DATA HANDBOOK

Memories MOS, TTL, and ECL

(408) 942-4600
(408) 942-4700
(408) 262-1224

Electronics Group
Claude Michael Group FAX

DISTRIBUTED BY
Marshall
San Francisco Division
336 Los Coches Street Milpitas, California 95035

Signetics

Philips Components

MEMORIES MOS, TTL, ECL

page
Selection guide 3
Functional index 5
Numerical index 9
Introduction
Introduction for type numbers with prefixes FCB, PCA, PCD, PCF 17
Type designation 19
Rating systems 21
Handling MOS devices 23
Introduction for type numbers with numerical prefixes 25
Product status 27
Ordering information 28
Quality and reliability 29
Bipolar reliability information 33
EPROM reliability information 36
Selection guide 38
RAM cross reference guide 40
PROM cross reference guide 41
EPROM cross reference guide 51
EPROM programming information 53
Bipolar programming procedures 55
MOS Memories 57
CMOS static RAM 59
CMOS EEPROM 137
64K-bit CMOS EPROM 183
128K-bit CMOS EPROM 221
256K-bit CMOS EPROM 231
516K-bit CMOS EPROM 261
1M-bit CMOS EPROM 271
TTL Memories 281
64-bit RAM 283
256-bit RAM 303
Byte-organized RAM 321
Low complexity PROM 341
4K-bit PROM 379
8K-bit PROM 405
16K-bit PROM 439
32K-bit PROM 461
64K-bit PROM 475
128K-bit PROM 485
ECL Memories 491
Low complexity PROM 493
16K-bit PROM 527
Package information 537

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.
© Copyright 1989 Signetics Company a division of North American Philips Corporation

All rights reserved.

SELECTION GUIDE

Functional index
Numerical index

FUNCTIONAL INDEX

type number	description	page
CMOS STATIC RAM		
FCB51C64/65	8192×8-bit latched static RAM	61
FCB61C65(L/LL)	8192×8-bit static RAM	63
FCB61C251	262144×1-bit static RAM	75
FCB61C252/253	65536×4-bit static RAM	79
FCB61C257(L/LL)	32768×8-bit static RAM	85
FCB61C1025(L/LL)	131072×8-bit static RAM	89
PCD5101	256×4-bit static RAM	93
PCD5114	1024×4-bit static RAM	101
PCF8570/70C/71	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	109
PCF8583	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	119
CMOS EEPROM		
PCA8582B	256×8-bit static EEPROM with $1^{2} \mathrm{C}$-bus interface for automotive applications	139
PCF8581/81C	128×8-bit EEPROM with $1^{2} \mathrm{C}$-bus interface	151
PCF8582A	256×8-bit static EEPROM with $1^{2} \mathrm{C}$-bus interface	161
PCF8582C	256×8-bit static EEPROM with $1^{2} \mathrm{C}$-bus interface for automotive applications	171
64K-bit CMOS EPROM		
27C64A-IND	64K-bit CMOS EPROMs (8K \times 8) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$	185
27C64A O.T.P.	64K-bit CMOS EPROM (8K \times 8) 100 ns	189
27C64A O.T.P.	64K-bit CMOS EPROMs (8K x 8) $120 \mathrm{~ns} ; 150 \mathrm{~ns}$	193
27C64A O.T.P.	64K-bit CMOS EPROM (8K \times 8) 200 ns	197
27C64A U.V.	64K-bit erasable CMOS EPROM (8K x 8) 100 ns	201
27C64A U.V.	64K-bit erasable CMOS EPROMs (8K x 8) $120 \mathrm{~ns} ; 150 \mathrm{~ns}$	205
27C64A U.V.	64K-bit erasable CMOS EPROMs (8K $\times 8$) 200 ns	209
27HC641 O.T.P.	64K-bit CMOS EPROMs ($8 \mathrm{~K} \times 8$) $45 \mathrm{~ns} ; 55 \mathrm{~ns}$	213
27HC641 U.V.	64K-bit erasable CMOS EPROMs (8K x 8) $35 \mathrm{~ns} ; 45 \mathrm{~ns} ; 55 \mathrm{~ns}$	217
128K-bit CMOS EPROM		
27HC128 O.T.P.	128K-bit CMOS EPROMs (16K x 8) $45 \mathrm{~ns} ; 55 \mathrm{~ns}$	223
27HC128 U.V.	128K-bit erasable CMOS EPROMs (16K $\times 8$) $45 \mathrm{~ns} ; 55 \mathrm{~ns}$	227

type number	description	page
256K-bit CMOS EPROM		
27C256-IND	256K-bit EPROMs (32K x 8) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$	233
27 C 256 O.T.P.	256K-bit EPROM (32K x 8) 120 ns	237
27 C 256 O.T.P.	256K-bit EPROMs (32K $\times 8$) $150 \mathrm{~ns} ; 170 \mathrm{~ns}$	241
27 C 256 O.T.P.	256K-bit EPROM ($32 \mathrm{~K} \times 8$) 200 ns	245
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 120 ns	249
27C256 U.V.	256K-bit erasable EPROMs (32K x 8) $150 \mathrm{~ns} ; 170 \mathrm{~ns}$	253
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 200 ns	257
516K-bit CMOS EPROM		
27 C 12 O.T.P.	512K-bit CMOS EPROMs (64K x 8) $150 \mathrm{~ns} ; 170 \mathrm{~ns} ; 200 \mathrm{~ns}$	263
$27 \mathrm{C512}$ U.V.	512K-bit erasable CMOS EPROMs (64K $\times 8$) $150 \mathrm{~ns} ; 170 \mathrm{~ns} ; 200 \mathrm{~ns}$	267
1M-bit CMOS EPROM		
27C210 O.T.P.	1M programmable EPROM (64K x 16) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$	273
27C210 U.V.	1M erasable CMOS EPROM (64K x 16) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$	277
64-bit TTL RAM		
82S25/3101A/		
74S189	64-bit TTL Bipolar RAM (16 $\times 4$) $50 \mathrm{~ns} ; 35 \mathrm{~ns}$	285
74F189A	64-bit TTL Bipolar RAM (16x4) 15 ns	289
74F219A	64-bit TTL Bipolar RAM (16 $\times 4$) 10 ns	293
74F410	64-bit TTL Bipolar register stack (16 x 4) 19.5 ns	297
256-bit TTL RAM		
82S16	256-bit TTL Bipolar RAM (256x1) 50 ns	305
82LS16	256-bit TTL Bipolar RAM (256x1) 40 ns	309
745301	256-bit TTL Bipolar RAM ($256 \times 1) 50 \mathrm{~ns}$	313
74LS301	256-bit TTL Bipolar RAM (256x1) 40 ns	317
Byte-Organized TTL RAM		
82S09/82S09A	576-bit TTL Bipolar RAM (64×9) $45 \mathrm{~ns} ; 35 \mathrm{~ns}$	323
82S19	576-bit TTL Bipolar RAM ($64 \times 9) 35 \mathrm{~ns}$	327
82S212/82S212A	2304-bit TTL Bipolar RAM (256 \times 9) $45 \mathrm{~ns} ; 35 \mathrm{~ns}$	331
8×350	2048-bit TTL Bipolar RAM (256 x 8)	335
Low Complexity TTL PROM		
82S23/82S123A	256-bit TTL Bipolar PROM (32×8) 50 ns	343
82S23A/82S123A	256-bit TTL Bipolar PROM (32×8) 25 ns	347
82US23/82US123	256-bit TTL Bipolar PROM (32×8) $13 \mathrm{~ns} ; 10 \mathrm{~ns}$	351
82S126/82S129	1024-bit TTL Bipolar PROM (256x4) 50 ns	355
82S126A/82S129A	1024-bit TTL Bipolar PROM (256 $\times 4$) 30 ns; 27 ns	359
82S130/82S 131	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S130A/82S131A	2048-bit TTL Bipolar PROM (512 \times 4) $33 \mathrm{~ns} ; 30 \mathrm{~ns}$	367
82S 135	2048-bit TTL Bipolar PROM ($256 \times 8) 45 \mathrm{~ns}$	371
82LS 135	2048-bit TTL Bipolar PROM (256x8) 100 ns	375

FUNCTIONAL INDEX

type number	description	page
4K-bit TTL PROM		
82S115	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	38.1
82S 137	4096-bit TTL Bipolar PROM (1024 x 4) 60 ns	385
82S137A/82S137B	4096-bit TTL Bipolar PROM (1024 $\times 4$) 45 ns; 35 ns	389
82S141/82S141A	4096-bit TTL Bipolar PROM (512 x 8) $60 \mathrm{~ns} ; 45 \mathrm{~ns}$	393
82S147/82S147A	4096-bit TTL Bipolar PROM (512 $\times 8$) $60 \mathrm{~ns} ; 45 \mathrm{~ns}$	397
82S147B	4096-bit TTL Bipolar PROM (512 x 8) 25 ns	401
8K-bit TTL PROM		
82S181/82S181A	8192-bit TTL Bipolar PROM (1024 $\times 8$) $70 \mathrm{~ns} ; 55 \mathrm{~ns}$	407
82S181C	8192-bit TTL Bipolar PROM (1024 $\times 8$) 35 ns	411
82S183	8192-bit TTL Bipolar PROM (1024 $\times 8$) 60 ns	415
82S185	8192-bit TTL Bipolar PROM (2048 $\times 4$) 100 ns	419
82S185A	8192-bit TTL Bipolar PROM (2048 $\times 4$) 50 ns	423
82S185B	8192-bit TTL Bipolar PROM (2048 $\times 4$) 35 ns	427
82HS187/82HS187A	8192-bit TTL Bipolar PROM (1024 $\times 8$) $55 \mathrm{~ns} ; 45 \mathrm{~ns}$	431
82HS189/82HS 189A	8192-bit TTL Bipolar PROM (1024 x 8) $55 \mathrm{~ns} ; 45 \mathrm{~ns}$	435
16K-bit TTL PROM		
82S191/82S191A	16 384-bit TTL Bipolar PROM (2048 x 8) $80 \mathrm{~ns} ; 55 \mathrm{~ns}$	441
82S191C	16 384-bit TTL Bipolar PROM (2048 \times 8) 35 ns	445
82HS191	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns	449
82LHS191	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
82HS 195/82HS 195A/		
82HS195B	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns; 35 ns; 25 ns	457
32K-bit TTL PROM		
82HS321/82HS321A/		
82HS321B	32 768-bit TTL Bipolar PROM (4096 x 8) $45 \mathrm{~ns} ; 35 \mathrm{~ns} ; 30 \mathrm{~ns}$	463
82HS321C	32 768-bit TTL Bipolar PROM (4096 \times 8) 25 ns	467
82LHS321	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
64K-bit TTL PROM		
82HS641/82HS641A/		
82HS641B	65 536-bit TTL Bipolar PROM (8192 x 8) $55 \mathrm{~ns} ; 45 \mathrm{~ns} ; 35 \mathrm{~ns}$	477
82HS641C	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns	481
128K-bit TTL PROM		
82HS1281	131 072-bit TTL Bipolar PROM (16384 x 8) 45 ns	487
Low Complexity ECL PROM		
10 P 256	256-bit ECL Bipolar PROM (32×8) 3 ns	495
100P256	256-bit ECL Bipolar PROM (32×8) 3 ns	499
10149	1024-bit ECL Bipolar PROM (256x4) 20 ns	503
100149	1024-bit ECL Bipolar PROM (256x4) 20 ns	507
10149A	1024-bit ECL Bipolar PROM (256x4) 10 ns	511
100149A	1024-bit ECL Bipolar PROM (256x4) 10 ns	515
10149B	1024-bit ECL Bipolar PROM (256x4) 5 ns	519
100149B	1024-bit ECL Bipolar PROM (256x4) 5 ns	523

type number description page

16K-bit ECL PROM
10P016
16 384-bit ECL Bipolar PROM (4096×4) 10 ns 529
100 P 016
16 384-bit ECL Bipolar PROM (4096×4) 10 ns
523

NUMERICAL INDEX

type number	description	page
FCB51C64P	8192×8-bit latched static RAM	61
FCB51C64T	8192×8-bit latched static RAM	61
FCB51C65P	8192×8-bit latched static RAM	61
FCB51C65T	8192×8-bit latched static RAM	61
FCB61C65(L/LL)P	8192×8-bit static RAM	63
FCB61C65(L/LL)T	8192×8-bit static RAM	63
FCB61C251P	26144×1-bit static RAM	75
FCB61C251T	26144×1-bit static RAM	75
FCB61C252P	65536×4-bit static RAM	79
FCB61C252T	65536×4-bit static RAM	79
FCB61C253P	65536×4-bit static RAM	79
FGB61C253T	65536×4-bit static RAM	79
FCB61C257(L/LL)P	32768×8-bit static RAM	85
FCB61C257(L/LL)T	32768×8-bit static RAM	85
FCB61C1025(L/LL)P	131072×8-bit static RAM	89
FCB61C1025(L/LL)T	131072×8-bit static RAM	89
N3101A D	64-bit TTL Bipolar RAM (16 $\times 4$) 35 ns	285
N3101A N	64-bit TTL Bipolar RAM (16×4) 35 ns	285
N74F 189A D	64-bit TTL Bipolar RAM (16×4) 15 ns	289
N74F189A N	64-bit TTL Bipolar RAM (16x4) 15 ns	289
N74F219A D	64-bit TTL Bipolar RAM (16×4) 10 ns	293
N74F219A N	64-bit TTL Bipolar RAM (16x4) 10 ns	293
N74F410 N	64-bit TTL Bipolar register stack (16x4) 19.5 ns	297
N74LS301 D	256-bit TTL Bipolar RAM (256 x 1) 40 ns	303
N74LS301 N	256-bit TTL Bipolar RAM (256x1) 40 ns	303
N74S189 D	64-bit TTL Bipolar RAM (16x4) 35 ns	285
N74S189 N	64-bit TTL Bipolar RAM (16×4) 35 ns	285
N74S301 D	256-bit TTL Bipolar RAM ($256 \times 1) 50 \mathrm{~ns}$	313
N74S301 N	256-bit TTL Bipolar RAM ($256 \times 1) 50 \mathrm{~ns}$	313
N8X350 A	2048-bit TTL Bipolar RAM (256 x 8)	335
N8X350 N	2048-bit TTL Bipolar RAM (256×8)	335
N82LHS191 A	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS191 N	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS191 N3	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS321 N	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
N82LHS321 N3	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
N82LHS321 A	32 768-bit TTL Bipolar PROM (4096 $\times 8$) 35 ns	471
N82HS187A A	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns	431
N82HS 187A N	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns	431
N82HS187 A	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	431
N82HS187 N	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	431

type number	description	page
N82HS 189A A	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns	435
N82HS 189A N	8192-bit TTL Bipolar PROM (1024 $\times 8$) 45 ns	435
N82HS189 A	8192-bit TTL Bipolar PROM ($1024 \times 8) 55 \mathrm{~ns}$	435
N82HS189 N	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	435
N82HS191 A	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns	449
N82HS191 N	16 384-bit TTL Bipolar PROM (2048×8) 25 ns	449
N82HS191 N3	16 384-bit TTL Bipolar PROM ($2048 \times 8) 25 \mathrm{~ns}$	449
N82HS195B A	16 384-bit TTL Bipolar PROM (4096 x 4) 25 ns	457
N82HS195B N	16 384-bit TTL Bipolar PROM (4096 x 4) 25 ns	457
N82HS 195A A	16 384-bit TTL Bipolar PROM (4096 $\times 4$) 35 ns	457
N82HS195A N	16 384-bit TTL Bipolar PROM (4096 x 4) 35 ns	457
N82HS 195 A	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns	457
N82HS 195 N	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns	457
N82HS321B A	32 768-bit TTL Bipolar PROM (4096 $\times 8$) 30 ns	463
N82HS321B F	32 768-bit TTL Bipolar PROM (4096 x 8) 30 ns	463
N82HS321B N	32 768-bit TTL Bipolar PROM (4096 x 8) 30 ns	463
N82HS321A A	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	463
N82HS321A F	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	463
N82HS321A N	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	463
N82HS321 A	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns	463
N82HS321 F	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns	463
N82HS321 N	32 768-bit TTL Bipolar PROM (4096 $\times 8$) 45 ns	463
N82HS321C N	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns	467
N82HS321C N3	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns	467
N82HS321C F	32 768-bit TTL Bipolar PROM (4096x8) 25 ns	467
N82HS321C A	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns	467
N82HS641B F	65 536-bit TTL Bipolar PROM (8192 x 8) 35 ns	477
N82HS641B N	65 536-bit TTL Bipolar PROM (8192 x 8) 35 ns	477
N82HS641A F	65 536-bit TTL Bipolar PROM (8192 x 8) 45 ns	477
N82HS641A N	65 536-bit TTL Bipolar PROM (8192 $\times 8$) 45 ns	477
N82HS641 N	65 536-bit TTL Bipolar PROM (8192 $\times 8) 55 \mathrm{~ns}$	477
N82HS641 F	65 536-bit TTL Bipolar PROM (8192 x 8) 55 ns	477
N82HS641C N	65 536-bit TTL Bipolar PROM (8192 $\times 8$) 25 ns	481
N82HS641C F	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns	481
N82HS641C A	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns	481
82HS1281 N	131 072-bit TTL Bipolar PROM (16384 $\times 8$) 45 ns	487
N82LS 16 D	256-bit TTL Bipolar RAM (256x 1) 40 ns	309
N82LS16 N	256-bit TTL Bipolar RAM (256 $\times 1$ 1) 40 ns	309
N82S09A A	576-bit TTL Bipolar RAM (64x9) 35 ns	323
N82S09A N	576-bit TTL Bipolar RAM ($64 \times 9) 35 \mathrm{~ns}$	323
N82S09 A	576-bit TTL Bipolar RAM (64 \times 9) 45 ns	323
N82S09 N	576-bit TTL Bipolar RAM (64×9) 45 ns	323
N82S16 D	256-bit TTL Bipolar RAM (256x 1) 50 ns	305
N82S16 N	256-bit TTL Bipolar RAM (256x1) 50 ns	305
N82S19 A	576-bit TTL Bipolar RAM (64 \times 9) 35 ns	327
N82S19 N	576-bit TTL Bipolar RAM ($64 \times 9) 35 \mathrm{~ns}$	327
N82S23 A	256-bit TTL Bipolar PROM (32 $\times 8$) 50 ns	343
N82S23 N	256-bit TTL Bipolar PROM (32×8) 50 ns	343
N82S23A A	256-bit TTL Bipolar PROM (32×8) 25 ns	347
N82S23A D	256-bit TTL Bipolar PROM (32×8) 25 ns	347
N82S23A N	256-bit TTL Bipolar PROM (32×8) 25 ns	347

description page
N82US23 A
N82US23 D
N82US23 N
N82S25 D
N82S25 N
N82S115 N
N82S123 A
N82S123 N
N82S123A A
N82S123A D
N82S123A N
N82US123 A
N82US123 D
N82US123 N
N82S126 A
N82S 126 N
N82S126A A
N82S126A D
N82S126A N
N82S129 A
N82S129 N
N82S129A A
N82S129A D
N82S129A N
N82S130 A
N82S130 N
N82S 130A A
N82S 130A D.
N82S 130A N
N82S131 A
N82S 131 N
N82S131A A
N82S131A D
N82S131A N
N82LS135 A
N82LS135 D
N82LS135 N
N82S135 A
N82S135 D
N82S 135 N
N82S 137 A
N82S137 N
N82S137A A N82S 137A N N82S137B A N82S137B N N82S141A A N82S141A N N82S141A N3

256-bit TTL Bipolar PROM $(32 \times 8) 13 \mathrm{~ns} 351$
256-bit TTL Bipolar PROM $(32 \times 8) 13 \mathrm{~ns} 351$
256 -bit TTL Bipolar PROM $(32 \times 8) 13 \mathrm{~ns} 351$
64 -bit TTL Bipolar RAM $(16 \times 4) 50 \mathrm{~ns} 285$
64-bit TTL Bipolar RAM $(16 \times 4) 50 \mathrm{~ns} 285$
4096-bit TTL Bipolar PROM $(512 \times 8) 60 \mathrm{~ns} 381$
256 -bit TTL Bipolar PROM $(32 \times 8) 50 \mathrm{~ns} 343$
256-bit TTL Bipolar PROM $(32 \times 8) 50 \mathrm{~ns} 343$
256-bit TTL Bipolar PROM $(32 \times 8) 25 \mathrm{~ns} 347$
256-bit TTL Bipolar PROM $(32 \times 8) 25 \mathrm{~ns} 347$
256-bit TTL Bipolar PROM $(32 \times 8) 25 \mathrm{~ns} 347$
256-bit TTL Bipolar PROM $(32 \times 8) 10 \mathrm{~ns} 351$
256-bit TTL Bipolar PROM $(32 \times 8) 10 \mathrm{~ns} 351$
256 -bit TTL Bipolar PROM (32×8) 10 ns 351
1024-bit TTL Bipolar PROM $(256 \times 4) 50 \mathrm{~ns} 355$
1024-bit TTL Bipolar PROM $(256 \times 4) 50 \mathrm{~ns} 355$
1024-bit TTL Bipolar PROM $(256 \times 4) 30 \mathrm{~ns} 359$
1024-bit TTL Bipolar PROM $(256 \times 4) 30 \mathrm{~ns} 359$
1024-bit TTL Bipolar PROM $(256 \times 4) 30 \mathrm{~ns} 359$
1024-bit TTL Bipolar PROM $(256 \times 4) 50 \mathrm{~ns} 355$
1024-bit TTL Bipolar PROM $(256 \times 4) 50 \mathrm{~ns} 355$
1024-bit TTL Bipolar PROM $(256 \times 4) 27$ ns 359
1024-bit TTL Bipolar PROM $(256 \times 4) 27 \mathrm{~ns} 359$
1024-bit TTL Bipolar PROM $(256 \times 4) 27 \mathrm{~ns} 359$
2048-bit TTL Bipolar PROM $(512 \times 4) 50 \mathrm{~ns} 363$
2048-bit TTL Bipolar PROM (512×4) 50 ns 363
2048-bit TTL Bipolar PROM (512×4) 33 ns 367
2048-bit TTL Bipolar PROM $(512 \times 4) 33 \mathrm{~ns} 367$
2048-bit TTL Bipolar PROM $(512 \times 4) 33 \mathrm{~ns} 367$
2048-bit TTL Bipolar PROM (512×4) 50 ns 363
2048-bit TTL Bipolar PROM $(512 \times 4) 50 \mathrm{~ns} 363$
2048-bit TTL Bipolar PROM $(512 \times 4) 30 \mathrm{~ns} 367$
2048-bit TTL Bipolar PROM $(512 \times 4) 30 \mathrm{~ns} 367$
2048-bit TTL Bipolar PROM $(512 \times 4) 30 \mathrm{~ns} 367$
2048-bit TTL Bipolar PROM $(256 \times 8) 100 \mathrm{~ns} 375$
2048-bit TTL Bipolar PROM $(256 \times 8) 100 \mathrm{~ns} 375$
2048-bit TTL Bipolar PROM $(256 \times 8) 100 \mathrm{~ns} 375$
2048-bit TTL Bipolar PROM $(256 \times 8) 45 \mathrm{~ns} 371$
2048-bit TTL Bipolar PROM $(256 \times 8) 45 \mathrm{~ns} 371$
2048-bit TTL Bipolar PROM $(256 \times 8) 45$ ns 371
4096-bit TTL Bipolar PROM $(1024 \times 4) 60 \mathrm{~ns} 385$
4096-bit TTL Bipolar PROM $(1024 \times 4) 60 \mathrm{~ns} 385$
4096-bit TTL Bipolar PROM $(1024 \times 4) 45 \mathrm{~ns} 389$
4096-bit TTL Bipolar PROM (1024×4) 45 ns 389
4096 -bit TTL Bipolar PROM $(1024 \times 4) 35 \mathrm{~ns} 389$
4096-bit TTL Bipolar PROM $(1024 \times 4) 35 \mathrm{~ns} 389$
4096-bit TTL Bipolar PROM $(512 \times 8) 45 \mathrm{~ns} 393$
4096-bit TTL Bipolar PROM $(512 \times 8) 45 \mathrm{~ns} 393$
4096-bit TTL Bipolar PROM $(512 \times 8) 45 \mathrm{~ns} 393$

type number	description	page
N82S141 N	4096-bit TTL Bipolar PROM ($512 \times 8) 60 \mathrm{~ns}$	393
N82S141 N3	4096-bit TTL Bipolar PROM (512×8) 60 ns	393
N82S147A A	4096-bit TTL Bipolar PROM ($512 \times 8) 45 \mathrm{~ns}$	397
N82S147A N	4096-bit TTL Bipolar PROM (512×8) 45 ns	397
N82S147 A	4096 -bit TTL Bipolar PROM (512×8) 60 ns	397
N82S147 N	4096-bit TTL Bipolar PROM (512×8) 60 ns	397
N82S147B A	4096-bit TTL Bipolar PROM (512×8) 25 ns	401
N82S147B N	4096-bit TTL Bipolar PROM (512×8) 25 ns	401
N82S181A A	8192-bit TTL Bipolar PROM ($1024 \times 8) 55 \mathrm{~ns}$	407
N82S181A N	8192-bit TTL Bipolar PROM ($1024 \times 8) 55 \mathrm{~ns}$	407
N82S181 A	8192-bit TTL Bipolar PROM ($1024 \times 8) 70 \mathrm{~ns}$	407
N82S181 N	8192-bit TTL Bipolar PROM ($1024 \times 8) 70 \mathrm{~ns}$	407
N82S181C A	8192-bit TTL Bipolar PROM ($1024 \times 8) 35 \mathrm{~ns}$	411
N82S181C N	8192-bit TTL Bipolar PROM ($1024 \times 8) 35 \mathrm{~ns}$	411
N82S181C N3	8192-bit TTL Bipolar PROM ($1024 \times 8) 35 \mathrm{~ns}$	411
N82S183 A	8192 -bit TTL Bipolar PROM ($1024 \times 8) 60 \mathrm{~ns}$	415
N82S183 N	8192-bit TTL Bipolar PROM ($1024 \times 8) 60 \mathrm{~ns}$	415
N82S185A N	8192-bit TTL Bipolar PROM (2048×4) 50ns	423
N82S 185B N	8192-bit TTL Bipolar PROM (2048×4) 35 ns	427
N82S 185 N	8192 -bit TTL Bipolar PROM (2048 \times 4) 100 ns	419
N82S191A A	16 384-bit TTL Bipolar PROM (2048×8) 55 ns	441
N82S191A N	16 384-bit TTL Bipolar PROM (2048×8) 55 ns	441
N82S191 A	16 384-bit TTL Bipolar PROM ($2048 \times 8) 80 \mathrm{~ns}$	441
N82S191 N	16 384-bit TTL Bipolar PROM ($2048 \times 8) 80 \mathrm{~ns}$	441
N82S191C A	16 384-bit TTL Bipolar PROM (2048×8) 35 ns	445
N82S191C N	16 384-bit TTL Bipolar PROM (2048×8) 35 ns	445
N82S 191C N3	16384 -bit TTL Bipolar PROM ($2048 \times 8) 35 \mathrm{~ns}$	445
N82S212A A	2304-bit TTL Bipolar RAM (256×9) 35 ns	331
N82S212A N	2304-bit TTL Bipolar RAM (256×9) 35 ns	331
N82S212 A	2304-bit TTL Bipolar RAM $(256 \times 9) 45 \mathrm{~ns}$	331
N82S212 N	2304-bit TTL Bipolar RAM (256×9) 45 ns	331
PCA8582BP	256×8-bit static EEPROM with $1^{2} \mathrm{C}$-bus interface for automotive applications	139
PCA8582BT	256×8-bit static EEPROM with $I^{2} \mathrm{C}$-bus interface for automotive applications	139
PCD5101P	256×4-bit static RAM	93
PCD5101T	256×4-bit static RAM	93
PCD5114P	1024×4-bit static RAM	101
PCD5114T	1024×4-bit static RAM	101
PCF8570P	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	109
PCF8570T	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	109
PCF8570CP	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	109
PCF8570CT	256×8-bit static RAM with $I^{2} \mathrm{C}$-bus interface	109
PCF8571P	128×8-bit static RAM with $I^{2} \mathrm{C}$-bus interface	109
PCF8571T	128×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	109
PCF8581P	128×8-bit EEPROM with $1^{2} \mathrm{C}$-bus interface	151
PCF8581T	128×8-bit EEPROM with $1^{2} \mathrm{C}$-bus interface	151
PCF8581CP	128×8-bit EEPROM with $1^{2} \mathrm{C}$-bus interface	151
PCF8581CT	128×8-bit EEPROM with $1^{2} \mathrm{C}$-bus interface	151

type number	description	page
PCF8582AP	256×8-bit static CMOS EEPROM with $1^{2} \mathrm{C}$-bus interface	161
PCF8582AT	256×8-bit static CMOS EEPROM with $1^{2} \mathrm{C}$-bus interface	161
PCF8582CP	256×8-bit static EEPROM with $I^{2} \mathrm{C}$-bus interface for automotive applications	171
PCF8582CT	256×8-bit static EEPROM with $I^{2} \mathrm{C}$-bus interface for automotive applications	171
PCF8583P	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	119
PCF8583T	256×8-bit static RAM with $1^{2} \mathrm{C}$-bus interface	119
10 P 016 F	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	529
100P016 F	16 384-bit ECL Bipolar PROM (4096 $\times 4$) 10 ns	533
10P256 F	256-bit ECL Bipolar PROM ($32 \times 8) 3 \mathrm{~ns}$	495
100P256 F	256-bit ECL Bipolar PROM (32×8) 3 ns	499
10149B F	1024-bit ECL Bipolar PROM (256x4) 5 ns	519
10149 F	1024-bit ECL Bipolar PROM (256x4) 20 ns	503
100149B F	1024-bit ECL Bipolar PROM (256x4) 5 ns	523
100149 F	1024-bit ECL Bipolar PROM (256x4) 20 ns	507
10149A F	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	511
100149A F	1024-bit ECL Bipolar PROM (256x4) 10 ns	515
27C64AI15 FA	64K-bit CMOS EPROM (8K x 8) 150 ns	185
27C64A120 FA	64K-bit CMOS EPROM (8K \times 8) 200 ns	185
27C64Al 15 N	64K-bit CMOS EPROM (8K $\times 8$) 150 ns	185
27C64AI20 N	64K-bit CMOS EPROM (8K $\times 8$) 200 ns	185
27C64Al 15 A	64K-bit CMOS EPROM (8K \times 8) 150 ns	185
27C64AI20 A	64K-bit CMOS EPROM (8K \times 8) 200 ns	185
27C64A-10 N	64K-bit CMOS EPROM (8K $\times 8$) 100 ns	189
27C64A-10 A	64K-bit CMOS EPROM (8K $\times 8$) 100 ns	189
27C64A-12 N	64K-bit CMOS EPROM (8K $\times 8$) 120 ns	193
27C64A-15 N	64K-bit CMOS EPROM (8K $\times 8$) 150 ns	193
27C64A-12 A	64K-bit CMOS EPROM (8K x 8) 120 ns	193
27C64A-15 A	64K-bit CMOS EPROM (8K $\times 8$) 150 ns	193
27C64A-20 N	64K-bit CMOS EPROM (8K x 8) 200 ns	197
27C64A-20 A	64K-bit CMOS EPROM (8K x 8) 200 ns	197
27C64A-10 FA	64 K -bit erasable CMOS EPROM (8K x 8) 100 ns	201
27C64A-12 FA	64K-bit erasable CMOS EPROM (8K x 8) 120 ns	205
27C64A-15 FA	64K-bit erasable CMOS EPROM ($8 \mathrm{~K} \times 8$) 150 ns	205
27C64A-20 FA	64K-bit erasable CMOS EPROM (8K x 8) 200 ns	209
27C210-15 N	1 M programmable EPROM ($64 \mathrm{~K} \times 16$) 150 ns	273
27C210-20 N	1 M programmable EPROM ($64 \mathrm{~K} \times 16$) 200 ns	273
27C210-15 A	1M programmable EPROM (64K $\times 16$) 150 ns	273
27C210-20 A	1M programmable EPROM ($64 \mathrm{~K} \times 16$) 200 ns	273
27C210-15 FA	1 M erasable CMOS EPROM ($64 \mathrm{~K} \times 16$) 150 ns	277
27C210-20 FA	1 M erasable CMOS EPROM ($64 \mathrm{~K} \times 16$) 200 ns	277
27C256115 FA	256K-bit EPROM (32K x 8) 150 ns	233
27C256120 FA	256K-bit EPROM (32K x 8) 200 ns	233
27C256115 N	256K-bit EPROM (32K x 8) 150 ns	233
27C256120 N	256K-bit EPROM (32K x 8) 200 ns	233
27C256115 A	256K-bit EPROM (32K $\times 8$) 150 ns	233
27C256120 A	256K-bit EPROM (32K x 8) 200 ns	233

type number	description	page
27C256-12 N	256K-bit EPROM (32K x 8) 120 ns	237
27C256-12 A	256K-bit EPROM ($32 \mathrm{~K} \times 8$) 120 ns	237
27C256-15 N	256K-bit EPROM ($32 \mathrm{~K} \times 8$) 150 ns	241
27C256-17 N	256K-bit EPROM (32K x 8) 170 ns	241
27C256-15 A	256K-bit EPROM (32K $\times 8$) 150 ns	241
27C256-17 A	256K-bit EPROM (32K x 8) 170 ns	241
27C256-20 N	256K-bit EPROM (32K x 8) 200 ns	245
27C256-20 A	256K-bit EPROM (32K x 8) 200 ns	245
27C256-12 FA	256K-bit erasable EPROM ($32 \mathrm{~K} \times 8$) 120 ns	249
27C256-15 FA	256K-bit erasable EPROM ($32 \mathrm{~K} \times 8$) 150 ns	253
27C256-17 FA	256K-bit erasable EPROM ($32 \mathrm{~K} \times 8$) 170 ns	253
27C256-20 FA	256K-bit erasable EPROM ($32 \mathrm{~K} \times 8$) 200 ns	257
27C512-15 N	512K-bit CMOS EPROM (64K x 8) 150 ns	263
27C512-17 N	512K-bit CMOS EPROM (64K x 8) 170 ns	263
27C512-20 N	512K-bit CMOS EPROM (64K \times 8) 200 ns	263
27C512-15 A	512K-bit CMOS EPROM (64K x 8) 150 ns	263
27C512-17 A	512K-bit CMOS EPROM (64K x 8) 170 ns	263
27C512-20 A	512K-bit CMOS EPROM (64K x 8) 200 ns	263
27C512-15 FA	512K-bit erasable CMOS EPROM ($64 \mathrm{~K} \times 8$) 150 ns	267
27C512-17 FA	512K-bit erasable CMOS EPROM ($64 \mathrm{~K} \times 8$) 170 ns	267
27C512-20 FA	512K-bit erasable CMOS EPROM ($64 \mathrm{~K} \times 8$) 200 ns	267
27HC128-45 N	128K-bit CMOS EPROM (16K x 8) 45 ns	223
27HC128-55 N	128K-bit CMOS EPROM (16K $\times 8$) 55 ns	223
27HC128-45 A	128K-bit CMOS EPROM (16K x 8) 45 ns	223
27HC128-55 A	128K-bit CMOS EPROM (16K x 8) 55 ns	223
27HC128-45 FA	128K-bit erasable CMOS EPROM (16K x 8) 45 ns	227
27HC128-55 FA	128K-bit erasable CMOS EPROM (16K $\times 8$) 55 ns	227
27HC641-45 N	64K-bit CMOS EPROM (8K $\times 8$) 45 ns	213
27HC641-55 N	64K-bit CMOS EPROM ($8 \mathrm{~K} \times 8$) 55 ns	213
27HC641-45 A	64K-bit CMOS EPROM (8K $\times 8$) 45 ns	213
27HC641-55 A	64K-bit CMOS EPROM (8K $\times 8$) 55 ns	213
27HC641-35 FA	64K-bit erasable CMOS EPROM (8K x 8) 35 ns	217
27HC641-45 FA	64K-bit erasable CMOS EPROM (8K $\times 8$) 45 ns	217
27HC641-55 FA	64K-bit erasable CMOS EPROM (8K $\times 8$) 55 ns	217

INTRODUCTION

page
Introduction for type numbers with prefixes FCB, PCA, PCD and PCF . . . 17
Introduction for type numbers with numerical prefixes 25

Introduction for type numbers with prefixes FCB, PCA, PCD and PCF

page
Type designation 19
Rating systems 21
Handling MOS devices 23

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.
A basic number consists of:
THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).
2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:
S : Solitary digital circuits
T: Analogue circuits
U: Mixed analogue/digital circuits
The SECOND LETTER is a serial letter without any further significance except ' H ' which stands for hybrid circuits.
3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:
MA : $\left\{\begin{array}{l}\text { Microcomputer } \\ \text { Central processing unit }\end{array}\right.$
MB : Slice processor (see note 2)
MD : Correlated memories
ME : Other correlated circuits (interface, clock, peripheral controller, etc.)
4. CHARGE-TRANSFER DEVICES AND SWITCHED CAPACITORS

The FIRST TWO LETTERS identify the following:
NH: Hybrid circuits
NL : Logic circuits
NM : Memories
NS : Analogue signal processing, using switched capacitors
NT : Analogue signal processing, using CTDs
NX : Imaging devices
NY: Other correlated circuits

Notes

1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
2. By 'slice processor' is meant: a functional slice of microprocessor.

THIRD LETTER

It indicates the operating ambient temperature range.
The letters A to G give information about the temperature:
A : temperature range not specified
B : 0 to $+70^{\circ} \mathrm{C}$
C : -55 to $+125^{\circ} \mathrm{C}$
D : -25 to $+70^{\circ} \mathrm{C}$
E: -25 to $+85^{\circ} \mathrm{C}$
F: -40 to $+85^{\circ} \mathrm{C}$
G: -55 to $+85^{\circ} \mathrm{C}$
If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter ' A '.

Example: the range 0 to $+75^{\circ} \mathrm{C}$ can be indicated by ' B^{\prime} or ' A '.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER

Indicates a minor variant of the basic type or the package. Except for ' Z ', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:
C : for cylindrical
D : for ceramic DIL
F: for flat pack
L : for chip on tape
P : for plastic DIL
Q : for OIL
T : for miniature plastic (mini-pack)
U : for uncased chip
Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.
FIRST LETTER: General shape
C : Cylindrical
D : Dual-in-line (DIL)
E. : Power DIL (with external heatsink)

F: Flat (leads on 2 sides)
G: Flat (leads on 4 sides)
K : Diamond (TO-3 family)
M : Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)
Q : Quadruple-in-line (OIL)
R : Power OIL (with external heatsink)
S: Single-in-line
T: Triple-in-line
A hyphen precedes the suffix to avoid confusion with a version letter.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note
Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note
The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are choser, by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

Caution

Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all leads or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g. metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and handling equipment to the same surface.
Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected to either the supply voltage or ground.

Mounting

Mount MOS integrated circuits on printed circuit boards after all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printedcircuit board the person mounting the circuits should touch the board before bringing MOS circuits into contact with it.

Soldering

Soldering iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges

Dress personnel in clothing of non-electrostatic material (no wool, silk or synthetic fibres). After the MOS circuits have been mounted on the board proper handling precautions should still be observed. Until the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tape be put on the circuit board terminals.

Transient voltages

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Beware of voltage surges due to switching electrical equipment on or off, relays and d.c. lines.

Introduction for type numbers with numerical prefixes

page
Product Status 27
Ordering Information 28
Quality and Reliability 29
Bipolar Reliability Information 33
EPROM Reliability Information 36
Selection Guide 38
RAM Cross Reference Guide 40
PROM Cross Reference Guide 41
EPROM Cross Reference Guide 51
EPROM Programming Information 53
Bipolar Programming Information 55

Product Status

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
objective specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Prellminary Speciflcation	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Ordering Information

Memory Products

Signetics Memory integrated circuit products may be ordered by contacting either the local Signetics sales office, Signetics representatives and/or Signetics authorized distributors. A complete listing is located in the back of this manual.

The tables shown below provide part number definitions for Signetics memory products. The Signetics part number system allows complete definition for ordering a device. The part number itself and the product description is defined on each data sheet. The suffix is a letter defining a package type. Additional or
special processing is defined by adding the processing indicator when required.

The military qualification, Full MIL Signetics or Full JAN slash sheet status, can be determined by contacting Signetics Military Division or referring to the Signetics Military Data Book.

Table 1. Part Number Description

Memory Products

SIGNETICS MEMORY QUALITY

Signetics has put together a winning process for manufacturing Memories. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The memories produced in Signetics must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed $2 \times 10^{5} \mathrm{amps} / \mathrm{cm}^{2}$. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to insure that the distribution of parameters resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data also provides a basis for identifying unique

Quality and Reliability

application-related problems which are not part of normal data sheet guarantees. Characterization takes place from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and at $\pm 10 \%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05 - QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available upon request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Memory products, samples are selected that represent all ge-
neric product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One-hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life: $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, 1000$ hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: $T_{J}=150^{\circ} \mathrm{C}$, 1000 hours
- Temperature Humidity Biased Life: $85^{\circ} \mathrm{C}$, 85% relative humidity, 1000 hours, static biased
- Temperature Cycling (Air-to-Air): $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 1000$ cycles

THE SHORT-TERM MONITOR

Every other week a 50 -piece sample from each generic family is run to 168 hours of pressure pot (15 psig, $121^{\circ} \mathrm{C}, 100 \%$ saturated steam) and 300 cycles of thermal shock $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$

In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fiftypiece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

Quality and Reliability

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the memory SURE program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

Included in the engineering process are:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors
- Device or generic group failure rate studies
- Advanced environmental stress development
- Failure mechanism characterization and corrective action/prevention reporting

The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cy-cle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, lower cost of ownership.

Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals, inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues. For example, in 1978 a program to reduce electrically defective units for a major automotive manufacturer improved outgoing quality levels by an order of magnitude.

In 1980 we recognized that in order to achieve outgoing levels on the order of 100ppm (parts per million), down from an industry practice of 10,000ppm, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedent-
ed low defect levels could only be achieved by contributions from all employees, from the R and D laboratory to the shipping dock. In short, from a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning tc adopt these cost-saving practices.

We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality (see Figure 1).

Figure 1. Signetics' Quallty Progress

Quality and Reliability

Figure 2. Performance To Schedule On-Time Delivery

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed-upon price (see Figure 2).

ONGOING QUALITY PROGRAM

The quality improvement program at Signetics is based on "Do it Right the First Time"'. The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared by all technical and administrative functions equally.
This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.
Key components of the program are the Quality College, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.
The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.
2. The system to achieve quality improvement is prevention.
3. The performance standard is zero defects.
4. The measurement system is continuous improvement.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

'MAKING CERTAIN' ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by provid-
ing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing issues.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

PRODUCT QUALITY PROGRAM

To reduce defects in outgoing products, we created the Product Quality Program. This is managed by the Product Engineering Council, composed of the top product engineering and test professionals in the company. This group:

1. Sets aggressive product quality improvement goals;
2. provides corporate-level visibility and focus on problem areas;
3. serves as a corporate resource for any group requiring assistance in quality improvement; and
4. drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.
Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated.

Quality and Reliability

Figure 3. Lot Acceptance Rate From Signetics' Vendors

MATERIAL WAIVERS

1988- 0
1987- 0
1986- 0
1985- 0
1984- 0
1983- 0
1982- 2
1981-134
Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.
Quality and Reliability Functions:

- Manufacturing quality control
- Product assurance testing and qualification
- Laboratory facilities - failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letterhead directly to the corporate VP of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence levels
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur
- Test correlation data is very useful. Line-pull information and field failure reports also help us improve product performance
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action
- An advance sample of the devices in question can start us on the problem resolution before physical return of shipment.
This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the quality improvement program. Key changes included such things as implementing 100% temperature testing on all products as well as upgrading test handlers to insure 100% positive binning. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.
The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading quality supplier of memories. These achievements have also led to our participation in several Ship-toStock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

Bipolar Reliability Information

Memory Products

OUR GOAL: 100\%
 PROGRAMMING YIELD

Our original goal back in the early 1970s was to develop a broad line of programmable products which would be recognized as having the best programming yield in the industry. Within the framework of a formal quality program, our efforts to improve circuit designs and refine manufacturing controls have resulted in major advances toward that goal.

Also within the framework of our formal quality program, we have now established a stated goal of 100% programming yield. Through the increasing effectiveness of a quality attitude of "Do It Right The First Time" we're moving ever closer to that target.

A significant amount of data on bipolar programming yields has been collected over the past three years. This data is the result of both inhouse programming (customer orders) and reports from major users of fuseable products. The data covers the full range of products from 256 -bit PROMs to 64 K PROMs and indicates an average level of 97.9% programming yield.
As time goes on the drive for a product line that has Zero Defects will grow in intensity. These efforts will provide both Signetics and our customers with the ability to achieve the mutual goal of improved product quality.
defective parts per million (IN THOUSANDS)

Figure 1. Bipolar Memory AOQ (Average Outgoing Quality)

The Memory Quality Assurance department has monitored Bipolar ppm progress, which can be seen in Figure 1. We are pleased with the progress that has been made, and expect to achieve even more impressive results as the procedures for accomplishing these tasks are fine tuned.

The real measure of any quality improvement program is the result that our customers see. The meaning of Quality is more than just working circuits. It means commitment to On Time Delivery at the Right Place of the Right Quantity of the Right Product at the Agreed Upon Price.

Bipolar Reliability Information

Figure 2. Bipolar Memory Process Flow

EPROM Reliability Information

Memory Products

All Signetics' EPROM die are designed as low power UV light erasable and electrically programmable read only memories. They have been designed to perform over military and commercial temperature ranges. These die are assembled in EPROM packages that comply with industry standard packages: Cerdip (Quartz window), Plastic DIP (One Time Programmable) and Plastic Leaded Chip Carrier (One Time Programmable).
The following descriptions are of the tests and calculations performed on each device organization and package type to validate the quality and reliability of the CMOS design and technology. All described tests are performed on each package type, with the exception of the 'Program-erase cycling' test for the One Time Programmable devices.

ELECTROSTATIC DISCHARGE PROTECTION (ESD)

This test is performed to validate the product's tolerance to electrostatic discharge damage.

Both MIL-STD-883 criteria (human body model) and mechanical model charged device test are performed.

HIGH TEMPERATURE STORAGE LIFE TEST (HTSL)

Another popular name for this test is data retention bake. This process is used to thermally accelerate charge loss from the floating gate. The test is performed by subjecting devices that contain a 100% programmed data pattern to a $250^{\circ} \mathrm{C}$ bake with no applied electrical bias or clocks.

In addition to charge loss, this test is used to detect mechanical reliability (i.e., bond integrity) and process instability.

DYNAMIC LOW TEMPERATURE LIFE TEST (DLTL)

This test is performed at $-10^{\circ} \mathrm{C}$ to detect the effects of hot electron injection into the gate oxide as well as package-related failures (i.e., metal corrosior). The biasing and clocking conditions for this test are identical to the DHTL \#1 test.

TEMPERATURE CYCLE (TMCL)
This test consists of performing 200 cycles of ambient air temperature of the chamber and housing the unbiased subject devices from $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and back. The 200 cycles are performed at 20 minutes per cycle.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#1)

This test is used to accelerate failure mechanisms by operating the devices at $125^{\circ} \mathrm{C}$ ambient temperature with worst-case specified power supply voltages of $V_{C C}$ and $V_{P P}$ at 5.5 V . The memory is sequentially addressed to exercise the fully-loaded outputs. A checkerboard complement data pattern is used to simulate random patterns expected during actual use.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#2)

This test is used to accelerate oxide breakdown failures and to further accelerate the failure mechanisms of DHTL \#1. The test setup is identical to the one used for the DHTL \#1 test except the temperature is $150^{\circ} \mathrm{C}$ and the V_{CC} and V_{PP} power supply voltages are 6.5 V , resulting in a 20% increase over the specified operational electrical field across the gate oxides of the device ($1.25 \mathrm{mV} / \mathrm{cm}$ for $325 \AA$ oxide thickness). This represents a $55 \times$ electrical field induced acceleration in addition to the thermal acceleration at $150^{\circ} \mathrm{C}$.

PROGRAM-ERASE CYCLING AND PROGRAMMABILITY

All four power supply voltage combinations for $V_{C C}$ and $V_{P P}$ are tested for programmability ($V_{C C}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $V_{P P}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ in program mode). The number of possible program/erase cycles is then tested to establish program-erase cycling expectations.

FAILURE RATE PREDICTIONS

In preparation for the various life tests, a 168 hour, $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ production burn-in is performed on the devices. The infant mortality rejects are removed from the population in order to develop long-term failure rate information during the random failure rate portion of the device life cycle.

The failure rate calculation combines all failure mechanisms by activation energies and associated device hours for the $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ Dynamic Life Test (DHTL \#1), the $150^{\circ} \mathrm{C}$, 6.5V Dynamic Life Test (DHTL \#2), the $150^{\circ} \mathrm{C}, 7.5 \mathrm{~V}$ Static Life Test and the $250^{\circ} \mathrm{C}$ Bake.
The activation energies for the various EPROM failure mechanisms are:

Defective bit	0.6 eV
\quad charge gain/loss	
\quad (electron hopping conduction)	
Oxide breakdown	0.3 eV
Silicon defects	0.3 eV
Contamination	$1.0-1.2 \mathrm{eV}$
Intrinsic charge loss	1.4 eV

NOTE:

The combined failure rate for the stresses is the sum of failure rates by activation energies.

Reliability Information

METHODS OF FAILURE RATE CALCULATIONS

Actual Device Hours = Number of Devices \times Number of Hours. In order to determine the Equivalent Hours derated to a given operating temperature, the junction temperatures of the devices should be calculated using the known thermal resistance of the package $\left(\theta_{\mathrm{JA}}\right)$ and the power dissipation of the devices:

$$
\begin{equation*}
T_{1,2}=\theta_{J A}(I V)_{1,2}+T_{A 1,2} \tag{1}
\end{equation*}
$$

Using the Arrhenius relation, the test temperature and the derated operating temperature will yield the thermal acceleration factor from T_{1} to T_{2} :
$\left.\frac{R_{1}}{R_{2}}=\frac{A \cdot \exp \left\lfloor\frac{E_{A}}{k T_{1}}\right.}{A \cdot \exp \left[\frac{E_{A}}{k T_{2}}\right.}\right\rfloor=\exp \left[\frac{E_{A}}{k}\right\rfloor\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right\rfloor$
$\mathrm{k}=8.617 \times 10^{-5} \mathrm{eV} /$ Kelvin (Boltzmann's constant)
A = proportionality constant for a given failure mechanism
$\mathrm{R}_{1}=$ mean time to failure (a) T_{1}
$R_{2}=$ mean time to failure © T_{2}
$E_{A}=$ activation energy for the failure mechanism
$T_{1}=$ operating temperature
$T_{2}=$ life test temperature

An additional $55 \times$ acceleration factor should be added for the $150^{\circ} \mathrm{C} / 6.5 \mathrm{~V}$ dynamic life test due to the time-dependent oxide failure acceleration (20% higher than specified power supply voltage).

Multiplying the actual device hours by the acceleration factor for each failure mechanism will result in the equivalent hours.

Poisson statistics are applied to estimate the performance of the population from the life test results of a sample test. This is useful when the probability of failures is small and the failures occur randomly in time. A commonly used formula for estimating the failure rate is the "chi-squared" equation:

$$
\begin{equation*}
F_{C}=\frac{x^{2}}{2 n t} \times 100 \% \tag{3}
\end{equation*}
$$

$\mathrm{F}_{\mathrm{C}}=$ calculated failure rate estimate (in $\% / 1000 \mathrm{hrs}$) at upper confidence limit
$\chi^{2}=$ 'chi-squared" value for $2 F_{A}+2$ degrees of freedom for \propto where F_{A} is the number of actual failures (χ^{2} comes from available tables for a known \propto)
$\alpha=1-B$, where B is the confidence limit (B is stated in \%).
$\mathrm{n}=$ number of units in test $t=$ test time in thousands of hours (equivalent)

Equation 3 will calculate the estimated failure rates/1000 hrs for 60\% confidence level (industry standard) for each failure mechanism.

