Television Tuners Coaxial Aerial Input Assemblies

Philips Components

TELEVISION TUNERS
 COAXIAL AERIAL INPUT ASSEMBLIES

page
Selection guides
VHF/UHF television tuners 5
VHF/UHF television front ends 8
SATELLITE front ends 9
Low noise block converters 9
Coaxial aerial input assemblies 10
Pin compatibility 11
Device specifications
VHF/UHF television tuners and front ends 15
Low noise block converters 261
Coaxial aerial input assemblies 267
TV systems \& characteristics
Overview of TV transmission standards 277

- colour systems 278
- intercarrier frequencies 279
Characteristics of TV systems 280
International TV systems and standards 281
TV channel frequencies 285
Data handbook system ii

Television Tuners

Coaxial Aerial Input Assemblies

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

Television Tuners

VHF/UHF TELEVISION TUNERS

PRODUCT TYPE VST FST PLL	UV617 UV618	UV816/6456 UV816/PLL	UV913 UV914	UV915E UV916E
System	CCIR: B, G, H	$\begin{aligned} & \text { CCIR: } B, G, H, I, I^{\prime}, \\ & \text { L, L' } \end{aligned}$	CCIR: B, G	CCIR: B, G, H, I, I', L, L', D2MAC
Region	Europe	Europe	Europe	Europe
Off-air channels VHF UHF	E2 to C E5 to E12 E12 to E69	$\begin{array}{\|l} \mathrm{E} 2 \text { to C } \\ \text { E5 to E21 } \\ \text { E21 to E69 } \\ \hline \end{array}$	E2 to C M4 to E21 E21 to E69	$\begin{array}{\|l\|} \hline E 2 \text { to } C \\ \text { E5 to E21 } \\ \text { E21 to E69 } \\ \hline \end{array}$
Cable channels	$\begin{aligned} & \text { S01 to S2 } \\ & \text { S2 to S20 } \end{aligned}$	S01 to S1 S11 to S39 S40 to S41	$\begin{aligned} & \text { S01 to S10 } \\ & \text { S2 to S20 } \end{aligned}$	S01 to S10 S11 to S39 S40 to S41
Frequency ranges (MHz) at picture carrier	48.25 to 105.25 112.25 to 294.25 471.25 to 855.25	48.25 to 168.25 175.25 to 447.25 455.25 to 855.25	48.25 to 82.25 163.25 to 224.25 471.25 to 855.25	$\begin{aligned} & 48.25 \text { to } 168.25 \\ & 175.25 \text { to } 447.25 \\ & 455.25 \text { to } 855.25 \end{aligned}$
IF frequency (MHz) picture sound1 sound2	$\begin{aligned} & 38.9 \\ & 33.4 \\ & 33.16 \end{aligned}$	see data sheet	$\begin{array}{\|l\|} \hline 38.9 \\ 33.4 \end{array}$	see data sheet
Voltage gain (dB) min. max.	$\begin{aligned} & 36 \\ & 50 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 40 \\ 50 \\ \hline \end{array}$	$\begin{array}{\|l} 40 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & 38 \\ & 50 \\ & \hline \end{aligned}$
Noise figure (dB) max. typ.	$\begin{aligned} & 11 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \\ & \hline \end{aligned}$
Min. AGC range (dB) min.	30	30	30	30
Tuning voltage (V)	0.8 to 28	1 to 28	0.3 to 28	0.7 to 28
Overall dimensions I xw xh (mm)	$84 \times 20 \times 55$	$84 \times 20 \times 25$	$66 \times 20 \times 46$	$66 \times 20 \times 46$
Aerial input plug	IEC	IEC	IEC, phono	IEC, phono
Compliance with radio interference	Amtsblatt	Amtsblatt CENELEC	CISPR 13 CENELEC	Amtsblatt CENELEC CISPR 13
Page	65	77	95	109
Remarks				

Television Tuners
Coaxial Aerial Input Assemblies

PRODUCT TYPE VST FST PLL	UV916H	UV933 UV934	$\begin{gathered} \text { UV935 } \\ \text { UV936E } \end{gathered}$	U943C U944C
System	CCIR: B, G, H, I, I', L, L', D2MAC	RTMA: M, N	RTMA: M, N	CCIR: 1
Region	Europe	S. America	USA	UK
Off-air channels VHF UHF	$\begin{array}{\|l\|} \hline \text { E2 to C } \\ \text { E5 to E21 } \\ \text { E21 to E69 } \\ \hline \end{array}$	A2 to A13 A14 to A83	A2 to A13 A14 to A69	E21 to E69
Cable channels	S01 to S10 S11 to S39 S40 and S41	A-2 to 1	A-2 to 65	
Frequency ranges (MHz) at picture carrier	48.25 to 168.25 175.25 to 447.25 455.25 to 855.25	55.25 to 211.25 471.25 to 885.25	$\begin{array}{\|l} 55.25 \text { to } 157.25 \\ 162.00 \text { to } 451.25 \\ 457.25 \text { to } 801.25 \end{array}$	471.25 to 855.25
IF frequency (MHz) picture sound1 sound2	see data sheet	$\begin{aligned} & 45.75 \\ & 41.25 \end{aligned}$	$\begin{array}{\|l} 45.75 \\ 41.25 \end{array}$	$\begin{aligned} & 38.9 \\ & 32.9 \\ & 32.4 \end{aligned}$
Voltage gain (dB) min. max.	$\begin{aligned} & 38 \\ & 52 \end{aligned}$	$\begin{aligned} & 38 \\ & 50 \end{aligned}$	$\begin{array}{\|l} 38 \\ 50 \\ \hline \end{array}$	$\begin{array}{\|l} 40 \\ 52 \end{array}$
Noise figure (dB) max. typ.	$\begin{array}{\|l\|} 9 \\ 6 \end{array}$	$\begin{aligned} & 12 \\ & 8 \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \end{aligned}$	$\begin{array}{\|l} 9 \\ 6 \\ \hline \end{array}$
Min. AGC range (dB) min.	30	30	30	30
Tuning voltage (V)		0.3 to 28	0.3 to 28	0.3 to 28
Overall dimensions I $\times \mathrm{w} \times \mathrm{h}$ (mm)	$66 \times 20 \times 46$			
Aerial input plug	IEC, phono IEC-Long	phono	IEC, phono IEC-Long	IEC, phono IEC-Long
Compliance with radio interference	Amtsblatt CENELEC CISPR 13	CISPR 13	FCC	CENELEC
Page	121	141	155	167
Remarks	symmetrical output optional ADC high performance		UV936H symmetrical output	

Television Tuners

Coaxial Aerial Input Assemblies

PRODUCT TYPE VST FST PLL	UV953 UV954	UV963 UV964	UV973 UV974	UV983 UV984
System	OIRT: D, K	CCIR: B, G, H	CCIR: 1	Japanese M
Region	China USSR	Australia	S. Africa	Japan
Off-air channels VHF UHF	C1 to C5 C6 to E12 C13 to C57	0 to 5 5 A to 12 21 to 69	SA4 to SA13 E21 to E69	J1 to J3 J4 to J12 J13 to J62
Cable channels				
Frequency ranges (MHz) at picture carrier	48.25 to 93.25 168.25 to 224.25 471.25 to 855.25	$\begin{aligned} & 46.25 \text { to } 102.25 \\ & 138.25 \text { to } 224.25 \\ & 471.25 \text { to } 855.25 \end{aligned}$	175.25 to 247.43 471.25 to 855.25	91.25 to 103.25 171.25 to 217.25 471.25 to 765.25
$\begin{aligned} & \text { IF frequency (MHz) } \\ & \text { picture } \\ & \text { sound1 } \\ & \text { sound2 } \end{aligned}$	$\begin{aligned} & 38.0 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 36.875 \\ & 31.375 \\ & 31.133 \end{aligned}$	$\begin{array}{\|l} 38.9 \\ 32.9 \end{array}$	$\begin{array}{\|l} 58.75 \\ 54.25 \end{array}$
Voltage gain (dB) min. max.	$\begin{aligned} & 40 \\ & 52 \end{aligned}$	$\begin{aligned} & 38 \\ & 50 \end{aligned}$	$\begin{aligned} & 38 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$
Noise figure (dB) max. typ.	$\begin{aligned} & 10 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \\ & \hline \end{aligned}$
Min. AGC range (dB) min.	30	30	30	30
Tuning voltage (V)	0.3 to 28	0.3 to 28	0.3 to 28	0.3 to 28
Overall dimensions I $\times \mathrm{w} \times \mathrm{h}$ (mm)	$66 \times 20 \times 46$			
Aerial input plug	IEC, phono	IEC, phono	IEC, phono	phono
Compliance with radio interference	CISPR 13	CISPR 13 AS2839	SABS	
Page	179	193	207	219
Remarks				

Television Tuners

Coaxial Aerial Input Assemblies
Selection guide

VHF/UHF TELEVISION FRONT ENDS

TYPE	REGION	SYSTEM	TUNER EQUIVALENT CHARACTERISTICS	SOUND	CONNECTOR	HOUSING DIMENSIONS LxWxH (mm) (note 1)	PAGE
		MAIN/ SEC.					
FE618Q	Europe	$\begin{aligned} & \text { CCIR: } \\ & \text { B, G, H/- } \end{aligned}$	UV618	quasi-split sound (stereo)	IEC	$147 \times 20 \times 55$	15
$\begin{aligned} & \text { FQ816 } \\ & \text { FQ816/IF } \\ & \text { (note 2) } \\ & \hline \end{aligned}$	Europe	$\begin{aligned} & \text { CCIR: } \\ & \mathrm{B}, \mathrm{G} /- \end{aligned}$	UV816	$\begin{aligned} & \text { quasi-split } \\ & \text { sound } \\ & \text { (stereo) } \end{aligned}$	IEC	$147 \times 20 \times 55$	29
FQ816ME FQ816ME/IF (note 2) FQ86F	Europe	CCIR: B, G/L, M	UV816	$\begin{aligned} & \text { quasi-split } \\ & \text { sound } \\ & \text { (stereo) } \end{aligned}$	IEC	$147 \times 20 \times 55$	29
FQ816MF FQ816MF/IF (note 2)	Europe	CCIR: L, L'/B, G, I	UV816	quasi-split sound (stereo)	IEC	$147 \times 20 \times 55$	29
$\begin{array}{\|l} \hline \text { FQ844 } \\ \text { FQ844/IF } \\ \text { (note 2) } \\ \hline \end{array}$	UK	$\begin{aligned} & \text { CCIR: } \\ & 1 /- \end{aligned}$	UV816	quasi-split sound (stereo)	IEC	$147 \times 20 \times 55$	29
F1916	Europe, S.E. Asia	$\begin{aligned} & \text { CCIR: } \\ & \mathrm{B}, \mathrm{G} /- \end{aligned}$	UV916E	intercarrier sound	IEC, phono	$100 \times 20 \times 47$	-
FS916	Europe, S.E. Asia	$\begin{aligned} & \text { CCIR: } \\ & \mathrm{B}, \mathrm{G} /- \end{aligned}$	UV916E	split sound (stereo)	IEC, phono	$100 \times 20 \times 47$	41
FS936	USA	$\begin{aligned} & \text { RTMA: } \\ & \text { M, N/- } \end{aligned}$	UV936E	split sound (stereo)	IEC, phono	$100 \times 20 \times 47$	53
FS986	Japan	Japan: M/-	UV936E	$\begin{aligned} & \text { split sound } \\ & \text { (stereo) } \\ & \hline \end{aligned}$	IEC, phono	$100 \times 20 \times 47$	-

Notes

1. Including connectors and tags.
2. "/IF" versions for D2MAC application.

Television Tuners
Coaxial Aerial Input Assemblies

SATELLITE FRONT ENDS

Product range

TYPE NUMBER	INPUT	CONNECTOR	FREQUENCY BAND (MHz)	AFC	$\begin{gathered} \text { IF } \\ \text { OUTPUT } \end{gathered}$	PAGE
SFE212S	single	IEC (f)	950-1750	external	no	233
SF914	single	IEC (f)	950-1750	external	no	247
SF914D	double	IEC (f + m)	950-1750	external	no	247
SF916 (note 1)	single	IEC (f)	950-2000	external	no	247
SF916D	double	IEC (f + m)	950-2000	external	no	247
SF916/F	single	F	950-2000	external	no	247
SF916D/A	single	IEC (f)	950-2000	internal	no	247
SF916D/F	double	IEC (f + m)	950-2000	internal	no	247
SF916D/F/IF	double	F	950-2000	external	yes	247

Note

1. The data sheets for the SF916 family will be available soon.

LOW NOISE BLOCK CONVERTERS

Product range

TYPE NUMBER	INPUT	CONNECTOR	FREQUENCY BAND (GHz)	NOISE FIGURE (dB)	HORN/ FLANGE	PAGE
SC813	single	F	$10.95-11.70$	1.3	horn	261
SC813/FL	single	F	$10.95-11.70$	1.3	flange	261
SC815	single	F	$10.95-11.70$	1.1	horn	261
SC815/FL	single	F	$10.95-11.70$	1.1	flange	261

Television Tuners
Coaxial Aerial Input Assemblies

COAXIAL AERIAL INPUT ASSEMBLIES

With mains separation:	
Frequency range	40 to 890 MHz
Impedance	75Ω asymmetrical
Input connector	meets the demands of IEC 169.2 and DIN 45325 (diameter 9.5 mm), and of Safety requirements (diameter 9.0 mm)
	SNIR 65; approbation approvals have been received or sought from BSI,

INSERTION LOSS			CATALOGUE NUMBER
AT FREQUENCY $(M H z)$	PAGE		
$40-300$	≤ 1	312212721300 (note 1)	267
$470-890$	≤ 1		
$40-230$	≤ 1	312212724140	271
$230-300$	≤ 1.5		
$470-890$	≤ 1.5		

Note

1. This assembly complies with the requirements of immunity from radiated interference of BS905.

Television Tuners
Coaxial Aerial Input Assemblies

PIN COMPATIBILITY AND CONSISTENCY

All tuners and front ends of the 800and 900 -series are pin compatible, i.e. the pins for the same function are located at the same place on the housing, despite the reduced size of
the 900-series in comparison with the 800 -series (see Fig.1). The mounting tags (ground) at the aerial input side of the 900 -series (MT4) have a different position, because these tuners are smaller. The height of the aerial input connector is the same for all tuners
and front ends. Some tuners and front ends of the 900-series (for example: UV916E, UV916H, U944C, FQ916, etc.) are available with an IEC-LONG connector to achieve optimum interchangeability with products of the 800 -series.

Fig. 1 Comparison of pin locations 800- and 900-series.

Television Tuners

Coaxial Aerial Input Assemblies

Terminal designation for 800 - and 900 -series

PIN NUMBER	DESCRIPTION VST-VERSIONS	DESCRIPTION PLL-VERSIONS
A	aerial input connector	
5	AGC voltage	AGC voltage
6	supply voltage (12 V)	supply voltage (12 V)
7	low band supply voltage (12 V)	
8	mid band supply voltage (12 V)	
10	high band supply voltage (12 V)	
11	tuning voltage (≈ 0.3 to 28 V)	tuning supply voltage (33 V via $22 \mathrm{k} \Omega$)
12	(note 1)	supply voltage (5 V)
13	(note 1)	SCL serial clock ($1^{2} \mathrm{C}$)
14	(note 1)	SDA serial data ($1^{2} \mathrm{C}$)
15	(note 1)	multiple address selection
16	ground/IF output (note 2)	ground/IF output (note 2)
17	IF output	IF output
19		audio mute
20		audio/video mute
21		AFC output
22		second IF sound
23		video output
24		supply voltage IF (12 V)
25		AF1/AM sound output
26		audio ground
27		AF2 sound output

Notes

1. Pins 12 to 15 are not used in VST tuners with the exception of the UV816/6456 (divider).
2. Both pins 16 and 17 are IF output for tuners with symmetrical outputs (for example: UV816, UV916H).

VHF/UHF TELEVISION TUNERS AND FRONT ENDS

VHF / UHF TELEVISION TUNER AND IF DEMODULATOR

QUICK REFERENCE DATA

Systems	CCIR systems B, G and H
Channels	off-air cable
low VHF	E2 to C S01 to S1
high VHF	E5 to E12 S2 to S20
UHF	E21 to E69
Intermediate frequencies	
picture	38.90 MHz
colour	34.47 MHz
sound 1	33.40 MHz
sound 2	33.16 MHz
Video output signal	
peak-to-peak voltage	2.1 to 2.8 V
top sync level	2.2 to 2.6 V
Intercarrier sound output signals	
5.50 MHz	200 to 500 mV RMS
5.74 MHz	90 to 225 mV RMS

APPLICATION

Designed to cover the tuner function according to the CCIR systems B, G and H with extended
VHF frequency ranges, combined with a quasi split sound IF function to demodulate the video signal and to convert the sound signal.

The tuner parts of the FE618Q/256 and the FE168Q/6456 are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis.

This tuner complies with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1961, and for Finland E.I.S. bulletin T33-82, section 4, when installed professionally in an adequate TV receiver.

Table 1 Available versions

	aerial input connector	frequency divider (IC)	catalogue number
FE618Q/256	IEC	$1: 256$	-
FE618Q/6456 (note 1)	IEC	$1: 64$ or 1:256	311229710251

Note to the Table

1. The frequency divider is switchable.

Fig. 1 Tuner part.

VHF/UHF television tuner and IF demodulator

DESCRIPTION

The front end contains a VHF/UHF tuner with electronic tuning and band switching, covering the low VHF band (frequency range 46 to 110 MHz), the high VHF band (frequency range 111 to 300 MHz), and the UHF band (frequency range 470 to 860 MHz).
Mechanically, the front end consists of a tuner part and an i.f. part built on separate low-loss printedwiring boards, carrying all components, in a housing made of a rectangular diecast metal frame and front and rear covers (see Fig. 3). The common IEC coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, IF output) are made via terminals in the underside. The mounting method is shown in Fig. 4. Electrically, the tuner part consists of VHF and UHF parts (see Fig. 1). They are equipped with a common aerial input and provided with RF MOSFET input stages. The VHF mixer, VHF oscillator and IF amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect the IF preselection.
The RF band pass filter and oscillator circuits are tuned by 7 tuning diodes; band switching is achieved by 4 switching diodes.
The UHF part of the tuner has a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the RF signal to the Schottky barrier mixer diode. The IF signal from the mixer diode is amplified by the IF pre-amplifier of the tuner IC.
The RF band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for IF injection.
The electrical circuit of the FE618Q/256 is extended with a frequency divider (division ratio of 256) and that of the FE618Q/6456 with a switchable divider (division ratio 64 or 256), with inputs connected to the VHF and UHF oscillators. The symmetrical ECL outputs are connected to terminals 13 and 14.

The IF part is of the quasi-split sound type. It has separate ICs for video demodulation and sound conversion (see Fig.2).

The demodulated (CVBS-) video signal is available at the video output of the front end and the converted sound signal, with intercarrier frequencies of 5.50 MHz and 5.74 MHz , is available at the sound output.

Terminal designations in Fig. 3

A $=$ aerial input (IEC female 75Ω)
6 = supply voltage, tuning part, +12 V
7 = supply voltage, low VHF + 12 V
8 = supply voltage, high VHF + 12 V
10 = supply voltage, UHF + 12 V
$11=$ tuning voltage, +0.48 to +28 V
12 = supply voltage, frequency divider, + 5 V
$13,14=$ balanced output voltage of frequency divider ($1 \mathrm{k} \Omega$)
15 = to be grounded for 256 ratio, floating for 64 ratio (FE618Q/6456 only)

$$
\begin{aligned}
22 & =\text { switching voltage AFC } \\
23 & =\text { AFC output } \\
24 & =1 F \text { sound } \\
27 & =\text { earth } \\
28 & =\text { video output } \\
30 & =\text { supply voltage IF } \\
& \text { demodulation, }+12 \mathrm{~V}
\end{aligned}
$$


```
Mass approx. 160 g
```


Mounting

The unit may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 4). The construction and positioning of the 3 mounting tags is such that a 'click' indicates the correct seating of the unit on the printed-wiring board. The unit may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tags is according to IEC 68-2, test Ta ($235 \pm 5^{\circ} \mathrm{C}$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

$1 \mathrm{eb}=0,025 \mathrm{inch}$

Fig. 4 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

In order to withstand vibrations, shocks and bumps that could damage the solder joints of the mounting tags, the front end should be mounted and , udered without clearance between the supporting area and the printed-wiring board.
This can be achieved by:

- twisting the mounting tags $18^{\circ}\left(-3^{\circ}\right)$; or
- pressing the front end against the printed-wiring board during soldering; or
- supporting the front end at its aerial connector.

If the aerial connector is used as a direct input to the television set, it should be supported to prevent the printed-wiring board from stress.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, supply and band switching voltages of $12 \pm 0,3 \mathrm{~V}$.

General

Semiconductors, VHF bands

RF amplifier BF992
mixer
oscillator (
tuning diodes
switching diodes
d.c. blocking diodes

Semiconductors, UHF bands
RF amplifier
oscillator
mixer
tuning diodes
Frequency divider
Semiconductors, IF
IF amplifier and demodulator
quasi-split-sound circuit
synchronization circuit
video output transistor
S.A.W. filter

Ambient temperature range operating
storage
Relative humidity

Voltages and currents

Supply voltages (tuner and IF part)
Current drawn from +12 V supply
VHF bands
UHF bands
bandswitching
IF part

TDA5030
$7 \times$ BB909
$4 \times$ BA482/483/484
$2 \times$ BAS15

BF990
BF970
1SS99
$4 \times$ BB405
SP4653

TDA2541
TDA2545A
TDA2577A
BC548
OFW G3203
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 95\%
$+12 \mathrm{~V} \pm 10 \%$
$\max .50 \mathrm{~mA}$
$\max .45 \mathrm{~mA}$
max. 15 mA
max. 200 mA ,
without mute 140 mA

For operation in all bands the terminals 6 and 30 are permanently connected to their voltage supplies. Additionally the supply voltage for band switching is connected to:
terminal 7 for operation in low VHF band
terminal 8 for operation in high VHF band
terminal 10 for operation in UHF bands

Tuning voltage range
+0.8 to +28 V
Current drawn from 28 V tuning voltage supply at $T_{a m b}=25^{\circ} \mathrm{C}$ and 60% R.H.
$\max .0 .5 \mu \mathrm{~A}$
at $T_{a m b}=25^{\circ} \mathrm{C}$ and 95% R.H.
$\max .2 \mu \mathrm{~A}$
at $T_{a m b}=60^{\circ} \mathrm{C}$ and 60% R.H.
$\max .2 \mu \mathrm{~A}$
Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.

Aerial input characteristics

Input impedance
75Ω
VSWR and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)

VSWR
VHF bands
UHF bands
reflection coefficient
VHF bands
UHF bands
Gain limited sensitivity level
VHF CCIR channels and UHF channels
S-channels
A.G.C. limited aerial input level

VHF bands min. $100 \mathrm{~dB}(\mu \mathrm{~V})$
UHF bands
Oscillator voltage level (fundamental and
harmonics up to 1000 MHz) at the input
VHF bands
UHF bands
Surge protection
max. 4
$\max .5$
max. 60\%
max. 66\%
min. $90 \mathrm{~dB}(\mu \mathrm{~V})$
max. $44 \mathrm{~dB}(\mu \mathrm{~V})$
$\max .66 \mathrm{~dB}(\mu \mathrm{~V})$
max. 5 kV
at nominal gain and during gain control
typ. $25 \mathrm{~dB}(\mu \mathrm{~V}), \max .33 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $29 \mathrm{~dB}(\mu \mathrm{~V})$, max. $37 \mathrm{~dB}(\mu \mathrm{~V})$

Tuning characteristics

Frequency ranges
low VHF band channel E2 (picture carrier 48.25 MHz) to
high VHF band

UHF bands
channel S1 (picture carrier 105.25 MHz).
channel S2 (picture carrier 112.25 MHz) to channel S20 (picture carrier 294.25 MHz). channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz).

The frequency ranges remain valid under the specified operating conditions during the entire life time of the unit.
The oscillator frequency is higher than the aerial signal frequency.

Slope of tuning characteristic
low VHF band, channel E2
channel S1
high VHF band, channel S2
channel S20
UHF bands, channel E21
channel E69
Tuning voltage range within which the divided oscillator frequency increases monotone with the tuning voltage

Slope of tuning characteristic
low VHF band
high VHF band
UHF bands
Tuning voltage range within which the tuning frequency increases monotone with the tuning voltage
Time constant of varicap voltage
Aerial input level causing detuning
of -300 or +1000 kHz
VHF bands
UHF bands

Oscillator characteristics

Shift of oscillator frequency at a change of the supply voltage of 5%

VHF bands
UHF bands
Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ and
from +25 to $+0^{\circ} \mathrm{C}$
VHF bands
UHF bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low VHF band
high VHF band
UHF bands
$\left.\begin{array}{r}5 \mathrm{MHz} / \mathrm{V} \\ 1 \mathrm{MHz} / \mathrm{V} \\ 10 \mathrm{MHz} / \mathrm{V} \\ 2 \mathrm{MHz} / \mathrm{V} \\ 22 \mathrm{MHz} / \mathrm{V} \\ 5 \mathrm{MHz} / \mathrm{V}\end{array}\right\}$ typical values

0,45 to 30 V

1 to $6 \mathrm{MHz} / \mathrm{V}$
2 to $14 \mathrm{MHz} / \mathrm{V}$
4 to $25 \mathrm{MHz} / \mathrm{V}$
0.45 to 30 V
1.5 ms
$\min .100 \mathrm{~dB}(\mu \mathrm{~V})$
$\min .90 \mathrm{~dB}(\mu \mathrm{~V})$
max. 250 kHz
max. 500 kHz
max. 250 kHz
max. 250 kHz
$\max .500 \mathrm{kHz}$
max. 1000 kHz
$\max .500 \mathrm{kHz}$
max. 1000 kHz
$\max .1500 \mathrm{kHz}$

Frequency divider characteristics

Frequency division ratio.

FE618Q/256 256
FE6180/6456
Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
Output imbalance

AFC output characteristics

Output capacitance

Output voltage, when loaded with $25 \mathrm{k} \Omega$
AFC switched off
AFC switched on
voltage for an aerial input of $50 \mathrm{~dB}(\mu \mathrm{~V})$
correctly tuned
detuning of +100 kHz
detuning of -100 kHz
AFC output slope at $\mathrm{V}_{\text {afc }}=6 \mathrm{~V}$ and
$V_{\text {aerial }}=50 \mathrm{~dB}(\mu \mathrm{~V})$
$A F C$ voltage when no aerial input
switchable, 64 or 256
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA ; typ. 25 mA
min. $0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$
typ. $1 \mathrm{k} \Omega$
$\max .0 .1 \mathrm{~V}$
typ. 1.2 nF

6 V

6 V
max. 1.5 V
min. 10.5 V
$\min .50 \mathrm{~V} / \mathrm{MHz}$, max. $150 \mathrm{~V} / \mathrm{MHz}$
$\min .3 \mathrm{~V}$, max. 8 V

Video output characteristics

Measuring conditions: video output (terminal 28) loaded with 155Ω, decoupling of i.f. supply (terminal 30) with $220 \mu \mathrm{~F}$.
Video peak-to-peak voltage, video modulation 100%, rest carrier 10%
\min. 2.1 V , max. 2.8 V
Top sync level
No-signal level
min. 2.2 V , max. 2.6 V
min. 5.0 V , max. 5.7 V
Video signal expansion for a change of the aerial input signal level from $40 \mathrm{~dB}(\mu \mathrm{~V}$ to $90 \mathrm{~dB}(\mu \mathrm{~V})$
Unweighted video signal to noise ratio for an aerial input level of $50 \mathrm{~dB}(\mu \mathrm{~V})$

VHF CCIR channels typ. 36 dB, min. 33 dB
S-channels
typ. $34 \mathrm{~dB}, \mathrm{~min} .31 \mathrm{~dB}$
UHF channels

Unweighted video S / N-ratio for $\mathrm{V}_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V})$
VHF CCIR channels
S-channels
UHF channels
Flatness ($0.1-3.5 \mathrm{MHz}$)
VHF/UHF for $V_{\text {aerial }}$ up to $70 \mathrm{~dB}(\mu \mathrm{~V})$
VHF for $\mathrm{V}_{\text {aerial }}=100 \mathrm{~dB}(\mu \mathrm{~V})$
UHF for $\mathrm{V}_{\text {aerial }}=90 \mathrm{~dB}(\mu \mathrm{~V})$
Group delay time deviation ($0.1-3.5 \mathrm{MHz}$)
for $V_{\text {aerial }}$ up to $70 \mathrm{~dB}(\mu \mathrm{~V})$
VHF, channels E3 and up; UHF channels
VHF , channel E2 minus 1 MHz
Gain drop at colour carrier for
$V_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V}) ; 1 \mathrm{MHz}$ reference

$$
\text { at } 4.43 \mathrm{MHz}
$$

at 4.00 MHz
at 4.80 MHz
Group delay time deviation
at colour carrier frequency $(4.43 \mathrm{MHz})$
2T-impulse response top level referred to black-white response 50\% level width K-rating
Differential gain
Differential phase
Field time waveform distortion
Line time waveform distortion
1.07 MHz sound-chroma interference level conditions gain control
picture carrier/colour carrier ratio picture carrier/sound carrier ratio 40 dB interference distance at video output
typ. 46 dB
typ. 44 dB
typ. 46 dB
$\max .3 \mathrm{~dB}$
$\max .4 \mathrm{~dB}$
$\max .4 \mathrm{~dB}$
$\max .50 \mathrm{~ns}$
max. 60 ns
typ. 5 dB max. 8.5 dB
typ. 2 dB
typ. 11 dB
typ. 60 ns
typ. 105\% min. 85\% max. 125\%
$\min .180 \mathrm{~ns}$ max. 220 ns
max. 4\%
typ. 4\% max. 10\%
typ. $2^{0} \max .10^{\circ}$
max. 10\%
max. 10\%

30 dB
16 dB
10 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$

Sound carriers rejection		
5.48 MHz to 5.52 MHz	min.	50 dB
5.74 MHz	\min.	35 dB
Level residual IF carrier and harmonics	max.	3.5 mV
Frequency divider interference distance for		
$V_{\text {aerial }}=50 \mathrm{~dB}(\mu \mathrm{~V})$ (referred to 1 MHz)	\min.	40 dB
Image rejection for $\mathrm{V}_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V})$		
VHF bands	min.	66 dB
UHF bands	\min.	53 dB
First repeat spot interference aerial input level		
VHF bands	min.	$75 \mathrm{~dB}(\mu \mathrm{~V})$
UHF bands	min.	$63 \mathrm{~dB}(\mu \mathrm{~V})$
Unwanted aerial input level for 1% cross modulation at a wanted signal level of $50 \mathrm{~dB}(\mu \mathrm{~V})$		
$\mathrm{N} \pm 1 \mathrm{VHF}$	min.	$74 \mathrm{~dB}(\mu \mathrm{~V})$
$\mathrm{N} \pm 1 \mathrm{UHF}$	min.	$74 \mathrm{~dB}(\mu \mathrm{~V})$
In-band VHF -low, $\mathrm{N} \pm 2$	typ.	$92 \mathrm{~dB}(\mu \mathrm{~V})$
In-band VHF -high, $\mathrm{N} \pm 3$	typ.	$92 \mathrm{~dB}(\mu \mathrm{~V})$
In-band UHF, $\mathrm{N} \pm 5$	typ.	$100 \mathrm{~dB}(\mu \mathrm{~V})$
Out-of-band	min.	$100 \mathrm{~dB}(\mu \mathrm{~V})$
Breakthroughs	typ.	$80 \mathrm{~dB}(\mu \mathrm{~V})$
Ripple susceptibility		
at pins 7,8 and 10	min.	5 mV (p-p)
at pins 6 and 30	min.	30 mV (p-p)

Video identification (QM versions only)
Load impedance $100 \mathrm{k} \Omega$
Output voltage (terminal 29)
no video
video
Line frequency for guaranteed
video identification
Aerial input sensitivity level

Sound carrier output characteristics

Measuring conditions:
Sound output load impedance (via DC block capacitor)
min. 10 V
$\max .0 .5 \mathrm{~V}$
$\min .15 .0 \mathrm{kHz} ; \max .16 .2 \mathrm{kHz}$
typ. $25 \mathrm{~dB}(\mu \mathrm{~V})$

Sound carrier levels related to picture carrier level:
first sound carrier (5.50 MHz)
second sound carrier (5.74 MHz)
Nominal RMS signal level
5.50 MHz
5.74 MHz

DC voltage level (terminal 24)
Signal to noise ratio weighted according to CCIR 468-3, determined after f.m.-detection for aerial input signal level $70 \mathrm{~dB}(\mu \mathrm{~V})$ and video contents:
black, 5.50 MHz
black, 5.74 MHz
5 kHz sine wave, 5.50 MHz
5 kHz sine wave, 5.74 MHz
250 kHz sine wave, 5.50 MHz
250 kHz sine wave, 5.74 MHz
typ. 50 dB
typ. 55 dB
min. 42 dB ; typ. 50 dB
min. 40 dB ; typ. 50 dB
min. 42 dB ; typ. 50 dB
$\min .32 \mathrm{~dB}$; typ. 34 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics
Within the limits of C.I.S.P.R. 13
(1975) + amendment 1 (1983), VDE0872/7.72., Amtsblatt DBP69/1981, and for Finland E.I.S., bulletin T33-82, section 4, when applying the unit in an adequate TV receiver

There will be no microphonics, provided the unit is installed in a professional manner.
Surge protection of aerial input against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

VHF/UHF TELEVISION MULTINORM FRONTENDS

QUICK REFERENCE DATA

Systems						
F0816						
F0844						
F0816M					CCIR systems B, G, L and M CCIR systems L, L^{\prime}, B, G and I	
FQ816M						
Channels					off-air E2 to C E5 to E12 E21 to E69	cable
low band						S01 to S10
mid band						S11 to S39
High band						S40 to S41
Video output signal peak-to-peak voltage					2.0 V	
Audio output signal					tbf	
Intermediate frequencies (MHz)						
System	B/G	L	L'	1	M	D2MAC
Picture	38.9	38.9	33.9	38.9	38.9	38.9
Sound 1	33.4	32.4	40.4	32.9	34.4	---
Sound 2	33.158	--	--	--	--	---
Nicam	33.05	--	--	32.348	---	--
Band edge	--	--	--	--	--	30.50

APPLICATION

The frontends are part of the 800 family of tuners and frontends which are designed to meet a wide range of applications.
The frontends consist of an all band tuner (high band only for FQ844) and a mono/multi standard IF demodulation unit giving baseband video and audio (mono/stereo) out.
The all band tuner sections of the F0816 series frontends are also suitable for D2MAC-AM system reception for channels between 300 and 470 MHz .

The tuner parts of the frontends are equipped with a built-in digitally controlled ($\left.I^{2} \mathrm{C}\right)$ PLL tuning system. Band and system switching is also carried out via the $I^{2} \mathrm{C}$-bus. The AFC signal can also be read via the $\mathrm{I}^{2} \mathrm{C}$-bus.

Available versions

Type	optimal system coverage	secondary system coverage	catalogue number
F0816	B and G	-	312223710430
FQ844	I	-	312223710440
FO816ME	B and G	L and M	312223710450
FQ816MF	L and L'	B, G and I	312223710460

Note

These frontends comply with the following requirements of radiation, signal handling capability and immunity from radiated interference:

FQ816 : CISPR13 (1975) including amendment 1 (1983), Amtsblatt 69 (1981), DIN VDE 0872, CENELEC EN55013 (radiation) and EN55020 (immunity) and Finland EIS Bulletin T33-86, section 4.

F0844 • : CISPR13 (1975) including amendment 1 (1983), CENELEC EN55013 (radiation) and EN55020 (immunity) and BS905.
FQ816ME: : CISPR13 (1975) including amendment 1 (1983), Amtsblatt 69 (1981), DIN VDE 0872 , CENELEC EN55013 (radiation) and EN55020 (immunity) and Finland EIS Bulletin T33-86, section 4.

FQ816MF : CISPR13 (1975) including amendment 1 (1983), CENELEC EN55013 (radiation) and EN55020 (immunity) and Finland EIS Bulletin T33-86, section 4.

DESCRIPTION

The frontends consist of a tuner section and an IF demodulation section. The tuner section of the FQ816 series covers the low band (frequency range 47.25 to 170 MHz), the mid band (frequency range 170 to 450 MHz) and the high band (frequency range 450 to 855.25 MHz). The tuner section of the FQ844 covers the high band only.

The tuner and IF sections are constructed on separate printed-wiring boards and housed in a die-cast metal housing with front and rear covers. A common IEC and SNIR aerial connector is integrated in one of the frame sides of the housing, all other connections are made via pins on the underside of the housing.
The tuner part is equipped with 3 tuned RF MOSFET input stages, with a 3-band mixer-oscillator IC, containing the oscillators, mixer and IF amplifier. Tuning and band switching in the tuner section is carried out via a digitally programmable ($1^{2} \mathrm{C}$) PLL tuning system. This enables tuning with a 62.5 kHz pitch with crystal accuracy.

The IF section of the frontend has the vision carrier fixed at $38.9 \mathrm{MHz}(33.9 \mathrm{MHz}$ for FQ 816 MF using system L'). The units use QSS-SAW filter except for the FQ816MF using system L' where a double Nyquist QSS-SAW filter is used in the vision channel.
Quasi-synchronous vision IF demodulation is used and this is suitable for positive and negative modulation.

The IF sound filtering is done by means of a QSS-SAW filter for systems B, G and I and via a separate bandpass filter for systems L and L^{\prime}.

The sound IF demodulation used offers two FM discriminator circuits and one AM detector circuit. It also has two switchable, independent symmetrical sound IF inputs, system selection and automute in the case of mono transmission or AM sound, as is the case with systems L and L^{\prime}.
The frontends also have a 2 nd IF sound output for use with digital sound (NICAM) or D/K/K1 sound. An additional audio ground pin is also available for applications requiring separate audio and video grounds.

System switching is carried out internally using the $I^{2} \mathrm{C}$-bus. The internal analog AFC signal is fed to the A/D converter present in the PLL IC and can be read via the $I^{2} \mathrm{C}$-bus.

MECHANICAL DATA

A aerial input
6 supply voltage, tuner section
11 tuning supply voltage
12 supply voltage PLL
13 SCL
14 SDA
15 AS
22 2nd IF sound
23 CVBS out
24 supply voltage, IF section
25 AF1/AM
26 audio ground
27 AF2
MT1
MT2 mounting tab MT3

IEC/SNIR female, 75Ω
$+12 \mathrm{~V}$
+33 V via $22 \mathrm{k} \Omega$ series resistor $+5 \mathrm{~V}$
serial clock line ($1^{2} \mathrm{C}$-bus)
serial data line ($1^{2} \mathrm{C}$-bus)
address selection line
intercarrier sound for NICAM, system D/K/K1.
video output
$+12 \mathrm{~V}$
AF sound out (for 2CS and L/L' sound)
AF sound out (for 2CS) (FQ816 types only) grounded

Fig. 1 Mechanical detail.
Note: VTI, and MAC AGC mode will be introduced to the frontend in the future.

Mass : approximately 160 grams.

Mounting

The unit may be mounted by soldering it to a printed-wiring board without clearance between the unit supporting surface and the board using the piercing diagram shown in Fig.3. The connection pins should be bent in accordance with Fig.4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test Ta $\left(230^{\circ} \pm 10^{\circ} \mathrm{C}, 2 \pm 0.5 \mathrm{~s}\right)$. The resistance to soldering heat is in accordance with IEC 68-2-20, test Tb $\left(260^{\circ} \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 2 Piercing diagram viewed from solder side of board.

Note: in order to prevent any stress to the printed-wiring board, the unit should be supported at its aerial connector.

Fig. 3 Bending of connecting pins.

ELECTRICAL DATA

Unless otherwise stated all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.2 \mathrm{~V}$, an aerial source impedance of 75Ω and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band

RF amplifier
tuning diodes
coupling diodes
Semiconductors, mid band
RF amplifier
tuning diodes
coupling diodes BB405
Semiconductors, high band
RF amplifier
tuning diodes BB405
Tuning/bandswitching IC
Tuning voltage transistor
Mixer/oscillator IC
Semiconductors, IF section
SAW filter
vision demodulator IC
sound demodulator IC
switching diodes
Ambient temperature range
operating
storage
Relative humidity operating
storage

Voltages and currents

Supply voltages (operational range) tuner and IF sections PLL
Current drawn from +12 V supply tuner section
IF section
Current drawn from +5 V supply PLL

BF998

95\% 100\%
BF998
BB911
BB901/BBY31
BF998
BB910
BB405

TSA5512
BC847B
TDA5330

OFWG3254/OFWK3255/OFWJ3251
TDA4439B
TDA3857/TDA3856
RLS135
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
$+12 V \pm 10 \%$
$+5 \mathrm{~V} \pm 10 \%$
$\max .85 \mathrm{~mA}$
max. 200 mA
$\max .50 \mathrm{~mA}$

ELECTRICAL DATA (continued)	
Voltages and currents (continued)	
Tuning voltage supply (note 1)	min. 30 V typ. 33 V max. 35 V
Current drawn from tuning supply	max. 1.7 mA
Aerial input characteristics	
Input impedance	75Ω
VSWR referred to 75Ω impedance and picture carrier low band mid band $170-300 \mathrm{MHz}$ mid band $300-450 \mathrm{MHz}$ high band	max. 4 max. 4 max. 3 max. 4
Reflection coefficient low band mid band $170-300 \mathrm{MHz}$ mid band $300-470 \mathrm{MHz}$ high band	max. 60\% max. 60\% max. 50\% max. 60\%
Oscillator voltage at aerial input (fundamental and harm up to 860 MHz 860 to 1000 MHz	onics) $34 \mathrm{~dB} \mu \mathrm{~V}$ $44 \mathrm{~dB} \mu \mathrm{~V}$
Surge protection	min. 5 kV
Tuning characteristics	
Frequency ranges low band	channel E2 (picture carrier 48.25 MHz) to channel S10 (picture carrier 168.25 MHz).
mid band	channel E5 (picture carrier 175.25 MHz) to channel S39 (picture carrier 447.25 MHz).
high band	channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz).
Voltage gain all channels gain difference of the off-air channels	$\min .40 \mathrm{~dB}$ $\max .50 \mathrm{~dB}$ max. 7 dB
Noise figures low band	$\begin{aligned} & \text { typ. } 6 \mathrm{~dB} \\ & \text { max. } 9 \mathrm{~dB} \end{aligned}$
mid band high band	typ. 7 dB max. 10 dB typ. 8 dB max. 11 dB

Note

1. An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ must be connected between the tuning supply and terminal 11 . The tuning supply current is 1.7 mA max.

