DATA HANDBOOK

RF
 Communications

Signetics
Philips Semiconductors

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, describedor contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnity Signetics for any damages resulting from such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.

Copyright 1991 Signetics Company a division of North American Philips Corporation

Product Status

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

RF Cornmunications Handbook Contents

Preface III
Product status iv
Alphanumeric product list vil
Ordering information x
Section 1 Amplifiers 1
NE/SA5200 RF dual gain-stage 3
NE/SA5204 Wide-band high-frequency amplifier 15
NE/SA5205 Wide-band high-frequency amplifier 25
NE/SA5209 Wideband variable gain amplifier 35
NE/SA5219 Wideband variable gain amplifier 50
NE/SA5234 Matched quad high-performance low-voltage operational amplifier 63
AN1651 Using the NE/SA5234 amplifier 67
NE/SE5539 High frequency operational amplifier 81
NE5592 Video amplifier 89
NE/SA/SE592 Video amplifier 94
TDA1010A $\quad 6 \mathrm{~W}$ audio amplifier with preamplifier 102
TDA1015 $\quad 1$ to 4 W audio amplifier with preamplifier 120
TDA1011A 2 to 6 W audio power amplifier with preamplifier 130
TDA1013B 4W amplifier with DC volume control 138
TDA7052 1 Watt low voltage audio power amplifier 146
TDA7052A/AT 1-Watt low voltage audio power amp with DC volume contro 151
TDA7056A 3-Watt mono BTL audio output amplifier 158
Section 2 Compandors 165
Compandor Selector Guide 166
NE570/571/SA571 Compandor 167
AN174 Applications for compandors NE570/571/SA571 174
AN176 Compandor cookbook 183
NE/SA572 Programmable analog compandor 189
AN175 Automatic level control using the NE572 197
NE/SA575 Low voltage compandor 198
NE/SA575SSOP Low voltage compandor in shrink small outline package 208
NE/SA576 Low power compandor 218
NE/SA577 Unity gain level programmable power compandor 221
NE/SA578 Unity gain level programmable low power compandor 225
AN1762 Companding with the NE577 and NE578 229
Section 3 FM IF Systems 241
FM/IF Systems Selector Guide 242
MC3361 Low-power FM IF 243
NE/SA604A High performance low power FM IF system 246
NE/SA614A Low power FM IF system 256
AN1991 Audio decibel level detector with meter driver 266
Section 3 FM IF Systems (cont.)
AN1993 High sensitivity applications of low-power RF/IF integrated circuits 268
NE/SA605 High performance low power mixer FM IF system 280
NE/SA605SSOP High performance low power mixer FM IF system in shrink small outline package 290
NE/SA615 High performance low power mixer FM IF system 298
NE/SA615 (SSOP) High performance low power mixer FM IF system in shrink small outline package 308
AN1994 Reviewing key areas when designing with the NE605 316
AN1995 Evaluating the NE605 SO and SSOP demo-board 336
NE/SA606 Low-voltage high performance mixer FM IF system 346
NE/SA616 Low-voltage high performance mixer FM IF system 362
NE/SA607 Low voltage high performance mixer FM IF system 378
NE/SA617 Low-voltage high performance mixer FM IF system 392
TDA1576T FM/F amplifier/demodulator circuit 406
AN192 A complete FM radio on a chip 414
AN193 TDA7000 for narrowband FM reception 427
TDA7000 Single-chip FM radio circuit 442
TDA7021T Single-chip FM radio circuit 449
Section 4 Mixers 459
MC1496/MC1596 Balancedmodulator/demodulator 461
AN189 Balanced modulator/demodulator applications using the MC1496/1596 465
NE/SA602A Double-balanced mixer and oscillator 470
NE/SA612A Double-balanced mixer and oscillator 478
AN1981 New low-power single sideband circuits 485
AN1982 Applying the oscillator of the NE602 in low-power mixer applications 493
TDA1574 FM front-end IC 496
TDA1574T Integrated FM tuner for radio receivers 504
TDA5030A TV VHF mixer/oscillator UHF preamplifier 513
Section 5 Audio and Data Processors 519
NE/SA5750 Audio processor - companding and amplifier section 521
NE/SA5751 Audio processor - filter and control section 528
AN1741 Using the NE5750 and NE5751 for audio processing 538
PCA5000AT Paging decoder 558
PCF5001T POCSAG paging decoder with EEPROM storage 577
TEA6300 Sound fader control circuit 579
UMF1000T Data processor for cellular radio (DPROC) 595
Section 6 Frequency Synthesizers, Pagers, and Data Receivers 627
NE/SA701 Divide by: 128/129-64/65 dual modulus low power ECL prescaler 629
NE/SA702 Divide by: 64/65/72 triple modulus low power ECL prescaler 633
NE/SA703 Divide by: 128/129/144 triple modulus low power ECL prescaler 637
TDD1742T CMOS frequency synthesizer 641
TSA6057/T Radio tuning PLL frequency synthesizer 663
TSA5511 $\quad 1.3 \mathrm{GHz}$ bi-directional I2C bus controlled synthesizer 672
UMA1014T Frequency synthesizer for cellular radio communication 683
UMF1005T Low-power frequency synthesizer 697
SCO/AN91004 Application report for the UMA1014T frequency synthesizer 718
UMF1009T Low power frequency synthesizer for radio communication 746
Section 7 Cellular chip set 761
Cellular chip set design guide 762
${ }^{2} \mathrm{C}$ Bus specification 806
AN168 The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: Theory and practical consideration 822
Section 8 Package outlines 833
NE/SA630 Single pole double throw (SPDT) switch 835
Section 9 Package outlines 845
8 -PIN (300 mils wide) Plastic Dual In-Line (N) Package 847
8 -PIN (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package 848
8-PIN Plastic Dual in-line (N/P) package 849
9 -PIN Plastic Single in-line (U) package 850
14-PIN (300 mils wide) Plastic Dual In-Line (N) package 851
14-PIN (157 mils wide) Plastic SO (Small Outine) Dual In-Line (D) Package 852
16-PIN (300 mils wide) Plastic Dual In-Line (N) Package 853
16-PIN (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package 854
16-PIN Plastic SO Dual In-Line (D / T) Package 855
16-PIN Plastic Dual In-Line (N/P) Package 856
16-PIN Plastic SOL Dual In-Line (D/T) Package 857
18-PIN Plastic Dual In-Line (N/P) Package 858
20-PIN (300 mils wide) Plastic Dual In-Line (N) Package 859
20-PIN (300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package 860
20-PIN Plastic Shrink Small Outline Package (SSOP) (DK Package) 861
20-PIN Plastic SO Dual In-Line (D/T) Package 862
24-PIN (600 mils wide) Plastic Dual IN-Line Package 863
24-PIN (300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package 864
28-PIN (600 mils wide) Plastic Dual In-Line (N) Package 865
28-PIN (300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package 866
28-PIN Plastic Dual In-Line (N/P) Package 867
28-PIN Plastic SO Dual In-Line (D/T) Package 868
Section 10 Sales office listings 869

RF Cornmunications Handbook Alphanumeric product list

RF Communications

MC1496/MC1596 Balanced modulator/demodulator 461MC3361
NE/SA5200243NE/SA5204RF dual gain-stage3NE/SA5205ide-band high-frequency amplifier15
NE/SA5209 35Wide-band high-frequency amplifier25
NE/SA5219 Wideband variable gain amplifier
NE/SA5234 Matched quad high-performance low-voltage operational amplifier 63
NE/SE5539 High frequency operational amplifier 81
NE5592
NE570/571/SA571NE/SA57289
Video amplifier
Compandor 167
NE/SA575Programmable analog compandor189NE/SA575 SSOPLow voltage compandor198NE/SA5750Low voltage compandor in shrink small outline package208
Audio processor - filter and control section 528NE/SA5751NE/SA576NE/SA577NE/SA578NE/SA/SE592NE/SA602ANE/SA604ANE/SA605
NE/SA605 (SSOP)Audio processor - companding and amplifier section521
Low power compandor 218
Unity gain level programmable power compandor 221
Unity gain level programmable low power compandor 225
Video amplifier 94
Double-balanced mixer and oscillator 470
High performance low power FM IF system 246
High performance low power mixer FM IF system 280
Low-voltage high performance mixer FM IF system 346NE/SA606High performance low power mixer FM IF system in shrink small outline package290
NE/SA607NE/SA612ALow voltage high performance mixer FM IF system378
Double-balanced mixer and oscillator 478
NE/SA614A
NE/SA
Low power FM IF system 256
High performance low power mixer FM IF system 298
NE/SA615 (SSOP) High performance low power mixer FM IF system in shrink small outline package 308
NE/SA616 Low-voltage high performance mixer FM IF system 362
NE/SA617 Low-voltage high performance mixer FM IF system 392NE630NE/SA701NE/SA702
NE/SA703
PCA5000AT
PCF5001T
Single-pole doulbe-throw switch (SPDT) 835
Divide by: 128/129-64/65 dual modulus low power ECL prescaler 629
Divide by: 64/65/72 triple modulus low power ECL prescaler 633
Divide by: 128/129/144 triple modulus low power ECL prescaler 637
Paging decoder 558TDA1010APOCSAG paging decoder with EEPROM storage577
102TDA1011A6 W audio amplifier with preamplifier
2 to 6 W audio power amplifier with preamplifier 130dolora
TDA1013B 4W amplifier with DC volume control 138
TDA1015 1 to 4 W audio amplifier with preamplifier 120
TDA1574 FM front-end IC 496
TDA1574T Integrated FM tuner for radio receivers 504
TDA1576T FMIF amplifier/demodulator circuit 406
TDA5030A TV VHF mixer/oscillator UHF preamplifier 513
TDA7000 442

Alphanumeric product list

TDA7021T Single-chip FM radio circuit 449
TDA7052 1 Watt low voltage audio power amplifier 146
TDA7052A 1-Watt low voltage audio power amp with DC volume control 151
TDA7056A 3 -Watt mono BTL audio output amplifier 158TDD1742T
TEA6300
TSA5511
TSA6057/T
UMF1000T
UMF1005T
UMF1009T
CMOS frequency synthesizer 641
Sound fader control circuit 579
1.3 GHz bi-directional ${ }^{2} \mathrm{C}$ bus controlled synthesizer 672
Radio tuning PLL frequency synthesizer 663
Data processor for cellular radio (DPROC) 595
Low-power frequency synthesizer 697
Low power frequency synthesizer for radio communication 746
UMA1014T Frequency synthesizer for cellular radio communication 683

Ordering Information

LINEAR PRODUCTS PART NUMBERING SYSTEM
Example: NE XXXX N

PHILIPS PRODUCTS PART NUMBERING SYSTEM PREFIXES HE, PC, PN, SA, TD, TE, TS, UM
Example: TD

Section 1 Amplifiers

RF Communications

INDEX

RF Amplifier Selector Guide 2
NE/SA5200 RF dual gain-stage 3
NE/SA5204 Wide-band high-frequency amplifier 15
NE/SA5205 Wide-band high-frequency amplifier 25
NE/SA5209 Wideband variable gain amplifier 35
NE/SA5219 Wideband variable gain amplifier 50
NE/SA5234 Matched quad high-performance low-voltage operational amplifier 63
AN1651 Using the NE/SA5234 amplifier 67
NE/SE5539 High frequency operational amplifier 81
NE5592 Video amplifier 89
NE/SA/SE592 Video amplifier 94
TDA1010A 6 W audio amplifier with preamplifier 102
TDA1015 1 to 4 W audio amplifier with preamplifier 120
TDA1011A 2 to 6 W audio power amplifier with preamplifier 130
TDA1013B $\quad 4 \mathrm{~W}$ amplifier with DC volume control 138
TDA7052 1 Watt low voltage audio power amplifier 146
TDA7052A 1-Watt low voltage audio power amp with DC volume control 151
TDA7056A 3-Watt mono BTL audio output amplifier 158

RF AMPLIFIER FAMILY OVERVIEW

DESCRIPTION

The NE/SA5200 is a dual amplifier with DC to 1200 MHz response. Low noise ($\mathrm{NF}=3.6 \mathrm{~dB}$) makes this part ideal for RF front-ends, and a simple power-down mode saves current for battery operated equipment. Inputs and outputs are matched to 50Ω.
The enable pin allows the designer the ability to turn the amplifiers on or off, allowing the part to act as an amplifier as well as an attenuator. This is very useful for front-end buffering in receiver applications.

FEATURES

- Dual amplifiers
- DC - 1200 MHz operation
- Low DC power consumption (4.2mA per amplifier @ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)
- Power-Down Mode (Icc $=95 \mu$ A typical)
- 3.6 dB noise figure at 900 MHz
- Unconditionally stable
- Fully ESD protected
- Low cost
- Supply voltage 4-9V
- Gain $\mathrm{S}_{21}=7 \mathrm{~dB}$ at $\mathrm{f}=1 \mathrm{GHz}$
- Input and output match $\mathrm{S}_{11}, \mathrm{~S}_{22}$ typically <-14dB

PIN CONFIGURATION

APPLICATIONS

- Cellular radios
- RF IF strips
- Portable equipment

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic SO (Surface-mount)	$0-70^{\circ} \mathrm{C}$	NE5200D
8 -Pin Plastic SO (Surface-mount)	$-40-+85^{\circ} \mathrm{C}$	SA5200D

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage 1	-0.5 to +9	V
P_{D}	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\right.$ still air) ${ }^{2}$ 8 -Pin Plastic	780	mW
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transients exceeding 10.5 V on V_{cc} pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

$$
8 \text {-Pin SO: } \quad \theta_{J A}=158^{\circ} \mathrm{C} / \mathrm{W}
$$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{C C}$	Supply voltage	4.0 to 9.0	V
T_{A}	Operating ambient temperature range NE Grade SA Grade	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature NE Grade SA Grade	$\begin{gathered} 0 \text { to }+90 \\ -40 \text { to }+105 \end{gathered}$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V_{cc}	Supply voltage		4	5.0	9.0	V
Icc	Total supply current	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{ENABLE}=\mathrm{High}$	6.4	8.4	10.4	mA
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, ENABLE $=$ Low		95	255	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{ENABLE}=\mathrm{High}$		17.8	22.2	mA
		$\mathrm{V}_{\text {cC }}=9 \mathrm{~V}$, ENABLE $=$ Low		320	960	$\mu \mathrm{A}$
V_{T}	TTLCMOS logic threshold voltage ${ }^{1}$			1.25		V
V_{IH}	Logic 1 level	Power-up mode	2.0		V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Logic 0 level	Power-down mode	-0.3		0.8	V
$1 / 1$	Enable input current	Enable $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
I_{H}	Enable input current	Enable $=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{V}_{10 \mathrm{C}, \mathrm{ODC}}$	Input and output DC levels		0.6	0.83	1.0	V

NOTE:

1. The ENABLE input must be connected to a valid logic level for proper operation of the NE/SA5200.

AC ELECTRICAL CHARACTERISTICS ${ }^{1} \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, either amplifier, enable $=5 \mathrm{~V}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
S21	Insertion gain	$\mathrm{f}=100 \mathrm{MHz}$	9.2	11	13.2	dB
		$\mathrm{f}=900 \mathrm{MHz}$	5.2	7.5		dB
S22	Output return loss	$\mathrm{f}=900 \mathrm{MHz}$		-14.3		dB
S12	Reverse isolation	$\mathrm{f}=900 \mathrm{MHz}$		-17.9		dB
S11	Input return loss	$f=900 \mathrm{MHz}$		-16.5		dB
P-1	Output 1dB compression point	$\mathrm{f}=900 \mathrm{MHz}$		-4.3		dBm
NF	Noise figure in 50Ω	$\mathrm{f}=900 \mathrm{MHz}$		3.6		dB
IP_{2}	Input second-order intercept point	$\mathrm{f}=900 \mathrm{MHz}$		+4.3		dBm
IP_{3}	Input third-order intercept point	$\mathrm{f}=900 \mathrm{MHz}$		-1.8		dBm
ISOL	Amplifier-to-amplifier isolation ${ }^{2}$	$\mathrm{f}=900 \mathrm{MHz}$		-25		dB
Pout	Saturated output power	$\mathrm{f}=900 \mathrm{MHz}$		-1.7		dBm
S21	Insertion gain when disabled	$\mathrm{f}=100 \mathrm{MHz}$		-13		dB
		$\mathrm{f}=900 \mathrm{MHz}$		-13.5		dB

NOTE:

1. All measurements include the effects of the NE/SA5200 Evaluation Board (see Figure 2). Measurement system impedance is 50Ω.
2. Input applied to one amplifier, output taken at the other output. All ports terminated into 50Ω.

APPLICATIONS

NE/SA5200 is a user-friendly, wide-band, unconditionally stable, low power dual gain amplifier circuit. There are several advantages to using the NE/SA5200 as a high frequency gain block instead of a discrete implementation. First is the simplicity of use. The NE/SA5200 does not need any external biasing components. Due to the higher level of integration and small footprint (SO8) package it occupies less space on the printed circuit board and reduces the manufacturing cost of the system. Also the higher level of integration improves the reliability of the amplifier over a discrete implementation with several components. The power down mode in the NE/SA5200 helps reduce power consumption in applications where the amplifiers can be disabled. And last but not the least is the impedance matching at inputs and outputs. Only those who have toiled through discrete transistor implementations for 50Ω input and output impedance matching can truly appreciate the elegance and simplicity of the NE/SA5200 input and output impedance matching to 50Ω.

A simplified equivalent schematic is shown in Figure 1. Each amplifier is composed of an NPN transistor with an Ft of 13 GHz in a classical series-shunt feedback configuration. The two wideband amplifiers are biased from the same bias generator. In normal operation each amplifier consumes about 4 mA of quiescent current (at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$). In the disable mode the device consumes about $90 \mu \mathrm{~A}$ of current, most of it is in the TTL enable buffer and the bias generator. The input impedance of the amplifiers is 50Ω. The amplifiers have typical gain of 11 dB at 100 MHz and 7 dB of gain at 1.2 GHz .

It can be seen from Figure 1 that any inductance between Pin 7, 3 and the ground plane will reduce the gain of the amplifiers at higher frequencies. Thus proper grounding of Pins 7 and 3 is essential for maximum gain and increased frequency response. Figure 2
shows the printed circuit board layout and the component placement for the NE/SA5200 evaluation board. The AC coupling capacitors should be selected such that at they are shorts at the desired frequency of operation. Since most low-cost large value surface mount capacitors cease to be simply capacitors in the UHF range and exhibit an inductive behavior, it is recommended that high frequency chip capacitors be utilized in the circuit. A good power supply bypass is also essential for the performance of the amplifier and should be as close to the device as practical.

Figure 3 shows the typical frequency response of the two channels of NE/SA5200. The low frequency gain is about 11 dB at 100 MHz and slowly drops off to 10 dB at 500 MHz . The gain is about 8 dB at 900 MHz and 7 dB at 1.2 GHz which is typical of NE/SA5200 with a good printed circuit board layout. It can also be seen that both channels have a very well matched frequency response and matched gain to within 0.1 dB at 100 MHz and 0.2 dB at 900 MHz .

NE/SA5200 finds applications in many areas of RF communications. It is an ideal gain block for high performance, low cost, low power RF communications transceivers. A typical radio transceiver front-end is shown in
Figure 4. This could be the front-end of a cellular phone, a VHF/ UHF hand-held transceiver, UHF cordless telephone or a spread spectrum system. The NE/SA5200 can be used in the receiver path of most systems as an LNA and pre-amplifier. The bandpass filter between the two amplifiers also minimize the noise into the first mixer. In the transmitter path, NE/SA5200 can be used as a buffer to the VCO and isolate the VCO from any load variations due to the power level changes in the power amplifier. This improves the stability of the VCOs. The NE/SA5200 can also be used as a pre-driver to the power amplifier modules.

The two amplifiers in NE/SA5200 can be easily cascaded to have a 13 dB gain block at

900 MHz . At 100 MHz the gain will be 22 dB and a noise figure of about 5.5 dB . The NE/SA5200 can be operated at a higher voltage up to 9 V for much improved 1 dB output compression point and higher 3rd order intercept point.

Several stages of NE/SA5200 can also be cascaded and be used as an IF amplifier strip for DBS/TV/GPS receivers. Figure 5 shows a 60 dB gain IF strip at 180 MHz . The noise figure for the cascaded amplifier chain is given by equation 1.

NF (total) $=\mathrm{NF} 1+\mathrm{NF} 2 / \mathrm{G} 1+\mathrm{NF} 3 / \mathrm{G} 1 * \mathrm{G} 2+$ NF4/G1*G2*G3 + ... (Equation. 1)

NOTE: The noise figure and gain should not be in dB in the above equation.

Since the noise figure for each stage is about 3.6 dB and the gain is about 11 dB , the noise figure for the 60 dB gain IF strip will be about 6.4 dB .

In applications where a single amplifier is required with a 7.5 dB gain at 900 MHz and current consumption is of paramount importance (battery powered receivers), the amplifier A1 can be used and amplifier A2 can be disabled by leaving GND2 (Pin 3) unconnected. This will reduce the total current consumption for the IC to a meager 4 mA .

The ENABLE pin is useful for Time-Division-Duplex systems where the receiver can be disabled for a period of time. In this case the overall system supply current will be decreased by 8 mA .

The ENABLE pin can also be used to improve the system dynamic range. For input levels that are extremely high, the NE/SA5200 can be disabled. In this case the input signal is attenuated by 13 dB . This prevents the system from being overloaded as well as improves the system's overall dynamic range. In the disabled condition the NE/SA5200 IP $_{3}$ increases to nearly +20 dBm .

Figure 1. Simplified Equivalent Schematic of NE/SA5200

Figure 2. Printed Circuit Board Layout of the NE/SA5200 Evaluation Board

Figure 3. Typical Frequency Response of NE/SA5200 in a 50Ω System

Figure 5. 60dB IF Gain Block for $\mathbf{1 0 0 - 3 0 0 M H z}$ IF for GPS/DBS Systems

Figure 6. Supply Current vs Supply Voltage and Temperature

Figure 7. Disabled Supply Current vs V_{Cc} and Temperature

Figure 8. Input Match vs Frequency and V_{CC}

Figure 9. Input Match vs Frequency and Temperature

Figure 11. Insertion Gain vs Frequency and $V_{C C}$ - Expanded Detail -

Figure 12. Insertion Gain vs Frequency and Temperature

Figure 14. Insertion Gain Matching (CH1 vs CH 2) vs Frequency

Figure 13. Insertion Gain vs Frequency and Temperature - Expanded Detail -

Figure 15. Reverse Insertion Gain vs Frequency and Temperature

Figure 16. Output Match vs Frequency and $V_{C C}$

Figure 18. S-parameters vs Frequency for Disabled Amplifier

Figure 17. Output Match vs Frequency and Temperature

Figure 19. Insertion Gain Matching Disabled (CH 1 vs CH 2) vs Frequency

Figure 20. CH1 Input to CH 2 Output Isolation vs Frequency

Figure 22. 1dB Output Compression Point vs Frequency and VCc

Figure 21. Noise Figure vs Frequency and $\mathbf{V}_{\mathbf{C C}}$ in a 50Ω System

Figure 23. Saturated Output Power vs Frequency and V_{cc}

Figure 24. Third-Order Output Intercept vs Frequency and $V_{c c}$

Figure 26. Second-Order Output Intercept vs Frequency and V_{Cc}

Figure 25. Third-Order Input Intercept vs Frequency and V_{cc}

Figure 27. Second-Order Input Intercept vs Frequency and V_{cc}

Figure 28. Switching Speed; $f_{I N}=10 \mathrm{MHz}$ at $\mathbf{- 2 6 d B m}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Coupling Capacitors Set to $0.01 \mu \mathrm{~F}$

Figure 29. Switching Speed; $f_{I N}=50 \mathrm{MHz}$ at $\mathbf{- 2 6 d B m}$, VDD $=5 \mathrm{~V}$, Coupling Capacitors Set to $\mathbf{1 0 0 p F}$

DESCRIPTION

The NE/SA5204 is a high-frequency amplifier with a fixed insertion gain of 20 dB . The gain is flat to $\pm 0.5 \mathrm{~dB}$ from DC to 200 MHz . The -3 dB bandwidth is greater than 350 MHz . This performance makes the amplifier ideal for cable TV applications. The NE/SA5204 operates with a single supply of 6 V , and only draws 25 mA of supply current, which is much less than comparable hybrid parts. The noise figure is 4.8 dB in a 75Ω system and 6 dB in a 50Ω system.
The NE/SA5204 is a relaxed version of the NE5205. Minimum guaranteed bandwidth is relaxed to 350 MHz and the " S " parameter Min/Max limits are specified as typicals only.

Until now, most RF or high-frequency designers had to settle for discrete or hybrid solutions to their amplification problems. Most of these solutions required trade-offs that the designer had to accept in order to use high-frequency gain stages. These include high power consumption, large component count, transformers, large packages with heat sinks, and high part cost. The NE/SA5204 solves these problems by incorporating a wideband amplifier on a single monolithic chip.
The part is well matched to 50 or 75Ω input and output impedances. The standing wave ratios in 50 and 75Ω systems do not exceed 1.5 on either the input or output over the entire $D C$ to 350 MHz operating range.
Since the part is a small, monolithic IC die, problems such as stray capacitance are minimized. The die size is small enough to fit into a very cost-effective 8 -pin small-outline (SO) package to further reduce parasitic effects.
No external components are needed other than AC-coupling capacitors because the ORDERING INFORMATION

NE/SA5204 is internally compensated and matched to 50 and 75Ω. The amplifier has very good distortion specifications, with second and third-order intermodulation intercepts of +24 dBm and +17 dBm , respectively, at 100 MHz .
The part is well matched for 50Ω test equipment such as signal generators, oscilloscopes, frequency counters, and all kinds of signal analyzers. Other applications at 50Ω include mobile radio, CB radio, and data/video transmission in fiber optics, as well as broadband LANs and telecom systems. A gain greater than 20 dB can be achieved by cascading additional NE/SA5204s in series as required, without any degradation in amplifier stability.

FEATURES

- Bandwidth (min.) $200 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}$ $350 \mathrm{MHz},-3 \mathrm{~dB}$
- 20 dB insertion gain
- $4.8 \mathrm{~dB}(6 \mathrm{~dB})$ noise figure $\mathrm{ZO}=75 \Omega$ ($Z \mathrm{O}=50 \Omega$)
- No external components required
- Input and output impedances matched to 50/75 Ω systems
- Surface-mount package available
- Cascadable

PIN CONFIGURATION

APPLICATIONS

- Antenna amplifiers
- Amplified splitters
- Signal generators
- Frequency counters
- Oscilloscopes
- Signal analyzers
- Broadband LANs
- Networks
- Modems
- Mobile radio
- Security systems
- Telecommunications

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5204N
	-40 to $+85^{\circ} \mathrm{C}$	SA5204N
8-Pin Plastic SO package	0 to $+70^{\circ} \mathrm{C}$	NE5204D
	-40 to $+85^{\circ} \mathrm{C}$	SA5204D

Wide-band high-frequency amplifier

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	9	V
$\mathrm{V}_{\text {IN }}$	AC input voltage	5	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{T}_{\text {A }}$	Operating ambient temperature range NE grade SA grade	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Pdmax	Maximum power dissipation ${ }^{1,2}$ $T_{A}=25^{\circ} \mathrm{C}$ (still-air) N package D package	$\begin{aligned} & 1160 \\ & 780 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
TJ	Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$
Tsold	Lead temperature (soldering 60s)	300	${ }^{\circ} \mathrm{C}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates

N package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2. See "Power Dissipation Considerations" section.

EQUIVALENT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{O}}=50 \Omega$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in all packages, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Operating supply voltage range	Over temperature	5		8	V
Icc	Supply current	Over temperature	19	24	31	mA
S21	Insertion gain	$f=100 \mathrm{MHz}$, over temperature	16	19	22	dB
S11	Input return loss	$\mathrm{f}=100 \mathrm{MHz}$		25		dB
		DC -550 MHz		12		dB
S22	Output return loss	$\mathrm{f}=100 \mathrm{MHz}$		27		dB
		DC -550 MHz		12		dB
S12	Isolation	$\mathrm{f}=100 \mathrm{MHz}$		-25		dB
		DC -550 MHz		-18		dB
BW	Bandwidth	$\pm 0.5 \mathrm{~dB}$	200	350		MHz
BW	Bandwidth	-3dB	350	550		MHz
	Noise figure (75)	$\mathrm{f}=100 \mathrm{MHz}$		4.8		dB
	Noise figure (50 2)	$\mathrm{f}=100 \mathrm{MHz}$		6.0		dB
	Saturated output power	$f=100 \mathrm{MHz}$		+7.0		dBm
	1 dB gain compression	$\mathrm{f}=100 \mathrm{MHz}$		+4.0		dBm
	Third-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+17		dBm
	Second-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+24		dBm
t_{R}	Rise time			5		ps
	Propagation delay			5		ps

Figure 1. Supply Current vs Supply Voltage

Figure 2. Noise Figure vs Frequency

Figure 3. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 5. Saturated Output Power vs Frequency

Figure 4. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 6. 1dB Gain Compression vs Frequency

Figure 8. Third-Order Intercept vs Supply Voltage

Figure 9. Input VSWR vs Frequency

Figure 11. Input (S_{11}) and Output (S_{22}) Return Loss vs Frequency

Figure 13. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 10. Output VSWR vs Frequency

Figure 12. Isolation vs Frequency ($\mathbf{S}_{\mathbf{1 2}}$)

Figure 14. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

THEORY OF OPERATION

The design is based on the use of multiple feedback loops to provide wide-band gain together with good noise figure and terminal impedance matches. Referring to the circuit schematic in Figure 15, the gain is set primarily by the equation:
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\left(R_{F 1}+R_{E 1} / R_{E 1}\right.$
which is series-shunt feedback. There is also shunt-series feedback due to $\mathrm{R}_{\mathrm{F} 2}$ and $\mathrm{R}_{\mathrm{E} 2}$ which aids in producing wide-band terminal impedances without the need for low value input shunting resistors that would degrade the noise figure. For optimum noise performance, $\mathrm{R}_{\mathrm{E} 1}$ and the base resistance of Q_{1} are kept as low as possible, while $R_{F 2}$ is maximized.

The noise figure is given by the following equation:
$N F=10 \log \left(1+\frac{\left[r_{b}+R_{E 1}+\frac{K T}{2 q C_{C 1}}\right]}{R_{O}}\right)$
where $\mathrm{I}_{\mathrm{C} 1}=5.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{r}_{\mathrm{b}}=130 \Omega$,
$\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{R}_{0}=50$ for a 50Ω
system and 75 for a 75Ω system.

The $D C$ input voltage level $V_{\text {IN }}$ can be determined by the equation:

$$
\mathrm{V}_{\mathrm{IN}^{\prime}}=\mathrm{V}_{\mathrm{BE} 1}+\left(\mathrm{l}_{\mathrm{C}_{1}}+\mathrm{l}_{\mathrm{C} 3}\right) \mathrm{R}_{\mathrm{E} 1}(3)
$$

where $\mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{~V}_{\mathrm{BE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 1}=5 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{C} 3}=7 \mathrm{~mA}$ (currents rated at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$).

Under the above conditions, V_{IN} is approximately equal to 1 V .
Level shifting is achieved by emitter-follower Q_{3} and diode Q_{4}, which provide shunt feedback to the emitter of Q_{1} via $R_{F 1}$. The use of an emitter-follower buffer in this feedback loop essentially eliminates problems of shunt-feedback loading on the output. The value of $\mathrm{R}_{\mathrm{F} 1}=140 \Omega$ is chosen to give the desired nominal gain. The DC output voltage $V_{\text {Out }}$ can be determined by:

$$
V_{\text {OUT }}=V_{C C-}\left(I_{C 2}+I_{C 6}\right) R 2,(4)
$$

where $V_{C C}=6 \mathrm{~V}, \mathrm{R}_{2}=225 \Omega, \mathrm{I}_{\mathrm{C} 2}=7 \mathrm{~mA}$ and $I_{\mathrm{C} 6}=5 \mathrm{~mA}$.
From here, it can be seen that the output voltage is approximately 3.3 V to give relatively equal positive and negative output swings. Diode Q_{5} is included for bias purposes to allow direct coupling of $\mathrm{R}_{\text {F2 }}$ to the base of Q_{1}. The dual feedback loops stabilize the DC operating point of the amplifier.
The output stage is a Darlington pair $\left(Q_{6}\right.$ and Q_{2}) which increases the DC bias voltage on
the input stage $\left(Q_{1}\right)$ to a more desirable value, and also increases the feedback loop gain. Resistor R_{0} optimizes the output VSWR (Voltage Standing Wave Ratio). Inductors L_{1} and L_{2} are bondwire and lead inductances which are roughly 3 nH . These improve the high-frequency impedance matches at input and output by partially resonating with 0.5 pF of pad and package capacitance.

POWER DISSIPATION

 CONSIDERATIONSWhen using the part at elevated temperature, the engineer should consider the power dissipation capabilities of each package.
At the nominal supply voltage of 6 V , the typical supply current is 25 mA (30 mA max). For operation at supply voltages other than 6 V , see Figure 1 for I_{cc} versus $\mathrm{V}_{c c}$ curves. The supply current is inversely proportional to temperature and varies no more than 1 mA between $25^{\circ} \mathrm{C}$ and either temperature extreme. The change is 0.1% per ${ }^{\circ} \mathrm{C}$ over the range.
The recommended operating temperature ranges are air-mount specifications. Better heat-sinking benefits can be realized by mounting the SO and N package bodies against the PC board plane.

Figure 15. Schematic Diagram

PC BOARD MOUNTING

In order to realize satisfactory mounting of the NE5204 to a PC board, certain techniques need to be utilized. The board must be double-sided with copper and all pins must be soldered to their respective areas (i.e., all GND and $V_{C C}$ pins on the package). The power supply should be decoupled with a capacitor as close to the $V_{C C}$ pins as possible, and an RF choke should be inserted between the supply and the device. Caution should be exercised in the connection of input and output pins. Standard microstrip should be observed wherever possible. There should be no solder bumps or burrs or any obstructions in the signal path to cause launching problems. The path should be as straight as possible and lead lengths as short as possible from the part to the cable connection. Another important consideration is that the input and output should be

AC-coupled. This is because at $V_{c c}=6 \mathrm{~V}$, the input is approximately at 1 V while the output is at 3.3 V . The output must be decoupled into a low-impedance system, or the DC bias on the output of the amplifier will be loaded down, causing loss of output power. The easiest way to decouple the entire amplifier is by soldering a high-frequency chip capacitor directly to the input and output pins of the device. This circuit is shown in Figure 16. Follow these recommendations to get the best frequency response and noise immunity. The board design is as important as the integrated circuit design itself.

SCATTERING PARAMETERS

The primary specifications for the NE5204 are listed as S-parameters. S-parameters are measurements of incident and reflected currents and voltages between the source,

Figure 16. Circuit Schematic for Coupling and Power Supply Decoupling
amplifier, and load as well as transmission losses. The parameters for a two-port network are defined in Figure 17.

a. Two-Port Network Defined

Figure 17.

Actual S-parameter measurements using an HP network analyzer (model 8505A) and an HP S-parameter tester (models 8503A/B) are shown in Figure 18.

Values for the figures below are measured and specified in the data sheet to ease adaptation and comparison of the NE/SA/SE5205 to other high-frequency amplifiers.
The most important parameter is S_{21}. It is defined as the square root of the power gain, and, in decibels, is equal to voltage gain as shown below:
$Z_{D}=Z_{\text {IN }}=Z_{\text {OUT }}$ for the NE/SA/SE5205

$\therefore \frac{P_{O U T}}{P_{I N}}=\frac{\frac{V_{O U T}{ }^{2}}{Z_{D}}}{\frac{V_{I N}{ }^{2}}{Z_{D}}}=\frac{V_{O U T}{ }^{2}}{V_{I N^{2}}}=P_{I}$
$P_{1}=V_{1}{ }^{2}$
$P_{1}=$ Insertion Power Gain
$V_{1}=$ Insertion Voltage Gain
Measured value for the
NE/SASE5205 $=\left|S_{21}\right|^{2}=100$
$\therefore P_{I}=\frac{P_{O U T}}{P_{I N}}=\left|S_{21}\right|^{2}=100$
and $V_{1}=\frac{V_{O U T}}{V_{\mathbb{N}}}=\sqrt{P_{I}}=S_{21}=10$
In decibels:
$P_{1(d B)}=10 \log \left|S_{21}\right|^{2}=20 \mathrm{~dB}$
$V_{1(d B)}=20 \log S_{21}=20 \mathrm{~dB}$
$\therefore P_{1(d B)}=V_{1(d B)}=S_{21(d B)}=20 d B$
Also measured on the same system are the respective voltage standing wave ratios. These are shown in Figure 19. The VSWR
can be seen to be below 1.5 across the entire operational frequency range.
Relationships exist between the input and output return losses and the voltage standing wave ratios. These relationships are as follows:
INPUT RETURN LOSS $=S_{11} \mathrm{~dB}$
$S_{11} d B=20 \log \left|S_{11}\right|$
OUTPUT RETURN LOSS $=\mathrm{S}_{22} \mathrm{~dB}$
$\mathrm{S}_{22} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{22}\right|$
INPUT VSWR=51.5
OUTPUT VSWR=s1.5

1DB GAIN COMPRESSION AND SATURATED OUTPUT POWER

The 1 dB gain compression is a measurement of the output power level where the small-signal insertion gain magnitude decreases 1 dB from its low power value. The decrease is due to nonlinearities in the amplifier, an indication of the point of transition between small-signal operation and the large signal mode.

The saturated output power is a measure of the amplifier's ability to deliver power into an external load. It is the value of the amplifier's output power when the input is heavily overdriven. This includes the sum of the power in all harmonics.

INTERMODULATION INTERCEPT TESTS

The intermodulation intercept is an expression of the low level linearity of the amplifier. The intermodulation ratio is the difference in dB between the fundamental output signal level and the generated distortion product level. The relationship between intercept and intermodulation ratio is illustrated in Figure 20, which shows product output levels plotted versus the level of the fundamental output for two equal strength
output signals at different frequencies. The upper line shows the fundamental output plotted against itself with a 1 dB to 1 dB slope. The second and third order products lie below the fundamentals and exhibit a 2:1 and 3:1 slope, respectively.

The intercept point for either product is the intersection of the extensions of the product curve with the fundamental output.

The intercept point is determined by measuring the intermodulation ratio at a single output level and projecting along the appropriate product slope to the point of intersection with the fundamental. When the intercept point is known, the intermodulation ratio can be determined by the reverse process. The second order IMR is equal to the difference between the second order intercept and the fundamental output level. The third order IMR is equal to twice the difference between the third order intercept and the fundamental output level. These are expressed as:

$$
\begin{aligned}
& \mathrm{IP}_{2}=\mathrm{P}_{\mathrm{OUT}}+\mathrm{IMR}_{2} \\
& \mathrm{IP}_{3}=\mathrm{P}_{\mathrm{OUT}}+\mathrm{IMR}_{3} / 2
\end{aligned}
$$

where Pout is the power level in dBm of each of a pair of equal level fundamental output signals, $I P_{2}$ and $I P_{3}$ are the second and third order output intercepts in dBm , and IMR_{2} and MR_{3} are the second and third order intermodulation ratios in dB . The intermodulation intercept is an indicator of intermodulation performance only in the small signal operating range of the amplifier. Above some output level which is below the 1 dB compression point, the active device moves into large-signal operation. At this point the intermodulation products no longer follow the straight line output slopes, and the intercept description is no longer valid. It is therefore important to measure $I P_{2}$ and $I P_{3}$ at output levels well below 1 dB compression. One

Figure 19. Input/Output VSWR vs Frequency
must be careful, however, not to select too low levels because the test equipment may not be able to recover the signal from the noise. For the NE/SA/SE5205 we have chosen an output level of -10.5 dBm with fundamental frequencies of 100.000 and 100.01 MHz , respectively. *5COL

ADDITIONAL READING ON SCATTERING PARAMETERS

For more information regarding
S-parameters, please refer to
High-Frequency Amplifiers by Ralph S. Carson of the University of Missouri, Rolla, Copyright 1985; published by John Wiley \& Sons, Inc.
"S-Parameter Techniques for Faster, More Accurate Network Design", HP App Note 95-1, Richard W. Anderson, 1967, HP Journal.
"S-Parameter Design", HP App Note 154, 1972.

Figure 20.

DESCRIPTION

The NE/SA/SE5205 is a high-frequency amplifier with a fixed insertion gain of 20 dB . The gain is flat to $\pm 0.5 \mathrm{~dB}$ from DC to 450 MHz , and the -3 dB bandwidth is greater than 600 MHz in the EC package. This performance makes the amplifier ideal for cable TV applications. For lower frequency applications, the part is also available in industrial standard dual in-line and small outline packages. The NE/SA/SE5205 operates with a single supply of 6 V , and only draws 24 mA of supply current, which is much less than comparable hybrid parts. The noise figure is 4.8 dB in a 75Ω system and 6 dB in a 50Ω system.
Until now, most RF or high-frequency designers had to settle for discrete or hybrid solutions to their amplification problems. Most of these solutions required trade-offs that the designer had to accept in order to use high-frequency gain stages. These include high-power consumption, large component count, transformers, large packages with heat sinks, and high part cost. The NE/SA/SE5205 solves these problems by incorporating a wide-band amplifier on a single monolithic chip.
The part is well matched to 50 or 75Ω input and output impedances. The Standing Wave Ratios in 50 and 75Ω systems do not exceed 1.5 on either the input or output from DC to the -3 dB bandwidth limit.

Since the part is a small monolithic IC die, problems such as stray capacitance are minimized. The die size is small enough to fit into a very cost-effective 8 -pin small-outline (SO) package to further reduce parasitic effects. A TO-46 metal can is also available that has a case connection for RF grounding which increases the -3dB frequency to 600 MHz . The Cerdip package is hermetically sealed, and can operate over the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

No external components are needed other than AC coupling capacitors because the NE/SA/SE5205 is internally compensated and matched to 50 and 75Ω. The amplifier has very good distortion specifications, with second and third-order intermodulation intercepts of +24 dBm and +17 dBm respectively at 100 MHz .
The device is ideally suited for 75Ω cable television applications such as decoder boxes, satellite receiver/decoders, and front-end amplifiers for TV receivers. It is also useful for amplified splitters and antenna amplifiers.
The part is matched well for 50Ω test equipment such as signal generators, oscilloscopes, frequency counters and all kinds of signal analyzers. Other applications at 50Ω include mobile radio, CB radio and data/video transmission in fiber optics, as well as broad-band LANs and telecom systems. A gain greater than 20 dB can be achieved by cascading additional NE/SA/SE5205s in series as required, without any degradation in amplifier stability.

FEATURES

- 600MHz bandwidth
- 20 dB insertion gain
- $4.8 \mathrm{~dB}(6 \mathrm{~dB})$ noise figure $\mathrm{ZO}=75 \Omega$ (ZO=50 $)$
- No external components required
- Input and output impedances matched to 50/75 Ω systems
- Surface mount package available
- MIL-STD processing available

PIN CONFIGURATIONS

N, FE, D Packages

APPLICATIONS

- 75Ω cable TV decoder boxes
- Antenna amplifiers
- Amplified splitters
- Signal generators
- Frequency counters
- Oscilloscopes
- Signal analyzers
- Broad-band LANs
- Fiber-optics
- Modems
- Mobile radio
- Security systems
- Telecommunications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE5205D
8 -Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE5205FE
8 -Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5205N
8 -Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA5205D
8 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5205N
8-Pin Cerdip	-40 to $+85^{\circ} \mathrm{C}$	SA5205FE
8 -Pin Cerdip	-55 to $+125^{\circ} \mathrm{C}$	SE5205FE
8 -Pin Plastic DIP	-55 to $+125^{\circ} \mathrm{C}$	SE5205N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage	9	V
$V_{\text {AC }}$	AC input voltage	5	$\mathrm{V}_{\mathrm{p} \text {-P }}$
T_{A}	Operating ambient temperature range NE grade SA grade SE grade	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
PDMAX	Maximum power dissipation, $T_{A}=25^{\circ} \mathrm{C}$ (still-air) ${ }^{1.2}$ FE package N package D package	$\begin{gathered} 780 \\ 1160 \\ 780 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \\ \mathrm{~mW} \\ \hline \end{gathered}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates:
$F E$ package at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2. See "Power Dissipation Considerations" section.

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{O}}=50 \Omega$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ in all packages, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5205			NE/SA5205			UNIT
			Min	Typ	Max	Min	Typ	Max	
	Operating supply voltage range	Over temperature	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	V
Icc	Supply current	Over temperature	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	24	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{array}{r} 20 \\ 19 \end{array}$	24	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
S21	Insertion gain	$f=100 \mathrm{MHz}$ Over temperature	$\begin{array}{r} 17 \\ 16.5 \end{array}$	19	$\begin{gathered} 21 \\ 21.5 \end{gathered}$	$\begin{gathered} 17 \\ 16.5 \end{gathered}$	19	$\begin{gathered} 21 \\ 21.5 \end{gathered}$	dB
S11	Input return loss	$\mathrm{f}=100 \mathrm{MHz} \mathrm{D}, \mathrm{N}$,		25			25		dB
		DC - f max D, N, FE	12			12			dB
S11	Input return loss	$\mathrm{f}=100 \mathrm{MHz}$ EC package					24		dB
		DC - $\mathrm{f}_{\text {MAX }}$ EC				10			dB
S22	Output return loss	$f=100 \mathrm{MHz} \mathrm{D}, \mathrm{N}$,		27			27		dB
		DC - $\mathrm{max}^{\text {m }}$	12			12			dB
S22	Output return loss	$\mathrm{f}=100 \mathrm{MHz} \mathrm{EC} \mathrm{package}$					26		dB
		DC - $f_{\text {max }}$				10			dB
S12	Isolation	$f=100 \mathrm{MHz}$		-25			-25		dB
		DC - fmax	-18			-18			dB
t_{n}	Rise time			5			5		ps
	Propagation delay			5			5		ps
BW	Bandwidth	$\pm 0.5 \mathrm{~dB} \mathrm{D}, \mathrm{N}$					450		MHz
$\mathrm{f}_{\text {max }}$	Bandwidth	$\pm 0.5 \mathrm{~dB} \mathrm{EC}$					500		MHz
$f_{\text {max }}$	Bandwidth	$\pm 0.5 \mathrm{~dB} \mathrm{FE}$		300			300		MHz
$f_{\text {max }}$	Bandwidth	-3dB D, N				550			MHz
$\mathrm{f}_{\text {MAX }}$	Bandwidth	$-3 \mathrm{dBEC}$				600			MHz
$\mathrm{f}_{\text {MAX }}$	Bandwidth	-3dB FE	400			400			MHz
	Noise figure (75 ${ }^{\text {) }}$	$f=100 \mathrm{MHz}$		4.8			4.8		dB
	Noise figure (50 2)	$f=100 \mathrm{MHz}$		6.0			6.0		dB
	Saturated output power	$\mathrm{f}=100 \mathrm{MHz}$		+7.0			+7.0		dBm
	1 dB gain compression	$\mathrm{f}=100 \mathrm{MHz}$		+4.0			+4.0		dBm
	Third-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+17			+17		dBm
	Second-order intermodulation intercept (output)	$\mathrm{f}=100 \mathrm{MHz}$		+24			+24		dBm

Figure 1. Supply Current vs Supply Voltage

Figure 3. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 5. Saturated Output Power vs Frequency

Figure 7. Second-Order Output Intercept vs Supply Voltage

Figure 2. Noise Figure vs Frequency

Figure 6. 1dB Gain Compression vs Frequency

Figure 8. Third-Order Intercept
vs Supply Voltage

Figure 12. Isolation vs Frequency (S_{12})

Figure 13. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 14. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

THEORY OF OPERATION

The design is based on the use of multiple feedback loops to provide wide-band gain together with good noise figure and terminal impedance matches. Referring to the circuit schematic in Figure 15, the gain is set primarily by the equation:

$$
\frac{V_{O U T}}{V_{I N}}=\frac{\left(R_{F 1}+R_{E 1}\right)}{R_{E 1}}
$$

which is series-shunt feedback. There is also shunt-series feedback due to $\mathrm{R}_{\mathrm{F} 2}$ and $\mathrm{R}_{\mathrm{E} 2}$ which aids in producing wideband terminal impedances without the need for low value input shunting resistors that would degrade the noise figure. For optimum noise performance, $\mathrm{R}_{\mathrm{E} 1}$ and the base resistance of Q_{1} are kept as low as possible while $R_{F 2}$ is (1) maximized.
where $\mathrm{I}_{\mathrm{C}_{1}}=5.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{r}_{\mathrm{b}}=130 \Omega$,
$\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{R}_{0}=50$ for a 50Ω system and 75 for a 75Ω system.
The DC input voltage level $\mathrm{V}_{\text {IN }}$ can be determined by the equation:

$$
V_{\mathbb{N}}=V_{B E 1}+\left(l_{C_{1}}+l_{C 3}\right) R_{E 1}
$$

where $\mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{~V}_{\mathrm{BE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 1}=5 \mathrm{~mA}$ and $\mathrm{l}_{\mathrm{C} 3}=7 \mathrm{~mA}$ (currents rated at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$).
Under the above conditions, $\mathrm{V}_{\text {IN }}$ is approximately equal to 1 V .
Level shifting is achieved by emitter-follower Q_{3} and diode Q_{4} which provide shunt feedback to the emitter of Q_{1} via $R_{F 1}$. The use of an emitter-follower buffer in this
feedback loop essentially eliminates problems of shunt feedback loading on the output. The value of $\mathrm{R}_{\mathrm{F} 1}=140 \Omega$ is chosen to give the desired nominal gain. The DC output voltage $\mathrm{V}_{\text {Out }}$ can be determined by:

$$
V_{\text {OUT }}=V_{C C-}-\left(l_{C_{2}}+l_{C 6}\right) R 2,(4)
$$

where $\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}, \mathrm{R}_{2}=225 \Omega, \mathrm{I}_{\mathrm{C} 2}=7 \mathrm{~mA}$ and $l_{\mathrm{C}}=5 \mathrm{~mA}$.

From here it can be seen that the output voltage is approximately 3.3 V to give relatively equal positive and negative output swings. Diode Q_{5} is included for bias purposes to allow direct coupling of $\mathrm{R}_{\mathrm{F} 2}$ to
the base of Q_{1}. The dual feedback loops stabilize the DC operating point of the amplifier.
The output stage is a Darlington pair (Q_{6} and Q_{2}) which increases the $D C$ bias voltage on the input stage $\left(Q_{1}\right)$ to a more desirable value, and also increases the feedback loop gain. Resistor R_{0} optimizes the output VSWR (Voltage Standing Wave Ratio). Inductors L_{1} and L_{2} are bondwire and lead inductances which are roughly 3 nH . These improve the high-frequency impedance matches at input and output by partially resonating with 0.5 pF of pad and package capacitance.

Figure 15. Schematic Diagram

POWER DISSIPATION CONSIDERATIONS

When using the part at elevated temperature, the engineer should consider the power dissipation capabilities of each package.
At the nominal supply voltage of 6 V , the typical supply current is 25 mA (30 mA Max). For operation at supply voltages other than 6 V , see Figure 1 for I_{cc} versus V_{cc} curves. The supply current is inversely proportional to temperature and varies no more than 1 mA between $25^{\circ} \mathrm{C}$ and either temperature extreme. The change is 0.1% per over the range.

The recommended operating temperature ranges are air-mount specifications. Better heat sinking benefits can be realized by mounting the D and EC package body against the PC board plane.

PC BOARD MOUNTING

In order to realize satisfactory mounting of the NE5205 to a PC board, certain techniques need to be utilized. The board must be double-sided with copper and all pins must be soldered to their respective areas (i.e., all GND and V_{Cc} pins on the SO
package). In addition, if the EC package is used, the case should be soldered to the ground plane. The power supply should be decoupled with a capacitor as close to the $V_{C C}$ pins as possible and an RF choke should be inserted between the supply and the device. Caution should be exercised in the connection of input and output pins. Standard microstrip should be observed wherever possible. There should be no solder bumps or burrs or any obstructions in the signal path to cause launching problems. The path should be as straight as possible and lead lengths as short as possible from the
part to the cable connection. Another important consideration is that the input and output should be AC coupled. This is because at $V_{c c}=6 \mathrm{~V}$, the input is approximately at 1 V while the output is at 3.3V. The output must be decoupled into a low impedance system or the DC bias on the output of the amplifier will be loaded down causing loss of output power. The easiest way to decouple the entire amplifier is by soldering a high frequency chip capacitor directly to the input and output pins of the device. This circuit is shown in Figure 16. Follow these recommendations to get the best frequency response and noise immunity. The board design is as important as the integrated circuit design itself.

SCATTERING PARAMETERS

The primary specifications for the NE/SA/SE5205 are listed as S-parameters. S-parameters are measurements of incident and reflected currents and voltages between the source, amplifier and load as well as transmission losses. The parameters for a two-port network are defined in Figure 17.

Actual S-parameter measurements using an HP network analyzer (model 8505A) and an HP S-parameter tester (models 8503A/B) are shown in Figure 18.

Values for the figures below are measured and specified in the data sheet to ease adaptation and comparison of the NE/SASE5205 to other high-frequency amplifiers.

Figure 30. Circuit Schematic for Coupling and Power Supply Decoupling

Figure 17a. Two-Port Network Defined

Figure 17b.

The most important parameter is S_{21}. It is defined as the square root of the power gain, and, in decibels, is equal to voltage gain as shown below:
$Z_{D}=Z_{\text {IN }}=Z_{\text {OUT }}$ for the NE/SA/SE5205

$P_{1}=V_{1}{ }^{2}$
$P_{I}=$ Insertion Power Gain
$V_{1}=$ Insertion Voltage Gain
Measured value for the
NE/SA/SE5205 $=\left|\mathrm{S}_{21}\right|^{2}=100$
$\therefore P_{1}=\frac{P_{\text {out }}}{P_{I N}}=\left|S_{21}\right|^{2}=100$
and $V_{l}=\frac{V_{O U T}}{V_{I N}}=\sqrt{P_{l}}=S_{21}=10$
In decibels:
$P_{1(d B)}=10 \log \left|S_{21}\right|^{2}=20 \mathrm{~dB}$
$V_{\text {(}(\mathrm{PB})}=20 \log \mathrm{~S}_{21}=20 \mathrm{~dB}$
$\therefore \mathrm{P}_{1(\mathrm{~dB})}=\mathrm{V}_{(\mathrm{dB})}=\mathrm{S}_{21(\mathrm{~dB})}=20 \mathrm{~dB}$
Also measured on the same system are the respective voltage standing wave ratios. These are shown in Figure 19. The VSWR can be seen to be below 1.5 across the entire operational frequency range.
Relationships exist between the input and output return losses and the voltage standing wave ratios. These relationships are as follows:
INPUT RETURN LOSS $=\mathrm{S}_{11} \mathrm{~dB}$ $\mathrm{S}_{11} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{11}\right|$
OUTPUT RETURN LOSS $=\mathrm{S}_{22} \mathrm{~dB}$ $\mathrm{S}_{22} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{22}\right|$

INPUT VSWR= ≤ 1.5
OUTPUT VSWR $=\leq 1.5$

1dB GAIN COMPRESSION AND SATURATED OUTPUT POWER

The 1 dB gain compression is a measurement of the output power level where the small-signal insertion gain magnitude decreases 1 dB from its low power value. The decrease is due to nonlinearities in the amplifier, an indication of the point of transition between small-signal operation and the large signal mode.

The saturated output power is a measure of the amplifier's ability to deliver power into an external load. It is the value of the amplifier's output power when the input is heavily overdriven. This includes the sum of the power in all harmonics.

INTERMODULATION INTERCEPT TESTS

The intermodulation intercept is an expression of the low level linearity of the amplifier. The intermodulation ratio is the difference in dB between the fundamental output signal level and the generated distortion product level. The relationship between intercept and intermodulation ratio is illustrated in Figure 20, which shows product output levels plotted versus the level of the fundamental output for two equal strength output signals at different frequencies. The upper line shows the fundamental output plotted against itself with a 1 dB to 1 dB slope. The second and third order products lie below the fundamentals and exhibit a 2:1 and 3:1 slope, respectively.

The intercept point for either product is the intersection of the extensions of the product curve with the fundamental output.

The intercept point is determined by measuring the intermodulation ratio at a single output level and projecting along the appropriate product slope to the point of intersection with the fundamental. When the intercept point is known, the intermodulation ratio can be determined by the reverse process. The second order IMR is equal to the difference between the second order intercept and the fundamental output level. The third order IMR is equal to twice the difference between the third order intercept and the fundamental output level. These are expressed as:

$$
\begin{aligned}
& \mathrm{IP}_{2}=\mathrm{P}_{\mathrm{ouT}}+\mathrm{IMR}_{2} \\
& \mathrm{IP}_{3}=\mathrm{P}_{\mathrm{OUT}+}+\mathrm{IMR}_{3} / 2
\end{aligned}
$$

where Pout is the power level in dBm of each of a pair of equal level fundamental output signals, $I \mathrm{P}_{2}$ and $\mathrm{I} \mathrm{P}_{3}$ are the second and third order output intercepts in dBm , and IMR_{2} and IMR_{3} are the second and third order intermodulation ratios in dB . The intermodulation intercept is an indicator of intermodulation performance only in the small signal operating range of the amplifier. Above some output level which is below the 1 dB compression point, the active device moves into large-signal operation. At this point the intermodulation products no longer follow the straight line output slopes, and the intercept description is no longer valid. It is therefore important to measure $I P_{2}$ and $I P_{3}$ at output levels well below 1 dB compression. One must be careful, however, not to select too low levels because the test equipment may not be able to recover the signal from the noise. For the NE/SA/SE5205 we have chosen an output level of -10.5 dBm with fundamental frequencies of 100.000 and 100.01 MHz , respectively.

a. Input VSWR vs Frequency

b. Output VSWR vs Frequency

Figure 19. Input/Output VSWR vs Frequency

ADDITIONAL READING ON

SCATTERING PARAMETERS

For more information regarding
S-parameters, please refer to
High-Frequency Amplifiers by Ralph S.
Carson of the University of Missouri, Rolla,
Copyright 1985; published by John Wiley \&
Sons, Inc.
"S-Parameter Techniques for Faster, More Accurate Network Design", HP App Note 95-1, Richard W. Anderson, 1967, HP Journal.
"S-Parameter Design", HP App Note 154, 1972.

Figure 20.

DESCRIPTION

The NE5209 represents a breakthrough in monolithic amplifier design featuring several innovations. This unique design has combined the advantages of a high speed bipolar process with the proven Gilbert architecture.
The NE5209 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The amplifier runs off a single 5 volt supply and consumes only 40 mA . The amplifier has high impedance (1kW) differential inputs. The output is 50 W differential. Therefore, the 5209 can simultaneously perform AGC, impedance transformation, and the balun functions.

The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building linear AGC systems.

FEATURES

- Gain to 1.5 GHz
- 850 MHz bandwidth
- High impedance differential input
- 50W differential output
- Single 5 V power supply
- 0-1V gain control pin
- $>60 \mathrm{~dB}$ gain control range at 200 MHz
- 26 dB maximum gain differential
- Exceptional $\mathrm{V}_{\text {Control }} / \mathrm{V}_{\text {GAIN }}$ linearity
- 7 dB noise figure minimum
- Full ESD protection
- Easily cascadable

APPLICATIONS

- Linear AGC systems
- Very linear AM modulator
- RF balun
- Cable TV multi-purpose amplifier
- Fiber optic AGC
- Radar
- User programmable fixed gain block
- Video
- Satellite receivers
- Cellular communications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$16-$ Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE5209D
$16-$ Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5209N
$16-$ Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA5209D
$16-$ Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5209N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	-0.5 to +8.0	V
P_{D}	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) $)^{1}$ $16-$ Pin Plastic DPP 16 -Pin Plastic SO	1450 1100	mW mW
$\mathrm{T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

16-Pin DIP: $\theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SO: $\theta_{J A}=110^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	$\mathrm{V}_{\mathrm{CC}_{1}=} \mathrm{V}_{\mathrm{CC} 2}=4.5$ to 7.0 V	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range NE Grade SA Grade	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature range NE Grade SA Grade	0 to +90 -40 to +105	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Icc	Supply current	DC tested	38	43	48	mA
		Over temperature ${ }^{1}$	30		55	mA
A_{V}	Voltage gain (single-ended in/single-ended out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	17	19	21	dB
		Over temperature ${ }^{1}$	16		22	dB
A_{V}	Voltage gain (single-ended in/differential out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	23	25	27	dB
		Over temperature ${ }^{1}$	22		28	dB
$\mathrm{R}_{\text {IN }}$	Input resistance (single-ended)	DC tested at $\pm 50 \mu \mathrm{~A}$	0.9	1.2	1.5	k Ω
		Over temperature ${ }^{1}$	0.8		1.7	k Ω
Rout	Output resistance (single-ended)	DC tested at $\pm 1 \mathrm{~mA}$	40	60	75	Ω
		Over temperature ${ }^{1}$	35		90	Ω
$\mathrm{V}_{\text {Os }}$	Output offset voltage (output referred)			± 20	± 100	mV
		Over temperature ${ }^{1}$			± 250	mV
$\mathrm{V}_{\text {IN }}$	DC level on inputs		1.6	2.0	2.4	V
		Over temperature ${ }^{1}$	1.4		2.6	V
V OUT	DC level on outputs		1.9	2.4	2.9	V
		Over temperature ${ }^{1}$	1.7		3.1	V
PSRR	Output offset supply rejection ratio (output referred)		20	45		dB
		Over temperature ${ }^{1}$	15			dB
$V_{B G}$	Bandgap reference voltage	$\begin{gathered} 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{Cc}}<7 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BG}}=10 \mathrm{k} \Omega \end{gathered}$	1.2	1.32	1.45	V
		Over temperature ${ }^{1}$	1.1		1.55	V

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
R_{BG}	Bandgap loading	Over temperature ${ }^{1}$	2	10		k Ω
$\mathrm{V}_{\text {AGC }}$	AGC DC control voltage range	Over temperature ${ }^{1}$		0-1.3		V
lbagc	AGC pin DC bias current	$0 \mathrm{~V}<\mathrm{V}_{\text {AGC }}<1.3 \mathrm{~V}$		-0.7	-6	$\mu \mathrm{A}$
		Over temperature ${ }^{1}$			-10	$\mu \mathrm{A}$

NOTES:

1. "Over Temperature Range" testing is as follows:

NE is 0 to $+70^{\circ} \mathrm{C}$
SA is -40 to $+85^{\circ} \mathrm{C}$
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature testing only.

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
BW	-3dB bandwidth		600	850		MHz
		Over temperature ${ }^{1}$	500			MHz
GF	Gain flatness	DC - 500 MHz		± 0.4		dB
		Over temperature ${ }^{1}$		± 0.6		dB
VImax	Maximum input voltage swing (single-ended) for linear operation ${ }^{2}$			200		$m V_{P-p}$
$V_{\text {OMAX }}$	Maximum output voltage swing (single-ended) for linear operation ${ }^{2}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		400		$m V_{P-P}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1.9		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
NF	Noise figure (unmatched configuration)	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=50 \mathrm{MHz}$		9.3		dB
$\mathrm{V}_{\text {IN-EQ }}$	Equivalent input noise voltage spectral density	$f=100 \mathrm{MHz}$		2.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
S12	Reverse isolation	$f=100 \mathrm{MHz}$		-60		dB
$\Delta \mathrm{G} / \Delta \mathrm{V}_{\mathrm{CC}}$	Gain supply sensitivity (single-ended)			0.3		dB / V
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain temperature sensitivity	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		0.013		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Input capacitance (single-ended)			2		pF
BW ${ }_{\text {AGC }}$	-3 dB bandwidth of gain control function			20		MHz
$\mathrm{PO}_{\mathrm{O}-1 \mathrm{~dB}}$	1 dB gain compression point at output	$f=100 \mathrm{MHz}$		-3		dBm
$\mathrm{P}_{1-1 \mathrm{~dB}}$	1 dB gain compression point at input	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=0.1 \mathrm{~V}$		-10		dBm
IP3out	Third-order intercept point at output	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}>0.5 \mathrm{~V}$		+13		dBm
$1 \mathrm{IP}_{\text {IN }}$	Third-order intercept point at input	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}<0.5 \mathrm{~V}$		+5		dBm
$\Delta \mathrm{G}_{\mathrm{AB}}$	Gain match output A to output B	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=1 \mathrm{~V}$		0.1		dB

NOTE:

1. "Over Temperature Range" testing is as follows:

NE is 0 to $+70^{\circ} \mathrm{C}$
SA is -40 to $+85^{\circ} \mathrm{C}$
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature testing only.
2. With $R_{L}>1 \mathrm{k} \Omega$, overload occurs at input for single-ended gain $<13 \mathrm{~dB}$ and at output for single-ended gain $>13 \mathrm{~dB}$. With $R_{L}=50 \Omega$, overload occurs at input for single-ended gain $<6 \mathrm{~dB}$ and at output for single-ended gain $>6 \mathrm{~dB}$.

NE5209 APPLICATIONS

The NE5209 is a wideband variable gain amplifier (VGA) circuit which finds many applications in the RF, IF and video signal processing areas. This application note describes the operation of the circuit and several applications of the VGA. The simplified equivalent schematic of the VGA is shown in Figure 1. Transistors Q1-Q6 form the wideband Gilbert multiplier input stage which is biased by current source 11. The top differential pairs are biased from a buffered and level-shifted signal derived from the $\mathrm{V}_{\mathrm{AGC}}$ input and the RF input appears at the lower differential pair. The circuit topology and layout offer low input noise and wide bandwidth. The second stage is a differential transimpedance stage with current feedback which maintains the wide bandwidth of the input stage. The output stage is a pair of emitter followers with 50Ω output impedance. There is also an on-chip bandgap reference with buffered output at 1.3 V , which can be used to derive the gain control voltage.
Both the inputs and outputs should be capacitor coupled or DC isolated from the signal sources and loads. Furthermore, the two inputs should be DC isolated from each other and the two outputs should likewise be DC isolated from each other. The NE5209 was designed to provide optimum performance from a 5 V power source. However, there is some range around this value ($4.5-7 \mathrm{~V}$) that can be used.
The input impedance is about $1 \mathrm{k} \Omega$. The main advantage to a differential input configuration is to provide the balun function. Otherwise, there is an advantage to common mode rejection, a specification that is not normally important to RF designs. The source impedance can be chosen for two different performance characteristics: Gain, or noise performance. Gain optimization will be
realized if the input impedance is matched to about $1 \mathrm{k} \Omega$. A $4: 1$ balun will provide such a broadband match from a 50Ω source. Noise performance will be optimized if the input impedance is matched to about 200 2 . A 2:1 balun will provide such a broadband match from a 50Ω source. The minimum noise figure can then be expected to be about 7dB. Maximum gain will be about 23 dB for a single-ended output. If the differential output is used and properly matched, nearly 30 dB can be realized. With gain optimization, the noise figure will degrade to about 8 dB . With no matching unit at the input, a 9 dB noise figure can be expected from a 50Ω source. If the source is terminated, the noise figure will increase to about 15 dB . All these noise figures will occur at maximum gain.
The NE5209 has an excellent noise figure vs gain relationship. With any VGA circuit, the noise performance will degrade with decreasing gain. The 5209 has about a 1.2 dB noise figure degradation for each 2 dB gain reduction. With the input matched for optimum gain, the 8 dB noise figure at 23 dB gain will degrade to about a 20 dB noise figure at 0 dB gain.
The NE5209 also displays excellent linearity between voltage gain and control voltage. Indeed, the relationship is of sufficient linearity that high fidelity AM modulation is possible using the NE5209. A maximum control voltage frequency of about 20 MHz permits video baseband sources for AM.

A stabilized bandgap reference voltage is made available on the NE5209 (Pin 7). For fixed gain applications this voltage can be resistor divided, and then fed to the gain control terminal (Pin 8). Using the bandgap voltage reference for gain control produces very stable gain characteristics over wide temperature ranges. The gain setting resistors are not part of the RF signal path,
and thus stray capacitance here is not important.

The wide bandwidth and excellent gain control linearity make the NE5209 VGA ideally suited for the automatic gain control (AGC) function in RF and IF processing in cellular radio base stations, Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber optic receivers for wideband data and video, and other radio communication applications. A typical AGC configuration using the NE5209 is shown in Figure 2. Three NE5209s are cascaded with appropriate AC coupling capacitors. The output of the final stage drives the full-wave rectifier composed of two UHF Schottky diodes BAT17 as shown. The diodes are biased by R1 and R2 to $V_{C C}$ such that a quiescent current of about 2 mA in each leg is achieved. An NE5230 low voltage op amp is used as an integrator which drives the $\mathrm{V}_{\mathrm{AGC}}$ pin on all three NE5209s. R3 and C3 filter the high frequency ripple from the full-wave rectified signal. A voltage divider is used to generate the reference for the non-inverting input of the op amp at about 1.7V. Keeping D3 the same type as D1 and D2 will provide a first order compensation for the change in Schottky voltage over the operating temperature range and improve the AGC performance. R6 is a variable resistor for adjustments to the op amp reference voltage. In low cost and large volume applications this could be replaced with a fixed resistor, which would result in a slight loss of the AGC dynamic range. Cascading three NE5209s will give a dynamic range in excess of 60 dB .

The NE5209 is a very user-friendly part and will not oscillate in most applications. However, in an application such as with gains in excess of 60 dB and bandwidth beyond 100 MHz , good PC board layout with proper supply decoupling is strongly recommended.

Figure 2. AGC Configuration Using Cascaded NE5209s

Figure 3. VGA AC Evaluation Board

Figure 4. Broadband Noise Optimization

Figure 5. Narrowband Noise Optimization

Figure 6. Broadband Gain Optimization

Figure 7. Narrowband Gain Optimization

Figure 8. Simple Amplifier Configuration

Figure 9 Unterminated Configuration

Figure 10. User-Programmable Fixed Gain Block

Figure 11. AM Modulator

Figure 13. Test Set-up 1 (Used for all Graphs)

Figure 14. Gain vs $V_{A G C}$ and $V_{C C}$

Figure 16. Voltage Gain vs Temperature and V_{CC}

Figure 15. Insertion Gain vs $\mathrm{V}_{\mathrm{AGC}}$ and Temperature

Figure 17. Supply Current vs Temperature and $V_{c C}$

Figure 18. Input Resistance vs Temperature

Figure 20. Output Bias Voltage vs Temperature and $\mathrm{V}_{\mathbf{c c}}$

Figure 19. Input Bias Voltage vs Temperature

Figure 21. DC Output Swing vs Temperature

Figure 22. Insertion Gain vs Frequency and $V_{\text {AGC }}$

Figure 24. Insertion Gain vs Temperature and $V_{C C}$

Figure 23. Insertion Gain vs Frequency and $V_{\text {Cc }}$

Figure 25. Output Return Loss vs Frequency

Figure 27. 1dB Gain Compression vs $V_{A G C}$

Figure 28. Third-Order Intermodulation Intercept vs $\mathbf{V}_{\text {AGC }}$

Figure 29. Noise Figure vs $V_{A G C}$

Figure 31. Bandgap Voltage vs Temperature and $V_{C C}$

Figure 32. Fixed Gain vs Temperature

TOP VIEW - COMPONENT SIDE

TOP VIEW - SOLDER SIDE
AGC Configuration Using Cascaded NE5209s - Layout

TOP VIEW - COMPONENT SIDE

TOP VIEW - SOLDER SIDE

DESCRIPTION

The NE5219 represents a breakthrough in monolithic amplifier design featuring several innovations. This unique design has combined the advantages of a high speed bipolar process with the proven Gilbert architecture.
The NE5219 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The amplifier runs off a single 5 volt supply and consumes only 40 mA . The amplifier has high impedance ($1 \mathrm{k} \Omega$) differential inputs. The output is 50Ω differential. Therefore, the 5219 can simultaneously perform AGC, impedance transformation, and the balun functions.
The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building linear AGC systems.

FEATURES

- 700 MHz bandwidth
- High impedance differential input
- 50Ω differential output
- Single 5V power supply
- 0-1V gain control pin
- $>60 \mathrm{~dB}$ gain control range at 200 MHz
- 26 dB maximum gain differential
- Exceptional $V_{\text {control }} / V_{\text {gain }}$ linearity
- 7 dB noise figure minimum
- Full ESD protection
- Easily cascadable

APPLICATIONS

- Linear AGC systems
- Very linear AM modulator
- RF balun
- Cable TV multi-purpose amplifier
- Fiber optic AGC
- Radar
- User programmable fixed gain block
- Video
- Satellite receivers
- Cellular communications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$16-$ Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE5219D
$16-$ Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5219N
$16-$ Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA5219D
$16-$ Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5219N

PIN CONFIGURATION

$V_{C C 1} 1$	$16 \mathrm{VCC2}$
GND 12	15 GND
$\mathrm{Na}_{\mathrm{A}}{ }^{3}$	$14 \mathrm{OUT}_{\mathbf{A}}$
$\mathrm{GND}_{1} 4$	13 GND ${ }^{\text {a }}$
$\mathrm{N}_{\mathrm{B}} 5$	$12 \mathrm{OUT}_{\mathrm{B}}$
$\mathrm{GND}_{1} 6$	$11 . \mathrm{GND}_{2}$
$V_{B G}$	$10 \mathrm{GND}_{2}$
$\mathrm{V}_{\text {AGC }}{ }^{8}$	$9 \mathrm{GND}_{2}$

Wideband variable gain amplifier

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	-0.5 to +8.0	V
P_{D}	Power dissipation, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ (still air) $)^{1}$ $16-\mathrm{Pin}$ Plastic DIP $16-\mathrm{Pin}$ Plastic SO	1450 1100	mW
mW			
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

16-Pin DIP: $\theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SO: $\theta_{J A}=110^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=4.5$ to 7.0 V	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range NE Grade SA Grade	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$
T_{J}		0 O	
0 to +90 NE Grade SA Grade	-40 to +105		

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
I_{cc}	Supply current	DC tested	36	43	50	mA
A_{V}	Voltage gain (single-ended in/single-ended out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	16	19	22	dB
A_{V}	Voltage gain (single-ended in/differential out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	22	25	28	dB
$\mathrm{R}_{\text {IN }}$	Input resistance (single-ended)	DC tested at $\pm 50 \mu \mathrm{~A}$	0.8	1.2	1.6	$\mathrm{k} \Omega$
Rout	Output resistance (single-ended)	DC tested at $\pm 1 \mathrm{~mA}$	35	60	80	Ω
$\mathrm{V}_{\text {Os }}$	Output offset voltage (output referred)			± 20	± 150	mV
$\mathrm{V}_{\text {IN }}$	DC level on inputs		1.6	2.0	2.4	V
V OUT	DC level on outputs		1.9	2.4	2.9	V
PSRR	Output offset supply rejection ratio		18	45		dB
$V_{B G}$	Bandgap reference voltage	$\begin{gathered} 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<7 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BG}}=10 \mathrm{k} \Omega \end{gathered}$	1.2	1.32	1.45	V
R_{BG}	Bandgap loading		2	10		k Ω
$V_{\text {AGC }}$	AGC DC control voltage range			0-1.3		V
Ibagc	AGC pin DC bias current	$\mathrm{OV}<\mathrm{V}_{\text {AGC }}<1.3 \mathrm{~V}$		-0.7	-6	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, V_{C C 1}=V_{C C 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
BW	-3dB bandwidth			700		MHz
GF	Gain flatness	DC - 500MHz		± 0.4		dB
$V_{\text {Imax }}$	Maximum input voltage swing (single-ended) for linear operation ${ }^{1}$			200		$\mathrm{mV} \mathrm{P}_{\text {- }}$.
$V_{\text {OMAX }}$	Maximum output voltage swing (single-ended) for linear operation ${ }^{1}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		400		$\mathrm{mV} \mathrm{P}^{\text {P }}$ P
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1.9		V_{P-P}
NF	Noise figure (unmatched configuration)	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=50 \mathrm{MHz}$		9.3		dB
$V_{\text {IN-EQ }}$	Equivalent input noise voltage spectral density	$f=100 \mathrm{MHz}$		2.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
S12	Reverse isolation	$f=100 \mathrm{MHz}$		-60		dB
$\Delta \mathrm{G} / \Delta \mathrm{V}_{\mathrm{CC}}$	Gain supply sensitivity (single-ended)			0.3		dB/V
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain temperature sensitivity	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		0.013		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
C_{IN}	Input capacitance (single-ended)			2		pF
$\mathrm{BW}_{\text {AGc }}$	-3dB bandwidth of gain control function			20		MHz
$\mathrm{P}_{\mathrm{O}-1 \mathrm{~dB}}$	1 dB gain compression point at output	$f=100 \mathrm{MHz}$		-3		dBm
$\mathrm{P}_{1-1 \mathrm{~dB}}$	1 dB gain compression point at input	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=0.1 \mathrm{~V}$		-10		dBm
IP3OUT	Third-order intercept point at output	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}>0.5 \mathrm{~V}$		+13		dBm
$\mathrm{IP3}_{\text {IN }}$	Third-order intercept point at input	$f=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}<0.5 \mathrm{~V}$		+5		dBm
$\Delta \mathrm{G}_{\text {AB }}$	Gain match output A to output B	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=1 \mathrm{~V}$		0.1		dB

NOTE:

1. With $R_{L}>1 k \Omega$, overload occurs at input for single-ended gain $<13 \mathrm{~dB}$ and at output for single-ended gain $>13 \mathrm{~dB}$. With $R_{L}=50 \Omega$, overload occurs at input for single-ended gain < 6dB and at output for single-ended gain > 6dB.

NE5219 APPLICATIONS

The NE5219 is a wideband variable gain amplifier (VGA) circuit which finds many applications in the RF, IF and video signal processing areas. This application note describes the operation of the circuit and several applications of the VGA. The simplified equivalent schematic of the VGA is shown in Figure 1. Transistors Q1-Q6 form the wideband Gilbert multiplier input stage which is biased by current source 11. The top differential pairs are biased from a buffered and level-shifted signal derived from the $V_{\text {AGC }}$ input and the RF input appears at the lower differential pair. The circuit topology and layout offer low input noise and wide bandwidth. The second stage is a differential transimpedance stage with current feedback which maintains the wide bandwidth of the input stage. The output stage is a pair of emitter followers with 50Ω output impedance. There is also an on-chip bandgap reference with buffered output at 1.3 V , which can be used to derive the gain control voltage.
Both the inputs and outputs should be capacitor coupled or DC isolated from the signal sources and loads. Furthermore, the two inputs should be DC isolated from each other and the two outputs should likewise be

DC isolated from each other. The NE5219 was designed to provide optimum performance from a 5 V power source. However, there is some range around this value ($4.5-7 \mathrm{~V}$) that can be used.

The input impedance is about $1 \mathrm{k} \Omega$. The main advantage to a differential input configuration is to provide the balun function. Otherwise, there is an advantage to common mode rejection, a specification that is not normally important to RF designs. The source impedance can be chosen for two different performance characteristics: Gain, or noise performance. Gain optimization will be realized if the input impedance is matched to about $1 \mathrm{k} \Omega$. A $4: 1$ balun will provide such a broadband match from a 50Ω source. Noise performance will be optimized if the input impedance is matched to about 200 Ω. A 2:1 balun will provide such a broadband match from a 50Ω source. The minimum noise figure can then be expected to be about 7 dB . Maximum gain will be about 23 dB for a single-ended output. If the differential output is used and properly matched, nearly 30 dB can be realized. With gain optimization, the noise figure will degrade to about 8 dB . With no matching unit at the input, a 9 dB noise figure can be expected from a 50Ω source. If
the source is terminated, the noise figure will increase to about 15 dB . All these noise figures will occur at maximum gain.

The NE5219 has an excellent noise figure vs gain relationship. With any VGA circuit, the noise performance will degrade with decreasing gain. The 5219 has about a 1.2 dB noise figure degradation for each 2 dB gain reduction. With the input matched for optimum gain, the 8 dB noise figure at 23 dB gain will degrade to about a 20 dB noise figure at 0 dB gain.
The NE5219 also displays excellent linearity between voltage gain and control voltage. Indeed, the relationship is of sufficient linearity that high fidelity AM modulation is possible using the NE5219. A maximum control voltage frequency of about 20 MHz permits video baseband sources for AM.

A stabilized bandgap reference voltage is made available on the NE5219 (Pin 7). For fixed gain applications this voltage can be resistor divided, and then fed to the gain control terminal (Pin 8). Using the bandgap voltage reference for gain control produces very stable gain characteristics over wide temperature ranges. The gain setting resistors are not part of the RF signal path,

Wideband variable gain amplifier

and thus stray capacitance here is not important.

The wide bandwidth and excellent gain control linearity make the NE5219 VGA ideally suited for the automatic gain control (AGC) function in RF and IF processing in cellular radio base stations, Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber optic receivers for wideband data and video, and other radio communication applications. A typical AGC configuration using the NE5219 is shown in Figure 2. Three NE5219s are cascaded with appropriate AC coupling capacitors. The output of the final stage drives the full-wave
rectifier composed of two UHF Schottky diodes BAT17 as shown. The diodes are biased by R1 and R2 to $V_{c c}$ such that a quiescent current of about 2 mA in each leg is achieved. An NE5230 low voltage op amp is used as an integrator which drives the $\mathrm{V}_{\mathrm{AGC}}$ pin on all three NE5219s. R3 and C3 filter the high frequency ripple from the full-wave rectified signal. A voltage divider is used to generate the reference for the non-inverting input of the op amp at about 1.7V. Keeping D3 the same type as D1 and D2 will provide a first order compensation for the change in Schottky voltage over the operating temperature range and improve the AGC
performance. R6 is a variable resistor for adjustments to the op amp reference voltage. In low cost and large volume applications this could be replaced with a fixed resistor, which would result in a slight loss of the AGC dynamic range. Cascading three NE5219s will give a dynamic range in excess of 60dB.
The NE5219 is a very user-friendly part and will not oscillate in most applications. However, in an application such as with gains in excess of 60 dB and bandwidth beyond 100 MHz , good PC board layout with proper supply decoupling is strongly recommended.

Figure 1. Equivalent Schematic of the VGA

Figure 2. AGC Configuration Using Cascaded NE5219s

Figure 3. VGA AC Evaluation Board

Figure 4. Broadband Noise Optimization

Figure 5. Narrowband Noise Optimization

Wideband variable gain amplifier

This circuit will exhibit about an 8dB noise figure with 24dB gain.

Figure 6. Broadband Gain Optimlzation

Figure 7. Narrowband Gain Optimization

Flgure 8. Simple Amplifier Configuration

Figure 9 Unterminated Configuration

Figure 11. AM Modulator

Figure 13. Test Set-up 1 (Used for all Graphs)

Wideband variable gain amplifier

Figure 14. Gain vs $V_{A G C}$ and $V_{C C}$

Figure 16. Voltage Gain vs Temperature and $V_{C C}$

Figure 15. Insertion Gain vs $V_{A G C}$ and Temperature

Figure 17. Supply Current vs Temperature and $V_{C C}$

Wideband variable gain amplifier

Figure 18. Input Resistance vs Temperature

Figure 20. Output Blas Voltage vs Temperature and V_{cc}

Figure 19. Input Bias Voltage vs Temperature

Figure 21. DC Output Swing vs Temperature

Wideband variable gain amplifier

Figure 22. Insertion Gain vs Frequency and VAGC

Figure 24. Insertion Gain vs Temperature and $V_{C C}$

Figure 23. Insertion Gain vs Frequency and $V_{\text {cc }}$

Figure 25. Output Return Loss vs Frequency

Figure 26. Reverse Isolation vs Frequency

Figure 28. Third-Order Intermodulation Intercept vs $\mathrm{V}_{\text {AGC }}$

Figure 27. 1dB Gain Compression vs $\mathrm{V}_{\text {AGC }}$

Figure 29. Noise Figure vs $\mathrm{V}_{\mathrm{AGC}}$

Figure 31. Bandgap Voltage vs Temperature and V_{Cc}

Figure 32. Fixed Gain vs Temperature

BOTTOM VIEW - D Package

TOP VIEW - D Package

VGA AC Evaluation Board Layout (SO Package)

Matched quad high-performance low-voltage operational amplifier

DESCRIPTION

The NE/SA5234 is a matched, low voltage, high performance quad operational amplifier. Among its unique input and output characteristics is the capability for both input and output rail-to-rail operation, particularly critical in low voltage applications. The output swings to less than 50 mV of both rails across the entire power supply range. The NE/SA5234 is capable of delivering 5.5 V peak-to-peak across a 600Ω load and will typically draw only $700 \mu \mathrm{~A}$ per amplifier. The bandwidth is 2.5 MHz and the 1% settling time is $1.4 \mu \mathrm{~s}$.

FEATURES

- Wide common-mode input voltage range: 250 mV beyond both rails
- Output swing within 50 mV of both rails
- Functionality to 1.8 V typical
- Low current consumption: $700 \mu \mathrm{~A}$ per amplifier
- $\pm 15 \mathrm{~mA}$ output current capability
- Unity gain bandwidth: 2.5 MHz
- Slew rate: $0.8 \mathrm{~V} / \mu \mathrm{s}$
- Low noise: $25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Electrostatic discharge protection
- Short-circuit protection
- Output inversion prevention

APPLICATIONS

- Automotive electronics
- Signal conditioning and sensing amplification
- Portable instrumentation
- Test and measurement
- Medical monitors and diagnostics
- Remote meters
- Audio equipment
- Security systems
- Communications
- Pagers
- Cellular telephone
- LAN
- 5V Datacom bus
- Error amplifier in motor drives
- Transducer buffer amplifier

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE5234D
14-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5234N
14 -Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA5234D
14 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5234N

Matched quad high-performance low-voltage

 operational amplifier
ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage	7	V
$V_{\text {ESd }}$	ESD protection voltage at any pin ${ }^{5}$ human body model robot model	$\begin{gathered} 2000 \\ 200 \end{gathered}$	$\stackrel{v}{v}$
$\mathrm{V}_{\text {S }}$	Dual supply voltage	± 3.5	V
$V_{\text {DP }}$	Voltage at any device pin ${ }^{1}$	$\mathrm{V}_{\mathrm{S} \pm} \pm 0.5$	V
l_{DP}	Current into any device pin ${ }^{1}$	± 50	mA
$\mathrm{V}_{\text {IN }}$	Differential input voltage ${ }^{2}$	0.5	V
V_{CM}	Common-mode input voltage (positive)	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{CM}	Common-mode input voltage (negative)	$\mathrm{V}_{\text {EE }}-0.5$	V
P_{D}	Power dissipation ${ }^{3}$	500	mW
T_{J}	Operating junction temperature ${ }^{3}$	+150	${ }^{\circ} \mathrm{C}$
$V_{\text {Sc }}$	Supply voltage allowing indefinite output short circuit to either rail 3 ,4	7	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T Sold	Lead soldering temperature (10 sec max)	+300	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance 14 pin Plastic DIP 14 pin Plastic SO	$\begin{aligned} & 80 \\ & 115 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

NOTES:

1. Each pin is protected by ESD diodes. The voltage at any pin is limited by the ESD diodes.
2. The differential input of each amplifier is limited by two internal diodes, connected in parallel and opposite to each other. For more differential input range, use differential resistors in series with the input pins.
3. The maximum operating junction temperature is $+150^{\circ} \mathrm{C}$. At elevated temperatures, devices must be derated according to the package thermal resistance and device mounting conditions. Derates above $+25^{\circ} \mathrm{C}$: F package at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} ; \mathrm{N}$ package at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$; D package at $6.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Simultaneous short circuits of two or more amplifiers to the positive or negative rail can exceed the power dissipation ratings and cause eventual destruction of the device.
5. Guaranteed by design.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	+2 to +5.5	V
$\mathrm{~V}_{\mathrm{S}}$	Dual supply voltage	± 1 to ± 2.75	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage (positive)	$\mathrm{V}_{\mathrm{CC}}+0.25$	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage (negative)	$\mathrm{V}_{\mathrm{EE}}-0.25$	V
$\mathrm{~T}_{\mathrm{A}}$	Temperature		
	NE	0 to +70	${ }^{\circ} \mathrm{C}$
	SA	-40 to +85	${ }^{\circ} \mathrm{C}$

Matched quad high-performance low-voltage operational amplifier

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
Icc	Supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		2.8	3.5		2.8	3.5	mA
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ over full temperature range		3.0	4.2		3.2	4.3	mA
$\mathrm{V}_{\text {OS }}$	Offset voltage			± 0.2	± 4		± 0.2	± 4	mV
		Over full temperature range		± 0.4	± 5		± 0.6	± 5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset voltage drift with temperature			4			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {os }}$	Offset voltage difference between any amplifiers in the same package at the common mode level ${ }^{1}$			0.4	3		0.4	3	mV
		Over full temperature range		0.8	4		1.2	4	mV
los	Offset current			± 3	± 20		± 3	± 30	nA
		Over full temperature range		± 4	± 30		± 6	± 60	nA
$\Delta \mathrm{l}_{\mathrm{OS}} / \Delta \mathrm{T}$	Offset current drift with temperature			0.02	$\pm .3$		0.03	$\pm .3$	$n{ }^{\prime}{ }^{\circ} \mathrm{C}$
I_{B}	Input bias current ${ }^{1}$	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}$	-150	-90		-150	-90		nA
		Over full temperature range	-175	-100		-200	-150		nA
		$\mathrm{V}_{\mathrm{EE}}+1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$		25	70		25	75	nA
		Over full temperature range		35	100		35	120	nA
$\Delta I_{B} / \Delta T$	Input bias current drift with temperature			0.5			0.5		$n \mathrm{~A} /^{\circ} \mathrm{C}$
Δl_{B}	Input bias current difference between any amplifier in the same package at the same common mode level.	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}$		10	30		10	30	nA
		Over full temperature range		25	50		50	70	nA
		$\mathrm{V}_{\mathrm{EE}}+1 \mathrm{~V}<\mathrm{V}_{\text {CM }}<\mathrm{V}_{\mathrm{CC}}$		5	20		5	20	nA
		Over full temperature range		15	30		25	50	nA
$\mathrm{V}_{C M}$	Common-mode input range	$V_{\text {OS }} \leq 6 \mathrm{mV}$	$\mathrm{V}_{\mathrm{EE}}-0.25$		$\mathrm{V}_{\mathrm{cc}+0.25}$	$\mathrm{V}_{\mathrm{EE}}-0.25$		$\mathrm{V}_{\mathrm{cc}+0.25}$	V
		$V_{\text {Os }} \leq 6 \mathrm{mV}$ over full temperature range	$\mathrm{V}_{\mathrm{EE}-0.1}$		$V_{\text {cc }}+0.1$	$\mathrm{V}_{\mathrm{EE}-}-0.1$		$V_{C C}+0.1$	V
CMRR	Common-mode rejection ratio, small signal	$\begin{array}{\|l} V_{E E}<V_{C M}<V_{E E}+0.5 V \\ V_{E E}+1 \end{array}<V_{C M}<V_{C C}$	90	100		90	100		dB
		Over full temperature range	90	100		80	90		dB
	Common-mode rejection ratio, large signal	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$		100			100		dB
		Over full temperature range		90			90		dB
PSRR	Power supply rejection ratio	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$	80	100		80	100		dB
		Over full temperature range	80	90		80	90		dB

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
IL	Peak load current, sink and source		10	15		10	15		mA
		Over full temperature range range	5	10		5	10		mA
$A_{\text {VOL }}$	Open-loop voltage gain		90	110		90	110		dB
		Over full temperature range		90			90		dB
Vout	Output voltage swing	$\mathrm{I}_{\text {PEAK }}=0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{EE}+}+0.05$		$\mathrm{V}_{\text {cc- }} 0.05$	$\mathrm{V}_{\text {EE }}+0.1$		$\mathrm{V}_{\text {cc- }} 0.1$	V
		$\mathrm{IPEAK}^{\text {P }} 10 \mathrm{~mA}$	$\mathrm{V}_{\text {EE }}+0.25$		$\mathrm{V}_{\mathrm{cc}}-0.25$	$\mathrm{V}_{\mathrm{EE}+0.25}$		$\mathrm{V}_{\mathrm{cc}}-0.25$	V
		$\mathrm{I}_{\text {PEAK }}=5 \mathrm{~mA}$ over full temp range	$\mathrm{V}_{\mathrm{EE}}+0.22$		$V_{\text {cc }}-0.2$	$\mathrm{V}_{\text {EE }}+0.2$		$\mathrm{V}_{\mathrm{cc}}-0.2$	V
	Output voltage swing for $\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.75 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{EE}+}+0.2$		$\mathrm{V}_{\mathrm{cc}}-0.2$	$\mathrm{V}_{\mathrm{EE}}+0.2$		$\mathrm{V}_{\mathrm{cc}}-0.2$	V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$V_{\text {EEE }}+0.25$		$\mathrm{V}_{\text {cc- }} 0.25$	$\mathrm{V}_{\mathrm{EEE}}+0.25$		$\mathrm{V}_{\mathrm{cc}}-0.25$	V

NOTES:

1. These parameters are measured for $V_{E E}<V_{C M}<V_{E E}+.5 \mathrm{~V}$ and for $\mathrm{V}_{E E}+1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$. By design these parameters are intermediate for common mode ranges between the measured regions.
AC ELECTRICAL CHARACTERISTICS $T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2$ to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ;$ unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA/SE5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew rate	Over full temperature range	. 5	0.8		. 5	0.8		$\mathrm{V} / \mu \mathrm{s}$
BW	Unity gain bandwidth: -3dB	Over full temperature range	2	2.5	4.0	2	2.5	4.0	MHz
θ_{M}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		55			55		deg
t_{5}	1\% settling time	$A_{V}=1,1 \mathrm{~V}$ step		1.4			1.4		$\mu \mathrm{s}$
V_{N}	Input referred voltage noise	$\begin{gathered} \mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{S}}=0 \Omega, \text { at } \\ 1 \mathrm{kHz} \end{gathered}$		25			25		$\begin{gathered} n \mathrm{nV} / 2 \\ \mathrm{~Hz}^{1 / 2} \end{gathered}$
THD	Total harmonic distortion	$10 \mathrm{kHz}, 1 \mathrm{~V}_{\text {p-p }}, A_{V}=1$		0.1			0.1		\%

OUTPUT INVERSION PREVENTION

Author: L. Hadley

I. SUMMARY

The NE/SA5234 is a unique low-voltage quad operational amplifier specifically designed to operate in a broadly diverse environment. It is an enhanced pin-for-pin replacement for the LM324 category of devices. Supply conditions can range from 1.8 V to 6.0 V with a resultant current drain of $2.8 \mathrm{~mA},-700 \mu \mathrm{~A}$ per op amp.

Most notable are the input and output dynamic range characteristics of the individual op amps. The common-mode input voltage can actually exceed the positive and negative supply rails by 250 mV with no danger of output latching or polarity reversal. In addition, the output of each op amp will swing to within 50 mV of the supply rails over the full supply range.

The frequency related characteristics are also above average for low voltage devices in this class. Internal unity gain compensation makes the NE5234 very resistant to any tendency to oscillate in low closed-loop gain configurations. Even so, a unity-gain bandwidth of 2.5 MHz is retained. Slew rate is $0.8 \mathrm{~V} / \mu \mathrm{s}$ and each op amp will settle to a 1% of nominal level within $1.4 \mu \mathrm{~s}$.

II. DETAILED DESCRIPTION

Input Stage

The input differential amplifier consists of a compound transistor structure of parallel NPN and PNP transistors which account for the unique over-drive characteristics of the NE5234. Referring to Figure 1, it is seen that the NPN pair, Q1 and Q2, allow the input to operate in the common-mode input voltage range of 1 V above V_{EE}. This region is designated the N -mode region in Figure 3 a . Operation in the common-mode range below 1 V transfers the input stage into the P -mode of operation.

In the N -mode operating condition, collector current from Q1 and Q2 is summed in the output emitter node of Q10 and Q12 respectively. Q1's base is the non-inverting input and Q2's base the inverting input node for the amplifier.

Linear operation between the two modes is governed by a current steering circuit consisting of Q5,6 and 7 in conjunction with voltage reference VB1. Operation in the

Figure 1. NE5234 Input Stage
N -region of the common-mode range will automatically cause Q5 to transfer the IB1 current source to Q7 and the NPN transistor pair Q1 and Q2. Operation below the 1V level at the inputs allows the current from IB1 to be fed directly to Q3 and Q4 emitters giving them priority in processing the signal and linearizing their transfer function. (The sum of the NPN and PNP input pair currents remain constant.)

Operation in the common-mode range near the positive supply rail would normally cause the input stage NPN transistor's base collector junction to become forward biased (base current flow directly to the collector circuit) reversing the collector current flow direction. In a conventional op amp, this would have the adverse effect of reversing the output signal polarity as the operating region is traversed by the input signal. (see Figure 2)

To prevent this from occurring, large geometry diode-connected transistors are cross-connected to the opposite NPN collector, (Q1, Q2). This current, in turn, is summed at the emitter of Q12 pulling it above the V_{CC} rail voltage and preventing polarity reversal. The inverse condition occurs when Q2 is driven above the positive rail, with Q10 emitter being pulled up and signal polarity preserved. (See Figure 1)

Figure 2. Output Inversion Protection

For negative going input signals, which drive the inputs toward the V_{EE} rail and below, another set of diode-connected transistors come into operation. These steer the current from the input into Q8 or Q9 emitter circuits again preventing the reversal effect.

Figure 3 shows graphically how the N and P mode transitions relate to the common-mode input voltage and the offset voltage $V_{O S}$.

Intermediate Amplifier and Output Stage (Figure 4)

The intermediate stage is isolated from the input amplifier by emitter followers to prevent any adverse loading effect. This stage adds gain to the over all amplifier and translates levels for the following class-AB current-control driver. Note that I_{2} is the inverting input and l_{1} the non-inverting input. The output is taken from multiple collectors on the non-inverting side and provides matching for the following stage.

Class-AB control of the output stage is achieved by Q61 and Q62 with the associated output current regulators. These act to monitor the smallest current of the non-load supporting output transistor to keep it in conduction. Thus, neither Q71 or Q81 is allowed to cutoff but is forced to remain in the proper Class-AB region.
Overload protection is provided by monitor circuits consisting of R76-D2 for sinking and R86-D3 for sourcing condition at the output. When the output current, source or sink,
reaches 15 milliamperes, drive current to the stage is shunted away from current sources IB6 or IB9 reducing base current to driver transistors Q72 and Q82 respectively.

The prevention of saturation in the output stage is achieved by saturation detectors Q78 and Q88. When either Q71 or Q81 approaches saturation, current is shunted away from the driver transistors, Q72 or Q83 respectively.

III. CHARACTERISTICS

Internal Frequency Compensation

The use of nested Miller capacitors C2 through C 6 , in the intermediate and output sections, provides the overall frequency compensation for the amplifier. The dominant pole setting capacitor, C 2 , provides a constant $6 \mathrm{~dB} /$ octave roll-off to below the unity gain frequency of 2.5 MHz . Figure 5 shows the measured frequency response plot for various values of closed-loop gains.

Figure 5. NE5234 Closed Loop Gain vs Frequency

Figure 6. Test Circuit

IV. NOISE REFERRED TO THE INPUT

The typical spectral voltage noise referred to each of the op amps in the NE/SA5234 is specified to be $25 \mathrm{nV} / \mathrm{NHz}$. Current noise is not specified. In the interest of providing a balance of information on the device parameters, a small sample of the standard NE5234s, were tested for input noise current. While this data does not represent a specification, it will give the designer a ball park figure to work with when beginning a particular design with the device. For completeness I have provided the corresponding spectral noise voltage data for the same sample. The data was taken using an HP3585A spectrum analyzer which has the capability of reading noise in $\mathrm{nV} / \mathrm{VHz}$.

The test circuit is shown in Figure 6. As is typical for such measurements the amplifier under test is terminated at its input first with a very low resistance, for the voltage noise reading, followed by the same test with a high value of resistance to register the effect of current noise. The amplifier is set to a non-inverting
closed-loop gain of 20 dB . Dual supply operation was chosen to allow direct termination of the input resistors to ground.
The measurements were made over the range from 200 Hz to 2 kHz . Each sample is measured at $200 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 2 kHz . The data is averaged for each frequency and then the small sample distribution is derived statistically giving the standard deviation relative to the mean.

Referring to the graph in Figure 7a, the equivalent voltage noise is seen to average $18 \mathrm{nV} / \mathrm{NHz}$. The 95% confidence interval is determined to be approximately one $\mathrm{nV} / \mathrm{JHz}$. The majority of the errors which contribute to this measurement are due to the thermal noise of the parallel combination of the feedback resistor network, in addition to the 10Ω termination resistor on the non-inverting input. At 300° Kelvin a 10Ω resistor generates $0.4 \mathrm{nV} / \mathrm{JHz}$ and the feedback network's equivalent resistance of 90Ω generates $1.2 \mathrm{VV} / \mathrm{JHz}$. Their order-of-magnitude difference from the main noise sources allows them to be neglected in the overall calculation of total stage noise.

a.

b.

Figure 7.
Noise current is measured across a $47 \mathrm{k} \Omega$ resistor and averaged in the same manner. The thermal noise generated by this large resistance is not insignificant. At room temperature it is $28 \mathrm{n} \mathrm{V} / \mathrm{VHz}$ and must be subtracted from the total noise as measured at the output of the op amp in order to arrive at the equivalent current generated noise voltage. Figure 7 b shows the derived current noise distribution for the small sample of 10 NE5234 devices. The result shows that noise current in the 200 Hz to 2 kHz frequency is typically $0.2 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$. The $1 / \mathrm{f}$ region was not determined for either current or voltage noise.

V. GUIDE LINES FOR MINIMIZING NOISE

When designing a circuit where noise must be kept to a minimum, the source resistances should be kept low to limit thermally generated degradation in the overall output response. Orders-of-magnitude should be kept in mind when evaluating noise performance of a particular circuit or in planning a new design. For instance, a transducer with a $10 \mathrm{k} \Omega$ source resistance will generate $2 \mu \mathrm{~V}$ of RMS noise over a 20 kHz bandwidth. Using the graphical data above, total noise from a gain stage may be calculated.-

Amplifier Noise Voltage

EQ 1.

$$
\begin{aligned}
25 n V / \sqrt{H z} \cdot \sqrt{B W} & =3.5 \mu V_{R M S} \\
B W & =10 \mathrm{kHz}
\end{aligned}
$$

Noise from source $10 \mathrm{k} \Omega$ Resistance-
Noise Voltage from source resistance

$$
14 n V / \sqrt{H z} \cdot \sqrt{B W}=20 \mu V_{R M S}
$$

Current generated noise EQ 3.

$$
0.2 p A / \sqrt{H z} \cdot 10^{3} \cdot \sqrt{B W}=0.28 \mu V_{R M S}
$$

The total noise is the root-of-the-sum-of-the-squares of the individual noise voltages-

$$
\begin{aligned}
E n & =\sqrt{(3.5)^{2}+(2.0)^{2}+(0.28)^{2}} \\
& =4.04 \mu V_{\text {RMS }}
\end{aligned}
$$

To determine the signal-to-noise ratio of the stage we must first choose a stage gain, make it 40 dB , and a signal voltage magnitude from the transducer which we will set at 10 mV RMs. The resulting signal-to-noise ratio at the output of this stage is determined by first multiplying the gain times the signal which gives $1 \mathrm{~V}_{\mathrm{gMS}}$ with a resultant noise of $400 \mu V_{\text {RMs. }}$. The signal-to-noise ratio is calculated as

$$
S / N \quad 20 \log _{10}\left(1.0 / 4 \times 10^{-4}\right)=68 d B
$$

This is quite adequate for good quality audio applications.

Next, assume that the bandwidth is cut to 3.0 kHz with an input of $1 \mathrm{mV} \mathrm{V}_{\text {RS }}$. The stage gain is kept at 40 dB . The total noise is calculated below. The RMS noise is modified by the ratio of the root of the noise channel bandwidths.

$$
\left[\frac{\sqrt{3 \times 10^{3}}}{\sqrt{20 \times 10^{3}}}\right] \cdot E n=1.6 \mu V_{R M S}
$$

EQ 6.
$100 \mathrm{~m} \mathrm{~V}_{\text {RMS }}$ and a $56 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and an output noise of 0.16 mV . Following this with a 10 kHz band limited gain-of-10 second-stage, with a $100 \mathrm{k} \Omega$ noise source at the non-inverting input, the combined S / N is calculated as follows: (assume a 100Ω source resistance from amplifier \#1)

The Second stage output noise is:
EQ 8.
$\left[\sqrt{\left(0.163 \times 10^{-3}\right)^{2}+(\sqrt{4 K T \cdot 100 \cdot 10,000})^{2}}\right] \cdot 10$
$=1.6 \mathrm{mV}$
$K=$ Boltzman'sConstant $=$

$$
\begin{array}{r}
1.38 \times 10^{-23} \frac{\text { Joule }}{\text { DegKelvin }} \\
T=300^{\circ} \mathrm{K} ; B W=10 \mathrm{kHz}
\end{array}
$$

The amplified output signal $=1 \mathrm{~V}_{\mathrm{RMS}}$
EQ 10.

$$
\begin{aligned}
S / N & =20 \log _{10}\left(\frac{1}{1.6 \times 10^{-3}}\right) \\
& =56 d B
\end{aligned}
$$

Note that there is no effect from the second-stage thermally generated resistor noise due to the dominating effect of the first-stage amplified noise being much greater than the input noise of the second-stage. In addition the equivalent noise resistance of the second-stage is essentially the output resistance of the first-stage plus any series resistance used in coupling the two. This is the parallel combination of source resistance with input terminating or biasing resistance.

VII. LOW HARMONIC DISTORTION

The NE/SA5234 is extremely well adapted to reducing harmonic distortion as it relates to signal level and head room in audio and instrumentation circuits. Its unique internal design limits overdrive induced distortion to a level much below that experienced with other low voltage devices. As will be shown, the device is capable of operating over a wide supply range without causing the typical clipping distortion prevalent in companion operational amplifiers of this class.
A series of tests are shown to allow you to see just how resistant this device is to generating clipping distortion. Two different gain configurations were chosen to demonstrate this particular feature: unity gain non-inverting and 40 dB non-inverting. The test set-up was as shown in Figure 9. The Harmonic Distortion analyzer used to make the measurements was a Storage

Figure 10.
Technology ST1700. The test frequency is 1 kHz . For single supply operation, as previously covered, the amplifier should be biased to half the supply voltage to minimize distortion. Operation with dual supplies is simpler from a parts count standpoint as isolation capacitors are not required. Also the time constants associated with charging and discharging these is eliminated. Figure 10a,b and c shows the total harmonic distortion in percent versus input voltage level at 1 kHz in $\mathrm{V}_{\mathrm{RMS}}$ for a non-inverting, unity gain NE5234. The load on the amplifier output is $10 \mathrm{k} \Omega$. Beginning with a supply voltage of 1.8 V and an input level of $0.1 \mathrm{~V}_{\mathrm{RMS}}$, distortion is well below 0.2% ad remains there up to an input level just over $0.5 \mathrm{~V}_{\text {RMS }}\left(1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}\right)$ and increases to 0.4% for for $0.6 \mathrm{~V}_{\mathrm{RMS}}\left(1.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)$.

For a 2 V supply, the input levels increase to $0.65 \mathrm{~V}_{\text {RMS }}$ and $0.7 \mathrm{~V}_{\text {RMS }}$, respectively for similar levels of distortion. With a supply voltage of 3.0 V the input may be increased to $1 \mathrm{~V}_{\text {RMS }}$ before THD rises to 0.2% and $1.1 \mathrm{~V}_{\text {RMS }}$ for only 0.8% THD. Operation with a 600Ω load will only raise the THD figures slightly. By way of comparison, Figure 10c shows the greatly reduced dynamic range experienced when an LM324 is plugged into the test socket in place of the NE5234. Note that The THD is completely off scale for the case of 1.8 and 2.0 V supply, then is barely usable for the low level end of the 3.0 V supply example. Figure 11a, b, and c demonstrates the effect on harmonic distortion when closed loop gain is increased to 40 dB in the non-inverting mode. It is evident that little increase in THD levels result. The graphs for
the 2.0 and 3.0 V supply case also include additional information on the effect of a 600Ω load on distortion.

VIII. GAIN-BANDWIDTH VS CLOSED LOOP FREQUENCY RESPONSE

Figure 5 shows the small signal frequency response of the NE5234 versus closed-loop gain in dB . The test circuit is shown in Figure 6. The plot is taken from measured data and thus shows how each value of closed-loop gain coincides with the open-loop response curve. The NE/SA5234's open-loop gain response has a uniform 6dB/octave roll-off which continues beyond 2.5 MHz . This factor guarantees each op amp in the IC a high stability in virtually any gain configuration. In making these measurements, dual supplies of $\pm 2.5 \mathrm{~V}$ were used in order to allow a grounded reference plane and no coupling capacitors which might cause frequency related errors.

A critical parameter which affects the reproduction quality of complex waveforms is the gain-bandwidth-product of the operational amplifier. Essentially, this is a measure of the maximum frequency handling characteristics of any operational amplifier for a given closed-loop gain. As is evident from the graph, the NE/SA5234 has a 2.5 MHz unity gain cross-over frequency...much higher than most other low voltage op amps. For comparison, the $\mu \mathrm{A} 741$ has a
gain-bandwidth-product of 1 MHz , as do the LM324 and the MC3403.

IX. LOOP-GAIN

The dynamic signal response of any closed-loop amplifier stage is a function of the Loop-gain of that particular stage. Loop-gain is equal to the open-loop gain in dB , at a given frequency, minus the closed-loop gain of the stage. The greater the Loop-gain, the lower the transfer function error of the device. Essentially, any parametric error is reduced by the factor of the Loop-gain. This includes output resistance and output signal voltage accuracy. It is good practice then to maximize Loop-gain to the degree that stage gain may be sacrificed for bandwidth. In some cases it is actually better to use two stages of gain in order to preserve signal quality than to use one high gain stage. Of course, there is a trade-off between the aforementioned factors that affect the signal-to-noise ratio of the stage and
optimizing the Loop-gain. For example, a voice-band audio stage which requires 3 kHz bandwidth, should be limited to a closed-loop gain of 40 dB for lowest distortion in the output signal. For higher quality audio applications requiring a 20 kHz bandwidth, the closed-loop gain must be limited to 20 dB . This results in a Loop-gain of 20 dB at the highest signal frequency.

A second consideration in the list of frequency dependent parameters is the effect of amplifier slew rate. Not only is it frequency dependent but it is also a function of signal amplitude, as we shall see in the next section.

X. SLEW RATE RESPONSE

The slew rate of an operational amplifier determines how fast it can respond to a signal, and is measured in volts-per-microsecond. The NE5234 has a typical slew rate of $0.8 \mathrm{~V} / \mu \mathrm{s}$. Let us see just what this means in terms of signal handling capability. If a sinusoidal input signal, V_{S}, is used as reference, it is specified by its frequency and peak amplitude, V_{P} as follows:
$V_{S}=V_{P} \sin (2 \pi f t)$
EQ. 13

Slew Rate (SR) is the time-rate-of-change of the signal voltage during any complete cycle, that is over the range of 0 to 2π. This amounts to taking the time derivative of the sine wave which results in multiplying the cosine by the factor ' $2 \pi \mathrm{f}$ '.

An example of the trade off between signal amplitude and frequency is shown below for the NE5234 slew rate of $0.8 \mathrm{~V} / \mu \mathrm{s}$. As shown in Figure 13, the maximum allowable amplitude signal which can be reproduced is determined by the slew rate response line which gives peak output volts versus frequency in Hertz.

Mathematically, slew rate is determined, by the equation below, as the derivative of the sine wave signal. The resultant slew rate function changes with both frequency and amplitude.

Slew Rate $=V_{P}(2 \pi f) \cos (2 \pi f i)$

Note that maximum slew rate occurs where the input sine wave signal crosses the values of $0, \pi$, and 2π on the radian axis. To get a feel for what this means in regards to the typical low voltage circuit, let us consider a $1 \mathrm{~V}_{\text {RMS }}$ sinusoidal input to a unity gain amplifier. The peak voltage in the above equation is 1.414 V . One can then calculate the required slew rate to faithfully reproduce this signal for various signal frequencies. Or with a given slew rate and a required peak signal amplitude, the maximum frequency before slew rate limiting occurs may be determined. For example using the above amplitude of $1 \mathrm{~V}_{\text {RMS }}$, and the slew rate of the NE5234 which is $800,000 \mathrm{~V} / \mathrm{sec}$, one determines that the highest frequency component which may be reproduced before slew rate distortion occurs is:

Figure 14. Single Supply Biasing in Cascade
$800,000 \mathrm{~V} / \mathrm{sec} / 2 \pi \cdot 1.414$ volts peak $=$ $90,090 \mathrm{~Hz}$. A graphical representation of this relationship is shown in Figure 13. By using this graph along with the information in the preceding Figure 10 and Figure 11, which relate usable signal levels versus power supply voltage, the dynamic behavior of a particular design may be predicted. For instance, given a single supply configuration operating at 2.0 V , Figure 10 b shows an upper limit to input amplitude of $0.7 \mathrm{~V}_{\text {RMS }}$, or about 1V peak for 1% THD. Using this level with the data in Figure 13 leads to a figure of 116 kHz as an upper frequency limit for a unity gain amplifier stage operating at 2V DC.

$$
\begin{aligned}
\frac{d V_{S}}{d t} & =V_{P} \omega \cos \omega t \\
& =\text { Slew Rate }
\end{aligned}
$$

EQ 14.

XI. PROCEDURES

Single Supply Operation

When the NE/SA5234 is used in an application where a single supply is necessary, input common-mode biasing to half the supply is recommended for best signal reproduction. Referring to Figure 14, a simplified inverting amplifier input stage is shown with the simplest form of resistive divider biasing. The value of the divider resistance R is not critical and may be increased above the $10 \mathrm{k} \Omega$ value shown as long as the bias current does not interfere with accuracy due to DC loading error. However the divider junction must be kept at a low AC impedance This is the purpose of bypass capacitor C_{s}. Its use provides transient suppression for signals coming from the supply bus. A low cost $0.1 \mu \mathrm{~F}$ ceramic disk or chip capacitor is recommended for suppressing fast transients in the microsecond and sub-microsecond region.

Foil capacitors are simply too inductive for any high frequency bypass application and should be avoided. If low frequency noise such as 60 Hz or 120 Hz ripple is present on the supply bus, an electrolytic capacitor is added in parallel as shown. The common-mode input source resistance, R_{S}, should also be matched within a reasonable tolerance for maximizing the rejection of induced $A C$ noise.

The output of the first stage is now fixed at the common mode bias voltage and the amplified AC signal is referenced to this constant value. Capacitive coupling to the inverting input is of course required to prevent the bias voltage from being multiplied by the stage gain. Second stage biasing may now be provided by the output voltage of the first stage if non-inverting operation is used in the former. For lowest noise in a high gain input stage, the magnitude of the input source resistance is critical; low values of resistance are preferred over high values to minimize thermally generated noise.

Non-Inverting Stage Biasing

Non-inverting operation of an amplifier stage with single supply is similar to the previous example but the bias resistor R_{S} must now be sufficiently high to allow the signal to pass without significant attenuation. The input source resistance reflects the output resistance of the preceding stage or other sourcing device such as a bridge circuit of relatively high impedance. A simple rule of thumb is to make the bias resistor an order of magnitude larger than the generator resistance. Again the feed back network must be terminated capacitively. In this case R1 and the generator resistance should be matched and then R_{S} is matched to the feedback resistance, R_{F}.

In all cases proper bypassing of the NE5234 supply leads (Pins 4 and 11) is very important particularly in a high noise environment. Bypass capacitors must be of ceramic construction with the shortest possible leads to keep inductance low. Chip capacitors are superior in this respect complimenting the increased use of surface mounted integrated devices. Note that both the NE5234D and the automotive grade SA5234D are available and are the surface mount versions of the device.

Figure 15. Non-Inverting Biasing

APPLICATIONS EXAMPLES

Instrumentation

Strain Gauge Bridge Amplifier

The circuit below shows a simple strain gauge circuit with a gain of $100(40 \mathrm{~dB})$ and operated from a single supply. The chart illustrates the transfer function of the circuit for a single order-of-magnitude signal differential range from the bridge beginning with 5 mV up to 50 mV . The circuit is operated from a single 5 V supply, but could equally as well be configured to use a dual balanced supply. It is immediately evident that the wide common-mode output range of the NE5234 is very advantageous in handling this wide range of signals with good linearity due to this feature.

A variation on this particular idea is the remote strain gauge circuit operating from a three wire line, one of which is the shield. This full-differential input circuit has balanced

Figure 16. A 4-20mA Current Loop

Figure 17. Strain Gauge Amplifier

Figure 18. Remote Strain Gauge

Figure 19. Solar Regulator
input resistance to afford good common-mode noise rejection characteristics. Resistors are metal film or deposited carbon. Supply leads must be carefully bypassed close to the NE/SA5234 with ceramic or chip monolithic capacitors to give optimum noise performance. As shown, an auxiliary sub-regulator may be added to improve the overall DC stability of the bridge signal voltage. A regulator capable of providing the necessary few milliamperes at somewhat reduced voltage for the transducer is shown in one of the following examples. This makes use of one of the op amps in the same device package to provide the voltage regulation. Note that the use of multiple op amps within a single package minimizes the possibility of thermal drift and mismatched response from various DC parameters.

Multiple sets of transducers may be constructed from The NE/SA5234 or the NE5234D surface mount device to form a compact and stable instrumentation package. This is useful for transducer applications in
the measurement of pressure, strain, position and temperature, which have similar circuit configurations. First order temperature compensation of the transducers such as semiconductor strain gauges, or resistive units may be achieved by using one of the gauges as a reference device only. It is thermally coupled to the same member as the active gauge, as shown in the example. (Figure 18)

A 4 to 20mA Current Loop

Some instrumentation installations require the $4-20 \mathrm{~mA}$ current loop. This addition to the above bridge transducer circuit examples is demonstrated in Figure 16.
This circuit makes use of the remote transducer bridge previously described and adds current loop signaling capability. The voltage-to-current converter consists of an additional op amp from the same NE/SA5234 package combined with a single transistor to drive the current loop. The sensitivity is actually in mAV, or transconductance, which is equal to $1 / \mathrm{R}_{\text {SH }}$. This sensitivity in this particular example is set to $4 \mathrm{~mA} / \mathrm{V}$. Thus, with a bridge amplifier having a differential gain of 100 , an input of 10 mV will produce a 4 mA output current and 50 mV will produce a 20 mA output. Of course the line resistance plus receiver resistance must be within the voltage compliance range of the supply voltage to guarantee linear operation over the total range. A negative supply may be used if it is preferred to have the current loop referenced to ground.

DC Regulators and Servos

Closely related to DC and low frequency AC linear transducers are DC regulators and servo circuits. The proliferation of many battery, and solar powered remote instrumentation packages results in a need for adaptable circuits which may readily be made up from existing stock IC's. The examples given here are quite simple, but can be very useful to the designer when economy and size are at a premium.

Solar Regulator for 3-Volt CMOS

Working with small instrumentation packages which are to operate from solar photovoltaic cells may bring a need for simple sub-regulators for MOS circuits requiring only a few milliamperes of drain current.
Figure 19 shows a simple low voltage regulator making use of the particularly excellent DC characteristics of the

NE/SA5234. The regulator becomes an integral part of any functional analog signal processing package such as an environmental data instrumentation unit. The low current drain of the the typical 3 V or 5 V MOS digital IC allows one sub regulator to serve up to 10 or more such devices. If the instrument package is to be subjected to wide temperature variations, the SA5234 is recommended. A second op amp in the package may serve as a low battery alarm with tone modulator as in radio links, or simple logic level comparator. Overcurrent protection is easily added within the regulator loop to detect short circuit failures and automatically limit the current.

DC Servo-amps

Servo control systems for low voltage motor drives require high gain-accuracy and good

DC stability for many applications. Applications such as the position control of air flow vanes, servo valves, and optical lenses or apertures, are typical examples. Figure 20 demonstrates one simple DC motor servo application with position control feedback. The motor is a 3 V permanent magnet rotor type used in micro-position applications and is adaptable to battery supply environments.
Position information is received from a multi-turn potentiometer to give adequate resolution. The input voltage may be generated from another potentiometer which is remote from the motor drive unit proper, or from a D/A converter output for micro processor controlled systems. The input voltage range is 1.0 to 3.0 V and the supply voltage is 4.5 V .

Figure 20. Full Bridge Motor Drive

Active filters

The NE5234 is easily adapted to use in a variety of active filter applications. Its high open-loop gain and excellent unity gain stability make it ideal for high-pass, band-pass and low-pass configurations operated with low voltage single supplies. Its low output impedance also makes it capable of obtaining low noise operation without resorting to separate high current buffers.

Figure 21a shows the circuit for a VCVS low-pass filter with dual supply biasing and 600Ω output termination. Figure Figure 21b is a band-pass filter with AC coupled gain network for single supply operation.

Communications and Audio

Stereo Bridge Amplifier
Figure 22 shows two NE5234 ICs in a bridge amplifier application. The choice of split supplies allows DC coupling, both from the input signal source and to the load. The gain is set to a nominal 20 dB . Either inverting or non-inverting operation is available. The inverting input impedance is chosen as 600Ω in order to match standard audio impedance lines within a system. The use of two such amplifiers will provide stereo operation to +10 dBm for a 600Ω load.

Voice Operated Microphone

The processing of voice transmissions for communications channels is generally coupled with the need for keeping the signal-to-noise ratio high and the intelligibility optimized for a given channel bandwidth. In addition, when a circuit is battery operated and portable, the requirement to obtain maximum battery life becomes important. The circuit example shown here is aimed at filling the need for a portable voice operated transmitter, cordless phone, or tape recorder. It utilizes the Signetics NE5234 quad op amp in conjunction with the new low-voltage NE578 compandor to create an audio processor capable of operating in just such an environment. Both devices are operational to a low battery voltage of 2.0 V . In addition the design further conserves current by automatically shifting the NE578 compandor to standby during the period when no transmissions are being made. Total current consumption at 3.0 V is 2.8 mA for the NE5234. In the active mode the NE578 draws 1.4 mA and this drops to $170 \mu \mathrm{~A}$ in the standby mode. This amounts to reducing the supply current demand by approximately 25% in the 'listen mode'.

Figure 23 shows the VOX audio circuit example. A description of its operation for voice activated transmission follows.

Audio generated by the electret microphone is fed into the non-inverting input of preamp A 1 and the signal amplified by 12 dB . The biasing is accomplished by the resistive divider which provides a level of half the supply voltage which is connected through a 100k resistor to the non-inverting terminal of A1. This automatically provides ratiometric common mode biasing set at $\mathrm{V}_{\mathrm{Cc}} / 2$ for the device. This level is then transferred directly
to the following amplifier, A 2 , setting its DC operating point. The $D C$ gain of both stage A1 and A2 are unity so the cumulative DC error is not multiplied by stage gain. The peak voice level is approximately 100 mV RMS at the input to $A 1$ from the microphone and this is boosted to 400 mV RMs. The feedback network gain has a low frequency corner at 160 Hz and is flat up to the intersection of the closed loop gain with the open loop gain curve at nearly 500 kHz . This would increase the noise bandwidth to an excessive degree unnecessary for voice channel communication. A band limiting network is, therefore, inserted across the feedback resistor to limit response to a nominal 5 kHz .
Amplifier stage $\mathbf{A} 2$ is used to provide high level audio to the rectifier-filter stage for the rapid generation of a DC control signal for operating the voice activated switch function. Stage A2 gain is set to 20 dB in order to allow activation of the voice channel on the rising edge of the first voice syllable. An attack time of 20 ms is implemented by adjusting the input charging impedance $\left(R_{S}\right)$ between the rectifier and the A2 amplifier output. AC coupling must be used to isolate the DC common-mode voltage of the amplifier from the rectifier/storage capacitor and to allow only audio frequencies to drive the switching circuit. Amplifier A3 provides a high impedance unity gain buffer to allow a very slow decay rate to be applied to the time constant capacitor, C_{T}. The output of the storage capacitor reaches approximately 3.2 V for a 250 ms duration 600 Hz burst signal. Diode D1 (1N914) provides a negative clamp action

Figure 23. VOX Audio System
which forces the full peak-to-peak voltage from A2 to charge the storage capacitor. D2 then acts to charge the capacitor to the peak input voltage minus one diode drop, 0.7 V . Finally, the buffered DC control signal is fed to A4 which acts as a threshold comparator with extremely high gain and controlled hysteresis. This provides a positive going signal for releasing the NE578 from its inhibit mode when voice input is present. The NE578 is switched from standby mode when voice input is present. The NE578 is switched from standby mode to the active state by raising the voltage on Pin 8 of the device above 2 V . Shutting the audio channel off requires this pin to be driven below 100 mV . This demands the extremely wide output voltage swing of the NE5234 in order to reach this near to the negative rail voltage. The voltage threshold of the comparator, A4, is adjustable by use of the sensitivity control, Rs. It is used to allow the activation level to be raised or lowered depending upon the ambient audio level in the transmitter vicinity.
Other critical parameters in this type of circuit are the attack and decay times of the RC network which controls the operation of the voice operated switch. Attack time determines how quickly the circuit activates after a quiet period, and the decay time sets
how long the transmitter channel stays active between words. It is important to reach an optimum balance between the two time constants in order to allow unbroken transmissions of good quality and no lost syllables. A 100 to 1 attack/decay ratio is used in this particular application and this is primarily set by the value of R_{A} and R_{D}. A typical delay of two seconds is easily accomplished. Due to extremely high input impedance of the buffer stage $A 3, R_{D}$ may be in the 1 to $2 \mathrm{M} \Omega$ range allowing a reasonable value of storage capacitor to be used.

The Audio Channel

Audio input from the preamplifier, A1, is fed directly to Pin 14 of the NE578 compandor. Referring to Figure 24, which shows the internal diagram of the device, it can be seen that this is the compressor portion of the NE578. There is the option in this system to operate either in a 2:1 compressor mode or an automatic level control mode, (ALC). The compressor mode simply makes a 2:1 reduction in the amplitude dynamic range of the input signal and brings it up to the chosen nominal 0 dB output level which is programmable from 10 mV RMS to $1 \mathrm{~V}_{\text {RMs }}$. In this particular example it is programmed for a OdB level of $0.42 \mathrm{~V}_{\text {RMS }}$ which is approximately $1 V_{\text {P.p. }}$. This allows for a standardized output
level with good characteristics for FM modulation where peak deviation must be controlled. Figure 25 shows the input-output characteristics of the compressor and ALC. The compressor also has an attack time determined by capacitor C6 on Pin 11. Attack time is 10 k * C6, decay time equals four times this value. An auxiliary amplifier stage is used following the NE578 in order to allow bandwidth and special forms of equalization to be implemented. Note that 2:1 compression in a transmission will enhance the channel dynamic range and may be used with no further processing at the receiver, but feeding the received signal through the complimentary 2:1 expandor will achieve even greater enhancement of the recovered audio. The NE578 contains both operations in the same package. Please refer to Signetics applications note AN1762 by Alvin K. Wong for complete information on these compandor circuits using the NE578.

Fiber Optic Receiver for Low
 Frequency Data (Figure 26)

This application makes use of the NE/SA5234 to detect photo-optic signals from either fiber or air transmitted IR (Infra-red) pulses. The signal is digitally encoded for the highest signal-to-noise ratio. The received
signal is sensed by an IR photo diode which has its cathode biased to half the supply voltage $(2.5 \mathrm{~V})$. The first gain stage is configured as a transimpedance amplifier to allow conversion from the microampere diode current signals to a voltage output of approximately $10 \mathrm{mV}_{0-p .}$. The second stage provides a gain-of-ten amplifier to raise this signal level to 1 V peak amplitude. This stage is directly coupled from the preamplifier stage in order to provide the necessary common-mode voltage of 2.5 V . Its gain control network is capacitively coupled to prevent DC gain as is required in single supply configurations. Since this is essentially a pulse gain stage, low frequency gain below the signal repetition rate is not needed. The third stage acts in a limiting amplifier configuration and its output is squared to swing approximately 5 V , the standard TTL level. Again common-mode
biasing is passed along from each of the stages up to the last in order minimize parts and simplify circuit layout. The final stage is a simple buffer amplifier to allow the receiver to drive a low impedance long wire line of 600Ω to 900Ω resistance. Some rise time response adjustment may be required. This is easily achieved following stage three by using $R_{T}-C_{T}$ to limit the rate of change of the signal voltage prior to the buffer. Note that the last stage acts as a zero-crossing detector. This maximizes noise immunity by allowing a transition only after the third stage output voltage has risen above $2 / 3 \mathrm{~V}_{\text {cc }}$. Phase inversion may be accomplished, if the logic level signals are polarity reversed, by making stage 3 inverting and AC coupling the input signal with a sufficiently large capacitor to reduce droop. Stage 3 must then be biased by connecting its non-inverting node to bias point ' A '. This provides a 2.5 V
threshold for the proper switching operation of the stage. However, care must be taken not allow the network's time constant to become code dependent as to the average low frequency signal components or errors will result in the output signal.
The advantage of this particular circuit is that it has the simplicity of single supply operation along with the capability of a large output swing making it fully TTL compatible

REFERENCES:

Signetics, a North American Philips Company. Linear Data Manual, Volume 2 : Industrial. Sunnyvale: 1988.

Wong, Alvin K. Companding with the NE577 and NE578..Signetics Applications Note AN1762: September 1990.

[^0]Figure 24. Block Diagram of NE578 Test and Application Circuit

Figure 25. NE570/571/SA571 System Level

DESCRIPTION

The NE/SE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter-follower inputs provide a true differential input impedance device. Proper external compensation will allow design operation over a wide range of closed-loop gains, both inverting and non-inverting, to meet specific design requirements.

FEATURES

- Bandwidth
- Unity gain - 350MHz
- Full power - 48 MHz
- GBW - 1.2GHz at 17 dB
- Slew rate: $600 N \mu \mathrm{~s}$
- Avol: 52dB typical
- Low noise $-4 n \mathrm{~V} \sqrt{\mathrm{~Hz}}$ typical
- MIL-STD processing available

APPLICATIONS

- High speed datacom
- Video monitors \& TV
- Satellite communications
- Image processing
- RF instrumentation \& oscillators
- Magnetic storage
- Military communications

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$14-$ Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5539N
$14-$ Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE5539D
14 -Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE5539F
14 -Pin Plastic DIP	-55 to $+125^{\circ} \mathrm{C}$	SE5539N
$14-$ Pin Cerdip	-55 to $+125^{\circ} \mathrm{C}$	SE5539F

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNITS
V_{cc}	Supply voltage	± 12	V
$\mathrm{P}_{\text {DMAX }}$	Maximum power dissipation, $T_{A}=25^{\circ} \mathrm{C}$ (still-air) ${ }^{2}$ F package N package D package	$\begin{aligned} & 1.17 \\ & 1.45 \\ & 0.99 \end{aligned}$	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$
T_{A}	Operating temperature range NE SE	$\begin{gathered} 0 \text { to } 70 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
TstG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Max junction temperature	150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead soldering temperature (10sec max)	+300	${ }^{\circ} \mathrm{C}$

NOTES:

1. Differential input voltage should not exceed 0.25 V to prevent excesive input bias current and common-mode voltage 2.5 V . These voltage limits may be exceeded if current is limited to less than 10 mA .
2. Derate above $25^{\circ} \mathrm{C}$, at the following rates:

F package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $11.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $7.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT

High frequency operational amplifier

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539			NE5539			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Vout	Output voltage swing	$\begin{gathered} \hline \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{GND} \text { and } \\ 470 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \\ \hline \end{gathered}$	+Swing -Swing				$\begin{aligned} & \hline+2.3 \\ & -1.7 \end{aligned}$	$\begin{aligned} & +2.7 \\ & -2.2 \end{aligned}$		V
Vout	Output voltage swing	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ \text { Over temp } \end{gathered}$	+ Swing -Swing	$\begin{aligned} & \hline+2.3 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & -2.1 \end{aligned}$					V
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$+{ }^{+ \text {Swing }}$	$\begin{aligned} & \hline+2.5 \\ & -2.0 \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & -2.7 \end{aligned}$					V
Icc_{+}	Positive supply current	$\mathrm{V}_{0}=0, \mathrm{R}_{1}=\infty$, Over temp			14	18		2.8	3.5	mA
		$\mathrm{V}_{0}=0, \mathrm{R}_{1}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			14	17		14	18	mA
Icc-	Negative supply current	$\mathrm{V}_{0}=0, \mathrm{R}_{1}=\infty$, Over temp			11	15		2.8	3.5	mA
		$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$			11	14		11	15	mA
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{C C}= \pm 1 \mathrm{~V}$, Over temp			300	1000				$\mu \mathrm{V} / \mathrm{V}$
		$\Delta \mathrm{V}_{\mathrm{CC}}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						200	1000	$\mu \mathrm{V} / \mathrm{N}$
Avol	Large signal voltage gain	$\begin{gathered} V_{\mathrm{O}}=+2.3 \mathrm{~V},-1.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \\ \mathrm{GND}, 470 \Omega \text { to }-V_{\mathrm{CC}} \end{gathered}$					47	52	57	dB
Avol	Large signal voltage gain	$\begin{aligned} & V_{O}=+2.3 \mathrm{~V},-1.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \text { to } \mathrm{GND} \end{aligned}$	Over temp							dB
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				47	52	57	
Avol	Large signal voitage gain	$\begin{aligned} & V_{\mathrm{O}}=+2.5 \mathrm{~V},-2.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \text { to } \mathrm{GND} \end{aligned}$	Over temp $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	46	53	60				dB

DC ELECTRICAL CHARACTERISTICS

$V_{C C}= \pm 6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS			SE5539			UNITS
					MIN	TYP	MAX	
Vos	Input offset voltage			Over temp		2	5	mV
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3	
los	Input offset current			Over temp		0.1	3	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1	
I_{8}	Input bias current			Over temp		5	20	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	10	
CMRR	Common-mode rejection ratio	$\mathrm{V}_{C M}= \pm 1.3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$			70	85		dB
lcC_{+}	Positive supply current			Over temp		11	14	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11	13	
Icc.	Negative supply current			Over temp		8	11	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{CmA}$		8	10	
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{\mathrm{CC}}= \pm 1 \mathrm{~V}$		Over temp		300	1000	$\mu \mathrm{V} / \mathrm{V}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Vout	Output voltage swing	$\begin{aligned} & R_{L}=150 \Omega \text { to } G N D \\ & \text { and } 390 \Omega \text { to }-V_{C C} \end{aligned}$		+Swing	+1.4	+2.0		V
			temp	-Swing	-1.1	-1.7		
			$\mathrm{T}_{\mathrm{A}}=$	+Swing	+1.5	+2.0		
			$25^{\circ} \mathrm{C}$	-Swing	-1.4	-1.8		

AC ELECTRICAL CHARACTERISTICS

$V_{C C}= \pm 8 V_{V} \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND and 470Ω to $-\mathrm{V}_{C C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			NE5539			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
BW	Gain bandwidth product	$A_{C L}=7, \mathrm{~V}_{0}=0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$		1200			1200		MHz
	Small signal bandwidth	$A_{C L}=2, R_{L}=150 \Omega^{1}$		110			110		MHz
ts	Settling time	$A_{C L}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		15			15		ns
SR	Slew rate	$A_{C L}=2, R_{L}=150 \Omega^{1}$		600			600		V/ $/ \mathrm{s}$
tpD	Propagation delay	$A_{C L}=2, R_{L}=150 \Omega^{1}$		7			7		ns
	Full power response	$A_{C L}=2, R_{L}=150 \Omega^{1}$		48			48		MHz
	Full power response	$A_{V}=7, R_{L}=150 \Omega^{1}$		20			20		MHz
	Input noise voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, 1 \mathrm{MHz}$		4			4		$\mathrm{nV} / \mathrm{NHz}$
	Input noise current	1 MHz		6			6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES:

1. External compensation.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND and 390Ω to $-\mathrm{V}_{\mathrm{CC}}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			UNITS
			MIN	TYP	MAX	
BW	Gain bandwidth product	$\mathrm{A}_{\mathrm{CL}}=7$		700		MHz
	Small signal bandwidth	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		120		MHz
ts	Settling time	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		23		ns
SR	Slew rate	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		330		V/us
tpD	Propagation delay	$A_{C L L}=2^{1}$		4.5		ns
	Full power response	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		20		MHz

NOTES:

1. External compensation.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (Continued)

CIRCUIT LAYOUT CONSIDERATIONS

As may be expected for an ultra-high frequency, wide-gain bandwidth amplifier, the
physical circuit is extremely critical.
Bread-boarding is not recommended. A double-sided copper-clad printed circuit board
will result in more favorable system operation. An example utilizing a 28 dB non-inverting amp is shown in Figure 1.

Figure 1. 28dB Non-Inverting Amp Sample PC Layout

NE5539 COLOR VIDEO
 AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 2 along with vector-scope 1 photographs showing the amplifier differential
gain and phase response to a standard five-step modulated staircase linearity signal (Figures 3, 4 and 5). As can be seen in Figure 4, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 5 is approximately $+0.1^{\circ}$.

The amplifier circuit was optimized for a 75W input and output termionation impedance with a gain of approximately $10(20 \mathrm{~dB})$.
NOTE:

1. The input signal was 200 mV and the output 2 V . V_{Cc} was $\pm 8 \mathrm{~V}$.

Figure 2. NE5539 Video Amplifier

Figure 3. Input Signal

Figure 4. Differential Gain $\mathbf{< 0 . 5 \%}$

NOTE:

Instruments used for these measurements were Tektronix 146 NTSC test signal generator, 520A NTSC vectorscope, and 1480 waveform monitor.

Figure 5. Differential Gain $\mathbf{+ 0 . 1}{ }^{\circ}$

Figure 6. Non-Inverting Follower

Figure 7. Inverting Follower

DESCRIPTION

The NE5592 is a dual monolithic, two-stage, differential output, wideband video amplifier. It offers a fixed gain of 400 without external components and an adjustable gain from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers.