DEVICE ${ }^{5}$	ORGANIZATION	OUTPUT CIRCUIT ${ }^{1}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { LOGIC }^{2} \end{aligned}$	$\begin{aligned} & \text { ACCESS } \\ & \text { TIME }^{3} \end{aligned}$	PACKAGE ${ }^{4}$	PINS	$\begin{gathered} \operatorname{MAX} \\ \mathrm{ICC} \end{gathered}$
RAMs 82525	16×4	OC	B	50	N, D	16	105
3101A	16×4	OC	B	35	N, D	16	105
74S189	16×4	TS	B	35	N, D	16	110
74F189A	16×4	TS	-	15	N, D	16, 20	70
$82 S 16$	256×1	TS	T	50	N, D	16	115
745301	256×1	OC	B	50	N, D	16	130
82LS16	256×1	TS	T	40	N, D	16	70
74LS301	256×1	OC	B	40	N, D	16	70
$82 \mathrm{SO9}$	64×9	OC	T	45	A, N	28	190
82S09A	64×9	OC	T	35	A, N	28	190
82S19	64×9	OC	B	35	N	28	190
825212	256×9	TS	B	45	N, A	22	185
82S212A	256×9	TS	B	35	N, A	22	185
8×350	256×8	TS	B	N/A	N, A	22	185
PROMs 82523	32×8	OC	-	50	N, A	16, 20	96
82S23A	32×8	OC	-	25	N, A, D	16, 20	96
82US23	32×8	OC	-	10	N, A, D	16, 20	115
825123	32×8	TS	-	50	N, A	16, 20	96
82S123A	32×8	TS	-	25	N, A, D	16, 20	96
82 US123	32×8	TS	-	13	N, A, D	16, 20	115
10 P 256	32×8	OE	-	3	F	16	150
100P256	32×8	OE	-	3	F	16	150
825126	256×4	OC	-	50	N	16, 20	120
82S126A	256×4	OC	-	30	N, A, D	16, 20	120
82S129	256×4	TS	-	50	N	16, 20	120
82S129A	256×4	TS	-	27	N, A, D	16, 20	120
10149	256×4	OE	-	20	F	16	160
10149A	256×4	OE	-	10	F	16	160
10149B	256×4	OE	-	5	F	16	160
100149	256×4	OE	-	20	F	16	160
100149A	256×4	OE	-	10	F	16	160
100149B	256×4	OE	-	5	F	16	160
825130	512×4	OC	-	50	N	16, 20	140
82S130A	512×4	OC	-	33	N, A, D	16, 20	140
825131	512×4	TS	-	50	N	16, 20	140
82S131A	512×4	TS	-	30	N, A, D	16, 20	140
82LS135	256×8	TS	-	100	A, N	20	100
82 S 135	256×8	TS	-	45	A, N, D	20	150
825115	512×8	TS	-	60	N	24	175
825137	1024×4	TS	-	60	N, A	18, 20	140
82S137A	1024×4	TS	-	45	N, A	18, 20	140
82S137B	1024×4	TS	-	35	N, A	18, 20	140
825141	512×8	TS	-	60	N	24	175
82S141A	512×8	TS	-	45	N, N3, A	24	175
$82 S 147$	512×8	TS	-	60	A, N	20	155
82S147A	512×8	TS	-	45	A, N	20	155
82S147B	512×8	TS	-	25	N, A	20	155
$82 \mathrm{S181}$	1024×8	TS	-	70	N	24	175
82S181A	1024 $\times 8$	TS	-	55	N, A	24, 28	175
825181 C	1024×8	TS	-	35	N, N3, A	24, 28	175
$82 \mathrm{S183}$	1024×8	TS	-	60	N, A	24, 28	175
$82 S 185$	2048×4	TS	-	100	N	18	120

Selection Guide

$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline \text { DEVICE }^{5} & \text { ORGANIZATION } & \begin{array}{c}\text { OUTPUT } \\ \text { CIRCUIT }\end{array} & \begin{array}{c}\text { OUTPUT } \\ \text { LOGIC }^{2}\end{array} & \begin{array}{c}\text { ACCESS }^{\text {TIME }}\end{array} & \text { PACKAGE }{ }^{4} & \text { PINS } & \text { MAX } \\ \text { ICC }\end{array}\right]$

NOTES:

1. Output circuit

OE = Open Emitter
OC = Open Collector
TS $=3$-State
2. Output logic
$\mathrm{T}=$ Transparent - input data appears on output during Write
$\mathrm{B}=$ Blanked - output is blanked during Write
$\mathrm{R}=$ Registers
3. Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$
4. Packages:
$\mathrm{N}=$ Plastic Dual In Line (N3 $=300$ mil-wide) ${ }^{\text { }}$
FA = CERDIP with quartz window
$A=$ Plastic Square Leaded Chip Carrier
$D=$ Small Outline Large (SO-L)
*Whenever a single device is offered in both 300 mil-wide and 600 mil -wide packages, designate either N 3 (300 mil) or N (600 mil) to assure proper order entry and shipment.
5. Part numbers:

82Sxox Junction-Isolated NiCr fuse
82HSxcx Oxide-Isolated vertical fuse
82USxxx Oxide-Isolated TiW fuse
27Cxxx EPROM
27HCxox High Speed EPROM
6. Objective specification (under product development)

RAM
 Cross Reference Guide

Bipolar Memory Products

ORGANIZATION	$\begin{array}{\|l\|} \hline \text { PKG } \\ \text { PINS } \end{array}$	SIGNETICS	$\frac{T_{A A}}{I_{C C}}$	FAIRCHILD	$\frac{T_{A A}}{I_{C C}}$	TI	$\frac{T_{A A}}{I_{C C}}$	AMD	$\frac{T_{\text {AA }}}{I_{C C}}$	NATIONAL	$\frac{T_{A A}}{I_{C C}}$
$16 \times 4 O C$	16	N3101A	$\frac{35}{105}$	93403*	NA	SN74S289B	$\frac{35}{105}$	AM27S02 AM3101A	$\begin{aligned} & \frac{35}{100} \\ & \frac{35}{100} \end{aligned}$	DM74S289	$\frac{35}{110}$
16×4 TS	16	N74S189 N74F189A	$\begin{gathered} \frac{35}{110} \\ \frac{15}{55} \end{gathered}$	93405*	NA	SN74S189B	$\frac{35}{110}$	AM27S03 AM27S03A	$\begin{aligned} & \frac{35}{100} \\ & \frac{25}{100} \end{aligned}$	DM74S189 DM74S189A	$\begin{aligned} & \frac{35}{110} \\ & \frac{25}{100} \end{aligned}$
16×4 OC	16	N82S25	$\frac{50}{105}$	93403*	NA	SN74S289B	$\frac{35}{105}$	AM27S02	$\frac{35}{100}$	DM74S289	$\frac{35}{110}$
64×9 OC	28	$\begin{gathered} \text { N82S09 } \\ \text { N82S09A } \\ T \end{gathered}$	$\begin{aligned} & \frac{45}{190} \\ & \frac{35}{190} \end{aligned}$								
64×9 OC	28	N82S19	$\frac{35}{190}$	93419 93419A	$\begin{aligned} & \frac{45}{150} \\ & \frac{35}{150} \end{aligned}$						
256×1 OC	16	N74S301	$\frac{50}{130}$			SN74S301	$\frac{65}{140}$	AM27LS01A	$\frac{35}{115}$		
256×1 OC	16	N74LS301	$\frac{40}{70}$					AM27LS01	$\frac{45}{70}$		
256×1 TS	16	$\begin{gathered} \text { N82S16 } \\ T \end{gathered}$	$\frac{50}{115}$	$\begin{gathered} 93421 * \\ T \end{gathered}$	NA	SN74S201	$\frac{65}{140}$	AM27LS00-1A T	$\frac{35}{115}$	$\begin{gathered} \text { 74S200* } \\ T \end{gathered}$	NA
256×1 TS	16	$\underset{T}{\text { N82LS16 }}$	$\frac{40}{70}$					$\begin{gathered} \text { AM27LS00-1 } \\ T \end{gathered}$	$\frac{45}{70}$	$\begin{gathered} \text { 74S206* } \\ T \end{gathered}$	NA
256×8 TS	22	N8X350	$\frac{\text { NA }}{185}$								
256×9 TS	22	N82S212 N82S212A	$\begin{aligned} & \frac{45}{185} \\ & \frac{35}{185} \\ & \hline \end{aligned}$	$\begin{gathered} 93479 \\ 93479 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \frac{45}{185} \\ & \frac{35}{185} \end{aligned}$						

NOTES:
T: Output is Transparent during write
*: Possibly Discontinued

PROM

Cross Reference Guide

Bipolar Memory Products

TI PART NO.	PERFORMANCE $t_{A A} /{ }_{\mathbf{l}}^{\mathbf{C C}}$	SIGNETICS PART NO.	PERFORMANCE $\mathrm{t}_{\mathrm{AA}} / \mathrm{l}_{\mathbf{c}}$
1/4K 32×8			
18SA030	40/110	82S23A	25/96
38SA030	25/125	82S23A	25/96
38SA032		82S23A A	25/96
$18 \mathrm{SO30}$	40/110	82S123A	25/96
385030	15/125	82US123	10/110
38 LO 0	20/45	82US123*	
385032	15/125	82S123A A	25/96
38SA030		82US23	10/110
38S030	15/125	82US123	10/110
1K 256×4			
24SA10	65/100	82S126A	30/120
34SA10	25/95	82S126A*	
34SA12		82S126A A	30/120
24S10	55/100	82S129A	27/120
34S10	18/95	82S129A*	
34L10	27/50	82S129A*	
34S12	27/150	82S129A A	27/120
34L12	27/150	82S129A	50/120
2K 256×8			
28 L 22	70/100	82S135	45/155
28 LA 22	75/100	82S135*	
38L22	45/70	82S135*	
38 S 22	25/125	82S135	45/155
38SA22	30/125	82S135*	
4K 512×8			
$28 S A 42$	65/135	82S147*	
28 L 42	95/85	82S147	60/155
28542	60/135	82 S 147	60/155
34542	45/155	82S147A	45/155
28SA46	65/135	82S141*	
28.46	95/85	82S141**	
28S46	60/135	82S141A	45/175
4K 1K $\times 4$			
24SA41	60/140	82S137*	
34SA41	35/110	82S1378*	
$34 \mathrm{S41}$	25/120	82S137B	35/140
24541	60/140	82S137A	45/140
8K 1K $\times 8$			
28L86A	110/80	82S181*	
28S2708A	70/165	82S181*	
28SA86A	70/175	82S181**	
28S86A	65/165	82S181A	55/175
38586	45/165	82S181C	35/175

[^0]
PROM Cross Reference Guide

TI (Cont'd) PART NO.	PERFORMANCE $t_{A A} /{ }_{\mathbf{C C}}$	SIGNETICS PART NO.	PERFORMANCE $t_{A A} /{ }^{\mathbf{c C}}$
8K 2K $\times 4$			
24SA81	70/175	82S185A*	
24S81	70/175	82S185A	50/155
38585	45/175	82S185B	45/155
16K $2 \mathrm{~K} \times 8$			
28S166	75/175	82S191A	55/175
28L166	125/110	82LHS191	35/110
38L165	35/100	82LHS191 N3	35/110
38L166	35/100	82LHS191 N	35/110
38L167	35/100	82LHS191 A	35/110
38S165	25/175	82HS191 N3	25/175
38SA165	35/175	82S191C ${ }^{\text {N }}$ *	
385166	25/175	82HS191 N	25/175
38SA166	35/175	82S191C*	
38S167	35/175	82S191C A	35/175
$38 S A 167$	35/175	82S191C**	
16K 4K $\times 4$			
34SA162	35/155	82HS195A*	
34L162	30/100	82HS195B*	
34S162-45	45/155	82HS195	45/155
34S162-35	35/155	82HS195A	35/155
34S162-25	25/155	82HS195B	25/155

NOTE:

* Nearest Equivalent

PACKAGES	TI Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F
PLCC (Plastic)	FN	A
LCC (Ceramic)	FK	G
SOL	DW	D
Plastic DIP (Skinny)	NT	N3
Ceramic DIP (Skinny)	JT	F3
Plastic DIP (Wide)	NW	N
Ceramic DIP (Wide)	JW	F
Super II Burn-In	- N3	-B

PROM Cross Reference Guide

AMD PART NO.	PERFORMANCE $t_{A A} /{ }^{\prime} \mathbf{C C}$	SIGNETICS PART NO.	PERFORMANCE $t_{A A} /{ }^{\prime} \mathbf{C C}$
1/4K 32×8			
$\begin{aligned} & \hline \text { 27S18A } \\ & \text { 27S19A } \\ & \text { 27S19SA } \end{aligned}$	$\begin{aligned} & 25 / 115 \\ & 25 / 115 \\ & 15 / 115 \end{aligned}$	$\begin{aligned} & \hline 82 S 23 A \\ & 82 S 123 A \\ & \text { 82US123A } \end{aligned}$	$\begin{aligned} & 25 / 96 \\ & 25 / 96 \\ & 10 / 110 \end{aligned}$
1K 256×4			
$\begin{aligned} & \hline 27 \mathrm{~S} 20 \\ & 27 \mathrm{~S} 20 \mathrm{~A} \\ & 27 \mathrm{~S} 21 \\ & 27 \mathrm{~S} 21 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 45 / 130 \\ & 30 / 130 \\ & 45 / 130 \\ & 30 / 130 \end{aligned}$	82S126A 82S126A 82S129A 82S129A	$\begin{aligned} & 30 / 120 \\ & 30 / 120 \\ & 27 / 120 \\ & 27 / 120 \end{aligned}$
2K 512×4			
$\begin{aligned} & \text { 27S16 } \\ & \text { 27S16A } \end{aligned}$	$\begin{aligned} & 55 / 160 \\ & 35 / 160 \end{aligned}$	$\begin{aligned} & 82 \mathrm{~S} 131 \\ & 82 \mathrm{~S} 131 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 50 / 140 \\ & 30 / 140 \end{aligned}$
4K 512×8			
$\begin{aligned} & \hline 27 \mathrm{~S} 29 \\ & 27 \mathrm{~S} 29 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 55 / 160 \\ & 35 / 160 \end{aligned}$	$\begin{aligned} & \text { 82S 147A } \\ & 82 S 147 B \end{aligned}$	$\begin{aligned} & 45 / 155 \\ & 25 / 155 \end{aligned}$
$\begin{aligned} & \text { 27S31 } \\ & \text { 27S31A } \end{aligned}$	$\begin{aligned} & 55 / 175 \\ & 35 / 175 \end{aligned}$	$\begin{aligned} & 82 S 141 \mathrm{~A} \\ & 82 S 141 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 45 / 175 \\ & 35 / 175 \end{aligned}$
$4 \mathrm{~K} 1 \mathrm{~K} \times 4$			
$\begin{aligned} & 27533 \\ & 27 S 33 A \end{aligned}$	$\begin{aligned} & 55 / 140 \\ & 35 / 140 \end{aligned}$	$\begin{aligned} & 82 S 137 \mathrm{~A} \\ & 82 S 137 B \end{aligned}$	$\begin{aligned} & 45 / 140 \\ & 35 / 140 \end{aligned}$
8K 1K $\times 8$			
$\begin{aligned} & \text { 27S181 } \\ & \text { 27S181A } \end{aligned}$	$\begin{aligned} & 60 / 185 \\ & 35 / 185 \end{aligned}$	$\begin{aligned} & \text { 82S181A N } \\ & \text { 82S181C N } \end{aligned}$	$\begin{aligned} & 55 / 175 \\ & 35 / 175 \end{aligned}$
$\begin{aligned} & \text { 27S281 } \\ & \text { 27S281A } \end{aligned}$	$\begin{aligned} & 60 / 185 \\ & 35 / 185 \end{aligned}$	82S181A N3 82S181C N3	$\begin{aligned} & 55 / 175 \\ & 35 / 175 \end{aligned}$
8K $2 \mathrm{~K} \times 4$			
$\begin{aligned} & \text { 27S185 } \\ & \text { 27S185A } \end{aligned}$	$\begin{aligned} & 50 / 150 \\ & 35 / 150 \end{aligned}$	$\begin{aligned} & \text { 82S185A } \\ & \text { 82S185C } \end{aligned}$	$\begin{aligned} & 50 / 155 \\ & 35 / 155 \end{aligned}$
8K Registered 1K $\times 8$			
$\begin{aligned} & \text { 27S35 } \\ & 27 S 35 A \end{aligned}$	$\begin{aligned} & 20 / 185 \\ & 15 / 185 \end{aligned}$	$\begin{aligned} & \text { 82HS187 } \\ & \text { 82HS187A } \end{aligned}$	$\begin{aligned} & 20 / 175 \\ & 15 / 175 \end{aligned}$
$\begin{aligned} & \text { 27S37 } \\ & \text { 27S37A } \end{aligned}$	$\begin{aligned} & 20 / 185 \\ & 15 / 185 \end{aligned}$	$\begin{aligned} & \text { 82HS189 } \\ & \text { 82HS189A } \end{aligned}$	$\begin{aligned} & 20 / 175 \\ & 15 / 175 \end{aligned}$
16K $2 \mathrm{~K} \times 8$			
$\begin{aligned} & \text { 27S191 } \\ & \text { 27S191A } \\ & \text { 27S191SA } \end{aligned}$	50/185 35/185 25/185	$\begin{aligned} & \text { 82S191A } \\ & \text { 82S191C } \\ & \text { 82HS191 } \end{aligned}$	$\begin{aligned} & 55 / 175 \\ & 35 / 175 \\ & 25 / 185 \end{aligned}$
$\begin{aligned} & \text { 27S291 } \\ & \text { 27S291A } \\ & \text { 27S291SA } \\ & \hline \end{aligned}$	50/185 35/185 25/185	82S191A N3 82S191C N3 82HS191 N3	$\begin{aligned} & 55 / 175 \\ & 35 / 175 \\ & 25 / 185 \end{aligned}$
$16 \mathrm{~K} 4 \mathrm{~K} \times 4$			
$\begin{aligned} & 27 S 41 \\ & \text { 27S41A } \end{aligned}$	$\begin{aligned} & 50 / 165 \\ & 35 / 165 \end{aligned}$	$\begin{aligned} & \text { 82HS195 } \\ & \text { 82HS195A } \\ & \text { 82HS195B } \end{aligned}$	$\begin{aligned} & 45 / 155 \\ & 35 / 155 \\ & 25 / 155 \end{aligned}$

PROM Cross Reference Guide

AMD (Cont'd) PART NO.	PERFORMANCE $t_{A A} / l_{C C}$	SIGNETICS PART NO.	PERFORMANCE $\mathrm{t}_{\mathrm{AA}} / \mathrm{l}_{\mathbf{C C}}$
32K 4K $\times 8$			
$\begin{aligned} & 27 S 43 \\ & 27 S 43 A \end{aligned}$	$\begin{aligned} & 55 / 185 \\ & 40 / 185 \end{aligned}$	$\begin{aligned} & \hline \text { 82HS321 } \\ & \text { 82HS321A } \end{aligned}$	$\begin{aligned} & 45 / 185 \\ & 35 / 185 \end{aligned}$
64K 8K $\times 8$			
$\begin{aligned} & \hline 27 S 49 \\ & 27 S 49 A \end{aligned}$	$\begin{aligned} & 55 / 190 \\ & 40 / 190 \end{aligned}$	$\begin{aligned} & \text { 82HS641 } \\ & \text { 82HS641B } \end{aligned}$	$\begin{aligned} & 55 / 185 \\ & 35 / 185 \end{aligned}$

PACKAGES	AMD Suffix	SIGNETICS Suffix
Plastic DIP	P	N
Ceramic DIP	D	F
PLCC (Plastic)	J	A
LCC (Ceramic)	L	G
SOL		D
Plastic DIP (Skinny)		N3
Ceramic DIP (Skinny)	B	F3
Super II Burn-In	B	

PROM Cross Reference Guide

NATIONAL SEMI PART NO.	PERFORMANCE $t_{A A} / l_{C C}$	SIGNETICS PART NO.	PERFORMANCE $t_{A A} / l_{C C}$
1/4K 32×8			
74S188	35/110	82S23A	25/96
74S188A	25/110	82S23A	25/96
74 S 288	35/110	82S123A	25/96
74S288A	25/110	82S123A	25/96
PL87X288B	15/140	82US123	10/110
1K 256×4			
74 S 387	50/130	82S126A	30/120
74S387A	30/130	82S126A	30/120
74S287	50/130	82S129A	27/120
74S287A	30/130	82S129A	27/120
2K 512×4			
74S570A	45/130	82S130A	33/140
74S571A	45/130	82S131A	33/140
74S571B	35/130	82S131A	30/140
2K 256×8			
74LS471	60/100	82LS135	100/100
4K 512×8			
74 S 472	60/155	$82 S 147$	60/155
74S472A	45/155	82S147A	45/155
74S472B	35/155	82S147B	25/155
74S474	65/170	82S141	60/175
74S474A	45/170	82S141A	45/175
74S474B	35/170	82S141B	35/175
4K 1K $\times 4$			
748573	60/140	82S137	60/140
74S573A	45/140	82S137A	45/140
74S573B	35/140	82S137B	35/140
8K 1K $\times 8$			
87 S 181	55/170	82S181A	55/175
87S181A	45/170	82S181C	35/175
87S281	55/170	82S181A N3	55/175
		82S181C N3	35/175
8K 2K $\times 4$			
87 S 185	55/140	82S185A	50/155
875185A	45/140	82S185B	45/155
87S185B	35/140	82S185C	35/155
8K Registered $1 \mathrm{~K} \times 8$			
87SR181	20/175	82HS189	20/175
16K 2K $\times 8$			
87 S 191	65/175	82S191A N	55/175
87S191A	45/175	82S191C N	35/175
87S191B	35/175	82S191C N	35/175
87S291	65/175	82S191A N3	55/175
87S291A	45/175	82S191C N3	35/175
87S291B	35/175	82S191C N3	35/175

PROM Cross Reference Guide

NATIONAL SEMI (Cont'd) PART NO.	PERFORMANCE $t_{A A} /{ }_{c c}$	SIGNETICS PART NO.	PERFORMANCE $t_{\text {AA }} / \mathbf{l c c}$
16K $4 \mathrm{~K} \times 4$			
$\begin{aligned} & \text { 87S195A } \\ & \text { 87S195B } \end{aligned}$	$\begin{aligned} & \hline 45 / 170 \\ & 35 / 170 \end{aligned}$	$\begin{aligned} & \text { 82HS195A } \\ & \text { 82HS195A } \end{aligned}$	$\begin{aligned} & 35 / 155 \\ & 35 / 155 \end{aligned}$
32K 4K $\times 8$			
87S321	55/185	82HS321	45/185

PACKAGES	NSC Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F
PLCC (Plastic)	V	A
LCC (Ceramic)		G
SOL	N	D
Plastic DIP (Skinny)	J	N3
Ceramic DIP (Skinny)		F3
Plastic DIP (Wide)	N	
Ceramic DIP (Wide)	F	
Super II Burn-In	-	-B

PROM Cross Reference Guide

MMI (Now AMD) PART NO.	PERFORMANCE $t_{A A} /{ }^{\prime} \mathbf{C C}$	SIGNETICS PART NO.	PERFORMANCE $t_{A A} /{ }^{\prime} \mathbf{C C}$
1/4K 32×8			
63S081 PLE5P8C 63S081A PLE5P8AC	$\begin{aligned} & 25 / 125 \\ & 25 / 125 \\ & 15 / 125 \\ & 15 / 125 \end{aligned}$	$\begin{aligned} & \text { 82S123A } \\ & \text { 82S123A } \\ & \text { 82US123A } \\ & \text { 82US123A } \end{aligned}$	$\begin{aligned} & \hline 25 / 96 \\ & 25 / 96 \\ & 10 / 110 \\ & 10 / 110 \end{aligned}$
1K 256×4			
$\begin{aligned} & \hline \text { 63S140 } \\ & \text { 63S141 } \\ & \text { 63S141A } \\ & \text { PLE8P4C } \end{aligned}$	$\begin{aligned} & 45 / 130 \\ & 45 / 130 \\ & 30 / 130 \\ & 30 / 130 \end{aligned}$	82S126A 82S129A 82S129A 82S129A	$\begin{aligned} & 30 / 120 \\ & 27 / 120 \\ & 27 / 120 \\ & 27 / 120 \end{aligned}$
2K 512×4			
$\begin{aligned} & \text { 63S240 } \\ & \text { 63S241 } \\ & \text { 63S241A } \\ & \text { PLE9P4C } \end{aligned}$	$\begin{aligned} & 45 / 130 \\ & 45 / 130 \\ & 35 / 130 \\ & 35 / 130 \end{aligned}$	82S130A 82S131A 82S131A 82S131A	$\begin{aligned} & 33 / 140 \\ & 30 / 140 \\ & 30 / 140 \\ & 30 / 140 \end{aligned}$
2K 256×8			
$\begin{aligned} & 63 S 281 \\ & 63 S 285 \end{aligned}$	$\begin{aligned} & 45 / 140 \\ & 45 / 160 \end{aligned}$	$\begin{aligned} & 82 \mathrm{~S} 135 \\ & 82 \mathrm{~S} 135 \end{aligned}$	$\begin{aligned} & 45 / 155 \\ & 45 / 155 \end{aligned}$
4K 512×8			
63 S 481 635481A PLE9P8C 63 S 485	$\begin{aligned} & 45 / 155 \\ & 30 / 155 \\ & 30 / 155 \\ & 45 / 160 \end{aligned}$	$\begin{aligned} & \hline 82 \text { S147A } \\ & \text { 82S147A } \\ & \text { 82S147B } \\ & 82 S 141 \end{aligned}$	$\begin{aligned} & 45 / 155 \\ & 45 / 155 \\ & 25 / 155 \\ & 45 / 175 \end{aligned}$
4K 1K $\times 4$			
63 S 441 63S441A PLE10P4C	45/140 35/140 35/140	82S137A 82S137B 82S137B	45/140 35/140 35/140
8K 1K $\times 8$			
635881 63S881A PLE10P8C 63 S881 \times S 63S881A \times S PLE10PBC \times S	45/160 30/160 30/160 45/160 30/160 30/160	82S181C N 82S181C N 82S181C N 82S181C N3 82S181C N3 82S181C N3	$\begin{aligned} & 35 / 175 \\ & 35 / 175 \\ & 35 / 175 \\ & 35 / 175 \\ & 35 / 175 \\ & 35 / 175 \end{aligned}$
8K $2 \mathrm{~K} \times 4$			
635841 63S841A PLE11P4C	50/150 35/150 35/150	82S185A 82S185C 82S185C	50/155 35/155 35/155
8K Registered $1 \mathrm{~K} \times 8$			
63RA881 63RA881A	$\begin{aligned} & 20 / 175 \\ & 15 / 175 \end{aligned}$	$\begin{aligned} & \text { 82HS189 } \\ & \text { 82HS189A } \end{aligned}$	$\begin{aligned} & 20 / 175 \\ & 15 / 175 \end{aligned}$
16K $2 \mathrm{~K} \times 8$			
$63 S 1681$ 63S1681A PLE11P8C 63S1681 \times S 63S1681A \times S PLE11P8C $\times S$	50/185 35/185 35/185 50/185 35/185 35/185	82S191A N 82S191C N 82S191C N 82S191A N3 82S191C N3 82S191C N3	55/175 35/175 35/175 55/175 35/175 35/175

PROM Cross Reference Guide

MMI (Now AMD) (Cont'd) PART NO.	PERFORMANCE $t_{A A} / l_{\mathbf{C C}}$	SIGNETICS PART NO.	PERFORMANCE $t_{A A} /{ }_{\mathbf{C C}}$
$16 \mathrm{~K} 4 \mathrm{~K} \times 4$			
$\begin{aligned} & \text { 63S1641 } \\ & \text { 63S1641A } \\ & \text { PLE12P4C } \end{aligned}$	$\begin{aligned} & 50 / 175 \\ & 35 / 170 \\ & 35 / 175 \end{aligned}$	$\begin{aligned} & \text { 82HS195 } \\ & \text { 82HS195A } \\ & \text { 82HS195A } \end{aligned}$	$\begin{aligned} & 45 / 155 \\ & 35 / 155 \\ & 35 / 155 \end{aligned}$
32K 4K $\times 8$			
$\begin{aligned} & \text { 63S3281 } \\ & \text { 63S3281A } \\ & \text { PLE12P8C } \end{aligned}$	45/185 35/190 35/190	$\begin{aligned} & \text { 82HS321 } \\ & \text { 82HS321A } \\ & \text { 82HS321A } \end{aligned}$	45/185 35/185 35/185
64K 8K $\times 8$			
$\begin{aligned} & \text { 63S6481 } \\ & 63 S 6481 A \end{aligned}$	$\begin{aligned} & 55 / 190 \\ & 45 / 190 \end{aligned}$	$\begin{aligned} & \hline 82 \mathrm{HS} 641 \\ & \text { 82HS641A } \end{aligned}$	$\begin{aligned} & 55 / 185 \\ & 45 / 185 \end{aligned}$

PACKAGES	MMI Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F
PLCC (Plastic)	NL	A
LCC (Ceramic)	L	G
SOL	Not available	D
Plastic DIP (Skinny)	NS	N3
Ceramic DIP (Skinny)	JS	F3
Super II Burn-ln	-	$-B$

PROM Cross Reference Guide

Fairchild (Now National Semi) PART NO.	PERFORMANCE $t_{\text {AA }} /{ }_{\text {cec }}$	SIGNETICS PART NO.	PERFORMANCE $\mathrm{t}_{\mathrm{AA}} / \mathrm{l}_{\mathrm{CC}}$
$8 \mathrm{~K} 1 \mathrm{~K} \times 8$			
$93 Z 451$	40/135	82S181C	35/175
16K $2 \mathrm{~K} \times 8$			
$\begin{aligned} & 93 Z 511 \\ & 93 Z 611 \end{aligned}$	$\begin{aligned} & 45 / 175 \\ & 25 / 185 \end{aligned}$	$\begin{aligned} & \text { 82S191A } \\ & \text { 82HS191 } \end{aligned}$	$\begin{aligned} & 55 / 175 \\ & 25 / 185 \end{aligned}$
64K 8K $\times 8$			
$93 Z 65$ 93Z65A $93 Z 667$	55/180 45/180 40/185	$\begin{aligned} & \text { 82HS641 } \\ & \text { 82HS641A } \\ & \text { 82HS641B } \end{aligned}$	55/185 45/185 35/185

PACKAGES	FSC Suffix	SIGNETICS Suffix
Plastic DIP	P	N
Ceramic DIP	D	F
PLCC (Plastic)	Not available	A
LCC (Ceramic)	L	G
SOL	Not available	D
Plastic DIP (Skinny)	SP	N3
Ceramic DIP (Skinny)	SD	F3
Super II Burn-In	-N3	- B

EPROM Cross Reference Guide

CMOS Memory Products

Most manufacturers of EPROMs use the same part numbering system with only prefix changes to denote manufacturers and suffix changes to denote packages.

EPROM PACKAGES CROSS REFERENCE

	PACKAGE SUFFIXES								
	AMD	INTEL	ALTERA	TI	MMI	NSC	FUJITSU	HITACHI	SIGNETICS
DIP (Plastic)	PD	P	P	N	N	N	P	DP	N
DIP (Ceramic)	CD		D	J	J	J	C	DG	F
PLCC (Plastic)	PL	N	L	FN	NL			CG	A
CLCC (Ceramic)	CL/CLR	R	J	FK	L				G
300 DIP (Plastic)				NT	NS			DP	N3
300 DIP (Ceramic)				JT	JS			DG	F3
600 DIP (Ceramic)				JW					F
600 DIP (Plastic)				NW					N
DIP (Ceramic) (with window)			JLCC			Q		DG	FA
DIP (Ceramic) (Side-Brazed)				JD	D	D			1

EPROM Programming Information

CMOS Memory Products

Complete programming system specifications are available upon request from Signetics Memory Marketing.

Signetics encourages the purchase of programming equipment from a manufacturer who has a full line of programming products to offer. Signetics also encourages the manufacturers of EPROM programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from Signetics Memory Marketing.

PROGRAMMING THE 27HC641

Initially, all bits of the 27HC641 are in an undefined state. Data is introduced by programming " 1 "s and " 0 "s into the desired bit locations. Both " 1 "s and " 0 "s must be present in the data word to define each bit. Since the 27 HC 641 is shipped in a virgin (undefined) state, it is recommended that all locations be programmed to remove ambiguous states.
The 27 HC 641 is in the programming mode when the Output Enable (G) pin is at 12.5 V . The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C64A

Caution: Exceeding 14.0V on the VPP Pin may permanently damage the 27C64A.

Initially, all bits of the 27C64A are in the " 1 " state. Data is introduced by selectively programming " 0 "s into the desired bit locations. Although only " 0 "s will be programmed, both " 1 "s and " 0 "s can be present in the data word.

The 27C64A is in the programming mode when the $V_{\text {Pp }}$ input is at 12.5 V , and CE and PGM is at TTL Logic Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27HC128

Caution: Exceeding 14.0V on the VPP Pin may permanently damage the 27 HC 128.

Initially, all bits of the 27HC128 are in an undefined state. Data is introduced by programming " 1 "s and " 0 "s into the desired bit locations. Both " 1 "s and " 0 "s must be present in the data word to define each bit.

The 27 HC 128 is in the programming mode when the Output Enable (G) pin is at 12.5 V . The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C256

Caution: Exceeding 14.0 V on $\mathrm{V}_{\text {PP }}$ Pin may permanently damage the 27C256.

Initially, all bits of the 27C256 are in the "1" state. Data is introduced by selectively programming " 0 "s into the desired bit locations. Although only " 0 " s will be programmed, both " 1 "s and " 0 "s can be present in the data word.

The 27C256 is in the programming mode when the V_{Pp} input is at 12.5 V , CE is at TTL Logic Low, and $O E$ is at TTL Logic High. The data to be programmed is applied 8 bits in parallel to the data output
pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C512

Caution: Exceeding 14.0V on the OE $N_{\text {PP }}$ Pin may permanently damage the 27C512.

Initially, all bits of the 27C512 are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only " 0 "s will be programmed, both " 1 "s and " 0 "s can be present in the data word.

The 27C512 is in the programming mode when the $\overline{O E} / V_{\text {pp }}$ input is at 12.75 V and CE is at TTL Logic Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C210

Caution: Exceeding 14.0 V on VPP Pin may permanently damage the 27C210.

Initially, all bits of the 27C210 are in the "1" state. Data is introduced by selectively programming " 0 "s into the desired bit locations. Although only " 0 "s will be programmed, both " 1 "s and "0"s can be present in the data word.

The 27C210 is in the programming mode when the $V_{P P}$ input is at $12.5 \mathrm{~V}, \mathrm{CE}$ and PGM is at TTL Logic Low, and OE is at TTL Logic High. The data to be programmed is applied 16 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

EPROM Programming Information

SIGNETICS EPROM PROGRAMMER REFERENCE GUIDE

Data I/O Corporation
10524 Willows Road, N.E.
Redmond, Washington 98073-9746
Telephone Number: (800) 247-5700

DEVICE	PKG TYPE	FAMILY PINOUT	MODEL 29				$\begin{aligned} & \text { SERIES } \\ & 22 \end{aligned}$	S1000	
			$\begin{aligned} & \text { UNIPAK } \\ & \hline \end{aligned}$	UNIPAK $2 B$	351B	GANG PAK		REV	SR
27C64A	DIP	5C33	V16	V16	086	V08	--	V13	28
27C64A	DIP	9333	--	--	--	--	--	--	-
27C64A	PLCC	5CC1	--	V18	099	--	V05	--	-
27HC641	DIP	3533	--	--	--	--	--	V14	28
27HC641	DIP	8767	V15	V15	--	V08	--	V14	28
27HC641	PLCC	879A	--	V15	093	--	--	--	-
27 C 256	DIP	05CF32	--	--	--	--	--	V13	28
27C256	DIP	9332	--	--	--	--	--	--	-
27 C 256	DIP	5C32	V16	V16	086	V08	--	--	-
27C256	PLCC	$5 \mathrm{CC3}$	--	V18	099	--	--	--	-
27 C 512	DIP	5EA4	V18	V18	086	--	--	V13	-
27 C 512	PLCC	5EC4	--	V19	099	--	--	V13	*
27C210	DIP	5FA8	V19	V19	095	--	--	V13	40
27C210	PLCC	5F88	--	V19	095P	--	--	V13	*

*Contact Mr. Lloyd Hyden/Data I/O for PLCC Rails.

EPROM Programming Information

UNISITE			280	201	288	MOD.	MODEL 60		BOARD SITE
REV	PLCC	$\begin{aligned} & \text { SET } \\ & \text { SITE } \end{aligned}$					REV	360A	
2.2	----	V2.2	--	-	--	-	--	--	01
--	----	--	VO4	V04	VO1	32	V10	005	-
2.5	CPST	--	--	--	--	-	--	--	01
--	---	--	--	--	1.2	-	--	--	--
2.8	----	--	--	--	--	-	--	--	--
2.8	CPST	--	--	--	--	-	--	--	--
--	----	--	--	--	--	-	--	--	--
2.2	---	V2.2	V04	V04	V01	32	V10	005	-
--	----	--	V04	V04	--	-	--	--	01
2.4	CPST	--	--	--	--	-	--	--	01
2.5	----	V2.5	--	--	--	-	V13	005	--
2.7	CPST	--	--	--	--	-	--	-	--
2.7	---	--	--	--	--	-	--	--	--
2.7	CPST	--	--	--	--	-	--	--	--

Eprom Programming Information

ERASURE CHARACTERISTICS

The erasure characteristics are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 \AA range. Data shows that constant exposure to room level fluorescent lighting could erase the typical EPROM in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the EPROM is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.
The recommended erasure procedure for EPROMs is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA)). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The package should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a Signetics EPROM can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week (a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPROMs to high intensity UV light for longer periods may cause permanent damage.

Note that all of the High speed EPROMs, ($\mathrm{HCxxx}^{\text {) , erase to to }}$ andefined state, i.e., neither " 1 " s or " 0 " s are stored after erasure. Both " 1 " s and " 0 " s MUST be programmed into the devices for proper operation.

INTELLIGENT IDENTIFIER

The intelligent identifier provides the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is functional in the $25^{\circ} \pm 5^{\circ} \mathrm{C}$ ambient temperature range. To activate this mode, the equipment must force 11.5 V to 12.5 V on address Ag. Two bytes may then be read from the device outputs by toggling address line A_{0} from V_{IL} to V_{IH}. The $\mathrm{CE}, \overline{\mathrm{OE}}$ and all other address lines must be at V_{IL} during interrogation.
The identifier information for Signetics' 27C64A is as follows:

When $A_{0}=V_{I L}$	
data is "Manufacturer"	$15_{(\text {HEX }}$
When $A_{0}=V_{I H}$	
data is "Product"	$0 B_{(H E X)}$

The identifier information for Signetics' 27 C 256 is as follows:

When $A_{0}=V_{I L}$	
data is "Manufacturer"	$15_{\text {(HEX) }}$
When $A_{0}=V_{1 H}$	
data is "Product"	$8 \mathrm{C}_{(\text {HEX })}$

The identifier information for Signetics' 27C512 is as follows:

When $A_{0}=V_{I L}$	
data is "Manufacturer"	$15_{(\text {HEX })}$
When $A_{0}=V_{I H}$ data is "Product" $1 D_{(\text {HEX })}$	

The identifier information for Signetics' 27C210 is as follows:

When $A_{0}=V_{L L}$
data is "Manufacturer" \quad FF15 (HEX)
When $A_{0}=V_{I H}$
data is "Product" \quad FF17 ${ }_{(\text {HEX }}$

Bipolar Programming Procedures

Bipolar Memory Products

Abstract

GENERIC I PROGRAMMING The Signetics family of Advanced Junction Isolated Schottky PROMs are high performance bipolar devices which use a nickel/ chromium (NiCr) alloy fuse to provide the many benefits of field programming. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming (except the 82S115 which has two fusing pins: FE1 and FE2). The programming voltages and timing requirements make unintentional programming virtually impossible. Arrays of devices may be programmed in the user's circuit, if desirable, as long as proper application of programming voltages is provided.

GENERIC I PROCEDURE

The Generic I family of Schottky PROMs uses no special pins for programming. The address pins remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the $V_{C C}$ pin to $8.75 \pm 0.25 \mathrm{~V}$. This voltage is referred to as $V_{\text {CCP }}$. After the proper delay the output corresponding to the bit selected is raised to $17.5 \pm 0.5 \mathrm{~V}$. This voltage is known as $V_{\text {OPF }}$ and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the $V_{\text {OpF }}$ power supply and circuitry. lopf is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL ' 0 ' level for 10 to $25 \mu \mathrm{~s}$. It is during this time that the actual fusing of the NiCr link occurs. The actual time for fusing of a Signetics NiCr fuse link has been determined to be between 0.6 to $1.2 \mu \mathrm{~s}$. The shorter the fusing pulse (CE), within the recommended limits, the sooner the total programming sequence is completed. Note that unprogrammed Generic I (Junction Isolated) parts are supplied with all bits at a logic " 0 '" level. Only the bits intended to be 'ones' will be programmed. Verification of programming can be performed after each bit or after the entire device has been programmed.

A fuse which does not blow during the first programming cycle should be considered a defective device and should be discarded.

GENERIC II PROGRAMMING

The Signetics family of Oxide Isolated Schottky PROMs are high performance bipolar devices which use a vertical diode fuse to provide the benefits of field programming. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming. The programming voltages and timing requirements make unintentional programming virtually impossible.

GENERIC II PROCEDURE

As with the Generic I devices, the addresses remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the V_{CC} pin to $8.75 \pm 0.25 \mathrm{~V}$. This voltage is referred to as $V_{\text {CCP. }}$ After the proper delay the output corresponding to the bit selected is raised to $20.0 \pm 0.5 \mathrm{~V}$. This voltage is known as $\mathrm{V}_{\text {OPF }}$ and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the $V_{\text {OPF }}$ power supply and circuitry. IOPF is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL ' 0 '" level for $1 \mu \mathrm{~s}$. The properly blown fuse will verify the TTL ' 0 '" level. Note that unprogrammed Generic II (Oxide Isolated) parts are supplied with all bits at a logic " 1 " level. Only the bits intended to be "zeros" will be programmed.

GENERIC III PROGRAMMING

The Signetics Generic III PROM family consist of those devices constructed with Oxide Isolated Schottky circuitry using Titanium Tungsten horizontal fuses. This results in a very high performance PROM at an optimum cost of manufacture. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming. The programming voltages and timing re-
quirements make unintentional programming virtually impossible.

GENERIC III PROCEDURE

As with the Generic I devices, the addresses remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the V_{CC} pin to $8.75 \pm 0.25 \mathrm{~V}$. This voltage is referred to as $\mathrm{V}_{\text {CCP }}$. After the proper delay the output corresponding to the bit selected is raised to $14.25 \pm 0.25 \mathrm{~V}$. This voltage is known as $\mathrm{V}_{\text {OPF }}$ and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the $V_{\text {OPF }}$ power supply and circuitry. IOPF, approximately 300 mA , is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL " 0 '" level for $5 \mu \mathrm{~s}$. The properly blown fuse will verify the TTL "1" or "High' level. Note that unprogrammed Generic III parts are supplied with all bits at a logic " 0 ' or "Low' level. Only the bits intended to be "Ones" will be programmed.

GENERIC IV PROGRAMMING

The Signetics family of ECL PROMs are bipolar devices which use a nickel/chromium (NiCr) alloy fuse, or as in the case of the newest members a Titanium Tungsten (TiW) fuse. Both of these designs are programmed using the same Generic IV method.

GENERIC IV PROCEDURE

Unlike previous methods the addresses used to select the proper word are unique voltage levels which become necessary when the $V_{C C}$ pin is raised to a positive voltage. (ECL normal mode of operation is with the $V_{C C}$ pin held to ground potential.) The outputs are used to supply fusing current during the programming mode as well as select the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the $\mathrm{V}_{\mathrm{CC} 1}$ pin to $11.5 \pm 0.5 \mathrm{~V}$. This voltage is referred to as $\mathrm{V}_{\text {CCP }}$. After the proper delay the output corresponding to the bit selected is raised to

Bipolar Programming Procedures

$12 \pm 0.5 \mathrm{~V}$ for $10 \mu \mathrm{~s}$. The properly blown fuse will verify a 'High'" level of 4.4 V min. Note that unprogrammed Generic IV devices are supplied with all bits at a logic "Low" level. Only the bits intended to be "High" will be programmed.

PROGRAMMING INFORMATION
Complete programming system specifications are available upon request from the Memory Marketing department. Signetics encourages the purchase of programming equipment from a manufacturer who has a full line of program-
ming products to offer. Signetics also encourages the manufacturers of programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from the Memory Marketing department.

SIGNETICS DISCOURAGES THE CONSTRUCTION AND USE OF 'HOMEMADE" PROGRAMMING EQUIPMENT

In order to consistently achieve excellent programming yields, periodic calibration of the programming equipment is required. Consult the equipment manufacturer for the recommended calibration interval. Records of programming yield, by device type, should be kept and any downward trend or sudden change should be considered as an indication of a need to recalibrate the programming equipment.

PROM Programming Information

SIGNETICS PROM PROGRAMMER REFERENCE GUIDE
Data I/O Corporation
10524 Willows Road, N.E.
Redmond, Washington 98073-9746
Telephone Number: (800) 247-5700

SIGNETICS PART \#	PACKAGE	$\begin{aligned} & \text { PIN } \\ & \text { CODE } \end{aligned}$	MODEL 29B				$\begin{aligned} & \text { SERIES } \\ & 22 \end{aligned}$	ADAPTOR	$\begin{gathered} \text { UNISITE } \\ 40 \end{gathered}$	ADAPTOR
			$\begin{aligned} & \text { UNI- } \\ & \text { PACK2 } \end{aligned}$	ADAPTOR	$\begin{gathered} \text { UNI- } \\ \text { PACK2B } \end{gathered}$	351B				
100149A	DIP	B1D7	--	--	--	--	--	-----	V2.0	-
10149A	DIP	B1D7	--	-----	--	-----	--	-----	V2.0	-----
82HS 187/189	DIP	CE5C	V12	-----	V12	-----	V03	-----	V2. 2	-----
82HS 191	DIP	CE21	V12	-----	V12	-----	--	-----	V2.4	-----
82HS191	PLCC	CE8B	--	-----	V18	093	--	-----	V2.4	CPSITE
$82 \mathrm{HS} 195 \mathrm{~A} / \mathrm{B}$	DIP	CF53	V12	-----	V12	-----	V03	351A064	V2. 2	-----
$82 \mathrm{HS} 195 \mathrm{~A} / \mathrm{B}$	PLCC	CE8C	--	-----	V14	090	--	-----	V2. 2	CPSITE
82HS321	DIP	CF63	V12	-----	V12	------	vo3	-----	V2. 2	-----
82HS321	PLCC	CF8E	--	-----	V17	093	--	-----	V2.4	CPSITE
82HS641	DIP	CE67	V12	-----	V12	------	V03	-----	V2. 2	-----
82HS641	PLCC	CE9A	--	-----	V14	093	--	-----	V2. 2	CPSITE
82LHS191	DIP	CE21	V12	-----	V12	-----	--	-----	V2.4	-----
82LHS321	DIP	CF63	V12	-----	V12	-----	V03	V03	V2. 2	-----
82LHS321	PLCC	CF8E	--	-----	V17	093	--	-----	V2.4	CPSITE
82LS135	DIP	1008	V03	-----	V07	-----	V02	351A064	V1.4	-----
825115	DIP	AE83	V07	351A068	V07	-----	V02	----	V1.1	-----
82S123	DIP	1002	V04	-----	V07	-----	V02	351A064	V1.4	-----
82S123	DIP	106C	--	-----	V15	-----	--	-----	--	-----
82S123	So	010802	--	-----	--	-----	--	-----	V1.6	CPSITE
82S123	PLCC	010702	--	-----	V15	087	--	-----	V1.6	CPSITE
82S126	DIP	1001	V03		V07	-----	V02	351A064	V1.7	-----
82S129	DIP	1001	V03	-----	V07	-----	V02	----	V1.7	-----
82S129	PLCC	106B	--		--		--	-----	V2.5	CPSITE
82S130	DIP	1003	V03		V07		V02	351A064	V1.7	-----
82S130	PLCC	106D	--	-----	V18	088	- -	-----	V2.4	CPSITE
82S 131	DIP	1003	V06		V07	-----	V02	351A064	V1.7	-----
$82 S 131$	PLCC	106D	--		V18	088	--	-----	V2.4	CPSITE
82S 135	DIP	1008	V03	-----	V07	-----	V02	351A064	V1.4	-----
$82 S 137$	DIP	1005	V03		V07	-----	V02	351A064	V1.4	-----
$82 S 137$	PLCC	106E	--		V18	088	--	-----	--	-----
82S141	DIP	1015	V03	-----	V07	---	V02	-----	V1.4	-----
82S141	PLCC	107F	--		V18	093	--	-----	V2.4	CPSITE
82S147	DIP	1009	V03		V07	-----	V02	351A064	V1.4	
$82 S 147$	PLCC	107C	--	-----	V18	089	--	-----	V2.4	CPSITE
$82 \mathrm{S181}$	PLCC	108A	--		V18	093	--	-----	V2.4	CPSITE
82S181/183	DIP	1016	V03	-----	V07	-.-. -	V02	-----	V1.4	-----
82S183	PLCC	108A	--	-----	--	-----	--	-	V2.5	CPSITE
82S185	DIP	1006	V03		V07	-----	V02	351A064	V1.4	-----
82S191	DIP	1021	V03		V07	-----	V02	-----	V1.4	-----
82S191	PLCC	108B	--	-	V18	093	--	-----	V2.4	CPSITE
82S23	DIP	1002	V03	-----	V07	-----	V02	351A064	V1.8	-----
82 S 23	PLCC	010702	--		V15	087	--	-----	V1.6	CPSITE
82 S 23	So	010802	--	-----	--	-----	--	-----	V1.4	CPSITE
82US123	DIP	0E02	V15	-----	V15	-----	--	-----	V2.1	-----
82US123	PLCC	0E6C	--	-----	V18	087	--	-----	V2.4	CPSITE
82US23	DIP	0E02	V15	-	V15	-----	--	-----	V2.1	-----
82US23	PLCC	0E6C	--	-----	V18	087	--	-----	V2.4	CPSITE

MOS MEMORIES

page
CMOS static RAM 59
CMOS EEPROM 137
64K-bit CMOS EPROM 183
128K-bit CMOS EPROM 221
256K-bit CMOS EPROM 231
516K-bit CMOS EPROM 261
1M-bit CMOS EPROM 271

CMOS STATIC RAM

page
FCB51C64/65 8192×8-bit latched static RAM 61
FCB61C65(L/LL) 8192×8-bit static RAM 63
FCB61C251 26144×1-bit static RAM 75
FCB61C252/253 65536×4-bit static RAM 79
FCB61C257(L/LL) 32768×8-bit static RAM 85
FCB61C1025(L/LL) 131072×8-bit static RAM 89
PCD5101 $256 \times$ 4-bit static RAM 93
PCD5114 1024×4-bit static RAM 101
PCF8570/70C/71 256×8-bit static RAM with I^{2} C-bus interface 109
PCF8583 256×8-bit static RAM with $I^{2} C$-bus interface 119

8192 X 8-BIT LATCHED STATIC RAM

GENERAL DESCRIPTION

The FCB51C64/65 are 65536 -bit latched static RAMs organized as 8192 words of 8 bits each. Both memory devices are available with TTL (/64) and CMOS (/65) I/O and in standard 600 mil DIL28 and 330 mil SO28 packages.
The devices can operate from a power supply between 2 and 6 V with an access time of between 70 and 150 ns , depending on the supply voltage.
The memories are latched, which means the address must be clocked into the address latch. For every address change a latch clock pulse must be applied to either $\overline{\mathrm{CE}}$, (active going negative) with CE2 high or, to CE2, (active going positive) with CE1 low. During the time preceding the active latch transition the memory is disabled.

Features

- Full CMOS 6 transistor memory cell
- Power supply 2 to 6 V
- Access times:
- Active power supply current:
- Standby current:

150 ns at $2 \mathrm{~V}, 70 \mathrm{~ns}$ at 4.5 V and 65 ns at 6 V
10 mA at $2 \mathrm{~V}, 40 \mathrm{~mA}$ at 4.5 V and 60 mA at 6 V
2 mA maximum for TTL input
$2 \mu \mathrm{~A}$ maximum for CMOS input

Fig. 1 Pinning diagram.

Fig. 2 Block diagram.

Philips Components

Data sheet			
status	Product specification		
date of issue	June 1990		

FEATURES

- Operating supply voltage $5 \mathrm{~V} \pm 10 \%$
- Inputs and outputs ESD protected
- Automatic power-down after a completed read access
- Access time: 55 ns and 70 ns
- Low current consumption: active $\quad 70 \mathrm{~mA}$ max. standby (TTL) 3 mA max. standby (CMOS) $\quad 100 \mu \mathrm{~A}$ max. (L-version) $1 \mu \mathrm{~A}$ max. (LL-version)
- Suitable for battery back-up operation: (FCB61C65L/LL only) data retention voltage 2 V min. data retention current $50 \mu \mathrm{~A}$ max. (L-version) data retention current $1 \mu \mathrm{~A}$ max. (LL-version)
- Latched data outputs giving stable data between consecutive accesses
- Easy memory expansion
- Common data I/O interface
- All inputs and outputs TTL and CMOS compatible
- All inputs have a Schmitt trigger switching action
- Three-state outputs
- Operating temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

FCB61C65(L/LL)

$8 \mathrm{~K} \times 8$ Fast CMOS low-power static RAM

GENERAL DESCRIPTION

The FCB61C65(L/LL) is a 65536-bit fast, low-power, static random access memory organized as 8192 words of 8 bits each.

The chip enable inputs $\overline{C E} 1$ and CE2 are available for memory expansion and to control the low-power/ standby mode.

The device operates from a 5 V power supply and has an access time of 55 ns and 70 ns .

The FCB61C65(L/LL) is ideally suited for memory applications where fast access time, low power and ease of use are required.

The FCB61C65(L/LL) is a CMOS device which uses a 6 transistor memory cell.

The IC is fabricated in a CMOS double-metal single-poly process using ion-implanted silicon gate technology.

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER		PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE	
FCB61C65 (L/LL)-XXP	28	DIL (600 mil)	plastic	SOT117	
FCB61C65 (L/LL)-XXT	28	SOXL (330 mil)	plastic	SOT213	

Philips Components

PHILIPS

Fig. 1 Block diagram.

8 K x 8 Fast CMOS low-power static RAM

TRUTH TABLE

CE1	CE2	$\overline{\mathbf{O E}}$	WE	MODE	IDD	I/O PIN	REF. CYCLE
H	X	X	X	not selected	ISB^{*}	HIGH Z	
X	L	X	X	not selected	ISB^{*}	HIGH Z	
L	H	L	H	read	$\mathrm{IDD}^{\text {/ }} \mathrm{IDP1}^{*}$	D OUT	read
L	H	H	L	write	IDD	DIN	write
L	H	L	L	write	IDD	DIN	write
L	H	H	H	ready-read	$\mathrm{I}_{\mathrm{DD}} / \mathrm{IDD1}^{*}$	HIGH Z	

*Including L/LL versions if input levels are CMOS.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
A12	2	address input
A7 to A0	3 to 10	address inputs
I/O 1 to I/O 3	11 to 13	data inputs/outputs
VSS	14	ground
I/O 4 to I/O 8	15 to 19	data inputs/outputs
$\overline{\text { CE1 }}$	20	chip enable 1
A10	21	address input
$\overline{\text { OE }}$	22	output enable
A11, A9, A8	23 to 25	address inputs
CE2	26	chip enable 2
$\overline{\text { WE }}$	27	write enable
VDD	28	+5 V supply

Fig. 2 Pinning diagram.

DECOUPLING ARRANGEMENTS

The FCB61C65(L/LL) is an address activated circuit. When an address change occurs, the operation is executed by an internal pulse generated from the Address Transition Detector (ATD). The current variation following an address or chip enable change may induce noise on the supply lines. This noise can be eliminated using a 100 nF capacitor with good high frequency characteristics as close as possible to the memory between V_{DD} and $\mathrm{V}_{\text {SS }}$.

LIMITING VALUES

Limiting values are in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {I }}$	voltage range on any pin with	DC inputs			
$V_{\text {I }}$	respect to $V_{S S}$		-0.5	+7.0	V
$T_{\text {amb }}$	operating ambient temperature		-1.5	+7.0	V
$T_{\text {bias }}$	temperature range with bias		0	+70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	storage temperature range		-10	+85	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	total power dissipation		-55	+125	${ }^{\circ} \mathrm{C}$

Note

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to operation under the conditions specified in the DC and timing characteristics. Exposure to higher than the rated voltages for extended periods of time could effect device reliability.

HANDLING

Input and outputs are protected against electro static discharge in normal handling, however, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices.

RECOMMENDED OPERATION CONDITIONS

$\mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	input voltage HIGH	2.2	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{IL}}$	input voltage LOW	-0.5^{*}	0.8	V

* $V_{\mathrm{IL}}=-1.5 \mathrm{~V}$ for a maximum pulse width of 50 ns .

DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; T_{\text {amb }}=0$ to $70^{\circ} \mathrm{C}$. Typical readings taken at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$. All voltages are referenced to $\mathrm{V}_{\text {SS }}(0 \mathrm{~V})$ unless otherwise specified. DC characteristics are valid after thermal equilibrium has been established.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL \& PARAMETER \& CONDITIONS \& MIN. \& TYP. \& MAX. \& UNIT

\hline lıI \& input leakage current \& $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$ \& -1 \& - \& 1 \& $\mu \mathrm{A}$

\hline ILO \& output leakage current \& $$
\begin{aligned}
& \overline{\mathrm{CE}} 1 \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{CE} 2=\mathrm{V}_{\mathrm{IL}} ; \\
& \mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}
\end{aligned}
$$ \& -1 \& - \& 1 \& $\mu \mathrm{A}$

\hline IDD

IDD \& \begin{tabular}{l}
average operating current

average operating current

 \&

cycle time $55 \mathrm{~ns} ; 100 \%$ duty factor; note 1

$$
\mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}
$$

cycle time $70 \mathrm{~ns} ; 100 \%$ duty factor; note 1

$$
\mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}
$$

\end{tabular} \& - \& \[

40
\]

$$
35
$$ \& \[

70
\]

\[
60

\] \& | mA |
| :--- |
| mA |

\hline IDD1 \& DC operating current \& $$
\begin{aligned}
& \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}} ; \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA} ; \mathrm{f}=0 \mathrm{~Hz} \\
& \overline{\mathrm{WE}}=\mathrm{CMOSH} ; \mathrm{V}_{\mathrm{I}}=\mathrm{CMOS} ; \\
& \text { note } 2
\end{aligned}
$$ \& - \& 3 \& 6 \& mA

\hline IDDL IDDLL \& FCB61C65L only FCB61C65LL only \& \& - \& $$
\begin{aligned}
& 2 \\
& 0.05
\end{aligned}
$$ \& \[

$$
\begin{gathered}
100 \\
1.0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
$$
\]

\hline ISB \& standby current \& | $\overline{\mathrm{CE}} 1=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{CE} 2=\mathrm{V}_{\mathrm{IL}}$ |
| :--- |
| $\overline{\mathrm{CE}} 1=\mathrm{CMOSH}$ and CE2 $=$ CMOS or CE2 $=\mathrm{CMOSL}$ | \& - \& \[

1.5
\] \& 3.0 \& mA

\hline ISBL ISBLL \& FCB61C65L only FCB61C65LL only \& \& - \& $$
\begin{aligned}
& 2 \\
& 0.05
\end{aligned}
$$ \& \[

$$
\begin{gathered}
100 \\
1.0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
$$
\]

\hline VOL \& output voltage LOW \& $\mathrm{IOL}=4 \mathrm{~mA}$ \& - \& - \& 0.4 \& V

\hline Vol \& output voltage LOW \& $\mathrm{IOL}^{\text {O }}=20 \mu \mathrm{~A}$ \& - \& - \& 0.2 \& V

\hline V_{OH} \& output voltage HIGH \& $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ \& 2.4 \& - \& - \& V

\hline V OH \& output voltage HIGH \& $\mathrm{IOH}=-20 \mu \mathrm{~A}$ \& $\mathrm{V}_{\mathrm{DD}}-0.2$ \& - \& - \& V

\hline
\end{tabular}

Notes to the DC characteristics

1. $\mathrm{I}_{\mathrm{DD}} \leq 50 \mathrm{~mA}$ at a cycle time of 100 ns and $\leq 45 \mathrm{~mA}$ at a cycle time of 120 ns .
2. $\mathrm{CMOS}=\mathrm{CMOSH}: \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \leq$ level $\leq \mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V}$ or

CMOSL: $-0.2 \mathrm{~V} \leq$ level $\leq+0.2 \mathrm{~V}$.

CAPACITANCES

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (parameters in this table are sampled and not 100% tested).

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
	input capacitance			
C_{1}	$\overline{\mathrm{CE} 1, \mathrm{CE} 2, \overline{W E}, \overline{\mathrm{OE}}}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	8	pF
C_{1}	all other inputs	$\mathrm{V}_{1}=0 \mathrm{~V}$	7	pF
$\mathrm{C}_{1 / 0}$	input/output capacitance	$\mathrm{V}_{1 / 0}=0 \mathrm{~V}$	8	pF

8 K x 8 Fast CMOS low-power static RAM

TIMING CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; inputs pulse levels $=0.4$ to 2.4 V ; input rise and fall times $=5 \mathrm{~ns}$; input and output timing reference levels $=1.5 \mathrm{~V}$ and output loading as in Figure 3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	55 TYPE		70 TYPE		UNIT
			MIN.	MAX.	MIN.	MAX.	
Read cycle							
t_{RC}	read cycle time		55	-	70	-	ns
$t_{\text {AA }}$	address access time		-	55	-	70	ns
$t_{\text {ACE }}$	chip enable access time		-	55	-	70	ns
toe	output enable access time		-	30	-	35	ns
$\mathrm{t}_{\text {CLZ }}$	chip enable to output LOW Z	note 6	5	-	5	-	ns
tolz	output enable to output LOW Z	note 6	5	-	5	-	ns
$\mathrm{t}_{\mathrm{CHZ}}$	chip disable to output HIGH Z	note 6	-	30	-	30	ns
$\mathrm{t}_{\mathrm{OHZ}}$	output disable to output HIGH Z	note 6	-	30	-	30	ns
t_{OH}	output hold time		10	-	10	-	ns
Write cycle							
twc	write cycle time		55	-	70	-	ns
$t_{\text {c }}$ W	chip enable to end of write	note 11	50	-	65	-	ns
$t_{\text {AW }}$	address valid to end of write		50	-	65	-	ns
$t_{\text {AS }}$	address set up time		0	-	0	-	ns
$t_{\text {WP }}$	write pulse width	note 9	30	-	35	-	ns
twr	write recovery time	note 10	0	-	0	-	ns
$t_{\text {WHz }}$	write enable to output HIGH Z	note 16	-	20	-	25	ns
tow	data to write time overlap		25	-	30	-	ns
t_{DH}	data hold from write time		5	-	5	-	ns
tow	end of write to output LOW Z	note 16	5	-	5	-	ns

Output load

Fig. 4 Read cycle timing.

WRITE CYCLE 2 - CHIP ENABLE CONTROLLED (see notes 9, 10 and 12)

Fig. 5 Write cycle timing.

8 K x 8 Fast CMOS low-power static RAM

Notes to the timing characteristics

Read cycle (see Fig.4)

1. $\overline{W E}$ is HIGH for read cycle.
2. Device is continuously selected, $\overline{\mathrm{CE}} 1$ is LOW and CE2 is HIGH.
3. Address is valid prior to or coincident with $\overline{\mathrm{CE}} 1$ LOW or CE2 HIGH transition.
4. When $\overline{\mathrm{CE}} 1$ is LOW and CE2 HIGH, the address inputs may not be floating.
5. $\overline{O E}$ is LOW.
6. $C_{L}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{CHz}}, \mathrm{t}_{\mathrm{L}} \mathrm{LZ}$, output transition measured at $\pm 200 \mathrm{mV}$ from preceding steady state. These parameters are sampled and not 100\% tested.
7. $t_{C L Z}$ and $t_{A C E}$ are measured from the last $\overline{C E} 1$ going LOW or CE2 going HIGH. $\mathrm{t}_{\mathrm{CHz}}$ is measured from the first of $\overline{\mathrm{CE}} 1$ going HIGH or CE2 going LOW.
8. If D OUT in two consecutive read cycles is the same, D OUT remains stable.

Write cycle (see Fig.5)
9. A write occurs during an overlap of LOW $\overline{C E} 1$, a HIGH CE2 and a LOW $\overline{W E}$.
10. tWR is measured from the earlier of CE2 going to LOW or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ going HIGH at the end of a write cycle.
11. If the $\overline{\mathrm{CE}} 1 / \mathrm{CE} 2$ transition occurs simultaneously to or after the $\overline{\mathrm{WE}} \mathrm{LOW}$ transition the outputs remain in a high impedance state.
12. $\overline{O E}$ is continuously LOW.
13. D OUT is in the same phase as the write data of this write cycle.
14. D OUT is the read data of the next address.
15. If $\overline{\mathrm{CE}} 1$ is LOW (CE2 is HIGH) and I/O pins are in the output state during this period then input data signals of opposite phase to the outputs must not be applied.
16. $C_{L}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{WHz}}$ and tow, measured at $\pm 200 \mathrm{mV}$ from steady state. These parameters are sampled and not 100% tested.

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

(FCB61C65L/LL only)
$\mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$; $\mathrm{I}_{\text {DRL/LL }}$ measurements are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
VDR	supply voltage for data retention	$\overline{\mathrm{CE}} 1=\mathrm{CMOSH} \text { or CE2 }=\mathrm{CMOSL}$ with other $V_{1}=C M O S$; note 1	2.0	-	5.5	V
IDRL IDRLL	supply current during data retention FCB61C65L only FCB61C65LL only	$\begin{aligned} & \mathrm{V}_{\mathrm{DR}}=3 \mathrm{~V} ; \\ & \mathrm{CE} 2=\mathrm{CMOSL} ; \text { other } \mathrm{V}_{1}=\mathrm{CMOS} \text { or } \\ & \mathrm{CE} 1=\mathrm{CMOSH} ; \text { other } \mathrm{V}_{1}=\mathrm{CMOS} \end{aligned}$	-	$\begin{aligned} & 2 \\ & 0.05 \end{aligned}$	$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Timing						
tCDR	chip disable to data retention time		0	-	-	ns
t_{R}	recovery time to fully active	note 2	$t_{R C}$	-	-	ns

Notes to the data retention characteristics

1. $\mathrm{CMOS}=\mathrm{CMOSH}: \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V} \leq$ level $\leq \mathrm{V}_{\mathrm{DR}}+0.2 \mathrm{~V}$ or

CMOSL: $-0.2 \mathrm{~V} \leq$ level $\leq+0.2 \mathrm{~V}$.
2. $t_{R C}=$ read cycle time.

Fig. 6 Data retention waveform ($\overline{\mathrm{CE}} 1$ controlled).

