=+		
D100 100C	RCVC #=#		
0101 100D	RCVD +=+	+1	
0102 100E	RCVE #=#	+1	

5

Application	Note		R6500/11 • R2424 Intelligent Modem Design
0103 100F	RCVF	*=*+1	
0104			
0105 2000	XMT	=\$2000	; BASE ADDRESS FOR THE TRANSMITTER REGISTERS
0106			r
0107 1010		#= XMT	
0108 2000	XMTO	*= *+2	
0109 2002	XMT2	¥=*+6	
0110 2008	XMT8	#=#+]	
0111 2009	XMT9	*=*+1	
0112 200A	XMTA	*=*+1	
0113 200B	XMTB	#=#+1	
0114 2000	XMTC	*=*+1	
0115 2000	XMTD	#=#+1	
0116 200E	XMTE	*=*+1	
0117 200F	XMTF	*=*+1	
0118			
0119 0010	DLYHIB	= \$10	: DELAY-TIME FACTOR
0120 E09C	DLYTIM		: (DLYTIN + DLYHIB @ 920KHZ = 1 SEC.)
0121 6760	TENTHD		: (TENTHD * DLYHIB @ 920KHZ = 1/10 SEC.)
0122 0001	ESCDLY		
0123 4790	ESCTIM		: 1 COUNT FOR "ESCAPE" CODE GUARD TIME (20MS)
0124		411.14	
0125 00BF	BAUD3	= \$00BF	: CNTR-A VALUE FOR SERIAL-I/D BAUD RATE OF 300 BAUD (@ 920KHz
0126 002F	BAUD12		: VALUE FOR 1200 BAUD
0127 0017	BAUD24		; VALUE FOR 2400 BAUD
0128	010024		, THESE FOR ZIVE DIDD
0129 0021	NUMEND	= 33	: NUMBER OF COMMANDS IN "CMDTBL"
V127 VV21	NUNLAU		; NUMBER OF COMMINYS IN CAPIBL"

0131 2010		*=\$F800	
0132			
0133 F800	A2 FF RESET	LDX #\$FF	; INITIALIZE THE R6500/11
0134 F802	9A	TXS	
0135 F803	D8	CLD	
0136 F804	78	SEI	
0137 F805	A9 A0	LDA #\$AO	; SET UP MODE REGISTER FOR ABBREVIATED BUS
0138 F807	85 14	STA MCR	
0139			
0140 F809	20 BE FA	JSR INITSW	; INITIALIZE VARIABLES, ETC.
0141			
0142 FB0C	87 01	SMB 0,PB	; CTL = 0 (TRANSMIT TO MODEM)
0143 FB0E	17 01	RMB 1,PB	; CTS/ = 0
0144 F810	27 01	RMB 2,PB	; DTR/ = 0 (ACTIVE)
0145 FB12	D7 01	SMB 5,PB	; HISPEED = 1 (HIGH SPEED)
0146 FB14	E7 01	SMB 6,PB	; DISABLE SPEAKER
0147			

R6500/11 • R2424 Intelligent Modem Design

5

0140	* *******	******							
0148 0149	•	***************************************							
0150	FIRST CHARS ACROSS	SHOULD BE "AT" OR ""A/". ASSUME AN "A"							
0151	•	; IS THE FIRST CHAR: BY TIMING THE DURATION OF THE FIRST LOW							
0152		; PULSE (START BIT), THE BAUD RATE IS DETERMINED. USING THIS AS							
0153		SAMPLES ARE MADE OF THE SERIAL INPUT LINE							
0154	AT ONE-BIT INTERVALS WE	TH EACH "BIT" SHIFTED INTO A TEST BUFFER							
0155		MPLES, THE TEST BUFFER IS RIGHT-JUSTIFIED							
0155		TIME) AND COMPARED TO THE ASCII "A" CHAR.							
0157	TE A MATCH IS NOT MARE	WE WAIT 2 MORE "BITS", TIME THE NEXT LOW PULSE							
0158	; AND CLOCK IN 7 MORE BI								
0159		"A" CHAR IS ASSUMED TO HAVE BEEN READ IN							
0160		E SAVED FOR FUTURE DETERMINATION OF							
0161		ARITY, BITS/CHAR). THE NEXT CHAR IS							
0162	· CLOCKED IN AND COMPARED	TO "T" AND "/". IF A MATCH IS FOUND THEN							
0163		ED AND THE COMMAND BYTES FOR THE MODEM							
0164	; (IF ANY) ARE READ IN A								
0165		DUND FOR "AT" OR "A/" THEN WE START OVER AGAIN							
0166	; LOOKING FOR AN "A" CHAR.								
0167		CTER ECHDING HAS BEEN ENABLED (AND BY DEFAULT							
0168		RATING INTERRUPTS AT A FREQUENCY SLIGHTLY							
0169	BREATER THAN TWICE THE 2	400 BAUD (MAXIMUM ALLOWABLE BAUD RATE) FREQUENCY.							
0170		MPLES THE LEVEL OF THE SERIAL INPUT LINE AND SETS							
0171		O MATCH. THIS HAS THE EFFECT OF BLINDLY ECHDING							
0172		TO THE HOST COMPUTER. THIS WILL BE DONE UNTIL							
0173									
0174		; "AT" OR "A/" HAS BEEN RECOGNIZED, AT WHICH POINT THE IRQ IS DISABLED ; and characters are echded back as characters, not as bits.							
0175									
0176 F816 A9 00	RESTRT LDA #00	; DISABLE RECEIVER AND TRANSMITTER							
0177 F818 85 15	STA SCCR								
0178 F81A 85 74	STA REPFLG	: CLEAR OUT WORKING VARIABLES							
0179 F81C 85 48	STA ABITS	·····							
0180 F81E 85 49	STA ABIT9								
0181 F820 85 4A	STA TBITS								
0182 F822 85 4B	STA TBIT9								
0183 F824 85 47	STA TESTB								
0184 F826 85 76	STA DILFLG	; PREVENT NUMBERS FROM DIALING UNTIL "DIAL" COMMAND							
0185 F828 85 80	STA WAITF6	,							
0186 F82A 85 75	STA BUFFLG								
0187 F82C 85 7D	STA STCODE	; ASSUME "DK" STCODE WILL BE RESET IF A PROBLEM ARISES							
0188 F82E AD 0D 1		; SET "LCD" BIT							
0189 F831 09 04	ORA #\$04	,							
0190 F833 8D 0D 1									
0191 F836 20 D7 F		; UPDATE RECEIVER REGISTER							
		,							
		PAGE 0005							
0192 F839 07 10	RMB 0,IFR-1	; CLEAR "RING" FLAG BIT FROM FLAG REGISTER							
0193 F83B A9 03	LDA #03	; CNTR A = PULSE WIDTH TIMER							
0104 F075 AF 14	004 800	-							

0192 F839	07 10	RMB	0,IFR-1	; CLEAR "RING" FLAG BIT FROM FLAG REGISTER
0193 F83B	A9 03	LDA	#03	; CNTR A = PULSE WIDTH TIMER
0194 F83D	05 14	ORA	MCR	
0195 F83F	85 14	STA	MCR	
0196 F841	7F 79 OC	BBR	7,ECHOFG,NOIRQ	; NO ECHO IF FLAG TURNED OFF
0197 F844	A9 B0	LDA	#\$B0	START TIMER B TO PERIODICALLY SAMPLE
0198 F846	85 IC	STA	CNTBCL	; THE SERIAL INPUT LINE AND ECHO BACK

5-17

Applica	tion No	te		R6500/11 • R2424 Intelligent Modem Design
0199 F848	A9 00		LDA #00	; THE SAME LOGIC LEVEL ON THE OUTPUT
0200 F84A	85 1E		STA CNTBHL	; LINE.
0201 F84C	D7 12		SMB 5, IER	
0202 F84E	77 78		RMB 7, IROFLG	
0203 F850	A9 FF	NOIRQ	LDA #\$FF	
0204 F852	AB		TAY	
0205 F853	85 18		STA CNTACL	; READY CNTR A FOR PULSE-WIDTH MEASUREMENT
0206 F855	84 1A		STY CNTAL	
0207 F857	8F 11 50	Li	BBS 0, IFR, RING	; IF PHONE IS RINGING, GO SEE IF IT'S TIME TO ANSWER IT
0208 F85A	FF OO FA		BBS 7,PA,L1	; WAIT FOR RECEIVE LINE TO GO LOW
0209 F85D	67 00		RMB 6,PA	; SET SERIAL-OUT LINE LOW TO MATCH
0210 F85F	7F 00 FD	L2	BBR 7,PA,L2	; NOW WAIT FOR IT TO SO BACK HIGH (THIS SHOULD
0211	50		CI 1	; BE THE START BIT OF "A")
0212 F862	58		CLI LDA CNTAH	; ALLOW TIMER-B IRQ
0213 F863	A5 19		LDA CNTAH Eor #\$FF	; GET PULSE WIDTH COUNT
0214 F865 0215 F867	49 FF 05 AT			; INVERT IT ; AND SAVE IT
0215 F867	85 43 A8		STA BDRATH Tay	; HAV SHVE II
0218 F867	A5 18		LDA CNTACL	
0218 F86C	49 FF		EOR #\$FF	
0219 F86E	AA		TAX	
0220 F86F	A9 FC		LDA #\$FC	; SET CNTR A = TIME INTERVAL COUNTER
0221 F871	25 14		AND MCR	
0222 F873	85 14		STA MCR	
0223 F875	86 42		STX BDRATL	; SAVE LOW BYT OF COUNT
0224 F877	86 18		STX CNTACL	; SET LOW BYTE OF BAUD TIMER
0225 F879	98		TYA	SET UP COUNTER FOR 1/2 BIT WIDTH, TO
0226 F87A	4A		LSR A	; POSITION SERIAL LINE SAMPLES APPROX.
0227 F87B	85 1A		STA CNTAL	; IN MIDDLE OF BIT.
0228 F87D	4F 11 FD	L3	BBR 4, IFR, L3	; WAIT FOR TIMER
0229 F880	84 1A		STY CNTAL	; NOW START TIMER A WITH FULL DELAY (ALSO CLEARS FLAG)
0230 F882	A5 00		LDA PA	; GET VALUE OF SERIAL BIT (SHOULD BE HIGH)
0231 F884	0A		ASL A	; ROTATE RECEIVE BIT VALUE INTO CARRY BIT
0232 F885	66 47		ROR TESTB	; AND ROTATE IT INTO TEST BYTE
0233 F887	A2 06		LDX #06	; CLOCK IN 6 MORE SERIAL BITS
0234 F889	4F 11 FD	L4	BBR 4, IFR, L4	; WAIT FOR ONE BIT TIME
0235 F88C	A5 18		LDA CNTACL	; CLEAR FLAG
0236 F88E	A5 00		LDA PA	; GET SERIAL BIT
0237 F890	OA		ASL A	; AND ROTATE IT INTO TESTB
0238 F891	66 47		ROR TESTB	
0239 F893	CA		DEX	; CLOCKED IN 6 BITS YET ?
0240 F894	D0 F3		BNE L4	; NO ==> GET NEXT BIT
0241 F896	A5 47		LDA TESTB	; YES==> IS CHAR AN "A" ?
0242 F898	4A		LSR A	; (RIGHT-JUSTIFY TEST CHAR)
0243 F899	C9 41		CHP #'A'	
0244 F89B	F0 10		BEQ FOUNDA	; YES==> CHECK NEXT CHAR FOR "T" OR "/"
0245 F89D	98 00		TYA	; NO ==> WAIT 2 BIT TIMES
0246 F89E	0A		ASL A	; THEN JUMP TO "RESTART"
0247 F89F	85 1A	1.44	STA CNTAL	; TO READ IN ANDTHER TEST CHAR : Wait for timer
0248 F8A1	4F 11 FD	L4A	BBR 4, IFR, L4A	,
0249 FBA4	7F 00 FD	L5	BBR 7,PA,L5	; THEN MAKE SURE INPUT LINE IS HIGH : AND READ IN ANOTHER 7 BITS
0250 F8A7	4C 16 F8	GO2RES	JMP RESTRT) HUL REAL TH HUCHBER / DITE
0251 0252 FBAA	4C 1C FA	RING	JMP RINGNG	; CHECK RING COUNT. IF PHONE HAS RUNG ENDUGH TIMES

R6500/11 • R2424 Intelligent Modem Design

PAGE 0006

(AS DETERMINED BY S-REG O) THEN ANSWER IT. 0253 0254 : OTHERWISE, GO BACK TO "RESTART" 0255 ; FOUND AN "A" CHAR. NOW SAVE NEXT TWO BITS FOR PROTOCOL CHECK, 0256 THEN CHECK FOR "T" OR "/" CHARS. 0257 : 0258 4. IFR. FOUNDA 0259 F8AD 4F 11 FD FOUNDA BBR : WAIT DNE BIT TIME 0260 F8B0 A5 18 LDA CNTACL : CLEAR FLAG 0261 F8B2 A5 00 LDA PA : GET BIT 0262 F8B4 0A ASL ۵ ; SAVE IT AS BIT 8 OF "A" (FOR FORMAT CHECKING LATER) 0263 F885 66 48 ROR ABIT8 0264 F887 4F 11 FD L6 BBR 4, IFR.L6 : GET BIT 9 (WAIT ONE MORE BIT TIME) LDA CNTACL : CLEAR FLAG 0265 F8BA A5 18 0266 F8BC A5 00 LDA PA 0267 F8BE 0A ASL Δ 66 49 0268 F8BF ROR ABIT9 : AND SAVE "A" BIT 9 BBR ; WAIT FOR RECEIVE LINE TO GO HIGH 0269 F8C1 7F 00 FD L7 7.PA.L7 L8 BBS 7, PA, L8 : NOW WAIT FOR IT TO GO LOW (START BIT) 0270 F8C4 FF 00 FD STX TESTB ; RESET "TESTB" FOR "T" AND "/" CHECK 0271 F8C7 86 47 0272 F8C9 98 TYA : DELAY APPROX. 1/2 BIT TIME 0273 F8CA 4A LSR : (DIVIDE MSB OF DELAY TIME BY 2) A 0274 FBCB 85 1A STA CNTAL : START TIMER 0275 F8CD 4F 11 FD L9 BBR 4, IFR, L9 : WAIT FOR TIMER ; RESTART TIMER (AND CLEAR FLAG) 0276 F8D0 84 1A STY CNTAL 0277 F8D2 A2 07 LDX #07 : CLOCK IN 7 BITS ONLY (OF CHAR FOLLOWING "A") 4F 11 FD 0278 F8D4 L10 BBR 4, IFR, L10 ; WAIT FOR TIMER 0279 F8D7 A5 18 LDA CNTACL : CLEAR FLAG 0280 F809 A5 00 LDA PA ; GET BIT ASL 0281 F8DB 0A A 0282 F8DC 66 47 ROR TESTB : AND SHIFT IT IN "TESTB" 0283 F8DE DEX : 7 BITS YET ? CA 0284 F8DF D0 F3 BNE L10 ; NO ==> GET NEXT BIT ; YES==> SEE IF THIS CHAR MATCHES "T" DR "/" 0285 F8E1 A5 47 LDA TESTB : (RIGHT-JUSTIFY CHAR) 0286 F8E3 4A LSR A *****'/' : "/" ? CMP 0287 FBE4 C9 2F ; YES==> "A/" CHARS RECEIVED --> FIGURE OUT PROTOCOL 0288 F8E6 F0 07 BEQ FOUNDS 0289 F8E8 C9 54 CMP #'T' : NO ==> "T" ? ; YES==> "AT" CHARS RECEIVED --> FIGURE OUT PROTOCOL 0290 F8EA F0 05 BEQ FOUNDT : NO ==> START OVER 0291 F8EC 4C 16 F8 JMP RESTRT 0292 FOUNDS SMB 7,REPFLG ; INDICATE REPEAT OF LAST COMMAND STRING 0293 FBEF F7 74 0294 0295 F8F1 4F 11 FD FOUNDT BBR 4. IFR.FOUNDT : WAIT ONE BIT TIME CNTACL 0296 F8F4 A5 18 LDA ; CLEAR FLAG : SAVE BIT 8 0297 F8F6 A5 00 LDA PA 0298 F8F8 0A ASL A 66 4A ROR TBIT8 0299 F8F9 0300 F8FB 4F 11 FD L12 BBR 4, IFR, L12 ; WAIT ONE LAST BIT TIME A5 18 LDA CNTACL ; CLEAR BIT-WIDTH FLAG 0301 F8FE 0302 F900 A5 00 LDA PA 0303 F902 A0 ASL A : SAVE BIT 9 0304 F903 66 4B ROR TBIT9 0305

R6500/11 • R2424 Intelligent Modem Design

0306				D. NOW FIGURE OUT TRANSMISSION PROTOCOL
0307		; (NUMBER BIIS/CHAI	R, ODD/EVEN/NO PARITY)
0308				. 10 517 5 55 444 - 5 5
	24 49		BIT ABIT9	; IS BIT 9 OF "A" = 0 ?
0310 F907	10 14		BPL EVENB	; YES==> PROTOCOL IS 8 BITS/CHAR, EVEN PARITY
0311 F909	24 4B		BIT TBIT9	; NO ==> IS BIT 9 OF "T" = 0 ?
	10 16		BPL ODD8	; YES==> PROTOCOL IS 8 BITS/CHAR, ODD PARITY
0313 F90D	A5 48		LDA ABITS	; NO ==> ARE EIGHTH BITS OF "A" AND "T"
				PAGE 0007
0314 F90F	45 4A		EOR TBITS	; THE SAME ?
0315 F911	F0 1C		BEQ NOPAR	; YES==> ND PARITY USED
0316 F913	24 48		BIT ABITS	; NO ==> BIT 8 OF "A" = 0 ?
0317 F915	10 12		BPL EVEN7	; YES==> 7 BITS, EVEN PARITY, 2 STOP BITS
0318 F917	A9 C6	0007	LDA #\$C6	; NO ==> 7 BITS, DDD PARITY, 2 STOP BITS
0319 F919	AO 10		LDY #\$10	; SET VALUE FOR "RCVC" (10 BITS/WORD)
0320 F91B	DO 20		BNE LABEL1	(BRANCH ALWAYS)
0321 F91D	A9 C3	EVENB	LDA #\$C3	
0322 F91F	A0 18		LDY #\$18	; SET VALUE FOR "RCVC" (11 BITS/WORD)
0323 F921	DO 1A		BNE LABEL1	: (BRA)
0324 F923	A9 C2	ODD8	LDA #\$C2	ş · •····
0325 F925	A0 18		LDY #\$18	: SET VALUE FOR "RCVC" (11 BITS/WORD)
0326 F927	DO 14		BNE LABEL1	; (BRA)
0327 F929	A9 C7	EVEN7		
0328 F92B	A0 10	LVENT	LDY #\$10	; SET VALUE FOR "RCVC" (10 BITS/WORD)
0329 F92D	DO OE		BNE LABEL1	; (BRA)
0330 F92F	24 48	NOPAR		; IS BIT 8 OF "A" = 1 ?
0331 F931	30 06		BMI NOPAR7	; YES==> 7 BITS, NO PARITY
0332 F933	A9 C0	NOPARS		; NO ==> 8 BITS, NO PARITY
0333 F935	A0 10	NorAno	LDY #\$10	; SET VALUE FOR "RCVC" (10 BITS/WORD)
0334 F937	DO 04		BNE LABEL1	(BRA)
0335 F939	A9 C4	NOPAR7		j CDRH /
0336 F938	A0 08		LDY #\$08	. CET UALLIE END #DOUC# (0 DITC/MODA)
0337	HV VO		LU1 #200	; SET VALUE FOR "RCVC" (9 BITS/WORD)
	0E 1E		PTA - 2000	- PET UD PEDIAL COMMAND DECICIED FOD
0338 F93D	85 15	LABEL1		; SET UP SERIAL COMMAND REGISTER FOR
0339 F93F	85 40		STA DEFPRO	; BAUD RATE AND PROTOCOL [SAVE PRESENT PROTOCOL]
0340 F941	A2 04		LDX #04	; DIVIDE BIT-WIDTH TIME BY 16
	46 43	ROTATE		; TO GET BAUD RATE VALUE
0342 F945	66 42		ROR BDRATL	
0343 F947	CA		DEX	
0344 F948	D0 F9		BNE ROTATE	
0345 F94A	A5 42		LDA BDRATL	; SET UP BAUD RATE TIMER
0346 F94C	85 18		STA CNTACL	
0347 F94E	A5 43		LDA BDRATH	
0348 F950	85 IA		STA CNTAL	
0349 F952	57 12		RMB 5,IER	; DISABLE IRQS
0350 F954	A5 42		LDA BDRATL	; DETERMINE WHAT BAUD RATE WE'RE RUNNING AT
0351 F956	C9 B5		CMP #BAUD3-1	0 ; IS IT GREATER THAN 300 ?
0352 F958	90 08		BCC GT300	; YES==> BRANCH
0353 F95A	A2 03	803	LDX #03	; NO ==> BAUD = 300
0354 F95C	57 01		RMB 5,PB	; SET "HISPEED" TO 0 (LOW SPEED)
0355 F95E	A9 04		LDA #\$04	; SET R2424 "MODE" CODE (BELL 212A ASYNC)
0356 F960	DO 12		BNE BD2	; (BRANCH ALWAYS)

R6500/11 • R2424 Intelligent Modem Design

0357	F962	C9 25	67300	CMP	\$BAUD12-10	; IS BAUD GREATER THAN 1200 ?
0358	F964	90 08		BCC	B24	; YES==> MUST BE 2400
0359	F966	A2 0C	B12	LDX	#12	ND ==> MUST BE 1200
0360	F968	D7 01		SMB	5,PB	SET "HISPEED" TO 1 (HIGH SPEED)
0361	F96A	A9 03		LDA	\$\$0 3	SET R2424 "MODE" CODE (BELL 212A ASYNC)
0362	F96C	DO 06		BNE	BD2	(BRA)
0363	F96E	A2 18	B24	LDX	#24	: 2400 BAUD
	F970	D7 01		SMB	5,PB	,
	F972	A9 0D		LDA	#\$0D	: SET R2424 "MODE" CODE (V.22 BIS ASYNC)
	F974	85 90	BD2	STA	TEMP	: SAVE "MODE" CODE IN TEMPORARY LOCATION
0367		AD 0A 10		LDA	RCVA	CHANGE "MODE" IN R2424 MODEM REGISTERS
0368		29 F0		AND	#\$F0	: - CLEAR OUT PREVIOUS MODE
0369		05 90		ORA	TEMP	- SET NEW MODE
	F97D	8D 0A 10		STA	RCVA	- AND PROGRAM RECEIVER
0371		AD OA 20		LDA	XMTA	: CHANGE TRANSMITTER BAUD RATE
0372		29 F0		AND	#\$F0	- CLEAR OUT PREVIOUS MODE
0373		05 90		ORA	TEMP	: - SET NEW MDDE
0374		8D 0A 20		STA	XNTA	: - AND PROGRAM TRANSMITTER
V3/4	r70/	OU VM 20		218	ATTR	j – HAV ERVORAD (RANJALI)ER

PAGE 0008

0375 F98A	8C 0C 10	STY RCVC	; AND SET MODEM
0376 F98D	8C OC 20	STY XMTC	
0377 F990	20 CB FD	JSR NEWCXR	; UPDATE R2424 REGISTERS WITH NEW VALUES
0378 F993	86 41	STX BAUD	; SAVE BAUD CODE
0379			
0380 F995	F7 78	SMB 7,IRQFL6	; SET ISR TO PROCESS DELAY TIME FOR WAIT-FOR-CARRIER
0381 F997	D7 16	SMB 5,SCSR	; SET "DATA REG EMPTY" FLAG FOR 'LAST BIT OUT'

PAGE 0009

5

0383 0384				OMMAND MODE. READ COMMAND F). TERMINATE ON (CR).
0385				
0386 F999	FF 74 4B	BBS	7,REPFLG,REPEAT	; BRANCH IF "A/" RECEIVED
0387 F990	A2 00	SETPTR LDX	# 00	; "AT" RECEIVED> SET BUFFER INDEX TO 0
0388 F99E	A5 16	WAITIN LDA	SCSR	; CHECK RECEIVER STATUS
0389 F9A0	29 OF	AND	\$\$0F	
0390 F9A2	FO FA	BEQ	WAITIN	; NO BITS SET ==> NO RECEIVED CHAR, TRY AGAIN
0391				· ·
0392 F9A4	A5 17	GETCHR LDA	SRDR	: GET CHAR FROM RECEIVER BUFFER
0393 F9A6		BBR	7,ECHOF6,CTLCOD	; BRANCH IF ECHO DISABLED
0394 F9A9		JSR	CHRDUT	: ECHO CHAR BACK TO HOST COMPUTER
0395 F9AD		CTLCOD CMP	53	: IS CHAR A (CR) ?
0396 F9AE		BEQ	GOTCHR	; YES==> SAVE IT AND PROCEED TO "ALLIN"
0397 F9B0		CMP	#\$20	: IS INCHAR A (SP) ?
0398 F982		BEQ	WAITIN	; YES==> IGNORE IT
0399 F984		BCC	WAITIN	: CHAR IS LESS THAN \$20 (CONTROL CODE)> IGNORE IT
0400 F9B6		CNP	\$\$7F	: IS IT A "DELETE" CHAR ? < REMOVE THESE FOUR LINES IF THE
				,
0401 F988		BNE	BS	; NO ==> CHECK FOR (BS> < (DELETE> KEY ON THE PARTICULAR
0402 F9BA	A5 8B	LDA	S5	; YES==> CHANGE IT TO <bs> < TERMINAL USED WITH THIS DESIGN</bs>
0403 F9BC	20 51 FF	JSR	CHROUT	; SEND OUT <backspace> < BACKSPACES THE CURSOR.</backspace>

5-21

R6500/11 • R2424 Intelligent Modem Design

0404	F9BF	C5	8B		BS	CMP	S5	ŧ	IS IT A (BACK-SPACE) ?
0405	F9C1	DO	0A			BNE	GOTCHR	:	ND ==> ACCEPT CHAR
0406	F9C3	CA			DELETE	DEX		÷	YES==> OVERWRITE PREVIOUS CHAR IN BUFFER
0407	E904	10	80				WAITIN		BRANCH IF BUFF POINTER NOT LESS THAN O
0408		A9					#\$20		DUTPUT A (SP)
0409			51	cc			CHROUT	,	
				rr					
0410	F768	30	ur.			BMI	SETPTR	,	LIMIT LOWEST VALUE OF POINTER TO 0 (BRA)
0411									
0412	F9CD	95	4C		GOTCHR	STA	INBUFF,X	;	SAVE CHAR IN BUFFER
0413	F9CF	C5	89			CMP	S3	;	IS IT A (CR) ?
0414	F9D1	FO	AO			BEQ	ALLIN		YES==> ALL CHARS RECEIVED
0415	F9D3	E8				INX			ND ==> INC POINTER AND GET NEXT CHAR
0416	F9D4	EO	29			CPX	#41	í	IS BUFFER FULL ?
0417	F906	DO	63			BNE	WAITIN	í	ND ==> GET NEXT CHAR
0418	F9D8	F7	75			SMB	7,BUFFLG	í	YES==> SET FLAG TO INDICATE ERROR
0419	F9DA	CA				DEX	•	í	KEEP READING UNTIL (CR)
0420	F9DB	DO	C1			BNE	WAITIN	í	(BRA)
0421									
0422	F9DD	7F	75	07	ALLIN	BBR	7,BUFFLG,REPEAT		; BRANCH IF 40 OR LESS CHARS READ IN
0423	F9E0	A9	04				#04		TOD MANY CHARS ENTERED> ERROR
0424	F9E2	85	7D			STA	STCODE	÷	SET STATUS CODE TO INDICATE ERROR
0425	F9F4	40	EO	FD			CR		AND TERMINATE COMMAND STRING
0426			-*				***	'	
		47	~~		DEDEAT		*^^		CET COMMAND CTOINC POINTED TO 7000
0427	r7E/	A2	vv		REPEAT		#00	;	SET COMMAND STRING POINTER TO ZERD

0429 0430 0431		,		ERS HAVE BEEN RECEIVED. NOW EXECUTE UNTIL (CR) OR UNRECOGNIZED COMMAND (ERROR)
0432 F9E9 0433 0434 F9EC 0435 F9EF 0436 F9F2	20 F5 F9 20 F2 F9 4C E9 F9 6C 9B 00	NXTCMD JSR JSR JMP Docmd JMP	FNDCMD Dochd Nxtchd (CMDVEC)	; FIND CORRESPONDING SUBROUTINE ADDRESS AND ; SET UP JUMP VECTOR ; EXECUTE COMMAND. ; FETCH NEXT COMMAND ; JMP TO COMMAND ROUTINE.
0438 0439 0440 0441 0442 0443		9 9 9	TO THE CHAR CHAR, AND LE COMMAND CHAR	ROUTINE ASSUMES THE X-REG POINTS IN "INBUFF" FOLLOWING THE COMMAND AVES X-REG POINTING TO THE NEXT . THE Y-REG IS FREE FOR USE AS RATCH-PAD REGISTER.
0444 F9F5 0445 F9F7 0446 F9F9 0447 F9FB 0448 F9FD 0448 F9FD 0449 FA00 0450 FA02 0451 FA03 0452 FA05 0453 FA07 0454 FA09	A0 00 B5 4C C5 89 F0 0E D9 47 FA FO C0 21 D0 F6 A9 04 85 7D	FNDCMD LDY LDA CMP BEQ LODP2 CMP BEQ INY CPY BNE LDA STA	#00 INBUFF,X S3 GOCR CMDTBL,Y FOUND #NUMCMD LDDP2 #04 STCDDE	; IS IT A (CR> ? ; YES==> TERMINATE COMMAND STRING

R6500/11 • R2424 Intelligent Modem Design

0455	FAOB	A0 21	GDCR	LDY	#NUMCMD	; SET POINTER TO <cr> COMMAND</cr>
0456						
0457	FAOD	98	FOUND	TYA		; COMMAND FOUND. BET ASSOCIATED VECTOR
0458	FAOE	OA		ASL	A	; MULT INDEX BY 2
0459	FAOF	A8		TAY		
0460	FA10	B9 69 FA		LDA	VECTBL,Y	; GET VECTOR
0461	FA13	85 9B		STA	CMDVEC	; AND SET UP COMMAND JUMP
0462	FA15	B9 6A FA		LDA	VECTBL+1,Y	
0463	FA18	85 9C		STA	CMDVEC+1	
0464	FAIA	E8		INX		; INC INBUFF INDEX TO POINT TO FIRST
0465	FAIB	60		RTS		; BYTE FOLLOWING COMMAND BYTE

PAGE 0011

0467		;	PHONE IS RINGING.	ANSWER IT ?
0468				
0469 FA1C	57 12	RINGNG R	MB 5,IER	; DISABLE IRQ
0470 FA1E	07 10	R	MB 0,IFR-1	; RESET PAO ("PHONE IS RINGING") FLAG
0471 FA20	A9 A0	Ľ	DA #\$AO	; SET MCR FOR SERIAL I/O
0472 FA22	85 14	S	TA MCR	
0473 FA24	A5 40	Ľ	DA DEFPRO	; SET SERIAL PROTOCOL TO MOST RECENT VALUE
0474 FA26	85 15	S	TA SCCR	
0475 FA28	A5 42	L	DA BDRATL	; SET SERIAL CLOCK TO MOST RECENT VALUE
0476 FA2A	85 18	S	TA CNTACL	
0477 FA2C	A5 43	L	DA BORATH	
0478 FA2E	85 1A	S	TA CNTAL	
0479 FA30	A9 02	L	DA #\$02	; SET "STCODE" TO "RING" RESPONSE
0480 FA32	85 7D	S	TA STCODE	
0481 FA34	20 E8 FE	J	SR RESPNS	; AND DUTPUT APPROPRIATE MESSAGE
0482 FA37	E6 87	I	NC S1	; ADD 1 TO RING COUNTER
0483 FA39	A4 87	L)Y S1	; NDW CHECK FOR RING COUNT
0484 FA3B	C4 86	C	PY 50	; IS THE RING COUNT UP TO THE SET LIMIT YET ?
0485 FA3D	FO 03	B	EQ ANSWER	; YES==> 60 ANSWER THE PHONE !
0486 FA3F	4C 16 F8	J	IP RESTRT	; NO==> START OVER READING IN CHARS FROM HOST SYSTEM
0487				
0488 FA42	F7 78	ANSWER SI	1B 7, IRQFLG	; CHANGE ISR TO PROCESS DELAY TIME FOR WAIT-FOR-CARRIER
0489 FA44	20 OD FC]	SR AAA	; NOW GO ANSWER PHONE ("JSR" WILL PUT 2 RETURN
0490				; ADDRESS BYTES ON THE STACK. THESE WILL BE
0491				; DISCARDED AT THE END OF THE <cr> COMMAND</cr>
0492				AT LABLE "NOWAIT" FOLLOWED BY
0493				A "JMP RESTRT")

PAGE 0012

0496			;			THE	ORDER	OF	THESE	TWO	TABLES	MUST	MATCH	
0497 Fi	A47	20	CMDTBL .B	YT	, ·									
0498 FI	A48	30	.B	IYT	0123456789#	ŧ.								
0499 Fi	A54	3B	.B	YT :	3B,'=?'	,								
0500 Fi	A57	41	.B	YT	ACDEFH'									
0501 F/	A5D	49	. B'	YT '	IMOPOR'									
0502 Ff	A63	53	. 8	YT '	STVXZ									
0503 FA	A68	00	. 8'	YT 1	00		;	MAF	KER FO)R <(R> COM	IAND		

5

R6500/11 • R2424 Intelligent Modem Design

0504										
0505	FA69	1E FB	VECTBL	. WOR	COMMA					
0506	FA6B	3C FB		. WOR	DIGIT,DIGIT,D	IGIT.DIGIT.	DISIT,DISI	IT		
0507	FA77	3C FB		. WOR	DIGIT, DIGIT, D	IGIT, DIGIT,	DIGIT,DIGI	T		
0508	FAB3	58 FB		. WOR	SEMIC, EQUAL, O	IUESTN				
0509	FA89	OD FC		. WOR	AAA,CCC,DDD,E	EE.FFF.HHH				
0510	FA95	BB FC		. WOR	III, MMM, DDO, P					
0511	FAA1	3A FD		. WOR	SSS.TTT.VVV.X	• •				
0512	FAAB	EO FD		. WOR	CR	· ·		MUST BE LAS	T ENTRY IN	TABLE
0513						,				
0514										
0515			; INI	TIAL VA	ALUES FOR S-REG	ISTERS, IN	ORDER FROM	0 TO 16		
0516			,							
0517	FAAD	00	STBL	.BYT	0,0,43,13,10					
0518	FAB2	08		.BYT	8,2,30,02					
0519	FAB6	06		BYT	6,7,70,50					
0520	FABA	FF		BYT	\$FF, \$FF, \$FF					
0521	FABD	00		.BYT	0					

0523			; THIS ROUTINE INIT:	ALIZES PROGRAM VARIABLES AND
0524			CPU REGISTERS.	
0525			•	
0526	FABE	A9 00	INITSW LDA #\$00	; DISABLE ALL IRQS
0527	FACO	85 11	STA IFR	
0528	FAC2	85 12	STA IER	
0529	FAC4	8D OD 20	STA XMTD	; SET UP R2424 TO DEFAULT VALUES
0530	FAC7	8D OB 20	STA XMTB	
0531	FACA	A9 04	LDA #\$04	
0532	FACC	8D OD 10	STA RCVD	
0533	FACF	A9 03	LDA #\$03	
0534	FADI	8D OA 10	STA RCVA	
0535	FAD4	8D 0A 20	STA XMTA	
0536	FAD7	A9 08	LDA #\$08	
0537	FAD9	8D OC 10	STA RCVC	
0538	FADC	8D OC 20	STA XMTC	
0539		8D OE 10	STA RCVE	
0540	FAE2	8D OE 20	STA XMTE	
0541				
0542		A9 00	LDA #00	
0543	FAE7	85 83	STA SSETF6	; SET FLAG TO INDICATE S-REG HAS NOT BEEN SET
0544	FAE9	85 87	STA SI	; SET RING COUNT TO O
0545	FAEB	85 7F	STA XCODE	; STANDARD "CARRIER" RESPONSE
0546	FAED	85 76	STA DILFLG	; DISABLE DIALING
0547	Faef	85 7B	STA RSLTF6	; ENABLE RESULT RESPONSE
0548	FAF1	A9 80	LDA #\$80	; ENABLE ECHO
0549	FAF3	85 79	STA ECHOFB	
0550	FAF5	85 7A	STA DUPLEX	; FULL DUPLEX
0551	FAF7	85 7E	STA VCODE	; SET UP FOR VERBAL RESPONSE
0552	FAF9	85 7C	STA SPKRF6	; SET SPEAKER FOR "M1" COMMAND OPERATION
0553	FAFB	A9 2F	LDA # <baud12< td=""><td>; SET DEFAULT BAUD RATE TO 1200 BAUD</td></baud12<>	; SET DEFAULT BAUD RATE TO 1200 BAUD
0554	FAFD	85 42	STA BDRATL	
0555		A9 00	LDA #>BAUD12	2
0556	FB01	85 43	STA BDRATH	

R6500/11 • R2424 Intelligent Modem Design

0557	FB03	A9	C0		LDA	#\$C0	; SET DEFAULT SERIAL PROTOCOL TO 8 BITS, NO PARITY
0558	F805	85	40		STA	DEFPRD	
0559	F807	A9	86		LDA	# <s0< td=""><td>; BASE POINTER FOR S-REGISTERS</td></s0<>	; BASE POINTER FOR S-REGISTERS
0560	F809	85	84		STA	SREGP	
0561	FBOB	A9	00		LDA	#>S0	; SET UP HIGH-BYTE OF S-REG POINTER
0562	FBOD	85	85		STA	SREGP+1	
0563	FBOF	A0	11		LDY	#17	; INITIALIZE S-REGS
0564	FB11	B9	AD FA	SLOOP	LDA	STBL,Y	
0565	FB14	91	84		STA	(SREGP),Y	
0566	FB16	88			DEY		
0567	FB17	10	F8		BPL	SLOOP	
0568	FB19	A5	89		LDA	S 3	
0569	FBIB	85	40		STA	INBUFF	; INITIALIZE COMMAND STRING TO [NULL]
0570	FBID	60			RTS		•
0571					.FILE	MDN10B	

PAGE 0014

AE 77				MAND DOUTING TO EXPOSITE THE							
0573			; THE FOLLOWING ARE ALL THE COMMAND ROUTINES TO EXECUTE THE : "AT" COMMANDS								
0574		; "A1" LUM	MANUS								
0575											
0576											
0577		; "," COMM	AND WAIT FOR O	NE PAUSE TIRE							
0578											
0579 FB1E	86 9D	COMMA STX	TENP	; SAVE INBUFF POINTER							
0580 FB20	A6 8E	LDX	58	; GET VALUE OF S-REG 8 (DELAY TIME)							
0581 FB22	F0 15	BEQ	NODLAY	; IF ZERD THEN NO DELAY							
0582 FB24	A9 9C	LDA	# <dlytin< td=""><td></td></dlytin<>								
0583 FB26	85 IC	STA	CNTBCL	; START TINER-B							
0584 FB28	A9 E0	LDA	#>DLYTIN								
0585 FB2A	85 1E	STA	CNTBHL								
0586 FB2C	A0 10	ONESEC LDY	#DLYHIB								
0587 FB2E	5F 11 FD	WAITB BBR	5,IFR,WAITB	; IS TIMER B DONE YET ?							
0588 FB31	A5 1C	LDA	CNTBCL	; YES ==> CLEAR TIMER FLAG							
0589 FB33	88	DEY		DONE COUNTING YET ?							
0590 FB34	D0 F8	BNE	WAITB	; NO ==> KEEP GOING							
0591 FB36	CA	DEX		ANY MORE 1-SEC DELAYS ?							
0592 FB37	DO F3	BNE	ONESEC	; YES==> ONE MORE TIME							
0593 FB39	A6 9D	NODLAY LDX	TEMP	RESTORE INBUFF POINTER							
0594 FB3B	60	RTS									
0595											
0596		:*********	*****************	*********							
0597		,									
0598											
0599		; DIAL A NU	MRFR								
0500		,									
0601 FB3C	7F 76 15	DIGIT BBR	7,DILFL6,DIGERR	: IF NUMBER IS NOT TO BE DIALED> ERROR							
0602 FB3F	A9 01	LDA	\$\$ 01	: WAIT UNTIL DIAL BUFFER EMPTY							
0603 FB41	2C 0E 20	WAITRE BIT	XMTE								
0604 FB44	FO FB	BED	WAITRE								
0605 FB46	B5 4B	LDA	INBUFF-1,X	; GET ASCII NUMBER FROM BUFFER. IN THIS CASE, THE							
0605 FB40 0606	DJ 4D	LDH	THDUFF-19A								
				; COMMAND BYTE IS THE PARAMETER. SINCE THE X-REG : HAS ALREADY BEEN UPDATED TO POINT TO THE BYTE							
0607				,							
0608				; FOLLOWING THIS DIGIT/COMMAND, THE BASE OF THE							
0609				; COMMAND BUFFER HAS TO BE SHIFTED DOWN ONE BYTE							

5

R6500/11 • R2424 Intelligent Modem Design

0610 0611 FB48 0612 FB44 0613 FB46 0614 FB48 0615 FB50 0616 FB53 0617	D0 02 A7 0E 27 0F 0 8D 00 20	CMP BNE LDA DIG2 AND STA QDIGIT RTS	#'#' D162 #\$0E \$\$0F XMTO	; TO COMPENSATE. ; IS THE DIAL DIGIT A "#" ? ; NO ==> BRANCH ; YES==> EXCHANGE CHAR FOR R2424'S "#" NUMBER ; MAKE IT ABSOLUTE ; AND DIAL
0618 F854 0619 F854 0620 F854 0621 0622 0623	5 85 7D	DIGERR LDA Sta JMP ;********	#04 StCODE CR	; "ERROR " ; TERMINATE COMMAND STRING PROCESSING
0624 0625 0626 0627 FB51 0628 FB51		; SEMICOLON SEMIC BBR ASL	COMMAND DO 7,DILFL6,SEMERR DILFL6	NE DIALING - RETURN TO COMMAND MODE ; BRANCH IF ";" ENTERED WHILE NOT DIALING (ERROR) ; TURN DFF DIAL FLAG (\$80> \$00)
0629 FB60 0630 FB62 0631 FB65 0632 FB65 0633 FB65	2 2C 0E 20 5 F0 FB 7 A9 FF	LDA Semi2 bit Beq Lda Sta	#01 XMTE Sem12 #\$FF XMT0	; WAIT UNTIL DIAL REGISTER IS EMPTY ; EMPTY YET ? ; ND ==> KEEP WAITING ; YES==> FINISH DIALING

0634 F 0635 F 0636		77 8 60	30			RMB RTS	7,WAITF6		;	PREVENT (CR) COMMAND FROM GOING ON-LINE (REMAIN IN Command Hode)
0638 0637 F	.D1C	A9 (14		SEMERR	1 114	#\$04			SET STCODE FOR ERROR
0638 F		85 7			JEILIN	STA	STCODE		,	
0630 F		40 8		50		JMP	CR			AND TERMINATE COMMAND STRING EXECUTION
0640	013	76 8	v	r v		onr	64		,	
0641							*********	**********		▙ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
0642					,					
0643						COMMANI	0	SET S-REGIST		
0644					; •=•	COMINA		SET S REDIST		
0645 F		7F 8	37	50	EQUAL	BBR	7 000700	NICEPP		IF FLAG IS CLEAR> "ERROR"
0646 F		A9 (40	EROWE	LDA	#00			CLEAR OUT TEMP BUFFER
		85 9				STA	NUM		,	CLEAR DUT TEHR DUTTER
0647 F							NUH+1			
0648 F 0649 F		85 9 85 9				STA Sta	NUM+2			
0650 F		20 8		cn		JSR	GETNUM			GET FIRST CHAR FROM BUFFER
0651 F		BO 3		r w		BCS	EQ4			IF IT IS NOT A NUMBER, THEN ASSUME ZERD
0652 F		85 9				STA	NUM			SAVE NUMBER IN TEMP BUFF
0653 F		20 8		c n		JSR	GETNUM		•	IS THERE ANOTHER NUMBER ?
0653 F		B0 (r v		BCS	EQ2			ND ==> ONES DIGIT ONLY> BRANCH
						LDY	NUM		•	YES==> MOVE ONES DIGIT OVER
0655 F		A4 9							2	
0656 F		84 9				STY	NUM+1		ş	MAN THOCKI ICHO VIDII
0657 F		85 9		- 7		STA	NUM			
0658 F		20 8		FD		JSR	GETNUM			IS THERE A THIRD NUMBER (HUNDREDS DIGIT) ?
0659 F		BO (•••			BCS	EQ2		,	ND ==> ALL NUMBERS FETCHED> BRANCH
0660 F	898	A4 (79			LDY	NUM+1		ij	YES==> MOVE DNES AND TENS DIGITS

R6500/11 • R2424 Intelligent Modem Design

5

0661	FB9A	84	9A			STY	NUM+2	;	OVER AND INSERT HUNDREDS
0662	FB9C	A4	98			LDY	NUM	;	
0663	FB9E	84	99			STY	NUH+1		
0664	FBA0	85	98			STA	NUM		
0665	FBA2	A5	99		EQ2	LDA	NUM+1	;	GET TENS DIGIT
0666	FBA4	FO	07			BEQ	EQ3	;	IGNORE IT IF IT'S ZERD
0667	FBA6	20	EC	FB		JSR	MULT10	;	IF > 0 , MULTIPLY BY 10
0668	FBA9	65	98			ADC	NUM	;	ADD IN ONES DIGIT
0669	FBAB	85	98			STA	NUM		AND SAVE TENS+DNES
0670	FBAD	A5	9A		EQ3	LDA	NUM+2	;	GET HUNDREDS DIGIT; IS IT = 0 ?
0671	FBAF	FO	0B			BEQ	EQ4	;	YES==> FINISHED CONVERTING TO HEX
0672	FBB1	20	EC	FB		JSR	MULT10	;	NO ==> MULTIPLY HUNDREDS DIGIT BY 10
0673	FBB4	20	23	FB		JSR	MULT10	;	AND BY 10 AGAIN (* 100)
0674	FBB7	18				CLC			
0675	F888	65	98			ADC	NUM	;	ADD IN TENS+ONES DIGIT
0676	FBBA	85	98			STA	NUM		
0677	FBBC	A5	98		EQ4	LDA	NUM		
0678	FBBE	AO	00			LDY	\$00		
0679	FBCO	91	84			STA	(SREGP),Y	ţ	SAVE TOTAL HEX VALUE
0680	FBC2	A5	96			LDA	S16	;	60 TO SELF-TEST ?
0681	FBC4	DO	12			BNE	SLFTST	;	ND => STOP SELF TEST
0682	FBC6	A9	EF		NOSLFT	LDA	#\$EF	į	NO SELF TEST RETURN TO NORMAL OPERATING MODE
0683	FBC8	2D	0A	10		AND	REVA	ţ	DISABLE SELF-TEST BITS IN R2424
0684	FBCB	8D	0A	10		STA	RCVA		
0685	FBCE	A9	EF			LDA	#\$EF		
0686	FBDO	2D	0A	20		AND	XMTA		
0687	FBD3	8D	0A	20		STA	XMTA		
0688	FBD6	DO	10			BNE	QEQ	;	(BRANCH ALWAYS)
0689									
0690	FBD8	A9	10		SLFTST	LDA	#\$10	;	START SELF-TEST
0691	FBDA	OD	0A	10		ORA	RCVA	;	SET SELF-TEST BITS IN R2424
0692	FBDD	8D	A0	10		STA	RCVA		
0693	FBEO	A9	10			LDA	#\$10		
0694	FBE2	OD	AO	20		ORA	XMTA		

PAGE 0016

0695 0696 0697 0698	FBE8		OA CB		QEQ	STA JSR RTS	XMTA Newcxr		; UPDATE R2424 SCRATCH-PAD REGISTERS
0699	FBEC	85	9D		MULT10	STA	TEMP		; SAVE VALUE IN TEMP STORAGE
0700	FBEE	0A				ASL	A		HULTIPLY BY 2 (+ 2)
0701	FBEF	0A				ASL	A		AND BY 2 AGAIN (# 4)
0702	FBF0	65	9D			ADC	TEMP		THEN ADD IN DRIGINAL VALUE (CARRY FLAG ALWAYS CLEAR)
0703	FBF2	0A				ASL	A		MULTIPLY BY 2 AGAIN (¥ 10)
0704	FBF3	60				RTS			
0705									
0706					:*****	******	**********	******	
0707					,				
0708					: *?*	COMMAND) SEND	BACK CO	ITENTS OF S-REGISTER
0709									
0710	FBF4	20	40 1	F (DUESTN	JSR	CRLF	1	PREFACE DUTPUT WITH (CR/LF)
0711	FBF7	AO	00			LDY	#00		

5-27

.....

