INTEGRATED CIRCUITS

DATA HANDBOOK

DISTRIBUTED BY

San Francisco Division

336 Los Coches Street Milpitas, California 95035

Electronics Group Claude Michael Group FAX (408) 942-4600 (408) 942-4700 (408) 262-1224

Memories MOS, TTL, and ECL

Signetics Philips Components

MEMORIES MOS, TTL, ECL

	page
Selection guide . Functional index	. 5
Numerical index	. 9
Introduction	
Introduction for type numbers with prefixes FCB, PCA, PCD, PCF	
Rating systems	
Handling MOS devices	. 23
Introduction for type numbers with numerical prefixes	. 25
Product status	
Quality and reliability	
Bipolar reliability information	. 33
EPROM reliability information	
Selection guide	
PROM cross reference guide	
EPROM cross reference guide	. 51
EPROM programming information	
Bipolar programming procedures	. 55
MOS Memories	
CMOS static RAM	
CMOS EEPROM	
128K-bit CMOS EPROM	
256K-bit CMOS EPROM	
516K-bit CMOS EPROM	
1M-bit CMOS EPROM	. 271
TTL Memories	. 281
64-bit RAM	
256-bit RAM	
Byte-organized RAM	. 321
4K-bit PROM	
8K-bit PROM	
16K-bit PROM	
32K-bit PROM	
128K-bit PROM	
ECL Memories	
Low complexity PROM	
	. 541
Package information	. 537

ŧ

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.

© Copyright 1989 Signetics Company a division of North American Philips Corporation

All rights reserved.

SELECTION GUIDE

Functional index Numerical index

FUNCTIONAL INDEX

pe number description				
CMOS STATIC RAM				
FCB51C64/65	B51C64/65 8192 x 8-bit latched static RAM			
FCB61C65(L/LL)	L) 8192 x 8-bit static RAM			
FCB61C251	262 144 x 1-bit static RAM	75		
FCB61C252/253	65 536 x 4-bit static RAM	79		
FCB61C257(L/LL)	32 768 x 8-bit static RAM	85		
FCB61C1025(L/LL)	131 072 x 8-bit static RAM	89		
PCD5101	256 x 4-bit static RAM	93		
PCD5114	1024 x 4-bit static RAM	101		
PCF8570/70C/71	256 x 8-bit static RAM with I ² C-bus interface	109		
PCF8583	256 x 8-bit static RAM with I ² C-bus interface	119		
CMOS EEPROM				
PCA8582B	256 x 8-bit static EEPROM with I ² C-bus interface			
	for automotive applications	139		
PCF8581/81C	128 x 8-bit EEPROM with I ² C-bus interface	151		
PCF8582A	256 x 8-bit static EEPROM with I ² C-bus interface	161		
PCF8582C	256 x 8-bit static EEPROM with I ² C-bus interface			
	for automotive applications	171		
64K-bit CMOS EPROM				
27C64A-IND	64K-bit CMOS EPROMs (8K x 8) 150 ns; 200 ns	185		
27C64A O.T.P.	64K-bit CMOS EPROM (8K x 8) 100 ns	189		
27C64A O.T.P.	64K-bit CMOS EPROMs (8K x 8) 120 ns; 150 ns	193		
27C64A O.T.P.	64K-bit CMOS EPROM (8K x 8) 200 ns	197		
27C64A U.V.	64K-bit erasable CMOS EPROM (8K x 8) 100 ns	201		
27C64A U.V.	64K-bit erasable CMOS EPROMs (8K x 8) 120 ns; 150 ns	205		
27C64A U.V.	64K-bit erasable CMOS EPROMs (8K x 8) 200 ns	209		
27HC641 O.T.P.	64K-bit CMOS EPROMs (8K x 8) 45 ns; 55 ns	213		
27HC641 U.V.	64K-bit erasable CMOS EPROMs (8K x 8) 35 ns; 45 ns; 55 ns	217		
128K-bit CMOS EPRO	Μ			
27HC128 O.T.P.	128K-bit CMOS EPROMs (16K x 8) 45 ns; 55 ns	223		
27HC128 U.V.	128K-bit erasable CMOS EPROMs (16K x 8) 45 ns; 55 ns	227		