Fig. 7 Data retention waveform (CE2 controlled).

8 K x 8 Fast CMOS low-power static RAM

Fig. 9 28-lead mini-pack; plastic (SO28XL; SOT213); conforms to IEC121E and JEDEC MO-059 AD.

262144 X 1-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C251 is a 256 K-bit static RAM memory organized as $\mathbf{2 6 2} \mathbf{1 4 4}$ words of 1 bit each.
The FCB61C251 operates from a power supply of 5 V and is available with access times of 20,25,35 and 45 ns .

The inputs and outputs are TTL-level compatible; with a small DC load the outputs will generate CMOS compatible levels.

The FCB61C251 is suitable for use in very large and very fast computer memories. The FCB61C251 has some unique built-in test features. These features enable the user to check if the redundancy circuits on the chip have been used; to electrically check to vendor ID code; or to put the device in a very low power mode (${ }_{\text {SB }}<10 \mu \mathrm{~A}$). It is also possible to bypass the peripheral circuits on the chip to directly stress the memory matrix, for, for example, reliability testing.
The device is available in the standard 24 -pin 300 mil DIP and SOJ packages.

Features

- Operating supply voltage: 5 V
- Access times: $\quad 20,25,35$ and 45 ns
- Active power dissipation: 120 mA (maximum)
- Standby power: 10 mA (maximum)
- Five built-in test modes

Fig. 1 Pinning diagram.

Fig. 2 Block diagram.

TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	mode	VDD current	output	ref. cycle
H	X	not selected	ISB	HIGH Z	
L	H	read	IDD	D OUT	read cycle
L	L	write	IDD	HIGH Z	write cycle

DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $70{ }^{\circ} \mathrm{C}$

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		V_{DD}	4.5	5.0	5.5	V
Input voltage HIGH		V_{IH}	2.2	3.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input voltage LOW*		V_{IL}	-0.3	-	0.8	V
Average operating current	min. cycle,					
	$\mathrm{I}_{\mathrm{I}}=0 \mathrm{~mA}$	IDD	-	50	120	mA
Standby current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	ISB	-	5	10	mA
Output voltage LOW	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0.4	V
Output voltage LOW	$\mathrm{IOL}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	$\mathrm{VOL}_{\mathrm{OL}}$	-	-	0.2	V
Output voltage HIGH	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{VOH}_{\mathrm{OH}}$	2.4	-	-	V
Output voltage HIGH	$\mathrm{IOH}=-20 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}-0.2$	-	-	V

CAPACITANCE

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

parameter	conditions	symbol	typ.	max.	unit
Input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{OV}$	C_{I}	4	6	pF
Input/output capacitance	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	5	8	pF

* $\mathrm{V}_{\mathrm{IL}}=-3.5 \mathrm{~V}$ for maximum pulse width of 20 ns .

TIMING CHARACTERISTICS
$V_{D D}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; input pulse levels $=0$ to 3 V ; input rise and fall times $=5 \mathrm{~ns}$; input and output timing reference levels $=1.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; unless otherwise specified.

parameter	symbol	-20		-25		-35		-45		unit
		min.	max.	min.	max.	min.	max.	min.	max.	
Read cycle Read cycle time Address access time Chip enable access time										
	${ }^{\text {t }} \mathrm{RC}$	20	-	25	-	35	-	45	-	ns
	${ }^{t} A A$	-	20	-	25	-	35	-	45	ns
	${ }^{\text {t }}$ ACE	-	20	-	25	-	35	-	45	ns
Chip enable to output LOW Z*	${ }^{\text {t CLZ }}$	5	-	5	-	5	-	5	-	ns
Chip enable to output HIGH Z*	${ }^{\text {t }} \mathrm{CHZ}$	-	10	-	15	-	15	-	15	ns
Output hold time*	${ }^{\text {toH }}$	5	-	5	-	5	-	5	-	ns
Write cycle Write cycle time Chip enable to end of write										
	twC	20	-	25	-	35	-	45	-	ns
	${ }^{\text {t }} \mathrm{CW}$	17	-	20	-	30	-	40	-	ns
Address valid to end of write	${ }^{\text {t }}$ AW	17	-	20	-	30	-	40	-	ns
Address set-up time	${ }^{\text {t }}$ AS	0	-	0	-	0	-	0	-	ns
Write pulse width	twp	15	-	15	-	25	-	35	-	ns
Write recovery time	tWR	0	-	0	-	0	-	0	-	ns
Write enable to output HIGH Z*	twhz	-	10	-	15	-	15	-	15	ns
Data to write time overlap	tDW	10	-	15	-	20	-	25	-	ns
Data hold from write time	${ }^{\text {t }}$ DH	0	-	0	-	0	-	0	-	ns
End of write to output LOW Z*	tow	5	-	5	-	5	-	5	-	ns

[^1]
65536 X 4-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C252/253 are 256 K-bit static RAM memories organized as 65536 words of 4 bits each.
The FCB61C252/253 operate from a power supply of 5 V and are available with access times of 20, 25,35 and 45 ns.

The inputs and outputs are TTL-level compatible; with a small DC load the outputs will generate CMOS compatible levels.
The FCB61C252/253 are suitable for use in very large and very fast computer memories. The FCB61C252/253 have some unique built-in test features. These features enable the user to check if the redundancy circuits on the chip have been used; or to electrically check the vendor ID code. It is also possible to bypass the peripheral circuits on the chip to directly stress the memory matrix, for, for example, reliability testing.

The FCB61C253 has an additional output enable pin to provide extra control for the output buffers and is available in the standard 28 -pin 300 mil DIP and SOJ packages. The FCB61C252 is available in the standard 24 -pin 300 mil DIP and SOJ packages.

Features

- Operating supply voltage: 5 V
- Access times: $\quad 20,25,35$ and 45 ns
- Active power dissipation: 120 mA (maximum)
- Standby power: 10 mA (maximum)
- Four built-in test modes

$\overline{\mathrm{OE}}$ input for FCB61C253 only.

Fig. 1 Block diagram.

Fig.2(a) Pinning diagram (FCB61C252).

Fig.2(b) Pinning diagram (FCB61C253).

TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { WE }}$	mode	VDD current	output	ref. cycle
H	X	not selected	ISB	HIGH Z	
L	H	read	IDD	D OUT	read cycle
L	L	write	IDD	HIGH Z	write cycle

$H=H I G H$ voltage level
L = LOW voltage level
X = don't care
$Z=$ high impedance OFF state

CAPACITANCE

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (parameters in this table are sampled not 100% tested)

parameter	conditions	symbol	typ.	max.	unit
Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	C_{I}	4	6	pF
Input/output capacitance	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	5	8	pF

DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=0$ to $70{ }^{\circ} \mathrm{C}$

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		VDD	4.5	5.0	5.5	V
Input voltage HIGH		$\mathrm{V}_{\text {IH }}$	2.2	3.5	$V_{D D}+0.5$	V
Input voltage LOW*		VIL	-0.3	-	0.8	V
Average operating current	min. cycle, $I_{1 / 0}=0 \mathrm{~mA}$	IDD	-	50	120	mA
Standby current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$	ISB	-	5	10	mA
Output voltage LOW	$\mathrm{IOL}^{\prime}=8 \mathrm{~mA}$	VOL	-	-	0.4	V
Output voltage LOW	$\mathrm{I}^{\prime} \mathrm{LL}=20 \mu \mathrm{~A}$	VOL	-	-	0.2	V
Output voltage HIGH	$\mathrm{I}^{\mathrm{OH}}=-4 \mathrm{~mA}$	VOH	2.4	-	-	V
Output voltage HIGH	$\mathrm{IOH}^{\prime}=-20 \mu \mathrm{~A}$	VOH	VDD-0.2	-	-	V

* $\mathrm{V}_{\mathrm{IL}}=-3.5 \mathrm{~V}$ for maximum pulse width of 20 ns .

TIMING CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; input pulse levels $=0$ to 3 V ; input rise and fall times $=5 \mathrm{~ns}$; input and output timing reference levels $=1.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; unless otherwise specified.
DEVELOPMENT DATA

parameter	symbol	-20-		-25		-35		-45		unit
		min.	max.	min.	max.	min.	max.	min.	max.	
Read cycle										
Read cycle time	t_{RC}	20	-	25	-	35	-	45	-	ns
Address access time	${ }^{t} A A$	-	20	-	25	-	35	-	45	ns
Chip enable access time	${ }^{\text {t }}$ ACE	-	20	-	25	-	35	-	45	ns
Chip enable to output LOW Z*	${ }^{\text {t CLI }}$	5	-	5	-	5	-	5	-	ns
Chip enable to output HIGH Z*	${ }^{\text {t }} \mathrm{CHZ}$	-	10	-	15	-	15	-	15	ns
Output hold time*	${ }^{\text {toH }}$	5	-	5	-	5	-	5	-	ns
Output enable access time**	${ }^{\text {toE }}$	-	10	-	15	-	20	-	30	ns
Output enable to output LOW Z**	tolz	0	-	0	-	0	-	0	-	ns
Write cycle										
Write cycle time	${ }^{\text {tw }}$ W	20	-	25	-	35	-	45	-	ns
Chip enable to end of write	${ }^{\text {t }}$ W	17	-	20	-	30	-	40	-	ns
Address valid to end of write	${ }^{\text {t }}$ AW	17	-	20	-	30	-	40	-	ns
Address set-up time	${ }^{t}$ AS	0	-	0	-	0	-	0	-	ns
Write pulse width	twP	15	-	15	-	25	-	35	-	ns
Write recovery time	tWR	0	-	0	-	0	-	0	-	ns
Write enable to output HIGH Z*	twhz	-	10	-	15	-	15	-	15	ns
Data to write time overlap	${ }^{\text {t }}$ W	10	-	15	-	20	-	25	-	ns
Data hold from write time	${ }^{\text {t }}$ DH	0	-	0	-	0	-	0	-	ns
End of write to output LOW Z*	tow	5	-	5	-	5	-	5	-	ns

* $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CLZ}}, \mathrm{T}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{\mathrm{WHZ}}$ and tow. Measured at 200 mV from a steady state.
** Only applicable for FCB61C253.
|

32768 X 8-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C257 (L/LL) is a 256 K-bit static random access memory organized as 32768 of 8 bits each.
The FCB61C257(L/LL) operates from a power supply of 5 V and is available with access times of 55 , 70 and 100 ns . The inputs and outputs are TTL-level compatible; without a DC load, the outputs will generate CMOS compatible levels.
The device has low active and very low standby power and is suitable for use in battery back-up applications.
The FCB61C257 (L/LL) is available in the standard 28-pin mil DIL and SOG packages.

Features

- Operating supply voltage: 5 V
- Access times: 55,70 and 100 ns maximum
- Active power dissipation: 80 mA maximum
- Standby power: $\quad 5 \mu \mathrm{~A}$ maximum

Fig. 1 Pinning diagram.

TRUTH TABLE

$\overline{C E}$	$\overline{O E}$	$\overline{\text { WE }}$	mode	VDD current	I/O pin	ref. cycle
H	X	X	not selected	ISB	HIGH Z	
L	L	H	read	IDD	D OUT	read (1) - (2)
L	H	L	write	IDD	D IN	write (1)
L	L	L	write	IDD	D IN	write (2)
L	H	H	ready-read	IDD	HIGH Z	

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE
$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage for data retention	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{CMOSL}, \\ & \text { other } \mathrm{V}_{1}=\mathrm{CMOS} \end{aligned}$	V ${ }_{\text {DR }}$	2.0	-	5.5	V
Supply current during data retention	$\begin{aligned} & V_{D R}=3 V \\ & C E=C M O S L \\ & \text { other } V_{1}=C M O S \end{aligned}$					
FCB61C257L only		IDRL	-	-	50	$\mu \mathrm{A}$
FCB61C257LL only		IDRLL	-	-	5	$\mu \mathrm{A}$
Timing						
Chip select to data retention time		${ }^{\text {t }}$ CDR	0	-	-	ns
Recovery time to fully active		${ }^{t} \mathrm{R}$	$\mathrm{t}_{\mathrm{RC}}{ }^{*}$	-	-	ns

[^2]
RECOMMENDED DC OPERATING CONDITIONS

$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Supply voltage	V_{DD}	4.5	5.0	5.5	V
Input voltage HIGH	V_{IH}	2.2	3.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input voltage LOW	V_{IL}	-0.5^{*}	-	0.8	V

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$. (Typical readings taken at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$). All voltages are with reference to $\mathrm{V}_{\mathrm{SS}}(\mathrm{O} \mathrm{V}$) unless otherwise specified; L / LL current measurements are valid after thermal equilibrium has been established.

parameter	conditions	symbol	min.	typ.	max.	unit
Input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{S S}$ to V_{DD}	ILI	-1.0	-	1.0	$\mu \mathrm{A}$
Output leakage current	$\overline{C E}$ or $\overline{O E}=V_{I H}$; $\mathrm{V}_{1 / \mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ to V_{D}		-1.0	-	1.0	$\mu \mathrm{A}$
Standby current	$\overline{\mathrm{CE}} \geqslant \mathrm{V}_{\mathrm{IH}}$	ISB	-	1.5	3.0	mA
FCB61C257L only	all $\mathrm{V}_{1}=$ CMOS $^{* *}$	ISBL	-	10	100	$\mu \mathrm{A}$
FCB61C257LL only	all $\mathrm{V}_{1}=$ CMOS $^{* *}$	ISBLL	-	0.1	5	$\mu \mathrm{A}$
DC read current	$\overline{W E}=V_{I H} ; 1 / O=0 \mathrm{~mA}$	IDD1	-	3	10	mA
FCB61C257L only	all $\mathrm{V}_{1}=\mathrm{CMOS}^{*}$	IDDL	-	10	100	$\mu \mathrm{A}$
FCB61C257LL only	all $\mathrm{V}_{1}=$ CMOS *	${ }^{\text {I DDLL }}$	-	0.1	5	$\mu \mathrm{A}$
Average operating current	minimum cycle time; $\mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}$	IDD	-	50	80	mA
Output voltage LOW	$\mathrm{I}^{\mathrm{OL}}=4 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
Output voltage LOW	$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OL }}$	-	-	0.2	V
Output voltage HIGH	${ }^{1} \mathrm{OH}=-2 \mathrm{~mA}$	V_{OH}	2.4	-	-	V
Output voltage HIGH	$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$	V_{OH}	$V_{D D}-0.2$	-	-	V

* $\mathrm{V}_{\mathrm{IL}}=-1.5 \mathrm{~V}$ for a maximum pulse width of 50 ns .
** CMOS = $\mathrm{CMOSH}: \mathrm{V}_{\mathrm{DD}}-0.2 \leqslant$ level $\leqslant \mathrm{V}_{\mathrm{DD}}+0.2$ or $\mathrm{CMOSL}:-0.2 \leqslant$ level $\leqslant 0.2 \mathrm{~V}$.

TIMING CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ}{ }^{\circ}$; input levels $=0$ to 3 V ; input rise and fall times $=5 \mathrm{~ns}$; input and output timing reference levels $=1.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; unless otherwise specified.

parameter	symbol	-55		-70		-100		unit
		min.	max.	min.	max.	min.	max.	
Read cycle Read cycle time Address access time Chip enable access time Output enable access time								
	${ }^{\text {tra }}$	55	-	70	-	100	-	ns
	${ }^{\text {t }}$ AA	-	55	-	70	-	100	ns
	${ }^{\text {t }}$ ACE	-	55	-	70	-	100	ns
	${ }^{\text {toE }}$	-	30	-	35	-	50	ns
Chip enable to output LOW Z	${ }^{\text {t CLZ }}$	5	-	5	-	5	-	ns
Output enable to output LOW Z	${ }^{\text {tolz }}$	5	-	5	-	5	-	ns
Chip disable to output HIGH Z	${ }^{\text {t }} \mathrm{CHZ}$	-	20	-	30	-	35	ns
Output disable to output HIGH Z	${ }^{\text {tohz }}$	-	30	-	30	-	35	ns
Output hold time	${ }^{\text {toH }}$	10	-	10	-	10	-	ns
Write cycle Write cycle time Chip enable to end of write								
	twc	55	-	70	-	100	-	ns
	${ }^{\text {t }} \mathrm{CW}$	50	-	65	-	80	-	ns
Address valid to end of write	${ }^{\text {t }}$ AW	50	-	65	-	80	-	ns
Address set-up time	${ }^{t}$ AS	0	-	0	-	0	-	ns
Write pulse width	twF	45	-	55	-	70	-	ns
Write recovery time	tWR	0	-	0	-	0	-	ns
Write enable to output HIGH Z	tWHZ	-	20	-	25	-	30	ns
Data to write time overlap	${ }^{\text {t }}$ W	25	-	30	-	40	-	ns
Data hold from write time	${ }^{\text {t }}$ H	5	-	5	-	5	-	ns
End of write to output LOW Z	tow	5	-	5	-	5	-	ns

131072×8-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C1025(L/LL) is a 1 M-bit static RAM memory organized as 131072 words of 8 bits each.
The FCB61C1025(L/LL) operates from a power supply of 5 V and is available with access times of 35, 45 , and 55 ns . The inputs and outputs are TTL-level compatible; without a DC load, the outputs will generate CMOS compatible levels.
The device has low active and very low standby power and is suitable for use in battery back-up applications.
The FCB61C1025(L/LL) is available in the standard 32-pin mil DIL and SOG packages.

Features

- Operating supply voltage: 5 V
- Access times: $\quad 35,45$, and 55 ns maximum
- Active power dissipation: 60 mA maximum
- Standby power:
$2 \mu \mathrm{~A}$ maximum (FCB61C1025LL only)

Fig. 1 Pinning diagram.

TRUTH TABLE

CE2	$\overline{\text { CE1 }}$	$\overline{O E}$	$\overline{W E}$	mode	VDD current	I/O pin	ref. cycle
L	X	X	X	not selected	ISB	Z	
X	H	X	X	not selected	ISB	Z	
H	L	L	H	read	IDD	D OUT	read (1) - (3)
H	L	H	L	write	IDD	D IN	write (1)
H	L	L	L	write	IDD	DIN	write (2)
H	L	H	H	ready-read	IDD	Z	

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE
$\mathrm{T}_{\mathrm{amb}}=0$ to $70{ }^{\circ} \mathrm{C}$

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage for data retention	$\begin{aligned} & \text { CE2 = CMOSL, } \\ & \text { other } V_{1}=\text { CMOS } \end{aligned}$	VDR	2.0	-	5.5	V
Supply current during data retention	$\begin{aligned} & V_{D R}=3 \mathrm{~V} ; \\ & \text { CE2 }=C M O S L \\ & \text { other } V_{1}=C M O S \end{aligned}$					
$\begin{aligned} & \text { FCB61C1025L } \\ & \text { FCB61C1025LL } \end{aligned}$		IDRL IDRLL	-		$\begin{aligned} & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Timing						
Chip select to data retention time		${ }^{\text {t }}$ CDR	0	-	-	ns
Recovery time to fully active		${ }^{\text {t }}$ R	$\mathrm{t}_{\mathrm{RC}}{ }^{*}$	-	-	ns

[^3]
RECOMMENDED DC OPERATING CONDITIONS

$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Supply voltage	V_{DD}	4.5	5.0	5.5	V
Input voltage HIGH	V_{IH}	2.2	3.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input voltage LOW	V_{IL}	-0.3^{*}	-	0.8	V

DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$. (Typical readings taken at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$). All voltages are with reference to $\mathrm{V}_{\text {SS }}(\mathrm{O} \mathrm{V}$) unless otherwise specified; L/LL current measurements are valid after thermal equilibrium has been established.

parameter	conditions	symbol	min.	typ.	max.	unit
Input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$	${ }^{\prime} \mathrm{LI}$	-1.0	-	1.0	$\mu \mathrm{A}$
Output leakage current	$\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE} 2=\mathrm{V}_{\mathrm{IL}}$; $\mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ to V_{DD}	ILo	-1.0	-	1.0	$\mu \mathrm{A}$
Standby current	$\mathrm{CE} 2 \leqslant \mathrm{~V}_{\text {IL }}$ or $\overline{\mathrm{CE1}} \geqslant \mathrm{~V}_{\text {IH }}$	ISB	-	1.5	3.0	mA
only FCB61C1025LL	all $\mathrm{V}_{1}=\mathrm{CMOS}^{*}$	ISBL	-	10	100	$\mu \mathrm{A}$
only	all $\mathrm{V}_{1}=$ CMOS *	ISBLL	-	0.1	2.0	$\mu \mathrm{A}$
DC read current FCB61C1025L	$\overline{W E}=V_{I H} ; 1 / O=0 \mathrm{~mA}$	'DD1	-	4	10	mA
only	all $\mathrm{V}_{1}=$ CMOS ${ }^{*}$	'DDL	-	10	100	$\mu \mathrm{A}$
FCB61C1025LL only	all $\mathrm{V}_{1}=\mathrm{CMOS}^{*}$	'DDLL	-	0.1	2.0	$\mu \mathrm{A}$
Average operating current	minimum cycle time; $I_{1 / O}=0 \mathrm{~mA}$	IDD	-	55	80	mA
Output voltage LOW	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
Output voltage LOW	$\mathrm{I}^{\mathrm{OL}}=20 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OL }}$	-	-	0.2	v
Output voltage HIGH	$1 \mathrm{OH}=-2 \mathrm{~mA}$	V_{OH}	2.4	-	-	V
Output voltage HIGH	$\mathrm{IOH}^{\prime}=-20 \mu \mathrm{~A}$	V_{OH}	$\mathrm{V}_{\text {DD }} 0.2$	-	-	V

* CMOS = CMOSH: $\mathrm{V}_{\mathrm{DD}}-0.2 \leqslant$ level $\leqslant \mathrm{V}_{\mathrm{DD}}+0.2$ or CMOSL: $-0.2 \leqslant$ level $\leqslant 0.2 \mathrm{~V}$.
* $\mathrm{V}_{\mathrm{IL}}=-1.5 \mathrm{~V}$ with a maximum pulse width duration of 50 ns .

TIMING CHARACTERISTICS
$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; input pulse levels $=0$ to 3 V ; input rise and fall times $=5 \mathrm{~ns}$; input and output timing reference levels $=1.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; unless otherwise specified.

parameter	symbol	-35		-45		-55		unit
		min.	max.	min.	max.	min.	max.	
Read cycle								
Read cycle time	${ }^{t} \mathrm{RC}$	35	-	45	-	55	-	ns
Address access time	${ }^{t} A A$	-	35	-	45	-	55	ns
Chip enable access time	${ }^{\text {t }}$ ACE	-	35	-	45	-	55	ns
Output enable access time	toe	-	20	-	25	-	30	ns
Chip enable to output LOW Z	${ }^{\text {t C L }}$	10	-	10	-	10	-	ns
Output enable to output LOW Z	tolz	5	-	5	-	5	-	ns
Chip disable to output HIGH Z	tchz	-	15	-	20	-	25	ns
Output disable to output HIGH Z	${ }^{\text {tohz }}$	-	15	-	20	-	25	ns
Output hold time	${ }^{\text {toH }}$	5	-	5	-	5	-	ns
Write cycle								
Write cycle time	twc	35	-	45	-	55	-	ns
Chip enable to end of write	${ }^{\text {t }}$ W	30	-	40	-	50	-	ns
Address valid to end of write	${ }^{\text {t }}$ WW	30	-	40	-	50	-	ns
Address set-up time	${ }^{t}$ AS	0	-	0	-	0	-	ns
Write pulse width	tWP	25	-	35	-	45	-	ns
Write recovery time	tWR	0	-	0	-	0	-	ns
Write enable to output HIGH Z	tWHZ	-	15	-	20	-	25	ns
Data to write time overlap	tDW	20	-	25	-	25	-	ns
Data hold from write time	${ }^{\text {t }}$ H	0	-	0	-	0	-	ns
End of write to output LOW Z	tow	5	-	5	-	5	-	ns

256×4-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD5101 is a very low-power 1024-bit static CMOS random access memory, organized as 256 words by 4 bits. It is suitable for low power and high speed applications where battery standby power is required to ensure non-volatility of data. All inputs and outputs are fully TTL compatible and pinning is compatible with 2101-type NMOS static RAMs and 5101 -type CMOS static RAMs.
There are two chip enable inputs, $\overline{\mathrm{CE1}}$ and CE2, selection being made when $\overline{\mathrm{CE1}}$ is LOW and CE2 is HIGH. The memory has an output disable function, OD, which allows the inputs/outputs to be used separately, or to be tied together for use in common data I/O systems.

Features

- Operating supply voltage range
- Low data retention voltage
- Low power consumption in both operating and standby modes
- Access time 150 ns at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; 400 \mathrm{~ns}$ at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$
- Three-state outputs
- All inputs and outputs directly TTL compatible
- Choice of two package types

Fig. 1 Block diagram: pin numbers in parentheses are for PCD5101T; other pin numbers are applicable to PCD5101P.

PACKAGE OUTLINES

PCD5101P: 22-lead DIL; plastic (SOT116).
PCD5101T: 24-lead mini-pack; plastic (SO24; SOT137A).

PINNING

Fig. 2 Pinning diagram for PCD5101P.

Fig. 3 Pinning diagram for PCD5101T.

OPERATING MODES

Table 1 Mode selection

$\overline{\text { CE1 }}$	CE2	R/ \bar{W}	OD	mode of operation	output state
H	X	X	X	standby	high impedance
X	L	X	X	standby	high impedance
L	H	L	H	write	high impedance
L	H	L	L	write	equal to input data
L	H	H	L	read	data valid
L	H	H	H	read	high impedance

Separate input/output: write cycle $O D=X$; read cycle $O D=L$.
Common input/output: write cycle $O D=H$; read cycle $O D=L$.
$H=$ HIGH voltage level
L = LOW voltage level
$\mathrm{X}=$ don't care

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range Input voltage range (any pin)
Operating temperature range
Storage temperature range
$V_{D D}$
$-0,3$ to $8,0 \vee$
V_{1}
$T_{\text {amb }}$
$\mathrm{T}_{\text {stg }}$
$\mathrm{V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
-25 to $+70{ }^{\circ} \mathrm{C}$
-55 to $+125{ }^{\circ} \mathrm{C}$
D.C. CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
$V_{D D}=5 \pm 0,5 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	VDD	4,5	5,0	5,5	V
Operating supply current $\text { at } V_{1}=V_{D D} \text { or } V_{S S} ; f=1 \mathrm{MHz} ;$ outputs open	IDD	-	10	17	mA
at $\mathrm{V}_{\mathrm{I}}=0,8$ or $2,0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$; outputs open	IDD	-	10	17	mA
at $\mathrm{V}_{1}=0,8$ or $2,0 \mathrm{~V} ; \mathrm{f}=5 \mathrm{MHz}$; outputs open	IDD	-	12	20	mA
Standby supply current at CE2 $=$ V SS	${ }^{\text {ISB }}$	-	0,02	5,0	$\mu \mathrm{A}$
Input leakage current at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ to V_{DD}	IILI	-	-	0,1	$\mu \mathrm{A}$
Input voltage LOW	$V_{\text {IL }}$	-0,3	-	+0,8	\checkmark
Input voltage HIGH	$V_{\text {IH }}$	2,0	-	$V_{D D}+0,3$	V
Output leakage current at $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ to V_{DD}; OD = HIGH or chip disabled	IIOL	-	-	0,2	$\mu \mathrm{A}$
Output voltage LOW at $\mathrm{I}_{\mathrm{OL}}=4,0 \mathrm{~mA}$	V_{OL}	-	-	0,4	V
Output voltage HIGH at $-\mathrm{I}^{\mathrm{OH}}=2,0 \mathrm{~mA}$	V_{OH}	2,4	-	-	V

D.C. CHARACTERISTICS ($V_{D D}=3 \mathrm{~V}$)
$V_{D D}=3 \pm 0,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	V ${ }_{\text {DD }}$	2,5	3,0	3,5	V
Operating supply current at $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS} ;} \mathrm{f}=1 \mathrm{MHz}$; outputs open	IDD	-	5	8	mA
at $\mathrm{V}_{1}=0,4$ or $1,6 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$; outputs open	IDD	-	5	8	mA
Standby supply current at CE2 $=\mathrm{V}_{\text {SS }}$	${ }^{\text {ISB }}$	-	0,02	5,0	$\mu \mathrm{A}$
Input leakage current at $V_{1}=V_{S S}$ to $V_{D D}$	IILI	-	-	0,1	$\mu \mathrm{A}$
Input voltage LOW	$V_{\text {IL }}$	-0,3	-	+0,4	V
Input voltage HIGH	$V_{\text {IH }}$	1,6	-	$V_{D D}+0,3$	V
Output leakage current at $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ to V_{DD}; OD = HIGH or chip disabled	\|loll	-	-	0,2	$\mu \mathrm{A}$
Output voltage LOW at $\mathrm{IOL}^{\prime}=1,0 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,3	V
Output voltage HIGH at $-\mathrm{I}_{\mathrm{OH}}=1,0 \mathrm{~mA}$	V_{OH}	1,7	-	-	V

A.C. TEST CONDITIONS ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)

Input pulse levels	$0,8 \mathrm{~V}$ to $2,0 \mathrm{~V}$
Input rise and fall times	5 ns
Input timing reference levels	$1,5 \mathrm{~V}$
Output timing levels	$1,5 \mathrm{~V}$
Output timing levels for high/low impedance	$1,2 \mathrm{~V}$ and $2,8 \mathrm{~V}$

Output load (2 TTL inputs and load capacitance C_{L})

Fig. 4 Test load.
A.C. CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
$V_{D D}=5 \pm 0,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; loads as per Fig. 4 with $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	${ }^{\text {tr }}$ C	150	-	-	ns
Address access time	${ }^{t} A A$	-	-	150	ns
Chip enable $\overline{\mathrm{CE1}}$ to output	${ }^{\text {t }} \mathrm{CO} 1$	-	-	150	ns
Chip enable CE2 to output	${ }^{\text {t }} \mathrm{CO} 2$	-	-	150	ns
Output disable OD to output	${ }^{\text {tod }}$	-	-	70	ns
Data output to high impedance state at $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	${ }^{\text {t }}$ DF	10	-	70	ns
Previously read data valid with respect to address change	${ }^{\text {toh1 }}$	10	-	-	ns
Previously read data valid with respect to chip enable	${ }^{\text {toh2 }}$	10	-	-	ns
Write cycle					
Write cycle time	twc	150	-	-	ns
Write delay time	${ }^{\text {t }}$ AW	0	-	-	ns
Chip enable $\overline{\mathrm{CE1}}$ to write	${ }^{\text {t }} \mathrm{CW} 1$	120	-	-	ns
Chip enable CE2 to write	${ }^{\text {t }} \mathrm{CW} 2$	120	-	-	ns
Data set-up time	tDW	70	-	-	ns
Data hold time	${ }^{\text {t }}$ DH	0	-	-	ns
Write pulse duration	twp	70	-	-	ns
Write recovery time	tWR	0	-	-	ns
Output disable OD set-up time	${ }^{t}$ DS	70	-	-	ns

A.C. TEST CONDITIONS ($V_{D D}=3 \mathrm{~V}$)

Input pulse levels	$0,4 \mathrm{~V}$ to $1,6 \mathrm{~V}$
Input rise and fall times	5 ns
Input timing reference levels	$1,0 \mathrm{~V}$
Output timing levels	$1,0 \mathrm{~V}$
Output timing levels for high/low \quad impedance $0,7 \mathrm{~V}$ and $1,7 \mathrm{~V}$ Output load Fig. 5.	

WAVEFORMS

Fig. 6 Read cycle timing; R/W $=$ HIGH.

Fig. 7 Write cycle timing.

LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

$\mathrm{CE} 2 \leqslant 0,2 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$.

parameter	symbol	\min.	typ.	max.	unit
Supply voltage for data retention	V_{DR}	1,0	-	5,5	V
Data retention current at $\mathrm{V}_{\mathrm{DD}}=1,5 \mathrm{~V}$	IDR	-	0,02	2,0	$\mu \mathrm{~A}$
Chip deselect to data retention time	$\mathrm{t} C D R$	0	-	-	ns
Operation recovery time	t_{R}	0	-	-	ns

Fig. 8 Low supply voltage data retention characteristics.

1024×4-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD5114 is a low-power, high-speed 4096-bit static CMOS RAM, organized as 1024 words of 4 bits each. The IC is suitable for low power and high speed applications, for battery operation and where battery backup is required. Inputs R/W and $\overline{C E}$ control the read/write operation and standby mode respectively. The PCD5114 is pin compatible with the SBB2114 types.

Features

- Operating supply voltage
- Low data retention voltage
- Low standby current
- Cycle time = access time
- Static operation requiring no clock or timing strobe
- Low power consumption
- 3-state common data input/output interface
- All inputs and outputs directly TTL compatible
- Pin compatible with SBB2114 variants
- 18-lead DIL package
- 20-lead SO package

2,5 V to $5,5 \mathrm{~V}$
$\min .1,0 \mathrm{~V}$
max. $5 \mu \mathrm{~A}$
max. 200 ns

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCD5114P: 18-lead DIL; plastic (SOT102G).
PCD5114T: 20-lead mini-pack; plastic (SO20; SOT163A).

Fig. 2 Pinning diagram: PCD5114D; PCD5114P.

A_{0} to A_{3}	column address inputs
A_{4} to $A 9$	row address inputs
$\overline{C E}$	chip enable input
R / \bar{W}	read/write input

Fig. 3 Pinning diagram: PCD5114T.
$\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{4}$ data input/output
VSS negative supply (ground)
VDD positive supply (+5V)

Table 1 Mode selection

$\overline{C E}$	R / \bar{W}	mode	output	power
H	H	not selected	high impedance	standby
H	L	not selected	high impedance	standby
L	H	read	active	active
L	L	write	high impedance	active

$H=$ HIGH logic level (the most positive voltage)
$L=$ LOW logic level (the most negative voltage)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range
Input voltage range (any pin)
Storage temperature range
Operating ambient temperature range

$V_{D D}$	$-0,3$ to +8 V
$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0,3$ to $\mathrm{V}_{\mathrm{DD}}+0,3 \mathrm{~V}$
$\mathrm{~T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to $+70^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

D.C. CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 0,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified

A.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; measured in Fig. 4, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	${ }^{\text {t }} \mathrm{C}$	200	-	-	ns
Address access time	${ }^{t} A A$	-	-	200	ns
Chip select access time	${ }^{t}{ }^{\text {AC }}$	-	-	200	ns
Output hold from address change	toha	20	-	-	ns
Output hold from chip select	tohc	20	-	-	ns
Output to low impedance from chip selection at $C_{L}=5 \mathrm{pF}$	${ }^{\text {t CLZ }}$	20	-	-	ns
Output to high impedance from chip deselection at $C_{L}=5 \mathrm{pF}$	${ }^{\text {t }} \mathrm{CHZ}$	-	-	80	ns
Write cycle					
Write cycle time	${ }^{\text {tw }}$ W	200	-	-	ns
Chip selection to end of write	${ }^{\text {t }}$ CW	120	-	-	ns
Address set-up time	${ }^{t}$ AS	0	-	-	ns
Write pulse duration	tWP	140	-	-	ns
Write recovery time	tWR	0	-	-	ns
Data set-up time	${ }^{t} \mathrm{DS}$	80	-	-	ns
Data hold time	${ }^{\text {t }}$ D ${ }^{\text {d }}$	0	-	-	ns
Output to high impedance from write enabled at $C_{L}=5 \mathrm{pF}$	twZ	-	-	60	ns
Output active from end of write at $C_{L}=5 \mathrm{pF}$	tRZ	20	-	-	ns

A.C. TEST CONDITIONS (see Fig. 4)

Input pulse levels
Input rise and fall times
Input timing reference levels
Output timing levels
Output timing levels for high/low impedance
Output load

Fig. 4 Load for a.c. test conditions
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0,5 \mathrm{~V}$).

A.C. CHARACTERISTICS

$V_{D D}=3 \mathrm{~V} \pm 0,5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; measured in Fig. $5, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	trc	500	-	-	ns
Address access time	${ }^{\text {t }}$ A A	-	-	500	ns
Chip select access time	${ }^{\text {t }} \mathrm{AC}$	-	-	500	ns
Output hold from address change	toha	20	-	-	ns
Output hold from chip select	tohc	20	-	-	ns
Output to low impedance from chip selection at $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	${ }^{\text {t CLZ }}$	20	-	-	ns
Output to high impedance from chip deselection at $C_{L}=5 \mathrm{pF}$	tCHZ	-	-	200	ns
Write cycle					
Write cycle time	twc	500	-	-	ns
Chip selection to end of write	tcW	300	-	-	ns
Adress set-up time	${ }^{\text {t AS }}$	0	-	-	ns
Write pulse duration	twp	350	-	-	ns
Write recovery time	tWR	0	-	-	ns
Data set-up time	tDS	200	-	-	ns
Data hold time	tDH	0	-	-	ns
Output to high impedance from write enabled at $C_{L}=5 \mathrm{pF}$	twZ	-	-	150	ns
Output active from end of write at $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	tRZ	20	-	-	ns

A.C. TEST CONDITIONS (see Fig. 5)

Fig. 5 Load for a.c.
test conditions
$\left(V_{D D}=3 \mathrm{~V} \pm 0,5 \mathrm{~V}\right)$.

Fig. 6 Read cycle timing (1): R/ \bar{W} is HIGH; $\overline{C E}$ is LOW for a read cycle.

Fig. 7 Read cycle timing (2): R/W is HIGH for a read cycle.

Fig. 8 Write cycle (1): R/ \bar{W} controlled.

Fig. 9 Write cycle (2): $\overline{C E}$ controlled.
Note: If the $\overline{C E}$ low transition occurs after the $\mathrm{R} / \overline{\mathrm{W}}$ low transition, the outputs remain in the high impedance state.

CAPACITANCE

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
Input capacitance at $V_{1}=V_{S S}$	C_{I}	-	-	5	pF
Output capacitance at $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$	C_{O}	-	-	5	pF

LOW VDD DATA RETENTION CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$

parameter	symbol	min.	typ.	max.	unit
$V_{D D}$ for data retention at $\overline{C E}=V_{D D R} \pm 0,2 V_{;} V_{I}=V_{D D R}$ to $V_{S S}$	$V_{\text {DDR }}$	1	-	5,5	V
Data retention current at $V_{D D R}=1,5 \mathrm{~V}$	' DDR	-	0,02	2	$\mu \mathrm{A}$
Chip deselect to data retention time	${ }^{t} \mathrm{CR}$	0	-	-	ns
Operation recovery time	${ }^{\text {t }}$ R	0	-	-	ns

Fig. 10 LOW VDD data retention.

128 X 8-BIT/256 X 8-BIT STATIC RAMS WITH $I^{2} \mathrm{C}-\mathrm{BUS}$ INTERFACE

GENERAL DESCRIPTION

The PCF8570, PCF8570C and PCF8571 are low-power static CMOS RAMs. The PCF8570 and PCF8570C are organized as 256 words by 8 -bits and the PCF8571 is organized as 128 words by 8 -bits. Addresses and data are transferred serially via a two-line bidirectional bus ($\left.1^{2} \mathrm{C}\right)$. The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1 and A2 are used for hardware address, allowing the use of up to eight devices connected to the bus without additional hardware. For system expansion over 8 devices the PCF8570/71 can be used in conjunction with the PCF8750C which has an alternative slave address for memory extension up to 16 devices.

Features

- Operating supply voltage
- Low data retention voltage
- Low standby current
- Power saving mode

Applications

- Telephony
- Radio and television
- Video cassette recorder
- General purpose
2.5 V to 6 V
- Serial input/output bus $\left(I^{2} \mathrm{C}\right)$
min. 1.0 V
max. $15 \mu \mathrm{~A}$
typ. 50 nA
- Address by 3 hardware address pins
- Automatic word address incrementing
- 8-lead DIL package

RAM expansion for stored numbers in repertory dialling
(e.g. PCD3343 applications)
channel presets
channel presets
RAM expansion for the microcontroller families MAB8400, PCF84CXX and most other microcontrollers

PACKAGE OUTLINES

Fig. 1 Block diagram.
7290775.3

PCF8570/PCF8570C/PCF8571/P: 8-lead DIL; plastic (SOT97).
PCF8570/PCF8570C/PCF8571/T: 8-lead mini-pack (SO8L; SOT176C).

PINNING

1 to 3	A0 to A2	address inputs
4	$V_{S S}$	negative supply
5	SDA	serial data line $11^{2} \mathrm{C}$-bus
6	SCL	serial clock line $)^{12}$-bus
7	TEST	test input for test speed-up; must be connected to $\mathrm{V}_{\text {SS }}$ when not in use (power saving mode, see Figs 12 and 13)
8	$V_{\text {DD }}$	positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min .	max.	unit
Supply voltage range	$V_{\text {DD }}$	-0.8	+8.0	V
Input voltage range	V_{1}	-0.8	$V_{D D}+0.8$	\checkmark
DC input current	± 11	-	10	mA
DC output current	± 10	-	10	mA
$\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ current	\pm IDD; \pm ISS	-	50	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	300	mW
Power dissipation per output	Po	-	50	mW
Operating ambient temperature range	Tamb	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Purchase of Philips' $1^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

CHARACTERISTICS

$V_{D D}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage		VDD	2.5	-	6.0	V
Supply current operating	$\begin{aligned} & V_{1}=V_{D D} \text { or } V_{S S} \\ & f_{S C L}=100 \mathrm{kHz} \end{aligned}$	IDD	-	-	200	$\mu \mathrm{A}$
standby	$\mathrm{fSCL}=0 \mathrm{~Hz}$	IDDO	-	-	15	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$	İDDO	-	-	5	$\mu \mathrm{A}$
Power-on reset level	note 1	VPOR	1.5	1.9	2.3	V
Inputs, input/output SDA						
Input voltage LOW	note 2	$V_{\text {IL }}$	-0.8	-	$0.3 V_{\text {DD }}$	V
Input voltage HIGH	note 2	$\mathrm{V}_{\text {IH }}$	0.7 VDD	-	$V_{D D}+0.8$	V
Output current LOW	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	IOL	3	-	-	mA
Leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	$\|\mathrm{l}\|$	-	-	1	$\mu \mathrm{A}$
Inputs A0 to A2; TEST						
Input leakage current	$V_{1}=V_{\text {DD }}$ or $V_{S S}$	$\pm \mathrm{ILI}$	-	-	250	nA
Inputs SCL; SDA						
Input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{S S}$	Cl_{1}	-	-	7	pF
LOW VDD data retention						
Supply voltage for data retention		VDDR	1	-	6	V
Supply current	$V_{\text {DDR }}=1 \mathrm{~V}$	IDDR	-	-	5	$\mu \mathrm{A}$
Supply current	$\begin{aligned} & V_{D D R}=1 \mathrm{~V} ; \\ & T_{a m b}=-25 \text { to }+70{ }^{\circ} \mathrm{C} \end{aligned}$	IDDR	-	-	2	$\mu \mathrm{A}$
Power saving mode	see Figs 12 and 13					
Supply current	$\begin{aligned} & \mathrm{TEST}=\mathrm{V}_{\mathrm{DD}} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$					
PCF8570/PCF8570C		IDDR	-	50	400	nA
PCF8571		IDDR	-	50	200	nA
Recovery time		thD2	-	50	-	$\mu \mathrm{s}$

Notes to the characteristics

1. The power-on reset circuit resets the $I^{2} \mathrm{C}$-bus logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$. The status of the device after a power-on reset condition can be tested by sending the slave address and testing the acknowledge bit.
2. If the input voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow: this current must not exceed $\pm 0.5 \mathrm{~mA}$.

CHARACTERISTICS OF THE $I^{2} C$-BUS

The $I^{2} \mathrm{C}$-bus is for 2 -way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 5 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $I^{2} \mathrm{C}$-bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{\text {IL }}$ and $V_{\text {IH }}$ with an input voltage swing of $V_{\text {SS }}$ to $V_{D D}$.

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	-	-	100	kHz
Tolerable spike width on bus	tSW	-	-	100	ns
Bus free time	tBUF	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	tSU; STA	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time	tHD;STA	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	tLOW	4.7	-	-	$\mu \mathrm{s}$
SCL HIGH time	tHIGH	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	tr	-	-	1.0	$\mu \mathrm{~s}$
SCL and SDA fall time	tf	-	-	0.3	$\mu \mathrm{~s}$
Data set-up time	tSU; DAT	250	-	-	ns
Data hold time	tHD; DAT	0	-	-	ns
SCL LOW to data out valid	tVD; DAT	-	-	3.4	$\mu \mathrm{~s}$
Stop condition set-up time	tSU; STO	4.0	-	-	$\mu \mathrm{s}$

PROTOCOL

	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6	(A6)

BIT O	ACKNOW-	STOP	
LSB	LEDGE (R/W)	CONDITION (A)	

Fig. $71^{2} \mathrm{C}$-bus timing diagram.

Bus protocol

Before any data is transmitted on the $I^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The $I^{2} \mathrm{C}$-bus configuration for different PCF8570/PCF8570C/PCF8571 READ and WRITE cycles is shown in Fig.8.

Fig.8(a) Master transmits to slave receiver (WRITE mode).

Fig.8(b) Master reads after setting word address
(WRITE word address; READ data).

Fig.8(c) Master reads slave immediately after first byte (READ mode).

APPLICATION INFORMATION

The PCF8570/PCF8571 slave address has a fixed combination 1010 as group 1 , while group 2 is fully programmable (see Fig.9). The PCF8570C has slave address 1011 as group 1 , while group 2 is fully programmable (see Fig.10).

1	0	1	0	$A 2$	$A 1$	$A 0$	R / \bar{W}

Fig. 9 PCF8570 and PCF8571 address.

Fig. 10 PCF8570C address.

Note

A0, $A 1$, and $A 2$ inputs must be connected to $V_{D D}$ or $V_{S S}$ but not left open-circuit.

It is recommended that a $4.7 \mu \mathrm{~F} / 10 \mathrm{~V}$ solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS}.

Fig. 11 Application diagram.

POWER SAVING MODE

With the condition TEST = VDD or VDDR the PCF8570/PCF8570C/PCF8571 goes into the power saving mode and $\mathrm{I}^{2} \mathrm{C}$-bus logic is reset.

(1) Power saving mode without 5 V supply voltage.
(2) Power saving mode with 5 V supply voltage.
(3) t_{SU} and $\mathrm{t}_{\mathrm{HD}} \geqslant 4 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{HD} 2} \geqslant 50 \mu \mathrm{~s}$.

Fig. 12 Timing for power saving mode.

(1) In the operating mode TEST $=0$; In the power saving mode TEST $=V_{\text {DDR }}$.

It is recommended that a $4.7 \mu \mathrm{~F} / 10 \mathrm{~V}$ solid aluminium capacitor (SAL) be connected between V_{DD} and VSS.

Fig. 13 Application example for power saving mode.

This data sheet contains advance information and specifications are subject to change without notice.

PCF8583

CLOCK CALENDAR WITH 256 X 8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCF8583 is a low power 2048 -bit static CMOS RAM organized as 256 words by 8 -bits. Addresses and data are transferred serially via a two-line bidirectional bus ($\left.1^{2} \mathrm{C}\right)$. The built-in word address register is incremented automatically after each written or read data byte. One address pin AO is used for programming the hardware address, allowing the connection of two devices to the bus without additional hardware. The built-in 32.768 kHz oscillator circuit and the first 8 bytes of the RAM are used for the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm registers or used as free RAM space.

Features

- ${ }^{2} \mathrm{C}$-bus interface operating supply voltage: 2.5 V to 6 V
- Clock operating supply voltage (0 to $70^{\circ} \mathrm{C}$): 1.0 V to 6 V
- Data retention voltage: 1.0 V to 6 V
- Operating current ($\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$): max. $50 \mu \mathrm{~A}$
- Clock function with four year calendar
- 24 or 12 hour format
- 32.768 kHz or 50 Hz time base
- Serial input/output bus ($\mathrm{I}^{2} \mathrm{C}$)
- Automatic word address incrementing
- Programmable alarm, timer and interrupt function

Fig. 1 Block diagram.

PACKAGE OUTLINES

PCF8583P: 8-lead DIL; plastic (SOT97).
PCF8583T: 8-lead mini-pack; plastic (SO8L; SOT176A).

PINNING

1 OSCI
2 OSCO
3 AO
$4 \quad V_{S S}$
5 SDA
6 SCL
7 INT
$8 \quad V_{D D}$
oscillator input, 50 Hz or event-pulse input
oscillator output
address input negative supply serial data line serial clock line f $1^{2} \mathrm{C}$-bus open drain interrupt output (active low) positive supply

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range (pin 8)	V_{DD}	-0.8	+7.0	V
Supply current (pin 4 or pin 8)	I_{DD} ISS	-	50	mA
Input voltage range	$\mathrm{V}_{\text {I }}$	-0.8 to V_{DD}	+0.8	V
DC input current	I_{I}	-	10	mA
DC output current	I_{O}	-	10	mA
Power dissipation per package	$\mathrm{P}_{\text {tot }}$	-	300	mW
Power dissipation per output	P_{O}	-	50	mW
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

FUNCTIONAL DESCRIPTION

The PCF8583 contains a 256 by 8 -bit RAM with an 8 -bit auto-increment address register, an on-chip 32.768 kHz oscillator circuit, a frequency divider, a serial two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus interface and a power-on reset circuit.
The first 8 bytes of the RAM (memory addresses 00 to 07) are designed as addressable 8 -bit parallel registers. The first register (memory address 00) is used as a control/status register. The memory addresses 01 to 07 are used as counters for the clock function. The memory addresses 08 to 0 F are free RAM locations or may be programmed as alarm registers.

Counter function modes

When the control/status register is set a 32.768 kHz clock mode, a 50 Hz clock mode or an eventcounter mode can be selected.

In the clock modes the hundredths of a second, seconds, minutes, hours, date, month (four year calendar) and weekdays are stored in a BCD format. The timer register stores up to 99 days. The eventcounter mode is used to count pulses applied to the oscillator input (OSCO left open). The event counter stores up to 6 digits of data.
When one of the counters is read (memory locations 01 to 07), the contents of all counters are strobed into capture latches at the beginning of a read cycle. Therefore faulty reading of the count during a carry condition is prevented.
When a counter is written, other counters are not affected.

Alarm function modes

By setting the alarm enable bit of the control/status register the alarm control register (address 08) is activated.
By setting the alarm control register a dated alarm, a daily alarm, a weekday alarm or a timer alarm may be programmed. In the clock modes, the timer register (address 07) may be programmed to count hundredths of a second, seconds, minutes, hours or days. Days are counted when an alarm is not programmed.
Whenever an alarm event occurs the alarm flag of the control/status register is set. A timer alarm event will set the alarm flag and an overflow condition of the timer will set the timer flag. The open drain interrupt output is switched on (active LOW) when the alarm or timer flag is set (enabled). The flags remain set until directly reset by a write operation.
When a timer function without any alarm function is programmed the remaining alarm registers (addresses 09 to OF) may be used as free RAM space.

Control/status register

The control/status register is defined as the memory location 00 with free access for reading and writing via the $I^{2} \mathrm{C}$-bus. All functions and options are controlled by the contents of the control/status register (see Fig.3).

Fig. 3 Control/status register.

Counter registers

In the different modes the counter registers are programmed and arranged as shown in Fig.4. Counter cycles are listed in Table 1.
In the clock modes 24 h or 12 h format can be selected by setting the most significant bit of the hours counter register. The format of the hours counter is shown in Fig.5.
The year and date are packed into memory location 05 (see Fig.6). The weekdays and months are packed into memory location 06 (see Fig.7). When reading these memory locations the year and weekdays are masked out when the mask flag of the control/status register is set. This allows the user to read the date and month count directly.
In the event-counter mode events are stored in BCD format. D5 is the most significant and DO the least significant digit. The divider is by-passed.

Fig. 4 Register arrangement.

Counter registers (continued)

MSB LSB

Memory location 04 (hours counter) reset state: 00000000

Unit hours BCD
Ten hours (0 to 2 binary)
AM/PM flag:
0 AM
1 PM
Format:
024 h format, AM/PM flag remains unchanged
$1 \quad 12 \mathrm{~h}$ format, AM/PM flag will be updated

Fig. 5 Format of the hours counter.

Fig. 6 Format of the year/date counter.

Fig. 7 Format of the weekdays/months counter.

Table 1 Cycle length of the time counters, clock modes

Alarm control register

When the alarm enable bit of the control/status register is set the alarm control register (address 08) is activated. All alarm, timer and interrupt output functions are controlled by the contents of the alarm control register (see Figs 8a and 8b).

Fig.8a Alarm control register, clock modes.

Fig.8b Alarm control register, event-counter mode.

Alarm registers

All alarm registers are allocated with a constant address offset of hex 08 to the corresponding counter registers.

An alarm goes off when the contents of the alarm registers matches bit-by-bit the contents of the involved counter registers. The year and weekday bits are ignored in a dated alarm. A daily alarm ignores the month and date bits. When a weekday alarm is selected, the contents of the alarm weekday/month register will select the weekdays on which an alarm is activated (see Fig.9).
Note: In the 12 h mode bits 6 and 7 of the alarm hours register must be the same as the hours counter.

Fig. 9 Selection of alarm weekdays.

Interrupt output

The open-drain n-channel interrupt output is programmed by setting the alarm control register. It is switched on (active LOW) when the alarm flag or the timer flag is set. In the clock mode without alarm the output sequence is controlled by the timer flag. The OFF voltage of the interrupt output may exceed the supply voltage.

Oscillator and divider

A 32.768 kHz quartz crystal has to be connected to OSCI (pin 1) and OSCO (pin 2). A trimmer capacitor between OSCI and $\mathrm{V}_{\text {DD }}$ is used for tuning the oscillator (see quartz frequency adjustment). A 100 Hz clock signal is derived from the quartz oscillator for the clock counters.

In the 50 Hz clock mode or event-counter mode the oscillator is disabled and the oscillator input is switched to a high impedance state. This allows the user to feed the 50 Hz reference frequency or an external high speed event signal into the input OSCI.

Initialization

When power-up occurs the $1^{2} \mathrm{C}$-bus interface, the control/status register and all clock counters are reset. The device starts time keeping in the 32.768 kHz clock mode with the 24 h format on the first of January at $0.00 .00: 00.1 \mathrm{~Hz}$ is output at the interrupt (starts HIGH). This can be disabled by setting the alarm enable bit in the control/status register.
A second level-sensitive reset signal to the $\mathrm{I}^{2} \mathrm{C}$-bus interface is generated as soon as the supply voltage drops below the interface reset level. This reset signal does not affect the control/status or clock counter registers.

It is recommended to set the stop counting flag of the control/status register before loading the actual time into the counters. Loading of illegal states will lead to a clock malfunction but will not latch-up the device.

CHARACTERISTICS OF THE I^{2} C-BUS

The $I^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 10 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH w.hen the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

Fig. 11 Definition of start and stop condition.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 12 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master also generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledge has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 13 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Timing specifications
All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{I L}$ and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	${ }^{\text {fSCL }}$	-	-	100	kHz
Tolerable spike width on bus	${ }_{\text {tsw }}$	-	-	100	ns
Bus free time	$\mathrm{t}_{\text {buF }}$	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	tSU; STA	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time	${ }^{\text {thb; STA }}$	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	tlow	4.7	-	-	$\mu \mathrm{s}$
SCL HIGH time	${ }^{\text {thigh }}$	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	t_{r}	-	-	1.0	$\mu \mathrm{s}$
SCL and SDA fall time	t_{f}	-	-	0.3	$\mu \mathrm{s}$
Data set-up time	${ }^{\text {t }}$ SU; DAT	250	-	-	ns
Data hold time	${ }^{\text {thb; }}$ DAT	0	-	-	ns
SCL LOW to data out valid	tVD; DAT	-	-	3.4	$\mu \mathrm{s}$
Stop condition set-up time	tsu; STO	4.0	-	-	$\mu \mathrm{s}$

PROTOCOL

	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6
(A6)			

BIT 0	ACKNOW-	STOP	
LSB	LEDGE	CONDITION	
(R / W)	(A)	(P)	

SCL

Fig. $14 I^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

$1^{2} \mathrm{C}$-bus protocol

Before any data is transmitted on the $I^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The $1^{2} \mathrm{C}$-bus configuration for the different PCF8583 READ and WRITE cycles is shown in Fig. 15.

Fig.15a Master transmits to slave receiver (WRITE mode).

Fig.15b Master reads after setting word address (WRITE word address; READ data).

Fig. 15c Master reads slave immediately after first byte (READ mode).

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Oscillator	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text {; } \\ & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \\ & \text { note } 4 \end{aligned}$					
Integrated oscillator capacitance		Cosc	-	40	-	pF
Oscillator stability for $\Delta V_{D D}=100 \mathrm{mV}$		f/fosc	-	2×10^{-7}	-	
Input frequency		f_{i}	-	-	1	MHz
Quartz crystal parameters						
Frequency $=32.768 \mathrm{kHz}$						
Series resistance		RS	-	-	40	$k \Omega$
Parallel capacitance		C_{L}	-	10	-	pF
Trimmer capacitance		$\mathrm{C}_{\text {T }}$	5	-	25	pF

Notes to the characteristics

1. The power-on reset circuit resets the $I^{2} \mathrm{C}$-bus logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
2. When the voltages are a diode voltage above or below the supply voltage $V_{D D}$ or $V_{S S}$ an input current will flow; this current must not exceed $\pm 0.5 \mathrm{~mA}$.
3. Event or 50 Hz mode only (no Quartz).
4. Event mode only.

APPLICATION INFORMATION

Quartz frequency adjustment

Method 1: Fixed OSCI capacitor

By evaluating the average capacitance necessary for the application layout a fixed capacitor can be used. The frequency is best measured via the 1 Hz signal available after power-on at the interrupt output (pin 7). The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance and the device-to-device tolerance (on average $\pm 5 \times 10^{-6}$). Average deviations of ± 5 minutes per year can be achieved.

Method 2: OSCI Trimmer

Using the alarm function (via the $I^{2} \mathrm{C}$-bus) a signal faster than 1 Hz can be generated at the interrupt output for fast setting of a trimmer.
Procedure:
Power-on
Initialization (alarm function)
Routine:
Set clock to time T and set alarm to time $T+d T$.
At time $T+d T$ (interrupt) repeat routine.
If time dT is approximately 10 ms a frequency of approximately 40 Hz is obtained.

APPLICATION INFORMATION (continued)
The PCF8583 slave address has a fixed combination 1010 as group 1.

Fig. 16 PCF8583 address.

Recommendation:
Connect a $4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ solid aluminium (SAL) capacitor between V_{DD} and V_{SS}.
Fig. 17 PCF8583 application diagram.

Fig. 18 Typical supply current as a function of supply voltage (clock); $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$.

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $1^{2} \mathrm{C}$ specifications defined by Philips.

CMOS EEPROM

pagePCA8582B 256×8-bit static EEPROM with I^{2} C-bus interface for automotive applications 139
PCF8581/81C 128×8-bit EEPROM with $I^{2} C$-bus interface 151
PCF8582A 256×8-bit static EEPROM with I^{2} C-bus interface 161
PCF8582C 256×8-bit static EEPROM with I^{2} C-bus interface for automotive applications 171

PCA8582B

256×8-BIT STATIC CMOS EEPROM WITH I ${ }^{2}$ C-BUS INTERFACE FOR AUTOMOTIVE APPLICATIONS

GENERAL DESCRIPTION

The PCA8582B is a 2 Kbit (256×8 bit) floating gate electrically erasable programmable read only memory (EEPROM). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases reliability compared to conventional EEPROM memories.
Power consumption is low due to the full CMOS technology used. The programming voltage is generated on chip using a voltage multiplier.
As data bytes are received and transmitted via the serial $I^{2} \mathrm{C}$-bus, an eight pin DIL package is sufficient. Up to eight PCA8582B devices may be connected to the $1^{2} \mathrm{C}$-bus.
Chip select is accomplished by three address inputs.
Timing of the Erase/Write cycle can be done in two ways: either by connecting an external clock to the "Programming Time Control (PTC)" pin (7) or by using an internal oscillator. In the latter application an RC time constant must be connected to pin 7.

