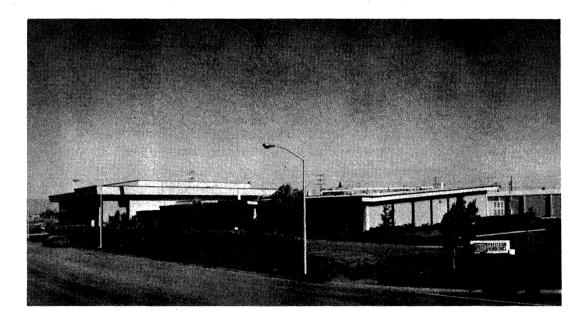


LINEAR & CONVERSION I.C. PRODUCTS



INTRODUCTION

This catalog contains complete technical data and information on Precision Monolithics' full line of linear and conversion products. In addition to data sheets, an expanded applications section, guaranteed chip specifications section, cross references, functional replacement guides, selection guides, package information, and definitions are provided.

Precision Monolithics' continued dedication to providing state-of-the-art products has resulted in 16 new products since the previous edition. New products include 11 operational amplifiers, 4 D/A converters, and BIFET analog multiplexers. There are 3 second-source BIFET op amps, 3 Precision BIFET op amps, 2 precision low power op amps, and both second-source and precision quad op amps. New D/A converters include Sign Plus 10 Bits, Two's Complement 10 Bit, 2 Digit BCD and 12 Bit multiplying types. A similar increase in new products is expected in the coming year. To keep informed, please fill out the Registration Card at the back of this catalog and return it to PMI, and we will send all new data sheets and application notes as they become available.

Contact the PMI sales office, representative, or distributor listed at the back of this catalog for further assistance.

Copyright 1977

Precision Monolithics Incorporated

PMI reserves the right to make changes to the products contained in this catalog to improve performance, reliability, or manufacturability.

Although every effort has been made to insure accuracy of the information contained in this catalog, PMI assumes no responsibility for inadvertent errors.

PMI assumes no responsibility for the use of any circuits described herein and makes no representation that they are free of patent infringement.

	· · · · · · · · · · · · · · · · · · ·	
	NUMERICAL INDEX	1
	ORDERING INFORMATION	2
	Q.A. PROGRAM	3
	INDUSTRY CROSS REFERENCE	4
	FUNCTIONAL REPLACEMENT GUIDE	5
	OPERATIONAL AMPLIFIERS	6
	COMPARATORS	7
	MATCHED TRANSISTORS	8
	VOLTAGE REFERENCES	9
	D/A CONVERTERS – LINEAR	10
	D/A CONVERTERS – COMPANDING	11
	MULTIPLEXERS	12
(DEFINITIONS	13
	СНІРЅ	14
	APPLICATION NOTES	15
	PACKAGE INFORMATION	16
	NOTES	17
	,	

SECT	ION 2																										
OF	DERING INFOR	RMATION .	• •	• •	•	•		•	•	·	•		•	•	•		•		•		•	•	•	•	•	•	2-1
SECT	ION 3																										
Q.,	A. PROGRAM		• •		•	•		٠	•	•	•	•	•	•	•		•	•	·	•	•	•	•	•	•	•	3-1
SECT	ION 4																										
IN	DUSTRY CROSS	REFERENCE																									
	Fairchild																										4-1
	National Semico	nductor		· ·																							4-2
	Raytheon .															· · .											4-3
	Texas Instrumen	nts		<i>.</i> .																							4-3
	Advanced Micro																				·					• •	4-4
	RCA						• •							·							•	•	•	·	•	•	4-5
	Motorola		• •	• •	·	;	• •	·	·	·	·	·	·	·	·	• •	·	·	·	·	·	·	·	·	·	·	4-5
SECT	ION 5																										
FU	INCTIONAL REI	PLACEMENT G	UIDE																								
	Analog Devices																										5-1
	Burr Brown .																										5-1
	Harris Semicond	luctor																									5-2
	National Semico	nductor																									5-2
	Cross Reference				Tra	insis	tors										•				•		•				5-3
	Cross Reference	- MAT-01 to 2	N Types	•	·	•		•	·	•	•	·	·	·	•		•	·		•	•	•	•	•	•	•	5-4
SECT	ION 6																										
OP	PERATIONAL A	MPLIFIERS																				۹.					
-	SELECTION GL																										
		Operational Am	nlifier																								6-1
	-	ower Operation																:		÷	÷		÷	÷			6-3
	-	ion Operational																÷			÷				÷	÷	6-5
		al Purpose Opera																									6-7
	Dual Precisio	on Operational A	mplifier																								6-9
	Dual General	Purpose Operat	ional Ar	nplifie	r -	•				2																	6-11
		ional Amplifier																									6-13
	OP-01	Inverting High	Speed O	peratio	onal	Am	plifie	r.																			6-16
	OP-02	High Performan	nce Gene	ral Pu	rpos	ie Ol	perat	ional	Ar	npli	fier					• •						• .					6-19
	OP-04	Dual Matched	ligh Per	orma	nce (Opei	ration	nal A	mp	lifie	er												•				6-25
	OP-05	Instrumentatio											•		•							•					6-31
	OP-07	Ultra-Low Offs											•	•	•				•	•		•	•		•	•	6-37
	OP-08	Precision Low													•		•	•	·	•	·	·	٠		·	·	6-43
	OP-09	Quad Matched											·	·	•		•	•	·	·	·	·	·	•	•	•	6-50
	OP-10	Dual Matched							•				·	·	•		•	·	•	·	·	·	·	·	·	·	6-56
	OP-11	Quad Matched																·	·	·	·	·	٠	·	·	·	6-66
	OP-12	Precision Low										•	·		·		·	·	·	·	·	·	٠	·	·	·	6-72
	OP-14	Dual Matched I										•	·	·	•	• •	•	·	·	•	•	•	·	·	·	·	6-78
	OP-15	Precision JFET	•				•			·					·			•	·	·	·	·	·	·	·	·	6-84
	OP-16 OP-17	Precision JFET											·	•		• •	•	·	·	·	·	•	•	·	·	·	6-90 6-96
	SSS725	Precision JFET Instrumentatio								·		·	·		·	• •	•	•	·	•	·	·	·	·	·	·	6-96
	SSS741	Compensated C								·								·	·	•	•	·	·	•	·	·	6-108
	SSS747	Dual Compensa										•	·	:		•••	÷	·	•	•	•	•	·	•	·	•	6-111
	SSS1458/1558	Dual Compensa				•						·	·	·	-	• •	•	·	·	•	·	·	·	•	·	·	6-114
	PM-108A	Low Input Cur								·		•	·	•	•	• •	•	•	·	•	•	·	·	•	·	·	6-114
	PM155	Monolithic JF															:	÷	÷	•	·	·	·	•	·	•	6-119
	PM156	Monolithic JF	•				-								÷		Ċ	Ċ		. •	÷	÷	:	•	•	÷	6-123
	PM157	Monolithic JF										•		•			·	:	÷	•	÷	÷	÷	·	:	÷	6-127
	PM725	Instrumentatio																	÷	÷	÷	÷	÷	•			6-131
	PM-741	Compensated (:					÷	÷			·	•	÷	÷	÷	÷		•	÷	÷	6-133
	PM-747	Dual Compensated												÷						:				÷			6-135
	PM-1458/1558	Dual Comepns																									6-137
	PM4136	Quad 741-Type	•			•																	۰.				6-139

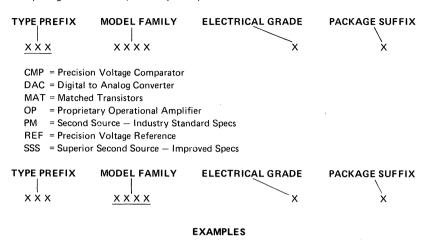
COMPARATORS																					
CMP-01 Fast Precis	•		• •	·	·	·	·	·	·		•	·	·	·	·	•	•	·	•	·	7-1
CMP-02 Low Input	Current Precision Comparator	·	• •	·	٠	•	·	·	•	• •	-	•	•	•	·	•	•	·	•	•	7-7
SECTION 8																					
MATCHED TRANSIS	TORS																				
MAT-01 Ultra-Mat	ched Monolithic Dual Transistor																				8-1
		·	• •	•	·	·	·	·	•	•••	•	•	•	•	•	•	·	·			• •
SECTION 9																					
VOLTAGE REFEREN	ICE																				
	cision Voltage Reference																				9-1
REF-02 +5V Preci	sion Voltage Reference																				9-8
SECTION 10																					
D/A CONVERTERS -	LINEAR																				
																					10-1
DAC 01	Selection Guide								·		·	•	·	•	·	·	·	·	·	·	
DAC-01	6 Bit Monolithic D/A Converter .								·	•••	•	·	•	•	·	•	·	·	·	·	10-3
DAC-02	10 Bit Plus Sign Monolithic D/A Cor				·	·	·	·	•		·	·	·	•	·	·	·	·	·	·	10-6
DAC-03	8 & 10 Bit Low Cost Monolithic D/A				·	·	·	·	·	• •	•	•	·	•	·	·	·	·	·	·	10-9
DAC-04	Two's Complement 10 Bit D/A Com			·			·	·	•	• •	•	·	·	•	·	·	·	·	·	•	10-12
DAC-05	11 Bit D/A Converter						•	·	•		•	·	·	•	·	·	·	·	·	·	10-16
DAC-06	Two's Complement 10 Bit D/A Com			·			·	·	•	• •	·	·	•	•	·	·	·	·	·	·	10-20
DAC-08	8 Bit High Speed Multiplying D/A C				·			·	•		•	·	•	•	•	•	·	·	·	•	10-24
DAC-20	2 Digit BCD High Speed Multiplying							·	·		•	·	·	·	·	·	·	·	·	·	10-34
DAC-100	8 & 10 Bit Digital-to-Analog Convert							·	·		•	·	·	•	·	·	·	·	·	·	10-42
SSS562	12 Bit Multiplying D/A Converter		• •						•		·	·	•	•	·	·	·	·	·	·	10-4 8
SSS1508A/1408A	8 Bit Multiplying D/A Converter .	·	• •	·	·	·	·	·	·		•	·	·	·	·	·	·	·	·	•	10-51
SECTION 11																					
D/A CONVERTERS -	- COMPANDING																				
DAC-76 COMDAC	TM Companding D/A Converter																				11-1
SECTION 12																					
MULTIPLEXERS																					
MUX-88 Protected	18 Channel BI-FET Analog Multiplexe	er	• •	·	•	·	·	·	·	• •	·	·	·	•	·	·	· •	·	·	·	12-1
0505101140																					
SECTION 13																					
DEFINITIONS									•												13-1
SECTION 14																					
MONOLITHIC CHIPS																					
	_																				14.1
General Description	1	·	• •	•	•	•	·	·	·	• •	•	·	·	•	·	•	·	·	·	·	14-1
Triple Passivation		·	• •	·	·	·	·	·	·		·	•	·	·	•	·	•	·	·	·	14-1
Quality Assurance		·	• •	·	•	·	·	·	•	• •	•	·	·	·	·	·	·	·	·	·	14-1
Ordering Informati		·	• •	·	·	·	•	·	•	• •	•	·	·	·	•	·	·	•	·	·	14-1
Mechanical Inform		·	• •	·	•	•	•	·	·	• •	·	·	·	·	•	·	·	·	·	•	14-2 14-2
Testing		•	• •	•	•	·	•	•	•	• •	•	•	·	•	•	·	·	·	·	·	
Assembly Procedur		·	• •	·	•	·	•	·	•	• •	•	·	·	·	•	·	•	·	·	·	14-2
Assembly Specifica		·	• •	·	·	·	·	·	·	• •	۰.	•	·	·	•	·	·	·	•	·	14-3
Precision Comparat																					14.0
	ecision Comparator										•	·	•	·	•	·	•	•	·	•	14-6
	put Current Precision Comparator .	·	• •	•	•	·	·	•	·	• •	·	·	·	·	·	·	·	·	•	·	14-7
D/A Converters –																					140
	Ionolithic D/A Converter			·	·	·	·	·	·	• •	·	·	·	·	·	·	•	·	•	·	14-8
	Plus Sign D/A Converter			•	·	·	·	·	•	• •	·	·	·	·	•	·	•	·	·	•	14-9
	Complement 10-Bit D/A Converter .																				14-10
	ligh Speed Multiplying D/A Converter																				14-11 14-12
•	BCD High Speed Multiplying DAC		• •														·	·	•	·	
	gh Speed Multiplying D/A Converter	·	• •	•	•	·	·	•	•	• •	·	·	·	·	·	·	·	·	•	·	14-13
	IO-Bit Two Chip D/A Converter	~																			14 14
	Bit D/A Current Source With Referenc		• •						•	• •	·	•	·	·	•	·	•	·	·	·	14-14
	Bit Resistor Network	·	• •	•	·	·	•	•	•	• •	•	•	·	·	·	·	•	·	·	·	14-15
D/A Converters – 0																					14 10
DAC-76 COMD Matched Transistor	AC TM Companding D/A Converter	•	• •	•	·	·	·	•	·	• •	•	·	·	·	·	·	·	·	·	·	14-16
	s Aatched Monolithic Dual Transistor																				14-17
WATOT UITAN	nationed Monorume Dual Transistor				•				•			•	•						•		1-1-1/

SECTION 7

Precision Operational Amplifiers	
OP-01 High Speed Operational Amplifier	18
OP-02 Compensated Operational Amplifier	19
OP-04 Dual Operational Amplifier	20
OP-05 Compensated Instrumentation Op Amp	21
OP-07 Ultra-Low Offset Voltage Op Amp	22
OP-08 Precision Low Input Current Operational Amplifier	23
OP-09 Quad Operational Amplifier	24
OP-11 Quad Operational Amplifier	25
OP-12 Precision Low Input Current Operational Amplifier	26
OP-14 Dual Operational Amplifier	27
OP-15 Precision Low Power JFET Input Operational Amplifier	28
OP-16 Wide Bandwidth Precision JFET Input Operational Amplifier	29
OP-17 Precision JFET Input Operational Amplifier	30
108 Low Input Current Operational Amplifier	31
155 Low Power JFET Input Op Amp	32
156 Wide Bandwidth JFET Input Op Amp	33
157 JFET Input Operational Amplifier	34
725 Instrumentation Operational Amplifier	35
4136 Quad Operational Amplifier	36
Precision Voltage References	
REF-01 +10V Precision Voltage Reference	37
REF-02 +5V Precision Voltage Reference/Thermometer	38

SECTION 15

APPLICATION NOTES


AB-1	Strobing the DAC-08 Under Logic Control	
AB-2	OP-10 Instrumentation Amplifier CMRR Versus Frequency Improvement	
AB-3	Digital Nulling of OP-05 and SSS725	
AB-4	REF-02 Temperature Controller	
AN-6	A Low Cost, High Performance Tracking A/D Converter	
AN-10	Simple Precision Millivolt Reference Uses No Zeners	1
AN-11	A Low Cost, Easy-to-Build Successive Approximation Analog-to-Digital Converter	2
AN-12	Temperature Measurement Method Based on Matched Transistor Pair Requires No Reference	9
AN-13	The OP-07 Ultra-Low Offset Voltage Op Amp	
	A Bipolar Op Amp That Challenges Choppers, Eliminates Nulling	5
AN-14	Interfacing Precision Monolithics Digital-to-Analog Converters With CMOS Logic	6
AN-15	Minimization of Noise in Operational Amplifier Applications	0
AN-16	Low Cost, High Speed Analog-to-Digital Conversion with the DAC-08	0
AN-17	DAC-08 Applications Collection	7
AN-18	Thermometer Applications of the REF-02	8
AN-19	Differential and Multiplying Digital-to-Analog Converter Applications	1
AN-20	Exponential Digitally Controlled Oscillator Using DAC-76	9
AN-21	3 IC 8 Bit Binary Digital to Process Current Converter with 4-20 MA Output	2
AN-22	Software Controlled Analog-to-Digital Conversion Using DAC-08 and the 8080A Microprocessor	4
AN-23	Digital-to-Analog Converter Generators Hyperbolic Functions	8
AN-24	The OP-17, OP-16, OP-15 as Output Amplifiers for High Speed D/A Converters 15-9	1
SECTION 16		
PACKAGE	INFORMATION	
SECTION 17		
NORTH AN	/ERICAN REPRESENTATIVES	
	IONAL REPRESENTATIVES	
	TION CARD/CHANGE OF ADDRESS CARD	

INTERNATIONAL REFREEDENTATIVES	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
REGISTRATION CARD/CHANGE OF ADDRESS CARD																•				1
NOTES																				1
NORTH AMERICAN DISTRIBUTOR LOCATIONS																				

	-
NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
СНІРЅ	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

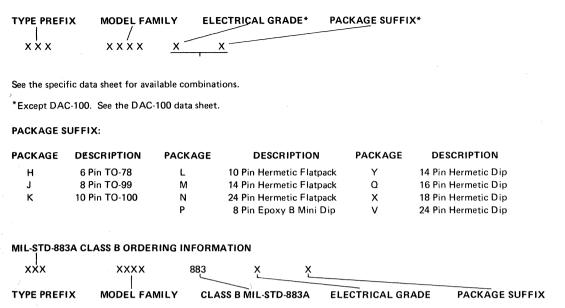
ORDERING INFORMATION

Proprietary and second source products are available with a choice of electrical specifications, packages and operating temperature ranges. This section explains the PMI part numbering system. For specific ordering information such as available electrical grade and package combinations, see the specific product data sheet.

OPERATIONAL AMPLIFIERS

OP-01	= High Speed Inverting
OP-02	= Precision Low Cost
OP-04	= Precision Low Cost Matched Dual
OP-05	= Precision Low Drift
OP-07	= Precision Low Offset Voltage
OP-10	= Precision Matched Dual
OP-14	= Precision Low Cost Matched Dual
SSS725	= Improved Instrumentation Op Amp
SSS741	= Improved General Purpose Op Amp
SSS747	= Improved General Purpose Dual Op Amp
SSS1408	= Improved 8-Bit D/A Converter
SSS1458	= Improved General Purpose Dual Op Amp
PM108	= Low Current Op Amp
PM725	= Instrumentation Op Amp
PM741	= General Purpose Op Amp
PM747	= General Purpose Dual Op Amp
PM1458	= General Purpose Dual Op Amp

COMPARATORS


CMP-01 = High Speed CMP-02 = Low Input Current

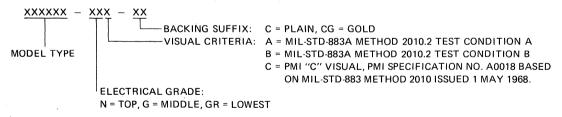
- D/A CONVERTERSDAC-01= 6 Bit Voltage OutputDAC-02= 10 Bit + Sign Voltage OutputDAC-03= 10 Bit Low Cost Voltage OutputDAC-04= 10 Bit Two's ComplementDAC-05= 8 Bit Universal High SpeedDAC-76= 8 Bit CompandingDAC-100= 10 Bit Current OutputVOLTAGE REFERENCES
- REF-01 = +10V Adjustable REF-02 = +5V Adjustable

MATCHED TRANSISTORS

MAT-01 = Ultra-matched Monolithic Transistors

ORDERING INFORMATION

All PMI -55° to +125°C devices are available in versions with screening to Class B of MIL-STD-883A as standard. A complete list is included in the HI-REL section of this catalog. For all products except DAC-100, the part number construction is as shown below; for DAC-100, see the DAC-100 data sheet.


Example: To order OP-01FJ with 883B screening.

1. Basic Device Part Number: OP-01FJ


2. MIL-STD-883A Class B Version: OP01-883-FJ

CHIP ORDERING INFORMATION

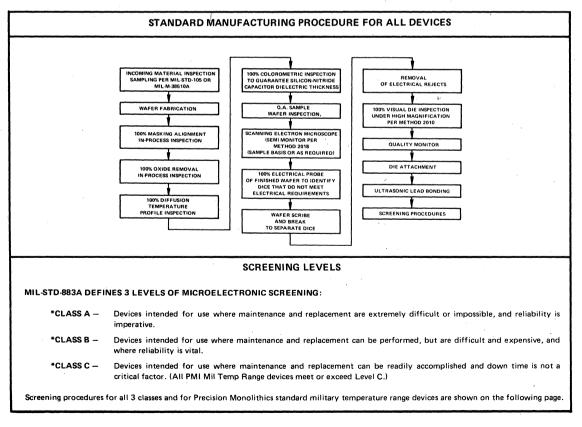
All PMI chips are available with either plain backing or, at extra cost, 1-micron thich eutectic-bonded gold backing. Electrical performance is specified at 25°C for all products in the data sheet section of this catalog. Visual inspection criteria is as listed below:

For price and delivery information or quotations for special devices, contact the nearest PMI sales office or representative listed in the back of this catalog.

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

Q.A. PROGRAM

MANUFACTURING AND SCREENING PROCEDURES


INTRODUCTION

Precision Monolithics, Inc., in establishing standard procedures for Manufacturing; Screening, Qualification, and Quality Conformance, has incorporated the requirements of both MIL-STD-883A, Notice 2 of March 1976, and MIL-Q-9858A. All PMI military temperature range devices meet or exceed Class C requirements, and, in addition, devices meeting and/or exceeding Class B requirements are available off-the-shelf as standard catalog items. Requests for devices with Class A or other special requirements are invited. The internal procedures designed to control and guarantee production of these devices are described herein.

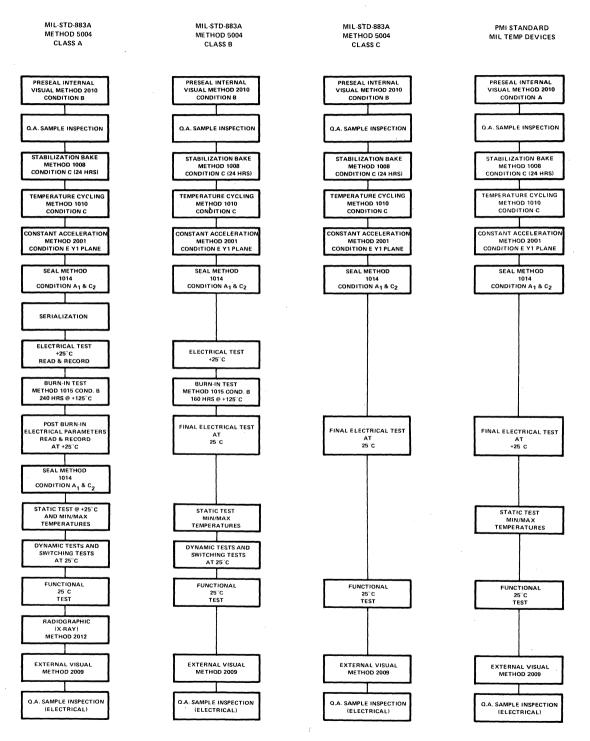

PMI standard "883" parts designate devices which have been subjected to 100% screening in accordance with Method 5004 of MIL-STD-883A, Class B.

TABLE OF CONTENTS	1
Manufacturing Procedure	1
Screening Levels 3-	1
Screening Procedures 3-3	2
Quality Conformance Procedures	3
LTPD Table	3
Group A 3-3	3
Group B	3
Group C	5
Group D	6
Ordering Information	7

Quality Conformance Testing (Groups A, B, C, D) in accordance with Method 5005 of MIL-STD-883A is available on special order.

SCREENING PROCEDURES

QUALIFICATION AND QUALITY CONFORMANCE PROCEDURES

MIL-STD-883A Method 5005 establishes Qualification and Quality Conformance Procedures for the 3 classes of devices and divides these procedures into group A, B, C&D tests: "The full requirements of group A, B, C and D tests and inspections are intended for use in initial device qualification, requalification in the event of product or process change and periodic testing for retention of qualification. Group A and B tests and inspections are intended for quality conformance inspection of individual inspection lots as a condition for acceptance for delivery."

Group A, B, C and D quality conformance tests are performed using a sample size determined from the LTPD table below. An initial sample size corresponding to zero rejects (an acceptance number of 0) is normally used; if necessary the sample size will be increased once to a higher number to meet the LTPD requirement for the class of device under test.

LTPD 3

LTPD 20 LTPD 15 LTPD 10 LTPD 7 LTPD 5 ACCEPTANCE NUMBER* Minimum Sample Size

LOT TOLERANCE PERCENT DEFECTIVE (LTPD) TABLE (PER MIL-M-38510A)

*Maximum allowable number of failures.

Service S

GROUP A ELECTRICAL TESTS: REFERENCE MIL-STD-883A METHOD 5005 (Electrical tests per applicable data sheet specifications)

SUBGROUP	TEST DESCRIPTION	CLASS A LTPD	CLASS B LTPD	CLASS C LTPD
3 1	Static tests at 25°C	5	5	5
2	Static tests at maximum rated operating temperature	7	7	10
3	Static tests at minimum rated operating temperature	7	7	10
4	Dynamic tests at 25°C	5	5	. 5
7	Functional tests at 25°C	5	5	5
9	Switching tests at 25°C	7	7	10

GROUP B TESTS FOR CLASS A DEVICES

	TEST		MIL-STD-883	CLASS A QUANTITY/(ACCEPT NO.)					
	1531	METHOD	CONDITION	LOT 1	LOT 2 AND SUBSEQUENT				
Subgrou									
Phys	ical dimensions	2016		2(0)	2(0)				
Subgrou	up 2 2/								
(a) '	Resistance to solvents	2015		3(0)	3(0)				
. (b)	Internal visual and mechanical	2014	Failure criteria from design and construction requirements of applicable procurement document	2(0)	2(0)				
(c)	Bond strength (1) Thermocompression (2) Ultrasonic (3) Flip-chip (4) Beam lead	2011	 Test condition C or D Test condition C or D Test condition F Test condition H 	2(0) 7/	2(0) 7/				
(d)	Die shear test	2019	Per table I of method 2019 for the applicable die size	3(0)	3(0)				

GROUP B TESTS FOR CLASS A DEVICES – CONTINUED

-		MIL-STD-883		CLASS A QUANTITY/ACCEPT NO.)	
	TEST	METHOD	CONDITION	LOT 1	LOT 2 AND SUBSEQUENT
Subgrou	p 3				
Solde	erability 3/	2003	Soldering temperature of 260 \pm 10° C	LTPD = 15	LTPD = 15
Subgrou	p 4				
Lead	integrity	2004	Test condition B ₂ , lead fatigue	2(0)	2(0)
	Seal	1014	As applicable	-10,	210)
	(a) Fine (b) Gross 4/				
Subgrou	o 5 6/				
(a)	Gate 1				
	(1) Electrical parameters		Group A, subgroup 1, 2, 3: Read and record		
	(2) Steady state life		Group A, subgroups 4-11: Attributes		
	(2) Steady state life (accelerated)	1005	Condition F, 250°C		
	(3) Electrical parameters		120 continuous hours minimum Group A, subgroups 1, 2, 3: Read and record	40(8)	10(2)
(ь)	Gate 2				
	(1) Steady state life (accelerated)	1005	Condition F, 250°C, 250 hours minimum including actual gate 1 life test duration		
	(2) Seal				
	a. Fine				
	b. Gross 4/ (3) Electrical parameters		Group A subgroups 1, 2, 2: Deed	40(16) 5/	10(4) 5/
	(S) Electrical parameters	1	Group A, subgroups 1, 2, 3: Read and record	40(10) 5/	10(4) 5/
			Group A, subgroups 4-11: Attributes		
Subgrou	o 6 2/	1			
(a)	Electrical parameters		Group A, subgroups 1, 2, 3: Read and record		
(ь)	Temperature cycling	1010	Condition C 100 cycles/min.	12(0)	5(0)
(c)	Constant acceleration	2001	Test Condition E: Y ₁ axis followed by one other axis, X or Z.		
(d)	Seal	1014		or	or
	(1) Fine (2) Gross 4/			20(1)	8(1)
(e)	Electrical parameters		Group A, subgroups 1, 2, 3: Read and record	20(1)	0(1)

1 Electrical reject devices from the same inspection may be used for all subgroups when end point measurements are not required.

2 For class A lot quality conformance testing, all samples for subgroup B2 must have been through the complete sequence of subgroup B6 tests.

3 All devices must have been through the temperature/time exposure in burn-in. The LTPD applies to the number of leads inspected except in no case shall less than three devices be used to provide the number of leads required.

4 When fluorocarbon gross leak testing is utilized, test condition C2 shall apply as a minimum.

5 Sample quantity for acceptance purposes is the incoming sample for gate 1 and the accept number applies to the total failures from both gate 1 and gate 2.

6 The alternate removal-of-bias provisions of paragraph 3.2.1 of methods 1005 and 1015 shall not apply for test temperatures above 125°C.

7 Pull ten (10) wires minimum per device or pull all wires if ten are not available.

GROUP B TESTS FOR CLASSES B AND C

TEST		MIL-STD-883		CLASSES B & C
		METHOD	METHOD CONDITION	
Subgrou	ıp 1			
Phys	sical dimensions	2016		2 devices (no failures)
Subgrou	ip 2			
(a)	Resistance to solvents	2015	• •	3 devices (no failures)
· (b)	Internal visual and mechanical	2014	Failure criteria from design and construction requirements of applicable procurement document.	1 device (no failures)
(c)	Bond strength 2/ (1) Thermocompression (2) Ultrasonic or wedge (3) Flip-chip (4) Beam lead	2011	 Test condition C or D Test condition C or D Test condition F Test condition H 	15
Subgrou	ıp 3			
Sold	erability 3/	2003	Soldering temperature of 260 \pm 10°C.	15

1 Electrical reject devices from the same inspection lot may be used for all subgroups when end point measurements are not required.

2 Test samples for bond strength may, at the manufacturer's option unless otherwise specified be randomly selected immediately following internal visual (precap) inspection specified in method 5004, prior to sealing.

3 All devices submitted for solderability test must have been through the temperature/time exposure specified for burn-in. The LTPD for solderability test applies to the number of leads inspected except in no case shall less than 3 devices be used to provide the number of leads required.

GROUP C (DIE-RELATED TESTS) (FOR CLASSES B AND C ONLY)

TEST	MIL-STD-883		LTPD
	METHOD	CONDITION	LIPD
Subgroup 1			
Operating life test 1/	1005	Test condition to be specified (1000 hours)	5
End point electrical parameters		As specified in the applicable device specification	. · · · · ·
Subgroup 2			
Temperature cycling	1010	Test condition C	15
Constant acceleration	2001	Test condition E min. (see 3)	
		Y ₁ axis followed by one other axis X or Z.	
SEAL	1014	As applicable	
Fine			
Gross 3/			
Visual examination	2		
End point electrical parameters		As specified in the applicable device specification.	

1 See 40.4 of appendix B of MIL-M-38510.

2 Visual examination shall be in accordance with method 1010.

3 When fluorocarbon gross leak testing is utilized, test condition C2 shall apply as minimum.

GROUP D (PACKAGE RELATED TESTS) (FOR ALL CLASSES)

MIL-STD-883		LTPD	
TEST	METHOD	CONDITION	LIPL
Subgroup 1			
Physical dimensions	2016		15
Subgroup 2 4/			
Lead integrity	2004	Test condition B2 (lead fatigue)	15
Seal	1014	As applicable	
(a) Fine			
(b) Gross 6/			
Subgroup 3 1/			
Thermal shock	1011	Test condition B as a minimum, 15 cycles minimum.	15
Temperature cycling	1010	Test condition C, 100 cycles minimum.	
Moisture resistance	1004		
Seal	1014	As applicable.	
(a) Fine			
(b) Gross 6/			
Visual examination	2/		
End point electrical		As specified in the applicable device specification.	
parameters		· · · · · · · · · · · · · · · · · · ·	
Subgroup 4 1/			
Mechanical shock	2002	Test condition B	15
Vibration variable frequency	2007	Test condition A	
Constant acceleration	2001	Test condition E (see 3)	
Seal	1014	As applicable	
(a) Fine			
(b) Gross 6/			
Visual examination	3/		
End point electrical parameters		As specified in the applicable device specification.	
Subgroup 5 4/			
Salt atmosphere	1009	Test condition A	15
Visual examination	5/		

1 Devices used in subgroup 3, "Thermal and Moisture Resistance" may be used in subgroup 4, "Mechanical."

2 Visual examination shall be in accordance with method 1010 or 1011 at a magnification of 5X to 10X.

3 Visual examination shall be performed in accordance with method 2007 for evidence of defects or damage to case, leads, or seals resulting from testing (not fixturing). Such damages shall constitute a failure.

MODELS AVAILABLE WITH MIL-STD-883A CLASS B PROCESSING STANDARD

DIGITAL-TO-ANALOG CONVERTERS

DAC-01-883-Y	DAC06-883-CX
DAC01-883-BY	DAC06-883-AQ
DAC-01-883-FY	DAC08-883-Q
DAC05-883-AX1 (or X2)	DAC20-883-AQ
DAC05-883-BX1 (or X2)	DAC20-883-0
DAC05-883-CX1 (or X2)	DAC76-883-BX
DAC06-883-AX	DAC76-883-X
DAC-883-BX	DAC-100 (NOTE)
	SSS1508A-883-BQ

NOTE: See the DAC-100 data sheet for available models.

PRECISION VOLTAGE REFERENCES

REF01-883-AJ	REF02-883-AJ
REF01-883-J	REF02-883-J

PRECISION VOLTAGE COMPARATORS

CMP01-883-J	CMP02-883-J
CMP01-883-Y	CMP02-883-Y

MATCHED DUAL TRANSISTORS.

MAT01-883-AH	MAT01-883-FH
MAT01-883-H	MAT01-883-GH

PRECISION OPERATIONAL AMPLIFIERS

OP01-883-J	OP10-883-Y
OP01-883-Y	OP11-883-AY
OP01-883-FY	OP11-883-BY
OP01-883-FJ	OP12-883-AJ
OP01-883-GJ	OP12-883-BJ
OP01-883-GY	OP12-883-CJ
OP02-883-AJ	OP15-883-AJ
OP02-883-AY	OP15-883-BJ
OP02-883-J	OP15-883-CJ
OP02-883-Y	OP16-883-AJ
OP05-883-AJ	OP16-883-BJ
OP05-883-AY	OP16-883-CJ
OP05-883-J	OP17-883-AJ
OP05-883-Y	OP17-883-BJ
OP07-883-AJ	OP17-883-CJ
OP07-883-AY	SSS725-883-AJ
OP07-883-J	SSS725-883-AY
OP07-883-Y	SSS725-883-J
OP08-883-AJ	SSS725-883-Y
OP08-883-BJ	PM725-883-J
OP08-883-CJ	PM725-883-Y
OP09-883-AY	PM108-883-AJ
OP09-883-BY	PM108-883-J
OP10-883-AY	

GENERAL PURPOSE OPERATIONAL AMPLIFIERS

SSS741-883-J
SSS741-883-Y
SSS741-883-GJ
SSS741-883-GY
PM741-883-J
PM741-883-Y
SSS747-883-K
SSS747-883-Y

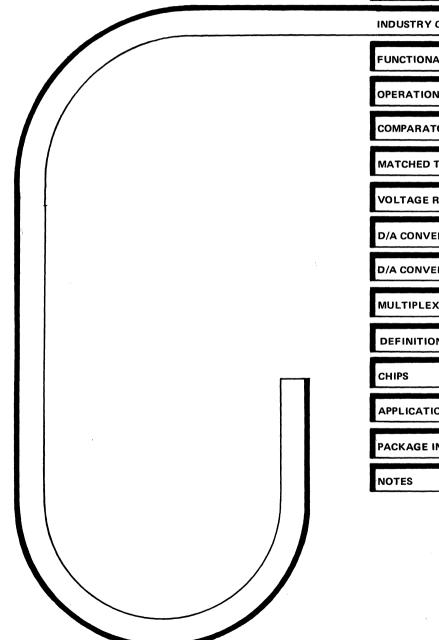
SSS747-883-GK SSS747-883GY PM747-883-K PM747-883-Y SSS1558-883-J PM1558-883-J PM4136-883-Y

GENERAL PURPOSE FET INPUT OPERATIONAL AMPLIFIERS

PM156-883-J PM157-883-AJ PM157-883-J

DUAL MATCHED HIGH PERFORMANCE OPERATIONAL

OP04-883-Y
OP04-883-K


PM155-883-AJ

PM156-883-AJ

PM155-883-J

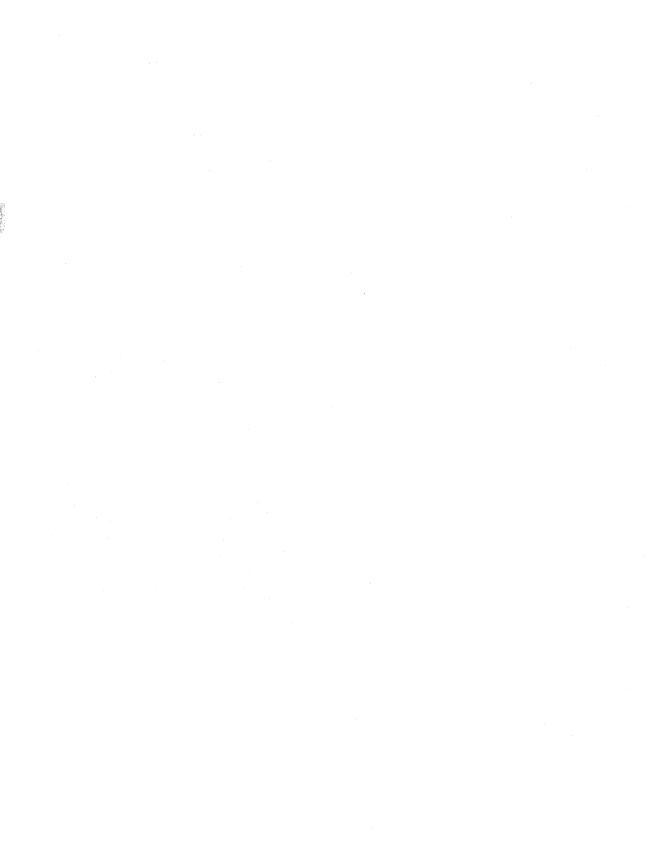
OP14-883-AJ OP14-883-J

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
	15
PACKAGE INFORMATION	16
NOTES	17

INTERCHANGEABILITY GUIDE

FAIRCHILD	PMI DIRECT REPLACEMENT	PMI IMPROVED DIRECT REPLACEMENT	TEMP RANGE	PACKAGE
LM108AH	PM108AJ	OP-08AJ	MIL	TO-99
LM108H	PM108J	OP-08BJ	MIL	TO-99
LM208H	PM208J	OP-08BJ	IND	TO-99
LM308AH	PM308AJ	OP-08EJ	COM	TO-99
LM308H	PM308J	OP-08FJ	COM	TO-99
725AHM	SSS725J	SSS725AJ	MIL	TO-99
725HM	PM725J	SS725J	MIL	TO-99
725HC	PM725CJ	SSS725EJ	COM	TO-99
725EHC		SS725EJ	COM	TO-99
725PC	PM725CP		COM	MINI-DIP
				70.00
741HM	PM741J	SSS741GJ	MIL	TO-99
741HC	SSS741CJ	OP-02CJ	COM	TO-99
741DM	PM741Y	SSS741GY	MIL	DIP
741DC	SSS741CY	OP-02CY	COM	DIP
741AHM	OP-02J	OP-02AJ	MIL	TO-99
741EHC	OP-02CJ	OP-02EJ	COM	TO-99
741ADM	OP-02Y	OP-02AY	MIL	DIP
741EDC	OP-02CY	OP-02EY	COM	DIP
747DM	PM747Y	SSS747GY	MIL	DIP
747DC	SSS747CY	OP-04CY	COM	DIP
747HM	PM747K	SSS747GK	MIL	TO-100
747HC	SSS747CK	OP-04CK	COM	TO-100
747 ADM		SSS747Y	MIL	DIP
747EDC		SSS747BY	COM	DIP
747AHM		SSS747K	MIL	TO-100
747EHC		SSS747BK	СОМ	TO-100
901 A D M				
801ADM		DAC-08AQ	MIL	DIP
801DM 801EDC		DAC-080	MIL	DIP
		DAC-08EQ	COM	DIP
801CDC		DAC-08CQ	COM	DIP
802DM		SSS1508A-8Q	MIL	DIP
802ADC		SSS1408A-8Q	COM	DIP
802BDC		SSS1408A-7Q	COM	DIP
802CDC		SSS1408A-6Q	COM	DIP

NATIONAL			ТЕМР		
SEMICONDUCTOR	REPLACEMENT	REPLACEMENT	RANGE	PACKAGE	
1 14100 411	DM100.4.1		MIL	TO-99	
LM108AH	PM108AJ PM108J	OP-08AJ OP-08BJ	MIL	TO-99	
LM108H				TO-99	
LM208H	PM208J	OP-08BJ		TO-99	
LM308AH LM308H	PM308AJ PM308J	OP-08EJ OP-08FJ	COM	TO-99	
LINIJUSH	PMISUOJ	UF-UOFJ	COM	10-99	
LF155AH	PM155AJ	OP-15AJ	MIL	TO-99	
LF155H	PM155J	OP-15BJ	MIL	TO-99	
LF255H	PM255J	OP-15BJ	IND	TO-99	
LF355AH	PM355AJ	OP-15EJ	COM	TO-99	
LF355H	PM355J	OP-15GJ	COM	TO-99	
LF156AH	PM156AJ	OP-16AJ	MIL	TO-99	
LF156H	PM156J	OP-16BJ	MIL	TO-99	
LF256	PM256J	OP-16BJ	IND	TO-99	
LF356AH	PM356AJ	OP-16EJ	COM	TO-99	
LF356H	PM356J	OP-16GJ	COM	TO-99	
LF157AH	PM157AJ	OP-17AJ	MIL	TO-99	
LF157H	PM157J	OP-17BJ	MIL	TO-99	
LF257H	PM257J	OP-17BJ	IND	TO-99	
LF357AH	PM357AJ	OP-17EJ	COM	TO-99	
LF357H	PM357J	OP-17GJ	COM	TO-99	
LM725AH	SSS725J	SSS725AJ	MIL	TO-99	
LM725H	PM725J	SSS725J	MIL	TO-99	
LM725CH	PM725CJ	SSS725CJ	COM	TO-99	
LM725D	PM725Y	SSS725Y	MIL	DIP	
LM725CN	PM725CP		СОМ	MINI-DIP	
		00074404			
LM741H	PM741J	SSS741GJ	MIL	TO-99	
LM741CH	SSS741CJ	OP-02CJ	COM	TO-99	
LM741D	PM741Y	SSS741GY	MIL	DIP	
LM741CD	SSS741CY	OP-02CY	COM	DIP	
LM747H	PM747J	SSS747GK	MIL	TO-100	
LM747CH	SSS747CK	OP-04CK	COM	TO-100	
LM747F		SSS747GM	MIL	FLATPAC	
LM747CF		SSS747BM	СОМ	FLATPAC	
LM747D	PM747Y	SSS747GY	MIL	DIP	
LM747CD	SSS747CY	OP-04CY	COM	DIP	
LM1458H	SSS1458	OP-14CJ	СОМ	TO-99	
LM1558H	PM1558	SSS1558	MIL	TO-99	
LF11508		MUX-88	MIL	DIP	
				DIP	
LMDAC08		DAC-08	MIL	DIF	


4-2

	PMI DIRECT	PMI IMPROVED	ТЕМР	
RAYTHEON	REPLACEMENT	REPLACEMENT	RANGE	PACKAGE
LM108AH	PM108AJ	OP-08AJ	MIL	TO-99
LM108H	PM108J	OP-08BJ	MIL	TO-99
LM208H	PM208J	OP-08BJ	IND	TO-99
LM308AH	PM308AJ	OP-08EJ	COM	TO-99
LM308H	PM308J	OP-08FJ	СОМ	TO-99
DMZOFT	DM7051			TO 00
RM725T	PM725J	SSS725J	MIL	TO-99
RC725T	PM725CJ	SSS725CJ	COM	TO-99
RM741T	PM741J		MIL	TO-99
RC741T	SSS741CJ	OP-02CJ	COM	TO-99
RM741D	PM741Y	SSS741GY	MIL	TO-99
RC741D	SSS741CY	OP-02CY	COM	TO-99
RC741DP		SSS741CY	СОМ	TO-99
- 044747T	047477	0000151		TO 100
RM747T	PM747K	SSS747K	MIL	TO-100
RC747T	SSS747CK	OP-04CK	COM	TO-100
RM747D	PM747Y	SSS747Y	MIL	DIP
RC747D	SSS747CY	OP-04CY	COM	DIP
RC747DP		SSS747CY	СОМ	DIP
RM1558T	PM1558	SSS1558	MIL	TO-99
RC1458T	SSS1458	OP-14CJ	COM	TO-99
RM4136	PM4136Y	OP-09BY	MIL	DIP
RC4136	PM4136CY	OP-09FY	СОМ	DIP
TEXAS	7			
INSTRUMENTS				
SN52558L	PM1558	SSS1558	MIL	TO-99
SN72558L	SSS1458	OP-14CJ	COM	TO-99
SN52741L	PM741J	SSS741GJ	MIL	TO-99
SN52741J	PM741Y	SSS741GY	MIL	DIP
SN72741L	SSS741CJ	OP-02CJ	COM	TO-99
SN72741J	SSS741CY	OP-02CY	СОМ	DIP
CNIC07471	PM747K	SSS747GK	·····	TO-100
SN52747L	PM747Y	SSS747GY		DIP
SN52747L SN52747J	1 1117 17 1			FLATPAC
		SSS747GM		
SN52747J		SSS747GM SSS747CK		TO-100
SN52747J SN52747Z				TO-100 DIP
SN52747J SN52747Z SN72747L		SSS747CK	СОМ	
SN52747J SN52747Z SN72747L SN72747J		SSS747CK SSS747CY	COM	DIP
SN52747J SN52747Z SN72747L SN72747J TL081ACL		SSS747CK SSS747CY OP-16FJ		DIP TO-99

ADVANCED MICRO DEVICES	PMI DIRECT REPLACEMENT	PMI IMPROVED DIRECT REPLACEMENT	TEMP RANGE	PACKAGE
000705 4 1	000705 4 1		A 4 1 1	TO 00
SSS725AJ	SSS725AJ		MIL	TO-99
SSS725J	SSS725J		MIL	TO-99
SSS725BJ	SSS725BJ		IND	TO-99
SSS725EJ	SSS725EJ		СОМ	TO-99
SSS741J	SSS741J	OP-02AJ	MIL	TO-99
SSS741CJ	SSS741CJ	OP-02ĚJ	СОМ	TO-99
0007471/	0007471/	00.044/		TO 400
SSS747K	SSS747K	OP-04AK	MIL	TO-100
SSS747P	SSS747Y	OP-04AY	MIL	DIP
SSS747M	SSS747M		MIL	FLATPAC
SSS747CK	SSS747CK	OP-04CK	COM	TO-100
SSS747CP	SSS747CY	OP-04CY	COM	DIP
SSS1508A-80	SSS1508A-8Q		MIL	DIP
SSS1408A-8Q	SSS1408A-8Q		COM	DIP
SSS1408A-7Q	SSS1408A-7Q		COM	DIP
SSS1408A-6Q	SSS1408A-6Q		COM	DIP
AMIEOOLO		00015004.00	DA11	
AM1508L8		SSS1508A-8Q	MIL	DIP
AM1408L8		SSS1408A-8Q	COM	DIP
AM1408L7		SSS1408A-7Q	COM	DIP
AM1408L6		SSS1408A-6Q	COM	DIP
DAC-08AQ	DAC-08AQ		MIL	DIP
DAC-08Q	DAC-08Q		MIL	DIP
DAC-08HQ	DAC-08HQ		COM	DIP
DAC-08EQ	DAC-08EQ		COM	DIP
DAC-08CQ	DAC-08CQ		СОМ	DIP
ANALOG DEVICES				
ANALOG DEVICES			•	
AD562SD/BIN	·······	SSS562-SD-BIN	MIL	DIP
AD562SD/BCD		SSS562-SD-BCD	MIL	DIP
AD562AD/BIN		SSS562-AD-BIN	IND	DIP
AD562AD/BCD		SSS562-AD-BCD	IND	DIP
AD562KD/BCD		SSS562-KD-BIN	COM	DIP
AD562KD/BCD		SSS562-KD-BCD	COM	DIP
SIGNETICS				
SE5009		DAC-08AQ	MIL	DIP
SE5008		DAC-08Q	MIL	DIP
NE5008		DAC-08EQ	COM	DIP
NE5007		DAC-08CQ	COM	DIP

		PMI IMPROVED		
	PMI DIRECT	DIRECT	TEMP	
RCA	REPLACEMENT	REPLACEMENT	RANGE	PACKAGE
CA108AT		PM108AJ	MIL	TO-99
CA108T		PM108J	MIL	TO-99
CA208AT		PM208AJ	IND	TO-99
DA208T		PM208J	IND	TO-99
CA308AT		PM308AJ	COM	TO-99
CA308T		PM308J	СОМ	TO-99
CA741T	PM741J	SSS741GJ	MIL	TO-99
CA741CT	SSS741CJ	OP-02CJ	COM	TO-99
	555741CJ	UP-UZCJ	COM	10-99
CA747T	PM-747K	SSS747K	MIL	TO-100
CA747CT	SSS747CK	OP-04CK	COM	TO-100
CA747E	PM747Y	SSS747Y	MIL	DIP
CA747CE			COM	DIP
CA1458T	SSS1458	OP-14CJ	COM	TO-99
CA1558T	PM1558	SSS1558	MIL	TO-99
MOTOROLA].			
MC1741G	PM741J	SSS741GJ	MIL	TO-99
MC1741L	PM741Y	SSS741GY	MIL	DIP
MC1741CG	SSS741CJ	OP-02CJ	COM	TO-99
MC1741CL	SSS741CY	OP-02CY	СОМ	DIP
MOIEFOO	DN4550	0001550		TO 00
MC1558G	PM1558	SSS1558	MIL	TO-99
MC1458G	SSS1458	OP-14EJ	COM	TO-99
MC1458CG	SSS1458	OP-14CJ	COM	TO-99
MC1508L-8		SSS1508A-8Q	MIL	DIP
MC1408L-8		SSS1408A-8Q	COM	DIP
MC1408L-7		SSS1408A-7Q	COM	DIP
			COM	

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
снірѕ	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

FUNCTIONAL EQUIVALENT GUIDE

THE FOLLOWING TABLES SHOW PMI DESIGN ALTERNATIVES TO OTHER MANUFACTURERS' DEVICES: IC'S, HYBRIDS, AND MODULES. THESE ARE USUALLY NOT DIRECT PIN-FOR-PIN ELECTRICAL AND MECHANICAL REPLACEMENTS, BUT RATHER, THEY ARE FUNCTIONAL EQUIVALENTS. PERFORMANCE AND SPECIFICATIONS ARE SIMILAR.

ANALOG DEVICES	DEVICE DESCRIPTION	PMI NEAREST EQUIVALENT	APPLICATION COMMENTS
AD504	PRECISION OP AMP	OP-05	NULLED.
AD509	HIGH SPEED OP AMP	OP-16	FAST SETTLING.
AD510	PRECISION OP AMP	OP-05	NULLED.
AD510	PRECISION OP AMP	OP-07	UNNULLED.
AD559	8-BIT MULTIPLYING D/A CONVERTER	DAC-08	MULTIPLYING.
AD580	VOLTAGE REFERENCE BANDGAP +2.5V	REF-02	REF-02 IS +5V REFERENCE.
AD741	IMPROVED 741 OP AMP	OP-02	PIN-FOR-PIN REPLACEMENT.
AD810	MATCHED TRANSISTOR PAIR	MAT-01	PIN-FOR-PIN REPLACEMENT.
AD818	MATCHED TRANSISTOR PAIR	MAT-01	LOG AMP APPLICATIONS.
AD2700	HYBRID +10V REFERENCE	REF-01	REF-01 IS IC AND LOW POWER.
AD7520	10-BIT MULTIPLYING DAC-CMOS	DAC-08	8-BIT APPLICATIONS
AD7520	10-BIT MULTIPLYING DAC-CMOS	DAC-100	10-BIT NON-MULTIPLYING APPLICATIONS.
CMOS MULTIPLEXERS	SEVERAL, CMOS TYPES	MUX-88	8 CHANNEL
FET OP AMPS	SEVERAL FET OP AMPS	OP-15/16/17	SELECT PMI DEVICE ACCORD- ING TO THE APPLICATION.

BURR BROWN

BB3505	HIGH SPEED OP AMP	OP-16	HIGHEST SPEED APPLICATIONS.
BB3506	HIGH SPEED OP AMP	OP-15	MEDIUM SPEED APPLICATIONS.
DAC-80/85	12-BIT DAC'S	SSS562	USE SSS562 WITH EXTERNAL REFERENCE.

HARRIS SEMICONDUCTOR	DEVICE DESCRIPTION	PMI NEAREST EQUIVALENT	APPLICATION COMMENTS
HA-2510	HIGH SPEED OP AMP	OP-16	PMI OP-15/16/17 REPLACE SEVERAL HARRIS TYPES IN SOME APPLICATIONS.
HA-2900	CHOPPER-STABILIZED PRE- CISION OP AMP	OP-07	SEE AN-13 ALSO.
HA-4741	QUAD OP AMP	OP-11	OP-11 HAS MUCH LOWER OFFSET VOLTAGE.

NATIONAL SEMICONDUCTOR

LH0044	HYBRID PRECISION OP AMP	OP-07	MOST APPLICATIONS.
LH0044	HYBRID PRECISION OP AMP	OP-12	APPLICATIONS WHERE LESS THAN 1mA SUPPLY CURRENT IS REQUIRED.
LH0070	HYBRID +10V REFERENCE	REF-01	REF-01 MUCH LOWER POWER.
LM110/310	VOLTAGE FOLLOWER	OP-12	CONNECT OP-12 AS A FOLLOW- ER. LOW SPEED APPLICATIONS.
LM110/310	VOLTAGE FOLLOWER	OP-15/16	CONNECT OP-15/16 AS A FOL- LOWER. HIGH SPEED APPLICATIONS.
LM111/311	VOLTAGE COMPARATOR	CMP-01	HIGH SPEED APPLICATIONS.
LM111/311	VOLTAGE COMPARATOR	CMP-02	LOW INPUT CURRENT APPLICATIONS.
LM114/115	MATCHED TRANSISTOR PAIR	MAT-01	PIN-FOR-PIN REPLACEMENT.
LM148	QUAD OP AMP	OP-11	OP-11 PIN-FOR-PIN WITH LOWER OFFSET VOLTAGES.
LM194/394	MATCHED TRANSISTOR PAIR	MAT-01	

CROSS REFERENCE – MAT-01 TO MONOLITHIC DUAL TRANSISTORS (I_C = 10 μ A)

DEVICE	BVCEO MIN (V)	V _{os} MAX (mV)	ΤCV _{os} ΜΑΧ (μV/°C)	hFE MIN	l _{os} MAX (nA)	TCI _{os} MAX (pA/°C)
MAT-01AH	45	0.1	0.5	500	0.6	90
MAT-01H	60	0.1	0.5	330	0.8	110
MAT-01FH	60	0.5	1.8	250	3.2	150
MAT-01GH	45	0.5	1.8	250	3.2	150
LM114A	45	0.5	2.0	500	2.0	
LM114	45	2.0	10	250	10	_
LM115A	60	0.5	2.0	250	2.0	
LM115	60	2.0	10	250	10	_
AD810	35	3.0	15	100	2.0	600
AD811	45	1.5	7.5	200	10	300
AD812	35	1.0	5.0	400	2.5	300
AD813	45	0.5	2.5	200	5	300
AD818	20	1.0	5.0	200	10	300

CROSS REFERENCE – MAT-01 TO 2N TYPES (I_C = 10μ A)

DEVICE	BVCEO MIN (V)	V _{os} MAX (mV)	ΤCV _{os} ΜΑΧ (μV/°C)	hFE MIN	^{%h} FE MATCH MAX	l _{os} MAX (nA)	TCI _{os} MAX (pA/°C)
MAT-01GH	45	0.5	1.8	250	8	3.2	150
2N2639	45	5.0	10	50	10	20	1000
2N2640	45	10	20	50	20	40	2000
2N2642	45	5.0	10	100	10	10	500
2N2643	45	10	20	100	20	20	375
2N2915	45	3.0	10	60	10	17	600
2N2915A	45	2.0	5.0	60	15	26	900
2N2916	45	5.0	10	150	10	7	N.C.
2N2916A	45	2.0	5.0	150	15	10	300
2N2917	45	10	20	60	20	17	1450
2N2918	45	5.0	20	150	20	7	750
MAT-01FH	60	0.5	1.8	250	8	3.2	150
2N2919	60	3.0	10	60	10	17	600
2N2919A	60	1.5	5.0	60	10	17	600
2N2920	60	3.0	10	150	10	7	N.C
2N2920A	60	1.5	5.0	150	10	7	300
2N2060	60	5.0	10	25	10	40	N.C
2N2060A	60	3.0	5.0	25	10	40	N.C
2N2060B	60	1.5	5.0	25	10	40	N.C

Notes:1. TCl_{os} Max and l_{os} Max calculated from published data.2. N.C. = Insufficient published data to calculate.

3. All of the above are physically interchangeable pin-for-pin with MAT-01 series.

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

INTRODUCTION TO PMI OPERATIONAL AMPLIFIERS

This section includes operational amplifiers suitable for most applications. Selection guides give key Min/Max specifications for singles, duals, and quads. This product line includes precision, superbeta, BIFET, and general purpose devices that provide a very wide range of performance parameters for both 0° to 70°C and -55° to +125°C operating temperature ranges.

New op amps introduced in the past year include: precision BIFETS (OP-15, OP-16, OP-17); second source BIFETS (PM155A, PM156A, PM157A); precision low power improved 108 types (OP-08, OP-12); second source quads (PM4136); and precision matched quads (OP-09, OP-11). All PMI military temperature range operational amplifiers are available with MIL-STD-883A Class B processing.

INDEX

OPERATIONAL AMPLIFIERS

PRODUCT	TITLE	PAGE
SELECTION GU	IIDES	
Single BiFet	Operational Amplifier	6-1
Single Low P	ower Operational Amplifier	6-3
Single Precisi	on Operational Amplifier	6-5
Single Genera	al Purpose Operational Amplifier	6-7
Dual Precisio	n Operational Amplifier	6-9
Dual General	Purpose Operational Amplifier	6-11
Quad Operat	ional Amplifier	6-13
OP-01	Inverting High Speed Operational Amplifier	6-16
OP-02	High Performance General Purpose Operational Amplifier	6-19
OP-04	Dual Matched High Performance Operational Amplifier . <	6-25
OP-05	Instrumentation Operational Amplifier	6-31
OP-07	Ultra-Low Offset Voltage Operational Amplifier	6-37
OP-08	Precision Low Input Current Operational Amplifier	6-43
OP-09	Quad Matched 741-Type Operational Amplifier	6-50
OP-10	Dual Matched Instrumentation Operational Amplifier	6-56
OP-11	Quad Matched 741-Type Operational Amplifier	6-66
OP-12	Precision Low Input Current Operational Amplifier	6-72
OP-14	Dual Matched High Performance Operational Amplifier	6-78
OP-15	Precision JFET Input Operational Amplifier	6-84
OP-16	Precision JFET Input Operational Amplifier	6-90
OP-17	Precision JFET Input Operational Amplifier	6-96
SSS725	Instrumentation Operational Amplifier	6-101
SSS741	Compensated Operational Amplifier	6-108
SSS747	Dual Compensated Operational Amplifier	6-111
SSS1458/1558	Dual Compensated Operational Amplifier	6-114
PM-108A	Low Input Current Operational Amplifier	6-116
PM155	Monolithic JFET Input Operational Amplifier	6-119
PM156	Monolithic JFET Input Operational Amplifier	6-123
PM157	Monolithic JFET Input Operational Amplifier	6-127
PM725	Instrumentation Operational Amplifier	6-131
PM-741	Compensated Operational Amplifier	6-133
PM-747	Dual Compensated Operational Amplifier	6-135
PM-1458/1558	Dual Comepnsated Operational Amplifier	6-137
PM4136	Quad 741-Type Operational Amplifier	6-139

SINGLE BIFET OPERATIONAL AMPLIFIER SELECTION GUIDE

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Printer and the second s					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DEVICE	MAX, T _J = 25°C	MAX, T _J = 125°C	DEVICE	MAX, T _J = 25°C	MAX, T _J = 125°C
OP-15A 50 pA 50 nA OP-15A 10 pA 44 PM-15BA 50 pA 25 nA PM-15BA 10 pA 44 PM-15BA 50 pA 25 nA PM-15BA 10 pA 11 PM-15BA 50 pA 25 nA PM-15BA 10 pA 11 PM-15BA 50 pA 25 nA PM-15BA 10 pA 11 PM-15BA 100 pA 7.5 nA OP-17B 20 pA 26 OP-17B 100 pA 50 nA PM-155 20 pA 22 PM-15C 100 pA 50 nA PM-155 20 pA 22 OP-16C 200 pA 10 nA OP-16C 50 pA 9 OP-16C 200 pA 10 nA OP-16C 50 pA 9 OP-16E 10 pA 0.4 0.4 0.4 0.4 0.4 OP-16E 50 pA 0.4 nA 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 <t< td=""><td>OP-15A</td><td>50 pA</td><td>5.0 nA</td><td>OP-15A</td><td>10 pA</td><td>4.0 nA</td></t<>	OP-15A	50 pA	5.0 nA	OP-15A	10 pA	4.0 nA
OP-17A 50 pA 25 nA OP-17A 10 pA 44 PM-155A 50 pA 25 nA PM-155A 10 pA 11 PM-156A 50 pA 25 nA PM-155A 10 pA 11 DP-17B 100 pA 7.5 nA 0P-17B 20 pA 60 OP-17B 100 pA 7.5 nA 0P-17B 20 pA 60 OP-17B 100 pA 7.5 nA 0P-17B 20 pA 60 OP-17B 100 pA 50 nA PM-156 20 pA 22 OP-16C 200 pA 10 nA 0P-16C 50 pA 90 OP-16C 200 pA 10 nA 0P-16C 50 pA 90 DF-17C 200 pA 10 nA 0P-16C 50 pA 90 OP-16E 50 pA 0 A nA 0P-16C 50 pA 0.3 OP-16E 50 pA 0 A nA 0P-17E 10 pA 1.0 OP-16E 50 pA 0 A nA 0P-16E 10 pA 1.0 </td <td>OP-16A</td> <td></td> <td></td> <td></td> <td></td> <td>4.0 nA</td>	OP-16A					4.0 nA
PM-155A 50 pA 25 nA PM-155A 10 pA 11 PM-155A 50 pA 25 nA PM-155A 10 pA 11 PM-155A 50 pA 25 nA PM-155A 10 pA 11 PM-155 100 pA 7.5 nA OP-15B 20 pA 66 OP-15B 100 pA 7.5 nA OP-16B 20 pA 66 PM-155 100 pA 50 nA PM-157 20 pA 66 PM-157 100 pA 50 nA PM-157 20 pA 20 OP-15C 200 pA 10 nA OP-16C 50 pA 90 OP-15C 200 pA 10 nA OP-17C 50 pA 90 OP-17C 200 pA 0 a 0 a 0 a 0 a 0 a OP-17E 50 pA 0 4 nA OP-17E 10 pA 0 a 0 a OP-17E 50 pA 0 4 nA OP-17E 10 pA 0 a 0 a OP-17E 50 pA 0 4 nA OP-1						4.0 nA
PM-155A 50 pA 25 nA PM-157A 10 pA 11 QP-15B 100 pA 7.5 nA QP-15B 20 pA 66 QP-15B 100 pA 7.5 nA QP-15B 20 pA 66 QP-17B 100 pA 7.5 nA QP-15B 20 pA 66 QP-17B 100 pA 50 nA PM-155 20 pA 20 PM-156 100 pA 50 nA PM-156 20 pA 22 QP-16C 200 pA 10 nA QP-16C 50 pA 30 QP-16C 200 pA 10 nA QP-16C 50 pA 30 QP-16C 200 pA 0 nA QP-16C 50 pA 30 QP-16C 200 pA 0 nA QP-16C 10 pA 0.3 QP-16C 200 pA 0 nA QP-16C 10 pA 0.3 QP-15E 50 pA 0 4 nA QP-15E 10 pA 0.3 QP-15F 50 pA 0 4 nA QP-17E 10 pA 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 nA</td>						10 nA
PM-157A 50 pA 25 nA PM-157A 10 pA 11 0P-156 100 pA 7.5 nA 0P-158 20 pA 66 0P-156 100 pA 7.5 nA 0P-158 20 pA 66 PM-155 100 pA 50 nA PM-155 20 pA 20 PM-155 100 pA 50 nA PM-156 20 pA 20 0P-166 200 pA 50 nA PM-156 20 pA 20 0P-166 200 pA 10 nA 0P-166 50 pA 20 0P-156 200 pA 10 nA 0P-167 50 pA 20 0P-156 50 pA 0.4 nA 0P-166 10 pA 0.3 0P-156 50 pA 0.4 nA 0P-156 10 pA 0.3 0P-156 50 pA 0.4 nA 0P-156 10 pA 0.3 0P-156 50 pA 0.4 nA 0P-156 10 pA 0.3 0P-156 50 pA 0.4 nA 0P-156 10 pA 0.3 <						
OP-15B 100 pA 7.5 nA OP-15B 20 pA 64 OP-15B 100 pA 7.5 nA OP-17B 20 pA 64 OP-17B 100 pA 50 nA PM-155 20 pA 64 PM-156 100 pA 50 nA PM-156 20 pA 22 OP-16B 20 pA 10 nA OP-17B 20 pA 22 OP-16C 200 pA 10 nA OP-16C 50 pA 23 OP-17C 200 pA 10 nA OP-16C 50 pA 34 OP-17C 200 pA 0 nA OP-16E 10 pA 0.3 OP-15E 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-15E 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-15E 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-17E 50 pA 5.0 nA PM-355A 10 pA 1.0 PM-356A 50 pA 5.0 nA OP-16E 10 pA 1.0 <						10 nA
OP-168 100 pA 7.5 nA OP-178 20 pA 50 PM-155 100 pA 50 nA PM-155 20 pA 22 PM-156 100 pA 50 nA PM-155 20 pA 22 PM-157 100 pA 50 nA PM-156 20 pA 22 PM-157 100 pA 50 nA PM-157 20 pA 22 PM-156 200 pA 10 nA OP-16C 50 pA 92 OP-172 200 pA 10 nA OP-16C 50 pA 92 OP-172 200 pA 10 nA OP-16C 50 pA 92 OP-16E 50 pA 0.4 nA OP-17E 10 pA 0.3 OP-16E 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-16F 10 pA 0.4 nA OP-17E 10 pA 0.3 OP-16F 10 pA 0.4 nA OP-16F 10 pA 0.4 OP-16F 10 pA 0.4 nA OP-16F 20 pA 0.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 nA</td>						10 nA
OP-17B 100 pA 7.5 nA OP-17B 20 pA 6.6 PM-155 100 pA 50 nA PM-155 20 pA 22 PM-156 100 pA 50 nA PM-156 20 pA 22 QP-15C 200 pA 10 nA OP-15C 50 pA 94 QP-17C 200 pA 10 nA OP-16C 50 pA 94 QP-17C 200 pA 10 nA OP-16C 50 pA 94 QP-17C 200 pA 0 nA OP-17E 0 pA 0.3 QP-17C MAX, T_y = 25° C MAX, T_y = 70° C DEVICE MAX, T_y = 25° C						6.0 nA
PM-155 100 pA 50 nA PM-155 20 pA 22 PM-156 100 pA 50 nA PM-157 20 pA 21 PM-157 100 pA 50 nA PM-155 20 pA 22 OP-16C 200 pA 10 nA OP-15C 50 pA 94 OP-17C 200 pA 10 nA OP-16C 50 pA 94 OP-17C 200 pA 10 nA OP-16C 50 pA 94 OP-16C 200 pA 10 nA OP-16C 50 pA 94 OP-16E 50 pA 0.4 nA OP-17C DEVICE MAX, T_J = 26° C MAX, T_J 77° C DFVIEE 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-16F 100 pA 0.4 nA OP-17E 10 pA 0.3 OP-16F 100 pA 0.6 nA OP-16F 10 pA 0.4 OP-16F 100 pA 0.6 nA OP-16F 20 pA 0.46						6.0 nA
PM-156 100 pA 50 nA PM-157 20 pA 22 QP-15C 200 pA 10 nA QP-15C 50 pA 94 QP-15C 200 pA 10 nA QP-15C 50 pA 94 QP-17C 200 pA 10 nA QP-16C 50 pA 94 QP-17C 200 pA 10 nA QP-16C 50 pA 94 QP-17C 200 pA 10 nA QP-17C 50 pA 94 QP-17C 200 pA 0.4 nA QP-17C 50 pA 0.3 QP-15E 50 pA 0.4 nA QP-15E 10 pA 0.3 QP-15E 50 pA 0.4 nA QP-15E 10 pA 0.3 QP-15E 50 pA 50 nA PM-356A 10 pA 1.0 PM-356A 50 pA 50 nA QP-16E 10 pA 0.3 QP-15E 50 pA 0.4 nA QP-15E 10 pA 1.0 PM-356A 50 pA 0.4 nA QP-15E 20 pA 0.4 nA						6.0 nA
PM-157 100 pA 50 nA PM-157 20 pA 10 nA OP-15C 200 pA 10 nA OP-15C 50 pA 94 OP-16C 200 pA 10 nA OP-16C 50 pA 94 OP-16C 200 pA 10 nA OP-16C 50 pA 94 OP-16C 200 pA 10 nA OP-16C 50 pA 94 OP-16C 50 pA 04 nA OP-16E 10 pA 0.3 OP-15E 50 pA 04 nA OP-16E 10 pA 0.3 OP-15E 50 pA 04 nA OP-16E 10 pA 0.3 OP-15E 50 pA 0.4 nA OP-16E 10 pA 0.3 OP-16F 10 pA 0.4 nA OP-16E 10 pA 0.4 OP-16F 100 pA 0.6 nA OP-16F 20 pA 0.4 OP-16F 100 pA 0.6 nA OP-16F 20 pA 0.4 OP-16C 200 pA 8.0 nA OP-16F 20 pA 0.4						20 nA
OP-15C 200 pA 10 nA OP-16C 50 pA 90 OP-16C 200 pA 10 nA OP-16C 50 pA 90 OP-17C 200 pA 10 nA OP-17C 50 pA 90 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT COMMERCIAL TEMPERATURE RANGE DEVICE MAX, T _J = 25°C MAX, T _J = 70°C DEVICE MAX, T _J = 25°C MAX, T _J = 70°C DEVICE MAX, T _J = 25°C MAX, T _J = 70°C DEVICE MAX, T _J = 25°C MAX, T _J = 70°C PM-356A 50 pA 0.4 nA OP-15E 10 pA 0.3 OP-16E 10 pA 0.3 OP-17E 10 pA 0.3 PM-356A 50 pA 5.0 nA PM-356A 10 pA 1.0 OP-16F 100 pA 0.6 nA OP-17F 20 pA 0.45 OP-16F 100 pA 0.6 nA OP-17F 20 pA 0.45 OP-16G 200 pA 0.8 nA OP-16F 20 pA 0.45						20 nA
OP-16C 200 pA 10 nA OP-16C 50 pA 91 OP-17C 200 pA 10 nA OP-17C 50 pA 91 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE COMMERCIAL TEMPERATURE RANGE COMMERCIAL TEMPERATURE RANGE 0P-16E 50 pA 0.4 nA 0P-16E 10 pA 0.3 0P-16E 50 pA 0.4 nA 0P-16E 10 pA 0.3 0P-16E 50 pA 0.4 nA 0P-16E 10 pA 0.3 0P-17E 50 pA 5.0 nA 0P-16E 10 pA 0.3 0P-17E 10 pA 0.4 nA 0P-16E 10 pA 0.3 0P-17E 10 pA 0.4 nA 0P-16E 10 pA 0.4 0P-16F 10 pA 0.6 nA 0P-16E 20 pA 0.4 0P-16F 10 pA 0.6 nA 0P-17F 20 pA 0.46 0P-17G 20 DA 0.8 nA 0P-17G 50 pA 2.0 0P-135A 20 DA 0.8 nA				PM-157	20 pA	20 nA
OP-17C 200 pA 10 nA OP-17C 50 pA 9.0 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, T ₃ = 25°C MAX, T ₃ = 70°C DEVICE MAX, T ₃ = 25°C MAX, T ₃ = 70°C DEVICE MAX, T ₃ = 25°C MAX, T ₃ = 70°C DEVICE MAX, T ₃ = 25°C MAX, T ₃ = 70°C DP-17E 10 pA 0.3 0P-16E 50 pA 0.4 nA 0P-16E 10 pA 0.3 0P-17E 10 pA 0.3 0P-16E 50 pA 5.0 nA 0P-17E 10 pA 0.3 0P-17E 10 pA 0.3 0P-16F 100 pA 0.6 nA 0P-16F 20 pA 0.4 nA 0P-16F 20 pA 0.4 nA 0P-16F 100 pA 0.6 nA 0P-16F 20 pA 0.4 nA 0P-16F 20 pA 0.4 nA 0P-16G 200 pA 0.8 nA 0P-16G 50 pA 2.0 nA 0.6 nA 0P-16G 200 pA 0.8 nA 0P-16G 50 pA 2.0 nA	OP-15C	200 pA	10 nA	OP-15C	50 pA	9.0 nA
OP-17C 200 pA 10 nA OP-17C 50 pA 9.4 COMMERCIAL TEMPERATURE RANGE INPUT BLAS CURRENT DEVICE MAX, T _J = 25°C MAX, T _J = 70°C DEVICE MAX, T _J = 25°C MAX, T _J = 70°C OP-16E 50 pA 0.4 nA OP-17E 10 pA 0.3 OP-16E 50 pA 0.4 nA OP-17E 10 pA 0.3 OP-16E 50 pA 5.0 nA PM-356A 10 pA 0.3 PM-356A 50 pA 5.0 nA PM-356A 10 pA 1.0 PM-356A 50 pA 0.6 nA OP-16F 20 pA 0.4 A OP-16F 100 pA 0.6 nA OP-16F 20 pA 0.4 A OP-16G 200 pA 0.8 nA OP-16G 50 pA 0.4 A OP-16G 200 pA 0.8 nA OP-16G 50 pA 0.2 O OP-16G 200 pA 0.8 nA OP-16G 50 pA 2.0 O PM-356 200 pA 1.0 nA 0.0 P.15A 22 pA 7.<	OP-16C	200 pA	10 nA	OP-16C	50 pA	9.0 nA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	OP-17C	200 pA	10 nA			9.0 nA
INPUT BIAS CURRENT INPUT OFFSET CURRENT DEVICE MAX, $T_J = 25^{\circ}$ C MAX, $T_J = 25^{\circ}$ C <th< td=""><td></td><td>•</td><td>1</td><td></td><td></td><td></td></th<>		•	1			
INPUT BIAS CURRENT INPUT OFFSET CURRENT DEVICE MAX, $T_{J} = 25^{\circ}$ C MAX, $T_{J} = 25^{$	(COMMERCIAL TEMPERATUR	FRANCE	6	MMERCIAL TEMPERATU	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DEVICE	MAX, T _J = 25°C	MAX, T _J = 70°C	DEVICE	MAX, T _j = 25°C	MAX, T _J = 70°C
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	OP.155	50 0 4	04.54	OP.155	10 = 4	0.3 nA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						0.3 nA
PM.355A 50 p.A 5.0 n.A PM.355A 10 p.A 1.0 PM.356A 50 p.A 5.0 n.A PM.357A 10 p.A 1.0 PM.357A 50 p.A 5.0 n.A PM.357A 10 p.A 1.0 OP-16F 100 p.A 0.6 n.A OP-16F 20 p.A 0.45 OP-16F 100 p.A 0.6 n.A OP-16F 20 p.A 0.45 OP-16G 200 p.A 0.8 n.A OP-16G 50 p.A 0.65 OP-16G 200 p.A 0.8 n.A OP-16G 50 p.A 0.65 OP-16G 200 p.A 8.0 n.A PM-355 50 p.A 2.0 PM.357 200 p.A 8.0 n.A PM-357 50 p.A 2.0 PM.357 200 p.A 8.0 n.A PM-357 50 p.A 2.0 PM-357 200 p.A 8.0 n.A PM-357 50 p.A 2.0 PM-357 200 p.A 11 n.A OP-16A 22 p.A 7 OP-158 100 p.A 11 n.A O						
PM:356A 50 pA 5.0 nA PM:357A 10 pA 1.0 PM:357A 50 pA 5.0 nA 0P:15F 100 pA 0.6 nA 0P:15F 20 pA 0.4 0P:16F 100 pA 0.6 nA 0P:15F 20 pA 0.4 0.6 0P:16F 20 pA 0.8 nA 0P:17F 20 pA 0.4 0.6 0P:16G 200 pA 0.8 nA 0P:16G 50 pA 0.6 0.6 0P:17G 200 pA 0.8 nA 0P:17G 50 pA 0.6 0.6 PM:356 200 pA 8.0 nA PM:355 50 pA 2.0 0.6 PM:357 200 pA 8.0 nA PM:357 50 pA 2.0 0.6 PM:357 200 pA 8.0 nA PM:357 50 pA 2.0 0.6 PM:357 200 pA 8.0 nA PM:357 50 pA 2.0 0.6 PM:357 200 pA 11 nA 0P:15A 21 pA 7. 0P:15A 110 pA	-					0.3 nA
MI357A S0 pA S0 nA PM-357A 10 pA 1.0 0P-15F 100 pA 0.6 nA 0P-15F 20 pA 0.4 0P-15F 100 pA 0.6 nA 0P-15F 20 pA 0.46 0P-17F 100 pA 0.6 nA 0P-17F 20 pA 0.46 0P-16G 200 pA 0.8 nA 0P-16G 50 pA 0.66 0P-16G 200 pA 0.8 nA 0P-17G 50 pA 0.66 PM-355 50 pA 8.0 nA 0P-17G 50 pA 2.0 PM-357 200 pA 8.0 nA 0P-17G 50 pA 2.0 PM-357 200 pA 8.0 nA 0P-17G 50 pA 2.0 PM-357 200 pA 8.0 nA 0P-17A 2.0 2.0 PM-357 50 pA 2.0 2.0 2.0 2.0 PM-357 50 pA 1.0 0P-15A 2.0 2.0 0P-15A 110 pA 9.0 nA 0P-15A 2.0 2.0						1.0 nA
MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 125°C DEVICE MAX, T _A = 25°C MAX, T _A = 125°C OP-15G 200 pA 9.0 nA 0.0 nA 0P-15A 22 pA 7. OP-15A 110 pA 9.0 nA 0P-15A 22 pA 7. OP-15B 200 pA 11 nA 0P-17A 25 pA 8. 0P-15B 200 pA 14 nA 0P-17B 25 pA 1. 0P-15C 400 pA 1.9 nA 0P-17B 25 pA 1. 0P-15C 400 pA 1.9 nA 0P-17C 25 pA 1. 2. 0P-15C 400 pA 1.9 nA 0P-16C 1.2 pA 1. 1. 0P-16C 130 pA 1.1 nA 0P-16C 1.2 pA 2. <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0 nA</td>						1.0 nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1.0 nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OP-15F	100 pA	0.6 nA			0.45 nA
OP:15G 200 p.A 0.8 n.A 0.9 n.A 0.9 n.A 0.9 n.A 0.9 n.A 0.8 n.A 0.9 n.BG 50 p.A 0.8 s.0 0.8 n.A 0.9 n.BG 50 p.A 0.6 s.0 0.6 s.0 0.9 n.BG 0.9 n.BG 0.9 n.BG 0.9 n.BG 0.9 n.BG 0.8 n.A 0.9 n.BG 50 p.A 0.6 s.0 0.8 n.A 0.9 n.BG 0.8 n.A 0.9 n.BG 50 p.A 0.8 n.A 0.9 n.BG 0.8 n.A 0.9 n.BS 0.9 n.B 0.8 n.A 0.9 n.B 0.8 n.A 0.9 n.B 0.8 n.A 0.9 n.B 0.8 n.A 0.9 n.B 2.0 n.B </td <td>OP-16F</td> <td>100 pA</td> <td>0.6 nA</td> <td></td> <td></td> <td>0.45 nA</td>	OP-16F	100 pA	0.6 nA			0.45 nA
OP:16G 200 pA 0.8 nA 0.9 nA 0.8 nA 0.8 nA 0.9 nA	OP-17F	100 pA	0.6 nA		20 pA	0.45 nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OP-15G	200 pA	0.8 nA	OP-15G	50 pA	0.65 nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				OP-16G	50 pA	0.65 nA
PM:355 200 pA 8.0 nA PM:355 50 pA 2.0 PM:356 200 pA 8.0 nA PM:356 50 pA 2.0 PM:357 200 pA 8.0 nA PM:356 50 pA 2.0 MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 125°C DEVICE MAX, T _A = 25°C MAX, T _A 0P:15A 110 pA 9.0 nA 0P:15A 22 pA 7 0P:16A 130 pA 11 nA 0P:15A 22 pA 7 0P:16B 200 pA 14 nA 0P:15B 40 pA 1 0P:16B 250 pA 18 nA 0P:16B 50 pA 14 0P:16C 500 pA 25 nA 0P:15C 100 pA 1 0P:16C 500 pA 25 nA 0P:16C 125 pA 2 0P:16C 500 pA 25 nA 0P:16C 125 pA 2 0P:16E 110 pA				OP-17G	50 pA -	0.65 nA
PM:356 200 pA 8.0 nA PM:357 200 pA 8.0 nA PM:357 200 pA 8.0 nA PM:357 50 pA 2.0 MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 125°C DEVICE MAX, T _A = 25°C MAX, T _A 0P:15A 110 pA 9.0 nA 0P:15A 22 pA 7. 0P:16A 130 pA 11 nA 0P:15A 22 pA 7. 0P:16B 250 pA 18 nA 0P:15B 40 pA 1 0P:16B 250 pA 18 nA 0P:15C 100 pA 1 0P:15C 400 pA 25 nA 0P:16C 125 pA 2 0P:17C 500 pA 25 nA 0P:16C 125 pA 2 0P:17C 500 pA 25 nA 0P:17C 125 pA 2 0P:16C 130 pA 0.9 nA 0P:16C 125 pA 2 0P:15E 110 pA <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.0 nA</td>						2.0 nA
Military Temperature Range INPUT BIAS CURRENT Military Temperature Range INPUT BIAS CURRENT DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 125^{\circ}$ C Device MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 125^{\circ}$ C OP-15A 110 pA 9.0 nA OP-15A 220 pA 7. OP-15A 110 pA 9.0 nA OP-15A 22 pA 7. OP-15A 130 pA 11 nA OP-15A 22 pA 7. OP-16B 250 pA 18 nA OP-15B 200 pA 14 nA OP-16B 50 pA 14. OP-16C 500 pA 18 nA OP-16C 120 pA 14. OP-16C 120 pA 14. OP-16C 500 pA 25 nA OP-16C 125 pA 2 OP-16C 500 pA 25 nA OP-16C 125 pA 2 OP-17C 500 pA 25 nA OP-16C 125 pA 2 OP-15E 110 pA 0.75 nA OP-15E 22 pA 0. OP-16E 130 pA 0.9 nA 0.9 nA						2.0 nA
MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 125^{\circ}$ C DEVICE MAX, $T_A = 25^{\circ}$ C MA						2.0 nA
INPUT BIAS CURRENT INPUT OFFSET CURRENT DEVICE MAX, $T_A = 25^\circ$ C <	,					
INPUT BIAS CURRENT INPUT OFFSET CURRENT DEVICE MAX, $T_A = 25^{\circ}C$ MAX, $T_$		MILITARY TEMPERATURI	RANGE		MU ITARY TEMPERATUR	FBANGE
OP-15A 110 pA 9.0 nA OP-15A 22 pA 7. OP-16A 130 pA 11 nA OP-16A 25 pA 8. OP-17A 130 pA 11 nA OP-16A 25 pA 8. OP-15B 200 pA 14 nA OP-15B 40 pA 1 OP-16B 250 pA 18 nA OP-16B 50 pA 14. OP-17C 250 pA 18 nA OP-16C 100 pA 14. OP-15C 400 pA 19 nA OP-16C 100 pA 1 OP-17C 500 pA 25 nA OP-16C 125 pA 2 OP-17C 500 pA 25 nA OP-17C 125 pA 2 OP-16C 110 pA 0.75 nA OP-16E 22 pA 0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEVICE	MAX, T _A = 25°C	MAX, T _A = 125°C	DEVICE	MAX, T _A = 25°C	MAX, T _A = 125°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OP-15A	110 DA	9.0 nA	OP-15A	22 nA	7.0 nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.5 nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.5 nA
OP-16B 250 pA 18 nA OP-16B 50 pA 14 OP-17B 250 pA 18 nA OP-16B 50 pA 14 OP-17B 250 pA 18 nA OP-17B 50 pA 14 OP-17C 400 pA 19 nA OP-17C 100 pA 1 OP-17C 500 pA 25 nA OP-16C 100 pA 1 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 70°C DEVICE MAX, T _A = 25°C MAX, T _A OP-16E 110 pA 0.75 nA OP-15E 22 pA 0.0 OP-17E 130 pA 0.9 nA OP-16E 25 pA 0.0 OP-15F 200 pA 1.1 nA OP-16F 50 pA 1.1 OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.1						11 nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						14.5 nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						14.5 nA
OP-16C 500 pA 25 nA OP-16C 125 pA 22 OP-17C 500 pA 25 nA OP-16C 125 pA 22 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT COMMERCIAL TEMPERATURE RANGE DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 70^{\circ}$ C DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 70^{\circ}$ C OP-15E 110 pA 0.75 nA OP-16E 22 pA 0.0 OP-17E 130 pA 0.9 nA OP-16E 25 pA 0.0 OP-15F 200 pA 1.1 nA OP-16F 250 pA 0.0 OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.1						14.5 hA 17 nA
OP-17C 500 pA 25 nA OP-17C 125 pA 2 COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 70°C DEVICE MAX, T _A = 25°C MAX, T _A = 70°C OP-15E 110 pA 0.75 nA OP-15E 22 pA 0.0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0.0 OP-15F 130 pA 0.9 nA OP-17E 25 pA 0.0 OP-15F 200 pA 1.1 nA OP-16F 25 pA 0.0 OP-16F 250 pA 1.4 nA OP-16F 50 pA 1.1 OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.1						
COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 70^{\circ}$ C DEVICE MAX, $T_A = 25^{\circ}$ C MAX, $T_A = 70^{\circ}$ C OP-15E 110 pA 0.75 nA OP-15E 22 pA 0.00000000000000000000000000000000000						22 nA
INPUT BIAS CURRENT INPUT OFFSET CURRENT DEVICE MAX, T _A = 25°C MAX, T _A = 70°C DEVICE MAX, T _A = 25°C MAX, T _A = 70°C OP-15E 110 pA 0.75 nA OP-15E 22 pA 0.0 OP-16E 130 pA 0.9 nA OP-16E 25 pA 0.0 OP-17E 130 pA 0.9 nA OP-17E 25 pA 0.0 OP-15F 200 pA 1.1 nA OP-15F 40 pA 0.0 OP-16F 250 pA 1.4 nA OP-17F 50 pA 1.1 OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.1	OP-17C	500 pA	25 nA	OP-17C	125 pA	22 nA
OP-15E 110 pA 0.75 nA OP-15E 22 pA 0. OP-16E 130 pA 0.9 nA OP-16E 25 pA 0. OP-17E 130 pA 0.9 nA OP-17E 25 pA 0. OP-15F 200 pA 1.1 nA OP-15F 40 pA 0. OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.						
OP-15E 110 pA 0.75 nA OP-15E 22 pA 0. OP-16E 130 pA 0.9 nA OP-16E 25 pA 0. OP-17E 130 pA 0.9 nA OP-17E 25 pA 0. OP-15F 200 pA 1.1 nA OP-15F 40 pA 0. OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.	DEVICE	MAX, T _A = 25°C	MAX, T _A = 70°C	DEVICE	MAX, T _A = 25°C	MAX, T _A = 70°C
OP-16E 130 pA 0.9 nA OP-16E 25 pA 0. OP-17E 130 pA 0.9 nA OP-17E 25 pA 0. OP-17F 130 pA 0.9 nA OP-17E 25 pA 0. OP-15F 200 pA 1.1 nA OP-15F 40 pA 0. OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.	00.155	110		00.155	22 - 4	0 FF - 4
OP-17E 130 pA 0.9 nA OP-17E 25 pA 0. OP-15F 200 pA 1.1 nA OP-15F 40 pA 0. OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.		•		1		0.55 nA
OP-15F 200 pA 1.1 nA OP-15F 40 pA 0. OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.						0.7 nA
OP-16F 250 pA 1.4 nA OP-16F 50 pA 1. OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.						0.7 nA
OP-17F 250 pA 1.4 nA OP-17F 50 pA 1.						0.8 nA
						1.1 nA
OP-15G 400 pA 15 pA 0P-15G 100 pA 1		•				1.1 nA
	OP-15G	400 pA	1.5 nA	OP-15G	100 pA	1.2 nA
	OP-16G	500 pA	2.0 nA	OP-16G	125 pA	1.7 nA
						1.7 nA
					•	

SINGLE BIFET OPERATIONAL AMPLIFIER SELECTION GUIDE

	MILITARY TEMPERATURI INPUT OFFSET VOLT		SUPP	MILITARY TEM LY CURRENT	INPUT O	RANGE FFSET VOLTAGE IFT (TCV _{OS})
DEVICE	MAX, T _A = 25°C	MAX, T _A = FULL	DEVICE	MAX, T _A = 25°C	DEVICE	MAX, T _A = FULL
OP-15A	0.5 mV	0.9 mV	DETIGE	MAR, 'A 200	DEVICE	
OP-16A	0.5 mV	0.9 mV	OP-15A	4 mA	OP-15A	5.0 μV/°C
OP-17A	0.5 mV	0.9 mV	OP-15B	4 mA	OP-16A	5.0 μV/°C
OP-15B	1.0 mV	2.0 mV	PM-155A	4 mA	OP-17A	5.0 µV/°C
OP-16B	1.0 mV	2.0 mV	PM-155	4 mA	PM-155A	5.0 µV/°C
OP-17B	1.0 mV	2.0 mV	OP-15C	5 mA	PM-156A	5.0 μV/°C
PM-155A	2.0 mV	2.5 mV	OP-16A	7 mA	PM-157A	5.0 µV/°C
PM-156A	2.0 mV	2.5 mV	OP-16B	7 mA	OP-15B	10 µV/°C
PM-157A	2.0 mV	2.5 mV	OP-17A	7 mA	OP-16B	10 µV/°C
OP-15C	3.0 mV	4.5 mV	OP-17B	7 mA	OP-17B	10 µV/°C
OP-16C	3.0 mV	4.5 mV	PM-156A	7 mA	OP-15C	*15 μV/°C
OP-17C	3.0 mV	4.5 mV	PM-156	7 mA	OP-16C	*15 μV/°C
PM-155	5.0 mV	7.0 mV	PM-157A	7 mA	OP-17C	*15 μV/°C
PM-156	5.0 mV	7.0 mV	PM-157	7 mA		
PM-157	5.0 mV	7.0 mV	OP-16C	8 mA		
			OP-17C	8 mA		
с	OMMERCIAL TEMPERATI					
	INPUT OFFSET VOLT		SUPP	LY CURRENT	INPUT OF DRI	FSET VOLTAGE
DEVICE	MAX, T _A = 25°C	MAX, T _A = FULL	DEVICE	MAX, T _A = 25°C	DEVICE	MAX, T = FULL
OP-15E	0.5 mV	0.75 mV		A		•
OP-16E	0.5 mV	0.75 mV	OP-15E	4 mA	OP-15E	5.0 μV/°C
OP-17E	0.5 mV	0.75 mV	OP-15F	4 mA	OP-16E	5.0 µ∨/°C
OP-15F	1.0 mV	1.5 mV	PM-355A	4 mA	OP-17E	5.0 µV/°C
OP-16F	1.0 mV	1.5 mV	PM-355	4 mA	PM-355A	5.0 μV/°C
OP-17F	1.0 mV	1.5 mV	OP-15G	5 mA	PM-356A	5.0 μV/°C
PM-355A	2.0 mV	2.3 mV	OP-16E	7 mA	PM-357A	5.0 µV/°C
PM-356A	2.0 mV	2.3 mV	OP-16F	7 mA	OP-15F	10 µV/° C
PM-357A	2.0 mV	2.3 mV	OP-17E	7 mA	OP-16F	10 µV/°℃
OP-15G	3.0 mV	3.8 mV	OP-17F	7 m A.	OP-17F	10 µV/°C
OP-16G	3.0 mV	3.8 mV	PM-356A	7 mA	OP-15G	*15 μV/°C
OP-17G	3.0 mV	3.8 mV	PM-357A	7 mA	OP-16G	*15 µV/°C
PM-355	10 mV	13 mV	OP-16G	8 mA	OP-17G	*15 µV/°C
PM-356	10 mV	13 mV	OP-17G	8 mA	PM-355	N/S
PM-357	10 mV	13 mV	PM-356	10 mA	PM-356	N/S
			PM-357	10 mA	PM-357	N/S
			*Parameter specificati	not 100% tested. 90%	% of all units r	neet these
				t specified.		

SLEW RATE		COMMERCIAL TEMPERATURE RAN SLEW RATE		
DEVICE	MIN, $T_A = 25^{\circ}C$	DEVICE	MIN, T _A = 25°C	
OP-17A	*45 V/μsec	OP-17E	*45 V/µsec	
PM-157A	*40 V/µsec	PM-357A	*40 V/µsec	
OP-17B	*35 V/µsec	OP-17F	*35 V/µsec	
PM-157	*30 V/µsec	OP-17G	*25 V/µsec	
OP-17C	*25 V/µsec	OP-16E	18 V/µsec	
OP-16A	18 V/µsec	OP-16F	12 V/µsec	
OP-16B	12 V/µsec	OP-15E	10 V/µsec	
OP-15A	10 V/µsec	PM-356A	10 V/µsec	
PM-156A	10 V/µsec	OP-16G	9.0 V/µsec	
OP-16C	9.0 V/µsec	OP-15F	7.5 V/µsec	
OP-15B	7.5 V/µsec	OP-15G	5.0 V/µsec	
PM-156	7.5 V/µsec	PM-355A	5.0 V/µsec	
OP-15C	5.0 V/µsec	PM-355	N/S	
PM-155A	3.0 V/µsec	PM-356	N/S	
	·	PM-357	N/S	

*Closed Loop Gain = 5 N/S - Not specified.

SINGLE LOW POWER OPERATIONAL AMPLIFIER SELECTION GUIDE

DEVICE

MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT						
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE				
OP-08A	2.0 nA	3.0 nA				
OP-08B	2.0 nA	3.0 nA				
OP-12A	2.0 nA	3.0 nA				
OP-12B	2.0 nA	3.0 nA				
PM-108A	2.0 nA	3.0 nA				
PM-108	2.0 nA	3.0 nA				
OP-08C	5.0 nA	10.0 nA				
OP-12C	5.0 nA	10.0 nA				
	COMMERCIAL TEM INPUT BIAS					
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE				
OP-08E	2.0 nA	2.6 nA				
OP-12E	2.0 nA	2.6 nA				
OP-08F	4.0 nA	5.2 nA				
OP-12F		5.2 nA				
OP-08G	5.0 nA	6.5 nA				
OP-12G	5.0 nA	6.5 nA				
PM-308A		10.0 nA				
PM-308	7.0 nA	10.0 nA				

	OP-08A	0.2 nA	0.4 nA
	OP-08B	0.2 nA	0.4 nA
	OP-12A	0.2 nA	0.4 nA
	OP-12B	0.2 nA	0.4 nA
	PM-108A	0.2 nA	0.4 nA
	PM-108	0.2 nA	0.4 nA
	OP-08C	0.5 nA	1.0 nA
	OP-12C	0.5 nA	1.0 nA
		COMMERCIAL TEM	IPERATURE RANGE T CURRENT
:	DEVICE	MAX, T _ = 25°C	MAX OVER TEMPERATURE
		~	
	OP-08E	0.2 nA	0.3 nA
	OP-12E	0.2 nA	0.3 nA
	OP-08F	0.4 nA	0.6 nA
	OP-12F	0.4 nA 0.4 nA	0.6 nA
	OP-08G	0.5 nA	0.7 nA
	OP-08G OP-12G	0.5 nA 0.5 nA	0.7 nA 0.7 nA
	OP-08G OP-12G PM-308A	0.5 nA 0.5 nA 1.0 nA	0.7 nA 0.7 nA 1.5 nA
	OP-08G OP-12G	0.5 nA 0.5 nA	0.7 nA 0.7 nA
	OP-08G OP-12G PM-308A	0.5 nA 0.5 nA 1.0 nA	0.7 nA 0.7 nA 1.5 nA
	OP-08G OP-12G PM-308A	0.5 nA 0.5 nA 1.0 nA	0.7 nA 0.7 nA 1.5 nA

MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT

MAX OVER TEMPERATURE

MAX, T_A = 25°C

SUPP	LY CURRENT	PERATURE RANGE INPUT OFFSET VOLTAGE DRIFT (TCV _{OS})		
DEVICE	MAX, T _A = 25°C	DEVICE	MAX OVER TEMPERATURE	
OP-08A	0.6 mA	OP-08A	2.5 μV/°C	
OP-08B	0.6 mA	OP-12A	2.5 μ V/° C	
OP-12A	0.6 mA	OP-08B	3.5 μV/°C	
OP-12B	0.6 mA	OP-12B	3.5 μV/°C	
PM-108A	0.6 mA	PM-108A	5.0 μV/°C	
PM-108	0.6 mA	OP-08C	10 µV/° C	
OP-08G	0.8 mA	OP-12C	10 µV/° C	
OP-12G	0.8 mA	PM-108	15 µV/° C	

INPUT OFFSET VOLTAGE

SUPPLY CURRENT			DRIFT (TCVOS)		
	DEVICE	MAX, T _A = 25°C	DEVICE	MAX, OVER TEMPERATURE	
	OP-08E	0.6 mA	OP-08E	2.5 µV/°C	
	OP-08F	0.6 mA	OP-12E	2.5 µV/°C	
	OP-12E	0.6 mA	OP-08F	3.5 µV/°C	
	OP-12F	0.6 mA	OP-12F	3.5 µ ∨/° C	
	OP-08G	0.8 mA	PM-308A	5.0 µV/°C	
	OP-12G	0.8 mA	OP-08G	10 µV/°C	
	PM-308A	0.8 mA	OP-12G	10 µV/°C	
	PM-308	0.8 mA	PM-308	30 µV/°C	

MILITARY	TEMPERATURE RANGE	
INPUT	OFFSET VOLTAGE	

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-08A	0.15 mV	0.35 mV
OP-12A	0.15 mV	0.35 mV
OP-08B	0.30 mV	0.60 mV
OP-12B	0.30 mV	0.60 mV
PM-108A	0.50 mV	1.0 mV
OP-08C	1.0 mV	2.0 mV
OP-12C	1.0 mV	2.0 mV
PM-108	2.0 mV	3.0 mV

COMMERCIAL TEMPERATURE RANGE INPUT OFFSET VOLTAGE

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-08E	0.15 mV	0.26 mV
OP-12E	0.15 mV	0.26 mV
OP-08F	0.30 mV	0.45 mV
OP-12F	0.30 mV	0.45 mV
PM-308A	0.50 mV	0.73 mV
OP-08G	1.0 mV	1.4 mV
OP-12G	1.0 mV	1.4 mV
PM-308	7.5 mV	10.0 mV

SINGLE LOW POWER OPERATIONAL AMPLIFIER SELECTION GUIDE

м	ILITARY TEMPERATURE R OPEN LOOP GAIN	ANGE		MILITARY TEMPERATURE OPEN LOOP GAIN	RANGE	
DEVICE	MIN, T _A = 25°C R _L ≥ 10KΩ	MIN OVER TEMPERATURE	DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	
OP-08A	80 V/mV	*40 V/mV	OP-08A	*50 V/mV	**40 V/mV	
DP-08B	80 V/mV	*40 V/mV	OP-08B	*50 V/mV	**40 V/mV	
DP-12A	80 V/mV	*40 V/mV	OP-12A	*50 V/mV	**40 V/mV	
DP-12B	80 V/mV	*40 V/mV	OP-12B	*50 V/mV	**40 V/mV	
M-108A	80 V/mV	**40 V/mV	OP-08C	N/S	**15 V/mV	
M-108	50 V/mV	**25 V/mV	OP-12C	N/S	**15 V/mV	
DP-08C	40 V/mV	*15 V/mV				
DP-12C	40 V/mV	*15 V/mV				
			*R _L ≥ 2KΩ			
*R _I ≥5KΩ			**R ₁ ≥ 5KΩ			
**Ri≥10KΩ			N/S – Not specified.			
CON	MERCIAL TEMPERATURE	RANGE	co	MMERCIAL TEMPERATUR OPEN LOOP GAIN	E RANGE	
DEVICE	MIN, T _A = 25°C R _L ≥ 10KΩ	MIN OVER TEMPERATURE RL≥10KΩ	DEVICE	MIN, T _A = 25°C R _L ≥ 2KΩ	MIN OVER TEMPERATURE RL ≥ 2KΩ	
OP-08E	80 V/mV	60 V/mV	OP-08E	50 V/mV	25 V/mV	
OP-08F	80 V/mV	60 V/mV	OP-12E	50 V/mV	25 V/mV	
OP-12E	80 V/mV	60 V/mV	OP-08F	30 V/mV	15 V/mV	
OP-12F	80 V/mV	60 V/mV	OP-12F	30 V/mV	15 V/mV	
PM-308A	80 V/mV	60 V/mV	OP-08G	N/S	N/S	
OP-08G	40 V/mV	25 V/mV	OP-12G	N/S	N/S	
OP-12G	40 V/mV	25 V/mV				
PM-308	25 V/mV	15 V/mV				

MILITARY TEMPERATURE RANGE COMMON MODE REJECTION RATIO

COMMERCIAL TEMPERATURE RANGE COMMON MODE REJECTION RATIO

DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
OP-08A	104 dB	100 dB	OP-08E	104 dB	100 dB
OP-08B	104 dB	100 dB	OP-12E	104 dB	100 dB
OP-12A	104 dB	100 dB	OP-08F	102 dB	100 dB
OP-12B	104 dB	100 dB	OP-12F	102 dB	100 dB
OP-08C	84 dB	80 dB	OP-08G	84 dB	80 dB
OP-12C	84 dB	80 dB	OP-12G	84 dB	80 dB
PM-108A	N/S	96 dB	PM-308A	N/S	96 dB
PM-108	N/S	85 dB	PM-308	N/S	80 dB

N/S - Not specified.

SINGLE PRECISION OPERATIONAL AMPLIFIER SELECTION GUIDE

MILITARY TEMPERATURE RANGE INPUT OFFSET VOLTAGE			
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE	
OP-07A OP-07 SSS725A OP-05A OP-05 SSS725 OP-02A PM-725 OP-02	0.075 mV	0.06 mV 0.20 mV 0.18 mV 0.24 mV 0.70 mV 0.70 mV 1.0 mV 1.5 mV 3.0 mV	
COMMERCIAL TEMPERATURE RANGE INPUT OFFSET VOLTAGE			
DEVICE	MAX, T _A = 25°C	MAX OVER	
OP-07E OP-07C OP-07D SSS725E OP-05E OP-05C SSS725C OP-02C PM-725C	0.075 mV 0.15 mV 0.50 mV 0.50 mV 0.50 mV 1.3 mV 1.3 mV 2.0 mV 2.5 mV	0.13 mV 0.25 mV 0.60 mV 0.60 mV 1.0 mV 1.6 mV 1.6 mV 3.0 mV 3.5 mV	

South States

	INPUT OFFSET DRIFT (TCV _{OS})		NPUT OFFSET DRIFT (TCV _{OSN})
DEVICE	TCV _{OS} MAX	DEVICE	TCV _{osn} MAX
OP-07A	0.6 µV/°C	OP-05A	0.5 µV/°C
SSS725A	0.8 µV/° C	OP-07A	0.6 µV/° C
OP-05A	0.9 µV/° C	SSS725A	0.6 µV/°C
OP-07	1.3 μV/°C	OP-05	1.0 µV/°C
OP-05	2.0 µV/° C	SSS725	1.0 µV/° C
SSS725	2.0 µV/°C	OP-07	1.3 µV/°C
PM-725	5.0 μV/°C		
OP-02A	*8.0 µV/°C		
OP-02	*10.0 μV/°C		
	INPUT OFFSET DRIFT (TCV _{OS})		NPUT OFFSET DRIFT (TCV _{OSN})
DEVICE	TCV _{os} MAX	DEVICE	TCV _{osn} MAX
OP-07E	1.3 μV/° C	OP-05E	0.6 µV/°C
OP-07C	*1.8 V/°C	SSS725E	0.6 µV/°C
OP-05E	*2.0 V/°C	OP-07E	1.3 µV/°C
SSS725E	*2.0 V/°C	OP-05C	*1.5 μV/°C
OP-07D	*2.5 V/°C	SSS725C	*1.5 µV/°C
OP-05C	*4.5 V/°C	OP-07C	*1.6 µV/° C
SSS725C	*4.5 V/°C	OP-07D	*2.5 µV/°C
OP-02E	*8.0 V/°C		
OP-02C	*10 V/°C	*Parameter is n	ot 100% tested.
90% of all u	nits meet these spec	ifications.	

MILITARY TEMPERATURE RANGE

MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-05A	2.0 nA	4.0 nA
OP-07A	2.0 nA	4.0 nA
OP-05	3.0 nA	6.0 nA
OP-07	- 3.0 nA	6.0 nA
OP-02A	30 nA	55 nA
OP-02	50 nA	100 nA
SSS725A	70 nA	120 nA
SSS725	80 nA	180 nA
PM-725	100 nA	200 nA

COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-05E	4.0 nA	5.5 nA
OP-07E	4.0 nA	5.5 nA
OP-05C	7.0 nA	9.0 nA
OP-07C	7.0 nA	9.0 nA
OP-07D	12 nA	14 nA
OP-02E	30 nA	55 nA
OP-02C	50 nA	100 nA
SSS725E	80 nA	100 nA
SSS725C	110 nA	180 nA
PM-725C	125 nA	250 nA

OP-05A 2.0 nA 4.0 nA OP-07A 2.0 nA 4.0 nA OP-02A 2.0 nA 5.0 nA OP-05 2.8 nA 5.6 nA OP-07 2.8 nA 5.6 nA OP-02 5.0 nA 10 nA SSS725 18 nA 5.0 nA PM-725 20 nA 40 n A

MILITARY TEMPERATURE RANGE

MAX OVER

TEMPERATURE

4.0 nA

INPUT OFFSET CURRENT

MAX, $T_A = 25^{\circ}C$

1.0 nA

DEVICE

SSS725A

COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-02E	2.0 nA	4.0 nA
OP-05E	3.8 nA	5.3 nA
OP-07E	3.8 nA	5.3 nA
SSS725E	5.0 nA	7.0 nA
OP-02C	5.0 nA	10 nA
OP-05C	6.0 nA	8.0 nA
OP-07C	6.0 nA	8.0 nA
OP-07D	6.0 nA	8.0 nA
SSS725C	13 nA	25 nA
PM-725C	35 nA	50 nA

SINGLE PRECISION OPERATIONAL AMPLIFIER SELECTION GUIDE

MILITARY TEMPERATURE RANGE POWER SUPPLY REJECTION RATIO T_A = 25°C OVER TEMPERATURE MIN (dB) DEVICE MAX ($\mu V/V$) MAX ($\mu V/V$) MIN (dB) SSS725A 114 dB 2.0 µV/V 106 dB 5.0 µV/V \$\$\$725 106 dB 8.0 µV/V 5.0 µV/V 102 dB OP-05A 100 dB 10 µV/V 94 dB 20 µV/V OP-05 100 dB 10 µV/V 20 µV/V 94 dB OP-07A 20 µV/V 100 dB 10 µV/V 94 dB OP-07 100 dB 10 µV/V 94 dB 20 µV/V PM-725 100 dB 10 µV/V 94 dB 20 µV/V 60 µV/V OP-02A 90 dB 30 µV/V 84 dB OP-02 90 dB 30 µV/V 60 µV/V 84 dB COMMERCIAL TEMPERATURE BANGE POWER SUPPLY REJECTION RATIO T_A = 25°C OVER TEMPERATURE MIN (dB) DEVICE MAX $(\mu V/V)$ MIN (dB) MAX ($\mu V/V$) SSS725E 7.0 μV/V 106 dB 5.0 µV/V 103 dB SSS725C 100 dB 10 µV/V 96 dB 15 µV/V OP-05E 94 dB 90 dB 30 µV/V 20 µV/V OP-07E 90 dB 94 dB 30 µV/V 20 µV/V OP-05C 90 dB 30 µV/V 86 dB 50 µV/V OP-07C 90 dB 30 µV/V 86 dB 50 µV/V **OP-07D** 90 dB 30 µV/V 50 µV/V 86 dB OP-02E 90 dB 30 µV/V 84 dB 60 µV/V OP-02C 90 dB 30 µV/V 60 µV/V 84 dB PM-725C 89 dB 35 µV/V N/S N/S

MILITARY TEMPERATURE RANGE	
OPEN LOOP GAIN	

DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
SSS725A	120 dB	114 dB	SSS725A	1000 V/mV	700 V/mV
SSS725	120 dB	110 dB	SSS725	1000 V/mV	500 V/mV
OP-05A	114 dB	110 dB	PM-725	1000 V/mV	250 V/mV
OP-05	114 dB	110 dB	OP-05A	300 V/mV	200 V/mV
OP-07A	110 dB	106 dB	OP-07A	300 V/mV	200 V/mV
OP-07	110 dB	106 dB	OP-05	200 V/mV	150 V/mV
PM-725	110 dB	100 dB	OP-07	200 V/mV	150 V/mV
OP-02A	90 dB	84 dB	OP-02A	100 V/mV	50 V/mV
OP-02	90 dB	84 dB	OP-02	50 V/mV	25 V/mV
	COMMERCIAL TEMPERATU	RE RANGE			
	COMMON MODE REJECTIO	NRATIO	C	OMMERCIAL TEMPERATU	RE RANGE
				OPEN LOOP GAIN	
DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	DEVICE	MIN, T _A = 25°C	MIN OVER
SSS725E	120 dB	115 dB			
OP-05E	110 dB	107 dB	SSS725E	1000 V/mV	800 V/mV
PM-725C	110 dB	100 dB	SSS725C	500 V/mV	300 V/mV
OP-07E	106 dB	103 dB	PM-725C	250 V/mV	125 V/mV
OP-05C	100 dB	97 dB	OP-05E	200 V/mV	180 V/mV
OP-07C	100 dB	97 dB	OP-07E	200 V/mV	180 V/mV
SSS725C	100 dB	97 dB	OP-05C	120 V/mV	100 V/mV
OP-07D	94 dB	94 dB	OP-07C	120 V/mV	100 V/mV
PM-725C	94 dB	N/S	OP-07D	120 V/mV	100 V/mV
OP-02E	90 dB	84 dB	OP-02E	100 V/mV	50 V/mV
OP-02C	90 dB	84 dB	OP-02C	50 V/mV	25 V/mV
N/S Not	specified		1		

MILITARY TEMPERATURE RANGE COMMON MODE REJECTION RATIO

6-6

SINGLE GENERAL PURPOSE OPERATIONAL AMPLIFIER SELECTION GUIDE

	INPUT OFFSET VOLTA	GE
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-02A OP-01 OP-02 OP-01F SSS741 OP-01G SSS741G PM-741	0.5 mV 0.7 mV 2.0 mV 2.0 mV 2.0 mV 5.0 mV 5.0 mV 5.0 mV	1.0 mV 1.0 mV 3.0 mV 3.0 mV 3.0 mV 6.0 mV 6.0 mV 6.0 mV
	INPUT OFFSET VOLTA	GE
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-02E OP-01H OP-02C OP-01E OP-01C SSS741C	0.5 mV 0.7 mV 2.0 mV 2.0 mV 5.0 mV 6.0 mV	1.0 mV 1.0 mV 3.0 mV 3.0 mV 6.0 mV 7.5 mV

MILITARY TEMPERATURE RANGE OPEN LOOP GAIN			
DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	
OP-02A	100 V/mV	50 V/mV	
SSS741	100 V/mV	50 V/mV	
OP-01	50 V/mV	30 V/mV	
OP-02	50 V/mV	25 V/mV	
OP-01F	50 V/mV	25 V/mV	
SSS741G	50 V/mV	25 V/mV	
PM-741	50 V/mV	25 V/mV	
OP-01G	25 V/mV	15 V/mV	

COMMERCIAL TEMPERATURE RANGE OPEN LOOP GAIN

MIN, T _A = 25°C	MIN OVER TEMPERATURE	
100 V/mV	50 V/mV	
50 V/mV	30 V/mV	
50 V/mV	25 V/mV	
50 V/mV	25 V/mV	
25 V/mV	15 V/mV	
25 V/mV	15 V/mV	
	100 V/mV 50 V/mV 50 V/mV 50 V/mV 25 V/mV	

MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-01	2.0 nA	4.0 nA
OP-02A	2.0 nA	5.0 nA
OP-01F	5.0 nA	10 nA
OP-02	5.0 nA	10 nA
SSS741	5.0 nA	10 nA
OP-01G	20 n A	40 nA
SSS741G	25 nA	50 nA
PM-741	200 nA	500 nA

COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE	
OP-01H	2.0 nA	4.0 nA	
OP-02E	2.0 nA	4.0 nA	
OP-01E	5.0 nA	10 nA	
OP-02C	5.0 nA	10 nA	
OP-01C	20 nA	40 n A	
SSS741C	25 nA	50 nA	

MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-01	30 nA	50 nA
OP-02A	30 n A	55 nA
OP-02	50 n A	100 nA
OP-01 F	50 nA	100 nA
SSS741	50 nA	100 nA
OP-01G	100 nA	200 nA
SSS741G	100 nA	200 nA
PM-741	500 n A	1500 nA

COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-02E	30 nA	50 nA
OP-01H	30 nA	50 nA
OP-02C	50 nA	100 nA
OP-01E	50 nA	100 nA
OP-01C	100 nA	200 nA
SSS741C	100 nA	200 nA

SINGLE GENERAL PURPOSE OPERATIONAL AMPLIFIER SELECTION GUIDE

MILITARY TEMPERATURE RANGE POWER SUPPLY REJECTION RATIO

T _A = 25°C			OVER TEMPERATURE		
DEVICE	MIN (dB)	ΜΑΧ (μV/V)	MIN (dB)	ΜΑΧ (μV/V)	
OP-01	90 dB	30 µV/V	90 dB	30 µ∨/∨	
OP-02A	90 dB	30 µV/V	84 dB	60 µV/V	
OP-02	90 dB	30 µV/V	84 dB	60 µV/V	
OP-01F	80 dB	100 µV/V	80 dB	100 µV/V	
OP-01G	80 dB	100 µV/V	80 dB	100 µV/V	
SSS741	80 dB	100 µV/V	80 dB	100 µV/V	
SSS741G	76 dB	150 µV/V	76 dB	150 µV/V	
PM-741	76 dB	150 μV/V	76 dB	150 μV/V	

COMMERCIAL TEMPERATURE RANGE POWER SUPPLY REJECTION RATIO

T _A = 25°C		OVER TEMPERATURE		
DEVICE	MIN (dB)	ΜΑΧ (μV/V)	MIN (dB)	ΜΑΧ (μ V/V)
OP-01H	90 dB	30 µV/V	90 dB	30 µV/V
OP-02E	90 dB	30 µV/V	84 dB	60 µV/V
OP-02C	90 dB	30 µV/V	84 dB	60 µV/V
OP-01E	80 dB	100 µV/V	80 dB	100 µV/V
OP-01C	80 dB	100 µV/V	80 dB	100 µV/V
SSS741C	76 dB	150 μV/V	N/S	N/S

MILITARY TEMPERATURE RANGE COMMON MODE REJECTION RATIO

DEVICE	MIN, $T_A = 25^{\circ}C$	MIN OVER TEMPERATURE
OP-01	90 dB	90 dB
OP-02A	90 dB	84 dB
OP-02	90 dB	84 dB
OP-01 F	80 dB	80 dB
OP-01G	80 dB	80 dB
SSS-741	80 dB	80 dB
SSS741G	70 dB	70 dB
PM-741	70 dB	70 dB

COMMERCIAL TEMPERATURE RANGE COMMON MODE REJECTION RATIO

DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
OP-01H	90 dB	90 dB
OP-02E	90 dB	84 dB
OP-02C	90 dB	84 dB
OP-01E	80 dB	80 dB
OP-01C	80 dB	80 dB
SSS741C	70 dB	N/S

DUAL PRECISION OPERATIONAL AMPLIFIER SELECTION GUIDE

. .

	MILITARY TEMPERATURE			MILITARY TEMP		
	INPUT OFFSET VOLTA			DINPUT OFFSET		INPUT OFFS DRIFT (TCV
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE	DEVICE	TCV _{os} MAX	DEVICE	TCV _{osn}
OP-10A OP-10 OP-04A OP-14A OP-04 OP-14	0.50 mV 0.50 mV 0.75 mV 2.0 mV 2.0 mV 2.0 mV 1000000000000000000000000000000000000			2.0 μ V/°C *2.0 μ V/°C *8.0 μ V/°C *1.0 μ V/°C *10 μ V/°C not 100% tested. units meet these specifi	OP-10A OP-10	1.0 μV. *1.0 μV
DEVICE	MAX, $T_A = 25^{\circ}C$	MAX OVER		COMMERCIAL TEM	PERATURE R	ANGE
	~	TEMPERATURE		DINPUT OFFSET DRIFT (TCV _{OS})		INPUT OFFS
OP-10E	0.50 mV	0.60 mV		03		
OP-04E	0.75 mV	1.5 mV	DEVICE	MAX OVER	DEVICE	MAX OV
OP-14E OP-10C	0.75 mV 1.3 mV	1.5 mV 1.6 mV	DEVICE	TEMPERATURE	DEVICE	TEMPERAT
OP-10C OP-04C	2.0 mV	3.0 mV				
OP-04C	2.0 mV	3.0 mV	OP-10E	*2.0 µV/°C	OP-10E	*1.0 μV/
01-140	2.0 111	5.6 11 4	OP-10C	*4.5 μV/°C	OP-10C	*1.5 μV/
			OP-04E OP-14E	*8.0 μV/°C *8.0 μV/°C		
			OP-14E OP-04C	*10 µV/°C		
			OP-04C OP-14C	*10 µV/°C		
			*Parameter i	not 100% tested. 90%	of all units me	et this specific
						

MILITARY	TEMPERATURE RANGE
INPUT	OFFSET CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-04A	2.0 nA	5.0 nA
OP-14A	2.0 nA	5.0 nA
OP-10A	2.8 nA	5.6 nA
OP-10	2.8 nA	5.6 nA
OP-04	5.0 nA	10 nA
OP-14	5.0 nA	10 nA

COMMERCIAL TEMPERATURE RANGE INPUT OFFSET CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-04E	2.0 nA	4.0 nA
OP-14E	2.0 nA	4.0 nA
OP-10E	3.8 nA	5.3 nA
OP-04C	5.0 nA	10 nA
OP-14C	5.0 nA	10 nA
OP-10C	6.0 nA	8.0 nA

MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-10A	3.0 nA	6.0 nA
OP-10	3.0 nA	6.0 nA
OP-04A	50.0 nA	100 nA
OP-14A	50.0 nA	100 nA
OP-04	75.0 nA	125 nA
OP-14	75.0 nA	125 nA

COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-10E	4.0 nA	5.5 nA
OP-10C	7.0 nA	9.0 nA
OP-04E	50.0 nA	50 n A
OP-14E	50.0 nA	50 nA
OP-04C	75.0 nA	125 nA
OP-14C	75.0 nA	125 nA

DUAL PRECISION OPERATIONAL AMPLIFIER SELECTION GUIDE

	MILITARY TEMPERATURE		h	MILITARY TEMPERATURE OPEN LOOP GAIN	RANGE
DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
OP-10A OP-10 OP-04A OP-04 OP-14A OP-14	110 dB 110 dB 90 dB 90 dB 90 dB 90 dB	106 dB 106 dB 84 dB 84 dB 84 dB 84 dB 84 dB	OP-10A OP-10 OP-04A OP-14A OP-04 OP-14	200 V/mV 200 V/mV 100 V/mV 100 V/mV 50 V/mV 50 V/mV	150 V/mV 150 V/mV 50 V/mV 50 V/mV 25 V/mV 25 V/mV
	OMMERCIAL TEMPERATUR		c	OMMERCIAL TEMPERATUI OPEN LOOP GAIN	RE RANGE
DEVICE	MIN, $T_A = 25^{\circ}C$	MIN OVER TEMPERATURE	DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-10E OP-10C OP-04E OP-14E OP-04C OP-14C	106 dB 100 dB 90 dB 90 dB 90 dB 90 dB	103 dB 97 dB 84 dB 84 dB 84 dB 84 dB 84 dB	OP-10E OP-10C OP-04E OP-14E OP-04C OP-14C	200 V/mV 120 V/mV 100 V/mV 100 V/mV 50 V/mV 50 V/mV	180 V/mV 100 V/mV 50 V/mV 50 V/mV 25 V/mV 25 V/mV

MILITARY TEMPERATURE RANGE

INPUT OFFSET VOLTAGE MATCH (AVOS)

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-10A	0.18 mV	0.3 mV
OP-10	0.5 mV	0.9 mV
OP-04A	1.0 mV	1.5 mV
OP-14A	1.0 mV	1.5 mV
OP-04	2.0 mV	3.0 mV
OP-14	2.0 mV	3.0 mV

COMMERCIAL TEMPERATURE RANGE

INPUT OFFSET VOLTAGE MATCH (ΔV_{OS})

DEVICE	MAX, $T_A = 25^\circ C$	MAX OVER TEMPERATURE
OP-10E	0.5 mV	0.70 mV
OP-04E	1.0 mV	1.5 mV
OP-14E	1.0 mV	1.5 mV
OP-04C	2.0 mV	3.0 mV
OP-14C	2.0 mV	3.0 mV
OP-10C	N/S	N/S

INPUT OFFSET VOLTAGE MATCH (ΔV_{OS}). The difference between the offset voltages of side A and side B; (V_OSA-V_OSB).

DUAL GENERAL PURPOSE OPERATIONAL AMPLIFIER SELECTION GUIDE

· • •

MILITARY TEMPERATURE RANGE INPUT OFFSET VOLTAGE					
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE			
OP-04A	.75 mV	1.5 mV			
OP-14A	.75 mV	1.5 mV			
OP-04	2.0 mV	3.0 mV			
OP-14	2.0 mV	3.0 mV			
SSS747	2.0 mV	3.0 mV			
SSS747G	5.0 mV	6.0 mV			
SSS1558	5.0 mV	6.0 mV			
PM-747	5.0 mV	6.0 mV			
PM-1558	5.0 mV	6.0 mV			
COMMERCIAL TEMPERATURE RANGE INPUT OFFSET VOLTAGE					
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE			
OP-04E	.75 mV	1.5 mV			
OP-14E	.75 mV	1.5 mV			
OP-04C	2.0 mV	3.0 mV			
OP-14C	2.0 mV	3.0 mV			
SSS747C	5.0 mV	6.0 mV			
SSS1458	5.0 mV	6.0 mV			

MILITARY TEMPERATURE RANGE OPEN LOOP GAIN					
DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE			
OP-04A	100 V/mV	50 V/mV			
OP-14A	100 V/mV	50 V/mV			
SSS747	100 V/mV	50 V/mV			
OP-04	50 V/mV	25 V/mV			
OP-14	50 V/mV	25 V/mV			
SSS747G	50 V/mV	25 V/mV			
SSS1558	50 V/mV	25 V/mV			
PM-747	50 V/mV	25 V/mV			
PM-1558	50 V/mV	25 V/mV			

COMMERCIAL TEMPERATURE RANGE OPEN LOOP GAIN

DEVICE	MIN, $T_A = 25^{\circ}C$	MIN OVER TEMPERATURE
OP-04E	100 V/mV	50 V/mV
OP-14E	100 V/mV	50 V/mV
OP-04C	50 V/mV	25 V/mV
OP-14C	50 V/mV	25 V/mV
SSS1458	50 V/mV	25 V/mV
SSS747C	50 V/mV	25 V/mV

MILITARY TEMPERATURE RANGE INPUT OFFSET CURRENT MAX T = 25°C MAX OVER

DEVICE	MAX, T _A = 25°C	TEMPERATURE
OP-04A	2.0 nA	5.0 nA
OP-14A	2.0 nA	5.0 nA
OP-04	5.0 nA	10 n A
OP-14	5.0 nA	10 n A
SSS747	5.0 nA	10 nA
SSS747G	25 nA	50 nA
SSS1558	25 nA	50 nA
PM-747	200 nA	500 n A
PM-1558	200 nA	500 nA
	COMMERCIAL TEMPERATUR	
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-04E	2.0 nA	4.0 nA
OP-14E	2.0 nA	4.0 nA
OP-04C	F 0 4	
1 01 040	5.0 nA	10 nA
OP-14C	5.0 nA 5.0 nA	10 nA 10 nA
OP-14C	5.0 nA	10 nA

MILITARY TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-04A	50 nA	100 nA
OP-14A	50 nA	100 nA
SSS747	50 n A	100 nA
OP-04	75 nA	125 nA
OP-14	75 nA	125 nA
SSS747G	100 nA	200 nA
SSS1558	100 nA	200 nA
PM-747	500 nA	1500 nA
PM-1558	500 nA	1500 nA

COMMERCIAL TEMPERATURE RANGE INPUT BIAS CURRENT

DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE
OP-04E	50 nA	50 nA
OP-14E	50 n A	50 nA
OP-04C	75 nA	125 nA
OP-14C	75 nA	125 nA
SSS747C	100 nA	200 nA
SSS1458	100 nA	200 nA

MILITARY TEMPERATURE RANGE POWER SUPPLY REJECTION RATIO

$T_{\Delta} = 25^{\circ}C$			OVER TEMPERATURE	
DEVICE	MIN (dB)	ΜΑΧ (μV/V)	MIN (dB)	ΜΑΧ (μ V/V)
OP-04A	90 dB	30 µV/V	84 dB	60 µV/V
OP-14A	90 dB	30 µV/V	84 dB	60 µV/V
OP-04	90 dB	30 µV/V	84 dB	60 µV/V
OP-14	90 dB	30 µV/V	84 dB	60 µV/V
SSS747	80 dB	100 µV/V	80 dB	100 µV/V
SSS747G	76 dB	150 µV/V	76 dB	150 µV/V
SSS1558	76 dB	150 µV/V	76 dB	150 µV/V
PM-747	76 dB	150 µV/V	76 dB	150 µV/V
PM-1558	76 dB	150 μV/V	N/S	N/S

COMMERCIAL TEMPERATURE RANGE POWER SUPPLY REJECTION RATIO

R TEMPERATURE	OVE		т _д = 25°С	
ΜΑΧ (μ V/V)	MIN (dB)	ΜΑΧ (μV/V)	MIN (dB)	DEVICE
60 µV/V	84 dB	30 µV/V	90 dB	OP-04E
60 µV/V	84 dB	30 µV/V	90 dB	OP-14E
60 µV/V	84 dB	30 µV/V	90 dB	OP-04C
60 µV/V	84 dB	30 µV/V	90 dB	OP-14C
150 μV/V	76 dB	150 µV/V	76 dB	SSS747C
150 µV/V	76 dB	150 µV/V	76 dB	SSS1458

MILITARY TEMPERATURE RANGE COMMON MODE REJECTION RATIO

DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
OP-04A	90 dB	84 dB
OP-14A	90 dB	84 dB
OP-04	90 dB	84 dB
OP-14	90 dB	84 dB
SSS747	80 dB	80 dB
SSS747G	70 dB	70 dB
SSS1558	70 dB	70 dB
PM-747	70 dB	70 dB
PM-1558	70 dB	N/S

N/S - Not specified.

COMMERCIAL TEMPERATURE RANGE COMMON MODE REJECTION RATIO

DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE
OP-04E	90 dB	84 dB
OP-14E	90 dB	84 dB
OP-04C	90 dB	84 dB
OP-14C	90 dB	84 dB
SSS747C	70 dB	70 dB
SSS1458	70 dB	70 dB

QUAD OPERATIONAL AMPLIFIER SELECTION GUIDE

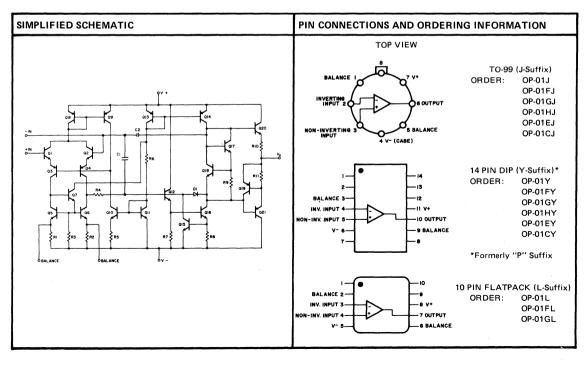
	OWER SUPPLY REJECTIO	RANGE N RATIO		LITARY TEMPERATURE I JT OFFSET VOLTAGE MA	
			inter c	I UITSET VOLTAGE MA	OS'
DEVICE	MIN, T _A = 25°C	MIN OVER TEMPERATURE	DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATU
OP-09A	90 dB	90 dB	OP-09A	0.75 mV	1.0 mV
OP-11A	90 dB	90 dB	OP-11A	0.75 mV	1.0 mV
OP-09B	90 dB	90 dB	OP-09B	2.0 mV	2.5 mV
OP-11B	90 dB	90 dB	OP-11B	2.0 mV	2.5 mV
PM-4136	76 dB	N/S			
N/S — Not spec	ified.		between the off	T VOLTAGE MATCH (AV _O set voltages of side A and sic g amplifier A as reference the	e B; (VOSA-VOSB).
co	MMERCIAL TEMPERATU	RE RANGÊ			
P	OWER SUPPLY REJECTIO	N RATIO	1	MMERCIAL TEMPERATU	
			1	of offset voerade mp	OS'
DEVICE	MIN, $T_A = 25^{\circ}C$	MIN OVER TEMPERATURE	DEVICE	MAX, T _A = 25°C	MAX OVER
OP-09E	90 dB	90 dB			
OP-11E	90 dB	90 dB	OP-09E	0.75 mV	1.0 mV
OP-09F	90 dB	90 dB	OP-11E	0.75 mV	1.0 mV
OP-09F	90 dB	90 dB	OP-09F	2.0 mV	2.5 mV
PM-4136C	70 dB	N/S	OP-11F	2.0 mV	2.5 mV
N/S — Not spec	sified.		between the of	T VOLTAGE MATCH (ΔV _C fset voltages of side A and sid g amplifier A as reference th	de B; (VOSA-VOSB)
	MILITARY TEMPERATUR			ILITARY TEMPERATURE	
	COMMON MODE REJECTI		"		RANGE
	COMMON MODE REJECTI	ON RATIO		OPEN LOOP GAIN	
DEVICE	COMMON MODE REJECTI MIN, T _A = 25°C		DEVICE		MIN OVER
DEVICE OP-09A	MIN, T _A = 25°C 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB	DEVICE OP-09A	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV	MIN OVER TEMPERATUR 100 V/mV
DEVICE OP-09A OP-11A	MIN, T _A = 25°C 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB	DEVICE	OPEN LOOP GAIN MIN, T _A = 25°C	MIN OVER TEMPERATUR 100 V/mV 100 V/mV
DEVICE OP-09A	MIN, T _A = 25°C 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB	DEVICE OP-09A	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV	MIN OVER TEMPERATUR 100 V/mV
DEVICE OP-09A OP-11A OP-09B	MIN, T _A = 25°C 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB	DEVICE OP-09A OP-11A	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV	MIN OVER TEMPERATUF 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B	MIN, T _A = 25°C 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV	MIN OVER TEMPERATUF 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 50 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV 25 V/mV
DEVICE OP-09A OP-11A	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB N/S RE RANGE	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUR	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified.	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB N/S RE RANGE	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUR OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S Not spec CC DEVICE	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified.	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-09F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUR OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec CC DEVICE OP-09E	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE IN RATIO MIN OVER TEMPERATURE 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-11E	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-09F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUR OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09E OP-09F	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-09B OP-11B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09E OP-09F OP-09F OP-09F	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09F OP-11F PM-4136C	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 20 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09E OP-09F OP-01F	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 20 V/mV	MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUR 100 V/mV 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09E OP-09F OP-11F PM-4136C	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 20 V/mV	MIN OVER TEMPERATUE 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUE 100 V/mV 100 V/mV 100 V/mV
DEVICE OP-09A OP-11A OP-09B PM-4136 N/S - Not spec CC DEVICE OP-09E OP-09F OP-11F PM-4136C	MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 70 dB cified. COMMERCIAL TEMPERATU COMMON MODE REJECTION MIN, T _A = 25°C 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	ON RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB N/S RE RANGE N RATIO MIN OVER TEMPERATURE 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB 100 dB	DEVICE OP-09A OP-11A OP-09B OP-11B PM-4136 CO DEVICE OP-09E OP-11E OP-09F OP-11F	OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 50 V/mV MMERCIAL TEMPERATUI OPEN LOOP GAIN MIN, T _A = 25°C 100 V/mV 100 V/mV 100 V/mV 100 V/mV 20 V/mV	MIN OVER TEMPERATUE 100 V/mV 100 V/mV 100 V/mV 25 V/mV RE RANGE MIN OVER TEMPERATUE 100 V/mV 100 V/mV 100 V/mV

QUAD OPERATIONAL AMPLIFIER SELECTION GUIDE

	MILITARY TEMPERATURE INPUT OFFSET VOLTA			MILITARY TEMP		
EVICE	MAX, $T_A = 25^{\circ}C$	MAX OVER TEMPERATURE		DEVICE	тсv _{os} і	MAX
				OP-09A	*10 μV/	°c
0P-09A	0.5 mV	1.0 mV		OP-11A	*10 µV/	°c
DP-11A	0.5 mV	1.0 mV		OP-09B	*15 µV/	
DP-09B	2.5 mV	3.5 mV		OP-11B	*15 µV/	
0P-11B	2.5 mV	3.5 mV		0. 110		U
M-4136	5.0 mV	6.0 mV				
			*Parameter is r specifications	not 100% tested. 9	0% of all units	meet these
C	OMMERCIAL TEMPERATUR INPUT OFFSET VOLTA					
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE		COMMERCIAL T		
0P-09E	0.5 mV	0.8 mV		DEVICE		
0P-11E	0.5 mV	0.8 mV		DEVICE	MAX, T	A 200
0P-09F	2.5 mV	3.0 mV	1	OP-09E	*10 μ\	//°C
0P-11F	2.5 mV	3.0 mV		OP-09E OP-11E	*10 μ\ *10 μ\	
M-4136C	6.0 mV	7.5 mV		OP-09F	*10 μ\ *15 μ\	
1000	0.0 111	1.5 111			*15 µ\ *15 µ\	
				OP-11F	15 μ	v/ C
			*Parameter ne specification	ot 100% tested. 90 s	9% of all units	meet these
	INPUT OFFSET CURRE			INPUT BIAS	CURRENT	
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE	DEVICE	MAX, T _A = 2	5°C	MAX OVER TEMPERATUR
OP-09A	20 nA	40 nA	OP-09A	300 nA		375 nA
DP-11A	20 nA	40 nA	OP-11A	300 nA		375 nA
OP-09B	50 nA	80 nA	OP-09B	500 nA		650 nA
OP-11B	50 nA	80 nA	OP-11B	500 nA		650 nA
PM-4136	200 nA	500 nA	PM-4136	500 nA		1500 nA
c	COMMERCIAL TEMPERATU		co	OMMERCIAL TEM		RANGE
DEVICE	MAX, T _A = 25°C	MAX OVER TEMPERATURE	DEVICE	MAX, T _A = 2		MAX OVER
	A					
OP-09E	20 nA	30 nA	OP-09E	300 nA		350 nA
OP-11E	20 nA	30 nA	OP-11E	300 nA		350 nA
OP-09F	50 nA	60 n A	OP-09F	500 nA		550 nA
OP-09F	50 nA	60 nA	OP-11F	500 nA		550 nA
PM-4136C	200 nA	300 nA	PM-4136C	500 nA		800 nA

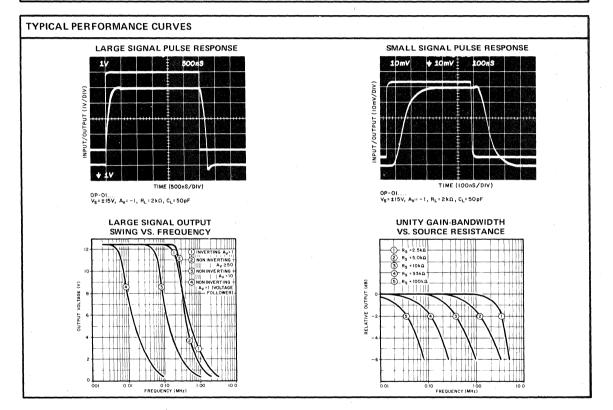
INVERTING HIGH SPEED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

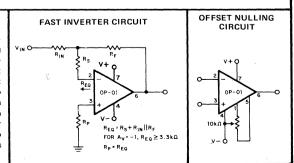

The OP-01 Series of monolithic High Speed Operational Amplifiers combines high slew rate, fast settling time output performance with excellent D.C. input characteristics.

An internal feed-forward frequency compensation network provides simplicity of application—no external capacitors are required for stable, high-speed performance. The fast output response is achieved without sacrifice in input bias current or power consumption. 250kHz power bandwidth is attained with a small signal bandwidth of 2.5 MHz, allowing noncritical board layout. The OP-01 is completely protected at both input and output, fits standard 741 sockets, and is offset nulled with a 10kΩ potentiometer.

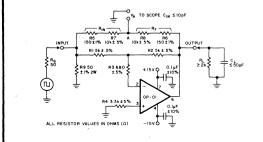
The low offset voltage, input bias current and offset voltage drift vs. temperature provide accurate D.C. performance in applications such as channel preamplifiers, fast integrators and precision summing amplifiers. The fast output response makes the OP-01 ideal in state-variable filters, servo drivers, waveform generators, analog computing amplifiers, and D/A converter output amplifiers.


FEATURES

	Fast Settling Time $\dots \dots \dots 1 \mu$ sec to 0.1%
	High Slew Rate \ldots 18 V/ μ sec
	Power Bandwidth
-	Low Power Consumption
	Excellent D.C. Specifications
	Internally Compensated
	Ideal DAC Output Amplifier
•	MIL-STD-883 Processing Available
	Fits Standard 741 Sockets
_	Low Cost


OP-01

ABSOLUTE MAXIMUM RATINGS		decision and the Control of the Cont	· · ·	
Total Supply Voltage			Circuit Duration	Indefinite
OP-01, OP-01F, OP-01E, OP-01H	±22V	•	ting Temperature Range	
OP-01G, OP-01C	±20V		-01, OP-01F, OP-01G	-55°C to +125°C
Power Dissipation (see note)	500mW		-01H, OP-01E, OP-01C	0° C to +70 $^{\circ}$ C
Differential Input Voltage	±30V	Stora	ge Temperature Range	–65°C to +150°C
Input Voltage	±15V	Lead	Temperature (Soldering, 60	Sec) 300°C
NOTE: Maximum Package Power Dissipation vs. ambient temperature	Package 1	Гуре	Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature
	TO-99 (J) Dual-in-Line Flat Pack (L		80°C 100°C 62°C	7.1mW/°C 10.0mW/°C 5.7mW/°C

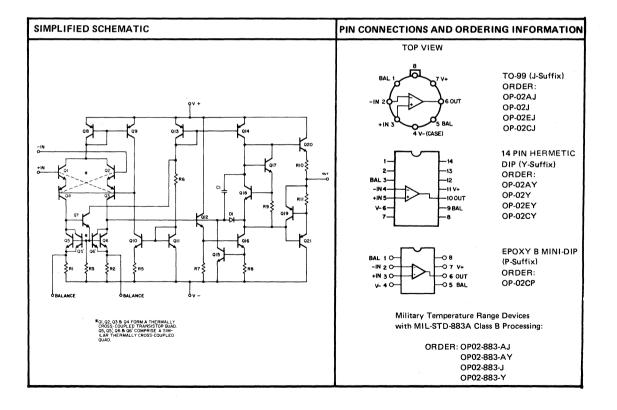


APPLICATIONS INFORMATION

The OP-1 incorporates an internal feed-forward compensation network to provide fast slewing and settling times in all inverting and moderateto-high gain non-inverting applications. Unity gain bandwidth is a function of the total equivalent source resistance seen by the inverting terminal, and proper choice of this resistance will allow the user to maximize bandwidth while assuring proper stability. The equivalent inverting terminal resistance is defined as $R_{IN} \parallel R_F$. A total equivalent input terminal resistance $\geq 3.3 \, \mathrm{k\Omega}$ will assure stability in all closed loop gain configurations including unity gain. Should $R_{IN} \parallel R_F \leq 3.3 \, \mathrm{k\Omega}$, a resistor (R_S) may be placed between the inverting input and the sum node to provide the required resistance. (See Fast Inverting Amplifier Diagram.) Lower values of total equivalent resistance may be used to improve bandwidth in higher closed loop gain configurations, as indicated by the Open Loop Gain vs. Frequency plot.

Input Offset Voltage VC Input Offset Current IO Input Bias Current IB Input Voltage Range CM Common Mode Rejection Ratio CM Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC	SMVR SMRR SRR (OM	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Min ±12.0 90 ±12.5 ±12.0 50 	Тур 0.3 0.5 18 ±13.0 110 ±13.5 ±13.0 100 40	Max 0.7 2.0 30 - - - - - 60	Min ±12.0 80 ±12.5 ±12.0 50 	Typ 1.0 20 ±13.0 100 ±13.5 ±13.0 100	Max 2.0 5.0	Min ± 12.0 80 ± 12.5 ± 12.0 25	Typ 2.0 2.0 25 ±13.0 100 100 ±13.5 ±13.0 75	Max 5.0 20 100 	Units mV nA NA V dB dB dB
Input Offset Current IO Input Bias Current IB Input Voltage Range CM Common Mode Rejection Ratio CM Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC Large Signal Voltage Gain A Power Consumption PC Settling Time to 0.1%	os B MVR MRR SRR 'OM	$V_{CM} = \pm CMVR$ $R_{S} \leq 50 k\Omega$ $V_{S} = \pm 5 \text{ to } \pm 20V$ $R_{S} \leq 50 k\Omega$ $R_{L} \geq 5k\Omega$ $R_{L} \geq 2k\Omega$ $R_{L} \geq 2k\Omega, V_{O} = \pm 10V$ $V_{OUT} = 0$	- ± 12.0 90 ± 12.5 ± 12.0 50 -	0.5 18 ±13.0 110 ±13.5 ±13.0 100 40	2.0 30 - - - - - -	80 80 ±12.5 ±12.0 50	1.0 20 ±13.0 100 ±13.5 ±13.0 100	5.0 50	 ±12.0 80 ±12.5 ±12.0	2.0 25 ±13.0 100 ±13.5 ±13.0	20 100 - - - -	nA nA V dB dB
Input Offset Current IO Input Bias Current IB Input Voltage Range CM Common Mode Rejection Ratio CM Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC Large Signal Voltage Gain A Power Consumption PC Settling Time to 0.1%	os B MVR MRR SRR 'OM	$\begin{split} &R_{S}{\leqslant}50{k\Omega} \\ &V_{S}=\pm5 \text{ to }\pm20V \\ &R_{S}{\leqslant}50{k\Omega} \\ &R_{L}{\geqslant}5k\Omega \\ &R_{L}{\geqslant}2k\Omega \\ &R_{L}{\geqslant}2k\Omega, V_{O}{=}\pm10V \\ &V_{OUT}=0 \end{split}$	- ± 12.0 90 ± 12.5 ± 12.0 50 -	18 ±13.0 110 110 ±13.5 ±13.0 100 40	30	80 80 ±12.5 ±12.0 50	20 ±13.0 100 ±13.5 ±13.0 100	50	80 80 ±12.5 ±12.0	25 ±13.0 100 ±13.5 ±13.0	100 - - - -	nA V dB dB
Input Voltage Range CN Common Mode Rejection Ratio CN Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC Large Signal Voltage Gain AN Power Consumption PC Settling Time to 0.1%	SMVR SMRR SRR (OM	$\begin{split} &R_{S}{\leqslant}50{k\Omega} \\ &V_{S}=\pm5 \text{ to }\pm20V \\ &R_{S}{\leqslant}50{k\Omega} \\ &R_{L}{\geqslant}5k\Omega \\ &R_{L}{\geqslant}2k\Omega \\ &R_{L}{\geqslant}2k\Omega, V_{O}{=}\pm10V \\ &V_{OUT}=0 \end{split}$	90 90 ±12.5 ±12.0 50 	±13.0 110 110 ±13.5 ±13.0 100 40	-	80 80 ±12.5 ±12.0 50	±13.0 100 100 ±13.5 ±13.0 100	-	80 80 ±12.5 ±12.0	±13.0 100 100 ±13.5 ±13.0	-	V dB dB V
Common Mode Rejection Ratio CM Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC Large Signal Voltage Gain AN Power Consumption PC Settling Time to 0.1%	SRR SRR OM	$\begin{split} &R_{S}{\leqslant}50{k\Omega} \\ &V_{S}=\pm5 \text{ to }\pm20V \\ &R_{S}{\leqslant}50{k\Omega} \\ &R_{L}{\geqslant}5k\Omega \\ &R_{L}{\geqslant}2k\Omega \\ &R_{L}{\geqslant}2k\Omega, V_{O}{=}\pm10V \\ &V_{OUT}=0 \end{split}$	90 90 ±12.5 ±12.0 50 	110 110 ±13.5 ±13.0 100 40	-	80 80 ±12.5 ±12.0 50	100 100 ±13.5 ±13.0 100	-	80 80 ±12.5 ±12.0	100 100 ±13.5 ±13.0	-	dB dB V
Power Supply Rejection Ratio PS Maximum Output Voltage Swing VC Large Signal Voltage Gain A Power Consumption P _E Settling Time to 0.1%	SRR (OM	$\begin{split} &R_{S}{\leqslant}50{k\Omega} \\ &V_{S}=\pm5 \text{ to }\pm20V \\ &R_{S}{\leqslant}50{k\Omega} \\ &R_{L}{\geqslant}5k\Omega \\ &R_{L}{\geqslant}2k\Omega \\ &R_{L}{\geqslant}2k\Omega, V_{O}{=}\pm10V \\ &V_{OUT}=0 \end{split}$	90 ±12.5 ±12.0 50 -	110 ±13.5 ±13.0 100 40		80 ±12.5 ±12.0 50	100 ±13.5 ±13.0 100	-	80 ±12.5 ±12.0	100 ±13.5 ±13.0	-	dB V
Maximum Output Voltage Swing V(Large Signal Voltage Gain A Power Consumption P _D Settling Time to 0.1%	YOM	$R_{S} \leq 50 k\Omega$ $R_{L} \geq 5 k\Omega$ $R_{L} \geq 2 k\Omega$ $R_{L} \geq 2 k\Omega, V_{O} = \pm 10V$ $V_{OUT} = 0$	±12.5 ±12.0 50 —	±13.5 ±13.0 100 40		±12.5 ±12.0 50	±13.5 ±13.0 100	-	±12.5 ±12.0	±13.5 ±13.0		v
Large Signal Voltage Gain A Power Consumption P Settling Time to 0.1%	٧٥	$R_{L} \ge 2k\Omega$ $R_{L} \ge 2k\Omega, V_{0} = \pm 10V$ $V_{OUT} = 0$	±12.0 50 -	±13.0 100 40		±12.0 50	±13.0 100	-	±12.0	±13.0	_	
Power Consumption P _C Settling Time to 0.1%		V _{OUT} = 0	-	40					25	75		
Settling Time to 0.1%	D				60		50				-	۷/m۱
-		A _V = -1 (Note)					50	90		50	90	mW
		V _{IN} = 5V		0.7	1.0	-	0.7	1.0	1	0.7	1.0	μsec
Slew Rate				18	-	-	18	-	-	18		V/µs
Large Signal Bandwidth				250	_	_	250	-		250		kHz
Small Signal Bandwidth				2.5	-	-	2.5	-	-	2.5	-	MHz
Risetime (Note)		A _V ≈ −1 V _{IN} =50mV		150		-	150	-		150		nsec
Overshoot (Note)				2	_		2		-	2	-	%
The following specifications apply fo OP-01E, OP-01C, unless otherwise sp	for V _S = ± specified.	15V, $-55^{\circ}C \le T_A \le +7$	125°C fo	r OP-01,	OP-011	-, OP-01	G and 0°	°C ≼ T	_A ≤ +70°	°C for O	P-01H,	
Input Offset Voltage	'os	R _S ≤ 50kΩ	-	0.4	1.0	_	1.5	3.0	_	3.0	6.0	mV
Input Offset Current	os			1.0	4.0	-	2.0	10	-	4.0	40	nA
Input Bias Current	в			30	50	-	40	100	-	50	200	nA
Input Voltage Range CN	MVR		±12.0	±13.0		±12.0	±13.0	~-	±12.0	±13.0		v
Common Mode Rejection Ratio CM	MRR	V _{CM} =±CMVR R _S ≤50kΩ	90	110	-	80	100		80	100		dB
Power Supply Rejection Ratio PS	SRR	V _S =± 5V to ±20V R _S ≤50kΩ	90	110	-	80	100	-	80	100	-	dB
Large Signal Voltage Gain A	vo	$R_L \ge 2k\Omega, V_O = \pm 10V$	30	60	-	25	60		15	50		V/m\
Maximum Output Voltage Swing V _C	′ом	R _L ≥5kΩ R _L ≥2kΩ	±12.5 ±12.0	±13.5 ±13.0		±12.5 ±12.0	±13.5 ±13.0	-	±12.5 ±12.0	±13.5 ±13.0	-	v v
Offset Voltage Drift TC	cvos	R _S ≼5kΩ	-	2.0	8.0		3.0	10.0		5.0	20.0	μV/°

Settling time may be measured using the circuit shown; this circuit incorporates the "false sum node" technique to produce more accurate, repeatable results. For a 5 volt input step, 0.1% settling will be achieved when the false sum node settles to within ±2.5mV of its final value. The oscilloscope used for observation of the false sum node should have wide bandwidth, fast overload recovery time, and be used with a low capacity probe (<10pF, including strays). A Tektronix 7504 scope with a 7A11 probe or equivalent is suggested. The pulse generator should have a 50 Ω output impedance and be capable of a 5V rise time in <20 ns with ringing less than 2.5mV after 0.5 μ s. 0.1% measurements require R_{IN} to equal R_F within 0.01%; R₅ and R₆ are used as trimming resistors to achieve this matching.