AGC range
low and mid band
high band
$\min .40 \mathrm{~dB}$
min. 30 dB

Overloading
Input signal producing 1 dB compression at nominal gain all channels
typ. $90 \mathrm{~dB} / \mu \mathrm{V}$
PLL lock-out
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping the oscillations completely at nominal gain all channels
$\min .100 \mathrm{~dB} / \mu \mathrm{V}$
Image rejection for 10 dB gain reduction at frequencies less than 300 MHz
min. 70 dB
typ. 75 dB
at frequencies between 300 MHz and 450 MHz
at frequencies between 450 MHz and 470 MHz
d
typ. 70 dB
min. 60 dB
typ. 65 dB
at frequencies above 470 MHz
IF rejection
channel E2
all other channels
min. 53 dB
typ. 65 dB

Cross modulation
The interfering carrier level required to produce 1% transfer of its modulation depth on the desired carrier N shall equal or exceed the desired carrier level for levels of this carrier of $60 \mathrm{~dB} / \mu \mathrm{V}$ to $100 \mathrm{~dB} / \mu \vee(90 \mathrm{~dB} / \mu \mathrm{V}$ for high band) or be:
in channel (except systems L and L^{\prime})
in channel for systems L and L^{\prime}
in band $N \pm 2$ low band
in band $N \pm 3$ mid band
in band $N \pm 5$ high band
Out of band
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
$\min .70 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
typ. $\quad 100 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$

Video output characteristics

Video peak-to-peak voltage, video modulation 100%, rest carrier 10% (for B / G mode only), minimum load 600Ω
No-signal level
DC level of sync pulse at terminal 23
typ. tbf
tbf

Residual intercarrier sound signal in video channel
for F0816, FQ816ME in B/G mode and FQ816MF in B/G mode
level at terminal 23 for 5.5 MHz
5.74 MHz
max. $68 \mathrm{~dB} / \mu \mathrm{V}$
max. $74 \mathrm{~dB} / \mu V$
for FO816ME in M mode
level at terminal 23 for 4.5 MHz
$\max .70 \mathrm{~dB} / \mu \mathrm{V}$
for FQ844
level at terminal 23 for 6.0 MHz
$\max .68 \mathrm{~dB} / \mu \mathrm{V}$

ELECTRICAL DATA (continued)

Sound carrier output characteristics

Measuring conditions
Sound output load impedance
Sound carrier levels related to picture carrier level:
first sound carrier (5.50 MHz)
$-13 \mathrm{~dB}$
second sound carrier (5.74 MHz)
$-20 \mathrm{~dB}$
Audio output levels
Systems B, G and I measured with 1 kHz audio signal, 27 kHz FM deviation.
audio output level (peak-to-peak value) typ. 1.4 V
total harmonic distortion max. 2\%
System M measure with 1 kHz audio signal, 13.5 kHz FM deviation. audio output level (peak-to-peak value) typ. 1.4 V
total harmonic distortion max. 2\%
Systems L and L^{\prime} measure with 1 kHz audio signal, 54% AM modulation.
audio output level (peak-to-peak value) typ. 1.2 V
total harmonic distortion
max. 2\%

Miscellaneous

Radio interference, oscillator radiation and oscillator voltage at aerial terminal
Within the limits of DBP Amtsblatt 69/1981 item 5.3.2 ans European standard EN55013

Microphonics

For sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$ the video signal to sound interference ratio will be greater than 40 dB .
ESD protection at the terminals
All terminals of the front end are protected against electrostatic discharge up to 2 kV . The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For further information regarding general aspects of $I^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$-bus specification", published by Philips Components.

$1^{2} \mathrm{C}$-bus requirements

$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\mathrm{IL}(\min)}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{I L}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$\mathrm{I}_{\mathrm{IH}(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH level current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

Address byte
MSB

1	1	0	0	0	MA1	MAO	R/ \bar{W}	ACK

Prog. Div. byte 1

0	n 14	n 13	n 12	n 11	n 10	n 9	n 8	ACK

Prog. div.
byte 2

$n 7$	$n 6$	$n 5$	$n 4$	$n 3$	$n 2$	$n 1$	$n 0$	ACK

Control
byte 1

1	CP	T1	T0	1	1	1	OS	ACK

Control
byte 2

P7	P6	P5	P4	P3	P2	P1	P0	ACK

ACK = Acknowledge

Address selection

voltage at port P3	MA1	MA2	address
$0 \ldots 0.1 \mathrm{~V}_{\text {PLL }}$	0	0	C 0
always valid	0	1	C 2
$0.4 \ldots 0.6 \mathrm{~V}_{\mathrm{PLL}}$	1	0	C 4
$0.9 \mathrm{~V}_{\mathrm{PLL}} .13 .5 \mathrm{~V}$	1	1	C 6

Programmable divider setting (byte 1 and 2)
Divider ratio: $N=16 \times\left(f_{R F}, p c(M H z)+f_{I F}, p c(M H z)\right)$
$N=16384 \times n 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+1024 \times n 10+512 \times n 9+256 \times n 8+$ $128 \times n 7+64 \times n 6+32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump setting
Charge pump setting $\mathrm{CP}=0$ for all bands.
Improved tuning speed is achieved by setting $\mathrm{CP}=1$ for channels above channel S 5 in low band, S29 in mid band and E47 in high band.

Test mode setting
T1 $=0, T 0=0$ for normal operation.
Op amp output
OS = 0 for normal operation

Control byte 2

Bandswitching, tuner section, all types

	P3	P4	P5	P6	P7
low band	0	0	1	0	1
mid band	0	1	0	0	1
high band	0	1	1	0	0

P3-P7: ports on PLL device
System switching, IF section
For F0816ME type

	P0	P1	P2
B/G mode	1	0	x
L mode	1	1	x
M mode	0	0	x

For F0816MF type

	$P 0$	$P 1$	$P 2$
L mode	1	1	1
L' mode	1	1	0
B/G mode	1	0	1
I mode	0	0	1

PO-P2: ports of PLL device.
$x=$ don't care.

Telegram examples, WRITE mode
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - CB1 - CB2 - ACK - Stop
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - DIV1 - ACK - Stop
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - Stop
Start - ADD - ACK - CB1 - ACK - CB2 - ACK - Stop
Start - ADD - ACK - CB1 - ACK - CB2 - ACK - DIV1 - ACK - Stop
Logic diagram ($R E A D$ mode, $R / \bar{W}=1$)

	MSB					LSB			
address byte	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \overline{\mathrm{W}}$	ACK
status byte	POR	FL	12	11	10	A2	A1	A0	ACK

ACK $=$ acknowledge.
POR $\quad=$ power-on reset flag. POR $=1$ on power-on.
$F L \quad=\quad$ in-lock flag. $F L=1$ when PLL is in lock.
$A 2, A 1, A 0=$ value of $A F C$ signal.
$12,11,10=$ not used in this application.

ADDITIONAL INFORMATION

Tuning voltage

A tuning voltage of 33 V must be connected via $22 \mathrm{k} \Omega$ series resistor to pin 11 . A preferred method is a constant current supply of 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

VHF/UHF television frontend

APPLICATION

The FS916E frontend is designed to cover all the frequencies in the channel $2(48.25 \mathrm{MHz}$) to channel $69(855.25 \mathrm{MHz})$ range of CCIR systems B and G.

The frontend is equipped with an $1^{2} \mathrm{C}$-bus for digitally programmable phase-locked loop frequency synthesis with crystal accuracy. Bandswitching is also carried out via the $I^{2} C$-bus. Since the address of the $I^{2} \mathrm{C}$ device can be set externally, more $\mathrm{I}^{2} \mathrm{C}$-controlled tuners/frontends can be used in the application (e.g. a second tuner for PIP applications).

The frontend complies with the radiation, signal handling capability and immunity regulations of:

- CISPR 13 (1973) including amendment 1 (1983)
- German regulations according to 'Amtsblatt' 69, 1981 + DIN VDE 0872
- CENELEC proposal European Standard EN55013, EN55020.

QUICK REFERENCE DATA

Systems	CCIR systems B and G
Channels	
VHF	channels E2 to C, E5 to E12
UHF	channels E21 to E69
CATV	channels S01 to S41
Intermediate frequencies	
picture	38.90 MHz
sound	33.40 MHz
colour	34.47 MHz

DESCRIPTION

The FS916E frontend is a combination of a VHF/UHF tuner with an IF demodulator. It covers the low band (frequency range 48.25 to 168.25 MHz), the mid band (frequency range 175.25 to 447.25 MHz) and the high band (frequency range 455.25 to 855.25 MHz).

The tuner and IF sections are constructed on separate printed circuit boards, and the entire unit is housed in a metal case consisting of
a rectangular frame with front and rear covers. The aerial connector is mounted on one end of the housing. All other connections are made via pins on the underside of the tuner.

The output of the tuner section is internally connected to the IF section. The IF section has a split sound PLL IF demodulator IC, and has the following output signals:

- demodulated video output
- non-decoded AF sound
- second IF output.

VHF/UHF television frontend

Semiconductors and key components used

FUNCTION	DEVICE USED		
	LOW BAND	MID BAND	HIGH BAND
Tuner section			
RF amplifier	BF998R	BF998R	BF998R
Mixer	BFS17	2SC2480	2S3841
Oscillator	BFS17	2SC3545	2SC2480
Tuning diodes	BB911	OF633	OF976
Coupling diodes	BF901	OF633	-
IF amplifier	BFS17		
PLL tuning IC	TSA5511T/C1		
Charge pump buffer transistor (NPN)	BC847B		
IF section			
PLL IC	LA7570		
Video amplifier	BC548		
Video SAW filter	OFWG3963		
Sound SAW filter	SAF41MC70Z		
Ceramic filter	TPS5.5MB2		
Ceramic trap	SFS5.5ME2		

VHF/UHF television frontend

MECHANICAL DATA

Dimensions in mm.

Fig. 1 Mechanical detail.

Mass

The mass of the tuner is approximately 85 g .

Mounting

The frontend may be mounted by soldering it to a printed circuit board, using the piercing diagram shown in Fig.2, without clearance between the tuner supporting surface and the board. The mounting tabs should be bent in accordance with Fig.3. The frontend may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, 2 to 5 s). The resistance to soldering heat is in accordance with
IEC 68-2-20, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}\right.$, $10 \pm 1 \mathrm{~s}$).

Pinning

PIN	FUNCTION
A	aerial input
6	supply voltage, tuner section, +12 V
11	tuning voltage 33 V through $22 \mathrm{k} \Omega$ resistor
12	PLL supply voltage, +5 V
13	SCL serial data line
14	SDA serial data line
15	address selection input
22	2nd IF sound output
23	video output
24	supply voltage, IF section, +12 V
25	AF sound output
MT1, MT2	mounting tab, grounded

VHF/UHF television frontend

${ }^{+}=$additional hole for extra fixing of frontend by means of a tap pan screw, 4 N , max. length 4.5 mm .

Fig. 2 Piercing diagram viewed from solder side of board.

Tab twist method seen from solder side.

Fig. 3 Bending of mounting tabs.

VHF/UHF television frontend

ELECTRICAL DATA

Unless otherwise stated, all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.5 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

PARAMETER	MIN.	TYP.	MAX.	UNIT
Environmental				
Ambient temperature range operating storage	$\begin{aligned} & -10 \\ & -25 \end{aligned}$	$-$	$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Relative humidity	-	-	95	\%
Voltages and currents				
Supply voltage, tuner section	10.8	12	13.2	V
Supply voltage, IF section	10.8	12	13.2	V
Supply voltage, PLL section	4.5	5	5.5	V
Current drawn tuner section IF section PLL section			$\begin{aligned} & 60 \\ & 75 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Tuning supply voltage	30	33	35	V
Tuning supply current	-	-	1.7	mA
Frequencies				
Low band	channel 2 (picture carrier 48.25 MHz) to channel S10 (picture carrier 168.25 MHz). Margin at extreme channels: min. 1.5 MHz .			
Mid band	channel E5 (picture carrier 175.25 MHz) to channel S39 (picture carrier 447.25 MHz). Margin at extreme channels: min. 3.0 MHz .			
High band	channel S40 (picture carrier 455.25 MHz) to channel 69 (picture carrier 855.25 MHz). Margin at extreme channels: min. 3.0 MHz .			

VHF/UHF television frontend

Tuner section

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Wanted signal characteristics					
Aerial input impedance		-	75	-	Ω
VSWR	referred to 75Ω	-	-	4	
Reflection coefficient		-	-	60	\%
RF bandwidth		-	11	-	MHz
RF curves, tilt	on any channel, the amplitude difference between the top of the overall curve and the picture carrier, the sound carrier, or any frequency between them will not exceed 3 dB for SC at nominal gain.				
AGC characteristics low - mid band high band		$\begin{aligned} & 40 \\ & 30 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Voltage gain		40	-	52	dB
Gain taper	off-air channels	-	-	7	dB
Noise figure low band mid band high band		-	\|-	$\begin{aligned} & 9 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ dB
Overloading input signal producing 1 dB signal compression PLL lockout		$\begin{array}{\|l\|} \hline- \\ 90 \end{array}$	$\left\lvert\, \begin{aligned} & 90 \\ & - \end{aligned}\right.$	-	$\begin{aligned} & d B / \mu \mathrm{V} \\ & \mathrm{~dB} / \mu \mathrm{V} \end{aligned}$
Image rejection nominal gain reduction to 10 dB gain reduction low - mid band mid band	$\begin{aligned} & <300 \mathrm{MHz} \\ & >300 \mathrm{MHz} \\ & <470 \mathrm{MHz} \\ & >470 \mathrm{MHz} \end{aligned}$	$\left\lvert\, \begin{aligned} & 70 \\ & 66 \\ & 60 \\ & 53 \end{aligned}\right.$		-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
IF rejection channel E2 other channels		$\begin{aligned} & 45 \\ & 60 \end{aligned}$	\|-		$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \end{gathered}$
1/2 IF susceptibility low - mid band mid band high band	$\begin{aligned} & <300 \mathrm{MHz} \\ & >300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 60 \end{aligned}$	$\left.\right\|_{-} ^{-}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ dB

VHF/UHF television frontend

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Unwanted signal characteristics					
Cross modulation (note 1) in channel in band $N \pm 2$: low band in band $N \pm 3$: mid band in band $N \pm 5$: high band out of band	gain reduction 0 dB gain reduction 0 dB gain reduction 0 dB gain reduction 0 dB	$\begin{aligned} & 72 \\ & 80 \\ & 80 \\ & 84 \\ & - \end{aligned}$	$\begin{aligned} & 76 \\ & 90 \\ & 90 \\ & 95 \\ & 100 \end{aligned}$		$\mathrm{dB} / \mu \mathrm{V}$ $d B / \mu V$ $d B / \mu V$ $d B / \mu V$ $\mathrm{dB} / \mu \mathrm{V}$
PLL tuning characteristics					
Accuracy		-	-	80×10^{-6}	
Resolution		-	-	62.5	kHz
Oscillator voltage at all terminals		-	-	70	$\mathrm{dB} / \mu \mathrm{V}$

Note

1. The undesired carrier level required to produce a 1% transfer of its modulation on to the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 30 dB gain reduction, or be as shown.

VHF/UHF television frontend

Overall performance

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Unweighted CVBS S/N video channel all bands	antenna input level: $66 \mathrm{~dB} / \mu \mathrm{V}$, 100% modulation, (12.5% rest carrier)	44	-	-	dB
Sensitivity (all bands)	antenna input level: 100\% modulation, (10% rest carrier); 15.75 kHz line frequency square wave	-	-	30	$\mathrm{dB} / \mu \mathrm{V}$
Audio sensitivity The main sound carrier level at aerial	antenna input level: $70 \mathrm{~dB} / \mu \mathrm{V}$ per channel; video modulation: black; sound modulation: standard, $1 \mathrm{kHz} / \pm 27 \mathrm{kHz}$ deviation; measure with $50 \mu \mathrm{~s}$ de-emphasis \& CCIR 468-4 filter. for audio S/N of 45 dB	-	38	-	$\mathrm{dB} \mu \mathrm{V}$
Stability with antenna load	with the antenna open, shorted or properly terminated at any input signal, there is no evidence of instability on any channel.				
PLL function	proper PLL function for all channels in the bands and when switched from any one band to another for both charge pump low and high under any combination of the operational conditions.				
Radio interference	oscillator radiation and oscillator voltage at the aerial terminal are within the limits of: - CISPR 13 (1975) amendment No. 1 (1983) - Amtsblatt 69/1981 + DIN VDE 0872 - CENELEC proposal European Standard EN55013, EN55020.				
Immunity from radiated interference	the frontend meets the requirements of DBP Amtsblatt 69/1981 item 5.3.2 and CENELEC EN55013.				
Microphonics	for sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be more than 40 dB .				
ESD protection	all the terminals of the frontend are protected against electrostatic discharge up to 2 kV . The product is classified in the category B (MIL-STD-883C).				

APPLICATION INFORMATION

For information regarding general aspects of $I^{2} C$-bus control, refer to : ' RC -bus specification', published by Philips Components.

For a more detailed description of the PLL IC, see the device specification TSA5511T/C1.

Programmable divider setting
Bytes 1 and 2

Divider ratio:

$\mathrm{N}=16 \times\left(\mathrm{f}_{\mathrm{f}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{i}}, \mathrm{pc}(\mathrm{MHz})\right)$
$\mathrm{f}_{\text {osc }}=\mathrm{N} / 16(\mathrm{MHz})$
$N=(8192 \times n 13)+(4096 \times n 12)+$ $(2048 \times \mathrm{n} 11)+(1024 \times \mathrm{n} 10)+$ $(512 \times \mathrm{n} 9)+(256 \times \mathrm{n} 8)+$
$(128 \times n 7)+(64 \times n 6)+(32 \times n 5)$ $+(16 \times n 4)+(8 \times n 3)+(4 \times n 2)+$ $(2 \times n 1)+n 0$

Control byte 1

Charge pump setting
Charge pump (CP) setting can be set to low current (logic 0) or high current (logic 1). $\mathrm{CP}=1$ results in faster tuning, $\mathrm{CP}=0$ in moderate tuning speed with slightly better residual FM . It is recommended to use $C P=0$ for fine search. In addition, $\mathrm{CP}=0$ should be used at the end of each tuning.

TEst mode setting
$T 1, T 0=$ for normal operation
PLL disabling
OS is set to logic 0 for normal operation. OS set to logic 1 switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When setting OS to logic 1 , it is recommended to set TO to logic 1 simultaneously.
$\mathbf{I}^{2} \mathrm{C}$-bus requirements
SDA and SCL pins

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{IL}	maximum input LOW voltage	-	1.5	V
$\mathrm{~V}_{\mathrm{H}}$	minimum input HIGH voltage	3.0	-	V
I_{L}	maximum input LOW current	-10.0	-	$\mu \mathrm{A}$
I_{IH}	maximum input HIGH current	-	10.0	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	maximum output LOW voltage at 3 mA sink current	-	0.4	V

Logic diagram

WRITE mode, R/W = 0

BYTE	BITS							
	$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { LSB } \end{gathered}$
Address	1	1	0	0	0	MA1	MAO	R/W
Prog. div. 1	0	0	n13	n 12	n 11	n10	n9	$n 8$
Prog. div. 2	n7	n6	n5	n4	n3	n2	n1	no
Control 1	1	CP	T1	T0	1	1	1	OS
Control 2	P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	ADDRESS	VOLTAGE AT PIN 15
0	0	C0	0 to $0.1 \mathrm{~V}_{\text {PLL }}$
0	1	C2	don't care
1	0	C4	0.4 to $0.6 \mathrm{~V}_{\text {PLL }}$
1	1	C6	$0.9 \mathrm{~V}_{\text {PLL }}$ to 13.5 V

Note

The tuner will always respond to address C 2 . The second address will depend on the voltage applied at pin 15.

VHF/UHF television frontend

Control byte 2

Band switching

BAND		BIT								
		P1	P2	P3	P4	P5	P6	P7		
Low band	x	x	x	0	0	1	0	1		
Mid band	x	x	x	0	1	0	0	1		
High band	x	x	x	0	1	1	0	0		

Notes

$\mathrm{x}=$ don't care .
P0-P7: band selection.
P3 must be programmed to 0 . The address selection voltage is applied at this pin.

Telegram examples

WRITE mode

```
start - ADR - ACK - DR1 - DR2 - CW1 - CW2 - stop
start - ADR - CW1 - CW2 - DR1 - DR2 - stop
start - ADR - DR1 - DR2 - CW1 - stop
start - ADR - DR1 - DR2 - stop
start = start condition
ADR = address
DR1 = divider ratio byte 1
DR2 = divider ratio byte 2
CW1 = control byte 1
CW2 = control byte 2
stop = stop condition
```


Logic diagram

READ mode, $R / W=1$

BYTE	BITS									
	$\mathbf{7}$ MSB	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	0 LSB		
Address byte Status byte	$\mathbf{1}$	1	0	0	0	MA1	MA0	R/W		
	POR	FL	12	11	10	A2	A1	A0		

FL indicates when the tuning loop of the PLL is in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1.

POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.

Bits 10 to 12 do not contain any relevant data for the tuner application and can be ignored.

IMPORTANT!!!

For channel selection involving bandswitching, it is recommended that the following consideration be included, to ensure smooth tuning to the desired channel, without causing unnecessary charge pump action. (Unnecessary charge pump action will result in a very low tuning voltage, $V_{1} \approx 0$, which may drive the oscillator into an extreme condition.)

Step 1: Compare wanted channel frequency (f_{w}) to the current channel frequency (f_{c}).
Step 2: If $f_{w}>f_{c}$, use telegram as: start - ADR - DR1 - DR2 -CW1-CW2 - stop.
Step 3: If $f_{w}<f_{c}$, use telegram as: start - ADR - CW1 - CW2 DR1 - DR2 - stop.

VHF/UHF television frontend

ADDITIONAL INFORMATION

Tuning supply voltage

A tuning voltage of 33 V must be connected via a $22 \mathrm{k} \Omega$ series resistor to pin 11. A preferred method is a constant current supply of 1 to 5 mA to the pin. Fig. 4 shows this with a 140 V supply. The Zener diode prevents the voltage at pin 11 exceeding 33 V .

APPLICATION

The FS936E frontend is designed to cover all the frequencies in the channel $2(55.25 \mathrm{MHz})$ to channel $69(801.25 \mathrm{MHz})$ range of RTMA systems M and N.

The frontend is equipped with an $1^{2} \mathrm{C}$-bus for digitally programmable phase-locked loop frequency synthesis with crystal accuracy. Bandswitching is also carried out via the $1^{2} \mathrm{C}$-bus. Since the address of the $1^{2} \mathrm{C}$ device can be set externally, more $I^{2} \mathrm{C}$-controlled tuners/frontends can be used in the application (e.g. a second tuner for PIP applications).
The frontend complies with the radiation, signal handling capability and immunity regulations of the FCC and DOC Canada.

QUICK REFERENCE DATA

Systems	RTMA systems M and N
Channels	
VHF	channels 2 to 6,7 to 13
UHF	channels 14 to 69
CATV	channels A-2 to 65
Intermediate frequencies	
picture	45.75 MHz
sound	41.25 MHz
colour	42.17 MHz

DESCRIPTION

The FS936E frontend is a combination of a VHF/UHF tuner with an IF demodulator. It covers the low band (frequency range 55.25 to 157.25 MHz), the mid band (frequency range 163.25 to 451.25 MHz) and the high band (frequency range 457.25 to 801.25 MHz).

The tuner and IF sections are constructed on separate printed circuit boards, and the entire unit is housed in a metal case consisting of
a rectangular frame with front and rear covers. The aerial connector is mounted on one end of the housing. All other connections are made via pins on the underside of the tuner.
The output of the tuner section is internally connected to the IF section. The IF section has a split sound PLL IF demodulator IC, and has the following output signals:

- demodulated video output
- non-decoded AF sound
- second IF output.

VHF/UHF television frontend

Semiconductors and key components used

FUNCTION	DEVICE USED		
	LOW BAND	MID BAND	HIGH BAND
Tuner section			
RF amplifier	BF998R	BF998R	BF998R(TEG)
Mixer	2SC2480	2SC2480	2SC2734
Oscillator	2SC2736	2SC2734	2SC2480
Tuning diodes	BB910	BB910	OF643
Coupling diodes	OF4199	BB910	-
IF amplifier	BFS17		
PLL tuning IC	TSA5512T		
Charge pump buffer transistor (NPN)	BC847B		
IF section			
PLL IC	LA7570		
Video amplifier	BC548		
Video SAW filter	OFWM3951		
Sound SAW filter	SAF41MC80Z		
Ceramic filter	TPS4.5MB2		
Ceramic trap	SFS4.5ME2		

VHF/UHF television frontend

MECHANICAL DATA

Dimensions in mm.

Fig. 1 Mechanical detail.

Mass

The mass of the tuner is approximately 85 g .

Mounting

The frontend may be mounted by soldering it to a printed circuit board, using the piercing diagram shown in Fig.2, without clearance between the tuner supporting surface and the board. The mounting tabs should be bent in accordance with Fig.3. The frontend may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC 68-2-20, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}\right.$, $10 \pm 1 \mathrm{~s}$).

Pinning

PIN	FUNCTION
A	aerial input
6	supply voltage, tuner section, +12 V
11	tuning voltage 33 V through $22 \mathrm{k} \Omega$ resistor
12	PLL supply voltage, +5 V
13	SCL serial data line
14	SDA serial data line
15	address selection input
19	external IF AGC
20	black noise inverter switch
22	2nd IF sound output
23	video output
24	supply voltage, IF section, +12 V
25	AF sound output
MT1, MT2	mounting tab, grounded

VHF/UHF television frontend

${ }^{+}=$additional hole for extra fixing of frontend by means of a tap pan screw, 4 N , max. length 4.5 mm .

Fig. 2 Piercing diagram viewed from solder side of board.

Tab twist method seen from solder side.

Fig. 3 Bending of mounting tabs.

VHF/UHF television frontend

ELECTRICAL DATA

Unless otherwise stated, all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $7.5 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

PARAMETER	MIN.	TYP.	MAX.	UNIT
Environmental				
Ambient temperature range operating storage	$\begin{aligned} & -10 \\ & -25 \end{aligned}$		$\begin{aligned} & 60 \\ & 85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Relative humidity	-	-	95	\%
Voltages and currents				
Supply voltage, tuner section	10.8	12	13.2	V
Supply voltage, IF section	10.8	12	13.2	V
Supply voltage, PLL section	4.5	5	5.5	V
Current drawn tuner section IF section PLL section	-		$\begin{aligned} & 50 \\ & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Tuning supply voltage	30	33	35	V
Tuning supply current	-	-	1.7	mA
Frequencies				
Low band	channel 2 (picture carrier 55.25 MHz) to channel G (picture carrier 157.25 MHz). Margin at extreme channels: $\min .1 .5 \mathrm{MHz}$.			
Mid band	channel H (picture carrier 163.25 MHz) to channel CCC (picture carrier 451.25 MHz). Margin at extreme channels: $\min .3 .0 \mathrm{MHz}$.			
High band	channel DDD (picture carrier 457.25 MHz) to channel 69 (picture carrier 801.25 MHz). Margin at extreme channels: $\min .3 .0 \mathrm{MHz}$.			

VHF/UHF television frontend

Tuner section

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Wanted signal characteristics					
Aerial input impedance		-	75	-	Ω
VSWR	referred to 75Ω	-	-	5	
Reflection coefficient		-	-	66	\%
RF bandwidth		6	-	20	MHz
RF curves, tilt	on any channel, the amplitude difference between the top of the overall curve and the picture carrier, the sound carrier, or any frequency between them will not exceed 4 dB for $\mathrm{PC}, 6 \mathrm{~dB}$ for SC at nominal gain and 4 dB in the AGC range between nominal gain and 20 dB gain reduction.				
AGC characteristics VHF off-air channels UHF off-air channels cable channels		$\begin{aligned} & 45 \\ & 30 \\ & 35 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Voltage gain		40	-	52	dB
Gain taper	off-air channels	-	-	8	dB
Noise figure low band, except channels 2-6 low band, channels 2-6 mid band, except channels H \& । mid band, channels H \& I high band			$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	$\begin{aligned} & 7 \\ & 8 \\ & 8 \\ & 10 \\ & 10 \end{aligned}$	
Overloading input signal producing 1 dB signal compression PLL lockout	VHF/UHF channels only off-air channels cable channels	$\begin{array}{\|l} 74 \\ 100 \\ 86 \end{array}$		-	$\mathrm{dB} / \mu \mathrm{V}$ $\mathrm{dB} / \mu \mathrm{V}$ $\mathrm{dB} / \mu \mathrm{V}$
Image rejection	channels 2-6, A-2-1, 7-13 channels J-EEE, 14-69	$\begin{aligned} & 60 \\ & 45 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
FM rejection, channel 6	90.5 MHz , antenna level $60 \mathrm{~dB} / \mu \mathrm{V}$ $93-108 \mathrm{~Hz}$, antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		-	dB dB
IF rejection, channel 6	all channels except 2 \& 3 channel 2 channel 3	$\begin{aligned} & 60 \\ & 50 \\ & 55 \end{aligned}$	$\begin{array}{\|l\|} \hline- \\ 55 \\ 60 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \hline \end{array}$
1/2 IF susceptibility channels 2-13 channels 14-69		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	\|-		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

VHF/UHF television frontend

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Unwanted signal characteristics					
$\begin{aligned} & \text { Cross modulation (note 1) } \\ & \text { in channel } \\ & \text { in band } N \pm 2 \text { : channels } 2-W \\ & \text { in band } N \pm 3 \text { : channels } A A-Z Z \\ & \text { in band } N \pm 5 \text { : channels } A A A-69 \end{aligned}$	gain reduction 0 dB gain reduction 0 dB gain reduction 0 dB gain reduction 0 dB	$\begin{aligned} & 65 \\ & 78 \\ & 78 \\ & 84 \end{aligned}$			$d B / \mu V$ $d B / \mu V$ $d B / \mu \mathrm{V}$ $d B / \mu \mathrm{V}$
PLL tuning characteristics					
Accuracy		-	-	50×10^{-6}	
Resolution		-	-	62.5	kHz
Oscillator voltage at all terminals		-	-	70	$\mathrm{dB} / \mu \mathrm{V}$

Note

1. The undesired carrier level required to produce a 1% transfer of its modulation on to the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 30 dB gain reduction, or be as shown.

VHF/UHF television frontend

Overall performance

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Video S/N unweighted VHF band UHF band	antenna input level: $66 \mathrm{~dB} / \mu \mathrm{V}$, 100% modulation, (12.5\% rest carrier)	$\begin{aligned} & 46 \\ & 45 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Sensitivity (all bands)	antenna input level: $66 \mathrm{~dB} / \mu \mathrm{V}$, 100% modulation, (12.5\% rest carrier); 15.75 kHz line frequency square wave	-	-	30	$\mathrm{dB} / \mu \mathrm{V}$
Audio S/N VHF bands UHF bands	antenna input level: $66 \mathrm{~dB} / \mu \mathrm{V}$, 100% modulation, (12.5\% rest carrier); full field colour bar signal, standard: $1 \mathrm{kHz} / \pm 25 \mathrm{kHz}$ deviation; $75 \mu \mathrm{~s}$ de-emphasis, LP 200 kHz filter	$\begin{aligned} & 53 \\ & 52 \end{aligned}$	-	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Stability with antenna load	with the antenna open, shorted or properly terminated at any input signal, there is no evidence of instability on any channel.				
PLL function	proper PLL function for all channels in the bands and when switched from any one band to another for both charge pump low and high under any combination of the operational conditions.				
Immunity	in the field of a synchronous television signal, having a measured field strength of $100 \mathrm{mV} / \mathrm{m}$ and the input terminated with a quarter wave stub, the IF output shall be at least 40 dB below the level of a 1 mV reference signal applied to the aerial input. In the field of a non-synchronous television signal, the IF output shall be at least 55 dB below the reference.				
Radio interference channels 2-6 channels 7-13 channels 14-69	any signal frequency average of 10 frequencies	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}\right.$	- - - -	$\begin{aligned} & 50 \\ & 150 \\ & 750 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{m}$ $\mu \mathrm{V} / \mathrm{m}$ $\mu \mathrm{V} / \mathrm{m}$ $\mu \mathrm{V} / \mathrm{m}$
Microphonics	for sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be more than 40 dB .				
ESD protection	all the terminals of the frontend are protected against electrostatic discharge up to 2 kV . The product is classified in the category B (MIL-STD-883C).				

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control, refer to : ' R C-busspecification', published by Philips Components.
For a more detailed description of the PLL IC, see the device specification TSA5512T.

Programmable divider setting

Bytes 1 and 2
Divider ratio:
$N=16 \times\left(f_{t}, p c(M H z)+f_{i j}, p c(M H z)\right)$
$\mathrm{f}_{\text {osc }}=\mathrm{N} / 16(\mathrm{MHz})$
$N=(16384 \times n 14)+(8192 \times n 13)+$
(4096×n12) $+(2048 \times n 11)+$ (1024×n10) + (512xn9) + (256xn8) $+(128 \times n 7)+(64 \times n 6)$ $+(32 \times n 5)+(16 \times n 4)+(8 x n 3)+$ ($4 \times \mathrm{n} 2$) $+(2 \times \mathrm{n} 1)+\mathrm{n} 0$

Control byte 1

Charge pump setting
Charge pump (CP) setting can be set to low current (logic 0) or high current (logic 1). CP $=1$ results in faster tuning, $\mathrm{CP}=0$ in moderate tuning speed with slightly better residual FM. It is recommended to use $C P=0$ for fine search. In addition, $\mathrm{CP}=0$ should be used at the end of each tuning.

Test mode setting
$\mathrm{T} 1, \mathrm{~T} 0=$ for normal operation

PLL disabling

OS is set to logic 0 for normal operation. OS set to logic 1 switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When setting OS to logic 1 , it is recommended to set T0 to logic 1 simultaneously.
${ }^{12} \mathrm{C}$-bus requirements
SDA and SCL pins

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{HL}	maximum input LOW voltage	-	1.5	V
$\mathrm{~V}_{\mathrm{H}}$	minimum input HIGH voltage	3.0	-	V
I_{LL}	maximum input LOW current	-10.0	-	$\mu \mathrm{A}$
I_{HH}	maximum input HIGH current	-	10.0	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	maximum output LOW voltage at 3 mA sink current	-	0.4	V

Logic diagram

WRITE mode, R/W $=0$

BYTE	BITS							
	$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	$\stackrel{0}{\text { LSB }}$
Address	1	1	0	0	0	MA1	MAO	R/W
Prog. div. 1	0	n14	n13	n12	n11	n10	n9	n8
Prog. div. 2	n7	n6	n5	n4	n3	n2	n1	n0
Control 1	1	CP	T1	T0	1	1	1	OS
Control 2	P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	ADDRESS	VOLTAGE AT PIN 15
0	0	C 0	0 to $0.1 \mathrm{~V}_{\text {PLL }}$
0	1	C 2	don't care
1	0	C 4	0.4 to $0.6 \mathrm{~V}_{\text {PLI }}$
1	1	C 6	$0.9 \mathrm{~V}_{\mathrm{PLL}}$ to 13.5 V

Note

The tuner will always respond to address $\mathbf{C} 2$. The second address will depend on the voltage applied at pin 15.

VHF/UHF television frontend

Control byte 2

Bandswitching

BAND	BIT									
		P0	P1	P2	P3	P4	P5	P6		
	P7									
Low band	x	x	x	0	0	1	0	1		
Mid band	x	x	x	0	1	0	0	1		
High band	x	x	x	0	1	1	0	0		

Notes

$\mathrm{x}=$ don't care.
P0-P7: band selection.
P3 must be programmed to 0 . The address selection voltage is applied at this pin.

Telegram examples

WRITE mode

```
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - CB1 - ACK - CB2 - ACK - stop
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - stop
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - stop
start - ADD - ACK - CB1 - ACK - CB2 - ACK - stop
start - ADD - ACK - CB1 - ACK - CB2 - ACK - DIV1 - ACK - stop
start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 = divider ratio byte 2
CB1 = control byte 1
CB2 = control byte 2
stop = stop condition
```

Logic diagram
READ mode, R/W = 1

BYTE	BITS							
	$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { LSB } \end{gathered}$
Address byte	1	1	0	0	0	MA1	MAO	R/W
Status byte	POR	FL	12	11	10	A2	A1	A0

FL indicates when the tuning loop of the PLL is in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1.

POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.

Bits 10 to 12 do not contain any relevant data for the tuner application and can be ignored.

VHF/UHF television frontend

ADDITIONAL INFORMATION

Tuning supply voltage

A tuning voltage of 33 V must be connected via a $22 \mathrm{k} \Omega$ series resistor to pin 11. A preferred method is a constant current supply of 1 to 5 mA to the pin. Fig. 4 shows this with a 140 V supply. The Zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems B, G and H	
Channels	off-air	cable
low v.h.f.	E2 to C	S01 to S1
high v.h.f.	E5 to E12	S2 to S20
u.h.f.	E21 to E69	
Intermediate frequencies		
picture	38,90 MHz	
colour	$34,47 \mathrm{MHz}$	
sound 1	$33,40 \mathrm{MHz}$	
sound 2	$33,16 \mathrm{MHz}$	

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems B, G and H with extended v.h.f. frequency ranges.

The tuner parts of the UV618/256 and the UV618/6456 are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type UV617.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV617	IEC	-	312223700060
UV618/256	IEC	$1: 256$	312223700010
UV618/6456 (note 1)	IEC	$1: 256 / 1: 64$	312223700371

The tuners comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1981, when installed professionally in an adequate TV receiver.

Note to the Table

1. The frequency divider is switchable.

DESCRIPTION

The UV617, UV618/256 and UV618/6456 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 46 to 110 MHz), the high v.h.f. band (frequency range 111 to 300 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a diecast metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common IEC coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f. and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with r.f. MOSFET input stages. The v.h.f. mixer, v.h.f. oscillator and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect i.f. preselections, a 40,4 trap is provided to improve the selectivity of common SAW filters for adjacent channel N-1 (system B).
Output impedance of the symmetrical i.f. terminals is approx. 75Ω to insure sufficient triple transient supression of the SAW.
The r.f. band pass filter and oscillator circuits are tuned by 7 tuning diodes; band switching is achieved by 4 switching diodes.
The u.h.f. part of the tuner has a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner I.C.. The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the UV618/256 is extended with a frequency divider (division ratio of 256) and that of the UV618/6456 with a switchable divider (division ratio 64 or 256), with inputs connected to the v.h.f. and u.h.f. oscillator. The symmetrical ECL outputs are connected to terminals 13 and 14.

Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.
Fig. 2.

Terminal
A = aerial input (IEC female 75Ω)
$5=$ a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, tuning part, +12 V
7 = supply voltage, low v.h.f., +12 V
8 = supply voltage, high v.h.f., +12 V
$10=$ supply voltage, u.h.f., +12 V
$11=$ tuning voltage, $+0,8$ to +28 V
12 = supply voltage, frequency divider, + 5 V
13, 14 = balanced output voltage of frequency divider ($1 \mathrm{k} \Omega$)
$15=$ to be grounded for 256 ratio, floating for 64 ratio (UV618/6456 only)
$16=$
$17=$ i.f. output, symm. (approx. 75Ω)
only for
UV618/256/6456

Mass approx. 95 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig. 4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2, test Ta ($230 \pm 10{ }^{\circ} \mathrm{C}$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV618/256/6456
$1 \mathrm{eb}=0,025$ inch

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 4.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands

r.f. amplifier	BF992
mixer	TDA5030
oscillator f	$7 \times$ OF633
tuning diodes	$4 \times$ BA482/483/484
switching diodes	$2 \times$ BAS15

Semiconductors, u.h.f. bands
r.f. amplifier BF990
oscillator BF970
mixer 1 SS99
tuning diodes $4 \times$ OF643
frequency divider SP4653
Ambient temperature range
operating
-10 to $+60{ }^{\circ} \mathrm{C}$
storage
Relative humidity
-25 to $+85{ }^{\circ} \mathrm{C}$

Voltages and currents

Supply voltage

$$
+12 \mathrm{~V} \pm 10 \%
$$

Current drawn from +12 V supply
v.h.f. bands
u.h.f. bands

Bandswitching
$\max .50 \mathrm{~mA}$
$\max .45 \mathrm{~mA}$

For operation in all bands the supply voltage is permanently connected to terminal 6 . Additionally the supply voltage is connected to:
terminal 7 for operation in low v.h.f. band
terminal 8 for operation in high v.h.f. band
terminal 10 for operation in u.h.f. bands
A.G.C. voltage (Figs 4,5 and 6)
voltage range $\quad+9,2$ to $+0,85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 3 V
high v.h.f. band
typ. 2 V
voltage at 30 dB gain reduction
u.h.f. band
typ. 2 V
Note: A.G.C. voltage between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.