R6500/11 • R2424 Intelligent Modem Design

0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722	FBFB FBFE FC00 FC03 FC06 FC07 FC07	A0 B9 20 88 10	9F 02 98 51	00 FF	QUES3	LDY LDA JSR DEY BPL JSR RTS	(SREGP),Y HX2ASC #02 NUM,Y CHROUT QUES3 CRLF			, , , , , , ,	GET VALUE OF S-REG AND CONVERT IT TO ASCII SEND OUT 3 CHARS GET CHAR FROM "NUM" BUFFER LAST CHAR ? NO ==> SEND OUT NEXT ONE YES==> SEND OUT <cr lf=""></cr>
0723					•						
0724					; "A"	COMMAND	Si	ET MOD	DEM TO	A	NSWER AN INCOMING CALL
0725											
0726			95	FC ·	AAA	JSR	H1AND2				PICK UP PHONE (GD OFF-HOOK) Set R2424 TO ANSWER MODE
0727			10			LDA	#\$10			;	SEI R2424 ID AMSWER HUDE
0728			0D			ORA	XMTD				
0729		80		20		STA	XMTD				SET "ORG" BIT TO 0
0730		A9					#\$DF			;	SEI "UKO" BII TU V
0731		20				AND	XMT9				
0732		8D				STA	XMT9				INDRATE POADA CTATIC
		20		FD		JSR	NEWCX				UPDATE R2424 STATUS Set Flag to indicate we are to wait for carrier
	FC23	F7		~~			7,WAITFG CR2			,	AND GO DIRECTLY TO CARRIER-DETECT
0735	FC25	40	٤Ŀ	FD		JMP	LKZ			,	DO NOT ACCEPT ANY MORE COMMANDS
0736										3	DU NUT HELEFT HAT HOLE COMMAND
0737						******	*********	*****	*****		************
0738					; *****	*******	**********	*****	*****		***************************************
0739 0740						COMMAND	TOGI	61 F T F		TT	FR
0740					; .	CONNER	100		10000		En .
0742											
	FC28	20	or	FD	222	JSR	GETNUM			,	GET PARAMETER, IF ANY
0744			OB		666	BCS	CCZERO				BRANCH IF ND PARAMETER (ASSUME ZERO)
	FC2D		09			BEQ	CCZERO				BRANCH IF PARAMETER = 0
	FC2F		04		CCONE		\$04				PARAMETER =1> TURN ON "CC" BIT
0747				20	ovent	DRA	XMT9				IN MODEM REGISTER
	FC34		07			BNE	0000			,	
	FC36		05			BNE	0000			:	(BRANCH ALWAYS)
	FC38		FB		CCZERO		#\$FB				PARAMETER =0> TURN DFF "CC" BIT
	FC3A			20		AND	XMT9			,	
	FC3D			20	2229	STA	XMT9				
	FC40			FD		JSR	NEWCX			:	UPDATE MODEM REGISTERS
	FC43	60				RTS				,	
0755											

0756	;*******************	******
0757		
0758 0759	; "D" COMMAND	DIAL A NUMBER
0760 FC44 A9 20	DDD LDA #\$20	; PUT MODEM IN ORIGINATE MODE
0761 FC46 0D 09 20	ORA XMT9	; AND SET TO DIAL
0762 FC49 8D 09 20	STA XMT9	

Applica	tion No	ote			R6500/11 • R2424 Intelligent Modem Desig
0763 FC4C	AD OD 20		LDA	XMTD	
0764 FC4F	29 EF			#\$EF	
0765 FC51	09 48		ORA	#\$48	
0766 FC53	8D 0D 20		STA	XMTD	; SET CRQ=1 AND DTR=1
0767 FC56	20 CE FD		JSR	NEWCX	; UPDATE TRANSMITTER REGISTERS
0768 FC59	20 08 20	WAITDL		XMTB	
	10 FB			WAITDL	; WAIT UNTIL DLO=1
0770 FC5E	AS BE			SB	; DELAY "S6" NUMBER OF SECONDS. USE "COMMA"
0771 FC60	48		PHA	50	; COMMAND FOR DELAY ROUTINE. TO DO THIS, WE HAVE TO
0772 FC61	A5 8C		LDA	S 6	; SAVE THE DRIGINAL VALUE OF "S8" (IN THIS CASE ON
0773 FC63	85 BE			58	; THE STACK) AND THEN SUBSTITUTE THE VALUE FOR "S6"
0774 FC65	20 1E FB		JSR	COMMA	: INTO "S8". THIS WILL DELAY "S6" SECONDS. AFTER
0775 FC68	68		PLA		; THE DELAY IS FINISHED, WE POP THE DRIGINAL "SB"
0776 FC69	85 BE			SB	; VALUE OFF THE STACK AND RETURN IT TO "S8".
	F7 76			7,DILFL6	; SET "DIAL FLAG" TO DIAL SUBSEQUENT NUMBERS
	F7 80			7,WAITES	; ENABLE WAIT-FOR-CARRIER DELAY
0779 FC6F	77 77			7,REVFLG	; SET FOR NORMAL DIALING
0780 FC71	60		RTS	, AUCAL CO	, SET FOR RORINE PINEIRO
0781	0V		NI D		
			*******	******	***********
0782		;*****	*******	*********	***************************************
0783			COMMAND		THE FOUNTINE PUADE DARK TO UNET EVETEN
0784		; "L"	COMMAND	T	GELE ECHDING CHARS BACK TO HOST SYSTEM
0785			100	OFTIM	ATT DADAUTTED IT ANY
0786 FC72	20 BE FD	EEE		GETNUM	; GET PARAMETER, IF ANY
0787 FC75	BO 06			EZERO	; BRANCH IF NO PARAMETER (ASSUME ZERO)
0788 FC77	F0 04	CONC		EZERO	; BRANCH IF PARAMETER = 0
0789 FC79	F7 79	EONE		7,ECHOF6	; SET ECHO FLAG
0790 FC7B	DO 02	C3C00		DECHO	; (BRA)
0791 FC7D	77 79	EZERO		7,ECHOF6	; CLEAR ECHO FLAG (NO ECHO)
0792 FC7F	60	BECHO	RIS		
0793					
0794		;*****	*******	*********	***************************************
0795					
0796		1 1	COMMAND	SE	HALF/FULL DUPLEX
0797					
0798 FC80	20 8E FD	FFF		GETNUM	; GET PARAMETER, IF ANY
0799 FC83	BO 06			FZERO	; IF NONE, ASSUME ZERD
0800 FC85	F0 04			FZERO	; BRANCH IF = 0
0801 FC87	F7 7A	FONE		7, DUPLEX	; SET FOR FULL DUPLEX
0802 FC89	DO 02			QFFF	; (BRANCH ALWAYS)
0803 FC88	77 7A			7, DUPLEX	; SET FOR HALF DUPLEX
0804 FC8D	60	QFFF	RTS		
0805					
0806		;*****	*******	********	***************************************
0807					
0808		; "H"	COMMAND	0	OFF HOOK
0809					
0810 FC8E	20 8E FD	HHH	JSR	GETNUM	; GET PARAMETER, IF ANY
0811 FC91	BO 14		BCS	HHZERO	; IF ND PARAMETER, ASSUME ZERD
0812 FC93	F0 12		BEQ	HHZERO	; BRANCH IF PARAMETER = 0
	AD OD 20	H1AND2	LDA	XMTD	; PARAMETER MUST BE 1 OR 2 (DN THE R2424, THEY
0813 FC95	ND VD 2V				
					; FUNCTION THE SAME)
0813 FC95 0814 0815 FC98	09 40			#\$40	; FUNCTION THE SAME)

5

R6500/11 • R2424 Intelligent Modem Design

0817	FC9D	46	OD	10		LDA	RCVD			
	FCAO		40			ORA	#\$40			
	FCA2		OD			STA	RCVD		,	SET RCV CRQ = 1
	FCA5		10			BNE	HHSET		•	(BRANCH ALWAYS)
	FCA7		OD		HHZERO		XMTD		•	60 OFF-LINE (HANG UP)
	FCAA		AF	20		AND	#\$AF		,	
	FCAC		00	20		STA	XMTD			SET XMIT CRQ = 0
	FCAF		OD			LDA	RCVD		,	OCT ANAL CRE - V
	FCB2		BF	••		AND	#\$BF			
	FCB4		OD	10		STA	RCVD			SET RCV CRQ = 0
	FCB7		CB		HHSET		NEWCXR			UPDATE MODEM'S INTERNAL REGISTERS
	FCBA	60			BHHH	RTS	NEWGAN		,	
0829	TCDA	00			G ratta	KI J				
0830										
0831							*******	**********	**	************
0832					,					***********
0833						COMMANI)	RESPOND WIT	н	CHECKSUM OR PRODUCT CODE
0834					, .	Comman	<i>,</i>	ALD: ONLY WI	44	
	FCBB	20	40	CE	ш	JSR	CRLF			MOVE DOWN TO NEXT LINE
	FCBE		9E			JSR	GETNUM			GET PARAMETER, IF ANY
	FCC1		06	r v		BCS	IIZERO			BRANCH IF NO PARAMETER (ASSUME ZERO)
	FCC3		04			BEQ	IIZERO			BRANCH IF PARAMTER = 0
	FCC5		20		LIONE		#CHKSUM-	NCC		SEND DUT CHECKSUN
	FCC7		02		TIUNE	BNE	echkaun- QII	130	ş	
	FCC9		31		IIZERO		#PCODE-M	CC		SEND OUT PRODUCT CODE
	FCCB		33		QII	JSR	MSGOUT	30	į	
	FCCE	20 60	33	rr	811	RTS	130001			
0844	FULL	00				NI3				
0845										
0846								**********		***********************************
0847					,		*******	**********		************
0848					; "M" (ORMAND.		ENABLE/DISAE		COLVRED
0849					,	.01111442			16a 6a	
0850	FULL	77	7C		HMM	RMB	7,SPKRF6			DISABLE SPEAKER FLAG
0851			8E	50	1661	JSR	GETNUM			GET PARAMETER, IF ANY
0852			OD			BCS	MMZERO		•	IF NONE, ASSUME ZERO
0853			OB			BEQ	MMZERO		•	BRANCH IF = 0
0854		69				CMP	#01			IS IT ONE ?
	FCDA		02			BNE	NMTWO			ND ==> LEAVE SPEAKER FLAG DISABLED
	FCDC	F7			MMONE		7,SPKRF6			YES==> ENABLE FLAG TO TURN SPEAKER OFF AT CARRIER TONE
	FCDE		01			RMB	6,PB			TURN ON SPEAKER
	FCEO		E5	cr	111.00	JMP	QMMM		ÿ	IURN UN JEENKER
				r.						
	FCE3 FCE5	E7 60			MMZERO QMMM	RTS	6,PB		ļ	DISABLE SPEAKER
	FLED	60			2000	RIS				
0861										
0862										
0863					;*****	******	*******	**********	**	**************************************
0864										
0865										
0866					; "0" (JUNNAND		GO ON-LINE		
0867			0	-	000	100				
0868			95	FU	000		H1AND2		•	PICK UP PHONE (60 OFF-HOOK)
0869		F7				SHB	7,WAITF6			ENABLE CARRIER TEST
0870	FLEB	4C	F6	FD		JMP	CARTIN		ţ	AND GO DIRECTLY TO CARRIER-DETECT

R6500/11 • R2424 Intelligent Modem Design

0874 ; "P" COMMAND PULSE DIAL 0875	
0876 FCEE AD 0B 20 PPP LDA XMTB ; SET PULSE/TONE BIT TO 0 0877 FCF1 29 FD AND \$\$FD	
PAGE 0019	
0878 FCF3 BD 0B 20 STA XMTB 0879 FCF6 20 CE FD JSR NEWCX ; UPDATE TRANSMITTER REGISTERS 0880 FCF9 60 RTS	i
0881 0882 ;***********************************	*****
0884 ; "Q" COMMAND TDGGLE SENDING RESULT CODE/MESSAGE 0885	
0886 FCFA 20 BE D QQQ JSR GETNUM ; GET PARAMETER, IF ANY 0887 FCFD B0 0.6 BCS QQZERO ; BRANCH IF NO PARAMETER (ASS 0888 FCFF F0 0.4 BEQ QQZERO ; BRANCH IF PARAMETER = 0	UME ZERO)
0889 FD01 F7 7B QQDNE SMB 7,RSLTFG ; SET FLAG E ENABLE PROMPTS } 0890 FD03 D0 02 BNE QQ ; (BRA)	
0891 FD05 77 7B QQZERD RMB 7,RSLTF6 ; CLEAR FLAG (DISABLE PROMPT 0892 FD07 60 QQ RTS 0893	5)
0894 ;************************************	******
0896 ; "R" COMMAND SET DIAL FOR REVERSE MODE 0897 ; (TO DIAL AN ORIGINATE-ONLY MODEM)	
0898 0899 FD08 7F 76 28 RRR BBR 7,DILFLG,RERROR ; BRANCH IF "R" ENTERED WHILE 0900 FD08 A5 41 LDA BAUD ; ARE WE RUNNING AT 2400 BAUD	
0901 FD0D C9 18 CMP #24 0902 FD0F F0 21 BEQ QRRR ; YES==> "REVERSE" MODE NOT EA 0903 ; "ANSWER" TONE BDES A	
0904 FD11 77 76 RMB 7, DILFLE ; NO ==> 300/1200> DISABLE 0905 FD13 F7 77 SMB 7, REVFLE ; SET FLAG TO INDICATE REVERSE 0906 FD15 A9 20 LDA \$\$20 : SET "DRG" BIT TO 1	
0906 FD15 A9 20 LDA #\$20 ; SET "DR6" BIT TO 1 0907 FD17 OD 09 20 DRA XMT9 0908 FD1A 8D 09 20 STA XMT9	
0909 FD1D A9 BF LDA #\$BF ; SET RECEIVER'S "CRQ" BIT TO 0910 FD1F 2D 0D 10 AND RCVD 0911 FD22 8D 0D 10 STA RCVD	0
0912 FD25 A9 BF LDA #\$BF ; SET TRANSMITTER'S "CRQ" BIT 0913 FD27 2D 0D 20 AND XMTD	TO 0
0914 FD2A 09 20 ORA \$\$20 ; AND *DATA* BIT TD 1 0915 FD2C BD 0D 20 STA XMTD 0916 FD2F 20 CB FD JSR NEWCXR ; UPDATE REGISTERS	
0917 FD32 60 QRRR RTS ; AND RETURN	
0919 FD33 A9 04 RERRDR LDA \$\$04 ; SET STCDDE FOR ERROR 0920 FD35 85 7D STA STCDDE 0921 FD37 4C E0 FD JMP CR ; AND TERMINATE COMMAND STR	ING EXECUTION

R6500/11 • R2424 Intelligent Modem Design

4000					
0922 0923				*******	******
0923		;****	*******	*******	****
0925		; "S'	" COMMAN	D	IDENTIFY S-REGISTER FOR FUTURE ACCESS
0926		, ,	Contina		IDENTIFI S-REDIGTER FOR FOTORE HEGESS
0927 FD3A	A9 86	SSS	LDA	# <s0< td=""><td>; START WITH BASE ADDRESS</td></s0<>	; START WITH BASE ADDRESS
0928 FD3C	85 84	333	STA	SREGP	y START WITH BASE ADDRESS
0929 FD3E	20 8E FD		JSR	GETNUM	; GET NUMBER OF S-REGISTER
0930 FD41	B0 14		BCS	QSSS	; BRANCH IF NO PARAMETER FOUND
0931 FD43	F0 12		BEQ	QSSS	; BRANCH IF PARAMETER = 0 (ALREADY SET UP)
0932 FD45	85 98		STA	NUM	SAVE VALUE
0933 FD47	20 8E FD		JSR	GETNUM	; GET ONES DIGIT, IF ANY
0934 FD4A	B0 04		BCS	SS2	; BRANCH IF ONLY ONE DIGIT
0935 FD4C	69 0A		ADC	#10	TENS DIGIT COULD ONLY BE A "1"
0936 FD4E	85 98		STA	NUM	
0937 FD50	A5 98	SS2	LDA	NUM	
0938 FD52	18		CLC		
V/00 (202					
					PAGE 0020
A070 CRE7	(5 DA		480	00000	ADD IN DACE ADDECC
0939 FD53	65 84		ADC	SREGP	; ADD IN BASE ADDRESS
0940 FD55	85 84	0000	STA	SREGP	; AND STORE IN POINTER
0941 FD57	F7 83	QSSS	SMB	7,SSETF	G ; SET FLAG TO INDICATE AN S-REG HAS BEEN SET
0942 FD59 0943	60		RTS		
0743				*******	*******
0945		;****		*******	***************************************
0946			COMMAND		TOUCH-TONE DIAL
0947		, •	COMMAND		
0948 FD5A	AD OB 20	TTT	LDA	XMTB	; SET PULSE/TONE BIT TO 1
0949 FD5D	09 02		DRA	# \$02	
0950 FD5F	8D 0B 20		STA	XMTB	
0951 FD62	20 CE FD		JSR	NEWCX	; UPDATE TRANSMITTER REGISTERS
0952 FD65	60		RTS		
0953	•••				
0954		:****	******	********	***************************************
0955		,			
0956		: "V"	COMMAND		SET VERBAL/NUMERIC RESPONSE
0957		•			
0958 FD66	20 8E FD	VVV	JSR	GETNUM	; BET PARAMETER, IF ANY
0959 FD69	B0 06		BCS	VZERO	; IF NONE, ASSUME ZERD
0960 FD6B	F0 04		BEQ	VZERD	; BRANCH IF = 0
0961 FD6D	F7 7E	VONE	SMB	7, VCODE	
0962 FD6F	DO 02		BNE	RAAA	: (BRANCH ALWAYS)
0963 FD71	77 7E	VZERO	RMB	7,VCODE	
0964 FD73	60	QVVV	RTS		,
0965					
0966		;*****	******	*******	***********
0967					,
0968		; "X"	COMMAND		ENABLE/DISABLE EXTENDED RESPONSE CODES
0969		•			
0970 FD74	20 8E FD	XXX	JSR	GETNUM	; GET PARAMETER, IF ANY
0971 FD77	BO 06		BCS	XZERO	; ASSUME ZERD, IF NOME
0972 FD79	F0 04		BEQ	XZERO	; BRANCH IF = 0
					· · · · · · · · · · · · · · · · · · ·

R6500/11 • R2424 Intelligent Modem Design

0973 FD7B	F7 7F	XONE SM	IB 7, XCODE	; SET FOR EXTENDED CODES
0974 FD7D	DO 02	BN	IE QXXX	
0975 FD7F	77 7F	XZERO RM	IB 7,XCODE	; SET FOR NORMAL CODES
0976 FD81	60	QXXX RT	5	
0977				
0978		;*******	************	***************************************
0979				
0980		; "Z" CO	MMAND	SOFTWARE RESET
0981				
0982 FD82	20 E8 FE	111 JS		; SEND OUT RESPONSE, IF ENABLED
0983 FD85	20 40 FF	JS		
0984 FD88 0985 FD88	7F 16 FD 4C 00 F8	ZZWAIT BB		•
V70J FU80	40 VV F8	JM	F REJEI	; THEN RESTART
		,		DADE 0001
				PAGE 0021
0987		: CHECK T	HE NEXT CHAR T	N "INBUFF". IF IT IS AN ASCII NUMBER (0-9),
0988				MSN, INCREMENT COMMAND STRING POINTER (REG-X),
0989			R CARRY AND RE	
0990				BER, SET CARRY AND RETURN.
0991		•		•
0992 FD8E	B5 4C	GETNUM LD	A INBUFF,X	; GET CHAR FROM BUFFER
0993 FD90	C9 30	CM	P #'0'	; IS IT LESS THAN 'O' ?
0994 FD92	90 09	BC	C NOTNUM	; YES==> QUIT
0995 FD94	C9 3A	CM	P #'9'+1	; NO ==> IS IT GREATER THAN '9' ?
0996 FD96	BO 06	BC	S QGETN	; YES==> QUIT
0997 FD98	E8	IN		; NO ==> INCREMENT INBUFF POINTER
0998 FD99	29 OF	AN		; MASK DFF TOP-MOST 4 BITS
0999 FD9B	90 01	BC		; AND RETURN
1000 FD9D	38	NOTNUM SE		; INDICATE CHAR IS NOT AN ASCII NUMBER
1001 FD9E	60	QGETN RT		; AND RETURN
1002 1003		•		**************************************
1003		•		DFTWARE DESIGN().
1005		, tra	0C 1J4 0JVZ 3	UFIMARE DEDION / .
1005 FD9F	A0 00	HX2ASC LD	Y #00	
1007 FDA1	C9 64	HX2 CM		; FIND NUMBER OF HUNDREDS
1008 FDA3	90 05	BCI		
1009 FDA5	E9 64	SB		
1010 FDA7	C8	IN		
1011 FDA8	DO F7	BN		
1012 FDAA	20 C4 FD	GOTHUN JS		; CONVERT TO ASCII
1013 FDAD	84 9A	ST	Y NUM+2	; AND SAVE IT
1014 FDAF	AO 00	LD	Y #00	
1015 FDB1	C9 0A	HX3 CM	P # 10	; FIND NUMBER OF TENS
1016 FDB3	90 05	BCI	C GOTTEN	
1017 FDB5	E9 0A	SB	C #10	
1018 FDB7	68	IN		
1019 FDB8	D0 F7	BNI		
1020 FDBA	20 C4 FD	GOTTEN JSI		; CONVERT TO ASCII
1021 FDBD	84 99	ST		; SAVE TENS DIGIT
1022 FDBF	09 30	OR		
1023 FDC1	85 98	ST		; SAVE ONES DIGIT
1024 FDC3	60	RTS	5	
1025				

R6500/11 • R2424 Intelligent Modem Design

1026	FDC4	48			HCONV	PHA			
1027	FDC5	98				TYA			
1028	FDC6	09	30			DRA	#\$30	;	CONVERT ABSOLUTE NUMBER TO ASCII
1029	FDC8	A8				TAY		·	
1030	FDC9	68				PLA			
1031	FDCA	60				RTS			
1032					;*****	******	********************	H	***************************************
1033									
1034	FDCB	20	D7	FD	NEWCXR	JSR	NEWCR	;	UPDATE BOTH RECEIVER AND TRANSMITTER REGS
1035									
1036	FDCE	A9	08		NEWCX	LDA	#\$0B	ţ	UPDATE MODEM'S TRANSMITTER REGISTERS
1037	FDDO	0D	0E	20		ORA	XMTE		
1038	FDD3	8D	0E	20		STA	XMTE		
1039	FDD6	60				RTS			
1040									
1041	FDD7	A9	08		NEWCR	LDA	#\$08	ţ	UPDATE MODEM'S RECEIVER REGISTERS
1042	FDD9	0D	0E	10		ORA	RCVE		
1043	FDDC	8D	0E	10		STA	RCVE		
1044	FDDF	60				RTS			

1046					;*****	******	**************	*****	*************
1047					; *(CR	>" COMM	AND CARRI	AGE RE	TURN: SEND DUT RESPONSE MESSAGE
1048					1		OR	GO INT	D DATA MODE IF REQUESTED AND
1049					;		IF	CARRIE	R SIGNAL ACTIVE.
1050									
1051	FDEO	A5	7D		CR	LDA	STCODE	;	CHECK STATUS OF PREVIOUS COMMANDS
1052	FDE2	DO	31			BNE	HOP	;	BRANCH IF NOT "OK"
1053	FDE4	7F	80	2E		BBR	7,WAITEG,HOP	;	BRANCH IF WE ARE NOT TO WAIT FOR A CARRIER SIGNAL
1054	FDE7	A9	01			LDA	#\$01	;	WAIT UNTIL DIAL REGISTER IS EMPTY
1055	FDE9	2C	0E	20	WAITDB	BIT	XMTE	;	EMPTY YET ?
1056	FDEC	FO	FB			BEQ	WAITDB	;	NO ==> CHECK AGAIN
1057	FDEE	FF	77	05	CR2	BBS	7,REVFL6,CARTIM		YES==> CHECK FOR "REVERSE" DIAL> BRANCH IF
1058								:	WE ARE REVERSE DIALING (DON'T CLOSE OUT DIALING JUST YET)
1059	FDF1	A9	FF			LDA	#\$FF		MUST BE 2400 DR NORMAL 300/1200 BAUD DIAL.
1060	FDF3	8D	00	20		STA	XMTO		> CLOSE DIAL MODE AND GO TO DATA MODE.
1061								•	
1062								. ;	IF WE WERE AT 300 BAUD AND DIALING "REVERSE"
1063									NODE THEN WE WOULD HAVE TO WAIT FOR A CARRIER
1064								į	SIGNAL BEFORE REVERSING THE MODEM TO "ANSWER"
1065									MODE. THEN WE WRITE AN \$FF TO "XMTO" TO CLOSE
1066									OUT THE DIAL SEQUENCE.
1067									
1068	FDF6	20	D3	FE	CARTIM	JSR	STRTB3	:	START CNTR-B FOR SECONDS-LONG TIME INTERVAL
1069	FDF9	A5	8D			LDA	S 7		SET UP SECONDS COUNTER (SET BY "CONMA" COMMAND)
1070	FDFB	85	46			STA	DELAYS		
1071	FDFD	4F		18	WCARIR		4,PB,GOTCAR	:	BRANCH IF CARRIER DETECTED
1072	FE00	8F				BBS	0, SCSR, NOCARR		BRANCH (EXIT) IF A KEY HAS BEEN TYPED
1073	FE03	7F				BBR	7,WAITC,WCARIR	;	BRANCH IF WAIT TIME HAS NOT EXPIRED
1074	FE06	57	12		NOCARR		5, IER	ź	DISABLE TIMER B IRQ
								,	

R6500/11 • R2424 Intelligent Modem Design

			_					
	FE08	A5 1			LDA	CNTBCL	;	AND CLEAR CNTB FLAG
	FEOA	77 8			RMB	7,WAITF6		TURN OFF WAIT FLAG
1077	FEOC	87 0	1		SHB	0,PB	;	DIRECT ALL OUTPUT TO HOST SYSTEM
1078	FEOE	A9 0	3		LDA	#\$ 03	;	INDICATE "NO CARRIER"
1079	FE10	85 7	D		STA	STCODE		
1080	FE12	20 A	7 FC		JSR	HHZERD	;	HANG UP THE PHONE
1081	FE15	4C A	F FE	HOP	JMP	NOWAIT	;	AND RETURN TO "RESTRT"
1082								
1083	FE18	57 1	2	GOTCAR	RMB	5,IER	;	GOT A CARRIER> DISABLE TIMER B IRQ
1084	FE1A	A9 F	F		LDA	\$\$FF	;	FINISH UP DIALING (IN CASE OF REVERSE DIAL)
1085	FE1C	8D 0	0 20		STA	XMTO		
1086	FE1F	A9 0	1		LDA	\$\$01	;	INDICATE CARRIER DETECTED
1087	FE21	85 7	D		STA	STCODE		
1088	FE23	7F 7	C 02		BBR	7,SPKRF6,GOTCR1	:	LEAVE SPEAKER ALONE IF FLAG IS NOT SET
1089	FE26	E7 0	1		SMB	6,PB		CARRIER DETECTED> TURN SPEAKER DFF
1090	FE28	20 E	B FE	60TCR1	JSR	RESPNS		
1091	FE2B	07 0	1		RMB	0,PB		THEN DIRECT ALL OUTPUT TO MODEM
	FE2D	A9 0		GOTCR2		#00		RESET ESCAPE CODE COUNTER
	FE2F	85 8			STA	ESCENT	,	
		20 B		GOTCR3		STRTB1	:	START TIMER-B FOR GUARD-TIME COUNTER
	FE34	4F 0		INCHAR		4,PB,INCHR2		BRANCH IF CARRIER STILL DETECTED
	FE37	20 C			JSR	STRTB2		CARRIER LOST> WAIT FOR SIO TENTHS-OF-SECONDS
	FE3A	A5 9	–		LDA	510		FOR CARRIER TO RETURN OTHERWISE INDICATE
		85 4	-		STA	DELAYS	;	LOSS OF CARRIER AND RETURN TO COMMAND MODE
		FF 8		CARCK2		7,WAITC,NOCARR	-	BRANCH IF THE TIME-OUT FLAG GOES TRUE
		CF 0				4,PB,CARCK2		BRANCH IF CARRIER STILL LOST
		A5 1			LDA	SCSR		CARRIER DETECTED AGAIN BEFORE TIME-DUT>CLEAR SERIAL FLAGS
		57 12	-			5,IER	•	DISABLE IRD
	FE48	A5 1		INCHR2		SCSR		
		29 01				#\$0F		CHAR RECEIVED ?
		FO E			BEQ	INCHAR		NO ==> CHECK AGAIN
1105		48		CHKCHR		A	•	YES==> CHECK FOR PROPER RECEPTION
1100		п		MINALIN		n	,	TEW

PAGE 0023

1107 FE4F	B0 06	BCS	CHKOK	BRANCH IF CHAR OK
1108 FE51		LDA	\$04	CHAR NOT OK> ERROR
				y CHAR AUT OK "" / LARDA
1109 FE53		STA	STCODE	
1110 FE55	DO 58	BNE	NOWAIT	; INDICATE ERROR AND START OVER (BRA)
1111				
1112 FE57	A5 17	CHKOK LDA	SRDR	; CHAR OK> FETCH IT
1113 FE59	20 51 FF	JSR	CHROUT	; AND SEND IT TO MODEM
1114 FE5C	FF 7A OA	BBS	7, DUPLEX, ESCCHK	; BRANCH IF CHAR IS NOT TO BE ECHOED BACK
1115 FE5F	87 01	SMB	0,PB	; ECHO> DIRECT OUTPUT TO HOST COMPUTER
1116 FE61	20 51 FF	JSR	CHROUT	; ECHO CHAR BACK
1117 FE64	6F 16 FD	WAITDP BBR	6,SCSR,WAITDP	; WAIT UNTIL CHAR IS SENT OUT
1118 FE67	07 01	RMB	0,PB	; AND REDIRECT OUTPUT BACK TO MODEM
1119				
1120		; NOW CHECK	FOR POSSIBLE ESCA	PE CODE SEQUENCE
1121				
1122 FE69	C5 88	ESCCHK CMP	52	; WAS CHAR AN "ESCAPE" CHAR ?
1123 FE6B	DO C4	BNE	GOTCR3	: NO ==> GET NEXT CHAR
1124 FE6D		LDA	ESCENT	: YES==> IS IT THE FIRST "ESCAPE" CHAR ?
				•
1125 FE6F	F0 06	BEQ	ESCHK2	; YES==> CHECK FOR ELAPSED TIME SINCE PREV CHAR

5

R6500/11 • R2424 Intelligent Modem Design

112	6 FE71	24	81			BIT	WAITC	;	HAS GUARD TIME ELAPSED ?
112	7 FE73	30	88			BMI	GOTCR2	;	YES==> WAITED TOO LONG; ESCAPE NO LONGER VALID
112	8 FE75	10	03			BPL	ESCHK3	;	ND ==> ADD 1 TO ESCAPE COUNT (BRANCH ALWAYS)
112	9 FE77	7F	81	87 ESC	:HK2	BBR	7,WAITC,GOTCR3	;	BRANCH IF GUARD TIME HAS NOT ELAPSED
113	O FE7A	E6	82	ESC	:HK3	INC	ESCENT	;	INCREMENT ESCAPE CODE COUNTER
113	1 FE7C	A5	82			LDA	ESCONT	į	IS THIS THE THIRD SEQUENTIAL "ESCAPE" CODE ?
113	2 FE7E	C9	03			CMP	#03		
113	3 FE80	DO	AF			BNE	GOTCR3	:	ND ==> GET NEXT CHAR
113	4 FE82	20	BB	FE		JSR	STRTB1		YES==> RESTART GUARD-TIMER
113	5 FE85	4F	01	13 LS1	CHK	BBR	4,PB,LSTCK2	í	NOW WAIT FOR 1 GUARD-TIME INTERVAL FOR A CHARACTER
113	6						, ,	í	(BRANCH IF CARRIER IS OK)
113	7 FE88	20	C9	FE		JSR	STRTB2	í	CARRIER LOST> WAIT FOR S10 TENTHS-OF-SECONDS
113	8 FE8B	A5				LDA	S10		FOR CARRIER TO RETURN OTHERWISE INDICATE
113	9 FE8D	85	46			STA	DELAYS		LOSS OF CARRIER AND RETURN TO COMMAND MODE
114	0 FEBF		81	AC CAR	CK3	BBS	7,WAITC,CARCK2		BRANCH IF THE TIME-OUT FLAG GOES TRUE
	1 FE92		01			BBS	4,PB,CARCK3		BRANCH IF CARRIER STILL LOST
	2 FE95	A5		•••		LDA	SCSR		CARRIER DETECTED AGAIN BEFORE TIME-OUT>CLEAR SERIAL FLAGS
	3 FE97		12			RMB	5, IER		DISABLE IRQ
	4 FE99		92			BNE	GOTCR2		LOSS OF CARRIER ABORTS ESCAPE SEQUENCE> BRANCH ALWAYS
114							001012	,	
	6 FE9B	45	16	1 91	***	LDA	SCSR		
	7 FE9D	29			VILL	AND	#\$0F		IF A CHARACTER HAS BEEN ENTERED BEFORE
	8 FE9F	DO				BNE	GOTCR2		THE GUARD-TIME INTERVAL HAS ELAPSED, THEN THE ESCAPE
	9 FEA1		81	F1		BBR	7.WAITC.LSTCHK		SEQUENCE IS ABORTED AND CHAR IS HANDLED IN THE
115		~		L1		DDI	/ gwni i u gwai unik		USUAL FASHION (AT "CHKCHR"). IF TIMER HAS
115	-								ELAPSED THEN ESCAPE SEQUENCE IS COMPLETED WITH A
115	-								RETURN TO COMMAND MODE.
115								j	REIDAN TO CONTRAD HODE.
	4 FEA4	57	17	500	ADE	RMB	5,IER		STOP TIMER B IRQ
	5 FEA6		16			BBR	6,SCSR,ESC2		WAIT UNTIL ALL CHARS ARE TRANSMITTED OUT
	6 FEA9	87		ru cou	2	SMB	0.PB		THEN DIRECT OUTPUT TO HOST COMPUTER
115		0/	01			and	U,FB	;	INER DIRECT DUTFOT TO HUST CONFUTER
115									
	9 FEAB	A9	~~			1.84	#00		DECET DECINT CODE TO BOUN
	O FEAD	н7 85				LDA Sta		į	RESET RESULT CODE TO "OK"
			10	NOU			STCODE	-	
	1 FEAF	68		NUN	MT 1	PLA		•	GET RID OF RETURN ADDRESS FROM "JSR DOCMD"
	2 FEBO	68	-0			PLA	DECONO		(OR "JSR AAA" AT LABLE "ANSWER")
	3 FEB1		E8	re.		JSR	RESPNS		SEND OUT RESPONSE, IF ENABLED
	4 FEB4	A9				LDA	#00	;	RESET RING COUNTER TO ZERO
	5 FEB6	85				STA	S1		
	6 FEB8	40	16	19		JMP	RESTRT	;	AND START ALL OVER AGAIN
116	/								

1168		; *****************	**********
1169		k.	
1170		; 1/50 SEC (20MS) DELAY	
1171			,
1172 FEBB	A5 92	STRTB1 LDA S12	; SET DELAY COUNTER FOR NUMBER OF 20MS GUARD-TIME INTERVALS
1173 FEBD	85 46	STA DELAYS	
1174 FEBF	57 12	RMB 5,IER	; DISABLE IRQ
1175 FEC1	A9 01	LDA #ESCDLY	; SET UP DELAY PARAMETERS
1176 FEC3	A2 9C	LDX # <esctim< td=""><td></td></esctim<>	