FEATURES

- 110 MHz unity gain bandwidth
- Adjustable gain from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATION

D, N Packages

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to $70^{\circ} \mathrm{C}$	NE5592N
$14-$ Pin SO package	0 to $70^{\circ} \mathrm{C}$	NE5592D

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	± 8	V
$\mathrm{V}_{\text {IN }}$	Differential input voltage	± 5	V
$V_{C M}$	Common mode Input voltage	± 6	V
lout	Output current	10	mA
$\mathrm{T}_{\text {A }}$	Operating temperature range NE5592	0 to +70	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
PD max	Maximum power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{1}$ D package N package	$\begin{aligned} & 1.03 \\ & 1.48 \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { w } \end{aligned}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:

D package $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{C M}=0$, unless otherwise specified. Recommended operating supply voltage is $\mathrm{V}_{S}= \pm 6.0 \mathrm{~V}$, and gain select pins are connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
A VoL	Differential voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P.P }}$	400	480	600	$\mathrm{V} N$
$\mathrm{R}_{\text {ln }}$	Input resistance		3	14		$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input capacitance			2.5		pF
los	Input offset current			0.3	3	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current			5	20	$\mu \mathrm{A}$
	Input noise voltage	BW 1 kHz to 10 MHz		4		$\mathrm{nV} / \mathrm{NHz}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 93 \\ & 87 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Supply voltage rejection ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	85		dB
	Channel separation	$\begin{gathered} V_{\text {out }}=1 \mathrm{~V}_{\text {P-p }} ; \mathrm{f}=100 \mathrm{kHz} \\ \text { (output referenced) } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \hline \end{gathered}$	65	70		dB
$\mathrm{V}_{\text {os }}$	Output offset voltage gain select pins open	$\begin{aligned} & \mathrm{R}_{\mathrm{L}=\infty} \\ & \mathrm{R}_{\mathrm{L}=\infty} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 0.25 \end{gathered}$	$\begin{gathered} 1.5 \\ 0.75 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$V_{C M}$	Output common-mode voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	3.1	3.4	V
$V_{\text {OUT }}$	Output differential voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.0	4.0		V
Rout	Output resistance			20		Ω
Icc	Power supply current (total for both sides)	$\mathrm{R}_{\mathrm{L}}=\infty$		35	44	mA

DC ELECTRICAL CHARACTERISTICS
$V_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{C M}=0,0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. Recommended operating supply voltage is $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$, and gain select pins are connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
Avol	Differential voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P.p }}$	350	430	600	V/V
RIN	Input resistance		1	11		k Ω
los	Input offset current				5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current				30	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio	$\begin{gathered} \mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{S}}=\phi \end{gathered}$	55			dB
PSRR	Supply voltage rejection ratio	$\Delta \mathrm{V}_{S}= \pm 0.5 \mathrm{~V}$	50			dB
	Channel separation	$\begin{gathered} V_{\text {OUT }}=1 \mathrm{~V}_{\text {P.p; } ;} \mathrm{f}=100 \mathrm{kHz} \\ \text { (output referenced) } \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \hline \end{gathered}$		70		dB
Vos	Output offset voltage gain select pins connected together gain select pins open	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	v V
Vout	Output differential voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8			V
lcc	Power supply current (total for both sides)	$\mathrm{R}_{\mathrm{L}}=\infty$			47	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltage $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. Gain select pins connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
BW	Bandwidth	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		25		MHz
t_{R}	Rise time			15	20	ns
tPD	Propagation delay	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		7.5	12	ns

TEST CIRCUITS $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.
(

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

DESCRIPTION

The NE/SA/SE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8 -pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATIONS

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE592N14
14-Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE592F14
14-Pin Cerdip	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SE592F14
14-Pin SO	0 to $+70^{\circ} \mathrm{C}$	NE592D14
8-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE592N8
8-Pin Cerdip	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SE592F8
8-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SA592N8
8-Pin SO	0 to $+70^{\circ} \mathrm{C}$	NE592D8
8-Pin SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SA592D8
10-Lead Metal Can	0 to $+70^{\circ} \mathrm{C}$	NE592H
10-Lead Metal Can	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SE592H

NOTES:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

$T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	± 8	V
$\mathrm{~V}_{\text {IN }}$	Differential input voltage	± 5	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage	± 6	V
$\mathrm{I}_{\text {OUT }}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range		
	SE592	-40 to +85	${ }^{\circ} \mathrm{C}$
	NE592	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D} \text { MAX }}$	Maximum power dissipation,		
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{1}$		
	$\mathrm{~F}-14$ package	1.17	W
	$\mathrm{~F}-8$ package	0.79	W
	$\mathrm{D}-14$ package	0.98	W
	$\mathrm{D}-8$ package	0.79	W
	H package	0.83	W
	$\mathrm{~N}-14$ package	1.44	W
	$\mathrm{~N}-8$ package	1.17	W

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:

F-14 package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{F}-8$ package at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D-14 package at $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $\mathrm{D}-8$ package at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ H package at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-14$ package at $11.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-8$ package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS
$T_{A}=+25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{SS}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}=+6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			UNIT
			Min	Typ	Max	Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$ High gain part	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \\ 400 \\ \hline \end{gathered}$	$\begin{array}{r} 400 \\ 100 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 120 \\ & 600 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 90 \end{gathered}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 110 \end{aligned}$	V/N V/N V/V
RIN	```Input resistance Gain 11 Gain 2 2,4```		10	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		20	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		$\begin{aligned} & k \Omega \\ & k \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{2}$	Gain 2^{4}		2.0			2.0		pF
los	Input offset current			0.4	5.0		0.4	3.0	$\mu \mathrm{A}$
$l_{\text {BIAS }}$	Input bias current			9.0	30		9.0	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {NOISE }}$	Input noise voltage	BW 1kHz to 10 MHz		12			12		$\mu V_{\text {RMS }}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			± 1.0			V
CMRR	Common-mode rejection ratio Gain 2^{4} Gain 2^{4}	$\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$ $V_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{s}}= \pm 0.5 \mathrm{~V}$	50	70		50	70		dB
$\mathrm{V}_{\text {os }}$	Output offset voltage Gain 1 Gain 2^{4} Gain 3^{3}	$R_{L=\infty}$ $R_{L=\infty}$ $R_{L=\infty}$		0.35	$\begin{gathered} 1.5 \\ 1.5 \\ 0.75 \end{gathered}$		0.35	$\begin{gathered} 1.5 \\ 1.0 \\ 0.75 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{CM}	Output common-mode voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	2.9	3.4	2.4	2.9	3.4	V
$V_{\text {OUT }}$	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.0	4.0		3.0	4.0		V
Rout	Output resistance			20			20		Ω
ICC	Power supply current	$\mathrm{R}_{\mathrm{L}}=\infty$		18	24		18	24	mA

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 10 -and 14 -pin versions only.

Video amplifier

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics $V_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{C M}=0,0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ for NE592; $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ for SA592, $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ for SE592, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}=+6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			UNIT
			Min	Typ	Max	Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$ High gain part	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \\ 400 \\ \hline \end{gathered}$	500	$\begin{aligned} & 600 \\ & 120 \end{aligned}$ 600	$\begin{gathered} 200 \\ 80 \end{gathered}$		$\begin{aligned} & 600 \\ & 120 \end{aligned}$	V/V V/V V / V
$\mathrm{R}_{\text {IN }}$	Input resistance Gain $2^{2,4}$		8.0			8.0			k Ω
los	Input offset current				6.0			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current				40			40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			± 1.0			V
CMRR	Common-mode rejection ratio Gain 2^{4}	$\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$	50			50			dB
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{s}}= \pm 0.5 \mathrm{~V}$	50			50			dB
$\mathrm{V}_{\text {os }}$	Output offset voltage Gain 1 Gain 2^{4} Gain 3^{3}	$\mathrm{R}_{\mathrm{L}=\infty}$			$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.2 \\ & 1.0 \end{aligned}$	V
$\mathrm{V}_{\text {OUT }}$	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8			2.5			V
Icc	Power supply current	$\mathrm{R}_{\mathrm{L}=\infty}$			27			27	mA

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 10 - and 14 -pin versions only.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{SS}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			SE592			UNIT
			Min	Typ	Max	Min	Typ	Max	
BW	Bandwidth Gain 1^{1} Gain $2^{2,4}$			$\begin{aligned} & 40 \\ & 90 \end{aligned}$			$\begin{aligned} & 40 \\ & 90 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
t_{R}	Rise time Gain 1^{1} Gain $2^{2,4}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P.P }}$		$\begin{gathered} 10.5 \\ 4.5 \end{gathered}$	12		$\begin{gathered} 10.5 \\ 4.5 \end{gathered}$	10	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPD	Propagation delay Gain 1^{1} Gain $2^{2,4}$	$V_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	10		$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	10	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. Gain select Pins $\mathrm{G}_{1 \mathrm{~A}}$ and $\mathrm{G}_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 10 -and 14 -pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TEST CIRCUITS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

TYPICAL APPLICATIONS

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V_{0} (s) TRANSFER V_{1} (s) FUNCTION
$0 \underbrace{\text { R }}_{\text {R }}$	LOW PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{1}{s+R / L}\right]$
	HIGH PASS	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s}{s+1 / R C}\right]$
	BAND PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]$
	BAND REJECT	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]$

NOTES:

In the networks above, the R value used is assumed to include $\mathbf{2 r}^{2}$, or approximately 32Ω.
$\mathrm{S}=\mathrm{j} \omega$
$\omega=2 \pi$

The TDA1010A is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is primarily developed as a 6 W car radio amplifier for use with 4Ω and 2Ω load impedances. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W .
Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- low-cost external components
- good ripple rejection
- thermal protection

QUICK REFERENCE DATA

Supply voltage range	V_{P}	6 to 24 V		
Repetitive peak output current	IORM	max.		A
Output power at pin 2; $\mathrm{d}_{\text {tot }}=10 \%$				
$V_{P}=14,4 V^{\prime} R_{L}=2 \Omega$	P_{o}	typ.	6,4	W
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{O}	typ.	6,2	W
$\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	Po	typ.	3,4	W
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$; with additional bootstrap resistor of 220Ω between pins 3 and 4	Po	typ.	9	W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,2	\%
Input impedance preamplifier (pin 8) power amplifier (pin 6)	$\begin{aligned} & \mid z_{i} \\ & \left\|z_{i}\right\| \end{aligned}$	typ. typ.	30	
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V}$	$I_{\text {tot }}$	typ.	31	mA
Sensitivity for $\mathrm{P}_{\mathrm{O}}=5,8 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	V_{i}	typ.	10	mV
Operating ambient temperature	Tamb	-25	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 t	150	${ }^{\circ} \mathrm{C}$

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{p}	max.	24	V
Peak output current	IOM	max.		A
Repetitive peak output current	Iorm	max.	3	A
Total power dissipation	see derating curve Fig. 2			
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to		${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Tamb	-25 to		${ }^{\circ} \mathrm{C}$
A.C. short-circuit duration of load during sine-wave drive; without heatsink at $V_{P}=14,4 \mathrm{~V}$	${ }_{\text {tsc }}$	max.		hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ maximum; thermal shut-down starts at $\mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$. The maximum sine-wave dissipation in a 2Ω load is about $5,2 \mathrm{~W}$. The maximum dissipation for music drive will be about 75% of the worst-case sine-wave dissipation, so this will be $3,9 \mathrm{~W}$. Consequently, the total resistance from junction to ambient
$R_{\text {th j-a }}=R_{\text {th j-tab }}+R_{\text {th tab-h }}+R_{\text {th h-a }}=\frac{150-60}{3,9}=23 \mathrm{~K} / \mathrm{W}$.
Since $R_{\text {th } j \text {-tab }}=10 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}$,
$R_{\text {th } h-a}=23-(10+1)=12 \mathrm{~K} / \mathrm{W}$.

D.C. CHARACTERISTICS

Supply voltage range	V_{P}		6 to 24 V
Repetitive peak output current	IORM	<	3 A
Total quiescent current at $V_{P}=14,4 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	typ.	31 mA

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A. F. output power (see Fig. 4) at $\mathrm{d}_{\text {tot }}=10 \%$; measured at pin 2 ; with bootstrap
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$ (note 1)
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$ (note 1 and 2)
$V_{P}=14,4 \mathrm{~V} ; R_{L}=8 \Omega$ (note 1)
$V_{P}=14,4 \mathrm{~V} ; R_{L}=4 \Omega$; without bootstrap
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$; with additional bootstrap
resistor of 220Ω between pins 3 and 4
Voltage gain preamplifier (note 3)
typ. $\quad 24 \mathrm{~dB}$
21 to 27 dB
power amplifier
$\mathrm{G}_{\mathrm{v} 2}$
total amplifier
$\mathrm{G}_{\mathrm{v} \text { tot }}$
typ. $\quad 30 \mathrm{~dB}$
27 to 33 dB
typ. 54 dB
51 to 57 dB
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$
Efficiency at $\mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$
Frequency response (-3 dB)
Input impedance
preamplifier (note 4)
$\left|z_{i}\right|$
power amplifier (note 5)
Output impedance of preamplifier; pin 7 (note 5)
Output voltage preamplifier (r.m.s. value)
$d_{\text {tot }}<1 \%$ (pin 7) (note 3)
Noise output voltage (r.m.s. value; note 6)

$$
\begin{aligned}
& R_{S}=0 \Omega \\
& R_{S}=8,2 \mathrm{k} \Omega
\end{aligned}
$$

Ripple rejection at $\mathrm{f}=1 \mathrm{kHz}$ to 10 kHz (note 7)
at $\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{C} 2=1 \mu \mathrm{~F}$
Sensitivity for $P_{0}=5,8 \mathrm{~W}$
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Up to $P_{o} \leqslant 3 W: d_{\text {tot }} \leqslant 1 \%$.
3. Measured with a load impedance of $20 \mathrm{k} \Omega$.
4. Independent of load impedance of preamplifier.
5. Output impedance of preamplifier $\left(\left|Z_{0}\right|\right)$ is correlated (within 10%) with the input impedance $\left(\left|z_{i}\right|\right)$ of the power amplifier.
6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz ($12 \mathrm{~dB} /$ octave).
7. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
8. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

Fig. 4 Output power of the circuit of Fig. 3 as a function of the supply voltage with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $R_{L}=2 \Omega^{(1)}$ has been measured with an additional 220Ω bootstrap resistor between pins 3 and 4 . Measurements were made at $f=1 \mathrm{kHz}, d_{\text {tot }}=10 \%, T_{a m b}=25^{\circ} \mathrm{C}$.

Fig. 5 See next page.
Total harmonic distortion in the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $R_{L}=2 \Omega(1)$ has been measured with an additional 220Ω bootstrap resistor between pins 3 and 4 . Measurements were made at $f=1 \mathrm{kHz}, V_{P}=14,4 \mathrm{~V}$.

Fig. 5 For caption see preceding page.

Fig. 6 Frequency characteristics of the circuit of Fig. 3 for three values of load impedance; typical values. P_{0} relative to $0 d B=1 W ; V_{P}=14,4 \mathrm{~V}$.

Fig. 7 Total power dissipation (solid lines) and the efficiency (dashed lines) of the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter (for $R_{L}=2 \Omega$ an external bootstrap resistor of 220Ω has been used); typical values. $V_{P}=14,4 \mathrm{~V} ; f=1 \mathrm{kHz}$.

Fig. 8 Thermal resistance from heatsink to ambient of a $1,5 \mathrm{~mm}$ thick bright aluminium heatsink as a function of the single-sided area of the heatsink with the total power dissipation as a parameter.

Fig. 9 Complete mono audio amplifier of a car radio.

Fig. 10 Track side of printed-circuit board used for the circuit of Fig. 9; p.c. board dimensions $92 \mathrm{~mm} \times 52 \mathrm{~mm}$.

Fig. 11 Component side of printed-circuit board showing component layout used for the circuit of Fig. 9.

Fig. 12 Complete stereo car radio amplifier.

Fig. 13 Track side of printed-circuit board used for the circuit of Fig. 12; p.c. board dimensions $83 \mathrm{~mm} \times 65 \mathrm{~mm}$.

Fig. 14 Component side of printed-circuit board showing component layout used for the circuit of Fig. 12. Balance control is not on the p.c. board.

Fig. 15 Channel separation of the circuit of Fig. 12 as a function of the frequency.

Fig. 16 Power supply of circuit of Fig. 17.

Fig. 18 Track side of printed-circuit board used for the circuit of Fig. 17 (Fig. 16 partly); p.c. board dimensions $169 \mathrm{~mm} \times 118 \mathrm{~mm}$.

Fig. 19 Component side of printed-circuit board showing component layout used for the circuit of Fig. 17 (Fig. 16 partly).

Fig. 20 Channel separation of the circuit of Fig. 17 as a function of frequency.

The TDA1015 is a monolithic integrated audio amplifier circuit in a 9 -lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4Ω load impedance. The very low applicable supply voltage of $3,6 \mathrm{~V}$ permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V_{p}	3,6 to 18		
Peak output current	IOM	max.	2,5	A
Output power at $\mathrm{d}_{\text {tot }}=10 \%$				
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.		
$V_{P}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	2,3	
$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.		
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,3	
Input impedance preamplifier (pin 8) power amplifier (pin 6)	$\left\lvert\, \begin{aligned} & \left\|z_{i}\right\| \\ & \left\|z_{i}\right\| \end{aligned}\right.$	typ.	100	
Total quiescent current	$I_{\text {tot }}$	typ.	14	
Operating ambient temperature	Tamb	-25	+ 150	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	+ 150	

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage $\quad V_{P} \max 18 \mathrm{~V}$

Peak output current
Total power dissipation

Storage temperature

Operating ambient temperature
A.C. short-circuit duration of load during sine-wave drive; $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} \quad \mathrm{t}_{\mathrm{sc}} \quad$ max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$ maximum.
The maximum sine-wave dissipation is $1,8 \mathrm{~W}$.
$R_{\text {th j-a }}=R_{\text {th } j-t a b}+R_{\text {th tab-h }}+R_{\text {th h-a }}=\frac{150-45}{1,8}=58 \mathrm{~K} / \mathrm{W}$.
Where $R_{\text {th } j-a}$ of the package is $45 \mathrm{~K} / \mathrm{W}$, so no external heatsink is required.

D.C. CHARACTERISTICS

Supply voltage range	V_{P}	3,6 to 18 V
Repetitive peak output current	IORM	$<$
Total quiescent current at $V_{P}=12 \mathrm{~V}$	$I_{\text {tot }}$	typ.
		14 mA

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A.F. output power at $\mathrm{d}_{\text {tot }}=10 \%$ (note 1)
with bootstrap:
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}} \quad$ typ. $4,2 \mathrm{~W}$
$V_{P}=9 V ; R_{L}=4 \Omega$
$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$
$\mathrm{P}_{\mathrm{O}} \quad$ typ. $\quad 2,3 \mathrm{~W}$
without bootstrap:
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \quad \mathrm{P}_{\mathrm{O}}$ typ. $3,0 \mathrm{~W}$
Voltage gain:
preamplifier (note 2)
power amplifier
total amplifier
$\mathrm{G}_{\mathrm{v} 1} \quad$ typ. $\quad 23 \mathrm{~dB}$

Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1,5 \mathrm{~W}$
Frequency response; -3 dB (note 3)
$\mathrm{G}_{\mathrm{v} 2} \quad$ typ. 29 dB
G_{v} tot typ. $\quad 52 \mathrm{~dB}$

$d_{\text {tot }} \quad \stackrel{\text { typ. }}{<} \quad$	$0,3 \%$
$1,0 \%$	

Input impedance:
preamplifier (note 4)
$\left|Z_{i 1}\right|>100 \mathrm{k} \Omega$
power amplifier
Output impedance preamplifier
Output voltage preamplifier (r.m.s. value)
$\mathrm{d}_{\text {tot }}<1 \%$ (note 2)
Noise output voltage (r.m.s. value; note 5)
$\mathrm{R}_{\mathrm{S}}=0 \Omega$
$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$
Noise output voltage at $\mathrm{f}=500 \mathrm{kHz}$ (r.m.s. value)

$$
\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0 \Omega
$$

Ripple rejection (note 6)

$$
f=100 \mathrm{~Hz} \quad \text { RR } \quad \text { typ. } 38 \mathrm{~dB}
$$

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Measured with a load resistor of $20 \mathrm{k} \Omega$.
3. Measured at $P_{0}=1 \mathrm{~W}$; the frequency response is mainly determined by C 1 and C 3 for the low frequencies and by C 4 for the high frequencies.
4. Independent of load impedance of preamplifier.
5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB /octave).
6. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
7. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 1 to 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

Fig. 6 Total harmonic distortion as a function of output power across R_{L}; —— with bootstrap; - - - without bootstrap; $f=1 \mathrm{kHz}$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 10).

Fig. 7 Output power across R_{L} as a function of supply voltage with bootstrap; $d_{\text {tot }}=10 \%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 10).

Fig. 8 Voltage gain as a function of frequency; P_{0} relative to $0 d B=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.

Fig. 9 Total harmonic distortion as a function of frequency; $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.

Fig. 10 Ripple rejection as a function of $R 2$ (see Fig. 4); $R_{S}=0$; typical values.

Fig. 11 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor $\mathrm{C5}$ is adapted for obtaining a constant bandwidth.

Fig. 12 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; $\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0$; typical values.

Fig. 13 Voltage gain as a function of $R 2$ (see Fig. 4).

The TDA 1011A is a monolithic integrated audio amplifier circuit in a 9 -lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4Ω load impedance. The device can deliver up to 6 W into 4Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the low applicable supply voltage of $5,4 \mathrm{~V}$ permits 9 V applications. The power amplifier has an inverted input/output which makes the circuit optimal for applications with active tone control and spatial stereo. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V_{P}	5,4 to 20 V		
Peak output current	${ }^{\text {I OM }}$	max.	3	A
Output power at $\mathrm{d}_{\text {tot }}=10 \%$				
$V_{P}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	6,5	
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	4,2	
$V_{P}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	2,3	
$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.		
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,2	
Input impedance preamplifier (pin 8)	$\left\|z_{i}\right\|$	>	100	$k \Omega$
Total quiescent current	$I_{\text {tot }}$	typ.	14	mA
Operating ambient temperature	Tamb	-25 to		${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 t		${ }^{\circ} \mathrm{C}$

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Peak output current
Total power dissipation
Storage temperature
Operating ambient temperature
A.C. short-circuit duration of load during sine-wave drive; $\mathrm{V}_{\mathrm{p}}=12 \mathrm{~V} \quad \mathrm{t}_{\mathrm{sc}} \quad \max .100$ hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ maximum; $\mathrm{P}_{\mathrm{O}}=3,8 \mathrm{~W}$.
The maximum sine-wave dissipation is $1,8 \mathrm{~W}$.
The derating of $10 \mathrm{~K} / \mathrm{W}$ of the package requires the following external heatsink (for sine-wave drive):
$R_{\text {th } j-a}=R_{\text {th } j-t a b}+R_{\text {th tab-h }}+R_{\text {th h-a }}=\frac{150-60}{1,8}=50 \mathrm{~K} / \mathrm{W}$.
Since $R_{\text {th } j-t a b}=10 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}, R_{\text {th h-a }}=50-(10+1)=39 \mathrm{~K} / \mathrm{W}$.

D.C. CHARACTERISTICS

Supply voltage range	V_{P}	5,4 to 20 V
Repetitive peak output current	IORM $^{<}$	$<$
Total quiescent current at $V_{P}=12 \mathrm{~V}$	$I_{\text {tot }}$	typ.

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A.F. output power at $d_{\text {tot }}=10 \%$ (note 1)
with bootstrap:

$\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{o}	typ.	6,5 W
$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	$>$ typ.	3,6 W
$\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	2,3 W
$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	1,0 W

without bootstrap:
$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$
Voltage gain:
preamplifier (note 2)
power amplifier (note 3)
total amplifier (note 3)
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1,5 \mathrm{~W}$
Frequency response; -3 dB (note 4)
Po typ. 3,5 W

Input impedance:
preamplifier (note 5)
Output impedance preamplifier
typ. 23 dB
$\mathrm{G}_{\mathrm{v} 1} \quad 21$ to 25 dB

Output voltage preamplifier (r.m.s. value)
$d_{\text {tot }}<1 \%$ (note 2)
Noise output voltage (r.m.s. value; note 6)
$\mathrm{R}_{\mathrm{S}}=0 \Omega$
$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$
Noise output voltage at $\mathrm{f}=500 \mathrm{kHz}$ (r.m.s. value)

$$
\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0 \Omega
$$

Ripple rejection (note 6)

$f=1$ to 10 kHz	RR	typ.	42 dB
$\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{C} 2=1 \mu \mathrm{~F}$	RR	$>$	35 dB
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)	I_{4} (rms)	typ.	35 mA
Stand-by current at maximum V_{P} (note 8)	I_{sb}	$<$	$100 \mu \mathrm{~A}$

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Measured with a load resistor of $20 \mathrm{k} \Omega$.
3. Measured with $R 2=20 \mathrm{k} \Omega$.
4. Measured at $P_{0}=1 \mathrm{~W}$; the frequency response is mainly determined by C 1 and C 3 for the low frequencies and by C 4 for the high frequencies.
5. Independent of load impedance of preamplifier.
6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz ($12 \mathrm{~dB} /$ octave).
7. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
8. The total current when disconnecting pin 5 or short-circuited to ground (pin 9).
9. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

2 to 6 W audio power amplifier with preamplifier
TDA1011A

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

2 to 6W audio power amplifier with preamplifier

Fig. 6 Total harmonic distortion as a function of output power across R_{L}; ——with bootstrap;

- - without bootstrap; $f=1 \mathrm{kHz}$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

Fig. 7, Output power across R_{L} as a function of supply voltage with bootstrap; $d_{\text {tot }}=10 \%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 1

Fig. 8 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; $\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0$; typical values.

GENERAL DESCRIPTION

The TDA1013B is an integrated audio amplifier circuit with DC volume control, encapsulated in a 9 -lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit ideal for applications in mains and battery-fed apparatus such as television receivers and record players.
The DC volume control stage has a logarithmic control characteristic with a range of more than 80 dB ; control is by means of a DC voltage variable between 2 and 6.5 V .
The audio amplifier has a well defined open loop gain and a fixed integrated closed loop. This device requires only a few external components and offers stability and performance.

Features

- Few external components
- Wide supply voltage range
- Wide control range
- Pin compatible with TDA1013A
- Fixed gain
- High signal-to-noise ratio
- Thermal protection

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		V_{P}	10	18	40	V
Repetitive peak output current		IORM	-	-	1.5	A
Total sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ;$ DC control at max. gain	V_{i}	44	55	69	mV
Audio amplifier						
Output power	THD $=10 \% ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{O}	4.0	4.2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	THD	-	0.15	0.1	\%
Sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W}$	V_{i}	100	125	160	mV
DC volume control unit						
Gain control range		$\left\|\Delta G_{v}\right\|$	80	-	-	dB
Signal handling	$\begin{aligned} & \text { THD }<1 \% ; \\ & \text { DC control }=0 \mathrm{~dB} \end{aligned}$	V_{i}	1.2	1.7	-	V
Sensitivity (pin 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=125 \mathrm{mV} ; \\ & \text { max. voltage gain } \end{aligned}$	v_{i}	39	45	55	mV
Input impedance (pin 8)		$\left\|Z_{i}\right\|$	23	29	35	$k \Omega$

Fig. 1 Block diagram.
PINNING
1 signal ground
2 amplifier output
3 supply voltage
4 electronic filter
5 amplifier input
6 control unit output
7 control voltage
8 control unit input
9 power ground

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V_{P}	-	40	V
Non-repetitive peak output current	$\mathrm{I}_{\mathrm{OSM}}$	-	3	A
Repetitive peak output current	$\mathrm{I}_{\mathrm{ORM}}$	-	1.5	A
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Crystal temperature	T_{C}	-	+150	o^{C}
Total power dissipation	$\mathrm{P}_{\text {tot }}$		see Fig. 2	

Fig. 2 Power derating curve.

HEATSINK DESIGN EXAMPLE

Assume $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$ (max.); for a 4 W application, the maximum dissipation is approximately 2.5 W . The thermal resistance from junction to ambient can be expressed as:
$R_{\text {th } j-a}=R_{\text {th } j-t a b}+R_{\text {th tab-h }}+R_{\text {th h-a }}=$
$\frac{T_{j \max }-T_{a \operatorname{mb} \max }}{P_{\max }}=\frac{150-60}{2.5}=36 \mathrm{~K} / \mathrm{W}$
Since $R_{\text {th } j-\operatorname{tab}}=9 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}, R_{\text {th h-a }}=36-(9+1)=26 \mathrm{~K} / \mathrm{W}$.

CHARACTERISTICS

$V_{P}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Fig. 10 ; unless otherwise specified

parameter	conditions	symbol	min .	typ.	max.	unit
Supply voltage range		V_{P}	10	18	40	V
Total quiescent current		$I_{\text {tot }}$	-	25	60	mA
Noise output voltage	note 1					
at maximum gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	V_{n}	-	0.5	-	mV
at maximum gain	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	V_{n}	-	0.6	1.4	mV
at minimum gain	$\mathrm{RS}=0 \Omega$	V_{n}	-	0.25	-	mV
Totsl sensitivity	$P_{0}=2.5 \mathrm{~W} ;$ DC control at max. gain	V_{i}	44	55	69	mV
Audio amplifier						
Repetitive peak output current		IORM	-	-	1.5	A
Output power	THD $=10 \% ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	4.0	4.2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	THD	-	0.15	1.0	\%
Sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W}$	V_{i}	100	125	160	mV
Input impedance (pin 5)		$\left\|Z_{i}\right\|$	100	200	500	k Ω
Power bandwidth		B_{p}	-	$\begin{aligned} & 30 \text { to } \\ & 40000 \end{aligned}$	-	Hz
DC volume control unit						
Gain control range		$\left\|\Delta G_{v}\right\|$	80	90	-	dB
Signal handling	$\begin{aligned} & \mathrm{THD}<1 \% ; \\ & \mathrm{DC} \text { control }=0 \mathrm{~dB} \end{aligned}$	V_{i}	1.2	1.7	-	V
Sensitivity (pin 6)	$\mathrm{V}_{\mathrm{o}}=125 \mathrm{mV} \text {; }$ max. voltage gain	V_{i}	39	44	55	mV
Input impedance (pin 8)		$\left\|Z_{i}\right\|$	23	29	35	$k \Omega$
Output impedance (pin 6)		$\left\|Z_{0}\right\|$	45	60	75	Ω

Note to the characteristics

1. Measured in a bandwidth in accordance with IEC 179, curve ' A '.

APPLICATION INFORMATION

Fig. 3 Output power as a function of supply voltage; $f=1 \mathrm{kHz}$; $\mathrm{THD}=10 \%$ and control voltage $\left(\mathrm{V}_{7}\right)=6.5 \mathrm{~V}$.

Fig. 4 Power dissipation as a function of output power; $\mathrm{V}_{\mathrm{p}}=18 \mathrm{~V}$; $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ and control voltage $\left(\mathrm{V}_{7}\right)=6.5 \mathrm{~V}$.

APPLICATION INFORMATION (continued)

Fig. 5 Power bandwidth; $V_{P}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$; THD $=10 \%$ and control voltage $\left(V_{7}\right)=6.5 \mathrm{~V}$.

Fig. 6 Total harmonic distortion as a function of frequency;
$\mathrm{V}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W}$ and control voltage $=6.5 \mathrm{~V}$.

Fig. 7 Total harmonic distortion as a function of output power; $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ and control voltage $=6.5 \mathrm{~V}$.

Fig. 8 Typical control curve.

APPLICATION INFORMATION (continued)

Fig. 9 Noise output voltage as a function of the control voltage; $\mathrm{V}_{\mathrm{p}}=18 \mathrm{~V}$; $R_{L}=8 \Omega$ (in accordance with IEC 179 , curve ' A ').

(1) Belongs to power supply circuitry.

Fig. 10 Application diagram.

GENERAL DESCRIPTION

The TDA7052 is a mono output amplifier in a 8-lead dual-in-line (DIL) plastic package. The device is designed for battery-fed portable audio applications.

Features:

- No external components
- No switch-on or switch-off clicks
- Good overall stability
- Low power consumption
- No external heatsink required
- Short-circuit proof

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage range		V_{P}	3	6	15	V
Total quiescent current	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{I}_{\text {tot }}$	-	4	8	mA
Voltage gain		G_{V}	39	40	41	dB
Output power	$\mathrm{THD}=10 \% ; 8 \Omega$	P_{O}	-	1,2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0,1 \mathrm{~W}$	THD	-	0,2	1,0	$\%$

Fig. 1 Block diagram.

PINNING

1	V_{P}	supply voltage	5	OUT1	output 1
2	IN	input	6	GND2	ground (substrate)
3	GND1	ground (signal)	7	n.c.	not connected
4	n.c.	not connected	8	OUT2	output 2

FUNCTIONAL DESCRIPTION

The TDA7052 is a mono output amplifier designed for battery-fed portable audio applications, such as tape recorders and radios.
The gain is fixed internally at 40 dB . A large number of tape recorders and radios are still designed for mono sound, plus a space-saving trend by reduction of the number of battery cells. This means a decrease in supply voltage which results in an reduction of output power. To compensate for this reduction, the TDA7052 uses the Bridge-Tied-Load principle (BTL) which can deliver an output power of $1,2 \mathrm{~W}(\mathrm{THD}=10 \%)$ into an 8Ω load with a power supply of 6 V . The load can be short-circuited at each signal excursion.

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	VP_{P}	-	18	V
Non-repetitive peak output current	$\mathrm{I}_{\mathrm{OSM}}$	-	1,5	A
Total power dissipation	$\mathrm{P}_{\text {tot }}$	see Fig. 2		
Crystal temperature	T_{C}	-	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

Fig. 2 Power derating curve.

POWER DISSIPATION

Assume $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ maximum.
The maximum sinewave dissipation is $0,9 \mathrm{~W}$.

$$
\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}=\frac{150-50}{0,9} \approx 110 \mathrm{~K} / \mathrm{W} .
$$

Where $R_{t h j-a}$ of the package is $110 \mathrm{~K} / \mathrm{W}$, so no external heatsink is required.

CHARACTERISTICS

$V_{p}=6 \mathrm{~V} ; R_{L}=8 \Omega ; f=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	conditions	symbol	\min.	typ.	max.	unit
Supply						
Supply voltage range		V_{P}	3	6	15	\checkmark
Total quiescent current	$\mathrm{R}_{\mathrm{L}}=\infty$	$I_{\text {tot }}$	-	4	8	mA
Voltage gain		G_{v}	39	40	41	dB
Output power	THD $=10 \%$	P_{0}	*	1,2	-	W
Noise output voltage (RMS value)						
	note 1	$V_{\text {no(rms }}$	-	150	300	$\mu \mathrm{V}$
	note 2	$V_{\text {no }}$ (rms)	-	60	-	$\mu \mathrm{V}$
Frequency response		f_{r}	-	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	-	Hz
Supply voltage ripple rejection	note 3	SVRR	40	50	-	dB
DC output offset voltage pin 5 to 8	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	ΔV_{5-8}	-	-	100	mV
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0,1 \mathrm{~W}$	THD	-	0,2	1,0	\%
Input impedance		$\left\|Z_{1}\right\|$	-	100	-	$\mathrm{k} \Omega$
Input bias current		${ }^{\text {b bias }}$	-	100	300	nA

Notes to the characteristics

1. The unweighted RMS noise output voltage is measured at a bandwidth of 60 Hz to 15 kHz with a source impedance (R_{S}) of $5 \mathrm{k} \Omega$.
2. The RMS noise output voltage is measured at a bandwidth of 5 kHz with a source impedance of 0Ω and a frequency of 500 kHz . With a practical load ($R=8 \Omega ; L=200 \mu \mathrm{H}$) the noise output current is only 100 nA .
3. Ripple rejection is measured at the output with a source impedance of 0Ω and a frequency between 100 Hz and 10 kHz . The ripple voltage $=200 \mathrm{mV}$ (RMS value) is applied to the positive supply rail.

Fig. 3 Application diagram.

FEATURES

- DC volume control
- Few external components
- Mute mode
- Thermal protection
- Short-circuit proof
- No switch on and off clicks
- Good overall stability
- Low power consumption
- Low HF radiation
- ESD protected on all pins

GENERAL DESCRIPTION

The TDA7052ANAT are mono BTL output amplifiers with DC volume control. They are designed for use in TV and monitors, but also suitable for battery-fed portable recorders and radios.

ORDERING INFORMATION

EXTENDED	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA7052A	8	DIL	plastic	SOT97
TDA7052AT	8	mini-pack	plastic	SOT96A

QUICK REFERENCE DATA

SYMBOL	PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range		4.5	-	18	V
P_{O}	output power in 8Ω (TDA7052A) in 16Ω (TDA7052AT)	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{P}}=6 \mathrm{~V}$	1	1.1	-	
G_{v}	maximum total voltage gain		0.5	0.55	-	W
ϕ	gain control range		35	36	37	WB
I_{P}	total quiescent current	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$	-	6	12	mA
THD	total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$	-	0.2	1	$\%$

Fig. 2 Pinning diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
V $_{\mathrm{P}}$	1	positive supply voltage
IN +	2	positive input
GND1	3	signal ground
VC	4	DC volume control
OUT +	5	positive output
GND2	6	power ground
n.c	7	not connected
OUT-	8	negative output

1-Watt low voltage audio power amp with DC volume control

FUNCTIONAL DESCRIPTION

The TDA7052A/AT are mono BTL output amplifiers with DC volume control, designed for use in TV and monitors but also suitable for battery fed portable recorders and radios. In conventional DC volume circuits the control or input stage is AC coupled to the output stage via external capacitors to keep the offset voltage low.
In the TDA7052A/AT the DC volume control stage is integrated into the input stage so that no coupling capacitors are required and yet a low offset voltage is maintained. At the same time the minimum supply remains low.

The BTL principle offers the following advantages:

- Lower peak value of the supply current
- The frequency of the ripple on the supply voltage is twice the signal frequency.

Thus a reduced power supply with smaller capacitors can be used which results in cost savings.
For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 36 dB . The DC volume control stage has a logarithmic control characteristic.

The total gain can be controlled from 36 dB to -44 dB . If the DC volume control voltage is below 0.3 V , the device switches to the mute mode. The amplifier is short-circuit proof to ground and V_{p}. Also a thermal protection circuit is implemented. If the crystal temperature rises above $150^{\circ} \mathrm{C}$ the gain will be reduced, so the output power is reduced. Special attention is given to switch on and off clicks, low HF radiation and a good overall stability.

LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{p}	supply voltage range		-	18	V
$\mathrm{I}_{\text {ORM }}$	repetitive peak output current		-	1	A
Iosm	non-repetitive peak output current		-	1.5	A
$P_{\text {bot }}$	total power dissipation TDA7052A TDA7052AT	$\mathrm{T}_{\text {amb }} \leq 25 \%$	${ }_{-}^{-}$	$\begin{aligned} & 1.25 \\ & 0.64 \end{aligned}$	$\begin{aligned} & W \\ & w \end{aligned}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-40	85	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	storage temperature range		-55	150	${ }^{\circ} \mathrm{C}$
$T_{\text {vi }}$	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sc }}$	short-circuit time		-	1	hr
V_{2}	input voltage pin 2		-	8	V
V_{4}	input voltage pin 4		-	8	V

1-Watt low voltage audio power amp with DC volume control

THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$R_{\text {th } \text { i-a }}$	from junction to ambient in free air			
	TDA7052A			
	TDA7052AT	-	100	KWW
		-	155	KW

Note

TDA7052A: $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
The maximum sine-wave dissipation is 0.9 W .
Therefore $T_{\text {amb(max) }}=150-100 \times 0.9=60^{\circ} \mathrm{C}$.
TDA7052AT: $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.
The maximum sine-wave dissipation is 0.46 W .
Therefore $\mathrm{T}_{\text {amb(max) }}=150-155 \times 0.46=78^{\circ} \mathrm{C}$.

1-Watt low voltage audio power amp with DC volume control

CHARACTERISTICS

$V_{p}=6 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; f=1 \mathrm{kHz}$; unless otherwise specified (see Fig.6).
TDA7052A: $R_{L}=8 \Omega$;
TDA7052AT: $\mathrm{R}_{\mathrm{L}}=16 \Omega$;

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range		4.5	-	18	V
I_{p}	total quiescent current	$\begin{aligned} & V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty \\ & \text { note 1 } \end{aligned}$	-	6	12	mA
Maximum gain; $\mathrm{V}_{4}=1.4 \mathrm{~V}$						
P_{0}	output power TDA7052A TDA7052AT	THD $=10 \%$	$\begin{aligned} & 1 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 1.1 \\ 0.55 \\ \hline \end{array}$	$-$	$\begin{array}{\|l} W \\ W \\ \hline \end{array}$
THD	total harmonic distortion TDA7052A TDA7052AT	$\begin{aligned} & P_{0}=0.5 \mathrm{~W} \\ & P_{0}=0.25 \mathrm{~W} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{\|l} \hline 0.2 \\ 0.2 \\ \hline \end{array}$	$\begin{array}{l\|l} 1 \\ 1 \end{array}$	$\begin{array}{\|l} \hline \% \\ \hline \\ \hline \end{array}$
G,	voltage gain		35	36	37	dB
V_{1}	input signal handling	$\mathrm{V}_{4}=1 \mathrm{~V} ; \mathrm{THD}<1 \%$	0.6	-	-	V
$\mathrm{V}_{\text {no(ms) }}$	noise output voltage (RMS value)	$\begin{aligned} & \mathrm{f}=500 \mathrm{kHz} ; \\ & \text { note } 2 \\ & \hline \end{aligned}$	-	tbf	-	$\mu \mathrm{V}$
B	bandwidth		-	$\begin{array}{\|l\|} \hline 20 \mathrm{~Hz} \text { to } \\ 20 \mathrm{kHz} \\ \hline \end{array}$	-	
RR	ripple rejection	note 3	40	-	-	dB
$\underline{\mathrm{V}}$ off	DC output offset voltage		-	tbf	150	mV
Z_{1}	input impedance (pin 2)		15	20	25	$\mathrm{k} \Omega$
Minimum gain; $\mathrm{V}_{4}=0.5 \mathrm{~V}$						
G	voltage gain		-	-44	-	dB
$\mathrm{V}_{\text {no(ms) }}$	noise output voltage RMS value)	note 4	-	20	30	$\mu \mathrm{V}$
Mute position						
Vo	output voltage in mute position	$\mathrm{V}_{4} \leq 0.3 \mathrm{~V} ; \mathrm{V}_{1}=600 \mathrm{mV}$	-	-	30	$\mu \mathrm{V}$
DC volume control						
ϕ	gain control range		75	80	-	dB
14	control current	$\mathrm{V}_{4}=0.4 \mathrm{~V}$	tbf	65	tbf	$\mu \mathrm{A}$

Notes to the characteristics

1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage dividend by R_{L}.
2. The noise output voltage (RMS value) at $f=500 \mathrm{kHz}$ is measured with $R_{S}=0 \Omega$ and bandwidth $=5 \mathrm{kHz}$.
3. The ripple rejection is measured with $R_{S}=0 \Omega$ and $f=100 \mathrm{~Hz}$ to 10 kHz . The ripple voltage of 200 mV , (RMS value) is applied to the positive supply rail.
4. The noise output voltage (RMS-value) is measured with $R_{S}=5 \mathrm{k} \Omega$ unweighted.

1-Watt low voltage audio power amp with DC volume control

Fig. 3 Gain control as a function of DC volume control.

Fig. 4 Noise output voltage as a function of DC volume control.

Fig. 5 Control current as a function of DC volume control.

1-Watt low voltage audio power amp with DC volume control

APPLICATION INFORMATION

(1) This capacitor can be omitted if the $220 \mu \mathrm{~F}$ electrolytic capacitor is connected close to pin 1 .

Fig. 6 Test and application diagram.

Fig. 7 Application with potentiometer as volume control; maximum gain $=30 \mathrm{~dB}$.

FEATURES

- DC volume control
- Few external components
- Mute mode
- Thermal protection
- Short-circuit proof
- No switch-on and off clicks
- Good overall stability
- Low power consumption
- Low HF radiation
- ESD protected on all pins.

GENERAL DESCRIPTION

The TDA7056A is a mono BTL output amplifier with DC volume control. It is designed for use in TV and monitors, but also suitable for battery-fed portable recorders and radios.

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA7056A	9	SIL	plastic	SOT110BE

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range		4.5	-	18	V
P_{O}	output power in 16Ω		3	3.4	-	W
G_{v}	voltage gain		35	36	37	dB
ϕ	gain control range		75	80	-	dB
I_{p}	total quiescent current		$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$	-	8	16
THD	total harmonic distortion	$\mathrm{V}_{\mathrm{P}}=0.5 \mathrm{~W}$	-	0.2	1	$\%$

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
V_{P}	2	positive supply voltage
V_{1}	3	voltage input
GND1	4	signal ground
VC	5	DC volume control
OUT +	6	positive output
GND2	7	power ground
OUT-	8	negative output
n.c.	9	not connected

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The TDA7056A is a mono BTL output amplifier with DC volume control, designed for use in TV and monitor but also suitable for battery-fed portable recorders and radios.
In conventional DC volume circuits the control or input stage is AC coupled to the output stage via external capacitor to keep the offset voltage low.
In the TDA7056A the DC volume stage is integrated into the input stage so that coupling capacitors are not required and a low offset voltage is maintained.
At the same time the minimum
supply voltage remains low. The BTL principle offers the following advantages:

- lower peak value of the supply current
- the frequency of the ripple on the supply voltage is twice the signal frequency

Thus, a reduced power supply and smaller capacitors can be used which results in cost savings. For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 36 dB . The DC volume control stage has a logarithmic control characteristic.
The total gain can be controlled from 36 dB to -44 dB .
If the DC volume control voltage is below 0.3 V , the device switches to the mute mode.
The amplifier is short-circuit proof to ground and V_{p}. Also a thermal protection circuit is implemented. If the crystal temperature rises above $150^{\circ} \mathrm{C}$ the gain will be reduced, so the output power is reduced. Special attention is given to switch-on and off clicks, low HF radiation and a good overall stability.

LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{p}	supply voltage range		-	18	V
$\mathrm{I}_{\text {ORM }}$	repetitive peak output current		-	1	A
$\mathrm{I}_{\text {OSM }}$	non repetitive peak output current		-	1.5	A
$\mathrm{P}_{\text {bo }}$	total power dissipation	$\mathrm{T}_{\text {case }}<60^{\circ} \mathrm{C}$	-	9	W
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature range		-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sig }}$	storage temperature range		-55	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vi }}$	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sc }}$	short-circuit time		-	1	hr
V_{3}	input voltage pin 3		-	8	V
$\mathrm{~V}_{5}$	input voltage pin 5		-	8	V

THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$R_{\text {th je }}$	from junction to case	-	10	KWW
$R_{\text {t } \text { ja }}$	from junction to ambient in free air	-	55	kW

Note

$V_{P}=12 \mathrm{~V} ; R_{L}=16 \Omega$; The maximum sine-wave dissipation is $=1.8 \mathrm{~W}$. The $R_{\text {th } \eta-\theta}$ of the package is 55 KW ;
$T_{\text {amb (max) }}=150-55 \times 1.8=51^{\circ} \mathrm{C}$

CHARACTERISTICS

$V_{P}=12 \mathrm{~V} ; f=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=16 \Omega ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; unless otherwise specified (see Fig.6)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{p}	supply voltage range		4.5	-	18	V
I_{p}	total quiescent current	$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$; note 1	-	8	16	mA
Maximum gain ($\mathrm{V}_{5}=1.4 \mathrm{~V}$)						
P_{0}	output power	THD $=10 \%$	3	3.4	-	W
THD	total harmonic distortion	$\mathrm{P}_{0}=0.5 \mathrm{~W}$	-	0.2	1	\%
G	voltage gain		35	36	37	dB
V_{1}	input signal handling	$\mathrm{V}_{5}=1 \mathrm{~V}$; THD $<1 \%$	0.6	-	-	V
$V_{\text {no(ms) }}$	noise output voltage (RMS value)	$\mathrm{f}=500 \mathrm{kHz}$; note 2	-	tbf	-	$\mu \mathrm{V}$
B	bandwidth		-	$\begin{array}{\|l\|} \hline 20 \mathrm{~Hz} \text { to } \\ 20 \mathrm{kHz} \\ \hline \end{array}$	-	
RR	ripple rejection	note 3	40	-	-	dB
$\left\|V_{\text {off }}\right\|$	DC output offset voltage		-	tbi	150	mV
Z_{1}	input impedance pin 3		15	20	25	k Ω
Minimum gain ($V_{5}=0.5 \mathrm{~V}$)						
G	voltage gain		-	-44	-	dB
$V_{\text {no(ms) }}$	noise output voltage (RMS value)	note 4	-	20	30	$\mu \mathrm{V}$
Mute position						
V_{0}	output voltage in mute position	$\mathrm{V}_{5} \leq 0.3 \mathrm{~V} ; \mathrm{V}_{1}=600 \mathrm{mV}$	-	-	30	$\mu \mathrm{V}$
DC volume control						
ϕ	gain control range		75	80	-	dB
I_{5}	control current	$\mathrm{V}_{5}=0 \mathrm{~V}$	tbf	65	tbi	$\mu \mathrm{A}$

Notes to the characteristics

1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage divided by R_{L}.
2. The noise output voltage (RMS value) at $f=500 \mathrm{kHz}$ is measured with $R_{s}=0 \Omega$ and bandwidth $=5 \mathrm{kHz}$.
3. The ripple rejection is measured with $R_{S}=0 \Omega$ and $f=100 \mathrm{~Hz}$ to 10 kHz . The ripple voltage of 200 mV (RMS value) is applied to the positive supply rail.
4. The noise output voltage (RMS value) is measured with $R_{S}=5 \mathrm{k} \Omega$ unweighted.

Fig. 3 Gain as a function of DC volume control.

Fig. 4 Noise output voltage as a function of DC volume control.

Fig. 5 Control current as a function of DC volume control.

APPLICATION INFORMATION

(1) This capacitor can be omitted if the $220 \mu \mathrm{~F}$ electrolytic capacitor is connected close to pin 2.

Fig. 6 Test and application diagram.

Fig. 7 Application using a potentiometer for volume control; $\mathrm{G}_{\mathrm{v}}=30 \mathrm{~dB}$.

Section 2

Compandors

RF Communications

INDEX

Compandor Selector Guide 166
NE570/571/SA571Compandor 167
AN174 Applications for compandors NE570/571/SA571 174
AN176 Compandor cookbook 183
NE/SA572 Programmable analog compandor 189
AN175 Automatic level control using the NE572 197
NE/SA575 Low voltage compandor 198
NE/SA575 Low voltage compandor in shrink small outline package SSOP 208
NE/SA576 Low power compandor 218
NE/SA577 Unity gain level programmable power compandor 221
NE/SA578 Unity gain level programmable low power compandor 225
AN1762 Companding with the NE577 and NE578 229

DESCRIPTION

The NE570/571 is a versatile low cost dual gain control circuit in which either channel may be used as a dynamic range compressor or expandor. Each channel has a full-wave rectifier to detect the average value of the signal, a linerarized temperature-compensated variable gain cell, and an operational amplifier.

The NE570/571 is well suited for use in cellular radio and radio communications systems, modems, telephone, and satellite broadcast/receive audio systems.

FEATURES

- Complete compressor and expandor in one IChip
- Temperature compensated
- Greater than 110 dB dynamic range
- Operates down to 6VDC
- System levels adjustable with external components
- Distortion may be trimmed out
- Dynamic noise reduction systems
- Voltage-controlled amplifier

PIN CONFIGURATION

D, F, and N Packages ${ }^{1}$		
RECT CAP 1	16	RECT CAP 2
RECTIN 1	15	RECTIN 2
AG CELLIN 1	14	AG CELL IN 2
GND 4	13	$V_{\text {cc }}$
INV. IN 15	12	INV. IN 2
RES. $\mathrm{R}_{3} 1$ 8	11	RES. $\mathrm{R}_{3} 2$
OUTPUT 1	10	OUTPUT 2
THD TRIM 18	9	THD TRIM 2
TOP VIEW		
SOL - Released in Large SO Package Only.		

APPLICATIONS

- Cellular radio
- Telephone trunk compandor-570
- Telephone subscriber compandor-571
- High level limiter
- Low level expandor-noise gate
- Dynamic filters
- CD Player

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic SOL	0 to $+70^{\circ} \mathrm{C}$	NE570D
16-Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE570F
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE570N
16-Pin Plastic SOL	0 to $+70^{\circ} \mathrm{C}$	NE571D
16-Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE571F
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE571N
16-Pin Plastic SOL	-40 to $+85^{\circ} \mathrm{C}$	SA571D
16-Pin Cerdip	-40 to $+85^{\circ} \mathrm{C}$	SA571F
16-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA571N

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS
$\left.\begin{array}{|c|c|c|c|}\hline \text { SYMBOL } & \text { PARAMETER } & \text { RATING } & \text { UNITS } \\ \hline V_{C C} & \text { Maximum operating voltage } \\ 570 \\ 571\end{array}\right)$

AC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			LIMITS			UNITS
			NE570			NE/SA571 ${ }^{5}$			
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		6		24	6		18	V
Icc	Supply current	No signal		3.2	4.8		3.2	4.8	mA
lout	Output current capability		± 20			± 20			mA
SR	Output slew rate			$\pm .5$			$\pm .5$		V/ $/ \mathrm{s}$
	Gain cell distortion ${ }^{2}$	Untrimmed Trimmed		$\begin{gathered} 0.3 \\ 0.05 \end{gathered}$	1.0		$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	2.0	\%
	Resistor tolerance			± 5	± 15		± 5	± 15	\%
	Internal reference voltage		1.7	1.8	1.9	1.65	1.8	1.95	V
	Output DC shift ${ }^{3}$	Untrimmed		± 20	± 100		± 30	± 150	mV
	Expandor output noise	No signal, 15Hz-20kHz ${ }^{1}$		20	45		20	60	$\mu \mathrm{V}$
	Unity gain level ${ }^{6}$	1 kHz	-1	0	+1	-1.5	0	+1.5	dBm
	Gain change ${ }^{2,4}$			± 0.1	± 0.2		± 0.1		dB
	Reference drift ${ }^{4}$			± 5	± 10		+2, -25	+20, -50	mV
	Resistor drift ${ }^{4}$			+1, 0			+8, -0		\%
	Tracking error (measured relative to value at unity gain) equals [$V_{O}-V_{O}$ (unity gain)] $d B-V_{2} d B m$	Rectifier input, $\begin{aligned} & V_{2}=+6 \mathrm{dBm}, V_{1}=0 \mathrm{~dB} \\ & \mathrm{~V}_{2}=-30 \mathrm{dBm}, \mathrm{~V}_{1}=0 \mathrm{~dB} \end{aligned}$		$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	-0.5, +1		$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	$-1,+1.5$	dB
	Channel separation			60			60		dB

NOTES:

1. Input to V_{1} and V_{2} grounded.
2. Measured at $0 \mathrm{dBm}, 1 \mathrm{kHz}$.
3. Expandor $A C$ input change from no signal to 0 dBm .
4. Relative to value at $T_{A}=25^{\circ} \mathrm{C}$.
5. Electrical characteristics for the SA571 only are specified over -40 to $+85^{\circ} \mathrm{C}$ temperature range.
6. $0 \mathrm{dBm}=775 \mathrm{mV}$ RMs.

CIRCUIT DESCRIPTION

The NE570/571 compandor building blocks, as shown in the block diagram, are a full-wave rectifier, a variable gain cell, an operational amplifier and a bias system. The arrangement of these blocks in the IC result in a circuit which can perform well with few external components, yet can be adapted to many diverse applications.
The full-wave rectifier rectifies the input current which flows from the rectifier input, to an internal summing node which is biased at $\mathrm{V}_{\text {REF }}$. The rectified current is averaged on an external filter capacitor tied to the $\mathrm{C}_{\text {RECT }}$ terminal, and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively-coupled voltage inputs as shown in the following equation. Note that for capacitively-coupled inputs there is no offset voltage capable of producing a gain error. The only error will come from the bias current of the rectifier (supplied internally) which is less than $0.1 \mu \mathrm{~A}$.
$G \propto \frac{\left|V_{I N}-V_{\text {REF }}\right| a v g}{R_{1}}$
or

$$
G \propto \frac{\left|V_{I N}\right| \text { avg }}{R_{1}}
$$

The speed with which gain changes to follow changes in input signal levels is determined by the rectifier filter capacitor. A small capacitor will yield rapid response but will not fully filter low frequency signals. Any ripple on the gain control signal will modulate the signal passing through the variable gain cell. In an expander or compressor application,
this would lead to third harmonic distortion, so there is a trade-off to be made between fast attack and decay times and distortion. For step changes in amplitude, the change in gain with time is shown by this equation.
$G(t)=\left(G_{\text {initial }}-G_{\text {final }}\right)_{e}-t / \tau$
$+G_{\text {final }} ; \tau=10 k \times C_{\text {RECT }}$
The variable gain cell is a current-in, current-out device with the ratio lout/IN controlled by the rectifier. $\mathrm{I}_{\mathbb{N}}$ is the current which flows from the ΔG input to an internal summing node biased at $\mathrm{V}_{\text {REF }}$. The following equation applies for capacitively-coupled inputs. The output current, lout, is fed to the summing node of the op amp.
$I_{I N}=\frac{V_{I N}-V_{\text {REF }}}{R_{2}}=\frac{V_{I N}}{R_{2}}$
A compensation scheme built into the ΔG cell compensates for temperature and cancels out odd harmonic distortion. The only distortion which remains is even harmonics, and they exist only because of internal offset voltages. The THD trim terminal provides a means for nulling the internal offsets for low distortion operation.

The operational amplifier (which is internally compensated) has the non-inverting input tied to $\mathrm{V}_{\text {REF }}$, and the inverting input connected to the $\Delta \mathrm{G}$ cell output as well as brought out externally. A resistor, R_{3}, is brought out from the summing node and allows compressor or expander gain to be determined only by internal components.
The output stage is capable of $\pm 20 \mathrm{~mA}$ output current. This allows a $+13 \mathrm{dBm}\left(3.5 \mathrm{~V}_{\text {RMS }}\right)$ output into a 300Ω load which, with a series
resistor and proper transformer, can result in +13 dBm with a 600Ω output impedance.
A bandgap reference provides the reference voltage for all summing nodes, a regulated supply voltage for the rectifier and ΔG cell, and a bias current for the $\Delta \mathrm{G}$ cell. The low tempco of this type of reference provides very stable biasing over a wide temperature range.

The typical performance characteristics illustration shows the basic input-output transfer curve for basic compressor or expander circuits.

TYPICAL TEST CIRCUIT

INTRODUCTION

Much interest has been expressed in high performance electronic gain control circuits. For non-critical applications, an integrated circuit operational transconductance amplifier can be used, but when high-performance is required, one has to resort to complex discrete circuitry with many expensive, well-matched components. This paper describes an inexpensive integrated circuit, the NE570 Compandor, which offers a pair of high performance gain control circuits featuring low distortion (<0.1\%), high signal-to-noise ratio (90dB), and wide dynamic range (110 dB).

CIRCUIT BACKGROUND

The NE570 Compandor was originally designed to satisfy the requirements of the telephone system. When several telephone channels are multiplexed onto a common line, the resulting signal-to-noise ratio is poor and companding is used to allow a wider dynamic range to be passed through the channel. Figure 1 graphically shows what a compandor can do for the signal-to-noise ratio of a restricted dynamic range channel. The input level range of +20 to -80 dB is shown undergoing a 2-to-1 compression where a 2 dB input level change is compressed into a 1 dB output level change by the compressor. The original 100 dB of dynamic range is thus compressed to a 50 dB range for transmission through a restricted dynamic range channel. A complementary expansion on the receiving end restores the original signal levels and reduces the channel noise by as much as 45 dB .
The significant circuits in a compressor or expander are the rectifier and the gain control element. The phone system requires a simple full-wave averaging rectifier with good accuracy, since the rectifier accuracy determines the (input) output level tracking accuracy. The gain cell determines the distortion and noise characteristics, and the phone system specifications here are very loose. These specs could have been met with a simple operational transconductance multiplier, or OTA, but the gain of an OTA is proportional to temperature and this is very undesirable. Therefore, a linearized transconductance multiplier was designed which is insensitive to temperature and offers low noise and low distortion performance. These features make the circuit useful in audio and data systems as well as in telecommunications systems.
on the IC). The full-wave averaging rectifier provides a gain control current, I_{G}, for the variable gain $(\Delta \mathrm{G})$ cell: The output of the $\Delta \mathrm{G}$ cell is a current which is fed to the summing node of the operational amplifier. Resistors are provided to establish circuit gain and set the output DC bias.

Figure 1. Restricted Dynamic Range Channel

Figure 2. Chip Block Dlagram (1 of 2 Channels)

The circuit is intended for use in single power supply systems, so the internal summing nodes must be biased at some voltage above ground. An internal band gap voltage reference provides a very stable, low noise 1.8 V reference denoted $\mathrm{V}_{\text {REF }}$. The non-inverting input of the op amp is tied to \checkmark REF, and the summing nodes of the rectifier and ΔG cell (located at the right of R_{1} and R_{2}) have the same potential. The THD trim pin is atso at the $V_{\text {REF }}$ potential.

Figure 3 shows how the circuit is hooked up to realize an expandor. The input signal, $\mathrm{V}_{\mathbb{N}}$, is applied to the inputs of both the rectifier and the ΔG cell. When the input signal drops by 6 dB , the gain control current will drop by a factor of 2 , and so the gain will drop 6 dB . The output level at $\mathrm{V}_{\text {Out }}$ will thus drop 12dB, giving us the desired 2 -to-1 expansion.

Figure 4 shows the hook-up for a compressor. This is essentially an expandor placed in the feedback loop of the op amp. The ΔG cell is setup to provide $A C$ feedback only, so a separate DC feedback loop is provided by the two $R_{D C}$ and $C_{D C}$. The values of $R_{D C}$ will determine the $D C$ bias at the output of the op amp. The output will bias to:
$V_{\text {OUT }} D C=1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}$
$V_{\text {REF }}=\left(1+\frac{R_{D C T O T}}{30 k}\right) 1.8 \mathrm{~V}$

BASIC CIRCUIT HOOK-UP AND

 OPERATIONFigure 2 shows the block diagram of one half of the chip, (there are two identical channels

Compandor

The output of the expander will bias up to:
$V_{\text {OUT }} D C=1+\frac{R_{3}}{R_{4}} V_{R E F}$
$V_{R E F}=\left(1+\frac{20 k}{30 k}\right) 1.8 \mathrm{~V}=3.0 \mathrm{~V}$
The output will bias to 3.0 V when the internal resistors are used. External resistors may be placed in series with R_{3}, (which will affect the gain), or in parallel with R_{4} to raise the $D C$

$$
\begin{aligned}
& \text { NOTES: } \\
& \text { GAIN }=\left(\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{\text {INavg }}}\right)^{\frac{1}{2}} \\
& I_{\mathrm{B}}=140 \mu \mathrm{~A}
\end{aligned}
$$

External components
Figure 4. Basic Compressor

Figure 5. Rectifier Concept

CIRCUIT DETAILS-RECTIFIER

Figure 5 shows the concept behind the full-wave averaging rectifier. The input current to the summing node of the op amp, $V_{\mathbb{N}} \mathrm{R}_{1}$, is supplied by the output of the op amp. If we can mirror the op amp output current into a unipolar current, we will have an ideal rectifier. The output current is averaged by $\mathrm{R}_{5}, C R$, which set the averaging time constant, and then mirrored with a gain of 2 to become I_{G}, the gain control current.

Figure 6 shows the rectifier circuit in more detail. The op amp is a one-stage op amp, biased so that only one output device is on at a time. The non-inverting input, (the base of Q_{1}), which is shown grounded, is actually tied to the internal $1.8 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}}$. The inverting input is tied to the op amp output, (the emitters of Q_{5} and Q_{6}), and the input summing resistor R_{1}. The single diode between the bases of Q_{5} and Q_{6} assures that only one device is on at a time. To detect the output current of the op amp, we simply use the collector currents of the output devices Q_{5} and $Q_{6} . Q_{6}$ will conduct when the input swings positive and Q_{5} conducts when the input swings negative. The collector currents will be in error by the a of Q_{5} or Q_{6} on negative or positive signal swings, respectively. ICs such as this have typical NPN β s of 200 and PNP β s of 40 . The a's of 0.995 and 0.975 will produce errors of 0.5% on negative swings and 2.5% on positive swings. The 1.5% average of these errors yields a mere 0.13 dB gain error. At very low input signal levels the bias current of Q_{2}, (typically 50 nA), will become significant as it must be supplied by Q_{5}. Another low level error can be caused by DC coupling into the rectifier. If an offset voltage exists between the $\mathrm{V}_{\mathbb{I}}$ input pin and the base of Q_{2}, an error current of $V_{O S} / R_{1}$ will be generated. A mere 1 mV of offset will cause an input current of 100 nA which will produce twice the error of the input bias current. For highest accuracy, the rectifier should becoupled into capacitively. At high input levels the β of the $P N P Q_{6}$ will begin to suffer, and there will be an increasing error until the circuit saturates. Saturation can be avoided by limiting the current into the rectifier input to $250 \mu \mathrm{~A}$. If necessary, an external resistor may be
placed in series with R_{1} to limit the current to this value. Figure 7 shows the rectifier accuracy vs input level at a frequency of 1 kHz .

At very high frequencies, the response of the rectifier will fall off. The roll-off will be more pronounced at lower input levels due to the increasing amount of gain required to switch between Q_{5} or Q_{6} conducting. The rectifier frequency response for input levels of 0 dBm , -20 dBm , and -40 dBm is shown in Figure 8. The response at all three levels is flat to well above the audio range.

Figure 8. Rectifier Frequency Response vs Input Level

VARIABLE GAIN CELL

Figure 9 is a diagram of the variable gain cell. This is a linearized two-quadrant transconductance multiplier. Q_{1}, Q_{2} and the op amp provide a predistorted drive signal for the gain control pair, Q_{3} and Q_{4}. The gain is controlled by I_{G} and a current mirror provides the output current.
The op amp maintains the base and collector of Q_{1} at ground potential ($V_{\text {REF }}$) by controlling the base of Q_{2}. The input current $I_{\mathbb{N}}\left(=V_{\mathbb{N}} / R_{2}\right)$ is thus forced to flow through Q_{1} along with the current I_{1}, so $I_{\mathrm{C}_{1}}=I_{1}+I_{\mathbb{N}}$. Since I_{2} has been set at twice the value of l_{1}, the current through Q_{2} is:

$I_{2}-\left(I_{1}+I_{N}\right)=I_{1}-l_{N}=I_{C 2}$.

The op amp has thus forced a linear current swing between Q_{1} and Q_{2} by providing the proper drive to the base of Q_{2}. This drive signal will be linear for small signals, but very non-linear for large signals, since it is compensating for the non-linearity of the differential pair, Q_{1} and Q_{2}, under large signal conditions.
The key to the circuit is that this same predistorted drive signal is applied to the gain control pair, Q_{3} and Q_{4}. When two differential pairs of transistors have the same signal applied, their collector current ratios will be identical regardless of the magnitude of the currents. This gives us:
$\frac{I_{C 1}}{I_{C 2}}=\frac{I_{C A}}{I_{C 3}}=\frac{I_{1}+I_{I N}}{I_{1}-I_{I N}}$
plus the relationships $I_{G}=I_{C_{3}+}+I_{C 4}$ and $\mathrm{l}_{\text {OUT }}=\mathrm{I}_{\mathrm{C4}}{ }^{-} \mathrm{I}_{\mathrm{C}}$ will yield the multiplier transfer function,
$I_{\text {OUT }}=\frac{I_{G}}{I_{1}} I_{\mathbb{N}}=\frac{V_{\mathbb{N}}}{R_{2}} \frac{I_{G}}{I_{1}}$
This equation is linear and temperature-insensitive, but it assumes ideal transistors.

Figure 9. Simplified Δ G Cell Schematic

Figure 10. $\Delta \mathrm{G}$ Cell Distortion vs Offset Voltage

If the transistors are not perfectly matched, a parabolic, non-linearity is generated, which results in second harmonic distortion. Figure 10 gives an indication of the magnitude of the distortion caused by a given input level and offset voltage. The distortion is linearly proportional to the magnitude of the offset and the input level. Saturation of the gain cell occurs at a +8 dBm level. At a nominal operating level of 0 dBm , a 1 mV offset will yield 0.34% of second harmonic distortion. Most circuits are somewhat better than this, which means our overall offsets are typically about mV . The distortion is not affected by the magnitude of the gain control current, and it does not increase as the gain is changed. This second harmonic distortion could be eliminated by making perfect transistors, but since that would be difficult, we have had to resort to other methods. A trim pin has been provided to allow trimming of the intornal offsers to zero, which effectively eliminated
second harmonic distortion Figure 11 shows the simple trim network required.
Figure 12 shows the noise performance of the ΔG cell. The maximum output level before clipping occurs in the gain cell is plotted along with the output noise in a 20 kHz bandwidth. Note that the noise drops as the gain is reduced for the first 20 dB of gain reduction. At high gains, the signal to noise ratio is 90 dB , and the total dynamic range from maximum signal to minimum noise is 110 dB .

Controtsignal feedthrough is generated in the gain cell by imperfect device matching and mismatches in the current sources, I_{1} and I_{2}. When no input signal is present, changing l_{G} will cause a small output signal. The distortion trim is effective in nulling out any control signal feedthrough, but in general, the null for minimum feedthrough will be different than the null in distortion. The control signal feedthrough can be trimmed independently of distortion by tying a current source to the $\Delta \mathrm{G}$
input pin. This effectively trims I_{1}. Figure 13 shows such a trim network.

Figure 12. Dynamic Range of NE570
FIgure 13. Control SIgnal Feedthrough
Trim

OPERATIONAL AMPLIFIER

The main op amp shown in the chip block diagram is equivalent to a 741 with a 1 MHz bandwidth. Figure 14 shows the basic circuit. Split collectors are used in the input pair to reduce g_{m}, so that a small compensation capacitor of just 10 pF may be used. The output stage, although capable of output currents in excess of 20 mA , is biased for a low quiescent current to conserve power. When driving heavy loads, this leads to a small amount of crossover distortion.

RESISTORS

Inspection of the gain equations in Figures 3 and 4 will show that the basic compressor and expander circuit gains may be set entirely by resistor ratios and the internal voltage reference. Thus, any form of resistors that match well would suffice for these simple hook-ups, and absolute accuracy and temperature coefficient would be of no importance. However, as one starts to modify the gain equation with external resistors, the internal resistor accuracy and tempco become very significant. Figure 15 shows the effects of temperature on the diffused resistors which are normally used in integrated circuits, and the ion-implanted resistors which are used in this circuit. Over the critical $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, there is a 10 -to-1 improvement in drift from a 5% change for the diffused resistors, to a
0.5% change for the implemented resistors. The implanted resistors have another advantage in that they can be made the size of the diffused resistors due to the higher resistivity. This saves a significant amount of chip area.

Figure 14. Operational Amplifier

Figure 15. Resistance vs Temperature

APPLICATIONS

The following circuits will illustrate some of the wide variety of applications for the NE570.

BASIC EXPANDOR

Figure 1 shows how the circuit would be hooked up for use as an expandor. Both the rectifier and ΔG cell inputs are tied to $V_{\mathbb{I N}}$ so that the gain is proportional to the average value of $\left(V_{I N}\right)$. Thus, when $V_{\mathbb{I}}$ falls $6 d B$, the gain drops 6 dB and the output drops 12 dB . The exact expression for the gain is

$$
\text { Gain exp. }=\left[\frac{2 R_{3} V_{I N}(\text { avg })}{R_{1} R_{2} I_{B}}\right]^{2}
$$

$I_{B}=140 \mu \mathrm{~A}$

The maximum input that can be handled by the circuit in Figure 1 is a peak of 3 V . The rectifier input current can be as large as $\mathrm{I}=3 \mathrm{~V} / \mathrm{R}_{1}=3 \mathrm{~V} / 10 \mathrm{k}=300 \mu \mathrm{~A}$. The $\Delta \mathrm{G}$ cell input current should be limited to
$\mathrm{I}=2.8 \mathrm{~V} / \mathrm{R}_{2}=2.8 \mathrm{~V} / 20 \mathrm{~K}=140 \mu \mathrm{~A}$. If it is necessary to handle larger input voltages than $0 \pm 2.8 \mathrm{~V}$ peak, external resistors should be placed in series with R_{1} and R_{2} to limit the input current to the above values.
Figure 1 shows a pair of input capacitors $\mathrm{C}_{\mathbb{N} 1}$ and $\mathrm{C}_{\mathbf{1 N} 2}$. It is now necessary to use both capacitors if low level tracking accuracy is not important. If R_{1} and R_{2} are tied together and share a common capacitor, a small current will flow between the ΔG cell summing node and the rectifier summing node due to offset

The output of the expandor is biased up to 3 V by the $D C$ gain provided by R_{3}, R_{4}. The output will bias up to
$V_{\text {OUTDC }}=1+\frac{R_{3}}{R_{4}} V_{\text {REF }}$

For supply voltages higher than $6 \mathrm{~V}, \mathrm{R}_{4}$ can be shunted with an external resistor to bias the output up to V_{cc}.
Note that it is possible to externally increase R_{1}, R_{2}, and R_{3}, and to decrease R_{3} and R_{4}. This allows a great deal of flexibility in setting up system levels. If larger input signals are to be handled, R_{1} and R_{2} may be increased; if a larger output is required, R_{3} may be
increased. To obtain the largest dynamic range out of this circuit, the rectifier input should always be as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restriction).

BASIC COMPRESSOR

Figure 2 shows how to use the NE570/571 as a compressor. It functions as an expandor in the feedback loop of an op amp. If the input rises 6 dB , the output can rise only 3 dB . The 3 dB increase in output level produces a 3 dB increase in gain in the ΔG cell, yielding a 6 dB increase in feedback current to the summing node. Exact expression for gain is
Gain comp. $=\left[\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N}(a v g)}\right]^{\frac{1}{2}}$

Figure 1. Basic Expandor
voltages. This current will produce an error in the gain control signal at low levels, degrading tracking accuracy.

The same restrictions for the rectifier and ΔG cell maximum input current still hold, which place a limit on the maximum compressor
output. As in the expandor, the rectifier and ΔG cell inputs could be made common to save a capacitor, but low level tracking accuracy would suffer. Since there is no DC feedback path around the op amp through the ΔG cell, one must be provided externally. The pair of resistors R_{DC} and the capacitor C_{DC} must be provided. The op amp output will bias up to
$V_{\text {OUTDC }}=\left(1+\frac{R_{D C}}{R_{4}}\right) V_{R E F}$
For the largest dynamic range, the compressor output should be as large as possible so that the rectifier input is as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restriction). If the input signal is small, a large output can be produced by reducing R_{3} with the attendant decrease in input impedance, or by increasing R_{1} or R_{2}. It would be best to increase R_{2} rather than R_{1} so that the rectifier input current is not reduced.

DISTORTION TRIM

Distortion can be produced by voltage offsets in the $\Delta \mathrm{G}$ cell. The distortion is mainly even harmonics, and drops with decreasing input signal (input signal meaning the current into the ΔG cell). The THD trim terminal provides
a means for trimming out the offset voltages and thus trimming out the distortion. The circuit shown in Figure 3 is suitable, as would be any other capable of delivering $\pm 30 \mu \mathrm{~A}$ into 100Ω resistor tied to 1.8 V .

LOW LEVEL MISTRACKING

The compandor will follow a 2-to-1 tracking ratio down to very low levels. The rectifier is responsible for errors in gain, and it is the rectifier input bias current of $<100 \mathrm{nA}$ that

Figure 4. Expandor With Low Level Mistracking
produces errors at low levels. The magnitude signal level drops to a $1 \mu \mathrm{~A}$ average, the bias current will produce a 10% or 1dB error in gain. This will occur at 42 dB below the maximum input level.

Figure 3. THD Trim Network
It is possible to deviate from the 2-to-1 transfer characteristic at low levels as shown in the circuit of Figure 4. Either R_{A} or R_{B}, (but not both), is required. The voltage on $\mathrm{C}_{\text {RECT }}$ is $2 \times V_{B E}$ plus $V_{I N}$ avg. For low level inputs $\mathrm{V}_{\mathbb{N}}$ avg is negligible, so we can assume 1.3 V as the bias on $C_{\text {RECT }}$. If R_{A} is placed from $\mathrm{C}_{\text {RECT }}$ to AND we will bleed off a current $I=1.3 V / R_{A}$. If the rectifier average input current is less than this value, there will be no gain control input to the $\Delta \mathrm{G}$ cell so that its gain will be zero and the expandor output will be zero. As the input level is raised, the input current will exceed $1.3 \mathrm{~V} / \mathrm{R}_{\mathrm{A}}$ and the expandor output will become active. For large input signals, R_{A} will have little effect. The result of this is that we will deviate from the 2-to-1 expansion, present at high levels, to an infinite expansion at low levels where the output shuts off completely. Figure 5 shows some examples of tracking curves which can be obtained. Complementary curves would be obtained for a compressor, where at low level signals the result would be infinite
compression. The bleed current through R_{A} will be a function of temperature because of the two $V_{B E}$ drops, so the low level tracking will drift with temperature. If a negative supply is available, if would be desirable to tie R_{A} to that, rather than ground, and to increase its value accordingly. The bleed current will then be less sensitive to the $V_{B E}$ temperature drift.

R_{B} will supply an extra current to the rectifier equal to ($\mathrm{V}_{\mathrm{CC}}-1.3 \mathrm{~V}$) R_{B}. In this case, the expandor transfer characteristic will deviate towards 1-to-1 at low levels. At low levels the expandor gain will stop dropping and the expansion will cease. In a compressor, this would lead to a lack of compression at low levels. Figure 6 shows some typical transfer curves. An R_{B} value of approximately 2.5 M would trim the low level tracking so as to match the Bell system N2 trunk compandor characteristic.

Figure 6. Mistracking With R_{B}

Figure 7. Rectifier Blas Current Compensation

Figure 8. Rectifier Performance With Bias Current Compensation

Figure 9. Gain vs Time Input Steps of $\pm 10, \pm 20, \pm 30 \mathrm{~dB}$

Figure 10. Compressor Attack Envelope +12dB Step

Figure 11. Compressor Release Envelope -12dB Step

RECTIFIER BIAS CURRENT CANCELLATION

The rectifier has an input bias current of between 50 and 100 nA . This limits the dynamic range of the rectifier to about 60 dB . It also limits the amount of attenuation of the ΔG cell. The rectifier dynamic range may be increased by about 20 dB by the bias current trim network shown in Figure 7. Figure 8 shows the rectifier performance with and without bias current cancellation.

ATTACK AND DECAY TIME

The attack and decay times of the compandor are determined by the rectifier filter time constant $10 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$. Figure 9 shows how the gain will change when the input signal undergoes a 10,20 , or 30 dB change in level.

The attack time is much faster than the decay, which is desirable in most applications. Figure 10 shows the compressor attack envelope for a +12 dB step in input level. The initial output level of 1 unit instantaneously rises to 4 units, and then starts to fall towards its final value of 2 units. The CCITT recommendation on attack and decay times for telephone system compandors defines the attack time as when the envelope has fallen to a level of 3 units, corresponding to $t=0.15$ in the figure. The CCITT recommends an attack time of 3 $\pm 2 \mathrm{~ms}$, which suggests an RC product of 20 ms . Figure 11 shows the compressor output envelope when the input level is suddenly reduced 12 dB . The output, initially at a level of 4 units, drops 12 dB to 1 unit and then rises to its final value of 2 units. The CCITT defines release time as when the output has risen to 1.5 units, and suggests a value of $13.5 \pm 9 \mathrm{~ms}$. This corresponds to $t=0.675$ in the figure, which again suggests a 20 ms RC product. Since $\mathrm{R}_{1}=10 \mathrm{k}$, the CCITT recommendations will be met if $\mathrm{C}_{\text {RECT }}=2 \mu \mathrm{~F}$.
There is a trade-off between fast response and low distortion. If a small $\mathrm{C}_{\text {RECT }}$ is used to get very fast attack and decay, some ripple will appear on the gain control line and produce distortion. As a rule, a $1 \mu \mathrm{~F} \mathrm{C}_{\text {RECT }}$ will produce 0.2% distortion at 1 kHz . The distortion is inversely proportional to both frequency and capacitance. Thus, for telephone applications where $\mathrm{C}_{\text {RECT }}=2 \mu \mathrm{~F}$, the ripple would cause 0.1% distortion at 1 kHz and 0.33% at 800 Hz . The low frequency distortion generated by a compressor would be cancelled (or undistorted) by an expandor, providing that they have the same value of CRECT.

FAST ATTACK, SLOW RELEASE HARD LIMITER

The NE570/571 can be easily used to make an excellent limiter. Figure 12 shows a typical circuit which requires of an NE570/571, of an LM339 quad comparator, and a PNP transistor. For small signals, the ΔG cell is nearly off, and the circuit runs at unity gain as set by R_{8}, R_{7}. When the output signal tries to exceed a + or -1 V peak, a comparator threshold is exceeded. The PNP is turned on and rapidly charges C_{4} which activates the ΔG cell. Negative feedback through the ΔG cell reduces the gain and the output signal level. The attack time is set by the RC product of R_{18} and C_{4}, and the release time is determined by C_{4} and the internal rectifier resistor, which is 10k. The circuit shown attacks in less than 1 ms and has a release time constant of 100 ms . R_{9} trickles about $0.7 \mu \mathrm{~A}$ through the rectifier to prevent C_{4} from becoming completely discharged. The gain cell is activated when the voltage on Pin 1 or 16 exceeds two diode drops. If C_{4} were allowed to become completely discharged, there would be a slight delay before it recharged to $>1.2 \mathrm{~V}$ and activated limiting action.
A stereo limiter can be built out of 1 NE570/571, 1 LM339 and two PNP transistors. The resistor networks R_{12}, R_{13} and R_{14}, R_{15}, which set the limiting thresholds, could be common between channels. To gang the stereo channels together (limiting in one channel will produce a corresponding gain change in the second channel to maintain the balance of the stereo image), then Pins 1 and 16 should be jumpered together. The outputs of all 4 comparators may then be tied together, and only one PNP transistor and one capacitor C_{4} need be used. The release time will then be the product $5 \mathrm{k} \times \mathrm{C}_{4}$ since two channels are being supplied current from C_{4}.

USE OF EXTERNAL OP AMP

The operational amplifiers in the NE570/571 are not adequate for some applications.

+15V Pin 13
GND Pin 4
$\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{4}}$ are internal to the $\mathrm{NE} 570 / 571$
Figure 12. Fast Attack, Slow Release Hard Limiter

Figure 13. Use of External Op Amp
The slew rate, bandwidth, noise, and output drive capability can limit performance in many systems. For best performance, an external op amp can be used. The external op amp may be powered by bipolar supplies for a larger output swing.

Figure 13 shows how an external op amp may be connected. The non-inverting input must be biased at about 1.8 V . This is easily accomplished by tying it to either Pin 8 or 9 , the THD trim pins, since these pins sit at 1.8V. An optional RC decoupling network is shown which will filter out the noise from the NE570/571 reference (typically about $10 \mu \mathrm{~V}$ in 20 kHz BW). The inverting input of the external op amp is tied to the inverting input of the internal op amp. The output of the external op amp is then used, with the internal op amp output left to float. If the external op amp is used single supply ($+\mathrm{V}_{\mathrm{CC}}$ and ground), it must have an input common-mode range down to less than 1.8 V .

Figure 14. N2 Compressor

N2 COMPANDOR
There are four primary considerations involved in the application of the NE570/571 in an N2 compandor. These are matching of input and output levels, accurate 600Ω input and output impedances, conformance to the Bell system low level tracking curve, and proper attack and release times.

Figure 14 shows the implementation of an N2 compressor. The input level of $0.245 \mathrm{~V}_{\text {RMS }}$ is
stepped up to $1.41 \mathrm{~V}_{\text {RMS }}$ by the 600Ω : $20 \mathrm{k} \Omega$ matching transformer. The 20 k input resistor properly terminates the transformer. An internal $20 \mathrm{k} \Omega$ resistor $\left(\mathrm{R}_{3}\right)$ is provided, but for accurate impedance termination an external resistor should be used. The output impedance is provided by the $4 \mathrm{k} \Omega$ output resistor and the $4 \mathrm{k} \Omega$: 600Ω output transformer.

Figure 15. N2 Expandor

The $0.275 \mathrm{~V}_{\text {RMS }}$ output level requires a 1.4 V op amp output level. This can be provided by increasing the value of R_{2} with an external resistor, which can be selected to fine trim the gain. A rearrangement of the compressor gain equation (6) allows us to determine the value for R_{2}.

$$
\begin{aligned}
R_{2} & =\frac{\text { Gain }^{2} \times 2 R_{3} V_{I N} a v g}{R_{1} I_{B}} \\
& =\frac{1^{2} \times 2 \times 20 \mathrm{k} \times 1.27}{10 \mathrm{k} \times 140 \mu \mathrm{~A}} \\
& =36.3 \mathrm{k}
\end{aligned}
$$

The external resistance required will thus be $36.3 \mathrm{k}-20 \mathrm{k}=16.3 \mathrm{k}$.

The Bell-compatible low level tracking characteristic is provided by the low level trim resistor from $\mathrm{C}_{\text {RECT }}$ to V_{CC}. As shown in Figure 6, this will skew the system to a $1: 1$ transfer characteristic at low levels. The $2 \mu \mathrm{~F}$ rectifier capacitor provides attack and release times of 3 ms and 13.5 ms , respectively, as shown in Figures 10 and 11. The R-C-R network around the op amp provides DC feedback to bias the output at DC.
An N2 expandor is shown in Figure 15. The input level of $3.27 \mathrm{~V}_{\text {RMS }}$ is stepped down to 1.33 V by the $600 \Omega: 100 \Omega$ transformer, which is terminated with a 100Ω resistor for accurate impedance matching. The output impedance is accurately set by the 150Ω output resistor and the 150 $2: 600 \Omega$ output transformer. With this configuration, the 3.46 V transformer output requires a 3.46 V op amp output. To obtain this output level, it is necessary to increase the value of R_{3} with an
external trim resistor. The new value of R_{3} can be found with the expandor gain equation

$$
\begin{aligned}
R_{3} & =\frac{R_{1} R_{2} I_{B} \text { Gain }}{2 V_{I N} \text { avg }} \\
& =\frac{10 k \times 20 \mathrm{k} \times 140 \mu \mathrm{~A} \times 2.6}{2 \times 1.20} \\
& =30.3 \mathrm{k}
\end{aligned}
$$

An external addition to R_{3} of 10 k is required, and this value can be selected to accurately set the high level gain.

A low level trim resistor from $\mathrm{C}_{\text {RECT }}$ to V_{CC} of about 3 M provides matching of the Bell low-level tracking curve, and the $2 \mu \mathrm{~F}$ value of $\mathrm{C}_{\text {RECT }}$ provides the proper attack and release times. A 16 k resistor from the summing node to ground biases the output to $7 \mathrm{~V}_{\mathrm{DC}}$.

VOLTAGE-CONTROLLED ATTENUATOR

The variable gain cell in the NE570/571 may be used as the heart of a high quality voltage-controlled amplifier (VCA). Figure 16 shows a typical circuit which uses an external op amp for better performance, and an exponential converter to get a control characteristic of $-6 \mathrm{~dB} / \mathrm{N}$. Trim networks are shown to null out distortion and DC shift, and to fine trim gain to OdB with OV of control voltage.
Op amp A_{2} and transistors Q_{1} and Q_{2} form the exponential converter generating an exponential gain control current, which is fed into the rectifier. A reference current of $150 \mu \mathrm{~A}$, (15 V and $\mathrm{R}_{20}=100 \mathrm{k}$), is attenuated a
factor of two (6 dB) for every volt increase in the control voltage. Capacitor C_{6} slows down gain changes to a 20 ms time constant ($\mathrm{C}_{6} \times \mathrm{R}_{1}$) so that an abrupt change in the control voltage will produce a smooth sounding gain change. R_{18} assures that for large control voltages the circuit will go to full attenuation. The rectifier bias current would normally limit the gain reduction to about 70 dB . R_{18} draws excess current out of the rectifier. After approximately 50 dB of attenuation at a $-6 \mathrm{~dB} / \mathrm{V}$ slope, the slope steepens and attenuation becomes much more rapid until the circuit totally shuts off at about 9 V of control voltage. A_{1} should be a low noise high slew rate op amp. R_{13} and R_{14} establish approximately a OV bias at A_{1} 's output.

With a 0 V control voltage, R_{19} should be adjusted for OdB gain. At 1V(-6dB gain) $\mathbf{R 9}_{\mathbf{9}}$ should be adjusted for minimum distortion with a large $(+10 \mathrm{dBm})$ input signal. The output DC bias (A_{1} output) should be measured at full attenuation (+10 V control voltage) and then R_{8} is adjusted to give the same value at OdB gain. Properly adjusted, the circuit will give typically less than 0.1% distortion at any gain with a DC output voltage variation of only a few millivolts. The clipping level ($140 \mu \mathrm{~A}$ into $\mathrm{Pin} 3,14$) is $\pm 10 \mathrm{~V}$ peak. A signal-to-noise ratio of 90 dB can be obtained.

If several VCAs must track each other, a common exponential converter can be used. Transistors can simply be added in parallel with Q_{2} to control the other channels. The transistors should be maintained at the same temperature for best tracking.

Figure 16. Voltage-Controlled Attenuator

AUTOMATIC LEVEL CONTROL

The NE570 can be used to make a very high performance ALC as shown in Figure 17. This circuit hook-up is very similar to the basic compressor shown in Figure 2 except that the rectifier input is tied to the input rather than the output. This makes gain inversely proportional to input level so that a 20 dB drop in input level will produce a 20 dB increase in gain. The output will remain fixed at a constant level. As shown, the circuit will maintain an output level of $\pm 1 \mathrm{~dB}$ for an input range of +14 to -43 dB at 1 kHz . Additional external components will allow the output level to be adjusted. Some relevant design equations are:
Output level $=\frac{R_{1} R_{2} I_{B}}{2 R_{3}}\left(\frac{V_{I N}}{} V_{I N}(\right.$ avg $\left.)\right)$
Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N}(\text { avg })}$ where
$\frac{V_{I N}}{V_{I N}(\text { avg }}=\frac{\pi}{2 \sqrt{2}}=1.11$ (for sine wave)

If ALC action at very low input levels is not desired, the addition of resistor R_{X} will limit the maximum gain of the circuit.
Gain max $=\frac{\frac{R_{1}+R_{X}}{1.8 V} \times R_{2} \times I_{B}}{2 R_{3}}$
The time constant of the circuit is determined by the rectifier capacitor, $\mathrm{C}_{\text {RECT }}$, and an internal 10k resistor.

$$
\tau=10 \mathrm{k} C_{\text {REC }}
$$

Response time can be made faster at the expense of distortion. Distortion can be approximated by the equation:
$T H D=\left(\frac{1 \mu F}{C_{\text {RECT }}}\right)\left(\frac{1 \mathrm{kHz}}{\text { freq. }}\right) \times 0.2 \%$

VARIABLE SLOPE

COMPRESSOR-EXPANDOR

Compression and expansion ratios other than 2:1 can be achieved by the circuit shown in Figure 18. Rotation of the dual potentiometer causes the circuit hook-up to change from a basic compressor to a basic expandor. In the
center of rotation, the circuit is $1: 1$, has neither compression nor expansion. The (input) output transfer characteristic is thus continuously variable from 2:1 compression, through 1:1 up to $1: 2$ expansion. If a fixed compression or expansion ratio is desired, proper selection of fixed resistors can be used instead of the potentiometer. The optional threshold resistor will make the compression or expansion ratio deviate towards 1:1 atlow levels. A wide variety of (input) output characteristics can be created with this circuit, some of which are shown in Figure 18.

HI-FI COMPANDOR

The NE570 can be used to construct a high performance compandor suitable for use with music. This type of system can be used for noise reduction in tape recorders, transmission systems, bucket brigade delay lines, and digital audio systems. The circuits to be described contain features which improve performance, but are not required for all applications.
A major problem with the simple NE570 compressor (Figure 2) is the limited op amp gain at high frequencies.

Figure 18. Variable Slope Compressor-Expandor

For weak input signals, the compressor circuit operates at high gain and the 570 op amp simply runs out of loop gain. Another problem with the 570 op amp is its limited slew rate of about $0.6 \mathrm{~V} / \mu \mathrm{s}$. This is a limitation of the expandor, since the expandor is more likely to produce large output signals than a compressor.

Figure 20 is a circuit for a high fidelity compressor which uses an external op amp and has a high gain and wide bandwidth. An input compensation network is required for stability.

Another feature of the circuit in Figure 20 is that the rectifier capacitor $\left(\mathrm{C}_{9}\right)$ is not grounded, but is tied to the output of an op amp circuit. This circuit, built around an LM324, speeds up the compressor attack time at low signal levels. The response times of the simple expandor and compressor (Figures 1 and 2) become longer at low signal levels. The time constant is not simply $10 k \times C_{\text {RECT }}$, but is really:

$$
\left(10 k+2\left(\frac{0.026 V}{I_{R E C T}}\right)\right) \times C_{R E C T}
$$

When the rectifier input level drops from OdBm to -30 dBm , the time constant increases from $10.7 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$ to $32.6 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$. In systems where there is unity gain between the compressor and expandor, this will cause no overall error. Gain or loss between the
compressor and expandor will be a mistracking of low signal dynamics. The circuit with the LM324 will greatly reduce this problem for systems which cannot guarantee the unity gain

Figure 19. Typical Input-Output Tracking Curves of Variable Ratio Compressor-Expandor

When a compressor is operating at high gain, (small input signal), and is suddenly hit with a signal, it will overload until it can reduce its gain. Overloaded, the output will attempt to swing rail to rail. This compressor is limited to approximately a $7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ output swing by the brute force clamp diodes D_{3} and D_{4}. The diodes cannot be placed in the feedback loop because their capacitance would limit high frequency gain. The purpose of limiting the output swing is to avoid overloading any succeeding circuit such as a tape recorder input.
The time it takes for the compressor to recover from overload is determined by the rectifier capacitor C_{g}. A smaller capacitor will allow faster response to transients, but will produce more low frequency third harmonic distortion due to gain modulation. A value of $1 \mu \mathrm{~F}$ seems to be a good compromise value and yields good subjective results. Of course, the expandor should have exactly the same value rectifier capacitor for proper transient response. Systems which have good low frequency amplitude and phase response can use compandors with smaller rectifier capacitors, since the third harmonic distortion which is generated by the compressor will be undistorted by the expandor.
Simple compandor systems are subject to a problem known as breathing. As the system is changing gain, the change in the background noise level can sometimes be heard.

The compressor in Figure 20 contains a high frequency pre-emphasis circuit ($\mathrm{C}_{2}, \mathrm{R}_{5}$ and C_{8}, R_{14}), which helps solve this problem. Matching de-emphasis on the expandor is required. More complex designs could make the pre-emphasis variable and further reduce breathing.

The expandor to complement the compressor is shown in Figure 21. Here an external op amp is used for high slew rate. Both the compressor and expandor have unity gain levels of 0 dB . Trim networks are shown for distortion (THD) and DC shift. The distortion trim should be done first, with an input of 0 dB at 10 kHz . The DC shift should be adjusted for minimum envelope bounce with tone bursts. When applied to consumer tape recorders, the subjective performance of this system is excellent.

Figure 21. HI-FI Expandor With De-emphasis

Compandors are versatile, low cost, dual-channel gain control devices for audio frequencies. They are used in tape decks, cordless telephones, and wireless microphones performing noise reduction. Electronic organs, modems and mobile telephone equipment use compandors for signal level control.
So what is companding? Why do it at all? What happens when we do it? Compandor is the contraction of the two words compressor and expandor. There is one basic reason to compress a signal before sending it through a telephone line or recording it on a cassette tape: to process that signal (music, speech, data) so that all parts of it are above the inherent noise floor of the transmission medium and yet not running into the max. dynamic range limits, causing clipping and distortion. The diagrams below demonstrate the idea; they are not totally correct because in the real world of electronics the 3 kHz tone is riding on the 1 kHz tone. They are shown separated for better explanation.
Figure 1 is the signal from the source. Figure 2 shows the noise always in the transmission medium. Figure 3 shows the max limits of the transmission medium and what happens when a signal larger than those limits is sent through it. Figure 4 is the result of compressing the signal (note that the larger signal would not be clipped when transmitted).
The received/playback signal is processed (expanded) in exactly the same - only inverted - ratio as the input signal was compressed. The end result

Figure 2. Wide-Band Noise Floor of Transmission Line

Figure 4. Signal After Compression
is a clean, undistorted signal with a high sig-nal-to-noise ratio.

This document has been designed to give the reader a basic working knowledge of the Signetics Compandor family. The analyses of three primary applications will be accompanied by "recipes" describing how to select external components (for both proper operation and function modification). Schematic and artwork for an application board are also provided. For comprehensive technical information consult the Compandor Product Guide or the Linear Data Manual.
The basic blocks in a compandor are the current-controlled variable gain cell $(\Delta \mathrm{G})$, voltage-to-current converter (rectifier), and operational amplifier. Each Signetics compandor package has two identical, independent channels with the following block diagrams (notice that the $570 / 71$ is different from the 572).

The operational amplifier is the main signal path and output drive.

BLOCK DIAGRAMS

Figure 5. Basic Compressor

The full-wave averaging rectifier measures the AC amplitude of a signal and develops a control current for the variable gain cell.
The variable gain cell uses the rectifier control current to provide variable gain control for the operational amplifier gain block.

The compandor can function as a
Compressor, Expandor, and Automatic Level Controller or as a complete compressor/expandor system as described in the following:

1) The COMPRESSOR function processes uncontrolled input signals into controlled output signals. The purpose of this is to avoid distortion caused by a narrow dynamic range medium, such as telephone lines, RF and satellite transmissions, and magnetic tape. The Compressor can also limit the level of a signal.
2) The EXPANDOR function allows a user to increase the dynamic range of an incoming compressed signal such as radio broadcasts.
3) The compressor/expandor system allows a user to retain dynamic range and reduce the effects of noise introduced by the transmission medium.
4) The AUTOMATIC LEVEL CONTROL (ALC) function (like the familiar automatic gain control) adjusts its gain proportionally with the input amplitude. This ALC circuit therefore transforms a widely varying input signal into a fixed amplitude output signal without clipping and distortion.

HOW TO DESIGN COMPANDOR CIRCUITS

The rest of the cookbook will provide you with basic compressor, expandor, and automatic level control application information. A NE570/571 has been used in all of the circuits. If high-fidelity audio or separately programmable attack and decay time are needed, the NE572 with a low noise op amp should be used.

The compressor (see Figure 5) utilizes all basic building blocks of the compandor. In this configuration, the variable gain cell is placed in the feedback loop of the standard inverting amplifier circuit. The gain equation is $A_{V}=-R_{F} / R_{I N}$. As shown above, the variable gain cell acts as a variable feedback resistor (R_{F}) (See Figure 5).

As the input signal increases above the crossover level of 0 dB , the variable resistor decreases in value. This causes the gain to decrease, thus limiting the output amplitude.

Below the crossover level of 0 dB , an increase in input signal causes the variable resistor to increase in value, thereby causing the output signal's amplitude to increase.

In the compressor configuration, the rectifier is connected to the output.

The complete equation for the compressor gain is:

Gain comp. $=\left[\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N} \text { (avg) }}\right]^{\frac{1}{2}}$
where: $\mathrm{R}_{1}=10 \mathrm{k}$
$\mathrm{R}_{2}=20 \mathrm{k}$
$\mathrm{R}_{3}=20 \mathrm{k}$ $\mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{IN}}(\mathrm{avg})=0.9\left(\mathrm{~V}_{\mathrm{IN}(\mathrm{RMS})}\right)$

COMPRESSOR RECIPE

1) DC bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 6 is designed around a system supply of 6 V , thus the output DC level should be 3 V .
$V_{\text {OUT DC }}=\left(1+\left(2 R_{D C} / R_{4}\right)\right) V_{\text {REF }}$
where: $\mathrm{R}_{4}=30 \mathrm{k}$
$V_{\text {REF }}=1.8 \mathrm{~V}$
R_{DC} is external
manipulating the equation, the result is. . .
$R_{D C}=\left(\left(\frac{V_{O U T}}{V_{R E F}}\right)-1\right) \frac{R_{4}}{2}$
Note that the $\mathrm{C}_{(\mathrm{DC})}$ should be large enough to totally short out any AC in this feedback loop.
2) Analyze the OUTPUT signal's anticipated amplitude.
a) if larger than 2.8 V peak, R_{2} needs to be increased. (see INGREDIENTS section)
b) if larger than 3.0 V peak, R_{1} will also need to be increased.

By limiting the peak input currents we avoid signal distortion.
3) The input and output coupling caps need to be large enough not to attenuate any desired frequencies ($X_{C}=1 /(6.28 \times f)$).
4) The $\mathrm{C}_{\text {RECT }}$ should be $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ for initial setup. This directly affects Attack and Release times.
5) An input buffer may be necessary if the source's output impedance needs matching.
6) Pre-emphasis may be used to reduce noisepumping, breathing, etc., if present. See the NE570/571 data sheet for specific details.
7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. Refer to data sheet for trimming network. Note that if notused, the THD trim pins should have 200pF caps to ground.
8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network. (This technique prevents infinite compression at low input levels.)

The EXPANDOR utilizes all the basic building blocks of the compandor (see Figure 7). In this configuration the variable gain cell is placed in the inverting input lead of the operational amplifier and acts as a variable input resistance, $\mathrm{R}_{\text {IN }}$. The basic gain equation for operational amplifiers in the standard inverting feedback loop is $A_{V}=-R_{F} / R_{I N}$.

As the input amplitude increases above the crossover level of 0 dBM , this variable resistor decreases in value, causing the gain to increase, thus forcing the output amplitude to increase (refer to Figure 10).
Below the crossover level, an increase in input amplitude causes the variable resistor to increase in value, thus forcing the output amplitude to decrease.

The complete equation for the expandor gain is:

Gain expandor $=\left(2 R_{3} V_{\text {IN }}(\right.$ avg $) / / R_{1} R_{2} /_{B}$

$$
\text { where: } \begin{aligned}
& R_{1}=10 \mathrm{k} \\
& R_{2}=20 \mathrm{k} \\
& R_{3}=20 \mathrm{k} \\
& \mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{IN}}(\text { avg })=0.9\left(\mathrm{~V}_{\text {IN(RMS) }}\right)
\end{aligned}
$$

In the expandor configuration the rectifier is connected to the input.

Figure 6. Basic Compressor

EXPANDOR RECIPE

1) DC bias the output halfway between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 V so the output DC level should be 3 V .

$$
\begin{aligned}
& \text { VoUT DC }=\left(1+R_{3} / R_{4}\right) V_{\text {REF }} \\
& \text { where: } R_{3}=20 \mathrm{k} \\
& R_{4}=30 \mathrm{k} \\
& V_{\text {REF }}=1.8 \mathrm{~V}
\end{aligned}
$$

Note that when using a supply voltage higher than 6 V the DC output level should be adjusted. To increase the DC output level, it is recommended that R_{4} be decreased by adding parallel resistance to it. (Changing R_{3} would also affect the expandor's AC gain and thus cause a mismatch in a companding system.)
2) Analyze the input signal's anticipated amplitude:
a) if larger than 2.8 V peak, R_{2} needs to be increased. (see INGREDIENTS section)
b) if larger than 3.0 V peak, R_{1} will also need to be increased. (see INGREDIENTS)

By limiting the peak input currents we avoid signal distortion.
3) The input and output decoupling caps need to be large enough not to attenuate any desired frequencies.
4) The $C_{\text {RECT }}$ should be $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ for initial setup.
5) An input buffer may be necessary if the source's output impedance needs matching.
6) De-emphasis would be necessary if the complementary compressor circuit had been pre-emphasized (as in a tape deck application). See the Hi-Fi Expandor application in the Linear Data Manual.
7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. See Linear Data Manual for trimming network. Note that if not used, the THD trim pins should have 200pF caps to ground.
8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network (see Linear Data Manual). (This technique prevents infinite expansion at low input levels.)

In the ALC configuration, (Figure 9), the variable gain cell is placed in the feedback loop of the operational amplifier (as in the Compressor) and the rectifier is connected to the input.
As the input amplitude increases above the crossover point, the overall system gain decreases proportionally, holding the output amplitude constant.
As the input amplitude decreases below the crossover point, the overall system gain increases proportionally, holding the output amplitude at the same constant level.

Figure 7. Basic Expandor

Figure 8. Basic Expandor

The complete gain equation for the ALC is:
Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{\text {IN }} \text { (avg) }}$
Output Level $=\frac{R_{1} R_{2} I_{B}}{2 R_{3}}\left(\frac{V_{I N}}{V_{I N}(\text { avg })}\right)$
where $\frac{V_{I N}}{V_{I N}(a v g)}=\frac{\pi}{2 \sqrt{2}}=1.11$ (for sine wave)
Note that for very low input levels, ALC may not be desired and to limit the maximum gain, resistor R_{x} has been added. The modified gain equation is:
Gain max. $=\frac{\left(R_{1}+R_{X}\right) \cdot R_{2} \cdot I_{B}}{2 R_{3}}$
$\mathrm{R}_{\mathrm{X}} \cong($ (desired max gain) $\times 26 \mathrm{k})-10 \mathrm{k}$

INGREDIENTS

[Application guidelines for internal and external components (and input/output constraints) needed to tailor (cook) each of the three entrees (applications) to your taste.]
$R_{1}(10 \mathrm{k} \Omega$) limits input current to the rectifier. This current should not exceed an AC peak value of $\pm 300 \mu \mathrm{~A}$. An external resistor may be placed in series with R_{1} if the input voltage to the rectifier will exceed $\pm 3.0 \mathrm{~V}$ peak (i.e., $10 \mathrm{k} \times 300 \mu \mathrm{~A}=3.0 \mathrm{~V}$).
$R_{2}(20 \mathrm{k} \Omega)$ limits input current to the variable gain cell. This current should not exceed an AC peak value of $\pm 140 \mu \mathrm{~A}$. Again, an external resistor has to be placed in series with R_{2} if the input voltage to the variable gain cell exceeds $\pm 2.8 \mathrm{~V}$ (i.e., $20 \mathrm{k} \times 140 \mu \mathrm{~A}$).
$\mathrm{R}_{3}(20 \mathrm{k} \Omega)$ acts in conjunction with R_{4} as the feedback resistor (R_{F}) (expandor configuration) in the equation. (R_{3} 's value can be either reduced or increased externally.) However, it is recommended that R_{4} be the
one to change when adjusting the output DC level.
$\mathrm{R}_{4}(30 \mathrm{k} \Omega)$ acts as the input resistor $\left(\mathrm{R}_{\mathbb{I}}\right)$ in the standard non-inverting op amp circuit. (Its value can only be reduced.)
$V_{\text {OUT DC }}=\left(1+\left(R_{3} / R_{4}\right)\right) V_{\text {REF }}$
(for the Expandor)
$\mathrm{V}_{\text {OUT DC }}=\left(1+\left(2 \mathrm{R}_{\mathrm{DC}} / \mathrm{R}_{4}\right)\right) \mathrm{V}_{\text {REF }}$
(for the Compandor, ALC)
[The purpose of these DC biasing equations is to allow the designer to set the output halfway between the supply rails for largest headroom (usually some positive voltage and ground).]
$C_{D C}$ acts as an $A C$ shunt to ground to totally remove the $D C$ biasing resistors from the $A C$ gain equation.
C_{F} caps are $A C$ signal coupling caps.
$\mathrm{C}_{\text {RECT }}$ acts as the rectifier's filter cap and directly affects the response time of the
circuit. There is a trade-off, though, between fast attack and decay times and distortion.

The time constant is: $10 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$
The total harmonic distortion (THD) is approximated by:

THD $\cong\left(1 \mu \mathrm{~F} / \mathrm{C}_{\text {RECT }}\right)(1 \mathrm{kHz} /$ freq. $) \times 0.2 \%$ NOTES:
The NE572 differs from the 570571 in that:

1. There is no internal op amp.
2. The attack and release times are programmed separately.

SYSTEM LEVELS OF A COMPLETE COMPANDING
 SYSTEM

Figure 10 demonstrates the compressing and expanding functions:
Point A represents a wide dynamic range signal with a maximum amplitude of +16 dB and minimum amplitude of -80 dB .

Point B represents the compressor output showing a $2: 1$ reduction in dynamic range (-40 dB is increased to -20 dB , for example). Point B can also be seen as the dynamic range of a transmission medium. Transmission noise is present at the -60 dB level from Point B to Point C.
Point C represents the input signal to the expandor.
Point D represents the output of the expandor. The signal transformation from Point C to D represents a 1:2 expansion.

APPLICATION BOARD

Shown below is the schematic (Figure 11) for Signetics' NE570/571 evaluation/demo board. This board provides one channel of Expansion and one channel of Compression (which can be switched to Automatic Level Control).

Figure 10. System Levels of a Complete Companding System

Figure 11.

Programmable analog compandor

DESCRIPTION

The NE572 is a dual-channel, high-performance gain control circuit in which either channel may be used for dynamic range compression or expansion. Each channel has a full-wave rectifier to detect the average value of input signal, a linearized, temperature-compensated variable gain cell (ΔG) and a dynamic time constant buffer. The buffer permits independent control of dynamic attack and recovery time with minimum external components and improved low frequency gain control ripple distortion over previous compandors.

The NE572 is intended for noise reduction in high-performance audio systems. It can also be used in a wide range of communication systems and video recording applications.

FEATURES

- Independent control of attack and recovery time
- Improved low frequency gain control ripple
- Complementary gain compression and expansion with external op amp
- Wide dynamic range-greater than 110 dB
- Temperature-compensated gain control
- Low distortion gain cell
- Low noise- $6 \mu \mathrm{~V}$ typical
- Wide supply voltage range-6V-22V
- System level adjustable with external components

APPLICATIONS

- Dynamic noise reduction system
- Voltage control amplifier
- Stereo expandor
- Automatic level control
- High-level limiter
- Low-level noise gate
- State variable filter

PIN CONFIGURATION

$\mathrm{D}^{1}, \mathrm{~N}, \mathrm{~F}$ Packages		
TRACK TRIM A 1	16	$V_{\text {cc }}$
RECOV. CAPA 2	15	TRACK TRIM B
RECT. IN ${ }^{3}$	14	RECOV. CAP B
ATTACK CAP A 4	13	RECT. IN B
\triangle OUT A 5	12	ATTACK CAP B
THD TRIM A 6	11	$\triangle G$ OUT B
\triangle GINA 7	10	THD TRIM B
GND 8	9	$\triangle \mathrm{G}$ INB

NOTE:

1. D package released in large SO (SOL) package only.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE572D
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE572N
16 -Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA572D
16 -Pin Cerdip	-40 to $+85^{\circ} \mathrm{C}$	SA572F
16 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA572N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	22	$\mathrm{~V}_{D C}$
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range		
NE572			
SA572	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$	
P_{D}	Power dissipation	500	mW

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

Standard test conditions (unless otherwise noted) $\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Expandor mode (see Test Circuit). Input signals at unity gain level (0 dB) $=100 \mathrm{mV} \mathrm{V}_{\text {RMS }}$ at $1 \mathrm{kHz} ; \mathrm{V}_{1}=\mathrm{V}_{2} ; \mathrm{R}_{2}=3.3 \mathrm{k} \Omega ; \mathrm{R}_{3}=17.3 \mathrm{k} \Omega$.

SYMBOL	PARAMETER	TEST CONDITIONS	NE572			SA572			UNIT
			Min	Typ	Max	Min	Typ	Max	
$V_{c c}$	Supply voltage		6		22	6		22	$V_{D C}$
ICC	Supply current	No signal			6			6.3	mA
V_{R}	Internal voltage reference		2.3	2.5	2.7	2.3	2.5	2.7	$V_{D C}$
THD	Total harmonic distortion (untrimmed)	$1 \mathrm{kHz} \mathrm{C} \mathrm{C}_{\mathrm{A}}=1.0 \mu \mathrm{~F}$		0.2	1.0		0.2	1.0	\%
THD	Total harmonic distortion (trimmed)	$1 \mathrm{kHz} \mathrm{C}_{\mathrm{R}}=10 \mu \mathrm{~F}$		0.05			0.05		\%
THD	Total harmonic distortion (trimmed)			0.25			0.25		\%
	No signal output noise	Input to V_{1} and V_{2} grounded (20-20kHz)		6	25		6	25	$\mu \mathrm{V}$
	DC level shift (untrimmed)	Input change from no signal to 100 mV RMS		± 20	± 50		± 20	± 50	mV
	Unity gain level		-1	0	+1	-1.5	0	+1.5	dB
	Large-signal distortion	$\mathrm{V}_{1}=\mathrm{V}_{2}=400 \mathrm{mV}$		0.7	3.0		0.7	3	\%
	Tracking error (measured relative to value at unity gain)= [$\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{O}}$ (unity gain)]dB $-\mathrm{V}_{2} \mathrm{~dB}$	Rectifier input $\begin{aligned} & V_{2}=+6 \mathrm{~dB} \mathrm{~V}_{1}=0 \mathrm{~dB} \\ & \mathrm{~V}_{2}=-30 \mathrm{~dB} \mathrm{~V}_{1}=0 \mathrm{~dB} \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & -1.5 \\ & +0.8 \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \end{aligned}$	$\begin{array}{r} -2.5 \\ +1.6 \end{array}$	dB
	Channel crosstalk	$200 \mathrm{mV}_{\text {RMS }}$ into channel A , measured output on channel B	60			60			dB
PSRR	Power supply rejection ratio	120 Hz		70			70		dB

TEST CIRCUIT

AUDIO SIGNAL PROCESSING IC COMBINES VCA AND FAST ATTACK/SLOW RECOVERY LEVEL SENSOR

In high-performance audio gain control applications, it is desirable to independently control the attack and recovery time of the gain control signal. This is true, for example, in compandor applications for noise reduction. In high end systems the input signal is usually split into two or more frequency bands to optimize the dynamic behavior for each band. This reduces low frequency distortion due to control signal ripple, phase distortion, high frequency channel overload and noise modulation. Because of the expense in hardware, multiple band signal processing up to now was limited to professional audio applications.
With the introduction of the Signetics NE572 this high-performance noise reduction concept becomes feasible for consumer hi fi applications. The NE572 is a dual channel gain control IC. Each channel has a linearized, temperature-compensated gain cell and an improved level sensor. In conjunction with an external low noise op amp for current-to-voltage conversion, the VCA features low distortion, low noise and wide dynamic range.
The novel level sensor which provides gain control current for the VCA gives lower gain control ripple and independent control of fast
attack, slow recovery dynamic response. An attack capacitor C_{A} with an internal 10k resistor R_{A} defines the attack time t_{A}. The recovery time t_{R} of a tone burst is defined by a recovery capacitor C_{R} and an internal 10k resistor R_{f}. Typical attack time of 4 ms for the high-frequency spectrum and 40 ms for the low frequency band can be obtained with $0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ attack capacitors, respectively. Recovery time of 200 ms can be obtained with a $4.7 \mu \mathrm{~F}$ recovery capacitor for a 100 Hz signal, the third harmonic distortion is improved by more than 10 dB over the simple RC ripple filter with a single $1.0 \mu \mathrm{~F}$ attack and recovery capacitor, while the attack time remains the same.

The NE572 is assembled in a standard 16-pin dual in-line plastic package and in oversized SOL package. It operates over a wide supply range from 6 V to 22 V . Supply current is less than 6 mA . The NE572 is designed for consumer application over a temperature range 0-70 The SA572 is intended for applications from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NE572 BASIC APPLICATIONS

Description

The NE572 consists of two linearized, temperature-compensated gain cells ($\Delta \mathrm{G}$), each with a full-wave rectifier and a buffer amplifier as shown in the block diagram. The two channels share a 2.5 V common bias reference derived from the power supply but
otherwise operate independently. Because of inherent low distortion, low noise and the capability to linearize large signals, a wide dynamic range can be obtained. The buffer amplifiers are provided to permit control of attack time and recovery time independent of each other. Partitioned as shown in the block diagram, the IC allows flexibility in the design of system levels that optimize DC shift, ripple distortion, tracking accuracy and noise floor for a wide range of application requirements.

Gain Cell

Figure 1 shows the circuit configuration of the gain cell. Bases of the differential pairs $Q_{1}-Q_{2}$ and $Q_{3}-Q_{4}$ are both tied to the output and inputs of OPA A_{1}. The negative feedback through Q_{1} holds the $V_{B E}$ of $Q_{1}-Q_{2}$ and the $V_{B E}$ of $Q_{3}-Q_{4}$ equal. The following relationship can be derived from the transistor model equation in the forward active region.
$\Delta V_{B E_{Q 3 Q 4}}=\Delta_{B E_{Q 102}}$
$\left(V_{B E}=V_{T} I_{\mathbb{N}} I C / I S\right)$
$V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}+\frac{1}{2} l_{O}}{I_{S}}\right)-V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}-\frac{1}{2} l_{O}}{I_{S}}\right)$
where $I_{I_{N}}=\frac{V_{\mathbb{N}}}{R_{1}}$

$$
\begin{aligned}
& R_{1}=6.8 \mathrm{k} \Omega \\
& I_{1}=140 \mu \mathrm{~A} \\
& \mathrm{I}_{2}=280 \mu \mathrm{~A}
\end{aligned}
$$

$V_{T I_{n}}\left(\frac{l_{1}+I_{N}}{I_{S}}\right)-V_{T I_{n}}\left(\frac{l_{2}-I_{1}-I_{N}}{I_{S}}\right)$
where $I_{\mathbb{N}}=\frac{V_{\mathbb{N}}}{R_{1}}$
$\mathrm{R}_{1}=6.8 \mathrm{k} \Omega$
$I_{1}=140 \mu \mathrm{~A}$
$\mathrm{I}_{2}=280 \mu \mathrm{~A}$
I_{0} is the differential output current of the gain cell and I_{G} is the gain control current of the gain cell.
If all transistors Q_{1} through Q_{4} are of the same size, equation (2) can be simplified to:
$I_{O}=\frac{2}{I_{2}} \cdot I_{I N} \cdot I_{G}-\frac{1}{I_{2}}\left(I_{2}-2 I_{1}\right) \cdot I_{G}$
The first term of Equation 3 shows the multiplier relationship of a linearized two quadrant transconductance amplifier. The second term is the gain control feedthrough due to the mismatch of devices. In the design, this has been minimized by large matched devices and careful layout. Offset voltage is caused by the device mismatch and it leads to even harmonic distortion. The offset voltage can be trimmed out by feeding a current source within $\pm 25 \mu$ A into the THD trim pin.
The residual distortion is third harmonic distortion and is caused by gain control ripple. In a compandor system, available control of fast attack and slow recovery improve ripple distortion significantly. At the unity gain level of 100 mV , the gain cell gives THD (total harmonic distortion) of 0.17% typ. Output noise with no input signals is only $6 \mu \mathrm{~V}$ in the audio spectrum ($10 \mathrm{~Hz}-20 \mathrm{kHz}$). The output current l_{0} must feed the virtual ground input of an operational amplifier with a resistor from output to inverting input. The non-inverting input of the operational amplifier has to be biased at $\mathrm{V}_{\text {REF }}$ if the output current l_{O} is DC coupled.

Figure 1. Basic Gain Cell Schematic

Rectifier

The rectifier is a full-wave design as shown in Figure 2. The input voltage is converted to current through the input resistor R_{2} and turns on either Q_{5} or Q_{6} depending on the signal polarity. Deadband of the voltage to current converter is reduced by the loop gain of the gain block A_{2}. If $A C$ coupling is used, the rectifier error comes only from input bias current of gain block A_{2}. The input bias current is typically about 70 nA . Frequency response of the gain block A_{2} also causes second-order error at high frequency. The collector current of Q_{6} is mirrored and summed at the collector of Q_{5} to form the full wave rectified output current I_{R}. The rectifier transfer function is
$I_{R}=\frac{V_{I N}-V_{\text {REF }}}{R_{2}}$
If $V_{\text {IN }}$ is $A C$-coupled, then the equation will be reduced to:
$I_{R A C}=\frac{V_{I M}(A V G)}{R_{2}}$

The internal bias scheme limits the maximum output current I_{R} to be around $300 \mu \mathrm{~A}$. Within a $\pm 1 \mathrm{~dB}$ error band the input range of the rectifier is about 52 dB .

Figure 2. Simplified Rectifier Schematic

Figure 3. Buffer Amplifier Schematic

Buffer Amplifier

In audio systems, it is desirable to have fast attack time and slow recovery time for a tone burst input. The fast attack time reduces transient channel overload but also causes low-frequency ripple distortion. The low-frequency ripple distortion can be improved with the slow recovery time. If different attack times are implemented in corresponding frequency spectrums in a split band audio system, high quality performance can be achieved. The buffer amplifier is designed to make this feature available with minimum external components. Referring to Figure 3 , the rectifier output current is mirrored into the input and output of the unipolar buffer amplifier A_{3} through Q_{8}, Q_{9} and Q_{10}. Diodes D_{11} and D_{12} improve tracking accuracy and provide common-mode bias for A_{3}. For a positive-going input signal, the buffer amplifier acts like a
voltage-follower. Therefore, the output impedance of A_{3} makes the contribution of capacitor $C R$ to attack time insignificant. Neglecting diode impedance, the gain $\mathrm{Ga}(\mathrm{t})$ for ΔG can be expressed as follows:

$$
G a(t)=\left(G a_{I N T}-G a_{F N L} e^{\frac{-}{\tau_{A}}}+G a_{F N L}\right.
$$

$$
\begin{aligned}
& G a_{\mid N T}=\text { Initial Gain } \\
& G a_{F N L}=\text { Final Gain } \\
& \tau_{A}=R_{A} \cdot C A=10 \mathrm{k} \bullet C A
\end{aligned}
$$

where τ_{A} is the attack time constant and R_{A} is a 10k internal resistor. Diode D_{15} opens the feedback loop of A_{3} for a negative-going signal if the value of capacitor CR is larger than capacitor CA. The recovery time depends only on $C R \bullet R_{R}$. If the diode impedance is assumed negligible, the dynamic gain $G_{R}(t)$ for ΔG is expressed as follows.

$$
\begin{aligned}
& G_{R}(t)=\left(G_{R I N T}-G_{R F N L} e^{\frac{-t}{\tau_{R}}}+G_{R F N L}\right. \\
& G_{R}(t)=\left(G_{R} \text { INT }-G_{R ~ F N L}\right) \mathrm{e}+G_{R F N L} \\
& \tau R=R_{R} \cdot C R=10 \mathrm{k} \cdot \mathrm{CR}
\end{aligned}
$$

where τR is the recovery time constant and R_{R} is a 10 k internal resistor. The gain control current is mirrored to the gain cell through Q_{14}. The low level gain errors due to input bias current of A_{2} and A_{3} can be trimmed through the tracking trim pin into A_{3} with a_{n} current source of $\pm 3 \mu \mathrm{~A}$.

Basic Expandor

Figure 4 shows an application of the circuit as a simple expandor. The gain expression of the system is given by
$\frac{V_{O U T}}{V_{I N}}=\frac{2}{l_{1}} \cdot \frac{R_{3} \cdot V_{I N(A V G)}}{R_{2} \cdot R_{1}}$

$\left(l_{1}=140 \mu \mathrm{~A}\right)$

Both the resistors R_{1} and R_{2} are tied to internal summing nodes. R_{1} is a 6.8 k internal resistor. The maximum input current into the gain cell can be as large as $140 \mu \mathrm{~A}$. This corresponds to a voltage level of $140 \mu \mathrm{~A}$ $6.8 \mathrm{k}=952 \mathrm{mV}$ peak. The input peak current into the rectifier is limited to $300 \mu \mathrm{~A}$ by the internal bias system. Note that the value of R_{1} can be increased to accommodate higher input level. R_{2} and R_{3} are external resistors. It is easy to adjust the ratio of R_{3} / R_{2} for desirable system voltage and current levels. A small R_{2} results in higher gain control
current and smaller static and dynamic tracking error. However, an impedance buffer A_{1} may be necessary if the input is voltage drive with large source impedance.
The gain cell output current feeds the summing node of the external OPA $\mathrm{A}_{2} . \mathrm{R}_{3}$ and A_{2} convert the gain cell output current to the output voltage. In high-performance applications, A_{2} has to be low-noise, high-speed and wide band so that the high-performance output of the gain cell will not be degraded. The non-inverting input of A_{2} can be biased at the low noise internal reference Pin 6 or 10. Resistor R_{4} is used to
bias up the output $D C$ level of A_{2} for maximum swing. The output $D C$ level of A_{2} is given by
$V_{O D C}=V_{R E F}\left(1+\frac{R_{3}}{R_{4}}\right)-V_{B} \frac{R_{3}}{R_{4}}$
V_{B} can be tied to a regulated power supply for a dual supply system and be grounded for a single supply system. CA sets the attack time constant and CR sets the recovery time constant. *5COL

Figure 4. Basic Expandor Schematic

Basic Compressor

Figure 5 shows the hook-up of the circuit as a compressor. The IC is put in the feedback loop of the OPA A_{1}. The system gain expression is as follows:
$\frac{V_{O U T}}{V_{I N}}=\left(\frac{l_{1}}{2} \cdot \frac{R_{2} \cdot R_{1}}{R_{3} \cdot V_{\text {INAVG }}}\right)^{\frac{1}{2}}$
$\mathrm{R}_{\mathrm{DC} 1}, \mathrm{R}_{\mathrm{DC} 2}$, and $C D C$ form a $D C$ feedback for A_{1}. The output $D C$ level of A_{1} is given by
$V_{O D C}=V_{R E F}\left(1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right)$

$$
-V_{B} \cdot\left(\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right)
$$

The zener diodes D_{1} and D_{2} are used for channel overload protection.

Basic Compandor System

The above basic compressor and expandor can be applied to systems such as tape/disc noise reduction, digital audio, bucket brigade delay lines. Additional system design techniques such as bandlimiting, band splitting, pre-emphasis, de-emphasis and equalization are easy to incorporate. The IC is a versatile functional block to achieve a high performance audio system. Figure 6 shows the system level diagram for reference.

Figure 6. NE572 System Level

NE572 AUTOMATIC LEVEL CONTROL

$V_{O D C}=V_{R E F}\left(1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right)$
OUTPUT LEVEL $=\left(\frac{R_{1} R_{2} I_{B}}{2 R_{3}}\right)\left(\frac{V_{I N}}{V_{I N(\text { avg })}}\right)$
Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N}(\text { avg })}$
ATTACK TIME $=(10 \mathrm{k}) \mathrm{C}_{\mathrm{A}}$
RECOVERY TIME $=(10 k) C_{R}$
TO LIMIT THE GAIN AT VERY LOW INPUT LEVELS, ADD Rx:
GAIN MAX. $=\frac{\frac{R_{1}+R_{X}}{2.5 V} \times R_{2} \times I_{B}}{2 R_{3}}$

WHERE: $\mathrm{R}_{4}=100 \mathrm{k}$
$\mathrm{R}_{\mathrm{DC} C_{1}}=\mathrm{R}_{\mathrm{DC}}=9.1 \mathrm{k}$
$\mathrm{V}_{\mathrm{PCF}}=2.5 \mathrm{~V}$
$V_{\text {REF }}=2.5 \mathrm{~V}$
WHERE: $\mathrm{R}_{1}=6.8 \mathrm{k}$ (Internal)
$\mathrm{R}_{2}=3.3 \mathrm{k}$
$\mathrm{R}_{3}=17.3 \mathrm{k}$ $\mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A}$
$\frac{V_{I N}}{V_{I N(\text { avg })}}=\frac{\pi}{2 \sqrt{2}}=1.11$
(FOR SINE WAVES)

DESCRIPTION

The NE/SA575 is a precision dual gain control circuit designed for low voltage applications. The NE575's channel 1 is an expandor, while channel 2 can be configured either for expandor, compressor, or automatic level controller (ALC) application.

FEATURES

\bullet Operating voltage range from 3 V to 7 V
-Reference voltage of $100 \mathrm{mV} \mathrm{V}_{\text {RS }}=\mathrm{OdB}$

- One dedicated summing op amp per channel and two extra uncommitted op amps
-600 Ω drive capability
- Single or split supply operation
-Wide input/output swing capability

APPLICATIONS

- Portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Portable broadcast mixers
- Wireless microphones
- Modems
- Electric organs
\bullet Hearing aids

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE575N
20-Pin Plastic SOL	0 to $+70^{\circ} \mathrm{C}$	NE575D
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA575N
20-Pin Plastic SOL	-40 to $+85^{\circ} \mathrm{C}$	SA575D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	
UNITS				
		NE575	SA575	
V_{CC}	Single supply voltage	8	8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	-40 to +85	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	DIP	68	68
		SOL	112	112

BLOCK DIAGRAM and TEST CIRCUIT

DC ELECTRICAL CHARACTERISTICS

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Minimum and Maximum values are for the full operating temperature range: 0 to $70^{\circ} \mathrm{C}$ for NE575, -40 to $+85^{\circ} \mathrm{C}$ for SA575. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise stated. Both channels are tested in the Expandor mode (see Test Circuit)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE575			SA575			
			MIN	TYP	MAX	MIN	TYP	MAX	
For compandor, Including summing amplifier									
V_{CC}	Supply voltage ${ }^{1}$		3	5	7	3	5	7	V
Icc	Supply current	No signal	3	4.2	5.5	3	4.2	5.5	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.4	2.5	2.6	2.4	2.5	2.6	V
R_{L}	Summing amp output load		10			10			$\mathrm{k} \Omega$
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB} \mathrm{BW}=3.5 \mathrm{kHz}$		0.12	1.0		0.12	1.5	\%
E_{NO}	Output voltage noise	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		6	20		6	30	$\mu \mathrm{V}$
OdB	Unity gain level	1 kHz	-1.0		1.0	-1.5		1.5	dB
$\mathrm{V}_{\text {OS }}$	Output voltage offset	No signal	-100		100	-150		150	mV
	Output DC shift	No signal to OdB	-50		50	-100		100	mV
	Tracking error relative to OdB	$\begin{aligned} & \text { Gain cell input }=0 \mathrm{~dB}, \\ & 1 \mathrm{kHz} \\ & \text { Rectifier input }=6 \mathrm{~dB}, \\ & 1 \mathrm{kHz} \\ & \hline \end{aligned}$	-0.5		0.5	-1.0		1.0	dB
		$\begin{aligned} & \text { Gain cell input }=0 \mathrm{~dB}, \\ & 1 \mathrm{kHz} \\ & \text { Rectifier input }=-30 \mathrm{~dB}, \\ & 1 \mathrm{kHz} \end{aligned}$	-0.5		0.5	-1.0		1.0	dB
	Crosstalk	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{C}_{\text {REF }}=220 \mu \mathrm{~F}$		-80	-65		-80	-65	dB

DC ELECTRICAL CHARACTERISTICS (cont.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE575			SA575			
			MIN	TYP	MAX	MIN	TYP	MAX	
For operational amplifier									
V_{0}	Output swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{cc}}-0.4$	$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.4$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
R_{L}	Output load	1kHz	600			600			Ω
CMR	Input common-mode range		0		V_{CC}	0		V_{CC}	V
CMRR	Common-mode rejection ratio		60	80		60	80		dB
I_{B}	Input bias current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ to 4.5 V	-0.5		0.5	-1		1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input offset voltage			3			3		mV
Avol	Open-loop gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		80			80		dB
SR	Slew rate	Unity gain		1			1		V/ $/ \mathrm{s}$
GBW	Bandwidth	Unity gain		3			3		MHz
E_{Nl}	Input voltage noise	$\mathrm{BW}=20 \mathrm{kHz}$		2.5			2.5		$\mu \mathrm{V}$
PSRR	Power supply rejection ratio	1 kHz , 250 mV		60			60		dB

NOTES:

1. Operation down to $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ is possible, but performance is significantly reduced. See curve in Figure 5.
2. Reference voltage, $\mathrm{V}_{\mathrm{REF}}$, is typically at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

FUNCTIONAL DESCRIPTION

This section describes the basic subsystems and applications of the NE/SA575 Compandor. More theory of operation on compandors can be found in AN174 and AN176. The typical applications of the NE575 low voltage compandor in an Expandor (1:2), Compressor (2:1) and Automatic Level Control (ALC) function are explained. These three circuit configurations are shown in Figures 1, 2, 3 respectively.
The NE575 has two channels for a complete companding system. The left channel, A, can be configured as a 1:2 Expandor while the right channel, B , can be configured as either a 2:1 Compressor, a 1:2 Expandor or an ALC. Each channel consists of the basic companding building blocks of rectifier cell, variable gain cell, summing amplifier and $V_{\text {REF }}$ cell. In addition, the NE575 has two additional high performance uncommitted op amps which can be utilized for application such as filtering, pre-emphasis/de-emphasis or buffering.

Figure 4 shows the complete schematic for the applications demo board. Channel A is configured as an expandor while channel B is configured so that it can be used either as a compressor or as an ALC circuit. The switch, S1, toggles the circuit between compressor and ALC mode. Jumpers J1 and J2 can be used to either include the additional op amps for signal conditioning or exclude them from the signal path. Bread boarding space is provided for R1, R2, C1, C2, R10, R11, C10 and C11 so that the response can be tailored for each individual need. The components as
specified are suitable for the complete audio spectrum from 20 Hz to 20 kHz .
The most common configuration is as a unity gain non-inverting buffer where R1, C1, C2, R10, C10 and C11 are eliminated and R2 and R11 are shorted. Capacitors C3, C5, C8, and C12 are for DC blocking, and R4 and R8 provide termination (for the capacitors). In systems where the inputs and outputs are AC coupled, these capacitors and resistors can be eliminated. Capacitors C4 and C9 are for setting the attack and release time constant.
C6 is for decoupling and stabilizing the voltage reference circuit. The value of C6 should be such that it will offer a very low impedance to the lowest frequencies of interest. Too small a capacitor will allow supply ripple to modulate the audio path. The better filtered the power supply, the smaller this capacitor can be. R5 and R12 provide DC reference voltage to the amplifiers of channel B. R6 and R7 provide a DC feedback path for the summing amp of channel B, while $C 7$ is a short-circuit to ground for signals. C14 and C15 are for power supply decoupling. C14 can also be eliminated if the power supply is well regulated with very low noise and ripple. Figure 8 shows the PC board layout of the applications demo board.

DEMONSTRATED
 PERFORMANCE

The applications demo board was built and tested for a frequency range of 20 Hz to 20 kHz with the component values as shown in Figure 4 and $V_{C C}=5 \mathrm{~V}$. In the expandor
mode, the typical input dynamic range was from $-34 d B$ to +12 dB where 0 dB is equal to 100 mV RMS. The typical unity gain level measured at $0 \mathrm{~dB} @ 1 \mathrm{kHz}$ input was $\pm 0.5 \mathrm{~dB}$ and the typical tracking error was $\pm 0.1 \mathrm{~dB}$ for input range of -30 to +10 dB .
In the compressor mode, the typical input dynamic range was from -42 dB to $\pm 18 \mathrm{~dB}$ with a tracking error +0.1 dB and the typical unity gain level was $\pm 0.5 \mathrm{~dB}$.
In the ALC mode, the typical input dynamic range was from -42 dB to +8 dB with typical output deviation of $\pm 0.2 \mathrm{~dB}$ about the nominal output of 0 dB . For input greater than +9 dB in ALC configuration, the summing amplifier sometimes exhibits high frequency oscillations. There are several solutions to this problem. The first is to lower the values of R7 and R8 to $20 \mathrm{k} \Omega$ each. the second is to add a current limiting resistor in series with C13 at Pin 13. the third is to add a compensating capacitor of about 22 to 30 pF between the input and output of summing amplifier (Pins 12 and 14). With any one of the above recommendations, the typical ALC mode input range increased to +18 dB yielding a dynamic range of over 60 dB .

EXPANDOR

The typical expandor configuration is shown in Figure 1. The variable gain cell and the rectifier cell are in the signal input path. The $\mathrm{V}_{\text {REF }}$ is always $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ to provide the maximum headroom without clipping. The 0 dB ref is $100 \mathrm{mV}_{\text {RMS }}$. The input is $A C$ coupled through C5, and the output is AC coupled through C3. If in a system the inputs
and outputs are AC coupled, then $\mathrm{C} 3, \mathrm{C} 5, \mathrm{R} 3$ and R4 can be eliminated, thus requiring only one external component, C4. The variable gain cell and rectifier cell are DC coupled so any offset voltage between Pins 4 and 9 will cause small offset error current in the rectifier cell. This will affect the accuracy of the gain cell. This can be improved by using an extra capacitor from the input to Pin 4 and eliminating the DC connection between Pins 4 and 9.
The expandor gain expression and the attach and release time constant is given by Equation 1 and Equation 2, respectively.

Equation 1.
Expandor gain $=\frac{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}{3.9 \mathrm{k} \times 100 \mu \mathrm{~A}}$
where $\mathrm{V}_{\operatorname{IN}}(\mathrm{avg})=0.975 \mathrm{~V}_{\operatorname{IN}(\mathrm{RMS})}$

COMPRESSOR

The typical compressor configuration is shown in Figure 2. In this mode, the rectifier cell and variable gain cell are in the feedback
path. R6 and R7 provide the DC feedback to the summing amplifier. The input is AC coupled through C12 and output is AC coupled through C8. In a system with inputs and outputs AC coupled, C8, C12, R8, and R9 could be eliminated and only R5, R6, R7, $C 7$, and $C 13$ would be required. If the external components R5, R6, R7 and C7 are eliminated, then the output of the summing amplifier will motor-boat in absence of signals or at extremely low signals. This is because there is no DC feedback path from the output to input. In the presence of an AC signal this phenomenon is not observed and the circuit will appear to function properly.
The compressor gain expression and the attack and release time constant is given by Equation 3 and Equation 4, respectively.

Equation 3.
Compressor gain $=\left[\frac{3.9 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}\right]^{1 / 2}$
where $\mathrm{V}_{\mathbb{N}}(\mathrm{avg})=0.975 \mathrm{~V}^{\prime N}(\mathrm{RMS})$

Equation 4.
$\tau_{\mathrm{R}}=\tau_{\mathrm{A}}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 4$

AUTOMATIC LEVEL CONTROL

The typical Automatic Level Control circuit configuration is shown in Figure 3. It can be seen that it is quite similar to the compressor schematic except that the input to the rectifier cell is from the input path and not from the feedback path. The input is AC coupled through C12 and C13 and the output is AC coupled through C8. Once again, as in the previous cases, if the system input and output signals are already AC coupled, then C12, C13, C8, R8 and R9 could be eliminated. Concerning the compressor, removing R5, R6, R7 and C7 will cause mo-tor-boating in absence of signals. $\mathrm{C}_{\text {Comp }}$ is necessary to stabilize the summing amplifier at higher input levels. This circuit provides an input dynamic range greater than 60 dB with the output within $\pm 0.5 \mathrm{~dB}$ typical. The necessary design expressions are given by Equation 5 and Equation 6, respectively.

Equation 5.
ALC gain $=\frac{3.9 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}$
Equation 6.
$\tau_{\mathrm{R}}=\tau_{\mathrm{A}}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 9$

Figure 1. Typical Expandor Configuration

TC23240S

Figure 2. Typical Compressor Configuration

TC23260S
Figure 3. Typical ALC Configuration

Figure 4. Signetics NE575 Low Voltage Expandor/Compressor/ALC Demo Board

Figure 5. Unity Gain Error vs Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. NE575 Expandor Output Frequency Response

8a. Application Board Component Placement

8B. Application Board Layout

Low voltage compandor in shrink small outline package

DESCRIPTION

The NE/SA575 is a precision dual gain control circuit designed for low voltage applications. The NE575's channel 1 is an expandor, while channel 2 can be configured either for expandor, compressor, or automatic level controller (ALC) application.

FEATURES

- Operating voltage range from 3 V to 7 V
- Reference voltage of 100 mV RMS $=0 \mathrm{~dB}$
- One dedicated summing op amp per channel and two extra uncommitted rail-to-rail op amps
- 600Ω drive capability
- Single or split supply operation
- Wide input/output swing capability
- DTMF summing

APPLICATIONS

- Portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Portable broadcast mixers
- Wireless microphones
- Modems
- Electric organs
- Hearing aids

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic SSOP	0 to $+70^{\circ} \mathrm{C}$	NE575DK
20-Pin Plastic SSOP	-40 to $+85^{\circ} \mathrm{C}$	SA575DK

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	
		UNITS		
		NE575	SA575	
V_{CC}	Single supply voltage	8	8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance \quad SSOP	117	117	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Low voltage compandor in shrink small outline package

BLOCK DIAGRAM and TEST CIRCUIT

AC/DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise stated. Both channels are tested in the Expandor mode (see Test Circuit)

For compandor, including summing amplifier

V_{CC}	Supply voltage ${ }^{1}$		3	5	7	3	5	7	V
I_{CC}	Supply current	No signal	3	4.2	5.5	3	4.2	5.5	mA
$\mathrm{~V}_{\text {REF }}$	Reference voltage 2	$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.4	2.5	2.6	2.4	2.5	2.6	V
R_{L}	Summing amp output load		10			10			$\mathrm{k} \Omega$
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB} \mathrm{BW}=3.5 \mathrm{kHz}$		0.12	1.0		0.12	1.5	$\%$
E_{NO}	Output voltage noise	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		6	20		6	30	$\mu \mathrm{~V}$
OdB	Unity gain level	1 kHz	-1.0		1.0	-1.5		1.5	dB
$\mathrm{~V}_{\text {OS }}$	Output voltage offset	No signal	-100		100	-150		150	mV
	Output DC shift	No sigial to OdB	-50		50	-100		100	mV

AC/DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE575			SA575			
			MIN	TYP	MAX	MIN	TYP	MAX	
	Tracking error relative to 0 dB	$\begin{aligned} & \text { Gain cell input }=0 \mathrm{~dB}, 1 \mathrm{kHz} \\ & \text { Rectifier input }=6 \mathrm{~dB}, 1 \mathrm{kHz} \end{aligned}$	-0.5		0.5	-1.0		1.0	dB
		$\begin{array}{\|l} \text { Gain cell input }=0 \mathrm{~dB}, 1 \mathrm{kHz} \\ \text { Rectifier input }=-30 \mathrm{~dB}, 1 \mathrm{kHz} \end{array}$	-0.5		0.5	-1.0		1.0	dB
	Crosstalk	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{C}_{\text {REF }}=220 \mu \mathrm{~F}$		-80	-65		-80	-65	dB
For operational amplifier									
V_{0}	Output swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{cc}}-0.4$	$\mathrm{V}_{\mathrm{cc}}-0.2$		$\mathrm{V}_{\mathrm{cc}}-0.4$	$\mathrm{V}_{\mathrm{cc}}-0.2$		V
R_{L}	Output load	1 kHz	600			600			Ω
CMR	Input common-mode range		0		V_{CC}	0		$V_{\text {cc }}$	V
CMRR	Common-mode rejection ratio		60	80		60	80		dB
I_{B}	Input bias current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ to 4.5 V	-0.5		0.5	-1		1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input offset voltage			3			3		mV
Avol	Open-loop gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		80			80		dB
SR	Slew rate	Unity gain		1			1		V/ $/ \mathrm{s}$
GBW	Bandwidth	Unity gain		3			3		MHz
E_{Nl}	Input voltage noise	$\mathrm{BW}=20 \mathrm{kHz}$		2.5			2.5		$\mu \mathrm{V}$
PSRR	Power supply rejection ratio	$1 \mathrm{kHz}, 250 \mathrm{mV}$		60			60		dB

NOTES:

1. Operation down to $V_{c c}=2 V$ is possible, but performance is significantly reduced. See curve in Figure 5 .
2. Reference voltage, $\mathrm{V}_{\text {REF }}$, is typically at $1 / 2 \mathrm{~V}_{\text {cc }}$.