Features

- Non-volatile storage of 2 Kbits organized as 256×8 bits
- High reliability by using a redundant storage code (single bit error correction)
- Only one power supply required
- On chip voltage multiplier for erase/write
- Serial input/output bus $\left(1^{2} \mathrm{C}\right)$
- Automatic word address incrementing
- Low power consumption
- One point erase/write timer
- Power on reset
- Up to 500000 erase/write cycles per byte
- 10 years non-volatile data retention time
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571 and PCD8572
- External clock signal possible
- Extended temperature range: -40 to $+125{ }^{\circ} \mathrm{C}$

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage range	VDD	4.5	5	5.5	V
Operating supply current READ	IDD	-	-	0.6	mA
Operating supply current WRITE/ERASE	IDD	-	-	2	mA
Standby supply current	IDDO	-	-	20	$\mu \mathrm{~A}$

PACKAGE OUTLINES

PCA8582BP: 8-lead DIL, plastic (SOT97).
PCA8582BT: 16 -lead mini-pack; plastic (SO16L; SOT162A).

Fig. 1 Block diagram for PCA8582BP.

PINNING

Fig． 2 （a）Pinning diagram（PCA8582BP）．

Fig． 2 （b）Pinning diagram（PCA8582BT）．

		address inputs
	A0	
	A1	
4	$\mathrm{V}_{\text {SS }}$	ground
5	SDA	
6	SCL	$\mathrm{I}^{2} \mathrm{C}$－bus lines
7	PTC	programming time control
8	$V_{\text {DD }}$	positive supply voltage

	$\left.\begin{array}{l} \text { n.c. } \\ \text { n.c. } \end{array}\right\}$	not connected
3	A0	
4	A1	address inputs
5	A2	
6	$\mathrm{V}_{\text {SS }}$	ground
7	n．c．	
8		not connected
	n．c．	
	$\left.\begin{array}{l} \text { SDA } \\ \text { SCL } \end{array}\right\}$	$\mathrm{I}^{2} \mathrm{C}$－bus lines
13	PTC	programming time control
14	$V_{\text {DD }}$	positive supply voltage
	n．c．	not connected
	n．c．	not connected

7224679

Fig． 3 PTC circuit when using an internal oscillator（a）PCA8582BP（b）PCA8582BT．

FUNCTIONAL DESCRIPTION

Characteristics of the $I^{2} \mathrm{C}$-bus

The $I^{2} \mathrm{C}$-bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The following bus conditions have been defined:
Bus not busy: both data and clock lines remain HIGH.
Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH defines the start condition.
Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the stop condition.
Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the $I^{2} \mathrm{C}$-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCA8582B operates in both modes.
By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".
Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse.
The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.
The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.
Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the $I^{2} \mathrm{C}$-bus are available on request.

I^{2} C-Bus Protocol

The I^{2} C-bus configurations for different READ and WRITE cycles of the PCA8582B are shown in Fig.4, (a) (b) and (c).

(1) After this stop condition the erase/write cycle starts and the bus is free for another transmission. Its duration is 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the $1^{2} \mathrm{C}$-bus.
(2) The second data byte is voluntary. It is not allowed to erase/write more that two bytes.

Fig. 4 (a) Master transmitter transmits to PCA8582B slave receiver (ERASE/WRITE mode).

Fig. 4 (b) Master reads PCA8582B slave after setting word address (WRITE word address; READ data).

Fig. 4 (c) Master reads PCA8582B slave immediately after first byte (READ mode).

FUNCTIONAL DESCRIPTION (continued)

Chip address (slave address) allocation

Three chip address inputs (A0, A1, A2) can produce eight different chip addresses. This means that up to eight different PCA8582B devices may be connected to the $1^{2} \mathrm{C}$-bus. Address allocation is illustrated by Fig.5.

Fig. 5 Slave address.
1^{2} C-bus timing

Fig. $6 I^{2} \mathrm{C}$-bus timing.

Fig. 7 (a) One byte ERASE/WRITE cycle.

Fig. 7 (b) Two byte ERASE/WRITE cycles.
(1) If an external clock is chosen for the PTC, this information is latched internally by leaving pin 7 LOW after transmission of the eighth bit of the word address (negative edge of SCL). The state of the PTC then, may be previously undefined.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	VDD	-0.3	+ 7	V
Voltage on any input pin input impedance $>500 \Omega$	V_{1}	VSS - 0.8	$\mathrm{V}_{\mathrm{DD}}+0.8$	V
Operating ambient temperature range	Tamb	-40	+ 125	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Current into any input pin	111	-	1	mA
Output current	1 O	-	10	mA

Purchase of Philips' $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage		VDD	4.5	5	5.5	V
Operating supply current READ	$\begin{aligned} V_{D D} & =5.5 \mathrm{~V} \\ \mathrm{f} S \mathrm{CL} & =100 \mathrm{kHz} \end{aligned}$	IDD	-	-	0.6	mA
Operating supply current WRITE/ERASE	$V_{D D}=5.5 \mathrm{~V}$	IDDW	-	-	2.0	mA
Standby supply current	$V_{D D}=5.5 \mathrm{~V}$	IDDO	-	-	20	$\mu \mathrm{A}$
Input PTC						
Input voltage HIGH		$\mathrm{V}_{\text {IH }}$	$V_{\text {DD }}-0.3$	-	-	v
Input voltage LOW		VIL	-	--	$\mathrm{V}_{\text {SS }}+0.3$	V
Input SCL and input/output SDA						
Input voltage HIGH		$\mathrm{V}_{\text {IH }}$	3.0	-	$V_{D D}+0.8$	v
Input voltage LOW		$V_{\text {IL }}$	-0.3	-	1.5	V
Output voltage LOW	$\begin{aligned} & \mathrm{IOH}=3 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	VOL	-	-	0.4	V
Output leakage current HIGH	$V_{O H}=V_{D D}$	ILO	-	-	10	$\mu \mathrm{A}$
Input leakage current (SCL)	$v_{1}=V_{D D}$ or $V_{S S}$	$\pm 1 \mathrm{l}$	-	-	10	$\mu \mathrm{A}$
Clock frequency	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	${ }^{\text {f SCL }}$	0	-	100	kHz
Input capacitance (SCL; SDA)		Cl_{1}	--	-	7	pF
Time the bus must be free before new transmission can start		${ }^{\text {t B U }}$	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time after which first clock pulse is generated		thD; STA	4	-	-	$\mu_{\text {s }}$
The LOW period of the clock		tLOW	4.7	--	-	$\mu \mathrm{S}$
The HIGH period of the clock		tHIGH	4	-	-	$\mu \mathrm{s}$
Set-up time for start condition	repeated start	tSU STA	4.7	-	-	$\mu \mathrm{s}$
Data hold time for $\mathrm{I}^{2} \mathrm{C}$-bus compatible masters		thD; DAT	5	-	-	$\mu \mathrm{s}$

CHARACTERISTICS (continued)

parameter	conditions	symbol	min.	typ.	max.	unit
Data hold time for $1^{2} \mathrm{C}$ devices	note 1	tHD; DAT	0	-	-	ns
Data set-up time		${ }^{\text {t SU }}$; DAT	250	-	-	ns
Rise time for SDA and SCL lines		t_{r}	-	-	1	$\mu \mathrm{s}$
Fall time for SDA and SCL lines		t_{f}	-	-	300	ns
Set-up time for stop condition		tSU, STO	4.7	-	-	$\mu \mathrm{s}$
Erase/write cycle time		tE/W	5	-	40	ms
Endurance (E/W cycles per byte)	note 2					
	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=125{ }^{\circ} \mathrm{C} \\ & \mathrm{t}_{\mathrm{E} / \mathrm{W}}=5-40 \mathrm{~ms} \end{aligned}$	NE/W	-	-	50000	cycles
	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=85 \mathrm{OC} \\ & \mathrm{t}_{\mathrm{E} / \mathrm{W}}=5.40 \mathrm{~ms} \end{aligned}$	NE/W	-	-	100000	cycles
	$\begin{aligned} & T_{a m b}=33{ }^{\circ} \mathrm{C} \\ & \mathrm{t}_{\mathrm{E} / \mathrm{W}}=10 \mathrm{~ms} \end{aligned}$	NE/W	-	-	500000	cycles
Data retention time	$\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	${ }^{\text {t }}$ S	10	-	-	years

Notes to the characteristics

1. An internal transmitter must provide a hold time (max. 300 ns) to bridge the undefined region of the falling edge of SCL.
2. Technical note in preparation.

E/W programming time control

A. Using an internal oscillator

Resistor $\mathrm{R}_{\mathrm{E} / \mathrm{W}}$ connected between pin 7 and V_{DD} and capacitor $\mathrm{C}_{\mathrm{E} / \mathrm{W}}$ connected between pin 7 and $\mathrm{V}_{\text {SS }}$ (see Table 1).

Table 1 Recommended RC combinations

$R_{E / W}$	$C_{E / W}$	tE/W (typ.) $(\mathrm{k} \Omega)$ note 1
56	(nF)	(ms)
50 2	note 3	
56	3.3	34
22	2.2	21
22	3.3	13
	2.2	7.5 (note 4)

Notes to Table 1

1. Maximum tolerance is 10%.
2. Maximum tolerance is 5%.
3. E / W times are mainly influenced by the tolerances in values of R and C.
4. Minimum allowed $t_{E / W}$ is 5 ms (see CHARACTERISTICS). The tolerances of R and C over the whole temperature range.
B. Using an external clock (see Table 2 and Fig.7)

Table 2 E/W programming time control using an external clock

parameter	symbol	min.	max.	unit
frequency	f_{p}	10	50	kHz
period LOW	$\mathrm{t}_{\mathrm{LOW}}$	9	-	$\mu \mathrm{s}$
period HIGH	$\mathrm{t}_{\mathrm{HIGH}}$	9	-	$\mu \mathrm{s}$
rise time	t_{r}	-	300	ns
fall time	tf_{f}	-	300	ns
delay time	t_{d}	0	$\mathrm{t}_{\text {LOW }}$	ns

128×8-BIT EEPROM WITH I ${ }^{2} \mathrm{C}$-BUS INTERFACE

GENERAL DESCRIPTION

The PCF8581 and PCF8581C are low-power CMOS EEPROMs with standard and wide operating voltage:
4.5 to 5.5 V (PCF8581); 2.5 to 6.0 V (PCF8581C).

In the following text, the generic term "PCF8581" is used to refer to both types in all packages except where specified.
The PCF8581 is organized as 128 words by 8 -bits.
Addresses and data are transferred serially via a two-line bidirectional bus $\left(\mathrm{I}^{2} \mathrm{C}\right)$. The built-in word address register is incremented automatically after each written or read data byte. All bytes can be read in a single operation. Up to eight bytes can be written in one operation, reducing the total write time per byte. Three address pins A0, A1 and A2 are used to define the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltage: 4.5 to 5.5 V (PCF8581); 2.5 to 6.0 V (PCF8581C)
- Integrated voltage multiplier and timer for writing (no external components required)
- Automatic erase before write
- Low standby current max. $10 \mu \mathrm{~A}$
- Eight-byte page write mode
- Serial input/output bus ($\mathrm{I}^{2} \mathrm{C}$)
- Address by 3 hardware address pins
- Automatic word address incrementing
- Designed for 10000 write cycles per byte minimum
- 10 years minimum non-volatile data retention
- Infinite number of read cycles
- Pin and address compatibility to PCF8570, PCF8571 and PCF8582

PACKAGE OUTLINES

PCF8581P/PCF8581CP: 8-lead DIL; plastic (SOT97).
PCF8581T/PCF8581CT: 8-lead mini-pack (SO-8L; SOT176C).

Fig. 1 Block diagram.

PINNING

1	A0	hardware address inputs	
2	A1		
3	A2		
4	$\mathrm{V}_{\text {SS }}$	negative supply	$1^{2} \mathrm{C}$-bus
5	SDA	serial data input/output	
6	SCL	serial clock input	
7	TEST	test output can be connected to $\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {DD }}$ or left open-circuit	
8	$V_{\text {DD }}$	positive supply	

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	\min.	max.	unit
Supply voltage range (pin 8)	V_{DD}	-0.3	7.0	V
Voltage range on any input*	V_{I}	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
DC input current (any input)	$\pm \mathrm{I}_{\mathrm{I}}$	-	10	mA
DC output current (any output)	$\pm \mathrm{IO}_{\mathrm{O}}$	-	10	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	150	mW
Power dissipation per output	P	-	50	mW
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	o^{C}
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40	+85	${ }^{\circ} \mathrm{C}$

[^4]
CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V (PCF8581C) 4.5 to 5.5 V (PCF8581); $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage range PCF8581C		$V_{\text {DD }}$	2.5	-	6.0	V
PCF8581		$V_{\text {DD }}$	4.5	-	5.5	V
Supply current standby	$\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$	IDD	-	-	10	$\mu \mathrm{A}$
operating	$\mathrm{f}^{\text {SCL }}=100 \mathrm{kHz}$	IDD	-	-	400	$\mu \mathrm{A}$
during write	see bus protocol	IDD	-	-	1000	$\mu \mathrm{A}$
Inputs						
A0, A1, A2, SCL, SDA						
Input voltage LOW		$V_{\text {IL }}$	-	-	$0.3 V_{\text {DD }}$	V
Input voltage HIGH		$\mathrm{V}_{\text {IH }}$	0.7V $V_{\text {DD }}$	-	-	V
Input leakage current	pin at $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$	${ }_{\text {LII }}$	-	-	1	$\mu \mathrm{A}$
Input capacitance	pin at $V_{S S}$	C_{1}	-	-	7	pF
Outputs						
SDA						
Output current LOW	pin at 0.4 V	${ }^{\text {IOL }}$	3	-	-	mA
TEST						
Output leakage current	pin at $\mathrm{V}_{\text {SS }}$ or V_{DD}	ILO	-	-	1	$\mu \mathrm{A}$
Erase/write data						
Write time		twr	6	-	12	ms
Data retention time		$t_{\text {RET }}$	10	-	-	years

Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

CHARACTERISTICS OF THE $I^{2} \mathrm{C}$-BUS

The $I^{2} \mathrm{C}$-bus is for two-way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig. 5 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eigth bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $V_{I L}$ and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.

parameter	symbol	min .	typ.	max.	unit
SCL clock frequency	${ }^{\text {f }}$ SCL	-	-	100	kHz
Tolerable spike width on bus	${ }^{\text {t }}$ S w	-	-	100	ns
Bus free time	${ }_{\text {t }}$ BUF	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	${ }^{\text {t SU; STA }}$	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time	thD; STA	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	t LOW	4.7	-	-	$\mu \mathrm{S}$
SCL HIGH time	${ }^{\text {thigh }}$	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	t_{r}	-	-	1.0	$\mu \mathrm{s}$
SCL and SDA fall time	t_{f}	-	-	0.3	$\mu \mathrm{s}$
Data set-up time	tSU; DAT	250	-	-	ns
Data hold time	thD; DAT	0	-	-	ns
SCL LOW to data out valid	${ }^{\text {t }} \mathrm{VD} ;$ DAT	-	-	3.4	$\mu \mathrm{s}$
Stop condition set-up time	${ }^{\text {t SU; STO }}$	4.0	-	-	$\mu \mathrm{s}$

PROTOCOL

| | START
 CONDITION
 (S) | BIT 7
 MSB
 (A7) | BIT 6 |
| :--- | :--- | :--- | :--- | :--- |
| (A6) | | | |

BIT O	ACKNOW-	STOP	
LSB	LEDGE	CONDITION	
(R/W)	(A)	(P)	

SCL

Fig. $7 I^{2} \mathrm{C}$-bus timing diagram.

Bus protocol

Before any data is transmitted on the $1^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The $1^{2} \mathrm{C}$-bus configuration for PCF8581 WRITE cycle is shown in Fig. 8 and READ cycle in Figs 10 and 11.

Writing

Fig. 8 Master transmits to slave receiver (WRITE mode).
After the word address, one to eight data bytes can be sent. The address is automatically incremented, but the four highest address bits (row) are internally latched. Therefore all bytes are written in the same row.
An example of writing eight bytes with word address $X 0000000$ and six bytes with word address X0010101 is shown in Fig. 9. Where $X=$ don't care.

word address	row	bytes							
$\times 0000000$	0	$1 \rightarrow$	$2 \rightarrow$	$3 \rightarrow$	$4 \rightarrow$	$5 \rightarrow$	$6 \rightarrow$	$7 \rightarrow$	$8 \rightarrow$
$X 0000001$	1								
$X 0010101$	2	$4 \rightarrow$	$5 \rightarrow$	6			$1 \rightarrow$	$2 \rightarrow$	$3 \rightarrow$
$\times 0011101$	3								
	.								
	.								

Fig. 9 Writing eight and six bytes with different word addresses.

To transmit eight bytes in sequential order, begin with the lowest address bits 000 . The data is written after a stop is detected. The data is only written if complete bytes have been received and acknowledged. Writing takes a time tWR (6 to 12 ms) during which the device will not respond to its slave address. Note that to write the next row, a new write operation is required (start, slave address, row address, data, stop).

LIFE SUPPORT APPLICATIONS

Faselec's product is not designed for use in life support appliances, devices or systems where malfunction of above product can reasonably be expected to result in a personal injury. Faselec's customers using or selling Faselec's PCF8581/81C for use in life support applications do so at their own risk and agree to fully indemnify Faselec for any damages resulting from such improper use or sale.

Reading

Fig. 10 Master reads after setting word address (WRITE word address; READ data).

Fig. 11 Master reads slave immediately after first byte (READ mode).
An unlimited number of data bytes can be read in one operation. The address is automatically incremented. If a read without setting the word address is performed after a write operation, the address pointer may point at a byte in the row after the previously written row. This occurs if, during writing, the three lowest address bits (column) rolled over.

APPLICATION INFORMATION

The PCF8581 slave address has a fixed combination 1010 as group 1 , while group 2 is fully programmable (see Fig. 12).

1	0	1	0	$A 2$	$A 1$	$A 0$	R / \bar{W}

Fig. 12 PCF8581 address.

Fig. 13 Application diagram.

Note

AO, A1 and A2 inputs must be connected to V_{DD} or V_{SS} but not left open-circuit.

256×8-bit STATIC CMOS EEPROM WITH I ${ }^{2} \mathrm{C}$-BUS INTERFACE

GENERAL DESCRIPTION

The PCF8582A is a 2 Kbits 5 Volt electrically erasable programmable read only memory (EEPROM) organized as 256 by 8 -bits. It is designed in a floating gate CMOS technology.
As data bytes are received and transmitted via the serial $I^{2} \mathrm{C}$-bus, an eight pin DIL package is sufficient. Up to eight PCF8582A devices may be connected to the $1^{2} \mathrm{C}$-bus.
Chip select is accomplished by three address inputs.
Timing of the Erase/Write cycle can be done in two different ways; either by connecting an external clock to the "Programming Timing Control", pin (7 or 13), or by using an internal oscillator. If the latter is used an RC time constant must be connected to pin 7 or 13.

Features

- Non-volatile storage of 2 Kbits organized as 256×8
- Only one power supply required (5 V)
- On chip voltage multiplier for erase/write
- Serial input/output bus $\left(I^{2} \mathrm{C}\right)$
- Automatic word address incrementing
- Low power consumption
- One point erase/write timer
- Power on reset
- 10,000 erase/write cycles per byte
- 10 years non-volatile data retention
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571, PCF8582 and PCD8572
- External clock signal possible.

PACKAGE OUTLINE

PCF8582AP; 8-lead dual in line; plastic (SOT97).
PCF8582AT; 16-lead mini-pack; plastic (SO16L; SOT162A).

Fig. 1 Block diagram.

Fig. 2 (a) Pinning diagram.

Fig. 2 (b) Pinning diagram.

Figs. 3 (a) and (b) RC circuit connections to PCF8582AP and PCF8582AT when using the internal oscillator

FUNCTIONAL DESCRIPTION

Characteristics of the $I^{2} \mathrm{C}$-bus

The $I^{2} \mathrm{C}$-bus is intended for communication between different ICs. The serial bus consists of two bi-directional lines, one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:
Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The following bus conditions have been defined:
Bus not busy; both data and clock lines remain HIGH.
Start data transfer; a change in the state of the data line, from HIGH to LOW,
while the clock is HIGH defines the start condition. Stop data transfer; a change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the stop condition.
Data valid; the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.
Within the $I^{2} \mathrm{C}$-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF8582A operates in both modes.
By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".
Each word of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse.
The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.
The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse in clock pulse.
Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this condition the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the $I^{2} \mathrm{C}$-bus are available on request.

$1^{2} \mathrm{C}$-Bus Protocol

The $I^{2} \mathrm{C}$-bus configurations for different READ and WRITE cycles of the PCF8582A are shown in Fig. 4, (a), (b) and (c).

(1) After this stop condition the erase/write cycle starts and the bus is free for another transmission. The duration of the erase/write cycle is approximately 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the $I^{2} \mathrm{C}$-bus.
(2) The second data byte is voluntary. It is not allowed to erase/write more than two types.

Fig. 4(a) Master transmitter transmits to PCF8582A slave receiver (ERASE/WRITE mode).

Fig. 4(c) Master reads PCF8582A slave immediately after first byte (READ mode).*
Note: the slave address is defined in accordance with the $I^{2} \mathrm{C}$-bus specification as:

1	0	1	0	$A 2$	$A 1$	$A 0$	R / W

[^5]$1^{2} C$-bus timing

Fig. $5 \mathrm{I}^{2} \mathrm{C}$-bus timing.

(1) If external clock for PTC is chosen, this information is latched internally by leaving pin 7 LOW after transmission of the eight bit of the word address (negative edge of SCL). The state of PTC then, may be previously undefined.

Fig. 6 (a) One-byte ERASE/WRITE cycle; (b) two-byte ERASE/WRITE cycle.

Ratings

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	\min.	\max.	unit	
Supply voltage	V_{DD}	-0.3	+7	V	
Voltage on any input pin input impedance 500Ω	$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0.8$	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V	
Operating temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$	
Current into any input pin	$\\|_{1} \mathrm{l}$	-	1	mA	
Output current	$I_{\mathrm{O}} \mathrm{l}$	-	10	mA	

Purchase of Philips' $1^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$-system provided the system conforms to the $I^{2} \mathrm{C}$ specifications defined by Philips.

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	conditions	symbol	min .	typ.	max.	unit
Operating supply voltage		$V_{\text {DD }}$	4.5	5.0	5.5	V
Operating supply current READ	$V_{D D}$ max. $\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	${ }^{\prime}$ DD	-	-	0.4	mA
Operating supply current WRITE/ERASE	$V_{\text {DD }}$ max.	IDDW	-	-	2.0	mA
Standby supply current	$V_{\text {DD }}$ max.	IDDO	-	-	10	$\mu \mathrm{A}$
Input PTC						
Input voltage HIGH			$V_{\text {DD }}-0.3$	-	-	v
Input voltage LOW			-	-	$\mathrm{V}_{\mathrm{SS}}+0.3$	V
Input SCL and input/output SDA						
Input voltage LOW		$V_{\text {IL }}$	-0.3	-	1.5	V
Input voltage HIGH		$\mathrm{V}_{\text {IH }}$	3.0	-	$V_{D D}+0.8$	V
Output voltage LOW	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	V
Output leakage current HIGH	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	ILO	-	-	1	$\mu \mathrm{A}$
Input leakage current (SCL)	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	'LI	-	-	1	$\mu \mathrm{A}$
Clock frequency		${ }^{\text {f SCL }}$	0	-	100	kHz
Input capacitance (SCL; SDA)		C_{1}	-	-	7	pF
Time the bus must be free before new transmission can start		${ }^{\text {t }}$ BUF	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time after which first clock pulse is generated		THD;STA	4	-	-	$\mu \mathrm{s}$

Note to the characteristics

1. The hold time required to bridge the undefined region of the falling edge of SCL must be internally provided by a transmitter. It is not greater than 300 ns .

CHARACTERISTICS (continued)
E/W programming time control
A. Using external resistor $R_{E / W}$ and capacitor $C_{E / W}$ (see Table 1)

Table 1 Recommended R, C combinations

$R_{E / W}$ $(\mathrm{k} \Omega)$ note 1	$\mathrm{C}_{E / W}$ (nF) note 2	$\mathrm{t}_{\mathrm{E} / \mathrm{W}}$ (typ.) (ms) note 3
56	3.3	34
56	2.2	21
22	3.3	13
22	2.2	7.5 (note 4)

Notes to Table 1

1. Maximum tolerance is 10%.
2. Maximum tolerance is 5%.
3. Actual E / W lines are mainly influenced by the tolerances in values of R and C.
4. Minimum allowed $t_{E / W}$ is 5 ms (see CHARACTERISTICS).
B. Using an external clock (see Table 2 and Fig.6)

Table 2 E/W programming time control using an external clock

parameters	symbol	min.	max.	unit
frequency	f_{p}	10.0	50.0	kHz
period LOW	$\mathrm{t}_{\text {LOW }}$	10.0	-	s
period HIGH	$\mathrm{t}_{\mathrm{HIGH}}$	10.0	-	s
rise time	t_{r}	-	300	ns
fall time	t_{f}	-	300	ns
delay time	t_{d}	0	-	ns

256×8-BIT STATIC CMOS EEPROM WITH I²${ }^{2}$-BUS INTERFACE FOR AUTOMOTIVE APPLICATIONS

GENERAL DESCRIPTION

The PCF8582C is a 2 Kbit (256×8-bit) floating gate electrically erasable programmable read only memory (EEPROM). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases reliability compared to conventional EEPROM memories.
Power consumption is low due to the full CMOS technology used. The programming voltage is generated on chip using a voltage multiplier.
As data bytes are received and transmitted via the serial $\mathrm{I}^{2} \mathrm{C}$-bus, a package using eight pins is sufficient. Up to eight PCF8582C devices may be connected to the $1^{2} \mathrm{C}$-bus.
Chip select is accomplished by the three address inputs, which may also be used to choose between eleven test modes which simplify circuit testing.
Timing of the Erase/Write cycle is done internally so no external components are needed. Pin 7 must be connected to either $V_{D D}$ or left open.
There is an option (described in PCF8582A and PCA8582B data sheets) of using an external clock for timing the length of an Erase/Write cycle.

Features

- Non-volatile storage of 2 Kbits organized as 256×8 bits
- High reliability by using a redundant storage code (single bit error correction)
- Only one power supply required
- On chip voltage multiplier
- Serial input/output bus $\left(I^{2} \mathrm{C}\right)$
- Automatic word address incrementing
- Low power consumption
- Extended supply voltage range (2.5 to 6 V)
- Internal timer for writing (no external components)
- Power on reset
- 500000 erase/write cycles per byte with low failure rate
- 10 years non-volatile data retention time
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571, PCD8572 and PCF8582A

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage range	V DD	2.5	-	6	V
Operating supply current READ	IDD	0.25	-	1.6	mA
Operating supply current WRITE/ERASE	IDD	0.35	-	2.5	mA
Standby supply current	IDDO	3.5	-	10	$\mu \mathrm{~A}$

PACKAGE OUTLINES

PCF8582P: 8-lead DIL; plastic (SOT97).
PCF8582T: 16-lead mini-pack; plastic (SO16L; SOT162A).

Fig. 1 Block diagram for PCF8582CP.

PINNING

Fig.2(a) Pinning diagram; PCF8582CP.

1 2	$\left.\begin{array}{l} \text { n.c. } \\ \text { n.c. } \end{array}\right\}$	not connected
3	A0	address inputs or test mode select
4	A1	
5	A2	
6	$V_{\text {SS }}$	ground
7	n.c.	
8	n.c.	not connected
9	n.c.	
10	n.c.	
11	SDA	$1^{2} \mathrm{C}$-bus lines
12	SCL f	
13	TEST	can be connected to $\mathrm{V}_{\text {DD }}$ or left open
14	$V_{\text {DD }}$	positive supply voltage
15	n.c. \|	not connected
16	n.c.	

Fig.2(b) Pinning diagram; PCF8582CT.

FUNCTIONAL DESCRIPTION

Characteristics of the $I^{2} \mathrm{C}$-bus

The $I^{2} \mathrm{C}$-bus is for 2 -way, 2 -line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.
The following bus conditions have been defined:
Bus not busy: both data and clock lines remain HIGH.
Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH defines the start condition.
Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the stop condition.
Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.
Within the $I^{2} \mathrm{C}$-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF8582C operates in both modes.
By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".
Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.
The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.
Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the $1^{2} \mathrm{C}$-bus are available on request.

I^{2} C-bus Protocol

The $I^{2} \mathrm{C}$-bus configurations for different READ and WRITE cycles of the PCF8582C are shown in Fig. 3 (a), (b) and (c).

(1) After this stop condition the erase/write cycle starts and the bus is free for another transmission. Its duration is 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the $I^{2} \mathrm{C}$-bus.
(2) The second data byte is voluntary. It is not allowed to erase/write more than two bytes.

Fig.3(a) Master transmitter transmits to PCF8582C slave receiver (ERASE/WRITE mode).

Fig.3(b) Master reads PCF8582C slave after setting word address (WRITE word address; READ data).

Fig.3(c) Master reads PCF8582C slave immediately after first byte (READ mode).

FUNCTIONAL DESCRIPTION (continued)

Chip address (slave address) allocation
Three chip address inputs (A0, A1, A2) can produce eight different chip addresses. This means that up to eight different PCF8582C devices may be connected to the $I^{2} \mathrm{C}$-bus. Address allocation is illustrated by Fig. 4.

Fig. 4 Slave address.
$1^{2} \mathrm{C}$-bus timing

FUNCTIONAL DESCRIPTION (continued)

Fig.6(a) One byte ERASE/WRITE cycle.

Fig.6(b) Two byte ERASE/WRITE cycles.
(1) If an external clock is chosen, this information is latched internally by leaving pin 7 (Test) LOW after transmission of the eighth bit of the word address (negative edge of SCL). The state of pin 7 then, may be previously undefined.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	\min.	max.	unit		
Supply voltage	V_{DD}	-0.3	+7	V		
Voltage on any input pin						
\quad input impedance $>500 \Omega$	$\mathrm{~V}_{\mathrm{I}}$	$\mathrm{V}_{\mathrm{SS}}-0.8$	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V		
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40	+85	${ }^{\circ} \mathrm{C}$		
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$		
Current into any input pin	$\\|_{\\|}$	-	1	mA		
Output current	$\mathrm{IIO}_{\mathrm{O}}$	-	10	mA		

Purchase of Philips' $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$-system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage		$\mathrm{V}_{\text {DD }}$	2.5	-	6	V
Operating supply current READ	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =3 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}} & =6 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \end{aligned}$	IDDR IDDR	-	-	0.25 1.6	mA mA
Operating supply current WRITE/ERASE	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =3 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}} & =6 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \end{aligned}$	IDDW IDDW	-	-	0.35 2.5	mA mA
Standby supply current	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =3 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}} & =6 \mathrm{~V} ; \\ \mathrm{f}_{\mathrm{SCL}} & =100 \mathrm{kHz} \end{aligned}$	IDDO IDDO	-	-	3.5 10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Test Input voltage HIGH Input voltage LOW		$V_{\text {IH }}$ $V_{\text {IL }}$	$\begin{aligned} & 0.9 \mathrm{~V}_{\mathrm{DD}} \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}+0.8 \\ & 0.1 \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	V
Input SCL and input/output SDA						
Input voltage HIGH		$V_{\text {IH }}$	$0.7 \mathrm{~V}_{\text {DD }}$	-	$V_{D D}+0.8$	V
Input voltage LOW		$V_{\text {IL }}$	-0.8	-	$0.3 V_{\text {DD }}$	\checkmark
Output voltage LOW	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=3 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$	V_{OL}	-	-	0.4	V
Output leakage current HIGH	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	'Lo	-	-	10	$\mu \mathrm{A}$
Input leakage current (SCL)	$\begin{aligned} & V_{1}=V_{D D} \\ & \text { or } V_{S S} \end{aligned}$	$\pm{ }_{\text {LI }}$	-	-	10	$\mu \mathrm{A}$
Clock frequency		${ }^{\text {f SCL }}$	0	-	100	kHz
Input capacitance (SCL; SDA)	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	C_{1}	-	-	7	pF

DEVELOPMENT DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Time the bus must be free before a new transmission can start		${ }^{\text {t BUF }}$	4.7	-	-	$\mu \mathrm{s}$
Start condition hold time. After this period the first clock pulse is generated		THD; STA	4	-	-	$\mu \mathrm{s}$
The LOW period of the clock		t LOW	4.5	-	-	$\mu \mathrm{S}$
The HIGH period of the clock		${ }^{\text {thigh }}$	4	-	-	$\mu \mathrm{s}$
Set-up time for start condition	repeated start	${ }^{\text {t SU }}$; STA	4.7	-	-	$\mu \mathrm{s}$
Data hold time for $1^{2} \mathrm{C}$-bus compatible masters		thD; DAT	5	-	-	$\mu \mathrm{s}$
Data hold time for $1^{2} \mathrm{C}$ devices	note 1	thD; DAT	0	-	-	ns
Data set-up time		tSU; DAT	250	-	-	ns
Rise time for SDA and SCL lines		t_{r}	-	-	1	$\mu \mathrm{s}$
Fall time for SDA and SCL lines		tf_{f}	-	-	300	ns
Set-up time for stop condition		tsu; STO	4.7	-	-	$\mu \mathrm{S}$
Erase/write cycle time		${ }^{\text {t }}$ / $/ \mathrm{W}$	5	-	25	ms
Endurance (E/W cycles per byte)	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C} ; \\ & \mathrm{t}_{\mathrm{E} / \mathrm{W}}=5-25 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{amb}}=33^{\circ} \mathrm{C} ; \\ & \mathrm{t}_{\mathrm{E} / \mathrm{W}}=10 \mathrm{~ms} \end{aligned}$			$\begin{array}{r} 100000 \\ 500000 \end{array}$		cycles cycles
Data retention time	$\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	ts	10	-	-	years

Note to the characteristics

1. An internal transmitter must provide a hold time (max. 300 ns) to bridge the undefined region of the falling edge of SCL.

E/W programming time control

A. Using an internal oscillator

Using an internal oscillator ${ }^{t_{E}} / \mathrm{W}$ has a minimum value of 5 ms and a maximum value of 25 ms ; the typical value is 10 ms .
B. Using an external clock (see Table 1 and Fig.6)

Table 1 E/W programming time control using an external clock

parameter	symbol	min.	max.	unit
frequency	f_{p}	10	50	kHz
period LOW	$\mathrm{t}_{\text {LOW }}$	5	-	$\mu \mathrm{s}$
period HIGH	$\mathrm{t}_{\text {HIGH }}$	5	-	$\mu \mathrm{s}$
rise time	t_{r}	-	300	ns
fall time	t_{f}	-	300	ns
delay time	t_{d}	0	$\mathrm{t}_{\text {LOW }}$	$\mu \mathrm{s}$

64K-bit CMOS EPROM

page
27C64A-IND 64K-bit CMOS EPROMs ($8 \mathrm{~K} \times 8$) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$ 185
27C64A O.T.P. 64K-bit CMOS EPROM (8K x 8) 100 ns 189
27C64A O.T.P. $\quad 64$ K-bit CMOS EPROMs (8K x 8) 120 ns; 150 ns 193
27C64A O.T.P. 64K-bit CMOS EPROM (8K x 8) 200 ns 197
27C64A U.V. 64K-bit erasable CMOS EPROM (8K x 8) 100 ns 201
27C64A U.V. 64K-bit erasable CMOS EPROMs (8K x 8) 120 ns; 150 ns 205
27C64A U.V. 64K-bit erasable CMOS EPROM (8K x 8) 200 ns 209
27HC641 O.T.P. 64K-bit CMOS EPROMs (8K x 8) 45 ns; 55 ns 213
27HC641 U.V. 64K-bit erasable CMOS EPROMs (8K x 8) $35 \mathrm{~ns} ; 45 \mathrm{~ns} ; 55 \mathrm{~ns}$ 217

27C64A-IND
 Industrial Temperature Range 64K-Bit CMOS EPROMs ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

Signetics 27C64A CMOS EPROM is a 64 K -bit 5 V only memory organized as 5,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27C64.

The 27C64A is specified to operate over the INDUSTRIAL TEMPERATURE RANGE of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with no degradation in performance.

The 27C64A is available in both the windowed ceramic DIP, the plastic DIP and the PLCC packages. This device can be programmed with standard EP. ROM programmers.

FEATURES

- Quick pulse programming algorithm for high speed production programming (3 second typical programming time)
- High-performance speeds
- 27C64Al15: 150ns maximum access time
- 27C64Al20: 200ns maximum access time
- Noise immunity features
$-+10 \% V_{\text {CC }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{12}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output Enable
$\overline{C E}$	Chip Enabie
GND	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
D.U.	Don't Use
$\overline{\text { PGM }}$	Program strobe
N.C.	No Connection

BLOCK DIAGRAM

READ MODE: 27C64A
The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{\text {OE }}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin CERDIP with quartz window (600mil-wide)	27 C 64 Al 15 FA 27 C 64 Al 20 FA
28 -pin Plastic Dual in-line (600mil-wide)	27 C 64 Al 15 N 27 C 64 Al 20 N
32-pin Plastic Leaded Chip Carrier $(450 \times 550 \mathrm{mil})$	$27 \mathrm{C} 64 \mathrm{Al15} \mathrm{~A}$
27 C 64 Al 20 A	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}^{10}$	$\overline{\text { PGM }}^{10}$	$\mathrm{~V}_{\mathrm{PP}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{IH}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
$I_{\text {IH }}$	Leakage	$V_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
IIL	Low	$\mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	$V_{\text {PP }}$ read	$V_{P P}=V_{C C}$			100	$\mu \mathrm{A}$
Output current						
ILO	Leakage	$\begin{aligned} & \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{1 \mathrm{H}} \\ & \mathrm{~V}_{\mathrm{OUT}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{aligned}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7}$, 9	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{IL}}, f=6.7 \mathrm{MHz} \\ V_{\mathrm{PP}}=V_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{\mathrm{CE}}=\mathrm{V}_{1} \mathrm{H}$			1.0	mA
$I_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$V_{\text {IL }}$	Low (TTL)	$V_{P P}=V_{C C}$	-0.5		0.8	V
$V_{\text {IL }}$	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	\checkmark
V_{IH}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$V_{C C}+0.5$	V
V_{IH}	High (CMOS)	$V_{P P}=V_{C C}$	$V_{C C}-0.2$		$V_{C C}+0.2$	V
$V_{P P}$	Read ${ }^{8}$	(Operating)	$V_{C C}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	V
V OH	High	$\mathrm{I}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ f=1.0 \mathrm{MHz} \\ V_{\text {iN }}=0 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C G}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{C C} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}. and can be connected directly to V_{CC}
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

Industrial Temperature Range 64K-Bit CMOS EPROMs ($8 \mathrm{~K} \times 8$)

AC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBCL	TO	FROM	27C64A115		27C64A120		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{A C C}$	Output	Address		150		200	ns
$t_{\text {ce }}$	Output	$\overline{\mathrm{CE}}$		150		200	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		65		75	ns
Disable time ${ }^{2}$							
$t_{D F}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		45		55	ns
t_{OH}	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
2. Guaranteed by design, not 100% tested.
3. $\overline{O E}$ may be delayed up to $t_{C E}-$ loE $_{\text {Of }}$ after the falling edge of $\overline{C E}$ without impact on $t_{C E}$
4. t_{DF} is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

Figure 1. Test Configuration

27C64A O.T.P. One Time Programmable 64K-Bit CMOS EPROM ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27C64A CMOS O.T.P. EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.
The 27C64A O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times. In the absence of quick-pulse programming equipment, the intelligent programming algorithm may be utilized.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds - 27C64A-10: 100ns maximum access time
- Noise immunity features
- $10 \% V_{\text {CC }}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)
PIN DESCRIPTION

$\mathrm{A}_{0}-\mathrm{A}_{12}$	Addresses
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{CE}}$	Chip enable
N.C.	No connection
GND	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
DU	Don't use
$\overline{\text { PGM }}$	Program strobe

PIN CONFIGURATIONS

One Time Programmable
27C64A O.T.P. 64 K -Bit CMOS EPROM ($8 \mathrm{~K} \times 8$)

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable ($\overline{\mathrm{OE}})$ is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28-pin Plastic Dual in-line 600 mil-wide	$27 \mathrm{C} 64 \mathrm{~A}-10 \mathrm{~N}$
32 -pin Plastic Leaded Chip Carrier $450 \mathrm{mil} \times 550 \mathrm{mil}$	$27 \mathrm{C} 64 \mathrm{~A}-10 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{\mathbf{1 0}}$	$\overline{\mathbf{P G M}}^{10}$	$\mathbf{V}_{\mathrm{PP}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{IH}	V_{CC}	D OUT
Output disable	V_{IL}	V_{IH}	V_{IH}	V_{CC}	$\mathrm{Hi-Z}$
Standby	V_{IH}	X	X	V_{CC}	Hi Z

Notes on following page

One Time Programmable

 64 K -Bit CMOS EPROM ($8 \mathrm{~K} \times 8$)DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
ILL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	$V_{\text {pp }}$ read	$V_{P P}=V_{C C}$			100	$\mu \mathrm{A}$
Output current						
'Lo	Leakage	$\begin{aligned} & \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \\ & V_{\text {OUT }}=5.5 \mathrm{~V}=V_{\mathrm{CC}} \\ & V_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{aligned}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7} .9$	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{FL}} \mathrm{f}=10.0 \mathrm{MHz} \\ V_{\mathrm{PP}}=V_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{C E}=V_{I H}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{IL}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
V_{IL}	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	V
$\mathrm{V}_{1 \mathrm{H}}$	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{v}_{\mathrm{CC}}+0.5$	V
V_{IH}	High (CMOS)	$V_{P P}=V_{C C}$	$\mathrm{v}_{\mathrm{cc}}-0.2$		$\mathrm{v}_{C C}+0.2$	V
$V_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$1 \mathrm{CL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{IOH}^{\prime}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance $^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CiN}_{\text {I }}$	Address and control	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$			6	pF
Cout	Outputs	$\begin{aligned} V_{\text {IN }} & =0 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .

All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{I H}$ or V_{IL}.

One Time Programmable

 64K-Bit CMOS EPROM ($8 \mathrm{~K} \times 8$)AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C64A - 10		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		100	ns
${ }^{\text {t }}$ CE	Output	$\overline{C E}$		100	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		35	ns
Disable time ${ }^{2}$					
$t_{\text {DF }}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		25	ns
${ }^{\text {OH}}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{I H}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
. Guaranteed by design, not 100% tested.
. $\overline{O E}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}.
2. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

ac Voltage waveforms

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

27C64A O.T.P.
 One Time Programmable $64 \mathrm{~K}(8 \mathrm{~K} \times 8$) EPROMs

Product Specification

Application Specific Products

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds
- 27C64A-12: 120ns maximum access time
- 27C64A-15: 150ns maximum access time

- Noise immunity features

- $\pm 10 \% V_{C C}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)

DESCRIPTION

Signetics 27C64A CMOS O.T.P. EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

BLOCK DIAGRAM

PIN CONFIGURATIONS

One Time Programmable 64K ($8 \mathrm{~K} \times 8$) EPROMs

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{0 E}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu A$. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the σE input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
$28-$ Pin Plastic Dual in-line	$27 \mathrm{C} 64 \mathrm{~A}-12 \mathrm{~N}$
600 mil-wide	$27 \mathrm{C} 64 \mathrm{~A}-15 \mathrm{~N}$
32 -Pin Plastic Leaded Chip Carrier	$27 \mathrm{C} 64 \mathrm{~A}-12 \mathrm{~A}$
450 mil $\times 550$ mil	$27 \mathrm{C} 64 \mathrm{~A}-15 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\text {PP }}$	Voltage on V_{PP} (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{1}$

MODE	$\mathbf{C E}$	$\mathbf{O E}^{2}$	PGM 2	$\mathrm{~V}_{\mathrm{PP}^{\mathbf{3}}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{HH}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{HH}	V_{HH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

NOTES:

1. All voltages are with respect to network ground.
2. X can be $V_{I H}$ or $V_{I L}$.
3. $V_{\text {PP }}$ may be one diode voltage drop below $V_{C C}$, and can be connected directly to $V_{C C}$.

One Time Programmable 64K ($8 \mathrm{~K} \times 8$) EPROMs

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{1+}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {cc }}$		0.01	1.0	$\mu \mathrm{A}$
$1 / 2$	Low	$\mathrm{V}_{\mathrm{HL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	$V_{\text {Pp }}$ read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$			100	$\mu \mathrm{A}$
Output current						
'Lo	Leakage	$\begin{gathered} \text { OE or CE }=V_{I H} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$			1.0	$\mu \mathrm{A}$
		$V_{\text {OUT }}=O V=G N D$			1.0	$\mu \mathrm{A}$
los	Short circuit7, 9	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
lcc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{O E}=\overline{C E}=V_{\mathrm{IL}}, \mathrm{f}=8.0 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{O}_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{C E}=\mathrm{V}_{1 \mathrm{H}}$	-		100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {LI }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{cc}}$	-0.5		0.8	V
V_{H}	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	V
V_{IH}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{V}_{\text {cc }}+0.5$	V
$\mathrm{V}_{\text {IH }}$	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\text {cc }}-0.2$		$V_{c c}+0.2$	V
$\mathrm{V}_{\text {pp }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{cc}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$1 \mathrm{CL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{I}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$			6	pF
$\mathrm{C}_{\text {OUT }}$	Outputs	$\begin{gathered} V_{\text {IN }}=O V \\ V_{\text {OUT }}=O V \end{gathered}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels. CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}} \pm 0.2 \mathrm{~V}$.
5. $C E$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{P P}+I_{C C}$ and is measured at a frequency ofd 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. $V_{p p}$ may be one diode voltage drop below $V_{C c}$, and can be connected directly to $V_{C c}$.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{\text {IH }}$ or $V_{\text {IL }}$.

One Time Programmable 64K ($8 \mathrm{~K} \times 8$) EPROMs

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C64A-12		27C64A-15		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {AcC }}$	Output	Address		120		150	ns
$\mathrm{t}_{\text {CE }}$	Output	CE		120		150	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	OE		60		65	ns
Disable time ${ }^{2}$							
$t_{\text {DF }}{ }^{4}$	Output Hi-Z	OE or CE		30		45	ns
t_{OH}	Output hold	Address, $\overline{C E}$ or $\overline{O E}$	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. \bar{O} may be delayed up to $\mathrm{t}_{C E}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{C E}$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $O E$ or $C E$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

27C64A O.T.P.
 One Time Programmable $64 \mathrm{~K}(8 \mathrm{~K} \times 8$) EPROMs

Product Specification

Application Specific Products

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds
- 27C64A-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)

DESCRIPTION

Signetics 27C64A CMOS O.T.P. EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

The 27C64A O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMS provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times. In the absence of quick-pulse programming equipment, the intelligent programming algorithm may be utilized.

PIN DESCRIPTION

$A_{0}-A_{12}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
N.C.	No connection
GND	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$D U$	Don't use
PGM	Program strobe

BLOCK DIAGRAM

One Time Programmable 64K ($8 \mathrm{~K} \times 8$) EPROMs

READ MODE: 27C64A
The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable ($\overline{O E}$) is the outputcontrol and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $O E$, assuming that CE has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu A$. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28 -Pin Plastic Dual in-line 600 mil-wide	$27 \mathrm{C} 64 \mathrm{~A}-20 \mathrm{~N}$
32 -Pin Plastic Leaded Chip Carrier $450 \mathrm{mil} \times 550 \mathrm{mil}$	$27 \mathrm{C} 64 \mathrm{~A}-20 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{0}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on V_{PP} (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and funtional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{1}$

MODE	$\mathbf{C E}$	$\mathbf{O E}^{2}$	PGM 2	$\mathrm{~V}_{\mathrm{PP}^{3}}$	OUTPUTS
Read	V_{H}	V_{H}	V_{H}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{HL}	V_{H}	V_{HH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{HH}	X	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

NOTES:

1. All voltages are with respect to network ground.
2. X can be $V_{\mathbb{H}}$ or $V_{I L}$.
3. $V_{\text {Pp }}$ may be one diode voltage drop below $V_{C C}$, and can be connected directly to $V_{C C}$.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
$\mathrm{I}_{1 \mathrm{H}}$	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {cC }}$		0.01	1.0	$\mu \mathrm{A}$
ILI	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
IPP	Vpp read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$			100	$\mu \mathrm{A}$
Output current						
ILo	Leakage	$\overline{\mathrm{C}}$ or $\mathrm{CE}=\mathrm{V}_{\mathrm{IH}}$ $V_{\text {out }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$ $V_{\text {OUT }}=O V=G N D$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7} 9$	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{O E}=\overline{C E}=V_{\mathrm{IL}}, f=5.0 \mathrm{MHz} \\ V_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{O}_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=\mathrm{V}_{\mathbb{H}}$			1.0	mA
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{1}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
V_{LL}	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	V
V_{IH}	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	2.0		$V_{C c}+0.5$	V
V_{IH}	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$	$V_{c c}-0.2$		$V_{C c}+0.2$	V
V_{PP}	Read ${ }^{8}$	(Operating)	$V_{\text {cc }}-0.7$		$V_{\text {cc }}$	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{\circ} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$			6	pF
Cout	Outputs	$\begin{gathered} V_{\text {IN }}=0 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $l_{P P}+I_{C C}$ and is measured at a frequency ofd 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. $V_{\text {PP }}$ may be one diode voltage drop below $V_{C c}$, and can be connected directly to $V_{C c}$.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{I H}$ or $V_{I L}$.

One Time Programmable 64K ($8 \mathrm{~K} \times 8$) EPROMs

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	T0	FROM	27C64A-20		UNIT
			Min	Max	
Access time ${ }^{1}$					
$\mathrm{t}_{\mathrm{Acc}}$	Output	Address		200	ns
$\mathrm{t}_{\text {ce }}$	Output	CE		200	ns
tOE^{3}	Output	OE		75	ns
Disable time ${ }^{2}$					
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	OE or CE		55	ns
t_{OH}	Output hold	Address, CE or OE	0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. OE may be delayed up to $\mathrm{t}_{C E}$ - t_{OE} after the falling edge of CE without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E}$ or $C E$, whichever occurs first.
aC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

27C64A U.V. 64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27C64A CMOS EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764

The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds - 27C64A-10: 100ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {Cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{12}$	Addresses
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{CE}}$	Chip enable
N.C.	No connection
GND	Ground
V_{PP}	Program voltage
V_{CC}	Power supply
$\overline{\text { PGM }}$	Program strobe

PIN CONFIGURATION

BLOCK DIAGRAM

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{\text {OE }}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic DIP with quartz window (600mil-wide)	$27 \mathrm{C} 64 \mathrm{~A}-10 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTES:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{10}$	$\overline{\mathbf{P G M}}^{10}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{IH}	V_{CC}	$\mathrm{D}_{\text {OUT }}$
Output disable	V_{IL}	V_{IH}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page.

64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{IH}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
$1 / 2$	Low	$\mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
lpp	$\mathrm{V}_{\text {Pp }}$ read	$V_{\text {PP }}=V_{C C}$			100	$\mu \mathrm{A}$
Output current						
ILO	Leakage	$\begin{gathered} \overline{O E} \text { or } \overline{C E}=V_{I H} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=V_{C C} \\ V_{\text {OUT }}=O V=G N D \end{gathered}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7} 9$	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{LL}}, f=10 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{\text {IH }}$			1.0	mA
$I_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voitage ${ }^{2}$						
V_{IL}	Low (TTL)	$V_{P P}=V_{C C}$	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	V
V_{IH}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{v}_{\text {cc }}+0.5$	v
$\mathrm{V}_{1 H}$	High (CMOS)	$V_{\text {PP }}=V_{c c}$	$\mathrm{v}_{\text {cc }}-0.2$		$\mathrm{v}_{\mathrm{cc}}+0.2$	v
$V_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$v_{C C}-0.7$		$\mathrm{V}_{C C}$	V
Output voltage ${ }^{2}$						
VOL	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
CiN_{1}	Address and control	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{f}=1.0 \mathrm{MHZ} \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ levels.

CMOS inputs: $G N D \pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{C C} \pm 0.2 \mathrm{~V}$.
5. $\overline{\mathrm{CE}}$ is $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. $V_{P P}$ may be one diode voltage drop below $V_{C C}$, and can be connected directly to $\mathrm{V}_{C C}$.
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C64A - 10		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		100	ns
t_{CE}	Output	$\overline{\mathrm{CE}}$		100	ns
$\mathrm{t}_{O} \mathrm{E}^{3}$	Output	$\overline{\mathrm{OE}}$		35	ns
Disable time ${ }^{2}$					
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		25	ns
${ }^{\text {toh }}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{\mathrm{OE}}$ may be delayed $u p$ to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}
4. $t_{D F}$ is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

ac Voltage waveforms

Figure 1. Test Configuration

Application Specific Products

FEATURES

- Low power consumption
$-100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds
- 27C64A-12: 120ns maximum access time
- 27C64A-15: 150ns maximum access time
- Noise immunity features
$- \pm 10 \% V_{c c}$ tolerance
- Maximum latch-up immunity through Epitaxial processing

DESCRIPTION

Signetics 27C64A CMOS EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

27C64A U.V. UV Erasable
 $64 \mathrm{~K}(8 \mathrm{~K} \times 8$) EPROMs

Product Specification

The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

PIN DESCRIPTION

$A_{0}-A_{12}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
N.C.	No connection
GND	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
PGM	Program strobe

PIN CONFIGURATION

BLOCK DIAGRAM

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{O E}$, assuming that CE has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu A$. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28 -Pin CERDIP with quartz window (600mil-wide)	$27 \mathrm{C} 64 \mathrm{~A}-12 \mathrm{FA}$
	$27 \mathrm{C} 64 \mathrm{~A}-15 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTES:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{1}$

MODE	CE	OE 2	PGM 2	$V_{P P}{ }^{3}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{IH}	V_{CC}	DOUT
Output disable	V_{IL}	V_{HH}	$\mathrm{V}_{\mathbb{H}}$	V_{CC}	$\mathrm{Hi-Z}$
Standby	V_{IH}	X	X	V_{CC}	$\mathrm{Hi-Z}$

NOTES:

1. All voltages are with respect to network ground.
2. X can be $V_{I H}$ or $V_{i L}$.
3. $V_{P P}$ may be one diode voltage drop below $V_{C C}$, and can be connected directly to $V_{C C}$.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
$1 / 2$	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	V_{pp} read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
$\mathrm{l}_{\text {Lo }}$	Leakage	$\begin{gathered} \text { OE or } C E=V_{I H} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{gathered}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7.9}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{O E}=C E=V_{\text {LL }} f=8.0 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			1.0	mA
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5,6}$	$\mathrm{CE}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{L}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$	-0.5		0.8	V
V_{LI}	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	V
$\mathrm{V}_{\text {IH }}$	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$	2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V
$\mathrm{V}_{\text {IH }}$	High (CMOS)	$V_{P P}=V_{C C}$	$V_{c c}-0.2$		$v_{c c}+0.2$	V
$\mathrm{V}_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$V_{c c}-0.7$		V_{Cc}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{\circ} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$			6	pF
$\mathrm{Cout}^{\text {coin }}$	Outputs	$\begin{gathered} V_{\text {IN }}=0 \mathrm{~V} \\ V_{\text {OUT }}=O \mathrm{~V} \end{gathered}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specifications.
6. Maximum active power usage is the sum of $I_{p p}+I_{c c}$ and is measured at a frequency ofd 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{Pp} may be one diode voltage drop below V_{Cc}, and can be connected directly to V_{Cc}
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

UV Erasable $64 \mathrm{~K}(8 \mathrm{~K} \times 8)$ EPROMs

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C64A-12		27C64A-15		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {ACC }}$	Output	Address		120		150	ns
$t_{\text {ce }}$	Output	CE		120		150	ns
toE^{3}	Output	OE		60		65	ns
Disable time ${ }^{2}$							
$t_{\text {dFF }}{ }^{4}$	Ou'put Hi-Z	OE or CE		30		45	ns
t_{OH}	Output hold	Address, CE or OE	0		0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{H H}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $O E$ may be delayed up to $\mathrm{t}_{C E}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $C E$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $O E$ or $C E$, whichever occurs first.

aC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

DESCRIPTION

Signetics' 27C64A CMOS EPROM is a 64 K -bit 5 V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.
The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current

27C64A U.V. 64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

- High-performance speeds
- 27C64A-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{12}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
N.C.	No connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$\overline{P G M}$	Program strobe

PIN CONFIGURATION

BLOCK DIAGRAM

64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of $t_{O E}$ from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{\text {OE }}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin CERDIP with quartz window (600mil-wide)	$27 \mathrm{C} 64 \mathrm{~A}-20 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{P P}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{\mathbf{1 0}}$	$\overline{\text { PGM }}^{\mathbf{1 0}}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{IH}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	V_{HH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

[^6]DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
IL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	V_{pp} read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
Lo	Leakage	$\begin{gathered} \overline{O E} \text { or } \overline{C E}=V_{I H} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=V_{C C} \\ V_{\text {OUT }}=0 \mathrm{~V}=G N D \end{gathered}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7}$. 9	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
${ }^{\text {ICC }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} C E=O E=V_{I L} f=5 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \\ \hline \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V^{\prime} \mathrm{H}$			1.0	mA
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{C E}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
V_{LL}	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	v
V_{H}	High (TTL)	$V_{\text {PP }}=V_{\text {cc }}$	2.0		$v_{c c}+0.5$	v
V_{H}	High (CMOS)	$V_{\text {PP }}=V_{C C}$	$\mathrm{V}_{\text {CC }}-0.2$		$v_{C c}+0.2$	v
$\mathrm{V}_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {CC }}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	v
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CIN}_{\text {IN }}$	Address and control	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification.
6. Maximum active power usage is the sum of $I_{P P}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{iH} or V_{HL}.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C64A - 20		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		200	ns
${ }^{\text {t }}$ CE	Output	$\overline{\mathrm{CE}}$		200	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{O E}$		75	ns
Disable time ${ }^{2}$					
$t_{\text {DF }}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		55	ns
t_{OH}	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{I H}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. OE may be delayed up to $\mathrm{I}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on I_{CE}
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

ac Voltage waveforms

Figure 1. Test Configuration

27HC641 O.T.P. One Time Programmable 64K-Bit CMOS EPROM ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

The 27HC641 CMOS, O.T.P. EPROM is a high-speed electrically programmable Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single $5 \mathrm{~V} \pm 10 \%$ power supply. All outputs offer 3-State operation and are fully TTL compatible.
The $27 \mathrm{HC641}$ uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing simplifying the design of electronic equipment which is subject to high noise environments.
The 27HC641 is available in industry standard packages with the same pinout as most 64 K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

FEATURES

- Address access time:
- 27HC641-55 55ns max
- 27HC641-45 45ns max
- Operating $\mathrm{I}_{\mathrm{C}}: 110 \mathrm{~mA}$ max
- 3-State outputs
- JEDEC standard 24-pin DIP and 28-pin PLCC package
- Direct replacement for standard 64K TTL PROMs
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
	$\mathbf{4 5 n s}$	55 ns
24-pin plastic DIP (600mil-wide)	$27 \mathrm{HC} 641-45 \mathrm{~N}$	$27 \mathrm{HC} 641-55 \mathrm{~N}$
28-pin plastic leaded chip carrier	$27 \mathrm{HC} 641-45 \mathrm{~A}$	$27 \mathrm{HC641-55} \mathrm{~A}$

BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN NAMES

$A_{0}-A_{12}$	Address inputs
$O_{1}-O_{8}$	Data outputs
\bar{G}	Output Enable
$V_{C C}$	Supply voltage
$N C$	No Connect
$G N D$	Ground $\left(V_{S S}\right)$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
V_{1}, V_{O}	Voltage on any pin 2	-0.5 to $V_{C C}+1 \mathrm{~V}$	V
T_{A}	Temperature under bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$V_{P P}$	Voltage on \bar{G} pin	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Supply voltage						
$\mathrm{V}_{\text {CC }}$		GND $=0 \mathrm{~V}$	4.5	5.0	5.5	V
Input voltage						
V_{1}	High		2.0		$\mathrm{V}_{C C}+0.5$	V
V_{lL}	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input Current						
I_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
$1 / L^{3}$	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			10	$\mu \mathrm{A}$
Output Current						
Lo	Leakage	$V_{\text {OUT }}=0$ to $V_{C C}$			± 10	$\mu \mathrm{A}$
los	Output short-circuit current ${ }^{4}$	$V_{\text {OUT }}=0 \mathrm{~V}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	-15		-70	mA
Supply Current						
Icc	V_{CC} operating current	$\begin{gathered} \bar{G}=V_{1 H}, O_{1-8}=0 \mathrm{~mA}, \\ f=20 \mathrm{MHz} \end{gathered}$			110	mA
Input Voltage						
$V_{\text {IC }}$	Input clamp voltage	$I_{\text {I }}=-12 \mathrm{~mA}$			-1.2	V
Output Voltage						
V_{OH}	High	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.45	V
Capacitance ${ }^{5}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} f=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Output				12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Input current for $\overline{\mathrm{G}}$ input only $=-100 \mu \mathrm{~A}$.
4. Test one output at a time for 1 sec max.
5. Capacitance limits are sampled and not 100% tested.