R6500/11 • R2424 Intelligent Modem Design

1178 FEC7 D0 12 BNE STRTIM ; AND START TIMER 1179 ; 1/10 SEC DELAY ; IND STATB2 RMB S, IER ; DISABLE IRQ 1181 : : AND START TIMER : DISABLE IRQ 1183 FEC5 A7 10 LDA #DU YHIB ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1184 FECD A2 60 LDX # <tenthd< td=""> ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1185 FECF A0 67 LDY #>TENTHD ; AND START TIMER (BRA) 1185 FECF A0 67 LDY #>TENTHD ; AND START TIMER (BRA) 1186 ; 1 SECOND DELAY ; AND START TIMER (BRA) 1187 FED5 A7 12 STRTB3<!--</th--><th>1177 FEC5</th><th>A0 47</th><th>LDY #>ESCTIM</th><th></th></tenthd<>	1177 FEC5	A0 47	LDY #>ESCTIM	
1180 ; 1/10 SEC DELAY 1181 1182 FEC9 57 12 STRTB2 RMB 5, IER ; DISABLE IRQ 1183 FECB A9 10 LDA #DLYHIB ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1184 FECD A2 60 LDX #KTENTHD ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1185 FECF A0 67 LDY #STENTHD ; AND START TIMER (BRA) 1185 FECF A0 67 LDY #STENTHD ; AND START TIMER (BRA) 1186 FD1 D0 08 BNE STRTIM ; AND START TIMER (BRA) 1187 IISABLE IRQ ; 1 SECOND DELAY 1187 AND START TIMER (BRA) 1188 ; 1 SECOND DELAY 1189 ; STRTB3 RMB S, IER ; DISABLE IRQ 1190 FED3 57 12 STRTB3 RMB S, IER ; DISABLE IRQ 1191 FED5 A9 10 LDA #OLYHIB ; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY 1191 FED5 A9 10 LDA #OLYHIB ; SET UP DELAY PARAMETERS F	1178 FEC7	DO 12	BNE STRTIM	; AND START TIMER
1180 ; 1/10 SEC DELAY 1181 1182 FEC9 57 12 STRTB2 RMB 5, IER ; DISABLE IRQ 1183 FECB A9 10 LDA #DLYHIB ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1184 FECD A2 60 LDX #KTENTHD ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1185 FECF A0 67 LDY #STENTHD ; AND START TIMER (BRA) 1185 FECF A0 67 LDY #STENTHD ; AND START TIMER (BRA) 1186 FD1 D0 08 BNE STRTIM ; AND START TIMER (BRA) 1187 IISABLE IRQ ; 1 SECOND DELAY 1187 AND START TIMER (BRA) 1188 ; 1 SECOND DELAY 1189 ; STRTB3 RMB S, IER ; DISABLE IRQ 1190 FED3 57 12 STRTB3 RMB S, IER ; DISABLE IRQ 1191 FED5 A9 10 LDA #OLYHIB ; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY 1191 FED5 A9 10 LDA #OLYHIB ; SET UP DELAY PARAMETERS F	1179			,
1181 1182 FEC9 57 12 STRTB2 RMB 5, IER ; DISABLE IRQ 1183 FECB A9 10 LDA #DLYHIB ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1184 FECD A2 60 LDX #KTENTHD ; SET UP DELAY PARAMETERS FOR 1/10 SEC 1185 FECF A0 67 LDY #STENTHD ; AND START TIMER (BRA) 1186 FED1 D0 06 BNE STRTIM ; AND START TIMER (BRA) 1187 I188 ; 1 SECOND DELAY AND START TIMER (BRA) 1187 I190 FED3 57 12 STRTB3 RMB 5, IER ; DISABLE IRQ 1190 FED3 57 12 STRTB3 RMB 5, IER ; DISABLE IRQ 1191 FED5 A9 10 LDA #DLYHIB ; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY 1191 FED5 A9 10 LDA #DLYHIB ; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY 1191 FED5 A9 10			: 1/10 SEC DELAY	
1182FEC95712STRTB2RHB5, IER; DISABLE IRQ1183FECBA910LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1/10 SEC1184FECDA260LDX# <tenthd< td="">1185FECFA067LDY#>TENTHD1186FEDID008BNESTRTIM; AND START TIMER1187I188; 1SECOND DELAY1189STRTB3RMB5, IER; DISABLE IRQ1190FED35712STRTB3RMB5, IER; DISABLE IRQ1191FED5A910LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1SEC. DELAY1192FED5A910LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1SEC. DELAY1191FED5A910LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1SEC. DELAY1192FED7A29CLDX#OLYHIB; SET UP DELAY PARAMETERS FOR 1SEC. DELAY1193FED9A0EOLDY#DUYTIMIII173FEDB86ICSTRTIN STXCMTBCL; LDAD COUNTER-B1193FED9A0EOLDY#DUYTIMIII174FEDFFEDF8544STADELAY1194FEDF8544STADELAYC; SET IRQCOUNTERII197FEE87781RMB7, WAITC; SET TIME-DUT FLA6FALSE1197FEE5</tenthd<>	1181		•	
1183 FECBA9 10LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1/10 SEC1184 FECDA2 60LDX###1185 FECFA0 67LDY#>TENTHD#1186 FED1D0 08BNESTRTIM; AND START TIMER (BRA)11871188; 1 SECOND DELAY1189;1 SECOND DELAY1199FED357 12STRTB3 RMB5, IER1190 FED357 12STRTB3 RMB5, IER; DISABLE IRD1191 FED5A9 10LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY1192 FED7A2 9CLDX##1193 FED9A0 E0LDY#>1193 FED9A0 E0LDY#>1195 FED984 1ESTYCNTBHL1196 FEDF85 44STADELAYC; SET IRD COUNTER-B1197 FEE185 45STADELAYT1198 FEE377 81RMB7, WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D7 12SMB5, IER; ENABLE CNTR-B IRQ	1182 FEC9	57 12	STRTB2 RMB 5, IER	; DISABLE IRQ
1185FECFA067LDY#>TENTHD1186FED1D008BNESTRTIM; AND START TIMER (BRA)11871188;1SECOND DELAY1189;1SECOND DELAY1197FED5A910LDA#DLYHIB1919FED5A910LDA#DLYHIB192FED7A29CLDX#OLYTIM1193FED9A0E0LDY#>DLYTIM1194FEDB861CSTRTIM STXCMTBHL1195FEDB841ESTYCMTBHL1196FEDF8544STADELAYC;SET1197FEE18545STADELAYC;SETIRQ1198FEE37781RMB7,WAITC;SETTIME-DUTFLASFALSE1199FEE5D712SMB5, IER;ENABLECNTR-BIRQ	1183 FECB	A9 10		; SET UP DELAY PARAMETERS FOR 1/10 SEC
1186FED1D0D0BNESTRTIH; AND START TIMER (BRA)11871188; 1SECOND DELAY1189; 1SECOND DELAY1189; 1STRTB3 RMB5, IER1190FED5A9 10LDA#DLYHIB1191FED5A9 10LDA#DLYHIB1192FED7A2 9CLDX#COLYTIM1193FED9A0 E0LDY#DLYTIM1193FED9A0 E0LDY#DLYTIM1194FEDB86 1CSTRTIM STXCNTBCL1195FEDB84 1ESTYCNTBHL1196FEDF85 44STADELAYC1197FEE185 45STADELAYT1198FEE377 81RMB7,WAITC1199FEE5D7 12SMB5, IER1199FEE5D7 12SMB5, IER1199FEE5D7 12SMB5, IER	1184 FECD	A2 60	LDX # <tenthd< td=""><td></td></tenthd<>	
11871188;1SECOND DELAY1189;1SECOND DELAY1190FED35712STRTB3 RMB1191FED5A910LDA#OLYHIB1191FED5A910LDA#OLYHIB1192FED7A29CLDX#OLYTIM1193FED9A0E0LDY#>DLYTIM1194FED8861CSTRTIMSTX1195FEDD841ESTYCNTBHL1196FEDF8544STADELAYC1197FEE18545STADELAYT1198FEE37781RMB7,WAITC;1199FEE5D712SMB5, IER;ENABLE CNTR-B	1185 FECF	A0 67	LDY #>TENTHD	
1188; 1 SECOND DELAY11891190119011911191FED35712STRTB3RMB5, IER; DISABLE1191FED5A910LDA40LY1B; SET UP1192FED7A29CLDX40LY1H11931194FED8861CSTRTIMSTXCNTBCL1194FED8841195FED7841196FEE18544STADELAYC1197FEE18545STADELAYT1198FEE37781RMB7,WAITC; SET TIME-DUT FLAG FALSE1199FEE5D712SMB5, IER; ENABLE CNTR-BIRQ	1186 FED1	D0 08	BNE STRTIM	; AND START TIMER (BRA)
11891190FED35712STRTB3RMB5, IER; DISABLE IRQ1191FED5A910LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY1192FED7A29CLDX#OLYTIM1193FED9A0EOLDY#>DLYTIM1194FEDB861CSTRTIMSTRTIM1195FEDD841ESTYCNTBHL1196FEDF8544STADELAYC; SET1197FEE18545STADELAYT1198FEE37781RMB7,WAITC; SET1199FEE5D712SMB5, IER; ENABLE1199FEE5D712SMB5, IER; ENABLE	1187			
1190 FED357 12STRTB3 RMB5, IER; DISABLE IRQ1191 FED5A9 10LDA#DLYHIB; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY1192 FED7A2 9CLDX#CDLYTIM1193 FED9A0 E0LDY#>DLYTIM1194 FEDB86 1CSTRTIM STXCNTBCL; LOAD COUNTER-B1195 FEDD84 1ESTYCNTBHL1196 FEDF85 44STADELAYC; SET IRQ COUNTER1197 FEE185 45STADELAYT1198 FEE377 81RMB7,WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D7 12SMB5, IER; ENABLE CNTR-B IRQ	1188		; 1 SECOND DELAY	
1191 FEDSA910LDA#OLVHIB; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY1192 FED7A29CLDX#OLYTIM1193 FED9A0E0LDY#>DLYTIM1194 FEDB861CSTRTIM STXCNTBCL; LDAD COUNTER-B1195 FEDD841ESTYCNTBHL1196 FEDF8544STADELAYC; SET IRQ1197 FEE18545STADELAYT1198 FEE37781RMB7,WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D712SMB5, IER; ENABLE CNTR-B	1189			
1192FED7A29CLDX###1193FED9A0E0LDY##>DLYTIM1194FEDB861CSTRTIM STXCNTBCL; LDADCDUNTER-B1195FEDD841ESTYCNTBHL1196FEDF8544STADELAYC; SETIRQCDUNTER1197FEE18545STADELAYT1198FEE37781RMB7,WAITC; SETTIME-DUTFLAGFALSE1199FEE5D712SMB5, IER; ENABLECNTR-BIRQ	1190 FED3	57 12	STRTB3 RMB 5, IER	; DISABLE IRQ
1193FED9AOEOLDY#>DLYTIM1194FEDB861CSTRTIM STXCNTBCL; LOAD COUNTER-B1195FEDD841ESTYCNTBHL1196FEDF8544STADELAYC; SET IRQ COUNTER1197FEE18545STADELAYT1198FEE37781RMB7,WAITC; SET TIME-DUT FLAG FALSE1199FEE5D712SMB5, IER; ENABLE CNTR-B	1191 FED5	A9 10	LDA #DLYHIB	; SET UP DELAY PARAMETERS FOR 1 SEC. DELAY
1194 FEDB86 1CSTRTIM STXCNTBCL; LOAD COUNTER-B1195 FEDD84 1ESTYCNTBHL1196 FEDF85 44STADELAYC; SET IRQ COUNTER1197 FEE185 45STADELAYT1198 FEE377 81RMB7,WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D7 12SMB5, IER; ENABLE CNTR-B IRQ	1192 FED7	A2 9C	LDX # <dlytim< td=""><td></td></dlytim<>	
1195 FEDD84 IESTYCNTBHL1196 FEDF85 44STADELAYC; SET IRQ COUNTER1197 FEE185 45STADELAYT1198 FEE377 81RMB7,WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D7 12SMB5,IER; ENABLE CNTR-B	1193 FED9	AO EO	LDY #>DLYTIM	
1196 FEDF 85 44 STA DELAYC ; SET IRQ COUNTER 1197 FEE1 85 45 STA DELAYT 1198 FEE3 77 81 RMB 7,WAITC ; SET TIME-DUT FLAG FALSE 1199 FEE5 D7 12 SMB 5,IER ; ENABLE CNTR-B IRQ	1194 FEDB	86 1C	STRTIM STX CNTBCL	; LDAD COUNTER-B
1197 FEE1 85 45 STA DELAYT 1198 FEE3 77 81 RMB 7,WAITC ; SET TIME-DUT FLAG FALSE 1199 FEE5 D7 12 SMB 5,IER ; ENABLE CNTR-B IRQ	1195 FEDD	84 1E	STY CNTBHL	
1198 FEE377 81RMB7,WAITC; SET TIME-DUT FLAG FALSE1199 FEE5D7 12SMB5,IER; ENABLE CNTR-B IRQ	1196 FEDF	85 44	STA DELAYC	; SET IRQ COUNTER
1199 FEES D7 12 SMB 5, IER ; ENABLE CNTR-B IRQ	1197 FEE1	85 45	STA DELAYT	
	1198 FEE3	77 81	RMB 7,WAITC	; SET TIME-DUT FLAG FALSE
1200 FEE7 60 RTS	1199 FEE5	D7 12	SMB 5, IER	; ENABLE CNTR-B IRQ
	1200 FEE7	60	RTS	

PAGE 0025

1202	FEEB	20	40	FF R	RESPNS	JSR	CRLF		
1203	FEEB	FF	7B	1E		BBS	7,RSLTF6,QRSP	ţ	BRANCH IF STATUS RESPONSE IS DISABLED
1204	FEEE	A5	7D			LDA	STCODE	;	GET CODE VALUE
1205	FEF0	C9 (01			CHP	#\$01	;	IF "CARRIER" RESPONSE, CHECK FOR EXTENDED CODE
1206	FEF2	DO	OD			BNE	RSP2	;	NDT "CARRIER"> BRANCH
1207	FEF4	7F 🗄	7F	OA		BBR	7, XCODE, RSP2	;	BRANCH IF EXTENDED CODE SET IS NOT TO BE USED
1208	FEF7	A4 -	41			LDY	BAUD	;	IS SYSTEM RUNNING AT 1200 BAUD ?
1209	FEF9	C0 (03			CPY	#\$03	;	
1210	FEFB	FO	04			BEQ	RSP2	;	NO ==> BRANCH
1211	FEFD	A9 (05			LDA	#\$05	ţ	YES==> INDICATE 1200/2400 BAUD CARRIER
1212	FEFF	85 1	7D			STA	STCODE	;	AND SAVE IT
1213	FF01	FF :	7E	09 R	SP2	BBS	7, VCODE, VERBAL	ţ	BRANCH IF RESPONSE IS TO BE VERBAL
1214	FF04	09	30	N	IUMERC	ORA	#\$30	ţ	CONVERT RESPONSE CODE TO ASCII
1215	FF06	20	51	FF		JSR	CHROUT	ţ	AND SEND IT DUT
1216	FF09	20	40	FF		JSR	CRLF	ţ	FOLLOWED BY <cr lf=""></cr>
1217	FFOC	60		8	RSP	RTS		ţ	RETURN
1218									
1219		A4 1	70	v	ERBAL	LDY	STCODE	ţ,	DETERMINE WHICH MESSAGE TO SEND OUT
1220		F0 3	20			BEQ	RSPOK	ţ	0 ==> "OK"
1221		88				DEY			
1222		F0 1	19				RSPCAR	ij	1 ==> "CARRIER"
1223		88				DEY			
1224		FO 1	12				RSPRNG	;	2 ==> "RING"
1225		88				DEY			
1226		F0 ()B				RSPNC	;	3 ==> "ND CARRIER"
1227		88				DEY			
1228	FF1B	F0 ()4			BEQ	RSPERR	ţ	4 ==> "ERROR"

5

麙

Appl	ica	tio	n	Note			R6500/11 • R2424 Intelligent Modem Design
1229							
1230 FI	F1D	AO	10	RSPC12	LDY	#CON12M-MS6	; 5 ==> "CONNECT 1200/2400"
1231 F	FIF	DO	12		BNE	MSGOUT	
1232 FI	F21	AO	17	RSPERR	LDY	#ERRMSG-MSG	Υ.
1233 FI	F23	DO	0E		BNE	MSGOUT	
1234 FI	F25	AO	OD	RSPNC	LDY	#NOCARM-MS6	
1235 FI	F27	DO	0A		BNE	MSGOUT	
1236 FI	F29	AO	09	RSPRNG	LDY	#RN6MS6-MS6	
1237 FI	F2B	DO	06		BNE	MSGOUT	
1238 FI	F2D	AO	02	RSPCAR	LDY	#CARMSG-MSG	
1239 FI	F2F	DO	02		BNE	MSGOUT	
1240 FI	F31	AO	00	RSPDK	LDY	#OKMS6-MS6	i i
1241							
1242 FI	F33	B9	7A F	FF MSGOUT	LDA	MSG,Y	; GET CHAR FROM MESSAGE TABLE
1243 FI	F36	48			PHA		; SAVE CHARACTER
1244 FI	F37	63			INY		; POINT TO NEXT CHAR
1245 Fi	F38	29	7F		AND	#\$7F	; MASK DFF MSB
1246 FI	F3A	20	51 F	F	JSR	CHROUT	; AND SEND DUT CHAR
1247 FI	F3D	68			PLA		; RESTORE SIGN BIT
1248 FI	F3E	10	F3		BPL	MSGOUT	; BRANCH IF MORE CHARS TO BE SENT
1249 FI	F40	A5	89	CRLF	LDA	S3	; (S3 CONTAINS CURRENT (CR>)
1250 FI	F42	20	51 F	F	JSR	CHROUT	; SEND DUT (CR)
1251 FI	F45	7F	7E ()5	BBR	7,VCODE,WAITLF	; BYPASS (LF) IF NUMERIC RESPONSE SELECTED
1252 FF	F48	A5	8A		LDA	54	; (S4 CONTAINS CURRENT (LF>)
1253 FF	F4A	20	51 F	F	JSR	CHROUT	; OUTPUT (LF)
1254 FF	F4D	7F	16 F	D WAITLF	BBR	7,SCSR,WAITLF	; WAIT UNTIL <lf> IS FINISHED</lf>
1255 FF	F50	60			RTS		; THEN RETURN
1256							
1257 FF	F51	6F	16 F	D CHROUT	BBR	6, SCSR, CHROUT	; WAIT TILL TRANSMITTER BUFFER IS EMPTY
1258 FF		85	17		STA	STDR	; THEN SEND OUT CHAR
1259 FF	F56	60			RTS		

1261 1262 1263			; INTE	RRUPT S	ERVICE ROUTINE	
1264	FF57	48	ISR	PHA		
1265	FF58	A5 1C		LDA	CNTBCL	; CLEAR TIMER B FLAG
1266	FF5A	FF 78 0D		BBS	7, IRQFL6, CARIER	BRANCH IF IRQ IS FOR WAIT-FOR-CARRIER DELAY
1267	FF5D	A5 00		LDA	PA	ECHO SERIAL IN TO SERIAL OUT
1268	FF5F	0A		ASL	A ·	
1269	FF60	90 04		BCC	SETO	
1270	FF62	E7 00	SET1	SMB	6,PA	
1271	FF64	B0 12		BCS	QISR	; (BRANCH ALWAYS)
1272	FF 66	67 00	SETO	RMB	6,PA	
1273	FF68	90 OE		BCC	DISR	; (BRANCH ALWAYS)
1274						
1275	FF6A	C6 44	CARIER	DEC	DELAYC	; IS TIMER COUNTER = 0 ?
1276	FF6C	DO OA		BNE	QISR	; ND ==> RETURN
1277	FF6E	A5 45		LDA	DELAYT	; YES==> RESET IT

R6500/11 • R2424 Intelligent Modem Design

1278 F	F70 85	5 44		STA	DELAYC	
1279 F	F72 Cl	46		DEC	DELAYS	; IS SECONDS COUNTER = 0 ?
1280 F	F74 DC	02		BNE	DISR	: NO ==> RETURN
1281 F	F76 F7	81		SMB	7.WAITC	: YES==> SET TIME-OUT FLAG
1282 F	F78 68	}	QISR	PLA	•	,
1283 F)	NMIRTN	RTI		
1285 F	F7A		MSG	=	+	
1286						
1287 F	F7A 4F		OKMSG	.SBY	'OK'	
1288 F	F7C 43	5	CARMSG	.SBY	'CONNECT'	
1289 FI	F83 52		RNGMSG	.SBY	'RING'	
1290 F	F87 4E		NOCARM	.SBY	'NO CARRIER'	
1291 F	F91 45	i	ERRMSG	.SBY	'ERROR'	
1292 F	F96 43	5	CON12M	. SBY	'CONNECT 1200/2400'	
1293						
1294 F	FA7 2A	1	CHKSUM	.SBY	*****	
1295 F	FAB 36		PCODE	.SBY	'6500 <i>'</i>	
1296						
1297 F	FAF			*=\$FFFA	ł	
1298						
1299 F	FFA 79	FF		. WOR	NMIRTN	
1300 F	FFC 00	FB		. WOR	RESET	
1301 F	FFE 57	FF		. WOR	ISR	
1302						
1303				.END	MDM10A	

ERRORS = 0000 <0000>

PAGE 0027

SYMBOL TABLE

AAA	FCOD	0489	0509	#0726				
ABIT8	0048	#0044	0179	0263	0313	0316	0330	
ABIT9	0049	#0045	0180	0268	0309			
ALLIN	F9DD	0414	#0422					
ANSWER	FA42	0485	#0488					
BAUD	0041	#0037	0378	0900	1208			
BAUD12	002F	#0126	0357	0553	0555			
BAUD24	0017	#0127						
BAUD3	00BF	#0125	0351					
BORATH	0043	#0039	0215	0341	0347	0477	0556	
BORATL	0042	#0038	0223	0342	0345	0350	0475	0554
BD2	F974	0356	0362	\$0366				
BS	F9BF	0401	#0404					
BUFFLG	0075	#0050	0186	0418	0422			
B03	F95A	#0353						
B12	F966	#0359						
B24	F96E	0358	#0363					
CARCK2	FE3E	#1099	1100	1140				
CARCK3	FE8F	#1140	1141					
CARIER	FF6A	1266	#1275					
CARMSG	FF7C	1238	\$1288					

5

- - - ----

R6500/11 • R2424 Intelligent Modem Design

CARTIM	EDEA	0870	1057	#1068							
200	FC28		#0743								
CCONE	FC2F										
CCZERO			0745	#0750							
CHKCHR											
CHKOK			#1112								
CHKSUM			#1294								
CHROUT		0394		0409	0716	1113	1116	1215	1246	1250	125
		\$1257		•1•/					1610	1200	
CMDTBL	F047		#0497								
CMDVEC					0463						
CNTACL		#0025				0235	0260	0265	0279	0296	030
UNITED	****	0346					4204	4200	v.,,	v	000
CNTAH	0019	#0026									
CNTAL			0206		0229	0247	0274	0276	0348	0478	
CNTBCL		#0030			0588	1075			0010		
CNTBHC		#0031		0000	Vuqu	10/0	44/7	1200			
CNTBHL			0200	0585	1195						
COMMA			#0579								
CON12M			\$1292								
CR	FDEO	0425			0639	0921	#1051				
CRLF	FF40	0710						#1249			
CR2	FDEE		\$1057	~~~~	•/00			*****			
CTLCOD			\$0395								
DDD	FC44		#0760								
DEFPRO		\$0036		0473	0558						
DELAYC			1196		1278						
DELAYS		#0042			1139	1173	1279				
DELAYT		#0041				••••	••••				
DELETE		#0406									
DIGERR			#0618	0645							
DIGIT	FB3C	0506		\$0601							
D162	FB4E		#0614								
DILFLG		#0051		0546	0601	0627	0628	0777	0899	0904	
DLYHIB			0586								
DLYTIM		#0120			1192	1193					
DOCMD			#0436								
DUPLEX		#0055		0801	0803	1114					
ECHOFG		#0054		0393	0549	0789	0791				

PAGE 0028

SYMBOL TABLE

EEE	FC72	0509	#0786			
EONE	FC79	#0789				
EQUAL	FB76	0508	#0645			
EQ2	FBA2	0654	0659	\$0665		
EQ3	FBAD	0666	#0670			
EQ4	FBBC	0651	0671	\$0677		
ERRMSG	FF91	1232	\$1291			
ESCAPE	FEA4	#1154				
ESCCHK	FE69	1114	#1122			
ESCONT	0082	\$0063	1093	1124	1130	1131
ESCOLY	0001	#0122	1175			

R6500/11 • R2424 Intelligent Modem Design

ESCHK2	FE77	1125	#1129								
ESCHK3	FE7A	1128	#1130								
ESCTIM	479C	#0123	1176	1177							
ESC2	FEA6	#1155	1155								
EVEN7	F929	0317	#0327								
EVEN8	F91D	0310	#0321								
EZERO	FC7D	0787	0788	\$0791							
FFF	FC80	0509	#0798								
FNDCMD	F9F5	0432	#0444								
FONE	FC87	#0801									
FOUND	FAOD	0449	#0457								
FOUNDA	F8AD	0244	#0259	0259							
FOUNDS	F8EF	0288	#0293								
FOUNDT	F8F1	0290	#0295	0295							
FZERO	FC88	0799	0800	#0803							
GETCHR	F9A4	#0392									
GETNUM	FD8E	0650	0653	0658	0743	0786	0798	0810	0836	0851	0886
		0929	0933	0958	0970	#0992					
GOCR	FAOB	0447	#0455								
SOTCAR		1071	\$1083								
GOTCHR			0405	#0412							
GOTCRI			#1090								
GOTCR2				1144	1148						
GOTCR3				1129							
GOTHUN			#1012								
GOTTEN			\$1020								
GO2RES		#0250									
GT300			#0357								
HCONV			1020	#1026							
ннн	FCBE		#0810	*****							
HHSET			#0827								
HHZERO			0812	#0821	1080						
HOP	FE15		1053		1000						
HX2	FDA1		1011	*****							
HX2ASC			#1006								
HX3	FDB1	#1015									
HIAND2			#0813	0949							
IER	0012		0201		0469	0528	1074	1083	1102	1143	1154
ICA	0012		1182		1199	0320	10/4	1000	1142	1140	1104
IFR	0011	#0018				0234	0248	0259	0264	0275	0278
11.4	0011	0295				0587	V240	0207	0204	V2/3	V2/U
111	FCBB		#0835	V4/V	VJZI	VJU/					
IIONE		\$0839	40000								
			0070	40041							
112ERO INBUFF		0837 #0048		#0841	0569	0605	0992				
INCHAR		#1095		0443	0307	0003	V772				
			#1103								
INCHR2			#1103 #0526								
INITSW		\$0053		0380	A400	1266					
IRQFLG	00/8	40032	0202	0380	V700	1700					

5

R6500/11 • R2424 Intelligent Modem Design

PAGE 0029

SYMBOL TABLE

FF57 #1264 1301 ISR LABEL1 F93D 0320 0323 0326 0329 0334 \$0338 LOOP2 F9FD #0448 0452 LSTCHK FE85 #1135 1149 LSTCK2 FE98 1135 #1146 F857 #0207 0208 L1 L10 F8D4 #0278 0278 0284 L12 F8FB #0300 0300 L2 F85F #0210 0210 L3 F87D #0228 0228 L4 F889 #0234 0234 0240 L4A F8A1 #0248 0248 L5 F8A4 #0249 0249 F887 #0264 0264 L6 L7 F8C1 #0269 0269 L8 F8C4 #0270 0270 L9 F8CD #0275 0275 MCR 0014 #0020 0138 0194 0195 0221 0222 0472 MMM FCCF 0510 #0850 MMONE FCDC \$0856 MMTWO FCDE 0855 #0857 MMZERO FCE3 0852 0853 \$0859 MS6 FF7A 0839 0841 1230 1232 1234 1236 1238 1240 1242 #1285 0842 1231 1233 1235 1237 1239 \$1242 1248 MSGOUT FF33 MULT10 FBEC 0667 0672 0673 #0699 NEWCR FDD7 0191 1034 #1041 NEWCX FDCE 0733 0753 0767 0879 0951 #1036 NEWCXR FDCB 0377 0696 0827 0916 #1034 NMIRTN FF79 #1283 1299 1234 #1290 NOCARM FF87 NOCARR FEO6 1072 #1074 1099 NODLAY FB39 0581 #0593 NOIRQ F850 0196 #0203 NOPAR F92F 0315 #0330 NOPAR7 F939 0331 #0335 NOPAR8 F933 #0332 NOSLFT FBC6 #0682 NOTNUM FD9D 0994 #1000 NOWAIT FEAF 1081 1110 #1161 NUM 0098 #0088 0647 0648 0649 0652 0655 0656 0657 0660 0661 0662 0663 0664 0665 0668 0669 0670 0675 0676 0677 0715 0932 0936 0937 1013 1021 1023 NUMCHD 0021 #0129 0451 0455 NUMERC FF04 #1214 NXTCMD F9E9 #0432 0435 F917 #0318 0007 0008 F923 0312 #0324 OKMSG FF7A 1240 #1287 **ONESEC FB2C** #0586 0592 000 FCE6 0510 #0868 PA 0000 #0013 0208 0209 0210 0230 0236 0249 0261 0266 0269 0270 0280 0297 0302 1267 1270 1272 PB 0001 #0014 0142 0143 0144 0145 0146 0354 0360 0364 0857 0859 1071 1077 1089 1091 1095 1100 1115 1118 1135

R6500/11 • R2424 Intelligent Modem Design

00005	CEAD		1156									
PCODE PPP	FCEE		#1295 #0876									
	FC3D			40757								
				\$0752								
QDIGIT QECHO		#0616										
RECHO	FL/F	0/90	#0792									·
											PAGE 0030	
SYMBOL	TABLE											
QEQ	FBEB		#0696									
QFFF	FC8D		\$0804									
	FD9E		0999	#1001								
ohhh	FCBA	#0828										
QII	FCCB		#0842									
QISR	FF78	1271	1273	1276	1280	#1282						
QMMM	FCE5		#0860									
0Q	FD07	0890	#0892									
QQONE	FD01	\$0889										
608	FCFA	0510	\$0886									
QQZERO	FD05	0887	0888	#0891								
orrr	FD32		#0917									×
QRSP	FFOC		#1217									,
QSSS	FD57		0931	#0941								
QUESTN	FBF4	0508	#0710									
QUES3	FC00	\$0715	0718									
8VVV	FD73	0962	#0964									
OXXX	FD81	0974	#0976									
RCV	1000		0094									
RCVA	100A	#0098	0367	0370	0534	0683	0684	0691	0692			
RCVB	100B	#0099										
RCVC	1000	#0100										
RCVD	100D	#0101				0817	0819	0824	0826	0910	0911	
RCVE	100E	#0102	0539	1042	1043							
RCVF	100F	#0103										
RCV2	1002	\$0095										
RCV8	1008	#0096										
RCV9	1009	\$0097										
REPEAT		0386		#0427								
REPFLG				0293	0386							
RERROR			#0919									
RESET			0985									
RESPNS			0982			#1202						
RESTRT		#0176				1166						
REVFLG				0905	1057						1	
RING	F8AA		#0252									
RINGNG			#0469									
RNGMSG			\$1289									
RDTATE			0344									
RRR	FD08		*0899									
RSLTFG			0547		0891	1203						,
RSPCAR			#1238									
RSPC12		#1230										
0020200	FF21	1228	#1232									

5

R6500/11 • R2424 Intelligent Modem Design

RSPNC FF25	1226 #1234						
RSPOK FF31	1220 #1240						
RSPRNG FF29	1224 \$1236						
RSP2 FF01	1206 1207	1210 #1213					
SCCR 0015	#0021 0177	0338 0474					
SCSR 0016	0022 0381	0388 0984	1072 1101	1103	1117	1142	1146
	1155 1254	1257					
SEMERR FB6F	0627 #0637						
SEMIC FB5B	0508 #0627						
SEMI2 FB62	#0630 0631						
SETPTR F99C	#0387 0410						
SETO FF66	1269 \$1272						
SET1 FF62	#1270						
SLFTST FBD8	0681 \$0690						
SLOOP FB11	#0564 0567						
SPKRF6 007C	#0057 0552	0850 0856	1088				

PAGE 0031

SYMBOL TABLE

SRDR	0017	#0024	0392	1112							
SREGP	0084	#0065	0560	0562	0565	0679	0712	0928	0939	0940	
SSETF6	0083	#0064	0543	0645	0941						
SSS	FD3A	0511	\$0927								
SS2	FD50	0934	#0937								
STBL	FAAD	#0517	0564								
STCODE	007D	#0058	0187	0424	0454	0480	0619	0638	0920	1051	1079
		1087	1109	1160	1204	1212	1219				
STDR	0017	#0023	0024	1258							
STRTB1	FEBB	1094	1134	#1172							
STRTB2	FEC9	1096	1137	#1182							
STRTB3	FED3	1068	#1190								
STRTIM	FEDB	1178	1186	\$1194							
S0	0086	#0069	0484	0559	0561	0927					
S1	0087	#0070	0482	0483	0544	1165					
S10	0090	#0079	1097	1138							
S11	0091	#0080									
S12	0092	#0081	1172								
S13	0093	#0082									
S14	0094	#0083									
S15	0095	\$0084									
S16	0096	\$0085	0680								
S17	0097	\$0086									
52	0088	#0071	1122								
S3	0089	#0072	0395	0413	0446	0568	1249				
S4	008A	#0073	1252								
S5	008B	#0074	0402	0404							
S6	380 0	#0075	0772								
S7	008D	#0076	1069								
S8	008E	\$0077	0580	0770	0773	0776					
S9	008F	\$0078									
TBITS	004A	\$0046	0181	0299	0314						
TBIT9	004B	#0047	0182	0304	0311						
TEMP	009D	\$0090	0366	0369	0373	0579	0593	0699	0702		

R6500/11 • R2424 Intelligent Modem Design

TENT	FHD 6760	#0121	1184	1185							
TEST	B 0047	#0043	0183	0232	0238	0241	0271	0282	0285		
TTT	FD5A	0511	#0948								
VCOD)E 007E	#0059	0551	0961	0963	1213	1251				
VEC1	BL FA69	0460	0462	#0505							
VERE	BAL FFOD	1213	#1219								
VONE	FD6D	#0961									
VVV	FD66	0511	#0958								
VZER	RO FD71	0959	0960	#0963							
WAIT	B FB2E	\$0587	0587	0590							
WAIT	C 0081	#0062	1073	1099	1126	1129	1140	1149	1198	1281	
WAIT	DB FDE9	\$1055	1056								
WAIT	DL FC59	\$0768	0769								
WAIT	DP FE64	#1117	1117								
WAIT	F6 0080	#0061	0185	0634	0734	0778	0869	1053	1076		
WAIT	IN F99E	\$0388	0390	0398	0399	0407	0417	0420			
WAIT	LF FF4D	1251	#1254	1254							
WAIT	RE FB41	\$0603	0604								
WCAF	RIR FDFD	#1071	1073								
XCOI	E 007F	#0060	0545	0973	0975	1207					
XMT	2000	#0105	0107								
XMTA	200A	#0112	0371	0374	0535	0686	0687	0694	0695		
XMTE	200B	#0113	0530	0876	0878	0948	0950				
XMTC	2000	#0114	0376	0538							
XMTE		#0115	0529	0728	0729	0763	0766	0813	0816	0821	0823
		0913	0915								

PAGE 0032

SYMBOL TABLE

XMTE 200E #0116 0540 0603 0630 1037 1038 1055 #0117 XMTF 200F XMTO 2000 #0108 0615 0633 1060 1085 XMT2 2002 XMT8 2008 #0109 #0110 0768 #0111 0731 0732 0747 0751 0752 0761 0762 0907 0908 XMT9 2009 XONE FD7B \$0973 0511 #0970 XXX FD74 XZERO FD7F 0971 0972 #0975 #0984 0984 ZZWAIT FD88 111 FD82 0511 #0982 .NAR6 ****

END OF ASSEMBLY

5

.

Interfacing Rockwell Signal Processor-Based Modems To An Apple Ile Computer

by Carlos A. Laiz, Product Applications Engineer Semiconductor Products Division, Newport Beach, California

INTRODUCTION

This application note describes the electrical design of a module that interfaces an Apple IIe* computer to a Rockwell Signal Processor (SP)-based modem. The design incorporates an USART (8251A) for asynchronous/synchronous serial data transfer and control, and two digital-to-analog converters (DACs) for quadrature eye pattern generation. Memory mapped input/output (I/O) allows easy access to the modem interface module connects directly to the following modems with minor software differences required to switch between them:

- R1212M or R1212DC
- 2DC R96DP 4DC • R96FT
 - R2424M or R2424DC
- R48DP

Two assembly listings of sample software subroutines for R1212/R2424 automatic dialing and R48DP/R96DP eye pattern generation are also included.

HARDWARE DESIGN

The interface module schematic (Figure 1) shows the routing of signals between an Apple IIe peripheral slot, the USART, and the modem. The modem can physically be located outside the Apple IIe and connected by a short 64-conductor ribbon cable to a 64-pin DIN connector (with the same pin assignments) installed on the interface module.

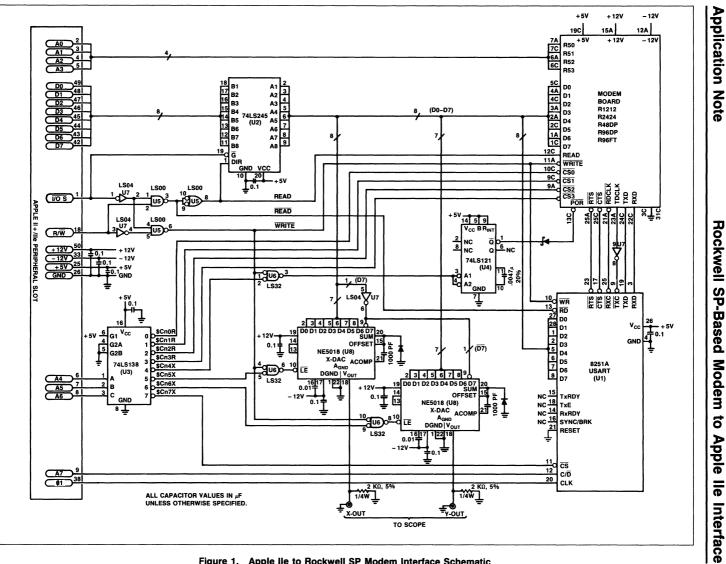
The major devices on the interface module are the 8251A Universal Synchronous/Asynchronous Receiver/Transmitter (USART) and two NE5018 DACs. The USART (U1) allows the microprocessor to transfer data and control to the modem via the serial interface. This USART supports both asynchronous and synchronous data transfer modes. The two DACs, U8 and U9, generate the analog voltages to drive the eye pattern X-OUT and Y-OUT signals, respectively.

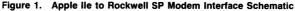
Address lines A0–A3 are directly connected to the modem register select inputs RS0-RS3. The Apple's partially decoded I/O SELECT (pin 1 in the Apple peripheral connector) is used to gate R/W to produce two separate READ and WRITE signals with the proper timing as required by the modem and the

*Apple and Apple IIe are registered trademarks of Apple Computer, Inc

USART. I/O SELECT is active during Ø0 clock when the microprocessor references page \$Cn, where n is a peripheral slot number (1-7) in the Apple.

The data lines are buffered by U2 and routed to multiple destinations (U1, U8, U9 and the interfacing modem). U2 is enabled by I/O SELECT and the data direction is controlled by READ.


Address lines A4-A6 are decoded (U3) into eight chip select signals (Cn0R-Cn3R and Cn4X-Cn7X). Addresses Cn0R-Cn3R correspond to the modem chip select inputs (CS0-CS3). Writing to address Cn4X triggers U4 to generate a low level pulse (4 μ s min.) causing the modem to initiate a Power On Reset (POR) cycle. Addresses Cn5X and Cn6X are used to write eye pattern data into the X-DAC and Y-DAC, respectively.


The USART's input line Control/Data (C/D) is controlled by the address line A7. Address $\overline{SCn7X}$ (A7 = 0) is used to write to the transmitter register or to read the receiver register in the USART. Address \overline{SCnFX} (A7 = 1) is used to write to the USART Control register or to read its status register. The USART is supplied with \emptyset 1 clock directly from the Apple bus.

The I/O addresses and their functions are summarized in Table 1.

Table 1. Interface Module Memory Map

Address	Device Addressed/Function Performed		
\$Cn0R	Chip Select 0 (CS0)		
\$Cn1R	Chip Select 1 (CS1)		
\$Cn2R	Chip Select 2 (CS2)		
\$Cn3R	Chip Select 3 (CS3)		
\$Cn4X	POR (Power-On-Reset)		
\$Cn5X	X-DAC Latch Enable (XLE)		
\$Cn6X	Y-DAC Latch Enable (YLE)		
\$Cn7X	USART Chip Select $(C/\overline{D} = A7 = \emptyset)$ USART Chip Select $(C/\overline{D} = A7 = 1)$		
\$CnFX			
Notes:			
n = Apple IIe peripheral slot number (1-7)			
R = Modem register number (0-F)			
X = Irrelev	vant		

5-47

Rockwell SP-Based Modem to Apple lie Interface

SOFTWARE CONSIDERATIONS

Application software can easily control the modem, the USART and the two DACs via the addresses decoded on the interface module (Table 1). The location of bits and registers as well as diagnostic access codes vary between modems. Refer to the appropriate data sheet for specific bit and register locations and access codes.

Two example software subroutines are included in this application note for interfacing to an SP-based modem. These routines are written in 6502 assembly language.

The Automatic Dialer subroutine for the R1212/R2424 (Figure 2) implements the same function described and flowcharted in the

R1212 and R2424 data sheets. The subroutine, as shown, starts at address \$6000 but can be easily relocated. As written, it assumes that the interface module is installed in Apple IIe peripheral slot 4. The number to be dialed should be stored at \$6100 and terminated with an \$FF character.

The Eye Pattern Generator subroutine for the R48DP/R96DP (Figure 3) generates a continuous eye pattern in loop 3 (local analog loopback) by reading a signal point once per baud. The subroutine starts at \$0300 and can also be easily relocated. Execution is halted and control returned to the calling routine when a key is pressed. The comments in the listing describe the detail operation.

	1000 UR6 \$6000	
	1008 «	

		4 AUTOMATIC DIALER ROUTINE *

	1040 *	
		* * * * * * * * * * * * * * * * * * * *
		BE OTALED SHOULD BE STURED AT *
		ROGRAM ASSUMES THAT THE *
		RD IS IN SLOT 4. IF MAY BE *
		SUBROUTINE FROM BASIC WITH A *
		DR A "JSR ≸6100" FROM ASSEMBLY. ★
		* * * * * * * * * * * * * * * * * * * *
	1104 *	
6000 60 18 04	1112 I DA #U41B	
6905 - 199 FD	1120 AND ##FD	;SET PULSE DIALING
5005r (0) 1R C4	11.13 STA \$C411:	
6008- AD TO C4	11.36 L.DA \$C41D	
200B 07 18	1144 ORA #\$C8	;SET CRQ=1, BUS≕1, DTR=1
6000 80 1D C4	1152 SIA \$C41D	
6010- AD 1E 1.4	1160 EDA #C41E	
6014-09-08	1168 ORA #\$08	;SEI NEWC (IRANSMITTER)
Solte BD 1E 14	1176 STA \$('41F.	
0018- A0 18 C4	1184 DLU LDA #C418	
8918-24 89	1192 AND 11480	
3010 · F0 F2	12:00 BED DLO	; DL O 1?
601F - 85, 00	1208 LDX #\$00	; INFITALIZE DIGIT COUNTER
5021 - AD 1E U4	1216 DDRF LDA 1041E	
6024 29 01	1224 AND #101	# DDRE=1 C
6026 F0 F9	LAAR DEG DORL	
40,48- 80 00 ST	1.:40 1.06 #6100.	•
602B 3D 10 14	1.:48 SIA #C410	STORE DIGIT IN DOR
80.4 · 18	1256 111	
70,1 CA FF	LC64 CHP ##FF	:LAGI 01611 2
WORLDO FF	1.17.2 BNI DDRF	;]E NO, DIAL NEXT DIGIT
60°34 - 60	1290 R15	;ELSE, RETURN FROM SUBROUTINE
សារាមភាព ស្រុស.F		
DEI) 6010 -)RE 60.1	

Rockwell SP-Based Modem to Apple Ile Interface

	0RG \$300
1008	*
1014	***************************************
1024	* R48DP/R96DP EYE PATTERN GENERATION ROUTINE #
1032	***************************************
1040	· *
1048	* THIS ROUTINE GENERATES A CONTINUOUS EYE PATTERN +
1056	* READING A SIGNAL POINT ONCE PER BAUD.
1064	* EXECUTION IS HALTED AND CONTROL IS RETURNED TO 4
1072	* THE CALLING PROGRAM WHEN A KEY IS PRESSED.
1080	· *
1088	********
1098	*
0300 AD 10 CO 1104	LDA ≇CO1O ;CLEAR KBRD.
0303- 8D 40 C4 1112	STA \$C440 ; POR
0306- A9 A2 1120	LDA ##A2
0308- 8D 25 C4 1128	
030B- A9 22 1136	LDA #\$22
030D- 8D 24 C4 1144	STA ≇C424 ;WRI1E RAM ACCESS YB
0310- AD 04 C4 1152	LDA \$C404
0313-09.80 1160	ORA #\$80
0315- 8D 04 C4 1168	•••••••••••••••••••••••••••••••••••••••
0318- AD 07 C4 1176	
0318 09 80 1184	
031D- 8D 07 C4 1192	
0320- AD 2E C4 1200	· · · · · · · · · · · · · · · · · · ·
0323-29-01 1208	
0325- F0 F9 1218	
0327- AD 23 C4 1224	······
032A- 80 50 C4 1232	
032D- AD 21 C4 1240	· · · · · · · · · · · · · · · · · · ·
0330- 8D 60 C4 1248	
0333- AD 20 C4 1250	······ · · · · · · · · · · · · · · · ·
0336- AD 00 CO 1264	
0339 29 80 1273	
033B- FO E3 1280	• • • • •
033D- A9 00 1288	
033F- 8D 50 C4 1296	
0342- 8D 60 C4 1304	
0345-60 1312	RIS

Figure 3. Eye Pattern Generator Routine

2400/1200/300 bps International Modem Design

by Malcolm B. Waters, Product Applications Engineer Semiconductor Products Division, Newport Beach, California

INTRODUCTION

This application note presents a design for a 2400/1200/300 bps international modem which meets CCITT recommendations V.21, V.22, V.22 bis and V.23. The design is based on the Rockwell R2424 2400/bps full duplex modem which provides the 2400 bps V.22 bis and 1200 bps V.22 modes, and the Am7910 FSK modem which provides 1200 bps half duplex V.23 and 300 bps full duplex V.21 modes. The modes supported are listed in Table 1.