FUNCTIONAL DESCRIPTION

This section describes the basic subsystems and applications of the NE/SA575 Compandor. More theory of operation on compandors can be found in AN174 and AN176. The typical applications of the NE575 low voltage compandor in an Expandor (1:2), Compressor (2:1) and Automatic Level Control (ALC) function are explained. These three circuit configurations are shown in Figures 1, 2, 3 respectively.
The NE575 has two channels for a complete companding system. The left channel, A, can be configured as a 1:2 Expandor while the right channel, B , can be configured as either a 2:1 Compressor, a 1:2 Expandor or an ALC. Each channel consists of the basic companding building blocks of rectifier cell, variable gain cell, summing amplifier and $\mathrm{V}_{\text {REF }}$ cell. In addition, the NE575 has two additional high performance uncommitted op amps which can be utilized for application such as filtering, pre-emphasis/de-emphasis or buffering.
Figure 4 shows the complete schematic for the applications demo board. Channel A is configured as an expandor while channel B is configured so that it can be used either as a compressor or as an ALC circuit. The switch,

S1, toggles the circuit between compressor and ALC mode. Jumpers J1 and J2 can be used to either include the additional op amps for signal conditioning or exclude them from the signal path. Bread boarding space is provided for R1, R2, C1, C2, R10, R11, C10 and C11 so that the response can be tailored for each individual need. The components as specified are suitable for the complete audio spectrum from 20 Hz to 20 kHz .

The most common configuration is as a unity gain non-inverting buffer where R1, C1, C2, R10, C10 and C11 are eliminated and R2 and R11 are shorted. Capacitors C3, C5, C8, and C12 are for DC blocking, and R4 and R8 provide termination (for the capacitors). In systems where the inputs and outputs are AC coupled, these capacitors and resistors can be eliminated. Capacitors C 4 and C 9 are for setting the attack and release time constant.

C6 is for decoupling and stabilizing the voltage reference circuit. The value of C6 should be such that it will offer a very low impedance to the lowest frequencies of interest. Too small a capacitor will allow supply ripple to modulate the audio path. The better filtered the power supply, the smaller this capacitor can be. R5 and R12 provide DC reference voltage to the amplifiers of
channel B. R6 and R7 provide a DC feedback path for the summing amp of channel B, while C7 is a short-circuit to ground for signals. C14 and C15 are for power supply decoupling. C14 can also be eliminated if the power supply is well regulated with very low noise and ripple. Figure 8 shows the PC board layout of the applications demo board.

DEMONSTRATED

PERFORMANCE

The applications demo board was built and tested for a frequency range of 20 Hz to 20 kHz with the component values as shown in Figure 4 and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. In the expandor mode, the typical input dynamic range was from -34 dB to +12 dB where 0 dB is equal to $100 \mathrm{mV} \mathrm{V}_{\text {RMs }}$. The typical unity gain level measured at OdB @ 1 kHz input was $\pm 0.5 \mathrm{~dB}$ and the typical tracking error was $\pm 0.1 \mathrm{~dB}$ for input range of -30 to +10 dB .
In the compressor mode, the typical input dynamic range was from -42 dB to $\pm 18 \mathrm{~dB}$ with a tracking error +0.1 dB and the typical unity gain level was $\pm 0.5 \mathrm{~dB}$.
In the ALC mode, the typical input dynamic range was from -42 dB to +8 dB with typical output deviation of $\pm 0.2 \mathrm{~dB}$ about the nominal
output of OdB. For input greater than +9 dB in ALC configuration, the summing amplifier sometimes exhibits high frequency oscillations. There are several solutions to this problem. The first is to lower the values of R7 and R8 to $20 \mathrm{k} \Omega$ each. The second is to add a current limiting resistor in series with C13 at Pin 13. The third is to add a compensating capacitor of about 22 to 30 pF between the input and output of summing amplifier (Pins 12 and 14). With any one of the above recommendations, the typical ALC mode input range increased to +18 dB yielding a dynamic range of over 60 dB .

EXPANDOR

The typical expandor configuration is shown in Figure 1. The variable gain cell and the rectifier cell are in the signal input path. The $V_{\text {REF }}$ is always $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ to provide the maximum headroom without clipping. The 0 dB ref is $100 \mathrm{mV}_{\text {RMs }}$. The input is $A C$ coupled through $C 5$, and the output is $A C$ coupled through C 3 . If in a system the inputs and outputs are AC coupled, then C3, C5, R3 and R4 can be eliminated, thus requiring only one external component, C4. The variable gain cell and rectifier cell are DC coupled so any offset voltage between Pins 4 and 9 will cause small offset error current in the rectifier cell. This will affect the accuracy of the gain cell. This can be improved by using an extra capacitor from the input to Pin 4 and eliminating the DC connection between Pins 4 and 9.

The expandor gain expression and the attack and release time constant is given by Equation 1 and Equation 2, respectively.

COMPRESSOR

The typical compressor configuration is shown in Figure 2. In this mode, the rectifier cell and variable gain cell are in the feedback path. R6 and R7 provide the DC feedback to the summing amplifier. The input is AC coupled through C12 and output is AC coupled through C8. In a system with inputs and outputs AC coupled, C8, C12, R8, and R9 could be eliminated and only R5, R6, R7, $C 7$, and C 13 would be required. If the external components R5, R6, R7 and C7 are eliminated, then the output of the summing amplifier will motor-boat in absence of signals or at extremely low signals. This is because there is no DC feedback path from the output to input. In the presence of an AC signal this phenomenon is not observed and the circuit will appear to function properly.

The compressor gain expression and the attack and release time constant is given by Equation 3 and Equation 4, respectively.

Equation 3

$$
\begin{array}{r}
\text { Compressor gain }=\left[\frac{3.9 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\mathbb{N}}(\mathrm{avg})}\right]^{1 / 2} \\
\text { where } \mathrm{V}_{\mathbb{N}}(\mathrm{avg})=0.975 \mathrm{~V}_{\mathbb{N}(\mathrm{RMS})}
\end{array}
$$

Equation 4.
$\tau_{R}=\tau_{A}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 4$

AUTOMATIC LEVEL CONTROL

The typical Automatic Level Control circuit configuration is shown in Figure 3. It can be seen that it is quite similar to the compressor schematic except that the input to the rectifier
cell is from the input path and not from the feedback path. The input is AC coupled through C12 and C13 and the output is AC coupled through C8. Once again, as in the previous cases, if the system input and output signals are already AC coupled, then C12, C13, C8, R8 and R9 could be eliminated. Concerning the compressor, removing R5, R6, R7 and C7 will cause motor-boating in absence of signals. $\mathrm{C}_{\text {COMP }}$ is necessary to stabilize the summing amplifier at higher input levels. This circuit provides an input dynamic range greater than 60 dB with the output within $\pm 0.5 \mathrm{~dB}$ typical. The necessary design expressions are given by Equation 5 and Equation 6, respectively.

Equation 5.
$A L C$ gain $=\frac{3.9 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}$
Equation 6.
$\tau_{\mathrm{R}}=\tau_{\mathrm{A}}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 9$
Figure 5 shows that the unity gain error remains small over a wide range of supply voltages. The unity gain error is important because it effects the tracking error. So, to achieve the best unity gain error, provide a power supply voltage of 4 to 5 V to the NE575.

Figures 6 and 7 show the output level over a range of frequencies and inputs for the compressor and expandor, respectively. These graphs reveal that the compandor has a constant and flat output. This is important because the signal will not be altered.

Low voltage compandor in shrink small

 outline package
tc23250s
Figure 1. Typical Expandor Configuration

Figure 2. Typical Compressor Configuration

Low voltage compandor in shrink small outline package

Low voltage compandor in shrink small

 outline package

Figure 5. Unity Gain Error vs Supply Voltage

Low voltage compandor in shrink small outline package

NE/SA575SSOP

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Compressor Output Frequency Response

Low voltage compandor in shrink small outline package

NE/SA575SSOP

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. NE575 Expandor Output Frequency Response

Low voltage compandor in shrink small outline package

Figure 9. The Companding Function

DESCRIPTION

The NE/SA576 is a unity gain level programmable compandor designed for low power applications. The NE576 is internally configured as an expandor and a compressor to minimize external component count.
The NE576 can operate at 1.8 V . During normal operations, the NE576 can operate from at least a 2 V battery. If the battery voltage drops to 1.8 V , this part will still continue to function, however, turning on the part at a V_{CC} of 1.8 V requires two external resistors to bring $\mathrm{V}_{\text {REF }}$ to half V_{CC}. One resistor connects between $V_{C C}$ and $V_{\text {REF }}$; the other connects from $V_{\text {REF }}$ to ground. A typical value for these external resistors is approximately 20 k . A lower value can be used, but the power consumption will go up.
The NE576 is available in a 14 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4mA @ 3.6V)
- Over 80 dB of dynamic range
- Wide input/output swing capability (rail-to-rail)
- Low external component count
- ESD hardened

APPLICATIONS

- Cordless telephone
- Consumer audio
- Wireless microphones
- Modems
- Electric organs
- Hearing aids
- Automatic level control

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE576N
14-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE576D
14-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA576N
14-Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA576D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
		NE576	SA576		
V_{CC}	Supply voltage	8	8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
$\boldsymbol{\theta}_{\mathrm{JA}}$	Thermal impedance	DIP	90	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SO	125	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV}$ RMs, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R 1 , R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA576			
			MIN	TYP	MAX	
V_{cc}	Supply voltage ${ }^{1}$		2	3.6	7	V
Icc	Supply current	$\begin{gathered} \text { No signal } \\ R_{2}=100 \mathrm{k} \Omega \end{gathered}$		1.4	3	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{VCC}=3.6 \mathrm{~V}$		1.8		V
R_{L}	Summing amp output load		10			k Ω
THD	Total harmonic distortion	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.5	\%
E_{NO}	Expandor output noise voltage	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	30	$\mu \mathrm{V}$
OdB	Unity gain level	OdB at 1kHz	-1.5	0.18	1.5	dB
$\mathrm{V}_{\text {OS }}$	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80		dB
V_{0}	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\text {cc }}-0.2$		V

NOTE:

1. Operation down to $V_{c C}=1.8 \mathrm{~V}$ is possible, see description on front page of NE576 data sheet.
2. Reference voltage, $V_{R E F}$, is typically at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

TYPICAL PERFORMANCE CHARACTERISTICS
$V_{C C}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega, 0 \mathrm{~dB}$ level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

DESCRIPTION

The NE/SA577 is a unity gain level programmable compandor designed for low power applications. The NE577 is internally configured as an expandor and a compressor to minimize external component count.
The NE577 is available in a 14 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4mA @ 3.6V)
- OdB level programmable ($10 \mathrm{~m} V_{\text {RMS }}$ to $1.0 \mathrm{~V}_{\text {RMS }}$)
- Over 90dB of dynamic range
- Wide input/output swing capability (rail-to-rail)
- Low external component count
- SA577 meets cellular radio specifications
- ESD hardened

APPLICATIONS

- High performance portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Wireless microphones
- Modems
- Electric organs
- Hearing aids
- Automatic level control (ALC)

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE577N
14-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE577D
14-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA577N
$14-$ Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA577D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
		NE577	SA577		
V_{CC}	Supply voltage	8	8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal impedance	DIP	90	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SO	125	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV} \mathrm{VMS}_{\text {, }}$, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R 1 , R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA577			
			MIN	TYP	MAX	
V_{Cc}	Supply voltage ${ }^{1}$		2	3.6	7	V
Icc	Supply current	$\begin{gathered} \text { No signal } \\ \mathrm{R}_{2}=100 \mathrm{k} \Omega \end{gathered}$		1.4	2	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}$	1.7	1.8	1.9	V
R_{L}	Summing amp output load		10			k Ω
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.5	\%
E_{No}	Expandor output noise voltage	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	25	$\mu \mathrm{V}$
OdB	Unity gain level	0 dB at 1 kHz	-1.5	0.18	1.5	dB
	Programmable range ${ }^{3}$	$\mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega$		0		dBV
		$\mathrm{R} 1=\mathrm{R} 3=22.6 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-10		dBV
		$\mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-20		dBV
		$\mathrm{R} 1=\mathrm{R} 3=1.33 \mathrm{k}$, $\mathrm{R} 2=200 \mathrm{k} \Omega$		-40		dBV
Vos	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80	-65	dB
Vo	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\mathrm{cc}}-0.2$		V

NOTE:

1. Operation down to $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ is possible, see application note AN 1762 .
2. Reference voltage, $\mathrm{V}_{\text {REF }}$, is typically at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.
3. Unity gain level can be adjusted CONTINUOUSLY between $-40 \mathrm{dBV}=10 \mathrm{mV}$ RMS and $\mathrm{OdBV}=1.0 \mathrm{~V}_{\text {RMs }}$. For details see application note AN1762.

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega, 0 \mathrm{~dB}$ level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

DESCRIPTION

The NE/SA578 is a unity gain level programmable compandor designed for low power applications. The NE578 is internally configured as an expandor and a compressor to minimize external component count.
The summing amplifiers of the NE578 have 600 W drive capability and the inverting input of the compressor amplifier is accessible through Pin 9 for summing multiple external signals. Power Down/Mute function is active low and requires an open collector output logic configuration at Pin 8. If Power Down/ Mute is not needed, Pin 8 should be left open. When the part is muted, supply current drops to 170 mA at 3.6 V . The NE578 is available in a 16 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4 mA @ 3.6 V)
- OdB level programmable
$\left(10 \mathrm{mV}\right.$ RMS to $1.0 \mathrm{~V}_{\mathrm{RMS}}$)
- Over 90 dB of dynamic range

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE578N
16-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	NE578D
16-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA578N
16 -Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	SA578D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
		NE578	SA578		
V_{CC}	Supply voltage	8	8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal impedance	DIP	90	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SO	125	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN CONFIGURATION

D and N Packages

APPLICATIONS

- High performance portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Wide input/output swing capability
- Low external component count
- SA578 meets cellular radio specifications
- ESD hardened
- Power Down mode
($\mathrm{Icc}=170 \mathrm{~mA} @ 3.6 \mathrm{~V}$)
- Mute function
- Multiple external summing capability
- 600W drive capability

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV}_{\text {RMS }}$, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R 1 , R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA578			
			MIN	TYP	MAX	
V cc	Supply voltage ${ }^{1}$		2	3.6	7	V
1 cc	Supply currentoperating power down	No signal, $\mathrm{R}_{\mathbf{2}}=100 \mathrm{k} \Omega$		$\begin{aligned} & 1.4 \\ & 170 \end{aligned}$	2	$\mathrm{mA}_{\mu \mathrm{A}}$
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	1.7	1.8	1.9	V
R_{L}	Summing amp minimum output load			600		Ω
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.0	\%
E_{NO}	Expandor output noise voltage	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	20	$\mu \mathrm{V}$
OdB	Unity gain level	OdB at 1kHz	-1.0	0.18	1.0	dB
	Programmable range ${ }^{3}$	$\mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega$		0		dBV
		$\mathrm{R} 1=\mathrm{R} 3=22.6 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-10		dBV
		$\mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-20		dBV
		$\mathrm{R} 1=\mathrm{R} 3=1.33 \mathrm{k} \Omega, \mathrm{R} 2=200 \mathrm{k} \Omega$		-40		dBV
V_{0}	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80	-65	dB
Vo	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\mathrm{cc}}-0.2$		V
	Power Down/Mute low level		0		0.4	V
	Power Down/Mute input current	Pin 8 grounded		-65		$\mu \mathrm{A}$

NOTE:

1. Operation down to $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ is possible, see application note AN 1762.
2. Reference voltage, $V_{R E F}$, is typically at $1 / 2 \mathrm{~V}_{C C}$.
3. Unity gain level can be adjusted CONTINUOUSLY between $-40 \mathrm{dBV}=10 \mathrm{mV} \mathrm{V}_{\text {RMS }}$ and $\mathrm{OdBV}=1.0 \mathrm{~V}_{\text {RMs }}$. For details see application note AN1762.

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega$, OdB level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

Author: Alvin K. Wong

INTRODUCTION

This application note is written for the designer who understands the basic functions of companding and wants to use the NE577 or NE578. If a designer is not familiar with the functionality of compandors, a good discussion can be found in the earlier Philips
Components-Signetics compandor data sheets and applications notes.
Key topics discussed in this paper are:

- How to program the unity gain level (OdB)
- How to implement an automatic level control
- How to get the best companding performance under strict design requirements
- How to set the attack and recovery time
- How to operate at 1.8 V
- How to sum external signals using the NE578
- How to power-down the NE578
- How to mute the NE578
- How to use the NE577 and NE578 as a dual expandor

But before reviewing these areas, a summary of Philips ComponentsSignetics compandor family will be presented. A system designer can then determine which compandor is best for the design.

SUMMARY OF COMPANDOR FAMILY

In the past, Philips
Components-Signetics offered four different types of compandors: the NE570, NE571, NE572, and NE575. Each of the four compandors has its own 'claim to fame'. The NE570 and NE571 are known to work well in high performance audio applications. The only real difference between the two is that the NE570 has a slight edge in performance. However when separate attack and recovery times are needed, the NE572 is the compandor to choose. The NE575 becomes useful when there are low voltage requirements.
With the increasing demand for low current consumption, good flexibility, and ease of use in semiconductors,

Philips Components-Signetics is offering three additional compandors to its family, the NE576, NE577 and NE578. These compandors typically require an I_{cc} of 1.4 mA at a V_{cc} of 3.6 V , but Philips Components-Signetics has demonstrated that these new chips are functional down to 1.8 V .
In addition to having low power consumption, the NE578 has a power-down mode. In this mode, the chip consumes only $170 \mu \mathrm{~A}$. This power-down mode is useful when the functionality of the chip is not needed at all times. In the power-down mode, the NE578 maintains all of its pin voltages at all their normal DC operating voltages. Because all of the capacitors remain charged in this mode, the power-up state will occur quickly. Powering down automatically mutes the NE578. Having the mute function internal to the NE578 audio section eliminates the need for an external switch. The NE578 is the only compandor in the family that has power-down and mute functions.
To allow for greater flexibility, the OdB level is now programmable for the NE577 and NE578. However, for the NE576, the OdB level is specified and set at 100 mV RMs. The earlier compandors also have a set unity gain (0dB) level. The NE570 and NE571 have a set 0 dB level at $775 \mathrm{mV}_{\text {RMs }}$. While the NE572 and the NE575 both have their OdB levels at $100 \mathrm{mV}_{\text {RMS }}$. If a designer wanted a different OdB level, two op amps would have to be implemented in the design. One of the op amps would connect to the input of the compandor, while the other op amp would connect to the output. But with the NE577 and NE578, these external op amps are no longer needed. The 0 dB level can be programmed from $10 \mathrm{mV}_{\mathrm{RMS}}$ to $1 \mathrm{~V}_{\mathrm{RMS}}$ with three external resistors.
Many of the external parts in the previous family of compandors are now internal to the device. Additionally, the left side of the chip is configured as an expandor, and the right side is configured as a compressor. This allows for minimum part count and fewer
variations in systems design. The external capacitors are also reduced in value which saves board space and cost. The only trade-off with using smaller capacitors is that there is less filtering. Because of this new approach, the NE576, NE577 and NE578 are easy to implement in any design.
Table 1 shows a brief summary of all the compandors. The seven different compandors offer a wide range of flexibility: different types of packages, power-down capability, programmable or fixed unity gain, different reference voltages, a wide range of operating voltages and currents, different pin outs, etc. From this information, a designer can quickly choose a compandor which best meets the design requirements. After a compandor is chosen from the table, a designer can find additional help from data sheets and application notes.
Since power consumption is important in most designs, it is important to discuss them in this application note. The NE570, NE571, and NE572 have built in voltage regulators, therefore, the current consumption remains roughly the same over the specified supply voltages. This can be especially useful when the power supply is not regulated very well. However with the NE575, NE576, NE577, and NE578, the current consumption will drop as the supply voltage decreases. For this, the power consumption will drop also. This means one can operate the part at a very low power level. This is a good feature for any design having strict power consumption guidelines.

INTRODUCING NE577 AND NE578

Figure 1 and 2 show block diagrams of the NE577 and NE578 respectively. The only substantial difference between the two is that the NE578 has a power-down capability, mute function and summing capabilities (for signals like DTMF tones). In addition the NE578 summing amplifiers are capable of driving 600Ω loads. Listed below are the basic functions of each external component for Figure 1 (NE577).

Table 1. Compandor Family Overview

	NE570	NE571	NE572	NE575	NE576	NE577	NE578
$V_{\text {cc }}$	6-24V	6-18V	6-22V	3-7V	2-7V	2-7V	2-7V
Icc	3.2 mA	3.2 mA	6 mA	3-5.5mA*	$1-3 m A^{*}$	1-2mA*	1-2mA*
Number of Pins	16	16	16	20	14	14	16
Packages NE: 0 to $+70^{\circ} \mathrm{C}$ SA: -40 to $+85^{\circ} \mathrm{C}$ N: Plastic DIP D: Plastic SO F: Ceramic DIP DJ: SSOP (Shrink Small Outline Package)	NE570F NE570N NE570D	NE571F NE571N NE571D SA571F SA571N SA571D	NE572N NE572D SA572F SA572N SA572D	NE575N NE575D NE575DJ SA575N SA575D SA575DJ	NE576N NE576D SA576N SA576D	NE577N NE577D SA577N SA577D	NE578N NE578D SA578N SA578D
ALC (Automatic Level Control)	Both Channels	Both Channels	Both Channels	Right Channel	Right Channel	Right Channel	Right Channel
Reference Voltage	Fixed 1.8V	Fixed 1.8V	Fixed 2.5V	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2$	$V_{c c} / 2$
Unity Gain	775 mV RMS	775 mV RMS	100 mV RMS	100 mV RMS	100 mV RMS	10 mV to $1 \mathrm{~V}_{\mathrm{RMS}}$	10 mV to $1 \mathrm{~V}_{\mathrm{RMS}}$
Power-Down	NO	NO	NO	NO	NO	NO	YES ($170 \mu \mathrm{~A})$
Key Features	-Excellent Unity Gain Tracking Error -Excellent THD	-Excellent Unity Gain Tracking Error -Excellent THD	-Independent Attack \& Recovery Time -Good THD -Needs ext. summing op amp	-2 Uncommited on-chip op amps available -Low voltage	-Low power -Low external component count	-Low power -Programmable unity gain	-Low power -Programmable unity gain -Power down -Mute function -Summing capability (DTMF) -600Ω drive capability
Applications Cordless Phones Cellular Phones Wireless Mics Modems Consumer Audio Two-way Communications	High performance audio circuits " $\mathrm{Hi}-\mathrm{Fi}$ Commercial Quality"	High performance audio circuits " $\mathrm{Hi}-\mathrm{Fi}$ Commercial Quality"	High performance audio circuits "Hi-Fi Studio Quality"	Consumer audio circuits "Commercial Quality"	Battery powered systems "Commercial Quality"	Battery powered systems "Commercial Quality"	Battery powered systems "Commercial Quality"

NOTES: NE5750/5751 are also excellent audio processor components for high performance cordless and cellular applications that include the companding function..
*Icc varies with V_{cc}.

R1 - Determines the Unity Gain Level for the Expandor
R2 - Determines What Value the Reference Current (I $\mathrm{I}_{\text {REF }}$) will be for the Part (Also Affects Unity Gain Level)
R3 - Determines the Unity Gain Level for the Compressor

C1 - DC Blocking Capacitor
C2 - Determines the Attack and Recovery Time for the Expandor
C3 - DC Blocking Capacitor
C 4 - Used to AC Ground the $\mathrm{V}_{\text {REF }}$ Pin
C5 - Provides AC Path from Gain Cell to Output of Summing Amp

C7-DC Blocking Capacitor
C8 - Provides AC Ground for the DC Feedback Path
C9 - DC Blocking Capacitor
*C10 - Increases the Dynamic Range and limits the Frequency Response to less than 500 kHz

*R1, R2 and R3 are 1% resistors.
Figure 2. NE578 Block Diagram

Listed below are the basic functions of each external component for Figure 2 (NE578).
R1 - Determines the Unity Gain Level for the Expandor
R2 - Determines What Value the Reference Current (I ${ }_{\text {REF }}$) will be for the Part (Also Affects Unity Gain Level)
R3 - Determines the Unity Gain Level for the Compressor
R4 - Used to Set the Gain of an External Signal like DTMF Tones and Sum them with the Companded Signal
C1-DC Blocking Capacitor
C2 - Determines the Attack and Recovery Time for the Expandor
C3-DC Blocking Capacitor
C4 - Used to AC Ground the $\mathrm{V}_{\text {REF }}$ Pin
C5 - Provides AC Path from Gain Cell to Output of Summing Amp
C6 - Determines the Attack and Recovery Time for the Compressor
C7-DC Blocking Capacitor
C8 - Provides AC Ground for the DC Feedback Path
C9-DC Blocking Capacitor
C10 - DC Blocking Capacitor
*C11 - Increases the Dynamic Range and limits the Frequency Response to less than 500 kHz
*Note: Bandwidth limiting is done to increase high frequency noise immunity and to make the performance of the part independent of layout or load capacitance.

HOW TO PROGRAM THE UNITY GAIN LEVEL (OdB)

Three external resistors R1, R2, and R3 define the unity gain level. Both the NE577 and the NE578 OdB levels can vary from 10 mV RMs to $1.0 \mathrm{~V}_{\text {RMS }}$. These limits are used in product characterization, but these parts can function over a wider OdB level range.
In most applications the OdB level is equal for both the compressor and expandor side. Therefore, R1 and R3 are equal in value. R3 sets the OdB level for the compressor side, and R1 sets the OdB level for the expandor side. However, there could be a situation where a design requires different 0 dB levels for compression and expansion. This will not be a problem with the NE577 or NE578, due to the separate OdB level programming.
Using the formulas below, a designer can calculate the resistor values for a desired unity gain level.

Formula 1: $\quad R_{2}=\frac{V_{B G}}{I_{R E F}}$
where $\mathrm{V}_{\mathrm{BG}}=$ Bandgap Voltage
$I_{\text {REF }}=$ Reference Current (V_{BG} is brought out on Pin 6 and R2 determines the I $\mathrm{I}_{\mathrm{REF}}$ value)

Formula 2: $\quad R_{1}=\frac{0.9 \cdot V_{I N_{R M S}}}{I_{R E F}}$
where $V^{N_{R M S}}$ is the $0 d B$ level ($\mathrm{R}_{1}=\mathrm{R}_{3}$ in most cases)
Programming the Unity Gain Level for the NE577 also applies for the NE578.
Example:
Program the NE577 or NE578 for a OdB Level at $100 \mathrm{mV}_{\text {RMS }}$

> Step 1: $V_{B G}=1.26 \mathrm{~V}$. Typically $\mathrm{I}_{\mathrm{REF}}=12.6 \mu \mathrm{~A} \mathrm{Good}$ Starting Point

$$
R_{2}=\frac{1.26 \mathrm{~V}}{12.6} \mu \mathrm{~A}
$$

Step 2:

$$
\mathrm{R}_{2}=100 \mathrm{k}
$$

$$
\begin{aligned}
R_{1} & =R_{3}=\frac{0.9 V_{I N_{R M S}}}{I_{\text {REF }}} \\
R_{1} & =R_{3}=\frac{(0.9 V)\left(100 m V_{R M S)}\right.}{12.6 \mu A} \\
\therefore \mathrm{R}_{1} & =\mathrm{R}_{3}=7.15 \mathrm{k}
\end{aligned}
$$

Step 3: $R_{1}=R_{3}=7.15 \mathrm{k}$ (1\% value) $\mathrm{R}_{2}=100 \mathrm{k}$ (1% value)
Step 4: Plug in these resistor values and measure for unity gain. Adjust accordingly for accuracy.

NOTE: Rough Limits for Resistors: $1 \mathrm{k} \leq \mathrm{R} 1 \leq 100 \mathrm{k}$ (1\% values) $20 \mathrm{k} \leq \mathrm{R} 2 \leq 200 \mathrm{k}$ (1% values) $1 \mathrm{k} \leq \mathrm{R} 3 \leq 100 \mathrm{k}$ (1% values)

Rough Limits for I I ${ }_{\text {REF }}$ $6.3 \mu \mathrm{~A} \leq \mathrm{I}_{\text {REF }} \leq 63 \mu \mathrm{~A}$
The example above gives pretty close results. A designer should use 1% resistors to get the best performance. Below in Table 2 are some recommended values to get started:

Table 2. Recommended Resistor Values for Different OdB Levels

OdB Level	$\mathbf{d B v}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$ \& $\mathbf{R}_{\mathbf{3}}$
$1.0 \mathrm{~V}_{\text {RMS }}$	0	24.3 k	18.7 k
$316.2 \mathrm{mV} \mathrm{V}_{\text {RM }}$	-10	100 k	22.6 k
$100 \mathrm{mV}_{\text {RMS }}$	-20	100 k	7.15 k
$10 \mathrm{mV} \mathrm{V}_{\text {RMS }}$	-40	200 k	1.33 k

PARAMETERS THAT LIMIT THE DYNAMIC RANGE

The above example is a good place to start, but to get the optimum performance from the NE577 and NE578, a designer needs to understand certain key parameters. $I_{\text {REF }}$ is important because it determines the values for all three resistors (R1, R2, and R3). Since $\mathrm{I}_{\mathrm{REF}}$ is directly related to I_{CC} (see Figure 3), one should be careful in choosing a value. If one chooses a high $I_{\text {REF }}$ current, power consumption goes up. However the output signal will have excellent low level distortion (see Figures 4 and 5). If one chooses a low $I_{\text {REF }}$ value, distortion at the output will increase slightly. Conversely, the power consumption is reduced, which might be worth the trade-off in battery operated designs.
The dynamic range of the NE577 and NE578 is determined by supply voltage (V_{cc}) and reference current (I IREF). I I REF determines how well the compandor will perform with low level input signals. The supply voltage determines how high (in level) an input signal can be before clipping appears on the output (in some cases increasing l ReF also helps). A designer needs to estimate the input range going into the compandor so that an appropriate V_{CC} and $\mathrm{I}_{\mathrm{REF}}$ can be chosen.

The bandgap voltage (V_{BG}) slightly varies over a wide range of $\mathrm{I}_{\text {REF }}$ currents (Figure 6). Figure 7 shows how IREF varies with R2. The higher R2 is, the lower $I_{\text {REF }}$ is. Figure 8 shows how the dynamic range varies over different values of $I_{\text {REF }}$ (the higher the supply voltage the better the dynamic range). The graphs in Figures 3-8 were taken at $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~F}=1 \mathrm{kHz}$ and OdB level $=100 \mathrm{mV} V_{\text {RMs. }}$. The $I_{\text {REF }}$ current was limited between $5 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$.
It can be seen that IREF plays an important role in current consumption, THD, and dynamic range. With the aid of these figures, one can determine an I I aff which meets the design goals.

Example:

Making use of the graphs in Figures 3-8 and formulas 1 and 2 , design a compandor with a 0 dB level of 100 mV RMs. Try to achieve a THD of 0.1 on the compressor side with wide dynamic range. Operate at a supply voltage of 3.6 V but with the lowest possible current consumption.
Step 1: According to Figure 5 , an $I_{\text {REF }}$ of $30 \mu \mathrm{~A}$ is required for approximately 0.1% distortion.

Figure 3. $\mathbf{I}_{\text {REF }}$ vs $I_{\text {CC }}$

Figure 5. IREF vs THD, Compressor Side

Figure 7. $\mathbf{I}_{\text {REF }}$ vs R2, R1

Figure 4. $\mathrm{I}_{\text {REF }}$ vs THD, Expandor Side

Figure 6. $\mathbf{I}_{\text {REF }}$ vs $V_{B G}$

Figure 8. $\mathbf{I}_{\text {REF }}$ vs Dynamic Range

Test Conditions: $\quad V_{C C}=3.6 \mathrm{~V} \quad \mathrm{~F}=\mathbf{1 k H z} \quad \mathbf{O d B}=100 \mathrm{mV} \mathrm{RMS}$

Step 2: From Figure 8, the dynamic range is approximately 92 dB . So far the requirements have been met.
Step 3: Figure 3 shows us that $I_{C C}$ is at 1.9 mA with no input signal (that's not bad at all!).
Step 4: Calculating R1, R2, and R3

Graphical Method:

From Figure 7: For $I_{\text {REF }}=30 \mu \mathrm{~A}$ and $0 \mathrm{~dB}=100 \mathrm{mV} \mathrm{VMS} \mathrm{R} 1=\mathrm{R} 3=3 \mathrm{k} \mathrm{R} 2=40 \mathrm{k}$

Actual resistors available: $\mathrm{R} 1=\mathrm{R} 3=3.01 \mathrm{k}$ (1\%) R2=40.2k (1\%)

Formula Method:

From Figure 6: $\mathrm{V}_{\mathrm{BG}}=1.21 \mathrm{~V}$ for $\mathrm{I}_{\mathrm{REF}}=30 \mu \mathrm{~A}$ therefore, using formula 1 :

$$
\begin{aligned}
R_{2} & =\frac{V_{B G}}{I_{R E F}} \\
R_{2} & =\frac{1.21 V}{30 \mu A} \\
\mathrm{R}_{2} & =40.33 \mathrm{k} \\
\mathrm{R}_{2} & =40.2 \mathrm{k} \text { (available in } 1 \% \text {) }
\end{aligned}
$$

Recall from formula 2:

$$
\begin{aligned}
R_{1} & =\frac{0.9 V_{I N_{R M S}}}{I_{R E F}} \\
R_{1} & =\frac{(0.9 \mathrm{~V})\left(100 \mathrm{mV} V_{R M S}\right)}{30 \mu A} \\
\mathrm{R}_{1} & =3 \mathrm{k} \\
\mathrm{R}_{1} & =3.01 \mathrm{k} \text { (available in } 1 \% \text {) }
\end{aligned}
$$

Connect these external resistors with the determined values and adjust for optimum performance.

Bench results:

After completing the exercise above, the resistors were connected and the results are given below.
$I_{C C}=1.89 \mathrm{~mA}$ (with no input signal)
THD $=0.1$ (meausured on spectrum analyzer)
$0 \mathrm{~dB}=109 \mathrm{mV}$ RMs (off by $0.8 \mathrm{~dB} .$. good!)
Dynamic Range $=92 \mathrm{~dB}$
These results are very close to what was predicted and by tweaking R1 and R3, the OdB error can be further reduced to zero.

BANDWIDTH OF COMPANDOR
Figure 9 shows the typical bandwidth for the NE577 and NE578. The graphs were taken with a $V_{C C}$ of 3.6 V and a 0 dB level of $100 \mathrm{mV}_{\mathrm{RMS}}$. The bandwidth of the expandor, the compressor, and the compandor (where a signal goes through the compressor and the expandor) is shown in this figure. Although the NE577 and NE578 are conservatively specified with a 20 kHz bandwidth, Figure 9 reveals that it is actually around 300 kHz .

Figure 9. Bandwidth of NE577 and NE578 Demo Board

HOW TO SET THE ATTACK AND RECOVERY TIMES

C2 and C6, from figures 1 and 2, set the attack and recovery times for the NE577 and NE578. Application Note 174 (AN174) defines A and R times and also describes how they are measured on the bench. Formula 3 shows how the A and R time can be calculated.

Formula 3:
Attack Time [ms] $=10 \mathrm{k} * \mathrm{C} 2$ or C6
Release Time [ms] = 4 * Attack Time
Although a fast attack time is desirable, one must remember that there is a trade-off with low distortion. As a general rule, a $1 \mu \mathrm{~F}$ capacitor for C 2 will produce 0.2% THD at 1 kHz . Since CCITT recommends an RC time constant of 20 ms for the attack time, a $2 \mu \mathrm{~F}$ capacitor is recommended for telephony applications because it has only 0.1% THD at 1 kHz and 0.33% at 800 Hz .

Note: AN174 can be found in the 1989 Linear Data Manual, Volume 1, or the RF Handbook.

IMPLEMENTING A PROGRAMMABLE AUTOMATIC LEVEL CONTROL

The function of an automatic level control (ALC) is to take a given range of input signals and provide a constant AC output level. This type of function is useful in many audio applications. One such application can be found in tape recorders. When a tape recorder with ALC is recording a conversation, a soft spoken person will be heard just as well as a loud spoken person during play back. Another useful application for ALC could be with telephony. A person who has difficulty hearing, will not have to ask the other party to speak up. If the phone already has a volume control, the user has to adjust the volume for different parties. But with the ALC, the volume only has to be set once.

Different constant AC output levels of an ALC can be 'programmed' with the NE577 and NE578. This allows the designer to choose the output level that is needed in the design, and eliminates the need for an external op amp.

The compressor side of the NE577 and NE578 can be configured to function as an automatic level control (ALC). Figure 10 and 11 show how this can be done. The circuit shown for the NE577/78 ALC is set up to provide a constant output level of $100 \mathrm{mV} V_{\text {RMS }}$ with an input range from -34 dB to +20 dB at 1 kHz (see Figure 12).

Below are some design equations for the ALC:

Eq 1.
$A C$ output level $\left(V_{R M S}\right)=\left[\frac{R_{3} \cdot R_{2_{a}} \cdot I_{R E F}}{R_{1_{a}}}\right] \cdot 1.11$
where $R_{1 a}=R_{2_{a}}=10 k$ (internal) $I_{R E F}=\frac{V_{B G}}{R_{2}}$

Eq 2.
Maximum Gain $=\frac{4\left(R_{3}+R_{X}\right) \cdot R_{2 a} \cdot I_{\text {REF }}}{R_{1_{a}} \cdot V_{C C}}$
Eq3.
Gain $=\frac{R_{3} \cdot R_{2_{a}} \cdot I_{\text {REF }}}{R_{1_{a}} \cdot V_{I N_{R M S}}}$

Figure 10. NE577 ALC Configuration

Figure 11. NE578 ALC Configuration

Example:
Design an ALC with a constant output level of $100 \mathrm{mV}_{\mathrm{RMS}}$ with a maximum gain of 10 .
Step 1: From Eq 1
$A C$ output level $\left(V_{R M S}\right)=\left[\frac{R_{3} \cdot R_{2_{a}} \cdot I_{R E F}}{R_{1 a}}\right] \cdot 1.11$
where $R_{1_{a}}=R_{2_{a}}=10 k$ (internal)

$$
I_{R E F}=\frac{V_{B G}}{R_{2}}
$$

In terms of R_{3}

$$
R_{3}=\frac{\left[A C \text { output level }\left(V_{R M S}\right)\right] R_{1_{a}}}{(1.11)\left(R_{2_{a}}\right) I_{R E F}}
$$

assuming $\mathrm{R}_{2}=100 \mathrm{k}$ and $\mathrm{V}_{\mathrm{BG}}=1.26 \mathrm{~V}$.

$$
\begin{aligned}
& R_{3}=\frac{100 m V_{R M S} \cdot 10 k}{1.11 \cdot 10 k \cdot 12.6 \mu \mathrm{~A}} \\
& R_{3}=7.15 k
\end{aligned}
$$

Step 2: From Eq 2
Maximum Gain $=\frac{4\left(R_{3}+R_{X}\right) \cdot R_{2_{a}} \cdot I_{\text {REF }}}{R_{1_{a}} \cdot V_{C C}}$
In terms of R_{x}
$R_{X}=\frac{(\text { Max. Gain })\left(V_{C C}\right)\left(R_{1_{a}}\right)}{4 R_{2_{a}} \cdot I_{\text {REF }}}-R_{3}$
$R_{X}=\frac{(10)(3.6 \mathrm{~V})(10 \mathrm{k})}{4(10 k) 12.6 \mu \mathrm{~A}}-7.15 k$
$R_{X}=707.1 k$
$R_{X}=715 k$ (available)
Step 3:
-connect resistors to circuit
-measure AC output level and adjust R3 for best accuracy
-check maximum gain by applying a low input level and adjust Rx for best results

Figure 12 shows the characteristics of the NE577/578 ALC circuit without Rx. The output stays at a constant 100 mV RMs level for a wide range of different input AC voltages. Any AC input signal above the cross-over point (unity gain level) is attenuated while any signal below the cross-over point is amplified. The cross-over point is where the input signal is equal to the output signal, where $A_{V}=1$.

Figure 13 reveals the dynamic range of the NE577 ALC circuit using Rx. The input range of the ALC is reduced. Instead of a $2 \mathrm{mV}_{\text {RMS }}$ input signal to get $100 \mathrm{mV} \mathrm{V}_{\text {RMS }}$ on the output, a 10 mV RMS input signal is now required (for $R x=681 \mathrm{k}$). The purpose of limiting the maximum gain of the circuit is to prevent amplification of background noise. To alleviate this problem, Rx is used. Since the ALC was designed with a maximum gain of

10, any input signal below 10 mV will not be amplified with a gain greater than 10 ($100 \mathrm{mv}_{\mathrm{RMS}} / 10=10 \mathrm{mv} \mathrm{mms}^{\text {) }}$. Using Rx can be an advantage because the threshold of the ALC can be set.

Figure 14 shows that as $R x$ increases so does A_{V}. In some applications it might be useful to make Rx a potentiometer. This will allow the user to adjust the threshold for different environmental conditions.

Figures 15-18 show the results of using the ALC for different constant output levels. VCC and $I_{\text {REF }}$ limit the dynamic range. The upper part of the range can be increased by either increasing $V_{C C}$ and/or $l_{\text {REF }}$. The lower part of the range can be improved by increasing laEF.

EXTRA FEATURES FOR NE578

The NE578 has three extra functions over the NE577. These are power-down, mute and summing capabilities. To implement the power-down/mute mode, Pin 8 should be active low (open collector configuration, see Figure 19). If the power-down/mute feature is not used, Pin 8 should be left open. The NE578 only consumes $170 \mu \mathrm{~A}$ of current at 3.6 V when Pin 8 is activated. The power-down/mute mode is useful in designs when the function of the chip is not utilized at all times. This feature is a necessity where power conservation is critical.

In cellular and cordless applications, it is common to mix DTMF tones with the audio signal. This usually requires another op amp
in which to mix the signals. With the NE578, however, the DTMF tones can be mixed internally on the compressor side. The DTMF signal is also compressed with the audio signal and ready for data transmission. Figure 2 shows that the summing of signals can be done at Pin 9 with R4 and C10. If amplification is not needed, then a 10 k resistor is a recommended value for R4. In addition the summing amplifiers are capable of driving 600Ω loads.

THE NE577 AND NE578 AS A DUAL EXPANDOR

The compressor side can actually be configured as an expandor for both the NE577 and NE578. Figure 20 shows how this can be done. Because Pin 9 of the NE578 is available to the designer, the compressor side can not only be configured as an expandor, but as an expandor with summing capabilities.

OPERATING AT 1.8 V

The NE577 and NE578 can operate at 1.8 V . However, turning on the part at a $V_{C C}$ of 1.8 V requires two external resistors to bring $\mathrm{V}_{\text {REF }}$ to half $V_{c c}$. One resistor connects between $V_{C C}$ and $V_{\text {REF }}$; the other connects from $V_{\text {REF }}$ to ground. A typical value for these external resistors is approximately 20k. A lower value can be used, but power consumption will increase.

There are two cases where the external resistors can be eliminated.

Case 1: NE578 only
With the power supply at 1.8 V and Pin 8 active low (power-down/mute activated), turn on the part. Then disable Pin 8 to power up.
Case 2: NE577 or NE578
During normal operations, the NE577 and NE578 can operate from at least a 2 V battery. If the battery voltage drops to 1.8 V , these parts will still continue to function.

NE577 AND NE578 DEMO BOARDS

Figures 21 shows the DIP package layout for the NE577 and NE578 demo boards, respectively. Figures 22 shows the SO layout for the NE577 and NE578 demo boards, respectively. The layouts are configured such that R1, R2, R3, and Rx can be removed and replaced easily. A switch is also available to change the operating mode of the compressor to an ALC configuration and vice versa (position the switch to the right for ALC mode).

When the compressor side is being evaluated, disconnect Rx completely from the socket on the demo boards. Rx should only be used when the compandor is being used for ALC.
For the NE578 demo board, two extra post are available. One is for power-down; the other is for summing external signals. To power-down, simply ground this post. To sum signals, connect the external signal to the proper post.

Figure 13. Dynamic Range of NE577 ALC Demo Board with $R_{X}=715 \mathrm{k} \Omega$

Figure 14. Dynamic Range of NE577 ALC Demo Board with Different $R_{\mathbf{X}}$ Values

INPUT OF ALC
OUTPUT OF ALC
Figure 15. NE577 ALC: AC Output Level $=10 \mathrm{mV}_{\text {RMS }}$

INPUT OF ALC OUTPUT OF ALC
Figure 16. NE577 ALC: AC Output Level $=100 \mathrm{mV}_{\text {RMS }}$

Figure 18. NE577 ALC: AC Output Level $=1 \mathrm{~V}_{\text {RMS }}$

LEVEL AT PIN 8 SHOULD BE OPEN COLLECTOR TTLLEVELS
THE REASON FOR OPEN COLLECTOR CONFIGURATION IS TO ENSURE:

1) PIN 8 IS FLOATING WHEN POWER-DOWN/MUTE IS NOT IMPLEMENTED
2) PIN 8 IS GROUNDED WHEN POWER-DOWN/MUTE IS ACTIVE

Figure 19. Proper Use of NE578 Pin 8

Figure 20. Expandor Configuration for the Compressor Side

NE578 DIP Top Silk Screen

Top View

Top View

Bottom View

Bottom View

Figure 21. NE577 and NE578 DIP Application Board Layout

Figure 22. NE577 and NE578 SO Application Board Layout

RF Communications

INDEX

FMIF Systems Selector Guide 242
MC3361 Low-power FM IF 243
NE/SA604A High performance low power FM IF system 246
NE/SA614A Low power FM IF system 256
AN1991 Audio decibel level detector with meter driver 266
AN1993 High sensitivity applications of low-power RF/IF integrated circuits 268
NE/SA605 High performance low power mixer FM IF system 280
NE/SA605 High performance low power mixer FM IF system in shrink small outline package (SSOP) 290
NE/SA615 High performance low power mixer FM IF system 298
NE/SA615 High performance low power mixer FM IF system in shrink small outline package (SSOP) 308
AN1994 Reviewing key areas when designing with the NE605 316
AN1995 Evaluating the NE605 SO and SSOP demo-board 336
NE/SA606 Low-voltage high performance mixer FM IF system 346
NE/SA616 Low-voltage high performance mixer FM IF system 362
NE/SA607 Low voltage high performance mixer FM IF system 378
NE/SA617 Low-voltage high performance mixer FM IF system 392
TDA1576T FMIF amplifier/demodulator circuit 406
AN192 A complete FM radio on a chip 414
AN193 TDA7000 for narrowband FM reception 427
TDA7000 Single-chip FM radio circuit 442
TDA7021T Single-chip FM radio circuit 449

FM IF SYSTEMS FAMILY OVERVIEW

DESCRIPTION

The MC3361 is a monolithic low-power FM IF signal processing system consisting of an oscillator, mixer, limiting amplifier, quadrature detector, filter amplifier, squelch, scan control and mute switch. It is intended for use in narrow band FM dual conversion communications equipment. The MC3361 is available in a 16-lead, dual-in-line plastic package and 16-lead SOL (surface-mounted miniature package).

FEATURES

- 2.0 V to 8.0 V operation
- Low current: 4.2 mA typ at VCC=4.0VDC
- Excellent sensitivity: $2.0 \mu \mathrm{~V}$ for -3 dB limiting typ
- Low external parts count
- Operation to 60 MHz

APPLICATIONS

- Cordless telephone
- Narrow band receivers
- Remote control

PIN CONFIGURATION

D^{1} and N Package		
CRYSTAL 1		RF ${ }_{\text {R }}$
OSC. 2	15	GND
OUTPET	14	AUDIO
vcc 4	13	SCAN
UMITER 5	12	SQUELCH
DECOUPUNG 6	11	FILTER
LMMITER 7	10	OUTPUT
$\begin{aligned} & \text { QUAD } \\ & \text { INPUT } \end{aligned}$	9	DEMOD OUTPUT
NOTE:		
1. Available in 16 -pin SOL package.		

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$16-$ Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	MC3361N
$16-$ Pin Plastic SOL	-40 to $+85^{\circ} \mathrm{C}$	MC3361D

BLOCK DIAGRAM

Low-power FM IF

ABSOLUTE MAXIMUM RATINGS
$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	PIN	RATING	UNIT
V_{CC} (Max)	Power supply voltage	4	10	$\mathrm{~V}_{\mathrm{DC}}$
V_{CC}	Generating supply voltage range	4	2.0 to 8.0	$\mathrm{~V}_{\mathrm{DC}}$
	Detector input voltage	8	1.0	$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
V_{16}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V}\right)$	16	1.0	$\mathrm{~V}_{\text {RMS }}$
V_{14}	Mute function	14	-0.5 to 5.0	$\mathrm{~V}_{\mathrm{PK}}$
T_{J}	Junction temperature		150	${ }^{\circ} \mathrm{C}$
T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$	

AC AND DC ELECTRICAL CHARACTERISTICS
$V_{C C}=4.0 V_{D C}, f_{O}=10.7 \mathrm{MHz}, \Delta f=+3.0 \mathrm{kHz}, f_{M O D}=1.0 \mathrm{kHz}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	PIN	TEST CONDITIONS	LIMITS		UNIT	
						Typ

TEST CIRCUIT

DESCRIPTION

The NE/SA604A is an improved monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator, and voltage regulator. The NE/SA604A features higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application compared with the NE/SA604. The NE/SA604A is available in a 16 -lead dual-in-line plastic and 16-lead SO (surface-mounted miniature) package.

FEATURES

- Low power consumption: 3.3mA typical
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.22 \mu \mathrm{~V}$ into 50Ω matching network) for 12 dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz
- SA604A meets cellular radio specifications

APPLICATIONS

- Cellular radio FM IF
-High performance communications receivers
- Intermediate frequency amplification and detection up to 25 MHz
- RF level meter
- Spectrum analyzer
- Instrumentation
-FSK and ASK data receivers

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE604AN
16-Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE604AD
16-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA604AN
16-Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA604AD

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TA	Operating ambient temperature range NE604A	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	$\begin{array}{ll}\text { Thermal impedance } & \begin{array}{c}\text { D package } \\ \mathrm{N} \text { package }\end{array}\end{array}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & \circ{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS						UNITS	
			NE604A	SA604A							
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{Cc}	Power supply voltage range				4.5		8.0	4.5		8.0	V
lcc	DC current drain				2.5	3.3	4.0	2.5	3.3	4.0	mA
	Mute switch input threshold	$\begin{aligned} & \hline \text { (ON) } \\ & \text { (OFF) } \end{aligned}$		1.7		1.0	1.7		1.0	V	

AC ELECTRICAL CHARACTERISTICS

Typical reading at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}$, unless otherwise stated. IF frequency $=455 \mathrm{kHz} ; \mathrm{IF}$ level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE604A			SA604A			
			MIN	TYP	MAX	MIN	TYP	MAX	
	Input limiting -3dB	Test at Pin 16		-92			-92		dBm/50 ${ }^{\text {d }}$
	AM rejection	80\% AM 1kHz	30	34		30	34		dB
	Recovered audio level	15 nF de-emphasis	110	175	250	80	175	260	$\mathrm{mV} \mathrm{V}_{\text {RS }}$
	Recovered audio level	150pF de-emphasis		530			530		$\mathrm{mV}_{\text {RMS }}$
THD	Total harmonic distortion		-35	-42		-34	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		73			73		dB
		RF level $=-118 \mathrm{dBm}$	0	160	550	0	160	650	mV
	RSSI output ${ }^{1}$	RF level $=-68 \mathrm{dBm}$	2.0	2.65	3.0	1.9	2.65	3.1	V
		RF level $=-18 \mathrm{dBm}$	4.1	4.85	5.5	4.0	4.85	5.6	V
	RSSI range	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		90			90		dB
	RSSI accuracy	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		± 1.5			± 1.5		dB
	IF input impedance		1.4	1.6		1.4	1.6		k Ω
	IF output impedance		0.85	1.0		0.85	1.0		$\mathrm{k} \Omega$
	Limiter input impedance		1.4	1.6		1.4	1.6		k Ω
	Unmuted audio output resistance			58			58		k Ω
	Muted audio output resistance			58			58		k Ω

NOTE:

1. NE604 data sheets refer to power at 50Ω input termination; about 21 dB less power actually enters the internal 1.5 k input.

NE604 (50)	NE604A $(1.5 \mathrm{k}) /$ NE605 $(1.5 \mathrm{k}$
-97 dBm	-118 dBm
-47 dBm	-68 dBm
+3 dBm	-18 dBm

The NE605 and NE604A are both derived from the same basic die. The NE605 performance plots are directly applicable to the NE604A.

Figure 1. NE/SA604A Test Circult

High performance low power FM IF system

Figure 2. Equivalent Circuit

Figure 3. Typical Application Cellular Radio (45 MHz to 455 kHz)

CIRCUIT DESCRIPTION

The NE/SA604A is a very high gain, high frequency device. Correct operation is not possible if good RF layout and gain stage practices are not used. The NE/SA604A cannot be evaluated independent of circuit, components, and board layout. A physical layout which correlates to the electrical limits is shown in Figure 1. This configuration can be used as the basis for production layout.

The NE/SA604A is an IF signal processing system suitable for IF frequencies as high as 21.4 MHz . The device consists of two limiting amplifiers, quadrature detector, direct audio output, muted audio output, and signal strength indicator (with output characteristic). The sub-systems are shown in Figure 2. A typical application with 45 MHz input and 455 kHz IF is shown in Figure 3.

IF Amplifiers

The IF amplifier section consists of two loglimiting stages. The first consists of two differential amplifiers with 39 dB of gain and a small signal bandwidth of 41 MHz (when driven from a 50Ω source). The output of the first limiter is a low impedance emitter follower with $1 \mathrm{k} \Omega$ of equivalent series resistance. The second limiting stage consists of three differential amplifiers with a gain of 62 dB and a small signal $A C$ bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. One of the outputs is available at Pin 9 to drive an external quadrature capacitor and L / C quadrature tank.
Both of the limiting amplifier stages are $D C$ biased using feedback. The buffered output of the final differential amplifier is fed back to the input through $42 \mathrm{k} \Omega$ resistors. As shown in Figure 2, the input impedance is
established for each stage by tapping one of the feedback resistors $1.6 \mathrm{k} \Omega$ from the input. This requires one additional decoupling capacitor from the tap point to ground.

Because of the very high gain, bandwidth and input impedance of the limiters, there is a very real potential for instability at IF frequencies above 455 kHz . The basic phenomenon is shown in Figure 6. Distributed feedback (capacitance, inductance and radiated fields)

Figure 5. Second Limiter and Quadrature Detector

Figure 6. Feedback Paths

Figure 7. Terminating High Impedance Filters with Transformation to Low Impedance

Figure 7. Low Impedance Termination and Gain Reduction Figure 7. Practical Termination

Figure 8. Crystal Input Filter with Ceramic Interstage Filter
forms a divider from the output of the limiters back to the inputs (including RF input). If this feedback divider does not cause attenuation greater than the gain of the forward path, then oscillation or low level regeneration is likely. If regeneration occurs, two symptoms may be present: (1)The RSSI output will be high with no signal input (should nominally be 250 mV or lower), and (2) the demodulated
output will demonstrate a threshold. Above a certain input level, the limited signal will begin to dominate the regeneration, and the demodulator will begin to operate in a "normal" manner.
There are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input
impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain. Gain reduction can effectively be accomplished by adding attenuation between stages. This can also lower the input impedance if well planned. Examples of impedance/gain adjustment are shown in

Figure 7. Reduced gain will result in reduced limiting sensitivity.
A feature of the NE604A IF amplifiers, which is not specified, is low phase shift. The NE604A is fabricated with a 10 GHz process with very small collector capacitance. It is advantageous in some applications that the phase shift changes only a few degrees over a wide range of signal input amplitudes. Additional information will be provided in the upcoming product specification (this is a preliminary specification) when characterization is complete.

Stability Considerations

The high gain and bandwidth of the NE604A in combination with its very low currents permit circuit implementation with superior performance. However, stability must be maintained and, to do that, every possible feedback mechanism must be addressed. These mechanisms are: 1) Supply lines and ground, 2) stray layout inductances and capacitances, 3) radiated fields, and 4) phase shift. As the system IF increases, so must the attention to fields and strays. However ground and supply loops cannot be overlooked, especially at lower frequencies. Even at 455 kHz , using the test layout in Figure 1, instability will occur if the supply line is not decoupled with two high quality RF capacitors, a $0.1 \mu \mathrm{~F}$ monolithic right at the $V_{C C}$ pin, and a $6.8 \mu \mathrm{~F}$ tantalum on the supply line. An electrolytic is not an adequate substitute. At 10.7 MHz , a $1 \mu \mathrm{~F}$ tantalum has proven acceptable with this layout. Every layout must be evaluated on its own merit, but don't underestimate the importance of good supply bypass.
At 455 kHz , if the layout of Figure 1 or one substantially similar is used, it is possible to directly connect ceramic filters to the input and between limiter stages with no special consideration. At frequencies above 2 MHz , some input impedance reduction is usually necessary. Figure 7 demonstrates a practical means.

As illustrated in Figure 8, 430Ω external resistors are applied in parallel to the internal $1.6 \mathrm{k} \Omega$ load resistors, thus presenting approximately 330Ω to the filters. The input filter is a crystal type for narrowband selectivity. The filter is terminated with a tank which transforms to 330Ω. The interstage filter is a ceramic type which doesn't contribute to system selectivity, but does suppress wideband noise and stray signal pickup. In wideband 10.7 MHz IFs the input filter can also be ceramic, directly connected to $\operatorname{Pin} 16$.

In some products it may be impractical to utilize shielding, but this mechanism may be
appropriate to 10.7 MHz and 21.4 MHz IF. One of the benefits of low current is lower radiated field strength, but lower does not mean non-existent. A spectrum analyzer with an active probe will clearly show IF energy with the probe held in the proximity of the second limiter output or quadrature coil. No specific recommendations are provided, but mechanical shielding should be considered if layout, bypass, and input impedance reduction do not solve a stubborn instability.

The final stability consideration is phase shift. The phase shift of the limiters is very low, but there is phase shift contribution from the quadrature tank and the filters. Most filters demonstrate a large phase shift across their passband (especially at the edges). If the quadrature detector is tuned to the edge of the filter passband, the combined filter and quadrature phase shift can aggravate stability. This is not usually a problem, but should be kept in mind.

Quadrature Detector

Figure 5 shows an equivalent circuit of the NE604A quadrature detector. It is a multiplier cell similar to a mixer stage. Instead of mixing two different frequencies, it mixes two signals of common frequency but different phase. Internal to the device, a constant amplitude (limited) signal is differentially applied to the lower port of the multiplier. The same signal is applied single-ended to an external capacitor at Pin 9 . There is a 90° phase shift across the plates of this capacitor, with the phase shifted signal applied to the upper port of the multiplier at Pin 8. A quadrature tank (parallel L/C network) permits frequency selective phase shifting at the IF frequency. This quadrature tank must be returned to ground through a DC blocking capacitor.
The loaded Q of the quadrature tank impacts three fundamental aspects of the detector: Distortion, maximum modulated peak deviation, and audio output amplitude. Typical quadrature curves are illustrated in Figure 10. The phase angle translates to a shift in the multiplier output voltage.

Thus a small deviation gives a large output with a high Q tank. However, as the deviation from resonance increases, the nonlinearity of the curve increases (distortion), and, with too much deviation, the signal will be outside the quadrature region (limiting the peak deviation which can be demodulated). If the same peak deviation is applied to a lower Q tank, the deviation will remain in a region of the curve which is more linear (less distortion), but creates a smaller phase angle (smaller output amplitude). Thus the Q of the quadrature tank must be tailored to the
design. Basic equations and an example for determining Q are shown below. This explanation includes first-order effects only.

Frequency Discriminator Design Equations for NE604A

where $\omega_{1}=\frac{1}{\sqrt{L\left(C_{P}+C_{S}\right)}}$

$$
\begin{equation*}
Q_{1}=R\left(C_{P}+C_{S}\right) \omega_{1} \tag{1c}
\end{equation*}
$$

From the above equation, the phase shift between nodes 1 and 2, or the phase across C_{5} will be:
$\phi=\dot{\mathbf{N}}_{\mathrm{O}}-\dot{\mathbf{N}}_{\mathbb{N}}=\mathrm{t}_{\mathrm{g}}^{-1}\left[\frac{\frac{\omega_{1}}{\mathrm{Q}_{1} \omega}}{1-\left(\frac{\omega_{1}}{\omega}\right)^{2}}\right]$
Figure 10 is the plot of ϕ vs. $\left(\frac{\omega}{\omega_{1}}\right)$
It is notable that at $\omega=\omega_{1}$, the phase shift is
$\frac{\pi}{2}$ and the response is close to a straight
line with a slope of $\frac{\Delta \phi}{\Delta \omega}=\frac{2 Q_{1}}{\omega_{1}}$
The signal V_{O} would have a phase shift of $\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]$ with respect to the $V_{\mathbb{N}}$.

$$
\text { If } \begin{align*}
& V_{\mathbb{I}}= A \operatorname{Sin} \omega t \Rightarrow V_{O}=A \tag{3}\\
& \qquad \operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]
\end{align*}
$$

Multiplying the two signals in the mixer, and low pass filtering yields:
$V_{I N} \bullet V_{O}=A^{2} \operatorname{Sin} \omega t$

$$
\begin{equation*}
\sin \left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{4}
\end{equation*}
$$

after low pass filtering

$$
\begin{align*}
\Rightarrow V_{\text {OUT }} & =\frac{1}{2} A^{2} \operatorname{Cos}\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{5}\\
& =\frac{1}{2} A^{2} \sin \left(\frac{2 Q_{1}}{\omega_{1}}\right) \omega
\end{align*}
$$

$$
\begin{aligned}
& \text { V OUT }^{2 Q_{1} \frac{\omega_{1}}{\omega}=\left[2 Q_{1}\left(\frac{\omega_{1}+\Delta \omega}{\omega_{1}}\right)\right]} \\
& \text { For } \frac{2 Q_{1} \omega}{\omega_{1}} \ll \frac{\pi}{2}
\end{aligned}
$$

Which is discriminated FM output. (Note that $\Delta \omega$ is the deviation frequency from the carrier ω_{1}.
Ref. Krauss, Raab, Bastian; Solid State Radio Eng.; Wiley, 1980, p. 311. Example: At 455 kHz IF, with $\pm 5 \mathrm{kHz}$ FM deviation. The maximum normalized frequency will be

$$
\frac{455 \pm 5 \mathrm{kHz}}{455}=1.010 \text { or } 0.990
$$

Go to the f vs. normalized frequency curves (Figure 10) and draw a vertical straight line at $\frac{\omega}{\omega_{1}}=1.01$.

The curves with $Q=100, Q=40$ are not linear, but $Q=20$ and less shows better linearity for this application. Too small Q decreases the amplitude of the discriminated FM signal. (Eq. 6) \Rightarrow Choose a $Q=20$

The internal R of the 604A is 40 k . From Eq. 1 c , and then 1 b , it results that
$C_{P}+C_{S}=174 \mathrm{pF}$ and $L=0.7 \mathrm{mH}$.
A more exact analysis including the source resistance of the previous stage shows that there is a series and a parallel resonance in the phase detector tank. To make the parallel and series resonances close, and to get maximum attenuation of higher harmonics at 455 kHz IF, we have found that a $\mathrm{C}_{\mathrm{S}}=10 \mathrm{pF}$ and $C_{P}=164 \mathrm{pF}$ (commercial values of 150 pF or 180 pF may be practical), will give the best results. A variable inductor which can be adjusted around 0.7 mH should be chosen and optimized for minimum distortion. (For 10.7 MHz , a value of $\mathrm{C}_{\mathrm{S}}=1 \mathrm{pF}$ is recommended.)

Audio Outputs

Two audio outputs are provided. Both are PNP current-to-voltage converters with $55 \mathrm{k} \Omega$ nominal internal loads. The unmuted output is always active to permit the use of signaling tones in systems such as cellular radio. The other output can be muted with 70 dB typical attenuation. The two outputs have an internal 180° phase difference.
(6) The nominal frequency response of the audio outputs is 300 kHz . this response can be increased with the addition of external resistors from the output pins to ground in parallel with the internal 55 k resistors, thus lowering the output time constant. Singe the output structure is a current-to-voltage converter (current is driven into the resistance, creating a voltage drop), adding external parallel resistance also has the effect of lowering the output audio amplitude and DC level.

This technique of audio bandwidth expansion can be effective in many applications such as SCA receivers and data transceivers.
Because the two outputs have a 180° phase relationship, FSK demodulation can be accomplished by applying the two output differentially across the inputs of an op amp or comparator. Once the threshold of the reference frequency (or "no-signal" condition) has been established, the two outputs will shift in opposite directions (higher or lower output voltage) as the input frequency shifts. The output of the comparator will be logic output. The choice of op amp or comparator will depend on the data rate. With high IF frequency (10 MHz and above), and wide IF bandwidth (L/C filters) data rates in excess of 4Mbaud are possible.

RSSI

The "received signal strength indicator", or RSSI, of the NE604A demonstrates monotonic logarithmic output over a range of 90 dB . The signal strength output is derived from the summed stage currents in the limiting amplifiers. It is essentially independent of the IF frequency. Thus, unfiltered signals at the limiter inputs, spurious products, or regenerated signals will manifest themselves as RSSI outputs. An RSSI output of greater than 250 mV with no signal (or a very small signal) applied, is an indication of possible regeneration or oscillation.

In order to achieve optimum RSSI linearity, there must be a 12 dB insertion loss between the first and second limiting amplifiers. With a typical 455 kHz ceramic filter, there is a nominal 4 dB insertion loss in the filter. An
additional 6 dB is lost in the interface between the filter and the input of the second limiter. A small amount of additional loss must be introduced with a typical ceramic filter. In the test circuit used for cellular radio applications (Figure 3) the optimum linearity was achieved with a $5.1 \mathrm{k} \Omega$ resistor from the output of the first limiter (P in 14) to the input of the interstage filter. With this resistor from Pin 14 to the filter, sensitivity of $0.25 \mu \mathrm{~V}$ for 12 dB SINAD was achieved. With the $3.6 \mathrm{k} \Omega$ resistor, sensitivity was optimized at $0.22 \mu \mathrm{~V}$ for 12dB SINAD with minor change in the RSSI linearity.

Any application which requires optimized RSSI linearity, such as spectrum analyzers, cellular radio, and certain types of telemetry, will require careful attention to limiter interstage component selection. This will be especially true with high IF frequencies which require insertion loss or impedance reduction for stability.

At low frequencies the RSSI makes an excellent logarithmic AC voltmeter.

For data applications the RSSI is effective as an amplitude shift keyed (ASK) data slicer. If a comparator is applied to the RSSI and the threshold set slightly above the no signal level, when an in-band signal is received the comparator will be sliced. Unlike FSK demodulation, the maximum data rate is somewhat limited. An internal capacitor limits the RSSI frequency response to about 100 kHz . At high data rates the rise and fall times will not be symmetrical.
The RSSI output is a current-to-voltage converter similar to the audio outputs. However, an external resistor is required.
With a $91 \mathrm{k} \Omega$ resistor, the output characteristic is 0.5 V for a 10 dB change in the input amplitude.

Additional Circuitry

Internal to the NE604A are voltage and current regulators which have been temperature compensated to maintain the performance of the device over a wide temperature range. These regulators are not accessible to the user.

Figure 10. Phase vs Normalized IF Frequency $\frac{\omega}{\omega_{1}}=1+\frac{\Delta \omega}{\omega_{1}}$

DESCRIPTION

The NE/SA614A is an improved monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator, and voltage regulator. The NE/SA614A features higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application compared with the NE/SA604. The NE/SA614A is available in a 16 -lead dual-in-line plastic and 16-lead SO (surface-mounted miniature) package.

FEATURES

- Low power consumption: 3.3mA typical
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.22 \mu \mathrm{~V}$ into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz
- SA614A meets cellular radio specifications

APPLICATIONS

- Celiular radio FM IF
- High performance communications receivers
- Intermediate frequency amplification and detection up to 25 MHz
-RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers

PIN CONFIGURATION

D and N Packages	
DECOUPAMP 1	16 IF AMP
GND 2	15 IF AMP
MUTE INPUT 3	14 IF AMP
$v_{\text {cc }} 4$	13 GND
RSSI OUTPUT 5	12 LIMITER
MUTE AUDIO	11 LMMTER
UNMUTE AUDIO 7	10 LMITER
QUADRATURE 8	9 LIMIER

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE614AN
16-Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE614AD
16-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA614AN
16-Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA614AD

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Single supply voltage	9	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TA	Operating ambient temperature range NE614A SA614A	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	Thermal impedance $\begin{aligned} & \text { D package } \\ & \text { N package }\end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS						UNITS	
			NE614A	SA614A							
			MIN	TYP	MAX	MIN	TYP	MAX			
V cc	Power supply voltage range				4.5		8.0	4.5		8.0	V
lcc	DC current drain				2.5	3.3	4.0	2.5	3.3	4.0	mA
	Mute switch input threshold	$\begin{aligned} & \text { (ON) } \\ & \text { (OFF) } \end{aligned}$		1.7		1.0	1.7		1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	

AC ELECTRICAL CHARACTERISTICS

Typical reading at $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}= \pm 6 \mathrm{~V}$, unless otherwise stated. IF frequency $=455 \mathrm{kHz}$; IF level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA614A			
			MIN	TYP	MAX	
	Input limiting -3dB	Test at Pin 16		-92		$\mathrm{dBm} / 50 \Omega$
	AM rejection	80\% AM 1kHz	25	33		dB
	Recovered audio level	15 nF de-emphasis	60	175	260	mV RMS
	Recovered audio level	150pF de-emphasis		530		mV RMS
THD	Total harmonic distortion		-30	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		68		dB
RSSI output ${ }^{1}$		RF level $=-118 \mathrm{dBm}$	0	160	800	mV
		RF level $=-68 \mathrm{dBm}$	1.7	2.50	3.3	V
		RF level $=-18 \mathrm{dBm}$	3.6	4.80	5.8	V
	RSSI range	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		80		dB
	RSSI accuracy	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		± 2.0		dB
	IF input impedance		1.4	1.6		k Ω
	IF output impedance		0.85	1.0		$\mathrm{k} \Omega$
	Limiter input impedance		1.4	1.6		$\mathrm{k} \Omega$
	Unmuted audio output resistance			58		$\mathrm{k} \Omega$
	Muted audio output resistance			58		k Ω

NOTE:

1. NE614A data sheets refer to power at 50Ω input termination; about 21 dB less power actually enters the internal 1.5 k input.

NE614A (50)	NE614A $(1.5 \mathrm{k}) /$ NE615 $(1.5 \mathrm{k}$
-97 dBm	-118 dBm
-47 dBm	-68 dBm
+3 dBm	-18 dBm

The NE615 and NE614A are both derived from the same basic die. The NE615 performance plots are directly applicable to the NE614A.

100nF + $80-20 \% 63 V$ K10000-25V Ceramic
$100 n F+10 \% 50 V$
$100 n \mathrm{~F} \pm 10 \% 50 \mathrm{~V}$
$100 \mathrm{nF}+10 \% 50 \mathrm{~V}$
$100 n F \pm 10 \% 50 \mathrm{~V}$
$10 \mathrm{pF} \pm 2 \% 100 \mathrm{~V}$ NPO Ceramic
$100 \mathrm{nF}+10 \% 50 \mathrm{~V}$
$100 \mathrm{nF}_{ \pm} 10 \% 50 \mathrm{~V}$
$15 n F \pm 10 \% 50 \mathrm{~V}$
150pF ${ }_{t} 2 \% 100 \mathrm{~V}$ N1500 Ceramic
$1 \mathrm{nF}, \mathbf{1 0 \%}$ 100V K2000-Y5P Ceramic
$1 \mathrm{nF}{ }^{10 \%} 100 \mathrm{~V}$ K $2000-\mathrm{Y} 5 \mathrm{P}$
$6.8 \mu{ }^{2}+20 \% 25 \mathrm{~V}$ Tantalum
455kHz Ceramic Filter Murata SFG455A3

$1500 \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film
$1500 \Omega \pm 5 \% 1 / 8 \mathrm{~W}$ Carbon Composition $100 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film

Figure 1. NE/SA614A Test Circuit

Figure 2. Equivalent Circuit

Figure 3. Typical Application Cellular Radio (45 MHz to $\mathbf{4 5 5 k H z}$)

CIRCUIT DESCRIPTION

The NE/SA614A is a very high gain, high frequency device. Correct operation is not possible if good RF layout and gain stage practices are not used. The NE/SA614A cannot be evaluated independent of circuit, components, and board layout. A physical layout which correlates to the electrical limits is shown in Figure 1. This configuration can be used as the basis for production layout.

The NE/SA614A is an IF signal processing system suitable for IF frequencies as high as 21.4 MHz . The device consists of two limiting amplifiers, quadrature detector, direct audio output, muted audio output, and signal strength indicator (with log output characteristic). The sub-systems are shown in Figure 2. A typical application with 45 MHz input and 455 kHz IF is shown in Figure 3.

IF Amplifiers

The IF amplifier section consists of two loglimiting stages. The first consists of two differential amplifiers with 39dB of gain and a small signal bandwidth of 41 MHz (when driven from a 50Ω source). The output of the first limiter is a low impedance emitter follower with $1 \mathrm{k} \Omega$ of equivalent series resistance. The second limiting stage consists of three differential amplifiers with a gain of 62 dB and a small signal AC bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. One of the outputs is available at Pin 9 to drive an external quadrature capacitor and LC quadrature tank.

Both of the limiting amplifier stages are DC biased using feedback. The buffered output
of the final differential amplifier is fed back to the input through $42 \mathrm{k} \Omega$ resistors. As shown in Figure 2, the input impedance is established for each stage by tapping one of the feedback resistors $1.6 \mathrm{k} \Omega$ from the input. This requires one additional decoupling capacitor from the tap point to ground.

Figure 5. Second Limiter and Quadrature Detector

Figure 6. Feedback Paths

Figure 7. Terminating High Impedance Filters with Transformation to Low Impedance

Figure 7. Low Impedance Termination and Gain Reduction Figure 7. Practical Termination

Figure 8. Crystal Input Filter with Ceramic Interstage Filter

Because of the very high gain, bandwidth and input impedance of the limiters, there is a very real potential for instability at IF frequencies above 455 kHz . The basic phenomenon is shown in Figure 6. Distributed feedback (capacitance, inductance and radiated fields) forms a divider from the output of the limiters back to the inputs (including RF input). If this
feedback divider does not cause attenuation greater than the gain of the forward path, then oscillation or low level regeneration is likely. If regeneration occurs, two symptoms may be present: (1)The RSSI output will be high with no signal input (should nominally be 250 mV or lower), and (2) the demodulated output will demonstrate a threshold. Above a certain input level, the limited signal will begin
to dominate the regeneration, and the demodulator will begin to operate in a "normal" manner.
There are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain.

Gain reduction can effectively be accomplished by adding attenuation between stages. This can also lower the input impedance if well planned. Examples of impedance/gain adjustment are shown in Figure 7. Reduced gain will result in reduced limiting sensitivity.
A feature of the NE614A IF amplifiers, which is not specified, is low phase shift. The NE614A is fabricated with a 10 GHz process with very small collector capacitance. It is advantageous in some applications that the phase shift changes only a few degrees over a wide range of signal input amplitudes.
Additional information will be provided in the upcoming product specification (this is a preliminary specification) when characterization is complete.

Stability Considerations

The high gain and bandwidth of the NE614A in combination with its very low currents permit circuit implementation with superior performance. However, stability must be maintained and, to do that, every possible feedback mechanism must be addressed. These mechanisms are: 1) Supply lines and ground, 2) stray layout inductances and capacitances, 3) radiated fields, and 4) phase shift. As the system IF increases, so must the attention to fields and strays. However, ground and supply loops cannot be overlooked, especially at lower frequencies. Even at 455 kHz , using the test layout in Figure 1, instability will occur if the supply line is not decoupled with two high quality RF capacitors, a $0.1 \mu \mathrm{~F}$ monolithic right at the $V_{C C}$ pin, and a $6.8 \mu \mathrm{~F}$ tantalum on the supply line. An electrolytic is not an adequate substitute. At 10.7 MHz , a $1 \mu \mathrm{~F}$ tantalum has proven acceptable with this layout. Every layout must be evaluated on its own merit, but don't underestimate the importance of good supply bypass.
At 455 kHz , if the layout of Figure 1 or one substantially similar is used, it is possible to directly connect ceramic filters to the input and between limiter stages with no special consideration. At frequencies above 2 MHz , some input impedance reduction is usually necessary. Figure 7 demonstrates a practical means.

As illustrated in Figure 8, 430W external resistors are applied in parallel to the internal 1.6 kW load resistors, thus presenting approximately 330Ω to the filters. The input filter is a crystal type for narrowband selectivity. The filter is terminated with a tank which transforms to 330Ω. The interstage filter is a ceramic type which doesn't contribute to system selectivity, but does suppress wideband noise and stray signal
pickup. In wideband 10.7 MHz IFs the input filter can also be ceramic, directly connected to $\operatorname{Pin} 16$.

In some products it may be impractical to utilize shielding, but this mechanism may be appropriate to 10.7 MHz and 21.4 MHz IF. One of the benefits of low current is lower radiated field strength, but lower does not mean non-existent. A spectrum analyzer with an active probe will clearly show IF energy with the probe held in the proximity of the second limiter output or quadrature coil. No specific recommendations are provided, but mechanical shielding should be considered if layout, bypass, and input impedance reduction do not solve a stubborn instability.

The final stability consideration is phase shift. The phase shift of the limiters is very low, but there is phase shift contribution from the quadrature tank and the filters. Most filters demonstrate a large phase shift across their passband (especially at the edges). If the quadrature detector is tuned to the edge of the filter passband, the combined filter and quadrature phase shift can aggravate stability. This is not usually a problem, but should be kept in mind.

Quadrature Detector

Figure 5 shows an equivalent circuit of the NE614A quadrature detector. It is a multiplier cell similar to a mixer stage. Instead of mixing two different frequencies, it mixes two signals of common frequency but different phase. Internal to the device, a constant amplitude (limited) signal is differentially applied to the lower port of the multiplier. The same signal is applied single-ended to an external capacitor at $\operatorname{Pin} 9$. There is a 90° phase shift across the plates of this capacitor, with the phase shifted signal applied to the upper port of the multiplier at Pin 8. A quadrature tank (parallel L / C network) permits frequency selective phase shifting at the IF frequency. This quadrature tank must be returned to ground through a DC blocking capacitor.
The loaded Q of the quadrature tank impacts three fundamental aspects of the detector: Distortion, maximum modulated peak deviation, and audio output amplitude. Typical quadrature curves are illustrated in Figure 10. The phase angle translates to a shift in the multiplier output voltage.

Thus a small deviation gives a large output with a high Q tank. However, as the deviation from resonance increases, the nonlinearity of the curve increases (distortion), and, with too much deviation, the signal will be outside the quadrature region (limiting the peak deviation which can be demodulated).

If the same peak deviation is applied to a lower Q tank, the deviation will remain in a region of the curve which is more linear (less distortion), but creates a smaller phase angle (smaller output amplitude). Thus the Q of the quadrature tank must be tailored to the design. Basic equations and an example for determining Q are shown below. This explanation includes first-order effects only.

Frequency Discriminator Design Equations for NE614A

Figure 9.

where $\omega_{1}=\frac{1}{\sqrt{L\left(C_{P}+C_{S}\right)}}$

$$
\begin{equation*}
Q_{1}=R\left(C_{P}+C_{S}\right) \omega_{1} \tag{1c}
\end{equation*}
$$

From the above equation, the phase shift between nodes 1 and 2, or the phase across C_{S} will be:
$\phi=\grave{\mathbf{Z}}_{\mathrm{O}}-\grave{\mathbf{V}}_{\mathbb{N}}=\operatorname{tg}^{-1}\left[\frac{\frac{\omega_{1}}{Q_{1} \omega}}{1-\left(\frac{\omega_{1}}{\omega}\right)^{2}}\right]$
Figure 10 is the plot of ϕ vs. $\left(\frac{\omega}{\omega_{1}}\right)$
It is notable that at $\omega=\omega_{1}$, the phase shift is
$\frac{\pi}{2}$ and the response is close to a straight
line with a slope of $\frac{\Delta \phi}{\Delta \omega}=\frac{2 Q_{1}}{\omega_{1}}$
The signal V_{O} would have a phase shift of $\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]$ with respect to the $V_{\mathbb{N}}$.

$$
\begin{align*}
& \text { If } V_{I N}=A \operatorname{Sin} \omega t \Rightarrow V_{O}=A \tag{3}\\
& \qquad \operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]
\end{align*}
$$

Multiplying the two signals in the mixer, and low pass filtering yields:

$$
\begin{align*}
V_{\mathbb{I N}} \bullet V_{O} & =A^{2} \operatorname{Sin} \omega t \tag{4}\\
& \operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]
\end{align*}
$$

after low pass filtering

$$
\left.\begin{array}{l}
\begin{array}{rl}
\Rightarrow V_{\text {OUT }} & =\frac{1}{2} A^{2} \operatorname{Cos}\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \\
& =\frac{1}{2} A^{2} \sin \left(\frac{2 Q_{1}}{\omega_{1}}\right) \omega
\end{array} \\
\text { VOUT } \propto 2 Q_{1} \frac{\omega_{1}}{\omega}=\left[2 Q_{1}\left(\frac{\omega_{1}+\Delta \omega}{\omega_{1}}\right)\right]
\end{array}\right\}
$$

Which is discriminated FM output. (Note that $\Delta \omega$ is the deviation frequency from the carrier ω_{1}.
Ref. Krauss, Raab, Bastian; Solid State Radio Eng.; Wiley, 1980, p. 311. Example: At 455 kHz IF, with $\pm 5 \mathrm{kHz}$ FM deviation. The maximum normalized frequency will be

$$
\frac{455 \pm 5 \mathrm{kHz}}{455}=1.010 \text { or } 0.990
$$

Go to the f vs. normalized frequency curves (Figure 10) and draw a vertical straight line at $\frac{\omega}{\omega_{1}}=1.01$.

The curves with $Q=100, Q=40$ are not linear, but $Q=20$ and less shows better linearity for this application. Too small Q decreases the amplitude of the discriminated FM signal. (Eq. 6) \Rightarrow Choose a $Q=20$
The internal R of the 614 A is 40 k . From Eq. 1 c , and then 1 b , it results that
$C_{P}+C_{S}=174 p F$ and $L=0.7 \mathrm{mH}$.
A more exact analysis including the source resistance of the previous stage shows that there is a series and a parallel resonance in the phase detector tank. To make the parallel and series resonances close, and to get maximum attenuation of higher harmonics at 455 kHz IF, we have found that a $\mathrm{C}_{\mathrm{S}}=10 \mathrm{pF}$ and $C_{P}=164 \mathrm{pF}$ (commercial values of 150 pF or 180pF may be practical), will give the best results. A variable inductor which can be adjusted around 0.7 mH should be chosen and optimized for minimum distortion. (For 10.7 MHz , a value of $\mathrm{C}_{S}=1 \mathrm{pF}$ is recommended.)

Audio Outputs

Two audio outputs are provided. Both are PNP current-to-voltage converters with $55 \mathrm{k} \Omega$ nominal internal loads. The unmuted output is always active to permit the use of signaling
(5) tones in systems such as cellular radio. The other output can be muted with 70 dB typical attenuation. The two outputs have an internal 180° phase difference.
the audio outputs is 300 kHz . this response can be increased with the addition of external resistors from the output pins to ground in parallel with the internal 55 k resistors, thus lowering the output time constant. Singe the output structure is a current-to-voltage converter (current is driven into the resistance, creating a voltage drop), adding external parallel resistance also has the effect of lowering the output audio amplitude and DC level.
This technique of audio bandwidth expansion can be effective in many applications such as SCA receivers and data transceivers.
Because the two outputs have a 180° phase relationship, FSK demodulation can be accomplished by applying the two output differentially across the inputs of an op amp or comparator. Once the threshold of the reference frequency (or "no-signal" condition) has been established, the two outputs will shift in opposite directions (higher or lower output voltage) as the input frequency shifts. The output of the comparator will be logic output. The choice of op amp or comparator will depend on the data rate. With high IF frequency (10 MHz and above), and wide IF bandwidth (L/C filters) data rates in excess of 4 Mbaud are possible.

RSSI

The "received signal strength indicator", or RSSI, of the NE614A demonstrates monotonic logarithmic output over a range of 90 dB . The signal strength output is derived from the summed stage currents in the limiting amplifiers. It is essentially independent of the IF frequency. Thus, unfiltered signals at the limiter inputs, spurious products, or regenerated signals will manifest themselves as RSSI outputs. An RSSI output of greater than 250 mV with no signal (or a very small signal) applied, is an indication of possible regeneration or oscillation.
In order to achieve optimum RSSI linearity, there must be a 12 dB insertion loss between the first and second limiting amplifiers. With
a typical 455 kHz ceramic filter, there is a nominal 4 dB insertion loss in the filter. An additional 6 dB is lost in the interface between the filter and the input of the second limiter. A small amount of additional loss must be introduced with a typical ceramic filter. In the test circuit used for cellular radio applications (Figure 3) the optimum linearity was achieved with a $5.1 \mathrm{k} \Omega$ resistor from the output of the first limiter (Pin 14) to the input of the interstage filter. With this resistor from Pin 14 to the filter, sensitivity of $0.25 \mu \mathrm{~V}$ for 12 dB SINAD was achieved. With the $3.6 \mathrm{k} \Omega$ resistor, sensitivity was optimized at $0.22 \mu \mathrm{~V}$ for 12dB SINAD with minor change in the RSSI linearity.
Any application which requires optimized RSSI linearity, such as spectrum analyzers, cellular radio, and certain types of telemetry, will require careful attention to limiter interstage component selection. This will be especially true with high IF frequencies which require insertion loss or impedance reduction for stability.
At low frequencies the RSSI makes an excellent logarithmic AC voltmeter.
For data applications the RSSI is effective as an amplitude shift keyed (ASK) data slicer. If a comparator is applied to the RSSI and the threshold set slightly above the no signal level, when an in-band signal is received the comparator will be sliced. Unlike FSK demodulation, the maximum data rate is somewhat limited. An internal capacitor limits the RSSI frequency response to about 100 kHz . At high data rates the rise and fall times will not be symmetrical.
The RSSI output is a current-to-voltage converter similar to the audio outputs. However, an external resistor is required.
With a $91 \mathrm{k} \Omega$ resistor, the output characteristic is 0.5 V for a 10 dB change in the input amplitude.

Additional CIrcultry

Internal to the NE614A are voltage and current regulators which have been temperature compensated to maintain the performance of the device over a wide temperature range. These regulators are not accessible to the user.

Figure 10. Phase vs Normalized IF Frequency $\frac{\omega}{\omega_{1}}=1+\frac{\Delta \omega}{\omega_{1}}$

Audio decibel level detector with meter driver

Author: Robert J. Zavrel Jr.

DESCRIPTION

Although the NE604 was designed as an RF device intended for the cellular radio market, it has features which permit other design configurations. One of these features is the Received Signal Strength Indicator (RSSI). In a cellular radio, this function is necessary for continuous monitoring of the received signal strength by the radio's microcomputer. This circuit provides a logarithmic response proportional to the input signal level. The NE604 can provide this logarithmic response over an 80 dB range up to a 15 MHz operating frequency. This paper describes a technique which optimizes this useful function within the audio band.
A sensitive audio level indicator circuit can be constructed using two integrated circuits: the NE604 and NE532. This circuit draws very little power (less than 5 mA with a single 6 V power supply) making it ideal for portable battery operated equipment. The small size and low-power consumption belie the 80 dB dynamic range and $10.5 \mu \mathrm{~V}$ sensitivity.

The RSSI function requires a DC output voltage which is proportional to the $\log _{10}$ of the input signal level. Thus a standard 0-5
voltmeter can be linearly calibrated in decibels over a single 80 dB range. The entire circuit is composed of 9 capacitors and two resistors along with the two ICs. No tuning or calibration is required in a manufacturing setting.
The Audio Input vs Output Graph shows that the circuit is within 1.5 dB tolerance over the 80 dB range for audio frequencies from 100 Hz to 10 kHz . Higher audio levels can be measured by placing an attenuator ahead of the input capacitor. The input impedance is high (about 50k), so lower impedance terminations (50 or 600Ω) will not be affected by the input impedance. If very accurate tracking is required ($<0.5 \mathrm{~dB}$ accuracy), a 40 or 50 dB segment can be "selected". A range switch can then be added with appropriate attenuators if more than 40 or 50 dB dynamic range is required.
There are two amplifier sections in the 604 with 2 and 3 stages in the first and second sections respectively. Each stage outputs a sample current to a summing circuit. The summing circuit has a current mirror which appears at Pin 5 . This current is proportional to the $\log _{10}$ of the input audio signal. A voltage is dropped across the 100 k resistor by the current, and a $0.1 \mu \mathrm{~F}$ capacitor is used to bypass and filter the output signal. The 532
op amp is used as a buffer and meter driver, although a digital voltmeter could replace both the op amp and the meter shown. The rest of the capacitors are used for power supply and amplifier input bypassing.

The RC circuit between Pins 14 and 12 forms a low-pass filter which can be adjusted by changing the value of C1. Raising the capacitance will lower the cut-off frequency and also lower the zero signal output resting voltage (about 0.6 V). Lowering the capacitance value will have the opposite effect with some reduction in dynamic range, but will raise the frequency response. The $2 \mathrm{k} \Omega$ resistor value provides the near-ideal

Figure 1.
inter-stage loss for maximum RSSI linearity. C 2 can also be changed. The trade-off here is between output damping and ripple. Most analog and digital metering methods will tend to cancel the effects of small or moderate
ripple voltages through integration, but high ripple voltages should be avoided.
A second op amp is used with an optional second filter. This filter has the advantage of
a low impedance signal source by virtue of the first op amp. Again, a trade-off exists between meter damping and ripple attenuation. If very low ripple and low

Audio decibel level detector with meter driver

damping are both required, a more complex active low-pass filter should be constructed.
Some applications of this circuit might include:

1. Portable acoustic analyzer
2. Microphone tester
3. Audio spectrum analyzer
4. VU meters
5. S-meter for direct conversion radio receiver
6. Audio dynamic range testers
7. Audio analyzers (THD, noise, separation, response, etc.)

ABSTRACT

This paper discusses four high sensitivity receivers and IF (Intermediate Frequency) strips which utilize intermediate frequencies of 10.7 MHz or greater. Each circuit utilizes a low-power VHF mixer and high-performance low-power IF strip. The circuit configurations are

1. 45 or 49 MHz to 10.7 MHz narrowband,
2. 90 MHz to 21.4 MHz narrowband,
3. 100 MHz to 10.7 MHz wideband, and
4. 152.2 MHz to 10.7 MHz narrowband.

Each circuit is presented with an explanation of component selection criteria, (to permit adaptation to other frequencies and bandwidths). Optional configurations for local oscillators and data demodulators are summarized.

INTRODUCTION

Traditionally, the use of 10.7 MHz as an intermediate frequency has been an attractive means to accomplish reasonable image
rejection in VHF/UHF receivers. However, applying significant gain at a high IF has required extensive gain stage isolation to avoid instability and very high current consumption to get adequate amplifier gain bandwidth. By enlightened application of two relatively new low power ICs, Signetics NE602 and NE604A, it is possible to build highly producible If strips and receivers with input frequencies to several hundred megahertz, IF frequencies of 10.7 or 21.4 MHz , and sensitivity less than $2 \mu \mathrm{~V}$ (in many cases less than $1 \mu \mathrm{~V}$). The Signetics new NE605 combines the function of the

NE602 and the NE604A. All of the circuits described in this paper can also be implemented with the NE605. The NE602 andNE604A were utilized for this paper to permit optimum gain stage isolation and filter location.

THE BASICS

First let's look at why it is relevant to use a 10.7 or 21.4 MHz intermediate frequency. 455 kHz ceramic filters offer good selectivity and small size at a low price. Why use a higher IF? The fundamental premise for the answer to this question is that the receiver architecture is a hetrodyne type as shown in Figure 1.

Figure 1. Basic Hetrodyne Recelver

Figure 2. Effects of Preselection on Images

Figure 3. Dual Conversion

Figure 5. NE602 Equivalent Circuit

A pre-selector (bandpass in this case) precedes a mixer and local oscillator. An IF filter follows the mixer. The IF filter is only supposed to pass the difference (or sum) of the local oscillator (LO) frequency and the preselector frequency.
The reality is that there are always two frequencies which can combine with the LO: The pre-selector frequency and the "image" frequency. Figure 2 shows two hypothetical pre-selection curves. Both have 3dB bandwidths of 2 MHz . This type of pre-selection is typical of consumer products such as cordless telephone and FM radio. Figure 2 A shows the attenuation of a low side image with 10.7 MHz . Figure 2 B shows the very limited attenuation of the low side 455 kHz image.

If the single conversion architecture of Figure 1 were implemented with a 455 kHz IF, any interfering image would be received almost as well as the desired frequency. For this reason, dual conversion, as shown in Figure 3, has been popular.

In the application of Figure 3, the first IF must be high enough to permit the pre-selector to reject the images of the first mixer and must have a narrow enough bandwidth that the second mixer images and the intermod products due to the first mixer can be attenuated. There's more to it than that, but those are the basics. The multiple conversion hetrodyne works well, but, as Figure 3 suggests, compared to Figure 2 it is more complicated. Why, then, don't we use the approach of Figure 2?

THE PROBLEM

Historically there has been a problem: Stability! Commercially available integrated IF amplifiers have been limited to about 60 dB of gain. Higher discrete gain was possible if each stage was carefully shielded and bypassed, but this can become a nightmare on a production line. With so little IF gain available, in order to receive signals of less than $10 \mu \mathrm{~V}$ it was necessary to add RF gain and this, in turn, meant that the mixer must have good large signal handling capability. The RF gain added expense, the high level mixer added expense, both added to the potential for instabilities, so the multiple conversion started looking good again.

But why is instability such a problem in a high gain high IF strip? There are three basic mechanisms. First, ground and the supply line are potentially feedback mechanisms from stage-to-stage in any amplifier. Second, output pins and external components create fields which radiate back to inputs. Third,

High sensitivity applications of low-power RF/IF integrated circuits

Figure 6. NE604A Equivalent Circuit

Figure 7. Symbolic Circuit
layout capacitances become feedback mechanisms. Figure 4 shows the fields and capacitances symbolically.

If Z_{F} represents the impedance associated with the circuit feedback mechanisms (stray capacitances, inductances and radiated fields), and $\mathrm{Z}_{\mathrm{IN}_{\mathrm{N}}}$ is the equivalent input impedance, a divider is created. This divider must have an attenuation factor greater than the gain of the amplifier if the amplifier is to remain stable.

- If gain is increased, the input-to-output isolation factor must be increased.
- As the frequency of the signal or amplifier bandwidth increases, the impedance of the layout capacitance decreases thereby reducing the attenuation factor.
The layout capacitance is only part of the issue. In order for traditional 10.7 MHz IF amplifiers to operate with reasonable gain bandwidth, the amount of current in the
amplifiers needed to be quite high. The CA3089 operates with 25 mA of typical quiescent current. Any currents which are not perfectly differential must be carefully bypassed to ground. The higher the current, the more difficult the challenge. And limiter outputs and quadrature components make excellent field generators which add to the feedback scenario. The higher the current, the larger the field.

High sensitivity applications of low-power RF/IF integrated circuits

Figure 8. Clrcult Board Layout

THE SOLUTION

The NE602 is a double balanced mixer suitable for input frequencies in excess of 500 MHz . It draws 2.5 mA of current. The NE604A is an IF strip with over 100dB of gain and a 25 MHz small signal bandwidth. It draws 3.5 mA of current. The circuits in this paper will demonstrate ways to take advantage of this low current and 75 dB or more of the NE604A gain in receivers and IF strips that would not be possible with traditional integrated circuits. No special tricks are used, only good layout, impedance planning and gain distribution.

THE MIXER

The NE602 is a low power VHF mixer with built-in oscillator. The equivalent circuit is shown in Figure 5. The basic attributes of this mixer include conversion gain to frequencies greater than 500 MHz , a noise figure of 4.6 dB @ 45 MHz , and a built-in oscillator which can be used up to 200 MHz . LO can be injected.

For best performance with any mixer, the interface must be correct. The input impedance of the NE602 is high, typically $3 \mathrm{k} \Omega$ in parallel with 3 pF . This is not an easy
match from 50Ω. In each of the examples which follow, an equivalent $50: 1.5 \mathrm{k}$ match
was used. This compromise of noise, loss, and match yielded good results. It can be improved upon. Match to crystal filters will require special attention, but will not be given focus in this paper.

This oscillator is a single transistor with an internal emitter follower driving the mixer. For best mixer performance, the LO level needs to be approximately $220 \mathrm{mV} \mathrm{V}_{\text {RSS }}$ at the base of the oscillator transistor (Pin 6). A number of oscillator configurations are presented at the end of this paper. In each of the prototypes for this paper, the LO source was a signal generator. Thus, a 51Ω resistor was used to terminate the signal generator. The LO is then coupled to the mixer through a DC blocking capacitor. The signal generator is set for 0 dBm . The impedance at the LO input (Pin 6) is approximately $20 \mathrm{k} \Omega$. Thus, required power is very low, but 0 dBm across 51Ω does provide the necessary $220 \mathrm{mV}_{\text {RMS }}$.

The outputs of the NE602 are loaded with $1.5 \mathrm{k} \Omega$ internal resistors. This makes interface to 455 kHz ceramic filters very easy. Other filter types will be addressed in the examples.

THE IF STRIP

The basic functions of the NE604A are ordinary at first glance: Limiting IF, quadrature detector, signal strength meter, and mute switch. However, the performance of each of these blocks is superb. The IF has 100 dB of gain and 25 MHz bandwidth. This feature will be exploited in the examples. The signal strength indicator has a 90 dB log output characteristic with very good linearity. There are two audio outputs with greater than 300 kHz bandwidth (one can be muted greater than 70 dB). The total supply current is typically 3.5 mA . This is the other factor which permits high gain and high IF.

Figure 6 shows an equivalent circuit of the NE604A. Each of the IF amplifiers has a $1.6 \mathrm{k} \Omega$ input impedance. The input impedance is achieved by splitting a DC feedback bias resistor. The input impedance will be manipulated in each of the examples to aid stability.

BASIC CONSIDERATIONS

In each of the circuits presented, a common layout and system methodology is used. The basic circuit is shown symbolically in Figure 7.

At the input, a frequency selective transformation from 50Ω to $1.5 \mathrm{k} \Omega$ permits analysis of the circuit with an RF signal generator. A second generator provides LO. This generator second generator provides LO. This generator is terminated with a 51Ω
resistor. The output of the mixer and the input of the first limiter are both high impedance (1.5Ω nominal). As indicated previously, the input impedance of the limiter must be low enough to attenuate feedback signals. So, the input impedance of the first limiter is modified with an external resistor. In most of the examples, a 430Ω external resistor was used to create a 330Ω input impedance $(430 / / 1.5 \mathrm{k} \Omega)$. The first IF filter is thus designed to present $1.5 \mathrm{k} \Omega$ to the mixer and 330Ω to the first limiter.

The same basic treatment was used between the first and second limiters. However, in each of the 10.7 MHz examples, this interstage filter is not an L/C tank; it is a ceramic filter. This will be explained in the first example.
After the second limiter, a conventional quadrature detector demodulates the FM or FSK information from the carrier and a simple low pass filter completes the demodulation process at the audio outputs.

Figure 9. NE602/604A Demonstration Circuit with RF Input of 45 MHz and IF of $21.4 \mathrm{MHz} \pm 7.5 \mathrm{kHz}$

Figure 10. Passband Relationship

As mentioned, a single layout was used for each of the examples. The board artwork is shown in Figure 8. Special attention was given to: (1) Creating a maximum amount of ground plane with connection of the component side and solder side ground at

Figure 11. VHF or UHF 2nd Conversion (Narrow Band)
locations all over the board; (2) careful attention was given to keeping a ground ring around each of the gain stages. The objective was to provide a shunt path to ground for any stray signal which might feed back to an input; (3) leads were kept short and relatively

Figure 12. NE602/604A Demonstration Circuit with RF Input of 90 MHz and IF of $\mathbf{2 1 . 4 \mathrm { MHz } \pm 7 . 5 \mathrm { kHz } , ~}$

High sensitivity applications of low-power RF/IF integrated circuits

Figure 13. UHF Second Conversion (Narrow Band) or VHF Single Conversion (Narrow Band)
wide to minimize the potential for them to radiate or pick up stray signals; finally (and very important), (4) RF bypass was done as close as possible to supply pins and inputs, with a good ($10 \mu \mathrm{~F}$) tantalum capacitor completing the system bypass.

EXAMPLE: 45MHZ TO 10.7MHZ NARROWBAND
As a first example, consider conversion from 45 MHz to 10.7 MHz . There are commercially available filters for both frequencies so this is a realistic combination for a second IF in a UHF receiver. This circuit can also be applied to cordless telephone or short range communications at 46 or 49 MHz . The circuit is shown in Figure 9.
The 10.7 MHz filter chosen is a type commonly available for 25 kHz channel spacing. It has a 3 dB bandwidth of 15 kHz and a termination requirement of $3 \mathrm{k} \Omega / 2 \mathrm{pF}$. To present $3 \mathrm{k} \Omega$ to the input side of the filter, a $1.5 \mathrm{k} \Omega$ resistor was used between the NE602 output (which has a $1.5 \mathrm{k} \Omega$ impedance) and the filter. Layout capacitance was close enough to 2pF that no adjustment was necessary. This series-resistance approach introduces an insertion loss which degrades the sensitivity, but it has the benefit of simplicity.

High sensitivity applications of low-power RF/IF

 integrated circuits

Figure 14. NE602/604A Demonstration Circuit with RF Input of $\sim 100 \mathrm{MHz}$ and IF of $10.7 \mathrm{MHz} \pm 140 \mathrm{kHz}$

The secondary side of the crystal filter is terminated with a 10.7 MHz tuned tank. The capacitor of the tank is tapped to create a transformer with the ratio for $3 \mathrm{k}: 330$. With the addition of the 430Ω resistor in parallel with the NE604A $1.6 \mathrm{k} \Omega$ internal input resistor, the correct component of resistive termination is presented to the crystal filter. The inductor of the tuned load is adjusted off resonance enough to provide the 2 pF capacitance needed. (Actual means of adjustment was for best audio during alignment).
If appropriate or necessary for sensitivity, the same type of tuned termination used for the secondary side of the crystal filter can also be used between the NE602 and the filter. If this is desired, the capacitors should be ratioed for $1.5 \mathrm{k}: 3 \mathrm{k}$. Alignment is more complex with tuned termination on both sides of the filter. This approach is demonstrated in the fourth example.
A ceramic filter is used between the first and second limiters. It is directly connected between the output of the first limiter and the input of the second limiter. Ceramic filters act much like ceramic capacitors, so direct connection between two circuit nodes with different $D C$ levels is acceptable. At the input to the second limiter, the impedance is again reduced by the addition of a 430Ω external

High sensitivity applications of low-power RF/IF integrated circuits

Figure 16. NE602/604A Demonstration Circuit with RF Input of 152.2 MHz and IF of $10.7 \mathrm{MHz} \pm 7.5 \mathrm{kHz}$
resistor in parallel with the internal $1.6 \mathrm{k} \Omega$ input load resistor. This presents the 330Ω
termination to the ceramic filter which the manufacturers recommend.
On the input side of the ceramic filter, no attempt was made to create a match. The output impedance of the first limiter is nominally $1 \mathrm{k} \Omega$. Crystal filters are tremendously sensitive to correct match. Ceramic filters are relatively forgiving. A review of the manufacturers' data shows that the attenuation factor in the passband is affected with improper match, but the degree of change is small and the passband stays centered. Since the principal selectivity for this application is from the crystal filter at the input of the first limiter, the interstage ceramic filter only has to suppress wideband noise.
The first filter's passband is right in the center of the ceramic filter passband. (The crystal filter passband is less than 10% of the ceramic filter passband). This passband relationship is illustrated in Figure 10.

After the second limiter, demodulation is accomplished in the quadrature detector. Quadrature criteria is not the topic of this paper, but it is noteworthy that the choice of loaded Q will affect performance. The NE604A is specified at 455 kHz using a quadrature capacitor of 10 pF and a tuning capacitor of 180pF. (180pF gives a loaded Q of 20 at 455 kHz). A careful look at the

$\bullet 152.2 \mathrm{MHz}$ RF input	$\bullet 10.7 \mathrm{MHz}$ IF
$\bullet 141.5 \mathrm{MHz}$ LO	$\bullet 15 \mathrm{kHz}$ IF BW
$($ odBm $)$	$\bullet 7 \mathrm{kHz}$ deviation

Figure 17. VHF Single Conversion (Narrow Band)
quadrature equations (Ref 3.) suggests that at 10.7 MHz a value of about 1 pF should be substituted for the 10 pF at 455 kHz .

The performance of this circuit is presented in Figure 11. The -12dB SINAD (ratio of Signal to Noise And Distortion) was achieved with a $0.6 \mu \mathrm{~V}$ input.

EXAMPLE: 90MHZ TO 21.4MHZ NARROWBAND

This second example, like the first, used two frequencies which could represent the intermediate frequencies of a UHF receiver. This circuit can also be applied to VHF single conversion receivers if the sensitivity is
appropriate. The circuit is shown in Figure 12.

Most of the fundamentals are the same as explained in the first example. The 21.4 MHz crystal filter has a $1.5 \mathrm{k} \Omega / 2 \mathrm{pF}$ termination requirement so direct connection to the output of the NE602 is possible. With strays there is probably more than 2 pF in this circuit, but the performance is good nonetheless. The output of the crystal filter is terminated with a tuned impedance-step-down transformer as in the previous example. Interstage filtering is accomplished with a $1 \mathrm{k} \Omega: 330$ step-down ratio. (Remember, the output of the first limiter is $1 \mathrm{k} \Omega$ and a 430Ω resistor has been added to make the second limiter input 330Ω). A DC blocking capacitor is needed from the output of the first limiter. The board was not laid out for an interstage transformer, so an "XACTO" knife was used to make some minor mods. Figure 13 shows the performance. The +12 dB SINAD was with $1.6 \mu \mathrm{~V}$ input.

EXAMPLE: 100MHZ TO 10.7MHZ WIDEBAND

This example represents three possible applications: (1) low cost, sensitive FM broadcast receivers, (2) SCA (Subsidiary Communications Authorization) receivers and (3) data receivers. The circuit schematic is shown in Figure 14. While this example has the greatest diversity of application, it is also the simplest. Two 10.7 MHz ceramic filters were used. The first was directly connected to the output of the NE602. The second was directly connected to the output of the first IF limiter. The secondary sides of both filters were terminated with 330Ω as in the two previous examples. While the filter bandpass skew of this simple single conversion receiver might not be tolerable in some applications, to a first order the results are excellent. (Please note that sensitivity is measured at +20 dB in this wideband example.) Performance is illustrated in Figure 15. +20 dB SINAD was measured with $1.8 \mu \mathrm{~V}$ input.

EXAMPLE: 152.2MHZ TO 10.7MHZ NARROWBAND

In this example (see Figure 16) a simple, effective, and relatively sensitive single conversion VHF receiver has been implemented. All of the circuit philosophy has

been described in previous examples. In this circuit, tuned-transformed termination was used on the input and output sides of the crystal filter. Performance is shown in Figure 17. The +12 dB SINAD sensitivity was $0.9 \mu \mathrm{~V}$.

OSCILLATORS

The NE602 contains an oscillator transistor which can be used to frequencies greater than 200 MHz . Some of the possible configurations are shown in Figures 18 and 19.

L/C

When using a synthesizer, the LO must be externally buffered. Perhaps the simplest approach is an emitter follower with the base connected to Pin 7 of the NE602. The use of a dual-gate MOSFET will improve performance because it presents a fairly constant capacitance at its gate and because it has very high reverse isolation.

CRYSTAL

With both of the Colpitts crystal configurations, the load capacitance must be specified. In the overtone mode, this can become a sensitive issue since the capacitance from the emitter to ground is actually the equivalent capacitive reactance
of the harmonic selection network. The Butler oscillator uses an overtone crystal specified for series mode operation (no parallel capacitance). It may require an extra inductor (L_{0}) to null out C_{0} of the crystal, but otherwise is fairly easy to implement (see references).

The oscillator transistor is biased with only $220 \mu \mathrm{~A}$. In order to assure oscillation in some configurations, it may be necessary to increase transconductance with an external resistor from the emitter to ground. $10 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ are acceptable values. Too small a resistance can upset DC bias (see references).

DATA DEMODULATION

It is possible to change any of the examples from an audio receiver to an amplitude shift keyed (ASK) or frequency shift keyed (FSK) receiver or both with the addition of an external op amp(s) or comparator(s). A simple example is shown in Figure 20. ASK decoding is accomplished by applying a comparator across the received signal strength indicator (RSSI). The RSSI will track IF level down to below the limits of the demodulator (-120 dBm RF input in most of the examples). When an in-band signal is
above the comparator threshold, the output logic level will change.

FSK demodulation takes advantage of the two audio outputs of the NE604A. Each is a

PNP current source type output with 180° phase relationship. With no signal present, the quad tank tuned for the center of the IF
passband, and both outputs loaded with the same value of capacitance, if a signal is received which is frequency shifted from the

-PERMITS IMPEDANCE MATCH OF NE602 OUTPUT OF 1.8k/8pF TO 3.0k FILTER IMPEDANCE *"CHOOSE FOR IMPEDANCE MATCH TO

Figure 19. Typical Varactor Tuned Application

IF passband, and both outputs loaded with the same value of capacitance, if a signal is received which is frequency shifted from the IF center, one output voltage will increase and the other will decrease by a corresponding absolute value. Thus, if a
comparator is differentially connected across the two outputs, a frequency shift in one direction will drive the comparator output to one supply rail, and a frequency shift in the opposite direction will cause the comparator
output to swing to the opposite rail. Using this technique, and L/C filtering for a wide IF bandwidth, NRZ data at rates greater than 4 Mb have been processed with the new NE605.

High sensitivity applications of low-power RF/IF integrated circuits

Figure 20. Basic NE602/604A Data Receiver

SUMMARY

The NE602, NE604A and NE605 provide the RF system designer with the opportunity for excellent receiver or IF system sensitivity with very simple circuitry. IFs at $455 \mathrm{kHz}, 10.7 \mathrm{MHz}$ and 21.4 MHz with 75 to 90 dB gain are possible without special shielding. The flexible configuration of the built-in oscillator of the NE602/605 add to ease of implementation. Either data or audio can be recovered from the NE604A/605 outputs.

REFERENCES

1) Anderson, D.: "Low Power ICs for RF Data Communications", Machine Design , pp 126-128, July 23, 1987.
2) Krauss, Raab, Bastian: Solid State Radio Engineering, p. 311, Wiley, 1980.
3) Matthys, R.: "Survey of VHF Crystal Oscillator Circuits," RF Technology Expo Proceedings, pp 371-382, February, 1987.
4) Signetics: "NE/SA604A High Performance Low Power FM IF System", Linear Data and Applications Manual, Signetics, 1987.
5) Signetics; "NE/SA602 Double Balanced Mixer and Oscillator", Linear Data and Applications Manual, Signetics, 1985.
6) Signetics: "AN1982-Applying the Oscillator of the NE602 in Low Power Mixer Applications", Linear Data and Applications Manual, Signetics, 1985.

DESCRIPTION

The NE/SA605 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA605 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application.
The NE/SA605 is available in $20-$ lead dual-inline plastic and 20 -lead SOL (surfacemounted miniature package).

The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher Icc, lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA605. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.

FEATURES

- Low power consumption: 5.7 mA typical at 6 V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
-XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
-102dB of IF Amp/Limiter gain
-25MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
-Two audio outputs - muted and unmuted
-Low external component count; suitable for crystal/ceramic/LC filters
\bullet Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA605 meets cellular radio specifications
- ESD hardened

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE605N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE605D
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA605N
20-Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA605D

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS				
V_{CC}	Single supply voltage	9	V				
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$				
T_{A}	Operating ambient temperature range NE605	0 to +70	${ }^{\circ} \mathrm{C}$				
	SA605					-40 to +85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	D package	90				
		N package	${ }^{\circ} \mathrm{C} / \mathrm{W}$				
		75	${ }^{\circ} \mathrm{C} / \mathrm{W}$				

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{cc}	Power supply voltage range		4.5		8.0	4.5		8.0	V
Icc	DC current drain		5.1	5.7	6.5	4.55	5.7	6.55	mA
	Mute switch input threshold (ON)		1.7			1.7			V
	(OFF)				1.0			1.0	V

AC ELECTRICAL CHARACTERISTICS

Typical reading at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=$ $455 \mathrm{kHz} ; \mathrm{R17}=5.1 \mathrm{k} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
RFIF section (int LO)									
	Unmuted audio level	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		450			450		mV VmS
	System RSSI output	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \mathrm{RF} \text { level }= \\ & -27 \mathrm{dBm} \end{aligned}$		4.3			4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA605 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(v)$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is wellsuited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .
The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is ACcoupled to a tuned quadrature network. This
signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.
The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.

NOTE: $d B(v)=20 \log V_{O U T} V_{\text {IN }}$

Automatic Test Circuit Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{FF}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21
C23
C25
Ceramic Filter Murata SFG455A3 or equiv
Fit 2 Ceramic Filter Murata SFG455A3 or equiv
IFT 1455 kHz ($\mathrm{Ce}=180 \mathrm{pF}$) Toko RMC-2A6597H
147-160nH Coilcraft UNI-10/142-04J08S 3.3 H nominal

Toko 292CNS-T1046Z
44.545MHz Crystal ICM4712701

100k $\pm 1 \%$ 1/4W Metal Film
5.1k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition $100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional) $100 \mathrm{~K} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)

Figure 1. NE/SA605 45MHz Test Circuit (Relays as shown)

Application Component List

C1	100pF NPO Ceramic	C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	390pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C5	100nF $\pm 10 \%$ Monolithic Ceramic	C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	IFT 1	455kHz (Ce = 180pF) Toko RMC-2A6597H
C9	100nF $\pm 10 \%$ Monolithic Ceramic	L1	147-160nH Coilcraft UNI-10/142-04J08S
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	L2	$3.3 \mu \mathrm{H}$ nominal
C11	100nF \pm 10\% Monolithic Ceramic		Toko 292CNS-T1046Z
C12	15nF $\pm 10 \%$ Ceramic	X1	44.545MHz Crystal ICM4712701
C13	150pF $\pm \mathbf{2 \%}$ N1500 Ceramic	R9	100k $\pm 1 \%$ 1/4W Metal Film
C14	100nF $\pm 10 \%$ Monolithic Ceramic	R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
C15	10pF NPO Ceramic	R5	Not Used in Application Board (see Note 8)
C17	100nF $\pm 10 \%$ Monolithic Ceramic	R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C18	$\mathbf{1 0 0 n F} \pm 10 \%$ Monolithic Ceramic	R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

Figure 2. NE/SA605 45MHz Application Circuit

Figure 3. NE/SA605 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be $30 \mathrm{kHz} \mathrm{SFG455A3s}$ made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 F or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R 5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 k \Omega$.

Figure 4. NE605 Application Board at $25^{\circ} \mathrm{C}$

Figure 5. Component Placement for NE605 Application Circuit

bOttom view

Figure 6. Layout for NE/SA605 Application Board

DESCRIPTION

The NE/SA605 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA605 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth $(25 \mathrm{MHz})$ and temperature compensated RSSI and limiters permitting higher performance application. The NE/SA605 is available in 20-lead dual-inline plastic and 20 -lead SOL (surfacemounted miniature package).
The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher loce lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA605. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.

FEATURES

\bullet Low power consumption: 5.7 mA typical at 6 V

- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
-XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
-102dB of IF Amp/Limiter gain
-25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
-Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
-SA605 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
-FSK and ASK data receivers
- Log amps
-Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic SSOP	0 to $+70^{\circ} \mathrm{C}$	NE605DK
20-Pin Plastic SSOP	-40 to $+85^{\circ} \mathrm{C}$	SA605DK

High performance low power mixer FM IF system in shrink small outline package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage	9	V
Tsta	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE605	0 to +70	${ }^{\circ} \mathrm{C}$
	SA605	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance SSOP package	117	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{cc}	Power supply voltage range		4.5		8.0	4.5		8.0	V
lcc	DC current drain		5.1	5.7	6.5	4.55	5.7	6.55	mA
	Mute switch input threshold (ON)		1.7			1.7			V
	(OFF)				1.0			1.0	V

High performance low power mixer FM IF system in shrink small outline package

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; R 17=5.1 \mathrm{k} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

High performance low power mixer FM IF system in shrink small outline package

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
RF/IF section (int LO)									
	Unmuted audio level	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}} . \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		450			450		mV RMS
	System RSSI output	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		4.3			4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA605 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is wellsuited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .

The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(\mathrm{v})$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is ACcoupled to a tuned quadrature network. This
signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.
The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.
NOTE: $d B(v)=20 \log V_{O U T} N_{\text {IN }}$

High performance low power mixer FM IF system in shrink small outline package

Automatic Test Circuit Component List

C1	47pF NPO Ceramic	C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	180pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	C26	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
C7	1nF Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	IFT 1	455kHz 270 H H TOKO \#303LN-1129
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	11	300 nH TOKO \#5CB-1
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	L2	1.2 μ H Coilcraft \#1008CS 12
C12	$15 \mathrm{nF}{ }_{ \pm} 10 \%$ Ceramic	X1	44.545MHz Crystal ICM4712701
C13	150pF $\pm 2 \%$ N1500 Ceramic	R9	100k ${ }^{\text {1\% }}$ 1/4W Metal Film
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
C15	10pF NPO Ceramic	R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic		

Figure 1. NE/SA605SSOP 45MHz Test Circuit (Relays as shown)

Application Component List

C1	47 pF NPO Ceramic
C2	180 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$22 \mathrm{pF} N P O$ Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C11	$100 \mathrm{nF}_{ \pm 10}$ (10\% Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

Figure 2. NE/SA605 45MHz Application Circuit

High performance low power mixer FM IF system in shrink small outline package

Figure 3. NE/SA605 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be $30 \mathrm{kHz} \mathrm{SFG455A3s}$ made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 k \Omega$.

High performance low power mixer FM IF system in shrink small outline package

NE/SA605SSOP

Figure 4. NE605 Application Board at $25^{\circ} \mathrm{C}$

DESCRIPTION

The NE/SA615 is a consumer monolithic lowpower FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA615 is available in 20-lead dual-in-line plastic and 20-lead SOL (surface-mounted miniature package).

The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed spcifications. the NE/SA615 has a higher Icc, lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA605. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.

FEATURES

- Low power consumption: 5.7 mA typical at 6 V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
- ESD hardened

APPLICATIONS

- Consumer cellular radio FM IF
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE615N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE615D
20 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA615N
20-Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA615D

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	9	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE615	0 to +70	${ }^{\circ} \mathrm{C}$
		SA615	-40 to +85
${ }^{\circ} \mathrm{C}$			
θ_{JA}	Thermal impedance	D package	90
		N package	75

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA615			
			MIN	TYP	MAX	
V cc	Power supply voltage range		4.5		8.0	V
Icc	DC current drain			5.7	7.4	mA
	Mute switch input threshold (ON) (OFF)		1.7		1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS

Typical reading at $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=$ $455 \mathrm{kHz} ; \mathrm{R17}=5.1 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA615			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=\mathbf{3 0 0 m V}$)						
$\mathrm{fiN}^{\text {in }}$	Input signal frequency			500		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			5.0		dB
	Third-order input intercept point	$\mathrm{f1}=45.00 ; \mathfrak{f 2}=45.06 \mathrm{MHz}$		-12		dBm
	Conversion power gain	Matched 14.5 dBV step-up 50Ω source	8.0	13		dB
				-1.7		dB
	RF input resistance	Single-ended input	3.0	4.7		$\mathrm{k} \Omega$
	RF input capacitance			3.5	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.50		k Ω
IF section						
	IF amp gain	50Ω source		39.7		dB
	Limiter gain	50Ω source		62.5		dB
	Input limiting -3dB, $\mathrm{R}_{17}=5.1 \mathrm{k}$	Test at Pin 18		-109		dBm
	AM rejection	80\% AM 1kHz	25	33	43	dB
	Audio level, $\mathrm{R}_{10}=100 \mathrm{k}$	15 nF de-emphasis	60	150	260	mV VMS
	Unmuted audio level, $\mathrm{R}_{11}=100 \mathrm{k}$	150pF de-emphasis		530		mV
	SINAD sensitivity	RF level -118dB		12		dB
THD	Total harmonic distortion		-30	-42		dB
S / N	Signal-to-noise ratio	No modulation for noise		68		dB
	IF RSSI output, $\mathrm{R}_{9}=100 \mathrm{k} \Omega^{1}$	IF level $=-118 \mathrm{dBm}$	0	160	800	mV
		IF level $=-68 \mathrm{dBm}$	1.7	2.5	3.3	V
		IF level $=-18 \mathrm{dBm}$	3.6	4.8	5.8	V
	RSSI range	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		80		dB
	RSSI accuracy	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		± 2		dB
	IF input impedance		1.40	1.6		k Ω
	IF output impedance		0.85	1.0		$\mathrm{k} \Omega$
	Limiter intput impedance		1.40	1.6		k Ω
			MIN	TYP	MAX	
	Unmuted audio output resistance			58		k Ω
	Muted audio output resistance			58		k Ω
RF/IF section (int LO)						
	Unmuted audio level	$4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		450		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA615 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(v)$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for x -tal configurations. Butler oscillators are
recommended for x-tal configurations up to 150 MHz .

The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

Overall, the IF section has a gain of 90dB. For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.
The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.

NOTE: $d B(v)=20 \log V_{\text {OUT }} / V_{\text {IN }}$

Figure 1. NE/SA615 45MHz Test Circuit (Relays as shown)

Application Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
Fit 1	Ceramic Filter Murata SFG455A3 or equiv
FIt 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	455kHz (Ce = 180pF) Toko RMC-2A6597H
L1	147-160nH Collcraft UNI-10/142-04J08S
L2	$3.3 \mu \mathrm{H}$ nominal
	Toko 292CNS-T1046Z
X1	44.545MHz Crystal ICM4712701
R9	100k $\pm 1 \%$ 1/4W Metal Film
R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
R5	Not Used in Application Board (see Note 8)
R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
R11	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)

Figure 2. NE/SA615 45MHz Application Circuit

Figure 3. NE/SA615 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. NE615 Application Board at $25^{\circ} \mathrm{C}$

High performance low power mixer FM IF system

Figure 5. Component Placement for NE615 Application Circuit

High performance low power mixer FM IF system

TOP VIEW

BOTTOM VIEW

Figure 6. Layout for NE/SA615 Application Board

High performance low power mixer FM IF system in shrink small outline package

DESCRIPTION

The NE/SA615 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA615 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application. The NE/SA615 is available in 20-lead dual-inline plastic and 20 -lead SOL (surfacemounted miniature package).

The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher I_{cc}, lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA615. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.

FEATURES

- Low power consumption: 5.7 mA typical at 6V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
-XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
-102dB of IF Amp/Limiter gain
$\bullet 25 \mathrm{MHz}$ limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
-Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
\bullet Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
-SA615 meets cellular radio specifications - ESD hardened

PIN CONFIGURATION

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
-RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
-Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$20-$ Pin Plastic SSOP	0 to $+70^{\circ} \mathrm{C}$	NE615DK
20-Pin Plastic SSOP	-40 to $+85^{\circ} \mathrm{C}$	SA615DK

High performance low power mixer FM IF system in shrink small outline package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{cc}	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE615	0 to +70	${ }^{\circ} \mathrm{C}$
	SA615	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance SSOP package	117	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA615			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		4.5		8.0	V
Icc	DC current drain			5.7	7.4	mA
	Mute switch input threshold (ON) (OFF)		1.7		1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

High performance low power mixer FM IF system in shrink small outline package

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=5.1 \mathrm{k} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=\mathbf{3 0 0 m V}$)						
f_{IN}	Input signal frequency			500		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			5.0		dB
	Third-order input intercept point	$\mathrm{f} 1=45.00 ; \mathrm{f} 2=45.06 \mathrm{MHz}$		-12		dBm
	Conversion power gain	Matched 14.5dBV step-up 50Ω source	8.0	13		dB
				-1.7		dB
	RF input resistance	Single-ended input	3.0	4.7		$\mathrm{k} \Omega$
	RF input capacitance			3.5	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.50		k Ω
IF section						
	IF amp gain	50Ω source		39.7		dB
	Limiter gain	50Ω source		62.5		dB
	Input limiting -3dB, $\mathrm{R}_{17}=5.1 \mathrm{k}$	Test at Pin 18		-109		dBm
	AM rejection	80\% AM 1kHz	25	33	43	dB
	Audio level, $\mathrm{R}_{10}=100 \mathrm{k}$	15 nF de-emphasis	60	150	260	$\mathrm{mV}_{\mathrm{RMS}}$
	Unmuted audio level, $\mathrm{R}_{11}=100 \mathrm{k}$	150pF de-emphasis		530		mV
	SINAD sensitivity	RF level -118dB		12		dB
THD	Total harmonic distortion		-30	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		68		dB
	IF RSSI output, $\mathrm{R}_{9}=100 \mathrm{k} \Omega^{1}$	IF level $=-118 \mathrm{dBm}$	0	160	800	mV
		IF level $=-68 \mathrm{dBm}$	1.7	2.5	3.3	V
		\|F level $=-18 \mathrm{dBm}$	3.6	4.8	5.8	V
	RSSI range	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		80		dB
	RSSI accuracy	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		± 2		dB
	IF input impedance		1.40	1.6		$\mathrm{k} \Omega$
	IF output impedance		0.85	1.0		k Ω
	Limiter intput impedance		1.40	1.6		$\mathrm{k} \Omega$
	Unmuted audio output resistance			58		k Ω
	Muted audio output resistance			58		$\mathrm{k} \Omega$
RF/IF section (int LO)						
	Unmuted audio level	$4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		450		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21dB less than the "available power" at the generator.

High performance low power mixer FM IF system in shrink small outline package

CIRCUIT DESCRIPTION

The NE/SA615 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(v)$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is wellsuited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler
oscillators are recommended for xtal configurations up to 150 MHz .
The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is ACcoupled to a tuned quadrature network. This
signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.
The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.
NOTE: $\mathrm{dB}(\mathrm{V})=20 \log \mathrm{~V}_{\text {OUT }} N_{\text {IN }}$

Automatic Test Circuit Component List

C1	47pF NPO Ceramic	C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	180pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C5	$100 n \mathrm{~F} \pm 10 \%$ Monolithic Ceramic	C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	C26	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
C7	1nF Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	FIt 2	Ceramic Filter Murata SFG455A3 or equiv
C9	$100 n \mathrm{~F} \pm 10 \%$ Monolithic Ceramic	IFT 1	455kHz 270 ${ }^{\text {H }}$ TOKO \#303LN-1129
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	L1	300nH TOKO \#5CB-1055Z
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	L2	1.2 $\mu \mathrm{H}$ Coilcraft \#1008CS 122
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic	X1	44.545MHz Crystal ICM4712701
C13	150pF $\pm 2 \%$ N1500 Ceramic	R9	100k $\pm 1 \%$ 1/4W Metal Film
C14	100nF $\pm 10 \%$ Monolithic Ceramic	R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
C15	10pF NPO Ceramic	R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C17	$100 \mathrm{nF}{ }_{ \pm} 10 \%$ Monolithic Ceramic	R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic		

Figure 1. NE/SA615SSOP 45MHz Test Circuit (Relays as shown)

Application Component List

C1	47pF NPO Ceramic
C2	180 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$22 \mathrm{pF} N P O$ Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21	100nF $\pm 10 \%$ Monolithic Ceramic
C23	100nF $\pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C26	390pF $\pm 10 \%$ Monolithic Ceramic
Fit 1	Ceramic Filter Murata SFG455A3 or equiv
Fit 2	Ceramic Fllter Murata SFG455A3 or equiv
IFT 1	455kHz 270 H TOKO \#303LN-1129
L1	300nH TOKO \#5CB-1055Z
L2	1.2 $\mu \mathrm{H}$ Coilcraft \#1008CS 122
X1	44.545MHz Crystal ICM4712701
R9	100k $\pm 1 \%$ 1/4W Metal Film
R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

Figure 2. NE/SA615 45MHz Application Circuit

High performance low power mixer FM IF system in shrink small outline package

Figure 3. NE/SA615 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 $\mu \mathrm{F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

High performance low power mixer FM IF system in shrink small outline package

NE/SA615 (SSOP)

Figure 4. NE615 Application Board at $25^{\circ} \mathrm{C}$

Author: Alvin K. Wong

INTRODUCTION

This application note addresses key information that is needed when designing with the NE605. Since the NE602 and the NE604 are closely related to the NE605, a brief overview of these chips will be helpful. Additionally, this application note will divide the NE605 into four main blocks where a brief theory of operation, important parameters, specifications, tables and graphs of performance will be given. A question \& answer section is included at the end. Below is an outline of this application note:

I. BACKGROUND

- History of the NE605
- Related app. notes
II. OVERVIEW OF THE NE605
- Mixer Section

RF section
Local osc. section
Output of mixer
Choosing the IF frequency
Performance graphs of mixer

- IF Section

IF amplifier
IF limiter
Function of IF section
Important parameters of IF section
5. Limiting
6. AM rejection
7. AM to PM conversion
8. Interstage loss

IF noise figure
Performance graphs of IF section

- Demodulator Section
- Output Section

Audio and unmuted audio
RSSI output
Performance graphs of output section

III.Question \& Answers

I. BACKGROUND

History of the NE605

Before the NE605 was made, the NE602 (double-balanced mixer and oscillator) and the NE604 (FM IF system) existed. The combination of these two chips make up a high performance low cost receiver. Soon
after the NE605 was created to be a one chip solution, using a newer manufacturing process and design. Since the newer process and design in the NE605 proved to be better in performance and reliability, it was decided to make the NE602 and the NE604 under this new process. The NE602A and the NE604A were created. To assist the cost-conscious customer, Signetics also offered an inexpensive line of the same RF products: the NE612, NE614, and NE615.
Because the newer process and design proved to be better in performance and reliability, the older chips are going to be discontinued. Therefore, only the NE602A, NE612A, NE604A, NE614A, NE605 and NE615 will be available.
Figure 1 shows a brief summary of the RF chips mentioned above. Under the newer process, minor changes were made to improve the performance. A designer, converting from the NE602 to the NE602A, should have no problem with a direct switch. However, switching from the NE604 to the NE604A, might require more attention. This will depend on how good the original design was in the system. In the "Questions \& Answers" section, the NE604 and NE604A are discussed in greater detail. This will help the designer, who used the NE604 in their original design, to switch to the " A " version. In general, a direct switch to the NE604A is simple.

Related Application Notes

There have been many application notes written on the NE602 and NE604A. Since the combination of those parts is very similar to the NE605, many of the ideas and applications still apply. In addition, many of the topics discussed here will also apply to the NE602A and NE604A.
Table 1 (see back of app note) shows the application notes available to the designer. They can be found in either the Signetics Linear Data Manual, Volume 1, or the Signetics RF Communications Handbook. Your local PhilipsComponents-Signetics sales representative can provide you with copies of these publications, or you can contact Signetics Publication Services.

Figure 1. Overview of Selected RF Chips

II. OVERVIEW OF THE NE605

In Figure 2, the NE605 is broken up into four main areas; the mixer section, the IF section, the demodulator section and the output section. The information contained in each of the four areas focuses on important data to assist you with the use of the NE605 in any receiver application.

Mixer Section

There are three areas of interest that should be addressed when working with the mixer section. The RF signal, LO signal and the output. The function of the mixer is to give the sum/difference of the RF and LO frequencies to get an IF frequency out. This mixing of frequencies is done by a Gilbert Cell four quadrant multiplier. The Gilbert Cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell.
The RF input impedance of the mixer plays a vital role in determining the values of the matching network. Figure 3 shows the RF input impedance over a range of frequency. From this information, it can be determined that matching 50Ω at 45 MHz requires matching to a $4.5 \mathrm{k} \Omega$ resistor in parallel with a 2.5 pF capacitor. An equivalent model can be seen in Figure 4 with its component values given for selected frequencies. Since there are many questions from the designer on how to match the RF input, an example is given below.

Figure 2. NE605 Broken Down Into Four Areas

MARKER 1:
${ }_{5}^{5}=1.1 .56$

MARKER 2:

MARKER 3:
$F=500 \mathrm{MHz}$
$588 \Omega{ }^{\|}{ }^{2.75 p F}$

MARKER 4:
$F=250 \mathrm{MHz}$
$1785 \Omega \| 2.5 \mathrm{pF}$

Figure 3. Smith Chart of NE605's RF Input Impedance (Pin 1 or 2)

RF Section of Mixer
The mixer has two RF input pins (Pin 1 and 2), allowing the user to choose between a
balanced or unbalanced RF matching network. Table 2 (see back of app note) shows the advantages and disadvantages for
either type of matching. Obviously, the better the matching network, the better the sensitivity of the receiver.

Figure 4. Equivalent Model of RF Input Impedance

Example: Using a tapped-C network, match a 50Ω source to the RF input of the NE605 at 45 MHz . (refer to Figure 5)

Figure 5. Tapped-C Network
Step 1. Choose an inductor value and its " Q " $L=0.22 \mu H Q_{P}=50$ (specified by manufacturer)
Step 2. Find the reactance of the inductor

$$
\begin{aligned}
X_{P} & =2 \pi \mathrm{FL} \\
& =2 \pi(45 \mathrm{MHz})(0.22 \mu \mathrm{H}) \\
\therefore \quad X_{P} & =62.2 \Omega
\end{aligned}
$$

Step 3. Then,
$R_{p}=Q_{p} X_{p}$ $=(50)(62.2)$
$\therefore R_{p}=3.11 \mathrm{k} \Omega$ (the inductance resistance)

Step 4. $\quad Q=R_{\text {TOTAL }} / X_{P}$

$$
=\left(R_{S^{\prime}} / / R_{L} / / R_{P}\right) / X_{P}
$$

$$
\text { where } \mathbf{R}_{\mathbf{S}}^{\prime}=\mathrm{R}_{\mathrm{L}}
$$

$$
=4.5 \mathrm{k} / / 4.5 \mathrm{k} / / 3.11 \mathrm{k} / 62.2
$$

$$
=21.39
$$

$\therefore Q \cong 21$ (the Q of the matching network)
where:
$\mathrm{R}_{\mathrm{S}}=$ source resistance;
$\mathrm{R}_{\mathrm{L}}=$ load resistance;
$R_{S}{ }^{\prime}=$ what the source resistance should look like to match R_{L};
$R_{P}=$ inductance resistance
Step 5.

$$
\begin{aligned}
\frac{C 1}{C 2} & =\sqrt{\frac{R_{S^{\prime}}}{R_{S}}}-1=8.6 \\
C_{T} & =\frac{1}{X_{P} \omega}=\frac{1}{(62.2) 2 \pi 45 \mathrm{MHz}} \\
& =56.86 \mathrm{pF}
\end{aligned}
$$

Step 6.

Step 7.

> using $C_{T}=\frac{C 1 C 2}{C 1+C 2}$
> where $C_{T}=56.86 \mathrm{pF}, \frac{C 1}{C 2}=8.6$

$$
\begin{aligned}
C_{T} & =\frac{C 1}{\frac{C 1}{C 2}+1} \\
\therefore C_{1} & =C_{T}\left(\frac{C 1}{C 2}+1\right) \\
\text { and } C_{2} & =\frac{C 1}{8.6}
\end{aligned}
$$

thus...
$C 1=539 p F$
$C 2=64 p F$
$L=0.22 \mu H$ (value started with)
Step 8. Frequency check
$\omega=\frac{1}{\sqrt{L C}}$
$2 \pi F=\frac{1}{\sqrt{L C}}$
$F=45 \mathrm{MHz}$ (...so far so good)
Step 9. Taking care of the 2.5 pF capacitor that is present at the RF input at 45 MHz
$\frac{C 2_{A}}{C 1_{A}}=\frac{64 p F}{540 p F}$
Eq. 1.
$C T N=\frac{C 1_{A} C 2_{A}}{C 1_{A}+C 2_{A}}$
Eq. 2.
where $C_{T N}=C_{T}-2.5 p F$
(recall value of C_{T} from Step 6.)
Making use of Equations 1 and 2, the new values of $C 1$ and $C 2$ are:
$C 1_{A}=524 \mathrm{pF}$
$C 2_{A}=60.6 \mathrm{pF}$
[NOTE: At this frequency the 2.5 pF capacitor could probably be ignored since its value at 45 MHz has little effect on C1 and C2.]

Step 10. Checking the bandwidth

$$
\begin{aligned}
& Q=\frac{F}{B W} \\
& B W=F U-F_{L} \\
& B W=\text { bandwidth } \\
& F_{U}=\text { upper } 3 \mathrm{~dB} \text { frequency } \\
& F_{L}=\text { lower } 3 \mathrm{~dB} \text { frequency }
\end{aligned}
$$

Using the above formulas results in
$\mathrm{F}_{\mathrm{U}}=46 \mathrm{MHz}$
$\mathrm{F}_{\mathrm{L}}=44 \mathrm{MHz}$
$\mathrm{BW}=2 \mathrm{MHz}$
The above shows the calculations for a single-ended match to the NE605. For a balanced matching network, a transformer can be used. The same type of calculations will still apply once the input impedance of the NE605 is converted to the primary side of the transformer (see Figure 6). But before we transform the input impedance to the primary side, we must first find the new input impedance of the NE605 for a balanced configuration. Because we have a balanced input, the $4.5 \mathrm{k} \Omega$ transforms to $9 \mathrm{k} \Omega(4.5 \mathrm{k}+$ $4.5 \mathrm{~K}=9 \mathrm{k}$) while the capacitor changes from 2.5 pF to $1.3 \mathrm{pF}(2.5 \mathrm{pF}$ in series with 2.5 pF is 1.3 pF). Notice that the resistor values double while the capacitor values are halved. Now the $9 \mathrm{k} \Omega$ resistor in parallel with the 1.3 pF capacitor must be transformed to the primary side of the transformer (see Figure 6).

Procedure:
Step 1. $\frac{Z_{p}}{Z_{S}}=\left(\frac{N_{P}}{N_{S}}\right)^{2}$
where:
$Z_{P}=$ impedance of primary side
$Z_{S}=$ impedance of secondary side
$\mathrm{N}_{\mathrm{P}}=$ number of turns on primary side
$N_{S}=$ number of turns on secondary side

Step 2. Recall,

$$
\begin{aligned}
& Z_{S}=\mathrm{R} \| X_{\mathrm{C}} \\
& \mathrm{Z}_{\mathrm{S}}=9 \mathrm{k} \| \mathrm{j} 2.7 \mathrm{k} \\
& \text { where } \\
& \mathrm{R}=9 \mathrm{k} \\
& X_{C}=\frac{1}{2 \pi F C}=2.7 \mathrm{k} \text { at } F=45 \mathrm{MHz}
\end{aligned}
$$

Step 3. Assume 1:N turns ratio for the transformer
$Z_{P}=\frac{Z_{S}}{N^{2}}=2.25 k \| j 680$
(assuming $N=2$)
Step 4.

$$
\therefore C=\frac{1}{2 \pi F X_{C}}=5.2 p F
$$

$R=2.25 \mathrm{k}$
(these are the new values to match using the formulas in tapped-C)
Step 5. Because the transformer has a magnetization inductance L_{M}, (inductance presented by the transformer), we can eliminate the inductor used in the previous example and tune the tapped-C network with the inductance presented by the transformer. Lets assume $L_{M}=0.22 \mu H(Q=50)$
Therefore
C1 $=381 \mathrm{pF}$
$\mathrm{C} 2=66.8 \mathrm{pF}$
$\mathrm{F}_{\mathrm{U}}=46.7 \mathrm{MHz}$
$\mathrm{F}_{\mathrm{L}}=43.3 \mathrm{MHz}$
$\mathrm{BW}=3.4 \mathrm{MHz}$
taking the input capacitor into consideration
C1 = 347pF
$\mathrm{C} 2=61 \mathrm{pF}$
$\mathrm{L}=0.22 \mu \mathrm{H}(\mathrm{Q}=50)$
Because of leakage inductance, the transformer is far from ideal. All of these leakages affect the secondary voltage under load which will seem like the indicated turns ratio is wrong. The above calculations show one method of impedance matching. The values calculated for C1 and C2 do not take into account board parasitic capacitance, and are, therefore, only theoretical values. There are many ways to configure and calculate matching networks. One alternative is a tapped-L configuration. But the ratio of the tapped-C network is easier to implement than ordering a special inductor. The calculations of these networks can be done on the Smith Chart. Furthermore, there are many computer programs available which will help match the circuit for the designer.