A.G.C. current

max. 0,03 mA
Slope of a.g.c. characteristic, at the end of the specified a.g.c. range low v.h.f. bands
typ. $40 \mathrm{~dB} / \mathrm{V}$
high v.h.f. bands
typ. $80 \mathrm{~dB} / \mathrm{V}$

Tuning voltage range	$+0,8$ to +28 V
Current drawn from 28 V tuning voltage supply	
at $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $60 \% \mathrm{R} . \mathrm{H}$.	$\max .0,5 \mu \mathrm{~A}$
at $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $95 \% \mathrm{R} . \mathrm{H}$.	$\max .2 \mu \mathrm{~A}$
at $T_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and $60 \% \mathrm{R} . \mathrm{H}$.	max. $2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
low v.h.f. band, channel E2 channel S1
high v.h.f. band, channel S2
channel S20
u.h.f. bands, channel E21
channel E69

5	$\mathrm{MHz} / \mathrm{V}$	
1	$\mathrm{MHz} / \mathrm{V}$	
10	$\mathrm{MHz} / \mathrm{V}$	
2	$\mathrm{MHz} / \mathrm{t}$	typical values
$22 \mathrm{MHz} / \mathrm{V}$		
5	$\mathrm{MHz} / \mathrm{V}$	

Frequencies

Frequency ranges
low v.h.f. band
high v.h.f. band
u.h.f. bands

Intermediate frequencies
picture
colour
sound 1
sound 2

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f. bands
u.h.f. bands
reflection coefficient
v.h.f. bands
u.h.f. bands

Output impedance (i.f.)
Capacitance between terminals
Load impedance
R.F. curves bandwidth
low v.h.f. band typ. 10 MHz
high v.h.f. band u.h.f. bands
max. 4
max. 5
max. 60\%
max. 66\%
75Ω approx.
typ. 3,5 pF
$\min .1 \mathrm{k} \Omega / /$ max. 22 pF
typ. 10 MHz
typ. 15 MHz
$38,90 \mathrm{MHz}$
75Ω
channel E2 (picture carrier $48,25 \mathrm{MHz}$) to channel S1 (picture carrier 105,25 MHz). Margin at the extreme channels:min. 2 MHz . channel S2 (picture carrier $112,25 \mathrm{MHz}$) to channel S20 (picture carrier $294,25 \mathrm{MHz}$). Margin at the extreme channels: $\min 2 \mathrm{MHz}$. channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min 3 \mathrm{MHz}$.
$34,47 \mathrm{MHz}$
$33,40 \mathrm{MHz}$
$33,16 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.
at nominal gain and during gain control
total capacitance load to be tuned to $36,15 \mathrm{MHz}$ by means of an inductance between terminals 16 and $17(\min . \mathrm{L}: 590 \mathrm{nH})$
R.F. curves, tilt
A.G.C. range v.h.f. bands
u.h.f. bands

Voltage gain
low v.h.f. band
high v.h.f. band
channels S2 to S6
channels S7 to S20
u.h.f. bands

Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands

E channels
S channels
u.h.f. bands

Overloading
Input signal producing 1 dB gain compression at nominal gain
v.h.f. bands
u.h.f. bands

Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the oscillations at nominal gain
v.h.f. bands
u.h.f. bands

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
v.h.f. bands
u.h.f. bands
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 40 dB
min. 30 dB
$\min .40 \mathrm{~dB} ; \max .50 \mathrm{~dB}$
typ. $36 \mathrm{~dB} ; \max .46 \mathrm{~dB}$
typ. 40 dB ; max. 50 dB
$\min .40 \mathrm{~dB}$; max. 50 dB
typ. 6 dB
typ. 6 dB
typ. 6 dB
typ. $5 \mathrm{~dB} ; \max .8 \mathrm{~dB}$
typ. 7 dB ; max. 10 dB
typ. 8 dB ; max. 11 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; $\min .85 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $90 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $110 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $110 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $100 \mathrm{~dB}(\mu \mathrm{~V})$
I.F. rejection (measured at picture carrier frequency)
low v.h.f. band min. 60 dB
high v.h.f. band min. 60 dB
u.h.f. bands
$\min .60 \mathrm{~dB}$
Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Cross modulation

Input signal producing 1\% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V}))$
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 2$ for low v.h.f., or channel $N \pm 3$ for high v.h.f., or channel $N \pm 5$ for u.h.f.)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
low v.h.f., interfering from u.h.f.
high v.h.f., interfering from low v.h.f.
high v.h.f., interfering from u.h.f.
u.h.f. interfering from low v.h.f.
u.h.f. interfering from high v.h.f.
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability (visibility test)

For the channel combinations
v.h.f.: $N \pm 1, N \pm 5, N+11$
u.h.f.: $N \pm 1, N \pm 5, N+9$

The tuner meets the requirements of "Amtsblatt" DBP/1981, item 5.1.2., when measured in an adequate TV receiver. The a.g.c. circuit of the receiver has to be adjusted with an input signal of $74 \mathrm{~dB}(\mu \mathrm{~V})$ on channel E60 in such a way, that the gain of the tuner is decreased by 10 dB .

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
v.h.f. bands
u.h.f. bands

Shift of oscillator frequency at a change of the supply voltage of 5%
v.h.f. bands
u.h.f. bands

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+40{ }^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $T_{a m b}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f. band
high v.h.f. band
u.h.f. bands
$\max .500 \mathrm{kHz}$
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
max. 250 kHz
max. 500 kHz
max. 250 kHz
max. 250 kHz
$\max .500 \mathrm{kHz}$
max. 500 kHz
$\max .1000 \mathrm{kHz}$
$\max .1500 \mathrm{kHz}$

Frequency divider characteristics

Frequency division ratio

UV618/256
256

UV618/6456
switchable, 64 or 256
Supply voltage
$+5 \mathrm{~V} \pm 5 \%$
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
max. 35 mA ; typ. 25 mA

Output imbalance
\min. 0,3 \vee_{p-p}

Interference signal on the i.f. output
typ. $\quad 1 \mathrm{k} \Omega$
typ. $0,1 \mathrm{~V}$

Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics

Surge protection

Protection against voltages
$\max .5 \mathrm{kV}$
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.

Protection against flashes

Within the limits of C.I.S.P.R. 13 (1975) , VDE0872/7.72. and Amtsblatt DBP69/1981, when applying the tuner in an adequate TV receiver
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the i.f. injection point TP1, accessible through a hole in the cover (see Fig. 2) via a probe (see Fig. 5).

Fig. 5.

VHF/UHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems		CCIR systems B, G and H; I, I', L, L' and D2MAC				
Channels low band		off-air		cable		-
		E2 to C E5 to E12 E21 to E69	S01 to S10			
mid band				to S39		
high band				to S41		
Intermediate frequencies (MHz)						
System	B, G and H	1	L	$1 '$	L'	D2MAC
Picture	38.90	39.50	38.90	38.90	33.40	38.90
Colour	34.47	35.07	34.47	34.47	37.83	
Sound 1	33.40	33.50	32.40	32.90	39.90	
Sound 2	33.16	33.00		32.40		
Bandedge						30.50

APPLICATION

Designed to cover the VHF and UHF channels of CCIR systems B, G and H; I, I', L, L' and D2MAC with extended VHF/UHF frequency ranges, including cable and hyperband.
The IF output is designed to directly drive a variety of SAW filters.
The UV816/256 and UV816/6456 tuners are equipped with frequency dividers which make them suitable for digital tuning systems based on frequency synthesis; apart from this they are equivalent to type UV815.
In the UV816/PLL tuner the frequency divider is replaced by a built-in digital controlled ($1^{2} \mathrm{C}$) PLL tuning system.

Table 1 Available versions (note 1)

	aerial input connector	frequency divider (IC)	catalogue number
UV816/6456 (note 2) UV816/PLL	IEC/SNIR	$1: 64$ or 1:256	311229710521
	IEC/SNIR		312229710601

Notes to Table 1

1. These tuners comply with the requirements of radiation, signal handling capability and immunity from radiated interference of Amtsblatt DBP69/1981, when installed professionally in an adequate TV receiver.
2. The frequency divider is switchable.

DESCRIPTION

The UV815/816 series feature combined VHF/UHF handling capability with electronic tuning and band switching. The tuners cover the low band (frequency range 46 to 170 MHz), the mid band (frequency range 170 to 450 MHz) and the high band (frequency range 450 to 360 MHz).
The tuners are built on a low-loss printed-wiring board carring all components in a die-cast metal housing made of a rectangular frame, with front and rear covers (see Fig.2). The common IEC and SNIR aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, AGC voltage, tuning and switching voltages, IF output) are made via pins on the underside. (For mounting method, see Figs 3 and 4).
Electrically, the tuners consist of low, mid and high band parts (see Figs 1A and 1B). They are equipped with a common aerial input and provided with three tuned mosfet input stages. The oscillators, mixers and IF amplifier are contained in a mixer-oscillator IC. The IF output is designed to directly drive a variety of SAW filters.
The output impedance of the symmetrical IF terminals is approximately 75Ω to ensure sufficient triple transient suppression of the SAW filter.
The UV815 tuner (basic type without divider) can be controlled by a voltage synthesizer tuning system.
The frequency divider of the type UV816/256 tuner has a division ratio of 256, that of the type UV816/6456 a switchable ratio of 64 or 256 , with symmetrical ECL output connected to two terminals at the underside of the tuner. The UV816 PLL is provided with a digital programmable phase-locked-loop tuning system. This enables tuning with a 62.5 kHz pitch with crystal accuracy. Besides tuning, the band switching is also carried out via the $I^{2} \mathrm{C}$ bus.

Fig.1A Circuit diagram for UV815, UV816/256, UV816/6456.

(1) Printed on board.

Fig.1B Circuit diagram for UV816 PLL.

MECHANICAL DATA

Unless otherwise stated the tolerance is $\pm 0.05 \mathrm{~mm}$
Pin/connector identity

UV815

A IEC 9.5 mm and SNIR 9 mm
5 AGC voltage 9.2 to 0.85 V
6 Supply voltage +12 V
7 Low band supply +12 V
8 Mid band supply +12 V
10 High band supply +12 V
11 Tuning voltage 0.7 to 28 V
12
13
14
15

16 IF output symm.
17 Approximately 75Ω MT1 MT2 1

Mounting tab grounded

UV816/Divider

IEC 9.5 mm and SNIR 9 mm
AGC voltage 9.2 to 0.85 V
Supply voltage +12 V
Low band supply +12 V
Mid band supply +12 V
High band supply +12 V
Tuning voltage 0.7 to 28 V
Prescaler supply +5 V
Prescaler output $1.2 \mathrm{k} \Omega$
Prescaler output $1.2 \mathrm{k} \Omega$
To be grounded for 256 ratio, floating for 64 ratio (UV816/6456 only)
IF output symm.
Approximately 75Ω
Mounting tab grounded

UV816 PLL

IEC 9.5 mm and SNIR 9 mm AGC voltage 9.2 to 0.85 V
Supply voltage +12 V

33 V via $22 \mathrm{k} \Omega$ series resistor PLL supply +5 V
SCL serial clock line $\mid 1^{2} \mathrm{C}$ SDA serial data line \int bus Address selection

IF output symm.
Approximately 75Ω
Mounting tab grounded

Fig. 2 Mechanical detail.

Mass: approximately 95 grams

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3 without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig.4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, 2 ± 0.5 s). The resistance to soldering heat is in accordance with IEC $68-2$, test $\operatorname{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

$1 \mathrm{eb}=0.025$ inch
(1) On 816 PLL, 816/256 and 816/6456 only.
(2) On $816 / 256$ and $816 / 6456$ only.
Fig. 3 Piercing diagram viewed from solder side of board; unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Note: In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 4 Bending of connecting pins.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$ and an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$.

General

Semiconductors, low band	
RF amplifier	BF998
tuning diodes	$4 \times$ BB911
coupling diodes	$1 \times$ BBY31
	$2 \times$ BB901
Semiconductors, mid band	
RF amplifier	BF998
tuning diodes	$4 \times$ B 910
coupling diodes	$1 \times$ BB405
Semiconductors, high band	
RF amplifier	BF998
tuning diodes	$4 \times$ BB405
Mixer/oscillator IC	TDA5330
Tuning transistor (UV816/PLL only)	BC847B
PLL synthesizer (UV816/PLL only)	TSA5510
	SP5510 multi addressable
	SDA3202 single addressable
Frequency divider	SDA4213
	SP4653X
	SAB6457
Ambient temperature range	
operating	-10 to $+60^{\circ} \mathrm{C}$
storage	-25 to $+70^{\circ} \mathrm{C}$
Relative humidity	max. 95\%
Voltages and currents	
Supply voltage	$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply with one band selected	
low band	
mid band high band	max. 85 mA
Bandswitching	max. 8 mA

For operation in all bands the supply voltage is permanently connected to pin 6 . Additionally the supply voltage is connected to:
pin 7 for operation in low band pin 9 for operation in mid band for UV815, 816/256 and 816/6456 only pin 10 for operation in high band

Input impedance
VSWR at nominal gain and during gain control
low band
mid band
high band
Reflection coefficient
low band
mid band
high band

Output impedance (IF)

Capacitance between terminals
Load impedance

RF curves bandwidth
low band
mid band
high band
RF curves, tilt

AGC range
low band
mid band
high band
AGC voltage
voltage range
voltage at nominal gain
voltage at 40 dB gain reduction
low band
mid band
voltage at 30 dB gain reduction
high band
75Ω
max. 4
max. 4 max. 3 between 300 to 450 MHz to
max. 4 max. 3 ensure D2MAC application
max. 60\%
max. 60\% max. 50\% between 300 to
max. 60% max. $50 \% 450 \mathrm{MHz}$ to ensure D2MAC application
75Ω approximately
typ. 3.5 pF
$\min .1 \mathrm{k} \Omega /$ max. 22 pF total capacitance load to be tuned to 36.15 MHz by means of an inductance between pins 16 and 17 (min. L: 890 nH)
typ. 8 to 11 MHz
typ. 8 to 13 MHz
typ. 14 to 12 MHz
on any channel the amplitude difference between the top of the RF resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 4 dB at nominal gain and 5 dB in AGC range between nominal gain and 20 dB gain reduction. See Fig.8.
$\min .40 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
+9.2 to $+0.85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
$+9.2 \pm 0.5 \mathrm{~V}$
typ. 3 V
typ. 3 V
typ. 2 V

Note: AGC voltages between 0 and +10.5 V may be applied without risk of damage

AGC current

Slope of AGC characteristic at the end of the specified AGC range
low-mid band
high band
typ. $40 \mathrm{~dB} / \mathrm{V}$
$\max .0 .03 \mathrm{~mA}$
typ. $80 \mathrm{~dB} / \mathrm{V}$

AGC characteristic E2 (48.25 MHz)

AGC characteristic S10 (168.25 MHz)

Fig. 5 Typical AGC curves, low band.

AGC characteristic E5 (175.25 MHz)

AGC characteristic S39 (447.25 MHz)

Fig. 6 Typical AGC curves, mid band.

AGC characteristic S40 (455.25 MHz)

AGC characteristic E69 (855.25 MHz)

Fig. 7 Typical AGC curves, high band.

Fig. 8 Tilt overall response curves.

Fig. 9 AGC circuit.

Tuning voltage range, UV815, UV816 with divider
Tuning voltage, UV816 PLL
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$
at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$
Slope of tuning characteristic
low band
mid band
high band

Frequencies

low band Channel E2 (picture carrier 48.25 MHz) to channel S10 (picture carrier 168.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$.
Channel E5 (picture carrier 175.25 MHz) to channel S39 (picture carrier 447.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$. Channel S40 (picture carrier 455.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$.

* An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ has to be connected between the tuning supply voltage and terminal 11 . The tuning supply current is 1.7 mA max.

Voltage gain
low + mid + high band
Maximum gain difference
Noise figure
low band
mid band
high band

Overloading

Input signal producing 1 dB gain compression at nominal gain
low, mid and high band
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping. of the oscillations at nominal gain
low + mid band
high band
$\min .40 \mathrm{~dB}$; max. 50 dB
7 dB
typ. 6 dB ; max. 9 dB
typ. 7 dB ; max. 10 dB
typ. 8 dB ; max. 11 dB

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
low, mid band $<300 \mathrm{MHz}$
$\min .70 \mathrm{~dB}$; typ. 75 dB
low, mid band $>300 \mathrm{MHz}$
high band $<470 \mathrm{MHz}$
high band $>470 \mathrm{MHz}$
IF rejection (measured at picture carrier frequency)
all bands
$\min .66 \mathrm{~dB}$; typ. 70 dB
min. 60 dB ; typ. 65 dB
$\min .53 \mathrm{~dB}$; typ. 65 dB
$\min .60 \mathrm{~dB}$ (Channel E2: $\min .50 \mathrm{~dB}$)

Note: At colour sub-carrier frequency maximum 6 dB less rejection

Cross modulation

Input signal producting 1% cross modulation, i.e. 1% of the modulation depth of interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
All bands at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
for systems L and $L^{\prime} 70 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction
(wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 2$ for low band or channel $N \pm 3$ for mid channel or channel $N \pm 5$ for high band)
low + mid band
at nominal gain
(wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction
(wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
high band
at nominal gain
(wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction
(wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band cross modulation at nominal gain
each of the low, mid or high band
interfering with any of the other
bands mentioned
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Unwanted signal handling capability (visibility test)
For the channel combinations
VHF and hyperband: $N \pm 1, N \pm 5, N+9, N+11$
UHF: $N \pm 1, N \pm 5, N+9$

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain all bands $\quad \min .74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change of supply voltage of $\pm 5 \%$
low band
$\max .250 \mathrm{kHz}$
mid band
$\max .500 \mathrm{kHz}$
high band
$\max .500 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation
for 15 minutes, measured between 5 s and 15 minutes after switching on)
$\max .250 \mathrm{kHz}$
during warm-up time (after the input stage is in operation for 15 minutes, measured between 2 s and 15 minutes after band switching)
$\max .250 \mathrm{kHz}$
at a change of the ambient temperature from $+25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
(measured after 3 cycles from +25 to $0^{\circ} \mathrm{C}$)
low band $\max .500 \mathrm{kHz}$
mid band $\max .750 \mathrm{kHz}$
high band
$\max .1000 \mathrm{kHz}$
at a change of humidity from $60 \pm 15 \%$ to $93 \pm 2 \%$,
at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low band
$\max .500 \mathrm{kHz}$
mid band
high band
$\max .1300 \mathrm{kHz}$
max. 1500 kHz

Frequency divider characteristics

Frequency division ratio
UV816/256
UV816/6456
Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$

Output impedance
Output imbalance
256
switchable, 64 or 256
$+5 \mathrm{~V} \pm 10 \%$
max. 35 mA ; typ. 25 mA

Signal disturbance ratio at IF output, IF output terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
min. $0.5 \mathrm{~V}(p-p)$ for 256 division ratio \min. $0.25 \mathrm{~V}(p-p)$ for 64 division ratio typ. $1 \mathrm{k} \Omega$
typ. 0.1 V

57 dB min.

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages (note 1)
Protection against flashes (note 2)
Within the limits of CISPR 13 (1975), VDE0872/7.72 and Amtsblatt DBP69/1981, item 5.1.2 and CENELEC proposal European standard EN55013 and EN55020 and Finland Requirements Bulletin 33-86 when applying the tuner in an adequent TV receiver.
There will be no microphonics, provided the tuner is installed in a professional manner.

Notes to the characteristics

1. 10 discharges of a 470 pF capacitor into the aerial terminal.
2. A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal. (Power removed from tuner during test).

APPLICATION INFORMATION

For further information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
"The $I^{2} \mathrm{C}$-bus specification", published by Philips Components.

Logic diagram

Address selection

MA1	MA0	voltage at terminal 15
0	0	$0 \ldots 0.1 \times \mathrm{VPLL}$
0	1	don't care
1	0	$0.4 \ldots 0.6 \times \mathrm{VPLL}$
1	1	$0.9 \ldots 2.7 \times \mathrm{VPLL}$

UHF/VHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	CCIR systems B and G
Channels	
low band	E2 to C
mid band	M4 to E12
high band	E21 to E69
Intermediate frequencies	
picture	38.90 MHz
colour	34.47 MHz
sound	33.40 MHz

APPLICATION

The UV913/914 tuners belong to the 900 family of small size tuners which are designed to meet a wide range of applications.
The UV914 is equipped with a built-in digital controlled $\left(I^{2} C\right) P L L$ tuning IC. Band switching is also carried out via the $1^{2} \mathrm{C}$-bus. The UV913 types are intended for voltage controlled tuning and do not have the PLL synthesizer.

The tuner IF output is designed with low output impedance to directly drive a variety of SAW filters.
These tuners comply with the radiation, signal handling and immunity requirements of CISPR 13 (1975) amendment No. 1 (1983) and CENELEC proposal European Standard EN55013 and EN55020.

Table 1 Available versions

type	aerial connector	tuning method	catalogue number
UV913	phono	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914710750
UV913/IEC (note 1)	IEC (14.5 mm)	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914711390
UV914	phono	$\mathrm{PLL} / I^{2} \mathrm{C}$	313914710980
UV914/IEC (note 1)	IEC (14.5 mm)	$\mathrm{PLL} / I^{2} \mathrm{C}$	313914711410

Note to Table 1

1. Available on special request.

DESCRIPTION

The UV913/914 tuners are combined VHF/UHF units covering the low band (frequency range 46.25 to 102.25 MHz), the mid band (frequency range 138.25 to 224.25 MHz) and the high band (frequency range 471.25 to 855.25 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components and are housed in a sheet steel housing with separated front and rear covers. The aerial connector (phono or IEC) is mounted on one side of the frame.
The tuners are equipped with a common aerial input connector (IEC or phono) and are provided with three tuned RF MOSFET input stages. The mixers and oscillators (bands I, II and III) and IF oscillators are biased for high signal handling capabilities.
Between the mixers and the IF amplifier, a double tuned IF filter is provided to improve IF selectivity and to maintain a flat response for the desired frequencies.
The low output impedance of the asymmetrical IF output ensures sufficient triple transient suppression of the SAW filter.
The UV914 tuner contains an $1^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

MECHANICAL DESCRIPTION

$7 Z 26499$

UV913

A aerial input
$5 \quad$ AGC voltage 9.2 to 0.85 V
6 supply voltage +12 V
7 VHF switch input
10 UHF switch input
tuning voltage 0.3 to 28 V
ground
IF output
mounting tab grounded
mounting tab grounded

UV914
aerial input
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage
(33 V via $22 \mathrm{k} \Omega$ series resistor)
supply voltage PLL+5V
SCL serial clock line
SDA serial data line address selection input
ground
IF output
mounting tab grounded
mounting tab grounded

Fig. 1 Mechanical detail.

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig. 3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV914 types only
(2) UV913 types only
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band
RF amplifier 3SK186
mixer 2SC2435
oscillator BF747
tuning diodes BB809
Semiconductors, mid band
RF amplifier
mixer 2SC2435
oscillator 2SC2435
tuning diodes 1SV124
Semiconductors, high band
RF amplifier
mixer
BF990A/01R
oscillator
2SC2435
tuning diodes
2SC2480

F amplifier
OF643

Tuning/bandswitching IC (UV914 types only)
BFS17

Tuning voltage transistor (UV914 types only)
SP5510 or TSA5510

Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
PLL supply voltage (UV914 types only)
Current drawn
supply current
PLL current
Tuning supply voltage (UV914 types only)*

Tuning supply voltage (UV913 types only)
Tuning supply current
Bandswitching voltage (UV913 types only)
Bandswitching current (UV913 types only)
$+12 \mathrm{~V} \pm 10 \%$
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
max. 95\%
$+5 V \pm 10 \%$
$\max .50 \mathrm{~mA}$
max. 55 mA
min. 30 V
typ. 33 V
max. 35 V
0.3 to 28 V
max. 1.7 mA
$+12 \mathrm{~V} \pm 10 \%$
max. 2 mA

[^0]
Aerial input characteristics

VSWR referred to 75Ω impedance
low band
mid band
high band
Reflection coefficient referred to 75Ω impedance
low band
max. 5
max. 5
max. 5
mid band
max. 66\%
high band
Surge protection
Oscillator voltage at aerial terminal
up to 860 MHz
860 to 1000 MHz
max. 66\%
max. 66\%
$\min .8 \mathrm{kV}$
$\max .46 \mathrm{~dB} / \mu \mathrm{V}$
$\max .46 \mathrm{~dB} / \mu V$

IF output characteristics

IF output impedance (between pins 17 and 16 (ground))
Permitted IF load impedance

Frequency range

Low band

Mid band

High band

Wanted signal characteristics

Voltage gain
all channels
gain difference of off-air channels
Noise figure
low band
mid band
high band
AGC range
low and mid bands
high band
$\min .40 \mathrm{~dB}$
max. 52 dB
max. 8 dB
max. 8 dB
max. 8 dB
$\max .10 \mathrm{~dB}$
min. 40 dB
$\min .30 \mathrm{~dB}$

Overloading input signal producing a gain compression of 1 dB input signal producing oscillator detuning of $+300 /-1000 \mathrm{kHz}$ input signal causing the PLL to fail to lock to desired signal	$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
Image rejection (between 0 and 10 dB gain reduction)	$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
low band	
mid band	$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
high band	min. 66 dB
IF rejection	
channel E2	
other channels	$\min .45 \mathrm{~dB}$

Amplitude response curves

Tilt of overall response

At any channel the amplitude differences between:
Off-air channels
top of response curve and picture
top of response curve and sound carrier
valley
sound carrier above picture carrier
IF response
Amplitude difference between:
top of response curve and picture carrier
top of response curve and sound carrier
max. 4 dB
min. 0.5 dB
max. 6 dB
max. 1 dB
$\max .3 \mathrm{~dB}$

Unwanted signal characteristics

Break through susceptibility
$\min .60 \mathrm{~dB} / \mu \vee$
Cross modulation
max. 1 dB
$\max .1 \mathrm{~dB}$

The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:

In channel low band
In band $\mathrm{N} \pm 2$ low band
In band $\mathrm{N} \pm 3$ mid band
In band $N \pm 5$ high band
Out of band
min. $66 \mathrm{~dB} / \mu \mathrm{V}$
$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .84 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$

FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V}) \quad \min .50 \mathrm{~dB}$
at channel 6 (93 to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$)
$\min .50 \mathrm{~dB}$

Oscillator characteristics (UV913 types only)
Drift of oscillator frequency
Warm up (tuner on-off, bandswitching)
low band
$\max .250 \mathrm{kHz}$
high band, up to channel 69
max. 500 kHz
high band, channel 70 to 83
$\max .500 \mathrm{kHz}$
Change of ambient temperature $25 \pm 25{ }^{\circ} \mathrm{C}$
low band
$\max .500 \mathrm{kHz}$
mid band
$\max .500 \mathrm{kHz}$
high band
$\max .1000 \mathrm{kHz}$
Change of humidity 60% to $93 \% \pm 2 \%$
low band
$\max .500 \mathrm{kHz}$
high band, up to channel 69
high band, channels 70 to 83
$\max .1000 \mathrm{kHz}$
max. 1500 kHz
Shift of oscillator frequency at a change of supply
voltage of 5\%
low band
mid and high bands
$\max .250 \mathrm{kHz}$
during AGC
$\max .500 \mathrm{kHz}$

Pulling (10 kHz)
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
PLL tuning characteristics (UV914 types only)
PLL tuning resolution
$\max .62 .5 \mathrm{kHz}$
Deviation from nominal of the:locked oscillator frequency under any combination of the operation conditions
50^{-6}

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal is within the limits of CISPR 13 (1975) amendment No. 1 (1983) and CENELEC proposal European Standard EN55013 and EN55020.

Microphonics

With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
\min. 40 dB

Oscillator voltage at the pins
supply and control pins
$\max .70 \mathrm{~dB} / \mu \mathrm{V}$
IF pins - low band
$\max .95 \mathrm{~dB} / \mu \mathrm{V}$
IF pins - high band
$\max .70 \mathrm{~dB} / \mu \mathrm{V}$
ESD protection at the pins
All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $I^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$ bus specification ', published by Philips Components.
$I^{2} \mathrm{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{1 \mathrm{H}(\min)}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{I L}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$\mathrm{I}_{\mathrm{IH}(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

	MSB						LSB	
Address byte	1	1	0	0	0	MA1	MAO	R / \bar{W}

Prog. div. byte 1

0	$n 14$	n 13	n 12	n 11	n 10	n 9	n 8

Prog. div. byte 2

$n 7$	$n 6$	$n 5$	$n 4$	$n 3$	$n 2$	$n 1$	$n 0$

Control byte 1

1	51	T1	T0	1	1	1	0

Control
byte 2

P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant*
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV914 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V}$). Therefore, with pin 15 open circuit, the tuner will respond to address C 2 and C 6 .

[^1]
Programmable divider setting (bytes 1 and 2)

Divider ratio: $\mathrm{N}=16 \times\left(\mathrm{f}_{\mathrm{rf}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{if}}, \mathrm{pc}(\mathrm{MHz})\right)$

$$
f_{\text {osc }}=N / 16(M H z) .
$$

$N=16384 \times n 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+$ $1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$ $32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $C P=1$ results in faster tuning, $C P=0$ in moderate tuning speed with slightly better residual oscillator FM.
Test mode setting: T1, T0 $=0$ for normal operation.
PLL disabling: OS $=0$ for normal operation.
$\mathrm{OS}=1$ switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set TO to logic 1.

Control byte 2

DEVELOPMENT DATA

Bandswitching

	PO	P 1	P 2	P 3	P 4	P 5	P 6	P 7
low band	x	x	x	0	0	1	1	0
mid band	x	x	x	0	1	0	1	0
high band	x	x	x	0	1	1	0	0

$x=$ don't care
PO to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 $=$ divider ratio byte 2
CB1 = control byte 1
CB2 = control byte 2
Stop $=$ stop condition
Logic diagram (READ mode, $R / \bar{W}=1$)

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1. POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and A0 to A2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

Start = Start condition
ADD = Address
ACK = Acknowledge
STB = Status byte
Stop $=$ Stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

VHF/UHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems
Channels
low band
mid band
high band

CCIR systems B, G and $H ; I, I^{\prime}, L, L^{\prime}$ and D2 MAC
off-air
E2 to C
E5 to E12
E21 to E69
cable
S01 to S10
S11 to S39
S40 and S41

Intermediate frequencies (MHz)

System	B, G and H	1	L	I^{\prime}	L^{\prime}	D2MAC
Picture	38.90	39.50	38.90	38.90	33.40	38.90
Colour	34.47	35.07	34.47	34.47	37.83	
Sound 1	33.40	33.50	32.40	32.90	39.90	
Sound 2	33.16	33.00		32.40		30.50

APPLICATION

Designed to cover the VHF and UHF channels of CCIR systems B, G and H, I, I', L, L' and D2MAC with extended VHF/UHF frequency ranges, including cable and hyperband.
The IF output is designed to directly drive a variety of SAW filters.
The UV916E/256 and UV916E/6456 tuners are equipped with frequency dividers which make them suitable for digital tuning systems based on frequency synthesis; apart from this they are equivalent to type UV915E.
In the UV916E/PLL tuner the frequency divider is replaced by a built-in digital controlled ($\left.I^{2} \mathrm{C}\right)$ PLL tuning system.

Table 1 Available versions (note 1)

	aerial input connector	frequency divider (IC)	catalogue number
UV915E	phono		313914710771
UV915E/IEC (note 2)	IEC $(14.5 \mathrm{~mm})$		313914710781
UV916E/PLL	phono		313914710471
UV916E/PLL/IEC (note 2)	IEC $(14.5 \mathrm{~mm})$		313914710361

Notes to Table 1

1. These tuners comply with the requirements of radiation, signal handling capability and immunity from radiated interference of Amtsblatt DBP69 1981, DIN VDE 0872, CISPR (1973) including amendment 1 (1983) and CENELEC proposal European Standard EN55013, EN55020.
2. Available on special request.

DESCRIPTION

The UV915E/916E series feature combined VHF/UHF handling capability with electronic tuning and band switching. The tuners cover the low band (frequency range 46 to 170 MHz), the mid band (frequency range 170 to 450 MHz) and the high band (frequency range 450 to 860 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components in a metal housing made of a rectangular frame, with front and rear covers (see Fig.1). The common IEC and SNIR aerial connector (75Ω) is mounted on one of the frame sides of the housing, all other connections (supply voltages, AGC voltage, tuning and switching voltages, IF output) are made via pins on the underside. (For mounting method, see Figs 2 and 3).
The tuners have three tuned RF input stages. The mixers and oscillators (low, mid and high bands) and IF amplifiers are biased for high signal handling capabilities. Between the mixers and the IF amplifier, a double tuned IF filter is provided to improve IF selectivity and maintain a flat response for the selected frequencies.
The IF output is designed for direct drive of a variety of SAW filters. The output impedance of the asymmetrical IF terminals is approximately 75Ω to ensure sufficient triple transient suppression of the SAW filter.
The UV916E tuners are provided with a digital programmable phase-locked-loop tuning system. This enables tuning with a 62.5 kHz pitch with crystal accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

MECHANICAL DATA

7225509

Pin/connector

identity	UV915E	UV916E/Divider
A	IEC 9.5 mm and SNIR 9 mm	IEC 9.5 mm and SNIR 9 mm
5	AGC voltage 9.2 to 0.85 V	AGC voltage 9.2 to 0.85 V
6	Supply voltage +12 V	Supply voltage +12 V
7	Low band supply +12 V	Low band supply +12 V
8	Mid band supply +12 V	Mid band supply +12 V
10	High band supply +12 V	High band supply +12 V
11	Tuning voltage 0.3 to 28 V	Tuning voltage 0.3 to 28 V
12		Prescaler supply +5 V
13		Prescaler output $1.2 \mathrm{k} \Omega$
14		Prescaler output $1.2 \mathrm{k} \Omega$
15		To be grounded for 256
		ratio, floating for 64 ratio
		(UV816/6456 only)
16	Ground	Ground
17	IF output	IF output
MT1, MT2	Mounting tab grounded	Mounting tab grounded

Dimensions in mm

TP - IF injection point

UV916E PLL

IEC 9.5 mm and SNIR 9 mm
AGC voltage 9.2 to 0.85 V
Supply voltage +12 V

33 V via $22 \mathrm{k} \Omega$ series resistor
PLL supply +5 V
SCL serial clock line SDA serial data line Multiple address selection

Ground
IF output
Mounting tab grounded

Fig. 1 Mechanical diagram.

Mass: approximately 80 grams

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins should be bent according to Fig.3. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test Ta $\left(230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0.5 \mathrm{~s}\right)$. The resistance to soldering heat is in accordance with IEC 68-2-20 test Tb $\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

$$
1 \mathrm{eb}=0.025 \text { inch. }
$$

(1) UV916E types only.
(2) UV915E and UV916E/Divider only.

Fig. 2 Piercing diagram viewed from solder side of board; unless otherwise stated the tolerance is $\pm 0.05 \mathrm{~mm}$.

Note: In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.
Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$ and an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$.

General

Semiconductors, low band
RF amplifier BF998R
mixer $2 S C 2480$
oscillator BFS17
tuning diodes BF911
coupling diodes OF643
Semiconductors, mid band
RF amplifier BF998R
mixer 2SC2480
oscillator 2SC3545
tuning diodes OF612
coupling diodes OF612
Semiconductors, high band
RF amplifier BF990A/01R
mixer 2SC3841
oscillator 2SC2480
tuning diodes OF643
IF amplifier BFS17
PLL tuning IC SP/TSA 5510
Charge pump buffer transistor (NPN) BC847B
Ambient temperature range
operating
storage
Relative humidity
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 95\%

Voltages and currents

Supply voltage
$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply with one band selected low band
mid band $\max .85 \mathrm{~mA}$
high band
Bandswitching
max. 8 mA
For operation in all bands the supply voltage is permanently connected to pin 6 . Additionally the supply voltage is connected to:
pin 7 for operation in low band
pin 8 for operation in mid band for UV915E, 916E/256 and 916E/6456 only pin 10 for operation in high band
Input impedance
75Ω
VSWR at nominal gain and during gain control low band
mid band
high band
max. 4
max. 4 max. 3 between 300 to 450 MHz to
max. 4 ensure D2MAC application

ELECTRICAL DATA (continued)

Voltages and currents (continued)
Reflection coefficient
low band
mid band
high band
Output impedance
Load impedance

RF curves bandwidth
low band
mid band
high band
RF curves, tilt

AGC range
low band
mid band
high band
AGC voltage
voltage range
voltage at nominal gain
voltage at 40 dB gain reduction low band mid band
voltage at 30 dB gain reduction high band
max. 60\%
max. 60% max. 50% between 300 to 450 MHz to max. 60\% ensure D2MAC application 75Ω approximately
min. $1 \mathrm{k} \Omega /$ max. 22 pF total capacitance load to be tuned to 36.15 MHz by means of an inductance between pins 16 (ground) and 17 (min. L: 890 nH)
typ. 8 to 11 MHz
typ. 8 to 13 MHz
typ. 14 to 12 MHz
on any channel the amplitude difference between the top of the RF resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 4 dB at nominal gain and 5 dB in AGC range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
+9.2 to $+0.85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
$+9.2 \pm 0.5 \mathrm{~V}$
typ. 3 V
typ. 3 V
typ. 2 V

Note: AGC voltages between 0 and +10.5 V may be applied without risk of damage.

AGC current

Slope of AGC characteristic at the end
of the specified AGC range
low-mid band
high band
Tuning voltage range, UV915E, UV916E with divider
Tuning voltage, UV916E PLL
$\max .30 \mu \mathrm{~A}$
typ. $40 \mathrm{~dB} / \mathrm{V}$
$\max .100 \mathrm{~dB} / \mathrm{V}$
typ. $80 \mathrm{~dB} / \mathrm{V}$
$\max .100 \mathrm{~dB} / V$
+0.7 to +28 V
+33 V nominal (via $22 \mathrm{k} \Omega$)*

[^2]Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$
at $T_{a m b}=60^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$
Slope of tuning characteristic
low band
mid band
high band

Frequencies
Frequency ranges
low band
mid band
high band

Voltage gain
low + mid + high band
Maximum gain difference
off-air
cable
Noise figure
low band
mid band
high band

Overloading

Input signal producing 1 dB gain compression at nominal gain low, mid and high band
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain low + mid band
high band

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
low, mid band $<300 \mathrm{MHz}$
low, mid band $>300 \mathrm{MHz}$
high band $\quad<470 \mathrm{MHz}$
high band $\quad>470 \mathrm{MHz}$
$\max .0 .5 \mu \mathrm{~A}$
\max. $2 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$
0.5 to $10 \mathrm{MHz} / \mathrm{V}$

1 to $20 \mathrm{MHz} / \mathrm{V}$
2 to $25 \mathrm{MHz} / \mathrm{V}$
channel E2 (picture carrier 48.25 MHz) to channel S10 (picture carrier 168.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$ channel E5 (picture carrier 175.25 MHz) to channel S39 (picture carrier 447.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$ channel S40 (picture carrier 455.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at the extreme channels: $\min .2 .0 \mathrm{MHz}$
$\min .38 \mathrm{~dB}$; max. 50 dB

7 dB
9 dB
max. 9 dB ; typ. 6 dB
max. 10 dB ; typ. 7 dB
max. 11 dB ; typ. 8 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $105 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. 100 dB
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. 90 dB
$\min .70 \mathrm{~dB}$
$\min .66 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$
$\min .53 \mathrm{~dB}$

ELECTRICAL DATA (continued)

Unwanted signal characteristics (continued)
IF rejection (measured at picture carrier
frequency)
channel E2 min. 45 dB
all other channels
$\min .60 \mathrm{~dB}$
Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Cross modulation

input signal producing 1% cross modulation, i.e. 1% of the modulation depth of interfering signal is transferred to the wanted signal
In channel cross modulation (wanted signal: picture carrier frequency;
interfering signal: sound carrier frequency)
all systems
$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$
In band cross modulation (wanted signal: picture carrier of channel N ;
interfering signal: picture carrier of
channel $\mathrm{N} \pm 2$ for low band or
channel $\mathrm{N} \pm 3$ for mid channel or
channel $\mathrm{N} \pm 5$ for high band)
low + mid band typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$
high band typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$
Out of band cross modulation at nominal gain
each of the low, mid or high band interfering
with any of the other bands mentioned
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Unwanted signal handling capability (visibility test)
The tuner meets the requirements of DBP Amtsblatt 69/1981 item 5.1.2 and CENELEC EN55020 section 4.2 when measured in an adequate TV receiver.
The AGC must be adjusted such that the picture carrier level (top sync.) does not exceed $107 \mathrm{~dB}(\mu \mathrm{~V}$) at an input signal level of $74 \mathrm{~dB}(\mu \mathrm{~V})$ or more.