The hardware design, along with software described in this application note, demonstrates a complete functional unit for asynchronous operation. The application note software supports five operating modes:

Originate 2400 bps in V.22 bis Originate 1200 bps in V.22 Originate 1200 bps in V.23 Originate 300 bps in V.21 Universal Auto Answer

The modem design includes the complete interface to an IBM PC (or compatible) host computer. The application hardware was built on a full-size prototyping card which can be installed into any spare PC expansion slot. The Am7910 modem and other peripheral and TTL devices are installed on one third of the prototyping card. A Rockwell R2424M, a small (4 in. x 3.5 in.) self-contained modem module, is mounted over one third of the prototyping card. A Rockwell Data Access Arrangement (RDAA) module (3.94 in. x 3.94 in.) is mounted over the middle third of the prototyping card. Figure 1 shows the basic layout of the major hardware components.

The Rockwell R2424 modem is also available as a device set (R2424DS). By using modem devices and an integral DAA in a production design, this application note design can be incorporated onto a single full-size IBM PC printed circuit board.

HARDWARE DESIGN

The major components of the international modem are:

R2424M 2400/1200 Full Duplex Modem module Am7910 1200/300 FSK Modem Z8530 Serial Communications Controller (SCC) 82C55 Programmable Peripheral Interface (PPI) Rockwell Data Access Arrangement (RDAA) module

A functional block diagram showing major data and control signal flow is shown in Figure 2. In addition to supplying the 2400 bps (V.22 bis) and 1200 (V.22) full duplex modes, the R2424 modem provides the primary control interface with the telephone line. The Am7910 modem supplies 1200 bps half duplex (V.23) and 300 bps full duplex (V.21) functions. The R2424 is controlled directly from the host computer data bus, whereas the Am7910 has control pins which are driven from the 82C55 PPI. Control signals select which modem is in operation and route the data along specific paths. A schematic detailing all signal routing and connections is shown in Figure 3.

Host Interface

The IBM PC address, data and control bus signals are buffered by devices U1-U4. The modem uses I/O address space 200H-23FH. Table 2 allocates the addresses used by the various devices in the application design. Decoder U5 generates four chip select signals ($\overline{CS0}$, $\overline{CS1}$, $\overline{CS2}$ and $\overline{CS3}$) from address lines A0-A9. The U13a output enables U5 when a valid address (200H-23FH) occurs.

The I/O Read ($\overline{\text{IOR}}$) and I/O Write ($\overline{\text{IOW}}$) lines are gated with a valid I/O address to generate read and write inputs to the R2424 modem, the Z8530 SCC (U6) and the 82C55 PPI (U7) as the chip select lines are not selected at a unique address range. An inverter (U14c) is included in the read line to make it active high for the R2424.

Recommendation	Rate	Full Duplex/ Half Duplex	Originate/ Answer	Modulation Scheme	Modem
V.22 bis	2400 bps	Full Duplex	Originate	PSK	R2424
V.22 bis	2400 bps	Full Duplex	Answer	PSK	R2424
V.22	1200 bps	Full Duplex	Originate	PSK	R2424
V 22	1200 bps	Full Duplex	Answer	PSK	R2424
V.23	1200 bps	Half Duplex	Mode 2	FSK	Am7910
V.23	1200 bps	Half Duplex	Mode 2 with Equalizer	FSK	Am7910
V.21	300 bps	Full Duplex	Originate	FSK	Am7910
V.21	300 bps	Full Duplex	Answer	FSK	Am7910

Table 1. International Modem Modes

Document No. 29220N90

2400/1200/300 bps International Modem Design

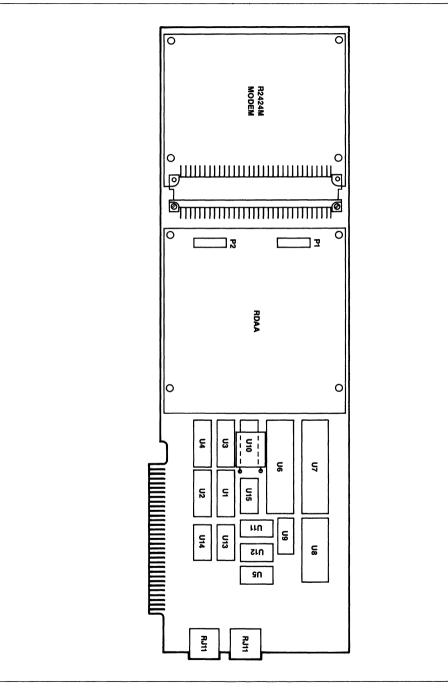
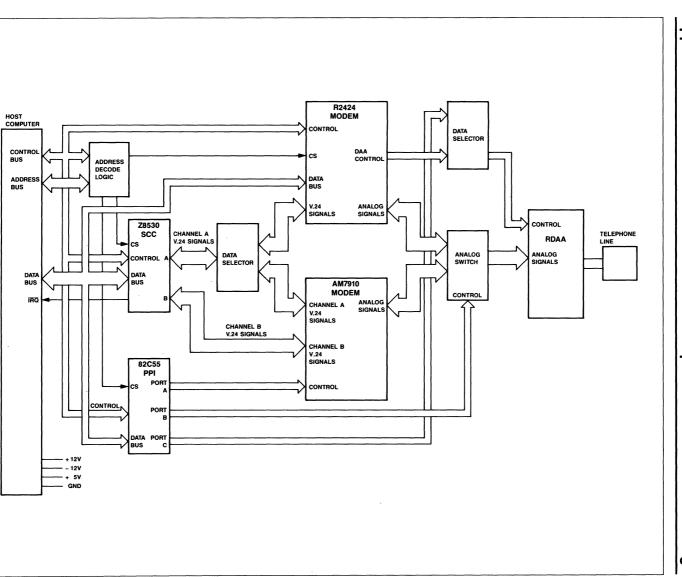



Figure 1. International Modem Prototype Layout

5

2400/1200/300 bps International Modem Design

5-52

2400/1200/300 bps International Modem Design

Table 2. International Modem I/O Addresses

Address (Hex)	Register Description
200	R2424 Receiver Reserved
201	R2424 Receiver Reserved
202	R2424 Receiver Diagnostic 1
203	R2424 Receiver Diagnostic 2
204	R2424 Receiver Diagnostic 3
205	R2424 Receiver Diagnostic 4
206	R2424 Receiver Reserved
207	R2424 Receiver Reserved
208	R2424 Receiver Status 1
209	R2424 Receiver Status 2
20A	R2424 Receiver Configuration 1
20B	R2424 Receiver Configuration 2
20C	R2424 Receiver Configuration 3
20D	R2424 Receiver Configuration 4
20E	R2424 Receiver Handshake
20F	R2424 Receiver Diagnostic Control
210	R2424 Transmitter Dial Digit Register
211	R2424 Transmitter Reserved
212	R2424 Transmitter Diagnostic 1
213	R2424 Transmitter Diagnostic 2
214	R2424 Transmitter Diagnostic 3
215	R2424 Transmitter Diagnostic 4
216	R2424 Transmitter Reserved
217	R2424 Transmitter Reserved
218	R2424 Transmitter Status 1
219	R2424 Transmitter Configuration 1
21A	R2424 Transmitter Configuration 2
21B	R2424 Transmitter Configuration 3
21C	R2424 Transmitter Configuration 4
21D	R2424 Transmitter Configuration 5
21E	R2424 Transmitter Handshake
21F	R2424 Transmitter Diagnostic Control
220	Z8530 Channel B Command
221	Z8530 Channel B Data
222	Z8530 Channel A Command
223	Z8530 Channel A Data
224-	Not Used
22F	Not Used
230	82C55 Port A
231	82C55 Port B
232	82C55 Port C
233	82C55 Control Register
234	Not Used
23F	Not Used

All data between the host computer and the modem is transferred over the bidirectional data bus (D0-D7). The data bus carries data to be transmitted to the modem (TXD) and to be received from the modem (RXD) via the Z8530 SCC, as well as control/status signals to/from the R2424 modem, the Z8530 SCC and the 82C55 PPI. U13b, U13c and U13d enable data bus buffer U3 when an I/O read or I/O write occurs in a valid address range. The direction of the data bus buffer is controlled by the host computer I/O read line (\overline{IOR}) gated with the valid I/O address signal appearing at U13d/11.

Z8530 SCC

The Z8530 SCC (U6) transfers the data from the modems to the data bus and converts the data from parallel to serial and serial to parallel between the host computer and the modem devices and provides asynchronous formatting and unformatting. The

SCC has two I/O channels (A and B). Channel A is used for all full duplex modes; channel B is used in a V.23 half duplex mode where a secondary channel is used.

Outgoing data (TXD) written from the host computer is serialized and formatted by the Z8530 SCC (U6). It is then output on the TXDA or TXDB pin in serial form.

Incoming data (RXD) from the modem is input to the SCC on the RXDA or RXDB pin and is read via the data bus from the SCC data register. The data is then routed to the PC display (application note software), or it may be routed to a different destination (user-provided software).

The SCC A/ \overline{B} input selects channel A or B. The SCC \overline{C}/D input determines if control or data information is being accessed. The \overline{WR} and \overline{RD} inputs determine if data is being written to or read from the SCC, respectively. The \overline{CE} input is low at address 220-223 to enable the SCC.

R2424 Modem

The R2424 is mapped into the PC I/O addresses 200H-21FH. The R2424 receiver is enabled by $\overline{CS0}$ (200H-20FH) and the transmitter is enabled by $\overline{CS1}$ (210H-21FH). This enables access to the 32 locations required by the receiver and transmitter interface memories. Host computer address lines A0-A3 are routed to R2424 register select inputs R0-R3, respectively, to access the required interface memory location.

For more information on the R2424 refer to the R2424 Data Sheet (Order No. MD11) and Section 4 (R1212/R2424 Modem Functional Characteristics) in the Modem Interface Guide (Order No. 685), both available from Rockwell International.

Am7910 Modem

Operation of the Am7910 modem is controlled by five configuration inputs (MC0-MC4). Table 3 lists the available modes and identifies the modes used in this application note. The Am7910 configuration signals are controlled by PPI (U7) ports PA0-PA4 since there is no direct host computer bus interface.

The V.24 control signals are routed from the Z8530 SCC (U6). The primary channel (used for all full duplex modes) is routed to the SCC channel A and the Am7910 secondary channel (used for the 1200 half duplex mode) is routed to the SCC channel B.

The clock for the Am7910 is provided by the SCC output TRxCA.

V.24 Interface

TTL V.24 signals are routed to/from the R2424/Am7910 modems as selected by U9 and U10. The RLSD, CTS and RXD outputs from either the R2424 or the Am7910 are switched through U9 to Z8530 SCC (U6) channel A inputs DCDA, CTSA and RXDA, respectively. PPI PA5 output high selects Am7910 signals; PPI PA5 output low selects R2424 signals.

The TXD input to both the R2424 and the Am7910 is routed directly from the SCC TXDA output. The RTS input to the R2424 and/or the Am7910 is routed from the SCC RTSA output through U10. The RTS input to the R2424 is enabled through U10 by PPI PA6 output low. The RTS input to the Am7910 is enabled through U10 by PPI PA7 output low.

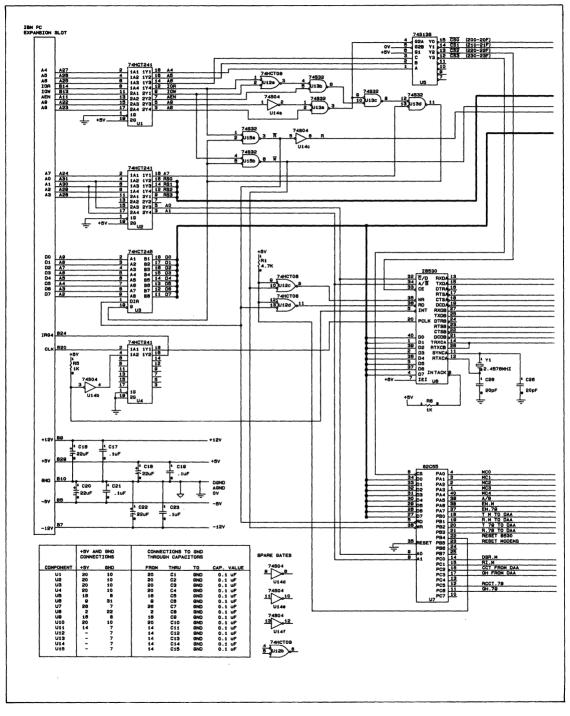
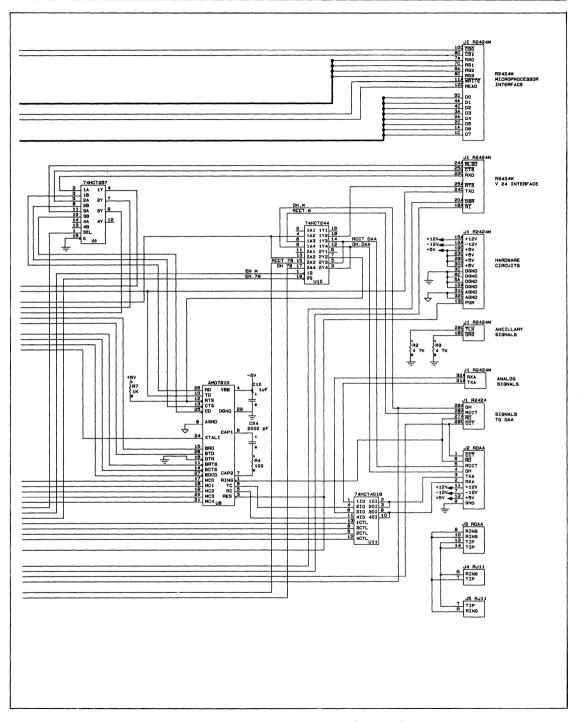



Figure 3. International Modem Schematic

2400/1200/300 bps International Modem Design

Figure 3. International Modem Schematic (Continued)

2400/1200/300 bps International Modem Design

MC4	MC3	MC2	MC1	MCO	Mode
0	0	0	0	0	Bell 103 Originate 300 bps Full Duplex
0	0	0	0	1	Bell 103 Answer 300 bps Full Duplex
0	0	0	1	0	Bell 202 1200 bps Half Duplex
0	0	0	1	1	Bell 202 with Equalizer 1200 bps Full Duplex
0	0	1	0	0	V.21 Originate 300 bps Full Duplex*
0	0	1	0	1	V.21 Answer 300 bps Full Duplex*
0	0	1	1	0	V.23 Mode 2 1200 bps Half Duplex*
0	0	1	1	1	V.23 Mode 2 with Equalizer 1200 bps Half Duples
0	1	0	0	0	V.23 Mode 1 600 bps Half Duplex
1	0	0	0	0	Bell 103 Originate Loopback
1	0	0	0	1	Bell 103 Answer Loopback
1	0	0	1	0	Bell 202 Main Loopback
1	0	0	1	1	Bell 202 with Equalizer Loopback
1	0	1	0	0	V.21 Originate Loopback
1	0	1	0	1	V.21 Answer Loopback
1	0	1	× 1	0	V.23 Mode 2 Main Loopback
1	0	1	1	1	V.23 Mode 2 with Equalizer Loopback
1	1	0	0	0	V.23 Mode 1 Main Loopback
1	1	0	0	1	V.23 Back Loopback

Table 3. Am7910 Mode Selection

82C55 PPI

The 82C55 PPI handles control signals between the host computer and the Am7910 modem and various TTL switches, data selectors/multiplexers and buffers. The functions of the bits in the PPI registers are listed in Table 4.

Port A signals control the Am7910 configuration and the U10 switch. Port B output signals control U11 to select the routing of TXA and RXA between the RDAA and either the R2424 or the Am7910. Port B butput signals also control the resetting of the modems and the PPI. Port C inputs monitor $\overline{\text{RTS}}$ and $\overline{\text{CTS}}$ from the R2424 and OH and $\overline{\text{CCT}}$ signals from the R2424. The Port C outputs issue OH and $\overline{\text{CCT}}$ to the RDAA via U10.

RDAA Interface

Routing selection of TXA to the RDAA and RXA from the RDAA is controlled by U11. TXA is routed from the R2424 (TXA) or the Am7910 (TC) and RXA is routed to the R2424 (RXA) or the Am7910 (RC). OH and RCCT originate from the R2424 (OH and RCCT) or from the 82C55 PPI (OH.79 on PC6 and RCCT.79 on PC7) as selected by U10. $\overline{\text{RD}}$ is routed from the RDAA to the R2424 ($\overline{\text{RD}}$) and Am7910 ($\overline{\text{RING}}$) in parallel. CCT is routed to the R2424 ($\overline{\text{CCT}}$) and to the PPI (CCT on PC2).

MODEM OPERATION

Originate Mode

Modem operation is divided into two parts: originate and answer. In the originate mode, the R2424 always does the dialing, regardless of the final configuration. If a V.22 or V.22 bis connection is desired, the default hardware setup (initialized by application software) permits the R2424 to stay on line after dialing and connect with the remote modem. If a V.21 or V.23 connection is desired, then the R2424 dials the call. After dialing, a set of control signals (OH and CCT) is generated to keep the DAA connected to the phone line. Meanwhile, the R2424 is disconnected and the Am7910 is configured for the desired mode. When the remote modem answers the Am7910 has control of the line and is set up to be in originate mode. The connection places the modem in data mode in either V.21 or V.23.

Answer Mode

In the answer mode, the modern must be capable of answering an incoming call from a modern of unknown configuration. The R2424 always answers the call, regardless of the final configuration. Because the default setup condition exists, the R2424 sends out the CCITT answertone and waits for the response from the remote modern. The software determines the configuration of the remote modern within one second of Data Set Ready becoming active in the R2424. It does this by first examining the SPEED bits.

If the SPEED bits are set to 11 (binary), then the modem is connected in V.22 bis mode at 2400 bps. If the SPEED bits are set to 10, then the modern is connected in V.22 mode at 1200 bps. If the SPEED bits are set to 00 then the calling modern is a V.21 or V.23 type. The RLSD bit of the R2424 is then examined. If it is set to 1, then the calling modem is a V.23 modem, otherwise it is a V.21 modem. At this time the Am7910 is already in data mode, although not connected to the line. (The ringing signal supplied by the DAA is shared by the R2424 and the Am7910, so both go off hook in answer mode.) When the software determines that a V.21 or V.23 connection is in progress, it holds the line by generating a set of control signals for the DAA. The R2424 is switched out and the Am7910 is switched in to the line, already in data mode. The remote modem received 2100 Hz answertone from the R2424. Now the Am7910 completes the handshake and the modems enter the data mode.

2400/1200/300 bps International Modem Design

OPERATING PROCEDURE

The procedure to operate the modem using the application note software is described in this section. It is assumed that the user has entered, edited and stored the FORTH screens listed in Figure 15. It also assumes that the FORTH command level has been invoked.

Га	ble	4.	82C55	Port	Functi	ions
----	-----	----	-------	------	--------	------

Port	Bit	Function	7910	R2424
Port /	A8	Outputs (0-7)		L
PA0	0	7910 Configuration Pin MC0	Х	
PA1	1	7910 Configuration Pin MC1	x	
PA2	2	7910 Configuration Pin MC2	x	
PA3	3	7910 Configuration Pin MC3	x	
PA4	4	7910 Configuration Pin MC4	x	
PA5	5	RXD, CTS, DCD Modem Select	x	x
		1 = 7910		
		0 = 2424		
PA6	6	DTR, RTS, RCCT, OH Disable to R2424	x	x
		1 = Disable		
		0 = Enable		
PA7	7	DTR, RTS, RCCT, OH Disable to 7910	x	x
		1 = Disable		
		0 = Enable		
Port I	B—8	Outputs (0-7)		L
PB0	0	R2424 TXA to DAA	x	x
	Ŭ	1 = Enable	^	
		0 = Disable		
PB1	1	R2424 RXA to DAA	x	x
	•	1 = Enable		
		0 = Disable		
PB2	2	7910 TC to DAA	x	x
1.02	-	1 = Enable		
		0 = Disable		
PB3	3	7910 RC to DAA	x	x
100	3	1 = Enable	^	
		0 = Disable		
PB4	4	Reset Z8530 (Pulse)		
104	7	1 = Normal		
		0 = Reset		
PB5	5	Reset Modems (Pulse)	х	x
F 05	5	1 = Normal	^	
		0 = Reset		
PB6	6	Not Used		x
PB7	7	Not Used		Â
		Inputs (0-3), 4 Outputs (4-7)		
PC0		Read R2424 DSR		
	0	Read R2424 DSR Read R2424 Ri		X
PC1 PC2	2	Read H2424 HI Read Status of CCT from DAA		X X
PC2 PC3	3	Read Status of OH from DAA		
PC3 PC4	4	Not Used		
PC4 PC5	5	Not Used Set RCCT on DAA for 7910	х	
PU3	2	1 = Set	^	
PC6	6	0 = Off	х	
700	0	Set OH on DAA for 7910	x	
		1 = Off-Hook		
PC7	7	0 = On-Hook		
PU/	'	Not Used		

Type 70 LOAD and press RETURN.

When loading is complete, the software initializes and configures all devices for the default settings. A menu screen is then displayed on the terminal. This menu is function key driven and prompts the user for a choice of five keys to press for different options. Four originate modes are presented and one universal auto answer mode. The four originate modes allow the modem to connect at 300 bps in V.21 mode, I200 bps in V.22, 2400 bps in V.22 bis and I200 bps in V.23. The universal auto answer mode connects at the speed and configuration of the calling modem (initially unknown).

The displayed menu is:

INTERNATIONAL MODEM	
F1 V.21 ORIGINATE	
F2 V.22 ORIGINATE 1200	
F3 V.22 ORIGINATE 2400	
F4 V.23 ORIGINATE	
F5 UNIVERSAL AUTO ANSWE	R

When the menu screen is displayed, the modem is in idle mode and the program is waiting for a function to be requested. To initiate a mode, press the corresponding function key.

Originate Mode

If an originate key is pressed, the user is prompted to enter the phone number to call. Upon number entry, the call is placed (always by the R2424). If a V.22 or V.22 bis configuration was selected then the R2424 stays connected to the line after placing the call. Otherwise, the Am7910 is switched in to complete the handshake with the remote modern. Once the modem is in data mode the program enters the dumb terminal routine.

After an originate mode is selected, the system will display one of the following messages depending on the selected mode:

V.21 300 BPS MODE
V.22 1200 BPS MODE
V.22 2400 BPS MODE
V.23 1200 BPS MODE*

followed by

ENTER PHONE NUMBER

Enter the telephone number to call and press ENTER.

Upon carrier detection and line connection the system will display:

CARRIER DETECTED . . . ON LINE TERMINAL ON LINE

To terminate the mode anytime during the operation, press CTRL BREAK. After connection is established, pressing ' (single quote) will also terminate the mode. After terminating the mode, press RETURN to return to FORTH command entry level. Now type MENU and press RETURN to disconnect the modem from the line and to display the mode menu.

^{*}V23 call origination results in a half duplex data mode connection. This application note software configures the originate modem for transmitting by asserting RTS. In order to receive data, RTS must be made inactive.

Auto Answer Mode

In the universal auto answer mode, the program waits for the phone to ring. It then answers the call with the R2424 which sends out a 2100 Hz answertone. The R2424 decides the speed and configuration of the calling modem from the response from the calling modem. Depending on the response, the line is left connected to the R2424 or switched to the Am7910. When the handshake is complete, the program enters the dumb terminal routine.

When the universal auto answer mode is selected, the system will display:

UNIVERSAL AUTO ANSWER MODE WAITING TO BE CALLED

Place the call from the remote modem. Upon ring detection and Data Set Ready assertion, the system will display:

RING DETECTED DATA SET READY ON

followed by one of the following messages when the corresponding connection is made:

CONNECTED TO V.21 MODEM AT 300 BPS CONNECTED TO V.22 MODEM AT 1200 BPS CONNECTED TO V.22 MODEM AT 2400 BPS CONNECTED TO V.23 MODEM AT 1200 BPS*

then

TERMINAL ON LINE . . .

To terminate the mode anytime during the operation, press CTRL BREAK. After connection is established, pressing ' (single quote) will also terminate the mode. After terminating the mode, press RETURN to return to FORTH command entry level. Now type MENU and press RETURN to disconnect the modem from the line (if not terminated by the remote modem) and to display the mode menu.

Dumb Terminal

The dumb terminal routine is used once the modem has completed a connection. Data entered on the PC keyboard is sent to the modem to be transmitted to the remote modem. Incoming data is displayed on the terminal. In order to capture all received data at 2400 bps, it is necessary to interrupt the PC so that the data can be stored in a buffer. (This is because the scrolling actions of the screen take too much time and data would be lost if a polling method were used.) The dumb terminal routine interacts with the USART function in the Z8530 SCC device (U6) on the modem board. There are two main actions running continuously. Keyboard data, if available, is written to the data port of channel A of the Z8530. Then it is sent to the modem via the TXD line. The received data buffer in memory is checked to see if there are any characters waiting in the queue to be displayed. If there are, it displays them.

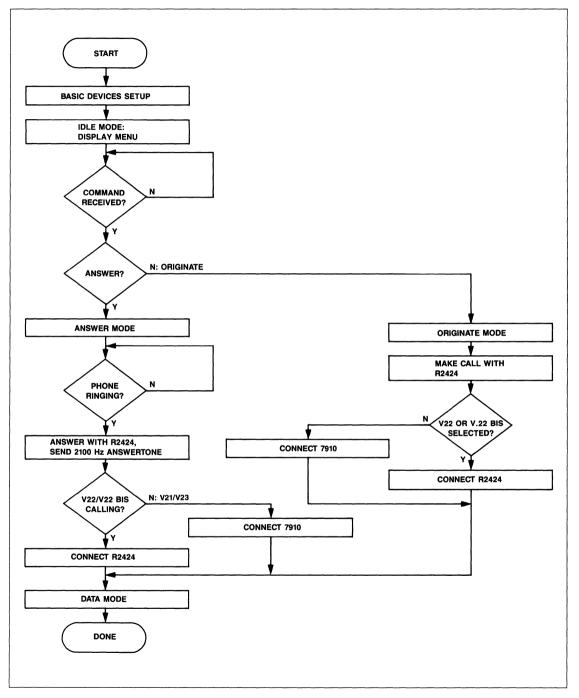
When the modem receives a character, it is passed to the RXD line of the Z8530. This causes an interrupt to be generated.

The interrupt handling routine services the interrupt by transferring the received data byte from the data port to the next location in the buffer in memory. Housekeeping is done on the buffer pointers and the loop then repeats itself.

SOFTWARE

Structure

The overall operation of the software is flowcharted in Figure 4. Figures 5 through 8 show subsections of the main routines, such as basic default settings for the devices. The command flow to control the modem in each of its configurations is shown in Figures 9 through 13.


If an originate connection is selected from the menu, then the flowcharts of Figure 11 and Figure 12 show the actions which are performed to set up the modem, make the call and enter the data state. The algorithm for the universal auto answer mode is given in Figure 13. This allows the modem to connect with an unknown calling modem which may be one of four different standards; V.21, V.22, V.22 bis or V.23. The modem auto-matically reconfigures itself and connects to the remote modem.

Programming

The application note software is programmed in FORTH. The FORTH screens are listed in Figure 15. Any FORTH system implementing the FORTH '83 standard for execution on the IBM PC should be compatible. The compiled screens presented here add the extra customized FORTH primitives to the Kernel dictionary. Operation of the modem is governed by routines using these words to control the hardware circuits from software. The software can be user-customized for a particular application. Alternatively, the listing is complete as supplied. There is an interrupt driven dumb terminal program included, which is capable of handling 2400 bps full duplex communications.

^{*}Answering a call from a V.23 modem results in a half duplex data mode connection. This application note software configures the modem for receiving by keeping RTS inactive. In order to transmit data after the remote modem has finished transmitting, RTS must be made active.

2400/1200/300 bps International Modem Design

5-59

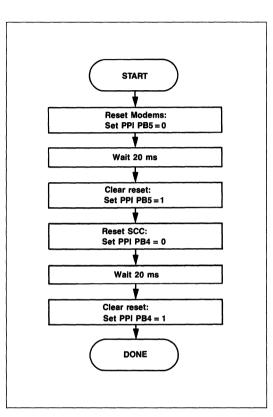


Figure 5. Flowchart — Reset Devices

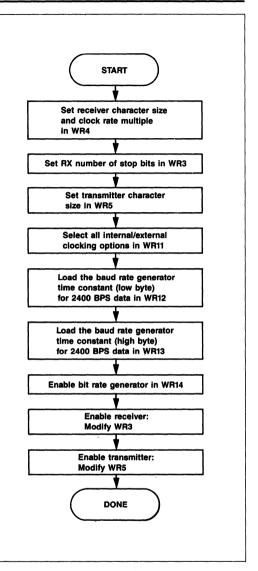


Figure 6. Flowchart — Basic Devices Setup: 8530

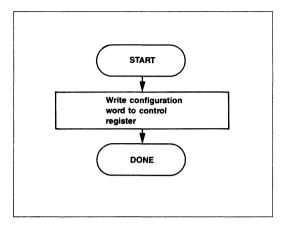


Figure 7. Flowchart - Basic Devices Setup: 82C55

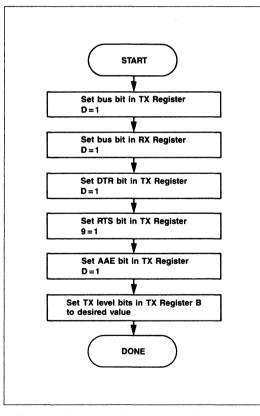


Figure 8. Flowchart --- Basic Devices Setup: R2424

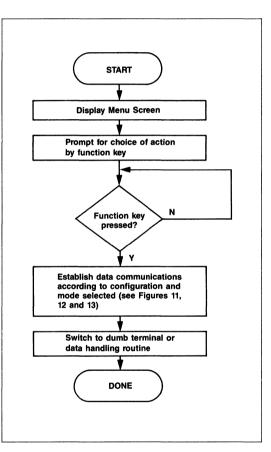


Figure 9. Flowchart - Main Operation

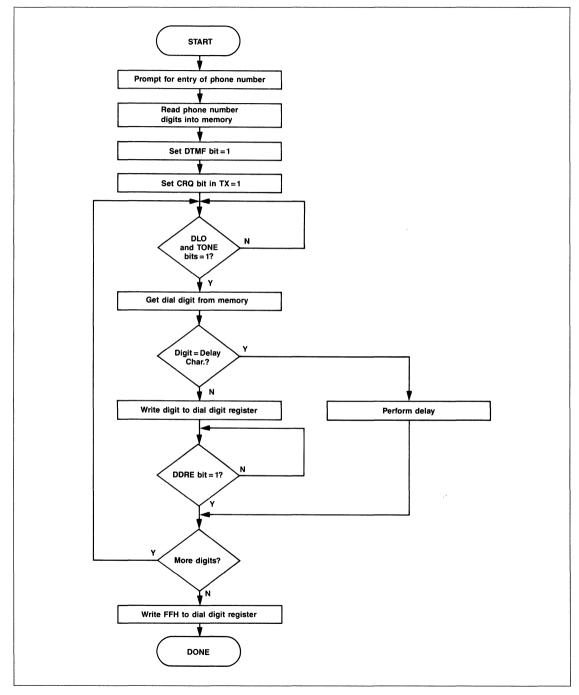
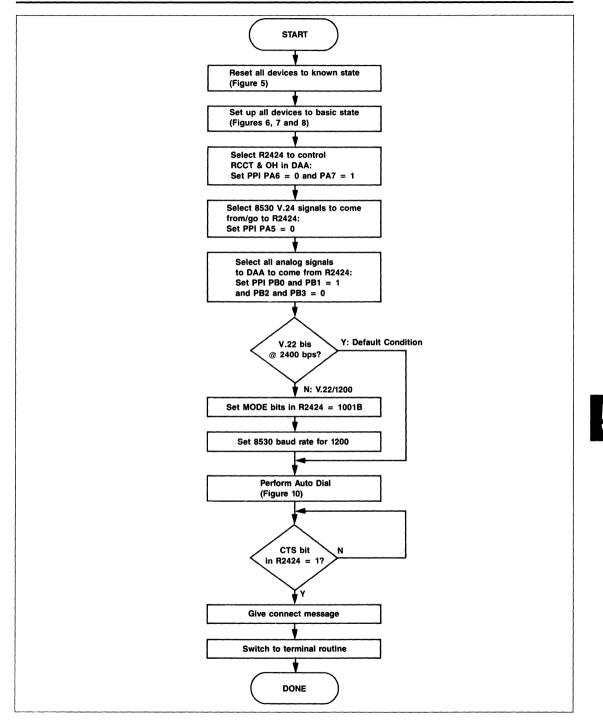
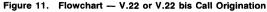




Figure 10. Flowchart - Auto Dial

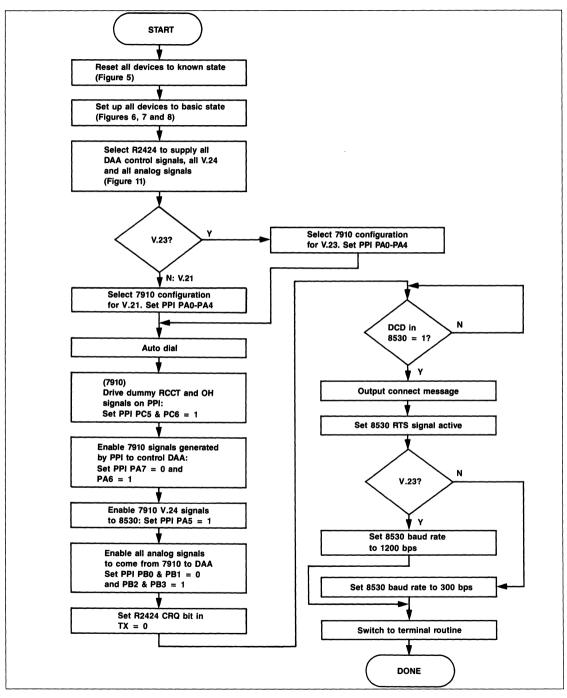
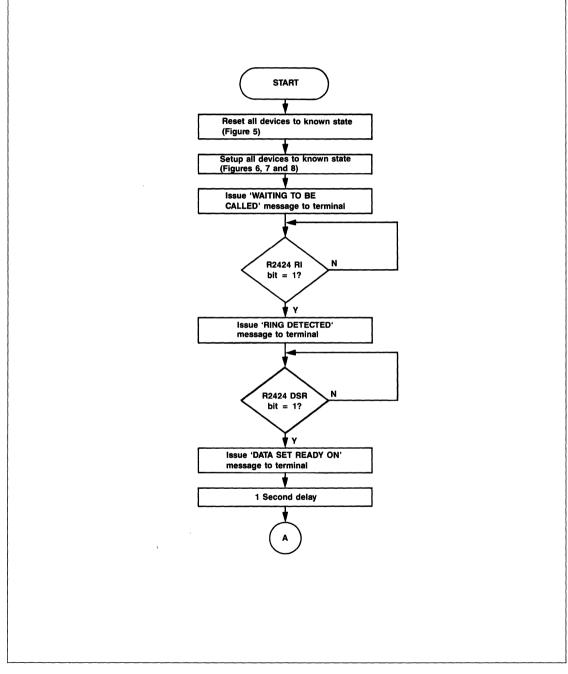



Figure 12. Flowchart - V.21 or V.23 Call Origination

2400/1200/300 bps International Modem Design

5-65

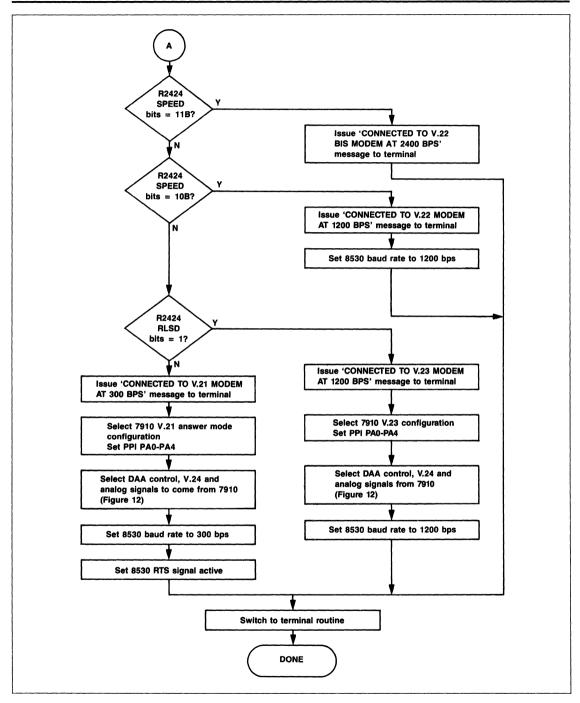


Figure 13. Flowchart — Universal Auto Answer Mode (Continued)

```
_____
```

2400/1200/300 bps International Modem Design

Screen # 69 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Screen # 70 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 FORTH DEFINITIONS HEX 2 3 -1 CONSTANT COM1? 0 CONSTANT COM2? 4 5 6 COM1? .IF 0223 CONSTANT ASC PORT 7 0010 CONSTANT INT MASK (IRQ4) 8 9 000C CONSTANT INT # 10 .THEN COM2? .IF 110223CONSTANT ASC_BASE120008CONSTANT INT_MASK(IRQ3)13000BCONSTANT INT_# 14 .THEN 15 --> Screen # 71 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 DECIMAL 2 **3 2VARIABLE LINKS** 4 VARIABLE X VARIABLE V 5 6 : FIX-VOC-LINKS 7 VOC-LINK DUP X ! @ V ! v e 8 BEGIN 9 WHILE V @ HERE U< IF V@X@! V@X! X@@V! 10 ELSE V @ @ V ! THEN 11 REPEAT ; 12 13 14 15 -->

Figure 14. International Modem FORTH Screens

```
Screen # 72
 0 ( V21/V23 MODEM INTERRUPT HANDLER
                                                        27/1/86 MBW )
 1 : BEGIN-MOD 1 ?DEPTH HERE LINKS !
            LATEST NAME> LINKS 4+ !
  2
            LIMIT 500 - SWAP - DP ! ;
 3
  4
  5 : END-MOD LINKS @ DP ! ;
  6
 7 : FORGET-MOD
                    LINKS 4+ @
           SHR4
 8
           LINKS @ 32 0 SKIP DROP
 9
10
           N>LINK W! FIX-VOC-LINKS ;
11
12
13
14
15 -->
Screen # 73
  0 ( V21/V23 MODEM INTERRUPT HANDLER
                                                        27/1/86 MBW )
  1
  2 DECIMAL 17000 BEGIN-MOD ASM86 END-MOD
  3
  4 HEX
  5
  6 2000 CONSTANT ASC_BUF_SIZE
  7
  8 CREATE ASC BUF ASC BUF SIZE ALLOT
  9
            ASC_BUF ASC_BUF_SIZE ERASE
 10
 11 VARIABLE ASC IN
 12 VARIABLE ASC OUT
 13
 14
 15 -->
Screen # 74
  0 ( V21/V23 MODEM INTERRUPT HANDLER
                                                        27/1/86 MBW )
  1
  2 0 INT # 4 * 2CONSTANT INT-VEC
  3
  4 2VARIABLE PREV ASC VEC
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15 -->
```

2400/1200/300 bps International Modem Design

Screen # 75 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) ٦ 2 : INCR PTR ROT 3 2 PICK @ + 4 2DUP <= 5 IF SWAP -6 ELSE SWAP DROP 7 THEN SWAP ! ; 8 9 : +ASC IN ASC IN ASC BUF_SIZE INCR_PTR ; 10 : +ASC OUT ASC OUT ASC BUF SIZE INCR PTR ; 11 12 13 14 15 --> Screen # 76 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 2 : ?ASC ASC IN @ ASC OUT @ <> ; 3 4 : @ASC BEGIN ?ASC 5 UNTIL ASC OUT @ ASC BUF + C@ 1 +ASC OUT ; 6 7 : #ASC ASC OUT @ ASC IN @ 2DUP U> IF ASC BUF SIZE + THEN - NEGATE ; 8 9 10 11 12 13 14 15 --> Screen # 77 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 HEX 2 CREATE ASC INT ASSEMBLER STI 3 4 AX PUSH BX PUSH DX PUSH DS PUSH 5 6 AX, CS MOV DS, AX MOV 7 DX, # ASC PORT MOV 8 AL, DX IN 9 CLI 10 BX, ASC_IN 2+ MOV ASC_BUF [BX], AL MOV 11 12 13 14 15 -->

2400/1200/300 bps International Modem Design

Screen # 78 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 2 BX INC 3 BX, # ASC_BUF_SIZE CMP 1\$ JNZ 4 BX, BX XOR ASC_IN 2+ , BX MOV 5 6 15: 7 STI AL, # 20 MOV 8 9 # 20 , AL OUT 10 DS POP DX POP BX POP AX POP 11 12 IRET 13 FORTH 14 15 --> Screen # 79 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 HEX 2 : ASC-TRAP PREV ASC VEC 2@ OR 0= 3 INT-VEC @L IF 4 INT-VEC 2+ @L 5 PREV ASC VEC 2! 6 THEN 7 ?cs: INT-VEC 2+ !L 8 ASC INT INT-VEC !L ; 9 10 11 12 13 14 15 --> Screen # 80 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 2 : ASC-RELEASE PREV ASC VEC 20 INT-VEC 2+ !L 3 INT-VEC !L "; 4 5 6 7 8 9 10 11 12 13 14 15 -->