Local Oscillator Section of Mixer

The NE605 provides an NPN transistor for the local oscillator where only external
components like capacitors, inductors, or resistors need to be added to achieve the LO frequency. The oscillator's transistor base and emitter (Pins 4 and 3 respectively) are available to be configured in Colpitts, Butler or varactor controlled LC forms. Referring to Figure 7, the collector is internally connected directly to V_{CC}, while the emitter is connected through a $25 \mathrm{k} \Omega$ resistor to ground. Base bias is also internally supplied through an $18 \mathrm{k} \Omega$ resistor. A buffer/divider reduces the oscillator level by a factor of three before it is applied across the upper tree of the Gilbert Cell. The divider de-sensitizes the mixer to oscillator level variations with temperature and voltage. A typical value for the LO input impedance is approximately $10 \mathrm{k} \Omega$.
The highest LO frequency that can be achieved is approximately 300 MHz with a $200 \mathrm{mV} \mathrm{V}_{\text {RMS }}$ signal on the base (Pin 4). Although it is possible to exceed the 300 MHz LO frequency for the on-board oscillator, it is not really practical because the signal level drops too low for the Gilbert Cell. If an application requires a higher LO frequency, an external oscillator can be used with its 200 mV RMs signal injected at Pin 4 through a DC blocking capacitor. Table 3 (see back of app note) can be used as a guideline to determine which configuration is best for the required LO frequency.

Because the Colpitts configuration is for parallel resonance mode, it is important to know, when ordering crystals, that the load capacitance of the NE605 is 10 pF. However, for the Butler configuration, the load capacitance is unimportant since the crystal will be in the series mode. Figure 8 shows the different types of LO configurations used with NE605.

If a person decides to use the Colpitts configuration in their design, they will probably find that most crystal manufacturers have their own set of standards of load
capacitance. And in most cases, they are unwilling to build a special test jig for an individual's needs. If this occurs, the designer should tell them to go ahead with the design. But, the designer should also be ready to accept the crystal's frequency to be off by $200-300 \mathrm{~Hz}$ from the specified frequency. Then a test jig provided by the designer and a 2nd iteration will solve the problem.

Output of Mixer

Once the RF and LO inputs have been properly connected, the output of the mixer supplies the IF frequency. Knowing that the mixer's output has an impedance of $1.5 \mathrm{k} \Omega$, matching to an IF filter should be trivial.

Choosing the Appropriate IF Frequency

 Some of the standard IF frequencies used in industry are $455 \mathrm{kHz}, 10.7 \mathrm{MHz}$ and 21.4 MHz . Selection of other IF frequencies is possible. However, this approach could be expensive because the filter manufacturer will probably have to build the odd IF filter from scratch.There are several advantages and disadvantages in choosing a low or high IF frequency. Choosing a low IF frequency like 455 kHz can provide good stability, high sensitivity and gain. Unfortunately, it can also present a problem with the image frequency (assuming single conversion). To improve the image rejection problem, a higher IF frequency can be used. However, sensitivity is decreased and the gain of the IF section must be reduced to prevent oscillations.
If the design requires a low IF frequency and good image rejection, it is best to use the double conversion method. This method allows the best of both worlds. Additionally, it is much easier to work with a lower IF frequency because the layout will not be as critical and will be more forgiving in production. The only drawback to this method is that it will require another mixer and LO. But, a transistor can be used for the first mixer stage (which is an inexpensive approach) and the NE605 can be used for the second mixer stage. The NE602A can also be used for the first conversion stage if the transistor approach does not meet the design requirements.
If the design requires a high IF frequency, good layout and RF techniques must be exercised. If the layout is sound and instability still occurs, refer to the "RSSI output" section which suggests solutions to these types of problems.

Figure 9. NE605 Application Oscillator Level

Figure 10. Mixer Efficiency vs Normalized LO Level

Figure 11. 50Ω Conversion Gain

Figure 12. Single-Ended Matched Input Conversion Gain (50Ω to $1.5 \mathrm{k} \Omega, 14.5 \mathrm{~dB}$ Matching Step-up Network)

Performance Graphs of Mixer

Fig.	Description
9	Oscillator Levels vs. Temperature with Different Supply Voltages for the 44.545MHz Crystal Colpitts Applications
10	LO Efficiency vs. Normalized Peak Level at the Base of the Oscillator Transistor
11	50s Conversion Gain vs. Temperature with Different Supply Voltages Using an External LO
12	Mixer Matched Input Conversion Gain vs. Temperature with Different Supply Voltages
13	IF Output Power vs. RF Input Level (3rd-order Intercept Point) 1st mixer = diode mxr, 2nd mixer = 605 mxr
14	NE605 and Diode Mixer Test Set Up
15	NE605 LO Power Requirements vs. Diode Mixer
16	NE605 Conversion Gain vs. Diode Mixer
17	Comparing Intercept Points with Different Types of Mixers

Another issue to consider when determining an IF frequency is the modulation. For example, a narrowband FM signal (30 kHz IF bandwidth) can be done with an IF of 455 kHz . But for a wideband FM signal (200 kHz IF bandwidth), a higher IF is required, such as 10.7 MHz or 21.4 MHz .

IF Section

The IF section consists of an IF amplifier and IF limiter. With the amplifier and limiter working together, 100 dB of gain with a

25 MHz bandwidth can be achieved (see Figure 18). The linearity of the RSSI output is directly affected by the IF section and will be discussed in more detail later in this application note.

IF Amplifier

The IF amplifier is made up of two differential amplifiers with 40 dB of gain and a small signal bandwidth of 41 MHz (when driven by a 50Ω source). The output is a low impedance emitter follower with an output resistance of about 230Ω, and an internal series build out of 700Ω to give a total of 930Ω. One can expect a 6 dB loss in each amplifier's input since both of the differential amplifiers are single-ended.

Figure 13. Third-Order Intercept and Compression

The basic function of the IF amp is to boost the IF signal and to help handle impulse noise. The IF amp will not provide good limiting over a wide range of input signals, which is why the IF limiter is needed.

IF Limiter

The IF limiter is made up of three differential amplifiers with a gain of 63 dB and a small
signal AC bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. The IF limiter's output resistance is about 260Ω with no internal build-out. The limiter's output signal (Pin 9 onNE604A, Pin 11 on NE605) will vary from a good approximation of a square wave at lower IF frequencies like 455 kHz , to a distorted sinusoid at higher IF frequencies, like 21.4 MHz .
The basic function of the IF limiter is to apply a tremendous amount of gain to the IF frequency such that the top and bottom of the waveform are clipped. This helps in reducing AM and noise presented upon reception.

Function of IF Section

The main function of the IF section is to clean up the IF frequency from noise and amplitude modulation (AM) that might occur upon reception of the RF signal. If the IF section has too much gain, then one could run into instability problems. This is where crucial layout and insertion loss can help (also addressed later in this paper).

Important Parameters for the IF Section Limiting: The audio output level of an FM receiver normally does not change with the RF level due to the limiting action. But as the RF signal level continues to decrease, the limiter will eventually run out of gain and the audio level will finally start to drop. The point where the IF section runs out of gain and the audio level decreases by 3 dB with the RF input is referred to as the -3 dB limiting point.

In the application test circuit, with a $5.1 \mathrm{k} \Omega$ interstage resistor, audio suppression is dominated by noise capture down to about the -120 dBm RF level at which point the phase detector efficiency begins to drop (see Interstage Loss section below).

Figure 14. Test Circuits for NE605 Mixer vs Diode Mixer

Figure 15. LO Power Requirements (Matched Input)

Figure 16. NE605 Conversion Gain vs. Diode Mixer

The audio drop that occurs is a function of two types of limiting. The first type is as follows: As the input signal drops below a level which is sufficient to keep the phase
detector compressed, the efficiency of the detector drops, resulting in premature audio attenuation. We will call this "gain limiting". The second type of limiting occurs when there is sufficient amount of gain without destabilizing regeneration (i.e. keeping the phase detector fully limited), the audio level will eventually become suppressed as the noise captures the receiver. We will call this "limiting due to noise capture".
Figure 19 shows the 3 dB drop in audio at about $0.26 \mu \mathrm{~V}_{\text {RMS }}$, with a $-118.7 \mathrm{dBm} / 50 \Omega$ RF level for the NE605. Note that the level has not improved by the 11 dB gain supplied by the mixer/filter since noise capture is expected to slightly dominate here.

Figure 17. Comparing Different Types of Mixers

AM rejection: The AM rejection provided by the NE605/604A is extremely good even for 80% modulation indices as depicted in Figures 20a through 20d. This performance results from the 370 mV peak signal levels set at the input of each IF amplifier and limiter stage. For this level of compression at the
inputs, even better performance could be expected except that finite AM to PM conversion coefficients limit ultimate performance for high level inputs as indicated in Figure 20b.

Low level AM rejection performance degrades as each stage comes out of limiting. In particular as the quadrature phase detector input drops below 100 mV peak, all limiting will be lost and AM modulation will be present at the input of the quad detector (See Figure 20d).

AM to PM conversion: Although AM rejection should continue to improve above -95 dBm IF inputs, higher order effects, lumped under the term AM to PM conversion, limit the application rejection to about 40 dB . In fact this value is proportional to the maximum frequency deviation. That is lower deviations producing lower audio outputs result directly in lower AM rejection. This is consistent with the fact that the interfering audio signal produced by the AM/PM conversion process is independent of deviation within the IF bandwidth and depends to a first estimate on the level of AM modulation present. As an example reducing the maximum frequency deviation to 4 kHz from 8 kHz , will result in 34 dB AM rejection. If the AM modulation is reduced from 80% to 40%, the AM rejection for higher level IFs will go back to 40 dB as expected. AM to PM conversion is also not a function of the quad tank Q, since an increase in Q increases both the audio and spurious AM to PM converted signal equally.

As seen above, these relationships and the measured results on the application board
(Figure 36) can be used to estimate high level Step 1. IF AM rejection. For higher frequency IFs (such as 21.4 MHz), the limiter's output will start to deviate from a true square wave due to lack of bandwidth. This causes additional AM rejection degradation.
Interstage Loss: Figure 21 plots the simulated IF RSSI magnitude response for various interstage attenuation. The optimum interstage loss is 12 dB . This has been chosen to allow the use of various types of filters, without upsetting the RSSI's linearity. In most cases, the filter insertion loss is less than 12 dB from point A to point B . Therefore, some additional loss must be introduced externally. The easiest and simplest way is to use an external resistor in series with the internal build out resistor (Pin 14 in the NE604A, Pin 16 in the NE605).
Unfortunately, this method mismatches the filter which might be important depending on the design. To achieve the 12 dB insertion loss and good matching to the filter, an L-pad configuration can be used. Figure 22 shows the different set-ups.
Below is an example on how to calculate the resistors values for both Figures 22a and 22b.
$X_{d B}=20 \log \frac{\sqrt{\left(960+R_{E X T} R_{F L T}\right.}}{960+R_{E X T}+R_{F L T}}-$ FIL [dB]
(just solve for $\mathrm{R}_{\mathrm{EXT}}$)
where
$X=$ the insertions loss wanted in dB $\mathrm{R}_{\mathrm{EXT}}=$ the external resistor
$\mathrm{R}_{\text {FLT }}=$ the filter's input impedance
FIL = insertion loss of filter in dB
2. For our application board $\mathrm{X}=12 \mathrm{~dB}$
$\mathrm{R}_{\mathrm{FLT}}=1.5 \mathrm{k}$
$\mathrm{FIL}=3 \mathrm{~dB}$
Therefore, using the above eq. gives $\mathrm{R}_{\mathrm{EXT}}=5.1 \mathrm{~K}$

$$
R_{E X T}=\left|960-\frac{R_{F L T}}{2 \times 10\left(\frac{-x_{d B}}{20}\right)}\right|
$$

Step 2.
$R_{S H U N T}=\frac{R_{F L T}}{1-2 \times 10^{\left(\frac{-x_{d B}}{20}\right)}}$
3. In this case, lets assume: $\mathrm{FIL}=-2 \mathrm{~dB}$ therefore, $\mathrm{X}_{\mathrm{dB}}=+10, \mathrm{R}_{\mathrm{FLT}}=1.5 \mathrm{k}$. The results are: $R_{\text {EXT }}=1.41 \mathrm{k}, R_{\text {SHUNT }}=4.08 \mathrm{k}$

IF nolse figure
The IF noise figure of the receiver may be expected to provide at best a 7.7 dB noise figure in a $1.5 \mathrm{k} \Omega$ environment from about 25 kHz to 100 MHz . From a 25Ω source the noise figure can be expected to degrade to about 15.4 db .
Performance Graphs of IF Section

Fig.	Description
24	IF Amp Gain vs. Temperature with Various Supply Voltages
25	IF Limiter Gain vs. Temperature with Various Supply Voltages
26	IF Amp 20MHz Response vs. Temperature
27	IF Limiter 20MHz Response vs. Temperature

Figure 18. IF Section of NE604A [NE605]

Demodulator Section

Once the signal leaves the IF limiter, it must be demodulated so that the baseband signal can be separated from the IF signal. This is accomplished by the quadrature detector. The detector is made up of a phase comparator (internal to theNE605) and a quadrature tank (external to theNE605).
The phase comparator is a multiplier cell, similar to that of a mixer stage. Instead of mixing two different frequencies, it compares the phases of two signals of the same frequency. Because the phase comparator needs two input signals to extract the information, the IF limiter has a balanced output. One of the outputs is directly connected to the input of the phase comparator. The other signal from the limiter's output (Pin 11) is phase shifted 90 degrees (through external components) and frequency selected by the quadrature tank. This signal is then connected to the other input of the phase comparator (Pin 10 of the NE605). The signal coming out of the quadrature detector (phase detector) is then low-passed filtered to get the baseband signal. A mathematical derivation of this can be seen in the NE604A data sheet.

Figure 19. NE605 Application Board, -3 dB Limiting (Drop in Audio)

The quadrature tank plays an important role in the quality of the baseband signal. It determines the distortion and the audio output amplitude. If the " Q " is high for the quadrature tank, the audio level will be high, but the distortion will also be high. If the " Q " is low, the distortion will be low, but the audio level will become low. One can conclude that there is a trade-off.

Output Section

The output section contains an RSSI, audio, and data (unmuted audio) outputs which can
be found on Pins 7,8, and 9, respectively, on the NE605. However, amplitude shift keying (ASK), frequency shift keying (FSK), and a squelch control can be implemented from these pins. Information on ASK and FSK can be found in Philips Components-Signetics application note AN1993.

Although the squelch control can be implemented by using the RSSI output, it is not a good practice. A better way of implementing squelch control is by comparing the bandpassed audio signal to high frequency colored FM noise signal from the unmuted audio. When no baseband signal is present, the noise coming out of the unmuted audio output will be stronger, due to the nature of FM noise. Therefore, the output of the external comparator will go high (connected to Pin 5 of the NE605) which will mute the audio output. When a baseband signal is present, the bandpassed audio level will dominate and the audio output will now unmute the audio.

Audio and Unmuted Audio (Data)

The audio and unmuted audio outputs (Pin 8 and 9 , respectively, on the NE605) will be discussed in this section because they are
basically the same. The only difference between them is that the unmuted audio output is always "on" while the audio output can either be turned "on" or "off". The unmuted audio output (data out) is for signaling tones in systems such as cellular radio. This allows the tones to be processed by the system but remain silent to the user. Since these tones contain information for cellular operation, the unmuted audio output can also be referred to as the "data" output. Applying 5V to Pin 5 on the NE605 mutes the audio on Pin 8 (connecting ground on Pin 5 unmutes it).
Both of these outputs are PNP current-to-voltage converters with a $55 \mathrm{k} \Omega$ nominal internal load. The nominal frequency response of the audio and data outputs are 300 kHz . However, this response can be increased with the addition of an external resistor ($<58 \mathrm{k} \Omega$) from the output pins to ground. This will affect the time constant and lower the audio's output amplitude. This technique can be applied to SCA receivers and data transceivers (as mentioned in the NE604A data sheet).

RSSI Output

RSSI (Received Signal Strength Indicator) determines how well the received signal is being captured by providing a voltage level on its output. The higher the voltage, the stronger the signal.

The RSSI output is a current-to-voltage converter, similar to the audio outputs. However, a $91 \mathrm{k} \Omega$ external resistor is needed to get an output characteristic of 0.5 V for every 20 dB change in the input amplitude.
As mentioned earlier, the linearity of the RSSI curve depends on the 12 dB insertion loss between the IF amplifier and IF limiter. The
reason the RSSI output is dependent on the IF section is because of the V / I converters. The amount of current in this section is monitored to produce the RSSI output signal. Thus, the IF amplifier's rectifier is internally calibrated under the assumption that the loss is 12 dB .

Because unfiltered signals at the limiter inputs, spurious products, or regenerated signals will affect the RSSI curve, the RSSI is a good indicator in determining the stability of the board's layout. With no signal applied to the front end of the NE605, the RSSI voltage level should read 250 mV RMS or less to be a good layout. If the voltage output is higher, then this could indicate oscillations or regeneration in the design.

Performance Graphs of Output Section

Fig.	Description
28	$51 \mathrm{k} \Omega$ Thermistor in Series with $100 \mathrm{k} \Omega$ Resistor Across Quad Tank (Thermistor Quad Q Compensation)
29 a	NE605 Application Board at $-55^{\circ} \mathrm{C}$
29 b	NE605 Application Board at $-40^{\circ} \mathrm{C}$
29 c	NE605 Application Board at $+25^{\circ} \mathrm{C}$
29 d	NE605 Application Board at $+85^{\circ} \mathrm{C}$
29 e	NE605 Application Board at $+125^{\circ} \mathrm{C}$
30 a	NE604A for -68dBm RSSI Output vs. Temperature at Different Sup- ply Voltages
30 b	NE604A for -18dBm RSSI Output vs. Temperature at Different Sup- ply Voltages
30c	NE605 for -120dBm RSSI Output vs. Temperature at Different Sup- ply Voltages

30d	NE605 for-76dBm RSSI Output vs. Temperature at Different Supply Voltages
30 e	NE605 for -28dBm RSSI Output vs. Temperature at different Supply Voltages
31	NE605 Audio level vs. Temperature and Supply Voltage
32	NE605 Data Output at -76 dBm vs. Temperature

Referring to the NE/SA604A data sheet, there are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain. Gain reduction can be accomplished by adding attenuation between stages. More details on regeneration and stability considerations can be found in the NE/SA604A data sheet.

III. QUESTIONS \& ANSWERS:

Q.-Bypass. How important is the effect of the power supply bypass on the receiver performance?
A. While careful layout is extremely critical, one of the single most neglected components is the power supply bypass in applications of NE604A or NE605. Although increasing the value of the tantalum capacitor can solve the problem, more careful testing shows that it is actually the capacitor's ESR (Equivalent Series Resistance) that needs to be checked. The simplest way of screening the bypass capacitor is to test the capacitor's dissipation factor at a low frequency (a very easy test, because most of the low frequency capacitance meters display both C, and Dissipation factor).

Figure 20. AM Rejection Results at Different Input Levels

Figure 21. NE604A's RSSI Curve at Different Interstage Losses
Q.-On-chip oscillator. We cannot get the NE605 on-chip oscillator to work. What is the problem?
A. The on board oscillator is just one transistor with a collector that is connected to the supply, an emitter that goes to ground through a 25 k resistor, and a base that goes to the supply through an 18 k resistor. The rest of the circuit is a buffer that follows the
oscillator from the transistor base (this buffer does not affect the performance of the oscillator).

Fundamental mode Colpitts crystal oscillators are good up to 30 MHz and can be made by a crystal and two external capacitors. At higher frequencies, up to about 90 MHz , overtone crystal oscillators (Colpitts) can be made like the one in the cellular application circuit. At higher frequencies, up to about 170 MHz , Butler type oscillators (the crystal is in series mode) have been successfully demonstrated. Because of the 8 GHz peak f_{T} of the transistors, LC Colpitts oscillators have been shown to work up to 900 MHz . The problem encountered above 400 MHz is that the onchip oscillator level is not sufficient for optimum conversion gain of the mixer. As a result, an external oscillator should be used at those frequencies.

Generally, about $220 \mathrm{mV}_{\mathrm{RMS}}$ is the oscillator level needed on Pin 4 for maximum conversion gain of the mixer. An external
oscillator driving Pin 4 can be used throughout the band. Finally, since the NE605's oscillator is similar to the NE602, all of the available application notes on NE602 apply to this case (assuming the pin out differences are taken into account by the user).
Below are a couple of points to help in the oscillator design. The oscillator transistor is biased around $250 \mu \mathrm{~A}$ which makes it very hard to probe the base and emitter without disturbing the oscillator (a high impedance, low capacitance active FET probe is desirable). To solve these problems, an external 22 k resistor (as low as 10 k) can be used from Pin 3 to ground to double the bias current of the oscillator transistor. This external resistor is put there to ensure the start up of the crystal in the 80 MHz range, and to increase the f_{T} of the transistor for above $300-400 \mathrm{MHz}$ operation. Additionally, this resistor is required for operations above $80-90 \mathrm{MHz}$. When a 1 k resistor from Pin 1 to
ground is connected on the NE605, half of the mixer will shut off. This causes the mixer to act like an amplifier. As a result, Pin 20 (the mixer, now amplifier output) can be probed to measure the oscillator frequency. Furthermore, the signal at Pin 20 relates to the true oscillator level. This second resistor is just for optimizing the oscillator of course. Without the 1 k resistor, the signal at Pin 20 will be a LO feedthrough which is very small and frequency dependent.

Finally in some very early data sheets, the base and emitter pins of the oscillator were inadvertently interchanged. The base pin is Pin 4, and the emitter pin is Pin 3. Make sure that your circuit is connected correctly.
Q.-Sensitivity at higher input frequencles. We cannot get good sensitivity like the 45 MHz case at input frequencies above 70 MHz . Do you have any information on sensitivity vs. input frequency?
A. The noise figure and the gain of the mixer degrade by less than 0.5 dB , going from 50 to 100 MHz . Therefore, this does not explain the poor degradation in sensitivity. If other problems such as layout, supply bypass etc. are already accounted for, the source of the problem can be regeneration due to the 70 MHz oscillator. What is probably happening is that the oscillator signal is feeding through the IF, getting mixed with the 455 kHz signal, causing spurious regeneration. The solution is to reduce the overall gain to stop the regeneration.
This gain reduction can be done in a number of places. Two simple points are the attenuator network before the second filter and the LO level (see Figure 22). The second case will reduce the mixer's noise figure which is not desirable. Therefore, increasing the Interstage loss, despite
minimal effect on the RSSI linearity, is the correct solution. As the Interstage loss is increased, the regeneration problem is decreased, which improves sensitivity, despite lowering of the over-all gain (the lowest RSSI level will keep decreasing as the regeneration problem is decreased). For an 81 MHz circuit it was found that increasing the Interstage loss from 12dB to about 17dB produced the best results (-119 dBm sensitivity). Of course, adding any more Interstage loss will start degrading sensitivity.

Conversely, dealing with the oscillator design, low LO levels could greatly reduce the mixer conversion gain and cause degradation of the sensitivity. For the 81 MHz example, a 22 k parallel resistor from Pin 3 to ground is required for oscillator operation where a Colpitts oscillator like the one in the cellular application circuit is used. The LO level at Pin 4 should be around $220 \mathrm{mV}_{\text {RMS }}$ for good operation. Lowering the LO level to approximately $150 \mathrm{mV} V_{\text {RMS }}$ may be a good way of achieving stability if increasing Interstage attenuation is not acceptable. In that case the 22 k resistor can be made a thermistor to adjust the LO level vs. temperature for maintaining sensitivity and ensuring crystal start-up vs. temperature. At higher IF frequencies (above 30 MHz), the interstage gain reduction is not needed. The bandwidth of the IF section will lower the overall gain. So, the possibility of regeneration decreases.
Q.-Mixer noise figure. How do you measure the mixer noise figure in NE605, and NE602?
A. We use the test circuit shown in the NE602 data sheet. The noise figure tester is the HP8970A. The noise source we use is
the HP346B (ENR $=15.46 \mathrm{~dB}$). Note that the output is tuned for 10.7 MHz . From that test circuit the NF-meter measures a gain of approximately 15 dB and 5.5 dB noise figure.
More noise figure data is available in the paper titled "Gilbert-type Mixers vs. Diode Mixers" presented at RF Expo ' 89 in Santa Clara, California. (Reprints available through Signetics Publication Services.)
Q.- What is the value of the series resistor before the IF filter in the NE605 or NE604A applications?
A. A value of $5.1 \mathrm{k} \Omega$ has been used by us in our demo board. This results in a maximally straight RSSI curve. A lower value of about 1 k will match the filter better. A better solution is to use an L pad as discussed earlier in this application note.
Q.- What is the low frequency input resistance of the NE605?
A. The data sheets indicated a worst case absolute minimum of 1.5 k . The typical value is 4.7 k .
Q.- What are BE-BC capacitors in the NE605 oscillator transistor?
A. The oscillator is a transistor with the collector connected to the supply and the emitter connected to the ground through a 25 k resistor. The base goes to the supply through an 18 k resistor. The junction capacitors are roughly about 24fF (fempto Farads) for CJE (Base-emitter capacitors), and 44fF for CJC (Collector-base capacitors). There is a 72 fF capacitor for CJS (Collectorsubstrate capacitor). This is all on the chip itself. It should be apparent that the parasitic packaging capacitors ($1.5-2.5 \mathrm{pF}$) are the dominant values in the oscillator design.

22a. SERIES RESISTOR CONFIGURATION

22b. L-PAD CONFGUURATION

Figure 22. Implementing the 12dB Insertion Loss

Summary of Differences for NE/SA604/604A

	NE/SA604	NE/SA604A
RSSI	No temperature compensation	Internally temperature compensated
IF Bandwidth	15 MHz	25MHz
IF LImlter Output	No buffer	Emitter follower buffer output with 8k in the emitter
Current Drain	2.7 mA	3.7 mA

Q.- What are the differences between the NE604 and NE604A? (see Table below)

A. The NE/SA604A is an improved version of the NE/SA604. Customers, who have been using the NE604 in the past, should have no trouble doing the conversion.

The main differences are that the small signal IF bandwidth is 25 MHz instead of 15 MHz , and the RSSI is internally temperature compensated. If external temperature compensation was used for the NE604, the designer can now cut cost with the NE604A. The designer can either get rid of these extra parts completely or replace the thermistor (if used in original temperature compensated design) with a fixed resistor.
Those using the NE604 at 455 kHz should not see any change in performance. For 10.7 MHz , a couple of dB improvement in performance will be observed. However, there may be a few cases where instability will occur after using NE604A. This will be the case if the PC-board design was marginal for the NE604 in the first place. This problem, however, can be cured by using a larger than $10 \mu \mathrm{~F}$ tantalum bypass capacitor on the supply line, and screening the capacitors for their ESR (equivalent series resistance) as mentioned earlier. The ESR at 455 kHz should be less than 0.2Ω. Since ESR is a frequency dependent value, the designer can correlate good performance with a low frequency dissipation factor, or ESR measurement, and screen the tantalum capacitors in production. There are some minor differences as well. The NE/SA604A uses about 1 mA more current than the NE/SA604. An emitter follower has been added at the limiter output to present a lower and more stable output impedance at Pin 9. The DC voltage at the audio and data outputs is approximately 3 V instead of 2 V in the NE604, but that should not cause any problems. The recovered audio level, on the other hand, is slightly higher in the NE604A which should actually be desirable. Because of these changes, it is now possible to design 21.4 MHz IFs using the NE604A, which was not possible with the NE604.

The two chips are identical, otherwise. The customers are encouraged to switch to the NE604A because it is a more advanced
bipolar process than the previous generation used in theNE604. As a result we get much tighter specifications on the NE604A.
Q.- How does the NE605 mixer compare with a typical double balanced diode mixer?
A. Some data on the comparison of the conversion gain and LO power requirements are shown in this application note. These two parameters reveal the advantages in using the NE605 mixer.

The only drawback of the NE605 may seem to be its lower third-order intercept point in comparison to a diode mixer. But, this is inherent in the NE605 as a result of the low power consumption. If one compares the conversion gain of the NE605 with the conversion loss of a low cost diode mixer, it turns out that the third-order intercept point, referred to the output, is the same or better in the NE605. Another point to take into account is that a diode mixer cannot be used in the front end of a receiver without a preamp due to its poor noise figure. A third-order intercept analysis shows that the intercept point of the combination of the diode mixer and preamp will be degraded at least by the gain of the preamp. A preamp may not be needed with NE605 because of its superior noise figure.

For more detailed discussion of this topic please refer to the paper titled "Gilbert-type Mixers vs. Diode Mixers").
Q.- How can we use the NE605 for SCA FM reception?
A. The 10.7 MHz application circuit described in AN1993 can be used in this case. The LO frequency should be changed and the RF front-end should be tuned to the FM broadcast range. The normal FM signal, coming out of Pin 8 of the NE605, could be expected to have about $1.5 \mu \mathrm{~V}$ (into 50Ω) sensitivity for $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. This signal should be band-pass filtered and amplified to recover the SCA sub-carrier. The output of that should then go to a PLL SCA decoder, shown on the data sheet of Signetics NE565 phase lock loop, to demodulate the base-band audio. The two outputs of the NE605 Pins 8 and 9 can be used to receive SCA data as well as voice, or features such as simultaneous reception of both normal FM,
and SCA. The RSSI output, with its 90 dB dynamic range, is useful for monitoring signal levels.
Q.- What is the power consumption of the NE605 or NE604A vs. temperature and V_{Cc} ?
A. The NE 605 consumes about 5.6 mA of current at 6 V . This level is slightly temperature and voltage dependent as shown in Figure 33 . Similar data for the NE604A is shown in Figure 34.
Q.- How can you minimize RF and LO feedthroughs
A. The RF and LO feedthroughs are due to offset voltages at the input of the mixer's differential amplifiers and the imbalance of the parasitic capacitors. A circuit, such as the one shown in Figure 35, can be used to adjust the balance of the differential amplifiers. The circuit connected to Pins 1 and 2 will minimize RF feedthrough while the circuit shown connected to Pin 6 will adjust the LO feedthrough. The only limitation is that if the RF and LO frequencies are in the 100 MHz range or higher, these circuits will probably be effective for a narrow frequency range.
Q.- Distortion vs. RF Input level. We get a good undistorted demodulated signal at low RF levels, but severe distortion at high RF levels. What is happening?
A. This problem usually occurs at 10.7 MHz or at higher IF's. The IF filters have not been properly matched on both sides causing a sloping IF response. The resulting distortion can be minimized by adjusting the quad tank at the FM threshold where the IF is out of limiting. As the RF input increases, the IF stages will limit and make the IF response flat again. At this point, the effect of the bad setting of the quad tank will show itself as distortion. The solution is to always tune the quad tank for distortion at a medium RF level, to make sure that the IF is fully limited. Then, to avoid excessive distortion for low RF levels, one should make sure that the IF filters are properly matched.
Q.-The most commonly asked questions: "Why doesn't the receiver sensitivity meet the specifications?"; "Why is the RSSI dynamic range much less than expected?"; "Why
does the RSSI curve dip at 0.9 V and stay flat at 1 V as the RF input decreases?"; "Why does the audio output suddenly burst into oscillation, or output wideband noise as the RF input goes down, instead of dying down slowly?"; "When looking at the IF output with a spectrum analyzer, why do high amplitude spurs become visible near the edge of the IF band as the RF level drops?"
A. These are the most widely observed problems with the NE605. They are all symptoms of the same problem; instability. The instability is due to bad layout and grounding.
Regenerative instability occurs when the limiter's output signals are radiated and picked up by the high impedance inputs of the mixer and IF amp. This signal is amplified by both the IF amp and limiter. Positive feedback causes the signal to grow until the signal at the limiter's output becomes limited. Due to the nature of FM, this instability will dominate any low RF input levels and capture the receiver (see Figure 23).

Since the receiver behaves normally for high RF inputs, it misleads the designer into believing that the design is okay. Additionally the RSSI circuit cannot determine whether the signal being received is coming from the antenna or the result of regenerative instability. Therefore, RSSI will be a good instability indicator in this instance because the RSSI will stay at a high level when the received signal decreases. Looking at the IF spectrum (Pin 11 for 605, Pin 9 for 604A) with the RF carrier present (no modulation), the user will see a shape as shown below. When regenerative instability occurs, the receiver does not seem to have the ultimate sensitivity of which it is capable.

Make sure that a double sided layout with a good ground plane on both sides is used. This will have RF/IF loops on both sides of the board. Follow our layouts as faithfully as you can. The supply bypass should have a low ESR $10-15 \mu \mathrm{~F}$ tantalum capacitor as discussed earlier. The crystal package, the inductors, and the quad tank shields should be grounded. The RSSI output should be used as a progress monitor even if is not needed as an output. The lowest RSSI level should decrease as the circuit is made more stable. The overall gain should be reduced by lowering the input impedance of the IF amplifier and IF limiter, and adding attenuation after the IF amplifier, and before the 2 nd filter. A circuit that shows an RSSI of 250 mV or less with no RF input should be considered close to the limit of the performance of the device. If the RSSI still remains above 250 mV , the recommendations mentioned above should be revisited.
Q.- Without the de-emphasis network at the audio output, the -3 dB bandwidth of the
audio output is limited to only 4.5 kHz . The maximum frequency deviation is 8 kHz , and the IF bandwidth is 25 kHz . What is the problem?
A. What is limiting the audio bandwidth in this case is not the output circuit, but the IF filters. Remember that Carson's rule for FM IF bandwidth requires the IF bandwidth to be at least:

2(Max frequency Dev. + Audio frequency)
With a 25 kHz IF bandwidth and 8 kHz frequency deviation, the maximum frequency that can pass without distortion is approximately $4.5 \mathrm{kHz} .2(8 \mathrm{kHz}+4.5 \mathrm{kHz})$ is 25 kHz as expected.

REFERENCES:

"High-Performance Low-Power FM IF System" (NE604A data sheet), Signetics Linear Data Manual, Signetics, 1988.
"AN199-Designing with the NE/SA604", Signetics Linear Data Manual, 1987.
"AN1981-New Low Power Single Sideband Circuits", Signetics Linear Data Manual, 1988.
"Applying the Oscillator of the NE602 in Low Power Mixer Applications", Signetics Linear Data Manual, 1988.
"AN1993-High Sensitivity Applications of Low-Power RF/IF Integrated Circuits", Signetics Linear Data Manual, 1988.
"RF Circuit Design", Bowick. C., Indiana: Howard W. Sams \& Company, 1982.
"The ARRL Handbook for the Radio Amateur", American Radio Relay League, 1986.
"Communications Receivers: Principles \&
Design", Rohde, U., Bucher, T.T.N., McGraw Hill, 1988.
"Gilbert-type Mixers vs. Diode Mixers", proceedings of R.F. Expo 1989, Fotowat, A., Murthi, E., pp. 409-413.

Figure 28. Audio Output: Compensated vs Uncompensated

Figure 29. Performance of the NE605 Application Board at Different Temperatures

Figure 30. RSSI Response for Different Inputs

Figure 31. Audio Level vs Temperature and Supply Voltage

Figure 33. NE605 Icc vs Temperature

Figure 34. NE604A Icc vs Temperature

Figure 35. Minimizing RF and LO Feedthrough

Application Component List

C1	100pF NPO Ceramic	C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	390pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C5	$100 n \mathrm{~F} \pm 10 \%$ Monolithic Ceramic	C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	IFT 1	455kHz ($\mathrm{Ce}=180 \mathrm{pF}$) Toko RMC-2A6597H
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	L1	147-160nH Coilcraft UNI-10/142-04J08S
C10	15 H F Tantalum (minimum)	L2	3.3^H nominal
C11	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic		Toko 292CNS-T1046Z
C12	$15 \mathrm{nF}{ }_{ \pm} 10 \%$ Ceramic	X1	44.545MHz Crystal ICM4712701
C13	150pF $\pm 2 \%$ N1500 Ceramic	R9	100k $\pm 1 \%$ 1/4W Metal Film
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
C15	10pF NPO Ceramic	R5	Not Used in Application Board (see Note 8)
C17	100nF $\pm 10 \%$ Monolithic Ceramic	R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

Figure 36. NE/SA605 45MHz Application Circuit

Reviewing key areas when designing with the NE605

Table 1. Related Application Notes

App. Note	Date	Title	Main Topics
AN198	Feb. 1987	Designing with the NE/SA602	- Advantages/Disadvantages to single-ended or balanced matching
AN1981	Dec. 1988	New Low Power Single Sideband Circuits	- General discussion on SSB circuits - Audio processing - Phasing-filter technique
AN1982	Dec. 1988	Applying the Oscillator of the NE602 in Low Mixer Applications	- Oscillator configurations
AN199	Feb. 1987	Designing with the NE/SA604	Circuits of: - AM synchronous det. - Temp. compensated RSSI circuit - Field strength meter - Product detector
AN1991	Dec. 1988	Audio Decibel Level Detector with Meter Driver	-Uses of the 604 in application
AN1993	Dec. 1988	High Sensitivity Application Low-Power RF/IF Integrated Circuits	- An overview of the NE602 and NE604 in typical applications - Good information before getting started

Table 2. Comparing Balanced vs Unbalanced Matching

NE605 or NE602	Matching	Advantages	Disadvantages
Pins 1 and 2 (RF input)	Single-ended (unbalanced)	- Very simple circuit -No sacrifice in 3rd-order performance	- Increase in 2nd-order products
	Balanced	- Reduce 2nd-order products	- Impedance match difficult to achieve

Table 3. LO Configurations

LO (MHz)	Suggested Configuration Using On-board Osclilator
$0-30$	Fundamental mode, use Colpitts
$30-70$	3rd overtone mode, use Colpitts
$70-90$	3-5th overtone mode, use Colpitts with 22k resistor connected from the emitter pin to ground
$90-170$	Use Butler, crystal in series mode, and a 22k resistor connected from the emitter pin to ground
$170-300$	LC configuration

Evaluating the NE605 SO and SSOP demo-board

Author: Alvin K. Wong

INTRODUCTION:

With the increasing demand for smaller and lighter equipment, designers are forced to reduce the physical size of their systems. There are several approaches to solving the size problem. A designer needs to look for sophisticated integrated single chip solutions, chips that are smaller in size, and chips that require minimum external components.
Signetics offers all of these solutions in their NE605. The NE605 single-chip receiver converts the RF signal to audio and is available in three packages: DIP,SO, and SSOP. This offers total flexibility for layout considerations. The SSOP package is the smallest 20 pin package available in the market today, and allows the designer the flexibility to reduce the overall size of a layout.

When working with a smaller and tighter layout in a receiver design, it becomes important to follow good RF techniques. This application note shows the techniques used in the SO and SSOP demo-board. It does not cover the basic functionality of the NE605
but instead focuses more on the layout constraints. This application note also has a trouble-shooting chart to aid the designer in evaluating the SO and SSOP demo-board. For a complete explanation of the NE605, please refer to application note AN1994 which describes the basic block diagrams, reviews the common problems encountered with the NE605, and suggests solutions to them. Reading AN1994 is highly recommended before attempting the SO and SSOP layout.

The recommended layout demonstrates how well the chip can perform. But it should be pointed out that the combination of external parts with their tolerances plays a role in achieving maximum sensitivity.
The minimum and maximum 12dB SINAD measurement for both boards is -118 dBm and -119.7 dBm , respectively. A typical reading taken in the lab for both SO and SSOP demo-boards is -119 dBm .

There were two different design approaches for both layouts. For the SO layout, there are
inductive tuning elements (except for the LO section); for the SSOP layout there are capacitive tuning elements. This approach was taken to show the designer that both ways can be used to achieve the same 12 dB SINAD measurement. However, it is worth mentioning that capacitive tuning elements are less expensive than the inductive tuning elements.

Packages Avallable

As mentioned above, there are three packages available for the NE605. See the "Package Outline" section of the Signetics 1992 RF Handbook for the physical dimensions of all three packages. Notice that the DIP package is the largest of the three in physical size; the SSOP is the smallest. The recommended layout and performance graphs for the DIP package are shown in the NE605 data sheet and AN1994. But the SO and SSOP recommended layout and performance graphs are shown in this application note.

Figure 1. NE605 Schematic for the SO Layout

SO LAYOUT:

Figure 1 shows the schematic for the SO layout. Listed below are the basic functions of each external component for Figure 1.
C1 - Part of the tapped-C network to match the front-end
C2 - Part of the tapped-C network to match the front-end
C5 - Used as an AC short to Pin 2

C6 - Used to tune the LO for the Colpitts oscillator
C7 - Used as part of the Colpitts oscillator
C8 - Used as part of the Colpitts oscillator
C9 - Supply bypassing
C10- Supply bypassing
C11 - Used as filter

C12 - Used as filter
C13- Used as filter
C14 - Used to AC ground the Quad tank
C15- Used to provide the 90° phase shift to the phase detector
C17- IF limiter decoupling cap
C18 - IF limiter decoupling cap
C21 - IF amp decoupling cap
C23 - IF amp decoupling cap
C26- Quad tank component
L1 - Part of tapped-C network to match the front-end TOKO 5CB-1320Z
L2 - Part of the Colpitts oscillator Coilcraft 1008CS-122

R9 - Used to convert the current into the RSSI voltage
R10 - Converts the audio current to a voltage
R11 - Converts the data current to a voltage
R17 - Used to achieve the -12dB insertion loss
IFT1 - Inductor for the Quad tank TOKO 303LN-1130
FILT1 - Murata SFG455A3 455kHz bandpass filter
FILT2 - Murata SFG455A3 455kHz bandpass filter
X1 - Standard 44.545 MHz crystal in QC38 package
The recommended SO layout can be found in Figure 2 and should be used as an example to help designers get started with their projects.
The SO NE605 board performance graphs can be found in Figure 3.

Figure 4. NE605 Schematic for the SSOP Layout

SSOP LAYOUT:

Figure 4 shows the schematic for the SSOP layout.
C1 - Part of the tapped-C network to
match the front-end
C2 - Part of the tapped-C network to match the front-end

C3 - Part of the tapped-C network to match the front-end
C5- Used as an AC short to Pin 2
C6 - Used to tune the LO for the Colpitts oscillator
C7 - Used as part of the Colpitts oscillator
C8 - Used as part of the Colpitts oscillator
C9 - Supply bypassing
C10 - Supply bypassing
C11 - Used as filter
C12- Used as filter
C13- Used as filter
C14 - Used to AC ground the Quad tank

C15-Used to provide the 90° phase shift to the phase detector
C17- IF limiter decoupling cap
C18 - IF limiter decoupling cap
C21 - IF amp decoupling cap
C23 - IF amp decoupling cap
C24 - Part of the Quad tank
C25 - Part of the Quad tank
C26 - Part of the Quad tank
L1 - Part of tapped-C network to match the front-end Coilcraft 1008CS-331

L2 - Part of the Colpitts oscillator Coilcraft 1008CS-122
R9 - Used to convert the current into the RSSI voltage
R10 - Converts the audio current to a voltage
R11 - Converts the data current to a voltage
R17 - Used to achieve the -12dB insertion loss

IFT1 - Inductor for the Quad tank Mouser ME435-2200
FILT1 - Murata SFGCC455BX 455kHz bandpass filter

FILT2 - Murata SFGCC455BX 455kHz bandpass filter
X1 - Standard 44.545 MHz crystal
The SSOP layout can be found in Figure 5. The SSOP NE605 board performance graphs can be found in Figure 6.

The main difference between the SO and SSOP demo-boards is that the SSOP demo-board incorporates the low profile 455 kHz Murata ceramic filter. It has an input and output impedance of 1.0 k . This presents a mismatch to our chips, but we have found that the overall performance is similar to that when we use the "blue" Murata filters that have the proper $1.5 \mathrm{k} \Omega$ input and output impedance.

Figure 5. NE605 SSOP Demo-board Layout (Not Actual Size)

Figure 6. NE605 SSOP Performance Graphs

HOW TO TUNE THE NE605 DEMO-BOARD

Figure 7 shows a trouble-shooting chart for the NE605. It can be used as a general guide to tune the DIP, SO, and SSOP
demo-boards. Below are some of the highlights from the trouble shooting chart that are explained in more detail.

Continued on next page
Figure 7. Trouble-shooting Chart for the NE605 Demo-board

Evaluating the NE605 SO and SSOP demo-board

*NOTE: Refer to the appropriate text section of the app. note for further details.

How to tell when a part is damaged

Since most SO and SSOP sockets hinder the maximum performance of the NE605, it is advisable to solder the packages directly to the board. By this approach, one will be able to evaluate the part correctly. However, it can be a tedious chore to switch to another part using the same layout. Therefore, to be absolutely certain that the chip is damaged, one can measure the DC voltages on the NE605. Table 1 shows the DC voltages that each pin should roughly have to be a good part.

Table 1. Approximate DC Voltages for the NE605

Pin Number	DC Voltage (V)
1	1.37
2	1.37
3	5.16
4	5.94
5	$\mathrm{~N} / \mathrm{A}$
6	$6.00\left(\mathrm{~V}_{\mathrm{CC}}\right)$
7	$\mathrm{~N} / \mathrm{A}$
8	2.00
9	2.00
10	3.49
11	1.59
12	1.59
13	1.59
14	1.65
15	$0.00(\mathrm{GND})$
16	1.60
17	1.60
18	1.60
19	1.60
20	4.87

Note: The DC voltage on Pin 5 is not specified because it can either be V_{Cc} or ground depending if the audio is muted or not (Connecting ground on Pin 5 mutes the audio on Pin 8, while V_{CC} on Pin 5 unmutes the audio).
The DC voltage on Pin 7 is not specified because its DC voltage depends on the strength of the RF signal getting to the input of the NE605. It also can be used as a stability indicator.

If any of the DC voltages are way off in value, and you have followed the trouble-shooting chart, the part needs to be changed.

RSSI Indicator

The next important highlight is using the RSSI pin as a stability indicator. With power connected to the part and no RF signal
applied to the input, the DC voltage should read 250 mV or less on Pin 7. Any reading higher than 250 mV , indicates a regeneration problem. To correct for the regeneration problem, one should check for poor layout, poor bypassing, and/or poor solder joints. Bypassing the NE605 supply line with a low equivalent series resistance (ESR) capacitor to reduce the RSSI reading can improve the 12 dB SINAD measurement by 8 dB , as found in the lab. If the regeneration problem still exists, read AN1994.

Quad tank and S-Curve

As briefly mentioned in the chart, it is important to measure the Q of the quad tank if a distortion reading of 1.8% or less cannot be measured. Recall that if the Q of the quad tank is too high for the deviation, then premature distortion will occur. However, if the Q is too low for the deviation, the audio level will be too low. The audio level coming out of the audio pin should be $140 \mathrm{mV}_{\text {RMS }}$ to 190 mV RMS.

Figure 8. Test Set-up to Measure S-Curve of the Quad Tank

If the distortion reading is too high and/or the audio level is too low, then it is important to measure and plot the S-curve of the quad tank. The test set-up used in the lab can be seen in Figure 8.
The following steps were taken to measure the S-curve for the SO and SSOP demo-boards.

Step 1. Remove the second IF ceramic filter from the demo-board.
Step 2. Connect a signal generator to the limiters input through a DC blocking capacitor.
Step 3. Connect a DC voltmeter and an oscilloscope to the audio output pin.
Step 4. Set the signal generator to a 455 kHz signal and be sure that the modulation is on ($\mathrm{RF}=455 \mathrm{kHz}$ Mod Freq $=1 \mathrm{kHz}$ Mod Level $=8 \mathrm{kHz}$). Apply this 455 Khz signal to the limiter input such that there is a sinewave on the oscilloscope screen. Adjust the quad tank for maximum sinewave amplitude on the oscilloscope or for lowest distortion. Additionally, adjust the supply input signal to the NE605 such that the 1 kHz sinewave reaches its maximum amplitude.

Figure 9. S-Curve for NE605 SO Demo-board

Figure 10. S-Curve for NE605 SSOP Demo-board

Step 5. Turn off the modulation and start taking data. Measure the Frequency vs DC voltage. Vary the frequency incrementally and measure the DC voltage coming out of the audio pin. Remember that once the modulation is turned off, the sinewave will disappear from the oscilloscope screen.
Step 6. Plot the S-curve.
Figures 9 and 10 show the S-curve measurements for the SO and SSOP demo-boards. Notice that the center of the S-curve is at 455 kHz . The overall linearity determines how much deviation is allowed before premature distortion. Since our application requires $\pm 8 \mathrm{kHz}$ of deviation, our S-curve is good because it exceeds the linear range of 447 kHz to 463 kHz .
If the Q of the quad tank needs to be lowered, a designer should put a resistor in parallel with the inductor. The lower the resistor value, the more the Q will be lowered. If the Q needs to be increased, choose a higher Q component. More information on the Quad tank can be found in the NE604A data sheet.

If the linear section of the S-curve is not centered at 455 kHz , the quad tank component values need to be recalculated. The way to determine the component values
is by using $F=\frac{1}{2 \pi \sqrt{L C}}$ where F should be
the IF frequency. In the case of the demo-boards, the $\mathrm{IF}=455 \mathrm{kHz}$.

Front End Tuning

The best way to tell if the front end of the NE605 is properly matched is to use a network analyzer in a S11 setting. The lower the dip, the greater the absorption of the wanted frequency. Figures 11 and 12 show the S11 dip for the front end matching of the SO and SSOP demo-boards, respectively.
We have found in the lab that a -8 dB to -10 dB dip is usually sufficient to get the maximum signal transfer such that a good 12dB SINAD reading is met. The front end circuit uses a tapped-C impedance transformation circuit which matches the 50Ω source with the input impedance of the mixer.

In the process of matching the front end, we have found that the ratio of the two capacitors play an important role in transferring the signal from the source to the mixer input. There should be approximately a $4: 1$ or $5: 1$ ratio.

Figure 11. S11 Front-End Response for SO Demo-board

Figure 12. S11 Front-End Response for SSOP Demo-board

Checking the Conversion Gain of the Mixer

Once the front end has been properly matched, a designer should check the conversion gain if there are problems with the SINAD measurement. Be sure to turn off the modulation when making this measurement.

The method of measuring conversion gain on the bench is fairly simple. For our demo-boards, measure the strength of the 455 kHz signal on the matching output network of the mixer with a FET probe. Then measure the 45 MHz RF input signal on the matching input network of the mixer. Subtract the two numbers and the measured conversion gain should be around 13 dB . Make sure that the input and output matching networks for the mixer have the same impedance since we are measuring voltage gain to get power gain ($\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$). Of course this conversion gain value will change if there is a different RF input. In AN1994, Figure 16 shows how the conversion gain varies with different RF input frequencies.

Checking the gains in the IF Section

If the IF section does not give 100 dB of gain, then the -118 dBm SINAD measurement cannot be achieved. In fact some symptoms
of low or no audio level can be due to the IF section.

One way of checking the function of the IF section is to check the gain of the IF amplifier and the IF limiter. The IF amplifier gain should be around 40 dB and the IF limiter gain should be around 60 dB .

To check this, connect a FET probe to the output of the amplifier. Apply a strong input signal with no modulation and then slowly lower the input signal and wait for the output of the amplifier to decrease. Measure the strength of the output signal in dB and then subtract from it the strength of the input signal in dB . This resulting number indicates the maximum gain of that section. (This method assumes matched input and output impedance.)
If a designer finds one of the sections with lower gain, then one area to check are the IF bypass capacitors. Be sure that the IF bypass capacitors have a good solid connection to the pad. It was also found in the lab that the RSSI stability reading improves when the IF bypass is properly installed.

QUESTION \& ANSWER SECTION

Q: When I measure the bandpass response of the IF filters on the SSOP demo-board, it appears to have a little hump compared to the SO demo-board which has a flat filter response. Why is there a difference in the bandpass response when the SO and SSOP 605 chips are similar?

A: The answer has to do with the ceramic filters and not the package of the NE605. The reason why the SO demo-board has a flat bandpass response is because it is matched properly with the filter. The SSOP demo board uses the new Murata low profile ceramic 455 kHz filter. Unfortunately, the input and output impedance is now $1 \mathrm{k} \Omega$ instead of $1.5 \mathrm{k} \Omega$. This presents an impedance mismatch which creates the hump to occur in the bandpass response. But one does not have to worry too much about this response because the situation does not affect the overall performance that much. Additionally, the 12 SINAD measurement is similar whether using the "blue" ($1.5 \mathrm{k} \Omega$) or "white" (1.0k Ω) Murata filters.

If you are worried about this, then switch to the correct "blue" Murata filters. The SSOP package will work with those filters as well.

Evaluating the NE605 SO and SSOP demo-board

But if your design has strict height requirements, the white filters are a good solution.

Q: How much LO signal do you see at the RF port?

A: The worst LO leakage seen at the RF input on the SO and SSOP demo-board is $-40 \mathrm{dBm} / 441 \mathrm{mV}$. This seems to vary with the LO level into the base of the on board transistor. This measurement will also vary with different LO frequencies. The NE605 SO and SSOP demo-boards have a LO frequency of 44.545 MHz . Since there are so many variables, a designer needs to measure his/her own board for an accurate LO-RF isolation measurement.

There are several ways to improve the LO leakage from getting to the antenna. One can choose a higher IF frequency and tighten
up the bandwidth of the front-end filter. Another solution is to add a low noise amplifier between the antenna and the mixer, and/or design a double conversion receiver and make sure the 1st mixer has a LO-RF isolation which meets the system specifications.
Q: On the SO and SSOP demo-board, the LO oscillator circuit is tunable with a variable capacitor. Is this a requirement?

A: No. The variable capacitor is used to tune the LO freq., but one can use a fixed value. The advantage of going with a fixed value capacitor is that it is a cheaper component part and there is no need for tuning. The only advantage with a tunable LO is that a designer can optimize the performance of the receiver.

Q: I know that the IF bandwidth of the NE605 allows me to build an IF of 21.4 MHZ . Will the NE605 SSOP package perform just as good at 21.4 MHz IF as it does at 455 kHz ?

A: Although we have not worked with NE605 SSOP at 21.4MHZ, we believe that it would be difficult to get a 12 dB SINAD measurement at -120 dBm . The wavelengths are much smaller at 21.4 MHz than 455 kHz . Since the wavelengths are smaller, there is a higher probability of regeneration occurring in the IF section. Therefore, a designer will probably have to reduce the gain in the IF section. Additionally, the SSOP package has pins that are physically closer together than with the normal type of packaged parts which can contribute to the unstable state with higher IF frequencies.

DESCRIPTION

The NE/SA606 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The NE/SA606 is available in 20 -lead dual-in-line plastic, 20-lead SOL (surface-mounted small outline large package) and 20 -lead SSOP (shrink small outline package).
The NE606 was designed for portable communication applications and will function down to 2.7V. The RF section is similar to the famous NE605. The audio and RSSI outputs have amplifiers with access to the feedback path. This enables the designer to level adjust the outputs or add filtering.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 90 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA606 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Wireless systems
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receiver
- Single conversion VHF receivers

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE606N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE606D
20-Pin Plastic SSOP (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE606DK
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA606N
20-Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA606D
20-Pin Plastic SSOP (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA606DK

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Single supply voltage	7	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE606	0 to +70	${ }^{\circ} \mathrm{C}$
	SA606	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	$\begin{array}{ll}\text { Thermal impedance } & \text { D package } \\ & \text { DK package } \\ & \text { N package }\end{array}$	$\begin{gathered} 90 \\ 117 \\ 75 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{N}$

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA606			
			MIN	TYP	MAX	
v_{cc}	Power supply voltage range		2.7		7.0	V
1 cc	DC current drain			3.5	4.2	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} \Omega$ and R18 $=3.3 \mathrm{k} \Omega$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA606			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=220 \mathrm{mV} \mathrm{R}_{\text {RSS }}$)						
f_{IN}	Input signal frequency			150		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			6.2		dB
	Third-order input intercept point (50 Ω source)	$\begin{aligned} & f 1=45.0 ; f 2=45.06 \mathrm{MHz} \\ & \text { Input RF level }=-52 \mathrm{dBm} \end{aligned}$		-9		dBm
	Conversion power gain	Matched 14.5dBV step-up	13.5	17	19.5	dB
		50Ω source		+2.5		dB
,	RF input resistance	Single-ended input		8		$\mathrm{k} \Omega$
	RF input capacitance			3.0	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.5		k Ω
IF section						
	IF amp gain	50Ω source		44		dB
	Limiter gain	50Ω source		58		dB

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE606			
			MIN	TYP	MAX	
	Input limiting -3dB, $\mathrm{R}_{17 \mathrm{a}}=2.4 \mathrm{k}, \mathrm{R}_{17 \mathrm{~b}}=3.3 \mathrm{k}$	Test at Pin 18		-109		dBm
	AM rejection	80\% AM 1kHz		45		dB
	Audio level	Gain of two (2kS AC load)	70	114	160	mV
	SINAD sensitivity	IF level-110dBm		17		dB
THD	Total harmonic distortion		-35	-50		dB
S / N	Signal-to-noise ratio	No modulation for noise		62		dB
$-{ }^{-}$IF RSSI output, $\mathrm{R}_{9}=2 \mathrm{k} \Omega^{1}$		IF level $=-118 \mathrm{dBm}$		0.3	. 80	V
		IF level $=-68 \mathrm{dBm}$. 70	1.1	1.80	V
		IF level $=-23 \mathrm{dBm}$	1.20	1.8	2.50	V
	RSSI range			90		dB
	RSSI accuracy			± 1.5		dB
	IF input impedance	Pin 18	1.3	1.5		k Ω
	IF output impedance	Pin 16		0.3		k Ω
	Limiter input impedance	Pin 14	1.3	1.5		k Ω
	Limiter output impedance	Pin 11		0.3		$\mathrm{k} \Omega$
	Limiter output voltage	Pin 11		130		$\mathrm{mV}_{\text {RMS }}$
RF/IF section (int LO)						
	Audio level	$3 \mathrm{~V}=\mathrm{V}_{\text {cc }}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		240		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$3 \mathrm{~V}=\mathrm{Vcc}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		2.2		V
	System SINAD sensitivity	RF level $=-117 \mathrm{dBm}$		12		dB

NOTE:

1. The generator source impedance is 50Ω, but the $N E / S A 606$ input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA606 input (Pin 18) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA606 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in L C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a

455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(\mathrm{v})$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $2 \mathrm{k} \Omega$ with a rail-to-rail output.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.
NOTE: $d B(v)=20 \log V_{\text {OUT }} N_{I N}$

Figure 1. NE/SA606 45MHz Test Circuit (Relays as shown)

Application Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Caramic
C9	$100 \mathrm{nF}{ }^{ \pm} 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

Figure 2. NE/SA606 45MHz Application Circuit

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a $\mathbf{6 k H z}$ deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below 10k Ω.

Figure 4. Icc vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-\mathrm{V}_{\mathrm{cc}}=\mathbf{3 V}$

Figure 17. NE/SA606D SOL Board Layout (2X Actual Size* - For Reference Use Only)

Low-voltage high performance mixer FM IF system

Figure 18. NE/SA606N DIP Board Layout (Actual Size* - For Reference Use Only)

DESCRIPTION

The NE/SA616 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The NE/SA616 is available in 20 -lead dual-in-line plastic, 20-lead SOL (surface-mounted small outline large package) and 20 -lead SSOP (shrink small outline package).
The NE616 was designed for portable communication applications and will function down to 2.7V. The RF section is similar to the famous NE615. The audio and RSSI outputs have amplifiers with access to the feedback path. This enables the designer to adjust the output levels or add filtering.

FEATURES

- Low power consumption: 3.5 mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102 dB of IF Amp/Limiter gain
- 2 MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 80 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA616 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Wireless systems
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receiver
- Single conversion VHF receivers

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE616N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE616D
20-Pin Plastic SSOP (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE616DK
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA616N
20-Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA616D
20-Pin Plastic SSOP (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA616DK

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {CC }}$	Single supply voltage	7	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TA	Operating ambient temperature range NE616	0 to +70	${ }^{\circ} \mathrm{C}$
	SA616	-40 to +85	${ }^{\circ} \mathrm{C}$
θ_{JA}	$\begin{array}{ll}\text { Thermal impedance } & \\ & \text { D package } \\ & \text { DK package } \\ & \text { N package }\end{array}$	$\begin{gathered} 90 \\ 117 \\ 75 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Low-voltage high performance mixer FM IF system

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA616			
			MIN	TYP	MAX	
V cc	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	5.0	mA

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} \Omega$ and $\mathrm{R} 18=3.3 \mathrm{k} \Omega$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE616			
			MIN	TYP	MAX	
	Input limiting -3dB, $\mathrm{R}_{17 \mathrm{a}}=2.4 \mathrm{k}, \mathrm{R}_{17 \mathrm{~b}}=3.3 \mathrm{k}$	Test at Pin 18		-105		dBm
	AM rejection	80\% AM 1kHz		40		dB
	Audio level	Gain of two ($2 \mathrm{k} \Omega \mathrm{AC}$ load)	60	114		mV
	SINAD sensitivity	IF level -110dBm		13		dB
THD	Total harmonic distortion		-30	-45		dB
S/N	Signal-to-noise ratio	No modulation for noise		62		dB
		IF level $=-118 \mathrm{dBm}$		0.3	. 80	V
		IF level $=-68 \mathrm{dBm}$. 70	1.1	2	V
		IF level $=-23 \mathrm{dBm}$	1.0	1.8	2.50	V
	RSSI range			80		dB
	RSSI accuracy			± 2		dB
	IF input impedance	Pin 18	1.3	1.5		k Ω
	IF output impedance	Pin 16		0.3		k Ω
	Limiter input impedance	Pin 14	1.3	1.5		k Ω
	Limiter output impedance	Pin 11		0.3		k Ω
	Limiter output voltage	Pin 11		130		$\mathrm{mV}_{\text {RMS }}$
RF/IF section (int LO)						
	Audio level	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		240		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$3 \mathrm{~V}=\mathrm{V}_{\text {cc }}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		2.2		V
	System SINAD sensitivity	RF level $=-117 \mathrm{dBm}$		12		dB

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA616 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA616 input (Pin 18) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA616 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a

455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an $A C$ load as low as $2 \mathrm{k} \Omega$ with a rail-to-rail output.
A \log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

NOTE: $d B(v)=20 \log V_{\text {OUT }} V_{\text {IN }}$

Low-voltage high performance mixer FM IF system

Figure 1. NE/SA616 45MHz Test Circuit (Relays as shown)

Application Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C12	$2.2 \mu \mathrm{~F}_{ \pm 10 \%}$ Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

Figure 2. NE/SA616 45MHz Application Circuit

Low-voltage high performance mixer FM IF system

Figure 3. NE/SA616 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. $I_{\text {cc }}$ vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level ($+25^{\circ} \mathrm{C}$)

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Low-voltage high performance mixer FM IF system

Figure 16. NE/SA616DK SSOP Board Layout (2X Actual Size* - For Reference Use Only)

Figure 17. NE/SA616D SOL Board Layout (2X Actual Size* - For Reference Use Only)
*Applies to Stand-Alone data sheets only.

Figure 18. NE/SA616N DIP Board Layout (Actual Size* - For Reference Use Only)

DESCRIPTION

The NE/SA607 is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The NE/SA607 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted miniature package) and 20 -lead SSOP package.
The NE607 was designed for portable communication applications and will function down to 2.7V. The RF section is similar to the famous NE605. The audio output has an internal amplifier with the feedback pin accessible. The RSSI output is buffered. The NE607 also has an extra limiter output. This signal is buffered from the output of the limiter and can be used to perform frequency check. This is accomplished by comparing a reference frequency with the frequency check signal using a comparator to a varactor or PLL at the oscillator inputs.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 90 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA607 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Buffered frequency check output
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200 V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Narrow band cellular applications (NAMPS/ NTACS)
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receivers
- Single conversion VHF receivers
- Wireless systems

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
$20-$ Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE607N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE607D
20-Pin Plastic SSOP (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE607DK
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA607N
$20-$ Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA607D
$20-$ Pin Plastic SSOP (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA607DK

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {CC }}$	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE607	0 to +70	${ }^{\circ} \mathrm{C}$
	SA607		
	Thermal impedance	-40 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA607			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	4.2	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} ; \mathrm{R} 18$ $=3.3 \mathrm{k} ;$ RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C -message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA607 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA607 input (Pin 18) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA607 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of
the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(\mathrm{v})$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $2 \mathrm{k} \Omega$ with a rail-to-rail output.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal is buffered through an internal unity gain op amp. The frequency check pin provides a buffered limiter output. This is useful for implementing an AFC (Automatic Frequency Check) function. This same output can also be used in conjunction with limiter output (Pin 11) for demodulating FSK (Frequency Shift Keying) data. Both pins are of the same amplitude, but 180° out of phase.

NOTE: $d B(v)=20 \log V_{\text {OUT }} V_{\text {IN }}$

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)
C12	$2.2 \mu \mathrm{~F}$
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm \mathbf{1 0 \%}$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C26	$0.1 \mu \mathrm{~F} \pm 10 \%$ Monolithic Ceramic
C27	$2.2 \mu \mathrm{~F}$
FIt 1	Ceramic Filter Murata SFG455A3 or equiv
FIt 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	455 kHz (Ce = 180pF) Toko RMC-2A6597H
L1	$147-160 \mathrm{nH}$ Coilcraft UNI-10/142-04J08S
L2	$3.3 \mu \mathrm{H}$ nominal
	Toko 292CNS-T1046Z
X1	44.545 MHz Crystal ICM4712701
R9	$2 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film
R10	$8.2 \mathrm{k} \Omega \pm 1 \%$
R11	$10 \mathrm{k} \Omega \pm 1 \%$
R12	$2 \mathrm{k} \Omega \pm 1 \%$
R14	$10 \mathrm{k} \Omega \pm 1 \%$
R17	$2.4 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R18	$3.3 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R19	$16 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

Figure 1. NE/SA607 45MHz Test Circult (Relays as shown)

Application Component List

C1	100pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	390pF NPO Ceramic	C25	100nF $\pm 10 \%$ Monolithic Ceramic
C5	$100 \mathrm{nF}+10 \%$ Monolithic Ceramic	C26	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	C27	2.2 $\mu \mathrm{F} \pm 10 \%$ Monolithic Ceramic
C7	1nF Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	IFT 1	455 kHz ($\mathrm{Ce}=180 \mathrm{pF}$) Toko RMC-2A6597H
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	L1	147-160nH Coilcraft UNI-10/142-04J08S
C12	$\begin{aligned} & 2.2 \mu \mathrm{~F} \pm 10 \% \text { Ceramic } \\ & 100 \mathrm{nF} \pm 10 \% \text { Monolithic Ceramic } \end{aligned}$	L2	$0.8 \mu \mathrm{H}$ nominal Toko 292CNS-T1038Z
C15	10pF NPO Ceramic	X1	44.545MHz Crystal ICM4712701
C17	100nF $\pm 10 \%$ Monolithic Ceramic	R5	Not Used in Application Board (see Note 8)
C18	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic	$R 17$	2.4k ${ }^{+5 \% 1 / 4 \mathrm{~W}}$ Carbon Composition
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	$\begin{aligned} & \mathbf{R} 18 \\ & \mathbf{R 1 9} \end{aligned}$	$3.3 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition $16 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

Figure 2. NE/SA607 45MHz Application Circuit

Figure 3. NE/SA607 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 F or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. I_{cc} vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Low voltage high performance mixer FM IF system

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level ($+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Low voltage high performance mixer FM IF system

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Dlstortion, AM Rejection and Nolse vs Temperature

Low voltage high performance mixer FM IF system

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-V_{C C}=3 V$

Low voltage high performance mixer FM IF system

DESCRIPTION

The NE/SA617 is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The NE/SA617 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted miniature package) and 20 -lead SSOP package.
The NE617 was designed for portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The audio output has an internal amplifier with the feedback pin accessible. The RSSI output is buffered. The NE617 also has an extra limiter output. This signal is buffered from the output of the limiter and can be used to perform frequency check. This is accomplished by comparing a reference frequency with the frequency check signal using a comparator to a varactor or PLL at the oscillator inputs.

FEATURES

- Low power consumption: 3.5mA typical at 3V
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 80 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA617 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Buffered frequency check output
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Narrow band cellular applications (NAMPS/ NTACS)
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receivers
- Single conversion VHF receivers
- Wireless systems

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
20-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE617N
20-Pin Plastic SOL (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE617D
20-Pin Plastic SSOP (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE617DK
20-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA617N
20-Pin Plastic SOL (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA617D
20-Pin Plastic SSOP (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA617DK

Low-voltage high performance mixer FM IF system

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {CC }}$	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating ambient temperature range NE617	0 to +70	${ }^{\circ} \mathrm{C}$
	SA617	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	D package DK package N package	90 117 75

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 V, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA617			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7		7.0	V
Icc	DC current drain			3.5	5.0	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. $\quad \mathrm{RF}$ frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} ; \mathrm{R} 18$ $=3.3 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA617			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=220 \mathrm{mV} \mathrm{R}_{\text {RMS }}$)						
$\mathrm{fiN}^{\text {in }}$	Input signal frequency			150		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			6.8		dB
	Third-order input intercept point (50 Ω source)	$\begin{aligned} & f 1=45.0 ; f 2=45.06 \mathrm{MHz} \\ & \text { Input RF Level }=-52 \mathrm{dBm} \end{aligned}$		-9		dBm
	Conversion power gain	Matched 14.5dBV step-up	11.0	17		dB
		50Ω source		+2.5		dB
	RF input resistance	Single-ended input		8		$\mathrm{k} \Omega$
	RF input capacitance			3.0	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.5		k Ω
IF section						
	IF amp gain	50 2 source		44		dB
	Limiter gain	50 2 source		58		dB
	Input limiting -3dB, $\mathrm{R}_{17}=2.4 \mathrm{k}$	Test at Pin 18		-105		dBm
	AM rejection	80\% AM 1kHz		40		dB
	Audio level	Gain of two (2kS AC load)	60	114		mV
	SINAD sensitivity	RF level -110dB		13		dB
THD	Total harmonic distortion		-30	-45		dB
S / N	Signal-to-noise ratio	No modulation for noise		62		dB
	IF RSSI output, $\mathrm{R}_{9}=2 \mathrm{k} \Omega^{1}$	IF level $=-118 \mathrm{dBm}$		0.3	0.8	V
		IF level $=-68 \mathrm{dBm}$. 70	1.1	2.0	V
		IF level $=-23 \mathrm{dBm}$	1.0	1.8	2.5	V
	RSSI range			80	-	dB
	RSSI accuracy			± 2.0		dB
	IF input impedance		1.3	1.5		k Ω
	IF output impedance			0.3		k Ω
	Limiter input impedance		1.30	1.5		k Ω
	Limiter output impedance	(Pin 11)		0.3		k Ω
	Limiter output voltage	(Pin 11)		130		$\mathrm{mV}_{\text {RMS }}$
RF/IF section (int LO)						
	Audio level	$3 \mathrm{~V}=\mathrm{V}$ cc, , RF level $=-27 \mathrm{dBm}$		240		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		2.2		V
	System SINAD sensitivity	RF level $=-117 \mathrm{dBm}$		12		dB

NOTE:

1. The generator source impedance is 50Ω, but the $N E / S A 617$ input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA617 input (Pin 18) which is about 21dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA617 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of
the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(\mathrm{v})$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $2 \mathrm{k} \Omega$ with a rail-to-rail output.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal is buffered through an internal unity gain op amp. The frequency check pin provides a buffered limiter output. This is useful for implementing an AFC (Automatic Frequency Check) function. This same output can also be used in conjunction with limiter output (Pin 11) for demodulating FSK (Frequency Shift Keying) data. Both pins are of the same amplitude, but 180° out of phase.
NOTE: $\mathrm{dB}(\mathrm{v})=20 \log \mathrm{~V}_{\text {OUT }} / V_{\text {IN }}$

Figure 1. NE/SA617 45MHz Test Circuit (Relays as shown)

Application Component List

C1	100pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	390pF NPO Ceramic	C25	$100 \mathrm{nF} \pm \mathbf{1 0 \%}$ Monolithic Ceramic
C5	100nF $\pm 10 \%$ Monolithic Ceramic	C26	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic	C27	$\mathbf{2 . 2 \mu F} \pm 10 \%$ Monolithic Ceramic
C7	1nF Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C9	$100 n \mathrm{~F} \pm 10 \%$ Monolithic Ceramic	IFT 1	455 kHz ($\mathrm{Ce}=180 \mathrm{pF}$) Toko RMC-2A6597H
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	L1	147-160nH Coilcraft UNI-10/142-04J08S
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Ceramic $100 \mathrm{nF}+10 \%$ Monolith	$L 2$	$0.8 \mu \mathrm{H}$ nominal Toko 292CNS-T1038Z
C15	10pF NPO Ceramic	X1	44.545MHz Crystal ICM4712701
C17	100nF $\pm 10 \%$ Monolithic Ceramic	R5	Not Used in Application Board (see Note 8)
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R17	$2.4 \mathrm{k} \Omega \pm 5 \%$ 1/4W Carbon Composition
C21	100nF $\pm 10 \%$ Monolithic Ceramic	$\begin{aligned} & \text { R18 } \\ & \text { R19 } \end{aligned}$	$3.3 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition $16 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

Figure 2. NE/SA617 45MHz Application Circuit

Figure 3. NE/SA617 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Low-voltage high performance mixer FM IF system

Figure 4. I_{cc} vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Low-voltage high performance mixer FM IF system

Figure 11. Sensitivity vs RF Level (Temperature $\mathbf{8 5}^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

FEATURES

- Fully balanced 4-stage limiting IF amplifier
- Symmetrical quadrature demodulator
- Field-strengh indication output for 1 mA ammeter
- Detune detector for side response and noise attenuation
- Detune voltage output
- Internal muting circuit
- 0° and 180° AF output signals
- Reference voltage output
- Electronic smoothing of the supply voltage

GENERAL DESCRIPTION
The TDA1576T is a monolithic integrated FM-IF amplifier circuit for use in mono and stereo FM-receivers of car radios or home sets.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range (pin 1)	7.5	8.5	15	V
I_{P}	supply current	10	16	23	mA
$\mathrm{V}_{\text {ilF }}$	input sensivity (RMS value) $-3 d B$ before limiting $\begin{aligned} & \mathrm{S} / \mathrm{N}=26 \mathrm{~dB} \\ & \mathrm{~S} / \mathrm{N}=46 \mathrm{~dB} \end{aligned}$	14	$\begin{aligned} & 22 \\ & 10 \\ & 55 \end{aligned}$	35	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$V_{\text {OAF }}$	AF output signal (RMS value)	-	67	-	mV
THD	total harmonic distortion with double resonant circuits	-	0.02	-	\%
S/N	signal-to-noise ratio ($\mathrm{V}_{\mathrm{i}}>1 \mathrm{mV}$)	-	72	-	dB
$\alpha_{\text {AM }}$	AM suppression	-	50	-	dB
RR	ripple rejection ($f=100 \mathrm{~Hz}$)	43	48	-	dB
I_{15}	maximum indicator output current	-	-	2	mA
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-30	-	+80	${ }^{\circ} \mathrm{C}$

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA1576T	20	mini-pack	plastic	SOT163A

Fig. 1 Block diagram and application circuit.

FM/IF amplifier/demodulator circuit

PINNING

SYMBOL	PIN	DESCRIPTION
V_{P}	1	positive supply voltage
$C_{P S}$	2	smoothing capacitor of power supply
IF1	3	IF signal to resonant circuit
RES1	4	resonant circuit
FMON	5	FM-ON, standby switch
RES2	6	resonant circuit
IF2	7	IF signal to resonant circuit
$V_{\text {O AF1 }}$	8	AF output voltage (00 phase)
V_{0} AF2	9	AF output voltage (1800 phase)
n.c.	10	not connected
n.c.	11	not connected
V_{i} det	12	detune detector input for external audio reference
$V_{\text {o det }}$	13	detune detector output voltage
$V_{\text {ref }}$	14	reference voltage output
V_{F}	15	level output for field-strengh
$V_{\text {Fo }}$	16	zero adjust for field-strengh
V_{i} IF	17	FM-IF input signal
IN2	18	input 2 of differential IF amplifier
IFLV	19	IF input level
GND	20	ground (0 V)

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage (pin 1)	0	15	V
$\mathrm{~V}_{2,5,16}$	voltage on pins 2,5 and 16	0	$\mathrm{~V}_{\mathrm{P}}$	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	0	450	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature range	-55	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature range	-30	+85	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$R_{\text {th } \mathrm{j} \text {-a }}$	from junction to ambient in free air	-	85	KNW

PIN CONFIGURATION

	MEH140		
$v_{p}{ }_{1}$	TDA1576T	20	GND
$\mathrm{C}_{\text {PS }} 2$		19	IFLV
IF1 3		18	IN2
RES1 4		17	$V_{i I F}$
MON 5		16	V_{F} 。
RES2 6		15	V_{F}
1F2 7		14	$V_{\text {ret }}$
$\mathrm{V}_{\text {OAF }}{ }^{8}$		13	V_{0} det
$\mathrm{V}_{\text {OAF2 }} 9$		12	$V_{\text {idet }}$
n.c. 10		11	n.c.

Fig. 2 Pin configuration.

CHARACTERISTICS

$V_{P}=8.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}} \mathrm{ZF}=10.7 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=60 \Omega ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$ with $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz} ; 50 \mu$ s de-emphasis (C8-9 $=6.8 \mathrm{nF}$); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and measurements taken in Fig.1, unless otherwise specified. The demodulator circuit is adjusted at minimum second harmonic distortion for $\mathrm{V}_{\mathrm{i}} \mathrm{ZF}=1 \mathrm{mV}$ and a deviation $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range (pin 1)		7.5	8.5	15	V
I_{P}	supply current	$V_{5}=V_{9}=V_{13}=0$	10	16	23	mA

Reference voltage

$\mathrm{V}_{\text {ref }}$	reference voltage (pin 14)	$\mathrm{I}_{14}=-1 \mathrm{~mA}$	-	4.9	-	V
$\Delta \mathrm{V}_{\text {ref }}$	reference voltage dependence on temperature	$\Delta \mathrm{V}_{14} / \mathrm{V}_{14} * \Delta \mathrm{~T}$	-	0.3	-	$\% / \mathrm{K}$
I_{14}	maximum output current	short-circuit current	4	6	7.5	mA
R_{14}	output resistor $\left(\Delta \mathrm{V}_{14} / \Delta \mathrm{I}_{14}\right)$	$\mathrm{I}_{14}<1.2 \mathrm{~mA}$	-	60	150	Ω

IF amplifier

$V_{\text {IIF }}$	input sensivity (RMS value, pin 17)	-3 dB before limiting	14	22	35	$\mu \mathrm{~V}$
R_{17-18}	input resistance	$\mathrm{V}_{\text {i IF }}=200 \mathrm{mV}(\mathrm{RMS})$	10	-	-	$\mathrm{k} \Omega$
C_{17-18}	input capacitance	$\mathrm{V}_{\mathrm{iIF}}=200 \mathrm{mV}(\mathrm{RMS})$	-	5	-	pF
$\mathrm{V}_{\text {IF }}$	output signal at pins 3 and 7 (peak-to-peak value)	$\mathrm{Z}_{3,7}=10 \mathrm{pF} / / 1 \mathrm{M} \Omega$	610	680	750	mV
R_{3-7}	output impedance		200	250	300	Ω

Demodulator

R_{4-6}	input resistance		20	30	40	$\mathrm{k} \Omega$
C_{4-6}	input capacitance		-	1	2.5	pF
$\mathrm{R}_{8,9}$	output impedance		2.9	3.7	4.5	$\mathrm{k} \Omega$
$\mathrm{V}_{8,9}$	DC offset voltage on output pins at $\mathrm{V}_{4-6}=0$	$\mathrm{V}_{5}>3 \mathrm{~V}$ or $\mathrm{V}_{3-7}=0$ or $\mathrm{V}_{13}<0.3 \mathrm{~V}$	-	0	± 100	mV
$\Delta \mathrm{V} / \Delta \varphi$	demodulator efficiency demodulator efficiency dependent on supply voltage (note 1)	$\Delta \mathrm{V}_{8-9} / \Delta \varphi$				
K		-	40	-	$\mathrm{mV} / 0$	
$\mathrm{~V} / \mathrm{V}$	DC voltage ratio	$\mathrm{V}_{8+} \mathrm{V}_{9} / 2 * \mathrm{~V}_{2}$	0.653	0.667	0.680	$\mathrm{~V} / \mathrm{V}$
$\Delta \mathrm{V} / \Delta \mathrm{T}$	dependence on temperature	$\Delta\left(\mathrm{V}_{8}+\mathrm{V}_{9} / 2 * \mathrm{~V}_{2}\right) / \Delta \mathrm{T}$	-	10^{-5}	-	$1 / \mathrm{K}$

Field-strengh output

V_{15}	output voltage (Fig.4)	$\mathrm{V}_{\text {i IF }}=0$	0	0.1	0.25	V
		$\mathrm{~V}_{\mathrm{i} \text { IF }}=1 \mathrm{mV}(\mathrm{RMS})$	1.1	1.5	1.9	V
	$\mathrm{~V}_{\mathrm{i} \text { IF }}=250 \mathrm{mV}(\mathrm{RMS})$	3.2	3.6	4.1	V	
S	control steepness	Fig.4	-	0.85	-	$\mathrm{V} / \mathrm{dec}$
R_{15}	output resistance		-	150	200	Ω
$\Delta \mathrm{~V} / \Delta \mathrm{T}$	dependence on temperature	$\mathrm{V}_{\text {i IF }}=\Delta \mathrm{V}_{15} /\left(\Delta \mathrm{T}_{*} \mathrm{~V}_{15}\right)$	-	0.3	-	$\% / \mathrm{K}$
I_{15}	stand-by operational cut-off current	$\mathrm{V}_{5} \geq 3 \mathrm{~V} ; \mathrm{V}_{15}=0$ to 5 V	-	-	10	$\mu \mathrm{~A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero level adjustment						
V_{16}	internal bias voltage		-	260	-	mV
R_{16}	input resistance		-	19	-	$\mathrm{k} \Omega$
S	control steepness	$\begin{aligned} & V_{i 1 F}=100 \mathrm{mV} ; \\ & A=\Delta V_{15} / \Delta V_{16} \\ & \hline \end{aligned}$	0.87	1.0	1.2	VN
Detuning detector						
I_{12}	input bias current		-	20	100	nA
R_{12}	input resistance (Fig.5)	$5 \mathrm{~V} / \Delta \mathrm{l}_{12}$	6	30	-	$\mathrm{M} \Omega$
$\mathrm{V}_{13} \mathrm{~V}_{14}$	output voltage ratio for $\Delta \varphi=\varphi\left(\right.$ pins 3-7) $-\varphi\left(\right.$ pins 4-6) -90°; (Fig.6) $\begin{aligned} & \Delta \varphi=9.2^{\circ}(43 \mathrm{kHz}), \mathrm{Q}=20 \\ & \Delta \varphi=3.5^{\circ}(16 \mathrm{kHz}), \mathrm{Q}=20 \\ & \Delta \varphi=14^{\circ}(65 \mathrm{kHz}), \mathrm{Q}=20 \end{aligned}$	$v_{1}=v_{2}=7.5 \mathrm{~V}$ $\mathrm{R}_{13-14}=10 \mathrm{k} \Omega$; pins 9 and 12 short-circuit $\begin{aligned} & V_{9,12}=334 \mathrm{mV} \\ & V_{9,12}=138 \mathrm{mV} \\ & V_{9,12}=501 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.75 \\ & 0.335 \\ & \hline \end{aligned}$	0.5 0.8 0.345	$\begin{aligned} & 0.55 \\ & 0.85 \\ & 0.355 \end{aligned}$	VN VN VN
l_{13}	maximum output current (Fig.7)	$\mathrm{V}_{13}=6 \mathrm{~V}$	0.4	0.5	0.6	mA
	cut-off current	$\mathrm{V}_{13}=2.5 \mathrm{~V} ; \mathrm{V}_{9,12}=0$	-	\cdot	-100	nA
Internal audio attenuation						
$\mathrm{V}_{13} \mathrm{~V}_{14}$	output voltage ratio (Fig.8) for $\alpha=1 \mathrm{~dB}$ for $\alpha=7.2 \mathrm{~dB}$ for $\alpha \geq 40 \mathrm{~dB}$	$\alpha=$ attenuation factor	$\begin{aligned} & 0.11 \\ & 0.095 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.12 \\ 0.1 \\ 0.06 \\ \hline \end{array}$	$\begin{aligned} & 0.13 \\ & 0.105 \end{aligned}$	
I_{13}	input current	$\mathrm{V}_{13} / \mathrm{V}_{13} \leq 0.1$	-	-	-225	nA
Stand-by switch						
V_{5}	input voltage for FM -on input voltage for FM -off linear range (Fig 9)	$\begin{aligned} & V_{3,7} / V_{3,7(\text { max })}=0.9 \\ & V_{19}=0.3 V \end{aligned}$	2.4	$\begin{array}{\|l\|} \hline 2.5 \\ 2.9 \\ 350 \end{array}$	3	$\begin{aligned} & \hline V \\ & v \\ & m V \end{aligned}$
I_{5}	input current	$\begin{aligned} & V_{5}=0 \text { to } 2 \mathrm{~V} \\ & V_{5}=3.5 \text { to } 15 \mathrm{~V} \end{aligned}$			$\begin{array}{\|l} \hline-100 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$V_{5} / \Delta T$	temperature dependence	FM-on ($3.5 \mathrm{~V}_{\mathrm{BE}}$) FM-off ($5 \mathrm{~V}_{\mathrm{BE}}$)		$\begin{array}{\|l} \hline 7 \\ 10 \end{array}$		$\begin{aligned} & \mathrm{mV} / \mathrm{K} \\ & \mathrm{mV} / \mathrm{K} \end{aligned}$
Supply voltage smoothing						
V_{1-2}	internal voltage drop	proportional to $V_{1}-3 V_{B E}$	80	210	400	mV
R_{1-2}	internal resistor		5.8	8.3	10.8	k Ω

OPERATING CHARACTERISTICS

$V_{P}=8.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}} \mathrm{ZF}=10.7 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=60 \Omega ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$ with $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz} ; 50 \mu \mathrm{~s}$ de-emphasis $\left(\mathrm{C}_{8-9}=6.8 \mathrm{nF}\right)$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and measurements taken in Fig.1, unless otherwise specified. The demodulator circuit is adjusted at minimum second harmonic distortion with $\mathrm{V}_{\mathrm{i}} \mathrm{ZF}=1 \mathrm{mV}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT

IF amplifier and demodulator

$V_{\text {i IF }}$	input sensivity (RMS value, pin 17) input signal for $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$ input signal for $S / N=46 \mathrm{~dB}$	-3 dB before AF limiting $\begin{aligned} & f=250 \text { to } 15000 \mathrm{~Hz} \\ & \mathrm{f}=250 \text { to } 15000 \mathrm{~Hz} \end{aligned}$	14	$\begin{aligned} & 22 \\ & 10 \\ & 55 \end{aligned}$	35	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
V_{0} AF	output signal at (RMS value, pins 8 and 9)		60	67	75	mV
$V_{0} N$	noise voltage for $V_{i \mid F}=0$ (RMS value, pins 8 and 9) weighted noise voltage according to	$\begin{aligned} & R_{S}=300 \Omega \\ & f=250 \text { to } 15000 \mathrm{~Hz} \\ & \text { DIN } 45405 \end{aligned}$	-	$\begin{aligned} & 900 \\ & 2 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
S/N	signal-to-noise ratio Fig. 3 (pin 8 and 9)	$\mathrm{V}_{\text {i IF }}=1 \mathrm{mV}$ (RMS)	-	72	-	dB
$\alpha_{A M}$	AM suppression	$\mathrm{V}_{\mathrm{i} \text { IF }}=0.5$ to 200 mV FM: $70 \mathrm{~Hz}, \pm 15 \mathrm{kHz}$ AM: $1 \mathrm{kHz}, \mathrm{m}=30 \%$	-	50	-	dB
$\alpha_{\text {FM }}$	FM rejection for FM-off	$\mathrm{V}_{\mathrm{i} \text { IF }}=500 \mathrm{mV} ; \mathrm{V}_{5}=3 \mathrm{~V}$	80	-	-	dB
$\Delta \mathrm{V}_{8,9}$	AFC shift in relation to minimum second harmonic distortion $\alpha_{2 H}$ DC offset at second harmonic distortion	$V_{i I F}=0.03 \text { to } 500 \mathrm{mV}$ operating mute or FM-off		$\begin{aligned} & 25 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\alpha_{3 H}$	distortion for third harmonic		-	0.65	-	\%
RR	ripple rejection $V_{\text {ripple }}=200 \mathrm{mV} \text { on } \mathrm{V}_{\mathrm{P}}$	$f=100 \mathrm{~Hz}$	43	48	-	dB

Note to the characteristics

1. $V_{8-9} / \Delta \varphi=K\left(V_{P}-3 V_{B E}\right)$

Fig.3 AF output voltage level on pins 8 and 9 as a function of $V_{\text {if }}$ at $V_{P}=8.5 \mathrm{~V}$; $f_{m}=1 \mathrm{kHz} ; \mathrm{Q}_{\mathrm{L}}=20$ and with de-emphasis. $\mathrm{S}=$ signal; $\mathrm{N}=$ noise.

Fig. 4 Field-strengh output ($\mathrm{I}_{16}=0$).

FM/IF amplifier/demodulator circuit

Fig. 5 Detuning input impedance.

Fig. 6 Detuning curve.

Fig. 8 Internal audio attenuation.

A complete FM radio on a chip

Authors: W.H.A.Van Dooremolen M. Hufschmidt

Until now, the almost total integration of an FM radio has been prevented by the need for LC tuned circuits in the RF, IF, local oscillator and demodulator stages. An obvious way to eliminate the coils in the IF and demodulator stages is to reduce the normally used intermediate frequency of 10.7 MHz to a frequency that can be tuned by active RC filters, the op amps and resistors of which can be integrated. An IF of zero deems to be ideal because it eliminates spurious signals such as repeat spots and image response, but it would not allow the IF signal to be limited prior to demodulation, resulting in poor signal-to-noise ratio and no AM suppression. With an IF of 70 kHz , these problems are overcome and the image frequency occurs about halfway between the desired signal and the center of the adjacent channel. However, the IF image signal must be suppressed and,
in common with conventional FM radios, there is also a need to suppress interstation noise and noise when tuned to a weak signal. Spurious responses above and below the center frequency of the desired station (side tunings), and harmonic distortion in the event of very inaccurate tuning must also be eliminated.
We have now developed a mono FM reception system which is suitable for almost total integration. It uses an active 70 kHz IF filter and a unique correlation muting circuit for suppressing spurious signals such as side responses caused by the flanks of the demodulator S-curve. With such a low IF, distortion would occur with the $\pm 75 \mathrm{kHz}$ IF swing due to received signals with maximum modulation. The maximum IF swing is therefore compressed to $\pm 15 \mathrm{kHz}$ by controlling the local oscillator in a frequency-locked loop (FLL). The combined
action of the muting circuit and the FLL also suppresses image response.

The new circuit is the TDA7000 which integrates a mono FM radio all the way from the aerial input to the audio output. External to the IC are only one tunable LC circuit for the local oscillator, a few inexpensive ceramic plate capacitors and one resistor. The TDA7000 dramatically reduces assembly and post-production alignment costs because only the oscillator circuit needs adjustment during manufacture to set the limits of the tuned frequency band. The complete FM radio can be made small enough to fit inside a calculator, cigarette lighter, key-ring fob or even a slim watch. The TDA7000 can also be used as receiver in equipment such as cordless telephones, CB radios, radio-controlled models, paging systems, the sound channel of a TV set or other FM demodulating systems.

BRIEF DATA

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
V_{CC}	Typical supply voltage		4.5		V
I_{CC}	Typical supply current		8		mA
f_{RF}	RF input frequency range	1.5		110	MHz
$\mathrm{V}_{\mathrm{RF}-3 \mathrm{~dB}}$	Sensitivity for -3 dB limiting EMF with $\mathrm{Z}_{\mathrm{S}}=75 \Omega$, mute disabled		1.5		$\mu \mathrm{~V}$
$\mathrm{~V}_{\mathrm{RF}}$	Maximum signal input for $T H D<10 \%, \Delta f= \pm 75 \mathrm{kHz} \mathrm{EMF}$ with $\mathrm{Z}_{\mathrm{S}}=75 \Omega$		200		mV
V_{O}	Audio output (RMS) with $\mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega, \Delta \mathrm{f}= \pm 22.5 \mathrm{kHz}$		75		mV

Using the TDA7000 results in significant improvements for all classes of FM radio. For simpler portables, the small size, lack of IF coils, easy assembly and low power consumption are not the only attractive features. The unique correlation muting system and the FLL make it very easy to tune, even when using a tiny tuning knob. For
higher-performance portables and clock radios, variable-capacitance diode tuning and station presetting facilities are often required. These are easily provided with the TDA7000 because there are no variable tuned circuits in the RF signal path. Only the local oscillator needs to be tuned, so tracking and distortion problems are eliminated.

The TDA7000 is available in either an 18 -lead plastic DIP package (TDA7000), or in a 16 -pin SO package (TDA7010T). Future developments will include reducing the present supply voltage (4.5 V typ.), and the introduction of FM stereo and AM/FM versions.

A complete FM radio on a chip

NOTES:

1. These pins are not used in the SO package version (TDA7010T) AP = All-Pass fitter.
2. L_{2} is printed on the experimental PCB (Figure 12).
$L_{1}=$ Toko MC108 No. 514 HNE 150013S 13. $\mathrm{C}_{20}=$ Toko No.2A-15BT-RO1.

Figure 1. The TDA7000 as a Variable Capacitor-Tuned FM Broadcast Receiver

CIRCUIT DESCRIPTION

As shown in Figure 1, the TDA7000 consists of a local oscillator and a mixer, a two-stage active IF filter followed by an IF limiter/amplifier, a quadrature FM demodulator, and an audio muting circuit controlled by an IF waveform correlator. The conversion gain of the mixer, together with the high gain of the IF limiter/amplifier, provides AVC action and effective suppression of AM signals. The RF input to the TDA7000 for -3 dB limiting is $1.5 \mu \mathrm{~V}$. In a conventional portable radio, limiting at such a low RF input level would cause instability because higher harmonics of the clipped IF signal would be radiated to the aerial. With the low IF used with the TDA7000, the radiation is negligible.

To prevent distortion with the low IF used with the TDA7000, it is necessary to restrict the IF deviation due to heavily modulated RF signals to $\pm 15 \mathrm{kHz}$. This is achieved with a frequency-locked loop (FLL) in which the output from the FM demodulator shifts the local oscillator frequency in inverse proportion to the IF deviation due to modulation.

Active IF Filter

The first section of the IF filter (AF1A) is a second-order low-pass Sallen-Key circuit with its cut-off frequency determined by internal $2.2 \mathrm{k} \Omega$ resistors and external capacitors C_{7} and C_{8}. The second section (AF1B) consists of a first-order bandpass filter with the lower limit of the passband determined by an internal $4.7 \mathrm{k} \Omega$ resistor and external capacitor C_{11}. The upper limit of the passband is determined by an internal $4.7 \mathrm{k} \Omega$ resistor and external capacitor C_{10}. The final section of the IF filter consists of a first-order low-pass network comprising an internal $12 \mathrm{k} \Omega$ resistor and external capacitor C_{12}. The overall IF filter therefore consists of a fourth-order low-pass section and a first-order high-pass section. Design equations for the filter are given in Figure 2. Figure 3 shows the measured response for the filter.

FM Demodulator

The quadrature FM demodulator M2 converts the IF variations due to modulation into an audio frequency voltage. It has a conversion gain of $-3.6 \mathrm{~V} / \mathrm{MHz}$ and requires phase quadrature inputs from the IF limiter/amplifier. As shown in Figure 4, the 90° phase shift is provided by an active all-pass filter which has about unity gain at all frequencies but can provide a variable phase shift, dependent on the value of external capacitor C_{17}.

Sallen-Key circuit
$A_{S K}=\frac{8}{1+j \omega a-\omega^{2} b}$
With $f O=\frac{1}{2 \pi R_{1} \sqrt{\left(C_{7} C_{8}\right)}}$ and $Q=0.5 \sqrt{\frac{C_{7}}{C_{8}}}$
$A_{S K}=\frac{8}{1+\left(j \frac{\omega}{\omega O} \cdot \frac{1}{\ell}\right)}-\frac{\omega^{2}}{\omega^{2} O}$
For $\mathrm{C}_{7}=3.3 \mathrm{nF}, \mathrm{C}_{8}=180 \mathrm{pF} ; \mathrm{Q}=2.1$ and $\mathrm{f} \mathrm{O}=94 \mathrm{kHz}$

Bandpass circuit
$A_{B P}=\frac{1}{1+j \omega C_{10} R_{2}} \cdot \frac{j \omega C_{11} R_{2}}{1+j \omega C_{11} R_{2}+\frac{j \omega C_{10} R_{2}}{1+j \omega C_{10} R_{2}}}$
For $f_{L P}=\frac{1}{2 \pi R_{2} C_{10}}$ and $f_{H P}=\frac{1}{2 \pi R_{2} C_{11}}$
$A_{B P}=\frac{f_{L P}}{f_{H P}} \cdot \frac{1}{\left(1+j \frac{f}{f_{H P}}\right)\left(1-j \frac{f_{L P}}{f}\right)+1}$
For $\mathrm{C}_{10}=330 \mathrm{pF}, \mathrm{C}_{11}=3.3 \mathrm{nF}, \mathrm{f} \mathrm{LP}=103 \mathrm{kHz}, \mathrm{f} \mathrm{HP}=10.3 \mathrm{kHz}$

Low-Pass circuit
$A_{L P}=\frac{1}{1+j \omega C_{12} R_{3}}$
for $f_{L P}=\frac{1}{2 \pi C_{12} R_{3}}$
$A_{L P}=\frac{1}{j \frac{\omega}{\omega_{L P}}}$

For $\mathrm{C}_{12}=150 \mathrm{pF}, \mathrm{fLP}=88.4 \mathrm{kHz}$

Figure 2. IF Filter of the TDA7000

IF Swing Compression With the FLL

With a nominal IF as low as 70 kHz , severe harmonic distortion of the audio output would occur with an IF deviation of $\pm 75 \mathrm{kHz}$ due to full modulation of a received FM broadcast signal. The FLL of the TDA7000 is therefore used to compress the IF swing by using the audio output from the FM demodulator to shift the local oscillator frequency in opposition to the IF deviation. The principle is illustrated in Figure 5, which shows how an IF deviation of 75 kHz is compressed to about 15 kHz . The THD is thus limited to 0.7% with $\pm 22.5 \mathrm{kHz}$ modulation, and to 2.3% with $\pm 75 \mathrm{kHz}$ modulation.

Correlation Muting System With

 Open FLLA well-known difference between FM and AM is that, for FM, each station is received in at least three tuning positions. Figure 6 shows the frequency spectrum of the output from the demodulator of a typical portable FM radio receiving an RF carrier frequency-modulated with a tone of constant frequency and amplitude. In addition to the audio response at the correct tuning point in the center of Figure 6, there are two side responses due to the flanks of the demodulator S-curve. Because the flanks of the S-curve are non-linear, the side responses have increased harmonic distortion. In Figure 6, the frequency and intensity of the side responses are functions of the signal strength, and they are separated from the correct tuning point by amplitude minima. However, in practice, the amplitude minima are not well defined because the modulation frequency and index are not constant and, moreover, the side response of adjacent channels often overlap.
High performance FM radios incorporate squelch systems such as signal strength-dependent muting and tuning deviation-dependent muting to suppress side responses. They also have a tuning meter to facilitate correct tuning. Although the TDA7000 is mainly intended for use in portables and clock radios, it incorporates a very effective new correlation muting system which suppresses interstation noise and spurious responses due to detuning to the flanks of the demodulator S-curve. The muting system is controlled by a circuit which determines the correlation between the waveform of the IF signal and an inverted version of it which is delayed (phase-shifted) by half the period of the nominal IF $\left(180^{\circ}\right)$. A noise generator works in conjunction with the muting system io give an audible indication

Figure 3. Measured Response of the IF Filter

Figure 4. FM Demodulator Phase Shift Circuit (All-Pass Filter)

High performance FM radios incorporate squelch systems such as signal strength-dependent muting and tuning deviation-dependent muting to suppress side responses. They also have a tuning meter to facilitate correct tuning. Although the TDA7000 is mainly intended for use in portables and clock radios, it incorporates a very effective new correlation muting system which suppresses interstation noise and spurious responses due to detuning to the flanks of the demodulator S-curve. The muting system is controlled by a circuit which determines the correlation between the waveform of the IF signal and an inverted version of it which is delayed (phase-shifted) by half the period of the nominal IF $\left(180^{\circ}\right)$. A noise generator works in conjunction with the muting system to give an audible indication of incorrect tuning.
Figure 7 illustrates the function of the muting system. Signal IF' is derived by delaying the IF signal by half the period of the nominal IF and inverting it. With correct tuning as shown in Figure 7a, the waveforms of the two signals are identical, resulting in large correlation. In this situation, the audio signal is not muted. With detuning as shown in Figure 7b, signal IF' is phase-shifted with respect to the IF signal. The correlation between the two waveforms is therefore small and the audio output is muted. Figure 7c shows that, because of the low Q of the IF filter, noise causes considerable fluctuations of the period of the IF signal waveform. There is then small correlation between the two waveforms and the audio is muted. The correlation muting system thus suppresses noise and side responses due to detuning to the flanks of the demodulator S-curve. Since the mute threshold is much lower than that obtained with most other currently-used muting systems, this muting system is ideal for portable radios which must often receive signals with a level only slightly above the input noise.
As shown in Figure 8, the correlation muting circuit consists of all-pass filter AP2 connected in series with FM demodulator all-pass filter AP1 and adjusted by an external capacitor to provide a total phase shift of 180°. The output from AP2 is applied to mixer M3 which determines the correlation between the undelayed limited If signal at one of its inputs and the delayed and inverted version of it at its other input. The output from mixer M3 controls a muting circuit which feeds the demodulated audio signal to the

Figure 5. IF Swing Compression with the FLL
output when the correlation is high, or feeds the output from a noise source to the output to give an audible indication of incorrect tuning when the correlation is low. The switching of the muting circuit is progressive (soft muting) to prevent the generation of annoying audio transients. The output from mixer M3 is available externally at Pin 1 and can also used to drive a detuning indicator.
Figure 9 shows that there are two regions where the demodulated audio signal is fed to the output because the muting is inactive. One region is centered on the correct tuning
point f. The other is centered on the image frequency $-f_{L}$. The image response is therefore not suppressed by the muting system when the frequency-locked loop is open. When the loop is closed, the time constant of the muting system, which is determined by external capacitor C_{1}, prevents the image response being passed to the audio output. This is described under the next heading.

A complete FM radio on a chip

Figure 6. Audio Signal of a Typical Portable Radio as a Function of Tuned Frequency With RF Input as a Parameter.
The Modulation and Amplitude are Both Constant.

Correlation Muting System With Closed FLL

The closed-loop response of the FLL is shown in Figure 10, in which the point of origin is the nominal IF ($\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{OS}}=\mathrm{f}_{\mathrm{L}}$). With correct tuning, the muting is inactive and the audio signal is fed to the output. Spurious responses due to the flanks of the demodulator S-curve which occur outside the IF band $-f_{2}$ to f_{2} are suppressed because the muting is active. Fast transients of the audio signal due to locking of the loop (A and B), and to loss of lock (C and D) are suppressed in two ways.

Lock and loss of lock transients B and D occur when the IF is greater than f_{2} and are therefore suppressed because the muting is active. The situation is different during loss of lock transient C because the muting is only active for the last part of the transient. To completely suppress this transient, capacitor C_{1} in Figure 1 holds the muting control line positive (muting active) during the short interval while the IF traverses from $-f_{1}$ to $-f_{2}$. The same applies for lock transient \mathbf{A} during the short interval while the IF traverses from $-f_{2}$ to $-f_{1}$. Since the image response occurs halfway between $-f_{1}$ and $-f_{2}$, it is also suppressed.
Figure 11 shows the audio output from the TDA7000 radio as a function of tuned frequency with aerial signal level as a parameter. Compared with the similar diagram for a typical conventional portable radio (Figure 6), there are three important improvements:

1. There are no side responses due to the flanks of the demodulator S-curve. This is due to the action of the correlation muting system (soft mute) which combines the function of a detuning-dependent muting system with that of a signal strength-dependent muting system.
2. The correct tuning frequency band is wide, even with weak aerial signals. This is due to the AFC action of the FLL which reduces a large variation of aerial input frequency (equivalent to detuning) to a small variation of the IF. There is no audio distortion when the radio is slightly detuned.
3. Although the soft muting system remains operative with low level aerial signals, there is no degradation of the audio signal under these conditions. This is due to the high gain of the IF limiter/amplifier which provides -3 dB limiting of the IF signal with an aerial input level of $1.5 \mu \mathrm{~V}$. However, the soft muting action does reduce the audio output level with low level aerial signals.

Figure 9. Operation of the Correlation Muting System with Open-Loop FLL

$\square=$ area of correct tuning

Figure 10. Closed-Loop Response of the FLL

Figure 11. Audio Signal of the TDA7000 as a Function of the Tuned Frequency with RF Input as a Parameter

RECEIVER CIRCUITS

Circuits With Variable Capacitor Tuning

The circuit diagram of the complete mono FM radio is given in Figure 1. An experimental printed-wiring board layout is given in Figure 12. Special attention has been paid to supply lines and the positioning of large-signal decoupling capacitors.

The functions of the peripheral components of Figure 1 not already described are as follows:
C_{1} - Determines the time constant required to ensure muting of audio transients due to the operation of the FLL.
C_{2} - Together with R_{2} determines the time constant for audio de-emphasis (e.g., $\mathrm{R}_{2} \mathrm{C}_{2}=$ $40 \mu \mathrm{~s}$.
C_{3} - The output level from the noise generator during muting increases with increasing value of C_{3}. If silent mute is required, C_{3} can be omitted.
C_{4} - Capacitor for the FLL filter. It eliminates IF harmonics at the output of the FM demodulator. It also determines the time constant for locking the FLL and influences the frequency response.
C_{5}-Supply decoupling capacitor which must be connected as close as possible to Pin 5 of the TDA7000.
C_{7} to $\mathrm{C}_{12}, \mathrm{C}_{17}$ and C_{18} - Filter and demodulator capacitors. The values shown are for an IF of 70 kHz . For other intermediate frequencies, the values of these capacitors must be changed in inverse proportion to the IF change.
C_{14} - Decouples the reverse RF input. It must be connected to the common return via a good quality short connection to ensure a low-impedance path. Inductive or capacitive coupling between C_{14} and the local oscillator circuit or IF output components must be avoided.
C_{15} - Decouples the DC feedback for IF limiter/amplifier $L A_{1}$.
C_{19} and C_{21} - Local oscillator tuning capacitors. Their values depend on the required tuning range and on the value of tuning capacitor C_{20}.
$\mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{~L}_{1}, \mathrm{~L}_{2}-$ The values given are for an RF bandpass filter with $Q=4$ for the European and USA domestic FM broadcast band $(87.5 \mathrm{MHz}$ to 108 MHz$)$. For reception of the Japanese FM broadcast band (76 MHz to $91 \mathrm{MHz}), \mathrm{L}_{1}$ must be increased to 78 nH and L_{2} must be increased to 150 nH . If stopband attenuation for high level AM or TV signals is not required, L_{2} and C_{22} can be omitted and C_{23} changed to 220pF.
R_{2} - The load for the audio output current source. It determines the audio output level, but its value must not exceed $22 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{CC}}=$ 4.5 V , or $47 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$.

A complete FM radio on a chip

NOTES:
The curves numbered 1 were measured with the muting system active. The curves numbered 2 were measured with the muting system disabled by injecting about $20 \mu \mathrm{~A}$ into Pin 1 of the TDA7000. The input frequency was 96 MHz modulated with $\mathbf{1 k H z}$ with a deviation $\mathbf{0} \mathbf{\pm 7 5 k H z}$ for the distortion curve.

Figure 12. Audio Output as a Function of Input EMF

PERFORMANCE OF THE CIRCUIT

$V_{C C}=4.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} f_{\mathrm{BF}}=96 \mathrm{MHz}, \mathrm{V}_{\mathrm{RF}}=0.2 \mathrm{mV}$ EMF from a 75Ω source, modulated with $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz}, f_{M}=1 \mathrm{kHz}$. Noise voltage measured unweighted over the bandwidth 300 Hz to 20 kHz , unless otherwise specified.

SYMBOL	PARAMETER	TYP	MAX	
$\begin{aligned} & \text { EMF } \\ & \text { EMF } \\ & \text { EMF } \end{aligned}$	<80>Sensitivity (EMF voltage)for -3dB limiting: muting disabled for -3 dB muting for ($\mathrm{S}+\mathrm{N}$)/N=26dB	$\begin{array}{r} 1.5 \\ 6 \\ 5.5 \end{array}$		
EMF	<80>Signal handling (EMF voltage) for $\mathrm{THD}<10 \% ; \Delta \mathrm{f}= \pm 75 \mathrm{kHz}$	200		
(S+N)/N	Signal-to-noise ratio (see Figure 13)	60		
$\begin{aligned} & \text { THD } \\ & \text { THD } \end{aligned}$	$<80>$ Total harmonic distortion (see Figure 13) at $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz}$ at $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$			
AMS	<80>AM suppression (ratio of the AM output signalreferred to the FM output signal) FM signal: $f_{m}=1 \mathrm{kHz} ; \Delta f= \pm 75 \mathrm{kHz}$ AM signal: $f_{m}=1 \mathrm{kHz} ; m=80 \%$			
RR	10			
V_{6-5} RMS	250			
$\Delta \mathrm{ffosc}^{\text {c }}$	$80 \mathrm{Variation} \mathrm{of} \mathrm{oscillator} \mathrm{frequencywith} \mathrm{supply} \mathrm{voltage} \mathrm{(} \Delta \mathrm{~V}_{\mathrm{CC}}=1 \mathrm{~V}$)	60		
$\begin{aligned} & \mathrm{S}_{+300} \\ & \mathrm{~S}_{-300} \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$			
$\Delta f_{\text {RF }}$	AFC range	± 300		
B	80 Audio bandwidth at $\Delta \mathrm{V}_{0}=3 \mathrm{dBmeasured}$ with pre-emphasis ($\mathrm{t}=50 \mu \mathrm{~s}$)	10		
$V_{\text {O(RMS) }}$	80AF output voltage (RMS value)at $\mathrm{R}_{L}=22 \mathrm{k} \Omega$	75		
$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \\ & \mathrm{R}_{\mathrm{L}} \\ & \hline \end{aligned}$		22 47		

Figure 13. Variable-Capacitance Diode Tuning for the Local Oscillator. Additional Measures Must be Taken to Ensure Temperature Stability.

Circuit With Variable-Capacitance Diode Tuning

Since it is only necessary to tune the local oscillator coil, it is very simple to modify the circuit of Figure 1 for variable-capacitance diode tuning. The modifications are shown in Figure 13. A circuit board layout for the modified receiver and a photograph of a complete laboratory model are shown in Figure 14.

Narrow-Band FM Receiver

The TDA7000 can also be used for reception of narrowband FM signals. In this case, the local oscillator is crystal-controlled (as shown in Figure 15) and there is therefore hardly any compression of the IF swing by the FLL. The deviation of the transmitted carrier frequency due to modulation must therefore be limited to prevent severe distortion of the demodulated audio signal.

Figure 14. Circuit Board Layout and Complete Model of a TDA7000 Radio With Variable-Capacitance Diode Tuning

Figure 15. A Narrowband FM Recelver With a Crystal-Controlled Local Oscillator

Figure 16. IF Selectivity for the Narrowband FM Receiver

The component values in Figure 16 result in an IF of 4.5 kHz and an IF bandwidth of 5 kHz (Figure 16). If the IF is multiplied by N , the values of capacitors C_{17} and C_{18} in the all-pass filters and the values of filter capacitors $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{11}$, and C_{12} must be multiplied by $1 / \mathrm{N}$. For improved IF selectivity to achieve greater adjacent channel attenuation, second-order networks can be used in place of C_{10} and C_{11}.

In this circuit the detuning noise generator is not used. Since the circuit is mainly for reception of audio signals, the audio output must be passed through a low-pass Chebyshev filter to suppress IF harmonics.

AUDIO AMPLIFIER AND DETUNING INDICATOR CIRCUITS

Audio output stages suitable for use with the TDA7000 are shown in Figures 17 and 18. Figure 19 shows how the muting signal can be used to operate an LED to give an indication of detuning.

Figure 17. A 0.4 mW Transistor Audio Output Stage Without Volume Control for Driving an Earpiece

NOTE:

1. These components replace $C 2$ and R2 in Figure 1. $P_{O}=250 \mathrm{~mW}, d=10 \%$ quiescent current $=8 \mathrm{~mA}$.

Figure 18. An Integrated 250 mW Audio Output Stage

ACKNOWLEDGEMENTS

The authors wish to acknowledge the information provided by D. Kasperkovitz and H.v. Rumpt for incorporation in this article

REFERENCE
NOW, W. and SIEWERT, I., "Integrated circuitsfor hi-fi radios and tuners', Electronic Componentsand Applications, Vol. 4, No. 1, November 1981,pp. 11 to 27.

Author: W.V. Dooremolen

INTRODUCTION

Today's cordless telephone sets make use of duplex communication with carrier frequencies of about 1.7 MHz and 49 MHz .

- In the base unit incoming telephone information is frequency-modulated on a 1.7 MHz carrier.
- This 1.7 MHz signal is radiated via the $A C$ mains line of the base unit.
- The remote unit receives this signal via a ferrite bar antenna.
- The remote unit transmits the call signals and speech information from the user at 49 MHz via a telescopic antenna.
- The base unit receives this 49 MHz FM-modulated signal via a telescopic aerial.

Today's Remote Unit Receivers

In cordless telephone sets, a normal superheterodyne receiver is used for the 1.7 MHz handset. The suppression of the adjacent channel at, e.g., 30 kHz , must be 50 dB , and the bandwidth of the channel must be $6-10 \mathrm{kHz}$ for good reception. Therefore, an IF frequency of 455 kHz is chosen. Since at this frequency there are ceramic filters with a bandwidth of 9 kHz (AM filters), the 1.7 MHz is mixed down to 455 kHz with an oscillator frequency of 2.155 MHz . Now there is an image reception at 2.61 MHz . To suppress this image sufficiently, there must be at least two RF filter sections at the input of the receiver.
The ceramic IF filter with its subharmonics is bad for far-off selectivity, so there must be an extra LC filter added between the mixer output and the ceramic filter.
After the selectivity there is a hard limiter for AGC function and suppression of AM.
Next, there is an FM detector which must be accurate because it must detect a swing of $\pm 2.5 \mathrm{kHz}$ at 455 kHz ; therefore, it must be tuned.
Figure 1 shows the block diagram which fulfills this principal. The total number of alignment points of this receiver is then 5 :

2 RF filters
1 Oscillator
1 IF filter
1 FM detector
5 Alignments

A Remote Unit Receiver With TDA7000

The remote unit receiver (see Figure 2) has as its main component the IC TDA7000, which contains mixer, oscillator, IF amplifiers, a demodulator, and squelch functions.
To avoid expensive filtering (and expensive filter-adjustments) in RF, IF, and demodulator stages, the TDA7000 mixes the incoming signal to such a low IF frequency that filtering can be realized by active RC filters, in which the active part and the Rs are integrated.
To select the incoming frequency, only one tuned circuit is necessary: the oscillator tank circuit. The frequency of this circuit can be set by a crystal.

IMAGE RECEPTION

For today's concept, a number of expensive components are necessary to suppress the image sufficiently. The suppression of the image is very important because the signal at the image can be much larger than the wanted signal and there is no correlation between the image and the wanted signal.
In a concept with 455 kHz IF frequency, the 1.7 MHz receiver has image reception at 2.155MHz. In the TDA7000 receiver, the IF frequency is set at 5 kHz . Then the 1.7 MHz receiver (with 1.695 MHz oscillator frequency) has image reception at 1.69 MHz , which is at

10 kHz from the required frequency (see Figure 3).
An IF frequency of 5 kHz has been chosen because:

- this frequency is so low, there will be no neighboring channel reception at the image frequency.
- this frequency is not so low that at maximum deviation (maximum modulation) distortion could occur (folding distortion, caused by the higher-order bessel functions)
- this frequency gives the opportunity to obtain the required neighboring channel suppression with minimum components in the IF selectivity.

Figure 2.

CIRCUIT DESCRIPTION
 (SEE FIGURE 2)

When a remote unit is at "power-on" in the "standby" position, it is ready to receive a "bell signal". A bell signal coming through the telephone line will set the base unit in the mode of transmitting a 1.7 MHz signal, modulated with, e.g., 0.75 kHz with $\pm 3 \mathrm{kHz}$ deviation.
The ferrite antenna of the remote unit receives this signal and feeds it to the mixer, where it is converted into a 5 kHz IF signal.

Before the RF signal enters the mixer (at Pins 13 and 14) it passes RF selectivity, taking care of good suppression of unwanted signals from, e.g., TV or radio broadcast frequencies. The IF signal from the mixer output passes IF selectivity (Pins 7 to 12) and the IF amplifier/limiter (Pin 15), from which the output is supplied to a quadrature demodulator (Pin 17). Due to the low IF frequency, cheap capacitors can be used for both IF selectivity and the phase shift for the quadrature demodulator.

The AF output of the demodulator (Pin 4) is fed to the AF filter and AF amplifier NE5535.

The RF Input Circuit

As the image reception is an in-channel problem, solved by the choice of IF frequency and IF selectivity, the RF input filter is only required for stopband selectivity (a far-off
selectivity to suppress unwanted large signals from, e.g., radio broadcast transmitters).
In a remote unit receiver at 1.7 MHz , this filter is at the ferrite rod. Figure 4 shows the bandpass behavior of such a filter at 1.7 MHz .

The Mixer

The mixer conversion gain depends on the level of the oscillator voltage as shown in Figure 5, so the required oscillator voltage at Pin 6 is $200 \mathrm{mV}_{\text {RMs }}$.

The Oscillator

To obtain the required frequency stability in a
cordless telephone set, where adjacent channels are at 20 or 30 kHz , crystal oscillators are commonly used.
The crystal oscillator circuits usable for this kind of application always need an LC-tuned resonant circuit to suppress the other modes of the crystal. In this type of oscillator (see Figure 6 as an example) the crystal is in the feedback line of the oscillator amplifier. Integration of such an amplifier should give a 2-pin oscillator.
The TDA7000 contains a 1 -pin oscillator. An amplifier with current output develops a voltage across the load impedance. Voltage feedback is internal to the IC.

Figure 5. Relative Mixer Conversion Gain

To obtain a crystal oscillator with the TDA7000 1-pin concept, a parallel circuit configuration as shown in Figure 7 has to be used.

Explanation of this circuit:

1. Without the parallel resistor RPFigure 8 shows the relevant part of the equivalent circuit. There are three frequencies where the circuit is in resonance (see Figure 9, and the frequency response for "impedance" and "phase", shown in Figure 10). The real part of the highest possible oscillation frequency dominates, and, as there is also a zero-crossing of the imaginary part,
this highest frequency will be the oscillator frequency. However, this frequency (fPAR) is not crystal-controlled; it is the LC oscillation, in which the parasitic capacitance of the crystal contributes.
2. With parallel resistor RP-

The frequency response (in "amplitude" and "phase") of the oscillator circuit of Figure 7 with RP is given in Figure 11. As the resistor value of RP is large related to the value of the crystal series resistance R1 or R3, the influence of RP at crystal resonances is negligible. So, at crystal resonance (see Figure 9b), R3 causes a circuit damping

$$
R=\frac{1}{W^{2}} \cdot R_{3} \cdot C_{1}^{2}+R_{3}\left(1+\frac{C_{2}}{C_{1}}\right)^{2}
$$

However, at the higher LC-oscillation frequency $f_{\text {PAR }}$ (see Figure 9c), R_{P} reduces the circuit impedance R_{O} to

$$
\frac{R_{O} \cdot R_{\text {DAMPING }}}{R_{O}+R_{D A M P I N G}}=R_{C}
$$

where
$R_{\text {DAMPING }}=\frac{1}{W^{2}} \cdot R_{P} \cdot C_{1}{ }^{2}+R_{P}\left(1+\frac{c_{2}}{C_{1}}\right)^{2}$
Thus a damping resistor parallel to the crystal (Figure 7) damps the parasitic LC oscillation at the highest frequency. (Moreover, the imaginary part of the impedance at this frequency shows incorrect zero-crossing.)

Taking care that $R_{P}>R_{\text {SERIES }}$, the resistor is too large to have influence on the crystal resonances. Then with the impedance R_{C} at the parasitic resonance lower than R at crystal resonance, oscillation will only take place at the required crystal frequency, where impedance is maximum and phase is correct (in this example, at third-overtone resonance).

Remarks:

1. It is advised to avoid inductive or capacitive coupling of the oscillator tank circuit with the RF input circuit by careful positioning of the components for these circuits and by avoiding common supply or ground connections.

The IF Amplifier

Selectivity

Normal selectivity in the TDA7000 is a fourth-order low-pass and a first-order high-pass filter. This selectivity can be split up in a Sallen and Key section (Pins 7, 8, 9), a
bandpass filter (Pins 10, 11), and a first-order low-pass filter (Pin 12).

Some possibilities for obtaining required selectivity are given:

1. In the basic application circuit, Figure 12a, the total filter has a bandwidth of 7 kHz and gives a selectivity at 25 kHz IF frequency of 42 dB .
In this filter the lower limit of the passband is determined by the value of C 4 at Pin 11, where C3 at Pin 10 determines the upper limit of the bandpass filter section.
2. To obtain a higher selectivity, there is the possibility of adding a coil in series with the capacitor between Pin 11 and ground. The so-obtained fifth-order filter has a selectivity at 25 kHz of 57 dB (see Figure 12b).
3. If this selectivity is still too small, there is a possibility of increasing the 25 kHz selectivity to 65 dB by adding a coil in series with the capacitor at Pin 11 to ground. In this application, where at 5 kHz IF frequency an adjacent channel at -30 kHz will cause a ($30-5$) $=25 \mathrm{kHz}$ interfering IF frequency, the pole of the last-mentioned LC filter (trap function) is at 25 kHz (see Figure 12c).

For cordless telephone sets with channels at 15 kHz distance, the filter characteristics are optimum as shown in the curves in Figure 13, in which case the filters are dimensioned for 5 kHz IF bandwidth (instead of 7 kHz). So for this narrow channel spacing application, the required selectivity is obtained by reducing the IF bandwidth; this at the cost of up to 2 dB loss in sensitivity.

NOTE:

At 5 kHz IF frequency adjacent channels at +15 kHz give undesired IF frequencies of 20 kHz and 10 kHz , respectively.

Limiter/Amplifier

The high gain of the limiter/amplifier provides AVC action and effective suppression of AM
modulation. DC feedback of the limiter is decoupled at Pin 15.

The Signal Demodulator

The signal demodulator is a quadrature demodulator driven by the IF signal from the limiter and by a phase-shifted IF signal derived from an all-pass filter (see Figure 14).
This filter has a capacitor connected at Pin 17 which fixes the IF frequency. The IF frequency is where a 90 degree phase shift takes care of the center position in the demodulator output characteristics (see Figure 15, showing the demodulator output (at Pin 4) as a function of the frequency, at 1 mV input signal).

The AF Output Stage

The signal demodulator output is available at Pin 4, where a capacitor, C, serves for elimination of IF harmonics. This capacitor also influences the audio frequency response. The output from this stage, available at $\operatorname{Pin} 2$, has an audio frequency response as shown in Figure 16, curve a. The output at Pin 2 can be muted.

Output Signal Filtering

Output signal filtering is required to suppress the IF harmonics and interference products of these harmonics with the higher-order bessel components of the modulation. Active filtering with operational amplifiers has been used (see Figure 17). The frequency response of
such a filter is given in Figure 16, Curve b, for an active second-order filter with an additional passive RC filter.

Output Amplification

The dimensioning of the operational amplifier of Figure 17a results in no amplification of the AF signal. In case amplification of this op amp is required, a feedback resistor and an RC filter at the reverse input can be added (see Figure 17b, for about 30 dB amplification).

Figure 8b.

Figure 9.

MEASUREMENTS

For sensitivity, signal handling, and noise behavior information in a standard application as shown in Figure 18, the signal and noise output as a function of input signal has been measured at 1.7 MHz , at 400 Hz modulation where the deviation is $\pm 2.5 \mathrm{kHz}$ (see Figure 19). As a result the $S+N / N$ ratio is as given in Figure 19, Curve 3.

APPENDIX

RF-Tuned Input Circuit at $\mathbf{4 6 M H z}$

In Figure 20 a filter is given which matches at 46 MHz a 75Ω aerial to the input of the TDA7000. Extra suppression of RF frequencies outside the passband has been obtained by a trap function.

RF Pre-Stage at 46 MHz

For better quality receivers at 46 MHz , an RF pre-stage can be added (see Figure 21) to improve the noise figure. Without this transistor, a noise figure $F=11 \mathrm{~dB}$ was found. With a transistor (BFY 90) with RC coupling at $3 \mathrm{~mA}, F=7 \mathrm{~dB}$ or at $6 \mathrm{~mA} F=6 \mathrm{~dB}$.

With a transistor stage having an LC-tuned circuit, one can obtain $\mathrm{F}=7 \mathrm{~dB}$ at $\mathrm{I}=0.3 \mathrm{~mA}$. NOTE:
The noise figure includes image-noise.

An LC Oscillator at 1.7 MHz

An LC oscillator can be designed with or without AFC. If for better stability external AFC is required, one can make use of the DC output of the signal demodulator, which delivers $80 \mathrm{mV} / \mathrm{kHz}$ at a DC level of 0.65 V to +supply. An LC oscillator as shown in Figure 22a, using a capacitor with a temperature coefficient of -150 ppm , gives an oscillator signal of 190 mV , with a temperature stability of $1 \mathrm{kHz} / 50^{\circ}$.

With the use of AFC, as shown in Figure 22b, one can further improve the stability, as AFC reduces the influence of frequency changes in the transmitter (due to temperature influence or aging). The given circuit gives a factor 2 reduction. Note that the temperature behavior of the AFC diode has to be compensated. In Figure 22b, with BB405B having a capacitance of 18 pF at the reverse voltage $\mathrm{V} 4=0.7 \mathrm{~V}$, the temperature coefficient of the capacitor C has to be -200ppm.

AF Output Possibilities

The AF output from the signal demodulator, available at Pin 4, depends on the slope of the demodulator as shown in Figure 15. The TDA7000 AF output is also available at Pin 2 (see Figure 23). The important difference between the output at Pin 2 and the output at Pin 4 is that the Pin 4 output is amplified and
limited before it is led to Pin 2 (see Figure 24). Moreover, the Pin 2 output is controlled by the mute function, a mute which operates in case the received signal is bad as far as noise and distortion are concerned.

The Pin 2 output delivers a higher AF signal; however, the AF output spectrum shows more mixing products between IF harmonics and modulation frequency harmonics. This is due to the "limited output situation" at Pin 2. In narrow-band application with relatively large deviation these products are so high that extra AF output filtering is required and, moreover, the IF center frequency has to be higher compared to the concept, using AF output at Pin 4.

So for those sets where the mute/squelch function of the TDA7000 is not used, and the higher AF output is not required, the use of the AF output at Pin 4 is advised, giving less interfering products and simplified AF output filtering.

Squelch and Squelch Indication

The TDA7000 contains a mute function, controlled by a "waveform correlator", based on the exactness of the IF frequency.
The correlation circuit uses the IF frequency and an inverted version of it, which is delayed (phase-shifted) by half the period of nominal IF. The phase shift depends on the value of the capacitor at Pin 18 (see Figure 23).
This mute also operates at low field strength levels, where the noise in the IF signal indicates bad signal definition. (The correlation between IF signal and the inverted phase-shifted version is small due to fluctuations caused by noise; see Figure 25.) This field strength-dependent mute behavior is shown in Figure 26, Curve 2, measured at full mute operation. The AF output is not "fast-switched" by the mute function, but there is a "progressive (soft muting) switch". This soft muting reduces the audio output signal at low field strength levels, without degradation of the audio output signal under these conditions.
The capacitor, C_{1}, at Pin 1 (see Figure 23) determines the time constant for the mute action.

Part operation of the mute is also a possibility (as shown by Figure 26, Curve 3) by circuiting a resistor in parallel with the mute capacitor at Pin 1.

In Figure 26 the small signal behavior with the mute disabled has been given also (see Curve 1).
One can make use of the mute output signal, available at Pin 1 , to indicate squelch
situation by an LED (see Figure 27). Operation of the mute by means of an external DC voltage (see Figure 28) is also possible.

Bell Signal Operation

To avoid tone decoder filters and tone decoder rectifiers for bell signal transmission, use can be made of the mute information in the TDA7000 to obtain a bell signal without the transmission of a bell pilot signal.

With a handset receiver as shown in Figure 23 in the "standby" position, the high mute output level turns amplifier 1 off via transistor T1 until a correct IF frequency is obtained. This situation appears at the moment that a bell signal switches the base unit in transmission mode. If the transmitted field strength is high enough to be received above a certain noise level, the mute level output goes down; T1 will be closed and amplifier 1 starts operating. However, due to feedback, this amplifier starts oscillating at a low frequency (a frequency dependent on the filter concept). This low-frequency signal serves for bell signal information at the loudspeaker.
Switching the handset to "talk" position will stop oscillation. Then amplifier 1 serves to amplify normal speech information.

Mute at Dialing

During dial operation, the key-pulser IC delivers a mute voltage. This voltage can be used to mute the AF amplifier, e.g., via T1 of the bell signal circuit/amplifier (see Figure 23).

CONCLUSIONS

The application of the TDA7000 in the remote unit (handset) as narrow-band FM receiver is very attractive, as the TDA7000 reduces assembly and post-production alignment costs. The only tunable circuit is the oscillator circuit, which can be a simple crystal-controlled tank circuit.
A TDA7000 with:

- fifth-order IF filter
- third-order AF output filter
- matched input circuit
- crystal oscillator tank circuit
- disabled mute circuit
gives a sensitivity of $2.5 \mu \mathrm{~V}$ for 20 dB signal-to-noise ratio, at adjacent channel selectivity of 40 dB (at 15 kHz) in cordless telephone application at 1.7 MHz .

The TDA7000 circuit is:

- without an RF pre-stage
- without RF-tuned circuits
- without oscillator transistor (and its components)
- without LC or ceramic filters in IF and demodulator.

For improved performance, the TDA7000 circuit can be expanded:

- with an RF pre-stage and RF selectivity
- with higher-order IF filtering
- with mute/squelch function.

For reduced performance the TDA7000 circuit can be simplified:

- to LC-tuned oscillator
- to lower-order IF filter
- to bell signal operation without pilot transmission.

Previously published as "BAE83135," Eindhoven, The Netherlands, December 20, 1983.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

To improve the performance of the all-pass filter with the amplitude limited IF waveform, R_{2} has been added. Since this influences the phase angle, the value of C_{17} must be increased by 13%, l.e., to $4.7 n F$.

Figure 14. FM Demodulator Phase-Shift Circuit (All-Pass Filter)

Figure 17

Figure 18.

Figure 19.

Figure 20.

Figure 21.

a.

b.

Figure 22.

Figure 23. Remote Unit Receiver: 1.7 MHz

Figure 24. Demodulator Characteristics

Figure 25. Function of the Correlation Muting System

Figure 27. Function of the Correlation Muting System

Figure 28.

GENERAL DESCRIPTION

The TDA7000 is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components is important (small dimensions and low costs).
The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 kHz . The i.f. selectivity is obtained by active RC filters. The only function which needs alignment is the resonant circuit for the oscillator, thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too noisy input signals. Special precautions are taken to meet the radiation requirements.
The TDA7000 includes the following functions:

- R.F. input stage
- Mixer
- Local oscillator
- I.F. amplifier/limiter
- Phase demodulator
- Mute detector
- Mute switch

QUICK REFERENCE DATA

Supply voltage range (pin 5)	V_{P}	2,7 to 10 V	
Supply current at $\mathrm{V}_{P}=4,5 \mathrm{~V}$	Ip	typ.	8 mA
R.F. input frequency range	f_{rf}	1,5 to	110 MHz
Sensitivity for -3 dB limiting (e.m.f. voltage) (source impedance: 75Ω; mute disabled)	EMF	typ.	$1,5 \mu \mathrm{~V}$
Signal handling (e.m.f. voltage) (source impedance: 75Ω)	EMF	typ.	200 mV
A.F. output voltage at $\mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega$	V_{0}	typ.	75 mV

Fig. 1 Block diagram.

Single-chip FM radio circuit

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 5)
Oscillator voltage (pin 6)
Total power dissipation
Storage temperature range
Operating ambient temperature range
$V_{P} \quad \max$
12 V
$V_{6-5} \quad V_{p}-0,5$ to $V_{p}+0,5 \mathrm{~V}$ see derating curve Fig. 2

$\mathrm{T}_{\text {stg }}$	-55 to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	0 to $+60^{\circ} \mathrm{C}$

0 to $+60{ }^{\circ} \mathrm{C}$

Fig. 2 Power derating curve.
D.C. CHARACTERISTICS
$V_{P}=4,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 5)	V_{P}	2,7	4,5	10	V
Supply current					
\quad at $\mathrm{V}_{\mathrm{P}}=4,5 \mathrm{~V}$	I_{P}	-	8	-	mA
Oscillator current (pin 6)	I_{6}	-	280	-	$\mu \mathrm{A}$
Voltage at pin 14	$\mathrm{~V}_{14-16}$	-	1,35	-	V
Output current at pin 2	I_{2}	-	60	-	$\mu \mathrm{A}$
Voltage at pin $2 ; \mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega$	V_{2-16}	-	1,3	-	V

A.C. CHARACTERISTICS

$V_{P}=4,5 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C}$; measured in Fig. 4 (mute switch open, enabled); $f_{r f}=96 \mathrm{MHz}$ (tuned to max. signal at $5 \mu \mathrm{~V}$ e.m.f.) modulated with $\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; E M F=0,2 \mathrm{mV}$ (e.m.f. voltage at a source impedance of 75Ω); r.m.s. noise voltage measured unweighted ($f=300 \mathrm{~Hz}$ to 20 kHz); unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity (see Fig. 3) (e.m.f. voltage)					
for -3 dB limiting; muting disabled	EMF	-	1,5	-	$\mu \mathrm{V}$
for -3 dB muting	EMF	-	6	-	$\mu \mathrm{V}$
for $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	EMF	-	5,5	-	$\mu \mathrm{V}$
Signal handling (e.m.f. voltage) for THD $<10 \% ; \Delta f= \pm 75 \mathrm{kHz}$	EMF	-	200	-	mV
Signal-to-noise ratio	S/N	-	60	-	dB
Total harmonic distortion at $\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz}$	THD	-	0,7	-	\%
at $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$	THD	-	2,3	-	\%
AM suppression of output voltage (ratio of the AM output signal referred to the FM output signal) FM signal: $f_{m}=1 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 75 \mathrm{kHz}$ AM signal: $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{m}=80 \%$ AMS - 50 - AB					
$\begin{aligned} & \text { Ripple rejection }\left(\Delta V_{P}=100 \mathrm{mV}\right. \text {; } \\ & \quad f=1 \mathrm{kHz}) \end{aligned}$	RR	-	10	-	dB
Oscillator voltage (r.m.s. value) at pin 6	V_{6-5} (rms)	-	250	-	mV
Variation of oscillator frequency with supply voltage ($\Delta \mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}$)	$\Delta \mathrm{f}_{\text {OSC }}$	-	60	-	kHz/V
Selectivity	$\mathrm{S}_{+} 300$	-	45	-	dB
	S-300	-	35	-	dB
A.F.C. range	$\Delta f_{r f}$	-	± 300	-	kHz
Audio bandwidth at $\Delta V_{O}=3 \mathrm{~dB}$ measured with pre-emphasis ($\mathrm{t}=50 \mu \mathrm{~s}$)	B	-	10	-	kHz
A.F. output voltage (r.m.s. value) at $R_{L}=22 \mathrm{k} \Omega$	V_{o} (rms)	-	75	-	mV
Load resistance at $V_{P}=4,5 \mathrm{~V}$	R_{L}	-	-	22	$k \Omega$
at $V_{P}=9,0 \mathrm{~V}$	R_{L}	-	-	47	k Ω

Fig. 3 A.F. output voltage (V_{0}) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF) with a source impedance (R_{S}) of 75Ω : (1) muting system enabled; (2) muting system disabled.
Conditions: $0 \mathrm{~dB}=75 \mathrm{mV} ; \mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$.
for $S+N$ curve: $\Delta f= \pm 22,5 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz}$.
for THD curve: $\Delta f= \pm 75 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.

Notes

1. The muting system can be disabled by feeding a current of about $20 \mu \mathrm{~A}$ into pin 1 .
2. The interstation noise level can be decreased by choosing a low-value capacitor at pin 3 . Silent tuning can be achieved by omitting this capacitor.

Fig. 4 Test circuit; for printed-circuit boards see Figs 5 and 6.

Fig. 5 Track side of printed-circuit board used for the circuit of Fig. 4.

Fig. 6 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

GENERAL DESCRIPTION

The TDA7021T integrated radio receiver circuit is for portable radios, stereo as well as mono, where a minimum of periphery is important in terms of small dimensions and low cost. It is fully compatible for applications using the low-voltage micro tuning system (MTS). The IC has a frequency locked loop (FLL) system with an intermediate frequency of 76 kHz . The selectivity is obtained by active RC filters. The only function to be tuned is the resonant frequency of the oscillator. Interstation noise as well as noise from receiving weak signals is reduced by a correlation mute system.
Special precautions have been taken to meet local oscillator radiation requirements. Because of the low intermediate frequency, low pass filtering of the MUX signal is required to avoid noise when receiving stereo. 50 kHz roll-off compensation, needed because of the low pass characteristic of the FLL, is performed by the integrated LF amplifier. For mono application this amplifier can be used to directly drive an earphone. The field-strength detector enables field-strength dependent channel separation control.

Features

- RF input stage
- Mixer
- Local oscillator
- IF amplifier/limiter
- Frequency detector
- Mute circuit
- MTS compatible
- Loop amplifier
- Internal reference circuit
- LF amplifier for
- mono earphone amplifier or
- MUX filter
- Field-strength dependent
channel separation control facility

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)		$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{4-3}$	1,8	-	6,0	V
Supply current	$\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$	f_{rf}	-	6,3	-	mA
RF input frequency			-5	110	MHz	
Sensitivity (e.m.f.) for	source impedance $=75 \Omega ;$	EMF	-	4	-	$\mu \mathrm{V}$
-3 dB limiting	mute disabled					
Signal handling (e.m.f.)	source impedance $=75 \Omega$	EMF	-	200	-	mV
AF output voltage		V_{O}	-	90	-	mV

PACKAGE OUTLINE

16-lead mini-pack; plastic (SO 16; SOT 109A).

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage (pin 4)		$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{4-3}$	-	7,0	V
Oscillator voltage		V_{5-4}	$\mathrm{~V}_{\mathrm{P}}-0,5$	$\mathrm{Vp}+0,5$	V
Storage temperature range		$\mathrm{T}_{\mathrm{stg}}$	-55	+150	o C
Operating ambient temperature range		$\mathrm{T}_{\mathrm{amb}}$	-10	+70	o C

THERMAL RESISTANCE

From junction to ambient
$R_{\text {th j-a }} 300 \mathrm{~K} / \mathrm{W}$
DC CHARACTERISTICS
$V p=3 V, T_{a m b}=25^{\circ} \mathrm{C}$, measured in circuit of Fig. 4, unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)		$V_{P}=V_{4-3}$	1,8	3,0	6,0	V
Supply current	$\mathrm{VP}=3 \mathrm{~V}$	I_{4}	-	6,3	-	mA
Oscillator current		I_{5}	-	250	-	$\mu \mathrm{A}$
Voltage at pin 13		V_{13-3}	-	0,9	-	V
Output voltage (pin 14)		V_{14-3}	-	1,3	-	V

Fig. 2 Supply current as a function of the supply voltage.