One Time Programmable

 64K-Bit CMOS EPROM $(8 \mathrm{~K} \times 8)$AC ELECTRICAL CHARACTERISTICS $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=98 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	27HC641-45		27HC641-55		UNIT
				Min	Max	Min	Max	
$t_{A A}$	Address access time	Output	Address		45		55	ns
$t_{\text {ES }}$	Output Enable access time	Output	Output Enable		25		30	ns
$t_{\text {ED }}$	Output disable time	Output	Output Enable		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

27HC641 U.V.

64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

The 27 HC 641 is a CMOS, high-speed ultraviolet light erasable electrically programmable Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single $5 \mathrm{~V} \pm 10 \%$ power supply. All outputs offer 3 -State operation and are fully TTL-compatible.
The 27HC641 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC641 is available in an industry standard 24 -pin dual in-line package with the same pinout as most 64 K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

FEATURES

- Address access time:
- 27HC641-55 55ns max
- 27HC641-45 45ns max
- 27HC641-35 35ns max
- Operating I_{Cc} : 110 mA max
- 3-State outputs
- JEDEC standard 24-pin DIP package
- Direct replacement for standard 64K TTL PROMs
- Fully TTL-compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE		
	35 ns	45 ns	55ns
24-pin ceramic DIP with quartz window 600 mil-wide	$27 \mathrm{HC} 641-35 \mathrm{FA}$	$27 \mathrm{HC} 641-45 \mathrm{FA}$	$27 \mathrm{HC} 641-55 \mathrm{FA}$

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{12}$	Address inputs
$O_{1}-O_{8}$	Data outputs
\bar{G}	Output Enable
$V_{C C}$	Supply voltage
$G N D$	Ground $\left(V_{S S}\right)$

BLOCK DIAGRAM

64K-Bit Erasable CMOS EPROM ($8 \mathrm{~K} \times 8$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage on any pin^{2}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$	V
$\mathrm{~T}_{\mathrm{A}}$	Temperature under bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
V_{PP}	Voltage on Pin 20^{2}	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Supply voltage						
V_{CC}		GND $=0 \mathrm{~V}$	4.5	5.0	5.5	V
Input voltage						
V_{IH}	High		2.0		$V_{C C}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input Current						
$\mathrm{I}_{1 /}$	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
112	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			10	$\mu \mathrm{A}$
Output Current						
ILO	Leakage	$V_{\text {OUT }}=0$ to $V_{\text {CC }}$			± 10	$\mu \mathrm{A}$
los	Output short-circuit current ${ }^{4}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}$	-15		-70	mA
Supply Current						
Icc	$V_{\text {CC }}$ operating current	$\begin{gathered} \bar{G}=V_{1 H}, O_{1-8}=0 \mathrm{~mA}, \\ f=20 \mathrm{MHz} \end{gathered}$			110	mA
Input Voltage						
VIC	Input clamp voltage	$I_{1 C}=-12 \mathrm{~mA}$			-1.2	V
Output Voltage						
V_{OH}	High	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.45	V
Capacitance ${ }^{5}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} \mathrm{f}=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{gathered}$			6	pF
$\mathrm{Cout}^{\text {O }}$	Output				12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only.

Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Input current for \bar{G} input only $=-100 \mu \mathrm{~A}$.
4. Test one output at a time for 1 sec max.
5. Capacitance limits are sampled and not 100% tested.

AC ELECTRICAL CHARACTERISTICS $C_{L}=30 p F, R_{L}=98 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	27HC641-35		27HC641-45		27HC64 1-55		UNIT
				Min	Max	Min	Max	Min	Max	
$t_{\text {AA }}$	Address access time	Output	Address		35		45		55	ns
$t_{\text {ES }}$	Output Enable access time	Output	Output Enable		20		25		30	ns
$t_{E D}$	Output disable time	Output	Output Enable		20		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

128K-bit CMOS EPROM

page
27 HC 128 O.T.P. 128 K -bit CMOS EPROMs (16K x 8) $45 \mathrm{~ns} ; 55 \mathrm{~ns} . .$.

27HC128 O.T.P. One Time Programmable 128K ($16 \mathrm{~K} \times 8$) EPROMs

Preliminary Specification

Application Specific Products

DESCRIPTION

The 27 HC 128 CMOS, O.T.P. EPROM is a high-speed electrically programmable Read Only Memory. It is organized as 16,384 words of 8 bits and operates from a single $5 \mathrm{~V} \pm 10 \%$ power supply. All outputs offer 3-State operation and are fully TTL compatible.

The 27 HC 128 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing simplifying the design of electronic equipment which is subject to high noise environments.
The 27 HC 128 is available in industry standard packages with the same pinout as most 128 K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

FEATURES

- Address access time:
- 27HC128-55 55ns max
- 27HC128-45 45ns max
- Operating I_{Cc} : $110 \mathrm{~mA} \max$
- 3-State outputs
- JEDEC standard 28-pin DIP and 28-pin PLCC package
- Direct replacement for standard 128K TTL PROMs
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
	45 ns	55ns
28-pin plastic DIP (600mil-wide)	$27 \mathrm{HC128-45} \mathrm{~N}$	$27 \mathrm{HC1} 28-55 \mathrm{~N}$
28-pin fiastic leaded chip carrier	$27 \mathrm{HC1} 28-45 \mathrm{~A}$	$27 \mathrm{HC} 128-55 \mathrm{~A}$

BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN NAMES

$A_{0}-A_{13}$	Address inputs
$O_{1}-O_{8}$	Data outputs
$\bar{G}-G$	Output Enables
$V_{C C}$	Supply voltage
$G N D$	Ground $\left(V_{S S}\right)$

One Time Programmable 128K (16K $\times 8$) EPROMs

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
V_{1}, V_{O}	Voltage on any pin 2	-0.5 to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$	V
$\mathrm{~T}_{\mathrm{A}}$	Temperature under bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {PP }}$	Voltage on $\overline{\mathrm{G}}$ pin	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Supply voltage						
$\mathrm{V}_{\text {cc }}$		GND $=0 \mathrm{~V}$	4.5	5.0	5.5	V
Input voltage						
$\mathrm{V}_{\text {IH }}$	High		2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input Current						
$\mathrm{IIH}^{\text {H }}$	High	$V_{\text {IN }}=V_{\text {CC }}$			10	$\mu \mathrm{A}$
$1_{11}{ }^{3}$	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			10	$\mu \mathrm{A}$
Output Current						
ILO	Leakage	$V_{\text {OUT }}=0$ to $V_{\text {CC }}$			± 10	$\mu \mathrm{A}$
los	Output short-circuit current ${ }^{4}$	$V_{\text {OUT }}=O V, \bar{G}=V_{\text {IL }}$	-15		-70	mA
Supply Current						
ICC	$V_{\text {CC }}$ operating current	$\begin{gathered} \overline{\mathrm{G}}=V_{\mathrm{IH}}, \mathrm{O}_{1-8}=0 \mathrm{~mA} \\ \mathrm{f}=20 \mathrm{MHz} \end{gathered}$			110	mA
Input Voltage						
$V_{\text {IC }}$	Input clamp voltage	$I_{I C}=-12 \mathrm{~mA}$			-1.2	V
Output Voltage						
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.45	V
Capacitance ${ }^{5}$						
$\mathrm{Cin}^{\text {N }}$	Input	$\begin{gathered} f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \\ V_{I N}=0 V \end{gathered}$			6	pF
COUT	Output	$V_{\text {OUT }}=5.0 \mathrm{~V}$			12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability,
2. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Input current for \bar{G} input only $=-100 \mu \mathrm{~A}$.
4. Test one output at a time for 1 sec max.
5. Capacitance limits are sampled and not 100% tested.

One Time Programmable 128K ($16 \mathrm{~K} \times 8$) EPROMs $\quad 27 \mathrm{HC} 128$ O.T.P.

AC ELECTRICAL CHARACTERISTICS $C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=98 \Omega .0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	27HC128-45		27HC128-55		UNIT
				Min	Max	Min	Max	
$t_{\text {AA }}$	Address access time	Output	Address		45		55	ns
$t_{\text {ES }}$	Output Enable access time	Output	Output Enable		25		30	ns
$t_{\text {ED }}$	Output disable time	Output	Output Enable		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

i

Application Specific Products

DESCRIPTION

The 27 HC 128 is a CMOS, high-speed Ultra-violet light erasable electrically programmable Read Only Memory. It is organized as 16,384 words of 8 bits and operates from a single $5 \mathrm{~V} \pm 10 \%$ power supply. All outputs offer 3-State operation and are fully TTL-compatible.

The 27 HC 128 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to high noise environments.

The 27 HC 128 is available in an industry standard 24 -pin dual-in-line package with the same pin out as most 128 K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

ORDERING INFORMATION

PACKAGE DESCRIPTION	45 ns	ORDER CODE
		55 ns
28-pin ceramic DIP with quartz window 600 mil-wide	$27 \mathrm{HC} 128-45 \mathrm{FA}$	$27 \mathrm{HC} 128-55 \mathrm{FA}$

FEATURES

- Address access time:
- 27HC128-55 55ns max
- 27HC128-45 45ns max
- Operating Icc: 110 mA max
- 3-State outputs
- JEDEC standard 24-pin DIP package
- Direct replacement for standard 128K TTL PROMs
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{13}$	Address inputs
$O_{1}-O_{8}$	Data outputs
\bar{G}	Output Enable
V_{CC}	Supply voltage
$G N D$	Ground $\left(V_{\mathrm{SS}}\right)$

BLOCK DIAGRAM

128K Erasable CMOS (16K $\times 8$) EPROM

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage on any pin 2	-0.5 to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$	V
$\mathrm{~T}_{\mathrm{A}}$	Temperature under bias	-10 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {PP }}$	Voltage on Pin 20^{2}	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Supply voltage						
$V_{\text {CC }}$		$G N D=0 V$	4.5	5.0	5.5	V
Input voltage						
V_{IH}	High		2.0		$V_{C C}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{v}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input Current						
$\mathrm{I}_{\text {IH }}$	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
$11{ }^{3}$	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$:	10	$\mu \mathrm{A}$
Output Current						
lo	Leakage	$V_{\text {OUT }}=0$ to $V_{\text {CC }}$			± 10	$\mu \mathrm{A}$
los	Output short-circuit current ${ }^{4}$	$V_{\text {OUT }}=0 V, \bar{G}=V_{\text {IL }}$	-15		-70	mA
Supply Current						
Icc	V_{CC} operating current	$\begin{gathered} \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH},} \mathrm{O}_{1-8}=0 \mathrm{~mA}, \\ \mathrm{f}=20 \mathrm{MHz} \end{gathered}$			110	mA
Input Voltage						
$V_{\text {IC }}$	Input clamp voltage	$\mathrm{I}_{\mathrm{C}}=-12 \mathrm{~mA}$			-1.2	V
Output Voltage						
$\mathrm{VOH}_{\mathrm{O}}$	High	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.45	V
Capacitance ${ }^{5}$						
$\mathrm{CiN}_{\text {I }}$	Input	$\begin{gathered} f=1 \mathrm{MHZ}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Output				12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability
2. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Input current for \bar{G} input only $=-100 \mu \mathrm{~A}$.
4. Test one output at a time for 1 sec max.
5. Capacitance limits are sampled and not 100% tested.

AC ELECTRICAL CHARACTERISTICS $C_{L}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=98 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	27HC128-45		27HC128-55		UNIT
				Min	Max	Min	Max	
$t_{A A}$	Address access time	Output	Address		45		55	ns
$t_{\text {ES }}$	Output Enable access time	Output	Output Enable		25		30	ns
$t_{\text {ED }}$	Output disable time	Output	Output Enable		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

256K-bit CMOS EPROM
page
27C256-IND 256K-bit EPROMs (32K x 8) 150 ns; 200 ns 233
27C256 O.T.P. 256K-bit EPROM (32K x 8) 120 ns 237
27C256 O.T.P. 256K-bit EPROMs (32K x 8) 150 ns; 170 ns 241
27C256 O.T.P. 256K-bit EPROM (32K x 8) 200 ns 245
27C256 U.V. 256K-bit erasable EPROM (32K x 8) 120 ns 249
27C256 U.V. 256K-bit erasable EPROMs (32K x 8) 150 ns; 170 ns 253
27C256 U.V. 256K-bit erasable EPROM (32K x 8) 200 ns 257

Application Specific Products

DESCRIPTION

Signetics 27 C 256 CMOS EPROM is a 256K-bit 5 V only memory organized as 131,072 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.
The 27 C 256 is specified to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with no degradation in performance.

The 27 C 256 is available in both the windowed Ceramic DIP, the plastic DIP and the PLCC Packages. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming (4 second typical programming times)

BLOCK DIAGRAM

READ MODE: 27C256

The 27 C 256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}})$ is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin CERDIP with quartz window (600mil-wide)	27 C 256115 FA
27 C 256120 FA	
28 -pin Plastic Dual in-line (600mil-wide)	27 C 256115 N
27 C 256120 N	
32-pin Plastic Leaded Chip Carrier (450 $\times 550 \mathrm{mil})$	27 C 256115 A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{10}$	$\mathrm{~V}_{\mathrm{PP}}{ }^{8}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	x	V_{CC}	Hi Z

Notes on following page.

256K (32K $\times 8$) EPROMs Industrial Temperature Range

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{IH}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
IL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	V_{pp} read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
Lo	Leakage	$\begin{gathered} \overline{O E} \text { or } \overline{C E}=V_{H H} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=V_{C C} \\ V_{\text {OUT }}=O V=G N D \end{gathered}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
Ios	Short circuit ${ }^{7.9}$	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}}, \mathrm{f}=6.7 \mathrm{MHz} \\ V_{\mathrm{PP}}=V_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{1 H}$			1.0	$\mu \mathrm{A}$
$I_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voitage ${ }^{\mathbf{2}}$						
$V_{\text {IL }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {c }}$	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	V
$\mathrm{V}_{\text {IH }}$	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{1}	High (CMOS)	$V_{P P}=V_{C C}$	${ } \mathrm{V}_{\mathrm{cc}}-0.2$		$v_{C C}+0.2$	V
$\mathrm{V}_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\mathrm{Cc}}-0.7$		V_{CC}	V
Output voltage ${ }^{\text {2 }}$						
V_{OL}	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{I}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
CiN_{1}	Address and control	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{f}=1.0 \mathrm{MHZ} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. CE is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification.
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}. and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{iH} or V_{iL}.

256K (32K $\times 8$) EPROMs Industrial Temperature Range

AC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256115		27C256120		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {ACC }}$	Output	Address		150		200	ns
t_{CE}	Output	$\overline{\mathrm{CE}}$		150		200	ns
tOE^{3}	Output	$\overline{\mathrm{OE}}$.		65		75	ns
Disable time ${ }^{2}$							
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	$\overline{O E}$ or $\overline{C E}$		45		55	ns
${ }^{\text {toh }}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

Figure 1. Test Configuration

27C256 O.T.P. One Time Programmable 256K (32K $\times 8$) EPROMs

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27 C 256 CMOS O.T.P. EPROM is a 256 K -bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming

BLOCK DIAGRAM

- High-performance speeds
- 27C256-12: 120ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {Cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
N.C.	No connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$D U$	Don't use

PIN CONFIGURATIONS

READ MODE: 27 C 256
The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of $t_{O E}$ from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{\mathrm{OE}}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin plastic DIP (600mil-wide $)$	$27 \mathrm{C} 256-12 \mathrm{~N}$
32-pin plastic leaded chip carrier $(450 \mathrm{mil} \times 550 \mathrm{mil})$	$27 \mathrm{C} 256-12 \mathrm{~A}$

absolute maximum ratings ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{\mathrm{g}}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	${\text { Voltage on } \mathrm{V}_{\mathrm{PP}}{ }^{2} \text { (During programming) }}^{\mathrm{V}_{\mathrm{CC}}}$	Supply voltage 2	-2.0 to +14.0

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}{ }^{\mathbf{1 0}}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LImits			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
$\mathrm{IIH}^{\text {H }}$	Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
ILL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	-1.0	$\mu \mathrm{A}$
Ipp	$\mathrm{V}_{\text {pp }}$ read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
Lo	Leakage	$\begin{gathered} \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ V_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{gathered}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7.9}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{f}=8.0 \mathrm{MHz} \\ V_{P P}=V_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{\text {IH }}$			1.0	$\mu \mathrm{A}$
$I_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	v
V_{IL}	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	V
V_{H}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{v}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{1 H}$	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}$	$v_{C C}-0.2$		$V_{C C}+0.2$	V
V_{PP}	Read ${ }^{8}$	(Operating)	$V_{C C}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	v
V_{OH}	High	$\mathrm{IOH}^{\text {O }}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CiN}_{1 \times}$	Address and control	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
$\mathrm{C}_{\text {OUt }}$	Outputs				12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{i L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{P P}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256-12		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		120	ns
$\mathrm{t}_{\text {CE }}$	Output	$\overline{C E}$		120	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{O E}$		60	ns
Disable time ${ }^{2}$					
$t_{\text {DF }}{ }^{4}$	Output High-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		30	ns
${ }^{\text {toh }}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0	.	ns

NOTES:

. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
Guaranteed by design, not 100% tested.
$\overline{O E}$ may be delayed up to $t_{C E}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{C E}$.
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

27C256 O.T.P. One Time Programmable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

Product Specification

Application Specific Products

DESCRIPTION

Signetics 27C256 CMOS O.T.P. EPROM is a 256 K -bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27 C 256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming

BLOCK DIAGRAM

- High-performance speeds
- 27C256-15: 150ns maximum access time
- 27C256-17: 170ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {CC }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{CE}}$	Chip enable
N.C.	No connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$D U$	Don't use

PIN CONFIGURATIONS

One Time Programmable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{\mathrm{OE}}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin plastic dual in-line (600mil-wide)	$27 \mathrm{C} 256-15 \mathrm{~N}$ $27 \mathrm{C} 256-17 \mathrm{~N}$
32-pin plastic leaded chip carrier $(450 \mathrm{mil} \times 550 \mathrm{mil})$	$27 \mathrm{C} 256-15 \mathrm{~A}$
$27 \mathrm{C} 256-17 \mathrm{~A}$	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	${\text { Voltage on } \mathrm{V}_{\mathrm{PP}}{ }^{2} \text { (During programming) }}^{\mathrm{V}_{\mathrm{CC}}}$	Supply voltage 2	-2.0 to +14.0

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}{ }^{\mathbf{1 0}}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
ILL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	-1.0	$\mu \mathrm{A}$
lpp	$V_{\text {pp }}$ read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
'Lo	Leakage	$\begin{gathered} \overline{O E} \text { or } \overline{C E}=V_{\text {IH }} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=V_{C C} \\ V_{\text {OUT }}=0 \mathrm{~V}=G N D \end{gathered}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7 .} 9$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{f}=6.7 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	$\mu \mathrm{A}$
$I_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{IL}	Low (TTL)	$V_{P P}=V_{C C}$	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$V_{\text {PP }}=V_{\text {cc }}$	-0.2		0.2	V
V_{1}	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	2.0		$v_{C C}+0.5$	V
V_{IH}	High (CMOS)	$V_{P P}=V_{C C}$	$\mathrm{V}_{\mathrm{Cc}}-0.2$		$\mathrm{V}_{C C}+0.2$	V
$\mathrm{V}_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\mathrm{CC}}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	v
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{VV} \end{aligned}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{i H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. CE is $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $\mathrm{I}_{\mathrm{pp}}+\mathrm{I}_{\mathrm{CC}}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{Pp} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{I H}$ or $V_{I L}$.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256-15		27C256-17		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {ACC }}$	Output	Address		150		170	ns
${ }^{\text {t }}$ CE	Output	$\overline{\mathrm{CE}}$		150		170	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		65		70	ns
Disable time ${ }^{2}$							
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		45		55	ns
${ }^{\text {toh }}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{O E}$ may be delayed $u p$ to $t_{C E}-t_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

Application Specific Products

DESCRIPTION

Signetics' 27C256 CMOS O.T.P. EPROM is a 256 K -bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27 C 256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hurdred times.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds
- 27C256-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {CC }}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm
PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{\mathrm{CE}}$	Chip enable
N.C.	No connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$D U$	Don't use

BLOCK DIAGRAM

PIN CONFIGURATIONS

READ MODE: 27C256

The 27 C 256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{\text {OEE }}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin plastic DIP 600 mil-wide	$27 \mathrm{C} 256-20 \mathrm{~N}$
32 -pin plastic leaded chip carrier $450 \mathrm{mil} \times 550 \mathrm{mil}$	$27 \mathrm{C} 256-20 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}^{10}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	DOUT
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
IL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	V_{pp} read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
'Lo	Leakage	$\begin{gathered} \overline{\mathrm{OE} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}} \\ \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{gathered}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7 .} 9$	$V_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
lcc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{I L}, \quad \mathrm{f}=5.0 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low (TTL)	$V_{P P}=V_{C C}$	-0.5		0.8	v
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	V
$\mathrm{V}_{\text {IH }}$	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{v}_{C C}+0.5$	v
$\mathrm{V}_{1 H}$	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.2$		$\mathrm{V}_{C \mathrm{C}}+0.2$	v
$\mathrm{V}_{\text {PP }}$	Read ${ }^{\text {8 }}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{IOL}^{2}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance $^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CiN}_{\text {I }}$	Address and control	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ f=1.0 \mathrm{MHz} \\ V_{\text {IN }}=0 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{C C} \pm 0.2 \mathrm{~V}$.
5. $\overline{\mathrm{CE}}$ is $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{P P}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{C}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{iH} or V_{IL}.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	то	FROM	27C256-20		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		200	ns
$\mathrm{t}_{\text {CE }}$	Output	$\overline{\mathrm{CE}}$		200	ns
taE^{3}	Output	$\overline{O E}$		75	ns
Disable time ${ }^{2}$					
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		55	ns
t_{OH}	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{HH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{O E}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

ac Voltage waveforms

AC TESTING LOAD CIRCUIT

Figure 1. Test Configuration

27C256 U.V.
 Erasable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27 C 256 CMOS EPROM is a 256 K -bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming
- High-performance speeds
- 27C256-12: 120ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply

PIN CONFIGURATION

BLOCK DIAGRAM

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of $t_{O E}$ from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode. the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic DIP with quartz window (600mil-wide)	$27 \mathrm{C} 256-12 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1} . \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respeci to network ground.

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{10}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	$\mathrm{D}_{\text {OUT }}$
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	x	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{IH}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
IL	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	-1.0	$\mu \mathrm{A}$
lpp	V_{pp} read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
ILO	Leakage	$\begin{gathered} \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{1 H} \\ \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{gathered}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7}$. 9	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{IL},} \mathrm{f}=8.0 \mathrm{MHz} \\ V_{\mathrm{PP}}=V_{\mathrm{CC}} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$I_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{I H}$			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{IL}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
V_{IL}	Low (CMOS)	$V_{P P}=V_{C C}$	-0.2		0.2	V
V_{IH}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{IH}	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}$	$\mathrm{v}_{\mathrm{cc}}-0.2$		$\mathrm{V}_{\mathrm{CC}}+0.2$	V
V_{PP}	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{Clin}^{\text {a }}$	Address and control	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{VV} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{I H}$ or $V_{I L}$.

Erasable 256K (32K $\times 8$) EPROMs

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256-12		UNIT
			Min	Max	
Access time ${ }^{1}$					
$t_{\text {ACC }}$	Output	Address		120	ns
$t_{\text {ce }}$	Output	$\overline{\mathrm{CE}}$		120	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		60	ns
Disable time ${ }^{2}$					
$t_{\text {DF }}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		30	ns
${ }^{\text {toh }}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{I H}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
2. Guaranteed by design, not 100% tested.
3. $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

ac voltage waveforms

Figure 1. Test Configuration

27C256 U.V. Erasable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

Product Specification

Application Specific Products

DESCRIPTION

Signetics 27C256 CMOS EPROM is a 256 K -bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27 C 256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.
The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds
- 27C256-15: 150ns maximum access time
- 27C256-17: 170ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {Cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply

- Quick pluse programming algorithm for high-speed production programming

BLOCK DIAGRAM

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin cerdip with quartz window (600mil-wide)	$27 \mathrm{C} 256-15 \mathrm{FA}$
$27 \mathrm{C} 256-17 \mathrm{FA}$	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on interrogation)${ }^{2}$ (During intelligent identifier	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}^{10}$	$\mathbf{V}_{\mathbf{P P}}{ }^{\mathbf{8}}$	OUTPUTS
Read	V_{IL}	V_{IL}	V_{CC}	$\mathrm{D}_{\text {OUT }}$
Output disable	V_{IL}	V_{IH}	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{IH}	X	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

[^7]DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
$1 / 1$	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	-1.0	$\mu \mathrm{A}$
Ipp	$\mathrm{V}_{\text {pp }}$ read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$
Output current						
Lo	Leakage	$\begin{gathered} \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \\ V_{\text {OUT }}=5.5 \mathrm{~V}=V_{\mathrm{CC}} \\ V_{\text {OUT }}=0 \mathrm{~V}=G N D \end{gathered}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7} .9$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, f=6.7 \mathrm{MHz} \\ V_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{O}_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2		0.2	V
V_{IH}	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	\checkmark
V_{HH}	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}$	$\mathrm{v}_{\text {cc }}-0.2$		$\mathrm{V}_{\mathrm{CC}}+0.2$	V
$\mathrm{V}_{\text {PP }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{CC}	v
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
V_{OH}	High	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CiN}_{\text {I }}$	Address and control	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ f=1.0 \mathrm{MHZ} \\ V_{\text {IV }}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
$\mathrm{Cout}^{\text {cout }}$	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than $20 n \mathrm{n}$.
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels. CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. $V_{\text {Pp }}$ may be one diode voltage drop below $V_{C C}$, and can be connected directly to $V_{C C}$
9. Guaranteed by design, not 100% tested.
10. X can be $V_{\mathbb{H}}$ or $V_{i L}$.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \approx \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \approx \mathrm{~V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256-15		27C256-17		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t^{\text {ACC }}$	Output	Address		150		170	ns
$t_{\text {CE }}$	Output	$\overline{\mathrm{CE}}$		150		170	ns
$\mathrm{t}_{\text {OE }}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		65		70	ns
Disable time ${ }^{2}$							
$\mathrm{t}_{\mathrm{DF}}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		45		55	ns
t_{OH}	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{I H}=2.4 \mathrm{~V}$ and $V_{I L}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$
2. Guaranteed by design, not 100° o tested.
3. $\overline{O E}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{C E}$ without impact on t_{CE}
4. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.

ac Voltage waveforms

Figure 1. Test Configuration

27C256 U.V.
 Erasable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27 C256 CMOS EPROM is a 256K-bit 5 V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and imrnunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.
The 27 C 256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current

High-performance speeds

- 27C256-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {Cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output enable
$\overline{C E}$	Chip enable
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply

PIN CONFIGURATION

BLOCK DIAGRAM

Erasable 256K (32K $\times 8$) EPROMs

READ MODE: 27C256

The 27 C 256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin Ceramic DIP with quartz window (600mil-wide)	$27 \mathrm{C} 256-20 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on interrogation)${ }^{2}$ (During intelligent identifier	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (During programming)	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground

DEVICE OPERATION ${ }^{2}$

MODE	$\overline{C E}$	$\overline{O E}^{10}$	$V_{p p}{ }^{8}$	OUTPUTS
Read	$V_{\text {IL }}$	$V_{\text {IL }}$	$V_{C C}$	Dout
Output disable	$V_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{H}}$	V_{CC}	$\mathrm{H}_{1} \mathrm{Z}$
Standby	$\mathrm{V}_{\text {IH }}$	\times	V_{CC}	$\mathrm{Hi}-\mathrm{Z}$

Notes on following page

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
h_{1}	Low	$\mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
Ipp	$V_{\text {pp }}$ read	$V_{P P}=V_{C C}$			100	$\mu \mathrm{A}$
Output current						
'Lo	Leakage	$\begin{aligned} & \overline{\mathrm{OE}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \\ & V_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{aligned}$			1.0	$\mu \mathrm{A}$
					1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7} .9$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
$I_{\text {cc }}$ TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}}, f=5.0 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{C E}=V_{I H}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{IL}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	v
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$V_{\text {PP }}=V_{C C}$	-0.2		0.2	V
V_{IH}	High (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IH }}$	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{v}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{C C}+0.2$	V
V_{pp}	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\mathrm{CC}}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OH }}$	High	$\mathrm{l}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			v
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{CIN}_{\text {I }}$	Address and control	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ f=1.0 \mathrm{MHz} \\ V_{\text {IN }}=0 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
Cout	Outputs				12	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Maximum active power usage is the sum of $I_{p p}+I_{C C}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{pp} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

Erasable $256 \mathrm{~K}(32 \mathrm{~K} \times 8)$ EPROMs

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C256-20		UNIT
			Min	Max	
Access time ${ }^{1}$					
$\mathrm{t}_{\mathrm{ACC}}$	Output	Address		200	ns
${ }^{\text {t Ce }}$	Output	$\overline{\mathrm{CE}}$		200	ns
tOE^{3}	Output	$\overline{\mathrm{OE}}$		75	ns
Disable time ${ }^{2}$					
$t_{\text {DF }}{ }^{4}$	Output High-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		55	ns
${ }^{\text {OH}}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}
4. $t_{D F}$ is specified from $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$, whichever occurs first.

ac Voltage waveforms

Figure 1. Test Configuration

516K-bit CMOS EPROM

27C512 O.T.P. 512K-bit CMOS EPROMs ($64 \mathrm{~K} \times 8$) 150 ns; 170 ns; 200 ns 263
27C512 U.V. $\quad 512 \mathrm{~K}$-bit erasable CMOS EPROMs ($64 \mathrm{~K} \times 8$) 150 ns; 170 ns; 200 ns 267

$$
i
$$

27C512 O.T.P. 512K-Bit CMOS EPROMs $(64 \mathrm{~K} \times 8)$

Product Specification

Application Specific Products

DESCRIPTION

Signetics 27C512 CMOS O.T.P. EPROM is a 512 K -bit 5 V only memory organized as 65,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C512 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27512.

The 27 C 512 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages: Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming
- High-performance speeds
- 27C512-15: 150ns maximum access time
- 27C512-17: 170ns maximum access time
- 27C512-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {Cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

BLOCK DIAGRAM

PIN CONFIGURATIONS

CD09544S
PIN DESCRIPTION

$A_{0}-A_{15}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$	Output enable/ Programming Voltage
$\overline{\mathrm{CE}}$	Chip enable
N.C.	No connection
GND	Ground
V_{CC}	Power supply
DU	Don't use

READ MODE: 27 C 512

The 27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable $\overline{O E} / V_{P P}$ is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{O E} / V_{P P}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C512 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E} / V_{P P} p i n$.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Plastic DIP (600mil-wide)	$27 \mathrm{C} 512-15 \mathrm{~N}$
	$27 \mathrm{C} 512-17 \mathrm{~N}$
32-Pin Plastic Leaded Chip Carrier $(450 \mathrm{mil} \times 550 \mathrm{mil})$	$27 \mathrm{C} 512-15 \mathrm{~A}$
	$27 \mathrm{C} 512-17 \mathrm{~A}$
	$27 \mathrm{C} 512-20 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
T_{A}	Operating temperature range	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (during intelligent identifier in- terrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\overline{\mathrm{OE} / \mathrm{V}_{\mathrm{PP}} \text { pin (during programming) }}$	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

DEVICE OPERATION ${ }^{1}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}} / \mathbf{V}_{\mathrm{PP}}$	OUTPUT
Read	V_{IL}	V_{IL}	$\mathrm{D}_{\mathrm{OUT}}$
Output disable	V_{IL}	V_{IH}	Hi Z
Standby	V_{IH}	X^{2}	$\mathrm{Hi-Z}$

NOTES:

1. All voltages are with respect to network ground.
2. X can be V_{IH} or V_{HL}.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LImits			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{iH}	Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{A}$
$1 / 1$	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Output current						
Lo	Leakage	$\begin{aligned} & \overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}} \text { or } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}} \\ & V_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}} \\ & V_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND} \end{aligned}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{6.7}$	$V_{\text {OUT }}=O V$			-100	mA
Supply current						
I_{CC} TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\mathrm{LL}}, \quad f=6.7 \mathrm{MHz} \\ V_{P P}=V_{C C}, \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{I H}$			1.0	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5} 6$	$\overline{C E}=V_{I H}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$V_{\text {IL }}$	Low (TTL)		-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)		-0.2		0.2	v
$\mathrm{V}_{1 \mathrm{H}}$	High (TTL)		2.0		$\mathrm{V}_{\mathrm{CC}}+0.5$	v
$\mathrm{V}_{1 H}$	High (CMOS)		$\mathrm{V}_{\text {CC }}-0.2$		$\mathrm{V}_{C C}+0.2$	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	v
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			v
Capacitance ${ }^{7} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and $\overline{\mathrm{CE}}$	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$			6	pF
Cout	Outputs				12	pF
CiN_{1}	$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$				25	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Spec $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND +0.2 V to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$
5. $\overline{C E}$ is $V_{C C}+0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Test one output at a time, duration should not exceed 1 second
7. Guaranteed by design, not 100% tested.

512K-Bit CMOS EPROMs ($64 \mathrm{~K} \times 8$)
27C512 O.T.P.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C512-15		27C512-17		27C512-20		UNIT
			Min	Max	Min	Max	Min	Max	
Access time ${ }^{1}$									
$t_{\text {ACC }}$	Output	Address		150		170		200	ns
$t_{\text {ce }}$	Output	$\overline{C E}$		150		170		200	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{O E} / V_{P P}$		60		60		75	ns
Disable time ${ }^{2}$									
$t_{\text {DF }}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ or $\overline{\mathrm{CE}}$		45		50		55	ns
$\mathrm{tOH}^{\text {O}}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$	0		0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{O E} / V_{P P}$ may be delayed up to $t_{C E}-t_{O E}$ after the falling edge of $\overline{C E}$ without impact on $t_{C E}$
4. $t_{D F}$ is specified from $\overline{O E} / V_{P P}$ or $\overline{C E}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

DESCRIPTION

Signetics 27C512 CMOS EPROM is a 512 K -bit, 5 V -only memory organized as 65,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C512 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27512.
The 27C512 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

Application Specific Products

27C512 U.V. 512K-Bit Erasable CMOS EPROMs ($64 \mathrm{~K} \times 8$)

Product Specification

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick pluse programming algorithm for high-speed production programming
- High-performance speeds
- 27C512-15: 150ns maximum access time
- 27C512-17: 170ns maximum access time
- 27C512-20: 200ns maximum access time
- Noise immunity features
- $\pm 10 \% V_{\text {CC }}$ tolerance
- Maximum latch-up immunity through epitaxial processing

BLOCK DIAGRAM

PIN CONFIGURATION

READ MODE: 27C512
The 27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable $\overline{O E} / V_{P P}$ is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of $t_{O E}$ from the falling edge of $\overline{O E} / V_{P p}$, assuming that $\overline{C E}$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27 C512 has a standby mode which reduces the maximum $\mathrm{V}_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{\mathrm{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E} / V_{P P}$ pin.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DiP with Quartz Window (600mil-wide)	$27 \mathrm{C} 512-15 \mathrm{FA}$
	$27 \mathrm{C} 512-17 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
T_{A}	Operating temperature range	-10 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-2.0 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (during intelligent identifier in- terrogation)	-2.0 to +13.5	V
$\mathrm{~V}_{P P}$	Voltage on $\overline{\mathrm{OE} / \mathrm{V}_{\text {PP }} \text { pin (during programming) }}$	-2.0 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-2.0 to +7.0	V

NOTE:

1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground

DEVICE OPERATION ${ }^{1}$

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E} / V_{\text {PP }}}$	OUTPUT
Read	V_{IL}	V_{IL}	$\mathrm{D}_{\text {OUT }}$
Output disable	V_{IL}	$\mathrm{V}_{\text {IH }}$	$\mathrm{Hi}-\mathrm{Z}$
Standby	$\mathrm{V}_{I H}$	x^{2}	$\mathrm{Hi}-\mathrm{Z}$

NOTES:

1. All voitages are with respect to network ground
2. X can be V_{IH} or V_{IL}.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \approx \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
$I_{\text {IH }}$	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Output current						
ILO	Leakage	$\begin{aligned} & \overline{\mathrm{OE}} / V_{P P} \text { or } \overline{\mathrm{CE}}=V_{I H} \\ & V_{\text {OUT }}=5.5 \mathrm{~V}=V_{\mathrm{CC}} \\ & V_{\text {OUT }}=O \mathrm{~V}=\mathrm{GND} \end{aligned}$			1.0	$\mu \mathrm{A}$
					-1.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{6.7}$	$V_{\text {OUT }}=0 \mathrm{~V}$			-100	mA
Supply current						
ICC TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{1 L}, f=6.7 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-7}=0 \mathrm{~mA} \end{gathered}$			20	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{1 H}$			1.0	mA
$I_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5.6}$	$\overline{C E}=V_{I H}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
$V_{\text {IL }}$	Low (TTL)		-0.5		0.8	V
$V_{\text {IL }}$	Low (CMOS)		-0.2		0.2	V
$\mathrm{V}_{\text {IH }}$	High (TTL)		2.0		$\mathrm{V}_{C C}+0.5$	V
$\mathrm{V}_{1 \mathrm{H}}$	High (CMOS)		$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}+0.2$	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{IOL}=2.1 \mathrm{~mA}$			0.45	V
V OH	High	$\mathrm{I}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5			V
Capacitance $^{7} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{1 \mathrm{~N}}$	Address and $\overline{\mathrm{CE}}$	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ f=1.0 \mathrm{MHZ} \\ V_{I N}=0 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$			6	pF
COUT	Outputs				12	pF
C_{IN}	$\overline{\mathrm{OE}} / V_{P P}$				25	pF

NOTES:

1. Minimum $D C$ input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. TTL inputs: Specification $V_{I L}, V_{I H}$ levels.

CMOS inputs: GND +0.2 V to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$.
5. $\overline{C E}$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within specification
6. Test one output at a time, duration should not exceed 1 second.
7. Guaranteed by design, not 100% tested.

512K-Bit Erasable CMOS EPROMs ($64 \mathrm{~K} \times 8$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=660 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C512-15		27C512-17		27C512-20		UNIT
			Min	Max	Min	Max	Min	Max	
Access time ${ }^{1}$									
$t_{A C C}$	Output	Address		150		170		200	ns
${ }^{\text {t }}$ CE	Output	$\overline{\mathrm{CE}}$		150		170		200	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	$\overline{\mathrm{OE}}$		60		60		75	ns
Disable time ${ }^{2}$									
$t_{D F}{ }^{4}$	Output Hi-Z	$\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$		45		50		55	ns
${ }^{\text {OHPH}}$	Output hold	Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$	0		0		0		ns

NOTES:

1. $A C$ characteristics are tested at $V_{I H}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{PP}}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E} / V_{P P}$ or $\overline{C E}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

1M-bit CMOS EPROMpage
$27 C 210$ O.T.P. 1 M programmable EPROMs ($64 \mathrm{~K} \times 16$) 150 ns; 200 ns 273
27C210 O.V. 1M erasable EPROMs ($64 \mathrm{~K} \times 16$) $150 \mathrm{~ns} ; 200 \mathrm{~ns}$ 277

27C210 O.T.P. Programmable 1 MEG ($64 \mathrm{~K} \times 16$) EPROM

Application Specific Products

DESCRIPTION

Signetics 27C210 CMOS O.T.P. EPROM is a $1,048,576$-bit 5 V only memory organized as 65,536 words of 16 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C210 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27210.
The 27C2100.T.P. is offered in plastic DIP and Plastic Leaded Chip Carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred time. In the absence of quickpulse programming equipment, the intelligent programming algorithm may be utilized.

Objective Specification

FEATURES

- Low power consumption
$-100 \mu \mathrm{~A}$ maximum CMOS standby current
- High-performance speeds:
- 150ns maximum access time
- 200ns maximum access time
- Noise immunity features:
$- \pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm

PIN DESCRIPTION

$A_{0}-A_{15}$	Address
$O_{0}-O_{15}$	Outputs
$O E$	Output Enable
$C E$	Chip Enable
PGM	Program
$N C$	No Connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply
$D U$	Don't Use

BLOCK DIAGRAM

PIN CONFIGURATIONS

READ MODE: 27C210

The 27C210 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{O E}$, assuming that $C E$ has been Low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

STANDBY MODE

The 27C210 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when $\overline{C E}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

DEVICE OPERATION

The modes of operation of the 27C210 are listed in Table 1. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for V_{Pp} and 12 V on A_{g} for Signetics Identifier.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
40 -Pin Plastic Dual-In-Line $(600$ mil-wide $)$	$27 \mathrm{C} 210-15 \mathrm{~N}$
40 -Pin Plastic Dual-In-Line $(600$ mil-wide $)$	$27 \mathrm{C} 210-20 \mathrm{~N}$
44 -Pin Plastic Leaded Chip Carrier (0.69×0.6)	$27 \mathrm{C} 210-20 \mathrm{~A}$
44 -Pin Plastic Leaded Chip Carrier (0.69×0.6)	$27 \mathrm{C} 210-15 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{O}}$	Voltage inputs and outputs	-0.6 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{\mathrm{g}}{ }^{2}$ (during intelligent identifier interrogation)	-0.6 to +13.0	V
$\mathrm{~V}_{\mathrm{PP}}$	${\text { Voltage on } \mathrm{V}_{\mathrm{PP}}{ }^{2} \text { (during programming) }}^{2}$	-0.6 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-0.6 to +7.0	V

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

Table 1. Modes Selection

NOTES:

1. X can be $V_{I L}$ or $V_{I H}$
2. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. $A_{1}-A_{8}, A_{10}-A_{15}=V_{1 L}$
4. See Table 2 for $V_{C C}$ and $V_{P P}$ voltages.

Programmable 1 MEG (64K $\times 16$) EPROM

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
I_{H}	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$		0.01	1.0	$\mu \mathrm{A}$
I_{LL}	Low	$\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
1 lpp	$V_{\text {pp }}$ read	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{cc}}$			10	$\mu \mathrm{A}$
Output current						
lob	Leakage	$\overline{O E}$ or $\overline{C E}=V_{1 H}$			10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$			10.0	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND}$			10.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7.9}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} \overline{C E}=O E=V_{\text {II }} f=5.0 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-15}=0 \mathrm{~mA} \\ \hline \end{gathered}$			50	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	CE $=\mathrm{V}_{\mathrm{IH}}$			1	mA
$\mathrm{I}_{\text {SB }}$ CMOS	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
Input voitage ${ }^{\text {2 }}$						
$\mathrm{V}_{\text {IL }}$	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$	-0.5		0.8	V
$\mathrm{V}_{\text {L }}$	Low (CMOS)	$V_{P P}=V_{c c}$	-. 02		0.2	V
V_{1}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$\mathrm{V}_{\text {cc }}+0.5$	V
V_{H}	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\text {cc }}-0.2$		$V_{c c}+0.2$	V
V_{PP}	Read ${ }^{8}$	(Operating)	$V_{c c}-0.7$		V_{CC}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
V OH	High	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
Capacitance ${ }^{9} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$			6	pF
Cout	Outputs	$\begin{gathered} V_{\text {IN }}=O V \\ V_{\text {OUT }}=O V \end{gathered}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground.
3. Typical limits are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
4. TTL inputs: $S p e c V_{I L}, V_{I H}$ levels.

CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
5. $C E$ is $V_{C C} \pm 0.2 V$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $I_{p p}+I_{c c}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. $V_{P p}$ may be one diode voltage drop below $V_{C c}$, and can be connected directly to $V_{C c}$.
9. Guaranteed by design, not 100% tested.
10. X can be $V_{I H}$ or $V_{I L}$.

Programmable 1 MEG ($64 \mathrm{~K} \times 16$) EPROM

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C210-15		27C210-20		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {ACC }}$	Output	Address		150		200	ns
${ }^{\text {t }}$ CE	Output	CE		150		200	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Output	OE		75		85	ns
Disable time ${ }^{2}$							
$t_{D F}{ }^{4}$	Output Hi-Z	OE or CE		55		60	ns
t_{OH}	Output hold	Address, CE or $\overline{\mathrm{OE}}$	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $O E$ may be delayed up to $t_{C E}-t_{O E}$ after the falling edge of $C E$ without impact on $t_{C E}$
4. $t_{D F}$ is specified from $O E$ or $C E$, whichever occurs first

aC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Application Specific Products

27C210 U.V. 1 MEG Erasable CMOS EPROM ($64 \mathrm{~K} \times 16$)

Objective Specification

DESCRIPTION

Signetics 27C210 CMOS EPROM is a 1 M -bit 5 V only memory organized as 65,536 words of 16 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C210 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27210.

The 27C210, available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming
- High-performance speeds:
- 27C210-15: 150ns maximum access time
- 27C210-20: 200ns maximum access time
- Noise immunity features:
$- \pm 10 \% V_{c c}$ tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm

PIN DESCRIPTION

$A_{0}-A_{15}$	Address
$O_{0}-O_{15}$	Outputs
$O E$	Output Enable
$C E$	Chip Enable
$P G M$	Program
$N C$	No Connection
$G N D$	Ground
$V_{P P}$	Program voltage
$V_{C C}$	Power supply

PIN CONFIGURATION

vpp 1	40 Vcc
CE 2	39 PGM
$00_{15} 3$	(38) NC
014	$37 A_{15}$
$0_{13} 5$	$36 A_{14}$
$00_{12} 6$	$35{ }^{\text {a }}$ (3
011	(34) A_{12}
00_{10}	(33) A_{11}
$\infty_{9} 9$	(32) A_{10}
$0_{8} 10$	(31) A_{9}
GND 11	30 GND
0712	$29 A_{B}$
$0_{6} 13$	${ }^{28} \mathrm{~A}_{7}$
0514	27) A_{6}
0415	26. A_{5}
$0_{3} 16$	25 A_{4}
$0_{2} \sqrt{17}$	24] A_{3}
018	23] A_{2}
$\infty_{0} 19$	(22) A_{1}
OE 20	$21 A_{0}$

BLOCK DIAGRAM

READ MODE: 27C210

The 27 C 210 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (DE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toe from the falling edge of $\overline{O E}$, assuming that $C E$ has been low and addresses have been stable for at least $t_{A C C}-t_{D E}$

STANDBY MODE

The 27C210 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

DEVICE OPERATION

The modes of operation of the 27C210 are listed in Table 1. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for $V_{P P}$ and 12 V on A_{9} for Signetics Identifier.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
40 -pin CERDIP with quartz window (600mil-wide)	$27 \mathrm{C} 210-15 \mathrm{FA}$
40 -pin CERDIP with quartz window (600 mil-wide)	$27 \mathrm{C} 210-20 \mathrm{FA}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Temperature under bias	-10 to +80	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage inputs and outputs	-0.6 to $\left(\mathrm{V}_{\mathrm{CC}}+1\right)$	V
V_{H}	Voltage on $\mathrm{A}_{9}{ }^{2}$ (during intelligent identifier interrogation)	-0.6 to +13.0	V
$\mathrm{~V}_{\mathrm{PP}}$	Voltage on $\mathrm{V}_{\mathrm{PP}}{ }^{2}$ (during programming)	-0.6 to +14.0	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage ${ }^{2}$	-0.6 to +7.0	V

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. All voltages are with respect to network ground.

Table 1. Modes Selection

Pins		CE	రE	PGM	A_{9}	A_{0}	$V_{p p}$	V cc	Outputs
Mode									
Read		V_{LL}	V_{IL}	x	X^{1}	x	x	5.0 V	Dout
Output Disable		X	V_{IH}	X	X	X	X	5.0 V	Hi-Z
Standby		$\mathrm{V}_{\text {IH }}$	X	X	X	X	V_{cc}	5.0 V	Hi-Z
Programming		V_{IL}	$\mathrm{V}_{\text {IH }}$	V_{IL}	X	X	Note 4	Note 4	$\mathrm{D}_{\text {IN }}$
Program Verity		$\mathrm{V}_{\text {IL }}$	V_{IL}	V_{H}	X	X	Note 4	Note 4	D ${ }_{\text {OUT }}$
Program Inhibit		V_{H}	X	X	X	X	Note 4	Note 4	Hi-Z
Signetics	Manufactured ${ }^{2}$	V_{LL}	V_{IL}	X	V^{+2}	V_{IL}	V_{cc}	5.0 V	FF15
	Device ${ }^{3}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	X	V^{2}	$\mathrm{V}_{\text {IH }}$	V_{CC}	5.0 V	FF17

NOTES:

1. X can be $V_{I L}$ or $V_{I H}$
2. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3. $A_{1}-A_{8}, A_{10}-A_{15}=V_{1 L}$
4. See Table 2 for $V_{C C}$ and $V_{P p}$ voltages.

1 MEG Erasable CMOS EPROM ($64 \mathrm{~K} \times 16$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq V_{C C} \leq+5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input current						
$I_{\text {H }}$	Leakage	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}$		0.01	1.0	$\mu \mathrm{A}$
$1_{1 L}$	Low	$\mathrm{V}_{\mathrm{K}}=0.45 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$
1 lpp	V_{po}	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$			10	$\mu \mathrm{A}$
Output current						
1 lol	Leakage	OE or $\overline{C E}=\mathrm{V}_{\mathrm{IH}}$			10.0	$\mu \mathrm{A}$
		$V_{\text {OUT }}=5.5 \mathrm{~V}=V_{\mathrm{CC}}$			10.0	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0 \mathrm{~V}=\mathrm{GND}$			10.0	$\mu \mathrm{A}$
los	Short circuit ${ }^{7.9}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			100	mA
Supply current						
Icc TTL	Operating (TTL inputs) ${ }^{4}$	$\begin{gathered} C E=O E=V_{\mathrm{L}}, f=5.0 \mathrm{MHz} \\ V_{P P}=V_{C C} \\ O_{0-15}=O \mathrm{~mA} \end{gathered}$			50	mA
$\mathrm{I}_{\text {SB }}$ TTL	Standby (TTL inputs) ${ }^{4}$	$\overline{C E}=V_{H}$			1	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}$	Standby (CMOS inputs) ${ }^{5,6}$	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
Input voltage ${ }^{2}$						
V_{IL}	Low (TTL)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.5		0.8	V
$\mathrm{V}_{\text {IL }}$	Low (CMOS)	$V_{P P}=V_{C C}$	-. 02		0.2	V
V_{IH}	High (TTL)	$V_{P P}=V_{C C}$	2.0		$v_{c c}+0.5$	V
V_{IH}	High (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$	$\mathrm{V}_{\mathrm{cc}}-0.2$		$V_{C c}+0.2$	V
$\mathrm{V}_{\text {pp }}$	Read ${ }^{8}$	(Operating)	$\mathrm{V}_{\text {cc }}-0.7$		V_{cc}	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.45	V
VOH	High	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
Capacitance ${ }^{\circ} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
$\mathrm{C}_{\text {IN }}$	Address and control	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$			6	pF
Cout	Outputs	$\begin{aligned} V_{I N} & =O V \\ V_{O U T} & =O V \end{aligned}$			12	pF

NOTES:

1. Minimum DC input voltage is -0.5 V . During transitions the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. All voltages are with respect to network ground
3. Typical limits are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=20^{\circ} \mathrm{C}$.
4. TTL inputs: $\operatorname{Spec} \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ levels. CMOS inputs: GND $\pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }} \pm 0.2 \mathrm{~V}$.
5. $C E$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
6. Maximum active power usage is the sum of $\mathrm{l}_{\mathrm{P} \mathrm{p}}+\mathrm{I}_{\mathrm{Cc}}$ and is measured at a frequency of 5 MHz .
7. Test one output at a time, duration should not exceed 1 second.
8. V_{Pp} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{Cc}.
9. Guaranteed by design, not 100% tested.
10. X can be V_{IH} or V_{IL}.

1 MEG Erasable CMOS EPROM (64K $\times 16$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C},+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

SYMBOL	TO	FROM	27C210-15		27C210-20		UNIT
			Min	Max	Min	Max	
Access time ${ }^{1}$							
$t_{\text {ACC }}$	Output	Address		150		200	ns
${ }_{\text {t Ce }}$	Output	CE		150		200	ns
$\mathrm{t}_{\text {OE }}{ }^{3}$	Output	OE		75		85	ns
Disable time ${ }^{2}$							
$t_{\text {dF }}{ }^{4}$	Output Hi-Z	OE or CE		55		60	ns
${ }^{\text {toh }}$	Output Hold	Address, CE or OE	0		0		ns

NOTES:

1. AC characteristics are tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
2. Guaranteed by design, not 100% tested.
3. $O E$ may be delayed up to $t_{C E}-\mathrm{C}_{\mathrm{OE}}$ after the falling edge of CE without impact on t_{CE}.
4. $t_{D F}$ is specified from $\overline{O E}$ or $C E$, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

TTL MEMORIES
page
64-bit TTL RAM 283
256-bit TTL RAM 303
Byte-Organized TTL RAM 321
Low Complexity TTL PROM 341
4K-bit TTL PROM 379
8K-bit TTL PROM 405
16K-bit TTL PROM 439
32K-bit TTL PROM 461
64K-bit TTL PROM 475
128K-bit TTL PROM 485

64-bit TTL RAM

page
82S25 64-bit RAM (16 x 4) 50 ns 285
310A/74S189 64-bit RAM (16 x 4) 35 ns 285
74F189A 64-bit RAM (16 x 4) 15 ns 289
74F219A 64-bit RAM (16×4) 10 ns 293
74F410 64-bit Register stack (16 x 40) 19.5 ns 297

Bipolar Memory Products

DESCRIPTION

This family of Read/Write Random Access Memories is ideal for use in scratch pad and high-speed buffer memory applications.

These products are fully decoded memory arrays with separate input and output lines. They feature PNP inputs and 1 Chip Enable line for ease of memory expansion.

During Write, the outputs of each product assume the logic state defined in the truth table.

Ordering information can be found on the following page.
The 82S25 and 74S189 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

$82 S 25$
 3101A
 74S189
 64-Bit TL Bipolar RAM

Product Specification

FEATURES

- Output access time:
- N82S25: 50ns max
- N3101A: 35ns max
- N74S189: 35ns max
- Power dissipation: $6.25 \mathrm{~mW} /$ bit, typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82S25: Open-Collector
- N3101A: Open-Collector
- N74S189: 3-State
- Schottky clamped
- TTL compatible

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S25 N • N3101A N • N74S189 N
16-pin Plastic Small Outline 300 mil-wide	N82S25 D • N3101A D • N74S189 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
$V_{O H}$	Output voltage High	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input voltage ${ }^{1}$						
$\begin{aligned} & V_{11} \\ & V_{1 H} \\ & V_{1 C} \end{aligned}$	Low High Clamp ${ }^{7}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{gathered}$	2.0		$\begin{gathered} 0.8 \\ -1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Output voltage ${ }^{1}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low }{ }^{2,3} \\ & \text { High (} 74 \mathrm{~S} 189 \text {) } \end{aligned}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { Low } \\ \text { lout }=16 \mathrm{~mA}, V_{C C}=4.75 \mathrm{~V} \\ \text { lout }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	V
Input current ${ }^{5}$						
$\begin{aligned} & I_{L} \\ & I_{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current ${ }^{5}$						
$\begin{aligned} & \hline \text { loLk } \\ & \text { los } \\ & \text { loz } \\ & \hline \end{aligned}$	Leakage Short circuit (74S189) Hi-Z (74S189)	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.75 \mathrm{~V} \\ \mathrm{CE}=\text { LOw, } V_{\text {OUT }}=0 \mathrm{~V} \\ 2.4 \geqslant V_{\text {OUT }} \geqslant 0.4 \mathrm{~V} \end{gathered}$			$\begin{array}{r} 100 \\ -100 \\ \pm 50 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Supply current ${ }^{6}$						
ICC	$\begin{aligned} & \hline 82 \mathrm{~S} 25 \\ & 3101 \mathrm{~A} \\ & 74 \mathrm{~S} 189 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 105 \\ & 105 \\ & 110 \\ & \hline \end{aligned}$	mA
Capacitance						
$\mathrm{C}_{\text {IN }}$ Cout	Input Output	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IV }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V}, \overline{\mathrm{CE}}=\text { High } \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

TRUTH TABLE

MODE	$\overline{C E}$	WE	$\mathrm{D}_{1 \times}$	$82 S 25$	3101A	745189
				Data Out		
Read	0	1	X	Stored $\overline{\text { Data }}$	Stored $\overline{\text { Data }}$	Stored $\overline{\text { Data }}$
Write '0'	0	0	0	1	1	$\mathrm{Hi}-\mathrm{Z}$
Write " 1 "	0	0	1	1	1	$\mathrm{Hi}-\mathrm{Z}$
Disable	1	X	X	1	1	$\mathrm{Hi}-\mathrm{Z}$

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S25			$\begin{aligned} & \text { N3101A, } \\ & \text { N74S189 } \end{aligned}$			UNIT
				Min	Typ	Max	Min	Typ	Max	
Access time										
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$	Address Chip Enable					50 35			35 17	ns
Disable time ${ }^{8}$										
${ }^{\text {t }} \mathrm{CD}$		Output	Chip Enable			35			17	ns
Response time ${ }^{8}$										
two		Output	Write Enable			25			25	ns
Write recovery time										
twr						50			35	ns
Setup and hold time										
$\begin{aligned} & \text { twSA }^{9} \\ & \text { twHA }^{2} \end{aligned}$	Setup time Hold time	Write Enable	Address	5 5			0			ns
twSD $t^{\text {WHD }}$	Setup time Hold time	Write Enable	Data in	30 5			25 0			ns
twsc twHC	Setup time Hold time	Write Enable	$\overline{\mathrm{CE}}$	0 5			0			ns
Pulse width ${ }^{4}$										
$t_{W P}{ }^{10}$	Write Enable			30			25			ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Output sink current is supplied through a resistor to V_{CC}.
3. All sense outputs in Low state.
4. To guarantee a Write into the slowest bit.
5. Positive current is defined as into the terminal referenced.
6. ICC is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the outputs open.
7. Test each input one at a time.
8. Measured at a delta of 0.5 V from the logic level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
9. Measured with minimum t_{wp}.
10. Measured with minimum IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

74F189A 64-Bit TL Bipolar RAM

Preliminary Specification

Bipolar Memory Products

DESCRIPTION

The 74F189A is a high-speed, 64-bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-State and are in the high-impedance state whenever the Chip Select ($\overline{\mathrm{CE}}$) input is High. The outputs are active only in the Read mode and the output data is the complement of the stored data.