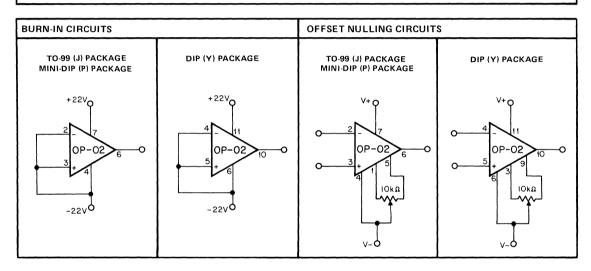


GENERAL DESCRIPTION

The OP-02 Series of High Performance General Purpose Operational Amplifiers provides significant improvements over industry-standard and "premium" 741 types while maintaining pin-for-pin compatibility, ease of application, and low cost. Key specifications, such as Vos, Ios, IB, CMRR, PSRR and A_{vo} , are guaranteed over the full operating temperature range. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise." A thermallysymmetrical input stage design provides low TCVos, TClos and insensitivity to output load conditions. The OP-02 Series is ideal for upgrading existing designs where accuracy improvements are required and for eliminating special low drift or low noise selected types. OP-02's with MIL-STD-883 processing are available. For dual high performance matched general purpose operational amplifiers, refer to the OP-04 and OP-14 data sheets.

FEATURES

- Excellent D.C. Input Specifications
- Fits Standard 741 Socket
- Internally Compensated
- Low Drift (TCV_{os}) $8 \mu V/^{\circ} C$ Max
- Premium" 741 Replacement
- 0°C/+70°C and -55°C/+125°C Models
- MIL-STD-883 Processing Available
- Silicon-Nitride Passivation
- Low Cost



ABSOLUTE MAXIMUM RATINGS

Supply Voltage Power Dissipation (see note) Differential Input Voltage Input Voltage Sup Output Short Circuit Duration	500mW OP ±30V OP pply Voltage Storag	2-02E, OP-02C	-55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C
--	--	---------------	---

NOTE: Maximum Package Power Dissipation vs. ambient temperature.

Package Type	Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature
TO-99 (J)	80°C	7.1mW/°C
Dual-in-Line (Y)	100°C	10.0mW/°C

OP-02 DEFINITIONS

INPUT OFFSET VOLTAGE (Vos)

The voltage which must be applied between the input terminals to obtain zero output voltage with no load.

INPUT OFFSET CURRENT (Ios)

The difference between the currents into the two input terminals when the output is at zero volts with no load.

INPUT BIAS CURRENT (IB)

The average of the currents into the two input terminals when the output is at zero volts with no load.

INPUT VOLTAGE RANGE (CMVR)

The range of common-mode voltage on the input terminals for which the common-mode rejection specifications apply.

COMMON-MODE REJECTION RATIO (CMRR)

The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.

POWER SUPPLY REJECTION RATIO (PSRR)

The inverse ratio of the change in input offset voltage to the change in power supply voltage producing it.

MAXIMUM OUTPUT VOLTAGE SWING (Vom)

The peak output voltage that can be obtained without clipping.

LARGE SIGNAL VOLTAGE GAIN (Avo)

The ratio of the change in output voltage (over a specified range) to the change in input voltage producing it.

AVERAGE OFFSET VOLTAGE DRIFT (TCVos)

The ratio of the change in the offset voltage to the change in temperature producing it.

AVERAGE OFFSET CURRENT DRIFT (TCIos)

The ratio of the change in the offset current to the change in temperature producing it.

POWER DISSIPATION (Pd)

The total power dissipated in the amplifier with the output at zero volts and no load.

UNITY GAIN CLOSED LOOP BANDWIDTH (BW)

The frequency at which the magnitude of the small signal voltage gain of the amplifier, operated closed-loop as a unity-gain follower, is 3dB below unity.

INPUT NOISE VOLTAGE (enp-p)

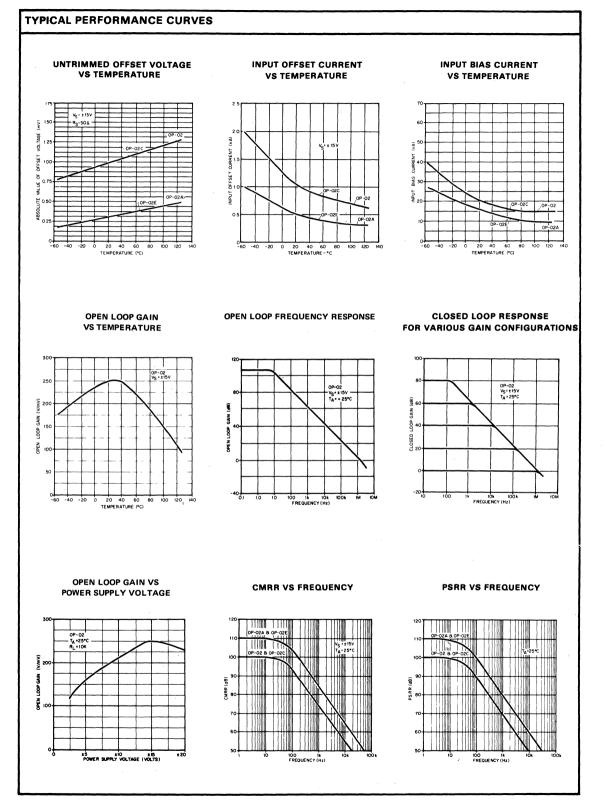
The peak to peak noise voltage in a specified frequency band.

INPUT NOISE VOLTAGE DENSITY (en)

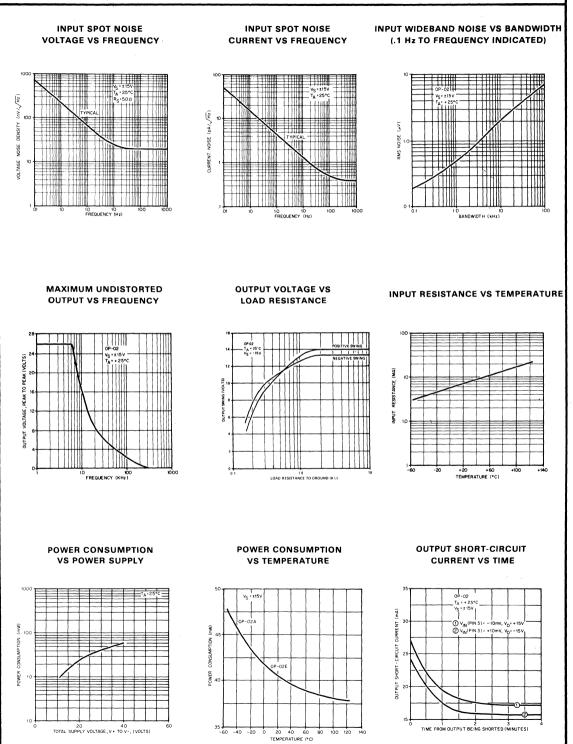
The rms noise voltage in a 1 Hz band surrounding a specified value of frequency.

INPUT NOISE CURRENT (inp-p)

The peak to peak noise current in a specified frequency band. INPUT NOISE CURRENT DENSITY (in)


The rms noise current in a 1Hz band surrounding a specified value of frequency.

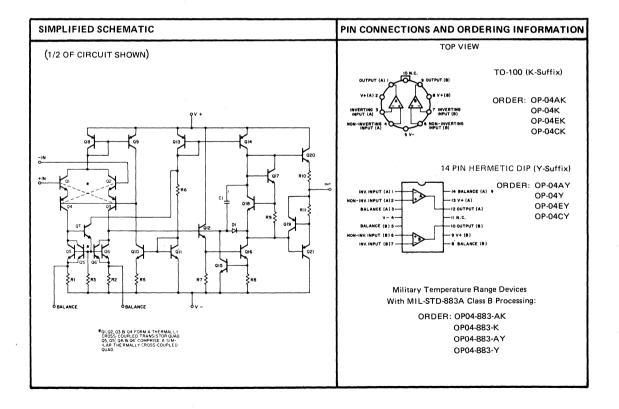
OP-02


ELECTRICAL CHARACTERISTICS				OP-02A			OP-02		
These specifications for $V_s = \pm 15V$, T	գ = 25°C, ս	nless otherwise note	ed.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_{g} \leq 50 k\Omega$	-	0.3	0.5	-	1.0	2.0	mV
Input Offset Current	los		-	0.5	2.0	-	1.0	5.0	nA
Input Bias Current	В			18	30	-	20	50	nA
Input Resistance-Differential Mode	R _{in}		3.8	7.5	-	2.3	7.0	-	MΩ
Input Voltage Range	CMVR		±12.0	±13.0		±12.0	±13.0	-	V.
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ ^{50kΩ}	90	110	-	90	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k} \Omega$	90	110		90	100	-	dB
Output Voltage Swing	v _{om}	$R_{L} \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0	-	v
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2kΩ V ₀ = ±10V	100	250	-	50	200	-	V/m ^v
Power Consumption	P _{cl}	V ₀ = 0V	-	40	60	-	50	90	mW
Input Noise Voltage	^e np-p	0.1 Hz to 10 Hz		0.65		-	0.65	-	μVρ
		f _o ≈ 10 Hz		25	-	****	25	~~	
Input Noise Voltage Density	e _n	f _o = 100 Hz f _o ≃ 1000 Hz	-	22 21	-		22 21	-	nV/√
Input Noise Current	ⁱ np-p	0.1 Hz to 10 Hz		12.8	_	_	12.8		рАр
		f _o - 10 Hz	_	1.4		_	1.4	_	
Input Noise Current Density	'n	f _o = 100 Hz		0.7		_	0.7		pA/√
		f _o - 1000 Hz	-	0.4	-		0.4		
Slew Rate (Note 1)	SR		0.25	0.5	-	0.25	0.5	-	V/μ
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	4.0	8.0	-	4.0	8.0	-	кНz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3		0.8	1.3		мн
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	200	300		200	300	nsec
Overshoot (Note 1)				5	10	-	5	10	%
The following specifications apply for	V _s = ±15V,	$-55^{\circ}C \leq T_{A} \leq +12$	25°C,un	less othe	rwise no	oted			
Input Offset Voltage	V _{os}	$R_{s} \leq 50 k\Omega$	-	0.5	1.0	-	1.4	3.0	m٧
Average Input Offset Voltage Drift (Note 1)	тсv _{os}	$R_{g} \leq 5k\Omega$	-	2.0	8.0	-	4.0	10.0	μV/°
Input Offset Current	I _{os}		-	1.0	5.0	-	2.0	10.0	nA
Average Input Offset Current Drift (Note 1)	TCI _{os}		-	7.5	75	-	15	150	pA/°
Input Bias Current	¹ в		-	30	55	-	40	100	nA
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0		v
Common Mode Rejection Ratio	CMRR	$V_{CM}^{= \pm CMVR}$ $R_{s} \le 50 k\Omega$	84	110		84	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_{s} = +5 \text{ to } \pm 20V$ $R_{s} \le 50 \text{ k}\Omega$	84	110	-	84	100		dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega$ $V_{o} = \pm 10V$	50	100	-	25	60	-	V/m'
Maximum Output Voltage Swing	Vom	$R_L \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0	-	v
Maximum Output Voltage Swing Note 1: Parameter is not 100% tested, 90%		_		±13.0		±12.0	±13.0	-	L

o	P-0	2
---	-----	---

ELECTRICAL CHARACTERISTICS				OP-02E			OP-02C		
These specifications for $V_s = \pm 15V$, T,	_ = 25 [°] C, un	less otherwise noted	d.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_{s} \leq 50 k\Omega$	-	0.3	0.5	-	1.0	2.0	mV
Input Offset Current	los		-	0.5	2.0	-	1.0	5.0	nA
Input Bias Current	ŀв			18	30	-	20	50	nA
Input Resistance-Differential Mode	R _{in}		3.8	7.5	-	2.3	7.0	-	MΩ
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0		v
Common Mode Rejection Ratio	CMRR	V _{CM} ⁼ ±CMVR R _s ≤ 50kΩ	90	110	-	90	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ kG}$	90	110	-	90	100		dB
Output Voltage Swing	Vom	$R_L \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0		V
Large Signal Voltage Gain	A _{vo}	R _L ≥2kΩ V _o = ±10V	100	250	-	50	200		V/mV
Power Consumption	Pd	V ₀ = 0V	-	40	60	-	50	90	mW
Input Noise Voltage	^e np-p	0.1Hz to 10Hz	-	0.65		_	0. 6 5	-	μV p-p
	,	f _o ≈ 10Hz	-	25		-	25		
Input Noise Voltage Density	e _n	f _o = 100 Hz	-	22	-	-	22	-	nV/√H
		f _o ≈ 1000 Hz	-	21	-	-	21	-	
Input Noise Current	ⁱ np-p	0.1 Hz to 10 Hz	-	12.8	-	-	12.8	-	рАр-р
		f _o = 10 Hz	-	1.4		-	1.4	-	
Input Noise Current Density	ⁱ n	f _o = 100 Hz	-	0.7	-		0.7	-	рА/√Н
		f _o = 1000 Hz	-	0.4		-	0.4	-	
Slew Rate (Note 1)	SR		0.25	0.5	-	0.25	0.5	-	V/µs
Large Signal Bandwidth (Note 1)		V _o = 20Vp-p	4.0	8.0	-	4.0	8.0	-	kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3		0.8	1.3	-	MHz
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	200	300	-	200	300	nsec
Overshoot (Note 1)			-	5	10	-	5	10	%
The following specifications apply for	V _s = ±15V, 0	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	unless o	otherwise	noted.				
Input Offset Voltage	V _{os}	$R_{g} \leq 50 k\Omega$	-	0.4	1.0	-	1.2	3.0	mV
Average Input Offset Voltage Drift (Note 1)	тсv _{os}	$R_{g} \leq 5k\Omega$	-	2.0	8.0	-	4.0	10.0	μV/°C
Input Offset Current	los		-	0.7	4.0	-	1.4	10.0	nA
Average Input Offset Current Drift (Note 1)	TCI _{os}		-	7.5	120	-	15	250	pA/°C
Input Bias Current	ЧВ		-	22	50	-	25	100	nA
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0	-	v
Common Mode Rejection Ratio	CMRR	$V_{CM} = \pm CMVR$ $R_s \le 50 k\Omega$	84	110	-	84	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	84	110	-	84	100	-	dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega$ $V_{0} = \pm 10V$	50	200	-	25	150	-	۷/m۱
Maximum Output Voltage Swing	Vom	$R_{L} \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0	_	v

TYPICAL PERFORMANCE CURVES


DUAL MATCHED HIGH PERFORMANCE OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The OP-04 Series of Dual Matched High Performance General Purpose Operational Amplifiers provides significant improvements over industry-standard 747 types while maintaining pin-for-pin compatibility, ease of application, and low cost. Key specifications, such as V_{OS} , I_{OS} , I_B , CMRR, PSRR and A_{VO} , are guaranteed over the full operating temperature range. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise." A thermally-symmetrical input stage design provides low TCV_{OS}, TCI_{OS} and insensitivity to output load conditions. The OP-04 Series is ideal for upgrading existing designs where accuracy improvements are required and for eliminating special low drift or low noise selected types. For more stringent requirements, refer to the OP-10 Dual Matched Instrumentation Operational Amplifier data sheet.

FEATURES

- Excellent D.C. Input Specifications
- Matched Vos and CMRR
- Fits Standard 747 Socket
- Internally Compensated
- Low Noise
- Low Drift
- 💼 Low Cost
- 0°C/+70°C and -55°C/+125°C Models
- Silicon-Nitride Passivation
- Models With MIL-STD-883A Class B Processing Available From Stock

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V	Operating Tempera	ture Range	
Internal Power Dissipation (Note 1)	500 mW	OP-04A, OP-04 OP-04E, OP-04C	:	–55°C to +125°C 0°C to +70°C
Differential Input Voltage	±30V	Note 1: Maximum temperature.	package power d	lissipation vs. ambient
Input Voltage	Supply Voltage			
Output Short Circuit Duration	Indefinite	M	AXIMUM AMBIENT TEMPERATURE FOR BATING	DERATE ABOVE MAXIMUM AMBIENT
Storage Temperature Range	-5° to $+150^{\circ}$ C	DUAL-IN-LINE (Y)	100°C	TEMPERATURE 10.0mW/°C
Lead Temperature Range (Soldering, 60 s	ec) 300°C	то-100 (К)	80° C	7.1mW/°C

MATCHING CHARACTERISTICS	OP-04A	OP-04
MATCHING CHARACTERISTICS	OP-04E	OP-04C

These specifications apply for V_s = $\pm 15V$, T_A = 25° C, R_s $\leq 100\Omega$, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units		
Input Offset Voltage Match	ΔV _{os}			0.3	1.0		1.0	2.0	mV		
Common Mode Rejection Ratio Match	∆CMRR	V _{CM} = ± CMVR	94	106	-	94	106	-	dB		
	These specifications apply for $V_s = \pm 15V$, -55° C $\leq T_A \leq \pm 125^\circ$ C for OP-04A and OP-04, 0° C $\leq T_A \leq 70^\circ$ C for OP-04E and OP-04C, $R_s \leq 100\Omega$, unless otherwise noted.										
Input Offset Voltage Match	ΔV _{os}		-	0.5	1.5	-	1.5	3.0	mV		
Common Mode Rejection Ratio Match	∆CMRR	V _{CM} = ± CMVR	90	100	-	90	100	-	dB		

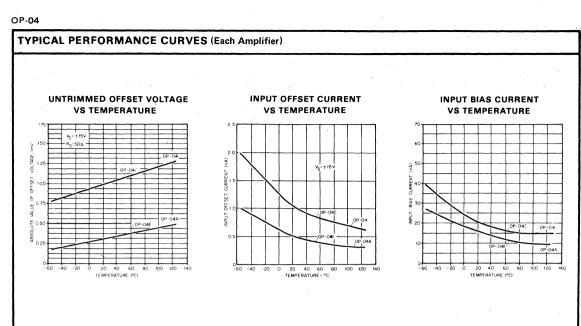
INPUT OFFSET VOLTAGE MATCH (ΔV_{os}). The difference between the offset voltages of side A and side B; (V_{OSA} - V_{OSB}).

MATCHING PARAMETER DEFINITIONS

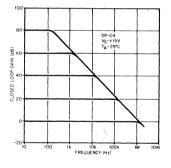
COMMON MODE REJECTION RATIO MATCH (ACMRR)

The difference between the common-mode rejection ratios (expressed in volt/volt) of side A and side B.

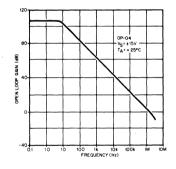
 Δ CMRR in dB = 20 log₁₀ (Δ CMRR in volt/volt).

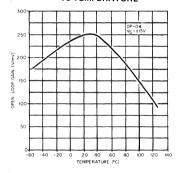

OFFSET NULLING CIRCUITS	OP-04 DEFINITIONS
DIP (Y) PACKAGE ONLY $\downarrow \downarrow $	 INPUT OFFSET VOLTAGE (V₀s) The voltage which must be applied between the input terminals to obtain zero output voltage with no load. INPUT OFFSET CURRENT (I₀s) The difference between the currents into the two input terminals when the output is at zero volts with no load. INPUT BIAS CURRENT (I_B) The average of the currents into the two input terminals when the output is at zero volts with no load. INPUT VOLTAGE RANGE (CMVR) The range of common-mode voltage on the input terminals for which the common-mode rejection specifications apply. COMMON-MODE REJECTION RATIO (CMRR) The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range. POWER SUPPLY REJECTION RATIO (PSRR) The inverse ratio of the change in input offset voltage to the change in power supply voltage producing it. MAXIMUM OUTPUT VOLTAGE SNING (V_{om}) The peak output voltage that can be obtained without clipping. LARGE SIGNAL VOLTAGE GAIN (A_{vo}) The ratio of the change in output voltage (over a specified range) to the change in input voltage producing it.

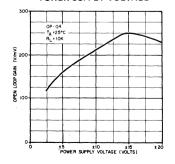
ELECTRICAL CHARACTERISTICS (Each Amplifier)				OP-04A		OP-04			
These specifications for $V_s = \pm 15V$, T	and the second se				r	r		·	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Un
Input Offset Voltage	Vos	$R_{g} \leq 50 k\Omega$	-	0.3	0.75		1.0	2.0	n
Input Offset Current	los		-	0.5	2.0		1.0	5.0	· r
Input Bias Current	<u>'B</u>	· · · · ·	-	18	50		20	75	<u> '</u>
Input Resistance-Differential Mode	R _{in}		3.8	7.5	-	2.3	7.0	-	N
Input Voltage Range	CMVR		±12.0	±13.0	_	±12.0	±13.0	-	
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 50kΩ	90	110	-	90	100	-	c
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k} \Omega$	90	110	-	90	100	-	d
Output Voltage Swing	v _{om}	R _L ≥2kΩ	±12.0	±13.0	-	±12.0	±13.0	-	
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _o = ±10V	100	250	-	50	200	-	V/
Power Consumption	P _{cl}	V ₀ = 0V	-	.40	60	-	50	90	m
Input Noise Voltage	^e np-p	0.1 Hz to 10 Hz	-	0.65	-	-	0.65	-	μV
		f _o = 10Hz	-	25	-	-mun	25	-	
Input Noise Voltage Density	^e n	$f_0 = 100 Hz$ $f_0 = 1000 Hz$	-	22 21	-	-	22 21	_	nV/
Input Noise Current	ⁱ np-p	0.1 Hz to 10 Hz		12.8			12.8	-	рА
Channel Seconding	······								├
Channel Separation	CS	(101)	100	-	-	100	-	-	
Input Noise Current Density	ⁱ n	$f_0 = 10 Hz$ $f_0 = 100 Hz$ $f_0 = 1000 Hz$	-	1.4 0.7 0.4	-	-	1.4 0.7 0.4		pA/
Slew Rate (Note 1)	SR	0	0.5	0.5	-	0.5	0.7	-	V
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	4.0	8.0	-	4.0	8.0	· · · .	k
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3	-	0.8	1.3	-	м
Risetime (Note 1)	1.	A _V = +1 V _{IN} = 50mV	-	200	300	-	200	300	ns
Overshoot (Note 1)	· · · · · · · · · · · · · · · · · · ·			5	10	-	5	10	
The following specifications apply for	V _{s`} = ±15V,	$-55^{\circ}C \leq T_A \leq +12$	25°C, un	less othe	rwise no	oted			
Input Offset Voltage	V _{os}	$R_{s} \leq 50 k\Omega$	-	0.5	1.5	-	1.4	3.0	n
Average Input Offset Voltage Drift (Note 1)	TCV _{os}	$R_{s} \leq 5k\Omega$	-	2.0	8.0	-	4.0	10.0	μ٧
Input Offset Current	l _{os} .		-	1.0	5.0	-	2.0	10.0	r r
Average Input Offset Current Drift (Note 1)	TCIos		-	7.5	75	-	15	150	pА
Input Bias Current	۱ _B		-	30	100	-	40	125	r
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0	-	
Common Mode Rejection Ratio	CMRR	V_{CM} = ±CMVR R _s ≤ 50kΩ	84	110	-	84	100	:	d
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	84	110	-	84	100	·	c
Large Signal Voltage Gain	A _{vo}	$\begin{array}{l} \textbf{R}_{L} \geq 2 \textbf{k} \Omega \\ \textbf{V}_{0} = \pm 10 \textbf{V} \end{array}$	50	100	-	25	60	_	V/
Maximum Output Voltage Swing	V _{om}	$R_L \ge 2k\Omega$	±12.0	±13.0	I	±12.0	±13.0		

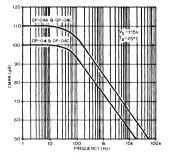

ELECTRICAL CHARACTERISTICS (Each Amplifier)				OP-04E			OP-04C			
These specifications for $V_s = \pm 15V$, T		less otherwise noted	ł.							
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units	
Input Offset Voltage	Vos	$H_{s} \leq 50 k\Omega$	-	0.3	0,75	-	1.0	2.0	mV	
Input Offset Current	los		-	0.5	2.0		1.0	5.0	nA	
Input Bias Current	I B		-	18	50	-	20	75	nA	
Input Resistance-Differential Mode	R _{in}		3.8	7.5		2.3	7.0	~	MΩ	
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0		V	
Common Mode Rejection Ratio	CMRR	V _{CM} [≈] ±CMVR R _s ≤ 50kΩ	90	110	-	90	100	1	dB	
Power Supply Rejection Ratio	PSRR	V _s = ±5 to ±20V R _s ≤ 50kΩ	90	110	-	90	100		dВ	
Output Voltage Swing	Vom	$R_L \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0		v	
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_o = \pm 10V$	100	·250	-	50	200	-	V/mV	
Power Consumption	Pd	V ₀ = 0V	-	40	60	-	50	90	mW	
Input Noise Voltage	e _{np-p}	0.1 Hz to 10 Hz		0.65			0.65	-	μVp·p	
Input Noise Voltage Density	e _n	f _o = 10 Hz f _o = 100 Hz		25 22			25 22	-	nV/√Ĥz	
		f _o = 1000 Hz		21		-	21			
Input Noise Current	ⁱ np-p	0.1 Hz to 10 Hz	-	12.8	-	-	12.8	-	рАр-р	
Channel Separation	CS	1997 - 19	100	_	-	100	-		dB	
Input Noise Current Density	ⁱ n	f _o = 10Hz f _o = 100Hz f _o = 1000Hz	1 1	1.4 0.7 0.4	-		1.4 0.7 0.4	-	pA/√Hz	
Slew Rate (Note 1)	SR		0.5	0.7	-	0.5	0.7	-	V/µs	
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	4.0	8.0	-	4.0	8.0		kHz	
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3	-	0.8	1.3		MHz	
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	200	300	-	200	300	nsec	
Overshoot (Note 1)			-	5	10		5	10	%	
The following specifications apply for	V _s = ±15V, 0	$^{\circ}C \leq T_{A} \leq +70^{\circ}C,$	unless o	otherwise	noted.					
Input Offset Voltage	V _{os}	${\rm R}_{\rm g} \leq 50k\Omega$	-	0.4	1.5	-	1.2	3.0	mV	
Average Input Offset Voltage Drift (Note 1)	tcv _{os}	$R_{g} \leq 5k\Omega$		2.0	8.0		4.0	10.0	μV/°C	
Input Offset Current	los		-	0.7	4.0	-	1.4	10.0	nA	
Average Input Offset Current Drift (Note 1)	TCI _{os}		-	7.5	120	-	15	250	pA/°C	
Input Bias Current	۱ _В		-	22	50		25	125	nA	
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0	-	v	
Common Mode Rejection Ratio	CMRR	V _{CM} ≈ ±CMVR R _s ≤50kΩ	84	110	-	84	100	-	dB	
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	84	110	-	84	100	-	dB	
Large Signal Voltage Gain	A _{vo}	$\begin{array}{l} {R_L} \ge 2 k\Omega \\ {V_o} = \pm 10 {V} \end{array}$	50	200		25	150		V/mV	
Maximum Output Voltage Swing	v _{om}	$R_L \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0	-	v	
Note 1: Parameter is not 100% tested, 90% of	of all units meet	these specifications.								

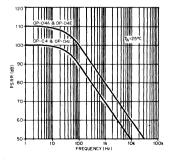
OP-04

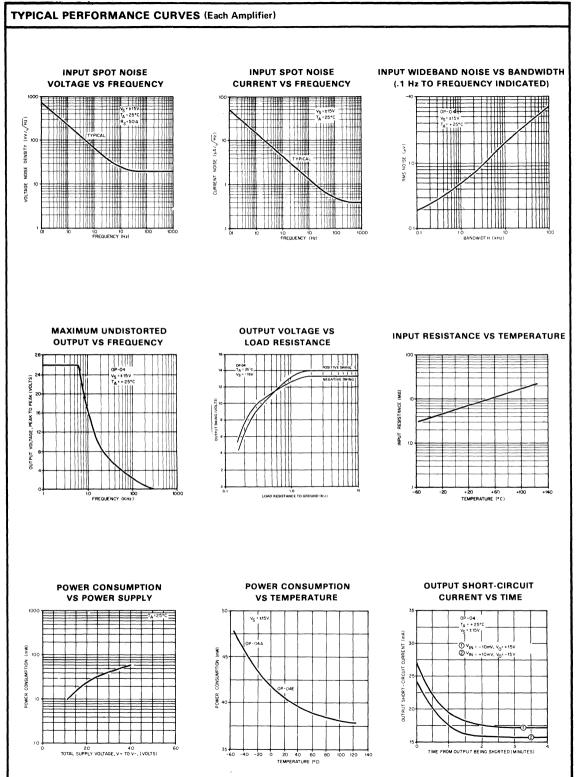

Note 1: Parameter is not 100% tested. 90% of all units meet these specifications.


CLOSED LOOP RESPONSE FOR VARIOUS GAIN CONFIGURATIONS


OPEN LOOP FREQUENCY RESPONSE


OPEN LOOP GAIN VS TEMPERATURE


OPEN LOOP GAIN VS POWER SUPPLY VOLTAGE



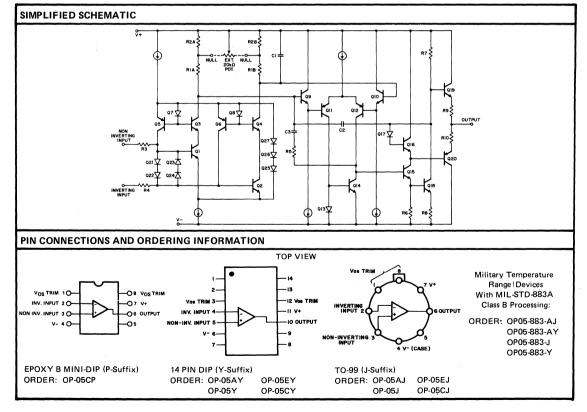
CMRR VS FREQUENCY

PSRR VS FREQUENCY

OP-04

INSTRUMENTATION OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION


The OP-05 Series of monolithic Instrumentation Operational Amplifiers combines superlative performance in low signal level applications with the flexibility and ease of application of a fully protected, internally compensated op amp. OP-05 characteristics include low offset voltage and bias current and high gain, input impedance, CMRR and PSRR.

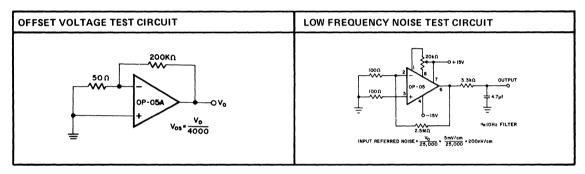
The OP-05 is a direct replacement in 725, 108A and unnulled 741 sockets allowing instant system performance improvement without redesign.

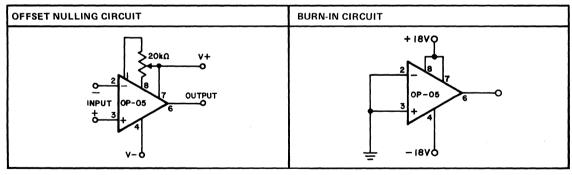
The OP-05 is an excellent choice for a wide variety of applications including strain gauge and thermocouple bridges, high gain active filters, buffers, integrators, and sample and hold amplifiers. For dual matched versions, refer to the OP-10 data sheet.

FEATURES

■ Low Noise
• Low Drift vs. Temp
b Low Drift vs. Time $\dots \dots \dots$
🖿 Low Bias Current
■ Low V _{os}
🖿 High CMRR
High PSRR
🖿 High Gain 300,000 Min
🍽 High R _{in} Diff
🖿 High R _{in} CM 200GΩ Typ
High Slew Rate
Internally Compensated Stable to 500pF Load
Easy to Use Fully Protected
\blacksquare Easy Offset Nulling \ldots Single 20k Ω Pot
Fits 725, 108A and 741 Sockets

ABSOLUTE MAXIMUM RATINGS


Supply Voltage	±22V	Storage Temperature Range	-65°C to +150°C
Internal Power Dissipation (Note 1)	500mW	Operating Temperature Range	
Differential Input Voltage	±30V	OP-05A, OP-05	–55°C to +125°C
Input Voltage (Note 2)	±22V	OP-05E, OP-05C	0°C to +70°C
Output Short Circuit Duration	Indefinite	Lead Temperature Range (Soldering	g, 60 sec) 300°C


NOTES:

Note 1: Maximum package power dissipation vs. ambient temperature.

Package Type	Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature
TO-99 (J)	80°C	7.1mW/°C
Dual-in-Line (Y)	100 [°] C	10.0mW/°C
Flat Pack (L)	62°C	5.7mW/°C

Note 2: For supply voltages less than $\pm 22V$, the absolute maximum input voltage is equal to the supply voltage.

APPLICATIONS INFORMATION

OP-05 Series devices may be fitted directly to 725 and 108/108A Series sockets with or without removal of external compensation components. Additionally, OP-05 may be fitted to unnulled 741 Series sockets; however, if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-05 operation. The OP-05 provides stable operation with load capacitances up to 500pF and \pm 10V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor. The designer is

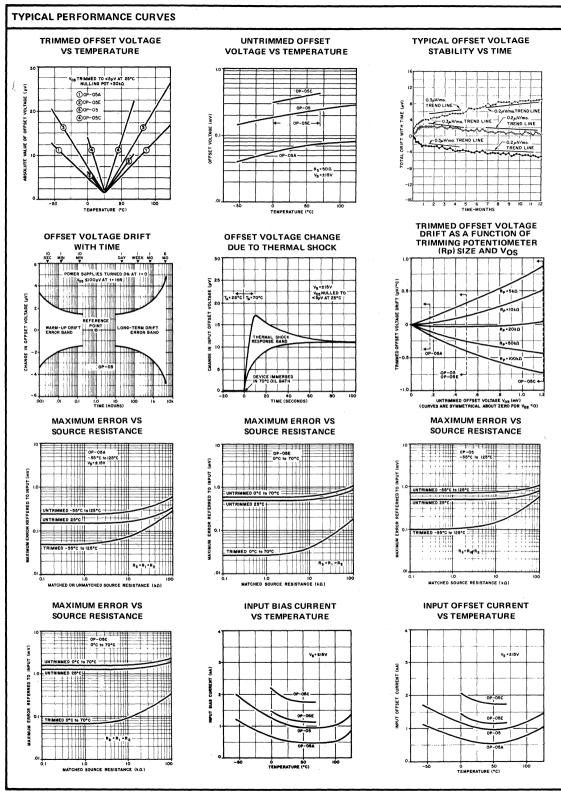
cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

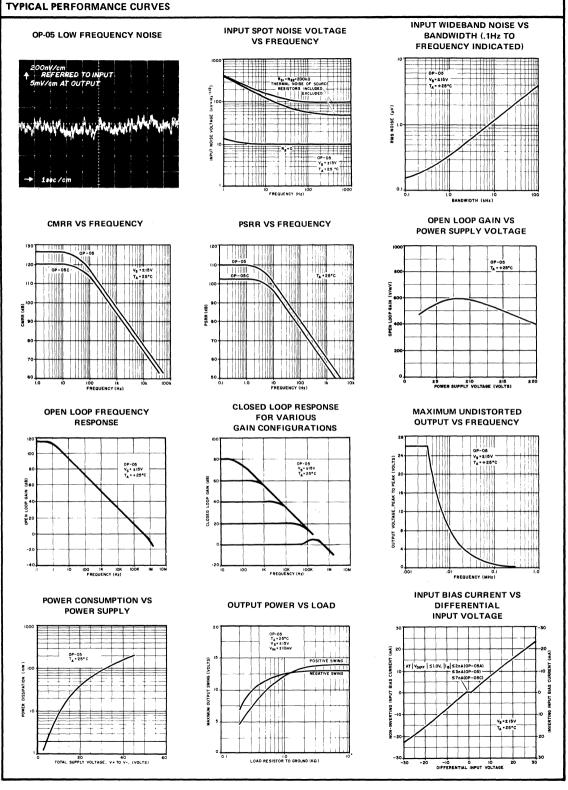
LECTRICAL CHARACTERISTICS				OP-05A	N				
These specifications apply fo	or V _s = ±1	5V, T _A = 25°C, unless	otherwis	e noted.					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	V _{os}			0.07	0.15		0.2	0.5	mV
Long Term Input Offset Voltage Stability	V _{os} /Time	(Note 1)	T	0.2	1.0		0.2	1.0	μV/Mo
Input Offset Current	l _{os}		 	.7	2.0		1.0	2.8	nA
Input Bias Current	1 ₈	· · · · · · · · · · · · · · · · · · ·		±.7	±2.0		±1.0	±3.0	nA
Input Noise Voltage	enp-p	0.1Hz to 10Hz (Note 2)		0.35	0.6		0.35	0.6	μV p-ρ
		f _o = 10Hz (Note 2)		10.3	18.0		10.3	18.0	1
Input Noise Voltage Density	e _n	f _o = 100Hz (Note 2)		10.0	13.0		10.0	13.0	nV/√H
		f _o = 1000Hz (Note 2)		9.6	11.0		9.6	11.0	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz (Note 2)		14	30		14	30	pA p-p
		fo = 10Hz (Note 2)		0.32	0.80		0.32	0.80	<u> </u>
Input Noise Current Density	in	fo = 100Hz (Note 2)		0.14	0.23		0.14	0.23	рА/√Н
		fo = 1000Hz (Note 2)		0.12	0.17		0.12	0.17	
Input Resistance – Differential Mode	R _{in}		30	80		20	60		MΩ
Input Resistance - Common Mode	R _{inCM}			200	t	<u> </u>	200		GΩ
Input Voltage Range	CMVR		± 13.5	± 14.0	<u> </u>	±13.5	±14.0		v
Common Mode Rejection Ratio	CMRR	V _{cM} = ±CMVR	114	126		114	126		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V$ to $\pm 18V$	100	110		100	110		dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega, V_{0} = \pm 10V$ $R_{L} \ge 500\Omega, V_{0} = \pm .5V$ $V_{0} = \pm 3V$	300 150	500 500		200 150	500 500		V/mV
		$R_{\rm I} \ge 10 k \Omega$	± 12.5	± 13.0	<u> </u>	± 12.5	± 13.0		
Maximum Output Voltage Swing	V₀M	$R_{L} \ge 2k\Omega$	± 12.0	± 12.8		±12.0	±12.8		v
		$R_L \ge 1 \kappa \Omega$	± 10.5	± 12.0		±10.5	± 12.0		
Slewing Rate	SR	$R_L \ge 2k\Omega$		0.17			0.17		V/µsec
Closed Loop Bandwidth	вw	Avcl = +1.0		0.6			0.6		MHz
Open Loop Output Resistance	Ro	V ₀ = 0, I ₀ = 0		60			60		Ω
Power Consumption	Pd	V _s = ± 3V		90 4	120 6		90 4	120 6	mW
Offset Adjustment Range		$R_p = 20k\Omega$	+	4			4		mV
The following specifications a	-		1 ≤ +125°	'C, unless	i otherwis	se noted.	J	L	L
Input Offset Voltage	V _{os}		<u> </u>	0.10	0.24		0.3	0.7	mV
Average Input Offset Voltage Drift									
Without External Trim With External Trim	TCV _{os}			0.3	0.9		0.7 0.3	2.0 1.0	μν/°c μν/°c
	TCV _{osn}	$R_p = 20k\Omega$		0.2	0.5				
Input Offset Current	los			1.0	4.0		1.8	5.6	nA
Average Input Offset Current Drift	TCI _{os}			5	25		8	50	pA/°C
Input Bias Current	ΪВ			±1.0	±4.0		± 2.0	±6.0	nA
Average Input Bias Current Drift	TCIB			8	25		13	50	pA/°C
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	110	123		110	123	'	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	94	106		94	106		dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	200	400	L	150	400		V/mV
Maximum Output Voltage Swing	V _{oM}	$R_L \ge 2k\Omega$	± 12.0	± 12.6		± 12.0	±12.6		V

NOTE 1: Long Term Input Offset Voltage Stability refers to the averaged trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5 μ V Parameter is not 100% tested; 90% of units meet this specification.

NOTE 2: Parameter is not 100% tested; 90% of units meet this specification.

ELECTRICAL CHARACTERISTICS	OP-05E	OP-05C	


These specifications apply for $V_s = \pm 15V$, $T_{\Delta} = 25^{\circ}C$, ur
--


Parameter	Symbol	Test Condi	itions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	V _{os}				0.2	0.5		0.3	1.3	mV
Long Term Input Offset Voltage Stability	V _{os} /Time		(Note 1)		0.3	1.5		0.4	2.0	μV/Mo
Input Offset Current	los				1.2	3.8		1.8	6.0	nA
Input Bias Current	ЧВ				± 1.2	±4.0		± 1.8	±7.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	(Note 2)	·	0.35	0.6		0.38	0.65	μV p-p
		f _o = 10Hz	(Note 2)		10.3	18.0		10.5	20.0	
Input Noise Voltage Density	e _n	f ₀ = 100Hz	(Note 2)		10.0	13.0		10.2	13.5	nV√H:
		f _o = 1000Hz	(Note 2)		9.6	11.0		9.8	11.5	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	(Note 2)		14	30		15	35	рАр-р
a maka da mana ana ang mang ang mang mang mang m		f ₀ = 10Hz	(Note 2)		0.32	0.80		0.35	0.90	
Input Noise Current Density	in	f _o = 100Hz	(Note 2)		0.14	0.23		0.15	0.27	рА/√Н
		f _o = 1000Hz	(Note 2)		0.12	0.17		0.13	0.18	
Input Resistance – Differential Mode	R _{in}			15	50		8	33		мΩ
Input Resistance – Common Mode	R _{inCM}				160			120		GΩ
Input Voltage Range	CMVR	1		± 13.5	± 14.0		± 13.0	± 14.0		v
Common Mode Rejection Ratio	CMRR	V _{cM} = ± CMVR		110	123		100	120		dB
Power Supply Rejection Ratio	PSRR		$V_s = \pm 3V$ to $\pm 18V$		107		90	104		dB
	1	$R_1 \ge 2k\Omega, V_c$, = ± 10∨	200	500		120	400		
Large Signal Voltage Gain	A _{vo}	1	$R_L \ge 500\Omega$, $V_o = \pm .5V$		500		100	400		V/mV
		R ₁ ≥ 10k	Ω	± 12.5	± 13.0		± 12.0	± 13.0		
Maximum Output Voltage Swing	V _{oM}	R _L ≥2kΩ	2	± 12.0	± 12.8		± 11.5	± 12.8		v
		R _L ≥1kΩ	2	± 10.5	± 12.0			± 12.0		
Slewing Rate	SR	R _L ≥2k∫	2	· · -	0.17			0.17		V/µse
Closed Loop Bandwidth	BW	A _{VCL} = +1	.0		0.6			0.6		MHz
Open Loop Output Resistance	R _o	V ₀ = 0, I ₀	= 0		60			60		Ω
D					90	120		95	150	mW
Power Consumption	Pd	$V_s = \pm 3V_s$	v		4	6		4	8	11100
Offset Adjustment Range		R _p = 20k	Ω		4			4		mV
The following specifications	apply for V	_s = ±15V, 0°C	≤ T _A ≤	< +70°C	, unless c	otherwise	noted.			
Input Offset Voltage	V _{os}	1			0.25	0.6		0.35	1.6	mV
Average Input Offset Voltage Drift Without External Trim	TCVos	1	(Note 2)		0.7	2.0		1.2	4.5	μv/°c

Without External Trim With External Trim	TCVos	(Note 2) R _D = 20kΩ		0.7	2.0 0.6		1.2	4.5 1.5	μv/°c
With External Trim	TCV _{osn}	hp - 20K32		0.2	0.6		0.4	(Note 2)	
Input Offset Current	los			1.4	5.3		2.0	8.0	nA
Average Input Offset Current Drift	TCIos	(Note 2)		8	35		12	50	pA/ [°] C
Input Bias Current	Чв			± 1.5	± 5.5		±2.2	± 9.0	nA
Average Input Bias Current Drift	тсі _в	(Note 2)		13	35		18	50	pA/ [°] C
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	107	123		97	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	90	104		86	100		dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	180	450		100	400		V/mV
Maximum Output Voltage Swing	V _{oM}	$R_L \ge 2k\Omega$,	± 12.0	± 12.6		±11.0	± 12.6		v

NOTE 1: Long Term Input Offset Voltage Stability refers to the averaged trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5µV -Parameter is not 100% tested; 90% of units meet this specification.

NOTE 2: Parameter is not 100% tested; 90% of units meet this specification.

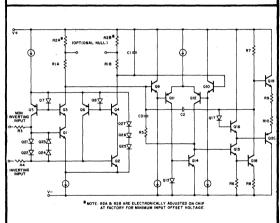
OP-05

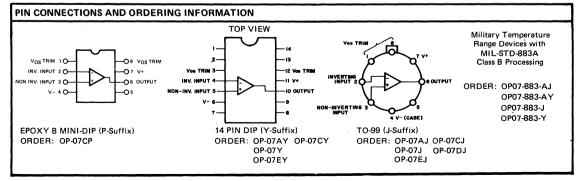
FMI

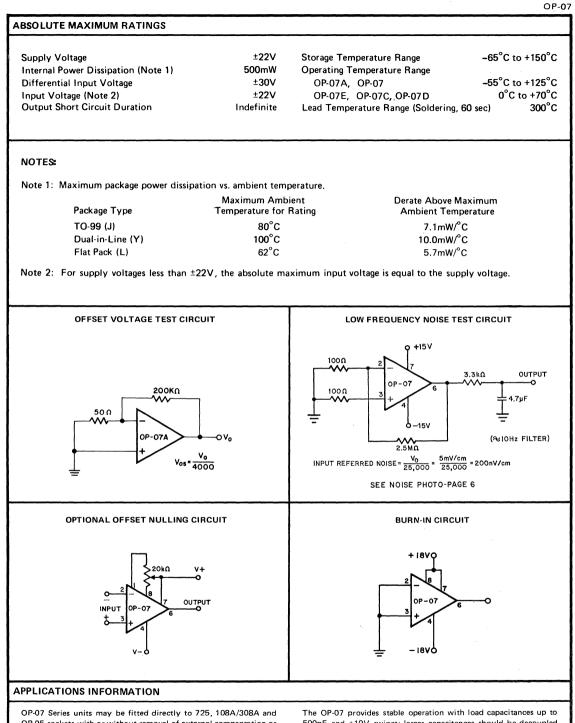
ULTRA-LOW OFFSET VOLTAGE OP AMP

GENERAL DESCRIPTION

The OP-07 Series represents a breakthrough in monolithic operational amplifier performance–Vos of 10μ V, TC Vos of 0.2μ V/°C and long term stability of 0.2μ V/month are achieved by a low noise, chopper-less bipolar input transistor amplifier circuit. Complete elimination of external components for offset nulling, frequency compensation and device protection permits extreme miniaturization and optimization of system Mean-Time-Between-Failure Rates in high performance aerospace/defense and industrial applications. Excellent device interchangeability provides reduced system assembly time and eliminates field recalibrations.


True differential inputs with wide input voltage range and outstanding common mode rejection provide maximum flexibility and performance in high noise environments and non-inverting applications. Low bias currents and extremely high input impedances are maintained over the entire temperature range.


Low cost, high volume production of OP-07 is achieved by electronic adjustment of an on-chip offset trimming network during initial factory testing. The OP-07 provides unparalleled performance for low noise, high accuracy amplification of very low level signals in transducer applications. Other applications include use in stable integrators, precision summing amplifiers for analog computation and test equipment and in ultra-precise voltage threshold detectors and comparators. The OP-07 is recommended as a replacement for modular and monolithic chopper-stabilized amplifiers where reductions in cost, noise, size and power consumption are required. Devices are available in chip form for use in hybrid circuitry. The OP-07 is a direct replacement for 725, 108A/308A, and OP-05 amplifiers; 741-types may be directly replaced by removing the 741's nulling potentiometer.


FEATURES

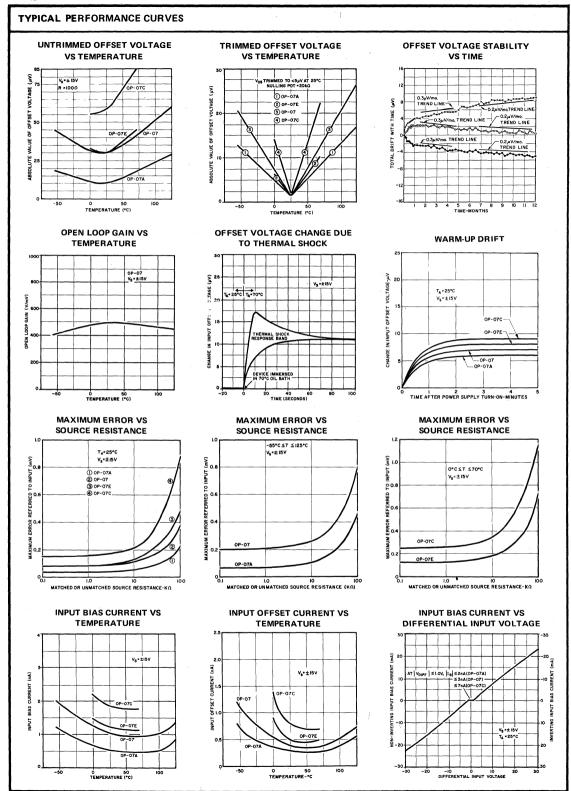
Ultra-Low Vos
Ultra-Low Vos Drift 0.2 μ V/°C
Ultra-Stable vs Time 0.2 μ V/Month
Ultra-Low Noise
No External Components Required
Replaces Chopper amps at Lower Cost
Single Chip Monolithic Construction
High Common Mode Input Range ±14.0V
Wide Supply Voltage Range ±3V to ±18V
Fits 725, 108A/308A, 741,AD510 Sockets

SIMPLIFIED SCHEMATIC

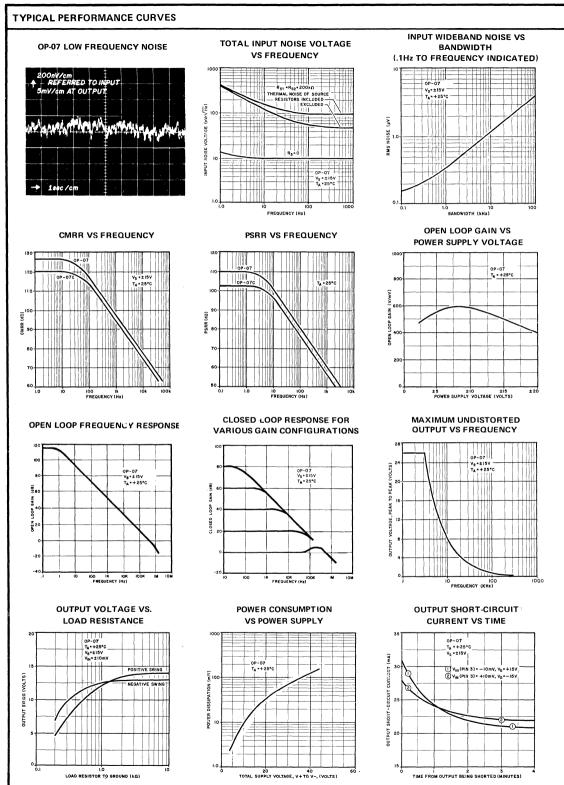
OP-07 Series units may be fitted directly to 725, 108A/308A and OP-05 sockets with or without removal of external compensation or nulling components. Additionally, OP-07 may be fitted to unnulled 741-type sockets; however if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-07 operation. OP-07 offset voltage may be nulled to zero (or other desired setting) through use of a potentiometer (see diagram above). The OP-07 provides stable operation with load capacitances up to 500pF and $\pm 10V$ swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor. The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

ELECTRICAL CHARACTERIS	STICS				OP-07A			OP-07		
These specifications apply fo	$v V_s = \pm 1!$	5V, T _A = 25°	C, unless	otherwise	e noted.					
Parameter	Symbol	Test Condi	tions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	V _{os}		(Note 1)		10	25		30	75	μν
Long Term Input Offset Voltage Stability	V _{os} /Time		(Note 2)		0.2	1.0	'	0.2	1.0	μv/м
Input Offset Current	I _{os}				0.3	2.0		` 0.4	2.8	nA
Input Bias Current	I _В				±.7	±2.0		±1.0	±3.0	nA
Input Noise Voltage	^e np-p	0.1Hz to 10Hz	(Note 3)		0.35	0.6		0.35	0.6	µ∨p
		f _o = 10Hz	(Note 3)		10.3	18.0		10.3	18.0	
Input Noise Voltage Density	e _n	f _o = 100Hz	(Note 3)		10.0	13.0		10.0	13.0	nV/√
1		f _o = 1000Hz	(Note 3)		9.6	11.0		9.6	11.0	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	(Note 3)		14	30		14	30	pA p
	P	fo = 10Hz	(Note 3)		0.32	0.80		0.32	0.80	
Input Noise Current Density	in	fo = 100Hz	(Note 3)	-	0.14	0.23		0.14	0.23	pA/√
		fo = 1000Hz	(Note 3)	· <u> </u>	0.12	0.17		0.12	0.17	
Input Resistance - Differential Mode	R _{in}			30	80		20	60		мΩ
Input Resistance - Common Mode	_				200			200		GΩ
Input Voltage Range	R _{inCM} CMVR						±13.0	±14.0		V 032
	CMRR			±13.0	± 14.0					dB
Common Mode Rejection Ratio	PSRR	$V_{cM} = \pm CN$		110	126		110	126		
Power Supply Rejection Ratio	Forn	$V_s = \pm 3V$ to		100	110		100	110		dB
Large Signal Voltage Gain	A _{vo}	$ \begin{array}{c c} R_{L} \geq 2k\Omega, V_{C} \\ R_{L} \geq 500\Omega, V \\ V_{S} = \pm 3V \end{array} $		300 150	500 500		200 150	500 500		V/m
									 	<u> </u>
		$R_L \ge 10k$		± 12.5	± 13.0		± 12.5	± 13.0		
Maximum Output Voltage Swing	V₀M	$R_{L} \ge 2k$		± 12.0 ± 10.5	± 12.8 ± 12.0		±12.0	±12.8		V V
		$R_L \ge 1k$		± 10.5	12.0	ļ	±10.5	±12.0		h
Slewing Rate	SR	$R_L \ge 2k$			0.17			0.17	<u>↓</u>	V/μse
Closed Loop Bandwidth	BW	A _{VCL} = +1	.0		0.6			0.6		MH:
Open Loop Output Resistance	Ro	V _o = 0, I _o =	= 0		60			60		Ω
Power Consumption	Pd				75	120		75	120	mW
		V _s = ± 3\			4	6		4	6	
Offset Adjustment Range		R _p = 20k	Ω		±4			±4		mV
The following specifications a	pply for V _s	= ± 15V, - 55°	c ≼t _A	≤ +125°	C, unless	otherwi	se noted.			
Input Offset Voltage	V _{os}	(Note 1)		25	60	<u> </u>	60	200 ,	μν
Average Input Offset Voltage Drift		1			1	1	[1		
Without External Trim	тсv _{os}				0.2	0.6		0.3	1.3	μv/°
With External Trim	TCV _{osn}	R _p = 20	sΩ		0.2	0.6		0.3	1.3	μv/°
Input Offset Current	l _{os}				0.8	4.0		1.2	5.6	nA
Average Input Offset Current Drift	TCI _{OS}	<u> </u>			5	25		8	50	pA/°
Input Bias Current	I _B				±1.0	±4.0		± 2.0	± 6.0	nA
Average Input Bias Current Drift	тсів	ł	· · · · ·			±4.0 25		13	50	pA/°
	CMVR	<u> </u>			8		± 13.0	± 13.5	50	h
Input Voltage Range				± 13.0	± 13.5	<u>↓</u>	h	+	t	V III
Common Mode Rejection Ratio	CMRR	V _{CM} = ± C		106	123	ļ	106	123		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to}$		94	106		94	106		dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega, V_{C}$		200	400		150	400		V/m
Maximum Output Voltage Swing	∨ _{oM}	R _L ≥ 2	k75	± 12.0	± 12.6		± 12.0	±12.6		V.

NOTE 1: Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. Additionally, OP-07A offset voltage is measured five minutes after power supply application at 25°C, -55°C and +125°C.


NOTE 2: Long Term Input Offset Voltage Stability refers to the averaged trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5µV -Parameter is not 100% tested; 90% of units meet this specification.

NOTE 3: Parameter is not 100% tested; 90% of units meet this specification.


OP-	07
-----	----

ELECTRICAL CHA	_			DP-07E		С	P-07C		0)P-07D		
These specifications app	ly for V _s =	$\pm 15V$, T _A = 25°C, unless of	herwise	noted.							· · · · · · · · · · · · · · · · · · ·	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	(Note 1)		30	75	-	60	150	-	60	150	μV
Long Term V _{OS} Stability	V _{os} /Time	(Note 2)	-	0.3	1,5	-	0.4	2.0	-	0.5	3.0	μV/Mo
nput Offset Current	los		-	0.5	3.8	-	0.8	6.0	-	0.8	6.0	nA
nput Bias Current	۱ _B			±1.2	±4.0		±1.8	±7.0	-	±2.0	±12	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)	-	0.35	0.6	-	0.38	0.65		0.38	0.65	μV p-p
		f _o = 10Hz (Note 3)	-	10.3	18.0	-	10.5	20.0	-	10.5	20.0	
Input Noise Voltage Density	^e n	f _o = 100Hz (Note 3)	-	10.0	13.0	-	10.2	13.5	-	10.2	13.5	nV/√H
Land Nation Oceans		$f_0 = 1000 Hz$ (Note 3)	-	9.6	11.0		9,8	11.5		9.8	11.5	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz (Note 3)		14	30	-	15	35	-	15	35	рАр-р
Input Noise Current	in	f _o = 10Hz (Note 3) f _o = 100Hz (Note 3)	-	0.32 0,14	0.80 0,23	-	0.35 0.15	0.90 0.27	_	0.35 0.15	0.90	pA/√F
Density	'n	$f_0 = 1000Hz$ (Note 3)	_	0.12	0.17	_	0.13	0.18	_	0.13	0.18	PA/V1
nput Resistance -	D .	0	15			8	22		7			
Diff. Mode	R _{in}		15	50	-	8	33	_	/	31	-	MΩ
Input Resistance – Common Mode	RinCM		-	160	-		120	-	-	120	-	GΩ
Input Voltage Range	CMVR		±13.0	±14.0	-	±13.0	±14.0	-	±13.0	±14.0	-	v
Common Mode Rejection Ratio	CMRR	V _{cM} ≖ ±CMVR	106	123	-	100	120	-	94	110	-	dB
Power Supply Rejection	PSRR	V _s ≈ ±3V to ±18V	94	107	_	90	104	_	90	104	_	dB
Ratio		$R_L \ge 2k\Omega, V_0 = \pm 10V$	200	500	_	120	400	_		400		
Large Signal Voltage Gain	Avo	$R_{L} \ge 500\Omega, V_{0} = \pm .5V$	150	500	_	120	400	_	120	400	_	V/mV
	1.00	$V_s = \pm 3V$	100	500		100	400					
		R _L ≥ 10kΩ	±12.5	±13.0	-	±12.0	±13.0	-	±12.0	±13.0	_	
Maximum Output Voltage	VoM	R _L ≥2kΩ	±12.0	±12.8	_	±11.5	±12.8	-	±11.5	±12.8	-	v
Swing		R _L ≥1kΩ	±10.5	±12.0	-	-	±12.0	-	-	-	-	
Slewing Rate	SR	R _L ≥ 2kΩ	-	0.17	-	-	0.17	-	-	0.17	-	V/µsec
Closed Loop Bandwidth	BW	AVCL = +1.0	-	0.6		-	0.6	-	-	0.6		MHz
Open Loop Output Resistance	Ro	V ₀ = 0, I ₀ = 0	-	60	-	-	60			60	_	Ω
Power Consumption	Pd	$V_s = \pm 3V$		75	120	-	80	150		80	150	mW
				4	6	-	4	8	-	4	8	
Offset Adjustment Range		$R_p = 20k\Omega$		±4	-	-	±4		_	±4		mV
The following specificat	ons apply f	for $V_s = \pm 15V$, $0^{\circ}C \leq T_A \leq$	+70°C,	unless o	therwise	noted.						
Input Offset Voltage	Vos	(Note 1)		45	130		85	250	_	85	250	μV
Average Input Offset	v os				130			200		- 00	250	μν
Voltage Drift								(Note 3)			(Note 3)	
Without External Trim	TCVos	B 201-0	-	0.3	1.3	-	0.5	1.8	-	0.7	2.5	µv/°c
With External Trim	TCVosn	$R_p = 20k\Omega$	-	0.3	1.3	-	0.4	1.6 (Note3)	-	0.7	2.5 (Note3)	
Input Offset Current	los		-	0.9	5.3	_	1.6	8.0	-	1.6	8.0	nA
Average Input Offset	TCIos	(Note 3)	<u> </u>	8	35	_	12	50	_	12	50	pA/°C
Current Drift Input Bias Current			_	±1,5	±5.5							
Average Input Bias	1 _B						±2.2	±9.0		±3.0	±14	nA
Current Drift	TCIB	(Note 3)		13	35		18	50		18	50	pA/°C
Input Voltage Range	CMVR		±13.0	±13.5		±13.0	±13.5		±13.0	±13.5		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	103	123	-	97	120	-	94	106	-	dB
Power Supply Rejection	PSRR	$V_s = \pm 3V$ to $\pm 18V$	90	104		86	100	_	86	100	_	dB
Ratio Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega, V_0 = \pm 10V$	180	450	_	100	400	_	100	400	_	V/mV
Maximum Output Voltage						<u> </u>						
Swing	V _{oM}	R _L ≥ 2kΩ	±12.0	±12.6	-	±11.0	±12.6	-	±11.0	±12.6	-	V
of power NOTE 2: Long Ter first 30 d	m Input Of ays of operation	measurements are performed fset Voltage Stability refers ation. Excluding the initial arameter is not 100% tested	to the a hour of	veraged operatio	trend lir n, chang	e of Vo	s vs. Tir	ne over e	xtended	d period	s after ti	

NOTE 3: Parameter is not 100% tested; 90% of units meet this specification.

PRECISION LOW INPUT CURRENT OP AMP

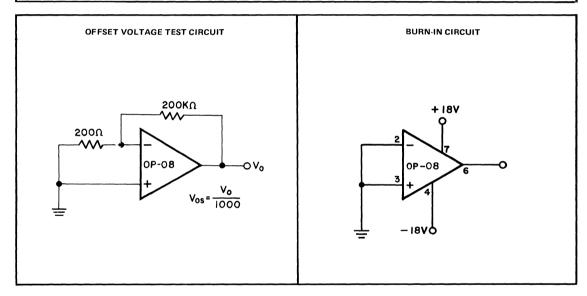
GENERAL DESCRIPTION

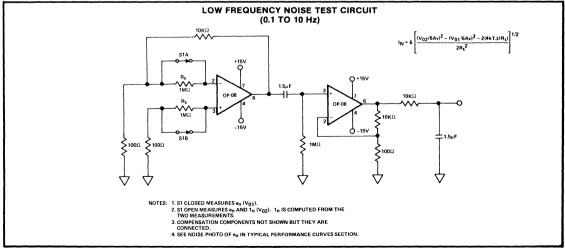
The PMI OP-08 is an improved version of the popular LM108A low power op amp. The OP-08 has a three times lower offset voltage and a two times lower offset voltage drift. The total worst case input offset voltage over -55° C to $+125^{\circ}$ C for the OP-08 is only 350 µV, while the 108A has 900 µV to 1000 µV for these conditions. In addition the OP-08 drives a 2k Ω load. This is five times the output current capability of the 108A. This excellent performance is achieved by applying PMI's ion-implanted super beta process and on-chip-zener-zap trimming capabilities. For devices with identical specifications plus internal frequency compensation, see the OP-12 data sheet.

FEATURES

Low Offset Voltage
■ Low Offset Voltage Drift 2.5µV/°C Max.
Five Times PM108A Load Current 5 mA Min.
Plus the Outstanding PM108A Features
Low Offset Current
🖝 Low Bias Current
Low Power Consumption 18 mW max. @ ±15V
🗰 High Common Mode Input Range ±13.5V Min.
MIL-STD-883A Class B Processing Available
Silicon-Nitride Passivation

ABSOLUTE MAXIMUM RATINGS


Supply Voltage		Operating Temperature Range	
OP-08A, OP-08B, OP-08C	±20V	OP-08A, OP-08B, OP-08C	–55°C to +125°C
OP-08E, OP-08F, OP-08G	±18V	OP-08E, OP-08F, OP-08G	0°C to +70°C
Internal Power Dissipation (Note 1)	500mW	Storage Temperature Range	-65°C to +150°C
Differential Input Current (Note 2)	±10mA	Lead Temperature Range	
Input Voltage (Note 3)	±15V	(Soldering, 60 sec)	300°C
Output Short Circuit Duration	Indefinite		


NOTE 1: Maximum package power dissipation vs. ambient temperature:

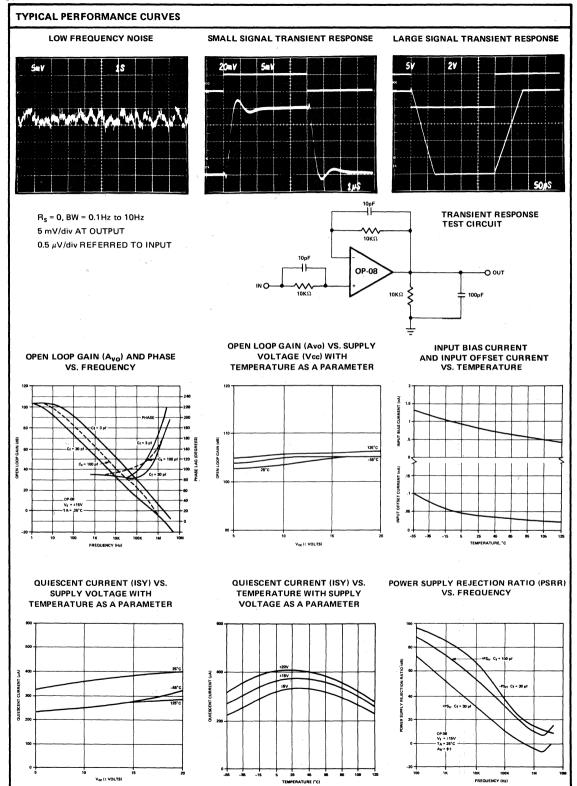
	Maximum	Derate Above
	Ambient	Maximum
	Temperature	Ambient
Package Type	for Rating	Temperature
TO-99 (J)	80°C	7.1 mW/°C

NOTE 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is provided.

NOTE 3: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTE	RISTIC	S		DP-08A			OP-08	3		OP-080	c	
These specifications apply for V	′ _s = ±15∨	, T _A = 25°C, unless other	wise no	ted.								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{os}		-	0.07	0.15	-	0.18	0.30	-	0.25	1.0	mV
Input Offset Current	1 _{os}		-	0.05	0.20		0.05	0.20	-	0.08	0.50	nA
Input Bias Current	۱ _B		-	0.80	2.0	-	0.80	2.0	-	1.0	5.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	_	0.9	-	-	0.9	-	-	0.9	-	μV p-p
Input Noise Voltage Density	e _n	$f_{o} = 10Hz$ $f_{o} = 100Hz$ $f_{o} = 1000Hz$	 	22 21 20	- - -		22 21 20	- - -		22 21 20	- - -	nV/√I
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	-	3	-	-	3	-	-	3	-	pA p-p
Input Noise Current Density	in	$f_o = 10Hz$ $f_o = 100Hz$ $f_o = 1000Hz$		0.15 0.14 0.13	1		0.15 0.14 0.13		- - -	0.15 0.14 0.13		pA/√I
Input Resistance — Differential Mode	R _{in}		26	70	-	26	70	-	10	50	-	MΩ
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0	<u>-</u>	±13.0	±14.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	104	120	-	104	120	-	84	116	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5V$ to $\pm 15V$	104	120	-	104	120	-	84	116	-	dB
Large Signal Voltage Gain	A _{vo}	$\begin{aligned} R_{L} &\geq 10 K \Omega , V_{O} = \pm 10 V \\ R_{L} &\geq 2 K \Omega , V_{O} = \pm 10 V \end{aligned}$	80 50	300 150	-	80 50	300 150	1 1	40 -	250 100	-	V/mV
Maximum Output Voltage Swing	VoM	R _L ≥ 10KΩ R _L ≥ 2KΩ		±14.0 ±12.0	-	±13.0 ±10.0	±14.0 ±12.0		±13.0 ±10.0		-	v
Slewing Rate	SR	R _L ≥ 2KΩ	-	0.12	-	-	0.12	-	-	0.12		V/µsec
Closed Loop Bandwidth	вw	AVCL = +1.0	_	0.80	-	·	0.80	_	-	0.80	-	MHz
Open Loop Output Resistance	Ro	V ₀ = 0, I ₀ = 0	-	200	-	-	200		-	200	-	Ω
Power Consumption	Pd	V _s = ±15V V _s = ±5V	- -	9 3	18 6		9 3	18 6	-	12 4	24 8	mW
The following specifications app	ly for V _s	= ±15V,	-125°C,	uniess o	therwis	e noted	Ι.					
Input Offset Voltage	Vos		_	0.12	0.35	-	0.28	0.60	-	0.40	2.0	mV
Average Input Offset Voltage Drift	TCVos		-	0.50	2.5	-	1.0	3.5	-	1.5	10	μV/°C

Average Input Offset Voltage Drift	тсv _{os}		-	0.50	2.5	-	1.0	3.5	-	1.5	10	μV/°C
Input Offset Current	I _{OS}		-	0.12	0.40	-	0.12	0.40	-	0.18	1.0	nA
Average Input Offset Current Drift	TCIOS		-	0.50	2.5	-	0.50	2.5	-	1.0	5.0	pA/°C
Input Bias Current	۱ _B		-	1.2	3.0	-	1.2	3.0	-	1.8	10	nA
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0	-	±13.0	±14.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	100	110	-	100	110	-	80	106	. –	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5V$ to $\pm 15V$	100	110	_	100	110	-	80	106	-	dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 5K\Omega, V_0 = \pm 10V$	40	120	-	40	120	-	15	80	-	V/mV
Maximum Output Voltage Swing	V₀M	R _L ≥ 10KΩ R _L ≥ 5KΩ		±14.0 ±13.0			±14.0 ±13.0		±13.0 ±10.0			V
Power Consumption	Pd		-	9	18	-	<u></u> 9	18	-	15 [°]	24	mW

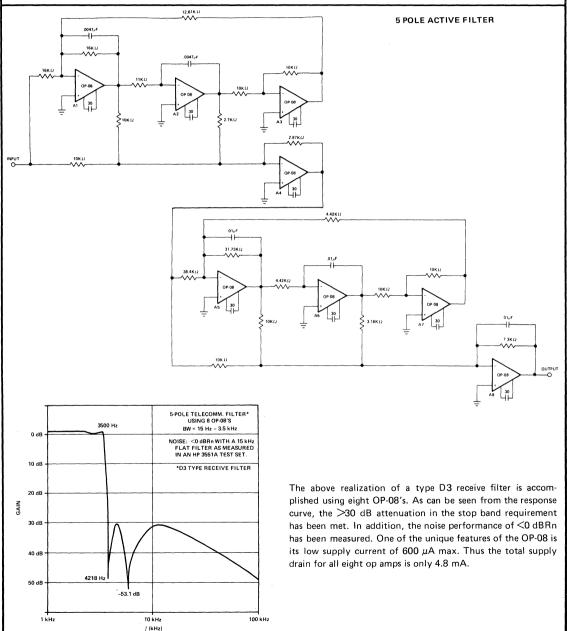

ELECTRICAL CHARACTERISTICS	OP-08E	OP-08F	OP-08G	
		·		

These specifications apply for V_s = $\pm 15V$, T_A = 25° C, unless otherwise noted.

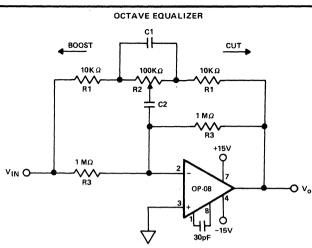
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos		-	0.07	0.15	-	0.18	0.30	-	0.25	1.0	mV
Input Offset Current	los		-	0.05	0.20		0.07	0.40	-	0.08	0.50	nA
Input Bias Current	۱ _B			0.80	2.0		0.90	4.0	-	1.0	5.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	-	0.9	-		0.9	· _	`-	0.9	-	µV p-p
Input Noise Voltage Density	e _n	f _o = 10Hz f _o = 100Hz f _o = 100Hz		22 21 20		1 1	22 21 20	-	- - -	22 21 20		nV/√H
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	-	3			3	-	-	3	·	рАр-р
Input Noise Current Density	in	f _o = 10Hz f _o = 100Hz f _o = 100Hz		0.15 0.14 0.13	-	-	0.15 0.14 0.13	-	 -	0.15 0.14 0.13	-	pA/√H
Input Resistance – Differential Mode	R _{in}	· · · · · · · · · · · · · · · · · · ·	26	70	-	13	60	_	10	50	-	MΩ
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0	-	±13.5	±14.0	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	104	120	-	102	120	-	84	116	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5V$ to $\pm 15V$	104	120	-	102	120	-	84	116	-	dB
Large Signal Voltage Gain	A _{vo}	$\begin{aligned} \mathbf{R}_{L} &\geq 10 \mathrm{K}\Omega, \mathbf{V}_{o} = \pm 10 \mathrm{V} \\ \mathbf{R}_{L} &\geq 2 \mathrm{K}\Omega, \mathbf{V}_{o} = \pm 10 \mathrm{V} \end{aligned}$	80 50	300 150	-	80 30	300 120	-	40 -	250 100	-	V/mV
Maximum Output Voltage Swing	∨ _{oM}	R _L ≥ 10KΩ R _L ≥ 2KΩ	±13.0 ±10.0	±14.0 ±12.0	-		±14.0 ±12.0	-	±13.0 ±10.0	±14.0 ±12.0	-	v
Slewing Rate	SR	R _L ≥ 2KΩ		0.12	-	-	0.12	-	-	0.12	_	V/µsec
Closed Loop Bandwidth	BW	A _{VCL} = +1.0	-	0.80	-		0.80	-	-	0.80	-	MHz
Open Loop Output Resistance	Ro	V ₀ = 0, I ₀ = 0	-	200	-	-	200	-	-	200	-	Ω
Power Consumption	Pd	V _s = ±15V V _s = ±5V	-	9 3	18 6		9	18 6	-	12 4	24 8	mW

The following specifications apply for V_s = $\pm 15V$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

Input Offset Voltage	Vos		-	0.10	0.26	-	0.23	0.45	-	0.32	1.4	mV
Average Input Offset Voltage Drift	TCVos		_	0.50	2.5	-	1.0	3.5	-	1.5	10	µV/°C
Input Offset Current	los		-	0.08	0.30	-	· 0.11	0.60	-	0.12	0.70	nA
Average Input Offset Current Drift	TCI _{OS}		-	0.50	2.5	-	1.0	5.0	-	1.0	5.0	pA/°C
Input Bias Current	IB			1.0	2.6		1.2	5.2	-	1.4	6.5	nA
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0		±13.5	-		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	100	116	-	100	116	_	80	112	-	dB
Power Supply Rejection Ratio	PSRR	V _s = ±5V to ±15V	100	116	-	100	116	-	80	112		dB
Large Signal Voltage Gain	A _{vo}	$\begin{aligned} \mathbf{R}_{L} &\geq 2 \mathbf{K} \Omega, \mathbf{V}_{0} = \pm 10 \mathbf{V} \\ \mathbf{R}_{L} &\geq 10 \mathbf{K} \Omega, \mathbf{V}_{0} = \pm 10 \mathbf{V} \end{aligned}$	25 60	100 200	-	15 60	100 200	-	- 25	80 150	-	V/mV
Maximum Output Voltage Swing	V _{oM}	R _L ≥ 10KΩ R _L ≥ 2KΩ		±14.0 ±12.0	-		±14.0 ±12.0		±13.0 ±10.0	±14.0 ±12.0		v
Power Consumption	PD		-	9	18	-	9	18	-	15	24	mW



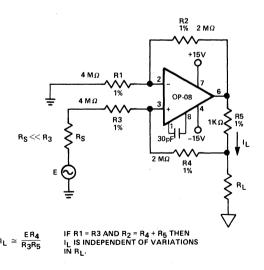
6-47


APPLICATIONS INFORMATION

The OP-08 series has extremely low input offset and bias currents; the user is cautioned that stray printed circuit board leakages can produce significant errors, especially at high board temperatures. Careful attention to board layout and cleaning procedure is required to fully realize the OP-08 performance. It is suggested that effects of board leakage be minimized by encircling the input pins with a conductive guard ring operated at a potential close to that of the inputs. This guard ring should be driven by a low impedance source such as the amplifier's output for non-inverting circuits, or be tied to ground for inverting circuits.

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS



The above circuit is one section of an octave equalizer used in audio systems. The table shows the values of C1 and C2 needed to achieve the given center frequencies. This circuit is capable of 12 dB boost or cut as determined by the position of R2.

Because of the low input bias current of the OP-08 the resistors could be scaled up by a factor of ten, and thereby reduce the values of C1 and C2 at the low frequency end. In addition ten sections as shown above will only draw a combined supply current of 6 mA maximum.

f _o (Hz)	с ₁	C2
32	0.18µF	0.018µF
64	0.1µF	0.01µF
125	0.047µF	0.0047µF
250	0.022µF	0.0022µF
500	0.012µF	0.0012µF
1k	0.0056µF	560pF
2k	0.0027µF	270pF
4k	0.0015µF	150pF
8k	680pF	68pF
16k	360pF	36pF

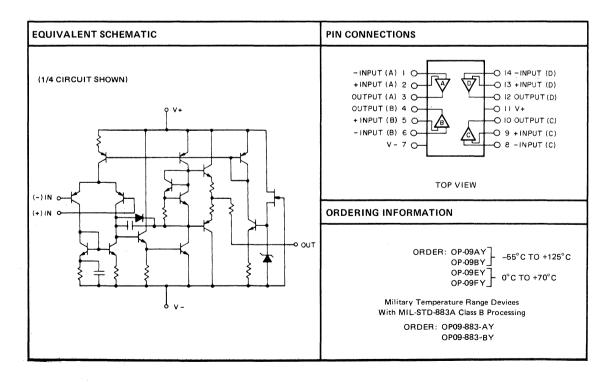
BILATERAL CURRENT SOURCE

The above circuit will produce the above current relationship to within 2% using 1% values for R1 through R5. This includes variations in R_1 from 10 Ω to 2000 Ω . The use of large

resistors for R1 through R4 minimizes the error due to R_L variations. The large resistors are possible because of the excellent input bias current performance of the OP-08.

QUAD MATCHED 741-TYPE OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

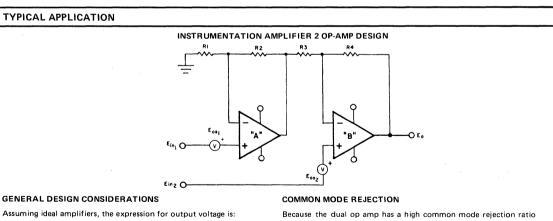

The OP-09 provides four matched 741-type operational amplifiers in a single 14-pin DIP package. The OP-09 is pin compatible with the RM4136 and RC4136 amplifiers. The amplifiers are matched for common mode rejection ratio and offset voltage. These parameters are very important in the design of instrumentation amplifiers. In addition the amplifier is designed to have equal positive-going and negative-going slew rates. This is a very important consideration for good audio system performance.

Each of the four amplifiers has the proven OP-02 advantages of low noise, low drift and excellent long term stability. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost.

FEATURES

	Guaranteed V _{os}
	Guaranteed Matched CMRR 94 dB MIN.
	Guaranteed Matched V _{os}
	RM4136/RC4136 Direct Replacements
	Low Noise
	Silicon-Nitride Passivation
	Internal Frequency Compensation
•	Low Crossover Distortion
	Continuous Short Circuit Protection
	Low Input Bias Current

The OP-09 is ideal for use in designs requiring minimum space and cost while maintaining OP-02-type performance. OP-09's with processing per the requirements of MIL-STD-883A are available. For dual-741-type versions, see the OP-04 and OP-14 data sheets.


OP-09

ABSOLUTE MAXIMUM RATINGS				· · · · · · · · · · · · · · · · · · ·
Supply Voltage	±22V	Operating Tem	nperature Range	
Internal Power Dissipation (Note 1)	800 mW	OP-09A, OI	P-09B	–55°C to +125°C
Differential Input Voltage	±30V	OP-09E, PC	0-09F	0°C to +70°C
Input Voltage	Supply Voltage		mum package power c	lissipation vs. ambient
Output Short Circuit Duration	Continuous	temperature.		
	(One Amplifier Only)		MAXIMUM AMBIENT	DERATE ABOVE
Storage Temperature Range	-65° to $+150^{\circ}$ C		FOR BATING	MAXIMUM AMBIENT TEMPERATURE
Lead Temperature Range (Soldering,	60 sec) 300°C	14 Pin DIP (Y)	80°C	10 mW/° C
				, , , , , , , , , , , , , , , , , , , ,

MATCHING CHARACTER	RISTICS		OP-	09A OP-	09E	OF	-09B OP-0	09F	
These specifications apply for	V _s = ±15V, T _A	= 25°C, R _s ≤ 100Ω, u	nless other	wise noted.					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Mín	Тур	Max	Units
Input Offset Voltage Match	ΔV _{os}	(Note 4)	-	0.5	0.75	-	0.8	2.0	mV
Common Mode Rejection Ratio Match (Note 3)	∆CMRR	V _{cM} = ±CMVR		1.0 120	20		1.0 120	20	μV/V dB
These specifications apply for $R_s \leqslant 100 \Omega$ unless otherwise n		5°C ≤ T _A ≤ +125°C fo	or OP-09A a	and OP-09B,	0°C ≤ T _A	≤ +70° C for	OP-09E and	OP-09F	•
Input Offset Voltage Match	ΔV _{os}	(Note 4)	-	0.6	1.0	-	1.0	2.5	mV
Common Mode Rejection Ratio Match (Note 3)	∆CMRR	V _c M = ±CMVR		3.2 110	20	94	<u>3.2</u> 110	20	μV/V dB

MATCHING PARAMETER DEFINITIONS

COMMON MODE REJECTION RATIO MATCH (Δ CMRR). The difference between the common-mode rejection ratios (expressed in volt/volt) of side A and side B. Δ CMRR in dB = -20 log₁₀ (Δ CMRR in volt/volt). See note 3. **INPUT OFFSET VOLTAGE MATCH** (ΔV_{0S}). The difference between the offset voltages of side A and side B; ($V_{0SA} - V_{0SB}$). See note 4.

1) $E_{o} = -\left[E_{in1}\left(1 + \frac{R_{2}}{R_{1}}\right)\frac{R_{4}}{R_{3}}\right] + E_{in2}\left(\frac{R_{4}}{R_{3}} + 1\right)$

With ideal resistors this simplifies to:

2)
$$E_0 = \left(E_{in2} - E_{in1}\right) \left(\frac{R_4}{R_3} + 1\right) \text{ provided } \frac{R_1}{R_2} = \frac{R_4}{R_3}$$

Because the dual op amp has a high common mode rejection ratio match, the ability to reject common mode inputs becomes primarily a function of resistor ratio matching. This device eliminates the need for special op amp selections in many instrumentation amplifier applications.

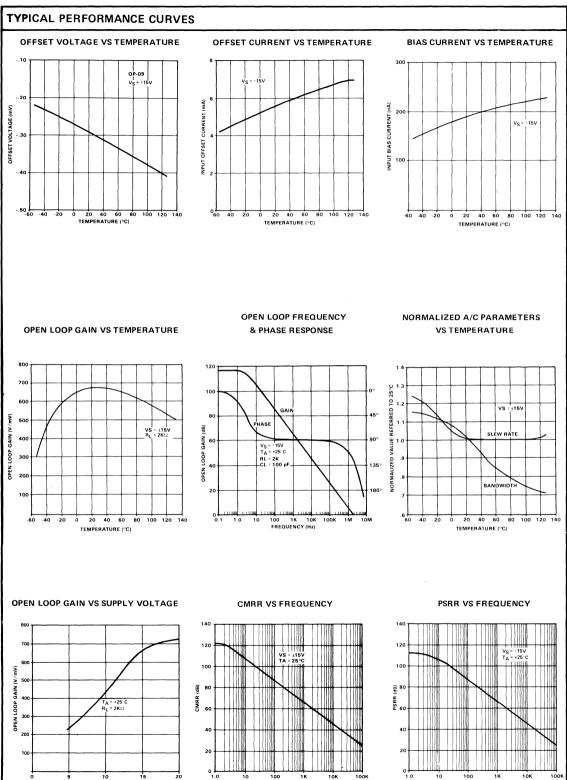
DIFFERENTIAL OFFSET VOLTAGE

The amplifier's differential input offset voltage ($E_{0S2}-E_{0S1}$) will be the major error factor. If the individual input offset voltages are of equal magnitude and polarity they appear as a common mode input and are rejected.

OP	-09
----	-----

ELECTRICAL CHARACTERIS	TICS (Each	Amplifier)		OP-09A			OP-09B		
These specifications for $V_s = \pm 15V$, T	Γ _A = 25°C, u	inless otherwise noted	d.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_s \le 10 k\Omega$	-	0.30	0.50	-	0.60	2.5	mV
Input Offset Current	los		-	8.0	20	-	25	50	nA
Input Bias Current	IВ		-	180	300	-	300	500	nA
Input Resistance Differential Mode	Rin		0.20	0.40	-	0.20	0.40	-	MΩ
Input Voltage Range	CMVR		±12	±13		±12	±13	-	V
Common Mode Rejection Ratio	CMRR	$V_{CM} = \pm CMVR$ $R_s \le 10k\Omega$	100	120	-	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110		dB
Output Voltage Swing	VoM	$R_L \ge 2k\Omega$	±11	±13	-	±11	±13	-	V
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2kΩ V ₀ = ±10V	100	650	-	100	6 50	-	V/mV
Power Consumption (Note 2)	Pd	V ₀ = 0V	-	123	180	-	123	180	mW
Input Noise Voltage	^е пр-р	0.1Hz to 10Hz	-	0.7	-		0.7	-	μV p-p
Input Noise Voltage Density	e _n	f _o = 10Hz	-	18	-	-	18	-	nV/√Hz
		f _o = 100Hz f _o = 1000Hz	_	14 12	-		14 12		
Input Noise Current	ⁱ np-p	0.1Hz to-10Hz	_	17	_	_	17		pA p-p
Channel Separation	CS		100	130		100	130	_	dB
Input Noise Current Density	in in	f _o = 10Hz	-	1.8		-	1.8		pA/√H
	'n	$f_0 = 100 Hz$		1.5	_	_	1.5	_	
		f ₀ = 1000Hz	-	1.2	-	-	1.2	-	
Slew Rate (Note 1)	SR		0.70	1.0	-	0.70	1.0	-	V/µs
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	11	16	_	11	16	-	kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	1.5	2.0	-	1.5	2.0	-	MHz
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	80	120	-	80	120	nsec
Overshoot (Note 1)			-	15	25	-	15	25	%
The following specifications apply fo	r V _s ≈ ±15V	. –55°C ≤ T _A ≤ +125	5°C, unless	otherwise I	noted.				
Input Offset Voltage	Vos	$R_s \le 10 k\Omega$	-	0.40	1.0	-	1.0	3.5	mV
Average Input Offset Voltage Drift (Note 1)	TCV _{os}	R _s ≤ 10kΩ	-	2.0	10	-	4.0	15	μV/°C
Input Offset Current	los		-	20	40	-	40	80	nA
Average Input Offset Current Drift	TCIos		-	0.10	0.30	-	0.30	0.60	nA/°C
Input Bias Current	۱ _B		-	200	375	-	400	650	nA
Input Voltage Range	CMVR		±12	±13	-	±12	±13	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} ≈ ±CMVR R _s ≥ 10kΩ	100	120	-	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Large Signal Voltage Gain	A _{vo}	$R_{\underline{L}} \ge 2k\Omega$ $V_0 = \pm 10V$	100	250	-	100	250	-	V/mV
Maximum Output Voltage Swing	V _{oM}	R _L ≥2kΩ	±11	±13	-	±11	±13	-	v
Power Consumption (Note 2)	Pd	V _o = 0V		115	200	_	115	200	mW

NOTE 1: Parameter is not 100% tested. 90% of all units meet these specifications.

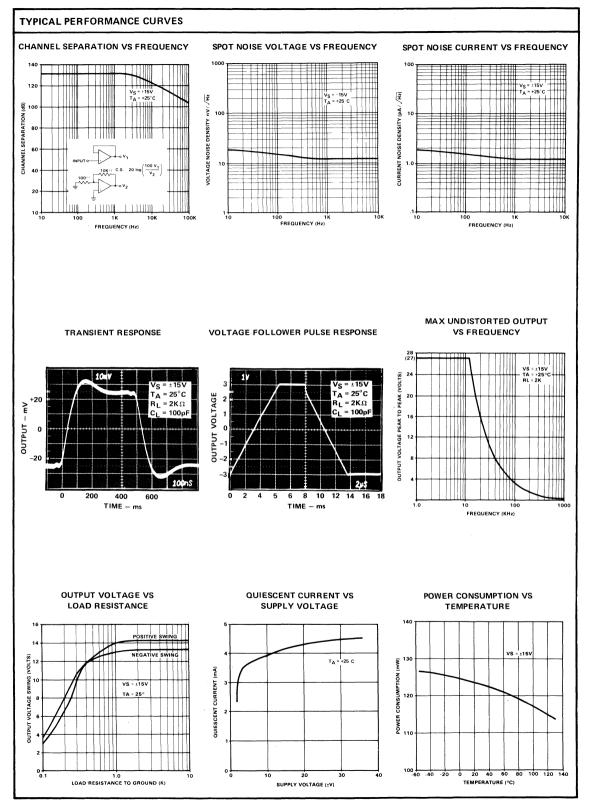

NOTE 2: Total dissipation for all 4 amplifiers in package.

NOTE 3: Match exists between any two amplifiers.

.

NOTE 4: Using amplifier A as reference then $\Delta V_{os} = V_{osn} - V_{osA}$.

ELECTRICAL CHARACTERIST				OP-09E			OP-09F		
These specifications for $V_s = \pm 15V$, T		nless otherwise noted					,		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s ≤ 10kΩ	-	0.30	0.50		0.60	2.5	mV
Input Offset Current	los			8.0	20		25	50	nA
Input Bias Current	IB		-	180	300		300	500	nA
Input Resistance Differential Mode	Rin		0.20	0.40	_	0.20	0.40	-	MΩ
Input Voltage Range	CMVR	·	±12	±13	÷	±12	±13	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 10kΩ	100	120	-	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Output Voltage Swing	VoM	$R_L \ge 2k\Omega$	±11	±13	-	±11	±13	-	V
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega$ $V_{0} = \pm 10V$	100	650	-	100	650	-	V/mV
Power Consumption (Note 2)	Pd	$V_0 = 0V$	-	123	180	-	123	180	mW
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	_	0.7	-	-	0.7		μVp-p
Input Noise Voltage Density	en	$f_0 = 10Hz$		18			18		nV/√Hz
	1	f _o = 100Hz	-	14	-	-	14	-	•••••
		f ₀ = 1000Hz	-	12	-	-	12	-	
Input Noise Current	inp-p	0.1Hz to 10Hz	-	17	-	-	17	-	рАр-р
Channel Separation	CS		100	130	-	100	130	-	dB
Input Noise Current Density	in	$f_0 = 10Hz$	_	1.8	-		1.8	· _	pA/√Hz
		f _o = 100Hz	-	1.5	-	-	1.5	-	
· (f ₀ = 1000Hz	-	1.2	-		`1.2		55
Slew Rate (Note 1)	SR		0.70	1.0	-	0.70	1.0	-	V/µs
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	11	16	-	11	16	-	kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	1.5	2.0	-	1.5	2.0	-	MHz
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	80	120	-	80	120	nsec
Overshoot (Note 1)			-	15	25		15	25	%
The following specifications apply fo			unless oth		ed.			_	
Input Offset Voltage	Vos	R _s ≤ 10kΩ	-	0.40	0.80	-	0.80	3.0	mV
Average Input Offset Voltage Drift (Note 1)	TCVos	R _s ≤ 10kΩ		2.0	10	-	4.0	15	μV/°C
Input Offset Current	los		-	20	30	-	40	60	nA
Average Input Offset Current Drift	TCIos		-	0.10	0.30	-	0.30	0.60	nA/°C
Input Bias Current	۱ _B		-	200	350		400	550	nA
Input Voltage Range	CMVR		±12	±13	-	±12	±13		V
Common Mode Rejection Ratio	CMRR	$V_{CM}^{= \pm CMVR}$ $R_s \le 10k\Omega$	100	120	-	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega$ $V_{0} = \pm 10V$	100	250	-	100	250	-	V/mV
Maximum Output Voltage Swing	VoM	$R_L \ge 2k\Omega$	±11	±13	-	±11	±13		V
Power Consumption (Note 2)	Pd	$V_0 = 0V$	-	115	200	-	115	200	mW



FREQUENCY (Hz)

POWER SUPPLY VOLTAGE (±V)

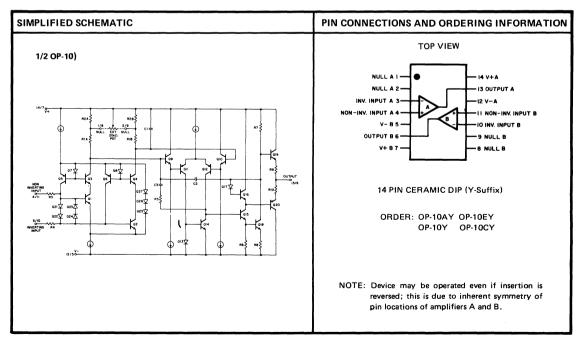
6-54

FREQUENCY (Hz)

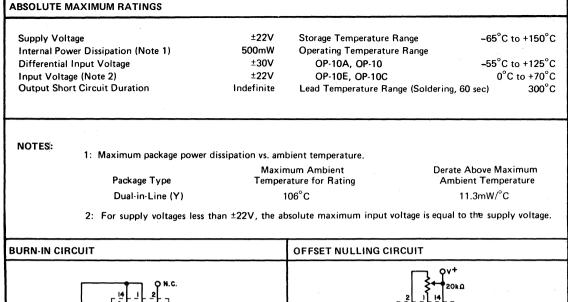
PMI DUAL MATCHED INSTRUMENTATION OPERATIONAL AMPLIFIER

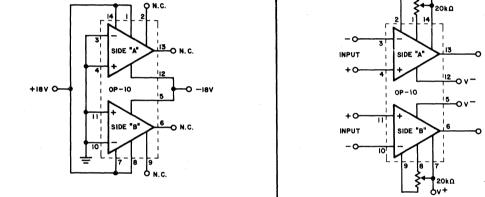
GENERAL DESCRIPTION

The OP-10 Series of Dual Matched Instrumentation Operational Amplifiers consists of two independent monolithic high performance operational amplifiers in a single 14-pin Dual-in-Line package. For the first time, extremely tight matching of critical parameters is provided between channels of a dual operational amplifier, whereas previous dual op amp designs have made no attempt towards matching.


The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels enables realization of extremely high performance instrumentation amplifier designs without resorting to laborious and expensive selection and matching of discrete amplifiers. The designer is assured of achieving the full performance guaranteed by the specification as the common package eliminates the unavoidable temperature differentials incurred by all designs utilizing separately housed amplifiers.

Matching between channels is provided on all critical parameters including offset voltage, tracking of offset voltage vs. temperature, non-inverting bias currents, and common mode and power supply rejection ratios. The individual amplifiers


FEATURES


Extremely Tight Matching
Excellent Individual Amplifier Parameters
Tight Offset Voltage Match 0.18mV Max
Tight Offset Voltage Match vs. Temp 0.8 μ V/ $^{\circ}$ C Max
Tight Common Mode Rejection Match 114 dB Min
Tight Power Supply Rejection Match 100 dB Min
Tight Bias Current Match 2.8 nA Max
Low Noise 0.6 μ Vp-p Max
Low Bias Current 3.0 nA Max
High Common Mode Input Impedance $% {\mathbf C}$. . 200G Ω Typ
High Channel Separation 126 dB Min
Internally Compensated Easy to Use
Compact 14 Pin Dip Package

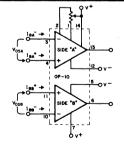
feature extremely low offset voltage, offset voltage drift, low noise voltage, low bias current and are completely compensated and protected.

QP-10

MATCHING PARAMETER DEFINITIONS

INPUT OFFSET VOLTAGE MATCH (ΔV_{OS}) The difference between the offset voltages of side A and side B; ($V_{OSA} - V_{OSB}$). In Fig. 1 if $V_{OSA} = V_{OSB}$, the net differential offset voltage at the output of the amplifier pair equals zero.

INPUT OFFSET VOLTAGE TRACKING (TC Δ V_{os}) The ratio of the change in Δ V_{os} to the change in temperature producing it.


AVERAGE NON-INVERTING BIAS CURRENT (I_B+) The average of the side A and side B non-inverting input bias currents;

NON-INVERTING INPUT OFFSET CURRENT (I_{os}^+) The difference between the non-inverting input bias currents of side A and side B; ($I_{BA}^+ - I_{BB}^+$).

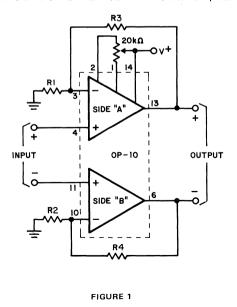
INVERTING INPUT OFFSET CURRENT (I_{os}) The difference between the inverting input bias currents of side A and side B; ($I_{BA}^{-} - I_{BB}^{-}$).

AVERAGE DRIFT OF NON-INVERTING BIAS CURRENT (TCI_B⁺) The ratio of the change in non-inverting bias current to the change in temperature producing it.

AVERAGE DRIFT OF NON-INVERTING OFFSET CURRENT (TCI_{os}⁺) The ratio of the change in non-inverting offset current to the change in temperature producing it.

COMMON MODE REJECTION RATIO MATCH (\triangle **CMRR**) The difference between the common-mode rejection ratios (expressed in volt /volt) of side A and side B. \triangle CMRR in dB = 20 log₁₀ (\triangle CMRR in volt/volt)

SUPPLY VOLTAGE REJECTION RATIO MATCH (\triangle PSRR) The difference between the power supply rejection ratios (expressed in volt /volt) of side A and side B. \triangle PSRR in dB = 20 log₁₀ (\triangle PSRR in volt/volt)


CHANNEL SEPARATION The ratio of the change in input offset voltage of one channel to the change in output voltage in the second channel producing it.

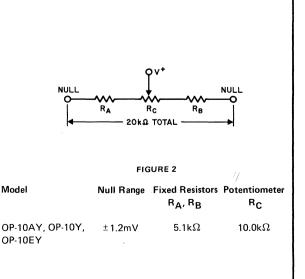
SPECIAL NOTES ON THE APPLICATION OF DUAL MATCHED OPERATIONAL AMPLIFIERS

ADVANTAGES OF DUAL MATCHED OPERATIONAL AMPLIFIERS

Dual Matched Operational Amplifiers provide the engineer a powerful tool for the solution of a number of difficult circuit design problems including true instrumentation amplifiers, extremely low drift, high common mode rejection D.C. amplifiers, low D.C. drift active filters, dual tracking voltage references and many other demanding applications. These designs are based on the principle that careful matching between two operational amplifiers can, to a large extent, eliminate the effect of D.C. errors inherent in the individual amplifiers.

Reference to the circuit shown in Fig. 1, a differential-in, differential-out amplifier, shows how the reductions in error can be accomplished. Assuming the resistors used are ideally matched, the gain of each side will be identical; if the offset voltages of each amplifier are perfectly matched, then the net differential voltage at the amplifiers output will be zero. Note that the output offset error of this amplifier is not a function of the offset voltage of the individual amplifiers, but only a function of the *difference* (degree of matching) between the amplifiers' offset voltages. This error-cancellation principle holds for a considerable number of input referred error parameters - offset voltage, offset voltage drift, inverting and non-inverting bias currents, commonmode and power supply rejection ratios. Note also that the impedances of each input, both common-mode and differential mode, are extremely high and can also be tightly matched, an important feature not possible with single operational amplifier circuits. Common mode rejection can be made exceptionally high; this is especially important in instrumentation amplifiers where errors due to large common-mode voltages can be far greater than those due to noise or drift with temperature.

(For example, consider the case of two op amps, each with 80 dB ($100\mu V/V$) CMRR. However, if the CMRR of one device is $+100\mu V/V$ while CMRR of the other is $-100\mu V/V$ for a net $200\mu V/V$ CMRR match, the resultant input referred error over a 10V common-mode input signal will be 2mV.)


POWER SUPPLIES

The V+ supply terminals are completely independent and may be powered by separate supplies if desired (this approach, however, would sacrifice the advantages of the power supply rejection ratio matching). The V- supply terminals are both connected to the common substrate and must be tied to the same voltage.

OFFSET TRIMMING

Offset trimming terminals are provided for each amplifier of the OP-10 – however, guaranteed performance over temperature can be obtained by trimming only one side (side A) to match the offset of the other for a net differential offset of zero. (See Fig. 1) This is due to the specific procedure used during factory testing of the devices; however, results which are essentially the same may be obtained by trimming side B to match side A, or by nulling each side individually.

The OP-10 is designed to provide lowest drift performance when trimmed with a $20k\Omega$ potentiometer; this value provides about $\pm 4mV$ of adjustment range which should be considerably more than adequate for most applications. Where finer resolution of trimming is desired, or where unwanted changes in potentiometer position with time and temperature could create unacceptable offsets, the sensitivity to offset vs. potentiometer position may be reduced by using the circuit of Fig. 2.

MATCHING CHARACTE	RISTICS			OP-10A	Y		OP-10Y		
These specifications apply	/ for V _s =	±15V, T _A = 25°C	, unless	otherwi	se noted	d.			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage Match	∆v _{os}			0.07	0.18		0.12	0.5	mV
Average Non-Inverting Bias Current	I _В +			± 1.0	± 3.0		± 1.3	±4.5	nA
Non-Inverting Offset Current	I _{os} +			0.8	2.8		~1.1	4.5	nA
Inverting Offset Current	I _{os} -			0.8	2.8		1.1	4.5	nA
Common Mode Rejection Ratio Match	∆cmrr	V _{CM} = ± CMVR	114	123		106	120		dB
Power Supply Rejection Ratio	∆psrr	$V_s = \pm 3V$ to $\pm 18V$	100	112		94	110		dB
Channel Separation			126	140		126	140		dB
These specifications apply	/ for V _s =	 ±15V,	「 _A ≤ +1	25°C, u	nless ot	herwise	noted.		
Input Offset Voltage Match	Δv _{os}			0.10	0.30		0.20	0.90	mV
Input Offset Voltage Tracking									
Without External Trim	τc∆v _{os}			0.45	1.3		0.9	2.5 (Note 1)	μv/
With External Trim	TC∆V _{osn}	Rp = 20kΩ Channel A only See Page 3.		0.3	0.8		0.4	1.2 (Note 1)	μν,
Average Non-Inverting Bias Current	^I в+			± 2.0	± 6.0		± 2.4	±8.0	nA
Average Drift of Non-Inverting Bias Current	TCIB+			10	40		15		pА
Non-Inverting Offset Current	I _{os} +			2.0	6.5		2.4	9.0	nA
Average Drift of Non-Inverting Offset Current	TCI _{os} +			12	50		18		pA/
Inverting Offset Current	I _{os} -			2.0	6.5		2.4	9.0	nA
Common Mode Rejection Ratio Match	∆cmrr	V _{CM} = ± CMVR	108	120		103	117		dB
Power Supply Rejection Ratio Match	∆psrr	$V_s = \pm 3V$ to $\pm 18V$	94	105		90	103		dB
								1	

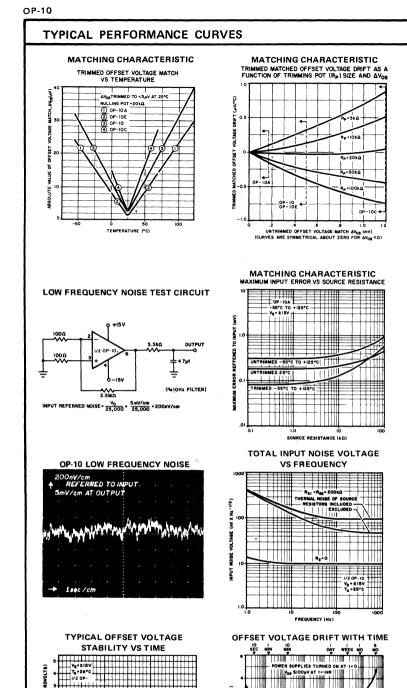
NOTE 1: Parameter not 100% tested; 90% of all units meet these specifications

NDIVIDUAL AMPLIFIE	R CHAR	ACTERISTICS	OP-10AY OP-10Y						
These specifications apply fo	or $V_s = \pm 1!$	5V, T _A = 25°C, unle	ss otherwis	e noted.					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{os}			0.2	0.5		0.2	0.5	mV
Input Offset Voltage Stability	V _{os} /Time	(Note 1		2.5	9		2.5	9	μV/M
Input Offset Current	los			1.0	2.8		1.0	2.8	nA
Input Bias Current	Чв			±1.0	±3.0		±1.0	±3.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 2)	0.35	0.6		0.35	0.6	µ∨p
		f _o = 10Hz (Note 2)	10.3	18.0		10.3	18.0	
Input Noise Voltage Density	e _n	f _o = 100Hz (Note 2)	10.0	13.0		10.0	13.0	nV/√
		f _o = 1000Hz (Note 2)	9.6	11.0		9.6	11.0	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz (Note 2)	14	30		14	30	рА р
		fo = 10Hz (Note 2		0.32	0.80		0.32	0.80	
Input Noise Current Density	'n	fo = 100Hz (Note 2		0.14	0.23		0.14	0.23	ρA/√
		fo = 1000Hz (Note 2)		0.12	0.17		0.12	0.17	
Input Resistance - Differential Mode	R _{in}		20	60		20	60	· -	MΩ
Input Resistance - Common Mode	RinCM			200			200		GΩ
Input Voltage Range	CMVR		± 13.0	±14.0		± 13.0	±14.0		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	110	126	t	110	126		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	100	110	<u> </u>	100	110		dB
			200	500		200	500		
Large Signal Voltage Gain	Avo	$ \begin{array}{c} R_{L} \geq 2k\Omega, V_{O} = \pm 10V \\ R_{L} \geq 500\Omega, V_{O} = \pm .5V \\ V_{S} = \pm 3V \end{array} $	150	500		150	500		V/m
		$R_{\rm L} \ge 10 k \Omega$	± 12.5	± 13.0		± 12.5	± 13.0		
Maximum Output Voltage Swing	V _{oM}	$R_L \ge 2k\Omega$	±12.0	±12.8		±12.0	±12.8		v
		$R_L \ge 1k\Omega$	±10.5	± 12.0		± 10.5	± 12.0		
Slewing Rate	SR	$R_L \ge 2k\Omega$		0.17			0.17		V/µs
Closed Loop Bandwidth	вw	A _{VCL} = +1.0		0.6			0.6		мн
Open Loop Output Resistance	Ro	V _o = 0, I _o = 0		60			60		Ω
	Pd			90	120		90	120	
Power Consumption	Pa	V _s = ± 3V		4	6		4	6	۳V
Offset Adjustment Range		R _p = 20kΩ		± 4			±4		mV
Input Capacitance	C _{in}			8			8		pF
The following specifications a	pply for V _s	= ± 15V, - 55°C ≤ T	√ ≤ +125່	°C, unless	otherwi	se noted.			
Input Offset Voltage	V _{os}			0.3	0.7		0.3	0.7	mV
Average Input Offset Voltage Drift				1			· · ·		
Without External Trim	тсv _{os}			0.7	2.0		0.7	2.0 (Note 2)	μv/°
With External Trim	TCVosn	$R_p = 20k\Omega$	-	0.3	1.0		0.3	1.0 (Note 2)	μv / [°]
Input Offset Current	los			1.8	5.6		1.8	5.6	' nA
Average Input Offset Current Drift	TCIos			8	50		8	50	pA/ [°]
Input Bias Current	^I в			± 2.0	± 6.0		± 2.0	±6.0	nA
Average Input Bias Current Drift	тсів			13	50		13	50	pA/ ^G
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	106	123		106	123		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	94	106		94	106		dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2k\Omega, V_{o} = \pm 10V$	150	400	†	150	400		V/m
Maximum Øutput Voltage Swing	V _{oM}	$R_{L} \ge 2k\Omega$	± 12.0	±12.6		t 12.0	±12.6		v

NOTE 1: Exclude first hour of operation to allow for stabilization of external circuitry. Parameter is not 100% tested; 90% of all units meet this specification.

NOTE 2: Parameter is not 100% tested; 90% of all units meet these specifications.

6-60


MATCHING CHARACT	ERISTICS			OP-10	EY		OP-100	Ŷ	
These specifications apply	/ for V _s = ±	15V, T _A = 25°C	, unless	otherw	vise note	d.			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage Match	۵v _{os}			0.12	0.5		0.3		mV
Average Non-Inverting Bias Current	¹ B ⁺			±1.3	± 4.5		± 2.0		nA
Non-Inverting Offset Current	I _{os} +			1.1	4.5		1.8		nA
Inverting Offset Current	I _{os} -			1.1	4.5		1.8		nA
Common-Mode Rejection Ratio Match	∆cmrr	V _{CM} = ± CMVR	106	120	·	·	117		dB
Power Supply Rejection Ratio Match	∆psrr	$V_s = \pm 3V$ to $\pm 18V$	94	110			106		dB
Channel Separation			126	140		120	137		dB
•									
i nese specifications apply	'iorv _s ±	15V, U C ≤ 1 _A ≤	≈ /0 C,	umess c	otherwis	e notea.			
These specifications apply	Γ	15V, U C < T _A <	≈ 70 C,	0.18	0.7		0.4		mV
*******	Δv_{os}		≈ 70 C,						mV
Input Öffset Voltage Match	Γ		✓ /U C,		0.7				
Input Offset Voltage Match Input Offset Voltage Tracking	۵v _{os}	Rp = 20kΩ Channel A only See Page 3		0.18	0.7		0.4		μν/
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim	Δν _{os} τcΔν _{os}	Rp = 20kΩ Channel A only		0.18 0.9	0.7 2.3 (Note 1)		0.4		mV μV/ μV/
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias	Δν _{os} τcΔν _{os} τcΔν _{osn}	Rp = 20kΩ Channel A only		0.18 0.9 0.3	0.7 2.3 (Note 1) 0.9		0.4 1.3 0.6		μν, μν,
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias Current Average Drift of Non-Inverting	Δν _{os} TCΔν _{os} TCΔν _{osn}	Rp = 20kΩ Channel A only		0.18 0.9 0.3 ± 2.0	0.7 2.3 (Note 1) 0.9 ± 6.0		0.4 1.3 0.6 ± 2.8		μν, μν, nA
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias Current Average Drift of Non-Inverting Bias Current	Δv_{os} TC Δv_{os} TC Δv_{osn} I _B + TCI _B +	Rp = 20kΩ Channel A only		0.18 0.9 0.3 ± 2.0 12	0.7 2.3 (Note 1) 0.9 ± 6.0 (Note 1)		0.4 1.3 0.6 ± 2.8 18		μν, μν, nA
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias Current Average Drift of Non-Inverting Bias Current Non-Inverting Offset Current Average Drift of Non-Inverting	Δv_{os} $TC\Delta v_{os}$ $TC\Delta v_{osn}$ $I_{B^{+}}$ $TCI_{B^{+}}$ $I_{os^{+}}$	Rp = 20kΩ Channel A only		0.18 0.9 0.3 ± 2.0 12 2.0	0.7 2.3 (Note 1) 0.9 ± 6.0 40 (Note 1) 6.0 50		0.4 1.3 0.6 ±2.8 18 2.8		μν, μν, nA pA,
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias Current Average Drift of Non-Inverting Bias Current Non-Inverting Offset Current Average Drift of Non-Inverting Offset Current	Δv_{os} $TC\Delta v_{os}$ $TC\Delta v_{osn}$ I_{B}^{+} TCI_{B}^{+} I_{os}^{+} TCI_{os}^{+}	Rp = 20kΩ Channel A only		0.18 0.9 0.3 ± 2.0 12 2.0 15	0.7 2.3 (Note 1) 0.9 ± 6.0 (Note 1) 6.0 50 (Note 1)		0.4 1.3 0.6 ± 2.8 18 2.8 20		μν, μν, nA pA,
Input Offset Voltage Match Input Offset Voltage Tracking Without External Trim With External Trim Average Non-Inverting Bias Current Average Drift of Non-Inverting Bias Current Non-Inverting Offset Current Average Drift of Non-Inverting Offset Current Inverting Offset Current Common Mode Rejection	Δv_{os} $TC\Delta v_{os}$ $TC\Delta v_{osn}$ I_{B}^{+} TCI_{B}^{+} I_{os}^{+} TCI_{os}^{-}	Rp = 20kΩ Channel A only		0.18 0.9 0.3 ± 2.0 12 2.0 15 2.0	0.7 2.3 (Note 1) 0.9 ± 6.0 40 (Note 1) 6.0 50 (Note 1) 6.0		0.4 1.3 0.6 ± 2.8 18 2.8 20 2.8		μν, μν, ηΑ ρΑ, ηΑ

NOTE 1: Parameter not 100% tested; 90% of all units meet these specifications.

INDIVIDUAL AMPLIFI	ER CHAR	ACTERISTICS		OP-10E	Y		OP-100	:Y	
These specifications apply for	r V _s = ±15V	', $T_A = 25^{\circ}C$, unless o	therwise i	noted.					
Parameter	Symbol v _{os}	Test Conditions	Min	Typ 0.2	Max 0.5	Min	Typ 0.3	Max 1.3	Unit mV
Input Offset Voltage Stability	V _{os} /Time	(Note 1)		2.5	9		3.5		μν/Μ
Input Offset Current	l _{os}	(1000 1)	+	1.2	3.8		1.8	6.0	nA
Input Bias Current	I _B		+	± 1.2	±4.0		± 1.8	± 7.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 2)		0.35	0.6	t	0.38	0.65	μvp
		f _o = 10Hz (Note 2)		10.3	18.0		10.5	20.0	<u> </u>
Input Noise Voltage Density	e _n	f ₀ = 100Hz (Note 2)		10.0	13.0		10.2	13.5	nVV+
		f _o = 1000Hz (Note 2)		9.6	11.0		9.8	11.5	
Input Noise Current	'np-p	0.1Hz to 10Hz (Note 2)		14	30		15	35	pAp-
		f _o = 10Hz (Note 2)		0.32	0.80		0.35	0.90	1
Input Noise Current Density	in	f ₀ = 100Hz (Note 2)	1	0.14	0.23		0.15	0.27	pA/VH
		f _o = 1000Hz (Note 2)		0.12	0.17		0.13	0.18	
Input Resistance – Differential Mode	R _{in}		15	50		8	33		мΩ
Input Resistance - Common Mode	R _{inCM}			160			120		GΩ
Input Voltage Range	CMVR	······	± 13.0	± 14.0		± 13.0	± 14.0		v V
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	106	123		100	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	94	107		90	104		dB
······································		$R_L \ge 2k\Omega, V_0 = \pm 10V$	200	500		120	400		1
Large Signal Voltage Gain	Avo	$R_{L} \ge 500\Omega, V_{0} = \pm .5V$ $V_{s} = \pm 3V$	150	500		100	400		V/m
	1	$R_{l} \ge 10 k \Omega$	± 12.5	± 13.0		± 12.0	± 13.0		
Maximum Output Voltage Swing	V _{oM}	R _L ≥2kΩ	± 12.0	± 12.8		± 11.5	± 12.8		v
		$R_L \ge 1k\Omega$	± 10.5	± 12.0			± 12.0		
Slewing Rate	SR	R _L ≥2kΩ	-	0.17			0.17		V/µse
Closed Loop Bandwidth	BW	A _{VCL} = +1.0		0.6	~-		0.6		MHz
Open Loop Output Resistance	R _o	V ₀ = 0, I ₀ = 0		60			60		Ω
b				90	120		95	150	mW
Power Consumption	Pd	$V_s = \pm 3V$		4	6		4	8	
Offset Adjustment Range		$R_p = 20k\Omega$	T	± 4			±4		mV
Input Capacitance	C _{in}						8		pF
The following specifications		$_{s}$ = ±15V, 0°C \leq T _A	≼ +70°C	, unless c	otherwise	noted.			
Input Offset Voltage	V _{os}	1		0.25	0.6		0.35	1.6	mV
Average Input Offset Voltage Drift			1	1	1	1	1		[
Without External Trim	TCVos	(Note 2	,	0.7	2.0		1.2	4.5	μv/°c
With External Trim	TCVosn	$R_p = 20k\Omega$ (Note 2		0.3	1.0		0.4	1.5	
Input Offset Current	los			1.4	5.3		2.0	8.0	nA
Average Input Offset Current Drift	TCI _{os}	(Note 2		8	35		12	50	pA/°C
Input Bias Current	'B			± 1.5	± 5.5		± 2.2	±9.0	nA
Average Input Bias Current Drift	тсів	(Note 2)		13	35		18	50	pA/°
Input Voltage Range	CMVR		± 13.0	± 13.5		± 13.0	± 13.5		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	103	123		97	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3V \text{ to } \pm 18V$	90	104		86	100		dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	180	450		100	400		V/m\
Maximum Output Voltage Swing	VoM	$R_L \ge 2k\Omega$,	± 12.0	± 12.6		±11.0	± 12.6		V

NOTE 1: Exclude first hour of operation to allow for stabilization of external circuitry. Parameter is not 100% tested; 90% of all units meet this specification.

NOTE 2: Parameter is not 100% tested; 90% of all units meet these specifications.

ΠH

╅┼╿╋┝┝╵┽╸╊┝╷┶

DEVICE A

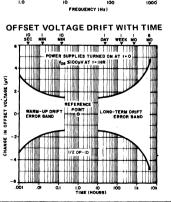
ЩЩ

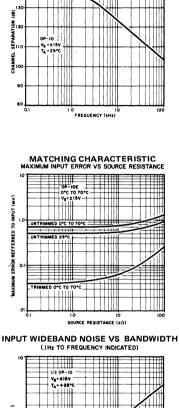
TIME (MONTHS)

DEVICE "B"

0115)

H

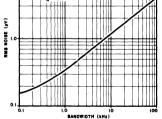

HE

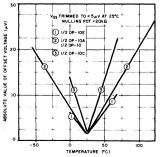

1

/OLTAGE

OFFSET

1

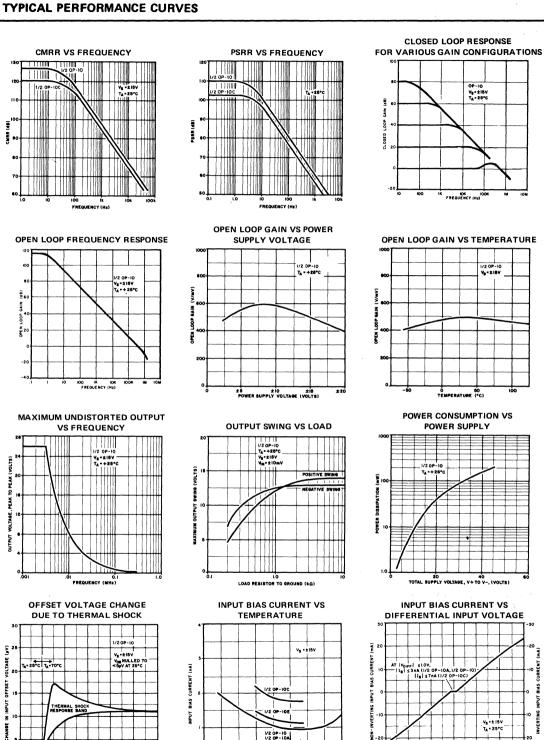



MATCHING CHARACTERISTIC

CHANNEL SEPARATION VS EREQUENCY

140

TRIMMED OFFSET VOLTAGE **VS TEMPERATURE**



DEVICE

20

40 (TIME (SECONDS) 60 e io

0.≱. -20

OP-10

1/2 OP-10

٩.

CURRENT

BIAS

INPUT

INVERTING 0

20

V5 - ± 15V TA - 25°C

ź 30

-10 0 10 DIFFERENTIAL INPUT VOLTAGE

6-64

Ó 50 TEMPERATURE (*C)

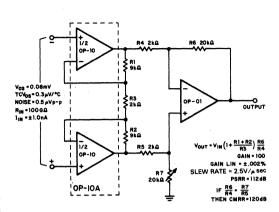
0

- 50

100

1/2 OP-10

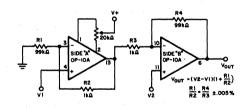
100

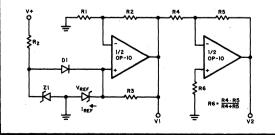

₹-20

-30 <u>|</u> -30

-20

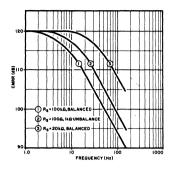
APPLICATIONS INFORMATION


TRIPLE OP-AMP INSTRUMENTATION AMPLIFIER


INSTRUMENTATION AMPLIFIERS USING OP-10

Instrumentation Amplifiers with performance surpassing those costing many hundreds of dollars can be easily and compactly built using the OP-10. Typical performance for a 2 and 3-amplifier design are given in the table. The 3-amplifier design, while more complex, has the advantages of convenient overall gain adjustment by trimming a single resistor (R_3) and of wide common-mode voltage handling capability at any overall gain, plus improved gain linearity. Slew rate, small signal bandwidth and full power bandwidth are also superior and may be further improved by choosing a high-speed op-amp such as the OP-01 series for the output]op-amp.

INSTRUMENTATION AMPLIFIER 2 OP-AMP DESIGN



PRECISION DUAL TRACKING VOLTAGE REFERENCES USING OP-10

CMRR VS FREQUENCY

INSTRUMENTATION AMPLIFIER (3 OP-AMP DESIGN)

TYPICAL PERFORMANCE OF INSTRUMENTATION AMPLIFIERS GAIN = 100

PARAMETER	2 OP AMP DESIGN	3 OP AMP DESIGN
Gain Nonlinearity	.004%	.001% (OP-05) .002% (OP-01)
Initial Input Offset Voltage vs. Temp (amplifier A	70µ∨	75 <i>µ</i> V
nulled with 20K pot) vs. Time	0.3µV/ [°] C 3.5µV/month	0.3µV/ [°] C 3.5µV/month
Input Bias Current vs. Temp.	±1.0nA 10pA/°C	±1.0nA 10pA/ [°] C
Input Offset Current vs. Temp.	0.8nA 12pA/ [°] C	0.8nA 12pA/ [°] C
Input Impedance Differential Common Mode	80GΩ 100GΩ	100GΩ 100GΩ
Input Noise Voltage (.1 to 10Hz)	0.5 µV p-p	0.5 <i>μ</i> V p-p
Input Noise Current (.1 to 10Hz)	14рА р-р	14рА р-р
Common Mode Rejection	120dB	120dB
Power Supply Rejection	112dB	112dB
Frequency Response Small Signal (-3dB)	6.0kHz	26kHz (OP-05) 85kHz (OP-01')
Full Power	2.5kHz	4.3kHz (OP-01) 43kHz (OP-05)
Slew Rate	.17∨/µs	0.17 V/μsec (OP-05) 4.0 V/μsec (OP-01)

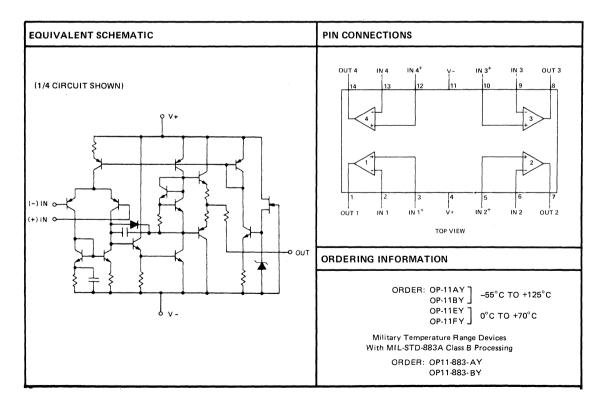
Precision dual tracking voltage references using a single reference source are easily constructed using OP-10. These references exhibit low noise, excellent stability vs temperature and time and have excellent power supply rejection.

In the circuit shown, R₃ should be adjusted to set I_{REF} to operate V_{REF} at its minimum temperature coefficient current. Proper circuit start-up is assured by R₂, Z₁, and D₁.

$$\begin{split} V_{Z1} &\leq V_{REF} + 2.0V & V1 = V_{REF} (1 + \frac{R2}{R1}) \\ I_{REF} &= (V1 - V_{REF})/R3 & V2 = V1 (\frac{-R5}{R4}) \end{split}$$

QUAD MATCHED 741-TYPE OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

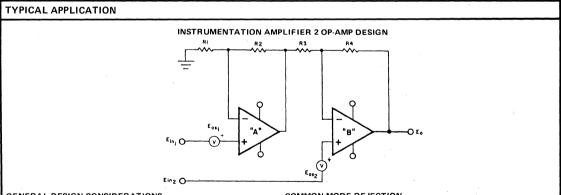

The OP-11 provides four matched 741-type operational amplifiers in a single 14-pin DIP package. The OP-11 is pin compatible with the LM148 and LM348 amplifiers. The amplifiers are matched for common mode rejection ratio and offset voltage. These parameters are very important in the design of instrumentation amplifiers. In addition the amplifier is designed to have equal positive-going and negative-going slew rates. This is a very important consideration for good audio system performance.

Each of the four amplifiers has the proven OP-02 advantages of low noise, low drift and excellent long term stability. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost.

FEATURES

Guaranteed V _{os}
Guaranteed Matched CMRR 94 dB MIN
Guaranteed Matched V _{os}
LM148/LM348 Direct Replacements
Low Noise
Silicon-Nitride Passivation
Internal Frequency Compensation
Low Crossover Distortion
Continuous Short Circuit Protection
Low Input Bias Current

The OP-11 is ideal for use in designs requiring minimum space and cost while maintaining OP-02-type performance. OP-11's with processing per the requirements of MIL-STD-883A are available. For dual-741-type versions, see the OP-04 and OP-14 data sheets.


OP-11

ABSOLUTE MAXIMUM RATINGS				All and a second se
Supply Voltage	±22V	Operating Ten	nperature Range	5
Internal Power Dissipation (Note 1)	800 mW	OP-11A, O		–55°C to +125°C
Differential Input Voltage	±30V	OP-11E, OI	P-11F	0°C to +70°C
Input Voltage	Supply Voltage		mum package power d	lissipation vs. ambient
Output Short Circuit Duration	Continuous	temperature.		
and the second	(One Amplifier Only)		MAXIMUM AMBIENT	DERATE ABOVE
Storage Temperature Range	-65° to +150°C		TEMPERATURE FOR RATING	MAXIMUM AMBIENT TEMPERATURE
Lead Temperature Range (Soldering,	60 sec) 300°C	14 Pin DIP (Y)	80°C	10 mW/° C

MATCHING CHARACTER	TCHING CHARACTERISTICS				OP-11A OP-11E			OP-11B OP-11F		
These specifications apply for V _S = ±15V, T _A = 25°C, R _S \leq 100 Ω , unless otherwise noted.										
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units	
Input Offset Voltage Match	ΔV _{os}	(Note 4)	-	0.5	0.75	-	0.8	2.0	mV	
Common Mode Rejection Ratio Match (Note 3)	∆CMRR	V _{cM} = ±CMVR	 94	1.0 120	20	 94	1.0 120	20	μV/V dB	
These specifications apply for $V_s = \pm 15V$, -55°C $\leq T_A \leq \pm 125°$ C for OP-11A and OP-11B, 0°C $\leq T_A \leq \pm 70°$ C for OP-11E and OP-11F $R_s \leq 100\Omega$ unless otherwise noted.										
Input Offset Voltage Match	ΔV _{os}	(Note 4)	-	0.6	1.0	-	1.0	2.5	mV	
Common Mode Rejection Ratio Match (Note 3)	∆CMRR	V _{cM} = ±CMVR		<u>3.2</u> 110	20	94	<u>3.2</u> 110	20	μV/V dB	

MATCHING PARAMETER DEFINITIONS

COMMON MODE REJECTION RATIO MATCH (Δ CMRR). The difference between the common-mode rejection ratios (expressed in volt/volt) of side A and side B. Δ CMRR in dB = -20 log₁₀ (Δ CMRR in volt/volt). See note 3. INPUT OFFSET VOLTAGE MATCH (ΔV_{os}). The difference between the offset voltages of side A and side B; ($V_{OSA} - V_{OSB}$). See note 4.

GENERAL DESIGN CONSIDERATIONS

Assuming ideal amplifiers, the expression for output voltage is:

1)
$$E_o = -\left[E_{in1}\left(+1\frac{R_2}{R_1}\right)\frac{R_4}{R_3}\right] + E_{in2}\left(\frac{R_4}{R_3}+1\right)$$

With ideal resistors this simplifies to:

2)
$$E_0 = (E_{in2} - E_{in1}) \left(\frac{R_4}{R_3} + 1\right)$$
 provided $\frac{R_1}{R_2} = \frac{R_4}{R_3}$

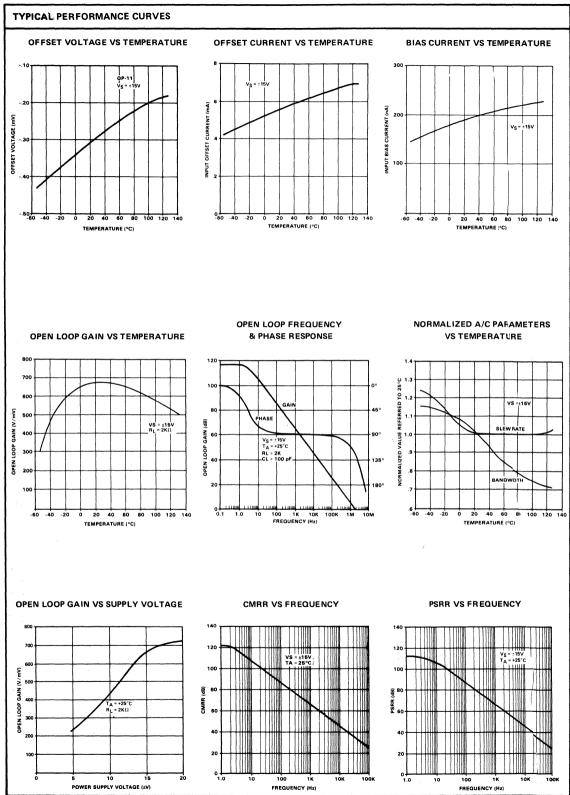
COMMON MODE REJECTION

Because the dual op amp has a high common mode rejection ratio match, the ability to reject common mode inputs becomes primarily a function of resistor ratio matching. This device eliminates the need for special op amp selections in many instrumentation amplifier applications.

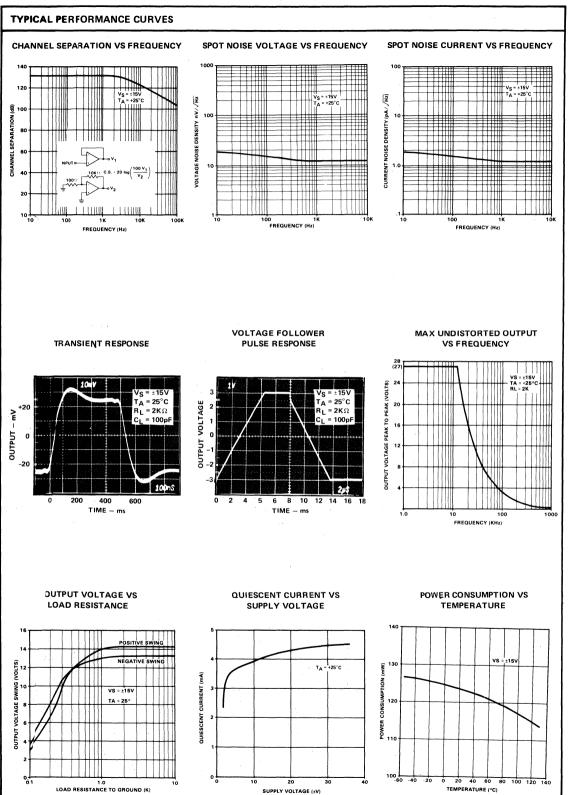
DIFFERENTIAL OFFSET VOLTAGE

The amplifier's differential input offset voltage $(E_{OS2}-E_{OS1})$ will be the major error factor. If the individual input offset voltages are of equal magnitude and polarity they appear as a common mode input and are rejected.

ELECTRICAL CHARACTERIS	TICS (Each	n Amplifier)		OP-11A			OP-11B		
These specifications for $V_s = \pm 15V$, T	Γ _A = 25°C, u	inless otherwise noted	d.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_s \le 10 k\Omega$		0.30	0.50	-	0.60	2.5	mV
Input Offset Current	los			8.0	20	-	25	50	nA
Input Bias Current	۱ _B		-	180	300		300	500	nA
Input Resistance Differential Mode	R _{in}		0.20	0.40	-	0.20	0.40	-	MΩ
Input Voltage Range	CMVR		±12	±13	_	±12	±13	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 10kΩ	100	120	_	100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Output Voltage Swing	VoM	$R_L \ge 2k\Omega$	±11	±13	-	±11	±13		V
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2kΩ V ₀ = ±10V	100	650	-	100	650	-	V/mV
Power Consumption (Note 2)	٩d	V ₀ = 0V	-	123	180	-	123	180	mW
Input Noise Voltage	^e np-p	0.1Hz to 10Hz	-	0.7	-	-	0.7	-	μV p-p
Input Noise Voltage Density	e _n	f _o = 10Hz		18	-	-	18.	-	nV/√H
		f _o = 100Hz f _o = 1000Hz	-	14 12	-	-	14 12	_	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz		17			17		pA p-p
Channel Separation	CS		100	130	_	100	130	_	dB
Input Noise Current Density	in	f _o = 10Hz		1.8		_	1.8	_	pA/√H
		f _o = 100Hz		1.5		-	1.5	-	
		f _o = 1000Hz	-	1.2	-	-	1.2	-	
Slew Rate (Note 1)	SR		0.70	1.0	-	0.70	1.0	-	V/µs
Large Signal Bandwidth (Note 1)		V ₀ = 20Vp-p	11	16	-	11	16		kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	1.5	2.0	-	1.5	2.0	-	MHz
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	80	120	-	80	120	nsec
Overshoot (Note 1)				.15	25	-	15	25	%
The following specifications apply fo	r V _s = ±15V	, –55° C ≤ T _A ≤ +12	5°C, unless	otherwise i	noted.				
Input Offset Voltage	Vos	R _s ≤ 10kΩ	-	0.40	1.0	-	1.0	3.5	mV
Average Input Offset Voltage Drift (Note 1)	TCV _{os}	$R_s \le 10 k\Omega$	-	2.0	10	-	4.0	15	μV/°C
Input Offset Current	1 _{os}		-	20	40	-	40	80	nA
Average Input Offset Current Drift	TCIos		-	0.10	0.30	-	0.30	0.60	nA/°C
Input Bias Current	1 _B		-	200	375	-	400 ,	650	nA
Input Voltage Range	CMVR		±12	±13		±12	±13	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 10kΩ	100	120	-	100	120	- ·	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_0 = \pm 10V$	100	250	-	100	250	-	V/mV
Maximum Output Voltage Swing	V _{oM}	R _L ≥2kΩ	±11	±13	-	±11	±13	-	v
Power Consumption (Note 2)	Pd	V ₀ = 0V	_	115	200	-	115	200	mW


NOTE 1: Parameter is not 100% tested. 90% of all units meet these specifications.

NOTE 2: Total dissipation for all 4 amplifiers in package.


NOTE 3: Match exists between any two amplifiers.

NOTE 4: Using amplifier 1 as reference then $\Delta V_{os} = V_{osn} - V_{os1}$.

ELECTRICAL CHARACTERIST				OP-11E	÷.,				
These specifications for $V_s = \pm 15V$, T	1			- 1					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s ≤ 10kΩ	-	0.30	0.50		0.60	2.5	mV
Input Offset Current	los			8.0	20		25	50	nA
Input Bias Current	ЧB		-	180	300		300	500	nA
Input Resistance Differential Mode	Rin		0.20	0.40	<i>,</i>	0.20	0.40	-	MΩ
Input Voltage Range	CMVR		±12	±13	-	±12	±13	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 10kΩ	100	120	-	100	120	·	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5$ to $\pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Output Voltage Swing	VoM	R _L ≥2kΩ	±11	±13	-	±11	±13	-	V
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2kΩ V ₀ = ±10V	100	650	-	100	650	-	V/mV
Power Consumption (Note 2)	Pd	$V_0 = 0V$	-	123	180	-	123	180	mW
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	- 1	0.7	-		0.7	-	μV p-p
Input Noise Voltage Density	en	f _o = 10Hz	-	18			18	-	nV/√Hz
		f _o = 100Hz	-	14	-	-	14	-	•
		f _o = 1000Hz	-	12	_		12	-	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	-	17	-	-	17	-	рАр-р
Channel Separation	CS		100	130	-	100	130	-	dB
Input Noise Current Density	in	f _o = 10Hz	-	1.8	-	-	1.8	-	pA/√Hz
		$f_0 = 100 Hz$	-	1.5 1.2	-	-	1.5 `1.2	-	
Slew Rate (Note 1)	SR	f _o = 1000Hz	0.70	1.2		0.70	1.2		Million
Large Signal Bandwidth (Note 1)	- Sh	N = 20M = -	11	16		11	16		V/μs kHz
Closed Loop Bandwidth (Note 1)	DIAL	$V_0 = 20Vp-p$	1.5	2.0			2.0	_	
Risetime (Note 1)	BW	AVCL = +1.0				1.5	2.0	120	MHz
		A _V = +1 V _{IN} = 50mV	-	80	120				nsec
Overshoot (Note 1)				15	25	-	15	25	%
The following specifications apply for	V _s = ±15V	, 0°C ≤ T _A ≤ +70°C,	unless oth	erwise note	ed				
Input Offset Voltage	Vos	$R_s \le 10k\Omega$	-	0.40	0.80	-	0.80	3.0	mV
Average Input Offset Voltage Drift (Note 1)	TCVos	R _s ≤ 10kΩ	-	2.0	10	-	4.0	15	μV/°C
Input Offset Current	los		-	20	30	-	40	60	nA
Average Input Offset Current Drift	TCIos		-	0.10	0.30		0.30	0.60	nA/°C
Input Bias Current	IB		- 1	200	350		400	550	nA
Input Voltage Range	CMVR		±12	±13	-	±12	±13	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 10kΩ	100	120		100	120	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 15V$ $R_s \le 10k\Omega$	90	110	-	90	110	-	dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_0 = \pm 10V$	100	250	-	100	250		V/mV
Maximum Output Voltage Swing	VoM	R _L ≥2kΩ	±11	±13	-	±11	±13	-	V
Power Consumption (Note 2)	Pd	$V_0 = 0V$	- 1	115	200	-	115	200	mW

6-70

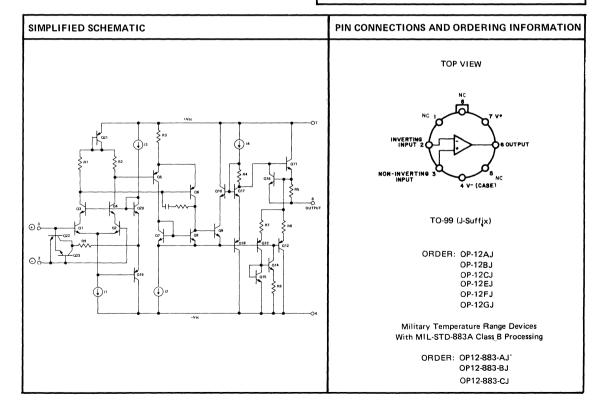
PRECISION LOW INPUT CURRENT OP AMP

GENERAL DESCRIPTION

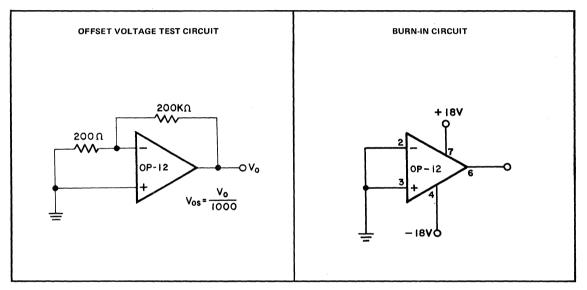
The PMI OP-12 is an improved version of the popular LM108A low power op amp. The OP-12 is internally compensated and its chip dimensions are only 42 x 58 mils. Additionally, the OP-12 has a three times lower offset voltage and a two times lower offset voltage drift. The total worst case input offset voltage over -55° C to $+125^{\circ}$ C for the OP-12 is only 350μ V while the 108A has 900μ V to 1000μ V for these conditions. In addition the OP-12 drives a 2k Ω load. This is five times the output current capability of the 108A. This excellent performance is achieved by applying PMI's ion-implanted super beta process and on-chip zener-zap trimming capabilities. The internal compensation makes this op amp ideal for hybrid assembly applications

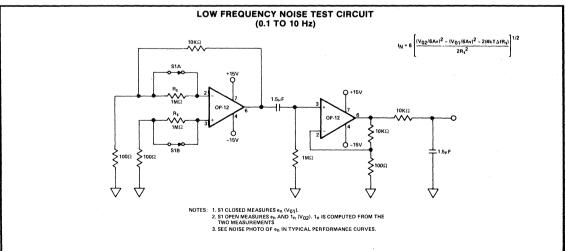
INTERNALLY COMPENSATED

FEATURES


Low Offset Voltage 150µV Ma	ax.
-----------------------------	-----

- Low Offset Voltage Drift $2.5\mu V/^{\circ} C Max$.
- Five Times PM108A Load Current 5 mA Min.
- Internal Frequency Compensation


Plus the Outstanding PM108A Features

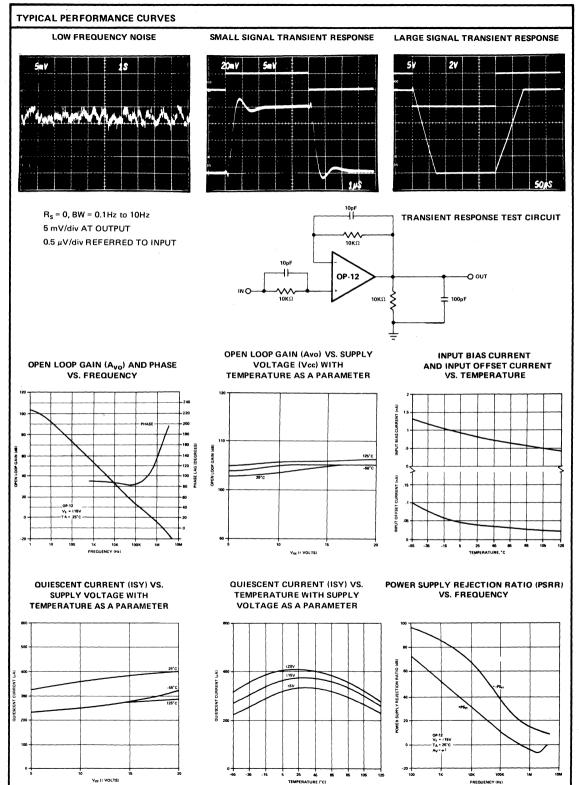

■ Low Offset Current
■ Low Bias Current 2.0 nA Max.
■ Low Power Consumption 18 mW max. @ ±15V

- High Common Mode Input Range ±13.5V Min.
- MIL-STD-883A Class B Processing Available
- Silicon-Nitride Passivation

ABSOLUTE MAXI	MUM RATINGS			
Supply Voltage			Operating Temperature Range	
OP-12A, OP-12E	3, OP-12C	±20V	OP-12A, OP-12B, OP-12C	–55°C to +125°C
OP-12E, OP-12F	, OP-12G	±18V	OP-12E, OP-12F, OP-12G	0°C to +70°C
Internal Power Diss	ipation (Note 1)	500mW	Storage Temperature Range	–65°C to+150°C
Differential Input (Current (Note 2)	±10mA	Lead Temperature Range	
Input Voltage (Not	e 3)	±15V	(Soldering, 60 sec)	300° C
Output Short Circu	it Duration	Indefinite		
NOTE 1: Maximu temperature:	m package power diss	ipation vs. ambient	. NOTE 2: The inputs are shunted wi overvoltage protection. Therefore, e	
	Maximum Ambient Temperature	Derate Above Maximum Ambient	if a differential input voltage in exces the inputs unless some limiting resist	
Package Type	for Rating	Temperature	NOTE 3: For supply voltages less	than ±15V, the absolute
TO-99 (J)	80°C	7.1 mW/°C	maximum input voltage is equal to the	he supply voltage.