AC CHARACTERISTICS (MONO OPERATION)

$\mathrm{V}_{\mathrm{P}}=3 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. $5 ; \mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$ modulated with $\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz}$;
$f_{m}=1 \mathrm{kHz}$; $E M F=0,3 \mathrm{mV}$ (e.m.f. at a source impedance of 75Ω); r.m.s. noise voltage measured unweighted ($f=300 \mathrm{~Hz}$ to 20 kHz); unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Sensitivity (e.m.f.) for -3 dB limiting for $-3 d B$ muting for $(S+N) / N=26 d B$ Signal handling (e.m.f.)	see Fig. 3 muting disabled	EMF EMF EMF	---	$\begin{aligned} & 4,0 \\ & 5,0 \\ & 7,0 \end{aligned}$	---	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
	$\begin{aligned} & \text { THD }<10 \% ; \\ & \Delta \mathrm{f}= \pm 75 \mathrm{kHz} \end{aligned}$	EMF	-	200	-	mV
Signal-to-noise ratio		(S+N)/N	-	60	-	dB
Total harmonic distortion	$\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz}$	THD	-	$\begin{aligned} & 0,7 \\ & 2,3 \end{aligned}$	-	\%
	$\Delta f= \pm 75 \mathrm{kHz}$	THD				
AM suppression of output voltage	ratio of $A M$ signal $\left(f_{m}=1 \mathrm{kHz} ; m=80 \%\right.$) to FM signal ($\mathrm{f}_{\mathrm{m}}=$ $1 \mathrm{kHz} ; \Delta \mathrm{f}=75 \mathrm{kHz}$)	AMS		50	-	dB
			-			
Ripple rejection	$\begin{aligned} & \Delta V P=100 \mathrm{mV} ; \\ & f=1 \mathrm{kHz} \end{aligned}$	RR	-			
				30	-	dB
Oscillator voltage (r.m.s. value)	$\Delta \mathrm{V} P=1 \mathrm{~V}$	V_{5-4} (rms)	-	250	-	mV
Variation of oscillator frequency with supply voltage		$\Delta f_{\text {osc }}$				
		$\frac{\Delta V_{P}}{}$	-	5	-	kHz/V
Selectivity	see Fig. 9; no modulation	$\begin{aligned} & S_{+300} \\ & S_{-300} \end{aligned}$	-	4630	-	dBdB
AFC range	$\Delta \mathrm{V}_{\mathrm{O}}=3 \mathrm{~dB} ;$ measured with $50 \mu \mathrm{~s}$ pre-emphasis	$\begin{aligned} & \pm \Delta f_{r f} \\ & \pm \Delta f_{r f} \end{aligned}$	-	160	-	kHz
Mute range			-	120	-	kHz
Audio bandwidth		B	-	10	-	kHz
AF output voltage (r.m.s. value)	$R_{L}(\operatorname{pin} 14)=100 \Omega$	Vo(rms)	-	90	-	mV
AF output current max.d.c. load max. a.c. load (peak value)	THD $=10 \%$	Io(dc) lo(ac)	$\begin{aligned} & -100 \\ & - \end{aligned}$	-		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
					$\begin{aligned} & +100 \\ & - \end{aligned}$	

Fig. 3 Field strength voltage $\left(\mathrm{V}_{9-3}\right)$ at $\mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega ; f=96,75 \mathrm{MHz} ; \mathrm{VP}=3 \mathrm{~V}$.

Fig. 4 Mono operation: AF output voltage (V_{0}) and total harmonic distortion (THD) as functions of input e.m.f. (EMF); $R_{\text {source }}=75 \Omega ; f_{r f}=96 \mathrm{MHz} ; 0 \mathrm{~dB}=90 \mathrm{mV}$. For $\mathrm{S}+\mathrm{N}$ and noise curves (1) is with muting enabled and (2) is with muting disabled; signal $\Delta f= \pm 22,5 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$. For THD curve, $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.

1) The AF output can be decreased by disconnecting the 100 nF capacitor from pin 16 .

Fig. 5 Test circuit for mono operation.

AC CHARACTERISTICS (STEREO OPERATION)

$V_{p}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. $8 ; \mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$ modulated with pilot $\Delta f= \pm 6,75 \mathrm{kHz}$ and $A F$ signal $\Delta f= \pm 22,5 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz} ; E M F=1 \mathrm{mV}$ (e.m.f. at a source impedance of 75Ω); r.m.s. noise voltage measured unweighted ($f=300 \mathrm{~Hz}$ to 20 kHz) ; unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
$\begin{aligned} & \text { Sensitivity (e.m.f.) } \\ & \text { for }(S+N) / N=26 d B \end{aligned}$	see Fig. 8; pilot off	EMF	-	11	-	$\mu \mathrm{V}$
Selectivity	see Fig. 9; no modulation	S +300	-	40	-	dB
		S-300	-	22	-	dB
Signal-to-noise ratio		(S+N)/N	-	50	-	dB
Channel separation	$\begin{aligned} & V_{i}=L \text {-signal; } f m=1 \mathrm{kHz} \text {; } \\ & \text { pilot on: } \end{aligned}$					
	at $f_{r f}=97 \mathrm{MHz}$ at $\mathrm{f}_{\mathrm{rf}}=87,5 \mathrm{MHz}$	α	-	26	-	dB
	and 108 MHz	α	-	14	-	dB

Fig. 6 Stereo operation: signal/noise and channel separation of TDA7021T when used in the circuit of Fig. 8.

Fig. 7 Stereo operation: channel separation as a function of audio frequency in the circuit of Fig. 8.

Fig. 8 Stereo application in combination with a low voltage PLL stereo decoder (TDA7040T) and a low voltage mono/stereo power amplifier (TDA7050T).

Fig. 9 Test set-up; $V_{i}=30 \mathrm{mV} ; \mathrm{f}_{\mathrm{i}}=76 \mathrm{kHz}$; selective voltmeter at output has $R_{i} \geqslant 1 \mathrm{M} \Omega$ and $\mathrm{C}_{\mathrm{i}} \leqslant 8 \mathrm{pF}$; $\mathrm{f}_{\mathrm{O}}=\mathrm{f}_{\mathrm{i}}$.

Note to Fig. 9

This test set-up is to incorporate the circuit of Fig. 5 for mono operation or the circuit of Fig. 8 for stereo operation. For either circuit, replace the 100 nF capacitor at pin 6 with $\mathrm{R} 6(100 \mathrm{k} \Omega)$ as shown above.

Selectivity

$S_{+300}=20 \log \frac{V_{0} \mid\left(300 k H z-f_{j}\right)}{V_{0} \mid f_{i}} \quad S_{-300}=20 \log \frac{V_{0} \mid\left(300 k H z+f_{j}\right)}{V_{0} \mid f_{i}}$

RF Communications

INDEX
MC1496/MC1596 Balanced modulator/demodulator 461
AN189 Balanced modulator/demodulator applications using the MC1496/1596 465
NE/SA602A Double-balanced mixer and oscillator 470
NE/SA612A Double-balanced mixer and oscillator 478
AN1981 New low-power single sideband circuits 485
AN1982 Applying the oscillator of the NE602 in low-power mixer applications 493
TDA1574 FM front-end IC 496
TDA1574T Integrated FM tuner for radio receivers 504
TDA5030A TV VHF mixer/oscillator UHF preamplifier 513

DESCRIPTION

The MC1496 is a monolithic double-balanced modulator/demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switched function (carrier). The MC1596 will operate over the full military temperature range of -55 to $+125^{\circ} \mathrm{C}$. The MC1496 is intended for applications within the range of 0 to $+70^{\circ} \mathrm{C}$.

FEATURES

- Excellent carrier suppression 65 dB typ @ 0.5 MHz 50 dB typ @ 10MHz
- Adjustable gain and signal handling
- Balanced inputs and outputs
- High common-mode rejection-85dB typ

APPLICATIONS

- Suppressed carrier and amplitude modulation
- Synchronous detection
- FM detection
- Phase detection
- Sampling
- Single sideband
- Frequency doubling

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	MC1496F
14-Pin Plastic	0 to $+70^{\circ} \mathrm{C}$	MC1496N
14-Pin Cerdip	-55 to $+125^{\circ} \mathrm{C}$	MC1596F
14-Pin Plastic	-55 to $+125^{\circ} \mathrm{C}$	MC1596N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
	Applied voltage	30	V
$\mathrm{V}_{8}-\mathrm{V}_{10}$	Differential input signal	± 5.0	V
$\mathrm{V}_{4}-\mathrm{V}_{1}$	Differential input signal	($5 \pm 1_{5} \mathrm{R}_{\mathrm{e}}$)	V
$\begin{aligned} & V_{2}-V_{1}, \\ & V_{3}-V_{4} \end{aligned}$	Input signal	5.0	\checkmark
I_{5}	Bias current	10	mA
PD	Maximum power dissipation, $T_{A}=25^{\circ} \mathrm{C}$ (still-air) ${ }^{\prime}$ F package N package	$\begin{aligned} & 1190 \\ & 1420 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \hline \end{aligned}$
TA	Operating temperature range MC1496 MC1596	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates:

F package at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $11.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EQUIVALENT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{C C}=+12 \mathrm{~V}_{\mathrm{DC}} ; \mathrm{V}_{C C}=-8.0 \mathrm{~V}_{\mathrm{DC}} ; 15=1.0 \mathrm{mADC} ; \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{E}}=1.0 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \mathrm{R}_{1 \mathrm{P}} \\ & \mathrm{C}_{\mathbb{P}} \\ & \hline \end{aligned}$	Single-ended input impedance Parallel input resistance Parallel input capacitance	Signal port, f=5.0MHz		$\begin{array}{r} 200 \\ 2.0 \end{array}$			$\begin{gathered} 200 \\ 2.0 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
$\begin{aligned} & \mathrm{R}_{\mathrm{OP}} \\ & \mathrm{C}_{\mathrm{OP}} \\ & \hline \end{aligned}$	Single-ended output impedance Parallel output resistance Parallel output capacitance	$\mathrm{f}=10 \mathrm{MHz}$		$\begin{array}{r} 40 \\ 5.0 \\ \hline \end{array}$			$\begin{aligned} & 40 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \hline \end{aligned}$
$\begin{array}{\|l} \mathrm{I}_{\mathrm{BS}} \\ \mathrm{I}_{\mathrm{BC}} \\ \hline \end{array}$	Input bias current $I_{B S}=$ $l_{B C}=$			$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 25 \\ \hline \end{array}$		$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\begin{array}{\|l} l_{10 S} \\ l_{10 C} \\ \hline \end{array}$	Input offset current $\begin{aligned} & l_{10 S}=l_{1}-I_{4} \\ & l_{10 C}=I_{8}-I_{10} \end{aligned}$			$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{Cl}} \mathrm{O}$ 100	\qquad of input offset current Output offset current $\mathrm{I}_{6}-\mathrm{I}_{12}$			$\begin{aligned} & 2.0 \\ & 14 \end{aligned}$	50		2.0	80	$n A{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$
Tcloo Vo	Average temperature coefficient of output offset current Common-mode quiescent output voltage (Pin 6 or Pin 12)			90 8.0			90 8.0		$n A{ }^{\circ} \mathrm{C}$ $V_{D C}$
$\begin{array}{\|l\|} \mathrm{l}_{\mathrm{D}+} \\ \mathrm{I}_{\mathrm{D}-} \\ \hline \end{array}$	Power supply current $I_{6}+I_{12}$ ${ }_{14}$			$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$m A_{D C}$
P_{D}	DC power dissipation			33			33		mW

AC ELECTRICAL CHARACTERISTICS
$V_{C C}=+12_{D C} ; V_{C C}=-9.0 V_{D C} ; I_{5}=1.0 \mathrm{~mA}_{D C} ; R_{L}=3.9 \mathrm{k} \Omega ; R_{E}=1.0 \mathrm{k} \Omega ; T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Typ	Max	Min	Typ	Max	
$V_{\text {CFT }}$	Carrier feedthrough	$\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV} \mathrm{V}_{\mathrm{RMS}}$ sinewave and offset adjusted to zero $\begin{aligned} & \mathrm{f} \mathrm{c}=1.0 \mathrm{kHz} \\ & \mathrm{fc}=10 \mathrm{MHz} \end{aligned}$ $\mathrm{V}_{\mathrm{C}}=300 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text { - }}$ squarewave: Offset adjusted to zero $\mathrm{fc}=1.0 \mathrm{kHz}$ Offset not adjusted $\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}$		$\begin{gathered} 40 \\ 140 \\ \\ 0.04 \\ 20 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 100 \end{aligned}$		$\begin{gathered} 40 \\ 140 \\ \\ 0.04 \\ 20 \\ \hline \end{gathered}$	$\begin{array}{r} 0.4 \\ 200 \end{array}$	$\mu \mathrm{V}_{\mathrm{RMS}}$ $\mathrm{mV}_{\mathrm{RMS}}$
$\mathrm{V}_{\text {cs }}$	Carrier suppressions	$\mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mV}_{\mathrm{RMS}}$ sinewave $\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}, 60 \mathrm{mV} \mathrm{V}_{\mathrm{RMS}}$ sinewave $\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, 60 \mathrm{mV}_{\text {RMS }}$ sinewave	50	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		40	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		dB
$\mathrm{BW}_{3 \mathrm{~dB}}$	Transadmittance bandwidth (Magnitude) ($R_{L}=50 \Omega$)	Carrier input port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV} \mathrm{VMS}$ sinewave $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$, 300 mV RMS sinewave Signal input port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{~m} \mathrm{~V}_{\mathrm{RMS}}$ sinewave $\left\|\mathrm{V}_{\mathrm{C}}\right\|=0.5 \mathrm{~V}_{\mathrm{DC}}$		300 80			300 80		MHz MHz
Avs	Signal gain	$\begin{gathered} V_{S}=100 \mathrm{~m} V_{\mathrm{RMS}} ; \mathrm{f}=1.0 \mathrm{kHz} \\ \left\|\mathrm{~V}_{\mathrm{C}}\right\|=0.5 \mathrm{~V}_{\mathrm{DC}} \end{gathered}$	2.5	3.5		2.5	3.5		V/V
CMV $A_{C M}$	Common-mode input swing Common-mode gain	Signal port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$ Signal port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$ $\left\|\mathrm{V}_{\mathrm{C}}\right\|=0.5 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & 5.0 \\ & -85 \end{aligned}$			$\begin{aligned} & 5.0 \\ & -85 \end{aligned}$		$\begin{aligned} & V_{p-p} \\ & d B \end{aligned}$
DVout	Differential output voltage swing capability			8.0			8.0		$V_{\text {P-P }}$

TEST CIRCUITS

BALANCED MODULATOR/DEMODULATOR APPLICATIONS USING MC1496/MC1596

The MC1496 is a monolithic transistor array arranged as a balanced
modulator-demodulator. The device takes advantage of the excellent matching qualities of monolithic devices to provide superior carrier and signal rejection. Carrier suppressions of 50 dB at 10 MHz are typical with no external balancing networks required.

Applications include AM and suppressed carrier modulators, AM and FM demodulators, and phase detectors.

THEORY OF OPERATION

As Figure 1 suggests, the topography includes three differential amplifiers. Internal connections are made such that the output becomes a product of the two input signals V_{C} and V_{S}.
To accomplish this the differential pairs Q1-Q2 and Q3-Q4, with their cross-coupled collectors, are driven into saturation by the zero crossings of the carrier signal V_{C}. With a low level signal, V_{S} driving the third differential amplifier Q5-Q6, the output voltage will be full wave multiplication of V_{C} and V_{S}. Thus for sine wave signals, $\mathrm{V}_{\text {OUT }}$ becomes:
$V_{\text {Out }}=E_{X} E_{Y}[\cos (\omega x+\omega y) t+\cos (\omega x-\omega y) t]$

As seen by equation (1) the output voltage will contain the sum and difference
frequencies of the two original signals. In addition, with the carrier input ports being driven into saturation, the output will contain the odd harmonics of the carrier signals. (See Figure 4.)
Internally provided with the device are two current sources driven by a
temperature-compensated bias network. Since the transistor geometries are the same and since $V_{B E}$ matching in monolithic devices is excellent, the currents through Q_{7} and Q_{8} will be identical to the current set at Pin 5 . Figures 2 and 3 illustrate typical biasing arrangements from split and single-ended supplies, respectively.
Of primary interest in beginning the bias circuitry design is relating available power supplies and desired output voltages to device requirements with a minimum of external components.
The transistors are connected in a cascode fashion. Therefore, sufficient collector voltage must be supplied to avoid saturation if linear operation is to be achieved. Voltages greater than 2 V are sufficient in most applications.
Biasing is achieved with simple resistor divider networks as shown in Figure 3. This configuration assumes the presence of symmetrical supplies. Explaining the DC biasing technique is probably best accomplished by an example. Thus, the initial assumptions and criteria are set forth:

1. Output swing greater than $4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.
2. Positive and negative supplies of 6 V are available.

3. Collector current is 2 mA . It should be noted here that the collector output current is equal to the current set in the current sources.
As a matter of convenience, the carrier signal ports are referenced to ground. If desired, the modulation signal ports could be ground referenced with slight changes in the bias arrangement. With the carrier inputs at $D C$ ground, the quiescent operating point of the outputs should be at one-half the total positive voltage or 3 V for this case. Thus, a collector load resistor is selected which drops 3 V at 2 mA or $1.5 \mathrm{k} \Omega$. A quick check at this point reveals that with these loads and current levels the peak-to-peak output swing will be greater than 4 V . It remains to set the current source level and proper biasing of the signal ports.
The voltage at Pin 5 is expressed by

$$
V_{B I A S}=V_{B E}=500 \cdot I_{S}
$$

where I_{S} is the current set in the current sources.

BIASING

Since the MC1496 was intended for a multitude of different functions as well as a myriad of supply voltages, the biasing techniques are specified by the individual application. This allows the user complete freedom to choose gain, current levels, and power supplies. The device can be operated with single-ended or dual supplies.

mentioned, contains the sum and difference frequencies while attenuating the fundamentals. Upper and lower sideband signals are the strongest signals present with harmonic sidebands being of diminishing amplitudes as characterized by Figure 4.
Gain of the 1496 is set by including emitter degeneration resistance located as R_{E} in Figure 5. Degeneration also allows the maximum signal level of the modulation to be increased. In general, linear response defines the maximum input signal as

$$
V_{s} \leq 15 \cdot R_{E}(\text { Peak })
$$

and the gain is given by

$$
\begin{equation*}
A_{V s}=\frac{R_{L}}{R_{E}+2 r_{\theta}} \tag{2}
\end{equation*}
$$

This approximation is good for high levels of carrier signals. Table 1 summarizes the gain for different carrier signals.
As seen from Table 1, the output spectrum suffers an amplitude increase of undesired sideband signals when either the modulation or carrier signals are high. Indeed, the modulation level can be increased if R_{E} is

Figure 4. Modulator Frequency Spectrum

$$
V_{B I A S}=V_{B E}=500 \times I_{S}
$$

where I_{S} is the current set in the current sources.
For the example $V_{B E}$ is 700 mV at room temperature and the bias voltage at Pin 5 becomes 1.7 V . Because of the cascode configuration, both the collectors of the current sources and the collectors of the signal transistors must have some voltage to operate properly. Hence, the remaining voltage of the negative supply $(-6 \mathrm{~V}+1.7 \mathrm{~V}=-4.3 \mathrm{~V})$ is split between these transistors by biasing the signal transistor
bases at -2.15 V . Countless other bias arrangements can be used with other power supply voltages. The important thing to remember is that sufficient DC voltage is applied to each bias point to avoid collector saturation over the expected signal wings.

BALANCED MODULATOR

In the primary application of balanced modulation, generation of double sideband suppressed carrier modulation is accomplished. Due to the balance of both modulation and carrier inputs, the output, as
increased without significant consequence. However, large carrier signals cause odd harmonic sidebands (Figure 4) to increase. At the same time, due to imperfections of the carrier waveforms and small imbalances of the device, the second harmonic rejection will be seriously degraded. Output filtering is often used with high carrier levels to remove all but the desired sideband. The filter removes unwanted signals while the high carrier level guards against amplitude variations and maximizes gain. Broadband modulators, without benefit of filters, are implemented using low carrier and

Balanced modulator/demodulator applications using the MC1496/1596

modulation signals to maximize linearity and minimize spurious sidebands.

AM MODULATOR

The basic current of Figure 5 allows no carrier to be present in the output. By adding offset to the carrier differential pairs, controlled amounts of carrier appear at the output whose amplitude becomes a function of the modulation signal or AM modulation. As shown, the carrier null circuit is changed from Figure 5 to have a wider range so that wider control is achieved. All connections are shown in Figure 6.

AM DEMODULATION

As pointed out in Equation 1, the output of the balanced mixer is a cosine function of the angle between signal and carrier inputs. Further, if the carrier input is driven hard enough to provide a switching action, the output becomes a function of the input amplitude. Thus the output amplitude is maximum when there is 0° phase difference as shown in Figure 7.

Amplifying and limiting of the AM carrier is accomplished by IF gain block providing 55 dB of gain or higher with limiting of $400 \mu \mathrm{~V}$. The limited carrier is then applied to the detector at the carrier ports to provide the desired switching function. The signal is then demodulated by the synchronous AM demodulator (1496) where the carrier frequency is attenuated due to the balanced nature of the device. Care must be taken not to overdrive the signal input so that distortion does not appear in the recovered audio. Maximum conversion gain is reached when the carrier signals are in phase as indicated by the phase-gain relationship drawn in Figure 7.
Output filtering will also be necessary to remove high frequency sum components of the carrier from the audio signal.

PHASE DETECTOR

The versatility of the balanced modulator or multiplier also allows the device to be used as a phase detector. As mentioned, the output of the detector contains a term related to the cosine of the phase angle. Two signals of equal frequency are applied to the inputs as per Figure 8. The frequencies are multiplied together producing the sum and difference frequencies. Equal frequencies cause the difference component to become DC while the undesired sum component is filtered out. The DC component is related to the phase angle by the graph of Figure 9.

Figure 5. Double Suppressed Carrier Modulator
Table 1. Voltage Gain and Output vs Input Signal

CARRIER INPUT SIGNAL $\left(V_{C}\right)$	APPROXIMATE VOLTAGE GAIN	OUTPUT SIGNAL FREQUENCY(S)
Low-level DC	$\frac{R_{L} V_{C}}{2\left(R_{E}+2 r_{E}\right)\left(\frac{K T}{q}\right)}$	f_{M}
High-level DC	$\frac{R_{L}}{R+2 r_{e}}$	f_{M}
Low-level AC	$\frac{R_{L} V_{C}(r m s)}{2 \sqrt{2}\left(\frac{K T}{q}\right)\left(R_{E}+2 r_{e}\right)}$	$\mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}}$
High-level AC	$\frac{0.637 R_{L}}{R_{E}+2 r_{e}}$	$\mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}}, 3 \mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}}$.
$5 \mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}} \ldots$		

Figure 6. AM Modulator

Figure 8. Phase Comparator

At 90° the cosine becomes zero, while being at maximum positive or maximum negative at 0° and 180°, respectively.

The advantage of using the balanced modulator over other types of phase comparators is the excellent linearity of conversion. This configuration also provides a conversion gain rather than a loss for greater resolution. Used in conjunction with a phase-locked loop, for instance, the balanced modulator provides a very low distortion FM demodulator.

FREQUENCY DOUBLER

Very similar to the phase detector of Figure 8, a frequency doubler schematic is shown in Figure 10. Departure from Figure 8 is primarily the removal of the low-pass filter. The output then contains the sum component which is twice the frequency of the input,
since both input signals are the same
frequency.

Figure 9. Phase Detector \pm Voltages

Balanced modulator/demodulator applications using the MC1496/1596

DESCRIPTION

The NE/SA602A is a low-power VHF monolithic double-balanced mixer with input amplifier, on-board oscillator, and voltage regulator. It is intended for high performance, low power communication systems. The guaranteed parameters of the SA602A make this device particularly well suited for cellular radio applications. The mixer is a "Gilbert cell" multiplier configuration which typically provides 18 dB of gain at 45 MHz . The oscillator will operate to 200 MHz . It can be configured as a crystal oscillator, a tuned tank oscillator, or a buffer for an external LO. For higher frequencies the LO input may be externally driven. The noise figure at 45 MHz is typically less than 5 dB . The gain, intercept performance, low-power and noise characteristics make the NE/SA602A a superior choice for high-performance battery operated equipment. It is available in an 8 -lead dual in-line plastic package and an 8 -lead SO (surface-mount miniature package).

FEATURES

- Low current consumption: 2.4 mA typical
\bullet Excellent noise figure: $<4.7 \mathrm{~dB}$ typical at 45 MHz
- High operating frequency
- Excellent gain, intercept and sensitivity
-Low external parts count; suitable for crystal/ceramic filters
- SA602A meets cellular radio specifications

APPLICATIONS

- Cellular radio mixer/oscillator
- Portable radio
- VHF transceivers
-RF data links
-HFNHF frequency conversion
- Instrumentation frequency conversion
- Broadband LANs

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE602AN
8-Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE602AD
8-Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	NE602AFE
8-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA602AN
8-Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA602AD
8-Pin Cerdip	-40 to $+85^{\circ} \mathrm{C}$	SA602AFE

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Maximum operating voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TA	Operating ambient temperature range NE602A	0 to +70	${ }^{\circ} \mathrm{C}$
	SA602A	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance $\begin{array}{l}\text { D package } \\ \text { N package }\end{array}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

BLOCK DIAGRAM

AC/DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA602A			
			MIN	TYP	MAX	
V cc	Power supply voltage range		4.5		8.0	V
	DC current drain			2.4	2.8	mA
fin^{\prime}	Input signal frequency			500		MHz
fosc	Oscillator frequency			200		MHz
	Noise figure at 45MHz			5.0	5.5	dB
	Third-order intercept point	$\begin{aligned} & R F_{I N}=-45 d B m: f_{1}=45.0 \mathrm{MHz} \\ & f_{2}=45.06 \mathrm{MHz} \end{aligned}$		-13	-15	dBm
	Conversion gain at 45 MHz		14	17		dB
RIN	RF input resistance		1.5			$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	RF input capacitance			3	3.5	pF
	Mixer output resistance	(Pin 4 or 5)		1.5		$\mathrm{k} \Omega$

DESCRIPTION OF OPERATION

The NE/SA602A is a Gilbert cell, an oscillator/buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.
The NE/SA602A is designed for optimum low power performance. When used with the SA604 as a 45 MHz cellular radio second IF and demodulator, the SA602A is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third-order intercept is typically -13 dBm (that is approximately +5 dBm output
intercept because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LANs or other closed systems where transmission levels are high, and small-signal or signal-to-noise issues are not critical, the input to the NE602A should be appropriately scaled.
Besides excellent low power performance well into VHF, the NE/SA602A is designed to be flexible. The input, RF mixer output and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.

The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent $A C$ input impedance is approximately $1.5 \mathrm{k}|\mid 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single ended output configurations and a balanced output.

The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank " Q " and required drive levels. The higher the " Q " of the tank or the smaller the required drive, the higher the permissible oscillation frequency. If the required LO is beyond oscillation limits, or the system calls for an external LO, the external signal can be injected at Pin 6 through a DC blocking capacitor. External LO should be at least 200 mV p.p.
Figure 5 shows several proven oscillator circuits. Figure 5 a is appropriate for cellular radio. As shown, an overtone mode of
operation is utilized. Capacitor C3 and inductor L1 suppress oscillation at the crystal fundamental frequency. In the fundamental mode, the suppression network is omitted.
Figure 6 shows a Colpitts varactor tuned tank oscillator suitable for synthesizer-controlled applications. It is important to buffer the output of this circuit to assure that switching spikes from the first counter or prescaler do not end up in the oscillator spectrum. The dual-gate MOSFET provides optimum isolation with low current. The FET offers good isolation, simplicity, and low current, while the bipolar transistors provide the simple solution for non-critical applications.

The resistive divider in the emitter-follower circuit should be chosen to provide the minimum input signal which will assure correct system operation.

When operated above 100 MHz , the oscillator may not start if the Q of the tank is too low. A $22 \mathrm{k} \Omega$ resistor from Pin 7 to ground will increase the DC bias current of the oscillator transistor. This improves the AC operating characteristic of the transistor and should help the oscillator to start. A $22 \mathrm{k} \Omega$ resistor will not upset the other DC biasing internal to the device, but smaller resistance values should be avoided.

Figure 1. Test Configuration

Double-balanced mixer and oscillator

TC020308

Figure 2. Equivalent Circuit

a. Single-Ended Ceramic Filter

b. Single-Ended Crystal Filter

c. Single-Ended IFT

Figure 4. Output Configuration

a. Colpitts Crystal Oscillator (Overtone Mode)

b. Colpitta LC Tank Oscillator

c. Hartley LC Tank Oscillator

Figure 5. Oscillator Circuits

Figure 6. Colpitts Oscillator Suitable for Synthesizer Applications and Typical Buffers

Figure 7. Typical Application for Cellular Radio

Figure 8. Icc vs Supply Voltage

Figure 9. Conversion Gain vs Supply Voltage

Figure 11. Noise Figure

Figure 13. Input Third-Order Intermod Point vs V_{cc}

DESCRIPTION

The NE/SA612A is a low-power VHF monolithic double-balanced mixer with on-board oscillator and voltage regulator. It is intended for low cost, low power communication systems with signal frequencies to 500 MHz and local oscillator frequencies as high as 200 MHz . The mixer is a "Gilbert cell" multiplier configuration which provides gain of 14 dB or more at 45 MHz .
The oscillator can be configured for a crystal, a tuned tank operation, or as a buffer for an external L.O. Noise figure at 45 MHz is typically below 6 dB and makes the device well suited for high performance cordless phone/cellular radio. The low power consumption makes the NE/SA612A excellent for battery operated equipment. Networking and other communications products can benefit from very low radiated energy levels within systems. The NE/SA612A is available in an 8 -lead dual in-line plastic package and an 8 -lead SO (surface mounted miniature package).

FEATURES

- Low current consumption
- Low cost
- Operation to 500 MHz
- Low radiated energy
- Low external parts count; suitable for crystal/ceramic filter
- Excellent sensitivity, gain, and noise figure

APPLICATIONS

- Cordless telephone
- Portable radio
- VHF transceivers
- RF data links
- Sonabuoys
- Communications receivers
- Broadband LANs
- HF and VHF frequency conversion
- Cellular radio mixer/oscillator

PIN CONFIGURATION

D, N Packages	
$\begin{array}{r} \text { inPuta } \sqrt{1} \\ \text { inPut } \sqrt{2} \\ \text { GND } \sqrt[3]{3} \\ \text { OUTPUTA } 4 \end{array}$	8 vcc 7 OSCILLATOR 6 OSCILLATOR 5 OUTPUT B

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE612AN
8 -Pin Plastic SO (Surface-Mount)	0 to $+70^{\circ} \mathrm{C}$	NE612AD
8 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA612AN
8 -Pin Plastic SO (Surface-Mount)	-40 to $+85^{\circ} \mathrm{C}$	SA612AD

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Maximum operating voltage	9	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
	Operating ambient temperature range NE	0 to +70 T_{A}	${ }^{\circ} \mathrm{C}$

AC/DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Figure 1

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Power supply voltage range		4.5		8.0	V
	DC current drain			2.4	3.0	mA
f_{in}	Input signal frequency			500		MHz
fosc	Oscillator frequency			200		MHz
	Noise figured at 45 MHz			5.0		dB
	Third-order intercept point at 45MHz	$R F_{1 N}=-45 \mathrm{dBm}$		-13		dBm
	Conversion gain at 45 MHz		14	17		dB
RIN	RF input resistance		1.5			k Ω
$\mathrm{C}_{\text {IN }}$	RF input capacitance			3		pF
	Mixer output resistance	(Pin 4 or 5)		1.5		$\mathrm{k} \Omega$

DESCRIPTION OF OPERATION

The NE/SA612A is a Gilbert cell, an oscillator/buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.

The NE/SA612A is designed for optimum low power performance. When used with the NE614A as a 45 MHz cordless phone/cellular radio 2nd IF and demodulator, the NE/SA612A is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third-order intercept is typically -15 dBm (that's approximately +5 dBm output intercept
because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LANs or other closed systems where transmission levels are high, and small-signal or signal-to-noise issues not critical, the input to the NE/SA612A should be appropriately scaled.

TEST CONFIGURATION

Figure 1. Test Configuration

Figure 2. Equivalent Circuit

Besides excellent low power performance well into VHF, the NE/SA612A is designed to be flexible. The input, output, and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.

The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent $A C$ input impedance is approximately $1.5 \mathrm{k}|\mid 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single-ended output configurations and a balanced output.
The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank "Q" and required drive levels. The higher the Q of the tank or the smaller the required drive, the higher the
permissible oscillation frequency. If the required L.O. is beyond oscillation limits, or the system calls for an external L.O., the external signal can be injected at Pin 6 through a DC blocking capacitor. External L.O. should be $200 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ minimum to $300 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text { - }}$ maximum.
Figure 5 shows several proven oscillator circuits. Figure $5 a$ is appropriate for cordless phones/cellular radio. In this circuit a third overtone parallel-mode crystal with approximately 5 pF load capacitance should be specified. Capacitor C3 and inductor L1 act as a fundamental trap. In fundamental mode oscillation the trap is omitted.
Figure 6 shows a Colpitts varacter tuned tank oscillator suitable for synthesizer-controlled applications. It is important to buffer the output of this circuit to assure that switching spikes from the first counter or prescaler do not end up in the oscillator spectrum. The dual-gate MOSFET provides optimum isolation with low current. The FET offers good isolation, simplicity, and low current, while the bipolar circuits provide the simple solution for non-critical applications. The resistive divider in the emitter-follower circuit should be chosen to provide the minimum input signal which will assume correct system operation.

Figure 4. Output Configuration

a. Colpitts Crystal Oscillator (Overtone Mode)

b. Colpitts LC Tank Oscillator

c. Hartley LC Tank Oscillator

Figure 5. Oscillator Circuits

Figure 6. Colpitts Oscillator Suitable for Synthesizer Applications and Typical Buffers

TEST CONFIGURATION

Figure 7. Typical Application for Cordless/Cellular Radio

Figure 8. $I_{\text {Cc }}$ vs Supply Voltage

Figure 10. Third-Order Intercept Point

Figure 12. Third-Order Intercept and Compression

Figure 9. Conversion Gain vs Supply Voltage

Figure 13. Input Third-Order Intermod Point vs $\mathbf{V}_{\mathbf{c c}}$

Author: Robert J. Zavrell Jr.

INTRODUCTION

Several new integrated circuits now permit RF designers to resurrect old techniques of single-sideband generation and detection. The high cost of multi-pole crystal filters limits the use of the SSB mode to the most demanding applications, yet the advantages of SSB over full-carrier AM and FM are well documented (Ref 1 \&2). The use of multi-pole filters can now be circumvented by reviving some older techniques without sacrificing performance. This has been made possible by the availability of some new RF and digital integrated circuits.

DESCRIPTION

Figure 1 shows the frequency spectrum of a 10 MHz full-carrier double-sideband AM signal using a 1 kHz modulating tone. This well-known type of signal is used by standard AM broadcast radio stations. Full-carrier AM's advantage is that envelope detection can be used in the receiver. Envelope detection is a simple and economical technique because it simplifies receiver circuitry. Figure 2 shows the time domain "envelope" of the same AM signal.

The 1 kHz tone example of Figures 1 and 2 serves as a simple illustration of an AM signal. Typically, the sidebands contain complex waveforms for voice or data communications. In the full-carrier double sideband mode (AM), all the modulation information is contained in both sidebands, while the carrier "rides along" without contributing to the transfer of intelligence. Only one sideband without the carrier is needed to effectively transmit the modulation information. This mode is called "single-sideband suppressed carrier". Because of its
reduced bandwidth, it has the advantages of improved spectrum utilization, better sig-nal-to-noise ratios at low signal levels, and improved transmitter efficiency when compared with either FM or full-carrier AM. A finite frequency allocation using SSB can support three times the number of channels when compared with comparable FM or AM full-carrier systems.

Figure 1. Frequency Domain Display of a 10MHz Carrier AM Modulated by a 1kHz Tone (Spectrum Analyzer Display)

Figure 2. Time Domain Display of the Same Signal Shown in Figure 1. (Oscilloscope Display)

There are three basic methods of single-sideband generation. All three use a balanced modulator to produce a double-sideband suppressed carrier signal. The undesired sideband is then removed by phase and amplitude nulling (the phasing method), high Q multi-pole filters (the filter method), or a "third" method which is a derivation of the phasing technique called here the "Weaver" method for the apparent inventor. The reciprocal of the generator functions is
employed to produce sideband detectors. Generators start with audio and produce the SSB signal; detectors receive the SSB signal and reproduce the audio. Since the sideband signal is typically produced at radio frequencies, it can be amplified and applied to an antenna or used as a subcarrier.

Reproduction of the audio signal in a full-carrier AM receiver is simplified because the carrier is present. The signal envelope, which contains the carrier and the sidebands, is applied to a non-linear device (typically a diode). The effect of envelope detection is to multiply the sideband signal by the carrier; this results in the recovery of the audio waveform. The mathematical basis for this process can be understood by studying trigonometric identities.
Since the carrier is not present in the received SSB signal, the receiver must provide it for proper audio detection. This signal from the local oscillator (LO) is applied to a mixer (multiplier) together with the SSB signal and detection occurs. This technique is called product detection and is necessary in all SSB methods. A major problem in SSB receivers is the ability to maintain accurate LO frequencies to prevent spectral shifting of the audio signal. Errors in this frequency will result in a "Donald Duck" sound which can render the signal unintelligible for large frequency errors.

Theory of Single-Sideband Detection

Figures 3 through 8 illustrate the three methods of SSB generation and detection. Since they are reciprocal operations, the circuitry for generation and detection is similar with all three methods. Duplication of critical circuitry is easy to accomplish in transceiver applications by using appropriate switching circuits.

Figure 4. Filter Method SSB Detector

Figure 6. Phasing Method Detector with Simplified Mathematical Model

Figures 3 and 4 show the generation and detection techniques employed in the filter method. In the generator a double sideband signal is produced while the carrier is eliminated with the balanced modulator. Then the undesired sideband is removed with a high Q crystal bandpass filter. A transmit mixer is usually employed to convert the SSB signal to the desired output frequency. The detection scheme is the reciprocal. A receive mixer is used to convert the selected input frequency to the IF frequency, where the filter removes the undesired SSB response. Then the signal is demodulated in the product detector. A major drawback to the filter method is the fact that the filter is fixed-tuned to one frequency. This necessitates the receive and transmit mixers for multi-frequency operation.

Figures 5 and 6 show block diagrams of a generator and demodulator which use the phase method. Figure 6 also includes a mathematical model. The input signal $(\operatorname{Cos}(X t))$ is fed in-phase to two RF mixers where " X " is the frequency of the input signal. The other inputs to the mixers are fed from a local oscillator (LO) in quadrature ($\mathrm{Cos}(\mathrm{Yt})$ and $\operatorname{Sin}(Y t)$), where " Y " is the frequency of the LO signal. By differentiating the output of one of the mixers and then summing with the other, a single sideband response is obtained. Switching the mixer output that is differentiated will change the selected sideband, upper (USB) or lower (LSB). In most cases the mixer outputs will be the audio passband (300 to 3000 Hz). Differentiating the passband involves a 90 degree phase shift over more than three octaves. This is the most difficult aspect of using the phasing method for voice band SSB.

For voice systems, difficulty of maintaining accurate broadband phase shift is eliminated by the technique used in Figures 7 and 8. The "Weaver" method is similar to the phasing method because both require two quadrature steps in the signal chain. The difference between the two methods is that the Weaver method uses a low frequency (1.8 kHz) subcarrier in quadrature rather than the broad-band 90 degree audio phase shift. The desired sideband is thus "folded over" the 1.8 kHz subcarrier and its energy appears between 0 and 1.5 kHz . The undesired sideband appears 600 Hz farther away between 2.1 and 4.8 kHz . Consequently, sideband rejection is determined by a low-pass filter rather than by phase and amplitude balance. A very steep low-pass response in the Weaver method is easier to achieve than the very accurate phase and amplitude balance needed in the phasing

New low-power single sideband circuits

Figure 8. Weaver Method Detector

Figure 9. Dual Filp-Flop Quadrature Synthesis

Figure 10. PLL Quadrature Synthesis
method. Therefore, better sideband rejection is possible with the Weaver method than with the phasing method.

Quadrature Dual Mixer Circults

One of the two critical stages in the phasing method and both critical stages in the Weaver method require quadrature dual mixer circuits. Figures 9 and 10 show two methods of obtaining quadrature LO signals for dual mixer applications. Other methods exist for producing quadrature LO signals, particularly use of passive LC circuits. LC circuits will not maintain a quadrature phase relationship when the operating frequency is changed. The two illustrated circuits are inherently broad-banded; therefore, they are far more flexible and do not require adjustment. These circuits are very useful for SSB circuits, but also can be applied to FSK, PSK, and QPSK digital communications systems.

The NE602 is a low power, sensitive, active, double-balanced mixer which shows excellent phase characteristics up to 200 MHz . This makes it an ideal candidate for this and many other applications.

The circuit in Figure 9 uses a divide-by-four dual flip-flop that generates all four quadratures. Most of the popular dual flip-flops can be used in different situations. The HEF4013 CMOS device uses very little power and can maintain excellent phase integrity at clock rates up to several megahertz. Consequently, the HEF4013 can be used with the ubiquitous 455 kHz intermediate frequency with excellent power economy. For higher clock rates (up to 120 MHz for up to 30 MHz operation), the fast TTL 74F74 is a good choice. It has been tested to 30 MHz operating frequencies with good results ($>30 \mathrm{~dB}$ SSB rejection). At lower frequencies $(5 \mathrm{MHz})$ sideband rejection increases to nearly 40 dB with the circuits shown. The ultimate low frequency rejection is mainly a function of the audio phase shifter. Better performance is possible by employing higher tolerance resistors and capacitors.

The circuit in Figure 10 shows another technique for producing a broadband quadrature phase shift for the LO. The advantage of this circuit over the flip-flops is that the clock frequency is identical to the operating frequency; however, phase accuracy is more difficult to achieve. A PLL will maintain a quadrature phase relationship when the loop is closed and the VCO voltage is zero. The DC amplifier will help the accuracy of the quadrature condition by presenting gain to the VCO control circuit The other problem that can arise is that PLL circuits tend to be noisy. Sideband noise is troublesome in both SSB and FM systems,

Figure 11. FAST TTL Driver from Analog Signal Source Using NE5205

Figure 12. Interface Circuitry Between 74F74 and the NE602s
but SSB is less sensitive to phase noise problems in the LO.
Figure 11 shows a circuit that is effective for driving the 74F74, or other TTL gates, with a signal generator or analog LO. The NE5205 provides about 20 dB gain with 50Ω input and output impedances from $D C$ to 450 MHz . Minimum external components are required. The $1 \mathrm{k} \Omega$ resistor is about optimum for "pulling" the input voltage down near the logic threshold. A 50Ω output level of 0 dBm can be used to drive the NE5205 and 74F74 to 100 MHz . Two NE5205s can be cascaded for even more sensitivity while maintaining extremely wide bandwidth. An advantage of using digital sources for the LO is that low-frequency power supply ripple will not cause hum in the receiver front end. This is a common problem in direct conversion designs.

Figure 12 shows the interface circuitry between the 74F74 and the NE602 LO ports. The total resistance reflects conservative current drain from the 74F74 outputs, while the tap on the voltage divider is optimized for proper NE602 operation. The low signal source impedance further helps maintain phase accuracy, and the isolation capacitor is miniature ceramic for DC isolation.

Audio Amplifiers and Switching

Using active mixers (NE602) in these types of circuits gives conversion gain, typically 18 dB . More traditional applications use passive
diode ring mixers which yield conversion loss, typically 7 dB . Consequently, the detected audio level will be about 25 dB higher when using the NE602. This fact can greatly reduce the first audio stage noise and gain requirements and virtually eliminate the "microphonic" effect common to direct conversion receivers. Traditional direct conversion receivers use passive audio LC filters at the mixer output and low noise, discrete JFETs or bipolars in the first stages. The very high audio sensitivity required by these amplifiers makes them respond to mechanical vibration - thus the "microphonics" result. The conversion gain allows use of a simple op amp stage (Figure 13) set up as an integrator to eliminate ultra-sonic and RF instability. The NE5534 is well known for its low noise, high dynamic range, and excellent audio characteristics (Reference 12) and makes an ideal audio amp for the 602 detector.
The sideband select function is easily accomplished with an HEF4053 CMOS analog switch. This triple double-pole switch drives the phase network discussed in the next section and also chooses one of two amplitude balance potentiometers, one for each sideband. Figure 14 illustrates this circuit. A buffer op amp is used with the two sideband select sections to reduce THD, maintain amplitude integrity, and not change the filter network input resistance values. The gain distribution within both legs of the
receiver was found to be very consistent (within 1 dB), thus the amplitude balance pots may be eliminated in less demanding applications. The NE602s have excellent gain as well as phase integrity.

Audio Phase Shift Circuits

The two critical stages for the phasing method are a dual quadrature mixer and a broadband audio phase shifter (differentiator). There are several broadband, phase shift techniques available. Figure 15 shows an analog all-pass differential phase shift circuit. When the inputs are shorted and driven with a microphone circuit, the outputs will be 90 degrees out-of-phase over the 300 to 3000 Hz band. This "splitting" and phase shift is necessary for the phasing generator. For phasing demodulation the two audio detectors are fed to the two inputs. The outputs are then summed to affect the sideband rejection and audio output.
Standard 1% values are shown for the resistors and capacitors, although better gain tolerances can be obtained with 0.1% laser-trimmed integrated resistors.
Polystyrene capacitors are preferred for better value tolerance and audio performance. Two quad op amps fit nicely into this application. One op amp serves as a switch buffer and the other three form a phasing section. The NE5514 quad op amps perform well for this application. Careful attention to active filter configurations can yield highly linear and very high dynamic range circuits. Yet these characteristics are much easier to achieve at audio than the common IF RF frequencies. This fact, coupled with the lack of IF tuned circuits, shielding, and higher power requirements make audio IF systems attractive indeed.
Figure 16 shows a "tapped" analog delay circuit which uses weighted values of resistors to affect the phase shift. Excellent phase and amplitude balance are possible with this technique, but the price for components is high. It should be stressed that the audio phase shift accuracy and amplitude balance are the limiting factors for SSB rejection when using the phase method; thus the higher cost may be justified in some applications.

Audio Processing

The summing amplifier is a conventional, inverting op amp circuit. It may be useful to configure a low-pass filter around this amplifier, and thus help the sharp audio filters which follow. Audio filters are necessary to shape the desired bandpass. Steep slope audio bandpass filters can be built from switched capacitor filters or from active filters

Figure 13. Phasing Method Detector for Direct Conversion Receiver
requiring more op amps. Switched capacitor filters have the disadvantage of requiring a clock frequency in the RF range. Harmonics can cause interference problems if careful design techniques are not used. Also, better dynamic range is obtained with active filter techniques using "real" resistors although much work is being done with SCF's and performance is improving.

Direct conversion receivers rely heavily on audio filters for selectivity. Active analog or switched capacitor filters can produce the high Q and dynamic ranges necessary. Signal strength or "S-meters" can be constructed from the NE602's companion part, the NE604. The "RSSI" or "received signal strength indicator" function on the 604 provides a logarithmic response over a 90 dB dynamic range and is easy to use at audio frequencies. Finally, the AGC (automatic gain control) function can also be performed in the audio section. Attack and delay times can be independently set with excellent distortion specifications with the NE572 compandor IC. The audio-derived AGC eliminates the need
for gain controlling and RF stage, but relies on an excellent receiver front-end dynamic range. In ACSSB (Amplitude Compandored Single-Side Band) systems transmitter compression and receiver expansion are defined by individual system specifications.

Phasing-Filter Technique

High quality SSB radio specifications call for greater than 70 dB sideband rejection. Using the circuits described in this paper for the phasing method, rejection levels of 35 dB are obtainable with good reliability. Coupled with an inexpensive two-pole crystal or ceramic filter, the 70 dB requirement is obtained. Also, the filtering ahead of the NE602 greatly improves the intermodulation performance of the receiver. Figure 17 shows a complete SSB receiver using the Phasing-Filter technique. The sensitivity of the NE602 allows low gain stages and low power consumption for the RF amplifier and first mixer. A new generation of low power CMOS frequency synthesizers is now available from several manufacturers including the

TDD1742 and dual chip HEF4750/51 solutions.

Direct Conversion Receiver

The antenna can be connected directly to the input of the NE602 (via a bandpass filter) to form a direct conversion SSB receiver using the phasing method. 35 dB sideband rejection is adequate for many applications, particularly where low power and portable battery operation are required. Figure 13 shows a typical circuit for direct conversion applications.

There are many other applications which can make use of SSB technology. Cordless telephones use FM almost exclusively. Eavesdropping could be greatly reduced for systems which employ SSB rather than FM. Furthermore, the better signal-to-noise ratio will extend the range, and battery life will be extended because no carrier is needed.

SSB is also used for subcarriers on microwave links and coaxial lines. Telephone communications networks that use SSB are
called FDM or Frequency Domain Multiplex systems. The low power and high sensitivity of the NE602 can offer FDM designers new techniques for system configuration.

Weaver Method Receiver Techniques

The same quadrature dual mixer can be used for the first stage in both the phasing and Weaver method receiver. The subcarrier stage in the Weaver method receiver can use CMOS analog switches (HEF4066) for great power economy. Figure 18 shows a circuit for the subcarrier stage. A 1.8 kHz subcarrier requires a 7.2 kHz clock frequency. If switched capacitor filters are used for the low-pass and audio filters, a single clock generator can be used for all circuits with appropriate dividers. Furthermore, if the receiver is used as an IF circuit, the fixed LO
signal could also be derived from the same clock. This has the added advantage that harmonics from the various circuits will not interfere with the received signal.

Results

The circuit shown in Figures 13, 14, and 15 has a $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ sensitivity of $0.5 \mu \mathrm{~V}$ with a dynamic range of about 80 dB . Single-tone audio harmonic distortion is below 0.05% with two-tone intermodulation products below 55 dB at RF input levels only 5 dB below the 1 dB compression point. The sideband rejection is about 38 dB at a 9 MHz operating frequency. The good audio specifications are a side benefit to direct conversion receivers. When used with inexpensive ceramic or crystal filters, this circuit can provide these specifications with $>70 \mathrm{~dB}$ sideband rejection.

Conclusions

Single sideband offers many advantages over FM and full-carrier double-sideband modulation. These advantages include: more efficient spectrum use, better signal-to-noise ratios at low signal levels, and better transmitter efficiency. Many of the disadvantages can now be overcome by using old techniques and new state-of-the-art integrated circuits. Effective and inexpensive circuits can use direct conversion techniques with good results. 35 dB sideband rejection with less than $1 \mu \mathrm{~V}$ sensitivity is obtained with the NE602 circuits. 70dB sideband rejection and superior sensitivity are obtained by using phasing-filter techniques. Either the phasing or Weaver methods can be used in either the direct conversion or IF section applications. The filter and phase-filter methods can be used in only the IF application.

Figure 14. Sideband Select Switching Function

Figure 15

Figure 16. Broadband 90° Audio Phase Shift Technique Using Tapped Delay Line (Reference 4)

Figure 18. Weaver Method Receiver Concept Example for $\leq \mathbf{3 0 M H z}$ Operation

REFERENCES

1. Spectrum Scarcity Drives Land-mobile Technology, G. Stone, Microwaves and RF, May, 1983.
2. SSB Technology Fights its Way into the Land-mobile Market, B. Manz, Microwaves and RF, Aug., 1983.
3. A Third Method of Generation and Detection of Single-Sideband Signals, D. Weaver, Proceedings of the IRE, 1956.
4. Delay Lines Help Generate Quadrature Voice for SSB, Joseph A. Webb and M. W. Kelly, Electronics, April 13, 1978.
5. A Low Power Direct Conversion Sideband Receiver, Robert J. Zavrel Jr., ICCE Digest of Technical Papers, June, 1985.
6. Electronic Filter Design Handbook, Arthur B. Williams, McGraw-Hill, 1981.
7. Solid State Radio Engineering, Herbert L. Krauss, et al, Wiley, 1980.
8. ACSB-An Overview of Amplitude Compandored Sideband Technology, James Eagleson, Proceedings of RF Technology Expo 1985.
9. The ARRL Handbook for the Radio Amateur, American Radio Relay League, 1985.
10. Designing With the SA/NE602 (AN198), Signetics Corp., Robert J. Zavrel Jr., 1985.
11. RF IC's Thrive on Meager Battery-Supply Diet, Donald Anderson, Robert J. Zavrel Jr., EDN, May 16, 1985.
12. Audio IC Op Amp Applications, Walter Jung, Sams Publications, 1981.
13.2 Meter Transmitter Uses Weaver Modulation, Norm Bernstein, Ham Radio, July, 1985.

INTRODUCTION

For the designer of low power RF systems, the Signetics NE602 mixer/oscillator provides mixer operation beyond 500 MHz , a versatile oscillator capable of operation to 200 MHz , and conversion gain, with only 2.5 mA total current consumption. With a proper understanding of the oscillator design considerations, the NE602 can be put to work quickly in many applications.

DESCRIPTION

Figure 1 shows the equivalent circuit of the device. The chip is actually three subsystems: A Gilbert cell mixer (which provides differential input gain), a buffered emitter follower oscillator, and RF current and voltage regulation. Complete integration of the DC bias permits simple and compact application. The simplicity of the oscillator permits many configurations.
While the oscillator is simple, oscillator design isn't. This article will not address the rigors of oscillator design, but some practical guidelines will permit the designer to accomplish good performance with minimum difficulty.
Either crystal or LC tank circuitry can be employed effectively. Figure 2 shows the four most commonly used configurations in their most basic form.

In each case the Q of the tank will affect the upper frequency limits of oscillation: the higher the Q the higher the frequency. The NE602 is fabricated with a 6 GHz process, but the emitter resistor from Pin 7 to ground is nominally 20 k . With 0.25 mA typical bias current, 200 MHz oscillation can be achieved with high Q and appropriate feedback.

The feedback, of course, depends on the Q of the tank. It is generally accepted that a minimum amount of feedback should be used, so even if the choice is entirely empirical, a good trade-off between starting characteristics, distortion, and frequency stability can be quickly determined.

Figure 1

a. Fundamental Crystal

Figure 2

Crystal Circuit Considerations

Crystal oscillators are relatively easy to implement since crystals exhibit higher Q's than LC tanks. Figure 3 shows a complete implementation of the SA602 (extended temperature version) for cellular radio with a 45 MHz first IF and 455 kHz second IF.

The crystal is a third overtone parallel mode with 5 pF of shunt capacitance and a trap to suppress the fundamental.

LC Tank Circuits

LC tanks present a little greater challenge for the designer. If the Q is too low, the oscillator won't start. A trick which will help if all else fails is to shunt Pin 7 to ground with a 22k resistor. In actual applications this has been effective to 200 MHz with high Q ceramic capacitors and a tank inductor of 0.08 mH and a Q of 90 . Smaller resistor value will upset DC bias because of inadequate base bias at the input of the oscillator. An external bias resistor could be added from VCC to Pin 6, but this will introduce power supply noise to the frequency spectrum.

The Hartley configuration (Figure 2D) offers simplicity. With a variable capacitor tuning the tank, the Hartley will tune a very large range since all of the capacitance is variable. Please note that the inductor must be coupled to Pin 7 with a low impedance capacitor. The Colpitts oscillator will exhibit a smaller tuning range since the fixed feedback capacitors limit variable capacitance range; however, the Colpitts has good frequency stability with proper components.

Synthesized Frequency Control

The NE602 can be very effective with a synthesizer if proper precautions are taken to minimize loading of the tank and the introduction of digital switching transients into the spectrum. Figure 4 shows a circuit suitable for aircraft navigation frequencies ($108-118 \mathrm{MHz}$) with 10.7 MHz IF.

The dual gate MOSFET provides a high degree of isolation from prescaler switching spikes. As shown in Figure 4, the total current consumption of the NE602 and 3SK126 is typically 3 mA . The MOSFET input is from the emitter of the oscillator transistor to avoid loading the tank. The Gate 1 capacitance of the MOSFET in series with the 2 pF coupling capacitor adds slightly to the feedback capacitance ratio. Use of the 22 k resistor at Pin 7 helps assure oscillation without upsetting DC bias.
For applications where optimum buffering of the tank, or minimum current are not mandatory, or where circuit complexity must be minimized, the buffers shown in Figure 5 can be considered.

Figure 3. Cellular Radio Application

The effectiveness of the MRF931 (or other VHF bipolar transistors) will depend on frequency and required input level to the prescaler. A bipolar transistor will generally provide the least isolation. At low frequencies the transistor can be used as an emitter follower, but by VHF the base emitter junction will start to become a bidirectional capacitor and the buffer is lost.

The 2N5484 has an IDSS of 5mA max. and the 2SK126 has IDSS of 6 mA max. making them suitable for low parts count, modest current buffers. The isolation is good.

Injected LO

If the application calls for a separate local oscillator, it is acceptable to capacitively-couple 200 to 300 mV at Pin 6.

Summary

The NE602 can be an effective low power mixer at frequencies to 500 MHz with oscillator operation to 200 MHz . All DC bias is provided internal to the device so very compact designs are possible. The internal bias sets the oscillator DC current at a relatively low level so the designer must choose frequency selective components which will not load the transistor. If the guidelines mentioned are followed, excellent results will be achieved.

Applying the oscillator of the NE602 in low-power mixer applications

* Permits impedance match of NE602 output, l.e.: 1.5k filter impedance.
* Choose for impedance match to next stage.

Figure 4

NOTES:

* 2k or as necessary for current limits or prescaler impedance match.

GENERAL DESCRIPTION

The TDA1574 is a monolithic integrated FM tuner circuit designed for use in the r.f./i.f. section of car radios and home-receivers. The circuit comprises a mixer, oscillator and a linear i.f. amplifier for signal processing, plus the following additional features.

Features

- Keyed automatic gain control (a.g.c.)
- Regulated reference voltage
- Buffered oscillator output
- Electronic standby switch
- Internal buffered mixer driving

QUICK REFERENCE DATA

Supply voltage range (pin 15)	V_{P}		7 to 16 V
Mixer input bias voltage (pins 1 and 2)	$\mathrm{V}_{1,2-4}$	typ.	1 V
\quad noise figure	NF^{2}	typ.	9 dB
Oscillator output voltage (pin 6)	V_{6-4}	typ.	2 V
output admittance at pin 6 for $\mathrm{f}=108,7 \mathrm{MHz}$	Y 22	typ.	$1,5+\mathrm{j} 2 \mathrm{mS}$
Oscillator output buffer			
D.C. output voltage (pin 9)	V_{9-4}	typ.	6 V
Total harmonic distortion	THD	typ.	-15 dBC
Linear i.f. amplifier output voltage (pin 10)	V_{10-4}	typ.	$4,5 \mathrm{~V}$
\quad noise figure at $\mathrm{R}_{\mathrm{S}}=300 \Omega$	NF	typ.	$6,5 \mathrm{~dB}$
Keyed a.g.c. output voltage range (pin 18)	V_{18-4}	$+0,5$ to $\mathrm{V}_{\mathrm{P}}-0,3 \mathrm{~V}$	

FUNCTIONAL DESCRIPTION

Mixer

The mixer circuit is a double balanced multiplier with a preamplifier (common base input) to obtain a large signal handling range and a low oscillator radiation.

Oscillator

The oscillator circuit is an amplifier with a differential input. Voltage regulation is achieved by utilizing the symmetrical tanh-transfer-function to obtain low order 2nd harmonics.

Linear IF amplifier

The IF amplifier is a one stage, differential input, wideband amplifier with an output buffer.

Keyed AGC

The AGC processor combines narrow- and wideband information via an RF level detector, a comparator and an ANDing stage. The level dependent, current sinking output has an active load, which sets the AGC threshold.
The AGC function can either be controlled by a combination of wideband and narrowband information (keyed AGC), or by a wideband information only, or by narrowband information only. If only narrowband AGC is wanted pin 3 should be connected to pin 5 . If only wideband AGC is wanted pin 12 should be connected to pin 13.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 15)	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{15-4}$	\max.	18 V
Mixer output voltage (pins 16 and 17)	$\mathrm{V}_{16,17-4}$	\max.	35 V
Standby switch input voltage (pin 11)	V_{11-4}	\max.	23 V
Reference voltage (pin 5)	V_{5-4}	\max.	7 V
Field strength input voltage (pin 12)	V_{12-4}	\max.	7 V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	800 mW
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to $+150{ }^{\circ} \mathrm{C}$	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to $+85{ }^{\circ} \mathrm{C}$	
THERMAL RESISTANCE			
From junction to ambient (in free air)	$\mathrm{R}_{\text {th j-amb }}$	$=$	$80 \mathrm{~K} / \mathrm{W}$

Note

All pins are short-circuit protected to ground.

CHARACTERISTICS

$V_{P}=V_{15-4}=8,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit Fig. 1 ; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 15)					
Supply voltage	$V_{P}=V_{15-4}$	7	-	16	V
Supply current (except mixer)	$l_{\text {P }}=l_{15}$	16	23	30	mA
Reference voltage (pin 5)	V_{5-4}	3,9	4,1	4,4	V
Mixer					
D.C. characteristics					
Input bias voltage (pins 1 and 2)	$\mathrm{V}_{1,2-4}$	-	1	-	V
Output voltage (pins 16 and 17)	$\mathrm{V}_{16,17-4}$	4	-	35	V
Output current (pin $16+$ pin 17)	${ }^{16}{ }^{+} \mathrm{I}_{17}$	-	4,0	-	mA
A.C. characteristics ($\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$)					
Noise figure	NF	-	9	-	dB
Noise figure including transforming network	NF	-	11	-	dB
3rd order intercept point	EMF1/P3	-	115	-	$\mathrm{dB} \mu \mathrm{V}$
Conversion power gain					
$10 \log \frac{4\left(V_{M \text { (out) }} 10,7 \mathrm{MHz}\right)^{2}}{(E M F 198 \mathrm{MHz})^{2}} \times \frac{R_{S 1}}{R_{M L}}$	Gp	-	14	-	dB
Input resistance (pins 1 and 2)	$\mathrm{R}_{1,2-4}$	-	14	-	Ω
Output capacitance (pins 16 and 17)	$\mathrm{C}_{16,17}$	-	13	-	pF
Oscillator					
D.C. characteristics					
Input voltage (pins 7 and 8)	$V_{7,8-4}$	-	1,3	-	V
Output voltage (pin 6)	V_{6-4}	-	2	-	V
A.C. characteristics ($\mathrm{f}_{\mathrm{osc}}=108,7 \mathrm{MHz}$)					
Residual FM (Bandwidth 300 Hz to 15 kHz); de-emphasis $=50 \mu \mathrm{~s}$	$\Delta \mathrm{f}$	-	2,2	-	Hz

parameter	symbol	min.	typ.	max.	unit
Linear i.f. amplifier					
D.C. characteristics					
Input bias voltage (pin 13)	V_{13-4}	-	1,2	-	V
Output voltage (pin 10)	V_{10-4}	-	4,5	-	V
A.C. characteristics ($\mathrm{f}_{\mathrm{i}}=10,7 \mathrm{MHz}$)					
Input impedance					
	R_{14-13}	240	300	360	Ω
	C_{14-13}	-	13	-	pF
Output impedance					
	R 10-4	240	300	360	Ω
	C_{10-4}	-	3	-	pF
Voltage gain					
$20 \log \frac{V_{10-4}}{V_{14-13}}$	GVIF	27	30	-	dB
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85{ }^{\circ} \mathrm{C}$	$\Delta G_{\text {VIF }}$	-	0	-	dB
1 dB compression point (r.m.s. value)					
at $\mathrm{V}_{\mathrm{P}}=7,5 \mathrm{~V}$	$\mathrm{V}_{10} 10 \mathrm{rms}$	-	550	-	mV
Noise figure					
Keyed a.g.c.					
D.C. characteristics					
Output voltage range (pin 18)	V_{18-4}	0,5	-	$V_{P}-0,3$	V
A.G.C. output current					
$V_{12-4}=450 \mathrm{mV} ; V_{18-4}=V_{p} / 2$	-118	25	50	100	$\mu \mathrm{A}$
at $V_{3-4}=2 \mathrm{~V}$ and					
$V_{12-4}=1 V^{\prime} V_{18-4}=V_{15-4}$	I_{18}	2	-	5	mA

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Narrowband threshold $\begin{aligned} & \text { at } V_{3-4}=2 \mathrm{~V} ; \mathrm{V}_{12-4}=550 \mathrm{mV} \\ & \text { at } \mathrm{V}_{3-4}=2 \mathrm{~V} ; \mathrm{V}_{12-4}=450 \mathrm{mV} \end{aligned}$ A.C. characteristics ($\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$) Input impedance					
	V_{18-4}	-	-	1	V
	V_{18-4}	$V_{P}-0,3$	-	-	V
	R_{3-4}	-	4	-	$k \Omega$
	C_{3-4}	-	3	-	pF
Wideband threshold (r.m.s. value) (see figures 2, 3, 4 and 5) at $V_{12-4}=0,7 V_{;} V_{18-4}=V_{P} / 2 ; I_{18}=0$					
	EMF2rms	-	17	-	mV
Oscillator output buffer (pin 9)D.C. output voltage					
	V_{9-4}	-	6,0	-	v
Oscillator output voltage (r.m.s. value)at $\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$at $\mathrm{R}_{\mathrm{L}}=75 \Omega$					
	V_{9-4} (rms)	-	110	-	mV
	V_{9-4} (rms)	30	50	-	mV
D.C. output impedance	R9-15	-	2,5	-	$k \Omega$
Signal purity					
Total harmonic distortion	THD	-	-15	-	dBC
Spurious frequencies at EMF1 $=0,2 \mathrm{~V} ; \mathrm{R}_{\mathrm{S} 1}=50 \Omega$	f_{S}	-	-35	-	dBC
Electronic standby switch (pin 11)					
Oscillator; linear i.f. amplifier; a.g.c. at $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$					
$\begin{aligned} & \text { Input switching voltage } \\ & \text { for threshold ON; } V_{18-4}=\geqslant V_{p}-3 \mathrm{~V} \\ & \text { for threshold OFF; } V_{18-4}=\leqslant 0,5 \mathrm{~V} \end{aligned}$					
	V_{11-4}	0	-	2,3	V
	V_{11-4}	3,3	-	23	V
Input currentat ON condition; $\mathrm{V}_{11-4}=0 \mathrm{~V}$at OFF condition; $\mathrm{V}_{11-4}=23 \mathrm{~V}$					
	-111	-	-	150	$\mu \mathrm{A}$
	l_{11}	-	-	10	$\mu \mathrm{A}$
Input voltageat $\mathrm{I}_{11}=\phi$					
	V_{11-4}	-	-	4,4	V

Fig. 2 Keyed a.g.c. output voltage V_{18-4} as a function of r.m.s. input voltage V_{3-4}. Measured in test circuit Fig. 1 at $\mathrm{V}_{12-4}=0,7 \mathrm{~V} ; \mathrm{I}_{18}=\phi$.

Fig. 4 Keyed a.g.c. output current I_{18} as a function of r.m.s. input voltage V_{3-4}. Measured in test circuit Fig. 1 at $V_{12-4}=0,7 \mathrm{~V} ; \mathrm{V}_{18-4}=8,5 \mathrm{~V}$.

Fig. 3 Keyed a.g.c. output voltage V_{18-4} as a function of input voltage V_{12-4}. Measured in test circuit Fig. 1 at $\mathrm{V}_{3-4}=2 \mathrm{~V} ; \mathrm{I}_{18}=\phi$.

Fig. 5 Keyed a.g.c. output current ${ }^{18}$ as a function of input voltage V_{12-4}.
Measured in test circuit Fig. 1
at $\mathrm{V}_{3-4}=2 \mathrm{~V} ; \mathrm{V}_{18-4}=8,5 \mathrm{~V}$.

GENERAL DESCRIPTION

The TDA1574T is an integrated FM tuner circuit designed for use in the RF/IF section of car radios and home-receivers. The circuit contains a mixer and an oscillator and a linear IF amplifier for signal processing. The circuit also incorporates the following features.

Features

- Keyed Automatic Gain Control (AGC)
- Regulated reference voltage
- Buffered oscillator output
- Electronic standby switch
- Internal buffered mixer driving

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage range (pin 17)		V_{p}	7	-	14	V
Mixer input bias voltage (pins 1 and 2)		$V_{1,2-4}$	-	1	-	V
Noise factor		NF	-	9	-	dB
Oscillator output voltage (pin 6)		V_{6-4}	-		-	\checkmark
Output admittance at pin 6	$\mathrm{f}=108.7 \mathrm{MHz}$	Y22	-			ms
Oscillator output buffer DC output voltage (pin 9)		V9-4	-	6	-	V
Total harmonic distortion		THD	-	-15	-	dB
Linear IF amplifier output voltage (pin 12)		\vee_{12-4}	-	4.5	-	V
Noise factor	$\mathrm{R}_{\mathrm{S}}=300 \Omega$	NF	-	6.5	-	dB
Keyed AGC output voltage range (pin 20)		V_{20-4}	0.5	-	V P-0.3	V

Coil data

L1: TOKO MC-108, 514HNE-150023S14; L $=0.078 \mu \mathrm{H}$
L2: TOKO MC-111, E516HNS-200057; L $=0.08 \mu \mathrm{H}$
L3: TOKO Coil set 7P, N1 $=5.5+5.5$ turns, N2 $=4$ turns
Fig. 1 Block diagram and test circuit.

PINNING

Fig. 2 Pinning diagram.

1. Mixer input 1
2. Mixer input 2
3. Wideband information input
4. Ground
5. Voltage reference
6. Oscillator output
7. Oscillator input 1
8. Oscillator input 2
9. Buffered oscillator output
10. Not connected
11. Not connected
12. IF output
13. Standby switch
14. Narrowband information input
15. IF input 1
16. IF input 2
17. Supply voltage
18. Mixer output 1
19. Mixer output 2
20. AGC output

FUNCTIONAL DESCRIPTION

Mixer

The mixer circuit uses a double balanced multiplier with a preamplifier (common base input) in order to obtain a large signal handling range and low oscillator radiation.

Oscillator

The oscillator circuit uses an amplifier with a differential input. Voltage regulation is achieved by utilizing the symmetrical tan h-transfer-function to obtain low order 2 nd harmonics.

Linear IF amplifier

The IF amplifier is a one stage, differential input, wideband amplifier with an output buffer.

Keyed AGC

The AGC processor combines narrow and wideband information via an RF level detector, a comparator and an ANDing stage. The level dependent current sinking output has an active load which sets the AGC threshold.
The AGC function can either be controlled by a combination of wideband and narrowband information (keyed AGC) or by a wideband/narrowband information only. If narrowband AGC is required pin 3 should be connected to pin 5 . If wideband AGC is required pin 14 should be connected to pin 15.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage (pin 17)		V_{17-4}	-	14	V
Mixer output voltage (pins 18 and 19) Standby switch input voltage (pin 13)		$V_{18,19-4}$	-	35	V
Reference voltage (pin 5)		V_{13-4}	-	23	V
Total power dissipation		V_{5-4}	-	7	V
Storage temperature range					
Operating ambient temperature range		$\mathrm{P}_{\text {tot }}$	-	500	mW

THERMAL RESISTANCE

From junction to ambient (in free air)

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{17-4}=8.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit Fig.1;
All measurements are with respect to ground ($\operatorname{pin} 4$); unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply (pin 17)						
Supply voltage	$V_{P}=V_{17}$	V_{17}	7	-	14	V
Supply current (except mixer)	$I_{P}=I_{17}$	I_{17}	16	23	30	mA
Reference voltage (pin 5)		V_{5}	4.0	4.2	4.4	V
Mixer						
DC characteristics						
Input bias voltage (pins 1 and 2)		$V_{1,2}$	-	1	-	V
Output voltage (pins 18 and 19)		$V_{18,19}$	4	-	35	V
Output current (pins 18 and 19)		$118+19$	-	4.5	-	mA
AC characteristics	$\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$					
Noise figure		NF	-	9	-	dB
Noise figure including transforming network		NF	-	11	-	dB
3rd order intercept point		EMF1/P3	-	115	-	$d B / \mu \mathrm{V}$
Conversion power gain	note 1	G_{CP}	-	14	-	dB
Input resistance (pins 1 and 2)		$\mathrm{R}_{1,2}$	-	14	-	Ω
Output capacitance (pins 18 and 19)		$\mathrm{C}_{18,19}$	-	13	-	pF
Oscillator						
DC characteristics						
Input voltage (pins 7 and 8)		$V_{7,8}$	-	1.3	-	V
Output voltage (pin 6)		V_{6}	-	2	-	V
AC characteristics						
$\begin{aligned} & \text { Residual FM (bandwidth = } \\ & 300 \mathrm{~Hz} \text { to } 15 \mathrm{kHz} \text {) } \end{aligned}$	de-emphasis $=50 \mu \mathrm{~s}$	Δf	-	2.2	-	Hz
Linear IF amplifier						
DC characteristics						
Input bias voltage (pin 15)		V_{15}	-	1.2	-	V

CHARACTERISTICS (continued)

parameter	conditions	symbol	min.	typ.	max.	unit
Output voltage (pin 12)		V_{12}	-	4.5	-	v
AC characteristics	$\mathrm{f}_{\mathrm{i}}=10.7 \mathrm{MHz}$					
Input impedance		R_{16-15}	240	300	360	Ω
Input impedance		$\mathrm{C}_{16 \text {-15 }}$	-	13	-	pF
Output impedance		R_{12}	240	300	360	Ω
Output impedance		C_{12}	-	3	-	pF
Voltage gain	note 2	G_{v}	27	30	-	dB
Voltage gain with variation of temperature	$\begin{aligned} & T_{\mathrm{amb}}=-40 \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	ΔG_{T}	-	0	-	dB
1 dB compression point (RMS value)						
at $\mathrm{V}_{\mathrm{P}}=8.5 \mathrm{~V}$		V_{12} (rms)	-	750	-	mV
at $\mathrm{V}_{\mathrm{P}}=7.5 \mathrm{~V}$		V_{12} (rms)	-	550	-	mV
Signal-to-noise ratio	$\mathrm{R}_{S}=300 \Omega$	S / N	-	6.5	-	dB
Keyed AGC						
DC characteristics						
Output voltage range (pin 20)		$\Delta \mathrm{V}_{20}$	0.5	-	$V_{p}-0.3$	V
$\begin{aligned} & \text { AGC output current } \\ & \text { at } I_{3}=0 \text { or } \\ & V_{14}=450 \mathrm{mV} \end{aligned}$						
$\begin{aligned} & v_{20}=V_{p} / 2 \\ & \text { at } V_{3}=2 V \text { and } \end{aligned}$		$-_{20}$	25	50	100	$\mu \mathrm{A}$
$\mathrm{V}_{14}=1 \mathrm{~V} ; \mathrm{V}_{20}=\mathrm{V}_{15}$		I_{20}	2	-	5	mA
Narrowband threshold at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{V}_{14}=550 \mathrm{mV}$		v_{20}		-	1	v
$\text { at } V_{3}=2 V_{;} V_{14}=450 \mathrm{mV}$		v_{20}	$V_{P}-0.3$	-	-	
AC characteristics	$\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$					
Input impedance		$\begin{aligned} & \mathrm{R}_{3} \\ & \mathrm{C}_{3} \end{aligned}$	-	4 3	-	k p /

parameter	conditions	symbol	min.	typ.	max.	unit
Wideband threshold (RMS value) (see Figs 3, 4, 5 and 6) at $\mathrm{V}_{14}=0.7 \mathrm{~V}$; $V_{20}=V_{p} / 2 ; I_{20}=0$		$\mathrm{EMF}_{2(\mathrm{rms})}$	-	17	-	mV
Oscillator output buffer (pin 9)						
DC output voltage		V_{9}	-	6	-	v
Oscillator output voltage (RMS value) at $R_{L}=00 ; C_{L}=2 \mathrm{pF}$ at $\mathrm{R}_{\mathrm{L}}=75 \Omega$						
		$\mathrm{V}_{9}(\mathrm{rms})$	-	110	-	$m \mathrm{~V}$
		$V_{9(r m s)}$	30	50	-	mV
DC output resistance		$\mathrm{R}_{\mathrm{g}-17}$	-	2.5	-	$k \Omega$
Signal purity						
Total harmonic distortion		THD	-	-15	-	$d B$
Spurious frequencies at $\mathrm{EMF} 1=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{S} 1}=50 \Omega$		${ }^{\text {f }}$ S	-	-35	-	dB
Electronic standby switch (pin 11)						
Oscillator; linear IF amplifier; AGC	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-40 \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$					
Input switching voltage for threshold ON for threshold OFF	$\mathrm{V}_{20}=>\mathrm{V}_{\mathrm{p}}-3 \mathrm{~V}$	V_{13}	0	-	2.3	V
	$\mathrm{V}_{20}=<0.5 \mathrm{~V}$	\vee_{13}	3.3	-	23	v
Input current at ON condition at OFF condition	$\mathrm{V}_{13}=0 \mathrm{~V}$		-	-	150	
	$\mathrm{V}_{13}=23 \mathrm{~V}$	-113	-	-		$\mu \mathrm{A}$
Input voltage	$1_{13}=0$	V_{13}	-	-	4.4	V

Notes to the characteristics

1. Power gain conversion is equated by the following equation:

$$
10 \log \frac{4\left(\mathrm{~V}_{\mathrm{M} \text { (out) }} 10.7 \mathrm{MHz}\right)^{2}}{(E M F 198 \mathrm{MHz})^{2}} \times \frac{R_{\mathrm{S} 1}}{R_{M L}}
$$

2. Voltage gain is equated by the following equation:
$20 \log \frac{V_{12}}{V_{16-15}}$

Fig. 3 Keyed AGC output voltage V_{20} as a function of RMS input voltage V_{3}.
Measured in test circuit Fig. 1 at $\mathrm{V}_{14}=0.7 \mathrm{~V}$; $1_{20}=0$.

Fig. 5 Keyed AGC output current I_{20} as a function of RMS input voltage V_{3}.
Measured in test circuit Fig. 1 at $\mathrm{V}_{14}=0.7 \mathrm{~V}$; $\mathrm{V}_{20}=8.5 \mathrm{~V}$.

Fig. 4 Keyed AGC output voltage V_{20} as a function of input voltage V_{14}. Measured in test circuit Fig. 1 at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{I}_{20}=0$.

Fig. 6 Keyed AGC output voltage I_{20} as a function of input voltage V_{14}. Measured in test circuit Fig. 1 at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{V}_{20}=8.5 \mathrm{~V}$.

Coil data

L1: TOKO MC-108, N1 = 5.5 turns, N2 = 1 turn
L2: । see Fig. 1
(1) Field strength indication of main IF amplifier.

Fig. 7 TDA1574T application diagram.

GENERAL DESCRIPTION

The TDA5030A provides VHF local oscillator, VHF mixer and UHF IF preamplifier functions for VHF/UHF television receivers. It includes a buffered output from the VHF local oscillator, a VHF/UHF switching circuit and an IF amplifier stage for an external SAW filter.

Features

- Balanced VHF mixer
- Voltage-controlled VHF local oscillator
- IF amplifier for SAW filter
- UHF IF preamplifier
- Local oscillator buffer output for external prescaler
- Voltage stabilizer
- UHF/VHF switching circuit
- Electrostatic discharge protection diodes at pins 10, 11, 12 and 13

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage	pin 15	$\mathrm{~V}_{\mathrm{P}}$	10	-	13,2	V
Supply current		Ip	-	42	-	mA
VHF mixer frequency range		f	50	-	470	MHz
Conversion gain						
Conversion noise						
Input signal for 1\% cross modulation Storage temperature range Operating ambient temperature range	300 MHz		-	24,5	-	dB
		-	10	-	dB	

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage	pin 15	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{15-3}$	-	14	V
Input voltage	pins 1, 2, 4 and 5	V_{i}	0	5	V
VHF switching voltage	pin 12	V_{12}	0	$\mathrm{V}_{15}+0,3$	V
Output current	pins 10,11 or 13	${ }^{-1} 10,11,13$	-	10	mA
Short-circuit time on outputs	pins 10 and 11	${ }^{\text {sss }}$	-	10	s
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55	+ 125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range		Tamb	-25	+ 85	${ }^{\circ} \mathrm{C}$
Junction temperature range		T_{j}	-	+ 125	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient
$R_{\text {th } j-a}$
55 K/W

CHARACTERISTICS

Measured in circuit of Fig. 2, $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{15-3}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage	pin 15	V_{15-3}	10	-	13,2	V
Supply current		l_{15}	-	42	55	mA
Switch voltage level for VHF	pin 12	V_{12}	0	-	2,5	V
Switch voltage level for UHF	pin 12	V_{12}	9,5	-	$\mathrm{V}_{15}+0,3$	V
Switch current	UHF selected	l_{12}	-	-	0,7	mA
VHF mixer (including IF amplifier)						
Frequency range		f	50	-	470	MHz
Noise factor	$\begin{aligned} & \operatorname{pin} 2 \\ & f=50 \mathrm{MHz} \end{aligned}$	F	-	7,5	9	dB
	$\mathrm{f}=225 \mathrm{MHz}$	F	-	9	10	dB
	$\mathrm{f}=300 \mathrm{MHz}$	F	-	10	12	dB
	$\mathrm{f}=470 \mathrm{MHz}$	F	-	11	13	dB
Optimum source conductance	pin 2					
	$\mathrm{f}=50 \mathrm{MHz}$	G	-	0,5	-	mS
	$\mathrm{f}=225 \mathrm{MHz}$	G	-	1,1	-	mS
	$\mathrm{f}=300 \mathrm{MHz}$	G	-	1,2	-	mS
Input conductance	$\begin{aligned} & \operatorname{pin} 2 \\ & f=50 \mathrm{MHz} \\ & \mathrm{f}=225 \mathrm{MHz} \\ & \mathrm{f}=300 \mathrm{MHz} \end{aligned}$	G_{i}	-	0,23	-	mS
		G_{i}	-	0,5	-	mS
		G_{i}	-	0,67	-	mS
Input capacitance	$\begin{aligned} & \operatorname{pin} 2 \\ & f=50 \mathrm{MHz} \end{aligned}$	C_{i}	-	2,5	-	pF
Input voltage for 1% cross-modulation (in channel)		V_{2-3}	97	99	-	$\mathrm{dB} \mu \mathrm{V}$
Input voltage for 10 kHz pulling (in channel)		V_{2-14}	100	-	-	$\mathrm{dB} \mu \mathrm{V}$
Voltage gain	$\mathrm{f}<300 \mathrm{MHz}$	A_{v}	22,5	24,5	26,5	dB

CHARACTERISTICS (continued)

parameter	conditions	symbol	\min.	typ.	max.	unit
UHF preamplifier (including IF amplifier)						
Input conductance	pin 5	G_{i}	-	0,3	-	mS
Input capacitance	pin 5	C_{i}	-	3,0	-	pF
Noise factor	pin 5	F	-	5	6	dB
Optimum source conductance	pin 5	G	-	3,3	-	mS
Input voltage for 1% cross-modulation (in channel)		V_{5-14}	88	90	-	$\mathrm{dB} \mu \mathrm{V}$
Voltage gain		A_{v}	31,5	33,5	35,5	dB
VHF mixer						
Conversion transadmittance	pins 2 to 6,7	$\mathrm{Yc}_{2-6,7}$	-	5,7	-	mS
Output impedance	pins 6 and 7	Z_{0}	-	1,6	-	$k \Omega$
VHF oscillator						
Frequency range		f	70	-	520	MHz
Frequency shift	$\begin{aligned} & \Delta V_{p}=10 \% ; \\ & f=70-330 \mathrm{MHz} \end{aligned}$	$\Delta \mathrm{f}$	-	-	200	kHz
Frequency drift	$\begin{aligned} & \Delta \mathrm{T}=15 \mathrm{~K} ; \\ & \mathrm{f}=70-330 \mathrm{MHz} \end{aligned}$	$\Delta \mathrm{f}$	-	-	250	kHz
Frequency drift	between 5 s and 15 min after switch-on	$\Delta \mathrm{f}$	-	-	200	kHz
SAW filter IF amplifier						
Input impedance	$\begin{aligned} & \mathrm{Z}_{10}, 11=2 \mathrm{k} \Omega ; \\ & \mathrm{f}=36 \mathrm{MHz} \end{aligned}$	$\mathrm{Z}_{8,9}$	-	$\begin{aligned} & 300+ \\ & \mathrm{j} 100 \end{aligned}$	-	Ω
Transimpedance		$Z_{8,9-10,11}$	-	2,2	-	$k \Omega$
Output reflection coefficient:	$\mathrm{f}=36 \mathrm{MHz}$					
modulus			0,45	0,37	0,41	
phase			-63	-112	-134	deg

parameter	conditions	symbol	min.	typ.	max.	unit
VHF local oscillator output buffer						
Output voltage	pin 13 $R_{L}=75 \Omega$ $\mathrm{f}<100 \mathrm{MHz}$	V_{13}	14	20	-	mV
	$\mathrm{f}>100 \mathrm{MHz}$	V_{13}	10	20	-	mV
Output impedance	$\mathrm{f}=100 \mathrm{MHz}$	z_{13}	-	90	-	Ω
RF signal on local oscillator output	$\mathrm{R}_{\mathrm{L}}=75 \Omega$					
	$\begin{aligned} & V_{i}=1 \mathrm{~V} ; \\ & \mathrm{f} \leqslant 225 \mathrm{MHz} \end{aligned}$	RF/(RF+LO)	-	-	10	dB
	$\begin{aligned} & V_{i}=0,3 \mathrm{~V} ; \\ & f=225-300 \mathrm{MHz} \end{aligned}$	RF/(RF+LO)	-	-	10	dB
IF signal on local oscillator output	UHF selected; $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega \\ & \mathrm{~V}_{\mathrm{i}}=350 \mathrm{mV} \end{aligned}$	IF/(IF+LO)	-	-	3	mV
Local oscillator harmonics w.r.t. local oscillator output signal	$\mathrm{R}_{\mathrm{L}}=75 \Omega$		-	-	-14	dB

(1) $\mathrm{C}=18 \mathrm{pF}, \mathrm{L}=2,2 \mu \mathrm{H}, \mathrm{f} \mathrm{CL}=36,5 \mathrm{MHz}$.
(2) Turns ratio $=7: 1$, load $=50 \Omega$.

Fig. 2 Test circuit.

Section 5 Audio and Data Processors

RF Communications

INDEX
NE/SA5750 Audio processor - companding and amplifier section 521
NE/SA5751 Audio processor - filter and control section 528
AN1741 Using the NE5750 and NE5751 for audio processing 538
PCA5000AT Paging decoder 558
PCF5001T POCSAG paging decoder with EEPROM storage 577
TEA6300 Sound fader control circuit 579
UMA1000T Data processor for cellular radio (DPROC) 595

DESCRIPTION

The NE/SA5750 is a high performance low power audio signal processing system. The NE/SA5750 subsystems include a low noise microphone preamplifier with adustable gain, a noise cancellation switching amplifier with adjustable threshold, a voice operated transmitter (VOX) switch, VOX control, an audio compressor with buffered input, audio expandor, a unity gain power amplifier to drive a speaker, a summing power amplifier for sidetone attenuation and headphone (earpiece) drive, and an internal bandgap voltage regulator with power down capability. When used with Signetics' NE/SA5751, the complete audio processing function of an AMPS or TACS cellular telephone is easily implemented. The NE/SA5750 can also be used without the NE/SA5751 in a wide variety of radio communications applications.

FEATURES

- High performance
- 5 V supply
- Adjustable VOX and noise cancellation threshold
- Adjustable gain preamplifier
- Audio companding
- ESD protected
- Open collector VOX output
- Logic inputs CMOS compatible
- Power down mode
- Built-in drivers for speaker and earpiece
- Few external components
- SOL and DIP packages

BENEFITS

- Very compact applications
- Long battery life in portable equipment
- Complete cellular audio function with the SA5751

APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
24-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5750N
24-Pin Plastic SOL	0 to $+70^{\circ} \mathrm{C}$	NE5750D
24-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5750N
24-Pin Plastic SOL	-40 to $+85^{\circ} \mathrm{C}$	SA5750D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Power supply voltage Voltage applied to any pin	6 $\left(\mathrm{~V}_{\mathrm{CC}}+0.3\right)$	V V
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient operating temperature NE5750 SA5750	0 to 70 -40 to +85	${ }^{\circ} \mathrm{C}$

Audio processor - companding and amplifier section

PIN DESCRIPTIONS

PIN NO.	SYMBOL	DESCRIPTION
1	MIC $_{\text {IN }}$	Microphone input
2	PREAMP $_{\text {GRES }}$	Preamplifier gain resistor
3	RECT $_{\text {GRES }}$	Reactifier gain resistor
4	NCAN $_{\text {CAP }}$	Noise cancellation timing capacitor
5	VOX $_{\text {OUT }}$	Voice operated transmission output
6	VOX $_{\text {CTL }}$	Voice operated transmission control
7	VOX $_{\text {TR }}$	Voice operated transmission threshold resistor
8	GND	Ground
9	V $_{\text {REF }}$	Reference voltage
10	H $_{\text {PDN }}$	Hardware power down
11	SPKR $_{\text {OUT }}$	Speaker output
12	EAR $_{\text {OUT }}$	Earpiece output
13	EAR $_{\text {IN }}$	Earpiece input, side tone input
14	SPKR $_{\text {IN }}$	Speaker input
15	EXP $_{\text {CAp }}$	Expandor timing capacitor
16	EXP $_{\text {OUT }}$	Expandor output
17	EXP $_{\text {IN }}$	Expandor input
18	V CC	Positive supply
19	COMP $_{\text {CAP2 }}$	Compressor timing capacitor 2
20	COMPouT	Compressor output
21	COMP $_{\text {CAP3 }}$	Compressor timing capacitor 3
22	COMPAP1	Compressor timing capacitor 1
23	COMP $_{\text {IN }}$	Compressor input
24	NCAN $_{\text {OUT }}$	Noise cancellation output

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, 0 \mathrm{~dB}=77.5 \mathrm{~m} \mathrm{~V}_{\text {RMs }}$. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V_{cc}	Supply voltage		4.75	5.0	5.25	V
Icc	Supply current	No signal Power down mode		$\begin{aligned} & \hline 8.4 \\ & 1.8 \end{aligned}$	$\begin{gathered} 12.0 \\ 3.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Z_{L}	Load impedance pins NCAN ${ }_{\text {OUt }}$ EXP ${ }_{\text {OUt }}$		50			$k \Omega$
	COMPout ${ }^{1}$		10			k Ω
Z_{IN}	$\begin{aligned} & \text { Input impedance } \\ & \operatorname{COMP}_{\mathbb{N}}, \text { MIC }_{\mathbb{N}}, \text { SPKR }_{\mathbb{N}} \end{aligned}$		40	50	60	k Ω
	EXP in 2		2.0	2.5		k Ω
	Noise cancellation current	Pin 7, grounded	40	50	60	$\mu \mathrm{A}$
Vos	DC offset $\mathrm{NCAN}_{\text {OUT }}{ }^{3}$		-50		50	mV

NOTES:

1. Compressor is tested in production with $50 \mathrm{k} \Omega$ load.
2. Not tested in production.
3. Offset values are identical for both gain states of noise reduction circuit.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{OdB}$ level $=77.5 \mathrm{mV}$ RMs. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	Preamplifier gain range Preamplifier voltage gain 0dB Preamplifier voltage gain 40dB	Pin 2 open Pin 2 AC ground	$\begin{gathered} 0 \\ \hline-1.0 \\ 39.0 \end{gathered}$	$\begin{gathered} 0 \\ 40 \end{gathered}$	$\begin{gathered} \hline 40 \\ 1.0 \\ 41.0 \end{gathered}$	dB dB dB
	Preamplifier noise density	Pin 2 AC grounded RS $=0-50 \mathrm{k} \Omega$ unweighted $20 \mathrm{~Hz}-20 \mathrm{kHz}$		7		$n V / \sqrt{H z}$
		weighted CCIR DIN45405 20-20kHz		8		$n V / \sqrt{H z}$
	Switch amplifier gain		9	10	11	dB
	Sidetone attenuation range				30	dB
Compandor 1kHz, all tests ${ }^{1}$						
COMPout	Compressor error at -21dB output level	Input level = -42dB		0.38		dB
COMPout	Compressor error at -10dB output level	Input level $=-20 \mathrm{~dB}$	-1.0		1.0	dB
COMPout	Compressor error at OdB output level	Input level = OdB	-1.5	0.12	1.5	dB
COMPOUT	Compressor error at +5 dB output level	Input level = +10dB	-1.0		1.0	dB
COMPout	Compressor error at +12.3 dB output level	Input level $=+24.6 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at -42dB output level	Input level $=-21 \mathrm{~dB}$		-0.41		dB
EXPout	Expandor error at -21dB output level	Input level $=-10.5 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at-10dB output level	Input level = -5dB	-1.0		1.0	dB
EXPout	Expandor error at OdB output level	Input level = OdB	-1.5	-0.18	1.5	dB
EXPout	Expandor error at +10 dB output level	Input level $=+5 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at +24.6 dB output level ${ }^{2}$	Input level $=+12.3 \mathrm{~dB}$	-1.5		1.5	dB
EXPout	Expandor Vos	No signal	-50.0		50.0	mV
EXPout	Expandor output DC shift	No signal to OdB	-100		100	mV

AC ELECTRICAL CHARACTERISTICS

NOTE:

1. Measurements are relative to $O \mathrm{~dB}$ output.
2. Measurement is absolute and indicative of the output dynamic range capability.

Figure 1. Typical Configuration of Audio Processor (APROC) System Chip Set

Figure 2. Cellular Radio System

Figure 3. APROC Application Diagram

Figure 4. NE/SA5750 Test and Application Circuit

DESCRIPTION

The NE/SA5751 is a high performance low power CMOS audio signal processing system. The NE/SA5751 subsystems include complementary transmit/receive voice band $(300-3000 \mathrm{~Hz})$, switched capacitor bandpass filters with pre-emphasis and de-emphasis respectively, a transmit low pass filter, peak deviation limiter for transmit, a digitally controlled volume control with 30 dB range (in 2 dB steps), audio path mute switches, a programmable DTMF generator, power- down circuitry for low current standby, power-on reset capability, and an $I^{2} \mathrm{C}$ interface. When the SA5751 is used with an SA5750 (companding function), the complete audio processing system of an AMPs or TACs cellular telephone is easily implemented.

FEATURES

- Low power
- High performance
- 5V supply
- Built-in programmable DTMF generator
- Built-in digitally controlled volume control
- Built-in peak-deviation limit
- ${ }^{2} \mathrm{C}$ Bus controlled
- Power-on reset
- Power-down capability

BENEFITS

- Very compact application
- Long battery life in portable equipment
- Complete cellular audio function with the SA5750

APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
24-Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	NE5751N
28-Pin Plastic SOL	0 to $+70^{\circ} \mathrm{C}$	NE5751D
24-Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA5751N
$28-$ Pin Plastic SOL	-40 to $+85^{\circ} \mathrm{C}$	SA5751D

PIN CONFIGURATION

N PACKAGE					
NC 1	NE5751	24	NC TXLFout TXDTMFOUT		
VREF 2		23			
TXBFIN 3		22			
TXBFOUT 4		21	TXS ${ }_{\text {IN }}$		
PREMPIN 5		20	TXSOUT		
$\mathrm{V}_{\mathrm{DD}}{ }^{6}$		19	GND		
DEMPOUT 7		18	$\mathrm{CLK}_{\text {IN }}$		
$\mathrm{VC}_{\text {IN }} 8$		17	SDA		
VCOUT1 9		16	SCL		
$\mathrm{VC}_{\text {OUT2 }} 10$		15	SA1		
MUTET 11		14	RXBFIN		
MUTER 12		13	VOXCTL		
D1 Package					
NC 1		28	NC		
NC 2		27	NC		
$\mathbf{V}_{\text {REF }} 3$		26	TXLFout		
TXBFIN 4		25	TXDTMFOUT		
TXBFOUT 5		24	TXS ${ }_{\text {IN }}$		
PREMPIN 6		23	TXSOUT		
$v_{D D}$ \square	NE5751	22	GND		
DEMPOUT 8		21	CLKIN		
$V C_{1 N}{ }^{9}$		20	SDA		
$\mathrm{VCOUT1}^{10}$		19	SCL		
vCout2 11		18	SA1		
MUTET 12		17	RXBFiN		
MUTER 13		16	voxcti		
NC 14		15	NC		
NOTE: 1. Available in SOL (large surface mount) package only					

PIN DESCRIPTIONS

PIN NO.		SYMBOL	DESCRIPTION
	(1)	NC	Not connected
1	(2)	NC	Not connected
2	(3)	$\mathrm{V}_{\text {REF }}$	Reference voltage
3	(4)	TXBFIN	Transmit bandpass filter input
4	(5)	TXBFout	Transmit bandpass filter output
5	(6)	PREMPIN	Pre-emphasis input
6	(7)	$V_{D D}$	Positive supply
7	(8)	DEMPout	De-emphasis output
8	(9)	$\mathrm{VC}_{\text {IN }}$	Volume control input
9	(10)	VCout1	Volume control output 1
10	(11)	VCout2	Volume control output 2
11	(12)	MUTET	TX analog voice path mute input
12	(13)	MUTER	RX analog voice path mute input
	(14)	NC	Not connected
	(15)	NC	Not connected
13	(16)	VOX ${ }_{\text {cti }}$	Vox control output
14	(17)	RXBF ${ }_{\text {IN }}$	Receive bandpass filter input
15	(18)	SA1	Serial bus address
16	(19)	SCL	Serial clock line
17	(20)	SDA	Serial data line
18	(21)	CLK ${ }_{\text {IN }}$	Clock input
19	(22)	GND	Ground
20	(23)	TXS ${ }_{\text {out }}$	Transmit summer output
21	(24)	TXS ${ }_{\text {IN }}$	Transmit summer input
22	(25)	TXDTMFout	Transmit DTMF output
23	(26)	TXLFOUT	Transmit low-pass filter output
24	(27)	NC	Not connected
	(28)	NC	Not connected

NOTE:

1. Callouts are for N package; those in parentheses are for the D (SOL) package.

NOTES:

1. T1 to T 10 represent the signal path switches.
2. M1 and M2 represent the mute switches.
3. PRE and DEE represent the bypass switches for pre-emphasis and de-emphasis, respectively.
4. $B 1$ to $B 6$ represent the output buffers.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
	Power supply voltage 1	6	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Ambient operating temperature NE5751	0 to 70	${ }^{\circ} \mathrm{C}$
		SA5751	-40 to +85
		${ }^{\circ} \mathrm{C}$	

NOTE:

1. Voltage applied to any pin -0.3 to $V_{D D}+0.3 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$, unless otherwise specified. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
V_{DD}	Power supply voltage range		4.75	5.0	5.25	V
IDD	Supply current	Operating Standby		$\begin{aligned} & 2.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$. See test circuit, Figure 4. Clock frequency $=1.2 \mathrm{MHz} ;$ test level $=0 \mathrm{dBV}=77.5 \mathrm{mV}$ RMS $=-20 \mathrm{dBm}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	RX BPF anti alias rejection			40		dB
	RX BPF input impedance	$\mathrm{f}=1 \mathrm{kHz}$		500		k Ω
	RX BPF gain with de-emphasis	$\mathrm{f}=1 \mathrm{kHz}$	-0.5	0	0.5	dB
	RX BPF gain with de-emphasis	$\mathrm{f}=100 \mathrm{~Hz}$		-31	-29	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=300 \mathrm{~Hz}$	9.0	9.6	11.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=3 \mathrm{kHz}$	-11.0	-10.0	-9.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=5.9 \mathrm{kHz}$		-68	-50	dBm0
	RX BPF noise with de-emphasis	$300 \mathrm{~Hz}-3 \mathrm{kHz}$		170		$\mu \mathrm{V}_{\text {RMS }}$
	RX dynamic range	with deemphasis		80		dB
	DEMPout output impedance	$\mathrm{f}=1 \mathrm{kHz}$		40		Ω
	DEMPout output swing (1\%)	$2.3 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {REF }} ; f=1 \mathrm{kHz}$	$V_{D D}-3$	3.5		$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
	VCout1 ouput swing (1\%)	$50 \mathrm{k} \Omega$ toV $\mathrm{REF} \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$	4.5		$V_{\text {P.P. }}$
	VCout2 output swing (1\%)	$50 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {REF }} ; \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}-1$	4.5		VP-P
	$\mathrm{VC}_{\text {Out1 }}$ noise	$\begin{gathered} \mathrm{VC}_{\mathrm{IN}} \text { grounded } \\ \mathrm{C} \text { - message } \end{gathered}$		25		$\mu \mathrm{V}_{\mathrm{FMS}}$
	$\mathrm{VC}_{\text {out2 }}$ noise	$\mathrm{VC}_{\text {IN }}$ grounded		25		$\mu \mathrm{V}_{\mathrm{RMS}}$
	Mute threshold off		0		0.8	V
	Mute threshold on		2.0		5.0	V
	CLK1, 2 high		4.0		5.0	V
	CLK1, 2 low		0		1.0	V
	TX BPF anti alias rejection			40		dB
	TX BPF input impedance	$\mathrm{f}=3 \mathrm{kHz}$		500		K Ω

AC ELECTRICAL CHARACTERISTICS (continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	TX BPF noise	$300-3000 \mathrm{kHz}$		90		$\mu \mathrm{V}_{\text {RMS }}$
	TX LPF gain	$\mathrm{f}=5.9 \mathrm{kHz}$		-39	-36	dB
	TX LPF gain with pre-emphasis	$\mathrm{f}=1 \mathrm{kHz}, 20 \mathrm{dBV}$		12.06		dB
	TX LPF gain with pre-emphasis	$\mathrm{f}=100 \mathrm{~Hz}$		-19		dBm0
	TX LPF gain with pre-emphasis	$f=300 \mathrm{~Hz}$		-10.45		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=3 \mathrm{kHz}$		9.14		dBm0
	TX LPF gain with pre-emphasis	$f=5900 \mathrm{~Hz}$		-39		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=9 \mathrm{kHz}$		-51		dBm0
	TX overall gain	1kHz	11.3	11.8	12.5	dB
	TX overall gain	100 Hz		-47	-45	dBm0
	TX overall gain	300 Hz	-11	-10.4	-9	dBm0
	TX overall gain	3 kHz	8	9	9.6	dBm0
	TX overall gain	5.9 kHz		-52	-45	dBm0
	TX BPF output impedance	$\mathrm{f}=1 \mathrm{kHz}$		360		Ω
	TX BPF output swing (1\%THD)	$\begin{gathered} 50 \mathrm{k} \Omega \text { to } \begin{array}{c} \text { VREF } \\ f=1 \mathrm{kHz} \end{array} \end{gathered}$		4.5		$\mathrm{V}_{\mathrm{P} \text { - }}$
	TX BPF dynamic range			90		dB
	PREMP ${ }_{\text {IN }}$ input impedance	$\mathrm{f}=3 \mathrm{kHz}$		500		$\mathrm{k} \Omega$
	Summing op amp Slew rate Output impedance Output swing (1% THD)	$C_{L}=15 p F$ Unity gain; $f=3 \mathrm{kHz}$ $1 \mathrm{kHz}, 5 \mathrm{k} \Omega \operatorname{load}\left(25^{\circ} \mathrm{C}\right)$		$\begin{gathered} 0.75 \\ 40 \\ 4.3 \end{gathered}$		$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \boldsymbol{\Omega} \\ \mathrm{~V}_{\mathrm{P} . \mathrm{P}} \end{gathered}$
	Volume control accuracy	-30 dB to 0 dB	-1	0	+1	dB
	Analog switches Insertion loss On time transition Off time transition	MUTET, MUTER 0.8 V ->2.0V MUTET, MUTER $2.0 \mathrm{~V}->0.8 \mathrm{~V}$		60 3 0.25		dB $\mu \mathrm{s}$ $\mu \mathrm{s}$

1^{2} C CHARACTERISTICS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are high. Data transfer may be initiated only when the bus is not busy.
The output devices, or stages, connected to the bus must have an open drain or open collector output in order to perform the wired-AND function.
Data at the $\mathrm{I}^{2} \mathrm{C}$ bus can be transferred at a rate up to $100 \mathrm{kbits} / \mathrm{s}$. The number of devices con-
nected to the bus is solely dependent on the maximum allowed bus capacitance of 400 pF .
Due to the variety of different devices which can be connected to the $\mathrm{I}^{2} \mathrm{C}$ bus, the levels of the logical " 0 " and " 1 " are not fixed and depend on the appropriate level of V_{DD}. For the typical supply voltage of 5 V which is chosen here, logical "1" and logical " 0 " are, however, fixed respectively on maximum input LOW voltage, 1.5 V and minimum input HIGH voltage, 3.0V.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock's
cycle. If it does not remain HIGH, it may be interrupted as a control signal.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH to LOW transition of the data line while the clock line is HIGH is defined as a start condition S. A LOW to HIGH transition of the data line while the clock is HIGH is defined as a stop condition.

SYSTEM CONFIGURATIONS

A device generating a message is a "transmitter"; a device receiving a message is the "receiver". The device that controls the
message is the "master"; and devices which are controlled by the master are the "slaves".

ACKNOWLEDGE

The number of data bytes transferred between the start and the stop condition from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set up and hold times must be taken into account.

$I^{2} \mathrm{C}$ BUS DATA CONFIGURATIONS

The NE5751 is always a slave receiver in the $I^{2} \mathrm{C}$ bus configuration (R/W bit-0). The slave address consists of seven bits in the serial mode where the least significant bit is selectable by hardware on input AO and the other more significant bits are internally fixed.

POWER ON RESET

In order to avoid undefined states of the NE5751 when the power is switched on, a power on reset is supplied. The reset is active when Pin $\mathrm{V}_{\text {REF }}$ is held below 0.8 V . The reset is off when Pin $V_{\text {REF }}$ is above 2.0V. Pin V REF is normally at 2.5 V generated by a resistive divider from V_{DD}. Nominal impedance is $20 \mathrm{k} \Omega$. In a typical application a capacitor is connected to $\operatorname{Pin} V_{\text {REF }}$ to improve power supply rejection. The time delay of the network resets the internal registers when power is first applied. The signal paths are off in the reset condition. The NE5751 must be programmed via the $I^{2} \mathrm{C}$ bus for normal operation. The Power Down mode is defined only when all register values are zero.

CONTROL REGISTERS

Register Map

The address register is as follows:

MSB						LSB	
A6	A5	A4	A3	A2	A1	A0	RW
1	0	0	0	0	0	SA1	0

SA1 is controlled by serial bus address pin.

Signal Path Register

MSB
LSB
T10 T9 T8 T6 VOX
T2 is the transmission gate between Pin PREEMP in and the emphasis input.

T3T5 connects the output of the DTMF generator to the emphasis input and connects the output of the XMT LPF to Pin TXDTMFout.

T4 connects the output of the XMT LPF to Pin TXLFout.
$V^{2} X_{E N}$ enables the VOX function of NE5750.
T6 connects Pin $\mathrm{VC}_{\text {IN }}$ to the volume control.

T8 connects the output of the DTMF generator to the volume control.

T9 enables $\mathrm{VC}_{\text {out1 }}$.
T10 enables $\mathrm{VC}_{\text {out2 }}$.
Volume Control and Test Register MSB LSB PDW T1T7 DEE PRE V1 V2 V3 V4
V4 is volume control bit 4. This is the MSB. A zero is 16 dB attenuation.
V3 is volume control bit 3 . A zero is 8 dB attenuation.

V2
is volume control bit 2 . A zero is 4 dB attenuation.

V1 is volume control bit 1 . A zero is 2 dB attenuation.

PRE is the bypass for the pre-emphasis.
DEE is the bypass for the de-emphasis.
T1T7 is the bypass for the compressor and expandor.

PDW is the control for power down mode.
This mode is defined only when all register values are reset to zero.

High Tone DTMF Register MSB
 LSB
 HD7 HD6 HD5 HD4 HD3 HD2 HD1 HD0
 The eight bits determine the output frequency by the following formula.:

High Frequency $=1200 \mathrm{kHz} / 6 / \mathrm{HD}$ where HD is the value of the register.

Low Tone DTMF Register MSB

The eight bits determine the output frequency by the following formula.:

> Low Frequency $=1200 \mathrm{kHz} / 12 / \mathrm{LD}$
> where LD is the value of the register.

The operation of the 96 ms DTMF timer is initiated by the loading of the low tone DTMF register. This timer terminates transmission of the tones as the generated tones cross the reference level after 96 ms . The on time of the tones can thus vary by up to one cycle of the tones.
Continuous tones can be obtained by again loading the two DTMF registers before 96 ms have elapsed.

Single tones can be obtained by loading 0,1 or 2 into one of the registers to silence it.

Phase continuous frequency modulation can be produced by loading a new value into a DTMF register during operation.

Figure 1. Typical Configuration of Audio Processor (APROC) System Chip Set

Audio processor - filter and control section

Figure 2. Cellular Radio System

Figure 4. NE/SA5751 Test and Application Circuit

PERFORMANCE CHARACTERISTIC

Author: Alvin K. Wong

INTRODUCTION

The NE5750 and the NE5751 are two audio processor chips that can be used in RF communications. The chip-set processes a voice so that by the time it is transmitted and received, the quality is preserved. This is accomplished through the use of compression/expansion and pre-emphasis/ de-emphasis.

The audio processor chip-set (APROC) has a wide variety of high performance applications such as cellular phones, cordless voice microphones, cordless intercom systems, standard phones, and hand-held, base, or mobile two-way communications equipment.
Below is an outline of this application note:
I. WHAT IS AUDIO PROCESSING

- How the Voice is Processed by the NE5750 and NE5751
- More Detail on the Key Features
- Performance Graphs
II. NE5750
- A Breakdown of the NE5750
- preamp
-noise canceller
-VOX
- VOX
- setting the threshold
-Compandor
-compressor
- expandor
-how to measure the attack and recovery time
-Amplifier Section
- speaker amplifier
-earphone amplifier
- How to Power Down
III. NE5751
- A closer look at the NE5751
-transmit path
- limiter and all-pass circuit
-receive path
- ${ }^{2} C$ Bus Receiver

IV. APROC DEMO-BOARD

- How to Power Down the Chip set
- Component list and layout

V. NE5750 DEMO-BOARD

- Component list and layout

Figure 1. Key Functions of the NE5750 and NE5751 That Contribute to Improving the S/N Ratio and Sensitivity in the System.

Figure 2. S/N Ratio With Companding vs Without Companding

VI. QUESTION AND ANSWER SECTION

I. WHAT IS AUDIO PROCESSING

HOW THE VOICE IS PROCESSED BY THE NE5750 and NE5751:

Audio processing begins when a person speaks into a microphone (see Figure 1). The signal is first amplified by the preamp, then screened by a bandpass filter. After the noise is filtered out, the voice signal is processed by the compressor. The function of the compressor is to attenuate loud voices and amplify soft ones. The upper voice frequencies are then amplified by pre-emphasis before their voltage amplitudes are restricted by the limiter and all-pass circuit. When this is completed, the processed voice is ready for transmission.
Since the voice signal was processed by the APROC before transmission, it must be unprocessed upon reception. The received signal is screened again so that the unwanted received noise is blocked before it goes
through de-emphasis. In de-emphasis, the upper voice frequencies are attenuated. Then the signal is expanded back to its primary dynamic range by the expandor. Because the voice is restored to its original state, it is ready for amplification by the power amp whose output can be connected to an external speaker. The receiving party will now be able to hear the transmitting party.

MORE DETAIL ON THE KEY FEATURES:

During compression, low level signals are amplified to "jump" over the transmitter channel noise, while the high level signals are compressed to prevent distortion. In general, because we are dealing with a limited dynamic range transmission medium, it is desirable to compress the signal prior to transmission. However, in order to preserve the dynamic range of the original voice signal, the compressed signal is expanded at reception. Figure 2 shows a diagram of a cordless phone application using companding. Note the signal-to-noise ratio with and without companding.

Another key function of the APROC is the pre-emphasis/de-emphasis capability which is used to overcome the "colored" noise, present in all FM receivers, generated by the FM demodulator. This noise worsens at the upper voice band as shown in Figure 3. Therefore, to keep the same signal-to-noise ratio in the lower and upper voice bands, pre-emphasis/de-emphasis is required. A person with a high-pitched voice will now be heard just as well as a person with a low, deep voice.

WHY PRE-EMPHASIS?
(S/N) $\mathbf{1}=$ SIGNAL-TO-NOISE RATIO WITHOUT $(\mathbf{S} / \mathbf{N})_{2}=$ SIGNAL-TO-NOISE RATIO WITH

Figure 3. Pre-emphasis Response
Another key stage of the APROC is the limiter with the all-pass circuit. Its main function is to limit the amplitude of the voice signal so that the maximum frequency deviation is limited to 12 kHz . Cellular radio specifications allow for a 30 kHz channel spacing with an audio bandwidth of 3 kHz . Therefore, by Carson's rule the maximum frequency deviation of the limiter must be 12 kHz as shown below.

1. Bandwidth $=2$ (Modulating Freq +
or
2. Max Freq Dev = Bandwidth/2 -
(Mod Freq)
$=30 \mathrm{kHz} / 2-3 \mathrm{kHz}$
$=15 \mathrm{kHz}-3 \mathrm{kHz}$
$=12 \mathrm{kHz}$

PERFORMANCE GRAPHS OF APROC DEMO-BOARD:

Figure 4 shows the general diagram of the audio processor chip set without the external components. External components for the chip set can be found in Figure 31, and the values were chosen for AMPS/TACS specs. To demonstrate the performance of the chip set, data was taken in the lab and resulted in the following figures.

Figure 4. Typical Configuration of Audio Processor (APROC) System Chip Set

Figure 5 Description

Figure 5 reveals what the signal would look like on the bench with different input levels. Figures $5 a, b$, and c all use the same audio input signal. The audio signal ($0-6 \mathrm{kHz}$) varies from 20 dB to -30 dB in 10 dB steps.

Figure 5a

This graph shows the Tx channel. Notice the signal's increase in amplitude as the frequency is increased due to pre-emphasis. Additionally, the slope of the signal decreases as the input increases.
The compressor function is readily shown where a 5 dB change in the output level occurs for every 10 dB change in the input.

Figure 5b
The $2: 1$ expansion of audio (20 dB change for every 10 dB), bandpass filtering and the de-emphasis filter response $(300-3 \mathrm{kHz})$ are shown. The graph shows the Rx channel. Notice the signal's decrease in amplitude as the frequency increases due to de-emphasis.
Figure 5c
This shows that a flat frequency response is achieved upon normal reception. Notice the 20 dB gap, although the input steps are for 10 dB . This is due to the noise canceller turning on. The decrease in amplitude for higher level, higher frequency tones is the result of the deviation limiter action.

a) TRANSMT CHANNEL (AUDIO LEVEL DECREASING)

b) RECEIVE CHANNEL

All Graphs:
10dB/Div CENTER: 3000 Hz SPAN: 6000 Hz

Figure 5.

Figure 6. NE5750/NE5751 Test Set-Up

NO GAIN IS OBSERVED IN THE NOISE LEVEL
Figure 7.

Figure	Description
7	No noise gain is observed at the output of the Tx channel because of the noise canceller circuit.
8	Shows why companding and emphasis are needed to improve the quality of the audio signal when BASEBAND NOISE is present in the system
9	Shows why companding and emphasis are needed to improve the quality of the audio signal when RF NOISE is present in the system.
10	Shows that the sensitivity and the signal-to-noise ratio of a receiver improved due to audio processing.

Figure 8. Audio Output with Baseband Channel Noise

After studying these figures, a designer will have a graphical understanding of how the APROC processes a signal.

Figure 6 shows the test set-up using the APROC demo-board to simulate a real cellular phone call. Audio noise is added to the input of the microphone and RF noise is added to the receiver. The table for Figures 7-10 describes what the associated waveforms reveal when certain key stages of the APROC are activated or bypassed.

As seen from the following figures, there is a definite advantage in using the chip set in high performance communication systems.

II. NE5750

A CLOSER LOOK AT THE NE5750:

Referring to Figure 11, the NE5750 has seven main features which make this chip unique: preamp, noise canceller, VOX, compressor, expandor, buffer, and power amplifiers. (NOTE: All component labels in this section are referenced to Figure 11, unless otherwise indicated.)

Preamp:

The NE5750 provides a preamp with adjustable gain. This allows the designer to boost the low level audio signal coming out of the microphone. The microphone can be connected to Pin 1 through a DC blocking capacitor, C1 (see Figure 12). The input impedance at this Pin is $50 \mathrm{k} \Omega$.
The preamp gain of the NE5750 can be adjusted from 0 dB to 40 dB by an external resistor, R7, connected to Pin 2 through a capacitor C2. Below is a formula which allows the designer to determine the value of R7 for a certain value of gain.
If a designer wanted a preamp gain of 20 dB , a $5 \mathrm{k} \Omega$ resistor would be required (see Table 2).

$$
R 7=\left[\frac{50,000}{{ }_{10}\left(\frac{X(d B)}{20}\right)-1}\right]-500
$$

Table 2. Calculated R7 Values for Different Preamp Gains

X (dB)	R7
0	Leave Pin 2 open
5	64 k
10	22 k
15	10 k
20	5.1 k
25	2.5 k
30	1.1 k
35	405
40	Pin 2 AC grounded

Noise Canceller:

The output of the preamp is connected to the input of the noise canceller circuit which is internal to the device. The function of the noise canceller is to automatically provide a set gain of either OdB when no signal is present, or 10 dB when a signal is present. With this feature, background noise is minimized from transmission.
This automatic gain setting can only be implemented when the noise canceller circuitry is used in conjunction with the VOX circuitry. The threshold and attack and release time can be set externally. This will be described in more detail in the "VOX" section.

Although the noise canceller circuit is really designed to be used with the VOX circuitry, it can be implemented without it. The noise canceller circuit can be set up to provide either 0 dB or 10 dB of gain at all times (regardless of the presence of a signal). Table 3 shows how to achieve either gain settings when the VOX function is bypassed.
Table 3. Setting Up the Gain of the Noise Canceller

Pin	Gain of Noise Canceller	
	0dB	10dB
3	Ground	Ground
4	Ground	$V_{\text {CC }}$
7	10 k to GND	Ground

The output of the noise canceller is accessible to the designer at Pin 24. C13 is used as a DC blocking capacitor.

VOX:
As mentioned earlier, the VOX circuitry works together with the noise canceller circuit. Pins $3,4,5,6$, and 7 all deal with the VOX's performance.
All of the resistor and capacitor values given in the NE5750 data sheet are chosen to meet AMPS/TACS specification for cellular radio. So any deviation from these values should be considered carefully if the application is in cellular radio.

Connected to Pin 3 is a resistor R2 and capacitor C15, as shown in Figure 13. These components set the gain of the VOX. The values here are for internal use only and have no direct relationship with the performance. So the values should be kept as shown. In some special applications, R2 may be adjusted such that the voltage on Pin 4 can be increased. By increasing this voltage, the voltage on Pin 7 can be set to a higher range (more details later).

Pin 4 has C3 and R1 connected to it which affects the attack and release time of the VOX circuit. In general the attack time should be faster than the release time.

The values given for C3 and R1 provide an approximate attack time of 12 ms and release time of 120 ms . These values should be kept as shown.

The timing of the VOX circuit is important because it controls the gain of the noise canceller, and can also turn the transmitter on and off.

- VOX ${ }_{\text {OUt }}$ and VOX CTRL

By using VOX ${ }_{\text {OUT }}$ and VOX ${ }_{\text {CTRL, }}$, Pins 5 and 6 respectively, the NE5750 can control the status of the transmitter. The VOX ${ }_{\text {OUT }}$ Pin should have a $10 \mathrm{k} \Omega$ pull-up resistor to V_{cc}. When probing Pin 5 , a logic ' 1 ' or ' 0 ' will be read. The VOX ${ }_{\text {CTRL }}$ pin should have a logic ' 1 ' or ' 0 ' connected to it. Table 4 shows how Pins 5 and 6 can be used:

Having a logic ' 0 ' on Pin 6 is sufficient in most applications. When voice is present, the noise canceller kicks on while the VOXout Pin supplies a logic ' 1 '; when voice is not present, VOXout Pin supplies a logic ' 0 '. In a cordless phone application this logic level could be used to turn the transmitter on and off, thereby conserving power for any battery operated applications.
Supplying a logic ' 1 ' on Pin 6 would cause the transmitter to stay on regardless of any signal input to Pin 1. However, the functionality of the noise canceller will still be signal dependent.

Figure 11. NE/SA5750 Application Demo-Board

Figure 12. Setting Microphone Preamplifier Gain

This condition is mainly used if the battery consumption is not a problem. Such a condition would be for any car cellular radios.

Figure 15. Compandor Dynamic Range

- setting the threshold

R3 at Pin 7 is used to set the threshold of the VOX. Setting the threshold determines the voltage level input at which the noise canceller and VOX will activate. Formula 4 shows how to calculate the VOX's threshold.

$$
\begin{equation*}
V O X_{T H R E S H}(\mathrm{mV})=50 \mu A \cdot R 3(\mathrm{KM}) \tag{4}
\end{equation*}
$$

Where R3 > 3k』)
If R3 $=5.6 k$, the measured voltage at $\operatorname{Pin} 7$ should be approximately 280 mV .

The way to adjust the VOX is to first determine what signal level is desired at Pin 1 to activate the VOX noise canceller circuits. Once that level is applied to Pin 1, connect a voltmeter to Pin 4. The voltage level measured here should be plugged into formula 4 to determine R3.

As mentioned earlier, the voltage at Pin 4 can be increased by R2. But one should only deviate from the R2 value if the voltage at Pin 7 cannot come down. In most cases, setting R2 to $43 \mathrm{k} \Omega$ and setting Pin 7 to the voltage at Pin 4 is sufficient.

Figure 14 shows graphically how R3 and R2 affect the location of the "box". The "box" is always 10 dB , which is due to the noise canceller circuit.

EXAMPLEI : Set the VOX threshold such that it "kicks on" when $30 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ is applied to Pin 1 of the NE5750 with a preamp gain of OdB.
Step 1: Make sure:
a. Pin 7 is left open.
b. The VOX attack and recovery components are in place at Pin 4.
c. R2 and C15 are connected to Pin 3 .
d. If using the NE5750 alone, be sure to connect the preamp output (Pin 24) to the compressor input (Pin 23) with a DC blocking cap.
e. The preamp gain is already set (in this instance the preamp gain is 0 dB).
f. Make sure that the compressor's components are also connected; compressor's attack time has to be functional

Step 2: Apply a constant 1 kHz sinewave signal to Pin 1 with the desired threshold. In this case, $30 \mathrm{mV} \mathrm{P}_{\mathrm{P} \text { - }}$.
Step 3: Measure the DC voltage on Pin 4; V4 $=260 \mathrm{mV}$

Step 4: Calculate R3:

$$
\begin{aligned}
\mathrm{R} 3 & =\mathrm{V} 4(\mathrm{~V}) /(50 \mu \mathrm{~A}) \\
& =0.260 / 50 \mu \mathrm{~A} \\
& =5.2 \mathrm{k}
\end{aligned}
$$

let's use a $5.3 \mathrm{k} \Omega$
Step 5: Connect R3 to Pin 7 and verify that VOX "kicks on" at the desired threshold.

- This set-up has the VOX kicking on at $30 \mathrm{mV} \mathrm{V}_{\text {P-p }}$ and kicking off at $11 \mathrm{mV} \mathrm{V}_{\text {P. }}$.
Referring to the above example, if a preamp gain of 10 dB was chosen before setting the threshold, the threshold will also change. So it is vital that the preamp gain be set before setting the VOX threshold.

Table 4. VOX Truth Table

Inputs		Outputs	
Voice (Pin 1)	VOX $_{\text {CTRL (Pin 6 of NE5750) }}$	Noise Canceller Gain	VOX Out
Not Present	logic ' 0 '	OdB	logic ' 0 '
Present	logic ' 0 '	10dB	logic '1'
Not Present	logic '1'	OdB	logic '1'
Present	logic '1'	10dB	logic '1'

NOTE: To apply a logic ' 0 ' on Pin 6 by the $I^{2} C$ evaluation program, be sure that the VOX $X_{E N}$ is high, and low for a logic ' 1 ' on Pin 6 . If the NE5750 is used alone, be sure that the output of the noise canceller is AC coupled to the input of the compressor. Also, make sure that all of the components for the compressor are connected.

Compandor:

- compressor

The compressor input at Pin 23 requires an external DC blocking capacitor (C12). The input impedance is roughly $50 \mathrm{k} \Omega$. Unlike the older compandors, this input can be directly driven from CMOS circuits (e.g. NE5751).
The gain from the preamp should be adjusted such that there is enough signal getting to the compandor. However, one must be careful not to overdrive the inputs. Additionally, do not forget the extra 10 dB gain from the noise canceller (assuming it is being used).
Figure 15 shows the typical dynamic range of the compandor. The maximum input signal that the compressor can handle is $3.72 \mathrm{~V}_{\mathrm{P} . \mathrm{P}}$ or 24.6 dB . The minimum input is approximately $1.74 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{p}}$ or -42 dB . Knowing that the OdB point of the compandor is at $77.5 \mathrm{~m} V_{\text {RMS }}$, one can easily convert from volts to dB . Formula 5 shows the conversion from $V_{\text {RMS }}$ to $d B$.

$$
\begin{equation*}
X(d B)=20 \log \left(\frac{V_{R M S}}{77.5\left(m V_{R M S}\right)}\right) \tag{5}
\end{equation*}
$$

where
$\mathrm{X}=$ value in dB
$\mathrm{V}=$ voltage in RMS.
Usually it is easier to work in voltages, but in this case it is better to work in dB. If one knows the input signal in dB , the designer can predict the output of the compressor (also in dB) to be half or two times the input. For instance, if the input were 10 dB , we could expect the output to be 5 dB . On the other hand, if the input was -20 dB , we could expect the output to be -10 dB .
Capacitor C11 on Pin 22 controls both the attack and release time of the compressor. The attack time may be calculated by Formula 6.

Attack time $=R \cdot C$
where $\mathrm{R}=10 \mathrm{k} \Omega$

a. Input

b. Output

c. Attack time

d. Release time

Figure 16. Compressor Dynamic Response

NOTE: The release time is roughly 4 times slower than the attack time by design.

Release time $=4 \cdot$ Attack time

Capacitor C10 on Pin 21 is used for AC bypassing. Capacitor C9 on Pins 19 and 20 is also for AC bypassing.

- expandor

The expandor input at Pin 17 requires an external DC blocking capacitor (C8). The input impedance is around $2.5 \mathrm{k} \Omega$. Referring to Figure 15, the input range of the expandor is from 19.53 mV P.p $(-21 \mathrm{~dB})$ to 903 mV P.p
(12.3 dB). The output range is from 1.74 mV P.p $(-42 \mathrm{~dB})$ to $3.72 \mathrm{~V}_{\text {P.p }}(24.6 \mathrm{~dB})$.

Capacitor C7 is used to set the attack and release time of the expandor. Formula 6 can also be used to determine those values.

- how to measure attack and recovery time In this section we will briefly describe the bench procedure for measuring attack and recovery times. Additional information can be found in AN174 in the "Attack and Decay Time" section.

Let's assume that $\mathrm{C}_{\text {RECT }}=2 \mu \mathrm{~F}$ and $R_{\text {INTERNAL }}=10 \mathrm{k}$. Since $T=R \cdot C$, then $\mathrm{T}=20 \mathrm{~ms}$. If we wanted a different "RC" time constant we would change the $\mathrm{C}_{\text {RECT }}$ value ($\mathrm{R}_{\text {INTERNAL }}$ is a fixed value).
Using these component values let's measure the attack and recovery times to see if the CCITT and EIA specifications are met.

measurement at compressor:

EIA Specifications
Attack time is the time required for the transmitter deviation to settle to a value equal to " 1.5 " times the final steady state value, for a 12 dB step up.
Release time is the time required for the transmitter deviation to settle to a value equal to " 0.75 " times the final steady state value, for a 12 dB step down.

The compressor must have a nominal attack time of 3 ms and a nominal recovery time of 13.5 ms as defined by CCITT.

Bench Procedure for Compressor Test

1. Apply a 1 kHz sinewave signal at OdB to the input of the compressor (0 dB is defined where the compandor passes the input signal through to the output - unity gain level for the APROC is $77.5 \mathrm{mV}_{\text {RMs }}$.
2. Modulate the 1 kHz input signal with a $1 \mathrm{~Hz}-2 \mathrm{~Hz}$ square wave.
3. Connect an oscilloscope probe to the input of the compressor and adjust both the modulation and oscilloscope (uncalibrate it) so that a $1: 4$ ratio is achieved on the screen of the oscilloscope (see Figure 16a).

Adjusting for a $1: 4$ ratio produces a 0 dB to 12 dB step at the input. The unit "1" represents the OdB input level and the unit " 4 " represents the 12 dB input level ($20 \log$ (4/1) $=12 \mathrm{~dB}$).
4. Connect another oscilloscope probe to the output of the compressor and observe the waveform (see Figure 16b). The "final steady-state" value for the attack time is " 2 " units while the release time is " 1 " unit. These output values are expected because, for a compressor, the ratio is $2: 1$ unless the input is at 0 dB , in which case, the ratio is $1: 1$.
5. Now to measure the attack and release time, capture the beginning and end of the output waveform where the changes occur (see Figure 16c and Figure 16d).
To measure the attack time (T_{A}):
-According to the EIA specifications:
$T_{A}=1.5 \cdot$ Final Steady-State Value
-therefore

$$
T_{A}=1.5 \cdot 2 \text { units }=3 \text { units }
$$

-Measure the time it takes for the output to drop to the 3 rd unit. According to Figure 16 c , our attack time is 3 ms . This indeed meets CCITT specs.
To measure the release time $\left(T_{R}\right)$:
-According to the EIA specifications:
$T_{R}=0.75 \cdot$ Final Steady-State Value
-therefore

$T_{A}=0.75 \cdot 1$ unit $=0.75$ units
-Measure the amount of time it takes for the output to rise up to 0.75 units. According to Figure 16 d , our release time is 13 ms . Again the CCITT spec. is met.

measurement at expandor:
 EIA Specifications

Attack time is the time required for the transmitter deviation to settle to a value equal
to " 0.57 " times the final steady state value, for a 6 dB step up.
Release time is the time required for the transmitter deviation to settle to a value equal to " 1.5 " times the final steady state value, for a 6 dB step down.
The expandor must have a nominal attack time of 3ms and a nominal recovery time of 13.5 ms as defined by CCITT.

Bench Procedure for Expandor Test

1. Apply a $\mathbf{1 k H z}$ sinewave signal at OdB to the input of the expandor (OdB is defined where the compandor passes the input signal through to the output - unity gain level).
2. Modulate the 1 kHz input signal with a $1 \mathrm{~Hz}-2 \mathrm{~Hz}$ square wave.
3. Connect an oscilloscope probe to the input of the expandor and adjust both the modulation and oscilloscope (uncalibrate it) so that a $1: 2$ ratio is achieved on the screen of the oscilloscope (see Figure 17a).
Adjusting for a $1: 2$ ratio produces a $0 d B$ to 6 dB step at the input. The unit "1" represents the 0 dB input level and the unit " 2 " represents the 6 dB input level $(20 \log (2 / 1)=6 \mathrm{~dB})$.
4. Connect another oscilloscope probe to the output of the expandor and observe the waveform (see Figure 17b). The "final steady-state" value for the attack time is " 4 " units while the release time is " 1 " unit.
5. These output values are expected because for an expandor the ratio is $1: 2$ unless the input is at 0 dB , in which case, the ratio is $1: 1$.
6. Now to measure the attack and release time, capture the beginning and end of the output waveform where the changes occur (see Figure 17c and Figure 17d).
To measure the attack time $\left(T_{A}\right)$:
-According to the EIA specifications:
$T_{A}=0.57 \cdot$ Final Steady-State Value

-therefore

$T_{A}=0.57 \cdot 4$ units $=2.28$ units
-Measure the time it takes for the output to reach 2.28 units. According to Figure 17c,
our attack time is 3 ms . This indeed meets CCITT specs..

To measure the release time $\left(T_{R}\right)$:
-According to the EIA specs.:
$T_{R}=1.5 \cdot$ Final Steady-State Value

-therefore

$T_{A}=1.5 \cdot 1$ unit $=1.5$ units
-Measure the amount of time it takes for the output to drop to 1.5 units. According to Figure 17d, our release time is 13 ms . Again the CCITT specification is met.

These results show that the release time is about 4 times slower than the attack time. All Signetics compandors are internally set up this way so that once the attack time is set by $C_{\text {RECT }}$, the release time is automatically set.

Figure 18. Speaker Amplifier for the NE5750

Earphone Gain $A_{V}=-\frac{R_{4}}{R_{6}}$
Sidetone Gain $A_{V}=-\frac{R_{4}}{R_{5}}$
Figure 19. Setting Gain for Earphone Amplifier

Special Note: In AN174, Figures 10 and 11 show the X -axis as being in fractions of the time constant. The way to clarify this is by multiplying 20 ms to these numbers to convert them to the measured attack and recovery time. The 20 ms comes from the "RC" time constant which can be varied by varying the $\mathrm{C}_{\text {RECT }}$ value. But again, once these numbers

Figure 20. NE5751 Tx Bandpass Filter
are converted, one can see that these figures show similar results as ours in the lab.

Amplifier Section:

-speaker amplifier
The speaker amplifier is a unity gain amplifier with a high input impedance. Located on Pin 11, the output of the amplifier, are two capacitors C5 and C16. Capacitor C5 is for DC blocking, while C 16 is for high pass filtering.

Since the amplifier's input is not directly accessible to the designer (see Figure 18), it is impossible to exceed a gain of one. However, if external attenuation is desired, use formula 7 to determine the series resistor that would connect to Pin 14.

$$
\begin{aligned}
A_{V} & =\frac{-R_{F}}{R_{\mathbb{N}}} \\
& =\frac{-50 k}{\left(50 k+R_{S}\right)}
\end{aligned}
$$

In most cases, the attenuation takes place in the NE5751 before the signal gets to the amplifier. Therefore, adding external attenuation is rare.

-earphone amplifier:

Unlike the speaker amplifier, the gain of the earphone amplifier can be set by external resistors. In this case, the required output and input are directly accessible. Figure 19 is a diagram of the earphone amplifier with the required equations. Sidetone gain can also be implemented with an external resistor.

How To Power Down

"Power down" or "power up" can be implemented by Pin 10 of the NE5750. When Pin 10 is connected to V_{cc}, the chip is in the "power up" state. In this mode, the chip is fully functional. However, when Pin 10 is connected to ground, the chip is in the "power down" state where the current consumption drops dramatically (CMOS or TTL levels will suffice). In this mode, the chip is not expected to be functional, but all of the capacitors remain charged so that "power up" can occur quickly. Having this capability allows the system to conserve battery power.

III. NE5751

A CLOSER LOOK AT THE

NE5751:

Figure 24 shows a block diagram of the NE5751. Key functions for this chip include a TX bandpass filter, TX pre-emphasis filter, TX low pass filter, summing amplifier, RX bandpass filter, RX de-emphasis, programmable DTMF generator, programmable attenuator, and an $\mathrm{I}^{2} \mathrm{C}$ bus interface.
-TX path
The input and output of the TX bandpass filter are located on Pins 3 and 4, respectively. The 4th-order Chebyshev bandpass filter is designed to pass 300 to 3000 Hz (voice band). (see Figure 20).

The input to the pre-emphasis circuit is accessible through Pin 5. This filter shapes
the spectrum with a +6 dB per octave slope in the pass band (see Figure 21). The output is then connected internally to a low pass filter and limiter circuit (see Figure 22). The functions of the last two filters guarantee that the 12 kHz maximum frequency deviation for cellular radio is not violated.
The output of the limiter filter (Pin 23) and the output of the programmable DTMF generator (Pin 22) can be connected to the input of the summing amplifier. The gain of this amplifier can be controlled with external resistors. In Figure 24, the resistors are all $51 \mathrm{k} \Omega$ which creates a unity gain configuration. The output of the amp is then connected to the transmitter.

The Limiter and All-pass Circuit: An important aspect of the AMPS specification is concerned with the 12 kHz maximum frequency deviation. The output of the APPROC should be less than 12 kHz regardless of the input signal. Figure 23 shows the equipment used for the test measurements and how the signal was processed. A 1 kHz signal was applied to the input of the demo-board until a 5% distorted signal was measured at the limiter output. This waveform's peak-to-peak voltage was recorded as a reference, then, at various chosen frequencies, the input of the demo-board was overdriven so we could record the distorted peak-to-peak waveform. (See Figure 26)
Formula 8 was used to calculate maximum frequency deviation from the waveforms shown in Figure 26.

$$
\begin{align*}
& \text { Max Freq Dev with All-Pass Ckt }= \tag{8}\\
& \qquad \frac{B W_{F}}{B W_{R}} \cdot 8 \mathrm{kHz}
\end{align*}
$$

where

Table 6. Maximum Frequency Deviation Results for the 12 kHz Test

Number Dialed	High Freq.	Low Freq.	DTMF HI	DTMF LO
1	1209	697	A5	8F
2	1336	697	96	8F
3	1477	697	87	8F
4	1209	770	A5	82
5	1336	770	96	82
6	1477	770	87	82
7	1209	852	A5	75
8	1336	852	96	75
9	1447	852	87	75
0	1336	941	96	6A
*	1209	941	A5	6A
\#	1477	941	87	6A

gives a range from 0 dB to -30 dB . The attenuator error is shown in Figure 29.

${ }^{2}{ }^{2} \mathrm{C}$ Bus Interface:

The NE5751 is controlled by a serial control bus comprised of a clock input, serial bus address, serial clock line, and serial data line.

A designer who is unfamiliar with $\mathrm{I}^{2} \mathrm{C}$ can refer to the following documents for assistance: 1) $1^{2} \mathrm{C}$ Bus Specification and 2) Signetics AN168. Both of these documents can be found in the 1989 Signetics Linear Data Manual or the 1991 RF
Communications Handbook.
The clock input requires an input frequency of 1.2 MHz . This frequency is vital for the operation of the part because it effects the DTMF generator and the 3 dB point of all the switch capacitor filters.

The output of the DTMF generator can be determined by Formula 8.

$$
\text { Low Freq }=\frac{\frac{\text { Clock input Freq }}{12}}{L D}
$$

where LD is the value of the register This translates to: DTMF LO REG $=100000 /$ LO REG(Hz)

$$
\begin{equation*}
\text { High Freq }=\frac{\frac{\text { Clock Input Freq }}{6}}{H D} \tag{8b}
\end{equation*}
$$

where HD is the value of the register
This translates to: DTMF HI REG $=200000$ / HI REG (Hz)

Table 6 can be used to help the designer program the DTMF generator.

There are a few key points that should not be overlooked when programming the NE5751. The control registers consist of the

1. Register map

2. Signal path register

3. Volume control and test register
4. High tone DTMF register
5. Low tone DTMF register

To generate a single tone from the DTMF generator, use the appropriate registers (high or low DTMF) and load the other one with a ' 0 ', ' 1 ', or ' 2 ' to silence it.
The order of these registers is important. If the programmer wanted to turn down the volume, he/she would have to re-program the register map, signal path, and then give the new data to the volume control and test register.

IV. APROC DEMO-BOARD

About the APROC demo-board:

The NE5750/51 demo-board layout can be seen in Figure 30, Figure 31, and Figure 32. It incorporates the use of DIP packages. However, an SO adapter could be made to test the SO APROC chips.
A separate board is used to interface the APROC demo-board with the computer's parallel port. This converter utilizes the 74LS05 as a buffer scheme.

An $I^{2} \mathrm{C}$ program for the APROC is provided so that a designer can easily program and evaluate the chip set. This eliminates the need to write an evaluation program.
However, it does not eliminate the need for a final system program.
The evaluation program has a graphic display that shows the transmit and receive path of the APROC on the terminal, as seen in Figure 33. By selecting a function, one can toggle the space bar on the key board to turn on or off any key features. The designer could also type in the codes for any registers to control the functions.

Figure 25 shows how the interface board and the demo-board can be used in conjunction with a computer. Once everything is connected properly, one can make his own evaluations on the chip set.