Ordering information can be found on the following page.

FEATURES

- Address access time: 15ns max
- Power dissipation: $4.3 \mathrm{~mW} /$ bit typ
- Schottky clamped TTL
- One Chip Enable input
- I/O
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N74F189A N
16-pin Plastic Small Outline 300 mil-wide	N74F189A D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	-0.5 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
V_{OH}	Output voltage High	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input voltage ${ }^{\text {2 }}$						
$\mathrm{V}_{10}{ }^{7}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}}{ }^{2,3} \end{aligned}$	High Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{gathered}$	2.4	0.35	0.5	v
Input current						
$\begin{aligned} & I_{\mathbb{H}} \\ & I_{\mathrm{LL}} \end{aligned}$	High Low	$\begin{aligned} V_{C C} & =5.25 \mathrm{~V} \\ V_{I N} & =5.5 \mathrm{~V} \\ V_{I N} & =0.5 \mathrm{~V} \end{aligned}$			40 0.6	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \\ & \hline \end{aligned}$	Off-State Short circuit	$\begin{gathered} V_{C C}=5.25 \mathrm{~V} \\ V_{I H}=2.0 V_{,} 2.4 \mathrm{~V} \geqslant V_{\mathrm{OUT}} \geqslant 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{gathered}$	-60		$\begin{array}{r} \pm 50 \\ -150 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Supply current ${ }^{6}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{WE}}, \overline{\mathrm{CE}}=\mathrm{GND}$			70	mA
Capacitance						
$\mathrm{C}_{\text {IN }}$ Cout	Input Output	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OUT}} & =2.0 \mathrm{~V} \end{aligned}$		5 8		pF pF

tRUTH TABLE

MODE	$\overline{\text { CE }}$	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\text {IN }}$	DATA OUT
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	Hi-Z
Write "1"	0	0	1	Hi-Z
Disable	1	X	X	$\mathrm{Hi}-\mathrm{Z}$

[^8]AC ELECTRICAL CHARACTERISTICS $R_{L}=500 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant V_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ	Max	
Access time							
$\begin{aligned} & \mathbf{t}_{\mathrm{tAA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address Chip Enable					15 13	ns
Disable time ${ }^{8}$							
${ }_{\text {cto }}$		Output	Chip Enable			9	ns
Response time ${ }^{8}$							
two		Output	Write Enable			9	ns
Write recovery time							
twr		Output	Write Enable			13	ns
Setup and hold time							
$\begin{aligned} & \mathrm{t}_{\mathrm{WSA}}{ }^{9} \\ & \mathrm{t}_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Enable	Address	3 2			ns
twsd $t_{\text {WHD }}$	Setup time Hold time	Write Enable	Data in	$\begin{gathered} 13 \\ 2 \end{gathered}$			ns
twsc twhc	Setup time Hold time	Write Enable	$\overline{C E}$	3 2			ns
Pulse width ${ }^{4}$							
${ }_{\text {twp }}{ }^{10}$	Write Enable			10			ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Output sink current is supplied through a resistor to V_{CC}.
3. All sense outputs in Low state.
4. To guarantee a Write into the slowest bit.
5. Positive current is defined as into the terminal referenced.
6. Icc is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
7. Test each input one at a time.
8. Measured at a delta of 0.5 V from the logic level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
9. Measured with minimum twp.
10. Measured with minimurn IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

FAST 74F219A 64-Bit TL Bipolar RAM

Preliminary Specification

Bipolar Memory Products

DESCRIPTION

The 74F219A is a high-speed, 64-bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-State and are in the High-impedance state whenever the Chip Select ($\overline{\mathrm{CE}}$) input is High. The outputs are active only in the Read mode and are of the same polarity as of the stored data.

Ordering information can be found on the following page.

BLOCK DIAGRAM

FEATURES

- Address access time: 10ns max
- Power dissipation: 4.3mW/bit typ
- Schottky clamped TTL
- One chip enable input
- Non-inverting data outputs. (For inverting see 74F189A)
- I/O
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION
D, N Packages

$A_{0} \square$	$\begin{aligned} & \text { DIP } \\ & \text { AND } \\ & \text { SOL } \end{aligned}$	$16 \mathrm{~V}_{\text {cc }}$
CE 2		$15 A_{1}$
WE ${ }^{3}$		(14) A_{2}
1,4		$13{ }^{1}{ }_{3}$
Q, 5		${ }_{12} \mathrm{I}_{4}$
$\mathrm{I}_{2} 6$		(1) a_{4}
$a_{2} 7$		(10) I_{3}
GNO 8		9) a_{3}
	TOP VIEW	
		cooog99s

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Plastic Dual-In-Line 300mil-wide	N74F219N
16-Pin Plastic Small Outline 300 mil-wide	N74F219D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	$V_{D C}$
$V_{I N}$	Input voltage	-0.5 to +7.0	
$V_{O H}$	Output voltage High	-0.5 to +5.5	
T_{A}	Operating temperature range	0 to +70	$V_{D C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input voitage ${ }^{2}$						
$V_{1 C}{ }^{7}$	Clamp	$V_{C C}=5.25 \mathrm{~V}, Y_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}}{ }^{2,3} \end{aligned}$	High Low	$\begin{gathered} V_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ l_{\mathrm{OL}}=20 \mathrm{~mA} \end{gathered}$	2.4	0.35	0.5	V
Input current						
$\begin{aligned} & I_{\mathbb{H}} \\ & I_{\mathbb{L}} \end{aligned}$	High Low	$\begin{aligned} V_{C C} & =5.25 \mathrm{~V} \\ V_{I N} & =5.5 \mathrm{~V} \\ V_{I N} & =0.5 \mathrm{~V} \end{aligned}$			40 0.6	$\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{loz}_{11} \\ & \operatorname{los}^{11} \end{aligned}$	Off-state Short circuit	$\begin{gathered} V_{\mathrm{CC}}=5.25 \mathrm{~V} \\ V_{\mathrm{IH}}=2.0 \mathrm{~V}, 2.4 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{OUT}} \geqslant 0.5 \mathrm{~V} \\ (\text { See Note) } \end{gathered}$	-60		$\begin{gathered} \pm 50 \\ -150 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{6}$						
ICC		$V_{C C}=5.25 \mathrm{~V}, \overline{\mathrm{WE}}, \overline{\mathrm{CE}}=\mathrm{GND}$			70	mA
Capacitance						
$\mathrm{CiN}_{\mathrm{in}}$ Cout	Input Output	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{I}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Read	0	1	X	Same polarity as stored data
Write " 0 "	0	0	0	$\mathrm{Hi}-\mathrm{Z}$
Write "1"	0	0	1	$\mathrm{Hi} Z$
Disable	1	X	X	$\mathrm{Hi}-\mathrm{Z}$

$X=$ Don't care

AC ELECTRICAL CHARACTERISTICS $R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ	Max	
Access time							
$t_{A A}$	Address	Output	Address			10.5	ns
${ }_{\text {C }}$ CE	Chip enable	Output	Chip enable			7.5	ns
Disable time ${ }^{8}$							
$t_{C D}$		Output	Chip enable			7.5	ns
Response time ${ }^{8}$							
two		Output	Write enable			8.5	ns
Write recovery time							
twr		Output	Write enable			7.5	ns
Setup and hold time							
$\begin{aligned} & t_{\text {WSA }} 9 \\ & \text { t WHA }^{2} \end{aligned}$	Setup time Hold time	Write enable	Address	$\begin{gathered} 0.5 \\ 0 \end{gathered}$			
twSD ${ }^{\text {twhD }}$	Setup time Hold time	Write enable	Data in	5 0			ns
twsc ${ }^{1}$ WHC	Setup time Hold time	Write enable	$\overline{\mathrm{CE}}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			
Pulse width							
$t_{\text {WP }}{ }^{1} 0$	Write enable			6.5			ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Output sink current is supplied through a resistor to $V_{C C}$.
3. All sense outputs in Low state.
4. To guarantee a Write into the slowest bit
5. Positive current is defined as into the terminal referenced
6. ICc is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
7. Test each input one at a time.
8. Measured at a delta of 0.3 V from the logic level with $R_{1}=500 \Omega, R_{2}=500 \Omega$ and $C_{L}=50 \mathrm{pF}$
9. Measured with minimum $t_{W P}$.
10. Measured with minimum twSA.
11. For los test: $V_{C C}=5.75 \mathrm{~V} V_{\text {OUT }}=0.5 \mathrm{~V}$

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

64-Bit TL Bipolar RAM (16 $\times 4$)

TIMING DIAGRAMS

Bipolar Memory Products

FEATURES

- Edge-triggered output register
- Typical access time of $\mathbf{1 9 . 5 n s}$
- 3-State outputs
- Optimized for register stack operation
- 18-pin package

DESCRIPTION

The 74F410 is a register-oriented highspeed 64-bit Read/Write Memory organized as 16 -words by 4 -bits. An edgetriggered 4-bit output register allows new input data to be written while previous data is held. 3-State outputs are provided for maximum versatility. The 74F410 is fully compatible with all TTL families.

FAST 74F410 Register Stack - 16×4 RAM 3-State Output Register

Product Specification

TYPE	TYPICAL ACCESS TIME	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 410	19.5 ns	45 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-Pin Plastic Dual-In-Line 300 mil-wide	N74F410N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select Input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (active- Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{WE}}$	Write Enable Input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Input (outputs change on Low-to-High transition)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

PIN CONFIGURATION

LOGIC SYMBOL

Register Stack - 16×4 RAM

3-State Output Register

FUNCTIONAL DESCRIPTION

Write Operation - When the three control inputs, Write Enable ($\overline{\mathrm{WE}}$), Chip Select ($\overline{\mathrm{CS}}$), and Clock (CP), are Low the information on the data inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location selected by the address inputs $\left(A_{0}-A_{3}\right)$. If the input data changes while $\overline{\mathrm{WE}}, \overline{\mathrm{CS}}$, and CP are Low, the contents
of the selected memory location follow these changes, provided setup and hold time criteria are met.
Read Operation - Whenever $\overline{\mathrm{CS}}$ is Low, $\overline{W E}$ is High, and CP goes from Low-to-High, the contents of the memory location selected by the address inputs ($A_{0}-A_{3}$) are edgetriggered into the Output Register.

When $\overline{W E}$ is Low, $\overline{C S}$ is Low, and CP goes from Low-to-High, the data at the Data Inputs is edge-triggered into the output register.
The ($\overline{\mathrm{OE}}$) input controls the output buffers. When $\overline{O E}$ is High the four outputs $\left(Q_{0}-Q_{3}\right)$ are in a high-impedance or OFF-state; when $\overline{\mathrm{OE}}$ is Low, the outputs are determined by the state of the Output Register.

BLOCK DIAGRAM

Register Stack - 16×4 RAM 3-State Output Register

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$V_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current			-3	mA
$\mathrm{IOL}^{\text {l }}$	Low-level output current			24	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}^{\text {a }}$ MAX	$\pm 10 \% V_{C C}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.3				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.5	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.5	V				
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{1 K}$					-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{1}	High-level input current			MAX, $V_{1}=2.7$				20	$\mu \mathrm{A}$			
ILL	Low-level input current	$\frac{A_{0}-A_{3}, D_{0}-D_{3}}{W E,}$	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		CP, $\overline{C S}$						-1.2	mA			
lozh	OFF-state output current, High-level voltage applied		$V_{C C}=M A X, V_{\text {OUT }}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$					-60		-150	mA			
Icc	Supply current (total)		$V_{C C}=$ MAX				45	70	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

Register Stack - 16×4 RAM

 3-State Output RegisterAC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ t_{PHL}	Propagation delay $C P \uparrow$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & t_{\mathrm{PZH}} \\ & t_{\mathrm{PZL}} \end{aligned}$	Enable time $\overline{O E}$ to Q_{n}	Waveform 3, 4	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable time $\overline{O E}$ to Q_{n}	Waveform 3, 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	ns

AC SETUP AND HOLD REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
READ MODE								
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time Low CS to CP \uparrow	Waveform 1	4.0			4.5		ns
$t_{n}(L)$	Hold time Low $\overline{C S}$ to CP \uparrow	Waveform 1	3.5			4.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time High or Low A_{n} to $C P \uparrow$	Waveform 1	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$			$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time High or Low A_{n} to $\mathrm{CP} \uparrow$	Waveform 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup time High WE to CP \uparrow	Waveform 1	13.0			15.0		ns
$t_{h}(H)$	Hold time High WE to CP \uparrow	Waveform 1	0			0		ns
$t_{w}(\mathrm{H})$	CP pulse width, High	Waveform 1	5.0			6.0		ns
WRITE MODE								
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time High or Low A_{n} to $\overline{W E}, \overline{C S}, C P$	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time High or Low A_{n} to $\overline{W E}, \mathrm{CS}, \mathrm{CP}$	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time High or Low D_{n} to $\overline{W E}, \overline{C S}, C P$	Waveform 2	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time High or Low D_{n} to $\overline{W E}, \overline{C S}, C P$	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
t_{w}	$\overline{\text { WE }}$ pulse width, Low	Waveform 2	7.0			8.0		ns
t_{w}	$\overline{\text { CS }}$ pulse width, Low	Waveform 2	6.0			7.0		ns
t_{w}	CP pulse width, Low	Waveform 2	7.0			8.0		ns

Register Stack - 16×4 RAM 3-State Output Register

AC WAVEFORMS

Register Stack - 16×4 RAM

 3-State Output Register
TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tPLZ	closed
tPLL	closed
All other	open

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value
$C_{L}=$ Load capacitance includes iig and probe capacitance:
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

256-bit TTL RAM

page
82S16 256-bit RAM (256 x 1) 50 ns 305
82LS16 256-bit RAM (256 x 1) 40 ns 309
74S301 256-bit RAM (256 x 1) 50 ns 313
74LS301 256-bit RAM (256 x 1) 40 ns 317

82S16 256-Bit TL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S16 is a Read/Write memory array which features 3-State outputs for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 Chip Enable inputs and PNP input transistors which reduce input loading.
During Write operation, the logical state of the output follows the complement of the data input being written. This feature allows faster execution of Write/Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following Write cycle.
The 82S16 has fast Read access and Write cycle times, and thus is ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

The 82S16 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data book.

FEATURES

- Address access time: 50ns max
- Write cycle time: 50ns max
- Power dissipation: 1.5mW/bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- Output follows complement of data input during Write
- Three Chip Enable inputs
- On-chip address decoding
- Output: 3-State
- Schottky clamped
- TTL compatible

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

PIN CONFIGURATION

BLOCK DIAGRAM

256-Bit TTL Bipolar RAM (256×1)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S16 N
16-pin Plastic Small Outline 300mil-wide	N82S16 D

absolute maximum ratings

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage High (open-collector)	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{C}} \end{aligned}$	High Low Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=\text { Min } \\ V_{C C}=\text { Min, } \mathrm{IIN}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-1.0	0.8 -1.5	V v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { Low }^{5} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{gathered}$	2.6	0.35	0.45	v
Input current ${ }^{3}$						
$\begin{aligned} & I_{1+1} \\ & I_{1 L} \end{aligned}$	High Low	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 1 \\ -10 \\ \hline \end{array}$	$\begin{gathered} 25 \\ -100 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{los} \end{aligned}$	Hi-Z state ${ }^{6}$ Short circuit ${ }^{7}$	$\begin{gathered} V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ V_{C C}=\text { Max, }, V_{O}=0 \mathrm{~V} \end{gathered}$	-15	$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
I_{CC}		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$		80	115	mA
Capacitance						
C_{IN} Cour	Input Output	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		pF

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{D I N}_{\mathbf{I N}}$	Dout
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	1
Write "1"	0	0	1	0
Disabled	1	X	X	Hi-Z

"' 0 " = All $\overline{C E}$ inputs Low; $" 1 "=$ One or more $\overline{C E}$ inputs High. $X=$ Don't care.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$	Address Chip Enable	Output Output	Address Chip Enable		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	ns
Disable time ${ }^{10}$							
$\begin{aligned} & \mathrm{t}_{\mathrm{CD}} \\ & \mathrm{t}_{\mathrm{WD}} \end{aligned}$	Valid time	Output Output	Chip Enable Write Enable		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns
Setup and hold time							
$\begin{aligned} & \text { twSA } \\ & \text { twHA } \end{aligned}$	Setup time Hold time	Write Enable	Address	$\begin{gathered} 15 \\ 5 \end{gathered}$	5 0		ns
twSD twhD	Setup time Hold time	Write Enable	Data in	40 5	30 0		ns
twsc twhC	Setup time Hold time	Write Enable	$\overline{\mathrm{CE}}$	10 5	0		ns
Pulse width ${ }^{9}$							
$t_{W P}{ }^{12}$	Write Enable			30	15		ns

NOTES:

1. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test each input one at a time.
4. Measured with a logic Low stored and $V_{1 L}$ applied to $\overline{C E}_{1}, \overline{C E}_{2}$ and $\overline{C E}_{3}$
5. Measured with a logic High stored. Output sink current is supplied through a resistor to V_{CC}
6. Measured with $V_{I H}$ applied to $\overline{C E}_{1}, \overline{C E}_{2}$ and $\overline{C E}_{3}$.
7. Duration of the short-circuit should not exceed 1 second.
8. ICC is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
9. Minimum required to guarantee a Write into the slowest bit
10. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
11. Measured with minimum $t_{w p}$.
12. Measured with minimum IWSA.
test load circuit

voltage waveforms

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {CE }}$	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
$t_{C D}$	Delay between when Chip Enable becomes High and Data Output is in off-state.
$t_{A A}$	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
$t_{\text {WSC }}$	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
$t_{\text {WHD }}$	Required delay between end of Write Enable pulse and end of valid input data.
$t_{\text {WP }}$	Width of Write Enable pulse.
twSA	Required delay between beginning of valid Address and beginning of Write Enable pulse.
$t_{\text {WSD }}$	Required delay between beginning of valid Data Input and end of Write Enable pulse.
$t_{\text {WD }}$	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
${ }^{\text {twhC }}$	Required delay between end of Write Enable pulse and end of Chip Enable.
$t_{\text {WHA }}$	Required delay between end of Write Enable pulse and end of valid Address.

82LS16
 256-Bit TL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LS16 is a Read/Write memory array which features 3-State outputs for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 Chip Enable inputs and PNP input transistors which reduce input loading.
During Write operation, the logical state of the output follows the complement of the data input being written. This feature allows faster execution of Write/Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following Write cycle.

The 82LS16 has fast Read access and Write cycle times, as well as low power requirements and thus is ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, where power limitations are of major concern.
Ordering information can be found on the following page.

FEATURES

- Address access time: 40ns max
- Write cycle time: 45ns max
- Power dissipation: $0.98 \mathrm{~mW} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Output follows complement of data input during Write
- On-chip address decoding
- Three Chip Enable inputs
- Output: 3-State
- Schottky clamped
- TTL compatible

PIN CONFIGURATION

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82LS16 N
16-pin Plastic Small Outline 300 mil-wide	N82LS16 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{\text {IN }}$	Input voltage	+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage High (open-collector)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LImits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & V_{1 H} \\ & V_{11} \\ & V_{1 C} \end{aligned}$	High Low Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-1.0	0.8 -1.5	v v v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	High Low ${ }^{5}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OH}} & =-3.2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{LL}} & =16 \mathrm{~mA} \end{aligned}$	2.6	0.35	0.45	V
Input current ${ }^{3}$						
$\begin{aligned} & I_{H} \\ & I_{\mathrm{L}} \end{aligned}$	High Low	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ -10 \end{gathered}$	$\begin{gathered} 25 \\ -100 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	$\mathrm{Hi}-\mathrm{Z}$ state 6 Short circuit ${ }^{7}$	$\begin{gathered} V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V}, V_{\text {O }}=0 \mathrm{~V} \end{gathered}$	-15	$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{array}{r} 40 \\ -40 \\ -70 \\ \hline \end{array}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
Icc		$V_{C C}=5.25 \mathrm{~V}$		50	70	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathbb{N}} \\ & \mathrm{C}_{\text {OUT }} \end{aligned}$	input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

truth table

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\mathbf{I N}}$	Dout
Read	0	1	X	Stored $\overline{\text { Data }}$
Write " 0 "	0	0	0	1
Write " 1 "	0	0	1	0
Disabled	1	X	X	$\mathrm{Hi}-\mathrm{Z}$

[^9]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address Chip Enable	Output Output	Address Chip Enable		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	ns
Disable time ${ }^{10}$							
$\begin{aligned} & \mathrm{t}_{\mathrm{CD}} \\ & \mathrm{t}_{\mathrm{WD}} \end{aligned}$	Valid time	Output Output	Chip Enable Write Enable		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	ns
Setup and hold time							
$\begin{aligned} & t_{\text {WSA }}{ }^{11} \\ & t_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Enable	Address	0 0	$\begin{aligned} & -5 \\ & -5 \end{aligned}$		ns
${ }^{\text {twSD }}$ ${ }^{t}$ WHD	Setup time Hold time	Write Enable	Data in	25 0	15 -5		ns
twsc $t_{\text {WHC }}$	Setup time Hold time	Write Enable	$\overline{C E}$	0	$\begin{aligned} & -5 \\ & -5 \end{aligned}$		ns
Pulse width ${ }^{9}$							
$t_{W P}{ }^{12}$	Write Enable			25	15		ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voitage values are with respect to network ground terminal.
3. Test each input one at a time.
4. Measured with a logic Low stored and $V_{1 L}$ applied to $\overline{C E}_{1}, \overline{C E}_{2}$ and $\overline{C E}_{3}$
5. Measured with a logic High stored. Output sink current is supplied through a resistor to V_{CC}.
6. Measured with $V_{I H}$ applied to $\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$.
7. Duration of the short-circuit should not exceed 1 second.
8. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
9. Minimum required to guarantee a Write into the slowest bit.
10. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
11. Measured with minimum twp.
12. Measured with minimum IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

NOTES:
All inputs $t_{r}=t_{t}=5 n s(10 \%$ to $90 \%)$
All AC parameters are measured at 1.5 V unless otherwise specified.
Write Cycle

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {t }}$ CE	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
${ }^{\text {c }}$ CD	Delay between when Chip Enable becomes High and Data Output is in off-state.
$t_{A A}$	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
twSC	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
tWHD	Required delay between end of Write Enable pulse and end of valid input data.
twp	Width of Write Enable pulse.
twSA	Required delay between beginning of valid Address and beginning of Write Enable pulse.
$t_{\text {WSD }}$	Required delay between beginning of valid Data Input and end of Write Enable pulse.
$t_{\text {WD }}$	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
${ }^{\text {twhC }}$	Required delay between end of Write Enable pulse and end of Chip Enable.
$t_{\text {WHA }}$	Required delay between end of Write Enable pulse and end of valid Address.

74S301
 256-Bit TL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 74S301 is a Read/Write memory array which features an Open-Collector output for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full onchip address decoding, 3 Chip Enable inputs and PNP input transistors, which reduce input loading.
The additional feature of output blanking during Write ($\overline{\mathrm{D}_{\mathrm{O}}}$ terminal High) permits $\overline{D_{O}}$ and D_{IN} terminals to share a common I/O line to reduce system interconnections. These devices have fast Read access and Write cycle times, and thus are ideally suited in high speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

FEATURES

- Address access time: 50ns max
- Write cycle time: 55ns max
- Power dissipation: 1.5mW/bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Output blanking during Write
- On-chip address decoding
- Schottky clamped
- TTL compatible
- Three Chip Enable inputs
- Output: Open-Collector

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N74S301 N
16-pin Plastic Small Outline 300 mil-wide	N74S301 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage High (open-collector)	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature Range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{II}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, 1_{\mathrm{IN}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-1.0	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
V_{OL}	Low ${ }^{5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.35	0.45	V
Input current						
$\begin{aligned} & I_{1 L} \\ & I_{H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lolk	Leakage	$\mathrm{V}_{1 H}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Supply current ${ }^{8}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		80	130	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{aligned} V_{\text {CC }} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

TRUTH TABLE

MODE	$\overline{\text { CE }}$	$\overline{\text { WE }}$	D $_{\text {IN }}$	D ${ }_{\text {OUT }}$
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	1
Write " 1 "	0	0	1	1
Disabled	1	X	X	1

"' 0 " = All $\overline{C E}$ inputs Low: " 1 " = One or more $\overline{C E}$ inputs High.
$X=$ Don't care.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$t_{A A}$ $t_{C E}$	Address Chip Enable	Output Output	Address Chip Enable		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	ns
Disable time ${ }^{10}$							
${ }^{t} C D$ two	Valid time	Output Output	Chip Enable Write Enable		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns
Setup and hold time							
$\begin{aligned} & t_{\text {WSA }}{ }^{11} \\ & t_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Enable	Address	$\begin{gathered} 20 \\ 5 \end{gathered}$	5 0		ns
twSD ${ }^{\text {twhD }}$	Setup time Hold time	Write Enable	Data in	40 5	$\begin{gathered} 30 \\ 0 \end{gathered}$		ns
twsc twHC	Setup time Hold time	Write Enable	$\overline{\mathrm{C}} \overline{\mathrm{E}}$	10 5	0 0		ns
Pulse width ${ }^{9}$							
$t_{W P}{ }^{12}$	Write Enable			30	15		ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test each input one at a time.
4. Measured with a logic Low stored and $V_{1 L}$ applied to $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$.
5. Measured with a logic High stored. Output sink current is supplied through a resistor to $V_{C C}$ 6. Measured with V_{H} applied to $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$.
6. Duration of the short-circuit should not exceed 1 second.
7. ICC is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
8. Minimum required to guarantee a Write into the slowest bit.
9. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
10. Measured with minimum $t_{w p}$.
11. Measured with minimum twSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS
MEASUREMENTS:
AII circuit delays are measured at the +1.5 level of
inputs and output.

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {CE }}$	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
$t_{\text {CD }}$	Delay between when Chip Enable becomes High and Data Output is in off-state.
$t_{\text {AA }}$	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
$t_{\text {WSC }}$	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
$t_{\text {WHA }}$	Required delay between end of Write Enable pulse and end of valid input data.
Required delay between end	
end of valid Address.	
end	
end of Chip Enable.	
Required delay between end	
end	

74LS301 256-Bit TLL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 74LS301 is a Read/Write memory array which features an Open-Collector output for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full onchip address decoding, 3 Chip Enable inputs and PNP input transistors, which reduce input loading.

The additional feature of output blanking during Write ($\overline{D_{O}}$ terminal High) permits $\overline{D_{O}}$ and $D_{\mathbb{I N}}$ terminals to share a common I/O line to reduce system interconnections. These devices have fast Read access and Write cycle times, and thus are ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

FEATURES

- Address access time: 40ns max
- Write cycle time: 45ns max
- Power dissipation: $0.98 \mathrm{~mW} /$ bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- Output blanking during Write
- On-chip address decoding
- Schottky clamped
- TTL compatible
- Three Chip Enable inputs
- Open-Collector output

APPLICATIONS

PIN CONFIGURATION

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

BLOCK DIAGRAM

256-Bit TLL Bipolar RAM (256×1)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$16-$ pin Plastic DIP 300 mil-wide	N74LS301 N
16 -pin Plastic Small Outline 300 mil-wide	N74LS301 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	$V_{D C}$	
$V_{\text {OUT }}$	Output voltage High (open-collector)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAIVETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & v_{I L} \\ & v_{1 H} \\ & v_{I C} \end{aligned}$	Low High Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, I_{!\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
V_{OL}	Low ${ }^{5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$			0.45	V
Input current ${ }^{\text {2 }}$						
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lolk	Leakage ${ }^{5}$	$\mathrm{V}_{1 H}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Supply current ${ }^{8}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		50	70	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	DIN *	DouT
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	1
Write "1"	0	0	1	1
Disabled	1	x	X	1

[^10]256-Bit TL Bipolar RAM (256×1)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$\begin{aligned} & t_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address Chip Enable	Output Output	Address Chip Enable		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	ns
Disable time ${ }^{10}$							
$\begin{aligned} & t_{C D} \\ & t_{W D} \end{aligned}$	Valid time	Output Output	Chip Enable Write Enable		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	ns
Setup and hold time							
$\begin{aligned} & t_{\text {WSA }}{ }^{11} \\ & t_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Enable	Address	0	$\begin{aligned} & -5 \\ & -5 \end{aligned}$		ns
twSD twhD	Setup time Hold time	Write Enable	Data in	25 0	15 -5		ns
$t_{\text {wsc }}$ twhc	Setup time Hold time	Write Enable	$\overline{\mathrm{CE}}$	0	$\begin{aligned} & -5 \\ & -5 \end{aligned}$		ns
Pulse width ${ }^{9}$							
$t_{W P}{ }^{12}$	Write Enable			25	15		ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test each input one at a time.
4. Measured with a logic low stored and $V_{1 \mathrm{~L}}$ applied to $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$
5. Measured with a logic high stored. Output sink current is supplied through a resistor to V_{CC}.
6. Measured with $V_{I H}$ applied to $\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{CE}}_{3}$.
7. Duration of the short-circuit should not exceed 1 second.
8. $I_{C C}$ is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
9. Minimum required to guarantee a Write into the slowest bit.
10. Measured at a delta of 0.5 V from logic levels with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
11. Measured with minimum twp.
12. Measured with minimum IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS
MEASUREMENTS:
All circuit delays are measured at the +1.5 level of
inputs and output.
Input Pulses

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {te }}$	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
${ }^{\text {t }}$ CD	Delay between when Chip Enable becomes High and Data Output is in off-state.
$t_{\text {AA }}$	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
$t_{\text {WSC }}$	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
tWHD	Required delay between end of Write Enable pulse and end of valid input data.
twp	Width of Write Enable pulse.
twSA	Required delay between beginning of valid Address and beginning of Write Enable pulse.
$t_{\text {WSD }}$	Required delay between beginning of valid Data Input and end of Write Enable pulse.
two	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
twhC	Required delay between end of Write Enable pulse and end of Chip Enable.
tWHA	Required delay between end of Write Enable pulse and end of valid Address.

Byte-Organized TTL RAM

page
82S09 576-bit TTL Bipolar RAM (64×9) 45 ns 323
82S09A 576-bit TTL Bipolar RAM (64 x 9) 35 ns 323
82S19 576-bit TTL Bipolar RAM (64×9) 35 ns 327
82S212 2304-bit TTL Bipolar RAM (256 x 9) 45 ns 331
82S212A 2304-bit TTL Bipolar RAM (256 x 9) 35 ns 331
8×350 2048-bit TTL Bipolar RAM (256 x 8) 335

Bipolar Memory Products

DESCRIPTION

The organization of this device allows byte storage of data, including parity. Where parity is not monitored, the ninth bit can be used as a tag or status indicator for each word stored. Ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.
The 82S09/09A features Open-Collector outputs, Chip Enable input, and a very low current PNP input structure to enhance memory expansion.

Ordering information can be found on the following page.
The 82S09 and 82S09A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82SO9 82S09A 576-Bit TL Bipolar RAM

Product Specification

FEATURES

- Address access time:
- N82SO9: 45ns max
- N82S09A: 35ns max
- Write cycle time:
- N82S09/09A: 45ns max
- Power dissipation: $1.3 \mathrm{~mW} /$ bit typ
- Input loading: $\mathbf{- 1 0 0 \mu A} \max$
- On-chip address decoding
- Schottky clamped
- Fully TTL compatible
- Output is non-blanked during Write
- One Chip Enable input
- Outputs: Open-Collector

APPLICATIONS

- Buffer memory
- Control register
- FIFO memory
- Push down stack
- Scratch pad

PIN CONFIGURATIONS

C001103S

576-Bit TL Bipolar RAM (64×9)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin Plastic DIP 600 mil-wide	N82S09 N \cdot N82S09A N
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N82S09 A \cdot N82S09A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{D C}$
$\mathrm{~V}_{\mathrm{OH}}$	Output voltage High	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input voltage ${ }^{1}$						
$\begin{aligned} & \hline V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V} \text { Min, } \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.5 \end{gathered}$	v v
Output voltage ${ }^{1}$						
$\mathrm{V}_{\text {OL }}$	Low ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.5	v
Input current						
$\begin{aligned} & I_{I L} \\ & I_{H H} \end{aligned}$	Low High	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
loLk	Leakage ${ }^{4}$	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Supply current ${ }^{5}$						
Icc		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$			190	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes on following page.

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{I}_{\mathbf{N}}$	$\mathbf{O}_{\mathbf{N}}$
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	1
Write "1"	0	0	1	0
Disabled	1	x	x	1

[^11]AC ELECTRICAL CHARACTERISTICS $R_{1}=600 \Omega, R_{2}=900 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S09			N82S09A			UNIT
				Min	Typ	Max	Min	Typ	Max	
Access time										
$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address Chip Enable					45 30			35	ns
Disable time ${ }^{8}$										
$\begin{aligned} & \mathrm{t}_{\mathrm{CD}} \\ & \mathrm{t}_{\mathrm{WA}} \end{aligned}$	Valid time	Output Output	Chip Enable Write Enable			$\begin{aligned} & 30 \\ & 30 \end{aligned}$			25	ns
Setup and hold time										
$\begin{aligned} & t_{W S A} 9 \\ & t_{W H A} \end{aligned}$	Setup time Hold time	Write Enable	Address	5 5			5 5			ns
${ }^{\text {twSD }}$ $t_{\text {WHD }}$	Setup time Hold time	Write Enable	Data in	35 5			30 5			ns
$t_{\text {WSC }}$ $t_{\text {WHC }}$	Setup time Hold time	Write Enable	$\overline{\mathrm{CE}}$	5 5			5			ns
Pulse width ${ }^{6}$										
$t_{W P}{ }^{10}$	Write Enable			35			35			ns

NOTES:

1. All voltage values are with respect to network ground.
2. Test each input one at a time.
3. Measured with the logic low stored. Output sink current is applied through a resistor to $V_{C C}$.
4. Measured with $V_{I H}$ applied to $\overline{C E}$.
5. Icc is measured with the Write enable and chip enable input grounded, all other inputs at 0.45 V , and the outputs open.
6. Minimum required to guarantee a Write into the slowest bit.
7. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2 -minute warm-up.
8. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
9. Measured with minimum $t_{\text {wp }}$.
10. Measured with minimum IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {t }}$ CE	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
$t_{A A}$	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
twsc	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
${ }^{\text {twhD }}$	Required delay between end of Write Enable pulse and end of valid input data.
$t_{\text {wp }}$	Width of Write Enable pulse.
twSA	Required delay between beginning of valid Address and beginning of Write Enable pulse.
${ }^{\text {twSD }}$	Required delay between beginning of valid Data Input and end of Write Enable pulse.
two	Delay between beginning of Write Enable pulse and when Data Output goes High (blanks).
${ }^{\text {twhC }}$	Required delay between end of Write Enable pulse and end of Chip Enable.
tWHA	Required delay between end of Write Enable pulse and end of valid Address.
$t_{\text {WR }}$	Delay between end of Write Enable pulse and when Data Output becomes valid. (Assuming Address still valid.)
twa	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data input.

82 S 19 576-Bit TL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The organization of this device allows byte storage of data, including parity. Where parity is not monitored, the ninth bit can be used as a tag or status indicator for each word stored. Ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S19 features Open Collector outputs, Chip Enable input, and a very low current PNP input structure to enhance mernory expansion.
During Write operation, the 82S19 output goes to a " 1 ".

Ordering information can be found on the following page.

FEATURES

- Address access time: 35ns max
- Write cycle time: 45ns max
- Power dissipation: $1.3 \mathrm{~mW} /$ bit typ
- Input loading: $\mathbf{- 1 0 0 \mu} \mathrm{A}$ max
- On-chip address decoding
- Schottky clamped
- Fully TTL compatible
- One Chip Enable input
- Output is blanked during Write
- Outputs: Open-Collector

APPLICATIONS

- Buffer memory
- Control register
- FIFO memory
- Push down stack
- Scratch pad

BLOCK DIAGRAM

PIN CONFIGURATIONS

COOH103S

576-Bit TL Bipolar RAM (64×9)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Plastic DIP 600 mil-wide	N82S19 N
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82S19 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	V_{DC}	
V_{OH}	Output voltage High	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LImits			UNIT
			Min	Typ	Max	
Input voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{IL}} \\ & \mathrm{v}_{\mathrm{HH}} \\ & \mathrm{v}_{\mathrm{C}} \end{aligned}$	Low High Clamp ${ }^{2}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.5 \end{gathered}$	v v
Output voltage						
$\mathrm{V}_{\text {OL }}$	Low ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.5	v
Input current						
$\begin{aligned} & I_{I L} \\ & I_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 26 \end{gathered}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Output current						
lolk	Leakage ${ }^{4}$	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Supply current ${ }^{3,5}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			190	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		pF pF

Notes on following page.

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{I}_{\mathbf{N}}$	$\overline{\mathbf{O}}_{\mathbf{N}}$
Read	0	1	X	Stored $\overline{\text { Data }}$
Write "0"	0	0	0	1
Write "1"	0	0	1	1
Disabled	1	X	X	1

[^12]576-Bit TL Bipolar RAM $(64 \times 9) \quad 82 S 19$

AC ELECTRICAL CHARACTERISTICS $R_{1}=600 \Omega, R_{2}=900 \Omega, C_{L}=30 p F, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ	Max	
Access time							
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$	Address Chip Enable					$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns
$t_{C D}$ two twn	Disable time Valid time Write recovery time	Output Output Output	Chip Enable Write Enable Write Enable			25 25 25	ns
Setup and hold time							
$\begin{aligned} & \text { twSA }^{8} \\ & t_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Enable	Address	5 5			ns
twSD twHD	Setup time Hold time	Write Enable	Data in	30 5			ns
$t_{\text {wsc }}$ twhe	Setup time Hold time	Write Enable	$\overline{C E}$	5 5			ns
Pulse width ${ }^{6}$							
$t_{W P}{ }^{9}$	Write enable			35			ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. Test each input one at a time.
3. Measured with a logic low stored and V_{IL} applied to $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ and CE_{3}.
4. Measured with $V_{I H}$ applied to $\overline{C E}$.
5. ICC is measured with the Write enable and chip enable inputs grounded, all other inputs at 0.45 V , and the outputs open.
6. Minimum required to guarantee a Write into the slowest bit.
7. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2 -minute warm-up.
8. Measured with minimum twp.
9. Measured with minimum IWSA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {t CE }}$	Delay between beginning of Chip Enable Low (with Address valid) and when Data Output becomes valid.
${ }^{\text {t }}$ CD	Delay between when Chip Enable becomes High and Data Output is in off-state.
$t_{A A}$	Delay between beginning of valid Address (with Chip Enable Low) and when Data Output becomes valid.
${ }^{\text {twSC }}$	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
$t_{\text {WHD }}$	Required delay between end of Write Enable pulse and end of valid input data.
twp	Width of Write Enable pulse.
$t_{\text {WSA }}$	Required delay between beginning of valid Address and beginning of Write Enable pulse.
$t_{\text {WSD }}$	Required delay between beginning of valid Data Input and end of Write Enable pulse.
two	Delay between beginning of Write Enable pulse and when Data Output goes High (blanks).
$t_{\text {WHC }}$	Required delay between end of Write Enable pulse and end of Chip Enable.
twha	Required delay between end of Write Enable pulse and end of valid Address.
twr	Delay between end of Write Enable pulse and when Data Output becomes valid. (Assuming Address still valid.)

82 S 212 82S212A 2304-Bit TLL Bipolar RAM

Product Specification

DESCRIPTION

The organization of the $82 S 212$ and 82S212A allows byte wide storage of data, including parity. Where parity is not required, the ninth bit can be used as a tag for each word stored. The 82S212 and 82S212A are ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which space and performance requirements dictate a wide data path in favor of word depth.
Data inputs and outputs are common (common I/O) with separate output disable (OD) line that allows ease of Read/ Write operations using a common bus.
Ordering information can be found on the following page.

The 82S212 and 82S212A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
- N82S212: 45ns max
- N82S212A: 35ns max
- Power dissipation: 0.3mW/bit typ
- Schottky clamped TTL
- One Chip Enable input
- Common I/O
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Cache memory
- Buffer storage
- Writable control store

TYPICAL I/O STRUCTURE

PIN CONFIGURATIONS

BLOCK DIAGRAM

2304-Bit TLL Bipolar RAM (256×9)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Plastic DIP 400 mil-wide	N82S212 N \cdot N82S212A N
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82S212 A \cdot N82S212A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage High (open-collector)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{4}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, I_{I N}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{array}{r} \hline 0.80 \\ -1.5 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Output voltage ${ }^{2}$						
V_{OH} $V_{\text {OL }}$	High Low	$\begin{gathered} \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
l_{Oz} los	Hi-Z State Short circuit ${ }^{4.5}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, or } \mathrm{OD}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High or } O D=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\mathrm{OD}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} 40 \\ -100 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		135	185	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

TRUTH TABLE

MODE	$\overline{\text { WE }}$	$\overline{\mathbf{C E}}$	OD	$\mathbf{D}_{\mathbf{N}}$ IN/OUT
Disable output	X	X	1	Hi Z
Disable R/W	X	1	X	$\mathrm{Hi-Z}$
Write	0	0	1	Data in
Read	1	0	0	Data out

X = Don't care

AC ELECTRICAL CHARACTERISTICS $R_{1}=600 \Omega, R_{2}=900 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	то	FROM	N82S212			N82S212A			UNIT
				Min	Typ ${ }^{3}$	Max	Min	Typ ${ }^{3}$	Max	
Access time										
$t_{\text {A }}$	Address	Output	Address			45			35	ns
Enable time										
toe ${ }^{\text {t }} \mathrm{CE}$	Output Output	Output Output	$\overline{O D}$ Chip Enable	5		$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns
Disable time ${ }^{6}$										
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{OD}} \\ & \mathrm{t}_{\mathrm{CD}} \end{aligned}$	Output Output	Output Output	OD Chip Enable			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns
Pulse width										
$\mathrm{t}_{\mathrm{W}}{ }^{8}$	Write			25			25			ns
Setup and hold time										
${ }^{t}$ swc twhD	Setup time Hold time	Write Chip Enable	Chip Enable Write	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \end{aligned}$			ns
$\begin{aligned} & \text { t}_{\text {WSD }} \\ & t_{\text {WHD }} \end{aligned}$	Setup time Hold time	Write Data	Data Write	$\begin{gathered} 25 \\ 5 \end{gathered}$			$\begin{gathered} 25 \\ 5 \end{gathered}$			ns
$\begin{aligned} & \text { twSA }^{9} \\ & t_{\text {WHA }} \end{aligned}$	Setup time Hold time	Write Address	Address Write	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \end{aligned}$			ns
$\begin{aligned} & \text { tso } \\ & \mathrm{t}_{\mathrm{HO}} \end{aligned}$	Setup time (from disabled state) Hold time	$\begin{gathered} \text { Chip Enable } \\ \text { OD } \end{gathered}$	$\begin{gathered} \mathrm{OD} \\ \text { Chip Enable } \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			5 5			ns

NOTES:

1. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2 -minute warmup.
2. All voltages are with respect to network ground terminal.
3. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
4. Measured on one pin at a time.
5. Duration of los test should not exceed one second.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. I_{Cc} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the outputs open.
8. Measured with minimum twSA.
9. Measured with minimum $t_{w p}$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAM

8X350 2048-Bit TL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 8×350 bipolar RAM is designed principally as a working storage element in an 8X305 based system. Internal circuitry is provided for direct use in 8×305 applications. When used with the 8X305, the RAM address and data buses are tied together and connected to the IV bus of the system.
The data inputs and outputs share a common I/O bus with 3-State outputs
Ordering information can be found on the following page.
The 8X350 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- On-chip address latches
- Schottky clamped
- One Master Enable input
- Directly interfaces with the 8×305 bipolar microprocessor with no external logic
- May be used on left or right bank
- Common I/O:
- Inputs: PNP buffered
- Outputs: 3-State

APPLICATIONS

- 8X300 or 8×305 working storage

TYPICAL I/O STRUCTURE

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Plastic DIP 400 mil-wide	N8×350 N
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N8X350 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
$V_{O H}$	Output voltage High Off-stage	+5.5 +5.5	$V_{D C}$
T_{O}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Input voltage						
$\begin{aligned} & \hline V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, l_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{IOL}_{\mathrm{OL}}=9.6 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{i N}=0.45 \mathrm{~V} \\ & V_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Hi-Z State Short circuit ${ }^{3.6}$	$\begin{aligned} \overline{\mathrm{ME}} & =\text { High, } V_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{M E} & =\text { High, }, V_{\text {OUT }}=0.5 \mathrm{~V} \\ \mathrm{SC} & =W C, \overline{M E}=\text { Low }, \\ V_{\text {OUT }} & =0 \mathrm{~V}, \text { High stored } \end{aligned}$	-15		$\begin{gathered} 40 \\ -100 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			185	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \\ & \hline \end{aligned}$	Input Output	$\begin{gathered} \hline \overline{\mathrm{ME}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

2048-Bit TLL Bipolar RAM (256×8)

TRUTH TABLE

MODE	$\overline{M E}$	SC	WC	MCLK	BUSSED DATA/ADDRESS LINES
Hold address Disable data out	1	X	x	X	Hi-Z data out
Input new address	0	1	0	1	Address Hi-Z
Hold address Disable data out	0	1	0	0	$\mathrm{Hi}-\mathrm{Z}$ data out
Hold address Write data	0	0	1	1	Data in
Hold address Disable data out	0	0	1	0	$\mathrm{Hi}-\mathrm{Z}$ data out
Hold address Read data	0	0	0	X	Data out
Undefined state ${ }^{12}$	0	1	1	1	-
Hold address ${ }^{12}$ Disable data out	0	1	1	0	Hi-Z data out

NOTE:

X = Don't care
AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ	Max	
Enable time							
$\begin{aligned} & \mathrm{t}_{\mathrm{E} 1} \\ & \mathrm{t}_{\mathrm{E} 2} \\ & \hline \end{aligned}$	Output Output	Data out Data out	$\overline{\mathrm{SC}-}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$	ns
Disable time ${ }^{13}$							
$\begin{aligned} & \mathrm{t}_{\mathrm{D} 1} \\ & \mathrm{t}_{\mathrm{D} 2} \end{aligned}$	Output Output	Data out Data out	$\frac{\mathrm{SC}+}{\overline{\mathrm{ME}}+}$			35 35	ns
Pulse width ${ }^{8}$							
tw	Master clock			40			ns
Setup and hold time							
$\begin{aligned} & \mathrm{t}_{S A} \\ & \mathrm{t}_{\mathrm{HA}} \end{aligned}$	Setup time Hold time	MCLKAddress	Address MCLK-	$\begin{gathered} 30 \\ 5 \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{SD}} \\ & \mathrm{t}_{\mathrm{HO}} \\ & \hline \end{aligned}$	Setup time Hold time	MCLKData in	Data in MCLK-	$\begin{gathered} 35 \\ 5 \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{t}_{\mathrm{H} 3} \end{aligned}$	Setup time Hold time	MCLK$\overline{\mathrm{ME}}+$	$\overline{M E}-$ MCLK-	$\begin{gathered} 40 \\ 5 \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s} 1} \\ & \mathrm{t}_{\mathrm{H} 2} \end{aligned}$	Setup time Hold time	$\begin{gathered} \text { MCLK- } \\ \overline{\mathrm{ME}}- \end{gathered}$	$\overline{\mathrm{ME}}-$ MCLK-	$\begin{gathered} 30 \\ 5 \end{gathered}$			ns
$t_{\text {S2 }}$ $t_{\text {t }}$ $t_{H 4}$	Setup time Hold time Hold time		SC-, WC-MCLK-MCLK-	0 5 5			ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2 -minute warm-up.
3. Test each pin one at a time.
4. Measured with a logic Low stored. Output sink current is supplied through a resistor to V_{CC}.
5. Measured with a logic High stored.
6. Duration of the short circuit should not exceed 1 second.
7. Icc is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
8. Minimum required to guarantee a Write into the slowest bit.
9. Applied to the 8×300 based system with the data and address pins tied to the IV Bus.
10. $S C+M E=1$ to avoid bus conflict.
11. $W C+M E=1$ to avoid bus conflict.
12. The SC and WC outputs from the 8×300 are never at 1 simultaneously.
13. Measured at at delta of 0.5 V from the logic level with $R_{1}=750 \Omega, R_{2}=500 \Omega$, and $C_{L}=5 p F$.

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {ts }} 1$	Required delay between beginning of Master Enable Low and falling edge of Master Clock.
${ }^{\text {t }}$ S	Required delay between beginning of valid Address and falling edge of Master Clock.
$t_{\text {HA }}$	Required delay between falling edge of Master Clock and end of valid Address.
$\mathrm{t}_{\mathrm{H} 1}$	Required delay between falling edge of Master Clock and when Select Command becomes Low.
$t_{E 1}$	Delay between beginning of Select Command Low and beginning of valid Data Output on the IV Bus.
$t_{\text {D1 }}$	Delay between when Select Command becomes High and end of valid Data Output on the IV Bus.
$\mathrm{t}_{\mathrm{H} 2}$	Required delay between falling edge of Master Clock and when Master Enable becomes Low.
$\mathrm{t}_{\mathrm{E} 2}$	Delay between when Master Enable becomes Low and beginning of valid Data Output on the IV Bus.
$t_{\text {D2 }}$	Delay between when Master Enable becomes High and end of valid Data Output on the IV Bus.
$\mathrm{t}_{5} 2$	Required delay between when Select Command or Write Command becomes Low and when Master Enable becomes Low.
tw	Minimum width of the Master Clock pulse.
${ }^{\text {t }} 3$	Required delay between when Master Enable becomes Low and falling edge of Master Clock.
$\mathrm{t}_{\mathrm{H} 3}$	Required delay between falling edge of Master Clock and when Master Enable becomes High.
${ }^{\text {tSD }}$	Required delay between beginning of valid Data Input on the IV Bus and falling edge of Master Clock.
$t_{\text {HD }}$	Required delay between falling edge of Master Clock and end of valid Data Input on the IV Bus.
$\mathrm{t}_{\mathrm{H} 4}$	Required delay between falling edge of Master Clock and when Write Command becomes Low.

TYPICAL 8X350 APPLICATION

test load circuit

Loading Condition

Voltage waveforms

Low Complexity TTL PROM

page
82S23/82S123 256-bit TTL Bipolar PROM (32×8) 50 ns 343
82S23A/82S123A 256-bit TTL Bipolar PROM (32 x 8) 25 ns 347
82 US23 256-bit TTL Bipolar PROM (32×8) 13 ns 351
82US123 256-bit TTL Bipolar PROM (32 x 8) 10 ns 351
82S126/82S129 1024-bit TTL Bipolar PROM (256×4) 50 ns 355
82S126A 1024-bit TTL Bipolar PROM (256 x 4) 30 ns 359
82S129A 1024-bit TTL Bipolar PROM (256×4) 27 ns 359
82S130/82S131 2048-bit Bipolar PROM (512 x 4) 50 ns 363
82S130A 2048-bit Bipolar PROM (512 x 4) 33 ns 367
82S131A 2048-bit Bipolar PROM (512 x 4) 30 ns 367
82S135 2048-bit Bipolar PROM (256×8) 45 ns 371
82LS135 2048-bit Bipolar PROM (256 x 8) 100 ns 375

Bipolar Memory Products

DESCRIPTION

The 82S23 and 82S123 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23 and 82S123 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing a Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either OpenCollector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82S23 and 82S123 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

$82 S 23$
 82S123
 256-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82S23: Open-Collector
- N82S123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S23 N •N82S123 N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S23 A •N82S123 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{OH} V_{O}	Output voltage High (82S23) Off-State (82S123)	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	Limits			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low High Clamp	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \\ & l_{N}=-12 \mathrm{~mA} \end{aligned}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} \overline{C E} & =\text { LOW } \\ \text { IOUT } & =16 \mathrm{~mA} \\ \text { IOUT } & =-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 50 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { louk } \\ & \text { loz } \\ & \text { los } \\ & \hline \end{aligned}$	Leakage (82S23) Hi-Z State (82S123) Short circuit (82S123) ${ }^{3}$	$\begin{aligned} & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{aligned}$	-15		$\begin{gathered} 40 \\ 40 \\ -40 \\ -90 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$			96	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \\ & \hline \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^13]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		45	50	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable			35	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Enable			35	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground terminal.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 82S23A and 82S123A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23A and 82S123A devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either OpenCollector or 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82S23A and 82S123A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

LOGIC DIAGRAM

82S23A 82S123A 256-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time: 25ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82S23A: Open-Collector
- N82S123A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S23A N • N82S123A N
16-pin Plastic SO 300 mil-wide	N82S23A D • N82S123A D
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S23A A • N82S123A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
$V_{O H}$ V_{O}	Output voltage High (82S23A) Off-State (82S123A)	+5.5 +5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Output voltage						
V_{OL} VOH	Low High	$\begin{gathered} \overline{\mathrm{CE}}=\text { LOW } \\ \text { IOUT }=16 \mathrm{~mA} \\ \text { IOUT }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{\mathbb{I N}}=0.45 \mathrm{~V} \\ & V_{\mathbb{I N}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 50 \end{gathered}$	$\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{loLK} \\ & \mathrm{loz} \\ & \mathrm{los} \\ & \hline \end{aligned}$	Leakage (82S23A) Hi-Z State (82S123A) Short circuit (82S123A) ${ }^{3}$	$\begin{aligned} \overline{\mathrm{CE}}=\text { High, } V_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{aligned}$	-15		$\begin{gathered} 40 \\ 40 \\ -40 \\ -90 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			96	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\begin{array}{c} \text { High, }, V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} \\ V_{\mathrm{OUT}}=2.0 \mathrm{~V} \end{array} \end{gathered}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^14]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time							
$t_{A A}{ }^{4}$		Output	Address		20	25	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable			18	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable			18	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82US23 82US123 256-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82US23 and 82US123 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic III fusing procedure. The 82US23 and 82US123 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ti-W link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82US23 and 82US123 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
- 82US23: 13ns max
- 82US123: 10ns max
- Power dissipation: $2.3 \mathrm{~mW} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A} \max$
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82US23: Open Collector
- N82US123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

LOGIC DIAGRAM

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82US23 N • N82US123 N
16-pin Plastic SOL 300 mil-wide	N82US23 D • N82US123 D
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82US23 A • N82US123 A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{\text {IN }}$	Input voltage	+5.5	$V_{D C}$
$V_{O H}$ V_{O}	Output voltage High (82US23) Off-state (82US123)	+5.5 +5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ}{ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stress above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.0		$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} \overline{\mathrm{CE}} & =\text { LOW } \\ \mathrm{IOUT} & =16 \mathrm{~mA} \\ \text { IOUT } & -2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{1 H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 50 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \text { lolk } \\ & \text { loz } \\ & \text { los } \\ & \hline \end{aligned}$	Leakage (82US23) Hi-Z State (82US123) Short circuit (82US123) ${ }^{3}$	$\begin{aligned} & \overline{\mathrm{CE}}=\text { High, } V_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {Out }}=0.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{aligned}$	-15		$\begin{array}{r} 40 \\ 40 \\ -40 \\ -90 \end{array}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			115	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\text {OUT }} \end{aligned}$	Input Output	$\begin{gathered} \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^15]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82US23			N82US123			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{\text {AA }}$		Output	Address			13			10	ns
${ }^{\text {t }}$ CE		Output	Chip Enable			8			7	ns
Disable time ${ }^{6}$										
$t_{C D}$		Output	Chip Enable			8			7	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

(

VOLTAGE WAVEFORM

Bipolar Memory Products

DESCRIPTION

The 82S126 and 82S129 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S126 and 82S129 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S126 and 82S129 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S126 82S129 1K-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: $0.5 \mathrm{~mW} /$ bit typ
- Input loading: $\mathbf{- 1 0 0 \mu \mathrm { A }} \max$
- On-chip address decoding
- Two Chip Enable inputs
- Output options:
- N82S126: Open Collector
- N82S129: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

1K-Bit TIL Bipolar PROM (256×4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S126 N • N82S129 N
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S126 A • N82S129 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{OH} V_{O}	Output voltage High (82S126) Off-State (82S129)	+5.5 +5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{1 H} \\ & \mathrm{~V}_{1 \mathrm{C}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v v
Output voltage						
$\begin{aligned} & V_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High (82S129) } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{CE}}_{1,2}=\text { Low } \\ & \text { lout }=16 \mathrm{~mA} \\ & \text { Iout }=-2.0 \mathrm{~mA} \end{aligned}$	2.4		0.45	V
Input current						
$\begin{aligned} & I_{\mathbb{L}} \\ & I_{\mathbb{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lolk Ioz los	Leakage (82S126) Hi-Z State (82S129) Short circuit (82S129) ${ }^{3}$	$\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}=\mathrm{High}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}=$ High, $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}=$ High, $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ $\overline{\mathrm{CE}}_{1,2}=$ Low, $\mathrm{V}_{\text {OUT }}=\mathrm{OV}$, High stored	-15		40 40 -40 -70	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			120	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		40	50	ns
${ }^{\text {t }}$ CE		Output	Chip Enable			25	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable			25	ns

NOTES:

1. Positive current is defined as into the terminal referenced
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 82S126A and 82S129A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S126A and 82S129A devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82S126A and 82S129A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S126A 82S129A 1K-Bit TLL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S126A: 30ns max
- N82S129A: 27ns max
- Power dissipation: $0.5 \mathrm{~mW} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- On-chip address decoding
- Two Chip Enable inputs
- Output options:
- 82S126A: Open-Collector
- 82S129A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

1K-Bit TIL Bipolar PROM (256×4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S126A N • N82S129A N
16-pin Plastic SO 300 mil-wide	N82S126A D • N82S129A D
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S126A A • N82S129A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	$V_{D C}$	
$V_{O H}$			
V_{O}	Output voltage High (82S126) Off-state (82S129)	Operating temperature range +5.5	0 to +75

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{gathered} V_{C C}=4.75 \mathrm{~V} \\ V_{C C}=5.25 \mathrm{~V} \\ V_{C C}=4.75 \mathrm{~V}, I_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	```Low (82S129A)```	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { Low } \\ \text { Iout }=16 \mathrm{~mA} \\ \text { IOUT }=-2.0 \mathrm{~mA} \end{gathered}$	2.4		0.45	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{HL}} \\ & I_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \text { loLk } \\ & \text { loz } \\ & \text { los } \end{aligned}$	Leakage (82S126A) Hi-Z State (82S129A) Short circuit (82S129A) ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \mathrm{CE}_{1,2}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		40 40 -40 -70	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$			120	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \\ \hline \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^16]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S129A			N82S126A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{\text {AA }}$		Output	Address		17	27		17	30	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		10	20		10	20	ns
Disable time ${ }^{6}$										
$t_{\text {cb }}$		Output	Chip Enable		6	15		6	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 82S130 and 82S131 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130 and 82S131 are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
These devices include on-chip decoding and 1 Chip Enable input for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82S130 and 82S131 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S130 82S131 2K-Bit TLL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: $0.3 \mathrm{~mW} /$ bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82S130: Open-Collector
- N82S131: 3-State
- No separate fusing-pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

2K-Bit TIL Bipolar PROM (512 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S130 N • N82S131 N
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S130 A \cdot N82S131 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	V_{DC}	
V_{OH} V_{O}	Output voltage High (82S130) Off-State (83S131)	+5.5 +5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V V
Output voltage						
V_{OL} V_{OH}	Low High (82S131)	$\begin{aligned} \overline{\mathrm{CE}} & =\text { LOW } \\ \text { IOUT } & =16 \mathrm{~mA} \\ \text { IOUT } & =-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { lolk } \\ & \text { loz } \\ & \text { los } \end{aligned}$	Leakage (82S130) Hi-Z State (82S131) Short circuit $(82 \mathrm{~S} 131)^{3}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \\ \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$V_{C C}=5.25 \mathrm{~V}$			140	mA
Capacitance						
$\mathrm{CiN}_{\mathrm{IN}}$ CoUt	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\begin{array}{c} \text { High, }, V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5 $\cdot 8$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^17]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address			50	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable			30	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82S130A 82S131A 2K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S130A and 82S131A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130A and 825131 A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
These devices include on-chip decoding and 1 Chip Enable input for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

The 82S130A and 82S131A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
- N82S130A: 33ns max
- N82S131A: 30ns max
- Power dissipation: 0.3mW/bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- One Chip Enable input
- Output options:
- N82S130A: Open-Collector
- N82S131A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300 mil-wide	N82S130A N • N82S131A N
16-pin Plastic SO 300 mil-wide	N82S130A D • N82S131A D
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S130A A • N82S131A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OH }}$ V_{O}	Output voltage High (82S130) Off-State (82S131)	+5.5 +5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{II}} \\ & \mathrm{~V}_{\text {IH }} \\ & \mathrm{V}_{\text {IC }} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High (82S131)	$\begin{aligned} \overline{\mathrm{CE}} & =\text { Low } \\ \text { IOUT } & =16 \mathrm{~mA} \\ \text { IOUT } & =-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lolk loz los	Leakage (82S130A) Hi-Z State (82S131A) Short circuit (82S131A) ${ }^{3}$	$\begin{aligned} & \overline{\mathrm{CE}}=\text { High, } V_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{aligned}$	-15		40 40 -40 -70	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			140	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^18]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S131A			N82S130A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{\text {AA }}$		Output	Address		18	30		18	33	ns
${ }^{\text {cte }}$		Output	Chip Enable		10	20		10	20	ns
Disable time ${ }^{6}$										
${ }_{\text {t }}$ D		Output	Chip Enable		6	15		6	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

NOTE:
All inputs $t_{1}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$.