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain all bands $\min .74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Shift of oscillator frequency at a change of
supply voltage of $\pm 5 \%$
low band $\quad \max .250 \mathrm{kHz}$
mid band $\max .500 \mathrm{kHz}$
high band : max. 500 kHz

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 minutes, measured between 5 s and 15 minutes after switching on)
during warm-up time (after the input stage is in operation for 15 minutes, measured between 2 s and 15 minutes after band switching)
at a change of the ambient temperature from $+25^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $0^{\circ} \mathrm{C}$)
low band
mid band
high band
at a change of humidity from $60 \pm 15 \%$ to $93 \pm 2 \%$, at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low
mid
high

Frequency divider characteristics

Frequency division ratio
UV916E/256
UV916E/6456
Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$

Output impedance
Output imbalance
Signal disturbance ratio at IF output,
IF output terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
$\max .250 \mathrm{kHz}$
$\max .250 \mathrm{kHz}$
max. 500 kHz
max. 750 kHz
$\max .1000 \mathrm{kHz}$
max. 500 kHz
$\max .1300 \mathrm{kHz}$
$\max .1500 \mathrm{kHz}$

256
switchable, 64 or 256
$+5 \mathrm{~V} \pm 10 \%$
max. 35 mA ; typ. 25 mA
min. $0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ for 256 division ratio
min. $0.25 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ for 64 division ratio
typ. $1 \mathrm{k} \Omega$
typ. 0.1 V

57 dB min.

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal are within the limits of:

- CISPR 13 (1975) amendment No. 1 (1983)
- Amtsblatt 69/1981 + DIN VDE 0872
- CENELEC proposal European Standard EN55013, EN55020.

Microphonics

For sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$ the video signal to sound interference ratio will be min. 40 dB .

ESD protection at the terminals
All terminals of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For further information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
"The $1^{2} \mathrm{C}$ - bus specification ", published by Philips Components.
$\mathbf{I}^{2} \mathbf{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\text {IL }}$ max. $=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\text {IH }}$ min. $=3.0 \mathrm{~V} \quad$ (minimum input HIGH voltage)
$I_{\text {IL max. }}=-10 \mu \mathrm{~A}$ (maximum LOW level input current)
$I_{\text {IH }}$ max. $=10 \mu \mathrm{~A}$ (maximum HIGH level input current)
V_{OL} max. $=0.4 \mathrm{~V} \quad$ (maximum output LOW voltage at 3 mA sink current)

Logic diagram

	MSB						LSB		
Address byte	1	1	0	0	0	MA1	MAO	0	A
Prog. div. byte 1	0	0	n13	n 12	n11	n10	n9	n8	A
Prog. div. byte 2	n7	n6	n5	n4	n3	n2	n1	n0	A
Control info byte 1	1	51	0	0	1	1	1	0	A
Control info byte 2	P7	P6	P5	P4	0	P2	P1	P0	A

A = Acknowledge
Address selection

	MA1	MAO	voltage at terminal 15
	0	0	$0 \ldots 0.1 \times \mathrm{V}$ PLL
$*$	0	1	don't care
	1	0	$0.4 \ldots 0.6 \times \mathrm{V}$ PLL
	1	1	$0.9 \ldots 2.7 \times \mathrm{V}$ PLL

* This general address is always valid for all tuner types of this group.

Note: It is not recommended to use the address MA1 $=0$. MA2 $=0$ in the set to enable a multi-addressable tuner to be used. Terminal 15 of that tuner may then be grounded.

Programmable divider setting (byte 1 and 2)

Divider ratio: $N=16{ }^{*} 1 \mathrm{f}_{\mathrm{RF}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{IF}}, \mathrm{pc}(\mathrm{MHz})$
$\mathrm{N}=8192 \times \mathrm{n} 13+4096 \times \mathrm{n} 12+2048 \times \mathrm{n} 11+1024 \times \mathrm{n} 10+512 \times \mathrm{n} 9+256 \times \mathrm{n} 8+128 \times \mathrm{n} 7+$ $+64 \times n 6+32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$.

Control info byte 1

Charge pump setting $5 \mathrm{I}=0$ for all bands.
Improved tuning speed is achieved by 5 I = 1 for frequencies higher than channel:
S5 in low band
S29 in mid band
E47 in high band

Control info byte 2

bandswitching	P0	P1	P2	P3	P4	P5	P6	P7
low band	X	X	X	0	0	1	1	0
mid band	X	X	X	0	1	0	1	0
high band	X	X	X	0	1	1	0	0

$X=$ don't care $\quad P 0 \ldots$ P7: band select outputs

Telegram examples

Start - Adr - Dr1 - Dr2 - Cw1 - Cw2 - Stop
Start - Adr - Cw 1 - Cw2 - Dr1 - Dr2 - Stop
Start - Adr - Dr1 - Dr2 - Cw 1 - Stop
Start - Adr - Dr1 - Dr2 - Stop
Start = start condition
Dr1 = divider ratio byte 1
Dr2 = divider ratio byte 2
Cw1 = control word byte 1
Cw2 = control word byte 2
Stop = stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

Channel coverage

BAND	FREQUENCY RANGE (MHz)	OFF-AIR CHANNELS	CABLE CHANNELS
Low	$46.25-170.00$	E2-C $(48.25-82.25 \mathrm{MHz})$	$\mathrm{S} 01-\mathrm{S} 10(69.25-168.25 \mathrm{MHz})$
Mid	$170.00-450.00$	$\mathrm{E} 5-\mathrm{E} 12(175.25-224.25 \mathrm{MHz})$	$\mathrm{S} 11-\mathrm{S} 39(231.25-447.25 \mathrm{MHz})$
High	$450.00-860.25$	$\mathrm{E} 21-\mathrm{E} 69(471.25-855.25 \mathrm{MHz})$	$\mathrm{S} 40-\mathrm{S} 41(455.25-463.25 \mathrm{MHz})$

Derived types

UV916H/IEC	IEC	311229710691
UV916H/IEC-L	Iong IEC connector	311229710701
UV916H/phono	phono (available upon special request)	
UV916HA/IEC		

Intermediate frequencies

				PROPOSED		
SYSTEM	B, G, \& H	\mathbf{I}	L	'	L' (BI)	D2MAC
picture	38.90	39.50	38.90	38.90	33.40	38.90
colour	34.47	35.07	34.47	34.47	37.83	
sound 1	33.40	33.50	32.40	32.90	39.90	
sound 2	33.16	33.00		32.40		
band edge						30.50

Note

The oscillator frequency is above the input signal frequency.

INTRODUCTION

The UV916H tuner belongs to the 900 family of tuners and front ends, which are designed to meet a wide range of applications. They are combined VHF, UHF all-band tuners suitable for CCIR systems B, G, H, I, I', L, L' and D2MAC (channels 300 to 470 MHz).
The /A indicates that these tuners are provided with an ADC input at a separate terminal.

The tuners comply with the requirements of radiation, signal handling capability and immunity conforming with:

- CISPR 13 (1973), including amendment 1 (1983)
- German regulations in accordance with "Amtsblatt" 69, 1981 (VDE 0872/1-5)
- European Standards EN55013, EN55020.

PRODUCT DESCRIPTION

The tuner is housed in a rectangular metal box, with front and rear covers. A common $9 / 9.5 \mathrm{~mm}$ IEC (75Ω) aerial input socket is on one of the sides of the frame. All other connections are made via pins on the base. Versions with a phono socket or a long IEC socket are also
available, giving compatibility with UV816 tuners.

The tuner is provided with 3 tuned RF MOSFET input stages. The oscillators, mixers and IF amplifier are built into a mixer-oscillator IC. The IF output is designed to direct drive a variety of SAW filters. The low IF-OUTPUT impedance (load may be balanced or unbalanced) ensures sufficient triple transient suppression of the SAW filter.

In addition, the tuners are provided with a digital programmable $\left({ }^{2} \mathrm{C}\right)$ phase-locked loop (PLL) tuning system, which is also suitable for multiple addressability. The PLL

VHF/UHF television tuner

system enables tuning with a 62.5 kHz pitch with crystal accuracy.

Band switching can also be controlled via the two-wire $1^{2} \mathrm{C}$-bus. Tuners with the extension " A " after
the type number have an ADC input at pin 10.

For detailed information about the ${ }^{12} \mathrm{C}$-bus transfer, e.g. band switching, frequency settings,
address select and ADC input
voltages, refer to the APPLICATION INFORMATION section of this data sheet.

(1) ADC input only available in tuners UV916HA

Fig. 1 Electrical block diagram.

MECHANICAL DATA

Dimensions in mm.

(1) Only valid for UV916HA tuner.

Fig. 2 Mechanical outline.

Aerial connection

IEC socket 9.5 mm female 75Ω, length 14 or 32 mm . Phono socket female 75Ω.

Mass

Approximately 50 g .

Mechanical requirements (IEC connector only)

Insertion force
measured with gauge
(nominal diameter $9.5 \mathrm{~mm})$: < 50 N .

Withdrawal force
measured with gauge
(nominal diameter
$9.5 \mathrm{~mm})$: $>10 \mathrm{~N}$.

Marking

The following items of data are printed on the top of the tuner:

- Type number
- Code number
- Origin letter of factory
- Change code
- Year and week code.

Solderability

The solderability of the terminals and mounting tags when tested initially and after 16 hours steam ageing in accordance with IEC 68-2-20 test Ta, method 1 (solder bath $235^{\circ} \mathrm{C}, 2 \mathrm{~s}$), results in a wetted area of 95%. No de-wetting will occur when soldered at $260^{\circ} \mathrm{C}$, 5 s.

Resistance to soldering heat

The product will not be damaged when tested in accordance with IEC 68-2-20 test Tb, method 1A (solder bath $260^{\circ} \mathrm{C}, 5 \mathrm{~s}$).

Terminal strength

The terminals will not be damaged when tested in accordance with IEC 68-2-21, test Ua1, tensile of 20 N in axial direction and test Ua2, thrust of 4 N in axial direction.

Terminals

TERMINAL		DESCRIPTION
5	AGC	gain control voltage
6	B +	supply voltage
10	ADC	A/D converter input ("A" versions only)
11	VT	tuning voltage supply
12	V PL 2	PLL supply voltage
13	SCL	I 2 C serial clock
14	SDA	I 2 C serial data
15	AS	address select input
16	IF	symmetrical IF output
17	IF	symmetrical IF output
M1, M2	GROUND	mounting tags

LIMITING VALUES

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Under non-operational conditions					
Ambient temperature		-25	-	85	${ }^{\circ} \mathrm{C}$
Relative humidity		-	-	100	\%
Bump acceleration		-	-	245	$\mathrm{m} / \mathrm{s}^{2}$
Shock acceleration		-	-	490	$\mathrm{m} / \mathrm{s}^{2}$
Vibration amplitude	10 to 55 Hz	-	0.35	-	mm
Under operational conditions					
Ambient temperature		-10	-	60	${ }^{\circ} \mathrm{C}$
Relative humidity		-	-	95	\%
B+ supply voltage		-	-	13.2	V
AGC voltage		-	-	13.2	V
PLL supply voltage		-	-	5.5	V
Tuning voltage supply	via series resistor of $22 \mathrm{k} \Omega$	-	-	35	V
Bus input voltage SDA		-0.3	-	6	V
Bus input voltage SCL		-0.3	-	6	V
Bus current SDA	open collector	-1	-	5	mA
Address select input voltage		-	-	16	V
ADC input voltage		-	-	16	V

VHF/UHF television tuner

OPERATIONAL CONDITIONS AND SUPPLY DATA

The tuner can be guaranteed to function properly under the following conditions.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Environmental					
Ambient temperature		-10	-	60	${ }^{\circ} \mathrm{C}$
Relative humidity		-	-	95	\%
Supply voltage					
$B+$ supply voltage		10.8	12	13.2	V
Relevant current		-	70	110	mA
Permissible ripple voltage		-	-	50	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
AGC voltage					
AGC voltage range		0.85	-	9.2	V
AGC current		-	-	30	$\mu \mathrm{A}$
AGC voltage low band mid band high band	at -40 dB at -30 dB	-	$\begin{gathered} 2 \\ 1.5 \\ 2 \\ \hline \end{gathered}$	-	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
AGC slope between nominal gain and the specified AGC range low band mid band high band		-	-	$\begin{aligned} & 20 \\ & 55 \\ & 50 \\ & \hline \end{aligned}$	dB $/ \mathrm{N}$ $\mathrm{dB} N$ dB $/ \mathrm{N}$
AGC source impedance		-	-	10	$\mathrm{k} \Omega$
PLL supply voltage					
Supply voltage		4.5	5	5.5	V
Relevant current for PLL		-	-	50	mA
Permissible ripple voltage		-	-	50	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
Tuning voltage supply (note 1)					
Tuning voltage supply		30	33	35	V
Relevant current		-	-	1.7	mA
Permissible ripple voltage		-	-	50	mV (p-p)
Band switching					
Refer to the Application Information section for the required bandswitching setting via the $1^{2} \mathrm{C}$-bus.					
ADC, analog input (only for UV916H/A and UV916HF/A types)					
ADC analog input voltage range (note 2)		0	-	5.5	V
AS (address select) input					
Input voltage range (note 3)		0	2.5	5.5	V

VHF/UHF television tuner

Notes

1. An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ must be connected between the tuning supply voltage and terminal 11. An alternative is given in the section headed Tuning supply voltage, in the APPLICATION INFORMATION section of this data sheet.
2. For detailed information about the conversion, refer to the APPLICATION INFORMATION section of this data sheet.
3. For detailed information about the address decoding, refer to the APPLICATION INFORMATION section of this data sheet.

Fig. 3 Typical test set-up.

VHF/UHF television tuner

ELECTRICAL DATA

Unless otherwise specified, all electrical values apply at the following levels:

Ambient $\quad 25 \pm 5^{\circ} \mathrm{C}$
temperature:
Relative
$60 \pm 15 \%$
humidity:
Supply voltage: $12 \pm 0.3 \mathrm{~V}$
AGC voltage: $\quad 9.2 \pm 0.2 \mathrm{~V}$
Aerial source $\quad 75 \Omega$ unbalanced
impedance:
PLL supply
$5 \pm 0.2 \mathrm{~V}$
voltage:
Tuning supply
voltage:
$33 \pm 0.5 \mathrm{~V}$ (via

For detailed information about the PLL programming, refer to the

APPLICATION INFORMATION

section of this data sheet.
The tuner is guaranteed to function properly within the specified operational conditions, but a certain deterioration of performance parameters may occur at the limits of the operational conditions.

The tuner characteristics are measured using the test jig shown in Fig. 3.

IF output characteristics
The IF output impedance between pins 16 and 17 at 36.15 MHz is approximately $90 \Omega+j 80 \Omega$. For further information, see also the section headed 'IF loading' in the APPLICATION INFORMATION

section of this data sheet.

Note:

In order to achieve balanced or unbalanced output configurations, IF-OUTPUT pins 16 and 17 are internally DC coupled to ground.

Frequency range

Low band:	pc 48.25 to pc
	168.25 MHz
Mid band:	pc 175.25 to pc
	447.25 MHz
High band:	pc 455.25 to pc
	855.25 MHz.

The tuner can always be tuned to 45.52 MHz or any channel under any combination of the specified operating conditions.

Aerial input characteristics

PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
VSWR (reflection coefficient) low band mid band mid band (note 1) high band	at picture carrier referred to 75Ω impedance			
surge protection		-	$4(60 \%)$	
oscillator voltage (see also 'Radiation' section)	$\leq 860 \mathrm{MHz}$			

Note

1. For D2MAC channels, worst case between picture carrier and picture carrier +5 MHz from nominal gain to 20 dB gain reduction.

VHF/UHF television tuner

GENERAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Voltage gain					
Off-air channels		38	-	50	dB
Cable channels		38	-	52	dB
Gain taper of the off-air channels		-	-	7	dB
Noise					
Low band		-	6	9 (E2)	dB
Mid band		-	5	8 (E2)	dB
High band	S39 to E59 E60 to E69		$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{gathered} 9 \\ 9 \text { (E69) } \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
AGC range					
Low - mid band		40	-	-	dB
High band		30	-	-	dB
Overloading					
1 dB gain compression		-	90	-	dB $\mu \mathrm{V}$
PLL lock-out		90	-	-	dB
Image rejection					
Nominal gain to 10 dB gain reduction low-mid band high band	$\begin{aligned} & <300 \mathrm{MHz} \\ & >300 \mathrm{MHz} \\ & <470 \mathrm{MHz} \\ & >470 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 70 \\ & 66 \\ & 66 \\ & 53 \end{aligned}$	- - - -	-	dB dB dB dB
IF rejection					
Channel E2		50	-	-	dB
Other channels		60	-	-	dB
I/2 IF susceptibility					
Low-mid band Mid band High band	$\begin{aligned} & <300 \mathrm{MHz} \\ & >300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 70 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \mu \mathrm{~V} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$
Sound/chroma moiré rejection					
low, mid and high band	at nominal gain	56	-	-	dB

VHF/UHF television tuner

BAND	FREQUENCY (MHz)	RF BANDWIDTH (TYP.) (MHz)
Low band	48	10
	170	12.5
Mid band	180	12
	290	17
(D2MAC)	300 to 450	18
High band	455	15
	855	10

RF bandwidth

The bandwidth of the response curve is defined as the width of the curve expressed in MHz , from the top of the curve to a line at a level of 3 dB below the top. The position of the top of the curve with respect to the picture carrier and sound carrier is irrelevant.

Fig. 4 Tilt of overall response curves.

VHF/UHF television tuner

Cross modulation

The undesired carrier level required to produce a 1% transfer of its modulation depth on the desired carrier for all gain values between maximum gain and the specified gain reduction is given in the following table.

	MIN.	TYP.	UNIT
In channel (except systems L and L')	74	-	$\mathrm{dB} \mu \mathrm{V}$
In channel for systems L and L'	70	-	$\mathrm{dB} \mu \mathrm{V}$
In band $N \pm 2$ low band	86	95	$\mathrm{~dB} \mu \mathrm{~V}$
In band $N \pm 3$ mid band	86	95	$\mathrm{~dB} \mu \mathrm{~V}$
In band $N \pm 5$ high band	94	100	$\mathrm{~dB} \mu \mathrm{~V}$
Out of band	-	100	$\mathrm{~dB} \mu \mathrm{~V}$

Visibility test

The tuner meets the requirements of DBP Amtsblatt 69/1981, item 5.1.2 (VDE 0872/1-5) and EN55020, when measured in an adequate television receiver. The AGC must be adjusted such that the picture carrier level (top sync.) at the tuner output does not exceed $107 \mathrm{~dB} \mu \mathrm{~V}$ at an input signal level of $74 \mathrm{~dB} \mu \mathrm{~V}$ or greater.

Radiation

Oscillator radiation and oscillator voltage at the aerial terminal are within the limits of:

- CISPR 13 (1975), amendment No. 1 (1983)
- Amtsblatt 69/1981 (VDE 0872/1-5)
- European standard EN55013.

Immunity from radiated fields

The tuner meets the requirements of DBP Amtsblatt 69/1981, item 5.3.2 and EN 55020, clause 7.

Immunity from conducted interference

On any channel (desired signal $60 \mathrm{~dB} \mu \mathrm{~V}$), a signal at IF and image frequencies with a $60 \mathrm{~dB} \mu \mathrm{~V}$ level applied to the tuner terminals (except IF terminals) will cause no interference ratio at the IF output less than 67 dB .

Microphonics

For sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be greater than 40 dB .

Tuning system interference rejection at the IF output

Tuning system interference rejection at the IF terminal in the range 33.4 to 38.9 MHz , with an aerial input level of $50 \mathrm{~dB} \mu \mathrm{~V}$

- Crystal harmonics rejection: min. 50 dB .

The measurements must be made using test jig 712203001270.

ESD protection at the terminals

All tuner terminals are protected against electrostatic discharge up to 5 kV except terminals 13 and 14 which can withstand 2 kV . The product is classified in category B (MIL-STD-883C).

Oscillator characteristics

The oscillator is tuned with a 62.5 kHz pitch. The deviation of E and S channels in system B / G is nominally 25 kHz .

Instability of the oscillator frequency under worst case conditions ($+5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\text {amb }}=0$ to $60^{\circ} \mathrm{C}$) is max. 80 ppm .

Lock-in time is max. 150 ms . The status of the PLL can be requested by reading the in-lock flag (see READ mode section).

Residual carrier frequency modulation (peak deviation) caused by $\mathrm{l}^{2} \mathrm{C}$ crosstalk is less than 2 kHz .

Oscillator voltage at the terminals

	UV916H - 916HA (dB $\mu \mathrm{V}$ max.)
Supply and control terminals	60
IF terminals	
low and mid bands	70
high band	60

ENVIRONMENTAL AND RELIABILITY DATA

Reliability test and requirements
Definition of catastrophic fallures

- The tuner cannot be tuned or is inoperative on one or more channels
- Gain more than 6 dB below specification limit.

Environmental conditions

Maximum chamber temperature is $60^{\circ} \mathrm{C}$.

Loading during conditioning

Supply voltage	$: 13.2 \mathrm{~V}$
AGC voltage	$: 9.2 \mathrm{~V}$
PLL supply voltage	$: 5.5 \mathrm{~V}$

Tuning supply voltage via $22 \mathrm{k} \Omega$ series resistor (PLL tuners): 30 V .
${ }^{12} \mathrm{C}$ command (PLL tuners): highest programmable division ratio of the PLL in each band (for the control word, see the APPLICATION INFORMATION section of this data sheet).

Degradation of characteristics
The characteristics will be measured after a preconditioning time of one hour at nominal environmental conditions as described in the ELECTRICAL DATA section. Overall stability characteristics after 2000 hours:

- Change of gain $: \max 3 \mathrm{~dB}$
- Change of tilt : max. 2 dB overall curve
- Tuning deviation : 110 ppm .

VHF/UHF television tuner

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control, see
Philips Components
RC-bus specification (12NC: 9398
336 70011, release November 1986).

Tuners with IEC connectors are suitable for male connectors designed in accordance with IEC 169-2.

The internal conductor pin of the mating phono plug used by the customer should not exceed 10 mm in total length.

Logic diagram

WRITE mode

Notes

A = Acknowledge.

1. $\mathrm{R} \overline{\mathrm{W}}$ bit $=0$ for WRITE mode.

Address selection
$\mathrm{V}_{\text {PLL }}=$ PLL supply voltage $=+5 \mathrm{~V}$.

MA1	MA0	VOLTAGE AT TERMINAL 15
0	0	0 to $0.1 \mathrm{~V}_{\text {PL }}$
0	1	don't care (note 1)
1	0	0.4 to $0.6 \mathrm{~V}_{\mathrm{PLL}}$
1	1	0.9 to $2.4 \mathrm{~V}_{\mathrm{PLL}}$

Note

1. This general address is always valid for all tuner types of this group. It is recommended not to use this address in applications where a further tuner becomes necessary, e.g. television sets with an option for picture-in-picture or satellite television.

Programmable divider setting (bytes 1 and 2)

Divider ratio:
$\mathrm{N}=16 \times($ Frf, pc $(\mathrm{MHz}))+$ Fif, pc
(MHz))
Fosc $=\mathrm{N} / 16(\mathrm{MHz})$
$N=(8192 \times n 13)+(4096 \times n 12)$
$+(2048 \times n 11)+(1024 \times n 10)$
$+(512 \times n 9)+(256 \times n 8)$
$+(128 \times n 7)+(64 \times n 6)$
$+(32 \times n 5)+(16 \times n 4)$
$+(8 \times n 3)+(4 \times n 2)+(2 \times n 1)+n 0$

Control info byte 1

Charge pump setting $5 \mathrm{I}=0$ for all bands. Faster tuning is achieved by $5 I=1$ for all frequencies higher than channel:

S5 at low band
S29 at mid band
E47 at high band.
Control info byte 2
Using Table 2 for the control info, byte 2 will also control the similar band switching as described in Table 1 for tuner type UV916H.

Telegram examples:
Start-Adr-Dr1-Dr2-Cw1-Cw2-Stop Start-Adr-Cw1-Cw2-Dr1-Dr2-Stop Start-Adr-Dr1-Dr2-Cw1-Stop Start-Adr-Dr1-Dr2-Stop
where:
Start $=$ start condition
Adr = address
Dr1 = divider ratio byte 1
Dr2 = divider ratio byte 2
Cw1 = control word byte 1
Cw2 = control word byte 2
Stop = stop condition.
For channel selection involving bandswitching, and to ensure smooth tuning to the desired channel without causing unnecessary charge-pump action, it is recommended to consider the following:

Table 1
Only valid for tuner type UV916H.

BAND SWITCHING	P0	P1	P2	P3	P4	P5	P6	P7
Low band	X	X	X	0	0	1	1	0
Mid band	X	X	X	0	1	0	1	0
High band	X	X	X	0	1	1	0	0

Note

$X=$ don't care; P0 to P7 are band select outputs.
Table 2
Only valid for tuner types UV916HA.

BAND SWITCHING	P0	P1	P2	P3	P4	P5	P6	P7
Low band	X	X	X	0	0	1	0	1
Mid band	X	X	X	0	1	0	0	1
High band	X	X	X	0	1	1	0	0

Note

$X=$ don't care; P0 to P7 are band select outputs.

1. Compare wanted channel frequency (fw) to the current channel frequency (fc).
2. If $\mathrm{fw}>\mathrm{fc}$, use telegram as:

Start-Adr-Dr1-Dr2-Cw1-Cw2-Stop.
3. If $\mathrm{fw}<\mathrm{fc}$, use telegram as:

Start-Adr-Cw1-Cw2-Dr1-Dr2-Stop .

Note

Unnecessary charge-pump action will result in very low tuning voltage $\left(\mathrm{V}_{1} \approx 0 \mathrm{~V}\right)$ which may drive the oscillator to extreme condition.

VHF/UHF television tuner

READ mode

The in-lock flag can be read by setting the $R \bar{W}$ bit to 1 .

Notes

$F L=1$: loop is phase-locked; $X=$ don't care; $A=$ Acknowledge.

1. $R \bar{W}$ bit $=1$ for READ mode.

The following table explains the A/D converter steps, only valid for UV916HA type. A2, A1, A0 (conversion code for the voltage level at terminal $10, A D C$):

A2	A1	A0	VOLTAGE AT TERMINAL 10
1	0	0	$0.6 \times \mathrm{V}_{\mathrm{PLL}}$ to $\mathrm{V}_{\mathrm{PLL}}$
0	1	1	$0.45 \times \mathrm{V}_{\mathrm{PLL}}$ to $0.6 \times \mathrm{V}_{\mathrm{PLL}}$
0	1	0	$0.3 \times \mathrm{V}_{\mathrm{PLL}}$ to $0.45 \times \mathrm{V}_{\mathrm{PLL}}$
0	0	1	$0.15 \times \mathrm{V}_{\mathrm{PLL}}$ to $0.3 \times \mathrm{V}_{\mathrm{PLL}}$
0	0	0	0 to $0.15 \times \mathrm{V}_{\mathrm{PLL}}$

Note

$V_{\text {PLL }}$ refers to the PLL supply voltage at terminal 12.

Tuning voltage supply

A typical tuning voltage of 33 V (max. 35 V and min. 30 V) must be connected via a $22 \mathrm{k} \Omega$ pull-up resistor to terminal 11. Alternatively, a constant current of 1 to 1.5 mA can also be applied. Figure 5 shows an alternative supply from a 140 V source. The Zener diode prevents the tuning voltage at pin 11 from exceeding 33 V .

Fig. 5 Recommended tuning voltage supply.

Mounting

The tuner must be mounted without clearance between the tuner supporting surface and the printed wiring board. When mounted in this way, the tuner must be soldered to the printed wiring board.

This can be achieved by:
a. Bending the connection pins (see Fig.6)
b. Pressing the tuner vertically on the PWB during soldering
c. Supporting the tuner with its aerial connector in the right position.

If the tuner is soldered to the PWB on a wave solder machine, the solder joints should be reinforced afterwards.

IF loading

The IF-OUTPUT of the tuner may be balanced or unbalanced.

The total external loading between terminals 16 and 17 is the balanced load impedance in parallel with 4 times the unbalanced load impedance, limited to $1 \mathrm{k} \Omega$ minimum $/ 30 \mathrm{pF}$ maximum.

For optimum signal handling, the reactive part of the IF circuit ($\mathrm{C}_{\text {extem }}$), must be tuned to the IF centre frequency. This is best achieved by connecting a coil in parallel with terminals 16 and 17.
$L_{\text {tune }}=\frac{1}{\left(2 \pi f_{l F}\right) \times\left(C_{\text {extem }}-1.8 p F\right)}$

To prevent any stress on the PWB set, it is recommended to support the tuner at the aerial connector.

Fig. 6 Recommended mounting method.

Hole pattern seen from solder side.
Unless otherwise stated, the tolerance is $\pm 0.05 \mathrm{~mm}$.

Fig. 7 Piercing pattern of main PWB.

Note:

Terminals 16 and 17 of the tuner are DC coupled to ground.

Hole pattern seen from solder side.
Unless otherwise stated, the tolerance is $\pm 0.05 \mathrm{~mm}$.

Fig. 8 PWB punching pattern where compatibility with UV816 is required.

Fig. 9 AGC circuit.

Fig. 10 Typical low band AGC curves.

Fig. 11 Typical mid band AGC curves.

VHF/UHF television tuner

Fig. 12 Typical high band AGC curves.

UHF/VHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	RTMA M and N	
Channels	off-air	cable
\quad low band	2 to 13	A-2 to I
$\quad 14$ to 83		
high band		
ntermediate frequencies picture	45.75 MHz	
sound	41.25 MHz	
colour	42.17 MHz	

APPLICATION

The UV933/934 tuners belong to the 900 series family of small size tuners which are designed to meet a wide range of applications.
The tuners are available with separate UHF and VHF inputs (75Ω phono for VHF, 300Ω balanced for UHF) or with a combined, single 75Ω input (phono or IEC).
The UV934 is equipped with a built-in digital controlled ($\left.I^{2} \mathrm{C}\right)$ PLL tuning IC. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus. The UV933 types are intended for voltage controlled tuning and do not have the PLL synthesizer.
The tuner IF output is designed with low output impedance to directly drive a variety of SAW filters.
Table 1 Available types

type	catalogue number	aerial input connector	tuning system
V933 (note 1)	312223700620	75Ω phono	$0.3-28 \mathrm{~V}$
UV933	312223700590	75Ω phono	$0.3-28 \mathrm{~V}$
UV933/D	312223700600	75Ω phono/	$0.3-28 \mathrm{~V}$
UV933/IEC (note 2)	312223700610	75Ω balanced	
UV934	312223700570	75Ω phono	$0.3-28 \mathrm{~V}$
UV934/D	312223700580	75Ω phono/	$\mathrm{PLL} / I^{2} \mathrm{C}$
		300Ω balanced	$\mathrm{PLL} / \mathrm{I}^{2} \mathrm{C}$
UV934/IEC (note 2)	312223700640	75Ω IEC	$\mathrm{PLL} / I^{2} \mathrm{C}$

Notes to Table 1

1. VHF only.
2. Available on special request.

DESCRIPTION

The UV933/934 tuners are combined VHF/UHF units covering the low band (frequency range 55.25 to 211.25 MHz) and the high band (frequency range 471.25 to 885.25 MHz).

The tuners are built on a low-loss printed-wiring board carrying all components and a small vertical printed-wiring board carrying the PLL tuning system components for the UV934. The boards are housed in a sheet steel housing with separate front and rear covers. The aerial connector (phono, IEC or balanced) is mounted on one side of the frame.
High selectivity is achieved in both low and high bands by means of a tuned aerial circuit and a double tuned bandpass filter separated by a MOSFET RF amplifier.

An FM bandstop filter, an IF rejection filter and a combined highpass/CB rejection filter precede the low band section. The mixers and oscillators in both bands are built using bipolar transistors in commonbase configuration.
An IF bandpass filter is present between the mixers and the final IF amplifier. The output impedance at the IF output pin is approximately 90Ω to ensure adequate triple transient suppression in the SAW filter.

The UV934 tuners contain an $1^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy.

/D types

UV933 and V933

A

5

B balanced UHF input (/D types only)
aerial input
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
VHF switch input (UV933 versions only)
UHF switch input
tuning voltage 0.3 to 28 V
ground
IF output
mounting tab grounded
mounting tab grounded

UV934
aerial input
balanced UHF input (/D types only)
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage
(33 V via $22 \mathrm{k} \Omega$ series resistor)
supply voltage PLL +5 V
SCL serial clock line
SDA serial data line
address selection input
ground
IF output
mounting tab grounded
mounting tab grounded

Fig. 1 Mechanical detail.

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig.3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV934 types only

7225462
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band
RF amplifier BF998
mixer BFS17
oscillator
tuning diodes
coupling diodes
BFSS17A

Semiconductors, high band
RF amplifier
BF900A/01
mixer
2SC3841
oscillator
ON4438
tuning diodes
IF amplifier
Tuning/bandswitching IC (UV934 types only)
Tuning voltage transistor (UV934 types only)
Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
PLL supply voltage (UV934 only)
$+12 \mathrm{~V} \pm 10 \%$

Current drawn
supply current
$+5 \mathrm{~V} \pm 10 \%$

PLL current
Tuning supply voltage

Tuning supply current
$\max .50 \mathrm{~mA}$
max. 55 mA
$\min .30 \mathrm{~V}$
typ. 33 V
$\max .35 \mathrm{~V}$
max. 1.7 mA
Bandswitching voltage (UV933 types only)
Bandswitching current (UV933 types only)
$+12 \mathrm{~V} \pm 10 \%$
max. 2 mA

Aerial input characteristics

VSWR referred to $75 \Omega / 300 \Omega$ impedance low band
max. 5
high band
Reflection coefficient referred to $75 \Omega / 300 \Omega$ impedance low band high band
Surfe protection
Oscillator voltage at aerial terminal
$54-300 \mathrm{MHz}$
$300-1000 \mathrm{MHz}$
Unbalance of 300Ω aerial terminal (D versions only) up to channel 64
channel 70 to channel 83
IF output characteristics
IF output impedance (between pins 17 and 16 (ground)
90Ω
Permitted IF load impedance
$\min .1 \mathrm{k} \Omega$
max. 22 pF

Frequency range

Low band

High band

Wanted signal characteristics

Voltage gain all channels
gain difference of off-air channels
Noise figure
low band off air channels 2 and 6
low band, all other off-air channels
high band up to channel 69
high band channels 70 to 83

AGC range

low band
min. 38 dB
$\max .50 \mathrm{~dB}$
$\max .8 \mathrm{~dB}$
typ. 8 dB
max. 10 dB
typ. 6.5 dB
$\max .8 \mathrm{~dB}$
typ. 9 dB
max. 10 dB
typ. 10 dB
$\max .12 \mathrm{~dB}$
high band
$\min .45 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$

Overloading
input signal producing a gain compression of 1 dB
input signal producing oscillator detuning
of $+300 /-1000 \mathrm{kHz}$
low band
high band
input signal causing the PLL to fail to lock
to desired signal
low band
high band

Image rejection (between 0 and 10 dB gain reduction)
low band
high band
IF rejection
channel 2
channel 3
all other channels
Channel 6 beat rejection
CB susceptibility

Amplitude response curves

Tilt of overall response
At any channel the amplitude differences between:
Off-air channels
top of response curve and picture
top of response curve and sound carrier
valley
sound carrier above picture carrier
IF response
Amplitude difference between:
top of response curve and picture carrier
top of response curve and sound carrier
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
$\min .80 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
min. 65 dB
$\min .50 \mathrm{~dB}$
min. 50 dB
typ. 55 dB
min. 55 dB
typ. 60 dB
min. 60 dB
min. 50 dB
\min. $108 \mathrm{~dB} / \mu \mathrm{V}$
$\max .4 \mathrm{~dB}$
min. 0.5 dB
max. 6 dB
max. 1 dB
$\max .3 \mathrm{~dB}$
$\max .1 \mathrm{~dB}$
$\max .1 \mathrm{~dB}$

Unwanted signal characteristics

Break through susceptibility
$\min .60 \mathrm{~dB} / \mu V$
Cross modulation
The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:
In channel low band high band
In band $\mathrm{N} \pm 2$ low band
In band $N \pm 5$ high band
Out of band
FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V}$)
at channel 6 (93 to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$)
Oscillator characteristics (UV933 types only)
Drift of oscillator frequency
Warm up (tuner on-off, bandswitching) low band
high band, up to channel 69
high band, channel 70 to 83
Change of ambient temperature $25 \pm 25^{\circ} \mathrm{C}$
low band
high band
Change of humidity 60% to $93 \% \pm 2 \%$
low band
high band, up to channel 69
high band, channels 70 to 83
Shift of oscillator frequency at a change of supply
voltage of 5\%
low band
high band up to channel 69
high band, channels 70 to 83
during AGC
Pulling (10 kHz)
PLL tuning characteristics (UV934 types only)
PLL tuning resolution
$\max .62 .5 \mathrm{kHz}$
Deviation from nominal of the locked oscillator frequency under any combination of the operation conditions: 50×10^{-6}.

Miscellaneous

Radio interference

When the tuner is mounted in a television chassis in such a way as to reduce chassis radiation to a minimum, the radiated signal shall be:

channels 2 to 6	$\max .50 \mu \mathrm{~V} / \mathrm{m}$
channels 7 to 13	$\max .150 \mu \mathrm{~V} / \mathrm{m}$
channels 14 to 69 any single frequency	$\max .750 \mu \mathrm{~V} / \mathrm{m}$
average of any 10 individual frequencies	$\max .350 \mu \mathrm{~V} / \mathrm{m}$

Microphonics
With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
min. 40 dB
Oscillator voltage at the pins
supply and control pins max. $60 \mathrm{~dB} / \mu \mathrm{V}$
IF terminals - low band max. $85 \mathrm{~dB} / \mu \mathrm{V}$
IF terminals - high band
max. $80 \mathrm{~dB} / \mu \mathrm{V}$

ESD protection at the pins

All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$ bus specification ", published by Philips Components.
$I^{2} \mathrm{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\mathrm{IH}(\mathrm{min})}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{\text {IL }}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$I_{I H(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

| | MSB | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address byte | | |
| 1 1 0 0 0 MA1 MAO | R / \bar{W} | |

Prog. div. byte 1

0	$n 14$	$n 13$	$n 12$	$n 11$	$n 10$	$n 9$	$n 8$

Prog. div.
byte 2

Control
byte 1

Control
byte 2

P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant ${ }^{*}$
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV934 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V}$). Therefore, with pin 15 open circuit, the tuner will respond to address C 2 and C 6 .

[^3]Programmable divider setting (bytes 1 and 2)
Divider ratio: $N=16 \times\left(f_{r f}, p c(M H z)+f_{i f}, p c(M H z)\right)$

$$
\mathrm{f}_{\mathrm{OSC}}=\mathrm{N} / 16(\mathrm{MHz})
$$

$\mathrm{N}=16384 \times \mathrm{n} 14+8192 \times \mathrm{n} 13+4096 \times \mathrm{n} 12+2048 \times \mathrm{n} 11+$
$1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$
$32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $C P=1$ results in faster tuning, $C P=0$ in moderate tuning speed with slightly better residual oscillator FM.

Test mode setting: T1, T0 = 0 for normal operation.
PLL disabling: $O S=0$ for normal operation
$\mathrm{OS}=1$ switches the charge pump transistor to the non-conductive state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set T0 to logic 1.

Control byte 2
Bandswitching

	P0	$P 1$	$P 2$	$P 3$	$P 4$	$P 5$	$P 6$	$P 7$
low band	x	x	x	0	0	1	1	x
high band	x	x	x	0	1	1	0	x

$x=$ don't care
P0 to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 $=$ divider ratio byte 2
CB1 = control byte 1
CB2 $=$ control byte 2
Stop $=$ stop condition
Logic diagram (READ mode, $R / \bar{W}=1$)

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1. POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and A0 to A2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

[^4]
ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11 . A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

VHF/UHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	RTMA systems M and N
Channels	channels 2 to 6, channels 7 to 13
VHF	channels 14 to 69 channels A-2 to 65
UHF	
CATV	45.75 MHz
Intermediate frequencies	41.25 MHz
picture	42.17 MHz
sound	

APPLICATION

The tuners are designed to cover all frequencies in the range ch $2(55.25 \mathrm{MHz})$ to ch $69(801.25 \mathrm{MHz})$ of RTMA systems M and N.
The IF output is designed to directly drive a variety of SAW filters. The UV936 tuner is equipped with an $I^{2} \mathrm{C}$-bus for digital programmable phase-locked-loop frequency synthesis with crystal accuracy. Bandswitching is also carried out via the $\mathrm{I}^{2} \mathrm{C}$-bus.
The UV935 tuner is designed for voltage controlled tuning and does not have the PLL tuning system.
The tuners comply with the requirements of radiation, signal handling capability and immunity of the FCC.