ELECTRICAL CHARACTERISTICS	OP-12A	OP-12B	OP-12C	
· · · · · · · · · · · · · · · · · · ·				

These specifications apply for V_s = $\pm 15V$, T_A = 25° C, unless otherwise noted.


		-		.	.			_		.		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos		-	0.07	0.15	-	0.18	0.30	-	0.25	1.0	mV
Input Offset Current	los		-	0.05	0.20	-	0.05	0.20	-	0.08	0.50	nA
Input Bias Current	۱ _B		-	0.80	2.0	-	0.80	2.0	-	1.0	5.0	nA
Input Noise Voltage	^e np-p	0.1Hz to 10Hz	-	0.9	-	-	0.9	-	-	0.9	-	µVp-p
Input Noise Voltage Density	₽n	f _o = 10Hz f _o = 100Hz f _o = 1000Hz		22 21 20			22 21 20	-		22 21 20		nV/√Hz
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz	-	3	-	-	3	-	-	3	-	рАр-р
Input Noise Current Density	ⁱ n	$f_0 = 10Hz$ $f_0 = 100Hz$ $f_0 = 1000Hz$		0.15 0.14 0.13	-		0.15 0.14 0.13			0.15 0.14 0.13		pA/√Hz
Input Resistance — Differential Mode	R _{in}		26	70	-	26	70	-	10	50	-	MΩ
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0	-	±13.0	±14.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} ≖ ±CMVR	104	120	-	104	120	-	84	116	-	dB
Power Supply Rejection Ratio	PSRR	V _s ≈ ±5V to ±15V	104	120	-	104	120	-	84	116	-	dB
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 10 K \Omega, V_{0} = \pm 10 V$ $R_{L} \ge 2 K \Omega, V_{0} = \pm 10 V$	80 50	300 150		80 50	300 150		40 -	250 100	-	V/mV
Maximum Output Voltage Swing	∨ _{oM}	R _L ≥ 10KΩ R _L ≥ 2KΩ		±14.0 ±12.0	-	±13.0 ±10.0	±14.0 ±12.0	-	±13.0 ±10.0	±14.0 ±12.0	-	v
Slewing Rate	SR	R _L ≥ 2KΩ	-	0.12	-	-	0.12	-	-	0.12	-	V/µsec
Closed Loop Bandwidth	BW	AVCL = +1.0		0.80	-	·	0.80	-	-	0.80	-	MHz
Open Loop Output Resistance	Ro	V ₀ = 0, I ₀ = 0	-	200	-	-	200	-	-	200	-	Ω
Power Consumption	Pd	$V_{s} = \pm 15V$ $V_{s}^{s} = \pm 5V$		9 3	18 6		9 3	18 6	-	12 4	24 8	mW
The following specifications app	ly for V _s	= ±15V, -55°C ≤ T _A ≤ +	·125°C,	unless o	therwise	e notec	1.					
Input Offset Voltage	v _{os}			0.12	0.35	-	0.28	0.60	-	0.40	2.0	mV
Average Input Offset Voltage Drift	TCV _{os}		-	0.50	2.5	-	1.0	3.5	-	1.5	10	μV/°C
Input Offset Current	l _{os}			0.12	0.40	~	0.12	0.40	-	0.18	1.0	nA
Average Input Offset Current Drift	тсі _{оs}			0.50	2.5		0.50	2.5	-	1.0	5.0	pA/°C
Input Bias Current	۱ _B			1.2	3.0		1.2	3.0	-	1.8	10	nA
Input Voltage Range	CMVR		±13.5	±14.0	-	±13.5	±14.0		±13.0	±14.0		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	100	110	-	100	110	-	80	106	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5V$ to $\pm 15V$	100	110	-	100	110	-	80	106	-	dB
Large Signal Voltage Gain	A _{vo}	R _L ≥ 5KΩ, V ₀ ≈ ±10V	40	120	-	40	120	-	15	80	-	V/mV
Maximum Output Voltage Swing	V _{oM}	R _L ≥ 10KΩ R _L ≥ 5KΩ		±14.0 ±13.0	-	±13.0 ±10.0	±14.0 ±13.0	-	±13.0 ±10.0	±14.0 ±12.0	-	v
Power Consumption	Pd		-	9.	18	-	9	18	-	15 [·]	24	mW

6-74

ELECTRICAL CHARACTERISTICS	OP-12E	OP-12F	OP-12G	

These specifications apply for V_s = $\pm 15V$, T_A = $25^{\circ}C$, unless otherwise noted.

	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Түр	Мах	Units
Input Offset Voltage	Vos		-	0.07	0.15	-	0.18	0.30	-	0.25	1.0	mV
Input Offset Current	los		-	0.05	0.20	-	0.07	0.40	-	0.08	0.50	nA
Input Bias Current	۱ _B		-	0.80	2.0	-	0.90	4.0	-	1.0	5.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz	-	0.9	-	-	0.9	-	-	0.9	-	μV p-p
		f _o = 10Hz	_	22	-	-	22	-	-	22		
Input Noise Voltage Density	e _n	f _o = 100Hz f _o = 1000Hz	-	21 20	-	_	21 20	_	1	21 20	_	nV/√H
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz		3			3		_	3	_	pA p-p
	-d-du.	$f_0 = 10$ Hz		0.15	_		0.15			0.15		PAPP
Input Noise Current Density	in	$f_0 = 100Hz$	_	0.14	-	_	0.14	-	-	0.14	-	pA/√F
		f _o = 1000Hz	-	0.13	-	-	0.13	-	-	0.13	-	
Input Resistance – Differential Mode	R _{in}		26	70	-	13	60	·	10	50	_	MΩ
Input Voltage Range	CMVR		±13.5	±14.0		±13.5	±14.0	_	±13.5	±14.0	-	v
Common Mode Rejection												
Ratio	CMRR	VCM = ±CMVR	104	120	-	102	120	_	84	116	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5V$ to $\pm 15V$	104	120	-	102	120	-	84	116	-	dB
Lorgo Signal Valtage Cain		$R_L \ge 10K\Omega, V_0 = \pm 10V$	80	300	<u> </u>	80	300		40	250		
Large Signal Voltage Gain	Avo	$R_L \ge 2K\Omega, V_0 = \pm 10V$	50	150	-	30	120		-	100	-	V/mV
Maximum Output Voltage Swing	V _{oM}	RL≥10KΩ RL≥2KΩ	±13.0 ±10.0	±14.0 ±12.0	-	±13.0 ±10.0	±14.0 ±12.0	-	±13.0 ±10.0		-	v
Slewing Rate	SR	R _L ≥ 2KΩ	-	0.12	-	-	0.12	-		0.12		V/µsec
Closed Loop Bandwidth	BW	A _{VCL} = +1.0	-	0.80	_	-	0.80	_	-	0.80		MHz
Open Loop Output Resistance	Ro	V _o = 0, I _o = 0		200		_	200	_	-	200	-	Ω
	┟╌───┦	N										
Power Consumption	Del 1	1:Vs = ±15V		9	18	-	9	18	-	12	24	
Power Consumption	Pd	$V_s = \pm 15V$ $V_s = \pm 5V$	_	9 3	18 6	-	9 3	18 6	_	12 4	24 8	mW
Power Consumption The following specifications i Input Offset Voltage	1	V _s = ±5V		3	6						1	mW
The following specifications	apply for	V _s = ±5V		3 nless othe	6 rwise n	oted.	3	6		4	8	mV
The following specifications i Input Offset Voltage Average Input Offset	apply for V _{os}	V _s = ±5V		3 nless othe 0.10	6 rwise n 0.26	oted.	3 0.23	6 0.45	-	4	8	mV
The following specifications Input Offset Voltage Average Input Offset Voltage Drift	apply for Vos TCVos	V _s = ±5V		3 nless othe 0.10 0.50	6 rwise n 0.26 2.5		3 0.23 1.0	6 0.45 3.5		4 0.32 1.5	8 1.4 10	mV μV/°C nA
The following specifications i Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset	apply for V _{os} TCV _{os}	V _s = ±5V	- 0°C, ur - -	3 nless othe 0.10 0.50 0.08	6 rwise n 0.26 2.5 0.30		3 0.23 1.0 0.11	6 0.45 3.5 0.60		4 0.32 1.5 0.12	8 1.4 10 0.70	mV μV/°C
The following specifications i Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset Current Drift	apply for V _{os} TCV _{os} I _{os} TCI _{os}	V _s = ±5V	- 0°C, ur - -	3 0.10 0.50 0.08 0.50	6 rwise n 0.26 2.5 0.30 2.5		3 0.23 1.0 0.11 1.0 1.2	6 0.45 3.5 0.60 5.0		4 0.32 1.5 0.12 1.0 1.4	8 1.4 10 0.70 5.0	mV μV/°C nA pA/°C
The following specifications i Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset Current Drift Input Bias Current	apply for V _{os} TCV _{os} T _C Cl _{os} I _B	$V_{s} = \pm 5V$ $V_{s} = \pm 15V, 0^{\circ}C \le T_{A} \le 7$		3 0.10 0.10 0.50 0.08 0.50 1.0	6 rwise n 0.26 2.5 0.30 2.5		3 0.23 1.0 0.11 1.0 1.2	6 0.45 3.5 0.60 5.0		4 0.32 1.5 0.12 1.0 1.4	8 1.4 10 0.70 5.0	mV µV/°C nA pA/°C nA
The following specifications i Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset Current Drift Input Bias Current Input Voltage Range Common Mode	apply for V _{os} TCV _{os} I _{os} TCI _{os} I _B CMVR	$V_{s} = \pm 5V$ $V_{s} = \pm 15V, 0^{\circ}C \le T_{A} \le 7$	 	3 0.10 0.50 0.08 0.50 1.0 ±14.0	6 rwise n 0.26 2.5 0.30 2.5		3 0.23 1.0 0.11 1.0 1.2 ±14.0	6 0.45 3.5 0.60 5.0 5.2 -		4 0.32 1.5 0.12 1.0 1.4 -	8 1.4 10 0.70 5.0	mV μV/°C nA pA/°C nA V
The following specifications a Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset Current Drift Input Bias Current Input Voltage Range Common Mode Rejection Ratio Power Supply	apply for Vos TCVos Ios TCIos IB CMVR CMRR	$V_{s} = \pm 5V$ $V_{s} = \pm 15V, 0^{\circ}C \le T_{A} \le 7$ $V_{cm} = \pm cmVR$	 0° C, ur ±13.5 100 100 25	3 0.10 0.50 0.08 0.50 1.0 ±14.0 116	6 rwise n 2.5 0.30 2.5 2.6 - -	 ±13.5 100	3 0.23 1.0 0.11 1.0 1.2 ±14.0 116	6 0.45 3.5 0.60 5.0 5.2 -	 ±13.5 80	4 0.32 1.5 0.12 1.0 1.4 - 112	8 1.4 10 0.70 5.0 6.5 -	mV μV/°C nA pA/°C nA V dB dB
The following specifications i Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Average Input Offset Current Drift Input Bias Current Input Voltage Range Common Mode Rejection Ratio Power Supply Rejection Ratio	apply for V _{os} TCV _{os} I _{os} TCI _{os} I _B CMVR CMRR PSRR	$V_{s} = \pm 5V$ $V_{s} = \pm 15V, 0^{\circ}C \leq T_{A} \leq +7$ $V_{CM} = \pm CMVR$ $V_{s} = \pm 5V \text{ to } \pm 15V$ $R_{L} \ge 2K\Omega, V_{o} = \pm 10V$	 0° C, ur ±13.5 100 100 25	3 0.10 0.50 0.50 1.0 ±14.0 116 116 100 200 ±14.0	6 rwise n 2.5 0.30 2.5 2.6 - -	- oted. - ±13.5 100 100	3 0.23 1.0 0.11 1.0 ±14.0 116 116 100 200 ±14.0	6 0.45 3.5 0.60 5.0 5.2 - - -	- - - ±13.5 80 80 -	4 0.32 1.5 0.12 1.0 1.4 - 112 112 80	8 1.4 10 0.70 5.0 6.5 - - - - - -	mV μV/°C nA pA/°C nA V dB

APPLICATION INFORMATION

The OP-12 series has extremely low input offset and bias currents; the user is cautioned that stray printed circuit board leakages can produce significant errors, especially at high board temperatures. Careful attention to board layout and cleaning procedure is required to fully realize the OP-12 performance. It is suggested that effects of board leakage be minimized by encircling the input pins with a conductive guard ring operated at a potential close to that of the inputs. This guard ring should be driven by a low impedance source such as the amplifier's output for non-inverting circuits, or be tied to ground for inverting circuits.

OP-12 DEFINITIONS

INPUT OFFSET VOLTAGE (Vos)

The voltage which must be applied between the input terminals to obtain zero output voltage with no load.

INPUT OFFSET CURRENT (Ios)

The difference between the currents into the two input terminals when the output is at zero volts with no load.

INPUT BIAS CURRENT (IB)

The average of the currents into the two input terminals when the output is at zero volts with no load.

INPUT VOLTAGE RANGE (CMVR)

The range of common-mode voltage on the input terminals for which the common-mode rejection specifications apply.

COMMON-MODE REJECTION RATIO (CMRR)

The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.

POWER SUPPLY REJECTION RATIO (PSRR)

The inverse ratio of the change in input offset voltage to the change in power supply voltage producing it.

INPUT RESISTANCE (Rin)

The ratio of the small-signal change in input voltage to the change in input current at either input terminal with the other grounded.

SUPPLY CURRENT (Isy)

The current required from the power supply to operate the amplifier with no load and the output at zero volts.

MAXIMUM OUTPUT VOLTAGE SWING (VoM)

The peak output voltage that can be obtained without clipping.

AVERAGE OFFSET VOLTAGE DRIFT (TCVos)

The ratio of the change in the offset voltage to the change in temperature producing it.

AVERAGE BIAS CURRENT DRIFT (TCIR)

The ratio of the change in the bias current to the change in temperature producing it.

INPUT NOISE VOLTAGE (enp-p)

The peak to peak noise voltage in a specified frequency band. INPUT NOISE VOLTAGE DENSITY (en)

The rms noise voltage in a 1Hz band surrounding a specified value of frequency.

INPUT NOISE CURRENT (inp-p)

The peak to peak noise current in a specified frequency band.

INPUT NOISE CURRENT DENSITY (in)

The rms noise current in a 1Hz band surrounding a specified value of frequency.

OPEN LOOP OUTPUT RESISTANCE (Ro)

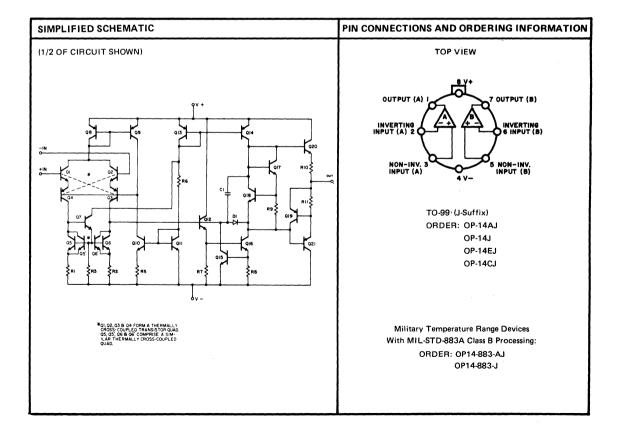
The small signal driving point resistance of the output terminal with respect to ground at a specified quiescent dc output voltage and current.

POWER CONSUMPTION (PD)

The power required to operate the amplifier with no load and the output at zero volts

DUAL MATCHED HIGH PERFORMANCE

GENERAL DESCRIPTION


The OP-14 Series of Dual Matched High Performance General Purpose Operational Amplifiers provides significant improvements over industry-standard 1458/1558 types while maintaining pin-for-pin compatibility, ease of application, and low cost. Key specifications, such as V_{OS} , I_{OS} , I_B , CMRR, PSRR, and A_{VO} are guaranteed over the full operating temperature range. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise." A thermally-symmetrical input stage design provides low TCV_{OS}, TCI_{OS} and insensitivity to output load conditions. The OP-14 Series is ideal for upgrading existing designs where accuracy improvements are required and for eliminating special low drift or low noise selected types. For similar devices with nulling capability, refer to the OP-04 data sheet.

FEATURES

Excellent D.C. Input Specifications

P - 1

- Matched Vos and CMRR
- Fits Standard 1458/1558 Socket
- Internally Compensated
- Low Noise
- Low Drift
- Low Cost
- 0°C/+70°C and -55°C/+125°C Models
- Silicon-Nitride Passivation
- Models With MIL-STD-883A Class B Processing Available From Stock

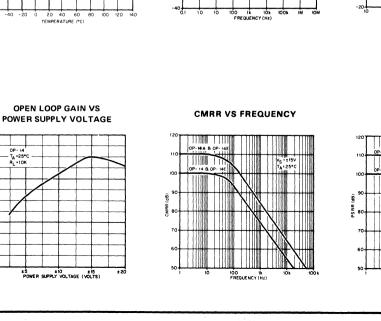
ABSOLUTE MAXIMUM RATINGS				-
Supply Voltage Internal Power Dissipation (Note 1) Differential Input Voltage Input Voltage	±22V 500 mW ±30V Supply Voltage	Operating Temperat OP-14A, OP-14 OP-14E, OP-14C Note 1: Maximum temperature.	;	-55°C to +125°C 0°C to +70°C dissipation vs. ambient
Output Short Circuit Duration Storage Temperature Range Lead Temperature Range (Soldering, 60 s	Indefinite –65° to +150°C ec) 300°C	TE	IMUM AMBIENT MPERATURE OR RATING 80°C	DERATE ABOVE MAXIMUM AMBIENT TEMPERATURE 7.1mW/°C

MATCHING CHARACTE	RISTICS		OP-14A OP-14E			OP-14 OP-14C				
These specifications apply for V _s = ±15V, T _A = 25°C, R _s \leq 100 Ω , unless otherwise noted.										
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage Match	ΔV _{os}		-	0.3	1.0	-	1.0	2.0	mV	
Common Mode Rejection Ratio Match	∆CMRR	V _{CM} = ± CMVR	94	106 [.] .	_	94	106	-	dB	
These specifications apply for $R_g \le 100\Omega$ unless otherwise r		$5^{\circ}C \leq T_{A} \leq +125^{\circ}C fc$	or OP-14A	and OP-14	, 0°C < T,	α ≤ 70°C	for OP-14E	and OP-1	4C,	
Input Offset Voltage Match	ΔV _{os}		-	0.5	1.5	-	1.5	3.0	mV	
Common Mode Rejection Ratio Match		V _{CM} = ± CMVR	90	100	-	90	100	-	dB	

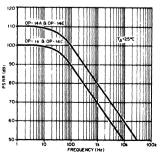
MATCHING PARAMETER DEFINITIONS

COMMON MODE REJECTION RATIO MATCH (ACMRR).

The difference between the common-mode rejection ratios (expressed in volt/volt) of side A and side B. Δ CMRR in dB = 20 log₁₀ (Δ CMRR in volt/volt).


INPUT OFFSET VOLTAGE MATCH (ΔV_{OS}). The difference between the offset voltages of side A and side B; ($V_{OSA}-V_{OSB}$).

OP-14 DEFINITIONS

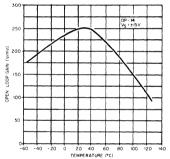

INPUT OFFSET VOLTAGE (Vos)	AVERAGE OFFSET VOLTAGE DRIFT (TCV _{os})
The voltage which must be applied between the input terminals to	The ratio of the change in the offset voltage to the change in tem-
obtain zero output voltage with no load.	perature producing it.
INPUT OFFSET CURRENT (Ine)	AVERAGE OFFSET CURRENT DRIFT (TCIos)
The difference between the currents into the two input terminals	The ratio of the change in the offset current to the change in
when the output is at zero volts with no load.	temperature producing it.
INPUT BIAS CURRENT (IB)	POWER DISSIPATION (Pd)
The average of the currents into the two input terminals when the	The total power dissipated in the amplifier with the output at zero
output is at zero volts with no load.	volts and no load.
INPUT VOLTAGE RANGE (CMVR)	UNITY GAIN CLOSED LOOP BANDWIDTH (BW)
The range of common-mode voltage on the input terminals for	The frequency at which the magnitude of the small signal voltage
which the common-mode rejection specifications apply.	gain of the amplifier, operated closed-loop as a unity-gain follower,
COMMON-MODE REJECTION RATIO (CMRR)	is 3 dB below unity.
The ratio of the input voltage range to the peak-to-peak change in	INPUT NOISE VOLTAGE (enp-p)
input offset voltage over this range.	The peak-to-peak noise voltage in a specified frequency band.
POWER SUPPLY REJECTION RATIO (PSRR)	INPUT NOISE VOLTAGE DENSITY (en)
The inverse ratio of the change in input offset voltage to the change	The rms noise voltage in a 1 Hz band surrounding a specified value
in power supply voltage producing it.	of frequency.
MAXIMUM OUTPUT VOLTAGE SWING (Vom)	INPUT NOISE CURRENT (inp.p)
The peak output voltage that can be obtained without clipping.	The peak-to-peak noise current in a specified frequency band.
LARGE SIGNAL VOLTAGE GAIN (Avo)	INPUT NOISE CURRENT DENSITY (in)
The ratio of the change in output voltage (over a specified range) to	The rms noise current in a 1 Hz band surrounding a specified value
the change in input voltage producing it.	of frequency.

ELECTRICAL CHARACTERISTICS (OP-14A					
These specifications for $V_s = \pm 15V$, T_A		nless otherwise note				r	·		T
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_s \le 50 k\Omega$		0.3	0.75	-	1.0	2.0	m∨
Input Offset Current	los		~	0.5	2.0	-	.1.0	5.0	nA
Input Bias Current	<u> ¹в</u>		~	18	50		20	75	nA MΩ
Input Resistance-Differential Mode	R _{in}		3.8	7.5	-	2.3	7.0	-	10132
Input Voltage Range	CMVR		±12.0	±13.0		±12.0	±13.0		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 50kΩ	90	110		90	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50k\Omega$	90	110	-	90	100	-	dB
Output Voltage Swing	Vom	$R_{L} \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0	-	v
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2kΩ V ₀ = ±10V	100	250	-	50	200	_	V/m
Power Consumption	P _{cl}	V ₀ = 0V		40	60	-	50	90	mW
Input Noise Voltage	e _{np-p}	0.1 Hz to 10 Hz	-	0.65		-	0.65	-	μVp
	_	$f_0 = 10 Hz$	-	25 22			25 22	-	nV/√
Input Noise Voltage Density	e _n	f _o = 100 Hz f _o = 1000 Hz	-	22	_	_	21	-	
Input Noise Current	ⁱ np-p	0.1 Hz to 10 Hz		12.8	~	-	12.8	-	pA p
Channel Separation	CS		100	-	-	100	-	-	dB
Input Noise Current Density	ⁱ n	$f_0 = 10 Hz$ $f_0 = 100 Hz$ $f_0 = 1000 Hz$	7 7 7	1.4 0.7 0.4			1.4 0.7 0.4	-	pA/√
Slew Rate (Note 1)	SR		0.5	0.7		0.5	0.7		V/µs
Large Signal Bandwidth (Note 1)		V _o = 20Vp-p	4.0 ⁻	8.0		4.0	8.0	-	kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3	-	0.8	1.3	_	мн
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	200	300	-	200	300	nsec
Overshoot (Note 1)			-	5	10	-	5	10	%
The following specifications apply for	V _s = ±15V,	$-55^{\circ}C \le T_{A} \le +12$!5°C,un	less othe	rwise no	oted			
Input Offset Voltage	Vos	$R_{s} \leq 50 k\Omega$	-	0.5	1.5	-	1.4	3.0	۳V
Average Input Offset Voltage Drift (Note 1)	TCV _{os}	$R_{g} \leq 5 k \Omega$	-	2.0	8.0	-	4.0	10.0	μV/ ^c
Input Offset Current	l _{os}		-	1.0	5.0	-	2.0	10.0	nA
Average Input Offset Current Drift (Note 1)	TCI _{os}		-	7.5	75	-	15	150	рА∕
Input Bias Current	^I в		-	30	100	-	40	125	nA
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} ^{= ±} CMVR R _s ≤50kΩ	84	110	-	84	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	84	110	-	84	100	-	dB
Large Signal Voltage Gain	A _{vo}	$\begin{array}{l} \textbf{R}_{L} \geq 2k\Omega \\ \textbf{V}_{o} = \pm 10 \textbf{V} \end{array}$	50	100	-	25	- 60	-	V/m
Maximum Output Voltage Swing	Vom	R ₁ ≥ 2kΩ	±12.0	±13.0	_	±12.0	±13.0	_	v

ELECTRICAL CHARACTERISTICS (E	ach Amplifi	er)		OP-14E			OP-14C		
These specifications for $V_s = \pm 15V$, T	_λ = 25 ^{°°} C, un	less otherwise note	4.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	V _{os} .	$R_{s} \leq 50 k\Omega$	-	0.3	0.75	-	1.0	2.0	mV
Input Offset Current	los			0.5	2.0	-	1.0	5.0	nĄ
Input Bias Current	IВ		-	18	50		20	75	nA
Input Resistance-Differential Mode	R _{in}		3.8	7.5		2.3	7.0	-	M۵
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _s ≤ 50kΩ	90	110		90	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	90	110	-	90	100		dB
Output Voltage Swing	Vom	$R_{L} \ge 2k\Omega$	±12.0	±13.0	-	±12.0	±13.0		v
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_o = \pm 10V$	100	250	-	50	200		V/m∿
Power Consumption	Pd	V ₀ = 0V	-	40	60	-	50	90	mW
Input Noise Voltage	enp-p	0.1 Hz to 10 Hz	-	0.65	_	-	0.65	_	μV p-
	י עיקה	f _o ≈ 10Hz	-	25		-	25	-	
Input Noise Voltage Density	e _n	f _o = 100 Hz		22	-	-	22	-	nV/∖ F
		f _o = 1000 Hz	-	21		-	21		
Input Noise Current	inp-p	0.1 Hz to 10 Hz	·	12.8	-	-	12.8	-	pA p-
Channel Separation	CS		100	-	-	100	-	-	dB
Input Noise Current Density	ⁱ n	$f_{0} = 10 \text{ Hz}$ $f_{0} = 100 \text{ Hz}$ $f_{0} = 1000 \text{ Hz}$	-	1.4 0.7∖ 0.4		-	1.4 0.7 0.4	-	pA∕∖Ť
Slew Rate (Note 1)	SR		0.5	0.7	-	0.5	0.7	<u>, -</u>	V/µs
Large Signal Bandwidth (Note 1)		V ₀ .= 20Vp-p	4.0	8.0		4.0	8.0	-	kHz
Closed Loop Bandwidth (Note 1)	BW	A _{VCL} = +1.0	0.8	1.3		0.8	1.3	-	MHz
Risetime (Note 1)		A _V = +1 V _{IN} = 50mV	-	200	300	_	200	300	nsec
Overshoot (Note 1)	1		_	5	10	-	5	10	%
The following specifications apply for	$V_{s} = \pm 15V, 0$	r °C ≤ T _A ≤ +70°C,	unless (otherwise	noted.	L	L	1	l
Input Offset Voltage	V _{os}	$R_{g} \leq 50 k\Omega$	-	0.4	1.5		1.2	3.0	mV
Average Input Offset Voltage Drift (Note 1)	TCV _{os}	$R_{s} \leq 5 \mathrm{k} \Omega$	-	2.0	8.0	-	4.0	10.0	μV/°(
Input Offset Current	I _{os}		-	0.7	4.0	-	1.4	10.0	nA
Average Input Offset Current Drift (Note 1)	TCI _{os}			7.5	120		15	250	pA/°
Input Bias Current	, I _B		-	22	50		25	125	nA
Input Voltage Range	CMVR		±12.0	±13.0	-	±12.0	±13.0	-	v
Common Mode Rejection Ratio	CMRR	$V_{CM} = \pm CMVR$ $R_s \le 50 k\Omega$	84	110	-	84	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5 \text{ to } \pm 20V$ $R_s \le 50 \text{ k}\Omega$	84	110	-	84	100	-	dB
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_0 = \pm 10V$	50	200	-	25	150	-	V/m
Maximum Output Voltage Swing	Vom	$R_{L} \geq 2k\Omega$	±12.0	±13.0	_	±12.0	±13.0	-	v

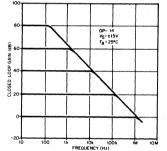
PSRR VS FREQUENCY

OPEN LOOP GAIN VS TEMPERATURE

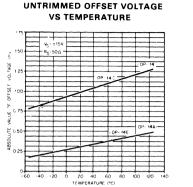

-40 -20

300

(A w 200 LOOP GAIN


Ni iog

0P- 14 TA =25°C RL = 10K



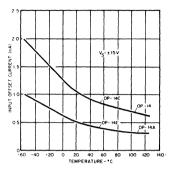
OPEN LOOP FREQUENCY RESPONSE

TYPICAL PERFORMANCE CURVES (Each Amplifier)

80 100 100 100

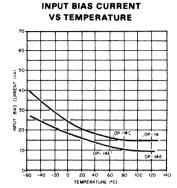
120

8

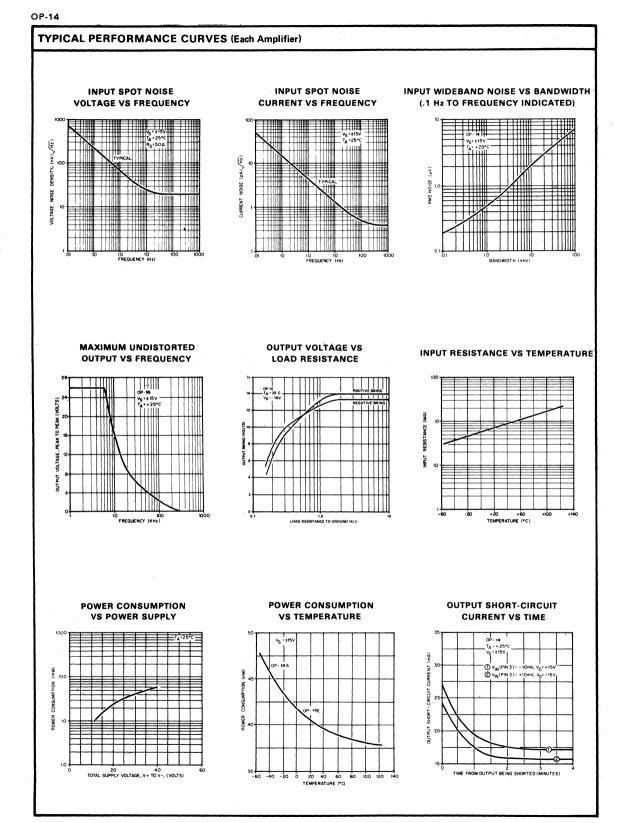

ŧ

GAN

90


DPENI

0



INPUT OFFSET CURRENT

VS TEMPERATURE

OP-14

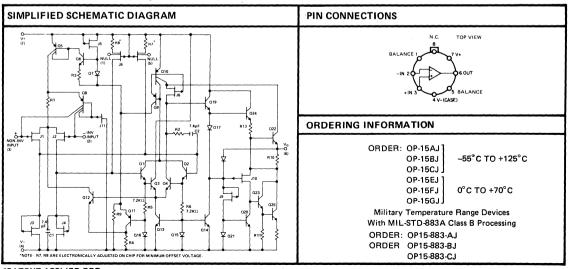
PRECISION JFET INPUT OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The OP-15 provides an excellent combination of high speed and low input offset voltage. In addition the OP-15 offers the speed of the 156A op amp with 155A dissipation. To further enhance the excellent input parameters, the OP-15 uses bias current compensation to maintain low input bias current at elevated temperatures.

The OP-15 was designed to provide real precision performance along with its high speed. For example the 500μ V offset voltage yields less than 1/2 LSB error in a 12 bit, 5V DAC. Although the OP-15 can be nulled, the design objective was to provide low offset voltage and drift WITHOUT NULLING. Systems become MORE COST-EFFECTIVE as the number of error correcting "knobs" decrease. PMI achieves this performance by use of an improved BI-FET process coupled with on-chip zener-zap offset trimming.

Most high speed monolithic op amps give settling time specifications to 0.01% error band, and so does PMI. Since 0.01% of 10V is 1mV, it is surprising that these same op amps have offset voltage errors in the 0.02% to 0.3% range. A large number of applications are in the 0.05% to 0.1% range, and PMI also gives specs for these error bands in its settling times. The fact that 500μ V is only 0.005% of 10V is why PMI specifies settling time to a true 0.01% error band.


The combination of low input offset voltage of $500\mu V$ MAX., slew rate of $17V/\mu sec$, and settling time of 900nsec-to 0.1%-

FEATURES

_	High Slew Rate $\dots \dots \dots$
-	5
	Fast Settling to ±0.1%
	Low Input Offset Voltage 500 μ V MAX
	Low Input Offset Voltage Drift
	156 Speed with 155 Dissipation
	Wide Bandwidth 6 MHz
	Minimum Slew Rate Guaranteed on All Models
	Temperature Compensated Input Bias Currents*
	Guaranteed Input Bias Current @ 125°C 9nA MAX
	Bias Current Specified WARMED UP Over Temp.
	Internal Compensation
	Low Input Noise Current
	High Common Mode Rejection Ratio 100dB
	Models With MIL-STD-883A Class B
	Processing Available From Stock

makes the OP-15 a true precision, high speed op amp. The additional features of low supply current coupled with an input bias current of 9nA at 125° C ambient (not junction) temperature makes the OP-15 useful in a wide range of applications.

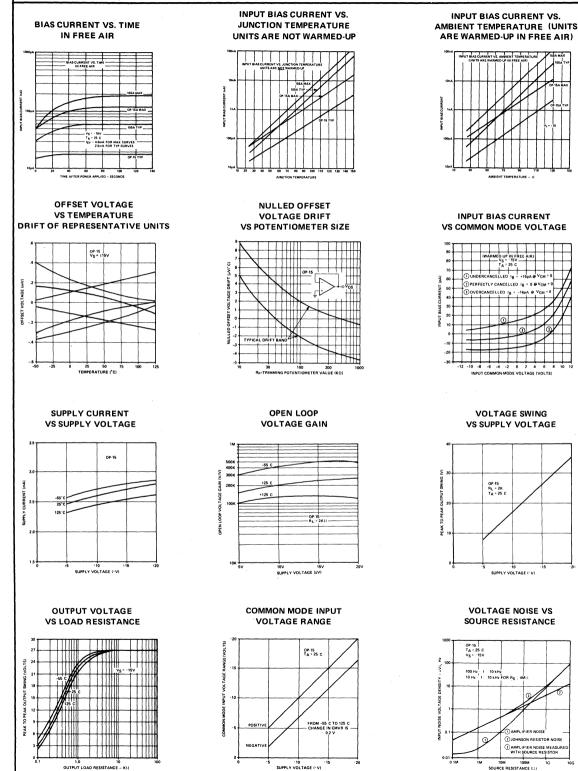
Applications include high speed amplifiers for current output DAC's, active filters, sample-and-hold buffers, and photocell amplifiers. For additional precision JFET op amps, see the OP-16 and OP-17 data sheets.

*PATENT APPLIED FOR

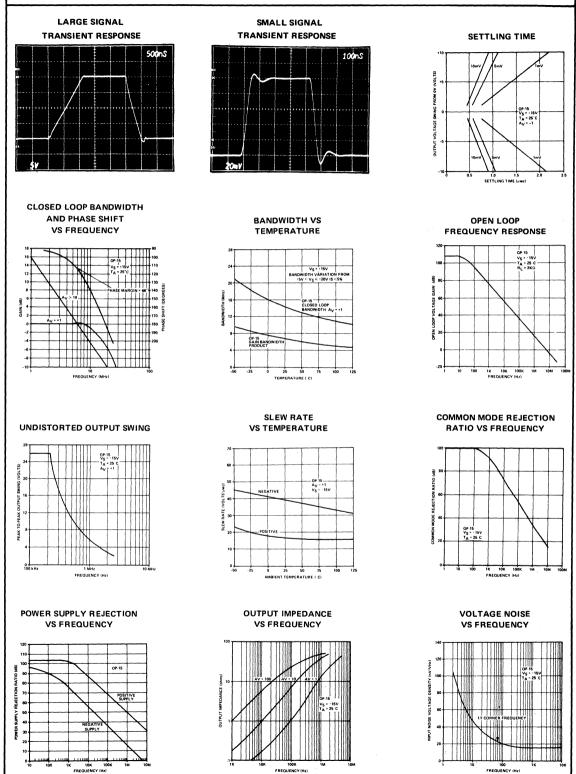
r

ABSOLUTE MAXIMUM RATINGS			
Supply Voltage	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	Differential Input Voltage	
OP-15A, OP-15B, OP-15E, OP-15F	±22V	OP-15A, OP-15B, OP-15E, OP-15F	±40V
OP-15C, OP-15G	±18V	OP-15C, OP-15G	±30V
Internal Power Dissipation		Input Voltage	
All Devices	500mW	OP-15A, OP-15B, OP-15E, OP-15F	±20V
(The TO-99(J) package must be derated	ted based	OP-15C, OP-15G	±16V
on a thermal resistance of 150° C/W to ambient or 45° C/W junction to ca Operating Temperature Range		(Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.)	
OP-15A, OP-15B, OP-15C	–55°C to +125°C		
OP-15E, OP-15F, OP-15G	0° C to +70° C	Output Short Circuit Duration	Indefinite
Maximum Junction Temperature (T _{.1})		Storage Temperature Range	–65°C to +150°C
All Devices	+150°C	Lead Temperature Range (Soldering, 60 sec)	+300° C

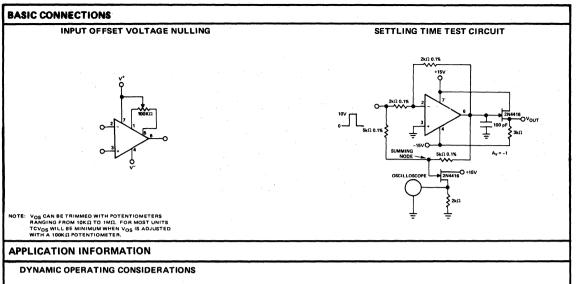
ELECTRICAL CHARACTER	RISTICS		(OP-15A			OP-15B		C	DP-15C		
These specifications apply for V_s	= ±15V,	$T_A = 25^{\circ}C$, unless oth	herwise	noted.							1997-1999 U.S. 1997 (1997)	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	-	0.2	0.5	-	0.4	1.0	-	0.5	3.0	mV
Input Offset Current	۱ _{os}	T _J - 25°C (Note 1) Device Operating	-	3.0 5.0	10 22	-	3.0 5.0	20 40	-	3.0 5.0	50 100	pА
Input Bias Current	۱ _B	T _J = 25°C (Note 1) Device Operating	-	15 18	50 110	-	15 18	100 200	-	15 18	200 400	pА
Input Resistance	R _{in}		-	10 ¹²	-		10 ¹²	-		10 ¹²		Ω
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2KΩ, V ₀ = ±10V	100	240	-	75	220	-	50	200		V/mV
Output Voltage Swing	VoM	R _L = 10K R _L = 2K	±12 ±11	±13 ±12.7	-	±12 ±11	±13 ±12.7	-	±12 ±11	±13 ±12.7		V
Supply Current	ISY	-**	-	2.7	4.0	-	2.7	4.0	-	2.8	5.0	mA
Slew Rate	SR	AVCL = +1.0	10	17	- ·	7.5	16		5.0	15	-	V/µsec
Gain Bandwidth Product	GBW		4.0	6.0		3.5	5.7		3.0	5.4		MHz
Closed Loop Bandwidth	CLBW	AVCL = +1.0	-	14	-		13		-	12		MHz
Settling Time	ts	tc 0.01% to 0.05% (Note 2) to 0.10%		2.2 1.1 0.9			2.3 1.1 0.9	-		2.4 1.2 1.0	1 1 1	μs
Input Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 -11.5	-	±10.3	+14.8 11.5		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	100	-	86	100		82	96		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	86 	100		86 	100	-	- 82	100		dB
Input Noise Voltage Density	en	f _o = 100Hz f _o = 100Hz	-	20 15	-	-	20 15		-	20 15	-	nV/√H:
Input Noise Current Density	ⁱ n	f _o = 100Hz f _o = 1000Hz	_	0.01 0.01	-	-	0.01 0.01	-	-	0.01 0.01		pA/√Ħ
Input Capacitance	CIN		-	3.0	-	-	3.0	-		3.0		pF
The following specifications app	y for V_s	= ±15V, –55°C ≤ T _A	≤ +125	°C, unle	ss other	wise no	ted.					
Input Offset Voltage	Vos	R _s = 50Ω	-	0.4	0.9	-	0.7	2.0	_	0.9	4.5	mV
Average Input Offset Voltage Drift Without External Trim With External Trim	TCV _{os} TCV _{osn}	R _p = 100KΩ		2.0 2.0	5.0 	-	3.0 3.0	10 -		4.0 4.0	(Note 3) 15 -	μV/°C
Input Offset Current (Note 1)	I _{OS}	$T_J = 125^{\circ}C$ $T_A = 125^{\circ}C$ Device Operating	-	0.6 0.8	4.0 7.0	-	0.8 1.2	6.0 11	-	1.0 1.5	9.0 17	nA
Input Bias Current (Note 1)	IB	$T_J = 125^{\circ}C$ $T_A = 125^{\circ}C$ Device Operating	-	1.2 1.7	5.0 9.0	-	1.5 2.2	7.5 14	-	1.8 2.7	10 19	nA
Input Voltage Range	CMVR		±10.4	+14.6 -11.3	-	±10.4	+14.6 -11.3	-	±10.25	+14.6 -11.3	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	97		85	97	-	80	93	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$, to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	85 -	97 —	-	85	97 —	-	- 80	93	-	dB
Large Signal Voltage Gain	Avo	R _L ≥ 2K, V _s = ±10V	35	120	-	30	110	-	25	100	-	V/mV
Maximum Output Voltage Swing	VoM	R _L ≥ 10KΩ	±12	±13	-	±12	±13	-	±12	±13	-	V


LECTRICAL CHARACTER			OP-15E)P-15F		C			
hese specifications apply for V_s =	±15V, T	$A = 25^{\circ}C$, unless other	rwise n	oted.								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	Vos	R _s = 50Ω	-	0.2	0.5	-	0.4	1.0		0.5	3.0	mV
Input Offset Current	los	T _J = 25°C (Note 1)	-	3.0	10	-	3.0	20	- .	3.0	50	pА
		Device Operating	-	5.0	22	-	5.0	40	-	5.0	100	
Input Bias Current	۱ _B	T _J = 25°C (Note 1)	-	15	50	-	15	100	-	15	200	pА
		Device Operating	-	18	110	_	18	200	_		400	
Input Resistance	Rin		-	10 ¹²	-	-	10 ¹²	-	-	10 ¹²	-	Ω
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2KΩ, V _s = ±10V	100	240		75	220	-	50	200	-	V/mV
Output Voltage Swing	VoM	R _L = 10K	±12	±13	-	±12	±13	1	±12	±13	-	V
		RL = 2K	±11	±12.7		±11	±12.7	-	±11	±12.7		
Supply Current	ISY		-	2.7	4.0	-	2.7	4.0	-	2.8	5.0	mA
Slew Rate	SR	A _{VCL} = +1.0	10	17	· _	7.5	16	-	5.0	15	-	V/µse
Gain Bandwidth Product	GBW		4.0	6.0	-	3.5	5.7	-	5.0	5.4		MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +1.0	-	14	´	-	13	-	-	12		MHz
Settling Time	ts	to 0.01%	-	2.2		-	2.3			2.4		μs
		to 0.05% (Note 2)	-	1.1		-	1.1	-	-	1.2		1
a mane mane and a second resource and the second		to 0.10%		0.9	_		0.9	-	-	1.0		ļ
Input Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 -11.5	-	±10.3	+14.8 11.5	-	V
Common Mode Rejection Ratio	CMRR	V _{cM} = ±CMVR	86	100	-	86	100	-	82	96		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10\dot{V}$ to $\pm 20V$	86	100		86	100	-	-		-	dB
		$V_s = \pm 10V$ to $\pm 15V$	-	-		-	-	-	82	100		
Input Noise Voltage Density	e _n	f _o = 100Hz	-	20			20		-	20	-	nV/√
		f _o = 1000Hz	-	15	-	-	15	-		15	-	
Input Noise Current Density	in	f _o = 100Hz	-	0.01		-	0.01	-	-	0.01	-	pA/√
		f _o = 1000Hz	-	0.01	-	-	0.01	-	-	0.01		
Input Capacitance	CIN		-	3.0		-	3.0	-	-	3.0		рF
The following specifications apply	y for V _s =	= ±15V, 0°C ≤ T _A ≤ ·	+70° C,			noted						
Input Offset Voltage	Vos	$R_s = 50\Omega$	-	0.3	0.75	-	0.55	1.5	-	0.7	3.8	mV
Average Input Offset Voltage Drift											(Note 3)	
Without External Trim	TCVos		-	2.0	5.0	-	3.0	10	-	4.0	15	µV/°
With External Trim		R _p = 100KΩ	-	2.0	-	_	3.0			4.0	-	
Input Offset Current	los	T _J = +70°C (Note 1)		0.04	0.30	. –	0.06	0.45	-	0.08	0.65	nA
		$T_A = +70^{\circ}C$ Device Operating	-	0.06	0.55		0.08	0.80	-	0.10	1.2	}
Input Bias Current	1 _B	$T_J = +70^{\circ}C$ (Note 1)		0.10	0.40	-	0.12	0.60		0.14	0.80	nA
input bias ourient	.8	$T_A = +70^{\circ}C$	_	0.13	0.75	_	0.16	1.1	_	0.19		
		Device Operating		0.13	0.75		0.10	1.1		0.13	1.5	
Input Voltage Range	CMVR		±10.4	+14.7	-	±10.4	+14.7	-	±10.25		-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	-11.4 98		85	<u>-11.4</u> 98	+	80	-11.4 94		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$	85	98		85	98	+				dB
one oupply nejection hallo		$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	- 65		_			-	80	94		
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 2K,$ $V_{s} = \pm 10V$	65	200	-	 50	180	-	35	130 .	-	V/m
Maximum Output Voltage Swing	VoM	RL≥10KΩ	±12	±13	_	±12	±13	+	±12	±13	-	v
NOTE 1: Due to limited producti			2	<u> </u>		-12		1	- 14	- 13		

curve clarifies this point. Since most amplifiers (in use) are on for more than 1 second, PMI also specifies the bias current for the warmed-up condition. The warmed-up bias current value is correlated to the junction temp, value via the curves of I_B vs. T_J and I_B vs. T_A. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I_B and I_{OS} are measured at V_{CM} = 0.


NOTE 2: Settling time is defined here for a unity gain inverter connection using $2K\Omega$ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within a specified percent of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit.

NOTE 3: Parameter is not 100% tested. 90% of all units meet these specifications.


6-86

TYPICAL PERFORMANCE CURVES

6-88

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

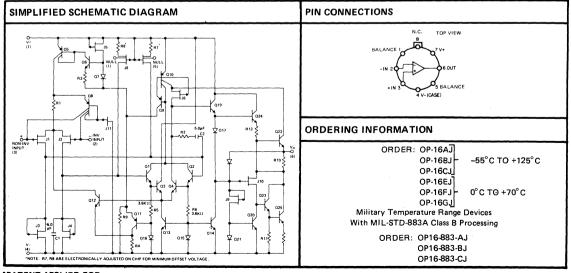
PRECISION JFET INPUT OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The OP-16 offers a performance combination not usually found in the same op amp-high speed and low input offset voltage. Not only does the OP-16 out-perform the 156A in speed and error band, but it is clearly superior to several more costly hybrid and dielectrically-isolated op amps. In addition, the OP-16 uses bias current compensation to maintain low input bias current at elevated temperatures.

The OP-16 was designed to provide real precision performance along with its high speed. For example the 500μ V offset voltage yields less than 1/2 LSB error in a 12 bit, 5V DAC. Although the OP-16 can be nulled, the design objective was to provide low offset voltage and drift WITHOUT NULLING. Systems become MORE COST-EFFECTIVE as the number of error correcting "knobs" decrease. PMI achieves this performance by use of an improved BI-FET process coupled with on-chip zener-zap offset trimming.

Most high speed monolithic op amps give settling time specifications to 0.01% error band, and so does PMI. Since 0.01% of 10V is 1mV, it is surprising that these same op amps have offset voltage errors in the 0.02% to 0.3% range. A large number of applications are in the 0.05% to 0.1% range, and PMI also gives specs for these error bands in its settling times. The fact that 500μ V is only 0.005% of 10V is why PMI specifies settling time to a true 0.01% error band.


The combination of low input offset voltage of $500\mu V$ MAX., slew rate of $25V/\mu sec$, and settling time of 700nsec-to 0.1%-

FEATURES

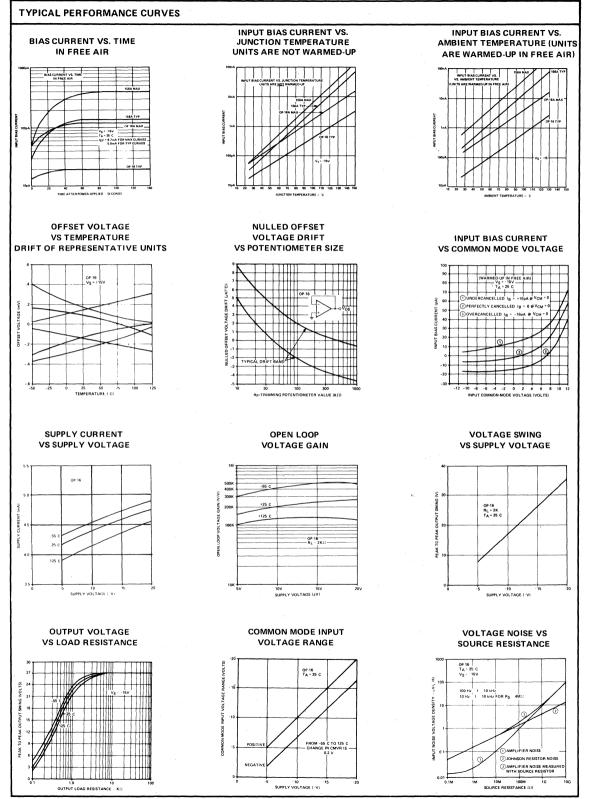
	High Slew Rate $\dots \dots \dots$
	Fast Settling to ±0.1%
	Low Input Offset Voltage 500 μ V MAX
	Low Input Offset Voltage Drift 2.0 μ V/°C
	Wide Bandwidth 8 MHz
	Minimum Slew Rate Guaranteed on All Models
	Temperature Compensated Input Bias Currents*
	Guaranteed Input Bias Current @ 125°C11nA MAX
	Bias Current Specified WARMED UP Over Temp.
	Internal Compensation
	Low Input Noise Current
	High Common Mode Rejection Ratio 100dB
-	Models With MIL-STD-883A Class B
	Processing Available From Stock

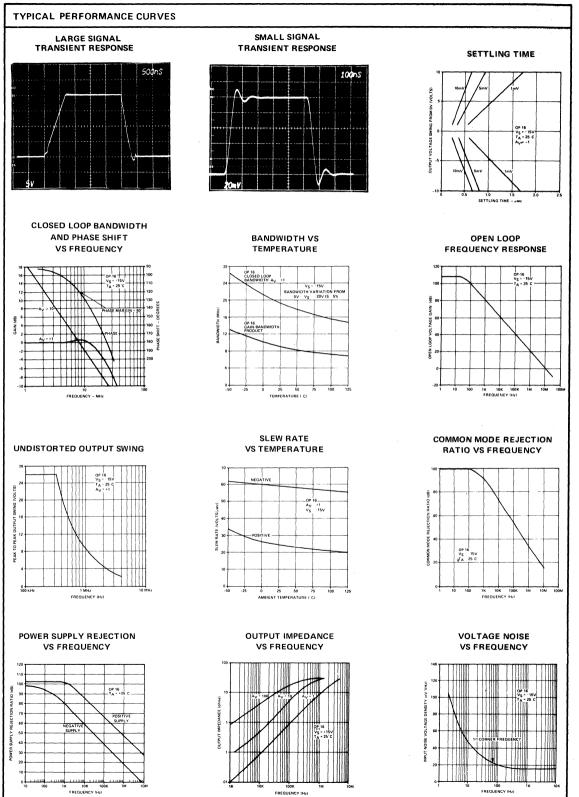
makes the OP-16 a true precision, high speed op amp. Because of the input bias current compensation, the maximum input bias current at 125° C ambient (not junction) temperature is only 11nA. This kind of performance makes the OP-16 useful in a wide range of applications.

Applications include high speed amplifiers for current output DAC's, active filters, sample-and-hold buffers, and photocell amplifiers. For additional precision JFET op amps, see the OP-15 and OP-17 data sheets.

*PATENT APPLIED FOR

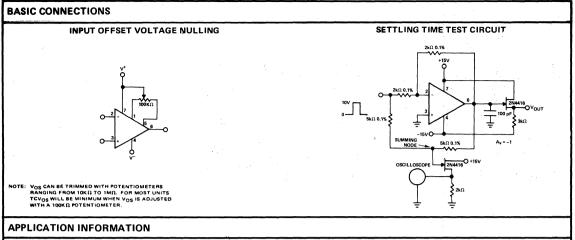
ABSOLUTE MAXIMUM RATINGS


Supply Voltage		Differential Input Voltage	
OP-16A, OP-16B, OP-16E, OP-16F	±22V	OP-16A, OP-16B, OP-16E, OP-16F	±40V
OP-16C, OP-16G	±18V	OP-16C, OP-16G	±30V
Internal Power Dissipation All Devices (The TO-99(J) package must be derated based on a thermal resistance of 150° C/W junction		Input Voltage OP-16A, OP-16B, OP-16E, OP-16F OP-16C, OP-16G	±20V ±16V
to ambient or 45° C/W junction to case.) Operating Temperature Range		(Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.)	
OP-16E, OP-16F, OP-16G	55°C to +125°C 0°C to +70°C	Output Short Circuit Duration	Indefinite
Maximum Junction Temperature (T _J)		Storage Temperature Range	–65°C to +150°C
All Devices	+150°C	Lead Temperature Range (Soldering, 60 sec)	+300° C


ELECTRICAL CHARACTER	ISTICS	·	(DP-16A			OP-16B		C)P-16C		
These specifications apply for V_{S}	≠ ±15V,	$T_A = 25^{\circ}C$, unless oth	erwise	noted.								.
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	-	0.2	0.5	-	0.4	1.0	-	0.5	3.0	mV
Input Offset Current	۱ _{os}	T _J = 25°C (Note 1) Device Operating		3.0 5.0	10 25	1 1	3.0 5.0	20 50	-	3.0 5.0	50 125	рА
Input Bias Current	Ι _Β	T _J = 25°C (Note 1) Device Operating	1 1	15 20	50 130	1 1	15 20	100 250	-	15 20	200 500	pА
Input Resistance	Rin		-	10 ¹²	-	-	10 ¹²	-	-	10 ¹²		Ω
Large Signal Voltage Gain	A _{vo}	R _L ≥2KΩ, V _s = ±10V	100	240	-	75	220	-	50	200	-	V/mV
Output Voltage Swing	V _{oM}	RL = 10K RL = 2K	±12 ±11	±13 ±12.7	- -	±12 ±11	±13 ±12.7	-	±12 ±11	±13 ±12.7		V
Supply Current	ISY			4.6	7.0	-	4.6	7.0	-	4.8	8.0	mA
Slew Rate	SR	A _{VCL} = +1.0	18	25	-	12	24	-	9.0	23	-	V/µsec
Gain Bandwidth Product	GBW		6.0	8.0	-	5.5	7.6	-	5.0	7.2	-	MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +1.0	-	19	· — ·	-	18	·	-	17	-	MHz
Settling Time	ts	to 0.01% to 0.05% (Note 2) to 0.10%		1.7 0.9 0.7	-		1.7 0.9 0.7			1.8 1.0 0.8		μs
Input Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 -11.5	-	±10.3	+14.8 -11.5	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	100	-	86	100	-	82	96	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	86 -	100 —	-	86 —	100 —	-	_ 82	100		dB
Input Noise Voltage Density	en	f _o = 100Hz f _o = 1000Hz	-	20 15	-	-	20 15	-	-	20 15	_	nV/√F
Input Noise Current Density	in	f _o = 100Hz f _o = 1000Hz	-	0.01 0.01		-	0.01 0.01	-	-	0.01 0.01		pA/√F
Input Capacitance	CIN		-	3.0	-	-	3.0	-	-	3.0	-	pF
The following specifications appl	y for Vs	= ±15V, -55°C ≤ T _A	≤ +125	°C, unle	ss other	wise no	ted.				•	l
Input Offset Voltage	Vos	R _s = 50Ω	-	0.4	0.9	-	0.7	2.0	-	0.9	4.5	mV
Average Input Offset Voltage Drift Without External Trim	TCVos		_	2.0	5.0		3.0	10	_	4.0	(Note 3) 15	μV/°C
With External Trim		R _p = 100KΩ	-	2.0	-	-	3.0	-	-	4.0	-	
Input Offset Current	l _{os}	$T_J = 125^{\circ}C$ (Note 1) $T_A = 125^{\circ}C$ Device Operating	-	0.6 1.0	4.0 8.5	-	0.80 1.3	6.0 14.5	-	1.0 1.7	9.0 22	nA
Input Bias Current	۱B	$T_J = 125^{\circ}C$ (Note 1) $T_A = 125^{\circ}C$ Device Operating	-	1.2 2.0	5.0 11	-	1.5 2.5	7.5 18	-	1.8 3.0	10 25	nA
Input Voltage Range	CMVR		±10.4	+14.6 -11.3	-	±10.4	+14.6 -11.3	-	±10.25	+14.6 -11.3	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	97	-	85	97		80	93		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	85 -	97 _	-	85 	97 	-	80	93	-	dB
Large Signal Voltage Gain	A _{vo}	R _L ≥2K, V _s = ±10V	35	120	-	30	110	-	25	100		V/mV
Maximum Output Voltage Swing	VoM	$R_L \ge 10K\Omega$	±12	±13	-	±12	±13	-	±12	±13	-	V

		25° 0 - 1		erwise noted			OP-16F			OP-16		l
hese specifications apply for V_s =	T		1	T	r	r	r		I	1		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Uni
Input Offset Voltage	Vos	R _s = 50Ω		0.2	0.5	-	0.4	1.0	-	0.5	3.0	mV
Input Offset Current	los	Tj = 25°C (Note 1)	- 1	3.0	10	-	3.0	20	-	3.0	50	pА
		Device Operating		5.0	25	-	5.0	50		5.0	125	
Input Bias Current	ΙB	T _J = 25°C (Note 1)	-	15	50	-	15	100	-	15	200	рА
······	ļ	Device Operating		20	130		20	250		20	500	
Input Resistance	Rin		-	10 ¹²	-	-	10 ¹²	-	-	10 ¹²	-	Ω
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2KΩ, V _o = ±10V	100	240	-	75	220	-	50	200	-	V/m
Output Voltage Swing	VoM	RL=10K	±12	±13	-	±12	±13	-	±12	±13	-	V
			±11	±12.7		±11	±12.7	-	±11	±12.7	-	ļ
Supply Current	ISY			4.6	7.0	-	4.6	7.0	-	4,8	8.0	mA
Slew Rate	SR	AVCL = +1.0	18	25	-	12	24	-	9.0	23	-	V/μs
Gain Bandwidth Product	GBW		6.0	8.0	-	5.5	7.6	-	5.0	7.2		MHz
Closed Loop Bandwidth	CLBW	AVCL = +1.0	-	19		-	18	-		17	-	MHz
Settling Time	ts	to 0.01%	-	1.7	-	-	1.7	-	-	1.8	-	μs
]	to 0.05% (Note 2)	-	0.9	-	-	0.9	-	-	1.0		
		to 0.10%		0.7		-	0.7	-	-	0.8	-	ļ
Input Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 -11.5	-	±10.3	+14.8 11.5	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	100		86	100		82	96		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$	86	100		86	100	_	_	_		dB
		V _s = ±10V to ±15V	_	_	_	_	_	_	82	100	_	
Input Noise Voltage Density	en	$f_0 = 100 Hz$	-	20		-	20	_	~	20		nV/\
		f _o = 1000Hz	-	15	-	_	15	_	-	15		1
Input Noise Current Density	in	f _o = 100Hz	-	0.01		_	0.01	-	-	0.01	_	pA/\
		f _o = 1000Hz	-	0.01	-	-	0.01	-	. –	0.01	-	
Input Capacitance	CIN		~	3.0	-	-	3.0		-	3.0	-	pF
The following specifications app	y for V _s	= ±15V, 0°C ≤ T _A ≤	+70°C,	unless ot	herwise	noted.						
Input Offset Voltage	Vos	R _s = 50Ω	-	0.3	0.75	-	0.55	1.5	-	0.7	3.8	mV
Average Input Offset Voltage Drift		· ·									(Note 3)	
Without External Trim	TCVos		-	2.0	5.0	-	3.0	10	-	4.0	15	µ∨/°
With External Trim		R _p = 100KΩ	-	2.0	-	-	3.0	-	-	4.0	-	
Input Offset Current	los	T _J = +70°C (Note 1)	-	0.04	0.30	-	0.06	0.45	-	0.08	0.65	nA
		$T_A = +70^{\circ}C$ Device Operating	-	0.07	0.70	-	0.10	1.1	-	0.15		
Input Bias Current	IВ	T _J = +70°C (Note 1)	-	0.10	0.40	-	0.12	0.60	-	0.14	0.80	nA
Innut Valtage Bange	CMI/P	T _A = +70°C Device Operating	+10.4	0.15	0.90	-	0.20 +14.7	1.4	 ±10.25	0.25	2.0	v-
Input Voltage Range	CMVR		±10.4	-11.4		±10.4	-11.4	_	- 10.20	-11.4		Ľ
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	98	-	85	98	1	80	94	_	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$	85	98	-	85	98	-	-	-		dB
		$V_s = \pm 10V$ to $\pm 15V$	-	-	-	-	-	-	80	94		i -
Large Signal Voltage Gain	Avo	R _L ≥ 2K, V _s ≈ ±10V	65	200	-	50	180	-	35	160		V/m
Maximum Output Voltage Swing		RL≥10KΩ	±12	±13	-	±12	±13	-		±13	· _	V
NOTE 1: Due to limited product curve clarifies this po warmed-up condition. vs. T _A . PMI has a bias	int. Since The war	e most amplifiers (in med-up bias current v	use) are alue is	on for correlate	more th d to the	an 1 se e juncti	cond, Pl on temp	VII also . value v	specifies /ia the cu	the bia urves of	s current f IB vs. Tj	for th and lរុ

NOTE 2: Settling time is defined here for a unity gain inverter connection using $2K\Omega$ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within a specified percent of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit.


NOTE 3: Parameter is not 100% tested. 90% of all units meet these specifications.

6-94

OP-16

DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

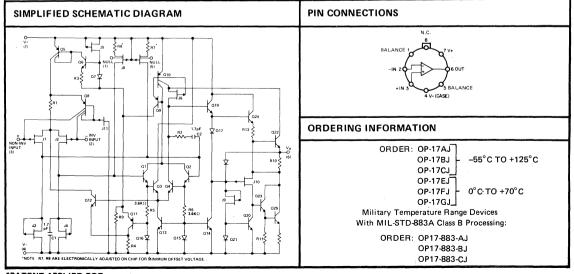
PRECISION JFET INPUT OPERATIONAL AMPLIFIER WIDE BANDWIDTH DECOMPENSATED (AVMIN = 5)

GENERAL DESCRIPTION

With an unusual performance combination of 400nsec settling time and an input offset voltage of 500μ V MAX., the OP-17 clearly outperforms the 157A op amp. In addition, the OP-17 is superior in both cost and performance to several dielectrically-isolated and hybrid op amps. Bias current compensation provides low input bias current at elevated temperatures.

The OP-17 was designed to provide real precision performance along with its high speed. For example the 500μ V offset voltage yields less than 1/2 LSB error in a 12 bit, 5V DAC. Although the OP-17 can be nulled, the design objective was to provide low offset voltage and drift WITHOUT NULLING. Systems become MORE COST-EFFECTIVE as the number of error correcting "knobs" decrease. PMI achieves this performance by use of an improved BI-FET process coupled with on-chip zener-zap offset trimming.

Most high speed monolithic op amps give settling time specifications to 0.01% error band, and so does PMI. Since 0.01% of 10V is 1mV, it is surprising that these same op amps have offset voltage errors in the 0.02% to 0.3% range. A large number of applications are in the 0.05% to 0.1% range, and PMI also gives specs for these error bands in its settling times. The fact that 500μ V is only 0.005% of 10V is why PMI specifies settling time to a true 0.01% error band.


The combination of low input offset voltage of $500\mu V$ MAX., slew rate of $70V/\mu sec$, and settling time of 400nsec-to 0.1%-makes the OP-17 a true precision, high speed op amp. Because

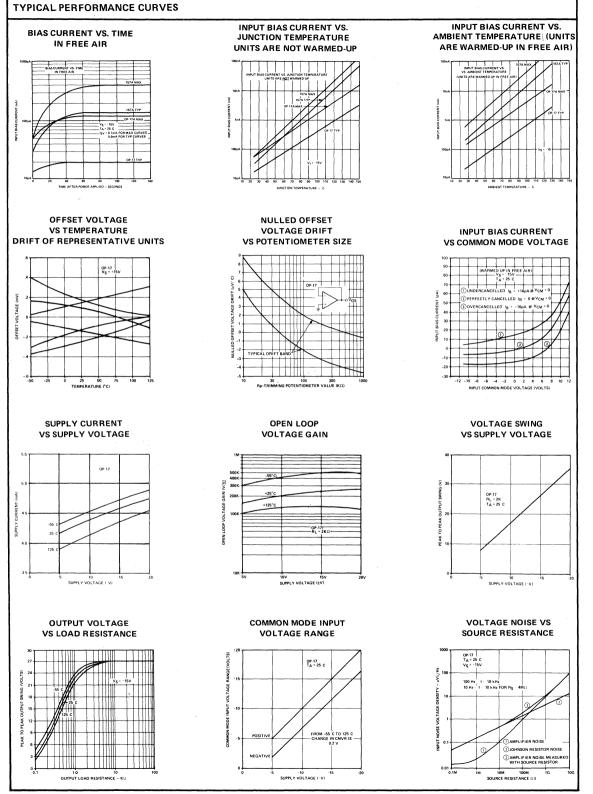
FEATURES

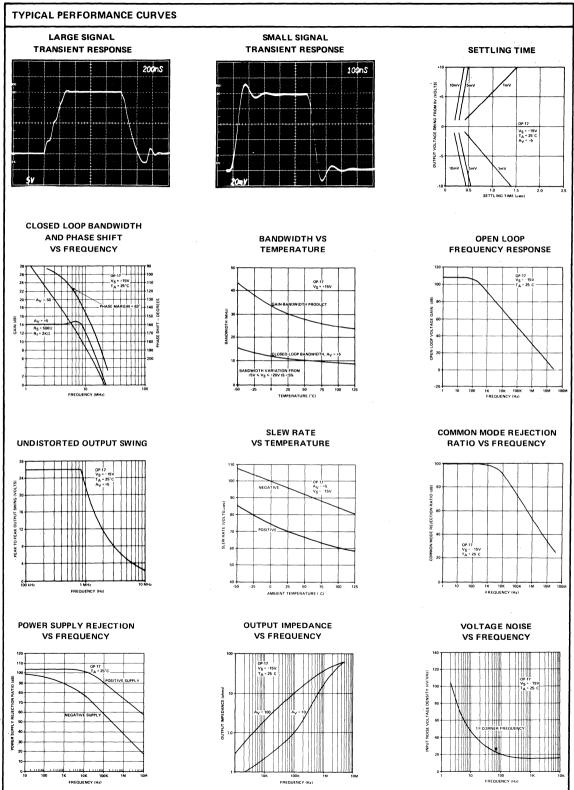
	High Slew Rate
	Fast Settling to ±0.1% 400 nsec
	Low Input Offset Voltage 500 µV MAX
	Low Input Offset Voltage Drift 2.0 μ V/°C
	Big Gain Bandwidth Product
-	Minimum Slew Rate Guaranteed on All Models
	Temperature Compensated Input Bias Currents*
•	Guaranteed Input Bias Current @ 125°C11nA MAX
	Bias Current Specified WARMED UP Over Temp.
	Internal Compensation
	Low Input Noise Current
	High Common Mode Rejection Ratio100dB
	Models with MIL-STD-883A Class B
	Processing Available From Stock

of the input bias current compensation, the maximum input bias current at 125°C ambient (not junction) temperature is only 11nA. This kind of performance makes the OP-17 useful in a wide range of applications.

Applications include high speed amplifiers for current output DAC's, active filters, and photocell amplifiers. For unity gain fast follower applications see the OP-15 and OP-16 precision JFET op amp data sheets.

*PATENT APPLIED FOR


ABSOLUTE MAXIMUM RATINGS


Supply Voltage		Differential Input Voltage	
OP-17A, OP-17B, OP-17E, OP-17F	±22V	OP-17A, OP-17B, OP-17E, OP-17F	±40V
OP-17C, OP-17G	±18∨	OP-17C, OP-17G	±30V
Internal Power Dissipation		Input Voltage	
All Devices	500mW	OP-17A, OP-17B, OP-17E, OP-17F	±20V
(The TO-99(J) package must be derate	ed based	OP-17C, OP-17G	±16V
on a thermal resistance of 150°C/W ju ambient or 45°C/W junction to case.)	nction to	(Unless otherwise specified the absolute maximum negative input voltage is equal	
Operating Temperature Range		to the negative power supply voltage.)	
OP-17A, OP-17B, OP-17C	–55° C to +125° C		
OP-17E, OP-17F, OP-17G	0°C to +70°C	Output Short Circuit Duration	Indefinite
Maximum Junction Temperature (T _{.1})		Storage Temperature Range	–65°C to +150°C
All Devices	+150°C	Lead Temperature Range (Soldering, 60 sec)	+300° C

ELECTRICAL CHARACTER	ISTICS			OP-17A			OP-17B	an a	C	DP-17C	a na an	
These specifications apply for V_s	= ±15V,	$T_A = 25^{\circ}C$, unless oth	erwise	noted.								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	-	0.2	0.5	-	0.4	1.0	-	0.5	3.0	mV
Input Offset Current	l _{os}	T _J = 25°C (Note 1) Device Operating	-	3.0 5.0	10 25	-	3.0 5.0	20 50	-	3.0 5.0	50 125	рА
Input Bias Current	IB	T _J = 25°C (Note 1) Device Operating	-	15 20	50 130	-	15 20	100 250	1 1	15 20	200 500	рА
Input Resistance	R _{in}		-	10 ¹²		-	10 ¹²			1012	-	Ω
Large Signal Voltage Gain	A _{vo}	R _L ≥ 2KΩ, V _s = ±10V	100	240	-	75	220	-	50	200	-	V/mV
Output Voltage Swing	V _{oM}	RL = 10K RL = 2K	±12 ±11	±13 ±12.7	· · -	±12 ±11	±13 ±12.7	-	±12 ±11	±13 ±12.7	-	V
Supply Current	ISY		-	4.6	7.0	-	4.6	7.0	-	4.8	8.0	mA
Slew Rate	SR	A _{VCL} = +5.0	45	70		35	66	-	25	62	-	V/µsec
Gain Bandwidth Product	GBW		20	30		15	28	-	11	26	-	MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +5.0	-	11			10	-	-	9	-	MHz
Settling Time	t _s	to 0.01% to 0.05% (Note 2) to 0.10%		1.5 0.5 0.4			1.5 0.5 0.4			1.6 0.6 0.5		μs
Input Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 -11.5	-	±10.3	+14.8 -11.5		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	100	-	86	100	_	82	96	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	86 	100		86 —	100	-	- 82	100	-	dB
Input Noise Voltage Density	e _n	f _o = 100Hz f _o = 1000Hz	-	20 15	-	-	20 15	-	-	20 15		nV/√Hz
Input Noise Current Density	in	f _o = 100Hz f _o = 100Hz		0.01 0.01	-	-	0.01 0.01	_	-	0.01	-	pA/√Hz
Input Capacitance	CIN		-	3.0	-	-	3.0	-	-	3.0	-	pF
The following specifications apply		= ±15V, -55°C ≤ T _A	< +12!	5°C, unle	ss other	wise no	ted.	.		L	L	
Input Offset Voltage	Vos	R _s = 50Ω	-	0.4	0.9	-	0.7	2.0	-	0.9	4.5	mV
Average Input Offset Voltage Drift Without External Trim	TCVos	2 400/40	-	2.0	5.0	-	3.0	10	-	4.0	(Note 3) 15	μV/°C
With External Trim	+	$R_p = 100K\Omega$		2.0	-		3.0	-		4.0	9.0	ļ
Input Offset Current	los	$T_J = 125^{\circ}C$ (Note 1) $T_A = 125^{\circ}C$ Device Operating	-	0.6 1.0	4.0 8.5	-	0.8 1.3	6.0 14.5	-	1.7	9.0 22	nA
Input Bias Current	۱ _B	$T_J = 125^{\circ}C$ (Note 1) $T_A = 125^{\circ}C$ Device Operating	-	1.2 2.0	5.0 11	-	1.5 2.5	7.5 18	-	1.8 3.0	10 25	nA
Input Voltage Range	CMVR		±10.4	+14.6 -11.3	-	±10.4	+14.6 -11.3	-	±10.25	+14.6 -11.3	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	97	-	85	97		80	93	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	85 	97 —	-	85	97		80	93	-	dB
Large Signal Voltage Gain	Avo	$R_L \ge 2K,$ $V_s = \pm 10V$	35	120	-	30	110	-	25	100	-	V/mV
Maximum Output Voltage Swing	VoM	R _L ≥ 10KΩ	±12	±13	-	±12	±13	- 1	±12	±13	-	V

ELECTRICAL CHARACTER				OP-17E			OP-17F	_				
These specifications apply for V_s	≈ ±15V,	$T_A = 25^{\circ}C$, unless ot	herwise	noted.								
Parameter	Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
nput Offset Voltage	Vos	R _s = 50Ω	-	0.2	0.5		0.4	1.0	-	0.5	3.0	mV
nput Offset Current	los	T」= 25°C (Note 1) Device Operating	-	3.0 5.0	10 25	-	3.0 5.0	20 50	-	3.0 5.0	50 125	рА
nput Bias Current	IB	$T_J = 25^{\circ}C$ (Note 1)	-	15 20	50	-	15	100	-	15	200	pА
nput Resistance	D.	Device Operating		10 ¹²	130		20 10 ¹²	250		20 10 ¹²	500	Ω
_arge Signal Voltage Gain	R _{in} A _{vo}	R _L ≥ 2KΩ, V _o = ±10V	- 100	240	-	75	220	-	50	200		V/mV
Dutput Voltage Swing	V _{oM}	8 R _L = 10K R _L = 2K	±12 ±11	±13 ±12.7	-	±12 ±11	±13 ±12,7	-	±12 ±11	±13 ±12,7	-	v
Supply Current	ISY			4.6	7.0		4.6	7.0		4.8	8.0	mA
Slew Rate	SR	A _{VCL} = +5.0	45	70		35	66	-	25	62		V/µsec
Gain Bandwidth Product	GBW		20	30		15	28		11	26	_	MHz
Closed Loop Bandwidth	CLBW	AVCL = +5.0	_	11	_		10	-	-	9	_	MHz
Settling Time	t _s	TO 0.01%		1.5	-		1.5	-		1.6		μs
	-5	TO 0.05% (Note 2)		0.5		_	0.5	-	_	0.6	_	
		TO 0.10%		0.4	_		0.4	-		0.5	-	
nput Voltage Range	CMVR		±10.5	+14.8 -11.5	-	±10.5	+14.8 11.5	-	±10.3	+14.8 -17.5	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} ≕ ±CMVR	86	100	-	86	100	-	82	96	-	dB
ower Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$ $V_s = \pm 10V$ to $\pm 15V$	86 —	100	-	86	100	-	 82		-	dB
nput Noise Voltage Density	e _n	f _o = 100Hz f _o = 100Hz	-	20 15	-	-	20 15	-	-	20 15	-	nV/√ŀ
nput Noise Current Density	ⁱ n	$f_0 \approx 100 \text{Hz}$		0.01	_	_	0.01			0.01	_	pA/√F
,		f _o = 1000Hz	_	0.01	-	-	0.01		_	0.01	-	P. 0 V I
nput Capacitance	CIN		-	3.0		-	3.0			3.0	-	рF
The following specifications apply			+70°C,			noted						
nput Offset Voltage	Vos	R _s = 50Ω	-	0.3	0.75	_	0.55	1.5		0.7	3.8	mV
Average Input Offset Voltage Drift											(Note 3)	
Without External Trim	TCVos	R _p = 100KΩ	_	2.0 2.0	5.0 	-	3.0 3.0	10	-	4.0 4.0	15 	μV/°C
With External Trim		$R_p = 100K32$ T _J = +70°C (Note 1)		0.04	0.30		0.06	0.45		0.08	0.65	nA
nput Offset Current	los	$T_A = +70^{\circ}C$ Device Operating	_	0.07	0.30	-	0.10	1.1	-	0.15	1.7	
nput Bias Current	I _B	T _J = +70°C (Note 1)	-	0.10	0.40	-	0.12	0.60		0.14	0.80	nA
· ·	J	$T_A = +70^{\circ}C$ Device Operating	-	/0.15	0.90	-	0.20	1.4		0.25	2.0	
Input Voltage Range	CMVR		±10.4	+14.7		±10.4		-	±10.25		-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	-11.4 98		85	-11.4 98		80	<u>-11.4</u> 94		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 20V$	85	98		85	98	-	-		-	dB
Large Signal Voltage Gain	Avo	$V_s = \pm 10V \text{ to } \pm 15V$ $R_L \ge 2K,$ $V_s = \pm 10V$	- 65	- 200	-	 50	- 180	-	80 35	94 160		V/mV
Maximum Output Voltage Swing	VoM	R _L ≥ 10KΩ	±12	±13		±12	±13		±12	±13		V
NOTE 1: Due to limited producti curve clarifies this poin warmed-up condition. vs. T _A . PMI has a bias or los are measured at V _{CI} NOTE 2: Settling time is defined voltage (the voltage at	on test ti nt. Since The warn current co M = 0.	mes the bias currents most amplifiers (in o ned-up bias current v ompensation circuit w a gain of five inverte	corresp use) are alue is /hich gi	ond to ju on for i correlate ves impro	more th d to the oved bia	temper nan 1 se e juncti as curre	atures. Ti econd, PM ion temp. nt over th	11 also value v e stand	current specifie via the c lard JFE	vs. time s the bia curves of ET input	s current i IB vs. TJ op amps.	ver-on) for the and IB IB and e error

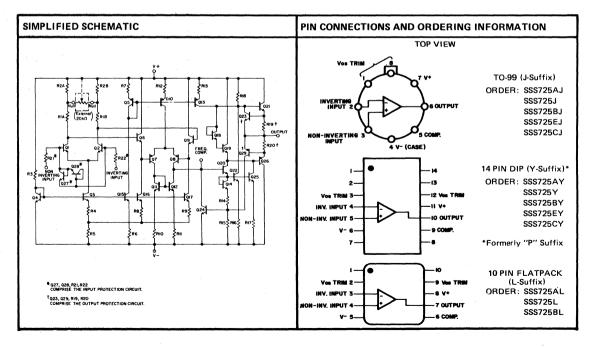
NOTE 3: Parameter is not 100% tested. 90% of all units meet these specifications.

6-100

OP-17

INSTRUMENTATION OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION


The SSS725 Series of monolithic Instrumentation Operational Amplifiers is specifically designed for accurate high-gain amplification of low level input signals in the presence of large common mode voltages. Superior DC input characteristics include very low offset voltage and current, extremely high open loop gain, low 1/f and wideband noise and a complete absence of "popcorn" noise. The extremely low offset voltage drift is further improved by an advanced nulling technique that provides optimum TCV_{OS} performance when V_{OS} has been nulled to zero. Very high common mode and power supply rejection enable accurate performance in the presence of large spurious signals.

Flexible external compensation provides wide bandwidth and high slew rate operation in high closed-loop gain applications. The superior long term stability, and compatibility with MIL-STD-883 processing make the SSS725 an excellent choice for high reliability process control and aerospace applications, including strain gauge and thermocouple amplifiers, low noise audio amplifiers and instrumentation amplifiers. The SSS725

FEATURES

- Very High Voltage Gain 1.000 kV/V Min
 Low Offset Voltage and Offset Current
- **Low Drift vs. Temperature (TCV**_{os}). . 0.8 μ V/°C Max
- Low Input Voltage and Current Noise
- Low Offset Voltage Drift with Time
- High Common Mode Rejection 120 dB Min
- High Power Supply Rejection 2 μ V/V Max
- Wide Supply Range±1.5V to ±22V
- ±30V Input Overvoltage Protection
- MIL-STD-883 Processing Available

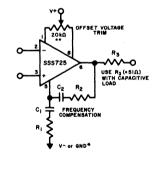
Series are direct replacements for all 725 types providing superior DC and noise performance plus the unique feature of complete input differential voltage and output short circuit protection. Further improvements in input performance plus complete internal frequency compensation are available: request the OP-05 Instrumentation and OP-07 Ultra-low Offset Voltage Operational Amplifier data sheets.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Internal Power Dissipation (Note 1) Differential Input Voltage Input Voltage (Note 2) Output Short Circuit Duration	±22V 500mW ±30V ±22V Indefinite	Operating Temperature Range SSS725A, SSS725 SSS725B SSS725E, SSS725C	-55°C to -25°C to 0°C to	+85°C +70°C
Storage Temperature Range	-65°C to +150°C	Lead Temperature Range (Soldering,	60 sec)	300°C

NOTES:

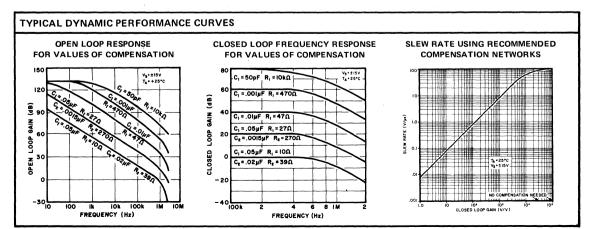
Note 1: Maximum package power dissipation vs. ambient temperature.


Package Type	Maximum Ambient Temperature for Rating	Derate Above Maximum Ambient Temperature
TO-99 (J)	80° C	7.1mW/°C
DUAL-IN-LINE (Y)	100°C	10.0mW/°C
FLAT (L)	62°C	5.7mW/°C

Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.

FREQUENCY COMPENSATION

COMPENSATION CIRCUIT


COMPENSATION VALUES

Avcl	R ₁ (Ω)	C ₁ (μF)	R2 (Ω)	C2 (μF)
10000	10K	50pF	-	-
1000	470	.001	-	-
100	47	.01	-	-
10	27	.05	270	.0015
1	10	.05	39	.02

*The compensation network (R₁, C₁) should be returned to the V-terminal. If the network is returned to ground, serious degradation of power supply rejection performance with frequency will occur. See typical curves, page 6 (PSRR vs FREQUENCY).

** The trimming potentiometer should be $20K\Omega$ for optimum nulled offset voltage drift. See page 6 for change in drift caused by potentiometers ranging from $5K\Omega$ to $100K\Omega$.

ELECTRICAL CHARACTERISTICS These specifications apply for $V_s = \pm 15V$, $T_A = 25^{\circ}C$,			SSS725A						
			, unless other	wise noted				L	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	v _{os}	${ m R_s}\leqslant 20{ m k}\Omega$		0.06	0.1		0.2	0.5	mV
Input Offset Current	los			0.3	1.0		0.75	5.0	nA
Input Bias Current	'B			30	70		30	80	nA
Input Noise Voltage Density	^e n	f ₀ = 10Hz (Note 1) f ₀ = 100Hz (Note 1) f ₀ = 1000Hz (Note 1)		9.0 8.0 7.0	15.0 9.0 7.5		9.0 8.0 7.0	15.0 9.0 7.5	nV/√H
Input Noise Current Density	'n	fo = 10Hz (Note 1) fo = 100Hz (Note 1) fo = 1000Hz (Note 1)		0.5 0.25 0.15	1.2 0.6 0.25		0.5 0.25 0.15	1.2 0.6 0.25	рА/√Н
Input Resistance	R _{in}		0.8	1.8		0.7	1.8		мΩ
Large Signal Voltage Gain	A _{vo}	r _L ≥2kΩ V _o =±10V	1,000,000	3,000,000		1,000,000	3,000,000		v/v
Output Voltage Swing	Vom	R _L ≥ 10kΩ R _L ≥ 2kΩ R _L ≥ 1kΩ	±12.5 ±12.0 ±11.0	±13.0 ±12.8 ±12.5		±12.5 ±12.0 ±11.0	±13.0 ±12.8 ±12.5		v v v
Input Voltage Range	CMVR		±13.5	±14.0		±13.5	±14.0		v
Common Mode Rejection Ratio	CMRR	${ m R}_{ m s}$ \leqslant 20k Ω	120	126		120	126		dB
Power Supply Rejection Ratio	PSRR	${ m R_s}\leqslant 20{ m k}\Omega$		0.5	2.0		1.0	5.0	μv/v
Power Consumption	Pd			90	105		105	120	mW
Large Signal Voltage Gain	Avo	R _L ≥500Ω V ₀ =±0.5V V _s =±3V	100,000	600,000		100,000	600,000		v/v
Power Consumption	Pd	V _s =±3V		4	6		4	6	mW
The following specification	ns apply fo	or $V_{s} = \pm 15V$, -55°	'C ≤ T _A ≤ -	+ 125° C, ur	nless othe	rwise noted	ł.		
Input Offset Voltage (Without external trim)	V _{os}	${\rm R_s} \leqslant 20 {\rm k} \Omega$		0.08	0.18		0.3	0.7	mV
Average Input Offset Voltage Drift (without external trim)	тсv _{os}	$R_s=50\Omega$ (Note 2)		0.3	0.8		0.7	2.0	µv/°c
Average Input Offset Voltage Drift (with external trim)	TCV _{osn}	${\sf R}_{\sf S}$ =50 Ω (Note 2)		0.2	0.6		Q.28	1.0	µv/°c
Input Offset Current	l _{os}	T _A MAX T _A MIN		0.25 0.8	1.0 4.0		0.6 2.0	4.0 18.0	nA nA
Average Input Offset Current Drift	тсі _{os}			3	20		8	90	pA/ [°] C
Input Bias Current	, ¹ B	T _A MAX T _A MIN		22 40	60 120		25 45	70 180	nA nA
Common Mode Rejection Ratio	CMRR	${ m R_s} \leq 20 { m k} \Omega$	114	124		110	122		dB
Power Supply Rejection Ratio	PSRR	${\rm R_s} \leqslant 20 {\rm k} \Omega$		1.0	5.0	<u>-</u>	2.0	. 8.0	μ ν /ν
Large Signal Voltage Gain	A _{vo}	V _o =±10V; R _L ≥2kΩ T _A MAX T _A MIN	1,000,000 700,000	3,500,000 2,000,000		1,000,000 500,000	3,500,000 1,800,000		v/v
Maximum Output Voltage Swing	Vom	$R_{L} \ge 2k\Omega$,	±12.0	±12.6		±12.0	±12.6		v

specifications.

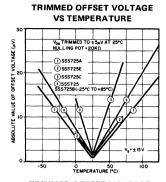
Note 2: Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent the realization of the contact temperature.

Note 1: Parameter is not 100% tested. 90% of all units meet these performance indicated if both sides of the contacts are not kept at approximately the same temperature. Therefore, the device ambient temperature should not be altered without simultaneously changing the

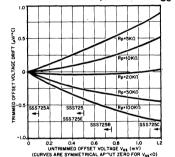
LECTRICAL CHARACTERIS	TICS			SSS725B		
These specifications apply for	V _s = ±15V, T _A = :	25°C, unless otherwise n	oted.			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
nput Offset Voltage	V _{os}	${\rm R_s} \leq 20 {\rm k} \Omega$		0.3	0.75	mV
nput Offset Current	los			0.75	5.0	nA
nput Bias Current	۱ _B			30	80	nA
nput Noise Voltage Density	e _n	f _O ≈ 10Hz (Note 1) f _O ≈ 100Hz (Note 1) f _O = 1000Hz (Note 1)		9.0 8.0 7.0	15,0 9.0 7.5	nV/√H
Input Noise Current Density	in	fo = 10Hz (Note 1) fo = 100Hz (Note 1) fo = 1000Hz (Note 1)		0.5 0.25 0.15	1.2 0.6 0.25	ρΑ/√H.
nput Resistance	R _{in}		0.7	1.8		мΩ
Large Signal /oltage Gain	A _{vo}	R _L ≥ 2kΩ Vo ^{∞±} 10V	1 ,000 ,000	3,000,000		v/v
Dutput Voltage Swing	V _{om}	$\begin{array}{l} R_{L} \geq 10 \mathrm{k} \Omega \\ R_{L} \geq 2 \mathrm{k} \Omega \\ R_{L} \geq 1 \mathrm{k} \Omega \end{array}$	±12.5 ±12.0 ±11.0	±13.0 ±12.8 ±12.5		v v v
nput Voltage Range	CMVR		±13.5	±1 4 .0		v
Common Mode Rejection Ratio	CMRR	$R_{s} \leq 20 k \Omega$	110	115		dB
ower Supply Rejection Ratio	PSRR	${\rm R_s}$ \leq 20k Ω		1.0	5.0	μν/ν
ower Consumption	Pd			90	120	mW
Large Signal Zoltage Gain	A _{vo}	R _L ≥ 500Ω V _o =±0.5V V _s =±3V	100,000	600,000		v/v
Power Consumption	Pd	V _s =±3V		4	6	mW
The following specifications ap	pply for $V_s = \pm 15$	/, −25°C \leq T _A \leq +85	°C, unless ot	herwise noted	Ι.	
nput Offset Voltage Without external trim)	V _{os}	${\rm R_s} \leqslant 20 {\rm k} \Omega$		0.4	1.0	mV
Average Input Offset Voltage Drift (without external trim)	tcv _{os}	${\sf R}_{\sf S}$ =50 Ω (Note 2)		1.0	2.8 (Note 1)	μv/°c
Average Input Offset Voltage Drift (with external trim)	TCV _{osn}	${\sf R}_{s}$ =50 Ω (Note 2)		0.3	1.0 (Note 1)	μv/°c
nput Offset Current	l _{os}	T _A MAX T _A MIN		0.7 1.3	5.0 14.0	nA nA
Average Input Offset Current Drift	тсі _{оs}			6	90 (Note 1)	pA/°
nput Bias Current	IВ	τ _Α ΜΑΧ Τ _Α ΜΙΝ		30 40	80 150	nA nA
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 20 k\Omega$	106	113		dB
ower Supply Rejection Ratio	PSRR	${\sf R}_{\sf S} \leqslant 20 {\sf k} \Omega$		2.0	8.0	μv/v
arge Signal Voltage Gain	A _{vo}	V _o =±10V; R _L ≥₂kΩ Τ _Α ΜΑΧ Τ _Α ΜΙΝ	1 ,000 ,000 500 ,000	3,500,000 2,300,000		V/V
Aaximum Output Voltage Swing	Vom	$R_L \ge 2k\Omega$	±12.0	±12.6		v

contacts to the input terminals can prevent the realization of the contact temperature.

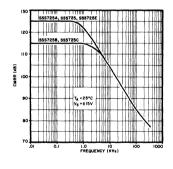
abt Note 2: Thermoelectric voltages generated by dissimilar metals at the temperature should not be altered without simultaneously changing the

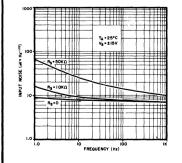

LECTRICAL CHARACTER		SSS725E								
These specifications apply	or $V_s = \pm 1$	15V, T _A = 25°C, un	less otherwise noted							
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage	Vos	${\rm R_s} \leqslant 20 {\rm k} \Omega$		0.2	0.5		0.4	1.3	mV	
Input Offset Current	los			0.75	5.0		2	13	nA	
Input Bias Current	I _B .			30	80		40	110	nA	
Input Noise Voltage Density	e _n	f _o = 10Hz (Note 1) f _o = 100Hz (Note 1) f _o = 1000Hz (Note 1)		9.0 8.0 7.0	15.0 9.0 7.5		9.0 8.0 7.0	15.0 9.0 7.5	nV/√ł	
Input Noise Current Density	in	fo = 10Hz (Note 1) fo = 100Hz (Note 1) fo = 1000Hz (Note 1)		0.5 0.25 0.15	1.2 0.6 0.25		0.6 0.3 0.2	1.4 0.7 0.3	pA/√F	
Input Resistance	R _{in}	1	0.7	1.8		0.5	1.5		мΩ	
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ Vo ^{≂±} 10V	1,000,000	3,000,000		500,000	3,000,000		v/v	
Output Voltage Swing	v _{om}	$\begin{array}{l} R_{L} \geqslant 10k\Omega\\ R_{L} \geqslant 2k\Omega\\ R_{L} \geqslant 1k\Omega \end{array}$	±12.5 ±12.0 ±11.0	±13.0 ±12.8 ±12.5		±12.0 ±11.5 	±13.0 ±12.8 ±12.0		v v v	
Input Voltage Range	CMVR		±13.5	±14.0		±13.5	±14.0		v	
Common Mode Rejection Ratio	CMRR	${\rm R_{S}} \leqslant 20 {\rm k} \Omega$	120	126		100	115		dB	
Power Supply Rejection Ratio	PSRR	${\rm R_s} \leqslant 20 {\rm k} \Omega$.1.0	5.0		2.0	10	μv/v	
Power Consumption	Pd			. 90	120		110	150	mW	
Large Signal Voltage Gain	A _{vo}	$R_{L} \ge 500\Omega$ $V_{0}^{-\pm}0.5V$ $V_{s}^{-\pm}3V$	100,000	600,000		60,000	600,000		v/v	
Power Consumption	Pd	Vs ±3V		4	6		4	. 8	mW	
The following specification	is apply fo	or $V_s = \pm 15V, 0^\circ C =$	≤ τ _A ≤ +	70°C, unles	ss otherw	ise noted.				
Input Offset Voltage (Without external trim)	v _{os}	$R_{s} \leq 20 k\Omega$		0.25	0.6		0.5	1.6	mV	
Average Input Offset Voltage Drift (without external trim)	TCV _{os}	R_s 50 Ω (Note 2)		0.7	2.0 (Note 1)		1.4	4.5 (Note 1)	μv/°c	
Average Input Offset Voltage Drift (with external trim)	TCV _{osn}	R _s 50\$2 (Note 2)		0.2	0.6		0.5	1.5 (Note 1)	μv/°c	
Input Offset Current	los	T _A MAX T _A MIN		0.65 0.9	5.0 7.0		2.0 3.0	15 25	nA nA	
Average Input Offset Current Drift	тсі _{оs}			4	40 (Note 1)		14	150 (Note 1)	pA/°(
Input Bias Current	1B	T _A MAX T _A MIN		30 35	80 100		35 45	110 180	nA nA	
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 20 k \Omega$	115	118		97	113	·	dB	
Power Supply Rejection Ratio	PSRR	R _S ≤ 20k\$2		1.5	7.0	_`_	3.0	15 -	μν/ν	
Large Signal Voltage Gain	Avo	V _o ±10V; R _L ≥2kΩ T _A MAX T _A MIN	1,000,000	3,200,000 2,700,000		400,000 300,000	3.200,000 2,700,000		v/ v	
Maximum Output Voltage Swing	Vom	R _L ≥2kΩ	±12.0	±12.6	[±11.0	±12.6		v	

Note 1: Parameter is not 100% tested. 90% of all units meet these performance indicated if both sides of the contacts are not kept at specifications.


Note 2: Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent the realization of the

approximately the same temperature. Therefore, the device ambient temperature should not be altered without simultaneously changing the contact temperature.

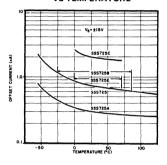

TYPICAL PERFORMANCE CURVES


TRIMMED OFFSET VOLTAGE DRIFT AS A FUNCTION OF TRIMMING POTENTIOMETER (Rp) SIZE AND VOS

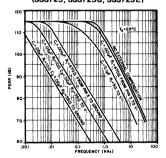
CMRR VS FREQUENCY

TYPICAL INPUT NOISE VOLTAGE

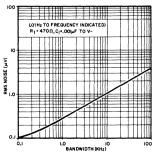
OFFSET VOLTAGE **VS TEMPERATURE** 1.0 SSS7250 88 \$725 Ĩ CCCT 555724 VOL TAGE SSS7254 OFFSET R-1500 V. ±15V

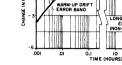

Ó 50 TEMPERATURE (*C)

100


0

-50


OFFSET CURRENT **VS TEMPERATURE**



PSRR VS FREQUENCY (SSS725, SSS725B, SSS725E)

INPUT WIDEBAND NOISE **VS BANDWIDTH**

ş

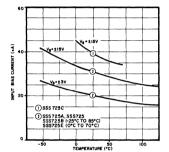
VOLTAGE

IN NULLED OFFSET

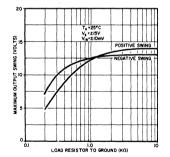
INPUT BIAS CURRENT **VS TEMPERATURE**

ióo 1000

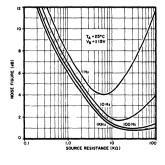
OFFSET VOLTAGE DRIFT


WITH TIME

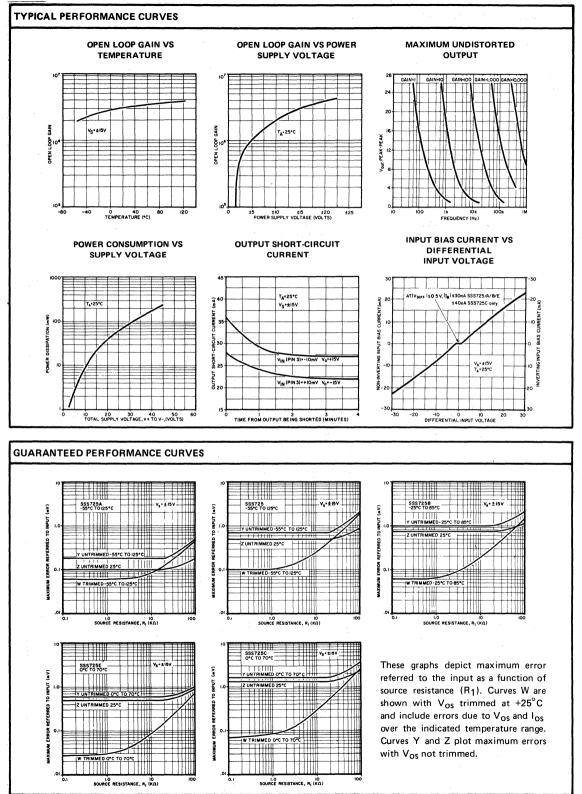
PLIES TURNED ON


1111

POWER SUPPLIES TUR


111100 Ŧ

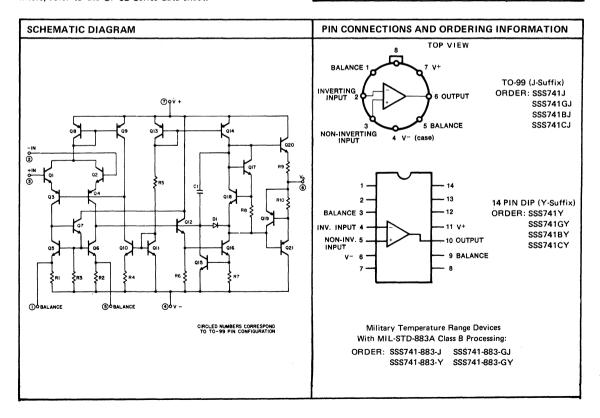
OUTPUT POWER



NOISE FIGURE VS SOURCE RESISTANCE

State of

6-107


COMPENSATED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The SSS741 Series of Internally Compensated Operational Amplifiers provides significant performance improvement while retaining full pin-for-pin interchangeability with industrystandard general-purpose types. Improved offset voltage, bias current, bandwidth and noise performance enable immediate system performance upgrading without redesign and eliminate costly special selections. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. The SSS741 Series is ideal for use in summing amplifiers, integrators, active filters and in other circuits where improved dynamic performance and accuracy are required. SSS741's with processing per the requirements of MIL 38510/883 are available. For dual versions, see the SSS747 Series data sheet. For very high performance general purpose operational amplifiers, refer to the OP-02 Series data sheet.

FEATURES

- Improved DC Specifications
- Low Input Bias Current. 50 nA Max
- High Large Signal Voltage Gain ... Up to 100 kV/V
- Internal Frequency Compensation
- Example Common Mode Voltage Range ±12V
- Continuous Short Circuit Protection
- MIL-STD-883A Processing Available
- Silicon-Nitride Passivation

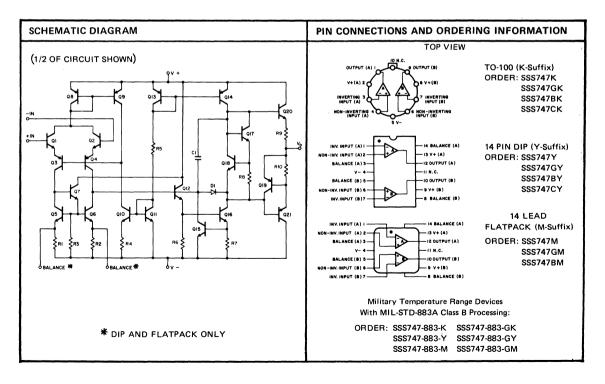
ABSOLUTE MAXIMUM RATINGS

SSS741, SSS741B, SSS741G	±22V	NOTES:		
SSS741C	±18V	Note 1: Maximum	package power di	ssipation vs. ambient
Internal Power Dissipation (Note 1)	500 mW	temperature		
Differential Input Voltage	±30V			
Input Voltage	Supply Voltage	M	AXIMUM AMBIENT	DERATE ABOVE
Output Short Circuit Duration	Indefinite		TEMPERATURE	MAXIMUM AMBIENT
Storage Temperature Range	65°C to +150°C	PACKAGE TYPE	FOR RATING	TEMPERATURE
Operating Temperature Range SSS741, SSS741G SSS741B SSS741C	-55°C to +125°C -25°C to +85°C 0°C to +70°C	TO-99 (J) DUAL-IN-LINE (Y)	80°C 100°C	7.1mW/°C 10.0mW/°C

ELECTRICAL CHARACTER	STICS		SSS	741	SSS74	1G	
These specifications apply for	T _A = 25°C		$\pm 5V \leq V_S$ unless other		$\pm 5V \le V_S$ unless other		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	v _{os}	$R_{S} \leq 50 k\Omega$	-	3.0	-	3.0	mV
Input Offset Current	IOS		-	25	_	25	nA
Input Bias Current	IB		<u> </u>	100		100	nA
Input Resistance	R _{IN}		1.0	-	1.0	-	MΩ
Large Signal Voltage Gain	Avo	$ \begin{array}{l} R_L \geq 2k\Omega \; V_S \texttt{=} \pm 15V \\ V_O \texttt{=} \pm 10V \end{array} $	25,000	_	25,000	-	v/v
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10	_ _	±12 ±10		V V
Input Voltage Range	CMVR	V _S = ±15V	±12	-	±12		v
Common Mode Rejection Ratio	CMRR	$R_{f S} \le 50 k \Omega$.70	_	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k\Omega$	- 1	150		150	μV/V
Power Consumption	PD	V _S = ±15V	_	85	-	85	mW
The following specifications a $-55^{\circ}C \le T_{A} \le +125^{\circ}C$	pply for	••••••••••••••••••••••••••••••••••••••		$_{ m S} \leq$ ±20V rwise noted	\pm 5V \leq V _S unless other		
Input Offset Voltage	vos	$R_{S} \leq 50 k\Omega$	-	3.0	-	6.0	mV
Input Offset Current	los		-	10	-	50	nA
Input Bias Current	IВ		-	100	-	200	nA
Large Signal Voltage Gain	Avo	$\label{eq:RL} \begin{array}{l} R_L \geq 2k\Omega \\ V_S = \pm 15V \\ V_O = \pm 10V \end{array}$	50,000		25,000	_	v/v
Output Voltage Swing	∨ом	$\label{eq:relation} \begin{split} R_L &\geq 10 k \Omega \\ R_L &\geq 2 k \Omega \\ V_S &= \pm 15 V \end{split}$	±12 ±10	-	±12 ±10	-	× ×
Common Mode Rejection Ratio	CMRR	$R_S \leq 50 k\Omega$	80	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_S \leq 50 k\Omega$	-	100	-	150	μV/V

BALANCING CIRCUIT Y-Package J-Package ۷+ v + . 07 011 2 6 - 10 3. 5 + 10KQ 10 K Ω 5 3 9 1 6 v ---

ELECTRICAL CHARACTER	ISTICS		SSS	741B	SSS	741C	
These specifications apply for	T _A = 25°C		$\pm 5V \le V_S \le \pm 20V$ unless otherwise specified		V _S = ±15V		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	v _{os}	$R_{S} \leq 50 k\Omega$	-	3.0	-	6.0	mV
Input Offset Current	los		-	5.0	_	25	nA
Input Bias Current	۱ _B		-	50	-	100	nA
Input Resistance	R _{IN}		2.0	-	1.0	-	MΩ
Large Signal Voltage Gain	Avo	$ \begin{array}{l} R_L \geq 2k\Omega \ V_S = \pm 15V \\ V_O = \pm 10V \end{array} $	50,000	-	25,000	-	V/V
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10	`	±12 ±10		v v
Input Voltage Range	CMVR	V _S = ±15V	±12	-	±12	-	v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k\Omega$	80	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k \Omega$	-	100		150	μν/ν
Power Consumption	PD	V _S = ±15V	-	85	-	85	mW
The following specifications a $-25^{\circ}C \le T_{A} \le +85^{\circ}C - SSS7$ $0^{\circ}C \le T_{A} \le +70^{\circ}C - SSS74$	'41B	.	unless	$V_{S} \leq \pm 20V$ otherwise cified	V _S =	±15∨	·
Input Offset Voltage	v _{os}	$R_{S} \leq 50 k\Omega$	-	4.0	_	7.5	mV
Input Offset Current	los		-	10	_	50	nA
Input Bias Current	ЧВ		-	100	_	200	nA
Large Signal Voltage Gain	Avo	$\begin{array}{l} R_L \geq 2k\Omega \\ V_S = \pm 15V \\ V_O = \pm 10V \end{array}$	25,000	-	15,000	_	v/v
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10		±12 ±10		v v
Common Mode Rejection Ratio	CMRR	$R_{\mathbf{S}} \leq 50 k\Omega$	80	-	_	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k \Omega$	-	100		_	μν/ν


DUAL COMPENSATED OPERATIONAL AMPLIFIER

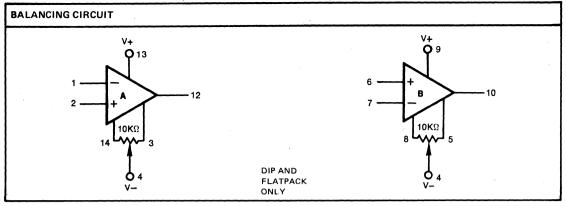
GENERAL DESCRIPTION

The SSS747 Series of Internally Compensated Dual Operational Amplifiers provides significant performance improvements while retaining full pin-for-pin interchangeability with industrystandard general-purpose types. Improved offset voltages, bias current, bandwidth and noise performance enable immediate system performance upgrading without redesign and eliminate costly special selections. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. The SSS747 is ideal for use in summing amplifiers, integrators, active filters and in other circuits where improved performance and accuracy are required. For very high performance dual operational amplifiers with the same pinout as SSS747, see the OP-04 data sheet.

FEATURES

- Improved D.C. Specifications
- Low Input Bias Current
- High Large Signal Voltage Gain
- Internal Frequency Compensation
- Large Common Mode Voltage Range
- Low Power Consumption
- Continuous Short Circuit Protection
- MIL-STD-883A Processing Available
- Silicon-Nitride Passivation

ABSOLUTE MAXIMUM RATINGS


Supply Voltage	±22V	NOTES:
Internal Power Dissipation (Note 1)	500 mW	Note 1: Max
Differential Input Voltage	±30V	ient tempera
Input Voltage	Supply Voltage	
Output Short Circuit Duration	Indefinite	PACKAGE T
Storage Temperature Range	65°C to 150°C	DUAL-IN-LIN
Operating Temperature Range SSS747, SSS747G SSS747B SSS747C	55°C to +125°C 25°C to +85°C 0°C to +70°C	TO-100 (K) 14-LEAD FLA
Lead Temperature Range (Soldering, 6	60 sec) 300°C	

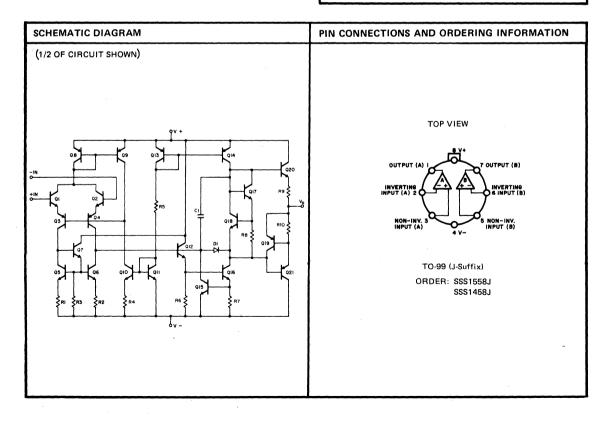
Note 1: Maximum package power dissipation vs. ambient temperature.

N	AXIMUM AMBIENT	DERATE ABOVE
	TEMPERATURE	MAXIMUM AMBIENT
PACKAGE TYPE	FOR RATING	TEMPERATURE
DUAL-IN-LINE (Y)	100°C	10.0mW/°C
TO-100 (K)	80° C	7.1mW/°C
14-LEAD FLATPAC	К(М) 62°С	5.7mW/°C

ELECTRICAL CHARACTER	STICS (Eac	h Amplifier)	SSS	747	SSS7	47G	
These specifications apply for $T_A = 25^{\circ}C$.		$\pm 5V \le V_S \le \pm 20V$ unless otherwise noted		$\pm 5V \le V_S \le \pm 15V$ unless otherwise noted			
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Unit
Input Offset Voltage	V _{OS}	$R_{S} \leq 50 k\Omega$	-	2.0	-	5.0	mV
Input Offset Current	los		-	5.0		25	nA
Input Bias Current	۱ _B		-	50	-	100	nA
Input Resistance	R _{IN}		2.0	-	1.0	-	MΩ
Large Signal Voltage Gain	Avo	$ \begin{array}{l} R_L \geq 2k\Omega \ V_S \texttt{=} \pm 15V \\ V_O \texttt{=} \pm 10V \end{array} $	100,000		50,000	-	V/V
Output Voltage Swing	V _{ОМ}	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10		±12 ±10		v v
Input Voltage Range	CMVR	V _S = ±15V	±12		±12	-	v
Common Mode Rejection Ratio	CMRR	$R_{\mathbf{S}} \leq 50 k\Omega$	80	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{\mathbf{S}} \leq 50 k\Omega$	-	100	·	150	μV/V
Power Consumption	PD	V _S = ±15V	-	85	-	85	mW
Channel Separation	CS		100	-	80	-	dB
The following specifications ap	oply for -55	$^{\circ}C \leq T_{A} \leq +125^{\circ}C.$	$\pm 5 V \leq V_S$ unless other		$\pm 5 V \leq V_S$ unless other		
Input Offset Voltage	v _{os}	$R_S \le 50 k\Omega$	-	3.0	-	6.0	mV
Input Offset Current	los		-	10	-	50	nA
Input Bias Current	۱ ^в		-	100		200	nA
Large Signal Voltage Gain	Avo	$\begin{array}{l} R_{L} \geq 2k\Omega\\ V_{S} = \pm 15V\\ V_{O} = \pm 10V \end{array}$	50,000	-	25,000	_	V/V
Output Voltage Swing	V _{ОМ}	$\begin{array}{l} R_{L} \geq 10 k \Omega \\ R_{L} \geq 2 k \Omega \\ V_{S} = \pm 15 V \end{array}$	±12 ±10	_	±12 ±10	_	v v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k\Omega$	80	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_S \leq 50 k\Omega$	_	100	-	150	μV/V

SSS747

ELECTRICAL CHARACTERISTICS (Each Amplifier)		SSS7	47B		747C		
These specifications apply for	T _A = 25°C.		±5V ≤ V _S ≤ ±20V unless otherwise specified		±5V ≤ V _S ≤ ±15V unless otherwise specified		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	v _{os}	$R_S \le 50 k\Omega$	-	3.0	-	5.0	mV
Input Offset Current	IOS		-	5.0	-	25	nA
Input Bias Current	۱ _B		-	50	-	100	nA
Input Resistance	R _{IN}		2.0	-	1.0	-	MΩ
Large Signal Voltage Gain	Avo	$ \begin{array}{l} R_L \geq 2k\Omega \; V_S \texttt{=} \pm 15V \\ V_O \texttt{=} \pm 10V \end{array} $	50,000	-	50,000	-	V/V
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10		±12 ±10	-	v v
Input Voltage Range	CMVR	V _S = ±15V	±12	-	±12	-	v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k\Omega$	80	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k\Omega$	-	100	-	150	μV/V
Power Consumption	PD	V _S = ±15V	-	85	-	85	mW
Channel Separation	cs		100	-	80	-	dB
The following specifications ap $-25^{\circ}C \leq T_{A} \leq +85^{\circ}C - SSS7$ $0^{\circ}C \leq T_{A} \leq +70^{\circ}C - SSS7476$	47B and		$\begin{array}{c c} \pm 5 V \leq V_{S} \leq \pm 20 V \\ \text{unless otherwise} \\ \text{specified} \end{array} \qquad \begin{array}{c} \pm 5 V \leq V_{S} \leq \pm 15 V \\ \text{unless otherwise} \\ \text{specified} \end{array}$		therwise		
Input Offset Voltage	Vos	$R_{S} \leq 50 k\Omega$	_	4.0	-	6.0	mV
Input Offset Current	los		-	10	-	50	nA
Input Bias Current	ЧВ		-	100	-	200	nA
Large Signal Voltage Gain	Avo	$R_{L} \ge 2k\Omega$ $V_{S} = \pm 15V$ $V_{O} = \pm 10V$	25,000		25,000	. –	v/v
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10	-	±12 ±10	_	v v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k \Omega$	80	- '	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k\Omega$		100	-	150	μV/V


DUAL COMPENSATED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The SSS1458/1558 Series of Internally Compensated Dual Operational Amplifiers provides significant performance improvements while retaining full pin-for-pin interchangeability with industry-standard types. Improved offset voltages, bias current, bandwidth and noise performance enable immediate system performance upgrading without redesign and eliminate costly special selections. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "pop-corn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. The SSS1458/1558 is ideal for use in summing amplifiers, integrators, active filters and in other circuits where improved performance dual operational amplifiers with the same pinout as SSS1458/1558, see the OP-14 data sheet.

FEATURES

	Improved D.C. Specifications
	Low Input Bias Current
	High Large Signal Voltage Gain
	Internal Frequency Compensation
	Large Common Mode Voltage Range $\dots \dots > \pm 12V$
•	Low Power Consumption
	Continuous Short Circuit Protection
	MIL-STD-883A Processing Available
_	Siliaan Nitrida Passivation

SSS1458/1558

ABSOLUTE MAXIMUM RATINGS

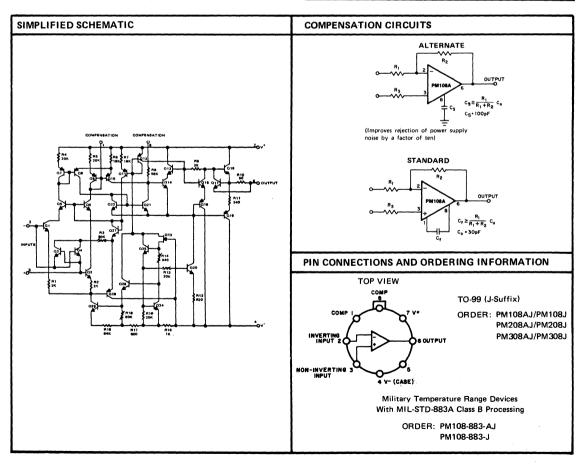
Supply Voltage	±22V
Supply Voltage	
Internal Power Dissipation (Note)	500 mW
Differential Input Voltage	±30V
Input Voltage	Supply Voltage
Output Short Circuit Duration	Indefinite
Storage Temperature Range	-65°C to +150°C

Lead Temperature Range (Soldering, 60 se	c) 300°C
Operating Temperature Range	
SSS1558	-55°C to +125°C
SSS1458	0°C to +70°C

NOTE: Derate at 7.1 mW/°C above 80°C.

LECTRICAL CHARACTERIST	ICS (Each A	Amplifier)	SSS	1558	SSS1	458	
hese specifications apply for T_A	= 25°C and	$1\pm5V \le V_s \le \pm15V$ unle	ss otherwise	noted.			
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	v _{os}	$R_{S} \leq 50 k\Omega$		5.0	-	5.0	mV
Input Offset Current	los		-	25	-	25	nA
Input Bias Current	۱ _B		-	100	-	100	nA
Input Resistance	R _{IN}		1.0	-	1.0	-	MΩ
Large Signal Voltage Gain	Avo	$ \begin{array}{l} R_L \geq 2 k \Omega \; V_S = \pm 15 V \\ V_O = \pm 10 V \end{array} $	50,000	-	50,000	-	V/V
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$	±12 ±10	- -	±12 ±10	- -	v v
Input Voltage Range	CMVR	V _S = ±15V	±12	-	±12	-	v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k \Omega$	70	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_{S} \leq 50 k \Omega$	-	150	-	150	μV/V
Power Consumption	PD	V _S = ±15V	-	85	-	85	mW
Channel Separation	CS		80	-	80	-	dB
The following specifications appl $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ for SSS1458	y for ±5V ≤ unless other	$V_{s} \leq \pm 15V$, $-55^{\circ}C \leq T$, wise noted.	_A	for SSS155	8, and		
Input Offset Voltage	vos	$R_{S} \leq 50 k\Omega$		6.0	-	6.0	mV
Input Offset Current	los		-	50	-	50	nA
Input Bias Current	ι _B			200		200	nA
Large Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_S = \pm 15V$ $V_O = \pm 10V$	25,000	-	25,000	_	V/V
Output Voltage Swing	∨ом	$V_S = \pm 15V R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	±12 ±10	_	±12 ±10	-	v v
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 50 k \Omega$	70	-	70	-	dB
Power Supply Rejection Ratio	PSRR	$R_S \le 50 k\Omega$	-	150	-	150	μV/V

300°C



LOW INPUT CURRENT OPERATIONAL AMPLIFIER PM108A / PM208A / PM308A / PM108 / PM208 / PM308

GENERAL DESCRIPTION

The PM108A Series of precision monolithic operational amplifiers 'features extremely low input offset and bias currents. Although directly interchangeable with industrystandard types, Precision Monolithics' advanced processing technique provides a significant improvement in input noise voltage. Low supply current drain over a wide power supply range makes the PM108A attractive in battery operated and other low power applications. Low offset current and low bias current provide excellent performance in high impedance circuits such as long period integrators, sample-and-holds, and with piezoelectric and capacitive transducers.

FEATURES

ABSOLUTE MAXIMUM RATINGS

NOTE 1: Maximum package power dissipation vs. ambient temperature:

	Maximum	Derate Above
	Ambient	Maximum
	Temperature	Ambient
Package Type	for Rating	Temperature
TO-99 (J)	80°C	7.1 mW/°C

NOTE 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is provided.

NOTE 3: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTER	ISTICS		PI	M308A			PM308	3	
These specifications apply for ± 5 V	v≤v _S ≤±15∖	and $T_A = 25^{\circ}C$ unless otherw	ise note	d.					
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	V _{os}		-	0.3	0.5	-	2.0	7.5	mV
Input Offset Current	l _{os}		-	0.2	1.0	-	0.2	1.0	nA
Input Bias Current	Ч _В		-	1.5	7.0	-	1.5	7.0	nA
Input Resistance	R _{in}		10	40	-	10	40	-	MΩ
Large Signal Voltage Gain	A _{vo}	$V_s = \pm 15V, V_{out} = \pm 10V$ $R_L \ge 10k\Omega$	80	300	-	25	300	-	V/mV
Supply Current	I _s	I _{out} = 0, V _{out} = 0	-	0.3	0.8	-	0.3	0.8	mA
Input Offset Voltage Average Input Offset			-	0.4	0.73	-	3.0	10.0 30	mV μ∨/ [°] C
	V _{os}		-	0.4	0.73	_	3.0	10.0	mV
Voltage Drift	TCV _{os}		-	1.0	5.0	-	6.0	30	μv/°c
Input Offset Current	los		-	0.3	1.5	-	0.3	1.5	nA
Average Input Offset Current Drift	TCI _{os}		·	2.0	10	-	2.0	10	
Input Bias Current	I _В				40	_	0.0		pA/°C
			-	2.0	10	-	2.0	10	pA/ ^o C nA
Large Signal Voltage Gain	A _{vo}	$V_s = \pm 15V, V_{out} = \pm 10V, R_1 \ge 10k\Omega$	- 60	2.0 200	-	15	100	10 -	
Large Signal Voltage Gain Output Voltage Swing	A _{vo} V _{oM}	V _s =±15V, V _{out} =±10V, R _L ≥10kΩ V _s =±15V, R _L =10kΩ							nA
			60	200	-	15	100	-	nA V/mV
Output Voltage Swing	V _{oM}	$V_s = \pm 15V, R_L = 10k\Omega$	60 ±13	200 ±14		15 ±13	100 ±14	-	nA V/mV V
Output Voltage Swing	V _{oM} CMVR	$V_s = \pm 15V, R_L = 10k\Omega$	60 ±13 ±14	200 ±14		15 ±13 ±14	100 ±14	-	nA V/mV V

ABSOLUTE MAXIMUM RATINGS

Supply Voltage		Operating Temperature Range	
PM108A, 108, 208A, 208	±20V	PM108A, PM108	–55°C to +125°C
PM308A, 308	±18V	PM208A, PM208	–25°C to +85°C
Internal Power Dissipation (Note 1)	500mW	PM308A, PM308	0°C to +70°C
Differential Input Current (Note 2)	±10mA	Storage Temperature Range	–65°C to +150°C
Input Voltage (Note 3)	±15V	Lead Temperature Range	
Output Short Circuit Duration	Indefinite	(Soldering, 60 sec)	300°C

	ECTRICAL CHARACTERISTICS						M108 M208		
These specifications apply for ± 5	$\delta v \leq v_{s} \leq \pm 20$	V and $T_A = 25^{\circ}C$ unless ot	herwise i	noted.					
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	v _{os}		-	0.3	0.5	-	0.7	2.0	mV
Input Offset Current	los		-	0.05	0.2	-	0.05	0.2	nA
Input Bias Current	1 _B		-	0.8	2.0	-	0.8	2.0	nA
Input Resistance	R _{in}		30	70	-	30	70	-	мΩ
Large Signal Voltage Gain	A _{vo}	$V_s = \pm 15V, V_{out} = \pm 10V, R_L \ge 10k\Omega$	80	300	-	50	300	-	V/mV
Supply Current	l _s	l _{out} ≈ 0, V _{out} = 0	-	0.3	0.6	-	0.3	0.6	mA

The following specifications apply for $\pm 5V \le V_S \le \pm 20V$, $-55^{\circ}C \le T_A \le \pm 125^{\circ}C$ for PM108 and PM108A, $-25^{\circ}C \le T_A \le \pm 85^{\circ}C$ for PM208 and PM208A, unless otherwise noted.

Input Offset Voltage	v _{os}		-	0.4	1.0	-	1.0	3.0	mV
Average Input Öffset Voltage Drift	tcv _{os}		I	1.0	5.0	-	3.0	15	μv/°c
Input Offset Current	los		-	0.1	0.4	-	0.1	0.4	nA
Average Input Offset Current Drift	TCI _{os}		-	0.5	2.5	-	0.5	2.5	pA/ [°] C
Input Bias Current	в		-	1.0	3.0	-	1.0	3.0	nA
Large Signal Voltage Gain	A _{vo}	V _s =±15V, V _{out} =±10V R _L ≥10kΩ	40	200	-	25	200	-	V/mV
Output Voltage Swing	V _{oM}	$V_s = \pm 15V, R_L = 10k\Omega$	±13	±14	-	±13	±14	-	V
Input Voltage Range	CMVR	V _s =±15V	±13.5	-	-	±13.5	-	-	v
Common Mode Rejection Ratio	CMRR		96	110	-	85	100	-	dB
Supply Voltage Rejection Ratio	PSRR		96	· 110	-	80	96	-	dB
Supply Current	l _s	V _{out} = 0, T _A = MAX	-	0.15	0.4	-	0.15	0.4	mA

PM108

PM155A/PM155/PM255/PM355

GENERAL DESCRIPTION

The PM155 Series provides low input current, high slew rate, and direct interchangeability with LF155 types. These operational amplifiers use a new process which allows fabrication of matched JFET transistors and standard bipolar transistors on the same chip. A JFET-input design enables operation with $\pm 40V$ input voltages eliminating the blowout problems associated with MOSFET devices.

High accuracy, low supply current, and low cost make the PM155 Series useful in new designs and as replacements for modular and hybrid types. Unlike many designs, nulling the input offset voltage does not degrade common mode rejection ratio or input offset voltage drift. Dynamic specifications include a slew rate of $5V/\mu$ sec, a 2.5MHz gain bandwidth product, and settling time to within ±0.01% of final value of 4.0 μ sec. In addition, low input voltage noise and current noise plus a low 1/f noise corner frequency allow this amplifier to be used in a variety of low noise, low power applications.

FEATURES

	LF155 Series Direct Replacements
	Low Input Bias and Offset Currents
	Low Supply Current 2mA
	Fast Settling to $\pm 0.01\%$ 4.0µsec
	Internal Compensation
	Low Input Offset Voltage
	Low Input Offset Voltage Drift $3.0\mu V/^{\circ}C$
	Low Input Noise Current 0.01pA \sqrt{Hz}
	High Common Mode Rejection Ratio 100dB
	High Open Loop Gain 106dB
	Models With MIL-STD-883A Class B
	Processing Available From Stock
1	

Applications include instrumentation amplifiers, integrators, log amps, photocell amplifiers, and notch filters. For other JFET operational amplifiers, see the PMI56A and PMI57A data sheets

ABSOLUTE MAXIMUM RATINGS

Supply Voltage		Maximum Junction Temperature (T _i)	
PM155A, PM155, PM255, PM355A	±22V	PM155A, PM155	+150°C
PM355	±18V	PM255	+115°C
Internal Power Dissipation		PM355A, PM355	+100° C
PM155A, PM155	670mW	Differential Input Voltage	
PM255	570mW	PM155A, PM155, PM255, PM355A	±40V
		PM355	±30V
PM355A, PM3 55	500mW	Input Voltage	
(The TO-99(J) package must be derated		PM155A, PM155, PM255, PM355A	±20V
based on a thermal resistance of 150° C/W		PM355	±16V
junction to ambient or 45° C/W junction		(Unless otherwise specified the absolute	
to case.)		maximum negative input voltage is equal	
Operating Temperature Range		to the negative power supply voltage.)	
PM155A, PM155	-55°C to +125°C	Output Short Circuit Duration	Indefinite
PM255	-25° C to +85° C	Storage Temperature Range	–65°C to +150°C
PM355A, PM355	0°C to +70°C	Lead Temperature Range (Soldering, 60 sec)	+300°C

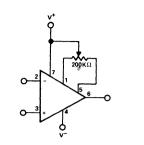
ELECTRICAL CHARACTERISTICS

unless otherwise noted.	5V ≤ V _S ≤	±20V, T _A ≈ +25°C		PM155A		F	PM355A		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω		1.0	2.0	-	1.0	2.0	mV
Input Offset Current	los	T _j = 25°C (Note 1)	-	3.0	10	-	3.0	10	pА
Input Bias Current	۱ _B	T _j = 25°C (Note 1)	-	30	50	-	30	50	рА
Input Resistance	RIN		-	1012		~	1012	-	Ω
Large Signal Voltage Gain	A _{vo}	$V_s = \pm 15V, V_0 = \pm 10V,$ $R_L = 2K\Omega$	50	200	-	50	200	-	V/mV
Supply Current	۱ _s	V _s = ±15V	-	2.0	4.0	-	2.0	4.0	mA
Slew Rate	SR	A _{VCL} = +1, V _s = ±15V	3.0	5.0	-	3.0	5.0	-	V/µse
Gain Bandwidth Product	GBW	V _s = ±15V	-	2.5	-	-	2.5	-	MHz
Settling Time to 0.01%	ts	V _s = ±15V (Note 2)		4.0	1	-	4.0	-	μsec
Input Noise Voltage		$R_s = 100 \Omega, f = 100 Hz, V_s = \pm 15 V$	_	25	-	-	25	-	nV√⊦
input Noise Voltage	e _n	$R_s=100\Omega, f=1000Hz, V_s=\pm15V$	1	20	1	-	20	-	nV√ŀ
Input Noise Current	in	f = 100Hz, V _s = ±15V	-	0.01	-	-	0.01	-	pA√ł
	'n	f = 1000Hz, V _s = ±15V	~	0.01	-		0.01	-	pA√F
Input Capacitance	C _{in}		~	3.0	-		3.0	-	рF
These specifications apply for \pm ² THIGH = +70°C for PM355A, u	5V ≤ V _s ≤ nless otherv	$\pm 20V,$ -55°C \leqslant T_A \leqslant +125°C an vise noted.	d THIGH	= +125°C	for PM15	55A, 0°C	≤T _A ≤ +	⊦70°C and	
1									
Input Offset Voltage	Vos	R _s = 50Ω	·	-	2.5		-	2.3	mV
Input Offset Voltage Input Offset Voltage Drift	V _{os} TCV _{os}	$\frac{R_s = 50\Omega}{R_s = 50\Omega}$	·	 3.0	2.5 5.0	-		2.3 5.0	
							 3.0 0.5		mV μV/°(μV/°(per m
Input Offset Voltage Drift Change in Input Offset Drift	TCV _{os} ∆TCV _{os}	R _s = 50Ω		3.0	5.0			5.0	μV/°0 μV/°0
Input Offset Voltage Drift Change in Input Offset Drift with Vos Adjust	$\frac{\text{TCV}_{\text{os}}}{\frac{\Delta \text{TCV}_{\text{os}}}{\Delta \text{V}_{\text{os}}}}$	$R_{s} = 50\Omega$ $R_{s} = 50\Omega$	-	3.0 0.5	5.0	-	0.5	5.0	μV/°(μV/°(perm
Input Offset Voltage Drift Change in Input Offset Drift with V _{os} Adjust Input Offset Current	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$ $\frac{I_{OS}}{I_{B}}$	$\frac{R_s}{R_s} = 50\Omega$ $\frac{R_s}{T_j} \le 50\Omega$ $\frac{T_j}{T_j} \le T_{HIGH} (Note 1)$	-	3.0 0.5	5.0 - 10	-	0.5	5.0 - 1.0	μV/° μV/° per m nA nA
Input Offset Voltage Drift Change in Input Offset Drift with V _{os} Adjust Input Offset Current Input Bias Current Large Signal Voltage Gain	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$ $\frac{I_{OS}}{I_{B}}$ A_{VO}	$\label{eq:result} \begin{split} & R_s = 50\Omega \\ & R_s = 50\Omega \\ & T_j \leq T_{HIGH} \ (Note \ 1) \\ & T_j \leq T_{HIGH} \ (Note \ 1) \\ & V_s^{\pm\pm}15V, V_o^{\pm\pm}10V, R_L^{\pm}2K\Omega \end{split}$		3.0 0.5 	5.0 - 10 25		0.5	5.0 - 1.0 5.0	μV/°(μV/°(per m nA
Input Offset Voltage Drift Change in Input Offset Drift with V _{os} Adjust Input Offset Current Input Bias Current	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$ $\frac{I_{OS}}{I_{B}}$	$\label{eq:result} \begin{split} & R_s = 50\Omega \\ & R_s = 50\Omega \\ & T_j \leq T_{HIGH} \mbox{ (Note 1)} \\ & T_j \leq T_{HIGH} \mbox{ (Note 1)} \end{split}$	 25	3.0 0.5 - - -	5.0 10 25 	- - - 25	0.5	5.0 - 1.0 5.0 -	μV/° μV/° per m nA nA V/m\
Input Offset Voltage Drift Change in Input Offset Drift with V _{os} Adjust Input Offset Current Input Bias Current Large Signal Voltage Gain	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$ $\frac{I_{OS}}{I_{B}}$ A_{VO}	$\label{eq:result} \begin{split} & R_s = 50\Omega \\ & R_s = 50\Omega \\ & T_j \leq T_{HIGH} \ (Note \ 1) \\ & T_j \leq T_{HIGH} \ (Note \ 1) \\ & V_{s} = \pm 15V, V_0 = \pm 10V, R_L = 2K\Omega \\ & V_s = \pm 15V, R_L = 10K\Omega \end{split}$	 25 ±12	3.0 0.5 - ±13	5.0 - 10 25 - -	 25 ±12	0.5 ±13	5.0 - 1.0 5.0 - -	μV/° μV/° per m nA nA V/mV
Input Offset Voltage Drift Change in Input Offset Drift with V _{os} Adjust Input, Offset Current Input Bias Current Large Signal Voltage Gain Output Voltage Swing		$eq:rescaled_$	 25 ±12 ±10	3.0 0.5 ±13 ±12 +15.1	5.0 - 10 25 - - -	 - 25 ±12 ±10	0.5 ±13 ±12 +15.1	5.0 - 1.0 5.0 - - -	μV/°(μV/°(per m nA nA V/mV V V

IOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_j. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_j = T_A + Θ_{jA} where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and I_{OS} are measured at V_{CM} = 0.

NOTE 2: Settling time is defined here for a unity gain inverter connection using 2KΩ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value form the time a 10V step input is applied to the inverter. See settling time test circuit on page 4.

NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.


ELECTRICAL CHARACT	ERISTICS					si.	te.		
These specifications apply for T and PM255, V _s = ±15V for PM3	A = +25°C, 355, unless o	$\pm 15V \le V_s \le \pm 20V$ for PM155 therwise noted.		PM155 PM255			PM35	5	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	-	3.0	5.0	-	3.0	10	mV
Input Offset Current	los	Tj = 25°C (Note 1)	-	3.0	20		3.0	50	pА
Input Bias Current	1 _B	T _j = 25°C (Note 1)	-	30	100	-	30	200	pА
Input Resistance	RIN		_	1012		-	1012	-	Ω
Large Signal Voltage Gain	A _{vo}	V _s = ±15V, V _o = ±10V, R _L = 2KΩ	50	200	-	25	200	1	V/mV
Supply Current	۱ _s		-	2.0	4.0	-	2.0	4.0	mA
Slew Rate	SR	A _{VCL} = +1, V _s = ±15V	-	5.0	-	-	5.0	-	V/µsec
Gain Bandwidth Product	GBW	V _s = ±15V		2.5	-	-	2.5	-	MHz
Settling Time to 0.01%	ts	V _s = ±15V (Note 2)	-	4.0	-	-	4.0	-	μsec
put Noise Voltage e _n		R _s =100Ω,f=100Hz,V _s =±15V	_	25	-	. <u> </u>	25	-	nV√H
	R _s =100Ω,f=1000Hz,V _s =±15V	-	20			20	1	nV√Ĥ	
	1.	f = 100Hz, V _s = ±15V	-	0.01		-	0.01	-	pA√Ĥ
Input Noise Current	ⁱ n	f = 1000Hz, V _s = ±15V	-	0.01		-	0.01	-	рА√Н
Input Capacitance	C _{in}		-	3.0	-	-	3.0	_	pF
		±20V for PM155 and PM255, V _s = \leq +70°C for PM355, unless otherw				_A ≤ +125	6°C for PN	1155,	
		R _s = 50Ω, PM155	-	-	7.0	-	-	-	mV
Input Offset Voltage	Vos	R _s = 50Ω, PM255	-	-	6.5		-		mV
		R _s = 50Ω, PM355	-	-	-		-	13	mV
Input Offset Voltage Drift	TCVos	R _s = 50Ω	_	5.0	-	-	5.0	-	μV/°C
Change in Input Offset Drift with V _{OS} Adjust	$\frac{\Delta TCV_{os}}{\Delta V_{os}}$	R _s = 50Ω	-	0.5	-	-	0.5	-	µV/°C perm∖
		PM155, T _j ≤ +125°C		-	20	-	-	-	nA
Input-Offset Current (Note 1)	los	PM255, T _j ≤ +85°C	-	-	1.0	-		-	nA
		PM355, T _j ≤ +70°C	-	-	_	-	-	2.0	nA
Input Bias Current		PM155, T _j ≤ +125°C	-	-	50	-	-	-	nA
(Note 1)	IВ	PM255, T _j ≤ +85°C	-	-	5.0	-	-	-	nA
		PM355, T _j ≤ +70°C	-	-	-	-	-	8.0	nA
Large Signal Voltage Gain	A _{vo}	$V_s=\pm 15V, V_o=\pm 10V, R_L=2K\Omega$	25	-		15	-	-	V/mV
	V	V _s = ±15V, R _L = 10KΩ	±12	±13	-	±12	±13	-	v
Output Voltage Swing	Vom	$V_s = \pm 15V, R_L = 2K\Omega$	±10	±12	-	±10	±12	-	v
Input Voltage Range	CMVR	V _s = ±15V	±11	+15.1 -12.0	-	±10	+15.1 -12.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	100	-	80	100	-	dB

- NOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_j. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_j = T_A + Θ_{jA} where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and I_{OS} are measured at V_{CM} = 0.
- NOTE 2: Settling time is defined here for a unity gain inverter connection using 2KΩ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit on page 4.
- NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

BASIC CONNECTIONS

INPUT OFFSET VOLTAGE NULLING

NOTE: For potentiometers with a temperature coefficient <100ppm/°C, the added TCV_{OS} with nulling is $\approx 0.5 \mu V/^{\circ}$ C/mV of adjustment.

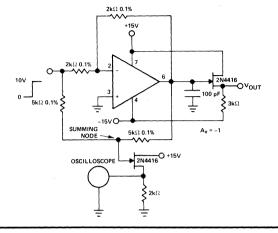
APPLICATION INFORMATION

INPUT VOLTAGE CONSIDERATIONS

The PM155 JFET input stage can accommodate large input differential voltages without external clamping as long as neither input exceeds the negative power supply. An input voltage which is more negative than V- can result in a destroyed unit.

If both inputs exceed the negative common mode voltage limit, the amplifier will be forced to a high positive output. If only one input exceeds the negative common mode voltage limit, a phase reversal takes place forcing the output to the corresponding high or low state. In either of the above conditions, normal operation will return when both inputs are returned to within the specified common mode voltage range.

Exceeding the positive common-mode limit on a single input will not change the phase of the output. However, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.


POWER SUPPLY CONSIDERATIONS

Power supply polarity reversal can result in a destroyed unit.

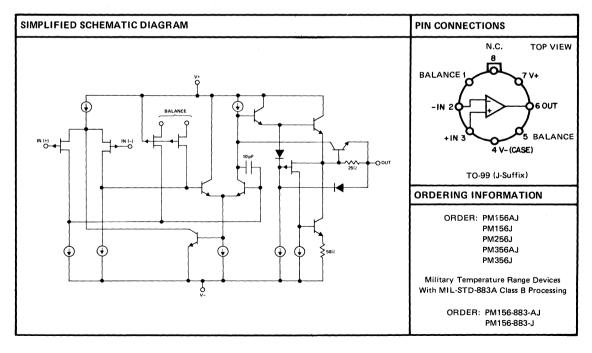
DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

PM156A/PM356A/PM156/PM256/PM356

GENERAL DESCRIPTION


The PM156 Series provides low input current, high slew rate, and direct interchangeability with LF156 types. These operational amplifiers use a new process which allows fabrication of matched JFET transistors and standard bipolar transistors on the same chip. A JFET-input design enables operation with \pm 40V input voltages eliminating the blowout problems associated with MOSFET devices.

High accuracy, excellent dynamic performance, and low cost make the PM156 Series useful in new designs and as replacements for modular and hybrid types. Unlike many designs, nulling the input offset voltage does not degrade common mode rejection ratio or input offset voltage drift. Dynamic specifications include a slew rate of $12V/\mu sec$, a 5MHz gain bandwidth product, and settling time to within $\pm 0.01\%$ of final value of $1.5\mu sec$. In addition, low input voltage noise and current noise plus a low 1/f noise corner frequency allow this amplifier to be used in a variety of low noise, wide bandwidth applications.

FEATURES

-	LF156 Series Direct Replacements
	Low Input Bias and Offset Currents
	High Slew Rate
	Fast Settling to $\pm 0.01\% \ldots \ldots \ldots \ldots \ldots 1.5\mu$ sec
	Internal Compensation
	Low Input Offset Voltage 1.0mV
	Low Input Offset Voltage Drift
	Low Input Noise Current
	High Common Mode Rejection Ratio 100dB
	High Open Loop Gain 106dB
	Models With MIL-STD-883A Class B
-	Processing Available From Stock

Applications include high speed D/A converter summing amplifiers, integrators, log amps, photocell amplifiers, and active filters. For higher speed (decompensated) models, see the PM157 data sheet.

PM156

PM356A

ABSOLUTE MAXIMUM RATINGS

Supply Voltage		Maximum Junction Temperature (T _i)	
PM156A, PM156, PM256, PM356A	±22V	PM156A, PM156	+150°C
PM356	±18V	PM256	+115°C
Internal Power Dissipation		PM356A, PM356	+100°C
PM156A, PM156	670mW	Differential Input Voltage	
PM256	570mW	PM156A, PM156, PM256, PM356A	±40V
PM356A, PM356	500mW	PM356	±30V
		Input Voltage	
(The TO-99(J) package must be derated based on a thermal resistance of 150°C/W		PM156A, PM156, PM256, PM356A	±20V
junction to ambient or 45° C/W junction		PM356	±16V
•		(Unless otherwise specified the absolute	
to case.)		maximum negative input voltage is equal	
Operating Temperature Range		to the negative power supply voltage.)	
PM156A, PM156	–55°C to +125°C	Output Short Circuit Duration	Indefinite
PM256	–25°C to +85°C	Storage Temperature Range	65° C to +150° C
PM356A, PM356	0°C to +70°C	Lead Temperature Range (Soldering, 60 sec)	+300°C

ELECTRICAL CHARACTERISTICS	PM156A
These specifications apply for $\pm 15V \le V \le \pm 20V$ T ₂ = $\pm 25^{\circ}$ C upless otherw	vise noted

Parameter	Symbol	±20V, T _A = +25°C unless otherw Test Conditions	Min		Max	Min	Tun	Max	Units
				Тур		NIIN	Тур		
Input Offset Voltage	Vos	R _s = 50Ω	-	1.0	2.0	-	1.0	2.0	mV
Input Offset Current	los	T _j = 25°C (Note 1)	-	3.0	10	-	3.0	10	pА
Input Bias Current	I _В	T _j = 25°C (Note 1)	1	30	50	-	30	50	pА
Input Resistance	R _{IN}		-	1012	-	-	1012	-	Ω
Large Signal	^	V _s = ±15V, V _o = ±10V,	50	200	_	50	200	-	V/mV
Voltage Gain	A _{vo}	R _L = 2KΩ	50	200		50	200		v/IIIv
Supply Current	۱ _s	V _s = ±15V	-	5.0	7.0	-	5.0	7.0	mA
Slew Rate	SR	$A_{VCL} = +1, V_s = \pm 15V$	10	12	-	10	12	-	V/µsec
Gain Bandwidth Product	GBW	V _s = ±15V	4.0	4.5	-	4.0	4.5	-	MHz
Settling Time to 0.01%	t _s	V _s = ±15V (Note 2)	-	1.5	-	1	1.5	-	μsec
Input Noise Voltage	e _n	$R_s = 100 \Omega, f = 100 Hz, V_s = \pm 15 V$	- +	15	-	1	15	-	nV √Hz
	۳n	$R_s = 100\Omega, f = 1000Hz, V_s = \pm 15V$	-	12	-	-	12	-	nV √Hz
Input Noise Current	;	$f = 100Hz, V_s = \pm 15V$	1	0.01	` —	-	0.01	-	pA √Hz
	ⁱ n	f = 1000Hz, V _s = ±15V	1	0.01	-	-	0.01	-	pA √Hz
Input Capacitance	C _{in}		1	3.0	-	-	3.0	-	pF
These specifications apply for \pm T _{HIGH} = +70°C for PM356A, u	15V ≤ V _s ≤ nless other	$ \leq \pm 20V, -55^{\circ}C \leq T_A \leq \pm 125^{\circ}C$ an wise noted.	d THIGH	₊ = +125°C	for PM1	56A,0°	C ≤ T _A ≤	+70°C an	d
Input Offset Voltage	v _{os}	R _s = 50Ω	-		2.5	-	-	2.3	mV
Input Offset Voltage Drift	TCV _{os}	R _s = 50Ω	-	3.0	5.0	-	3.0	5.0	μV/°C
Change in Input Offset Drift with V _{os} Adjust	$\frac{\Delta TCV_{os}}{\Delta V_{os}}$	R _s = 50Ω	-	0.5	-	-	0.5	-	μV/°C per mV
Input Offset Current	los	T _i ≤ T _{HIGH} (Note 1)	~	-	10	-		1.0	nA
Input Bias Current	I _B	T _j ≤ T _{HIGH} (Note 1)	-	-	25	-	-	5.0	nA
Large Signal Voltage Gain	A _{vo}	V _s =±15V, V _o =±10V, RL=2KΩ	25	-	-	25	-	-	V/mV
		V _s = ±15V, R _L = 10KΩ	±12	±13	-	±12	±13	-	v
Output Voltage Swing	Vom	V _s = ±15V, R _L = 2KΩ	±10	±12		±10	±12	~	V
Input Voltage Range	CMVR	V _s = ±15V	±11	+15.1 -12.0	-	±11	+15.1 -12.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	100	-	85	100		dB
Power Supply Rejection Ratio	PSRR	(Note 3)	85	100	-	85	100		dB

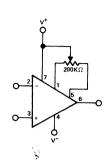
NOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_j = T_A + Θ_{jA} where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and IQS are measured at V_{CM} = 0.

NOTE 2: Settling time is defined here for a unity gain inverter connection using 2KΩ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit on page 4.