ķ

type number	description	page
256K-bit CMOS EPROM		
27C256-IND	256K-bit EPROMs (32K x 8) 150 ns; 200 ns	233
27C256 O.T.P.	256K-bit EPROM (32K x 8) 120 ns	237
27C256 O.T.P.	256K-bit EPROMs (32K x 8) 150 ns; 170 ns	241
27C256 O.T.P.	256K-bit EPROM (32K x 8) 200 ns	245
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 120 ns	249
27C256 U.V.	256K-bit erasable EPROMs (32K x 8) 150 ns; 170 ns	253
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 200 ns	257
516K-bit CMOS EPRO	Μ	
27C512 O.T.P.	512K-bit CMOS EPROMs (64K x 8) 150 ns; 170 ns; 200 ns	263
27C512 U.V.	512K-bit erasable CMOS EPROMs (64K x 8) 150 ns; 170 ns; 200 ns	267
1M-bit CMOS EPROM		
27C210 O.T.P.	1M programmable EPROM (64K x 16) 150 ns; 200 ns	273
27C210 U.V.	1M erasable CMOS EPROM (64K x 16) 150 ns; 200 ns	277
64-bit TTL RAM		
82S25/3101A/		
74S189	64-bit TTL Bipolar RAM (16 x 4) 50 ns; 35 ns	285
74F189A	64-bit TTL Bipolar RAM (16 x 4) 15 ns	289
74F219A	64-bit TTL Bipolar RAM (16 x 4) 10 ns	293
74F410	64-bit TTL Bipolar register stack (16 x 4) 19.5 ns	297
256-bit TTL RAM		
82S16	256-bit TTL Bipolar RAM (256 x 1) 50 ns	305
82LS16	256-bit TTL Bipolar RAM (256 x 1) 40 ns	309
74S301	256-bit TTL Bipolar RAM (256 x 1) 50 ns	313
74LS301	256-bit TTL Bipolar RAM (256 x 1) 40 ns	317
Byte-Organized TTL R	AM	
82S09/82S09A	576-bit TTL Bipolar RAM (64 x 9) 45 ns; 35 ns	323
82S19	576-bit TTL Bipolar RAM (64 x 9) 35 ns	327
82S212/82S212A	2304-bit TTL Bipolar RAM (256 x 9) 45 ns; 35 ns	331
8X350	2048-bit TTL Bipolar RAM (256 x 8)	335
Low Complexity TTL	PROM	
82S23/82S123A	256-bit TTL Bipolar PROM (32 x 8) 50 ns	343
82S23A/82S123A	256-bit TTL Bipolar PROM (32 x 8) 25 ns	3 47
82US23/82US123	256-bit TTL Bipolar PROM (32 x 8) 13 ns; 10 ns	351
82S126/82S129	1024-bit TTL Bipolar PROM (256 x 4) 50 ns	355
82S126A/82S129A	1024-bit TTL Bipolar PROM (256 x 4) 30 ns; 27 ns	359
825130/825131	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S130A/82S131A	2048-bit TTL Bipolar PROM (512 x 4) 33 ns; 30 ns	367
82S135	2048-bit TTL Bipolar PROM (256 x 8) 45 ns	371
82LS135	2048-bit TTL Bipolar PROM (256 x 8) 100 ns	375

FUNCTIONAL INDEX

type number	description	page
4K-bit TTL PROM		
82S115	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	38/
82S137	4096-bit TTL Bipolar PROM (1024 x 4) 60 ns	385
82S137A/82S137B	4096-bit TTL Bipolar PROM (1024 x 4) 45 ns; 35 ns	389
82S141/82S141A	4096-bit TTL Bipolar PROM (512 x 8) 60 ns; 45 ns	393
82S147/82S147A	4096-bit TTL Bipolar PROM (512 x 8) 60 ns; 45 ns	397
82S147B	4096-bit TTL Bipolar PROM (512 x 8) 25 ns	40
8K-bit TTL PROM		
82S181/82S181A	8192-bit TTL Bipolar PROM (1024 x 8) 70 ns; 55 ns	407
82S181C	8192-bit TTL Bipolar PROM (1024 x 8) 35 ns	41
82S183	8192-bit TTL Bipolar PROM (1024 x 8) 60 ns	41
82S185	8192-bit TTL Bipolar PROM (2048 x 4) 100 ns	41
82S185A	8192-bit TTL Bipolar PROM (2048 x 4) 50 ns	42
82S185B	8192-bit TTL Bipolar PROM (2048 x 4) 35 ns	42
82HS187/82HS187A	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns; 45 ns	43
82HS189/82HS189A	8192-bit TTL Bipolar PROM (1024 x 8) 55 hs, 45 hs 8192-bit TTL Bipolar PROM (1024 x 8) 55 hs; 45 hs	43
16K-bit TTL PROM		
82S191/82S191A	16 384-bit TTL Bipolar PROM (2048 x 8) 80 ns; 55 ns	44
82S191/025191A	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	44
82HS191	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns	44
82LHS191	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	45
82HS195/82HS195A/		40.
82HS195/82HS195A/	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns; 35 ns; 25 ns	45
32K-bit TTL PROM		
82HS321/82HS321A/	22 769 hit TTL Bingles BBOM (4006 x 9) 45 per 25 per 20 pe	46
82HS321B	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns; 35 ns; 30 ns	
82HS321C	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns	46
82LHS321	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	47
64K-bit TTL PROM		
82HS641/82HS641A/		
82HS641B	65 536-bit TTL Bipolar PROM (8192 x 8) 55 ns; 45 ns; 35 ns	47
82HS641C	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns	48
128K-bit TTL PROM		
82HS1281	131 072-bit TTL Bipolar PROM (16384 x 8) 45 ns	48
Low Complexity ECL P		
10P256	256-bit ECL Bipolar PROM (32 x 8) 3 ns	49
100P256	256-bit ECL Bipolar PROM (32 x 8) 3 ns	49
10149	1024-bit ECL Bipolar PROM (256 x 4) 20 ns	50
100149	1024-bit ECL Bipolar PROM (256 x 4) 20 ns	50
10149A	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	51
100149A	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	51
10149B	1024-bit ECL Bipolar PROM (256 x 4) 5 ns	51
100149B	1024-bit ECL Bipolar PROM (256 x 4) 5 ns	52