Table 1 Available versions

type	aerial connector	tuning method	catalogue number
UV935	phono	$0.3-28 \mathrm{~V}$	313914711010
UV935/IEC (note 1)	IEC $(14.5 \mathrm{~mm})$	$0.3-28 \mathrm{~V}$	
UV936	phono	313914710381	
UV936/IEC (note 1)	IEC $(14.5 \mathrm{~mm})$	PLL/I ${ }^{2} \mathrm{C}$	

Note to Table 1

1. Available on special request only.

DESCRIPTION

The UV935 and UV936 tuners are combined VHF/UHF tuners with electronic tuning and band switching. The tuners cover the low band (frequency range 55.25 to 157.25 MHz), the mid band (frequency range 163.25 to 451.25 MHz) and the high band (frequency range 457.25 to 801.25 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components in a metal housing with front and rear covers.
The tuners are equipped with a common phono aerial input and provided with three tuned RF MOSFET input stages. The mixers and oscillators (bands I, II and III) and IF amplifiers are biased for high signal handling capabilities. Between the mixers and the IF amplifier, a double tuned IF filter is provided to improve IF selectivity and to maintain a flat response for the desired frequencies.
The low output impedance of the asymmetrical IF terminals ensures sufficient triple transient suppression of the SAW filter.
The UV936 tuner is provided with a digital programmable ($\left.1^{2} \mathrm{C}\right)$ phase-locked-loop tuning system. This enables tuning with a 62.5 kHz pitch with crystal accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

7225510
Pin/connector

identity

A
5
6
11
12
13
14
15
16
17
MT2, MT4

UV935
Aerial input (phono)
AGC voltage ($9.2-0.85 \mathrm{~V}$)
Supply voltage $\mathrm{B}+(+12 \mathrm{~V}$)
Tuning supply (0.3-28 V)

Ground
IF output
Mounting tabs, grounded

UV936

Aerial input
AGC voltage ($9.2-0.85 \mathrm{~V}$)
Supply voltage $\mathrm{B}+(+12 \mathrm{~V}$)
Tuning supply (33 V via $22 \mathrm{k} \Omega$ series resistor)
Supply voltage PLL + 5 V
SCL serial clock line
SDA serial data line
$1^{2} \mathrm{C}$-bus
Address select input
Ground
IF output
Grounded

Fig. 1 Mechanical diagram.

Mass: approximately 80 grams

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins should be bent according to Fig.3. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test Ta $\left(230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0.5 \mathrm{~s}\right)$. The resistance to soldering heat is in accordance with IEC $68-2-20$ test Tb $\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV936 only. $1 \mathrm{eb}=0.025$ inch.

Fig. 2 Piercing diagram viewed from solder side of board.

Note: In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise stated all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band
RF amplifier BF990A/01R
mixer
oscillator
tuning diodes
coupling diodes
2SC2480
BFS17
OF612
OF643
Semiconductors, mid band
RF amplifier
BF998R
mixer
oscillator
2 SC2480
2 SC3545
tuning diodes
OF612
coupling diodes
OF612
Semiconductors, high band
RF amplifier BF990A/01R
mixer
2SC3841
oscillator
tuning diodes
2SC2757
OF643
IF amplifier
BF817
PLL tuning IC
TSA 5510T
Charge pump buffer transistor (npn)
BC847B
Ambient temperature range operating
storage (non-operational)
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
Relative humidity
operating
max. 95\%
non-operating
max. 100\%
Voltages and currents
Supply voltage
tuner
$12 \mathrm{~V} \pm 10 \%$
PLL
Tuner ripple susceptability (peak-to-peak value)
$\max .20 \mathrm{mV}$
PLL ripple susceptability (peak-to-peak value)
max. 20 mV
Supply current
tuner
max. 50 mA
PLL
AGC voltage
voltage range
AGC current
AGC source impedance
max. 70 mA
+0.85 to +9.2 V
max. $1 \mu \mathrm{~A}$
$10 \mathrm{k} \Omega$

ELECTRICAL DATA (continued)

Voltages and currents (continued)

Tuning supply voltage (note 1)

Ripple amplitude on tuning supply
Tuning supply current

Frequencies

Frequency ranges
low band
mid band
high band

Intermediate frequencies picture
sound colour

Wanted signal characteristics

Input impedance
VSWR and reflection coefficient (worst case on or between picture and sound carrier at maximum gain) VSWR (all channels) reflection coefficient
RF curves bandwidth channels 2-6, A-2-1, 7-13
channels J-EEE, 14-69

RF curves, tilt:
at any channel the amplitude difference between:

- top of response curve and picture carrier
- top of response curve and sound carrier
- valley
min. 30 V
typ. 33 V
max. 35 V
max. 10 mV (p-p)
max. 1.7 mA
channel 2 (picture carrier 55.25 MHz) to channel G (picture carrier 157.25 MHz). Margin at extreme channels: min. 1.5 MHz channel H (picture carrier 162.000 MHz) to channel CC (picture carrier 451.25 MHz). Margin at extreme channels: $\min .3 .0 \mathrm{MHz}$ channel AAA (picture carrier 457.25 MHz) to channel 69 (picture carrier 801.25 MHz). Margin at extreme channels: $\min .3 .0 \mathrm{MHz}$
45.75 MHz
41.25 MHz
42.17 MHz
75Ω
max. 6
max. 66\%
$\min . \quad 5 \mathrm{MHz}$
$\max .13 \mathrm{MHz}$
min. 5 MHz
max. 18 MHz
max. $4 d B$
max. 6 dB
max. 1.5 dB

Note

1. An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ must be connected between the tuning supply and terminal 11 . The tuning supply current is 1.7 mA .

AGC range
VHF off-air channels min. 45 dB
cable channels
min. 35 dB
UHF off-air channels
min. 30 dB
Voltage gain
min. 38 dB
max. 50 dB
Maximum gain difference
max. 8 dB
Noise figure
low band channels 2 and 6
max. 8 dB
low band other channels
mid band channels H and I
mid band other channels
high band
max. 7 dB
max. 10 dB
max. 8 dB
max. 10 dB
Overloading
input signal producing 1 dB compression at nominal gain
VHF/UHF off-air channels
$\min .74 \mathrm{~dB} / \mu \vee$
PLL lockout
input signal producing either a detuning of the oscillator of +300 kHz
or -1000 kHz or stopping the oscillations at nominal gain
off-air channels
$\min .100 \mathrm{~dB} / \mu \mathrm{V}$
cable channels
$\min .86 \mathrm{~dB} / \mu \mathrm{V}$
Unwanted signal characteristics
Image rejection (maximum gain)
channels 2-6, A-2-1, 7-13
min. 60 dB
channels J-EEE, 14-69
min. 45 dB
IF rejection (measured at picture carrier frequency)
channel 2
channel 3
all other channels
typ. 55 dB
min. 50 dB
typ. 60 dB
min. 55 dB
min. 60 dB

Cross modulation

The undesired carrier level required to produce 1% modulation on the desired carrier shall be equal to or exceed the desired carrier level for all gain values between maximum gain and -40 dB (VHF), -30 dB (UHF) gain reduction or be:
in band $N \pm 2$: channels $2-W$
in band $N \pm 3$: channels $A A-Z Z$
in band $N \pm 5$: channels $A A A-69$
min. $78 \mathrm{~dB} / \mu V$
min. $78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .84 \mathrm{~dB} / \mu \mathrm{V}$

PLL tuning characteristics

The oscillator is tuned with a 62.5 kHz pitch.
Stability of the oscillator under any operational conditions
all channels
Channel 69 oscillator resolution
Tuning response time (charge pump is set high)
max. 40 ppm
max. 62.5 kHz
max. 100 ms

ELECTRICAL DATA (continued)

PLL tuning characteristics (continued)
Oscillator voltage at terminals
IF output - channels 2, 3 and 4 max. $94 \mathrm{~dB} / \mu \mathrm{V}$
IF output - all other channels max. $84 \mathrm{~dB} / \mu \mathrm{V}$
all other terminals
max. $70 \mathrm{~dB} / \mu \mathrm{V}$

IF output characteristics

IF output impedance (between pins 16 (ground) and 17)
at 43.96 MHz
typ. 75Ω
IF load impedance
max. $1 \mathrm{k} \Omega / 22 \mathrm{pF}$
The total capacitance loading at the IF terminals must be tuned at the IF centre frequency by means of a coil between pins 16 (ground) and 17 (minimum value: 750 nH).

Miscellaneous

Radio interference
The tuner must be mounted in the television chassis in such a manner as to reduce chassis radiation to a minimum. Measurements made in accordance with IEEE standard procedure RS 207 and 54IRE 17, S1.

Channels 2-6
Channels 7-13
Channels 14-69 any single frequency average of 10 individual frequencies
max. $\quad 50 \mu \mathrm{~V} / \mathrm{m}$
max. $150 \mu \mathrm{~V} / \mathrm{m}$
max. $750 \mu \mathrm{~V} / \mathrm{m}$
max. $350 \mu \mathrm{~V} / \mathrm{m}$

Immunity (RF ingress)
In the field of a synchronous television signal having measured field strength of $100 \mathrm{mV} / \mathrm{m}$ and the input terminated in 75Ω load with a quarter wave stub, the IF output shall be at least 40 dB below the level of a 1 mV reference signal applied to the aerial input. In the field of a non-synchronous television signal the IF output shall be at least 55 dB below the reference signal.

Microphonics

For sound signals in the audio frequency range 100 Hz to 10 kHz with sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$ the video signal to sound interference ratio will be min. 40 dB .

ESD protection
All the terminals of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For further information regarding general aspects of $I^{2} \mathrm{C}$-bus control refer to:
"The $I^{2} \mathrm{C}$-bus specification", published by Philips Components.
$I^{2} \mathrm{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V} \quad$ (maximum input LOW voltage)
$\mathrm{V}_{1 \mathrm{H}(\mathrm{min})}=3.0 \mathrm{~V} \quad$ (minimum input HIGH voltage)
$I_{I L}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW level input current)
$I_{\mathrm{IH}}(\max)=10 \mu \mathrm{~A} \quad$ (maximum HIGH level input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V} \quad$ (maximum output LOW voltage at 3 mA sink current)

Programming description

For $I^{2} \mathrm{C}$ programming, there is one module address (7 bits) and the $\mathrm{R} / \overline{\mathrm{W}}$ bit for selecting READ or WRITE mode.

1	1	0	0	0	MA1	MAO	R / \bar{W}

Logic diagram

Address byte
MSB LSB

1	1	0	0	0	MA1	MAO	0

Prog. div. byte 1

0	n 14	n 13	n 12	n 11	n 10	n 9	n 8

Prog. div. byte 2

n 7	n 6	n 5	n 4	n 3	n 2	n 1	n 0

Control byte 1
Control byte 2

1	51	T1	T0	1	1	1	0
P7 P6 P5 P4 P3 P2 P1 P0							

Address selection

active address	voltage at terminal 15	MA1	MA0
C0	$0 \ldots . \ldots .1 \mathrm{~V}$ PLL	0	0
C2	don't care	0	1
C4	$0.4 \ldots .0 .6 \mathrm{~V}$ PLL	1	0
C6	$0.9 \ldots 1.1 \mathrm{~V}$ PLL	1	1

Programmable divider setting

Divider ratio: $\mathrm{N}=16 \times\left[\mathrm{f}_{\mathrm{RF}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{I}} \mathrm{F}, \mathrm{pc}(\mathrm{MHz})\right]$

$$
\mathrm{f} \mathrm{OSC}=\mathrm{N} / 16(\mathrm{MHz})
$$

$\mathrm{N}=16384 \times \mathrm{n} 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+1024 \times n 10+512 \times n 9+256 \times n 8+$ $+128 \times n 7+64 \times n 6+32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

APPLICATION INFORMATION (continued)

Control byte 1

Charge pump setting $5 \mathrm{I}=0$ for all bands.
Test mode setting T1, T0 = 0 for normal operation.

Control byte 2

bandswitching	PO	P1	P2	P3	P4	P5	P6	P7
band I	X	X	X	0	0	1	1	0
band II	X	X	X	0	1	0	1	0
band III	X	X	X	0	1	1	0	0

$X=$ don't care \quad PO . . . P7: band selection outputs
P7 is used to switch-off the charge pump transistor during alignment. P3 must be programmed to logic 0 , as the address voltage is applied at this port.

Telegram examples WRITE mode
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - CB1 - ACK - CB2 - ACK - Stop
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - CB1 - ACK - CB2 - ACK - Stop
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - DIV1 - ACK - Stop
Start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - Stop
Start - ADD - ACK - CB1 - ACK - CB2 - ACK - Stop
Start - ADD - ACK - CB1 - ACK - CB2 - ACK - DIV1 - ACK - Stop
Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 = divider ratio byte 2
CB1 = control byte 1
CB2 = control byte 2
Stop $=$ stop condition
Read mode ($\mathrm{R} / \overline{\mathrm{W}}=1$)
Logic diagram

	MSB							LSB
Address byte	1	1	0	0	0	MA1	MAO	1
Status byte	POR	FL	12	11	10	A2	A1	A0

FL is set to 1 when the tuning loop is in lock.
POR (power-on-reset) is intentionally set to 1 in case V PLL drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.

10 to 12 and $A 0$ to $A 2$ do not contain any relevant data and can be ignored.

Telegram examples READ mode
Start - ADD - ACK - STB - ACK - STB - Stop ----- From processor
Start - ADD - ACK - STB - Stop ----. From PLL
Start = start condition
ADD = address
ACK = acknowledge
STB = status byte
Stop = stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

UHF television tuners

APPLICATION

The U943C and U944C tuners belong to the 900 series of small size tuners which are designed to meet a wide range of applications.

The U944C is equipped with a built-in digitally controlled ($I^{2} \mathrm{C}$) PLL tuning IC. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus. The U943C types are intended for voltage controlled tuning and do not have a PLL synthesizer.
The IF output is designed with low output impedance to directly drive a variety of SAW filters.
These tuners comply with the radiation, signal handling and immunity requirements of CENELEC proposal European Standard EN55013 and EN55020.

DESCRIPTION

The U943C and U944C tuners are designed to cover the UHF band from 470 MHz to 860 MHz (channels E21 to E69).

The tuners are built on a low-loss, single sided printed-wiring board with an additional small vertical board carrying the PLL tuning

QUICK REFERENCE DATA

System	CCIR system I	
Channels	E21 to E69	
Intermediate frequencies		
picture	39.50 MHz	or
colour	35.07 MHz	38.90 MHz
sound 1	33.5 .0 MHz	34.47 MHz
sound 2	33.00 MHz	32.90 MHz

Table 1 Available versions

TYPE	AERIAL CONNECTOR	TUNING METHOD
U943C	phono	0.3 V to 28 V
U943(IEC)C	IEC $(14.4 \mathrm{~mm})$	0.3 V to 28 V
U944C	phono	PLLI ${ }^{2} \mathrm{C}$
U944(IEC)C	IEC $(14.4 \mathrm{~mm})$	PLLI ${ }^{2} \mathrm{C}$

system components in the U944C tuner. The tuners are housed in a folded sheet steel housing with separate front and rear covers. The aerial connection (phono or IEC) is mounted on one side of the housing.

Selectivity is increased by use of a tuned antenna circuit and a double tuned bandpass filter separated by a MOSFET RF amplifier.

The mixer and oscillator are constructed using bipolar transistors in common-base configuration.

An IF bandpass filter is provided between the mixer and the final IF amplifier. The output impedance at the tuner IF terminal is approximately 90Ω to ensure adequate triple transient suppression in the SAW filter.

The U944C tuners contain an $1^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal accuracy.

UHF television tuners

U943C; U944C

Semiconductors used

FUNCTION	DEVICE USED
RF amplifier	BF998R
Mixer	2 SC3841
Oscillator	ON4438
Tuning diodes	OF643
IF amplifier	BFS17
Tuning/bandswitching IC (U944C only)	TSA5512 or SP5512
Tuning transistor (U944C only)	BC847B

MECHANICAL DATA

Pinning

PIN	TUNER TYPE	
	U943C	U944C
A	aerial input	aerial input
5	AGC voltage, 9.2 V to 0.85 V	AGC voltage, 9.2 V to 0.85 V
6	supply voltage, +12 V	supply voltage, +12 V
11	tuning voltage, 0.3 V to 28 V	tuning supply voltage, 33 V via
		$22 \mathrm{k} \Omega$ series resistor
12		PLL supply voltage, +5 V
13		SCL serial clock line
14		SDA serial data line
15	address selection input	
16	ground	ground
17	IF output	IF output
MT2,	mounting tab, grounded	mounting tab, grounded
MT4		

Mass

The mass of the tuner is approximately 50 grams.

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig.3. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s}$). The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}\right.$, $10 \pm 1 \mathrm{~s}$).

7225545

Dimensions in mm .

Fig. 1 Mechanical detail.

UHF television tuners

$1 \mathrm{eb}=0.025$ inch
(1) U944C types only

Fig. 2 Piercing diagram viewed from solder side of board.

Fig. 3 Bending of connecting pins and mounting tabs.

UHF television tuners

ELECTRICAL DATA

Unless otherwise stated all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Environmental					
Ambient temperature range operating storage		$\begin{array}{r} -10 \\ -25 \\ \hline \end{array}$	$-$	$\begin{aligned} & +60 \\ & +85 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Relative humidity		-	-	95	\%
Voltages and currents					
Supply voltage		10.8	12	13.2	V
PLL supply voltage	U944C only	4.5	5	5.5	V
Ripple susceptibility (peak-to-peak)		5	-	-	mV
Current drawn supply current PLL current	U944C only	-	-	$\begin{aligned} & 62 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Tuning supply voltage } \\ & \text { U944 } \\ & \text { U943 (Fig.4) } \\ & \hline \end{aligned}$	via $22 \mathrm{k} \Omega$ series resistor	$\begin{array}{\|l\|} \hline 30 \\ 0.3 \\ \hline \end{array}$	33	$\begin{array}{\|l} 35 \\ 28 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Current drawn from tuning supply	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 60^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}, 95 \% \mathrm{RH} \end{aligned}$			$\begin{aligned} & 0.15 \\ & 2 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Tuning slope		-	4 to 30	-	$\mathrm{MHz} N$
AGC voltage (Fig.5) range nominal gain 30 dB gain reduction		$\begin{aligned} & 0.85 \\ & 9.0 \\ & - \end{aligned}$	$\begin{array}{r} 9.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 9.2 \\ & 10.0 \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
AGC current		-	-	30	$\mu \mathrm{A}$
Slope of AGC characteristic at end of specified range		-	30	-	dB / N
AGC slope		-	-	100	dB/N
Frequencies					
Frequency range	channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at extreme channels: \min. 3 MHz .				

UHF television tuners

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Wanted signal characteristics					
Input impedance		-	75	-	Ω
VSWR	referred to 75Ω	-	1.5	5	
Reflection coefficient		-	-	66	\%
RF bandwidth		8	14	18	MHz
RF curves, tilt	on any channel the amplitude difference between the top of the overall curve and the picture carrier, the sound carrier, or any frequency between them will not exceed 4 dB at nominal gain and 5 dB in the AGC range between nominal gain and 20 dB gain reduction.				
AGC range		30	35	-	dB
Voltage gain		40	44	52	dB
Gain taper		-	4	6	dB
Noise figure		-	6	9	dB
Overloading input signal causing 1 dB gain compression oscillator detuning (U943C types only) PLL lock-out (U944C types only)	+300/-1000 kHz	$\begin{array}{\|l} 74 \\ 80 \\ 90 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ 90 \\ 100 \\ \hline \end{array}$		$\mathrm{dB} / \mu \mathrm{V}$ $d B / \mu V$ $d B / \mu V$
Image rejection	nominal gain up to 10 dB gain reduction	50	55	-	dB
IF rejection	picture, all channels	75	90	-	dB
$1 / 2$ IF susceptibility		60	70	-	$\mathrm{dB} / \mu \mathrm{V}$
Unwanted signal characteristics					
Cross modulation (note 1) in channel in band ± 5 out of band		$\begin{aligned} & 66 \\ & 84 \\ & 90 \end{aligned}$	$\begin{array}{\|l\|} \hline 80 \\ 92 \\ 100 \end{array}$	-	$d B / \mu V$ $d B / \mu V$ $\mathrm{dB} / \mu \mathrm{V}$

UHF television tuners

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Oscillator characteristics					
Pulling	input signal producing a shift in oscillator frequency of 10 kHz at nominal gain	74	80	-	$\mathrm{dB} / \mu \mathrm{V}$
Oscillator voltage at aerial terminal		-	-	46	$\mathrm{dB} / \mu \mathrm{V}$
Shift of oscillator frequency change of supply voltage of 5% during AGC	U943C only	-	-	$\begin{aligned} & 500 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Drift of oscillator frequency during warm-up time during change of ambient temperature from $+25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ during change of relative humidity from 60% to $93 \% \pm 2 \%$	U943C only $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$			$\begin{aligned} & 250 \\ & 1000 \\ & \\ & 1500 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
PLL tuning resolution	U944C only	-	-	62.5	kHz
Stability of lock oscillator frequency		-	-	50	ppm
IF characteristics					
IF output impedance		-	75	-	Ω
Allowable IF load impedance		1		22	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Miscellaneous					
Surge protection protection against voltages (note 2) protection against flashes (note 3)		$1-$	$-$	$\begin{aligned} & 8 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Immunity from radiated interference	the aerial input of the tuner meets the requirements of CENELEC, provided that the aerial cable is fitted with the appropriate plug.				
Radio interference	oscillator radiation and oscillator voltage at the aerial input are within the limits of CENELEC proposal European Standard EN55013 and EN55020.				
Microphonics	there will be no microphonics provided that the tuner is installed in a professional manner.				
ESD protection at the terminals	all the terminals of the tuner are protected against electrostatic discharge up to 2 kV . The product is classified in category B (MIL-STD-883C).				

Notes

1. The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 30 dB gain reduction or be as shown.
2. 10 discharges of a 470 pF capacitor into the aerial terminal.
3. A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal. Power is removed from the tuner during the test.

Fig. 4 Tuning characteristics.

Fig. 5 AGC characteristic.

APPLICATION INFORMATION

For information regarding general aspects of $1^{2} \mathrm{C}$-bus control refer to: ${ }^{1}{ }^{2} C$-bus specification', published by Philips Components.

For a more detailed description of the PLL IC see the device specification of the TSA5512.

Programmable divider setting

Bytes 1 and 2
Divider ratio:
$N=16 \times\left(f_{\mathrm{H}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{H}}, \mathrm{pc}(\mathrm{MHz})\right)$
$f_{\text {osc }}=N / 16(M H z)$
$N=(16384 \times n 14)+(8192 \times n 13)+$ $(4096 \times n 12)+(2048 \times n 11)+$ $(1024 \times \mathrm{n} 10)+(512 \times \mathrm{n} 9)+$ $(256 \times n 8)+(128 \times n 7)+$ $(64 \times \mathrm{n} 6)+(32 \times \mathrm{n} 5)+(16 \times \mathrm{n} 4)+$ $(8 \times n 3)+(4 \times n 2)+(2 \times n 1)+n 0$

Control byte 1

Charge pump setting
Charge pump (CP) setting can be set to low current (logic 0) or high current (logic 1). $\mathrm{CP}=1$ results in faster tuning, $C P=0$ in moderate tuning speed with slightly better residual FM.

TEst mode setting

T1, T0 = for normal operation

PLL disabling

OS is set to logic 0 for normal operation. OS set to logic 1 switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When setting OS to logic 1 it is recommended to simultaneously set T0 to logic 1.

$\mathbf{I}^{2} \mathrm{C}$-bus requirements

SDA and SCL pins

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{IL}(\text { max })}$	maximum input LOW voltage	-	1.5	V
$\mathrm{~V}_{\mathrm{IH}(\text { min })}$	minimum input HIGH voltage	3.0	-	V
$\mathrm{I}_{\mathrm{IL}(\text { max })}$	maximum LOW input current	-	-10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{IH}(\text { max })}$	maximum HIGH input current	-	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}(\text { max })}$	maximum output LOW voltage at 3 mA sink current	-	0.4	V

Logic diagram

WRITE mode, $R \bar{N}=0$

BYTE	BITS							
	7 MSB	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { LSB } \end{gathered}$
Address	1	1	0	0	0	MA1	MAO	R / \bar{W}
Prog. div. 1	0	n14	n13	n12	n11	n10	n9	n8
Prog. div. 2	n7	n6	n5	n4	n3	n2	n1	n0
Control 1	1	51	T1	T0	1	1	1	1
Control 2	P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	ADDRESS	VOLTAGE AT PIN 15
0	0	C0	0 to $0.1 \mathrm{~V}_{\text {PLL }}$
0	1	C 2	note 1
1	0	C 4	0.4 to $0.6 \mathrm{~V}_{\text {PLL }}$
1	1	C 6	$0.9 \mathrm{~V}_{\text {PLL }}$ to 13.5 V

Notes

The U944C types have pin 15 (address input) left floating.

1. The tuner will always respond to address C 2 . The second address will depend on the voltage applied at pin 15. When pin 15 is tied to $+\mathrm{B}(+12 \mathrm{~V})$ through a $47 \mathrm{k} \Omega$ resistor, the tuner will respond to addresses C 2 and C 6 . When pin 15 is tied to ground through a $47 \mathrm{k} \Omega$ resistor, the tuner will respond to addresses C 2 and C 0 .

UHF television tuners

Telegram examples

WRITE mode

```
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - CB1 - ACK - CB2 - ACK - stop
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - stop
start - ADD - ACK - DIV1 - ACK - DIV2 - ACK - stop
start - ADD - ACK - CB1 - ACK - CB2 - ACK - stop
start - ADD - ACK - CB1 - ACK - CB2 - ACK - DIV1 - ACK - stop
start \(=\) start condition
ADD = address
ACK = acknowledge
DIV1 \(=\) divider ratio byte 1
DIV2 \(=\) divider ratio byte 2
\(\mathrm{CB} 1=\) control byte 1
CB2 = control byte 2
stop \(=\) stop condition
```


Logic diagram

READ mode, $R \bar{W}=1$

BYTE	BITS							
	$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	${ }_{\text {LSB }}^{0}$
Address byte	1	1	0	0	0	MA1	MAO	R/ \bar{W}
Status byte	POR	FL	12	11	10	A2	A1	A0

FL indicates when the tuning loop of the PLL is in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1.
POR (power on reset) is internally set to logic 1 if the PLL voltage
drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.

Bits 10 to 12 and A 0 to A 2 do not contain any relevant data for the tuner application and can be ignored.

ADDITIONAL INFORMATION
 RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF
injection point TP, accessible through a hole in the cover (see Fig. 1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is a constant current supply of 1 to 5 mA to the pin. Figure 6 shows this with a 140 V supply. The
zener diode prevents the voltage at pin 11 exceeding 33 V .

IF loading

To guarantee optimal signal handling performance to reactive load of the IF output circuit (internal capacitance, interconnections, SAW filter) has to be tuned to the IF centre frequency by means of a coil L in parallel with the SAW filter.

Fig. 6 Constant current supply.

Fig. 7 IF output circuit.

UHFNHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	systems D and K
Channels	E2 to C5
low band	C6 to E12
mid band	C13 to C57
high band	
Intermediate frequencies	38.00 MHz
picture	33.57 MHz
colour	31.50 MHz

APPLICATION

The UV953/954 tuners belong to the 900 family of small size tuners which are designed to meet a wide range of applications.
The UV954 is equipped with a built-in digital controlled ($\left.I^{2} \mathrm{C}\right)$ PLL tuning IC. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus. The UV953 types are intended for voltage controlled tuning and do not have the PLL synthesizer.
The tuner IF output is designed with low output impedance to directly drive a variety of SAW filters.
These tuners comply with the radiation, signal handling and immunity requirements of CISPR13 (1975) amendment No. 1 (1983) and CENELEC proposal European Standard EN55013 and EN55020.

Table 1 Available versions

type	aerial connector	tuning method	catalogue number
UV953	phono	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914711400
UV953/IEC (note 1)	IEC (14.5 mm)	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914711380
UV954	phono	PLL/I ${ }^{2} \mathrm{C}$	313914700120
UV954/IEC (note 1)	IEC $(14.5 \mathrm{~mm})$	$\mathrm{PLL} / \mathrm{I}^{2} \mathrm{C}$	313914711430

Note to Table 1

1. Available on special request.

DESCRIPTION

The UV953/954 tuners are combined VHF/UHF units covering the low band (frequency range 48.25 to 93.25 MHz), the mid band (frequency range 168.25 to 224.25 MHz) and the high band (range 471.25 to 863.25 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components and are housed in a sheet steel housing with separated front and rear covers. The aerial connector (phono or IEC) is mounted on one side of the frame.
The tuners are equipped with a common aerial input connector (IEC or phono) and are provided with three tuned RF MOSFET input stages. The mixers and oscillators (bands I, II and III) and IF oscillators are biased for high signal handling capabilities.
Between the mixers and the IF amplifier, a double tuned IF filter is provided to improve IF selectivity and to maintain a flat response for the desired frequencies.
The low output impedance of the asymmetrical IF output ensures sufficient triple transient suppression of the SAW filter.
The UV954 tuner contains an $1^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

MECHANICAL DESCRIPTION

UV953
A aerial input
5 AGC voltage 9.2 to 0.85 V
6 supply voltage +12 V
7 VHF switch input
10 UHF switch input
11 tuning voltage 0.3 to 28 V
ground
IF output
mounting tab grounded
mounting tab grounded

Dimensions in mm

UV954

aerial input
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage （ 33 V via $22 \mathrm{k} \Omega$ series resistor） supply voltage PLL＋ 5 V SCL serial clock line SDA serial data line address selection input ground IF output mounting tab grounded mounting tab grounded

Fig． 1 Mechanical detail．

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig.3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV954 types only
(2) UV953 types only
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band

RF amplifier
mixer
oscillator
tuning diodes
Semiconductors, mid band
RF amplifier
mixer
oscillator tuning diodes

Semiconductors, high band
RF amplifier
mixer
oscillator
tuning diodes
IF amplifier
Tuning/bandswitching IC (UV954 types only)
Tuning voltage transistor (UV954 types only)
Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
PLL supply voltage (UV954 types only)
Current drawn supply current PLL current
Tuning supply voltage (UV954 types only)*

Tuning supply voltage (UV953 types only)
Tuning supply current
Bandswitching voltage (UV953 types only)
Bandswitching current (UV953 types only)

3SK 186
2SC2435
BF747
BB809

3SK 186
2SC2435
2SC2435
1SV124

BF990A/01R
2SC2435
2SC2480
OF643
BFS17
SP5510 or TSA5510
BC847B
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
max. 95\%
$+12 \mathrm{~V} \pm 10 \%$
$+5 \mathrm{~V} \pm 10 \%$
$\max .50 \mathrm{~mA}$
$\max .55 \mathrm{~mA}$
$\min .30 \mathrm{~V}$
typ. 33 V
max. 35 V
0.3 to 28 V
max. 1.7 mA
$+12 \mathrm{~V} \pm 10 \%$
max. 2 mA

[^5]
Aerial input characteristics

VSWR referred to 75Ω impedance
low band mid band high band
Reflection coefficient referred to 75Ω impedance low band mid band high band
Surge protection
Oscillator voltage at aerial terminal up to 860 MHz 860 to 1000 MHz

IF output characteristics

IF output impedance (between pins 17 and 16 (ground))
Permitted IF load impedance

Frequency range

Low band

Mid band

High band

Wanted signal characteristics

Voltage gain
all channels
gain difference of off-air channels
Noise figure
low band
mid band
high band
AGC range
low and mid bands
high band
max. 5
max. 5
max. 5
max. 66\%
max. 66\%
max. 66\%
$\min .8 \mathrm{kV}$
max. $46 \mathrm{~dB} / \mu V$
$\max .46 \mathrm{~dB} / \mu V$
90Ω
$\min .1 \mathrm{k} \Omega$
max. 22 pF
channel E2 (picture carrier 48.25 MHz) to channel C5 (picture carrier 93.25 MHz). Margin at extreme channels: $\min .2 \mathrm{MHz}$. channel C6 (picture carrier 168.25 MHz) to channel E12 (picture carrier 224.25 MHz). Margin at extreme channels: $\min .2 \mathrm{MHz}$.
channel C13 (picture carrier 471.25 MHz) to channel C57 (picture carrier 855.25 MHz). Margin at extreme channels: $\min .2 \mathrm{MHz}$.
min. 40 dB
$\max .52 \mathrm{~dB}$
max. 8 dB
$\max .8 \mathrm{~dB}$
$\max .8 \mathrm{~dB}$
$\max .10 \mathrm{~dB}$
min. 40 dB
min. 30 dB

Overloading
input signal producing a gain compression of 1 dB
input signal producing oscillator detuning
of $+300 /-1000 \mathrm{kHz}$
input signal causing the PLL to fail to lock to desired signal
Image rejection (between 0 and 10 dB gain reduction)
low band
mid band
high band
IF rejection
channel E2
other channels
min. $90 \mathrm{~dB} / \mu \mathrm{V}$
min. $90 \mathrm{~dB} / \mu \mathrm{V}$
min. $90 \mathrm{~dB} / \mu \mathrm{V}$
min. 66 dB
$\min .66 \mathrm{~dB}$
$\min .45 \mathrm{~dB}$
min. 50 dB
\min. 60 dB

Amplitude response curves

Tilt of overall response
At any channel the amplitude differences between:
Off-air channels
top of response curve and picture
top of response curve and sound carrier
valley
sound carrier above picture carrier
IF response
Amplitude difference between:
top of response curve and picture carrier
top of response curve and sound carrier

Unwanted signal characteristics

Break through susceptibility
$\min .60 \mathrm{~dB} / \mu \mathrm{V}$
Cross modulation
The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:

In channel low band
In band $\mathrm{N} \pm 2$ low band
In band $N \pm 3$ mid band
In band $N \pm 5$ high band
Out of band
$\min .66 \mathrm{~dB} / \mu \mathrm{V}$
$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .84 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$

FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V}) \quad \min .50 \mathrm{~dB}$
at channel 6 (93 to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$)
$\min .50 \mathrm{~dB}$
Oscillator characteristics (UV963 types only)
Drift of oscillator frequency
Warm up (tuner on-off, bandswitching)
low band
$\max .250 \mathrm{kHz}$
high band, up to channel 69
max. 500 kHz
high band, channel 70 to 83
$\max .500 \mathrm{kHz}$
Change of ambient temperature $25 \pm 25^{\circ} \mathrm{C}$
low band
$\max .500 \mathrm{kHz}$
mid band
$\max .500 \mathrm{kHz}$
high band
$\max .1000 \mathrm{kHz}$
Change of humidity 60% to $93 \% \pm 2 \%$
low band
max. 500 kHz
high band, up to channel 69
max. 1000 kHz
high band, channels 70 to 83
max. 1500 kHz
Shift of oscillator frequency at a change of supply
voltage of 5\%
low band
$\max .250 \mathrm{kHz}$
mid and high bands
max. 500 kHz
during AGC
$\max .150 \mathrm{kHz}$
Pulling (10 kHz)
$\min .74 \mathrm{~dB} / \mu \vee$
PLL tuning characteristics (UV964 types only)
PLL tuning resolution
max. 62.5 kHz
Deviation from nominal of the locked oscillator frequency under any combination of the operation conditions
50^{-6}

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal is within the limits of CISPR 13 (1975) amendment No. 1 (1983) and CENELEC proposal European Standard EN55013 and EN55020.
Microphonics
With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
$\min .40 \mathrm{~dB}$

Oscillator voltage at the pins
supply and control pins
$\max .70 \mathrm{~dB} / \mu \mathrm{V}$
IF pins - low band $\max .95 \mathrm{~dB} / \mu \mathrm{V}$
IF pins - high band
$\max .70 \mathrm{~dB} / \mu \mathrm{V}$
ESD protection at the pins
All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$ bus specification ', published by Philips Components.
$I^{2} \mathrm{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\mathrm{IH}(\mathrm{min})}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{I L}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$I_{I H(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

Address byte
MSB

1	LSB						
1	1	0	0	0	MA 1	MAO	R $/ \bar{W}$

Prog. div. byte 1

0	$n 14$	$n 13$	$n 12$	$n 11$	$n 10$	$n 9$	$n 8$

Prog. div. byte 2

$n 7$	$n 6$	$n 5$	$n 4$	$n 3$	$n 2$	$n 1$	n0

Control byte 1

1	5 I	T 1	TO	1	1	1	0

Control byte 2

P7	P6	P5	P4	P3	P2	P1	PO

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant*
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV954 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V}$). Therefore, with pin 15 open circuit, the tuner will respond to address C 2 and C6.

* The tuner will always respond to address C2. The second address will depend on the voltage applied at pin 15.

Programmable divider setting (bytes 1 and 2)
Divider ratio: $N=16 \times\left(f_{r f}, p c(M H z)+f_{i f}, p c(M H z)\right)$

$$
\mathrm{f}_{\mathrm{osc}}=\mathrm{N} / 16(\mathrm{MHz})
$$

$\mathrm{N}=16384 \times \mathrm{n} 14+8192 \times \mathrm{n} 13+4096 \times \mathrm{n} 12+2048 \times \mathrm{n} 11+$ $1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$ $32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $C P=1$ results in faster tuning, $C P=0$ in moderate tuning speed with slightly better residual oscillator FM.

Test mode setting: T1, T0 = 0 for normal operation.
PLL disabling: $O S=0$ for normal operation.
$\mathrm{OS}=1$ switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set TO to logic 1.

Control byte 2

DEVELOPMENT DATA
Bandswitching

	PO	P 1	P 2	P 3	P 4	P 5	P 6	P 7
low band	x	x	x	0	0	1	1	0
mid band	x	x	x	0	1	0	1	0
high band	x	x	x	0	1	1	0	0

$x=$ don't care
P0 to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

> Start $=$ start condition
> ADD $=$ address
> ACK $=$ acknowledge
> DIV1 $=$ divider ratio byte 1
> DIV2 $=$ divider ratio byte 2
> CB1 $=$ control byte 1
> CB2 $=$ control byte 2
> Stop $=$ stop condition

Logic diagram (READ mode, $R / \bar{W}=1$)

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1. POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and A0 to A2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

[^6]
ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection
An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

UHF/VHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	CCIR systems B, G and H
Channels	0 to 5
low band	5 A to 12
mid band	21 to 69
high band	
Intermediate frequencies	38.875 MHz
picture	32.441 MHz
colour	31.375 MHz
sound 1	31.133 MHz

APPLICATION

The UV963/964 tuners belong to the 900 series of small size tuners which are designed to meet a wide range of applications.
The UV964 is equipped with a built-in digital controlled $\left(I^{2} C\right) P L L$ tuning IC. Band switching is also carried out via the $1^{2} \mathrm{C}$-bus. The UV963 types are intended for voltage controlled tuning and do not have the PLL synthesizer.

The tuner IF output is designed with low output impedance to directly drive a variety of SAW filters. These tuners comply the radiation, signal handling and immunity requirements of CISPR 13 (1973) including amendment (1983) and Australian standard AS2839.1 (1986).

Table 1 Available versions

type	aerial connector	tuning method	catalogue number
UV963	phono	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914711031
UV963/IEC (note 1)	IEC (14.5 mm)	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914711041
UV963/L (note 1)	IEC (32.2 mm)	$0.3 \mathrm{~V}-28 \mathrm{~V}$	-
UV964	phono	PLL/I ${ }^{2} \mathrm{C}$	313914711061
UV964/IEC (note 1)	IEC (14.5 mm)	$\mathrm{PLL} / I^{2} \mathrm{C}$	313914711071
UV964/L (note 1)	IEC (32.2 mm$)$	$\mathrm{PLL} / I^{2} \mathrm{C}$	-

Note to Table 1

1. Available on special request.

DESCRIPTION

The UV963/964 tuners are combined VHF/UHF units covering the low band (frequency range 46.25 to 102.25 MHz), the mid band (frequency range 138.25 to 224.25 MHz) and the high band (frequency range 471.25 to 855.25 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components and are housed in a sheet steel housing with separated front and rear covers. The aerial connector (phono or IEC) is mounted on one side of the frame.
The tuners are equipped with a common aerial input connector (IEC or phono) and are provided with three tuned RF MOSFET input stages. The mixers and oscillators (bands I, II and III) and IF oscillators are biased for high signal handling capabilities.
Between the mixers and the IF amplifier, a double tuned IF filter is provided to improve IF selectivity and to maintain a flat response for the desired frequencies.
The low output impedance of the asymmetrical IF output ensures sufficient triple transient suppression of the SAW filter.
The UV964 tuners contains an $I^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

7225465

UV963
A aerial input
5 AGC voltage 9.2 to 0.85 V
6 supply voltage +12 V
7 VHF switch input
10 UHF switch input
11 tuning voltage 0.3 to 28 V
ground
IF output
mounting tab grounded
mounting tab grounded

UV964
aerial input
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage
(33 V via $22 \mathrm{k} \Omega$ series resistor)
supply voltage PLL + 5 V
SCL serial clock line
SDA serial data line
address selection input
ground
IF output
mounting tab grounded
mounting tab grounded

Fig. 1 Mechanical detail.