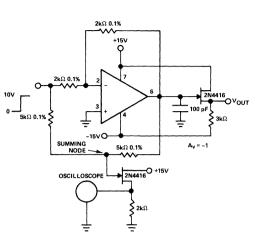
NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

ELECTRICAL CHARACTERISTICS				PM156 PM256							
These specifications apply for T	A = +25°C,	$\pm 15V \leq V_{s} \leq \pm 20V$ for PM156 and	$15V \leqslant V_{s} \leqslant \pm 20V$ for PM156 and PM256, V_{s} = $\pm 15V$ for PM356, unless otherwise noted.								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units		
Input Offset Voltage	v _{os}	R _s = 50Ω		3.0	5.0	_	3.0	10	mV		
Input Offset Current	los	T _j = 25°C (Note 1)	-	3.0	20	-	3.0	50	pА		
Input Bias Current	Ι _Β	T _j = 25°C (Note 1)	-	30	100	·	30	200	рА		
Input Resistance	RIN		-	1012	-	-	1012	-	Ω		
Large Signal Voltage Gain	A _{vo}	$V_s = \pm 15V, V_0 = \pm 10V,$ R _L = 2K Ω	50	200	-	25	200	-	V/mV		
Supply Current	IS		-	5.0	7.0		5.0	10	mA		
Siew Rate	SR	AVCL = +1, Vs = ±15V	7.5	12	-	-	12	-	V/µsec		
Gain Bandwidth Product	GBW	V _s = ±15V	-	5.0	-	-	5.0		MHz		
Settling Time to 0.01%	t _s	V _S = ±15V (Note 2)	-	1.5	-	-	1.5	-	μsec		
		R _s =100Ω,f =100Hz,V _s = ±15V		15	-	-	15		nV√H		
Input Noise Voltage	en -	R _s =100Ω,f=1000Hz,V _s = ±15V	-	12	-		12	-	nV √Ĥ		
		f = 100Hz, V _s = ±15V	-	0.01	-	-	0.01	-	pA √H		
Input Noise Current	in	f = 1000Hz, V _s = ±15V	-	0.01	-	-	0.01		pA √H		
Input Capacitance	C _{in}		-	3.0	-	_	3.0	-	pF		
These specifications apply for \pm -25°C \leq T _A \leq +85°C for PM25	15V ≤ V _s ≤ 56, 0°C ≤ T _Α	$\pm 20V$ for PM156 and PM256, V _s = $= +70^{\circ}$ C for PM356, unless otherw	±15V for rise noted	PM356, -4 I. 		A ≤ +12!	5°C for Pl	M156,			
		$R_s \approx 50\Omega$, PM156			7.0		-	_	mV		
Input Offset Voltage	Vos	$R_s = 50\Omega, PM256$			6.5			-	mV		
Input Offset Voltage Drift	TOV	$R_s = 50\Omega$, PM356		- 5.0		_		13	mV μV/°C		
Change in Input Offset	TCV _{os}	R _s = 50Ω		5.0			5.0				
Drift with V _{OS} Adjust	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$	R _s = 50Ω	. –	0.5	-	_ '	0.5	-	µV/°C per mV		
Input Offset Current		PM156, T _j ≤ +125°C	-	-	20	_ ·	-	-	nA		
(Note 1)	los	PM256, T _j ≤ +85° C	-	-	1.0	_	-	-	nA		
		PM356, T _j ≤ +70°C	-	-	-	_		2.0	nA		
Input Bias Current		PM156, T _j ≤ +125°C	-	-	50	-			nA		
(Note 1)	۱B	PM256, $T_j \le +85^\circ C$			5.0	-		-	nA		
		PM356, T _j ≤ +70°C	-	-	-		-	8.0	nA		
Large Signal Voltage Gain	A _{vo}	$V_s=\pm 15V, V_o=\pm 10V, R_L=2K\Omega$	25	-	-	15	-	-	V/mV		
Output Voltage Swing	Vom	$V_s = \pm 15V, R_L = 10K\Omega$	±12	±13	-	±12	±13	-	v		
Catpat voltage owing	*om	$V_s = \pm 15V, R_L = 2K\Omega$	±10	±12	-	±10	±12	-	v		
Input Voltage Range	CMVR	V _s = ±15V	±11	+15.1 -12.0	-	±10	+15.1 -12.0	-	v		
Common Mode Rejection Ratio	CMRR	V _{CM} ≈ ±CMVR	85	100	-	80	100	-	dB		

NOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T1. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $T_j = T_A + \Theta_{jA}$ where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and IOS are measured at $V_{CM} = 0$.


NOTE 2: Settling time is defined here for a unity gain inverter connection using 2K n resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit on page 4.

NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.


BASIC CONNECTIONS

INPUT OFFSET VOLTAGE NULLING

NOTE: For potentiometers with a temperature coefficient ≤ 100 ppm/° C, the added TCV_{os} with nulling is $\approx 0.5 \mu$ V/° C/mV of adjustment.

APPLICATION INFORMATION

INPUT VOLTAGE CONSIDERATIONS

The PM156 JFET input stage can accommodate large input differential voltages without external clamping as long as neither input exceeds the negative power supply. An input voltage which is more negative than V- can result in a destroyed unit.

If both inputs exceed the negative common mode voltage limit, the amplifier will be forced to a high positive output. If only one input exceeds the negative common mode voltage limit, a phase reversal takes place forcing the output to the corresponding high or low state. In either of the above conditions, normal operation will return when both inputs are returned to within the specified common mode voltage range.

Exceeding the positive common-mode limit on a single input will not change the phase of the output. However, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

POWER SUPPLY CONSIDERATIONS

Power supply polarity reversal can result in a destroyed unit.

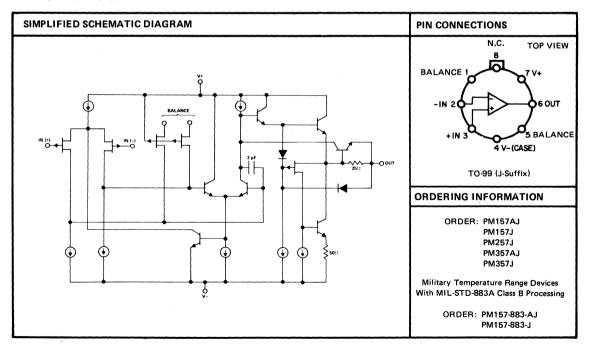
DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

PM157A/PM357A/PM157/PM257/PM357 WIDE BANDWIDTH DECOMPENSATED (A V_{MIN} = 5)

GENERAL DESCRIPTION


The PM157 Series provides low input current, high slew rate, and direct interchangeability with LF157 types. These operational amplifiers use a new process which allows fabrication of matched JFET transistors and standard bipolar transistors on the same chip. A JFET-input design enables operation with $\pm 40V$ input voltages eliminating the blowout problems associated with MOSFET devices.

High accuracy, excellent dynamic performance, and low cost make the PM157 Series useful in new designs and as replacements for modular and hybrid types. Unlike many designs, nulling the input offset voltage does not degrade common mode rejection ratio or input offset voltage drift. Dynamic specifications include a slew rate of 50V/µsec, a 20MHz gain bandwidth product, and 1.5µsec settling time. (Decompensation results in a closed loop gain minimum of 5.) Low input voltage and current noise and a low 1/f noise corner frequency allow the PM157 to be used in many low noise, high frequency applications.

FEATURES

LF157 Series Direct Replacements
Wide Bandwidth 20MHz
High Slew Rate \ldots
Fast Settling to $\pm 0.01\% \dots \dots \dots \dots \dots \dots \dots \dots 1.5\mu$ sec
Internal Compensation
Low Input Bias and Offset Currents
Low Input Offset Voltage 1.0mV
Low Input Offset Voltage Drift $3.0\mu V/^{\circ}C$
Low Input Noise Current 0.01pA \sqrt{Hz}
High Common Mode Rejection Ratio 100dB
Models With MIL-STD-883A Class B
Processing Available From Stock

Applications include high frequency active filters, high speed peak detectors, and large power bandwidth gain stages. For unity-gain compensated models, refer to the PM156 data sheet.

PM157

ABSOLUTE MAXIMUM RATINGS

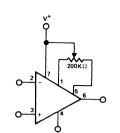
Supply Voltage		Maximum Junction Temperature (T _i)	
PM157A, PM157, PM257, PM357A	±22V	PM157A, PM157	+150°C
PM357	±18V	PM257	+115°C
Internal Power Dissipation		PM357A, PM357	+100°C
PM157A, PM157	670mW	Differential Input Voltage	
PM257	570mW	PM157A, PM157, PM257, PM357A	±40V
PM357A, PM357	500mW	PM357	±30V
(The TO-99(J) package must be der on a thermal resistance of 150°C/W junction to ambient or 45°C/S junc to case.)	1	Input Voltage PM157A, PM157, PM257, PM357A PM357 (Unless otherwise specified the absolute r negative input voltage is equal to the nega	
Operating Temperature Range		power supply voltage.)	
PM157A, PM157	–55°C to +125°C	Output Short Circuit Duration	Indefinite
PM257	–25°C to +85°C	Storage Temperature Range	–65°C to +150°C
PM357A, PM357	0°C to +70°C	Lead Temperature Range (Soldering, 60 sec)	+300° C

ELECTRICAL CHARACTERISTICS				PM157	A		PM357	Ά	
These specifications apply for ±	15V < V _s <	±20V, T _A = +25°C unless otherw	ise noted	l.					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	_	1.0	2.0	_	1.0	2.0	mV
Input Offset Current	los	T _j = 25°C (Note 1)		3.0	10	-	3.0	10	рА
Input Bias Current	IB	T _j = 25°C (Note 1)		30	50	-	30	50	pА
Input Resistance	RIN		-	1012	-	-	1012	-	Ω
Large Signal	•	$V_{s} = \pm 15V, V_{o} = \pm 10V,$	50	200		50	200		N/
Voltage Gain	A _{vo}	R _L = 2KΩ	50	200	-	50	200	_	V/mV
Supply Current	۱ _s	V _s = ±15V		5.0	7.0	-	5.0	7.0	mA
Slew Rate	SR	AVCL = 5, Vs = ±15V	40	50	-	40	50		V/µsec
Gain Bandwidth Product	GBW	V _s = ±15V	15	20	-	15	20	-	MHz
Settling Time to 0.01%	ts	V _s = ±15V (Note 2)	-	1.5	_	-	1.5	-	μsec
Input Noise Voltage		$R_s = 100 \Omega, f = 100 Hz, V_s = \pm 15 V$	-	15	-	-	15	-	nV √Hz
input Noise Voltage	e _n	$R_s = 100\Omega, f = 1000Hz, V_s = \pm 15V$	-	12	-	-	12	-	nV √Hz
Input Noise Current	in	f = 100Hz, V _s = ±15V	-	0.01	-	-	0.01	-	pA √Hz
input Noise Current		f = 1000Hz, V _s = ±15V		0.01	-	-	0.01	-	pA √Hz
Input Capacitance	Cin			3.0	-	-	3.0	-	pF
These specifications apply for ±	15V < Vs	≤ ±20V, -55°C ≤ T _A ≤ +125°C an	d THIGH	4 = +125°C	for PM15	7A, 0°0	C < TA <	+70°C an	d
THIGH ≈ +70°C for PM357A,									
Input Offset Voltage	Vos	R _s = 50Ω			2.5	-	-	2.3	тV
Input Offset Voltage Drift	TCVos	R _s = 50Ω		3.0	5.0	-	3.0	5.0	μV/°C
Change in Input Offset	∆TCV _{os}	R _s = 50Ω		0.5	_	_	0.5		μV/°C
Drift with V _{os} Adjust	ΔV _{os}	H ₅ - 5032	~	0.5	-	-	0.5	-	per mV
Input Offset Current	los	T _j ≤ T _{HIGH} (Note 1)	-	Τ.	10	-	-	1.0	nA
Input Bias Current	1 _B	T _j ≤ T _{HIGH} (note 1)	-	-	25	-	-	5.0	nA
Large Signal Voltage Gain	A _{vo}	$V_s=\pm 15V, V_o=\pm 10V, R_L=2K\Omega$	25	-	-	25		-	V/mV 🤇
Output Voltage Swing	v	$V_s = \pm 15V, R_L = 10K\Omega$	±12	±13	-	±12	±13	-	v
Curput Voltage Swillig	Voņ	$V_s = \pm 15V, R_L = 2K\Omega$	±10	±12		±10	±12	-	V
Input Voltage Range	CMVR	V _s = ±15V	±11	+15.1 -12.0	-	±11	+15.1 ~12.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	100	-	85	100	-	dB
Power Supply Rejection Ratio	PSRR	(Note 3)	85	100	-	85	100	_	dB

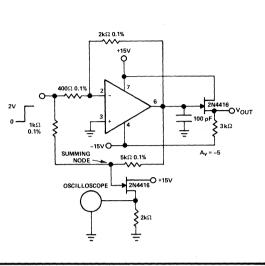
NOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. T_J. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. T_j = T_A + Θ_{jA} where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and IOS are measured at V_{CM} = 0.

NOTE 2: Settling time is defined here for a $A_V = -5$ connection with $R_F = 2K\Omega$. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 2V step input is applied to the inverter. See settling time test circuit on page 4.

NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.


				PM157 PM257			PM35	7	
These specifications apply for	Γ _A = +25°C,	$\pm 15V \le V_s \le \pm 20V$ for PM157 and F	PM257, V	s = ±15V	for PM357	7, unless	otherwise	noted.	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	Vos	R _s = 50Ω	_	3.0	5.0	-	3.0	10	mV
Input Offset Current	l _{os}	T _j = 25°C (Note 1)	· _	3.0	20	-	3.0	50	pА
Input Bias Current	1 _B	T _j = 25°C (Note 1)	-	30	100	-	30	200	pА
Input Resistance	RIN		-	1012	-	-	1012	-	Ω
Large Signal Voltage Gain	A _{vo}	V _s = ±15V, V _o = ±10V R _L = 2KΩ	50	200	-	25	200	-	V/mV
Supply Current	۱s		-	5.0	7.0	-	5.0	10	mA
Slew Rate	SR	A _{VCL} = 5, V _s = ±15V	30	50	-	-	50	-	V/µsec
Gain Bandwidth Product	GBW	V _s = ±15V	-	20	-	·	20	-	MHz
Settling Time to 0.01%	ts	V _s = ±15V (Note 2)	-	1.5	-	-	1.5	-	μsec
Input Noise Voltage		$R_{s}=100\Omega, f=100Hz, V_{s}=\pm 15V$	-	15	-	-	15	-	nV √H
mput Noise Voltage	e _n	R _s =100Ω,f=1000Hz,V _s = ±15V	, -	12	-	. – .	12	-	nV √H:
Input Noise Current		f = 100Hz, V _s = ±15V	-	0.01	-	-	0.01	-	pA √H
	ⁱ n	f = 1000Hz,V _s = ±15V.		0.01	-	-	0.01	-	рА√Н
Input Capacitance	C _{in}		-	3.0	-		3.0	-	pF
These specifications apply for \pm -25° C \leq T \wedge \leq +85° C for PM25	15V ≤ V _s ≤ 57.0°C ≤ T∧	$\pm 20V$ for PM157 and PM257, V _s = \pm $\leq +70^{\circ}$ C for PM357, unless otherwise	15V for P	M357, -5	5°C≤T _A	≤ +125	°C for PM	157,	
					7.0				
Input Offset Voltage		$R_{s} = 50\Omega, PM157$			7.0 6.5				mV
input Onset Voltage	∨ _{os}	$R_s = 50\Omega, PM257$	_		6.5		ļ	-	mv
		R _s = 50Ω, PM357						10	
Input Offert Valters Drift		R - 500					-	13	mV
Input Offset Voltage Drift		R _s = 50Ω	-	5.0	-	-	- 5.0	13 _	μV/°C
Input Offset Voltage Drift Change in Input Offset Drift with V _{OS} Adjust		R _s = 50Ω R _s = 50Ω	-	5.0 0.5		-	 5.0 0.5		μV/°C μV/°C
Change in Input Offset			-		-				μV/°C μV/°C
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current		R _s = 50Ω	-		-		0.5		μV/°C μV/°C per mV
Change in Input Offset Drift with V _{OS} Adjust		$R_s = 50Ω$ PM157, T _j ≤ +125°C	-	0.5	- 20	-	0.5	-	μV/°C μV/°C per mV nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1)		$R_s = 50Ω$ PM157, T _j ≤ +125°C PM257, T _j ≤ +85°C	-	0.5 -	- 20 1.0	-	0.5	-	μV/°C μV/°C per mV nA nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current		$\label{eq:Rs} \begin{split} &R_{s} = 50 \Omega \\ &PM157, \ \ T_{j} \leqslant +125^{\circ} C \\ &PM257, \ \ T_{j} \leqslant +85^{\circ} C \\ &PM357, \ \ T_{j} \leqslant +70^{\circ} C \end{split}$	-	0.5 -	 20 1.0	-	0.5	 2.0	μV/°C μV/°C per mV nA nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1)	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$	$R_{s} = 50Ω$ PM157, T _j ≤ +125°C PM257, T _j ≤ +85°C PM357, T _j ≤ +70°C PM157, T _j ≤ +125°C		0.5 	- 20 1.0 - 50	-	0.5	- - - 2.0	μV/°C μV/°C per mV nA nA nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current	$\frac{\Delta TCV_{OS}}{\Delta V_{OS}}$	$\begin{split} & R_{s} = 50\Omega \\ & \\ & PM157, \ \ T_{j} \leqslant +125^{\circ}C \\ & \\ & PM257, \ \ T_{j} \leqslant +85^{\circ}C \\ & \\ & PM357, \ \ T_{j} \leqslant +70^{\circ}C \\ & \\ & \\ & PM157, \ \ T_{j} \leqslant +125^{\circ}C \\ & \\ & \\ & PM257, \ \ T_{j} \leqslant +85^{\circ}C \\ \end{split}$		0.5 	- 20 1.0 - 50	-	0.5		μV/°C μV/°C per mV nA nA nA nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current (Note 1) Large Signal Voltage Gain	$\frac{\Delta TCV_{os}}{\Delta V_{os}}$ I_{os} I_{B} A_{vo}	$\label{eq:result} \begin{split} & R_{s} = 50\Omega \\ & PM157, \ \ T_{j} \leqslant +125^{\circ}C \\ & PM257, \ \ T_{j} \leqslant +85^{\circ}C \\ & PM357, \ \ T_{j} \leqslant +70^{\circ}C \\ & PM157, \ \ T_{j} \leqslant +125^{\circ}C \\ & PM257, \ \ T_{j} \leqslant +85^{\circ}C \\ & PM357, \ \ T_{j} \leqslant +70^{\circ}C \\ \end{split}$		0.5 - - - - -	 20 1.0 50 5.0 	-	0.5 		μV/°C μV/°C per mV nA nA nA nA nA
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current (Note 1)	$\frac{\Delta TCV_{os}}{\Delta V_{os}}$ I_{os} I_{B}	$\begin{split} &R_{s} = 50\Omega \\ &PM157, \ T_{j} \leqslant +125^{\circ}C \\ &PM257, \ T_{j} \leqslant +85^{\circ}C \\ &PM357, \ T_{j} \leqslant +70^{\circ}C \\ &PM157, \ T_{j} \leqslant +125^{\circ}C \\ &PM257, \ T_{j} \leqslant +85^{\circ}C \\ &PM357, \ T_{j} \leqslant +70^{\circ}C \\ &V_{s}{=}{\pm}15V, V_{o}{=}{\pm}10V, R_{L}{=}2K\Omega \end{split}$	- - - - - 25		 20 1.0 50 5.0 -	- - - - - - 15	0.5	 2.0 8.0 	μV/°C μV/°C per mV nA nA nA nA nA NA V/mV
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current (Note 1) Large Signal Voltage Gain	$\frac{\Delta TCV_{os}}{\Delta V_{os}}$ I_{os} I_{B} A_{vo}	$\begin{split} & R_{s} = 50\Omega \\ & \\ & PM157, \ T_{j} \leq +125^{\circ}C \\ & PM257, \ T_{j} \leq +85^{\circ}C \\ & PM357, \ T_{j} \leq +70^{\circ}C \\ & PM157, \ T_{j} \leq +125^{\circ}C \\ & PM257, \ T_{j} \leq +85^{\circ}C \\ & PM257, \ T_{j} \leq +85^{\circ}C \\ & PM357, \ T_{j} \leq +70^{\circ}C \\ & V_{s} {=} \pm 15V, \ V_{o} {=} {\pm}10V, \ R_{L} {=} 2K\Omega \\ & V_{s} {=} {\pm}15V, \ R_{L} {=} 10K\Omega \end{split}$	- - - - - 25 ±12	0.5 - - - - ±13		- - - - - - 15 ±12	0.5 	 2.0 8.0 	μV/°C μV/°C per mV nA nA nA nA NA V/mV V
Change in Input Offset Drift with V _{OS} Adjust Input Offset Current (Note 1) Input Bias Current (Note 1) Large Signal Voltage Gain Output Voltage Swing	ΔTCV _{os} ΔV _{os} I _{os} I _B Α _{vo} Vom	$\begin{split} \textbf{R}_{s} &= 50\Omega \\ \\ \textbf{PM157, T_{j}} &\leq +125^{\circ}\text{C} \\ \\ \textbf{PM257, T_{j}} &\leq +85^{\circ}\text{C} \\ \\ \textbf{PM357, T_{j}} &\leq +70^{\circ}\text{C} \\ \\ \textbf{PM357, T_{j}} &\leq +125^{\circ}\text{C} \\ \\ \textbf{PM357, T_{j}} &\leq +85^{\circ}\text{C} \\ \\ \textbf{PM357, T_{j}} &\leq +70^{\circ}\text{C} \\ \\ \textbf{V}_{s} &= \pm15\text{V}, \textbf{V}_{o} \\ &= \pm15\text{V}, \textbf{R}_{L} \\ = 10\text{K}\Omega \\ \\ \hline \textbf{V}_{s} &= \pm15\text{V}, \textbf{R}_{L} \\ &= 2\text{K}\Omega \\ \end{split}$	- - - - - 25 ±12 ±10	0.5 ±13 ±12 +15.1		- - - - - 15 ±12 ±10	0.5 		μV/°C μV/°C per mV nA nA nA nA NA NA V/mV V V V

- NOTE 1: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, TJ. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. Tj = T_A + Θ_{jA} where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. IB and IQS are measured at V_{CM} = 0.
- NOTE 2: Settling time is defined here for a $A_v = -5$ connection with $R_F = 2K\Omega$. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 2V step input is applied to the inverter. See settling time test circuit on page 4.
- NOTE 3: Power supply rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.


BASIC CONNECTIONS

INPUT OFFSET VOLTAGE NULLING

SETTLING TIME TEST CIRCUIT

NOTE: For potentiometers with a temperature coefficient ≤100ppm/°C, the added TCV_{os} with nulling is ≈0.5μV/°C/mV of adjustment.

APPLICATION INFORMATION

INPUT VOLTAGE CONSIDERATIONS

The PM157 JFET input stage can accommodate large input differential voltages without external clamping as long as neither input exceeds the negative power supply. An input voltage which is more negative than V- can result in a destroyed unit.

If both inputs exceed the negative common mode voltage limit, the amplifier will be forced to a high positive output. If only one input exceeds the negative common mode voltage limit, a phase reversal takes place forcing the output to the corresponding high or low state. In either of the above conditions, normal operation will return when both inputs are returned to within the specified common mode voltage range.

Exceeding the positive common-mode limit on a single input will not change the phase of the output. However, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

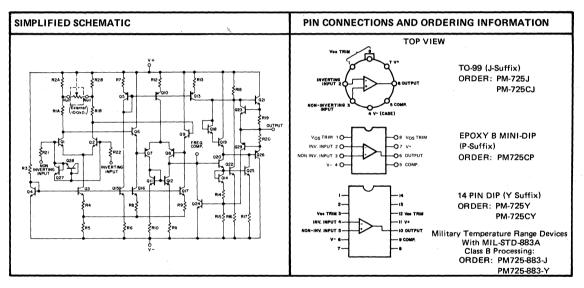
POWER SUPPLY CONSIDERATIONS

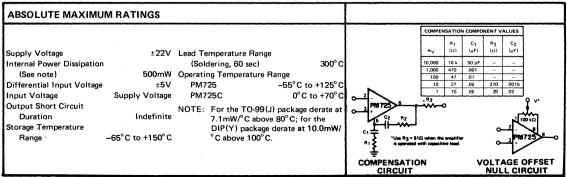
Power supply polarity reversal can result in a destroyed unit.

DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.


INSTRUMENTATION OPERATIONAL AMPLIFIER


GENERAL DESCRIPTION

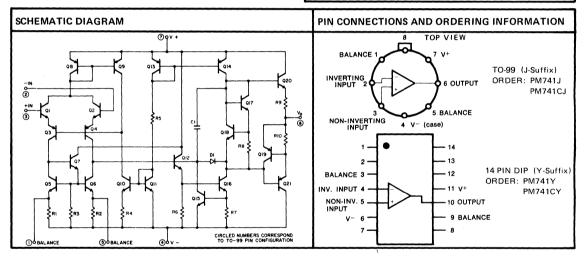
The PM725 Series of monolithic Instrumentation Operational Amplifiers provides industry-standard 725 specifications. In addition, Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. For improved specifications, see the SSS725 Series data sheet. For devices with internal frequency compensation request the OP-05 Instrumentation and OP-07 Ultra-low Offset Voltage Operational Amplifier data sheets.

FEATURES

- Low Offset Voltage and Offset Current
- Low Drift with Temperature
- Low Input Voltage And Current Noise
- High Power Supply Rejection $10\mu v/v$ max
- Silicon-Nitride Passivation
- Differential Input Overvoltage Protection

ΡM	725
----	-----

ECTRICAL CHARACTERISTICS				RM725		PM725C			
These specifications apply for $V_s = \pm$	15V, T _A =	25°C, unless otherwise no	ted.						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage (Without external trim)	v _{os}	R _S ≤ 10 kΩ		0.5	1.0		0.5	2.5	mV
Input Offset Current	l _{os}			2.0	20		2.0	35	nA
Input Bias Current	1 _B			42	100		42	125	nA
		f _o = 10 Hz		15			15		nV/√
Input Noise Voltage	e _n	f _o = 100 Hz		9.0			9.0		nV/√
		f _o = 1 kHz		8.0			8.0		nV/√
		f _o = 10 Hz		1.0			1.0		pA/√
Input Noise Current	ⁱ n	f _o = 100 Hz		0.3			0.3		pA/√I
		f _o = 1 kHz		0.15			0.15		pA/√
Input Resistance	R _{in}			1.5			1.5		MΩ
Input Voltage Range	CMVR		±13.5	±14		±13.5	±14		v
Large Signal Voltage Gain	Avo	$R_L \ge 2 k\Omega$, $V_0 = \pm 10 V$	1,000,000	3,000,000		250,000	3,000,000		V/V
Common Mode Rejection Ratio	CMRR	$R_S \le 10 \text{ k}\Omega$	110	120		94	120		dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10 kΩ		2.0	10		2.0	35	μV/V
Output Voltage Swing		R _L ≥ 10 kΩ	±12	±13.5		±12	±13.5		v
	Vom	R _L ≥2kΩ	±10	±13.5		±10	±13.5		v
Output Resistance	Ro			150			150		Ω
Power Consumption	Pd			80	105		80	150	mW
The following specifications apply for '	V _s = ±15V	, –55°C ≤ T _A ≤ +125°C fc	or PM725, 0°	C ≤ T _A ≤ +	70°C	for PM725	C, unless ot	herwi	se notec
Input Offset Voltage (Without external trim)	V _{os}	R _S < 10 kΩ			1.5			3.5	mV
Average Input Offset Voltage Drift (Without external trim)	тсv _{os}	R _S = 50Ω		2.0	5.0		2.0		μV/°C
Average Input Offset Voltage Drift (With external trim)	TCV _{osn}	R _S = 50Ω		0.6			0.6		μV/°C
In out Offert Current		T _A = MAX		1.2	20		1.2	35	nA
Input Offset Current	los	T _A = MIN		7.5	40		4.0	50	nA
Average Input Offset Current Drift	TCIOS			35	150		10		pA/°C
In mut Bing Coursent		T _A = MAX		20	100			125	nA
Input Bias Current	ΙB	T _A = MIN		80	200			250	nA
		$R_L \ge 2 k\Omega, T_A = MAX$	1,000,000			125,000			V/V
Large Signal Voltage Gain	A _{vo}	$R_L \ge 2 k\Omega, T_A = MIN$	250,000			125,000			V/V
Common Mode Rejection Ratio	CMRR	R _S ≤ 10 kΩ	100				115		dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10 kΩ			20		20		μV/V
Output Voltage Swing	Vom	R _L ≥ 2 kΩ	±10			±10			V


COMPENSATED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The PM741 Series of Internally Compensated Operational Amplifiers provides industry-standard 741 specifications. In addition, Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. For improved specifications, see the SSS741 Series data sheet. For very high performance general purpose op amps, refer to the OP-02 Series data sheet.

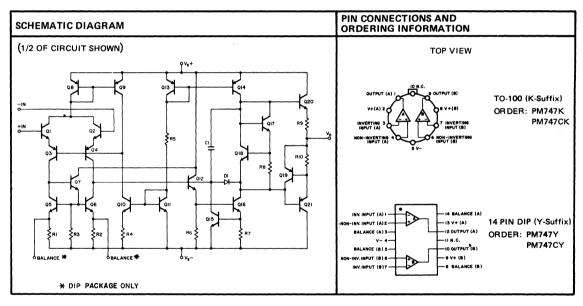
FEATURES

- Industry Standard 741 Specifications
- Internal Frequency Compensation
- Continuous Short Circuit Protection
- MIL-STD-883 Processing Available
- Silicon-Nitride Passivation
 - Low Noise

ABSOLUTE MAXIMUM RATINGS

Supply Voltage		Operating Tempera	ature Range	
PM741	±22V	PM741		–55°C to +125°C
PM741C	±18V	PM741C		0°C to +85°C
Internal Power Dissipation (Note 1)	500 mW	Note 1 Maximum	n package power diss	ination value t
Differential Input Voltage	±30V	temperatur	ipation vs ambient	
Input Voltage	Supply Voltage	N	MAXIMUM AMBIENT	DERATE ABOVE
Output Short Circuit Duration	Indefinite		TEMPERATURE	MAXIMUM AMBIENT
Storage Temperature Range	-65° C to $+150^{\circ}$ C	PACKAGE TYPE TO-99 (J)	FOR RATING 80 [°] C	TEMPERATURE 7.1mW/ [°] C
Lead Temperature Range (Soldering, 6	0 sec) 300°C	DUAL-IN-LINE (Y)	100 [°] C	10.0mW/°C

These specifications apply for unless otherwise specified.	T _A = 25°C, V	s = ±15V,	PN	1741	PM		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Uni
Input Offset Voltage	v _{os}	$R_S \le 10k\Omega$	-	5.0	_	6.0	mV
Input Offset Current	IOS		_	200	-	200	nA
Input Bias Current	IВ		-	500	-	500	nA
Input Resistance	R _{IN}		0.3	-	0.3	_	MS
Large Signal Voltage Gain	Avo	RL ≥ 2kΩ V _O = ±10V	50,000		25,000	-	V/\
Supply Current	١s		-	2.8		2.8	mA
The following specifications approximately $PM741$ and $0^{\circ}C \leq T_{A} \leq +85^{\circ}$		C ≤ T _A ≤ +125°C –	V _S =	= ±15V	V _S =	±15V	
Input Offset Voltage	v _{os}	R _S ≤ 10kΩ	~	6.0	-	7.5	m۷
Input Offset Current	los	,	-	500	-	300	nA
Input Bias Current	۱ _B		-	1.5		0.8	μA
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	25,000	-	15,000	-	V/V
Output Voltage Swing	∨ом	RL ≥ 10kΩ RL ≥ 2kΩ	±12 ±10	-	±12 ±10		v v
Input Voltage Range	CMVR		±12	-	±12	-	V
Common Mode Rejection Ratio	CMRR	R _S ≤ 10kΩ	70	-	70	-	dB
	· · · · · · · · · · · · · · · · · · ·		1	_			1


DUAL COMPENSATED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The PM747 Series of Internally Compensated Dual Operational Amplifiers provides industry-standard 747 specifications. In addition, Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. For improved specifications, see the SSS747 Series data sheet. For very high performance dual op amps, refer to the OP-10 Dual Matched Instrumentation Operational Amplifier data sheet.

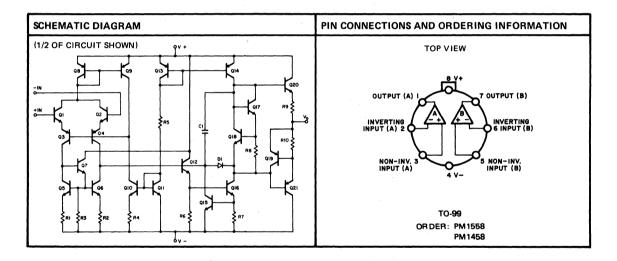
FEATURES

- Dual PM 741 Internally Compensated Operational Amplifier
- Internal Frequency Compensation
- Continuous Short Circuit Protection
- MIL-STD-883 Processing Available
- Silicon-Nitride Passivation
- Low Noise

ABSOLUTE MAXIMUM RATINGS **BALANCING CIRCUIT** Storage Temperature Range -65° to 150°C Supply Voltage v. PM747 ±22V Lead Temperature Range O 13 PM747C ±18V (Soldering, 60 sec) 300° C Internal Power Dissipation Operating Temperature Range (See note) PM747 -55°C to +125°C в 10 . 12 500mW Metal Can (K) package PM747C 0°C to +70°C 670mW DIP (Y) Package 1**0Κ**Ω **10Κ**Ω Differential Input Voltage ±30V NOTE: For the TO-100(K) package derate Input Voltage Supply Voltage at 7.1mW/°C above 80°C; for the **Output Short Circuit** DIP(Y) package derate at 10.0mW/ ò Ò Duration Indefinite °C above 100°C. DIP PACKAGE PINOUT

ECTRICAL CHAR	ACTERISTI	60			PM747			PM747C		
These specifications ap unless otherwise noted		25°C, V _s =	±15V,							
Parameter		Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage		v _{os}	R _S < 10 kΩ	-	1.0	5.0	-	1.0	6.0	mV
Input Offset Current		los		-	20	200		20	200	nA
Input Bias Current		IB		-	80	500	-	80	500	nA
Input Resistance		RIN		0.3	2.0	-	0.3	2.0	-	MΩ
Input Capacitance		CIN		-	1.4	-		1.4	-	рF
Offset Voltage Adjustr	nent Range			-	±15	-	-	±15	-	mV
Large Signal Voltage G	iain	Avo	$R_{L} > 2 k\Omega, V_{O} = \pm 10 V$	50	200		25	200	-	V/m
Output Resistance		RO		-	75	-	-	75	-	Ω
Output Short Circuit C	Current	ISC		-	25	-	_	25	-	mA
Supply Current		ISY		-	1.7	2.8		1.7	2.8	mA
Power Consumption		PD	V _S = ±15 V	-	50	85	-	50	85	mW
Transient Response R	isetime		$V_{IN} = 20 \text{mV}, \text{R}_{I} = 2 \text{k}\Omega$	-	0.3	-	-	0.3	-	μsec
(Unity Gain) 0	vershoot		C _L < 100 pF		5.0	-		5.0	-	%
Slew Rate			$R_{L} \leq 2 k\Omega$	-	0.7	_		0.7	-	V/µs
Channel Separation		CS		-	120	-	-	120	-	dB
The following specifica < +125°C for PM747, otherwise noted.								T		
Input Offset Voltage		vos	R _S < 10 kΩ	-	1.0	6.0	-	1.0	7.5	mν
Input Offset Current		1	T _A = MAX	-	7.0	200	-	7.0	200	nA
input Onset Current		los	T _A = MIN	-	85	500	-	30	300	nA
In must Rine Current			T _A = MAX	-	0.03	0.5	-	0.03	0.5	μA
Input Bias Current		1B	T _A = MIN	-	0.3	1.5	-	0.10	0.8	μA
Input Voltage Range		CMVR		±12	±13 🕔	-	±12	±13	-	v
Common Mode Reject	ion Ratio	CMRR	R _S < 10 kΩ	70	90	-	70	90	-	dB
Power Supply Rejection	on Ratio	PSRR	R _S < 10 kΩ	-	30	150	-	30	150	μV/\
Large Signal Voltage G	Gain	Avo	$R_L > 2 k\Omega$, $V_0 = \pm 10 V$	25	-	-	15	-	-	V/m
0 ··· · · · · · · · · · · · · · · · · ·			R _L > 10 kΩ	±12	±14	-	±12	±14	-	V
Output Voltage Swing		∨ом	R _L > 2 kΩ	±10	±13	-	±10	±13	-	v
<u> </u>		1.	T _A = MAX	-	1.5	2.5	-	1.5	2.5	mA
Supply Current		ISY	T _A = MIN	- 1	2.0	3.3	-	2.0	3.3	mΑ
		1	T _A = MAX	1	45	75	-	45	75	mW
Power Consumption		PD		-	40	/5	-	45	/5	11144

PM-1458/1558


DUAL COMPENSATED OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The PM1558 Series of Internally Compensated Dual Operational Amplifiers provides industry-standard 1558 specifications and pin-for-pin compatibility. In addition, Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost. For improved specifications, refer to the SSS747/1558 Dual Internally Compensated Operational Amplifier data sheet. For precision dual op amps, refer to the OP-10 Dual Matched Instrumentation Operational Amplifier data sheet.

FEATURES

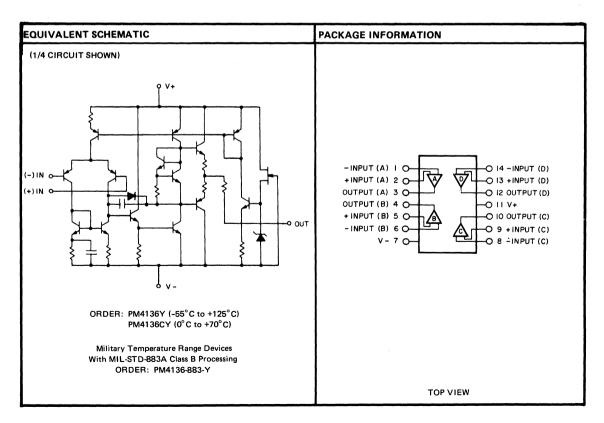
- Dual PM 741 Internally Compensated Operational Amplifier
- Internal Frequency Compensation
- Low Power Consumption
- Continuous Short Circuit Protection
- MIL-STD-883 Processing Available
- Silicon-Nitride Passivation

ABSOLUTE MAXIMUM RATINGS **Operating Temperature Range** Supply Voltage ±22V PM1558 PM1458 ±18V PM1558 -55°C to +125°C PM1458 0° C to +70° C Internal Power Dissipation 500 mW (See note) **Differential Input Voltage** ±30V Input Voltage Supply Voltage Output Short Circuit Duration Indefinite For the TO-99(J) package derate at 7.1 mW/°C above 80°C. Storage Temperature -65° to 150°C Range Lead Temperature Range 300° C (Soldering, 60 sec) TO-99(J)

ELECTRICAL CHARACTER	STICS								
These specifications apply for T _A ≈ unless otherwise noted.	25°C, V _s =	±15V,		PM1558					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	vos	R _S < 10kΩ	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	los		-	0.03	0.2	-	0.03	0.2	μA
Input Bias Current	IВ		-	0.2	0.5	-	0.2	0.5	μA
Input Resistance	R _{IN}		0.3	2.0	-	0.3	2.0		MΩ
Large Signal Voltage Gain	Avo	$R_L \ge 2K\Omega, V_0 = \pm 10V$	50	200	-	20	100	-	V/mV
Output Voltage Swing	∨ом	R _L ≥ 10KΩ	±12	±14	-	±12	±14		v
Input Voltage Range	CMVR	V _S = ±15V	±12	±13	-	±12	±13	-	v
Common Mode Rejection Ratio	CMRR	R _S ≤ 10kΩ	70	90	-	70	90	-	dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10kΩ	-	30	150	-	30	150	μV/V
Power Consumption both Amplifiers	PD	V ₀ = 0	-	70	150	-	70	170	mW
Channel Separation	CS		-	.1.20		-	120	-	dB
The following specifications apply $\leq +125^{\circ}$ C for PM1558, 0°C $< T_{A}$ unless otherwise noted.									
Input Offset Voltage	VOS	R _S ≤ 10kΩ	-		6.0	-	-	7.5	mV
Input Offset Current	IOS		-	-	0.5	-	-	0.3	μA
Input Bias Current	IВ		-	-	1.5	-	-	0.8	μA
Large Signal Voltage Gain	Avo	$R_L \ge 2k\Omega, V_0 = \pm 10V$	25		-	15	-	<u> </u>	V/mV
Output Voltage Swing	∨ом	$R_L > 2k\Omega$	±10	±13		±10	±13	-	v

PM1458/1558

QUAD 741-TYPE OPERATIONAL AMPLIFIER


GENERAL DESCRIPTION

The PM4136 Series provides four 741-type operational amplifiers in a single 14-pin DIP package, pin-compatible with the RM4136 and RC4136. Each of the four amplifiers has the proven SSS741 Series advantages of low noise, low drift and excellent long term stability. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process eliminates "popcorn noise" and provides maximum reliability and long term stability of parameters for lowest overall system operating cost.

The PM4136 Series is ideal for use in designs requiring minimum space and cost while maintaining SSS741-type performance. PM4136's with processing per the requirements of MIL 38510/883 are available. For dual-741-type versions, see the SSS747/1558 data sheet.

FEATURES

- RM4136/RC4136 Direct Replacements
- Low Noise
- Silicon-Nitride Passivation
- Internal Frequency Compensation
- Low Crossover Distortion
- Continuous Short Circuit Protection
- Low Input Bias Current
- Low Input Offset Voltage

10014
±22V
±18V
800 mW
±30V
±15V
Indefinite
-65°C to +150°C
–55°C to +125°C
0°C to +70°C
ec) 300°C

NOTES:

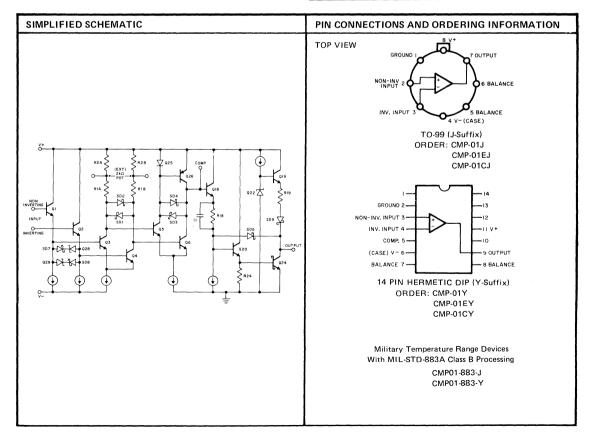
- 1. Rating applies for ambient temperature of $+25^{\circ}$ C; derate linearly at 6.4 mW/°C for ambient temperatures above $+25^{\circ}$ C.
- 2. For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.
- 3. Short-circuit may be to ground, one amplifier only. I_{SC} = 45mA (typical).

These specifications apply for $V_S = \pm 15V$ unless otherwise specifications apply fo			PM4136			PM4136C		
Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	R <u>s∖≤</u> 10 kΩ	-	0.5	5.0	-	0.5	6.0	mV
Input Offset Current		<u> </u>	5.0	200	-	5.0	200	nA
Input Bias Current		-	40	500	-	40	500	nA
Input Resistance		0.3	5.0	-	0.3	5.0	_	MΩ
Large-Signal Voltage Gain	R _L ≥ 2kΩ V _{OUT} ≈ ±10V	50,000	300,000	_	20,000	300,000		V/1
Output Voltage Swing	$R_L \ge 10 \ k\Omega$	±12	±14	-	±12	±14	-	v
	$R_L \ge 2k\Omega$	±10	±13	-	±10	±13	-	V
Input Voltage Range		±12	±14		±12	±14	-	V
Common Mode Rejection Ratio	$R_{S} \leq 10 k\Omega$	70	100		70	100	-	dB
Supply Voltage Rejection Ratio	$R_S \leq 10 k\Omega$	-	10	150	_	10	150	μν/
Power Consumption	No load		210	340	-	210	340	mW
Transient Response (unity gain) Risetime	$V_{IN} = 20 \text{ mV}$ RL = $2k\Omega$ CL $\leq 100 \text{ pF}$	-	0.13	_	-	0.13	_	μs
Transient Response (unity gain) Overshoot	V _{IN} = 20 mV R _L = 2kΩ C _L ≤ 100 pF	-	5.0	-	-	5.0	l	%
Unity Gain Bandwidth		-	3.0		-	3.0	-	MHz
Slew Rate (unity gain)	$R_L \ge 2k\Omega$	-	1.5		-	1.0	-	V/µ
Channel Separation	f = 10 kHz Rs = 1kΩ open loop	-	105	-	-	105	_	dB
(Gain - 100)	$f = 10 \text{ kHz}^{\circ}$ $R_S = 1 \text{ k}\Omega$ Gain = 100	-	105	_	-	105		dB
The following specifications apply $V_S = \pm 15V$ unless otherwise spec		125°C for P	M4136, 0°C	≤ T _A ≤ +70	°C for PM41	36C, and		
Input Offset Voltage	$R_{S} \leq 10 k\Omega$	-	_	6.0	-	-	7.5	mV
Input Offset Current		-	-	500	-	-	300	nA
Input Bias Current		-		1500	-	-	800	nA
Large Signal Voltage Gain	$R_{L} \ge 2k\Omega$ $V_{OUT} = \pm 10V$	25,000	-	-	15,000	_	-	V/1
Output Voltage Swing	$R_L \ge 2k\Omega$	±10	-	-	±10	-	-	V
	T _A = High	- 1	180	300	-	180	300	mW
	T _A = Low	+	240	400		240	400	mW

	NUMERICAL INDEX	1
	ORDERING INFORMATION	2
	Q.A. PROGRAM	3
	INDUSTRY CROSS REFERENCE	4
	FUNCTIONAL REPLACEMENT GUIDE	5
	OPERATIONAL AMPLIFIERS	6
	COMPARATORS	7
	MATCHED TRANSISTORS	8
	VOLTAGE REFERENCES	9
	D/A CONVERTERS – LINEAR	10
	D/A CONVERTERS – COMPANDING	11
	MULTIPLEXERS	12
	DEFINITIONS	13
	CHIPS	14
	APPLICATION NOTES	15
	PACKAGE INFORMATION	16
	NOTES	17

INDEX COMPARATORS

PRODUCT	TITLE	PAGE
CMP-01	Fast Precision Comparator	7-1
CMP-02	Low Input Current Precision Comparator	7-7


FAST PRECISION COMPARATOR

GENERAL DESCRIPTION

The CMP-01 is a monolithic Fast Precision Voltage Comparator using an advanced compatible NPN-Schottky Barrier Diode process. It features fast response time to both large and small input signals, while maintaining excellent input characteristics. The CMP-01 is capable of operating over a wide range of supply voltages, including single 5 volt supply operation. The large output current sinking and high output voltage capability assure good application flexibility, while the combination of fast response, high accuracy, and freedom from oscillation assure performance in precision level detectors and 12 and 13 bit A/D converters. The CMP-01 is pin compatible to earlier 111, 106, and 710 types. For applications requiring lower input offset and bias currents, refer to the CMP-02 data sheet.

FEATURES

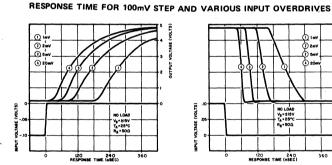
Fast Response Time 110 ns typ., 180 ns Max
High Input Slew Rate
Low Offset Voltage 0.3 mV typ., 0.8 mV Max
Low Offset Current 4 nA typ., 25 nA Max
Low Offset Drift 1.0 μ V/°C, 30 pA/°C
Standard Power Supplies $\pm 5V$ to $\pm 18V$
Guaranteed Operation from Single +5V Supply
No Pull-up Resistor Required for TTL Drive
Wired OR Capability
Fits 111, 106, 710 Sockets
Easy Offset Nulling Single 2k Ω Potentiometer
Easy to Use Free from Oscillations

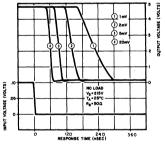
CMP-01

ABSOLUTE MAXIMUM RATINGS

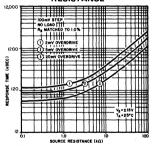
Total Supply Voltage, V+ to V-	36V	Output Sink Current (Continuous O	peration) 75 m/
Output to Ground	-5V to +32V	Operating Temperature Range -	
Output to Negative Supply Voltage	50V	CMP-01	-55°C to +125°
Ground to Negative Supply Voltage	30V	CMP-01E, -01C	0°C to +70°
Positive Supply Voltage to Ground	30V	Storage Temperature Range	-65°C to +150°C
Positive Supply Voltage to Offset Null	0 to 2V	Lead Temperature (Soldering, 60 Sec	c) 300°(
Power Dissipation (See Note)	500 mW	Output Short Circuit Duration - to	ground Indefinit
Differential Input Voltage	±11V	to	V+ 1 min
Input Voltage ($V_s = \pm 15V$)	±15V		

Note: Maximum package power dissipation vs. ambient temperature

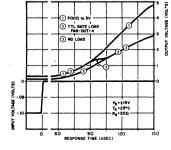

Package Type TO-99 (J) Dual-in-Line (Y)

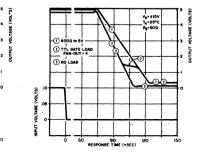

Maximum Ambient Temperature for Rating 80°C 100°C

Derate Above Maximum Ambient Temperature

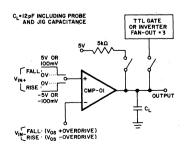

> 7.1 mW/°C $10.0 \text{ mW/}^{\circ}\text{C}$

TYPICAL PERFORMANCE CURVES



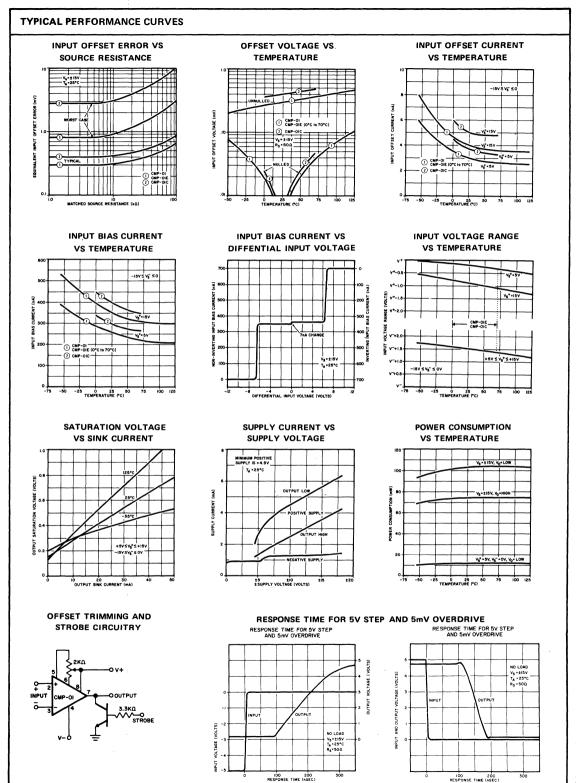


RESPONSE TIME VS SOURCE RESISTANCE



RESPONSE TIME, 100mV STEP, 5mV OVERDRIVE, VARIOUS LOADS

RESPONSE TIME TEST CIRCUIT



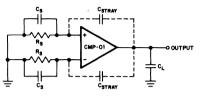
ELECTRICAL CHARACTERIS	FICS			CMP-01		
These specifications apply for $V_s = \pm$	15V, T _A = 25°C	unless otherwise noted.				
Parameter	Symbol	Test Conditions	Min	Тур.	Max.	Units
Input Offset Voltage	V _{os}	$R_{s} \leq 5k\Omega$ (Note 1)	_	0.3	0.8	mV
Input Offset Current	los	(Note 1)		4	25	nA
Input Bias Current	1 _B		-	350	600	nA
Differential Input Resistance	R _{in}		3.0	14	-	MΩ
Voltage Gain	Av	V ₀ = 0.4V to 2.4V	200	500	-	V/mV
Response Time	tr	100mV step, 5mV overdrive				
		no load (no pull-up)	-	110	180	nsec
	1	5kΩ to 5V	- 1	110	-	nsec
		TTL fan-out = 4, no pull-up	-	110	-	nsec
		5V step 5mV overdrive				
		no load (no pull-up)	-	160	-	nsec
		5kΩ to 5V TTL fan-out = 4, no pull-up	-	160 160	-	nsec nsec
	+		+	92		
Input Slew Rate						V/µseo
Input Voltage Range	CMVR		±12.5	113.0		V
Common Mode Rejection Ratio	CMRR	EV 211 21011 ISL	94	110		dB
Power Supply Rejection Ratio	PSRR	$5V \le V_{s+} \le 18V, -18V \le V_{s-} \le 0V$	80	100		dB
Positive Output Voltage	∨он	$V_{in} \ge 3mV$, $I_0 = 320\mu A$ $V_{in} \ge 3mV$, $I_0 = 0$	2.4 2.4	3.2 4.8	-	
Saturation Voltage	VSAT	$V_{in} \ge 3mV, I_0 = 0$ $V_{in} \le -10mV, I_{sink} = 6.4 mA$	- 2.4	0.3	0.45	
outdration vortage	*SA1	$V_{in} \leq -10 \text{mV}$, $I_{sink} \leq 0.4 \text{mA}$	-	0.36	0.45	v
Output Leakage Current	LEAK	$V_{in} \ge 10 \text{mV}, V_0 = 30 \text{V}$	-	0.03	2.0	μΑ
Positive Supply Current	I+	$V_{in} \le -10 \text{mV}$	<u>+</u>	5.6	8.0	mA
Negative Supply Current	1-	$V_{in} \le -10 \text{mV}$	-	1.3	2.2	mA
Power Dissipation	Pd	$V_{in} \leq -10 \text{mV}$		103	153	mW
Offset Voltage Adjustment Range	· u	Nulling Pot $\geq 2k\Omega$		±5		mV
These specifications apply for V _{s+} = 5 Input Offset Voltage	V _{os}	$R_s \le 5k\Omega$ (Note 1)		0.4	1.5	mV
Input Offset Current	lis	(Note 1)		3	21	nA
Input Bias Current	I _B	L		250	500	nA
Voltage Gain	Av	$V_0 = 0.4V$ to 2.4V (Note 1)		50		V/mV
Response Time	tr	100mV step, 5mV overdrive		450		1
		5kΩ to 5V TTL fan-out = 4, 5kΩ to 5V	_	150 150	-	nsec
Input Voltage Range	CMVR		1.8/3.5	1.7/3.8		nsec V
Saturation Voltage	VSAT	$V_{in} \leq -3.5 mV$, $I_{sink} \leq 6.4 mA$	1.0/3.3	0.3	0.45	t v
Positive Supply Current	1+	V _{in} ≤ -10mV		2.3	3.2	mA
Power Dissipation	Pd	$V_{in} \leq -10 \text{mV}$		11.5	16.0	mW
		$^{\circ}C \leq T_{A} \leq +125^{\circ}C$, unless otherwise noted.	L	11.0	10.0	1
			r			1
nput Offset Voltage	Vos	R _s ≤ 5kΩ (Note 1) V _{s+} = 5V, V _{s−} = 0V (Note 1)	-	0.5 0.6	1.6 2.8	mV
Average Input Offset Voltage Drift				0.0	2.0	mV
Without External Trim	TCVos	$R_s = 50\Omega$		1.5		μV/°C
With External Trim	TCVosn	$R_s = 50\Omega$	_	1.0	_	μV/°C
Input Offset Current		$T_A = +125^{\circ}C$ (Note 1)	_	4	25	nA
input offset ourient	los	$T_A = -55^{\circ}C$ (Note 1)	_	8	80	nA
Average Input Offset Current Drift	TCIos	$25^{\circ}C \leq T_A \leq +125^{\circ}C$	-	12		pA/°C
		$-55^{\circ}C \le T_{A} \le 25^{\circ}C$	-	35	-	pA/°C
Input Bias Current	IВ	$T_{A} = +125^{\circ}C$	-	300	600	nA
		T _A = -55°C	-	550	1400	nA
/oltage Gain	Av	$V_0 \approx 0.4 V$ to 2.4 V	100	500		V/mV
Response Time	tr	100mV step, 5mV overdrive		100		
		T _A = +125°C, no load T _A = -55°C, no load	-	160 90	-	nsec
nput Voltage Range	CMVR	г _А = =55 С, но юда	± 12.0	90 ±13.0	_	nsec V
Common Mode Rejection Ratio	CMRR		±12.0 88	±13.0 106		
Power Supply Rejection Ratio	PSRR	$5V \leq V_{s+} \leq 15V, -15V, \leq V_{s-} \leq 0V$	75	96		dB
Positive Output Voltage		$V_{in} \ge 4mV, I_0 = 200\mu A$	2.4	3.0		dB V
Saturation Voltage	V _{OH} V _{SAT}	$V_{in} \le 4mV$, $I_0 = 200\mu A$ $V_{in} \le -10mV$, $I_{sink} = 0$	- 2.4	0.20	0.4	
						• •

NOTE 1: These parameters are specified as the maximum values required to drive the output between the logic levels of 0.4V and 2.4V with a 1kΩ load tied to +5V; thus, these parameters define an error band which takes into account the worst case effects of voltage gain and input impedance.

ELECTRICAL CHARACTERIS	ncs			CMP-01E			CMP-01C		
These specifications apply for $V_s = 1$	15V, TA =	25°C unless otherwise noted.							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vos	R _s ≤ 5kΩ (Note 1)	-	0.3	0.8	_	0.4	2.8	mV
Input Offset Current	los	(Note 1)	-	4	25	-	5	80	nA
Input Bias Current	I _B		-	350	600	_	400	900	nA
Differential Input Resistance	Rin		3.0	14		1.0	10	_	MΩ
Voltage Gain	Av	$V_0 = 0.4V$ to 2.4V	200	500	_	100	500		V/m\
Response Time	t _r	100mV step, 5mV overdrive							
		no load (no pull-up)		110	180		110	180	nsec
		5k Ω to 5V	-	110	-	-	110	-	nsec
		TTL fan-out = 4, no pull-up	-	110		-	110	-	nsec
		5V step 5mV overdrive							
		no load (no pull-up) 5kΩ to 5V	_	160 160	_	_	160 160	_	nsec
		TTL fan-out = 4, no pull-up		160	_	_	160	_	nsec nsec
Input Slew Rate				92			92		
					_	-			V/µse
Input Voltage Range	CMVR		±12.5	±13.0	_	±12.5	±13.0	-	V
Common Mode Rejection Ratio	CMRR		94	110	_	90	110	-	dB
Power Supply Rejection Ratio			80	100	-	74	98	-	dB
Positive Output Voltage	∨он	$V_{in} \ge 3mV$, $I_0 = 320\mu A$	2.4	3.2	-	-	_	-	V
		$V_{in} \ge 3mV$, $I_o = 240\mu A$	 2.4	 4.8	-	2.4 2.4	3.4 4.8	-	V V
Coturnation Malana		$V_{in} \ge 3mV, I_0 = 0$			-	2.4		-	
Saturation Voltage	VSAT	$V_{in} \leq -10 \text{mV}$, $I_{sink} = 0$	-	0.16 0.31	0.4 0.45	_	0.16 0.31	0.4 0.45	V V
Output Leokers Courset L		$V_{in} \leq -10 \text{mV}, I_{sink} \leq 6.4 \text{mA}$							
Output Leakage Current I	LEAK	$V_{in} \ge 10 \text{mV}, V_0 = 30 \text{V}$		0.03	4.0	-	0.05	8.0	μA
Positive Supply Current	1+	V _{in} ≤ −10mV	-	5.6	8.0	_	5.6	8.5	mA
Negative Supply Current	1-	V _{in} ≤ −10mV		1.3	2.2	-	1.3	2.2	mA
Power Dissipation	Pd	V _{in} ≤ -10mV		103	153	_	103	161	mW
Offset Voltage Adjustment Range		Nulling Pot $\geq 2k\Omega$		±5	-		±5	-	mV
These specifications apply for Vs+ =	5V, V _s - =	$0V, T_A = 25^{\circ}C$ unless otherwise noted.							
Input Offset Voltage			1 1	0.4	1.5		0.5	25	
Input Offset Current	V _{os}	$R_{s} \leq 5k\Omega \text{ (Note 1)}$ (Note 1)		3	1.5 21	-	0.5 4	3.5 65	mV
Input Bias Current	los	(NOTE 1)			500				nA
Voltage Gain	IB			250	500	_	300	720	nA
Response Time	Av	$V_0 = 0.4V$ to 2.4V (Note 1)	-	50	-	-	50	-	V/mV
nesponse nime	^t r	100mV step, 5mV overdrive							
		5kΩ to 5V	-	150	-	-	150	-	nsec
		TTL fan-out = 4, $5k\Omega$ to $5V$	-	150		-	150		nsec
Input Voltage Range	CMVR		1.8/3.5	1.7/3.8		1.8/3.5	1.7/3.8	-	V
Saturation Voltage	VSAT	$V_{in} \le -3.5 mV$, $I_{sink} \le 6.4 mA$	-	0.3	0.45	-	0.3	0.45	V
Positive Supply Current	1+	V _{in} ≤ −10mV	~~~	2.3	3.2		2.4	3.8	mA
Power Dissipation	Pd	V _{in} ≤ −10mV	-	11.5	16.0	-	12.0	19.0	mW
The following specifications apply f	or V _s = ±15	5V, $0^{\circ} \leq T_{A} \leq +70^{\circ}$ C unless otherwise r	oted.						
Input Offset Voltage	Vos	$R_{s} \leq 5k\Omega$ (Note 1)		0.4	1.4		0.5	3.5	mV
input officer voltage	♥ OS	$V_{s+} = 5V, V_{s-} = 0V$ (Note 1)		0.4	2.4	_	0.5	4.3	mV
Average Input Offset Voltage Drift									
Without External Trim	TCVos	R _s ≃ 50Ω		1.5			1.8	-	μV/°C
With External Trim	TCVosn	$R_s = 50\Omega$	-	1.0	-	-	1.2	-	μV/°0
Input Offset Current	· I _{os}	$T_{A} = +70^{\circ} C$ (Note 1)		4	25	-	5	80	nA
		$T_A = 0^\circ C$ (Note 1)	-	5	45	-	6	120	nA
Average Input Offset Current Drift	TCIos	$25^{\circ}C \leq T_{A} \leq +70^{\circ}C$	-	12			12		pA/°
	0.0	$0^{\circ}C \leq T_{A} \leq 25^{\circ}C$	-	35	-	-	40	-	pA/°
Input Bias Current	IВ	T _A = +70° C	-	330	600	-	340	900	nA
		$T_A = 0^\circ C$	-	400	950		450	1200	nA
Voltage Gain	Av	$V_0 = 0.4V$ to 2.4V	100	500		70	500	-	V/m\
Response Time	t _r	100mV step, 5mV overdrive							
		$T_A = +70^{\circ}C$, no load	-	130	-	-	130	-	nsec
		$T_A = 0^\circ C$, no load		100	-	-	100		nsec
Input Voltage Range	CMVR		12.0	+13.3		±12.0	+13.3	-	V
Common Mode Rejection Ratio	CMRR		90	108	-	86	108	-	dB
Power Supply Rejection Ratio	PSRR	$5V \leq V_{s+} \leq 15V$, $-15V \leq V_{s-} \leq 0V$	77	98	-	70	88	-	dB
Positive Output Voltage	V _{OH}	$V_{in} > 4mV$, $I_0 = 200\mu A$	2.4	3.2	-	2.4	3.2	· —	V .
Saturation Voltage	VSAT	$V_{in} \leq -10 mV$, $I_{sink} = 0$	-	0.17	0.4	-	0.17	0.4	V
Saturation voltage	SAL I	- III SIIIR							

NOTE 1: These parameters are specified as the maximum values required to drive the output between the logic levels of 0.4V and 2.4V with a 1kΩ load tied to +5V; thus, these parameters define an error band which takes into account the worst case effects of voltage gain and input impedance.

7-5


APPLICATION NOTES

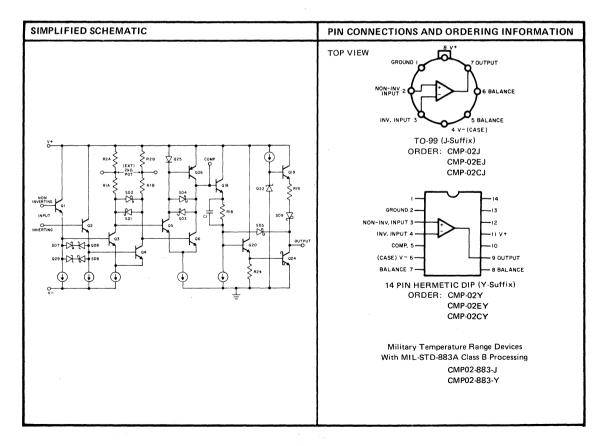
The CMP-01 provides fast response times even with small input overdrives; to achieve this performance requires very high gain at high frequencies. The CMP-01 is completely free of oscillations; however, small values of stray capacitance from output to input when combined with high-source resistances can cause an unstable condition, D. C. characteristics are not affected, but when the input is within a few microvolts of the transition level, certain conditions can create an oscillation region. The width of this oscillatory region and the size of source resistance where oscillations begin is a strong function of the stray coupling present. The following suggestions are offered as a guide towards minimizing the conditions for oscillation: matched source resistors, minimized stray capacitances (e.g. a ground plane between output and input), capacitive output loading (C_L) , or a capacitor from the compensation terminal to A.C. ground (DIP only). The capacitive loading techniques will eliminate the oscillations, but result in slower response time. Positive resistive feedback

creating a hysteresis condition can be very effective – see diagram on page 6. Matched bypass capacitors across the input resistors also can eliminate the instability.

and if $C_{S} \ge 20 \text{ pF}\left[\frac{\text{maximum step size}}{\text{minimum overdrive}}\right]$

the response time will approximate the response time for low values of $R_{\rm g}.$ It should be noted that the offset nulling terminals do not require bypassing for stability. As with all wideband circuits, it is recommended that the supplies be bypassed near the socket of the device.

TYPICAL APPLICATIONS PRECISION, DUAL LIMIT, GO/NO GO TESTER LEVEL DETECTOR WITH HYSTERESIS (Positive Feedback) V₁ ≤32 V 151 75m4 UPPER INPUT O OUTPUT +15V LOWER Wired OR Output is low when either limit is exceeded. Hysteresis width $\leq 4V$ Output is high when input is within limits. **3 IC LOW COST A/D CONVERTER** ANALOG 0 TO + 10 V 5 00080 3.9 M Ω REFERE REF-O DAC-08E B3 C 84 C 85 C 86 C B7C SERIAL O SUCCESSIVE APPROXIMATION REGISTER START C CONVERSION CONNECT "START" TO "CONVERSION COMPLETE" FOR CONTINUOUS CON-VERSIONS, TTL CLOCK INPUT O-2.25 MHZ


LOW INPUT CURRENT PRECISION COMPARATOR

GENERAL DESCRIPTION

The CMP-02 is a monolithic low input current comparator using an advanced compatible NPN-Schottky Barrier Diode process. It features superior input characteristics with extremely low offset voltage, offset current, bias current and temperature drift. High common mode and power supply rejection plus good response time contribute to excellent performance in the most demanding applications. The balanced offset nulling, large output drive, and wired-or capability combined with internal pull-up maximize application convenience. The CMP-02 is capable of operating over a wide range of supply voltages, including single plus 5 volt supply operation, and is pin-compatible to earlier 111, 106, and 710 types. For applications requiring faster response time, please refer to the CMP-01 Fast Precision Comparator data sheet.

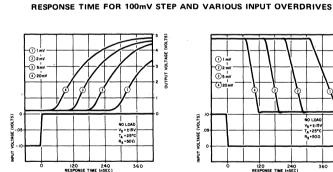
FEATURES

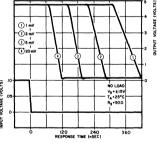
Low Offset Voltage 0.3 mV typ., 0.8 mV Max
Low Offset Current 0.3 nA typ., 3.0 nA Max
Low Bias Current 28 nA typ., 50 nA Max
Low Offset Drift1.0 μ V/°C, 4 pA/°C
High Gain
High CMRR
High Input Impedance
Fast Response Time 190 ns typ., 270 ns Max
Standard Power Supplies ±5V to ±18V
Guaranteed Operation from Single +5V Supply
No Pull-up Resistor Required for TTL Drive
Wired-OR Capability
Fits 111, 106, 710 Sockets
Easy Offset Nulling Single $2K\Omega$ Potentiometer
Easy to Use Free from Oscillations

ABSOLUTE MAXIMUM RATINGS

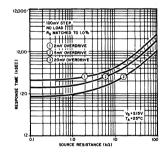
			14
Total Supply Voltage, V+ to V-	36V	Output Sink Current (Continuous Ope	ration) 75 mA
Output to Ground	5V to +32V	Operating Temperature Range –	
Output to Negative Supply Voltage	50V	CMP-02	-55°C to +125°C
Ground to Negative Supply Voltage	30V	CMP-02E, -02C	0°C to +70°C
Positive Supply Voltage to Ground	30V	Storage Temperature Range	-65°C to +150°C
Positive Supply Voltage to Offset Null	0 to 2V	Lead Temperature (Soldering, 60 Sec)	300°C
Power Dissipation (See Note)	500 mW	Output Short Circuit Duration — to gr	ound Indefinite
Differential Input Voltage	±11V	to V	+ 1 min.
Input Voltage ($V_s = \pm 15V$)	±15V		

Note: Maximum package power dissipation vs. ambient temperature

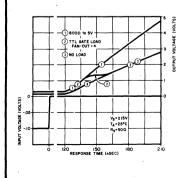

Package Type TO-99 (J) Dual-in-Line (Y)

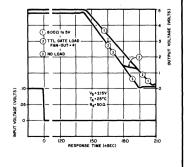

Maximum Ambient Temperature for Rating 80°C 100°C

Derate Above Maximum Ambient Temperature

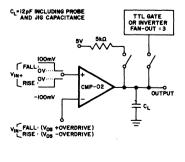

> 7.1 mW/°C $10.0 \text{ mW/}^{\circ}\text{C}$

TYPICAL PERFORMANCE CURVES





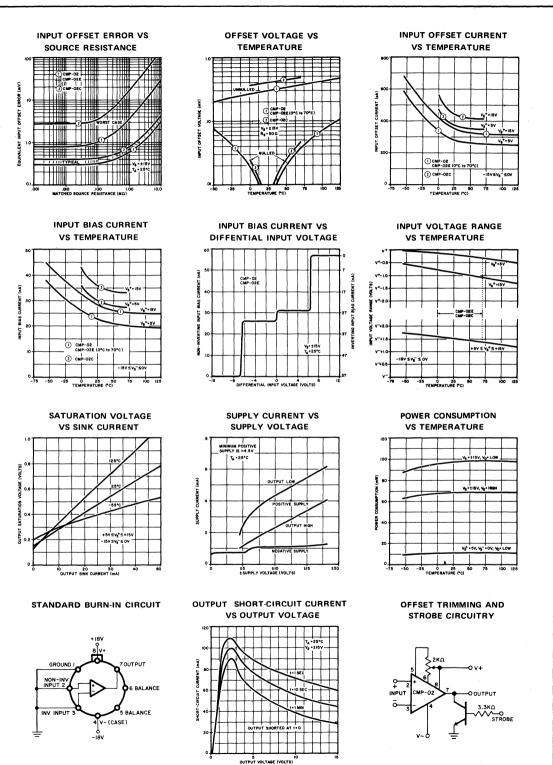
RESPONSE TIME VS SOURCE RESISTANCE



RESPONSE TIME, 100mV STEP, 5mV OVERDRIVE, VARIOUS LOADS

RESPONSE TIME TEST CIRCUIT

СМ	P-02
----	------

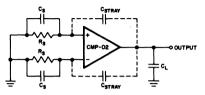

ELECTRICAL CHARACTERIS	TICS			CMP-02		
These specifications apply for $V_s = \pm$	15V, T _A = 25°C	unless otherwise noted.				
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vos	$R_{s} \leq 5k\Omega$ (Note 1)	_	0.3	0.8	mV
Input Offset Voltage	Vos	R _s ≤ 50KΩ (Note 1)		0.3	0.9	mV
Input Offset Current	I _{os}	(Note 1)	_	0.3	3.0	nA
Input Bias Current	IB		-	28	50	nA
Differential Input Resistance	R _{in}		5.0	16	-	MΩ
Voltage Gain	Av	$V_0 = 0.4V$ to 2.4V	200	500	-	V/m
Voltage Gain Av Voltage Gain Av Response Time tr 100mV step, 5mV overdrive no load (no pull-up) 5kΩ to 5V TTL fan-out = 4, no pull-up			190 190 190	270 	nsec nsec nsec	
Input Slew Rate			-	12.5	-	V/µs
Input Voltage Range	CMVR		±12.5	±13.0	-	V
Common Mode Rejection Ratio	CMRR		94	110	_	dB
Power Supply Rejection Ratio	PSRR	$5V \leq V_{s+} \leq 18V, -18V \leq V_{s-} \leq 0V$	80	100	-	dB
positive Output Voltage V_{OH} $V_{in} \ge 3mV, I_0 = 320\mu A$ $V_{in} \ge 3mV, I_0 = 0$		2.4 2.4	3.2 4.8		v v	
Saturation Voltage	VSAT	$V_{in} \leq -10 \text{mV}$, $I_{sink} = 6.4 \text{ mA}$ $V_{in} \leq -10 \text{mV}$, $I_{sink} = 12 \text{ mA}$	-	0.3 0.36	0.45 0.5	v v
Output Leakage Current	LEAK	$V_{in} \ge 10 \text{mV}, V_0 = 30 \text{V}$	_	0.03	2.0	μA
Positive Supply Current	1+	V _{in} ≤ −10mV	_	5.5	8.0	mA
Negative Supply Current		V _{in} ≤ −10mV		1.1	2.2	mA
Power Dissipation	Pd	$V_{in} \le -10 \text{mV}$		99	153	mW
Offset Voltage Adjustment Range	· a	Nulling Pot $\ge 2k\Omega$	_	±5.0	-	mV
These specifications apply for V _s + = 5 Input Offset Voltage	5V, V _s - = 0V, Τ _Δ 	$r_{s} = 25^{\circ}$ C, unless otherwise noted. $R_{s} \leq 5k\Omega$ (Note 1)		0.4	1.5	mV
Input Offset Current	los	(Note 1)		0.25	3.0	nA
Input Bias Current	1 _B		-	24	45	nA
Voltage Gain	Av	V ₀ = 0.4V to 2.4V (Note 1)	_	50	-	V/mV
Response Time	t _r	100mV step, 5mV overdrive 5kΩ to 5V TTL fan-out = 4, 5kΩ to 5V	-	250 250		nsec nsec
Input Voltage Range	CMVR		1.8/3.5	1.7/3.9	_	v
Saturation Voltage	VSAT	$V_{1} \leq -35mV_{1} \leq -64mA_{2}$	1.0/3.5	0.30	0.45	v
Positive Supply Current	1+	$V_{in} \le -3.5 \text{mV}$, $I_{sink} \le 6.4 \text{ mA}$ $V_{in} \le -10 \text{mV}$		2.2	3.0	
Power Dissipation	P _d	V _{in} ≤ -10mV		11.0	15.0	mA mW
here and the second		$^{\circ}C \leq T_{A} \leq +125^{\circ}C$, unless otherwise noted.	<u>۲</u>		13.0	
Input Offset Voltage	V _{os}	$R_{s} \leq 5k\Omega$ (Note 1) $V_{s+} = 5V, V_{s-} = 0V$ (Note 1)	-	0.5 0.6	1.6 2.8	mV mV
Average Input Offset Voltage Drift				I T		
Without External Trim	TCVos	$R_s = 50\Omega$	-	1.5	-	μV/°C
With External Trim	TCVosn	R _s = 50Ω		1.0	-	μV/°C
Input Offset Current	l _{os}	T _A = +125°C (Note 1) T _A = -55°C (Note 1)		0.3 0.6	4.0 12.0	nA nA
Average Input Offset Current Drift	TCIos	$25^{\circ}C \leq T_A \leq +125^{\circ}C$ - $55^{\circ}C \leq T_A \leq 25^{\circ}C$	-	2.0 4.0	_	рА/°С рА/°С
Input Bias Current	۱B	T _A = +125°C T _A = -55°C		25 45	50 120	nA nA
Voltage Gain	Av	V _o = 0.4V to 2.4V	100	500	-	V/mV
Response Time	t _r	100mV step, 5mV overdrive $T_A \approx +125^{\circ}C$, no load $T_A \approx -55^{\circ}C$, no load	-	310 155	-	nsec
Input Voltage Range	CMVR		±12.0	±13.0		
Common Mode Rejection Ratio			±12.0 88			V
	CMRR			106	-	dB
Power Supply Rejection Ratio Positive Output Voltage	PSRR	$5V \le V_{s+} \le 15V, -15V \le V_{s-} \le 0V$	75	96	-	dB
Contine Output voltade	∨он	V _{in} ≥ 4mV, I _o = 200µA	2.4	3.0	-	v
Saturation Voltage	VSAT	$V_{in} \leq -10 mV$, $I_{sink} = 0$		0.20	0.4	V

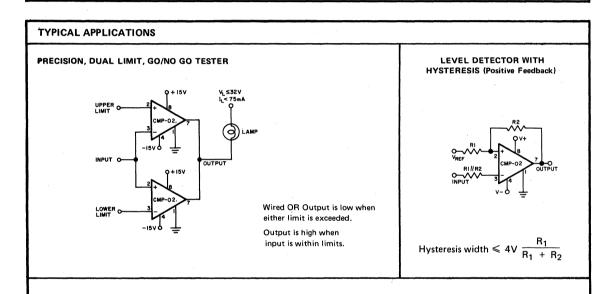
NOTE 1: These parameters are specified as the maximum values required to drive the output between the logic levels of 0.4V and 2.4V with a 1kΩ load tied to +5V; thus, these parameters define an error band which takes into account the worst case effects of voltage gain and input impedance.

•

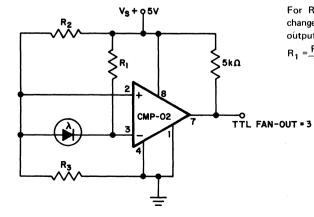
ELECTRICAL CHARACTERIS	STICS	1		CMP-02E			CMP-02C		
These specifications apply for $V_s = $	±15V, T _A =	25°C unless otherwise noted.							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Offset Voltage	Vos	R _s ≤ 5kΩ (Note 1)		0.3	0.8	_	0.4	2.8	mV
Input Offset Voltage	Vos	R _s ≤ 50KΩ (Note 1)	-	0.3	0.9	_	0.4	3.0	mV
Input Offset Current	los	(Note 1)	-	0.3	3.0	-	0.4	15	nA
Input Bias Current	1 _B			28	50	-	35	100	nA
Differential Input Resistance	Rin		5.0	16	-	1.5	12	-	MΩ
Voltage Gain	Av	V ₀ = 0.4♥ to 2.4∨	200	500	·	100	500		V/mV
Response Time	t _r	100mV step, 5mV overdrive no load (no pull-up) 5kΩ to 5V		190 190	270	-	190 190	270 —	risec nsec
		TTL fan-out = 4, no pull-up	-	190	-	-	190		nsec
Input Slew Rate			-	15	·	-	15	-	V/µse
Input Voltage Range	CMVR		±12.5	±13.0	-	±12.5	±13.0	-	v
Common Mode Rejection Ratio	CMRR		94	110		90	110	-	dB
Power Supply Rejection Ratio	PSRR	$5V \leq V_{s+} \leq 18V, -18V \leq V_{s-} \leq 0V$	80	100	-	74	98	-	dB
Positive Output Voltage	V _{ОН}	$ \begin{array}{l} V_{in} \geqslant 3mV, I_{o} = 320 \mu A \\ V_{in} \geqslant 3mV, I_{o} = 240 \mu A \\ V_{in} \geqslant 3mV, I_{o} = 0 \end{array} $	2.4 - 2.4	3.2 - 4.8		- 2.4 2.4	- 3.4 4.8		> > >
Saturation Voltage	VSAT	$V_{in} \leq -10 \text{mV}, I_{sink} = 0$ $V_{in} \leq -10 \text{mV}, I_{sink} \leq 6.4 \text{ mA}$	-	0.16 0.31	0.4 0.45	_	0.16 0.31	0.4 0.45	v v
Output Leakage Current	LEAN	$V_{in} \ge 10 \text{mV}, V_0 = 30 \text{V}$		0.03	4.0		0.05	8.0	μA
Positive Supply Current	I+	$V_{in} \ge 10 \text{mV}, V_0 = 30 \text{V}$ $V_{in} \le -10 \text{mV}$		5.5	8.0		5.6	8.5	mA mA
Negative Supply Current	1-			1.1	2.2		1.2	2.2	mA
Power Dissipation		V _{in} ≤ -10mV							
Offset Voltage Adjustment Range	Pd	$V_{in} \le -10 \text{mV}$ Nulling Pot $\ge 2k\Omega$		99 ±5.0	153		102 ±5.0	161	mW mV
	= 5V, V _s - =	$0V, T_A = 25^{\circ}C$ unless otherwise noted.			I	L	-0.0	l	
Input Offset Voltage	Vos	$R_s \leq 5k\Omega$ (Note 1)	-	0.4	1.5	-	0.5	3.5	mV
Input Offset Current	los	(Note 1)	-	0.25	3.0	_	0.35	14	nA
Input Bias Current	1 _B		-	24	45	-	30	90	nA
Voltage Gain	Av	V ₀ = 0.4V to 2.4V (Note 1)	-	50		_	50	-	V/mV
Response Time	t _r	100mV step, 5mV overdrive 5kΩ to 5V TTL fan-out = 4, 5kΩ to 5V	-	250 250			250 250	-	nsec nsec
Input Voltage Range	CMVR		1.8/3.5	1.7/3.8	_	1.8/3.5	1.7/3.8	-	v
Saturation Voltage		$V_{1} \leq -35mV_{1} \leq 64mA_{2}$	1.0/0.0	0.3	0.45	1.070.0	0.3	0.45	v
Positive Supply Current	VSAT	$V_{in} \le -3.5 \text{mV}, I_{sink} \le 6.4 \text{ mA}$ $V_{in} \le -10 \text{mV}$		2.2	3.0	_	2.3	3.6	mA
Power Dissipation	Pd	V _{in} ≤ -10mV		11.0	15.0		11.5	18.0	mW
The following specifications apply f	or V _s = ±15	$V, 0^{\circ} \leq T_{A} \leq +70^{\circ}C$ unless otherwise r	noted.	L	·	h			
Input Offset Voltage	Vos		-	0.4 0.5	1.4 2.4	_	0.5 0.6	3.5 4.3	mV mV
Average Input Offset Voltage Drift Without External Trim With External Trim	TCV _{os} TCV _{osn}	$R_s = 50\Omega$ $R_s = 50\Omega$	-	1.5 1.0		·	1.8 1.2	·	μV/°C μV/°C
Input Offset Current	los	T _A = +70°C (Note 1) T _A = 0°C (Note 1)	-	0.3 0.4	3.0 6.0		0.4 0.5	15 25	nA nA
Average Input Offset Current Drift	TCIos	$\begin{array}{l} 25^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C\\ 0^{\circ}C \leqslant T_{A} \leqslant 25^{\circ}C \end{array}$	-	2.0 4.0	-	-	3.0 5.0	-	pA/°C pA/°C
Input Bias Current	IB	$T_{A} = +70^{\circ}C$ $T_{A} = 0^{\circ}C$	1.	26 34	50 80	-	33 42	100 160	nA nA
Voltage Gain	Av	$V_0 = 0.4V$ to 2.4V	100	500	-	70	500		V/mV
Response Time	tr	100mV step, 5mV overdrive $T_A = +70^{\circ}$ C, no load $T_A = 0^{\circ}$ C, no load	-	225 180		-	225 180		nsec nsec
Input Voltage Range	CMVR		±12.0	±13.0	- 1	±12.0	±13.0	-	V
Common Mode Rejection Ratio	CMRR		90	108	- 1	86	108	-	dB
	PSRR	$5V \le V_{s+} \le 15V, -15V \le V_{s-} \le 0V$	77	98	- 1	70	88	-	dB
Power Supply Rejection Ratio		and the second	+		1			t	
Power Supply Rejection Ratio Positive Output Voltage	∨он	V _{in} ≥ 4mV, I _o = 200µA	2.4	3.2	-	2.4	3.2	- 1	v

TYPICAL PERFORMANCE CURVES


7-11


APPLICATION NOTES

The CMP-02 provides fast response times even with small input overdrives; to achieve this performance requires very high gain at high frequencies. The CMP-02 is completely free of oscillations; however, small values of stray capacitance from output to input when combined with high-source resistances can cause an unstable condition, D. C. characteristics are not affected, but when the input is within a few microvolts of the transition level, certain conditions can create an oscillation region. The width of this oscillatory region and the size of source resistance where oscillations begin is a strong function of the stray coupling present. The following suggestions are offered as a guide towards minimizing the conditions for oscillation: matched source resistors, minimized stray capacitances (e.g. a ground plane between output and input), capacitive output loading (C_L), or a capacitor from the compensation terminal to A.C. ground (DIP only). The capacitive loading techniques will eliminate the oscillations, but result in slower response time. Positive resistive feedback creating a hysteresis condition can be very effective – see diagram on page 6. Matched bypass capacitors across the input resistors also can eliminate the instability,


and if $C_{S} \ge 20 \text{ pF}\left[\frac{\text{maximum step size}}{\text{minimum overdrive}}\right]$

the response time will approximate the response time for low values of $R_{\rm s}$. It should be noted that the offset nulling terminals do not require bypassing for stability. As with all wideband circuits, it is recommended that the supplies be bypassed near the socket of the device.

PRECISION PHOTODIODE LEVEL DETECTOR

For $R_1 = 2.5 \text{ M}\Omega$, $R_2 = R_3 = 5M\Omega$, the output state changes at a photo diode current $(I_{\lambda T})$ of 0.5μ A. (The output changes state at threshold current $I_{\lambda T} = \frac{V_s^+}{2R_2}$ where $R_1 = \frac{R_2}{2R_2}$ and $R_3 = R_2$)

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

INDEX MATCHED TRANSISTORS

PRODUCT	TITLE	PAGE
MAT-01	Ultra-Matched Monolithic Dual Transistor .	8-1

ULTRA-MATCHED MONOLITHIC DUAL TRANSISTOR EXCELLENT LOG CONFORMANCE

GENERAL DESCRIPTION

The MAT-01 series are monolithic ultra-tightly matched dual NPN transistors, fabricated using an exclusive Silicon Nitride "Triple-Passivation" process which provides extreme stability of critical parameters versus both temperature and time. Outstanding matching characteristics include offset voltages of 40μ V, temperature drift of V_{OS} of 0.15μ V/°C and hEE matching of 0.7%. Very high hEE is provided over a six decade range of collector current, including an exceptional hFE of 590 @ Ic = 10nano amperes! Excellent logarithmic conformance over a seven decade collector current span suggests application in log/antilog and multiplier/divider circuitry. The very low values of noise voltage and current make the MAT-01 ideal for usage in critical low-level input stages while the 6 pin TO-99 package allows direct replacement of most previous dual transistors for immediate performance improvements. The very high hFE at low collector

FEATURES

Tight Vos (VBE Match)40 μ V Typ, 100 μ V MaxLow TC Vos0.15 μ V/°C Typ, 0.5 μ V/°C MaxTight hFE Match0.7% Typ, 3.0% MaxHigh hFE
Excellent Long Term Stability \ldots 0.2 μ V/Month, Typ
Precision Logarithmic Conformance Direct Replacement for Most Dual Transistors

currents also makes the MAT-01 attractive in all high impedance and micropower circuit designs.

ABSOLUTE MAXIMUM RATINGS					
	MAT-01	MAT-01		MAT-01 AH, GH	МАТ-01 Н ЕН
	AH, GH	H, FH	Total Power Dissipation		
Collector-Base Voltage (BV _{CBO})	45V	60V	Case Temperature $\leq 40^{\circ}$ C (Note 2)	1.8W	1.8W
Collector-Emitter Voltage (BVCEO)	45V	60V	Ambient Temperature ≤ 70°C		
Collector-Collector Voltage (BV _{CC})	45V	60 V	(Note 3)	500mW	500mW
Emitter-Emitter Voltage (BV _{FF})	45V	60V	Operating Ambient Temperature	–55°C to	
Emitter-Base Voltage (BVFBO) (Note 1)	5V	5V	Operating Junction Temperature	–55°C to	
Collector Current (I _C)	25mA	25mA	Storage Temperature	′ –65 [°] C to	+150°C
Emitter Current (IE)	25mA	25mA	Lead Temperature (Soldering, 60 sec.)	3	. D`00E

NOTES

Note 1: Application of reverse bias voltages in excess of rating shown can result in degradation of $\rm h_{FE}$ and $\rm h_{FE}$ matching characteristics. Do not attempt to measure $\rm BV_{EBO}$ greater than the 5V rating shown.

Note 2: Rating applies to applications using heat sinking to control case temperature. Derate linearly at 16.4mW/ $^{\circ}$ C for case temperatures above 40° C. Note 3: Rating applies to applications not using heat sinking; device in free air only. Derate linearly at 6.3mW/ $^{\circ}$ C for ambient temperatures above 70° C.

PIN CONNECTIONS AND ORDERING INFORMATION

TOP VIEW

Note: Substrate is connected to case.

ORDER: MAT-01AH MAT-01H MAT-01FH MAT-01GH Military Temperature Range Devices With MIL-STD-883A Class B Processing: ORDER: MAT01-883-AH MAT01-883-H MAT01-883-FH MAT01-883-GH

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_{CB} = 15V$, $I_C = 10\mu A$, $T_A = 25^{\circ}C$, unless otherwise noted.

				MAT-01	۹H	1	MAT-010	GH	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Breakdown Voltage	BVCEO		45	_	-	45	_	·	v
Offset Voltage	Vos		-	0.04	0.1	-	0.10	0.50	mV
Offset Voltage Stability First Month Long Term	V _{os} /Time V _{os} /Time	(Note 1) (Note 2)	-	2.0 0.2	-	-	2.0 0.2	_ _	μV/Month μV/Month
Offset Current	los		-	0.1	0.6	-	0.2	3.2	nA
Bias Current	1 _B		-	13	20		18	40	nA
Current Gain	hfe	I _C = 10nA	-	590	-	-	430	-	
	hFE	I _C = 10μA	500	770	-	250	560		
	hfe	I _C = 10mA	-	840			610	-	
Current Gain Match	∆hFE		- 1	0.7	3.0	-	1.0	8.0	%
	∆hFE	100nA ≤ I _C ≤ 10mA	-	0.8	-		1.2	-	%
Low Frequency Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)	-	0.23	0.4		0.23	0,4	μVp-p
Broadband Noise Voltage	^e nRMS	1Hz to 10kHz	-	0.60	-		0.60		μV _{RMS}
Narrowband Noise Voltage	e _n	f _o = 10Hz (Note 3)	-	7.0	9.0		7.0	9.0	nV√Hz
Density		f _o = 100Hz (Note 3)	-	6.1	7.6	-	6.1	7.6	nV/√Hz
		f _o = 1000Hz (Note 3)	-	6.0	7.5		6.0	7.5	nV/√Hz
Offset Voltage Change	ΔV _{os} /ΔV _{CB}	0 ≤ V _{CB} ≤ 30V	-	0.5	3.0		0.8	8.0	μV/V
Offset Current Change	ΔI _{os} /ΔV _{CB}	0 ≤ V _{CB} ≤ 30V	-	2.0	15		3.0	70	pA/V
Collector-Base Leakage Current	ICBO	V _{CB} = 30V, I _E = 0 (Note 4)	-	15	50	-	25	200	рА
Collector-Emitter Leakage Current	ICES	V _{CE} = 30V, V _{BE} = 0 (Note 4)	-	50	200	-	90	400	рА
Collector-Collector Leakage Current	lcc	V _{CC} = 30	-	20	200	-	30	400	рА
Collector Saturation Voltage	VCE(SAT)	I _B = 0.1mA, I _C = 1mA	-	0.12	0.20	-	0.12	0.25	V
·	VCE(SAT)	I _B = 1mA, I _C = 10mA	-	0.8	-	-	0.8	-	V
Gain-Bandwidth Product	fT	V _{CE} = 10V, I _C = 10mA	-	450	-	-	450	-	MHz
Output Capacitance	Cob	V _{CE} = 15V, I _E = 0	-	2.8	-	-	2.8	-	рF
Collector-Collector Capacitance	CCC	V _{CC} = 0	-	8.5	-	-	8.5		pF
The following specifications app	ly for V _{CB} = 15	V, I _C = 10μA, –55°C ≤ T _A	≤ +125	°C, unless	otherwise	noted.	L		
Offset Voltage	V _{os}		-	0.06	0.15	-	0.14	0.70	mV
Average Offset Voltage Drift	TCVos	(Note 3)	-	0.15	0.50	-	0.35	1.8	μV/°C
Offset Current	los		1 -	0.9	8.0	-	1.5	15.0	nA
Average Offset Current Drift	TCIos	(Note 3)	-	10	90	-	15	150	pA/°C
Bias Current	۱ _B		-	28	60	-	36	130	nA
Current Gain	hFE		167	400	-	77	300	-	
			+						

Collector-Collector Leakage Current

Current

Collector-Base Leakage Current

Collector-Emitter Leakage

NOTES:

Note 1: Exclude first hour of operation to allow for stabilization of external circuitry.

Note 2: Parameter describes long term average drift trend after first month of operation.

Note 3: Parameter is not 100% tested; 90% of all units meet this specification.

ГСВО

CES

lcc

Note 4: The collector-base (I_{CBO}) and collector-emitter (I_{CEO}) leakage currents may be reduced by a factor of two to ten times by connecting the substrate (package) to a potential which is lower than either collector voltage.

80

300

200

15

50

30

_

25

90

50

_

200

400

400

nΑ

nΑ

nΑ

T_A = 125°C, V_{CB} = 30V

 $T_{A} = 125^{\circ}C, V_{CC} = 30V$

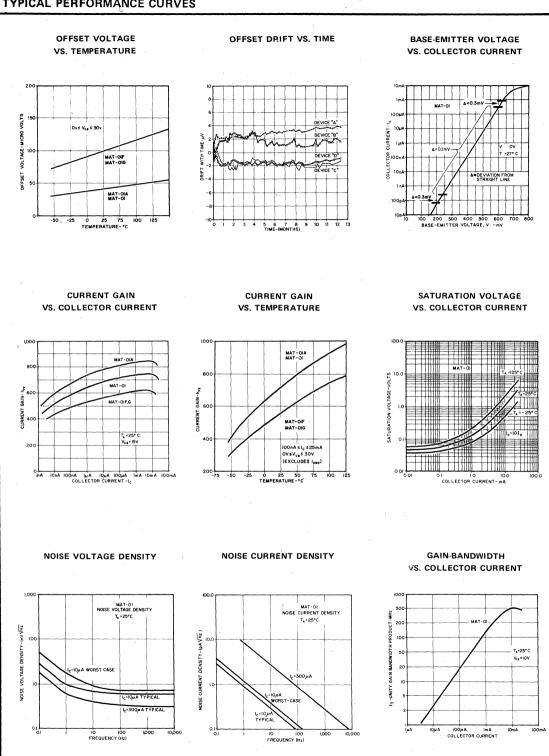
 $T_{\rm E} = 0 \text{ (Note 4)}$ $T_{\rm A} = 125^{\circ}\text{C}, V_{\rm CE} = 30\text{V},$ $V_{\rm BE} = 0 \text{ (Note 4)}$

ELECTRICAL CHARACTERISTICS

		1	MAT-0	ін (MAT-01FH			
Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
BVCEO		60	-	-	60	_	-	v
Vos		-	0.04	0.1		0.10	0.50	mV
V _{os} /Time V _{os} /Time	(Note 1) (Note 2)	-	2.0 0.2		_	2.0 0.2	-	μV/Monti μV/Monti
los			0.1	0.8	-	0.2	3.2	nA
IB	_		15	30		18	40	nA
hFE	I _C = 10nA	-	520	-	_	430	-	
hFE	I _C = 10μA	330	680	-	250	560	-	
hFE	I _C = 10mA		740	-	_	610	-	
ΔhFE		-	0.7	2.7		1.0	8.0	%
ΔhFE	100nA ≤ I _C ≤ 10mA		0.8	-	_	1.2	-	%
^e np-p	0.1Hz to 10Hz (Note 3)	-	0.23	0.4		0.23	0.4	μVp-p
enRMS	1Hz to 10kHz	-	0.60	-	-	0.60	-	^µ VRMS
e _n	f _o ≈ 10Hz (Note 3)	-	7.0	9.0		7.0	9.0	nV/√Hz
[f _o = 100Hz (Note 3)	-	6.1	7.6	_	6.1	7.6	nV/√Hz
ſ	f _o = 1000Hz (Note 3)	-	6.0	7.5		6.0	7.5	nV/√Hz
$\Delta V_{os} / \Delta V_{CB}$	$0 \le V_{CB} \le 45V$	-	0.5	3.0	-	0.8	8.0	μV/V
ΔI _{os} /ΔV _{CB}	$0 \le V_{CB} \le 45V$	-	2.0	15.0		3.0	70	pA/V
СВО	V _{CB} = 45V, I _E = 0 (Note 4)	-	15	50	-	25	200	pА
ICES	$V_{CE} = 45V, V_{BE} = 0$ (Note 4)	-	50	200	-	90	400	рА
'cc	V _{CC} = 45		20	200		30	400	рА
VCE(SAT)	I _B = 0.1mA, I _C = 1mA	-	0.12	0.20		0.12	0.25	V
VCE(SAT)	I _B = 1mA, I _C = 10mA	-	0.8	-	-	0.8		v
fT	V _{CE} = 10V, I _C = 10mA		450	-		450	-	MHz
C _{ob}	V _{CE} = 15V, I _E = 0	-	2.8	-	-	2.8	-	pF
CCC	V _{CC} = 0		8.5	-		8.5	-	pF
	BVCEO Vos Vos/Time Ios IB hFE hFE AhFE @np-p @nRMS @n ΔVos/ΔVCB ΔVos/ΔVCB ICBO ICES ICC VCE(SAT) VCE(SAT) fT Cob	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Offset Voltage	Vos			0.06	0.15	-	0.14	0.70	mV
Average Offset Voltage Drift	TCVos	(Note 3)		0.15	0.50	_	0.35	1.8	μV/°C
Offset Current	los		~	0.9	9.0	-	1.5	15.0	nA
Average Offset Current Drift	TCIos	(Note 3)		11	110		15	150	pA/°C
Bias Current	۱ _B			30	95	-	36	130	nA
Current Gain	hFE		105	350	-	77	300	-	
Collector-Base Leakage Current	СВО	T _A = 125°C, V _{CB} = 45V,		15	80	-	25	200	nA
		I _E = 0 (Note 4)							
Collector-Emitter Leakage	CES	T _A = 125°C, V _{CE} = 45V,	-	50	300	-	90	400	nA
Current		V _{BE} = 0 (Note 4)							
Collector-Collector Leakage	^I cc	T _A = 125°C, V _{CC} = 45V	-	30	200		50	400	nA
Current									

NOTES:

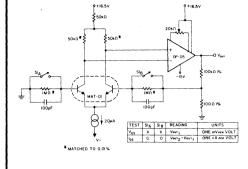

Note 1: Exclude first hour of operation to allow for stabilization of external circuitry.

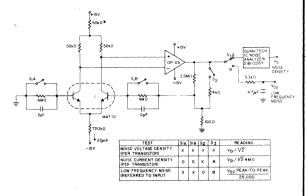
Note 2: Parameter describes long term average drift trend after first month of operation.

Note 3: Parameter is not 100% tested; 90% of all units meet this specification.

Note 4: The collector-base (I_{CBO}) and collector-emitter (I_{CEO}) leakage currents may be reduced by a factor of two to ten times by connecting the substrate (package) to a potential which is lower than either collector voltage.

TYPICAL PERFORMANCE CURVES

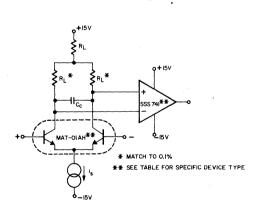



8-4

MAT-01 TEST CIRCUITS

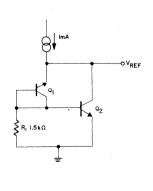
MAT-01 MATCHING MEASUREMENT CIRCUIT

MAT-01 NOISE MEASUREMENT CIRCUIT


APPLICATION NOTES

Application of reverse bias voltages to the emitter-base junctions in excess of ratings (5V) may result in degradation of h_{FE} and h_{FE} matching characteristics; circuit designs should be checked to insure that such reverse bias voltages cannot be applied during transient conditions, such as at circuit turn-on and turn-off.

The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input terminals are maintained at the same temperature, preferrably close to the temperature of the device's package.


TYPICAL APPLICATIONS

PRECISION OPERATIONAL AMPLIFIERS

	MAT-OI AH	MAT-OIAH	MAT-OIGH	MAT-OIGH
	SSS741	SSS 741	SSS 74IC	SSS 741C
Vos MAX	0.15mV	0.27mV	065mV	1.2 mV
TCVos MAX	.6 #V/°C	Iµ V∕°C	2µV/°C	4µV/°C
los MAX	O.8nA	O.InA	3.2nA	0.32nA
I MAX	20nA	2nA	40nA	4nA
GAIN MIN	2,000,000	2,000,000	800,000	800,000
ls	20µA	2µA	20µA	2 µ A
RL	100kΩ	ΙΜΩ	100kΩ	IMΩ

PRECISION REFERENCE

V_{REF}≈7.0V TCV_{REF}≈lOppm/°C

R₀≈40Ω

 $R_{i}may$ be adjusted to minimize TCV_{REF} Increasing R_{i} will cause a positive change in TCV_{REF}

Note: h_{FE} of QI will be reduced by operation in breakdown mode.

OSS REFEREN	ICE MAT-01 TO	MONOLITH	C DUAL TRANS	ISTORS (I _C =	10μA)		
DEVICE	BVCEO MIN (V)	V _{os} MAX (mV)	ТСV _{OS} МАХ (µ̀V/°С)	hfe Min	М	l _{os} IAX 1A)	TCI _{os} MAX (pA/°C)
MAT-01AH	45	0.1	0.5	500		0.6	90
MAT-01H	60	0.1	0.5	330		0.8	110
MAT-01FH	60	0.5	1.8	250	:	3.2	150
MAT 01GH	45	0.5	1.8	250	:	3.2	150
_M114A	45	0.5	2.0	500		2.0	
_M114	45	2.0	10	250		10	
_M115A	60	0.5	2.0	250	:	2.0	
_M115	60	2.0	10	250		10	
AD810	35	3.0	15	100	:	2.0	600
AD811	45	1.5	7.5	200		10	300
AD812	35	1.0	5.0	400	:	2.5	300
AD813	45	0.5	2.5	200	!	5	300
AD818	20	1.0	5.0	200	\$	10	300
	(V)	(mV)	(μV/°C)		MAX	(nA)	(pA/°C)
MAT-01GH	45	0.5	1.8	250	8	3.2	150
2N2639	45	5.0	10	50	10	20	1000
2N2640	45	10	20	50	20	40	2000
2N2642	45	5.0	10	100	10	10	500
2N2643	45	10	20	100	20	20	375
2N2915	45	3.0	10	60	10	17	600
2N2915A	45	2.0	5.0	60	15	26	900
2N2916	45	5.0	10	150	10	7	N.C.
2N2916A	45	2.0	5.0	150	15	10	300
2N2917	45	10	20	60	20	17	1450
2N2918	45	5.0	20	150	20	7	750
	60	0.5	1.8	250	8	3.2	150
MAT-01FH	00				10		
		3.0	10	60	10	17	600
MAT-01FH 2N2919 2N2919A	60 60	3.0 1.5	10 5.0	60 60	10	17 17	600 600
2N2919 2N2919A	60						
2N2919 2N2919A 2N2920	60 60	1.5	5.0	60	10	17	600
2N2919	60 60 60	1.5 3.0	5.0 10	60 150	10 10	17 7	600 N.C.

Notes: 1. TCI_{os} Max and I_{os} Max calculated from published data.

2. N.C. = Insufficient published data to calculate.

3. All of the above are physically interchangeable pin-for-pin with MAT-01 series.

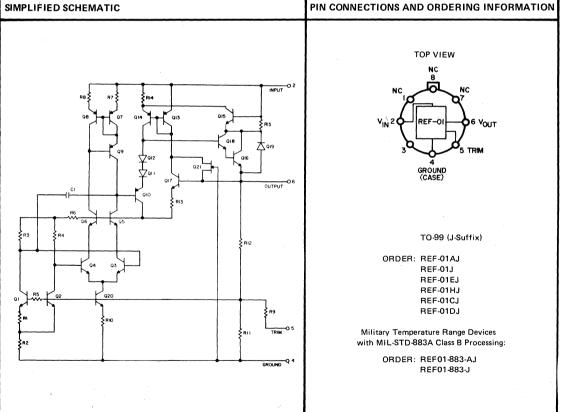
NUMERICAL INDEX	
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUI	DE 5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	; 11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

INDEX VOLTAGE REFERENCE

PRODUCT	TITLE P	AGE
	+10V Precision Voltage Reference	
REF-02	+5V Precision Voltage Reference	9-8

form for

+10V PRECISION VOLTAGE REFERENCE


GENERAL DESCRIPTION

The REF-01 Precision Voltage Reference provides a stable +10V output which can be adjusted over a \pm 3% range with minimal effect on temperature stability. Single supply operation over an input voltage range of 12 to 40V, low current drain of 1mA, and excellent temperature stability are achieved with an improved bandgap design. Low cost, low noise and low power make the REF-01 an excellent choice whenever a stable voltage reference is required, such as in D/A and A/D converters, in portable instruments, and in digital voltmeters. Full military temperature range devices with screening to MIL-STD-883A are available.

FEATURES

	Adjustable 10 Volt Output±3%
	Excellent Temperature Stability 3 $ppm/^{\circ}C$
•	Low Noise
	Low Power 15mW
-	Wide Input Voltage Range 12 to 40V
	High Load Driving Capability
	No External Components
	Short Circuit Proof
	MIL-STD-883A Screening Available

PIN CONNECTIONS AND ORDERING INFORMATION

r

		40.3			-	~~~~~			
Input Voltage REF-01, A, E,	н	40 \ 30 \	-						
REF-01C, D Power Dissipation (see note)		500mV		REF-01	A, REF-0	1			C to +125°C
Output Short Circuit Duration	'n	Indefinit		REF-01	E, REF-0	1H,		0°	°C to +70°C
(to ground or VIN)		$REF-01D REF-01C,$ $-65^{\circ}C \text{ to } +150^{\circ}C$ Note: Derate at 7.1mW/°C above 80°C ambient							
Storage Temperature Range								t	
Lead Temperature (Soldering	g, 60 sec)	300°C temperature.							
ELECTRICAL CHARACTE	RISTICS								
				REF-01A			REF-01		
These specifications apply fo	or V _{IN} = +15	V, $T_A = 25^\circ C$, unless oth	nerwise no	ted.	r				
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	vo	۱ _L = 0mA	9.97	10.00	10.03	9.95	10.00	10.05	v
Output Adjustment Range	ΔV _{trim}	R _p = 10kΩ	± 3.0	±3.3	-	±3.0	±3.3	-	%
Output Voltage Noise	^e np-p	0.1Hz to 10Hz (Note 5)	-	20	30	-	20	30	µVp-p
Input Voltage Range	V _{IN}		12	-	40	12	-	40	V
Line Regulation (Note 4)		V _{IN} = 13 to 33V	-	0.006	0.010	-	0.006	0.010	%/V
Load Regulation (Note 4)		1 _L = 0 to 10mA		0.005	0.008	-	0.006	0.010	%/mA
Turn-on Settling Time	ton	To ±0.1% of final value		5.0	-	-	5.0		μsec
Quiescent Current	ISY	No Load	-	1.0	1.4	-	1.0	1.4	mA
Load Current	۱L		10	21	-	10	21	-	mA
Sink Current	^I s		-0.3	-0.5	-	-0.3	0.5	-	mA
Short Circuit Current	lsc	V _O = 0		30	-		30	-	. mA
The following specifications	apply for V	N = +15V, -55° C ≤ T _A	≤ +125° C	and IL = 0	mA,unless	otherwise r	oted.		
Output Voltage Change	ΔVOT	0°.≤T _A ≤+70° C	-	0.02	0.06	-	0.07	0.17	%
with Temperature (Notes 1 and 2)		-55°≤T _A ≤+125° C	-	0.06	0.15		0.18	0.45	%
Output Voltage	tcv _o	(Note 3)	-	3	8.5		10	25	ppm/° C
Temperature Coefficient Change in VO Temperature Coefficient with Output		R _p = 10kΩ	-	0.7	• -	-	0.7	-	ppm/° C /%
Adjustment Line Regulation		0°≤T _A ≤+70° C		0.007	0.012	-	0.007	0.012	%/V
(V _{IN} ≈ 13 to 33V) (Note 4)		–55°≤T _A ≤+125° C	-	0.009	0.015	-	0.009	0.015	%/V
Load Regulation		0°≤T _A ≤+70° C		0.006	0.010		0.007	0.012	%/mA ~
(I		–55° ≼T _A ≤ +125° C	-	0.007	0.012		0.009	0.015	%/mA
		lute difference between t as a percentage of 10V:	the maxim	um output v	oltage and	minimum c	output volta	ge over the	specified
	V _{MAX} - V								
		rimmed to 10.000V or u	ntrimmed						
	d as $\Delta V \cap au$ d	ivided by the temperatur	re range: i	ല. TCV പന്ദ്രീ	to+70° C) =	ΔV _{OT} 0	to+70° C		
		ΔV _{OT} -55 to+125°C 180°C	ago, I.	.,		70	°C		
		ecifications include the		•					
NOTE 5: Parameter is no	t 100% tested	; 90% of units meet this	specificat	ion.					

BEF-01 DEFINITIONS

LINE REGULATION

The ratio of the change in output voltage to the change in line voltage producing it.

LOAD REGULATION

The ratio of the change in output voltage to the change in load current producing it.

QUIESCENT CURRENT (ISY)

The current required from the supply to operate the device with no load.

OUTPUT TURN-ON SETTLING TIME (ton)

The time required for the output voltage to reach its final value within a specified error band after application of VIN.

OUTPUT VOLTAGE NOISE (enp-p)

The peak to peak output noise voltage in a specified frequency band.

OUTPUT CHANGE WITH TEMPERATURE (AVOT)

The absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 10V:

$$\Delta V_{OT} = \frac{V_{MAX} - V_{MIN}}{10V} \times 100$$

OUTPUT TEMPERATURE COEFFICIENT (TCVO)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/°C.

ELECTRICAL CHARACTERISTICS

	REF-01E	REF-01H	
1		*	

These specifications apply for $V_{IN} = +15V$, $T_A = 25^{\circ}C$, unless otherwise noted c

Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	Vo	IL = 0mA	9.97	10.00	10.03	9.95	10.00	10.05	v
Output Adjustment Range	ΔV _{trim}	R _p = 10kΩ	±3.0	±3.3	-	±3.0	±3.3	-	%
Output Voltage Noise	^е пр-р	0.1Hz to 10Hz (Note 5)	-	20	30	-	20	30	μVp-p
Input Voltage Range	VIN		12	- 1	40	12	-	40	V
Line Regulation (Note 4)	11	V _{IN} = 13 to 33V		0.006	0.010	-	0.006	0.010	%/V
Load Regulation (Note 4)	1	IL = 0 to 10 mA	-	0.005	0.008	-	0.006	0.010	%/mA
Turn-on Settling Time	t _{on}	To ±0.1% of final value	-	5.0		<u> </u>	5.0		μsec
Quiescent Current	1 _{SY}	No Load	-	1.0	1.4	-	1.0	1.4	mA
Load Current	1		10	21	-	10	21	[-]	mA
Sink Current	۱s		-0.3	-0.5		-0.3	-0.5	[-]	mA
Short Circuit Current	¹ SC	V _O = 0	-	30		-	30	[_]	mA

The following specifications apply for V_{IN} = +15V, $0^{\circ}C \le T_A \le +70^{\circ}C$ and I_L = 0mA, unless otherwise noted.

Output Voltage Change with Temperature	ΔV _{OT}	(Notes 1 and 2)	-	0.02	0.06		0.07	0.17	%
Output Voltage Temperature Coefficient	тсv _о	(Note 3)	-	3	8.5	-	10	25	ppm/°C
Change in V _O Temperature Coefficient With Output Adjustment		R _p = 10kΩ	-	0.7	-	-	0.7	-	ppm/° C/%
Line Regulation (Note 4)		V _{IN} = 13 to 33V	-	0.007	0.012	-	0.007	0.012	%/V
Load Regulation (Note 4)		I _L = 0 to 8 mA	-	0.006	0.010	-	0.007	0.012	%/mA

NOTE 1:

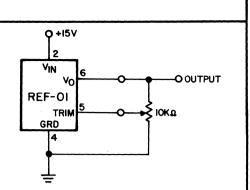
 ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 10V:

$$\Delta V_{\text{OT}} = \frac{V_{\text{MAX}} - V_{\text{MIN}}}{10V} \times 100$$

NOTE 2: ΔV_{OT} specification applies trimmed to +10.000V or untrimmed.

ΔVοτ TCV_O is defined as ΔV_{OT} divided by the temperature range; i.e., TCV_O = $\frac{1}{70^{\circ}C}$ NOTE 3:

NOTE 4: Line and Load Regulation specifications include the effects of self heating.


NOTE 5: Parameter is not 100% tested; 90% of units meet this specification.

OUTPUT ADJUSTMENT

The REF-01 trim terminal can be used to adjust the output voltage over a 10V ±300mV range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 10V. Of course, the output can also be set to exactly 10.000V, or to 10.240V for binary applications.

Adjustment of the output does not significantly affect the temperature performance of the device. Typically the temperature coefficient change is 0.7 ppm/°C for 100mV of output adjustment.

ELECTRICAL CHARACTERISTICS

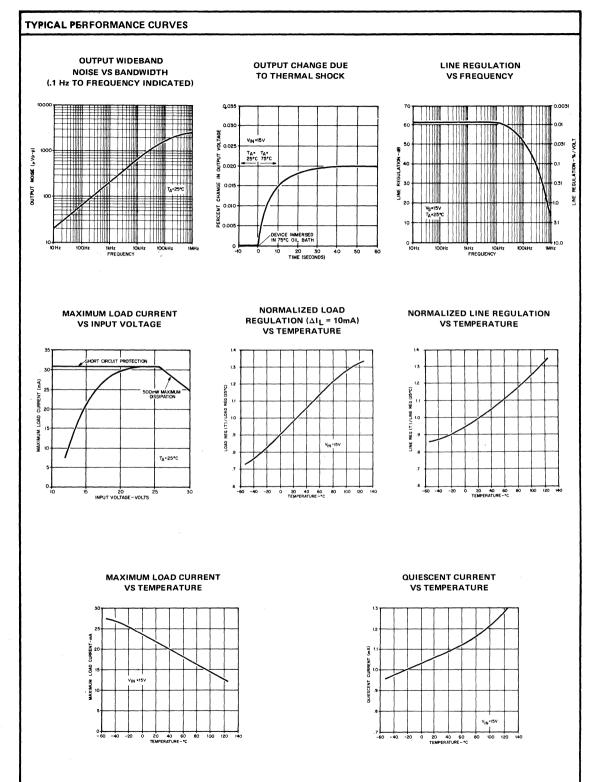
REF-01D

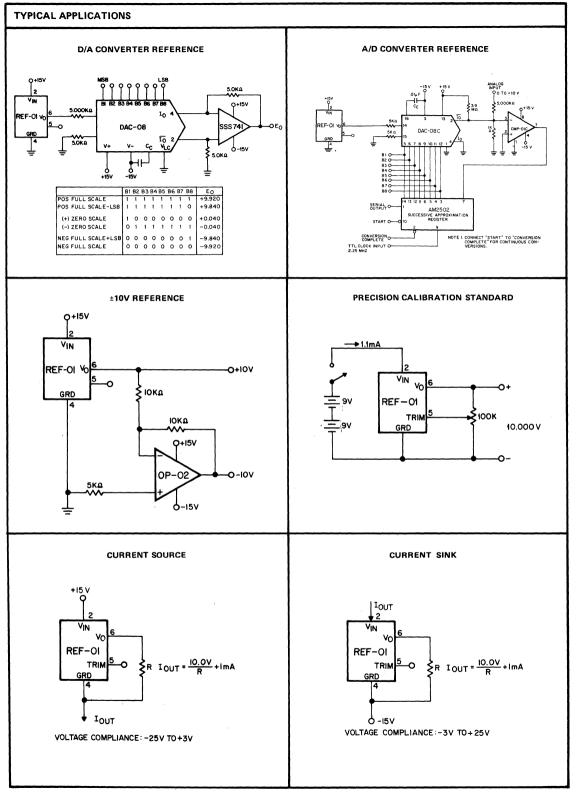
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	vo	۱ _L = 0mA	9.90	10.00	10.10	9.850	10.00	10.150	v
Output Adjustment Range	ΔV _{trim}	R _p = 10kΩ	±2.7	±3.3		±2.0	±3.3	-	%
Output Voltage Noise	enp-p	0.1Hz to 10Hz (Note 5)	-	25	35	-	25	-	μVp-p
Input Voltage Range	VIN		12	-	30	12	-	30	V
Line Regulation (Note 4)		V _{IN} = 13 to 30V	-	0.009	0.015	-	0.012	0.04	%/V
Load Regulation (Note 4)		I _L = 0 to 8 mA	-	0.006	0.015	-	-	-	%/mA
Load Regulation (Note 4)		I _L = 0 to 4 mA	-	-	-	-	0.009	0.04	%/mA
Turn-on Settling Time	^t on	To ±0.1% of final value	-	5.0	-	-	5.0	-	μsec
Quiescent Current	ISY	No Load	-	1.0	1.6	-	1.0	2.0	mA
Load Current	۱		8	21	-	8	21	-	mA
Sink Current	IS		-0.2	-0.5	-	-0.2	0.5		mA
Short Circuit Current	^I SC	V _O = 0	-	30	-	-	30		mA
The following specifications	apply for V	IN = +15V, 0°C ≤ T _A ≤ +70)°C, unless	otherwise	noted.				
Output Voltage Change with Temperature	ΔV _{OT}	(Notes 1 and 2)	. –	0.14	0.45	-	0.49	-	%
Output Voltage Temperature Coefficient	тсv _о	(Note 3)	-	20	65	-	70	-	ppm/°
Change in V _O Temperature Coefficient With Output Adjustment		R _p = 10kΩ	-	0.7	-		0.7	-	ppm/%
Line Regulation (Note 4)	1	V _{IN} = 13 to 30V	-	0.011	0.018	-	0.020	-	%/V
Load Regulation (Note 4)		li = 0 to 5 mA	_	0.008	0.018	_	0.020	-	%/mA

REF-01C

NOTE 1:

 ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 10V:

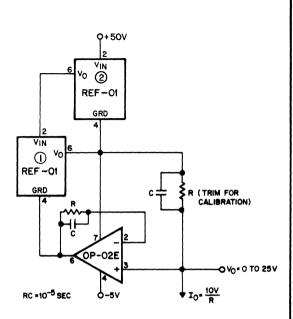

$$\Delta V_{OT} = \frac{V_{MAX} - V_{MIN}}{10V} \times 100$$


NOTE 2: ΔV_{OT} specification applies trimmed to +10.000V or untrimmed.

 ΔV_{OT} TCV_O is defined as ΔV_{OT} divided by the temperature range; i.e., TCV_O = $\frac{2 \times 0.1}{70^{\circ}C}$ NOTE 3:

NOTE 4: Line and Load Regulation specifications include the effects of self heating.

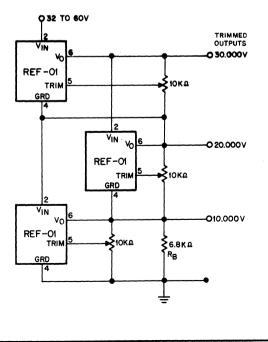
NOTE 5: Parameter is not 100% tested; 90% of units meet this specification.



TYPICAL APPLICATIONS

PRECISION CURRENT SOURCE

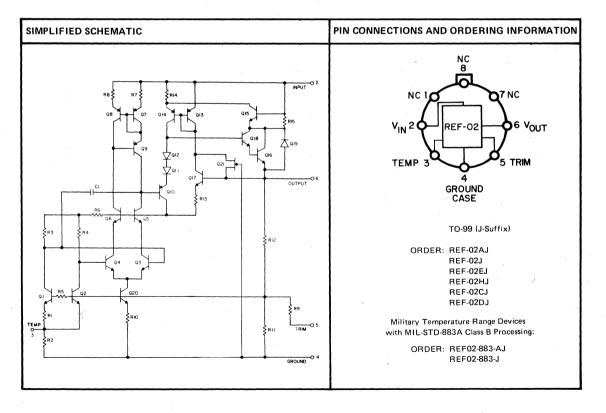
A current source with 25V output compliance and excellent output impedance can be obtained using this circuit. REF-01 (2) keeps the line voltage and power dissipation constant in device (1); the only important error consideration at room temperature is the negative supply rejection of the op amp. The typical $3\mu V/V$ PSRR of the OP-02E will create an 8 ppm change ($3\mu V/V$ 25V/10V) in output current over a 25V range; for example, a 10mA current source can be built (R = 1kΩ) with 300 MΩ output impedance.


$$R_0 = \frac{25V}{8 \times 10^{-6} \times 10 \text{ mA}}$$

REFERENCE STACK WITH EXCELLENT LINE REGULATION

Three REF-01's can be stacked to yield 10.000, 20.000 and 30.000V outputs. An additional advantage is near-perfect line regulation of the 10.000 and 20.000 output voltages. A 32V to 60V input change produces an output change which is less than the noise voltage of the devices. A load bypass resistor (R_B) provides a path for the supply current (I_{SY}) of the 20.000V regulator.

In general any number of REF-01's can be stacked this way. For example, ten devices will yield outputs of 10, 20, 30, ... 100V. The line voltage can range from 105 to 130V. However, care must be taken to ensure that the total load currents do not exceed the maximum usable current (typically 21mA).


+5V PRECISION VOLTAGE REFERENCE/THERMOMETER

GENERAL DESCRIPTION

The REF-02 Precision Voltage Reference provides a stable +5V output which can be adjusted over a \pm 6% range with minimal effect on temperature stability. Single supply operation over an input voltage range of 7V to 40V, low current drain of 1mA, and excellent temperature stability are achieved with an improved bandgap design. Low cost, low noise and low power make the REF-02 an excellent choice whenever a stable voltage reference is required, such as in D/A and A/D converters, in portable instruments, and in digital voltmeters. The versatility of the REF-02 is illustrated by its use as a monolithic thermometer. (See AN-18, "Thermometer Applications of the REF-01 data sheet.

FEATURES

	Temperature Voltage Output 2.1 mV/°C
-	Adjustable 5 Volt Output ±6%
	Excellent Temperature Stability 3 ppm/°C
	Low Noise
	Low Power
	Wide Input Voltage Range
	High Load Driving Capability 20mA
	No External Components
	Short Circuit Proof
	MIL-STD-883A Screening Available

Input Voltage REF-02, A		40	0 V C	perating Te	mperatur	e Range			
REF-02C, I			0.V	REF-02A	, REF-02		-	-55°C to	+125°C
Power Dissipation (see not		500r		REF-02E, REF-02H				0°C to	o +70°C
Output Short Circuit Duration Indef (to ground or V _{IN})			nte	REF-02C					
Storage Temperature Rang	je	-65°C to +150	D°C №	lote: Der	ate at 7.1ı	nW/°C ab	ove 80°C a	mbient	
Lead Temperature (Solder	ing, 60 se	c) 300	О°С	tem	perature.				
LECTRICAL CHARACTI	RISTICS								
				REF-02A			REF-02		
These specifications apply fo	r, VIN = +1	5V, T _A ≈ 25°C, unless o	otherwise no	oted.		terre an an an aire			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	VO	۱ _L = 0mA	4.985	5.000	5.015	4.975	5.000	5.025	V
Output Adjustment Range	ΔV_{trim}	R _p = 10kΩ	±3.0	±6.0	-	±3.0	±6.0	-	%
Output Voltage Noise	enp-p	0.1Hz to 10Hz (Note 1)	~	10	15	-	10	15	µVp-p
Input Voltage Range	VIN		7	-	40	7	-	40	V
Line Regulation (Note 2)		V _{IN} = 8 to 33V	-	0.006	0.010	-	0.006	0.010	%/V
Load Regulation (Note 2)		l _L ≓ 0 to 10mA	-	0.005	0.010	-	0.006	0.010	%/mA
Turn-on Settling Time	t _{on}	To ±0.1% of final value	-	5.0	-	-	5.0	-	μsec
Quiescent Current	ISY	No Load	-	1.0	1.4		1.0	1.4	mA
Load Current	۱۲		10	21		10	21	-	mA
Sink Current	IS		-0.3	-0.5		-0.3	0.5	-	mA
Short Circuit Current	ISC	V _O = 0	-	30	-	_ ·	30	-	mA
Temp Voltage Output	VT	(Note 3)	-	630		·	630	-	mV
The following specifications a	apply for V	IN = +15V, -55°C ≤ T _A	_A ≤ +125° C	and IL = Om	A, unless o	therwise no	ted.		
Output Voltage Change	∆VOT	$0^\circ \leqslant T_A \leqslant +70^\circ C$	_	0.02	0.06	<u> </u>	0.07	0.17	%
with Temperature (Notes 4 and 5)	1	-55°≤T _A ≤+125°C	-	0.06	0.15	_	0.18	0.45	%
Output Voltage Temperature Coefficient	тсv _о	(Note 6)		3	8.5	-	10	25	ppm/°(
Change in V _O Temperature Coefficient with Output Adjustment		R _p = 10kΩ	-	0.7			0.7	-	ppm/°C
Line Regulation		0°≤T _A ≤+70°C	-	0.007.	0.012	-	0.007	0.012	%/V
(V _{IN} = 8 to 33V) (Note 2)		-55°≤TA≤+125°C		0.009	0.015		0.009	0.015	%/V
Load Regulation		0°≤T _A ≤+70°C	-	0.006	0.010	-	0.007	0.012	%/mA
(I _L = 0 to 8mA) (Note 2)		-55°≤T _A ≤+125°C	_	0.007	0.012		0.009	0.015	%/mA
Temp Voltage Output Temperature Coefficient	TCVT	(Note 3)	-	2.1	-	-	2.1	-	mV/°C
والمستادية فيوانية والثلية النبو المتقالين التلاف المراجع	t 100% tes	ed; 90% of units meet t	his specifica	ition.	L				<u></u>
		specifications include th							
	-	pin 3 to 50nA and capa		-					
		solute difference betwe ed as a percentage of 5V		mum output	voltage and	minimum	output volta	ge over the	e specifie
ΔV _{OT} =	V _{MAX}	V _{MIN} X 100							
NOTE 5: ΔV_{OT} specific	ation applie	s trimmed to 5.000V or	r untrimmed	i.		AV-	$= 0^{\circ} t_0 + 70$	°c	
NOTE 6: TCVO is define	ed as ∆VOT	divided by the tempera		i.e., TCV _O (0)° to +70°C	$z = \frac{\Delta \sqrt{C}}{\Delta \sqrt{C}}$	70°C		
and TCVO (-5	_	$^{\circ}C) = \Delta V_{OT} - 55^{\circ} t_{C}$	1 +125° C				· - •		

REF-02

4

REF-02 DEFINITIONS

LINE REGULATION

The ratio of the change in output voltage to the change in line voltage producing it.

LOAD REGULATION

The ratio of the change in output voltage to the change in load current producing it.

QUIESCENT CURRENT (ISY)

The current required from the supply to operate the device with no load.

OUTPUT TURN-ON SETTLING TIME (ton)

The time required for the output voltage to reach its final value within a specified error band after application of $\rm V_{1N}$

ELECTRICAL CHARACTERISTICS

OUTPUT VOLTAGE NOISE (enp-p)

The peak to peak output noise voltage in a specified frequency band.

OUTPUT CHANGE WITH TEMPERATURE (AVOT)

The absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 5V:

$$\Delta V_{OT} = \frac{V_{MAX} - V_{MIN}}{5V} \times 100$$

OUTPUT TEMPERATURE COEFFICIENT (TCVO)

The ratio of the output change with temperature to the specified temperature range expressed in ppm/ $^{\circ}$ C.

				REF-02E			REF-02H		
These specifications apply f	or V _{IN} = +1	5V, $T_A = 25^{\circ}C$, unless other	rwise notec	I.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	Vo	1 _L = 0 mA	4.985	5.000	5.015	4.975	5.000	5.025	V
Output Adjustment Range	ΔV _{trim}	R _p = 10kΩ	±3.0	±6.0	-	±3.0	±6.0	-	%
Output Voltage Noise	^e np-p	0.1Hz to 10Hz (Note 1)	-	10	15	-	10	15	μVp-p
Input Voltage Range	VIN		7	-	40	7	-	40	V
Line Regulation (Note 2)		VIN = 8 to 33V	-	0.006	0.010	-	0.006	0.010	%/V
Load Regulation (Note 2)		I _L = 0 to 10 mA	-	0.005	0.010	-	0.006	0.010	%/mA
Turn-on Settling Time	t _{on}	To ±0.1% of final value	-	5.0	-	-	5.0	-	μsec
Quiescent Current	ISY	No Load	-	1.0	1.4	-	1.0	1.4	mA
Load Current	۱L		10	21	-	10	21	-	mA
Sink Current	IS .		-0.3	-0.5	-	-0.3	-0.5	-	mA
Short Circuit Current	^I SC	V _O = 0	-	30	-	-	30	-	mA
Temp Voltage Output	VT	(Note 3)	_	630	_	-	630	_	mV
The following specifications Output Voltage Change with Temperature	∆VOT	(Notes 4 and 5)	-	0.02	0.06	_	0.07	0.17	%
Output Voltage Temperature Coefficient	тсv _о	(Note 6)	-	3	8.5	_	10	25	ppm/°
Change in V _O Temperature Coefficient With Output Adjustment		R _p = 10kΩ	-	0.7		-	0.7	-	ppm/%
Line Regulation (Note 2)		V _{IN} = 8 to 33V	-	0.007	0.012	-	0.007	0,012	%/V
Load Regulation (Note 2)		I _L = 0 to 8 mA	-	0.006	0.010	-	0.007	0.012	%/mA
Temp Voltage Output Temperature Coefficient	TCVT	(Note 3)		2.1	-	<u>-</u>	2.1	-	mV/°C
NOTE 2: Line and Load NOTE 3: Limit current NOTE 4: ΔV _{OT} is defir specified temp - ΔV _{OT} NOTE 5: ΔV _{OT} specifie	I Regulation in or out of eed as the ab erature rang = <u>VMAX -</u> 5V cation applie	ted; 90% of units meet this s specifications include the et pin 3 to 50nA and capacitar solute difference between th e expressed as a percentage <u>VMIN</u> X 100 s trimmed to +5.000V or un divided by the temperature	ffects of se nce on pin ne maximu of 5V: ntrimmed.	lf heating. 3 to 30pF. m output vo		ie minimun	n output vol	tage over th	e

 \mathbf{c}

OUTPUT

OUTPUT ADJUSTMENT

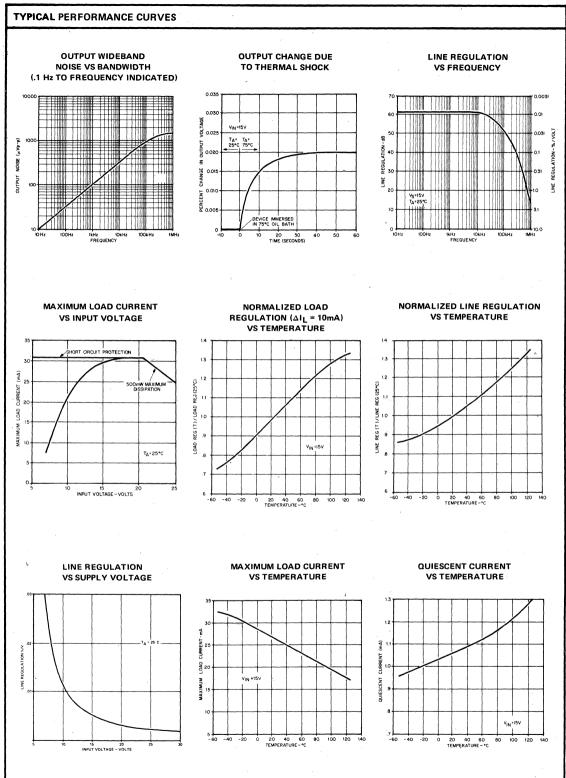
The REF-02 trim terminal can be used to adjust the output voltage over a 5V ±300mV range. This feature allows the system designer to trim system errors by setting the reference to a voltage other than 5V. Of course, the output can also be set to exactly 5.000V, or to 5.12V for binary applications.

Adjustment of the output does not significantly affect the temperature performance of the device. Typically the temperature coefficient change is 0.7 ppm/°C for 100mV of output adjustment.

BURN-IN CIRCUIT O 18V @ 125°C 2 Q +15V 2 VIN -O OUTPUT ٧o REF-02 <u>°</u> REF-02 TEMP TRIM > ΙΟΚΩ 4 4

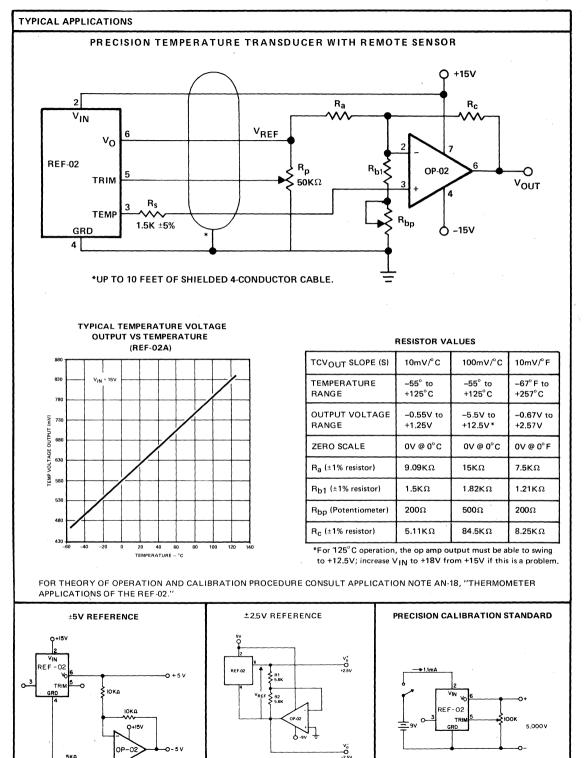
FOTRICAL OULD A OTERIOTICO

				REF-02C			REF-02D		
These specifications apply for	or VIN = +1!	$5V, T_A = 25^{\circ}C, unless other$	rwise noted	•					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage	vo	1L = 0 mA	4.950	5.000	5.050	4.900	5.000	5.100	v
Output Adjustment Range	ΔV _{trim}	R _p = 10kΩ	±2.7	±6.0	-	±2.0	±6.0	-	%
Output Voltage Noise	^e np-p	0.1Hz to 10Hz (Note 1)	-	12	18	-	12	-	μVp-p
Input Voltage Range	ViN	12	7	·	30	7	-	30	v
Line Regulation (Note 2)		V _{IN} = 8 to 30V	-	0.009	0.015	_	0.010	0.04	%/V
Load Regulation (Note 2)		I _L ≈ 0 to 8 mA	-	0.006	0.015	-			%/mA
Load Regulation (Note 2)		1 _L = 0 to 4 mA	-	-	-	-	0.015	0.04	%/m/
Turn-on Settling Time	^t on	To ±0.1% of final value	-	5.0	-	-	5.0	-	μsec
Quiescent Current	ISY	No Load	-	1.0	1.6	-	1.0	2.0	mA
Load Current	۱L		8	21	-	8	21	-	mA
Sink Current	۱s		-0.2	0.5	-	0.2	-0.5	-	mA
Short Circuit Current	Isc	V _O = 0	-	30	-	-	30	_	mA
Temp Voltage Output	VT	(Note 3)	-	630	-	-	630	_	mV
The following specifications	apply for V	IN ≈ +15V, 0°C ≤ T _A ≤ +7	0°C and IL	= 0mA,unl	ess otherwi	se noted.			
Output Voltage Change with Temperature	ΔV _{OT}	(Notes 4 and 5)	-	0.14	0.45	-	0.49	_	%
Output Voltage Temperature Coefficient	тсv _о	(Note 6)	-	20	65	-	70	-	ppm/
Change in V _O Temperature Coefficient With Output Adjustment		R _p = 10kΩ	-	0.7	-	-	0.7	-	ppm/
Line Regulation (Note 2)		V _{IN} = 8 to 30V	-	0.011	0.018	-	0.012	-	%/V
Load Regulation (Note 2)		ار = 0 to 5 mA	-	0.008	0.018	-	0.016	-	%/m/
Temp Voltage Output Temperature Coefficient	TCVT	(Note 3)	-	2.1	_	-	2.1	_	mV/°


NOTE 3: Limit current in or out of pin 3 to 50nA and capacitance on pin 3 to 30pF.

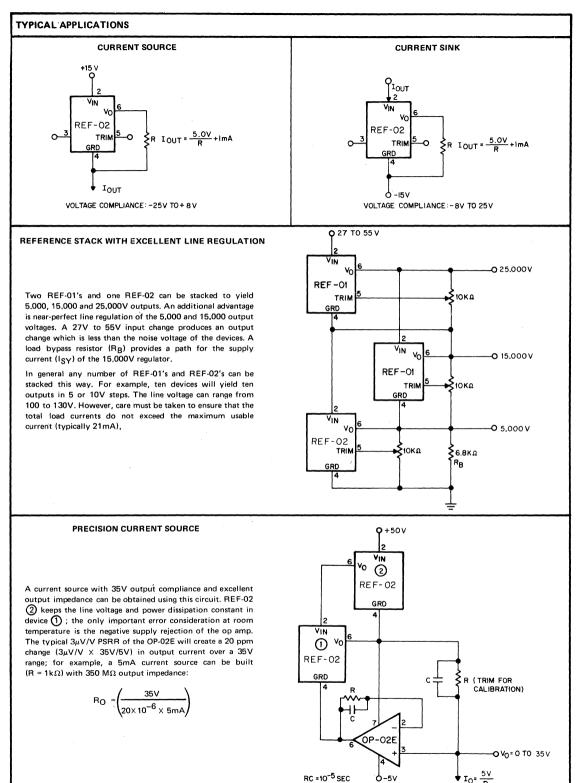
NOTE 4: ΔV_{OT} is defined as the absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of 5V:

$$\Delta V_{\text{OT}} = \frac{V_{\text{MAX}} - V_{\text{MIN}}}{5V} \times 100$$


NOTE 5: ΔV_{OT} specification applies trimmed to +5.000V or untrimmed.

TCV_O is defined as ΔV_{OT} divided by the temperature range; i.e., TCV_O = $\frac{\Delta V_{OT}}{70^{\circ}C}$ NOTE 6:

9-12


REF-02

 $V_0^+ = \frac{R_1}{R_1 + R_2} (V_{REF}) V_0^- = \frac{R_2}{R_1 + R_2} (V_{REF})$

0-15V

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
 D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

INDEX D/A CONVERTERS – LINEAR

PRODUCT	TITLE	PAGE
	Selection Guide	10-1
DAC-01	6 Bit Monolithic D/A Converter	10-3
DAC-02	10 Bit Plus Sign Monolithic D/A Converter	10-6
DAC-03	8 & 10 Bit Low Cost Monolithic D/A Converter	10-9
DAC-04	Two's Complement 10 Bit D/A Converter	10-12
DAC-05	11 Bit D/A Converter	10-16
DAC-06	Two's Complement 10 Bit D/A Converter	10-20
DAC-08	8 Bit High Speed Multiplying D/A Converter	10-24
DAC-20	2 Digit BCD High Speed Multiplying D/A Converter	10-34
DAC-100	8 & 10 Bit Digital-to-Analog Converter	10-42
SSS562	12 Bit Multiplying D/A Converter	10-48
SSS1508A/ 1408A	8 Bit Multiplying D/A Converter	10-51

DIGITAL TO ANALOG CONVERTER SELECTION GUIDE

CURRENT OUTPUT INTERNAL REFERENCE - 10 BIT RESOLUTION

DEVICE	TEMP RANGE FOR SPECIFICATION (°C)	MAXIMUM NONLINEARITY (%FS)	MAX FULL SCALE TEMPCO (ppm/°C)
DAC-100ACQ5	-55/+125	±0.05	60
DAC-100BBQ5	-55/+125	±0.1	30
DAC-100CCQ5	-55/+125	±0.2	60
DAC-100DDQ5	-55/+125	±0.3	120
DAC-100AAQ1 (Q2)	-25/+85	±0.05	15
DAC-100ACQ1 (Q2)	-25/+85	±0.05	60
DAC-100ADQ1 (Q2)	-25/+85	±0.05	120
DAC-100BBQ1 (Q2)	-25/+85	±0.1	30
DAC-100BCQ1 (Q2)	-25/+85	±0.1	60
DAC-100CCQ1 (Q2)	-25/+85	±0.2	60
DAC-100DDQ1 (Q2)	-25/+85	±0.3	120
DAC-100ACQ3 (Q4)	0/+70	±0.05	60
DAC-100BCQ3 (Q4)	0/+70	±0.1	60
DAC-100CCQ3 (Q4)	0/+70	±0.2	60
DAC-100DDQ3 (Q4)	0/+70	±0.3	120

MULTIPLYING CURRENT OUTPUT - 12 BIT RESOLUTION

DEVICE	OPERATING TEMPERATURE RANGE (°C)	MAXIMUM NONLINEARITY (T _A = 25°C)	MAXIMUM GAIN TEMPERATURE COEFFICIENT
SSS562-SD-BIN	-55/+125	±1/4 LSB	±3ppm/°C
SSS562-AD-BIN	-25/+85	±1/2 LSB	±3ppm/°C
SSS562-KD-BIN	0/+70	±1/2 LSB	±3ppm/°C

MULTIPLYING CURRENT OUTPUT - 3 DIGIT RESOLUTION

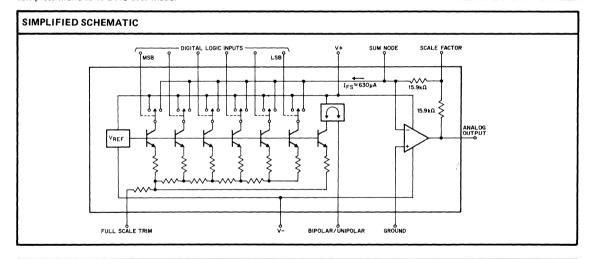
DEVICE	OPERATING	MÁXIMUM	MAXIMUM
	TEMPERATURE	NONLINEARITY	GAIN TEMPERATURE
	RANGE (°C)	(T _A = 25°C)	COEFFICIENT
SSS562-SD-BCD	-55/+125	±1/10 LSB	±3ppm/°C
SSS562-AD-BCD	-25/+85	±1/2 LSB	±3ppm/°C
SSS562-KD-BCD	0/+70	±1/2 LSB	±3ppm/°C

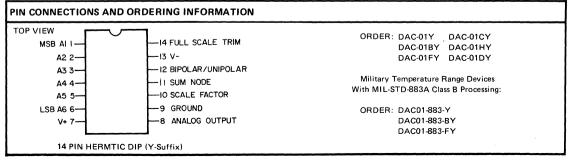
MULTIPLYING CURRENT OUTPUT 8-BIT RESOLUTION

DEVICE	TEMP RANGE FOR SPECIFICATION (°C)	MAXIMUM NONLINEARITY (% FS)	DUAL HIGH COMPLIANCE OUTPUTS	UNIVERSAL LOGIC INPUTS
DAC-08AQ	-55/+125	±0.1	YES	YES
DAC-08Q	-55/+125	±0.19	YES	YES
DAC-08HQ	0/+70	±0.1	YES	YES
DAC-08EQ	0/+70	±0.19	YES	YES
DAC-08CQ	0/+70	±0.39	YES	YES
SSS1508A-8Q	-55/+125	±0.19	NO	NO
SSS1408A-8Q	0/+75	±0.19	NO	NO
SSS1408A-7Q	0/+75	±0.39	NO	NO
SSS1408A-6Q	0/+75	±0.78	NO	NO

MULTIPLYING CURRENT OUTPUT - 2 DIGIT RESOLUTION TEMP RANGE MAXIMUM DUAL HIGH UNIVERSAL FOR SPECIFICATION NONLINEARITY COMPLIANCE LOGIC DEVICE (°C) OUTPUTS INPUTS (% FS) YES DAC-20AQ -55/+125 ±1/4 LSB YES -55/+125 YES YES **DAC-20Q** ±1/2 LSB YES YES DAC-20EQ 0/+70 ±1/4 LSB YES YES DAC-20CQ 0/+70 ±1/2 LSB

VOLTAGE OUTPUT INTERNAL REFERENCE TEMPERATURE RANGE FOR SPECIFICATION RESOLUTION MONOTONICITY NONLINEARITY (°C) DEVICE (BITS) MIN (BITS) **MAX (% FS)** DAC-05A 10+Sign 10 ±0.1 -55/+125 ±0.1 -55/+125 DAC-06A 10 10 ±0.1 0/+70 DAC-05E 10+Sign 10 10 ±0.1 0/+70 DAC-06E 10 ±0.1 0/+70 10+Sian DAC-02ACX1 10 DAC-02ACX2 10+Sign 10 ±0.1 0/+70 0/+70 DAC-04ACX2 10 10 ±0.1 25 DAC-03ADX1 10 10 ±0.1 ±0.1 25 DAC-03ADX2 10 10 ±0.2 10+Sign 9 -55/+125 DAC-05B 9 ±0.2 -55/+125 DAC-06B 10 10+Sign 9 ±0.2 0/+70 DAC-05F DAC-06F 10 9 ±0.2 0/+70 0/+70 DAC-02BCX1 10+Sian 9 ±0.1 9 ±0.1 0/+70 DAC-02BCX2 10+Sign DAC-04BCX2 10 9 ±0.1 0/+70 10 9 ±0.1 25 DAC-03BDX1 25 DAC-03BDX2 10 9 ±0.1 -55/+125 DAC-05C 10+Sign 8 ±0.4 8 ±0.4 -55/+125 DAC-06C 10 DAC-05G 10+Sign 8 ±0.4 0/+70 DAC-06G 8 ±0.4 0/+70 10 DAC-02CCX1 10+Sign 8 ±0.2 0/+70 10+Sign DAC-02CCX2 8 ±0.2 0/+70 DAC-04CCX2 10 8 ±0.2 0/+70 8 25 DAC-03CDX1 10 ±0.2 25 10 8 ±0.2 DAC-03CDX2 DAC-01AY 6 6 ±0.3 -55/+125 7 0/+70 DAC-02DDX1 10+Sign ±0.4 DAC-02DDX2 10+Sign 7 ±0.4 0/+70 DAC-04DDX2 10 7 ±0.4 0/+70 10 7 25 DAC-03DDX1 ±0.4 7 25 DAC-03DDX2 10 ±0.4 6 DAC-01Y 6 ±0.45 -55/+125 DAC-01BY 6 6 ±0.45 -55/+125 -55/+125 DAC-01FY 6 6 ±0.45 DAC-01CY 6 6 ±0.45 0/+70 6 DAC-01HY 6 ±0.45 0/+70 DAC-01DY 6 6 ±0.8 0/+70


6 BIT MONOLITHIC D/A CONVERTER


GENERAL DESCRIPTION

The DAC-01 is a complete monolithic 6-bit digital-to-analog converter, incorporating current steering logic, current sources, diffused resistor ladder network, precision voltage reference and fast summing op amp on one chip. Monolithic construction provides small size, light weight, low power consumption and very high reliability. Wide power supply range, three output voltage options, and three input code options assure flexibility for a wide variety of applications. A seventh bit may also be added for greater resolution. The DAC-01 is ideal for CRT deflection circuits, servo positioning controls, digitally programmed power supplies and pulse generators, modem and telephone system digitizing and demodulation circuits, digital filters, and 6-bit A/D converters. Introduced in 1970, the DAC-01 is still the fastest, lowest power, most accurate 6-bit complete monolithic DAC ever made.