2400/1200/300 bps International Modem Design

Screen # 81 27/1/86 MBW) 0 (V21/V23 MODEM INTERRUPT HANDLER 1 HEX 2 : ASC-ENB 21 PC@ 3 INT MASK NOT AND 4 21 PC! 5 6 ASC IN OFF ASC OUT OFF 7 ASC BUF ASC BUF SIZE ERASE ; 8 9 10 11 12 13 14 15 --> Screen # 82 27/1/86 MBW) 0 (V21/V23 MODEM INTERRUPT HANDLER 1 HEX 2 21 PC@ 3 : ASC-DSB INT MASK OR 4 5 21 PC! ; 6 7 8 9 10 11 12 13 14 15 --> Screen # 83 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW) 1 2 : ASC-ON ASC-TRAP ASC-ENB ; 3 4 : ASC-OFF ASC-DSB ASC-RELEASE ; 5 6 7 8 9 10 11 12 13 14 15 -->

Figure 14. International Modem FORTH Screens (Continued)

5

```
Screen # 84
  0 ( V21/V23 MODEM INTERRUPT HANDLER
                                                       27/1/86 MBW )
  1 HEX
  2
  3 : ASC TX WAIT
                    BEGIN ASC PORT 1 - PC@ 40 AND
  4
                   UNTIL ;
  5
  6 : !ASC
                   ASC TX WAIT ASC PORT PC! ;
 7
 8
 9
10
11
12
13
14
15 -->
Screen # 85
 0 (V21/V23 MODEM INTERRUPT HANDLER 27/1/86 MBW )
  1
  2 HEX HERE OFFFO U>
 3
  4 .IF
           CR
 5
           CR
  6
           CR
 7
           CR
 8
 9
           FORGET COM1? ." ERROR....MUST BE LOADED BELOW FFF0 "
10
11 .THEN DECIMAL FORGET-MOD
12 -->
 13
14
15
Screen # 86
  0 ( V21/V23 MODEM DUMB TERMINAL
                                                       27/1/86 MBW )
  1 FORTH DEFINITIONS DECIMAL
  2 HEX
  3 ( --- )
  4 : TALK
                CR ." TERMINAL ON LINE . . . ." CR CR ASC-ON
           BEGIN
  5
                    ?ASC
  6
                    IF
                          @ASC 7F AND EMIT
  7
                    THEN
  8
                    ?TERMINAL
  9
                    IF
                          KEY DUP 27 =
 10
                               DROP CLS QUIT
                          IF
 11
                          ELSE !ASC
 12
                          THEN
13
                    THEN
14
           AGAIN ;
15 DECIMAL -->
```

2400/1200/300 bps International Modem Design

Screen # 87 0 (V21/V23 MODEM TIMERS 27/1/86 MBW) 1 DECIMAL 2 : ALL ; 3 : MS 4 0 DO 22 0 DO LOOP LOOP ; 5 : SEC 1000 * MS ; 6 7 8 9 10 11 12 13 14 DECIMAL 15 --> Screen # 88 0 (V21/V23 MODEM INITIALISATION 27/1/86 MBW) 1 HEX 2 : INIT.8255 81 233 PC! ; (2 1/2 OUTPUT PORTS 1/2 INPUT) 3 : RESET.MODEMS 231 PC@ DUP DF AND (SET PB5 TO 0) 4 231 PC! 5 20 MS 20 OR 231 PC! 6 (SET PB5 TO 1) 7 50 MS ; 8 : RESET.8530 231 PC@ DUP EF AND (SET PB4 TO 0) 9 231 PC! 10 20 MS 11 10 OR 231 PC! 12 20 MS ; 13 : INIT INIT.8255 RESET.MODEMS RESET.8530 ; (EVERYTHING) 14 DECIMAL 15 --> Screen # 89 0 (V21/V23 MODEM ENABLES/DISABLES 27/1/86 MBW) 1 HEX (MAKE PA6=0) 2 : EN.RCCT/OH.M 230 PC@ BF AND 3 80 OR 230 PC! (MAKE PA7=1) ; 4 : EN.RCCT/OH.79 230 PC@ 7F AND (MAKE PA7=0) 5 40 OR 230 PC! (MAKE PA6=1) ; 6 : EN.V24.79 230 PC@ 20 OR 230 PC! (MAKE PA5=1) ; 7 : EN.V24.M 230 PC@ DF AND 230 PC! (MAKE PA5=0) ; 8 : EN.ANALOG.M 231 PC@ 03 OR (PB0/ PB1=1) (PB2/ PB3=0) ; 9 F3 AND 231 PC! 10 : EN.ANALOG.79 231 PC@ OC OR (PB0/ PB1=0) (PB2/ PB3=1) ; 11 FC AND 231 PC! 12 : ENABLE.INT.8530 1 222 PC! 10 222 PC! (SET INT ON RX) 9 222 PC! OA 222 PC! ; (MIE 13) 14 DECIMAL 15 -->

2400/1200/300 bps International Modem Design

Screen # 90 0 (V21/V23 MODEM ENABLES/DISABLES 27/1/86 MBW) 1 HEX EN.RCCT/OH.M EN.V24.M EN.ANALOG.M 2 : EN.M 3 (ENABLE ALL R2424 SIGNALS) ; 4 5 : EN.79 EN.RCCT/OH.79 EN.V24.79 EN.ANALOG.79 (ENABLE ALL 7910 SIGNALS) ; 6 7 8 9 10 : NEWC.R 20E PC@ 08 OR 20E PC! 11 BEGIN 20E PC@ 8 = NOT UNTIL ; 12 : NEWC.T 21E PC@ 08 OR 21E PC! 13 BEGIN 21E PC@ 8 = NOT UNTIL ;14 DECIMAL 15 --> Screen # 91 0 (V21/V23 MODEM R2424 BIT SETTING 1 OF 2 27/1/86 MBW) 1 HEX 2 : NOW (FLAG REGISTER MASK --) SWAP DUP 2SWAP SWAP ROT ROT 3 4 ROT 0 = IF5 FF SWAP - SWAP DUP PC@ 6 ROT AND SWAP PC! 7 ELSE SWAP DUP PC@ ROT 8 9 OR SWAP PC! 10 THEN 11 12 13 14 15 --> Screen # 92 0 (V21/V23 MODEM R2424 BIT SETTING 2 OF 2 27/1/86 MBW) DUP 20A >= IF 1 2 DUP 20D <= IF 3 NEWC.R ELSE 4 DUP 219 >= IF 5 DUP 21D <= IF 6 NEWC.T 7 THEN 8 THEN 9 THEN 10 THEN DROP ; 11 12 13 14 15 -->

2400/1200/300 bps International Modem Design

```
Screen # 93
  0 ( V21/V23 MODEM
                    R2424 BIT CHECKING
                                                       27/1/86 MBW )
  1 HEX
           ( REGISTER MASK -- BIT VALUE )
  2 : IS
  3
  4
      SWAP PC@ AND IF 1 ELSE 0 THEN ;
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14 DECIMAL
 15 -->
Screen # 94
  0 ( V21/V23 MODEM R2424 RECEIVER BIT MASKS
                                                       27/1/86 MBW )
  1 HEX
                    80 ;
  2 : BUS.R
               20D
  3 : CRQ.R
                   40 ;
               20D
  4 : LCD
               20D
                   04 ;
  5 : AL.R
               20B
                   01;
  6 : ERDL.R
              20A
                   80 ;
  7 : RDL.R
               20A
                    40 ;
  8 : DL.R
               20A
                    20
                      :
 9 : ST.R
               20A
                    20
                       ;
              208
 10 : TONE
                    80 ;
 11 : ATD
              208
                    40 ;
12 : TM
              208
                    02 ;
 13 : RLSD
              208 01;
14 DECIMAL
15 -->
Screen # 95
  0 ( V21/V23 MODEM
                     R2424 TRANSMITTER BIT MASKS 27/1/86 MBW )
  1 HEX
                    01 ;
 2 : DDRE
              21E
 3 : BUS.T
              21D
                    80 ;
  4 : CRQ.T
              21D
                    40 ;
 5 : DATA
              21D
                    20 ;
 6 : AAE
              21D
                   10 ;
 7 : DTR
                   08
              21D
                       ;
 8 : DSRA
                   80;
              21C
 9 : GTE
              21B
                   10 ;
10 : GTS
              21B 08 ;
11 : 3DB
              21B 04 ;
12 : DTMF
              21B 02;
13 : AL.T
              21B 01 ;
14 DECIMAL
15 -->
```

.

```
Screen # 96
  0 ( V21/V23 MODEM
                    R2424 TRANSMITTER BIT MASKS
                                                         27/1/86 MBW )
  1 HEX
  2 : ERDL.T
               21A
                    80 ;
  3 : RDL.T
               21A
                    40 ;
  4 : DL.T
               21A
                    20 ;
  5 : ST.T
               21A
                    10 ;
  6 : RTRN
               219
                    40 ;
  7 : ORG
               219
                    20 ;
  8 : LL
               219
                    10 ;
  9 : RTS
               219
                    08;
 10 : CC
               219
                    04 ;
 11 : EF
               219
                    02 ;
                    80 ;
 12 : DLO
               218
 13 : CTS
               218
                    40 ;
 14 DECIMAL
 15 -->
Screen # 97
  0 ( V21/V23 MODEM R2424 TRANSMITTER BIT MASKS
                                                         27/1/86 MBW )
  1 HEX
  2 : DSR
               218
                    20 ;
  3 : RI
               218
                    10 ;
  4
  5
  6
  7
  8
 9
 10
 11
 12
13 DECIMAL
14 -->
15
Screen # 98
 0 ( V21/V23 MODEM R2424 MULTIPLE BITS
                                                         27/1/86 MBW )
 1 HEX
 2 : V.22/1200
                  20A PC@ F9 AND 09 OR 20A PC! ( SET RX MODE BITS )
 3
                  NEWC.R
 4
                  21A PC@ F9 AND 09 OR 21A PC! ( SET TX MODE BITS )
 5
                  NEWC.T ;
  6 : V.22/2400
                  20A PC@ FD AND OD OR 20A PC!
 7
                  NEWC.R
                  21A PC@ FD AND OD OR 21A PC!
 8
 9
                  NEWC.T ;
 10 : SPEED?
                  209 PC@ 10 / DUP 4 / 4 * - ; ( -- VALUE OF BITS )
11
12
 13
14 DECIMAL
15 -->
```

2400/1200/300 bps International Modem Design

Screen # 99 0 (V21/V23 MODEM R2424 TRANSMIT LEVEL 27/1/86 MBW) 1 HEX 2 : 0DB 21B PC@ OF AND 00 OR 21B PC! NEWC.T ; 3 : -2DB 21B PC@ 3F AND 20 OR 21B PC! NEWC.T ; 4 : -4DB21B PC@ 5F AND 40 OR 21B PC! NEWC.T 5 : -6DB 21B PC@ 7F AND 60 OR 21B PC! NEWC.T : 6 : -8DB 21B PC@ 9F AND 80 OR 21B PC! NEWC.T : 7 : -10DB 21B PC@ BF AND AO OR 21B PC! NEWC.T ; 8 21B PC@ DF AND CO OR 21B PC! NEWC.T ; : -12DB 9 : -14DB 21B PC@ FF AND E0 OR 21B PC! NEWC.T ; 10 11 12 13 14 DECIMAL 15 --> Screen # 100 0 (V21/V23 MODEM 8530 SETUP 27/1/86 MBW) 1 (THIS DEFAULT SETTING CONFIGURES THE 8530 FOR 8 BIT DATA, 2 (1 STOPBIT, ENABLES THE TRANSMITTER & RECEIVER, SETS DTR, RTS) 3 (SETS THE CLOCKS, XTAL I/P, AND THE BIT RATE GENERATOR FOR 2400) 4 HEX 5 : DEFAULT.8530 ENABLE.INT.8530 4 222 PC! 44 222 PC! (SET RX 8 BITS X16 CLOCK) 6 7 3 222 PC! C0 222 PC! (1 STOPBIT 8 5 222 PC! 60 222 PC! (SET TX 8 BITS 9 (CLOCK OPTIONS B 222 PC! D4 222 PC! (BAUD RATE GEN LOW FOR 2400 10 C 222 PC! 1E 222 PC! 11 D 222 PC! 00 222 PC! (BAUD RATE GEN HI FOR ALL 12 E 222 PC! 01 222 PC! (ENABLE BIT RATE GEN) (ENABLE RX 13 3 222 PC! C1 222 PC! 14 5 222 PC! 68 222 PC! (ENABLE TX) ; 15 DECIMAL --> Screen # 101 0 (V21/V23 MODEM CHANGE 8530 PARAMETERS 27/1/86 MBW) 1 HEX 2 : RX.ENABLE 3 222 PC! C1 222 PC! ; 3 : RX.DISABLE 3 222 PC! C0 222 PC! ; 4 : RTS.8530.ON 5 222 PC! EA 222 PC! 5 : RTS.8530.0FF 5 222 PC! E8 222 PC! 6 : 300BPS.8530 C 222 PC! FE 222 PC! 7 : 1200BPS.8530 C 222 PC! 3E 222 PC! ; 8 : 2400BPS.8530 C 222 PC! 1E 222 PC! 9 : DTR/RTS.8530.0FF 5 222 PC! 68 222 PC! : 10 : DTR.8530.ON 5 222 PC! E8 222 PC! ; 11 12 13 14 DECIMAL 15 -->

2400/1200/300 bps International Modem Design

Screen # 102 0 (V21/V23 MODEM DAA CONTROL MASKS 27/1/86 MBW) 1 HEX 2 : CCT 232 04 ; -- FLAG) (-- FLAG) 08 ; 3 : OH 232 (4 : RCCT.79 232 20 ; (FLAG ----) (FLAG 5 : OH.79 232 40 ; ___) 6 7 8 9 10 11 12 13 14 DECIMAL 15 --> Screen # 103 0 (V21/V23 MODEM R2424 BASIC MODEM SETUP 27/1/86 MBW) 1 HEX 2 : DEFAULT.2424 3 INIT EN.M 4 5 V.22/2400 1 BUS.R NOW 1 BUS.T NOW 6 7 1 DTR NOW 1 RTS NOW 8 9 1 AAE NOW (NO ATTENUATION BEFORE DAA) 10 ODB 11 DEFAULT.8530 ; 12 13 14 DECIMAL 15 --> Screen # 104 0 (V21/V23 MODEM 8530 STATUS 27/1/86 MBW) 1 HEX 2 : RXREADY? BEGIN 222 PC@ 1 AND 1 = UNTIL ;BEGIN 222 PC@ 4 AND 4 = UNTIL ;3 : TXREADY? 4 : DCD.8530? BEGIN 222 PC@ 08 AND 08 = UNTIL ; 5 6 7 8 9 10 11 12 13 14 DECIMAL 15 -->

2400/1200/300 bps International Modem Design

Screen # 105 0 (V21/V23 MODEM PHONE NUMBER ENTERING 27/1/86 MBW) 1 HEX 2 0 VARIABLE PHONE.NUMBER 20 ALLOT 3 : PHONE.NUMBER.PROMPT 4 ." ENTER PHONE NUMBER " ; 5 6 : READY.TO.DIAL? BEGIN DDRE IS UNTIL ; 7 8 9 10 11 12 13 14 DECIMAL 15 --> Screen # 106 0 (V21/V23 MODEM DIALER 27/1/86 MBW) 1 HEX 2 : DIAL PHONE.NUMBER.PROMPT 3 PHONE.NUMBER 20 EXPECT CR 4 1 DTMF NOW 1 CRQ.T NOW ." DIALING # " 1 SEC PHONE.NUMBER 5 BEGIN DUP 1+ SWAP C@ DUP DUP 0= 6 IF 7 DROP DROP 1 8 ELSE DUP 44 = IF9 2 SEC DROP DROP 0 10 ELSE READY.TO.DIAL? OF AND 210 PC! EMIT 0 11 12 THEN 13 THEN UNTIL DROP READY.TO.DIAL? FF 210 PC! -14DB CLS ; 14 15 DECIMAL --> Screen # 107 0 (V21/V23 MODEM 7910 CONFIGURATION 27/1/86 MBW) 1 HEX 230 PC@ E0 AND 05 OR 230 PC! ; 2 : V21.ANS.7910 3 : V21.ORG.7910 230 PC@ E0 AND 04 OR 230 PC! ; 4 : V23.7910 230 PC@ E0 AND 06 OR 230 PC! ; 5 : V23.EQU.7910 230 PC@ E0 AND 07 OR 230 PC! ; 6 7 8 9 10 11 12 13 14 DECIMAL 15 -->

Figure 14. International Modem FORTH Screens (Continued)

5

```
Screen # 108
 0 ( V21/V23 MODEM 7910 CONNECT V.21
                                                      27/1/86 MBW )
  1 HEX
  2 : CONNECT.V21.ORG
     CLS ." V.21 300BPS MODE " CR
  3
  4
     DEFAULT.2424
  5
     V21.ORG.7910
  6
     DTAL
     1 RCCT.79 NOW 1 OH.79 NOW EN.79
  7
     0 CRQ.T NOW
  8
 9
     DTR.8530.ON
    DCD.8530? ." CARRIER DETECTED . . . ON LINE " CR CR
10
11
    RTS.8530.0N
12
     300BPS.8530 TALK
                         ;
13
14 DECIMAL
15 -->
Screen # 109
  0 ( V21/V23 MODEM 7910 CONNECT V.23
                                                      27/1/86 MBW )
  1 HEX
  2 : CONNECT.V23.ORG
  3
     CLS ." V.23 1200BPS MODE " CR
  4
     DEFAULT.2424
  5
    V23.7910
  6
    DIAL
 7
    1 RCCT.79 NOW 1 OH.79 NOW EN.79
     0 CRQ.T NOW
 8
 9
    DTR.8530.0N
     DCD.8530? ." CARRIER DETECTED . . . ON LINE " CR CR
10
11
     RTS.8530.ON 1200BPS.8530
12
    TALK
             ;
13
14 DECIMAL
15 -->
Screen # 110
 0 ( V21/V23 MODEM 2424 CONNECT V.22
                                                      27/1/86 MBW )
  1 HEX
  2 : CONNECT.V22.ORG
  3
     CLS ." V.22 1200BPS MODE " CR
  4
     DEFAULT.2424 V.22/1200 1200BPS.8530
  5
     DTAT.
     BEGIN CTS IS 1 = UNTIL ." CARRIER DETECTED . . . ON LINE "
  6
      CR CR TALK
  7
  8 : CONNECT.V22.2400
      CLS ." V.22 2400BPS MODE " CR
  9
 10
     DEFAULT.2424
 11
     DIAL
 12
     BEGIN CTS IS 1 = UNTIL ." CARRIER DETECTED . . . ON LINE "
     CR CR TALK
 13
                   ;
 14 DECIMAL
 15 -->
```

2400/1200/300 bps International Modem Design

```
Screen # 111
 0 (V21/V23 MODEM V.22 ANSWER MODE CONNECTIONS 27/1/86 MBW )
 1 HEX
 2 : V22BIS.CONNECTION
      ." CONNECTED TO V.22 BIS MODEM AT 2400 BPS " CR CR
  3
     TALK
  4
              ;
 5
  6 : V22.CONNECTION
 7
     ." CONNECTED TO V.22 MODEM AT 1200 BPS " CR CR
     1200BPS.8530
 8
 9
     TALK
              :
 10
 11
 12
 13
 14 DECIMAL
15 -->
Screen # 112
  0 ( V21/V23 MODEM V.21/V.23 ANSWER MODE CONNECTIONS 27/1/86 MBW )
  1 HEX
  2 : V21.CONNECTION
     ." CONNECTED TO V.21 MODEM AT 300BPS " CR CR
  3
  4
     V21.ANS.7910
     1 RCCT.79 NOW 1 OH.79 NOW EN.79
  5
  6
     DTR.8530.ON RTS.8530.ON
 7
     300BPS.8530
     TALK
 8
 9 : V23.CONNECTION
 10
     ." CONNECTED TO V.23 MODEM AT 1200BPS " CR CR
 11
     V23.7910
12
     1 RCCT.79 NOW 1 OH.79 NOW EN.79
 13
     DTR.8530.0N
     1200BPS.8530
 14
 15
     TALK
              ; DECIMAL -->
Screen # 113
  0 (V21/V23 MODEM AUTO ANSWER MODE 1 OF 2 27/1/86 MBW )
  1 HEX
  2 : AUTO.ANSWER
  3
      DEFAULT.2424
      CLS ." UNIVERSAL ANSWER MODE " CR
  4
  5
          ." WAITING TO BE CALLED " CR
  6
     BEGIN RI IS UNTIL
  7
          ." RING DETECTED . . .
                                  " CR
  8
     BEGIN DSR IS UNTIL
  9
         ." DATA SET READY ON
                                  " CR
      1 SEC
 10
 11
 12
 13
 14 DECIMAL
 15 -->
```

2400/1200/300 bps International Modem Design

```
Screen # 114
  0 ( V21/V23 MODEM AUTO ANSWER MODE
                                          2 OF 2
                                                          27/1/86 MBW )
  1 HEX
  2
      SPEED? DUP 3 = IF V22BIS.CONNECTION ELSE
  3
             DUP 2 = IF V22.CONNECTION
                                            ELSE
  4
      THEN THEN DROP
  5
      RLSD IS IF V23.CONNECTION ELSE V21.CONNECTION THEN ;
  6
  7
  8
  9
 10
 11
 12
 13
 14 DECIMAL
 15 -->
Screen # 115
  0 ( V21/V23 MODEM MENU SCREEN
                                                         27/1/86 MBW )
  1 HEX
  2
   : MENU INIT BEGIN
                         ." ROCKWELL INTERNATIONAL'S
  3
      CLS
          A 3 GOTOXY
                                                        " CR
  4
      CR
           A SPACES
                         ." INTERNATIONAL MODEM ....
                                                        " CR
  5
                         ." Fl
      CR CR A
               SPACES
                                                        " CR
                                V.21 ORIGINATE
                         ." F2
  6
            Α
               SPACES
                                V.22 ORIGINATE 1200
                                                        " CR
  7
                         ." F3
            Α
               SPACES
                                                        " CR
                                V.22 ORIGINATE 2400
                         ." F4
  8
            Α
               SPACES
                                V.23 ORIGINATE
                                                        " CR
               SPACES
                         ." F5
  9
            Α
                                AUTO ANSWER/CONFIGURE
                                                        " CR
 10 PCKEY DROP DUP 3B = IF CONNECT.V21.ORG
                                              ELSE
 11
               DUP 3C = IF CONNECT.V22.ORG
                                              ELSE
 12
               DUP 3D = IF CONNECT.V22.2400 ELSE
 13
               DUP 3E = IF CONNECT.V23.ORG ELSE
 14
               DUP 3F = IF AUTO.ANSWER
 15 THEN THEN THEN THEN THEN SWAP DROP UNTIL ; MENU DECIMAL -->
Screen # 116
  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
```

Figure 14. International Modem FORTH Screens (Continued)

Quality of Received Data for Signal Processor-Based Modems

by Carlos A. Laiz, Product Applications Engineer Semiconductor Products Division. Newport Beach, California

INTRODUCTION

This application note provides the modem design engineer with detailed information on the generation and interpretation of diagnostic data featured in Rockwell's signal processor (SP)-based modems.

Rockwell's plug-compatible SP-based modems can generate a variety of diagnostic data. This data is extremely useful in the evaluation of modem performance and line conditions. A microprocessor interface can readily access diagnostic data and other useful signals via the SP interface memory.

The diagnostic capabilities of specific Rockwell modems are summarized in Table 1.

ACCESSING DIAGNOSTIC DATA

Diagnostic data can be readily accessed via the microprocessor interface. The host processor must store the access code corresponding to the desired data in the RAM access register (See Table 2). The signal processor then stores the desired data in diagnostic data registers. The data available flag (R48DP, R96DP, R96FT and R96FAX only) in the respective interface memory sets when the signal processor writes data into diagnostic register zero and resets when the host reads data from register zero and is used to handshake with the diagnostic data registers. Diagnostic data is generated in 16-bit double precision form, although for most applications only the most significant byte of data is necessary. The RAM access codes for the SP-based moderns are shown in Table 2. Functional block diagrams that relate the RAM access codes to specific functions are shown in Figures 1 through 4. Refer to the applicable modem data sheet for specific details regarding an individual modem.

EYE PATTERN

A quadrature eye pattern is an extremely useful diagnostic tool. The visual display of an eye pattern can be monitored to identify common line disturbances, as well as defects in the modulation/demodulation processes.

The ideal eye patterns or signal constellations for the various encoding methods are illustrated in Figures 5 through 10. By performing digital-to-analog (D/A) conversion of the received signal point data (refer Table 2, Node 9), an eye pattern can be displayed on an oscilloscope. Two methods of eye pattern generation are available:

- The microprocessor can read the received signal points and then write this data into two memory mapped D/A converters. Figure 11 shows a typical microprocessor interface eye pattern generator. A typical parallel eye pattern algorithm is shown in Figure 12.
- High speed modems (4800 bps and above) can generate diagnostic data serially through hardware pins in the modem connector.

Modem		Eye Pattern				Access t
	Serial	Parallel MPU Bus	EQM Value	Error Vector	Phase Error	SP RAM Space ²
R1212M		x	1	x	x	X
R1212DC		x	1	x	x	x
R2424M		x	1	x	x	X
R2424DC		×	1	x	x	x
R48DP	X	x	x	x		X
R96DP	x	x	x	x		x
R96FT	x	x	x	x		X
R96FAX	X	x	x	x		x

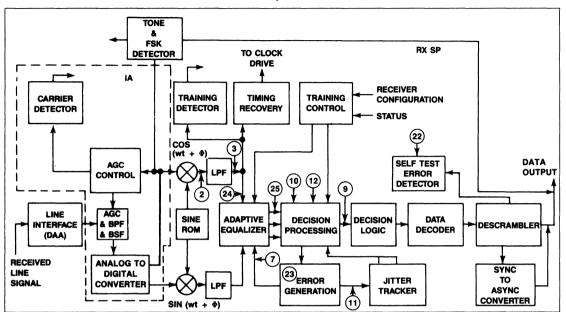
Table 1. Summary of Diagnostic Capabilities for SP-Based Modems

Notes:

1. EQM may be computed by the host processor from the error vector data.

2. See RAM access codes (Table 2) and block diagrams (Figures 1-4).

Document No. 29220N71


Application Note 5-83 Order No. 671 February 1985

Signal Processor-Based Modems

	R1212M/DC R2424M/DC					R48DP/	R96DP		R96FT				R96FAX		
Node No.	Function	Access Codes	Chip No.	Reg. No.	RAM X	Access Y	Chip No.	Reg. No.	RAM X	Access Y	Chip No.	Reg. No.	RAM Access	Chip No.	Reg. No.
1	Received Signal Samples (and Output)				C0	-	1	2,3	DC	_	1	2,3	CO	0	2,3
2	Demodulator Output	56	0	2,3,4,5	C2	42	1	0,1,2,3	CO	40	1	0,1,2,3	42	0	0,1,2,3
3	Low Pass Filter Output	40	0	2,3,4,5	D4	54	1	0,1,2,3	DD	5D	1	0,1,2,3	54	0	0,1,2,3
4	Average Energy					04	1	0,1		32	1	0,1	DC	0	2,3
5	AGC Gain Word				81	-	1	2,3		2E	1	2,3	81	0	2,3
6	Equalizer Input				CO	40	2	0,1,2,3	CO	40	2	0,1,2,3	40	1	0,1,2,3
7	Equalizer Taps	01-0D	0	2,3,4,5	81-A0	01-20	2	0,1,2,3	81-A0	01-20	2	0,1,2,3	01-20	1	0,1,2,3
8	Unrotated Equalizer Output				E1	61	2	0,1,2,3	E1	61	2	0,1,2,3	61	1	0,1,2,3
9	Rotated Equalizer Output (Received Point Eye Pattern)	11	0	2,3,4,5	A2	22	2	0,1,2,3	E2	62	2	0,1,2,3	22	1	0,1,2,3
10	Decision Points (Ideal Eye Pattern Points)	51	0	2,3,4,5	E2	62	2	0,1,2,3	E8	68	2	0,1,2,3	62	1	0,1,2,3
11	Error Vector (Rotated Error)	52	0	2,3,4,5	E3	63	2	0,1,2,3	E5	65	2	0,1,2,3	63	1	0,1,2,3
12	Rotation Angle	12	0	4,5		00	2	0,1	A7	—	2	2,3	00	1	0,1
13	Frequency Correction				AA	-	2	2,3					A8	1	2,3
14	EQM	*			A7	-	2	2,3	AC	-	2	2,3	AB	1	2,3
15	Dual Point				AE	2E	2	0,1,2,3					—		
16	Group II Baseband Signal												C8	1	2,3
17	Group II AGC Gain Word												AD	1	2,3
18	Group II AGC Slew Rate												AA	1	2,3
19	Group II PLL Frequency Correction												C2	1	2,3
20	Group II PLL Slew Rate												F0	1	2,3
21	Group II Black/White Level												2A	1	0,1
22	Self Test Error Counter	00	0	2,3,4,5											
23	Phase Error	10	0	2,3											
24	Input Signal to Equalizer Taps	41-4D	0	2,3,4,5											
25	Equalizer Output	53	0	2,3,4,5											

Table 2. RAM Access Codes

Signal Processor-Based Modems

Receiver/Equalizer Section

Transmitter Section

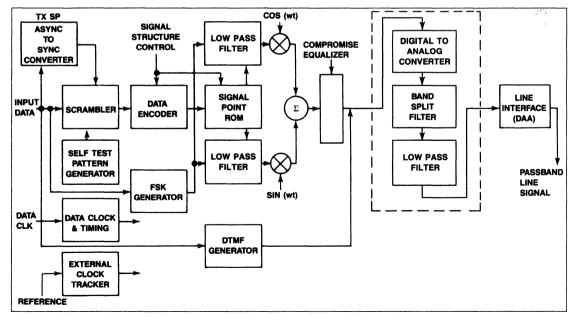


Figure 1. R1212/R2424 Processing Flow Diagram

5

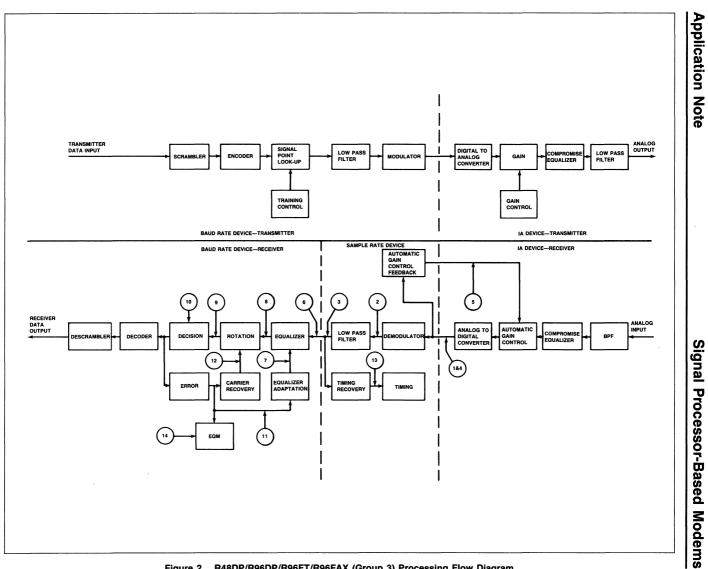
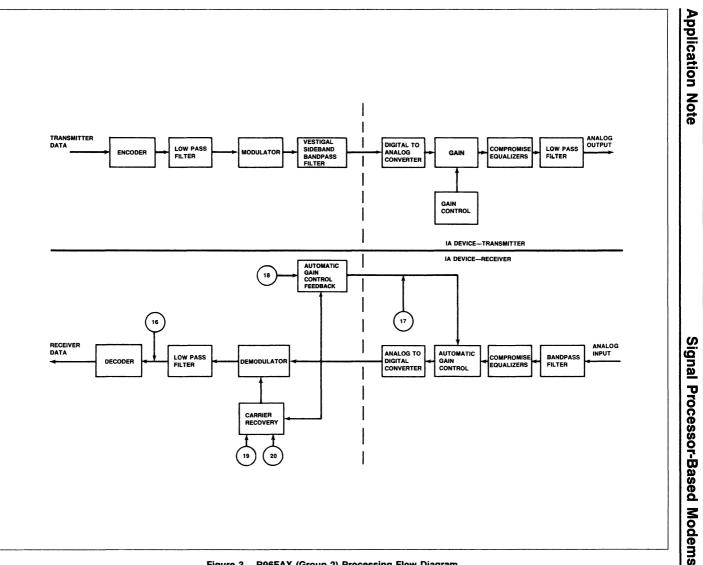
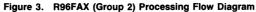
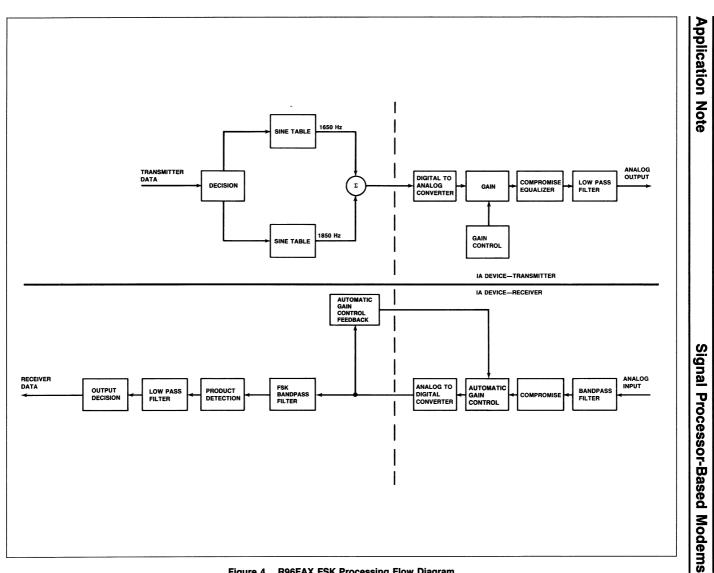
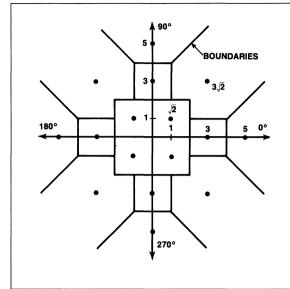
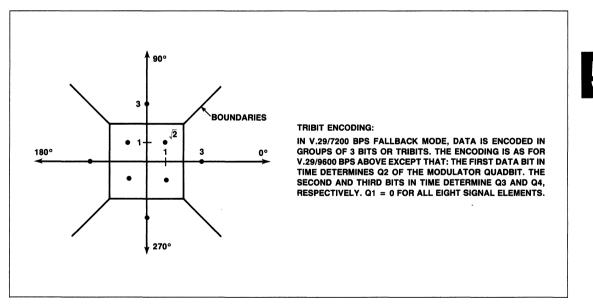




Figure 2. R48DP/R96DP/R96FT/R96FAX (Group 3) Processing Flow Diagram

5


Figure 4. R96FAX FSK Processing Flow Diagram

Signal Processor-Based Modems

Q2	Q3	Q4	PHASE CHANGE	ABSOLUTE PHASE	Q1	RELATIVE
0	0	1	0°			_
0	0	0	45°	0°, 90°,	0	3
0	1	0	90°	180°, 270°		_
0	1	1	135°		1	5
1	1	1	180°			5
1	1	0	225°	45°, 135°,	0	√2
1	0	0	270°	225°, 315°		0.5
1	0	1	315°		1	3√2

Figure 5. Ideal Eye Pattern-V.29/9600 bps

Signal Processor-Based Modems

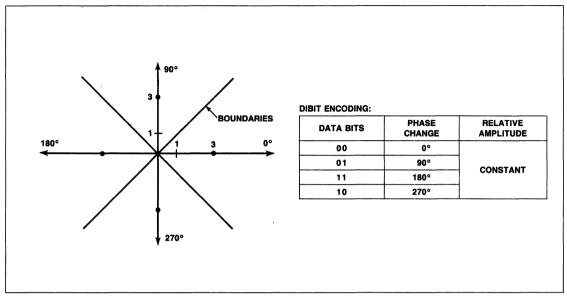
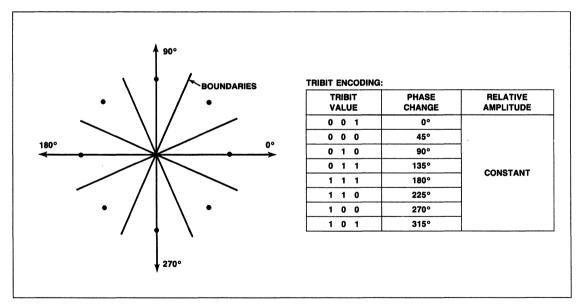
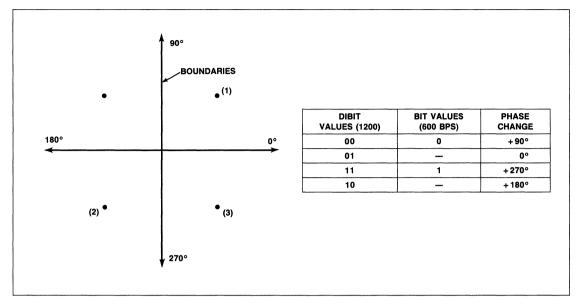
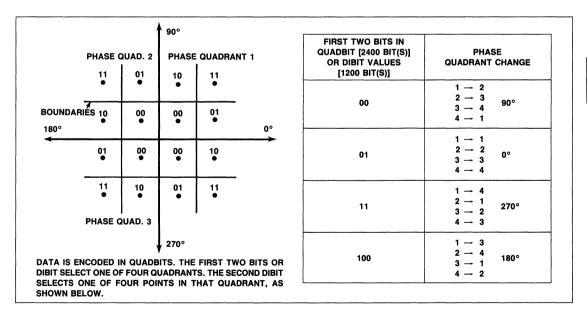
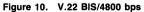





Figure 7. Ideal Eye Pattern-V.29/4800 bps and V.27/BIS/TER/2400 bps





Signal Processor-Based Modems

5

Signal Processor-Based Modems

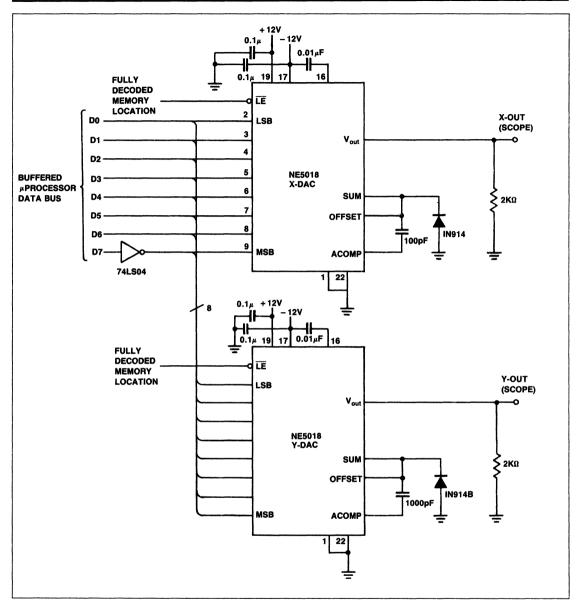
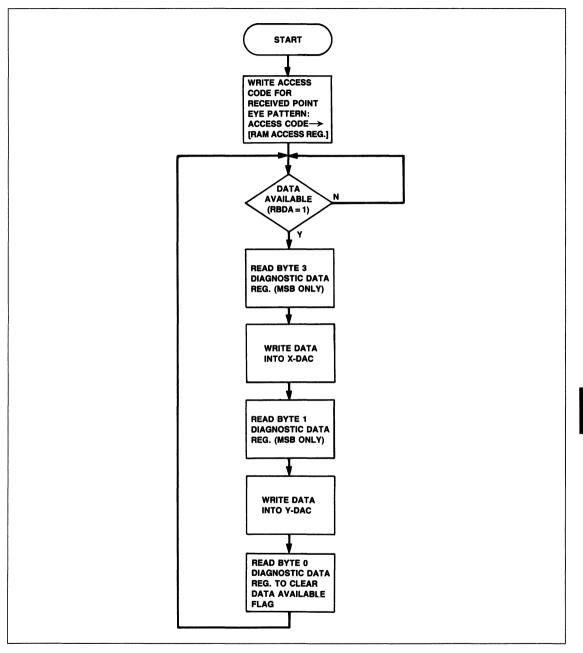



Figure 11. Typical Microprocessor Bus Eye Pattern Generator

Signal Processor-Based Modems

`,

- --- -

Signal Processor-Based Modems

The hardware necessary to generate a serial eye pattern along with the relevant timing signals are shown in Figures 13 and 14.

The eye pattern consists of dots or received signal points. Each point represents the location of a received signal element in the

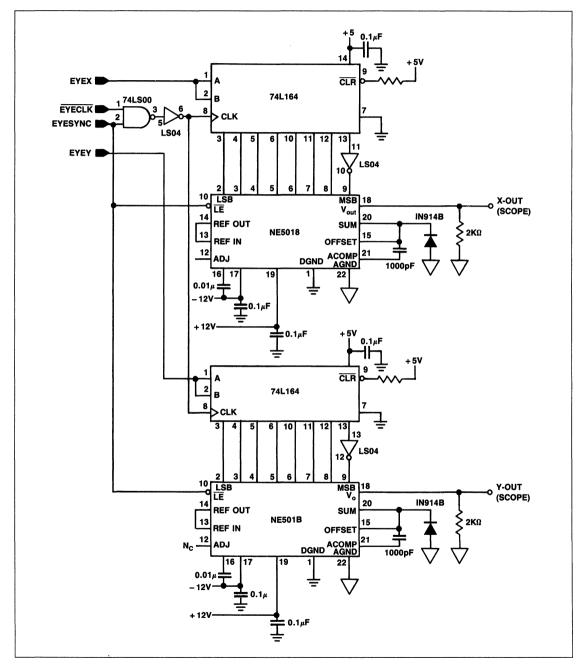


Figure 13. Serial Eye Pattern Generator

Signal Processor-Based Modems

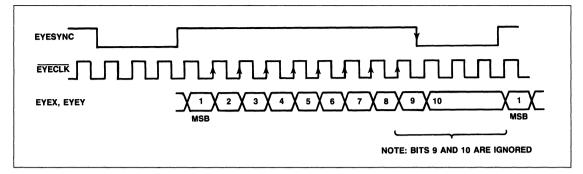


Figure 14. Serial Eye Pattern Signal Timing

baseband signal plane. In polar coordinates each point represents a magnitude and differential phase shift. Eye pattern data is updated at the baud rate so the oscilloscope display appears to be a continuous signal constellation.

For a DPSK (Differential Phase Shift Keyed) modem, the phase shift from one signal element to the next is decoded to recover data. For a QAM (Quadrature Amplitude Modulation) modem, both amplitude and differential phase shift are decoded to recover data.