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig. 3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV964 types only

7225508
(2) UV963 types only
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band
RF amplifier BF998
mixer BFS17
oscillator BFSS17A
tuning diodes
coupling diodes
OF4052
Semiconductors, high band
RF amplifier
BF900A/01
mixer
oscillator
tuning diodes
2SC3841
ON4438

IF amplifier
Tuning/bandswitching IC (UV964 types only)
Tuning voltage transistor (UV964 types only)
Ambient temperature range
operating
storage
Relative humidity
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
max. 95\%

Voltages and currents

Supply voltage
PLL supply voltage (UV964 only)
$+12 \mathrm{~V} \pm 10 \%$

Current drawn
supply current
$+5 \mathrm{~V} \pm 10 \%$

PLL current

Tuning supply voltage (UV964 only)*

Tuning supply voltage (UV963 only)
Tuning supply current
Bandswitching voltage (UV963 types only)
Bandswitching current (UV963 types only)
max. 50 mA
$\max .55 \mathrm{~mA}$
min. 30 V
typ. 33 V
max. 35 V
0.3 to 28 V
max. 1.7 mA
$+12 \mathrm{~V} \pm 10 \%$
max. 2 mA

[^7]
Aerial input characteristics

VSWR referred to 75Ω impedance
low band
mid band
high band
Reflection coefficient referred to 75Ω impedance low band mid band high band
Surge protection
Oscillator voltage at aerial terminal
$54-300 \mathrm{MHz}$
$300-1000 \mathrm{MHz}$

IF output characteristics

IF output impedance (between pins 17 and 16 (ground))
Permitted IF load impedance

Frequency range

Low band

Mid band

High band

Wanted signal characteristics

Voltage gain
all channels
gain difference of off-air channels
Noise figure
low band
mid band
high band
AGC range
low and mid bands
high band
max. 4
max. 4
max. 4
max. 60\%
max. 60\%
max. 60\%
min. 6 kV
$\max .50 \mathrm{~dB} / \mu V$
$\max .66 \mathrm{~dB} / \mu \mathrm{V}$
90Ω
$\min .1 \mathrm{k} \Omega$
max. 22 pF
channel 0 (picture carrier 46.25 MHz) to channel 5 (picture carrier 102.25 MHz). Margin at extreme channels: min. 1 MHz . channel 5A (picture carrier 138.25 MHz) to channel 12 (picture carrier 224.25 MHz). Margin at extreme channels: min. 1 MHz . channel 21 (picture carrier 471.25 MHz to channel 69 (picture carrier 855.25 MHz). Margin at extreme channels: min. 1 MHz .
min. 38 dB
max. 50 dB
max. 8 dB
max. 8 dB
max. 8 dB
$\max .11 \mathrm{~dB}$
min. 40 dB
min. 30 dB

Overloading
input signal producing a gain compression of 1 dB
input signal producing oscillator detuning
of $+300 /-1000 \mathrm{kHz}$
low band
high band
input signal causing the PLL to fail to lock
to desired signal
low band
high band

Image rejection (between 0 and 10 dB gain reduction)
low band
mid band
high band
IF rejection
channel 0
other channels

Amplitude response curves

Tilt of overall response

At any channel the amplitude differences between:
Off-air channels
top of response curve and picture top of response curve and sound carrier
valley
sound carrier above picture carrier
IF response
Amplitude difference between:
top of response curve and picture carrier top of response curve and sound carrier

Unwanted signal characteristics

Break through susceptibility
Cross modulation
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu V$
$\min .80 \mathrm{~dB} / \mu V$
min. $90 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu V$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
typ. 66 dB
typ. 66 dB
min. 53 dB
min. 50 dB
min. 60 dB
$\max .4 \mathrm{~dB}$
$\min .0 .5 \mathrm{~dB}$
$\max .6 \mathrm{~dB}$
$\max .1 \mathrm{~dB}$
$\max .3 \mathrm{~dB}$
$\max .1 \mathrm{~dB}$
max. 1 dB

The undesired carrier level required to produce $\mathbf{1 \%}$ transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:

In channel low band
In band $\mathrm{N} \pm 2$ low band
In band $\mathrm{N} \pm 3$ mid band
In band $N \pm 5$ high band
Out of band
$\min .70 \mathrm{~dB} / \mu \mathrm{V}$
$\min .80 \mathrm{~dB} / \mu \mathrm{V}$
$\min .80 \mathrm{~dB} / \mu \mathrm{V}$
$\min .84 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V})$ $\min .50 \mathrm{~dB}$at channel 6 (93 to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$)$\min .50 \mathrm{~dB}$
Oscillator characteristics (UV963 types only)
Drift of oscillator frequency
Warm up (tuner on-off, bandswitching)
low band $\max .250 \mathrm{kHz}$
high band, up to channel 69max. 250 kHzhigh band, channel 70 to 83max. 500 kHz
Change of ambient temperature $25 \pm 25^{\circ} \mathrm{C}$
low band$\max .500 \mathrm{kHz}$
mid band$\max .750 \mathrm{kHz}$high bandmax. 1000 kHz
Change of humidity 60% to $93 \% \pm 2 \%$low band$\max .500 \mathrm{kHz}$
high band, up to channel 69max. 1000 kHz
high band, channels 70 to 83max. 1500 kHz
Shift of oscillator frequency at a change of supply
voltage of 5\%
low band$\max .250 \mathrm{kHz}$
mid and high bands
during AGCmax. 500 kHzmax. 150 kHzPulling (10 kHz)$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
PLL tuning characteristics (UV964 types only)
PLL tuning resolution$\max .62 .5 \mathrm{kHz}$
Deviation from nominal of the locked oscillator frequencyunder any combination of the operation conditions

Miscellaneous

Radio interference

When the tuner is mounted in a television chassis in such a way as to reduce chassis radiation to a minimum, radiated signal shall be:
channels 2 to $6 \quad \max .50 \mu \mathrm{~V} / \mathrm{m}$
channels 7 to $13 \quad \max .150 \mu \mathrm{~V} / \mathrm{m}$
channels 14 to 69 any single frequency $\quad \max .750 \mu \mathrm{~V} / \mathrm{m}$
average of any 10 individual frequencies $\max .350 \mu \mathrm{~V} / \mathrm{m}$

Microphonics

With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
$\min .40 \mathrm{~dB}$

Oscillator voltage at the pins supply and control pins
$\max .60 \mathrm{~dB} / \mu V$ IF pins - low band $\max .85 \mathrm{~dB} / \mu \mathrm{V}$ IF pins - high band

ESD protection at the pins
All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $I^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$ bus specification", published by Philips Components.
$I^{2} \mathbf{C}$-bus requirements (SDA and SCL pins)
$\mathrm{V}_{\mathrm{IL}(\text { max })}=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\mathrm{IH}(\min)}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{\text {IL }}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$I_{1 H(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}}(\max)=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

Address byte

Prog. div. byte 1

0	n 14	n 13	n 12	n 11	n 10	n 9	n 8

Prog. div. byte 2

$n 7$	$n 6$	$n 5$	$n 4$	n3	n2	n1	n0

Control
byte 1

1	51	T1	T0	1	1	1	0

Control
byte 2

P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant*
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV964 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V})$. Therefore, with pin 15 open circuit, the tuner will respond to address C2 and C6.

[^8]Programmable divider setting (bytes 1 and 2)
Divider ratio: $N=16 \times\left(f_{r f}, p c(M H z)+f_{i f}, p c(M H z)\right)$

$$
\mathrm{f}_{\mathrm{osc}}=\mathrm{N} / 16(\mathrm{MHz})
$$

$N=16384 \times n 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+$ $1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$ $32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $C P=1$ results in faster tuning, $\mathrm{CP}=0$ in moderate tuning speed with slightly better residual oscillator FM.
Test mode setting: T1, T0 = 0 for normal operation.
PLL disabling: $O S=0$ for normal operation.
$\mathrm{OS}=1$ switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set TO to logic 1.

Control byte 2

Bandswitching

	$P 0$	$P 1$	$P 2$	$P 3$	$P 4$	$P 5$	$P 6$	$P 7$
low band	x	x	x	0	0	1	1	0
mid band	x	x	x	0	1	0	1	0
high band	x	x	x	0	1	1	0	0

$x=$ don't care
P0 to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 $=$ divider ratio byte 2
CB1 = control byte 1
CB2 $=$ control byte 2
Stop $=$ stop condition
Logic diagram (READ mode, $R / \bar{W}=1$)

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1. POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to I 2 and A 0 to A 2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

Start $=$ Start condition
ADD = Address
ACK = Acknowledge
STB = Status byte
Stop $=$ Stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11 . A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

UHF/VHF TELEVISION TUNERS

QUICK REFERENCE DATA

System	CCIR system I
Channels (South African channel distribution) low band high band	SA4 to SA13
Intermediate frequencies picture sound	E21 to E69

APPLICATION

The UV973/974 tuners belong to the 900 series of small size tuners which are designed to meet a wide range of applications.
The UV974 is equipped with a built-in digital controlled $\left(I^{2} C\right)$ PLL tuning IC. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus. The UV973 types are intended for voltage controlled tuning and do not have the PLL synthesizer.
The tuner IF output is designed with a low output impedance to directly drive a variety of SAW filters. The tuners comply with the radiation, signal handling and immunity requirements of the South African Bureau of Standards (SABS).

Table 1 Available versions

type	aerial connector	tuning method	catalogue number
UV973	phono	$0.3 \mathrm{~V}-28 \mathrm{~V}$	313914710911
UV973/IEC	IEC $(18.5 \mathrm{~mm})$	$0.3 \mathrm{~V}-28 \mathrm{~V}$	-
UV974	phono	PLL/I ${ }^{2} \mathrm{C}$	313914710931
UV974/IEC	IEC $(18.5 \mathrm{~mm})$	PLL/I ${ }^{2} \mathrm{C}$	-

DESCRIPTION

The UV973/974 tuners are combined VHF/UHF units covering the low band (frequency range 175.25 to 247.43 MHz) and the high band (frequency range 471.25 to 855.25 MHz).

Selectivity in both low and high bands is provided by means of a tuned antenna circuit and a double tuned bandpass filter separated by a MOSFET RF amplifier.
The mixers and oscillators in both bands are constructed using bipolar transistors in common base mode. An IF bandpass filter is provided between the mixers and the final IF amplifier.
The output impedance at the tuner IF terminal is approximately 90Ω to ensure sufficient triple transient suppression in the SAW filter.
The UV974 tuners contain an $1^{2} \mathrm{C}$-bus controlled Phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus.

MECHANICAL DATA

UV973

A aerial input
5 AGC voltage 9.2 to 0.85 V
6 supply voltage +12 V
7 VHF switch input
10 UHF switch input
11 tuning voltage 0.3 to 28 V
12
13
14
15
16

MT1 mounting tab grounded
MT2 mounting tab grounded

UV974
aerial input
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage
(33 V via $22 \mathrm{k} \Omega$ series resistor) supply voltage PLL + 5 V
SCL serial clock line
SDA serial data line address selection input ground IF output
mounting tab grounded mounting tab grounded

Fig. 1 Mechanical detail.

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig.3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5{ }^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV974 types only
(2) UV973 types only
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band
RF amplifier BF998R
mixer
oscillator
tuning diodes
coupling diodes
BFS17
2SC3545
miconductors, high band
RF amplifier BF998R
mixer 2SC3841
oscillator $2 S C 3845$
tuning diodes OF643
IF amplifier
Tuning/bandswitching IC (UV974 types only)
Tuning voltage transistor (UV974 types only)
Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
PLL supply voltage (UV974 only)
$+12 \mathrm{~V} \pm 10 \%$

Current drawn
supply current

+ $5 \mathrm{~V} \pm 10 \%$

PLL current
Tuning supply voltage (UV974 only)*

Tuning supply voltage (UV973 only)
Tuning supply current
Bandswitching voltage (UV973 types only)
Bandswitching current (UV973 types only)
max. 50 mA
max. 55 mA
min. 30 V
typ. 33 V
max. 35 V
0.3 to 28 V
max. 1.7 mA
$+12 \mathrm{~V} \pm 10 \%$
max. 2 mA

* Via $22 \mathrm{k} \Omega$ series resistor.

Aerial input characteristics
VSWR referred to 75Ω impedance low band
high band
Reflection coefficient referred to 75Ω impedance low band
high band
Surge protection
Oscillator voltage at aerial terminal
$<860 \mathrm{MHz}$
$860-1000 \mathrm{MHz}$
IF output characteristics
IF output impedance
(between pins 17 and 16 (ground))
Permitted IF load impedance

Frequency range

Low band

High band

Wanted signal characteristics
Voltage gain
all channels
gain difference of off-air channels
Noise figure
low band
mid band
AGC range
low band
high band
max. 5
max. 5
max. 66\%
max. 66\%
up to 5 kV
$\max .46 \mathrm{~dB} / \mu \mathrm{V}$
$\max .46 \mathrm{~dB} / \mu \mathrm{V}$
90Ω
$\min .1 \mathrm{k} \Omega$
max. 22 pF
channel SA4 (picture carrier 175.25 MHz) to channel SA13 (picture carrier 247.43 MHz). Margin at extreme channels: $\min .3 \mathrm{MHz}$. channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at extreme channels: min. 3 MHz .
min. 38 dB
max. 50 dB
max. 8 dB
$\max . \quad 7 \mathrm{~dB}$
max. 9 dB
$\min .40 \mathrm{~dB}$
min .30 dB

Overloading
input signal producing a gain compression of 1 dB
input signal producing oscillator detuning
of $+300 /-1000 \mathrm{kHz}$
low band
high band
input signal causing the PLL to fail to lock
to desired signal
low band
high band
Image rejection (between 0 and 10 dB gain reduction)
low band
high band
IF rejection
all channels

Amplitude response curves

Tilt of overall response
At any channel the amplitude differences between:
Off-air channels
top of response curve and picture
top of response curve and sound carrier
valley
sound carrier above picture carrier
IF response
Amplitude difference between:
top of response curve and picture carrier
top of response curve and sound carrier

Unwanted signal characteristics

Break through susceptibility

Cross modulation

The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:

In channel low band
In channel high band
In band $\mathrm{N} \pm 3$ low band
In band $N \pm 5$ high band
Out of band
FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V})$
at channel 6 (93 to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}$)
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
$\min .80 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
typ. 65 dB
typ. 55 dB
$\min .60 \mathrm{~dB}$
typ. 70 dB
$\max .4 \mathrm{~dB}$
min .0 .5 dB
max. 6 dB
max. 1 dB
max. 3 dB
max. 1 dB
max. 1 dB
$\min .60 \mathrm{~dB} / \mu \mathrm{V}$
$\min .66 \mathrm{~dB} / \mu \mathrm{V}$
$\min .66 \mathrm{~dB} / \mu \mathrm{V}$
$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
$\min .82 \mathrm{~dB} / \mu \mathrm{V}$
typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
min. 50 dB
min. 50 dB

Oscillator characteristics (UV973 only)

Drift of oscillator frequency

Warm up (tuner on-off, bandswitching) low band
max. 250 kHz
high band, up to channel 69
$\max .250 \mathrm{kHz}$
high band, channel 70 to 83
$\max .500 \mathrm{kHz}$
Change of ambient temperature $25 \pm 25^{\circ} \mathrm{C}$ low band
max. 500 kHz
high band
max. 1000 kHz
Change of humidity 60% to $93 \% \pm 2 \%$
low band
$\max .500 \mathrm{kHz}$
high band, up to channel 69
max. 1000 kHz
high band, channels 70 to 83
max. 1500 kHz
Shift of oscillator frequency at a change of supply voltage of 5\%
low band
max. 250 kHz
mid and high bands
max. 500 kHz
during AGC
$\max .150 \mathrm{kHz}$
Pulling (10 kHz)
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$

PLL tuning characteristics (UV974 only)

PLL tuning resolution
Deviation from nominal of the:locked oscillator frequency under any combination of the operation conditions
$\max .62 .5 \mathrm{kHz}$
50^{-6}

Miscellaneous

Radio interference

When the tuner is mounted in a television chassis in such a way as to reduce chassis radiation to a minimum, radiated signal shall be:

channels 2 to 6	$\max .50 \mu \mathrm{~V} / \mathrm{m}$
channels 7 to 13	$\max .150 \mu \mathrm{~V} / \mathrm{m}$
channels 14 to 69 any single frequency	$\max .750 \mu \mathrm{~V} / \mathrm{m}$
average of any 10 individual frequencies	$\max .350 \mu \mathrm{~V} / \mathrm{m}$

Microphonics

With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
$\min .40 \mathrm{~dB}$
Oscillator voltage at the pins
$\begin{array}{ll}\text { supply and control pins } & \max .60 \mathrm{~dB} / \mu V \\ \text { IF pins - low band } & \max .85 \mathrm{~dB} / \mu V \\ \text { IF pins - high band } & \max .80 \mathrm{~dB} / \mu \mathrm{V}\end{array}$
ESD protection at the pins
All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
"The $\mathrm{I}^{2} \mathrm{C}$ bus specification", published by Philips Components.
$I^{2} \mathrm{C}$-bus requirements (SDA and SCL pins)
$V_{I L}(\max)=1.5 \mathrm{~V}$ (maximum input LOW voltage)
$\mathrm{V}_{\mathrm{IH}(\mathrm{min})}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{I L}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$I_{I H}(\max)=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode, $\mathrm{R} / \overline{\mathrm{W}}=0$)

	MSB						LSB	
Address byte	1	1	0	0	0	MA1	MAO	R/W

Prog. div. byte 1

0	n 14	n 13	n 12	n 11	n 10	n 9	n 8

Prog. div.
byte 2

$n 7$	$n 6$	$n 5$	$n 4$	n3	n2	n1	n0

Control
byte 1

1	51	T 1	T0	1	1	1	0

Control
byte 2

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant*
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV974 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V}$). Therefore, with pin 15 open circuit, the tuner will respond to address CO and C 6 .

[^9]Programmable divider setting (bytes 1 and 2)
Divider ratio: $\mathrm{N}=16 \times\left(\mathrm{f}_{\mathrm{rf}}, \mathrm{pc}(\mathrm{MHz})+\mathrm{f}_{\mathrm{if}}, \mathrm{pc}(\mathrm{MHz})\right)$
$\mathrm{f}_{\mathrm{osc}}=\mathrm{N} / 16(\mathrm{MHz})$.
$N=16384 \times n 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+$
$1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$
$32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $\mathrm{CP}=1$ results in faster tuning, $\mathrm{CP}=0$ in moderate tuning speed with slightly better residual oscillator FM.
Test mode setting: T1, T0 $=0$ for normal operation.
PLL disabling: $O S=0$ for normal operation.
OS = 1 switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set TO to logic 1.

Control byte 2

Bandswitching

	PO	P 1	P 2	P 3	P 4	P 5	P 6	P 7
low band	x	x	x	0	0	1	1	0
mid band	x	x	x	0	1	0	1	0
high band	x	x	x	0	1	1	0	0

$x=$ don't care
P0 to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 $=$ divider ratio byte 2
CB1 = control byte 1
CB2 = control byte 2
Stop = stop condition
Logic diagram (READ mode, $R / \bar{W}=1$)

Address byte

Status byte

POR	FL	12	11	10	A2	A1	A0

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1.
POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and A0 to A2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

Start $=$ Start condition
ADD $=$ Address
ACK = Acknowledge
STB = Status byte
Stop $=$ Stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

UHF/VHF TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	Japanese system M
Channels	
low band	J 1 to J3
mid band	J 4 to J 12
high band	J 13 to J 62
Intermediate frequencies	
vision	58.75 MHz
sound	54.25 MHz

APPLICATION

The UV983/984 tuners belong to the 900 family of small size tuners which are designed to meet a wide range of applications.
The tuners are available with separate UHF and VHF inputs (75Ω phono for VHF, 300Ω balanced for UHF) or with a combined, single 75Ω input (phono or IEC).

The UV984 is equipped with a built-in digital controlled ($I^{2} \mathrm{C}$) PLL tuning IC. Band switching is also carried out via the $I^{2} \mathrm{C}$-bus. The UV983 types are intended for voltage controlled tuning and do not have the PLL synthesizer.
The tuner IF output is designed with low output impedance to directly drive a variety of SAW filters.
Table 1 Available types

type	aerial input connector	tuning system	catalogue number
UV983	75Ω phono	$0.3-28 \mathrm{~V}$	
UV983/D	75Ω phono $/ 300 \Omega$ balanced	$0.3-28 \mathrm{~V}$	
UV984	75Ω phono	PLL $/ I^{2} \mathrm{C}$	
UV984/D	75Ω phono $/ 300 \Omega$ balanced	PLL/I C	

DESCRIPTION

The UV983/984 tuners are combined VHF/UHF units covering the low band (frequency range 91.25 to 103.25 MHz), the mid band (frequency range 171.25 to 217.25 MHz) and the high band (frequency range 471.25 to 765.25 MHz).
The tuners are built on a low-loss printed-wiring board carrying all components and a small vertical printed-wiring board carrying the PLL tuning system components for the UV984. The boards are housed in a sheet steel housing with separated front and rear covers. The aerial connector (phono, IEC or balanced) is mounted on one side of the frame.
High selectivity is achieved in both low and high bands by means of a tuned aerial circuit and a double tuned bandpass filter separated by a MOSFET RF amplifier.
An FM bandstop filter, an IF rejection filter and a combined high-pass/CB rejection filter precede the low band section. The mixers and oscillators in both bands are built using bipolar transistors in commonbase configuration.
An IF bandpass filter is present between the mixers and the final IF amplifier. The output impedance at the IF output pin is approximately 90Ω to ensure adequate triple transient suppression in the SAW filter.
The UV984 tuners contains an $I^{2} \mathrm{C}$-bus controlled phase-locked-loop tuning system enabling direct channel access with crystal controlled accuracy.

MECHANICAL DESCRIPTION

UV983
A aerial input
B balanced UHF input (/D types only)
5 AGC voltage 9.2 to 0.85 V
6 supply voltage +12 V
7 VHF switch input (UV983 versions only)
10 UHF switch input
tuning voltage 0.3 to 28 V
ground
IF output
mounting tab grounded mounting tab grounded

/D types

Dimensions in mm

UV984
aerial input
balanced UHF input (/D types only)
AGC voltage 9.2 to 0.85 V
supply voltage +12 V
tuning supply voltage
(33 V via $22 \mathrm{k} \Omega$ series resistor)
supply voltage PLL + 5 V
SCL serial clock line
SDA serial data line address selection input ground
IF output
mounting tab grounded
mounting tab grounded

Fig. 1 Mechanical detail.

Mass: approximately 55 grams

Mounting

The tuner may be mounted by soldering it to a printed-wiring board, using the piercing diagram shown in Fig. 2 without clearance between the tuner supporting surface and the board. The connecting pins and mounting tabs should be bent in accordance with Fig. 3.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) UV984 types only
$1 \mathrm{eb}=0.025$ inch.
Fig. 2 Piercing diagram viewed from solder side of board.

7225458

Note

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

Fig. 3 Bending of connecting pins and mounting tabs.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an AGC voltage of $9.2 \pm 0.2 \mathrm{~V}$, a PLL supply voltage of $5 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ series resistor.

General

Semiconductors, low band

RF amplifier	BF998
mixer	BFS17
oscillator	BFSS17A
tuning diodes	OF4052
coupling diodes	BB901

Semiconductors, high band

RF amplifier	BF900A/0
mixer	2SC3841

oscillator ON4438
tuning diodes OF643
IF amplifier
Tuning/bandswitching IC (UV984 types only)
Tuning voltage transistor (UV984 types only)
Ambient temperature range
operating
storage
Relative humidity
BFS17
SP5510 or TSA5510
BC847B
$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
max. 95\%

Voltages and current

Supply voltage
PLL supply voltage (UV984 only)
$+12 \mathrm{~V} \pm 10 \%$

Current drawn
supply current
$+5 \mathrm{~V} \pm 10 \%$

PLL current
Tuning supply voltage

Tuning supply current
Bandswitching voltage (UV983 types only)
Bandswitching current (UV983 types only)
max. 50 mA
$\max .55 \mathrm{~mA}$
min. 30 V
typ. 33 V
max. 35 V
max. 1.7 mA
$+12 V \pm 10 \%$
max. 2 mA

Aerial input characteristics

VSWR referred to $75 \Omega / 300 \Omega$ impedance
low band
high band
Reflection coefficient referred to $75 \Omega / 300 \Omega$ impedance low band
high band
Surge protection
Oscillator voltage at aerial terminal
$54-300 \mathrm{MHz}$
$300-1000 \mathrm{MHz}$
Unbalance of 300Ω aerial terminal (D versions only) all channels

IF output characteristics

IF output impedance (between pins 17 and 16 (ground)
Permitted IF load impedance
max. 5
max. 5
max. 66\%
max. 66\%
min. 6 kV
$\max .50 \mathrm{~dB} / \mu V$
$\max .66 \mathrm{~dB} / \mu V$
$\min .10 \mathrm{~dB}$
90Ω
$\min .1 \mathrm{k} \Omega$
max. 22 pF
channel J1 (picture carrier 91.25 MHz) to channel J3 (picture carrier 103.25 MHz). Margin at extreme channels: $\min .1 \mathrm{MHz}$. channel J4 (picture carrier 171.25 MHz) to channel J12 (picture carrier 217.25 MHz). Margin at extreme channels: $\min .1 \mathrm{MHz}$. channel J13 (picture carrier 471.25 MHz) to channel J62 (picture carrier 765.25 MHz). Margin at extreme channels: min. 1 MHz .
$\min .40 \mathrm{~dB}$
$\max .50 \mathrm{~dB}$
$\max .8 \mathrm{~dB}$
max. 7 dB
$\max .10 \mathrm{~dB}$
$\min .45 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$

Overloading	
input signal producing a gain compression of 1 dB	$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
input signal producing oscillator detuning	
of $+300 /-1000 \mathrm{kHz}$	
low band	min. $90 \mathrm{~dB} / \mu \mathrm{V}$
high band	min. $80 \mathrm{~dB} / \mu \mathrm{V}$
input signal causing the PLL to fail to lock to desired signal	
low band	min. $90 \mathrm{~dB} / \mu \mathrm{V}$
	typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
high band	$\min .90 \mathrm{~dB} / \mu \mathrm{V}$
	typ. $100 \mathrm{~dB} / \mu \mathrm{V}$
Image rejection (between 0 and 10 dB gain reduction)	
low and mid bands	min. 60 dB
high band	min. 50 dB
IF rejection	
low and mid bands	min. 55 dB
high band	min. 60 dB
Amplitude response curves	
Tilt of overall response	
At any channel the amplitude differences between:	
Off-air channels	
top of response curve and picture	max. 4 dB
top of response curve and sound carrier	min. 0.5 dB
	max. 6 dB
valley	max. 1 dB
sound carrier above picture carrier	max. 3 dB
IF response	
Amplitude difference between:	
top of response curve and picture carrier	max. 1 dB
top of response curve and sound carrier	max. 1 dB
Unwanted signal characteristics	
Break through susceptibility	min. $60 \mathrm{~dB} / \mu \mathrm{V}$
Cross modulation	
The undesired carrier level required to produce 1% transfer of its modulation onto the desired carrier shall be equal to or exceed the desired carrier level ($60 \mathrm{~dB} / \mu \mathrm{V}$ at nominal gain) for all gain values between maximum gain and 40 dB (low band) or 30 dB (high band) reduction or be:	
In channel	min. $66 \mathrm{~dB} / \mu \mathrm{V}$
In band $\mathrm{N} \pm 2$ low and mid bands	$\min .78 \mathrm{~dB} / \mu \mathrm{V}$
In band $\mathrm{N} \pm 5$ high band	$\min .84 \mathrm{~dB} / \mu \mathrm{V}$
Out of band	typ. $100 \mathrm{~dB} / \mu \mathrm{V}$

FM rejection
at channel $6(90.5 \mathrm{MHz}$, antenna level $60 \mathrm{~dB} / \mu \mathrm{V}) \quad \mathrm{min} .50 \mathrm{~dB}$
at channel $6(93$ to 108 MHz , antenna level $90 \mathrm{~dB} / \mu \mathrm{V}) \quad \min .50 \mathrm{~dB}$

Oscillator characteristics (UV983 types only)

Drift of oscillator frequency
Warm up (tuner on-off, bandswitching)
low and mid band
high band, up to channel 69
Change of ambient temperature $25 \pm 25^{\circ} \mathrm{C}$
low and mid bands
high band
Change of humidity 60% to $93 \% \pm 2 \%$
low band
high band, up to channel 69
high band, channels 70 to 83
Shift of oscillator frequency at a change of supply
voltage of 5%
low and mid bands
high band
during AGC
Pulling (10 kHz)
PLL tuning characteristics (UV984 types only)

PLL tuning resolution

Deviation from nominal of the locked oscillator frequency under any combination of the operation conditions
max. 250 kHz
max. 250 kHz
$\max .500 \mathrm{kHz}$
max. 1000 kHz
$\max .500 \mathrm{kHz}$
max. 1000 kHz
max. 1500 kHz
$\max .250 \mathrm{kHz}$
$\max .500 \mathrm{kHz}$
$\max .150 \mathrm{kHz}$
$\min .74 \mathrm{~dB} / \mu \mathrm{V}$
$\max .62 .5 \mathrm{kHz}$
50×10^{-6}

Miscellaneous

Radio interference

When the tuner is mounted in a television chassis in such a way as to reduce chassis radiation to a minimum, the radiated signal shall be:
channels 2 to 6
channels 7 to 13
channels 14 to 69 any single frequency
average of any 10 individual frequencies
$\max .50 \mu \mathrm{~V} / \mathrm{m}$
max. $150 \mu \mathrm{~V} / \mathrm{m}$
max. $750 \mu \mathrm{~V} / \mathrm{m}$
max. $350 \mu \mathrm{~V} / \mathrm{m}$

Microphonics

With the tuner exposed to sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$, the video signal to sound interference ratio will be:
$\min .40 \mathrm{~dB}$

Oscillator voltage at the pins
supply and control pins
IF pins - low band
IF pins - high band
$\max .60 \mathrm{~dB} / \mu \mathrm{V}$
$\max .85 \mathrm{~dB} / \mu \mathrm{V}$
$\max .80 \mathrm{~dB} / \mu \mathrm{V}$

ESD protection at the pins
All pins of the tuner are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

APPLICATION INFORMATION

For information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control refer to:
" The I ${ }^{2} \mathrm{C}$ bus specification", published by Philips Components.
1^{2} C-bus requirements (SDA and SCL pins)
$V_{I L(\max)}=1.5 \mathrm{~V}$ (maximum input LOW voltage
$\mathrm{V}_{\mathrm{IH}(\min)}=3.0 \mathrm{~V}$ (minimum input HIGH voltage)
$I_{\mathrm{IL}}(\max)=-10 \mu \mathrm{~A}$ (maximum LOW input current)
$I_{I H(\max)}=10 \mu \mathrm{~A}$ (maximum HIGH input current)
$\mathrm{V}_{\mathrm{OL}(\max)}=0.4 \mathrm{~V}$ (maximum output LOW voltage at 3 mA sink current)
Logic diagram (WRITE mode $R / \bar{W}=0$)

	MSB						LSB	
Address byte	1	1	0	0	0	MA1	MAO	R/VW
Prog. div. byte 1	0	n14	n13	n12	n11	n10	n9	n8

Prog. div. byte 2

n2	n6	n5	n4	n3	n2	n1	n0

Control
byte 1

1	51	T1	T0	1	1	1	0

Control
byte 2

P7	P6	P5	P4	P3	P2	P1	P0

Address selection

MA1	MA0	Address	Voltage at pin 15
0	0	C0	0 to 0.1 V PLL
0	1	C2	irrelevant*
1	0	C4	0.4 to 0.6 V PLL
1	1	C6	0.9 V PLL to 13.5 V

The UV984 types have pin 15 (address input) biased internally using a $47 \mathrm{k} \Omega$ resistor to $\mathrm{B}+(+12 \mathrm{~V})$. Therefore, with pin 15 open circuit, the tuner will respond to address C 2 and C 6 .

[^10]
Programmable divider setting (bytes 1 and 2)

Divider ratio: $N=16 \times\left(f_{r f}, p c(M H z)+f_{i f}, p c(M H z)\right)$

$$
\mathrm{f}_{\mathrm{osc}}=\mathrm{N} / 16(\mathrm{MHz}) .
$$

$N=16384 \times n 14+8192 \times n 13+4096 \times n 12+2048 \times n 11+$
$1024 \times n 10+512 \times n 9+256 \times n 8+128 \times n 7+64 \times n 6+$ $32 \times n 5+16 \times n 4+8 \times n 3+4 \times n 2+2 \times n 1+n 0$

Control byte 1

Charge pump (CP) setting: CP can be set to either logic 0 (low current) or logic 1 (high current). $C P=1$ results in faster tuning, $C P=0$ in moderate tuning speed with slightly better residual oscillator FM.
Test mode setting: T1, T0 $=0$ for normal operation.
PLL disabling: OS = 0 for normal operation
$\mathrm{OS}=1$ switches the charge pump transistor to the non-conducting state, enabling the tuner to be manually tuned by applying a variable tuning voltage to pin 11. When selecting OS to logic 1 it is recommended to simultaneously set TO to logic 1.

Control byte 2

Bandswitching

	P 0	P 1	P 2	P 3	P 4	P 5	P 6	P 7
low band	x	x	x	0	0	1	1	x
mid band	x	x	x	0	1	0	1	0
high band	x	x	x	0	1	1	0	x

$x=$ don't care
P0 to P7: output ports on PLL device
P3 must be programmed with 0 since the address voltage is applied at this combined input/output port.

Telegram examples (WRITE mode)

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	DIV1	ACK	Stop

Start	ADD	ACK	DIV1	ACK	DIV2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	Stop

Start	ADD	ACK	CB1	ACK	CB2	ACK	DIV1	ACK	Stop

Start = start condition
ADD = address
ACK = acknowledge
DIV1 = divider ratio byte 1
DIV2 $=$ divider ratio byte 2
CB1 = control byte
CB2 = control byte 2
Stop = stop condition
Logic diagram (READ mode, $R / \bar{W}=1$)

Address byte
MSB

1	1	0	0	0	MA1	MAO	R $/ \bar{W}$		
POR FL 12 11 10 A2 A1 A0									L
:---									

FL indicates when the tuning loop of the PLL to be in lock. The loop must be phase-locked for at least 8 periods of the internal 7.8125 kHz reference frequency (i.e. 1 ms) before the FL flag is set to logic 1. POR (power on reset) is internally set to logic 1 if the PLL voltage drops below 3 V . The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and A0 to A2 do not contain any relevant data for the tuner application and can be ignored.
Telegram examples (READ mode)

Start = Start condition

ADD = Address
ACK = Acknowledge
STB = Status byte
Stop $=$ Stop condition

ADDITIONAL INFORMATION

RF AGC setting

The RF AGC must be set such that the IF output level of the tuner (with IF load as stated) does not exceed $107 \mathrm{~dB} / \mu \mathrm{V}$.

IF injection

An IF signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the IF injection point TP, accessible through a hole in the cover (see Fig.1) using probe 313914710950.

Tuning supply voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 11. A preferred method is constant current supply of 1 to 1.5 mA to the pin. Figure 4 shows this with a 140 V supply. The zener diode prevents the voltage at pin 11 exceeding 33 V .

Fig. 4 Constant current supply.

SATELLITE FRONT ENDS

QUICK REFERENCE DATA

System	D2-MAC, PAL, SECAM
Frequency band	950 to 1750 MHz
Intermediate frequency (note 1)	479.5 MHz
Channels	1 to 40 in accordance with WARC77

APPLICATION

The SFE212 satellite front ends are designed for reception of satellite signals in the 11.7 to 12.5 GHz band via a down converter. They are a combination of a UHF tuner, frequency range 950 to 1750 MHz , covering the 40 channels defined by the WARC77 frequency allocation, with an IF signal processing unit suitable for the D2-MAC packets system. The unit has a built-in digitally controlled ($1^{2} \mathrm{C}$) PLL tuning system. This front end is also suitable for processing of PAL and SECAM signals broadcast throughout Europe.

Table 1 Available versions

	AFC	input connector	auxiliary IF output	catalogue number
SFE212S	external analog	IEC female	-	31112685006

These tuners comply with the requirements of radiation, signal handling capability and immunity from radiated interference of Amtsblatt NR164, January 1986 and Amtsblatt vfg 754/1971.

Note

1. The oscillator frequency is higher than the aerial signal frequency.

DESCRIPTION

These satellite front ends are a combination of a UHF tuner with electronic tuning covering the frequency range from 950 to 1750 MHz and a 479.5 MHz IF signal processing unit.
The incoming FM signals are uniformly distributed over 40 channels each in right or left polarization. If channel ' n ' is transmitted with left polarization, channel ' $n+1$ ' is transmitted with right polarization. Therefore channels ' n ', ' $n+2$ ', $n+4^{\prime} \ldots$, are transmitted with left polarization and channels ' $n+1$ ', ' $n+3$ ' . . ., with right polarization.

The unit is mounted in a metal housing constructed within a rectangular frame with front and rear covers (see Fig.3). It is equipped with one common IEC type RF female connector (75Ω) with the possibility of supplying and controlling one down converter or a set up of several down converters via the inner conductors.
The tuner is fitted with a broadband matching network followed by the RF amplifier which is loaded with a two resonator bandpass filter.
The selected signal enters a bipolar mixer driven by a negative resistance oscillator and the converted signal is transferred to the IF unit.
The IF unit includes:

- A selective amplifier with one MOSFET gain controlled stage and two bipolar stages .
- The selectivity which is controlled by two helical filters.
- The IF IC which incorporates the PLL demodulator, the level detector and the loop amplifier.
- The AFC interface and a low ohmic output impedance video amplifier.

The unit is controlled via the $I^{2} \mathrm{C}$-bus by a syntheziser tuning IC located in the tuner section.
A version with auxiliary IF output is available on request.

Fig. 2 SFE212S block diagram.

Fig. 3 Mechanical detail.

Pin/connector identity

A Aerial input

33 V via $22 \mathrm{k} \Omega$ series resistor

1
3
4
6
7
8
9 AFC input (SFE212S \& SFE212S/A only)
11 AFC input (SFE212S \& SFE212S/A only)
12 PLL and prescaler supply voltage
19
20
21
23
24
MT1
MT2 Mounting tab grounded
AFC output (SFE212S \& SFE212S/A only)
IF AGC output
IF supply voltage 12 V
Baseband output
Ground
Outdoor unit supply
Tuner supply voltage
Tuning voltage
PLL selection
SDA serial data line
SCL serial clock line

12 V
$1^{2} \mathrm{C}$-bus
$1^{2} \mathrm{C}$-bus

5 V

$$
0
$$

,

Mounting tab grounded

Mass: approx. 140 grams

Mounting

The unit may be mounted by soldering it on to a printed-wiring board using the piercing diagram shown in Fig.4. The connection pins should be bent in accordance with Fig.5. The unit may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the pins and mounting tabs is in accordance with IEC 68-2-20, test $\mathrm{Ta}\left(230 \pm 10{ }^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is in accordance with IEC $68-2-20$, test $\mathrm{Tb}\left(260 \pm 5{ }^{\circ} \mathrm{C}\right.$, $10 \pm 1 \mathrm{~s})$.

Fig. 4 Piercing diagram viewed from solder side of board.

Fig. 5 Bending of connecting pins and mounting tags.

Note:

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5{ }^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, a prescaler and PLL supply voltage of $5 \pm 0.2 \mathrm{~V}$ and a tuning voltage of $33 \pm 0.5 \mathrm{~V}$ via a $22 \mathrm{k} \Omega$ resistor. The front end is tuned by means of a built in synthesizer. For further information refer to Application information.

General

Semiconductors and ICs

RF amplifier
mixer
oscillator
tuning diodes
PLL tuning IC
frequency divider
IF amplifier
filter
switching diodes
demodulator IC
Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage (tuner + IF)
Current drawn from +12 V supply (tuner +IF)
PLL and prescaler supply voltage
PLL and prescaler supply current
Tuning voltage range
Tuning voltage source impedance

BFG67
BFR92AR
BFR93AR
$6 \times$ BB215
TSA5510
SAB8726
BF998, BFR92A
Helical filter
BA682
SL1451
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85{ }^{\circ} \mathrm{C}$
max. 95\%
$12 \mathrm{~V} \pm 10 \%$
max. 210 mA
$5 \mathrm{~V} \pm 10 \%$
max. 140 mA
33 V (via $22 \mathrm{k} \Omega$) (note 1)
$\max .47 \mathrm{k} \Omega$

Note

1. An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ has to be connected between the tuning supply voltage and terminal 4 . The tuning supply current is 1.7 mA max.