FEATURES

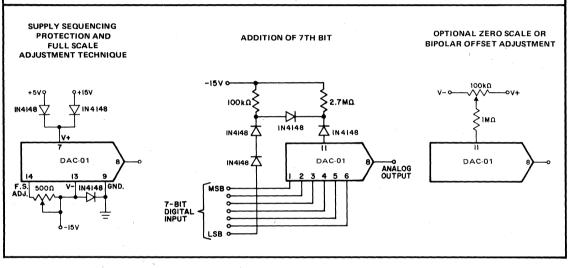
	Fast 3µsec Settling Time (Max)
	Complete Includes Reference, Ladder, Op Amp
	Low Power Consumption 250 mW (Max)
	6-Bit Resolution 7 Bit Accuracy
	3 Output Options
	Standard Power Supplies ±12V to ±18V
	–55°/+125°C or 0°/70°C Ranges Available
89	TTL, DTL Compatible Logic Levels
	Models With MIL-STD-883A Class B
	Processing Available From Stock
	Low Cost

ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
DAC-01, DAC-01B, DAC-01F	-55°C to +125°C
DAC-01C, DAC-01H, DAC-01D	0°C to +70°C
V+ Supply Voltage to Ground	0 to +18V
V- Supply Voltage to Ground	0 to -18V

NOTE 1: Rating applies up to ambient temperatures of 100°C. For temperatures above 100°C, derate linearly at 10mW/°C.
 Logic Input to Ground
 -0.7 to +6V

 Internal Power Dissipation (Note 1)
 500 mW


 Storage Temperature
 -65°C to +150°C

 Lead Soldering Temperature
 300°C (60 sec)

 Output Short Circuit Duration (Note 2)
 Indefinite

NOTE 2: Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature.

BASIC CIRCUIT CONNECTIONS

APPLICATIONS INFORMATION

INPUT CODES—The DAC-01 utilizes standard complementary binary coding for unipolar mode operation (all inputs high produces zero output voltage). Complementary offset binary (bipolar) mode operation may be implemented by shorting pin 11 to pin 12 (all inputs high produces negative full scale output voltage). One's complement coding may be implemented by shorting pin 11 to pin 12 and inverting the MSB before entering pin 1 (all other bits are not inverted). Two's complement coding may be implemented by shorting pin 11 to pin 12, inverting the MSB before entering pin 1 (all other bits are not inverted). Two's complement coding may be implemented by shorting pin 11 to pin 12, inverting the MSB before entering pin 1, and injecting approximately 5µA into pin 11 (which is at ground potential) by using the "zero scale or bipolar offset adjustment" circuit.

POWER SUPPLIES—Care should be taken to insure that positive voltages are not applied to the logic inputs for more than approximately 300ms before the V+ supply is applied. It is also important that V- not be removed during operation. The addition of three clamping diodes (see fig. above) is recommended where random supply sequences may be encountered. Power supplies should be bypassed near the package with a $0.1\mu F$ disk capacitor. Chip users should connect the substrate to V-.

FULL SCALE ADJUST-A 500 Ω pot from pin 14 to V- can be used to adjust the full scale output voltage to exactly 10 volts in unipolar mode or 10 to 20 volts p-p in bipolar mode. If no pot is used, tie pin 14 to V-.

SCALE FACTOR-For +10 volt or ± 5 volt outputs, short pin 10 to pin 11 (adjusts the feedback resistor around the output amplifier). For ± 10 volt output, leave pin 10 open. Intermediate output voltages may be obtained by placing a pot between pin 10 and pin 11, but this will seriously degrade the full scale temperature coefficient due to the mismatch between the +1150 ppm/°C tempco of the diffused resistors and the pot tempco.

LOWER RESOLUTION APPLICATIONS-When less than 6 bits of resolution is required, tie off unused bits to a voltage level greater than +2.1 volts. The +5 volt logic supply is usually convenient.

ELECTRICAL CHARACTERISTICS

DAC-01

These specifications apply for $V_S = \pm 15V$ and over the rated operating temperature range unless otherwise noted.

Parameter	DAC-01	DAC-01B	DAC-01F	DAC-01C	DAC-01H	DAC-01D	Units
Output Options	Unipolar Bipolar	Unipolar Bipolar	Unipolar	Unipolar Bipolar	Unipolar	Unipolar Bipolar	
Temperature Range	55/+125	-55/+125	-55/+125	0/+70	0/+70	0/+70	°C
Nonlinearity 25°C — Max	±0.40	±0.40	±0.40	±0.40	±0.40	±0.78	%FS
Nonlinearity Over Temperature - Max	±0.45	±0.45	±0.45	±0.45	±0.45	±0.78	%FS
Full Scale Tempco – Max	±80	±120	±80	±160	±160	±160	ppm/°C
Unipolar Zero Scale Output Voltage — Max (Note 1, 2)	25	25	40	25	40	50	mV

These specifications apply for all DAC-01 grades, $V_S = \pm 15V$ and over the rated operating temperature range unless otherwise noted.

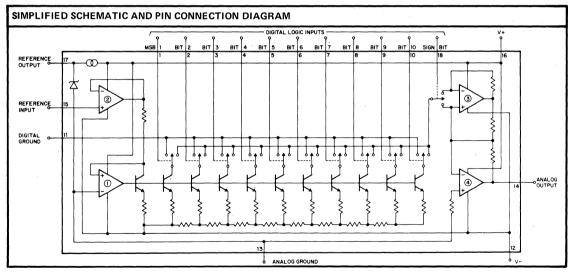
Parameter	Conditions	Min	Тур	Max	Units
Unipolar Full Scale Output Voltage (Note 3)	2KΩ load, logic ≤ 0.5V, short pin 13 to pin 14. Short pin 12 to Ground and pin 10 to pin 11.	+10.00	-	+11.75	Volts
Bipolar Output Voltage (Note 3)	$2K\Omega$ Load, Short pin 11 to pin 12.				
±5 Volt Range	Short pin 13 to pin 14, Short pin 10 to pin 11.				
V _{FS+}	Logic Inputs ≤ 0.5V	+4.93	-	+5.94	Volts
V _{FS-}	Logic Inputs ≥ 2.1V	-5.94	5 -	-4,93	Volts
±10 Volt Range	Open pin 10				
V _{FS+}	Logic Inputs ≤ 0.5V	+9.86	-	+11.89	Volts
V _{FS}	Logic Inputs ≥ 2.1V	-11.89	-	<u>-</u> 9.86	Volts
Bipolar Offset Voltage (Note 1) ±1/2 (I V _{FS+} I–I V _{FS-} I)	±5 Volt Range ±10 Volt Range	_	, ±40 ±80	±70 ±140	mV mV
Resolution		-	-	6	bits
Logic Input "0"		-	- 1	0.5	Volts
Logic Input "1"		2.1	-	-	Volts
Logic Input Current, Each Input		-	2.2	8	μΑ
Power Supply Sensitivity	$\pm 12V \le V_S \le \pm 18V V_{FS} \cong 10.0 V$	-	±0.01	±0.15	%VFS/V
Power Consumption		-	200	250	mW
Settling Time to ±1/2 LSB	$2.1V \le \text{logic level} \le 0.5V \text{ T}_A = 25^{\circ}\text{C}.$	-	1.5	3	μsec

NOTES:

1. Zero scale or bipolar offset voltage can be trimmed to zero volts or to the exact one's or two's complement condition with an external resistor network to pin 11.

2. Logic input voltage \ge 2.1 volts.

3. Full scale is adjustable to precisely 10 volts for unipolar operation and 10 volt or 20 volt p-p bipolar operation with an external 500 ohm potentiometer from pin 14 to V-.


10 BIT PLUS SIGN MONOLITHIC D/A CONVERTER

GENERAL DESCRIPTION

The DAC-02 is a complete 10 bit plus sign D/A converter on a single 82 x 148 mil monolithic chip. All elements of a complete sign/magnitude DAC are included-precision voltage reference, current steering logic, current sources, R-2R resistor network, logic controlled polarity switch and high speed internally compensated output op amp. Monotonicity guaranteed over the 0° C to $+70^{\circ}$ C temperature range is achieved by the untrimmed diffused R-2R resistor ladder network. The buffered reference input is capable of tracking over a wide range of voltages, increasing application flexibility. The wide power supply range, low power consumption, choice of full scale output voltages and sign/magnitude coding assure utility in a wide range of applications including CRT displays, data acquisition systems, A/D converters, servo positioning controls, and voice and music digitizing and reconstruction systems.

FEATURES

Complete Includes Reference and Op Amp	,
Compact Single 18 Pin DIP Package	,
Bipolar Output Sign/Magnitude Coding	
Monotonicity Guaranteed	
Nonlinearity ±1 LSB	,
Fast 1.5 μsec Settling Time	
Stable Full Scale Tempco 60 ppm/°C	
Low Power Consumption	
TTL, DTL, CMOS Compatible Inputs	
Reliable 100% Burned-in 72 Hrs @ +125°C	

MODEL	MONOTONICITY	FS TEMPCO	TEMP RANGE	PACKAGE
DAC-02 ACX1 (or X2)*	10 BITS	60 ppm/°C MAX	0°/+70°C	HERMETIC 18 PIN I
DAC-02 BCX1 (or X2)*	9 BITS	60 ppm/°C MAX	0°/+70°C	HERMETIC 18 PIN D
DAC-02 CCX1 (or X2)*	8 BITS	60 ppm/°C MAX	0°/+70°C	HERMETIC 18 PIN I
DAC-02 DDX1 (or X2)*	7 BITS	150 ppm/°C MAX	0°/+70°C	HERMETIC 18 PIN D

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	0°C to +70°C	Internal Reference Output Current	300µA
Storage Temperature Range	–65°C to +150°C	Reference Input Voltage	0 to +10V
V+ Supply to Analog Ground	0 to +18V	Internal Power Dissipation	500 mW
V– Supply to Analog Ground	0 to -18V	Lead Soldering Temperature	300°C (60 sec)
Analog Ground to Digital Ground	0 to ±0.5V	Output Short Circuit Duration	Indefinite
Logic Inputs to Digital Ground	-5V to (V ₊ 7V)	(Short circuit may be to ground or ei	ther supply.

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_S = \pm 15V$ and over the 0°C to $\pm 70°C$ temperature range, unless otherwise specified.

		GRAD	DES AC,	BC, CC		GRADE I	GRADE DD				
Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Units			
Resolution	Bipolar Output Unipolar Output	11 10	11 10	11 10	11 10	11 10	11 10	bits bits			
Monotonicity (See Note 1)	0° C to 70° C Grade AC Grade BC Grade CC Grade DD	10 9 8	-		7	_	_	bits bits bits bits bits			
Nonlinearity (See Note 1)	0° C to 70° C Grade AC Grade BC Grade CC Grade DD	-		±0.1 ±0.1 ±0.2	_		±0.4	% % %			
Settling Time	To ±1/2 LSB, 10 Volt Step	ł	1.5	-	-	1.5	-	μsec			
Full Scale Tempco	Total, Internal Reference Connected		-	±60	-	-	±150	ppm/°C			
Full Scale Tempco	External Reference	-	±30	-	-	±30	-	ppm/°C			
Reference Input Bias Current		-	100	-	-	100		nA			
Reference Input Impedance			200	-	-	200	·	MΩ			
Reference Input Slew Rate		-	1.5	-	-	1.5	-	V/µsec			
Reference Output Voltage		_	6.7	1	-	6.7	-	V			
Zero Scale Offset	Sign Bit High, All Other Logic Inputs Low	1	±5	±10	-	±5	±10	mV			
Zero Scale Symmetry	X2 Models (±5V Full Scale) X1 Models (±10V Full Scale)	-	±1 ±1	±2.5 ±5		±1 ±1	±5 ±10	mV mV			
Full Scale Bipolar Symmetry	(See Definitions) (See Note 2)	-	±30	±60		±30	±80	mV			
Power Supply Sensitivity	V _S = ±12V to ±18V	-	±0.015	±0.05	_	±0.015	±0.1	% VFS/V			
Power Dissipation	I _{OUT} = 0	_	225	300	-	225	350	mW			
Logic Input Current	Each Input, $-5V$ to (V_+7V)	-	1	-	-	1	-	μA			
Logic Input "0"		-		0.8			0.8	V			
Logic Input "1"		2.0	-	-	2.0	-	-	V			
Full Scale Output Voltage	(See Note 3)										
±10 Volt Models	V _{FS+} (Sign Bit High)	+10.0	-	+11.5	+10.0		+11.5	v			
	V _{FS-} (Sign Bit Low)	-11.5	-	-10.0	-11.5		-10.0	v			
±5 Volt Models	V _{FS+} (Sign Bit High)	+5.00	-	+5.75	+5.00	-	+5.75	v			
	V _{FS} (Sign Bit Low)	-5.75	-	-5.00	-5.75		-5.00	v			

NOTE 1: This parameter is 100% tested at 0° C, +25°C and +70°C.

NOTE 2: These specifications apply for X1 (\pm 10V) models; for X2 (\pm 5V) models, divide specifications shown by 2.

NOTE 3: Reference Output terminal connected directly to Reference Input terminal, $R_L = 2K\Omega$, all logic inputs $\ge 2.0 V$.

DEFINITION OF SPECIFICATIONS*

BIPOLAR FULL SCALE SYMMETRY

The magnitude of the difference between $|V_{\mbox{FS+}}|$ and $|V_{\mbox{FS-}}|$

LOGIC "0"

The (low) logic input voltage necessary to hold a bit OFF.

LOGIC "1"

The (high) logic input voltage necessary to hold a bit ON.

SIGN/MAGNITUDE CODING

The input logic coding used by the DAC-02. The polarity of the output voltage is determined by the logic level of the Sign Bit; the magnitude of the output voltage is determined by the binarily-weighted logic inputs.

OPERATING INSTRUCTIONS

FULL SCALE ADJUSTMENT-Full Scale output voltage may be trimmed by use of a potentiometer and series resistor as shown; however, best results will be obtained if a low tempco resistor if used or if pot and resistor tempcos match. Alternatively, a single pot of > 75K Ω may be used.

REFERENCE OUTPUT-For best results, Reference Output current should not exceed $100\mu A$.

USE WITH EXTERNAL REFERENCES—Positive-polarity external reference voltages referred to Analog Ground may be applied to the Reference Input terminal to improve full scale tempco, to provide tracking to other system elements, or to slave a number of DAC-02's to the Reference Output of any one of them.

REFERENCE INPUT BYPASS-Lowest noise and fastest settling operation will be obtained by bypassing the Reference Input to Analog Ground with a 0.01μ F disk capacitor.

VARIABLE REFERENCES—Operation as a two-quadrant multiplying DAC is achieved by applying an analog input varying between 0 and $\pm 10V$ to the Reference Input terminal. The DAC output is then the scaled product of this voltage and the digital input. $\pm 5V$ output models (X2) must be used if Reference Input voltages will exceed $\pm 6.7V$ in order to prevent saturation of the output amplifier.

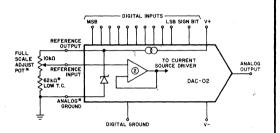
LOWER RESOLUTION APPLICATIONS-For applications not requiring full 10 bit resolution, unused logic inputs should be tied to ground.

UNIPOLAR OPERATION-Operation as a 10 bit straight binary converter may be implemented by permanently tying the Sign Bit to +5V (for positive Full Scale output) or to ground (for negative Full Scale output).

POWER SUPPLIES—The DAC-02 will operate within specifications for power supplies ranging from $\pm 12V$ to $\pm 18V$. Power supplies should be bypassed near the package with a 0.1μ F disk capacitor. Chip users should connect the substrate to V-.

CAPACITIVE LOADING—The output operational amplifier provides stable operation with capacitive loads up to 100pF.

*SEE SECTION 13 FOR COMPLETE D/A CONVERTER DEFINITIONS


ZERO SCALE OFFSET

The output voltage (V_{ZS+}) produced by a positive zero scale input code (1-000000000)

ZERO SCALE SYMMETRY

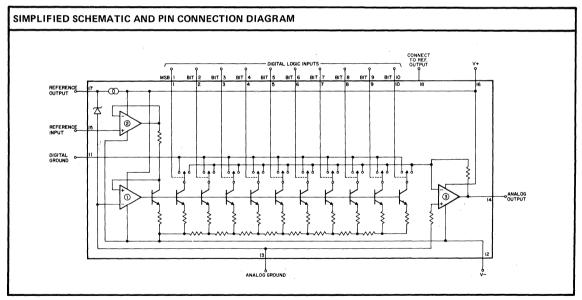
The change in the output voltage produced by switching the Sign Bit with all logic bits low ($V_{ZS+}-V_{ZS-}$)

FULL SCALE ADJUSTMENT CIRCUIT

POSITIVE SIGN/MAGNITUDE CODING TABLE

	SIGN BIT	M	SB							L	SB
+ FULL SCALE	1	1	1	1	1	1	1	1	1	1	1
+ "HALF" SCALE	1	1	0	0	0	0	0	0	0	0	0
ZERO SCALE (+)	1	0	0	0	0	0	0	0	Õ	0	0
ZERO SCALE (-)	0	0	0	0	0	0	0	0	0	0	0
- "HALF" SCALE	0	1	0	0	0	0	0	0	0	0	0
-FULL SCALE	0	1	1	1	1	1	1	1	1	1	1

GROUNDING-for optimum noise rejection, separate digital and analog grounds have been brought out. Best results will be obtained if these grounds are connected together at one point only, preferably near the DAC-02 package, so that the large digital currents do not flow through the analog ground path.


8 & 10 BIT LOW COST MONOLITHIC D/A CONVERTER

GENERAL DESCRIPTION

The DAC-03 is a complete 10 bit low cost D/A converter on a single 82 x 148 mil monolithic chip. All elements of a complete DAC are included—precision voltage reference, current steering logic, current sources, R-2R resistor network and high speed internally compensated output op amp. The untrimmed diffused R-2R resistor ladder network achieves monotonic operation over a wide temperature range. The buffered reference input is capable of tracking over a wide range of voltages, increasing application flexibility. The wide power supply range, low power consumption and choice of full scale output voltages assure utility in a wide range of applications including CRT displays, data acquisition systems, A/D converters, and servo positioning controls. For bipolar DAC's refer to the DAC-02 and DAC-04 data sheets.

FEATURES

Monotonicity Guaranteed
Low Cost
Complete Includes Reference and Op Amp
Compact Single 18 Pin DIP Package
Fast 1.5 μ sec Settling Time
Stable
Standard Power Supplies ±12V to ±18V
Low Power Consumption 350 mW Max
TTL, DTL, CMOS Compatible Inputs
5V and 10V Models Available

ORDERING INFORMATION

MODEL	MONOTONICITY	TEMP RANGE	FS TEMPCO	PACKAGE
DAC-03 ADX1 (or X2)*	10 BITS	0° /+70° C	60 ppm/°C TYP	18 PIN DIP
DAC-03 BDX1 (or X2)*	9 BITS	0°/+70°C	60 ppm/°C TYP	18 PIN DIP
DAC-03 CDX1 (or X2)*	8 BITS	0°/+70°C	60 ppm/°C TYP	18 PIN DIP
DAC-03 DDX1 (or X2)*	7 BITS	0°/+70°C	60 ppm/°C TYP	18 PIN DIP

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	0° to +70°C	Internal Reference Output Current	300µA		
Storage Temperature Range	-65°C to +150°C	Reference Input Voltage	0 to +10V		
V+ Supply to Analog Ground	0 to +18V	Internal Power Dissipation	500 mW		
V- Supply to Analog Ground	0 to -18V	Lead Soldering Temperature	300°C (60 sec)		
Analog Ground to Digital Ground	0 to ±0.5V	Output Short Circuit Duration	Indefinite		
Logic Inputs to Digital Ground	-5V to (V ₊ 7V)	(Short circuit may be to ground or either supply.)			
	•				

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_S = \pm 15V$ and $T_A = 25^{\circ}C$ unless otherwise specified.

Parameter	Condition	Min	Тур	Max	Units
Resolution		10	10.	10	bits
Monotonicity	Grade AD Grade BD Grade CD Grade DD	10 9 8 7		— — — —	bits bits bits bits
Nonlinearity	Grade AD Grade BD Grade CD Grade DD		- ** - - -	±0.1 ±0.1 ±0.2 ±0.4	% % %
Settling Time	To ±1/2 LSB, 10 Volt Step	-	1.5	-	μsec
Full Scale Tempco	Total, Internal Reference Connected	-	60	-,	ppm/°C
Full Scale Tempco	External Reference	-	±40	-	ppm/°C
Reference Input Bias Current		-	100	-	nA
Reference Input Impedance		-	200	-	MΩ
Reference Input Slew Rate	an da antina da antin	-	1.5		V/µsec
Reference Output Voltage		_	6.7	-	V
Zero Scale Offset	· · · · · · · · · · · · · · · · · · ·	-	±1.0	±10	mV
Power Supply Sensitivity	V _S = ±12V to ±18V	-	±.015	±0.1	% V _{FS} /V
Power Dissipation	I _{OUT} = 0	-	225	350	mW
Logic Input Current	(Each Input, -5V to (V ₊ 7V)	-	1	_ "	μA
Logic Input "0"		-	-	0.8	v
Logic Input "1"		2.0	_	-	v
Full Scale Output Voltage 10 Volt Models (X1) 5 Volt Models (X2)	(See Note)	+10.0 +5.00	_	+11.5	v

NOTE: Reference Output terminal connected directly to Reference Input terminal and pin 18, R_L = $2K\Omega$, all logic inputs ≥ 2.0 V.

DAC-03

DEFINITION OF SPECIFICATIONS

LOGIC "0"

The (low) logic input voltage necessary to hold a bit OFF.

LOGIC "1"

The (high) logic input voltage necessary to hold a bit ON.

APPLICATION NOTES

FULL SCALE ADJUSTMENT-Full Scale output voltage may be trimmed by use of a potentiometer and series resistor as shown; however, best results will be obtained if a low tempco resistor is used or if pot and resistor tempcos match. Alternatively, a single pot of > 75K Ω may be used.

REFERENCE OUTPUT-For best results, Reference Output current should not exceed $100\mu A$.

USE WITH EXTERNAL REFERENCES—Positive-polarity external reference voltages referred to Analog Ground may be applied to the Reference Input terminal to improve full scale tempco, to provide tracking to other system elements, or to slave a number of DAC-03's to the Reference Output of any one of them.

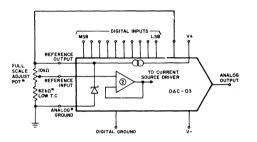
REFERENCE INPUT BYPASS-Lowest noise and fastest settling operation will be obtained by bypassing the Reference Input to Analog Ground with a 0.01μ F disk capacitor.

LOWER RESOLUTION APPLICATIONS-For applications not requiring full 10 bit resolution, unused logic inputs should be tied to ground.

POWER SUPPLIES—The DAC-03 will operate within specifications for power supplies ranging from $\pm 12V$ to $\pm 18V$. Power supplies should be bypassed near the package with a 0.1 μ F disk capacitor. Chip users should connect the substrate to V-.

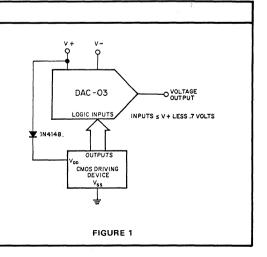
INTERFACING WITH CMOS LOGIC

The DAC-03's logic input stages require about 1μ A and are capable of operation with inputs between -5 volts and V+ less .7 volt. This wide input voltage range allows direct CMOS interfacing in most applications, the exception being where the CMOS logic and D/A converter must use the same positive power supply.


In this special case, a diode should be placed in series with the CMOS driving device's V_{DD} lead as shown in Figure 1. The diode limits V_{DD} to V+ less .7 volt-since the output from the CMOS device cannot exceed this value, the DAC's maximum input voltage rule is satisfied. Summarizing: in all applications, the DAC-03 requires either no interfacing components, or at most a single inexpensive diode for full CMOS compatibility.

SEE SECTION 13 FOR COMPLETE D/A CONVERTER DEFINITIONS

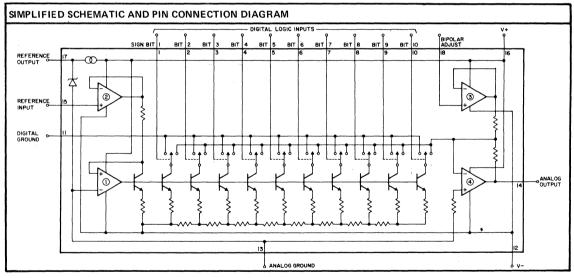
ZERO SCALE OFFSET


The output voltage (V_{ZS}) produced by a zero scale input code (0000000000)

FULL SCALE ADJUSTMENT CIRCUIT

GROUNDING-for optimum noise rejection, separate digital and analog grounds have been brought out. Best results will be obtained if these grounds are connected together at one point only, preferably near the DAC-03 package, so that large digital currents do not flow through the analog ground path.

CAPACITIVE LOADING—the output operational amplifier provides stable operation with capacitive loads up to 100pF.


TWO'S COMPLEMENT 10 BIT D/A CONVERTER

GENERAL DESCRIPTION

The DAC-04 is a complete 10 bit Two's Complement D/A Converter on a single 82 x 148 mil monolithic chip. All elements of a complete bipolar output Two's Complement DAC are included-precision voltage reference, current steering logic, current sources, R-2R resistor network, bipolar offset circuit and high speed internally compensated output op amp. Monotonicity guaranteed over the entire 0° to+70°Ctemperature range is achieved using an untrimmed diffused R-2R resistor network. The buffered reference input is capable of tracking over a wide range of voltages, increasing application flexibility. The user may also easily implement One's Complement, Straight Offset Binary, or unipolar operation. The ±12V to ±18V power supply range, low power consumption TTL and CMOS compatibility, choice of full scale output voltages and adaptable logic coding capability assure utility in a wide range of applications.

FEATURES

	Complete Includes Reference and Op Amp
	Compact Single 18 Pin DIP Package
	Bipolar Output Two's Complement Coding
	Monotonicity Guaranteed
89	Nonlinearity ±1 LSB
	Fast $\ldots \ldots 1.5 \ \mu \text{sec Settling Time}$
	Standard Power Supplies $\hdots\dots\dots\dots\hdots \pm 12V$ to $\pm 18V$
	Low Power Consumption
	TTL, CMOS Compatible Inputs
	Reliable 100% Burned-in 72 Hrs @ +125 $^{\circ}$ C

ORDERING INFORMATION MODEL OUTPUT MONOTONICITY FS TEMPCO TEMP RANGE PACKAGE DAC-04ACX2 90 ppm/°C MAX ±5V 10 BITS 0°/+70°C **18 PIN HERMETIC DIP** DAC-04BCX2 ±5V 9 BITS 90 ppm/°C MAX 0°/+70°C 18 PIN HERMETIC DIP 90 ppm/°C MAX DAC-04CCX2 +5V 8 BITS 0°/+70°C **18 PIN HERMETIC DIP** DAC-04DDX2 +5V 7 BITS 150 ppm/°C MAX 0°/+70°C **18 PIN HERMETIC DIP**

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	0° to +70°C	Internal Reference Output Current	300 µA
Storage Temperature Range	–65°C to +150°C	Reference Input Voltage	0 to +10V
V+ Supply to Analog Ground	0 to +18V	Internal Power Dissipation	500 mW
V– Supply to Analog Ground	0 to -18V	Lead Soldering Temperature	300°C (60 sec)
Analog Ground to Digital Ground	0 to ±0.5V	Output Short Circuit Duration	Indefinite
Logic Inputs to Digital Ground	–5V to (V ₊ – .7V)	(Short circuit may be to ground or ei	ther supply.)

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_S = \pm 15V$ and over the 0° C to +70° C temperature range, unless otherwise specified.

		GRAD	DES AC, B	c, cc	(GRADE	DD	
Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Units
Resolution		10	10	10	10	10	10	bits
Monotonicity	0° C to +70° C							
(See Note 1)	Grade AC	10	-					bits
1	Grade BC	9	-	-				bits
	Grade CC	8	-	-	_			bits
	Grade DD				7	_	-	bits
	0°C to +70°C							
Nonlinearity	Grade AC	-	-	±0.1				%
(See Note 1)	Grade BC	-	-	±0.1				% %
	Grade CC Grade DD	-	-	± 0.2		_	±0.4	%
Settling Time	To ±1/2 LSB, 10 Volt Step	_	1.5	_	-	2.5		μsec
Full Scale Tempco	Total, Internal Reference Connected	_	45	90		60	150	ppm/°C
Full Scale Tempco	Zero Drift External Reference Applied	-	30			50	-	ppm/°C
Reference Input Bias Current		_	100			100	-	nA
Reference Input Impedance		-	200			200	-	MΩ
Reference Input Slew Rate	2	1	1.5	· _	-	1.5	-	V/µsec
Reference Output Voltage		-	6.7	-	-	6.7	-	V
Unipolar Zero Scale Output Voltage	Short Pin 18 to ground (See Note 2)	-	±5.0	-	-	±5.0		mV
Bipolar Offset Voltage	Short Pins, 15 and 18 to Pin 17 (See Note 3)	-5.0	-	-0.1	-5.0	-	-0.1	% Range
Power Supply Sensitivity	V _S = ±12V to ±18V	-	±0.015	±0.1		± 0.15		%/V
Power Dissipation	IOUT = 0	-	225	300		300	350	mW
Logic Input Current	Each Input, –5V to (V+ – .7V)	-	1.0		-	1.0	-	μA
Logic Input "0"		-	-	0.8	-	-	0.8	V
Logic Input "1"		2.0		-	2.0	-	-	v
Full Scale Output Range	Short Pin 15 to Pin 17 (See Note 4)	10	-	11.5	10	-	11.5	v
					L			

NOTE 1: This parameter is 100% tested at $0^{\circ}C,\,+25^{\circ}C$ and $+70^{\circ}C$

NOTE 2: May be operated in 0 to +10V Unipolar mode by shorting Pin 18 to ground.

NOTE 3: Bipolar Offset Voltage is trimmable to exact Two's or One's Complement condition with the circuit shown on the next page.

NOTE 4: Full Scale Output Voltage is trimmable to exact desired output range of 10V with the circuit shown on the next page.

DEFINITION OF SPECIFICATIONS

BIPOLAR OFFSET VOLTAGE $1/2(|V_{FS+}| - |V_{FS-}|)$ The maximum error due to asymmetry around zero output expressed as a percentage of Full Scale Output Range.

FULL SCALE OUTPUT RANGE

The peak-to-peak voltage swing of the converter's output, i.e. $|V_{FS+}|+|V_{FS-1}|$ for bipolar operation, and $(V_{FS-}V_{ZS})$ for unipolar operation.

NEGATIVE BIPOLAR FULL SCALE OUTPUT VOLTAGE (VFS-)

The output voltage for 1000000001 input code for Two's

OPERATING INSTRUCTIONS

ADJUSTING FOR TWO'S COMPLEMENT CODING

- 1. Connect Full Scale Adjust and Bipolar Adjust Circuitry as shown in figure.
- 2. Turn all bits off (V_{FS-}-LSB) 100000000
- 3. Adjust Bipolar Pot for VFS- -LSB at output -5.0098V
- 4. Turn all bits on (V_{FS+}) 0111111111
- 5. Adjust Full Scale Pot for desired V_{FS+} value +5.0000V
- 6. Check Zero Scale Reading (V_{ZS}) 0 0 0 0 0 0 0 0 0 0 0 If this reading is outside desired V_{ZS} range, readjust Bipolar Pot till the output reads 0.0000 V.

TWO'S COMPLEMENT CODING TABLE

	INPUT												
	M	SB							Ľ	SB	OUTPUT		
V _{FS+}	0	1	1	1	1	1	1	1	1	1	+5.000V		
$V_{FS+} - LSB$	0	1	1	1	1	1	1	1	1	0	+4.990V		
+1 LSB	0	0	0	0	0	0	0	0	0	1	+0.010V		
Zero	0	0	0	0	0	0	0	-	0	0	0.000V		
–1 LSB	1	1	1	1	1	1	1	1	1	1	-0.010V		
V _{FS} + LSB	1	0	0	0	0	0	0	0	1	0	-4.990V		
V _{FS-}	1	0	0	0	0	0	0	0	0	1	-5.000V		

ADJUSTING FOR ONE'S COMPLEMENT CODING

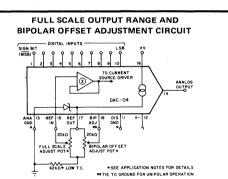
- 1. Connect Full Scale Adjust and Bipolar Adjust Circuitry as shown in above figure.
- 2. Turn all bits off (V_{FS-}) 100000000
- 3. Adjust Bipolar Pot for $V_{\mbox{FS-}}$ at output $\hfill\hfil$
- 4. Turn all bits on (V_{FS+}) 0111111111

5.	Adjust Full Scale Pot for desired V _{FS+} value	 +5.0000V
ON	E'S COMPLEMENT CODING TABLE	

	IDEAL											
	MSB LSB											OUTPUT
V _{FS+} V _{FS+} – LSB				1 1								+5.000V +4.990V
+0 0	-	0 1		0 1								+0.005V -0.005V
V _{FS-} + LSB V _{FS-}	1 1	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	1 0		–4.990∨ –5.000∨

SEE SECTION 13 FOR COMPLETE D/A CONVERTER DEFINITIONS

Complement coding, or the output voltage for 1000000000 input code for One's Complement coding.


POSITIVE BIPOLAR FULL SCALE OUTPUT VOLTAGE (VFS+)

The output for 0111111111 input code.

UNIPOLAR FULL SCALE OUTPUT VOLTAGE (VFS)

The (positive) output voltage for 0111111111 input code.

UNIPOLAR ZERO SCALE OUTPUT VOLTAGE (VZS) The output voltage for 100000000 input code.

NOTE that two zero states will straddle ($\pm 1/2$ LSB) the true zero. Therefore the DAC will have symmetrical outputs for both positive and negative full scale.

EXTERNAL ADJUSTMENT NETWORK-Full Scale Output Range and Bipolar Offset may be adjusted by using the circuit shown in the figure above. Best results will be obtained when low tempco pots and resistors are used, or if pot and resistor tempcos match.

IMPLEMENTING STRAIGHT OFFSET BINARY CODING-Straight Offset Binary coding is exactly the same as One's Complement coding except that the most significant bit occurs in true, rather than inverted form and the output states are relabeled. To convert the DAC-04 to Straight Offset Binary code operation, simply place a logic inverter in series with the MSB input (Pin 1) and invert the MSB value shown in steps 2, and 4 of the One's Complement adjustment procedure shown above.

STRAIGHT OFFSET BINARY CODING TABLE

	INPUT MSB LSB										IDEA OUTPI	
V _{FS+} V _{FS+} – 1 LSB		1 1									+5.000 +4.990	
+ 1/2 LSB Zero		0									+0.005	
– 1/2 LSB	-	1									-0.005	»v
V _{FS-} +1 LSB - V _{FS-}	0 0				0 0						-4.990 -5.000	

REFERENCE OUTPUT—For best results, Reference Output current should not exceed $100\mu A$.

OPERATING INSTRUCTIONS - CONT'D

USE WITH EXTERNAL REFERENCES—Positive-polarity external reference voltages referred to Analog Ground may be applied to the Reference Input terminal to improve full scale tempco, to provide tracking to other system elements, or to slave a number of DAC-04's to the Reference Output of any one of them.

POWER SUPPLIES—The DAC-04 will operate within specifications for power supplies ranging from $\pm 12V$ to $\pm 18V$. Power supplies should be bypassed near the package with a 0.1μ F disk capacitor. Chip users should connect the substrate to V-.

GROUNDING-for optimum noise rejection, separate digital and analog grounds have been brought out. Best results will be obtained if these grounds are connected together at one point only, preferably at the DAC-04 package, so that large digital currents do not flow through the analog ground path.

CAPACITIVE LOADING—the output operational amplifier provides stable operation with capacitive loads up to 100pF.

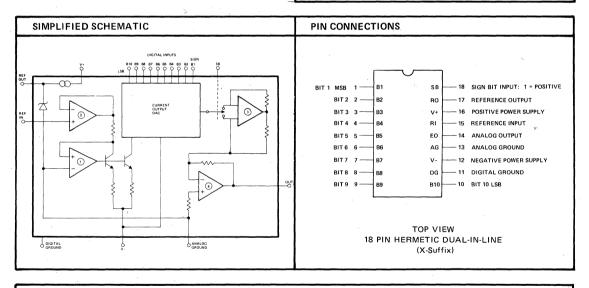
REFERENCE INPUT BYPASS-Lowest noise and fastest settling operation will be obtained by bypassing the Reference Input to Analog Ground with a 0.01μ F disk capacitor.

VARIABLE REFERENCES—Operation as a two-quadrant multiplying DAC is achieved by applying an analog input varying between 0 and +10V to the Reference Input terminal. The DAC output is then the scaled product of this voltage and the digital input. A reference input of 6.27V will produce approximately nominal output range.

LOWER RESOLUTION APPLICATIONS—For applications not requiring full 10 bit resolution, unused logic inputs should be tied to ground.

UNIPOLAR OPERATION-Operation as a 10V positive output 10 bit converter may be implemented by permanently tying pin 18 to ground.

DAC-05


11 BIT DIGITAL TO ANALOG CONVERTER (10 BITS PLUS SIGN)

GENERAL DESCRIPTION

The DAC-05 is a complete, monolithic, Sign Plus 10 Bit DAC with a voltage output. A precision voltage reference, a logic-controlled polarity switch, and a high speed (1.5 μ sec settling time) output op amp are included. Monotonicity, non-linearity, power consumption, and full scale temperature coefficient are guaranteed over the full operating temperature range. Reliability is enhanced by a monolithic design, 100% burn-in, and a hermetic DIP package. Six low cost 0°/70°C and six -55°/+125°C models are available plus six models with MIL-STD-883A Class B processing.

FEATURES

	Complete Includes Reference and Op Amp
	Bipolar Output Sign/Magnitude Coding
	Fast 1.5 μ sec Settling Time
-	Monotonicity and Nonlinearity Guaranteed
	Reliable 100% Burned-in 72 Hrs @+125° C
-	Low Power Consumption
	Compact Single 18 Pin Hermetic DIP Package
	Choice of Output Ranges
	Models with MIL-STD-883A Class B Processing Available From Stock

ORDERING INFORMATION

MODEL	MONOTONICITY	TEMP RANGE	Military Temperatur with MIL-STD-883A	-	
DAC-05AX1 (or 2)	10 BITS	-55°/+125°C	MODEL	MONOTONICITY	
DAC-05BX1 (or 2) DAC-05CX1 (or 2)	9 BITS 8 BITS	-55° /+125° C -55° /+125° C	DAC 05-883-AX1 (or 2) DAC 05-883-BX1 (or 2)	10 BITS 9 BITS	
DAC-05EX1 (or 2)	10 BITS	0° /+70° C	DAC 05-883-DX1 (01 2)	8 BITS	
DAC-05FX1 (or 2) DAC-05GX1 (or 2)	9 BITS 8 BITS	0° /+70° C 0° /+70° C			

ABSOLUTE MAXIMUM RATINGS

Operating	Temperature	Range
-----------	-------------	-------

DAC-05A,B,C
DAC-05E,F,G
Storage Temperature Range
V+ Supply to Analog Ground
V-Supply to Analog Ground

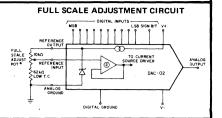
55°C to +125°C
0° C to $+70^{\circ}$ C
65°C to +150°C
0 to +18V
0 to -18V

Analog Ground to Digital Ground	0 to ±0.5V
Logic Inputs to Digital Ground	-5V to (V ₊ 7V)
Internal Reference Output Current	300μA
Reference Input Voltage	0 to +10V
Internal Power Dissipation	500 mW
Lead Soldering Temperature	300°C (60 sec)
Output Short Circuit Duration	Indefinite
(Short circuit may be to ground or e	ither supply.

These specifications apply f	or V _S = ±'	15V and $T_A = -55^\circ C$ to $+125^\circ$	°C unle	ss oth	nerwise	speci	fied.					
			DAC			DAC-			DAC			
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Resolution		Including Sign	11	11	11	11	11	11	11	11	11	bits
Monotonicity			10	-	-	9	_	-	8		-	bits
Nonlinearity	NL	$T_A = 0^\circ C \text{ to } +70^\circ C$	-	-	±0.1		-	±0.2			±0.4	%FS
		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	-		±0.2	`	-	±0.3			±0.5	%FS
Full Scale Tempco	TCVFS	Internal Reference Connected	-	30	60	-	45	90		60	120	ppm/°0
		Enternal Reference Connected	-	30	-	-	30	-	-	30	-	ppm/°
Full Scale Output Voltage	V _{FS+}	Sign Bit High (Note 1)	+10.0		+11.5	+10.0		+11.5	+10.0	-	+11.5	v
(X1 Suffix)	V _{FS-}	Sign Bit Low (Note 1)	-11.5	-	-10.0	-11.5	-	-10.0	-11.5	-	-10.0	v
Full Scale Output Voltage	V _{FS+}	Sign Bit High (Note 1)	+5.00		+5.75	+5.00	-	+5.75	+5.00	~	+5.75	v
(X2 Suffix)	V _{FS-}	Sign Bit Low (Note 1)	-5.75	-	-5.00	-5.75		-5.00	-5.75	-	-5.00	v
Zero Scale Offset	V _{FS+}	T _A = +25° C	-	1.0	5.0	-	1.0	5.0	-	1.0	5.0	mV
(Sign Bit High, All Others Low)		$T_A = -55^\circ C$ to $+125^\circ C$	-	2.0	10	-	2.0	10	-	2.0	10	mV
Zero Scale Symmetry (X1 Suffix)		(Note 2)	-	±4.0	±10	-	±4.0	±10	-	±4.0	±10	mV
Zero Scale Symmetry (X2 Suffix)		(Note 2)	-	±2.0	±5.0		±2.0	±5.0	-	±2.0	±5.0	mV
Full Scale Bipolar Symmetry		T _A = +25°C (Note 3)	-	±10	±50		±10	±50	-	±10	±50	mV
(X1 Suffix)		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	-	±20	±70		±20	±70		±20	±70	mV
Full Scale Bipolar Symmetry	1	$T_{A} = +25^{\circ}C \text{ (Note 3)}$	-	±5.0	±25		±5.0	±25	-	±5.0	±25	mV
(X2 Suffix)		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	-	±10	±35	-	±10	±35		±10	±35	mV
Settling Time	ts	To ± ½ LSB, 10V Change	-	1.5	-	-	1.5			1.5	-	μsec
Reference Input Slew Rate	1		-	1.5	-	-	1.5		-	1.5	'	V/µsec
Reference Input Bias Current			-	100	-		100	-	-	100	-	nA
Reference Input Impedance			-	200	-	-	200	-	-	200	-	MΩ
Reference Output Voltage			-	6.7		-	6.7			6.7	-	v
Logic Input Current	1 _{IN}	Each Input, -5V to (V+ – .7V)	-	±1.0	±10	-	±1.0	±10	-	±1.0	±10	μA
Logic Input "0"	VIL		-	-	0.8	-	~	0.8	-		0.8	V
Logic Input "1"	VIH		2.0	-		2.0		-	2.0	-	-	v
Power Supply Sensitivity		T _A = +25°C	-	0.02	0.05	-	0.02	0.05	-	0.02	0.05	^{%∨} FS
$(V_{S} = \pm 12V \text{ to } \pm 18V)$	1	$T_{A} = +25^{\circ}C$ $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$		0.05	0.1		0.05	0.1	-	0.05	0.1	^{%∨} FS
Power Dissipation	1	$T_{A} = +25^{\circ}C$	-	200	300		200	300		200	300	mW
(1 _{OUT} = 0)		$T_A = -55^{\circ}C$ to $+125^{\circ}C$	-	250	350		250	350	-	250	350	mW

NOTE 1: Reference Output terminal connected directly to Reference Input terminal, $R_L = 2K\Omega$, all logic inputs $\ge 2.0 V$.

NOTE 2: Zero Scale Symmetry is the change in the output voltage produced by switching the Sign Bit with all logic bits low (V_{ZS+}-V_{ZS-}).


NOTE 3: Full Scale Bipolar Symmetry is the magnitude of the difference between $|V_{FS+}|$ and $|V_{FS-}|$.

DAC-05

CONNECTION INFORMATION

FULL SCALE ADJUSTMENT - Full Scale output voltage may be trimmed by use of a potentiometer and series resistor as shown; however, best results will be obtained if a low tempco resistor is used or if pot and resistor tempcos match. Alternatively, a single pot of \ge 75K Ω may be used.

REFERENCE INPUT BYPASS – Lowest noise and fastest settling operation will be obtained by bypassing the Reference Input to Analog Ground with a 0.01μ F disk capacitor. **GROUNDING** – For optimum noise rejection, separate digital and analog grounds have been brought out. Best results will be obtained if these grounds are connected together at one point only, preferably near the DAC-05 package, so that the large digital currents do not flow through the analog ground path.

ELECTRICAL CHARACTERISTICS-COMMERCIAL GRADES

These specifications apply for $V_s = \pm 15V$ and $T_A = 0^{\circ}C$ to $\pm 70^{\circ}C$ unless otherwise specified.

		·	DAC-	-05E		DAC	-05 F		DAC	-05G		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Resolution		Including Sign	11	11	11	11	11	11	11	11	11	bits
Monotonicity			10	-	-	9	-	-	8	-	-	bits
Nonlinearity	NL	T _A = +25°C	-	-	±0.1	-	-	±0.2	-		±0.4	%FS
		$T_A = 0^\circ C$ to $70^\circ C$	-	-	±0.2		-	±0.3	-	-	±0.5	%FS
Full Scale Tempco	TCVFS	Internal Reference Connected	-	45	100	-	45	100		45	100	ppm/°
(Note 4)		External Reference Connected	-	30	-	-	30	-	-	30	-	ppm/°
Full Scale Output Voltage	V _{FS+}	Sign Bit High (Note 1)	+10.0	-	+11.5	+10.0	-	+11.5	+10.0	-	+11.5	v
(X1 Suffix)	V _{FS-}	Sign Bit Low (Note 1)	-11.5	-	-10.0	-11.5	-	-10.0	-11.5	-	-10.0	v
Full Scale Output Voltage	V _{FS+}	Sign Bit High (Note 1)	+5.00	-	+5.75	+5.00	-	+5.75	+5.00	-	+5.75	v
(X2 Suffix)	V _{FS-}	Sign Bit Low (Note 1)	-5.75	-	-5.00	-5.75	-	-5.00	-5.75	-	-5.00	v
Zero Scale Offset	V _{ZS+}	T _A = 25°C.	-	1.0	5.0		1.0	5.0	-	1.0	5.0	mV
(Sign Bit High, All Others Low)		$T_A = 0^\circ C$ to $+70^\circ C$	-	2.0	10	-	2.0	10	-	2.0	10	mV
Zero Scale Symmetry (X1 Suffix)		(Note 2)		±4.0	±10	-	±4.0	±10	-	±4.0	±10	mV
Zero Scale Symmetry (X2 Suffix)		(Note 2)	-	±2.0	±5.0	-	±2.0	±5.0		±2.0	±5.0	mV
Full Scale Bipolar Symmetry	1	$T_A = +25^\circ C \text{ (Note 3)}$		±10	±50	-	±10	±50	-	±10	±50	mV
(X1 Suffix)		$T_A = 0^\circ C$ to $+70^\circ C$	-	±20	±70	-	±20	±70	-	±20	±70	mV
Full Scale Bipolar Symmetry		T _A = +25°C (Note 3)	-	±5.0	±25	-	±5.0	±25		±5.0	±25	mV
(X2 Suffix)		$T_A = 0^\circ C$ to $+70^\circ C$	-	±10	±35	-	±10	±35		±10	±35	mV
Settling Time		To ± ½ LSB, 10V Change	-	1.5		-	1.5	-		1.5	-	μsec
Reference Input Slew Rate			-	1.5	-	-	1.5	-	-,	1.5	-	V/µsec
Reference Input Bias Current			-	100	-	-	100	-	-	100		nA
Reference Input Impedance			-	200	-	-	200	-	-	200	-	MΩ
Reference Output Voltage				6.7	-	-	6.7	-	-	6.7	1	V
Logic Input Current	1 _{IN}	Each Input, -5V to (V+7V)	-	±1.0	±10	- ·	±1.0	±10	-	±1.0	±10	μA
Logic Input "0"	VIL		-	-	0.8	-	-	0.8	1	-	0.8	v
Logic Input "1"	V _{IH}		2.0	-	-	2.0	-		2.0	-	-	v
Power Supply Sensitivity		$T_A = +25^{\circ}C$	-	0.02	0.05	-	0.02	0.05	-	0.02	0.05	^{%V} FS
$(V_{S} = \pm 12V \text{ to } \pm 18V)$		$T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$	-	0.05	0.1	-	0.05	0.1	-	0.05	0.1	%V _{FS}
Power Dissipation	·	$T_A = +25^{\circ}C$	-	200	300	-	200	300	-	200	300	mW
(IOUT = 0)		$T_{} = 0^{\circ}C \text{ to } +70^{\circ}C$	-	250	350	-	250	350	-	250	350	mW

NOTE 2: Zero Scale Symmetry is the change in the output voltage produced by switching the Sign Bit with all logic bits low (V_{ZS+}-V_{ZS-}).

NOTE 3: Full Scale Bipolar Symmetry is the magnitude of the difference between $|V_{FS+}|$ and $|V_{FS-}|$.

NOTE 4: Parameter is not 100% tested; 90% of units meet this specification.

APPLICATIONS INFORMATION

LOWER RESOLUTION APPLICATIONS - For applications not requiring full 10 bit resolution, unused logic inputs should be tied to ground.

UNIPOLAR OPERATION – Operation as a 10 bit straight binary converter may be implemented by permanently tying the Sign Bit to +5V (For positive Full Scale output) or to ground (for negative Full Scale output).

POWER SUPPLIES - The DAC-05 will operate within specifications for power supplies ranging from $\pm 12V$ to $\pm 18V$. Power supplies should be bypassed near the package with a 0.1μ F disk capacitor.

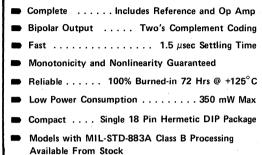
CAPACITIVE LOADING - The output operational amplifier provides stable operation with capacitive loads up to 500pF.

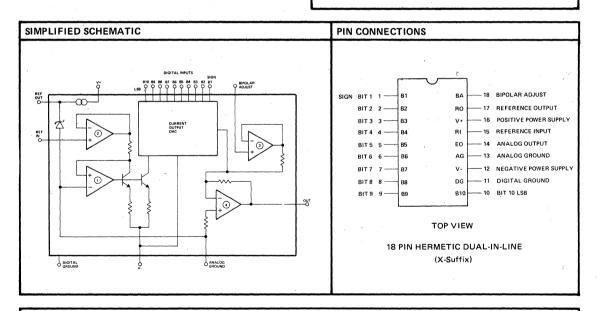
REFERENCE OUTPUT - For best results, Reference Output current should not exceed $100\mu A$.

USE WITH EXTERNAL REFERENCES - Positive-polarity external reference voltages referred to Analog Ground may be applied to the Reference Input terminal to improve full scale tempco, to provide tracking to other system elements, or to slave a number of DAC-05's to the Reference Output of any one of them.

SIGN PLUS MAGNITUDE CODING TABLE

	SIGN BIT	M	SB							LS	ЗВ
+ FULL SCALE	1	1	1	1	1	1	1	1	1	1	1
+ "HALF" SCALE	1	1	0	0	0	0	0	0	0	0	0
ZERO SCALE (+)	1	0	0	0	0	0	0	0	0	0	0
ZERO SCALE (~)	0	0	0	0	0	0	0	0	0	0	0
- "HALF" SCALE	0	1	0	0	0	0	0	0	0	0	0
-FULL SCALE	0	1	1	1	1	1	1	1	1	1	1




TWO'S COMPLEMENT 10 BIT D/A CONVERTER

GENERAL DESCRIPTION

The DAC-06 is a complete, monolithic, Two's Complement 10 Bit DAC with a voltage output. A precision voltage reference, R-2R resistor network, bipolar offset circuit, and a high speed (1.5 µsec settling time) output op amp are included. Monotonicity, nonlinearity, power consumption, and full scale temperature coefficient are guaranteed over the full operating temperature range. Reliability is enhanced by a monolithic design, 100% burn-in, and a hermetic DIP package. Three low cost 0°/70° C and three -55°/+125°C models are available plus three models with MIL-STD-883A Class B processing.

FEATURES

ORDERING INFORMATION

MODEL	MONOTONICITY	TEMP RANGE		ature Range Devices
DAC-06AX	10 BITS	-55°/+125°C	with MIL-STD-8	83A Class B Processing:
DAC-06BX	9 BITS	-55°/+125°C	MODEL	MONOTONICITY
DAC-06CX	8 BITS	-55°/+125°C	DAC06-883-AX	10 BITS
DAC-06EX	10 BITS	0°/+70°C	DAC06-883-BX	9 BITS
DAC-06FX	9 BITS	0°/+70°C	DAC06-883-CX	8 BITS
DAC-06GX	8 BITS	0°/+70°C	DACCORDECT	0 5110

ABSOLUTE MAXIMUM RATINGS

· · · · · · · · · · · · · · · · · · ·		
Operating Temperature Range		Internal Refer
DAC-06A, B, C	–55°C to +125°C	Reference Inp
DAC-06E, F, G	$0^{\circ}C$ to $+70^{\circ}C$	Bipolar Offset
Storage Temperature Range	-65°C to +150°C	Internal Powe
V+Supply to Analog Ground	0 to +18V	Lead Solderin
V- Supply to Analog Ground	0 to -18V	Output Short
Analog Ground to Digital Ground	0 to ±0.5V	(Short circ
Logic Inputs to Digital Ground	-5V to (V ₊ 7V)	

DAC-06 DEFINITIONS

FULL SCALE OUTPUT RANGE-The peak-to-peak voltage swing of the converter's output, i.e. $|V_{FS}+|+|V_{FS}-|$ for bipolar operation, and $(V_{FS}-V_{ZS})$ for unipolar operation.

POSITIVE BIPOLAR FULL SCALE OUTPUT VOLTAGE (VFS+)-The output for 0111111111 input code.

NEGATIVE BIPOLAR FULL SCALE OUTPUT VOLTAGE(V_{FS})-The output voltage for 1000000001 input code for Two's Complement coding, or the output voltage for 1000000000 input code for One's Complement coding.

UNIPOLAR FULL SCALE OUTPUT VOLTAGE (VFS)-The (positive) output voltage for 0111111111 input code.

UNIPOLAR ZERO SCALE OUTPUT VOLTAGE (VZS)- The output voltage for 1000000000 input code.

BIPOLAR OFFSET VOLTAGE 1/2(|VFS+||VFS-|)-The maximum error due to asymmetry around zero output expressed as a percentage of Full Scale Output Range. (This is adjustable to zero-see Adjustment Procedures on the last page.)

Internal Reference Output Current	300µA
Reference Input Voltage	0 to +10V
Bipolar Offset Input Voltage	0 to +10V
Internal Power Dissipation	500 mW
Lead Soldering Temperature	300°C (60 sec)
Output Short Circuit Duration	Indefinite
(Short circuit may be to ground or either	supply.)

LEAST SIGNIFICANT BIT (LSB)—The smallest incremental output change obtainable, which is ideally equal to the full scale output range divided by 2n⁻¹, where n = number of bits of resolution.

MOST SIGNIFICANT BIT (MSB)—The largest incremental output change obtainable by switching a single logic input, ideally equal to the ideal LSB multiplied by 2m⁻¹, where n = number of bits of resolution. In Two's and One's Complement Converters this MSB is inverted with respect to the other (binary) bits and is used as a sign bit; this feature is incorporated into the DAC-06 design.

MONOTONICITY-Having each successive output state greater than or equal to the preceding one when the DAC is sequenced through all successive states from VF_{S-} to VF_{S+} .

 $\label{eq:FULL_SCALE_TEMPERATURE_COEFFICIENT-Change in absolute full scale output range in ppm between 25°C and either temperature extreme divided by the corresponding change in temperature.$

POWER SUPPLY SENSITIVITY—The ratio of the percentage change in full scale output range to the change in the supply voltage producing it.

ELECTRICAL CHARACTERISTICS – MILITARY GRADES

These specifications apply for $V_S = \pm 15V$ and $T_{\Delta} = -55^{\circ}C$ to $\pm 125^{\circ}C$ unless otherwise specified.

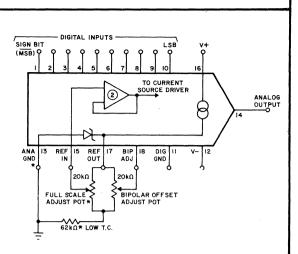
			DAC	-06A		DAC	-06B		DAC			
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Resolution			10	10	10	10	10	10	10	10	10	bits
Monotonicity		,	10	-	-	9	-	-	8	-	-	bits
Nonlinearity	NL	$T_A = 0^\circ C$ to $70^\circ C$	0.1		-	0.2	-	-	0.4	-		%FSR
		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	0.2	-	-	0.3	-	-	0.5	-		%FSR
Full Scale Tempco	TCVFS	Internal Reference Connected	, 1	30	60	-	45	90	-	60	120	ppm/°
·		External Reference Connected		30			30	-	-	30	_ ·	ppm/°
Full Scale Output Range	FSR	V _{FS} _ + V _{FS+} (Note 1)	10	-	11.5	10	-	11.5	10	-	11.5	v
Unipolar Zero Scale Output	v _{zs}	$T_A = +25^{\circ}C$		1.0	5.0	-	1.0	5.0		1.0	5.0	mV
Voltage (Pin 18 to Pin 11)		$T_A = -55^\circ C \text{ to } +125^\circ C$	-	2.0	10	-	2.0	10	-	2.0	10	mV
Bipolar Offset Voltage (Pin 15 to 18 and 17)		^{1/2} (V _{FS+} - V _{FS-}])	-5.0	-	-0.1	-5.0		-0.1	-5.0	-	-0.1	%FSR
Settling Time	ts	To ±1/2 LSB, 10 Volt Step		1.5	-		1.5	-		1.5	-	μsec
Reference Input Slew Rate				1.5	_		1.5		-	1.5	-	V/µsee
Reference Input Bias Current			-	100	-	-	100	-	-	100	-	nA
Reference Input Impedance		· · · · · · · · · · · · · · · · · · ·	-	200	-	-	200		-	200	-	MΩ
Reference Output Voltage				6.7	-		6.7	-	-	6.7	-	v
Logic Input Current	1 _{IN}	Each Input, -5V to (V+7V)	: -	±1.0	±10	-	±1.0	± 10	_	±1.0	± 10	μA
Logic Input "0"	VIL		-	. –	0.8	-	-	0.8	· —	-	0.8	v
Logic Input "1"	V _{IH}		2.0	-		2.0	-	-	2.0		-	V
Power Supply Sensitivity		T _A = +25°C	-	0.02	0.05		0.02	0.05	-	0.02	0.05	%FS/\
$(V_S = \pm 12V \text{ to } \pm 18V)$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	-	0.05	0.1		0.05	0.1	—	0.05	0.1	%FS/\
Power Dissipation		T _A = +25° C		200	300	-	200	300	-	200	300	mW
(I _{OUT} = 0)	1	$T_A = -55^\circ C$ to $+125^\circ C$		250	350	-	250	350		250	350	mW

CONNECTION INFORMATION

,as

EXTERNAL ADJUSTMENTS - Full Scale Range and Bipolar Symmetry may be adjusted using the connections shown with the procedures on the next page.

REFERENCE INPUT BYPASS – Lowest noise and fastest settling operation will be obtained by bypassing the Reference Input and the Bipolar Offset Adjust inputs with $0.01\mu F$ disc capacitors connected to Analog Ground.


GROUNDING – For optimum noise rejection, separate digital and analog grounds have been brought out. Best results will be obtained if these grounds are connected together at one point only, preferably at the DAC-06 package, so that large digital currents do not flow through the analog ground path.

REFERENCE OUTPUT - For best results, Reference Output current should not exceed $100\mu A$.

USE WITH EXTERNAL REFERENCES - Positive-polarity external reference voltages referred to Analog Ground may be applied to the Reference Input terminal to improve full scale tempco, to provide tracking to other system elements, or to slave a number of DAC-06's to the Reference Output of any one of them.

UNIPOLAR OPERATION - Operation as a 10V positive output 10 bit converter may be implemented by permanently tying pin 18 to ground.

LOWER RESOLUTION APPLICATIONS - For applications not requiring full 10 bit resolution, unused logic inputs should be tied to ground.

NOTE: For unipolar operation, omit the Bipolar offset adjustment potentiometer.

ELECTRICAL CHARACTERISTICS – COMMERCIAL GRADES

These specifications apply for $V_{S} = \pm 15V$ and $T_{A} = 0^{\circ}C$ to $70^{\circ}C$ unless otherwise specified.

			DAC	-06E		DAC	-06F		DAC	-06G		
Parameter	Parameter Symbol Conditions			Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Resolution			10	10	10	10	10	10	10	10	10	bits
Monotonicity			10	-	-	9	-	-	8	-	-	bits
Nonlinearity	NL	$T_A = +25^{\circ}C$	0.1	-	-	0.2	-	-	0.4	-		%FSR
		$T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$	0.2	-	-	0.3	·	-	0.5	-	-	%FSR
Full Scale Tempco	TCVFS	Internal Reference Connected	-	45	100	-	45	100		45	100	ppm/°
(Note 2)		External Reference Connected	-	30	-	-	30		-	30	-	ppm/°
Full Scale Output Range	FSR	^V FS- ^{+ V} FS+ (Note 1)	10	-	11.5	10	-	11.5	10	-	11.5	v
Unipolar Zero Scale Output	v _{zs}	T _A = +25°C	-	1.0	5.0	-	1.0	5.0	-	1.0	5.0	mV
Voltage (Pin 18 to Pin 11)		$T_A = 0^\circ C$ to $+70^\circ C$		2.0	10	-	2.0	10	-	2.0	10	mV
Bipolar Offset Voltage (Pin 15 to 18 and 17)		$T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $\frac{1}{2}(V_{FS+} - V_{FS-})$	-5.0	-	-0.1	-5.0	-	-0.1	-5.0	-	-0.1	%FSR
Settling Time	t _s	To ±½ LSB, 10 Volt Step		1.5		-	1.5			1.5	-	μsec
Reference Input Slew Rate			-	1.5	-	-	1.5		-	1.5	-	V/µse
Reference Input Bias Current			-	100	-	-	100	-		100	-	nA
Reference Input Impedance			-	200		-	200	1		200	-	MΩ
Reference Output Voltage			-	6.7	-	-	6.7	-		6.7	-	v
Logic Input Current	IIN	Each Input, -5V to (V+ – .7V)	-	±1.0	± 10	-	±1.0	± 10		±1.0	± 10	μA
Logic Input "0"	VIL		-	-	0.8	-	-	0.8		-	0.8	v
Logic Input "1"	VIH		2.0	-	-	2.0		-	2.0	-		v
Power Supply Sensitivity		T _A = +25°C		0.02	0.05	-	0.02	0.05		0.02	0.05	%FS/\
(V _S = ±12V to ±18V)		$T_A = 0^\circ C$ to $+70^\circ C$		0.05	0.1	-	0.05	0.1	-	0.05	0.1	%FS/\
Power Dissipation		$T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $T_{A} = +25^{\circ}C$ $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$.—	200	300	-	200	300	-	200	300	mW
^{(I} OUT ^{= 0)}		$T_{A} = 0^{\circ}C$ to $+70^{\circ}C$		250	350	-	250	350		250	350	mW

ADJUSTMENT PROCEDURES

ADJUSTING FOR TWO'S COMPLEMENT CODING

- 1. Turn all bits off (V_{FS}-LSB) --- 100000000
- Adjust Bipolar Pot for V_{FS}-LSB at output for ±5V operation adjust to -5.0098V.
- 3. Turn all bits on (V_{FS+}) -- 0111111111
- Adjust Full Scale Pot for desired V_{FS+} value for ±5V operation adjust output to +5.0000V.
- 5. Check Zero Scale Reading (V_{ZS}) 0 0 0 0 0 0 0 0 0 0 If this reading is outside desired V_{ZS} range, readjust Bipolar Pot till the output reads 0.0000 V.

TWO'S COMPLEMENT CODING TABLE

			IDEAL								
	M	SB							LS	SB	OUTPUT
V _{FS+}	0	1	1	1	1	1	1	1	1	1	+5.000V
V _{FS+} – LSB	0	1	1	1	1	1	1	1	1	0	+4.990∨
+1 LSB	0	0	0	0	0	0	0	0	0	1	+0.010V
Zero	0	0	0	0	0	0	0	0	0	0	0.000V
-1 LSB	1	1	1	1	1	1	1	1	1	1	-0.010V
V _{FS-} +LSB	1	0	0	0	0	0	0	0	1	0	~4.990V
V _{FS-}	1	0	0	0	0	0	0	0	0	1	-5.000V

IMPLEMENTING STRAIGHT OFFSET BINARY CODING -Straight Offset Binary coding is exactly the same as One's Complement coding except that the most significant bit occurs in true, rather than inverted form and the output states are relabeled. To convert the DAC-06 to Straight Offset Binary code operation, simply place a logic inverter in series with the MSB input (Pin 1) and invert the MSB value shown in steps 2, and 4 of the One's Complement adjustment procedure.

ADJUSTING FOR ONE'S COMPLEMENT CODING

- 1. Turn all bits off (V_{FS-}) 1 0 0 0 0 0 0 0 0 0 Adjust Bipolar Pot for V_{FS-} at output for ±5V operation adjust to -5.0000V.
- 3. Turn all bits on $(V_{FS+}) 0 1 1 1 1 1 1 1 1 1$
- Adjust Full Scale Pot for desired V_{FS+} value for ±5V operation adjust output to +5.0000V.

ONE'S COMPLEMENT CODING TABLE

				IDEAL							
	M	SB							L	SB	OUTPUT
V _{FS+}	0	1	1	1	1	1	1	1	1	1	+5.000V
V _{FS+} - LSB	0	1	1	1	1	1	1	1	1	0	+4.990V
+0						-	0	-	-	-	+0.005V
-0	1	1	1	1	1	1	1	1	1	1	-0.005V
V _{FS-} +LSB	1	0	0	0	0	0	0	0	0	1	-4.990V
V _{FS-}	1	0	0	0	0	0	0	0	0	0	-5.000V

NOTE that two zero states will straddle $(\pm \frac{1}{2} LSB)$ the true zero. Therefore the DAC will give symmetrical outputs for both positive and negative full scale.

STRAIGHT OFFSET BINARY CODING TABLE

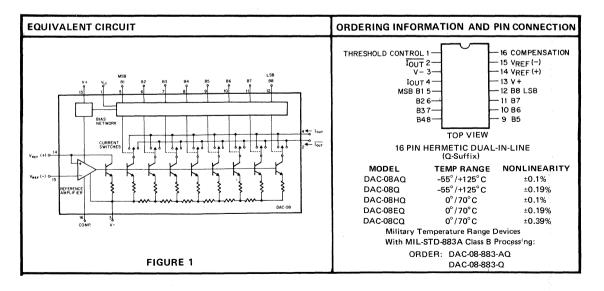
			IDEAL								
	M	SB							LS	SB	OUTPUT
V _{FS+}	1	1	1	1	1	1	1	1	1	1	+5.000V
V _{FS+} -1 LSB	1	1	1	1	1	1	1	1	1	0	+4.990V
+ ½ LSB Zero	1	0	0	0	0	0	0	0	0	0	+0.005V
- ½ LSB	0	1	1	1	1	1	1	1	1	1	-0.005V
V _{FS-} +1 LSB	0	0	0	0	0	0	0	0	0	1	-4.990V
V _{FS-}	0	0	0	0	0	0	0	0	0	0	-5.000V

8 BIT HIGH SPEED MULTIPLYING D/A CONVERTER UNIVERSAL DIGITAL LOGIC INTERFACE

GENERAL DESCRIPTION

The DAC-08 series of 8 bit monolithic multiplying Digitalto-Analog Converters provide very high speed performance coupled with low cost and outstanding applications flexibility.

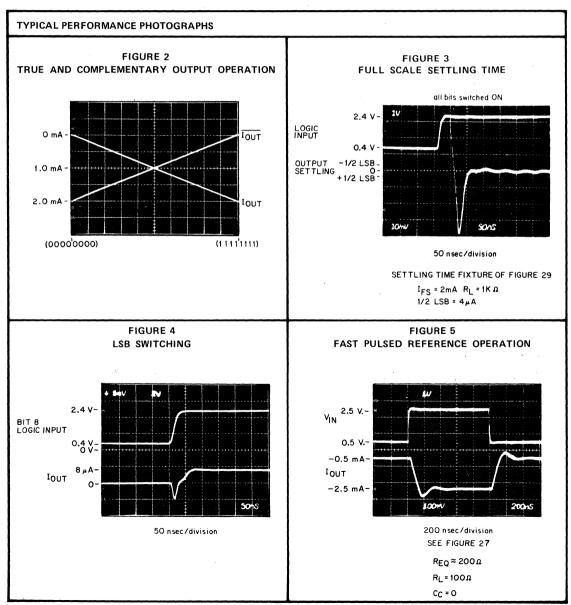
Advanced circuit design achieves 85 nsec settling times with very low "glitch" and at low power consumption. Monotonic multiplying performance is attained over a wide 40 to 1 reference current range. Matching to within 1 LSB between reference and full scale currents eliminates the need for full scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic inputs.


High voltage compliance dual complementary current outputs are provided, increasing versatility and enabling differential operation to effectively double the peak-to-peak output swing. In many applications, the outputs can be directly converted to voltage without the need for an external op amp.

All DAC-08 series models guarantee full 8 bit monotonicity, and nonlinearities as tight as $\pm 0.1\%$ over the entire operating temperature range are available. Device performance is essentially unchanged over the $\pm 4.5V$ to $\pm 18V$ power supply range, with 33 mW power consumption attainable at $\pm 5V$ supplies.

FEATURES

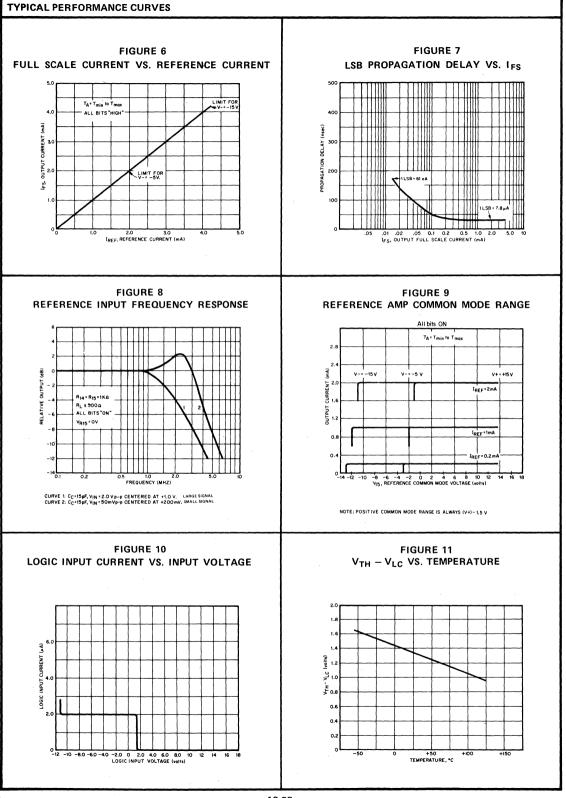
The compact size and low power consumption make the DAC-08 attractive for portable and military/aerospace applications; devices processed to MIL-STD-883A, Level B are available.

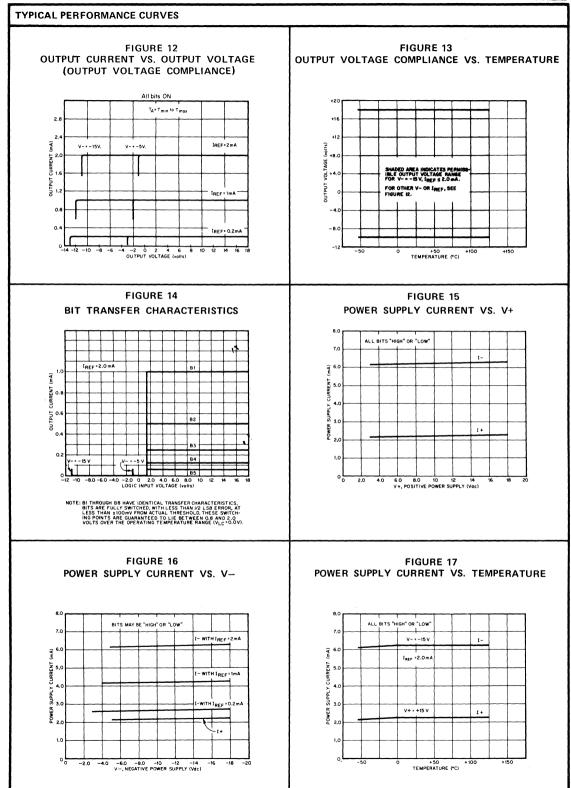

DAC-08 applications include 8 bit, 1 μ sec A/D converters, servo-motor and pen drivers, waveform generators, audio encoders and attenuators, analog meter drivers, programmable power supplies, CRT display drivers, high speed modems and other applications where low cost, high speed and complete input/output versatility are required.

DAC-08

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

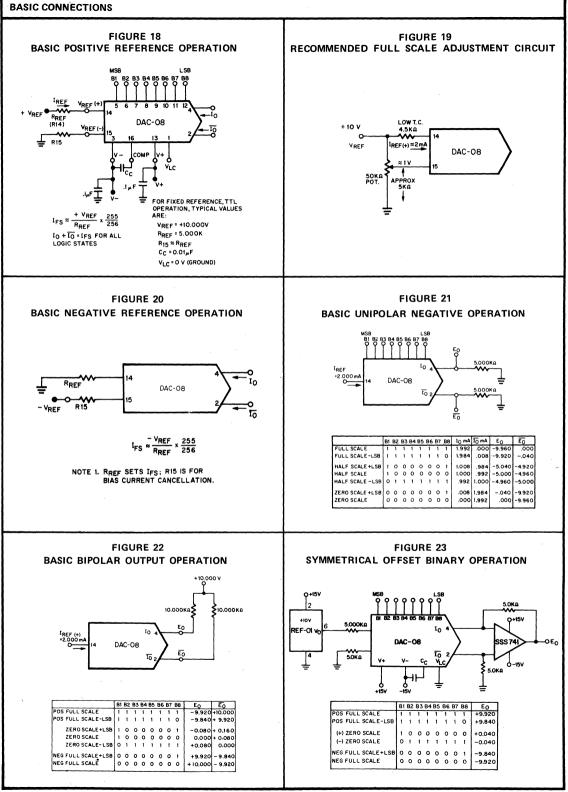
Operating Temperature DAC-08AQ, Q DAC-08EQ, CQ, HQ Storage Temperature	-55°C to +125°C 0°C to +70°C -65°C to +150°C	V+ Supply to V– Supply Logic Inputs V _{LC} Analog Current Outputs	36V V- to V- plus 36V V- to V+ See Fig. 12
Power Dissipation	500 mW	Reference Inputs (V ₁₄ , V ₁₅)	V- to V+
Derate above 100°C	10mW/°C	Reference Input Differential Voltag	ge (V ₁₄ to V ₁₅) ±18V
Lead Soldering Temperature	300°C (60 sec)	Reference Input Current (114)	5.0mA

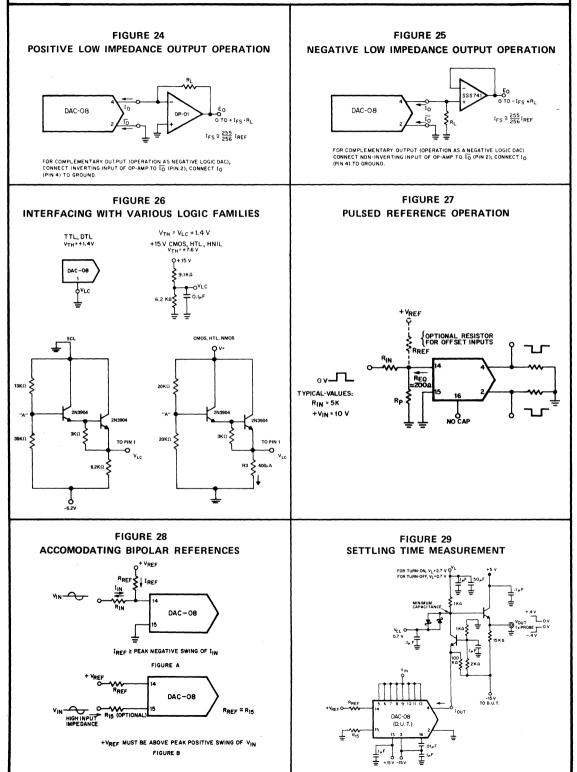

ELECTRICAL CHARACTERISTICS


				DAC-08A			DAC-08		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Мах	Units
Resolution			8	8	8	8	8	8	bits
Monotonicity			8	8	8	8	8	8	bits
Nonlinearity		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	-	-	±0.1	-	-	±0.19	% FS
Settling Time	ts	To $\pm \%$ LSB, all bits switched ON or OFF T _A = 25°C	-	85	135	-	85	135	nsec
Propagation Delay Each bit All bits switched	^ւ թլн, ւթнլ	T _A = 25°C	 	35 35	60 60	-	35 35	60 60	nsec nsec
Full Scale Tempco	TCIFS		_	±10	±50	_	±10	±50	ppm/°C
Output Voltage Compliance	V _{OC}	Full scale current change <½ LSB ROUT > 20 Megohm typ.	10	-	+18	-10	-	+18	Volts
Full Scale Current	IFS4	VREF = 10.000V R ₁₄ , R ₁₅ = 5.000k Ω T _A = 25°C	1.984	1.992	2.000	1.94	1.99	2.04	mA
Full Scale Symmetry	IFSS	¹ FS4 ¹ FS2	-	±0.5	±4.0	-	±1.0	±8.0	μA
Zero Scale Current	Izs		-	0.1	1.0	-	0.2	2.0	μA
Output Current Range	IFSR	V− = −5.0V V− = −7.0V to −18V	0 0	2.0 2.0	2.1 4.2	0 0	2.0 2.0	2.1 4.2	mA mA
Logic Input Levels Logic "0" Logic "1"	V _{IL} VIH	V _{LC} = 0V	_ 2.0		0.8 —	2.0	-	0.8 	Volts Volts
Logic Input Current Logic "0" Logic "1"	Ц ЦН	V _{LC} = 0V V _{IN} = -10V to +0.8V V _{IN} = 2.0V to 18V		-2.0 0.002	10 10		-2.0 0.002	10 10	μΑ μΑ
Logic Input Swing	VIS	V-=-15V	-10	-	+18	-10	-	+18	Volts
Logic Threshold Range	V _{THR}	V _S = ±15V	-10	-	+13.5	-10	-	+13.5	Volts
Reference Bias Current	I ₁₅		-	-1.0	-3.0	-	-1.0	-3.0	μA
Reference Input Slew Rate	dl/dt	See Figs. 5, 27	4.0	8.0	-	4.0	8.0	-	mA/µse
Power Supply Sensitivity	PSSI _{FS+} PSSI _{FS-}	V+ = 4.5V to 18V V- = -4.5V to -18V I _{REF} = 1.0 mA	-	±0.0003 ±0.002	±0.01 ±0.01		±0.0003 ±0.002	±0.01 ±0.01	%/% %/%
Power Supply Current	l+ L-	$V_{S} = \pm 5V$, $I_{REF} = 1.0 \text{ mA}$ $V_{C} = \pm 5V$, -15V,		2.3 4.3	3.8 -5.8	-	2.3 -4.3	3.8 -5.8	mA mA
	یں الجام ہے۔ الے الحال ہے۔ الے الحال ہے۔	V _S = +5V, -15V, I _{REF} = 2.0 mA V _S = ±15V, I _{REF} = 2.0 mA		2.4 -6.4	3.8 -7.8	-	2.4 -6.4	3.8 -7.8	mA mA
	1+ ³ 55 1-			2.5 6.5	3.8 7.8	-	2.5 -6.5	3.8 7.8	mA mA
Power Dissipation	PD	±5V, I _{REF} = 1.0 mA +5V, -15V, I _{REF} = 2.0 mA ±15V, I _{REF} = 2.0 mA		33 108 135	48 136 174		33 108 135	48 136 174	mW mW mW

ELECTRICAL CHARACTERISTICS

These specifications apply for V_S = ±15V, I_{REF} = 2.0 mA, T_A = 0°C to 70°C unless otherwise specified. Output characteristics refer to both I_{OUT} and I_{OUT}.


				DAC-08	н		DAC-08	E		DAC-08	BC	
Parameter	Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Units
Resolution			8	8	8	8	8	8	8	8	8	bits
Monotonicity			8	8	8	8	8	8	8	8	8	bits
Nonlinearity		$T_A = 0^\circ C$ to $70^\circ C$	-		±0.1	_		±0.19		_	±0.39	% FS
Settling Time	t _s	To $\pm \frac{1}{2}$ LSB, all bits switched ON or OFF T _A = 25°C	-	85	135	-	85	150	-	85	150	nsec
Propagation Delay Each bit All bits switched	^t PLH ^t PHL	T _A ≈ 25°C		35 35	60 60		35 35	60 60	-	35 35	60 60	nsec nsec
Full Scale Tempco	TCIFS		-	±10	±50	-	±10	±50	-	±10	±80	ppm/°C
Output Voltage Compliance	Voc	Full scale current change < ½ LSB ROUT > 20 Megohm typ.	-10	-	+18	-10		+18	-10	-	+18	Volts
Full Scale Current	IFS4	V _{REF} = 10.000V R ₁₄ , R ₁₅ = 5.000k Ω T _A = 25°C	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
Full Scale Symmetry	FSS	IFS4 IFS2	-	±0.5	±4.0	-	±1.0	±8.0	-	±2.0	±16	μA
Zero Scale Current	IZS		-	0.1	1.0	-	0.2	2.0		0.2	4,0	μA
Output Current Range	IFSR	V- = -5.0V V- = -7.0V to -18V	0 0	2.0 2.0	2.1 4.2	0 0	2.0 2.0	2.1 4.2	0	2.0 2.0	2.1 4.2	mA mA
Logic Input Levels Logic "0" Logic "1"	VIL VIH	V _{LC} = 0V	- 2.0		0.8 —	_ 2.0		0.8	- 2.0	-	0.8	Volts Volts
Logic Input Qurrent Logic "O" Logic "1"	կլ կո	V _{LC} = 0V V _{IN} = -10V to +0.8V V _{IN} = 2.0V to 18V		-2.0 0.002	-10 10		-2.0 0.002	-10 10		-2.0 0.002	-10 10	μΑ μΑ
Logic Input Swing	VIS	V- = -15V	-10	-	+18	-10	-	+18	-10	-	+18	Volts
Logic Threshold Range	VTHR	V _S = ±15V	-10	-	+13.5	-10	-	+13.5	-10	-	+13.5	Volts
Reference Bias Current	115		-	-1.0	-3.0	-	-1.0	-3.0		-1.0	-3.0	μA
Reference Input Slew Rate	dl/dt	See Figs, 5, 27	4.0	8.0	-	4.0	8.0	-	4.0	8.0	-	mA/ µsec
Power Supply Sensitivity	PSSI _{FS+} PSSI _{FS-}		-	±0.0003 ±0.002	±0.01 ±0.01	-	±0.0003 ±0.002	±0.01 ±0.01		±0.0003 ±0.002	±0.01 ±0.01	%/% %/%
Power Supply Current	+ -	V _S = ±5V, I _{REF} = 1.0 mA V _S = +5V, -15V		2.3 -4.3	3.8 -5.8	-	2.3 -4.3	3.8 -5.8	-	2.3 -4.3	3.8 -5.8	mA mA
	+ -	$I_{REF} = 2.0 \text{ mA}$ $V_{S} = \pm 15V$		2.4 -6.4	3.8 -7.8	-	2.4 -6.4	3.8 -7.8		2.4 -6.4	3.8 -7.8	mA mA
	+ 	IREF = 2.0 mA	-	2.5 -6.5	3.8 -7.8	_	2.5 -6.5	3.8 -7.8		2.5 6.5	3.8 -7.8	mA mA
Power Dissipation	PD	±5V, I _{REF} = 1.0 mA +5V, -15V, I _{REF} = 2.0 mA ±15V, I _{REF} = 2.0 mA		33 108 135	48 136 174	-	33 103 135	48 136 174	-	33 108 135	48 136 174	mW mW mW



10-29

DAC-08

10-31

APPLICATIONS INFORMATION

REFERENCE AMPLIFIER SETUP

The DAC-08 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +4.0mA. The full scale output current is a linear function of the reference current and is given by:

$$I_{FS} = \frac{255}{256} \times I_{REF} \text{ where } I_{REF} = I_{14}.$$

In positive reference applications (Fig. 18), an external positive reference voltage forces current through R_{14} into the $V_{\text{REF}(+)}$ terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to $V_{\text{REF}(-)}$ at pin 15 (Fig. 20); reference current flows from ground through R_{14} into $V_{\text{REF}(+)}$ as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R_{15} (nominally equal to R_{14}) is used to cancel bias current errors; R_{15} may be eliminated with only a minor increase in error.

Bipolar references may be accomodated by offsetting V_{REF} or pin 15 as shown in Fig. 28. The negative common mode range of the reference amplifier is given by: V_{CM⁻} = V⁻ plus (I_{REF} \times 1 KΩ) plus 2.5V. The positive common mode range is V+ less 1.5V.

When a DC reference is used, a reference bypass capacitor is recommended. A 5.0V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R₁₄ should be split into two resistors with the junction bypassed to ground with a 0.1 μ F capacitor.

For most applications, a +10.0V reference is recommended for optimum full scale temperature coefficient performance. This will minimize the contributions of reference amplifier V_{OS} and TCV_{OS} . For most applications the tight relationship between I_{REF} and I_{FS} will eliminate the need for trimming I_{REF}. If required, full scale trimming may be accomplished by adjusting the value of R₁₄, or by using a potentiometer for R₁₄. An improved method of full scale trimming which eliminates potentiometer T.C. effects in shown in Fig. 19.

Using lower values of reference current reduces negative power supply current and increases reference amplifier negative common mode range. The recommended range for operation with a DC reference current is +0.2mA to +4.0mA.

The reference amplifier must be compensated by using a capacitor from pin 16 to V⁻. For fixed reference operation, a 0.01 μ F capacitor is recommended. For variable reference applications, see section entitled "Reference Amplifier Compensation for Multiplying Applications."

MULTIPLYING OPERATION

The DAC-08 provides excellent multiplying performance with an extremely linear relationship between I_{FS} and I_{REF} over a range of 4 mA to 4 μ A. Monotonic operation is maintained over a typical range of I_{REF} from 100 μ A to 4.0 mA; consult factory for devices selected for monotonic operation over wider I_{REF} ranges.

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V⁻. The value of this capacitor depends on the impedance presented to pin 14: for R₁₄ values of 1.0, 2.5 and 5.0K Ω , minimum values of C_c are 15, 37, and 75 pF. Larger values of R₁₄ require proportionately increased values of C_c for proper phase margin.

For fastest response to a pulse, low values of R₁₄ enabling small C_c values should be used. If pin 14 is driven by a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For R₁₄ = 1 K Ω and C_c = 15 pF, the reference amplifier slews at 4 mA/µsec enabling a transition from I_{REF} = 0 to I_{REF} = 2 mA in 500 nsec.

Operation with pulse inputs to the reference amplifier may be accomodated by an alternate compensation scheme shown in Fig. 27. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff ($I_{REF} = 0$) condition. Full scale transition (0 to 2 mA) occurs in 120 nsec when the equivalent impedance at pin 14 is 200 Ω and $C_c = 0$. This yields a reference slew rate of 16 mA/µsec which is relatively independent of R_{IN} and V_{IN} values.

LOGIC INPUTS

The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 2µA logic input current and completely adjustable logic threshold voltage. For V = -15V, the logic inputs may swing between -10V and +18V. This enables direct interface with +15V CMOS logic, even when the DAC-08 is powered from a +5V supply. Minimum input logic swing and minimum logic threshold voltage are given by: V- plus ($I_{BFF} \times 1 K\Omega$) plus 2.5V. The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 1, VLC). Fig. 11 shows the relationship between VLC and V_{TH} over the temperature range, with V_{TH} nominally 1.4 above VIC. For TTL and DTL interface, simply ground pin 1. When interfacing ECL, an IREF = 1 mA is recommended. For interfacing other logic families, see Fig. 26. For general setup of the logic control circuit, it should be noted that pin 1 will source 100 μ A typical; external circuitry should be designed to accommodate this current.

Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a 1 K Ω divider, for example, it should be bypassed to ground by a 0.01 μ F capacitor.

APPLICATIONS INFORMATION

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided, where $I_0 + \overline{I_0} = I_{FS}$. Current appears at the "true" output when a "1" is applied to each logic input. As the binary count increases, the sink current at pin 4 increases proportionally, in the fashion of a "positive logic" D/A converter. When a "0" is applied to any input bit, that current is turned off at pin 4 and turned on at pin 2. A decreasing logic count increases $\overline{I_0}$ as in a negative or inverted logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing I_{FS} ; do not leave an unused output pin open.

Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 36V above V- and is independent of the positive supply. Negative compliance is given by V- plus ($I_{REF} X1K\Omega$) plus 2.5V.

The dual outputs enable double the usual peak-to-peak load swing when driving loads in quasi-differential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving centertapped coils and transformers.

POWER SUPPLIES

The DAC-08 operates over a wide range of power supply voltages from a total supply of 9V to 36V. When operating at supplies of \pm 5V or less, I_{REF} \leq 1 mA is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range; consult the various figures for guidance. For example, operation at -4.5V with I_{REF} = 2 mA is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8V total must be applied to insure turn-on of the internal bias network.

Symmetrical supplies are not required, as the DAC-08 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required: however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows:

 $P_d = (I+) (V+) + (I+) (V-) + (2 I_{REF}) (V-)$. A useful feature of the DAC-08 design is that supply current is constant and independent of input logic states; this is useful in cryptographic applications and further serves to reduce the size of the power supply bypass capacitors.

TEMPERATURE PERFORMANCE

The nonlinearity and monotonicity specifications of the DAC-08 are guaranteed to apply over the entire rated operating temperature range. Full scale output current drift is tight, typically $\pm 10 \text{ ppm/}^{\circ}$ C, with zero scale output current and drift essentially negligible compared to 1/2 LSB.

Full scale output drift performance will be best with +10.0V references as V_{OS} and TCV_{OS} of the reference amplifier will be very small compared to 10.0V. The temperature coefficient of the reference resistor R_{14} should match and track that of the output resistor for minimum overall full scale drift. Settling times of the DAC-08 decrease approximately 10% at -55°C; at +125°C an increase of about 15% is typical.

SETTLING TIME

The DAC-08 is, capable of extremely fast settling times, typically 85nsec at I_{REF} = 2.0mA. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 35 nsec for each of the 8 bits. Settling time to within 1/2 LSB of the LSB is therefore 35 nsec, with each progressively larger bit taking successively longer. The MSB settles in 85 nsec, thus determining the overall settling time of 85 nsec. Settling to 6-bit accuracy requires about 65 to 70 nsec. The output capacitance of the DAC-08 including the package is approximately 15 pF, therefore the output RC time constant dominates settling time if $R_L > 500\Omega$.

Settling time and propagation delay are relatively insensitive to logic input amplitude, and rise and fall times, due to the high gain of the logic switches. Settling time also remains essentially constant for I_{REF} valuer down to 1.0mA, with gradual increases for lower I_{REF} values. The principal advantage of higher I_{REF} values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant.

Measurement of settling time requires the ability to accurately resolve $\pm 4 \ \mu$ A, therefore a 1 K Ω load is needed to provide adequate drive for most oscilloscopes. The settling time fixture of Fig. 29 uses a cascode design to permit driving a 1 K Ω load with less than 5pF of parasitic capacitance at the measurement node. At I_{REF} values of less than 1.0 mA, excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 0111111 to 10000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within $\pm 0.2\%$ of the final value, and thus settling times may be observed at lower values of I_{REF}.

DAC-08 switching transients or "glitches" are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.

Fastest operation can be obtained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference and V_{LC} terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; 0.1 μ F capacitors at the supply pins provide full transient protection.

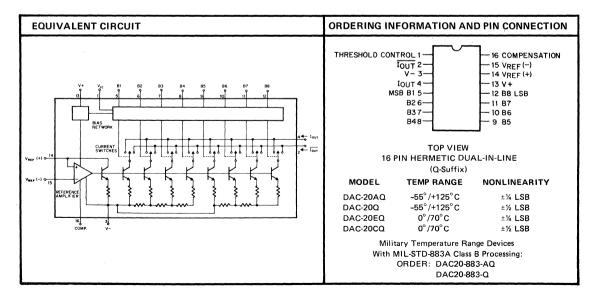
2 DIGIT BCD HIGH SPEED MULTIPLYING DAC UNIVERSAL DIGITAL LOGIC INTERFACE

GENERAL DESCRIPTION

The DAC-20 series of 2 digit BCD monolithic multiplying Digital-to-Analog Converters provide very high speed performance coupled with low cost and outstanding applications flexibility.

Advanced circuit design^{*} achieves 85 nsec settling times with very low "glitch" and at low power consumption. Monotonic multiplying performance is attained over a wide 40 to 1 reference current range. Matching to within 1 LSB between reference and full scale currents eliminates the need for full scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic inputs.

Dual complementary current outputs with -10V to +18V voltage compliance enable resistive termination, a voltage output without an external op amp.


All DAC-20 series models guarantee full 2 digit monotonicity, and nonlinearities as tight as \pm % LSB over the entire operating temperature range are available. Nonlinearity is unchanged over the \pm 4.5V to \pm 18V power supply range, with 37mW power consumption attainable at \pm 5V supplies.

FEATURES

Fast Settling Output Current 85 nsec
Full Scale Current Prematched to ±1 LSB
Direct Interface to TTL, CMOS, ECL, HTL, PMOS
Nonlinearity to ±¼ LSB Max Over Temp Range
High Output Impedance and Compliance10V to +18V
Complementary Current Outputs
Wide Range Multiplying Capability 1 MHz Bandwidth
■ Low FS Current Drift±10ppm/°C
■ Wide Power Supply Range ±4.5V to ±18V
➡ Low Power Consumption 37mW @ ±5V
Low Cost

The compact size and low power consumption make the DAC-20 attractive for portable and military/aerospace applications; devices processed to MIL-STD-883A, Level B, are available.

DAC-20 applications include A/D converters, audio attenuators, analog meter drivers, programmable power supplies, high speed modems and other applications where low cost, high speed and complete input/output versatility are required.

DAC-20

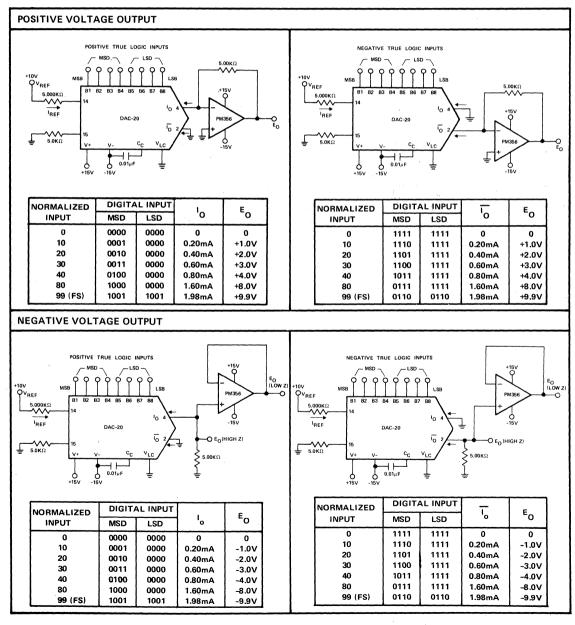
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Operating Temperature Range
DAC-20AQ, Q
DAC-20EQ, CQ
Storage Temperature Range
Power Dissipation
Derate above 100° C
Lead Soldering Temperature

-55° C to +125° C 0° C to +70° C -65° C to +150° C 500mW 10mW/°C 300° C (60 sec) $\begin{array}{c|c} V+ \mbox{ Supply to V- Supply } & 36V \\ \mbox{ Logic Inputs } & V- \mbox{ to V- plus 36V } \\ V_{LC} & V- \mbox{ to V+} \\ \mbox{ Reference Input S (V_{14}, V_{15}) } & V- \mbox{ to V+} \\ \mbox{ Reference Input Differential Voltage (V_{14} \mbox{ to V}_{15}) } \\ \mbox{ Reference Input Current (I_{14}) } & 5.0 \mbox{ mA} \\ \end{array}$

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_S = \pm 15V$, $I_{REF} = 2.0 \text{ mA}$, $T_A = -55^{\circ} \text{C}$ to $\pm 125^{\circ} \text{C}$ for DAC-20A and DAC-20, $T_A = 0^{\circ} \text{C}$ to $\pm 70^{\circ} \text{C}$ for DAC-20E and DAC-20C, unless otherwise specified. Output characteristics refer to both I_{OUT} and I_{OUT} .


Parameter	Symbol	Conditions	DAC-20A, DAC-20E			DAC-20, DAC-20C			
			Min	Тур	Max	Min	Тур	Max	Units
Resolution		BCD 0 to 99 steps	2	2	2	2	2	2	digits
Monotonicity		BCD 99 steps	2	2	2	2	2	2	digits
Nonlinearity	NL	FS = 1001 1001	—		±1/4		-	±1/2	LSB
Settling Time	ts	To $\pm \frac{1}{2}$ LSB ($\pm 0.5\%$ FS) all bits switched ON or OFF. T _A = 25°C	-	85	135	-	85	150	nsec
Propagation Delay Each bit All bits switched	^t РLН, ^t РНL	T _A = 25°C		35 35	60 60	-	35 35	60 60	nsec nsec
Full Scale Tempco	TCIES			±10	±50		±10	±80	ppm/°C
Output Voltage Compliance	V _{OC}	Full scale current change <%LSB (<0.5% FS) R _{OUT} > 20 Megohm typ. 1 BEF = 1.0mA	-10	-	+18	-10	-	+18	Volts
Full Scale Current (Digital Input 1001 1001)	¹ FS4	VREF = 10.000V R ₁₄ , R ₁₅ = 5.000kΩ T _A = 25°C	1.96	1.98	2.00	1.92	1.98	2.04	mA
Zero Scale Current	ZS		-	0.1	2.5	-	0.2	5.0	μA
Output Current Range	IFSR	V- = -5.0V V- = -7.0V to -18V	0	2.0 2.0	2.2 4.2	0	2.0 2.0	2.2 4.2	mA mA
Logic Input Levels				<u> </u>			2.0	7.2	
Logic "O"	VIL	V _{LC} = 0V	-	-	0.8	-	-	0.8	Volts
Logic "1"	⊻ін		2.0	-	-	2.0	-	-	Volts
Logic Input Current		V _{LC} = 0V							
Logic "0"	ԿԵ	$V_{IN} = -10V$ to +0.8V		-2.0	±10		-2.0	±10	μA
Logic "1"	Чн	V _{IN} = 2.0V to 18V		0.002	±10		0.002	±10	μA
Logic Input Swing	VIS	V- ≈ -15V	-10	-	+18	-10		+18	Volts
Logic Threshold Range	VTHR	V _S = ±15V	-10		+13.5	-10	-	+13.5	Volts
Reference Bias Current	115		-	-1.0	-3.0		-1.0	-3.0	μA
Reference Input Slew Rate	dl/dt		4.0	8.0	-	4.0	8.0	-	mA/ μsec
Power Supply Sensitivity	PSSIFS+	V+ = 4.5V to 18V	-	±0.0003	±0.03	-	±0.0003	±0.03	%/%
	PSSIFS-	V- = -4.5V to -18V IREF = 1.0mA	. –	±0.002	±0.03		±0.002	±0.03	%/%
Power Supply Current		$V_S = \pm 5V$, $I_{BEF} = 1.0 \text{ mA}$							
	[+ -		-	2.3 -5.0	3.8 -6.5	·	2.3 -5.0	3.8 -6.5	mA mA
	+ -	V _S = ±15V, I _{REF} = 2.0 mA	-	2.5 -7.8	3.8 -9.1		2.5 -7.8	3.8 -9.1	mA mA
Power Dissipation	PD	V _S = ±5V, I _{REF} = 1.0 mA	-	37	52	-	37	52	mW
		V _S = ±15V, I _{REF} = 2.0 mA		152	194		152	194	mW

BASIC OUTPUT CONNECTIONS

With complementary current outputs, the DAC-20 may be used with either positive true or negative true (complementary) logic. Current appears at the "true" output (I_0) when a "1" is applied to a logic input. As the BCD-coded input increases, the sink current at pin 4 increases proportionately, in the fashion of a "positive logic" D/A converter. When a "0" is applied to a logic input, that current is turned off at pin 4 and on at pin 2 (I_0) which is used for negative true or "negative logic" D/A converters.

The unused output must be connected to ground or some voltage source capable of sourcing I.65 times I_{REF} . A detailed discussion of reference input operation begins on the next page.

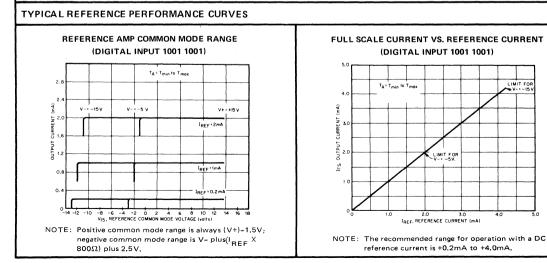
Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 36V above V- and is independent of the positive supply. Negative compliance is given by V- plus (I_{REF} X800 Ω) plus 2.5V.

DAC-20

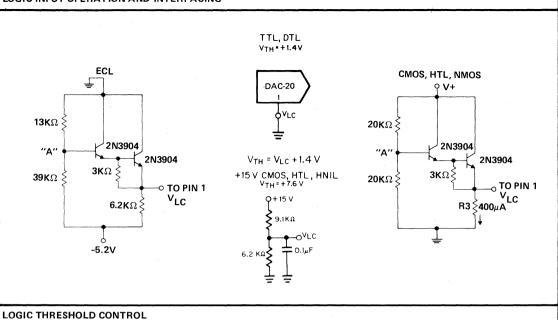
REFERENCE OPERATION POSITIVE NEGATIVE REI BEI VREF(+) VREF(+) RBEF REF (R14) DAC-20 (814) DAC-20 VREF(-) VREF(-) R15 **R15** I C OR FIXED REFERENCE, TTL FOR FIXED REFERENCE, TTL OPERATION, TYPICAL VALUES OPERATION, TYPICAL VALUES 99 100 . V_{REF} = +10.000V V_{REF} ≈ -10.000V $R_{REF} = 5.000 K\Omega$ $R_{REF} = 5.000 K\Omega$ $R_{15} \approx R_{REF}$ $C_{C} \approx 0.01 \mu F$ R_{REF} = 5.000KΩ ^{≈ R}REF $I_0 + \overline{I_0} \approx I_{REF} \times 1.65$ R₁₅ $10 + \overline{10} \approx 1_{\text{REF}} \times 1.65$ = 0.01//F C_C FS FOR ALL LOGIC FOR ALL LOGIC = 1001 1001 ≈ 1001 1001 REFERENCE AMPLIFIER SETUP

The DAC-20 is a multiplying D/A converter in which the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly zero to +4.0mA. The full scale output current is a linear function of the reference current and is given by:

 $I_{FS} = 99/100 \times I_{REF}$ where $I_{REF} = I_{14}$.


In positive reference applications an external positive reference voltage forces current through R₁₄ into the V_{REF}(+) terminal (pin 14) of the reference amplifier. Alternatively, a negative reference may be applied to V_{REF}(-) at pin 15; reference current flows from ground through R₁₄ into V_{REF}(+) as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 15. The voltage at pin 14 is equal to and tracks the voltage at pin 15 due to the high gain of the internal reference amplifier. R₁₅ (nominally equal to R₁₄) is used to cancel bias current errors and may be eliminated with

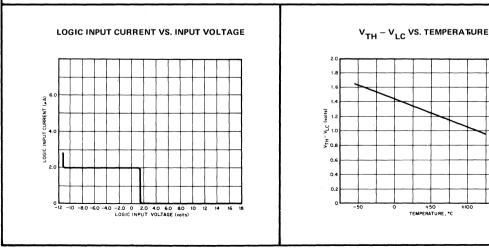
only a minor increase in error.


When a DC reference is used, a reference bypass capacitor is recommended. A 5.0V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R₁₄ should be split into two resistors with the junction bypassed to ground with a 0.1μ F capacitor.

For most applications, a +10.0V reference such as the PMI REF-01 is recommended for optimum full scale temperature coefficient performance. This will minimize the contributions of reference amplifier V_{OS} and TCV_{OS}. For most applications the tight relationship between I_{REF} and I_{FS} will eliminate the need for trimming I_{REF}. If required, full scale trimming may be accomplished by adjusting the value of R14.

The reference amplifier must be compensated by using a capacitor from pin 16 to V-. For fixed reference operation, a 0.01 μ F capacitor is recommended. For variable reference applications, see section entitled "Multiplying Operation."

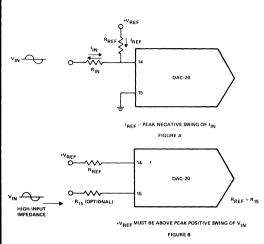
LOGIC INPUT OPERATION AND INTERFACING

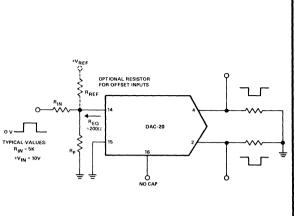


The DAC-20 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 2μ A logic input current and completely adjustable logic threshold voltage. For V- = -15V, the logic inputs may swing between -10V and +18V. This enables direct interface with +15V CMOS logic, even when the DAC-20 is powered from a +5V supply. Minimum input logic swing and minimum logic threshold voltage are given by: V- plus (IREF × 800Ω) plus 2.5V. The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 1, V₁ c).

The logic input threshold is 1.4V above V_{LC} . For TTL and DTL interface, simply ground pin 1. When interfacing ECL, an $I_{REF} = 1$ mA is recommended. For interfacing other logic families, see the figure above. Pin 1 will source 100μ A typically, so the external circuitry must be designed to accommodate this current.

Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a 1 K Ω divider, for example, it should be bypassed to ground by a $0.01\mu F$ capacitor.


TYPICAL PERFORMANCE CURVES

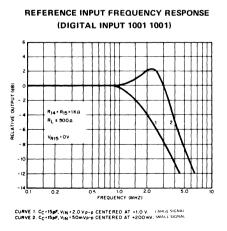


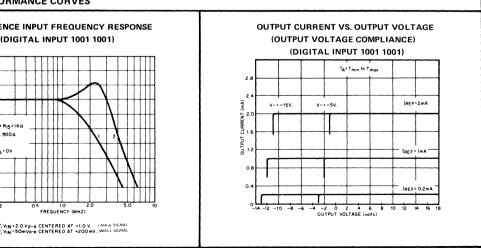
MULTIPLYING OPERATION

ACCOMODATING BIPOLAB REFERENCES

PULSED REFERENCE OPERATION

The DAC-20 provides excellent multiplying performance with an extremely linear relationship between IFS and IREF over a range of 4 mA to 4 μ A. Monotonic operation is maintained over a typical range of IREF from 100 µA to 4.0 mA; consult factory for devices selected for monotonic operation over wider IRFF ranges.

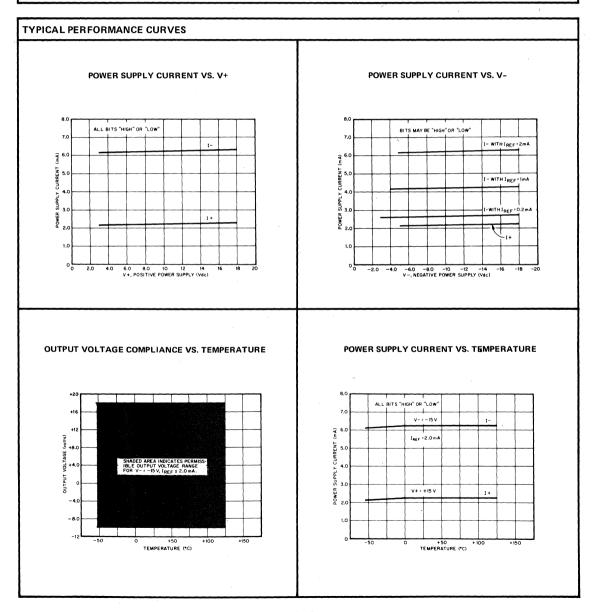

Bipolar references may be accomodated by offsetting VRFF or pin 15. The negative common mode range of the reference amplifier is given by: $V_{CM-} = V_{-}$ plus (IREF \times 800 Ω) plus 2.5V. The positive common mode range is V+ less 1.5V.


AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V-. The value of this capacitor depends on the impedance presented to pin 14: for R₁₄ values of 1.0, 2.5 and 5.0K Ω , minimum values of C_C are 15, 37, and 75 pF. Larger values of R₁₄ require proportionately increased values of CC for proper phase margin.

For fastest response to a pulse, low values of R14 enabling small C_C values should be used. If pin 14 is driven by a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall bandwidth and slew rate. For $R_{14} = 1 \text{ K}\Omega$ and $C_C = 15 \text{ pF}$, the reference amplifier slews at 4 mA/ μ sec enabling a transition from IREF = 0 to IREF = 2 mA in 500 nsec.

Operation with pulse inputs to the reference amplifier may be accomodated by the alternate compensation scheme shown above. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff ($I_{RFF} = 0$) condition. Full scale transition (0 to 2 mA) occurs in 120 nsec when the equivalent impedance at pin 14 is 200 Ω and C_C = 0. This yields a reference slew rate of 16 mA/µsec which is relatively independent of RIN and VIN values.

TYPICAL PERFORMANCE CURVES



POWER SUPPLY CONSIDERATIONS

The DAC-20 operates over a wide range of power supply voltages from a total supply of 9V to 36V. When operating at supplies of $\pm 5V$ or less, $I_{REF} \leq 1$ mA is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative logic threshold range; consult the various figures for guidance. For example, operation at -4.5V with $I_{REF} = 2$ mA is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however, at least 8V total must be applied to insure turn-on of the internal bias network.

Symmetrical supplies are not required, as the DAC-20 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required: however, an artificial ground may be useful to insure logic swings, etc. remain between acceptable limits.

Power consumption may be calculated as follows: $P_d = (I+) (V+) + (I+) (V-) + (2 | REF) (V-)$. A useful feature of the DAC-20 design is that supply current is constant and independent of input logic states; this reduces the size of the power supply bypass capacitors.

APPLICATIONS INFORMATION

TEMPERATURE PERFORMANCE

The nonlinearity and monotonicity specifications of the DAC-20 are guaranteed to apply over the entire rated operating temperature range. Full scale output current drift is tight, typically $\pm 10 \text{ ppm/}^2$ C, with zero scale output current and drift essentially negligible compared to ½ LSB.

Full scale output drift performance will be best with +10.0V references as VOS and TCVOS of the reference amplifier will be very small compared to 10.0V. The temperature coefficient of the reference resistor R₁₄ should match and track that of the output resistor for minimum overall full scale drift. Settling times of the DAC-20 decrease approximately 10% at -55° C; at +125°C an increase of about 15% is typical.

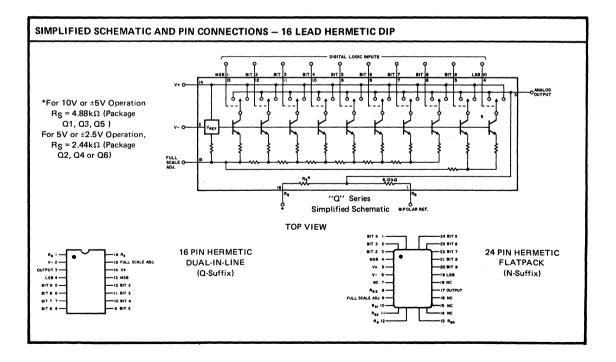
SETTLING TIME OPTIMIZATION

The DAC-20 is capable of extremely fast settling times, typically 85 nsec at I_{REF} = 2.0 mA. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The output capacitance of the DAC-20 including the package is approximately 15 pF, therefore the output RC time constant dominates settling time if $R_1 > 500\Omega$.

Fastest operation can be obtained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply, reference and V_{LC} terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; 0.1 μ F capacitors at the supply pins provide full transient protection.

8 & 10 BIT DIGITAL-TO-ANALOG CONVERTER

GENERAL DESCRIPTION

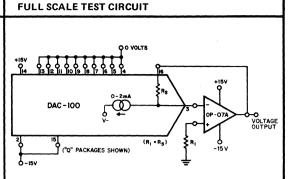

The DAC-100 is a complete 10 bit resolution Digital-to-Analog converter constructed on two monolithic chips in a single 16-pin DIP or 24-pin flatpack. Featuring excellent nonlinearity vs. temperature performance, the DAC-100 includes a low tempco voltage reference, 10 current source/switches and a high stability thin-film R-2R ladder network. Maximum application flexibility is provided by the fast current output and by matched bipolar offset and feedback resistors which are included for use with an external op amp for voltage output applications. Although all units have 10-bit resolution, a wide choice of nonlinearity and tempco options is provided to allow price/performance optimization.

The small size, wide operating temperature range, low power consumption and high reliability construction make the DAC-100 ideal for aerospace applications. Other applications include use in servo-positioning systems, X-Y plotters, CRT

FEATURES

-	Complete Internal Reference
	Flexible 0 to 2mA Output
	Fast Settling 225 nsec (8 Bits), 375 nsec (10 Bits)
	Stable
-	0°C/+70°C, -25°C/+85°C, -55°C/+125°C Models
	Available
-	TTL and DTL Compatible Logic Inputs
	Wide Supply Range $\pm 6V$ to $\pm 18V$
-	8 and 10 Bit Versions Available
-	MIL-STD-883A Class B Processing Models Available
	Low Cost Q3, Q4 Series

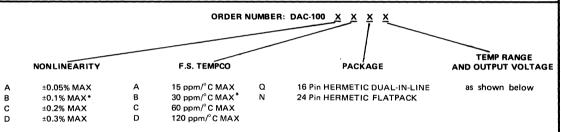
displays, programmable power supplies, analog meter movement drivers, waveform generators and high speed Analog-to-Digital converters.



GENERAL INFORMATION

1. The DAC-100 series are digital-to-analog current converters; voltage outputs are implemented by using an external operational amplifier with the internally-provided feedback resistor. For clarity and convenience, most specifications will reference full scale output voltage rather than full scale output current, assuming an "ideal" op amp has been utilized for conversion (See test circuit at right).

2. The logic coding used for driving the DAC-100 should be complementary binary or offset complementary binary to obtain unipolar and bipolar analog outputs, respectively.

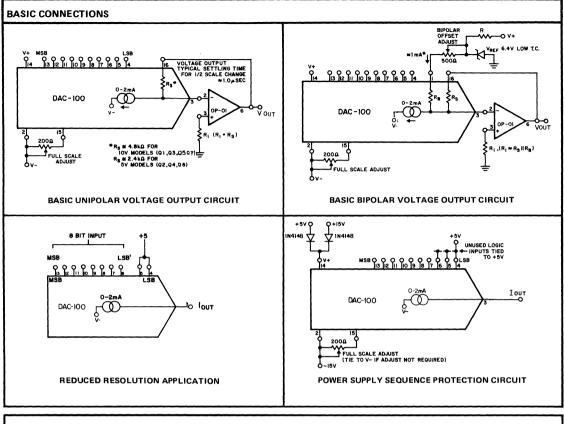

3. As shown in the ordering information below, the DAC-100 series provides a wide variety of worst-case nonlinearity and full-scale tempco combination options. All devices have 10 bits of resolution; the nonlinearity options of $\pm 0.05\%$, $\pm 0.1\%$, $\pm 0.2\%$ and $\pm 0.3\%$ guarantee monotonic operation for resolutions of 10, 9, 8, and 7 bits respectively. When less than the full 10 bits are utilized, the unused logic inputs must be connected to a "high" logic level (>2.1 V).

DEFINITION: Full Scale Tempco is defined as the change in output voltage measured in the circuit above and is expressed in ppm between 25°C and either temperature extreme divided by the corresponding temperature change.

NOTE: Since R_S precisely tracks the internal R-2R ladder network over temperature, the absolute I_{FS} Tempco of ±120ppm/°C is cancelled by R_S when the output voltage is used as in the above circuit

*NOTE: For DAC-100 BBQ5 and DAC-100 BBQ6 only; nonlinearity is ±0.1% over -25°C to +85°C and ±0.12% over -55°C to +125°C. Full Scale Tempco is 30 ppm/°C over -25°C to +85°C and 40 ppm/°C over -55°C to +125°C.

Model	–55°/+125°C 883A Class B		–25°/+85°C 883A Class B	–25°	–25°/+85°C		0°/+70°C	
	10V ±5V	5V ±2.5V	10V 5V ±5V ±2.5V	10V ±5V	5V ±2.5V	10V ±5V	5∨ ±2.5∨	
DAC-100AA	-	-	N9	Q1	Q2	-	-	
DAC-100AB	_	-	N9	Q1	02	-	-	
DAC-100AC	Q5	Q6	N9	Q1	02	03	Q4	
DAC-100BB	Q5	Q6	N9	Q1	Q2	-	-	
DAC-100BC	Q5	Q6	N9	Q1	Q2	03	Q4	
DAC-100CC	Q5	Q6	N9	Q1	Q2	03	Q4	
DAC-100DD	_	_	N9	Q1	Q2	Q3	Q4	


ABSOLUTE MAXIMUM RATINGS

V+ Supply to V– Supply	0 to +36V	Operating Temperature Range	
V+ Supply to Output	0 to +18V	Q3, Q4	0°C to +70°C
V- Supply to Output	0 to -18V	All others	-55°C to +125°C
Logic Inputs to Output	-1V to +6V		
Power Dissipation (Note 1)	500mW	Storage Temperature Range	
		Q and N Packages	-65°C to +150°C
NOTES:			
1. Rating applies to ambient temperatu	re of 100°C. Above	Lead Temperature (Soldering)	
100°C, derate at 10mW/°C.		Q and N Packages	+300°C (60 sec)

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_s = \pm 15V$, $-25^{\circ}C \le T_A \le +85^{\circ}C$ for Q1, Q2, and N9 devices; $0^{\circ}C \le T_A \le +70^{\circ}C$; for Q3 and Q4, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for Q5 and Q6 devices, unless otherwise specified. (See BBQ5, Q6 note on previous page under Ordering Information.)

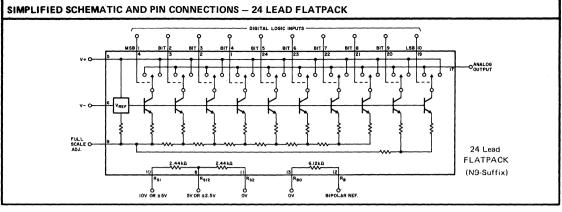
Parameter	Conditions	Min	Тур	Max	Units
Resolution		10	10	10	bits
Nonlinearity	"A" option (±½ LSB –10 bits)	_	-	± 0.05	^{% I} FS
(For nonlinearity/tempco	"B" option (±½ LSB -9 bits)	-	-	± 0.1	% FS
combinations, see	"C" option (±½ LSB –8 bits)	-	-	± 0.2 ± 0.3	% FS
Availability chart.)	"D" option (±¾ LSB -8 bits)	-	-	± 0.3	^{% I} FS
Full Scale Tempco	"A" option	-	-	± 15	ppm/ [°] C
(See Full Scale	"B" option	-	-	± 30	ppm/°C
Test Circuit.)	"C" option	-		± 60	ppm/°C
	"D" option	-	-	±120	ppm/ [°] C
Settling Time	to ±0.05% FS		-	375	ns
T _A = 25°C	to ±0.1% FS	-	-	300	ns
	to ±0.2% FS	-	-	225	ns
	to ±0.4% FS	-	-	150	ns
	to ±0.8% FS	-		100	ns
Full Scale Output Voltage (Limits guarantee adjustability	Connect FS Adjust to V-				
to exact 10.0 (5.0) V with a	10V Models (Q1, Q3, Q5, N9) 5V Models (Q2, Q4, Q6)	10	-	11.1	v
200Ω (Trimpot [®] between FS Adjust and y)	VIN = 0.0V	5	-	5.55	v
Zero Scale Output Voltage	V _{IN} = 2.1V		. –	0.013	% FS
Logic Inputs	Measured with respect to output pin				
High		2.1	-		v
Low		-	-	0.7	v
Logic Input Current,	V _{IN} = 0 to +6V	-	-	5	μA
Each Input Logic Input Resistance	V _{IN} = 0 to +6V		3		MΩ
	VIN - 0 10 +0V	-		-	
Logic Input Capacitance Output Resistance			2 500		pF kΩ
			13		pF
Output Capacitance			13		μr
Applied Power Supplies:					
V+ V	Linearity within specification	+6 6	-	+18 	v
Power Supply Sensitivity	Linearity within specification $V_e = \pm 6V$ to $\pm 18V$	-0	-	-18 ±0,10	V % per volt
	s	-		10.10	
Power Consumption Q3, Q4 models	V _s = ±15V	-	200	300	mW
	$V_s = \pm 6V$		80	100	mW
All other models	$V_s = \pm 15V$		200	250	mW

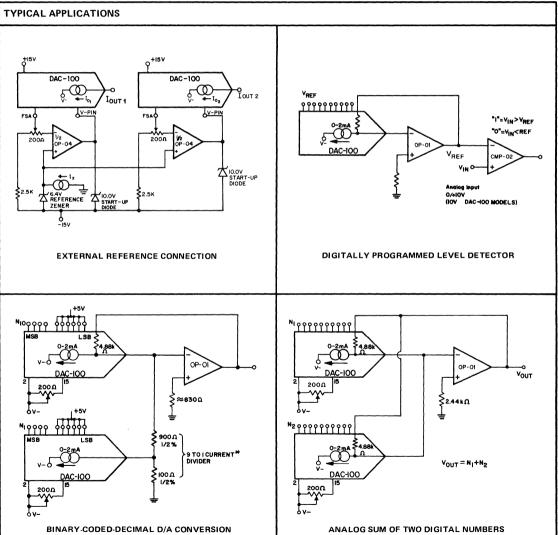
APPLICATIONS INFORMATION

FULL SCALE OUTPUT ADJUSTMENT – The output current of the DAC-100 may be reduced to produce an exact 10.000 (5.000) volt output by connecting a 200Ω adjustable resistance between the Full Scale Adjust pin and V-. Adjustment should be made with an input of all "zeroes."

LOWER RESOLUTION APPLICATIONS – The DAC-100 may, be used in applications requiring less than 10 bits of resolution. All unused logic inputs *must* be tied to the high logic for proper operation. "Floating" logic inputs can cause improper operation.

LOGIC CODING — The DAC-100 uses complementary or inverted binary logic coding, i.e., an all "zeroes" input produces a full scale output, while an all "ones" input produces a zero scale output. Each lesser significant bit's weight is one-half the previous more significant bit's value. High logic input level turns the bit "off," low logic input level turns the bit "on."


LOGIC COMPATIBILITY – The input logic levels are directly compatible with DTL and TTL logic and may also be used with CMOS logic powered from a single +5 volt supply.


NONLINEARITY (NL). The maximum deviation from an ideal straight line drawn between the end points, expressed as a percent of Full Scale Range (FSR) or given in terms of LSB value. The end points are zero scale output to full scale output for unipolar operation and minus full scale to positive full scale for bipolar operation.

BIPOLAR OPERATION — The DAC-100 may be converted to bipolar operation by injecting a half-scale current into the output; this is accomplished by connecting the internal bipolar resistor to a +6.4 volt reference. Trimming of the zero output may be facilitated by placing a 500.02 adjustable resistance in series with the +6.4 volts.

POWER SUPPLY SEQUENCING – IMPORTANT – Occasional early DAC-100 devices may suffer temporary malfunction and possible permanent damage if voltage is present at the logic inputs before the V+ supply is available. A simple protection circuit may be implemented by using two silicon diodes to clamp the V+ terminal to the logic supply. DAC-100 devices with date codes of 7547 and later incorporate design changes which eliminate this effect and require no special precautions or protective circuitry.

VOLTAGE AT OUTPUT PIN – The DAC-100 is designed to be operated with the voltage at the output pin held very close to zero volts. Input logic threshold levels are directly affected by output pin voltage changes; voltage swings at the output may cause loss of linearity due to improper switching of bits. Large voltage swings may cause permanent damage and should be avoided. Proper operation can be obtained with output voltages held within ± 0.7 volts; a pair of back-to-back silicon diodes tied from the output.

* (CAN BE EXPANDED TO 3 DIGITS BY ADDITION OF A THIRD DAC-IOO AND 99 TO I CURRENT DIVIDER)

INTERFACING WITH CMOS LOGIC

The DAC-100 requires only about 1μ A of input current into each logic stage. This enables use with CMOS inputs as long as one rule is observed: logic input voltages should not exceed 6.5 volts or V+, whichever is smaller. To provide an understanding of this rule, it is necessary to discuss the logic input stage design.

LOGIC INPUT STAGE DESIGN

For simplicity, only one of the ten identical input circuits is shown below. The DAC-100 uses a fast current-steering technique that switches a bit-weighted current between the positive supply (V+) and the analog output, which is usually constrained to be at zero volts (virtual ground) by an external summing amplifier.

Switching is accomplished by forward biasing Q4, a diodeconnected transistor, for the bit "on" condition and back biasing Q4 in the "off" condition. For the "on" condition (V_{IN} \leq .7 volts), Q3 is "off"-all of the bit-weighted current; I₁, flows from the analog output through Q4 and ultimately to V-. In the "off" condition (V_{IN} \geq 2.1 volts), Q3 is "on", Q4 is back biased, and the bit-weighted current is sourced from the positive power supply instead of the analog output.

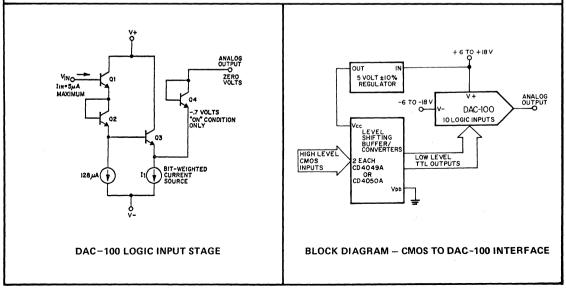
If V_{1N} is too high, Q4's emitter-base junction will experience reverse breakdown and a fault condition will occur. Equation 1 describes this condition:

1)
$$BV_{IH} = V_{BE1} + V_{BE2} + V_{BE3} + BV_{EB4} \approx 7.7$$
 volts

Using this relationship, it can be seen that a conservative input voltage limit would be around 6.5 volts. When the 6.5V input limit is observed, DAC-100 operation with CMOS inputs is easily achieved.

±6 VOLT POWER SUPPLY OPERATION

This is the most convenient method of interfacing the DAC-100 with CMOS logic. At ± 6 volts, DAC-100 power dissipation is only 80mW, which is very small considering the inclusion of a complete internal reference. No interfacing components are required with $\pm 5\%$ power supplies, and the CMOS logic and DAC-100 can use the same +6 volt power supply. In this application the device is directly CMOS compatible.


HIGH LEVEL CMOS INTERFACING

The block diagram below illustrates a convenient method for interfacing CMOS input levels between 6.5 volts and 15 volts with DAC-100. Inexpensive and readily available CMOS hex buffer/converters step down the high-level inputs to TTL levels that cannot exceed 5 volts-clearly satisfying the input stage voltage rule.

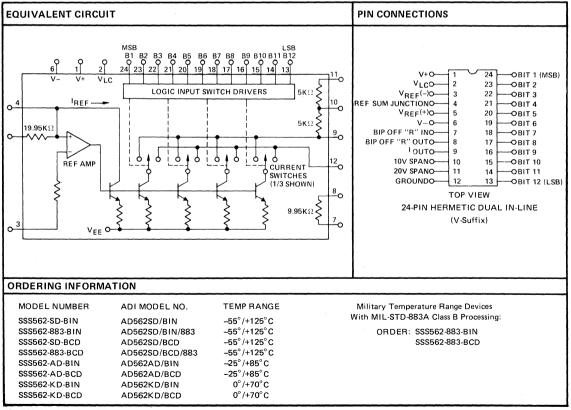
In addition to level shifting, buffer/converters provide input coding flexibility since they are available as inverting (CD4049A) or noninverting (CD4050A) devices. This gives the user a choice between negative-true and positive-true binary coding and allows the same basic DAC-100-to-CMOS interfacing method to be used in either type of application.

Since buffer/converter power consumption is very low, the required +5 volts can be provided by a simple regulator or even a resistive divider in some applications. In a multi-DAC system, one central, inexpensive 3-terminal IC regulator can supply several level shifting devices.

NOTE: For a more complete explanation and detailed circuit connections, refer to AN-14, "Interfacing PMI D/A's with CMOS Logic."

12 BIT MULTIPLYING D/A CONVERTER

GENERAL DESCRIPTION


The SSS562 is a 12-bit monolithic multiplying Digital-to-Analog converter consisting of a reference current amplifier, an R-2R ladder network, range and offset scaling resistors, and 12 high speed current switches. Improvements over the AD562 include faster settling time, lower power dissipation, greater negative power supply range, and wider voltage compliance. The SSS562 is directly interchangeable with the AD562.

The SSS562 uses a unique trimming method, selective shorting of zener diodes by avalanche migration, to achieve 13 bit accuracy rather than laser trimming. Reliability of this trimming method has been proven in several other PMI products with over 3 years of reliability history. The SSS562 is recommended for 12 bit accuracy D/A applications where single chip reliability, small size and low cost are primary considerations.

FEATURES

- Single Chip Monolithic Construction*
- Binary and BCD Models
- Nonlinearity to ±1/4 LSB (Max)
- Improved Settling Time 1.5 μsec (Max)
- Fits AD562 Socket Directly
- Guaranteed Monotonicity
- High Speed Multiplying Capability
- TTL and CMOS Logic Input Compatibility
- Low Power Consumption
- Low Cost
- MIL-STD-883A Level B Models Available

For improved specifications and greater applications flexibility, see the DAC-12 High Speed Multiplying D/A Converter data sheet.

*PATENTS APPLIED FOR

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range SSS562-SD SSS562-AD SSS562-KD Storage Temperature Range Power Dissipation	-55°C to +125°C -25°C to +85°C 0°C to +70°C -65°C to +150°C 500mW	Positive Power Supply (V _{CC}) Negative Power Supply (V _{EE}) V _{CC} to V _{EE} Logic Inputs Summing Junction (Pin 4) CMOS/TTL Threshold (Pin 2)	36V- VEE 36V- VCC 36V VEE to VEE + 36V VEE to VCC VEE to VCC VEE to VCC
Power Dissipation Derate above 100°C	500mW 10mW/°C	CMOS/TTL Threshold (Pin 2) I _{OUT} (Pin 9)	V _{EE} to V _{CC} +18 to -12V
Lead Soldering Temperature	300°C (60 sec)	Span Resistors	36V

ELECTRICAL CHARACTERISTICS These specifications apply for $V_S = \pm 15V$, $V_{BEF} = \pm 10.0000V$, $T_A = \pm 25^{\circ}C$, unless otherwise specified. SSS562SD SSS562AD SSS562KD Symbol Min Тур Тур Max Min Typ Max Units Parameter Conditions Max Min **Resolution (Binary Models)** T_A = Full 12 12 12 12 12 12 12 12 12 Bits TA = Full 12 Monotonicity (Binary 12 12 Bits -----_ --_ Mode(s) Nonlinearity (Binary Models) NL ±1/4 ±1/2 ±1/2 LSB ____ ~ ____ ____ _ _ Resolution (BCD Models) 3 3 3 3 3 3 3 3 3 Digits $T_A = Full$ T_A = Full (999 3 3 Digits Monotonicity (BCD Models) 3 _ Steps) NL ±1/10 ±1/2 ±1/2 LSB Nonlinearity (BCD Models) _ _ -_ ____ _ 1.5 15 1.5 Settling Time ts To ±1/2 LSB, All -----μsec bits ON or OFF, current into short circuit. Major Carry Switching To 90% complete 200 200 ----200 nsec ____ ___ ____ _ ____ Transient Voltage Noise (All bits ON) En 0.1Hz to 10Hz 30 _ 30 ____ _ 30 µVp-p Output Voltage Compliance Voc -2.5 +10 -2.5 ----+10 -2.5 +10 V _ % **Output Current Range** Unipolar (0 to _ +10-----_ +10 _ _ +10____ -2mA) ±10 % Bipolar (-1mA to ±10 ±10 ---------_ ----____ +1mA) **Output Resistance** ____ 2.0 2.0 2.0 MΩ _ **Output Capacitance** 30 30 30 pF _ --------%ES Zero Scale Current Izs All bits OFF ____ 0.01 ___ 0.01 _ ----0.01 Logic Inputs -TTL, VCC = VIH 2.0 2.0 v IIN = 100nA (Max) 2.0 ____ -----_ _ +5V, Pin 2 Open Circuit 0.8 0.8 v VIL IIN=-100µA (Max) _ _ 0.8 _ _ _ ____ ·__ % Vcc Logic Inputs -CMOS, I_{IN} = 100nA (Max) 70 70 70 ⊻н ____ 4.75V ≤ V_{CC} ≤ 15.8V, Pin VIL IIN=-100µA (Max) 30 30 ----30 % Vcc _ ____ _ _ -----2 to Pin 1 ZIN Reference Voltage Input 20KΩ (Nominal) ±10 ----±10 --+10..... % Range (Nominal) 0 ±10 0 ±10 V 0 ____ ±10 VRR -±0.25 ±0.25 % External Adjustment Range (See following _ ±0.25 page) 15.8 V Power Supply Range V+ 1 + = 10 mA (Typ)4.75 15.8 4.75 15.8 4.75 ----_ --13.5 V ٧--13.5 -16.5 I-=-15mA (Typ) -16,5 -13.5 -16.5 _ 1.0 ppmFS/% **Power Supply Sensitivity** V+ = +5V 1.0 _ 1.0 _ ----of Gain 1.0 1.0 ppmFS/% V+ = +15V 1.0 _ -2.0 2.0 ppmFS/% V- = -15V 2.0 _ _ -------------The following specifications apply for V_S = ±15V, V_{REF} = +10.0000V, -55°C \leq T_A \leq +125°C for SSS562SD, -25°C \leq T_A \leq +85°C for for SSS562SD, -25°C \leq +85°C < +85°C \leq +85°C < +85°C \leq +85°C < +85°C SSS562AD, $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ for SSS562KD, unless otherwise specified. TOTA LLookage Cu T T 1 201 10 00055

Zero Scale Temperature Coefficient	ICZS	Leakage Current	-	-	2.0	-	-	1.0	-	-	1.0	/°C
Bipolar Offset Temperature Coefficient			-	-	4.0	-		4.0	-	-	4.0	ppmFS /°C
Gain Temperature Coefficient		Excludes VREF	-	-	3.0	-		3.0	-	-	3.0	ppmFS /°C
Differential Nonlinearity Temperature Coefficient			-	2.0	-	-	2.0	-	-	2.0		ppmFS /°C

SSS562

SSS562

Parameter	Description	Тур	Units
Quadrants	Two-quadrant: bipolar operation is achieved using the digital inputs only.	-	-
Reference Voltage	Unipolar. Digital input multiplies reference voltage,	0 to +10	v
Accuracy	10 bits for reduced reference voltage of +1V.	±0.05	%FS
Reference Feedthrough (Unipolar Mode)	All bits OFF, 0 to +10V (p-p) sinewave frequency for 1/2 LSB (p-p) feedthrough.	2.0	KHz
Output Slew Rate	All bits ON, 10V step change in reference voltage.	1.0	mA/μ sec
Output Settling Time	All bits ON, 10V step change in reference voltage, to $\pm 0.01\%$ FS.	5.0	μsec
Reference Amplifier Bandwidth	Closed loop, small signal.	1.0	MHz

ADJUSTMENT PROCEDURES AND TABLE

BIPOLAR OFFSET

With all bits OFF, adjust R1 until op amp output is -2.5V on $\pm 2.5V$ range, -5.0V on $\pm 5.0V$ range, or -10.0V on $\pm 10.0V$ range.

UNIPOLAR OFFSET

With all bits OFF, adjust R4 until op amp output is 0V. R1 and the connection from pin 8 to pin 9 are not required.

BIPOLAR BCD GAIN

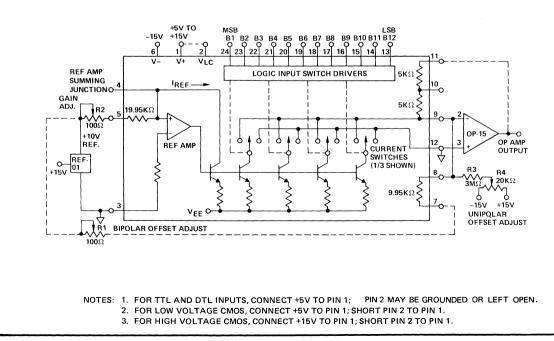
Turn bits 2 and 4 ON, Turn bits 1, 3, 5 through 12 OFF. Adjust R2 until op amp output is 0V.

RANGE OP AMP CONNECTIONS -2.5V to +2.5V Out to Pin 10 Pin 11 to Pin 9 -5.0V to +5.0V Out to Pin 10 N.C. to Pin 11 -10.0V to +10.0V Out to Pin 11 N.C. to Pin 10 0 to +5.0V Out to Pin 10 Pin 11 to Pin 9 0 to +10.0V Out to Pin 10 N.C. to Pin 11

BIPOLAR BINARY GAIN

Turn bit 1 (MSB) ON. Turn bits 2 through 12 OFF. Adjust R2 until output is 0V.

UNIPOLAR BCD GAIN


Turn bits 1, 4, 5, 8, 9, 12 ON (Code 1001 1001 1001, BCD 999). Adjust R2 until op amp output is +4.995V for 0 to +5.0V range, or +9.990V for 0 to +10.0V range.

UNIPOLAR BINARY GAIN

Turn all bits ON. Adjust R2 until op amp output is +4.9988V for 0 to +5.0V range, or +9.9976V for 0 to +10.0V range.

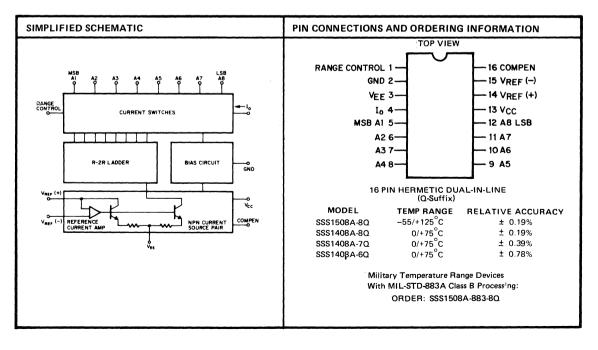
OFFSET ADJUST

R1 as below R1 as below R1 as below R4 as below R4 as below

FMI) SSS1508A/1408A

8 BIT MULTIPLYING D/A CONVERTER

GENERAL DESCRIPTION

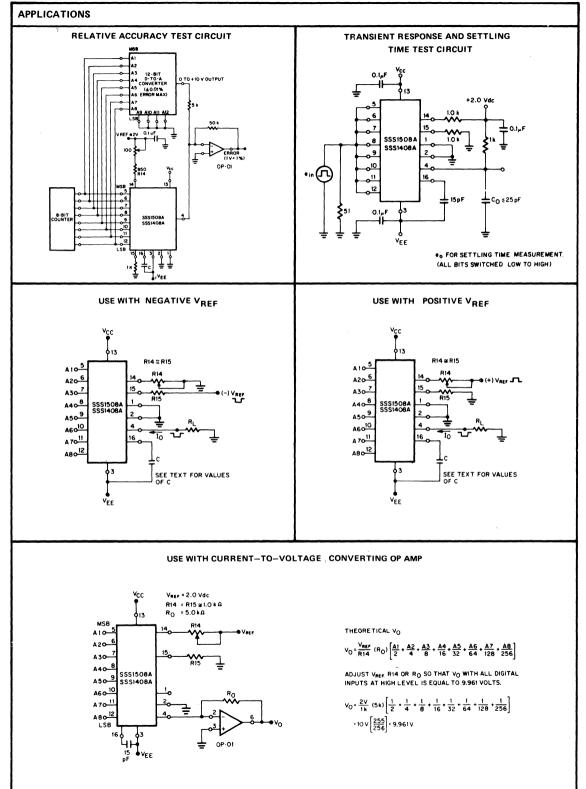

The SSS1508A/1408A are 8 bit monolithic multiplying Digital-to-Analog Converters consisting of a reference current amplifier, an R-2R ladder, and eight high speed current switches. For many applications, only a reference resistor and reference voltage need be added. Improvements in design and processing techniques provide faster settling times combined with lower power consumption while retaining direct interchangeability with MC1508/1408 devices.

The R-2R ladder divides the reference current into eight binarily-related components which are fed to the switches. A remainder current equal to the least significant bit is always shunted to ground, therefore the maximum output current is 255/256 of the reference amplifier input current. For example, a full scale output current of 1.992 mA would result from a reference input current of 2.0mA.

The SSS1508A/1408A is useful in a wide variety of applications, including waveform synthesizers, digitally programmable gain and attenuation blocks, CRT character generation, audio digitizing and decoding, stepping motor drives, programmable power supplies and in building Tracking and Successive Approximation Analog-to-Digital Converters.

FEATURES

For significantly improved speed and applications flexibility the user's attention is directed to the DAC-08 8 bit High Speed Multiplying D/A Converter data sheet. For D/A converters which include precision voltage references on the chip please refer to the DAC-02, DAC-04 and DAC-100 data sheets.



SSS1508A/1408A

Rating	Symbol	Value	Units
Power Supply Voltage	V _{CC} V _{EE}	+5.5 -16.5	Vdc Vdc
Digital Input Voltage	V ₅ thru V ₁₂	+5.5,0	Vdc
Applied Output Voltage	Vo	+0.5,-5.2	Vdc
Reference Current	¹ 14	5.0	mA
Reference Amplifier Inputs	V ₁₄ , V ₁₅	V _{CC} , V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25°C	PD	1000 6.7	m₩ m₩/°C
Operating Temperature Range SSS1508A-8 SSS1408A	TA	–55 to +125 0 to +75	°c °c
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{Vref}{R14}$ = 2.0 mA, SSS1508A-8: T_A = -55°C to +125°C, SSS1408A T_A = 0°C to +75°C unless otherwise noted. All digital inputs at high logic level.)

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Relative Accuracy (Error relative to full scale IO,		Er				
SSS1508A-8, SSS1408A-8		-'		-	±0.19	% IFS
SSS1408A-7		1 1	-	-	±0.39	% IFS
SSS1408A-6				-	±0.78	% IFS
Settling Time to within 1/2 LSB (includes t_{PLH})	(T _A = +25°C)	ts	_	250	-	ns
Propagation Delay Time	T _A = +25°C	^t PLH ^{,t} PHL	-	30	100	ns
Output Full Scale Current Drift		тсі _о	-	, ±20	-	PPM/°C
Digital Input Logic Levels (MSB)						
High Level, Logic "1"		V _{IH}	2.0	-	-	Vdc
Low Level, Logic "0"		V _{IL}		-	0.8	Vdc
Digital Input Current (MSB)	High Level, V _{IH} = 5.0V	Чн	-	0	0.04	mA
	Low Level, VIL = 0.8V	ΠL	-	0.4	-0.8	mA
Reference Input Bias Current (Pin 15)		¹ 15	-	-1.0	-3.0	μA
Output Current Range	V _{EE} = -5.0V	IOR	0	2.0	2.1	mA
	$V_{EE} = -6.0$ to $-15V$		0	2.0	4.2	mA
Output Current	V _{ref} = 2.000V, R14 = 1000Ω	^I O	1.9	1.99	2.1	mA
Output Current (All bits low)		^I O(min)	-	0	4.0	μA
Output Voltage Compliance	I _{ref} = 1mA					
(E _r ≤ 0.19% at T _A = +25°C)	V _{EE} = -5	V _o	-	-	-0.6, +0.5	Vdc
	V _{EE} below –10V				-5.0, +0.5	Vdc
Reference Current Slew Rate		SRI _{ref}	-	4.0	-	mA/μs
Output Current Power Supply Sensitivity		PSSI0-		0.5	2.7	μA/V
Power Supply Current	(All bits low)	lcc	-	+9 -7.5	+14 -13	mA mA
	/T	I _{EE}	+4.5	+5.0	+5.5	Vdc
Power Supply Voltage Range	(T _A = +25°C)	V _{CCR} V _{EER}	+4.5 -4.5	-15	-16.5	Vdc
	· · · · · · · · · · · · · · · · · · ·					
Power Dissipation		Pd				
	All bits low			82	135	mW
	V _{EE} = -5.0 Vdc					
	V _{EE} = -15 Vdc		-	157	265	mW
	All bits high					
	V _{EE} = -5.0 Vdc			70	-	mW
	$V_{EE}^{UU} = -15 \text{ Vdc}$			132		mW
					1	

GENERAL INFORMATION AND APPLICATION NOTES

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive voltage are shown on page 3. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature-drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor may be tied to either V_{EE} or ground, but using V_{EE} increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown. A high input impedance is the main advantage of this method. Compensation involves a capacitor to V_{EE} on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4.0-volts above the V_{EE} supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0V logic supply is not recommended as a reference voltage. If a well regulated 5.0V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to +0.5 volts when V_{EE} = -5V due to the current switching methods employed in the SSS1508A-8.

The negative output voltage compliance of the SSS1508A-8 is extended to -5.0V volts where the negative supply voltage is more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance but a 2.5-kilohm load increases "worst case" settling time to 1.2 μ s (when all bits are switched on). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7.0volts, due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the SSS1508A-8 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the SSS1508A-8 has a very low full scale current drift with temperature.

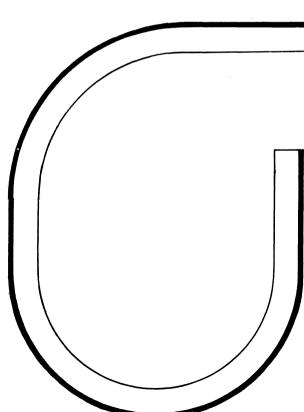
The SSS1508A-8/SSS1408A Series is guaranteed accurate to within $\pm 1/2$ LSB at a full scale output current of 1.992 mA. This coresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB $(8.0 \ \mu A)$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown on page 3. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the SSS1508A-8 accuracy is essentially the same between 1.5 and 2.5 mA. Then the SSS1508A-8 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.19\%$ specification provided by the SSS1508A-8.