Assume a V.22/1200 bps configuration (R1212 modem), and that initially a dot is displayed at point 1 of Figure 9. If the first dibit received is 10, the point displayed will be point 2, corresponding to a 180° shift in phase. If the second dibit is a $00 (90^{\circ})$, point 3 will be displayed. In this fashion a continuous stream of random data produces the display of Figure 9.

TYPICAL LINE DISTURBANCES

Actual received signal points are distorted by one or more types of line disturbances such as noise, phase or amplitude hits, phase or amplitude jitter, harmonic distortion and drop-outs.

White noise produces a smearing of each signal constellation point around its ideal location (see Figure 15A).

Phase jitter produces periodic phase smearing with little or no amplitude effect (see Figure 15B).

Harmonic distortion produces a non-periodic amplitude smearing with little phase effect (see Figure 15C).

Amplitude jitter produces an effect similar to harmonic distortion, but in this case the disturbance is periodic.

An amplitude (or phase) hit is associated with an instantaneous high error in the amplitude (or phase) signal component.

The degree of smearing in the eye pattern is proportional to the severity of the particular disturbance. These disturbances may occur in combination producing more complex smearing of the eye pattern.

A point falling within the signal space delimited by boundaries is decoded by the modem as if it were located at the ideal point within that space. When a line disturbance causes the signal point to cross a decision boundary, the received signal point is incorrectly decoded.

ERROR VECTOR AND EQM VALUES

Transient phenomena are difficult to observe in a quadrature eye pattern. Also, the proper interpretation of the eye pattern is a function of the observer's training and requires constant attention. Rockwell's signal processor modems generate error vector and Eye Quality Monitor (EQM) data that are more suitable for microprocessor manipulation and interpretation.

The error vector is defined as the angle and magnitude difference between an actual received signal point and its ideal location in the baseband signal plane (refer to Figure 16). Error vectors are represented as complex numbers whose real and imaginary components may be read out of the modem's diagnostic registers once per baud. An EQM value may be obtained by processing the error vector data to obtain a positive hexadecimal value whose magnitude is an indicator of the quality of the received signal or probability of error of received signal points. In the case of high speed modems (R48DP, R96DP, R96FT, and R96FAX), the error vector is processed by the SP devices and the EQM value is available through the diagnostic data registers. For medium speed modems (R1212 and R2424), the EQM value may be computed by the host processor using the error vector data. An algorithm for computing EQM values is given below.

It is desirable to have a quantity whose magnitude is proportional to the time average of the error vector magnitude. The error vector magnitude may be approximated by its squared magnitude eliminating the computation of a square root:

Re
$$(ERROR)^2$$
 + Im $(ERROR)^2$ (Eq. 1)

The squared magnitude may then be averaged by a digital filter of transfer function (see Figure 17):

$$H(Z) = \frac{\alpha}{1 - \beta Z^{-1}}$$
 (Eq. 2)

The coefficients α and β may be computed by a Z-domain approximation to an RC network of transfer function (see Figure 18):

$$H(s) = -\frac{1}{1 + S\tau}, \tau = RC$$
 (Eq. 3)

Signal Processor-Based Modems

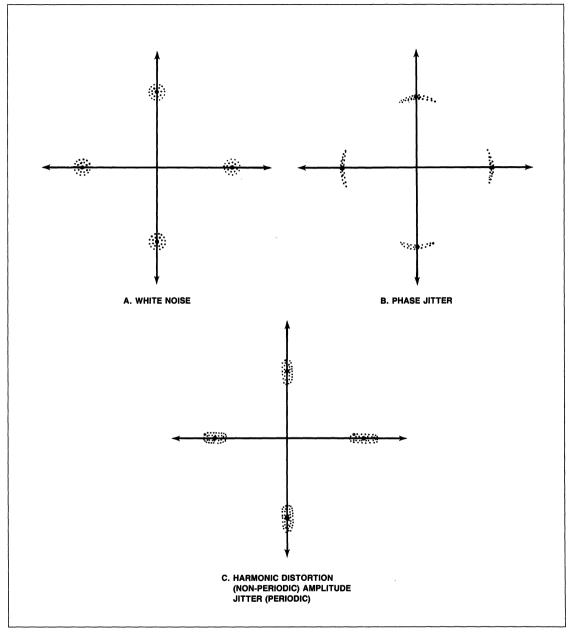


Figure 15. Typical Line Disturbances

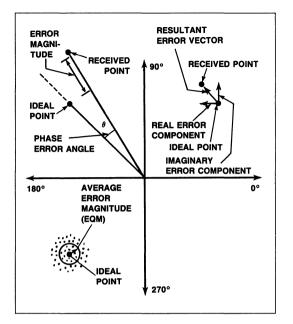


Figure 16. Error Vector Phase Error/EQM

Substituting variables (first backward difference approximation) S = 1 - Z⁻¹/T yields α and β (τ = RC, T = sampling period 1/T = 7200 Hz for R1212/R2424):

$$\alpha = \frac{1}{1 + \tau/T} = \frac{1}{1 + 7200\tau}$$
 (Eq. 4)

$$\beta = \frac{\tau/T}{1 + \tau/T} = \frac{1}{1 + \frac{1}{7200\tau}}$$
(Eq. 5)

Re-writing the transfer function H(Z) (Equation 1) as a difference equation:

$$y(n) = \alpha u(n) + \beta y(n-1)$$
 (Eq. 6)

Letting the input sequence $u(n) = \text{Re} (\text{ERROR } (n))^2 + \text{Im} (\text{ERROR } (n))^2$ and the output y(n) = EQM(n) we obtain:

$$EQM(n) = \alpha \left[Re(ERROR(n))^2 + Im(ERROR(n))^2 \right] + \beta EQM(n-1)$$
(Eq. 7)

where: EQM(n)	=	Current EQM value.
EQM(n - 1)	=	EQM value delayed by one sample
		period.
Re (ERROR (n))	=	Real component of the error vector.
		Imaginary component of the error
(, , ,		vector.

If we choose $\tau = 0.1$ seconds and 1/T = 7200 Hz then, $\alpha = 0.001386962$ and $\beta = 0.998613037$. Note that $\alpha + \beta = 1$ and $\alpha \ll \beta < 1$.

Signal Processor-Based Modems

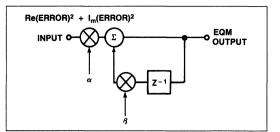


Figure 17. Digital Energy Averaging Filter

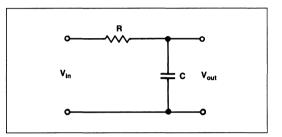
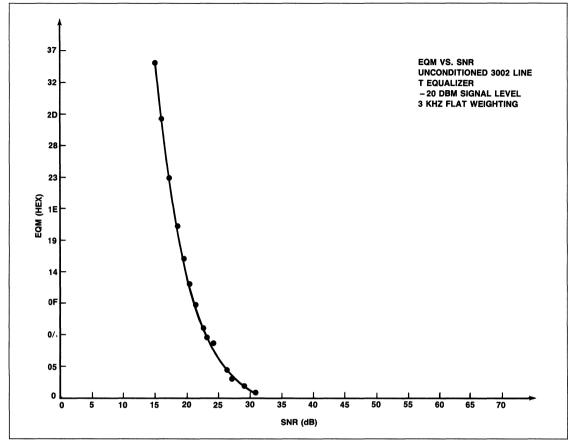
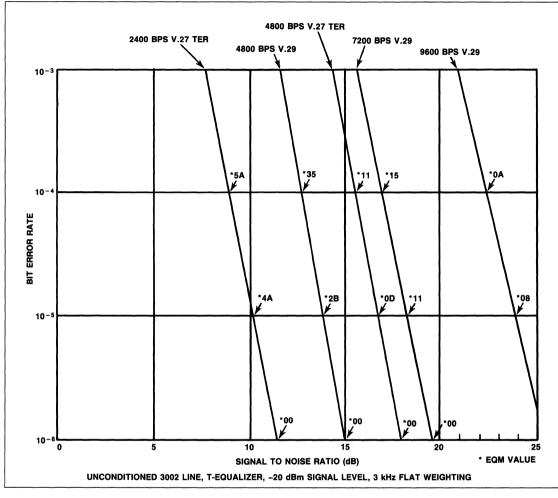


Figure 18. Equivalent Analog RC-Network


The EQM value is the filtered squared magnitude of the error vector. These values represent the probability of error and can be used to implement a discrete Data Signal Quality Detector circuit (circuit 110 of CCITT recommendation V.24 or circuit CG of RS-232-C recommendation) by comparing the EQM value against an experimentally obtained criteria (refer to Figures 19 and 20).

Bit Error Rate (BER) curves as a function of the signal-to-noise ratio (SNR) are used to establish a criteria for determining the acceptance of EQM values. Figure 20 is a typical BER curve showing the meaning of a given EQM value in terms of BER and SNR. From an EQM value, the host processor can determine an approximate BER value. If the BER is found to be unacceptable, the host may cause the modern to fall-back to a lower speed to improve BER.

It should be noted that the meaning of EQM varies with the type of line disturbance present on the line and with the various configurations. A given magnitude of EQM in V.29/9600 does not represent the same BER as in V.29/4800. The former configuration has 16 signal points that are more closely spaced than the four signal points in the latter, resulting in a greater probability of error for a given level of noise or jitter. Also, the type of disturbance has a significant bearing on the EQM value. For example, white noise produces an evenly distributed smearing of the eye pattern with about equal magnitude and phase error while phase litter produces phase error with little error in magnitude.


Recalling that EQM is an average of the squared magnitude of the error vector, it can be seen that the correspondence of EQM to SNR (and hence BER) is dependent upon the signal structure of the modulation being used and the type of line disturbance present.

Signal Processor-Based Modems

Signal Processor-Based Modems

SCALING OF SP SIGNALS (R48DP, R96DP, R96FT, AND R96FAX)

The following list of formulas can be used to obtain diagnostic data in engineering units. Typical values or ranges for the data are also given.

CONVERSION FORMULAS, RANGES AND TYPICAL VALUES FOR R48DP, R96DP AND R96FAX MODEMS

1. AGC Gain Word (16 bits unsigned)-Node 5

Range:

 $0F00_{16} - 7FFF_{16}$ for LRTH = 0 (-43 dBm Threshold) $0640_{16} - 7FFF_{16}$ for LRTH = 1 (-47 dBm Threshold) AGC Gain in dB = 50 - $\frac{\text{AGC Gain Word}}{(100)_8} \times 0.097 \text{ dB}$

 Average Power Word (16 bits)—Node 4
 Typical value: 4211₈ = 0889₁₆ (corresponding to 0 dBm)

Post-AGC Average Power in dBm	= 10 Log (⁴	Average Power Word (889) ₁₆	dBm
----------------------------------	-------------------------	---	-----

Pre-AGC Average (Post AGC Avg. Power in dBm Power in dBm = AGC gain in dB) dBm

3. A/D Sample Word (16 bits two's complement)—Node 1 (Refer to Figure 21 for the location of V_{INT} and V_{EXT} signals)

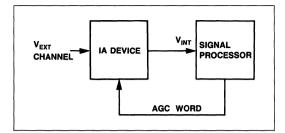
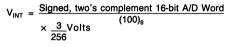



Figure 21. External and Internal Voltages

 $V_{EXT} = V_{INT} \div LOG_{10}^{-1} \left[\frac{AGC Gain (dB)}{20} \right]$

Signal Processor-Based Modems

4. Rotation Angle Word (16 bits two's complement)-Node 12

Range: - 180° -- + 180°

Rotation Angle in degrees = $\frac{\text{Rot. Angle Word}}{2^{16}} \times 180^{\circ}$

5. Frequency Correction Word (16 bits two's complement)— Node 13 (Deviation from carrier in Hz)

Range: FC01₁₆ - 0400₁₆ (±37.5Hz)

Freq. Correction in Hz = $\left(\frac{\text{Freq. Correction word}}{2^{16}}\right)$ × (Baud Rate in Hz) Hz

- 6. Error Vector Real (16 bits two's complement) and Imaginary (16 bits two's complement) Words (Refer to Table 3.)
- 7. Scaled Signal Points (16 bits two's complement) (V.29 to V.27)

(Refer to Figure 22 and Table 4.)

Table 3. Error Vector Maximum Val	ues
-----------------------------------	-----

Configuration	Bit Rate (BPS)	Real Error	Imag. Error	Magnitude <mark>}∕Re² + Im²</mark>
V.29	9600	<c00<sub>16</c00<sub>	<c00<sub>16</c00<sub>	<e66<sub>16</e66<sub>
V.29	7200	<240016	<240016	<1AD4 ₁₆
V.29	4800	<1C00 ₁₆	<1C00 ₁₆	<1C00 ₁₆
V.27	4800	<1C00 ₁₆	<1C00 ₁₆	<1C00 ₁₆
V.27	2400	<1C00 ₁₆	<1C00 ₁₆	<1C00 ₁₆

Table 4. R48DP/R96DP/R96FAX Scaled Signal Points (Hex)

		Mo	odem	
	V.29/9600	V.29/7200	V.29/4800 & V.27/2400	V.27/4800
Point	х, у	х, у	х, у	х, у
1	0000, 2800	0000, 2400	0000, 1F00	0000, 1F00
2	2800, 0000	2400, 0000	1F00, 0000	1600, 1600
3	0000, D800	0000, DC00	0000, E100	1F00, 0000
4	D800, 0000	DC00, 0000	E100, 0000	1600, EA00
5	0000, 1800	0C00, 0C00		0000, E100
6	1800, 1800	0C00, F400		EA00, EA00
7	1800, 0000	F400, F400		E100, 0000
8	1800, E800	F400, 0C00		EA00, 1600
9	0000, E800			
10	E800, E800			
11	E800, 0000			
12	E800, 1800			
13	0800, 0800			
14	0800, F800			
15	F800, F800			
16	F800, 0800			

Signal Processor-Based Modems

5

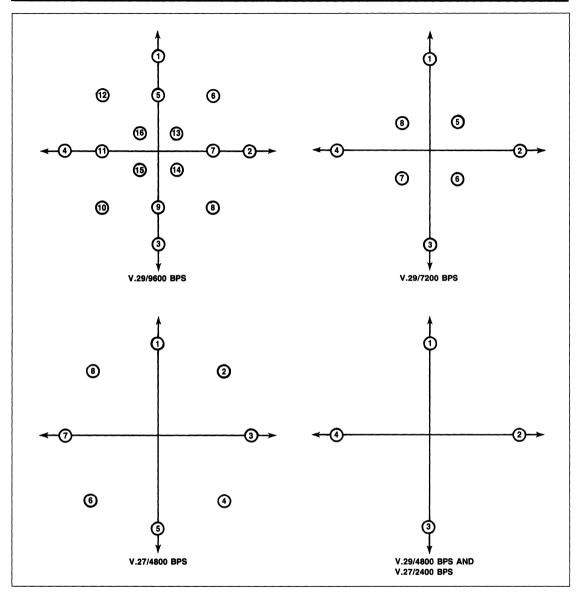


Figure 22. Scaled Signal Points

SCALING OF SP SIGNALS (R1212 AND R2424)

1. Rotation Angle (16 bits unsigned)—Node 12 Range: 0° — 360°

 $\frac{\text{Rotated}}{\text{Angle}} = \left[\frac{16 \text{ Bit Rotated Angle Word}}{2} \bullet 7\text{FFF}_{16} \right] \times 5B_{16}$

2. Phase Error (16 bits two's complement)-Node 22

Phase Error^o = $\frac{16 \text{ Bit Phase Error Word}}{K}$

Signal Processor-Based Modems

Where: $-45^{\circ} \leq$ Phase Error $\leq 45^{\circ}$ K = 28_{16} for 2400 bps K = 14_{16} for 1200 bps

3. Scaled Signal Points (16 bit two's complement)

(Refer to Figure 23 and Table 5.)

		Modem	
1	V.22 bis/2400 bps	V.22 A/B, Bell 212A/1200 bps	V.22 A/B 600 bps
Point	х, у	х, у	х, у
1	1800, 1800	1100, 1100	EF00, 1100
2	800, 1800	EF00, 1100	1100, EF00
3	800, 800	EF00, EF00	
4	1800, 800	1100, EF00	
5	F800, 1800		
6	E800, 1800		
7	E800, 800		
8	F800, 800		
9	F800, F800		
10	E800, F800		
11	E800, E800		
12	F800, E800		
13	1800, F800		
14	800, F800		
15	800, E800		
16	1800, E800		

Table 5. R1212 and R2424 Scaled Signal Points (Hex)

Signal Processor-Based Modems

.....

5

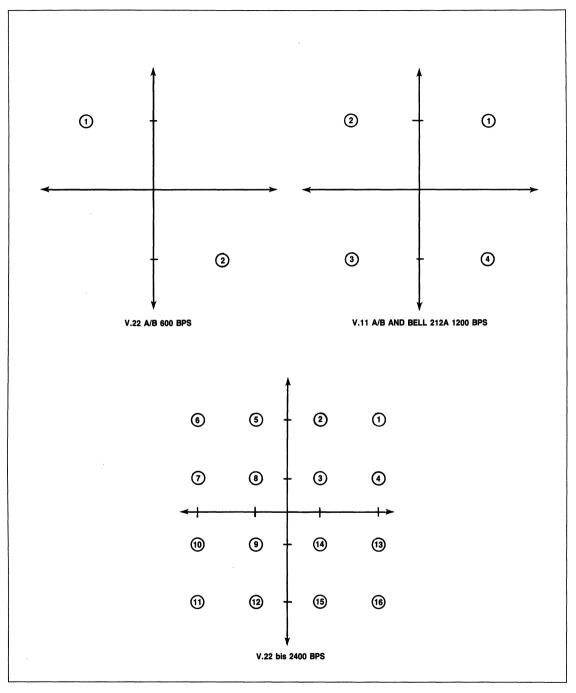


Figure 23. Scaled Signal Points

R2424 • R1212 Application Note

R2424 and R1212 Modems Auto Dial and Tone Detection

by Jeffrey T. Higgins and Malcolm B. Waters, Product Applications Engineers Semiconductor Products Division, Newport Beach, California

INTRODUCTION

The R2424 and R1212 modems provide auto dial and tone detection capabilities. These functions aid the designer in creating an intelligent modem subsystem. The auto dialer can be designed to dial both normally and in reverse fashion. Tone detection, a subset of an intelligent auto dialer, can provide call progress monitoring of ringback, busy, and answer tones. This application note presents examples of auto dial and tone detection routines and the problems they overcome.

R2424/R1212 AUTO DIALER

The auto dialer flowchart (Figure 1) shows the typical command flow to cause the modem to dial and then enter the tone detection state. The sequence shown assumes that the modem is in serial control (BUS bits = 0) and that the NEWC bits are set at the appropriate time.

To auto dial the DTR signal must be active. In a constant carrier application where RTS must be on before the end of the handshake, it is recommended that RTS be activated the first time DTR is active and then left on permanently. (RTS may also be hardwired to DTR for constant carrier applications.)

During the time the modern is initialized for auto dialing and the telephone number is being entered, both CRQ bits should be 0. After touch tone or pulse dialing is selected using the DTMF bit and the telephone number is entered, both CRQ bits should be set to a one.

Note:

The CRQ bit in the transmitter enables the auto dialer. The CRQ bit in the receiver enables tone detection when CRQ in the transmitter is enabled. If no tone detection is wanted, CRQ in the receiver does not have to be set.

Following a short delay to allow the relay to close, the DLO and TONE bit are checked. The DLO bit when active tells the user that the relay is closed. If the CRQ bit in the receiver is enabled, the TONE bit at this time will be a one signifying that dial tone is being detected. If both bits are active the actual dialing can begin.

First, the dial digit register is checked to see if it is empty. If it is, the first dial digit is taken from memory and examined. If it is a character that represents a delay then a delay occurs and the second dial digit is taken from memory. If it was not a delay character then it is loaded into the dial digit register. The modem will take the digit and dial it according to the state of the DTMF bit. (The DTMF bit can be changed during the dialing process to allow both tone and pulse dialing of consecutive digits.) The modem also accounts for interdigit delay. After the digit is dialed and the interdigit delay time has elapsed the DDRE bit will be a one signifying that the next digit can be loaded. The interdigit delay can be lengthened by not loading the dial digit register immediately after the DDRE bit is active. This process is continued until the last digit is dialed.

At this point the user can put the modem into data mode by loading \$FF into the dial digit register (assuming the CRQ bit in the receiver is 0) or the tone detection routine can begin. If tone detection is desired, \$FF should not be loaded at this time. The loading of \$FF tells the modem to go into the data mode and start the 30 second abort timer. Once this action is taken the dialing process and tone detection is ended. CRQ in the transmitter must be a one during data mode or the modem will go on-hook. When \$FF is loaded, CRQ in the receiver must be a zero.

ANSWER TONE DETECTION—NO RINGBACK

If tone detection is attempted, the software which determines the call progress status must be able to compensate for the many inconsistencies in the dial-up network. One of the problems is no ringback.

Since the tone detector in the modem has a passband from 345 to 635 Hz it is unable to detect answer tone if no ringback occurs. Figure 2 is a flowchart of a routine which switches back and forth between data mode and tone detection mode to catch answer tone if no ringback occurs. Figure 4 shows the worst case example of no ringback and the timing of the software routine which tries to keep the modem from missing the answer tone.

After the last digit is dialed, a 4.5 second watchdog timer is started. During this time the TONE bit is being monitored for call progress tones. If the TONE bit becomes active then the routine of Figure 3 is implemented. If the timer times out and no tone was detected the routine continues and looks for answer tone. (If the answer sequence started immediately after the last digit was dialed then approximately 500 milliseconds of answer tone would remain. This is enough time for the originating modem to detect answer tone.) CRQ in the receiver is reset to zero and \$FF is loaded into the dial digit register. This action puts both the transmitter and receiver in data mode. The receiver can now detect answer tone. A 750 ms watchdog timer is started. The DSR bit is monitored during this time. If DSR becomes active then answer tone was detected and the modem will continue with the handshake. If the timer times out and DSR is not active the program can exit and abort the call (depending on how many tries are desired for tone detection) or it can go back into tone detection looking for call progress tones.

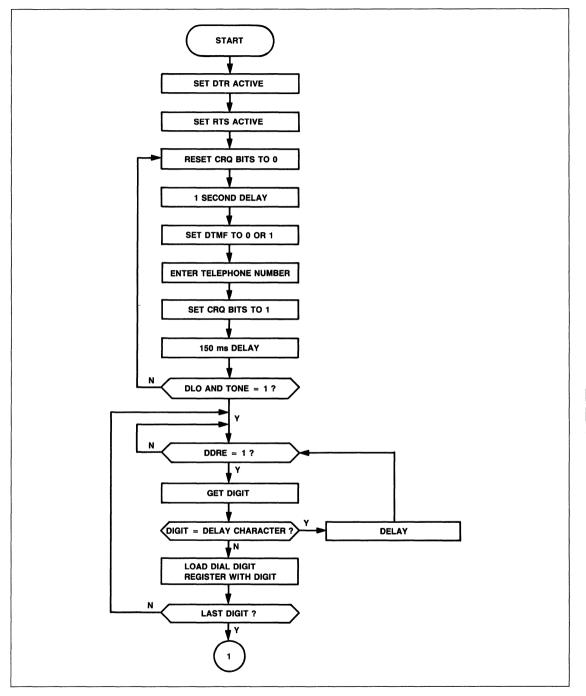
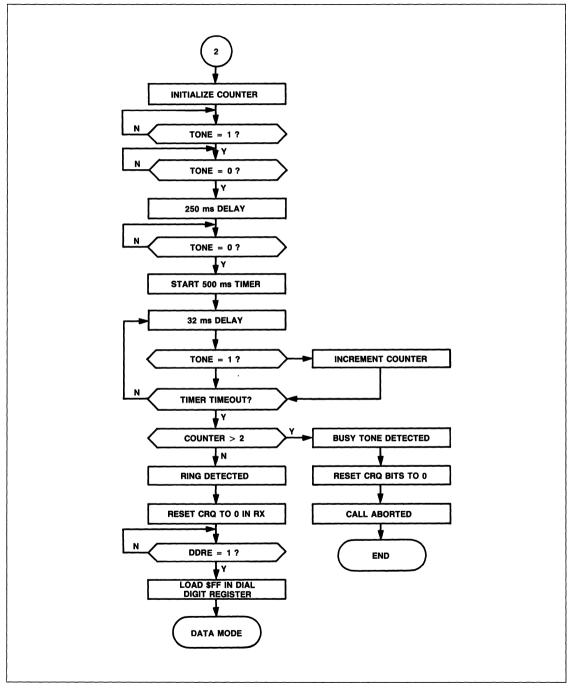
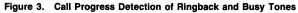




Figure 1. R1212 and R2424 Auto Dial Routine

Figure 2. Answer Tone Detection When No Ringback Occurs

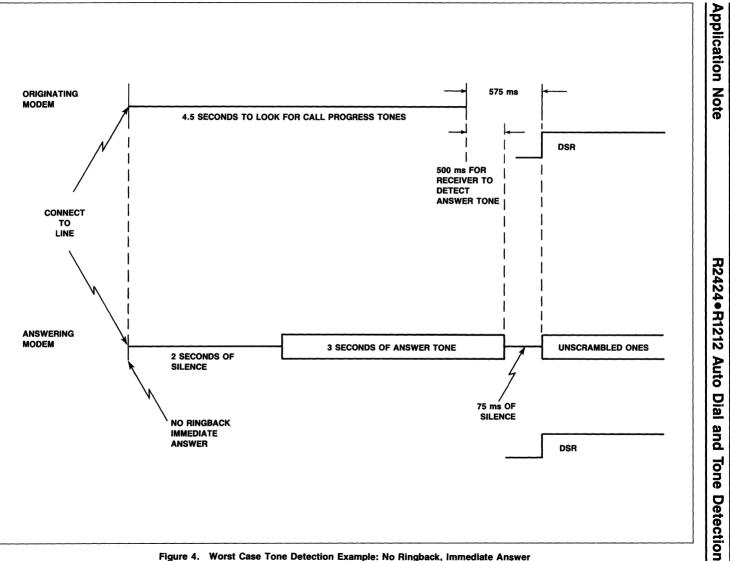


Figure 4. Worst Case Tone Detection Example: No Ringback, Immediate Answer

R2424•R1212 Auto Dial and Tone Detection

If it is desired to go back into the tone detect mode, the following sequence must be followed. Set the AL bit in the receiver to a one. Reset CRQ in the transmitter to a zero and after 2 sample times (approximately 300 microseconds) set CRQ in the transmitter to a one. This action resets the transmitter, without opening the relay. One baud time later (approximately 2 ms) reset AL in the receiver to a zero. (Although setting and resetting the AL bit in the receiver does not seem to make sense, it does help to ensure internal flags are properly set so the modem does not lock-up by switching back and forth between data and tone detect mode. After AL in the receiver is reset, set cRQ in the receiver to a one. At this point the modem is back in tone detect mode and the routine begins again.

If after a number of passes through the routine no call progress or answer tones have been detected, the call can be aborted by resetting both CRQ bits to a zero.

CALL PROGRESS DETECTION

If the TONE bit becomes active during the 4.5 second period of Figure 2, the call progress tone detection routine of Figure 3 should be implemented. This routine monitors the duty cycle of the TONE bit and reports what tone is being detected.

The difficulty with any tone detection routine is the fact that the tones provided by the telephone network are not always according to specification. Figure 5 shows both ideal and nonideal tone detection situations. It is the nonideal tones that create the timing problems in the tone detection routine, and those situations must be dealt with. The routine of Figure 3 provides a possible solution to catch the nonideal call progress tones.

The call progress detection routine makes its decisions after the on-to-off period of any tone. After a 250 ms delay the TONE bit is monitored for 500 ms. During this time samples of the TONE bit are taken every 32 ms (see Figure 6). If the TONE bit is active when sampled, a counter is incremented. If the counter was incremented more than two times it is assumed that a busy tone was detected. CRQ should then be reset in both the transmitter and receiver to zero. This puts the modem back on-hook and the call is aborted. If the counter was incremented two times or less a ring was detected and the moder must go into data mode. This is accomplished by resetting CRQ in the receiver to zero and loading \$FF into the dial digit register.

Note:

It is assumed that the answering modern will answer after one ring. Therefore, the tone detection routine must decide the call progress status before the remote modern answers.

R2424/R1212 REVERSE AUTO DIALER

The R2424 and R1212 can be used to call an originate-only modem. This application provides a higher level of security in dial-up environments. With the increasing problem of data security in dial-up computer systems it is necessary to prevent unauthorized users from connecting to the network. Reverse auto dialing helps solve the problem.

The central site modem would be set up to monitor a ringing signal, but would be configured for originate mode. The remote modem would dial, switch to the answer mode and send the answering sequence. The central site would answer the call and detect answer tone as though it had originated the call. The handshake would then proceed as normal.

If an authorized modem which was not configured to send answertone after dialing, tried to connect, the central site modem would not respond after answering, because it would be expecting answer tone.

The reverse auto dialer flowchart (Figure 7) shows the command flow to cause the modem to dial and then enter the answer state and send answer tone. The sequence shown assumes that the modem is in parallel control (BUS bits = 1) and that the NEWC bits are set at the appropriate time.

The routine initializes the modem and prepares it for dialing. The ORG bit is set to a zero (manual answer) but is ignored during the dialing process. The dialing is identical to Figure 1 except that CRQ in the receiver is not set to a one. No tone detection can be done with the reverse dialing because CRQ in the transmitter is disabled after the last digit is dialed. After CRQ in the transmitter is reset to a zero the DATA bit is immediately set to a one. Since the ORG bit was set previously, the result is the OH relay stays closed, the modem switches from originate to answer configuration, and the answer sequence is transmitted.

The modem will send the answering sequence for 30 seconds or until the other modem responds.

R2424/R1212 REVERSE AUTO ANSWER

The R2424 and R1212 provides the capability to auto answer in the originate configuration. This feature complements the reverse auto dialing described previously.

The flowchart of Figure 8 shows the method to perform the reverse auto answering. The sequence shown assumes that the modem is in parallel control (BUS bits = 1) and that the NEWC bits are set at the appropriate time.

The ORG bit is set to a one, configuring the modem to originate. On detection of the ring using the RI bit, the DATA bit is set to a 1. This sequence causes the modem to answer, but remain in the originate mode looking for the answer sequence.

A more comprehensive description of R1212/R2424 modem operation is contained in Section 4 of the Modem Interface Guide (Order No. 685)

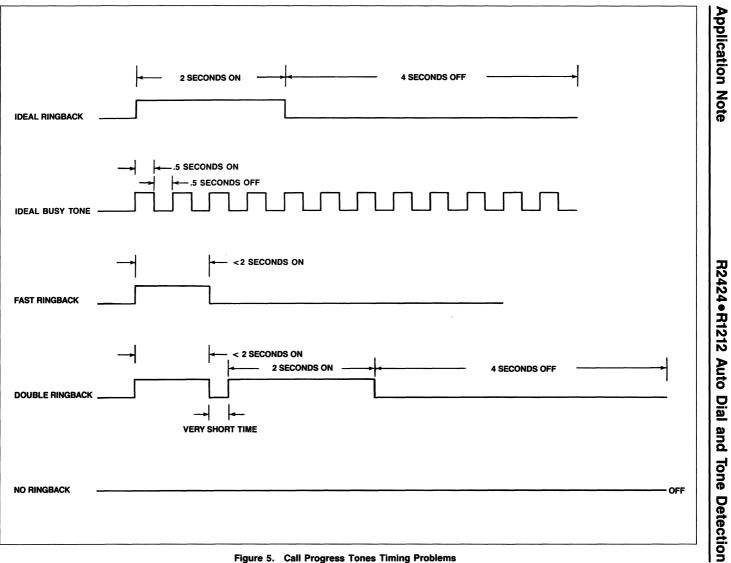
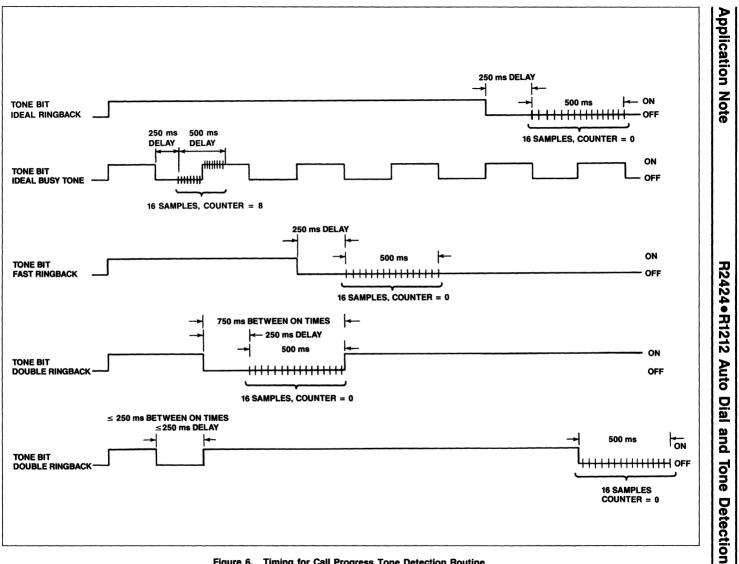



Figure 5. Call Progress Tones Timing Problems

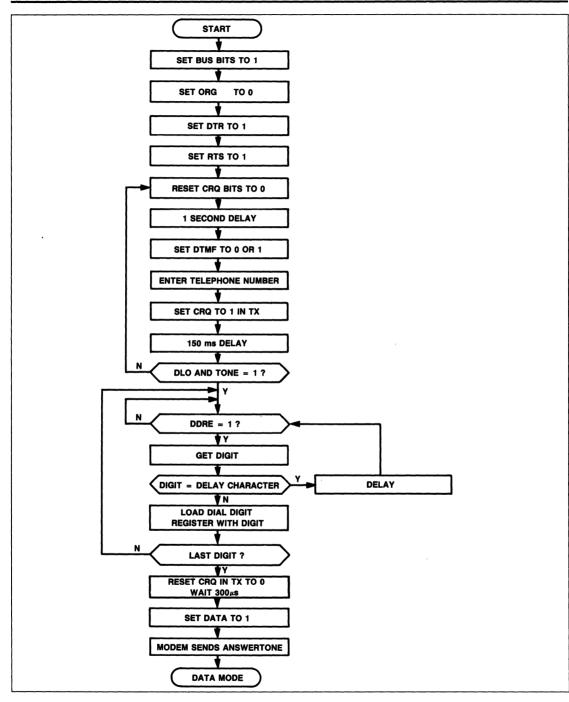


Figure 7. R1212 and R2424 Reverse Auto-Dial Routine

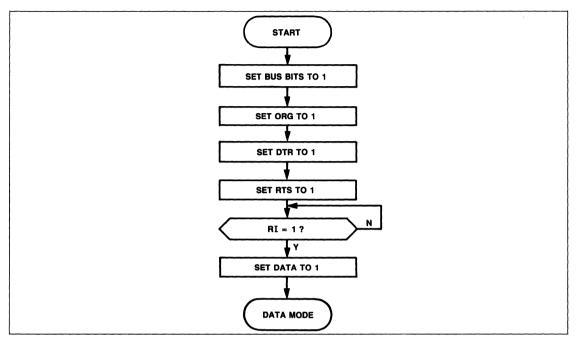


Figure 8. R1212 and R2424 Reverse Auto Answer

8088 Microprocessor to R1212/R2424 Modem Interface

INTRODUCTION

This application note details the connections and circuitry needed to interface a Rockwell R1212 1200 BPS or R2424 2400 BPS Full-Duplex Modem to an 8088 microprocessor-based system. Also included is an assembly language level computer program that performs an auto dialer function.

8088 INTERFACE

The basic interface signals between an R1212/R2424 and an 8088-based system are summarized in Figure 1. A schematic detailing the components and connections necessary to interface an R1212/R2424 modem to an expansion slot in an IBM PC (or equivalent) personal computer is shown in Figure 2. This particular circuit was used with a COMPAQ Personal Computer but should be able to be used with an IBM PC or other compatible computer with little or no modification.

The R1212/R2424 modem is mapped into the memory space allocated for the prototype board in the IBM PC input/output map. The chip select logic places the modem in the following address space:

Chip Select Line	Address Range
CSO	\$300-\$30F
CS1	\$310-\$31F

The INS8250 UART provides the asynchronous communications between the R1212/R2424 modern and the 8-bit microprocessor data bus.

AUTO DIALER SOFTWARE

The 8088 assembly language instructions (and assembled hmachine code that performs an auto dialer function is listed starting on page 3.

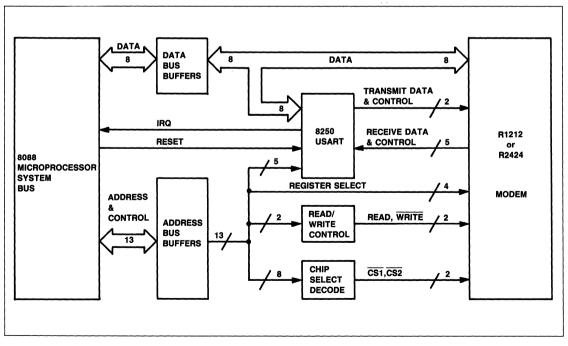


Figure 1. IBM PC to R1212/R2424 Modem Interface

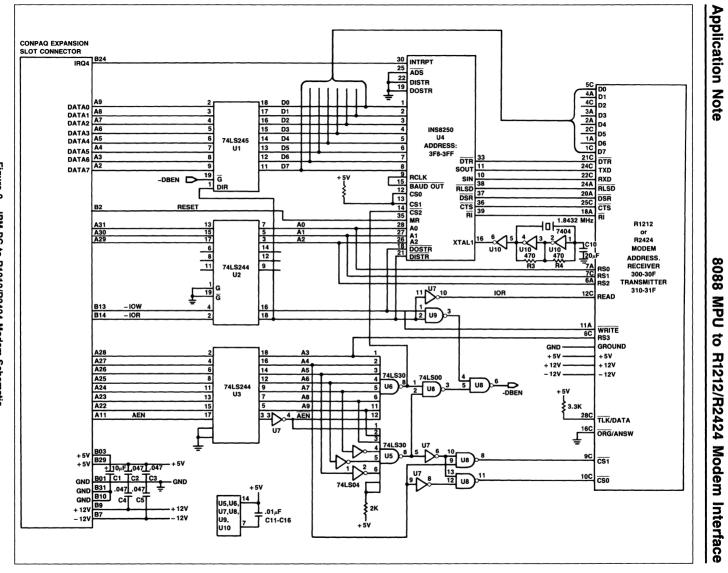


Figure 2. IBM PC to R1212/R2424 Modem Schematic

5

8088 MPU to R1212/R2424 Modem Interface

8088 AUTO DIALER ASSEMBLY LISTING

```
TITLE
                                                                       8088 AUTO DIALER (DIAL1.ASM)
                                                          COMMENT*
                                                                         Rockwell Applications Lab 5/15/84
                                                                         This is written as an example of an auto-dialer in 8088
                                                                         Assembly Language. It was written using the Micosoft
Macro Assembler which runs under the IBM Disk Operating
                                                                         System.
                                                                         The hardware used places the interface memory Bank 0
and Bank 1 at locations 300-30F and 310-31F respectively.
This is the space allocated for the Prototype Card in the
IBM I/O Address Map.
                                                          Macro pseudo-op for use in setting req bits in the interface memory
                                                          ;
The address and bit to be set/reset is sent to the Macro.
;The Macro then gets the appropriate byte from the R1224.
;This byte is ORed with the bit to be set to change only that
;bit. The byte is then sent back to the R1224.
                                                          ;
SET
                                                                         MACRO
                                                                                        ADDR, BIT
                                                                                       DX,ADDR
AL,DX
AL,BIT
                                                                         MOV
                                                                         τN
                                                                         OR
                                                                         OUT
                                                                                        DX,AL
                                                                         ENDM
0000
                                                          STACK
                                                                         SEGMENT STACK
                                                                                                       DUP (?)
0000
         0100 0
                                                                         DB
                                                                                       256
                            77
                                   J
0100
                                                          STACK
                                                                         ENDS
                                                          DATA
0000
                                                                         SEGMENT
0000
          14 15 E
                                                                                        20,21 DUP(0)
                                                          BUF
                                                                         DB
                                                                                                                      ;Set up a buffer for the phone number
                            00
                                   3

        20
        45
        4E
        54
        45
        52

        20
        50
        48
        4F
        4E
        45

        20
        4E
        55
        4D
        42
        45

        52
        3A
        24
        20
        20
        24
        49
        41
        4C

        49
        4E
        47
        20
        24
        49
        42
        20

                                                                                        ' ENTER PHONE NUMBER: $ '
0016
                                                          MSG
                                                                         DB
                                                                                        ' DIALING $ '
002C
                                                          MES1
                                                                         DB
0038
                                                          DATA
                                                                         ENDS
0000
                                                          ĆODE
                                                                          SEGMENT
0000
                                                          START
                                                                         PROC
                                                                                       FAR
                                                          Standard Program Prologue
                                                                         ASSUME
                                                                                        CS: CODE, DS: DATA, SS: STACK
0000
          1E
                                                                         PUSH
                                                                                        DS
0001
         BB 0000
                                                                         MOV
                                                                                        AX,0
          50
BB
0004
                                                                         PUSH
                                                                                        Δ¥
0005
                                                                                        BX,DATA ;Get data segment base address
                        - R
                                                                         MOV
0008
          SF DB
                                                                         MOV
                                                                                        DS, BX
0000A
         E8 000E R
                                                                         CALL
                                                                                        MAIN
OOOD
         CB
                                                                         RET
000E
                                                          START
                                                                         ENDP
```

8088 MPU to R1212/R2424 Modem Interface

8088 AUTO DIALER ASSEMBLY LISTING (Continued)

000E			; MAIN	PROC	NEAR	
			; ;Dıal se			
			; Diai Se	-up		
				SET	31DH,00H	;Assure that DTR is a O
000E	BA 031D	+		MOV	DX,31DH	
0011	EC	+		IN	AL, DX	
0012 0014	0C 00 EE	++		OR OUT	AL,00H DX.AL	
0014	CC.	•		SET	31EH,08H	;Set NEWC
0015	BA 031E	+		MOV	DX,31EH	;Set News
0018	EC	+		IN	AL, DX	
0019	00 08	+		OR	AL,08H	
001B	EE	+		OUT	DX, AL	
			;			
				SET	30DH, BOH	;Set the BUS bit, receiver
0010	BA 030D	+		MOV	DX, 30DH	
001F 0020	EC OC BO	+		IN OR	AL,DX	
0020	EE	÷		OUT	AL, BOH DX, AL	
0022		*	;	001	DX, AL	
			,	SET	31DH, BOH	;Set the BUS bit, transmitter
0023	BA 031D	+		MOV	DX,31DH	, see the soo sief chansmittee
0026	EC	+		IN	AL, DX	
0027	OC 80	+		OR	AL, BOH	
0029	EE	+		OUT	DX,AL	
			;			
				SET	31BH,02H	Set DTMF for tone dialing
002A 002D	BA 031B EC	++++		MOV	DX,31BH	
002D	0C 02	+		IN OR	AL, DX	
0030	EE	+		OUT	AL, O2H DX, AL	
		•	:		DA, HE	
				SET	30DH,40H	;Set CRQ bit, receiver
0031	BA 030D	+		MOV	DX, 30DH	,
0034	EC	+		IN	AL, DX	
0035	OC 40	+		OR	AL,40H	
0037	EE	+		ουτ	DX,AL	
			;			
				SET	31DH,40H	;Set CRQ bit, transmitter
0038	BA 031D EC	+ +		MOV IN	DX,31DH	
003B 003C	OC 40	÷			AL,DX AL,40H	
003E	EE	+		OUT	DX,AL	
0002			;			
				leas	t 50 msec between #	reset and set of DTR
			;	MOV		
003F 0041	B3 FF FE CB			DEC	BL,OFFH BL	
0041	80 FB 00		110611	CMP	BL,00H	
0046	75 F9			JNZ	TIME1	
			;			
				SET	31DH,08H	;Set DTR
0048	BA 031D	+		MOV	DX,31DH	
004B	EC	+		IN	AL, DX	
004C	OC 08	+		OR	AL, OBH	
004E	EE	+		OUT	DX,AL	
			;	SET	30EH,0BH	;Set NEWC, Receiver
004F	BA 030E	+		MOV	DX, 30EH	, bet news, neeerve.
0052	EC	+		IN	AL, DX	
0053	00 08	+		OR	AL, OBH	
0055	EE	+		OUT	DX, AL	
				SET	31EH, OBH	Set NEWC bit, Transmitter
0056	BA 031E	+		MOV	DX,31EH	
0059	EC	+		IN	AL,DX	
005A 005C	OC OB	+		OR OUT	AL,OBH DX,AL	
0050	CC	+		001	DA, ML	
			, ;Check t	hat w	e are off-hook and	ready to dial
			1			
005D	BA 0318		WAIT:	MOV	DX,318H	
0060	EC			IN	AL, DX	
0061	24 80			AND	AL, BOH	
0063	3C 80			CMP	AL, BOH	;Check to see if DLO is set
0065	75 F6			JNZ	WAIT	;If not, wait for it

8088 MPU to R1212/R2424 Modem Interface

8088 AUTO DIALER ASSEMBLY LISTING (Continued)

		;			
0067	BA 0308	,	MOV	DX,308H	
	EC		IN	AL, DX	,
006A			AND	AL, BOH	
006B	24 80				
006D	3C 80		CMP	AL, BOH	
006F	75 EC		JNZ	WAIT	
		;			
0071	B4 09		MOV	AH,9	
0073	BA 0016 R		MOV	DX,OFFSET MSG	<pre>Print prompt for phone # input</pre>
0076	CD 21		INT	21H	
		;			
		; Read 1	the numb	er and display i	t.
		;			
0078	B4 0A		MOV	AH, OAH	
007A	BA 0000 R		MOV	DX OFFSET BUF	;Buffered Keyboard Input
007D	CD 21		INT	21H	
		;			
007F	B2 0A	,	MOV	DL, OAH	;Line feed
0081	84 02		MOV	AH,02	Display function
0083	CD 21		INT	21H	;DOS call
0085	60 21	;			
0085	B4 09	,	MOV	AH,9	
			MOV	DX,OFFSET MES1	;Print DIALING message
0087	BA 002C R		INT	21H	, FILL DIALING MESSage
0088	CD 21		INI	21H	
					the second the second second second
		; Loop (and redi	splay telephone	number as it is dialed
		;			
0080	BE 0000		MOV	SI,0	
008F	B9 0000		MOV	CX,O	
0092	8A OE 0001 R		MOV	CL, BUF+1	;Get number of digits read
0096	8A 94 0002 R	PAD:	MOV	DL,BUF(SI+2)	
		DL DOW	contain	s the dial digit	
009A	52	,	PUSH	DX :Preser	ve the dial digit on the stack
•••••				,	······································
		, Check	to see t	bat the dial did	nt register is empty
		CHECK	to see t	Hat the brar brg	ic egisee is empty
009B	BA 031E	FULL1:	MOV	DV TIEL	
		PULLI		DX,31EH	
009E	EC		IN	AL,DX	
009F	24 01		AND	AL,01H	
00A1	3C 01		CMP	AL,01H	
00A3	75 F6		JNZ	FULL1	
		;			
		;Get th	e dial d	ligit off the sta	ack
		;			
00A5	5A		POP	DX	
		:			
		Check	to see i	f it's a carriag	le return
				-	
00A6	BO FA OD		CMP	DL, ODH	
00A9	74 10		37	DONE	;If it is, end the dialing sequence
					,
		, Feedba	ck for d	lialion	
		;			
OOAB	B4 02	,	MOV	AH,2	Print the digits as they are dialed
OOAD	CD 21		INT	21H	, in the che orgics as they are orated
UUHD	CD 21		1101	210	
		, 			24
			ne olai	digit to the R12	224
		;			
OOAF	BO E2 OF		AND	DL,OFH	
0082	8A C2		MOV	AL,DL	;Dial Digit must be in AL to be sent
0084	BA 0310		MOV	DX,310H	;to the I/O port
00B7	EE		OUT	DX,AL	;Send it
0088	46		INC	SI	Point to the next digit
00B9	E2 DB		LOOP	PAD	
		;			
		:Go her	e to end	the dial sequer	nce by putting FF
				dıgıt register	ine by parting it
		Accura	DDRE er	mpty again	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DDILL EI	ipcy again	
OOBB	BA 031E	DONE:	MOV	DX,31EH	
OOBE	EC	DOINCE			
OOBE	24 01		IN	AL, DX	
			AND	AL,01H	
00C1	3C 01		CMP	AL,01H	
00C3	75 F6		JNZ	DONE	
		\$			
0005	BA 0310		MOV	DX,310H	
0008	BO FF		MOV	AL, OFFH	
OOCA	EE		OUT	DX,AL	
		;		•	
OOCB	C3		RET		
3300		MAIN	ENDP		
00000		CODE	ENDS		
		END	START		

High Speed Modems Filter Characteristics

INTRODUCTION

The R96F, R96DP, R48DP, and R96FT modems include integrated analog devices using switched capacitor filters to perform the functions of receiver input bandpass filtering, transmitter output lowpass filtering, and compromise equalization. Differences in performance result from half-duplex (HDX) or fullduplex (FDX) versions of the integrated analog device.