Typical performance

Channel	1	20	40	
Tuning voltage	2.6	9.5	22	V
Noise figure	9	9	9	dB
Image rejection	48	39	40	dB
In channel third order intermodulation	77	90	80	$\mathrm{~dB} \mu \mathrm{~V}$
Baseband output level (note 1)	1	1	1	V
Linearity luminance (note 1)	1.5	1.5	1.5	$\%$
Signal to noise ratio unweighted (C/N 10 dB) (note 1)	25	25	25	dB
Static demodulation threshold (note 1)		6		

Aerial input characteristics

Input impedance 75Ω

RF input characteristics

In band VSWR referred to 75Ω
typ. 1.5
max. 2
Return losses
$\min .10 \mathrm{~dB}$
RF input level range
min. $-65 \mathrm{dBm} / 44 \mathrm{~dB} \mu \mathrm{~V}$
max. $-30 \mathrm{dBm} / 79 \mathrm{~dB} \mu \mathrm{~V}$
Oscillator voltage at aerial input (fundamental and harmonics)
from 40 MHz to 1750 MHz
$\max .46 \mathrm{~dB} \mu \mathrm{~V}$
from 1750 MHz to 2200 MHz
$\max .60 \mathrm{~dB} \mu \mathrm{~V}$
Surge protection
max. 5 kV

Baseband output (terminal 23) characteristics

Measuring conditions
unless otherwise specified baseband output characteristics apply to:
RF input level
$60 \mathrm{~dB} \mu \mathrm{~V}$
C/N
min. 20 dB
Modulation characteristics
frequency peak to peak deviation $13.5 \mathrm{MHz} / \mathrm{V}$
MAC pre-emphasis
PAL coded FDM (Frequency Division Multiplex) video signal
Positive modulation : i.e. the frequency increases from black to white level
Baseband output load
$470 \Omega \pm 5 \%$

Note

1. Measured with a PAL signal with $13.5 \mathrm{MHz} / \mathrm{V}$ deviation and MAC pre-emphasis applied.

Baseband output (terminal 23) characteristics with MAC pre-emphasis

Impedance

Output load
DC level when correctly tuned (note 1)

Demodulation threshold
Demodulation non linearity within 10 MHz
around 479.5 MHz
Linearity (luminance)
Differential gain
Differential phase
1 dB bandwidth
Group delay inequality luminance - chrominance
2 T pulse response
Amplitude between
Asymmetry and pulse shape
2 T pulse width at 50% height of total 2 T amplitude
typ. 50Ω
min. 470Ω
min. 5.4 V
typ. 5.7 V
max. 6.0 V
typ. $C / N=6 d B$
$\max . \mathrm{C} / \mathrm{N}=7.5 \mathrm{~dB}$
max. 2\%
max. 4\%
max. 6\%
max. 50
$\min .9 \mathrm{MHz}$
max. 25 ns (peak-to-peak)

95 and 105\%
see Fig. 6
$200 \mathrm{~ns} \pm 10 \%$

Fig. 6 Luminance - chrominance graph.

Line tilt

Signal to noise ratio (unweighted) with 8.5 MHz low pass filter
for $C / N=30 d B$
for $C / N=18 d B$
for $C / N=14 d B$
for $\mathrm{C} / \mathrm{N}=10 \mathrm{~dB}$
for $\mathrm{C} / \mathrm{N}=8 \mathrm{~dB}$
max. 3\%
typ. $45 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
typ. $33 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
typ. $29 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
typ. $25 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
typ. $23 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$

Note

1. With $60 \mathrm{~dB} \mu \mathrm{~V}$ unmodulated RF signal.

Data signal characteristics

These assessments are carried out with a D2MAC modulated signal (duobinary data rate of 10.125 MHz)
Bit error rate (BER)

```
For C/N = 13dB
For C/N = 12 dB
For C/N = 10 dB
For C/N = 8dB
For C/N = 7 dB
```

typ. 10^{-6}
typ. 5.10^{-6}
typ. 10^{-4}
typ. 10^{-3}
typ. 5.10^{-3}

AFC input (terminals 9 and 11) (SFE212S only)
Terminal 9 is connected to port P5 of the TSA5510 PLL tuning IC via an CR cell (100 pF to ground and 100Ω aerial resistor). Terminal 11 is connected to port P4 of the same IC via a similar CR cell.

AFC output (terminal 19) (SFE212S only)

Output impedance
DC voltage when correctly tuned
Slope detuning

IF AGC output characteristics

Output impedance
Output level range with $100 \mathrm{k} \Omega$ load
for $79 \mathrm{~dB} \mu \mathrm{~V}$ unmodulated input signal typ. 1.5 V
for $44 \mathrm{~dB} \mu \mathrm{~V}$ unmodulated input signal typ. 5 V
IF output characteristics (auxiliary IF output, /A versions only)
Phono connector output
VSWR referred to 75Ω
Output level

Bandwidth at 3 dB
in band tilt between top edges $479.5 \pm 10 \mathrm{MHz}$
in band group delay (27 MHz)

Selectivity

$$
\begin{aligned}
& \mathrm{fc}-19.18 \mathrm{MHz} \\
& \mathrm{fc}+19.18 \mathrm{MHz} \\
& \mathrm{fc}-38.36 \mathrm{MHz} \\
& \mathrm{fc}+38.36 \mathrm{MHz}
\end{aligned}
$$

typ. 1.5
max. 2
min. $65 \mathrm{~dB} \mu \mathrm{~V}$
typ. $67 \mathrm{~dB} \mu \mathrm{~V}$
max. $69 \mathrm{~dB} \mu \mathrm{~V}$
typ. 27 MHz
typ. 3 dB
typ. 25 ns (peak-to-peak)
min. 8 dB
min. 8 dB
$\min .40 \mathrm{~dB}$
min. 40 dB

PLL selection characteristics - See application information.

Frequency range

Channel 1 (picture carrier 977.48 MHz) to channel 40 (picture carrier 1725.50 MHz). Margin at extreme channels: min. 10 MHz .

Noise figure
Image rejection
IF rejection
In channel 1\% third order intermodulation
Excluding channel 1
For channel 1
max. 15 dB
min. 30 dB
min. 50 dB
min. $80 \mathrm{~dB} \mu V$
$\min .74 \mathrm{~dB} \mu \mathrm{~V}$

Maximum level difference between any in-band channels

Note: This specification is determined by the broadband intermodulation behaviour of the tuner (channelling fully loaded). Level difference

Out of band intermodulation

For unwanted signals in the 40 to 862 MHz range

Oscillator characteristics

The oscillator is tuned with 125 kHz pitch.
Instability of the oscillator under any combination of operational conditions
Time required for tuning from channel 1 to channel 40 charge pump. current 51 change pump. current I

Miscellaneous

Radio interference

mmunity from radiated interference immunity in the wanted signal range (950 to 1750 MHz) * immunity in the IF range $479.5 \pm 10 \mathrm{MHz}$ * Immunity from conducted interference
On any channel (desired signal at $60 \mathrm{~dB} \mu \mathrm{~V}$) a signal at IF and image frequencies of $60 \mathrm{~dB} \mu \mathrm{~V}$, applied to the front end terminals (except optional IF output) will cause no impairment on the video picture.

* Value to be fixed.

Microphonics

For sound signals in the audio frequency range 100 Hz to 10 kHz and sound pressure levels up to $105 \mathrm{~dB}(20 \mu \mathrm{~Pa})$ the video signal to sound interference ratio will be greater than 40 dB .
Oscillator voltage at terminals in the 950 MHz to 1750 MHz range
supply, control and video output pins
max. $60 \mathrm{~dB} \mu \mathrm{~V}$
IF voltage at the terminals
ESD protection at the terminals
All terminals of the front end are protected against electrostatic discharge up to 2 kV .
The product is classified in category B (MIL-STD-883C).

* Value to be fixed.

APPLICATION INFORMATION

For further information regarding general aspects of $I^{2} \mathrm{C}$-bus control refer to:
" The $\mathrm{I}^{2} \mathrm{C}$ bus specification ", published by Philips Components.

Logic diagram

Address
Byte

Prov. Div.
Byte 1

0	$n 14$	$n 13$	$n 12$	$n 11$	$n 10$	$n 9$	$n 8$	A

Prog. Div.
Byte 2

$n 7$	$n 6$	$n 5$	$n 4$	$n 3$	$n 2$	$n 1$	$n 0$	A

Control Info.
Byte 1

1	CP	TI	TO	1	1	1	0	A

Control Info.
Byte 2

P 7	P 6	P 5	P 4	P 3	P 2	P 1	P 0	A	P

$S=$ Start
A = Acknowledge
$P=$ Stop

Programmable divider setting
Divider ratio: $\mathrm{N}=16^{*}$ [Frf, pc $(\mathrm{MHz})+$ Fif, pc (MHz)]
$\mathrm{N}=163844^{*} \mathrm{n} 14+8192$ * $\mathrm{n} 13+4096$ * $\mathrm{n} 12+2048{ }^{*} \mathrm{n} 11+1024{ }^{*} \mathrm{n} 10+512{ }^{*} \mathrm{n} 9+256$ * $\mathrm{n} 8+$ $128^{*} \mathrm{n} 7+64^{*} \mathrm{n} 6+32{ }^{*} \mathrm{n} 5+16{ }^{*} \mathrm{n} 4+8^{*} \mathrm{n} 3+4^{*} \mathrm{n} 2+2{ }^{*} \mathrm{n} 1+\mathrm{n} 0$

Control info byte 1
$\mathrm{TI}, \mathrm{TO}=0$ (normal setting)
Address selection

MA1	MAO	voltage at terminal 6
0	0	$0 \ldots 0.1 \mathrm{~V}$ PLL
0	1	don't care (general address)
1	0	$0.4 \ldots 0.6 \mathrm{~V}$ PLL
1	1	$0.9 \ldots 1.1 \mathrm{~V}$ PLL

Telegram examples
Start - Adr - TV2 - TV1 - ST1 - ST2 - Stop
Start - Adr - ST1 - ST2 - TV1 - TV2 - Stop
Start - Adr - TV1 - TV2 - ST1 - Stop
Start - Adr - TV1 - TV2 - Stop
Start $=$ start condition
Adr = addressing
TV1 $=$ divider ratio first byte
TV2 $=$ divider ratio second byte
ST1 = control word first byte
ST2 = control word second byte
Stop $=$ stop condition
Read mode ($R / W=1$)
Logic diagram

CIDIPS
Address byte
MSB

1	1	0	0	0	MA1	MAO	1

Status byte

POR	FL	12	11	10	A2	A1	A0

FL is set to 1 when the tuning loop is in lock.
POR (power on reset) is intentionally set to 1 in case V PLL drops below 3 V .
The POR bit is reset when an end-of-data is detected by the PLL IC.
10 to 12 and $A 0$ to $A 2$ do not contain any relevant data and can be ignored.
Internal capacitance at terminal 8 SCL
max. 60 pF
Internal capacitance at terminal 7 SDA
max. 60 pF

ADDITIONAL INFORMATION

Tuning voltage

A tuning voltage of 33 V must be connected via a series $22 \mathrm{k} \Omega$ resistor to pin 4. A prefered method is a constant current supply of $1-1.5 \mathrm{~mA}$ to the pin.
Figure 7 shows this with a 140 V supply. The zener diode prevents the voltage at pin 4 exceeding 33 V .

Fig. 7 Constant current supply.

APPLICATION

The SF910 satellite front end family is designed to cover all frequencies in the range of 950 MHz to 1750 MHz . They are meant for both D-/D2-MAC DBS and PAL/SECAM FSS signals.
The SF910 has a built-in digitally controlled (${ }^{2} \mathrm{C}$-bus) PLL tuning system. The IF-part is equipped with a PLL demodulator IC.

The D-version has a dual switchable input which is controlled via an 1^{2} C-bus. The SF914 and SF914D meet the requirements for radiation in accordance with the amendment to CENELEC EN55013 (57 dBpW).

DESCRIPTION

These satellite front ends are a combination of a tuner covering a frequency range of 950 MHz to 1750 MHz and an IF signal processing unit.
The tuner is fitted with a broadband matching network followed by an RF amplifier which is loaded with an electronically tuned bandpass filter. The selected channel is mixed with a synthesized oscillator signal to obtain an intermediate frequency (IF) which in turn passes to a filter and a gain controlled amplifier. The IF unit contains a SAW filter followed by a buffer amplifier and a PLL FM-demodulator. The demodulated signals are applied to a video buffer amplifier to drive the video signal processing circuit.

The unit is mounted in a metal housing with front and rear covers.

QUICK REFERENCE DATA

System	D-/D2-MAC, PAL, SECAM
Frequency band	950 MHz to 1750 MHz
Channels	1 to 40 in accordance with WARC77
Intermediate frequency (note 1)	479.5 MHz
Baseband video polarity	positive

Note

1. The oscillator frequency is higher than the aerial signal frequency.

AVAILABLE VERSIONS

TYPE	INPUT CONNECTOR(S)	AMTSBLATT/ CENELEC	CATALOGUE NUMBER
SF912	IEC (female)	no	
SF912D	IEC (female) and IEC (male)	no	
SF914	IEC (female)	yes	312223710551
SF914D	IEC (female) and IEC (male)	yes	312223710561

BLOCK DIAGRAM

Fig. 1 Block diagram.

PINNING

PIN	FUNCTION
A1	aerial input 1 (female)
A2	aerial input 2 (male, D-version)
5	LNC voltage supply
6	LNC voltage supply (D-version)
11	tuning voltage supply
12	tuner section voltage supply
13	SCL (serial clock line) ${ }^{2}$ C-bus control
14	SDA (serial data line) $\mathrm{I}^{2} \mathrm{C}$-bus control
17	I/O (input/output) port
19	AGC output
22	AFC output
23	CVBS baseband output
24	IF section voltage supply
M1	mounting tag
M2	mounting tag

SEMICONDUCTOR COMPONENT LIST

RF transistor	BFG93AR
PIN diode	HVR187
Mixer transistor	BFR92A
Oscillator transistor	BFR93A
Tuning diodes	BB811
PLL tuning IC	SP5055S
IF transistors	BFR92A + BFS01R
IF amp IC	MPC1688G
SAW filter	B529
PLL demodulator IC	TDA8730
Varicap diode	OF4199
Video transistor	BC848B

MECHANICAL DATA

Fig. 2 Mechanical outline.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 10 \%$, tuner and PLL supply voltages at $5 \pm 0.2 \mathrm{~V}$, an IF supply voltage of $12 \pm 0.3 \mathrm{~V}$ and a tuning supply voltage of $33 \pm 0.5 \mathrm{~V}$ via a 22Ω series resistor. See note 1 .

PARAMETER	TYP.	MAX.	UNIT
Voltages and currents	$5 \pm 5 \%$	-	V
Tuner section voltage supply	-	150	mA
Current drawn from +5 V supply	$12 \pm 5 \%$	-	V
IF section voltage supply	-	132	mA
Current drawn from +12 V	33	-	V
Tuning voltage supply (note 2)	-	1.7	mA
Tuning voltage supply current	-	20	V
LNC voltage supply	-	400	mA
LNC voltage supply current			

Notes

1. The front end is tuned by means of a built-in $1^{2} \mathrm{C}$-bus controlled synthesizer. For further information refer to Application Information.
2. An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ must be connected between the tuning voltage supply and pin 11.

CHARACTERISTICS

All specified input levels refer to 75Ω input impedance.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
RF input characteristics					
In-band VSWR		-	1.5	3	
Return loss		6	-	-	dB
RF input level range		44	-	79	$\mathrm{dB} \mu \mathrm{V}$
Tuning range (carrier frequency) Margin at extreme channels		$\begin{array}{\|l\|} \hline 965 \\ 20 \\ \hline \end{array}$	$\mid-$	1735	MHz MHz
Oscillator voltage at aerial input from 40 MHz to 1750 MHz from 1750 MHz to 2250 MHz		-	-	$\begin{array}{\|l} 54 \\ 76 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \mu \mathrm{~V} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$
Surge protection		5	-	-	kV
Noise figure		-	10	15	dB
Image rejection		35	50	-	dB
IF rejection		50	60	-	dB
Channel 1 in-channel intermodulation		79	85	-	$\mathrm{dB} \mu \mathrm{V}$
In-band intermodulation		79	-	-	$\mathrm{dB} \mu \mathrm{V}$
AFC output characteristics					
DC level when correctly tuned		3	3.4	3.8	V
Slope detuning		-	90	-	$\mathrm{mV} / \mathrm{MHz}$
Time constant		-	22	-	ns
AGC output characteristics					
Output impedance		-	10	-	k Ω
Output load		100	-	-	k Ω
Output level range for $79 \mathrm{~dB} \mu \mathrm{~V}$ unmodulated RF input signal for $44 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$ unmodulated RF input signal		$1-$	$\begin{aligned} & 3.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$
Baseband output					
Baseband output load		-	470	-	Ω
DC level		1.8	2.3	2.8	V

Satellite front ends

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PAL video characteristics (measurement conditions, unless otherwise specified)					
RF input level		-	60	-	dB $\mu \mathrm{V}$
Carrier-to-noise ratio	measured in 27 MHz bandwidth	30	-	-	dB
Modulation parameters					
Frequency deviation	CCIR-405 pre-/de-emphasis PAL coded video signal positive modulation	-	25	-	MHzN
Video output level	no de-emphasis, measured from top sync to peak white	-	550	-	mV
Baseband frequency response	maximum amplitude deviation between 0.1 MHz and 5 MHz	-	-	0.5	dB
Dynamic threshold	the C / N limit at which clicks in a 75% saturated colour bar are just visible			13	dB
Static threshold		-	5	-	dB
Unweighted signal-to-noise ratio	$\mathrm{C} / \mathrm{N}=14 \mathrm{~dB}$	39	40	-	dB
Differential phase	frequency deviation $16 \mathrm{MHz} / \mathrm{N}$	-	± 2	± 5	deg
Differential gain	frequency deviation $16 \mathrm{MHz} / \mathrm{N}$	-	± 2	6	\%
Second order intermodulation (The level difference between a 3.25 MHz video carrier and its second harmonic at 6.5 MHz)		25	30	-	dB
MAC video characteristics					
Modulation parameters					
Frequency deviation	EBU pre-/de-emphasis D2-MAC coded video signal	-	13.5	-	$\mathrm{MHz} / \mathrm{N}$
Video output level	measured from black to white luminance level (no de-emphasis)	-	700	-	mV
Baseband frequency response	maximum amplitude deviation between 0.1 MHz and 10 MHz	-	-	1	dB
Dynamic threshold	the C / N limit at which clicks in a 75% saturated colour bar are just visible	-	-	9	dB
Bit error rate	$\begin{aligned} & \mathrm{C} / \mathrm{N} \text { value for } \mathrm{BER}=10^{-3} \\ & \mathrm{C} / \mathrm{N} \text { value for } \mathrm{BER}=10^{-5} \end{aligned}$	$\left.\right\|_{-} ^{-}$	-	$\begin{array}{\|l\|} \hline 8 \\ 11 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

LOGIC TABLES

READ MODE $(R \bar{W}=1)$
Table 1

	MSB							LSB
Address byte	1	1	0	0	0	MA1	MA0	R/ \bar{W}
Status byte	POR	FL	12	11	10	A2	A1	A0

Status byte explanation

POR	Power on reset indicator, set to logic 1 if the power supply to the device has dropped below 3 V
	The POR is set to 0 when the read sequence is terminated by a stop command
FL	Phase Lock Detect Flag:
	1 = device is phase locked
	$0=$ device is unlocked
12	No relevant information
11, 10	Status ports P5 and P4
	0 indicates LOW level
	1 indicates HIGH level
A2, A1, and A0	5 level A/D converter data from P6, can be used to feed AFC information from the IF section to the microprocessor

Telegram examples

READ MODE FROM PROCESSOR
Table 2

Start	Adr	Ack	STB	Ack	STB		Stop
Start	Adr	Ack	STB		Stop		

From PLL

No acknowledge	end of data
Start	start condition
Adr	address
Ack	acknowledge
STB	status byte
Stop	stop condition

WRITE MODE ($\mathrm{R} / \overline{\mathrm{W}}=0$)
Table 3

	MSB						LSB	
Address byte	1	1	0	0	0	MA1	MA0	R \bar{W}
Prog. div. byte1	0	n 14	n 13	n 12	n 11	n 10	n 9	n 8
Prog. div. byte 2	$\mathrm{n7}$	n 6	n 5	n 4	n 3	n 2	n 1	n 0
Control byte 1 Control byte 2	1	CP	T1	T0	1	1	1	0S

Note

1. P1 and P2 not connected in the IC package.

Address

The address of the front end is fixed to C6: $($ MA1, MA0 $)=(1,1)$ and also responds to $\mathrm{C} 2:(\mathrm{MA1}, \mathrm{MAO})=(0,1)$

Satellite front ends

Programmable divider setting	
Divider ratio	$\begin{aligned} & N=16 \times\left(\mathrm{frffpc}+\mathrm{fiff}_{\mathrm{fc}}\right)(\mathrm{MHz}) \\ & \mathrm{F}_{\text {osc }}=\mathrm{N} / 16(\mathrm{MHz}) \\ & N=(16384 \times \mathrm{n} 14)+(8192 \times \mathrm{n} 13)+(4096 \times \mathrm{n} 12)+(2048 \times \mathrm{n} 11) \\ & +(1024 \times \mathrm{n} 10)+(512 \times \mathrm{n} 9)+(256 \times \mathrm{n} 8)+(128 \times n 7)+(64 \times \mathrm{n} 6) \\ & +(32 \times \mathrm{n} 5)+(16 \times \mathrm{n} 4)+(8 \times \mathrm{n} 3)+(4 \times \mathrm{n})+(2 \times \mathrm{n})+(\mathrm{n} 0) \\ & \hline \end{aligned}$
Control byte 1	
Charge pump setting Test mode setting PLL disabling	CP can be set to either 0 (LOW current) or 1 (HIGH current). CP = 1 results in fastest tuning $\mathrm{T} 1, \mathrm{~T} 0=0$ for normal operation OS $=0$ for normal operation OS = 1 switches the charge pump transistor to a non-conducting state, the front end can then be tuned manually with a variable tuning voltage applied to pin 11 When selecting $O S=1$, it is recommended to set simultaneously $\mathrm{TO}=1$.
Control byte 2	
Port P0 to P5 Port P6 Port P7	not used I/O port 3 0 for HIGH impedance output 1 for LOW impedance output If the port is to be used as an input port it should not be programmed to output a LOW impedance state for single input version: P7 = 0 for normal operation for dual input version (antenna input select) P7 $=0$ for input RF1 P7 = 1 for input RF2

Telegram examples

WRITE MODE

Table 4

Start	Adr	Ack	DIV1	Ack	DIV2	Ack	CB1	Ack	CB2	Ack	Stop
Start	Adr	Ack	DIV1	Ack	DIV2	Ack	CB1	Ack	CB2	Ack	Stop
Start	Adr	Ack	DIV1	Ack	DIV2	Ack	DIV1	Ack	Stop		
Start	Adr	Ack	DIV1	Ack	DIV2	Ack	Stop				
Start	Adr	Ack	CB1	Ack	CB2	Ack	Stop				
Start	Adr	Ack	CB1	Ack	CB2	Ack	DIV1	Ack	Stop		

key

Start start condition
Adr address
Ack acknowledge
DIV1 divider ratio byte 1
DIV2 divider ratio byte 2
CB1 control byte 1
CB2 control byte 2
Stop stop condition

APPLICATION INFORMATION

$I^{2} \mathrm{C}$-bus control

For further information regarding general aspects of $\mathrm{I}^{2} \mathrm{C}$-bus control, refer to "The $I^{2} C$-bus specification" published by Philips Components.

AFC system

An example of a simple AFC system for the front end in combination with an interface circuit is briefly described below.

The system makes use of the internal ADD converter of the PLL frequency synthesizer in the tuner part.

The AFC signal coming out on pin 22 is applied to a simple first order lowpass filter (R4-C) to remove the video and frequency dispersal signal in order to obtain a $D C$ signal that is a measure for the centre frequency of the FM signal entering the demodulator. With R4 $=470 \mathrm{k} \Omega$ and $C=100 \mathrm{nF}$ a suitable lowpass filter is obtained.

A simple low frequency operational amplifier is used to make a DC level shift and slope adjustment so that the output (V_{O}) matches the A/D converter window. The A/D converter has 5 levels ranging from 000 to 100 with the mid level 010 corresponding to the window centre around 1.88 V and a window of about 750 mV . For a tuning accuracy of $\pm 1 \mathrm{MHz}$, a 2 MHz frequency window is required. With the demodulator slope of about $85 \mathrm{mV} / \mathrm{MHz}$, a 2 MHz window at the AFC output equals 170 mV . Therefore the interface circuit must provide a gain of $750 \mathrm{mV} / 170 \mathrm{mV}=$ 4.41.

The resistors can be calculated from the following equations:
$G=(1+R 1) \div R x$
$R x=R 2+R 3^{+} x R 3^{-}+\left(R 3^{+}+R 3^{-}\right)$
where:
$R 3^{+}$is the value between the wiper of R3 and V_{S}
$R 3^{-}$is the value between the wiper of R3 and ground
$V_{O}=(V 1 \times G)-\left(V_{S} \times R 1 \times\right.$ R $\left.^{-}\right)$
$\div(R \times R 3)$
The digital values from the A/D converter output can be read via the $\mathrm{I}^{2} \mathrm{C}$-bus and processed by the microcontroller that controls the tuning system. The software for the AFC tuning system must be able to handle a curve shown in Fig. 4.
A demonstration software package is available from Philips Components for controlling all tuning functions of a PLL synthesized tuning system for satellite receivers. It requires a MS-DOS operating system and runs on IBM PC/XT/AT computers or compatibles. For control of the $\mathrm{I}^{2} \mathrm{C}$-bus an interface board is required which is plugged into the computer's Centronics port.

Mounting the unit on a printed wiring board (PWB)

The unit must be mounted on the board ensuring that there is no clearance between the supporting surfaces and the PWB.
In this condition the unit is soldered in place.

This can be achieved by:
(a) Pressing the unit vertically on the PWB during soldering
(b) Supporting the unit with its aerial connector in the right position
(c) Twisting the ground tags (see Fig.5).

In order to prevent any stress to the PWB it is recommended that the unit is supported at its aerial connector.

Fig. 4 AD converter window.

Viewed from the solder side.
Fig. 5 Lug twist method of mounting tabs.

Dimensions in mm .
Viewed from the solder side.
(1) Additional hole for extra fixing with a pan tap screw 2 N . max length 4.05 mm .

Fig. 6 Piercing diagram.

LOW NOISE BLOCK CONVERTERS

FEATURES

- Ku-band Low Noise Block (LNB)
- Hermetically sealed and weatherproof
- Built-in switchable electronic depolarizer
- Intended for ASTRA 1A, 1B, (1C) and Eutelstat II
- ZZF approved
- Compact size
- Available with horn or flange.
- Low loss PTFE radome

DESCRIPTION

The SC813 and SC815 Low Noise Block (LNB) down converters are 100% hermetically sealed weatherproof units, intended as outdoor units for Ku-band double heterodyne satellite receivers. By using the latest High Electron Mobility Transistors (HEMT) and Microwave Monolithic Integrated Circuits (MMIC) technology, the noise figures have been considerably reduced. All types feature built-in electronic depolarizers switchable by the supply voltage to the unit. Both units are ZZF approved (DIN V VDE 0855 part 12, November 1988) and fulfil ETSI requirements (prETS 300158 chapter 2).

APPLICATION

The LNB units are primarily intended for the reception of ASTRA and Eutelstat II generation of satellites.

QUICK REFERENCE DATA

Input frequency range	Ku-band
Local oscillator frequency	10 GHz
Waveguide and feed losses	0.1 dB
Gain	52 dB
Output impedance	75Ω
Supply voltage	
vertical polarisation	9 to 14 V
horizontal polarisation	16.5 to 20 V

ORDERING INFORMATION

VERSION	NOISE	TYPE	12NC NUMBER
SC813	1.3 dB	horn	311229800010
SC813/FL	1.3 dB	flange	311229800020
SC815	1.1 dB	horn	311229800030
SC815/FL	1.1 dB	flange	311229800040

MECHANICAL DATA

Feedhorn	optimized for $0.6 \mathrm{f} / \mathrm{D}$ offset reflector
Output connector	type F, female, 75Ω
Mass	420 g
horn type	350 g
flange type	
Dimensions $(1 \times \mathrm{w} \times \mathrm{h})$	$105 \times 56 \times 82 \mathrm{~mm}$
horn type	$105 \times 56 \times 31 \mathrm{~mm}$

Low noise converters

Fig. 1 Block diagram.

Dimensions in mm.

Fig. 2 Mechanical outline.

Low noise converters

CHARACTERISTICS

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input frequency		10.95 to 11.70			GHz
Output frequency		950 to 1700			MHz
Local oscillator (LO) frequency		-	10	-	GHz
LO tolerance for alignment and $\mathrm{T}_{\text {amb }}$ variations		9.997	-	10.003	GHz
LO leakage	installed on waveguide	-	-	-60	dBm
Supply voltage vertical polarisation horizontal polarisation	at LNB	$\begin{gathered} 9.0 \text { to } 14.0 \\ 16.5 \text { to } 20.0 \\ \hline \end{gathered}$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Supply voltage ripple		-	-	200	$m V_{p-p}$
Supply current		-	160	200	mA
$\begin{aligned} & \text { Noise figure } \\ & \text { SC813 } \\ & \text { SC815 } \\ & \hline \end{aligned}$	at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	$\begin{aligned} & 1.3 \\ & 1.1 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Waveguide and feed losses		-	-	0.1	dB
Overall conversion gain		46	52	-	dB
Gain ripple within any 27 MHz segment		-	-	1.0	dB
Cross polarisation discrimination	on axis	20	-	-	dB
Image band rejection		50	-	-	dB
Output terminal return loss	VSWR = 2.5:1	8	-	-	dB
Output surge protection		5	-	-	kV
In-band intermodulation. Maximum two carrier output level yielding 35 dB minimum spurious suppression		-	-	-15	dBm
Operating temperature ($\mathrm{T}_{\text {amb }}$)		-40	-	+60	${ }^{\circ} \mathrm{C}$

COAXIAL AERIAL INPUT ASSEMBLIES

COAXIAL AERIAL INPUT ASSEMBLY

APPLICATION

This coaxial aerial input assembly has been developed for application in TV sets with 75Ω input impedance, for use in v.h.f. as well as in u.h.f. bands. Thanks to the use of safety capacitors in the assembly, the chassis of the TV set is separated from the aerial input. The connector for the aerial input meets the demands of the IEC standards (diameter $9,5 \mathrm{~mm}$) and the French standards (diameter $9,0 \mathrm{~mm}$).

The coaxial aerial input assembly complies with the requirements of immunity from radiated interference of BS 905. It meets the safety requirements of IEC 65; approbation approvals have been sought from KEMA, VDE, SEV, BSI, DEMKO, NEMKO, SEMKO, EI and LCEE.

DESCRIPTION

The assembly is provided with safety capacitors, which are moulded in thermo-setting insulation material, thus forming a capacitor block. This capacitor block is built in a metal housing, with lid, which is carried by a plastic fixing plate. All points to the safety capacitors are press contacts, achieved by the metal housing. The housing has an outlet for the coaxial cable to the television tuner.

ELECTRICAL DATA

The electrical values are measured at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \pm 15 \%$.

Input impedance of connector
75Ω, asymmetrical
Frequency ranges
v.h.f.

40 to 300 MHz
u.h.f.

470 to 890 MHz
Reflection
v.h.f.
$\leqslant 15 \%$
u.h.f.
$\leqslant 25 \%$
Insertion loss
v.h.f.
u.h.f.
$\leqslant 1 \mathrm{~dB}$; typ. 0,2 dB
Contact resistance of connector
after 1 plug insertion
inner bush $\quad \leqslant 10 \mathrm{~m} \Omega$
outer bush $\leqslant 5 \mathrm{~m} \Omega$
Insulation resistance
Immunity from radiated interference
$>500 \mathrm{M} \Omega$
in conformity with requirements of BS 905, provided the assembly is installed in a professional manner, and a proper coaxial cable is used.

Fig. 1.

ENVIRONMENTAL DATA
Operating temperature range
Storage temperature range
Relative humidity

$$
\begin{aligned}
& 0 \text { to }+55{ }^{\circ} \mathrm{C} \\
& -40 \text { to }+85^{\circ} \mathrm{C} \\
& \leqslant 95 \%
\end{aligned}
$$

Fig. 2.

MOUNTING

The assembly can be mounted to the chassis of the TV set with two self-tapping screws, $4 \mathrm{~N} \times 9,5$.
It must be connected to the tuner via a coaxial cable with a diameter of 3 mm . The inner cable conductor should be soldered to the metal plating of the capacitor block, and the cable earth sheath to the metal housing, see Fig. 3.
The soldering conditions are: $340^{\circ} \mathrm{C}, 2 \mathrm{~s}$.
Plugs to be used with the assembly have to comply with the properties mentioned in DIN 45325, IEC 69-2 ($9,5 \mathrm{~mm}$ diameter) and SNIR (9 mm diameter).
It is advised not to use aluminium plugs.

Fig. 3 Recommended fixing of the aerial cable.

COAXIAL AERIAL INPUT ASSEMBLY

APPLICATION

This coaxial aerial input assembly has been developed for application in TV sets with 75Ω input impedance, for use in v.h.f. as well as in u.h.f. bands. Thanks to the use of safety capacitors in the assembly, the chassis of the TV set is separated from the aerial input. The connector for the aerial input meets the demands of the IEC standards (diameter $9,5 \mathrm{~mm}$) and the French standards (diameter $9,0 \mathrm{~mm}$).
The coaxial aerial input assembly complies with the requirements of immunity from radiated interference of BS 905. It meets the safety requirements of IEC 65; approbation approvals have been sought from KEMA, VDE, SEV, BSI, DEMKO, NEMKO, SEMKO, EI and LCEE.

DESCRIPTION

The assembly is provided with safety capacitors, which are moulded in thermo-setting insulation material, thus forming a capacitor block. This capacitor block is built in a metal housing with lid, which is carried by a plastic fixing plate. All points to the safety capacitors are press contacts, achieved by the metal housing. A printed circuit board containing a splitter for v.h.f. and u.h.f. signals is built in the housing. The housing has two outlets for coaxial cables to the television tuner.

Fig. 1 Electrical diagram.

ELECTRICAL DATA

The electrical values are measured at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \pm 15 \%$.
Input impedance of connector 75Ω, asymmetrical

Frequency ranges
v.h.f.
u.h.f.

40 to 300 MHz
Reflection
v.h.f.; u.h.f. output terminated with 75Ω
$\leqslant 30 \%$
u.h.f.; v.h.f. output terminated with 75Ω

Insertion loss
v.h.f., $40-230 \mathrm{MHz}$
$\leqslant 1 \mathrm{~dB}$; typ. 0,7 dB
v.h.f., $230-300 \mathrm{MHz}$, u.h.f. terminated with 75Ω
u.h.f., v.h.f. terminated with 75Ω
$\leqslant 1,5 \mathrm{~dB}$; typ. $1,2 \mathrm{~dB}$
Suppression
of u.h.f. frequencies at v.h.f. output
$40-230 \mathrm{MHz}$
$\geqslant 15 \mathrm{~dB}$
$230-300 \mathrm{MHz}$
measured at
40 MHz
200 MHz
230 MHz
300 MHz
of v.h.f. frequencies at u.h.f. output
$470-890 \mathrm{MHz}$
measured at
470 MHz
700 MHz
890 MHz
typ. 50 dB
typ. 22 dB
typ. 18 dB
typ. 11 dB
$\geqslant 13 \mathrm{~dB}$
typ. 14 dB
typ. 21 dB
typ. 22 dB
Contact resistance of connector
after 1 plug insertion
inner bush
outer bush
$\leqslant 10 \mathrm{~m} \Omega$
Insulation resistance
Immunity from radiated interference
$\leqslant 5 \mathrm{~m} \Omega$
$>500 \mathrm{M} \Omega$
in conformity with requirements of BS 905, provided the assembly is installed in a professional manner, and a proper coaxial cable is used.

Quality assessment in production centres are according to the rules of BSI and VDE.

ENVIRONMENTAL DATA

Operating temperature range
Storage temperature range
Relative humidity
Maximum bump acceleration
Maximum shock acceleration
Maximum vibration amplitude

0 to $+55^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$
$\leqslant 95 \%$
25 g
50 g
$0,35 \mathrm{~mm}$

MECHANICAL DATA
Dimensions in mm

Fig. 2.
Mass $\quad 26 \mathrm{~g}$ approximately

Connector

Insertion force $\leqslant 50 \mathrm{~N}$
Pull-out force 10 to 50 N
Pull-out force of inner bush, measured with a min. gauge of $2,29 \mathrm{~mm}$ dia., after 5 insertions of a max. plug gauge of $2,43 \mathrm{~mm}$ dia. $\geqslant 1 \mathrm{~N}$
Loading of inner bush in axial direction for $5 \mathrm{~s} \quad \leqslant 50 \mathrm{~N}$
Pull-out force of outer bush, measured with a min. plug gauge of 9 mm dia., after 5 insertions of a max. plug gauge of $9,5 \mathrm{~mm}$ dia.
Loading of outer bush in 4 radial and axial directions for 5 s
$\leqslant 50 \mathrm{~N}$

Marking

Moulded at the front of the fixing plate:

- PHILIPS
-7105 (for the National Approbation Offices regarding the safety aspects)
- $250 \mathrm{~V} \sim, 390 \mathrm{pF} 3 \mathrm{x}$

Punched into one of the side faces of the metal housing:

- letter code for factory of origin
- production date code (year and week)

MOUNTING

The assembly can be mounted to the chassis of the TV set with two self-tapping screws, $4 \mathrm{~N} \times 9,5$.
It must be connected to the tuner via coaxial cables with a diameter of 3 mm stripped according to Fig. 3. The inner cable conductors should be soldered to the inputs of splitters which line up with the cable inlets, the cable earth sheaths soldered to the metal housing.
The soldering conditions are: $340^{\circ} \mathrm{C}, 2 \mathrm{~s}$.
Plugs to be used with the assembly have to comply with the properties mentioned in DIN 45325, IEC 69-2 ($9,5 \mathrm{~mm}$ diameter) and SNIR (9 mm diameter).
It is advised not to use aluminium plugs.

Fig. 3 Recommended cable stripping.
Cable length max. 150 mm .