MULTIPLYING ACCURACY

The SSS1508A-8 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. If the reference current in the multiplying mode ranges from 16 μ A to 4.0 mA, the additional error contributions are less than 1.6 μ A. This is well within eight-bit accuracy when referred to full scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the SSS1508A-8 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.


SETTLING TIME

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 250 ns for settling to within $\pm 1/2$ LSB, for 8-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when R_L \leq 500 ohms and C_O \leq 25 pF.

The slowest single switch is the least significant bit. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 250 ns may be realized.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 μ F supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

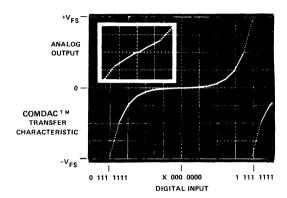
	NUMERICAL INDEX	1
	ORDERING INFORMATION	2
	Q.A. PROGRAM	3
	INDUSTRY CROSS REFERENCE	4
	FUNCTIONAL REPLACEMENT GUIDE	5
	OPERATIONAL AMPLIFIERS	6
	COMPARATORS	7
	MATCHED TRANSISTORS	8
	VOLTAGE REFERENCES	9
	D/A CONVERTERS – LINEAR	10
	D/A CONVERTERS – COMPANDING	11
	MULTIPLEXERS	12
	DEFINITIONS	13
I	СНІРЅ	14
	APPLICATION NOTES	15
	PACKAGE INFORMATION	16
	NOTES	17
1		

INDEX

D/A CONVERTERS - COMPANDING

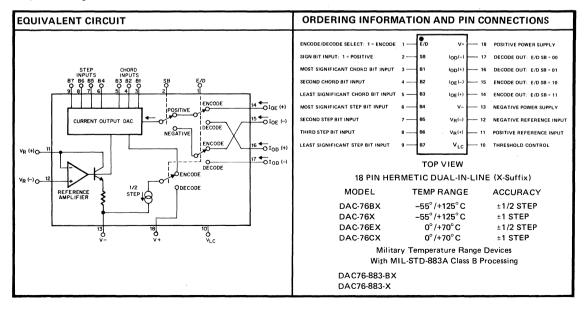
PRODUCT	TITLE	PAGE
DAC-76	COMDAC TM Companding D/A Converter	11-1

Ł


COMDAC[™] COMPANDING D/A CONVERTER MONOLITHIC LOGARITHMIC DAC

FEATURES

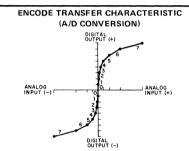
- Sign Plus 12 Bit Range With Sign Plus 7 Bit Coding
- 12 Bit Accuracy and Resolution Around Zero
- Sign Plus 72dB Dynamic Range
- True Current Outputs: -5V to +18V Compliance
- Tight Full Scale Tolerance Eliminates Calibration
- Low Full Scale Drift Over Temperature
- Conforms With Bell System µ-255 Companding Law
- Multiplying Reference Inputs
- Low Power Consumption and Low Cost
- Ideal for PCM, Audio, and 8 Bit µP Applications
- Outputs Multiplexed for Time Shared Applications


GENERAL DESCRIPTION

The DAC-76 monolithic COMDACTM D/A Converter provides the dynamic range of a sign + 12-bit DAC in a sign + 7-bit format. A companding (compression/expansion) transfer function is implemented by using three bits to select one of eight binarily-related chords (or segments) and four bits to select one of sixteen linearly-related steps within each chord. Accuracy is assured by specifying chord end point values, chord nonlinearity, and monotonicity over the full operating temperature range.

| DAC-76|

The 8-bit format with a sign + 72dB dynamic range is especially useful in control systems using 8-bit microprocessors, RAM's and ROM's. Low distortion multiplying capability and conformance with the Bell System μ -255 logarithmic law for PCM transmission make the DAC-76 ideal for use in audio applications. Other applications include servo controls, stress and vibration analysis, digital recording and speech synthesis. Additional applications are listed on the last page.



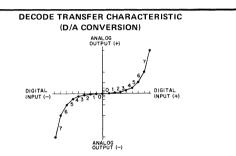
COMPANDING PRINCIPLES

BACKGROUND

Companding or signal compression and signal expansion is widely used. In FM broadcasting companding is performed by de-emphasis and pre-emphasis. In analog systems companding is performed by log and antilog amplifiers. But in data conversion and transmission, companding has been limited to the telecommunications industry. They recognized the need to efficiently represent analog signals with the fewest possible number of digital bits. With just 8 bits, the standard format, of microprocessors, RAM's, ROM's and registers, telecommunications companding systems achieve very low signal-to-quantizing distortion over a 40dB range of speech amplitudes by using the Bell System μ -255 logarithmic companding law.

TRANSFER CHARACTERISTICS

The system transfer characteristics above result when the DAC-76 is used for signal compression (A/D conversion) and for signal expansion (D/A conversion). As one would expect, when the curves are superimposed their average is a straight line because compression and expansion must be equal and opposite.


Both transfer characteristics show outputs divided into 8 chords in both polarities with 16 equal steps in each chord. Note that each chord endpoint is approximately 6dB down from the next higher chord's endpoint and that the chord slopes are binarily-related.

BELL μ -255 LOGARITHMIC CHARACTERISTIC

The output of the DAC-76 is an approximation to the μ -255 law which can be expressed as:

- $Y = 0.18 \ln (1 + \mu x)$ where:
- X = Normalized input signal level of the compressor (encoder), V_{IN}/V_{FS} with values from -1 to +1.
- Y = Output signal level of the encoder
- $\mu = 255$

This law is implemented by the DAC-76 with an eight chord (or segment) piecewise linear approximation for each polarity with sixteen linear steps in each chord. A dynamic range of 72dB in both polarities is achieved with 8 bit coding.

The table below relates step size in each chord to other commonly-encountered measurements and to the equivalent, conventional, binary-coded DAC. Step size (except in Chord 0) is about 0.3dB and is an almost constant percentage of reading. In addition, there is a 1 1/2 step change between the maximum code in each chord and the minimum code in the next chord to smooth the chord transitions and to conform with existing telecommunication specifications.

The following three pages contain electrical specifications, the DC test circuit, tables of ideal chord endpoint currents for both encode and decode modes, and parameter definitions.

CHORD	STEP SIZE NORMALIZED TO FULL SCALE	STEP SIZE IN μΑ WITH 2007.75 μΑ F.S.	STEP SIZE AS A % OF FULL SCALE	STEP SIZE IN dB AT CHORD ENDPOINTS	STEP SIZE AS A % OF READING AT CHORD ENDPOINTS	RESOLUTION & ACCURACY OF EQUIVALENT BINARY DAC
0	2	0.5	0.025%	0.60	6.67%	SIGN + 12 BITS
1	4	1.0	0.05%	0.38	4.30%	SIGN + 11 BITS
2	8	2.0	0.1%	0.32	3.65%	SIGN + 10 BITS
3	16	4.0	0.2%	0.31	3.40%	SIGN + 9 BITS
4	32	8.0	0.4%	0.29	3.28%	SIGN + 8 BITS
5	64	16	0.8%	0.28	3.23%	SIGN + 7 BITS
6	128	32	1.6%	0.28	3.20%	SIGN + 6 BITS
7	256	64	3.2%	0.28	3.19%	SIGN + 5 BITS

STEP SIZE SUMMARY TABLE DECODE OUTPUT (SIGN BIT EXCLUDED)

ELECTRICAL CHARACTERISTICS

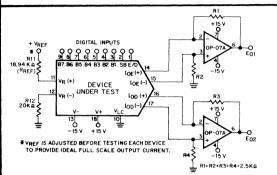
These specifications apply for V_S = ±15V, I_{REF} = 528 μ A, -55°C \leq T_A \leq +125°C, and for all 4 outputs unless otherwise specified.

Note: In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_0) step size is 0.5 μ A, while in the last chord near full scale (C_7) step size is 64 μ A.

				DAC-76	В				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Resolution		8 chords with 16 steps each	±128	±128	±128	±128	±128	±128	Steps
Dynamic Range		20 log (I _{7,15} /I _{0,1})	72	72	72	72	72	72	dB
Monotonicity		Sign Bit + or -	128	-	-	128	-	-	Steps
Chord Endpoint Accuracy		Error relative to ideal values at I _{FS} ^{= 2007.75µA}	-	-	±1/2	-	-	±1	Step
Step Nonlinearity		Step error within chord	-	-	±1/2	-	-	±1	Step
Encode Current		Additional Output Encode/Decode = 1	3/8	1/2	5/8	1/4	1/2	3/4	Step
Settling Time	ts	To within ±1/2 step		500	-	I	500		nsec
Full Scale Drift	^{∆ I} FS	Full Temperature Range	-	±1/20	±1/4	-	±1/10	±1/2	Step
Output Voltage Compliance	v _{oc}	Full scale current change ≤ 1/2 step	-5	-	+18	5	_	+18	Volts
Full Scale Current Deviation from Ideal (See Tables)	I _{FS} (D) I _{FS} (E)	VREF = 10.000V T _A =25°C R11 = 18.94 kΩ R12 = 20 kΩ	-	-	±1/2 ±1/2		-	±1 ±1	Step Step
Full Scale Symmetry Error	10(+)-10(-)	Decode or Encode Pair	-	±1/40	±1/8	-	±1/20	±1/4	Step
Zero Scale Current	^I ZS	Measured at Selected Output with 000 0000 Input		1/40	1/4	_	1/20	1/2	Step
Disable Current	IDIS	Leakage of output disabled by E/Dand SB		5.0	50	-	5.0	50	nA
Output Current Range	I _{FSR}		0	2.0	4.2	0	2.0	4.2	mA
Logic Input Levels Logic ''0'' Logic ''1''	Vil Vih	V _{LC} = OV	 2.0	-	0.8 —	 2.0	-	0.8 	Volts Volts
Logic Input Current	IIN	$V_{IN} = -5V$ to $+18V$	-	-	40		-	40	μΑ
Logic Input Swing	V _{IS}	V- = -15V	5	-	+18	-5	-	+18	Volts
Reference Bias Current	¹ 12		-	-1.0	-4.0	-	-1.0	-4.0	μΑ
Reference Input Slew Rate	dl/dt		-	0.25	-	-	0.25		mΑ/μ
Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)	PSSI _{FS+} PSSI _{FS-}	V+=4.5 to 18V,V-=-15V V-=-10.8Vto-18V,V+=15V	-	±1/20 ±1/10	±1/2 ±1/2	-	±1/20 ±1/10		Step Step
Power Supply Current	+ 	V _S =+5V, -15V, I _{FS} =2.0 mA	-	2.7 -6.7	4.0 -8.8	-	2.7 -6.7	4.0 -8.8	mA mA
Power Supply Current	+ -	V _S = ±15V, I _{FS} = 2.0 mA	-	2.7 -6.7	4.0 -8.8	-	2.7 6.7	4.0 -8.8	mA mA
Power Dissipation	PD	V _S =+5V,-15V,I _{FS} =2.0mA V _S =±15V,I _{FS} =2.0mA	-	114 141	152 192	-	114 14 1	152 192	mW mW

ELECTRICAL CHARACTERISTICS

These specifications apply for $V_S = \pm 15V$, $I_{REF} = 528 \ \mu A$, $0^{\circ}C \leq T_A \leq \pm 70^{\circ}C$, and for all 4 outputs unless otherwise specified.


Note: In a companding DAC the term LSB is not used because the step size within each chord is different. For example, in the first chord around zero (C_0) step size is 0.5 μ A, while in the last chord near full scale (C_7) step size is 64 μ A.

				DAC-76	E		DAC-76	6C	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Resolution		8 chords with 16 steps each	±128	±128	±128	±128	±128	±128	Steps
Dynamic Range		^{20 log (1} 7,15 ^{/1} 0,1 ⁾	72	72	72	72	72	72	dB
Monotonicity		Sign Bit + or -	128		-	128			Steps
Chord Endpoint Accuracy		Error relative to ideal values at I _{FS} = 2007.75µA	-	-	±1/2	-	-	±1	Step
Step Nonlinearitγ		Step error within chord	-	-	±1/2	-		±1	Step
Encode Current		Additional Output Encode/Decode = 1	3/8	1/2	5/8	1/4	1/2	3/4	Step
Settling Time	t _s	To within ±1/2 step		500			500	-	nsec
Full Scale Drift	Δ I _{FS}	Full Temperature Range	-	±1/20	±1/4	-	±1/10	±1/2	Step
Output Voltage Compliance	v _{oc}	Full scale current change ≤ 1/2 step	-5	-	+18	-5	-	+18	Volts
Full Scale Current Deviation from Ideal (See Tables)	IFS(D) IFS(E)	VREF = 10.000V T _A =25°C R11 = 18.94 kΩ R12 = 20 kΩ		1	±1/2 ±1/2	-	-	±1 ±1	Step Step
Full Scale Symmetry Error	1 ⁰⁽⁺⁾⁻¹ 0(-)	Decode or Encode Pair	-	±1/40	±1/8	-	±1/20	±1/4	Step
Zero Scale Current	^I zs	Measured at Selected Output with 000 0000 Input	-	1/40	1/4	-	1/20	1/2	Step
Disable Current	^I DIS	Leakage of output disabled by E/Dand SB	-	5.0	50	-	5.0	50	nA
Output Current Range	IFSR		0	2.0	4.2	0	2.0	4.2	mA
Logic Input Levels Logic ''0'' Logic ''1''	Vil Vih	V _{LC} = OV	2.0	-	0.8 —	2.0	-	0.8	Volts Volts
Logic Input Current	IIN	V _{IN} = -5V to +18V	-	-	40	-	-	40	μΑ
Logic Input Swing	VIS	V- = -15V	-5	-	+18	-5	-	+18	Volts
Reference Bias Current	112		-	-1.0	-4.0	-	-1.0	-4.0	μA
Reference Input Slew Rate	di/dt		-	0.25	-	-	0.25	-	mA/,
Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)	PSSI _{FS+} PSSI _{FS-}	V+=4.5 to 18V,V-=-15V V-=-10.8V to-18V,V+=15V	-	±1/20 ±1/10	±1/2 ±1/2	_) ±1/2 ±1/2	Step Step
Power Supply Current	1+ 1	V _S = +5V,-15V,I _{FS} = 2.0 mA		2.7 -6.7	4.0 -8.8		2.7 -6.7	4.0 -8.8	mA mA
Power Supply Current	+ 	V _S = ±15V, I _{FS} = 2.0 mA	-	2.7 -6.7	4.0 -8.8	-	2.7 -6.7	4.0 -8.8	mA mA
Power Dissipation	PD	V _S =+5V,-15V,I _{FS} =2.0mA V _S =±15V,I _{FS} =2.0mA	_	114 14 1	152 192	-	114	152 192	mW mW

ABSOLUTE MAXIMUM RATINGS

V+ Supply to V– Supply	36V	Operating Temperature	
V _{LC} Swing	V– plus 8V to V+	DAC-76B, DAC-76	$-55^{\circ}C$ to $+125^{\circ}C$
Analog Current Outputs	V– plus 8V to V– plus 36V	DAC-76E, DAC-76C	$0^{\circ}C$ to $+70^{\circ}C$
Reference Inputs	V- to V+	Storage Temperature	–65°C to +150°C
Reference Input Differential	Voltage ±18V	Power Dissipation	500mW
Reference Input Current	1.25 mA	Derate above 100°C	10mW/°C
Logic Inputs	V- plus 8V to V- plus 36V	Lead Soldering Temperature	$300^{\circ}C$ (60 sec)

OUTPUT CURRENT DC TEST CIRCUIT

	LINE SELECTION TABLE											
TEST GROUP	ENCODE/ DECODE		TPUT REMENT									
1	1	1	^I OE ⁽⁺⁾	(E ₀₁ /R1)								
2	1	0	IOE ()	(E ₀₁ /R2)								
3	0	1	10D (+)	(E ₀₂ /R3)								
4	0	0	10D (-)	(E ₀₂ /R4)								

NOTE:—Accuracy is specified in the test circuit using the tables below to be within the specified proportion of a step at the maximum value in each chord. Monotonic operation is guaranteed for all input codes.

CONDENSED CURRENT OUTPUT TABLES

IDEAL DECO	DE OUTPUT	CURRENT I	MICROAMP	S AT CHORD I	ENDPOINTS				
	CHORD	0	1	2	3	4	5	6	7
STEP		000	001	010	011	100	101	110	111
0	0000	0	8.25	24.75	57.75	123.75	255.75	519.75	1047.75
15	1111	7.5	23.25	54.75	117.75	243.75	495.75	999.75	2007.75
STEP	SIZE	0.50	1	2	4	8	16	32	64

IDEAL ENCODE OUTPUT CURRENT IN MICROAMPS AT CHORD ENDPOINTS

	CHORD	0	1	2	3	4	5	6	7
STEP		000	001	010	011	100	101	110	111
0	0000	0.25	8.75	25.75	59.75	127.75	263.75	535.75	1079.75
15	1111	7.75	23.75	55.75	119.75	247.75	503.75	1015.75	2039.75
STE	9 SIZE	0.50	1	2	4	8	16	32	64

SPECIFICATION PARAMETER DEFINITIONS

STEP NONLINEARITY: Step size deviation from ideal within a chord.

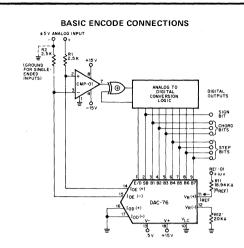
ENCODE CURRENT: The difference between $I_{OE}(+)$ and $I_{OD}(+)$ or the difference between $I_{OE}(-)$ and $I_{OD}(-)$ at any code.

FULL SCALE DRIFT: The change in output current over the full operating temperature with V_{REF} = 10.000V, R11 = 18.94K Ω , and R12 = 20K Ω .

FULL SCALE SYMMETRY ERROR: The difference between $I_{OD}(-)$ and $I_{OD}(+)$ or the difference between $I_{OE}(-)$ and $I_{OE}(+)$ at full scale output.

OUTPUT VOLTAGE COMPLIANCE: The maximum output voltage swing at any current level which causes <1/2 step change in output current.

CHORDS: Groups of linearly-related steps in the transfer function. Also known as segments.

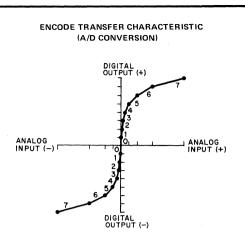

CHORD ENDPOINTS: The maximum code in each chord. Used to specify accuracy.

STEPS: Increments in each chord which divide it into 16 equal levels.

OUTPUT LEVEL NOTATION: Each output current level may be designated by the code $I_{C,S}$ where C = chord number and S = step number. For example, $I_{0,0}$ = zero scale current; $I_{0,1}$ = first step from zero; $I_{0,15}$ = endpoint of first chord (C_0); $I_{7,15}$ = full scale current.

DYNAMIC RANGE: Ratio of the largest output $(1_{7,15})$ to the smallest output excluding zero $(1_{0,1})$ expressed in dB. This can be measured peak or peak-to-peak with the same result.

BASIC ENCODE OPERATION (COMPRESSING A/D CONVERSION)

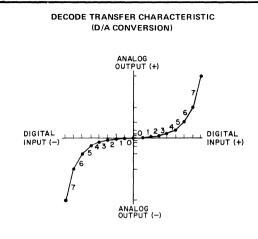

ENCODE DECISION LEVELS

Compressing A/D conversion with the DAC-76 requires a comparator, an exclusive-or gate, and a successive approximation register-the usual elements in any sign-plus-magnitude A/D converter. However, a compressing ADC has one significant difference from regular A/D converters.

In a conventional (linear) converter, the step size is a constant percentage of full scale, but in a compressing A/D converter, the step size increases as the output changes from zero scale to full scale. The standard 1/2 step bias used in conventional ADC's to keep quantizing error below $\pm 1/2$ step cannot be easily furnished by the user of a compressing ADC. For this reason, the DAC has a 1/2 step greater output in the encode mode than it has in the decode mode. This may be seen clearly by comparing the normalized encode and decode output tables at any code point.

ENCODING SEQUENCE

An encoding sequence begins with the Sign Bit comparison and decision. During this time the comparator is a polarity detector

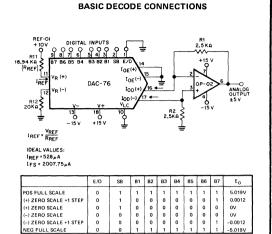

only. The Encode/Decode (E/D) input is held at a logic "0". Therefore, no current flows into the encode outputs, and the comparator is effectively disconnected from the DAC. Once the input polarity has been determined, the E/D input is changed to a logic "1" allowing current to flow into $I_{OE}(+)$ or $I_{OE}(-)$ depending upon the Sign Bit Answer.

For positive inputs, current flows into $I_{OE}(+)$ through R1, and the comparator's output will be entered as the answer for each successive decision. For negative inputs, current flows into $I_{OE}(-)$ through R2 developing a negative voltage which is compared with the analog input. An exclusive-or gate inverts the comparator's output during negative trials to maintain the proper logic coding, all ones for full scale and all zeros for zero scale. (A more complete schematic is shown in the applications section.)

The bits are converted with a successive removal technique, starting with a decision at the code 011 1111 and turning off bits sequentially until all decisions have been made. Successive removal is necessary because the 1/2 step encode decision level current is drawn from the sum node, rather than sourced into it.

NORMAL	ZED ENCODE	E LEVEL (SI	GN BIT EX	CLUDED)	I _{C,S} = 2[2 ^C (S+17) –16.5]	C = chord no. (0 through 7) S = step no. (0 through 15)			
	CHORD	0	1	2	3	4	5	6	7	
STEP		000	001	010	011	100	101	110	111	
0	0000	1	35	103	239	511	1055	2143	4319	
1	0001	3	39	111	255	543	1119	2271	4575	
2	0010	5	43	119	271	575	1183	2399	4831	
3	0011	7	47	127	287	607	1247	2527	5087	
4	0100	9	51	135	303	639	1311	2655	5343	
5	0101	11	55	143	319	671	1375	2783	5599	
6	0110	13	59	151	335	703	1439	2911	5855	
7	0111	15	63	159	351	735	1503	3039	6111	
8	1000	17	67	167	367	767	1567	3167	6367	
9	1001	19	71	175	383	799	1631	3295	6623	
10	1010	21	75	183	399	831	1695	3423	6879	
11	1011	23	79	191	415	863	1759	3551	7135	
12	1100	25	83	199	431	895	1823	3679	7391	
13	1101	27	87	207	447	927	1887	3807	7647	
14	1110	29	91	215	463	959	1951	3935	7903	
15	1111	31	95	223	479	991	2015	4063	8159	
STEP SIZ	E	2	4	8	16	32	64	128	256	

BASIC DECODE OPERATION (EXPANDING D/A CONVERSION)



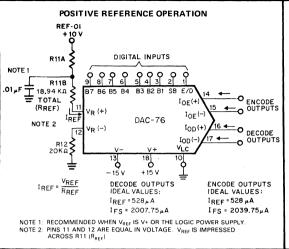
DECODE OPERATION

D/A conversion with the DAC-76 may be illustrated by using an operational amplifier connected to the decode outputs as a balanced load. The decode mode of operation is selected by applying a logic "O" to the Encode/Decode input. This enables the I_{OD} outputs, disables the I_{OE} outputs, and allows I_{OD}(+) or I_{OD}(-) to be selected by the Sign Bit input. When the Sign Bit input is high, a logic "1", all of the output current flows into I_{OD}(+) forcing a positive voltage at the operational amplifier's output. When the Sign Bit input is low, a logic "0", all of the output current flows into I_{OD}(-) through R2 forcing a negative voltage output. Since the Sign Bit only steers current into I_{OD}(+) or I_{OD}(-), the output will always be symmetrical, limited only by the matching of R1 and R2.

NORMALIZED TABLES

The encode and decode tables may be used to calculate ideal output current at any code point. For example, in decode mode at $I_{3,7}$

(011 0111) find 343. 343/8031 times I_{FS} of 2007.75 μ A equals 85.75 μ A. Alternatively, use the condensed current tables and add up the number of steps.

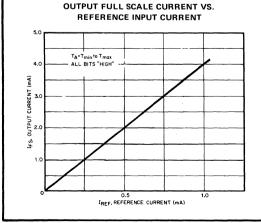

BASIC REFERENCE CONSIDERATIONS

Full scale output current is ideally 2007.75 μ A when the reference current is 528 μ A in the decode mode. In the encode mode it is 2039.75 μ A because the additional 1/2 step adds 32 μ A to the output. A percentage change in IREF caused by changes in VREF will produce the same percentage change in output current.

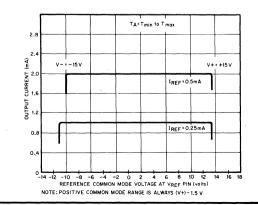
The large step size at full scale allows the use of inexpensive references in many applications. In some situations VREF may even be the positive power supply. For example, with V+ = 15V, RREF = $15V/528\mu$ A or $28.4K\Omega$. When using a power supply as a reference, R11 should be two resistors, R11A and R11B, and the junction should be bypassed to ground to provide decoupling.

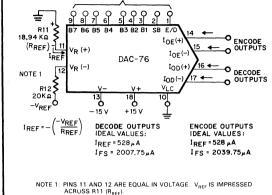
NORMALIZ	ZED DECODE	OUTPUT (S	IGN BIT EX	(CLUDED)	$I_{C,S} = 2[2^C (S+16.5) - 16.5]$ S = step no. (0 through 15) S = step no. (0 through 15)					
	CHORD	0	1	2	3	4	5	6	7	
STEP		000	001	010	011	100	101	110	111	
0	0000	0	33	99	231	495	1023	2079	4191	
1	0001	2	37	107	247	527	1087	2207	4447	
2	0010	4	41	115	263	559	1151	2335	4703	
3	0011	6	45	123	279	591	1215	2463	4959	
4	0100	8	49	131	295	623	1279	2591	5215	
5	0101	10	53	139	311	655	1343	2719	5471	
6	0110	12	57	147	327	687	1407	2847	5727	
7	0111	14	61	155	343	719	1471	2975	5983	
8	1000	16	65	163	359	751	1535	3103	6239	
9	1001	18	69	171	375	783	1599	3231	6495	
10	1010	20	73	179	391	815	1663	3359	6751	
11	1011	22	77	187	407	847	1727	3487	7007	
12	1100	24	81	195	423	879	1791	3615	7263	
13	1101	26	85	203	439	911	1855	3743	7519	
14	1110	28	89	211	455	943	1919	3871	7775	
15	1111	30	93	219	471	975	1983	3999	8031	
STEP	SIZE	2	4	8	16	32	64	128	256	

REFERENCE AMPLIFIER OPERATION



REFERENCE AMPLIFIER SETUP

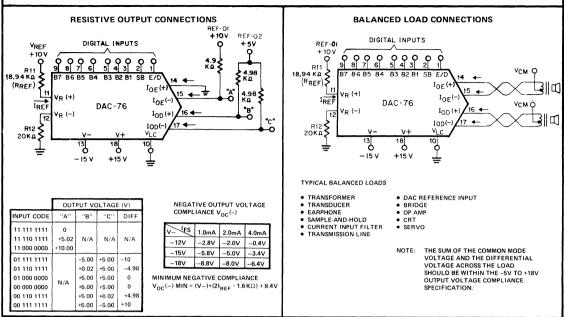

The DAC-76 is a multiplying D/A converter in which the output current is the product of the normalized digital input and the input reference current. The reference current may be fixed or may vary from nearly zero to +1.0mA. The full scale output current is a linear function of the reference current and is given for all four outputs in the figures above.


In positive reference applications an external positive reference voltage forces current through R11 into the $V_R(+)$ terminal (pin 11) of the reference amplifier. Alternatively, a negative reference may be applied to $V_R(-)$ at pin 12; reference current flows from ground through R11 into $V_R(+)$, as in the positive reference case. This negative reference connection has the advantage of a very high impedance presented at pin 12. The voltage at pin 11 is equal to and tracks the voltage at pin 12 due to the high gain of the internal reference amplifier. R12 (nominally equal to R11) is used to cancel bias current errors and may be eliminated with only a minor increase in error.

TYPICAL PERFORMANCE CURVES

REFERENCE AMPLIFIER INPUT COMMON MODE RANGE

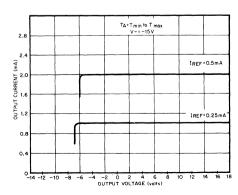
DIGITAL INPUTS


NEGATIVE REFERENCE OPERATION

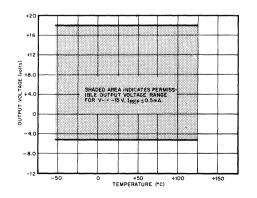
REFERENCE RECOMMENDATIONS

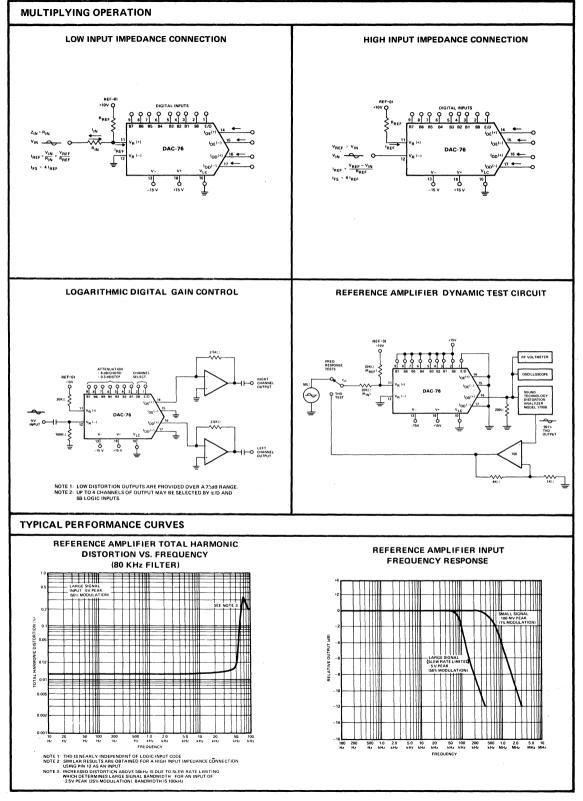
For most applications a +10.0V reference, such as the PMI REF-01, is recommended for optimum full scale temperature coefficient performance. (This also minimizes the contributions of reference amplifier V_{OS} and TCV_{OS} .) For most applications the tight relationship between I_{REF} and I_{FS} eliminates the need for trimming I_{REF} ; but if desired, full scale trimming may be accomplished by selecting R11 or by using a potentiometer for R11.

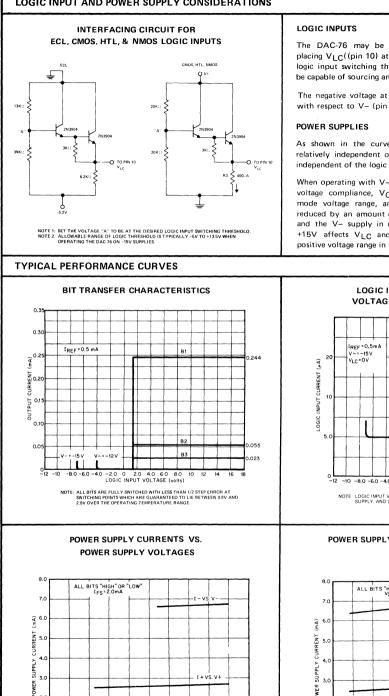
Using lower values of reference current reduces negative power supply current and increases reference amplifier negative common mode range. While the recommended operating range of DC reference currents is 0.1mA to 1.0mA, monotonic operation is maintained over an even wider range allowing the DAC-76 to be used in many multiplying applications. For variable reference applications, see section entitled "Multiplying Operation."


TRUE CURRENT OUTPUT OPERATION

The DAC-76 has true current outputs with wide voltage compliance enabling fast drive of a variety of single-ended and balanced loads. Positive voltage compliance is +18V, and negative voltage compliance is -5.0V with $I_{REF} = 528\mu$ A and V- = -15V. Negative voltage compliance for other values of I_{REF} and V- may be calculated using the table above. Typical connections, both single-ended and differential, are shown in the figure above with output voltage tables. Note the differential sign-plus-magnitude relationship between "B" and "C". The differential output voltage is independent of the +5.00 nominal voltage source as long as the V_{OC}(-) minimum values are observed.


High common mode output range is possible due to the wide output voltage compliance and allows use with transformers or other balanced loads. The terminating impedances may be located a distance away from the DAC-76 allowing transmission of analog quantities as currents rather than voltages and elimination of ground loop errors. Capacitive termination is also possible, performing an "integrate-and-hold" process which is a function of V_{REF}, R_{REF}, the digital input code, and the selection time for a given current output. Resetting of the integrating capacitor may be accomplished with a CMOS switch in parallel with the capacitor. Thus, many applications traditionally requiring op amps may be performed with a high voltage compliance, current output DAC.


TYPICAL PERFORMANCE CURVES

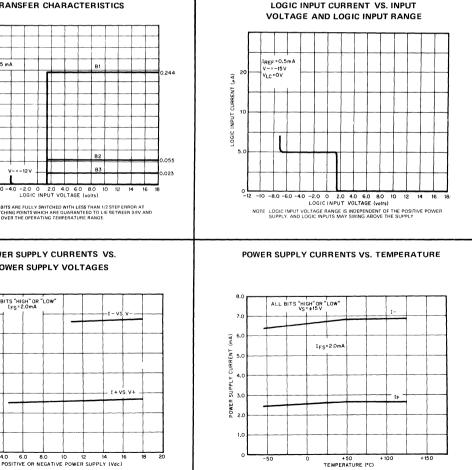

OUTPUT CURRENT VS. OUTPUT VOLTAGE (OUTPUT VOLTAGE COMPLIANCE)

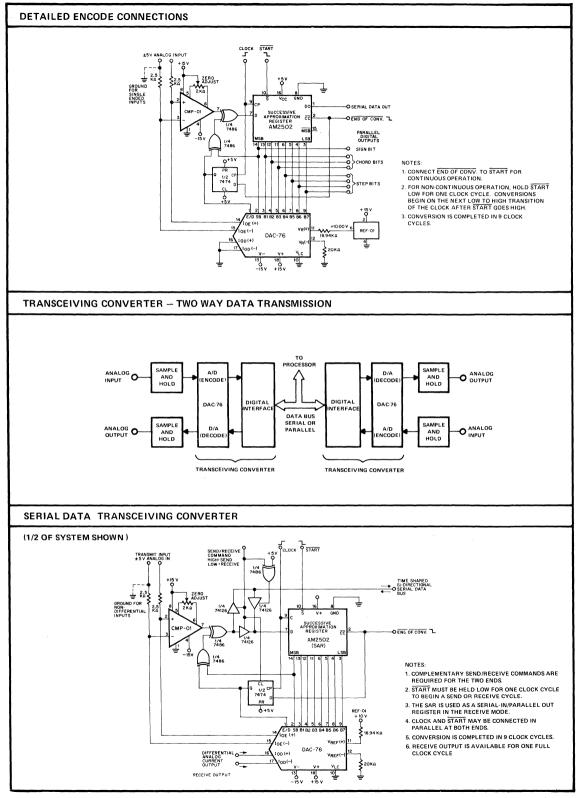
OUTPUT VOLTAGE COMPLIANCE VS. TEMPERATURE

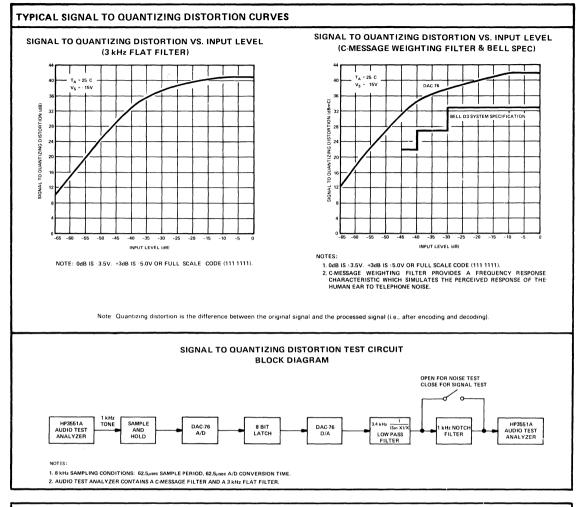
LOGIC INPUT AND POWER SUPPLY CONSIDERATIONS

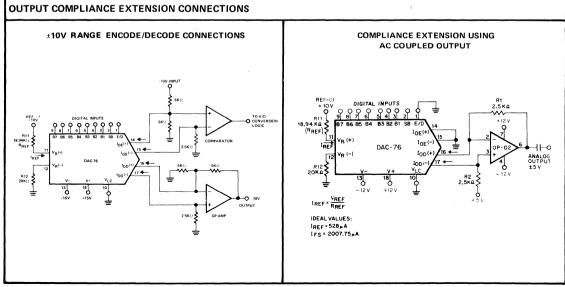
2.0

1.0

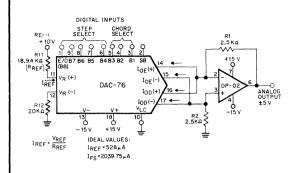

٥**٢**


2.0 4.0 6.0 8.0 10 12 The DAC-76 may be interfaced with other-than-TTL logic by placing V_{LC} (pin 10) at a potential which is 1.4V below the desired logic input switching threshold. However, this voltage source must be capable of sourcing and sinking a changing current at pin 10.


The negative voltage at the logic inputs must be limited to +10V with respect to V- (pin 13).


As shown in the curves below, power supply current drain is relatively independent of voltage and temperature and completely independent of the logic input states.

When operating with V- between -15V and -11V, output negative voltage compliance, VOC(-), reference input amplifier common mode voltage range, and logic input negative voltage range are reduced by an amount equivalent to the difference between -15V and the V- supply in use. Operation with V+ between +5V and +15V affects V_{LC} and the reference amplifier common mode positive voltage range in the same manner.



EXTENSION TO SIGN PLUS 78dB DYNAMIC RANGE

EXTENDED RANGE CONNECTIONS

EXTENDED RANGE OPERATION

When used as a D/A converter only, the DAC-76 range may be extended from sign + 72dB to sign + 78dB by using the encode output current to insert additional levels halfway between each step. By connecting $I_{OD}(+)$ to $I_{OE}(+)$ and $I_{OD}(-)$ to $I_{OE}(-)$, the E/D logic input functions as a fifth step bit input. Full scale positive now becomes 1 111 11111; full scale negative is 0 111 11111. Each chord is divided into 32 steps instead of the former 16 steps, effectively increasing dynamic range by 6dB.

The accompanying table summarizes the new chord and step characteristics obtained in the extended connection shown above.

SUMMARY TABLE FOR 3 CHORD BITS AND 5 STEP BITS

CHORD	STEP (µA)	RANGE (µA)	STEP (mV)	RANGE (V)
0	0.25	0 to 7.75	0.625	0 to 0.019
1	0.5	8.25 to 23.75	1.25	0.021 to 0.059
2	1.0	24.75 to 55.75	2.5	0.062 to 0.139
3	2.0	57.75 to 119.75	5.0	0.144 to 0.299
4	4.0	123.75 to 247.75	10	0.309 to 0.619
5	8.0	255.75 to 503.75	20	0.639 to 1.259
6	16	519.75 to 1015.75	40	1.299 to 2.539
7	32	1047.75 to 2039.75	80	2.619 to 5.099

ADDITIONAL DECODE OUTPUT TABLES

	CHORD	0	1	2	3	4	5	6	7
STEP		000	001	010	011	100	101	110	111
0	0000	0	8.25	24.75	57.75	123.75	255.75	519.75	1047.75
1	0001	0.5	9.25	26.75	61.75	131.75	271.75	551.75	1111.75
2	0010	1	10.25	28.75	65.75	139.75	287.75	583.75	1175.75
3	0011	1.5	11.25	30.75	69.75	147.75	303.75	615.75	1239.75
4	0100	2	12.25	32.75	73.75	155.75	319.75	647.75	1303.75
5	0101	2.5	13.25	34.75	77.75	163.75	335.75	679.75	1367.75
6	0110	3	14.25	36.75	81.75	171.75	351.75	711.75	1431.75
7	0111	3.5	15.25	38.75	85.75	179.75	367.75	743.75	1495.75
8	1000	4	16.25	40.75	89.75	187.75	383.75	775.75	1559.75
9	1001	4.5	17.25	42.75	93.75	195.75	399.75	807.75	1623.75
10	1010	5	18.25	44.75	97.75	203.75	415.75	839.75	1687.75
11	1011	5.5	19.25	46.75	101.75	211.75	431.75	871.75	1751.75
12	1100	6	20.25	48.75	105.75	219.75	447.75	903.75	1815.75
13	1101	6.5	21.25	50.75	109.75	227.75	463.75	935.75	1879.75
14	1110	7	22.25	52.75	413.75	235.75	479.75	967.75	1943.75
15	1111	7.5	23.25	54.75	117.75	243.75	495.75	999.75	2007.75
STE	P SIZE	.50	1	2	4	8	16	32	64

CHORD	N	ORD ENDPOIN		CHORD END IN μΑ W 2007.75μΑ	тн	CHORD EN AS A PEF OF FULL	RCENT	IN dB	NDPOINTS DOWN
0		30		7.5		0.37%		-48.55	
1		93		23.25		1.169		-38.	
2		219	·	54.75		2.739	1	-31.	
3		471		117.75	ł	5.869		-24.	
4		975		243.75		12.1%	-	-18.	
5		1983		495.75		24.7%		-12.	
6		3999		999.75		49.8%		-6.	
7		8031		2007.75		100%		0	
DECODE		PRESSED I		N FROM FU	LL SCALE (S	SIGN BIT EXC	LUDED)		
<u> </u>	CHORD	0		2	3	4	5	6	7
STEP		000	001	010	011	100	101	110	111
0	0000		-47.73	-38.18	-30.82	-24.20	-17.90	-11.74	-5.65
1	0000	-72.07	-47.73	-37.51	-30.82	-24.20	-17.30	-11.22	-5.13
2	0010	-66.05	-45.84	-36.88	-29.70	-23.15	-16.87	-10.73	-4.65
3	0010	-62.53	-45.03	-36.30	-29.18	-22.66	-16.40	-10.27	-4.19
4	0100	-60.03	-44.29	-35.75	-28.70	-22.21	-15.96	-9.83	-3.75
5	0101	-58.10	-43.61	-35.24	-28.24	-21.77	-15.53	-9.41	-3.33
6	0110	-56.51	-42.98	-34.75	-27.80	-21.36	-15.13	-9.01	-2.94
7	0111	-55.17	-42.39	-34.29	-27.39	-20.96	-14.74	-8.63	-2.56
8	1000	-54.01	-41.84	-33.85	-26.99	-20.58	-14.37	-8.26	-2.19
9	1000	-52.99	-41.32	-33.44	-26.61	-20.22	-14.02	-7.91	-1.84
10	1010	-52.07	-40.83	-33.04	-26.25	-19.87	-13.68	-7.57	-1.51
11	1011	-51.25	-40.37	-32.66	-25.90	-19.54	-13.35	-7.25	-1.18
12	1100	-50.49	-39.93	-32.29	-25.57	-19.22	-13.03	-6.93	-0.87
13	1101	-49.80	-39.51	-31.95	-25.25	-18.91	-12.73	-6.63	-0.57
14	1110	-49.15	-39.11	-31.61	-24.94	-18.61	-12.43	-6.34	-0.28
15	1111	-48.55	-38.73	-31.29	-24.63	-18.32	-12.15	-6.06	0
DECOD	Ε Ουτρυτ ελ	(PRESSED II	N PERCEN	T OF FULL S	SCALE (SIGI	N BIT EXCLU	DED)		
	CHORD	0	1	2	3	4	5	6	7
STEP	\rightarrow	000	001	010	011	100	101	110	111
0	0000	0	0.411	1.23	2.88	6.16	12.7	25.9	52.2
1	0001	0.025	0.461	1.33	3.08	6.56	13.5	27.5	55.4
2	0010	0.050	0.511	1.43	3.27	6.96	14.3	29.1	58.6
3	0011	0.075	0.560	1.53	3.47	7.36	15.1	30.7	61.7
4	0100	0.100	0.610	1.63	3.67	7.76	15.9	32.3	64.9 68.1
5	0101	0.125	0.660	1.73	3.87	8.16	16.7 17.5	33.9 35.5	71.3
6	0110	0.149	0.710	1.83	4.07	8.55 8.95	17.5 18.3	35.5 37.0	74.5
7	0111	0.174	0.760	1.93	4.27 4.47	9.35	18.3	37.0	74.5
8	1000	0.199	0.809	2.03	4.47	9.35	19.1	40.2	80.9
9	1001	0.224	0.859 0.909	2.13 2.23	4.67 4.87	9.75	20.7	40.2	80.9
10 11	1010 1011	0.249	0.909	2.23	4.87 5.07	10.1	20.7	41.8	84.1
12	1100	0.274	1.01	2.33	5.07	10.5	21.5	45.0	90.4
	1100	0.299	1.01	2.43	5.47	11.3	22.3	46.6	93.6
1 2	1 101	0.324	1.00	2.00	5.47	11.5			
13 14	1110	0.240	1 1 1 1	262	5.67	117	230	48.2	96.8
13 14 15	1110 1111	0.349 0.374	1.11 1.16	2.63 2.73	5.67 5.86	11.7 12.1	23.9 24.7	48.2 49.8	96.8 100

APPLICATIONS

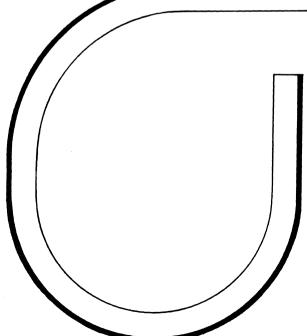
The DAC-76 is ideal in applications which require a wide dynamic range and can be characterized by an accuracy specification based on percent of reading rather than percent of full scale. The nonlinear characteristic is also useful in control systems when a decreasing slope or a constant rate of change (constant second derivative) is needed as a system approaches zero level or a given set point.

INSTRUMENTATION AND CONTROL

Data Acquisition – Data Transceiver Microprocessor Interface PCM Data Recording – Biological, Automotive, Aviation Function Generation PCM Telemetry Servo Controls – Phase Locked Loop and Set Point Controls Transducer Interface – Seismic, Strain Gauge

TELECOMMUNICATIONS

Telephony – PCM Codec Two-Way Radio Intercom Systems Radar Systems Secure Voice Communications


AUDIO

Music Distribution Digital Recording Constant dB Attenuator Analog Multiplexer Digitally-Controlled Gain Voice Synthesis and Identification Variable Speed Recording and Playback Reverberation and Special Effects

ADDITIONAL CIRCUIT APPLICATIONS

Logarithmic Attenuator Pour Quadrant Multiplier Line Driver dB Meter Analog or Digital Compressor and Expander Four Channel Multiplexer

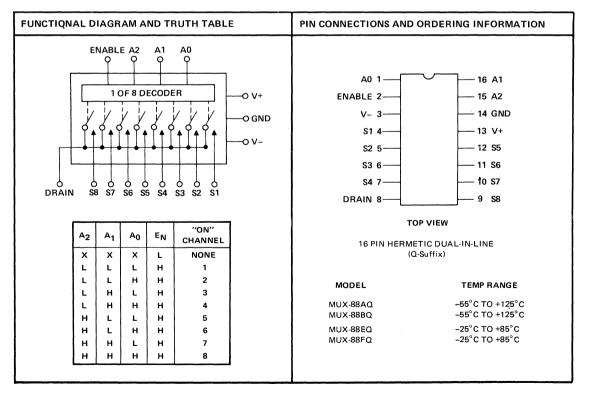
	NUMERICAL INDEX	1
	ORDERING INFORMATION	2
	Q.A. PROGRAM	3
	INDUSTRY CROSS REFERENCE	4
	FUNCTIONAL REPLACEMENT GUIDE	5
	OPERATIONAL AMPLIFIERS	6
	COMPARATORS	7
	MATCHED TRANSISTORS	8
	VOLTAGE REFERENCES	9
	D/A CONVERTERS – LINEAR	10
	D/A CONVERTERS COMPANDING	11
	MULTIPLEXERS	12
	DEFINITIONS	13
	CHIPS	14
	APPLICATION NOTES	15
	PACKAGE INFORMATION	16
	NOTES	17
)]		
/ /		

INDEX

MULTIPLEXERS

PRODUCT	TITLE	PAGE
MUX-88	Protected 8 Channel BI-FET Analog Multiplexer	12-1

PROTECTED 8 CHANNEL BI-FET ANALOG MULTIPLEXER


GENERAL DESCRIPTION

The MUX-88 is a monolithic 8 channel analog multiplexer which connects a single output to 1 of the 8 analog inputs depending upon the state of a 3-bit binary address. Disconnection of the output is provided by a logical "0" at the enable input, thereby providing a package select function.

Fabricated with Precision Monolithics' high performance BI-FET technology, this device features overvoltage protection that is fail safe with power loss, while offering low, constant "ON" resistance. Performance advantages include low leakage currents and fast settling time with low crosstalk to satisfy a wide variety of applications. This multiplexer does not suffer from latch-up or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action without the need for external pullup resistors.

FEATURES

- Pin Compatible With DG508, HI-508A, LF11508
- JFET Switches Rather Than CMOS
- No Static Discharge Blow-out Problem
- No SCR Latch-up Problems
- Analog Inputs Overvoltage Protected ±20V Beyond Normal Ratings
- Fail Safe With Power Loss
- Low Output Leakage Current 100nA MAX
- Digital Inputs Compatible With TTL and CMOS
- No Pullup Resistors Required To Insure Break-Before-Make Action With TTL Inputs

MUX-88

ABSOLUTE MAXIMUM RATINGS $(T_{\Delta} = 25^{\circ}C \text{ unless otherwise noted})$

Operating Temperature Range, MUX-88AQ, BQ Operating Temperature Range, MUX-88EQ, FQ Storage Temperature Range Power Dissipation Derate above 100°C Lead Soldering Temperature

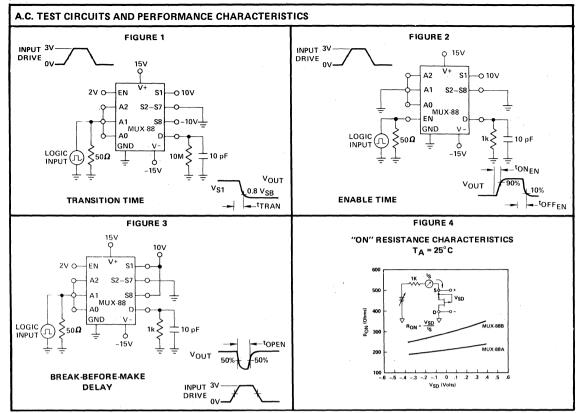
-55°C to +125°C -25°C to +85°C -65°C to +150°C 500mW 10mW/°C 300°C (60 sec) Max Junction Temperature V+ Supply to V- Supply V+ Supply to Ground Logic Input Voltage Analog Input Voltage Max Current Through Any Pin

36V 18V –4V to V+ Supply V– Supply –20V to V+ Supply +15V

25mA

150° C

ELECTRICAL CHARACTERISTICS These specifications apply for V+ = 15V, V- = -15V and T_A = 25° C unless otherwise specified. MUX-88A MUX-88B Symbol Min Min Тур Max Units Parameter Conditions Тур Max "ON" Resistance $V_{D} = 0V, I_{S} = 100 \mu A$ 220 260 300 370 Ω RON _ ----% ARON With Applied Voltage ∆RON $-10V \le V_D \le 10V$, I_S = $100\mu A$ ----1.6 _ -40 -RON Match Between Switches $V_{\rm D} = 0V, I_{\rm S} = 100 \mu A$ RON Match ____ 8.0 20 ____ 15 30 Ω Source Current (Switch "OFF") Vs = 11V, Vp = -11V (Note 1) ____ 0.01 0.1 _ 0.01 0.1 nΑ S(OFF) Drain Current (Switch "OFF") Vs = 11V, Vp = -11V (Note 1) 0.1 1.0 1.0 D(OFF) 0.1 nA Leakage Current (Switch "ON") Vp = 11V (Note 1) 0.1 1.0 0.1 1.0 nΑ D(ON) Digital "1" Input Voltage 2.0 Volts VINH _ ----2.0 --------Digital "0" Input Voltage 0.8 -----0.8 Volts VINL ____ _ V_{IN} = 0.7V Digital "0" Input Current 1.0 10 1.0 10 μA INL -____ Digital "0" Enable Current 4.0 10 4.0 10 INL(EN) VEN = 0.7V μA Digital Input Capacitance 3.0 3.0 pF CDIG -----_ _ ----Switching Time Figure 1 (Note 2) 1.0 1.3 1.5 21 ^tTRAN ----usec **Output Settling Time** 10V step to .025% 2.9 2.9 usec ts --------_ ----Break-Before-Make Delay Figure 3 0.8 ____ _ ----10 _ μsec ^tDLY Enable Delay "ON" Figure 2 1.0 1.2 μsec tON(EN) Enable Delay "OFF" Figure 2 02 tOFF(EN) -----0 2 ---------_ μsec "OFF" Isolation (Note 3) -80 -80 dB ISOOFF ___ ----------_ Crosstalk СТ (Note 3) -80 -80 dB Source Capacitance Switch "OFF", VS = OV, CS(OFF) 25 25 οF ---- $V_D = 0V$ Switch "OFF", $V_S = 0V$, Drain Capacitance 12 CD(OFF) 12 pF $V_D = 0V$ Input to Output Capacitance Switch "OFF", $V_S = 0V$, 0.2 0.2 pF CDS(OFF) -------------V_D = 0V V+ = 15V 10 12 6.0 8.0 mΑ Positive Supply Current 1+ (All Digital Inputs Grounded) V + = 5V8.0 5.0 mA ---------_ -----Negative Supply Current V-=-15V 3.0 3.8 -2.0 3.0 mΑ 1-(All Digital Inputs Grounded) V- = -5V 2.5 1.8 mΑ These specifications apply for V+ = 15V, V- = -15V and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ unless otherwise specified. "ON" Resistance RON 480 $V_{D} = 0V, I_{S} = 100 \mu A$ 370 0 -----**ARON With Applied Voltage** ΔRON $-10V \le V_{D} \le 10V, I_{S} = 100\mu A$ 24 6.0 % ----_ RON Match Between Switches RON Match $V_{D} = 0V, I_{S} = 100 \mu A$ 10 30 -----15 45 Ω Source Current (Switch "OFF") $V_{S} = 11V, V_{D} = -11V$ 10 S(OFF) ---_ _ 10 nA (Note 2) Drain Current (Switch "OFF") V_S = 11V, V_D = -11V D(OFF) 100 -100 nΑ -(Note 2) Leakage Current (Switch "ON") V_D = 11V (Note 2) 100 100 D(ON) ----_ _ _ nΑ Digital "1" Input Voltage VINH 2.0 2.0 Volts -_ Digital "0" Input Voltage VINL 0.8 0.8 Volts Digital "0" Input Current VIN = 0.7V _ ____ 20 -----20 μA INL Digital "0" Enable Current VEN = 0.7V 20 UNL(EN) 20 μA --____ _ Positive Supply Current 1+ All Digital Inputs Grounded 15 11 mΑ --------------_ Negative Supply Current 1-All Digital Inputs Grounded 5.0 -4.0 mΑ


ELECTRICAL CHARACTERISTICS NOTES

NOTE 1: Conditions applied to leakage tests insure worst case leakages. Exceeding 11V on the analog input may cause an "OFF" channel to turn "ON".

NOTE 2: Lots are sample tested to this parameter. The measurement conditions of FIGURE 1 insure worst case transition time.

NOTE 3: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with RL = 1K, CL = 7pF, Vs = 3V RMS, F = 100 kHz.

				MUX-88	E		MUX-88	F	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
'ON'' Resistance	R _{ON}	V _D = 0V, I _S = 100μA	-	220	260	-	300	370	Ω
ARON With Applied Voltage	ARON	$-10V \le V_{D} \le 10V, I_{S} = 100\mu A$		-	1.6	_	-	4.0	%
RON Match Between Switches	RON Match	$V_{\rm D} = 0V, I_{\rm S} = 100\mu{\rm A}$	-	8.0	20	-	15	30	Ω
Source Current (Switch "OFF")	IS(OFF)	V _S = 11V, V _D = -11V (Note 1)	- 1	0.01	0.1		0.01	0.1	nA
Drain Current (Switch "OFF")	D(OFF)	$V_{S} = 11V, V_{D} = -11V$ (Note 1)	-	0.1	1.0	-	0.1	1.0	nA
Leakage Current (Switch "ON")	D(ON)	V _D = 11V (Note 1)	-	0.1	1.0	-	0.1	1.0	nA
Digital ''1'' Input Voltage	VINH		2.0	-	-	2.0	-		Volts
Digital "0" Input Voltage	VINL		-	-	0.8	-	-	0.8	Volts
Digital "0" Input Current	INL	V _{IN} = 0.7V	-	1.0	10		1.0	10	μA
Digital "0" Enable Current	INL(EN)	V _{EN} = 0.7V	-	4.0	10	-	4.0	10	μA
Digital Input Capacitance	CDIG		- 1	3.0	-	-	3.0	-	pF
Switching Time	^t TRAN	Figure 1 (Note 2)	-	1.0	1.3	-	1.5	2.1	μsec
Dutput Settling Time	ts	10V step to .025%	- 1	2.9	_	-	2.9	_	μsec
Break-Before-Make Delay	^t DLY	Figure 3	-	0.8		_	1.0		usec
Enable Delay "ON"	tON(EN)	Figure 2	_	1.0	_	-	1.2	_	μsec
Enable Delay "OFF"	tOFF(EN)	Figure 2		0.2			0.2		μsec
'OFF'' Isolation	ISOOFF	(Note 3)		-80			-80		dB
Crosstalk	СТ	(Note 3)		-80			-80		dB
Source Capacitance	C _{S(OFF)}	Switch "OFF", $V_S = 0V$, $V_D = 0V$	-	2.5	-	-	2.5		pF
Drain Capacitance	CD(OFF)	Switch "OFF", $V_S = 0V$, $V_D = 0V$	-	12	-	-	12	-	pF
Input to Output Capacitance	C _{DS(OFF)}	Switch "OFF", V _S = 0V, V _D = 0V	-	0.2	-	-	0.2	-	pF
Positive Supply Current		V+ = 15V	-	10	12	-	6.0	8.0	mA
All Digital Inputs Grounded)	1+	V+ = 5V	-	8.0	-	-	5.0	-	mA
Negative Supply Current		V-=-15V	-	3.0	3.8	_	2.0	3.0	mA
(All Digital Inputs Grounded)	1-	V- = -5V	- 1	2.5		_	1.8		mA
These specifications apply for V+	= 15V, V- = -1	5V and $-25^{\circ}C \leq T_{A} \leq 85^{\circ}C$ unless	otherw	ise specifi	ed.				
'ON'' Resistance	R _{ON}	V _D = 0V, I _S = 100μA	-	_	370	_	-	480	Ω
ARON With Applied Voltage	ARON	$-10V \le V_{D} \le 10V, I_{S} = 100\mu A$	-	-	2.4	-	_	6.0	%
RON Match Between Switches	RON Match	$V_{\rm D} = 0V, I_{\rm S} = 100\mu{\rm A}$	-	10	30	· _	15	45	Ω
Source Current (Switch "OFF")	IS(OFF)	V _S = 11V, V _D = -11V (Note 2)	-	-	10	-		10	nA
Drain Current (Switch "OFF")	[†] D(OFF)	V _S = 11V, V _D = -11V (Note 2)	-	-	100	-	-	100	nA
Leakage Current (Switch "ON")	D(ON)	V _D = 11V (Note 2)	-	-	100		-	100	nA
Digital "1" Input Voltage	VINH		2.0	_	-	2.0	-	-	Volts
Digital "O" Input Voltage	VINL		-	_	0.8	_	-	0.8	Volts
Digital "O" Input Current	INL	V _{IN} = 0.7V	-	-	20	_		20	μA
Digital "0" Enable Current	INL(EN)	V _{EN} = 0.7V	-	-	20	-		20	μA
Positive Supply Current	1+	All Digital Inputs Grounded	<u> </u>		15			11	mA
Negative Supply Current	1-	All Digital Inputs Grounded	↓		5.0		I	4.0	mA

APPLICATIONS INFORMATION

These analog multiplexers employ ion-implanted JFET's in a switch configuration designed to assure break-before-make action. The turn-off time is much faster than the turn-on time to guarantee this feature over the full operating temperature and input voltage range. Fabricated with BI-FET processing rather than CMOS, special handling is not necessary to prevent damage to this multiplexer. Because the digital inputs only require a 2.0V logic "1" input level, power-consuming pullup resistors are not required for TTL compatibility to insure break-before-make switching as is most often the case with CMOS multiplexers. The digital inputs utilize PNP input transistors where input current is maximum at the logic "0" level and drops to that of a reverse-biased diode (about .1 μ A) as the input voltage is raised above \approx 1.4V.

The "ON" resistance, R_{ON} , of the analog switches is constant over the wide input voltage range of -15V to +11V with $V_{SUPPLY} = \pm 15V$. Input voltages up to $\pm 20V$ beyond this normal input range are permissible with device power on. Input voltages of up to +11V and lower than -15V are allowable with device power off. Higher input voltage is tolerable provided that some form of current limiting is employed (such as that of an op-amp output stage) to avoid exceeding junction temperature and power dissipation requirements. For normal operation, however, positive input voltages should be restricted to 11V (or 4V less than the positive supply) otherwise leakage currents will increase and a normally "OFF" switch may be falsely turned "ON". Although the output voltage will be erroneous, damage to the multiplexer will not result because the switch "ON" resistance greatly increases and the IDSS of the JFET protects the switch (Figure 4). When operating with negative input voltages, current through an "ON" switch must be externally limited to prevent the voltage drop across the switch from exceeding -0.4V source to drain. This is not a problem generally, for in most applications the multiplexer output will be connected to a high impedance load.

		NUMERICAL INDEX	1
		ORDERING INFORMATION	2
		Q.A. PROGRAM	3
		INDUSTRY CROSS REFERENCE	4
		FUNCTIONAL REPLACEMENT GUIDE	5
		OPERATIONAL AMPLIFIERS	6
		COMPARATORS	7
		MATCHED TRANSISTORS	8
		VOLTAGE REFERENCES	9
		D/A CONVERTERS – LINEAR	10
		D/A CONVERTERS – COMPANDING	11
		MULTIPLEXERS	12
		DEFINITIONS	13
		CHIPS	14
		APPLICATION NOTES	15
/		PACKAGE INFORMATION	16
		NOTES	17
	//		

. • γ,

OPERATIONAL AMPLIFIER DEFINITIONS

AVERAGE BIAS CURRENT DRIFT (TCIR)

The ratio of the change in the bias current to the change in temperature producing it.

AVERAGE OFFSET CURRENT DRIFT (TCIos)

The ratio of the change in the offset current to the change in temperature producing it.

AVERAGE OFFSET VOLTAGE DRIFT (TCVos)

The ratio of the change in the offset voltage to the change in temperature producing it.

AVERAGE OFFSET VOLTAGE DRIFT WITH EXTERNAL TRIMMING (TCVosn)

The ratio of the change in the offset voltage to the change in temperature producing it, with the offset voltage trimmed to zero at room temperature.

COMMON-MODE REJECTION RATIO (CMRR)

The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.

COMMON-MODE INPUT RESISTANCE (RinCM)

The ratio of the input voltage range to the change in input bias current over this range.

INPUT BIAS CURRENT (IR)

The average of the currents into the two input terminals when the output is at zero volts with no load.

INPUT NOISE CURRENT (inp-p)

The peak to peak noise current in a specified frequency band.

INPUT NOISE CURRENT DENSITY (in)

The rms noise current in a 1Hz band surrounding a specified value of frequency.

INPUT NOISE VOLTAGE (enp-p)

The peak to peak noise voltage in a specified frequency band.

INPUT NOISE VOLTAGE DENSITY (en)

The rms noise voltage in a 1Hz band surrounding a specified value of frequency.

INPUT OFFSET CURRENT (Ios)

The difference between the currents into the two input terminals when the output is at zero volts with no load.

MATCHING OPERATIONAL AMPLIFIER DEFINITIONS

INPUT OFFSET VOLTAGE MATCH (ΔV_{os}). The difference between the offset voltages of side A and side B; $(V_{OSA} - V_{OSB}).$

INPUT OFFSET VOLTAGE (Vos)

The voltage which must be applied between the input terminals to obtain zero output voltage with no load.

INPUT VOLTAGE RANGE (CMVR)

The range of common-mode voltage on the input terminals for which the common-mode rejection specifications apply.

INPUT RESISTANCE (Rin)

The ratio of the small-signal change in input voltage to the change in input current at either input terminal with the other grounded.

LARGE SIGNAL VOLTAGE GAIN (Avo)

The ratio of the change in output voltage (over a specified range) to the change in input voltage producing it.

MAXIMUM OUTPUT VOLTAGE SWING (VoM)

The peak output voltage that can be obtained without clipping.

OPEN LOOP OUTPUT RESISTANCE (Ro)

The small signal driving point resistance of the output terminal with respect to ground at a specified quiescent dc output voltage and current.

POWER DISSIPATION (Pd)

The total power dissipated in the amplifier with the output at zero volts and no load.

POWER SUPPLY REJECTION RATIO (PSRR)

The inverse ratio of the change in input offset voltage to the change in power supply voltage producing it.

SLEW RATE (SR)

The ratio of a change in output voltage to the minimum time required to effect this change under large-signal drive conditions. Slew rate may be specified separately for positive and negative-going changes.

SUPPLY CURRENT (Isv)

The current required from the power supply to operate the amplifier with no load and the output at zero volts.

UNITY GAIN CLOSED LOOP BANDWIDTH (BW)

The frequency at which the magnitude of the small signal voltage gain of the amplifier, operated closed-loop as a unity-gain follower, is 3dB below unity.

COMMON MODE REJECTION RATIO MATCH (ACMRR).

The difference between the common-mode rejection ratios (expressed in volt/volt) of side A and side B. Δ CMRR in db = -20 log₁₀ (Δ CMRR in volt/volt).

COMPARATOR DEFINITIONS

COMMON MODE REJECTION RATIO (CMRR)

The ratio of the input voltage range to the maximum change in input offset voltage over this range.

DIFFERENTIAL INPUT RESISTANCE (Rin)

The resistance looking into either input terminal with the other grounded.

DIFFERENTIAL INPUT VOLTAGE

The range of voltage between the input terminals for which operation within specifications is assured.

INPUT BIAS CURRENT (IB)

The average of the two input currents, with the inputs tied together.

INPUT OFFSET CURRENT (Ins)

The difference in the currents into the two input terminals when the output is within a specified voltage range.

INPUT OFFSET VOLTAGE (VOS)

The voltage between the input terminals when the output is within a specified voltage range.

INPUT SLEW RATE

The maximum rate of change in differential and/or commonmode input voltage which the input stage can follow. The comparator's total response time for any input voltage step with arbitrary overdrive is equal to the sum of the response time for the small signal (100mV) step with the same overdrive, plus the slewing time (= initial differential input voltage divided by input slew rate).

INPUT VOLTAGE RANGE (CMVR)

The range of common mode voltage on the input terminals for which operation within specifications is assured.

OUTPUT LEAKAGE CURRENT (ILEAK)

The current into the output terminal with a given output voltage and input drive equal to or greater than a specified value.

OFFSET VOLTAGE ADJUSTMENT BANGE

The change in offset voltage that can be obtained by adjusting a specified external nulling potentiometer.

OUTPUT SINK CURRENT (Isink)

The maximum negative current that can be delivered by the comparator.

MATCHED TRANSISTOR PAIR DEFINITIONS

AVERAGE OFFSET CURRENT DRIFT (TCIos)

The ratio of the change in Ios to the change in temperature producing it.

AVERAGE OFFSET VOLTAGE DRIFT (TCVos)

The ratio of the change in Vos to the change in temperature producing it.

BIAS CURRENT (IB)

The average of the base currents at a specified collector voltage and current.

BROADBAND NOISE VOLTAGE (en RMS)

The root-mean-square noise voltage referred to the input in a specified bandwidth at a specified collector voltage and current.

CURRENT GAIN MATCH (Ahre)

The difference in hFE between the transistors at a specified voltage and current, expressed as a percentage of the lower of the two hFE's. 1 1

$$\left(I - \frac{hFE_1}{hFE_2}\right) \times 100$$

OVERDRIVE

The input step voltage of specified size drives the comparator from some initial input voltage to an input level just barely in excess of that required to bring the output from its high or low state to the logic threshold voltage. This excess is defined as the voltage overdrive.

POSITIVE OUTPUT VOLTAGE (VOH)

The high output voltage level with a given load and input drive equal to or greater than a specified value.

POWER SUPPLY REJECTION RATIO (PSRR)

The ratio of the maximum change in input offset voltage to the specified change in power supply voltage.

RESPONSE TIME (tr)

The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. Logic threshold is defined as the voltage at the output of the comparator at which the loading logic circuitry changes its digital state, or, as 1.4V when the loading logic circuitry is not used.

SATURATION VOLTAGE (VSAT)

The low output voltage level with a given sink current and input drive less than or equal to a specified value.

SUPPLY CURRENTS

The currents required from the positive or negative supplies to operate the comparator with no output load. The currents will vary with input voltage, but are maximum when the output is low, and, therefore, are specified with the input drive less than or equal to a given value.

VOLTAGE GAIN (AV)

The ratio of the change in output voltage (over a specified range) to the change in input voltage producing it.

NOISE VOLTAGE (enp-p)

The peak-to-peak noise voltage referred to the input in a specified bandwidth at a specified collector voltage and current.

NOISE VOLTAGE DENSITY (en)

The rms noise voltage referred to the input in a 1Hz band surrounding a specified frequency, measured at a specified collector voltage and current.

OFFSET CURRENT (Ios)

The difference between the base currents at a specified collector voltage and current.

OFFSET CURRENT CHANGE $(\Delta I_{OS}/\Delta V_{CB})$

The ratio of the change in offset current to the change in collector-base voltage producing it.

OFFSET VOLTAGE (Vos)

The difference between the base-emitter voltages (V_{be1} -Vbe2) at a specified collector voltage and current.

VOLTAGE REFERENCE DEFINITIONS

and

LINE REGULATION

The ratio of the change in output voltage to the change in line voltage producing it including the effects of self heating.

LOAD REGULATION

The ratio of the change in output voltage to the change in load current producing it including the effects of self heating.

OUTPUT CHANGE WITH TEMPERATURE (ΔV_{OT})

The absolute difference between the maximum output voltage and the minimum output voltage over the specified temperature range expressed as a percentage of the typical output voltage.

$$\Delta V_{OT} = \frac{V_{MAX} - V_{MIN}}{V_{O} (Typical)} \times 100$$

OUTPUT TEMPERATURE COEFFICIENT (TCVO)

The ratio of the output change with temperature to the specified temperature range expressed in $ppm/^{\circ}C$. For

example: TCVO is defined as ΔVOT divided by the temperature range; i.e.,

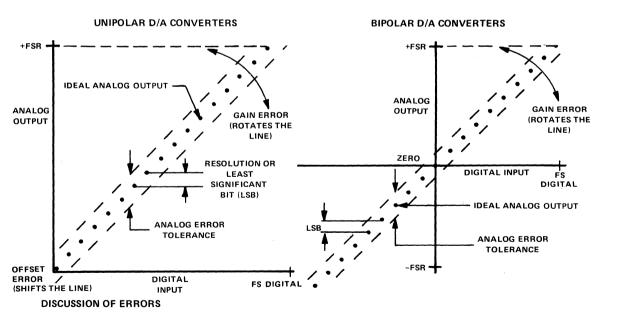
$$TCV_{O}(0^{\circ} \text{ to } +70^{\circ}\text{C}) = \frac{\Delta V_{OT} 0^{\circ} \text{ to } +70^{\circ}\text{C}}{70^{\circ}\text{C}}$$

$$= TCV_{O}(-55^{\circ} \text{ to } +125^{\circ}\text{C}) = \frac{\Delta V_{OT} -55 \text{ to } +125^{\circ}\text{C}}{180^{\circ}\text{C}}$$

OUTPUT TURN-ON SETTLING TIME (ton)

The time required for the output voltage to reach its final value within a specified error band after application of V_{IN} .

OUTPUT VOLTAGE NOISE (enp-p)


The peak to peak output noise voltage in a specified frequency band.

QUIESCENT CURRENT (ISY)

The current required from the supply to operate the device with no load.

LINEAR DIGITAL-TO-ANALOG CONVERTER TERMS AND DEFINITIONS

D/A Converters accept either a binary-coded or BCD-coded digital input code and convert this input to an equivalent analog voltage or current as an output. PMI's D/A Converters utilize the current-switched ladder network design principle which provides fast settling and reduced switching transients. D/A Converters are classified according to the type of analog output range i.e. bipolar or unipolar (See Figures below):

Transfer accuracy in a D/A Converter is generally determined by measuring deviation of the actual analog output from the ideal expected output. In general, the adjustable analog output errors of a D/A Converter are full-scale or gain error and offset or zero-scale error. Nonadjustable D/A Converter errors include nonlinearity, differential nonlinearity, zero-scale symmetry, zero and full-scale temperature drift coefficients and power-supply sensitivity. The most meaningful nonadjustable error term in a D/A Converter is NONLINEARITY. The next most important nonadjustable error terms are full-scale drift and differential-nonlinearity. A D/A Converter that has a specified maximum nonlinearity of $\pm 1/2$ LSB over temperature will also be guaranteed to be monotonic. PMI specifies maximum nonlinearity over temperature for every D/A Converter (except the DAC-03) to assure the designer of precision performance for the most demanding applications.

D/A CONVERTER DEFINITIONS - CONT'D

DIGITAL-TO-ANALOG CONVERTER

A circuit for converting a digital code word into discrete analog quantities according to a prescribed relationship.

LEAST SIGNIFICANT BIT (LSB)

The smallest incremental analog output change obtainable and is equal to the full scale output range divided by 2^{n-1} , where n = number of bits.

$$LSB = \frac{FSR}{(2^n) - 1}$$

MOST SIGNIFICANT BIT (MSB)

The largest incremental analog output change obtainable by switching a single logic bit input. It is ideally equal to:

$$MSB = FSR\left(\frac{2^{(n-1)}}{(2^n)-1}\right)$$

where n = number of bits.

FULL SCALE RANGE (FSR)

The output analog signal span expressed in units of voltage or current.

ZERO SCALE OFFSET ERROR (ZS)

The measured analog output when the digital input code corresponds to an analog value of zero. Usually expressed as a percentage of nominal Full Scale Range but also expressed in ppm, LSB's, or given in units of current or voltage.

ZERO SCALE SYMMETRY ERROR

For a Sign-Magnitude D/A converter, zero scale symmetry is the change in the analog output produced by switching the sign bit with a zero code input to the magnitude bits. This quantity is expressed in units of current, voltage, or in fractions of an LSB.

RESOLUTION

The number of states (2^n) that the output range may be divided or resolved into, where n = number of bits. Generally this is expressed in number of bits.

NONLINEARITY (NL)

The maximum deviation from an ideal straight line drawn between the end points, expressed as a percent of Full Scale Range (FSR) or given in terms of LSB value. The end points are zero scale output to full scale output for unipolar operation and minus full scale to positive full scale for bipolar operation.

DIFFERENTIAL NONLINEARITY (DNL)

The maximum deviation of the analog output between any two adjacent output states from the ideal value.

Differential nonlinearity error is expressed as percent of full scale range or in terms of LSB value. For example, a differential linearity error specification of $\pm 1/2$ LSB implies that the output step size for adjacent digital input codes is $1 \pm 1/2$ LSB or 1/2 to 3/2 LSB.

MONOTONICITY

A converter is monotonic if the analog output increases or remains the same for an increase in value of the digital input code.

GAIN ERROR

The difference between the actual output Full Scale Range and the ideal Full Scale Range expressed as a percent of Full Scale Range or in terms of LSB value.

SETTLING TIME

The elapsed time for the analog output to reach its final value within a specified error band after the corresponding digital input code has been changed. Usually specified for a Full Scale Range change and measured from the 50% point of the logic input change to the time the output reaches final value within the specified error band.

GLITCH

A switching transient appearing in the output during a code transition. Its value is expressed in volts or current and time duration at the base.

D/A CONVERTER DEFINITIONS - CONT'D

RELATIVE ACCURACY

Another term for nonlinearity.

POWER SUPPLY SENSITIVITY

The change in the Full Scale Range of the converter due to a change in the power supply value. This may be expressed as a percent of Full Scale Range per one percent change in the power supply or as a percent of Full Scale Range per volt of power supply change. Normally this is specified at D.C., but is sometimes specified over a given frequency range.

FULL SCALE TEMPERATURE COEFFICIENT OR GAIN DRIFT

This is the change in the Full Scale Range from the 25° C value and either temperature extreme divided by the corresponding change in temperature and is expressed in ppm/^oC.

MISCELLANEOUS TEMPERATURE COEFFICIENTS

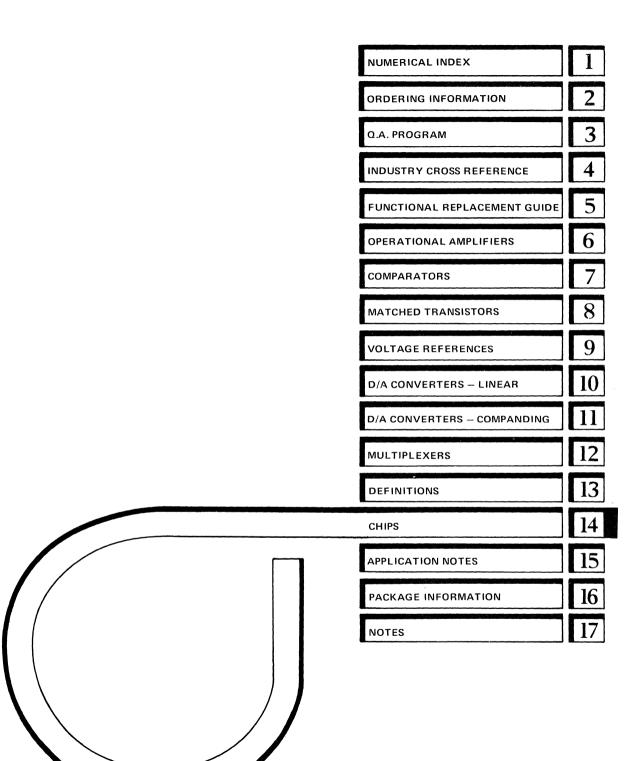
Although nonlinearity and differential nonlinearity should be specified as a worst case error over temperature, some manufacturers do specify a drift component on these terms. As in gain drift, they are specified as the change from the 25° C values to either temperature extreme divided by the corresponding change in temperature and expressed in ppm of FSR/°C.

OUTPUT VOLTAGE COMPLIANCE

The voltage range over which the current output of a digital-to-analog converter meets the specified error limits. If the error limit is not specified, the voltage range is not a true compliance specification but merely a range over which the converter will be functional.

D/A CONVERTERS BY OUTPUT TYPE

CURRENT OUTPUT D/A CONVERTERS


The output of the converter is a true digitally controlled current source or sink which has a high output impedance and a voltage compliance within which the converter meets the specified error limits.

RESISTIVE OUTPUT D/A CONVERTER

The output of the converter is a current, but has a low output resistance (typically 1-20 K ohm) and nearly zero output voltage compliance.

VOLTAGE OUTPUT D/A CONVERTER

The output of the converter is a voltage source, and is characterized by low output impedance and a specified load driving capability.

...

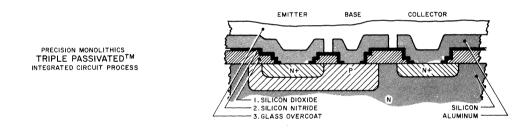
INDEX MONOLITHIC CHIPS

	PAG
General Description	1
Triple Passivation	1
Quality Assurance	1
Ordering Information	1
Mechanical Information	2
Testing	2
Assembly Procedures	2
Assembly Specification A0018A	3
Precision Comparators	
CMP-01 Fast Precision Comparator	6
CMP-02 Low Input Current Precision Comparator	7
D/A Converters – Linear	
DAC-01 6-Bit Monolithic D/A Converter	8
DAC-02 10-Bit Plus Sign /DA Converter	9
DAC-04 Two's Complement 10-Bit D/A Converter	10
DAC-08 8-Bit High Speed Multiplying D/A Converter	11
DAC-20 2-Digit BCD High Speed Multiplying DAC	12
1408A 8-Bit High Speed Multiplying D/A Converter	13
DAC-100 8- & 10-Bit Two Chip D/A Converter	
DAI-01 10-Bit D/A Current Source With Reference	14
DAR-01 10-Bit Resistor Network	
D/A Converters – Companding	10
DAC-76 COMDAC TM Companding D/A Converter	16
Matched Transistors	10
MAT-01 Ultra-Matched Monolithic Dual Transistor	17
Precision Operational Amplifiers	
OP-01 High Speed Operational Amplifier	18
OP-02 Compensated Operational Amplifier	
OP-04 Dual Operational Amplifier	
OP-05 Compensated Instrumentation Op Amp	
OP-07 Ultra-Low Offset Voltage Op Amp	
OP-08 Precision Low Input Current Operational Amplifier	23
OP-09 Quad Operational Amplifier	24
OP-11 Quad Operational Amplifier	25
OP-12 Precision Low Input Current Operational Amplifier	26
OP-14 Dual Operational Amplifier	27
OP-15 Precision Low Power JFET Input Operational Amplifier	28
OP-16 Wide Bandwidth Precision JFET Input Operational Amplifier	29
OP-17 Precision JFET Input Operational Amplifier	30
108 Low Input Current Operational Amplifier	
155 Low Power JFET Input Op Amp	
156 Wide Bandwidth JFET Input Op Amp	
157 JFET Input Operational Amplifier	
725 Instrumentation Operational Amplifier	
4136 Quad Operational Amplifier	
Precision Voltage References	50
REF-01 +10V Precision Voltage Reference	37
REF-02 +5V Precision Voltage Reference/Thermometer	38
	00

PAGE

Monolithic Chips

GENERAL DESCRIPTION

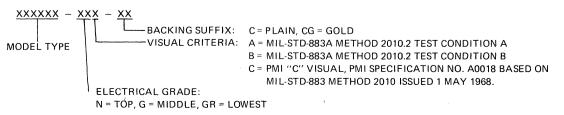

The superior performance of most Precision Monolithics products is available to the hybrid microcircuit designer. All chips are 100% electrically tested for all guaranteed DC parameters at 25°C and are 100% visually inspected to MIL-STD-883 visual criteria. Each chip is protected with our "Triple Passivation" Process incorporating an advanced Silicon Nitride ion barrier plus a thick glass coating over the metallization. Chips are packaged in waffle-pack carriers with an anti-static shield and cushioning strip placed over the active surface to assure extra protection during shipment. Precision Monolithics chips provide the highest performance available coupled with lowest overall finished costs.

FEATURES

	Highest Yields
	Highest Performance Tight specifications
	Highest Reliability-Exclusive "Triple Passivation" Process
	Wide Temperature Range Operations
	Excellent Die Attach Thick Gold or Standard Backing
	100% Visually Inspected to MIL-STD-883 Criteria
-	Tight Distributions Precision Process Control
	Carefully Packaged No Loss During Shipment
	Guaranteed Dimensions $\ldots \ldots \ldots \ldots \ldots \pm 3$ mils
	Guaranteed Pad Size

TRIPLE PASSIVATION

Triple Passivation is a three-step process which provides superior reliability and protection for all Precision Monolithics integrated circuits. First, a specially treated thermal silicon dioxide layer is grown. This protects the junctions and also attracts any residual ionic impurities to the top surface of the oxide, where they are held fixed. Next, a layer of silicon nitride is applied to prevent the entry of any potential contamination or impurities. The third erep is the thick glass overcoat layer which leaves only the bonding pads exposed. This "glassivation" protects the chip from damage during assembly and is especially important in minimizing yield loss during shipment and assembly of chips for hybrid circuits.



QUALITY ASSURANCE

Precision Monolithics believes that quality and reliability must be built into the product; no amount of testing can replace these inherent properties. For this reason, all devices are fabricated and processed to MIL-STD-883 requirements as standard practice with many exclusive processes and controls added to improve quality and reliability. The integrity of aluminum metallization is confirmed by sampling wafer lots using a Scanning Electron Microscope (SEM) examination per Method 2018 specifications. QA testing of dice is provided by normal production testing of packaged devices.

ORDERING INFORMATION

All PMI chips are available with either plain backing or, at extra cost, 1-micron thick eutectic-bonded gold backing. Electrical performance is specified at 25°C for all products in the data sheet section of this catalog. Visual inspection criteria is as listed below:

For price and delivery information or quotations for special devices, contact the nearest PMI sales office or representative listed in the back of this catalog.

MECHANICAL INFORMATION

Dimensions

All dimensions are nominal and in mils (10^{-3} inches). Die thickness is nominally 10 mils ±1 mil. Tolerance on die dimensions is ± 3 mils.

Metallization

Aluminum metallization with a nominal thickness of 10,000 angstroms is standard for all devices.

Bonding Pads

Minimum bonding pad size is 4.0 mils \times 4.0 mils for all devices.

ASSEMBLY PROCEDURES

Proper shipping and storage, die attachment, and bonding are required to take advantage of the full performance built into PMI devices. PMI provides this information but cannot assume responsibility for technology and interface problems in applying chips, nor guarantee results in using the suggested processing methods; this information is for user assistance only and is to be used at the user's own discretion.

STORAGE

Assembly begins with storage, because chips which are metallized with aluminum will slowly oxidize if exposed to air. This action is very slow, but eventually a thin layer of aluminum oxide will form on the bonding pads. To keep oxidation to a minimum, PMI chips are stored in a temperature and humidity controlled nitrogen atmosphere at the factory until shipment; they are never stored at any other point in the sales and distribution chain.

Oxidation is a more serious problem with thermal compression gold ball bonding than it is with ultrasonic aluminum wire bonding. Ultrasonic aluminum wire bonding can penetrate a thicker layer of aluminum oxide than gold ball bonding. If thermal compression gold ball bonding is used, the devices should be bonded within a few weeks after shipment. Storage under dry nitrogen conditions is highly recommended for chips to be used with either type of bonding.

SHIPPING

Protection during shipment is provided by the waffle-pack carrier and its antistatic shield and cushioning strip. In addition the waffle pack is vacuum-sealed in a polyethylene bag.

EUTECTIC DIE ATTACHMENT CONDITIONS

The die-attach area of the package should be gold plated. While preforms are not generally required, they may be necessary in some cases depending on die size and the thickness of the package's gold plating. If required, preforms of approximately 0.65 or 0.90 mm diameter with a composition of gold-silicon 98/2 are recommended.

The heater-block used should have a sufficiently large thermal mass plus adequate control to assure a constant package temperature of 420° C ± 10° C during the die-attach operation. Inert gas protection, nitrogen with a flow of approximately 30 liters/hour, is also recommended.

EUTECTIC DIE ATTACHMENT PROCEDURE

For ease of handling in die attachment, dice should first be

TESTING

Visual Inspection

All chips are 100% visually inspected to the applicable visual criteria per MIL-STD-883.

Devices with visual inspection to test condition A, MIL-STD-883A Method 2010.2 are available on special order only.

Electrical Testing

All dice are 100% tested to the DC specifications listed in the data sheet section of this catalog. Sample assembly and testing in standard packages to specified LTPD of units from customer's dice lot are available at extra cost.

transferred from their waffle packs to flat glass or metal plates. Allow the package to soak a sufficient time to acquire a uniform temperature. (Where necessary place a preform on the mounting surface.)

Using suitable tweezers, carefully pick up the die from the supply plate, orient properly and gently scrub in a circular or back-and-forth motion until eutectic melt is visible completely around the die. Eutectic melt should be visible completely around the periphery of the die. There should be no evidence of balling or flaking of die-attach material. After completing the die-attach operation remove the package from the heater block.

The die should be level and flat with respect to the package surface. Die attach material should not touch the top surface of the die or stand vertically above the edge of the die.

CONDUCTIVE EPOXY DIE ATTACHMENT

A solvent and other contaminant-free conductive epoxy should be used, specifically designed for die-attach use. Manufacturer's instructions should be carefully followed. While PMI uses eutectic die-attach exclusively, conductive epoxy die-attach can be used, although this technique is not as well-established.

ULTRASONIC ALUMINUM WIRE BONDING

PMI uses ultrasonic aluminum wire bonding and recommends its use for best performance. It is also more economical than gold-ball bonding. For specific procedures with either method, the detailed operation instructions of the manufacturer of the specific bonding equipment used should be carefully followed. A suitable wire for ultrasonic bonding is Aluminum-Silicon alloy 99/1, Diameter .001", elongation 0.5 - 2% tensile strength 14 - 16g; but again, specific instructions/recommendations related to the bonding equipment used should be observed. An average bond pull'strength of 4 - 6g, and a minimum limit of 2g should be maintained to assure mechanical bond quality.

UNUSED PADS

All pads marked with (•) are not to be bonded to by user. These pads are used by the factory for testing or adjusting (zener zap) electrical parameters.

ASSEMBLY SPECIFICATION A0018A DIE INSPECTION – TEST INSPECTION C

I. OBJECTIVE

The purpose of this specification is to check the workmanship of monolithic microcircuits. (Procured as individual dice) to detect and eliminate die with defects which could lead to device failures in normal application.

II. POLICY

- 2.1 All die will be wafer probed at +25°C to ensure meeting electrical performance parameters.
- 2.2 When Test Condition C for visual inspection is specified, die shall be 100% inspected in accordance with the following procedure.

III. PROCEDURE

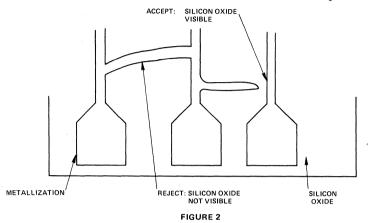
- 3.1 Each die shall be examined in a suitable sequence of observations and at the specified magnification to determine compliance with the requirements of the applicable procurement document and the criteria of the specified test condition. The order in which criteria are presented is not a required order of examination. Inspection shall be performed perpendicular to the die surface with the device under illumination normal to the die surface.
- 3.2 If a specified visual inspection requirement is in conflict with circuit design topology or construction which has been documented in the detail specification or design documentation and approved by the qualifying activity, the latter shall prevail. All references herein to silicon oxide or oxide shall also apply to silicon nitride or any other underlying passivation or material used in fabricating monolithic microcircuits. Wherever the criteria of "0.1 mil of oxide or metal" is used, a discernible line shall satisfy this requirement. After visual inspection, devices shall be stored in a dry, dust free, positive-pressure, inert, controlled environment.
- 3.3 Test Condition C visual examination shall be conducted on all monolithic microcircuits. The order of examination required in 3.3.1 through 3.3.5 may be varied at the discretion of the inspector. The inspection shall be performed within the range of 75X to 150X, unless otherwise specified.

3.3.1 Metallization

No die shall be acceptable that exhibits the following defects in the operating metallization:

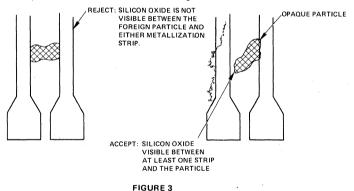
3.3.1.1 Scratches, missing metallization

No scratches shall be acceptable in the interconnecting metallization which reduce the width of the conducting stripe by three-fourths or more of the minimum design width, provided the scratch exposes silicon oxide at any point along its length. Scratches, exposing silicon oxide, occurring in metallization contact cut areas shall not be acceptable if they leave three-fourths or more of the contact area isolated from the metallization. Scratches, exposing oxide and occurring on metallization bonding pads shall not be acceptable if they occur in such a manner as to isolate three-fourths or more of the bond area from the metallization. Missing metallization reducing the width by three-fourths of its narrowest designed width shall be cause for rejection.


FIGURE 1

3.3.1.2 Metallization adherence

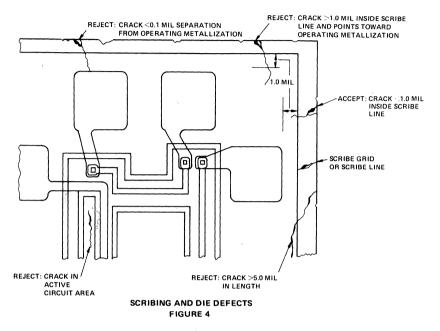
Any metallization lifting, peeling, or blistering that results in less than 1/4 of the minimum design width remaining undisturbed.


3.3.1.3 Bridged metallization

Reject all material on which silicon oxide is not visible between metallization stripes. Such reductions may be caused by smears, photolithographic defects or conductive foreign material (see figures 2 & 3).

3.3.2 Foreign Material

Unattached metallic, abrasive or conductive material on the surface of the die shall not be acceptable. Attached metallic or conductive material shall not be acceptable on the surface of the die if silicon oxide is not visible between the particle and any adjacent metallization. A particle shall be considered attached if it cannot be removed by a nitrogen blow (20 psi). Conductive foreign material attached to the top surface of the overcoat shall be acceptable. This inspection will be conducted at low magnification (30X-60X).



3.3.3 Scribing and die defects

No device shall be acceptable that exhibits:

- (a) Less than 0.1 mil of passivation visible between operating metallization or bond periphery and edge of the die.
 - NOTE: Criteria of 3.3.3(a) can be excluded for peripheral metallization including bonding pads where the metallization is at the same potential as the die.
- (b) A chipout in the active circuit area.
- (c) Any crack in the active circuit area or a crack that exceeds 5.0 mils in length (see figure 4).

- (d) Any crack that comes closer than 0.1 mil to any operating metallization or other active circuit area on the die (see figure 4).
- (e) A crack, that exceeds 1.0 mil in length, inside the scribe grid or scribe line that points toward operating metallization or functional circuit elements (see figure 4).
- (f) Any attached piece of an adjacent die protruding more than .003" (3 mils) from the edge of the die.

3.3.4 Overcoat

Overcoat is defined as a dielectric layer (glassivation) applied after metallization. No device shall be considered acceptable which exhibits any overcoat void which bridges any two operating circuit metallization areas or any operating circuit metallization to bare silicon. No device shall be acceptable that has glassivation covering more than 50% of any active bonding pad.

3.3.5 Probing

All bonding pads shall be inspected for evidence of probing. Any die having any active unprobed bonding pads shall be rejected.

3.3.6 Dimensions

The length and width dimensions of the chip shall be inspected and must be within $\pm .003''$ of the catalog dimensions.

CMP-01 FAST PRECISION COMPARATOR

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS
Junction Temperature (Tj) – Total Supply Voltage, V+ to V– Output to Ground Output to Negative Supply Voltage Ground to Negative Supply Voltage Positive Supply Voltage to Ground Positive Supply Voltage to Offset Null Output Sink Current (Continuous Operation) Differential Input Voltage Input Voltage (V _S = ±15V) Output Short Circuit Duration – to ground to V+	$65^{\circ}C \text{ to } +150^{\circ}C$ 36V -5V to +32V 50V 30V 0 to 2V 75 mA $\pm 11V$ $\pm 15V$ Indefinite 1 min.	66 MILS Inv Non Inv Input Input *NC Ground Ground Null Null Out

ELECTRICAL SPECIFICATIO	ELECTRICAL SPECIFICATIONS AT 25°C				CM	P01-G	
These specifications apply for $V_S =$	±15V unless oth	erwise noted.					
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	V _{OS}	R _S ≤ 5 kΩ		0.8	_	2.8	mV
Input Offset Current	los		-	25	-	80	nA
Input Bias Current	I _B		-	600	-	900	nA
Differential Input Resistance	R _{in}		3.0		1.0	-	MΩ
Input Voltage Range	CMVR		±12.5		±12.5	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	94	-	90	-	dB
Power Supply Rejection Ratio	PSRR	$5V \leq V_S + \leq 18V$ -18V $\leq V_S - \leq 0V$	80	-	74	-	dB
Positive Output Voltage	V _{OH}	$V_{in} \ge 3mV$, $I_0 = 320\mu A$	2.4	-	-	-	v
		$V_{in} \ge 3mV$, $I_O = 240\mu A$	-	-	2.4	-	V
Saturation Voltage	VSAT	I _{sink} = 6.4 mA	-	0.45	-	0.45	v
Output Leakage Current	LEAK	V _{in} ≥ 10mV, V _o = 30V		4.0	-	8.0	μA
Positive Supply Current	1+	V _{in} ≤ −10mV		8.0	-	8.5	mA
Negative Supply Current	1-	V _{in} ≤ −10mV		2.2	-	2.2	mA
Power Consumption	PD	V _{in} ≤ −10mV	-	153	-	161	mW
These specifications apply for V_S^+	= 5V and V _S - =	0V unless otherwise noted.		•	• • • • • • • • • • • • • • • • • • • •		
Input Offset Voltage	Vos	R _S ≤ 5 kΩ	-	1.5	-	3.5	mV
Input Offset Current	los		-	21	-	65	nA

TYPICAL ELECTRICAL CHAR	CMP01-N	CMP01-G			
Parameter	Symbol	Test Conditions	Typical	Typical	Units
Average Input Offset Voltage Drift	TCVos	Rs = 50Ω	1.5	1.8	μV/°C
Average Input Offset Current Drift	TCIOS		35	40	pA/°C
Response Time (T _A = +25°C)	t _r	100mV step, 5mV overdrive no load (no pull-up)	90	90	nsec

CMP-02 LOW INPUT CURRENT PRECISION COMPARATOR

ABSOLUTE MAXIMUM RATIN	NGS		CHIP	LAYOUT A	ND DIMEN	MENSIONS				
$\begin{array}{c c} Junction Temperature (T_j) & -65^\circ C \ to +150^\circ C \\ Total Supply Voltage, V+ to V- & 36V \\ Output to Ground & -5V \ to +32V \\ Output to Negative Supply Voltage & 50V \\ Ground to Negative Supply Voltage & 30V \\ Positive Supply Voltage to Ground & 30V \\ Positive Supply Voltage to Offset Null & 0 \ to 2V \\ Output Sink Current (Continuous Operation) & 75 \ mA \\ Differential Input Voltage & \pm 11V \\ Input Voltage (VS = \pm 15V) & \pm 15V \\ Output Short Circuit Duration - to ground \\ to V+ & 1 \ min. \\ \end{array}$				V	Input I	Jon Inv nput	41 MiLS /+ ↓			
ELECTRICAL SPECIFICATION	NS AT 25°C			СМ	P02-N	СМ	P02-G			
These specifications apply for $V_S = $	±15V unless oth	nerwise noted.				r				
Parameter	Symbol	Test Condi	tions	Min	Max	Min	Max	Units		
Input Offset Voltage	V _{OS}	R _S ≤ 5 kΩ		-	0.8	-	2.8	mV		
, f		R _S ≤ 50 kΩ		-	0.9	-	3.0	mV		
Input Offset Current	los			-	3.0		15	nA		
Input Bias Current	۱ _B			-	50		100	nA		
Differential Input Resistance	R _{in}			5.0	-	1.5	-	MΩ		
Input Voltage Range	CMVR			±12.5	· _	±12.5	-	V		
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR		94	-	90		dB		
Power Supply Rejection Ratio	PSRR	5V ≤ V _S + ≤18\ -18V ≤ V _S - ≤0		80	-	74	-	∙d₿		
Positive Output Voltage	VOH	V _{in} ≥ 3mV, I _o =	320µA	2.4	-	-	-	v		
		V _{in} ≥ 3mV, I _o =	240μA	-	· _	2.4		v		
Saturation Voltage	VSAT	l _{sink} = 6.4 mA		-	0.45	-	0.45	v		
Output Leakage Current	LEAK	V _{in} ≥ 10mV, V _c	5 = 30V	-	4.0	-	8.0	μA		
Positive Supply Current	1+	V _{in} ≤ −10mV			8.0	-	8.5	mA		
Negative Supply Current	1-	V _{in} ≤ −10mV		-	2.2	-	2.2	mA		
Power Consumption	PD	V _{in} ≤ -10mV		-	153		161	mW		
These specifications apply for V_{S} + =	5V and V _S - =	0V unless otherwise	noted.	_ []				· · · · · · · · · · · · ·		
Input Offset Voltage	Vos	R _S ≤ 5 kΩ	- <u>1</u>	-	1.5		3.5	mV		
Input Offset Current		h		++	3.0		14	nA		

TYPICAL ELECTRICAL CHARACTERISTICS (V _S = $\pm 15V$)			CMP02-N	CMP02-G	
Parameter	Symbol	Test Conditions	Typical	Typical	Units
Average Input Offset Voltage Drift	TCVos	R _S = 50Ω	1.5	1.8	μV/°C
Average Input Offset Current Drift	TCI _{os}		4.0	5.0	. pA/°C
Response Time (T _A = +25°C)	t _r	100mV step, 5mV overdrive no load (no pull-up)	160	160	nsec

Ś

DAC-01 6 BIT MONOLITHIC D/A CONVERTER

ABSOLUTE MAXIMUM RATINGS	CHIP LAYOUT AND DIMENSIONS
Junction Temperature (Tj)-65°C to +150°CV+ Supply Voltage to Ground0 to +18VV- Supply Voltage to Ground0 to -18VLogic Input to Ground-0.7 to +6VOutput Short Circuit DurationIndefinite	NC Trim V Unpolar/ Sum Scale Ground NC Sipolar Node Factor Signals
NOTE: Short circuit may be to ground or either supply. Rating applies to +150°C chip temperature.	Bit 1 MSB Bit 3 Bit 4 Bit 5 Bit 6 Bit 2 -

ELECTRICAL SPECIFICA	TIONS AT 2	25°C	DAC01-N DAC01-GR BIPOLAR AND UNIPOLAR UNIPOLAR ONLY				
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Nonlinearity		Vs = ±15V	-	±0.4	-	±0.4	%
Internal Reference Voltage	VMCR	V _S = ±15V ³	6.65	6.76	6.4	6.9	v
Zero Scale Voltage	Vzs	V _S = ±15V		±.021	-	±.035	v

These specifications apply for $V_S = \pm 15V$ unless otherwise noted.

Parameter	Test Conditions	Min	Max	Units	
Unipolar Full Scale Output Voltage (All Models)	$2K\Omega$ load, logic $\leqslant 0.0V,$ short V– to Full Scale Trim, Unipolar/ Bipolar to Ground, and Scale Factor to Sum Node.	10.00	11.75	v	
Bipolar Output Voltage ±5 Volt Range (Except	$2K\Omega$ Load, Short Sum Node to Unipolar/Bipolar.				
V _{FS+} DAC-01-GR) V _{FS-}	Short V- to Full Scale Trim and Scale Factor to Sum Node. Logic Inputs = 0V Logic Inputs = 3.0V	+4.93 -5.94	+5.94 -4.93	v v	
±10 Volt Range (Except V _{FS+} DAC-01-GR) V _{FS-}	Open Scale Factor Logic Inputs = 0V Logic Inputs = 3.0V	+9.78 -11.89	+11.89 -9.78	v v	
Bipolar Offset Voltage ±1/2 (I V _{FS+} I–I V _{FS} –I)	±5 Volt Range ±10 Volt Range	-	±70 ±140	mV mV	
Resolution		6	6	bits	
Logic Input "0"		-	0.5	v	
Logic Input "1"		2.1	-	v	
Lògic Input Current, Each Input	V _{IN} = +2.1V	-	±8.0	μA	
Power Supply Rejection	$\pm 12V \le V_S \le \pm 18V$ V _{FS} \cong 10.0 V	-	0.15	%FS/V	
Power Consumption	No Load	_	250	mW	

TYPICAL ELECTRIC	AL CHARACTER	ISTICS	DAC-01-N	DAC01-G	DAC01-GR	
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Settling Time	ts	To ±1/2 LSB	1.5	1.5	1.5	μsec
Full Scale Tempco	TCV _{FS}	V _S = ±15V	60	90	90	ppm/°C

DAC-02 10 BIT PLUS SIGN D/A CONVERTER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIME	NSIONS
V+ Supply to Analog Ground V- Supply to Analog Ground Analog Ground to Digital Ground	$\begin{array}{c} -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ 0 \text{ to } +18\text{V} \\ 0 \text{ to } -18\text{V} \\ 0 \text{ to } \pm0.5\text{V} \\ 5\text{V to } (\text{V}_{+}7\text{V}) \\ 300 \ \mu\text{A} \\ 0 \text{ to } +10\text{V} \\ \text{Indefinite} \\ \text{er supply.} \end{array}$	148 Mill Bit 9 Bit 7 Bit 5 Bit 4 Bit 10 Bit 11 Bit 12 LSB LSB Digital Ground V- Ground Ground	Bit 2 Bit 3 Bit 3

ELECTRICAL SPECIFICA	ELECTRICAL SPECIFICATIONS AT 25°C		C02-N	DAC	02-G	DAG		
These specifications apply for N	$I_{S} = \pm 15V$ and $\pm 10V$ Full Sca	le Output ur	less otherwis	se noted.				
Parameter	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Resolution	Bipolar Output	13	13	13	13	13	13	bits
Bits 11 and 12 not normally used	Unipolar Output	12	12	12	12	12	12	bits
Monotonicity		9	-	8	-	7	-	bits
Nonlinearity		-	±0.1	-	±0.2		±0.4	% FS
Zero Scale Offset	Sign Bit High, All Other Inputs Low	-	±10		±10		±10	mV
Zero Scale Symmetry	±10V Full Scale	-	±5.0		±5.0		±10	mV
Full Scale Bipolar Symmetry	±10V Full Scale	-	±60	-	±60		±80	mV
Power Supply Rejection	V _S = ±12V to ±18V	-	0.05	-	0.05	-	0.1	% V _{FS} /\
Power Dissipation	I _{OUT} = 0	-	300	-	300	-	350	mW
Logic Input "0"		_	0.8	-	0.8	-	0.8	v
Logic Input "1"		2.0	-	2.0	-	2.0	-	v
Full Scale Output Voltage	V _{FS+} (Sign Bit High)	10	11.5	10	11.5	10	11.5	v
	V _{FS-} (Sign Bit Low)	-11.5	-10	-11.5	-10	-11.5	-10	v

TYPICAL ELECTR	ICAL CHAR	ACTERISTICS	DAC02-N	DAC02-G	DAC02-GR			
These specifications ap	ply for $V_S = \pm$	15V and +10V Full Scale Output unless otherwise noted.						
Parameter	Symbol	Test Conditions	Typical	Typical Typical Typical				
Full Scale Tempco	tcv _{fs}	Internal Reference	60	60	90	ppm/°C		
Settling Time (T _A = 25°C)	t _s	To ±1/2 LSB 10 Volt Step	1.5	1.5	1.5	µsec		
Logic Input Current		T _A = 25°C	1.0	1.0	1.0	μA		

NOTE: Voltage Output Range programmable by connecting SF¹(10V) to Analog Output for 10 volt range. Jumper from SF²(5V) to Analog Output sets device to 5 volt range.

DAC-04 TWO'S COMPLEMENT 10 BIT D/A CONVERTER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMEN	ISIONS
Junction Temperature (Tj) V+ Supply to Analog Ground V- Supply to Analog Ground Analog Ground to Digital Ground Logic Inputs to Digital Ground Internal Reference Output Current Reference Input Voltage Output Short Circuit Duration (Short circuit may be to ground or	$\begin{array}{c} -65^{\circ}C \text{ to } +150^{\circ}C \\ 0 \text{ to } +18V \\ 0 \text{ to } -18V \\ 0 \text{ to } \pm 0.5V \\ -5V \text{ to } (V_{+}7V) \\ 300\mu A \\ 0 \text{ to } +10V \\ \text{Indefinite} \\ \text{either supply} \end{array}$	148 MILS- Bit 9 Bit 7 Bit 6 Bit 10 Bit 10 Bit 11 Bit 12 LS8 Digital Ground V- Ground	Bit 3 Sign Bit Bipolar Adjust *NC Output SF1 Analog Ref NC Output 571 Analog Ref UU Output 57 U Output V*

ELECTRICAL SPECIFICATIONS AT 25°C			DAC04-N DAC04-G DAC04-GR					
These specifications apply for V	S = ±5V Full Scale Output unless other	wise noted	l.					
Parameter	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Resolution	Bipolar Output	12	12	12	12	12	12	bits
Monotonicity		9	-	8	-	7	-	bits
Nonlinearity		-	±0.1		±0.2	-	±0.4	% FS
Bipolar Offset Voltage	Short Reference Input to Reference Output and Bipolar Adjust	-5.0	-0,1	-5.0	-0.1	-5.0	. 0.1	% range
Power Supply Rejection	V _S = ±12V to ±18V	-	0.1	-	0.1		-	%VFS/
Power Dissipation	IOUT = 0	-	300		300	-	350	mW
Logic Input "0"		-	0.8	-	0.8	-	0.8	v
Logic Input "1"		2.0	-	2.0	-	2.0	-	v
Full Scale Output Voltage	Short Reference Input to Reference Output	10.0	11.5	10.0	11.5	10.0	11.5	v

TYPICAL ELECTRICAL CHARACTERISTICS			DAC04-N	DAC04-G	DAC04-GR			
These specifications apply for $V_S = \pm 15V$ and $\pm 5V$ Full Scale Output unless otherwise noted.								
Parameter	Symbol	Test Conditions	Typical	Typical	Units			
Full Scale Tempco	TCV _{FS}	Internal Reference	60	60	90	ppm/°C		
Settling Time (T _A = 25°C)	ts	To ±½LSB 10 Volt Step	1:5	1.5	1.5	μsec		
Logic Input Current		T _A = 25°C	1.0	1.0	1.0	μA		

NOTE: See DAC-02 note

DAC-08 8 BIT HIGH SPEED MULTIPLYING D/A CONVERTER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS
Junction Temperature (Tj) V+ Supply to V- Supply Logic Inputs VLC Reference Inputs Reference Input Differential Voltage Reference Input Current	-65° C to +150° C 36V V- to V- plus 36V V- to V+ V- to V+ ±18V 5.0mA	85 MILS 1 / B7 B6 B5 B4 B3 B2 B8 LSB) V+ VRef(+) VRef(-) VRef(-) VRef(-) VRef(-) V V V V V V V V V Volut 62 MILS

ELECTRICAL SPECIFICATIONS AT 25°C			DAC	08-N	DAC	08-G	DAC	08-G R	
These specifications apply for	nd I _{REF} = 2.0 mA unless o	therwise sp	ecified. O	utput char	acteristics	refer to bo	oth IOUT a	Ind TOUT.	
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Resolution			8	8	8	8	8	8	bits
Monotonicity			8	8	8	8	8	8	bits
Nonlinearity			-	±0.1	-	±0.19		±0.39	% FS
Output Voltage Compliance	Voc	Full scale current change <½ LSB	-10	+18	-10	+18	-10	+18	v
Full Scale Current	IFS4	V _{REF} = 10.000V R ₁₄ , R ₁₅ = 5.000kΩ	1.94	2.04	1.94	2.04	1.94	2.04	mA
Full Scale Symmetry	IFSS		-	±8.0	-	±8.0	-	±16	μA
Zero Scale Current	ZS		-	2.0		±4.0	`	4.0	μA
Output Current Range	IFSR	V-= -5.0V V-= -7.0V to -18V	0	2.1 4.2	0 0	2.1 4.2	0 0	2.1 4.2	mA mA
Logic "0" Input Level	VIL			0.8	-	0.8		0.8	V
Logic "1" Input Level	VIH		2.0	-	2.0	-	2.0	-	v
Logic Input Current Logic "0" Logic "1"	山 山舟	$V_{LC} = 0V$ $V_{IN} = -10V \text{ to } +0.8V$ $V_{IN} = 2.0V \text{ to } 18V$	-	±10 ±10		±10. ±10	-	±10 ±10	μΑ μΑ
Logic Input Swing	VIS	V-=-15V	-10	+18	-10	+18	-10	+18	v
Reference Bias Current	115		-	-3.0	-	-3.0		-3.0	μA
Power Supply Sensitivity	PSSIFS+ PSSIFS-	V+ = 4.5V to 18V V- = -4.5V to -18V I _{REF} = 1.0 mA	-	0.01 0.01	-	0.01 0.01		0.01 0.01	%/% %/%
Power Supply Current	+ -	Vs = ±18V IREF ≤ 2.0 mA	-	3.8 - 7.8	-	3.8 7.8		3.8 - 7.8	mA mA
Power Dissipation	PD	Vs = ±18V I _{REF} ≤ 2.0 mA	-	174	-	174	-	174	mW

TYPICAL ELECTRICAL	RISTICS	DAC-08N	DAC-08G	DAC-08GR		
These specifications apply for V _S = ±15V and I _{REF} = 2.0 mA unless otherwise specified. Output characteristics refer to both I _{OUT}						and IOUT.
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Reference Input Slew Rate	di/dt		8.0	8.0	8.0	mA/µsec
Propagation Delay	^t PLH ^{, t} PHL	T _A = 25°C, Any bit	35	35	35	nsec
Settling Time	t _s	To $\pm \frac{1}{2}$ LSB, all bits switched ON or OFF, T _A = 25°C	100	100	100	nsec

DAC-20 2 DIGIT BCD HIGH SPEED MULTIPLYING DAC

ABSOLUTE MAXIMUM RATINGS	CHIP LAYOUT AND DIMENSIONS			
Junction Temperature (Tj)-65° C to +150° CV+ Supply to V- Supply36VLogic InputsV- to V- Plus 36VVLCV- to V+Reference InputsV- to V+Reference Input Differential Voltage± 18VReference Input Current5.0mA	85 MILS 87 86 85 84 83 82 88 (LSB) 81 (MSB) V. V. V. V. V. V. Comp. / / / / / / / / / / / / / / / / / / /			

ELECTRICAL SPECIFICA	ΰ°C	DAC	-20-N	DAC-20-G			
These specifications apply for V	Vs = ±15V and I	REF = 2.0 mA unless otherwise spec	ified. Outpu	t characteris	tics refer to b	oth IOUT ar	nd IOUT.
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Resolution		BCD 0 to 99 steps	2	2	2	2	Digits
Monotonicity		BCD 99 steps	2	2	2	2	Digits
Nonlinearity	NL	FS = 1001 1001	- '	±1/4	-	±1/2	LSB
Output Voltage Compliance	Voc	Full scale current change <1/2 LSB	-10	+18	/ -10	+18	v
Full Scale Current	IFS4	V _{REF} = 10.000V R ₁₄ , R ₁₅ = 5.000kΩ	1.96	2.00	1.92	2.04	mA
Zero Scale Current	IZS			2.5	-	5.0	μĄ
Output Current Range	IFSR	V- = -5.0V V- = -7.0V to -18V	0	2.1 4.2	0	2.1 4.2	mA mA
Logic "O" Input Level	VIL	· · · · · · · · · · · · · · · · · · ·	·	0.8	_	0.8	v
Logic "1" Input Level	VIH		2.0		2.0	-	v
Logic Input Current Logic "0" Logic "1"	հլ հլ	V _{LC} = 0V V _{IN} = -10V to +0.8V V _{IN} = 2.0V to 18V	·	±10 ±10		±10 ±10	μΑ μΑ
Logic Input Swing	VIS	V-=-15V	-10	+18	-10	+18	v
Reference Bias Current	¹ 15		· - ·	-3.0	-	-3.0	μA
Power Supply Sensitivity	PSSIFS+ PSSIFS-	V+ = 4.5V to 18V V- = -4.5V to -18V IREF = 1.0mA		±0.03 ±0.03	-	±0.03 ±0.03	%/%. %/%
Power Supply Current	+ _	V _S = ±18V I _{REF} ≤ 2.0 mA		3.8 -7.8		3.8 -7.8	mA mA
Power Dissipation	PD	V _S = ±18V I _{REF} ≤ 2.0 mA		194	-	194	mW

TYPICAL ELECTRICAL	CHARACTERIS	DAC-20-N	DAC-20-G				
These specifications apply for V _S = ± 15 V and I _{REF} = 2.0 mA unless otherwise specified. Output characteristics refer to both I _{OUT} and $\overline{I_{OUT}}$.							
Parameter	Symbol	Test Conditions	Typical	Typical	Units		
Reference Input Slew Rate	dl/dt		8.0	8.0	mA/µsec		
Propagation Delay	tPLH, tPHL	T _A = 25°C, Any bit	35	35	nsec		
Settling Time	ts	To $\pm 1/2$ LSB, all bits switched ON or OFF, T _A = 25°C	100	100	nsec		

1408A 8 BIT HIGH SPEED MULTIPLYING D/A CONVERTER CHIP LAYOUT AND DIMENSIONS

đ

ABSOLUTE MAXIMUM RATINGS	i			
Junction Temperature (T _j) V+ Supply V- Supply Logic Inputs Applied Output Voltage (V _O) Reference Inputs Reference Input Current NOTE: No range control required.	-65° C to +150° C +5.5V -16.5V 0 to +5.5V +0.5V to -5.2V V- to V+ 5.0mA	95 MLS 87 06 05 04 97 1 98 06 05 04 97 1 98 06 05 04 97 1 98 06 05 04 97 1 90 06 05 0 90 06 0 90 06 0 90 06 0 90 06 0 90 06 0 90 06 0 90 0		

ELECTRICAL SPECIFICATIONS AT	1408					
These specifications apply for $V + = 5V$, $V - 5V$	= -15V, I _{REF}	= 2.0mA unless otherwise spe	cified.			
Parameter	Symbol	Test Condition	15	Min	Max	Units
Resolution				8	8	bits
Monotonicity				8	8	bits
Nonlinearity				-	±0.19	% FS
Output Voltage Compliance	Voc	Full scale current change <½ LSB	V- = -5V V _{below} -10V	-0.6 -5.0	+0.5 +0.5	V V
Full Scale Current	IFS	VREF = 2.000V, R14, R15	5 = 1.000kΩ	1.9	2.1	mA
Zero Scale Current	Izs	(All bits low)		-	4.0	μA
Output Current Range	FSR	V- = -5.0V V- = -6.0 to -15V		-	2.1 4.2	mA mA
Logic "O" Input Level	VIL			-	0.8	v
Logic "1" Input Level	VIH			2.0	-	v
Logic Input Current Logic "0" Logic "1"	կլ կլ	Low Level, V _{IL} = 0.8V High Level, V _{IH} = 5.0V		-	±10 ±10	μΑ μΑ
Reference Bias Current	I15			-	-3.0	μΑ
Output Current Power Supply Sensitivity	PSSI0-			-	2.7	μA/V
Power Supply Current (All bits low)	+ -			-	+14 -13	mA mA
Power Supply Voltage Range	V+(R) V- (R)			+4.5 -4.5	+5.5 -16.5	mA mA
Power Dissipation (All bits low)	PD	V- = -5.0V V- = -15V		-	135 265	mW mW

TYPICAL ELECTRICAL CHAR	1408AG						
These specifications apply for V+ = +5V, V- = -15V, V _{LC} and $\overline{I_{OUT}}$ connected to ground, and I _{REF} = 2.0mA, unless otherwise specified. Output characteristics refer to I _{OUT} only.							
Parameter	Symbol	Test Conditions	Typical	Units			
Reference Input Slew Rate	di/dt		4.0	mA/µsec			
Propagation Delay	tPLH, tPHL	T _A = 25°C, Any bit	30	nsec			
Settling Time	ts	To ± ½LSB, all bits switched ON or OFF, T _A = 25°C	250	nsec			

DAC-100 8 & 10 BIT TWO-CHIP D/A CONVERTER DAI-01 10 BIT D/A CURRENT SOURCE WITH REFERENCE A COMPLETE 10 BIT D/A CONVERTER EQUIVALENT TO THE DAC-100 SERIES IS

COMPRISED OF ONE DAI-01 PLUS ONE DAR-01 SERIES CHIP

ABSOLUTE MAXIMUM RATING	S	CHIP LAYOUT AND DIMENSIONS
Junction Temperature (T _j) V+ Supply to V- Supply V+ Supply to Output V- Supply to Output Logic Inputs to Output	-65°C to +150°C 0 to +36V 0 to +18V 0 to -18V -1V to +6V	Bit 2 60 Mills Bit 2 7 Bit 3 Bit 5 Bit 1 Bit 4 MSB Bit 8 V+ RC RC R2 R4 R6 67 MILS

ELECTRICAL SPECIFICATIONS AT 25°C			DAI01-N		DAI01-G		DAI01-GR		,
These specifications apply when connected to an ideal DAR-01.									
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Nonlinearity		V _S = ±15V	-	±0.05		± 0.05	-	±0.2	%
Internal Reference Voltage	VMCR	V _{S.} = ±15V	6.600	6.825	6.45	6.90	6.45	6.90	v

These specifications apply for V_S =	$\pm 15V$ and when connected to an ideal DAR-01 unless	s otherwise noted.		
Parameter	Test Conditions	Min	Max	Units
Resolution		10	10	bits
Full Scale Output Current	All bits low, V- connected to FS Adjust	1840	2274	μA
Zero Scale Output Current	All bits high, V- connected to FS Adjust	-	±0.25	μA
∟ogic Input "0"	Measured with respect to output	-	0.7	v
Logic Input "1"	Measured with respect to output	2.1	-	v
Supply Current	All bits high, V- connected to FS Adjust	-	8.33	mA
Power Supply Rejection	Vs = ±6V to ±18V	-	0.1	%IFS/V

TYPICAL ELECTRICAL CHA	DAI01-N	DAI01-G	DAI01-GR				
These specifications apply for $V_S = \pm 15V$, and when connected to an ideal DAR-01 unless otherwise noted.							
Parameter	Test Conditions	Typical	Typical	Typical	Units		
Full Scale Tempco	(Note)	±60	±120	±120	ppm/°C		

NOTE: Full Scale Tempco is defined as the change in output voltage measured in the test circuit shown on the DAC-100 data sheet and is expressed in ppm between 25°C and either temperature extreme divided by the corresponding temperature change.

DAC-100 8 & 10 BIT TWO-CHIP D/A CONVERTER DAR-01 10 BIT RESISTOR NETWORK

A COMPLETE 10 BIT D/A CONVERTER EQUIVALENT TO THE DAC-100 SERIES IS COMPRISED OF ONE DAI-01 PLUS ONE DAR-01 SERIES CHIP.

ABSOLUTE MA	ABSOLUTE MAXIMUM RATINGS			CHIP LAYOUT AND DIMENSIONS		
Chip Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Voltage Across Any Resistor15V						
NOMINAL RES R1 thru R7 R8 R12 thru R56 RC1	3.2KΩ 12.8KΩ 1.6KΩ 1.6KΩ	JES RC2 RS1, RS2 RB	9.956ΚΩ 2.44ΚΩ 6.12ΚΩ	RC2 RC2 RC2 RC2 RC2 RC2 RC2 RC2		

ELECTRICAL SPECIFICATIONS AT 25°C	DAR01-N	DAR01-G	DAR01-GR	
			· · · · · · · · · · · · · · · · · · ·	

The following specifications apply for the R2R Ladder Network comprised of R1-R8, R12, R23, R34, R45, and R56 when connected to an ideal DAI-01.

Parameter	Test Conditions	Maximum	Maximum	Maximum	Units
Nonlinearity	VR1 = 3.2V	±0.035	±0.05	±0.1	%

ELECTRICAL SPECIFIC	CATIONS AT 25°C IN COMMON TO ALL	GRADES				
The following specifications apply with VR1 = 3.2V.						
Parameter	Test Conditions	Minimum	Maximum	Units		
Resistance R1	Absolute Measurement	2.56	3.84	ΚΩ		
Ratio RC1 to R1	Ideal = 1 to 1	-1.0	+1.0	%		
Ratio R1 to RS1	Ideal = 1.31147 to 1	-1.0	+1.0	%		
Ratio R1 to RS2	Ideal = 1.31147 to 1	-1.0	+1.0	%		
Ratio RB to R1	Ideal = 1.9125 to 1	-1.0	+1.0	%		

TYPICAL ELECTRICAL CHARACTERISTICS IN COMMON TO ALL GRADES						
Parameter Conditions Typical Units						
Absolute Temperature Coefficient	All resistors	±120	ppm/°C			
Tracking Temperature Coefficient	All resistors with respect to R1	3.0	ppm/°C			

DAC-76 Comdac™ companding d/a converter

ABSOLUTE MAXIMUM RATINGS	CHIP LAYOUT AND DIMENSIONS		
Junction Temperature (Tj) -65°C to +150°C V+ Supply to V- Supply 36V VLC Swing V- plus 8V to V+ Analog Current Outputs V- plus 8V to V- plus 36V Reference Inputs V- to V+ Reference Input Differential Voltage ±18V Reference Input Current 1.25 mA Logic Inputs V- plus 8V to V- plus 36V	$ \begin{array}{c} $		

ELECTRICAL SPECIFICATIONS AT 25°C			DAC	76-N	DAC		
These specifications apply for	V _S = ±15V, I _{REF}	= 528 μ A, and for all 4 outputs unless	s otherwise s	specified.			
Parameter	Symbol	Test Conditions	Min	Max	Min	Мах	Units
Resolution		8 chords with 16 steps each	±128	±128	±128	±128	Steps
Dynamic Range		20 log (I _{7,15} /I _{0,1})	72	72	72	72	dB
Monotonicity		Sign Bit + or -	128	-	128		Steps
Chord Endpoint Accuracy		Error relative to ideal values at I _{FS} = 2007.75µA	-	±1/2	-	±1	Step
Step Nonlinearity		Step error within chord	-	±1/2	-	±1	Step
Encode Current		Additional Output Encode/Decode = 1	3/8	5/8	1/4	3/4	Step
Output Voltage Compliance	Voc	∆I _{FS} ≤ 1/2 step	-5.0	+18	5.0	+18	Volts
Full Scale Current Deviation From Ideal	I _{FS} (D) I _{FS} (E)	V _{REF} = 10.000V R11 = 18.94 kΩ · R12 = 20 kΩ	1	±1/2 ±1/2		±1 ±1	Step Step
Full Scale Symmetry Error	IO(+)-IO(-)	Decode or Encode Pair	-	±1/8		±1/4	Step
Zero Scale Current	izs	Measured at Selected Output with 000 0000 Input	-	±1/4	-	±1/2	Step
Disable Current	IDIS	Leakage of output disabled by E/D and SB	-	50		50	nA
Output Current Range	IFSR		0	4.2	0	4.2	mA
Logic Input Levels Logic "0" Logic "1"	VIL VIH	V _{LC} = 0V		0.8 	 2.0	0:8 	Volts Volts
Logic Input Current	1 _N	V _{IN} = -5V to +18V	-	40	-	· 40	μΑ
Logic Input Swing	VIS	V- = -15V	-5	+18	-5	+18	Volts
Reference Bias Current	¹ 12		-	-4.0	-	-4.0	μA
Power Supply Sensitivity Over Supply Range (Refer to Characteristic Curves)	PSSI _{FS+} PSSI _{FS-}	V+ = 4.5 to 18V, V- = -15V V- = -10.8V to -18V, V+ = 15V		±1/2 ±1/2	-	±1/2 ±1/2	Step Step
Power Supply Current	+ 	V _S = +5V, -15V, I _{FS} = 2.0 mA		4.0 8.8	-	4.0 8.8	mA mA
Power Supply Current	+ -	V _S = ±15V, I _{FS} = 2.0 mA	-	4.0 -8.8	-	4.0 8.8	mA mA
Power Dissipation	PD	$V_S = +5V, -15V, I_{FS} = 2.0 \text{ mA}$ $V_S = \pm 15V, I_{FS} = 2.0 \text{ mA}$		152 192	-	152 192	mW mW

MAT-01 ULTRA-MATCHED MONOLITHIC DUAL TRANSISTOR

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS
Junction Temperature (T _j) Emitter-Base Voltage (BV _{EBO}) Collector Current (I _C) Emitter Current (I _E) Collector-Base Voltage (BV _{CBO}) Collector-Emitter Voltage (BV _{CC}) Collector-Collector Voltage (BV _{CC}) Emitter-Emitter Voltage (BV _{EE})	-65°C to +150°C 5V 25mA 25mA 45V 45V 45V 45V	E1 E2 B1 C1 C2 B2 B2 B2 B2 C2 B2 B2 B2 B2 B2 B2 C2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B

ELECTRICAL SPECIFICATIONS AT 25°C				Г01-N		
These specifications apply for V_{CB} = 15V and I_C = 10 μ A unless otherwise noted.						
Parameter	Symbol	Test Conditions	Min	Max	Units	
Breakdown Voltage	BVCEO		45	-	v	
Offset Voltage	Vos		-	0.5	mV	
Offset Current	IOS		-	3.2	nA	
Bias Current	IВ		-	40	nA	
Current Gain	hFE		250	-	-	
Current Gain Match	∆hFE		-	8.0	%	
Offset Voltage Change	∆V _{OS} /∆V _{CB}	0 ≤ V _{CB} ≤ 30V	-	8.0	μV/V	
Offset Current Change	∆I _{OS} /∆V _{CB}	0 ≤ V _{CB} ≤ 30V	-	70	pA/V	
Collector-Base-Leakage Current	Сво	V _{CB} = 30V, I _E = 0	-	200	ρА	
Collector-Emitter-Leakage Current	ICES	V _{CE} = 30V, V _{BE} = 0	-	400	pА	
Collector Saturation Voltage	VCE(SAT)	I _B = 0.1mA, I _C = 1mA	-	0.25	v	

These specifications apply for V_{CE}	$= 15V, I_{C} = 10\mu A, T$	$a = 25^{\circ}C$, unless otherwise noted.		
Parameter	Symbol	Test Conditions	Typical	Units
Average Offset Voltage Drift	TCVOS		0.35	μV/°C
Average Offset Current Drift	TCIOS		15	pA/°C
Gain-Bandwidth Product	fT	V _{CE} = 10V, I _C = 10mA	450	MHz
Offset Voltage Stability	∆V _{OS} /T	First Month (Note 1)	2.0	μV/Mo
		Long Term (Note 2)	0.2	μV/Mo

OP-01 HIGH SPEED OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATING	S	CHIP LAYOUT AND DIMENSIONS
Junction Temperature (T _j) Total Supply Voltage OP01-N and OP01-G OP01-GR	-65°C to +150°C ±22V ±20V	46 MILS Out Null V+
Differential Input Voltage	±30V	42 MILS
Input Voltage	±15V	┃
Short Circuit Duration	Indefinite	Null Inv Non Inv Input Input

ELECTRICAL SPECIFICATIONS AT 25°C			OP0	1-N	OPO	1-G	OP0	1-GR	
These specifications apply for	r V _S = ±15V un	less otherwise noted.							
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	R _S ≤ 50kΩ	-	0.7	-	2.0	-	5.0	mV
Input Offset Current	los		-	2.0	-	5.0		20	nA
Input Bias Current	IВ		-	30	-	50	-	100	nA
Input Voltage Range	CMVR		±12.0	-	±12.0	-	±12.0	_	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _S ≤ 50kΩ	90	-	80	-	80	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±5 to ±20V R _S ≤ 50kΩ	90	-	80	-	80		dB
Maximum Output Voltage Swing	∨ом	RL≥5kΩ RL≥2kΩ	±12.5 ±12.0	-	±12.5 ±12.0	-	±12.5 ±12.0		v v
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	50	_	50	-	25	_	V/mV
Power Consumption	PD	V _{OUT} = 0	-	60	-	90	-	90	mW

TYPICAL ELECTRICAL	TYPICAL ELECTRICAL CHARACTERISTICS			OP01-G	OP01-GR	
These specifications apply fo	or V _S = ±15V, T,	A = 25°C unless otherwise	noted.			
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Slew Rate	SR	A _{VCL} = -1	18	18	18	V/µs
Settling Time to 0.1%		VIN = 5V A _V = -1 R _L = 2kΩ C _L = 50pF	1.0	1.0	1.0	μsec
Large Signal Bandwidth			250	250	250	KHz
Small Signal Bandwidth			2.5	2.5	2.5	MHz
Risetime		V _{IN} = 50mV A _V = -1 R _L = 2kΩ C _L = 50pF	150	150	150	nsec

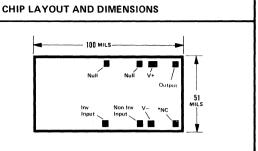
OP-02 (IMPROVED 741) COMPENSATED OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS		
Junction Temperature (Tj) Supply Voltage OP02-N and OP02-G OP02-GR	-65°C to +150°C ±22V ±18V			
Differential Input Voltage Input Voltage Output Short Circuit Duration	±30V Supply Voltage Indefinite	A2 MILS Vull Inv Non Inv Input Input		

ELECTRICAL SPECIFICATIONS AT 25°C			OP02-N		OP02-G		OP02-GR		
			V _S = ±15V unless otherwise specified		±5V≤V _S ≤±20V unless otherwise specified		V _S = ±15V unless otherwise specified		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Мах	Units
Input Offset Voltage	V _{OS}	R _S ≤ 50kΩ	-	0.5	-	2.0	-	6.0	mV
Input Offset Current	los		-	2.0	-	5.0	-	200	nA
Input Bias Current	IB		-	30		50	-	500	nA
Input Voltage Range	CMVR	V _S = ±15V	±12.0	-	±12.0	-	±12.0	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _S ≤ 50kΩ	90	-	80		70	-	dB
Power Supply Rejection Ratio	PSRR	V _S ≕ ±5 to ±20V R _S ≤ 50kΩ	90	-	80	-	76	-	dB
Maximum Output Voltage Swing (V _S = ±15V)	∨ом	R _L ≥ 10kΩ R _L ≥ 2kΩ	±12.0 ±12.0	-	±12.0 ±10.0	-	±12.0 ±10.0	. –	v v
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ, V _O = ±10V V _S = ±15V	100	-	50	1	25	-	V/mV
Power Consumption	PD	V _{OUT} = 0, V _S ≈ ±15V	-	60		85		85	mW
Slew Rate	SR	Rլ = 2kΩ, Cլ = 100pF	0.25	-	0.25	-	-	-	V/µs

TYPICAL ELECTRICAL CHARACTERISTICS			OP02-N	OP02-G	OP-02-GR				
These specifications apply for $V_s = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise noted.									
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units			
Risetime		$A_V = +1 V_{IN} = 20mV$ $R_L = 2k\Omega$ $C_L = 50pF$	200	200	200	nsec			
Overshoot		A _V = +1 V _{IN} = 20mV R _L = 2kΩ C _L = 50pF	5.0	5.0	5.0	%			

OP-04 (IMPROVED 747) DUAL OPERATIONAL AMPLIFIER


ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS				
Junction Temperature (Ti)	-65°C to +150°C	79 Mils				
Supply Voltage OP04-N and OP04-G OP04-GR	±22V ±18V	V+ "A" V+ "B" Bal Output Output Bal / "B" "B" "B"				
Differential Input Voltage	±30V	Inv Inv 46 MILS				
Input Voltage	Supply Voltage	"A" Bal Bal Input "A" V− "B" "B"				
Output Short Circuit Duration	Indefinite	Non Inv 2 P Non Inv In "A" ■ ■ ■ "B"				

ELECTRICAL SPECIFICATIONS AT 25°C			OP04-N		OP04-G		OP04-GR		
These specifications apply for each amplifier unless otherwise noted.		V _S = ±15V unless otherwise specified		±5V≤V _S ≤±20V unless otherwise specified		V _S = ±15V unless otherwise specified			
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	R _S ≤ 50kΩ	-	0.75	- '	2.0	-	6.0	mV
Input Offset Voltage Match	∆Vos	R _S ≤ 100Ω	-	1.0	-	-	-	-	mV
Input Offset Current	los		-	2.0	-	5.0	-	200	nA
Input Bias Current	ι _B			50	-	50	-	500	nA
Input Voltage Range	CMVR	V _S = ±15V	±12.0	-	±12.0	-	±12.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _S ≤ 50kΩ	90	-	80	-	70	-	dB
Common Mode Rejection Ratio Match	∆CMRR	V _{CM} = ±CMVR R _S ≤ 100Ω	94	-		-	-	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±5 to ±20V R _S ≤ 50kΩ	90	-	80	-	76	-	dB
Maximum Output Voltage Swing ($V_S = \pm 15V$)	∨ом	R _L ≥ 10kΩ R _L ≥ 2kΩ	±12.0 ±12.0	-	±12.0 ±10.0	-	±12.0 ±10.0	-	V V
Large Signal Voltage Gain	Avo	$R_{L} \ge 2k\Omega, V_{O} = \pm 10V$ $V_{S} = \pm 15V$	100	-	100	-	25	-	V/m\
Power Consumption (Both Amplifiers)	PD	V _{OUT} = 0 V _S = ±15V	-	120	-	170	-	170	mW
Slew Rate	SR	$R_L = 2k\Omega$, $C_L = 100pF$	0.4	-	0.4	-	-		V/µs
Channel Separation	CS		100	-	100	·	-	-	dB

TYPICAL ELECTRICA	TYPICAL ELECTRICAL CHARACTERISTICS			OP04-G	OP04-GR	
These specifications for Vg	s = ±15V, T _A = :					
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Risetime		$A_V = +1 V_{IN} = 20mV$ $R_L = 2k\Omega$, $C_L = 50pF$	200	200	200	nsec
Overshoot		A _V = +1 V _{IN} = 20mV R _L = 2kΩ, C _L = 50pF	5.0	5.0	5.0	%

OP-05 COMPENSATED INSTRUMENTATION OP AMP

ABSOLUTE MAXIMUM RATINGS	
Junction Temperature (T _i)	-65°C to +150°C
Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage	Supply Voltage
Output Short Circuit Duration	Indefinite

ELECTRICAL SPECIFIC	ELECTRICAL SPECIFICATIONS AT 25°C			OP05-N OP05-G		OP05-GR			
These specifications apply for	Vs = ±15V un	less otherwise noted.							
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos		-	0.5		0.5	-	1.3	mV
Input Offset Current	los		-	±2.8	-	±3.8	-	±6.0	nA
Input Bias Current	IВ		-	±3.0	-	±4.0	_	±7.0	nA
Input Resistance Differential Mode	R _{IN}		20	-	15	-	8.0	-	MΩ
Input Voltage Range	CMVR		±13.5	-	±13.5	-	±13.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	114	-	110	-	100	-	dB
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 3V$ to $\pm 18V$	100	-	94	-	90	_	dB
Maximum Output Voltage Swing	∨ом	RL ≥ 10kΩ RL ≥ 2kΩ RL ≥ 1kΩ	±12.5 ±12.0 ±10.5	-	±12.5 ±12.0 ±10.5	- · -	±12.0 ±11.5 —	-	v v v
Large Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	200	-	200		120	·	V/m\
Differential Input Voltage				±30	-	±30	-	±30	v
Power Consumption (VOUT = 0V)	PD	V _S = ±15V	-	120	-	120	-	150	mW

TYPICAL ELECTRICAL	CHARACTE	RISTICS	OP05-N	OP05-G	OP05-GR			
These specifications apply for $V_S = \pm 15V$.								
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units		
Average Input Offset Voltage Drift	TCVOS	R _S ≤ 50Ω	0.7	0.7	1.2	μV/°C		
Nulled Input Offset Voltage Drift	TCVOSN	Rs ≤ 50Ω Rp = 20kΩ	0.3	0.3	0.4	μV/°C		
Average Input Offset Current Drift	TCIOS		8.0	8.0	12	pA/°C		

OP-07 ULTRA-LOW OFFSET VOLTAGE OP AMP

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS					
Junction Temperature (T _j)	-65°C to +150°C	100					
Supply Voltage	±22V	*NC *NC Null Null V+ //					
Differential Input Voltage	±30V	Output 53					
Input Voltage	Supply Voltage	Inv Non Inv					
Output Short Circuit Duration	Indefinite	Input input V-					

ELECTRICAL SPECIFICA	ELECTRICAL SPECIFICATIONS AT 25°C				ОРО	7-Ġ	OP07-GR		
These specifications apply for	V _S = ±15V un	less otherwise noted.							
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos		-	95	-	150	-	1300	μV
Input Offset Current	los		-	±2.8	-	±6.0	-	±6.0	nA
Input Bias Current	۱ _B		-	±3.0	-	±7.0		±7.0	nA
Input Resistance Differential Mode	RIN		20		8.0	-	8.0	-	MΩ
Input Voltage Range	CMVR		±13.0	-	±13.0	-	±13.0	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	110	-	100	-	100	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±3V to ±18V	100	-	90	-	90	-	dB
Maximum Output		R _L ≥ 10kΩ	±12.5	· -	±12.0	-	±12.0	-	V
Voltage Swing	⊻ом	RL≥2kΩ	±12.0	-	±11.5	-	±11.5	-	v
Vortage offing		R _L ≥ 1kΩ	±10.5	-	-	-	-	·	v
Large Signal Voltage Gain	Avo	RL≥2kΩ V _O = ±10V	200	-	120	-	120	-	V/mV
Differential Input Voltage			-	±30	-	±30	-	±30	v
Power Consumption (VOUT = 0V)	PD	V _S = ±15V	-	120	-	120	-	150	mW

TYPICAL ELECTRICA	L CHARACTE	RISTICS	OP07-N	OP07-G	OP07-GR				
These specifications apply for $V_S = \pm 15V$.									
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units			
Average Input Offset Voltage Drift	TCVOS	R _S ≤ 50Ω	0.3	0.5	1.2	μV/°C			
Nulled Input Offset Voltage Drift	TCVOSN	R _S ≤ 50 Ω Rp = 20kΩ	0.3	0.4	0.4	μV/°C			
Average Input Offset Current Drift	TCIOS		8.0	12	12	pA/°C			

OP-08 PRECISION LOW INPUT CURRENT OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATING	S	CHIP LAYOUT AND DIMENSIONS		
Junction Temperature (T _j) Supply Voltage OP-08-N OP-08-GR and G Differential Input Current Input Voltage Output Short Circuit Duration	-65°C to +150°C ±20V ±18V ±10mA ±15V Supply Voltage Continuous	S8 MILS COMP V+ COMP V+ OUT - 42 MILS INV NON INV INPUT V-		

ELECTRICAL SPECIFICATIONS AT 25°C				OP-08-N		OP-08-G		OP-08-GR			
These specifications apply for $V_S = \pm 15V$, unless otherwise noted.											
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units		
Input Offset Voltage	Vos		-	0.3	-	0.3	-	1.0	mV		
Input Offset Current	los		-	0.2	-	0.4	-	0.5	nA		
Input Bias Current	۱ _B		-	2.0	-	4.0	-	5.0	nA		
Input Voltage Range	CMVR		±14	-	±14	-	±14	-	v		
Common Mode Rejection Ratio	CMRR	V _{CM} = ± CMVR	104	-	102	-	84		dB		
Power Supply Rejection Ratio	PSRR	V _S = ±5 to ±15V	104	-	102	-	84	-	dB		
Maximum Output Voltage Swing	∨ом	R _L ≥ 10kΩ R _L ≥ 2kΩ	±13 ±10	-	±13 ±10	-	±13 ±10		v		
Large Signal Voltage Gain	Avo	R _L ≥ 10kΩ, V _O = 10V R _L ≥ 2k	- 50		- 30	-	40 	-	V/mV		
Input Resistance	R _{in}		25	-	13	-	10	-	MΩ		
Supply Current	۱s	l _{out} = 0, V _{out} = 0	-	0.6		0.6	-	0.8	mA		

TYPICAL ELECTRICAL CH	OP-08-N	OP-08-G	OP-08-GR			
These specifications apply for $V_S = \pm 15V$.						L
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Average Input Offset Voltage Drift	TCV _{os}		1.0	1.0	1.5	μV/°C
Average Input Offset Current Drift	TCI _{os}		0.5	1.0	1.0	pA/°C

14-23

OP-09 QUAD OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATING	CHIP LAYOUT AND [DIMENSIONS		
Junction Temperature (T _j)	-65°C to +150°C	1		1-
Supply Voltage OP-09N, OP-09G	±22V	+1N(B)		IT
Differential Input Voltage	±30V	2 °-1N(1	B) -IN(A) 💼	
Input Voltage	±15V	■ v -	V+ 🖬	70 міц я
(For supply voltages less than ± maximum input voltage is equal	to the supply voltage.)	■ -INIC +INIC		
Output Short Circuit Duration to C (One amplifier only, ISC = 45m)		L=		1_+_

ELECTRICAL SPECIFICATIO	OP	09-N	OP-	09-G			
These specifications apply for each amplifier unless otherwise noted.			V _S = ±15V unless otherwise specified		VS = ±15V unless otherwise specified		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	Rs ≤ 10kΩ	-	0.5	-	2.5	mV
Input Offset Current	los	1		20	-	50	nA
Input Bias Current	۱ _B		-	300	-	500	nA
Input Voltage Range	CMVR		±12	-	±12	-	v
Common Mode Rejection Ratio	CMRR	$V_{CM} = \pm CMVR, R_S \le 10k\Omega$	100	-	100	-	dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10kΩ	90	-	90	-	dB
Maximum Output Voltage Swing	VOM	R _L ≥ 10kΩ	. 12	-	12	-	v
	,	R _L ≥ 2kΩ	11	-	11	-	v
Large Signal Voltage Gain	Avo	$R_L \ge 2k\Omega, V_O = \pm 10V$	100	-	100	-	V/mV
Power Consumption (Four Amplifiers)	PD	V _{OUT} = 0, No Load	-	180		180	mW

TYPICAL CHARACTERIS	OP-09-N	OP-09-G			
These specifications for $V_S = \pm$	15V, T _A = 25°C, unl	ess otherwise noted.			
Parameter	Symbol	Test Conditions	Typical	Typical	Units
Slew Rate	SR	$A_V = 1, R_L \ge 2k\Omega$	1.0	1.0	V/µsec
Unity Gain Bandwidth	GBW		2.0	2.0	MHz
Channel Separation	CS	A _V = 100, f = 10kHz R _S = 1kΩ	120	120	dB

NOTE: Either or both V+ pads may be used without any change in performance.

OP-11 QUAD OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS			
Junction Temperature (Tj) Supply Voltage OP-11N, OP-11G Differential Input Voltage Input Voltage (For supply voltages less than ±15 maximum input voltage is equal t Output Short Circuit Duration to G (One amplifier only, ISC = 45mA	o the supply voltage.) round Continuous	*INICI OUT(C) OUT(B) -INIBI *INICI *INIBI *INIBI *INICI *INIBI #INIBI *INICI *INIBI #INIBI *INICI *INIBI #INIBI *INICI *INICI #INIBI			

ELECTRICAL SPECIFICATIO	OP	OP-11-N		-11-G			
These specifications apply for each amplifier unless otherwise noted.			V _S ≈ ±15V unless otherwise specified		V _S = ±15V unless otherwise specified		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	V _{OS}	R _S ≤ 10KΩ	-	0.5	-	2.5	mV
Input Offset Current	los		-	20	-	50	nA
Input Bias Current	1 _B		-	300	-	500	nA
Input Voltage Range	CMVR		±12	-	±12	-	V
Common Mode Rejection Ratio	CMRR	$V_{CM} = \pm CMVR, R_S \le 10k\Omega$	100	-	100	-	dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10kΩ	90	-	90	-	dB
Maximum Output Voltage Swing	⊻ом	R _L ≥10kΩ	± 12	-	±12	-	· V
		R _L ≥2kΩ	± 11	-	±11	-	v
Large Signal Voltage Gain	Avo	$R_L \ge 2k\Omega, V_0 = \pm 10V$	100	-	100	-	V/mV
Power Consumption (Four Amplifiers)	PD	V _{OUT} = 0, No Load	-	180	-	180	mW

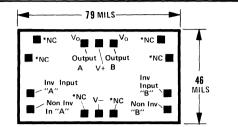
TYPICAL CHARACTERIS	OP-11-N	OP-11-G			
These specifications for $V_S = \pm 2$	15V, T _A = 25°C, unl	ess otherwise noted.			
Parameter	Symbol	Test Conditions	Typical	Typical	Units
Slew Rate	SR	A _V = 1, R _L ≥ 2kΩ	1.0	1.0	V/µsec
Unity Gain Bandwidth	GBW		2.0	2.0	MHz
Channel Separation	CS	A _V = 100, f = 10kHz R _S = 1kΩ	120	120	dB

NOTE: Either or both V+ pads may be used without any change in performance.