F	JNCTIONAL INDEX		
	type number	description	page
	16K-bit ECL PROM	Λ	
	10P016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	529
	100P016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	523

8

NUMERICAL INDEX

type number	description	page
FCB51C64P	8192 x 8-bit latched static RAM	61
FCB51C64T	8192 x 8-bit latched static RAM	61
FCB51C65P	8192 x 8-bit latched static RAM	61
FCB51C65T	8192 x 8-bit latched static RAM	61
FCB61C65(L/LL)P	8192 x 8-bit static RAM	63
FCB61C65(L/LL)T	8192 x 8-bit static RAM	63
FCB61C251P	26 144 x 1-bit static RAM	75
FCB61C251T	26 144 x 1-bit static RAM	75
FCB61C252P	65 536 x 4-bit static RAM	79
FCB61C252T	65 536 x 4-bit static RAM	79
FCB61C253P	65 536 x 4-bit static RAM	79
FCB61C253T	65 536 x 4-bit static RAM	79
FCB61C257(L/LL)P	32 768 x 8-bit static RAM	85
FCB61C257(L/LL)T	32 768 x 8-bit static RAM	85
FCB61C1025(L/LL)P	131 072 x 8-bit static RAM	89
FCB61C1025(L/LL)T	131 072 x 8-bit static RAM	89
N3101A D	64-bit TTL Bipolar RAM (16 x 4) 35 ns	285
N3101A N	64-bit TTL Bipolar RAM (16 x 4) 35 ns	285
N74F189A D	64-bit TTL Bipolar RAM (16 x 4) 15 ns	289
N74F189A N	64-bit TTL Bipolar RAM (16 x 4) 15 ns	289
N74F219A D	64-bit TTL Bipolar RAM (16 x 4) 10 ns	293
N74F219A N	64-bit TTL Bipolar RAM (16 x 4) 10 ns	293
N74F410 N	64-bit TTL Bipolar register stack (16 x 4) 19.5 ns	297
N74LS301 D	256-bit TTL Bipolar RAM (256 x 1) 40 ns	303
N74LS301 N	256-bit TTL Bipolar RAM (256 x 1) 40 ns	303
N74S189 D	64-bit TTL Bipolar RAM (16 x 4) 35 ns	285
N74S189 N	64-bit TTL Bipolar RAM (16 x 4) 35 ns	285
N74S301 D	256-bit TTL Bipolar RAM (256 x 1) 50 ns	313
N74S301 N	256-bit TTL Bipolar RAM (256 x 1) 50 ns	313
N8X350 A	2048-bit TTL Bipolar RAM (256 x 8)	335
N8X350 N	2048-bit TTL Bipolar RAM (256 x 8)	335
N82LHS191 A	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS191 N	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS191 N3	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	453
N82LHS321 N	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
N82LHS321 N3	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
N82LHS321 A	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns	471
N82HS187A A	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns	431
N82HS187A N	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns	431
N82HS187 A	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	431
N82HS187 N	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	431