TV SYSTEMS \& CHARACTERISTICS

	OVERVIEW OF TV TRANSMI TV sound transmission standards										
$\begin{aligned} & \stackrel{\ominus}{O} \\ & N \end{aligned}$		M, N	M	M	M	B, G, H	B, G, H	1	D, K, K'	D	L
	Intercarrier 1 MHz Intercarrier 2 MHz	4.5	4.5	4.5	$\begin{gathered} 4.5 \\ 4.72 \end{gathered}$	$\begin{gathered} 5.5 \\ 5.74 \end{gathered}$	$\begin{gathered} 5.5 \\ 5.85 \end{gathered}$	$\begin{gathered} 6.0 \\ 6.552 \end{gathered}$	6.5	$\begin{gathered} 6.5 \\ 6.74 \end{gathered}$	direct AM dem. at 1st IF
	Vision modulation	neg.	pos.								
	Sound modulation: $\begin{aligned} & \text { IC1 } \\ & \text { IC2 } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	FM digital	FM digital	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & \text { AM } \\ & \text { AM } \end{aligned}$
	Audio coding AF1	M	M MPX (FM/AM) SAP	M MPX (FM/FM)	$\begin{gathered} M \\ L+R \\ A \end{gathered}$	$\begin{gathered} M \\ (L+R) / 2 \\ A \end{gathered}$	M1	M1	M	$\begin{gathered} M \\ (L+R) / 2 \\ A \end{gathered}$	M
	Audio coding AF2	-	-	-	$\begin{gathered} M \\ L-R \\ B \end{gathered}$	$\begin{aligned} & M \\ & R \\ & B \end{aligned}$	L, R A, B (NICAM)	$\begin{gathered} \text { L, R } \\ \text { A, B } \\ \text { (NICAM) } \end{gathered}$	-	$\begin{aligned} & M \\ & R \\ & B \end{aligned}$	-
$\underset{y}{\mathrm{y}}$	Country of stereo sound transmission		USA Brazil Canada Mexico Taiwan	Japan	Rep. of Korea	W. Germany Australia Netherlands Italy Austria Switzerland Malaysia	Scandinavia Belgium Spain New Zealand Singapore	UK Hong Kong		Peoples Rep. of China	
	Stereo system number on map		1	2	3	4	5	6		7	

January 1992
279

Television Tuners Coaxial Aerial Input Assemblies

Characteristics

 of TV systems| system | number
 of lines | channel
 width
 $(M H z)$ | vision
 bandwidth
 (MHz) | vision/sound
 separation
 (MHz) | vestigial
 side-band
 (MHz) | modulation
 vision | sound |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 405 | 5 | 3 | -3.5 | 0.75 | Pos | AM |
| B | 625 | 7 | 5 | +5.5 | 0.75 | Neg | FM |
| C | 625 | 7 | 5 | +5.5 | 0.75 | Pos | AM |
| D | 625 | 8 | 6 | +6.5 | 0.75 | Neg | FM |
| E | 819 | 14 | 10 | +11.15 | 2 | Pos | AM |
| F | 819 | 7 | 5 | +5.5 | 0.75 | Pos | AM |
| G | 625 | 8 | 5 | +5.5 | 0.75 | Neg | FM |
| H | 625 | 8 | 5 | +5.5 | 1.25 | Neg | FM |
| I | 625 | 8 | 5.5 | +6 | 1.25 | Neg | FM |
| K | 625 | 8 | 6 | +6.5 | 0.75 | Neg | FM |
| K1 | 625 | 8 | 6 | +6.5 | 1.25 | Neg | FM |
| L | 625 | 8 | 6 | +6.5 | 1.25 | Pos | AM |
| M | 525 | 6 | 4.2 | +4.5 | 0.75 | Neg | FM |
| N | 625 | 6 | 4.2 | +4.5 | 0.75 | Neg | AM |

standard for
country VHF UHF colour channels
A

Afghanistan	B		PAL	CCIR
Albania	B			IT
Algeria	B	(G)	PAL	CCIR
Angola	I			Angola
Argentina	N		PAL	US
Australia	B		PAL	Austr.
Austria	B	G	PAL	CCIR
Azores	M			CCIR/US

B				
Bahamas	M		NTSC	US^
Bahrain	B		PAL	CCIR
Bangla-Desh	B			CCIR
Barbados	M		NTSC	US
Belgium	B	H	PAL	CCIR
Bermuda	M		NTSC	US
Bolivia	N		PAL	US
Brazil	M	M	PAL	US
Brunei	B		PAL	CCIR
Bulgaria	D	K	SECAM	OIRT
Burma	M		NTSC	US

| C | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cambodia | M | | | |
| Canada | M | M | NTSC | US |
| Canary Isl. | B | | | CCIR |
| Centr. | | | | |
| \quad Afr. Rep. | B | | | |
| Chad | K1 | | | |
| Chile | M | | NTSC | US |
| China | D | D | PAL | China |
| Colombia | M | | NTSC | US |
| Congo | D | | | FOT^ |
| CostaRica | M | | NTSC | US |
| Cuba | M | | NTSC | US^ |
| Cyprus | B | G,H | PAL | CCIR |
| Czechoslovakia | D | K | SECAM | OIRT |

standard for
country VHF UHF colour channels

D

Dahomey	K1			K1*
Denmark	B	G PAL	CCIR	
Dibouti Dominican	K1		SECAM	FOT
\quadRep. M NTSC	US			

E

Ecuador	M	NTSC	US
Egypt	B	SECAM	CCIR
ElSalvador	M	NTSC	US
Ethiopia	B		CCIR

F

Finland	B	G	PAL	CCIR
France	L	L	SECAM	F
French \quad Polynesia	K1			
				FOT

G

Gabon	K1	SECAM	FOT
Gambia	(K1)		(FOT)

German
Dem. Rep. B G SECAM CCIR
German
Fed. Rep. B G PAL CCIR
Ghana B PAL CCIR
Gibraltar B PAL CCIR
Greece B G SECAM CCIR*

Greenland $\quad M / B \quad \begin{gathered}\text { NTSC/ } \\ \text { PAL }\end{gathered}$ US
Guadeloupe K1 SECAM FOT
Guatemala M NTSC US

Guiana
(French) K1 FOT

country	VHF UHF colour channels				country	standard for VHF UHF colour channels			
H					M				
Haiti	M		NTSC	US*	Madagascar	K1			FOT
Hawaii	M		NTSC	US	Madeira	B			CCIR
Honduras	M			US	Malawi	B	G^{\star}		
Hong Kong		I	PAL	UK	Malaysia	B		PAL	CCIR
Hungary	D	K	SECAM	OIRT	Mali	K1	K1*		
					Malta	B			CCIR
I					Martinique	K1		SECAM	FOT
Iceland	B		PAL	CCIR	Mauritania	B			
India	B			CCIR	Mauritius	B		SECAM	CCIR
Indonesia	B	G	PAL	IN	Mexico	M	M	NTSC	US
Iran	B		SECAM	CCIR	Monaco	G	L,G	SECAM	
Iraq	B		SECAM	CCIR				/PAL	CCIR
Ireland	A,I	I	PAL	IR	Mongolia	D			OIRT
Israel	B	G		CCIR	Morocco	B		SECAM	MO
Italy	B	G	PAL	IT	Mozambique	B			
Ivory Coast	K1		SECAM	IC					
					N				
J					Netherlands	B	G	PAL	CCIR
Jamaica	M		-	US	Neth. Antilles	M		NTSC	US
Japan	M	M	NTSC		New Caledonia	K1		SECAM	FOT
Jordan	B		PAL	CCIR	New Zealand	B		PAL	NZ
					Nicaragua	M		NTSC	US
K					Niger	K1			FOT*
Kenya	B			CCIR	Nigeria	B		PAL	CCIR*
Korea, North	D		SECAM	OIRT	Norway	B	G	PAL	CCIR
Korea, South	M	M	NTSC	US					
Kuwait	B		PAL	CCIR					
L									
Lebanon	B		SECAM	CCIR					
Liberia	B		PAL	CCIR					
Libya	B		SECAM	CCIR					
Luxembourg	B	L,G	PAL/						

Television Tuners	International TV systems
Coaxial Aerial Input Assemblies	and standards

country	standard for					standard for			
	VHF UHF colour channels				country	VHF UHF colour channels			
0			PAL	CCIR	T	K1	FOT		
Oman	B	G			Tahiti				
					Taiwan	M		NTSC	US
P					Tanzania	B,I	I	PAL	CCIR
Pakistan	B		PAL	CCIR	Thailand	B		PAL	CCIR
Panama	M		NTSC	US	Togo Rep.	K1		SECAM	FOT
Paraguay	N			US*	Trinidad \&				
Peru	M		NTSC	US	Tobago	M		NTSC	US
Philippines	M	M	NTSC	US	Tunisia	B		SECAM	CCIR*
Poland	D	K	SECAM	OIRT	Turkey	B		(PAL)	CCIR
Portugal	B	G	PAL	CCIR*					
Puerto Rico	M	M	NTSC	US	U	B		PAL	CCIR
					Uganda				
Q					United Arab				
Qatar	B		PAL	CCIR	Emirates	B		PAL	CCIR
R			I	OIRT	United Kingdom	A	I	PAL	
Rumania	D	D			Upper Volta	K1			$\begin{gathered} \text { UK } \\ \text { OIRT } \\ \text { US* } \end{gathered}$
					Uruguay	N			
S					USA	M	M	NTSC	US
Samoa	M		NTSC	US	USSR	D	K	SECAM	OIRT
Saudi Arabia	B,G		SECAM	CCIR					
	PAL								
Senegal	K1			FOT					
Sierra Leone	B		PAL	CCIR					
Singapore	B		PAL	CCIR					
South Africa	I	I	PAL	SA					
Spain	B	G	PAL	CCIR					
Sri Lanka	B		PAL	CCIR					
Sudan	B			CCIR					
Surinam	M		NTSC	US					
Swaziland	G		PAL						
Sweden	B	G	PAL	CCIR					
Switzerland	B	G	PAL	CCIR					
Syria	B		SECAM	CCIR					

country	standard for VHF UHF colour channels			
V				
Venezuela	M		NTSC	US
Vietnam (Khmer)	M		NTSC	US
Virginia	M		NTSC	US
Y				
Yemen				
Yemen (Dem. Rep.)	B			CCIR
Yugoslavia	B	G	PAL	CCIR
Z				
Zaire	K1		SECAM	FOT
Zambia	B		PAL	CCIR
Zanzibar	I	I	PAL	
Zimbabwe	B			CCIR

Notes: Abbreviations used in the Channel section are as shown in the following table.

FOT French overseas territories
IC Ivory Coast
IN Indonesia
IR Ireland
IT Italy
MO Morocco
NZ New Zealand
SA South Africa
UK United Kingdom
US United States

* Estimated
() There is no local broadcast station, but one can listen to a broadcast from a neighbouring country.
- There is no broadcast.

Television Tuners
Coaxial Aerial Input Assemblies

CCIR B, G

vision IF 38.9 MHz , sound IF 33.4 MHz .

	frequency				frequency		
Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$	Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$
2	47-54	48.25	53.75	40	622-630	623.25	628.75
3	54-61	55.25	60.75	41	630-638	631.25	636.75
4	61-68	62.25	67.75	42	638-646	639.25	644.75
5	174-181	175.25	180.75	43	646-654	647.25	652.75
6	181-188	182.25	187.75	44	654-662	655.25	660.75
7	188-195	189.25	194.75	45	662-670	663.25	668.75
8	195-202	196.25	201.75	46	670-678	671.25	676.75
9	202-209	203.25	208.75	47	678-686	679.25	684.75
10	209-216	210.25	215.75	48	686-694	687.25	692.75
11	216-223	217.25	222.75	49	694-702	695.25	700.75
12	223-230	224.25	229.75	50	702-710	703.25	708.75
21	470-478	471.25	476.75	51	710-718	711.25	716.75
22	478-486	479.25	484.75	52	718-726	719.25	724.75
23	486-494	487.25	492.75	53	726-734	727.25	732.75
24	494-502	495.25	500.75	54	734-742	735.25	740.75
25	502-510	503.25	508.75	55	742-750	743.25	748.75
26	510-518	511.25	516.75	56	750-758	751.25	756.75
27	518-526	519.25	524.75	57	758-766	759.25	764.75
28	526-534	527.25	532.75	58	766-774	767.25	772.75
29	534-542	535.25	540.75	59	774-782	775.25	780.75
30	542-550	543.25	548.75	60	782-790	783.25	788.75
31	550-558	551.25	556.75	61	790-798	791.25	796.75
32	558-566	559.25	564.75	62	798-806	799.25	804.75
33	566-574	567.25	572.75	63	806-814	807.25	812.75
34	574-582	575.25	580.75	64	814-822	815.25	820.75
35	582-590	583.25	588.75	65	822-830	823.25	828.75
36	590-598	591.25	596.75	66	830-838	831.25	836.75
37	598-606	599.25	604.75	67	838-846	839.25	844.75
38	606-614	607.25	612.75	68	846-854	847.25	852.75
39	614-622	615.25	620.75	69	854-862	855.25	860.75

$\mathrm{Ch}=$ Channel
$\mathrm{F}_{\mathrm{p}}=$ picture carrier frequency
$\mathrm{F}_{\mathrm{s}}=$ sound carrier frequency

Television Tuners Coaxial Aerial Input Assemblies

CCIR, cable

vision IF 38.9 MHz , sound IF 33.4 MHz .

	frequency				frequency		
Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$	Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$
E 2	47- 54	48.25	53.75	S21	302-310	303.25	308.75
E 3	54-61	55.25	60.75	S22	310-318	311.25	316.75
E 4	61-68	62.25	67.75	S23	318-326	319.25	324.75
S01	68-75	69.25	74.75	S24	326-334	327.25	332.75
S02	75-82	76.25	81.75	S25	334-342	335.25	340.75
S03	82-89	83.25	88.75	S26	342-350	343.25	348.75
S 1	104-111	105.25	110.75	S27	350-358	351.25	356.75
S 2	111-118	112.25	117.75	S28	358-366	359.25	364.75
S 3	118-125	119.25	124.75	S29	366-374	367.25	372.75
S 4	125-132	126.25	131.75	S30	374-382	375.25	380.75
S 5	132-139	133.25	138.75	S31	382-390	383.25	388.75
S 6	139-146	140.25	145.75	S32	390-398	391.25	396.75
S 7	146-153	147.25	152.75	S33	398-406	399.25	404.75
S 8	153-160	154.25	159.75	S34	406-414	407.25	412.75
S 9	160-167	161.25	166.75	S35	414-422	415.25	420.75
S10	167-174	168.25	173.75	S36	422-430	423.25	428.75
E 5	174-181	175.25	180.75	S37	430-438	431.25	436.75
E 6	181-188	182.25	187.75	S38	438-446	439.25	444.75
E 7	188-195	189.25	194.75	S39	446-454	447.25	452.75
E 8	195-202	196.25	201.75	S40	454-462	455.25	460.75
E 9	202-209	203.25	208.75	S41	462-470	463.25	468.75
E10	209-216	210.25	215.75				
E11	216-223	217.25	222.75				
E12	223-230	224.25	229.75				
S11	230-237	231.25	236.75				
S12	237-244	238.25	243.75				
S13	244-251	245.25	250.75				
S14	251-258	252.25	257.75				
S15	258-265	259.25	264.75				
S16	265-272	266.25	271.75				
S17	272-279	273.25	278.75				
S18	279-286	280.25	285.75				
S19	286-293	287.25	292.75				
S20	293-300	294.25	299.75				

Television Tuners Coaxial Aerial Input Assemblies

JAPAN

vision IF 58.75 MHz
sound IF 54.25 MHz

frequency				frequency			
Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$	Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$
1	90-96	91.25	95.75	32	584-590	585.25	589.75
2	96-102	97.25	101.75	33	590-596	591.25	595.75
3	102-108	103.25	107.75	34	596-602	597.25	601.75
4	170-176	171.25	175.75	35	602-608	603.25	607.75
5	176-182	177.25	181.75	36	608-614	609.25	613.75
6	182-188	183.25	187.75	37	614-620	615.25	619.75
7	188-194	189.25	193.75	38	620-626	621.25	625.75
8	192-198	193.25	197.75	39	626-632	627.25	631.75
9	198-204	199.25	203.75	40	632-638	633.25	637.75
10	204-210	205.25	209.75	41	638-644	639.25	643.75
11	210-216	211.25	215.75	42	644-650	645.25	649.75
12	216-222	217.25	221.75	43	650-656	651.25	655.75
13	470-476	471.25	475.75	44	656-662	657.25	661.75
14	476-482	477.25	481.75	45	662-668	663.25	667.75
15	482-488	483.25	487.75	46	668-674	669.25	673.75
16	488-494	489.25	493.75	47	674-680	675.25	679.75
17	494-500	495.25	499.75	48	680-686	681.25	685.75
18	500-506	501.25	505.75	49	686-692	687.25	691.75
19	506-512	507.25	511.75	50	692-698	693.25	697.75
20	512-518	513.25	517.75	51	698-704	699.25	703.75
21	518-524	519.25	523.75	52	704-710	705.25	709.75
22	524-530	525.25	529.75	53	710-716	711.25	715.75
23	530-536	531.25	535.75	54	716-722	717.25	721.75
24	536-542	537.25	541.75	55	722-728	723.25	727.75
25	542-548	543.25	547.75	56	728-734	729.25	733.75
26	548-554	549.25	553.75	57	734-740	735.25	739.75
27	554-560	555.25	559.75	58	740-746	741.25	745.75
28	560-566	561.25	565.75	59	746-752	747.25	751.75
29	566-572	567.25	571.75	60	752-758	753.25	757.75
30	572-598	573.25	577.75	61	758-764	759.25	763.75
31	578-584	579.25	583.75	62	764-770	765.25	769.75

$\mathrm{Ch}=$ Channel
$\mathrm{F}_{\mathrm{p}}=$ Picture carrier frequency
$\mathrm{F}_{\mathrm{s}}=$ Sound carrier frequency

Television Tuners

Coaxial Aerial Input Assemblies

TV channel frequencies (MHz)

JAPAN, cable

vision IF 58.75 MHz
sound IF 54.25 MHz

Ch	vision frequency	sound frequency 109.25	113.75	Ch	vision frequency
C13	119.75	C39	319.25	sound frequency	
C14	115.25	11923.75			
C15	121.25	125.75	C40	325.25	329.75
C16	127.25	131.75	C41	331.25	335.75
C17	133.25	137.75	C42	337.25	341.75
C18	139.25	143.75	C43	343.25	347.75
C19	145.25	149.75	C44	349.25	353.75
C20	151.25	155.75	C45	355.25	359.75
C21	157.25	161.75	C46	361.25	365.75
C22	165.25	169.75	C47	367.25	371.75
C23	223.25	227.75	C48	373.25	377.75
C24	231.25	235.75	C49	379.25	383.75
C25	237.25	241.75	C50	385.25	389.75
C26	243.25	247.75	C51	391.25	395.75
C27	249.25	253.75	C52	397.25	401.75
C28	253.25	257.75	C53	403.25	407.75
C29	259.25	263.75	C54	409.25	413.75
C30	265.25	269.75	C55	415.25	419.75
C31	271.25	275.75	C56	421.25	425.75
C32	277.25	281.75	C57	427.25	431.75
C33	283.25	287.75	C58	433.25	437.75
C34	289.25	293.75	C59	439.25	443.75
C35	295.25	299.75	C60	445.25	449.75
C36	301.25	305.75	C61	451.25	455.75
C37	307.25	311.75	C62	457.25	461.75
C38	313.25	317.75	C63	463.25	467.75

Television Tuners Coaxial Aerial Input Assemblies

USA

vision IF 45.75 MHz
sound IF 41.25 MHz

	frequency				frequency		
Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$	Ch	range		
2	54-60	55.25	59.75	43	644-650	645.25	649.75
3	60-66	61.25	65.75	44	650-656	651.25	655.75
4	66-72	67.25	71.75	45	656-662	657.25	661.75
5	76-82	77.25	81.75	46	662-668	663.25	667.75
6	82-88	83.25	87.75	47	668-674	669.25	673.75
7	174-180	175.25	179.75	48	674-680	675.25	679.75
8	180-186	181.25	185.75	49	680-686	681.25	685.75
9	186-192	187.25	191.75	50	686-692	687.25	691.75
10	192-198	193.25	197.75	51	692-698	693.25	697.75
11	198-204	199.25	203.75	52	698-704	699.25	703.75
12	204-210	205.25	209.75	53	704-710	705.25	709.75
13	210-216	211.25	215.75	54	710-716	711.25	715.75
14	470-476	471.25	475.75	55	716-722	717.25	721.75
15	476-482	477.25	481.75	56	722-728	723.25	727.75
16	482-488	483.25	487.75	57	728-734	729.25	733.75
17	488-494	489.25	493.75	58	734-740	735.25	739.75
18	494-500	495.25	499.75	59	740-746	741.25	745.75
19	500-506	501.25	505.75	60	746-752	747.25	751.75
20	506-512	507.25	511.75	61	752-758	753.25	757.75
21	512-518	513.25	517.75	62	758-764	759.25	763.75
22	518-524	519.25	523.75	63	764-770	765.25	769.75
23	524-530	525.25	529.75	64	770-776	771.25	775.75
24	530-536	531.25	535.75	65	776-782	777.25	781.75
25	536-542	537.25	541.75	66	782-788	783.25	787.75
26	542-548	543.25	547.75	67	788-794.	789.25	793.75
27	548-554	549.25	553.75	68	794-800	795.25	799.75
28	554-560	555.25	559.75	69	800-806	801.25	805.75
29	560-566	561.25	565.75	70	806-812	807.25	811.75
30	566-572	567.25	571.75	71	812-818	813.25	817.75
31	572-578	573.25	577.75	72	818-824	819.25	823.75
32	578-584	579.25	583.75	73	824-830	825.25	829.75
33	584-590	585.25	589.75	74	830-836	831.25	835.75
34	590-596	591.25	595.75	75	836-842	837.25	841.75
35	596-602	597.25	601.75	76	842-848	843.25	847.75
36	602-608	603.25	607.75	77	848-854	849.25	853.75
37	608-614	609.25	613.75	78	854-860	855.25	859.75
38	614-620	615.25	619.75	79	860-866	861.25	865.75
39	620-626	621.25	625.75	80	866-872	867.25	871.75
40	626-632	627.25	631.75	81	872-878	873.25	877.75
41	632-638	633.25	637.75	82	878-884	879.25	883.75
42	638-644	639.25	643.75	83	884-890	885.25	889.75
January 1992		289					

Television Tuners Coaxial Aerial Input Assemblies

TV channel frequencies (MHz)

USA, cable

vision IF 45.75 MHz
sound IF 41.25 MHz

frequency					Ch		frequency		F_{s}
	Ch	range	F_{p}	$\mathrm{F}_{\text {s }}$			range	F_{p}	
2	2	54-60	55.25	59.75	AA	37	300-306	301.25	
3	3	60-66	61.25	65.75	BB	38	306-312	307.25	311.75
4	4	66-72	67.25	71.75	CC	39	312-318	313.25	317.75
5A	1	72-78	73.25	77.75	DD	40	318-324	319.25	323.75
5	5	76-82	77.25	81.75	EE	41	324-330	325.25	329.75
6	6	82-88	83.25	87.75	FF	42	330-336	331.25	335.75
A-5	95	90-96	91.25	95.75	GG	43	336-342	337.25	341.75
A-4	96	96-102	97.25	101.75	HH	44	342-348	343.25	347.75
A-3	97	102-108	103.25	107.75	II	45	348-354	349.25	353.75
A-2	98	108-114	109.25	113.75	JJ	46	354-360	355.25	359.75
A-1	99	114-120	115.25	119.75	KK	47	360-366	361.25	365.75
A	14	120-126	121.25	125.75	LL	48	366-372	367.25	371.75
B	15	126-132	127.25	131.75	MM	49	372-378	373.25	377.75
C	16	132-138	133.25	137.75	NN	50	378-384	379.25	383.75
D	17	138-144	139.25	143.75	00	51	384-390	385.25	389.75
E	18	144-150	145.25	149.75	PP	52	390-396	391.25	395.75
F	19	150-156	151.25	155.75	QQ	53	396-402	397.25	401.75
G	20	156-162	157.25	161.75	RR	54	402-408	403.25	407.75
H	21	162-168	163.25	167.75	SS	55	408-414	409.25	413.75
I	22	168-174	169.25	173.75	TT	56	414-420	415.25	419.75
7	7	174-180	175.25	179.75	UU	57	420-426	421.25	425.75
8	8	180-186	181.25	185.75	VV	58	426-432	427.25	431.75
9	9	186-192	187.25	191.75	WW	59	432-438	433.25	437.75
10	10	192-198	193.25	197.75	AAA	60	438-444	439.25	443.75
11	11	198-204	199.25	203.75	BBB	61	444-450	445.25	449.75
12	12	204-210	205.25	209.75	CCC	62	450-456	451.25	455.75
13	13	210-216	211.25	215.75	DDD	63	456-462	457.25	461.75
J	23	216-222	217.25	221.75	EEE	64	462-468	463.25	467.75
K	24	222-228	223.25	227.75		65	468-474	469.25	473.75
L	25	228-234	229.25	233.75		66	474-480	475.25	479.75
M	26	234-240	235.25	239.75		67	480-486	481.25	485.75
N	27	240-246	241.25	245.75		68	486-492	487.25	491.75
0	28	246-252	247.25	251.75		69	492-498	493.25	497.75
P	29	252-258	253.25	257.75		70	498-504	499.25	503.75
Q	30	258-264	259.25	263.75		71	504-510	505.25	509.75
R	31	264-270	265.25	269.75		72	510-516	511.25	515.75
S	32	270-276	271.25	275.75		73	516-522	517.25	521.75
T	33	276-282	277.25	281.75		74	522-528	523.25	527.75
U	34	282-288	283.25	287.75		75	528-534	529.25	533.75
V	35	288-294	289.25	293.75		76	534-540	535.25	539.75
W	36	294-300	295.25	299.75		77	540-546	541.25	545.75
January 1992			290						

Television Tuners

Coaxial Aerial Input Assemblies

USA, cable

vision IF 45.75 MHz
sound IF 41.25 MHz

			frequency		frequency				
Ch	range	F_{p}	F_{s}	Ch	range	F_{p}	F_{s}		
78	$546-552$	547.25	551.75	87	$600-606$	601.25	605.75		
79	$552-558$	553.25	557.75	88	$606-612$	607.25	611.75		
80	$558-564$	559.25	563.75	89	$612-618$	613.25	617.75		
81	$564-570$	565.25	569.75	90	$618-624$	619.25	623.75		
82	$570-576$	571.25	575.75	91	$624-630$	625.25	629.75		
83	$576-582$	577.25	581.75	92	$630-636$	631.25	635.75		
84	$582-588$	583.25	587.75	93	$636-642$	637.25	641.75		
85	$588-594$	589.25	593.75	94	$642-648$	643.25	647.75		
86	$594-600$	595.25	599.75						

$\mathrm{Ch}=$ Channel
$\mathrm{F}_{\mathrm{p}}=$ Picture carrier frequency
$\mathrm{F}_{\mathrm{s}}=$ Sound carrier frequency

Television Tuners
Coaxial Aerial Input Assemblies

TV channel frequencies (MHz)

CHINA

picture IF 37.0 MHz
sound IF 30.5 MHz

Ch	frequency range	F_{p}	$\mathrm{F}_{\text {s }}$	Ch	frequency range	F_{p}	$\mathrm{F}_{\text {s }}$
1	48.5-56.5	49.75	56.25	30	646-654	647.25	653.75
2	56.5-64.5	57.75	64.25	31	654-662	655.25	661.75
3	64.5-72.5	65.75	72.25	32	662-670	663.25	669.75
4	76-84	77.25	83.75	33	670-678	671.25	677.75
5	84-92	85.25	91.75	34	678-686	679.25	685.75
6	167-175	168.25	174.75	35	686-694	687.25	693.75
7	175-183	176.25	182.75	36	694-702	695.25	701.75
8	183-191	184.25	190.75	37	702-710	703.25	709.75
9	191-199	192.25	198.75	38	710-718	711.25	717.75
10	199-207	200.25	206.75	39	718-726	719.25	725.75
11	207-215	208.25	214.75	40	726-734	727.25	733.75
12	215-223	216.25	222.75	41	734-742	735.25	741.75
13	470-478	471.25	477.75	42	742-750	743.25	749.75
14	478-486	479.25	485.75	43	750-758	751.25	757.75
15	486-494	487.25	493.75	44	758-766	759.25	765.75
16	494-502	493.25	501.75	45	766-7.74	767.25	773.75
17	502-510	503.25	509.75	46	774-782	775.25	781.75
18	510-518	511.25	517.75	47	782-790	783.25	789.75
19	518-526	519.25	525.75	48	790-798	791.25	797.75
20	526-534	527.25	533.75	49	798-806	799.25	805.75
21	534-542	535.25	541.75	50	806-814	807.25	813.75
22	542-550	543.25	549.75	51	814-822	815.25	821.75
23	550-558	551.25	557.75	52	822-830	823.25	829.75
24	558-566	559.25	565.75	53	830-838	831.25	837.75
25	606-614	607.25	613.75	54	838-846	839.25	845.75
26	614-622	615.25	621.75	55	846-854	847.25	853.75
27	622-630	623.25	629.75	56	854-862	855.25	861.75
28	630-638	631.25	637.75	57	862-870	863.25	869.75
29	638-646	639.25	645.75				

Television Tuners

 Coaxial Aerial Input Assemblies
FRANCE

vision IF 32.7 MHz sound IF 39.2 MHz

Ch	F_{p}	F_{s}
FA	47.75	41.25
FB	55.75	49.25
FC1	60.50	54.00
FC	63.75	57.25
F1	176.00	182.50
F2	184.00	190.50
F3	192.00	198.50
F4	200.00	206.50
F5	208.00	214.50
F6	216.00	222.50

USSR and OIRT MEMBERS

vision IF 38.0 MHz sound IF 31.5 MHz

Ch	F_{p}	F_{s}
R1	49.75	56.25
R2	59.25	65.75
R3	77.25	83.75
R4	85.25	91.75
R5	93.25	99.75
R6	175.25	181.75
R7	183.25	189.75
R8	191.25	197.75
R9	199.25	205.75
R10	207.25	213.75
R11	215.25	221.75
R12	223.25	229.75

IRELAND
vision IF 39.5 MHz
sound IF 33.5 MHz

Ch	F_{p}	F_{s}
A	45.75	51.75
B	53.75	59.75
C	61.75	67.75
D	175.25	181.25
E	183.25	189.25
F	191.25	197.25
G	199.25	205.25
H	207.25	213.25
J	215.25	221.25

UK

vision IF 39.5 MHz
sound IF 33.5 MHz

Ch	F_{p}	F_{s}
B1	45.00	41.50
B2	51.75	48.25
B3	56.75	53.25
B4	61.75	58.25
B5	66.75	63.25
B6	179.75	176.25
B7	184.75	181.25
B8	189.75	186.25
B9	194.75	191.25
B10	199.75	196.25
B11	204.75	201.25
B12	209.75	206.25
B13	214.75	211.25
B14	219.75	216.25

ITALY

vision IF 38.9 MHz sound IF 33.4 MHz

Ch	F_{p}	F_{s}
A	53.75	59.25
B	62.25	67.75
C	82.25	87.75
D	175.25	180.75
E	183.75	189.25
F	197.25	192.75
G	201.25	206.75
H	210.25	215.75
H1	217.25	222.75
H2	224.25	229.75

FRENCH OVERSEAS
 TERRITORIES

vision IF 40.2 MHz
sound IF 33.7 MHz

Ch	$\mathbf{F}_{\mathbf{p}}$	$\mathbf{F}_{\mathbf{s}}$
K4	175.25	181.75
K5	183.25	189.75
K6	191.25	197.75
K7	199.25	205.75
K8	207.25	213.75
K9	215.25	221.75

Television Tuners

INDONESIA

vision IF 38.9 MHz
sound IF 33.4 MHz

Ch	F_{p}	F_{s}
1 A	44.25	49.75
2	55.25	60.75
3	62.25	67.75
4	175.25	180.75
5	182.25	187.75
6	189.25	194.75
7	196.25	201.75
8	203.25	208.75
9	210.25	215.75
10	217.25	222.75
11	224.25	229.75

NEW ZEALAND
vision IF 38.9 MHz
sound IF 33.4 MHz

Ch	F_{p}	F_{s}
1	45.25	50.75
2	55.25	60.75
3	62.25	67.75
4	175.25	180.75
5	182.25	187.75
6	189.25	194.75
7	196.25	201.75
8	203.25	208.75
9	210.25	215.75

TAIWAN

vision IF 45.75 MHz sound IF 41.25 MHz

Ch	F_{p}	F_{s}
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

CHILE

vision IF 45.75 MHz sound IF 41.25 MHz

Ch	F_{p}	F_{s}
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.75	191.75
10	193.75	197.75
11	199.75	203.75
12	205.75	209.75
13	211.75	215.75

AUSTRALIA

vision IF 36.875 MHz

sound IF 31.375 MHz		
Ch	F_{p}	F_{s}
0	46.25	51.75
1	57.25	62.75
2	64.25	69.75
3	86.25	91.75
4	95.25	100.75
5	102.25	107.75
5 A	138.25	143.75
6	175.25	180.75
7	182.25	187.75
8	189.25	194.75
9	196.25	201.75
10	209.25	214.75
11	216.25	221.75

$\mathrm{Ch}=$ Channel
$\mathrm{F}_{\mathrm{p}}=$ Picture carrier frequency
$\mathrm{F}_{\mathrm{s}}=$ Sound carrier frequency

Television Tuners Coaxial Aerial Input Assemblies

ANGOLA

vision IF 39.5 MHz sound IF 33.5 MHz

Ch	$\mathbf{F}_{\mathbf{p}}$	$\mathbf{F}_{\mathbf{s}}$
1	43.25	49.25
2	52.25	58.25
3	60.25	66.25
4	175.25	181.25
5	183.25	189.25
6	191.25	197.25
7	199.25	205.25
8	207.25	213.25
9	215.25	221.25
10	223.25	229.25

IVORY COAST

vision IF 38.0 MHz		
sound IF 31.5 MHz		
Ch	\mathbf{F}_{p}	\mathbf{F}_{s}
1	43.25	49.75
2	52.25	58.75
3	60.25	66.75
4	175.25	181.75
5	183.25	189.75
6	191.25	197.75
7	199.25	205.75
8	207.25	213.75
9	215.25	221.75

SOUTH AFRICA

vision IF 38.9 MHz sound IF 32.9 MHz

Ch	F_{p}	F_{s}
4	175.25	181.25
5	183.25	189.25
6	191.25	197.25
7	199.25	205.25
8	207.25	213.25
9	215.25	221.25
10	223.25	229.25
11	231.25	237.25
12		
13	247.43	253.43

MOROCCO

vision IF 38.9 MHz sound IF 33.4 MHz

Ch	F_{p}	F_{s}
M4	163.25	168.75
M5	171.25	176.75
M6	179.25	184.75
M7	187.25	192.75
M8	195.25	200.75
M9	203.25	208.75
M10	211.25	216.75
E2	48.25	53.75
E4	62.25	67.75
E5	175.25	180.75
E8	196.25	201.75
E12	224.25	229.75

$\mathrm{Ch}=$ Channel
$\mathrm{F}_{\mathrm{p}}=$ Picture carrier frequency
$\mathrm{F}_{\mathrm{s}}=$ Sound carrier frequency

DATA HANDBOOK SYSTEM

Data handbook system

INTRODUCTION

Our data handbook system comprises more than 65 books with subjects including electronic components, subassemblies and magnetic products. The handbooks are classified into seven series:

INTEGRATED CIRCUITS;
DISCRETE SEMICONDUCTORS;
DISPLAY COMPONENTS;
PASSIVE COMPONENTS;
PROFESSIONAL COMPONENTS;
MAGNETIC PRODUCTS;
LIQUID CRYSTAL DISPLAYS.
Data handbooks contain all pertinent data available at the time of publication and each is revised and reissued regularly.

Loose data sheeets are sent to subscribers to keep them up-to-date on additions or alterations made during the lifetime of a data handbook.

Catalogues are available for selected product ranges (some catalogues are also on floppy discs).
For more information about data handbooks, catalogues and subscriptions, contact one of the organizations listed on the back cover of this handbook. Product specialists are at your service and enquiries are answered promptly.

INTEGRATED CIRCUITS

IC01 Radio, Audio and Associated Systems Bipolar, MOS
IC02 Video and Associated Systems Bipolar, MOS
IC03 ICs for Telecom Subscriber Sets, Cordless, Mobile and Cellular Telephones, Radio Pagers
IC04 HE4000B Logic Family CMOS
IC05 Advanced Low-power Schottky (ALS) Logic Series
IC06 High-speed CMOS; 74HC/HCT/HCU Logic Family
IC07 Advanced CMOS Logic (ACL)
IC07 supplement: Additional ACL data
IC08 10/100k ECL Logic/Memory/PLD

INTEGRATED CIRCUITS (continued)

IC09 TTL Logic Series
IC10 Memories
MOS, TTL, ECL
Linear Products
$1^{2} \mathrm{C}$-bus-compatable ICs
IC13 Programmable Logic Devices (PLD)
IC14 8048-based 8-bit Microcontrollers
IC15 FAST TTL Logic Series
IC15 supplement: Additional FAST data
IC16 CMOS Integrated Circuits for Clocks and Watches
IC17 ICs for Telecom ISDN
IC18 Microprocessors and Peripherals
IC19 Data Communication Products
IC20 8051-based 8-bit Microcontrollers
IC23 ABT MULTIBYTE ${ }^{\text {TM }}$ Advanced BiCMOS Bus Interface Logic

DISCRETE SEMICONDUCTORS

SC08b RF Power MOS Transistors
SC09 RF Power Modules
SC10 Surface Mounted Semiconductors
SC12 Optocouplers
SC13 PowerMOS Transistors
SC14 Wideband Transistors and Wideband Hybrid IC Modules
SC15 Microwave Transistors
SC16 Wideband Hybrid IC Modules
SC17 Semiconductor Sensors

Data handbook system

DISPLAY COMPONENTS
DC01 Colour Display Components Colour TV Picture Tubes and Assemblies Colour Monitor Tube Assemblies
DC02 Monochrome Monitor Tubes and Deflection Units
DC03 Television Tuners, Coaxial Aerial Input Assemblies
DC04 Loudspeakers
DC05 Flyback Transformers, Mains Transformers and General-purpose FXC Assemblies

PASSIVE COMPONENTS

PA01 Electrolytic Capacitors
PA02 Varistors, Thermistors and Sensors
PA03 Potentiometers and Switches
PA04 Variable Capacitors
PA05 Film Capacitors
PA06 Ceramic Capacitors
PA07 Quartz Crystals for Special and Industrial Applications
PA08 Fixed Resistors
PA10 Quartz Crystals for Automotive and Standard Applications
PA11 Quartz Oscillators

PROFESSIONAL COMPONENTS

PC01 High-power Klystrons and Accessories
PC02 Cathode-ray Tubes
PC03 Geiger-Müller Tubes
PC04 Photo Multipliers
PC05 Plumbicon Camera Tubes and Accessories
PC06 Circulators and Isolators
PC07 Vidicon and Newvicon Camera Tubes and Deflection Units
PC08 Image Intensifiers
PC09 Dry-reed Switches
PC11 Solid-state Image Sensors and Peripheral Integrated Circuits
PC12 Electron Multipliers

MAGNETIC PRODUCTS

MA01 Soft Ferrites
MA02 Permanent Magnets
MA03 Piezoelectric Ceramics

LIQUID CRYSTAL DISPLAYS

LCD01 Liquid Crystal Displays and Driver ICs for LCDs

Philips Components - a worldwide company

Argentina: PHILIPS ARGENTINA S.A.
Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-4261.
Australia: PHILIPS COMPONENTS PTY Ltd, 34 Waterloo Road, NORTH RYDE NSW 2113, Tel. (02) 8054455. Fax. (02) 8054466.
Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN, Tel. (0222) $60101-820$.
Belgium: N.V PHILIPS PROF SYSTEMS - Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 5256111.
Brazil: PHILIPS COMPONENTS, Av. Francisco Monteiro 702, RIBEIRAO PIRES-SP, CEP 09400, Tel. (011) 459-8211. Fax. (O11) 459-8282.
Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.
Chile: PHILIPS CHILENAS.A.,Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816.
Colombia: IPRELENSO LTDA., Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621 , Tel. (01) 2497624.

Denmark: PHILIPS COMPONENTS A/S, Prags Boulevard 80 , P.O. Box 1919, DK-2300 COPENHAGEN S, Tel 32-883333.

Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-2630 ESPOO, Tel. 358-0-50261.
France: PHILIPS COMPOSANTS, 117 Quai du Président Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (01) 40938000 , Fax. 0140938322.
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0, Fax. (040) 3296912.
Greece: PHILIPS HELLENIQUE S.A. Components Division, No. 15, 25th March Street, GR 1778 TAVROS,
Tel. (01) 4894339/4894911.
Hong Kong: PHILIPS HONG KONG LTD Components Div., 15/F Philips Ind. Bldg, 24-28 Kung Yip St., KWAI CHUNG, Tel. (0) -4245121 . Fax. (0) 4806960 .
India: PEICO ELECTRONICS \& ELECTRICALS LTD. Components Dept., Shivsagar Estate A'Block, P.O. Box 6598, 254-D Dr. Annie Besant Rd., BOMBAY-40018, Tel. (022) 4921500-4921 515. Fax. (022) 49419063.
Indonesia: P.T. PHILIPS DEVELOPMENT CORPORATION, Philips House, 4th floor, JL. H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021) 5201122; Fax. (021)5205189.
Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Components Division, Newstead, Clonskeagh, DUBLIN 14. Tel. (01)693355.
Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, 1-20124 MILANO, Tel. (02)6752.1, Fax. (02)67522642.
Japan: PHILIPS JAPAN LTD., Components Division, Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03) 813-3740-5030. Fax. 0381337400570.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD. Components Division, Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.
Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div., 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511.
Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHI HUA HUA 32340 MEXICO Tel. (16) 18-67-01/02.
Netherlands: PHILIPS NEDERLAND B.V. Marktgroep Philips Components, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHILIPS NEW ZEALAND LTD.
Components Division, 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09) 894-160, Fax. (09)897-811.

Norway: NORSK A/S PHILIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 748000.
Pakistan: PHILIPS ELECTRICAL CO OF PAKISTAN LTD, Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.
Peru: CADESA, Carretera Central 6.500, LIMA 3, Apartado 5612, Tel. 51-14-350059.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 911, MAKATI, Metro MANILA. Tel. (63-2)810-0161. Fax. 6328173474.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS SINGAPORE, PTE LTD., Components Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel 3502000.
South Africa: S.A. PHILIPS PTY LTD., Components Division, 195-215 Main Road, JOHANNESBURG 2000, P.O. Box 7430, Tel. (011) 470-5434. Fax. (011)4705494.
Spain: PHILIPS COMPONENTS, Balmes 22 ,
08007 BARCELONA, Tel. (03) 301 63 12. Fax. (03) 3014243.
Sweden: PHILIPS COMPONENTS, A.B., Tegeluddsvägen 1 , S-11584 STOCKHOLM, Tel. (0)8-7821 000.
Switzerland: PHILIPS COMPONENTS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. (01) 4882211 .
Taiwan: PHILIPS TAIWAN LTD., 581 Min Sheng East Road, P.O. Box 22978, TAIPEI 10446, Taiwan, Tel. 886-2-5097666. Fax. 88625005899.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.
Turkey: TURK PHILIPS TICARETA.S., Philips Components, Talatpasa Cad. No. 5, 80640 LEVENTISTANBUL, Tel. (01) 1792770.
United Kingdom: PHILIPS COMPONENTS LTD, Philips House, Torrington Place, LONDON WC1E 7HD, Tel. (071) 5806633 , Fax. (071) 4362196.
United States: (Colour picture tubes - Monochrome \& Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963 , ANN ARBOR, Michigan 48106, Tel. 313-9969400. Fax. 313-761 2886, (Passive Components, Discrete Semiconductors, Materials and Professional Components \& LCD) PHILIPS COMPONENTS, Discrete Products Division, 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, Florida 33404, Tel. (407) 881-3200.
Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) 70-4044.
Venezuela: MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 2417509.
Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD.,
62 Mutere Road, HARARE, P.O. Box 994, Tel. 47211.
For all other countries apply to: Philips Components,
Marketing Communications, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

COD2 (C) Philips Export B.V. 1992

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
939618250011

[^0]: * Via $22 \mathrm{k} \Omega$ series resistor.

[^1]: * The tuner will always respond to address C2. The second address will depend on the voltage applied at pin 15.

[^2]: * An external pull-up resistor of $22 \mathrm{k} \Omega \pm 5 \%$ has to be connected between the tuning supply voltage and terminal 11 . The tuning supply current is 1.7 mA max.

[^3]: * The tuner will always respond to address C 2 . The second address will depend on the voltage applied at pin 15.

[^4]: Start $=$ Start condition
 ADD = Address
 ACK = Acknowledge
 STB = Status byte
 Stop = Stop condition

[^5]: * Via $22 \mathrm{k} \Omega$ series resistor.

[^6]: Start $=$ Start condition
 ADD = Address
 ACK = Acknowledge
 STB = Status byte
 Stop $=$ Stop condition

[^7]: * Via $22 \mathrm{k} \Omega$ series resistor.

[^8]: * The tuner will always respond to address C2. The second address will depend on the voltage applied at pin 15.

[^9]: * The tuner will always respond to address C 2 . The second address will depend on the voltage applied at pin 15.

[^10]: * The tuner will always respond to address C2. The second address will depend on the voltage applied at pin 15.