OP-12 PRECISION LOW INPUT CURRENT OPERATIONAL AMPLIFIER

INTERNALLY COMPENSATED

ABSOLUTE MAXIMUM RATING	S	CHIP LAYOUT AND DIMENSIONS				
Junction Temperature (Tj) Supply Voltage OP-12-Nand OP-12-G OP-12-GR Differential Input Current Input Voltage	-65°C to +150°C ±20V ±18V ±10mA ±15V Supply Voltage	S8 MILS 				
Output Short Circuit Duration	Continuous					


ELECTRICAL SPECIFICATIONS AT 25°C				12-N	OP	-12-G	OP-	12-GR	
These specifications apply for V_S	= ±15V, unles	s otherwise noted.							
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos		-	0.3	-	0.3	_	1.0	mV
Input Offset Current	los		-	0.2	-	0.4		0.5	nA
Input Bias Current	, I _B		-	2.0	-	4.0	-	5.0	nA
Input Voltage Range	CMVR		±14	_	±14	-	±14	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	104		102	-	84	-	dB
Power Supply Rejection Ratio	PSRR	Vs = ±5 to ±15V	104	-	102	_	84	-	dB
Maximum Output Voltage Swing	∨ом	$R_L \ge 10 k\Omega$	±13	-	±13	-	±13	-	v
		R _L ≥2kΩ	±10	-	±10	-	±10	-	
Large Signal Voltage Gain	Avo	R _L ≥ 10kΩ, V _O = ±10V		-	- 30	-	40	-	V/mV
		R _L ≥2kΩ	50		13		- 10		Mo
Input Resistance	R _{in}		25		13		10	-	MΩ
Supply Current	۱s	l _{out} = 0, V _{out} = 0	-	0.6	-	0.6	-	0.8	mA

TYPICAL ELECTRICAL CH	OP-12-N	OP-12-G	OP-12-GR			
These specifications apply for V_S	= ±15V,					
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Average Input Offset Voltage Drift	TCV _{OS}		1.0	1.0	1.5	μV/°C
Average Input Offset Current Drift	TCI _{os}		0.5	1.0	1.0	pA/°C

OP-14 (IMPROVED 1458) DUAL OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS		С⊦
Junction Temperature (T _j) Supply Voltage OP14-N and OP14-G OP14-GR	-65° C to +150° C ±22V ±18V	
Differential Input Voltage Input Voltage Output Short Circuit Duration	±30V Supply Voltage Indefinite	

CHIP LAYOUT AND DIMENSIONS

ELECTRICAL SPECIFICA	ELECTRICAL SPECIFICATIONS AT 25°C					14-G	OP1	4-GR	
These specifications apply for each amplifier unless otherwise noted.					±5V ≤ V _S ≤ ±20V unless otherwise specified		V _S = ±15V unless otherwise specified		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	V _{OS}	$R_S \leq 50 k\Omega$	-	0.75	-	2.0	-	6.0	mV
Input Offset Voltage Match	۵۷ _{OS}	R _S ≤ 100Ω	-	1.0	-	-	-	-	mV
Input Offset Current	los		-	2.0	_	5.0	-	200	nA
Input Bias Current	۱ _B		-	50	-	50	-	500	nA
Input Voltage Range	CMVR	V _S = ±15V	±12.0	-	±12.0	-	±12.0		V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _S ≤ 50kΩ	90	-	80	-	70	-	dB
Common Mode Rejection Ratio Match	∆CMRR	V _{CM} = ±CMVR R _S ≤ 100Ω	94	-	-	-	-	-	dB
Power Supply Rejection Ratio	PSRR	V _S = ±5 to ±20V R _S ≤ 50kΩ	90		80		76		dB
Maximum Output Voltage Swing (V _S = ±15V)	∨ом	$R_{L} \ge 10 k\Omega$ $R_{L} \ge 2 k\Omega$	±12.0 ±12.0	-	±12.0 ±10.0	_	±12.0 ±10.0	-	V V
Large Signal Voltage Gain	Avo	R _L ≥2kΩ,V _O = ±10V V _S = ±15V	100	-	100	-	25	-	V/mV
Power Consumption (Both Amplifiers)	PD	V _{OUT} = 0 V _S = ±15V	-	120	-	170	-	170	mW
Slew Rate	SR	$R_L = 2k\Omega, C_L \approx 100pF$	0.4	-	0.4		-		V/µs
Channel Separation	CS		100	-	100	-	_	_	dB

TYPICAL ELECTRIC	AL CHARACT	ERISTICS	OP14-N	OP14-G	OP14-GR	
These specifications for V	pecifications for V _S = $\pm 15V$, T _A = 25°C, unless otherwise noted.					
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Risetime		$A_V = +1 V_{IN} = 20mV$ $R_L = 2k\Omega, C_L = 50pF$	200	200	200	nsec
Overshoot		$A_V = +1 V_{IN} = 20 mV$ $R_L = 2k\Omega, C_L = 50pF$	5.0	5.0	5.0	%

OP-15 PRECISION, LOW POWER JFET INPUT OP AMP

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS
Junction Temperature (Tj)	–65°C to +150°C	۲۵۰ ۲۵۰ هر ا
Supply Voltage		
OP-15-N, OP-15-G	±22∨	
OP-15-GR	±18V	
Differential Input Voltage		OUTPUT
OP-15-N, OP-15-G	±40V	MILS
OP-15-GR	±30V	NON INV INPUT V- NULL
Input Voltage	Supply Voltage	
Output Short Circuit Duration	Continuous	

ELECTRICAL SPECIFICAT	IONS AT 2	5°C	OP-	OP-15-N OF		15-G	OP-15-GR		
These specifications apply for T_j	= +25°C, ±1!	5V, unless otherwise noted	d.				• • • • • • • • • • • • • • • • • • •		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	R _S = 50Ω	-	0.5	-	1.0	-	3.0	mV
Large Signal Voltage Gain	Avo	V ₀ = ±10V, R _L = 2KΩ	100		75		50	-	·V/mV
Input Voltage Range	CMVR	V _s = ±15V	±10.5	_	±10.5	-	±10.5	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	_	86	-	82	-	dB
Power Supply Rejection Ratio	PSRR	V _s = ±10V to ±20V	86	-	86	-	-	-	dB
		V _s = ±10V to ±15V	-	-	-		82	-	dB
Maximum Output Voltage	VOM	RL = 10KΩ	12	. —	12		12		V
Swing		R _L = 2KΩ	11	-	11	-	11		V
Supply Current	ISY			4.0	-	4.0	-	50	mΑ

TYPICAL ELECTRICAL C	HARACTER	ISTICS	OP-15-N	OP-15-G	OP-15-GR	
These specifications apply for V	s = ±15V, Tj =	25°C	L		L	-
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Average Input Offset Voltage				,		
Drift without ext trim	TCVOS	R _p = 100KΩ	2.0	3.0	4.0	μV/°C
With ext trim	TCVOSN		2.0	3.0	4.0	
Input Offset Current	los		3.0	3.0	3.0	рА
Input Bias Current	IB		15	15	15	pА
Slew Rate	SR	AVCL = +1	17	16	15	V/µsec
Settling Time	ts	to 0.01%	2.2	2.3	2.4	μs
	3	to 0.05%	1.1	1.1	1.2	
		to 0.10%	0.9	0.9	1.0	
Gain Bandwidth Product	GBW		6.0	5.7	5.4	MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +1	14	13	12	MHz
Input Noise Voltage Density	en	f = 100Hz	20	20	20	nV/√Hz
		f = 1000Hz	15	15	15	nV/√Hz
Input Noise Current Density	in	f = 100	0.01	0.01	0.01	pA/ /Hz
		f = 1000	0.01	0.01	0.01	pA/ √H z
Input Capacitance	Cin		. 3	3	3	pF

OP-16 WIDE BANDWIDTH PRECISION JFET INPUT OP AMP

ABSOLUTE MAXIMUM RATINGS	<u>.</u>	CHIP LAYOUT AND DIMENSIONS
Junction Temperature (T _i)	-65°C to +150°C	e
Supply Voltage		
OP-16N, OP-16G	±22V	NULL V.
OP-16GR	±18V	
Differential Input Voltage		OUTPUT
OP-16N, OP-16G	±40∨	MILS
OP-16GR	±30V	NON INV INPUT V- NULL
Input Voltage	Supply Voltage	
Output Short Circuit Duration	Continuous	

ELECTRICAL SPECIFICATIO	NS AT 25°C	;	OP-1	OP-16N		OP-16G		OP-16GR	
These specifications apply for $T_j = +$	$25^{\circ}C, V_{s} = \pm 1$	5V, unless otherwise no	ted.						
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	R _s = 50Ω	-	0.5	-	1.0	-	3 .0	mV
Large Signal Voltage Gain	Avo	V _o = ±10V, R _L = 2KΩ	100		75	-	50	-	V/mV
Input Voltage Range	CMVR		±10.5	-	±10.5		±10.3	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	-	86	~	82	-	dB
Pausa Susalu Daiastian Patia	0000	V _s = ±10V to ±20V	86	-	86	-	-	-	dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 10V$ to $\pm 15V$	-	-	-	-	82		dB
		R _L = 10KΩ	12	-	12		12	.—	V
Maximum Output Voltage Swing	∨ом	R _L = 2KΩ	11	-	11	-	11	-	v
Supply Current	ISY		-	7.Ó	-	7.0		8.0	mA

TYPICAL ELECTRICAL CHAR	ACTERIST	ICS	OP-16N	OP-16G	OP-16GR	
These specifications apply for $V_S = \pm$	15V, Tj = 25°	C		**************************************	r	
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Average Input Offset Voltage Drift Without Ext Trim With Ext Trim	TCV _{OS} TCV _{OSN}	R _p = 100KΩ	2.0 2.0	3.0 3.0	4.0 4.0	μV/°C μV/°C
Input Offset Current	los		3.0	3.0	3.0	pА
Input Bias Current	IB S		15	15	15	pА
Slew Rate	SR	AVCL = +1	25	24	23	V/µsec
Settling Time	t _s	to 0.01% to 0.05% to 0.10%	1.7 0.9 0.7	1.7 0.9 0.7	1.8 1.0 0.8	μs
Gain Bandwidth Product	GBW		8.0	7.6	7.2	MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +1	19	18	. 17	MHz
Input Noise Voltage Density	e _n	f = 100Hz f = 1000Hz	20 15	20 15	20 15	nV/√Hz nV/√Hz
Input Noise Current Density	in .	f = 100 f = 1000	0.01 0.01	0.01 0.01	0.01 0.01	pA/√Hz pA/√Hz
Input Capacitance	C _{in}		3	3	3	ρF

OP-17 PRECISION JFET INPUT OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIME	NSIONS
Junction Temperature (Tj)	–65° C to +150° C	64 MILS	
Supply Voltage			
OP-17-N, OP-17-G	±22V	NULL V+	
OP-17-GR	±18V		
Differential Input Voltage		001901	45 MILS
OP-17-N, OP-17-G	±40V		MILS
OP-17-GR	±30V		
Input Voltage	Supply Voltage		
Output Short Circuit Duration	Continuous		

LECTRICAL SPECIFICATIONS AT 25°C			OP-	OP-17-N OP-		17-G	OP 17 GR		-		
These specifications apply for $T_j = +25$ °C, $V_s = +15V$, unless otherwise noted.											
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units		
Input Offset Voltage	vos	R _s = 50Ω	-	0.5	-	1.0	-	3.0	mV		
Large Signal Voltage Gain	Avo	V _o = ±10V, R _L = 2KΩ	100	_	75	-	50	-	V/mV		
Input Voltage Range	CMVR	V _s = ±15V	±10.5	-	±10.5		±10.3	-	V		
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	86	_	86	-	82	_	dB		
Power Supply Rejection Ratio	PSRR	V _s = ±10V to ±20V	86	_	86		-		dB		
		$V_s = \pm 10V$ to $\pm 15V$		-	-		82		dB		
Maximum Output Voltage	VOM	R _L = 10KΩ	12		12		12	-	V		
Swing		R _L = 2KΩ	11	·	11		11	-	V		
Supply Current	ISY		-	7.0		7.0		8.0	mA		

TYPICAL ELECTRICAL C	HARACTER	ISTICS	OP-17-N	OP-17-G	OP-17-GR	
These specifications apply for V	's = ±15V, Tj =	= 25°°C.				
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Average Input Offset Voltage Drift without ext trim Drift with ext trim	TCVOS TCVOSN	R _p = 100KΩ	2.0 2.0	3.0 3.0	4.0 4.0	μV/°C
Input Offset Current	los		3.0	3.0	3.0	pА
Input Bias Current	IВ		15	15	15	pА
Slew Rate	SR	A _{VCL} = 5	70	66	62	V/µsec
Settling Time	t _s	to 0.01% to 0.05% to 0.10%	1.5 0.5 0.4	1.5 0.5 0.4	1.6 0.6 0.5	μs
Gain Bandwidth Product	GBW		30	28	26	MHz
Closed Loop Bandwidth	CLBW	A _{VCL} = +5	11 -	10	9	MHz
Input Noise Voltage Density	en	f = 100Hz f = 1000Hz	20 15	20 15	20 15	nV/ √Hz nV/ √Hz
Input Noise Current Density	İ'n	f = 100 f = 1000	0.01 0.01	0.01 0.01	0.01 0.01	pA/√Hz pA/√Hz
Input Capacitance	C _{in}		3	3	3	pF

108 LOW INPUT CURRENT OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATING	S	CHIP LAYOUT AND DIMENSIONS		
Junction Temperature (T _j) Supply Voltage 108-N and 108-G 108-GR	-65°C to +150°C ±20∨ ±18∨			
Differential Input Current (See PM108A data sheet)	±10mA	OUT 42 MILS		
Input Voltage (See PM108A data sheet) Output Short Circuit Duration	±15V, Supply Voltage			
Output Short Circuit Duration	Continuous			

ELECTRICAL SPECIFICA	ELECTRICAL SPECIFICATIONS AT 25°C			8-N	10	B-G	10	8-GR	
These specifications apply for a	±5V ≤ V _S ≤ ±2	20V for 108-N, \pm 5V \leq V _s	s ≤ ±15V fo	or 108- Ga	nd108-GF	l, unless o	therwise n	oted.	
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	v _{os}		-	0.5	-	2.0	-	7.5	mV
Input Offset Current	los		-	0.2	-	1.0	-	1.0	nA
Input Bias Current	Ι _Β		-	2.0	_ :	7.0	-	7.0	nA
Input Voltage Range	CMVR	V _S = ±15V	±14	-	±14	-	±14	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR V _s = ±15V	96	-	85		80	-	dB
Power Supply Rejection	PSRR	V _S = ±5 to ±20V	96	-	-		-	-	dB
Ratio		V _S = ±5 to ±15V	-	-	80	-	80	-	dB
Maximum Output Voltage Swing	∨ом	R _L ≥ 10kΩ V _S = ±15V	±13	-	±13	-	±13		v
Large Signal Voltage Gain	Avo	$R_L \ge 10k\Omega, V_O = \pm 10V, V_S = \pm 15V$	80	-	50	-	25	_	V/mV
Input Resistance	R _{in}		25	-	8.5	-	8.5	-	MΩ
Supply Current	۱s	I _{out} = 0, V _{out} = 0	-	0.6	-	0.8	-	0.8	mA

TYPICAL ELECTRICAL	CHARACTER	ISTICS	108-N	108-G	108-GR	
These specifications apply fo	or V _S = ±15V.					
Parameter	Symbol Test Conditions		Typical	Typical	Typical	Units
Average Input Offset Voltage Drift	TCV _{os}		1.0	3.0	6.0	μV/°C
Average Input Offset Current Drift	TCI _{OS}		1.0	2.0	2.0	pA/°C

155 LOW POWER JFET INPUT OP AMP

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS			
Junction Temperature (Tj)	-65°C to +150°C	€64 MILS			
Supply Voltage					
155-N and 155-G	±22V				
155-GR	±18V				
Differential Input Voltage		OUTPUT 45 MILS			
155-N and 155-G	±40V	in the second			
155-GR	±30V	NON INV INPUT V- NULL			
Input Voltage	Supply Voltage				
Output Short Circuit Duration	Continuous				

ELECTRICAL SPECIFICATIONS AT 25°C			155-N		15	155-G		155-GR	
These specifications apply for T _j = +25°C, \pm 15V \leq V _s \leq \pm 20V for 155-N and 155-G, \pm 15V for 155-GR, unless otherwise noted.									
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	Vos	R _S = 50Ω	-	2.0	-	5.0	-	10	mV
Large Signal Voltage Gain	Avo	$V_0 = \pm 10V, V_s = \pm 15V$ R _L = 2K Ω	50	-	50		25	-	V/mV
Input Voltage Range	CMVR	V _s = ±15V	±11	-	±11	-	±11		v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	. –	85	_	80	. —	dB
		$V_s = \pm 10V$ to $\pm 20V$	85	-	85		-	-	dB
Power Supply Rejection Ratio	PSRR	V _s = ±10V to ±15V		-			80	-	dB
Maximum Output Voltage	∨ом	$V_s = \pm 15V, R_L = 10K\Omega$	12	-	12		12		V
Swing		$V_s = \pm 15V, R_L = 2K\Omega$	10	-	10	-	10	-	v
Supply Current	IS	$V_{s} = \pm 15V, V_{0} = 0$	-	4.0	-	4.0	-	4.0	mA

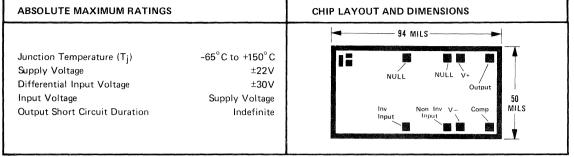
TYPICAL ELECTRICAL CH	TYPICAL ELECTRICAL CHARACTERISTICS				155-GR				
These specifications apply for $V_S = \pm 15V$.									
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units			
Average Input Offset Voltage Drift	TCVOS	$R_S \leq 50\Omega$	4.0	5.0	6.0	μV/°C			
Input Offset Current	los		3.0	4,0	5,0	рĄ			
Input Bias Current	ЧB		30	30	40	pA			
Slew Rate	SR	A _{VCL} = +1	5.0	5.0	5.0	V/µsec			
Settling Time to 0.01%	ts	1	4.0	4.0	4.0	μsec			
Gain Bandwidth Product	GBW		2.5	2.5	2.5	MHz			

156 WIDE BANDWIDTH JFET INPUT OP AMP

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS			
Junction Temperature (T _j)	-65°C to +150°C	€464 MILS			
Supply Voltage					
156-N and 156-G	±22V	V+ V+			
156-GR	±18V				
Differential Input Voltage		OUTPUT 45			
156-N and 156-G	±40V	MILS			
156-GR	±30V	NON INV			
Input Voltage	Supply Voltage				
Output Short Circuit Duration	Continuous				

ELECTRICAL SPECIFICATIONS AT 25°C			156-N		156-G		156-GR		
These specifications apply for $T_j = +25^{\circ}C$, $\pm 15V \le V_s \le \pm 20V$ for 156-N and 156-G, $V_s = \pm 15V$ for 156-GR, unless otherwise noted.									
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	V _{OS}	R _s = 50Ω	-	2.0	-	5.0	-	10	mV
Large Signal Voltage Gain	AVO	V _o = ±10V, V _s = ±15V R _L = 2KΩ	50	-	50	_	25	_	V/mV
Input Voltage Range	CMVR	V _s = ±15V	±11	-	±11	-	±11	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85	-	85	_	80	-	dB
Power Supply Rejection Ratio	PSRR	V _s = ±10V to ±20V	85	-	85	_	-	.—	dB
rower supply Rejection Ratio	rann	V _s = ±10V to ±15V	-	_	-	-	80	_	dB
Maximum Output Voltage	VOM	$V_{s} = \pm 15V, R_{L} = 10KΩ$	12	-	12		12	-	v
Swing		$V_s = \pm 15V, R_L = 2K\Omega$	10	-	10		10	_	V
Supply Current	۱ _S	$V_s = \pm 15V, V_0 = 0$	-	7.0		7.0	-	10	mA

TYPICAL ELECTRICAL C	HARACTE	RISTICS	156-N	156-G	156-GR				
These specifications apply for $V_S = \pm 15V$.									
Parameter	Symbol	Test Conditions	ions Typical Typical Typical						
Average Input Offset Voltage Drift	TCVOS	$R_S \leq 50\Omega$	4.0	5.0	6.0	μV/°C			
Input Offset Current	'os		3.0	4.0	5.0	pА			
Input Bias Current	۱ _B		30	30	40	pА			
Slew Rate	SR	A _{VCL} = +1	12	12	12	V/µsec			
Settling Time to 0.01%	ts		1.5	1.5	1.5	μsec			
Gain Bandwidth Product	GBW		5.0	5.0	5.0	MHz			


157 JFET INPUT OPERATIONAL AMPLIFIER wide bandwidth decompensated (Av = 5)

ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS				
Junction Temperature (Ti)	-65°C to +150°C	€				
Supply Voltage						
157-N and 157-G	±22V					
157-GR	±18V					
Differential Input Voltage		OUTPUT				
157-N and 157-G	±40V	45 MILS				
157-GR	±30V	NON INV				
Input Voltage	Supply Voltage					
Output Short Circuit Duration	Continuous					

ELECTRICAL SPECIFICAT	ELECTRICAL SPECIFICATIONS AT 25°C			157-N 157-G		157-GR			
These specifications apply for T _j = +25°C, ±15V \leq V _S \leq ±20V for 157-N and 157-G, V _S = ±15V for 157-GR, unless otherwise noted.									
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	V _{OS}	R _s = 50Ω	_	2.0		5.0	-	10	mV
Large Signal Voltage Gain	Avo	V _o = ±10V, V _s = ±15V R _L = 2ΚΩ	50	-	50	-	25	-	V/mV
Input Voltage Range	CMVR	V _s = ±15V	±11	-	±11	-	±11	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR	85		85	-	80	-	dB
		$V_s = \pm 10V$ to $\pm 20V$	85	-	85	-	-	-	dB
Power Supply Rejection Ratio	PSRR	V _s = ±10V to ±15V	-	-	-	-	80	-	dB
Maximum Output Voltage	∨ом	$V_s = \pm 15V, R_L = 10K\Omega$	12	-	12	<u>-</u>	12		V
Swing		$V_s = \pm 15V, R_L = 2K\Omega$	10	-	10	-	10		V
Supply Current	١s	$V_{s} = \pm 15V, V_{0} = 0$	_	7.0	-	7.0	-	10	mA

TYPICAL ELECTRICAL CI	TYPICAL ELECTRICAL CHARACTERISTICS				157-GR				
These specifications apply for $V_S = \pm 15V$.									
Parameter Symbol Test Conditions Typical Typical Typical									
Average Input Offset Voltage Drift	TCVOS	R _S ≤ 50Ω	4.0	5.0	6.0	μV/°C			
Input Offset Current	IOS		3.0	4.0	5.0	рА			
Input Bias Current	Ι _Β		30	30	40	рА			
Slew Rate	SR	AVCL = 5	50	50	50	V/µsec			
Settling Time to 0.01%	ts	A _{VCL} = 5	1.5	1.5	1.5	μsec			
Gain Bandwidth Product	GBW		20	20	20	MHz			

725 INSTRUMENTATION OPERATIONAL AMPLIFIER

ELECTRICAL SPECIFICA	ELECTRICAL SPECIFICATIONS AT 25°C			725-N		725-G		725-GR	
These specifications apply for	VS = ±15V un	less otherwise noted.	n (mengerinning ekonomision)	angen und de Grange man en version de management		nanz militik in geografi militik geografi		and a second	
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Input Offset Voltage	vos	R _S ≤ 20kΩ	-	0.5	-	1.3	-	2.5	mV
Input Offset Current	los		-	5.0		13	-	35	nA
Input Bias Current	۱ _B		-	80	-	110		125	nA
Input Resistance Differential Mode	R _{IN}		0.7		0.5		-	_	MΩ
Input Voltage Range	CMVR		±13.5	-	±13.5		±13.5	-	V
Common Mode Rejection Ratio	CMRR	V _{CM} = ±CMVR R _S ≤ 20kΩ	120		100		94	-	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$ $R_S \le 20k\Omega$	-	5.0		10	-	35	$\mu \nabla / \nabla$
Maximum Output Voltage Swing	∨ом	R _L ≥ 10kΩ R _L ≥ 2kΩ R _L ≥ 1kΩ	±12.5 ±12.0 ±11.0		±12.0 ±11.5 ~-		±12.0 ±10.0 —		V V V
Lareg Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	1000	_	500	_	250	-	V/mV
Differential Input Voltage			-	±30		±30		±30	V
Power Consumption (VOUT = 0V)	PD	V _S = ±15V	-	105		150	-	150	mW

TYPICAL ELECTRICA	L CHARACTE	RISTICS	725-N	725-G	725-GR				
These specifications apply for $V_S = \pm 15V$.									
Parameter	Symboi	Test Conditions	Typical	Typical	Typical	Units			
Average Input Offset Voltage Drift	тсv _{OS}	$R_S \le 50\Omega$	0.7	1.4	2.0	μV/°C			
Nulled Input Offset Voltage Drift	TCV _{OSN}	R _S ≤ 50Ω Rp = 20kΩ	0.3	0.5	0.6	μV/°C			
Average Input Offset Current Drift	TCI _{OS}		10	14	14	pA/°C			

4136 QUAD OPERATIONAL AMPLIFIER

ABSOLUTE MAXIMUM RATING	CHIP LAYOUT AND DIMENSIONS				
Junction Temperature (Tj)	-65°C to +150°C	851	MILS		
Supply Voltage			-		
4136-N and 4136-G	±22V	+IN(B) 0(17/8)	OUT(A) +IN(A)	Ť	
4136-GR	±18V	COTTE)	oona		
Differential Input Voltage	±30V	🖀 -IN(B)	-IN(A)		
Input Voltage	±15V	v -	V+ 🖬	70 MILS	
(For supply voltages less than ±1 maximum input voltage is equal	-IN(C)	-1N(D) 📕			
Output Short Circuit Duration to G (One amplifier only, I _{SC} = 45m)			V+ OUT(D) +IN(D)		

ELECTRICAL SPECIFICATIO	413	4136-G		6-GR			
These specifications apply for each amplifier unless otherwise noted.			unless	VS = ±15V unless otherwise specified		= ±15V otherwise sified	
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Units
Input Offset Voltage	VOS	R _S ≤ 10KΩ	-	5.0	-	6.0	mV
Input Offset Current	los		-	200	-	200	nA
Input Bias Current	۱ _B		-	500	-	500	nA
Input Voltage Range	CMVR		±12	-	±12	-	v
Common Mode Rejection Ratio	CMRR	V _{CM} ≂ ±CMVR, R _S ≤ 10kΩ	70	-	70		dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 10kΩ	-	⁻ 150	-	150	μV/V
Maximum Output Voltage Swing	VOM	RL≥10kΩ	±12	_	±12		v
		$R_L \ge 2k\Omega$	±10	-	±10	-	v
Large Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	50,000	-	20,000		V/V
Power Consumption (Four Amplifiers)	PD	V _{OUT} = 0, No Load	-	340		340	mW

TYPICAL CHARACTERIST	TICS	4136-G	4136-GR				
These specifications for $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.							
Parameter	Symbol	Test Conditions	Typical	Typical	Units		
Slew Rate	SR	$A_V = 1, R_L \ge 2k\Omega$	1.5	1.5	V/µsec		
Unity Gain Bandwidth	GBW		3.0	3.0	MHz		
Channel Separation	CS	A _V = 100, f = 10KHz R _S = 1kΩ	105	105	dB		

NOTE: Either or both V+ pads may be used without any change in performance.

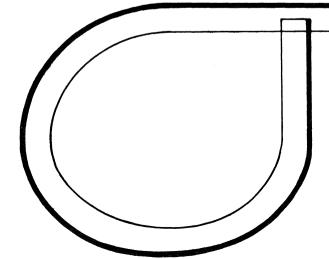
REF-01 +10V PRECISION VOLTAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS	CHIP LAYOUT AND DIMENSIONS
Junction Temperature (Tj) -65°C to +150°C Input Voltage REF01-N and REF01-G 40V REF01-GR 30V Output Short Circuit Duration Indefinite (to ground or V _{IN})	63 MILS Input Output NC Ground Trim MILS

ELECTRICAL SPECIFICATIONS AT 25°C				REF01-N		REF01-G		REF01-GR	
These specifications apply for V_{IN} = +15V unless otherwise noted.									
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Output Voltage	VO	۱ _L = 0	9.90	10.10	9.85	10.15	9.80	10.20	V
Output Adjustment Range	Δv_{trim}	R _p = 10kΩ	±3.0	-	±2.7	-	-	-	%
Input Voltage Range	VIN		13	40	13	30	13	30	v
		V _{IN} = 13 to 33V	-	0.01	-	_	_	-	%/V
Line Regulation		V _{IN} = 13 to 30V	-	-	-	0.015		0.04	%/V

TYPICAL ELECTRICA	L CHARAC	TERISTICS	REF01-N	REF01-G	REF01-GR			
These specifications apply for V_{IN} = +15V, T_A = 25°C, unless otherwise noted.								
Parameter Symbol		Test Conditions	est Conditions Typical		Typical	Units		
Load Doculation		IL = 0 to 10 mA	0.006	-	-	%/mA		
Load Regulation		IL = 0 to 8 mA	_	0.006	0.10	%/mA		
Output Voltage Noise	^e np-p	0.1 Hz to 10 Hz	20	25	25	μVp-p		
Turn-on Settling Time	^t on	To ±0.1% of final value	5.0	5.0	5 .0	μsec		
Quiescent Current	ISY	No load	1.0	1.0	1.0	mА		
Load Current	١Ľ		21	21	21	mA		
Sink Current	۱ _S		0.5	0.5	0.5	mA		
Short Circuit Current	ISC	V _O = 0	30	30	30	mA		
Output Voltage Temperature Coefficient	тсv _О		10	20	50	ppm/°C		

REF-02 +5V PRECISION VOLTAGE REFERENCE/THERMOMETER


ABSOLUTE MAXIMUM RATINGS		CHIP LAYOUT AND DIMENSIONS		
Junction Temperature (T _j) Input Voltage REF02-N and REF02-G REF02-GR	-65°C to +150°C 40∨ 30∨	G3 MILS Input Output *NC 40		
Output Short Circuit Duration (to ground or V_{IN})	Indefinite	Ground Trim		

ELECTRICAL SPECIFICATIONS AT 25°C				REF02-N		REF02-G		REF02-GR	
These specifications apply f	These specifications apply for V_{IN} = +15V unless otherwise noted.								
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Output Voltage	vo	۱ـ = 0	4.95	5.05	4.925	5.075	4.90	5.10	v
Output Adjust Range	∆V _{trim}	R _p = 10kΩ	±3.0		±3.0	-	-	-	%
Input Voltage Range	VIN		7	40	7	30	7	30	v
Line Regulation		V _{IN} = 8 to 33V	-	0.01	-	-	-	-	%/V
		V _{IN} = 8 to 30V	-	_	-	0.015	-	0.04	%/V

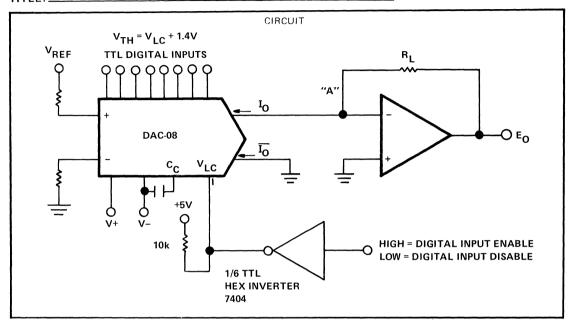
TYPICAL ELECTRICAL C	HARACTI	ERISTICS	REF02-N	REF02-G	REF02-GR	
These specifications apply for V	/IN = +15V,	T _A = 25°C, unless otherwise	noted.			
Parameter	Symbol	Test Conditions	Typical	Typical	Typical	Units
Temp Voltage Output	ν _T	(Note)	630	630	630	mV
Temp Voltage Output Temperature Coefficient	TCVT	(Note)	2.1	2.1	2.1	mV/°C
Output Voltage Temperature Coefficient	тсv _о		10	20	50	ppm/°
Load Regulation		IL = 0 to 10mA	0.006	-	-	%/mA
		۱ _L = 0 to 8mA	-	0.006	.010	%/mA
Output Voltage Noise	^е пр-р	0.1Hz to 10Hz	20	25	25	μVp-p
Turn-on Settling Time	ton	To ±0.1% of final value	5.0	5.0	5.0	μsec
Quiescent Current	ISY	No load	1.0	1.0	1.0	mA
Load Current	ι <u>.</u>		21	21	21	mA
Sink Current	IS		0.5	0.5	0.5	mA
Short Circuit Current	Isc	V _O = 0	30	30	30	mA

NOTE: On Temp Output, limit load current to ±50nA and load capacitance to 30pF. See AN-18 for detailed REF-02 thermometer applications information.

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

INDEX APPLICATION NOTES

PAGE


AB-1	Strobing the DAC-08 Under Logic Control	15-1
AB-2	OP-10 Instrumentation Amplifier CMRR Versus Frequency Improvement	15-2
AB-3	Digital Nulling of OP-05 and SSS725	15-3
AB-4	REF-02 Temperature Controller	15-4
AN-6	A Low Cost, High Performance Tracking A/D Converter	15-5
AN-10	Simple Precision Millivolt Reference Uses No Zeners	15-11
AN-11	A Low Cost, Easy-to-Build Successive Approximation Analog-to-Digital Converter	15-12
AN-12	Temperature Measurement Method Based on Matched Transistor Pair Requires No Reference \ldots	15-19
AN-13	The OP-07 Ultra-Low Offset Voltage Op Amp.	
	A Bipolar Op Amp That Challenges Choppers, Eliminates Nulling	15-25
AN-14	Interfacing Precision Monolithics Digital-to-Analog Converters With CMOS Logic	15-36
AN-15	Minimization of Noise in Operational Amplifier Applications	15-40
AN-16	Low Cost, High Speed Analog-to-Digital Conversion with the DAC-08	15-50
AN-17	DAC-08 Applications Collection	15-51
AN-18	Thermometer Applications of the REF-02	15-68
AN-19	Differential and Multiplying Digital-to-Analog Converter Applications	15-71
AN-20	Exponential Digitally Controlled Oscillator Using DAC-76	15-79
AN-21	3 IC 8 Bit Binary Digital to Process Current Converter with 4-20 MA Output	15-82
AN-22	Software Controlled Analog-to-Digital Conversion Using DAC-08 and the 8080A Microprocessor .	15-84
AN-23	Digital-to-Analog Converter Generators Hyperbolic Functions	15-88
AN-24	The OP-17, OP-16, OP-15 as Output Amplifiers for High Speed D/A Converters	15-91

APPLICATION BRIEF NO. _1___

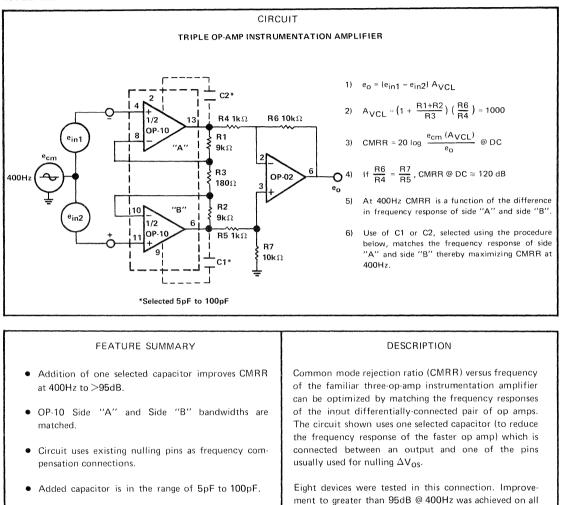
AUTHOR Bob Blair and Donn Soderquist

TITLE: STROBING THE DAC-08 UNDER LOGIC CONTROL

FEATURE SUMMARY

- Digital inputs are treated as all zeros by increasing the logic threshold to +6.4V.
- Single Line Logic Control
- Handy in Multiplying Applications
- When more than one DAC is connected to point "A" party line connection strobing is simple.
- Higher speed and simpler than the alternative method of disabling which is accomplished by reducing V_{REF} to zero.
- Note: Recovery when logic inputs are enabled may be slower when DAC is on +5V supply due to bias line saturation. This should be checked in the actual application.

DESCRIPTION


Since the PMI DAC-08 has a variable logic input threshold, strobing the output is easily accomplished using the circuit above. Normally, for TTL thresholds, pin 1 (V_{LC}) is grounded; but if it is connected instead to a hex inverter with a pullup resistor to +5V, all digital inputs effectively become zeros. All current flows in \overline{IO} ; no current flows in IO no matter what the digital input code may be. When the hex inverter's output is low, normal TTL input logic threshold and operation is restored.

APPLICATION BRIEF NO. 2

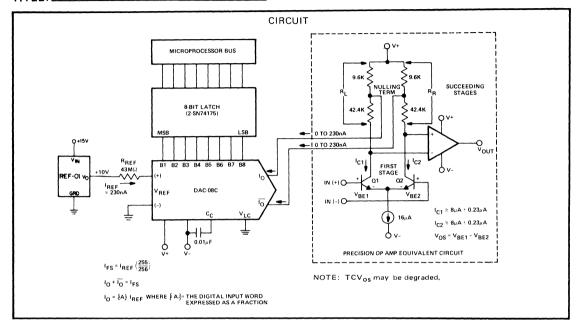
AUTHORS _____ Donn Soderquist and George Erdi

TITLE: OP-10 INSTRUMENTATION AMPLIFIER CMRR VERSUS FREQUENCY IMPROVEMENT

CAPACITOR SELECTION PROCEDURE

- 1. Connect e_{in1} to e_{in2} and to a 400Hz $\pm 10V$ signal source.
- 2. While observing e_0 with an oscilloscope, try different values of C1 or C2 until e_0 is at a minimum.
- 3. Permanently install the selected capacitor.

ment to greater than 95dB @ 400Hz was achieved on all devices, an improvement of 1 to 20dB over performance


without the selected capacitor.

APPLICATION BRIEF NO. _3_

AUTHOR Charles Vinn

TITLE: DIGITAL NULLING OF OP-05 AND SSS725

FEATURE SUMMARY

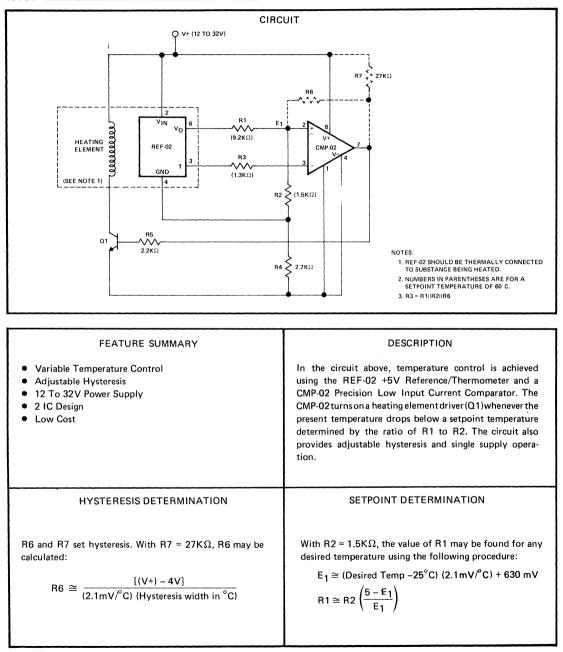
- Digitally-controlled offset nulling is achieved by imbalancing the first stage collector currents of a precision op amp.
- Greater than 1.5 mV of offset voltage may be nulled to zero with $5\mu V$ resolution at $25^{\circ}C$.
- This application is especially useful in microprocessorcontrolled systems where stringent error budgets exist.
- Circuit uses the nulling terminals with a DAC-08 substituted for the conventional nulling potentiometer.

DESCRIPTION

The input offset voltage of a precision op amp (OP-05 or OP-07) may be nulled to $<5\mu$ V using the complementary current outputs of a DAC-08 to change the ratio of collector currents in the first stage. With V_{OS} being defined as the voltage which must be applied between the input terminals to force V_{OUT} to zero and assuming all errors to be in the first stage, V_{OS} may be expressed as:

1)
$$V_{OS} = \frac{kT}{q} \log_e \frac{IC1}{IC2} \cdot \frac{IS2}{IS1}$$
 where

- k = Boltzmann's constant = 1.38×10^{-23} joules/°K
- T = Absolute temperature, $^{\circ}K$
- q = Charge of an electron = 1.6×10^{-19} coulomb
- I_S = Theoretical reverse-saturation current
- I_C = Collector Current


Changing the ratio I_{C1}/I_{C2} over a ± 3% range results in an input offset voltage nulling range of greater than 1.5mV at 25°C.

APPLICATION BRIEF NO. 4

AUTHOR Bob Blair

TITLE: REF-02 TEMPERATURE CONTROLLER

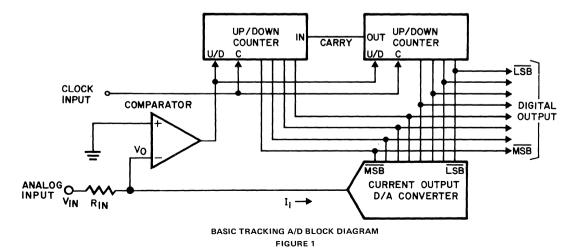
Application Notes

AN-6

A LOW COST, HIGH-PERFORMANCE TRACKING A/D CONVERTER

INTRODUCTION

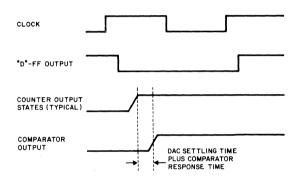
The availability of low-cost IC D/A converters, comparators and up/down counters makes possible construction of tracking A/D converters having high performance and reliability despite their small size and low cost. These A/D converters are suitable for a wide range of applications such as transducer and audio digitizing, infinite sample and holds, and servocontrol loops. This paper describes an 8-bit tracking A/D converter that can be built using Precision Monolithics, Inc., DAC100 CCQ3 D/A converter, CMP-01CJ Fast Precision Comparator and 4 bit MSI up/down counters.


TYPES OF A/D CONVERTERS

There are several popular styles of A/D converters (ADC) based on using a D/A converter in a feedback configuration. The three most common are: ramp or count-up, tracking or servo, and successive approximation.

Ramp types produce one conversion per each 2N clock counts for an "n" bit converter and are suitable only for very slowly changing analog data; additionally, the data can be taken out only at the end of the conversion period. Successive approximation types are quite fast, requiring only "n+1" clock counts for conversion. They are capable of encoding fast-moving analog signals if an external sample-and-hold circuit is used to stop the analog data; again, the digital output is true only at the end of the conversion period. For many applications, tracking ADC's can provide adequate speed while costing approximately the same as simple ramp types. Additional advantages are that no sample-and-hold circuit is required and that the digital data is continuously available at the output.

BASIC OPERATION

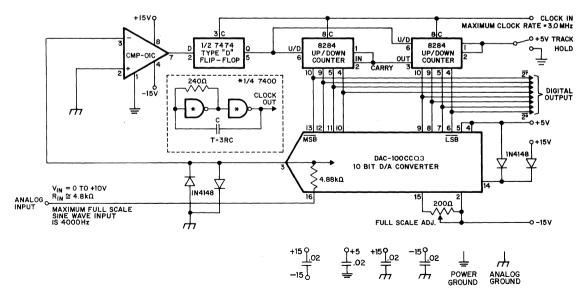

The tracking A/D is a relatively simple system, both in concept and in practice. The basic design requires three major elements: an up/down counter, a current output D/A converter, and a voltage comparator (see Fig. 1). The voltage at the comparator's input will be the result of the analog input voltage minus the DAC output sink current times R_{in} (V_o = $V_{in} - I_1 \cdot R_{in}$). Assuming a perfect comparator, if the output voltage (V_o) is above ground, the comparator's output will be low, causing the up/down counter to increase the DAC's output sink current by one LSB. (The counter actually counts down one count; this results from the DAC's utilization of complementary logic, i.e., an all-zero input produces maximum DAC output current.) The comparator continues to examine the voltage for polarity, and always drives the counter's code in the direction which causes the output voltage to approach zero. Once a balance is achieved, the loop is "locked", and tracks the analog input signal so long as the loop slew rate is not exceeded. When the loop is balanced, the converter's output is the binary-coded equivalent of the analog input.

When encoding a DC input signal, the digital output will "dither" or alternate between the two adjacent states which span the theoretically correct output value. This is of little consequence as all A/D converters have a similar error, known as the "quantizing" error.

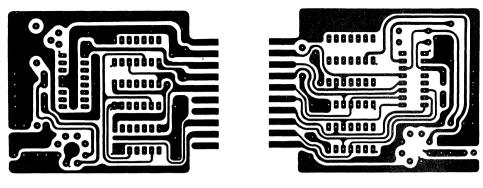
In the actual circuit design, a "type-D" flip-flop is inserted between the comparator and the counter's up/down input. This is to insure adequate set-up time between the comparator's output change and the counter's next stage change.

Loop timing can be seen in Fig. 2. After the positive clock transition, the counter changes to its next state and drives the DAC to its new output. After the DAC has settled and the comparator has come to its final state, the next positive clock transition loads the comparator's new state into the flip-flop and the cycle repeats.

FINAL CIRCUIT DESIGN

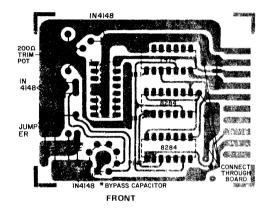

The completed 8 bit tracking A/D design is shown in Fig. 3. The digital output is available in complemented form, as the DAC-100 utilizes complementary logic. Diode clamps insure the DAC output remains near zero despite input and turn-on transients. For this 8 bit design, the two least significant digital inputs of the 10 bit DAC are not required and are connected to +5V, thus turning them off. Diodes are also used to insure that a positive voltage is applied to the V+ pin (pin 14) as soon as the +5V supply comes up. The clock, although extremely simple, is quite stable over a wide range of temperatures and supply voltages. Several layouts were tried, with no perceptible differences in performance. (See Fig. 4)

TRIMMING


The circuit requires only one trimming operation. The fullscale output current of the DAC is adjusted to produce proper encoding at full scale input. Although several schemes are possible, the simplest is to place +10.0V at the input, and trim the 200 Ω Full Scale Adjust pot to produce a low output at the 7 most significant bits with the LSB alternating states (dithering) at the clock frequency.

VOLTAGE OUTPUT APPLICATIONS

The basic tracking A/D uses a "current-comparison" technique; the analog voltage is not reconstructed at the comparator's input, thus eliminating the need for an op amp to convert the DAC-100's current output to a voltage. For applications such as infinite (no-droop) analog sample-and-hold circuits, the OP-01CJ, a low cost, fast slewing, fast settling op amp with internal compensation can be added as in Fig. 5. This configuration also provides very high input impedances, without requiring an extra buffer amplifier. The reconstructed analog voltage is available at the output of the op amp; gating the counter "off" stores the data in analog form.



COMPLETE SCHEMATIC – 8 BIT TRACKING A/D CONVERTER FIGURE 3

FRONT

васк

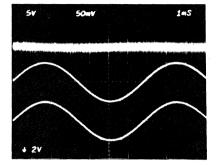
CONNECTOR					
FRONT	BACK				
ANALOG GND	ANALOG GN	D			
+5V		27			
ANALOG IN		26			
DIGITAL GND		25			
CLOCK	DIGITAL	24			
N.C.	OUTPUT	23			
N.C.	1	22			
TRACK & HOLD		21			
+15V]	20			
N.C.	-15V				

ACTUAL SIZE PRINTED CIRCUIT LAYOUT - CIRCUIT OF FIG. 3 FIGURE 4

8 BIT TRACKING A/D PARTS LIST

Quantity Description 1 DAC-100CCO3 D/A Converter CMP-01CJ Comparator 1 2 8284 Up/Down Counters 7474 Dual D-Type Flip-Flop 1 7400 Quad Gate 1 200Ω Trimpot, Bourns 3359P 1 4 IN4148 Diodes 5 Ceramic Capacitors 1 Carbon Composition Resistor PC Board 1

TRACKING A/D CONVERTER WAVEFORMS

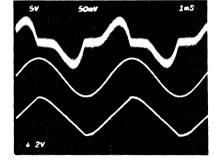

These scope photos were taken to indicate the waveforms observed at the comparator input during normal and abnormal operation of the converter. The output analog voltage trace was generated by applying the encoded digital output to a second D/A converter.

NORMAL OPERATION

Comparator Input

Analog Input

Reconstructed Analog Input


5V 500mV 145

INPUT OVER-RANGE

Comparator Input

Analog Input

Reconstructed Analog Input

SLEW RATE LIMITING

Comparator Input

Analog Input

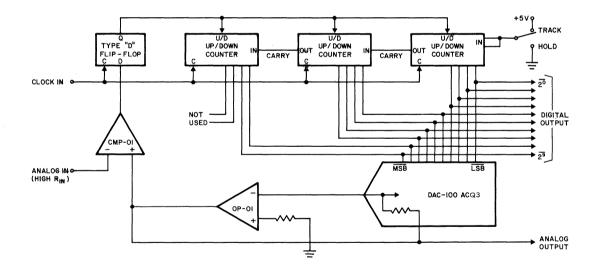
Reconstructed Analog Input

BIPOLAR OPERATION

Bipolar operation (\pm 5V) can be obtained by injecting a current equal to 1/2 the full scale current into the DAC-100 sum line. This can be accomplished by applying +6.4V to the internal bipolar resistor of the DAC-100 (pin 1)-a 500\Omega trimpot in series will allow precise adjustment of bipolar symmetry. To trim, apply -5.0V at the input and adjust the 500\Omega symmetry-trimpot to produce a high output at all bits, with the normal "dither" in the LSB only. Next, ground the input and adjust the Full Scale trimpot to produce an output which alternates between 10000000 and 01111111.

0 TO +5V OPERATION

Operation with 5 volt full scale inputs (0V to \pm 5V or \pm 2.5V) can be obtained by specifying the DAC-100 CCQ4.


0.05% APPLICATIONS

Applications requiring 10 bits of resolution with 0.05% linearity can be implemented by adding a third up/down counter and utilizing all 10 inputs of an DAC-100ACQ3 (or Q4). See Fig. 5.

PERFORMANCE

Performance of the completed converter is quite impressive despite the low cost and small size. Using clock rates of 3.0 MHz, 10Vp-p signals can be accurately tracked to frequencies of about 4.0 kHz; higher frequencies can be accommodated by reducing the peak-to-peak amplitude.

Fully monotonic operation is obtained from 0° to 70°C; this is achieved because the DAC-100CO3 is guaranteed to have $\pm 1/2$ LSB linearity to 8 bits (0.2%) over this temperature range, and the DAC-100ACO3 has $\pm 1/2$ LSB linearity to 10 bits (0.05%).

15-9

All D.C. static errors can be attributed to the analog components only; the comparator makes no contribution to linearity errors, but its Vos and Vos drift with temperature are a consideration in the zero scale and full scale performance, and especially so in bipolar applications. The worst case DAC-100 zero error over 0° C to 70° C is 0.6mV; adding to this the 3.5mV max Vos of the CMP-01C results in a worst case zero scale error of 4.1mV, which is acceptably small compared to the value of 1/2 LSB (19.5mV) for the 8 bit A/D.

Because the Vos drift of the CMP-01C is typically only $1.8\mu V/^{\circ}C$ even without offset trimming, the full scale drift will be almost entirely a function of the DAC-100CC tempco-60ppm/°C maximum.

For 10 bit applications, the comparator Vos becomes significant; the CMP-01C can be nulled, or the 0.8V max Vos CMP-01E can be utilized without nulling. Nulling of the comparator is not required in bipolar applications; this is accomplished by the bipolar symmetry trimming.

Other performance characteristics of the completed converter are listed in Table 1.

MILITARY TEMPERATURE RANGE OPERATION

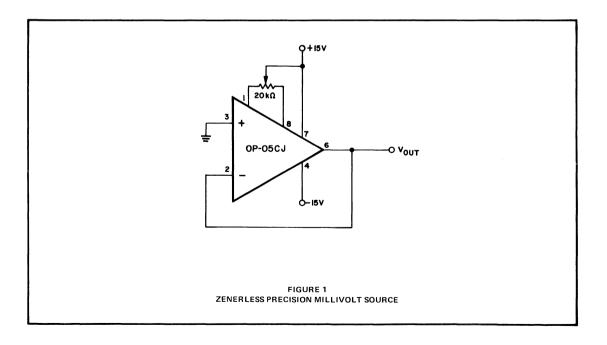
Operation over wider temperature ranges can be obtained by simply specifying appropriate temperature range components. The simplicity of the all IC design coupled with the compatibility with MIL-M-38510 processing assures high reliability in military applications.

CONCLUSION

Extremely compact, low power consumption, all IC tracking A/D converters are made possible by combining Precision Monolithics, Inc. DAC-100 series 10 bit D/A converter, CMP-01 series comparator, and commercially available MSI up/down counters. Layout, construction and adjustment are noncritical. The simplicity and low cost of the tracking A/D converter invites usage in many new applications, including single channel digitizing at remote transducer locations.

TABLE 1 PERFORMANCE DATA			APPENDIX – USEFUL DATA & FORMULAE		
	8 Bit	10 Bit	10V full scale 5V full scale		
Nonlinearity (0°C to +70°C		0.05% max	LSB – 8 bits 39.1mV 19.5mV 10 bits 9.85mV 4.92mV		
Full Scale Tempco (0°C to +70°C)	60 ppm max	60 ppm max	Loop Slew Rate = Clock Frequency X V _{LSB} = $f_{C} X V_{LSB}$		
Zero Scale Error (0°C to +70°C)	.10 LSB max	.20 LSB max*	Max Clock Frequency = $I/(T_A + T_B + T_C + T_D + T_E)$		
Zero Scale Error Comparator Trimmed (0°C to +70°C)	.02 LSB	.08 LSB	WHERE: T _A = Flip-Flop Propagation Delay T _B = Minimum Counter Set-Up Time		
Full Scale Voltages	0V to +10V, ±5V	0V to +10V ±5V	T _C = Counter Propagation Delay		
	0V to +5V, ±2.5V	0V to +5V, ±2.5V	T _D = D/A converter Settling Time (to n-bits)		
Power Supply Rejection (0°C to +70°C)	. 02 % per % max	.02% per % max	T _E = Comparator Response Time		
Power Consumption (V _S = ±15V, +5V)	1.4W max	1.77W max			
*untrimmed CMP-01E			Min Clock Frequency = $\frac{\pi \cdot Vin_{p-p} \cdot f_{in} \max}{V_{LSB}}$		

Application Notes


AN-10

SIMPLE PRECISION MILLIVOLT REFERENCE USES NO ZENERS

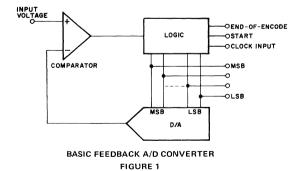
by

Donn Soderquist

A low output impedance millivolt source is frequently required in test systems, for generating small currents with moderate resistance values, and for general laboratory use. An excellent millivolt source can be built using only two parts; an instrumentation op amp and a potentiometer. The op amp is connected as a unity-gain buffer (Fig. 1) and the output is adjusted to the required voltage using the offset nulling terminals. The amplifier must have suitable characteristics such as low long term drift, freedom from chopper and "popcorn" noise, good power supply rejection and low offset voltage drift with temperature. To achieve low output impedance the op amp must have high gain around zero output voltages, and should have negligible thermal-induced drift for stable performance under varying load conditions. Use of a high performance bipolar input op amp such as the Precision Monolithics OP-05CJ provides low drift without chopper noise. With a typical initial offset voltage of 0.3mV, outputs from about -3.5mV to +3.5mV can be achieved. Adjusting the offset of the OP-05CJ to a value other than zero will create a drift equal to $3.3\mu V/^{\circ}$ C per millivolt of output setting. The circuit's low frequency noise will be less than 0.65 μ V pk-pk with an output impedance of less than one milliohm. Long term drift will be much less than 3.5 μ V per month and power supply rejection is about 10 μ V/Volt.

Application Notes

AN-11

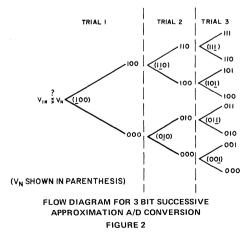

A LOW COST, EASY-TO-BUILD SUCCESSIVE APPROXIMATION ANALOG-TO-DIGITAL CONVERTER

by Donn Soderquist

Successive Approximation Analog-to-Digital Converters have often been considered to be complex, expensive and troublesome circuits to produce. This application note describes a high-speed 8 bit successive approximation A/D easily constructed using only 3 readily available IC's. Precision Monolithics' DAC-100 Digital-to-Analog Converter, CMP-01 Fast Precision Voltage Comparator, a Successive Approximation Register plus a handful of discrete components complete the design. Despite the simplicity, the A/D is capable of 8 bit conversions in 6 μ sec, and can easily be expanded to 10 bit resolution operation.

FEEDBACK A/D CONVERTERS

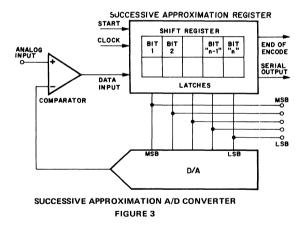
Most popular A/D Converters built today use a Digital-to-Analog Converter as part of a feedback or servo loop. Three of the most common types are the Ramp, Tracking, and Successive-Approximation; these differ primarily in the type of programming logic circuitry used to drive the D/A converter. All three types perform a comparison between the analog input and the output of a D/A converter; the logic changes the D/A output so that it approaches the analog input—when they are equal, the input to the DAC is the correct digitally encoded number (Fig. 1).

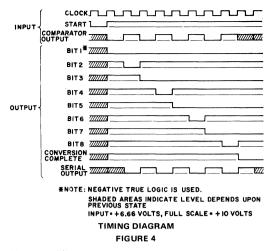


The Ramp or Count-up type ADC uses up-counters for the programming logic. A start command clears the counters which then count up until the comparator output changes. The user must allow 2^n clock periods to insure a complete conversion; therefore only very slowly varying data may be converted.

Tracking A/D converters use up/down counters for the programming logic; the comparator output forces the counters to "track" the changes in the analog input. Once initial "lock" is acquired the correct digital output is continuously available, and the converter may be capable of encoding fairly fastmoving input siganls without requiring a sample and hold circuit. (Complete details on the construction of this type of converter are available in Precision Monolithics Application Note "A Low Cost, High Performance Tracking A/D Converter", AN-6).

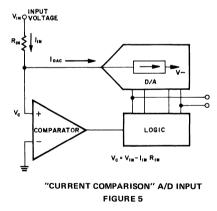
Tracking ADC's are at their best when used to encode a single signal with a well-behaved maximum slew rate; multiplexed or video signals have large discontinuities which cause large errors while the tracking loop moves to acquire a new "lock" on the signal.


Successive Approximation A/D Converters are attractive for their rapid conversion rates and have found wide acceptance in video and multiplexed data systems. Recently-announced IC's provide the three basic converter building blocks in integrated form, reducing the cost and complexity of this approach to a figure at or below that of the ramp and tracking types. The great advantage of the SA ADC is that complete "n"-bit conversions can be accomplished typically in N + 1 clock periods—for a 10 bit converter this would be a speed improvement of about 100 times over the ramp type.

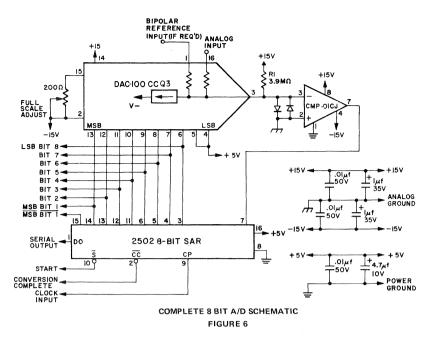

BASIC SUCCESSIVE APPROXIMATION A/D CONVERSION

An SA ADC operates by comparing the analog input to a series of "trial" conversions; the first trial compares the input to the value of the most significant bit (MSB) or approximately half of full scale. Figure 2 shows the progression of trials for a 3-bit converter. If the input is greater than the MSB value, the MSB is retained and the converter moves on to "trying" the next most significant bit, or approximately three-quarters full scale. If the input had been less than the MSB, the logic would have turned the MSB off before going on to the next most significant bit, or one-quarter full scale. This "branching" continues until each successively smaller bit has been tried, with the entire process taking "n+1" trials.

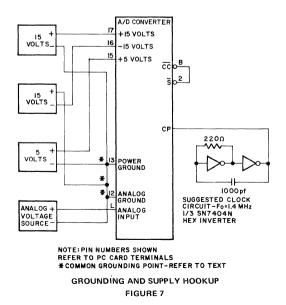
To implement the logic for the successive approximation algorithm, a configuration similar to Fig. 3 may be employed wherein a start command places a "one" in the first bit of a shift register. This sets the first latch to "one", and turns on the DAC's MSB. If the comparator output remains low, the "one" will remain in the latch; if not, the latch will be reset to zero before the next bit trial begins. The next clock cycle causes the shift register to place a "one" in the second bit and a similar process continues till all bits have been tried. After the last bit's trial, the end-of-encode output changes state indicating the parallel data is ready to be used. A useful feature of successive approximation conversion is that the correctly converted data is also available in serial form; this is handy for transmission of data on a single bus.



The complete sequence of events is demonstrated in the timing diagram of Fig. 4. Note that "negative true" logic is shown; the DAC-100 employs a complementary binary code and the AM2502 produces a "low" output during each bit's trial, thus producing the standard successive approximation routine starting with the MSB trial and working towards the LSB trial. All events are initiated during positive-going clock transitions; the conversion process starts when the S input is held low, which also causes the \overline{CC} (Conversion Completed) output to go high. After all bits have been tried, the last positive clock transition returns the \overline{CC} to a low state, indicating the conversion has completed.


"CURRENT" COMPARISON

The previous discussion has indicated that the function of the comparator was to perform a comparison between the analog input voltage and the output voltage of the D/A converter. Higher speed conversions may be achieved by using the output of a fast current output DAC directly. This may be implemented as shown in Fig. 5, where the comparator examines the polarity of ($V_{IN} - I_{IN}R_{IN}$). The "current comparison" method eliminates the need for a current-to-voltage converting op amp which is by far the slowest element in most D/A converters.


COMPLETE CIRCUIT

The schematic for the complete 8-bit A/D converter is shown in Fig. 6. It is seen that the complete circuit adds very few components to the basic 3 IC's of the block diagram. A 200 Ω potentiometer is used to adjust the full scale output and R1 is used to inject a +1/2 LSB value current into the sum node. This insures that adjacent code point transitions occur at 1/2 LSB points for minimum overall error. The clamp diodes minimize settling time and prevent large inputs from damaging the DAC output. For an 8-bit, 10 volt system the CMP-01CJ's maximum offset voltage is less than 1/10 LSB and should not require nulling.

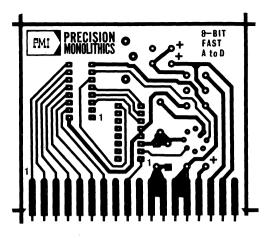
LAYOUT

A suggested layout for an 8-bit converter is shown in Fig. 8. This layout demonstrates some of the basic rules of good A/D converter practice: analog wiring is kept as short as possible and is separated from digital lines; the DAC output trace is especially short and directly connected to the comparator input and clamping diodes. Generous power supply bypassing has been employed using both disc and electrolytic capacitors. Other layouts can be easily designed because of the extreme simplicity of this circuit.

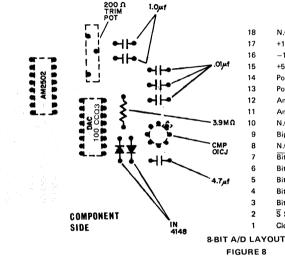
GROUNDING

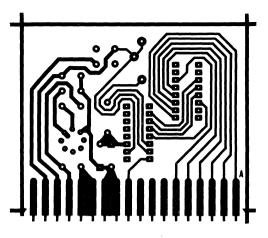
For optimum noise rejection, digital (power) ground currents should not flow in signal input ground return lines. Analog and power grounds should be connected as close as possible to the A/D converter input connector. Fig. 7 illustrates a typical system installation showing the ground connections.

SERIAL OUTPUT


The digital output is available in serial NRZ (non-return-tozero) format at the data output (DO) shortly after each positive-going clock transition. Serial output is especially convenient in applications where system wiring must be minimized, such as in one A/D per channel systems. Performing the A/D conversion process in close proximity to the signal source has the advantage of reducing errors associated with transmission of low level analog signals; instead, digitally encoded signals are transmitted with their inherent low error rates and ease of multiplexing.

BIPOLAR OPERATION


Bipolar operation can be obtained by injecting a current equal to 1/2 full scale into the sum node. This can be accomplished by applying +6.4 volts through a 500 ohm potentiometer to the internal bipolar resistor of the DAC-100. Both Bit 1 and Bit 1 are available so 2's complement or offset binary coding may be obtained as desired.


0 TO +5V, ±2.5V OPERATION

Operation with 5V Full Scale Inputs (0 to \pm 5V, \pm 2.5V) may be obtained by specifying DAC-100 models with a Q4 suffix.

COMPONENT SIDE

TRACE SIDE

CONNECTOR PIN CONNECTIONS

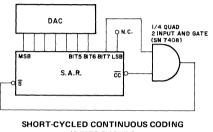
	N.C.	v	N.C.	
	+15 Volts	υ	+15 Volts	
	-15 Volts	т	-15 Volts	
	+5 Volts	S	+5 Volts	
	Power Ground 🛓	R	Power Ground 圭	
	Power Ground 🚢	Р	Power Ground 🛓	
	Analog Ground 妌	N	Analog Ground	
	Analog Ground 枾	м	Analog Ground 枾	
	N.C.	L	Analog Input	
	Bipolar Reference Voltage Input	к	N.C.	
	N.C.	J	N.C.	
	Bit 1	н	N.C.	
	Bit 1	F	Bit 5	
	Bit 2	ε	Bit 6	
	Bit 3	D	Bit 7	
	Bit 4	С	Bit 8	
	S Start	в	CC Conversion Completed	
	Clock Input	Α	DO Serial Output	
_	NUT			

CALIBRATION

For unipolar, 8-bit, 10 volt full scale calibration apply +9.941 volts (Full scale -3/2 LSB) to the input. Adjust the gain potentiometer until the digital output is alternating between "0000 0000" and "0000 0001". This calibrates the converter at a transition point insuring correct outputs over the analog input range. No zero adjust is necessary due to the low comparator input offset voltage (Vos), virtually zero output offset of the DAC and the correct +1/2 LSB bias established by R1.

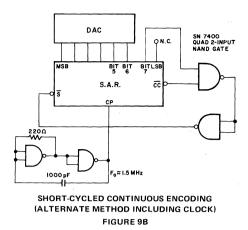
For 8-bit, ±5 volt full scale offset binary operation, first perform the unipolar calibration as described above with the bipolar reference removed. Next connect the +6.4 volt bipolar reference through the 500 ohm potentiometer to the bipolar input resistor. With -5.000 volts as an analog input, adjust the 500 ohm potentiometer until the digital output is alternating between "1111 1111" and "1111 1110". For calibration at lower bit resolutions refer to Table 1.

PERFORMANCE

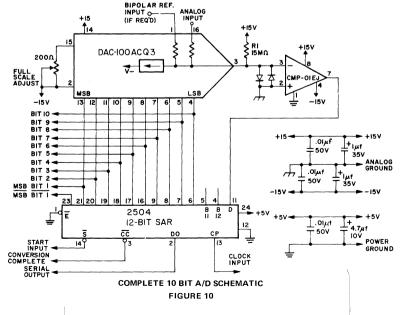

Performance of the completed converter for 6, 7 and 8 bit resolution applications is shown in Table II. To assure fully monotonic operation in 8 bit applications the DAC-100CC grade with its maximum nonlinearity of 0.2% from 0° to 70°C should be specified. Applications requiring 8-bit resolution with 0.3% or less linearity may utilize the lower cost DAC-100DD types.

All D.C. static errors can be attributed to the analog components only; the comparator makes no contribution to nonlinearity .but its 25° C V_{os} and V_{os} drift with temperature are a consideration in the zero scale and full scale performance, and especially so in bipolar applications. The worst case DAC-100 zero error over 0° to 70°C is 0.6mV; adding to this the 3.5mV max Vos of the CMP-01C results in a worst case zero scale error of 4.1mV, which is acceptably small compared to the value of 1/2 LSB (19.5mV) for the 8 bit A/D.

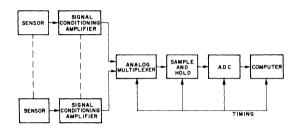
Because the V_{os} drift of the CMP-01C is typically only $1.8\mu V/^{\circ}C$ even without offset trimming, the full scale drift will be almost entirely a function of the DAC-100CC tempco-60ppm/°C maximum. (Tempco of DAC-100DD models is 120ppm/°C.)


REDUCED RESOLUTION APPLICATIONS

Encoding time may be reduced in applications not requiring the full 8 bit resolution. In convert-on-command applications, the negative-going transition of the (N+1) bit may be used as the Conversion Completed $\overline{(CC)}$ signal; the register will continue to step through the remaining bits so the \overline{CC} level will be present for one clock period only. For continuous conversion applications, the register may be truncated by applying a low


(6 BITS SHOWN) FIGURE 9A

level to the \overline{S} input; however, caution must be observed to prevent possible stalling on power-up: the \overline{S} input should be generated by either the \overline{CC} or bit (N+1) going to a low state. Figure 9 demonstrates a 6 bit, continuous-encoding application. Since reducing the resolution increases the size of the LSB, the value of R1 and the full scale calibration point should be changed accordingly, as shown in Table I. Additional speed in reduced resolution applications may be achieved by increasing the clock frequency.


10 BIT APPLICATIONS

The basic 8-bit converter may easily be expanded to 10 bits by using a 2504 12 bit Successive Approximation Register; it may be allowed to step through all 12 bits or shortcycled as described above (Fig. 9A,9B). All DAC-100 Series devices have 10-bit resolution; for applications requiring 10 bit monotonic performance the DAC-100ACQ3 or Q4 grades with maximum nonlinearity of $\pm 0.05\%$ (0° to 70°C) should be specified; for less demanding applications the ±0.1% DAC-100BCQ3 (Q4) grades are recommended. Due to the 10mV LSB size, comparator V_{os} can provide significant zero error. This can be eliminated in unipolar applications by nulling the CMP-01CJ or specifying the 0.8mV offset CMP-01EJ. No initial Vos improvement is required in bipolar applications, as this error will be eliminated during the bipolar calibration procedure. The offsetting resistor (R1) should be $15M\Omega$ for 10 bit applications, with the full scale calibration voltage of +9.985 for unipolar applications.

SYSTEM CONSIDERATIONS

When integrating the A/D Converter into a system, consideration must be given to several factors to assure best performance. First, the analog signal to be encoded should not change more than 1/2 LSB during the encoding process; a sample-and-hold circuit should be used if required to hold changes to 1/2 LSB or preferably, much less (Fig. 11). Second, proper grounding of the system is essential to prevent errors due to system noise. The preferred method is to connect the analog signal ground and digital power ground together at only one point, right at the A/D's connector. This will insure that digital ground currents do not flow in the analog ground line.

TYPICAL MULTIPLEXED DATA ACQUISITION SYSTEM FIGURE 11

LOWER POWER CONSUMPTION

Power consumption may easily be reduced from 935 mW maximum to about 310 mW with two minor design changes. The D/A and comparator power supplies can be reduced from ± 15 volts to ± 6 volts and the low power TTL AM25LO2PC logic function may be specified. Digital output fanout is reduced to 3 standard TTL loads. The value of R1 must also be lowered accordingly to maintain the same $\pm 1/2$ LSB bias current to the sum node.

MILITARY TEMPERATURE RANGE OPERATION

Operation over wider temperature ranges can be obtained by simply specifying appropriate temperature range components. The simplicity of the three IC designs coupled with the compatibility of the devices with MIL-STD-883A processing assures high reliability in military applications.

CONCLUSION

Extremely compact, rugged, low power consumption successive approximation A/D converters are made possible by combining 3 IC's: PMI's DAC-100 Series 10-bit D/A, CMP-01comparator, and a Successive Approximation Register. This simple, low cost design opens up new applications such as one A/D per channel operation in data acquisition systems.

	PARTS LIST FOR 8 BIT A/D CONVERTER		PARTS LIST FOR 10 BIT A/D CONVERTER
±0.3% m	aximum nonlinearity , FS tempco 120ppm/°C	±0.1% ma	aximum nonlinearity, FS tempco 60ppm/°C
1	DAC-100DDQ3 (or Q4)	1	DAC-100BCQ3 (or Q4)
1	CMP-01CJ	1	CMP-01EJ
1	AM2502PC (Advanced Micro Devices) or Equivalent	1	AM2504PC (Advanced Micro Devices) or Equivalent
1	Pot-200Ω Bourns #3006P-1-201	1	Pot-200Ω Bourns #3006P-1-201
1	4.7 μf CAP- Mallory #TDC475M010EL	1	4.7 μf CAP Mallory #TDC475M010EL
2	1.0 μf CAP- Mallory #TDC105M035EL	2	1.0 μ f CAP Mallory #TPC105M035EL
2	Diode, 1N4148	2	Diode, 1N4148
3	.01 µf CAP-Centralab #CK-103	3	.01 µf CAP- Centralab #CK-103
1	PC Board	1	PC Board
1	Resistor 3.9M Ω 5% 1/4W	1	Resistor 15M Ω 5% 1/4W
For ±0.2% maximum nonlinearity, FS tempco 60 ppm/°C use DAC-100CCQ3 (or $\overline{Q4}$)			5% maximum nonlinearity, FS tempco 60ppm/°C C-100ACQ3 (or Q4)

TABLE I - REDUCED RESOLUTION APPLICATION DATA

Resolution Desired		Offset Current Value (1/2 LSB)	Conversion Complete Indicator	Full Scale Calibration Point	LSB (10 VFS)	
8 Bits	3.9 MΩ	3.9 µA	CC	9.941V	39 mV	
7 Bits	2 MΩ	7.8 µA	Bit 8	9.883V	78 mV	
6 Bits	1 MΩ	15.6 μA	Bit 7	9.766V	156 mV	
5 Bits	470 ΚΩ	31.3 µA	Bit 6	9.531V	313 mV	
4 Bits	240 KΩ	62.5 μA	Bit 5	9.163V	625 mV	

	TABLE II – PERFORM	ANCE DATA	
Resolution	6-Bits	7-Bits	8-Bits
D/A	DAC-100DDQ3	DAC-100DDQ3	DAC-100CCQ3
0° to 70° Maximum Nonlinearity	±0.3%	±0.3%	±0.2%
0° to 70°C Full Scale Tempco Max.	120ppm/°C	120ppm/°C	60ppm/°C
Zero Scale Error Max.	±0.05 LSB	±0.1LSB	±0.2 LSB
Conversion Time 1.5 MHz Clock	4.7 μsec	5.3 <i>µ</i> sec	6.0 µsec
Unipolar Reference		Internal	
Bipolar Reference		External +6.4 Volts	5
Input Impedance (+	10V or ±5V Scale)	5K Ω Nominal	
Input Impedance (+	5V or ±2.5V Scale)	2.5K Ω Nominal	
Quantizing Error		±1/2 LSB	
Output Code Unipo	lar	Complementary Bi	nary
Output Code Bipola	r	Complementary Of	fset Binary
Clock		External	
Logic Output Drive	Capability	6 TTL Loads	
Analog Power Supp	ly Range	±6V to ±18V	
Digital Power Suppl	y Range	+5 Volts ±5%	
Power Consumption	±15V and +5V Supplies	935 mW Max.	

Application Notes

AN-12

TEMPERATURE MEASUREMENT METHOD BASED ON MATCHED TRANSISTOR PAIR REQUIRES NO REFERENCE

by

Jim Simmons and Donn Soderquist

Most remote temperature measurements are made with thermistors or thermocouples as the sensing elements. This article shows how the function can be accomplished by using the intrinsic properties of a well-matched monolithic transistor pair. The method is attractive for its simplicity accuracy, and long-term stability. Of particular utility is the fact that the output is inherently linear and is directly useable without special linearizing circuitry.

Thermocouples can require both linearizing circuitry and reference junction making them difficult to apply. Linear outputs may be achieved with composite thermistor-resistor networks but long-term stability is difficult to predict. Ordinary silicon diodes, when operated as temperature sensors, require constant current drive and extensive calibration. The matched transistor pair method has none of these drawbacks.

BASIC THEORY

Matched transistor pairs have predictable relationships which make temperature measurements possible. To develop these relationships, let us consider the fundamental properties of a single transistor. The well known relationship between collector current and base-emitter voltage for a single transistor is:

1)
$$V_{be} = \frac{kT}{q} \log_e \left(\frac{I_C}{I_S}\right)$$
 provided $I_C/I_S >> 1$

where

k = Boltzmann's constant = 1.38×10^{-23} joules/°K

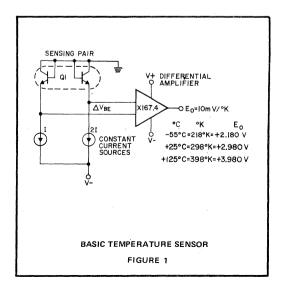
- T = absolute temperature, $^{\circ}K$
- q = charge of an electron = $1.6 \times 10^{-1.9}$ coulomb
- I_S = theoretical reverse-saturation current \cong 1.87 x $10^{-14} A$
- I_{C} = collector current

Consider the difference in base-emitter voltages, $\triangle V_{be},$ of two transistors operated at the same temperature:

2)
$$\Delta V_{be} = \frac{kT}{q} \log_e \left(\frac{I_{C1}}{I_{S1}}\right) - \frac{kT}{q} \log_e \left(\frac{I_{C2}}{I_{S2}}\right)$$

This expression may be rewritten to:

3)
$$\Delta V_{be} = \frac{kT}{q} \log_{e} \left(\frac{I_{C1}}{I_{C2}}\right) - \frac{kT}{q} \log_{e} \left(\frac{I_{S1}}{I_{S2}}\right)$$


The values of I_{S1} and I_{S2} are a strong function of processing and geometry variables, and are very nearly identical in a well-matched monolithic transistor pair. As I_{S1} and I_{S2} approach equality (log_e 1=0), the second term can be eliminated. For an ideal pair the expression becomes:

4)
$$\Delta V_{be} = \frac{kT}{q} \log_e \left(\frac{|C1|}{|C2|}\right)$$

Note that if the ratio of collector currents I_{C1} to I_{C2} is made constant, $\bigtriangleup V_{be}$ will be proportional to absolute temperature alone. No absolute values of current are required because only a stable current ratio must be maintained. For a fixed ratio of 2 to 1 the expression is:

5)
$$\frac{\Delta V_{be}}{\Delta T}$$
 = 5.973 X 10⁻⁵ = 59.73 μ V/°K

This predictable differential base-emitter voltage relationship allows a matched transistor pair to be used as a temperature sensor. A complete temperature measuring system can be built with a matched pair, two constant current sources, and a differential amplifier as shown in Figure 1.

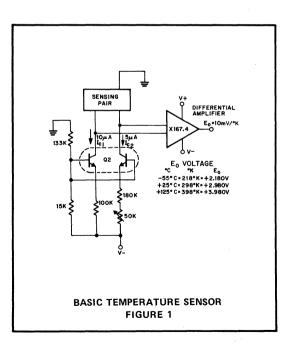
SYSTEM DESIGN CONSIDERATIONS

To illustrate this concept, let us design a system to provide accurate temperature measurement over the range of -55° C to $+125^{\circ}$ C (218°K to 398°K). Other goals are: ease of calibration, long-term stability, standard resistor values, and small physical size. In addition, the system should be capable of operation with the sensing matched pair located up to 100 feet from the current sources and differential amplifier. A system achieving these goals is detailed below.

SENSING MATCHED PAIR

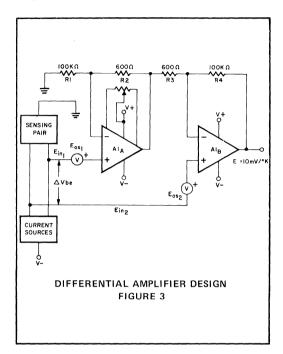
Any mismatch will cause performance to deviate from the ideal case shown in Eq. 4, the most critical parameter being average offset voltage drift (TCV_{os}) . This quantity, multiplied by the largest temperature excursion $(100^{\circ}K)$ and the differential amplifier gain (167.4), will be the output error and is shown in Table 1 for typical TCV_{os} specifications.

Clearly, system accuracy is directly related to the degree of matching of the sensing pair. A Precision Monolithics MAT-01H with its typical TCV_{os} of $.15\mu$ V/°C was specified in order to minimize this error factor.


CONSTANT CURRENT SOURCES

Two currents of a precise 2 to 1 ratio are provided by this section. Several considerations make 5μ A and 10μ A good choices as nominal operating currents for I_{C2} and I_{C1} respectively. Most monolithic matched transistor pairs are specified at $I_C = 10\mu$ A. Input bias currents associated with the differential amplifier can be ignored because 5μ A is three orders of magnitude larger. Resistor values are small enough to keep physical size and cost reasonable. Finally, the quiescent currents do not develop significant voltage drops in 100 feet of ordinary shielded pair cable.

The two most important current source transistor matching characteristics required are h_{FE} and V_{os} long-term stability, assuming that this part of the circuit is not subjected to wide temperature variations. If the system is to have good power supply and ripple rejection, the h_{FE} match must be maintained over a range of operating currents. These characteristics will insure a constant 2 to 1 ratio of I_{C1} to I_{C2} is maintained.


With the circuit as shown in Figure 2, the total system has measured power supply rejection of 1° K/volt. Once calibrated, long-term changes in V_{os} will change the current ratio, and, in turn, the output. A Precision Monolithics MAT-01GH was selected for Q2 because it has the desired combination of specified long-term stability (.2 μ V/month) and close h_{FF} matching, typically 1%.

TCV _{os}	Error in [°] K over 100 [°]
.15µV/°C	.251°K
.5 μV/°C	.837°K
1.0µV/°C	1.67 [°] K
2.0µV/°C	3.34°K
2.5µV/°C	4.19 [°] K
5.0µV/°C	8.37°K
10 μV/°C	16.7 [°] K
ТАВ	LE 1

DIFFERENTIAL AMPLIFIER

The sensing pair and constant current sources provide a differential voltage (ΔV_{be}) which is directly proportional to absolute temperature. The amplifier must acquire this voltage difference in the presence of common mode voltages, amplify it by 167.4, and change it from a differential to a single-ended signal. Excellent performance is obtained using the circuit of Figure 3.

The two op-amp differential amplifier configuration is widely used wherever high input impedance and fixed gain are required. This amplifier uses a dual matched instrumentation operational amplifier designed and specified for differential applications, the Precision Monolithics OP-10CY.

GENERAL DESIGN CONSIDERATIONS

Assuming ideal amplifiers, the expression for output voltage is:

6)
$$E_0 = \left[E_{in_1} \left(1 + \frac{R_2}{R_1} \right) \frac{R_4}{R_3} \right] + E_{in_2} \left(\frac{R_4}{R_3} + 1 \right) \right]$$

With ideal resistors this simplifies to:

7)
$$E_0 = (E_{in2} - E_{in1}) (\frac{R4}{R3} + 1) \text{ provided } \frac{R1}{R2} = \frac{R4}{R3}$$

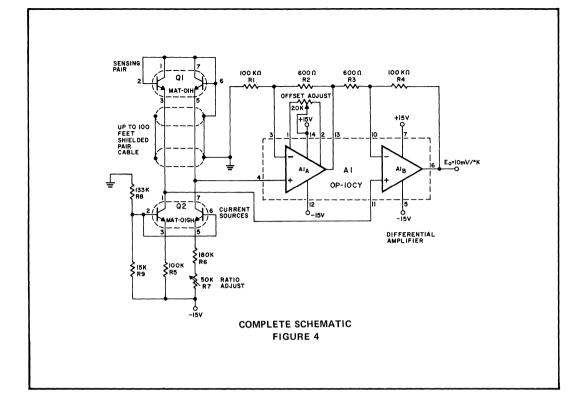
In this system, $(E_{in1} - E_{in2})$ has been previously defined as ΔV_{be} . The actual expression for E_0 may be written as: 8) $E_0 = \Delta V_{be}$ ($\frac{R4}{R3}$ + 1) but $\frac{\Delta V_{be}}{\Delta T} = 5.973 \times 10^{-5}$ (Eq. 5)

Therefore, the ideal overall system output expression is:

9)
$$E_0 = (5.973 \times 10^{-5}) (\frac{R4}{R3} + 1) T$$

COMMON MODE REJECTION

At 25°C (298°K), ΔV_{be} is 17.8 mV. while the individual sensing pair base-emitter voltages are about 520 mV. There is a need to reject the 520 mV. common mode input voltage while accurately amplifying the differential input voltage, ΔV_{be} . At -55° C (218°K), the situation becomes more difficult with ΔV_{be} of 13 mV. and 696 mV. of common mode voltage. Keeping in mind that this is a best case disregarding any extraneous cable pickup, it can be observed that the requirement for high common mode rejection is very real.


Because the dual op amp has a specified 117 dB common mode rejection ratio match, the ability to reject common mode inputs becomes primarily a function of resistor ratio matching. This device eliminates the need for special op amp selections in this stringent differential amplifier application.

Resistor selections can be avoided by using readily available .01% tolerance precision resistors, resulting in a worst-case ratio match of .04%. This ratio match, in combination with the dual op amp's performance, results in greater than 100 dB common mode rejection at the amplifier's input.

Long-term stability of the resistors must approach the initial ratio match or degradation of common mode rejection can occur over time. The resistors chosen are specified at \pm 50ppm/3 years and \pm 5ppm/°C thereby assuring stability versus time and temperature.

DIFFERENTIAL OFFSET VOLTAGE

The amplifier's differential input offset voltage ($E_{os1}-E_{os2}$) will be the major error factor. If the individual input offset voltages are of equal magnitude and polarity they appear as a common mode input and are rejected. The OP-10CY provides the additional convenience that only a single offset adjustment is necessary to provide the required ΔV_{os} match; this adjustment at the same time provides minimum $TC\Delta V_{os}$ of the differential amplifier.

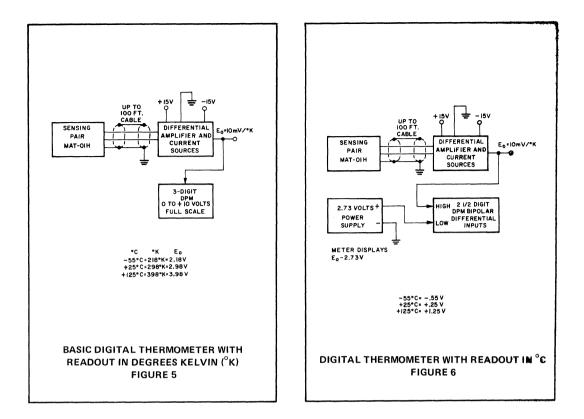
INSTALLATION

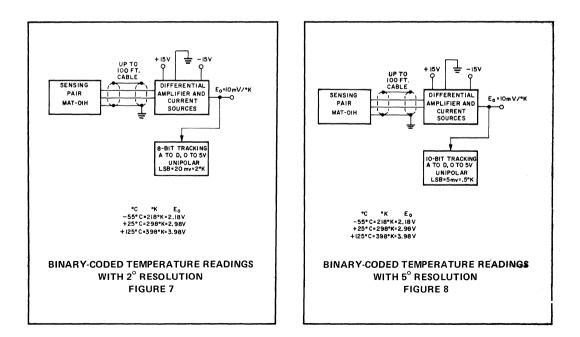
Ordinary shielded pair cable, with #22 or larger conductors, is satisfactory for most remote temperature measuring applications. Good thermal conductivity from the sensing pair's case to the environment being measured is essential to avoid incorrect readings. When this circuit is used for temperature control, thermally-conductive epoxy works especially well in attaching the sensing pair to the device being controlled.

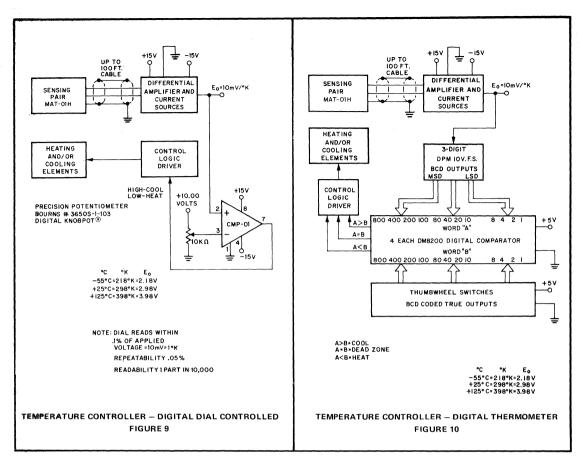
CALIBRATION PROCEDURE

This is an easy two-step procedure. First, short the differential amplifier inputs and adjust the offset potentiometer until the output reads zero volts. Remove the input short. Second, with the sensing pair at a known temperature (room temperature is suitable), adjust the ratio potentiometer for a correct differential amplifier output reading. Having the capability of room temperature calibration makes this circuit much more convenient to calibrate than other types.

OVERALL ACCURACY


This circuit, with the components as specified, is capable of $\pm 1^{\circ}$ K accuracy over the full military temperature range of -55° C to $+125^{\circ}$ C (218° K to 398° K). Optimum accuracy is obtained with the differential amplifier and constant current sources in a controlled environment remote from the sensing pair. Maintenance of high accuracy over long periods of time is achieved because all components used in this design have long-term stability specified.


APPLICATIONS


The circuit's output, as measured by a 10-volt full scale digital panel meter, makes a digital thermometer. DPM's with BCD outputs may be used in applications requiring simultaneous direct readout and digital outputs for control purposes.

CONCLUSIONS

Accurate temperature measurement and control systems are easily and economically built using the predictable characteristics of modern monolithic matched transistor pairs. This method offers long-term stability, excellent linearity, simple calibration, and high performance in severe environments.

PARTS LIST		
1.	Q1	MAT-01H, Matched Transistor Pair Precision Monolithics, Inc.
2.	02	MAT-01GH, Matched Transistor Pair Precision Monolithics, Inc.
З.	A1	OP-10CY, Dual Instrumentation Op Amp Precision Monolithics, Inc.
4.	R1, R4	Resistor, 600 ohms, .01% General Resistance Econistor
5.	R2, R3	Resistor, 100K.chms, .01% General Resistance Econistor
6.	R5	Resistor, 100Kohms, .1% General Resistance Econistor
7.	R6	Resistor, 180Kohms, .1% General Resistance Econistor
8.	R7	Potentiometer, 50Kohms, 10% Bourns #3006P-1-503
9.	R8	Resistor, 133Kohms, 1% RN55C1333F
10.	R9	Resistor, 15Kohms, 1% RN55C1502F
11.	R10	Potentiometer, 20Kohms, 10% Bourns #3006P-1-203

Application Notes

AN-13

THE OP-07 ULTRA-LOW OFFSET VOLTAGE OP AMP— A BIPOLAR OP AMP THAT CHALLENGES CHOPPERS. ELIMINATES NULLING

by

Donn Soderquist & George Erdi

The OP-07, a new bipolar-input monolithic operational amplifier, provides chopper-stabilized amplifier performance at bipolar prices. Input offset voltage, the major error contribution in most designs, is reduced to a maximum of $25\mu V$ by a new computer-controlled on-chip trimming technique. Such low V_{os} eliminates the nulling potentiometer requirement of most op amp circuits, greatly reducing system complexity while improving reliability. A description of this amplifier's design and performance is given, followed by an applications section showing how superior input specifications can simplify high-accuracy analog design.

IMPORTANCE OF LOW INPUT OFFSET VOLTAGE

In many applications, the initial input offset voltage of operational amplifiers causes more inaccuracy than all other error factors combined. The other significant error parameters, such as bias and offset currents, open-loop gain, and common mode rejection, have come closer to theoretically ideal performance than has V_{OS}. For this reason, most operational amplifiers, monolithic and modular, are provided with terminals to allow the user to adjust this offset voltage to zero-a costly and potentially unreliable procedure, which in many cases degrades performance of TCV_{OS}. Monolithic op amp manufacturers have constantly strived for improvement in V_{OS} from μ A709 and μ A741 at 5000 μ V, to the μ A725 at 1000 μ V in 1969, to the OP-05A at 150 μ V in application operational amplifier design.

Temperature stability is also important since the benefits of low initial V_{OS} are quickly lost if a small change in operating temperature causes substantial V_{OS} drift. Good long-term V_{OS} stability is required to avoid periodic re-calibrations and degradation of system performance over time. Until now, chopperstabilized or externally-nulled monolithic op amps have been the usual choices despite the disadvantages of high noise and/or external components. The OP-07 design achieves the desired combination of low V_{OS} , low TCV_{OS}, long-term V_{OS} stability, low bias current, and low noise. It provides performance comparable to chopper-stabilized amplifiers with the further advantages of freedom from chopper-frequency noise and external component requirements.

LOW Vos AMPLIFIERS

Some of the more common methods for optimizing Vos

performance have been chopper-stabilized amplifiers, bipolar amplifiers nulled to zero initial V_{OS} , and combinational amplifiers constructed with a matched transistor pair followed by a standard bipolar op amp. Each approach to the V_{OS} problem is a compromise between allowable error, reliability and price. The purpose of this discussion is to show how the OP-07 provides superior performance, higher reliability, and reduced size at a lower overall cost.

CHOPPER-STABILIZED AMPLIFIERS

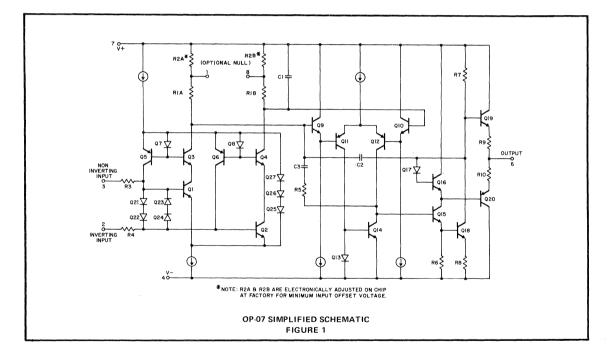
In the past, designers have been forced to use chopperstabilized amplifiers in applications requiring less than $100\mu V$ initial V_{OS} . The OP-07 is a cost-effective alternative, providing chopper-type performance with 741 ease-ofapplication. Use of a bipolar input op amp eliminates the usual chopper problems of high noise, large physical size, and limited common-mode input voltage range.

Low initial input offset voltage specifications lose their significance if noise and long-term drift are of the same magnitude. Although the monolithic choppers have lower average input bias currents, the chopping action produces very large spikes in the input currents and prevents their use with large or unbalanced source resistors. For this reason, most chopper manufacturers carefully avoid specifying noise currents above 10Hz. The bias current remains below 4nA over the full military temperature range, and being free from chopper spikes, enables use in high impedance circuitry.

Another chopper-related problem is that input signals often interact with chopping frequency components and their harmonics. This interaction can cause errors due to intermodulation, producing slowly varying offset voltages usually below 20Hz. Chopper frequency switching transients can also cause electromagnetic interference frequently requiring special shielding and input guarding methods to protect adjacent circuitry. Modular choppers can have input overload recovery times as high as five seconds and require up to ten external components to effectively eliminate this problem. Monolithic choppers require expensive, large external components, such as two .1 μ F teflon dielectric capacitors, for wide temperature range operation. These problems are eliminated by the OP-07.

NULLED BIPOLAR AMPLIFIERS

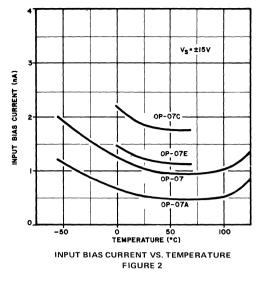
The major disadvantage of most high performance bipolar op amps is that their high initial V_{OS} must be adjusted to zero with a nulling potentiometer or trimming resistors. In certain amplifiers, this is also a requirement in order to optimize TCV_{OS} performance. Selected or adjusted components require special test labor, take up much-needed space, decrease reliability, and add to system complexity. "Maintainability" is poor—field replacements or renulling due to long-term V_{OS} and resistance changes must be performed by a skilled technician with sophisticated test equipment. Use of an internally-nulled OP-07 avoids all of these problems since it is a complete, fully-interchangeable device, and does not require zeroing to optimize TCV_{OS}.


COMBINATIONAL AMPLIFIERS

This is one of the oldest methods, usually implemented with a heated-substrate matched transistor pair in a differential-input gain stage followed by a conventional op amp. This method

requires four precision resistors, a nulling potentiometer, external frequency compensation, and up to 360mW of heater power. TCV_{os} is only about $2\mu V/^{\circ}C$ despite the temperature control for the input pair. The OP-07 provides improved performance in all parameters as well as lower cost, elimination of calibration labor, lower noise and a tremendous reduction in total power consumption.

CIRCUIT DESCRIPTION


The three-stage design concept of previous Precision Monolithics' instrumentation quality op amps was retained for the OP-07 because, using this design, nulling of V_{OS} simultaneously optimizes TCV_{OS}. (This relationship is not the case for the more commonly used two-stage "741"-type amplifier.) There are additional advantages of high gain, low noise, and predictable long-term stability. Low input bias current is achieved by bias current cancellation; i.e., currents are generated equal in magnitude but opposite in direction to the base currents of the input transistors Q1 and Q2 in the simplified schematic of Figure 1.

INPUT STAGE

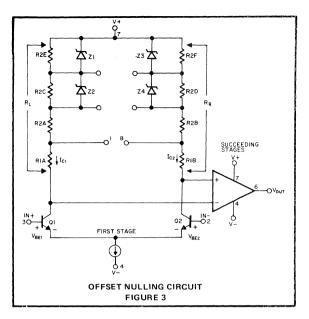
To achieve lowest initial V_{OS} , TCV_{OS} and noise, a simple differential input pair, Q1 and Q2, was chosen. V_{OS} nulling resistors R2A and R2B are electronically adjusted and will be covered separately in the trimming discussion. R3 and R4, in conjunction with Q21-Q24, provide input differential overvoltage protection.

The symmetry of the input stage allows examination of only one side to demonstrate bias current cancellation. Base drive for the input transistor, Q1, is provided by Q5 and the external circuitry; the difference between Q5's collector current and Q1's base current being the input bias current. Q1 and Q3 are hFE-matched transistors operating at similar collector currents and, therefore, the base current of Q1 is approximately equal to the base current of Q3. Q3's base current is supplied by Q7, a diode-connected PNP transistor closely matched to Q5. Together Q5 and Q7 form a current mirror (turnaround) and the collector current of Q5 will equal the base current of Q3. In this manner almost all base current for Q1 is provided by Q5 and precise bias current cancellation is achieved. Careful design has enabled this cancellation to be effective over a wide temperature range. (Fig. 2).

FOLLOWING STAGES

The first stage output is buffered by emitter followers Q9 and Q10, and applied to a high-gain differential stage, Q11 and Q12. Its output, the junction of Q12, Q14, Q15, and R5, drives a short-circuit-protected complementary emitter follower power output stage.

COMPENSATION


Frequency compensation of the OP-07 is accomplished using three capacitors. Feedforward capacitor C3 bypasses the second stage lateral pnp's at high frequencies and, therefore, the excessive phase-shift normally associated with these transistors is circumvented. The dominant pole of the amplifier is set by C2 which feeds back around the second and driver stages and rolls off the open loop response at 20dB decade. The presence of C1 ensures that the high frequency signal path is single-ended by rolling off the response of one side of the input stage. The total internal capacitance on the 100 X 53 mil chip is 210pF, a remarkable amount for a monolithic device.

LAYOUT

The circuit layout has thermal symmetry, a concept which has been used quite extensively on precision amplifier designs since its inception in 1969.¹ Variations in power dissipation in the driver and output stages, and the resultant thermal gradients affect the critical input transistors identically, thereby preventing offset voltage changes at the input.

INTERNAL NULLING TECHNIQUE

To understand the nulling technique some fundamental relationships should be examined using the equivalent circuit of Fig. 3. (Errors caused by the second stage are effectively divided by the first stage gain and will be neglected in this discussion.) V_{OS} is defined as the voltage which must be applied between the input terminals to obtain zero voltage at the amplifier's output. Referring to Fig. 3:

1) Vos = Vbe1- Vbe2, Vout = zero

With an error free second stage it may be assumed that the input transistor collectors are equal in potential.

2)
$$I_{C1}R_L = I_{C2}R_R$$
 and $\frac{I_{C1}}{I_{C2}} = \frac{R_R}{R_L}$
3) $V_{be} = \frac{kT}{q} \log_e \left(\frac{I_{C1}}{I_{S1}}\right)$, $V_{be2} = \frac{kT}{q} \log_e \left(\frac{I_{C2}}{I_{S2}}\right)$,
Provided $I_C/I_S >> 1$.

Substituting in Eq. 1:

4)
$$V_{OS} = \frac{kT}{q} \log_e \left(\frac{IC1}{IS1}\right) - \frac{kT}{q} \log_e \left(\frac{IC2}{IS2}\right)$$

Rewriting:

5)
$$V_{os} = \frac{kT}{q} \log_e \left(\frac{|C1|}{|C2|} \cdot \frac{|S2|}{|S1|} \right)$$

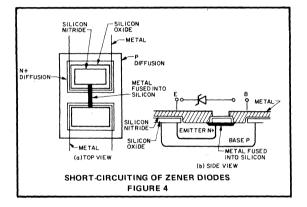
Substituting from Eq. 2:

6)
$$V_{os} = \frac{kT}{q} \log_e \left(\frac{RR}{RL} \cdot \frac{IS2}{IS1} \right)$$

For Vos = zero:

7)
$$\frac{R_R}{R_L} \cdot \frac{I_{S2}}{I_{S1}} = 1$$

Where:


- k = Boltzmann's constant = 1.38×10^{-23} joules/°K
- $T = Absolute temperature, ^{\circ}K$
- q = Charge of an electron = 1.6×10^{-19} coulomb
- Is = Theoretical reverse-saturation current
- IC = Collector Current

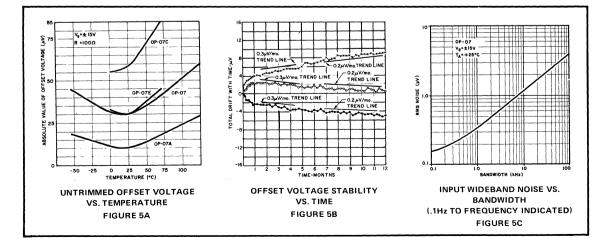
¹Editor's note: This concept was originally introduced by George Erdi during his employment at Fairchild Semiconductor Research and Development.

Therefore, by adjusting the ratio of $\frac{R_R}{R_L}$ the inherent

processing-related differences in IS1 and IS2 which cause V_{be} differentials may be cancelled. Earlier amplifier designs achieved the adjustment of collector resistance by an external nulling potentiometer between Pin 1 and Pin 8 with its wiper connected to Pin 7 (Fig. 1).

In the OP-07, permanent nulling is accomplished by shorting out a small percentage of R_R or R_L as determined by a computer programmed with Eq. 6 and a lookup table. This is done by reading V_{OS} before trimming, comparing its magnitude and polarity with a lookup table value, and shorting out one of the normally nonconducting zener diodes. The short is created by passing a high current pulse through the selected zener, fusing its metal contacts into the silicon as shown in Figure 4. High volume production is achieved through automation, with initial device testing at wafer probe including V_{OS} trimming requiring less than one second.

Through this technique, V_{OS} of the entire "raw" OP-07 distribution can be nulled to less than 150 μ V, with the majority being under 75 μ V. Prime grade yields are high, providing adequate numbers of OP-07A devices with a V_{OS} maximum of 25 μ V.


PERFORMANCE

The specifications in Table I and curves of Figure 5 show noise, initial Vos, and long-term stability performance unsurpassed by any other monolithic op amp. This device is free of the common problems of latchup, noise, compensation capacitors, and narrow power supply limitations. Power supply rejection ratio (PSRR) exceeds 100dB over the unusually wide range of ±3 to ±18 volts. Common-mode rejection is specified over a full ±13 volt input range allowing small signal amplification in high noise environments and use in inverting, noninverting, and differential applications. The amplifier is completely self-contained-no external compensation or protection components are required. It is an excellent replacement for chopper-stabilized amplifiers where reductions in cost, noise, size, and power consumption are desired, and for monolithic op amps where elimination of the offset nulling potentiometer is desirable.

OP-07 PERFORMANCE @ VS = ±15V, TA = 25°C

Parameter	Typical	Min/Max	Units
Offset voltage, V _{OS}	10	25	μV
drift with temperature	0.2	0.6	μV/°C
drift with time	0.2	1.0	μV/mo
Offset current, los	0.3	2.0	nA
drift with temperature	5	25	pA/°C
Input bias current, IB	±0.7	±2.0	nA
drift with temperature	8	25	pA/°C
Noise voltage 0.1Hz to 10Hz	0.35	0.6	μV p-p
Noise current 0.1Hz to 10Hz	14	30	рАр-р
Input resistance – differential	80	30	MΩ
Input resistance - common mode	200		GΩ
Common-mode rejection	126	110	dB
Power supply rejection	110	100	dB
Voltage gain	500	300	V/mV
Slew-rate	0.25	-	V/µsec
Unity gain bandwidth	1.2	-	MHz

OP-07A PERFORMANCE TABLE I

15-28

The pinout of the OP-07 allows direct replacement of 725, 108, and OP-05 types without circuit changes while 741 devices may be replaced by removal of the nulling potentiometer. HA-2900 series chopper-stabilized amplifiers may be replaced by removing the two .1 μ f capacitors and the 1500pf capacitor whenever cost or noise reductions are required. Table II is included to show comparative performance in wide temperature range applications.

Manufacturer's Part Number	V _{os} Max –55°/+125°C	TCV _{os} Max -55°/+125°C (Unnulled)	Voltage Noise Typical F=10Hz	Current Noise Typical F=10Hz	^I Bias Max -55°/+125°C	Long-Term Drift Typical
OP-07A	60µ∨	.6µV/°C	10.3nV/ √Hz	.32pA/ 	4nA	.2µV/mo
OP-07	200µ∨	1.3µV/°C	10.3nV/ √Hz	.32pA/ √Hz	6nA	.2µV/mo
HA-2900	60µV	.6µV/°C	900nV/ √Hz	Not Specified (Chopper)	1nA	Not Specified
OP-05A	240µV	.9µ∨/°C	10.3nV/ 	.32pA/ 	4nA	.2µV/mo
OP-05	700µV	2.0µV/°C	10.3nV/ 	.32pA/ √Hz	6nA	.2µV/mo
μA725	1500µ∨	5.0µV/°C	15mV/ √Hz	1.0pA/ 	200nA	Not Specified
LM108A	1000µ∨	5.0µV/°C	43nV/ √Hz	Not Specified	3nA	Not Specified

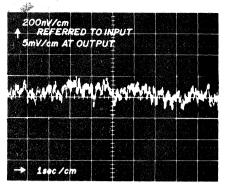

TABLE II
MILITARY TEMPERATURE RANGE PERFORMANCE COMPARISON

Table III compares various OP-07 versions with competitive op amps over the $0^{\circ}/70^{\circ}$ C temperature range. An absence of noise and long-term stability specifications for some amplifiers should caution potential users of possible deficiencies in those areas. This same comment would apply to "typical-only" specifications since accurate predictions of circuit performance can only be made with a fully specified device.

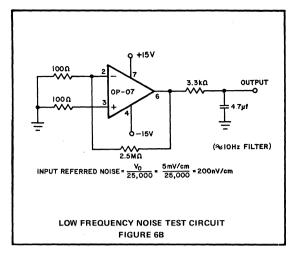
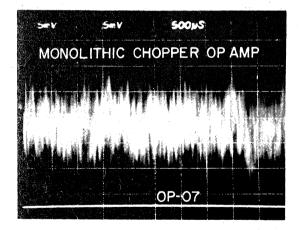
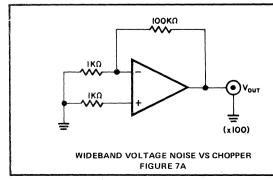
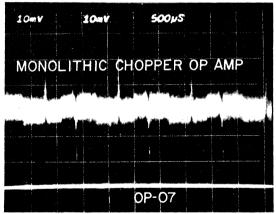

Manufactu Part Num		V _{os} Max. 0°/70°C	Long Term Drift Typical	Long Term Drift Maximum	Voltage Noise Typical 0.1Hz to 10Hz	Voltåge Noise Maximum 0.1Hz to 10Hz
OP-07A	(M)	45µ∨	.2µV/mo	1.0µV/mo	.35µV p-p	.6µV р-р
OP-07	(M)	130µ∨	.2µV/mo	1.0µV/mo	.35µV p-p	.6µV p-р
OP-07E	(C)	130µV	.3μV/mo	1.5µV/mo	.35µV p-p	.6µV p-p
OP-07C	(C)	250µ∨	.4µV/mo	2.0µV/mo	.38µV p-p	.65µV p-p
LM108A	(M)	725µ∨	Not Specified	Not Specified	Not Specified	Not Specified
HA-2900 Chopper-Sta	(M) bilized	60µ∨	Not Specified	Not Specified	35µ∨ р-р	Not Specified
HA-2905 Chopper-Sta	(C) bilized	80µ∨	Not Specified	Not Specified	35µ∨ р-р	Not Specified
AD504M	(C)	545µV	10µV/mo	Not Specified	Not Specified	.6µV p-p
AD508L	(C)	612µ∨	Not Specified	10µV/mo	1.0µV p-p	Not Specified
Typical Inverting-On Chopper Mo		95µ∨	2.0µV/mo	Not Specified	1.7µV p-p	Not Specified

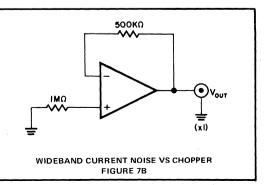
TABLE III COMMERCIAL TEMPERATURE RANGE PERFORMANCE COMPARISON

NOISE PERFORMANCE




LOW FREQUENCY NOISE FIGURE 6A




The low frequency noise photograph in Figure 6A shows $.35\mu$ Vp-p input voltage noise (0.1Hz to 10Hz), the best performance available in an instrumentation op amp at this writing. The wideband voltage noise comparison photograph (Fig. 7A) shows relative performance of a OP-07 and a monolithic chopper in the same X100 configuration; the chopper is seen to have at least 200μ Vp-p noise referred to the input. Clearly, low V_{os} specifications are not very meaningful if input voltage noise is the predominant error factor.

Chopper-frequency noise is a common mode current noise occurring at the chopping frequency due to switching transients. The effect of a 500Kohm source mismatch is shown in the wideband current noise photograph comparing a OP-07 with a monolithic chopper in the non-inverting buffer application (Fig. 7B). High source impedance circuits require low input noise currents, which as the photograph illustrates, can be larger than input bias current with certain operational amplifiers.

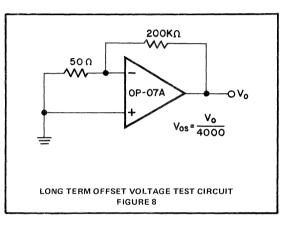
LONG TERM Vos DRIFT

Input offset voltage drift over time has three components: Warmup drift, first month drift, and trend line stability.

Warmup drift is a change in V_{os} occurring in the first few minutes of operation. In order to produce high volumes of OP-07's, V_{os} is measured .5 seconds after application of power using automated test equipment. The pass limits are "guard-banded" or made small enough with respect to the V_{os} maximum specification to compensate for not having directly observed warmup drift. In addition, offset voltage on the OP-07A selection is measured five minutes after power supply application at 25° C, -55° C and $+125^{\circ}$ C.

The first month stability, defined as changes in V_{os} from one hour to 30 days, is typically 2.5μ V. Even with closely maintained equipment, individual measurements with time can suffer from inaccuracies on the order of a half-microvolt due to low frequency noise and slight temperature variations. Fortunately, over a large number of measurements these errors tend to integrate out, and an accurate trend line can be defined.

The trend line is defined as the drift per month averaged over the month one to month twelve period, and is generally an order of magnitude better than the first month drift (Fig. 5B). Over 1.7 million device hours of testing and characterization have been logged in order to accurately specify long-term V_{OS} stability. Results indicate an average trend line drift of 0.2μ V/month-outstanding stability performance for any amplifier, regardless of its technological approach.

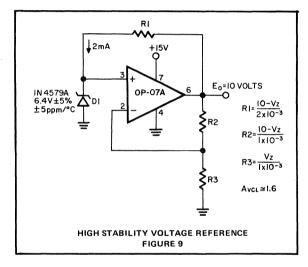

LONG-TERM Vos TESTING CONDITIONS

The deceptively simple circuit of Fig. 8 is used for long-term V_{OS} stability testing. Three absolutely essential conditions must exist for accurate measurements: still air, power supply accuracy, and long-term temperature control.

All components, including sockets and solder joints, are enclosed in a metal box to eliminate air movement and temperature gradients. Thermoelectric error voltages may be generated if the dissimilar metal junctions formed by solder joints and socket contacts are at different temperatures. This effect is minimized by using "low thermal" solder (70% Cadmium, 30% Tin) and nonmetallic flux, such as Kester #1544, to avoid ionic contamination.

Although the power supply rejection ratio (PSRR) of the OP-07 is extremely high, nevertheless it should be considered as a potential error factor in long-term V_{os} testing. The power supplies are verified to be at ± 15 volts ± 10 mV before each set of weekly readings. This removes any possible significant errors due to the PSRR specification of 110dB (3 μ V/Volt).

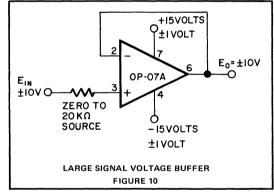
All long-term V_{OS} testing is performed in a controlled laboratory environment of 30°C to eliminate TCV_{OS} , $0.2\mu V/^{\circ}C$, as an error possibility.



APPLICATIONS OF OP-07

HIGH STABILITY VOLTAGE REFERENCE

The simple bootstrapped voltage reference circuit of Figure 9 provides a precise 10 volts virtually independent of changes in power supply voltage, ambient temperature, and output loading. Correct zener operating current of exactly 2mA is maintained by R1 a selected 5ppm/°C resistor, connected to the regulated output. Accuracy is primarily determined by three factors: The 5ppm/°C temperature coefficient of D1, 1ppm/°C ratio tracking of R2 and R3, and operational amplifier V_{os} errors.


 V_{OS} errors, amplified by 1.6 (A_{VCI}), appear at the output and can be significant with most monolithic amplifiers. For example: an ordinary amplifier with TCV_{OS} of 5\mu V/°C contributes .8ppm/°C of output error while the OP-07 at .3\mu V/°C (0.5ppm/°C) effectively eliminates TCV_{OS} as an error consideration.

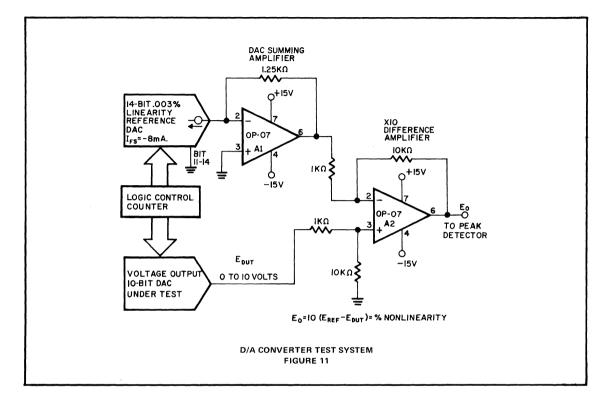
Perhaps the most easily overlooked accuracy requirement in this and many other critical circuits, is long-term V_{OS} stability. In this circuit, a 741 drifting at 100 μ V/mo would cause 200ppm/year of output drift—a very large amount. This type of problem is particularly troublesome in potted subassemblies where periodic recalibration is impossible. Use of the OP-07 at 1 μ V/mo maximum avoids this potentially troublesome condition.

LARGE SIGNAL BUFFER-.005% WORST-CASE ACCURACY

Unity gain large-signal buffers are one of the most common applications of operational amplifiers. The low V_{OS} and high CMRR of the OP-07 provide high accuracy, and small physical size is achieved due to the complete absence of external components. Performance over the appropriate temperature range is shown for the various OP-07 selections. Note that the errors on Table IV are absolute worst-case numbers, a combination that would be extremely unlikely in actual practice. A figure closer to expected overall performance based on the RMS sum of typical errors is also included. Typical mil temp range error for the OP-07A is 44μ V-far smaller than most other amplifiers' input offset voltage error alone.

Error	OP-07A -	55°/+125°	OP-07 -55°/+125°		OP-07E 0°	/+70°	OP-07C (0°/+70°
Source	Min/Max	Typical	Min/Max	Typical	Min/Max	Typical	Min/Max	Typical
V _{os} ¹	60µ∨	25µV	200µV	60µ∨	130µV	45μV	250µV	85µV
IBias ¹	80µ∨	20µ∨	120µV	40µ∨	110µ∨	30µ∨	180µ∨	44µ∨
CMRR ¹	50µ∨	7μV	50µ∨	7µ∨	70µ∨	7μV	141µV	10µV
PSRR ¹	40µ∨	10µ∨	40µV	10µ∨	63µV	13µ∨	100µV	20µV
Gain ¹	50µ∨	25µV	67µV	25µ∨	56µ∨	22µV	100µ∨	25μV
ΔV _{OS} 5 years	60µ∨	12µV	60µV	12μV	90µ∨	18µV	120µV	24µ∨
Total	340µ∨	44µV*	537µV	78µV*	519µ∨	63µV*	891µV	104µ∀'
Percent Full Scale	.0034%	.0005%*	.0054%	.0008%*	.0052%	.0006%*	.009%	.001%*

TABLE IV

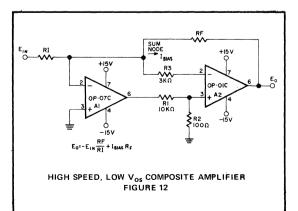

¹Full operating temperature range specifications.

15-32

CALIBRATION-FREE DAC TESTING SYSTEM

The circuit of Figure 11' is part of an automated test system used for measuring 6-bit to 10-bit DAC nonlinearity at each

possible digital input code combination. It detects the largest difference between a 14-bit linear reference DAC and a unit under test, and generates an output voltage that is directly proportional to nonlinearity as a percentage of full scale.

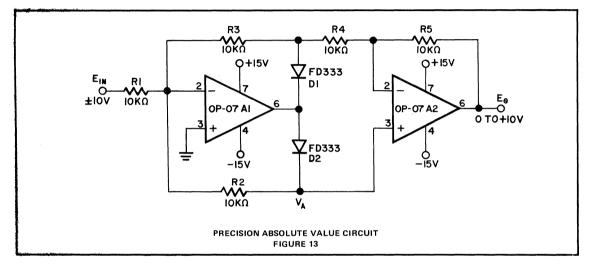

Reference DACs are frequently supplied having current-output only, with selection of a summing amplifier left up to the user. Summing amplifier characteristics must not cause degradation of reference DAC linearity, full-scale, or zero scale performance or erroneous testing could occur. In addition, V_{OS} errors are direct zero scale output errors, so both long term V_{OS} stability and drift over temperature are important. Using a OP-07, total E_{ref} errors due to op amp performance are estimated at less than $100\mu V$ or .2LSB on a 14-bit base, permanently eliminating zero calibration while maintaining test system accuracy. Summing amplifier applications requiring higher speed should use the composite amplifier of Figure 12.

Another OP-07 is used in the difference amplifier for high common mode rejection and V_{os} stability. This op amp is well-suited for critical test system circuits, providing accurate measurements, high reliability, and calibration-free operation.

COMPOSITE SUMMING AMPLIFIER WITH HIGH SLEW RATE AND LOW V_{os}

The circuit configuration of Figure 12 is a method for obtaining a $18V/\mu$ sec slew rate with OP-07 V_{os} characteristics. V_{os} of A2 (3mV) is continuously nulled by forcing the sum node to equal V_{os} of A1 through a secondary feedback loop formed by R1, R2, A2's input stage, and R3. An error due to I_{Bias} of

A2 limits practical values of feedback resistances to a maximum of $5K\Omega$ in most applications; a fast FET input op amp could be used as A2 to reduce the circuit's bias current to approximately 2nA. The circuit is also good as a current-output DAC summing amplifier because zero scale offset adjustments are not required and high speed is preserved. Composite connections such as this are generally quite cost-effective compared to single op amps having both high slew rate and good V_{os} specifications


ADDOLUTE VALUE CIRCUIT WITH MINIMUM ERROR

This circuit provides precise full-wave rectification by inverting negative-polarity input voltages and operating as a unity-gain buffer for positive-polarity inputs. It is useful for conditioning imputs to unipolar A to D's, positive peak detectors, single gradmant multipliers, and magnitude-only measurement systems. A polarity indication for sign plus magnitude applications is present at the output of A1.

For a positive input, the circuit operates as two stages of inverting unity-gain amplification. As the input goes positive, two output of A1 becomes negative, turning D2 off and D1 on, phoeng the junction of R3 and R4 at $-E_{in}$. VA is at zero volts because D2 is off and only insignificant A2 bias current flows in #2. A2 operates as a second inverting unity-gain stage and E_0 equals E_{in} .

For negative inputs, the first stage gain to point V_A is -2/3 because D2 is on, D1 is off, and 1/3 of the input current, $E_{in}/R1$, flows in R3 and R4. The second stage is operated in a non-inverting gain of 1.5 configuration with V_A as its input, giving an over-all circuit gain of -1.

Using conventional op amps, input offset voltage is usually the predominent error factor because it is doubled and added to E_{in}. For example, with E_{in} of 100mV, only .5mV of V_{os} will cause 1% output error. Clearly, A1 and A2 must be low V_{os} op amps to achieve high accuracy over the full input voltage range. By using a OP-07, performance is mainly a function of resistor ratio matching and diode leakages. Gain errors due to resistor matching will typically be less than .03% when R2-R4 are within .01% of R1's value. Low leakage diodes should be used to prevent errors from reverse current flow in R2 or R3 which would appear as V_{os} error of A2.

PRECISION ABSOLUTE VALUE CIRCUIT

Persitive Input

1) VA = 0, D2 off, D1 on

2)
$$E_o = \left(\frac{-E_{in}R3}{R1}\right)$$
. $\left(\frac{-R5}{R4}\right)$
= $E_{in} \frac{R3R5}{R1R4}$

3) With R1=R3=R4=R5:

Eo = Ein

4) $V_{\Theta S}$ error included: $E_{\Theta} = E_{in} + 2V_{OS}2$

Negative Input

1) D1 off, D2 on
2)
$$\frac{-E_{in}}{R1} = \frac{V_A}{R2} + \frac{V_A}{R3 + R4}$$

3) $E_0 = V_A \left(1 + \frac{R5}{R3 + R4}\right)$
4) With R3=R4=R5:

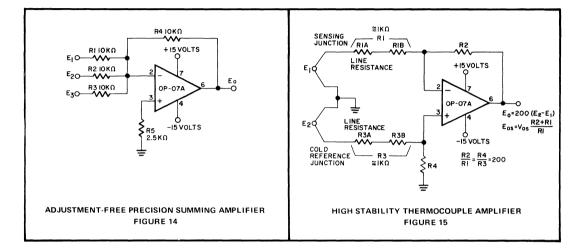
$$E_0 = 1.5V_A$$

(B2) (B3 + B4) (15)E:

5)
$$E_0 = -\frac{(R_2)(R_3 + R_4)(R_3)E_{III}}{R_1(R_2 + R_3 + R_4)}$$

6) With R1=R2=R3=R4: $E_0 = -E_{in}$

7)
$$V_{os}$$
 error included:
 $E_o = -E_{in} + 1.5V_{os2} - .5V_{os1}$


8) For Both Inputs:

$$E_0 = + |E_{in}|$$

PRECISION SUMMING AMPLIFIER WITH NO ADJUSTMENTS

Figure 14 shows the basic op amp connection for analog computation, a precision summing amplifier. Analog computers use several of these stages connected in combinations to produce continuous outputs that are a function of multiple input variables. Single-stage accuracy is important because errors accumulate throughout a system and determine its over-all performance. Some analog computers require time-consuming and annoying recalibration of each stage at weekly or monthly intervals to compensate for long-term V_{OS} drift. This circuit, with 1 μ V to 2 μ V per month maximum change in V_{OS}, completely eliminates periodic calibration while insuring long-term accuracy.

Single-stage maximum full scale errors contributed by the op amp range from .001% for a OP-07A to .004% for a OP-07C. This makes resistor-related errors of ratio matching and temperature tracking the major accuracy considerations. Instrumentation quality operational amplifiers with ultrallow V_{OS} allow simple construction of high performance summing and differencing amplifiers.

INSTRUMENTATION AMPLIFIERS FOR THERMOCOUPLES

Thermocouples are very low voltage output temperature transducers requiring differential DC amplification before linearization and display. Typical full scale outputs are under 50mV with some types having as low as $5\mu V/^{\circ}C$ sensitivity.

These very small input signals often have sizable common mode voltages present because thermocouples are frequently located in high-noise industrial environments. The single op-amp instrumentation amplifier of Figure 15 has the high common mode rejection and long-term accuracy required for this stringent application.

The amplifier achieves about 100dB of common mode voltage rejection over a full ±13 volt range when the ratios of R2/R1 and R4/R3 are matched within .01%. R1B and R3B are usually around 1K Ω , a value large in respect to line resistance but small enough to make voltage drops from input bias currents negligible. Input voltages and V_{os} are both amplified by 200 so V_{os} changes, either long-term or due to temperature, can cause direct output error. For example, with a 5 μ V/°C thermocouple, the OP-07A holds this error factor to .5°C/year and 1°C for an amplifier operating temperature range of 100°C (-25°C to +75°C)– a typical industrial environment. For 0°C to 70°C applications, the low-cost OP-07C holds output error due to a change in V_{os} below 1°C/year and 2°C over the full commercial operating temperature range.

The circuit is useful whenever small differential signals from low-impedance sources must be accurately amplified in the presence of large common mode voltages.

CONCLUSIONS

The OP-07 Ultra-Low Offset Voltage Operational Amplifier is a cost-effective monolithic alternative to the chopperstabilized amplifier and is suitable for a wide variety of critical applications. An internal trimming procedure achieves significant improvements over previous bipolar designs in offset voltage, noise levels, and long-term stability at a moderate cost. For the first time, a complete precision IC op amp is available requiring no external components whatsoever for general application, thus increasing reliability by decreasing system complexity. The adjustmentfree, fully interchangeable device allows tremendous simplification of calibration and field servicing procedures. This is a most powerful and cost-effective design tool--choppertype performance and bipolar prices with 741 ease-ofoperation.

REFERENCES

- Erdi, G. "Minimizing Offset Voltage Drift with Temperature in Monolithic Operational Amplifiers." Proceedings of the National Electronic Conference, Volume 25, 1969.
- (2) Erdi, G. "A Low Drift, Low Noise Monolithic Operational Amplifier for Low Level Signal Processing." Fairchild Semiconductor Application Brief #136, July 1969.

Application Notes

AN-14

INTERFACING PRECISION MONOLITHICS DIGITAL-TO-ANALOG CONVERTERS WITH CMOS LOGIC

by Donn Soderquist

The rise in popularity of CMOS logic has created a demand for digital-to-analog converters with CMOS-compatible logic inputs. The low current logic input stages in all Precision Monolithics DAC's allow simple CMOS interfacing in most applications. Since interfacing is easily achieved, the proven advantages of low cost and high speed are available to both TTL and CMOS system designers. This application note discusses interfacing methods and rules for both voltage and current output types and describes several typical CMOS system applications.

INTERFACING THE DAC-08

The DAC-08 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, 2μ A logic input current and completely adjustable logic threshold voltage. For V- = -15V, the logic inputs may swing between -10V and +18V. This enables direct interface with +15V CMOS logic, even when the DAC-08 is powered from a +5V supply. Minimum input logic swing and minimum logic threshold voltage are given by: V- plus ($I_{REF} \cdot 1 \ K\Omega$) plus 2.5V. The logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 1, V_{LC}). It should be noted that pin 1 will source approximately 100 μ A; external circuitry should be designed to accommodate this current.

Fastest settling times are obtained when pin 1 sees a low impedance. If pin 1 is connected to a resistive divider, as in Fig. 1, it should be bypassed to ground by a 0.1μ F capacitor.

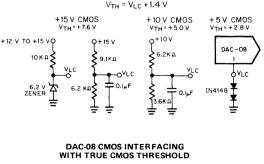


FIGURE 1

INTERFACING THE DAC-02, DAC-03, AND DAC-04

Three complete voltage output monolithic DAC's are described in this section: the DAC-02 and DAC-03, 10-bit plus sign devices, and the DAC-04, a 10-bit two's complement coded converter. These DAC's are well-suited to use in CMOS systems as their complete, internal temperature-compensated references eliminate the external reference voltage requirement, a major source of power dissipation, drift, and cost in some CMOS compatible designs.

These DAC's have logic input stages which require about $1\mu A$ and are capable of operation with inputs between -5 volts and V+ less .7 volt. This wide input voltage range allows direct CMOS interfacing in many applications, the exception being where the CMOS logic and D/A converter must use the same power supply.

In this special case, a diode should be placed in series with the CMOS driving device's V_{DD} lead as shown in Figure 2. The diode limits V_{DD} to V+ less .7 volt-since the output from the CMOS device cannot exceed this value, the DAC's maximum input voltage rule is satisfied. Summarizing: in all applications, these high-speed DAC's require either no interfacing components, or, at most, a single inexpensive diode for full CMOS compatibility.

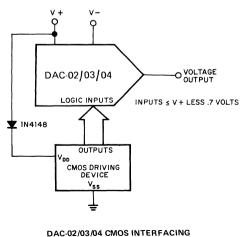


FIGURE 2

INTERFACING THE DAC-100 AND DAC-01

The DAC-100, a complete 10-bit monolithic fast current output DAC is available in a wide range of electrical grades and packages. This device requires only about 1μ A of input current into each logic stage. Similar logic input stages are used in the DAC-01, a complete voltage output 6-bit DAC. One rule must be observed when interfacing these DAC's with CMOS inputs: logic input voltages should not exceed 6.5 volts or V+, whichever is smaller. To provide an understanding of this rule, it is necessary to discuss the logic input stage design.

ANALOG OUTPUT TINESDA MAXIMUM JUNESDA INASIMUM JUNESDA INASIMUM JUNESDA JUNESD

FIGURE 3

DAC100 LOGIC INPUT STAGE DESIGN

For simplicity, only one of the ten identical input circuits is shown in Figure 3. The DAC100 uses a fast currentsteering technique that switches a bit-weighted current between the positive supply (V+) and the analog output, which is usually constrained to be at zero volts (virtual ground) by an external summing amplifier.

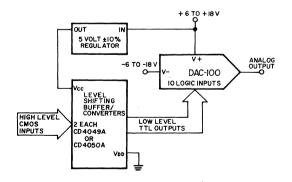
Switching is accomplished by forward biasing Q4, a diodeconnected transistor, for the bit "on" condition and back biasing Q4 in the "off" condition. For the "on" condition (V_{1N} \leq .7 volts), Q3 is "off"-all of the bit-weighted current, 1, flows from the analog output through Q4 and ultimately to V-. In the "off" condition (V_{1N} \geq 2.1 volts), Q3 is "on", Q4 is back biased, and the bit-weighted current is sourced from the positive power supply instead of the analog output.

If V_{1N} is too high, Q4's emitter-base junction will experience reverse breakdown and a fault condition will occur. Equation 1 describes this condition:

(1)
$$BV_{1H} = V_{BE1} + V_{BE2} + V_{BE3} + BV_{EB4} \approx 7.7$$
 volts

Using this relationship, it can be seen that a conservative input voltage limit would be around 6.5 volts. When the 6.5V input limit is observed, DAC100 operation with CMOS inputs is easily achieved as demonstrated in the following applications section.

CMOS COMPATIBLE OPERATION OF DAC-100 WITH ± 6 VOLT POWER SUPPLIES

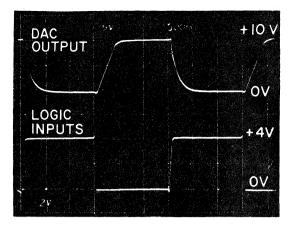

This is the most convenient method of interfacing a DAC-100 with CMOS logic. At ± 6 volts, DAC-100 power dissipation is only 80mW, which is very small considering the inclusion of a complete internal reference. No interfacing components are required with $\pm 5\%$ power supplies, and the CMOS logic and DAC-100 can use the same ± 6 volt power supply. In this application the device is directly CMOS compatible.

HIGH LEVEL CMOS INTERFACING

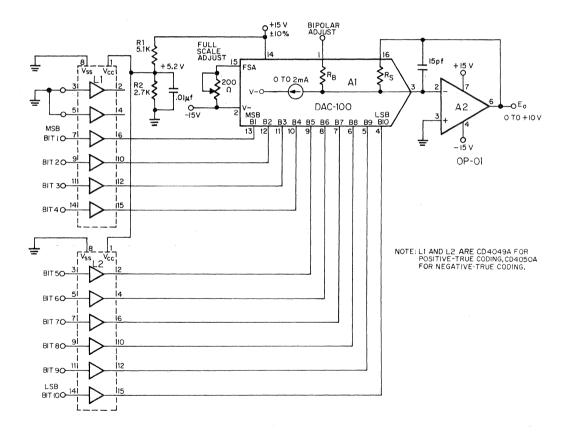
The block diagram in Figure 4 illustrates a convenient method for interfacing CMOS input levels between 6.5 volts and 15 volts with a DAC-100. Inexpensive and readily available CMOS hex buffer/converters step down the high-level inputs to TTL levels that cannot exceed 5 volts—clearly satisfying the input stage voltage rule.

In addition to level shifting, buffer/converters provide input coding flexibility since they are available as inverting (CD4049A) or noninverting (CD4050A) devices. This gives the user a choice between negative-true and positive-true binary coding and allows the same basic DAC-100-to-CMOS interfacing method to be used in either type of application.

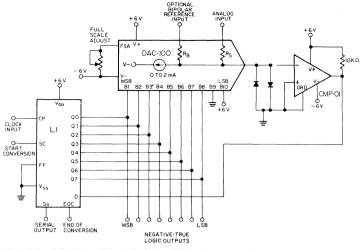
Since buffer/converter power consumption is very low, the required +5 volts can be provided by a simple regulator or even a resistive divider in some applications. In a multi-DAC system, one central, inexpensive 3-terminal IC regulator can supply several level shifting devices. Next, we will examine a complete circuit using all of these concepts in a high-speed CMOS compatible DAC.



BLOCK DIAGRAM – CMOS TO DAC-100 INTERFACE FIGURE 4


COMPLETE CMOS COMPATIBLE DAC

The complete, 10-bit, voltage output DAC in Figure 5 has CMOS input compatibility, high speed, and low cost. Current output from the DAC-100 is accurately converted to a voltage by the Precision Monolithics OP-01, a high speed op amp which has been specifically designed for the DAC summing amplifier application. Input offset voltage of this op amp is typically 2mV., eliminating the requirement for zero scale adjustment.


The dynamic performance, as shown in the photograph, is quite good. Slew rate is $18V/\mu$ sec while settling time to ±.05% of full scale requires less than 1.5 μ sec. DC performance is also good since DAC-100 nonlinearity is specified over the entire temperature range. In addition, the internal temperature-compensated voltage reference provides minimum full scale drift and decreases overall circuit complexity.

DYNAMIC PERFORMANCE

INTERFACING DAC-100 WITH ±15 VOLT CMOS SYSTEMS FIGURE 5

8-BIT CMOS COMPATIBLE THREE IC SUCCESSIVE APPROXIMATION A TO D CONVERTER FIGURE 6

LOW COST THREE IC CMOS COMPATIBLE A/D CONVERTER

The diagram in Figure 6 is a modification of a previously published application note circuit substituting CMOS logic for TTL. All necessary logic for A to D conversion is contained in L1, a MC14559 CMOS successive approximation register. A conversion sequence is initiated by applying a positive pulse, with a width greater than one clock cycle, to the "Start Conversion" input. The analog input, applied to R_s and converted to a current, is compared successively to 1/2 scale, then 1/4 scale, and the remaining binarily decreasing bit weights until it has been resolved within $\pm 1/2$ LSB. At this time, "End of Conversion" changes to a logic "1" and the parallel answer

is present in negative-true, binary-coded format at the register outputs.

Tracking A to D's may be similarly constructed using CD4029A up/down counters, a DAC-100, and a CMP-01 fast precision comparator.

CONCLUSION

Precision Monolithics D/A converters may be easily incorporated into CMOS systems. Low current logic input stage designs allow simple interfacing with a minimum of external components. The low power dissipation, high speed output and low cost make this line of monolithic DAC's attractive in CMOS system designs.

Application Notes

AN-15

MINIMIZATION OF NOISE IN OPERATIONAL AMPLIFIER APPLICATIONS

by Donn Soderquist

INTRODUCTION

Since operational amplifier specifications such as input offset voltage and input bias current have improved tremendously in the past few years, noise is becoming an increasingly important error consideration. To take advantage of today's high performance op amps, an understanding of the noise mechanisms affecting op amps is required. This paper examines noise contributions, both internal and external to an op amp, and provides practical methods for minimizing their effects.

BASIC NOISE PROPERTIES

Noise, for purposes of this discussion, is defined as any signal appearing in an op amp's output that could not have been predicted by DC and AC input error analysis. Noise can be random or repetitive, internally or externally generated, current or voltage type, narrowband or wideband, high frequency or low frequency; whatever its nature, it can be minimized.

The first step in minimizing noise is source identification in terms of bandwidth and location in the frequency spectrum; some of the more common sources are shown in Figure 1, an 11-decade frequency spectrum chart. Some preliminary observations can be made: noise is present from DC to VHF from sources which may be identified in terms of bandwidth and frequency. Noise source bandwidths overlap, making noise a composite quantity at any given frequency. Most externally caused noise is repetitive rather than random and can be found at a definite frequency. Noise effects from external sources must be reduced to insignificant levels to realize the full performance available from a low noise op amp.

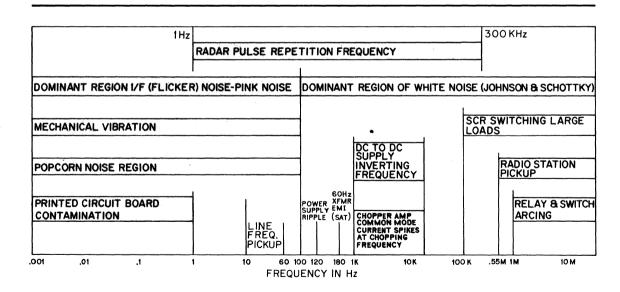
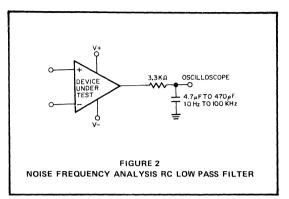


FIGURE 1 FREQUENCY SPECTRUM OF NOISE SOURCES AFFECTING OPERATIONAL AMPLIFIER PERFORMANCE


EXTERNAL NOISE SOURCES

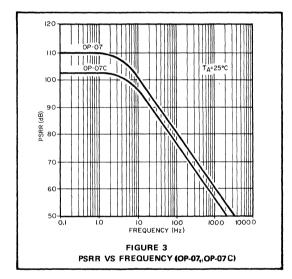
Since noise is a composite signal, the individual sources must be identified to minimize their effects. For example, 60 Hz power line pickup is a common interference noise appearing at an op amp's output as a 16 msec sine wave. In this and most other situations, the basic tool for external noise source frequency characterization is the oscilloscope sweep rate setting. Recognizing the oscilloscope's potential in this area, Tektronix[®] manufactures several preamplifiers with variable bandwidth and frequency which allow quick noise source frequency identification. Another basic identification tool is the simple low pass filter as shown in Figure 2, where the bandpass is calculated by:

1)
$$f_0 \cong \frac{1}{2\pi RC}$$

With such a filter, measurement bandpass can be changed from 10Hz to 100KHz (C = 4.7μ F to 470pF), attenuating higher

frequency components while passing frequencies of interest. Once identified, noise from an external source may be minimized by the methods outlined in Table 1-the external noise chart.

	TABL	E 1 EXTERNAL NOISE SOURCE CHART	
Source	Nature	Causes	Minimization Methods
60Hz Power	Repetitive Interference	Powerlines physically close to op amp inputs. Poor CMRR at 60Hz. Power Transformer primary-to-secondary capa- citive coupling.	Reorientation of power wiring. Shielded transformers. Single point grounding. Battery power.
120Hz Ripple	Repetitive	Full wave rectifier ripple on op amp's supply terminals. Inadequate ripple con- sideration. Poor PSRR at 120Hz.	Thorough design to minimize ripple. RC decoupling at the op amp. Battery power.
180 Hz	Repetitive EMI	180Hz radiated from saturated 60Hz transformers.	Physical reorientation of components. Shielding. Battery power.
Radio Stations	Standard AM Broadcast Through FM	Antenna action anyplace in system.	Shielding. Output filtering. Limited cir- cuit bandwidth.
Relay and Switch Arcing	High frequency burst at switching rate	Proximity to amplifier inputs, power lines, compensation terminals, or nulling terminals.	Filtering of HF components. Shielding. Avoidance of ground loops. Arc sup- pressors at switching source.
Printed Circuit Board Contamination	Random Low Frequency	Dirty boards or sockets.	Thorough cleaning at time of soldering followed by a bakeout and humidity sealant.
Radar Transmitters	High Frequency Gated At Radar Pulse Repetition Rate	Radar transmitters from long range sur- face search to short range navigational— especially near airports.	Shielding. Output filtering of frequencies >> PRR.
Mechanical Vibration	Random < 100 Hz	Loose connections, intermittent metallic contact in mobile equipment.	Attention to connectors and cable con- ditions. Shock mounting in severe environments.
Chopper Frequency Noise	Common Mode Input Current At Chopping Frequency	Abnormally high noise chopper amplifier in system.	Balanced source resistors. Use bipolar input op amps instead. Use premium low noise chopper.


65

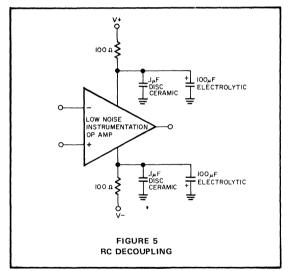
POWER SUPPLY RIPPLE

Power supply ripple at 120Hz is not usually thought of as a noise, but it should be. In an actual op amp application, it is quite possible to have a 120Hz noise component that is equal in magnitude to all other noise sources combined, and, for this reason, it deserves a special discussion.

To be negligible, 120 Hz ripple noise should be between 10 nV and 100 nV referred to the input of an op amp. Achieving these low levels requires consideration of three factors: the op amp's 120 Hz power supply rejection ration (PSRR), the regulator's ripple rejection ratio, and finally, the regulator's input capacitor size.

PSRR at 120Hz for a given op amp may be found in the manufacturer's data sheet curves of PSRR versus frequency as shown in Figure 3. For the amplifier shown, 120Hz PSRR is about 74dB, and to attain a goal of 100nV referred to the input, ripple at the power terminals must be less than .5mV. Today's IC regulators provide about 60dB of ripple rejection; in this case the regulator input capacitor must be made large enough to limit input ripple to .5V.

Externally-compensated low noise op amps can provide improved 120Hz PSRR in high closed-loop gain configurations. The PSRR versus frequency curves of such an op amp are shown in Figure 4. When compensated for a closed-loop gain of 1000, 120Hz PSRR is 115dB. PSRR is still excellent at much higher frequencies allowing low ripple-noise operation in exceptionally severe environments.


POWER SUPPLY DECOUPLING

Usually, 120 Hz ripple is not the only power supply associated noise. Series regulator outputs typically contain at least 150μ V of noise in the 100 Hz to 10 KHz range; switching types contain even more. Unpredictable amounts of induced noise can also be present on power leads from many sources. Since high frequency PSRR decreases at 200B/decade, these higher frequency supply noise components must not be allowed to reach the op amp's power terminals. RC decoupling, as shown in Figure 5, will adequately filter most wideband noise. Some

caution must be exercised with this type of decoupling, as load current changes will modulate the voltage at the op amp's supply pins.

PSRR VS FREQUENCY (SSS725, SSS725B, SSS725E)

POWER SUPPLY REGULATION

Any change in power supply voltage will have a resultant effect referred to an op amp's inputs. For the op amp of Figure 3, PSRR at DC is 110dB $(3\mu V/V)$ which may be considered as a potential low frequency noise source. Power supplies for low noise op amp applications should, therefore, be both low in ripple and well-regulated. Inadequate supply regulation is often mistaken to be low frequency op amp noise.

When noise from external sources has been effectively minimized, further improvements in low noise performance are obtained by specifying the right op amp and through careful selection and application of the associated components.

OP AMP NOISE SPECIFICATIONS

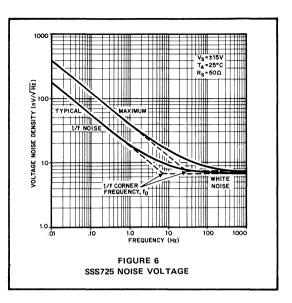
Most completely specified low noise op amp data sheets specify current and voltage noises in a 1Hz bandwidth and low frequency noise over a range of .1Hz to 10Hz. To minimize total noise, a knowledge of the derivation of these specifications is useful. In this section, the reader is provided with an explanation of basic op amp-associated random noise mechanisms and introduced to a simplified method for calculating total input-referred noise in typical applications.

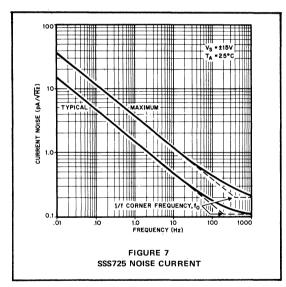
RANDOM NOISE CHARACTERISTICS

Op amp-associated noise currents and voltages are random. They are aperiodic and uncorrelated to each other and have Gaussian amplitude distributions, the highest noise amplitudes having the lowest probability. Gaussian amplitude distribution allows random noises to be expressed as rms quantities; multiplying a Gaussian rms quantity by six results in a peak to peak value that will not be exceeded 99.73% of the time (this is a handy rule-of-thumb for noise calculations).

The two basic types of op amp-associated noises are white noise and flicker noise $(1/f_{.})$. White noise contains equal amounts of power in each Hertz of bandwidth. Flicker noise is different in that it contains equal amounts of power in each *decade* of bandwidth. This is best illustrated by spectral noise density plots such as in Figures 6 and 7. Above a certain corner frequency, white noise dominates; below that frequency flicker (1/f) noise is dominant. Low noise corner frequencies distinguish low noise op amps from general purpose devices.

SPECTRAL NOISE DENSITY


To utilize Figures 6 and 7, let us consider the definition of spectral noise density: the square root of the rate of change of mean-square noise voltage (or current) with frequency (Eq. 2).