Figure 27. NE5751 Rx Bandpass Filter

Figure 28. NE5751 Rx De-emphasis

How to Power Down on the NE5750/51 Demo-Board:

In general, power down mode is a condition where a system has just enough power to "stay alive" and, therefore, is not expected to be fully operational. When called upon, the system can quickly get out of this mode and into the power up mode and be ready to perform its functions. This fast reaction time is possible because all of the capacitors have maintained their charges. This is because power was not cut-off completely. The power down function reduces overall current consumption when the system is not fully operational, and is especially helpful when the system is operating from a battery powered source.
There are three power down conditions when we refer to to the NE5750/51 demo-board. They are listed and described as follows:

1. NE5750 Power Down

Purpose:

- to reduce current consumption
- to maintain all DC voltages on the device pin to keep the capacitors charged

How To:

- use hardware switch on demo-board which forces Pin 10 to ground
- or use a CMOS logic output into Pin 10

Benefits:

- reduces current consumption while maintaining readiness

Figure 29. NE5751 Attenuation Error

- current drops from 8.4 mA to 1.8 mA (typically)

Mode of Operation:

- Everything is semi-functional, although performance is not, and will not be, guaranteed

2. NE5751 Power Down

Purpose:

- to reduce current consumption
- to maintain all DC voltages on the device Pin to keep the capacitors charged up
- to open all voice paths so that no signals will flow
How To:
- program the $\mathrm{I}^{2} \mathrm{C}$ bus under the condition that all registers are set to zero

Benefits:

- all the registers are always at zero when powering up from the power down mode
- reduces current consumption while maintaining readiness
- current drops from 2.7 mA to 1.1 mA (typically)

Mode of Operation:

- Everything is semi-functional, although performance is not, and will not be, guaranteed

3. Chip-Set Power Down

Definition:

-the NE5750 and NE5751 demo-board is in the power down mode when:

1. The transmitter and receiver are muted on the NE5751
2. The NE5751 is powered down (all registers are set to zero), and
3. The NE5750 is powered down

How to Power Down the Chip-Set Properly (1st Choice):

Please follow this recommended sequence;

1. Mute both the transmitter and receiver on the NE5751.
2. Program the following registers as follows:

Signal Path Register: 00000000

Volume Control Register: 00000000
High DTMF Register: 00
Low DTMF Register: 00
3. Power Down the NE5750.

How to Simulate the Power Down on the Chip-Set (2nd choice)*
Please follow this recommended sequence;

1. Program the following registers as follows:

Signal Path Register: 00010000

Volume Control Register: 01100000
High DTMF Register: 00
Low DTMF Register: 00

2. Power Down the NE5750

*NOTE: this method is only used when the NE5751 mute switches are not accessible, by design.

Comments

1. Muting both the transmitter and receiver on the NE5751 can be done by the two "hardware" switches on the demo-board (forces Pins 11 and 12 to V_{CC}).
2. Powering down the NE5751 can be done by programming the correct assigned register to zero (For more details, consult the NE5751 data sheet).
3. Powering down the NE5750 can be done by the "hardware" switch on the demoboard (forces Pin 10 to ground).
4. When coming out of the power down mode to the power up mode, reverse the procedure given above.
5. If functions are activated while in the power down mode before power up occurs, the "chip-set power down" is no longer valid.
6. We recommend that a $2.2 \mu \mathrm{~F}$ capacitor be placed between the NE5751 de-emphasis output to the NE5750 expandor input. The purpose of this capacitor is to block any DC offset that might occur between the two chips while in the power down mode. If this capacitor is not used, an abnormal reaction might occur where white noise is generated.

V. NE5750 DEMO-BOARD

Figure 34 shows the layout for the NE5750 demo-board. This board can be used to evaluate the NE5750, alone, and allows the designer to do extensive testing without having to worry about other external factors. Again, this board makes use of dip packages only. However, a SO adapter can be made to implement the SO version of the NE5750.

VI. QUESTION AND ANSWER SECTION

NE5750 and NE5751 (APROC):
Q : Is it OK to connect the $V_{\text {REF }}$ pins together for the NE5750 and NE5751? My circuit seems to be working properly.

A: No, this is not a good idea. Although both $\mathrm{V}_{\mathrm{REF}} \mathrm{S}$ are at $2.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2\right)$, there is no guarantee that they will be exactly equal over temperature. One of the $\mathrm{V}_{\mathrm{REF}} \mathrm{S}$ might influence the function of the other chip which, in turn, might have a detrimental effect on the performance of the chips.

Q: Will the APROC chip set work for TACS, NMT or NAMPS specifications as it does for AMPS specification?

A: The APROC was designed to meet AMPS and TACS specifications, however, as it stands now, the chip set will also meet the NAMPs requirements. The chip set will not work for NMT specifications.

Q: In the power down mode, is it OK to program the DTMF registers before powering up?

A: No. This will break the rules of powering down. All the registers are set to zero in this mode. Please review the section on powering down the chip set properly.

NE5750:

Q: Even though I have all the required external components in place on Pins 1,2,3,4,5,6 and 7, my VOX circuit does not work. What is wrong?

A: The VOX circuit is not a trivial connection. Even though all the components are connected, be sure that the output of the NE5750 noise canceller is AC coupled to the input of the compressor to complete the VOX loop. This holds true if the NE5750 is used alone. However, if the NE5751 is used make sure that the signal is fed from the band-pass filter to the input of the NE5750 compressor input. For further advice, please read example 1 in the "setting the threshold" section of this application note.

Q: Do I have to use $\mathrm{I}^{2} \mathrm{C}$ if I use the NE5750 alone?

A: No, the NE5750 can be used by itself and does not require the use of $I^{2} \mathrm{C}$.

Q: Can 1 speed up the release time of the compressor?

A: Not directly. The release time is dependent on the attack time setting. Once the attack time is set by C11 on Pin 22 of the NE5750, the release time is set internally to be four times slower. So to increase the release time requires that the attack time be increased. One should be careful because setting the
attack time too fast could cause more distortion on the output.

Q: The NE5750 compressor input impedance is around $50 \mathrm{k} \Omega$. Why is this impedance higher than that of others in your family of compandors?

A: The NE5750 was designed to be compatible with the NE5751. The NE5750 compressor input was modified to accept CMOS driven outputs like the NE5751. This internal modification eliminates the need for an external buffer.

NE5751:

Q: Can I change the filter characteristics?
A: Yes, by changing the master clock input frequency the 3 dB points will be effected. For example, if $\mathrm{F}=1.2 \mathrm{MHz}$, then BPF1 $=3 \mathrm{kHz}$. Now, if $F=600 \mathrm{kHz}$, BPF $1=1.5 \mathrm{kHz}$; and if $F=2.4 \mathrm{MHz}$, BPF1 $=6 \mathrm{kHz}$. This type of application is not recommended because the part was not designed to be used this way and, therefore, performance will not be guaranteed. Additionally, the DTMF generator will be off in frequency from the calculated values because of the assumption of a 1.2 MHz clock, and the $\mathrm{I}^{2} \mathrm{C}$ interface will not be functional.

Q: Besides $I^{2} \mathrm{C}$, can I communicate to the NE5751 with another type of operating scheme?

A: Yes, by bit banging. Instead of using the $1^{2} \mathrm{C}$ hardware one can supply the clock and data defined in the $I^{2} \mathrm{C}$ protocol software. But this takes up a lot of memory, therefore, it is preferable to implement the $I^{2} \mathrm{C}$ hardware.

Q: The limiter seems to work when I overdrive the input with a strong signal. However, when I try to pass DTMF tones, the limiter's level varies when switches T3/T5 and T4 are set to different settings Why is this? Isn't the output supposed to stay constant regardless of the input being overdriven or passing DTMF tones?

A: Yes, the limiter should hold the output constant when an overdriven signal is applied, but only when the switches are
used properly. When passing DTMF tones, $\mathrm{T} 1, \mathrm{~T} 2$, and T 4 should be left open, while T3/T5 are closed. The voice path should be disconnected when DTMF tones are being passed. Hence, T3/T5 should be left open when DTMF is not used.

Q: When I program a DTMF tone, it only stays on for 96 ms . How can I make it stay on longer?

A: The way to make it stay on longer than 96 ms is to re-load the DTMF registers (re-program the DTMF registers before 96 ms expires).

REFERENCES:

"Audio Processing for Cellular Radio or High Performance Transceivers", proceedings of R.F. Expo 1989, A. Fotowat, S. Navid, L. Engh, pp. 195-203.
"Designing Cellular Radios with the Philips Components-Signetics Cellular Chip Set", Cellular Radio Chip Set Design Manual, Feb. 25, 1990.

Figure 30. Layout of the APROC Demo-board

ItLLN甘 Gu！ssəoond o！̣ne 」Of LGLGEN pue OGLGヨN əut 6u！s？

Component Functions

R1	Pull-up resistor for VOX ${ }_{\text {OUT }}$ logic levels	C1	Bypase cap for VCC of NE5750
R2	Sets gain of VOX, but for internal use only effects voltage on Pin 4	C2	Bypase cap for VCC of NE5750
R3	Used to set release time of VOX	C4	DC blocking cap for mic input
R4	Sets threehold level of VOX	C5	DC blocking cap for mic gain setting resistor
R5	Feedback resistor for ear amplifier	C7	Used to set attack a release time of VOX
R6	Sets gain of ear amplifier for the side tone input	C8	Used to AC ground the VREF pin (5750)
R7	Used in confunction with C10 to filter out unwanted noise. Optional	C9	DC blocking cap for speaker out
R8	Sets gain of ear amplifier	C10	filter for speaker out
R9	Used to bias up Pin 14 to 2.5 V by connecting $V_{\text {THRESH }}$ to $V_{\text {REF }}$ without loading down VREF source	C12	Sets attack and release time of compressor Used to AC short the DC path for the compressor
R10	Input resistor for summing amp out. Can be used to set gain of signal	C14	Provides AC path to the VOX circuitry
R11	Input resistor for summing amp out. Can be used to set the gain of the DTMF	C16	OPTIONAL. Basically to fitter out noise
R12	Input resistor for summing amp. Can be used to set gain of the side tone input	C17	Sets attack and release time for the expandor
R13	Feedback resistor for summing amp. Can be used to set gain of all the inputs	C18	Used to AC ground VREF pin (5751)
R14	Used to set gain of the preamp of NE5750 (OPTIONAL)	C19	Bypase cap for V ${ }_{\text {CC }}$ of NE5751
		C20	DC blocking cap for receiver input
J1	JUMPER	C21	DC blocking cap for ear amplifier output
J2	JUMPER	C22	Sets gain of VOX, internal use only
		C23	DC blocking cap for summing amp out
		C24	Bypass cap for V CC of NE5751

NOTE: The board is constructed in such a way as to allow a single power supply to power the chip set, or for each chip to be powered by a separate power supply. Using separate power supplies will permit monitoring of current consumption of each part when Jumpers 3 and 4 are removed.

Figure 32. Parts and Function List of APROC Demo-board

Figure 34. NE5750 Demo-board Layout

Figure 35.

GENERAL DESCRIPTION

The PCA5000AT is a fully integrated decoder for the CCIR Radio Paging Code number 1 (POCSAG-code). It supports two basic modes of operation:

Alert-Only-Pager. This is a stand-alone mode in which the PCA5000AT scans inputs from three external switches that relate to the states ON, OFF and SILENT. Only a few external components are required to build an Alert-Only pager.
Display-Pager. In this mode, received calls and messages are transferred via the IC's serial communication interface to an external microcontroller. A built-in voltage converter can double the supply voltage output and perform level shifting on the interface signals.
Call-alert cadences are generated when valid calls and messages are received, and status cadences to indicate the present state of the decoder are generated following a status interrogation. An on-chip 5×9-bit static RAM with battery back-up is provided for programming two user-addresses and for special functions. Synchronization of the input data stream is achieved by the built-in ACCESS algorithm which allows data to be synchronized without preamble detection and minimizes battery power consumption by receiver-enable control. One of three error correction algorithms is applied to received code words to optimize the call success rate.
The PCA5000AT is fabricated in SACMOS-technology to ensure low power consumption at low supply voltages. Typical applications are alert-only pagers, numeric/alphanumeric display pagers, cellular radio and data/telemetry decoders.

Features

- Wide operating supply voltage range (1.7 to 6.0 V)
- Very low supply current ($15 \mu \mathrm{~A}$ typ.)
- Decodes CCIR Radio Paging Code number 1
- Data rate: 512 bits/s
- Powerful 'ACCESS' synchronisation algorithm
- Supports two user addresses
- Four cadences per user address
- Silent call storage, up to four different calls
- Interfaces directly to the UAA2033 digital paging receiver
- Directly drives a 2 kHz bleeper
- High-level alert facility requires only a single external transistor
- Receiver-enable control for battery economy
- On-chip static RAM, non-volatile with battery back-up
- On-chip voltage converter
- Level-shifted microcontroller interface
- Battery-low alert
- Out-of-range indication (optional)

PACKAGE OUTLINE

28-lead mini-pack; plastic (SO28; SOT136A.)

Paging decoder

Fig. 1 Block diagram.
mnemonic
V_{B}
PR
DI
WR
X1
X2
TS
QR
OR
RE
AL
BS
VSS
AI
BL
SK
OFF
ON
OS
DO
n.c.

DS
FL
PC
$V_{\text {REF }}$
CN
CP
VDD

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

Operating modes

The decoder has two basic operating modes; alert-only-pager and display-pager. There is also a programming mode in which the contents of the internal RAM are programmed or verified. The RAM holds two user-addresses and special function bits.

Alert-Only-Pager

No external microcontroller is required in this mode.
Tone-alert cadences are generated when valid calls are received. Four different alert cadences are available and are called by combinations of the function bits. The voltage doubler is disabled in this mode.
The decoder continually scans the inputs ON, OFF and SK from the external switches ON, OFF and SILENT that determine the internal operating status. Operating one of the switches first causes the cadence of the existing internal status to be generated and then, after 1.5 s switch operation, generation of a cadence to indicate the new internal status of the decoder.

Display-Pager

In this mode the decoder receives calls/messages and directs those addressed to one of the two stored user addresses to an external microcontroller for post-processing and display. Tone-alert cadences are generated when valid calls are received.
The decoder provides a doubled supply voltage output to the microcontroller and associated hardware, and the interface signals are level-shifted to allow direct coupling to the microcontroller.
The internal state of the decoder is determined by the logic levels on the static inputs ON and SK.

Internal states

If the decoder is in one of the two operating modes, its internal status is always one of the following:
OFF state. This is the power-saving inactive state in which no decoding takes place and the paging receiver is disabled. Scanning of the ON, OFF and SK inputs is maintained to allow state-changes to be effected.

ON state. This is the normal active state of the decoder. Received calls and messages are compared with the two user addresses stored in the RAM. When the validity of incoming calls is confirmed, appropriate cadences are generated and data is shifted out via the serial microcontroller interface.
SILENT state. This is the same as the ON state except that alert cadences are not generated following valid calls. Instead, if programmed as an alert-only pager, the decoder stores up to four different calls. The appropriate alert cadences are generated after the decoder has been returned to the ON-state. However, special silent override calls will cause generation of alert cadences.

Paging decoder

POCSAG code structure

A transmission using the CCIR Radio Paging Code No. 1 (POCSAG code) is structured according to the following rules (see Fig. 3)

The transmission is started by sending a preamble which is a sequence of at least 576 continually alternating bits ($01010101 \ldots$. .). The preamble precedes a number of batch blocks. The transmission is terminated after the last batch.

Every batch comprises a synchronisation code word with a fixed 32-bit pattern followed by eight frames (numbered 0 to 7). Only complete batches are transmitted.
A frame comprises two code words, each 32 bits long. A code word is either an address, message or an idle code word. Idle code words are transmitted to fill empty batches or to separate messages.

An address code word is coded as shown in Fig. 3; 18 bits of the 21-bit user address are coded in the code word and are protected against transmission errors by a CRC check word (bits 22 to 31). The other three bits of the user address are coded in the number of the frame in which the address code word is transmitted. Two function bits (bits 20 and 21) allow distinction between four different calls to one user address.
A message code word contains 20 bits of any information, these are also protected by a check word.

preamble	1st batch	2nd batch	subsequent batches \longrightarrow

a) Call structure

1 batch = 17 code words

b) Batch structure
bit

1	2 to 19	20	21	22 to 31	32
0	user address	FC	FC	parity check	

c) Address code word structure (FC are function code bits)
bit

1	2 to 21	22 to 31	32
1	message	parity check	

d) Message code word structure

Fig. 3 POCSAG coding structure.

FUNCTIONAL DESCRIPTION (continued)

Decoding

The POCSAG-coded input data is first noise-filtered by a digital filter. A sampling clock, synchronous to the 512 bits/s data rate, is derived from the filtered data.
Synchronization is performed on the POCSAG code structure using the ACCESS algorithm, which is a five-stage state mechanism.
The decoder first searches the data stream for preamble or synchronization code word patterns. Before synchronism can be achieved, the decoder must ascertain that synchronization code words are correctly positioned at the beginning of each batch. When the correct structure is detected, the decoder switches to the 'receive mode'. (The receiver enable output (RE) is active before input data is required.)
Error correction algorithms are applied to the data.
If synchronization is lost (i.e. no synchronization code word found at the beginning of the next batch) the decoder enters a two-step recovery mechanism. In the first step, over the next 15 batches, the decoder attempts to resynchronize by bit-wise shifting its frame window. A 'carrier off' state is entered in the second step, in this the data stream is tested convolutionally for a preamble or synchronization code word at every effective bit position within a continuous stream of at least 17 batches. When synchronization is regained, the decoder returns to the 'receive mode'.
In the 'receive mode', the input data stream is sampled at the frame position pointed to by the RAM program and the sampled code words are error-corrected. If they are address code words, they are compared with the two user addresses from the RAM. If the result of this comparison is 'true', the following actions take place:

- a store is set for a call-alert cadence. The cadence will relate to the combination of the function bits in the accepted code word but will not be generated until the call has been terminated;
- the receiver enable output (RE) is held active so that reception of the call can continue. This condition remains until
- another address code word or an IDLE instruction is received
- the error-correction algorithm fails to generate a code word
- synchronisation is lost;
- message code words attached to the validated address code word are transferred via the serial communication interface to the external microcontroller.

Programming

The on-chip RAM is organized in five 9 -bit words (Fig. 4). It is used to store two user addresses (receiver identification codes) and six programmed special function bits. A lithium back-up battery maintains data retention when the main power supply is removed.

	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
word 0	A08	A07	A06	A05	A04	A03	A02	A01	A00
word 1	A17	A16	A15	A14	A13	A12	A11	A10	A09
word 2	B08	B07	B06	B05	B04	B03	B02	B01	B00
word 3	B17	B16	B15	B14	B13	B12	B11	B10	B09
word 4	FR2	FR1	FR0	SP6	SP5	SP4	SP3	SP2	SP1

where:
AXX are 18 bits of user address ' A '
$B X X$ are 18 bits of user address ' B '
FR2 to FR0 are frame number bits common to both addresses ' A ' and ' B ' SP6 to SP1 are special function bits.

Fig. 4 RAM organization.
A user address in POCSAG code comprises 21 bits, three of which are coded in the frame number. In the PCA5000AT the frame number is common to both user addresses.
The special function bits are programmable to select from the following:
bit SP1: 0 alert-only-pager mode; silent override enabled on address ' B '
1 display-pager mode
SP2: 0 enable voltage converter (SP1 = 1)
1 disable voltage converter (SP1 = 1); cadence 1 also for $\mathrm{FC}=11$
SP3: 0 1-bit error-correction on message code words
1 4-bit burst error-correction on message code words on address ' B ' ($\mathrm{FC}=00$ or 11)
SP4: free for user-application
SP5: 0 silent override enabled on address ' B ' ($\mathrm{FC}=01$ or 10)
1 silent override enabled on address ' B ' ($\mathrm{FC}=00$ or 11)
SP6: 0 silent override disabled on address ' A ' $(\mathrm{FC}=10)$
1 silent override enabled on address ' A ' ($F C=10$)
The programming mode is entered by holding input PR at VDD during power-on; exit from the programming mode is made by removing the main power supply. The back-up battery must remain connected to the PCA5000AT to keep the RAM contents when the main power supply is removed. During programming, inputs ON, OFF and SK must not all be '1' at the same time.
Programming of the RAM and verifying its contents is performed in a sequence starting with word 0 , bit 0 and progressing through each of the five words in turn. Input and output is a serial operation; X1 is the shift clock input and DI, DO are respectively the data input and output.
During the RAM programming operation, a negative-going pulse first on WR and then on PR copies the 9 bits just shifted in into the RAM and switches to the next word (see Fig. 10).

During the RAM verify operation, reading the first word is triggered by a negative-going pulse on PR, which also switches to the next word in the sequence after 9 bits have been read (see Fig. 11).
Exit from the programming mode should be made after programming or verification of the RAM contents has been performed on all five words.

Paging decoder

FUNCTIONAL DESCRIPTION (continued)

Fig. 5 Example of bit conversion in user address programming.

Generation of output signals

Alerter interface

The alerter interface provides for the acoustic signalling of calls received (Fig. 8) and of changes of pager status (Fig. 9).
When valid calls are received and the pager is in the ON state, the decoder generates 2 kHz squarewave output signals to produce tone alert cadences via a magnetic or piezoceramic 2 kHz bleeper. The cadence signals differ in modulation according to the two function bits FC in the address code word (Fig. 6b). The PCA5000AT supports two levels of alerter loudness: during the first four seconds, cadences are generated at low intensity (output AL active, output OR inactive); during the following twelve seconds, the intensity is increased (outputs AL and QR both active).
The alert tone generation is automatically terminated after sixteen seconds. Alert cadences are also terminated by an ON, OFF or SILENT input when in alert-only-pager mode, or by pulsing the status/reset input in display-pager mode.
If the call is a message with subsequent message code words, alert cadence generation begins after the message has been terminated.
The alerter generates cadences to indicate the present internal status when interrogated and, when the main supply is low, gives a battery-low indicator output and generates an alarm tone.

Paging decoder

Serial communication interface

This interface facilitates communication with an external microcontroller. Data is transmitted serially in the format shown in Fig. 6.

After receiving a valid address code word, transmission commences by sending a start command. The start command contains function data from the RAM, user address called (A or B) and function control bits FC from the address code word. The transmission continues with message words that contain the data from the received message code words. The end of a message transfer is marked by the sending of a stop command or another start command. In a stop command, bit 2 indicates that the call was successfully terminated.

b) Start command format
bit

0	1	2	3	4 to 23
1	1	1	1	message code word bits 2 to 21 as received

c) Message word format
bit

0	1	2	3	4	5	6	7
0	0	success- ful termin- ation	$\overline{\text { QS }}$ input	SP4	SP2	not used	not used

d) Stop command format

Fig. 6 Serial communication interface.

Paging decoder

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
V_{DD} is referred to as 0 V (ground)

parameter	symbol	min.	max.	unit
Supply voltage	$\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{13-28}$	+0.5	-7.0	V
RAM back-up supply voltage	V_{B}	$\mathrm{V}_{\mathrm{SS}}+0.8$	-6.0	V
Input voltage on pins				
ON, OFF, SK, AI, PC, FL, BL,	V_{I}	0.8	$\mathrm{~V}_{\mathrm{REF}}-0.8$	V
DS, DO	V_{I}	0.8	$\mathrm{~V}_{\mathrm{SS}}-0.8$	V
Input voltage on any other pin	P_{O}	-	100	mW
Power dissipation per output	$\mathrm{P}_{\text {tot }}$	-	250	mW
Total power dissipation	$\mathrm{T}_{\mathrm{amb}}$	-10	+60	o^{C}
Operating ambient temperature range				
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+125	o^{C}

CHARACTERISTICS: Alert-Only-Pager ($\mathrm{SP} 1=0$)
$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=-2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{B}}=-3.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; quartz crystal $\mathrm{f}=32.768 \mathrm{kHz}$,
$R_{\text {Smax }}=40 \mathrm{k} \Omega, \mathrm{C} 1$ (Fig. 12) $=8$ to 40 pF

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage range		$\mathrm{V}_{\text {SS }}$	-1.7	-2.7	-6.0	V
Operating supply current	all outputs open; all inputs at $V_{S S}$; voltage converter off	ISS		-	-22.0	$\mu \mathrm{A}$
Level at which RAM switches to V_{B}		$\mathrm{V}_{\text {SS }}(\mathrm{sw}$)	-1.0	-	-1.7	V
Supply current; peak value	AL = LOW	ISSM	-	-	-45.0	mA
$\begin{aligned} & \text { Input voltage LOW } \\ & \text { PR, DI, BS, QS, WR, } \\ & \text { TS } \\ & \text { AI, ON, OFF, SK, PC } \end{aligned}$		$\begin{aligned} & V_{I L} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & 0.7 V_{\mathrm{SS}} \\ & 0.7 \mathrm{~V}_{\mathrm{REF}} \end{aligned}$	-	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input voltage HIGH PR, DI, BS, QS, WR, TS AI, ON, OFF, SK, PC		$\begin{aligned} & V_{I H} \\ & V_{I H} \end{aligned}$	-	-	$\begin{aligned} & 0.3 V_{S S} \\ & 0.3 V_{\text {REF }} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$

CHARACTERISTICS: Alert-Only-Pager (continued)

parameter	conditions	symbol	min .	typ.	max.	unit
Input current						
PR, TS, BS	$V_{1}=V_{\text {DD }}$	11	7.0	-	18.0	$\mu \mathrm{A}$
WR	$V_{1}=V_{\text {SS }}$	1	-9.0	-	-28.0	$\mu \mathrm{A}$
DI	$V_{1}=V_{\text {DD }}$;					
	$V_{\text {RE }}=V_{S S}$	11	6	-	16	$\mu \mathrm{A}$
PR, TS, BS, DI, OS, PC	$V_{1}=V_{S S}$	1	-	-	-0.1	$\mu \mathrm{A}$
WR, QS, PC	$V_{1}=V_{\text {DD }}$	1	-	-	0.1	$\mu \mathrm{A}$
AI, ON, OFF, SK,	$V_{1}=V_{\text {DD }}$	1	6.0	-	16.0	$\mu \mathrm{A}$
AI, ON, OFF, SK	$V_{1}=V_{S S}$	1	-	-	-0.1	$\mu \mathrm{A}$
Input capacitance						
QS, TS		Cl_{1}	-	-	5	pF
AI, ON, OFF, SK, PC		Cl_{1}	-	-	5	pF
X1		Cl_{1}	-	-	5	pF
Output current LOW						
RE, OR, QR	$\mathrm{V}_{\text {OL }}=-1.35 \mathrm{~V}$	IOL	10.0	-	-	$\mu \mathrm{A}$
DO, DS, BL, FL	$\mathrm{V}_{\mathrm{OL}}=-1.35 \mathrm{~V}$	${ }_{\text {IOL }}$	10.0	-	-	$\mu \mathrm{A}$
AL	$\mathrm{V}_{\mathrm{OL}}=-1.5 \mathrm{~V}$	${ }^{\text {IOL }}$	17.5	-	41.5	mA
Output current HIGH						
RE	$\mathrm{V}_{\mathrm{OH}}=-1.35 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	10.0	-	-	$\mu \mathrm{A}$
OR, QR	$\mathrm{V}_{\mathrm{OH}}=-1.35 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	10.0	540	750	$\mu \mathrm{A}$
DO, DS, BL, FL	$\mathrm{V}_{\mathrm{OH}}=-1.35 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	10.0	-	-	$\mu \mathrm{A}$
AL	$\mathrm{AL}=$ high impedance	${ }^{-1} \mathrm{OH}$	-	-	0.2	$\mu \mathrm{A}$
Output capacitance X2		C_{0}	19	-	23	pF

CHARACTERISTICS: Display-pager; alphanumeric mode (SP1 $=1, \mathrm{SP2}=1$)
CN and CP open circuit;
$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=-6.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; quartz crystal $\mathrm{f}=32.768 \mathrm{kHz}$,
$R_{\text {Smax }}=40 \mathrm{k} \Omega, \mathrm{C} 1$ (Fig. 13) $=8$ to 40 pF

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage range Microcontroller interface negative reference		$V_{S S}$	-1.7	-	-3.0	V
Input current AI, ON, OFF, SK	$\mathrm{V}_{1}=\mathrm{V}_{\text {REF }}$ or V_{DD}	II	-2.0	V		

CHARACTERISTICS: Display-pager; numeric mode (SP1 = 1, SP2 = 0)
220 nF capacitor connected to CN, CP;
$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} ; \mathrm{VSS}_{\mathrm{SS}}=-3.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
quartz crystal $\mathrm{f}=32.768 \mathrm{kHz}, \mathrm{R}_{\text {Smax }}=40 \mathrm{k} \Omega, \mathrm{C} 1$ (Fig. 13) $=8$ to 40 pF

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage range		$\mathrm{V}_{\text {SS }}$	-1.7	-	-3.0	V
Voltage converter $V_{\text {REF output: }}$ output voltage						
	$\mathrm{V}_{\text {SS }}=-3.0 \mathrm{~V}$; no load	$V_{\text {REF }}$	-5.95	-	-6.0	V
	$\mathrm{V}_{\text {SS }}=-2.0 \mathrm{~V}$;					
	IVREF $=150 \mu \mathrm{~A}$; PC $=0$	$V_{\text {REF }}$	-2.7	-	-	V
	$\mathrm{V}_{\text {SS }}=-2.0 \mathrm{~V}$;					
	IVREF $=45 \mu \mathrm{~A} ; \mathrm{PC}=1$	$V_{\text {REF }}$	-2.7	-	-	V
output current	$\mathrm{V}_{S S}=-2.0 \mathrm{~V} ; \mathrm{PC}=0$	IVREF	-150	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{SS}}=-2.0 \mathrm{~V} ; \mathrm{PC}=1$	IVREF	-45	-	-	$\mu \mathrm{A}$
Input current						
AI, ON, OFF, SK	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {REF }}$ or $\mathrm{V}_{\text {DD }}$	11	-	-	0.1	$\mu \mathrm{A}$

TIMING: Display-pager (SP1 = 1)
$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=-2.7 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
quartz crystal $\mathrm{f}=32.768 \mathrm{kHz}, \mathrm{R}_{\mathrm{Smax}}=40 \mathrm{k} \Omega, \mathrm{C} 1$ (Fig. 13) $=8$ to 40 pF

parameter	conditions	symbol	min.	typ.	max.	unit
Oscillator frequency		$\mathrm{f}_{\text {osc }}$	-	32.768	-	kHz
Alerter frequency		$\mathrm{f}_{\text {alert }}$	-	2048	-	Hz
Data input rate		${ }_{\text {f }} \mathrm{l}$	-	512	-	bits/s
Frequency reference FL output		${ }^{\text {f }} \mathrm{FL}$	-	16.384	-	kHz
Data input transition time		${ }^{\text {t }}$ DI	-	-	100	$\mu \mathrm{s}$
Preamble duration			1125	-	-	ms
Batch duration		${ }^{\text {t }}$ BAT	-	1062.5	-	ms
Bit period		${ }^{\text {t BIT }}$	-	1.9531	-	ms
Data output rate		${ }^{\text {f }} \mathrm{D}$	-	512	-	bit/s
Data output transition time	$C_{L}=5 \mathrm{pF}$	toto	-	-	100	ns
Data strobe clock period		${ }^{\text {t }}$ D	-	1.9531	-	ms
Data output set-up time		${ }^{\text {t }}$ DOS	-	1.77	-	ms
Data strobe pulse width		${ }^{\text {t }}$ DSW	61	122	-	$\mu \mathrm{s}$
Data hold time		tDH	30.5	61	-	$\mu \mathrm{s}$
Call alert period		${ }^{\text {t }}$ ALT	-	16	-	s
Call alert (low level) AL output only		${ }^{\text {t }}$ ALL	-	4.0	-	s
Call alert (high level) QR and AL outputs		${ }^{\text {t }}$ ALH	-	12.0	-	s

parameter	conditions	symbol	min.	typ.	max.	unit
Call alert cycle period	$C_{L}=5 \mathrm{pF}$	${ }^{\text {t }}$ ALC	-	1.0	-	s
Call alert pulse period		tALP	-	125	-	ms
Status pulse set-up time		tSTP	10.0	330	-	$\mu \mathrm{S}$
Status pulse duration		tSTD	10.0	330	-	$\mu \mathrm{s}$
Status alert period		tSTON	-	62.5	-	ms
Status alert delay		tSTOF	-	62.5	-	ms
Receiver control RE transition time		${ }^{\text {trXT }}$	-	-	100	ns
RE establishment time		trXON	-	31.2	-	ms
Programming: data clock period		tPDC	-	100	-	$\mu \mathrm{s}$
data settling time		tPDS	20.0	-	-	$\mu \mathrm{S}$
write set-up time		twSU	20.0	-	-	$\mu \mathrm{s}$
write pulse width		twp	10.0	-	-	$\mu \mathrm{s}$
program input pulse width		tPR	10.0	-	-	$\mu \mathrm{s}$
program input settling time		tPRS	20	-	-	$\mu \mathrm{s}$
Power-on reset pulse width		tPOR	7.5	-	-	$\mu \mathrm{s}$
Program start delay time		tCSU	20.0	-	-	$\mu \mathrm{s}$
Program data hold time		tPDE	10.0	-	-	$\mu \mathrm{s}$
Data clock period LOW		${ }^{\text {t }} \times 1$	10.0	50.0	-	$\mu \mathrm{s}$

Fig. 7 Serial communications interface timing.

Fig. 8 Call alert cadences; FC refers to function control bits 20 and 21 in the address code word.

Fig. 9 Status indication cadences.

Fig. 10 Timing of RAM programming operation.
supply
voltage V voltage V_{SS}

Fig. 11 Timing of RAM verify operation.

Fig. 12 Example of alert-only pager.

Fig. 13 Example of display-pager in alphanumeric mode with voltage converter enabled.

Application notes

Input pins

The programming control inputs have internal biasing resistors of sufficiently low impedance to provide safe operation even if the pins are left open circuit.
Pin $1\left(V_{B}\right)$: RAM back-up battery negative supply. Connect this pin to the negative terminal of a lithium battery and connect the positive battery terminal to V_{DD}. This battery supply ensures data retention when the main supply voltage is removed.
Pin 2 (PR): programming enable, normally LOW. To enter the programming mode, pull this input HIGH when connecting the main supply voltage.
Pin 3 (DI): serial data input. During normal operation, POCSAG-coded data is received via this pin. When in programming mode, data to be stored in the internal RAM is read from this input whenever a pulse on X 1 occurs.
Pin 4 (WR): programming write input, normally HIGH. A positive edge on this pin copies the preceding word shifted into the internal RAM. Keep this pin HIGH during RAM-read operations.
Pin 5 (X1): oscillator input. Connect a 32 kHz crystal to this pin during normal operation. When in programming write mode, a positive edge on X 1 shifts the data present on DI to the internal register. When in programming read mode, a positive edge on X1 moves the next bit from the internal register to DO.

Pin 6 (X2): oscillator output. Return connection to the 32 kHz crystal.
Pin 7 (TS): test mode enable input, always LOW.
Pin 12 (BS): battery sense input. The decoder samples this input when it is in the ON state and the receiver is enabled. Every single sample is copied to the BL output. A continuous high-level alert tone is generated if four sequential samples are HIGH.
Pin 13 (VSS): main negative supply voltage. Remove the voltage from this pin to leave the programming mode. The RC combination of 22Ω and $10 \mu \mathrm{~F}$ (Figs 12 and 13) should remain connected; disconnect the battery only.
Pin 14 (AI): alarm input, normally LOW. A HIGH on this input causes a continuous high-level alert tone to be generated. The input may be pulsed to modulate the output tone.
Pin 16 (SK): silent key/mute input.
Alert-Only-Pager: push-button switch input, pushing the switch selects SILENT state.
Display-Pager: static input, when HIGH no calls are stored and no alert tones are generated for calls received.
Pin 17 (OFF): off key/reset input.
Alert-Only-Pager: push-button switch input, pushing the switch selects OFF state.
Display-Pager: static input, normally LOW. A positive-going pulse on this input causes (a) status indication cadences to be generated if the decoder is not alerting or (b) resetting an alert call or a battery-low alert if active.
Pin 18 (ON): on key/on-off input.
Alert-Only-Pager: push-button switch input. Pushing the switch selects ON state.
Display-pager: static input. LOW level selects OFF state, HIGH level selects ON state.
Pin 19 (OS): vibrator enable input, normally LOW. A HIGH level enables the vibrator output logic and switches QR to vibrator output.
Pin 24 (PC): voltage converter power control. The level on this pin determines the output impedance of the voltage converter. LOW selects low impedance, HIGH selects high impedance.
Pin 26 (CN): voltage converter external capacitor, negative connection.

Input pins (continued)

Pin 27 (CP): voltage converter external capacitor, positive connection.
Pin 28 (VDD): main positive supply input. This pin is common to all supply voltages and is referred to as GROUND.

Output pins

Pin 8 (QR): alert high-level output/vibrator output. This output can directly drive an external bipolar transistor to control a vibrator-type alerter if OS is set HIGH, or supports high-level alerting in conjunction with AL.
Pin 9 (OR): out-of-range output, active HIGH. If the decoder detects 'carrier-off', an output is generated for the duration of the synchronization scan period. Connecting OR to QR provides alert tone generation during 'carrier-off'.
Pin $10(\mathrm{RE})$: receiver enable output, active HIGH. Connect the radio paging receiver power control input to this pin to minimize power consumption. Whenever no input data is required, the PCA5000AT will disable the paging receiver to conserve power.
Pin 11 (AL): alert low-level output, active LOW. The low-level alert tone is generated via this output; the alert becomes high-level in conjunction with QR.

Pin 15 (BL): battery-low output, active HIGH. Every time the PCA5000AT samples the BS input, data sensed is output on this pin.

Pin 20 (DO): received data output. During normal operation, accepted calls and possibly subsequent message code words are output via this pin at a rate of 512 bits/s. When in programming read mode, data read from the internal RAM is presented bit-by-bit on this pin.
Pin 22 (DS) : received data strobe output, active LOW. In normal operation, every time this output goes LOW, the next bit on the DO output is valid.
Pin 23 (FL): frequency reference output. If the decoder is programmed as a Display-Pager, a 16 kHz squarewave reference is output from this pin.
Pin 25 ($\mathrm{V}_{\mathrm{REF}}$): microcontroller interface negative reference voltage. The LOW level of pins FL, BL, DO, DS, AI, ON, OFF, SK and PC is related to the voltage on $V_{\text {REF }}$.
Alert-Only-Pager: Connect $\mathrm{V}_{\text {REF }}$ output to $\mathrm{V}_{\text {SS }}$.
Display-Pager: The doubled negative supply voltage generated by the internal voltage converter is output from $\mathrm{V}_{\text {REF }}$. The $\mathrm{V}_{\text {REF }}$ pin may also be driven from an external supply if the capacitor across CN/CP is removed and CN/CP are left open circuit.

DESCRIPTION

The PCF5001T is a very low power Decoder and Pager Controller specially designed for use in Radiopagers. The architecture of the PCF5001T allows for flexible application in a wide variety of Radiopager designs.
The PCF5001T is fully compatible with CCIR Radiopaging Code Number 1 (also known as the POCSAG code) operating at the 512 bps data rate, and 1200 bps data rate. 2400 bps operation is also possible. The PCF5001T also offers features which extend the basic flexibility and efficiency of this code standard.

On-chip non-volatile 114 bit EEPROM storage is provided to hold up to four user addresses, two frame numbers and the programmed decoder condifuration.

FEATURES

- Wide operating supply voltage range (1.5 to 6.0 V)
- Extended temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Very low supply current $(60 \mu \mathrm{~A}$ typ. with 76.8 kHz crystal)
- Programmable call termination conditions
- Eight different alert cadences
- Directly drives magnetic or piezoelectric beeper
- Silent call storage, up to eight different calls
- Repeat alarm facility
- Programmable duplicate call suppression
- Interfaces directly to UAA2050T and UAA2080T digital paging receivers
- Programmable receiver power control for battery economy
- On-chip voltage converter with improved drive capability
- Serial microcontroller interface for display pager applications
- Optional visual indication of received call data using a modified RS-232 format
- Level shifted microcontroller interface signals
- Alert on low battery
- Optional out-of-range indication

APPLICATIONS

- Alert-only pagers, display pagers
- Telepoint
- Telemetry/data receivers

PIN CONFIGURATION

D PACKAGE

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	SOT-136A

GENERAL DESCRIPTION

The Sound Fader Control circuit (SOFAC) is an $I^{2} \mathrm{C}$-bus controlled preamplifier for car radios.

Features

- Source selector for three stereo inputs
- Inputs and outputs for noise reduction circuits
- Volume and balance control; control range of 86 dB in steps of 2 dB
- Bass and treble control from +15 dB (treble 12 dB) to -12 dB in steps of 3 dB
- Fader control from 0 dB to -30 dB in steps of 2 dB
- Fast muting
- Low noise suitable for DOLBY* B and C NR (noise reduction)
- Signal handling suitable for compact disc
- $I^{2} \mathrm{C}$-bus control for all functions
- ESD protected

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply voltage Input sensitivity for full power at the output stage	V_{CC}	7,0	8,5	13,2	V
Input signal handling	$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	-	50	-	mV
Frequency response	$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	-	1,65	-	V
Channel separation					
$\mathrm{f}=250 \mathrm{~Hz}$ to 10 kHz	f_{r}	35	-	20000	Hz
Total harmonic distortion		α_{CS}	70	92	-
Signal plus noise-to-noise ratio Operating ambient temperature range	THD	-	0,05	-	dB
	$\mathrm{T}+\mathrm{N}) / \mathrm{N}$	-	80	-	dB

[^1]

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING		
1	SDA	serial data input/output (I ${ }^{2}$ C-bus)
2	GNDB	ground for $I^{2} C$-bus terminals
3	QLR	output left rear
4	QLF	output left front
5	TL	treble control capacitor; left channel
6	BL1	bass control capacitor; left channel
7	BLO	bass control capacitor; left channel
8	INLA	input left source A
9	i.c.	internally connected
10	INLB	input left source B
11	ELFI	electronic filtering for supply
12	INLC	input left source C
13	OSL	output source selector left
14	INL	input left control part
15	INR	input right control part
16	QSR	output source selector right
17	INRC	input right source C
18	GND	ground
19	INRB	input right source B
20	V ref	reference voltage (1/2 VCC)
21	INRA	input right source A
22	BRO	bass control capacitor; right channel
23	BR1	bass control capacitor; right channel
24	TR	treble control capacitor; right channel
25	QRF	output right front
26	QRR	output right rear
27	VCC	supply voltage
28	SCL	serial clock input (${ }^{2}$ C-bus)

FUNCTIONAL DESCRIPTION

The source selector selects three stereo channels -RF part (AM/FM), recorder and compact disc. As the outputs of the source selector and the inputs of the main control part are available, additional circuits such as compander and equalizer systems may be inserted into the signal path. The AC signal setting is performed by resistor chains in combination with multi-input operational amplifiers. The advantage of this principle is the combination of low noise, low distortion and a high dynamic range for the circuit.
The separate volume controls of the left and the right channel facilitate correct balance control. The range and balance control is software programmable.
Because the TEA6300 has four outputs a low-level fader is included. The fader control is independent of the volume control and an extra mute position is built in for the front, the rear or for all channels. The last function may be used for muting during preset selection. An extra pop suppression circuit is built in for pop-free switching on and off. As all switching and control functions are controllable via the two-wire $I^{2} \mathrm{C}$-bus, no external interface between the microcomputer and the TEA6300 is required.
The on-chip power-on-reset sets the TEA6300 to the general mute mode.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	\min.	\max.	unit
Supply voltage (pin 27-18)	V_{CC}	-	16	V
Maximum power dissipation	$\mathrm{P}_{\text {tot }}$	-	1	W
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40	+85	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$V_{C C}=8,5 \mathrm{~V} ; R_{S}=600 \Omega ; R_{L}=10 \mathrm{k} \Omega ; f=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; test circuit Fig. 10 ; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage	$V_{\text {CC }}$	7,0	8,5	13,2	\checkmark
Supply current	ICC	-	26	-	mA
Supply current at 8,5 V	${ }^{\text {ICC }}$	-	-	33	mA
Supply current at $13,2 \mathrm{~V}$	ICC	-	-	44	mA
DC voltage inputs, outputs and reference	VDC	0,45	0,5	0,55	V
Internal reference voltage (pin 20) $V_{\mathrm{ref}}=0,5 \mathrm{~V}_{\mathrm{CC}}$	$V_{\text {REF }}$	-	4,25	-	V
Maximum voltage gain bass and treble linear, fader off	G_{v}	19	20	21	dB
Output voltage level for $\mathrm{P}_{\text {max }}$ at the output stage for start of clipping	V_{0} (rms) V_{0} (rms)	-	$\begin{aligned} & 500 \\ & 1000 \end{aligned}$	-	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
Input sensitivity at $\mathrm{V}_{\mathrm{O}}=500 \mathrm{mV}$	$V_{i(r m s)}$	-	50	-	mV
Frequency response bass and treble linear; roll-off frequency -1 dB	f_{r}	35	-	20000	Hz
Channel separation $\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$; bass and treble linear; frequency range 250 Hz to 10 kHz	${ }^{\alpha} \mathrm{CS}$	70	92	-	dB
Total harmonic distortion frequency range 20 Hz to $12,5 \mathrm{kHz}$ $V_{i}=50 \mathrm{mV} ; \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB}$	THD	-	0,1	0,3	\%
$\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV} ; \mathrm{G}_{\mathrm{v}}=00 \mathrm{~dB}$	THD	-	0,05	0,2	\%
$V_{i}=1,6 \mathrm{~V} ; \mathrm{G}_{\mathrm{v}}=-10 \mathrm{~dB}$	THD	-	0,2	0,5	\%
Ripple rejection					
$V_{r(r m s)}<200 \mathrm{mV} ; \mathrm{G}_{\mathrm{V}}=0 \mathrm{~dB} ;$ bass and treble linear; at $\mathrm{f}=100 \mathrm{~Hz}$ at $f=40 \mathrm{~Hz}$ to $12,5 \mathrm{kHz}$	RR_{100} $\mathrm{RR}_{\text {range }}$	-	70 60	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Signal plus noise-to-noise ratio bass and treble linear; notes 1 and 2 CCIR 468-2 weighted; quasi peak					
$\mathrm{V}_{\mathrm{i}}=50 \mathrm{mV} ; \mathrm{V}_{\mathrm{O}}=46 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$	$(S+N) / N$	-	65	-	dB
$\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV} ; \mathrm{V}_{\mathrm{O}}=45 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$	$(S+N) / N$	-	67	-	dB
$\mathrm{V}_{\mathrm{i}}=50 \mathrm{mV} ; \mathrm{V}_{\mathrm{O}}=200 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$(S+N) / N$	65	70	-	dB
$\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV} ; \mathrm{V}_{0}=200 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$(S+N) / N$	65	78	-	dB
$\mathrm{V}_{\mathrm{i}}=50 \mathrm{mV} ; \mathrm{V}_{\mathrm{O}}=500 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$	$(S+N) / N$	-	70	-	dB
$\mathrm{V}_{\mathrm{i}}=500 \mathrm{mV} ; \mathrm{V}_{\mathrm{O}}=500 \mathrm{mV} ; \mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$	$(S+N) / N$	-	85	-	dB
Noise output power mute position, only contribution of TEA6300; power amplifier for 25 W	$P_{\text {no }}$	-	-	10	nW
Crosstalk ($20 \log \mathrm{~V}_{\text {bus(p-p) }} / \mathrm{V}_{\mathrm{o}}(\mathrm{rms})$) between bus inputs and signal outputs $\mathrm{G}_{\mathrm{V}}=0 \mathrm{~dB}$; bass and treble linear	α_{B}	-	110	-	dB
Source selector					
Input impedance	z_{i}	20	30	40	k Ω
Output impedance	z_{0}	-	-	100	Ω
Output load resistance	R_{L}	10	-	-	$k \Omega$
Output load capacity	C_{L}	0	-	200	pF
Input isolation not selected source; frequency range 40 Hz to $12,5 \mathrm{kHz}$	${ }^{\alpha}$ S	-	80	-	dB
Voltage gain $R_{L} \geqslant 10 \mathrm{k} \Omega$	G_{v}	-	0	-	dB
Internal bias voltage ratio	$\mathrm{V}_{\mathrm{bint}} / \mathrm{V}_{\text {ref }}$	-	1	-	
Maximum input voltage level (RMS value) $\text { THD }<0,5 \%$	$\mathrm{V}_{\mathrm{i} \text { (rms) }}$	-	1,65	-	V
THD $<0,5 \%$; $\mathrm{V}_{\text {CC }}=7,5 \mathrm{~V}$	$V_{i(r m s)}$	-	1,5	-	v
Total harmonic distortion $V_{i}=500 \mathrm{mV} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	THD	-	-	0,1	\%
Noise output voltage weighted CCIR 468-2, quasi peak	V_{no}	-	9	20	$\mu \mathrm{V}$
DC offset voltage between any inputs	V_{0}	-	-	10	mV
Control part					
Source selector disconnected, source resistance 600Ω					
Input impedance	z_{i}	35	50	65	k Ω
Output impedance	Z_{0}	-	100	150	Ω
Output load resistance	R_{L}	5	-	-	k Ω
Output load capacity	C_{L}	0	-	2500	pF

parameter	symbol	min.	typ.	max.	unit
Maximum input voltage $\text { THD }<0,5 \% ; G_{v}=-10 \mathrm{~dB} ;$ bass and treble linear	$V_{i(r m s)}$	-	2,0	-	V
Noise output voltage weighted acc CCIR 468-2, quasi peak, bass and treble linear, fader off $\begin{aligned} & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{v}}=-66 \mathrm{~dB} \end{aligned}$ mute position	$\begin{aligned} & v_{\text {no }} \\ & v_{\text {no }} \\ & v_{\text {no }} \\ & v_{\text {no }} \end{aligned}$	- - -	110 25 19 11	220 50 38 22	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
Volume control Continuous control range Step resolution	G_{c}	-	86 2	-	dB $d B$
Attenuator set error $\left(\mathrm{G}_{\mathrm{v}}=+20 \text { to }-50 \mathrm{~dB}\right)$	$\Delta \mathrm{G}_{\mathrm{a}}$	-	-	2	dB
Attenuator set error $\left(\mathrm{G}_{\mathrm{v}}=+20 \text { to }-66 \mathrm{~dB}\right)$	$\Delta \mathrm{G}_{\mathrm{a}}$	-	-	3	dB
Gain tracking error balance in mid position, bass and treble linear	ΔG_{t}	-	-	2	dB
Mute attenuation	α_{m}	72	90	-	dB
DC step offset					
Between any adjoining step and any step to mute $\begin{aligned} \mathrm{G}_{\mathrm{v}} & =0 \text { to }-66 \mathrm{~dB} \\ \mathrm{G}_{\mathrm{v}} & =20 \text { to } 0 \mathrm{~dB} \end{aligned}$		-	0,2 2	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	mV mV
In any treble and fader position $\mathrm{G}_{\mathrm{v}}=0 \text { to }-66 \mathrm{~dB}$		-	-	10	mV
In any bass position $\mathrm{G}_{\mathrm{v}}=0$ to -66 dB		-	-	20	mV
Bass control					
Bass control range $f=40 \mathrm{~Hz}$; maximum boost	G_{b}	14	15	16	dB
$f=40 \mathrm{~Hz}$; maximum attenuation	G_{b}	11	12	13	dB
Step resolution		-	3	-	dB
Step error		-	-	0,5	dB
Treble control					
Tresla control range $\mathrm{f}=15 \mathrm{kHz}$; maximum boost	G_{t}	11	12	13	dB
$\mathrm{f}=15 \mathrm{kHz}$; maximum attenuation	G_{t}	11	12	13	dB
$\mathrm{f}>15 \mathrm{kHz}$; maximum boost	G_{t}	-	-	15	dB
Step resolution		-	3	-	dB
Step error		-	-	0,5	dB

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Fader control					
Continuous attenuation fader control range	G_{f}	-	30	-	dB
Step resolution		-	2	-	dB
Attenuator set error		-	-	1,5	dB
Mute attenuation	α_{m}	74	84	-	dB
Digital part					
Bus terminals					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	3	-	12	V
LOW	$V_{\text {IL }}$	-0,3	-	+1,5	V
Input current					
HIGH	$\mathrm{I}_{\text {IH }}$	-10	-	+ 10	$\mu \mathrm{A}$
LOW	IIL	-10	-	+ 10	$\mu \mathrm{A}$
Output voltage LOW $\mathrm{I}_{\mathrm{L}}=3 \mathrm{~mA}$	V_{OL}	-	-	0,4	V
AC characteristics in accordance with the $I^{2} \mathrm{C}$-bus specification					
Power-on-Reset					
When RESET is active the GMU (general mute) bit is set and the $I^{2} \mathrm{C}$-bus receiver is in RESET position					
Increasing supply voltage start of reset	V_{Cc}				V
	V_{CC}	5,2	6,0	6,8	V
Decreasing supply voltage start of reset	V_{CC}	4,2	5,0	5,8	V

Notes to the characteristics

1. The indicated values for output power assume a 6 W power amplifier with 20 dB gain, connected to the output of the circuit. Signal-to-noise ratios exclude noise contribution of the power amplifier.
2. Signal-to-noise ratios on a CCIR 468-2 average meter reading are 4,5 dB better than on CCIR 468-2 quasi peak.

I^{2} C-BUS FORMAT

S	SLAVE ADDRESS	A	SUBADDRESS	A	DATA	A	P
S	= start condition			SUBADDRESS = see Table 1			
SLA	DDRESS $=100000$					Ta	
A	= acknowl	gen	d by the slave	P		OP	ition

If more than 1 byte of DATA is transmitted, then auto-increment of the subaddress is performed.
Table $1 \mathrm{I}^{2} \mathrm{C}$-bus; subaddress/data

function	subaddress	DATA							
		D7	D6	D5	D4	D3	D2	D1	DO
volume left	00000000	X	X	VL5	VL4	VL3	VL2	VL1	VLO
volume right	00000001	X	x	VR5	VR4	VR3	VR2	VR1	VRO
bass	00000010	X	x	X	X	BA3	BA2	BA1	BAO
treble	00000011	X	X	X	X	TR3	TR2	TR1	TRO
fader	00000100	X	X	MFN	FCH	FA3	FA2	FA1	FAO
switch	00000101	GMU	X	X	X	X	SCC	SCB	SCA

Function of the bits:

VLO to VL5	volume control left
VRO to VR5	volume control right
BAO to BA3	bass control
TRO to TR3	treble control
FAO to FA3	fader control select fader channel (front or rear)
MFH	mute control of the selected fader channel (front or rear) MCA to SCC source selector control
GMU	mute control (general mute) for the outputs QLF, QLR, QRF and QRR don't care bits (logic 1 during testing)
X	

Table 2 Bass setting

G V	DBTA			
	BA3	BA2	BA1	BA0
+15	1	1	1	1
+15	1	1	1	0
+15	1	1	0	1
+15	1	1	0	0
+12	1	0	1	1
+9	1	0	1	0
+6	1	0	0	1
+3	1	0	0	0
0	0	1	1	1
-3	0	1	1	0
-6	0	1	0	1
-9	0	1	0	0
-12	0	0	1	1
-12	0	0	1	0
-12	0	0	0	1
-12	0	0	0	0

Table 3 Treble setting

G_{v}	DATA			
	TR3	TR2	TR1	TR0
+12	1	1	1	1
+12	1	1	1	0
+12	1	1	0	1
+12	1	1	0	0
+12	1	0	1	1
+9	1	0	1	0
+6	1	0	0	1
+3	1	0	0	0
0	0	1	1	1
-3	0	1	1	0
-6	0	1	0	1
-9	0	1	0	0
-12	0	0	1	1
-12	0	0	1	0
-12	0	0	0	1
-12	0	0	0	0

Sound fader control circuit

Table 4 Volume setting LEFT

	$\stackrel{\bar{W}}{\underset{\rightrightarrows}{\Phi}}$	吅く
\bigcirc		S
0	$00000000000000 \sim$－	¢
0		
0		发ゝ
0	－	¢
	$0 \rightarrow 0 \rightarrow$	玄

Table 5 Volume setting RIGHT

G_{V}			DATA					
dB			VR5	VR4	VR3	VR2	VR1	

Table 6 Fader function

sett		DATA					
front rear		MFN	FCH	FA3	FA2	FA1	FAO
		fader off					
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1
		fader front					
- 2	0	1	1	1	1	1	0
- 4	0	1	1	1	1	0	1
- 6	0	1	1	1	1	0	0
-8	0	1		1	0	1	1
-10	0	1	1	1	0	1	0
-12	0		1	1	0	0	1
-14	0	1	1	1	0	0	0
-16	0	1	1	0	1	1	1
-18	0	1	1	0	1	1	0
-20	0	1	1	0	1	0	1
-22	0	1	1	0	1	0	0
-24	0	1	1	0	0	1	1
-26	0	1	1	0	0	1	0
-28	0	1	1	0	0	0	1
-30	0	1	1	0	0	0	0
				mute	front		
-80	0	0	1	1	1	1	0
.	.						
-	-				.		
-80	0	0	1	0	0	0	0

Table 7 Selected inputs

selected inputs	SCC	DATA	
	SCB	SCA	
data not allowed	1	1	1
data not allowed	1	1	0
data not allowed	1	0	1
INLC, INRC	1	0	0
data not allowed	0	1	1
INLB, INRB	0	1	0
INLA, INRA	0	0	1
data not allowed	0	0	0

setting	DATA					
front rear	MFN	FCH	FA3	FA2	FA1	FAO
	fader off					
00	1	0	1	1	1	1
00	0	0	1	1	1	1
	fader rear					
$0-2$	1	0	1	1	1	0
0-4	1	0	1	1	0	1
0-6	1	0	1	1	0	0
$0-8$	1	0	1	0	1	1
$0 \quad-10$	1	0	1	0	1	0
$0 \quad-12$	1	0	1	0	0	1
$0-14$	1	0	1	0	0	0
0 0-16	1	0	0	1	1	1
$0-18$	1	0	0	1	1	0
$0-20$	1	0	0	1	0	1
0 -22	1	0	0	1	0	0
$0-24$	1	0	0	0	1	1
0 - 06	1	0	0	0	1	0
0 -28	1	0	0	0	0	1
$0 \quad-30$	1	0	0	0	0	0
	mute rear					
$0 \quad-80$	0	0	1	1	1	0
- .						
.						
$0-80$	0	0	0	0	0	0

Table 8 Mute control

MUTE control	DATA GMU	remarks
active	1	outputs QLF, QLR QRF and QRR are muted no general mute

Fig. 3 Bass control without T-pass filter.

Fig. 4 Bass control with T-pass filter.

Pin numbers in parenthases refer to the bass control, right channel.
Fig. 5 T-pass filter.

Fig. 6 Treble control.

Fig. 7 Output noise voltage (CCIR $468-2$ weighted: quasi peak).

Fig. 8 Signal-to-noise ratio (CCIT 468-2 weighted; quasi peak) with a 6 W power amplifier (gain 20 dB) without noise contribution of the power amplifier (see Fig. 9).

Fig. 9 Recommended level diagram; $\mathrm{V}_{\mathrm{imin}}=50 \mathrm{mV}, \mathrm{V}_{\mathrm{o}}=500 \mathrm{mV}$ for $\mathrm{P}_{\text {max }}$.

APPLICATION INFORMATION

Fig. 10 Test and application circuit.

GENERAL DESCRIPTION

The UMA1000T is a low power CMOS LSI device incorporating the data transceiving, data processing, and SAT functions (including on-chip filtering) for an AMPS or TACS hand-held portable cellular radio telephone.

Features

- Single chip solution to all the data handling and supervisory functions
- Configurable to both AMPS and TACS
- $I^{2} \mathrm{C}$ serial bus control
- All analog interface and filtering functions fully implemented on chip
- Error handling in hardware reduces software requirements
- Robust SAT decoding and transponding circuitry
- Low current consumption
- Śmall physical size
- Minimum external peripheral components required

QUICK REFERENCE DATA

parameter	symbol	\min.	typ.	max.	unit
Supply voltage (pin 28) Supply current (pin 28) normal operation Operating ambient temperature range V_{DD}	4.5	5.0	5.5	V	

PACKAGE OUTLINE

28-lead mini-pack; plastic (SO28; SOT136A).

Fig. 1 Block diagram.
Data processor for cellular radio (DPROC) UMA1000T

Data processor for cellular radio (DPROC)

VSSA 1	\bigcirc	28	$V_{D D}$
AGND 2		27	RXCLK
DEMODD 3		26	RESET
DATA 4		25	SCL
RACTRL 5		24	SDA
TEST 6		23	AO
INVRX 7		22	A1
RXLINE 8	UMA1000T	21	INVTX
i.c. 9		20	TXCTRL
i.c. 10		19	BUSY
TACTRL 11		18	TXCLK
CLKIN 12		17	TXHOLD
BUFOUT 13		16	SYNCCLK
$\mathrm{V}_{\text {SSD }} 14$		15	TXLINE

Fig. 2 Pinning diagram.

PINNING

1 VSSA
2 AGND
3 DEMODD
4 DATA
5 RACTRL
6 TEST

7 INVRX
8 RXLINE
9 i.c.
10 i.c.
11 TACTRL
12 CLKIN
13 BUFOUT
14 VSSD
15 TXLINE
16 SYNCCLK

17 TXHOLD
18 TXCLK
19 BUSY
20 TXCTRL
21 INVTX
22 A1

23 AO
24 SDA
25 SCL
26 RESET
27 RXCLK
$28 \mathrm{~V}_{\mathrm{DD}}$
analog negative supply (0 V)
($\mathrm{V}_{\text {DD }}$ - $\mathrm{V}_{\text {SSA }}$)/2 analog reference ground received data signal input transmitted data signal output received audio control output
SCAN Control input - used for power on reset inverts sense of received data stream received data signal output internally connected; must be left open -circuit transmitter audio control output 1.2 MHz external master clock input buffered output of internal clock oscillator digital ground transmitted data signal SCAN CLOCK Control input - used for power-on reset holds off transmission of data transmitted data clock input reverse control channel status output transmitter control output inverts sense of transmitted data stream address input 1 - used for power-on reset address input 0 serial data input/output serial clock input master rest input received data clock input positive supply voltage (+5 V)

CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage		V_{DD}	4.5	5.0	5.5	V
Supply current	normal operation	IDD	-	2.0	-	mA
Digital inputs	note 1					
Input voltage LOW		V_{IL}	0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Input voItage HIGH		$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input capacitance			-	-	6	pF
Digital outputs	note 1					
Output voltage LOW	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0.4	V
Output voltage HIGH	$\mathrm{I}_{\text {source }}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Open-drain outputs	note 2					
Output voItage LOW	$\mathrm{I}_{\text {sink }}=2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0.4	V
Open-drain SDA						
Output voltage LOW	$\mathrm{I}_{\text {sink }}=3 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0.4	V

Notes to the characteristics

1. All digital inputs and outputs of DPROC are compatible with standard CMOS devices and the following general characteristics apply.
2. Open-drain outputs have no internal pull-up resistors.

FUNCTIONAL DESCRIPTION

General

The UMA 1000T (DPROC) is a single chip CMOS device which handles the data and supervisory functions of an AMPS or TACS subscriber set.
These functions are:

- Data reception and transmission
- Control and voice channel exchanges
- Error detection, correction, decoding and encoding
- Supervisory Audio Tone decoding and transponding
- Signalling Tone generation

In an AMPS or TACS cellular telephone system, mobile stations communicate with a base over full duplex RF channels. A call is initially set up using one out of a number of dedicated control channels. This establishes a duplex voice connection using a pair of voice channels. Any further transmission of control data occurs on these voice channels by briefly blanking the audio and simultaneously transmitting the data. The data burst is brief and barely noticable by the user. A data rate of $10 \mathrm{kbit} / \mathrm{s}$ is used in the AMPS system and $8 \mathrm{kbits} / \mathrm{s}$ in TACS. The signalling formats for both Forward Channels (base to mobile) and Reverse Channels (mobile to base) are shown in Fig. 3.

A function known as Supervisory Audio Tone (SAT), a set of 3 audio tones (5970,6000 and 6030 Hz), is used to indicate the presence of the mobile on the designated voice channel. This signal, which is analagous to the On-Hook signal on land lines, is sent out to the mobile by the base station on the Forward Voice Channel. The signal must be accurately recovered and transponded back to the base station to complete the 'loop'. At the base station this signal is used to ascertain the overall quality of the communication link.
Another voice channel associated signal is Signalling Tone (ST). This tone (8 kHz TACS, 10 kHz AMPS) is generated by the mobile and is sent in conjunction with SAT on the Reverse Voice Channel to serve as an acknowledgement signal to a number of system orders.
The key requirements of a hand held portable cellular set are:

- small physical size
- minimum number of interconnections (serial bus)
- low power consumption
- low cost

The DPROC is a member of our Cellular Radio chipset, based on the $I^{2} \mathrm{C}$-bus, which meets these requirements. A cellular radio system schematic using the chip set is shown in Fig. 4.

Fig. 4 Cellular radio system schematic.

EXTERNAL PIN DESCRIPTION

Supply (VDD; VSSA; VSSD; AGND)
VDD : Positive supply voltage for digital and analog circuitry ($\pm 5 \mathrm{~V}+10 \%$)
VSSA : Negative supply voltage for analog circuitry (0 V)
$V_{S S D}$: Digital ground (0 V)
AGND: Internally generated reference ground used by internal analog circuitry. Voltage level $\left(V_{D D}-V_{S S A}\right) / 2 \pm 2 \%$.
Both VSSA and VSSD must be connected to common ground.

System clock (CLKIN; BUFOUT)

CLKIN is a digital input for the externally generated 1.2 MHz master clock. This signal should be accurate to 100×10^{-6} and have a worst case of $60: 40$ mark-space ratio. BUFOUT is the buffered output of the clock oscillator and provides the option of generating the clock signal on chip by connecting a 1.2 MHz crystal between BUFOUT and CLKIN.

parameter	symbol	min.	typ.	max.	unit
Clock period time	T_{p}	833.25	833.33	833.42	ns
HIGH time	$\mathrm{t}_{\text {HIGH }}$	40%	50%	60%	$\mathrm{~T}_{\mathrm{p}}$
LOW time	$\mathrm{t}_{\text {LOW }}$	-	T_{p}-t t HIGH	-	
Rise time	t_{r}	-	50	-	ns
Fall time	t_{f}	-	50	-	ns

$1^{2} \mathbf{C}$ serial data link (SDA; SCL)
SDA is the bi-directional data line; $S C L$ the clock input from an $I^{2} \mathrm{C}$ master. These constitute a typical $I^{2} \mathrm{C}$ link and conform to standard characteristics as defined in the $\mathrm{I}^{2} \mathrm{C}$-bus specification.

- data rate: up to $100 \mathrm{kbit} / \mathrm{s}$

Slave Address Select (AO; A1)

Selection of the device slave address is achieved by connecting AO to either $V_{S S D}$ or $V_{D D}$ and connecting A1 to either pin 16 and pin 6 or to $V_{D D}$. The slave address is defined in accordance with the $1^{2} \mathrm{C}$ specifications as shown in Fig. 5.

1	1	0	1	1	A 1	A 0	R / \bar{W}

Fig. 5 Device slave address.

Power-up state

DPROC will not respond reliably to any inputs (including $\overline{\mathrm{RESET}}$) until 100μ s after the power supply has settled within the specified tolerance. The analog sections of the device will have stabilized within 5 ms . No power-on-reset is provided, therefore before the device can enter normal operation TEST and SYNCCLK must be pulsed HIGH. The reset pulse on these pins must have a minimum period of $250 \mu \mathrm{~s}$ and the fall time of the negative going edge must be faster than $1 \mu \mathrm{~s}$. Pin A1 must remain HIGH during this reset period therefore if the A 1 bit of the $I^{2} \mathrm{C}$ address is required to be logic 0 . A1 may be connected to TEST and SYNCCLK. If it is required to be at logic 1 then A1 may be permanently connected to $V_{D D}$. If it is required that $A O=$ logic 1 , then a normal master reset (pin 26) sequence must follow the power-on-reset sequence to get the internal registers in the defined state.
After the power-on-reset a dummy transmission should be made to initiate internal DPROC counters. This transmission should be made with arbitration (ABREN) disabled and the RF transmitter stage switched OFF. Figure 6 shows the power-on reset sequence.

Where:
t1 = time not critical.
$\mathrm{t}_{\mathrm{r}}=$ reset time $=250 \mu \mathrm{~s}$ max .
$\mathrm{t}_{\mathrm{f}}=$ pulse fall time $=1 \mu \mathrm{~s}$ max.
$\mathrm{t}_{\mathrm{HD}}=\mathrm{Al}$ hold time $=0 \mu \mathrm{~s} \mathrm{~min}$.

Note

The RF transmitter is OFF during reset sequence.
Fig. 6 Power-on reset programming sequence.

Master reset ($\overline{\mathrm{RESET}}$)

$\overline{\text { RESET }}$ is an asynchronous active LOW master reset input, with a minimum active pulse width of $2 \mu \mathrm{~s}$ which may be used to reset certain logic within DPROC to a predefined state as illustrated in Tables 1 and 2. Alternatively, DPROC may be set into a known initial state be setting the $I^{2} \mathrm{C}$ control register as required. The internal reset sequence after a negative pulse on RESET takes $250 \mu \mathrm{~s}$.

EXTERNAL PIN DESCRIPTION (continued)

Table 1 Predefined state of the digital output pins

output	state
RXLINE	HIGH
TXCTRL	HIGH
TACTRL	HIGH
RACTRL	HIGH
BUSY	HIGH

Table 2 Predefined state of the $I^{2} \mathrm{C}$ registers

register									
	7	6	5	4	3	2	1	0	
control	LOW								
SATD	LOW								
TST	LOW								

Data Transfer Link (RXLINE;TXLINE;TXHOLD; TXCLK and RXCLK)

RXLINE, TXLINE, TXCLK and RXCLK provide a dedicated serial data link for the transfer of system data messages between DPROC and the system controller at variable rates of up to $200 \mathrm{kbits} / \mathrm{s}$.
TXHOLD allows the system controller to preload the DPROC transmit register with one word without the data being transmitted. DPROC then starts transmitting the instant TXHOLD is driven LOW.

- RXCLK : clock input from system controller
- RXLINE : data output from DPROC to system controller
- TXCLK : clock input from system controller
- TXLINE : open drain data bi-directional line to the system controller
- TXHOLD : (HIGH) holds off transmission of data
- data rate : up to $200 \mathrm{kbit} / \mathrm{s}$

Note
A minimum mean data transfer rate for the received data of $2.1 \mathrm{kbits} / \mathrm{s}$ (AMPS) and $1.7 \mathrm{kbits} / \mathrm{s}$ (TACS) is required to ensure contiguity of message words.
The format for received and transmitted data words is shown in Fig. 14 (a) and Fig. 14 (b) respectively. The receive and transmit data timing is illustrated in Fig. 15 (a) and Fig. 15 (b) respectively.

Transmitter Control (TXCTRL)

TXCTRL is an open-drain output used to disable the transmitter during a Reverse Control Channel access failure.

- output level HIGH : RF enable
- output level LOW : RF disable

Transmitter Audio Enable (TACTRL)

TACTRL is an open-drain digital output signal used to blank the audio path and enable the data path to the modulator during data bursts on the Reverse Voice Channel.

- output level HIGH : audio enabled
- output level LOW : audio muted

Receiver Audio Enable (RACTRL)

RACTRL is an open-drain digital output used to blank the audio path to the earpiece when a sequence of dotting and word sync is detected.

RACTRL and TACTRL functions can be combined using one line.

- output level HIGH : audio enabled
- output level LOW : audio muted

Reverse Control Channel Status (BUSY)

BUSY is a digital output giving the status of the Reverse Control Channel. This is determined by a majority decision on the result of the last 3 consecutive Busy-Idle bits and has the following logic levels:

- output level HIGH : channel busy
- output level LOW : channel idle

On a voice channel BUSY indicates channel idle.
Invert Receive Data (INVRX)
Enables an additional inverter in the receive data path. This allows RF demodulators with high or low local oscillators to be used. The TACS and AMPS specifications define a NRZ encoded logic 1 as a LOW-to-HIGH transition in the centre of a data bit period. The polarity of the demodulated data stream into DPROC depends on the receiver local oscillator.

- input HIGH : data inverted
- input LOW : data normal

Invert Transmit Data (INVTX)

Enables an additional inverter in the transmit data path. This allows RF modulators with high or low local oscillators to be used. The TACS and AMPS specifications define a NRZ encoded logic 1 as a LOW-to-HIGH transition in the centre of a data bit period. The polarity of the modulated data stream depends on the transmitter local oscillator.

- input HIGH : data inverted
- input LOW : data normal

EXTERNAL PIN DESCRIPTION (continued)

Transmitted Data Output (DATA)

Data is an analog output which provides Manchester encoded and filtered data signal SAT and signalling tone. This signal should normally be AC coupled into the Audio/Data summer.

- DC level : analog ground (AGND)
- signal level :2 V (p-p) * for signalling tone
- signal tolerance $: 2 \%+$ supply voltage variation ($\Delta V_{D D}$)
- minimum load impedance : $10 \mathrm{k} \Omega$
- maximum load capacitance : 2 nF
- maximum output impedance : 50Ω

Received Data Input (DEMODD)
Demodd inputs analog data and SAT signals from the RF demodulator. This pin should normally be AC coupled (characteristics for UMA1000T/F4 upwards).

- DC level
- maximum data level
- nominal data level
- minimum data level
- minimum SAT level
- input impedance
: analog ground (AGND)
: $1 \vee(p-p)$
: 250 mV (p-p)
: 200 mV (p-p)
: 50 mV ($\mathrm{p}-\mathrm{p}$)
$:>1 \mathrm{M} \Omega$

CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$ BUS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 7 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 8 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 9 System configuration.

CHARACTERISTICS OF THE ${ }^{2}$ ² BUS (continued)

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 10 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$ bus.

Timing specifications

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 11.

Fig. 11 Timing.

Where:

$t_{B U F}$	$t \geqslant t_{\text {LOWmin }}$
t_{HD}; STA	$\mathrm{t} \geqslant \mathrm{t}$ HIGHmin
$\mathrm{t}_{\text {LOWmin }}$	$4.7 \mu \mathrm{~s}$
${ }^{\text {tHIGHmin }}$	$4 \mu \mathrm{~s}$
${ }^{\text {t SU; STA }}$	$t \geqslant t_{\text {LOWmin }}$
thD; DAT	$\mathrm{t} \geqslant 0 \mu \mathrm{~s}$
${ }^{\text {t }}$ SU; DAT	$\mathrm{t} \geqslant 250 \mathrm{~ns}$
tr_{r}	$t \leqslant 1 \mu \mathrm{~s}$
t_{f}	$t \leqslant 300 \mathrm{~ns}$
${ }^{\text {t SU; STO }}$	$\mathrm{t} \geqslant \mathrm{t}$ LOWmin

The minimum time the bus must be free before a new transmission can start

Start condition hold time
Clock LOW period
Clock HIGH period
Start condition set-up time, only valid for repeated start code
Data hold time
Data set-up time
Rise time of both the SDA and SCL line
Fall time of both the SDA and SCL line
Stop condition set-up time

Note

All the values refer to $V_{I H}$ and $V_{I L}$ levels with a voltage swing of $V_{D D}$ to $V_{S S}$.

Fig. 12 Complete data transfer.

Where:
Clock tLOWmin
$4.7 \mu \mathrm{~s}$
thIGHmin
$4 \mu \mathrm{~s}$

The dashed line is the acknowledgement of the receiver

Max. number of bytes
Premature termination of transfer
Acknowledge clock bit

Unrestricted
Allowed by generation of STOP condition
Must be provided by the master

I^{2} C REGISTERS

General

The $I^{2} \mathrm{C}$ register block resides internally within the $\mathrm{I}^{2} \mathrm{C}$ interface block and contains various items of status and control information which are transferred to and from DPROC via the $1^{2} \mathrm{C}$-bus. The block is organized into four 8 -bit registers:

- Status Register contains read only items
- Control Register
- SAT Programmable Phase Shift Register
contain write only items
- TEST Register

Note

In normal operation the SAT delay register and the TEST register require programming only after a device reset.

Table 3 Register map

register	bit							
	7	6	5	4	3	2	1	0
status	-	-	WSYNC	BUSY	TXABRT	TXIP	MSCC1	MSCCO
control	-	SERV	STS	TXRST	ABREN	FVC	STEN	SATEN
SATD								

S	DPROC ADR	R	A	STATUS	A	P

(a) read from DPROC status register

S	DPROC ADR	W	A	CONTROL	A	P

(b) write to DPROC control register

S	DPROC ADR	W	A	CONTROL	A	SAT DELAY	A	TEST	A	P

(c) write to all DPROC registers

Where:

S	: START condition
W	: read/write bit (logic $0=$ write)
R	: read/write bit (logic $1=$ read)
A	: acknowledge bit
P	: STOP condition
DPROC ADR	$:$ slave address of DPROC
TEST	: must be programmed to logic 0 for normal operation

Fig. $13 \mathrm{I}^{2} \mathrm{C}$ data format.

Data processor for cellular radio (DPROC)

Status Register

This is a read only register containing DPROC status information.

Measured SAT Colour Code (MSCC1; MSCC0)
MSCC1 and MSCC0 provide information about the current measured SAT colour code in accordance with Table 4.

Table 4 Measured SAT Colour Code

MSCC1	MSCCO	SAT frequency (Hz)
0	0	5970
0	1	6000
1	0	6030
1	1	no valid SAT

Transmission In Progress (TXIP)

TXIP indicates whether DPROC is currently accessing the Reverse Control or Voice Channels.

- logic 1 : data transmission in progress
- logic 0 : transmission not in progress

Transmission Abort Status (TXABRT)

TXABRT indicates that a Reverse Control Channel Access Attempt has been aborted by DPROC without successful message transmission.

- logic 1 : transmission attempt aborted
- logic 0 : no access collision detected

Reverse Control Channel Status (BUSY)

BUSY gives the status of the Reverse Control Channel. This is determined by a majority decision on the result of the last 3 consecutive Busy-Idle bits on the Forward Control Channel.

- logic 1 : channel busy
- logic 0 : channel idle

On a voice channel the BUSY bit defaults to the set state.

Note

This signal is also routed to the BUSY output pin.

Word Synchronization Indicator (WSYNC)

WSYNC indicates whether DPROC has acquired frame synchronization according to the Forward Control Channel format.

- logic 1 : frame synchronization acquired
- logic 0 : no frame synchronization

Data processor for cellular radio (DPROC)

$I^{2} \mathrm{C}$ REGISTERS (continued)

Control Register

This is a write only register containing DPROC control information.

SAT Path Enable (SATEN)

SATEN enables the SAT transponded signal to be output on external pin DATA.

- logic 1 : SAT tone enabled
- logic 0 : SAT tone inhibited

Signalling Tone (ST) Path Enable (STEN)

STEN enables the Signalling Tone to be output on external pin Data.

- logic 1 : ST enabled
- logic 0 : ST inhibited

Channel Format Select (FVC)

FVC selects the required channel format.

- logic 1 : Voice channel format
- logic 0 : Control channel format

Transmission Abort Permission (ABREN)

ABREN indicates whether DPROC has permission to abort data transmission and disable RF on the Reverse Control Channel following the detection of a channel access attempt collision.

- logic 1 : RF disable allowed
- logic 0 : RF disable inhibited

Message Transmission Abort (TXRST)

TXRST terminates a message being transmitted on the reverse channel. It is a monostable signal which when activated causes a reset of the message transmission circuitry and causes TXABRT and TXIP ${ }^{2} \mathrm{C}$ signals to be reset.
This signal does not clear the DPROC transmit register; therefore if a word has been loaded into DPROC after a TXABRT has occured the control line TXHOLD should be held LOW to allow the word to be cleared from the DPROC input register.

- logic 1 : reset active
- logic 0 : reset inactive

System Type Select (STS)

STS selects required system format.

- logic 1 : AMPS
- logic 0 : TACS

Note
Toggling this signal also resets the receive logic in DPROC.
Serving System Select (SERV)
SERV selects which of the serving system data streams (A or B) is accepted.

- logic 1 : system A selected
- logic 0 : system B selected

SAT Programmable Delay Register (SATD)
SATD programs the value of phase shift which is applied to the SAT tones in the SAT Regeneration Block. This value will be determined and programmed into the System Controller during manufacture. The recovered SAT is delayed in time by approximately $0.8 \mu \mathrm{~s} \times$ value in the register which corresponds to approximately 1,8 degrees x value in the register. The total phase shift is limited to 360 degrees.
The ability to adjust SAT phase angle is not necessary in current AMPS and TACS systems. Therefore this register should normally be in AMPS and TACS, this function is not necessary and should programmed to zero.

DIGITAL CIRCUIT BLOCKS

General

The majority of the digital circuitry within the DPROC device is identical for both AMPS and TACS. The device has little additional redundancy to implement both systems. The functions of these blocks are described in the following sections and relate to those shown in Fig. 1.

Data Recovery

The Data Recovery Block receives wideband Manchester encoded data in sampled and sliced form from the Strobed Comparator Block, on which it performs the following functions:

- clock recovery
- Manchester decoding
- data regeneration

The Clock Recovery Block extracts an 8 or 10 kHz (TACS or AMPS) phase locked clock signal from the Manchester encoded data stream. This is implemented using a digital-phase-locked-loop (PLL) which has an adjustable "bandwidth" to provide both fast acquisition and low jitter.
Manchester decoding is performed by exclusive ORing the recovered Manchester encoded data with the recovered clock.
The NRZ data regeneration is performed by a digital integrate and dump circuit. This consists of an up/down counter that counts 1.2 MHz cycles during the data period. The sense of the count is determined by the result of the Manchester Decoder output. The number of counts is sampled at the end of a data period. If this number exceeds a threshold the data is latched as a 1 otherwise it is latched as a 0 .

SAT Processing

The Supervisory Audio Tone processing consists of the following functions:

- SAT recovery
- SAT determination
- SAT regeneration

SAT recovery

The SAT Recovery Block receives a filtered and sliced SAT signal which must be recovered before being routed to the Determination and Regeneration Blocks.
The recovery is performed using a digital phase-locked-loop.

SAT determination

The SAT Determination Block indicates which, if any, of the valid SAT tones is detected from the recovered SAT. The AMPS and TACS specifications require that a determination is made at least every 250 ms . Determination involves counting the number of cycles of the regenerated SAT in this time period. This count is then compared to a set of four known counts which define the boundaries between the SAT frequencies and the SAT not valid events. The result is then coded into the $I^{2} \mathrm{C}$ status registers MSCCO and MSCC1 as shown in Table 5.

Table 5 Status registers MSCCO, MSCC1; decoded SAT frequencies

register		SAT frequency band $(\mathrm{Hz} \pm 4 \mathrm{~Hz})$	decoded SAT (Hz)
MSCCO	MSCC1	<5956	not valid
1	1	5956 to 5986	5970
0	0	5986 to 6014	6000
0	1	6014 to 6046	6030
1	0	>6046	not valid
1	1		

SAT regeneration

The SAT Regeneration Block generates a digital SAT stream from the recovered SAT stream for transponding back to the base station. The AMPS and TACS specifications require the SAT to be trarisponded with a maximum phase shift of 20 degrees between the point the modulated RF signal enters the mobile from the base station, and the point the modulated RF leaves the mobile. A variable phase compensation circuit is provided in DPROC to shift the recovered SAT through 0 to 360 degrees before being passed to the output summing network. The degree of phase shift is determined during manufacture of the set and the required additional phase shift is stored in non-volatile RAM and programmed via $I^{2} \mathrm{C}$ at each power-on cycle. The phase correction is performed by a counter delay method using signals which are phase locked to the recovered SAT.

Dotting Detector

The Dotting Detector Block determines whether a data inversion (dotting) pattern has been received on the Forward Voice Channel. The detection of 32 bits of data inversion indicates that the Clock Recovery Block has acquired bit synchronization and that the narrow bandwidth mode on the clock recovery phase-locked-loop is selected. This signal is also used to indicate that a data burst is expected and activates the audio mute RACTRL, after a Word Synchronization Block has been received, for the duration of the burst.

Word Synchronization Detector

The Word Synchronization Block performs the following functions:

- Frame synchronization
- Reverse Control Channel status (B/I determination)
- Valid Serving System determination

These functions are associated solely with the Forward Control Channel and have no meaning on the Forward Voice Channel.
Information in a data stream is identified by its position with respect to a unique synchronization word. This synchronization word is an 11 bit-Barker code which has a low probability of simulation in an error environment, and can be easily detected. Data received is only considered valid at times when DPROC has achieved frame synchronization. In this condition the block leaves its search mode and enters its lock mode. This is indicated by bit WSYNC being set HIGH. In order to achieve this two consecutive synchronization words separated by 463 bits must be detected. Once in lock mode, the synchronization word detector is examined every 463 bits and only loses frame synchronization after 5 consecutive unsuccessful attempts at detecting the synchronization word have been made. At this point bit WSYNC is cleared and the device is returned to its search mode. On the Forward Voice Channel detection of the synchronization word indicates that the following 40 bits are valid data. Information detailing the status of the Reverse Control Channel is given by the Busy/Idle bits. These occur at intervals of 11 bits within the frame, the first occurring immediately following the synchronization word. The status of the channel is determined by a majority decision on the last three consecutive Busy/Idle bits.

Majority Voting Block

The Majority Voting Block performs the following functions:

- identifying position and validity of frames in the received data stream
- extracting 5 repeats of each word from a valid frame
- performing a bit-wise majority decision on the five repeats of the data word

The validity of the frames is determined by setting a counter in operation which times out and resets the circuitry after 920 or 463 bit periods from detecting valid word synchronization. The time out period selected depends on whether DPROC is monitoring the Forward Voice or Control Channel respectively.
Up to five repeats of the message word are searched for and extracted by DPROC. On the forward Voice Channel DPROC will extract the first five words that occur for which a correct synchronization word is found. These words can occur in any position in the frame. A serial majority vote is performed as the fifth word is being extracted.

Error Correction Block

The Error Correction Block performs the following functions:

- extraction of a valid message from the Majority-Voted Word
- computation of the S1 and S3 syndromes
- correction of up to one error in the word
- communication of received data to the System Controller via the Received Data Serial Link.

Interpretation of parity of a received word is obtained from knowledge of the syndromes of the word. The syndromes are calculated using feedback shift registers with two characteristic equations:

$$
1+X+X^{6} \text { and } 1+X+X^{2}+X^{4}+X^{6}
$$

Once the syndromes of a received word are known, it is possible to determine if a correctable error is present. DPROC only corrects up to one error although the code used has a Hamming distance of five. The occurence of two or more errors is signalled by setting the BCH error flag, which is communicated to the System Controller via the Received Data Serial Link.

Received Data Serial Link

The Received Data Serial Link transfers data and control information from DPROC to the System Controller. The data is transferred on RXLINE under control of a clock signal RXCLK, generated by the System Controller. The system controller is informed of the arrival of a decoded data word in the DPROC output register by RXLINE being driven LOW. If the system controller chooses to ignore the received data or only partially clock the data out, the DPROC will reset the receive buffer for the next word after the period RWIN (see Fig. 15).

Data Format

Each Received Data word consists of 4 bytes. The word format is shown in Fig. 14 (a). The sense and function of the fields is shown in Table 6.

Table 6 Received Data word

bit	title	sense	function
31	start	LOW	identifies start of word
30	BCH error	active HIGH	indicates that an uncorrected BCH error is associated with the word
29 to 2	received data	binary data	received data word if detected as HIGH indicates that a transmission error has Occured on the microprocessor to DPROC serial link identifies end of the word
	RXLINE error	LOW	

Link Protocol

The Received Data protocol is described by the timing diagram Fig. 15 (a) and has the following parameters:

- maximum receive window (RWIN)

Control Channel (TACS) $=47 \mathrm{~ms}$
Control Channel $($ AMPS $)=37 \mathrm{~ms}$

- minimum clock period (tcLK (min) $=2 \mu \mathrm{~s}$
- minimum clock hold-off (tWAIT) $=100 \mu \mathrm{~s}$

Transmit Data Serial Interface

The Transmit Data Serial Link performs reception of data from the System Controller to DPROC over a dedicated line TXLINE. The transfer of data is synchronous with a clock signal TXCLK, generated by the System Controller.

Data Format

Each Transmit Data word consists of 5 bytes. The word format is shown in Fig. 14 (b). The sense and function of the fields is shown in Table 7.

Table 7 Transmit Data word

bit	title	sense	function
39	start	LOW	identifies start of word
38,37	DCC	binary data	digital colour code
36 to 1	transmit data	binary data	transmit data word
0	stop	HIGH	identifies end of the word

Link Protocol

Messages are normally up to 5 words in length on the Reverse Control Channel and up to 2 words in length on the Reverse Voice Channel. However, DPROC will transmit messages of any word length. These must be transmitted on the data stream without interruption. To avoid the need for large buffer areas, a flexible protocol is used to allow DPROC to control the transfer of data words. DPROC has an on-chip buffer which can hold one complete word of a message. Whilst new words are being loaded into DPROC, within the time period Buffer clear to end of TWIN, DPROC will maintain uninterrupted data transmission. The System Controller can abort the transmission of a message at any point activating the $1^{2} \mathrm{C}$ signal TXRST. This signal causes the interface to return to its power-up state and resets TXIP and TXABRT (see Table 3). On completion of these tasks TXRST will return to its inactive state. The Transmit Data Protocol is described by the timing diagram shown in Fig. 15(b) and has the following parameters:

- maximum transmit window (TWIN) voice channel (TACS) $=60 \mathrm{~ms}$ voice channel (AMPS) $=48 \mathrm{~ms}$ control channel (TACS) $=29 \mathrm{~ms}$ control channel (AMPS) $=23 \mathrm{~ms}$
- minimum clock period $(\mathrm{t} \mathrm{CLK}(\min))=2 \mu \mathrm{~s}$

MSB

START	BCH ERROR	RECEIVED WORD (28 bits) ξ

Bit $31 \quad$ Bit $30 \quad$ Bit 29

Bit 2
Bit 1
Bit 0
(a) received data word

Fig. 14 Data word formats.

DIGITAL CIRCUIT BLOCKS (continued)

(a) DPROC to microcontroller link; receive data timing.

Where:

```
tHD = 100 ns minimum
tSU = O ns minimum
TWAIT = Ons minimum
```

(b) Microcontroller to DPROC link; transmit data timing.
(1) The buffer busy time depends on whether the first or subsequent words are being loaded.
(2) The system controller should monitor the TXLINE during bit 0 , if the status of TXLINE does not change from a HIGH to a LOW on the rising edge of TXCLK, then a framing error has occured. This can be caused by glitches on the clock line or if an arbitration error occured while the DPROC transmit register was being loaded. The system controller should recover the situation by holding TXLINE HIGH and supplying clocks on TXCLK until TXLINE goes LOW. Then the situation should be treated as a normal channel arbitration failure as described in Reverse Control Channel Access Arbitration - Abort Procedure.

Fig. 15 Data timing diagrams.

Data processor for cellular radio (DPROC)

UMA1000T

BCH and Manchester Encoding Block

The functions performed by this circuit block include:

- reception of data from the System Controller
- parity generation
- message construction
- Manchester encoding

Each 36-bit Information Word sent on the Reverse Voice and Control Channels is coded into a 48 bit code word. The code word consists of the 36 -bit word followed by 12 parity bits. These parity bits are formed by clocking the information word into a 12-bit feedback shift register with characteristic equation:

$$
1+x^{3}+x^{4}+x^{5}+X^{8}+x^{10}+X^{12}
$$

The BCH Encoder Block constructs the Reverse Voice and Control Channel data streams from the information it receives from the System Controller. The streams are formed out of the four possible field types:

- Dotting (data inversions)
- 11-bit Synchronization Word
- Digital Colour Code
- 48-bit code word

The 2 bits of DCC received from the System Controller are coded into a 7 -bit word as shown in Table 8.
Table 8 Digital Colour Code; 7-bit word

DCC1	DCCO	Coded DCC						
0	0	0	0	0	0	0	0	0
0	1		0	1	1	1	1	1
1	0	1	1	0	0	0	1	1
1	1	1	1	1	1	1	0	0

The data sense for Manchester Encoding has a NRZ logic 1 encoded as a 0-to-1 transition and a NRZ logic 0 encoded as a 1-to- 0 transition.

DIGITAL CIRCUIT BLOCKS (continued)

Reverse Control Channel Access Arbitration

The AMPS and TACS specifications require a method of arbitration on the Reverse Control Channel to prevent two mobiles from transmitting on the same channel at the same time. This function is performed by DPROC monitoring the Busy/Idle stream sent on the Forward Control Channel.

The AMPS and TACS specifications state that once the mobile has commenced transmitting on the Reverse Control Channel it must monitor the Busy/Idle stream. If this stream becomes active outside a predetermined 'window', measured from the start of the transmission of the message, the mobile must terminate its transmission and disable the transmitter immediately.
In the Cellular Radio chip-set there are two levels of control of the RF transmitter; the first is absolute control by the System Controller, the second is conditional by other devices in the set. In DPROC the conditional control of the transmitter is performed via the output TXCTRL. This line is effectively wired ANDed together, using open-drain outputs, with other devices which may wish to control the transmitter. When these devices do not wish to disable the transmitter their output is in a HIGH impedance state.
An exception to this procedure occurs when the Serving System instructs the mobile not to monitor the Busy/Idle bits. In this event the arbitration logic can be disabled by clearing $\mathrm{I}^{2} \mathrm{C}$ register bit ABREN.

The flow of events during a Control Channel Access attempt is as follows:

Initial State

- transmitter power off via $1^{2} \mathrm{C}$
- DPROC transmit circuitry in power-up state
- TXCTRL line HIGH

Access Attempt Procedure

1. System Controller decides to send message (note 1).
2. System Controller drives TXCTRL low directly.
3. System Controller switches transmitter power on and waits for power-up for the transmitter module (RF transmitter is still disabled by TXCTRL).
4. System Controller sets TXRST via $I^{2} \mathrm{C}$ to DPROC.
5. System Controller sets $A B R E N$ via $I^{2} C$ (if required) allowing DPROC to control the transmitter.

6 System Controller determines status of Reverse Control Channel by monitoring the Busy/Idle bit. If busy, waits a random time then tries again.
7. System Controller releases TXCTRL allowing it to be pulled HIGH enabling the transmitter output.
8. System Controller transfers the first word of the message to DPROC via serial link (note 1).
9. DPROC sets $I^{2} \mathrm{C}$ signal TXIP and starts sending message while monitoring Busy/Idle status.
10. If channel becomes busy before 56 bits and ABREN is set then perform Abort Procedure.
11. If channel remains idle after 104 bits and ABREN is set then perform Abort Procedure.
12. System controller loads the subsequent words of the message into DPROC when the buffer becomes clear (Fig.15b).
13. On completion of entire message DPROC clears TXIP and 25 ms later the System Controller disables transmitter via $1^{2} \mathrm{C}$.
14. System Controller finally sends TXRST to prepare DPROC for next transmission.

Note to the Access Attempt Procedure

1. At stage 1 the system controller may choose to preload DPROC with the first word of the message and hold it from transmission until stage 7 using the TXHOLD line. This gives a lower time overhead between detecting an IDLE channel and commencing the transmission. To use this feature TXHOLD must be driven HIGH before the last bit of data has been transferred into DPROC.
Figure 16 illustrates the DPROC data transmission timing.

Data processor for cellular radio (DPROC)

Fig. 16 DPROC data transmission timing/microcontroller interface.

DIGITAL CIRCUIT BLOCKS (continued)

Abort Procedure (see Fig. 17)

1. DPROC immediately disables transmitter output by driving TXCTRL low.
2. DPROC sets TXABRT.
3. System Controller detects failure by monitoring TXCTRL and TXABRT.
4. System Controller disables transmitter via RF power amplifier.
5. System Controller sends TXRST to prepare DPROC for next transmission.

Note

If a message is loaded into DPROC after a TXABRT has occured this word will remain in the DPROC transmit register and will not be cleared to TXRST.
If this situation arises the method of clearing the buffer ready for a second access attempt is to leave TXHOLD LOW and then send a TXRST prior to setting up a new transmission after TXLINE goes HIGH; this will clear any residual data in the buffer.

Signal Tone Generation (ST)
The 8 or 10 kHz (TACS or AMPS) tone generated from the Manchester Encoding Block is used as the Signalling Tone stream.

Fig. 17 DPROC data transmission timing/microcontroller interface during arbitration failure.

ANALOG CIRCUIT BLOCKS

General

The analog signal processing functions on DPROC are implemented using switched-capacitor techniques. The main filtering functions are operated at 300 kHz , and these circuits are 'interfaced' to the continuous time and sampled digital domains by distributed RC active filters, passive interpolators and comparators.
The distributed RC sections, the Anti-Alias Filter and the Clock Noise Filter, are non-critical and are designed to tolerate process spreads. The critical filtering in the SAT Filter and the Output Filter, is performed by 300 kHz switched-capacitor circuitry. The Passive Interpolators increase the sampling rate from 300 kHz to 1.2 MHz . The sampled analog signals from the Passive Interpolators are converted to sampled 2 -state digital signals by the Strobed Comparators. The Gated Digital-to-Analog converters and Analog Summer blocks perform resynchronization and sub-sampling of the digitally generated DPROC output signals, and conversion to the sampled analog domain.

These analog section of the device are shown in Fig. 1.

Reference Voltage Generator

The Reference Voltage Generator generates the analog ground reference voltage (AGND) used internally within the DPROC device. To minimize noise AGND must be externally decoupled to VSSA as shown in Fig. 18.

Anti-Alias Filter

The Anti-Alias Filter is placed before the SAT sampling block to prevent any unwanted signals or high-frequency noise present on the DEMODD pin being aliased into the pass-band by the sampling action of the switched-capacitor filter. To achieve this the Anti-Alias Filter is a continuous timedistributed RC-active low-pass filter.

SAT Input Filter

The SAT Input Filter is a switched-capacitor filter which provides band-pass filtering of the SAT signals from the DEMODD pin to improve the SAT signal-to-noise ratio prior to recovery and transponding.

Passive Interpolator

The function of the Passive Interpolator is to increase the sampling rate at the output of the switched-capacitor filters. This reduces the coarseness of the zero crossing information which would otherwise cause unacceptable isochronous distortion in the recovered signal.

Strobed Comparators

The Strobed Comparators form the analog-to-digital interface for the received data and SAT signals from the DEMODD pin. These comparators act as limiting amplifiers wich convert the filtered sampled analog signals into 2 -state sampled digital signals containing only the zero-crossing information from the analog signal.

Gated Digital-to-Analog and Analog Summer

The Gated Digital-to-Analog converters and Analog Summer form the interface between the digital and analog circuitry on the transmit path of DPROC. It is at this point that the three sampled digital signals, containing SAT, ST and encoded digital data, are combined to form a composite signal. The data streams are enabled by the $I^{2} \mathrm{C}$ signals STEN, SATEN and the internal signal DATAEN respectively (DATAEN disables SAT and ST when data is being transmitted). The digital-to-analog conversion and sub-sampling operation is performed by the Gated Digital-to-Analog converters and Analog Summer. The relative signal weights applied in the summer (with respect to the data path) are shown in Table 9.

Table 9 Relative signal weights

signal	relative output level AMPS and TACS
ST	1.0
SAT	0.25
DATA	1.0

Output Filter

The Output Filter is a switched-capacitor filter which performs band-limiting of the DPROC output signals in accordance with the AMPS and TACS specifications. The required below band roll-off is achieved via external AC coupling from the DATA pin.

Clock Noise Filter

The filter is a non-critical continuous time-distributed RC-active low-pass filter used to remove any switching transient residues from the output signal.
alternative clock using DPROC on-chip oscillator circuit

Section 6

Frequency Synthesizers, Pagers, and Data Receivers

RF Communications

INDEX
NE/SA701 Divide by: 128/129-64/65 dual modulus low power ECL prescaler 629
NE/SA702 Divide by: 64/65/72 triple modulus low power ECL prescaler 633
NE/SA703 Divide by: 128/129/144 triple modulus low power ECL prescaler 637
TDD1742T CMOS frequency synthesizer 641
TSA6057/T Radio tuning PLL frequency synthesizer 663
TSA5511 1.3 GHz bi-directional I2C bus controlled synthesizer 672
UMA1014T Frequency synthesizer for cellular radio communication 683
UMF1005T Low-power frequency synthesizer 697
SCO/AN91004 Application report for the UMA1014T frequency synthesizer 718
UMF1009T Low power frequency synthesizer for radio communication 746

DESCRIPTION

The NE701 is an advanced dual modulus (Divide By 128/129 or 64/65) low power ECL prescaler. The minimum supply voltage is 2.5 V for compatibility with the new CMOS UMF1005 and UMF1009 synthesizers from Philips and other logic circuits. The maximum supply current is 2.8 mA allowing application in battery operated low-power equipment. Maximum input signal frequency is 1.2 GHz for cellular and other land mobile applications. There is no lower frequency limit due to a fully static design. The circuit is implemented in ECL technology on the HS4+ process (the bipolar portion of the QUBiC process). The circuit will be available in an 8 pin SO package with 150 mil package width.

FEATURES

- Low voltage operation
- Low current consumption
- Operation up to 1.2 GHz

APPLICATIONS

- Cellular phones
- Cordless phones
- RF LANs
-Test and measurement
- Military radio
- VHF/UHF mobile radio
-VHF/UHF hand-held radio

PIN CONFIGURATION

D Package

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE701D
8 -Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA701D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Maximum operating voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbb{I}}$	Input voltage	-0.5 to V_{CC}	V
I_{O}	Output current	10	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Divide by: 128/129-64/65 dual modulus low power ECL prescaler

DC ELECTRICAL CHARACTERISTICS

The following DC specifications are valid for $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {cc }}$	Power supply voltage range		2.5		6.0	V
Icc	Supply current				2.8	mA
V_{OH}	Output high level	$\mathrm{l}_{\text {OUT }}=1.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1.4$			V
V_{OL}	Output low level	$\mathrm{V}_{\mathrm{CC}} \geq 3.2 \mathrm{~V}$			$\mathrm{V}_{\mathrm{cc}}-3.0$	V
		$\mathrm{V}_{\text {cc }}<3.2 \mathrm{~V}$			0.2	V
$\mathrm{V}_{\text {IH }}$	MC input high threshold	$\mathrm{I}_{\text {MC }}=60 \mu \mathrm{~A}$	2.0			V
V_{IL}	MC input low threshold	$l_{\text {MC }}=20 \mu \mathrm{~A}$			0.8	V
1	MC input current	$\mathrm{V}_{\mathrm{MC}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			150	$\mu \mathrm{A}$
V_{H}	SW input high threshold		2.0			V
$\mathrm{V}_{\text {IL }}$	SW input low threshold				0.8	V
1	SW input current	$\mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			100	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS
The following AC specifications are valid for $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude	1000pF input coupling	0.1		2.0	$\mathrm{V}_{\mathrm{P} \text {-P }}$
${ }^{\text {fin }}$	Input signal frequency	Direct coupled input	0		1.2	GHz
		1000 pF input coupling			1.2	GHz
$\mathrm{R}_{\text {ID }}$	Differential input resistance	DC measurement	5			$\mathrm{k} \Omega$
C_{1}	Input capacitance				TBD	pF
Vo	Output voltage	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	1.6			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
		$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	1.2			$V_{\text {P-P }}$
t_{s}	Modulus set-up time	$\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}$		TBD		ns
t_{H}	Modulus hold time	$\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}$		TBD		ns
tPD	Propagation time			TBD		ns

DESCRIPTION OF OPERATION

The NE701 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a fixed 5 stage synchronous counter, see BLOCK DIAGRAM. The normal operating mode is for SW (Modulus Set Switch) input to be set low and MC (Modulus Control) input to be set high in which case the circuit comprises a divide by 128. For divide by 129 the MC singal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the synchronous counter. Similarly, for divide by 64 and 65 the NE701 will generate those respective moduli with the SW signal forced high, in which the fourth stage of the synchronous divider is bypassed.

A truth table for the modulus values is given below:

Table.

Modulus	MC	SW
128	1	0
129	0	0
64	1	1
65	0	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.

The prescaler input is positive edge sensitive, and the output at the final count is a falling
edge with propagation delay tpD relative to the input. The rising edge of the output occurs at the count 64 for modulus 128/129 or count 32 for modulus $64 / 65$ with delay tpD. The SW input is not designed for synchronous switching.
The MC and SW inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed. The SW input has an internal pull-down simplifying modulus group selection. With SW open the divide by 128/129 mode is selected and with SW connected to V_{Cc} divide by $64 / 65$ is selected.
The prescaler input is differential and ECL compatible. The output is single-ended ECL compatible.

AC TIMING CHARACTERISTICS

DESCRIPTION

The NE702 triple modulus (Divide By 64/65/72) low power ECL prescaler is used in synthesizer systems to achieve low phase lock time, broad operating range, high reference frequency and small frequency step sizes. The minimum supply voltage is 2.5 V for compatibility with the new CMOS UMF1005 and UMF1009 synthesizers from Philips and other logic circuits. The maximum supply current is 2.8 mA allowing application in battery operated low-power equipment. Maximum input signal frequency is 1.2 GHz for cellular and other land mobile applications. There is no lower frequency limit due to a fully static design. The circuit is implemented in ECL technology on the HS4+ process (the bipolar portion of the QUBiC process). The circuit will be available in an 8 pin SO package with 150 mil package width.

FEATURES

- Low voltage operation
- Low current consumption
\bullet - Operation up to 1.2 GHz

APPLICATIONS

- Cellular phones
-Cordless phones
-RF LANs
- Test and measurement
- Military radio
- VHF/UHF mobile radio
- VHF/UHF hand-held radio

PIN CONFIGURATION

D Package

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE702D
8-Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA702D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Maximum operating voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to V_{CC}	V
I_{O}	Output current	10	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Divide by: 64/65/72 triple modulus low power ECL prescaler

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS
The following DC specifications are valid for $-40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V_{Cc}	Power supply voltage range		2.5		6.0	V
Icc	Supply current				2.8	mA
V_{OH}	Output high level	$\mathrm{l}_{\text {OUT }}=1.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1.4$			V
V_{OL}	Output low level	$\mathrm{V}_{\mathrm{CC}} \geq 3.2 \mathrm{~V}$			$\mathrm{V}_{\mathrm{cc}}{ }^{-3.0}$	V
		$\mathrm{V}_{\mathrm{cc}}<3.2 \mathrm{~V}$			0.2	V
V_{H}	MC1,2 input high threshold	$1_{\text {MC }}=60 \mu \mathrm{~A}$	2.0			V
V_{IL}	MC1,2 input low threshold	$\mathrm{I}_{\mathrm{MC}}=20 \mu \mathrm{~A}$			0.8	V
1	MC1,2 input current	$\mathrm{V}_{\mathrm{MC}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			150	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

The following AC specifications are valid for $\mathrm{V} C \mathrm{C}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude	1000 pF input coupling	0.1		2.0	$\mathrm{V}_{\text {P-P }}$
$\mathrm{fin}^{\text {N }}$	Input signal frequency	Direct coupled input	0		1.2	GHz
		1000 pF input coupling			1.2	GHz
$\mathrm{R}_{\text {ID }}$	Differential input resistance	DC measurement	5			$\mathrm{k} \Omega$
C_{1}	Input capacitance				TBD	pF
Vo	Output voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	1.6			V_{p-p}
		$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	1.2			V_{P-P}
ts	Modulus set-up time	$\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}$		TBD		ns
${ }_{\text {H }}$	Modulus hold time	$\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}$		TBD		ns
tPD	Propagation time			TBD		ns

DESCRIPTION OF OPERATION

The NE702 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a 5 stage synchronous counter, see BLOCK DIAGRAM. The normal operating mode is for MC1 (Modulus Control) to be set high and MC2 input to be set low in which case the circuit comprises a divide by 64 . For divide by 65 the MC1 singal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the sunchronous counter. For divide by 72, MC2 is set high configuring the prescaler to divide
by 4 and the counter to divide by 18. A truth table for the modulus values is given below:

Table.

Modulus	MC1	MC2
64	1	0
65	0	0
72	0	1
72	1	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.

The prescaler input is positive edge sensitive, and the output at the final count is a falling edge with propagation delay tpo relative to the input. The rising edge of the output occurs at the count 32 with delay tpd.

The MC1 and MC2 inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed.

The prescaler input is differential and ECL compatible. The output is differential ECL compatible.

Divide by: 64/65/72 triple modulus low power ECL prescaler

AC TIMING CHARACTERISTICS

FEATURES

- Low voltage operation
- Low current consumption
\bullet - Operation up to 1.2 GHz

APPLICATIONS

- Cellular phones
- Cordless phones
- RF LANs
- Test and measurement
- Military radio
\bullet VHF/UHF mobile radio
\bullet VHF/UHF hand-held radio

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic SO (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE703D
8 -Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA703D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Maximum operating voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to V_{CC}	V
I_{O}	Output current	10	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS

The following DC specifications are valid for $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V cc	Power supply voltage range		2.5		6.0	V
lcc	Supply current				2.8	mA
V_{OH}	Output high level	lout $=1.2 \mathrm{~mA}$	V cc-1.4			V
V_{OL}	Output low level	$\mathrm{V}_{\mathrm{CC}} \geq 3.2 \mathrm{~V}$			$\mathrm{V}_{\mathrm{cc}}-3.0$	V
		$\mathrm{V}_{\mathrm{cc}}<3.2 \mathrm{~V}$			0.2	V
V_{IH}	MC1,2 input high threshold	${ }^{\text {MC }}=60 \mu \mathrm{~A}$	2.0			V
V_{LL}	MC1,2 input low threshold	$\mathrm{I}_{\mathrm{MC}}=20 \mu \mathrm{~A}$			0.8	V
1	MC1,2 input current	$\mathrm{V}_{\mathrm{MC}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			150	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

The following AC specifications are valid for $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude	1000pF input coupling	0.1		2.0	$\mathrm{V}_{\mathrm{p} \text {-p }}$
$\mathrm{fin}^{\text {N }}$	Input signal frequency	Direct coupled input	0		1.2	GHz
		1000pF input coupling			1.2	GHz
$\mathrm{R}_{\text {ID }}$	Differential input resistance	DC measurement	5			k Ω
C_{1}	Input capacitance				TBD	pF
V_{0}	Output voltage	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	1.6			$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
		$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	1.2			$\mathrm{V}_{\mathrm{P} \text {-P }}$
ts	Modulus set-up time	$\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}$		TBD		ns
tH_{H}	Modulus hold time	$\mathrm{fiN}^{\text {a }} 1.2 \mathrm{GHz}$		TBD		ns
tPD	Propagation time			TBD		ns

DESCRIPTION OF OPERATION

The NE703 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a 6 stage synchronous counter, see BLOCK DIAGRAM. The normal operating mode is for MC1 (Modulus Control) to be set high and MC2 input to be set low in which case the circuit comprises a divide by 128 . For divide by 129 the MC1 singal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the sunchronous counter. For divide by 144, MC2 is set high configuring the prescaler to divide by 4 and the counter to divide by 36. A
truth table for the modulus values is given below:

Table.

Modulus	MC1	MC2
128	1	0
129	0	0
144	0	1
144	1	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.

The prescaler input is positive edge sensitive, and the output at the final count is a falling edge with propagation delay tpp relative to the input. The rising edge of the output occurs at the count 64 with delay tpD.
The MC1 and MC2 inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed.
The prescaler input is differential and ECL compatible. The output is differential ECL compatible.

Divide by: 128/129/144 triple modulus low power

AC TIMING CHARACTERISTICS

GENERAL DESCRIPTION

The TDD1742T is a low power, high-performance frequency synthesizer in local oxidation CMOS (LOCMOS) technology. The device is designed for use in channelized VHF/UHF applications especially portable and mobile radios.
The circuit incorporates many of the features of the HEF4750V (frequency synthesizer) and HEF4751 (universal divider), including a high-gain phase comparator together with an on-chip sample-and-hold capacitor and phase modulator.
A multiplexed or bus-structured programming sequence allows interface to a microcontroller or external memory (ROM/PROM); power is applied to the memory only when it is required for programming via additional on-chip circuitry.
Operation is possible with a minimum supply voltage of 7 V and a maximum input frequency of $8,5 \mathrm{MHz}$.
Encapsulation in a 28 -lead mini-pack enables the construction of small, low power consumption synthesizers with low noise performance and high side-band attenuation.

Features

- On-chip sample-and-hold capacitor
- Low power consumption
- High-gain phase comparator with low levels of noise and spurious outputs
- Auxiliary digital phase comparator for fast locking
- On-chip phase modulator
- Simple interfacing to external memory
- Microcontroller compatible
- Power-on reset circuitry

QUICK REFERENCE DATA

Supply voltage ranges		
pin 14	$V_{\text {DD1 }}=V_{14-6}$	7 to 10 V
pin 8	$V_{\text {DD2 }}=V_{8-6}$	4,5 to 5 V
pin 1	$V_{\text {DD3 }}=V_{1-6}$	7 to 10 V
Supply current		
$\text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 3}=7,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V} \text {) }$ $\text { pin } 14 \text { (phase modulator OFF) }$		
$\text { pin } 8$	$\begin{aligned} I_{D D 1} & =I_{14} \\ \text { IDD2 } & =I_{8} \end{aligned}$	$\begin{array}{ll} \max . & 1,5 \mathrm{~mA} \\ \max . & 100 \mu \mathrm{~A} \end{array}$

Fig. 1 Block diagram.

PINNING

$V_{\text {DD3 }} 1$	TDD1742T	28.	BRA
PC1 2		27	BRC
PC2 3		26	BRB
i.c. 4		25	MEMEN
CLK 5		24	MOD
$\mathrm{V}_{\text {SS }} 6$		23	PE1
DIV(M)		22	PE2
$\mathrm{V}_{\mathrm{DD} 2} 8$		21	AB2
FB 9		20	AB1
OL 10		19	ABO
RESET 11		18	DB0
XTAL 12		17	DB1
OSC 13		16	DB2
$\mathrm{V}_{\text {DD1 }} 11$		15	DB3

Fig. 2 Pinning diagram.

Pin functions
pin no. mnemonic

1	VDD3
2	PC1

i.c.

CLK
$V_{S S}$
DIV(M)

FB

RESET

description

Power Supply 3: analogue supply voltage (7 to 10 V).
Phase Comparator 1: high-gain analogue phase comparator output which is used when the system is in-lock to give low levels of noise and spurious outputs.
Phase Comparator 2: low-gain digital phase comparator 3-state output which enables the achievement of fast lock times when the system is initially out-of-lock. Phase comparator 2 is inhibited when the phase is within the locking range of phase comparator 1.
internally connected (must be left floating).
Clock: clock output.
Ground: circuit earth potential.
Divider: input to the main programmable divider ($8,5 \mathrm{MHz}$ max.) , usually from prescaler.
Power Supply 2: supply voltage for TTL-compatible stages (+ $5 \mathrm{~V} \pm 10 \%$).
Feedback: feedback output to control the modulus of the external prescaler.
Out-of-lock: out-of-lock indication flag output. This output is HIGH when phase comparator 2 is in operation (when the system is out-of-lock).
Power-on-Reset: Following power up an initial pulse is applied to this input pin to set the internal counters.

Pin functions (continued)

pin n o.	mnemonic	description
12	XTAL	Crystal: output to external crystal to form the oscillator circuit in combination with the OSC input. Alternatively this pin may be used as a buffer output.
13	OSC	Oscillator: input to reference oscillator which together with the XTAL output and an external crystal is used to generate the reference frequency. Alternatively to OSC input may be used as a buffer amplifier for an external reference oscillator.
14	VDD1	Power Supply 1: digital supply voltage (7 to 10 V).
15-18	DB3-DB0	Data Bus: Data Bus inputs (TTL compatible).
19-21	AB0-AB2	Address Bus: TTL compatible bidirectional address bus. Provides address output to an external memory or input from microcontroller. The outputs are 3 -state with internal pull-downs.
22 23	PE2 PE1	Program Enable 2: $\left\{\begin{array}{l}\text { TTL compatible inputs to initiate the } \\ \text { programming cycle or strobe the internal } \\ \text { data latches. }\end{array}\right.$ Program Enable 1:
24	MOD	Modulator: high impedance linear phase modulator input, which applies a voltage controlled delay to the programmable divider output to the phase comparator.
25	MEMEN	Memory Enable: mode control and memory enable bidirectional pin. If pin 25 is LOW at general reset the TDD1742T is set to the microcontroller mode; if pin 25 is HIGH at general reset the TDD1742T is set to the memory mode and the ROM/PROM is enabled.
26	BRB	Bias Resistor B: current mirror which acts as gain control for the phase modulator.
27	BRC	Bias Resistor C: current mirror pin which provides analogue biassing.
28	BRA	Bias Resistor A: current mirror pin which acts as gain control for phase comparator 1.

CMOS frequency synthesizer

FUNCTIONAL DESCRIPTION

Reference oscillator chain

The reference oscillator chain comprises a crystal oscillator and dividers to give the required frequency to drive the phase comparators.
The oscillator stage is a single inverter connected between pin 12 (XTAL) and pin 13 (OSC). Satisfactory operation is achieved with crystals up to 9 MHz . Alternatively, the OSC input may be used as a buffer amplifier for an external reference oscillator.
The reference divider chain comprises a fixed divide by 4 -stage followed by three cascaded programmable dividers of ratios $\div 12 / 13 / 14 / 15, \div 5 / 6 / 7 / 9$ and $\div 1 / 2 / 4 / 8$. The output of the last stage is applied as one input (R) to the two phase comparators. Thus a number of division ratios between 240 and 4320 are possible which provides all the required VHF and UHF channel spacings with reference crystals in a 1 to 9 MHz range.

Main programmable divider

The main programmable divider is a rate feedback binary divider. As shown in figure 1 it comprises a fixed 7-bit binary divider ($\div 128$) and two rate selectors (n_{1} and n_{0}). One rate selector controls a 7-bit fully programmable dual modulus divider ($\left.\div n_{2} / n_{2}+1\right)$ and the other controls the external dual modulus prescaler $(\div A / A+1)$.
The overall division rate (N) is given by:
$N=\left(128 n_{2}+n_{1}\right) A+n_{0}$

Where:

$$
\begin{aligned}
& 0 \leqslant n_{0} \leqslant 127 \\
& 0 \leqslant n_{1} \leqslant 127 \\
& 1 \leqslant n_{2} \leqslant 127
\end{aligned}
$$

The output from the programmable divider is fed to the phase comparators via the phase modulator and the multiplexer. The phase modulator is bypassed if not selected.

Phase comparison

The TDD1742T contains 2 phase comparators which act in close co-operation. Phase comparator 1 is the main comparator. It is designed to have a high-gain analogue output, 4500 volts/cycle at 10 kHz (typ.). This enables a low noise performance to be achieved. However, the output of phase comparator 1 will saturate at high or low levels for very small phase excursions.
Phase comparator 2 is an auxiliary comparator with a wide range, which enables faster lock times to be achieved than otherwise would be possible. This digital phase comparator has a linear $\pm 2 \pi$ radians phase range, which corresponds to a gain of $\frac{V_{D D}}{2}$ volts/cycle.

To avoid degrading the noise performance of the system by the relatively low gain of phase comparator 2, once a small phase error has been achieved an internal switch disconnects phase comparator 2, leaving only phase comparator 1 connected. Thus the low noise properties of phase comparator 1 are obtained once phase-lock has been achieved.

FUNCTIONAL DESCRIPTION (continued)
Phase comparator 1 (see Fig. 3)
Phase comparator 1 is comprised of a linear ramp generator and a sample and hold circuit.

Fig. 3 Simplified block diagram of phase comparator 1.
A negative-going transition at the $V_{M U X}$ input causes the hold capacitor C_{A} to be discharged via switch S 1 and constant current source I_{1}.
A positive-going transition at the V_{M} UX input causes the hold capacitor C_{A} to be charged via switch S 2 and constant current source I_{2}, which produces a linear ramp.
A negative-going transition at the R input terminates the linear ramp.
Capacitor C_{A} holds the voltage that the ramp has attained, and is buffered by the voltage follower VF1. After the output of VF1 is stable ($2 \mu \mathrm{~s}$), the sample switch S3 is closed for approximately $1 \mu \mathrm{~s}$ by the one-shot oscillator. This enables the capacitor C_{C} to charge to the voltage level of VF1 and in turn buffered by voltage follower VF2 made available at output PC1.
The construction and small duty cycle of the sample switch S3 provides a low hold step, resulting in a minimum side-band level.
If the linear ramp terminates before a negative-going transition at the R input is present, an end of ramp (EOR) signal is produced, generating in turn an out-of-lock (OL) signal. OL enables phase comparator 2 via the out-of-lock detector.
These actions are illustrated in the waveforms of Fig. 4 and Fig. 5.
The gain of phase comparator 1 as measured at PC1 is given by:
PC gain $\simeq \frac{446 \mathrm{I}_{\mathrm{BRA}}}{\mathrm{F}_{\mathrm{R}}}$
Where:

Fig. 4 Waveforms of phase comparator 1 ; in-lock condition.

Fig. 5 Waveforms of phase comparator 1; out-of-lock condition.
When $\mathrm{V}_{\text {MUX }}$ leads R the output signal at pin 2 (PC1) is proportional to the phase difference (in-lock condition) or HIGH (out-of-lock condition).
When R leads $V_{\text {MUX }}$ the output signal at pin 2 (PC1) remains LOW.

Fig. 6 Phase characteristic of output PC1.

FUNCTIONAL DESCRIPTION (continued)
Phase comparator 2 (see Fig. 7)

Fig. 7 Simplified block diagram of phase comparator 2.

The digital phase comparator (PC2) has three stable states:

- Reset
- $V_{\text {MUX }}$ leads R
- R leads $\mathrm{V}_{\text {MUX }}$

Table 1 Phase comparator 2: stable states and corresponding output levels

state	$\mathrm{V}_{\text {MUX }}$ leads R	R leads $\mathrm{V}_{\text {MUX }}$
reset	0	0
$\mathrm{~V}_{\text {MUX }}$ leads R	1	0
R leads $\mathrm{V}_{\text {MUX }}$	0	1

Transition from one state to another takes place on command of either an active $\mathrm{V}_{\mathrm{MUX}}$-edge or an active R-edge as shown in Fig. 8.

Fig. 8 Transition of state; phase comparator 2.

The output of phase comparator 2 produces positive or negative going pulses with variable width, dependent on the phase relationship of R and $V_{\text {MUX }}$.
The average output voltage is a linear function of the phase difference. Output at pin 3 (PC2) remains in the high impedance OFF-state in the region in which phase comparator 1 operates

Fig. 9 Phase characteristic of output PC2.
To reach the reset state of phase comparator 2 it is necessary to apply:

- $2 \mathrm{~V}_{\mathrm{MUX}}+\mathrm{R}^{*}$
or
- $2 R+V_{M U X}$

Thus to achieve the R leads $V_{M U X}$ state $2 R$ must be applied; to achieve the $V_{M U X 1}$ leads R state $2 \mathrm{~V}_{\text {MUX }}$ must be applied.

Out-of-lock function

There are several situations when the system goes from the locked to the out-of-lock state (OL output goes HIGH):

- $V_{\text {MUX }}$ leads R, however out of the range of phase comparator 1
- R leads $V_{\text {MUX }}$
- R-pulse is missing
- $\mathrm{V}_{\text {MUX }}$-pulse is missing

In the first three situations the locked state can be reset by applying two successive cycles within the range of phase comparator 1.
In the fourth situation the locked state can be reset by applying a $\mathrm{V}_{\mathrm{MUX}}$ pulse followed by two successive cycles within the range of phase comparator 1.

Phase modulator (see Fig. 10)

The linear phase modulator applies a voltage controlled delay to the signal from the programmable divider to the phase comparator input. The gain of the phase modulator is adjustable via an external bias resistor (BRB) which is connected between pin 26 and ground.
The time delay introduced into the V path to the phase modulator is:
909
$\frac{\mathrm{I}}{\mathrm{IBRB}} \mathrm{ns} /$ volt of input applied to pin 24 (MOD)
When a positive-going transition appears at the V -input, the D type flip-flop produces a HIGH V^{\prime} level and causes capacitor C_{B} to produce a positive-going ramp via switch S 1 and constant current source I_{1} starting at the $V_{S S}$ potential. When the ramp has reached a value equal to the modulation input voltage (at MOD), the comparator resets the D type flip-flop, which terminates the V pulse. C_{B} now discharges to V_{SS} via switch S 1 and constant current source I_{2} and the circuit returns to the start position. Because the trailing edge of the V^{\prime} pulse is the active edge for the phase comparators, a linear phase modulation is achieved. The associated waveforms are shown in Fig. 11. The phase modulator can be switched OFF, via the programming logic, to avoid superfluous dissipation. To achieve, this the M signal must be programmed to logic 0 . The V pulse will then be connected via switch S 2 to $\mathrm{V}_{\mathrm{MUX}}$.

* This means apply two successive active $\mathrm{V}_{\text {MUX }}$ edges followed by one active R edge.

FUNCTIONAL DESCRIPTION (continued)

Fig. 10 Simplified block diagram of the phase modulator.

Fig. 11 Phase modulator waveforms; $M=1$.

Program control

A multiplexed or bus structured sequence allows the TDD1742T to be interfaced to a microcontroller or a PROM.
The device is fully programmable in terms of:

- 6 bits to define the reference divider ratio
- 21 bits to define the main divider ratio
- 1 bit to switch the modulator
- 4 bits to determine the test status

Thus the TDD1742T is programmed with a total of 32 bits which are organized as eight 4-bit words. The address bus is 3 bits wide and the data bus is 4 bits wide. Both buses are TTL compatible. The data words are described in detail in Tables 3 to 7.

Microcontroller mode

If pin 25 ($\overline{M E M E N}$) is LOW at general reset, the device is set to the micro-controller mode. In this mode a 7 -bit word, comprised of 3 address bits (ABO to AB2) and 4 data bits (DB0 to DB3), may be strobed into the TDD1742T when the program enable pins PE1 and PE2 are set to opposite state (EXCLUSIVE -OR condition; see Fig. 12 and Table 2). One frame of 8 words is necessary to completely program the TDD1742T. Incoming data is not clocked into the internal counter latches until after the receipt of data corresponding to address 111 . Upon subsequent reprogramming it is not necessary to change all eight words but a reprogramming sequence must always finish with the data corresponding to address 111 .

(1) Address and data valid.
(2) Address and data not valid.

Fig. 12 Waveforms for program enable function; microcontroller mode.

Table 2 Truth table for program enable function; microcontroller mode

PE1	PE2	load
0	0	NO
1	0	YES
0	1	YES
1	1	NO

Program control (continued)

Memory mode (PROM)

If pin 25 ($\overline{M E M E N}$) is HIGH at general reset, TDD1742T is set to the memory mode and a programming cycle is initiated. Subsequent reprogramming is performed by applying a pulse to program enable PE1 (pin 23) or PE2 (pin 22). If PE1 is LOW, programming will occur on the LOW-to-HIGH transition of PE2. If PE1 is HIGH, programming will occur on the HIGH-to-LOW transition of PE2. PE1 and PE2 are interchangeable. Reprogramming will also occur by applying a pulse to RESET (pin 11).
At the start of a programming sequence pin 25 goes LOW and may be used to apply power to the memory via an external driver. After a settling time the address bus outputs 000 followed by the remaining seven addresses. During the second half of each address period data, from the memory is latched into the TDD1742T so that the access time of the PROM is not critical.

Note

The program clock is derived from the reference divider chain and its frequency equals $\mathrm{f}_{\mathrm{OSC}} / 4 \mathrm{R}_{\mathrm{O}}$. After the full 32 bits have been read the address returns to address 000 before going 3 -state. This step transfers data from the internal data latches to the appropriate divider latches. Pin 25 now returns to a high impedance state and power is removed from the memory. Fig. 13 shows the timing for a reset initiated programming sequence; the timing is similar for program enable initiated sequence.

(1) Delay time for PROM settling.
(2) The program clock is derived from the reference divider chain.
(3) Data is valid during the shaded period.

Fig. 13 Timing diagram for TDD1742T PROM control.

Data memory maps

Table 3 Bit programming of the eight 4-bit words

address				data				
$A B 2$	$A B 1$	$A B 0$	$D B 3$	$D B 2$	$D B 1$	$D B 0$		
0	0	0		see Table 4				
0	0	1	$n_{0} 3$	$n_{0} 2$	$n_{0} 1$	$n_{0} 0$		
0	1	0	$R_{0} 0$	$n_{0} 6$	$n_{0} 5$	$n_{0} 4$		
0	1	1	$n_{1} 3$	$n_{1} 2$	$n_{1} 1$	$n_{1} 0$		
1	0	0	$R_{0} 1$	$n_{1} 6$	$n_{1} 5$	$n_{1} 4$		
1	0	1	$n_{2} 3$	$n_{2} 2$	$n_{2} 1$	$n_{2} 0$		
1	1	0	M	$n_{2} 6$	$n_{2} 5$	$n_{2} 4$		
1	1	1	$R_{2} 1$	$R_{2} 0$	$R_{1} 1$	$R_{1} 0$		

In Table 3
n_{0}, n_{1} and n_{2} comprises the main programmable divider.
$n_{0} 0$ is the LSB of $n_{0}, n_{0} 6$ the MSB and so forth.
If M is 1 the modular is $O N$.
Table 4 Memory map for address 000

DB3	DB2	DB1	DB0	program clock to output CLK	mode
0	0	X	X	yes	idle
0	1	0	0	no	idle
all other combinations			not defined	not defined	

Where

X = don't care.
For optimum performance (minimum crosstalk) 0100 should be programmed into address 000.

Memory maps (continued)
Table 5 Reference divider control; part 1

$R_{0} 1$	$R_{0} 0$	division ratio
0	0	12
0	1	13
1	0	14
1	1	15

In Table 5:

$\mathrm{R}_{0} 0$ and $\mathrm{R}_{0} 1$ control the $\div 12 / 13 / 14 / 15$ portion of the reference divider.
Table 6 Reference divider control; part 2

$R_{1} 1$	$R_{1} 0$	division ratio
0	0	9
0	1	5
1	0	6
1	1	7

In Table 6:
$R_{1} 0$ and $R_{1} 1$ control the $\div 5 / 6 / 7 / 9$ portion of the reference divider.
Table 7 Reference divider control; part 3

$R_{2} 1$	$R_{2} 0$	division ratio
0	0	1
0	1	2
1	0	4
1	1	8

In Table 7:
$R_{2} 0$ and $R_{2} 1$ control the $\div 1 / 2 / 4 / 8$ portion of the reference divider.

Current biassing

Current biassing is provided by 3 external bias resistors A, B and C.
Bias Resistor A : is connected between pin 28 (BRA) and ground. The value of the resistor must be such that $I_{B R A}=20 \mu \mathrm{~A}$, which acts as gain control for analogue phase comparator 1.
Bias Resistor B : is connected between pin 26 ($B R B$) and ground. The value of the resistor must be such that $I_{B R B}=3$ to $25 \mu \mathrm{~A}$, which acts as gain control for the phase modulator.
Bias Resistor C : is connected between pin 27 ($B R C$) and ground. The value of the resistor must be such that $I_{B R C}=5$ to $30 \mu \mathrm{~A}$, which provides biassing for the remainder of the analogue circuitry.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage ranges
pin 14
pin 8
pin 1
Voltage on any input
Relative supply voltage
Relative supply voltage
D.C. current into any input or output

Power dissipation per package for $T_{a m b}=0$ to $+85^{\circ} \mathrm{C}$
Power dissipation per output for $\mathrm{T}_{\mathrm{amb}}=0$ to $+85^{\circ} \mathrm{C}$
Storage temperature range
Operating ambient temperature range

VDD1
VDD2
VDD3
V_{1}
$V_{D D 2}{ }^{-}{ }_{\text {DD1 }}$
$V_{D D 3}-V_{D D 1}$
± 1
$P_{\text {tot }} \quad \max . \quad 400 \mathrm{~mW}$
PO_{O}
$\mathrm{T}_{\text {stg }}$
Tamb

$$
-0,5 \text { to }+15 \mathrm{~V}
$$

$$
-0,5 \text { to }+15 \mathrm{~V}
$$

max.

$$
-0,5 \text { to }+15 \mathrm{~V}
$$

$$
-0,5 \text { to } V_{\mathrm{DD} 1}+0,5 \mathrm{~V}
$$

max.
$0,5 \mathrm{~V}$
max.
$0,5 \mathrm{~V}$
\max.
10 mA

100 mW
-65 to $150{ }^{\circ} \mathrm{C}$
-40 to $85^{\circ} \mathrm{C}$
D.C. CHARACTERISTICS
$V_{D D 1}=V_{D D 3}=7,4 \mathrm{~V} ; \mathrm{V}_{\text {DD2 }}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified; for definitions see note 1 .

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage		7	-	10	V
	DD1	7	-		
pin 8	VDD2	4,5	-	5	V
pin 1	VDD3	7	-	10	V
Supply current					mA
pin 14 (phase modulator OFF)	IDD1	-	-	1,5	mA
pin 8	IDD2	-	-	100	$\mu \mathrm{A}$
pin 1 (phase modulator OFF)	IDD3	-	-	1,5	mA
Input leakage current (notes 2 and 3) logic inputs, MOD	$\pm \mathrm{L} \mathrm{LI}$	-	-	300	nA
Output leakage current (notes 2 and 3) at $1 / 2 V_{D D}$					
PC2 high impedance OFF state	$\pm \mathrm{I}_{\text {LO }}$	-	-	50	nA
MEMEN high impedance state	$\pm \mathrm{I}_{\text {LO }}$	-	-	1,6	$\mu \mathrm{A}$
I/O current $A B 0$ to $A B 2$ high impedance state	I/O	5	-	30	$\mu \mathrm{A}$
Logic input voltage LOW CMOS inputs; CMOS I/Os	VIL	-	-	0,3V DD1	V
TTL inputs; TTL I/Os	$V_{\text {IL }}$	-	-	0,8	V
Logic input voltage HIGH CMOS inputs; CMOS I/Os	$\mathrm{V}_{\text {IH }}$	0,7V ${ }^{\text {DD1 }}$	-	-	V
TTL inputs; TTL I/Os	$\mathrm{V}_{\text {IH }}$	2	-	-	V
Logic output voltage LOW (note 2) at $\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	V_{OL}	-	-	50	mV
Logic output voltage HIGH (note 2) at $\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	V_{OH}	$V_{\text {DD } 1-50 ~}^{\text {- }}$	-	-	mV

parameter	symbol	min.	typ.	max.	unit	
Logic output voltage LOW (note 2)						
MEMEN at $\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	1	v	
$\mathrm{PC2} 2$ at $\mathrm{IOL}=1,5 \mathrm{~mA}$	VOL	-	-	0,5	V	
CLK; OL at $\mathrm{IOL}=1 \mathrm{~mA}$	$V_{\text {OL }}$	-	-	0,5	V	
XTAL at $\mathrm{IOL}=3 \mathrm{~mA}$	$\mathrm{VOL}_{\text {OL }}$	-	-	0,5	v	
FB at $\mathrm{IOL}=1 \mathrm{~mA}$	VOL	-	-	0,5	V	
$\mathrm{ABO} ; \mathrm{AB1} 1 ; \mathrm{AB2}$ at $\mathrm{I}_{\mathrm{OL}}=0,2 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,4	V	
Logic output voltage HIGH (notes 2 and 3) $\mathrm{PC} 2 \text { at }-\mathrm{I}_{\mathrm{OH}}=1,5 \mathrm{~mA}$	V OH	$V_{\text {DD1 }}-0,5$	-	-	V	
CLK; OL at $-\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}$	$\mathrm{V}^{\text {OH }}$	$V_{\text {DD1 }}-0,5$	-	-	V	
XTAL at $-\mathrm{IOH}^{\prime}=3 \mathrm{~mA}$	$\mathrm{VOH}^{\text {OH}}$	$V_{\text {DD1 }} 1$	-	-	V	
FB at $-1 \mathrm{OH}=1 \mathrm{~mA}$	V OH	$\mathrm{V}_{\text {DD2 }}{ }^{-1}$	-	-	V	
$A B O ; A B 1$ at $\mathrm{IOH}^{\prime}=0,2 \mathrm{~mA}$	$\mathrm{V}^{\text {OH }}$	2,4	-	-	V	
$\mathrm{AB2}$ at $\mathrm{IOH}^{2}=0,8 \mathrm{~mA}$	VOH	2,4	-	-	v	
Output PC1 sink current (notes 2, 3 and Fig. 15) source current (notes 2, 3 and Fig. 16)	10 -10	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	-	mA mA	
Internal resistance of phase comparator 1 (notes 2 and 3) locked state \|output swing	$<200 \mathrm{mV}$ specified output range: $0,5 V_{D D}-0,5 \vee \text { to } 0,5 V_{D D}+0,5 \mathrm{~V}$	R_{i}	-	2,0	-	Ω

A.C. CHARACTERISTICS

A dynamic specification is given for the circuit, built-up with external components as shown in Fig. 14, under the following conditions; for definitions see note $1 ; \mathrm{V}_{\mathrm{DD}}=7,4 \pm 0,4 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leqslant 40 \mathrm{~ns} ; \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{C}}=10 \mathrm{nF} ; \mathrm{R}_{\mathrm{A}}$ chosen so that $\mathrm{I}_{\mathrm{RA}}=20 \mu \mathrm{~A} \pm 1 \mu \mathrm{~A} ; \mathrm{R}_{\mathrm{B}}$ chosen so that $I_{R B}=3$ to $25 \mu A ; R_{C}$ chosen so that $I_{R C}=5$ to $30 \mu A$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Main programmable divider (DIV(M); pin 7) input frequency all divider ratios (square wave input)	${ }^{\text {f }}$ IV (M)	8,5	-	-	MHz
Reference divider input frequency all divider ratios (square wave input)	${ }^{\text {f }}$ DIV(R)	9	-	-	MHz
Oscillator frequency (OSC; pin 13)	${ }^{\text {foSC }}$	9	12	-	MHz
Input capacitance DIV(M); OSC DB0 to DB3; PE1; PE2; AB0 to AB2	$\begin{aligned} & C_{1} \\ & C_{1} \end{aligned}$	-	-	3 5	pF pF
Propagation delay (see Fig. 17)					
Feedback output to external prescaler $\operatorname{DIV}(\mathrm{M}) \rightarrow \mathrm{FB}$ at $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ HIGH to LOW* LOW to HIGH*	tPHL tPLH	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Average power supply current (notes 3 and 4) in-lock state	IDD1 IDD2 IDD3	-	$\begin{aligned} & 2 \\ & 0,15 \\ & 0,45 \end{aligned}$	-	mA mA mA

Fig. 14 Test circuit for measuring a.c. characteristics.

Notes to the characteristics

1. Definitions:
$R_{A}=$ external biassing resistor between pins $B R A$ and $V_{S S}$.
$R_{B}=$ external biassing resistor between pins BRB and $V_{S S}$.
$R_{C}=$ external biassing resistor between pins $B R C$ and $V_{S S}$.
$C_{A}=$ decoupling capacitor between pins BRA and $V_{D D}$.
$C_{B}=$ decoupling capacitor between pins BRB and $V_{D D}$.
$C_{C}=$ decoupling capacitor between pins BRC and $V_{D D}$.
CMOS logic inputs: RESET, OSC.
CMOS logic outputs: PC2, CLK, OL, XTAL.
CMOS logic I/O: MEMEN.
TTL logic inputs: DB0 to DB3, PE2, PE1.
TTL logic output: FB.
TTL logic I/O: ABO to AB2.
Analogue inputs: DIV(M), MOD.
Analogue output: PC1.
Analogue biassing pins: BRA, BRB, BRC.
2. All logic inputs at $V_{S S}$ or $V_{D D}$.
3. R_{A} connected; its value chosen such that $I_{B R A}=20 \mu \mathrm{~A}$. R_{B} connected; its value chosen such that $I_{B R B}=20 \mu \mathrm{~A}$. R_{C} connected; its value chosen such that $I_{B R C}=20 \mu \mathrm{~A}$.
4. Average power supply current measured at:
fosc $=5 \mathrm{MHz}$, external clock, divider ratio 420;
$\mathrm{f}_{\mathrm{DIV}(\mathrm{M})}=2 \mathrm{MHz}$, divider ratio 168 .

Fig. 15 Equivalent circuit for output PC1 sink current.

Fig. 16 Equivalent circuit for output PC1 source current.

Fig. 17 Waveforms showing propagation delay; DIV $(M) \rightarrow F B$.

APPLICATION INFORMATION

Fig. 18 shows a typical application circuit using the TDD1742T in the memory mode with the following design parameters:
Frequency range $\quad 150$ to 155 MHz
VCO sensitivity $1 \mathrm{MHz} / \mathrm{V}$
Reference frequency $\quad 12,5 \mathrm{kHz}$
Prescaler $\div 80 / 81$
Reference crystal frequency $\quad 5,25 \mathrm{MHz}$
Reference divider chain $\quad \div 15 ; \div 7 ; \div 1$
Total division ratio 12000 to 12400
Loop bandwidth 300 Hz

Fig． 18 Typical application circuit using the TDD1742T in memory mode．

」てヤLレロロ」	」ӘZISəułUKs Kouənbod SONO

GENERAL DESCRIPTION

The TSA6057/6057T is a bipolar single chip frequency synthesizer manufactured in SUBILO-N technology (components laterally separated by oxide). It performs all the tuning functions of a PLL radio tuning system. The IC is designed for application in all types of radio receivers.