R96 FILTERS

The following tables illustrate the response of the receiver input bandpass and transmitter output low pass filters without compromise equalization.

A. Receiver Input Bandpass Filter

Parameter	Value
Test signal range	0 dBm to - 45 dBm
Passband	400 Hz – 3000 Hz
Passband ripple	0.5 dB max.
Loss below 60 Hz	40 dB min.
Loss above 6000 Hz	40 dB min.
Passband gain	0.0 dB ± 1.0 dB
Delay distortion 400 Hz -	
1800 Hz	Less than 1000 usec
Delay distortion 1800 Hz -	
3000 Hz	Less than 150 usec

B. Transmitter Output Lowpass Filter

Parameter	Value
Test signal	0 dBm to - 16 dBm
Passband	400 – 3000 Hz
Passband Gain	–1dB±1dB
Passband ripple	0.5 dB max.
Loss at 3600 Hz	5.5 dB min.
Loss at 7800 Hz	32 dB min.
Loss at 11400 Hz	33.5 dB min.
Loss at 12000 Hz	41 dB min.
Loss above 17400 Hz	45 dB min.
Delay distortion 400 – 3000 Hz	Less than 300 usec

The following tables illustrate the change in filter response caused by enabling each of the compromise equalizers independently.

A. Receiver

1. Link Amplitude Equalizer HDX and FDX.

Frequency	Gain dB Relative to 1700 Hz		
Hz	US Long	Japanese 3 Link	
1000	- 0.27	- 0.13	
1400	- 0.16	- 0.08	
2000	+ 0.33	+0.16	
2400	+ 1.54	+ 0.73	
2800	+ 5.98	+ 2.61	
3000	+ 8.65	+ 3.43	

2. Link Delay Equalizer FDX Only.

Frequency	Delay Microseconds Relative to 1700 H	
Hz	US Long	Japanese 3 Link
800	- 498.1	- 653.1
1200	- 188.3	- 398.5
1600	- 15.1	- 30.0
1700	+ 0.0	+ 0.0
2000	- 39.8	+ 11.7
2400	- 423.1	- 117.1
2800	- 672.4	- 546.3

3. Cable amplitude HDX and FDX.

a. CODE 1

Frequency	Gain dB Relative to 1700 Hz	
Hz	HDX	FDX
700	- 0.99	- 0.94
1500	- 0.20	- 0.24
2000	+0.15	+ 0.31
3000	+ 1.43	+ 1.49

b. CODE 2

Frequency	Gain dB Rela	tive to 1700 Hz
Hz	HDX	FDX
700	- 2.39	- 2.67
1500	- 0.65	- 0.74
2000	+0.87	+ 1.02
3000	+ 3.06	+ 3.17

c. CODE 3

Frequency	Gain dB Relative to 1700 Hz		
Hz	HDX	FDX	
700	- 3.93	- 3.98	
1500	- 1.22	- 1.20	
2000	+ 1.90	+ 1.81	
3000	+ 4.58	+ 4.38	

B. Transmitter

1. Link Amplitude Equalizer HDX Only.

Frequency	Gain dB Relative to 1700 Hz		
Hz	US Long	Japanese 3 Link	
1000	-0.27	- 0.13	
1400	-0.16	- 0.08	
2000	+ 0.33	+ 0.16	
2400	+ 1.54	+ 0.73	
2800	+ 5.98	+ 2.61	
3000	+ 8.65	+ 3.43	

High Speed Modems

- 2. Cable Amplitude HDX and FDX.
 - a. CODE 1

Frequency Hz	Gain dB Relative to 1700 Hz
700	- 0.99
1500	- 0.20
2000	+ 0.15
3000	+ 1.43

b. CODE 2

Frequency Hz	Gain dB Relative to 1700 Hz
700	- 2.39
1500	- 0.65
2000	+ 0.87
3000	+ 3.06

c. CODE 3

Frequency Hz	Gain dB Relative to 1700 Hz
700	- 3.93
1500	- 1.22
2000	+ 1.90
3000	+ 4.58

R96F Modem Tone Detector Filter Tuning

INTRODUCTION

The Rockwell R96F modem includes three independent tone detectors (F1, F2 and F3). These tone detectors are operational when the modem is configured for V.21 FSK, and are centered, upon power-up, to 2100 Hz (F1), 1100 Hz (F2), and 462 Hz (F3). This application note presents a method of tuning these detectors to any desired frequency in the 300 Hz -3 kHz band.

COMPUTATION OF TONE DETECTOR COEFFICIENTS

Each tone detector consists of two second-order filters in cascade, an energy averaging filter, and a threshold comparator. A diagram of the tone detector is shown in Figure 1.

Filter 1 has a transfer function:

$$H_1(Z) = \frac{2\alpha}{1 - 2\beta_1 Z^{-1} - 2\beta_2 Z^{-2}}$$
(Eq. 1)

Filter 2 has a transfer function:

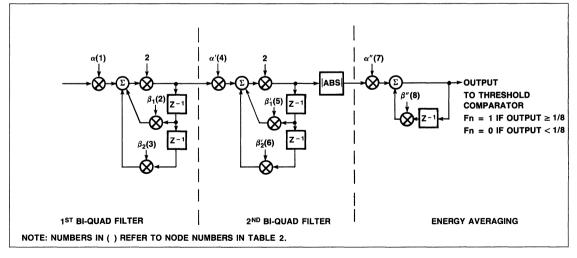
$$H_2(Z) = \frac{2\alpha'}{1 - 2\beta'_1 Z^{-1} - 2\beta'_2 Z^{-2}}$$
(Eq. 2)

The energy averaging filter has a transfer function:

$$H_{3}(Z) = \frac{\alpha''}{1 - \beta'' Z^{-1}}$$
 (Eq. 3)

The output of the energy averager is fed to a threshold comparator which sets, or resets, the appropriate bit (F1, F2 and F3) in the signal processor (SP) scratchpad memory if the energy output is equal to or greater than 1/8, or less than 1/8, respectively.

Filters 1 and 2 have a typical frequency response as shown in Figure 2. When cascaded, they form a bandpass filter with a narrow bandwidth as shown in Figure 3.


Given the transfer functions $H_1(Z)$ and $H_2(Z)$, an analytical method is required to compute their coefficients for any desired frequency in the 300 Hz - 3 kHz band. First, consider $H_1(Z)$. This transfer function can be rewritten as:

$$H_1(Z) = \frac{2\alpha Z^2}{Z^2 - 2\beta_1 Z - 2\beta_2}$$
(Eq. 4)

which has a conjugate pair of poles:

$$P_1 = \beta_1 + j \sqrt{\beta_1^2 + 2\beta_2}$$

$$P_2 = \beta_1 - j \sqrt{\beta_1^2 + 2\beta_2}$$

and

Figure 1. R96F Tone Detector Diagram

Document No. 29220N68

Application Note

Order No. 668 Rev. 1, January 1987

These poles lie on a circle of radius 0.994030884 on the Z-plane. The radius of the tone detector circle was chosen so that each filter has a high Q without being unstable (i.e., poles must lie inside the unit circle for stability). Figure 4 shows a Z-plane pole-zero diagram for an arbitrary conjugate pole pair on the tone detector circle. The angle $\theta = 360^{\circ} \times f_0/f_S$, where f_0 is the desired center frequency and f_S is the sampling rate $(f_S = 9600 \text{ Hz})$. The following equations are derived from the angle and magnitude of the position vector pointing to a pole pair located at the desired angle:

$$\cos^{-1}\left(\frac{\beta_1}{r}\right) = \theta = 360^\circ \times \frac{f_0}{f_S}$$
(Eq. 5)

$$\sqrt{\beta_1^2 + (-\beta_1^2 - 2\beta_2)} = r = 0.994030884$$
 (Eq. 6)

solving for β_1 and β_2 :

$$\beta_1 = r \cos\left(360^\circ \frac{f_0}{f_S}\right)$$
 (Eq. 7)

$$\beta_2 = -\frac{r^2}{2}$$
 (Eq. 8)

In deriving these equations, only $H_1(Z)$ was considered. However, the tone detector consists of two identical filters in cascade. Referring to Figure 5, shifting filter 1 and filter 2 above and below the desired center frequency, a response with the desired bandwidth is achieved. Furthermore, since α controls the amplitude response, one may set $\alpha = \alpha'$ to uniformly raise or lower the overall cascade response.

From Equation 8, we see that $\beta_2 = \beta'_2 = -r^2/2 = -0.494048699$. Rewriting Equation 7 in terms of the offsets f_A and f'_A we obtain:

$$\beta_1 = r \cos \left[360^\circ (f_O - f_A) / f_S \right]$$
 (Eq. 9)

$$\beta'_1 = r \cos \left[360^\circ (f_0 + f'_A) / f_S \right]$$
 (Eq. 10)

The frequency offset is approximately 72% of B/2 (half the bandwidth):

$$f'_{\rm A} \cong 0.72 \left(\frac{\rm B}{2}\right)$$
 (Eq. 11)

The value of f_A should be equal to f_A^* . However, f_A may be chosen 1% smaller than f_A^* to compensate for the fact that the overall cascade response is not perfectly symmetrical (see Figure 5).

The values for the coefficients α and α' that set $|H(f_0)| = 0 \text{ dB}$ in equations 1 and 2 were measured and plotted versus center frequency f_0 as shown in Figure 6. Three equations corresponding to three linear approximations result:

R96F Modem Tone Detector Filter Tuning

$$\frac{(104/319)f_0 - 78.62}{32767} \qquad 300 \le f_0 \le 1100 \text{ Hz}$$
(Eq. 12a)

$$\alpha = \alpha' = \frac{(44/275)f_0 + 104}{32767} \qquad 1100 \le f_0 \le 1650 \text{ Hz}$$
(Eq. 12b)

$$\frac{(4/45)f_0 + 221}{32767} \qquad 1650 \le f_0 \le 3000 \text{ Hz}$$
(Eq. 12c)

Energy Averaging Filter

The coefficients of the energy averaging filter are determined by a Z-domain approximation to an RC circuit of transfer function: $H(S) = 1/1 + S\tau$.

$$\alpha'' = \frac{1}{1 + 9600\tau}$$
 (Eq. 13)

$$\beta'' = \frac{1}{1 + \frac{1}{9600\tau}}$$
(Eq. 14)

Upon power-up, α'' and β'' are set for $\tau = 0.1$ seconds. Unless different tone detector response times are required, these coefficients need not be changed.

Table 1 contains the computed values of the filter coefficients, including those of default frequencies 462 Hz, 1100 Hz, and 2100 Hz. The value 32767 (Hex 7FFF) is full scale in the SP's machine units (i.e., 32767 = unity). Coefficients may range from -1 to +1 (or FFFF to 7FFF in machine units).

WRITING NEW COEFFICIENTS INTO THE SIGNAL PROCESSOR (SP) RAM

The RAM ACCESS B register (1:F) allows the host processor to specify an access code for RAM data registers. The access code specifies the RAM location being written. Table 2 contains the RAM access codes for all filter coefficients.

The proper procedure for writing new coefficients into the SP RAM is as follows:

- 1. Store the desired access code into register 1:F.
- 2. Wait for bit DA1 (1:E:0) to be a 1.
- 3. Set bit RAMW (1:D:0) to a 1.
- Write the two halves of the 16-bit coefficient into registers 1:1 and 1:0. (Register 1:1 is the MSB.)

Writing to Register 1:0 resets DA1 (1:E:0) to a 0 and starts the write cycle, which ends by DA1 returning to a 1. Bit RAMW (1:D:0) must remain set until the end of the cycle.

R96F Modem Tone Detector Filter Tuning

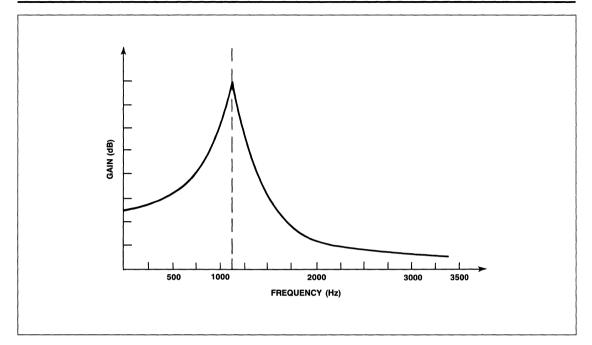


Figure 2. Typical Single Filter Response

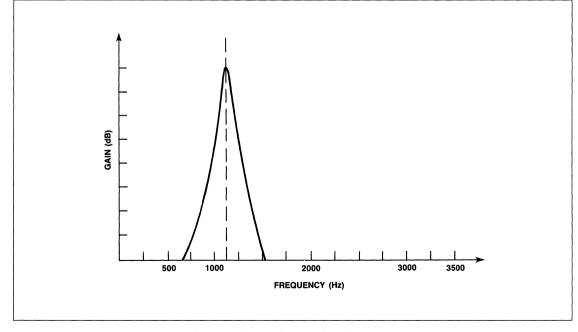


Figure 3. Typical Cascade Filter Response

R96F Modem Tone Detector Filter Tuning

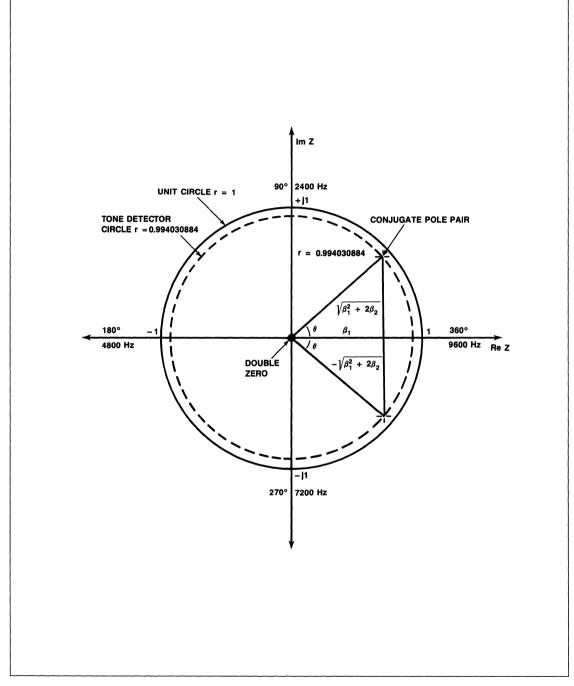


Figure 4. Z-Plane Pole-Zero Diagram

R96F Modem Tone Detector Filter Tuning

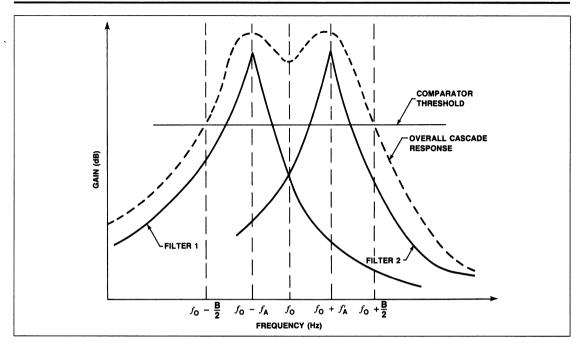


Figure 5. Graphical Representation of Bandwidth (B) and Offset Frequencies (f_A and f'_A)

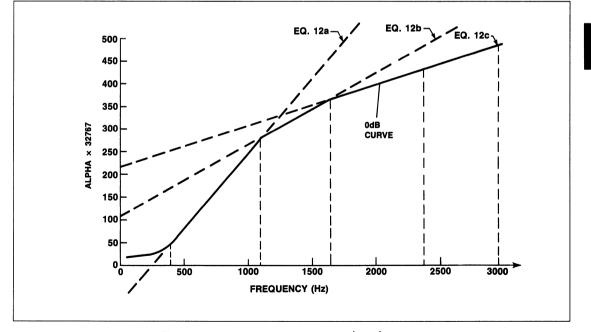


Figure 6. α versus Center Frequency for $|H(f_0)| = 0$ dB

R96F Modem Tone Detector Filter Tuning

Frequency	Coefficient	Coefficient Coeff	
Detected	Name	Hex	Decimal
2100 Hz ±25 Hz	$\alpha = \alpha'$	0198	408/32767
	β1	1A4A	6730/32767
$f_{\rm A} \cong 18 {\rm Hz}$	β	175A	5978/32767
	$\beta_2 = \beta'_2$	C0C5	- 16187/32767
1850 Hz ±24 Hz	$\alpha = \alpha'$	0180	384/32767
	β1	2E37	11831/32767
<i>f</i> _A ≅ 18 Hz	β	2B69	11113/32767
	$\beta_2 = \beta'_2$	C0C4	- 16188/32767
1650 Hz ±23 Hz	$\alpha = \alpha'$	0170	368/32767
	β1	3D48	15688/32767
<i>f</i> _A ≅ 18 Hz	β ₁	3AA6	15014/32767
	$\beta_2 = \beta'_2$	C0C4	- 16188/32767
1100 Hz ±30 Hz	$\alpha = \alpha'$	0118	280/32767
	β ₁	60B2	24754/32767
<i>f</i> _A ≅ 19 Hz	β	5E9C	24220/32767
	$\beta_2 = \beta'_2$	C0C4	- 16188/32767
462 Hz ± 14 Hz	$\alpha = \alpha'$	0048	72/32767
	β ₁	79F3	31219/32767
<i>f</i> _A ≅ 10 Hz	β	7974	31092/32767
	$\beta_2 = \beta'_2$	C083	- 16253/32767

Table 1. Calculated Coefficient Values

Table 2. Filter Coefficients Access Codes

Node		Ace	Access Code (Hex)		
No. (n)	Name	F1	F2	F3	
1	α	2E	34	ЗA	
2	β ₁	2F	35	3B	
3	β2	30	36	3C	
4	α'	2B	31	37	
5	βί	2C	32	38	
6	β2	2D	33	39	
7	α"	B7	B9	BB	
8	β"	B8	BA	BC	

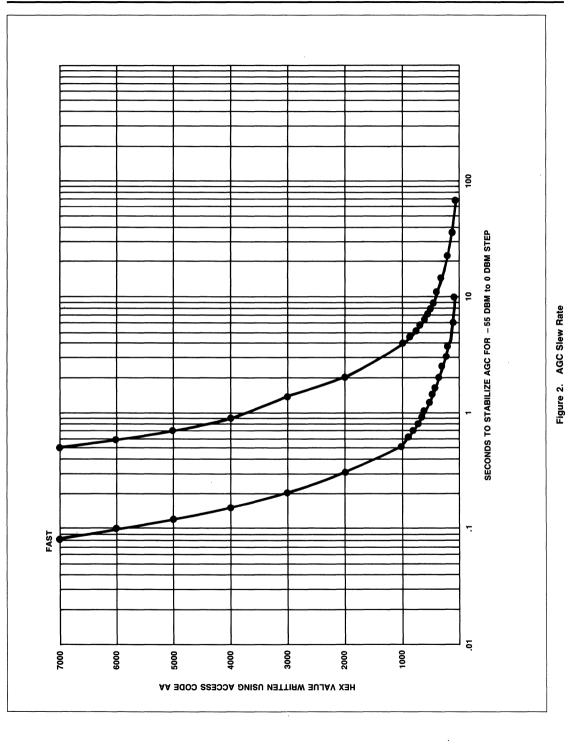
R96F Application Note

R96F Modem Recommended Receive Sequence for Group 2 Facsimile

INTRODUCTION

The R96F includes a transmit and receive configuration that is compatible with the transmission scheme of Group 2 facsimile equipment. In order to achieve the best results with Group 2 reception, the following procedure is recommended. The step numbers are keyed to points in Figure 1. Refer to Data Sheet MD06 and Application Note Order No. 654 for details on how to configure the modem and write modem data to chip one.

GC 2100 Hz	LCS 1100 Hz	P	HASING	э	CFR TX TONE	м	ESS	AGE
		1	1	1		1	1	1
		1	2	3		4	5	6


Figure 1. Group 2 Facsimile Sequence

METHOD

- 1. Enter Group 2 configuration and wait 5 milliseconds to complete initialization. Then:
 - a. Write hex 0038 using access code C2. This action sets the Group 2 phase-locked-loop for a frequency correction of 9 Hz, causing the phase term to drift rapidly to overcome any tendency to slow phase recovery.
 - b. Write hex 4000 using access code F1 and hex 7FFF using access code 71. This action allows the Group 2 phaselocked-loop to accept the greatest number of samples for carrier recovery during phasing.
 - c. Write hex 2000 using access code AA. This action sets the AGC slew rate for very fast acquisition.
 - d. Select fast AGC state by setting control bit G2FGC (1:C:0) to a one.
- 2. After phasing is detected, wait approximately 2 seconds for the AGC circuit to settle. Then:
 - a. Write hex 0000 using access code AA. This action stops AGC tracking in order to preserve the present AGC setting.
 - b. Select slow AGC state by resetting control bit G2FGC (1:C:0) to a zero. This action changes the Group 2 phaselocked-loop characteristics to match reduced AGC response.
 - c. Read and save the 16-bit value from registers 1:3 and 1:2 using access code C2. This value represents the frequency error term from the Group 2 phase-locked-loop.
 - Verify that phasing signal is still being received. This action guarantees that AGC value was frozen during phasing signal.

- e. If step d above determines that phasing signal is present, allow transmission of CFR. If phasing signal is not present, suppress CFR.
- 3. Exit Group 2 configuration.
- At completion of CFR transmission, re-enter Group 2 configuration and wait 5 milliseconds to complete initialization. Then:
 - a. Repeat step 1.b.
 - b. Repeat step 2.a.
 - c. Add hex 0038 to the value saved in step 2.c above and write the sum using access code C2. This action forces a 9 Hz error as in step 1.a.
- 5. Wait for start of Group 2 message transmission. Then:
 - a. Write hex 0400 using access code AA. This action restores the AGC slew rate to the default value.
 - b. After 2 lines, write the value saved in step 2.c using access code C2. This action removes the 9 Hz forced frequency error without waiting for the phase-locked-loop to complete the correction. This step is optional as the correction will eventually be completed, but, depending on the percentage of white in the document being sent, the correction may take from 4 to 16 lines (100 ms of white required).
- After approximately 6 to 10 seconds of message reception, perform either step a or step b below:
 - a. Write hex 6100 using access code F1 and hex 0600 using access code 71. This action places narrow limits on the received signal used for carrier recovery during message reception and reduces the chance of errors being caused by repeated patterns in the message.
 - b. Synchronize the modem's Group 2 phase-locked-loop to the facsimile machine's blanking signal as follows:
 - 1. Freeze the phase-locked-loop during data by:
 - a. Writing hex 7FFF using access code F1
 - b. Writing hex 0000 using access code 71
 - 2. Enable the phase-locked-loop during the white margins by:
 - a. Writing hex 4000 using access code F1
 - b. Writing hex 7FFF using access code 71
 - c. The sequence of writing in step 6.b is important and must be performed as described. Option 6.b requires more action by the host procesor, but it eliminates the possibility of data patterns affecting carrier recovery.

PARAMETER SCALING

- 1. Access code C2 represents frequency error; i.e., the deviation of received carrier from 2100 Hz. LSB = 0.167 Hz.; Range = \pm 140 Hz.
- Access code F0 represents the Group 2 phase-locked-loop slew rate for the first order term. The number is directly proportional to slew rate. The range of stable operating values is 0010 to 7000 in hexidecimal.
- Access code AA represents the AGC slew rate. Range = 0000 to 7FFF in hexidecimal. Scaling: see Figure 2.
- 4. Access codes F1 and 71 represent limits on acceptable zero crossings for use by the carrier recovery loop. The carrier recovery loop uses several nonlinear controls in attempting to lock the zero crossings of the local carrier to those of the transmitter. Since Group 2 facsimile uses VSB transmission, it is necessary to either reconstruct the upper sideband or exclude those zero crossings that represent frequencies other than 2100 Hz. The R96F excludes unwanted zero crossings by testing the effective slope of the waveform as it crosses zero. In Figure 3, points A and B represent samples taken about a zero crossing over sample period T, where T = 1/10,368 seconds.

The magnitude of |A| + |B| is directly proportional to the slope of line segment AB and is therefore an indicator of frequency. If H represents the value stored at F1 and L represents the value at 71, then 1 - [|A| + |B|] + H must be less than positive full scale or the frequency is excluded for being too low. Also 1 - [|A| + |B|] + H + L must be greater than positive full scale or the frequency is excluded for being too high.

The average value for 1 - [|A| + |B|] with an all white transmission and back-to-back connection is hex 19A1 \pm 0543.

 An access code added to baud rate chip 5301-20 allows host control of the limits placed on phase error correction. This access code is F2 in chip 1. When the phase error exceeds the limit set by F2, PLL updating is suspended. The default value of 5000 corresponds to a limit of \pm 67.5 degrees. A zero in F2 causes the PLL to update for any phase error. By setting F2 to zero, it may be unnecessary to force a frequency offset in the receive sequence. For systems using step 6.a in the receive sequence, reception of messages containing a large amount of black may be improved by setting F2 to zero. F2 scaling is:

Phase limit =
$$180^{\circ} - \left(\frac{F2 \text{ value}}{7FFF}\right) \times 180^{\circ}$$

Once phasing is acquired, the limits may be narrowed to improve immunity to phase hits, etc.

BLACK/WHITE THRESHOLD

The R96F receives a Group 2 baseband signal that contains density (gray scale) information in the amplitude modulation. In order for this information to be used on a Group 3 facsimile machine the R96F converts the gray scale to black/white baseband form. The threshold at which the black/white decision is made determines the density of the received page.

Access code 2A represents the Group 2 black/white threshold. This location defaults to hex 7800 at POR time. The number may be increased or decreased by the host to achieve a page weighted more toward white or toward black, respectively.

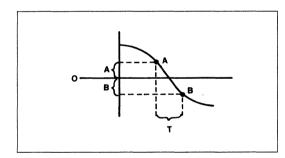


Figure 3. Samples of Zero Crossing

R96F Modem

DTMF Dialing Using the R24MFX, R24BKJ, R48MFX, or R48PCJ Modem

INTRODUCTION

The R24MFX, R24BKJ, R48MFX, and R48PCJ modems include tunable oscillators that can be used to perform dual-tone multi-frequency (DTMF) dialing. The frequency and amplitude of each oscillator output is under host control. A programmable tone detector can also be used in call establishment to recognize an answer tone.

This application note describes the method of oscillator and filter tuning by the host processor and provides an example of an auto-dialer routine that may be programmed into the host.

DTMF REQUIREMENTS

EIA Standard RS-496, paragraph 4.3.2, specifies requirements that ensure proper DTMF signaling through the public switched telephone network (PSTN). These tones consist of two sinusoidal signals, one from a high group of three frequencies and one from a low group of four frequencies, that represent each of the standard pushbutton telephone characters shown in Table 1.

High Frequency Low Frequency	1209 Hz	1336 Hz	1477 Hz
697 Hz	1	2	3
770 Hz	4	5	6
852 Hz	7	8	9
941 Hz	*	0	#

Table 1. DTMF Signals

Signal power is defined for the combined tones as well as for the individual tones. Both maximum and minimum power requirements are functions of loop current. By combining the various requirements of RS-496, compromise power levels can be determined that meet the power specification for all U.S. lines (when driving the PSTN from a 600 ohm resistive source). The high frequency tone should be at a higher power level than the low frequency tone by approximately 2 dB. The maximum combined power, averaged over the pulse duration, should not exceed +1 dBm. The minimum steady state power of the high frequency tone should not be less than -8 dBm. When connecting the modem circuit to the PSTN by means of a data access arrangement (DAA) set for permissive mode, the DAA gain is -9 dB. The modem circuit must, therefore, drive the DAA input with +1 dBm of steady state high frequency power and -1 dBm of steady state low frequency power in order to meet all of the listed conditions.

The required duration of the DTMF pulse is 50 ms minimum. By experience, a pulse duration of approximately 95 ms is more reliable. The required interval between DTMF pulses is 45 ms minimum and 3 seconds maximum. Again by experience, an interdigit delay of approximately 70 ms is preferred.

The remaining requirements of RS-496, relative to DTMF dialing, are not influenced by the host processor. These requirements are all met by the modem's oscillators.

SETTING OSCILLATOR PARAMETERS

The oscillator frequency and output power are set by the host computer using the microprocessor bus and diagnostic data routine. For a description of the microprocessor bus and other interface considerations, refer to the R24/48MEB modem evaluation board data sheet and the relevant modem data sheet listed in Table 2.

Table 2. Data Sheet Order Numb

Title	Order Number
R24/48MEB Data Sheet	MD22
R24MFX Data Sheet	MD17
R24BKJ Data Sheet	MD20
R48MFX Data Sheet	MD19
R48PCJ Data Sheet	MD21

When setting the frequency of tone 1, the host must write a 16-bit hexadecimal number into RAM using RAMA code 8E. When setting the frequency of tone 2, a 16-bit hexadecimal number must be written into RAM using RAMA code 8F. The power levels of tone 1 and tone 2 are set by writing 16-bit hexadecimal numbers into RAM using RAMA codes 44 and 45, respectively. The hexadecimal numbers written into these RAM locations are scaled as follows:

R24MFX AND R24BKJ

Frequency number = 9.1022 (desired frequency in Hz).

R48MFX AND R48PCJ

Frequency number = 6.8267 (desired frequency in Hz).

R24MFX, R24BKJ, R48MFX, AND R48PCJ

Power number = $27573.6 [10^{(P_0/20)}]$

DTMF Dialing Using the R24XXX or R48XXX Modem

Where $P_{o}=$ output power in dBm with a series 600 ohm resistor into a 600 ohm load.

These decimal numbers must be converted to hexadecimal form then stored in RAM by following the RAM data write routine illustrated by Figure 1.

Hexadecimal numbers for DTMF generation on the R24MFX and R48MFX are listed in Table 3. These numbers are also suitable for use with the R24BKJ and R48PCJ. Numbers used for setting the frequency of tone 1 and tone 2 are larger in the 2400 bps products than in the 2400/4800 bps products. This variation is due to the sample rate difference between these modems. Power levels are selected to give the desired output power for each tone while compensating for modem filter characteristics.

	Table 3. DTMF Parameters					
Digit	RAMA	R24XXX	R48XXX			
	8E	2174	1918			
0	8F	2F80	23A0			
U	44	6184	6184			
	45	7A80	7A80			
	8E	18C8	1296			
1	8F	2AFC	203D			
•	44	61E8	61E8			
	45	7AFC	7AFC			
	8E	18C8	1296			
2	8F	2F80	23A0			
_	44	61E8	61E8			
	45	7A80	7A80			
	8E	18C8	1296			
3	8F	3483	2763			
-	44	61E8	61E8			
	45	79E3	79E3			
	8E	1B60	1488			
4	8F	2AFC	203D -			
-	44	6250	6250			
	45	7AFC	7AFC			
	8E	1B60	1488			
5	8F	2F80	23A0			
5	44	6250	6250			
	45	7A80	7A80			
	8E	1B60	1488			
6	8F	3483	2763			
, i i i i i i i i i i i i i i i i i i i	44	6250	6250			
	45	79E3	79E3			
	8E	1E4A	16B8			
7	8F	2AFC	203D			
	44	621A	621A			
	45	7AFC	7AFC			
	8E	1E4A	16B8			
8	8F	2F80	23A0			
	44	621A	621A			
	45	7A80	7A80			
	8E	1E4A	16B8			
9	8F	3483	2763			
Ť	44	621A	621A			
	45	79E3	79E3			

DETECTING ANSWER TONE

The modem tone detect bit, TDET (A:7), can be used to detect the presence of answer tone when connection to the remote modem is successful. Bit TDET goes active (one) when energy is detected by the associated tone detect filter. This filter is illustrated in Figure 2.

A set of eight coefficients determines the filter response. Table 2 lists the RAM access codes and filter coefficient values to be written using the RAM Data Write routine of Figure 1. These values tune the filter to detect 2100 Hz \pm 25 Hz.

Once TDET turns on, the calling modem knows the call has been answered. At the end of the answer tone, TDET returns to zero and data transmission can begin.

COMPLETE CALLING SEQUENCE

A complete calling sequence consists of several steps including modem configuration, telephone number selection, DTMF transmission, and answer tone detection. A sample flow chart for implementing an auto-dialer in host software is illustrated in Figure 3.

The auto-dialer routine may be entered at one of two points; either AUTO DIAL or REDIAL. When entering at AUTO DIAL, the host prompts the user to enter a phone number, which is then stored in the phone number buffer. When entering at REDIAL, the routine dials the number previously stored in the phone number buffer and does not issue a user prompt.

Interrupts not required during dialing are disabled to prevent errors in real time delays. Interrupt status is saved to allow restoring these interrupts when dialing is complete. The current modem configuration is saved prior to selecting the tone configuration, then restored at the completion of the auto-dialer routine to allow data transfer.

The commands for off-hook and request coupler cut through are typical of signals required by data access arrangements that may be connected to the modem for switched network operation.

Since the number to be dialed varies in length depending on the requirements of various PBX equipment, domestic telephone companies, and foreign PTTs, the number buffer must allow for numbers of different length. The method used in Figure 3 to determine the end of valid bytes in the buffer is zero recognition. After the last digit is entered, the carriage return must place a hexadecimal 00 (nul character) in the buffer. All other bytes must be non-zero ASCII characters. Only numeric characters (ASCII 30 through 39) are printed and dialed. Non-numeric characters are tested for comma and nul. Comma causes a 2-second pause in dialing to allow for known delays in the telephone network or PBX. Nul ends the dialing portion of the routine and begins the answer tone detection portion. All other characters are ignored.

DTMF Dialing Using the R24XXX or R48XXX Modem

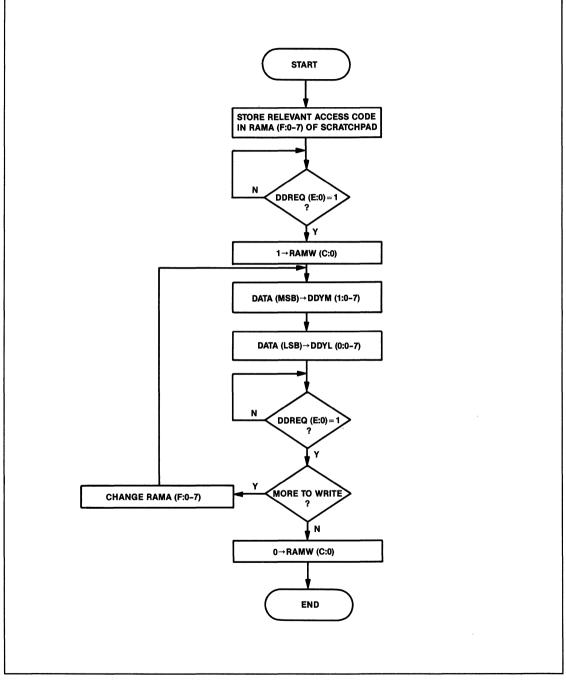


Figure 1. RAM Data Write Routine

DTMF Dialing Using the R24XXX or R48XXX Modem

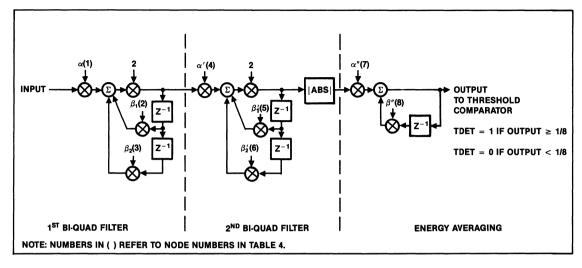


Figure 2. Tone Detector Diagram

Table 4. Tone Detector Coefficients for 2100 Hz

		F	R24XX		R48XX
Node	Coefficient Name	RAMA	Coefficient Value	RAMA	Coefficient Value
1	α	36	0198	38	0198
2	β ₁	37	E0F4	39	1A4A
3	β_2	38	C0C5	3A	C0C5
4	α	39	0198	3B	0198
5	βï	3A	DD33	3C	175A
6	$\beta'_2 \alpha''$	3B	C0C5	3D	C0C5
7	α."	B6	002D	B8	002D
8	β"	B7	7FD1	B9	7FD1

The answer tone detection logic allows 30 seconds for 2100 Hz recognition. If answer tone is not recognized within this time limit, the call is aborted. If answer tone is recognized, the routine jumps to the data handling software.

ADDED FEATURES

The application of modem tone generation and detection to DTMF dialing and answer tone recognition can be extended to include additional features. For example, the tone detector can monitor call progress for dial tone, busy signal or ringback tone. The detector filter must be returned to detect different frequencies used in call progress signaling. Table 5 lists tones for various lines in the Bell network. These call progress signals vary according to the telephone networks of each country. For details on tuning the tone detector for other frequencies, refer to Application Note Order No. 668. That note refers to the R96F filters but is also applicable to R24XXX and R48XXX modems for coefficient calculation. When applying Application Note 668 to R24XXX modems, the sample rate used should be 7200 samples per second rather than 9600 samples per second.

In OEM equipment that combines the features of a modem with those of a telephone handset, the tone generators may be used to generate a caller reassurance tone (or even music) while the caller is kept on hold. To generate a single tone, set one of the oscillators to zero frequency or zero amplitude while the other oscillator is keyed on by the RTSP bit. This technique is also applicable for generating a 2100 Hz answer tone when the modem is used to automatically answer a call. The parameters for 2100 Hz answer tone generation are listed in Table 6.