2A)
$$e_n^2 = \frac{d}{df} (E_n)^2$$

2B) $i_n^2 = \frac{d}{df} (I_n)^2$

3A)
$$E_n = \sqrt{\int_{f_i}^{f_H} e_n^2 df}$$

3B)
$$I_n = \sqrt{\int_{f_L}^{f_H} i_n^2 df}$$

Conversely, the rms noise value within a given frequency band is the square root of the definite integral of the spectral noise density over that frequency band (Eq. 3). This means that three things must be known to evaluate total voltage noise (E_n) or current noise (I_n) : f_H , f_L , and a knowledge of noise behavior over frequency.

WHITE NOISE

White noise sources are defined to have a noise content that is equal in each Hertz of bandwidth, and Eq. 3 may be rewritten for white noise sources as:

4)
$$E_n$$
 (w) = $e_n \sqrt{f_H - f_L}$ 5) I_n (w) = $i_n \sqrt{f_H - f_L}$

It is therefore convenient to express spectral noise density in V/\sqrt{Hz} or A/\sqrt{Hz} where $f_H - f_L = 1$ Hz. When $f_H \ge 10$ f_L , the white noise expressions may be further reduced to:

6)
$$E_n(w) = e_n \sqrt{f_H}$$
 7) $I_n(w) = i_n \sqrt{f_H}$

FLICKER NOISE

Since flicker noise content is equal in each decade of bandwidth, total flicker noise may be calculated if noise in one decade is known. The .1Hz to 1Hz decade noise content (K) is widely used for this purpose because the white noise contribution below 10Hz is usually negligible.

8)
$$E_n(f) \cong K \sqrt{\frac{1}{f}}$$
 9) $I_n(f) \cong K \sqrt{\frac{1}{f}}$

When substituted in Eq. 3, the expressions may be rewritten to:

10)
$$E_n(f) = K \sqrt{ln\left(\frac{f_H}{f_L}\right)}$$
 11) $l_n(f) = K \sqrt{ln\left(\frac{f_H}{f_L}\right)}$

FLICKER NOISE AND WHITE NOISE

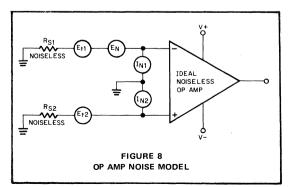
When corner frequencies are known, simplified expressions for total voltage and current noise (E_N and I_N) may be written:

12)
$$E_{N} (f_{H} - f_{L}) = e_{n} \sqrt{f_{ce} \ln\left(\frac{f_{H}}{f_{L}}\right) + f_{H} - f_{L}}$$

13) $I_{N} (f_{H} - f_{L}) = i_{n} \sqrt{f_{ci} \ln\left(\frac{f_{H}}{f_{L}}\right) + f_{H} - f_{L}}$

Where: $e_n =$ White noise voltage in a 1 Hz bandwidth

- in = White noise current in a 1 Hz bandwidth
- f_{ce} = Voltage noise corner frequency
- f_{ci} = Current noise corner frequency


f_H = Upper frequency limit

f₁ = Lower frequency limit

The two most important internally generated noise minimization rules are derived from Eq. 12 and 13: limit the circuit bandwidth and use operational amplifiers with low corner frequencies.

NOISE SUMMATION

In the spectral density discussion, the concepts of white noise and flicker noise were introduced. In Figure 8, the complete input-referred op amp noise model, internal white and flicker noise sources are combined into three equivalent input noise generators, E_N , I_{N1} and I_{N2} . The noise current generators produce noise voltage drops across their respective source resistors, R_{S1} and R_{S2} . The source resistors themselves generate thermal noise voltages, E_{t1} , and E_{t2} . Total rms

input-referred voltage noise, over a given bandwidth, is the square root of the sum of the squares of the five noise voltage sources over that bandwidth.

$$I4) E_{NT}(f_{H}-f_{L}) = \sqrt{E_{N}^{2} + (I_{N1} \cdot R_{S1})^{2} + (I_{N2} \cdot R_{S2})^{2} + E_{t1}^{2} + E_{t2}^{2}}$$

Minimization of total noise requires an understanding of the mechanisms involved in each of the five generators. First, the white noise mechanisms, thermal and shot, are discussed, followed by the low frequency noise mechanisms, flicker and popcorn.

THERMAL NOISE

Thermal (Johnson) noise is a white noise voltage generated by random movement of thermally-charged carriers in a resistance; in op amp circuits this is the type of noise produced by the source resistances in series with each input. Its rms value over a given bandwidth is calculated by:

15)
$$E_t = \sqrt{4kTR(f_H - f_L)}$$

T = Absolute temperature, [°]Kelvin

R = Resistance in ohms

 $f_H = Upper frequency limit in Hertz$

 $f_L = Lower frequency limit in Hertz$

At room temperature Eq. 15 simplifies to:

16)
$$E_t = 1.28 \times 10^{-10} \sqrt{R (f_H - f_L)}$$

To minimize thermal noise (E_{t1} and E_{t2}) from R_{S1} and R_{S2} , large source resistors and excessive system bandwidth should be avoided.

Thermal noise is also generated inside the op amp, principally from r_{bb^\prime} , the base-spreading resistances in the input stage transistors. These noises are included in E_N , the total equivalent input voltage noise generator.

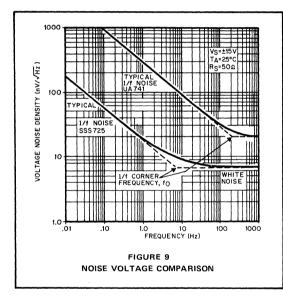
SHOT NOISE

Shot noise (Schottky noise) is a white noise current associated with the fact that current flow is actually a movement of discrete charged particles (electrons). In Figure 8, I_{N1} and I_{N2} , above the 1/f frequency, are shot noise currents which are related to the amplifier's DC input bias currents:

17)
$$I_{sh} = \sqrt{2q I_{BIAS} (f_H - f_L)}$$

At room temperature Eq. 17 simplifies to:

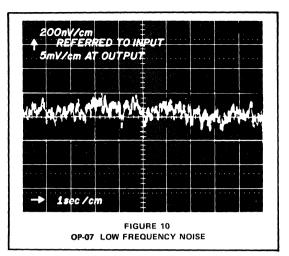
18)
$$I_{sh} = 5.64 \times 10^{-10} \sqrt{I_{BIAS} (f_H - f_L)}$$

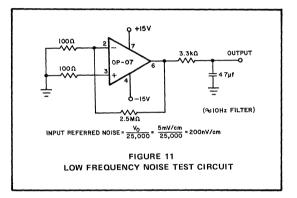

Shot noise currents also flow in the input stage emitter dynamic resistances (r_e), producing input noise voltages. These voltages, along with the $r_{bb'}$ thermal noise, make up the white noise portion of E_N , the total equivalent input noise voltage generator.

FLICKER NOISE

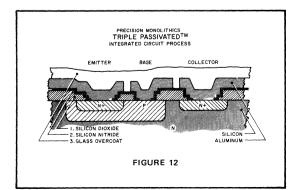
In limited bandwidth applications, flicker (1/f) noise is the most critical noise source. An op amp designer minimizes flicker noise by keeping current noise components in the input and second stages from contributing to input voltage noise. Eq. 19 illustrates this relationship:

19)
$$\frac{i_n \text{ second stage}}{g_m \text{ first stage}} = e_n \text{ input}$$


Another critical factor is corner frequency. For minimum noise the current and voltage noise corner frequencies must be low; this is crucial. As shown in Figure 9, low noise corner frequencies distinguish low noise op amps from ordinary industrystandard 741 types.



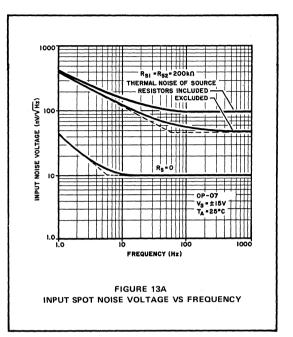
The photograph in Figure 10, taken using the test circuit of Figure 11, illustrates the flicker noise performance of the OP-07. This device demonstrates proper attention to low noise circuit design and wafer processing and achieves a remarkable 0.35μ V peak to peak input voltage noise in the 0.1 Hz to 10 Hz bandwidth.


POPCORN NOISE

Popcorn noise (burst noise) is a momentary change in input bias current usually occurring below 100 Hz, and is caused by imperfect semiconductor surface conditions incurred during wafer processing. Precision Monolithics minimizes this problem through careful surface treatment, general cleanliness, and a special three-step process known as "Triple Passivation."

To begin the process, a specially treated thermal silicon dioxide layer is grown. This protects the junctions and also attracts any residual ionic impurities to the top surface of the oxide, where they are held fixed. Next, a layer of silicon nitride is applied to prevent the entry of any potential contamination or impurities. The third step is the thick glass overcoat which leaves only the bonding pads exposed. A cutaway view of a finished device is shown in Figure 12.

Op amp manufacturers face a difficult decision in dealing with popcorn noise. Through careful low noise processing, it can be eliminated from almost all devices; alternatively, the processing may be relaxed, and finished devices must be individually tested for this parameter. Special noise testing takes valuable labor time, adds significant amounts to manufacturing cost, and ultimately increases the price a customer has to pay. At Precision Monolithics the low noise process alternative is used to manufacture high volumes of cost-effective low noise op amps.


TOTAL NOISE CALCULATION

With data sheet curves and specifications, and a knowledge of source resistance values, total input-referred noise may be calculated for a given application. To illustrate the method, noise information from the Precision Monolithics OP-07 data sheet is reproduced in Figure 13. The first step is to determine the current and voltage noise corner frequencies so that the E_N and I_N terms of Eq. 14 may be calculated using Eq. 12 and 13.

CORNER FREQUENCY DETERMINATION

In the input spot noise versus frequency curves of Figure 13, it may be seen that voltage noise $(R_s = 0)$ begins to rise at about 10 Hz. Lines projected from the horizontal (white noise) portion and sloped (flicker noise) portion intersect at 6 Hz, the voltage noise corner frequency (fce). In the center curve, excluding thermal noise from the source resistance, current noise multiplied by 200 K $\!\Omega$ is plotted as a voltage noise. Lines projected from the horizontal portion and sloped portions intersect at 60 Hz, the current noise corner frequency (f_{ci}).

Eq. 12 and 13 also require e_n and i_n for calculation of E_N and IN. To find en and in, use the data sheet specification a decade or more above the respective corner frequencies; in this case e_n is 9.6 nV / \sqrt{Hz} (1000 Hz), and i_n is 0.12pA/√Hz (1000 Hz).

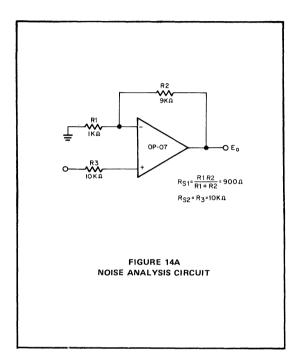
ELECTRICAL CHARAC	LECTRICAL CHARACTERISTICS						OP-07		
These specifications apply fo	r V _s = ± 1!	5V, $T_A = 25^{\circ}C$, unless	otherwise	e noted.					
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Noise Voltage	^е пр-р	0.1Hz to 10Hz		0.35	0.6		0.35	0.6	μv p-
Input Noise Voltage Density		f _o = 10Hz		10.3	18.0		10.3	18.0	
	e _n	f _o = 100Hz		10.0	13.0		10.0	13.0	n∨/√
		f _o = 1000Hz		9.6	11.0		9.6	11.0	
Input Noise Current	ⁱ np-p	0.1Hz to 10Hz		14	30		14	30	pA p-
		fo = 10Hz	T	0.32	0.80		0.32	0.80	
Input Noise Current Density	ⁱ n	fo = 100Hz		0.14	0.23		0.14	0.23	pA/√ł
		fo = 1000Hz		0.12	0.17		0.12	0.17	
Input Offset Voltage	V _{os}			10	25		30	75	μν
Long Term Input Offset Voltage Stability	V _{os} /Time			0.2	1.0		0.2	1.0	μv/M
Input Offset Current	los			0.3	2.0		0.4	2.8	nA
Input Bias Current	IВ			±.7	±2.0		±1.0	±3.0	nA

INPUT NOISE VOLTAGE (enp-p)

The peak to peak noise voltage in a specified frequency band. INPUT NOISE VOLTAGE DENSITY (en)

INPUT NOISE CURRENT (inp.p)

The rms noise voltage in a 1Hz band surrounding a specified value of frequency.


The peak to peak noise current in a specified frequency band. INPUT NOISE CURRENT DENSITY (in) The rms noise current in a 1Hz band surrounding a specified value

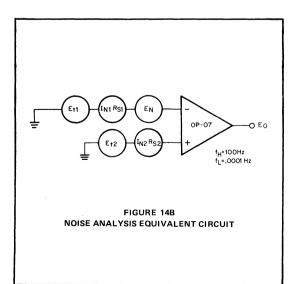

of frequency.

FIGURE 13B

BANDWIDTH OF INTEREST

To be summed correctly, each of the five noise quantities must be expressed over the same bandwidth, f_H-f_L . At this time, assume f_H to be the highest frequency component that must be amplified without distortion. Note that e_n , i_n , corner frequencies and bandwidth are independent of actual circuit component values. When doing noise calculations for a large number of circuits using the same op amp, these numbers only have to be calculated once.

TYPICAL APPLICATION EXAMPLE

Figure 14A shows a typical X10 gain stage with a 10 K Ω source resistance. In Figure 14B, the circuit is redrawn to show five noise voltage sources. To evaluate total input-referred noise, the values of each of the five sources must be determined.

Using Eq. 16:
$$E_t = \sqrt{R (f_H - f_L)}$$

 $E_{t1} = 1.28 \times 10^{-10} \sqrt{(900 \Omega)(100 Hz)} = .04 \mu V rms$
 $E_{t2} = 1.28 \times 10^{-10} \sqrt{(10 K\Omega)(100 Hz)} = .128 \mu V rms$

Next, calculate I_N using Eq. 13:

$$I_{N} = i_{n} \sqrt{f_{ci} \ln \left(\frac{f_{H}}{f_{L}}\right) + f_{H} - f_{L}}$$
$$= .12 pA \sqrt{60 \ln \frac{100 Hz}{.0001 Hz} + 100 - .0001}$$

and:

 $I_{N1} \cdot R_{S1} = 3.66 \text{ pA} (900 \Omega) = .0033 \mu \text{Vrms}$

 $I_{N2} R_{S2} = 3.66 pA (10 K\Omega) = .0366 \mu V rms$

Finally, E_N from Eq. 12:

$$E_{N} = e_{n} \sqrt{f_{ce} \ln\left(\frac{f_{H}}{f_{L}}\right) + f_{H} - f_{L}}$$

= 9.6 nV $\sqrt{6 \ln \frac{100 \text{ Hz}}{.0001 \text{ Hz}} + 100 - .0001}$
= .130 µVrms

Substituting in Eq. 14:

$$14)E_{NT}^{(f_H-f_L)} = \sqrt{E_N^2 + I_{N1}^2 R_{S1}^2 + I_{N2}^2 R_{S2}^2 + E_{t1}^2 + E_{t2}^2}$$

$$= \sqrt{(.130\mu V)^{2} + (.0033\mu V)^{2} + (.0366\mu V)^{2} + (.04\mu V)^{2} + (.128\mu V)^{2}}$$

Total input-referred noise = 1.14μ V peak to peak (.0001 Hz to 100 Hz).

741 CALCULATION EXAMPLE

The preceding calculation determined total noise in a given bandwidth using a low noise op amp. To place this level of performance into perspective, a calculation using the industry-standard 741 op amp in the circuit of Figure 14 is useful. Once again the starting point is corner frequency determination, using the data sheet curves of Figure 15: $f_{ce} = 200$ Hz; $f_{ci} = 2$ KHz; $e_n \cong 20$ nV/ $\sqrt{\text{Hz}}$; $i_n = .5$ pA/ $\sqrt{\text{Hz}}$.

Using these corner frequencies and noise magnitudes, E_N and I_N are calculated to be $1\mu Vrms$ and 83 pArms respectively. Multiplying this noise current by the source resistance gives terms 2 and 3 of Eq. 14 as shown below:

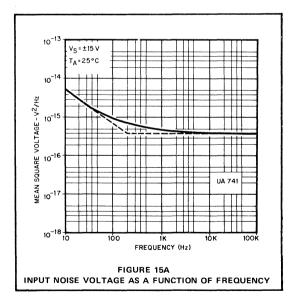
$$14)E_{NT}(f_{H} - f_{L}) = \sqrt{E_{N}^{2} + I_{N1}^{2}R_{S1}^{2} + I_{N2}^{2}R_{S2}^{2} + E_{+1}^{2} + E_{+2}^{2}}$$

Substituting in Eq. 14:

$$= \sqrt{(1\mu V)^{2} + (.075\mu V)^{2} + (.83\mu V)^{2} + (.04\mu V)^{2} + (.128\mu V)^{2}}$$

= 1.3µVrms

Total input-referred noise = 7.8μ V peak to peak (.0001 Hz to 100 Hz).

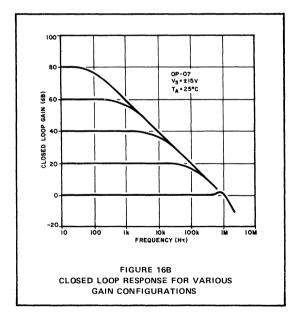

This is 6.8 times that of the low noise op amp example.

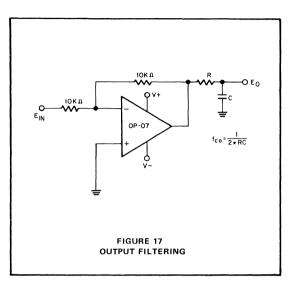
The calculation examples illustrate three rules for minimizing noise in operational amplifier applications:

RULE 1. Use an op amp with low corner frequencies.

RULE 2. Keep source resistances as low as possible.

RULE 3. Limit circuit bandwidth to signal bandwidth.




BANDWIDTH

Effective circuit bandwidth must not be much greater than signal bandwidth or amplification of undesirable high frequency noise components will occur. Throughout the preceding calculations, an assumption of "bandwidth-of-interest" was made, while in actual application the amplifier's bandwidth must be considered.

120 0P-07 vs=±15v 80 TA = + 25°C (9 B) GAIN LOOP OPEN L 0 -40. 01 10 iò 100 lÓk 100 k IM 101 lk FREQUENCY (Hz) FIGURE 16A OPEN LOOP FREQUENCY RESPONSE

In Figure 16, the OP-07 frequency response curves show a rolloff of 20dB/decade; integration of the area under the curve will show the effective circuit noise bandwidth to be 1.57 times the 3dB bandwidth. In most closed-loop gain configurations, the amplifier's bandwidth may be greater than required, and output filtering, such as in Figure 17, could be used. As an alternate to output filtering, an integrating capacitor may be connected across the feedback resistor. Bandwidth may also be limited in some applications by overcompensating an externally-compensated low noise op amp, such as the SSS725.

MISCELLANEOUS NOISE MINIMIZATION METHODS

Certain other noise mechanisms merit consideration: Use metal film resistors; carbon resistors exhibit "excess noise," with both 1/f and white noise content being related to DC applied voltage. The use of balanced source resistors, while sometimes good for DC error purposes, will increase noise; the balancing resistor is not required for op amps such as the OP-07, since $I_{OS} \approx I_{B}$. Keep noise in its proper perspective; minimize it without introducing additional DC errors. Use low noise op amps with overall DC specifications that will satisfy the application.

SUMMARY

A summary of the major points to consider is as follows:

- 1) Minimize externally generated noise.
- 2) Choose an amplifier with low 1/f noise corner frequencies.
- 3) Limit the circuit bandwidth to signal bandwidth.
- 4) Eliminate excessive resistance in the input circuit.

CONCLUSION

Recent improvements in IC op amp DC specifications have made noise an important error consideration. From data sheet information and source resistance values, total input-referred noise over a given bandwidth can be easily calculated. Total noise can be minimized by a thorough understanding of the various noise-generation mechanisms.

Application Notes

AN-16

LOW COST, HIGH SPEED ANALOG-TO-DIGITAL CONVERSION WITH THE DAC-08

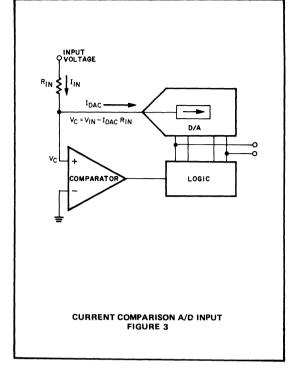
by Donn Soderquist & John Schoeff

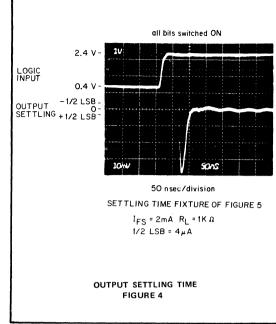
Today's fast computer and microprocessor-controlled systems frequently require A/D converters which will complete a conversion in one cycle time.

Until now, these high speed A/D converters have been expensive and difficult to build. Most designers have therefore chosen to purchase modular A/D converters typically ranging in price from \$100 to \$400. This application note describes three less costly A/D designs, with total conversion times of 4 μ sec, 2 μ sec, and 1 μ sec. These designs are implemented with the DAC-08, a recently announced high speed monolithic Digital-to-Analog converter. A discussion of basic successive approximation is given, followed by practical circuit designs.


SUCCESSIVE APPROXIMATION A/D ADVANTAGES

Successive approximation A/D conversion is the most popular choice in many systems today because it achieves high conversion rates at very low cost. Other methods, such as Tracking (Servo) or Staircase (Ramp), require up to "2ⁿ" clock cycles per conversion, where "n" is the number of bits of resolution, while successive approximation requires only "n+1" clock cycles. Finally, a designer can easily construct his A/D with readily available standard IC's.


BASIC SUCCESSIVE APPROXIMATION A/D CONVERSION


A successive approximation A/D converter operates by comparing the analog input to a series of "trial" conversions; the first trial compares the input to the value of the most significant bit (MSB) or approximately half of full scale. Fig. 1 shows the progression of trials for a 3-bit converter. If the input is greater than the MSB value, the MSB is retained and the converter moves on to "trying" the next most significant bit, or approximately three-quarters full scale. If the input had been less than the MSB, the logic would have turned the MSB off before going on to the next most significant bit, or one-quarter full scale. This "branching" continues until each successively smaller bit has been tried, with the entire process taking "n" trials.

To implement the logic for the successive approximation algorithm, a configuration similar to Fig. 2 may be employed, wherein a start command places a "one" in the first bit of a shift register. This sets the first latch to "one" and turns on the DAC's MSB. If the comparator output remains low, the "one" will remain in the latch; if not, the latch will be reset to zero before the next bit trial begins. The next clock cycle causes the shift register to place a "one" in the second bit, and a similar process continues till all bits have been tried. After the last bit's trial, the end-of-conversion output changes state indicating the parallel data is ready to be used.

15-50

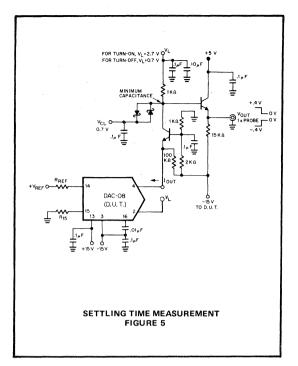
CURRENT COMPARISON

The previous discussion indicated that the function of the comparator was to perform a comparison between the analog input <u>voltage</u> and the output <u>voltage</u> of the DAC. Higher speed conversions may be achieved by using the output of a fast current output DAC directly. This may be implemented as shown in Fig. 3, where the comparator examines the polarity of $(V_{IN} - I_{DAC}R_{IN})$. Current comparison eliminates the need for a current-to-voltage converting op amp which is by far the slowest element in most D/A converters.

DYNAMIC CONSIDERATIONS

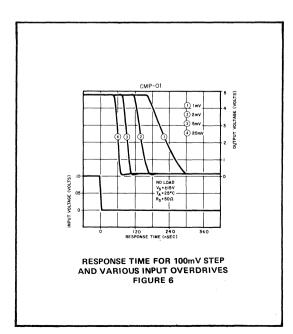
The time required to complete an 8 bit successive approximation A/D conversion is determined by the length of 8 trials and their associated comparator decisions, plus one clock cycle. To minimize these periods, three dynamic considerations must be made:

- 1. DAC output current settling time to $\pm 1/2$ LSB.
- 2. Comparator propagation delay with the available overdrive.
- 3. Logic propagation delay and setup time requirements.

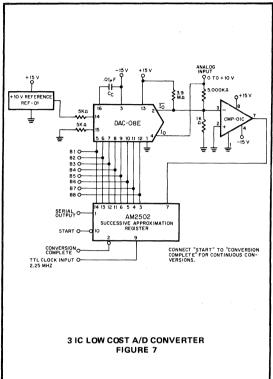

For example, with a 500nsec DAC, a 500nsec comparator, and 100nsec of logic delay, each of these cycles would require 1.1μ sec. An 8 bit conversion would take 9 clock periods, or 10μ sec. To design a fast A/D, each of these delays must be made as short as possible. In the next few paragraphs, practical methods of minimizing these delays are discussed.

DAC CURRENT SETTLING TIME

The DAC-08 is a low cost monolithic current output DAC with 85nsec full scale settling time and is ideal for use in high speed A/D converter designs. The internal logic switch design enables propagation delays of 35nsec for each of the 8 bits. Settling time of the LSB to within $\pm 1/2$ LSB of final value is therefore 35nsec, with each successively more significant bit taking progressively longer. The MSB settles in 85nsec; it is the dominant factor of full scale settling time. This performance is illustrated in the scope photo of Fig. 4, taken at the output of the test circuit of Fig. 5.


A major factor affecting settling time is the RC time constant formed by the load resistance (R_L) and the DAC output capacitance (C_O) plus any stray capacitance present at the summing node. Settling to within ±1/2LSB at 8 bits (±.2% full scale) requires 6.2 RC time constants. For the DAC-08, the output capacitance is 15pF; as a result the output RC time constant is a major factor influencing settling time when R_L is greater than 500 Ω and dominates when R_L exceeds 900 Ω .

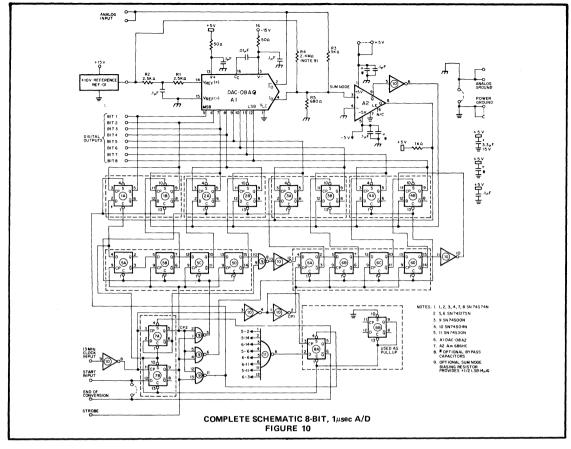
This situation produces difficult requirements. Optimum DAC settling time occurs when $R_L \leq 500\Omega$, but for full scale currents of 2mA, 1/2LSB is only 4 μA . Thus, with a 500 Ω equivalent resistance, the voltage at the DAC output corresponding to 1/2LSB is only 2mV and is inadequate for high speed operation of many comparators. For this reason, R_L is usually larger than 500 Ω , which is a necessary compromise between DAC settling time and comparator input overdrive requirements.



COMPARATOR CONSIDERATIONS

All comparators respond fastest to large differential input voltages (high overdrive). This phenomenon is shown in Fig. 6, a graph of response time vs. input voltage for the Precision Monolithics' CMP-01. This low cost comparator provides DC characteristics compatible with 10 and 12 bit A/D converters and has adequate speed for 4μ sec 8 bit converters.

For 2 μ sec and 1 μ sec designs, the AM686 was selected. It provides 12nsec propagation delay with 2.5mV overdrive, Schottky TTL outputs, and DC input specifications adequate for an 8 bit A/D. Ultra-high speed requires considerable power. Maximum supply currents are 42mA from the +5V supply and 34mA from the -5V supply.

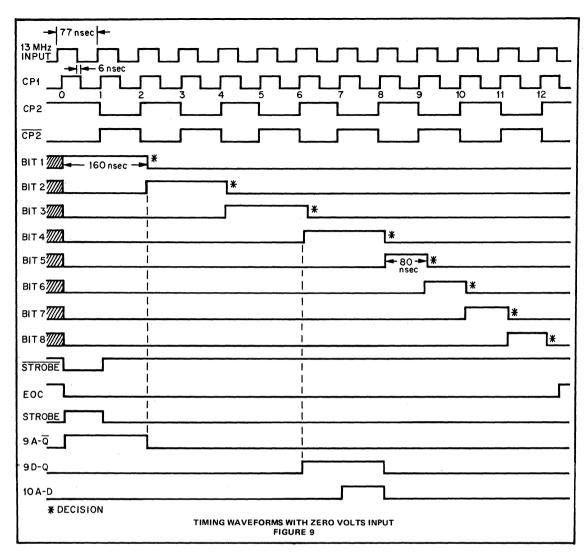


LOGIC CONSIDERATIONS

A single DIP package, the AM2502 Successive Approximation Register, contains the logic for 8 bit A/D converters operating at 2μ sec or greater conversion times. (Detailed descriptions of A/D's constructed with the AM2502 and Precision Monolithics DAC's are contained in AN-11, available upon request.) A 1 μ sec A/D requires special logic design using Schottky TTL and will be described in the detailed circuit description.

PRACTICAL 3 IC A/D'S

When the required conversion time is $\geq 2\mu$ sec, the DAC-08's fast settling time enables very simple and low cost designs. A 4 μ sec design is shown in Fig. 7. At additional cost and increased power dissipation, changing the comparator to an AM686 results in a 2 μ sec A/D. Every nanosecond counts in a 1 μ sec A/D, and the circuit necessarily increases in complexity. However, with the DAC-08, Schottky TTL logic, and attention to layout, a 1 μ sec A/D can be constructed at low cost.

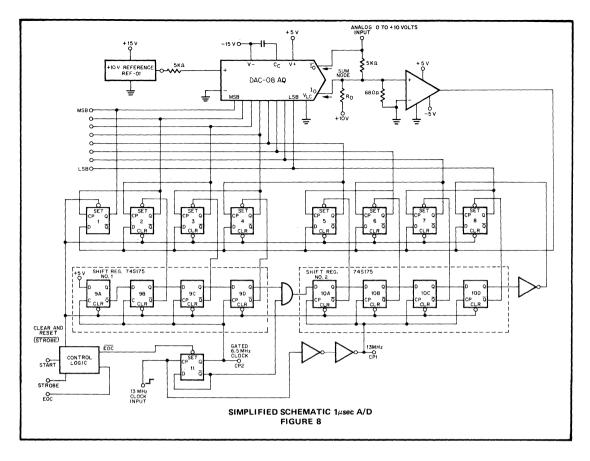

ANALOG DESIGN

The DAC-08 AQ is useful in this design for several reasons. Its output full scale current is guaranteed to be 1.992mA $\pm 8\mu$ A, when a 10.000V reference is connected to a 5.000K Ω resistor in series with pin 14. In this design, the 5K Ω is split to allow bypassing without capacitively loading the 10 volt source. For slightly higher speed, the total resistance may be reduced to 2.5K Ω , thereby increasing I $_{\Omega}$ full scale to 3.984mA, allowing a lower sum node resistance and lower RC time constant. (The DAC itself does not settle faster at 4mA full scale current.) The DAC-08A maximum nonlinearity of ±0.1% full scale enables faster settling time to within ±1/2LSB (±0.2% full scale) for each bit trial than would be the case using a DAC with ±0.2% nonlinearity. Using the ±0.2% nonlinearity DAC-08 or DAC-08E provides cost savings at an overall increase in conversion time. Both true and complementary current outputs are provided, and their summation is always I_{full} _{scale}. In this design, I_{O} is connected to the analog input. Since $I_0 + \overline{I_0}$ is constant, and Io flows in R3, the DC input current is constant. Holding the A/D input current constant reduces buffer amplifier output impedance requirements. The buffer amplifier used in this application must have sufficient bandwidth to hold V_{INI} constant during a 1 μ sec A/D conversion.

CALIBRATION AND ACCURACY

In many applications calibration is not required. With a 10.000V reference and $\pm 0.05\%$ tolerance resistors, the worst case full scale error is $\pm 0.15\%$. The zero scale error is totally dependent upon comparator input offset voltage and input bias current, and, in most cases, it may be tolerated. If the errors are not tolerable, then the following calibration procedure may be used.

Calibration of the A/D is done first at zero scale, then at full scale. The zero transition is set by R4, a resistor connected to the +10 volt reference. For 10V full scale, the desired transition point between a code of 0000 0000 and 0000 0001 is at +20mV (+1/2LSB). With an ideal comparator, R4 would be 2.56M Ω (10 volts/3.9 μ A). Since comparators are less than ideal, R4 must also cancel out the comparator's input offset errors. With +20mV applied at the analog input and using a low clock rate, select R4 to cause the output code to fluctuate between 0000 0000 and 0000 0001. (Do not install a pot for R2 or R4 since it will increase capacitance and inductance at the sum node.) Full scale is calibrated by applying +9.940V to the analog input and trimming R2 until the output code fluctuates between 1111 1110 and 1111 1111. Alternatively, the reference voltage source may be adjusted for the same effect. This will be a small adjustment due to the DAC-08A's tight output full scale current relationship with the reference voltage. Once calibrated, accuracy is a function of temperature-induced drifts only.


A TYPICAL CONVERSION CYCLE

A conversion is initiated by a high level at the Start input when the input 13MHz clock makes a low to high transition. Approximately 9nsec later, the control logic generates a clear and reset pulse (Strobe), which causes several events: the 8 output flip-flops are cleared except for the MSB flip-flop 1 which is set to a "one"; both shift registers are cleared; the DAC has Bit 1 turned on, all others are off. The conditions for the first trial at half scale are now established.

As the DAC output settles, the comparator continuously examines the polarity at its non-inverting input. For this case, with zero volts at the Analog Input, the comparator finds a negative voltage present; its output therefore is low. This low is applied to the "D" inputs of all 8 output flip-flops. Recall that 74S74 flip-flop outputs won't change until they are clocked by a positive transition at their CP inputs. At the time labeled 1 on the CP1 waveform, the reset and clear pulse, Strobe, returns high. Shift Register No. 1 waits for a positive-going transition of CP2. At 2 time CP2 goes high, transferring a "one" from $9A\cdot\overline{O}$ to $9B\cdotO$; $9B\cdot\overline{O}$ goes low, setting 2-O high and clocking the comparator's "zero" into the Bit 1 flip-flop. The other 6 flip-flops do nothing, because they are not clocked. Bit 1's answer is now latched, and Bit 2, 1/4 full scale, is being tried. The process continues with the shift register causing each bit to be tried from Bit 2 to Bit 8. After the Bit 8 decision, the EOC output goes high, indicating that the answer in parallel format is available at the 8 bit outputs.

OUTPUT INTERFACING

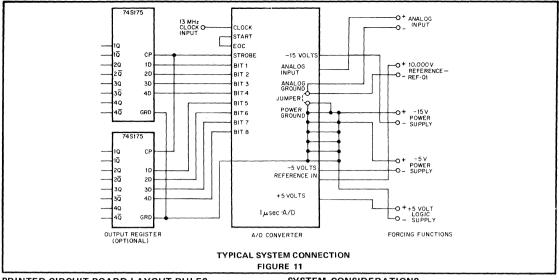
In continuous conversion operation, the most common connection, EOC is connected to the Start input. While the answer is available whenever EOC is high, it is convenient to use the positive-going edge of the Strobe output as a clock for two 74S175 quad "D" flip-flops used as an 8 bit storage latch. Since Strobe goes high before another conversion cycle begins, there is ample setup time for the latch; the answer has been steady for over 35nsec.

OVERALL DESIGN

Due to the bit settling time range of the DAC-08 from 85nsec for Bit 1 to 35nsec for Bit 8, progressively decreasing trial-and-decision periods would be ideal. Practically, such a timing sequence is difficult to generate at low cost, so a compromise was made: The first four bits allow 160nsec for each trial-and-decision, while the last four bits allow 80nsec. This may be seen in the waveforms of Fig. 9. The timing sequence is generated by shifting a "one" through two shift registers with in-phase clocks, one at 6.5MHz derived from the other at 13MHz.

Standard 74 Schottky TTL logic was selected for speed, compatibility with the AM686 comparator, ready availability, and price.

A useful characteristic of the DAC-08 is its capability to directly interface with all popular logic families including TTL, CMOS, and ECL. For this design the DAC-08's logic control pin (pin 1) is grounded to provide the proper TTL logic threshold. A design utilizing ECL could provide slightly faster conversion time at increased power consumption.


LOGIC DESIGN

The primary logic design element is the 74S series positiveedge-triggered "D" flip-flop. This type of flip-flop is useful in A/D designs because of several properties:

- 1. The propagation delay from Set to Q going high is only 3nsec.
- The information on the D input is transferred to the Ω output only at a positive-going edge of CP.
- 3. Changes at the D input (comparator settling changes) are ignored when CP is in a steady state.

74S74 dual "D" flip-flops are used for the 8 output latches and for the control logic, and 74S175 quad "D" flip-flops are used for the two shift registers.

Flip-flops 2 through 8 in the simplified schematic (Fig. 8) perform two functions. Typical operation can be understood by examining the operation of flip-flop 2. When set by an input from Shift Register No. 1, the Q output of flip-flop No. 2 goes high, which starts the trial of bit 2 and acts as a clock for flip-flop 1, transferring the comparator's output state, which is the result of trial 1, to Q of flip-flop 1. This basic connection, using the beginning of a new trial to clock the previous bit trial, is used on all 8 output flip-flops. The start of each bit trial is precisely coincident with clocking of the previous bit answer; so no time is wasted, and logic delays are reduced to setup times only.

PRINTED CIRCUIT BOARD LAYOUT RULES

SYSTEM CONSIDERATIONS

For A/D designs generally, and high speed designs in particular, layout is important. Some of the more important rules are listed below:

- 1. Digital ground must be separated from analog ground; they must meet at only one common point.
- Digital traces should not cross or be routed near sensitive analog areas; this is especially important near the sum node.
- 3. With Schottky TTL logic, the digital ground and V_{CC} traces should be large and contain provisions for generous bypassing.
- The trace from the DAC output to comparator input (sum node) should be short, and it should be guarded by analog ground.
- All analog components should be located as close as possible to the edge connector so that the input analog traces will be short.
- The comparator's outputs should be routed away from its inputs, to minimize capacitive coupling and possible oscillation.

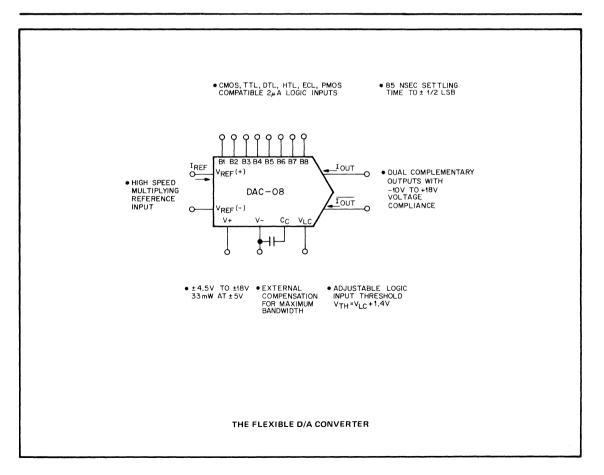
Typical system connections are shown in Figure 11. Digital grounds and analog grounds meet at one point only keeping large power supply return currents away from the sensitive analog ground portion of the A/D system. Start is connected to EOC for continuous conversions, and Strobe is used to clock the parallel answer into an output register at the end of each conversion.

CONCLUSION

The DAC-08 high speed monolithic D/A converter greatly simplifies construction of high speed A/D converters. Designs using only three IC's achieve 2μ sec and 4μ sec conversions, and 1μ sec conversions can be attained with additional logic. Techniques have been presented which allow the user to construct low cost, high speed A/D converters.

Application Notes

AN-17

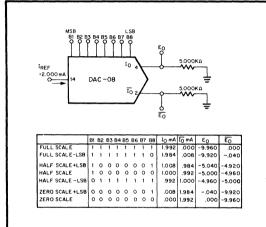

DAC-08 APPLICATIONS COLLECTION

by John Schoeff & Donn Soderquist

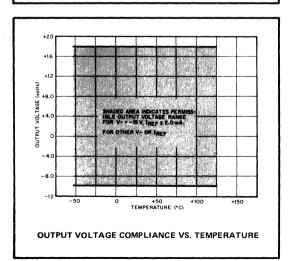
There has been a trend in recent years toward providing totally dedicated Digital-to-Analog Converters with limited applications versatility. This application note describes a new type of monolithic DAC designed for an extremely broad range of applications, the Precision Monolithics DAC-08.

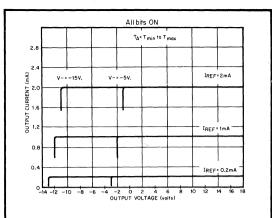
Several unique design features of this low cost DAC combine

to provide total applications flexibility. Principal among them are: dual complementary, true current outputs; universal logic inputs capable of interfacing with any logic family; 85 nsec settling time; high speed multiplying capability; and finally, the ability to use any standard system power supply voltages. A description of these features is given followed by specific applications using each feature.

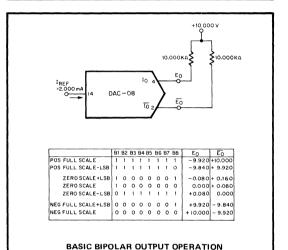

OUTPUT

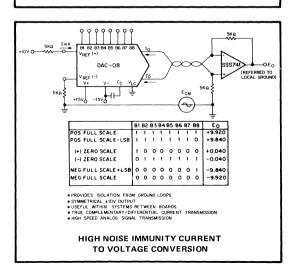
HIGH VOLTAGE COMPLIANCE CURRENT OUTPUTS


Many older current-output DAC's actually have resistive outputs which must be terminated in a virtual ground. The DAC-08, however, is a true digitally-controlled current source with an output impedance typically exceeding 20 megohms.

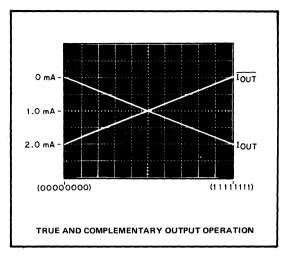

Its outputs can swing between -10V and +18V with little or no effect on full scale current or linearity. Some of the applications that require high output voltage compliance include:

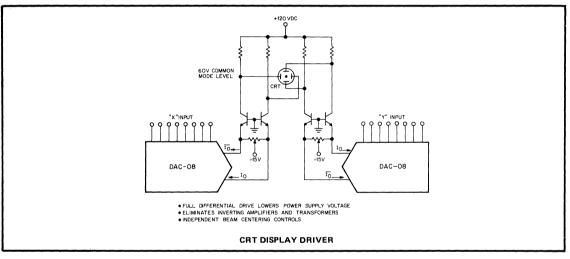
- 1) Precise current transmission over long distances.
- 2) Programmable current sources.
- 3) Analog meter movement driving.
- Resistive termination for a voltage output without an op amp.
- 5) Capacitive termination for digitally-controlled integrators.
- 6) Inductive termination with balanced transformers, transducers and headsets.

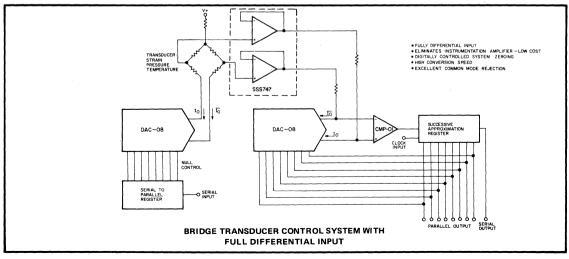



BASIC UNIPOLAR NEGATIVE OPERATION

OUTPUT CURRENT VS. OUTPUT VOLTAGE (OUTPUT VOLTAGE COMPLIANCE)

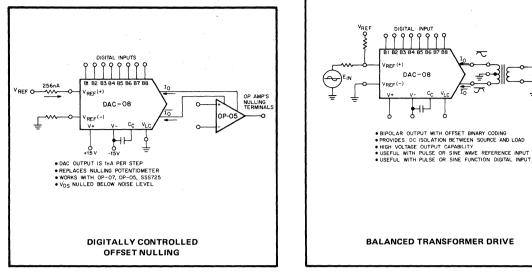





Conventional DAC's have a single output, so they cannot drive balanced loads and are limited to a single input code polarity. The DAC-08 was designed to overcome these limitations

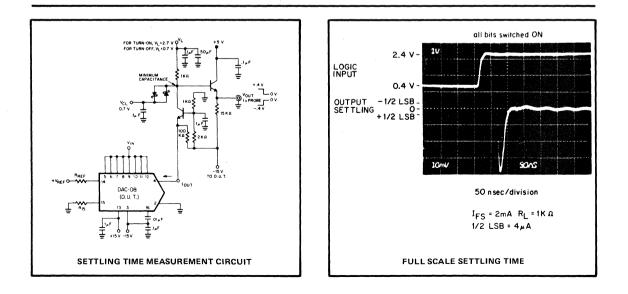
Input coding of positive binary or complementary binary is obtained by a choice of outputs, I_O for positive-true or $\overline{I_O}$ for negative-true. In many applications both are used either independently or in combination. Dual complementary outputs allow some very unusual and useful DAC applications:

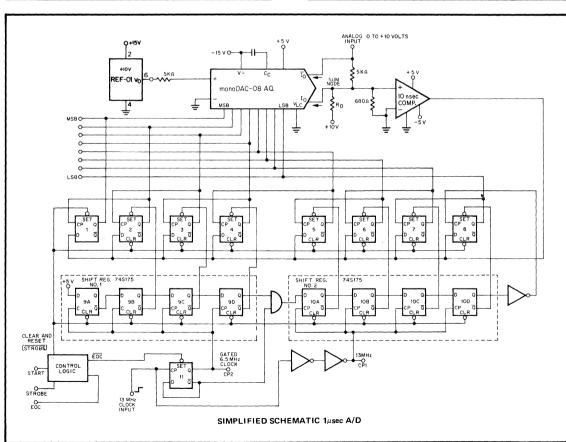
- 1) CRT display driving without transformers.
- 2) Differential transducer control systems.
- 3) Differential line driving.
- 4) High speed waveform generation.
- 5) Digitally controlled offset nulling of op amps.

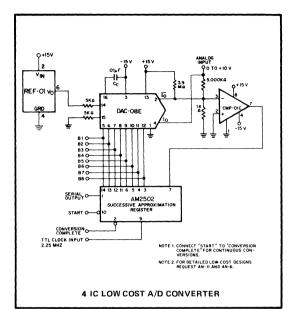


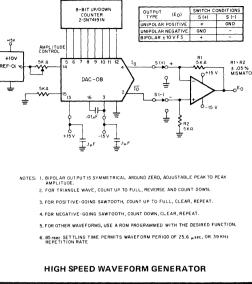
OUTPUT

DUAL COMPLEMENTARY OUTPUTS

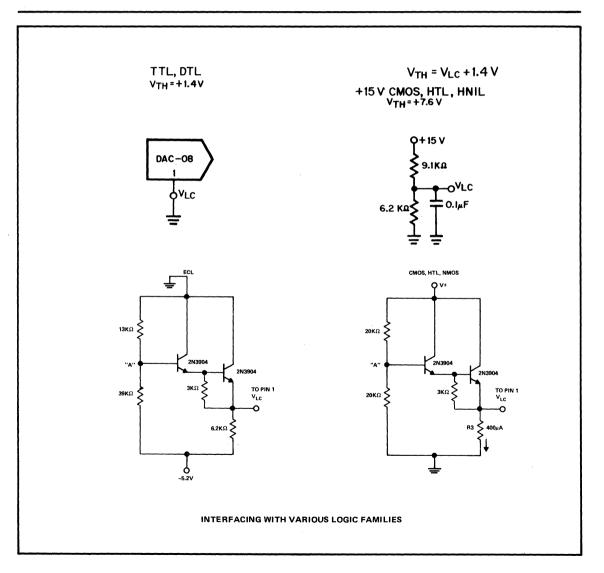

HIGH SPEED

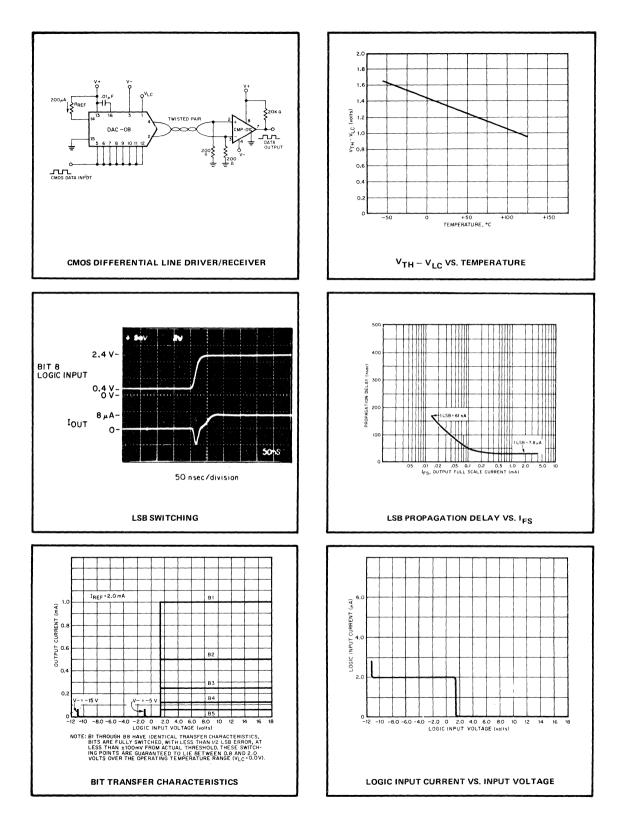

Sub-microsecond settling times are common in current-output DAC's. Many DAC's settle in 500 nsec; 300 nsec is not unusual. But 85 nsec settling time for a low cost DAC is exceptional, and this characteristic allows use of the DAC-08 in formerly difficult and expensive-to-build applications:


1) 1 μ sec, 2 μ sec and 4 μ sec A/D's. (These are completely described in AN-16, available upon request)


Ŷ

- 2) 15 MHz Tracking A/D's.
- 3) ECL compatible applications.
- 4) Video displays requiring a low-glitch DAC.
- 5) Radar pulse height analysis sytems.

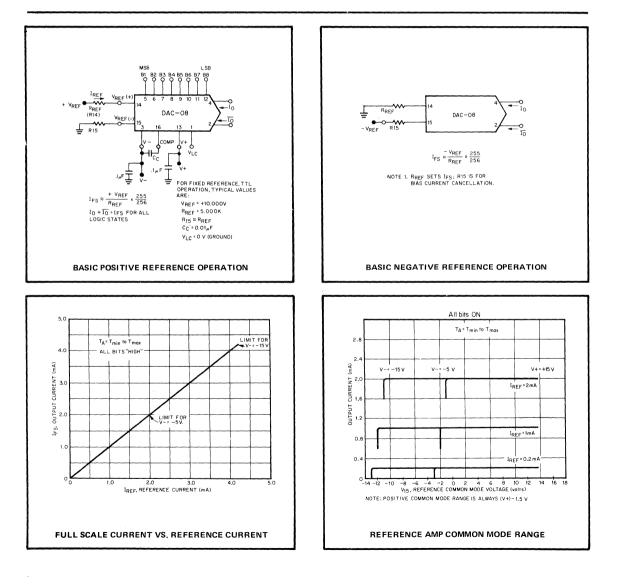

CLOCK INPUT

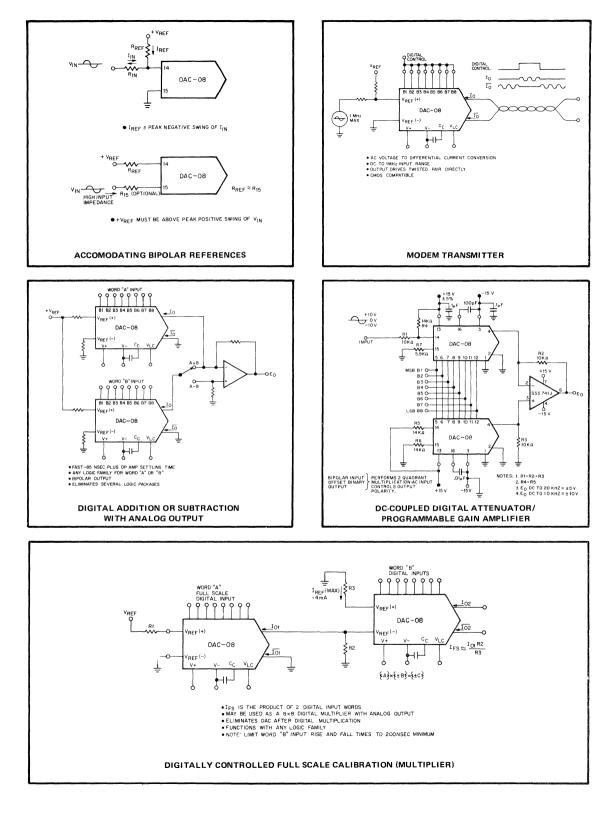

LOGIC INPUTS

ADJUSTABLE INPUT LOGIC THRESHOLD

Most DAC's have TTL or CMOS compatible inputs which require complicated interfaces for use with ECL, PMOS, NMOS or HTL logic. By contrast, the DAC-08, with typical logic input current of 2μ A and an adjustable input logic threshold, interfaces easily with any logic family in use today. The logic input threshold is 1.4V positive with respect to pin 1; for TTL pin 1 is therefore grounded; for other families pin 1 is connected as shown in the interfacing figure. An adjustable threshold and a -10V to +18V input range greatly simplify system design especially with other-than-TTL logic:

- 1) ECL applications without level translators.
- 2) Direct interfaces with Hi-Z RAM outputs.
- CMOS applications without static discharge considerations.
- 4) HTL or HNIL applications without level translators.
- 5) System size, weight, and cost reductions.

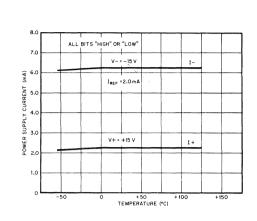




MULTIPLYING CAPABILITY

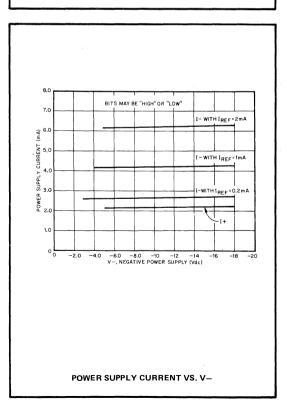
Fixed internal references are included in many DAC's, but they limit the user to non-multiplying, single polarity reference applications and do not allow a single system reference. To achieve the design goals of low cost and total applications flexibility, the DAC-08 uses an external reference. Positive or negative references may be applied over a wide common mode voltage range. In addition, the full scale current is matched to the reference current eliminating calibration in most applications.

- 1) Digitally controlled full scale calibration.
- 2) 8 x 8 multiplication of 2 digital words.
- 3) Digital Attenuators/Programmable gain amplifiers.
- 4) Modem transmitters to 1 MHz.
- 5) Remote shutdown and party line DAC applications.


15-65

POWER SUPPLY REQUIREMENTS

The DAC-08 works with $\pm 4.5V$ to $\pm 18V$ supplies allowing use with all standard digital and analog system supply voltages plus most battery voltages. With only 33mW of power dissipation at $\pm 5V$ and 85nsec settling time, it has a lower speed power product than CMOS DAC's. Power dissipation is almost constant over temperature, and bypassing is accomplished with 0.01μ F capacitors—no large electrolytics are required. These power supply requirements allow:


1) Battery operation.

- 2) Use of unregulated or poorly regulated power supplies.
- 3) Use in space-limited areas due to small bypass capacitors.
- 4) Use in constant power dissipation applications.
- 5) Common digital and analog power supplies.

POWER SUPPLY CURRENT VS. TEMPERATURE

OTHER APPLICATIONS

MICROPROCESSOR APPLICATIONS

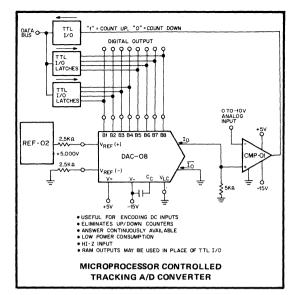
The ability to use μ P power supply voltages and the ability to interface with any logic family make the DAC-08 especially useful in μ P applications:

- 1) Tracking A/D converters.
- 2) Successive approximation A/D converters.
- 3) Direct drive from Hi-Z MOS RAM outputs.

By programming the ROM's with the successive approximation or the tracking A/D algorithm, all of the logic for A/D conversion is contained in the μ P. This is a very inexpensive approach, since there is no need for the usual A/D conversion logic packages.

OTHER APPLICATIONS: The following list summarizes just a few of the many applications for this flexible DAC. Consult the factory for further information.

A/D CONVERTERS


Tracking (Servo) Successive Approximation Ramp (Staircase) Microprocessor Controlled Ratiometric (Bridge Balancing)

TEST SYSTEMS

Transistor Tester (Force IB and IC) Resistor Matching (Use both outputs) Programmable Power Supplies Programmable Pulse Generators Programmable Current Source Function Generators (ROM Drive)

ARITHMETIC OPERATIONS

Analog Division by a Digital Word Analog Quotient of Two Digital Words Analog Product of Two Digital Words—Squaring Addition and Subtraction with Analog Output Magnitude Comparison of Two Digital Words Digital Quotient of Two Analog Variables Arithmetic Operations with Words from Different Logic Families

GRAPHICS AND DISPLAYS

Polar to Rectangular Conversion CRT Character Generation Chart Recorder Driver CRT Display Driver

DATA TRANSMISSION

Modem Transmitter Differential Line Driver Party Line Multiplexing of Analog Signals Multi-level 2-Wire Data Transmission Secure Communications (Constant Power Dissipation)

CONTROL SYSTEMS

Reference Level Generator for Setpoint Controllers Positive Peak Detector Negative Peak Detector Disc Drive Head Positioner Microfilm Head Positioner

AUDIO SYSTEMS

Digital AVC and Reverberation Music Distribution Organ Tone Generator Audio Tracking A/D

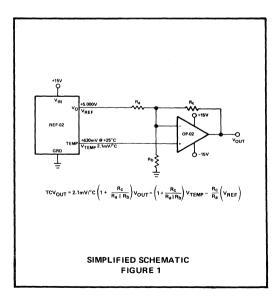
CONCLUSION

High voltage compliance complementary current outputs, universal logic inputs and multiplying capability make the Precision Monolithics DAC-08 the most versatile monolithic high speed DAC available today.

Application Notes

AN-18

THERMOMETER APPLICATIONS OF THE REF-02 by George Erdi


INTRODUCTION

This application note describes electronic thermometer applications of the REF-02 +5V Voltage Reference where the voltage output is a direct measurement of temperature in °C or in °F. These applications use the predictable 2.1mV/° C TEMP output voltage temperature coefficient of the REF-02, a byproduct of a bandgap voltage reference design. Thermometer applications are described first followed by a discussion of bandgap voltage reference theory.

THERMOMETER ESSENTIALS

In addition to a highly linear temperature sensitive component, electronic thermometers should have the following characteristics:

- 1) Convenient scaling such as $10mV/^{\circ}C,\ 100mV/^{\circ}C,$ or $10mV/^{\circ}F.$
- 2) Direct voltage readings such as -0.55V at $-55^{\circ}C$, 0V at $0^{\circ}C$, and +1.25V at $+125^{\circ}C$.
- 3) Room temperature calibration.

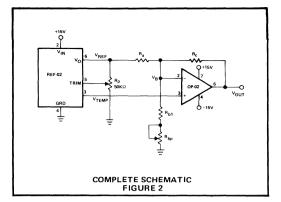
BASIC CIRCUIT IMPLEMENTATION

The simplified schematic in Fig. 1 shows the basic thermometer connections. An operational amplifier, three resistors, and the +5.000V output of the REF-02 function together to level shift and amplify V_{TEMP} allowing V_{OUT} to read in the desired manner. The expression for V_{OUT} is:

Eq. 1)
$$V_{OUT} = \left(1 + \frac{R_c}{R_a \parallel R_b}\right) V_{TEMP} - \frac{R_c}{R_a} (V_{REF})$$

The first term is the gain of the circuit with VREF equal to 0V; the second term is the gain of the circuit with VTEMP equal to 0V. Differentiating Eq. 1 with respect to temperature gives the slope, S, of the output-versus-temperature curve:

Eq. 2)
$$\frac{dVOUT}{dT} = S = m \left(1 + \frac{R_c}{R_a \parallel R_b} \right)$$
$$= 2.1 mV/^{\circ} C \left(1 + \frac{R_c}{R_a \parallel R_b} \right)$$


where m = TCVTEMP

Thus, the ratio of R_c to R_a \parallel R_b sets the slope of V_{OUT}, and the ratio of R_c to R_a and V_{REF} set the initial output value at 25°C. Table I lists typical scaling ratios for different output scales

TEMPERATURE SCALING RATIOS

$V_{\text{REF}} = 5.000 \text{V}, \text{V}_{\text{TEMP}} = 630 \text{mV} @ 25^{\circ} \text{C}, \text{TCV}_{\text{TEMP}} = 2.1 \text{mV}/^{\circ} \text{C}$					
V _{OUT} @ 25°C (77°F)	TCV _{OUT} (Slope)	$\frac{R_c}{R_a}$	R _c R _a ∥R _b		
250mV	10mV/°C	0.55	3.76		
2.5V	100mV/°C	5.50	46.6		
770mV	10mV/°F	0.926	7.57		

TABLE I

COMPLETE CIRCUIT

Two potentiometers, R_p and R_{bp}, have been added to the circuit for precise calibration and to allow for the ±1% resistor tolerances. VREF is adjusted by R_p to set the VOUT value at +25°C (77°F); the ratio of R_c to R_a || R_b is adjusted by R_{bp} to set the slope of VOUT versus temperature. Resistor values for typical output scales are shown in Table II.

TCV _{OUT} SLOPE (S)	10mV/°C	100mV/°C	10mV/° F
TEMPERATURE RANGE	–55° to +125°C	–55° to +125°C	–67° F to +257° F
OUTPUT VOLTAGE RANGE	–0.55V to +1.25V	–5.5V to +12.5V*	-0.67V to +2.57V
ZERO SCALE	0∨ @ 0° C	0V @ 0°C	0V @ 0° F
R _a (±1% resistor)	9.09KΩ	15KΩ	8.25KΩ
R _{b1} (±1% resistor)	1.5ΚΩ	1. 82 ΚΩ	1.0ΚΩ
R _{bp} (Potentiometer)	200Ω	500Ω	200 Ω
R _c (±1% resistor)	5.11ΚΩ	84.5ΚΩ	7.5K Ω

RESISTOR VALUES

*For 125°C operation, the op amp output must be able to swing to +12.5V; increase V $_{\rm IN}$ to +18V from +15V if this is a problem.

TABLE II

CALIBRATION CONDITIONS

All calibration is conducted in free air. Heatsinking of the REF-02 is unnecessary and is undesirable. The small $(2^{\circ}C)$ rise in chip temperature of the REF-02 above ambient temperature serves as an error-cancelling factor of some second order effects internal to the REF-02 design. The calibration procedure which follows assumes free air – no heatsinking – calibration.

CALIBRATION PROCEDURE

Calibration is performed at ambient temperature with two adjustments using the following procedure:

Step 1: Measure and record V_{TEMP} and T_A in °C.

Step 2: Calculate the calibration ratio "r" using Eq. 3:

Eq. 3)
$$r \equiv \frac{R_a \parallel R_b}{R_c + R_a \parallel R_b} = \frac{V_{TEMP} \text{ in } mV}{S(T_A + 273)}$$

Where S = TCVOUT, TA = ambient temperature in $^{\circ}$ C

- Step 3: Turn power off, short VREF terminal to ground, and apply a precise 100mV to the VOUT terminal.
- Step 4: Adjust R_{bp} so that $V_B = r(100 \text{ mV})$; remove short.
- Step 5: Turn power on; adjust Rp so that VOUT equals the correct value at ambient temperature.

The system is now calibrated.

CALIBRATION EXAMPLE

Here is an example at T_{A} = 25°C, S = 10mV/°C, and V_{TEMP} = 632mV:

Step 1: VTEMP = 632mV, $TA = 25^{\circ}C$.

Step 2: Using Eq. 3:

$$r = \frac{VTEMP}{S(T_A + 273)} = \frac{632}{10(25 + 273)} = \frac{632}{2980} = 0.2121$$

- Step 3: Apply 100.00mV to VOUT with power off and VREE connected to ground.
- Step 4: Adjust R_{bp} so that $V_B = r(100mV) = 21.21mV$
- Step 5: Turn power on and adjust R_p so that V_{OUT} equals +0.25V.

The system is now calibrated.

TRANSDUCER ERROR FACTORS

Error terms are threefold:

- Slope errors Deviations from nominal slope. For example, if the slope is 10.04mV/°C instead of 10.00mV/°C, the accuracy due to the slope error is 0.4%.
- Linearity errors Deviations in VTEMP versus temperature from straight line performance, a change in VTEMP slope with temperature.
- 3. Offset error VOUT deviations due to changes in VREF with temperature.

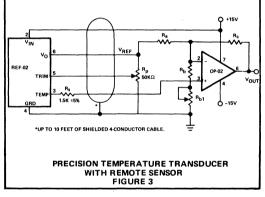
Since these errors are grade dependent, Table III is provided as an aid in specifying the correct combination of components for a given application. Offset error can be eliminated by using one REF-02 as a temperature sensor only and another REF-02 (operated at a constant temperature) as VREF.

TRANSDUCER PERFORMANCE

Typical system accuracy is $\pm 0.5\%$ over the -55° to $\pm 125^{\circ}$ C range of a REF-02A. For example, when calibrated at $\pm 25^{\circ}$ C, the reading of VOUT at $\pm 105^{\circ}$ C may be 105.4° C, a deviation of 0.5% of the 80° temperature change ($\pm 25^{\circ}$ C to $\pm 105^{\circ}$ C).

Although the REF-02 is guaranteed to perform over the -55° to $+125^{\circ}$ C range only, operation beyond those limits is possible. A large number of devices were measured and found to be functioning satisfactorily over the -150° C to $+170^{\circ}$ C range, and there was only a slight degradation in accuracy.

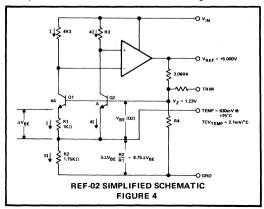
REMOTE APPLICATIONS


In many applications, the sensor must be located some distance away from the measurement circuitry. One precaution must be taken with the REF-02: a $1.5 K\Omega$ resistor

should be connected between pin 3 (TEMP) and its associated cable conductor to isolate this pin from cable capacitances. Remote application of the transducer is illustrated in Fig. 3 with R_s , the isolation resistor.

GRADE	REF-02A	REF-02	REF-02E	REF-02H	REF-02C
TEMPERATURE RANGE	–55° to +125°C	–55° to +125°C	0° to +70°C	0° to +70°C	0° to +70°C
SLOPE ERROR	±0.30%	±0.40%	±0.25%	±0.35%	±0.45%
TCVTEMP ERROR	±0.10%	±0.12%	±0.08%	±0.10%	±0.15%
OFFSET ERROR	±0.15%	±0.40%	±0.10%	±0.30%	±0.60%
RMS ERROR SUM	±0.35%	±0.58%	±0.28%	±0.47%	±0.76%
TYPICAL ACCURACY	0.50%	0.75%	0.40%	0.60%	0.90%
OP-02 GRADE RECOMMENDED	OP-02A	OP-02	OP-02E	OP-02C	OP-02C

TABLE III


TYPICAL TRANSDUCER PERFORMANCE VS. GRADE

TRANSDUCER SUMMARY

The accuracies indicated compare quite favorably to traditional temperature measurement methods such as thermocouples and thermistors. Ease-of-use, low cost, and high accuracy make this new bandgap method of temperature measurement attractive in a wide range of applications.

The following section describes the bandgap principle in theory and its use in the internal REF-02 design.

BANDGAP REFERENCE THEORY

Bandgap voltage references [1], [2], [3], use predictable relationships from semiconductor physics to generate a constant voltage. The base-emitter voltage of a transistor (VBE) has a processing and current density dependent negative temperature coefficient of about $-2.1 \text{ mV}/^{\circ}\text{C}$. Another well known relationship with a positive temperature coefficient is the difference between base-emitter voltages of two transistors operated at different current densities:

Eq. 4)
$$\Delta V_{BE} = \frac{kT}{q} \log_{e} \left(\frac{J^{2}}{J1} \right)$$
, where
k = Boltzmann's constant = 1.38×10^{-23}

- joules/°K
- T = absolute temperature, $^{\circ}K$
- q = charge of an electron = 1.6×10^{-19} coulomb
- J = current density

When ΔV_{BE} is amplified and added to V_{BE} , a voltage reference with zero temperature coefficient results if the sum (V_Z) of these two terms equals the linearly-extrapolated band-gap voltage of silicon (V_{g0}) at 0°K or -273°C; V_{g0} = 1.205V. A more exact calculation, see reference [2], will show that V_Z will have zero temperature coefficient if:

Eq. 5)
$$V_Z = V_{go} + \frac{kT}{q} = 1.230V @ +25^{\circ}C$$

The circuit in Fig. 4 generates a ΔV_{BE} of 72mV at 25°C by making the current density of Q2 16 times greater than Q1. Q2 has four times the current of Q1, and Q1 has four times the emitter area of Q2. A ΔV_{BE} of 72mV appears across R1 and is amplified by 8.75 (becoming the TEMP output) and is added to V_{BE} (Q2) to produce a nearly constant V_Z of 1.23V. The -2.1mV/°C of TCV_{BE} is cancelled by the +2.1mV/°C of TCV_{TEMP}; and V_Z is amplified by 4.06 to produce an output V_{REF} of 5.000V.

REF-02 TYPICAL NODAL VOLTAGES

TEMPERATURE	T _A = -75°C (T _J = 200°K)	$T_A = +25^{\circ}C$ ($T_J = 300^{\circ}K$)	T _A = +125°C (T _J = 400°K)
$\Delta V_{BE} = \frac{kT}{q} \log_e 16$	48mV	72mV	96mV
V _{TEMP} = 8.75 ∆V _{BE}	420mV	630mV .	840mV
V _{BE} (Q2)	810mV	600mV	390mV
$V_Z \approx V_{BE} + V_{TEMP}$	1.23V	1.23V	1.23V
$V_{REF} \approx 1 + \frac{3.06R4}{R4}$ $\approx 4.06 V_{Z}$	5.00V	5.00∨	5.00V

TABLE IV

Application Notes

AN-19

DIFFERENTIAL AND MULTIPLYING DIGITAL TO ANALOG CONVERTER APPLICATIONS

bv

INTRODUCTION

John Schoeff and Donn Soderquist

The introduction of low cost monolithic D/A converters has simplified data acquisition and control system design. This application note describes several new applications using the multiplying capability and dual complementary current outputs of the Precision Monolithics DAC-08.

THE UNIVERSAL DAC

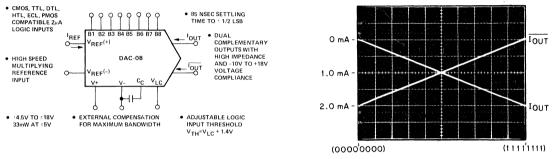
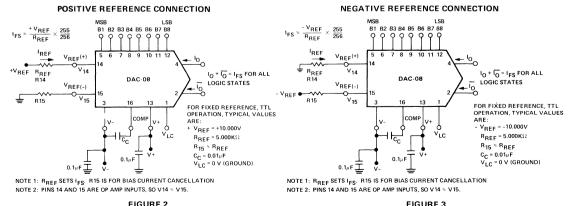


FIGURE 1

MULTIPLYING DAC BASICS

A multiplying DAC has an analog output which is the product of a digital input word and a reference voltage and can be expressed as:

1) 1
$$E_0 = E_{REF} \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$


For a current reference, current output DAC, the expression becomes:

2)
$$I_0 = I_{\text{REF}} \left[\frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \frac{A_4}{16} + \frac{A_5}{32} + \frac{A_6}{64} + \frac{A_7}{128} + \frac{A_8}{256} \right]$$

The DAC-08 has complementary/differential current outputs, and IO has a complement expressed as:

3) $\overline{IO} = I_{ES} - I_O$ for all input logic states.

The relationship of I_{REF} to I_O and $\overline{I_O}$ is illustrated in Fig. 2 and in Fig. 3, the basic DC reference connections. References may be either positive or negative, and a bipolar output voltage may be achieved using the high compliance current outputs alone or with an output operational amplifier. The simplest form of a multiplying DAC accepts a unipolar varying reference input.

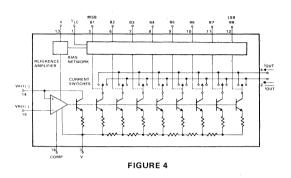

15-71

FIGURE 2

BIPOLAR REFERENCES

Operation with bipolar references is achieved by modulating I_{REF} as shown in Fig. 5. To aid in understanding bipolar operation, see the equivalent circuit in Fig. 4. The reference inputs of the DAC-08 are op amp inputs – $V_{REF}(+)$ being the inverting input and $V_{REF}(-)$ being the noninverting input. Excellent gain linearity of the reference amplifier allows multiplying operation over a range of I_{REF} of $4\mu A$ to 4mA with monotonic operation from less than $100\mu A$ to 4mA.

DAC-08 EQUIVALENT CIRCUIT

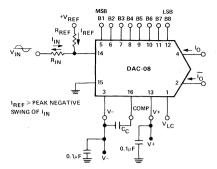
REFERENCE AMPLIFIER COMPENSATION

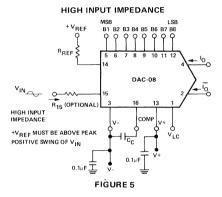
AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V-. The value of this capacitor depends on the impedance presented to pin 14: for R₁₋ values of 1.0, 2.5 and 5.0K Ω , minimum values of C_c are 15, 37, and 75 pF. Larger values of R₁₄ require proportionately increased values of C_c for proper phase margin.

FAST PULSED OPERATION

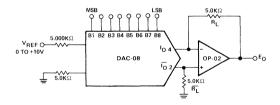
For fastest multiplying response, low values of R₁₄ enabling small C_c values should be used. For R₁₄ = 1K Ω and C_c = 15pF, the reference amplifier slews at 4mA/µsec enabling a transition from I_{REF} = 0 to I_{REF} = 2mA in 500nsec. If R₁₄ or the parallel equivalent resistance at pin 14 is less than 200 Ω , no compensation capacitor is necessary, and a full scale transition requires only 160nsec.

TWO-QUADRANT MULTIPLICATION

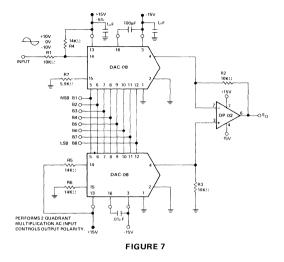

There are two forms of two-quadrant multiplication: bipolar digital, where the digital input word controls output polarity, and bipolar analog, where the analog reference input controls output polarity.

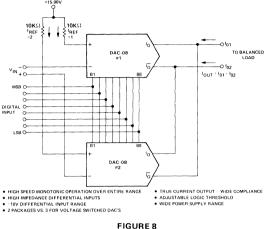

Bipolar digital two-quadrant multiplication is shown in Fig. 6 with the output polarity being controlled by an offsetbinary-coded digital input word.

Bipolar analog two-quadrant multiplication is shown in Fig. 7. A bipolar reference voltage is connected to the upper DAC-08 and modulates the reference current by ± 1.0 mA around a quiescent current of 1.1mA. The lower DAC-08 also has a reference current of 1.1mA; due to the parallel digital inputs, the lower DAC-08 effectively subtracts out the quiescent 1.1mA of the upper DAC-08's reference


BIPOLAR REFERENCE CONNECTIONS

BIPOLAR DIGITAL TWO-QUADRANT MULTIPLICATION (SYMMETRICAL OFFSET BINARY)




IF R_L = $\overline{R_L}$ WITHIN ±.05%, OUTPUT IS SYMMETRICAL ABOUT GROUND

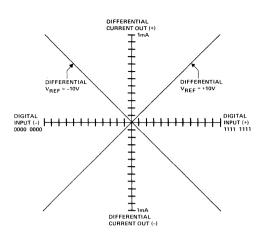
	B1	B2	B3	В4	В5	B6	B7	88	I _O mA	ló mA	E _O (V)
POS. FULL SCALE	1	1	1	1	1	1	1	1	1.992	.000	+9.96
POS. FULL SCALE -LSB	1	1	1	1	1	1	1	0	1.984	.008	+9.88
(+) ZERO SCALE	1	0	0	0	0	0	0	0	1.000	.992	+.040
(-) ZERO SCALE	0	1	1	1	1	1	1	1	.992	1.000	040
NEG. FULL SCALE +LSB	0	0	0	0	0	0	0	1	.008	1.984	-9.88
NEG. FULL SCALE	0	0	0	0	0	0	0	0	.000	1.992	-9.96

FIGURE 6

current at all input codes, since the voltage across R3 varies between -10V and 0V. Thus, the output voltage, E_O, is a product of a digital input word and a bipolar analog reference voltage.

FOUR-QUADRANT MULTIPLICATION

Four-quadrant multiplication combines the two forms of two-quadrant multiplication. Output analog polarity is controlled by either the analog input reference or by the offset binary digital input word. One implementation of this function with the DAC-08 is shown in Fig. 8 with output current values listed in Table I.

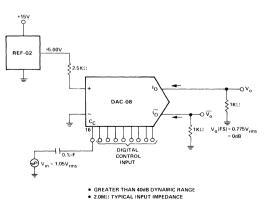

The four-quadrant multiplying DAC circuit shown accepts a differential voltage input and produces a differential current output. An output op amp is not shown because it is not always required; many applications are more suited for high output compliance (-10V to +18V) differential current outputs. Typical balanced loads include transformers, transducers, transmission lines, bridges and servos. Operation of the four-quadrant multiplier may be more easily visualized by considering that if either $V_{IN} = 0V$ or the offset binary digital input code is at midscale (corresponding to zero), then a change in the other input will not affect the output. Zero multiplied by any number equals zero.

A common mode current will be present at the output and must be accommodated by the balanced load. A pair of matched resistors may be used at the outputs to shunt most of the common mode current to ground, thus reducing the common mode voltage swing at the output.

DIGITAL INPUT	V _{IN} (+)	V _{IN} (-)	V _{IN} DIFF.	^I REF #1 (mA)	^I REF #2 (mA)	^I O ^{#1} (mA)	10#2 (mA)	^I 01 (mA)	I _O #2 (mA)	^I 0 ^{#1} (mA)	^I 02 (mA)	^I OUT DIFF.
1111 1111	+5V	-5V	+10V	2.000	1.000	1.992	0	1.992	0.996	0	0.996	0.996 mA
1000 0000	+5V	-5V	+10V	2.000	1.000	1.000	0.496	1.496	0.500	0.992	1.492	0.004 mA
0111 1111	+5 V	-5V	+10V	2.000	1.000	0.992	0.500	1.492	0.496	1.000	1.496	-0.004 mA
0000 0000	+5V	-5V	+10V	2.000	1.000	0	0.996	0.996	0	1.992	1.992	-0.996 mA
1111 1111	0V	0V	0V	1.500	1.500	1.494	0	1.494	1.494	0	1.494	0.000 mA
1000 0000	-10V	-10V	0V	2.500	2.500	1.250	1.240	2.490	1.250	1.240	2.490	0.000 mA
0111 1111	+10V	+10V	0V	0.500	0.500	0.248	0.250	0.498	0.248	0.250	0.498	0.000 mA
0000 0000	0V	0V	0٧	1.500	1.500	0	1.494	1.494	0	1.494	1.494	0.000 mA
1111 1111	-5V	+5V	-10V	1.000	2.000	0.996	0	0.996	1.992	0	1.992	-0.996 mA
1000 0000	~5V	+5V	-10V	1.000	2.000	0.500	0.992	1.492	1.000	0.496	1.496	-0.004 mA
0111 1111	-5V	+5V	-10V	1.000	2.000	0.496	1.000	1.496	0.992	0.500	1.492	0.004 mA
0000 0000	-5V	+5V	-10V	1.000	2.000	0	1.992	1.992	0	0.996	0.996	0.996 mA

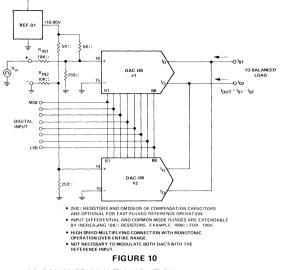
TABLE I - FOUR-QUADRANT MULTIPLYING CURRENT VALUES IN FIGURE 8

FOUR-QUADRANT MULTIPLYING DAC TRANSFER FUNCTION


FIGURE 9

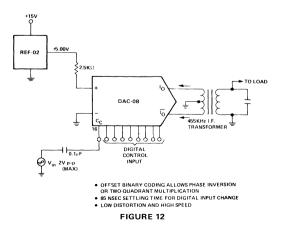
HIGHEST SPEED FOUR-QUADRANT MULTIPLYING CONSIDERATIONS

The configuration shown in Fig. 10 makes use of the DAC-08's ability to operate in a fast pulsed reference mode without compensation capacitors. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff ($I_{REF} = 0$) condition. This connection yields a reference slew rate of 16mA/µsec which is relatively independent of R_{IN} and V_{IN} values.


Input resistances are not limited to $10K\Omega$. For example, $100K\Omega$ resistors for R_{1N1} and R_{1N2} allow $\pm 100V$ reference voltage inputs making this connection especially useful in high common mode voltage environments. Except for different reference treatment, operation and digital input coding are identical in the circuits shown in Fig. 8 and in Fig. 10; both have the transfer function shown in Fig. 9.

HIGH INPUT IMPEDANCE AC-COUPLED MULTIPLICATION (AUDIO FREQUENCY DIGITAL ATTENUATOR)

FOUR-QUADRANT MULTIPLYING DAC WITH EXTENDABLE INPUT RANGE AND HIGHEST SPEED

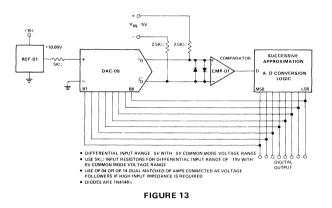


AC-COUPLED MULTIPLICATION

Some multiplying DAC applications are more easily achieved with AC coupling. At the same time, a high impedance input is often required to avoid loading a relatively high source impedance. Both requirements are met by the circuits shown in Fig. 11 and Fig. 12 which use the compensation capacitor terminal (C_c) as an input. This is possible because C_c is the base of a transistor whose emitter is one diode drop (0.7V) away from the R-2R ladder network common baseline internal to the DAC-08.

With a full scale input code the output, V_O, is flat to >200KHz and is 3dB down at approximately 1.0MHz making this type of multiplying connection useful even beyond the audio frequency range. Such a connection is illustrated in Fig. 12 operating at 455KHz, the highest recommended operating frequency in this connection.

HIGH INPUT IMPEDANCE AC-COUPLED MULTIPLICATION (I.F. AMPLIFIER/DIGITAL ATTENUATOR)

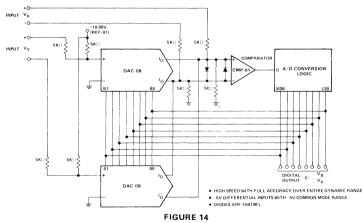


DIFFERENTIAL AND RATIOMETRIC A/D CONVERSION

Complementary/differential current-source outputs and multiplying capability allow the DAC-08 to be used in differential and ratiometric A/D converter designs directly without signal conditioning amplifiers. This group of applications begins with the basic differential A/D converter and ratiometric A/D converter connections followed by more specific applications.

These are extremely cost-effective designs due to their low parts count and simplicity. Alternative designs performing identical functions require instrumentation amplifiers for the differential-to-single-ended input signal conditioning and analog multipliers or dividers for the arithmetic functions.

DIFFERENTIAL INPUT A/D CONVERSION BASIC CONNECTIONS

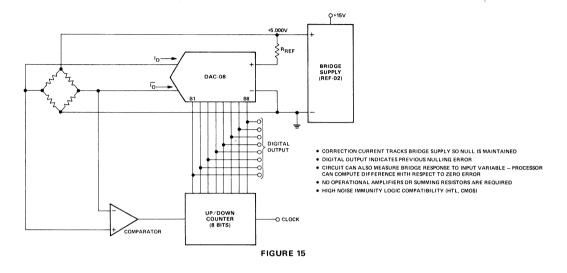


DIFFERENTIAL A/D CONVERSION

The circuit in Fig. 13 uses the high voltage compliance current output capability of the DAC-08 and the high common mode voltage rejection of the CMP-01 to construct a differential input ADC without input signal conditioning. IC's: a REF-01 +10V reference, a 2502-type successive approximation register, a CMP-01 precision voltage comparator, and a DAC-08. As shown, the circuit converts an analog input in less than 2.0 μ sec. For lower speed requirements, the A/D conversion logic can be the tracking or servo type consisting of up/down counters.

A successive approximation ADC is constructed with four

FOUR-QUADRANT RATIOMETRIC A/D CONVERSION BASIC CONNECTIONS

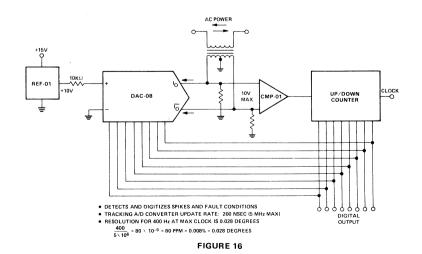

FOUR QUADRANT RATIOMETRIC A/D CONVERSION

Ratiometric A/D conversion with fully differential X and Y inputs is accomplished with the circuit in Fig. 14. Here, one set of inputs, V_X , is connected in a manner similar to the circuit in Fig. 13, and the other set of inputs, V_Y , is connected in a multiplying fashion. Operation is as follows: I_{REF} for both the upper and the lower DAC-08 is modulated between 1mA and 3mA; and the resulting output currents are differentially transformed into voltages by the 5K Ω resistors at the comparator's inputs and compare 4 with the V_X differential input. When the conversion process is complete (comparator inputs differentially nulled to less than 1/2 LSB) a digital output is available which corresponds to the quotient of V_X/V_Y. Thus, four-quadrant ratiometric A/D conversion is achieved with four IC's and without instrumentation amplifiers.

BRIDGE TRANSDUCER NULL

In many control systems, bridges must be nulled, and a digital representation of the bridge's error must be provided for computer monitoring and control. The circuit in Fig. 15 accomplishes both tasks by using the DAC-08 complementary/differential current outputs to null the

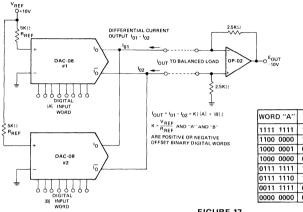
bridge with the DAC-08 connected in a tracking differential A/D converter configuration. The REF-02 reference voltage source provides both the bridge excitation voltage and the positive reference voltage for the DAC-08. Some of the advantages of this circuit are listed at the bottom of Fig. 15.


BRIDGE TRANSDUCER NULL

POWER MONITOR

Another differential current-input ADC is shown in Fig. 16 with a transformer-coupled input. An up/down counter, a precision high speed comparator, and the DAC-08 form a tracking A/D converter which continuously monitors the analog input. Two precautions must be observed: the

common mode voltage at the comparator's inputs must not exceed $\pm 10V$; and the differential voltage must not exceed 11V. Voltage-limiting resistors at the comparator's inputs are recommended.


ALGEBRAIC DIGITAL COMPUTATION

Frequently, a digital arithmetic operation (addition, subtraction, multiplication, or division) must be performed, and an analog output must be provided. Traditionally, the arithmetic operations are performed with several IC's, and the output drives a D/A converter. This section describes applications of the DAC-08 as an arithmetic building block, new design approaches that reduce the number of packages required in many applications. Today's low cost, versatile DAC's merit a designer's consideration as arithmetic elements.

One benefit is not immediately apparent and deserves special mention. In all of these applications, the digital

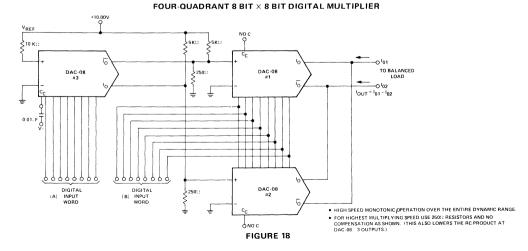
input words can be CMOS, TTL, DTL, NMOS, or MECL, because the DAC-08 interfaces with all of those logic families. In fact, the two input words may even be from different logic families to eliminate special level translators or interface circuitry. (See AN-17, "DAC-08 Applications Collection.")

The first arithmetic application is shown in Fig. 17. Two DAC-08's perform a fast algebraic summation with a direct analog output. The circuit works by paralleling the outputs of two DAC-08's and summing their currents while driving a balanced load. The output is the algebraic sum of word "A" and word "B" in all four quadrants.

FOUR-QUADRANT ALGEBRAIC DIGITAL COMPUTATION

WORD "A"	WORD "B"	¹ 01	1 ₀₂	EOUT
1111 1111	1111 1111	3.984mA	0	+9.96V
1100 0000	1100 0000	3.000mA	0.984mA	+5.04V
1000 0001	0111 1111	2.000mA	1.984mA	+0.04V
1000 0000	0111 1111	1.992mA	1.992mA	0
0111 1111	1000 0000	1.992mA	1.992mA	0
0111 1110	1000 0000	1.984mA	2.000mA	-0.04V
0011 1111	0011 1111	0.984mA	3.000mA	-5.04V
0000 0000	0000 0000	0	3.984mA	-9.96V

FIGURE 17


FOUR-QUADRANT DIGITAL MULTIPLICATION

High speed multiplication of two 8-bit digital words with an analog output usually requires several logic packages and a D/A converter. The circuit in Fig. 18 performs this function using only three IC's.

In Fig. 18 DAC-08 number 1 and number 2 are connected as previously shown, and DAC-08 number 3 provides the

analog reference inputs to DAC-08 number 1 and number 2. Those reference inputs are determined by digital input word "A." The circuit's output, I_{01} - I_{02} , is a differential current output which may be used to drive a balanced load.

Four-quadrant multiplication is thus performed by adding one more DAC-08 to the basic four-quadrant multiplying connection.

OTHER DAC APPLICATIONS

The combination of high voltage compliance complementary current outputs, universal logic inputs, and multiplying capability in a low cost DAC enables widespread application. Consider the following partial list:

A/D CONVERTERS

Tracking (Servo) Successive Approximation Ramp (Staircase) Microprocessor Controlled Ratiometric (Bridge Balancing)

TEST SYSTEMS

Transistor Tester (Force I_B and I_C) Resistor Matching (Use both outputs) Programmable Power Supplies Programmable Pulse Generators Programmable Current Source Function Generators (ROM Drive)

ARITHMETIC OPERATIONS

Analog Division by a Digital Word Analog Quotient of Two Digital Words Analog Product of Two Digital Words—Squaring Addition and Subtraction with Analog Output Magnitude Comparison of Two Digital Words Digital Quotient of Two Analog Variables Arithmetic Operations with Words from Different Logic Families

CONCLUSION

Differential and multiplying applications have been described which use the high voltage compliance, complementary current outputs and the high speed multiplying inputs of the Precision Monolithics DAC-08.

BIBLIOGRAPHY

1) "DAC-08 Applications Collection"

By John Schoeff and Donn Soderquist

Precision Monolithics Application Note #AN-17, 1975

GRAPHICS AND DISPLAYS

Polar to Rectangular Conversion CRT Character Generation Chart Recorder Driver CRT Display Driver DATA TRANSMISSION Modem Transmitter Differential Line Driver Party Line Multiplexing of Analog Signals Multi-level 2-Wire Data Transmission Secure Communications (Constant Power Dissipation)

CONTROL SYSTEMS

Reference Level Generator for Setpoint Controllers Positive Peak Detector Negative Peak Detector Disc Drive Head Positioner Microfilm Head Positioner


AUDIO SYSTEMS

Digital AVC and Reverberation Music Distribution Organ Tone Generator Audio Tracking A/D

 2) "Low Cost, High Speed Analog-to-Digital Conversion With the DAC-08"
 By Donn Soderquist and John Schoeff Precision Monolithics Application Note #AN-16, 1975

3) "Differential and Multiplying Use of Digital-to-Analog Converters"

By Donn Soderquist and John Schoeff E.E. Times article, June 21, 1976, pp. 40-47

Application Notes

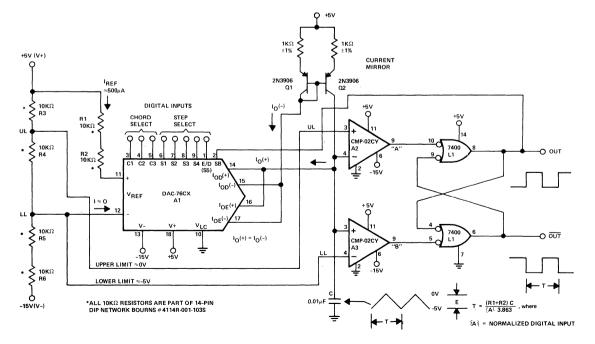
AN-20

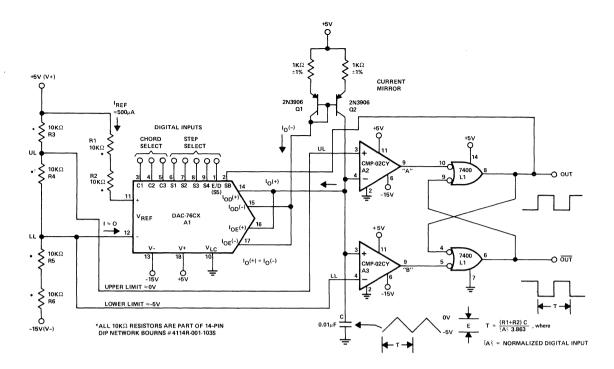
EXPONENTIAL DIGITALLY CONTROLLED OSCILLATOR USING DAC-76

by Donn Soderquist

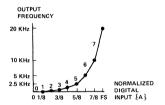
Here is a 4-IC, microprocessor-controlled oscillator with a 8159 to 1 frequency range covering 2.5Hz to 20KHz. An exponential, current output IC DAC functioning as a programmable current source alternately charges and discharges a capacitor between precisely-controlled upper and lower limits. This circuit features instantaneous frequency change, operates with \pm V \pm IV and \pm IV supplies, and provides monotonic frequency changes over a 78dB range – the dynamic range of a 13-bit DAC.

BASIC OPERATION


Connected as shown in Fig. 1, the output of the exponential DAC is an 8-chord (or segment) current ranging between 250nA and 2.0mA. The three most significant bits select 1 of 8 binarily-related chords; and the five least significant bits select 1 of 32 linear steps within each chord. This current is switched between the $I_0(+)$ output and the $I_0(-)$ output under the control of a pin labeled SB.


When SB is low, $I_0(-)$ is selected, and the DAC's output current drives a current mirror which ramps the timing capacitor in a positive direction until an upper limit of OV is sensed by A2. At this time the set-reset flip-flop (L1) is set, SB becomes a "1", and the DAC's output current is switched

to the $I_0^{(+)}$ output. Now the capacitor is charged to a lower limit of -5V, the flip-flop is reset, and the cycle repeats itself.


REFERENCE SETUP

The multiplying relationship between the reference current, I_{REF} , and the full scale output of the DAC is 3.863. I_{REF} is set by the voltage between V+ and the lower limit divided by R1+R2. This is so because pin 12, $V_{REF}(-)$, is a high impedance input, namely the noninverting input of an op amp internal to the DAC. Since both I_{REF} and the upper and lower limits are derived by dividing down the power supply voltages, operation (frequency of oscillation) is independent of power supply changes. (See Appendix 1 for a complete derivation of the timing formula.)

OSCILLATOR TRANSFER FUNCTION

WAVEFORMS

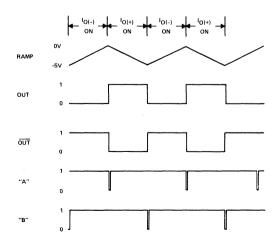


TABLE I IDEAL OUTPUT FREQUENCY

CHORD (SEG- MENT)	DIGITAL INPUT CODE	NORMAL- IZED DIGITAL INPUT {A}	OUTPUT FRE- QUENCY	AVERAGE STEP SIZE	
	000 00001	1 8159	2.45Hz		
0	000 01000	<u>8</u> 8159	19.6Hz	2.3Hz	
	000 11111	<u>31</u> 8159	76.0Hz		
1	001 00000	<u>33</u> 8159	80.9Hz	4.8Hz	
	001 11111	<u>95</u> 8159	233Hz	4.0112	
2	010 00000	010 00000 <u>99</u> 243Hz		9.5Hz	
2	010 11111	223 8159	547Hz	5.5112	
3	011 00000	00000 <u>231</u> <u>8159</u>		19Hz	
3	011 11111	479 8159	1.17KHz	19112	
4	100 00000	495 8159	1.21KHz	38Hz	
-	100 11111	991 8159	2.43KHz	3012	
	101 00000	1023 8159	2.51KHz	7611-	
5	101 11111	2015 8159	4.94KHz	76Hz	
6	110 00000	2079 8159	5.09KHz	152Hz	
	110 11111	4063 8159	9.96KHz	152112	
7	111 00000	4191 8159	10.3KHz	303Hz	
Ĺ	111 11111	$\frac{8159}{8159}$ = FS	20.0KHz	000112	

FREQUENCY SELECTION

Table I lists ideal output frequencies at the lowest and highest codes of each chord and the average change in frequency produced by a one step change (LSB change) within each chord. For highest accuracy in Chord 0, especially between 2.5Hz and 19.6Hz, comparators with low input current are recommended. The CMP-02CY comparators typically have 35nA of input current; at the lowest code point (000 00001) the DAC output is 250nA; so low input current comparators are essential for best operation. Above 000 01000 (4μ A or 19.6Hz) the comparator input currents become less critical.

CONCLUSION

A microprocessor-controlled oscillator has been shown which achieves a 13-bit dynamic range with only 8 bits of control. Monotonic frequency steps over 2.5Hz to 20KHz are provided in a 4-IC low cost design.

REFERENCE

"Eight-Bit Frequency Source Suited for μ P Control" by Albert Helfrick, <u>EDN</u>, September 20, 1976, pp. 116-118.

APPENDIX

TIMING EQUATION DERIVATIONS

One of the best features of this design is its insensitivity to power supply changes. The equation derivations are shown to explain how V+ and V- drop out as timing determinations.

With a constant current drive the charge on C changes linearly over a range (E) between an upper limit (UL) and a lower limit (LL) dependent upon the DAC's digital input code, the DAC's output current, and the value of the timing capacitor (C).

Eq. 1)
$$T = 2\left(\frac{GL}{I}\right)$$
 where: C = timing capacitor value
E = upper limit - lower limit
I = DAC output current, $I_0(+)$
or $I_0(-)$
T = period
Eq. 2) E = UL - LL where: UL = upper limit
LL = lower limit
Eq. 3) UL = $\frac{R4+R5+R6}{R3+R4+R5+R6}$ [(V+) - (V-)] +(V-)
where: V+ = positive power supply and V- = negative
power supply
but: R3=R4=R5=R6

$$\therefore UL = \frac{3(V+)+(V-)}{4}$$
Eq. 4)
$$LL = \frac{R5+R6}{R3+R4+R5+R6} \qquad \left[(V+)-(V-) \right] + (V-)$$

$$LL = \frac{(V+)+(V-)}{2}$$

Substituting 3 and 4 into 2 and solving for E:

Eq. 5)
$$E = \frac{(V+)-(V-)}{4}$$

Rewriting Eq. 1 and substituting 5:

1. . . .

Eq. 6)
$$\frac{T}{2C} = \frac{\frac{(V+) - (V-)}{4}}{1}$$

The expression for I is:

Eq. 7) I = 3.863 { A } IREF

Eq. 8) $I_{REF} = \frac{(V+) - LL}{R1 + R2}$

Substituting 4 into 8:

Eq. 9) IREF =
$$\frac{(V^{\perp}) - \left[\frac{(V^{\perp}) + (V^{\perp})}{2}\right]}{R1 + R2}$$

$$=\frac{(V+)-(V-)}{2(R1+R2)}$$

Substituting 9 and 7 into 6:

Eq. 10)
$$\frac{T}{2C} = \frac{\frac{(V+) - (V-)}{4}}{3.863 \{A\} \left[\frac{(V+) - (V-)}{2(R1+R2)}\right]}$$

Multiplying by $\{A\}$ 3.863:

Eq. 11)
$$\left\{ \frac{A}{2C} \right\} \frac{3.863T}{2C} = \frac{\frac{(V+)-(V-)}{4}}{\frac{(V+)-(V-)}{2(R1+R2)}}$$

$$\frac{1}{2C} = \frac{1}{2}$$

So, V+ and V- have dropped out as timing considerations. Solving for T:

Eq 12)
$$T = \frac{C(R1 + R2)}{3.863 \{A\}}$$
 but: $C = 0.01 \mu F$
R1 = R2 = 10K Ω
Eq. 13) $T = \frac{5.177 \times 10^{-5}}{\{A\}}$

Finally, the simplified expressions:

Eq. 14) T
$$\approx \frac{50\,\mu\text{sec}}{\{\Lambda\}}^{-1}$$

Eq. 15) f (frequency)
$$\cong \frac{\{A\}}{50 \times 10^{-6}} \cong 20 \text{KHz}$$
 full scale

Application Notes

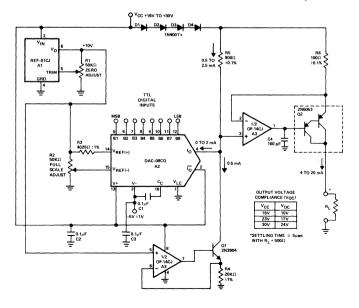
AN-21

3 IC 8 BIT BINARY DIGITAL TO PROCESS CURRENT CONVERTER WITH 4 - 20MA OUTPUT

by Donn Soderquist

This application note describes a 3 IC, 4 – 20mA process current, digital to analog converter that can be constructed for less than \$20 at current 100+ prices. It operates from a -5V \pm 1V negative power supply and a +23V \pm 7V positive power supply, has 24V output voltage compliance, and occupies less than 4 square inches of printed circuit board space. Other significant features include TTL logic input compatibility, 8-bit binary coding, 0° to +70°C operation, and 5µsec full scale settling time into a 500Ω load.

THEORY OF OPERATION


A fixed current of 0.5mA is added to a DAC's output current varying between 0 and 2.0mA and the resulting total current is multiplied by a factor of 8 to produce an output current of 4.0 to 20mA.

In the schematic, first note the REF-01CJ, a +10V adjustable reference. Its output goes to the noninverting input of $\frac{1}{2}$ of A3, a dual precision op amp. The inverting input is within a feedback loop forcing +10V to appear at the top of R4, a 20K Ω resistor; a 0.5mA current will flow in R4 through Q1, a high h_{FE} transistor. The same +10V is applied to R3, the reference input resistor of a multiplying IC D/A converter, the DAC-08. Full scale output current of the DAC will be the difference in voltage between the +10V reference and pin 14 of the DAC divided by R3; pin 15 will be at the same voltage **as** pin 14 because it is a high impedance point, the noninverting input of an op amp internal to the DAC.

a current of 0 to 2mA (depending on the digital input code) will flow into the DAC's output, pin 4.

Both the DAC's output current and the fixed 0.5mA flow in R5, a 800 Ω precision resistor. The voltage developed by that current is applied to the noninverting input of the other ½ of A3 and will also appear across R6, a 100 Ω precision resistor. Thus, 8 times the 0.5 to 2.5mA current in R5 flows in R6, or 4 to 20mA. Almost all of this current appears at the output because the 2N6053 is a high h_{FE} device, a power darlington transistor.

Some other components need explanation. C1 provides frequency compensation of the DAC's reference amplifier; C2 and C3 are power supply decoupling (bypass) capacitors; C4 prevents high frequency oscillations. D1 through D4 insure at least 2.5V differential between the op amp's inputs and its positive power supply under all conditions. R1 and R2 are zero scale and full scale adjustments respectively.

CALIBRATION PROCEDURE

Apply +23V \pm 7V and -5V \pm 1V to the converter with a current-measuring meter connected between the output and ground. Make the digital inputs all zeros, <+0.8V. Adjust R1 until the output current is 4.0mA. Now change the digital inputs to all ones, > +2.0V. Adjust R2 until the output current is 20mA. Calibration is now completed.

OUTPUT VOLTAGE COMPLIANCE

Output voltage compliance is V_{cc} -6V. For example, at V_{cc} = +16V, the output may go to a maximum of +10V without affecting output current. Thus, a 500 Ω resistor would be the maximum load resistor at V_{cc} = +16V. At V_{cc} = +30V, V_{oc} = 24V, and R₁ Max = 1.2K Ω .

SCALE MODIFICATION,

Although the values shown are for the more common 4-20mA requirement, operation at 1-5mA or 10-50mA may be achieved by changing some components. For 10-50mA,

change R6 to 40Ω ; this makes the multiplying factor 20 instead of 8. For 1-5mA, replace the 2N6053 with a 2N5087, and change R6 to 400Ω .

CONCLUSION

A simple, low cost process current converter has been shown with wide application in the controls industry. The design is tolerant of wide power supply variations, has high voltage compliance, and is easily calibrated. Reliability and cost are optimized by using only 3 integrated circuits, the Precision Monolithics DAC-08, REF-01, and OP-14, plus a few readily available discrete components.

REFERENCE

Crowley, B., "Circuit Converts Voltages to 4-20mA For Industrial Control Loops," <u>Electronic Design</u>, Jan. 5, 1976, p. 116.

```
PARTS LIST
```

Circuit Symbol(s)	Description
A1	+10V Reference, PMI REF-01CJ
A2	8 Bit DAC, PMI DAC-08CQ
A3	Dual Op Amp, PMI OP-14CJ
C1-C3	0.1µF +80%/-20% 50V, Type CK-104
C4	100pF ±5% Mica, DM10ED101J03
D1-D4	Power Diode, 1N4001
Q1	NPN Transistor, 2N3904
Q2	PNP Power Darlington, Motorola 2N6053
R1-R2	50KΩ Potentiometer, Bourns #3006P-1-503
R3	4020Ω ±1%, RN55C4021F
R4	20KΩ ±1%, RN55C2002F
R5	800Ω ±0.1%, GR #8E16D800
R6	100Ω ±0.1%, GR #8E16D100

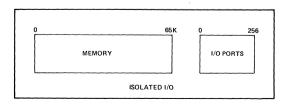
Application Notes

AN-22

SOFTWARE CONTROLLED ANALOG TO DIGITAL CONVERSION USING DAC-08 AND THE 8080A MICROPROCESSOR

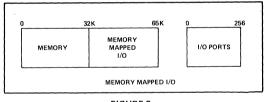
by

Will Ritmanich and Wes Freeman


The microprocessor is generally regarded as a flexible replacement for discrete logic devices. Yet most microprocessor-based designs still use numerous isolation and support packages for analog to digital (A/D) conversion, rather than using just software and the processor itself. There are many applications where the minimum system approach is both desirable and feasible. This application note describes a very simple, low cost method of software controlled 8-bit A/D conversion using the Precision Monolithics DAC-08 and the Intel 8080A. Innovative software eliminates the need for peripheral isolation devices. Easily expandable to 10-bit or 12-bit A/D conversions, the technique may be emulated using other microprocessors having separate address and data busses.

8080A I/O INTERFACE CONSIDERATIONS

In order to communicate with any input/output peripheral device, the 8080A must be able to distinguish between its normal memory array and that particular I/O peripheral. Two techniques exist for accomplishing this, each with its own set of advantages and disadvantages.


The basic approach, used especially in large systems requiring greater than 32K memory, assigns the particular peripheral to an I/O "Port." This has the effect of isolating the I/O from the memory bus by the use of additional interface devices (generally the 8255 Programmable Peripheral Interface). Data transfers to and from the peripheral are then enabled by special instructions IN or OUT. This method has the advantage of allowing full 65K memory usage (Figure 1), but requires additional support circuits. Although conceptually simple, it restricts communication to the peripheral through the 8080A Accumulator.

For simple applications or where the full memory addressing capability of the 8080A is not needed, a powerful technique referred to as "Memory-mapped I/O" can be implemented. By utilizing unused portions of memory address space for I/O operations, the full instruction set used to control memory can also be used to operate on peripherals. This creates a powerful "new" capability for dealing with I/O. The major constraint, however, is that the peripheral must now conform to memory bus signals and timing.

I/O CONTROL USING MEMORY MAPPING

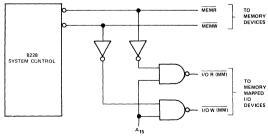
The convention used in establishing memory mapped I/O is to assign address line A_{15} as the I/O control flag. Thus, if A_{15} is "zero," then memory is active, and if A_{15} is "one" then I/O is active. This creates a "map" of the memory as shown in Figure 2. Although other address lines could be used for the function, A_{15} is normally used because it is easier to control with software and allows full address capability for the lower 32K of memory.

FIGURE 2

MEMORY MAPPED I/O CONTROL SIGNALS

In order to manipulate memory-mapped I/O, it is necessary to generate the appropriate control signals. This is accomplished by gating $\overline{\text{MEMR}}$ and $\overline{\text{MEMW}}$ with A₁₅ as shown in Figure 3. System bus characteristics are preserved and all instructions normally used to operate on memory can now be used on I/O as well.

I/O CONTROL SIGNAL GENERATION



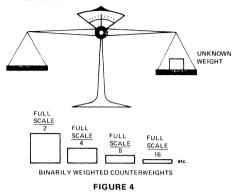
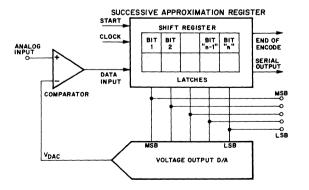

FIGURE 1

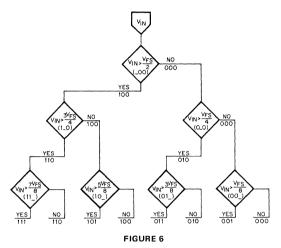
FIGURE 3

SUCCESSIVE APPROXIMATION A/D CONVERSION

Because it provides the best tradeoff between speed and hardware/software complexity, the successive approximation method of A/D conversion has been selected. Figure 4 shows a simple analogy of this approach based on the use of a pan balance.


SUCCESSIVE APPROXIMATIONS ANALOGY

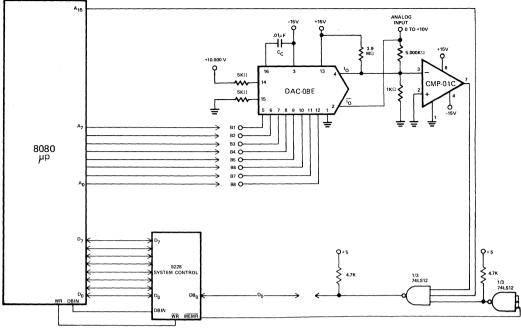
To measure some unknown weight, it is placed on one pan of the balance. By successively applying binarily-weighted counterweights to the other pan until the scale is balanced, we can ascertain the portion of the unknown weight compared to that of the known full scale weight. The number of "trials" is made equal to the number of counterweights available by starting with the heaviest counterweight first, and either retaining it or rejecting it based on the comparison to the unknown. This process is repeated for the next heaviest and so on, until all weights have been tried.


Electrically, this can be simulated by sequential comparisons between the output of a digital to analog converter and some unknown analog input. Figure 5 shows the basic circuit configuration.

BASIC SUCCESSIVE APPROXIMATION CIRCUIT

At the start of a conversion, the most significant bit (MSB) of the DAC is turned on by the Successive Approximation Register (SAR) producing an output from the DAC equal to one-half full scale. The DAC's output is compared to the analog input by a comparator, and if the DAC output is greater than the unknown input voltage, the MSB is turned off. If, however, the DAC output is less than the unknown input, the MSB is allowed to remain on, and the next most significant bit is tried. Whether or not this second bit should remain on or be turned off is subject to the same criteria as before (Figure 6). This basic procedure is used to test all remaining DAC bit inputs.

FLOW DIAGRAM FOR 3 BIT SUCCESSIVE APPROXIMATION A/D CONVERSION

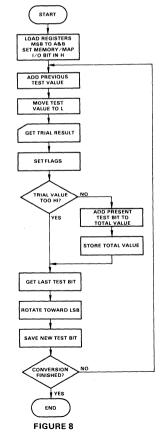


LOGIC REPLACEMENT BY THE 8080A

The circuit illustrated in Figure 5 can be simplified by utilizing the logic capability of the 8080A to replace the SAR. The eight lowest order address bits control the data bit inputs to the DAC-08 (Figure 7). Table 1 contains the software used to accomplish this. Figure 8 depicts the corresponding flow diagram.

; DAC 08 A/D CONVERSION ROUTINE

START:	LXI	P.08000H	LOAD MSP IN F.CLEAR C
	MOV	A.P	IMSE TO ACC
	MOV	H,A	SET MEM/MAP 1/0
TEST	ORA	С	JADD LAST TEST VALUE
	MOV	LA	MOVE PRESENT TEST TO L
	MOV	A, M	JGET COMP OUTPUT
	ANA	A	SET FLAGS
	JPO	TOOHI	JDISCARD PRESENT TEST FIT
	MOV	A.F	JGET PRESENT TEST PIT
	ORA	С	; ADD TOTAL SO FAR
	MOV	C . A	SAVE TOTAL
TOOHI	MOV	A.F	GET LAST TEST EI1
	RAE		FOTATE TOWARD LSB
	MOV	B, A	SAVE NEW TEST FIT
	JN C	TEST	JUMP IF NOT FINISH
	EN D		; FINAL VALUE IS IN C


This technique accesses the DAC as a 256 X 1 ROM. Conversion time, hardware interface, and program length are minimized due to the fast settling time of the DAC-08 and CMP-01 combination, which is less than the processor cycle time (Figure 9). No "wait" states or (NOP) instructions are required for execution of the program.

The instruction (MOV L, A) moves the test value to the "L" (memory address) register, which controls the 8 lowest order address bits, establishing the trial bit value to the DAC. The applied analog input current is compared to the DAC output current by the CMP-01. The (MOV A, M) instruction gates the trial comparison results provided by the CMP-01 into the 8080A Accumulator. The processor then continues to perform the logical operations required to accomplish the analog to digital conversion. It requires 21 bytes of memory with an 8-bit conversion time ranging from 235 to 285 μ sec using a 2.0 MHZ clock. The time varies slightly depending on the analog input, because extra program steps are required if the trial bit must be saved. Quantizing is performed over an analog input range of 0 to +10 volts, although other user-selected encoding ranges can also be used.

EXPANSION

This technique may also be used for A/D conversions of 10 or 12 bits by simply connecting the DAC MSB inputs to the corresponding address lines. The hardware and software savings show a very marked increase because multiple latches and extensive software byte moving operations are eliminated. Thus, for a 10-bit A/D conversion, the DAC "appears" to the 8080A as a 1024 X 1 ROM; a 12-bit DAC "appears" as a 4096 X 1 ROM. In general, the settling time of a 10-bit or 12-bit DAC is greater than the cycle time of the 8080A; however, by using the 8080A READY line to insert "wait" states, the settling time of any DAC can be accommodated.

SOFTWARE CONTROLLED A/D CONVERSION

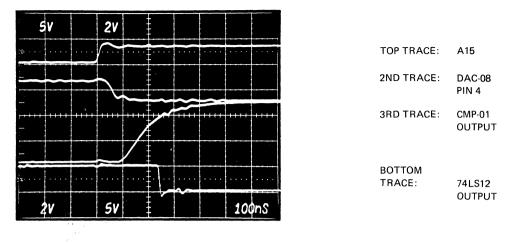


FIGURE 9

CONCLUSION

A low cost A/D conversion technique using DAC-08 and the 8080A microprocessor has been presented. Implementation requires a minimal allocation of memory for program software and very few interface components. The technique permits expansion to control 10-bit or 12-bit A/D conversions.

BIBLIOGRAPHY

- "8080 Microcomputer Systems Users Manual," Intel Corporation 9/75.
- "A/D Conversion Systems: Let your μP do the Working" by Don Aldridge, EDN, 5/5/76, pp 75-80.
- "Low Cost, High Speed Analog to Digital Conversion with the DAC-08," Precision Monolithics Application Note AN-16.

Application Notes

AN-23

DIGITAL-TO-ANALOG CONVERTER GENERATES HYPERBOLIC FUNCTIONS

by Will Ritmanich, Bob Blair, and Bob Debowey

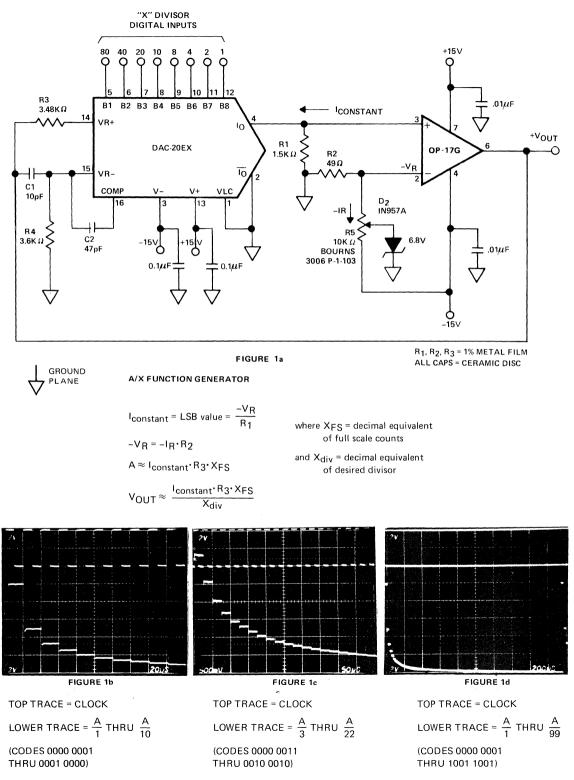
Measurement and control systems frequently require fine resolution around a setpoint with wide dynamic ranging capability. This can be satisfied by systems designs which use a high resolution, strictly linear approach; but this is costly and often unnecessary. Nonlinear function fitting using multiplying digital-to-analog converters (DAC's) offers a desirable alternative by being both simpler and more cost-effective. This application note describes how extended range hyperbolic functions of the type A/X or -A/X (where "A" indicates an analog constant, while "X" represents a decimally-expressed digital divisor) are easily generated by just two low-cost I.C.'s; an operational amplifier and a multiplying DAC. Circuit configurations are provided for each polarity output along with dynamic performance photographs and general design guidelines for either binary or BCD-coded divisors. At current prices (100+) the configurations shown can be built for less than \$10.

THEORY OF OPERATION (A/X)

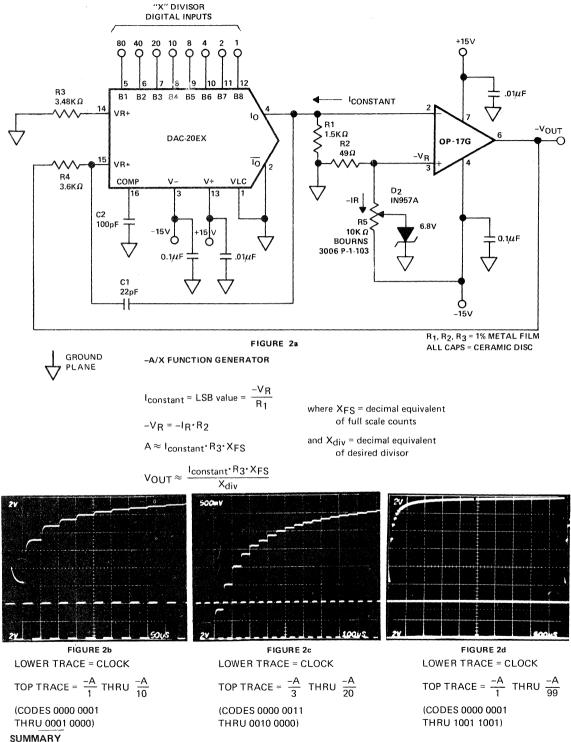
Figure 1a shows the A/X function circuit which uses a two-digit BCD-coded DAC, the DAC-20EX, and a decompensated, widebandwidth op-amp, the OP-17. A constant current, I constant, equal to the value of one least significant bit (LSB), flows into the DAC output terminal, I_0 . Simultaneous adjustment of the scale factor and output amplifier offset voltage is enabled by a multiturn, low tempco potentiometer, R5, which adjusts current $-I_R$ producing voltage $-V_R$ across R2. The LSB value (scale factor) equals $-V_R/R1$.

Zener diode, D_Z , provides a stable reference voltage source. Because feedback for the op amp is through the DAC, capacitors C1 and C2 are added to provide proper phase compensation. Reference resistor R3 is determined by the scale factor and the maximum current allowed into the DAC reference input V_R+. Bias current compensation for the DAC reference amplifier is accomplished by R4.

Figures 1b, 1c, and 1d show dynamic performance of circuit 1a when the digital inputs are swept by an external BCD up-counter with codes of 0000 0001 through 1001 1001 (division by zero is not allowed).


THEORY OF OPERATION (-A/X)

The circuit configuration for the -A/X function is shown in figure 2a. It is quite similar to that of figure 1a with both the DAC reference amplifier and output amplifier terminals reversed. Capacitors C1 and C2 provide phase compensation. Figures 2b, 2c, and 2d show dynamic performance of circuit 2a.


DESIGN CONSIDERATIONS

- 1) Circuit speed and settling time are dictated by output op amp slew rate, scale factor, and compensation. Use of slower amplifiers considerably increases the illustrated settling times. Effective slew rate of circuit 1a is $3V/\mu s$, while circuit 2a slews $0.6V/\mu s$.
- 2) Layout and breadboarding of high gain, wide-bandwidth devices necessitates considerable care with a ground plane with single point grounding being highly desirable. Decoupling capacitors located close to the devices' supply inputs are essential.
- 3) Accuracy of the circuit is within 1% over the 0°C to +70°C temperature range with 1% metal film resistors R1, R2 and R3. DAC linearity becomes an important factor as the divisor decreases; for this reason 1/4 LSB linear DAC's are recommended.
- 4) Binary coding may be accomplished by subsituting an 8-bit binary-coded DAC-08EX for the two-digit BCD-coded DAC-20EX. In addition to adjusting circuit values however, a higher performance op amp such as the OP-17F is desirable because the output amplifier's input offset voltage drift becomes a more significant error source for overall scale factor stability over temperature. This is due to the increased resolution of the binary coding.

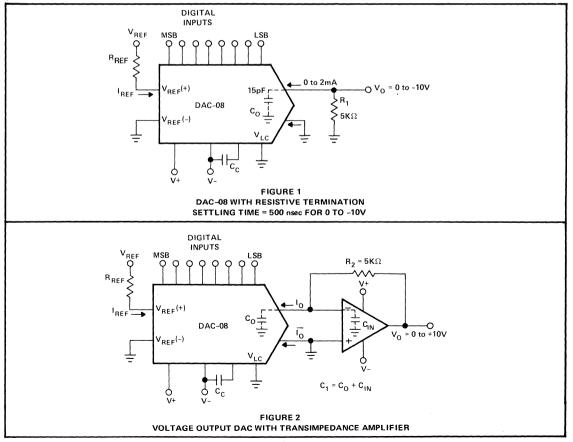
A/X FUNCTION GENERATOR

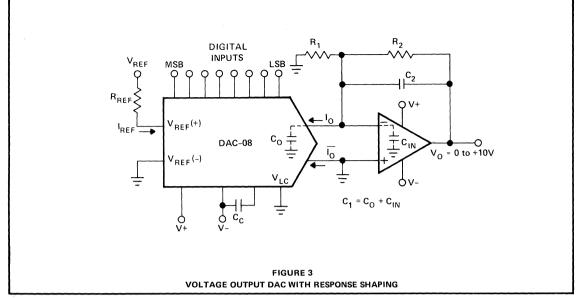
- A/X FUNCTION GENERATOR

Simple, low cost circuits which generate the hyperbolic functions A/X and -A/X have been presented, together with design guidelines for either binary or BCD-coded divisors.

Application Notes

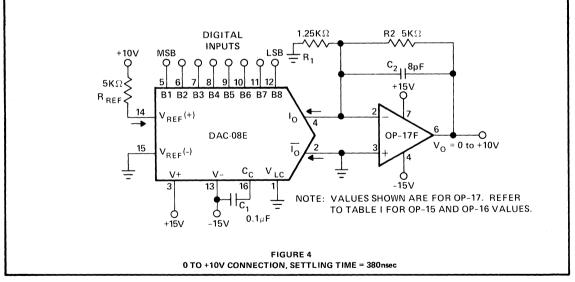
AN-24


THE OP-17, OP-16, OP-15 AS OUTPUT AMPLIFIERS FOR HIGH SPEED D/A CONVERTERS


by George Erdi

This application note shows how to make high speed, voltage output D/A converters using the DAC-08 and OP-15/16/17 precision bifet op amps. Designs are optimized for highest speed (OP-17), lowest drift (OP-16) and for lowest power (OP-15). Although the DAC-08 is used as an example, the same configurations work with DAC-20 and DAC-76.

Converting the current output of a fast IC DAC to a voltage while maintaining fast settling time is difficult. The full scale current of the DAC-08 settles in 85nsec. It can be terminated with a load resistance, as shown in Figure 1, to give a 10V output. However, in this configuration the settling time will be dominated by the RC time constant of R₁ and the DAC-08's output capacitance (T=R₁C₀=5K Ω X 15pF = 75nsec). It requires 6.2 time constants to settle within 0.2% of full scale (1/2 least significant bit of an 8 bit converter). Therefore, the settling time is 500nsec including the DAC-08's 35nsec propagation delay.


Due to this RC time constant, current to voltage conversion is usually accomplished with a transimpedance amplifier as shown in Figure 2. The output's response is now limited by the amplifier's slew rate and settling time. However, an additional pole is introduced at $\frac{1}{2\pi R_2 C_1}$, where C_1 is the sum of the DAC's output capacitance and the op amp's input capacitance. The frequency of this pole is likely to be at an inopportune location for fast amplifiers, creating an underdamped response or even oscillation.

The circuit of Figure 3 resolves this problem. It can be shown that if $R_1C_1 = R_2C_2$, the effect of the two capacitors is completely cancelled, and the overall settling will be determined by the amplifier's behavior only. In addition, C_2 can be varied to fine tune the system's response and minimize settling time to compensate for the op amp's possibly underdamped or overdamped characteristics. The disadvantage of this circuit compared to that of Figure 2 is that all input errors, and in particular input offset voltage (V_{os}), are

amplified by the factor $\left(1 + \frac{R_2}{R_1}\right)$

The optimum speed is obtained - at low cost - by using the OP-17, fast, precision, BIFET-input op amp, stable only at closed-loop gains of five or more. Therefore, the R_1/R_2 ratio is set at four (Figure 4). Settling time to 0.2% is 380nsec with all bits turning on (0 to 10V), or all bits turning off (10V to 0). The last 2.5 volts of the rising wave-form are shown in the photograph of Figure 5. The three grades of the OP-17 are specified at $V_{OS} = 0.5$ mV max (OP-17E), 1.0mV max (OP-17F), and 3.0mV max (OP-17G). Even though V_{OS} is multiplied five times its effect is still less than 0.2% or 20mV. The OP-17E's contribution will be only 1/4 LSB even on a 10 bit system. The offset voltage can also be trimmed to zero, then the TCV_{OS'} at 2 to 4 μ V/°C, typically,will be the limiting factor. The complementary output of the DAC-08 can be used for a -10V to +10V system as depicted in Figure 6. Settling time is only slightly increased because of the time required to slew the additional ten volts. Since 1/2 LSB is now 40mV, the non-slew portion is decreased by 70nsec.

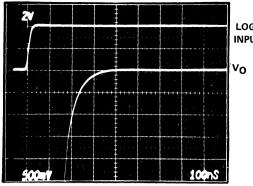
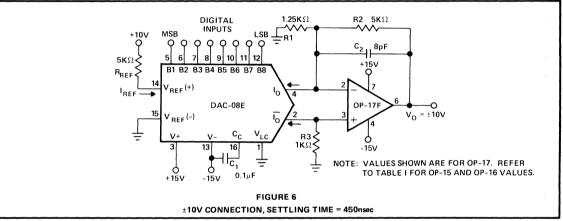



FIGURE 5 SETTLING TIME OF FIGURE 4 CIRCUIT USING OP-17

LOGIC

The OP-16 is slower than the OP-17 but it is stable in unity gain. Therefore, improved output-referred error can be traded off for increased settling time. The OP-15 is a lower power dissipation model, but again this improvement is obtained at the expense of settling time. Table I summarizes the resistor and capacitor values for the various amplifiers in the circuits of Figure 4 and Figure 6, the settling times obtained in these circuits, and the output-referred offset errors.

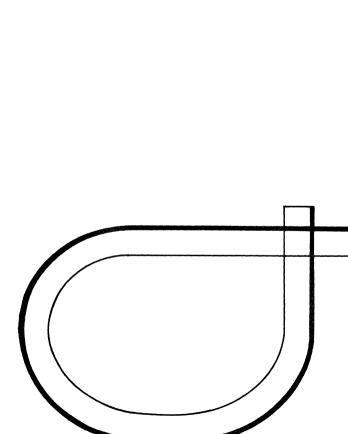
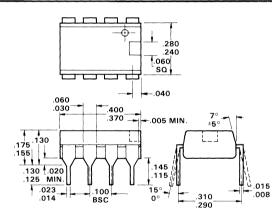
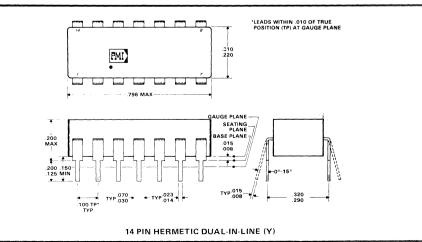


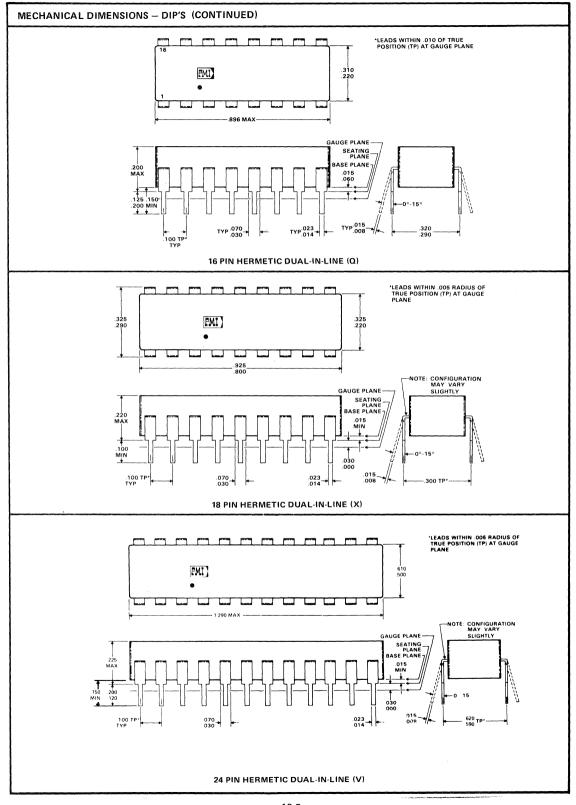
TABLE I
OP-17/16/15 PERFORMANCE AS OUTPUT OP AMP FOR DAC-08

	OP-17		OP-16		OP-15	
	0 to 10V Fig. 4	-10 to +10V Fig. 6	0 to 10V Fig. 4	–10 to +10V Fig. 6	0 to 10V Fig. 4	-10 to +10V Fig. 6
R ₁	1.25ΚΩ	1.25ΚΩ	10KΩ	10ΚΩ	1 0 ΚΩ	10KΩ
R ₂	5ΚΩ	5ΚΩ	5ΚΩ	5ΚΩ	5ΚΩ	5ΚΩ
R ₃	-	1ΚΩ	-	3.3KΩ	_	3.3KΩ
C2	8pF	8pF	25pF	40pF	30pF	50pF
Settling time to $\pm 0.2\%$	380nsec	450nsec	750nsec	1100nsec	900n sec	1350nsec
Slew Time	150nsec	290nsec	400nsec	800nsec	590nsec	1170nsec
1/2 LSB = 0.2%	20mV	40mV	20mV	40mV	20mV	40mV
Closed Loop Gain	5	5	1.5	1.5	1.5	1.5
Offset Error at Output						
E Grade MAX	2.5mV	2.5mV	0.75mV	0.75mV	0.75mV	0.75mV
F Grade MAX	5.0mV	5.0mV	1.5mV	1.5mV	1.5mV	1.5mV
G Grade MAX	15.0mV	15.0mV	4.5mV	4.5mV	4.5mV	4.5mV
SUPPLY CURRENT MAX	7mA	7mA	7mA	7mA	4mA	4mA

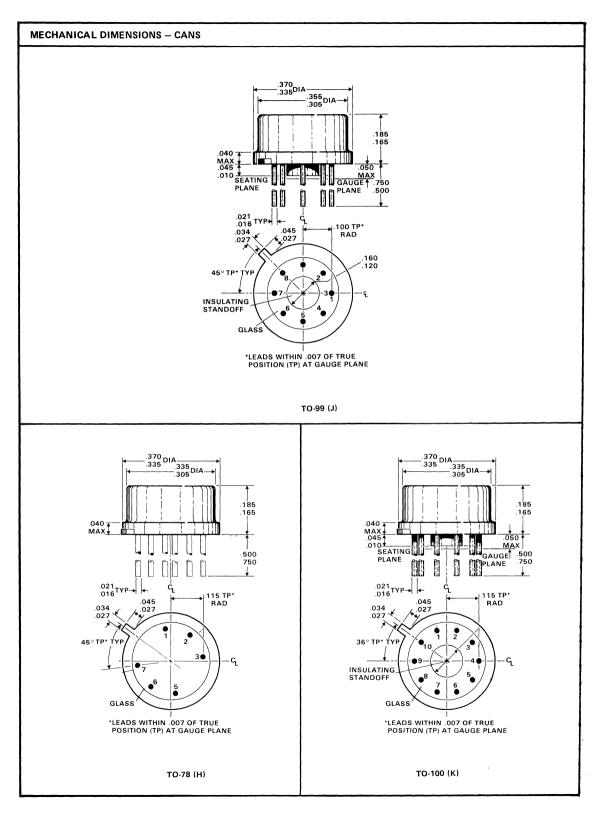
\$) 2 . .

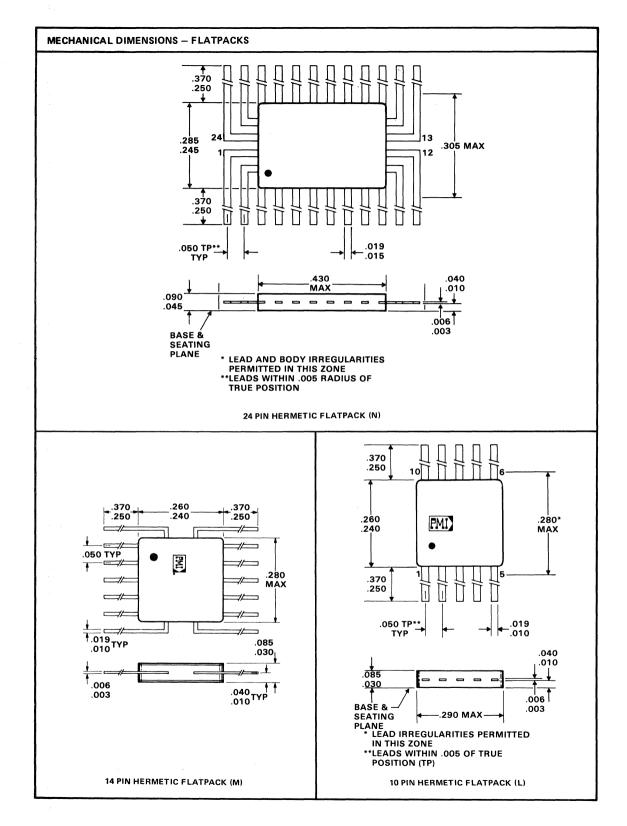

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

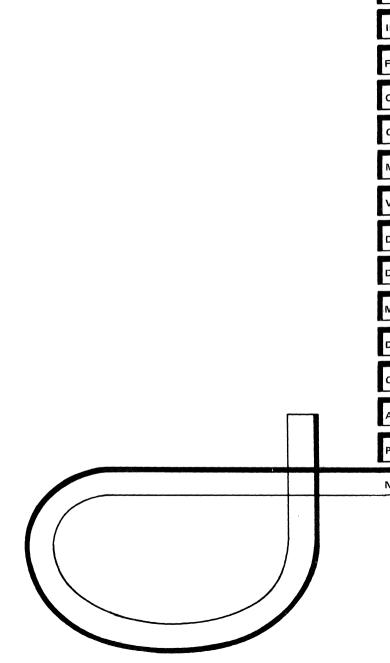

AVAILABLE PACKAGES


PACKAGE	DESCRIPTION
н	6 Pin TO-78
J	8 Pin TO-99
К	10 Pin TO-100
L	10 Pin Hermetic Flatpack
M	14 Pin Hermetic Flatpack
N	24 Pin Hermetic Flatpack
Y	14 Pin Hermetic Dip
Q	16 Pin Hermetic Dip
Х	18 Pin Hermetic Dip
V	24 Pin Hermetic Dip
Ρ	Epoxy B Mini Dip

MECHANICAL DIMENSIONS - DIP'S




8 PIN EPOXY B MINI DIP



16-2

NUMERICAL INDEX	1
ORDERING INFORMATION	2
Q.A. PROGRAM	3
INDUSTRY CROSS REFERENCE	4
FUNCTIONAL REPLACEMENT GUIDE	5
OPERATIONAL AMPLIFIERS	6
COMPARATORS	7
MATCHED TRANSISTORS	8
VOLTAGE REFERENCES	9
D/A CONVERTERS – LINEAR	10
D/A CONVERTERS – COMPANDING	11
MULTIPLEXERS	12
DEFINITIONS	13
CHIPS	14
APPLICATION NOTES	15
PACKAGE INFORMATION	16
NOTES	17

PMI REGIONAL OFFICES

EAST

3375 Park Avenue Wantagh, NY 11793 (516) 785-3331 CENTRAL

605 East Algonquin Road Suite 250G Arlington Heights, IL 60005 (312) 437-6697

9800 S. Sepulveda Blvd., Suite 818 Los Angeles, CA 90045 (213) 670-3791

SOUTHWEST

NORTHWEST

1500 Space Park Drive Santa Clara, CA 95050 (408) 246-9222

PMI DISTRICT OFFICES

PENNSYLVANIA, King of Prussia P.O. Box 657 (215) 265-3255 MARYLAND, Lutherville-Timonium P.O. Box 74 (301) 252-2988 NEW YORK, Fishkill Box A 800-824-5120 EXT 237

NORTH AMERICAN REPRESENTATIVES

ALABAMA, Huntsville W.A. Brown Components P.O. Box 1332 West Station (205) 539-4411 TWX 810-850-0140

ARIZONA, Tempe Argus Sales 1050 E. Southern, Suite C5 P.O. Box 26817 (602) 967-8709 TWX 910-950-1940

CALIFORNIA, Mountain View Thresum Associates 1901 Old Middlefield Way, Suite 16 (415) 965-9180 TWX 910-379-6617

CALIFORNIA, San Diego L&S Associates 11772 Sorrento Valley Road (714) 455-0055 TWX 910-322-1730

COLORADO, Wheatridge Waugaman Associates, Inc. 4800 Van Gordon (303) 423-1020 TWX 910-938-0750 CONNECTICUT, Wallingford Com-Sale 633 Williams (203) 269-7964

FLORIDA, Orlando Technology Marketing Associates 6009 S. Orange Ave. (305) 857-3760

FLORIDA, Pompano Beach Technology Marketing Associates 1010 East Atlantic Blvd. (305) 942-0774

GEORGIA, Chamblee W.A. Brown Components 3083F Colonial Way (404) 455-0405

ILLINOIS, Rolling Meadows Sumer, Inc. 5050 Newport Drive (312) 394-4900 TWX 910-687-0764

NORTH AMERICAN REPRESENTATIVES (CONT'D)

INDIANA, Indianapolis Ihrig Associates, Inc. 6410 Woodwind Drive (317) 783-7630

IOWA, Cedar Rapids Comstrand, Inc. 204 Collins Road, NE (319) 377-1575 TWX 910-576-0924

KANSAS, Olathe Technical Representatives, Inc. 801 Clairborne (913) 782-1177 TWX 910-749-6412

NEW MEXICO, Albuquerque Waugaman Associates, Inc. P.O. Box 14894 (505) 294-1436

NEW YORK, Jericho J-Square Marketing, Inc. P.O. Box 103 (516) 997-6210 TWX 510-222-1048

NORTH CAROLINA, Raleigh W.A. Brown Components P.O. Box 19407 (919) 781-9426

MASSACHUSETTS, Waltham Com-Sale 235 Bear Hill Road (617) 890-0011

MICHIGAN, Detroit A. Blumenberg Associates P.O. Box 8936 (313) 557-1934 TWX 810-224-4852

MICHIGAN, St. Joseph A. Blumenberg Associates 2910 Willa Drive (616) 983-0431

MINNESOTA, Minneapolis Comstrand, Inc. 6279 University Ave., NE (612) 571-0000 TWX 910-576-0924

MISSOURI, Hazelwood Technical Representatives, Inc. 300 Brooks Dr., Suite 108 (314) 731-5200 TWX 910-762-0618 OHIO, Cleveland Del Steffen & Associates 33 Alpha Park (216) 461-8333 TWX 810-427-9272

OHIO, Dayton Del Steffen & Associates 1201 E. David Road (513) 293-3145

OHIO, Lexington Del Steffen & Associates 173 Otterbein Drive (419) 884-2313

TENNESSEE, Knoxville W. A. Brown Components 4000 Pleasant Ridge Road Apt. C-4 (615) 637-3523

TEXAS, Houston Oeler & Menelaides, Inc. 6065 Hillcroft, Suite 502 P.O. Box 35428 (713) 772-0730

TEXAS, Richardson Oeler & Menelaides, Inc. 558 S. Central Expressway, #276 (214) 234-6334 TWX 910-867-4745

UTAH, Salt Lake City Waugaman Associates, Inc. 445 East 2nd South, Suite 304 (801) 363-0275 TWX 910-925-5607

WASHINGTON, Seattle SJI 6 626 Alaska Street (206) 624-9020 TWX 910-444-2212

WISCONSIN, Milwaukee Sumer Inc. 11430 W. Bluemound Road (414) 259-9060

CANADA ONTARIO, Mississauga RFQ Limited P.O. Box 262 Port Credit Postal Station (416) 626-1445

QUEBEC, Dollard Des Oreaux RFQ Limited P.O. Box 213 (514) 626-8324

PMI – A BOURNS SUBSIDIARY – IS REPRESENTED IN EUROPE, NEAR EAST AND AFRICA THROUGH THE NETWORK OF BOURNS REPRESENTATIVES.

EUROPEAN HEADQUARTERS BOURNS AG, BAARERSTRASSE 8, 6301 ZUG, SWITZERLAND PHONE: 042 23 22 42 TELEX: 78 722

AUSTRIA

Ing. Otto Folger Elektronische Gerate Graf Starhemberggasse 45 1040 Vienna Phone: 0222 / 65 45 03 Telex: 76588

BELGIUM

Bourns (Belgium) N.V. I.R.C., Rogiersplein 13 1000 Brussels Phone: 02 / 218 2005 Telex: 23217

DENMARK

E. Friis-Mikkelsen A/S
Krogshøjvej 51
2880 Bagsvaerd-Copenhagen
Phone: 01 / 98 63 33
Telex: 37350

EASTERN EUROPE Eltrans Handelsgesellschaft m.b.H. Nordbahnstrasse 44/15 1020 Vienna Phone: 0222 / 24 71 37 Telex: 75011 a

FINLAND

Oy Chester AB Kumpulantie 1 00510 Helsinki 51 Phone: 80 / 735 774 Telex: 122217

FRANCE

Ohmic S.A. 21/23, rue des Ardennes 75019 Paris Phone: 01 / 203 9633 Telex: 230008

GERMANY

Bourns GMBH Eberhardstrasse 63 7 Stuttgart 1 Phone: 0711 / 24 29 36 Telex: 721556

GREECE

Sotiris V. Vorgias Kontostavlou 11-13 Kalamaki Alimos Athens Phone: 9812326

IRAN

Berkeh Company Ltd. 20, Salm Street Roosevelt Avenue Teheran Phone: 831 564 Telex: 212956

ISRAEL Rapac Electronics Ltd. P.O. Box 18053 Tel Aviv Phone: 45 42 46 or 44 66 91 Telex: 33528

ITALY Technic S.r.L. Piazza Firenze 19 20149 Milan

Phone: 02 / 32 56 88

NETHERLANDS Bourns (Nederland) B.V. Van Tuyl Serooskerkestraat 81-85 P.O. Box 37 Voorburg Phone: 070 88 93 18 Telex: 32 023

NORWAY

A/S Kjell Bakke Tekniske Agenturer Nygt 48, P.O. Box 143 2011 Strømmen Phone: 02 / 71 53 50 Telex: 19407

PORTUGAL

Telectra S.A.R.L. Rua Rodrigo da Fonseca 103 Lisbon 1 Phone: 68 60 72 Telex: 1598

SOUTH AFRICA

Associated Electronics (Pty) Ltd. P.O. Box 31094 Braamfontein – Johannesburg Phone: 839 1824 Telex: 8-8432

SPAIN

Hispano Electronica S.A. Poligono Industrial Urtinsa Apartado de Correos 48 Alcorcon (Madrid) Phone: 619-4108 Telex: 42 634

SWEDEN

AB Elektroutensilier 184 00 Akersbergam Phone: 0764 / 20 110 Telex: 10912

SWITZERLAND

Bourns (Schweiz) AG Baarerstrasse 8 P.O. Box 331 6301 Zug Phone: 042 / 23 22 42 Telex: 78722

TURKEY

Nel, Nukleer Elektronik Ltd. Fevzi Cakmak, Sokak 33/3 Yenisehir, Ankara Phone: 18 72 70 Telex: 42-229

UNITED KINGDOM Bourns (Trimpot) Ltd. Hodford House 17/27 High Street

Hounslow, Middlesex TW3 1TE Phone: 01 / 572 6531 Telex: 264485

YUGOSLAVIA

Unitrade/Podravka Foreign Agencies Marinkoviceva 1 41000 Zagreb Phone: 44 80 55 Telex: 21169

AUSTRALIA Cema 21 Chandos St. Crows Nest NSW 2065

INDIA Fegu Electronics, Inc. 260 Sheridan Ave. Palo Alto, Ca. 94306

JAPAN Toyo Trading Co., Ltd. Second Section – Electronic P.O. Box 5014 International Tokyo, Japan

SOUTH AMERICA Intectra 2349 Charleston Road Mountain View, Ca.

FMI

Precision Monolithics Incorporated 1500 Space Park Drive, Santa Clara, CA 95050 (408) 246-9222. TWX 910-338-0528. ©Cable MONO.