Features

- On-chip AM and FM prescalers with high input sensitivity
- On-chip high performance one input (two output) tuning voltage amplifier for the AM and FM loop filters
- On-chip 2-level current amplifier (charge pump) to adjust the loop gain
- Only one reference oscillator (4 MHz) for both AM and FM
- High speed tuning due to a powerful digital memory phase detector
- 40 kHz output reference frequency for co-operation with the FM/IF system and microcomputerbased tuning interface IC (TEA6100)
- Oscillator frequency ranges of: 512 kHz to 30 MHz and 30 MHz to 150 MHz
- Three selectable reference frequencies of $1 \mathrm{kHz}, 10 \mathrm{kHz}$ or 25 kHz for both tuning ranges
- Serial 2 -wire $\mathrm{I}^{2} \mathrm{C}$-bus interface to a microcomputer and one programmable address input
- Software controlled bandswitch output

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage pin 3 pin 16		$\begin{aligned} & v_{C C 1}=v_{3-4} \\ & v_{C C 2}=v_{16-4} \end{aligned}$	4.5 $\mathrm{~V}_{\mathrm{CC} 1}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Supply current pin 3 pin 16	no outputs loaded	l_{3} l_{16}	$\begin{aligned} & 12 \\ & 0.7 \end{aligned}$	20 1.0	28 1.3	mA
Max. input frequency on $A M_{1}$		$\mathrm{f}_{\mathrm{i}} \mathrm{AM}$	30	-	-	MHz
Min. input frequency on AM_{I}		$\mathrm{f}_{\mathrm{i}} \mathrm{AM}$	-	-	0.512	MHz
Max. input frequency on FM_{1}		$\mathrm{f}_{\mathrm{iFM}}$	150	-	-	MHz
Min. input frequency on FM_{1}		$\mathrm{fiFM}^{\text {iF }}$	-	-	30	MHz
Input voltage on $A M_{1}$ (RMS value)	$\mathrm{V}_{\mathrm{iFM}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{iA}} \mathrm{M}$ (rms)	30	-	500	mV
Input voltage on FM_{1} (RMS value)	$\mathrm{V}_{\text {i }} \mathrm{MM}=0 \mathrm{~V}$	$\mathrm{V}_{\text {iFM }}$ (rms)	20	-	300	mV
Total power dissipation		$\mathrm{P}_{\text {tot }}$	-	0.14	-	W
Operating ambient temperature range		Tamb	-30	-	+ 85	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINES

TSA6057: 16-lead DIL; plastic (SOT38).
TSA6057T: 16-lead minipack; plastic (SO16L; SOT162A).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1	XTAL1	reference oscillator output
2	XTAL2	reference oscillator input
3	$\mathrm{V}_{\mathrm{CC} 1}$	positive supply voltage
4	$V_{\text {EE }}$	ground
5	FMI	FM VCO input
6	DEC	prescaler decoupling
7	AM ${ }_{1}$	AM VCO input
8	BS	bandswitch output
9	${ }^{\text {ref }}$	40 kHz reference output
10	SDA	serial data input
11	SCL	serial clock input $\quad 1{ }^{2} \mathrm{C}$-bus
12	AS	address select input
13	FM_{O}	FM output for external loop filter
14	LOOP ${ }_{\text {I }}$	tuning voltage amplifier input
15	AM_{O}	AM output for external loop filter
16	$\mathrm{V}_{\mathrm{CC} 2}$	positive supply voltage

FUNCTIONAL DESCRIPTION

The TSA6057/6057T contains the following parts and facilities:

- Separate input amplifiers for the AM and FM VCO-signals.
- A prescaler with the divisors 3:4 on AM and 15:16 on FM, a multiplexer to select AM or FM and a 4-bit programmable swallow counter.
- A 13-bit programmable counter.
- A digital memory phase detector.
- A reference frequency channel comprised of a 4 MHz crystal oscillator followed by a reference counter. The reference frequency can be $1 \mathrm{kHz}, 10 \mathrm{kHz}$ or 25 kHz and is applied to the digital memory phase detector. The reference counter also outputs a 40 kHz reference frequency to pin 9 for co-operation with the FM/IF system and microcomputer-based tuning interface IC (TEA6100).
- A programmable current amplifier (charge pump) which consists of a $5 \mu \mathrm{~A}$ and a $450 \mu \mathrm{~A}$ current source. This allows adjustment of loop gain, thus providing high current-high speed tuning and low current-stable tuning.
- A one input - two output tuning voltage amplifier. One output is connected to the external AM loop filter and the other output to the external FM loop filter. Under software control, the AM output is switched to a high impedance state by the FM/AM switch in the FM position and the FM output is switched to a high impedance state by the AM/FM switch in the AM position. The outputs can deliver a tuning voltage of up to 10.5 V .
- An $I^{2} \mathrm{C}$-bus interface with data latches and control logic. The $\mathrm{I}^{2} \mathrm{C}$-bus is intended for communication between microcontrollers and different ICs or modules. Detailed information on the $I^{2} \mathrm{C}$-bus specification is available on request.
- A software-controlled bandswitch output.

Radio tuning PLL frequency synthesizer

FUNCTIONAL DESCRIPTION (continued)

Controls

The TSA6057/6057T is controlled via the 2 -wire $\mathrm{I}^{2} \mathrm{C}$-bus. For programming there is one module address, a logic 0 R/W bit, a subaddress byte and four data bytes. The subaddress determines which one of the four data bytes is transmitted first. The module address contains a programmable address bit (D1) which with address select input AS (pin 12) makes it possible to operate two TSA6057s in one system.

The auto increment facility of the $I^{2} \mathrm{C}$-bus allows programming of the TSA6057/6057T within one transmission (address + subaddress +4 data bytes).

- The TSA6057/6057T can also be partially programmed. Transmission must then be ended by a stop condition.
The bit organization of the 4 data bytes is shown in Fig. 3 and are described in sections (a) to (f).
(a) The bits S0 to S16 (DB0: D7-D1; DB1: D7-D0; DB2: D1-D0) together with bit FM/AM (DB2: D5) are used to set the divisor of the input frequency at inputs $A M_{1}$ (pin 7) or $F M_{1}$ (pin 5). If the system is in lock the following is valid:

$F M / \overline{A M}$	input frequency $\left(f_{j}\right)$	input
0	$\left(S 0 \times 2^{0}+\mathrm{S} 1 \times 2^{1} \ldots \ldots+\mathrm{S} 13 \times 2^{13}+\mathrm{S} 14 \times 2^{14}\right) \times \mathrm{f}_{\text {ref }}$	$A M_{I}$
1	$\left(\mathrm{~S} 0 \times 2^{0}+\mathrm{S} 1 \times 2^{1} \ldots \ldots+\mathrm{S} 15 \times 2^{15}+\mathrm{S} 16 \times 2^{16}\right) \times \mathrm{f}_{\text {ref }}$	$\mathrm{FM} /$

Where
The minimum dividing ratio for $A M$ mode is $2^{6}=64$
The minimum dividing ratio for FM mode is $2^{8}=256$
(b) The bit CP is used to control the charge pump current (DBO: DO).

$C P$	current
0	low
1	high

(c) The bits REF1 and REF2 are used to set the reference frequency applied to the phase detector (DB2: D7-D6).

REF1	REF2	frequency (kHz)
0	0	1
0	1	10
1	0	25
1	1	none

(d) The bit $\overline{F M} /$ AM OPAMP controls the switch AM/FM; FM/AM in the tuning voltage amplifier output circuitry (DB2: D4).

$\overline{\text { FM/AM OPAMP }}$	switch FM/AM	switch AM/FM
1	closed	open
0	open	closed

(e) The bit BS controls the open collector bandswitch output (DB2: D2)

BS	bandswitch output
1	sink current
0	floating

(f) The data byte DB3 must be set to $0 \ldots \ldots$. . It is also used for test purposes.

SUBADDRESS

DATA BYTE 0 (DBO)

DATA BYTE 1 (DB1)

DATA BYTE $2(D B 2)$

DATA BYTE 3 (DB3)

Examples using auto-increment facility

S	ADDRESS	A	SUBADDRESS 02	A	DB2	A	DB3	A

S	ADDRESS	A	SUBADDRESS 00	A	DB0	A	DB1	A

S	ADDRESS	A	SUBADDRESS 03	A	DB3	A	DB0	A	DB1	A	DB2

Fig. 3 Bit organization.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage (pin 3)	$\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{3-4}$	-0.3	5.5	V
Supply voltage (pin 16)	$\mathrm{V}_{\mathrm{CC} 2}=\mathrm{V}_{16-4}$	$\mathrm{~V}_{\mathrm{CC} 1}$	12.5	V
Total power dissipation	$\mathrm{P}_{\mathrm{tot}}$	-	0.85	W
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-30	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\mathrm{stg}}$	-65	+150	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC} 2}=8.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 3)	no outputs loaded	$\mathrm{V}_{\mathrm{CC} 1}$	4.5	5.0	5.5	V
Supply voltage (pin 16)		$\mathrm{V}_{\mathrm{CC} 2}$	$\mathrm{V}_{\text {CC1 }}$	8.5	12	V
Supply current pin 3			12	20	28	mA
pin 16		ICC1 I CC2	0.7	1.0	1.3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$1^{2} \mathrm{C}$-bus inputs (SDA; SCL)						
Input voltage HIGH		$V_{\text {IH }}$	3.0	-	5.0	V
Input voltage LOW		VIL	-0.3	-	1.5	V
Input current HIGH		IIH	-	-	10	$\mu \mathrm{A}$
Input current LOW		IIL	-	-	10	$\mu \mathrm{A}$
SDA output	open collector$\mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$					
Output voltage LOW		$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
AS input						
Input voltage HIGH		$V_{\text {IH }}$	3.0	-	5.0	V
Input voltage LOW		$V_{\text {IL }}$	-0.3	-	1.0	V
Input current HIGH		IIH	-	-	10	$\mu \mathrm{A}$
Input current LOW		IIL	-	-	10	$\mu \mathrm{A}$
RF input (AM; FM)						
Max. input frequency on $A M_{1}$		fiAM	30	-	-	MHz
Min. input frequency on $A M_{1}$		$f_{i A M}$	-	-	0.512	MHz
Max. input frequency on $F M_{1}$		$f_{i F M}$	150	-	-	MHz
Min. input frequency on FM_{1}		$\mathrm{f}_{\mathrm{i}} \mathrm{FM}$	-	-	30	MHz
Input voltage on AM_{1} (RMS value)	$v_{i F M}=0 V$ measured in Fig. 4	$\mathrm{V}_{\mathrm{iAM}}(\mathrm{rms})$	30	-	500	mV
Input impedance $A M_{1}$ resistance capacitance		$\begin{aligned} & R_{A M} \\ & \text { C }_{A M} \end{aligned}$	-	5.9 2	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$

Radio tuning PLL frequency synthesizer

parameter	conditions	symbol	min.	typ.	max.	unit
RF input (continued)	$\mathrm{V}_{\mathrm{iAM}}=0 \mathrm{~V}$ measured in Fig. 4					
Input voltage on FM । (RMS value)		$\mathrm{V}_{\mathrm{iFM}}(\mathrm{rms})$	20	-	300	mV
Input impedance $F M_{1}$ resistance capacitance		$\begin{aligned} & R_{F M} \\ & C_{F M} \end{aligned}$	-	3.6 2	-	$\mathrm{k} \Omega$ pF
Oscillator (XTAL1; XTAL2)Crystal resonanceresistance (4 MHz)	see Fig. 5					
		RXTAL	-	-	150	Ω
Programmable charge pump	$\mathrm{f}_{\text {ripple }}=100 \mathrm{~Hz}$					
Output current to loop filter bit CP = logic 0 bit $C P=\operatorname{logic} 1$		$\begin{array}{\|l} \text { I chp } \\ \text { Ichp } \end{array}$	$\begin{aligned} & 3 \\ & 400 \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 500 \end{array}$	$\begin{aligned} & 7 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Ripple rejection						
$20 \log \Delta \mathrm{~V}_{\mathrm{CC} 1} / \Delta \mathrm{V}_{\mathrm{O}}$		RR	40	50	-	dB
$20 \log \Delta \mathrm{~V}_{\mathrm{CC} 2} / \Delta \mathrm{V}_{\mathrm{O}}$		RR	40	50	-	dB
Bandswitch output (pin 8)						
Output voltage HIGH		V_{OH}	-	-	12	v
Output voltage LOW	$\mathrm{I}^{\mathrm{OL}}=3 \mathrm{~mA}$	V_{OL}	-	-	0.8	V
Output leakage current	$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$	ILO	-	-	10	$\mu \mathrm{A}$
Reference frequency output (pin 9)						
Output frequency	4 MHz crystal	$\mathrm{f}_{\text {ref }}$	-	40	-	kHz
Output voltage HIGH	$\mathrm{I}_{\text {source }}=5 \mu \mathrm{~A}$	V_{OH}	1.2	1.4	1.7	V
Output voltage LOW		$\mathrm{V}_{\text {OL }}$	-	0.1	0.2	V
Tuning voltage amplifier outputs						
AM output (pin 15) max. output voltage	$\mathrm{I}_{\text {source }}=0.5 \mathrm{~mA}$	V_{O} (max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2} \\ & -1.5 \end{aligned}$	-	-	v
min. output voltage	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	$V_{O}($ min $)$		-	0.8	\checkmark
max. output source current		Isource	0.5	-	-	mA
max. output sink current		' $_{\text {sink }}$	1.0	-	-	mA
FM output (pin 13) max. output voltage	$I_{\text {source }}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{O} \text { (max }}$	$\mathrm{V}_{\mathrm{CC} 2}$	-	-	V
min . output voltage	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	V_{O} (min)	-	-	0.8	V
max. output source current		Isource	0.5	-	-	mA
max. output sink current		$\mathrm{I}_{\text {sink }}$	1.0	-	-	mA
Impedance of switched off output		Z_{O} (off)	5	-	-	$\mathrm{M} \Omega$
Input bias current (absolute value)		$I_{\text {bias }}$	-	1	5	nA

Fig. 4 Prescaler input sensitivity.

APPLICATION INFORMATION

Fig. 5 Crystal connection (4 MHz).

Fig. 6 Application diagram

FEATURES

- Complete 1.3 GHz single chip system
- Low power $5 \mathrm{~V}, 35 \mathrm{~mA}$
- ${ }^{2} \mathrm{C}$-bus programming
- In-lock flag
- Varicap drive disable
- Low radiation
- Address selection for Picture-In-Picture (PIP), DBS tuner
- Analog-to-digital converter
- 8 bus controlled ports (5 for TSA5511T), 4 open collector outputs (bi-directional)
- Power-down flag

APPLICATIONS

- TV tuners
- VCR Tuners

DESCRIPTION

The TSA5511 is a single chip PLL frequency synthesizer designed for TV tuning systems. Control data is entered via the $\mathrm{I}^{2} \mathrm{C}$-bus; five serial bytes are required to address the device, select the oscillator frequency, programme the eight output ports and set the charge-pump current. Four of these ports can also be used as input ports (three general purpose I/O ports, one ADC). Digital information concerning those ports can be read out of the TSA5511 on the SDA line (one status byte) during a READ operation. A flag is set when the loop is "in-lock" and is read during a READ operation. The device has one fixed $\mathrm{I}^{2} \mathrm{C}$-bus address and 3 programmable addresses, programmed by applying a specific voltage on Port 3. The phase comparator operates at 7.8125 kHz when a 4 MHz crystal is used.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {cc }}$	supply voltage	-	5	-	V
$\mathrm{I}_{\text {cc }}$	supply current	-	35	-	mA
Δf	frequency range	64	-	1300	MHz
V_{1}	input voltage level 80 MHz to 150 MHz 150 MHz to 1 GHz 1 GHz to 1.3 GHz	$\left\lvert\, \begin{aligned} & 12 \\ & 9 \\ & 40 \end{aligned}\right.$		$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	
$f_{\text {XTAL }}$	crystal oscillator	3.2	4	4.48	MHz
Io	open-collector output current	10	-	-	mA
10	current-limited output current	-	1	-	mA
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-10	-	80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range (IC)	-40	-	150	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TSA5511	18	DIL	plastic	SOT102
TSA5511T	16	SO	plastic	SOT109
TSA5511AT	20	SO	plastic	SOT163

Fig. 1 Block diagram.

Fig. 2 Pin configuration (SOT102).

Fig. 3 Pin configuration (SOT109).

Fig. 4 Pin configuration (SOT163).

PINNING

SYMBOL	PIN DIL 18	PIN SO16	PIN SO20	DESCRIPTION
PD	1	1	1	charge-pump output
Q1	2	2	2	crystal oscillator input 1
Q2	3	3	3	crystal oscillator input 2
n.c.			4	not connected
SDA	4	4	5	serial data input/output
SCL	5	5	6	serial clock input
P7	6	6	7	port output/input (general purpose)
n.c.			8	not connected
P6	7	7	9	port output/input for general purpose ADC
P5	8	8	10	port output/input (general purpose)
P4	9	9	11	port output/input (general purpose)
P3	10	10	12	port output/input for address selection
P2	11		13	port output
n.c.		11		not connected
P1	12		14	port output
P0	13		15	port output
$V_{\text {CC }}$	14	12	16	voltage supply
RF	15	13	17	UHF/VHF signal input 1
RF IN	16	14	18	UHF/VHF signal input 2 (decoupled)
$\mathrm{V}_{\text {EE }}$	17	15	19	GND
UD	18	16	20	drive output

FUNCTIONAL DESCRIPTION

The TSA5511 is controlled via the two-wire $\mathrm{I}^{2} \mathrm{C}$-bus. For programming, there is one module address (7 bits) and the R \bar{W} bit for selecting READ or WRITE mode.

WRITE mode : $\mathrm{R} / \overline{\mathrm{W}}=0$ (see Table 1)

After the address transmission (first byte), data bytes can be sent to the device. Four data bytes are needed to fully program the TSA5511. The bus transceiver has an
auto-increment facility which permits the programming of the TSA5511 within one single transmission (address + 4 data bytes).

The TSA5511 can also be partially programmed on the condition that the first data byte following the address is byte 2 or byte 4. The meaning of the bits in the data bytes is given in Table 1. The first bit of the first data byte transmitted indicates whether frequency data (first bit $=0$) or charge pump and port information (first bit $=1$) will follow. Until an $I^{2} \mathrm{C}$-bus STOP condition is sent by
the controller, additional data bytes can be entered without the need to re-address the device. This allows a smooth frequency sweep for fine tuning or AFC purpose. At power-on the ports are set to the high impedance state.

The 7.8125 kHz reference frequency is obtained by dividing the output of the 4 MHz crystal oscillator by 512 . Because the input of UHF/VHF signal is first divided by 8 the step size is 62.5 kHz . A 3.2 MHz crystal can offer step sizes of 50 kHz .

Table 1 Write data format

	MSB							LSB		
Address	1	1	0	0	0	MA1	MAO	0	A	byte 1
Programmable divider	0	N14	N13	N12	N11	N10	N9	N8	A	byte 2
Programmable divider	N7	N6	N5	N4	N3	N2	N1	N0	A	byte 3
Charge-pump and test bits	1	CP	T1	T0	1	1	1	OS	A	byte 4
Output ports control bits	P7	P6	P5	P4	P3	P2*	P1*	P0*	A	byte 5

note

* not valid for TSA5511T.

MA1, MAO programmable address bits (see Table 4)
A acknowledge bit
$\mathrm{N}=\mathrm{N} 14 \times 2^{14}+\mathrm{N} 13 \times 2^{13}+\ldots+\mathrm{N} 1 \times 2^{1}+\mathrm{N} 0$
$\mathrm{CP} \quad$ charge-pump current
$C P=0 \quad 50 \mu \mathrm{~A}$
$C P=1 \quad 220 \mu \mathrm{~A}$
$P 3$ to $P 0=1$ limited-current output is active
P7 to $\mathrm{P} 4=1$ open-collector output is active
P 7 to $\mathrm{PO}=0 \quad$ output are in high impedance state
$\mathrm{T} 1=1 \mathrm{P6}=\mathrm{f}_{\text {ret }}, \mathrm{P} 7=\mathrm{f}_{\mathrm{DIV}}$
TO = $1 \quad$ 3-state charge-pump
OS =1 operational amplifier output is switched off (varicap drive disable)

FUNCTIONAL DESCRIPTION (continued)

READ mode : $\mathrm{R} / \overline{\mathrm{W}}=1$ (see Table 2)

Data can be read out of the TSA5511 by setting the $\mathrm{R} \overline{\mathrm{W}}$ bit to 1 . After the slave address has been recognized, the TSA5511 generates an acknowledge pulse and the first data byte (status word) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a high position of the SCL clock signal.
A second data byte can be read out of the TSA5511 if the processor generates an acknowledge on the

SDA line. End of transmission will occur if no acknowledge from the processor occurs.
The TSA5511 will then release the data line to allow the processor to generate a STOP condition. When ports P3 to P7 are used as inputs, they must be programmed in their high-impedance state. The POR flag (power-on-reset) is set to 1 when V_{cc} goes below 3 V and at power-on. It is reset when an end of data is detected by the TSA5511 (end of a READ sequence).
Control of the loop is made possible with the in-lock flag FL which indicates (FL = 1) when the loop is
phase-locked. The bits 12,11 and 10 represent the status of the I/O ports P7, P5 and P4 respectively. A logic 0 indicates a LOW level and a logic 1 a HIGH level (TTL levels).
A built-in 5-level ADC is available on I/O port P6. This converter can be used to feed AFC information to the controller from the IF section of the television as illustrated in the typical application circuit in Fig. 5. The relationship between bits A2, A1 and A0 and the input voltage on port P6 is given in Table 3.

Table 2 Read data format

	MSB									
Address	1	1	0	0	0	MA1	MA0	1	A	byte 1
Status byte	POR	FL	12	11	10	A2	A1	A0	-	byte 2

POR	power-on-reset	Address selection
	flag. $(P O R=1$ on power-on)	The module address contains programmable address bits (MA1
FL	in-lock flag (FL = 1 when the loop is phase-locked)	and MAO) which together with the I/O port P3 offers the possibility of having several synthesizers (up to
12, 11, 10	digital information for I/O ports P7, P5 and P4 respectively	3) in one system. The relationship between MA1 and MAO and the input voltage I/O port P3 is given in Table 4.
A2, A1, A0	digital outputs of the 5 -level ADC. Accuracy is $1 / 2$ LSB (see Table 3)	
MSB is tran	ted first.	

Table 3 A/D converter levels

Voltage applied on the port P6	A2	A1	A0
$0.6 \mathrm{~V}_{\mathrm{cc}}$ to 13.5 V	1	0	0
$0.45 \mathrm{~V}_{\mathrm{Cc}}$ to $0.6 \mathrm{~V}_{\mathrm{cc}}$	0	1	1
$0.3 \mathrm{~V}_{\mathrm{cc}}$ to $0.45 \mathrm{~V}_{\mathrm{cc}}$	0	1	0
$0.15 \mathrm{~V}_{\mathrm{cc}}$ to $0.3 \mathrm{~V}_{\mathrm{cc}}$	0	0	1
0 to 0.15 V	0	0	0

Table 4 Address selection

MA1	MA0	\quad Voltage applied on port P3
0	0	0 to $0.1 \mathrm{~V}_{\mathrm{cc}}$
0	1	always valid
1	0	0.4 to $0.6 \mathrm{~V}_{\mathrm{cc}}$
1	1	$0.9 \mathrm{~V}_{\mathrm{Cc}}$ to 13.5 V

LIMITING VALUES
In accordance with Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{CC}	supply voltage	-0.3	6	V
$\mathrm{~V}_{1}$	charge-pump output voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{2}	Crystal (Q1) input voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{4}	serial data input/output	-0.3	6	V
$\mathrm{~V}_{5}$	serial clock input	-0.3	6	V
$\mathrm{~V}_{6-13}$	P7 to P1 I/O voltage	-0.3	+16	V
$\mathrm{~V}_{15}$	prescaler input	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{18}	drive output voltage	-0.3	$\mathrm{~V}_{\mathrm{cC}}$	V
I_{6}	P7 to P0 output current (open collector)	-1	15	mA
I_{4}	SDA output current (open collector)	-1	5	mA
$\mathrm{~T}_{\text {sg }}$	storage temperature range (IC)	-40	+150	${ }^{\circ} \mathrm{C}$
T_{j}	maximum junction temperature		150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {th } \mathrm{j} \text {-a }}$	from junction to ambient in free air (DIL18)	-	80	KW
	from junction to ambient in free air (SO16)	-	110	KW
	from junction to ambient in free air (SO20)	-	80	KW

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; unless otherwise specified
All pin numbers refer to DIL 18 version

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT

Functional range

$V_{C c}$	supply voltage range		4.5	-	5.5	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-10	-	80	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{\text {CLK }}$	clock input frequency		64	-	1300	MHz
N	divider		256	-	32767	
lcc	supply current		25	35	50	mA
$f_{\text {XTAL }}$	crystal oscillator		3.2	4	4.48	MHz
Z_{1}	input impedance (pin 2)		-480	-400	-320	Ω
	input level $\begin{aligned} & f=80 \text { to } 150 \mathrm{MHz} \\ & f=150 \text { to } 1000 \mathrm{MHz} \\ & f=1000 \text { to } 1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=-10 \text { to } 80^{\circ} \mathrm{C} ; \end{aligned}$ see typical sensitivity curve in Fig. 6	$\begin{aligned} & 12 /-25 \\ & 9 /-28 \\ & 40 /-15 \end{aligned}$		$\begin{array}{\|l\|} \hline 300 / 2.6 \\ 300 / 2.6 \\ 300 / 2.6 \\ \hline \end{array}$	$\mathrm{mV} / \mathrm{dBm}$ $\mathrm{mV} / \mathrm{dBm}$ $\mathrm{mV} / \mathrm{dBm}$
R_{1}	prescaler input resistance see SMITH chart in Fig. 7		-	50	-	Ω
C_{1}	input capacitance		-	2	-	pF

Output ports (current-limited) P0-P3

$I_{\text {LO }}$	leakage current	$V_{13}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
$I_{\text {sink }}$	output sink current	$\mathrm{V}_{13}=12 \mathrm{~V}$	0.7	1.0	1.5	mA

Output ports (open collector) P4-P7 (see note 1)

I_{LO}	leakage current	$\mathrm{V}_{9}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	output voltage LOW	$\mathrm{I}_{9}=10 \mathrm{~mA}$; note 2	-	-	0.7	V

Input P3

IOH $^{\text {IOL }}$	input current HIGH	$\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
l	input current LOW	$\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$

Input ports P4-5, P7

$V_{I L}$	input voltage LOW		-	-	0.8	V
$\mathrm{~V}_{\mathrm{H}}$	input voltage HIGH		2.7	-	-	V
I_{H}	input current HIGH	$\mathrm{V}_{6}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
I_{IL}	input current LOW	$\mathrm{V}_{6}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$

Input port P6

I_{IH}	input current HIGH	$V_{7}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
I_{IL}	input current LOW	$V_{7}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SCL and SDA inputs						
V_{IH}	input voltage HIGH		3.0	-	5.5	V
$\mathrm{V}_{\text {IL }}$	input voltage LOW		-	-	1.5	V
I_{H}	input current HIGH	$\begin{aligned} & \mathrm{V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$-$	-	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IIL	input current LOW	$\begin{aligned} & \mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \hline-10 \\ -10 \\ \hline \end{array}$	$1-$	$\begin{aligned} & - \\ & - \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output SDA (open collector)						
Lo	leakage current	$\mathrm{V}_{4}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
V_{4}	output voltage	$\mathrm{I}_{4}=3 \mathrm{~mA}$	-	-	0.4	V
Charge-pump output PD						
I_{IH}	input current HIGH (absolute value)	$C P=1$	90	220	300	$\mu \mathrm{A}$
$I_{1 L}$	input current LOW (absolute value)	$C P=0$	22	50	75	$\mu \mathrm{A}$
V_{0}	output voltage	in-lock	1.5	-	2.5	V
I ${ }_{\text {Leak }}$	off-state leakage current	T0 = 1	-5	-	5	nA
Operational amplifier output UD (test mode : TO = 1)						
V_{18}	output voltage	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	-	-	100	mV
V_{18}	output voltage when switched-off	$\mathrm{OS}=1 ; \mathrm{V}_{1 \mathrm{~L}}=2 \mathrm{~V}$	-	-	200	mV
G	operational amplifier current gain; $I_{18} /\left(I_{1}-I_{\text {ileak }}\right)$	$\begin{aligned} & O S=0 ; V_{1 L}=2 \mathrm{~V} ; \\ & \mathrm{I}_{18}=10 \mu \mathrm{~A} \end{aligned}$	2000	-	-	

Notes to the characteristics

1. When a port is active, the collector voltage must not exceed 6 V .
2. Measured with a single open-collector port active.

Fig. 6 Prescaler typical input sensitivity curve; $\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=-10$ to $+80^{\circ} \mathrm{C}$.

Fig. 7 Prescaler Smith chart of typical input impedance; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; reference value $=50 \Omega$.

FLOCK FLAG DEFINITION (FL)

When the FL flag is 1 , the maximum frequency deviation (Δf) from stable frequency can be expressed as follows:
$\Delta f= \pm\left(K_{V C O} / K_{0}\right) \times I_{C P} \times(C 1+C 2) /(C 1 \times C 2)$
where:

$\mathrm{K}_{\mathrm{VcO}}$	$=$	oscillator slope (HzN)
I_{CP}	$=$	charge-pump current (A)
K_{O}	$=$	$4 \times 10 \mathrm{E} 6$
C 1 and C 2	$=$	loop filter capacitors

Fig. 8 Loop filter.

FLOCK FLAG APPLICATION

- $\mathrm{K}_{\mathrm{vco}}=16 \mathrm{MHz} \mathrm{V}$ (UHF band)
- $I_{C P}=220 \mu \mathrm{~A}$
- $C 1=180 \mathrm{nF}$
- $\mathrm{C} 2=39 \mathrm{nF}$
- $\Delta f= \pm 27.5 \mathrm{kHz}$.

Table 5 Flock flag settings

	MIN.	MAX.	UNIT
Time span between actual phase lock and FL-flag setting	1024	1152	$\mu \mathrm{~s}$
Time span between the loop losing lock and FL-flag resetting	0	128	$\mu \mathrm{~s}$

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $1^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939835810011.

FEATURES

- Single chip synthesizer solution;
- Compatible with Philips Cellular Radio chipset;
- Fully programmable RF divider;
- IIC two-line serial bus interface;
- On chip crystal oscillator \backslash TCXO buffer from 3 to 16 MHz ;
- 16 reference division ratios allowing 5 to 100 kHz channel spacing;
- Crystal frequency divide-by-8 output;
- On chip out-of-lock indication;
- Two VCO control outputs;
- Latched synthesizer alarm output;
- Status register including out-of-lock indication and power failure;
- Power down mode.

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC \& VCP	Supply voltage range	4.5	5.0	5.5	V
ICC + ICP	Supply current	-	13	-	mA
ICCpd	ICC in power down	-	2.5	-	mA
FREF	Phase comparator reference frequency	5	-	100	KHz
RFin	RF frequency input	50	-	1100	MHz
Tamb	Operating temperature range	-40	-	85	$\circ \mathrm{C}$

APPLICATIONS

- Cellular mobile radio (NMT, AMPS, TACS)
- Private Mobile Radio (PMR)
- Cordless telephones

GENERAL DESCRIPTION

The UMA1014T is a low power universal synthesizer which has been designed for use in channelized radio communications. The IC is manufactured in bipolar technology and is designed to operate from 5 to 100 kHz channel spacing with an RF input of 50 to 1100 MHz . The channel is programmed via the standard IIC bus. A low power sensitive RF divider is integrated as well as a dead zone eliminated tri-state phase comparator. A low noise charge pump delivers 1 mA or $1 / 2 \mathrm{~mA}$ output current enabling better compromise between fast switching and loop bandwidth. A power down circuit allows the synthesizer to be idled.

ORDERING AND PACKAGE INFORMATION

Extended Type number	Package			
	Pins	Pin Position	Material	Code
UMA1014T	16	SO16	plastic	SOT109A
UMA1014M	20	SSOP20	plastic	SOT266A

Frequency synthesizer for cellular radio communication

FIG. 1 Block diagram

FIG 2 PIN CONFIGURATION

PINNING

Symbol	Pin		Description		
	SO16	SSOP20			
OSCin	1	1	Oscillator input or TCXO input		
OSCout	2	3	Oscillator output		
VCP	3	4	Charge pump 5 Volts supply		
VCC	4	5	5 Volts supply		
PCD	5	6	Charge pump output		
GD	6	7	Ground		
VCOA	7	8	VCO buffer switch output A (including out-of-lock)		
RF	8	10	RF input		
SCL	9	11	Serial clock line input		
SDA	10	13	Serial data line input/output		
HPDN	11	14	Hardware power down (low active)		
SAA	12	15	Slave address select input A		
VCOB	13	16	VCO buffer switch output B		
I.C.	14	17	Internally connected (for test purpose only)		
SYA	15	18	Synthesizer alarm output		
FX8	16	20	1/8 crystal frequency output		
N.C. $=$ not connected					

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

Symbol	Parameter	Min	Max	Unit
VCC	Supply voltage range	-0.3	7	V
Vi	Voltage range at pin i to ground	0	Vcc	V
Tstg	Storage temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
Tamb	Operating ambient temperature range	-40	85	${ }^{\circ} \mathrm{C}$

HANDLING

Every pin withstands the ESD test in accordance with MIL-STD-883C class A (method 3015-2). Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling Integrated Circuits.

FUNCTIONAL DESCRIPTION

The UMA1014T is a low power frequency synthesizer for radio communications which operates in the 50 to 1100 MHz range. The device includes an oscillatorbuffer circuit, a reference divider, an RF main divider, a tri-state phase comparator, a charge pump and a control circuit which transfers the serial data into the four internal 8 bit-registers. The VCC supply feeds the logic part while VCP feeds the charge-pump only. Both supplies are +5 Volts $(+/-$ 10%). The power down facility puts the synthesizer in the idle mode (all current supplies are switched off except in the control part). Any IC transfer is permitted during this mode and all information in the registers is retained allowing fast power-up.

MAIN DIVIDER.

The main divider is a fully programmable pulse swallow type counter. After a sensitive input amplifier ($50 \mathrm{mV},-13 \mathrm{dBm}$), the RF signal is applied to a $31 / 32$ dual-modulus counter. The output is then used as the clock for the 5 -bit swallow counter $\mathrm{R}=(\mathrm{MD} 4, \ldots, \mathrm{MD} 0)$ and the 13 bit main counter $\mathrm{N}=(\mathrm{MD17}, \ldots, \mathrm{MD})$). The ratio is sent via the IIC bus into the registers B, C and D. It is then buffered in a 18 -bit latch. The ratio in the divider chain is updated with this new information only after the least significant bit (D0) is received. This update is synchronized to the output of the divider in order to limit the phase error during small jumps of the synthesized frequency.

MAN COUNTER								SWALLOW COUNTER		
: N								: R		
MD17	MD16	MD15		MD8	MD7		MD5	MD4		MD0
B1	B0	C7	...	C0	D7	...	D5	D4	...	D0
MSB										LSB

Division ratio in the main divider

The main divider can be programmed to any value between 2048 and 262143 (i.e. 2^{18-1}). If a ratio X, which is less than 2048 , is sent to the divider, the ratio ($\mathrm{X}+2048$) will be programmed. For switching between adjacent channels it is possible to program only register D allowing shorter IIC programming time.

OSCILLATOR.
The oscillator is a common collector Colpitts type with external capacitive feedback. It has been designed to function also as a buffer when a TCXO or any clock is used. The oscillator has very small temperature drift and high voltage supply rejection. When acting as a buffer, no additional external components will be necessary.

REFERENCE DIVIDER.

The reference divider is semi-programmable with 16 division ratios which are selected via the IIC bus. The programming uses bits A3 to A0 of register A as shown below. These ratios can be used with crystal frequencies from 3 to 16 MHz . All popular channel spacings can be obtained from a single crystal / TCXO frequency of 9.6 MHz .

A3	A2.	Al	A0	reference	Channel spacing for
RD3	RD2	RDI	RD0	division ratio	9.6 MHz at OSCin
0	0	0	0	128	75 kHz
0	0	0	1	160	\% 60 kHz
0	0	1	0	192	50 kHz
0	0	1	1	240	40 kHz
0	1	0	0	256	37.5 kHz
0	1	0	1	320	30 kHz
0	1	1	0	384	25 kHz
0	1	1	1	480	20 kHz
1	0	0	0	512	18.75 kHz
1	0	0	1	640	15 kHz
1	0	1	0	768	12.5 kHz
1	0	1	1	960	10 kHz
1	1	0	0	1024	9.375 kHz
1	1	0	1	\% 1280	7.5 kHz .
1	1	1	0	1536	$\widetilde{F}^{2} .6 .25 \mathrm{kHz}$.
1	1	1	1	\% 1920.	5 5 kHz

reference divider programming

PHASE COMPARATOR AND CHARGE PUMP.

The block diagram of the phase comparator and charge pump is shown below. The phase comparator is both a phase and frequency detector. It comprises dual flip-flops together with logic circuitry which eliminates the dead zone. When a phase error is detected, the UP or DOWN signal becomes high. It switches on the corresponding current generator which sources or sinks current as appropriate into the loop filter. When no phase error is detected, PCD goes tristate. The final tuning voltage of the VCO is provided by the loop filter. The charge pump current is programmable via the IIC bus. When bit IPCD (bit A5) is set to logic 1, the charge pump will deliver 1 mA . When IPCD is logic 0 , the charge pump will deliver 0.5 mA .

The phase comparator has a phase inverter logic input (PHI). This allows the use of inverted or non-inverted loop filter configurations. It is thus possible to use a passive loop filter which can offer high performance without an operational amplifier. The function of the phase comparator and charge pump is given in the table below and a typical transfer curve is shown overleaf.

FIG. 3 Phase comparator and charge pump

	PHI = 0		(Passive loop filter)		PHI =1			(Active loop filter)	
	Fref<Fvar	Fref $>$ Fvar	Fref=Fvar	Fref<Fvar	Fref>Fvar	Fref=Fvar			
UP	0	1	0	1	0	0			
DOWN	1	0	0	0	1	0			
Ipcd	-1 mA	1 mA	$<+/-5 \mathrm{nA}$	1 mA	-1 mA	$<+/-5 \mathrm{nA}$			

Operation of the phase comparator

FIG. 4 Gain of phase detector and charge pump

OUT-OF-LOCK DETECTOR.

An out-of-lock detector using the UP and DOWN signals from the phase comparator is included on chip. Pin VCOA is an open collector output which is forced low during out-of-lock. This information is also available via the IIC bus in the status register. When the phase error (measured at the phase comparator) is greater than approximately 200 ns , an out-of-lock condition is immediately flagged. The flag is only released after 6 reference cycles of phase error less than 200 ns .

FIG. 5 Out-of-lock function

MAIN CONTROL

The control part consists mainly of the IC control interface and a set of four registers, A, B, C and D. The serial input data (SDA) is converted to 8 bit parallel words and stored in the appropriate registers. The data transmission to the synthesizer is executed in the burst mode with the following format:

```
//slave addr./subaddr./data1/data2/../datan// ; n up to 4.
```

Data byte 1 is written in the register indicated by the subaddress. An auto-increment circuit if enabled ($\mathrm{AVI}=1$) then provides the correct addressing for the following data bytes. Since the length of the data burst is not fixed, it is possible to program the whole set of registers or just one. The registers are structured in such a way so that the burst, for normal operation, is kept as short as possible. The bits that are only programmed during the set-up (reference division ratio, power down, phase inversion and current on PCD) are stored in registers A and B.

In the slave address, six bits are fixed. The remaining two bits depend on the application.

1	1	0	0	0	1	SAAN	R/WN

Slave address
SAAN is the slave address select not. When SAA (pin 12) is high, then SAAN $=0$, and when pin 12 goes low SAAN $=1$. This allows the use of two UMA1014Ts on the same IIC bus with a different address. R/WN (read/write not) should be set to 0 when writing to the synthesizer or set to 1 when reading the status register.

The subaddress includes the register pointer, and sets the flags related to the auto-increment (AVI) and the alarm disable (DI) :

\mathbf{x}	\mathbf{x}	\mathbf{x}	DI	AVI	\mathbf{x}	SB1	SB0

Subaddress

DI (Disable Interrupt); DI=1 disables SYA alarm DI $=0$ allows SYA alarm
AVI (Auto Value AVI $=1$ enables auto-increment Increment); $\quad \mathrm{AVI}=0$ disables auto-increment SB1/SB0 point to the register where DATA1 will be written. (see table attached)
x means not used.

SB1	SB0	register pointed
0	0	A
0	1	B
1	0	C
1	1	D

Pointer of the registers

MAIN CONTROL (continued)

When the auto-increment is disabled ($\mathrm{AVI}=0$), the subaddress pointer will maintain the same value during the IIC bus transfer. All the databytes will then be written consecutively in the same register pointed to by the subaddress.

STATUS REGISTER and synthesizer alarm.

When an out-of-lock condition or a power dip occurs, open collector output SYA (pin 15) is forced low and latched. The pin SYA will be only released after the status register is read via the IIC bus.

The status register contains information as shown below:

0	0	0	OOL	0	LOOL	LPD	DI

where : OOL momentary out-of-lock
LOOL latched out-of-lock
LPD latched power dip
DI disable interrupt (of the last write cycle)

The IIC bus protocol to read this internal register is a single byte without subaddressing:
//slave address ($\mathrm{R} / \mathrm{WN}=1$)/status register (read)//

MAIN CONTROL (continued)

BIT ALLOCATION :

BIT ALLOCATION										
register.	pointer:	7	6	5	4	3	2	1	0	preset
A	00	PD	X	IPCD	X	RD3	RD2	RD1	RD0	00001110
B	01	1	0	1	PHI	VCOB	VCOA	MD17	MD16	10100101
C	10	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	00111000
D	11	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	10000000

register name	bit name	function		preset value
A	PD	power down	$\mathrm{PD}=0$ normal operation	0
	IPCD	programmable current in PCD	$\begin{gathered} \mathrm{IPCD}=1: 1 \mathrm{~mA} \\ \mathrm{IPCD}=0: 1 / 2 \mathrm{~mA} \end{gathered}$	0
	RD3...RD0	reference ratio	see table	1110; r=1536
B	PHI	phase inverter	$\mathrm{PHI}=0$ passive loop filter	0
	VCOA	VCO switch A	set the pin 7	1
	VCOB	VCO switch B	set the pin 13	0
	MD17 MD16	bits 17 and 16	MSB of main divider ratio	01
C	MD15 ... MD8	bits $15 . .8$	main divider ratio	00111000
	MD7 ... MD0	bits 7 ... 0	main divider ratio	$\begin{gathered} 10000000 \\ \mathrm{r}=80000 \end{gathered}$

Registers in UMA1014T

CHARACTERISTICS

$\mathrm{Vcc}=4.5$ to $5.5 \mathrm{~V} ; 25 \mathrm{deg}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min..	Typ.	Max.	Unit.
Supply (pins VCC \& VCP).						
vcc	Supply voltage range		4.5	-	5.5	v
ICC	Supply current		-	11.5	-	mA
ICCpd	Supply current	power down	\bullet	2.5	-	mA
VCP	Supply voltage of the charge pump		4.5	-	5.5	V
ICP	Supply current C-P	IPCD $=0.5 \mathrm{~mA}$	\bullet	1.4	-	mA
ICPpd	Supply current C-P	power down	-	0.01	-	mA
RF dividers (pin RF)						
$\mathrm{F}_{\mathrm{R} F}$	Frequency range		50	-	1100	MHz
VRFrms	input voltage level	50 to 100 MHz	150	-	200	mV
		100 to 1100 MHz	50	-	150	mV
Rin	Input resistance	at 1 GHz	-	200	-	Ω
		at 100 MHz	-	600	-	Ω
Cin	Input Capacitance*		-	2	-	pF
RRF	Division ratios		2048	-	262143	-
* Note: Cin in parallel with Rin						
Oscillator and reference divider (pins OSCin, OSCout)						
fosc	Oscillator frequency range		3	-	16	MHz
vosc(rms)	Input level sine		0.1	-	$\begin{gathered} \text { VCC } \\ 2.8 \end{gathered}$	Vrms
$\operatorname{vosc}(p-p)$	Input level square wave		0.3	-	vcc	V_{pp}
$z_{\text {OSCout }}$	oupput impedance at OSCout pin		-	-	2	$\mathrm{K} \Omega$
$\mathrm{R}_{\text {REF }}$	Reference division ratio	see table	128	-	1920	\bullet
F。	Ouput frequency range		5	-	100	KHz

Frequency synthesizer for cellular radio communication

CHARACTERISTICS (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit.
1/8 crystal frequency open collector output (pin FX8)						
$\mathbf{I O L}_{\text {L }}$	Current output low	$\mathrm{V}_{\text {OL }} \geq 0.6 \mathrm{~V}$	1	-	-	mA
Phase comparator (pin PCD)						
$F_{P C D}$	Frequency range		5		100	$\mathbf{K H z}$
$\mathrm{I}_{P C D}$	Output current$V_{P C D}=2.5 \mathrm{~V}$	Bit IPCD $=1$	0.8	1	1.3	mA
		Bit $\mathrm{PPCD}=0$	0.4	0.5	0.7	mA
$\mathrm{I}_{\text {PCDIK }}$	Output leakage current		-5	+/-1	5	nA
$\mathrm{V}_{\text {PCD }}$	Output voltage		0.4		$\mathrm{V}_{C P}-0.5$	V

Serial clock input, serial data input (pins SDA, SCL)

Fclk	clock frequency		0	-	100	KHz
VIH	input voltage high		3	-	-	V
VIL	input voltage low		-	-	1.5	V
IH	input current high		-	3	10	$\mu \mathrm{~A}$
ILL	input current low		-10	-5	-	$\mu \mathrm{A}$
CI	input capacitance		-	-	10	pF
IOL	SDA sink current	VOL $=0.4 \mathrm{~V}$	-	-	3	mA

Slave address select input (pin SAA) hardware power down input (pin HPDN)

VIH	input voltage high		3	-	-	V
VIL	input voltage low		-	-	0.4	V
IIH	input current high		-	-	0.1	$\mu \mathrm{~A}$
IIL	input current low		-10	-	-	$\mu \mathrm{A}$

VCO output switches (pins VCOA, VCOB), synthesizer alarm (pin SYA)							
VOL	output voltage low	note 1	-	-	0.4	V	
IOL	sink current low		400	-	-	$\mu \mathrm{A}$	

[^2]

FIG. 6 RF Input Sensitivity

DESCRIPTION

The UMF1005 is a low power, high performance frequency synthesizer in CMOS technology. This integrated circuit is designed to achieve $10-2000 \mathrm{KHz}$ channel spacing. The channel is selected via a high speed serial interface.

FEATURES

- Fast locking by "Fractional-N" divider
- Auxiliary synthesizer.
- Digital phase comparator with proportional and integral charge pump output.
- High speed serial input.
- Low power consumption.

Applications

- Mobile telephony
- Portable battery-powered radio equipment

Package outlines

UMF1005T: 20-lead plastic mini-pack; (SSOP20,SOT266)

Fig. 1: Block diagram UMF 1005T

Fig. 2: Pinning UMF1005T

PINNING

Symbol	Pin	Description
VDD	1	digital supply voltage
INM1	2	main divider positive input
INM2	3	main divider negative input DATA
CLOCK	4	serial data input line
STROBE	5	serial clock input line
INR	6	serial strobe input line
INA	7	reference divider input line
RA	8	auxiliary divider input line
PHA	10	auxiliary current setting; resistor to $V_{S S}$
PHI	11	auxiliary phase detector output
VSSA	12	integral phase detector output
PHP	13	analog ground; internally connected to $V_{S S}$
VDDA	14	proportional phase detector output
RN	15	analog supply voltage
RF	16	main current setting; resistor to $V_{S S}$
LOCK	17	frac. comp. current setting; resistor to $V_{S S}$
FB1	18	lock detector output
FB2	19	feedback output for prescaler modulus control
feedback output for prescaler modulus control		
VSS	20	common ground connection

Serial programming input

The serial input is a 3 wire input (CLOCK, STROBE, DATA) to program all counter ratios, DAC's, selection and enable bits. The programming data is structured into 24 or 32 bit words; each word includes 1 or 4 address bits. Figure 3 shows the timing diagram of the serial input. When the STROBE = L, the clock driver is enabled and on the positive edges of the CLOCK the signal on DATA input is clocked into a shift register. When the STROBE $=\mathrm{H}$, the clock is disabled and the data in the shift register remains stable. Depending on the 1 or 4 address bits the data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 4 words must be sent: D, C, B and A. Figure 4 shows the format and the contents of each word. The E word is for testing purposes only. The E (test) word is reset when programming the D word. The data for NM4, CN, and PR is stored by the B word in temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the A word into the work registers which avoids false temporary main divider input. CN is only loaded from the temporary registers when a short 24 bit AO word is used. CN will be directly loaded by programming a long 32 bit A1 word. The flag LONG in the D word determines whether A0 (LONG = "0") or A1 (LONG = "1") format is applicable. The A word contains new data for the main divider. The A word is loaded only when a main divider synchronization signal is also active, to avoid phase jumps when reprogramming the main divider. The synchronisation signal is generated by the main dividers. It disables the loading of the A word each main divider cycle during maximum 300 main divider input cycles. To be sure that the A word will be correctly loaded the STROBE signal must be H for at least 300 main divider input cycles. Programming the A word means also that the main charge pumps on output PHP and PHI are set into the speed-up mode as long as the STROBE is H .

Fig. 3 Serial Input timing sequence

Fig. 4 Serial input word format

Symbol	Bits
NM1	12
NM2	$\begin{aligned} & 8 \text { if } P R=" 0 x " \\ & 4 \text { if } P R=" 1 x " \end{aligned}$
NM3	4 if $P R=" 1 \times "$
NM4	4 if $\mathrm{PR}=$ " 11 "
PR	2
NF	3
FMOD	1
LONG	1
CN	8
CL	2
CK	4
EM	1
EA	1
SM	2
AM	2
NR	12
NA	12

Function

number of main divider cycles when prescaler is programmed in ratio R1 (FB1 = "1", FB2 = "0")*
number of main divider cycles when prescaler is programmed in ratio R2 (FB1 = "0", FB2 = "0")*
number of main divider cycles when prescaler is programmed in ratio R 3 ($\mathrm{FB} 1=" 0 ", \mathrm{FB} 2=" 1 ")^{*}$
number of main divider cycles when prescaler is programmed in ratio R4 (FB1 = "0", FB2 = "1")*
prescaler type in use
PR = "00": modulus 2 prescaler
PR = "10": modulus 3 prescaler
PR = "11": modulus 4 prescaler
fractional - N increment
fractional - N modulus selection flag
"1" : modulo 8
A word format selection flag
"0": 24 bit A0 format
"1": 32 bit A1 format
current setting factor for main charge pumps
acceleration factor for proportional charge pump current acceleration factor for integral charge pump current main divider enable flag auxiliary divider enable flag reference select for main phase detector reference select for aux. phase detector reference divider ratio auxiliary divider ratio

* not including reset cycles and fractional - N effects.

Auxiliary variable divider

The input signal on INA is amplified to logic level by a single ended input buffer, which accepts low level AC coupled input signals. This input stage is enabled if the serial control bit $E A=" 1 "$. Disabling means that all currents in the buffer are switched off. A fixed divide by 8 divider is the first stage of the counter, which has been optimized to accept a 100 MHz input signal. The second stage is a 12-bit programmable counter. The total division ratio can be expressed as:
N Aux $=8 \times N A ;$ with $N A=4$ to 4095
Reference variable divider (fig. 5)
The input signal on INR is amplified to logic level by a single ended input buffer, which accepts low level AC coupled input signals. This input stage is enabled by the OR function of the serial intput bits EA and EM. Disabling means that all currents are switched off. The reference divider consists of a programmable divider by NR (NR $=4$ to 4095) followed by a three bit binary counter. The 2 bit SM determines which of the 4 output pulses is selected as main phase detector input. The 2 bit SA determines the selection of the auxiliary phase detector signal. To obtain the best time spacing for the main and auxiliary reference signals, the opposite output will be used for the auxiliary phase detector, reducing the possibility of unwanted interactions. For this reason the programmable divider produces a symmetric output pulse for even ratios and a 1 input cycle asymmetric pulse for odd ratios.

MAIN SELECT

Fig. 5 Reference variable divider

Main variable divider

The input signals on INM1, INM2 are amplified to a logic level by a balanced input comparator giving a common mode rejection. This input stage is enabled by serial control bit $\mathrm{EM}=1$. Disabling means that all currents in the comparator are switched off. The main divider is built up by a 12 bit counter plus a sign bit. Depending on the serial input values NM1, NM2, NM3, NM4 and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles according to the following table:

Counter Status	FB1	FB2	Prescaler ratio
(-NM1 - 1) to 0	1	0	$R 1$
(-NM1-1) to -1	1	0	$R 1^{*}$
1 to NM2	0	0	$R 2$
0 to $N M 2$	0	0	$R 2^{*}$
0 to NM3	0	1	$R 3$ if $P R=" 1 X^{\prime \prime}$
0 to $N M 4$	1	1	$R 4$ if $P R=" 11^{"}$

* when the fractional accumulator overflows

The total division ratio from prescaler to the phase detector may be expressed as:
$N=(N M 1+2) \times R 1+N M 2 \times R 2+[(N M 3+1) \times R 3+[(N M 4+1) \times R 4]]$
or when the fractional accumulator overflows:
$N^{\prime}=(N M 1+1) \times R 1+(N M 2+1) \times R 2+[(N M 3+1) \times R 3+[(N M 4+1) \times R 4]]$
with prescaler ratio $\mathrm{R} 2=\mathrm{R} 1+1->\mathrm{N}^{\prime}=\mathrm{N}+1$
PR defines the prescaler type in use and the bit capacity for NM2, NM3 according to the following table:

PR	Modulus prescaler	Bit capacity			
		NM1	NM2	NM3	NM4
00	2	12	8	-	-
01	2	12	8	-	-
10	3	12	4	4	-
11	4	12	4	4	4

When a number of prescaler ratios is set on 2, respectively 3 , the reset cycles for R3, respectively R4 will also not occur. Programming to e.g. 2 prescaler ratios will result in an overall divider ratio:
$N=(N M 1+2) \times R 1+N M 2 \times R 2$

The loading of the work registers NM1, NM2, NM3, NM4, PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as is explained in the Serial Programming Input chapter.

At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also the fractional accumulator is incremented with NF. The accumulator works modulo Q. Q is preset by the serial control bit FMOD to 8 when FMOD $=$ "1". Each time the accumulator overflows, the feedback to the prescaler will select one cycle using prescaler ratio R2 instead of R1. As shown above, this will increase the overall division ratio by 1 if $\mathrm{R} 2=\mathrm{R} 1+1$. The mean division ratio over Q main divider cycles will then be:
$\mathrm{NQ}=(\mathrm{NM} 1+\mathrm{NM} 2+2) \times \mathrm{R} 1+[(\mathrm{NM} 3+1) \times \mathrm{R} 3+[(\mathrm{NM} 4+1) \times \mathrm{R} 4]+\mathrm{NF} / \mathrm{Q}$
Programming a fraction means the prescaler with main divider will divide by N or $\mathrm{N}+1$. The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the contents of the fractional accumulator FRD, which is used for fractional current compensation.

Phase detectors (fig. 6)
The auxiliary and main phase detectors are a 2 D-type flipflop phase and frequency detector. The flipflops are set by the negative edges of output signals of the dividers. The reset inputs are activated when both flipflops have been set and when the reset enable signal is active (L). Around zero phase error this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or deadband around zero phase error. The flipflops drive on-chip charge pumps. A pull-up current from the charge pump indicates the VCO frequency shall be increased while a pull-down pulse indicates the VCO frequency shall be decreased.

Fig. 6 Phase detector structure with timing

Current settings

The UMF1005 has 3 current setting pins RA, RN, and RF. The active charge pump currents and the fractional compensation currents are linearly dependent on the current in the current setting pins. This current I_{R} can be set by an external resistor to be connected between the current setting pin and $\mathrm{V}_{\text {SS }}$. The typical value R (current setting resistor) can be calculated with the formula:
$R=\left(V_{D D A}-1.1-80 \times \operatorname{SQRT}\left(I_{R}\right)\right) / I_{R}$
The current can be set to zero by connecting the corresponding pin to $\mathrm{V}_{\mathrm{DDA}}$.

Auxiliary output charge pumps

The auxiliary charge pumps on pin PHA are driven by the auxiliary phase detector and the current value is determined by the external resistor RA at pin RA. The active charge pump current is typically:
$I_{P H A}=8 \times I_{\text {RA }}$

Main output charge pumps and fractional compensation currents

The main charge pumps on pin PHP and PHI are driven by the main phase detector and the current value is determined by the current at pin RN and via a number of DACs which are driven by registers of the serial input. The fractional compensation current is determined by the current at pin RF, the contents of the fractional accumulator FRD and a number of DACs driven by registers from the serial input. The timing for the fractional compensation is derived from the reference divider. The current is on during 1 input reference cycle before and 1 cycle after the output signal to the phase comparator. Figure 7 shows the waveforms for a typical case.

When the serial input A word is loaded, the output circuits are in the "speed-up mode" as long as the STROBE is H , else the "normal mode" is active. In the "normal mode" the current output PHP is:

IPHP_N $=I_{\text {Pump10 }}+I_{\text {comp10 }}$
where:
$I_{\text {pump10 }}= \pm$ CN \times IRN $/ 32$:charge pump current
$\mathrm{I}_{\text {comp10 }}= \pm \mathrm{FRD} \times \mathrm{I}_{\mathrm{RF}} / 128$:fractional compensation current

The current in PHI is in "normal mode" zero. In "speed-up mode" the current in output PHP is:
$I_{\text {PHP_S }}=I_{\text {PHP_N }}+I_{\text {Pump11 }}+l_{\text {comp11 }}$
where:
$I_{\text {pump11 }}=I_{\text {pump10 }} \times 2(\mathrm{CL}+1) \quad$:charge pump current
$l_{\text {comp11 }}=l_{\text {comp10 }} \times 2(\mathrm{CL}+1) \quad$:fractional compensation current
In "speed-up mode" the current in output PHI is:
$I_{\text {PHI_S }}=I_{\text {pump21 }}+I_{\text {comp21 }}$
where:

$I_{\text {pump21 }}=I_{\text {pump11 }} \times C K$:charge pump current
$I_{\text {comp21 }}=I_{\text {comp11 }} \times C K$:fractional compensation current

Figure 7 shows that for a proper fractional compensation the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting on the input RN, RF must have the following ratio:
$I_{R N} / I_{R F}=\left(Q \times f_{V C O}\right) /\left(2 \times C N \times f_{I R A}\right)$
$\begin{array}{lll}\text { where: } & Q & \text { : fractional- } N \text { modulus } \\ & f_{V C O}=f_{\mathcal{N M}} \times N & \text { : input frequency of the prescaler }\end{array}$

Lock detect

The output LOCK is H when the auxiliary phase detector AND the main phase detector indicates a lock condition. The lock condition is defined as a phase difference of less than ± 1 cycle on the reference input INR. The look condition is also fullilled when the relative counter is disabled ($\mathrm{EM}=\mathrm{=} 0$ " or respectively $\mathrm{EA}=" 0$ ") for the main, respectively auxiliary counter.

Main N

Detector output

Contents accum.

Fractional compensation current

Output on PHP, PHI

Fig. 7 Waveforms for $N F=2$, Fraction $=0.4$

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

Symbol	Parameter	Min	Max	Unit
$V_{\text {DD }}$	supply voltage	-0.5	6.5	V
VI	voltage on any input	-0.5	$V_{D D}+0.5$	V
1	DC current into any input or output	-10	10	mA
$P_{\text {tot }}$	total power dissipation		tbf 150	mW
Tstg	storage temperature range	-65	150	
Tamb	operating ambient temperature range	-40	85	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

$V_{D D}=V_{D D A}=4.5$ to $5.5 \mathrm{~V} ; T_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Un
$l_{\text {D }}$	standby digital supply current	$E N M=E N A=0$; inputs on $V_{D D}$ or 0	-	-	1	$\mu \mathrm{A}$
ID	Operational supply current	ENM $=E N A=1$; $f_{\text {INM }}=f_{\text {REF }}=10 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{INA}}=50 \mathrm{MHz}$	-	-	tbf	$\mu \mathrm{A}$
IDDA	Standby analog supply currents	$\begin{aligned} & V_{\mathrm{RA}}=\mathrm{V}_{\mathrm{DDA}} ; \mathrm{V}_{\mathrm{RF}}= \\ & \mathrm{V}_{\mathrm{DDA}} \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DDA}} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
IDDA	Operational analog supply current		-	-	tbf	$\mu \mathrm{A}$

Digital outputs FB1, FB2, LOCK

$V_{O L}$	Output voltage LOW	$10=1 \mu \mathrm{~A}$	-	-	50	mV
$V_{O L}$	Output voltage LOW	$10=2 \mathrm{~mA}$	-	-	0.4	V
$V_{O H}$	Output voltage HIGH	$10=-1 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}-50}$	-	-	mV
$V_{O H}$	Output voltage HIGH	$10=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-0.5-$	-	V	

Charge pump PHA

$I_{\text {PHP }}$	output current PHP	$\begin{aligned} & \mathrm{CN} \times(2(\mathrm{CL}+1)+1) \\ & \times \mathrm{I}_{\mathrm{RN}}=-96 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	± 2.5	± 3.0	± 3.5	mA
1 PHP	output current PHP	$\begin{aligned} & \mathrm{CN} \times(2(\mathrm{CL}+1)+1) \\ & \times \mathrm{I}_{\mathrm{RN}}=-9.6 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	± 0.25	± 0.30	± 0.35	mA
	relative output current variation PHP	$\begin{aligned} & \mathrm{CN} \times(2(\mathrm{CL}+1)+1) \\ & \times \mathrm{I}_{\mathrm{RN}}=-96 \mathrm{~mA} ; \\ & \text { note } 2 \end{aligned}$	-	-	10	\%
	CN monotonic output current range PHP	$\begin{aligned} & C N=0 \text { to } 255 ; \\ & V_{P H P}= \\ & 0.4 \text { to } V_{D D}-0.4 \mathrm{~V} \end{aligned}$	0	-	± 3.0	mA

Charge pump PHI, speed up mode (note 1), $\mathrm{I}_{\mathrm{RN}}=-5$ to $-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{RF}}=\mathrm{V}_{\mathrm{DD}}$

$\mathrm{l}_{\text {PHI }}$	output current PHI	$\mathrm{CN} \times 2(\mathrm{CL}+1)$	± 8	± 10	± 12	mA
		$\begin{aligned} & \times C K \times I_{R N} \\ & =-320 \mathrm{~mA} ; \end{aligned}$				
		$\mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DD}} / 2$				
IPHI	output current PHI	$\mathrm{CN} \times 2(\mathrm{CL}+1)$	± 0.8	± 1.0	± 1.2	mA
		$\mathrm{xCK} \times \mathrm{IRN}$				
		$=-32 \mathrm{~mA}$;				
		$\mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DD}} / 2$				
		CN $\times 2(\mathrm{CL}+1) \times \mathrm{CK}$	-	-	15	\%
	variation PHI	$x I_{\text {RN }}=-320 \mathrm{~mA}$;				
		note2				
	CN monotonic output current range PHI	$\mathrm{CN}=0 \text { to } 255 ;$	0	-	± 10	mA
		$\mathrm{V}_{\mathrm{PH}}=$				
		0.4 to $\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$				

Fractional compensation PHP, normal mode (note 1), $\mathrm{I}_{\mathrm{RF}}=-5$ to $-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DD}}$

lPHP_F/FRD	fractional comp. output $\mathrm{I}_{\mathrm{RF}}=-76.8 \mu \mathrm{~A}$; current PHP versus FRD FRD $=1$ to 7 note 3	-700	-600	-500	nA
IPHP_F/FRD	fractional comp. output $I_{R F}=-7.68 \mu \mathrm{~A}$; current PHP versus FRD FRD $=1$ to 7 note 3	-70	-60	-50	nA

Fractional compensation PHP, speed up mode (note 1), $\mathrm{I}_{\mathrm{RN}}=-5$ to $-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DD}}$

| | $I_{\text {PHP_F }} /$ FRD | fractional compensation | $(2(C L+1)+1) \times I_{\text {RF }}$ | -4.5 | -3.6 | -2.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | mA

Fractional compensation PHI, speed up mode (note 1), $I_{R N}=-5$ to $-100 \mu A, V_{R N}=V_{D D}$

IPHI_F/FRD	fractional compensation	$2(C L+1) \times C K \times I_{\text {RF }}$	-16	-12	-8	$\mu \mathrm{A}$
	output current PHI versus FRD note 3	$\begin{aligned} & =-1536 \mu \mathrm{~A} ; \\ & \mathrm{FRD}=1 \text { to } 7 \end{aligned}$				
IPHIF/FRD	fractional compensation	$2(C L+1) \times C K \times I_{R F}$	-1.6	-1.2	-0.8	$\mu \mathrm{A}$
	output current PHI versus FRD note 3	$=-153.6 \mu \mathrm{~A} ;$				

Charge Pump Leakage Currents

\|PHP_L	output leakage current PHP	$\begin{aligned} & V_{R F}=V_{D D A} \\ & V_{R N}=V_{D D A} \\ & V_{P H P}=0 \text { to } V_{D D A} \end{aligned}$			± 10	$n \mathrm{~A}$
lphi_L	output leakage current PHI	$\begin{aligned} & V_{R F}=V_{D D A} \\ & V_{R N}=V_{D D A} \\ & V_{P H I}=0 \text { to } V_{D D A} \end{aligned}$	-	-	± 10	nA
IPHA_L	output leakage current PHA	$\begin{aligned} & V_{R F}=V_{D D A} \\ & V_{R N}=V_{D D A} \\ & V_{P H A}=0 \text { to } V_{D D A} \end{aligned}$	-	-	± 10	nA

note $1:$ When a serial input "A" word is programmed, the main charge pumps on PHP and PHI are in the "speed up mode" as long as STROBE $=H$. When this is not the case, the main charge pumps are in the "normal mode".
note 2:The relative output current variation is defined thus:
Δ lout $^{\prime} /$ lout $=2 \times\left(I_{2}+I_{1}\right) /\left|\left(I_{2}-I_{1}\right)\right| ;$ with $V_{1}=0.4 \mathrm{~V}, V_{2}=V_{D D}-0.4 \mathrm{~V}$ (see fig. 8)
note $3: F R D$ is the value of the 3 bit fractional accumulator

Fig. 8 Output current definition

AC CHARACTERISTICS

symbol	parameter	min	typ	max	unit
Main divider					
$\mathrm{f}_{\text {INM }}$	Max. input frequency	20	-	-	MHz
$\mathrm{V}_{\text {INM } 1,2}$	Differential input signal amplitude	600	-	-	mV pp
${ }_{\text {tPHL }}$	Prop. delay $\mathrm{V}_{\text {INM1 }}-\mathrm{V}_{\text {INM2 }}$ to falling edge FB1, FB2	.	-	25	ns
$t_{\text {PLH }}$	Prop. delay $\mathrm{V}_{\mathrm{INM} 1}-\mathrm{V}_{\mathrm{INM} 2}$ to rising edge FB1, FB2	-	-	25	ns
$t_{\text {MSM }}$	Mark-space ratio	35/65	-	65/35	\%
Z INM	Minimum impedance				
	Resistive,	5	-	-	$k \Omega$
	Capacitive	-	-	5	pF
Reference divider					
$\mathrm{f}_{\text {INR }}$	Max. input frequency	30	-	-	MHz
$V_{\text {INR }}$	Input signal amplitude	300	-	-	mV pp
$t_{\text {MSR }}$	Mark-space ratio	35/65	-	65/35	\%
ZIMR	Min. impedance				
	Resistive	5	-	-	$k \Omega$
	Capacitive	-	-	5	pF

AC CHARACTERISTICS (Con't)

Auxiliary					
fina	Max. input frequency	100	-	-	MHz
VINA	input signal amplitude	300	-	-	$m V_{p p}$
$t_{\text {MSA }}$	Mark-space ratio	35/65	-	-	\%
ZINA	Min. impedance				
	Resistive	5	-	-	$k \Omega$
	Capacitive	-	-	5	pF
Serial Interface $f_{\text {clock }}$	Clock frequency	-	-	10	MHz

DEFINITIONS

Data sheet status

Objective specification: This data sheet contains target or goal specifications for product development.

Preliminary specification: This data sheet contains preliminary data; supplementary data may be published later.

Product specification: This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
©Philips Export B.V. 1991
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not imply any license under patent- or other industrial or intellectual property rights.

1. INTRODUCTION

This application note is intended as a guide to designing a phase locked loop based on the Philips UMA1014T frequency synthesizer integrated circuit. The UMA1014T is a low power single chip solution to frequency synthesis in the range 100 MHz to 1100 MHz and is primarily intended for use in analogue cellular radio applications.

The device comprises of the following functional blocks:

- \quad RF dual-modulus prescaler.
- RF programmable divider.
- Reference oscillator.
- Reference programmable divider.
- Digital phase comparator.
- In-lock detection circuitry.
- \quad I2 C serial programming interface.

In addition, the device features a power down mode for battery conservation and a XTAL/8 output for use with the Philips cellular radio chipset. The only major external component required is a voltage controlled oscillator (VCO).

This application report presents a design for a frequency synthesizer based on the UMA1014T suitable for the local oscillator for analogue cellular radio applications in the 900 MHz band. A PCB layout is suggested. For detailed device specifications of the UMA1014T refer to the data sheet (Reference 1).

2. FUNCTIONAL DESCRIPTION OF THE UMA1014T

The main functions are illustrated in a Phase Lock Loop (PLL) block diagram (Fig 1). A temperature controlled crystal oscillator (TCXO) provides a reference frequency to the PLL. A phase comparator uses a charge pump to send correction current pulses to a low pass filter. The filter integrates the pulses giving a voltage which controls a VCO. VCO and TCXO o/ps are divided down to a common comparison frequency to control the phase comparator. When the $\mathrm{VCO} o / \mathrm{p}$ is on frequency the current pulses need only be large enough to cancel leakage currents thus maintaining the required voltage on the VCO.

2.1 Main Divider Chain

The UMA1014T contains a fully programmable main divider chain with an on-chip RF prescaler. The range of the main divider is from 2048 to 262143 , thus permitting all useful phase detector comparison frequencies over the full range of input frequencies.

2.2 Reference Divider Chain

Since current analogue systems have only a few different channel spacings, and in any system there is a restricted choice of reference crystal frequencies, the UMA1014T implements a reference divider with limited programmability. A total of 16 different division ratios can be selected which enables all the required phase detector comparison frequencies to be generated. These ratios are $128,160,192,240,256,320,384,480,512,640$, $768,960,1024,1280,1536$ and 1920.

In addition, there is one eighth of the crystal frequency available on an output for use with the Philips cellular radio chipset. This chipset uses a 1.2 MHz clock for the analogue and digital baseband circuits which is provided by the frequency synthesizer; the synthesizer thus requires the use of a 9.6 MHz crystal in this application.

2.3 Phase Detector

There are three requirements for the phase detector; firstly it should cover the full 360 degree phase range, secondly it should have good noise performance, and thirdly it should have good comparison frequency suppression. In order to meet these requirements, the use of a high gain digital phase comparator is beneficial. The comparator covers the complete phase range while introducing little noise owing to the high proportion of time that is spent in a high impedance state. Good reference rejection is achieved due to low leakage currents.

2.3.1 Digital Phase Comparator

The Digital Phase Comparator (PCD) has three states, sinking current, sourcing current and a high impedance tristate. The design is based on D type flip-flops and responds to the full 360 degree range of phase inputs. The D type flip-flops control two current sources arranged in a push pull configuration. PCD delivers a constant current while the main and reference dividers are out of phase, either sinking or sourcing (Fig 2). The current IPCD is programmed via the I2C interface to be either 1 mA or 0.5 mA . The phase comparator gain is hence:

$$
\begin{equation*}
P C D \text { gain }=\frac{I P C D}{2 x \mathrm{n}} \mathrm{~A} / \mathrm{rad} \tag{1}
\end{equation*}
$$

The phase comparator circuit incorporates a delay which eliminates a dead band that would otherwise be present in digital phase comparators. Dead bands are due to the finite time the current sources take to switch on. The design of the UMA1014T takes this into account by introducing the delay into the D type reset line. This gives the current sources enough time to respond. Both current sources are switched on for the duration of the delay thus cancelling each other at PCD.

3. INTERFACING TO THE UMA1014T

The UMA1014T provides two way communication to a controller, power down facility, programmable o/p ports, oscillator circuitry and PLL control. The UMA1014T is designed to have the minimum of external components to enable low cost, compact and reliable circuits.

3.1 Programming the UMA1014T

The UMA1014T is programmed via the Philips Standard I2C bus. To program information into the device registers, it is necessary to transmit first the device address, then the sub-address, and finally the data bytes for the register(s) (Reference 2). To read the status register, it is only necessary to transmit the address before reading back the value of the status register. When writing to the UMA1014T the sub-address allows writing to any single register, or a burst mode where all registers can be written in one $\mathrm{I}^{2} \mathrm{C}$ transfer. The formats are thus:

Write to one register:
START - address - sub-address - data - STOP contains register number to be accessed R/WN (read/write not) bit set to 0 (write)

Write to several registers:

Read from status register:

The address byte, in addition to containing the R/WN bit as shown above, has one bit that reflects the inverse of the SAA pin logic level. This allows the addressing of up to two synthesizer circuits on the same I2 C bus.

The format for the address bus is as follows:
 0 (write), 1 (read) opposite logic level to that of SAA pin MSB of device address, transmitted first after START condition

The sub-address has the following format: (X means not used)

 register pointer auto-increment-0 (disable), 1 (enable) SYA interrupt - 1 (disable), 0 (enable)

The status register relates to the alarm of the ciruit as follows:

0	0	0	00 L	0	L00L	LPD	DI
Each bitis active high.							

00L Momentarily out of lock, L00L Latched out of lock (\dagger),
LPD Latched power dip (\dagger), DI Interupt disabled on SYA,
(\dagger) Reading status register clears these if the error condition has been removed.

Data is formatted as a series of registers as follows:

Reg/ister	$\left\lvert\, \begin{array}{ll} \infty & 6 \\ 0 \\ 0 \\ - & 0 \end{array}\right.$	Bit Allocation								Preset
		7	6	5	4	3	2	1	0	
A	00	PD	0	IPCD	X	RD3	RD2	RD1	RD0	00001110
B	01	1	0	1	PHI	VCOB	VCOA	MD17	MD16	10101001
C	10	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	00111000
D	11	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	10000000

Register map bit polarities:
0
PD
IPCD
RD3..0 Reference divider ratio MSB = RD3

PHI Passive loop (no inversion)
VCOA Set pin 7 low
VCOB Set pin 13 low
MD17..0 Main divider ratio MSB = MD17

1
Power down
$\mathrm{PCD}=1 \mathrm{~mA}$

Active loop (Phase inversion)
Set pin 7 high
Set pin 13 high

RD3..RD0 reference divider programming:

RD3	RD2	RD1	RD0	Reference Division Ratio
0	0	0	0	128
0	0	0	1	160
0	0	1	0	192
0	0	1	1	240
0	1	0	0	256
0	1	0	1	320
0	1	1	0	384
0	1	1	1	480
1	0	0	0	512
1	0	0	1	640
1	0	1	0	768
1	0	1	1	960
1	1	0	0	1024
1	1	0	1	1280
1	1	1	0	1536
1	1	1	1	1920

MD17..MD0 main divider value 2048 to 262143 (hex $\$ 800$ to $\$ 3$ ffff).

3.2 Hardware Control Inputs and Outputs

There are a number of status and control signals generated by the UMA1014T and also a hardware control input.

3.2.1 HPD Input

This input is used to disable the divider chains in order to save power when the synthesizer is not required to be operational. The power down state can be activated either by taking this pin low or by setting the power down bit in the I'C register to a ' 1 '. The input has an internal pull-up resistor so that normal operation will be obtained if the pin is left open circuit.

The power down state does not have any effect on the I2C circuitry, so that the device may still be addressed, and new information programmed into the registers even in the power down mode.

3.2.2 FX8 Output

This is an open collector output of one eighth of the crystal or TCXO input frequency. It is required for use with the Philips cellular radio chipset for AMPS and TACS systems; in this application the synthesizer should be used with a 9.6 MHz TCXO. The recommended pull-up load is 27 k Ohm .

3.2.3 SYA (Synthesizer Alarm) Output

This is an open collector output which is normally held high by an external 27 k Ohm load. Under error conditions, the synthesizer latches SYA low. The error conditions that set SYA low are a power dip or an out-of-lock condition. A power dip occurs when VCC supply falls below about 3.5 V . SYA is reset again by reading the status register, which contains the relevant alarm information. The SYA output can also be enabled and disabled via ${ }^{2}{ }^{2} \mathrm{C}$ as required.

The typical use of SYA would be to interrupt a microcontroller to warn of the error condition. As the output is open collector, it is possible to connect more than one device together directly; in this case the microcontroller would poll the relevant devices to locate the source of the error condition.

3.2.4 VCO0 and VCO1 Outputs

These are open collector outputs and are intended for enabling the power supply to VCOs or buffer stages so that these parts of the set can be powered down when not required to be operational. The outputs are controlled via $\mathrm{I}^{2} \mathrm{C}$. In addition, the VCOO output is forced low during an out-of-lock condition; this output could therefore be used to disable the transmitter when this condition occurs to prevent causing interference. In this case, there may well be other parts of the circuitry also controlling the transmitter in the same way; as the VCOO and VCO1 lines are open collector, they may be directly connected to other such controlling signals.

The VCO1 output is not affected by the hardware power down input or power down via $\mathrm{I}^{2} \mathrm{C}$. The VCO0 output will of course be forced low due to the out-of-lock condition resulting from a power down.

3.3 Crystal Oscillator

For analogue cellular radio applications, the UMA1014T will almost certainly be used with an external oscillator in order to provide the stability necessary to ensure operation within the specification. However, in case some other applications do not require such accuracy, provision has been made to form a crystal oscillator using the OSCIN and OSCOUT inputs (pins 1 and 2 respectively). The oscillator circuit should be of the Colpitts type and requires the addition of four capacitors to function. This is shown in Fig 3, with capacitor values suitable for operation at 9.6 MHz .

The internal biasing provides possible operation over the range 3 MHz to 16 MHz with the addition of a suitable crystal. It may be necessary to adjust the values of the capacitors slightly to guarantee oscillation under all conditions for frequencies significantly different to 9.6 MHz .

The crystal used in this circuit is parallel resonant, fundamental mode, with a load capacitance of 30 pF which is approximately the series combination of the three fixed capacitors in parallel with the trimmer capacitor.

Application report for the UMA1014T frequency synthesizer

3.4 External Oscillator

When using an external oscillator such as a TCXO module, the output from the oscillator should be connected directly to the OSCin pin (pin 1). The OSCout pin (pin 2) should either be left open circuit, or could be used as a buffered version of the signal applied to OSCin.

3.5 RF Connection to Main Divider

The output from the VCO needs to be split between the synthesizer RF o/p and the UMA1014T main divider input. A matched splitter is used as shown in Fig 4. Ideally, the splitter should provide maximum isolation to the VCO to prevent pulling or modulation due to changes in the load impedance at the $\mathrm{RF} \mathrm{o} / \mathrm{p}$ and main divider input. The amount of isolation is limited by the required RF output power and the main divider input sensitivity. Emphasis is placed on the importance of providing sufficient isolation between the VCO and the main divider to keep spurious modulations at a minimum level.

3.6 Loop Filter Design

The correct design of the loop filter is of considerable importance to the optimum performance of the synthesizer. The filter should be designed so as to achieve the required compromise between noise performance and switching time. The actual circuit will therefore depend on the particular application. A procedure has been established to ensure quick and simple loop filter design. The method, based on first order approximations, provides a working solution without a need for computer simulation and modelling.

Design Procedure

For typical applications a passive loop is used thus removing the need for an operational amplifier. The following design is based on a second order low pass filter (Reference 3). Then, for applications requiring further reference breakthrough rejection, a third order is incorporated. The third order loop filter is used for circuits and measurements in this report.

Application report for the UMA1014T frequency synthesizer

Loop parameters are first chosen, these are:

- Radio frequency RF
- Comparison frequency CF
- Switching time St
- Minimum modulating frequency MF
- VCO gain rad/Volt Ko
- Phase comparator gain Amps/rad Kd
- Phase margin ф

Determine the loop bandwidth Fn from

$$
\begin{equation*}
\frac{3}{\text { switching time }}=F n \tag{2}
\end{equation*}
$$

Determine main divider ratio N from $\quad N=R F / C F$
Determine angular velocity wn rads/sfrom wn $=2 \times \mathrm{n} \times \mathrm{Fn}$

The loop filter circuit (Fig 5) has three time constants, these are:

$$
\begin{array}{ll}
\bullet & \mathrm{T} 1=\mathrm{C} 3 \times \mathrm{R} 2 \\
\bullet & \mathrm{~T} 2=\mathrm{R} 2 \times \mathrm{C} 1 \times \mathrm{C} 3 /(\mathrm{C} 3+\mathrm{C} 4) \\
- & \mathrm{T} 3=\mathrm{C} 2 \times \mathrm{R} 1 \tag{6}
\end{array}
$$

The second order loop is designed by omitting R1 and C2 (T3) and uses the equations below:

$$
\begin{align*}
& T 2=\frac{1}{\frac{\operatorname{COS} \phi}{w n}-T a n \phi} \tag{7}\\
& T 1=1 /\left(w n^{2} \times T 2\right) \\
& C 3+C 1=K \sqrt{\frac{1+(w n \times T 1)^{2}}{1+(w n \times T 2)^{2}}} \tag{9}
\end{align*}
$$

Application report for the UMA1014T frequency

 synthesizer$$
\begin{align*}
& \text { where } K=\frac{K d x K o}{N x w n^{2}} \tag{10}\\
& C 1=\frac{T 2 x(C 3+C 1)}{T 1} \tag{11}\\
& C 3=(C 3+C 1)-C 1 \tag{12}\\
& R 2=T 1 / C 3 \tag{13}
\end{align*}
$$

Measuring the reference spurs and comparing with a particular specification establishes if a third order is necessary.

If a further ' A ' $d B$ of breakthrough suppression is needed to meet specification, then $T 3$ is included to make a third order filter. Note ' A ' should not be so large that $\mathrm{T} 3 \times 10>\mathrm{T} 1$. A good starting value for ' A ' is 20 dB .

$$
\begin{equation*}
T 3=\sqrt{\left(\frac{10^{(A / 20)}-1}{(2 x \mathrm{n} x F c)^{2}}\right)} \tag{14}
\end{equation*}
$$

T2 determines the loop stability and remains the same as for 2nd order loop.

A calculated value of closed loop bandwidth wne is used. This is usually slightly less than wn so the switching time will be slightly longer than originally specified.

$$
\begin{align*}
& w n c=\frac{(T 2+T 3)}{T 2^{2}} x \tan \phi x\left(\sqrt{1+\frac{4 x T 2^{2}}{(2 x \tan \phi x(T 2+T 3))^{2}}}-1\right) \tag{15}\\
& T 1=\frac{1}{w n c^{2} x(T 2+T 3)} \tag{16}\\
& C 3+C 1=K \sqrt{\frac{1+(w n c x T 1)^{2}}{\left(1-w n c^{2} x T 2 x T 3\right)^{2}+\frac{T 3+T 2}{T 1}}} \tag{17}
\end{align*}
$$

Application report for the UMA1014T frequency synthesizer

$$
\begin{aligned}
& \text { where } K=\frac{K o x K d}{N x w n c^{2}} \\
& C 1=\frac{(C 3+C 1) x T 2}{T 1} \\
& C 3=(C 3+C 1)-C 1
\end{aligned}
$$

$$
C 2=C 1 / 16
$$

$$
R 2=T 1 / C 3
$$

$$
\begin{equation*}
R 1=T 3 / C 2 \tag{23}
\end{equation*}
$$

For a successful filter it is important that $\mathrm{C} 3 \gg \mathrm{C} 1$ and $\mathrm{C} 1 \gg \mathrm{C} 2$.

3.6.1 Worked Example

As an example the design of the third order loop filter for the UMA1014T under the following conditions is shown below. This design on the PCAL1143-1 board suitable for ETACS transmit application. Switching time is set sightly shorter than expected to compensate for the reduction in the final loop bandwidth Fnc.

VCO frequency	$=888 \mathrm{MHz}$
VCO gain \quad Ko	$=13 \mathrm{MHz} / \mathrm{V}$
	$=25 \mathrm{kHz}$ (with half channel offset)
Channel spacing	
Reference oscillator	$=9.6 \mathrm{MHz}$
Switching time	$=12 \mathrm{~ms}$ (for a requirement $<14 \mathrm{~ms}$)
Min mod frequency	$=300 \mathrm{~Hz}$
Phase margin(degrees)	$=45$
Additional reference	
Rejection	$=20 \mathrm{~dB}$

In this example the phase comparator gain Kd chosen is $1 \mathrm{~mA} /$ cycle as opposed to 0.5 mA / cycle. In open environments a loop based on this is less susceptible to interference as capacitor values are higher. A comparison frequency of 12.5 kHz is chosen to allow for the half channel offset specified in ETACS.

The first order loop bandwidth Fn:

$$
\begin{equation*}
\frac{3}{12 \times 10^{3}}=250 \mathrm{~Hz} \quad \mathrm{wn}=2 x \text { п } x \mathrm{Fn}=1570 \mathrm{rads} / \mathrm{s} \tag{2}
\end{equation*}
$$

The main divider ratio N :

$$
\begin{align*}
& \frac{888 \times 10^{6}}{12.5 \times 10^{3}}=71040 \tag{3}\\
& T 2=\frac{\frac{1}{\cos 45}-\tan 45}{1570}=2.64 \times 10^{-4} \tag{7}\\
& \left.T 3=\sqrt{\left(\frac{10^{20 / 20}-1}{(2 \times \pi \times 12500)^{2}}\right.}\right)=3.82 \times 10^{-5} \\
& w n c=\frac{\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right) \times \tan 45}{\left(2.64 \times 10^{-4}\right)^{2}} x
\end{align*}
$$

$$
\begin{equation*}
\left(\sqrt{1+\frac{4 \times\left(2.64 \times 10^{-4}\right)^{2}}{\left(2 \times \tan 45 \times\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right)\right)^{2}}}-1\right)=1421 \tag{15}
\end{equation*}
$$

$$
T 1 \frac{1}{1421^{2} \times\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right)}=1.64 \times 10^{-3}
$$

Application report for the UMA1014T frequency

 synthesizer$$
\begin{equation*}
K=\frac{13 \times 10^{6} \times 10^{-3}}{71040 \times 1421^{2}}=9.04 \times 10^{-8} \tag{18}
\end{equation*}
$$

$$
C 1+C 3=K \sqrt{\left(1-1421^{2} \times 2.64 \times 10^{-4} \times 3.82^{-5}\right)^{2}+\frac{3.82 \times 10^{-5}+2.64^{-4}}{1.64 \times 10^{-3}}}
$$

$$
=2.14 \times 10^{-7}
$$

$$
\begin{equation*}
C 1=\frac{2.14 \times 10^{-7} \times 2.64 \times 10^{-4}}{1.64 \times 10^{-3}}=3.45 \times 10^{-8} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
C 3=2.14 \times 10^{-7}-3.45 \times 10^{-8}=1.8 \times 10^{-7} \tag{20}
\end{equation*}
$$

$C 2=3.45 \times 10^{-8} / 16=2.15 \times 10^{-9}$

$$
R 2=1.64 \times 10^{-3} / 1.8 \times 10^{-7}=9111
$$

$$
R 1=3.82 \times 10^{-5} / 2.15 \times 10^{-9}=17767
$$

Check C2 \ll C1 \ll C3.

Values chosen for filter components are:

$$
\begin{array}{llll}
\mathrm{C} 1=33 & \mathrm{nF} & \mathrm{R} 1=18 & \mathrm{k} \mathrm{Ohms} \\
\mathrm{C} 2=2.2 & \mathrm{nF} & \mathrm{R} 2=10 & \mathrm{k} \mathrm{Ohms} \\
\mathrm{C} 3 & =180 \mathrm{nF} & &
\end{array}
$$

3.7 PCB Layout Considerations

The circuit of the UMA1014T demonstration board (PCAL1143-1) is shown in Fig 6, with the layout shown in Fig 7. This PCB has a solid ground plane on one side (apart from isolated pads for non-grounded connections to leaded components). In addition, there are areas of ground plane on the surface mount side of the board to ensure satisfactory grounding of important components. There are a good number of plated-through holes connecting the two layers of ground plane. Normal RF design practices should of course be taken into account when laying out the circuit.

There are a number of particular points that should be borne in mind when considering the circuit and layout.

- The non-surface mount side of the board (if a 2 sided board is used) should be virtually solid ground plane to give good RF performance.
- The 5 V digital supply (VCC) should be well decoupled as close to the pin as possible, preferably with a large value capacitor (eg: 47 uF) and in series with a small value resistor (eg: 12 Ohms) from the 5 V line.
- The 5 V charge pump supply (VCP) should be decoupled separately from VCC but in a similar manner. Routing the 5 V supply under the IC is to be avoided.
- Incorporating a ground plane on the surface mount side of the PCB underneath the synthesizer helps isolate digital noise from the charge pump parts. This ground plane should be well connected with vias to the full ground plane.

4. TYPICAL PERFORMANCE

This section describes the typical performance obtainable with the UMA1014T with the circuit shown in Fig 6 and parameters listed in 3.6.1. The relevant performance criteria for a synthesizer are usually:

Close-in phase noise (ie: noise within the loop bandwidth).

Noise floor at an offset from the carrier.

Comparison breakthrough components.

Switching time.

It should be noted of course that these criteria can be traded off against each other to some extent to tailor the overall performance, and that the performance described here is only one compromise between the various criteria. In general, the choice of a low loop bandwidth will improve the comparison frequency breakthrough and will filter out more of the close-in phase noise, but will result in a longer switching time. The use of a higher order filter can improve comparison frequency breakthrough with little effect on the noise or switching time. The noise floor at offsets significantly higher than the loop bandwidth are determined completely by the VCO itself.

Plots of the close-in spectrum (span of 2 kHz) and also a span of 50 kHz are shown in Figs 8 and 9 respectively for a carrier frequency of 888 MHz and a comparison frequency of 12.5 kHz . From Fig 8 we can see from the noise plateau that the loop bandwidth is around 270 Hz , and Fig 9 shows the spectrum analyser noise floor at offsets greater than about 15 kHz from the carrier with the first and second comparison frequency breakthrough component being visible at 12.5 kHz and 25 kHz from the carrier respectively.

Figure 10 shows switching waveforms for a frequency jump of 10 MHz . The top trace (labelled CH1) is the I2C transfer to the UMA1014T; the second (CH2) is the VCO control line. The third trace (CH3) is the VCOA output showing the out-of-lock condition. The fourth trace $(\mathrm{CH} 4)$ is the RF output of the VCO mixed down to 0 Hz with a signal generator at the destination frequency. The VCO output is coupled to the mixer via an amplifier with 17 dB gain followed by a 10 dB attenuatur. This is to provide isolation to the VCO from the mixer.

The mixer output trace shows that the switching time is 13 m seconds, which is a little longer than the VCO control line trace appears to show. This is because observation of the VCO control line is not accurate due to the very high VCO gain ($13 \mathrm{MHz} / \mathrm{V}$).

From Fig 10, we can see that the VCO control line has a single overshoot during switching; this shows that the loop is properly damped, so the phase margin is correct.

To summarise the performance of the circuit in Fig 6:
loop bandwidth
close-in noise $\quad-55 \mathrm{dBc} / \mathrm{Hz}$ at 200 Hz from carrier

VCO noise floor $\quad-113 \mathrm{dBc} / \mathrm{Hz}$ at 25 kHz from carrier
residual fm
comparison frequency breakthrough -65 dBc at 12.5 kHz
typical switching time
-82 dBc at 25 kHz
270 Hz
$<18 \mathrm{~Hz}$ rms, CCITT weighted
$<13 \mathrm{~m}$ seconds for 10 MHz jump to within 1 kHz of the destination frequency

5. CONCLUSIONS

Information regarding the use of the UMA1014T in a frequency synthesizer application has been presented. A methodology for determining the loop filter components has been described since the switching and noise performance of the complete circuit depends on a good filter design. The layout of the PCAL1143-1 demonstration board has been shown as an example PCB layout.

6. REFERENCES

1. UMA1014T, Initial Specification Data Sheet, September 1990.
2. N M W Oatley;
Application Information for the UMA1010T/UMA1012T,
Philips Components Application Report MC090001.
3. Ulriche, L Rhode;

Digital PLL Frequency Synthesizers Theory and Design. 28/3/91.

Fig 1 PLL Circuit Block Diagram

Fig 2 Digital Phase Comparator Operation

Fig 3 Crystal Oscillator Circuit Diagram
\qquad

Fig 4 RF Power Splitter Circuit Diagram

888 MHz
$13 \mathrm{MHz} / \mathrm{V}$

Fig 5 Loop Filter Circuit Diagram

Fig 6 Frequency Synthesizer Circuit using the UMA1014T
t00 L6NV/OOS

Application report for the UMA1014T frequency synthesizer

Fig 7 Board Layout for UMA1014T Frequency Synthesizer

Application report for the UMA1014T frequency synthesizer

```
UMA1ø14T ETACS TX IPCD=1mA MKR 888.øøø25ص MHz
```


Fig 8 Typical Carrier Spectrum - 2 kHz Span

Application report for the UMA1014T frequency synthesizer

UMA1Ø14T ETACS TX IPCD=1mA REF -5.6 dBm ATTEN $1 \varnothing \mathrm{~dB}$

p

 $10 \mathrm{~dB} /$ SAMPLE $V I D$10 | | | | | |
| :--- | :--- | :--- | :--- | :--- |

MKR $\triangle 12.1 \varnothing \mathrm{kHz}$ $-64.60 \mathrm{~dB}$

Fig 9 Typical Carrier Spectrum - 50 kHz Span

Application report for the UMA1014T frequency synthesizer

Fig 10 Typical Switching Waveforms

GENERAL DESCRIPTION

The UMF1009T is a low-power, high performance dual modulus frequency synthesizer designed in CMOS technology. The device is designed for use in channelled VHF/UHF applications, especially portable and mobile radios. The synthesizer is programmed via the standard two-line serial $1^{2} \mathrm{C}$-bus.

FEATURES

- On-chip sample-and-hold capacitor
- Low power consumption
- High gain phase comparator with low levels of noise and low level spurious outputs
- Digital phase comparator for fast locking
- On-chip crystal oscillator from 2.4 to 16.8 MHz ; circuit can be used with a crystal or a tuned-circuit TCXO
- A large reference frequency range at the phase detector (binary 15-bit programmable reference counter)
- In-lock detector open-drain output

- 1.2 MHz output for easy interface to the other cellular radio chip set devices
- Single supply voltage (2.7 to 5.5 V).

ORDERING INFORMATION

EXTENDED	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UMF1009T	16	SO16	plastic	SOT109A

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply voltage range						
VDDD VDDA	supply voltage digital supply voltage analog		$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Operating current						
$\begin{aligned} & \text { IDDD } \\ & I_{\text {DDA }} \end{aligned}$	digital analog	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \end{aligned}$	- - -	-	$\begin{aligned} & 1.5 \\ & 0.8 \\ & 1.0 \\ & 0.6 \end{aligned}$	mA mA mA mA
Frequency range						
f_{1} fosc	input frequency crystal frequency range	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2.4 \\ & 2.4 \end{aligned}$	- - -	$\begin{array}{\|l\|} \hline 18.0 \\ 8.0 \\ 16.8 \\ 8.0 \\ \hline \end{array}$	MHz MHz MHz MHz
Temperature						
Tamb	operating ambient temperature range		-40	-	+85	${ }^{\circ} \mathrm{C}$

Fig. 1 Block diagram.

Fig. 2 Pin configuration.

PINNING

SYMBOL	PIN	DESCRIPTION
PCA	1	analog phase detector output
PCD	2	digital phase detector output
IL	3	in-lock detector output (HIGH when in lock)
$\mathrm{V}_{\text {SS }}$	4	ground
DIV ${ }_{\text {ref }}$	5	reference divider input
XTAL	6	output to external crystal
F12	7	1.2 MHz output
DIV_{1}	8	main divider input from prescaler
FB	9	feedback output for prescaler modulus control
V ${ }_{\text {DDD }}$	10	digital supply; 2.7 to 5.5 V
AO	11	address input 0
A1	12	address input 1
SDA	13	serial data input/output
SCL	14	serial clock input
$\mathrm{V}_{\text {DDA }}$	15	analog supply; 2.7 to 5.5 V
RA	16	PCA gain setting resistor

Low power frequency synthesizer for radio communication

FUNCTIONAL DESCRIPTION

Figure 1 shows the functional block diagram of the UMF1009T.
The main divider, reference divider, phase detectors and the $\mathrm{I}^{2} \mathrm{C}$-bus interface are described in the subsequent sections.

Main divider

The main divider is a rate-feedback binary type comprising a fixed 7-bit binary divider and two rate selectors n 1 and n 0 . One rate selector controls a 7-bit fully programmable dual modulus divider ($\mathrm{n} 2 / \mathrm{n} 2+1$), and the other controls an external dual modulus prescaler (A/A +1). The total division ratio is given by:
$N=(128 . n 2+n 1) \cdot A+n 0$

Where:
$0 \leq n 0 \leq 127,0 \leq n 1 \leq 127$ and $1 \leq n 2 \leq 127$

Thus if the division ratio is expressed as a binary number and A is chosen to be 128 , then the n 0 rate selector will contain the least significant bits, the n 1 selector the next 7 bits and the n 2 divider the most significant 7 bits. If A is chosen to be a lower power of 2 , then the number of bits of the $n 0$ divider that require programming can be reduced. For example, if $A=32$, then only 5 bits of n0 need to be programmed and the most
significant 2 bits can remain at zero while still retaining full programmability. If the most significant bits of nO are used in this situation, then several combinations of values for the $n 0, n 1$ and $n 2$ counters will give the same division ratio.

The output from the programmable divider is fed to the phase detectors.

Fig. 3 Main divider structure.

Reference divider

The reference oscillator chain comprises a crystal oscillator and dividers to produce the required frequency to drive the phase detectors. The oscillator stage is a simple inverter connected between pin 6 (XTAL) and pin 5 ($\mathrm{DIV}_{\text {reft }}$. Satisfactory operation is achieved using a crystal up to 16.8 MHz ($\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$), (up to $8 \mathrm{MHz} \mathrm{V}_{D D}=2.7 \mathrm{~V}$). Alternatively, the DIV ref input may be used as a buffer amplifier for an external reference oscillator.

The reference divider contains two sections; the first divider section is programmed to divide by a suitable ratio to give the correct 1.2 MHz output frequency. The second divider section will now operate at 2.4 MHz and is fully programmable. Thus the input frequency at DIV $_{\text {ref }}$ can be any of the frequencies given in Table 1.

If the 1.2 MHz output is not required, then the n 4 divider can be programmed to any suitable value. Setting $n 4=1$ will give access to the fully programmable $n 3$ reference divider without any fixed division. The n3 divider is fully programmable over the range 12 to 4095 to allow complete flexibility in the choice of input frequency to the $\mathrm{DIV}_{\text {ref }}$ pin for the required reference frequency.

The total reference division is given by: $N=n 3 \times n 4$

Where:

```
12\leqn3 \leq 4095 (FFF hex)
    1\leqn4\leq7
```


Phase detectors

There are two phase detectors which work in close co-operation to provide

Table 1 DIV ${ }_{\text {ref }}$ input frequencies

n4	DIV ${ }_{\text {ref }}$ input for 1.2 MHz output	n3 for reference frequency	
		12.5 kHz	15 kHz
1	2.4 MHz	192	160
2	4.8 MHz	192	160
3	7.2 MHz	192	160
4	9.6 MHz	192	160
5	12.0 MHz	192	160
6	14.4 MHz	192	160
7	16.8 MHz	192	160

MLA216
Fig. 4 Reference divider structure.
both a good noise performance and fast frequency locking over a large range. Phase detector 1 (PCA) is the main analog detector. It is designed to have a high gain, typically
$\frac{5 \times 10^{12} \times\left(\mathrm{V}_{\text {DDD }}-0.7\right)}{\mathrm{R}_{\mathrm{A}} \times \text { fDIV }_{(\text {ref })}}$ V/Cycle thus enabling low noise operation to be achieved. Phase comparator 2 (PCD) is a digital phase comparator with a linear 2π radians phase range corresponding to a gain of $V_{\text {Dod }}$ (2 V/cycle.

In order to avoid degrading the noise performance of PCA, once a small phase error has been achieved, an internal switch is used to disconnect PCD.

PCA phase detector

The analog phase detector consists of a linear ramp generator and a sample-and-hold circuit. At the beginning of the reference cycle an internal capacitor is charged from a constant current source to give the linear ramp. The output voltage from the capacitor is buffered by a voltage follower. When both the main and reference divider outputs are in phase, the ramp is terminated. After a short delay, to allow the voltage follower to settle, the follower output is sampled and held by a second internal capacitor. This is buffered and routed to the PCA output pin. After the sample has been acquired, the first capacitor is discharged by a constant current sink to provide a controlled discharge, thus minimizing the disturbance to the sample-andhold circuit.

If the linear ramp approaches the value of the analog supply rail and
the two divider outputs are not in phase, then the digital phase comparator PCD will be enabled and an out-of-lock error will be indicated as a LOW state on the open drain output IL (pin 3).

To allow for more flexibility in the design of the loop dynamics, the gain of PCA is controlled by a variable resistor connected between RA and $\mathrm{V}_{\text {SS }}$. This resistor controls a current
source via a current mirror; a typical value for the resistor is $470 \mathrm{k} \Omega$.

PCD phase comparator

The output of the PCD is a series of positive ($V_{D D}$) or negative ($V_{S S}$) voltage pulses with variable width which is dependent on the phase relationship of the main and reference divider outputs. During the time the two outputs are in phase,
the output from PCD is in a high impedance state. If PCA is in its operating range then $P C D$ is disabled. The enable signal for PCD is inverted and routed to the IL pin so that when PCD is enabled, pin IL is pulled LOW.

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {DDA }}$	supply voltage (analog)		-0.5	6.5	V
$\mathrm{~V}_{\mathrm{DDD}}$	supply voltage (digital)		-0.5	6.5	V
$\mathrm{~V}_{\mathrm{I}}$	voltage on any input		-0.5	$\mathrm{~V}_{\mathrm{DDD}}+0.5$	V
$\mathrm{~V}_{\mathrm{DDD}}-\mathrm{V}_{\mathrm{DDA}}$	relative supply voltage		-	0.5	V
I_{I}	DC current into any input or output		-10	+10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	$\mathrm{T}_{\mathrm{amb}}=0$ to $+85^{\circ} \mathrm{C}$	-	400	mW
P_{D}	power dissipation per output		-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature range		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature range		-40	+85	$0^{\circ} \mathrm{C}$

Low power frequency synthesizer for radio communication

DC CHARACTERISTICS

Tamb $=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL \& PARAMETER \& CONDITIONS \& MIN. \& TYP. \& MAX. \& UNIT \\
\hline \multicolumn{7}{|l|}{Supply voltage} \\
\hline \begin{tabular}{l}
VDDA \\
\(V_{D D D}\)
\end{tabular} \& analog supply digital supply \& \& \[
\begin{aligned}
\& 2.7 \\
\& 2.7
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 5.5 \\
\& 5.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Supply current (note 1)} \\
\hline \[
\begin{aligned}
\& \hline \text { IDDA } \\
\& \text { IDDD }
\end{aligned}
\] \& analog supply digital supply \& \[
\begin{aligned}
\& V_{D D}=5 \mathrm{~V} \\
\& V_{D D}=3 \mathrm{~V} \\
\& V_{D D}=5 \mathrm{~V} \\
\& V_{D D}=3 \mathrm{~V}
\end{aligned}
\] \& -
-
- \& - \& \[
\begin{aligned}
\& \hline 1 \\
\& 0.6 \\
\& 1.5 \\
\& 0.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA} \\
\& \mathrm{~mA} \\
\& \mathrm{~mA} \\
\& \hline
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Logic} \\
\hline V \(\mathrm{V}_{\text {IL }}\)
\(\mathrm{V}_{\text {OL }}\)
\(\mathrm{V}_{\mathrm{OH}}\)
VOL

VOL

VOH \& | input voltage LOW input voltage HIGH CMOS output voltage LOW CMOS output voltage HIGH output voltage LOW (IL, PCD and F12) |
| :--- |
| SDA output voltage LOW |
| output voltage HIGH (PCD, FB and F12) |
| leakage current PCD 3-state mode CMOS inputs/outputs | \& \[

$$
\begin{aligned}
& \mathrm{lO}<1 \mu \mathrm{~A} \\
& \mathrm{lO}<1 \mu \mathrm{~A} \\
& \mathrm{~V} D \mathrm{DD}=4.5 \mathrm{~V} ; \\
& \mathrm{lOL}=2 \mathrm{~mA} \\
& \mathrm{VDD}=2.7 \mathrm{~V} ; \\
& \mathrm{lOL}=1 \mathrm{~mA} \\
& \mathrm{VDD}=4.5 \mathrm{~V} ; \\
& \mathrm{lOL}=3 \mathrm{~mA} \\
& \mathrm{VDD}=2.7 \mathrm{~V} \\
& \mathrm{lOL}=1.5 \mathrm{~mA} \\
& \mathrm{VDD}=4.5 \mathrm{~V} ; \\
& -\mathrm{loL}=2 \mathrm{~mA} \\
& \mathrm{VDD}=2.7 \mathrm{~V} ; \\
& -\mathrm{lOL}=1 \mathrm{~mA}
\end{aligned}
$$
\] \& -0.5

$0.7 V_{D D D}$
$V_{D D D}-0.05$
-
-
-
-
$V_{D D D}-0.5$
$V_{D D D}-0.5$ \& -
-
-
-
-
-
-
-
-
-

- \& $0.3 V_{D D D}$
$V_{D D D}+0.5$
50
-0.4
0.4
0.4
0.4
-
-

50

100 \& | V |
| :--- |
| V |
| mV |
| V |
| V |
| v |
| v |
| v |
| v |
| v |
| nA |
| nA |

\hline \multicolumn{7}{|l|}{Analog output current (pin 1)}

\hline | $I_{\text {sink }}$ |
| :--- |
| Isource | \& | sink current |
| :--- |
| source current | \& | $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$; |
| :--- |
| $\mathrm{V}_{\mathrm{PCA}}=\mathrm{V}_{\mathrm{DDD}}$ |
| $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$; |
| $V_{P C A}=V_{D D D}$ |
| $\mathrm{V}_{\mathrm{PCA}}=\mathrm{V}_{\mathrm{SS}} ;$ |
| $V_{D D}=4.5 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{PCA}}=\mathrm{V}_{\mathrm{SS}} ;$ |
| $V_{D D}=2.7 \mathrm{~V}$ | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 0.5 \\
& -1 \\
& -0.5
\end{aligned}
$$
\] \& -

-
-
- \& -
-
-
-
- \& | mA |
| :--- |
| mA |
| mA |
| mA |

\hline \multicolumn{7}{|l|}{Operating voltage range (pin 1)}

\hline | $V_{\text {PCAL }}$ |
| :--- |
| $V_{\text {PCAH }}$ | \& | operating voltage LOW |
| :--- |
| operating voltage HIGH | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} ; \\
& \mathrm{l}_{\mathrm{PCA}}=0 \\
& \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} ; \\
& \mathrm{P}_{\mathrm{PCA}}=0 \\
& \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} ; \\
& \mathrm{PCA}=0 \\
& \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} ; \\
& \mathrm{P}_{\mathrm{PA}}=0
\end{aligned}
$$
\] \& 2

0.5 \& | - |
:---
-
-

1 \& $$
\begin{aligned}
& \hline \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
$$

\hline \multicolumn{7}{|l|}{Input capacitance}

\hline Cl_{1} \& DIV $_{1}$ and DIV $_{\text {ref }}$ (pins 5 and 8) all other inputs \& \& \& \& \[
$$
\begin{array}{r}
3 \\
-5
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
$$
\]

\hline
\end{tabular}

Note to the DC characteristics

1 Supply current at maximum frequency (DI_{\mid}and $\mathrm{DIV}_{\text {reff }}$), maximum reference division ratio without any load at the outputs.

Low power frequency synthesizer for radio communication

AC CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Main programmable divider						
foiv(M)	input frequency	$V_{D D}=5 \mathrm{~V}$	0	-	18	MHz
		$V_{D D}=3 \mathrm{~V}$	0	-	8	MHz
$V^{\prime}(p-p)$	input signal amplitude (peak-to-peak value) propagation delay (HIGH-to-LOW)		0.5	-	-	V
tPHL		$\mathrm{DIV}_{1}>\mathrm{FB} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$				
		$V_{D D}=5 \mathrm{~V}$	-	17	35	ns
	propagation delay (LOW-to-HIGH)	$\begin{aligned} & V_{D D}=3 V \\ & \text { DIV }_{1}>F B ; C_{L}=10 p F \end{aligned}$	-	40	80	ns
$\mathrm{t}_{\text {PLH }}$		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 17 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \end{aligned}$	ns ns
Reference divider						
folv(R) fref $t_{\mathrm{H}-\mathrm{L}}$	input frequency reference frequency 1.2 MHz output (F12) (HIGH-to-LOW)	$V_{D D}=5 \mathrm{~V}$ $V_{D D}=3 \mathrm{~V}$	0	-		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
		$V_{D D}=5 \mathrm{~V}$	0	-	100	kHz
		$V_{D D}=3 \mathrm{~V}$	-	-	50	kHz
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	-	-	40	ns
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	-	-	90	ns
12C-bus						
fCLK $t_{\text {spike }}$	SDA clock frequency tolerable spike width at SDA and SCL		-	-	100	kHz
			-	-	100	ns

CHARACTERISTICS OF THE

 $1^{2} \mathrm{C}$-busThe $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different IC modules. The two lines are serial data line (SDA) and serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data
transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 5 Bit transfer.

Low power frequency synthesizer for radio communication

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

System configuration

A device generating a message is a "transmitter", a device receiving a message is a "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 6 Definition of start and stop conditions.

Fig. 7 System configuration.

Low power frequency synthesizer for radio communication

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must
generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set up and hold times must also be taken into account.

A master receiver must signal an end of data to the transmitter by not
generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Timing specifications

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig.9.

Fig. 8 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig. 9 Timing.

Where:

$t_{\text {BUF }}$	$t \geq t_{\text {LOW }}(\mathrm{min})$	the minimum time the bus must be free before a new transmission can start
thD; STA	$t \geq t_{\text {HIGH }}(\mathrm{min})$	start condition hold time
tLOW (min)	$4.7 \mu \mathrm{~s}$	clock LOW period
$t_{\text {HIGH (}} \mathrm{min}$)	$4 \mu \mathrm{~s}$	clock HIGH period
TSU;STA	$t \geq t_{\text {LOW }}(\mathrm{min})$	start condition set-up time, only valid for repeated start code
THD;DAT	$\mathrm{t} \geq 0 \mu \mathrm{~s}$	data hold time
TSU;DAT	$t \geq 250 \mathrm{~ns}$	data set-up time
tr_{r}	$\mathrm{t} \leq 1 \mu \mathrm{~s}$	rise time of both SDA and SCL line
$\mathrm{tf}_{\text {f }}$	$\mathrm{t} \leq 300 \mathrm{~ns}$	fall time of both SDA and SCL line
Tsu;Sto	$t \geq t_{\text {LOW }}(\mathrm{min})$	stop condition set-up time

Note

All the values refer to V_{IH} and V_{IL} levels with a voltage swing of $V_{D D}$ to VSS.

SDA

Fig. 10 Complete data transfer.

Where:
Clock; $\mathrm{t}_{\text {Low }(\text { min })}=4.7 \mu \mathrm{~s}$
Clock; $\mathfrak{t}_{\text {HIGH (min) }}=4 \mu \mathrm{~s}$
The dashed line is the acknowledgement of the receiver

Maximum number of bytes unrestricted

Premature termination of transfer allowed by generation of STOP condition

Acknowledge clock bit must be provided by the master

${ }^{12}$ C protocol

In order to fully program the synthesizer, a sequence of five data bytes is necessary. The data bytes are organized so that on subsequent transfers, not all five bytes need to be sent.
This is achieved by the arrangement in Figure 11.

Fig. $111^{2} \mathrm{C}$ protocol timing.

The information from the $\mathrm{I}^{2} \mathrm{C}$-bus interface is only transferred to the relevant divider(s) on successful completion of the data after the STOP condition. For subsequent programming, e.g. on changing channels, it is only necessary to program the dividers which need altering.

The new information will only be locked into the lower 14 bits of the main divider registers. This reduces the loading on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig. 12 n 0 and n 1 programming.

Table 1 Data bit map

Register	bit							
	7 MSB	6	5	4	3	2	1	0 LSB
1	n1.0	n0.6	n0.5	n0.4	n0.3	n0.2	n0.1	n0.0
2	n2.1	n2.0	n1.6	n1.5	n1.4	n1.3	n1.2	n1.1
3	X	X	X	n2.6	n2.5	n2.4	n2.3	n2.2
4	n3.7	n3.6	n3.5	n3.4	n3.3	n3.2	n3.1	n3.0
5	X	n4.2	n4.1	n4.0	n3.11	n3.10	n3.9	n3.8

Where:
$\mathrm{n} 0, \mathrm{n} 1, \mathrm{n} 2$ comprise the main divider $n 3, n 4$ comprise the reference divider n 0.0 is the least significant bit of nO and so forth
$X=$ don't care - bit position is not used.
Bit 7 (the MSB) is transmitted first on the bus.

Slave address select (A0, A1)
Selection of the device slave address is achieved by connecting A0 and A1 to either $V_{S S}$ or $V_{D D}$.

The slave address is defined in accordance with the $\mathrm{I}^{2} \mathrm{C}$-bus specification as shown in Figure 13.

1	1	0	0	0	A 1	A 0	$\mathrm{R} / \dot{\bar{W}}$

Fig. 13 Slave address.

APPLICATION DIAGRAM

Fig. 14 Application diagram.

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

Section 7

Cellular chip set

RF Communications

INDEX
Cellular chip set design guide 762
$1^{2} \mathrm{C}$ Bus specification 806
AN168 The inter-integrated circuit (I2C) serial bus: Theory and practical consideration 822

RF Communications

The Philips Components-Signetics Cellular chip set is the world's first complete chip set commercially available from one manufacturer. It combines both Bipolar and CMOS technologies to bring a highly integrated
solution to the market. The complete chip set consists of 12 ICs that handle the processing of data, the processing of audio, the receiver, the switching of channeis and the transmitter.

This section describes how the chip set functions and how the software interacts with the chip set. A complete demo board can be ordered through any local Philips Components-Signetics sales office.
INTRODUCTION 802

1. CELLULAR SYSTEM DEFINITION 802
1.1. AMPS and TACS Spectrum Allocation 803
1.2. An integrated chip-set addressing cellular market needs 805
References 805
SYSTEM ARCHITECTURE 807
2. OVERALL ARCHITECTURE 807
2.1. Clocking 807
2.2. RF Architecture 807
2.3. Baseband Architecture 807
2.4. Other I2C Peripherals 808
HARDWARE DESCRIPTION 812
3. OVERVIEW 812
3.1. RF 812
3.2. Baseband 813
3.3. Data Path Description 815
3.4. Layout 815
SOFTWARE DESCRIPTION 833
4. OVERVIEW 833
4.1. Cellular Phone Operation 833
4.2. Setup \& Implementation 839
DATA SHEETS FOR THE CELLULAR CHIP SET
TDA7052 1-Watt low voltage audio power amp 146
NE/SA605 High performance low power mixer FM IF system 280
NE/SA5750 Audio processor - companding and amplifier section (special components for cellular radio) 521
NE/SA5751 Audio processor - filter and control section (special components for cellular radio) 528
UMA1000T Data processor for cellular radio (DPROC) 595
TDD1742T Low power frequency synthesizer (LOPSY) 641
UMA1014T Frequency synthesizer for cellular radio communication 683

INTRODUCTION

1. CELLULAR SYSTEM DEFINITION

A cellular system consists of an FM radio network covering a set of geographical areas (known as Cells) inside of which mobile two-way radio units, like Cellular Telephones, can communicate. The radio network is defined by a set of Base Stations distributed over the area of system coverage, managed
and controlled by a centralized or de-centralized digital switch equipment known as MTSO, or Mobile Telephone Switching Office. A base station in its geographical placement is known as a cell site. It is composed of low powered FM transceivers, power amplifiers, control unit, and other hardware depending on the system configuration. Its function is to interface between cellular mobiles and the MTSO. It communicates with the MTSO over dedicated data links, wire or non-wire, and
communicates with mobiles over the air waves. The MTSO's function is controlling call processing, call setup, and release which includes signalling, supervision, switching and allocating RF channels. MTSO also provides a centralized administration and maintenance point for the entire network. It interfaces with Public Switched Telephone Network (PSTN), over wire line voice facility, to honor services to and from conventional wire line telephones. Figure 1.1 depicts the components and layout of a cellular system.

Figure 1.1. The Components and Layout of a Cellular System.

An MTSO is known under different names depending on the manufacturer and on the system configuration. MTSO (Mobile Telephone Switching Office) was given to it by Bell Labs; EMX ${ }^{1}$ (Electronic Mobile Xchange) by Motorola; AEX ${ }^{2}$ by Ericcson; NEAX ${ }^{3}$ by NEC; SMC (Switching Mobile

Center) and MMC ${ }^{4}$ (Master Mobile Center) are Novatel's.
There are several types of Cellular telephones: mobiles, or car mount; portable, or pocket phone; and hand-held, or transportable phone. They fall into three classes (TACS has 4 classes) defined by the
amount of their power output: Mobiles (Class 1) radiate the most power; Transportables (Class 2); Pocket phones (Class 3; Classes 3 and 4 for TACS) have minimum power output. Tables 1.1a and 1.1 b show the classes of cellular phones and their power levels for AMPS and TACS, respectively.

Table 1.1a. Power of Mobile Phone for AMPS

Power Level	Power of Mobile Phone for AMPS					
	Mobile Station Power Class					
	1		11		III	
	dBW	mW	dBW	mW	dBW	mW
0	6	4000	2	1600	-2	630
1	2	1600	2	1600	-2	630
2	-2	630	-2	630	-2	630
3	-6	250	-6	250	-6	250
4	-10	100	-10	100	-10	100
5	-14	40	-14	40	-14	40
6	-19	15	-18	15	-18	15
7	-22	6	-22	6	-22	6

Table 1.1b. Power of Mobile Phone for TACS

Power Level	Power of Mobile Phone for TACS							
	Mobile Station Power Class							
	1		II		III		IV	
	dBW	mW	dBW	mW	dBW	mW	dBW	mW
0	10	10000	6	4000	2	1600	-2	630
1	2	1600	2	1600	2	1600	-2	630
2	-2	630	-2	630	-2	630	-2	630
3	-6	250	-6	250	-6	250	-6	250
4	-10	100	-10	100	-10	100	-10	100
5	-14	40	-14	40	-14	40	-14	40
6	-19	15	-18	15	-18	15	-18	15
7	-22	6	-22	6	-22	6	-22	6

A cell is defined by its physical size, and more importantly by the size of its population and its traffic patterns. An entire city like Chicago can be one cell. There are disadvantages, however, to such definition in that the number of channels would be limited to a small fraction of inhabitants, i.e., the system's capacity would be very limited, and the transmitter of the cell would have to be very powerful to cover such a large area. The major advantage behind a cell-based system configuration is the frequency re-use scheme, whereby, the same set of frequencies/channels can be allocated to more than one nearby cell provided the cells are a certain distance apart. Most cellular systems adopt a frequency re-use pattern of 7.

The last constituent of a Cellular system is the communication protocol that governs the way a phone call is established. Cellular protocols differ between countries, e.g., in the USA the Advanced Mobile Phone Service standard (AMPS) is used, while in Canada
the AURORA 800 is used. In Europe each country has its own standard. Total Access Communication System (TACS) is used in the United Kingdom; NMT or Nordic system is used in the Scandinavian countries (Denmark, Norway, Sweden, and Finland); RC2000 is used in France; and NETZ C-450 is used in Germany. NTT is the Japanese standard for cellular.

1.1. AMPS and TACS Spectrum Allocation

In 1980 the FCC changed its policy towards a one-system-per-market, and established two licensed carriers per service area. It was the FCC's view that such an approach would eliminate monopoly and provide some competitive advantages. Two systems (A and B) emerged, each with its own group of channels, to share the allocated spectrum (Figure 1.2). System A is defined for the non-wire-line companies, and system B is defined for the wire-line companies.

AMPS Cellular systems employ a frequency spectrum of 20 MHz made up of 666 channels with 30 kHz channel spacing. The transmit frequency at 825.030 MHz is specified as channel 1 , and transmit frequency at 844.980 MHz is specified as channel 666 . The receiver operates at 45 MHz above the transmit frequency, therefore, channel 1 receives at 870.030 MHz and channel 666 receives at 889.980 MHz . An additional 5 MHz spectrum was subsequently added to the existing 20 MHz which increased the number of channels from 666 to 832. As for the TACS Cellular standards, its frequency spectrum is 15 MHz comprised of 600 channels with 25 kHz channel spacing. The transmit frequency at 890.0125 MHz is specified as channel 1 , and the transmit frequency at 904.9875 MHz is specified as channel 600. The receiver operates at 45 MHz above the transmit frequency, therefore, channel 1 receives at

Cellular chip set design guide

935.0125 MHz and channel 600 receives at 959.9875 MHz .

The AMPS and TACS channel spectrum is divided into 2 basic groups. A set of
channels are dedicated for control information exchange (mobile \leftrightarrow cell site) and are termed control channels (shaded areas). The
second group, made up of the remaining channels, are termed voice channels and are used for conversations.

Figures 1.2 and 1.3 show the frequency spectrum and channel assignment for AMPS and TACS, respectively. Both figures include the additional spectrum of 166 extra channels for AMPS and 400 channels for TACS. Note, however, that TACS' additional spectrum has not been implemented and the dedicated
control channels are for the 600 channel system. The shaded area outlines the set of DEdicated Control Channels. Table 1.2 below summarizes the frequency parameters of AMPS and TACS. The set of control channels may be split by the system operator (MTSO) into subsets of DEdicated Control

Channels, Paging Channels and Access Channels. Figure 1.4 depicts an optional configuration of control channels by the MTSO, based on the Combined Page/Access channels variable (CPA) which is set by an overhead message.

Figure 1.4. Optional Division of Control Channels for 'System A' Based on CPA.

1.2. An Integrated chip-set addressing cellular market needs

Cellular mobile telephones have been with us for several years. The first equipment was complex and highly priced (affordable only by the business sector). A rapid build-up in the number of users, fuelled by competition, has resulted in a steadily decreasing selling price to the consumer. In order to remain competitive, setmakers must continually strive to reduce costs. Key to achieving this aim is the adoption of an optimum architecture. Such an architecture must minimize complexity through the use of VLSI

Existing sets tend to comprise a mix of analog functions provided by standard integrated circuits coupled with digital functions using custom/semi-custom circuits. By adopting a total chip-set approach using bipolar and CMOS technologies where most appropriate, a more optimal solution can be achieved. A series of developments with careful attention to low current consumption has resulted in a chip set of six ICs that is applicable to portables, tran'sportables and mobile telephony. The chip set is suitable for both the American AMPS and the English (United Kingdom) TACS standards.

A software package implementing the AMPS and TACS standards, written entirely in PL/M51, has been developed to introduce a fully functional cellular radio.

References

1. EMX is a trade mark or symbol of Motorola
2. AEX is a trade mark or symbol of Ericcson
3. NEAX is a trade mark or symbol of NEC
4. SMC and MMC are trade mark or symbols of Novatel

Cellular chip set design guide

Table 1.2 AMPS and TACS Frequency Allocation

		AMPS		TACS	
Channel Spacing		30 kHz		25 kHz	
Spectrum Allocation		20 MHz		15 MHz	
Additional Spectrum		5 MHz		10 MHz	
Total \# of Channels		832		1000	
System A Frequency Allocation					
AMPS			TACS		
CH\#	Mobile TX MHz	Mobile RX MHz	CH \#	Mobile TX MHz	Mobile RX MHz
1	825.030	870.030	1	890.0125	935.0125
$313{ }^{1}$	834.390	879.390	23^{2}	890.5625	935.5625
333^{2}	834.990	879.990	43^{1}	891.5625	936.5625
667	845.010	890.010	300	897.5625	942.5625
716	846.480	891.480			
991	824.040	869.040			
1023	825.000	870.000			
System B Frequency Allocation					
AMPS			TACS		
$334{ }^{3}$	835.020	880.020	$323{ }^{3}$	897.0625	942.0625
$354{ }^{4}$	835.620	880.620	343^{4}	897.5625	942.5625
666	844.980	890.000	600	904.9875	949.9875
717	846.510	891.000			
799	848.970	894.000			

NOTES:

1. Last DEdicated Control Channel for System A
2. First DEdicated Control Channel for System A
3. Last DEdicated Control Channel for System B
4. First DEdicated Control Channel for System B

SYSTEM ARCHITECTURE

2. OVERALL ARCHITECTURE

The RF section includes low power frequency synthesizers (UMA1014) and a single chip second mixer/oscillator/IF amplifier/demodulator (NE605). A single chip CMOS data processor (UMA1000) performs all functions associated with control data, supervisory and signaling tones. All voice, alert and DTMF functions are contained on two audio processor devices; one CMOS and the other bipolar (NE/SA5751 and NE/SA5750, respectively). Switched capacitor integrated filter technology is used in all baseband processing functions to achieve a minimum number of external passive components. The system's master controller is the 80C552 which is a derivative of the Intel 80C52 μ controller with integrated ADC (Analog-to-Digital Converter), PWM (Pulse Width Modulator), ${ }^{2} \mathrm{C}$ and UART interfaces. The DPROC, the APROCs, and the LOPSYs are interconnected via an $I^{2} C$ bus which is a 2-wire serial bus that can transfer data at $100 \mathrm{~kb} / \mathrm{s}$. Refer to Figure 2.1 to view the system's architecture.

2.1. Clocking

A 9.6 Hz VTCXO (Voltage controlled Temperature Compensated Xtal Oscillator) is divided by 8 to provide a 1.2 MHz frequency for the data processor (DPROC, UMA1000), and the audio processors (APROCs,
NE/SA5750/5751). The μ controller is clocked by aseparate 11.059 MHz crystal.

2.2. RF Architecture

2.2.1. Receiver Front-End

The receiver adopts a double conversion superhet architecture with a first IF of 45 MHz and a second IF of 455 kHz . A single transistor circuit is used for the RF amplifier and first mixer stages. The second mixer, second local oscillator, all IF amplification, limiter, demodulator and RSSI functions are provided by the NE605. The receiver's local oscillator comprises a single loop frequency synthesizer, UMA1014 a 7.2 MHz oscillator for the frequency synthesizers, and another division by 6 to provide, normally operating at 45 MHz above the receive frequency. An on-chip divide by 8 , generating a 1.2 MHz clock, for the Data and Audio processors, from a 9.6 MHz VTCXO.

2.2.2. Transmitter

The modulation is applied to the transmit VCO. A loop bandwidth of approximately 200 Hz is used in the transmit synthesizer path, achieving a flat modulation characteristic above 300 Hz and permitting sufficiently fast switching time. Hybrid power modules are used to amplify the transmit signal to the level required according to the power class of the equipment:

The cellular system requires the transmit power to be reduced in 4 dB steps down to 6 mW . To achieve a flat characteristic, independent of gain spreads in the amplifier stages, a power leveling loop external to the PA module is used (Figure 2.2). The output of the power module is adjustable by varying the supply voltage to one or more of the amplifier stages. A power sensor in the output of the transmitter generates a DC voltage related to the transmitter output power. This can comprise a simple diode detector, or a more complex system using a coupler with multiple sensing to reduce sensitivity to load VSWR. The sensor output is compared with a reference DC level using a voltage comparator and the difference used to control the power output. The loop will settle, such that the sensor output will be equal to the reference level. The reference level is derived by integrating the PWMO output from the μ controller and is set according to the required output power. Non-linearities in the sensor may be accommodated by suitable software calibration of the reference level.
There are a number of circuit functions which need to disable the transmitter (signal $\mathrm{TX}_{\text {DIS }}$): the μ controller for system control (in the case of a malfunction); audio processor for VOX control in discontinuous voice mode; and data processor if a collision is detected during reverse control channel access. Control of the transmitter is provided by a single line with controlling devices 'pulling low' to disable in a wired-OR configuration.

2.3. Baseband Architecture

2.3.1. Audio Processors

All audio functions associated with the voice channel are processed in the NE5750/51
(Figure 2.4). Microphone amplification, VOX provision, compression, expansion and audio power output are provided in a bipolar IC, the NE5750. All filters, pre-emphasis, deviation limiting, de-emphasis, signal path switching, volume control and tone generation are provided in a CMOS IC, the NE5751.

Switched capacitor techniques have been used to fully integrate all filter functions. The tone generator is used for DTMF signaling, ringing tones and key confirmation. The pinouts of the two ICs have been arranged so that a straightforward interconnection is achieved on the PCB layout. Access to different parts of the audio signal path is inherent in this approach and eases the connection of ancillary units such as modem, hands-free adaptor, etc.

2.3.2. Data Processor

All functions associated with control data, supervision (SAT) and signaling (ST) are incorporated into a single CMOS data processor IC, the UMA1000 (Figure 2.5).
In the receive path, a dedicated two-wire serial link ($R X_{\text {CLOCK, }} R X_{\text {LINE }}$) passes the fully decoded data word to the μ controller. Clocking is under control of the μ controller and is not time-critical. When operating on a voice channel, the dotting detector, which precedes a data burst, is used to blank the audio path directly to prevent data bursts from being heard by the user ($R A_{G T R L}$).
In the transmit path, a 40-bit (36 data bits and 4 bits of framing and DCC) word to be transmitted is passed from the μ controller to the data processor via another dedicated two-wire serial link (TX CLOCK, TX LINE) where it is held in a buffer. The μ controller can trigger immediate transmission of the data at the appropriate time. The base station returns the status of the channel access within the busy/idle stream. If the busy/idle stream does not revert to 'busy' during the specified window, transmission is aborted (TX ${ }_{\text {CTRLL }}$). This time-critical channel arbitration sequence is performed by the data processor IC independent of the μ controller.

2.3.3. Microcontroller

The PCB80C552 μ controller handles the functions of the cellular portable with low power and high operating speed. This CMOS processor is a derivative of the 8051 μ controller. It can operate with an instruction cycle time of less than $1 \mu \mathrm{~S}$, and about 50% of its operations execute in a single machine cycle. This device also supports extensive power saving modes, giving approximately 75% power saving in a standby mode, and a micropower power-down mode for backup battery operation. The low power modes ideally complement the UMA1000T data processor which processes the continuous cellular data stream, enabling the μ controller
to operate in a burst processing mode. Thus the processor may spend in excess of 90% of the time in a standby mode.
The processor operates over a wide temperature range and has a high degree of EMC protection. It has an 8-channel-multiplexed 10-bit ADC, used for RSSI processing, battery voltage monitoring etc, and a pseudo 8-bit analog output (based on PWM) used to control the transmit amplifier's power level. A full hardware implementation of an $I^{2} \mathrm{C}$ UART (in addition to the standard RS-232 UART), six 8-bit I/O ports and an 'on-chip' watchdog timer are all included. It has an industry standard 8052 core, which gives access to an extensive range of development support facilities, including 'High Level Language' support (PL/M51, a Pascal-like language), 'In Circuit Emulation' and symbolic debug facilities. This promotes fast development and debugging of equipment software.
A software package implementing the AMPS and TACS standards, written entirely in PLM51, has been developed to introduce a fully functional cellular radio.

2.3.4. $\mathrm{I}^{2} \mathrm{C}$ Bus

The $1^{2} \mathrm{C}$ bus (Figure 2.3) is essentially a Local Area Network (LAN) for integrated circuits. Each device has its own 7-bit address and is connected to a two-wire serial bus. The interface protocol is self-checking and selfarbitrating, allowing a multi-master control of the bus. Data is transferred at a rate of $100 \mathrm{~kb} / \mathrm{s}$ as a message block consisting of device address, a read/write indication, and the data block. A general description of the $\mathrm{I}^{2} \mathrm{C}$ bus is specified in the publication "The $1^{2} \mathrm{C}$ Bus Specification" (order code 9398-358-10011).
The multi-master mode of the $I^{2} \mathrm{C}$ bus can allow a simple test harness to take full control of the equipment for functional system tests and alignment in production. Test functions of the devices not used in normal operation can be exercised in this way.

2.4. Other $I^{2} C$ Peripherals

In addition to the major components of the Cellular Radio Chip Set, there are a large
number of general purpose peripheral ICs with $1^{2} \mathrm{C}$ interfaces.
The PCF8576 is one of a range of LCD matrix and segment drivers. This device can address up to 160 segments, and is cascadable for larger displays. It is available in TAB packaging, allowing the device to be directly mounted onto a flexible connector driving the LCD. A six-wire connection to the main PCB (power, $I^{2} \mathrm{C}$ and contrast control), shows further cost advantages by reducing PCB area over that needed for normal direct LCD drivers.

This device exhibits most of the advantages that can be attained when using $\mathrm{I}^{2} \mathrm{C}$ peripherals for adding features to any particular equipment. The range of such devices cover most requirements, with the availability of EEPROMs, RAMs, clock/calendars, tone generators and I/O expandors, all usable on the same bus with no compatibility problems.

Figure 2.1 System Architecture

Cellular chip set design guide

[^3]

HARDWARE DESCRIPTION

3. OVERVIEW

The chip-set evaluator hardware design is divided into two major sections: RF section, and Data/Audio and Program Control section, also known as the Baseband section.

The RF section consists of a receive and a transmit Local Oscillators, a receiver front-end circuit, a duplexer, and a transmit module. The Local Oscillators are clocked from a single source, a Temperature Compensated Xtal Oscillator $(9.6 \mathrm{MHz}$ VTCXO). The receiver front-end circuit is composed of a preamp mixer for 1 st IF, and 2nd IF and a demodulator circuit (NE605, Figure 3.1). The Local Oscillators' circuits utilize the UMA1014, a single chip frequency synthesizer with on-board IIC interface allowing easy programmability and control from the micro. (Figures 3.3, 3.4).

The Base Band section consists of the Logic and Program Control circuit (Figure 3.6), a Data PROCessing circuit (UMA 1000, Figure 3.9), and an Audio PROCessing circuit which includes an Audio Power Amplifier, (NE/ SA5750/51, TDA7052, Figure 3.10). A separate MAX-232 driver board is provided to interface the Program Control circuit to a dumb terminal. This will aid the user in software development and debugging (Figure 3.8).

Tables 3.4 and 3.5 show the codes and specifications a cellular phone should meet and how they can be met [Ref. 3]. Next we will identify the specifications that require further careful design.

3.1. RF

3.1.1. Receiver Design Consideration

3.1.1.1. Preamp Mixer Design

The AMPS specification calls for a -116 dBm sensitivity at 12 dB (SINAD) demodulated sig-nal-to-noise ratio (EIA/IS-19-B 2.3.1.3.).
There is 6 dB improvement in performance due to the pre-emphasis/de-emphasis function on board the NE/SA5751. This means that the detected S / N ratio has to be 6 dB prior to pre-emphasis/de-emphasis. For a 1 kHz tone and a typical frequency deviation of 8 kHz , normal FM demodulation characteristic curves show that a S / N ratio of $1-2 \mathrm{~dB}$ is required. For a channel bandwidth of 30 kHz , the input noise will be -129 dBm . If we choose -119 dBm as our sensitivity design
goal, it appears that this noise can only be degraded 8 dB by the front-end in order to achieve the minimum detectable input carrier level of -119 dBm . Assuming a worst case loss of 5 dB by the duplexer, a post duplexer amplifier with 3 dB noise figure is required. In addition, because the front-end amplifier is followed by an 881 MHz ceramic filter and a mixer, the distribution of gains has to be optimized so that the overall noise figure of the front-end (including the duplexer) is not going to exceed 8 dB . In Figure 3.2 the gains and NFs are shown on the block diagram.

While all of the gain of the front-end can be achieved in the preamp, this has to be traded off against the required intercept characteristics. The AMPS specification calls for good detection in the presence of signals that are 60 kHz and 120 kHz away from the carrier. The carrier should be close to the minimum acceptable level for good detection. In this condition, the interfering signals should be 65 dB larger than the desired carrier until they begin to cause reduction in detected signal level. A little bit of analysis shows that this specification (EIA 2.3.3.3) translates into a -17 dBm system third-order intercept as measured from the antenna. Looking at Figure 3.2, since the first IF filter $(30 \mathrm{kHz}$ wide, 4 -pole crystal filter at 45 MHz) is narrow enough to eliminate the interfering signals, the intercept point of the overall system is set mostly by the front-end and the first mixer. Assuming a 5 dB worst case loss in the duplexer, a 10 dB gain in the front-end amplifier and 2 dB loss in the 881 MHz ceramic filter, the first mixer must have an input intercept of about -14 dBm (See Figure 3.1). For every dB of improvement in the intercept point of this mixer, the gain of the front-end can be improved by 1 dB to help it better overcome the noise figure of the following stages. Having said this, however, it is recommended that the intercept point of the 2nd mixer not be ignored because future cellular requirements call for dynamic frequency allocations, or other modulation methods that may cause adjacent channels to be used within the same cell.

While we have used a bipolar device as our first mixer, a dual gate MOSFET has the potential of exhibiting better third-order intermod characteristics. Another technique for the front-end is to combine the preamp and mixer in one device. This has the advantage of relaxing the mixer intercept point by about 8 dB . The problem, however, is that one has to depend on the duplexer filter for all of the image rejection to reduce the effective noise figure of the mixer.
3.1.1.2. FM IF

The Signetics NE605 chip is used to produce the FM IF. This chip first mixes the 45 MHz first IF signal down to 455 kHz (2nd IF). The signal then goes through approximately 100 dB of gain in a multi-stage limiter. The fully limited signal is then demodulated in the final quad-tank FM demodulator. The demodulator provides two outputs: Data and Audio. The data output contains data bursts and goes to the DPROC DEMODD input (Pin 3). The audio output is mutable; it goes to the APROC-NE5751's RXBF ${ }_{\text {IN }}$ input (Pin 17). The Audio channel is muted for the 100 ms data bursts period during a conversation. Another output of the chip is an internally temperature-compensated RSSI, Received Signal Strength Indicator, with more than 90 dB dynamic range. With about 115 dB overall gain and high impedances, the 2nd IF can pick up a multitude of signals and frequencies that are readily available in a cellular phone. (We will cover these when we discuss the layout and shielding issues). In recent years a number of cellular phone manufacturers have increased the first IF frequency to around $80-90 \mathrm{MHz}$ to be able to use SAW device first IF filters, and obtain better image rejection characteristics. While this can easily be accomplished with the NE605 chip, the increase of the IF frequency will increase the probability of closing spurious feedback loops that can cause regenerative oscillations in case layout is not done carefully. The AMPS spec for RSSI linearity (2.6.3) is directly satisfied by this FM IF, while other specs, such as sensitivity and hum and noise S / N (2.2.2.4.3), are partially satisfied by the FM/IF. In the case of the hum and noise S / N, the phase noise of the receive synthesizer is also important, but it can be neglected as long as its residual FM noise is much less than 100 Hz .

3.1.2. VTCXO

The 9.6 MHz Voltage controlledTemperature Compensated Xtal Oscillator provides a reference clock to the transmit and receive Local Oscillators where it is divided by 8 to generate a 1.2 MHz clock source to the APROCs and the DPROC.

3.1.3. Local Oscillators

The receive Local Oscillator circuit consists of the single chip frequency synthesizer, UMA1014, with on-board prescaler and loop filter, and a 926 MHz VCO (45MHz above receive frequency. (Figure 3.3)

The transmit Local Oscillator circuit is similar to that of the receive LO circuit except that the VCO frequency is 836 MHz and is used to modulate the signal (data or SAT+Audio) to be transmitted. (Figure 3.4)

The receive local oscillator frequency is set by the master μ controller as follows: The μ controller accesses the frequency synthesizer, via IIC interface, and loads it with a reference and main divider values. The reference divider divides the 9.6 MHz reference frequency down to 15 kHz . The main divider value divides the VCO output frequency, after a fixed divide by 2 prescaler, to produce 15 kHz . A mismatch, detected by the small phase comparator, causes the VCO to adjust its frequency such that, when divided by the main divider, it will yield 15 kHz . Note that the VCO output is 45 MHz above the carrier frequency, and the main divider value must be set accordingly.
The transmit Local Oscillator frequency is set similarly by the master μ controller. Note however that the VCO output equals the carrier frequency, and that the reference frequency is 1.2 MHz .

3.1.3.1. Receiver Frequency Synthesizer

The design of the loop filter of the synthesizer and its resulting phase noise will help satisfy the (2.2.2.4.3) spec. In this case we have used a 200 Hz filter which will give acceptable phase noise characteristics, and be fast enough for switching between channels.