VOLTAGE WAVEFORMS

82S135
 2K-Bit TLL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82S135 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 45ns max
- Power dissipation: $329 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

2K-Bit TL Bipolar PROM (256×8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$20-$ pin Plastic DIP 300 mil-wide	N82S135 N
20 -pin Plastic SO 300 mil-wide	N82S135 D
$20-$ pin Plastic Leaded Chip Carrier 350 mil-square	N82S135 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Power supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{I N}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low High Clamp	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \\ & I_{\mathbb{N}}=-12 \mathrm{~mA} \end{aligned}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V V
Output voltage						
VOL V_{OH}	Low High	$\begin{gathered} \text { lout }=9.6 \mathrm{~mA} \\ \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { Low, IOUT }=-2 \mathrm{~mA}, \text { High stored } \end{gathered}$	2.4		0.5	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{IOz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V} \\ \mathrm{CE}_{1}, \mathrm{CE}_{2}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15	,	$\begin{gathered} -40 \\ 40 \\ -75 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		135	150	mA
Capacitance						
C_{IN} COUT	Input Output	$\begin{gathered} V_{C C}=5.0 \mathrm{~V}, \overline{\mathrm{CE}}=\mathrm{High} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^19]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{A A}$		Output	Address		40	45	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		20	25	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable		20	35	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82LS135 2K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LS135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
The 82LS135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

FEATURES

- Address access time: 100ns max
- Power dissipation: 200μ W/bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Unprogrammed outputs are at Low level
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

2K-Bit TIL Bipolar PROM (256×8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300 mil-wide	N82LS135 N
20-pin Plastic SO 300 mil-wide	N82LS135 D
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82LS135 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-state	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{C}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$v_{O L}$ V_{OH}	Low High	$\begin{gathered} \text { IOUT }=16 \mathrm{~mA} \\ \text { IOUT }=-2 \mathrm{~mA}, \text { High stored } \end{gathered}$	2.4		0.5	v
Input current						
$\begin{aligned} & I_{I L} \\ & I_{\mathbb{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I H}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
loz los	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { High, } V_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -75 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$		80	100	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathbb{N}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \overline{\mathrm{CE}}=\text { High } \\ \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^20]
2K-Bit TL Bipolar PROM (256×8)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 p F, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		70	100	ns
${ }_{\text {t }}^{\text {ce }}$		Output	Chip Enable		30	50	ns
Disable time ${ }^{6}$							
${ }_{\text {t }}$		Output	Chip Disable		30	60	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

4K-bit TTL PROM

page
82S115 4096-bit PROM (512 x 8) 60 ns 381
82S137 4096-bit PROM (1024 x 4) 60 ns 385
82S137A 4096-bit PROM (1024 x 4) 45 ns 389
82S137B 4096-bit PROM (1024 x 4) 35 ns 389
82S141 4096-bit PROM (512 x 8) 60 ns 393
82S141A 4096-bit PROM (512 x 8) 45 ns 393
82S147 4096-bit PROM (512 x 8) 60 ns 397
82S147A 4096-bit PROM (512 x 8) 45 ns 397
82S147B 4096-bit PROM (512×8) 25 ns 401

82S115 4K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82 S 115 is field programmable and includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations. A D-type latch is used to enable the 3-State output drivers. In the Transparent Read mode, stored data is addressed by applying a binary code to the address inputs while holding Strobe High. In this mode the bit drivers will be controlled solely by $\overline{\mathrm{CE}}_{1}$ and CE_{2} lines.
In the Latched Read mode, outputs are held in their previous state (High, Low, or Hi Z) as long as Strobe is Low, regardless of the state of Address or Chip Enable. A positive Strobe transition causes data from the applied address to reach the outputs if the chip is enabled, and causes outputs to go to the $\mathrm{Hi}-\mathrm{Z}$ State if the chip is disabled.

A negative Strobe transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the $\mathrm{Hi}-\mathrm{Z}$ condition if the chip was disabled.

Ordering information can be found on the following page.
This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 60ns max
- Power dissipation: $165 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Two Chip Enable inputs
- On-chip storage latches
- Schottky clamped
- Fully TTL compatible
- Outputs: 3-State

PIN CONFIGURATION

	N Package

BLOCK DIAGRAM

b000803s

ORDERING INFORMATION

DESCRIPTION	ORDERING CODE
24-pin Plastic DIP 600 mil-wide	N82S115 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\text {DC }}$
$\mathrm{T}_{\text {A }}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{5}$	LIMITS			UNIT
			Min	Typ ${ }^{8}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{VI}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v v
Output voitage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2}=\text { High } \\ \text { lout }=9.6 \mathrm{~mA} \\ \text { Iout }=-2 \mathrm{~mA} \end{gathered}$	2.7	0.4	0.45	V
Input current ${ }^{5}$						
$\begin{aligned} & I_{I L} \\ & I_{H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 25 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current ${ }^{5}$						
loz los	Hi-Z State Short circuit ${ }^{1}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High or } \mathrm{CE}_{2}=\text { Low, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { High or } \mathrm{CE}_{2}=\text { Low, } \mathrm{VOUT}_{\text {OU }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{10}$						
Icc		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High or } \mathrm{CE}_{2}=\text { Low, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 5 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{8}$	Max	
Access time ${ }^{6}$								
$\begin{aligned} & t_{\mathrm{AA}} \\ & t_{\mathrm{CE}} \end{aligned}$		Output Output	Address Chip Enable	Latched or transparent Read ${ }^{2,4}$		$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	ns
Disable time ${ }^{9}$								
${ }^{\text {t }}$ D		Output	Chip Disable	Latched or transparent Read ${ }^{2.4}$		20	40	ns
Setup and hold time								
$\mathrm{t}_{\mathrm{CDS}}$ $\mathrm{t}_{\mathrm{CDH}}$	Setup time Hold time	Output	Chip Enable	Latched Read only ${ }^{3,4}$	40 10			ns
Hold time								
$t_{\text {ADH }}$	Hold time	Address	Strobe	Latched Read only ${ }^{3,4}$		0		ns
Pulse Width								
${ }_{\text {tsw }}$	Strobe			Latched Read only ${ }^{3.4}$	30	15		ns
Latch time								
tsL	Strobe			Latched Read only ${ }^{3,4}$	60	35		ns
Delatch time ${ }^{9}$								
$t_{\text {dL }}$	Strobe			Latched Read only ${ }^{3,4}$			35	ns

NOTES:

1. No more than one output should be grounded at the same time and strobe should be disabled Strobe is in the High state.
2. If the Strobe is High, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear $T_{A A}$ nanoseconds after the address has changed or $T_{C E}$ nanoseconds after the output circuit is enabled.
3. In latched Read Mode data from any selected address will be held on the output when Strobe is lowered only when Strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.
4. During operation the fusing pins FE_{1} and FE_{2} must be grounded or left floating.
5. Positive current is defined as into the terminal referenced.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Areas shown by crosshatch are latched data from previous address.
8. Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
9. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$, and $C_{L}=5 p F$.
10. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

(3.0V

4K-Bit TL Bipolar PROM $(512 \times 8) \quad 82 S 115$

TIMING DIAGRAM

82S137 4K-Bit TLL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S137 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic 1 fusing procedure. The 82 S 137 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82S137 devices are also processed to military requirements for operation over the military temperature range, for specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

PIN CONFIGURATIONS

4K-Bit TLL Bipolar PROM (1024 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300 mil-wide	N82S137 N
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S137 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-state	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{IL}} \\ & \mathrm{v}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0		$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} & \overline{\mathrm{CE}}_{1,2}=\mathrm{LOW} \\ & \mathrm{I}_{\mathrm{OUT}}=16 \mathrm{~mA} \\ & \text { IOUT }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	v
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1,2}=\text { Low, }^{\text {LowT }}=0 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$			140	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{A A}$		Output	Address		40	60	ns
$t_{\text {CE }}$		Output	Chip Enable		25	30	ns
Disable time ${ }^{6}$							
$t_{C D}$		Output	Chip Enable		25	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82S137A
 82S137B 4K-Bit TLL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S137A and 82S137B are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S137A and 82 S 137 B are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82S137A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

4K-Bit TL Bipolar PROM (1024 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300 mil-wide	N82S137A N • N82S137B N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S137A A • N82S137B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1 , 2}}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{LL}} \\ & \mathrm{~V}_{\mathrm{HH}} \\ & \mathrm{v}_{\mathrm{C}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \\ \hline \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{VOL}_{\mathrm{OL}} \\ & \mathrm{VOH}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\mathrm{CE}}_{1,2}=\text { Low } \\ & \text { lout }=16 \mathrm{~mA} \\ & \text { lout }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{LL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{aligned} \overline{\mathrm{CE}}_{1,2} & =\text { High, } \mathrm{V}_{\text {Out }}=0.5 \mathrm{~V} \\ \mathrm{CE}_{1,2}= & \text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \mathrm{CE}_{1,2} & =\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \text { High stored } \end{aligned}$	-15		$\begin{array}{r} 40 \\ -40 \\ -70 \end{array}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		85	140	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S137A			N82S137B			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{A A}$		Output	Address		35	45		30	35	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		20	30		15	25	ns
Disable time ${ }^{6}$										
t_{CD}		Output	Chip Disable		20	30		15	25	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

voltage waveforms

All inputs $t_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$.
All AC parameters are measured at 1.5 V unless otherwise specified.

Bipolar Memory Products

DESCRIPTION

The 82S141 and 82S141A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S141 and 82S141A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.
This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

FEATURES

- Address access time:
- N82S141: 60ns max
- N82S141A: 45ns max
- Power dissipation: $76 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATION

4K-Bit TL Bipolar PROM (512 $\times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24 -pin Plastic DIP 300 mil-wide	N82S141 N3 • N82S141A N3
24 -pin Plastic DIP 600 mil-wide	N82S141 N •N82S141A N
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N82S141A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-state	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{v}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{11} \\ & \mathrm{~V}_{1 H} \\ & \mathrm{~V}_{16} \end{aligned}$	Low High Clamp	$\mathrm{I}_{1 \times}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v
Output voltage ${ }^{2}$						
$\begin{aligned} & V_{\text {OL }} \\ & V_{O H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { Low, } \mathrm{CE}_{3,4}=\text { High } \\ \text { lout }=9.6 \mathrm{~mA} \\ \text { Iout }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	v
Input current ${ }^{1}$						
$\begin{aligned} & I_{1 L} \\ & l_{H+} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\mathbb{I N}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current ${ }^{1}$						
$\begin{aligned} & \text { 102 } \\ & \text { los } \end{aligned}$	Hi-Z state Short circuit ${ }^{3}$		-15		40 -40 -70	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{1 N} \\ & \mathrm{C}_{\text {OUU }} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{VIN}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5		$\mathrm{pF}_{\mathrm{pF}}$

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S141			N82S141A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{A A}$		Output	Address			60			45	ns
${ }^{\text {t }}$ CE		Output	Chip Enable			40			30	ns
Disable time ${ }^{6}$										
${ }^{\text {t }}$ CD		Output	Chip disable			40			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of the short circuit should not exceed 1 second
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82S147 82S147A 4K-Bit TLL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S147 and 82S147A are fieldprogrammable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 82S147 and 82S147A includes onchip decoding and one Chip Enable input for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S147 and 82S147A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
- N82S147: 60ns max
- N82S147A: 45ns max
- Power dissipation: 625mW typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

4K-Bit Bipolar PROM (512 $\times 8$)

ORDERING INFORMATION

PACKAGES	ORDER CODE
20-pin Plastic DIP 300 mil-wide	N82S147 N • N82S147A N
20-pin Plastic Leaded Chip Carrier 300 mil-square	N82S147 A . N82S147A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Power supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-state	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LImits			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\mathrm{I}_{1}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V v
Output voltage						
$\begin{aligned} & \mathrm{VOL}_{\mathrm{OL}} \\ & \mathrm{VOH}^{2} \end{aligned}$	Low High	$\begin{aligned} & \overline{C E}=\text { LOW } \\ & \text { IOUT }=9.6 \mathrm{~mA} \\ & \text { IOUT }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
loz los	Hi-Z State Short circuit ${ }^{3}$	$\begin{aligned} & \overline{C E}=\text { High, }, V_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{C E}=\text { High, }, V_{\text {OUT }}=0.5 \mathrm{~V} \\ & \overline{C E}=\text { LOW }, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		125	155	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S147			N82S147A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{\text {AA }}$		Output	Address		45	60		40	45	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		20	35		20	30	ns
Disable time ${ }^{6}$										
${ }^{\text {t }}$ D		Output	Chip Disable		20	35		20	30	ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. Positive current is defined as into the terminal referenced.
3. Duration of the short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

test load circuit

VOLTAGE WAVEFORMS

82S147B 4K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S147B is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
The 82S147B includes on-chip decoding and one Chip Enable input for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S147B device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 25ns max
- Power dissipation: 625mW typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A} \max$
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

ORDERING INFORMATION

PACKAGES	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82S147B N
20-pin Plastic Leaded Chip Carrier 350 mil-square	N82S147B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1}, 2}$	LImits			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{LL}} \\ & \mathrm{~V}_{\mathrm{HH}} \\ & \mathrm{~V}_{\mathrm{C}} \end{aligned}$	Low High Clamp	$\mathrm{l}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} & \overline{C E}=\text { LOW } \\ & \text { IOUT }=9.6 \mathrm{~mA} \\ & \text { IOUT }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	v
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$	-		$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{aligned} & \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { High, } V_{\text {OUT }}=0.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		125	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\text {IN }} \\ & \mathrm{C}_{\text {OUT }} \end{aligned}$	Input Output	$\begin{gathered} \hline \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^21]
4K-Bit Bipolar PROM (512 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S147B			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address			25	ns
${ }^{\text {t }}$ CE		Output	Chip Enable			15	ns
Disable time ${ }^{6}$							
${ }^{\text {c }}$ CD		Output	Chip Disable			15	ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. Positive current is defined as into the terminal referenced.
3. Duration of the short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

test load circuit

VOLTAGE WAVEFORMS

-
8K-bit TTL PROM
page
82S181 8192-bit PROM (1024 x 8) 70 ns 407
82S181A 8192-bit PROM (1024 x 8) 55 ns 407
82S181C 8192-bit PROM (1024 x 8) 35 ns 411
82S183 8192 -bit PROM (1024 x 8) 60 ns 415
82S185 8192-bit PROM (2048 x 4) 100 ns 419
82S185A 8192-bit PROM (2048 x 4) 50 ns 423
82S185B 8192-bit PROM (2048 x 4) 35 ns 427
82HS187 8192-bit PROM (1024 x 8) 55 ns 431
82HS187A 8192-bit PROM (1024 x 8) 45 ns 431
82HS189 8192-bit PROM (1024 x 8) 55 ns 435
82HS189A 8192-bit PROM (1024 x 8) 45 ns 435

Bipolar Memory Products

DESCRIPTION

The 82S181 and 82S181A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S181 and 82S181A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.
This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

The 82S181 and 82S181A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S181
 82S181A 8K-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S181: 70ns max
- N82S181A: 55ns max
- Power dissipation: $76 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

8K-Bit TL Bipolar PROM (1024×8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82S181 N • N82S181A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S181 A \cdot N82S181A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{I \mathrm{~N}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	Parameter	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{\text {2 }}$						
$\begin{aligned} & \mathrm{v}_{12} \\ & \mathrm{v}_{11} \\ & \mathrm{v}_{10} \end{aligned}$		$\mathrm{lin}^{\text {a }}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \mathrm{VOH}^{2} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { Low, } \mathrm{CE}_{3.4}=\text { High } \\ \text { lout }=9.6 \mathrm{~mA} \\ \text { Iout }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	v
Input current ${ }^{1}$						
$\begin{aligned} & 1 / 2 \\ & l_{1 H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I N}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	${ }_{\mu \mathrm{A}} \mathrm{A}^{\text {a }}$
Output current ${ }^{1}$						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$		-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
$\mathrm{Cin}_{\mathrm{in}}$ Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\mathrm{pr}_{\mathrm{pF}}$

[^22]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S181			N82S181A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$										
$t_{\text {AA }}$		Output	Address		50	70		45	55	ns
${ }^{\text {t }}$ CE		Output	Chip Enable		25	40		25	40	ns
Disable time ${ }^{6}$										
${ }^{\text {t }}$ CD		Output	Chip Disable		25	40		25	40	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of the short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{p} F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

note:

All inputs $t_{1}=t_{1}=5$ ns (10% to 90%)

VOLTAGE WAVEFORMS

82S181C 8K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S181C is field programmable, which means that custom patterns are immediately available by following the Signetics Generic 1 fusing procedure. The 82S181C is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fiusing the Ni-Cr link matrix.
This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 35ns max
- Power dissipation: $76 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

8K-Bit TL Bipolar PROM (1024 $\times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82S181C N
24-pin Plastic DIP 300 mil-wide	N82S181C N3
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N82S181C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{2}$						
$V_{\text {IL }}$	Low				0.8	V
$V_{\text {IH }}$	High		2.0			V
$V_{\text {IC }}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\overline{\mathrm{CE}}_{1,2}=$ Low, $\mathrm{CE}_{3.4}=$ High				
V_{OL}	Low	$\mathrm{I}_{\text {OUT }}=9.6 \mathrm{~mA}$			0.45	V
V_{OH}	High	I OUT $=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{1}$						
IIL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$V_{\text {IN }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
I_{Oz}	Hi-Z State	$\begin{aligned} & \overline{\mathrm{CE}}_{1,2}=\text { High, } C E_{3,4}=\text { Low }, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{CE}_{3,4}=\text { Low, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$			40 -40	
los	Short circuit	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { Low, } \mathrm{CE}_{3,4}=\mathrm{High}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ \text { High stored } \end{gathered}$	-15		-70	mA
Supply current ${ }^{7}$						
ICC		$V_{C C}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF pF

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{A A}$		Output	Address		25	35	ns
${ }_{\text {t }}^{\text {CE }}$		Output	Chip Enable		15	20	ns
Disable time ${ }^{6}$							
${ }^{\text {t }}$ CD		Output	Chip Disable		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

test load circuit

NOTE:
All inputs: $t_{r}=t_{1}=5 n s(10 \%$ to $90 \%)$.

VOLTAGE WAVEFORMS

82S183
 8K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S183 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic । fusing procedure. The standard 82S183 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
In the Transparent Read mode, stored data is addressed by applying a binary code to the address inputs while holding Strobe High. In this mode the output drivers are controlled solely by $\overline{\mathrm{CE}}_{1}$, $\overline{\mathrm{CE}}_{2}$, and CE_{3} lines.
A D-type latch is used to enable the 3State output drivers. In the Latched Read mode, outputs are held in their previous state (High, Low, or Hi-Z) as long as Strobe is Low, regardless of the state of Address or Chip Enable. A positive Strobe transition causes data from the applied address to reach the outputs if the chip is enabled, and caus-
es outputs to go to the $\mathrm{Hi}-\mathrm{Z}$ state if the chip is disabled.

A negative Strobe transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the $\mathrm{Hi}-\mathrm{Z}$ condition if the chip was disabled.

Ordering information can be found on the following page.

FEATURES

- Address access time: 60ns max
- Power dissipation: 80μ W/bit typ
- Input loading: $\mathbf{- 1 0 0 \mu A} \max$
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Three Chip Enable inputs
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

8K-Bit TIL Bipolar PROM (1024 $\times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82S183 N
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82S183 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{T}_{\text {A }}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{4}$	LIMITS			UNIT
			Min	Typ ${ }^{6}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low High Clamp	$I_{\text {IN }}=-12 m A$	2.0	-0.8	0.8 -1.2	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Output voltage						
V_{OL} V_{OH}	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { Low, } \mathrm{CE}_{3}=\text { Strobe }=\text { High } \\ \text { IOUT }=9.6 \mathrm{~mA} \\ \text { IOUT }=-2.0 \mathrm{~mA} \end{gathered}$	2.4		0.45	$\begin{aligned} & V \\ & V \end{aligned}$
Input current ${ }^{4}$						
$\begin{aligned} & I_{\mathbb{L}} \\ & I_{\mathbb{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$	25		$\begin{gathered} -100 \\ 25 \end{gathered}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Output current ${ }^{4}$						
loz los	Hi-Z State Short circuit ${ }^{1}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High or } \mathrm{CE}=\text { Low, } \mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High or } \mathrm{CE}=\text { LOw, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } \mathrm{CE}=\text { High, } V_{\text {OUT }}=0 \mathrm{~V}, \\ \text { High stored } \end{gathered}$	-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{9}$						
Icc		$V_{C C}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1,2}=\text { High or } \mathrm{CE}_{3}=\text { Low, } \mathrm{V}_{\mathrm{CC}}=5.0 \\ \mathrm{~V}_{\mathbb{N}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF pF

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITIONS	MIN	TYP ${ }^{6}$	MaX	UNIT
Access time ${ }^{2}$								
$\begin{aligned} & t_{\mathrm{AA}} \\ & t_{\mathrm{CEE}} \end{aligned}$		Output Output	Address Chip Enable	Latched or transparent read		$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	ns ns
Disable time ${ }^{\text {2,7 }}$								
${ }_{\text {t }} \mathrm{CD}$		Output	Chip Disable	Latched or transparent read		25	40	ns
Setup and hold time ${ }^{3}$								
$\mathrm{t}_{\mathrm{cDs}}$ $\mathrm{t}_{\mathrm{CDH}}$	Setup time Hold time	Output	Chip Enable	Latched read only	$\begin{aligned} & 40 \\ & 10 \end{aligned}$			ns
$\mathrm{t}_{\text {ADH }}$	Hold time	Output	Address		0			ns
Pulse width ${ }^{3}$								
tsw	Strobe			Latched read only	30	15		ns
Latch time ${ }^{3}$								
$\mathrm{t}_{\text {SL }}$	Strobe			Latched read only	60	35		ns
Delatch time ${ }^{\text {3,7 }}$								
t_{DL}	Strobe			Latched read only			30	ns

NOTES:

1. No more than one output should be grounded at the same time and Strobe should be disabled. Strobe is in High state.
2. If the Strobe is High, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear $T_{A A}$ nanoseconds after the address has changed the $T_{C E}$ nanoseconds after the output circuit is enabled. $T_{C D}$ is the time required to disable the output and switch it to an off or High impedance state after it has been enabled.
3. In Latched Read Mode data from any selected address will be held on the output when Strobe is lowered. Only when Strobe is raised will new location data be transfered and chip enable conditions be stored. The new data will appear on the output if the chip enable conditions enable the outputs.
4. Positive current is defined as into the terminal referenced.
5. Areas shown by crosshatch are latched data from previous address.
6. Typical values are $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
7. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

82S185 8K-Bit TLL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S185 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82 S 185 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82S185 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Low power dissipation: 50μ W/bit typ
- Address access time: 100ns max
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

N Package	
$A_{6} 1$	18 V Cc
$A_{5} 2$	${ }_{17} A_{7}$
44.3	$16 A_{8}$
$A_{3} 4$	$15{ }^{4}{ }_{9}$
$A_{0} 5$	(14) O_{1}
$A_{1}{ }_{6}$	(13) O_{2}
$A_{2} 7$	(12) O_{3}
$A_{10} 8$	(11) O_{4}
OND 9	10] CE
	CD01212S

BLOCK DIAGRAM

8K-Bit TLL Bipolar PROM (2048×4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300 mil-wide	N82S185 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ}{ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{1}$						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
$\mathrm{V}_{\text {IH }}$	High		2.0			V
$V_{1 C}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{1}$						
		$\overline{C E}=$ Low				
V_{OL}	Low	$I_{\text {OUT }}=16 \mathrm{~mA}$			0.45	V
V_{OH}	High	I OUT $=-2 m A$	2.4			V
Input current ${ }^{2}$						
IIL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$V_{1 N}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
loz	Hi-Z State	$\overline{C E}=$ High, $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$\overline{\mathrm{CE}}=$ High, $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			40	
los	Short circuit ${ }^{3}$	$\overline{\mathrm{CE}}=$ Low, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, High stored	-15		-70	mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		90	120	mA
Capacitance						
		$\overline{\mathrm{CE}}=\mathrm{High}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				
C_{IN}	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		5		pF
Cout	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		8		pF

[^23]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		70	100	ns
${ }^{\text {t }}$ CE		Output	Chip Enable		30	40	ns
Disable time ${ }^{6}$							
${ }^{\text {t }}$ CD		Output	Chip Disable		30	40	ns

NOTES:

1. All voltage values are with respect to network ground terminal
2. Positive current is defined as into the terminal referenced.
3. Duration of the short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, R_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

test load circuit

VOLTAGE WAVEFORMS

82S185A 8K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S185A is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82S185A device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Low power dissipation: $70 \mu \mathrm{~W} /$ bit typ
- Address access time: 50ns max
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

N Package

BLOCK DIAGRAM

8K-Bit TLL Bipolar PROM (2048 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300 mil-wide	N82S185A N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1 , 2}}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \\ & I_{\mathbb{N}}=-12 \mathrm{~mA} \end{aligned}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \\ \hline \end{gathered}$	v v
Output voltage						
V_{O} V_{OH}	Low High	$\begin{aligned} \overline{\mathrm{CE}} & =\text { LOW } \\ \text { IOUT } & =16 \mathrm{~mA} \\ \text { OUTT } & =-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & \mathbb{I}_{\mathbb{L}} \\ & \mathbb{I N H}^{2} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
loz los	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High, }^{2} V_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V} \text { High stored } \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		110	155	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 p F, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S185A			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		40	50	ns
${ }_{\text {t }}^{\text {CE }}$		Output	Chip Enable		20	30	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES:
All inputs $t_{t}=t_{1}=5 n s(10 \%$ to $90 \%)$.
All AC parameters are measured at 1.5 V unless otherwise specified.

82S185B 8K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S185B is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S185B device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 35ns max
- Low power dissipation: 70μ W/bit typ
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

8K-Bit TIL Bipolar PROM (2048 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300 mil-wide	N82S185B N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{I N}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	V_{DC}	
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1 , 2}}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IH }} \\ & V_{\text {IC }} \end{aligned}$	Low High Clamp	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \\ & I_{N}=-12 \mathrm{~mA} \end{aligned}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} & \overline{\mathrm{CE}}=\text { LOW } \\ & \mathrm{IOUT}=16 \mathrm{~mA} \\ & \mathrm{IOUT}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	V
Input current						
$\begin{aligned} & I_{I L} \\ & I_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & 102 \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { High, }^{2} \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { High stored } \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
ICC		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		110	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^24]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82S185C			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{A A}$		Output	Address		20	35	ns
$t_{\text {ce }}$		Output	Chip Enable		12	20	ns
Disable time ${ }^{6}$							
${ }^{\text {t }}$ CD		Output	Chip Disable		12	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES:

All inputs $t_{t}=t_{t}=5 n s(10 \%$ to $90 \%)$.
All AC parameters are measured at 1.5 V unless otherwise specified.

Bipolar Memory Products

DESCRIPTION

The 82 HS 187 is a programmable read only memory containing D-type, masterslave data registers. The 82 HS 187 contains 1024 words of 8 bits each. The unprogrammed state is with all outputs at a High level and can be selectively programmed to a Low level by following the Signetics Generic II programming method. The output structure is 3-State for ease in connection to bus-organized systems. The combination of on-chip registers and 3 -State outputs will substantially reduce cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.
All outputs will go into the third state or Hi-Z condition whenever the Asynchronous Chip Enable $(\overline{\mathrm{G}})$ is High. The outputs are enabled when ($\overline{\mathrm{GS}}$) is brought Low before the rising edge of the clock and $(\overline{\mathrm{G}})$ is held Low. The ($\overline{\mathrm{GS}}$) flip-flop is designed to power-up in the third state or $\mathrm{Hi}-\mathrm{Z}$ condition with the application of $V_{C C}$.

82HS187 82HS187A 8K-Bit TL Bipolar PROM

Product Specification

The 82 HS 187 also features an initialize function, $\overline{\text { NITT}}$. The initialize function provides the user with an extra word of programmable memory which is accessed with single-pin control by applying a Low on INIT. The initialize function is asynchronous and is loaded into the Output Register and will appear at the outputs upon an application of a Low on INIT if the outputs are enabled, and will control the state of the data registers independent of all other inputs. The unprogrammed state of INIT is all ones.
Data is read from the PROM by first applying an address to inputs A_{0} to A_{g}. During the setup time the output of the array is loaded into the master flip-flop of the data register. During the rising edge (Low-to-High transition) of the clock, the data is transferred to the slave of the flip-flop and will appear on the output if the output is enabled. Following the rising edge clock transition, the Addresses and Synchronous Chip Enable can be removed and the output data will remain stable.

BLOCK DIAGRAM

FEATURES

- On-chip edge-triggered registers
- Programmable register with Asynchronous initialize function
- 24-pin 300mil-wide DIP package
- Read cycle "'Address setup plus clock to output delay"
- N82HS187: 55ns max
- N82HS187A: 45ns max
- Outputs: 3-State
- Unprogrammed outputs are High level
- Synchronous and Asynchronous Enables for word expansion

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300 mil-wide	N82HS187 N • N82HS187A N
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82HS187 A • N82HS187A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperatue range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$					0.8	V
$V_{1 H}$	High		2.0			V
$V_{\text {IC }}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OL} V_{OH}	Low High	$\begin{aligned} & \overline{\mathrm{G}, \overline{\mathrm{GS}}=\text { LOW }} \\ & \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & V \\ & v \end{aligned}$
Input current ${ }^{1}$						
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current ${ }^{1}$						
$\begin{aligned} & \mathrm{IOz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V} \\ \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{G}, \mathrm{GS}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ \text { High stored } \end{gathered}$	-15		$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
$I_{\text {cc }}$		$V_{C C}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF

Notes on following page.

8K-Bit TL Bipolar PROM (1024 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{4}$	то	FROM	N82HS187			N82HS187A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{CSA}} \\ & \mathrm{t}_{\mathrm{CHA}} \end{aligned}$	Setup Hold	CLK	Address	$\begin{gathered} 35 \\ 0 \end{gathered}$			$\begin{gathered} 30 \\ 0 \end{gathered}$			ns
toc	Delay	Output	CLK			20	0		15	ns
${ }^{\text {tw }}$ c	Width	H \& L	CLK	20	10		15	10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{CSGS}} \\ & \mathrm{t}_{\mathrm{CHGS}} \end{aligned}$	Setup Hold	CLK	$\overline{\mathrm{GS}}$	$\begin{gathered} 15 \\ 5 \end{gathered}$			$\begin{gathered} 10 \\ 5 \end{gathered}$			ns
$\mathrm{t}_{\text {IIN }}$	Delay	Output	$\overline{\text { INIT }}$		12	30			25	ns
${ }_{\text {t }}$	Recovery	CLK	INIT	20	9		15			ns
$\mathrm{t}_{\text {win }}$	Width		INTT	25			20			ns
tog	Delay	Output	$\overline{\mathrm{G}}$		11	25			20	ns
tozc^{6}	Delay	Output	CLK		16	25			20	ns
toza^{6}	Delay	Output	$\overline{\mathrm{G}}$		14	25			20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
. All voltages with respect to network ground.
2. Duration of short circuit should not exceed 1 second.
3. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
4. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

NOTE:
All inputs: $t_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to $90 \%)$.

VOLTAGE WAVEFORMS

82HS189 82HS189A 8K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82 HS 189 is a programmable read only memory containing D-type, masterslave data registers. The 82 HS 189 contains 1024 words of 8 bits each. The unprogrammed state is with all outputs at a High level and can be selectively programmed to a Low level by following the Signetics Generic II programming method. The output structure is 3-State for ease in connection to bus-organized systems. The combination of on-chip registers and 3 -State outputs will substantially reduce cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.

All outputs will go into the third state or $\mathrm{Hi}-\mathrm{Z}$ condition if the Asynchronous Chip Enable ($\overline{\mathrm{G}}$) is held High. The outputs are enabled when ($\overline{\mathrm{GS}}$) is brought Low before the rising edge of the clock and ($\overline{\mathrm{G}}$) is held Low. The ($\overline{\mathrm{GS}}$) flip-flop is designed to power-up in the third state or

Hi-Z condition with the application of $V_{C C}$.
The 82 HS 189 also features an initialize function, $\mathbb{N} I T$. The initialize function provides the user with an extra word of programmable memory which is accessed with single-pin control by applying a Low on INIT. The initialize function is synchronous and is loaded into the Output Register on the next rising edge of the clock. The unprogrammed state of INIT is all ones.
Data is read from the PROM by first applying an address to inputs A_{0} to A_{g}. During the setup time the output of the array is loaded into the master flip-flop of the data register. During the rising edge (Low-to-High transition) of the clock, the data is transferred to the slave of the flip-flop and will appear on the output if the output is enabled. Following the rising edge clock transition, the Addresses and Synchronous Chip Enable can be removed and the output data will remain stable.

BLOCK DIAGRAM

FEATURES

- On-chip edge-triggered registers
- Asynchronous and Synchronous Enables for word expansion
- Programmable register with synchronous initialize function
- 24-pin 300 mil -wide package
- Read cycle "Address setup plus clock to output delay"
- N82HS189: 55ns max
- N82HS189A: 45ns max
- Unprogrammed outputs are High level
- Outputs: 3-State

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$24-$ pin Plastic DIP 300 mil-wide	N82HS189 N • N82HS189A N
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82HS189 A • N82HS189A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	+5.5	$\mathrm{~V}_{D C}$
$\mathrm{~V}_{\mathrm{O}}$	Output voltage Off-State	+5.5	$\mathrm{~V}_{D C}$
$\mathrm{~T}_{A}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{\text {2 }}$						
$\begin{aligned} & V_{\text {II }} \\ & V_{\text {IH }} \\ & V_{\text {IC }} \end{aligned}$	Low High Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \\ \hline \end{array}$	v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{aligned} & \overline{\mathrm{G}, \mathrm{GS}}=\text { LOW } \\ & \text { IouT }=16 \mathrm{~mA} \\ & \text { IOUT }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	v
Input current ${ }^{1}$						
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			-250 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current ${ }^{1}$						
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{3}$	$\begin{gathered} \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V} \\ \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{G}}, \overline{\mathrm{GS}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ \text { High stored } \end{gathered}$	-15		40 -40 -70	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{G}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^25]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{4}$	TO	FROM	N82HS 189			N82HS189A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{CSA}} \\ & \mathrm{t}_{\mathrm{CHA}} \end{aligned}$	Setup Hold	CLK	Address	$\begin{gathered} 35 \\ 0 \end{gathered}$			$\begin{gathered} 30 \\ 0 \end{gathered}$			ns
toc	Delay	Output	CLK		10	20	0		15	ns
twc	Width	$H \& L$	CLK	20	10		15			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{CSGS}} \\ & \mathrm{t}_{\mathrm{CHGS}} \end{aligned}$	Setup Hold	CLK	$\overline{\mathrm{GS}}$	$\begin{gathered} 15 \\ 5 \end{gathered}$			$\begin{gathered} 10 \\ 5 \end{gathered}$			ns
${ }^{\text {t CSIN }}$ $t_{\text {CHIN }}$	Setup Hold	CLK	$\overline{\text { INIT }}$	$\begin{gathered} 25 \\ 0 \end{gathered}$	8		$\begin{gathered} 20 \\ 0 \end{gathered}$			ns
t_{OG}	Delay	Output	$\overline{\mathrm{G}}$		11	25			20	ns
tozc^{6}	Delay	Output	CLK		16	25			20	ns
tOzG^{6}	Delay	Output	$\overline{\mathrm{G}}$		14	25			20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground
3. Duration of short circuit should not exceed 1 second
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

8K-Bit TL Bipolar PROM (1024×8)

VOLTAGE WAVEFORMS

NOTE:
All AC parameters are measured at 1.5 V unless otherwise specified.
16K-bit TTL PROM
page
82S191 16 384-bit TTL PROM (2048 x 8) 80 ns 441
82S191A 16 384-bit TTL PROM (2048×8) 55 ns 441
82S191C 16 384-bit TTL PROM (2048 x 8) 35 ns 445
82HS191 16 384-bit TTL PROM (2048 x 8) 25 ns 449
82LHS191 16 384-bit TTL PROM (2048×8) 35 ns 453
82HS195 16 384-bit TTL PROM (4096 x 4) 45 ns 457
82HS195A 16 384-bit TTL PROM (4096x4) 35 ns 457
82HS195B 16 384-bit TTL PROM (4096 x 4) 25 ns 457

Signetics

Bipolar Memory Products

DESCRIPTION

The 82S191 and 82S191A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S191 and 82S191A are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S191 and 82S191A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S191 82S191A 16K-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S191: 80ns max
- N82S191A: 55ns max
- Power dissipation: $40 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24 -pin Plastic DIP 600 mil-wide	N82S191 N • N82S191A N
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N82S191 A • N82S191A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
$V_{1 H}$	High		2.0			V
$V_{\text {IC }}$	Clamp	$\mathrm{l}_{\mathrm{N}}=-12 m A$		-0.8	-1.2	V
Output voltage						
V_{OL} V_{OH}	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2,3}=\text { High } \\ \text { Iout }=9.6 \mathrm{~mA} \\ \text { Iout }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	$\begin{aligned} & V \\ & v \end{aligned}$
Input current ${ }^{1}$						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current ${ }^{1}$						
loz los	$\mathrm{Hi}-\mathrm{Z}$ state Short circuit ${ }^{3}$	$\begin{aligned} \overline{\mathrm{CE}}_{1}= & \text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ & V_{\text {OUT }}=0.5 \\ \overline{\mathrm{CE}}_{1}= & \text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ & V_{\text {OUT }}=5.5 \\ \overline{\mathrm{CE}}_{1}= & \text { Low, } \mathrm{CE}_{2,3}=\text { High }, \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	-15		$\begin{aligned} & -40 \\ & 40 \\ & -70 \end{aligned}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
$I_{C C}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output			5 8		pF pF

[^26]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82S191			N82S191A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ	Max	
Access time ${ }^{4}$										
$t_{A A}$		Output	Address		50	80		50	55	ns
t_{CE}		Output	Chip Enable		30	40		20	30	ns
Disable time ${ }^{6}$										
t_{CD}		Output	Chip Disable		30	40		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82S191C 16K-Bit TIL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S191C is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S191C is supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
The 82S191C devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 35ns max
- Power dissipation: $40 \mu \mathrm{~W} /$ bit typ
- Input loading: $-100 \mu \mathrm{~A}$ max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- 300mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algoritnms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82S191C N
24-pin Plastic DIP 300 mil-wide	N82S191C N3
28 -pin Plastic Leaded Chip Carrier 450 mil-square	N82S191C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1 , 2}}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low				0.8	V
V_{1+}	High		2.0			V
$V_{1 C}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\overline{\mathrm{CE}}_{1}=$ Low, $\mathrm{CE}_{2,3}=$ High				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{l}_{\text {OUT }}=9.6 \mathrm{~mA}$			0.45	v
V_{OH}	High	lout $=-2 \mathrm{~mA}$	2.4			v
Input current						
ILI	Low	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ V_{\text {OUT }}=0.5 \end{gathered}$				$\mu \mathrm{A}$
		$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ V_{\text {OUT }}=5.5 \end{gathered}$			40	
los	Short circuit ${ }^{3}$	$\overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2,3}=\text { High },$	-15		-70	mA
		$V_{\text {OUT }}=O V$				
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		5		pF
Cout	Output			8		pF

[^27]16K-Bit TL Bipolar PROM (2048 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LImits			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
t_{AA}		Output	Address		30	35	ns
$t_{\text {ce }}$		Output	Chip Enable		15	20	ns
Disable time ${ }^{6}$							
${ }^{\text {t }}$ D		Output	Chip Disable		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82HS191 16K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82 HS 191 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82 HS 191 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.
This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

The 82HS191 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 25ns max
- Power dissipation: $40 \mu \mathrm{~W} /$ bit typ
- Input loading: $-250 \mu \mathrm{~A}$ max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

16K-Bit TL Bipolar PROM (2048 $\times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP (600mil-wide)	N82HS191 N
24-pin Plastic DIP (300mil-wide)	N82HS191 N3
28-pin Plastic Leaded Chip Carrier (450mil-square)	N82HS191 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low ${ }^{3}$				0.8	V
V_{IH}	High^{3}		2.0			V
$\mathrm{V}_{\text {IC }}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
V_{OL}	Low	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2,3}=\text { High } \\ \text { IOUT }=16 \mathrm{~mA} \end{gathered}$			0.5	V
V OH	High	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2,3}=\text { High } \\ \text { IOUT }=-2 \mathrm{~mA} \end{gathered}$	2.4			V
Input current						
IL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-250	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low, } V_{\text {OUT }}=0.5 \\ & \mathrm{CE}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, V_{\text {OUT }}=5.25 \end{aligned}$			$\begin{gathered} -40 \\ 40 \end{gathered}$	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\overline{\mathrm{CE}}_{1}=$ Low, $\mathrm{CE}_{2,3}=$ High, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		125	175	mA
Capacitance						
$\mathrm{CiN}_{\text {I }}$	Input	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{gathered}$		5		pF
Cout	Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		8		pF

Notes on following page

AC ELECTRICAL CHARACTERISTICS $\mathrm{R}_{1}=270 \Omega, \mathrm{R}_{2}=600 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		15	25	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip enable		10	15	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip disable		10	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82LHS191 16K-Bit TL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LHS191 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82LHS191 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3 -State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.
The 82LHS191 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 35ns max
- Power dissipation: $32 \mu \mathrm{~W} /$ bit typ
- Input loading: $-250 \mu \mathrm{~A}$ max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300 mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

16K-Bit TL Bipolar PROM (2048×8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP (600mil-wide)	N82LHS191 N
24-pin Plastic DIP (300mil-wide)	N82LHS191 N3
28-pin Plastic Leaded Chip Carrier (450mil-square)	N82LHS191 A

absolute maximum ratings

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\text {IN }}$	Input voltage	+5.5	$V_{D C}$
$\mathrm{~V}_{\mathrm{O}}$	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C \mathrm{C}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IH }} \\ & V_{I C} \end{aligned}$	$\begin{aligned} & \text { Low }^{3} \\ & \text { High }^{3} \\ & \text { Clamp } \end{aligned}$	$1 \mathrm{ln}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Output voltage						
$\begin{aligned} & \mathrm{VOL}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2.3}=\text { High } \\ \text { IOUT }=16 \mathrm{~mA} \\ \overline{\mathrm{CE}}_{1}=\text { LOw, } C E_{2.3}=\text { High } \\ \text { IOUT }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.5	v v
Input current						
$\begin{aligned} & I_{I L} \\ & I_{H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
loz los	$\mathrm{Hi}-\mathrm{Z}$ state Short circuit ${ }^{3}$		-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{7}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		100	110	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low }, \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\begin{array}{c} \text { High, } \\ \mathrm{VE}_{2,3}=\text { Low } \\ \text { O } \end{array}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF pF

Notes on following page

16K-Bit TLL Bipolar PROM (2048 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{4}$							
$t_{\text {AA }}$		Output	Address		30	35	ns
$t_{\text {ce }}$		Output	Chip enable		15	20	ns
Disable time ${ }^{6}$							
${ }_{\text {t }}$		Output	Chip disable		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega$ and $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

$$
\mid
$$

Bipolar Memory Products

DESCRIPTION

The 82 HS 195 is field programmable, which means that custom patterns are immediately available by following the Generic II fusing procedure. The Signetics 82 HS195 is supplied with all outputs at logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

PIN CONFIGURATIONS

16K-Bit TIL Bipolar PROM (4096 $\times 4$)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300 mil-wide	N82HS195 N • N82HS195A N • N82HS195B N
20-pin Plastic Leaded Chip Carrier	N82HS195 A • N82HS195A A • N82HS195B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & \hline V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	$\begin{aligned} & \text { Low }^{3} \\ & \text { High }^{3} \\ & \text { Clamp } \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1} \& \overline{\mathrm{CE}}_{2}=\text { Low } \\ \text { lout }=16 \mathrm{~mA} \\ \text { IOUT }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.45	v
Input current						
$\begin{aligned} & I_{1 /} \\ & I_{1 U} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=0.45 \mathrm{~V} \\ & V_{\text {IN }}=5.25 \mathrm{~V} \end{aligned}$			-250 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
loz los	Hi-Z State Short circuit ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}_{1} \& \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1} \& \overline{\mathrm{CE}}_{2}=\text { High, } V_{\text {OUT }}=5.25 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1} \& \overline{\mathrm{CE}}_{2}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V} \text {, High stored } \end{gathered}$	-15		$\begin{gathered} \hline-40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		120	145	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1} \& \overline{\mathrm{CE}}_{2}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5		pF

[^28]
16K-Bit TL Bipolar PROM (4096 $\times 4$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82HS195			N82HS195A			N82HS 1958			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{7}$													
$t_{A A}$		Output	Address		35	45		25	35		20	25	ns
${ }^{\text {t }}$ CE		Output	Chip Enable		20	25		15	20		10	15	ns
Disable time ${ }^{6}$													
${ }^{\text {c }}$ C		Output	Chip Disable		20	25		15	20		10	15	ns

NOTES:

All voltage values are with respect to network ground terminal.
Positive current is defined as into the terminal referenced.
Measured with one output switching from a Logic " 1 " to a Logic " 0 ".
Duration of the short circuit should not exceed 1 second.
Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega, C_{L}=5 p F$
. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
8. Measured with all inputs grounded and all outputs open.

test load circuit

VOLTAGE WAVEFORMS

NOTE:
NOTE:
All inputs $t_{4}=t_{1}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
All AC parameters are measured at 1.5 V unless otherwise specified.
32K-bit TTL PROMpage
82HS321 32 768-bit PROM (4096x8) 45 ns 463
82HS321A 32 768-bit PROM (4096x8) 35 ns 463
82HS321B 32 768-bit PROM (4096x8) $\mathbf{3 0} \mathbf{n s}$ 463
82HS321C 32 768-bit PROM (4096x8) 25 ns 467
82LHS321 32 768-bit PROM (4096x8) 35 ns 471

Bipolar Memory Products

DESCRIPTION

The 82 HS 321 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82 HS 321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82HS321 82HS321A 82HS321B 32K-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time: N82HS321: 45ns max N82HS321A: 35ns max N82HS321B 30ns max
- Power dissipation: 20μ W/bit typ
- Input loading: $-250 \mu \mathrm{~A}$ max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82HS321 N • N82HS321A N • N82HS321B N
24-pin Ceramic DIP 600 mil-wide	N82HS321 F • N82HS321A F • N82HS321B F
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82HS321 A • N82HS3c1A A • N82HS321B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$V_{\text {IL }}$ $V_{I H}$ $V_{\text {IC }}$	Low 3 High^{3} Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & v \end{aligned}$
Output voltage						
VOL VOH	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2}=\text { High } \\ \text { lout }=16 \mathrm{~mA} \\ \text { lout }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{1 L} \\ & I_{H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Hi -Z state Short circuit ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High }, \mathrm{CE}_{2}=\text { LOW }, V_{\text {OUT }}=0.5 \\ \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2}=\text { Low }, V_{\text {OUT }}=5.25 \\ \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2}=\text { High }, V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	μA mA
Supply current ${ }^{8}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} COUT	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } C E_{2}=\text { Low }, \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^29]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82HS321			N82HS321A			N82HS321B			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{7}$													
$t_{\text {AA }}$		Output	Address		40	45		30	35		25	30	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		25	30		20	25		18	20	ns
Disable time ${ }^{6}$													
${ }^{\text {t }}$ D		Output	Chip Disable		25	30		20	25		18	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching from from a Logic " 1 " to a Logic " 0 ".
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega, C_{L}=5 p F$.
7. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

NOTES:

All inputs: $t_{1}=t_{1}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
All AC parameters are measured at 1.5 V unless otherwise specified.

82HS321C 32K-Bit IL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82 HS 321 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3 -State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.
This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: N82HS321C: 25ns max
- Power dissipation: $\mathbf{2 0} \mu$ W/bit typ
- Input loading: - $250 \mu \mathrm{~A}$ max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300mil-wide plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	- N82HS321C N
24-pin Plastic DIP 300 mil -wide	- N82HS321C N3
24-pin Ceramic DIP 600mil-wide	- N82HS321C $\overline{\mathrm{F}}$
28-pin Plastic Leaded Chip Carrier 450 mil-square	- N82HS321C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low ${ }^{3}$ High^{3} Clamp	$\mathrm{I}_{1} \mathrm{~N}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \\ \hline \end{array}$	V V V
Output voltage						
V_{OL} V_{OH}	Low High	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { Low, } \mathrm{CE}_{2}=\text { High } \\ \text { IOUT }=16 \mathrm{~mA} \\ \text { I OUT }=-2 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{IOZ} \\ & \mathrm{IOS} \end{aligned}$	$\mathrm{Hi}-\mathrm{Z}$ state Short circuit ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High }, \mathrm{CE}_{2}=\text { Low }, \mathrm{V}_{\mathrm{OUT}}=0.5 \\ \mathrm{CE}_{1}=\text { High }, \mathrm{CE}_{2}=\text { Low }, \mathrm{V}_{\text {OUT }}=5.25 \\ \overline{\mathrm{CE}}_{1}=\text { Low }, \mathrm{CE}_{2}=\text { High }, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
$I_{\text {CC }}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{CE}_{2}=\text { Low }, \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		pF pF

[^30]
32K-Bit TL Bipolar PROM (4096 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82HS321C			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{7}$							
$t_{A A}$		Output	Address		20	25	ns
$t_{C E}$		Output	Chip Enable		10	15	ns
Disable time ${ }^{6}$							
${ }^{\text {C }}$ D		Output	Chip Disable		10	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
. All voltages with respect to network ground.
2. Measured with one output switching from from a Logic " 1 " to a Logic " 0 ".
3. Duration of short circuit should not exceed 1 second.
4. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

NOTES:

All inputs: $t_{1}=t_{1}=5$ ns $(10 \%$ to $90 \%)$.
All AC parameters are measured at 1.5 V unless otherwise specified.

82LHS321 32K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LHS321 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic Ilfusing procedure. The 82LHS321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.
Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:

N82LHS321: 35ns max

- Power dissipation: 16μ W/bit typ
- Input loading: -250 $\mu \mathrm{A}$ max
- Two Chip Enable Inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

PIN CONFIGURATIONS

32K-Bit TTL Bipolar PROM (4096 $\times 8$)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82LHS321 N
24-pin Plastic DIP 300mil-wide	N82LHS321 N3
28-pin Plastic Leaded Chip Carrier 450 mil-square	N82LHS321 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	+5.5	$\mathrm{~V}_{D C}$
$\mathrm{~V}_{\mathrm{O}}$	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$V_{\text {IL }}$	Low ${ }^{3}$				0.8	
$\mathrm{V}_{\text {IH }}$	High^{3}		2.0			V
$V_{\text {IC }}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\overline{C E}{ }_{1}=$ Low, $C E E_{2}=$ High				
V_{OL}	Low	$\mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$			0.5	V
V OH	High	IOUT $=-2 \mathrm{~mA}$	2.4			V
Input current						
1 IL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-250	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$C E_{1}=$ High, $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{\text {OUT }}=0.5$			-40	$\mu \mathrm{A}$
		$C E_{1}=$ High, $C E_{2}=$ Low,$V_{\text {OUT }}=0.5$			40	
los	Short circuit ${ }^{4}$	$C E_{1}=$ Low,$C E_{2}=$ High, $V_{\text {OUT }}=O \mathrm{~V}$	-15		-70	mA
Supply current ${ }^{6}$						
Icc		$V_{C C}=5.25 \mathrm{~V}$		100	110	mA
Capacitance						
		$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low				
	*	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		5		pF
$\mathrm{C}_{\text {OUT }}$	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		8		pF

NOTES:

1. Positive current is defined as into the terminal referenced
2. All voltages with respect to network ground.
3. Measured with one output switching from a Logic " 1 " to a Logic " 0 "
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured with all inputs grounded and all outputs open.

32K-Bit TTL Bipolar PROM (4096 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time ${ }^{2}$							
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$		Output Output	Address Chip Enable		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Disable time ${ }^{3}$							
$t_{\text {co }}$		Output	Chip Disable		20	25	ns

NOTES:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
3. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega, C_{L}=5 p F$.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

All inputs $\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 . 5 n s}$ ($\mathbf{1 0 \%}$ to 90\%).
All AC parameters are measured at 1.5 V uniess otherwise specililed.
1
64K-bit TTL PROMpage
82HS641 65 536-bit PROM ($8192 \times 8) 55 \mathrm{~ns}$ 477
82HS641A $\quad 65$ 536-bit PROM (8192 x 8) 45 ns 477
82HS641B 65 536-bit PROM ($8192 \times 8) 35 \mathrm{~ns}$ 477
82HS641C 65 536-bit PROM (8192 x 8) 25 ns 481

Bipolar Memory Products

The 82 HS 641 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82 HS 641 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip address decoding with 1 Chip Enable input for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused applications.
Ordering information can be found on the following page.

This device is also processed to military requirements for operating over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82HS641 82HS641A 82HS641B 64K-Bit TL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82HS641 55ns max
- N82HS641A 45ns max
- N82HS641B 35ns max
- Power dissipation: $10 \mu \mathrm{~W} /$ bit typ
- Input loading: $\mathbf{- 2 5 0 \mu \mathrm { A }}$ max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

N Package	
A7 1	24 Vcc
$A_{6} 2$	$23{ }^{2} A_{8}$
$A_{6} 3$	22] A_{0}
$A_{4} 4$	(21) A_{10}
$A_{3} 5$	20) $\overline{C E}_{1}$
$A_{2} 6$	(10) A_{11}
$A_{1} 7$	18] A_{12}
$A_{0} 8$	(17) O_{8}
019	(18) 0_{7}
$\mathrm{O}_{2} 10$	(15) O_{6}
$\mathrm{O}_{3} 11$	(14) O_{5}
and 12	(13) O_{4}
	c.009662s

BLOCK DIAGRAM

64K-Bit TL Bipolar PROM (8192 $\times 8$)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	N82HS641 N • N82HS641A N • N82HS641B N
24-pin Ceramic DIP 600 mil-wide	N82HS641 F • N82HS641A F • N82HS641B F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-state	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low ${ }^{3}$ High^{3} Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Output voltage						
V_{OL} V_{OH}	Low High	$\begin{aligned} & \overline{\mathrm{CE}}_{1}=\text { LOW } \\ & \text { lout }=16 \mathrm{~mA} \\ & \text { lout }=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Low High	$\begin{aligned} & V_{\mathbb{I N}}=0.45 \mathrm{~V} \\ & V_{\mathbb{I N}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{gathered} -250 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{IOZ} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High, } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { High, } V_{\text {OUT }}=5.25 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{C E}_{1}=H i g h \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^31]64K-Bit TLL Bipolar PROM (8192 $\times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	N82HS641			N82HS641A			N82HS641B			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
Access time ${ }^{7}$													
$t_{\text {AA }}$		Output	Address		50	55		40	45		30	35	ns
$\mathrm{t}_{\text {CE }}$		Output	Chip Enable		30	35		20	25		15	20	ns
Disable time ${ }^{6}$													
t_{CD}		Output	Chip Disable		30	35		20	25		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching from a Logic " 1 " to a Logic " 0 '
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega, C_{L}=5 p F$.
7. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

82HS641C 64K-Bit TL Bipolar PROM

Preliminary Specification

Bipolar Memory Products

The 82 HS 641 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS641 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip address decoding with 1 Chip Enable input for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused applications.