Figure 3. Autodialer Flow Chart

DTMF Dialing Using the R24XXX or R48XXX Modem

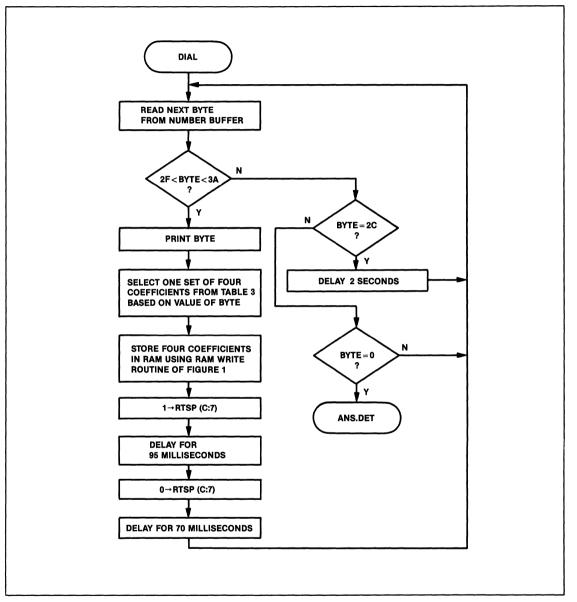


Figure 3. Autodialer Flow Chart (Cont'd)

DTMF Dialing Using the R24XXX or R48XXX Modem

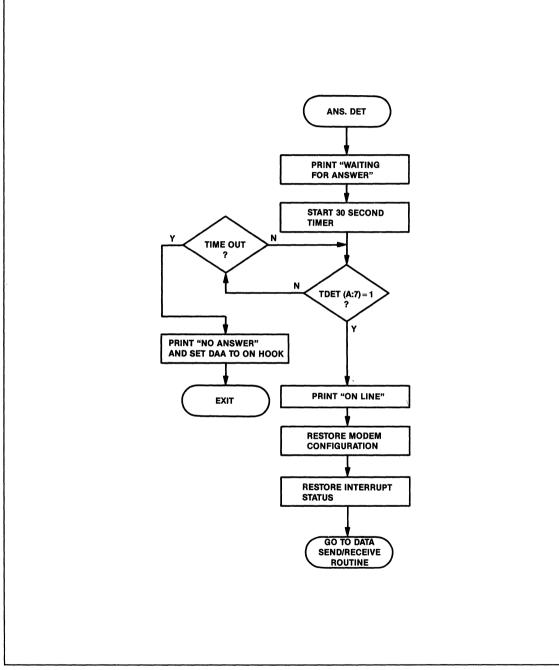


Figure 3. Autodialer Flow Chart (Cont'd)

DTMF Dialing Using the R24XXX or R48XXX Modem

Tone	Frequency (Hz)*	Interruption Rates	Use	
Precision Dial Tone	350 + 440	Continuous	Dialing may commence	
Old Dial Tones	600 + 120 or 133, and other combinations	Continuous	Dialing may commence	
Precision Busy	480 + 620	0.5 Sec On 0.5 Sec. Off	Called line busy	
Old Busy	600 + 120	0.5 Sec On 0.5 Sec. Off	Called line busy	
Precision Reorder	480 + 620	0 3 Sec. On Local 0.2 Sec. Off Reorder	All local switching paths busy, all trunks busy, all	
Old Reorder	600 + 120	0.2 Sec. On Toll 0.3 Sec Off Reorder 0.25 Sec. On Toll 0.25 Sec. Off Local	paths or trunks busy	
Precision Audible Ringing	440 + 480	2 Sec. On 4 Sec. Off	To calling customer	
Old Audible Ringing	420 + 40, and other combinations	2 Sec. On 4 Sec. Off	To calling customer	
Call Waiting	440	0 3 Sec. On	Call waiting service; an incoming call is waiting	
Precision Receiver Off-Hook (ROH)	1400 + 2060 + 2450 + 2600	On and Off 5 Times per Sec.	To cause off-hook customers to go on-hook	
Precision High Tone	480	Continuous	To cause off-hook	
Old High Tone	480, 400 or 540		customers to go on-hook	
Recorder Connector Tone	1400	On 0 5 Sec. Every 15 Seconds	To indicate call is being recorded by distant customer	

*A "+" sign indicates either superposition (precision tones) or modulation (old tones).

Table 6. 2100 Hz Answer Tone Parameters

Frequency	RAMA	R24XXX	R48XXX
2100 Hz	8E	4AAA	3800
	8F	0000	0000
	44	5FFF	5FFF
	45	5FFF	5FFF

5

5-138

ROCKWELL SEMICONDUCTOR PRODUCTS SALES OFFICES

REGIONAL SALES OFFICES/ROCKWELL SEMICONDUCTOR PRODUCTS

HOME OFFICE

0104 Semiconductor Products Division Rockweil International 4311 Jamboree Road PO Box C, MS 501-300 Newport Beach, California 92660-3095 (714) 833-4700 TWX: 910 591-1698

UNITED STATES/CANADA

0105 Semiconductor Products Division Rockwell International 4311 Jamboree Road Newport Beach, California 92660-3095 (714) 833-4655 TWX: 910 591-1698

0106 Semiconductor Products Division Rockwell International 3375 Scott Blvd., Suite 410 Santa Clara, California 95054 (408) 980-1900 TLX. 756560

Semiconductor Products Division Rockwell International 3081 Holcomb Bridge Rd. Suite A Norcross, Georgia 30071 (404) 466-7598 FAX: (404) 466-7598

0101 Semiconductor Products Division Rockwell International 2001 N Collins Blvd., Suite 103 Richardson, Texas 75080 (214) 996-6500 TLX. 501258 0102 Semiconductor Products Division Rockwell International 10700 West Higgins Rd., Suite 102 Rosemont, Illinois 60018 (312) 297-8862 TWX 910 233-0179 0103 Semiconductor Products Division **Rockwell International** 5001 B Greentree Executive Campus, Rt. 73 Mariton, New Jersey 08053 (609) 592-0090 MCI: 6502229511 0107 Semiconductor Products Division Rockwell International 2 Burlington Woods Burlington, Massachusetts 01803 (617) 272-5645 MCI: 6502512464 Semiconductor Products Division

Semiconductor Products Division 55 Town Center Court, Suite 700 Scarborough, Ontario Canada M1P 4X4 (416) 296-1644 FAX: (416) 296-1259 FAR EAST 0240 Semiconductor Products Division Rockwell International Overseas Corp. Itohpia Hirakawa-cho Bidg 7-6, 2-chome, Hirakawa-cho Chiyoda +ku, Tokyo 102, Japan (81-3) 265-8808 T.X. J22188

Rockwell International (Asia Pacific) Ltd 904 World Wide House 19 Des Voeux Road Central Hong Kong (852-5) 246-033 TLX: HX74071

EUROPE

0201 Semiconductor Products Division Rockwell International GmbH Fraunhoferstrasse 11 D-8033 Munchen-Martinsried West Germany (49-89) 857-6016 TLX: 521/2650 rimd d 0202 Semiconductor Products Division Rockwell International Limited Central House Lampton Road Hounslow, TW3 1HA England 44-1-577-1034 TLX: 851-25463 Semiconductor Products Div GmbH Rockwell International Isafjordsgatan 11 183 40 Spanga Sweden (44-8) 751-5000 TLXee02. 122442

0246 Semiconductor Products Rockwell Collins Italiana S.P.A Via Boccaccio, 23 20123 Milano, Italy FAX: (39-2) 498-1450 TLX: 315652 RCIMIL 1

0278 Semiconductor Products Division Rockwell International Immeuble de Bureaux Evry 2 523, Place des Terasses 91034 Evry Cedex, France (33-6) 1497-2828 TLX: 690-328

SOUTH AMERICA

Semiconductor Products Division Rockwell International 4311 Jamboree Rd. P O. Box C Newport Beach, CA 92660-3095 (714) 833-4490 TLX: 910 591-1698

For applications assistance, price quotations or technical literature, call your local Rockwell semiconductor and telecommunication products sales office.

SALES REPRESENTATIVES - UNITED STATES/CANADA

ALABAMA

2000 Robert O. Whitesell & Associates Braham Springs Professional Village 2227 Drake Ave., S.W., Ste. 10-F P.O Box 1797 Huntsville, AL 35805 (205) 883-5110 FAX: 205 882-9626

ARIZONA

2062 Hecht, Henschen, & Assoc. Inc. 2435 E. University Dr. P.O. Box 21166 Phoenix, AZ 85034 (602) 275-4411 TWX: 910 951-0635

ARKANSAS

Norcom Inc. 2227 S. Garnett Rd., Ste. 109A (Tulsa, Oklahoma 74129) (918) 832-7747 TWX: 910 845-2298

CALIFORNIA

Integrated Systems & Device Sales 28025 Dorothy Dr., Ste. 106 Agoura Hills, CA 91301 (818) 707-2366 TWX: 910 494-1220

Centaur Corporation 18006 Skypark Circle, Ste. 106 Irvine, CA 92714 (714) 261-2123 TWX: 910 595-2887 FAX: (714) 261-2905 Centaur Corporation 23901 Calabasas Rd., Ste. 1063 Calabasas, CA 91302 (818) 704-1655

Centaur Corporation 9420 Farnham St, Ste. 201A San Diego, CA 92123 (619) 278-4950 FAX: (619) 278-0649

2060 Criterion Sales Inc. 3350 Scott Blvd., Bldg. #44 Santa Clara, CA 95054-3126 (408) 988-6300 TWX[,] 910 336-7352

2072

Quorum 3 8000 E. Gırard Ave., Ste. 302 Denver, CO 80231 (303) 696-8480 TWX: 910 997-8013

CONNECTICUT

2004 **Kitchen & Kutchin** 23 Peck Street North Haven, CT 06473 (203) 239-0212 TWX. 910 474-0011

DELAWARE

Beacon North 103-F Carpenter Dr. (Sterling, VA 22170) (703) 478-2480

FLORIDA

2005 Currie, Peak & Frazier, Inc. 7335 Lake Ellenor Dr. Orlando Central Park, FL 32809 (305) 855-0843 TWX: 810 850-0106

GEORGIA

2002 Currie, Peak and Frazier, Inc. 5664 Peachtree Parkway, Ste J Norcross, GA 30092 (404) 449-7662

IDAHO

Westerberg Associates (See Bellevue, Washington)

ILLINOIS

LTD Technologies Inc. 810 Arlington Heights Rd. Itasca, IL 60143 (312) 773-2900 TWX. 332415

INDIANA

2007 Robert O. Whitesell & Associates 3426 Taylor St Fort Wayne, IN 46804 (219) 432-5591 TWX: 810 332-1416

2008 **Robert O. Whitesell & Associates** 6691 E. Washington St. P.O. Box 19904 Indianapolis, IN 46219-0904 (317) 359-9283 TWX: 810 341-3320 2009 Robert O. Whitesell & Associates 1825 S. Plate, Suite A Kokomo, IN 46901 (317) 457-9127 TWX: 810 269-1917

IOWA

2070 **Dy-Tronix Inc.** 23 Twixt Town Rd. N.E., Ste. 201 Cedar Rapids, IA 52402-3297 (319) 377-8275 FAX: (319) 377-9163

KANSAS

2081 **Dy-Tronix Inc.** 1999 Amidon, Suite 322 Wichita, KS 67203-2124 (316) 838-0884

KENTUCKY

Robert O. Whitesell & Associates 313 Lagrange Rd, Suite 201 P.O. Box 797 Pewee Valley, KY 40056-9998 (502) 241-8977

LOUISIANA

Robert O. Whitesell & Associates (See Huntsville, Alabama)

MAINE

Kitchen & Kutchin, Inc. (See Burlington, Massachusetts)

SALES REPRESENTATIVES - UNITED STATES/CANADA (cont'd)

MARYLAND Beacon North (See Sterling, Virginia)

MASSACHUSETTS 2012 Kitchen & Kutchin, Inc. 87 Cambridge St Burlington, MA 01803 (617) 229-2660 TWX: 710 332-8914

MICHIGAN

 R.O. Whitesell & Associates

 8332 Office Park Dr., Ste A

 Grand Blanc, MI 48439-2035

 (313) 695-0770

 TWX: 810 224-4939

 2013

 Robert O. Whitesell & Associates

 688 Cascade West Parkway S.E.

 Grand Rapids, MI 49506

 (616) 942-5420

 2014

Robert O. Whitesell & Associates 18444 W. 10 Mile Rd. Southfield, Mil 48075 (313) 559-5454 TWX: 510 601-2458 2015

R.O. Whitesell & Associates 1822 Hilltop Rd. St. Joseph, MI 49085 (616) 983-7337

MINNESOTA

2077 Electronic Innovators, Inc. 9923 Valley View Rd Eden Prairie, MN 55344 (612) 941-0830 (612) 941-0830

MISSISSIPPI Robert O. Whitesell & Associates (See Huntsville, Alabama)

MISSOURI 2068 **Dy-Tronix Inc.** 3407 Bridgeland Drive Bridgeton, MO 63044 (314) 291-4777

2069 **Dy-Tronix Inc.** 8801 E. 63rd St., Ste. 108 Raytown, MO 64133-4865 (816) 356-6340

MONTANA

Rockwell International 10700 W. Higgins, Ste 102 (Rosemont, IL 60018) (312) 297-8862 TWX. 910 233-0179

NEBRASKA Dy-Tronix Inc. (See Cedar Rapids, Iowa) (See Bridgeton, Missouri)

NEVADA Criterion Sales Inc. (See Santa Clara, California)

NEW HAMPSHIRE Kitchen & Kutchin, Inc. (See Burlington, Massachusetts) NEW JERSEY

2043 **PAF Associates** 508 Main St Boonton, NJ 07005 (201) 335-0680

PAF Associates 706 C Craydon Rd. Cranbury, NJ 08512 (609) 655-8054 2017 Naudain Associates The Pavilions at Greentree Route 73, Ste 307 Martino NJ 08053

(609) 983-5300

Rep New Tec 9219 Lagrima De Oro Rd , N E Albuquerque, NM 87111 (505) 293-2582

NEW YORK

2048 Ossmann Component Sales Corp. 6666 Old Collamer Rd East Syracuse, NY 13057 (315) 437-7052 FAX. (315) 437-2332 2049

 Ossmann Component Sales Corp
 280 Metro Park

 Rochester, NY 14623
 (716) 424-4460

 TWX 310 493-7053
 (753)

2020 **PAF Associates** 120 W Main St. Smithtown, Li, NY 11787 (516) 360-0940 MCI. 6502811354 2074 **Ossmann Component Sales Corp.** 300 Main St Vestal, NY 13850 (607) 754-3264 TWX: 510 252-1987

NORTH CAROLINA

2021 Currie, Peak and Frazier, Inc. 1212 Grove St P.O. Box 5588 Greensboro, NC 27403 (919) 373-0380

NORTH DAKOTA Rockwell International (See Rosemont, Illinois)

OHIO 2022 Robert O. Whitesell & Associates 1172 West Galbraith Cincinnati, OH 45231 (513) 521-2290

2023 **Robert O. Whitesell & Associates** 6000 West Creek Rd, Ste 21 Cleveland, OH 44131 (216) 447-9020 TWX 810 427-2211 2024 **Robert O. Whitesell & Associates** 6161 Busch Blvd. Suite. 108 Columbus, OH 43229 (614) 888-9396 TWX. 801 337-2076 2025 **Robert O. Whitesell & Associates** 4133 South Dixie Ave Dayton, OH 45439 (513) 298-9546 TWX, 510 601-2416

OKLAHOMA 2026 Norcom, Inc. 2227 S. Garnett Rd Suite 116 Tulsa, OK 74129 (918) 832-7747 TWX 910 845-2298

OREGON 2079 Westerberg Assoc., Inc. 7165 S.W Fir Loop Portland, OR 97223 (503) 620-1931

PENNSYLVANIA Naudain Associates

(See Mariton, New Jersey)

2028 **Robert O. Whitesell & Associates** 1360 Old Freeport Rd, Ste 1-B Pittsburgh, PA 15238 (412) 963-6161

RHODE ISLAND Kitchen & Kutchin, Inc. (See Burlington, Massachusetts)

SOUTH DAKOTA Rockwell International (See Rosemont, Illinois)

TENNESSEE

2029 Robert O. Whitesell & Associates 408 Cedar Bluff Rd , Ste 145 Knoxville, TN 37923 (615) 694-9476

TEXAS

2031 Norcom, Inc. 8330 Burnet Rd, Ste 106 Austin, TX 78758 (512) 451-2757 TWX. 910 874-1383

2030 Norcom, Inc. 4450 Sigma Rd. Suite 135 Dallas, TX 75234 (214) 386-4888 TWX: 910 860-5456

2032 Norcom, Inc. 8502 Tybor, Ste. 115 Houston, TX 77074 (713) 778-0392 TWX. 910 881-1056

2080 Norcom, Inc. 7110 Mountain Grove San Antonio, TX 78250 (512) 680-4513

UTAH

Round Valley Services 478 West 650 South Orem, UT 84058 (801) 224-5773 Quorum 3 7427 Parkcrest Ct Salt Lake City, UT 84121 (801) 943-9227

VERMONT

Kitchen & Kutchin, Inc. (See Burlington, Massachusetts)

VIRGINIA

2035 Beacon North, Inc. 1 Beacon Ct Forest, VA 24551 (804) 239-8486 TWX 910 997-0163

Beacon North, Inc. 103-F Carpenter Dr. Sterling, VA 22170 (703) 478-2480 TLX 510 600-8363

WASHINGTON

2078 Westerberg Assoc., Inc. 12595 N.E. Bel-Red Rd., Ste. 112 Bellevue, WA 98005 (206) 453-8881 TWX. 910 443-2319

WASHINGTON, D.C.

Beacon North 103-F Carpenter Dr. (Sterling, VA 22170) (703) 478-2480

WEST VIRGINIA Robert O. Whitesell & Associates (See Cincinnati, Ohio)

WISCONSIN

2058 Larsen Associates Inc. 10855 W Potter Rd Wauwatosa, WI 53226 (414) 258-0529

WYOMING

Quorum 3 (See Denver, Colorado)

CANADA

2036 Renmark Electronics Limited 180 Yorkland Blvd., Ste 1 Willowdale, Ontano Canada M2J 1R5 (416) 494-5445 Telex: 06 986 557 RENMARK TOR

2047 Renmark Electronics Limited 1445 Woodruffe Ave Nepean, Ottawa Canada K2G 1W1 (613) 727-0320

AUSTRALIA

VSI Electronics Pty. Limited 16 Dickson Ave. Artarmon, NSW 2064 Australia (02) 439-4655 TLX AA22846 FAX. (02) 439-6435

INDUSTRIAL DISTRIBUTORS - UNITED STATES/CANADA

The following Distributors stock Rockwell semiconductor and telecommunication products. If there is no distributor location close to you, call the nearest Rockwell semiconductor products sales representative listed on the reverse page.

ALABAMA

1000 Hamilton/Avnet Electronics 4940 Research Dr N.W Huntsville, AL 35805 (205) 837-7210 TWX. 810 726-2162

 Quality Components

 4900 University Sq., Ste. 20

 Huntsville, AL 35816

 (205) 830-1881

 1188

 Marshall Industries

 3313 Memorial Parkway South

 Huntsville, AL 35801

 (205) 81-9235

ARIZONA

1002 Hamilton/Avnet Electronics 505 So Madison Dr Tempe, AZ 85281 (602) 231-5100 or 894-1666 TWX 910 950-0077

1167 Marshall Industries 835 West 22nd Street Tempe, AZ 85282 (602) 968-6181

CALIFORNIA

Zeus West Anaheim 1130 Hawk Circle Anaheim, CA 92807 (714) 632-6880

1158 Marshall Industries 9710 De Soto Avenue Chatsworth, CA 91311 (818) 407-4100 1149

Hamilton/Avnet 9650 De Soto Ave Chatsworth, CA 91311 (818) 700-6500

1004 Avnet Electronics 350 McCormick Costa Mesa, CA 92626 (714) 754-6111 TWX 910 595-2638 1005

Hamilton Electro Sales 3170 Pullman St. Costa Mesa, CA 92626 (714) 641-4100

1003 Hamilton Electro Sales 10950 Washington Blvd. Culver City, CA 90230 (213) 558-2000

1006 Hamilton/Avnet Electronics International Group 10950 Washington Blvd. Culver City, CA 90230 (213) 558-2441 1148 Western Micro Technology Inc. 10040 Bubb Rd Cupertino, CA 95014 (408) 725-1660

1159 Marshall Industries 9674 Telstar Avenue El Monte, CA 91731 (818) 442-7204

Hamilton Electro Sales 1361-B West 190th St. Gardena, CA 90248 (213) 217-6748 1190 Marshall Industries 1 Morgan Avenue Irvine, CA 92710 (714) 859-5050

Marshall Industries 336 Los Coches St. Milpitas, CA 95035 (408) 943-4600

Hamilton/Avnet Electronics 3002 East G Street Ontario, CA 91764 (714) 989-4602 1172 Marshall Industries 3039 Kilgore Avenue, #140 Rancho Cordova, CA 95813 (916) 635-9700 1092 Hamilton/Avnet Electronics 4103 Northgate Blvd. Sacramento, CA 95834 (916) 925-2216 1007 Hamilton/Avnet Electronics

Hamilton/Avnet Electronic 4545 Viewridge Ave. San Diego, CA 92123 (619) 571-7510 TWX. 910 335-1216 1173 Marshall Industries

10105 Carroll Canyon Rd. San Diego, CA 92131 (619) 578-9600

Zeus 1580 Old Oakland Rd, Ste. 205 San Jose, CA 95131 (408) 998-5121 1008 Hamilton/Avnet Electronics 1175 Bordeaux Dr Sunnyvale, CA 94086 (408) 743-3355 TWX: 910 339-9332 1152 Image Electronics 1342 Bell Ave. Tustin, CA 92680 (714) 259-0900

COLORADO

1185 **Marshall Industries** 7000 North Broadway Denver, CO 80221 (303) 451-8444 1009 **Hamilton/Avnet Electronics** 8765 E. Orchard Rd, Ste. 708 Englewood, CO 80111 (303) 740-1000 TWX: 910 935-0787

CONNECTICUT

1011 Hamilton/Avnet Electronics Commerce Industrial Park Commerce Dr. Danbury, CT 06810 (203) 797-2800 TWX. 710 456-9974

1012 J.V. Electronics 690 Main St. East Haven, CT 06512 (203) 469-2321

1182 Marshall Industries 20 Sterling Dr Barnes Ind Park, N. Post Office Box 200 Wallingford, CT 06492 (203) 265-3822 FLORIDA 1013

Hamilton/Avnet Electronics 6801 N W. 15th Way Fort Lauderdale, FL 33309 (305) 971-2900 TWX. 510 956-3097

1186 Marshall Industries 1001 N W 62nd Street, #306-D Ft Lauderdale, FL 33309 (305) 928-0661 1165

Marshail Industries 4205 34th Street, S.W. Orlando, FL 32811 (305) 841-1878

Zeus 1750 West Broadway Suite 1114 Ovievo, FL 32765 (305) 365-3000 1014 Hamilton/Avnet Electronics 3197 Tech Dr. North St Petersburg, FL 33702 (813) 576-3930 TWX: 810 863-0374

 Reptron

 14501 McCormick Dr.

 Tampa, FL 33625

 (813) 855-4656

 1146

 Hamilton/Avnet Electronics

 6947 University Bivd.

 Winter Park, FL 32792

 (305) 628-3888

GEORGIA

1015 Hamilton/Avnet Electronics 5825D Peachtree Corners E. Norcross, GA 30092 (404) 447-7500 TWX: 810 776-0432

1176 Marshall Industries 4350-J International Blvd Norcross, GA 30093 (404) 923-5750

Quality Components 6145 Northbelt Pkwy , Ste. B Norcross, GA 30071 (404) 449-9508

ILLINOIS

1016 Advent Electronics 7110-16 N. Lyndon St. Rosemont, IL 60018 (312) 298-4210

1017 Hamilton/Avnet Electronics 1130 Thorndale Ave Bensenville, IL 60106 (312) 860-8522 TWX 910 227-0060

1180 Marshall Industries 1261 Wiley Road, #F Schaumburg, IL 60195 (312) 490-0155

INDIANA

1036 Hamilton/Avnet Electronics 485 Gradie Dr. Carmel, IN 46032 (317) 844-9333 TWX⁻ 810 260-3966 1035 Advent Electronics 8446 Moller Rd Indianapolis, IN 46268 (317) 872-4910 1189

Marshall Industries 6990 Corporate Dr. Indianapolis, IN 46278 (317) 297-0483

IOWA

1086 Advent Electronics 682 58th Ave Ct. S W Cedar Rapids, IA 52404 (319) 363-0221

Hamilton/Avnet 915 33rd Ave., S.W Cedar Rapids, IA 52404 (319) 362-4757

KANSAS

1191 **Marshall Industries** 8321 Melrose Dr Lenexa, KS 66214 (913) 492-3121

1037 Hamilton/Avnet Electronics 9219 Quivira Rd Overland, KS 66215 (913) 888-8900 TWX 910 743-0005

MARYLAND

1039 Hamilton/Avnet Electronics 6822 Oak Hall Ln Columbia, MD 21045 (301) 995-3550 TWX 710 862-1861

Zeus 8930A Rt. 108 Columbia, MD 20145 (301) 997-1118 1161

1161 Marshall Industries 8445 Helgerman Ct Gaithersburg, MD 20877 (301) 840-9450 1075

Almo Electronics Corp. 8502 Dakota Dr. Gaithersburg, MD 20877 (301) 670-0090

MASSACHUSETTS

1179 Marshall Industries One Wilshire Rd. Burlington, MA 01803 (617) 658-0810

Hamilton/Avnet 10-D Centennial Dr Peabody, MA 01960 (617) 531-7430 1084

1084 **Future Electronics** 133 Flanders Rd. Westboro, MA 01581 (617) 366-2400

MICHIGAN 1043

1043 Advent Electronics 24713 Crestview Ct. Farmington Hills, MI 48018 (313) 477-1650

1077 Hamilton/Avnet Electronics 2215 29th St, S.E. A-5 Grand Rapids, MI 49508 (616) 243-8805 TWX 810 273-6921 1044 Hamilton/Avnet Electronics 32487 Schoolcraft Rd Livonia, MI 48150 (313) 522-4700 TWX: 810 242-8775

1162 Marshall Industries 31067 Schoolcraft Livonia, MI 48150 (313) 525-5850

Reptron 34403 Glendale Rd. Post Office Box 2768 Livonia, MI 48150 (313) 525-2700

MINNESOTA

1127 Voyager Electronics Corp. 7163 Commerce Circle West Fridley, MN 55432 (612) 571-7766

1047 Hamilton/Avnet Electronics 10300 Bren Rd. E. Minnetonka, MN 55343 (612) 392-0600 TWX: 910 576-2720

1163 **Marshall Industries** 3800 Annapolis Ln. Plymouth, MN 55441 (612) 559-2211

MISSOURI

1048 Hamilton/Avnet Electronics 13743 Shoreline Ct. Earth City, MO 63045 (314) 344-1200 TWX: 910 762-0684

NEW HAMPSHIRE

Hamilton/Avnet Electronics 444 E. Industrial Park Dr. Manchester, NH 03103 (603) 624-9400

NEW JERSEY 1156 Pan American Electronics Inc. 59 Main Street Bloomingdale, NH 07403 (201) 839-0077

(201) 839-0077 1020 Hamilton/Avnet Electronics 1 Keystone Ave., Bldg. 36 Cherry Hill, NJ 08003 (609) 424-0110 TWX: 710 940-0262

1078 Hamilton/Avnet Electronics 10 Industral Rd. Fairfield, NJ 07006 (201) 575-3390 TWX: 710 734-4388

1164 **Marshall Industries** 101 Fairfield Rd. Fairfield, NJ 07006 (201) 882-0320

1166 **Marshall Industries** 102 Gaither Dr. Mt. Laurel, NJ 08054 (609) 234-9100

1126 General Components Inc. 245-D Clifton Ave. West Berlin, NJ 08091 (609) 768-6767

NEW MEXICO

1022 Hamilton/Avnet Electronics 2524 Baylor Dr. S.E. Albuquerque, NM 87106 (505) 765-1500 TWX: 910 989-0614

NEW YORK

 RAE Industrial Elec. Ltd.

 Acacian Express Ltd.

 61 Aero Dr.

 Cheektowaga, NY 14225

 c/J Jim McCullough

 (416) 736-1588

 1114

 Semispacialists of America

 564 Smith St.

 Farmingdale, NY 11735

 (516) 293-2710

 FAX: (516) 293-2707

 1025

 Hamilton/Avnet Electronics

 933 Motor Parkway

 Haupauge, LI, NY 11787

 (516) 231-9800

 TWX: 510 224-6166

 1192

 Marshall Industries

 275 Oser Ave.

 Hauppauge, LI, NY 11788

 (516) 273-2424

Marshall Industries 129 Brown St.

129 Brown St. Johnson City, NY 13790 (607) 798-1611 1024 Hamilton/Avnet Electronics 333 Metro Park Rochester, NY 14623 (716) 475-9140 TWX: 510 253-5470 1171 Marshall Industries 1280 Scottsville Rd. Rochester, NY 14624 (716) 235-7620 1023 Hamilton/Avnet Electronics 103 Twin Oaks Dr. Syracuse, NY 13206 (315) 437-2641

NORTH CAROLINA

1027 Hamilton/Avnet Electronics 3510 Spring Forest Rd. Raleigh, NC 27604 (919) 878-0810 TWX: 510 928-1836 1170 Marshall Industries 5221 North Blvd. Raleigh, NC 27604 (919) 878-9882

Quality Components 2940-15 Trawick Rd. Raleigh, NC 27604 (919) 876-7767

0HI0 1028

 1025

 Hamilton/Avnet Electronics

 4588 Emery Industrial Parkway

 Cleveland, OH 44128

 (216) 831-3500

 TWX: 810 427-9452

 1029

 Hamilton/Avnet Electronics

 954 Senate Dr.

 PO. Box 610

 Dayton, OH 45459

 (513) 433-6700

 TWX 810 450-2531

1184 **Marshall Industries** 6212 Executive Bivd. Dayton, OH 45424 (513) 236-8088 1181 **Marshall Industries** 5905-B Harper Rd. Solon, OH 44139 (216) 248-1738 1133 **Hamilton/Avnet Electronics** 777 Brooksedge Bivd. Westerville, OH 43081 (614) 882-7004

OKLAHOMA 1113 Quality Components, Inc. 9934 East 21st St. South

9934 East 21st St. South Tulsa, OK 74129 (918) 664-8812

OREGON

1150 Western Micro Technology Inc. 13770 SW. 24th Beaverton, OR 97005 (503) 629-2082 1169 Marshall Industries 8230 S.W. Nimbus Ave. Beaverton, OR 97005 (503) 644-5050 1032 Hamilton/Avnet Electronics 6024 S.W. Jean Rd. Bidg. C, Suite 10 Lake Oswego, OR 97034 (503) 635-8157 TWX: 910 455-8179

PENNSYLVANIA

1034 Almo Electronics 9815 Roosevelt Blvd. Philadelphia, PA 19114 -(215) 698-4000

Hamilton/Avnet 2800 Liberty Ave., Bidg. E Pittsburgh, PA 15222 (412) 281-4150 1188 Marshall Industries 701 Alpha Drive, Ste. 240 Pittsburgh, PA 15238 (412) 963-0441

(412) 963-0441 1033 **E.C.I.** 1569 W. King St. York, PA 17404 (717) 843-8971

TEXAS 1110

1110 Quality Components, Inc. 4257 Kellway Circle Addison, TX 75001 (214) 733-4300 TWX: 910 860-5459 1050 Hamilton/Avnet Electronics 1807-A.W. Braker Lane Austin, TX 78758 (512) 837-8911 TWX: 910 874-1319 1177 Marshall Industries 8504 Cross Park Dr. Austin, TX 78758 (512) 837-1991 1112 Quality Components, Inc. 2120-M Baker Ln. Austin, TX 78758 (512) 835-0220 TLX: 324930 1183 **Marshail Industries** 2045 Chenauit Carroliton, TX 75006 (214) 233-5200 1052 **Hamilton/Avnet Electronics** 2111 W. Walnut Hill Ln. Irving (Dallas), TX 75062 (214) 550-7755 TWX: 910 860-5929 1187

Marshall Industries 3698 Westchase Dr. Houston, TX 77042 (713) 895-9200

Zeus 1800 N. Glenville Dr., Ste. 120 Richardson, TX 75081 (214) 783-7010

Hamilton/Avnet Electronic 4850 Wright Rd. Stafford, TX 77477 (713) 240-7898 1111 Quality Components, Inc. 1005 Industrial Bivd. Sugarland, TX 77378 (713) 240-2255

UTAH

1059 Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, UT 84119 (801) 972-2800 TWX: 910 925-4017

WASHINGTON

1060 Hamilton/Avnet Electronics 14212 N.E. 21st St Bellevue, WA 98007 (206) 643-3950 TWX: 910 443-2469

1175 **Marshall Industries** 14102 N.E. 21st Street Bellevue, WA 98007 (206) 747-9100

1149 Western Micro Technology Inc. 14636 N.E. 95th Street Redmond, WA 98052 (206) 881-6737

WISCONSIN

1061 Hamilton/Avnet Electronics 2975 Marrland Rd. New Berlin, WI 53151 (414) 784-4510 TWX: 910 262-1182

CANADA

1091 **Hamilton/Avnet Electronics** 2816 21 st St. N.E. Calgary, Alberta Canada T2E 622 (403) 280-3586 TWX: 03-827642 1082 **Cardinal Industrial Electronics Ltd.** 10630 172nd St. P.O. Box 12000 Edmonton, Alberta Canada T5, 2P4 (403) 483-6266 Telex: 037-2372

RAE Industrial Elec. Ltd. 11680 170 St. Edmonton, Alberta Canada T5S 1J7 (403) 451-4001

ROCKWELL SEMICONDUCTOR PRODUCTS SALES OFFICES - INTERNATIONAL

You can obtain expert applications assistance, price quotations and delivery data from the Distributors and Sales Representatives listed below for Rockwell semiconductor and telecommunication products. If there is no Rockwell distributor convenient to your country, please consider Hamilton/Avnet International listed below.

EUROPE & MIDDLE EAST

AUSTRIA

0226 W. Moor GESMBH Storchengasse 1/1/1 A-1150 Wien Austria 43 (222) 858-646 TLX: 047-135701 moor a

BELGIUM

0272 Microtron International Tremelobaan 131-2850 Keerbergen Belgium (016) 600586 TLX: 846-22606 mitron b

DENMARK

0244 Micronor APS Torvet 1 8600 Silkeborg Denmark (45-6) 816522 TLX 63245 MICRONOR DK

FINLAND

0252 VALTAMATIC Pakilantie 61, P1 21 SF-00660 Helsinki 66 Finland (358-0) 742-011 TLX: 124440 VALTA SF

FRANCE

0223 System Contact 88, Avenue du General de Gaulle 67200 Eckbolsheim France (33-88) 782-089 TLX. 890266 Syconf

0259 ERN

ERN 237 rue de Fourney 78530 BUC France (33-3) 956-0011 TLX. 698627

0279 DATADIS 10-12 rue Emile Landrin 92100 Boulogne, France (33-1) 605-6000 TLX. 201905

Rhonalco 4- rue Roger - Brechan F-69003 Lyon France (33-7) 853.00 25 TLX: 380284

HOLLAND

Alcom Electronics BV Esse Baan 1 Postbus 358, 2900 LJ Capelle A/D Ijssell Holland 010-51 95 33 TLX. 26 160

INDIA

4066 Semiconductor Complex Limited Phase VIII S.A.S. NAGAR-160059 Punjab, India 87265, 87809, 87585 TLX: 395270 LSI 0255 Bynet Data Communications 8-Hanechoshet St Ramat-Hachayal Tel-Aviv 69710, Israel (03) 498-811 TLX 35517

ITALY 0260 Murata Erie Via Melchiorre Gioria, 66 T-20125 Milano, Italy (39-2) 607-3786 TWX. 330385

NORWAY 0271 Satt Electronics O H. Bangs Vei 17 Decthelw 20

ISRAEL

0 H. Bangs Vei 17 Postboks 70 1322 Hovik, Norway (47-02) 123 600 TLX. 72559 satt n

SPAIN

0239 Comelta SA. Emillio Munoz 41 ESC 1, Planta 1, Nave 1-1-2 Madrid 17, Spain (34-1) 754-3001 TLX: 42007 CETA E

SWEDEN

Betoma AB Box 3005 Delvaegen 12 S-17103 Solna, Sweden (46-8) 820280 TLX 19389 BETOMA S

SWITZERLAND

0227 Aumann & Co. AG Foerrlibuckstr 150 CH-8037 Zurich Switzerland (41-1) 443-300 TLX: 822 966

UNITED KINGDOM

0267 Steatite Microelectronics Ltd. Hagley House, Hagley Rd. Birmingham B16 8QW England (021) 454-2655 TLX: 337645 0258

RC.S. Microsystems Ltd. The Kings Arms 141, Uxbridge Rd. Hampton Hill, Middlesex TW12 1BL, England (01) 879-2204 TLX: 8951470 RCS MIC

0216 Peico Electronics Ltd. Spring Gardens London Rd. Romford Esex PM7 9LP, England (44-708) 61911 TLX: 23984 0280 Abacus Electronics PLC Abacus House Bone Lane, Newbury Berkshire, RG14 5SF, England (0635) 30680 TLX: 84343

WEST GERMANY

Bitronic GmBH Dıngolfingerstr. 6 D-8000 Muenchen 80, Germany (49-89) 496001 TLX 5212931 bit d

0245 Unitronic GmBH Munsterstr. 338 P.O. Box 330 429 4000 Dusseldorf 30 W. Germany (49-211) 626364-67 TLX 8586434 unid d 0237 Astronic GmBH

Astronic Gmbh Winzererstr 47d. 8000 Munchen 40 Munich, West Germany (49-89) 309031 TLX: 5216187 a strd

FAR EAST

AUSTRALIA/NEW ZEALAND 4054 VSI Electronics (Australia) Pty. Ltd. 26 Dickson Avenue Artarmon, NSW 2064 Australia

P.O Box 578 Crows Nest, NSW 2065 Brisbane, Australia (02) 439-4655 FAX. (02) 439-6435 TLX: AA-22846

HONG KONG

Tektron Electronics (HK) Ltd. 1702 Bank Centre 636 Nathan Rd. Kowloon, Hong Kong (852-3) 880629 TLX 38513 TEKHL

JAPAN

0268 KS Semiconductor, Inc. 3-6-31-1F Osaki Shinasgawaku T141 Tokyo, Japan 03 (490) 0761-2 0269 Kanematsu Semiconductor Corp. 2-8-5 Hachobori Chuc-Ku, Tokyo 104, Japan (03) 551-7791 TLX: 252 3798 KSC J 0203

Kyokuto Boeki Kaisha, Ltd. 7th Floor, New Otemachi Bldg. 1-1, 2-chome, Otemachi, Chiyoda-ku Tokyo, Japan (03) 244-3803 TLX: J22440 0204

 Kyokuto Boeki Kaisha, Ltd.

 Rm. 606

 Mainichi Osaka Kaikan Kitakan

 53, Dojima-Funadaikumachi, Kita-ku

 Osaka, Japan

 (06) 344-1121

 TLX c/o KBK's Tokyo Office

 0266

 Marubent-Hytech Co. Ltd.

 1-1, Higashi Ikebukuro

 3 Chome, Toshimaku

 Tokyo, Japan

 (81-3) 989-7810

 TLX: 3/2647

0206 Matsushits

0206 Matsushita Electric Trading Co. P.O Box 18, Trade Center 32nd Filoor, World Trade Center Bidg 4-1 Hamamatsu-cho 2-chome Minato-ku 70kyo 105, Japan (81-3) 435-4552 TLX: 522-8771 MUTOSK J 0207 Matsushita Electric Trading Co. 71 Kawaramach, 5-chome Higash-ku

Higashi-Ku Osaka 541, Japan (06) 204-5563 TLX 522-8771

KOREA

0242 Unistandard Corp. 757-1 Bang Bae-Dong Kang-Nam Ku Seoul, Korea Mail Add. CPO Box 7194 Seoul TLX: K22116 "UNIST" (82-2) 532-6815

NEW ZEALAND

0243 Microprocessor Development Ltd. 100 Pah Rd, Royal Oak P:O B. 24159 Aukland, New Zealand (64-9) 653-119 T.L.X.NZ 60613

SINGAPORE

0262 **Dynamar International Ltd.** 12, Lorong Bakar Batu Kolam Ayer Industrial Est Singapore RE 1334 74 76 188 TLX: 26283

TAIWAN

0213 Setek International Inc. 3rd Floor, No. 135 Chien Kuo N Road, Sec 2 Taipe, Taiwan, ROC (02) 537-5091 TLX. 13579

THAILAND

0253 Siam Tettech Co. Ltd. 75 Soi Rubia Sukhum-Vit 42 Prakanong, Bangkok P O. Box 2718 Thailand (39) 02445054 TLX. 82631 WHITCO TH

SOUTH AMERICA

ARGENTINA

0271 Control Digital S.R.L. BME Mitre 688-4 to Piso of 409 1036 Buenos Aires, Argentina 54-1-33-3460 TLX: 24774

OTHER COUNTRIES

1006 Hamilton/Avnet Electronics International Group 10950 Washington Blvd Culver City, CA 90230 (213) 558-2441 RAE Industrial Elec. Ltd. 3455 Gardner Court Burnaby. British Columbia Vancouver. Canada V5G 4J7 (604) 291-8866 Telex 04-356533 1072 Future Electronics, Inc. 1695 Boundary Rd. Vancouver. British Columbia Canada V5K 4X7 (604) 294-1166 FAX: (604) 294-1206

RAE Industrial Elec. Ltd. 760 Century St. Winnipeg, Manitoba Canada R3H 0M1 (204) 786-8401

RAE Industrial Elec. Ltd. 15 Mount Royal Blvd. P.O. Box 821 Moncton, New Brunswick Canada E1C 8N6 (506) 857-8001 RAE industrial Elec. Ltd. #103-11 Morris Dr. Burnside Industrial Park Dartmouth, Nova Scotia Canada B3B 1M2 (902) 465-2350 1081 Future Electronics Inc. 82 Saint Regis Crescent North Downsview, Ontario Canada M3.1 IZ3 (416) 638-4771

RAE Industrial Elec. Ltd. 500 Norfinch Dr. Downsview, Ontario Canada M3N 1Y4 (416) 736-1588 1063 Hamilton/Avnet Electronics 6845 Rexwood Rd, Units 3-5 Mississauga, Ontario Canada L4V 1R2 (416) 677-7432 1064 Hamilton/Avnet Electronics 190 Colonnade Rd. Nepean, Ontario Canada K2E 7J5 (613) 226-1700 TWX: 053-4971 1070 Future Electronics Inc. Baxter Center 1050 Baxter Rd. Ottawa, Ontario Canada K2C 3P2 (613) 820-8313 1080 Future Electronics Inc. 237 Hymus Bivd. Pointe Claire, Quebec Canada H9R 5C7 (514) 694-7710 Telex: 05-823554 1065

1065 Hamilton/Avnet Electronics 2795 Halpern St. Laurent Montreal, Quebec Canada H4S 1M2 (514) 331-6443

RAE Industrial Elec. Ltd. 501-45A Street East Saskatoon, Saskatchewan Canada S7H 0W6 (306) 933-2888