3.1.3.2. Transmitter Frequency Synthesizer

While a variety of synthesizer configurations are available, a more reliable operation with fewer spurious signals can be achieved if both transmit and receive frequencies are directly synthesized independent of each other. The transmit synthesizer has the same loop time constant as the receive synthesizer. The only difference is that a $300 \mathrm{~Hz}-6 \mathrm{kHz}$ bandpass filtered signal (Voice + SAT) is added to the VCO modulating input.

3.1.4. Transmitter Design Considerations

3.1.4.1. Power Leveling Loop

A cellular system requires the transmit power to be reduced in 4 dB steps down to 6 mW . To achieve a flat characteristic, independent of gain spreads in the amplifier stages, a power leveling loop external to the PA module is used. The output of the power module is adjusted by varying the supply voltage to one or more of the amplifier stages. A PWM signal coming out of the μ controller is low-pass filtered to get a DC control signal. A phone could, in principle, be calibrated in this mode using an external power meter to find the corresponding PWM number for each power level. The problem, however, is that
with small variations in gains or load impedance, the power out could fluctuate as well. Also, if the antenna is accidentally removed with the unit in operation, the reverse power may damage the unit. To solve these problems, a feedback loop is generated by making a -15 dB directional coupler which senses the reverse power (see Figure 3.5) and rectifies it. This can be a simple diode detector, or a more complex system using a coupler with multiple sensing and a dynamic matching network to further reduce sensitivity to load VSWR. This error signal is, in effect, added to the DC control signal coming from the μ controller PWM so as to control the power module with a $20 \mu \mathrm{~s}$ time constant. The loop will settle, such that the directional-coupler diode detector output will be equal to the reference level. The reference level is derived directly from the μ controller (PWMO port) and is set according to the required output power. Non-linearities in the sensor may be accommodated by suitable software calibration of the reference level. (This part of the circuit satisfies the 3.2.1.3 RF power output levels.)

3.2. BASEBAND

3.2.1. Logic and Program Control

This section of the baseband consists of a central processing and management unit, the PCB80C552 μ Controller, and its associated circuitry. The μ controller fetches program instructions stored on board a 64kBytes Programmable Read Only Memory (PROM, SN27C512-15 FA). An 8kBytes of Static RAM (FCB61C65-70) is used to store data structures and program variables. Because the μ controller is based on Intel's 8051 family of μ controllers, and the data bus and the low-er-order address bus share the same port (port0), a 3-state Octal D-type transparent latch (74HC573D) is used to separate data from address (Figures 3.6, and 3.8). Table 3.1 lists the I/O signals on the μ controller and their functions in the Cellular application.

3.2.2. Data Processing

The data processing circuit consists of a DPROC, UMA1000T IC, with a small number of external passive components. The DPROC function is to decode received, demodulated data (DEMODD), from the NE605 and to encode and transmit digital data from the μ controller (Figure 3.9). The following sections will describe the receive and transmit paths of the DPROC, and Table 3.2 will describe its inputs and outputs and their functions.

Note on DPROC RESET sequence:

The following sequence should be followed to insure proper operation of the DPROC:

1. Pin 22 - IIC address Pin A1, must be tied HIGH; at least during the reset pulse. (Note that this will alter the DPROC IIC address from 0D8h to ODCh)
2. Pin 26 - NRESET must be tied HIGH.
3. Pins 6 and 16 - must be tied to the RESET signal from the μ controller, which was connected to Pin 26 (NRESET). Note that the reset from the μ controller must be active HIGH, because Pins 6 and 16 are active HIGH. The software must, therefore, change the polarity of the reset pulse accordingly.
4. The RESET signal timing is as follows: $\geq 250 \mu \mathrm{sec}$ in the HIGH state; < $1 \mu \mathrm{sec}$ fall time.

3.2.2.1. Receiving Data

The data processor extracts digital data from the NE605 demodulated signal output
(DATA). The data stream transmitted on the FOrward Control Channel is composed of a 463-bit message made up of word blocks, where each word block is a 28 -bit data word and 12 parity bits repeated 5 times, and preceded by a preamble (dotting) and word synchronization bits (as per EIA/IS-3-D).
Detection of the Dotting sequence (10101010...) is an indication to the DPROC that a message has arrived. The word synch, WSYNC, sequence trains the clock recovery circuitry and synchronizes it.

DPROC then extracts from each word block the 5-time repeated word and selects, by majority voting, one word. The selected word goes through error detection and correction where up to one error can be corrected. The DPROC then pulls RX LINE low, indicating to the μ controller that a data word is available. The DPROC repeats this process for each word block in the FOCC message.

3.2.2.2. Transmitting Data

Data to be transmitted is fed to the DPROC, from the μ controller, for Manchester and BCH encoding, and conversion to an analog signal. The resultant analog signal output (DATA) goes to the APROC (NE5751) transmit summer input where it is added to an Audio signal (DTMF or speech) path. The transmit summer output is then modulated, in the transmit Local Oscillator block, and sent to the transmit module.

Two other analog components are outputted at Pin 4 (DATA), during Voice CHANnel state:

Signaling Tone (ST) and Supervisory Audio Tone (SAT). ST, a 10 kHz carrier, is generated on board the DPROC and is used to acknowledge reception of control messages from the cell site. When ST is transmitted the audio signal in the transmit path is muted (TACTRL, disabling NE5751 T4 \& T5 switches). SAT $(6 \mathrm{kHz} \pm 30 \mathrm{~Hz}$ signal) is used by the cell site to measure the mobile's signal quality. It is received by DPROC's Digital PLL, and transponded to the cell site by summing it with the speech signal coming from the APROC (NE5751, T4 \& T5 enabled). Both ST and SAT are disabled when data is transmitted on the reverse voice channel (done inside DPROC).

3.2.3. Audio Processing

The audio processing functions for cellular applications are implemented on two IC's, the NE5750 and the NE5751 (Figure 3.10).

3.2.3.1. NE5750

The NE5750 is a Bipolar IC. It integrates a noise cancellation circuit, a VOX circuit and a Companding circuit.

Noise Cancellation

When the input signal, produced by the microphone, drops below a certain threshold (e.g., when there is no speech), the noise cancellation circuitry reduces the overall gain by 10 dB . This threshold is set by an external resistor R3 (R3 Ohm $\times 0.05 \mathrm{~V}_{\mathrm{RMS}}$). The background noise canceller circuit has a builtin hysteresis to prevent VOX activation when the input signal is approximately at the threshold level.

Vox

Voice Operated Transmission, with an attack (C3), and decay ($\mathrm{T}=\mathrm{C} 3 \mathrm{R} 1$) set with external components.

Companding

The audio signal's dynamic range is compressed before transmission, and expanded after reception.

3.2.3.2. NE5751

The NE5751 is a CMOS IC. It integrates a de-emphasis, a pre-emphasis, a deviation limiter, and a DTMF generator. It also provides programmable digital switches to control the signal path (audio mute), and a digital volume control.

Pre-emphasis/de-emphasis: In order to improve FM receiver sensitivity and maintain good S / N for higher audio tones, the baseband audio signal's higher frequency components are amplified before transmission (pre-emphasis), and attenuated after reception (de-emphasis).
Deviation limiter: It guarantees a maximum audio signal (voice) deviation of $\pm 12 \mathrm{kHz}$.
DTMF generator: Two DTMF registers are accessible form the $I^{2} \mathrm{C}$ bus: High tone and Low tone DTMF registers. The High and Low frequency tones are computed as follows: High frequency $=1200 \mathrm{kHz} / 6 / \mathrm{HD}$
where HD is the High register value.
Low frequency $=1200 \mathrm{kHz} / 12 / \mathrm{LD}$
where LD is the Low register value.
This translates to:
DTMF HI REG $=200000 / \mathrm{HI}$ REG Hz and
DTMF LO REG $=100000 /$ LO REG Hz

3.2.3.3. NE5750

The NE5750 is a Bipolar IC. It integrates a noise cancellation circuit, a VOX circuit and a Companding circuit.

Noise Cancellation

When the input signal, produced by the microphone, drops below a certain threshold (e.g., when there is no speech), the noise cancellation circuitry reduces the overall gain by 10 dB . This threshold is set by an external resistor R3 (R3 Ohm $\times 0.05 \mathrm{~V}_{\mathrm{RMS}}$). The
background noise canceller circuit has a builtin hysteresis to prevent VOX activation when the input signal is approximately at the threshold level.

VOX

Voice Operated Transmission, with an attack (C3), and decay ($\mathrm{T}=\mathrm{C} 3 \mathrm{R} 1$) set with external components.

Compading

The audio signal's dynamic range is compressed before transmission, and expanded after reception.

3.2.3.4. NE5751

The NE5751 is a CMOS IC. It integrates a de-emphasis, a pre-emphasis, a deviation limiter, and a DTMF generator. It also provides programmable digital switches to control the signal path (audio mute), and a digital volume control.

Pre-emphasis/de-emphasis: In order to improve FM receiver sensitivity and maintain good S / N for higher audio tones, the baseband audio signal's higher frequency components are amplified before transmission (pre-emphasis), and attenuated after reception (de-emphasis).

Deviation limiter: It guarantees a maximum audio signal (voice) deviation of $\pm 12 \mathrm{kHz}$.
DTMF generator: Two DTMF registers are accessible form the $I^{2} \mathrm{C}$ bus: High tone and Low tone DTMF registers. The High and Low frequency tones are computed as follows:
High frequency $=1200 \mathrm{kHz} / 6 / \mathrm{HD}$ where HD is the High register value.
Low frequency $=1200 \mathrm{kHz} / 12 / \mathrm{LD}$ where LD is the Low register value.

This translates to:
DTMF HI REG $=200000 / \mathrm{HI}$ REG Hz and
DTMF LO REG $=100000 /$ LO REG Hz

Table 3.0 Std DTMF Freq./Corresponding Values of DTMF HI/LO Registers

Number Dialed	High Freq.	Low Freq.	DTMF HI	DTMF LO
1	1209	697	A5	8F
2	1336	697	96	8 F
3	1477	697	87	8 F
4	1209	770	A5	82
5	1336	770	96	82
6	1477	770	87	82
7	1209	852	96	75
8	1336	852	87	75
9	1447	852	95	75
0	1336	941	86	6 A
$*$	1209	941		6 A
$\#$			6 A	

The register values quoted will not give exactly these frequencies. Note that single tones can also be generated by loading 0,1 , or 2 in the high frequency register.

3.2.3.5. Receiving Audio

The demodulated signal (AUDIO) produced by the NE605 circuit carries FM audio. It is fed to the NE5751 receiver input (Pin 17) where it is filtered by a 4th-order band-pass filter with a stop-band notch at 6 kHz to reject the SAT signal. The resultant audio signal $(300-3000 \mathrm{~Hz})$ is then de-emphasized with -6dB/Octave slope filter, over the higher frequency range, to compensate for the pre-emphasis function in the transmitter. The de-emphasized signal then goes to the NE5750 for expansion, to compensate for the compression in the transmitter. The recovered audio signal (expander output) comes back to the NE5751 into a digitally programmable attenuator circuit where the volume can be adjusted to 1 out of 16 levels, each with 2 dB increments (level $0=0 \mathrm{~dB}$, level $15=32 \mathrm{~dB}$). Finally, the attenuated signal feeds an audio power amp on board the NE5750 which drives the speaker. The same signal is summed to the side tone coming from the microphone using an audio power amplifier which drives the earpiece (Figure 3.10a).

3.2.3.6. Transmitting Audio

The voice signal produced by the microphone is preamplified with a low noise, programmable gain preamplifier controlled by R7, on board the NE5750. The signal then feeds the noise cancellation circuit where gain is reduced by 10 dB in the presence of background noise (or absence of speech). The resultant signal then enters the NE5751 at Pin 4 where it is filtered with a 4th-order 300 3000 Hz band-pass filter. The filtered signal leaves the NE5751 to be compressed on the NE5750. The compressed signal leaves the NE5750 and enters the NE5751 at Pin 6 where it is pre-emphasized $6 \mathrm{~dB} /$ Octave slope in the pass band; a limiter circuit guarantees a maximum frequency deviation of $\pm 12 \mathrm{kHz}$, and a 5 th-order 3000 Hz low-pass splatter filter controls the spectrum occupancy of the baseband signal to $3 \mathrm{kHz}(\pm 15 \mathrm{kHz}$ from center frequency). Before leaving the NE5751, the signal is summed to DTMF signals, generated internally, and to the SAT signal coming from the DPROC. The summer output is then modulated inside the transmit Local Oscillator block before going to the transmit module (Figure 3.10a).

3.3. Data Path Description

3.3.1. Receiving Data/Audio

The incoming 800 MHz RF modulated carrier through the Duplexer is mixed, using a single transistor circuit, with the receiver Local Oscillator to produce a 45 MHz IF signal. This 45 MHz modulated IF is then mixed down to 455 kHz , filtered, and demodulated on board the NE605 (see 3.1.1.2). Only one of the two resultant demodulated signals from the NE605 goes to the APROC and DPROC for further filtering and separation into voice and data signals, respectively. The NE605 also provides a Received Signal Strength Indicator (RSSI). RSSI is routed to the ADC (Analog-to-Digital Converter) input of the main μ controller which can determine, based on the quantized value of the RSSI, the best channel from which to receive.
The NE605 demodulated output provides a data signal (DEMODD) to the data processor (DPROC) for digital data recovery and error correction. The recovered data is presented to the μ controller over a dedicated 2 -wire bus ($R X_{\text {LINE }}$ \& $R X_{\text {CLK }}$). The controller then reads the data by clocking it out of the DPROC via $R X_{\text {CLK }}$ and processes it as dictated by the AMPS/TACS specifications. The DEMODD data signal also goes to the APROC (NE/SA5751, Pin 17) where it is DEMPhesized, band-pass filtered to receive audio frequencies ranging from 300 Hz to 3 kHz , EXPANDed by the NE/SA5750, then sent to the earpiece.

3.3.2. Transmitting Data/Audio

Outgoing data frames are set up by the master μ controller and sent to the DPROC over a dedicated 2-wire bus ($T X_{\text {LINE }}$ \& $T X_{\text {CLK }}$); the μ controller clocks the data into the DPROC via TX CLK. . Refer to DPROC application note for transmitter link protocol [5]. The DPROC encodes the data into BCH and Manchester, converts it into an analog signal (DATA), and sends it to the APROC (NE/SA5751, Pin 24) transmit summer input. Speech signals coming from the microphone are fed into a noise cancellation circuit (NE/SA5750), band-pass filtered on the NE5751, then fed to the NE5750 for COMPression. The COMPressor output goes through the NE/ SA5751 where it is PREMphasized and low-pass filtered, and goes out at Pin 26 to the transmit summer input.
The APROC NE/SA5751 summer output, Pin 23 (signal TXMOD), goes to the transmit local
oscillator circuit where the signal is modulated, and then sent to the transmit module. For more information on Audio Processing refer to a paper by Ali Fotowat, et al [2].

3.4. LAYOUT

3.4.1. Layout and Shielding Techniques for Reducing Spurious Signals

The full-duplex feature of the cellular phone and the requirement for light and small phones, makes the layout very critical. Several paths for receiver blockage and instability do exist that have to be identified and eliminated. It should be made certain, however, that the gain blocks are designed with enough gain (e.g., for an FM IF chip with -106 dBm sensitivity, at least 10 dB of noise free gain is required in the front-end and the first IF). In the case of the NE605, however, with better than -116 dBm sensitivity already at the IF , the problem is reduced to calculating the noise figures and having just enough gain to overcome the front-end noise as it was calculated before. In either case, the final IF spectrum of a "noise" or "gain" limited receiver looks deceptively symmetric and clean; the only problem being not enough sensitivity. After these problems have been solved, the spurious signals start to show up in the final IF. There are several sources of these spurious signals that we have determined through experimentation and during the course of our design:

- The first and most important is the leakage of the transmitter power or its sub-harmonics into the receiver section. This can be in the form of radiated or conducted spurious emission. The former can be eliminated by making certain that the whole phone package is made of metal or that at least the receiver section is totally shielded from the antenna. The latter can only be eliminated by the duplexer and the trans-mit-receive filters. Paths through the power supply should be eliminated by filtering the supply and using separate regulators for the RF power amp and the receiver.
- The second important source of spurious signals is due to the receiver synthesizer and mixing products. Any phase noise or low frequency signal riding on the VCO input will end up in the IF pass-band. Too much LO level (overdrive of the first
mixer) will also mix with other available spurs, causing many unwanted in-band spurs.
- The third type of spur is due to the 2nd IF chip. Although the IF frequency is 455 kHz , most of the gains are here and a poorly designed 2nd IF PC board layout can cause multiple loops. The 455 kHz IF, although not a mixer, can reproduce the 45 MHz IF component by mixing the LO and noise due to the nonlinearity of the amplification in limiters.
- Finally, spurs can be generated by the μ controller communication with the EPROM software, or other logic circuits (like the extra RS-232 interface used in our phone for demonstration purposes) or the dividers that divide the VTCXO frequency. All three circuits generated 455 kHz IF band spurs. Although the clock frequencies in these sections are around 10 MHz , the random pattern of data transmission can also generate strong enough non-harmonic spurs as high as 80 or 90 MHz that can block the first IF for low levels, as well.

There are several techniques for detecting the presence of spurs. The easiest one is to check the DC voltage in the received signal strength indicator. RSSI in the NE605 has a wide dynamic range and does not distinguish between signals actually coming from the antenna or spurs looping in the receiver. Consequently, as the signal from the antenna weakens, the RSSI curve drops logarithmically, making a small (but distinguishable) dip, but remains flat at the RSSI level of the spurs, instead of going down to 0.5 V or lower (depending on the front-end gain), which is
the case in the absence of such spurs. The second method is to use a low capacitance high impedance probe to look at the final 455 kHz IF output on a spectrum analyzer. With no modulation and large RF signals (e.g., -80dBm), the rough shape of IF filters will be observable. As the RF input decreases, the noise level increases correspondingly and, eventually, the spurs will show up in the final IF. As long as the carrier level is a couple of dB above the spurs, the receiver seems to behave normally due to the FM capture effect. As the RF input becomes comparable or less than the spurs (as seen in the final IF), the receiver will be captured by the spur and the audio output will exhibit a lot of noise. To find out the source of each spur, one has to eliminate the sources by going back through the receiver stages. For example, if shorting the final 455 kHz input to ground eliminates a spur, it is a sign that a simple 2nd IF loop is present. In this case, improvement in the grounding around the IF amps and use of low ESR tantalum supply bypass capacitors can help solve the problem. The same procedure is used in stopping or reducing the 2nd LO level, and/or shorting the 45 MHz input of the FM/IF chip to ground. If a spur is eliminated this way, it is a sign of a 45 MHz loop. The solution in this case, ironically, may be to reduce the gain. This can be done easily after the first 455 kHz IF limiter without degrading the system noise figure. Of course, too much reduction in gain can also reduce sensitivity. As a result, the optimum reduction in gain which will eliminate the spur may be of the order of only 1 or 2 dB , as we observed in our design. Disabling or reducing the 1st LO level is the next thing to
try in the same manner as above. This procedure will identify the place and the frequency at which the spurs enter the receiver. Finally, by eliminating other sources of noise, like turning off the μ processor or disconnecting various voltage regulators, the source of the fourth type of spurious signals can be systematically identified and eliminated.

The layout, shown in Figure 3.11, is divided into two sections: the top portion is the RF section, and the bottom portion consists of the μ controller, Audio, and baseband signal processing. The transmitter and receiver stages use different voltage regulators, and have also been separated as much as possible. The VTCXO is placed between the transmit and receive synthesizers. In the baseband portion, the APROC chips are placed close to the modulator synthesizer to minimize pick-up on the modulation input. The positioning of the μ controller and EPROM could be improved by placing them further away from the FM IF section. The current positioning required shielding of the FM IF chip.

Finally, each block was separated from the others by a grounded strip with many feedthrough holes. This allowed us to shield different parts of the board after we had eliminated many of the more obvious spurious signals, and helped in finding more potentially hazardous ones. Table 3.1 shows the measurements on sensitivity with various sections shielded. It is obvious that the shielding of the IF section seems to have had the most effect.

Table 6. 1. Receiver Sensitivity Measurement Based on Shielding

Shielding on:	Receiver sensitivity
Front-end	-115 dBm
2nd IF	-116 dBm
Receive synthesizer	-115 dBm
TCXO/Divider	-116 dBm
Transmit synthesizer	-115 dBm
Microcontroller/EPROM	-115 dBm

Finally, comparison of our board with other existing phones of similar size shows a reduction from a 4 layer board to a two layer board, a 50% reduction in the number of ICs, and a 75% reduction in the number of external components in addition to minimum shielding.

REFERENCES:

1. "The I ${ }^{2} C$ Bus Specification", order code 9398-358-10011, Signetics, September 1988
2. "Audio Processing For Cellular Radio or High Performance Transceivers", proceedings of RF Technology Expo, February 1989, A. Fotowat, S. Navid, L. Engh.
3. "EIA Interim Standard, Recommended Minimum Standards for $800-\mathrm{MHz}$ Cellular

Subscriber Units", EIA/IS-19-B, May 1988.
4. "An Integrated Chip Set for Cellular Mobile Telephones", Proceedings RF Expo West, 1989, T.G.R. Hall, P.J. Hart.
5. "The UMA1000T 'DPROC' Data Processor For Cellular Radio", T.G.R. Hall, August 31, 1989. Report No: MCO89005.

Cellular chip set design guide

Table 6. 2. μ Controller I/O Signals and Their Functions in the Cellular Application

Port \#	Pin \#	Signal Name	Description
0	50-57	AD0-AD7	Data bus and low order address bus.
1	16	PWRDWN	Output. Power down control. It shuts off the power to the transmit LO circuit. It is active high: 1 = power down.
	17	HPDN	Output. Power down control. It powers down the APROC NE5750. IOt is active low: $0=$ power down.
	18	TXCTRL	Open-drain. It enables/disables the transmit module. The μ controller must disable transmission at the end of Conversation, or in the case of malfunction. It is also connected to DPROC which will disable transmission if a collision is detected during SYStem access state, and to APROC (NE5750) to implement VOX during Voice CHANnel state.
	19	BUSY	Input from DPROC. Indicates the status of the REverse Control Channel. It is used in the SYStem access state to control the number of access attempts.
	20, 21	$\begin{aligned} & R X_{\text {CLK }}, \\ & \text { RX }_{\text {LINE }} \end{aligned}$	A two-wire dedicated serial bus used to ship data from DPROC to the μ controller. $R X_{\text {LINE }}$ is input, $R X_{\text {CLK }}$ is output. Four bytes of data are made available by the DPROC. $R X_{\text {LINE }}$ is first pulled low, signaling to the μ controller that data is available. the μ controller responds by targeting $R X_{\text {CLK }}$ and clocks data out of the DPROC.
	22, 23	SCL, SDA	$1^{2} \mathrm{C}$ bus clock and data signals, respectively. Please refer to appendix ii for description of the $\mathrm{I}^{2} \mathrm{C}$ bus specification.
2	39-46	A8-A15	High order address bus.
3	24, 25	RXD, TXD	Receive and transmit signals for the on-board UART (Universal Asynchronous Receiver/Transmitter). They are connected via a MAX232 IC to the RS-232 connector of a dumb terminal.
	26, 27	$\begin{aligned} & \text { TX } \begin{array}{l} \text { LINE } \\ \text { TX }_{\text {CLK }} \end{array}, \end{aligned}$	Dedicated two-wire serial bus used to ship data from the μ controller to DPROC. TX cLK is output; $\mathrm{TX}_{\text {LINE }}$ is I/O. When the mcontroller needs to send data to DPROC it polls $T X_{\text {LINE. }} \mathrm{TX}_{\text {LINE }}$ in the high state indicates that DPROC is ready to receive it. Five bytes of data are sent to DPROC and will eventually be transmitted on the reverse access channel.
	28	TXHOLD	Output. Active high. It disables DPROC transmit buffer. It can be used to control message transmission.
	29	NRESET	Output. Active low. A pulse is generated to reset the DPROC.
4	7-14	KB0-KB7	I/O. They form a matrix for scanning the keypad.
5	1	RSSI	Input to ADCO. Received Signal Strength Indicator coming from NE605 is converted to digital. Selection of Best and 2nd Best of Dedicated, Page, or Access channels is done based on RSSI's digital value.
	62-68	ADC1-ADC7	Unused.
	4	PWM	Output of PWM0. Used to provide a voltage level to regulate power output of the transmit module. The output has a dty cycle for responding to one of the seven power levels.

Table 6. 3. DPROC I/O Signals and Their Functions in the Cellular Application

Pin \#	Signal Name	Description
1		Analog ground.
2		Analog reference ground.
3	DEMODD	Input. Demodulated signal carrier data or audio from the NE605 circuit.
4	DATA	Output, to NE5751. Analog output providing Manchester encoding and filtered data signal, SAT, and Signaling Tone.
5	RACTRL	Open drain, connected to APROC (NE5751). Receiver audio control. While in VCHAN state, and a dotting sequence is detected indicating the arrival of a control message, the audio path to the earpiece (switch M2) is muted to prevent the user from hearing the the data burst.
6, 7, 16, 21		See DPROC specification.
$\begin{aligned} & 8, \\ & 27 \end{aligned}$	RX Line, RX	Two-wire serial bus used to ship received data words from DPROC to the μ controller.
11	TACTRL	Open drain connected to APROC (NE5751). Transmit audio control. While in VCHAN state and data needs to be transmitted, the audio path (switch M1) is muted allowing only data path to the APROC summer input.
$\begin{aligned} & 15, \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{TX} \mathrm{X}_{\text {LINE }}, \\ & \mathrm{TX} \mathrm{X}_{\text {CLK }} \\ & \hline \end{aligned}$	Two-wire serial bus used to ship data words to be transmitted from the μ controller to DPROC.
17	TXHOLD	Input, from μ controller. It disables data words from going through the transmit path of the DPROC. The μ controller may load the DPROC transmit buffer, but inhibit transmission until the BUSY signal changes to IDLE.
19	BUSY	Output, to μ controller. Multiplexed with a data stream transmitted on FOCC is the BUSY/IDLE bit indicating the status of the reverse control channel. DPROC sets BUSY signal accordingly. It is used to determine whether a collision has occurred during transmission: if the channel becomes busy before 56 bits have been transmitted, or if channel does not become busy after 104 bits have been transmitted.
20	TXCTRL	Open drain disables transmit module. DPROC control over transmission is activated when a collision, as defined in EIA/IS-3-D (also, on page 13 of DPROC spec, items 9, 10 of Access Attempt Procedure), is detected (see BUSY).
24, 25	SDA, SCL	$R^{2} \mathrm{C}$ bus data and clock signals, respectively. For a description of $R^{2} \mathrm{C}$ bus refere to Appendix ii. DPROC $1^{2} \mathrm{C}$ address $=0 \mathrm{D} 8 \mathrm{~h}$

Cellular chip set design guide
HARDWARE DESCRIPTION

Table 6. 4. Meeting Receiver Specifications

AMPS Standards		
EIA/IS-19-B	Specification	Met By
2.2 .2 .1 .3	Audio Frequency Response	APROC
2.2 .2 .2 .3	Audio Muting	APROC OR NE605
2.2 .2 .3 .3	expander Tracking	NE5750
2.2 .2 .4 .3	Hum and Noise S/N	NE605
2.2 .2 .5 .3	Audio Distortion	APROC AND NE605
2.2 .2 .6 .3	Budio Sound Level	SPEAKER, NE5750
2.2 .3 .2 .3	Sensitivity	DPROC
2.3 .1 .3	Adjacent Channel Selectivity	FRONT-END AND NE605
2.3 .2 .3	Intermods	MURATA FILTERS
2.3 .3 .3	Spurious Response Interference	FRONT-END
2.3 .4 .3	Bit-Error-Rate	SYSTEM DESIGN
2.3 .5 .3	Conducted Spurious Emission	DPROC, NE605
2.4 .3	Radiated Spurious Power	LAYOUT, FILTERING
2.5 .3	RSSI Linearity	PACKAGING AND FCC
2.6 .3		NE605

Table 6. 5. Meeting Transmitter Specifications

AMPS Standards		
EIA/IS-19-B	Specification	Met By
3.1.2.3	Frequency Stability	TCXO, UMA1014
3.1.3.3	Carrier Switching Time	RF Power Module
3.1.4.3	Channel Switching Time	UMA1014
3.2.1.3	RF Power Output Levels	Power Mod, PWM Cal.
3.2.2.3	Switching Time Between Power Levels	Power Leveling Loop
3.2.3.3	Carrier-On State	RF Power Module and Driver
3.3.1.3	Modulation Stability	APROC
3.3.2.1.3	Compressor Tracking	NE5750
3.3.2.2.3	Transmit Frequency Response	NE5751
3.3.2.3.3	Inst. Peak Deviation	NE5751
3.3.2.4.3	Audio Muting	APROC
3.3.2.5.3	Transmit Audio Sensitivity	Microphone, NE5750
3.3.3.3	Wideband Data	DPROC
3.3.4.3	SAT Deviation and Phase Error	DPROC
3.3.5.3	ST Frequency and Deviation	DPROC and 5751
3.3.6.3	FM Hum and Noise	NE5750, UMA1014, VCO
3.3.7.3	Residual AM	Synthesizer and RF Amp
3.3.8.3	Modulation Distortion and Noise	APROC
3.4.1.3	Spectrum Noise Suppression	APROC, Filtering, Shielding
3.4.2.3	Conducted Spurious Emissions	Duplexer, RF Power Mod
3.4.3.3	Radiated Spurious Emissions	Shielding
3.5.3	Crosstalk (Audio)	APROC, Packaging
4.	Environmental	Ruggedness
EIA/S-3-D		
	CELLULAR SYSTEM MOBILE STATION - LAND STATION COMPATIBILITY SPECIFICATION	Signetics AMPS Software

Cellular chip set design guide

Figure 3.3 Receive Synthesizer

Cellular chip set design guide

Cellular chip set design guide

VExW ^өу

[^4]

Figure 3.11 PCB Layout

SOFTWARE DESCRIPTION

4. OVERVIEW

The source code is developed using Intel's Programming Language for μ Controller 8051 family (PLM51) and PLM51 compiler. The software was initially developed to implement TACS (Total Access Systems, United Kingdom) protocol. The AMPS parameters were extracted from the EIA IS-3-D
specifications and added to the existing source code to result in a single piece of software that can run either AMPS or TACS standards. To select between the two standards, a compilation switch would have to be set accordingly, and ALL the high level software modules would have to be recompiled. An example of a compilation batch file is shown in the Appendix.

4.1. Cellular Phone Operation

From a protocol stand point, a cellular telephone operates as a state machine
switching between four major states: INIT (INITialization), IDLE, SYS (SYStem access), and VCHAN (Voice CHANnel). Four software modules, with similar names but with .PLM extension, implement these states respectively, and are described in section 4.2.2, High Level Modules. Following is a description of tine soítware's top level state diagram (Figure 4.1) linking these states together.

Figure 4.1. Main Program Structure

At hardware power up or system reset, the mobile executes POWRUP routine followed by NORMOD, the state machine handler, which then switches the phone state to the INIT state.

Figures 4.2 through 4.5 show a high level flowchart of the AMPS protocol/software. It is
designed to give the reader a general idea of the activities of a cellular telephone. The major states are enclosed in rectangular boxes, and are interconnected with arrows leading to decisions (lozanges) and reasons for exiting any particular state. Each of the states is tagged with a reference number
corresponding to a paragraph in the EIA/IS-3-D specification.

4.1.1. INIT

In the INIT state the mobile scans the Dedicated Control Channels spectrum and selects the two best channels based on the
quantized value of the RSSI signal coming from the RF FRONT-END circuit (NE605).
The mobile then locks onto the best channel and reads and decodes overhead control messages (OHD) which are periodically transmitted by the cell site on the FOrward Control Channels(FOCC). Part of the OHD messages read are information to configure the Paging channels.

If unable to read any messages from best channel (mobile roamed away from nearest cell site), the mobile tries again by listening to the $2 n d$ best channel. If the mobile fails again to read messages from the 2 nd best channel, it repeats the INIT state and re-scans the Dedicated Control Channels spectrum. Otherwise, the mobile does the following:
Once configured, Paging Channels are scanned and OHD messages are decoded from best or 2nd best Page Channel, then compared to information already read from best or 2nd best Dedicated Control Channel (EIA 2.6.1.2.2). The need for such comparison arises due to the roaming feature of cellular. The user may have roamed out of his Home System between reading data from the Dedicated Control Channel and reading data from the Paging Channel. Upon verification, i.e. the mobile is still in Home System, the mobile switches to the IDLE state. Otherwise, the mobile has roamed to another system and the INIT state is re-executed.

4.1.2. IDLE

In the IDLE state the mobile listens to the Best or 2nd Best Page channel, as determined in the INIT state, and waits for requests from the User or from the system, i.e. the cell site. Requests from the system are sent in OverHeaD messages, such as REGISTRATION and RESCAN, and as mobile Station Control Messages, such as AUDIT order and PAGE order. User request can only be a call ORIGINATION, and is issued by pressing the SEND key. All requests, such as Registration, Audit, or Page (from the system) and Origination (from the user) require the mobile to transmit control information back to the system on the REverse access Control Channel (RECC) (see SYStem access below). Hence, following the receipt of a request, the mobile goes into SYStem access state. In the case of a RESCAN order, the mobile does not need to go to the SYStem access state; it simply loops back into the INITialization state. Note that OHD messages received over Page channel carry information to configure

Access channels which are used in the system access state. During the IDLE state the mobile's transmitter and its Audio processing circuitry are not operational, so they can be powered down and reduce the phone's power consumption level.

4.1.3. SYS Access

The main task in the system access state is to seize a Reverse access Control Channel and transmit to the cell site the mobile Identification Number (MIN or Tel. *) followed by the mobile Electronic Serial Number (ESN), as per EIA 2.6.3.7 (Service Request). Criteria for reverse control channel seizure, like maximum number of seizure attempts and maximum number of channel busy indications, are communicated to the mobile over the best forward access control channel. The mobile starts the SYStem access state by scanning the set of access channels and selecting the 2 best channels. as done for dedicated and paging channel selection. The mobile then attempts to acquire a reverse access channel by first monitoring the Busy/ldie bit. If the channel is busy, the number of busy attempts is incremented. However, it the channel is not busy, and the mobile has started transmission of its MIN and ESN, but a collision is detected (by DPROC, which will abort the transmission), the number of seizure attempts is incremented. In either case of channel acquisition failure (due to Busy or collision), the mobile waits 200 msec before attempting another channel seizure. If the number seizure attempts, or the number of busy occurrences, have been incremented to exceed a certain maximum, the mobile aborts SYStem access and goes to INIT state. Otherwise, if the system access timer times out before it was able to seize a REverse Control Channel, the mobile exits system access state and goes to INIT state. If the system access timer did not time out, channel seizure was successful, and MIN and ESN were transmitted, the mobile changes its internal state to Service Request (Figures 4.4 and 4.5) where a next step decision is made based on the reason for entering SYS access state (i.e., Registration, Audit, Page Response, or Origination). If the mobile has entered the SYStem access state in response to an Audit order, the mobile goes to INIT state. (Audit is a way for the system to poll roaming mobiles to determine their geographic location on a cell boundary.)
If the mobile has entered the SYStem access state in response to a Registration indication,
it waits for the cell site to acknowledge the receipt of MIN and ESN by sending a Registration Confirmation control message. The mobile, having received the confirmation message, will then update its Registration timestamp and return to INIT state. (Figure 4.5, Auto Reg Update, "success") If system access is entered in response to Origination or Paging Request, the mobile waits for the cell site to assign it an initial voice channel, and then goes to the voice channel state. If system access timer times out before a voice channel is assigned, the mobile exits system access and goes to INIT state. Note that in response to a user originated call, the mobile transmits the dialed number in addition to transmitting MIN and ESN.

4.1.4. VCHAN

The mobile verifies that the initial voice channel assigned to it in SYStem access state is a valid channel, i.e., within the spectrum of voice channels, then tunes to it. Voice channel state consists of three sub-states: Conversation, Waiting for Order and Waiting for Answer. If the mobile enters VCHAN in response to a user originated call, it goes directly to Conversation sub-state and remains there until ordered by the cell site to change sub-states (or state, e.g. Release state). If the mobile enters VCHAN in response to system originated call (or paging), it goes to Wait for Order sub-state. In this sub-state the cell site sends an Alert message to the mobile ordering it to ring. The mobile rings and changes sub-state to Wait for Answer.

The user would answer the phone by pressing the SEND key, changing the mobile sub-state to Conversation. During sub-states the mobile can be handed off to another channel, or the power level changed, by order messages from the cell site. Receipt of cell site orders are acknowledged by the mobile by generating a 10 kHz signaling tone with variable duration, based on the received message.

When the conversation is terminated, by the user pressing the END key or by a Release order from the cell site, the mobile turns on its signaling tone for 1.8 sec to indicate to the cell site that it will release the voice channel and shut off its transmitter. The mobile then goes to INIT state.
This was an overall description on the cellular behavior. Following is a brief description of each of the software modules.

Figure 4.3. AMPS Flow Chart: System Access State

Figure 4.4. AMPS Flow Chart: System Access State (cont) and Voice Channel State

Figure 4.5. AMPS Flow Chart: System Access State (cont)

4.2. Setup \& Implementation

The software modules can be divided into two categories:

1. Device driver modules.
2. High level, protocol dependent modules.

Device drivers are hardware dependent routines allowing the user control over the ICs using a high level language. High level modules are hardware independent routines and typically address the device drivers during normal operation. Following is the list of device drivers for the cellular chip set.

4.2.1. Device Drivers

ADCINT.PLM: This file programs the Analog-to-Digital Converter on board the μ controller PCB80C552. The software waits until the ADC has converged before reading the digital value of the analog signal (typically RSSI).

DPROC.PLM: This file is temporary. It is a patch for the DPROC, version TN2682. It contains routines that perform message set-up and transmission, bypassing the DPROC transmit path. This is due to the fact that the TN2682 has a faulty Manchester encoder (see note in INTDAT.PLM below). Two other programs, described beiow, are developed to work in conjunction with this module: SENDI.ASM and INTERRUP.ASM.
॥C.PLM: This file programs the $I^{2} \mathrm{C}$ bus interface on board the μ controller PCB80C552. The software performs retries in the case of no acknowledgment.

INTDAT.PLM: DPROC communication software with the system controller over the dedicated xmit/receive lines:
$R X_{\text {CLK, }}, R X_{\text {LINE }}$ DPROC $\rightarrow \mu$ controller
TX ${ }_{\text {CLK }}$, TX LINE $\mu_{\text {controller }} \rightarrow$ DPROC

Hold μ controller \rightarrow DPROC

Transmitter Routine

When the system controller needs to send data (typically MIN and ESN during a system access), it polls TX ${ }_{\text {LINE }}$, indicating DPROC readiness to receive data. The transmit routine will not be called unless the TX LINE has been released HIGH by the DPROC, signifying buffer Not busy, or readiness for receiving more data. The transmit routine picks up the data (5 bytes) from the data structure
TX_MESSAGE(TX_WORD_NUMBER).TX_ WRD_DATPRO, and transmits it serially on TX $X_{\text {LINE }}$ while toggling $T X_{\text {CLK }}$ (data stable on positive edge). On the last rising edge of TX CLK, , DPROC will pull the TX LINE LOW as an ACK/(buffer)BUSY signal. The transmitted word has the following format (e.g., word1).

NOTES:

1. The STOP bit is not part of the structure.
2. The EMPTY bit is not used and is always set to zero.

Message to be transmitted is stored in structure: TX_MESSAGE
(m).TX_WRD_DATPRO (b)
where: $\quad m$ is word number ($0-5$) b is byte number within
word ($0-4$) counting from left
NOTE: Due to the DPROC hardware problem in transmission, the μ Controller performs message formatting and transmission instead of the DPROC. To that effect, the transmit software routine which normally passes to the DPROC a data word (40bits), namely DPROC_SEND_DATA_WORD, has been replaced with another routine,
SEND_DPROC_MESSAGE in DPROC.PLM module.

SEND_DPROC_MESSAGE now forms the message to be transmitted by calculating the parity for each of the repeats of the word (5 repeats) and forms a frame. This frame of 5 data words is then preceded with Dotting, Word synchronization, and encoded DCC to form the final message to be transmitted.

SND_DATA_ASM routine is then called to perform the transmission on the $T X_{\text {LINE. }}$ The transmit driver routine, SND_DATA_ASM, is written in assembly language for better efficiency, and is located in a file called SENDI.ASM. Note that TX LINE wire is used to transmit the data. It must be routed to the APROC's summing input. $T X_{\text {CLK }}$ is unused (not toggled by software).

We have included in the software a compilation variable, BYPASS, in order to invoke the appropriate transmit routine. With the new DPROC (TN2683) which fixes the transmit hardware problem, the transmit software routine can be removed. The user should, however, re-compile all modules with BYPASS $=0$ (see compilation example) in order to select
DPROC_SEND_DATA_WORD routine (DPROC. PLM and SENDI.ASM may be deleted).
Summary: If BYPASS $=1$, the parity is computed and appended at the end of each
word of the 5 -word frame, and Dotting + WSYNC + encoded DCC are inserted at the beginning of that frame before the whole message is transmitted on TX LINE to APROC summing input, by SENDI.ASM.
Receiver Routine
When the DPROC has received and decoded the incoming DEMODD data of the Forward control channel (FOCC), it pulls the RX LINE LOW. The system controller, which is now in receive message mode polling $R X_{\text {LINE }}$ continuously looking for messages on FOCC, supplies $\mathrm{RX}_{\text {CLK }}$ to clock the data out of the DPROC according to the received data timing (page 12 of DPROC spec.). The receive routine, DATA_PRO_RX, first pulls the clock line LOW, waits some time for the hardware to settle, then clocks out DPROC data on the rising edge. A total of 32 bits (4 bytes) are clocked in and the clock is left in a HIGH state as the spec. shows.
The received word has the following format (word1).

Received message is stored in structure:
RX_MESSAGE (m).RX_WRD_DATPRO (b) where: $\quad m$ is word number ($0-15$) b is byte number within word (0-3) counting from left
IOMOD.PLM: This file contains a list of high level routines used to program devices on the $1^{2} \mathrm{C}$ bus. Such routines rely on lower level $I^{2} \mathrm{C}$ routines, in I2C.PLM, to perform the actual data transfer. Note that a specific data structure must be adopted in order to make use of IOMOD.PLM independently.
MSGXHAND.PLM: This file contains high level routines that perform string processing for the UART interface. They rely on lower level routines, in V24INT.PLM, to maintain the data structure for data received from the Dumb terminal keyboard, and data sent to the Dumb terminal screen.
SENDIPLM: This is a program written in assembly language and designed to transmit the message for the DPROC. The data bits are shifted out on $T X_{\text {LINE }}$ at a frequency equals twice the data rate, due to Manchester encoding.
SYNTH.PLM (LOPSYPLM): This file contains procedures to program the synthesizers (Receive and Transmit). They use the $I^{2} \mathrm{C}$ routines which do the actual data transfer. SYNTH.PLM MUST be used with the UMA1010/12 synthesizers only, and LOPSY.PLM MUST be used with TDD1742 synthesizers. Both files contain the same set of routine names. So if they are both compiled, the one that is linked last will be the effective one. Note that TDD1742 has no $1^{2} \mathrm{C}$ interface, and must be used with an I/O expander PCF8574.
V24INTPLM: This file holds the μ controller PCB80C552 UART interface routines for data transfer from and to the Dumb terminal. This file sits below MSGXHAND.PLM hierarchically.
NOTE: V24INT.PLM and MSGXHAND.PLM are NOT part of cellular operation. They were developed to support test programs and utilities in TESTH. PLM.

4.2.2. High Level Modules

This is the list of modules that implement the AMPS/TACS standards. It is presented alphabetically.
CODMSG.PLM: This module is a support module. It deals with encoding of words A..E, as labeled in EIA spec, for transmission on the reverse control channel. It also encodes words F..H for transmission on the reverse voice channel. Note that words F, G and H are Order Confirmation, Called-Address Word, and Called-Address Word 2, respectively.
IDLE.PLM: The Idle mode has several main functions to perform. These include:

1. Check data fading,
(5 sec. timer to read OverHeaD message)
2. Check non-preferred system timeout, (TACS only)
3. Respond to Overhead MSG,
4. Respond to mobile control MSG
(Page and Order),
5. Check re-registration timeup, (TACS only)
6. Support call initiation request (SEND key pressed)
When certain conditions specific to the function involved are satisfied, the above functions can cause the mobile to exit from Idle state into either INITialization or SYStem access states. When this happens, the program returns IDLE_EXIT_REASON flag which will be used by a higher level module (NORMOD) to decide on the next action to take. IDLE_EXIT_REASON is initially set to NULL and is used to keep the mobile in Idle state.
While the mobile is in IDLE state, and IDLE_EXIT_REASON = NULL, the μ controller is put in idle or "sleep" mode by setting register $\operatorname{PCON}[0]=1$. In addition, we set variable LO_POWER_MODE $=$ TRUE to indicate to the master timer routine, in TIMINT.PLM, to change the periodic
interrupts from 1 msec to 25 msec . At the next timer interrupt, the μ controller wakes up (every 25 msec .) and resumes execution of the IDLE state starting from the line of code following the assignment statement: 'PCON = 0000001'.
INIT.PLM: The top level routine, INITIALIZATION_STATE, consists of three nested loops. The inner most one dictates that an overhead message must be read on the DEDICATED CONTROL CHANNEL and parameters updated. It is possible that the mobile alternates between two serving systems if no overhead message can be received from either system.
Coming out of the inner loop, the mobile needs to read an overhead message on the PAGING CHANNEL. If it failed on the current serving system (system A or system B), it has to restart on the other serving system. If it has successfully gone through the above two stages, the overhead information collected on the Dedicated Control Channel is compared with that collected on the Paging Channel. Unless they match, the above activities are repeated indefinitely.

There is another requirement of the spec (SSDT) which allows the mobile to enter this procedure at the middle, skipping stages of initialization and the inner loop described above. That is dealt with using a flag INIT_1ST_STAGE.
MAIN.PLM: Contains a call to POWERUP to initialize the software and the hardware and a call to the state machine handler (NORMOD) which decides which of the four states to go to next (Figure 4.1).
NORMOD.PLM: State machine handler. Based on the ...EXIT_REASON of one state, this routine selects next state and calls the corresponding routine. Debug messages can be placed here, displaying reasons for exiting one state and entering another.
PWRUP.PLM: Initializes global variables such as control registers for DPROC and APROC, serving system, etc.

RDMSSG.PLM: This is a support module. It reads state dependent messages from DPROC.

REG.PLM: This is a support module. It deals with updating the registration variables, and keeps track of the last four visited areas (NEXTREGs-p SIDs-p pair).

REPLYPLM: This is a support module. It contains functional blocks related to handling replies from land station during system access.

RFXHIXLE.PLM: High level to SYNTH.PLM (or LOPSY.PLM). It scans the dedicated control channel spectrum of system A or system B and chooses the best channel.

SYS.PLM: When a mobile enters System Access state from Idle, its IDLE EXIT REASON becomes the ACCESS AIM in the context of this state. A SYSACC EXIT REASON is initially set to NULL on entry. When changed to one of the following
GP_TIMER_MSEC (NUM_OF_GP_TIMERS)
GP_TIMER_MIN (NUM_OF_GP_TIMERS)
where NUM_OF_GP_TIMERS = 5
Note that handling these is the responsibility of the user, i.e., they can be used as any system timer as defined by AMPS or TACS.
The main part of this module is the TO interrupt vector routine which is called every 1 msec (or 25 msec). The msec portions of the timers is decremented by one. When msec reaches zero, the MIN portion is examined and decremented if >0 while the MSEC portion is loaded with 60000 . If the
$X t a l=11.059 \mathrm{MHz}$.

Timer Period of 1 msec is TP $=(X T A L H z / 12) 10^{-3} \mathrm{sec} .=1 \mathrm{~ms}$;		
	where 12 = 1 machine cycle .	
@ $11.059 \mathrm{MHz}, 1 \mathrm{msec}$ period	$=039 \mathrm{Ah}$	
1 ms TIMER	= 0FFFFh - 039A	$=0 \mathrm{FC65h}$; counting up
@ 11.059MHz, 25msec period	$=5 \mathrm{~A} 00 \mathrm{~h}$	
25 msec TIMER	$=0$ FFFFh - 5A00h	$=0 A 5 F F h$; counting up
Hence		
TIMER_RELOAD_HI	$=0 \mathrm{FCh}$	
TIMER_RELOAD_LO	$=065 \mathrm{~h}$	
TIMER_RELOAD_HI_25	$=0 A 5 \mathrm{~h}$	
TIMER_RELOAD_LO_25	$=0 \mathrm{FFh}$:	

This module also handles the telephone keypad by scanning it. Routine KBOARD_SC scans the keypad and returns the declared value of the key pressed; NULL if no key pressed, or OFFh if two keys pressed. The key pressed is checked again in 32 msec for debounced. If the key is
reasons, the SYSACC EXIT REASON causes an exit from this state.
ORDER_CONFIRMED
MSG_TIMOUT
OVERLOAD_DISTB_DELAY,
(TACS)
EXCEED_MAX_BUSY
EXCEED MAX SEIZE
RELEASE
NTERCEPT
RE-ORDER
USR HALT
ACCESS_TIMOUT
VCHAN_ASSIGNED
Apart from VCHAN ASSIGNED in which case the mobile enters 'Control of voice channel' state, the other reasons cause it to go to SSDT (Serving System Determination Task). The mobile can retry to gain access if it
received a directed retry message from the land station by selecting from a new set of access channels' two best ones.

TIMINT.PLM: Interrupts occur every 1 msec during the active states of the mobile, i.e., POWER UP, INITIALIZATION, SYSTEM ACCESS and VCHAN; but during IDLE state the interrupts occur every 25 msec with the timer increments being adjusted accordingly. This allows the processor to spend more time in the low power mode which is flagged by a bit (LO_POWER_MODE), and the timer interrupt sets another bit (LONG_TIMER_INT) to flag the change from 1 ms to 25 msec increments.

Timers are configured into two arrays of 5 entries each. One array measures in MSEC (millisecond), and the other measures in MINutes. They are considered as high level timers and are declared as follows:

word	external auxiliary
byte	external auxiliary

MIN portion is zero and the MSEC portion is also zero, the timer is no longer decremented. Note that the timers can be Enabled and Disabled by loading 00h and OFFh, respectively, in the MIN part. If the timer value is more than 1 minute, it is automatically enabled.

The timer interrupt allocates timeslots within a 128 msec frame to perform the various time related functions. The low level timers are
updated every 1 msec , and high level timers are updated every 4 msec to prevent timer interrupt overrun. The keypad is scanned every 32 msec .

The interrupt by timer TO is caused by a 16-bit counter overflow. Therefore, T0 must be loaded with an initial value of OFC65hex to cause 1 msec interrupt, and must be loaded with OA5FFhex for a 25 msec interrupt according to the following:

TXMSSG.PLM: High level to INTDAT.PLM (or DPROC.PLM) in that it deals with transmission of data words to DPROC. It monitors channel arbitration (BUSYIDLE signal from DPROC) and turns OFF transmitter (TXDIS $=0$) in the case of
accepted the key value is stored into the keypad buffer and later used by READ_USER_INPUT routine, called from various points in the software to update the LCD. Note that if a key remains pressed, it is only accepted once.
collision, as specified by UMA1000 specification, Reverse Control Channel Access Arbitration, page 11. The arbitration is specified as follows:

1. Initial condition: Busy/Idle = Idle; transmission in progress.
2. If B / l reverts to Busy before the first 54 bits have been transmitted, a collision has occurred.
3. If B / I does notrevert to Busy after 104 bits have been transmitted, a collision has occurred.
VCHAN.PLM (mobile station control of voice channel): The Control of Voice channel state consists of the following sub-states:
4. WAIT FOR ORDER
5. WAIT FOR ANSWER
6. CONVERSATION
7. RELEASE VOICE CHANNEL

Within these sub-states, the mobile waits to receive either a user command or an order from the land station. Apart from having received a command/order which requires the mobile to come out of the wait loop, it also emerges when other conditions are satisfied. These conditions are

1. Fade timeout
2. Time to check channel quality (SAT), at least every 250 msec

After having processed the order/command/emerge condition, the sub-states report the result to its immediate calling routine (1 level up, control of voice channel) which directs the mobile to enter a new sub-state as listed above, or re-enter the same sub-state. The mobile stays on the voice channel until there is a reason to leave
such as Answer timeout, Fade timeout or Release command. When VCHAN is first entered, the task of 'Confirming initial voice channel ' is carried out. For as long as the mobile remains on the voice channel, the quality of the voice channel is monitored by reading SAT color code (SCC).
XTRCTPLM: This is a support module. It unpacks received messages into individual fields and sets appropriate variables.

4.2.3. Include Files

DATETIME,DCL: This file contains a declaration of a CONSTant string which, when called by the software, will display a date and time stamp. It is included in MAIN.PLM. This file must be updated to reflect the current date and time before compilting MAIN.PLM. Such utility is not provided with the source code.

DECLAR.DCL: This is a list of declaration of variables. It is inluded in all *.PLM files.

EXTRNS.DCL: This is a list of declaration of external variables and external procedures. It is inluded in PWRUP.PLM file.

REG552.DCL: This file contains the 80C552 Special Function Register map and declarations of those registers. It is developed by INTEL.
REPEAT.DCL: This file contains a macro definition of REPEAT...UNTIL statement. It is included in DPROC.PLM.

PUBLIC.DCL: This is a list of global variable declarations. It is included in MAIN.PLM. A change in this list must be followed by a compilation of MAIN.PLM.

UTIL51.DCL: This is a list of library routines to aid in the programming. It is developed by INTEL, the supplier of PLM51 compiler.

4.2.4. Installation

The hardware platform is assumed to be an IBM PC or compatible. There are three floppies containing all the files needed to generate the PROM code for the chip-set evaluator unit. The PLM51 compiler and linker programs must be resident, or reachable, from the working directory. Insert the floppies and use the COPY command to copy the content into a working directory. Proceed to next section to learn about compilation and linking, but here is a summary of commands to get PROM code:

1. COPY B:*.* <CR>
\{Repeat for all three floppies \}
2. BUILD <CR>
3. LINK <CR>

The final PROM code resides in file CELL1.HEX

4.2.5. Compiling and Linking

There are several command files set up to aid the programmer in the compilation of the source modules, and link their corresponding object modules. After every source module is compiled, it is added to a library called USERLIB.LIB (this file can be created by running LIB51 program). When all modules have been compiled and added to USERLIB.LIB, the linker must be invoked by running RL51 program to resolve all external definitions and produce the final HEX code. Below is a list of the command files and their functions.

PLMA.BAI This command file calls up the PLM51 compiler and, if there are no errors, invokes the library program LIB51 to add the compiled module to the list of object modules. When done, it deletes the .OBJ file to free up disk space. An example of PLMA content is shown below.

USAGE: PLMA < module name, without .PLM extension >
Example: PLMA ADCINT
NOTE: The user must provide a program to automatically update file DATETIME.DCL every time PLMA is called on MAIN(.PLM). Date and Time stamping is important to keep track of software revisions.

Cellular chip set design guide

Example: PLMA.BAT

echo off

if exist \%1.plm goto COMPILE
echo ERROR ! File does not exist
goto END
:COMPILE
echo Compiling... AMPS = SET, BYPASS = SET
if $\% 1==$ main echo Running date stamp
if $\% 1==$ MAIN echo Running date stamp
if $\% 1==$ main < Include a call to a program to update the date/time stamp in DATETIME.DCL file >
if $\% 1==$ MAIN < Include a call to a program to update the date/time stamp in DATETIME.DCL file >
plm51 \%1.PLM SET(BYPASS) SET(AMPS) DEBUG LIST OPTIMIZE(3) CODE
if not errorlevel 2 goto LIBRARY
echo ERROR in compilation!
echo MODULE has not been updated in library
goto END
:LIBRARY
if \%1==main goto END
if $\% 1==$ MAIN goto END
echo Adding to Library
lib51 replace \%1.obj in userlib.lib
del \%1.obj
del \%1. Ist
:END
echo on

Cellular chip set design guide

LINK.BAT This routine must be called to link USAGE: LINK
the object modules and produce the final hex
code. Below is an example of LINK.BAT.

Example: LINK.BAT
echo off
RL51 MAIN.OBJ, SENDI.OBJ, INTERRUP.OBJ, USERLIB.LIB, PLM51.LIB, UTIL51.LIB TO CELL1.ABS IXREF overlay
oh cell1.abs to cell1.hex
echo on

BUILD.BAT This utility file will compile all the modules and add them to USERLIB.LIB. It must be followed by LINK.BAT to generate
the PROM code. Below is an example of
USAGE:
BUILD BUILD.BAT.

Example: BUILD.BAT

call PLMA codmsg
call PLMA dproc
call PLMA except
call PLMA hsekpr
call PLMA idle
call PLMA iic
call PLMA init
call PLMA intdat
call PLMA lopsy call PLMA main call PLMA msgxhand call PLMA normod call PLMA pwrup call PLMA rdmssg call PLMA reg call PLMA reply
call PLMA sys call PLMA testh call PLMA timint call PLMA txmssg call PLMA v24int call PLMA vchan call PLMA xtrct

$I^{2} \mathrm{C}$ Bus specification

RF Communications

INTRODUCTION

For 8-bit applications, such as those requiring single-chip microcomputers, certain design criteria can be established:

- A complete system usually consists of at least one microcomputer and other peripheral devices, such as memories and I/O expanders.
- The cost of connecting the various devices within the system must be kept to a minimum.
- Such a system usually performs a control function and does not require high-speed data transfer.
- Overall efficiency depends on the devices chosen and the interconnecting bus structure.

In order to produce a system to satisfy these criteria, a serial bus structure is needed. Although serial buses don't have the through-put capability of parallel buses, they do require less wiring and fewer connecting pins. However, a bus is not merely an interconnecting wire, it embodies all the formats and procedures for communication within the system.

Devices communicating with each other on a serial bus must have some form of protocol which avoids all possibilities of confusion, data loss, and blockage of information. Fast devices must be able to communicate with slow devices. The system must not be dependent on the devices connected to it; otherwise, modifications or improvements would be impossible. A procedure has also to be resolved to decide which device will be in control of the bus and when. And if different devices with different clock speeds are connected to the bus, the bus clock source must be defined.
All these criteria are involved in the specification of the $\mathrm{I}^{2} \mathrm{C}$ bus.

THE ${ }^{2}$ C BUS CONCEPT

Any manufacturing process (NMOS, CMOS, $\mathrm{I}^{2} \mathrm{~L}$) can be supported by the $\mathrm{I}^{2} \mathrm{C}$ bus. Two wires (SDA-serial data, SCL-serial clock) carry information between the devices connected to the bus. Each device is recognized by a unique address-whether it is a micro-
computer, LCD driver, memory or keyboard interface-and can operate as either a transmitter or receiver, depending on the function of the device. Obviously an LCD driver is only a receiver, while a memory can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers (see Table 1). A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The $I^{2} \mathrm{C}$ bus is a multimaster bus. This means that more than one device capable of controlling the bus can be connected to it. As masters are usually microcomputers, let's consider the case of a data transfer between two microcomputers connected to the $\mathrm{I}^{2} \mathrm{C}$ bus (Figure 1). This highlights the master-slave and receiver-transmitter relationships to be found on the $I^{2} \mathrm{C}$ bus. It should be noted that these relationships are not permanent, but only depend on the direction of data transfer at that time. The transfer of data would follow in this way:

Figure 1. Typical $I^{2} \mathrm{C}$ Bus Configuration

$I^{2} \mathrm{C}$ Bus specification

Table 1. Definition of $I^{2} C$ Bus Terminology

TERM	DESCRIPTION
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals, and terminates a transfer
Slave	The device addressed by a master
Multi-master	More than one master can attempt to control the bus at the same time without corrupting the message
Arbitration	Procedure to ensure that if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
Synchronization	Procedure to synchronize the clock signals of two or more devices

1. Suppose microcomputer A wants to send information to microcomputer B.
-Microcomputer A (master) addresses microcomputer B (slave)
-Microcomputer A (master transmitter) sends data to microcomputer B (slave receiver)
-Microcomputer A terminates the transfer.
2. If microcomputer \mathbf{A} wants to receive information from microcomputer B

> -Microcomputer A (master) addresses microcomputer B (slave)
> -Microcomputer A (master receiver) receives data from microcomputer B (slave transmitter)
> -Microcomputer A terminates the transfer.

Even in this case, the master (microcomputer A) generates the timing and terminates the transfer.

The possibility of more than one microcomputer being connected to the $I^{2} \mathrm{C}$ bus means that more than one master could try to initiate a data transfer at the same time. To avoid the chaos that might ensue from such an event, an arbitration procedure has been developed. This procedure relies on the wired-AND connection of all devices to the $I^{2} \mathrm{C}$ bus.

If two or more masters try to put information on to the bus, the first to produce a one when the other produces a zero will lose the arbitra-
tion. The clock signals during arbitration are a synchronized combination of the clocks generated by the masters using the wired-AND connection to the SCL line (for more detailed information concerning arbitration see Arbitration and Clock Generation).
Generation of clock signals on the $I^{2} \mathrm{C}$ bus is always the responsibility of master devices; each master generates its own clock signals when transferring data on the bus. Bus clock signals from a master can only be altered when they are stretched by a slow slave device holding down the clock line or by another master when arbitration takes place.

GENERAL CHARACTERISTICS

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a pull-up resistor (see Figure 2). When the bus is free, both lines are High. The output stages of devices connected to the bus must have an open-drain or open-collector in order to perform the wired-AND function. Data on the $I^{2} \mathrm{C}$ bus can be transferred at a rate up to $100 \mathrm{kbit} / \mathrm{s}$. The number of devices connected to the bus is solely dependent on the limiting bus capacitance of 400 pF .

BIT TRANSFER

Due to the variety of different technology devices (CMOS, NMOS, 1^{2} L) which can be connected to the $I^{2} C$ bus, the levels of the logical

0 (Low) and 1 (High) are not fixed and depend on the appropriate level of V_{DD} (see Electrical Specifications). One clock pulse is generated for each data bit transferred.

Data Validity

The data on the SDA line must be stable during the High period of the clock. The High or Low state of the data line can only change when the clock signal on the SCL line is Low (Figure 3).

Start and Stop Conditions

Within the procedure of the $I^{2} \mathrm{C}$ bus, unique situations arise which are defined as start and stop conditions (see Figure 4).
A High-to-Low transition of the SDA line while SCL is High is one such unique case. This situation indicates a start condition.
A Low-to-High transition of the SDA line while SCL is High defines a stop condition.

Start and stop conditions are always generated by the master. The bus is considered to be busy after the start condition. The bus is considered to be free again a certain time after the stop condition. This bus free situation will be described later in detail.
Detection of start and stop conditions by devices connected to the bus is easy if they have the necessary interfacing hardware. However, microcomputers with no such interface have to sample the SDA line at least twice per clock period in order to sense the transition.
$I^{2} C$ Bus specification

Figure 2. Connection of Devices to the $I^{2} C$ Bus

Figure 3. Bit Transfer on the $\mathrm{I}^{2} \mathrm{C}$ Bus

Figure 4. Start and Stop Conditions
$I^{2} C$ Bus specification

TRANSFERRING DATA

Byte Format

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge bit.
Data is transferred with the most significant bit (MSB) first (Figure 5). If a receiving device cannot receive another complete byte of data until it has performed some other function, for example, to service an internal interrupt, it can hold the clock line SCL Low to force the transmitter into a wait state. Data transfer then continues when the receiver is ready for another byte of data and releases the clock line SCL.

In some cases, it is permitted to use a different format from the $\mathrm{I}^{2} \mathrm{C}$ bus format, such as CBUS compatible devices. A message which starts with such an address can be termi-
nated by the generation of a stop condition, even during the transmission of a byte. In this case, no acknowledge is generated.

Acknowledge

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitting device releases the SDA line (High) during the acknowledge clock pulse.

The receiving device has to pull down the SDA line during the acknowledge clock pulse so that the SDA line is stable Low during the high period of this clock pulse (Figure 6). Of course, setup and hold times must also be taken into account and these will be described in the Timing section.
Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte has been received (except when the message starts with a CBUS address).

When a slave receiver does not acknowledge on the slave address, for example, because it is unable to receive while it is performing some real-time function, the data line must be left High by the slave. The master can then generate a STOP condition to abort the transfer.

If a slave receiver does acknowledge the slave address, but some time later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave not generating the acknowledge on the first byte following. The slave leaves the data line High and the master generates the STOP condition.

In the case of a master receiver involved in a transfer, it must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate the STOP condition.

Figure 5. Data Transfer on the $I^{2} \mathrm{C}$ Bus

Figure 6. Acknowledge on the $I^{2} C$ Bus

$I^{2} \mathrm{C}$ Bus specification

ARBITRATION AND CLOCK GENERATION

Synchronization

All masters generate their own clock on the SCL iine to transfer messages on the $\mathrm{I}^{2} \mathrm{C}$ bus. Data is only valid during the clock High period on the SCL line; therefore, a defined clock is needed if the bit-by-bit arbitration procedure is to take place.
Clock synchronization is performed using the wired-AND connection of devices to the SCL LINE. This means that a High-to-Low transition on the SCL line will affect the devices concerned, causing them to start counting off their Low period. Once a device clock has gone Low it will hold the SCL line in that state until the clock High state is reached (Figure 7). However, the Low-to-High change in this device clock may not change the state of the SCL line if another device clock is still within its Low period. Therefore, SCL will be held Low by the device with the longest Low period. Devices with shorter Low periods enter a High wait state during this time.
When all devices concerned have counted off their Low period, the clock line will be released and go High. There will then be no difference between the device clocks and the state of the SCL line and all of them will start counting their High periods. The first device to complete its High period will again pull the SCL line Low.
In this way, a synchronized SCL clock is generated for which the Low period is determined by the device with the longest clock Low period while the High period on SCL is determined by the device with the shortest clock High period.

Arbitration

Arbitration takes place on the SDA line in such a way that the master which transmits a

High level, while another master transmits a Low level, will switch off its DATA output stage since the level on the bus does not correspond to its own level.
Arbitration can carry on through many bits. The first stage of arbitration is the comparison of the address bits. If the masters are each trying to address the same device, arbitration continues into a comparison of the data. Because address and data information is used on the $I^{2} \mathrm{C}$ bus for the arbitration, no information is lost during this process.
A master which loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration.

If a master does lose arbitration during the addressing stage, it is possible that the winning master is trying to address it. Therefore, the losing master must switch over immediately to its slave receiver mode.
Figure 8 shows the arbitration procedure for two masters. Of course more may be involved, depending on how many masters are connected to the bus. The moment there is a difference between the internal data level of the master generating DATA 1 and the actual level on the SDA line, its data output is switched off, which means that a High output level is then connected to the bus. This will not affect the data transfer initiated by the winning master. As control of the $\mathrm{I}^{2} \mathrm{C}$ bus is decided solely on the address and data sent by competing masters, there is no central master, nor any order of priority on the bus.

Use of the Clock Synchronizing Mechanism as a Handshake

In addition to being used during the arbitration procedure, the clock synchronization mechanism can be used to enable receiving devices to cope with fast data transfers, either on a byte or bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slave devices can then hold the SCL line Low, after reception and acknowledge of a byte, to force the mastor into a wait state until the slave is ready for the next byte transfer in a type of handshake procedure.
On the bit level, a device such as a microcomputer without a hardware $\mathrm{I}^{2} \mathrm{C}$ interface on-chip can slow down the bus clock by extending each clock Low period. In this way, the speed of any master is adapted to the internal operating rate of this device.

Formats

Data transfers follow the format shown in Figure 9. After the start condition, a slave address is sent. This address is 7 bits long; the eighth bit is a data direction bit (R/W). A zero indicates a transmission (WRITE); a one indicates a request for data (READ). A data transfer is always terminated by a stop condition generated by the master. However, if a master still wishes to communicate on the bus, it can generate another start condition, and address another slave without first generating a stop condition. Various combinations of read/write formats are then possible within such a transfer.

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.
The stop condition is generated by the master.
During a change of direction within a transfer, the start condition and the slave address are both repeated, but with the R/W bit reversed.

$I^{2} \mathrm{C}$ Bus specification

Figure 7. Clock Synchronization During the Arbitration Procedure

Figure 8. Arbitration Procedure of Two Masters

$I^{2} \mathrm{C}$ Bus specification

Figure 9. Complete Data Transfer

Possible Data Transfer Formats Are:

a) Master transmitter transmits to slave receiver. Direction is not changed.

A = Acknowledge
S = Start
$P=$ Stop
b) Master reads slave immediately atter first byte.
c) Combined formats.

NOTES:

1. Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be written. After the start condition is repeated, data can then be transferred.
2. All decisions on auto-increment or decrement of previously accessed memory locations, etc., are taken by the designer of the device.
3. Each byte is followed by an acknowledge as indicated by the A blocks in the sequence.
4. RC devices have to reset their bus logic on receipt of a start condition so that they all anticipate the sending of a slave address.

$I^{2} \mathrm{C}$ Bus specification

ADDRESSING

The first byte after the start condition determines which slave will be selected by the master. Usually, this first byte follows that start procedure. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowl-
edge, although devices can be made to ignore this address. The second byte of the general call address then defines the action to be taken.

Definition of Bits in the First Byte
The first seven bits of this byte make up the slave address (Figure 10). The eighth bit
(LSB-least significant bit) determines the direction of the message. A zero on the least significant position of the first byte means that the master will write information to a selected slave; a one in this position means that the master will read information from the slave.

Figure 10. The First Byte After the Start Procedure

When an address is sent, each device in a system compares the first 7 bits after the start condition with its own address. If there is a match, the device will consider itself addressed by the master as a slave receiver or slave transmitter, depending on the R/W bit.
The slave address can be made up of a fixed and a programmable part. Since it is expected that identical ICs will be used more than once in a system, the programmable part of the slave address enables the maximum possible number of such devices to be connected to the $\mathrm{I}^{2} \mathrm{C}$ bus. The number of programmable address bits of a device depends on the number of pins available. For example, if a device has 4 fixed and 3 programmable address bits, a total of eight identical devices can be connected to the same bus.
The $I^{2} \mathrm{C}$ bus committee is available to coordinate allocation of $1^{2} \mathrm{C}$ addresses.
The bit combination 1111XXX of the slave address is reserved for future extension purposes.
The address 1111111 is reserved as the extension address. This means that the addressing procedure will be continued in the next byte(s). Devices that do not use the ex-
tended addressing do not react at the reception of this byte. The seven other possibilities in group 1111 will also only be used for extension purposes but are not yet allocated.
The combination 0000XXX has been defined as a special group. The following addresses have been allocated:

FIRST BYTE			
$\begin{aligned} & \text { SLA } \\ & \text { ADDF } \end{aligned}$	$\begin{aligned} & \overline{V E} \\ & \text { ESS } \end{aligned}$	R/W	
0000	000	0	General call address
0000	000	1	Start byte
0000	001	x	CBUS address
0000	010	X	Address reserved for different bus format
0000	011	X	
0000	100	X	To be defined
0000	101	X	To be defined
0000	110	X	To be defined
0000	111	X	To be defined

No device is allowed to acknowledge at the reception of the start byte.
The CBUS address has been reserved to enable the intermixing of CBUS and $I^{2} C$ devices
in one system. $1^{2} \mathrm{C}$ bus devices are not allowed to respond at the reception of this address.
The address reserved for a different bus format is included to enable the mixing of $I^{2} \mathrm{C}$ and other protocols. Only $I^{2} \mathrm{C}$ devices that are able to work with such formats and protocols are allowed to respond to this address.

General Call Address

The general call address should be used to address every device connected to the $\mathrm{I}^{2} \mathrm{C}$ bus. However, if a device does not need any of the data supplied within the general call structure, it can ignore this address by not acknowledging. If a device does require data from a general call address, it will acknowledge this address and behave as a slave receiver. The second and following bytes will be acknowledged by every slave receiver capable of handling this data. A slave which cannot process one of these bytes must ignore it by not acknowledging.
The meaning of the general call address is always specified in the second byte (Figure 11).

Figure 11. General Call Address Format

$I^{2} \mathrm{C}$ Bus specification

There are two cases to consider:

1. When the least significant bit is a zero.
2. When the least significant bit is a one.

When B is a zero, the second byte has the following definition:

00000110 ($\mathrm{H}^{\prime} 06^{\prime}$) Reset and write the programmable part of slave address by software and hardware. On receiving this two-byte sequence, all devices (designed to respond to the general call address) will reset and take in the programmable part of their address.
Precautions must be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus.

00000010 ($\mathrm{H}^{\prime} 02$ ') Write slave address by software only. All devices which obtain the programmable part of their address by software (and which have been designed to respond to the general call
address) will enter a mode in which they can be programmed. The device will not reset.
An example of a data transfer of a programming master is shown in Figure 12 (ABCD represents the fixed part of the adiress).
00000100 ($\mathrm{H}^{\prime} 04^{\prime}$) Write slave address by hardware only. All devices which define the programmable part of their address by hardware (and which respond to the general call address) will latch this programmable part at the reception of this two-byte sequence. The device will not reset.
00000000 ('H00') This code is not allowed to be used as the second byte.
Sequences of programming procedure are published in the appropriate device data sheets.
The remaining codes have not been fixed and devices must ignore these codes.
When B is a one, the two-byte sequence is a hardware general call. This means that the
sequence is transmitted by a hardware master device, such as a keyboard scanner, which cannot be programmed to transmit a desired slave address. Since a hardware master does not know in advance to which device the message must be transferred, it can only generate this hardware general call and its own address, thereby identifying itself to the system (Figure 13).

The seven bits remaining in the second byte contain the device address of the hardware master. This address is recognized by an intelligent device, such as a microcomputer, connected to the bus which will then direct the information coming from the hardware master. If the hardware master can also act as a slave, the slave address is identical to the master address.
In some systems an alternative could be that the hardware master transmitter is brought in the slave receiver mode after the system reset. In this way, a system configuring master can tell the hardware master transmitter (which is now in slave receiver mode) to which address data must be sent (Figure 14). After this programming procedure, the hardware master remains in the master transmitter mode.

Figure 12. Sequence of a Programming Master

Figure 13. Data Transfer From Hardware Master Transmitter

$I^{2} \mathrm{C}$ Bus specification

A. Configuring Master Sends Dump Address to Hardware Master

B. Hardware Master Dumpe Data to Selected Slave Device

Figure 14. Data Transfer From Hardware Master Transmitter Capable of Dumping Data Directly to Slave Devices

Start Byte

Microcomputers can be connected to the $1^{2} \mathrm{C}$ bus in two ways. If an on-chip hardware $\mathrm{I}^{2} \mathrm{C}$ bus interface is present, the microcomputer can be programmed to be interrupted only by requests from the bus. When the device possesses no such interface, it must constantly monitor the bus via software. Obviously, the more times the microcomputer monitors, or polls, the bus, the less time it can spend carrying out its intended function.
Therefore, there is a difference in speed between fast hardware devices and the relatively slow microcomputer which relies on software polling.

In this case, data transfer can be preceded by a start procedure which is much longer than normal (Figure 15). The start procedure consists of:

1. A start condition, (S)
2. A start byte 00000001
3. An acknowledge clock pulse
4. A repeated start condition, (Sr)

After the start condition (S) has been transmitted by a master requiring bus access, the start byte (00000001) is transmitted. Another microcomputer can therefore sample the SDA line on a low sampling rate until one of the
seven zeros in the start byte is detected. After detection of the Low level on the SDA line, the microcomputer is then able to switch to a higher sampling rate in order to find the second start condition (Sr), which is then used for synchronization.
A hardware receiver will reset at the reception of the second start condition (Sr) and will therefore ignore the start byte.

After the start byte, an acknowledge-related clock pulse is generated. This is present only to conform with the byte-handling format used on the bus. No device is allowed to acknowledge the start byte.

Figure 15. Start Byte Procedure

CBUS Compatibility

Existing CBUS receivers can be connected to the $I^{2} \mathrm{C}$ bus. In this case, a third line, called DLEN, has to be connected and the acknowledge bit omitted. Normally, $I^{2} \mathrm{C}$ transmissions are multiples of 8 -bit bytes; however, CBUS devices have different format.

In a mixed bus structure, $1^{2} \mathrm{C}$ devices are not allowed to respond on the CBUS message.
For this reason, a special CBUS address
(0000001X) has been reserved. No ${ }^{2}{ }^{2} \mathrm{C}$ device will respond to this address. After the transmission of the CBUS address, the DLEN line can be made active and transmission, according to the CBUS format, can be performed (Figure 16).
After the stop condition, all devices are again ready to accept data.

Master transmitters are allowed to generate CBUS formats after having sent the CBUS
address. Such a transmission is terminated by a stop condition, recognized by all devices. In the low speed mode, full 8 -bit bytes must always be transmitted and the timing of the DLEN signal adapted.

If the CBUS configuration is know and no expansion with CBUS devices is foreseen, the user is allowed to adapt the hold time to the specific requirements of device(s) used.

ELECTRICAL SPECIFICATIONS OF INPUTS AND OUTPUTS OF ${ }^{2} \mathrm{C}$ DEVICES

The $I^{2} \mathrm{C}$ bus allows communications between devices made in different technologies which might also use different supply voltages.
For devices with fixed input levels, operating on a supply voltage of $+5 \mathrm{~V} \pm 10 \%$, the following levels have been defined:
$V_{\text {ILmax }}=1.5 \mathrm{~V}$ (maximum input Low voitage)
$V_{1 H \min }=3 \mathrm{~V}$ (minimum input High voltage)
Devices operating on a fixed supply voltage different from +5 (e.g., $1^{2} \mathrm{~L}$) must also have these input levels of 1.5 V and 3 V for V_{IL} and $\mathrm{V}_{\mathbb{H}}$, respectively.
For devices operating over a wide range of supply voltages (e.g., CMOS), the following levels have been defined:
$V_{I L \max }=0.3 \mathrm{~V}_{D D}$ (maximum input Low voltage)
$V_{I H \min }=0.7 V_{D D}$ (minimum input High voltage)

For both groups of devices, the maximum output Low value has been defined:
$V_{\text {OLmax }}=0.4 \mathrm{~V}$ (max. output voitage Low) at 3mA sink current)

The maximum low-level input current at Volmax of both the SDA pin and the SCL pin of an $I^{2} \mathrm{C}$ device is $-10 \mu \mathrm{~A}$, including the leakage current of a possible output stage.

The maximum high-level input current at $0.9 \mathrm{~V}_{\text {DD }}$ of both the SDA pin and SCL pin of an $I^{2} \mathrm{C}$ device is $10 \mu \mathrm{~A}$, including the leakage current of a possible output stage.

The maximum capacitance of both the SDA pin and the SCL pin of an $I^{2} \mathrm{C}$ device is 10 pF .

Devices with fixed input levels can each have their own power supply of $+5 \mathrm{~V} \pm 10 \%$. Pull-up resistors can be connected to any supply (see Figure 17).

However, the devices with input levels related to $V_{D D}$ must have one common supply line to
which the pull-up resistor is also connected (see Figure 18).
When devices with fixed input levels are mixed with devices with $V_{D D}$-related levels, the latter devices have to be connected to one common supply line of $+5 \mathrm{~V} \pm 10 \%$ along with the pull-up resistors (Figure 19).

Input levels are defined in such a way that:

1. The noise margin on the Low level is 0.1 $V_{D D}$.
2. The noise margin on the High level is 0.2 VDD .
3. Series resistors (\mathbf{R}_{S}) up to 300Ω can be used for flash-over protection against high voltage spikes on the SDA and SCL line (due to flash-over of a TV picture tube, for example) (Figure 20).

The maximum bus capacitance per wire is 400 pF . This includes the capacitance of the wire itself and the capacitance of the pins connected to it.

${ }^{2}{ }^{2} \mathrm{C}$ Bus specification

Figure 19. Devices with $V_{D D}$ Related Levels Mixed with Fixed Input Level Devices on the $I^{2} C$ Bus

Figure 20. Serial Resistors ($\mathbf{R}_{\mathbf{S}}$) for Protection Against High Voltage

${ }^{12} \mathbf{C}$ Bus specification

TIMING

The clock on the ${ }^{12} \mathrm{C}$ bus has a minimum Low period of $4.7 \mu \mathrm{~s}$ and a minimum High period of $4 \mu \mathrm{~s}$. Masters in this mode can generate a bus clock with a frequency from 0 to 100 kHz .
All devices wonnected to the bus must be able to follow transfers with frequencies up to 100 kHz , either by being able to transmit or receive at that speed or by applying the clock synchronization procedure which will force the master into a wait state and stretch the Low periods. In the latter case the frequency is reduced.

Figure 21 shows the timing requirements in detail. A description of the abbreviations used is shown in Table 2. All timing references are at $\mathrm{V}_{\text {ILmax }}$ and $\mathrm{V}_{\text {ILmin }}$.

LOW-SPEED MODE

As explained previously, there is a difference in speed on the $\mathrm{I}^{2} \mathrm{C}$ bus between fast hardware devices and the relatively slow microcomputer which relies on software polling. For this reason a low speed mode is available on the $I^{2} \mathrm{C}$ bus to allow these microcomputers to poll the bus less often.

Start and Stop Conditions

In the low-speed mode, data transfer is preceded by the start procedure.

Data Format and Timing

The bus clock in this mode has a Low period of $130 \mu \mathrm{~s}+25 \mu \mathrm{~s}$ and a High period of $390 \mu \mathrm{~s}$
$+25 \mu \mathrm{~s}$, resulting in a clock frequency of approximately 2 kHz . The duty cycle of the clock has this Low-to-High ratio to allow for more efficient use of microcomputers without an on-chip hardware $I^{2} C$ bus interface. In this mode also, data transfer with acknowledge is obligatory. The maximum number of bytes transferred is not limited (Figure 22).

In this mode, a transfer cannot be terminated during the transmission of a byte.

The bus is considered busy after the first start condition. It is considered free again one minimum clock Low period, $105 \mu \mathrm{~s}$, after the detection of the stop condition. Figure 23 shows the timing requirements in detail Table 3 explains the abbreviations.

Table 2. Timing Requirement for the $I^{2} C$ Bus

SYMBOL	PARAMETER	LMITS		UNIT
		MIN	MAX	
$\mathrm{f}_{\text {ScL }}$	SCL clock frequency	0	100	kHz
$t_{\text {buF }}$	Time the bus must be free before a new transmission can start	4.7		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$	Hold time start condition. After this period the first clock pulse is generated	4		$\mu \mathrm{s}$
Liow	The Low period of the clock	4.7		$\mu \mathrm{s}$
${ }_{\text {HIGH }}$	The High period of the clock	4		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	Setup time for start condition (only relevant for a repeated start condition)	4.7		$\mu \mathrm{s}$
thD; DAT	Hold time DATA for CBUS compatible masters for $1^{2} \mathrm{C}$ devices	$\begin{gathered} 5 \\ 0^{*} \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
${ }^{\text {t }}$ SU ${ }_{\text {DAT }}$	Setup time DATA	250		ns
t_{R}	Rise time of both SDA and SCL lines		1	$\mu \mathrm{s}$
${ }_{\text {t }}$	Fall time of both SDA and SCL lines		300	ns
$\mathrm{t}_{\text {SU; }}$ STO	Setup time for stop condition	4.7		$\mu \mathrm{s}$

NOTES:
All values referenced to V_{IH} and V_{IL} levels.

* Note that a transmitter must internally provide a hold time to bridge the undefined region (300ns max.) of the falling edge of SCL.

Figure 22. Data Transfer Low-Speed Mode

Figure 23. Timing Low-Speed Mode

${ }^{1}{ }^{2} \mathrm{C}$ Bus specification

LOW SPEED MODE

CLOCK	\vdots Low $=130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
DUTY CYCLE	\vdots HHIGH $=390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$
START BYTE	$\vdots: 3$ Low-to-High (Duty cycle of clock generator)
MAX. NO. OF BYTES	$\vdots 0000001$
PREMATURE TERMINATION OF TRANSFER	\vdots UNRESTRICTED
ACKNOWLEDGE CLOCK BIT	\vdots NOT ALLOWED
ACKNOWLEDGMENT OF SLAVES	\vdots ALWAYS PROVIDED

Table 3. Timing Low-Speed Mode

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
$\mathrm{t}_{\text {BUF }}$	Time the bus must be free before a new transmission can start	105		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ;}$ STA	Hold time start condition. After this period the first clock pulse is generated	365		$\mu \mathrm{s}$
thD; STA	Hold time (repeated start condition only)	210		$\mu \mathrm{s}$
tow	The Low period of the clock	105	155	$\mu \mathrm{s}$
${ }^{\text {t HIGH }}$	The High period of the clock	365	415	$\mu \mathrm{s}$
${ }^{\text {ISU; STA }}$	Setup time for start condition (only relevant for a repeated start condition)	105	155	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD }}$ t $\mathrm{t}_{\text {AT }}$	Hold time DATA for CBUS compatible masters for $1^{2} C$ devices	$\begin{gathered} 5 \\ 0^{*} \\ \hline \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
${ }^{\text {t }}$ SU DAT	Setup time DATA	250		ns
t_{R}	Rise time of both SDA and SCL lines		1	Hs
t_{F}	Fall time of both SDA and SCL lines		300	ns
${ }_{\text {t }}^{\text {SU; STO }}$	Setup time for stop condition	105	155	$\mu \mathrm{s}$

NOTES:

All values referenced to V_{H} and V_{IL} levels.
*Note that a transmitter must internally provide a hold time to bridge the undefined region (300ns max.) of the falling edge of SCL.

${ }^{12} \mathrm{C}$ Bus specification

APPENDIX 1

Maximum and minimum values of the pull-up resistors \mathbf{R}_{P} and series resistors $\mathbf{R}_{\mathbf{S}}$ (see Figure 20).
In an $I^{2} C$ bus system these values depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of devices (input current + leakage current)

1. The supply voltage limits the minimum value of the R_{p} resistor due to the specified 3 mA as minimum sink current of the output stages, at 0.4 V as maximum low voltage. In graph $1, V_{D D}$ against $R_{P \min }$ is shown.

The desired noise margin of $0.1 \mathrm{~V}_{\mathrm{DD}}$ for the low level limits the maximum value of $\mathbf{R}_{\mathbf{s}}$.

In Graph 2, $\mathrm{R}_{\text {Smax }}$ against R_{p} is shown.
2. The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_{p} because of the specified rise time of $1 \mu \mathrm{~s}$.

In Graph 3, the bus capacitance-R $\mathrm{R}_{\text {max }}$ relationship is shown.
3. The maximum high-level input current of each input/output connection has a specified value of $10 \mu \mathrm{~A}$ max. Due to the desired noise margin of 0.2 V_{DD} for the
high level, this input current limits the maximum value of R_{P}. This limit is dependent on $V_{D D}$.

In Graph 4 the total high-level input cur-rent-R Pmax relationship is shown.

|²C LICENSE

Purchase of Signetics or Philips $I^{2} C$ components conveys a license under the Philips $I^{2} C$ patent rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} C$ standard specification as defined by Philips.

Graph 3

Graph 2

Graph 4

The inter-integrated circuit ($\mathrm{I}^{2} \mathrm{C}$) serial bus: theory and practical consideration

Author: Carl Fenger

INTRODUCTION

The $I^{2} \mathrm{C}$ (Inter-IC) bus is becoming a popular concept which implements an innovative serial bus protocol that needs to be understood. On the hardware level $\mathrm{I}^{2} \mathrm{C}$ is a collection of microcomputers (MAB8400, PCD3343, 83C351, 84CXX) and peripherals (LCD/LED drivers, RAM, ROM, clock/timer, A/D, D/A, IR transcoder, I/O, DTMF generator, and various tuning circuits) that communicate serially over a two-wire bus, serial data (SDA) and serial clock (SCL). The $1^{2} \mathrm{C}$ structure is optimized for hardware simplicity. Parallel address and data buses inherent in conventional systems are replaced by a serial protocol that transmits both address and bidirectional data over a 2 -line bus. This means that interconnecting wires are reduced to a minimum; only V_{Cc}, ground and the two-wire bus are required to link the controller(s) with the peripherals or other controllers. This results in reduced chip size, pin count, and interconnections. An ${ }^{2} \mathrm{C}$ system is therefore smaller, simpler and cheaper to implement that its parallel counterpart.
The data rate of the $1^{2} \mathrm{C}$ bus makes it suited for systems that do not require high speed. An $1^{2} \mathrm{C}$ controller is well suited for use in systems such as television controllers, telephone sets, appliances, displays or applications involving human interface. Typically an $I^{2} \mathrm{C}$ system might be used in a control function where digitally-controllable elements are adjusted and monitored via a central processor.
The $I^{2} \mathrm{C}$ bus is an innovative hardware interface which provides the software designer the flexibility to create a truly multi-master environment. Built into the serial interface of the controllers are status registers which monitor all possible bus conditions: bus free/busy, bus contention, slave acknowledgement, and bus interference. Thus an $I^{2} C$ system might include several controllers on the same bus each with the ability to asynchronously communicate with peripherals or each other. This provision also provides expandability for future add-on controllers. (The $\mathrm{I}^{2} \mathrm{C}$ system is also ideal for use in environments where the bus is subject to noise. Distorted transmissions are immediately detected by the hardware and the information presented to the software.) A slave acknowledgement on every byte also facilitates data integrity.

An $l^{2} \mathrm{C}$ system can be as simple or sophisticated as the operating environment demands. Whether in a single master or multi-master system, noisy or 'safe', correct system operation can be insured under software control.

COONTROLLERS

Currently the family of $\mathrm{I}^{2} \mathrm{C}$ controllers include the MAB8400, and the PCD3343 the PCD3343 is basically a CMOS version of the MAB8400). The MAB8400 is based on the 8048, with a few instructions added and a few deleted. Tables 1 and 2 summarize the differences.
Programs for the MAB8400 and PCD3343 may be assemmbled on an 8048-assembler using the macros listed in Appendix A. The serial I/O instructions involve moving data to and from the $\mathrm{SO}, \mathrm{S} 1$, and S 2 serial I/O control registers. The block diagram of the $I^{2} \mathrm{C}$ interface is shown in Figure 1.

SERIAL I/O INTERFACE

A block diagram of the Serial Input/Output (SIO) is shown in Figure 1. The clock line of the serial bus (SCL) has exclusive use of Pin 3 , while the Serial Data (SDA) line shares Pin 2 with parallel I/O signal P23 of port 2. Consequently, only three I/O lines are available for port 2 when the $I^{2} C$ interface is enabled.

Communication between the microcomputer and interface takes place via the internal bus of the microcomputer and the Serial Interrupt Request line. Four registers are used to store data and information controlling the operation of the interface:

- data shift register SO
- address register SO'
- status register S1
- clock control register S2

THE I ${ }^{2} \mathrm{C}$ BUS INTERFACE SERIAL CONTROL REGISTERS S0, S1

All serial ${ }^{2} \mathrm{C}$ transfers occur between the accumulator and register SO . The $\mathrm{I}^{2} \mathrm{C}$ hardware takes care of clocking out/in the data, and receiving/generating an acknowledge. In addition, the state of the $I^{2} \mathrm{C}$ bus is controlled and monitored via the bus control register S1. A definition of the registers is as follows:

Table 1. MAB8400 Family Instructions not in the MAB8048 Instruction Set

SERIAL I/O	REGISTER	CONTROL	CONDITIONAL BRANCH
MOV A,Sn	DEC @Rr	SEL MB2	JNTF addr
MOV Sn, A	DJNZ @Rr,addr	SEL MB3	
MOV Sn, \#data			
ENSI			
DIS SI			

Table 2. MAB8048 Instructions not in the MAB8400 Family Instruction Set

DATA MOVES	FLAGS	BRANCH	CONTROL
MOVX A,@R	CLR F0	*JNI addr	ENTOCLK
MOVX@R,A	CPLF0	JF0 addr	
MOVP3 A,@A	CLRF1	JF1 addr	
MOVD A,P	CPLF1		
MPVD P,A		*replaced by	
ANLD P,A		JT0, JNT0	
ORLD P,A			

Figure 1. Block Diagram of the MAB8400 SIO Interface

Data Shift Register SO - SO is the data shift register used to perform the conversion between serial and parallel data format. All transmissions or receptions take place through register SO MSB first. All ${ }^{2} \mathrm{C}$ bus receptions or transmissions involve moving data to/from the accumulator from/to SO.
Address Register $\mathbf{S O}^{\prime}$ - In multi-master systems, this register is loaded with a controller's slave address. When activated, (ALS =0), the hardware will recognize when it is being addressed by setting the AAS (Addressed As Slave) flag. This provision allows a master to be treated as a slave by other masters on the bus.
Status Register S1-S1 is the bus status register. To control the SIO interface, information is written to the register. The lower 4 bits in S 1 serve dual purposes; when
written to, the control bits $\mathrm{ESO}, \mathrm{BC} 2, \mathrm{Bc} 1$, BcO are programmed (Enable Serial Output and a 3-bit counter which indicates the current number of bits left in a serial transfer). When reading the lower four bits, we obtain the status information AL, AAS, ADO, LRB (Arbitration Lost, Addressed As Slave, Address Zero (the general call has been received), the Last Received Bit (usually the acknowledge bit)). The upper 4 bits are the MST, TRX, BB and PIN control bits (Master, Transmitter, Bus Busy, and Pending Interrupt Not). These bits define what role the controller has at any particular time. The values of the master and transmitter bits define the controller as either a master or slave (a master initiates a transfer and generates the serial clock; a slave does not), and as a transmitter or receiver. Bus Busy
keeps track of whether the bus is free or not, and is set and reset by the 'Start' and 'Stop' conditions which will be defined. Pending Interrupt Not is reset after the completion of a byte transfer + acknowledge, and can be polled to indicate when a serial transfer has been completed. An alternative to polling the PIN bit is to enable the serial interrupt; upon completion of a byte transfer, an interrupt will vector program control to location 07 H .

SERIAL CLOCK/ACKNOWLEDGE CONTROL REGISTER S2

Register S2 contains the clock-control register and acknowledge mode bit. Bits S20-S24 program the bus clock speed. Bit S26 programs the acknowledge or not-acknowledge mode (1/0). The various
$1^{2} \mathrm{C}$ bus clock speed possibilities are shown in Table 3.

Table 3. Clock Pulse Frequency Control When Using a 4.43MMHz Crystal

HEX S20-S24 CODE	DIVISOR	APPR̄XX. (CLOCK (KHz)
0	0	0
1	39	114
2	45	98
3	51	87
4	63	70
5	75	59
6	87	51
7	99	45
8	123	36
9	147	30
A	171	26
B	195	23
C	243	18
D	291	15
E	339	13
F	387	11
10	483	9.2
11	579	7.7
12	675	6.6
13	771	5.8
14	963	4.6
15	1155	3.8
16	1347	3.3
17	1539	2.9
18^{*}	1923	2.3
19	2307	1.9
$1 A^{*}$	2691	1.7
$1 B^{*}$	3075	1.4
$1 C$	3843	1.2
$1 D$	4611	1.0
$1 E$	5379	0.8
$1 F$	6147	0.7

-only values that may be used in the low speed mode (ASC - 1)

These speeds represent the frequency of the serial clock bursts and do not reflect the speed of the processor's main clock (i.e., it controls the bus speed and has no effect on the CPU's execution speed).

BUS ARBITRATION

Due to the wire-AND configuration of the $I^{2} \mathrm{C}$ bus, and the self-synchronizing clock circuitry of ${ }^{2} \mathrm{C}$ masters, controllers with varying clock speeds can access the bus without clock contention. During arbitration, the resultant clock on the bus will have a low period equal to the longest of the low periods; the high period will equal the shortest of the high periods. Similarly, when two masters attempt to drive the data line simultaneously, the data is 'ANDed', the master generating a low while the other is driving a high will win arbitration. The resultant bus level will be low, and the loser will withdraw from the bus and set its 'Arbitration Lost' flag (S1 bit 3).

The losing Master is now configured as a slave which could be addressed during this very same cycle. These provisions allow for a number of microcomputers to exist on the same bus. With properly written subroutines, software for any one of the controllers may regard other masters as transparent.

${ }^{2}{ }^{2} \mathrm{C}$ PROTOCOL AND ASSEMBLY LANGUAGE EXAMPLES

${ }^{2} \mathrm{C}$ data transfers follow a well-defined protocol. A transfer always takes place between a master and a slave. Currently a microcomputer can be master or slave, while the 'CLIPS' peripherals are always salves. In a 'bus-free' condition, both SCL and SDA lines are kept logical high be external pull-up resistors. All bus transfers are bounded by a 'Start' and a 'Stop' condition. A 'Start' condition is defined as the SDA line making a high-to-low transition while the SCL line is high. At this point, the internal hardware on all slaves are activated and are prepared to clock-in the next 8 bits and interpret it as a 7-bit address and a R/W control bit (MSB first). All slaves have an internal address $\mathrm{I}^{2} \mathrm{C}$ data transfers follow a well-defined protocol. A transfer always takes place between a master and a slave. Currently a microcomputer can be master or slave, while the 'CLIPS' peripherals are always salves. In a 'bus-free' condition, both SCL and SDA lines are kept logical high be external pull-up resistors. All bus transfers are bounded by a 'Start' and a 'Stop' condition. A 'Start' condition is defined as the SDA line making a high-to-low transition while the SCL line is high. At this point, the internal hardware on

all slaves are activated and are prepared to clock-in the next 8 bits and interpret it as a 7-bit address and a R/W control bit (MSB first). All slaves have an internal address (most have 2-3 programmable address bits) which is then compared with the received address. The slave that recognized its address will respond by pulling the data line low during a ninth clock generated by the master (all $I^{2} \mathrm{C}$ byte transfers require the master to generate 8 clock pulses plus a ninth acknowledge-related clock pulse). The slave-acknowledge will be registered by the master as a ' 0 ' appearing in the LRB (Last Received Bit) position of the S1 serial I/O status register. If this bit is high after a transfer attempt, this indicates that a slave did not acknowledge and that the transfer should be repeated.

After the desired slave has acknowledged its address, it is ready to either send or receive data in response to the master's driving clock. All other slaves have withdrawn from the bus. In addition, for multi-master systems, the start condition has set the 'Bus Busy' bit of the serial I/O register S1 on all masters on the bus. This gives a software indication to other master that the bus is in use and to wait until the bus is free before attempting an access.

The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: theory and practical consideration

Figure 3

There are two types of $I^{2} \mathrm{C}$ peripherals that now must be defined: there are those with only a chip address such as the I/O expandor, PCF8574, and those with a chip address plus an internal address such as the static RAM, PCF8570. Thus after sending a start condition, address, and R/W bit, we must take into account what type of slave is being addressed. In the case of a slave with only a chip address, we have already indicated its address and data direction (R/W) and are therefore ready to send or receive data. This is performed by the master generating bursts of 9 clock pulses for each byte that is sent or received. The transaction for writing one byte to a slave with a chip address only is shown in Figure 3.

In this transfer, all bus activity is invoked by writing the appropriate control byte to the serial I/O control register S1, and by moving data to/from the serial bus buffer register SO . Coming from a known state (MOV S 1 , \#18H-Slave, Receiver, Bus not Busy) we first load the serial I/O buffer SO with the desired slave's address (MOV SO, \#40H). To transmit this preceded by a start condition,
we must first examine the control register S1, which, after initialization, looks like this:
MAS- BUS
TER TRANS BUSY PIN

	ESO	BC2	BC1	BCO		
0	0	0	1	1	0	0

To transmit to a slave, the Master, Transmitter, Bus Busy, PIN (Pending Interrupt Not), and ESO (Enable Serial Output) must be set to a 1. This results in an 'F8H' being written to S . This word defines the controller as a Master Transmitter, invokes
Table 4. Binary Numbers in Bit-Count Locations BC2, BC1 and BC0

BC2	BC1	BCO	BITTS/BYTE WITHOUT ACK	BITS/BYTE WITH ACK
0	0	1	1	2
0	1	0	2	3
0	1	1	3	4
1	0	0	4	5
1	0	1	5	6
1	1	0	6	7
1	1	1	7	8
0	0	0	8	9

The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: theory

 and practical considerationit to produce 9 clocks (8 bits plus an acknowledge clock) for this transfer. The bit counter will then count off each bit as it is transmitted. The bit counter possibilities are shown in Table 4.

Thus the bit counter keeps track of the number of clock pulses remaining in a serial transfer. Additionally, there is a not-acknowledge mode (controlled through bit 6 of clock control register S2) which inhibits the acknowledge clock pulse, allowing the possibility of straight serial transfer. We may thus define the word size for a serial transfer (by pre-loading $\mathrm{BC} 2, \mathrm{BC} 1, \mathrm{BCO}$ with the appropriate control number), with or without an acknowledge-related clock pulse being generated. This makes the controller able to transmit serial data to most any serial device regardless of its protocol (e.g., C-bus devices).

CHECKING FOR SLAVE ACKNOWLEDGE

After a 'Start' condition and address have been issued, the selected slave will have recognized and acknowledged its address by pulling the data line low during the ninth clock pulse. During this period, the software (which runs on the processor's 4 MHz clock) will have been either waiting for the transfer to be completed by polling the PIN bit in S1 which goes low on completion of a transfer/reception (whose length is defined by the pre-loaded Bit-counter value), or by the hardware in Serial Interrupt mode. The serial interrupt (vectored to 07 H) is enabled via the EN SI (enable serial interrupt) instruction.

At the point when PIN goes low (or the serial interrupt is received) the 9-bit transfer has been completed. The acknowledgement bit will now be in the LRB position of register S1, and may be checked in the routine 'ACKWT' (Wait for Acknowledge) as shown in Figure 4.

This routing must go one step further in multi-master systems; the possibility of an Arbitration Lost situation may occur if other masters are present on the bus. This condition may be detected by checking the 'AL' bit (bit 3). If arbitration has been lost, provisions for re-attempting the transmission should be taken. If arbitration is lost, there is the possibility that the controller is being addressed as a Slave. If this condition is to be recognized, we must test on the 'AAS' bit
(bit 2). A 'General Call' address (OOH) has also been defined as an 'all-call' address for all slaves; bit1, AD0, must be tested if this feature is to be recognized by a Master.

ACKWT:	MOV A,S1	;Get bus status word
	;from S1.	
	;Poll the PIN bit	
	jB4 ACKWT	;intil it goes low
	;indicating transfer	
	;completed	
	;Jump to BUSERR	
	;ioutine if acknowiedge	
	;not received.	
	;transfer complete,	
	;acknowledge received - return.	

Figure 4

After a successful address
transfer/acknowledge, the slave is ready to be sent its data. The instruction MOV SO,A will now automatically send the contents of the accumulator out on the bus. After calling the ACKWT routine once more, we are ready to terminate the transfer. The Stop condition is created by the instruction 'MOV S1, \#OD8H'. This re-sets the bus-busy bit, which tells the hardware to generate a Stop - the data line makes a low-to-high transition while the clock remains high. All bus-busy flags on other masters on the bus are reset by this signal.
The transfer is now complete - PCF8574 I/O Expandor will transfer the serial data stream to its 8 output pins and latch them until further update.

MASTER READS ONE BYTE FROM SLAVE

A read operation is a similar process; the address, however, will be 41 H , the LSB indicating to the I/O device that a read is to be performed. During the data portion of a read, the I/O port 8574 will transmit the contents of its latches in response to the clock generated by the master. The Master/Receiver in this case generates a low-level acknowledge on reception of each byte (a 'positive' acknowledge). Upon completion of a read, the master must generate a 'negative' acknowledge during the ninth clock to indicate to the slaves that the read operation is finished. This is necessary because an arbitrary number of bytes may be read within the same transfer. A negative acknowledge consists of a high signal on the data line during the ninth clock of the last byte to be read. To accomplish this, the master 8400 must leave the acknowledge mode just before the final byte, read the final byte (producing only 8 clock pulses), program the bit-counter with 001 (preparing for a one-bit negative acknowledge pulse), and simply move the contents of SO to the
accumulator. This final instruction accomplishes two things simultaneously: it transfers the final byte to the accumulator and produces one clock pulse on the SCL line. The structure of the serial I/O register SO is such that a read from it causes a double-buffered transfer from the $I^{2} \mathrm{C}$ bus to SO , while the original contents of SO are transferred to the accumulator. Because the number of clocks produced on the bus is determined by the control number in the Bit Counter, by presetting it to 001, only one clock is generated. At this point in time the slave is still waiting for an acknowledge; the bus is high due to the pull-up, as single clock pulse in this condition is interpreted as a 'negative' acknowledge. The slave has now been informed that reading is completed, a Stop condition is now generated as before. The read process (one byte from a slave with only a chip address) is shown in Figure 5.
These examples apply to a slave with a chip address - more than one byte can be written/read within the same transfer; however, this option is more applicable to $\mathrm{I}^{2} \mathrm{C}$ devices with sub-addresses such as the static RAMs or Clock/Calendar. In the case of these types of devices, a slightly different protocol is used. The RAM, for example, requires a chip address and an internal memory location before it can deliver or accept a byte of information. During a write operation, this is done by simply writing the secondary address right after the chip address - the peripheral is designed to interpret the second byte as an internal address. In the case of a Read operation, the slave peripheral must send data back tot he Master after it has been addressed and sub-addressed. To accomplish this, first the Start, Address, and Sub-address is transmitted. Then we have repeated start condition to reverse the direction of the data transfer, followed by the chip address and RD, than a data string (w/acknowledges). This repeated Start does not affect other peripherals - they have been deactivated and

The inter-integrated circuit $\left(\mathrm{I}^{2} \mathrm{C}\right)$ serial bus: theory and practical consideration

Figure 5

Figure 6. Flowchart for Reading/Writing One Byte to an $I^{2} \mathrm{C}$ Peripheral; Single-Master, Single-Address Slave

MOV S1, \#18H	Initialize bus-status register :Master, Transmitter, :Bus-not-Busy, Enable SIO,
MOV SO, \#0AOH	:Load SO with RAM's chip :âdureaz
MOV S1, \#0F8H	:Start cond. and transmit :address
CALL ACKWT	:Wait until address received
MOV A, WOOH	:Set up for transmitting RAM :location address
MOV SO,A	:Transmit first RAM address
CALL ACKWT	:Wait
MOV S1, \#18H	:Set up for a repeated Start :condition
MOV A, \#OA1H	:Get RAM chip address \& RD bit
MOV SO, A	:Send out to bus
MOV S1, \#0F8H	:preceded by repeated Start
CALL ACKWT	:Wait
MOV A,So	:First data byte to S0
CALL ACKWT	:Wait
MOV A,So	:Second data byte to SO
	:And First data byte to Acc.
CALL ACKWT	:Walt
MOV RO,A	:Save first byte in R0
MOV A,So	:Third data byte to SO :and second data byte to Acc.
CALL ACKWT	:Wait
MOV R1,A	:Save second data byte in R1
MOV S2, \#01H	:Leave ack. mode :Bit Counter=001 for neg ack.
MOV A,S0	:Third data byte to ace :negative ack. generated
MOV R2,A	:Save third data byte in R2
MOV A,S1	:Get bus status
JB4 WAIT1	:Wait until transfer complete
MOV S1, \#0D8H	:Stop condition
MOV S2, \#41H	:Restore acknowledge mode

Figure 7
will not reactivate until a Stop condition is detected. $I^{2} \mathrm{C}$ peripherals are equipped with auto-incrementing logic which will automatically transmit or receive data in consecutive (increasing) locations. For example, to read 3 consecutive bytes to PCB8571 RAM locations 00, 01 and 02, we use the following format as shown in Figure 7.

This routine reads the contents of location 00 , 01 and 02 of the PCB8571 128-byte RAM and puts them in registers RO, R1, and R2. The auto-incrementing feature allows the programmer to indicate only a starting location, then read an arbitrary block of
consecutive memory addresses. The WAIT 1 loop is required to poll for the completion of the final byte because the ACKWT routine will not recognize the negative acknowledge as a valid condition.

BUS ERROR CONDITIONS:

ACKNOWLEDGE NOT RECEIVED

In the above routines, should a slave fail to acknowledge, the condition is detected during the 'ACKWT' routine. The occurrence may indicate one of two conditions: the slave has failed to operate, or a bus disturbance has occurred. The software response to either
event is dependent on the system application. In either case, the 'BusErr' routine should reinitialize the bus by issuing a 'Stop' condition. Provision may then be taken to repeat the transfer an arbitrary number of times. Should the symptom persist, either an error condition will be entered, or a backup device can be activated.
These sample routines represent single-master systems. A more detailed analysis of multi-master/noisy environment systems will be treated in further application notes. Examples of more complex systems can be found in the 'Software Examples' manual; publication 939861570011.

The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: theory and practical consideration

APPENDIX A

Only the 8048 assembler is capable of assembling MAB8400 source code when it has at least a "DATA" or "Define Byte" assembler directive, possibly in combination with a MACRO facility.

The new instructions can be simply defined by MACROs. The instructions which are not in the MAB8400 should not be in the MAB8400 source program.

An example of a macro definitions list is given here for the Intel Macro Assembler.

This list can be copied in front of a MAB8400 source program; the new instructions are added to the MAB8400 via its name in the op-code field and (if required) followed by an operand in the operand field.

MACRO DEFINITIONS

LINE		SOURCE S	EMENT	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	\$MACROFILE ;MACROS FOR 8048 ASSEMBLER RECOGNITION ;OF 8400 COMMANDS			
4		MOVSOA	MACRO	;MOV SO,A
5		DB 3CH		
6		ENDM		
7		MOVASO	MACRO	;MOV A,S0
8		DB OCH		
9		ENDM		
10	0	MOVS1A	MACRO	;MOV S1,A
11	1	DB 3DH		
12	2	ENDM		
13	3	MOVAS1	MACRO	;MOV A,S1
14	4	DBODH		
15	5	ENDM		
16	6	MOVS2A	MACRO	;MOV S2,A
17	7	DB 3EH		
18	8	ENDM		
19	9	MOVSO	MACROL	;MOV SO,\#DATA
20	0	DB 9CH,L		
21	1	ENDM		
22	2	MOVS1	MACROL	;MOV S1,\#DATA
23	3	DB 9DH,L		
24	4	ENDM		
25	5	MOVS2	MACROL	;MOV S2,\#DATA
26	6	DB 9EH,L		
27	7	ENDM		
28	8	ENSI	MACRO	;ENSI
29	9	DB 85H		
30	0	ENDM		
31	1	DISSI		;DIS SI (Disable serial interrupt)
32	2	DB	$95 \mathrm{H}$	
33	3	ENDM		
	5; PORT O INSTRUCTIONS:			
36;	6;	INAPO	MACRO	; IN A,PO
37	7	DB	08H	
38 39	8,	ENDM		
40,	\%	OUTPOA	MACRO	;OUTL PO,A
41	1	DB	38 H	
42	2	ENDM		
43;	3;			
44	4	ORLPO	MACROL	;ORL PO,\#DATA
45	5	DB	88H,L	
46	6	ENDM		
478:	$8{ }^{\text {8 }}$;ANL PO,\#DATA
49	9	DB	$98 \mathrm{H}, \mathrm{~L}$	
50	0	ENDM		
51;	$1 ;$			

The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: theory and practical consideration

MACRO DEFINITIONS (Continued)

LINE	SOURCE	EMENT
52 DATA MEMORY INSTRUCTIONS;		
53	DECARO	MACRO ;DEC @RO
54	DB	${ }^{0} \mathrm{COH}$
55	ENDM	
56;		
57	DECAR1	MACRO ;SEL MB2
58	DB	OA5H
60;		
61 SELECT MEMORY BANK INSTRUCTIONS:		
62 边	SELMB2	MACRO ;SEL MB2
63	DB	OC1H
64	ENDM	
65;		
66 67	$\begin{aligned} & \text { SEL } \\ & \text { DB } \end{aligned}$	MACRO OB5H
68	ENDM	
69; ENDM		
70;CONDITIONAL JUMP INSTRUCTIONS:		
71	DJNZAO	MACRO L ; DJNZ @RO,ADDR
72	DB	OEOH,L AND OFFH
73	ENDM	
74;		
75	DJNZA1	MACROL ; DJNZ @R1,ADDR
76	DB	OE1H,L AND OFFH
77	ENDM	
78;		
79	JNTF	MACRO L \quad;JUMP IF TIMERFLAG IS
80	DB	06H,L AND OFFH
81	ENDM	
${ }_{83}^{82}$;END OF MACRO DEFINITIONS		

The inter-integrated circuit $\left(I^{2} \mathrm{C}\right)$ serial bus: theory and practical consideration

THE 8400 INSTRUCTIONS BUILT FROM THE MACRO LIST

LOC/OBJ	LINE	SOURCE STATEMENT		
0000	1	ORG 0		
	2	MOVASO		
00000 C	$3+$	DB MOVAS1	OCH	;MACRO for MOV A,S1
0001 OD	$5+$	DB MOVSOA	ODH	,MACRO
	6			;MACRO for MOV SO,A
00023 C	7+	DB ${ }_{\text {MOVS1A }}$	3 CH	
	8			;MACRO for MOV S1,A
0003 3D	$9+$	DB	3DH	
	10	MOVS2A	-	;MACRO for MOV S2,A
0004 3E	11+	DB	3EH	
	12	MOVSO	56 H	;MACRO for MOV SO,\#56H
00059 C 000656	13+	DB	$9 \mathrm{CH}, 56 \mathrm{H}$	
	14	MOVS1	9 FH	;MACRO for MOV S1,\#9FH
$\begin{aligned} & 0007 \text { 9D } \\ & 00089 \mathrm{~F} \end{aligned}$	15+	DB	9DH,9FH	
	16	MOVS2	OE8H	;MACRO for MOV S2,\#0E8H
0009 9E 000A E8	17+	DB	$9 \mathrm{EH}, \mathrm{OE} 8 \mathrm{H}$	
	18	ENS1		;MACRO for ENS1
O00B 85	19+	DB	85H	
	20	DISSI	;MACRO for	
000 C 95	$21+$	DB	95 H	
	22	INAPO		;MACRO for IN A,PO
000D 08	$23+$ 24	DB ${ }^{\text {OUTPOA }}$	08H	
O00E 38	25+	DB	38H	;MACRO for OUTL PO,A
	26	ORLPO	5 AH	;MACRO for ORL PO,A
$\begin{aligned} & \text { 000F 88 } \\ & 00105 A \end{aligned}$	27+	DB	88H,5AH	
	28	ANLPO	2FH	;MACRO for ANL PO,A
$\begin{aligned} & 001198 \\ & 00122 \mathrm{~F} \end{aligned}$	29+	DB	98H,2FH	
	30	DECARO		;MACRO for DEC @RO
0013 CO	$31+$	DB	OCOH	
	32	DECAR1		;MACRO for DEC @R1
0014 C1	$33+$	DB	0 C 1 H	
	34	SELMB2		;MACRO for SEL MB2
0015 A5	35+		OA5H	
	36	SELMB3		;MACRO for SEL MB3
0016 B5	37+	DB	OB5H	
	38	DJNZAO	567 H	;MACRO for DJNZ @RO,567H
0017 E0	39+	DB	$\begin{aligned} & \mathrm{OEOH}, 567 \mathrm{r} \\ & \text { OFFH } \end{aligned}$	
001967				
	40	DJNZA1	OEFEH	;MACRO for DJNZ @R1,0EFEH
0019 E1	41+	DB	OE1H, OEF OFFH	ND
001A FE				
	42	JNTF	789 H	;MACRO for JNTF 789H
001 0 06	43+	DB	$\begin{aligned} & 06 \mathrm{H}, 789 \mathrm{H} \\ & \text { OFFH } \end{aligned}$	
001 C 89				
	44	END		

Signetics

Section 8
 Complementary RF Products

RF Communications

DESCRIPTION

The NE630 is a wideband RF switch fabricated in BiCMOS technology and incorporating on-chip CMOS/TTL compatible drivers. Its primary function is to switch signals in the frequency range $\mathrm{DC}-1 \mathrm{GHz}$ from one 50Ω channel to another. The switch is activated by a CMOS/TTL compatible signal applied to the enable channel 1 pin (ENCH1).
The extremely low current consumption makes the NE/SA630 ideal for portable applications. The excellent isolation and low loss makes this a suitable replacement for PIN diodes.

The NE/SA630 is available in an 8-pin dual in-line plastic package and an 8 -pin SO (surface mounted miniature) package.

FEATURES

-Wideband (DC - 1GHz)

- Low through loss (1 dB typical at 200 MHz)
- Unused input is terminated internally in 50Ω
- Excellent overload capability (1dB gain compression point +18 dBm at 300 MHz)
-Low DC power ($170 \mu \mathrm{~A}$ from 5 V supply)
- Fast switching (20ns typical)
-Good isolation (off channel isolation 60dB at 100 MHz)
-Low distortion (IP_{3} intercept +33 dBm)
- Good 50Ω match (return loss 18 dB at 400 MHz)
- Full ESD protection
- Bidirectional operation

PIN CONFIGURATION

D and N Packages	
$\mathrm{V}_{\mathrm{DD}} 1$	8 out
GND 2	7 AC GND
input 3	6 GND
ENCH1 4	$5 \mathrm{OUT}_{2}$

APPLICATIONS

- Digital transceiver front-end switch
- Antenna switch
- Filter selection
-Video switch
\bullet - SK transmitter

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8 -Pin Plastic DIP	0 to $70^{\circ} \mathrm{C}$	NE630N
8 -Pin Plastic SO (Surface-mount)	0 to $70^{\circ} \mathrm{C}$	NE630D
8 -Pin Plastic DIP	-40 to $+85^{\circ} \mathrm{C}$	SA630N
8 -Pin Plastic SO (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA630D

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{DD}	Supply voltage	-0.5 to +5.5	V
P_{D}	Power dissipation, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ (still air) 8-Pin Plastic DIP 8-Pin Plastic SO	1160 780	mW mW
$\mathrm{T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

8 -Pin DIP: $\theta_{\mathrm{JA}}=108^{\circ} \mathrm{C} / \mathrm{W}$
8 -Pin SO: $\theta_{\mathrm{JA}}=158^{\circ} \mathrm{C} / \mathrm{W}$

EQUIVALENT CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS		
$V_{D D}$	Supply voltage	3.0 to 5.5 V	V		
T_{A}	Operating ambient temperature range NE Grade SA Grade	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ T_{J}Operating junction temperature range NE Grade SA Grade		0 to +90
:---:					
-40 to +105	$⿻$	${ }^{\circ} \mathrm{C}$			
:---:					
${ }^{\circ} \mathrm{C}$					

DC ELECTRICAL CHARACTERISTICS
$V_{D D}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA630			
			MIN	TYP	MAX	
IDD	Supply current		40	170	300	$\mu \mathrm{A}$
V_{T}	TTLCMOS logic threshold voltage ${ }^{1}$		1.1	1.25	1.4	V
V_{H}	Logic 1 level	Enable channel 1	2.0		$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Logic 0 level	Enable channel 2	-0.3		0.8	V
$1 / 2$	ENCH1 input current	ENCH1 $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
I_{H}	ENCH1 input current	$\mathrm{ENCH} 1=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$

NOTE:

1. The ENCH1 input must be connected to a valid Logic Level for proper operation of the NE/SA630.

Single pole double throw (SPDT) switch

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - D PACKAGE
$V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ \hline \text { NE/SA630 } \end{gathered}$			UNITS
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \mathrm{DC}-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		1 1.4 2	2.8	dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel) ${ }^{2}$	$\begin{gathered} 10 \mathrm{MHz} \\ 100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 70 \\ & 24 \end{aligned}$	80 60 50 30		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (ON channel)	$\begin{aligned} & \mathrm{DC}-400 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 20 \\ & 12 \end{aligned}$		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (OFF channel)	$\begin{aligned} & \hline \mathrm{DC}-400 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 17 \\ & 13 \end{aligned}$		dB
to	Switching speed (on-off delay)	50\% TTL to 90/10\% RF		20		ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Switching speeds (on-off rise/fall time)	90\%/10\% to 10\%/90\% RF		5		ns
	Switching transients			165		mV P.p
$\mathrm{P}_{-1 \mathrm{~dB}}$	1dB gain compression	DC - 1GHz		+18		dBm
IP_{3}	Third-order intermodulation intercept	100 MHz		+33		dBm
IP_{2}	Second-order intermodulation intercept	100 MHz		+52		dBm
NF	Noise figure ($\left.\mathrm{Z}_{\mathrm{O}}=50 \Omega\right)$	$\begin{aligned} & 100 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		dB

NOTE:

1. All measurements include the effects of the D package NE/SA630 Evaluation Board (see Figure 1B). Measurement system impedance is 50Ω.
2. The placement of the $A C$ bypass capacitor is critical to achieve these specifications. See the applications section for more details.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - N PACKAGE

$V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all other characteristics similar to the D-Package, unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \mathrm{DC}-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		1 1.4 2.5		dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel)	10 MHz 100 MHz 500 MHz 900 MHz	58	68 50 37 15		dB
NF	Noise figure ($\mathrm{Z}_{0}=50 \Omega$)	100 MHz 900 MHz		$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$		dB

NOTE:

1. All measurements include the effects of the N package NE/SA630 Evaluation Board (see Figure 1C). Measurement system impedance is 50Ω.

APPLICATIONS

The typical applications schematic and printed circuit board layout of the NE/SA630 evaluation board is shown in Figure 1. The layout of the board is simple, but a few cautions need to be observed. The input and output traces should be 50Ω. The placement of the AC bypass capacitor is extremely
critical if a symmetric isolation between the two channels is desired. The trace from Pin 7 should be drawn back towards the package and then be routed downwards. The capacitor should be placed straight down as close to the device as practical. For better isolation between the two channels at higher frequencies, it is also advisable to run the two
output/input traces at an angle. This also minimizes any inductive coupling between the two traces. The power supply bypass capacitor should be placed close to the device. Figure 7 shows the frequency response of the NE/SA630. The loss matching between the two channels is excellent to 1.2 GHz as shown in

a. NE/SA Evaluation Board Schematic

b. NE/SA630 D-Package Board Layout

c. NE/SA630 N-Package Board Layout

Figure 1

Figure 10. The isolation and matching of the two channels over frequency is shown in Figure 12 and Figure 14, respectively.

The NE630 is a very versatile part and can be used in many applications. Figure 2 shows a block diagram of a typical Digital RF transceiver front-end. In this application the NE630 replaces the duplexer which is typically very bulky and lossy. Due to the low power consumption of the device, it is ideally suited for handheld applications such as in CT2 cordless telephones. The NE630 can also be used to generate Amplitude Shift Keying (ASK) or On-Off Keying (OOK) and Frequency Shift Keying (FSK) signals for digital RF communications systems. Block diagrams for these applications are shown in Figure 3 and Figure 4, respectively.
For applications that require a higher isolation at 1 GHz than obtained from a single NE630, several NE630s can be cascaded as shown in Figure 5. The cascaded configuration will have a higher loss but greater than 35 dB of isolation at 1 GHz and greater than $65 \mathrm{~dB} @$ 500 MHz can be obtained from this configuration. By modifying the enable control, an RF multiplexer/ de-multiplexer or antenna selector can be constructed. The simplicity of NE630 coupled with its ease of use and high performance lends itself to many innovative applications.
The NE/SA630 switch terminates the OFF channel in 50Ω. The 50Ω resistor is internal and is in series with the external AC bypass capacitor. Matching to impedances other than 50Ω can be achieved by adding a resistor in series with the AC bypass capacitor (e.g., 25Ω additional to match to a 75Ω environment).

AMPLITUDE SHFT KEYING (ASK) GENERATOR
Flgure 3

FREQUENCY SHIFT KEYING (FSK) GENERATOR
Figure 4

Single pole double throw (SPDT) switch

Figure 6 Supply Current vs. V_{DD} and Temperature

Figure 8 Loss vs. Frequency and $V_{D D}$ for D-Package -Expanded Detail-

Figure 7 Loss vs. Frequency and $V_{D D}$ for D-Package

Figure 9 Loss Matching vs. Frequency for N-Package (DIP)

Figure 10 Loss Matching vs. Frequency; CH1 vs. CH2 for D-Pakage

Figure 12 Isolation vs. Frequency and $V_{D D}$ for D-Package

Figure 11 Loss vs. Frequency and Temperature for D-Package

Figure 13 Isolation Matching vs. Frequency for N-Package (DIP)

Figure 14 Isolation Matching vs. Frequency; CH1 vs. CH2 for D-Package

Figure 16 Output Match On-Channel vs. Frequency

Figure 15 Input Match On-Channel vs. Frequency and $V_{D D}$

Figure 17 OFF-Channel Match vs. Frequency and VDD

Figure 18 OFF Channel Match vs. Frequency and Temperature

Figure 20 Intercept Points vs. $V_{D D}$

Figure $19 P_{-1} d B$ vs. Frequency and $V_{D D}$

Figure 21 Noise Figure vs. Frequency and $V_{D D}$ for D-Package

Section 9 Package outlines

RF Communications

INDEX

8-Pin (300 mils wide) Plastic Dual In-Line (N) Package 847
8-PIN (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package 848
8-PIN Plastic Dual in-line (N/P) Package 849
9-PIN Plastic Single In-Line (U) Package 850
14-PIn (300 mils wide) Plastic Dual In-Line (N) Package 851
14-PIN (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package 852
16-Pin (300 mils wide) Plastic Dual In-Line (N) Package 853
16-Pin (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package 854
16-PIN Plastic SO Dual In-Line (D/T) Package 855
16-PIN Plastic Dual In-Line (N/P) Package 856
16-PIN Plastic SOL Dual In-Line (D/T) Package 857
18-PIN Plastic Dual In-Line (N/P) Package 858
20-Pin (300 mils wide) Plastic Dual In-Line (N) Package 859
20-PIN (300 mils wide) Plastic SOL (Small Outline Large)
Dual In-Line (D) Package 860
20-PIN Plastic Shrink Small Outline Package (SSOP) (DK) Package 861
20-PIN Plastic SO Dual In-Line (D/T) Package 862
24-Pin (600 mils wide) Plastic Dual In-Line Package 863
24-Pin (300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package 864
28-pin (600 mils wide) Plastic Dual In-Line (N) Package 865
28-PIN (300 mils wide) Plastic SOL (Small Outline Large)
Dual In-Line (D) Package 866
28-PIN Plastic Dual In-Line (N/P) Package 867
28-PIN Plastic SO Dual In-Line (D/T) Package 868

NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AB for standard Dual in-Line (DIP) package 0.300 inch row spacing (plastic) 8 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M - 1982.
4. "T", " D ", and " E " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#8 when viewed from the top.

NOTES
7. Package dimensions conform to JEDEC Specification MS-012-AA for standard Small Outline (SO) package, 8 leads, $3.75 \mathrm{~mm}\left(0.150^{\prime \prime}\right)$ body width (Issue A, June 1985).
8. Controlling dimensions are mm. Inch dimensions in parentheses.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. " T ", " D ", and " E " are reference datums on the molded bocy and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ on any side.
11. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#8 when viewed from top.
12. Signetics ordering code for a product packages in a plastic Smal Outine (SO) package is the suffix D after the product number.

Package outlines

8-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE

Dimensions in mm
Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Only for devices with asymmetrical end-leads.

Package outlines

9-PIN PLASTIC SINGLE IN-LINE (U) PACKAGE

$\stackrel{\Phi}{⿷}$

NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AC for standard Dual In-Line (DIP) package 0.300 inch row spacing (plastic) 14 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M - 1982.
4. "T", "D", and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#14 when viewed from the top

NOTES

1. Package dimensions conform to JEDEC Specification MS-012-AB for standard Small Outline (SO) package, 14 leads, $3.75 \mathrm{~mm}\left(0.150^{\prime \prime}\right)$ body width (Issue A, June 1985)
2. Controlling dimensions are mm . Inch dimensions in parentheses
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. "T", "D", and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ on any side.
5. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#14 when viewed from the top.
6. Signetics ordering code for a product packages in a plastic Smal Outline (SO) package is the suffix D after the product number.

NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AA for standard Dual in-Line (DIP) package 0.300 inch row spacing (plastic) 16 leads (Issue B, $7 / 85$).
3. Dimension and tolerancing per ANSI Y14, 5M - 1982.
4. "T", "D", and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#16 when viewed from the top.

Package outlines

16-PIN PLASTIC SO DUAL IN-LINE (D/T) PACKAGE

Dimensions in mm

Ө Positional accuracy.
(M) Maximum Material Condition.

Package outlines

16-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE

Package outlines

16-PIN PLASTIC SOL DUAL IN-LINE (D/T) PACKAGE

(1) Dimensions in mm .

Package outlines

18-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE

NOTES

1. Package dimensions conform to JEDEC Specification MS-013-AC for standard Small Outline (SO) package, 20 leads, 7.50 mm ($0.300^{\prime \prime}$) body width (Issue A, June 1985)
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. "T", " D ", and " E " are reference datums on the molded bocly and do not indude mold flash or protrusions. Mold flash or protrusions shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ on any side.
5. Pin numbers start with Pin \#1 and continue counterclockwise to in \#20 when viewed from top.
6. Signetics ordering code for a product packaged in a plastic Small Outline (SO) package is the suffix D after the product nurnber.

Package outlines

20-PIN PLASTIC SHRINK SMALL OUTLINE PACKAGE (SSOP) (DK PACKAGE)

Package outlines

20-PIN PLASTIC SO DUAL IN-LINE (D/T) PACKAGE

(1) Dimensions in mm.

NOTES

1. Package dimensions conform to JEDEC Specification MS-013-AD for standard Small Outline (SO) package 24 leads, $7.50 \mathrm{~mm}\left(0.300^{\circ}\right)$ body width (lssue A. June 1985).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI $\mathrm{Y} 14.5 \mathrm{M}-1982$.
4. " T ", " D ", and " E " are reference datums on the molded body and do not incluce mold flash or protrusions. Mold flash or protrusions shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ on any side.
5. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#24 when viewed from top.
6. Signetics ordering code for a product packaged in a plastic Small Outine (SO) package is the sufix D atter the product number.

Package outlines

28-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE

(1) Positional accuracy.
(M) Maximum Material Condition.
side view
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Index may be horizontal as shown, or vertical.

Dimensions in mm

Package outlines

28-PIN PLASTIC SO DUAL IN-LINE (D/T) PACKAGE

Section 10

Sales offices

RF Communications

Sales Offices, Representatives \& Distributors

RF Communications

SIGNETICS

HEADQUARTERS
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409
ALABAMA
Huntsville
Phone: (205) 464-0111
CALIFORNIA
Calabasas
Phone: (818) 880-6304
Irvine
Phone: (714) 833-8980
(714) 752-2780

San Diego
Phone: (619) 560-0242
Sunnyvale Phone: (408) 991-3737
COLORADO
Englewood
Phone: (303) 792-9011
GEORGIA
Atlanta
Phone: (404) 594-1392
ILLINOIS
Itasca Phone: (708) 250-0050
INDIANA
Kokomo Phone: (317) 459-5355
MASSACHUSETTS
Westford
Phone: (508) 692-6211
MICHIGAN
Farmington Hills Phone: (313) 553-6070

NEW JERSEY

Toms River Phone: (908) 505-1200
NEW YORK
Wappingers Falls
Phone: (914) 297-4074

OHIO

Columbus
Phone: (614) 888-7143
OREGON
Beaverton
Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
TENNESSEE
Greeneville
Phone: (615) 639-0251

TEXAS

Austin
Phone: (512) 339-9945
Richardson Phone: (214) 644-1610

CANADA

SIGNETICS CANADA, LTD.
Etobicoke, Ontario Phone: (416) 626-6676
Nepean, Ontario
Phone: (613) 225-5467
REPRESENTATIVES
ALABAMA
Huntsville
Elcom, Inc.
Phone: (205) 830-4001

ARIZONA

Scottsdale
Thom Luke Sales, Inc. Phone: (602) 941-1901
CALIFORNIA
Orangevale
Webster Associates
Phone: (916) 989-0843
COLORADO
Englewood
Thom Luke Sales, Inc. Phone: (303) 649-9717
CONNECTICUT
Wallingford
JEBCO
Phone: (203) 265-1318
FLORIDA
Oviedo
Conley and Assoc., Inc. Phone: (407) 365-3283

GEORGIA

Norcross
Elcom, Inc.
Phone: (404) 447-8200
ILLINOIS
Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 765-3000
INDIANA
Indianapolis
Mohrfield Marketing, Inc. Phone: (317) 546-6969
IOWA
Cedar Rapids
J.R. Sales

Phone: (319) 393-2232
MARYLAND
Columbia
Third Wave Solutions, Inc.
Phone: (301) 290-5990

MASSACHUSETTS
Chelmsford
JEBCO
Phone: (508) 256-5800
MICHIGAN
Brighton
AP Associates
Phone: (313) 229-6550
MINNESOTA
Eden Prairie
High Technology Sales
Phone: (612) 944-7274

MISSOURI

Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Bob Dean, Inc.
Phone: (914) 297-6406
NORTH CAROLINA
Matthews
ADI, Inc.
Phone: (704) 847-4323
Smithfield
ADI, Inc.
Phone: (919) 934-8136
OHIO
Aurora
InterActive Technical Sales, Inc.
Phone: (216) 562-2050

Dayton

InterActive Technical Sales, Inc.
Phone: (513) 436-2230
Dublin
InterActive Technical Sales, Inc.
Phone: (614) 792-5900
OREGON
Beaverton
Western Technical Sales
Phone: (503) 644-8860

PENNSYLVANIA

Hatboro
Delta Technical Sales, Inc.
Phone: (215) 957-0600

TEXAS
Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston
Synergistic Sales, Inc.
Phone: (713) 937-1990
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500
UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050
WASHINGTON
Bellevue
Western Technical Sales
Phone: (206) 641-3900

Spokane

Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352
CANADA
Calgary, Alberta
Tech-Trek, Ltd.
Phone: (403) 241-1719
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Nepean, Ontario
Tech-Trek, Ltd.
Phone: (613) 225-5161
Richmond, B.C.
Tech-Trek, Ltd.
Phone: (604) 276-8735
Ville St. Laurent, Quebec
Tech-Trek, Ltd.
Phone: (514) 337-7540
PUERTO RICO
Santurce
Mectron Group
Phone: (809) 723-6165
DISTRIBUTORS
Contact one of our
local distributors:
Almac/Arrow Electronics
Anthem Electronics
Arrow/Schweber Electronics
Falcon Electronics, Inc.
Gerber Electronics
Hamilton/Avnet Electronics
Marshall Industries
Wyle/EMG
Zentronics, Ltd.

Philips - a worldwide company

Argentina: PHILIPS ARGENTINA S.A. Div. Philios Components, Vedia 3892, 1430 BUENOS ARES, Tel. (01) 541-4261
Australla: PHILIPS COMPONENTS PTY Lrt, 34 Waterloo Road, NORTH PYDE, NSW 2113, TEL (02) 305 -4455. Fax (02) 8054466
Austria: OSTERREICHISCHE PHILFS INDUSTRIE G.m. b.H., UB Bauelemente, Triester St: 64, 1101 WIEN. Tel. (0222) $60101-820$
Belgium: N. V. PHILIPS PROF. SYSTEMS - Components Div. 80 Rue Des Deux Gares, B-1070 BRUXELIES, Tel. (02) 5256111
Brazil: PHILIPS COMPONENTS (Active Devices \& LCD) Rua Do Rocio 720 , SAO PAULO SP, CEP 4552, P.O. Box 7383 , CEP 01051, Tel. (011) 829-1166. Fax (011) 829-1849. PHILIPS COMPONENTS (Passive Devices \& Materials) Av. Francisco Monteiro 702, PIBEIRAO PIRES SP, CEP 09400, TGi. (011) 4598211 . Fax (011) 459.8282
Sanada: PHILPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, MIB 1M8 Tel. (416) 292-5161.
(IC Products) SIGNE IICS CANADA LID, 1 Eva Road, Suite 411, ETOBICOKE, Ontario, M9C 475, Tel. (416) 626-6676
Chile: PHILIPS CHILENA S.A., Ay. Santa Maria, Casilla 0760, SANTIAGO, Tel. (02) 0773816
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (01) 2497624

Denmark: PHILIPS COMPONENTS AIS, Prags Boulevard 80, PB1919, DK-2300 COPENHAGEN S, Tel. 32.883333
Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-02630 ESPOO Tel. 358.0 .50261
France: PHILIPS COMPOSANIS, 117 Quai du President Roosevelt 92134 ISSY-LES MOULINEAUX Cedex, Tel. (01) 40938000. Fax. 0140938692
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0, Fax, 0403296912.
Greece: PHILIPS HELIENIQUE S.A, Components Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) $4894339 / 4894911$
Hong Kong: PHLIPS HONG KONG LTD, Components Div, 15/F Philips Ind. Bligg., 24 Kung Yip St., KWAl CHUNG, Tel. (0)-4245121
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Components Dept., Shivsagar Estate 'A' Block, P.O. Box 6598, 254-D Dr. Anmie Besant Rd., BOMBAY-40018 Tel. (022) 4921500-4921515. Fax. 02249410063
Indonesia; P T. PHILIPS-RALIN ELECTRONICS, Components Div., Setiabudill Building, 6 h FI, Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA, 12910, Tel. (021) 517995
Ireland: PHILIPS ELECTRONICS (IRELAND) ITD, Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355
ltaly: PHILIPS S.pA, Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1, Fax. 0267522642
Japan: PHILIPS JAPAN LTD, Components Division, Philips Bidg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03) 813-3740-5030. Fax. 0381337400570
Korea (Republic of): PHILIPS INDUSTRIES (KOREA) LTD., Components Division, Philips House, 260-199 liaewon dong. Yongsan ku, SEOUL. Tel. (02) 7945011
Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div, 3 Jalan SS15i2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511
Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHIHUAHUA 32340 MEXICO, Tel. (16) 18-67-01.02
Netherlands: PHILIPS NEDERLAND B V., Markigroep Philips Components, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 783749
New Zealand: PHILIPS NEW ZEALAND LTD, Components Division, 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09) $894-160$, Fax. (09) 897-811

939818140011

Norway: NORSK AS PHILIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 741010
Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACH13, Tel. (021) 725772

Peru: CADESA, Carretera Central 6.500, LIMA 3, Apartado 5612. Tel. 51-14-350059
Philippines: PHILIPS SEMICONDUCTOPS PHILPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 911, MAKATI, Metro MANILA, Tel. (63-2) 810.0161 Fax. 6328173474
Portugal: PHILIPS PORTUGUESA S.A.R.L. Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121
Singapore: PHIL.PS SINGAPORE, PTE LTD., Components Div, Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000
South Africa: S A. PHIIIPS PTY LTD, Components Division, 195-215 Main Road, JOHANNESBURG 2000, P.O. Box 7430, Tel. (011) 470-5434. Fax. (011) 4705494
Spain: PHILIPS COMPONENTS, Balmes 22, 08007 BARCELONA, Tel. (03) 3016312 . Fax. 033014243
Sweden: PHILIPS COMPONENTS, A.B., Tegelueddsvágen 1, S-11584 STOCKHOLM, Tel. (0)8-7821000
Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. (01) 4882211
Taiwan: PHILIPS TAWAN LTD,, 581 Min Sheng East Road, P.O. Box 22978, TAIPEl 10446, Taiwan, Tel. 886-2-509-7666. Fax. 88625005899
Thalland: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silon Road, P.O. Box 961, BANGKOK, Tel. (02) $233.6330-9$

Turkey: TURK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel, (01) 1792770
United Kingdom: PHILIPS COMPONENTS LTD., Mullard House, Torington Place, LONDON WCIE 7HD, Tel. (071) 5806633 , Fax. (071)4362196
United Staies: (Color Picture Tubes - Monochrome \& Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963 , ANN ARBOR, Michigan 48106, Tel. (313) 996-9400 (IC Products) SIGNETICS COMPANY, 811 East Arques Avenue, SUNNWVALE, CA 94088-3409, Tel. (800) 227-1817, Ext. 900 (Passive Components, Discrete Semiconductors, Materials and Professional Components \& LCD) PHILIPS SEMICONDUCTORS, Discrete Products Division, 2001 West Blue Heron Blvd., PO. Box 10330 , RIVIERA BEACH, Florida 33404, Tel. (407) 881-3200
Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) 70-4044
Venezuela: MAGNETICA S.A, Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 2417509
Zimbabwe: PHILIPS ELECTRICAL. (PVT) LTD., 62 Mutare Road, HARARE, P.O. Box 994, Tel. 47211

For all other countries apply to: Philips Components, Marketing Communica tions, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands,
Telex 35000 phtenl, Fax $+31-40-724825$
ADS92 ©Philips Export B. V. 1991
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent - or industrial or intellectual property rights.

[^0]: ‘R1, R2 and R3 are 1\% resistors.

[^1]: * Dolby is a registered trademark of Dolby Laboratories Licencing Corporation, San Fransisco, California (U.S.A.).

[^2]: Note: 1. The pin VCOA is forced to zero state during out-of-lock

[^3]: Cellular chip set design guide

[^4]: Cellular chip set design guide