Ordering information can be found on the following page.
This device is also processed to military requirements for operating over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
- N82HS641C 25ns
- Power dissipation: $10 \mu \mathrm{~W} /$ bit typ
- Input loading: $\mathbf{- 2 5 0 \mu \mathrm { A }} \max$
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

64K-Bit TL Bipolar PROM (8192 $\times 8$)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600 mil-wide	\bullet N82HS641C N
24-pin Ceramic DIP 600 mil-wide	\bullet N82HS641C F
28-pin Plastic PLCC 450 mil-square	\bullet N82HS641C A

absolute maximum ratings

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	$V_{D C}$	
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Low ${ }^{3}$ High^{3} Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.0	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \\ \hline \end{array}$	V V V
Output voltage						
V_{OL} V_{OH}	Low High	$\begin{aligned} \overline{\mathrm{CE}}_{1} & =\text { LOW } \\ \text { IOUT } & =16 \mathrm{~mA} \\ \text { IOUT } & =-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & V \\ & V \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{1 N}=0.45 \mathrm{~V} \\ & V_{\mathbb{I N}}=5.25 \mathrm{~V} \end{aligned}$			$\begin{array}{r} -250 \\ 40 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{4}$	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\text { High }, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { High, } V_{\text {OUT }}=5.25 \mathrm{~V} \\ \overline{\mathrm{CE}}_{1}=\text { LOW }, V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} -40 \\ 40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{8}$						
ICC		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		130	175	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\mathrm{High} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		5 8		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^32]AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	N82HS641C			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time ${ }^{7}$							
$t_{A A}$		Output	Address		22	25	ns
$t_{\text {ce }}$		Output	Chip Enable		14	15	ns
Disable time ${ }^{6}$							
t_{CD}		Output	Chip Disable		14	15	ns

NOTES:

. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching from a Logic " 1 " to a Logic " 0 ".
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured at a delta of 0.5 V from Logic Level with $\mathrm{R}_{1}=750 \Omega, \mathrm{R}_{2}=750 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
7. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

128K-bit TTL PROM

page
82HS1281 131 072-bit PROM (16384×8) 45 ns 487

Document No.	
ECN No.	
Date of Issue	November 1986
Status	Objective Specification
Bipolar Memory Products	

DESCRIPTION

The 82 HS 1281 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic Ilfusing procedure. The 82 HS 1281 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.
This device includes on-chip address decoding with 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

BLOCK DIAGRAM

82HS1281 128K-Bit TTL Bipolar PROM

FEATURES

- Address access time: 45ns max
- Power dissipation: $5 \mu \mathrm{~W} / \mathrm{bit}$ typ
\bullet Input loading: -250 1 A max
- Four Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

PIN CONFIGURATION

N Package	
$\mathrm{A}_{9} 1$	28 vcc
$A_{8}{ }^{2}$	$27{ }^{2} 10$
$A_{7}{ }^{3}$	$26 A_{11}$
$A_{6} 4$	$25{ }^{2} 12$
$A_{5} 5$	24) A_{13}
$\mathrm{A}_{4} 6$	$23{ }^{2} \mathrm{CE}_{1}$
$A_{3} 7$	$22 . \mathrm{CE}_{2}$
$A_{2} 8$	$21 \mathrm{CE}_{3}$
$A_{1} 9$	20. CE_{4}
$A_{0} 10$	$19{ }^{10}$
$O_{1} 11$	180_{7}
$\mathrm{O}_{2} 12$	170_{6}
$0_{3} 113$	${ }^{16} 0_{5}$
and 14	$15{ }^{15}$

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28-Pin Plastic DIP 600 mil-wide	N82HS1281 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{\mathbb{N}}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low ${ }^{3}$				0.8	V
$V_{\text {IH }}$	High ${ }^{3}$		2.0			V
$V_{\text {IC }}$	Clamp	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{CE}_{3}=$ High, $\mathrm{CE}_{1,2,4}=$ Low				
$V_{\text {OL }}$	Low	IOUT $=16 \mathrm{~mA}$			0.5	v
V_{OH}	High	$\mathrm{l}_{\text {OUT }}=-2 \mathrm{~mA}$	2.4			V
Input current						
I_{1}	Low	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$			-250	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
loz	Hi-Z state	$\mathrm{CE}_{3}=$ Low, $\mathrm{CE}_{1,2,4}=$ High, $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$			-40	
los	Short circuit ${ }^{4}$	$\begin{gathered} C E_{3}=\text { Low, } \mathrm{CE}_{1,2,4}=\text { High, } \mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V} \\ C E_{3}=\text { High, } C E_{1,2,4}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} 40 \\ -70 \end{gathered}$	mA
Supply current ${ }^{\text {b }}$						
'cc		$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$		100	110	mA
Capacitance						
		$\begin{gathered} \mathrm{CE}_{3}= \\ =\begin{array}{ll} \text { High, } \mathrm{CE}_{1,2,4}=\text { Low } \\ & \mathrm{CC}=5.0 \mathrm{~V} \end{array} \end{gathered}$				
C_{N}	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		5		pF
Cout	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		8		pF

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching from a Logic "1" to a Logic "0".
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Measured with all inputs grounded and all outputs open.

AC ELECTRICAL CHARACTERISTICS $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LMMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time ${ }^{2}$							
$t_{A A}$ $t_{C E}$		Output Output	Address Chip Enable			$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Disable time ${ }^{\text {3 }}$							
$t_{\text {co }}$		Output	Chip Disable			25	ns

NOTES:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
3. Measured at a delta of 0.5 V from Logic Level with $R_{1}=750 \Omega, R_{2}=750 \Omega, C_{L}=5 p F$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

All AC parameters are measured at 1.5 V unless otherwise specified.

ECL MEMORIES
page
Low Complexity ECL PROM 493
16K-bit ECL PROM 527
1

Low Complexity ECL PROM

		page
10P256	256-bit ECL Bipolar PROM ($32 \times 8) 3 \mathrm{~ns}$	495
100P256	256-bit ECL Bipolar PROM ($32 \times 8) 3 \mathrm{~ns}$	499
10149	1024-bit ECL Bipolar PROM (256x4) 20 ns	503
100149	1024-bit ECL Bipolar PROM (256x4) 20 ns	507
10149A	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	511
100149A	1024-bit ECL Bipolar PROM (256x4) 10 ns	515
10149B	1024-bit ECL Bipolar PROM (256x4) 5 ns	519
100149B	1024-bit ECL Bipolar PROM (256x4) 5 ns	523

10P256 256-Bit ECL Bipolar PROM

Preliminary Specification

Bipolar Memory Products

DESCRIPTION

The 10P256 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 10P256 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

The 10P256 has power pins placed in the center of the package to provide low inductance paths for output drive current.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 3ns max
- Power dissipation: 2.6mW/blt typ
- High-impedance inputs (50K Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series
- Center package power pins

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

mroонві:

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18 -pin Ceramic DIP (300mil-wide)	10 P 256 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ${ }^{\mathbf{1}}$	RATING	UNIT
$\mathrm{V}_{E E}$	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to -3	$\mathrm{~V}_{\mathrm{DC}}$
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

NOTE:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A}<+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq \mathrm{V}_{E E} \leq-5.46 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS	$0^{\circ} \mathrm{C}$		+25 ${ }^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		UNIT
			Min	Max	Min	Typ ${ }^{3}$	Max	Min	Max	
Input voltage ${ }^{\text {2,3 }}$										
$\mathrm{V}_{\text {IL }}$	Low		-1.870		-1.850			-1.830		V
V_{IH}	High			-0.840			-0.810		-0.720	v
$V_{\text {ILA }}$	Low threshold			-1.480			-1.475		-1.445	v
$V_{\text {IHA }}$	High threshold		-1.150		-1.105			-1.040		V
Output voltage										
V_{OL}	Low	$\mathrm{V}_{\text {IH }}=$ Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	V
V_{OH}	High	$\mathrm{V}_{\mathrm{LL}}=\mathrm{Min}$	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	v
$V_{\text {OLA }}$	Low threshold	$\mathrm{V}_{\text {IHA }}=$ Min, $\mathrm{V}_{\text {ILA }}=\operatorname{Max}$		-1.640			-1.630		-1.600	v
$\mathrm{V}_{\text {OHA }}$	High threshold	$\mathrm{V}_{\text {IHA }}=\operatorname{Min}, \mathrm{V}_{\text {IIA }}=\operatorname{Max}$	-1.020		-0.980			-0.920		V
Input current ${ }^{4}$										
IIL	Low	$\mathrm{V}_{\text {IH }}=\mathrm{Max}$			0.5					$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Min}$		250			250		250	$\mu \mathrm{A}$
Supply drain current										
$l_{\text {eE }}$		$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$		150		130	150		150	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 10 K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
4. Unused inputs must have $10 \mathrm{~K} \Omega$ min to $V_{E E}$ or be connected to $-2 V_{D C}$.

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-5.46 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$t_{\text {AA }}$		Output	Address			3	ns
$\mathrm{t}_{\text {ce }}$		Output	Chip Enable		1.3	2	ns
Disable time							
tco		Output	Chip Disable		1.3	2	ns
Rise and fall time							
${ }_{+}$	Rise time (20-80\%)				1.0		ns
L	Fall time (80-20\%)				1.0		ns

NOTES:

1. Typical values are at $\mathrm{V}_{E E}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TPIN to input pin and TPout to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{C C}$ and V_{CC} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

Address Access Time

Chip Enable/Disable Propagation Delays

Bipolar Memory Products

DESCRIPTION

The 100P256 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 100P256 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.
The 100P256 has power pins placed in the center of the package to provide low inductance paths for output drive current.
A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 3ns max
- Power dissipation: 2.2mW/blt typ
- High-impedance inputs (50K Ω pulldown)
- One Chip Enable Input
- Open Emitter outputs (50 2 drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series
- Center package power pins

PIN CONFIGURATION

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic DIP (300mil-wide)	$100 P 256 \mathrm{~F}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to -3	$\mathrm{~V}_{\mathrm{DC}}$
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}}<+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
Input voltage						
V_{IL}	Low		-1.810			V
V_{IH}	High				-0.880	v
$\mathrm{V}_{\text {ILA }}$	Threshold Low				-1.475	V
$V_{\text {IHA }}$	Threshold High		-1.165			v
Output voltage						
VOL	Low	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Min}$	-1.810		-1.620	V
V_{OH}	High	$\mathrm{V}_{\mathrm{IH}}=$ Max	-1.025		-0.880	V
Vola	Threshold Low	$\mathrm{V}_{\text {IL }}=$ Max			-1.610	V
Voha	Threshold High	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	-1.035			V
Input current ${ }^{5}$						
ILIL	Low	$\mathrm{V}_{\text {LL }}=\mathrm{Min}$	0.5			$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	High	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Max}$			220	$\mu \mathrm{A}$
Supply current						
$l_{\text {EE }}$		$V_{E E}=-4.5 \mathrm{~V}$		130	150	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 100 K series device has been designed to meet the $D C$ specification after thermal equilibrium has been established. The circuit is in a testsocket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. For current measurements, maximum is defined as the maximum absolute value.
4. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Unused inputs must have $10 \mathrm{~K} \Omega$ min to $\mathrm{V}_{E E}$ or be connected to $-2 \mathrm{~V}_{\mathrm{DC}}$.

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq \mathrm{V}_{E E} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	T0	FROM	LMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$t_{\text {AA }}$		Output	Address			3	ns
tce		Output	Chip enable		1.3	2	ns
Disable time							
$\mathrm{tco}^{\text {d }}$		Output	Chip disable		1.3	2	ns
Rise and fall time							
t	Rise time (20-80\%)				1.0		ns
5	Fall time (80-20\%)				1.0		ns

NOTE:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 10149 is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 10149 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.
A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the folowing page.

10149 1K-Bit ECL Bipolar PROM

Product Specification

FEATURES

- Address access time: 20ns max
- Power dissipation: $0.66 \mathrm{~mW} /$ bit typ
- High impedance inputs ($50 \mathrm{k} \Omega$ pulidown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

1K-Bit ECL Bipolar PROM (256 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP 300mil-wide	10149 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ${ }^{1}$	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V_{DC}
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-30 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +165	

DC ELECTRICAL CHARACTERISTICS $-30^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{EE}} \leqslant-5.46 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS	$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNIT
			Min	Max	Min	Typ ${ }^{3}$	Max	Min	Max	
Input voltage ${ }^{\text {2,3 }}$										
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I L A} \\ & V_{I H A} \end{aligned}$	Low High Low threshold High threshold		$\begin{aligned} & -1.890 \\ & -1.205 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -1.500 \end{aligned}$	$\begin{aligned} & -1.850 \\ & -1.105 \end{aligned}$		-0.810 -1.475	$\begin{aligned} & -1.825 \\ & -1.035 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -1.440 \end{aligned}$	V
Output voltage										
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\mathbb{I H}}=\operatorname{Max} \\ & V_{I L}=\operatorname{Min} \end{aligned}$	$\begin{aligned} & \hline-1.89 \\ & -1.06 \end{aligned}$	$\begin{gathered} \hline-1.675 \\ -0.89 \end{gathered}$	$\begin{aligned} & -1.85 \\ & -0.96 \end{aligned}$		$\begin{aligned} & -1.65 \\ & -0.81 \end{aligned}$	$\begin{gathered} \hline-1.825 \\ -0.89 \end{gathered}$	$\begin{gathered} -1.615 \\ -0.70 \end{gathered}$	V
$V_{\text {OLA }}$ $V_{\text {OHA }}$	Low threshold High threshold	$\mathrm{V}_{\text {IHA }}=\mathrm{Min}, \mathrm{V}_{\text {ILA }}=$ Max	-1.08	-1.655	-0.98		-1.63	-0.91	-1.595	
Input current										
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\text {IH }}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Min} \end{aligned}$		250	0.5		250		250	$\mu \mathrm{A}$
Supply drain current										
l_{EE}		$V_{E E}=-5.2 \mathrm{~V}$		160		150	160		160	mA

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega,-30^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+85^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leqslant \mathrm{~V}_{E E} \leqslant-5.46 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{3}$	Max	
Access time							
$\begin{aligned} & t_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$		Output Output	Address Chip Enable		$\begin{gathered} 14 \\ 4 \end{gathered}$	20 8	ns
Disable time							
${ }^{\text {c }}$ CD		Output	Chip Enable		4	8	ns
Rise and fall time							
$\mathrm{t}_{+}{ }_{\text {+ }}$	Rise time (20-80\%) Fall time ($80-20 \%$)				$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 10 K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. Typical values are at $\mathrm{V}_{E E}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

test load circuit

NOTES:

1. For $A C$ tests. all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < $1 / 4$ inch from TPin to input pin and TPOUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
3. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

100149

1K-Bit ECL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 100149 is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 100149 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.
A Chip Enable input is provided for ease of memory expansion.
Ordering information can be found on the following page.

FEATURES

- Address access time: 20ns max
- Power dissipation: $0.66 \mathrm{~mW} /$ bit typ
- High impedance inputs ($50 \mathrm{k} \Omega$ pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100 K series

PIN CONFIGURATION

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -pin Ceramic DIP 300 mil-wide	100149 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V_{DC}
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leqslant \mathrm{~V}_{E E} \leqslant-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
Input voltage						
$V_{\text {IL }}$	Low		-1.810			V
V_{IH}	High				-0.880	V
$V_{\text {ILA }}$	Threshold Low				-1.475	v
$\mathrm{V}_{\text {IHA }}$	Threshold High		-1.165			V
Output voltage						
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Min}$	-1.810		-1.620	V
V_{OH}	High	$\mathrm{V}_{1 H}=\mathrm{Max}$	-1.025		-0.880	v
$V_{\text {OLA }}$	Threshold Low	$\mathrm{V}_{\text {IL }}=\mathrm{Max}$			-1.610	v
$\mathrm{V}_{\text {OHA }}$	Threshold High	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	-1.035			V
Input current						
$1 / 1$	Low	$\mathrm{V}_{\text {IL }}=\mathrm{Min}$	0.5			
I_{IH}	High	$V_{1 H}=\operatorname{Max}$			220	$\mu \mathrm{A}$
Supply current						
$I_{\text {EE }}$		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		150	180	mA

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{EE}} \leqslant-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time							
$\begin{aligned} & \boldsymbol{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \\ & \hline \end{aligned}$		Output Output	Address Chip Enable		$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Disable time							
t_{CD}		Output	Chip Disable		5	8	ns
Rise and fall time							
t t^{+} 	Rise time ($20-80 \%$) Fall time ($80-20 \%$)				$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm . Outputs are terminated through a 50Ω resistor to -2 V .
3. For current measurements, maximum is defined as the maximum absolute value.
4. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TP in to input pin and TP OUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the manner.
3. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply. should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC}, and V_{CC} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

10149A 1K-Bit ECL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 10149A is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 10149A is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.
Ordering information can be found on the folowing page.

BLOCK DIAGRAM

FEATURES

- Address access time: 10ns max
- Power dissipation: $0.66 \mathrm{~mW} /$ bit typ
- High impedance inputs ($50 \mathrm{k} \Omega$ pulidown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

PIN CONFIGURATION

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

1K-Bit ECL Bipolar PROM (256 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP (300mil-wide)	10149 A F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ${ }^{1}$	RATING	UNIT
$V_{E E}$	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V_{DC}
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-30^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}<+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leqslant \mathrm{~V}_{E E} \leqslant-5.46 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		UNIT
			Min	Max	Min	Typ ${ }^{3}$	Max	Min	Max	
Input voltage ${ }^{\text {2,3 }}$										
$\mathrm{V}_{\text {IL }}$	Low		-1.870		-1.850			-1.830		V
V_{IH}	High			-0.840			-0.810		-0.720	V
$\mathrm{V}_{\text {ILA }}$	Low threshold			-1.480			-1.475		-1.445	V
$\mathrm{V}_{\text {IHA }}$	High threshold		-1.150		-1.105			-1.040		V
Output voltage										
V_{OL}	Low	$\mathrm{V}_{\text {IH }}=$ Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	V
V_{OH}	High	$\mathrm{V}_{\text {IL }}=\mathrm{Min}$	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	V
$\mathrm{V}_{\text {OLA }}$	Low threshold	$\mathrm{V}_{\text {IHA }}=\mathrm{Min}, \mathrm{V}_{\text {ILA }}=$ Max		-1.640			-1.630		-1.600	V
$V_{\text {OHA }}$	High threshold		-1.020		-0.980			-0.920		V
Input current										
I/L	Low	$\mathrm{V}_{1 H}=$ Max			0.5					$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Min}$		250			250		250	$\mu \mathrm{A}$
Supply drain current										
$\mathrm{I}_{\text {ef }}$		$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$		160		150	160		160	mA

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{EE}} \leqslant-5.46 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{3}$	Max	
Access time							
$t_{A A}$		Output	Address			10	ns
$t_{\text {ce }}$		Output	Chip enable		4	6	ns
Disable time							
t_{CD}		Output	Chip enable		4	6	ns
Rise and fall time							
$t+$	Rise time ($20-80 \%$)				4.0		ns
t.	Fall time (80-20\%)				4.0		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm . Outputs are terminated through a 50Ω resistor to -2 V .
3. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

test load circuit

(

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < $1 / 4$ inch from TPIN to input pin and TPOUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC} and V_{CC} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

100149A 1K-Bit ECL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 100149A is field programmable, meaning that custom patterns are immediately available by following the ECL fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 100149A is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 10ns max
- Power dissipation: $0.66 \mathrm{~mW} /$ bit typ
- High impedance inputs ($50 \mathrm{k} \Omega$ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -pin Ceramic DIP (300mil-wide)	100149 A F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V_{DC}
I_{0}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leqslant \mathrm{~V}_{\text {EE }} \leqslant-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
Input voltage						
VIL $V_{I H}$ VILA $V_{\text {IHA }}$	Low High Threshold Low Threshold High		$\begin{aligned} & -1.810 \\ & -1.165 \end{aligned}$		$\begin{aligned} & -0.880 \\ & -1.475 \end{aligned}$	V
Output voltage						
$V_{\text {OL }}$ V_{OH} Vola VOHA	Low High Threshold Low Threshold High	$\begin{aligned} V_{\mathrm{IL}} & =\operatorname{Min} \\ V_{I \mathrm{H}} & =M a x \\ V_{\mathrm{IL}} & =\operatorname{Max} \\ V_{I H} & =\operatorname{Min} \end{aligned}$	$\begin{aligned} & \hline-1.810 \\ & -1.025 \\ & -1.035 \end{aligned}$		$\begin{aligned} & -1.620 \\ & -0.880 \\ & -1.610 \end{aligned}$	V
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} V_{\mathrm{IL}} & =\operatorname{Min} \\ V_{I H} & =\operatorname{Max} \end{aligned}$	0.5		220	$\mu \mathrm{A}$
Supply current						
$\mathrm{I}_{\text {EE }}$		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		150	160	mA

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{EE}} \leqslant-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Access time							
$\begin{aligned} & \mathrm{t}_{\mathrm{tAA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$		Output Output	Address Chip enable		5	$\begin{gathered} \hline 10 \\ 6 \end{gathered}$	ns
Disable time							
t_{CD}		Output	Chip disable		5	6	ns
Rise and fall time							
$\begin{aligned} & \mathrm{t}^{+} \\ & \mathrm{r}^{-} \end{aligned}$	Rise time ($20-80 \%$) Fall time ($80-20 \%$)				$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. For current measurements, maximum is defined as the maximum absolute value.
4. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TP IN to input pin and TPOUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
3. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

Address Access Time

Chip Enable/Disable Propagation Delays

Bipolar Memory Products

DESCRIPTION

The 10149B is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.
The 10149B is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

10149B
 1K-Bit ECL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time: 5ns max
- Power dissipation: $0.76 \mathrm{~mW} / \mathrm{bit}$ typ
- High-impedance inputs ($50 \mathrm{~K} \Omega$ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Microprogramming
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -pin Ceramic DIP (300mil-wide)	10149 BF

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ${ }^{1}$	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to -3	$\mathrm{~V}_{\mathrm{DC}}$
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq \mathrm{V}_{E E} \leq-5.46 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		UNIT
			Min	Max	Min	Typ ${ }^{3}$	Max	Min	Max	
Input voltage ${ }^{2,3}$										
$\mathrm{V}_{\text {IL }}$	Low		-1.870		-1.850			-1.830		V
V_{IH}	High			-0.840			-0.810		-0.720	v
$V_{\text {ILA }}$	Low threshold			-1.480			-1.475		-1.445	v
$\mathrm{V}_{\text {HA }}$	High threshold		-1.150		-1.105			-1.040		V
Output voltage										
V_{OL}	Low	$\mathrm{V}_{1 H}=$ Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	v
V_{OH}	High	$\mathrm{V}_{\text {IL }}=\mathrm{Min}$	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	v
$V_{\text {OLA }}$	Low threshold	$\mathrm{V}_{\text {IHA }}=\operatorname{Min}, \mathrm{V}_{\text {ILA }}=$ Max		-1.640			-1.630	.	-1.600	v
V_{OH}	High threshold	$\mathrm{V}_{\text {IHA }}=$ Min, $\mathrm{V}_{\text {ILA }}=$ Max	-1.020		-0.980			-0.920		V
Input current ${ }^{\text {d }}$										
ILI	Low	$\mathrm{V}_{\text {IH }}=\operatorname{Max}$			0.5					$\mu \mathrm{A}$
${ }_{1 / 4}$	High	$\mathrm{V}_{\text {LL }}=\mathrm{Min}$		250			250		250	$\mu \mathrm{A}$
Supply drain current										
lee		$V_{E E}=-5.2 \mathrm{~V}$		160		150	160		160	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 10 K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
4. Unused input pins must have $10 \mathrm{~K} \Omega$ min to V_{EE} or be connected to $-2 \mathrm{~V}_{\mathrm{DC}}$.

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq \mathrm{V}_{\text {EE }} \leq-5.46 \mathrm{~V}$

	PARAMETER	TO	FROM	LMITS			UNIT
SYMBOL				Min	Typ ${ }^{1}$	Max	
Access time							
$t_{A A}$		Output	Address			5	ns
tce		Output	Chip Enable		2	3	ns
Disable time							
$t_{\text {co }}$		Output	Chip Disable		2	3	ns
Rise and fall time							
4	Rise time (20-80\%)				2.0		ns
1	Fall time (80-20\%)				2.0		ns

NOTE:

1. Typical values are at $\mathrm{V}_{E E}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUITS

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be $<1 / 4$ inch from TPiN to input pin and TP OUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
3. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC} and V_{CC} terminals, located as close to the device as possible, is recommended to reduce ringing

1K-Bit ECL Bipolar PROM (256 \times 4)

VOLTAGE WAVEFORMS

Chip Enable/Disable Propagation Delays

100149B 1K-Bit ECL Bipolar PROM

Prellminary Specification

Bipolar Memory Products

DESCRIPTION

The 100149B is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.
The 100149B is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 5ns max
- Power dissipation: $0.66 \mathrm{~mW} / \mathrm{bit}$ typ
- High-Impedance inputs ($50 \mathrm{~K} \Omega$ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

PIN CONFIGURATION

APPLICATIONS

- Sequential controliers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

1K-Bit ECL Bipolar PROM (256×4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -pin Ceramic DIP (300mil-wide)	100149 B F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{E E}$	Supply voltage $\left(V_{C C}=0\right)$	-8	$V_{D C}$
$V_{I N}$	Input voltage $\left(V_{C C}=0\right)$	0 to -3	$V_{D C}$
I_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ4	Max	
Input voltage						
V_{IL}	Low		-1.810			V
$\mathrm{V}_{\text {IH }}$	High				-0.880	v
$V_{\text {ILA }}$	Threshold Low				-1.475	v
$\mathrm{V}_{\text {IHA }}$	Threshold High		-1.165			v
Output voltage						
VoL	Low	$\mathrm{V}_{\mathrm{LL}}=\mathrm{Min}$	-1.810		-1.620	V
$\mathrm{VOH}^{\text {O }}$	High	$\mathrm{V}_{\text {IH }}=$ Max	-1.025		-0.880	v
Vola	Threshold Low	$\mathrm{V}_{\text {IL }}=$ Max			-1.610	v
$\mathrm{V}_{\text {OHA }}$	Threshold High	$\mathrm{V}_{1 H}=\mathrm{Min}$	-1.035			v
Input current ${ }^{5}$						
ILL	Low	$\mathrm{V}_{\text {IL }}=\mathrm{Min}$	0.5			$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{\mathrm{IH}}=\mathrm{Max}$			220	$\mu \mathrm{A}$
Supply current						
$\mathrm{I}_{\text {EE }}$		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		150	160	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. For current measurements, maximum is defined as the maximum absolute value.
4. Typical values are at $\mathrm{V}_{E E}=-4.5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
5. Unused inputs must have $10 \mathrm{~K} \Omega$ minimum to $\mathrm{V}_{E E}$ or be connected to $-2 \mathrm{~V}_{\mathrm{DC}}$.

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq V_{E E} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$		Output Output	Address Chip Enable		2	5	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Disable time							
tco		Output	Chip Disable		2	3	ns
Rise and fall time							
r r	Rise time (20-80\%) Fall time (80-20\%)				$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TPin to input pin and TPOuT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
3. Normal practice in test fixtures layout should be followed. tead lengths, particularly to the power supply, should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC} and V_{CC} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

16K-bit ECL PROM

		page
10 P 016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	529
100P016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	533

10P016 16K-Bit ECL Bipolar PROM

Objective Specification

Bipolar Memory Products

DESCRIPTION

The 10P016 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 10P016 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.
Ordering information can be found on the following page.

FEATURES

- Address access time: 10ns max
- Power dissipation: $57 \mu \mathrm{~W} /$ bit typ
- High-impedance inputs (50K Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50 2 drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controliers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

F Package

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20 -pin Ceramic DIP (300mil-wide $)$	$10 P 016 \mathrm{~F}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ${ }^{1}$	RATING	UNIT
V_{EE}	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to -3	$\mathrm{~V}_{\mathrm{DC}}$
I_{0}	Output source current	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

NOTE:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A}<+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq \mathrm{V}_{E E} \leq-5.46 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		UNIT
			Min	Max	Min	Typ ${ }^{3}$	Max	Min	Max	
Input voltage ${ }^{\text {2,3 }}$										
V_{LL}	Low		-1.870		-1.850			-1.830		V
V_{IH}	High			-0.840			-0.810		-0.720	v
$V_{\text {ILA }}$	Low threshold			-1.480			-1.475		-1.445	v
$V_{\text {IHA }}$	High threshold		-1.150		-1.105			-1.040		V
Output voltage										
V_{OL}	Low	$\mathrm{V}_{\text {IH }}=$ Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	V
V_{OH}	High	$V_{\text {IL }}=\operatorname{Min}$	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	v
$V_{\text {OLA }}$	Low threshold	$V_{\text {IHA }}=\operatorname{Min}, \mathrm{V}_{\text {ILA }}=\operatorname{Max}$		-1.640			-1.630		-1.600	v
$\mathrm{V}_{\mathrm{OHA}}$	High threshold	$\mathrm{V}_{\text {IHA }}=\operatorname{Min}, \mathrm{V}_{\text {ILA }}=\operatorname{Max}$	-1.020		-0.980			-0.920		V
Input current ${ }^{4}$										
ILI	Low	$\mathrm{V}_{\text {IH }}=\mathrm{Max}$			0.5					$\mu \mathrm{A}$
$I_{\text {IH }}$	High	$\mathrm{V}_{\text {IL }}=\mathrm{Min}$		250			250		250	$\mu \mathrm{A}$
Supply drain current										
$l_{\text {EE }}$		$\mathrm{V}_{E E}=-5.2 \mathrm{~V}$		200		180	200		200	mA

NOTE:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 10 K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socketor mounted on a printed circuitboard and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
4. Unused inputs must have $10 \mathrm{~K} \Omega$ min to $V_{E E}$ or be connected to $-2 V_{D C}$.

16K-Bit ECL Bipolar PROM (4096×4)

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.94 \mathrm{~V} \leq V_{E E} \leq-5.46 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$t_{\text {A }}$		Output	Address		6	10	ns
tce		Output	Chip Enable		2	5	ns
Disable time							
tco		Output	Chip Disable		2	5	ns
Rise and fall time							
${ }_{+}$	Rise time (20-80\%)				1.0		ns
t	Fall time (80-20\%)				1.0		ns

NOTE:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < $1 / 4$ inch from TPin to input pin and TPOUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
2. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

Chip Enable/Disable Propagation Delays

100P016 16K-Bit ECL Bipolar PROM

Objective Specification

Bipolar Memory Products

DESCRIPTION

The 100P016 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.
The 100P016 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.
A Chip Enable input is provided for ease of memory expansion.
Ordering information can be found on the following page.

FEATURES

- Address access time: 10ns max
- Power dissipation: $49 \mu \mathrm{~W} / \mathrm{bit}$ typ
- High-impedance inputs ($50 \mathrm{~K} \Omega$ pulldown)
- One Chip Enable input
- Open Emitter outputs (50 2 drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

PIN CONFIGURATION

F Package	
$v_{c \infty} 1$	$20 \mathrm{v}_{\mathrm{cc}}$
$0_{3} 2$	19 O_{2}
O4 3	180_{1}
$A_{0} 4$	17 CE
$A_{1} 5$	16] A_{11}
$A_{2} 6$	$15{ }^{15}{ }_{10}$
$A_{3} 7$	$14 A_{9}$
$A_{4} 8$	${ }^{13} \mathrm{~A}_{\mathrm{B}}$
A_{5} G	(12) A_{7}
$v_{\text {EE }} 10$	(11) A_{6}
	cois5215

APPLICATIONS

- Sequentlal controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

16K-Bit ECL Bipolar PROM (4096 $\times 4$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Ceramic DIP (300mil-wide)	100 P16 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{E E}$	Supply voltage $\left(V_{C C}=0\right)$	-8	$V_{D C}$
$V_{I N}$	Input voltage $\left(V_{C C}=0\right)$	0 to -3	$V_{D C}$
I_{O}	Output source current	40	mA
T_{A}	Operating temperature range	-0 to +75	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-55 to +165	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\mathbf{1 , 2}}$	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
Input voltage -						
V_{L}	Low		-1.810			V
$\mathrm{V}_{\text {IH }}$	High				-0.880	v
$V_{\text {ILA }}$	Threshold Low				-1.475	v
$\mathrm{V}_{\text {IHA }}$	Threshold High		-1.165			v
Output voltage						
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{V}_{\mathrm{l}}=\mathrm{Min}$	-1.810		-1.620	v
V_{OH}	High	$\mathrm{V}_{1 H}=$ Max	-1.025		-0.880	v
$V_{\text {OLA }}$	Threshold Low	$\mathrm{V}_{\mathrm{IL}}=$ Max			-1.610	v
$\mathrm{V}_{\text {OHA }}$	Threshold High	$\mathrm{V}_{1 H}=$ Min	-1.035			v
Input current ${ }^{\text {5 }}$						
$1 / 1$	Low	$\mathrm{V}_{\mathrm{LL}}=\mathrm{Min}$	0.5			$\mu \mathrm{A}$
I_{H}	High				220	$\mu \mathrm{A}$
Supply current						
$\mathrm{I}_{\text {EE }}$		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		180	200	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Each ECL 100 K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socketor mounted on a printed circuit board and transverse air flow greater than 400 linear pm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. For current measurements, maximum is defined as the maximum absolute value.
4. Typical values are at $V_{E E}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Unused inputs must have $10 \mathrm{~K} \Omega$ min to V_{EE} or be connected to $-2 \mathrm{~V}_{\mathrm{DC}}$.

AC ELECTRICAL CHARACTERISTICS $R_{1}=50 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C},-4.275 \mathrm{~V} \leq V_{E E} \leq-4.725 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LMMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Access time							
$\begin{aligned} & t_{A A} \\ & t_{C E} \end{aligned}$		Output Output	Address Chip Enable		$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	ns ns
Disable time							
${ }_{\text {t }}$ D		Output	Chip Disable		2	5	ns
Rise and fall time							
+ t	Rise time (20-80\%) Fall time (80-20\%)				$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns ns

NOTE:

1. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

TEST LOAD CIRCUIT

NOTES:

1. For $A C$ tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < $1 / 4$ inch from TPIN to input pin and TPOUT to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply should be as short as possible. A $10 \mu \mathrm{~F}$ capacitor between V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ terminals, located as close to the device as possible, is recommended to reduce ringing.

16K-Bit ECL Bipolar PROM (4096×4)

VOLTAGE WAVEFORMS

Address Access Time

Chip Enable/Disable Propagation Delays
PACKAGE INFORMATION
page
Package outlines 539
Introduction 541
Package outlines for product with prefixes: FCB, PCA, PCD, PCF Introduction 555
Soldering 573

PACKAGE OUTLINES

page
Introduction 541
Plastic Leaded Chip Carrier 543
Plastic Small Outline 545
Ceramic DIP 547
Plastic DIP 551

Package Outlines

Bipolar Memory Products

INTRODUCTION

The following information applies to packages currently used for Memories. For information on other package configurations, refer to the respective Data Manual for each product.

GENERAL

1. The following pages contain information on plastic DIP and CERDIP packages ranging from 16 pins to 28 pins, SOLs 16 to $20-\mathrm{pin}$, and Plastic Leaded Chip Carriers from 20 pins to 32 pins.
2. Information for each package such as notes and reference standards are included on each drawing for easy reference.
3. Thermal resistance values have been determined by utilizing the linear temperature dependence of the forward voltage drop across the substrate diode in a digital device to monitor the junction temperature rise during known power application across V_{CC} and ground. Since thermal resistance values are dependent on die size and
the value of power dissipated, measurements were made on packages containing various die sizes. The information in the tables shown here are typical values for a mid memory die size for a given package. For more detailed information on thermal performance of specific packages please contact your Signetics sales representative and request the latest publication of Thermal Performance Data published by Signetics Corporate Package Engineering.
\square

Package Outlines

PLASTIC LEADED CHIP CARRIER (PLCC)

NO. OF LEADS	PACKAGE CODE	$\theta_{\mathbf{J A}} / \theta_{\mathbf{J C}}$	DESCRIPTION
20	A	$72 / 31$	350 mil-square
28	A	$60 / 24$	450 mil-square
32	A	$58 / 18$	450×550 mil-rectangular

1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
2. Body material: Plastic (Epoxy).
3. Thermal test Fixture: Device soldered to a glass epoxy test board with the dimensions $1.58^{\prime \prime} \times 0.75^{\prime \prime} \times 0.059^{\prime \prime}$ with $0.009^{\prime \prime}$ stand off.

20-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

28-PIN PLASTIC LEADED CHIP CARRIER

32-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

PLASTIC SMALL OUTLINE PACKAGES (SOL)

NO. OF LEADS	PACKAGE CODE	$\theta_{\mathrm{JA}} / \theta_{\mathrm{JC}}$	DESCRIPTION
16	D	$95 / 27$	300 mil-wide
20	D	$86 / 23$	300 mil-wide

1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
2. Body material: Plastic (Epoxy).
3. Thermal test fixture: Device soldered to a glass epoxy test board with the dimensions of $1.58^{\prime \prime} \times 0.75^{\prime \prime} \times 0.059^{\prime \prime}$ with $0.009^{\prime \prime}$ stand off.

16-PIN PLASTIC SMALL OUTLINE (SOL)

Package Outlines

20-PIN PLASTIC SMALL OUTLINE (SOL)

Package Outlines

CERAMIC DUAL-IN-LINE PACKAGES

NO. OF LEADS	PACKAGE CODE	$\theta_{\text {JA }} / \theta_{\mathbf{J C}}$	DESCRIPTION
16	F	$77 / 12$	300 mil-wide
18	F	$73 / 9$	300 mil-wide
20	F	$72 / 8$	300 mil-wide
22	F	$66 / 7$	400 mil-wide
24	F,F3 ${ }^{1}$	$63 / 6$	300 mil-wide
24	F,FA	$62 / 5$	600 mil-wide
28	F,FA	$45 / 5$	600 mil-wide

NOTES

1. Order coded as F3 when both 600 and 300 mil-wide packages are available

CERDIP

1. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
2. Body Material: Ceramic with glass seal at leads.
3. Thermal test fixture: Device secured in Textool ZIF socket with $0.04^{\prime \prime}$ stand off.

16-PIN HERMETIC CERDIP

Package Outlines

18-PIN HERMETIC CERDIP

20-PIN HERMETIC CERDIP

Package Outlines

22-PIN HERMETIC CERDIP

24-PIN HERMETIC CERDIP (300mil-wide)

Package Outlines

24-PIN HERMETIC CERDIP (600mil-wide)

FN3 853-0588 84221

NOTES:

1. Controlling dimension: inches. Millimeters are shown in parentheses.
2. Dimensions and tolerancing per ANSI Y14.5M - 1982
3. " T ", " D ", and " E " are reference datums on the body
and include allowance for glass overrun and meniscus on
and include allowance for glass overrun
4. These dimensions measured with the leads constrained to be perpendicular to plane T.
5. Pin numbers start with pin \#1 and continue
counterclockwise to pin \#24 when viewed from the top.
6. Denotes window location for EPROM products.

28-PIN CERDIP (600mil-wide)

Package Outlines

PLASTIC DUAL-IN-LINE PACKAGES

NO. OF LEADS	PACKAGE CODE	$\theta_{\text {JA }} / \theta_{\text {JC }}$	DESCRIPTION
16	N	$76 / 26$	300 mil-wide
18	N	$63 / 24$	300 mil-wide
20	N	$60 / 24$	300 mil-wide
22	N	$56 / 21$	400 mil-wide
24	$\mathrm{~N} /$ N3 1	$52 / 20$	300 mil-wide
24	N	$44 / 18$	600 mil-wide
28	N	$42 / 16$	600 mil-wide

NOTES:

1. Order coded as N3 when both 600 mil and 300 mil -wide packages are available.

PLASTIC DIP

1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
2. Body material: Plastic (Epoxy).
3. Thermal test fixture: Device secured in a Textool ZIF socket with $0.04^{\prime \prime}$ stand off.

16-PIN PLASTIC DUAL IN-LINE (PDIP)

Package Outlines

18-PIN PLASTIC DUAL IN-LINE (PDIP)

20-PIN PLASTIC DUAL IN-LINE (PDIP)

Package Outlines

22-PIN PLASTIC DUAL IN-LINE (PDIP)

24-PIN PLASTIC DUAL IN-LINE (PDIP)

Package Outlines

24-PIN PLASTIC DIP (600mil-wide)

28-PIN PLASTIC DUAL IN-LINE (600mil-wide)

PACKAGE OUTLINES

Introduction page
\quad for Prefixes: FCB, PCA, PCD, PCF . 555

The package information for each type number is given below:

type number	description and package code	page
FCB51C64P	28-lead dual in-line; plastic (SOT 117)	561
FCB51C64T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB51C65P	28-lead dual in-line; plastic (SOT117)	561
FCB51C65T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C65(L/LL)P	28 -lead dual in-line; plastic (SOT117)	561
FCB61C65(L/LL)T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C251P	24-lead dual in-line; plastic (SOT101A,B,F,G,L)	558
FCB61C251T	24-lead mini-pack; plastic (SOJ24; SOT239)	570
FCB61C252P	24-lead dual in-line; plastic (SOT101A,B,F,G,L)	558
FCB61C252T	24-lead mini-pack; plastic (SOJ24; SOT239)	570
FCB61C253P	28 -lead dual in-line; plastic (SOT117)	561
FCB61C253T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C257(L/LL)P	28-lead dual in-line; plastic (SOT117)	561
FCB61C257(L/LL)T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C1025(L/LL)P	32-lead dual in-line; plastic (SOT201)	567
FCB61C1025(L/LL)T	32-lead mini-pack; plastic (SO32 2XL; SOT221)	569
PCA8582BP	8 -lead dual in-line; plastic (SOT97)	557
PCA8582BT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCD5101P	22-lead dual in-line; plastic (SOT116)	560
PCD5101T	24-lead mini-pack; plastic (SO24; SOT137A)	562
PCD5114P	18-lead dual in-line; plastic (SOT102G, N, PE)	559
PCD5114T	20-lead mini-pack; plastic (SO20; SOT163A)	564
PCF8570P	8 -lead dual in-line; plastic (SOT97)	557
PCF8570T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8570CP	8-lead dual in-line; plastic (SOT97)	557
PCF8570CT	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8571P	8-lead dual in-line; plastic (SOT97)	557
PCF8571T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8581P	8-lead dual in-line; plastic (SOT97)	557
PCF8581T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8581CP	8-lead dual in-line; plastic (SOT97)	557
PCF8581CT	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8582AP	8-lead dual in-line; plastic (SOT97)	557
PCF8582AT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCF8582CP	8-lead dual in-line; plastic (SOT97)	557
PCF8582CT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCF8583P	8-lead dual in-line; plastic (SOT97)	557
PCF8583T	8-lead mini-pack; plastic (SO8L; SOT176A)	565

Package outlines

8-LEAD DUAL IN-LINE;PLASTIC (SOT97)

Dimensions in mm

24-LEAD DUAL IN-LINE; PLASTIC (SOT101A, B, F, G, L)

Package outlines

18-LEAD DUAL IN-LINE; PLASTIC (SOT102G, N, PE)

Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

Package outlines

28-LEAD DUAL IN-LINE;PLASTIC (SOT117)

Dimensions in mm

Package outlines

24-LEAD MINI-PACK; PLASTIC (SO24; SOT137A)

Positional accuracy.
(M) Maximum Material Condition.

Dimensions in mm

\dagger Positional accuracy.
(M) Maximum Material Condition.

20-LEAD MINI-PACK; PLASTIC (SO20; SOT163A)

Dimensions in mm
Positional accuracy.
(M) Maximum Material Condition.

8-LEAD MINI-PACK; PLASTIC (SO8L; SOT176A)

\bigoplus Positional accuracy.
(N) Maximum Material Condition.

[^33]
8-LEAD MINI-PACK; PLASTIC (SO8L; SOT176C)

Dimensions in mm

32-LEAD DUAL IN-LINE; PLASTIC WITH INTERNAL HEAT SPREADER (SOT201)

\dagger Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

28-LEAD MINI-PACK; PLASTIC (SO28XL; SOT213)

© Positional accuracy.
(M) Maximum Material Condition.

Dimensions in mm

Package outlines

32-LEAD MINI-PACK; PLASTIC (SO32 2XL; SOT221)

top view

(M) Maximum Material Condition.

Package outlines

24-LEAD MINI-PACK; PLASTIC (J-BENT LEADS) (SOJ24; SOT239)

Dimensions in mm

SOLDERING

page
Plastic dual in-line (DIL) packages 573
Plastic mini-pack (SO) packages 573

Soldering

SOLDERING PLASTIC MINI-PACKS

1. By hand held soldering iron or pulse heated solder tool Fix the component by first soldering two, diagonally opposite end leads. Apply the heating tool to the flat part of the lead only. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using proper tools, all other leads can be soldered in one operation within 2 to 5 seconds at between 270 and $320^{\circ} \mathrm{C}$. (Pulse-heated soldering is not recommended for SO packages).
For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to substrate by dipping or by an extra thick tin/lead plating before package placement.

2. By wave

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.
Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder bath is 10 seconds, if allowed to cool to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

3. By solder paste reflow

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement. Several techniques exist for reflowing, for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 seconds according to method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.
Pre-heating is necessary to dry paste and evaporate binding agent.
Pre-heating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

4. Repairing soldered joints

The same precaution and limits apply as in (1) above.

SOLDERING PLASTIC DUAL IN-LINE PACKAGES

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between 300 and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printedcircuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

Sales Offices, Representatives \& Distributors

Memories MOS, TTL and ECL

SIGNETICS
HEADQUARTERS
811 East Arques Avenue P.O. Box 3409

Sunnyvale, CA 94088-3409
Phone: (408) 991-2000
ALABAMA
Huntsville
Phone: (205) 830-4001
CALIFORNIA
Calabasas
Phone: (818) 880-6304
Irvine
Phone: (714) 833-8980
(714) 752-2780

San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5071
GEORGIA
Atlanta
Phone: (404) 594-1392
ILLINOIS
Itasca
Phone: (708) 250-0050
INDIANA
Kokomo
Phone: (317) 459-5355
MASSACHUSETTS
Westford
Phone: (508) 692-6211
MICHIGAN
Farmington Hills
Phone: (313) 553-6070
NEW JERSEY
Parsippany Phone: (201) 334-4405
Toms River
Phone: (201) 505-1200
NEW YORK
Wappingers Falls
Phone: (914) 297-4074
NORTH CAROLINA
Raleigh
Phone: (919) 787-4990

OHIO

Columbus
Phone: (614) 888-7143
Dayton
Phone: (513) 436-0066

OREGON
Beaverton
Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
TENNESSEE
Greeneville
Phone: (615) 639-0251
TEXAS
Austin
Phone: (512) 339-9945
Richardson
Phone: (214) 644-3500
CANADA
SIGNETICS CANADA, LTD.
Etobicoke, Ontario
Phone: (416) 626-6676
Nepean, Ontario
Phone: (613) 225-5467
REPRESENTATIVES
ALABAMA
Huntsville
Elcom, Inc.
Phone: (205) 830-4001

ARIZONA

Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 941-1901
CALIFORNIA
Folsom
Webster Associates
Phone: (916) 989-0843
COLORADO
Aurora
Thom Luke Sales, Inc.
Phone: (303) 751-5011
CONNECTICUT
Wallingford
JEBCO
Phone: (203) 265-1318
GEORGIA
Atlanta
Elcom, Inc.
Phone: (404) 594-1392
FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283
ILLINOIS
Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 382-3001

INDIANA
Indianapolis
Mohrfield Marketing, Inc. Phone: (317) 546-6969

IOWA

Cedar Rapids
J.R. Sales

Phone: (319) 393-2232
MARYLAND
Columbia
Third Wave Solutions, Inc.
Phone: (301) 290-5990
MASSACHUSETTS
Chelmsford
JEBCO
Phone: (508) 256-5800
MICHIGAN
Brighton
AP Associates, Inc.
Phone: (313) 229-6550

MINNESOTA

Eden Prairie
High Technology Sales
Phone: (612) 944-7274
MISSOURI
Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW HAMPSHIRE
Hooksett
JEBCO
Phone: (603) 645-0209

NEW MEXICO

Albuquerque
F.P. Sales

Phone: (505) 345-5553
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Bob Dean, Inc.
Phone: (914) 297-6406
NORTH CAROLINA
Smithfield
ADI
Phone: (919) 934-8136
OHIO
Centerville
Bear Marketing, Inc.
Phone: (513) 436-2061

Richfield
Bear Marketing, Inc.
Phone: (216) 659-3131

OREGON

Beaverton
Western Technical Sales
Phone: (503) 644-8860

PENNSYLVANIA

Pittsburgh
Bear Marketing, Inc.
Phone: (412) 531-2002

Hatboro

Delta Technical Sales, Inc.
Phone: (215) 957-0600
TEXAS
Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston
Synergistic Sales, Inc.
Phone: (713) 937-1990
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500
UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050
WASHINGTON
Bellevue Western Technical Sales
Phone: (206) 641-3900

Spokane

Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352
CANADA
Burnaby, B.C.
Tech-Trek, Ltd.
Phone: (604) 439-1373
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Nepean, Ontario
Tech-Trek, Ltd.
Phone: (613) 225-5161
Ville St. Laurent, Quebec
Tech-Trek, Ltd.
Phone: (514) 337-7540

PUERTO RICO

Santurce
Mectron Group
Phone: (809) 728-3280

DATA HANDBOOK SYSTEM

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of six series of handbooks:

INTEGRATED CIRCUITS

DISCRETE SEMICONDUCTORS

DISPLAY COMPONENTS

PASSIVE COMPONENTS*

PROFESSIONAL COMPONENTS**

MATERIALS*

The contents of each series are listed on pages iii to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

* Will replace the Components and materials (green) series of handbooks.
** Will replace the Electron tubes (blue) series of handbooks.

INTEGRATED CIRCUITS

This series of handbooks comprises:
code handbook title

IC01 Radio, audio and associated systems Bipolar, MOS
IC02a/b Video and associated systems Bipolar, MOS
IC03 ICs for Telecom Bipolar, MOS Subscriber sets, Cordless Telephones
IC04 HE4000B logic family CMOS
IC05 Advanced Low-power Schottky (ALS) Logic Series
IC06 High-speed CMOS; PC74HC/HCT/HCU Logic family
IC07 Advanced CMOS logic (ACL)
IC08 ECL 10K and 100K logic families
IC09N TTL logic series
IC10 Memories MOS, TTL, ECL
IC11 Linear Products
IC12 $\quad I^{2}$ C-bus compatible ICs
IC13 Semi-custom Programmable Logic Devices (PLD)
IC14 Microcontrollers NMOS, CMOS
IC15 FAST TTL logic series
Supplement
to IC15 FAST TTL logic series

IC16 CMOS integrated circuits for clocks and watches
IC17 ICs for Telecom
Bipolar, MOS
Radio pagers
Mobile telephones
ISDN
IC18 Microprocessors and peripherals
IC19 Data communication products

DISCRETE SEMICONDUCTORS

\(\left.$$
\begin{array}{lll}\begin{array}{l}\text { This series of data } \\
\text { current } \\
\text { code }\end{array}
$$ \& \begin{array}{l}handbooks comprises:

new\end{array} \& handbook title\end{array}\right]\)| code | SC01 | Diodes
 High-voltage tripler units
 S1 |
| :--- | :--- | :--- |
| S2a | SC02* | Power diodes |
| S2b | SC03* | Thyristors and triacs |
| S3 | SC04 | Small-signal transistors |
| S4a | SC05 | Low-frequency power transistors and hybrid IC power modules |
| S4b | SC06 | High-voltage and switching power transistors |
| S5 | SC07 | Small-signal field-effect transistors |
| S6 | SC08 | RF power transistors |
| S7 | SC09 | RF power modules |
| SC10 | Surface mounted semiconductors | |
| S8a | SC11* | Light emitting diodes |
| S8b | SC12 | Optocouplers |
| S9 | SC13* | PowerMOS transistors |
| S10 | SC14 | Wideband transistors and wideband hybrid IC modules |
| S11 | SC15 | Microwave transistors |
| S15** | SC16 | Laser diodes |
| S13 | SC17 | Semiconductor sensors |
| S14 | SC18* | Liquid crystal displays and driver ICs for LCDs |

[^34]
DISPLAY COMPONENTS

This series of data handbooks comprises:

current code	new code	handbook title
T8	DC01	Colour display components
T16	DC02	Monochrome monitor tubes and deflection units
C2	DC03	Television tuners, coaxial aerial input assemblies
C3	DC04*	Loudspeakers
C20	DC05	Flyback transformers, mains transformers and general-purpose FXC assemblies

* These handbooks are currently issued in another series; they are not yet issued in the Display Components series of handbooks.

PASSIVE COMPONENTS

This series of data handbooks comprises:

current code	new code	handbook title
C14	PA01	Electrolytic capacitors; solid and non-solid
C11	PA02	Varistors, thermistors and sensors
C12	PA03	Potentiometers and switches
C7	PA04	Variable capacitors
C22	PA05*	Film capacitors
C15	PA06*	Ceramic capacitors
C9	PA07*	Piezoelectric quartz devices
C13	PA08	Fixed resistors

[^35]
PROFESSIONAL COMPONENTS

This series of data handbooks comprises: current code		
new code	handbook title	
T1	*	Power tubes for RF heating and communications
T2a	*	Transmitting tubes for communications, glass types
T2b	*	Transmitting tubes for communications, ceramic types
T3	PC01**	High-power klystrons
T4	*	Magnetrons for microwave heating
T5	PC02**	Cathode-ray tubes
T6	PC03**	Geiger-Müller tubes
T9	PC04**	Photo and electron multipliers
T10	PC05	Plumbicon camera tubes and accessories
T11	PC06	Circulators and Isolators
T12	PC07	Vidicon and Newvicon camera tubes and deflection units
T13	PC08	Image intensifiers
T15	PC09**	Dry reed switches
C8	PC10	Variable mains transformers; annular fixed transformers
	PC11	Solid state image sensors and peripheral integrated circuits

* These handbooks will not be reissued.
** Not yet issued with the new code in this series of handbooks.

MATERIALS

This series of data handbooks comprises:

current	new
code	code

\(\left.\begin{array}{lll}C4

C5\end{array}\right\}\)| MA01* | Soft Ferrites |
| :--- | :--- |
| C16 | MA02** |

* Handbooks C4 and C5 will be reissued as one handbook having the new code MA01.
** Not yet issued with the new code in this series of handbooks.

Philips Components - a worldwide Company

Argentina: PHILIPS ARGENTINA S.A. Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-4261.
Australia: PHILIPS COMPONENTS PTY Lid, 11 Waltham Street, ARTARMON N.S.W. 2064, TEL. (02) 4393322.
Austria: OSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H. UB Bauelemente, Triester Str: 64, 1101 WIEN. Tel. (0222) 60 101-820.
Belgium: N. V. PHILIPS PROF SYSTEMS - Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 5256111.
Brazil: PHILIPS COMPONENTS (Active Devices) Av. das Nacoes Unidas, 12495 -SAO PAULO-SP, CEP 04578, P.O. Box 7383, Tel. (011) 534-2211
PHILIPS COMPONENTS (Passive Devices \& Materials) Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, CEP 09400, Tel. (011) 459-8211.
Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Miner Ave, SGARBOROUGH, Ontario, M1B 1M8 Tel. (416) 292-5161. (IC Products) SIGNETICS CANADA LTD., 1 Eva Road, Suite 433, ETOBICOKE, Ontario, M9C 4Z5, Tel. (416 626-6676.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816
Colombia: IPRELENSO LTDA., Carrera 21 No. $56-17$, BOGOTA, D.E. P.O. Box 77621, Tel. (01) 2497624.

Denmark: PHILIPS COMPONENTS AS, Prags Boulevard 80, PB1919, DK-2300 COPENHAGENS, Tel 01-541133
Finland: PHILIPS COMPONENTS, Sinikaliontie 3, SF-2630 ESPOO Tel 358 -0-50261.
France: PHILIPS COMPOSANTS, 117 Quai du President Roosevelt, 92134 ISSY.LES MOULINEAUX Cedex, Tel. (01) 40938000.
Germany (Fed. Republic): PHIIIPS COMPONENTS UB der Philips G.m.bH. Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1. Tel. (040) 3296-0.
Greece: PHILIPS HELLENIOUE S.A., Components Division, No. 15 , 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894911.
Hong Kong: PHILIPS HONG KONG LTD. Components Div., 15 F Philips Ind. Bldg., 24-28 Kung Yip St, KWAl CHUNG, Tel. (0)-4245 121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., COmponerits Dept., Band Box Building, 254-D Dr. Annie Besant Rid, BOMBAY - 400025, Tel. (022) $4930311 / 4930590$.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div, Setiabudi II Building, 6th FI., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995
Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.
Haly: PHLLIPS S.p.A. Philips Components, Piazza IV Novembre 3, 1-20124 MILANO, Tel. (02) 6752.1.
Japan: PHILIPS JAPAN LTD., Components Division, Phlips Bldg, 13-37. Kohnan 2-chome, Minato-ku, TOKYO (108), Tel (03) 7405028
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Components Division, Philps House, $260-199$ ltaewon-dong, Yongsan ku, SEOUL, Tel. (02) 794.5011.
Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div., 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511.
Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHIHUAHUA 32340 MEXICO, Tel. (16) 18-67-0102.
Netherlands: PHILIPS NEDERLAND B.V. Marktgroep Philips Components, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHILIPS NEW ZEALAND LTD., Components Division, 110 Mt. Eden Road, C. P.O. Box 1041, AUCKLAND, Tel. (09) $605-914$

Norway: NORSK AS PHILIPS, Philps Components, Box 1. Manglerud 0612. OSLO, Tel. (02) 680200.
Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M. A. Jinnah Rd., KARACH1-3, Tel. (021) 725772.

Peru: CADESA, Garretera Central 6.500, LIMA 3, Apartado 5612. Tel. 51-14-350059.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makat Comm. Centre, MAKATI-RIZAL 3116, Tel (02) 868951 to 59
Portugal: PHILIPS PORTUGUESA S.A.R.L, Av Eng. Duare Pacheco 6. 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS SINGAPORE, PTE LTD., Components Div., Lorong 1 , Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Atrics: S.A. PHILIPS PTY LTD, Components Divis ion, JOHANNESBURG 2000, P.O. Box 7430 .
Spain: PHLLPS COMPONENTS, Baimes 22,08007 BARCELONA Tel. (03) 3016312.
Sweden: PHILIPS COMPONENTS, A.B. Tegeluddsvagen 1, S-11584 STOCKHOLM, Tel. (0)8-7821000.
Switzerland: PHILPS A. G. Components Dept, Allmendstrasse 140-142, CH 8027 ZURICH, Tel. (01) 4882211.
Taiwan: PHILIPS TAIWAN LTD. 581 Min Sheng East Road, P.O. Box 22978, TAIPEI 10446, Taiwan, Tel. 886-2-5005899.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, PO. Box 961, BANGKOK, Tel. (02) 233 6330-9.
Turkey: TURK PHILIPS TICARET A.S, Philips Components, Talatoasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (01) 1792770.
United Kingdom: PHILIPS COMPONENTS LTD., Mulard House, Torrington Place, LONDON WCIE 7HD, Tel. (01) 5806633.
United States: (Color Picture Tubes - Monochrome \& Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963 , ANN ARBOR, Michigan 48106, Tel. (313) 996.9400. (IC Products) SIGNETICS COMPANY, 811 East Arques Avenue, SUNNTVALE, CA 94088-3409, Tel. (408) 991-2000. (Passive Components, Discrete Semiconductors, Materials and Professional Components) PHILIPS COMPONENTS, Discrete Products Division, 2001 West Blue Heron Blvd., P O. Box 10330 , RIVIERA BEACH. Florida 33404, Tel. (407) 881-3200
Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) $70-4044$
Venezuela: MAGNETICA S.A, Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 2417509.
Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD., 62 Mutare Road, HARARE, P.O. Box 994 , Tel. 47211.

For all other countries apply to: Philips Components Division, Strategic Accounts and international Sales, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl, Fax 23753.
AS80 04/26/90 ©Philips Export B. V. 1990
Al rights are reserved. Reproduction in whole or in part is prohbited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent - or industrial or intellectual property rights.

Copyright 1990 NAPC Printed in USA

[^0]: NOTE:

 * Nearest Equivalent

[^1]: ${ }^{*} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{OH}}, \mathrm{t}_{\mathrm{WHZ}}$ and t OW . Measured at 200 mV from a steady state.

[^2]: * $\mathrm{t}_{\mathrm{RC}}=$ read cycle time.

[^3]: ${ }^{*} \mathrm{t}_{\mathrm{RC}}=$ read cycle time.

[^4]: * Measured via a 500Ω resistor.

[^5]: * The device can be used as read only without the programming clock.

[^6]: Notes on following page.

[^7]: Notes on following page.

[^8]: $X=$ Don't care

[^9]: " 0 " $=$ All $\overline{\mathrm{CE}}$ inputs Low; " 1 " $=$ One or more $\overline{\mathrm{CE}}$ inputs High. $X=$ Don't care.

[^10]: *' 0 " = All CE inputs Low: " 1 " = One or more CE inputs High. $X=$ Don't care.

[^11]: x = Don't care

[^12]: $X=$ Don't care

[^13]: Notes on following page.

[^14]: Notes on following page.

[^15]: Notes on following page.

[^16]: Notes on following page

[^17]: Notes on following page

[^18]: Notes on following page.

[^19]: Notes on following page.

[^20]: Notes on following page.

[^21]: Notes on following page

[^22]: Notes on following page.

[^23]: Notes on following page.

[^24]: Notes on following page.

[^25]: Notes on following page.

[^26]: Notes on following page.

[^27]: Notes on following page.

[^28]: Notes on following page.

[^29]: Notes on following page

[^30]: Notes on following page

[^31]: Notes on following page.

[^32]: Notes on following page.

[^33]: Dimensions in mm

[^34]: * Not yet issued with the new code in this series of handbooks.
 ** New handbook in this series; will be issued shortly.

[^35]: * Not yet issued with the new code in this series of handbooks.