9

type number	number description		
N82HS189A A	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns		435
N82HS189A N	8192-bit TTL Bipolar PROM (1024 x 8) 45 ns		435
N82HS189 A	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns		435
N82HS189 N	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns		435
N82HS191 A	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns		449
N82HS191 N	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns		449
N82HS191 N3	16 384-bit TTL Bipolar PROM (2048 x 8) 25 ns		449
N82HS195B A	16 384-bit TTL Bipolar PROM (4096 x 4) 25 ns		457
N82HS195B N	16 384-bit TTL Bipolar PROM (4096 x 4) 25 ns		457
N82HS195A A	16 384-bit TTL Bipolar PROM (4096 x 4) 35 ns		457
N82HS195A N	16 384-bit TTL Bipolar PROM (4096 x 4) 35 ns		457
N82HS195 A	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns		457
N82HS195 N	16 384-bit TTL Bipolar PROM (4096 x 4) 45 ns		457
N82HS321B A	32 768-bit TTL Bipolar PROM (4096 x 8) 30 ns		463
N82HS321B F	32 768-bit TTL Bipolar PROM (4096 x 8) 30 ns		463
N82HS321B N	32 768-bit TTL Bipolar PROM (4096 x 8) 30 ns		463
N82HS321A A	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns		463
N82HS321A F	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns		463
N82HS321A N	32 768-bit TTL Bipolar PROM (4096 x 8) 35 ns		463
N82HS321 A	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns		463
N82HS321 F	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns		463
N82HS321 N	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns		463
N82HS321C N	32 768-bit TTL Bipolar PROM (4096 x 8) 45 ns		403
N82HS321C N3	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns		467
N82HS321C F	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns		467
N82HS321C A	32 768-bit TTL Bipolar PROM (4096 x 8) 25 ns		467
	65 536-bit TTL Bipolar PROM (4030 x 8) 25 hs		477
N82HS641B F	65 536-bit TTL Bipolar PROM (8192 x 8) 35 ns		477
N82HS641B N	•		477
N82HS641A F	65 536-bit TTL Bipolar PROM (8192 x 8) 45 ns		477
N82HS641A N	65 536-bit TTL Bipolar PROM (8192 x 8) 45 ns		477
N82HS641 N	65 536-bit TTL Bipolar PROM (8192 x 8) 55 ns		477
N82HS641 F	65 536-bit TTL Bipolar PROM (8192 x 8) 55 ns 65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns		481
N82HS641C N			481
N82HS641C F	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns		481
N82HS641C A	65 536-bit TTL Bipolar PROM (8192 x 8) 25 ns		
82HS1281 N	131 072-bit TTL Bipolar PROM (16384 x 8) 45 ns		487
N82LS16 D	256-bit TTL Bipolar RAM (256 x 1) 40 ns		309
N82LS16 N	256-bit TTL Bipolar RAM (256 x 1) 40 ns		309
N82S09A A	576-bit TTL Bipolar RAM (64 x 9) 35 ns		323
N82S09A N	576-bit TTL Bipolar RAM (64 x 9) 35 ns		323
N82S09 A	576-bit TTL Bipolar RAM (64 x 9) 45 ns		323
N82S09 N	576-bit TTL Bipolar RAM (64 x 9) 45 ns		323
N82S16 D	256-bit TTL Bipolar RAM (256 x 1) 50 ns		305
N82S16 N	256-bit TTL Bipolar RAM (256 x 1) 50 ns		305
N82S19 A	576-bit TTL Bipolar RAM (64 x 9) 35 ns		327
N82S19 N	576-bit TTL Bipolar RAM (64 x 9) 35 ns		327
N82S23 A	256-bit TTL Bipolar PROM (32 x 8) 50 ns		343
N82S23 N	256-bit TTL Bipolar PROM (32 x 8) 50 ns		343
N82S23A A	256-bit TTL Bipolar PROM (32 x 8) 25 ns		347
N82S23A D	256-bit TTL Bipolar PROM (32 x 8) 25 ns		347
N82S23A N	256-bit TTL Bipolar PROM (32 x 8) 25 ns		347

September 1989

type number	number description	
N82US23 A	256-bit TTL Bipolar PROM (32 x 8) 13 ns	351
N82US23 D	256-bit TTL Bipolar PROM (32 x 8) 13 ns	351
N82US23 N	256-bit TTL Bipolar PROM (32 x 8) 13 ns	351
N82S25 D	64-bit TTL Bipolar RAM (16 x 4) 50 ns	285
N82S25 N	64-bit TTL Bipolar RAM (16 x 4) 50 ns	285
V82S115 N	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	381
N82S123 A	256-bit TTL Bipolar PROM (32 x 8) 50 ns	343
N82S123 N	256-bit TTL Bipolar PROM (32 x 8) 50 ns	343
N82S123A A	256-bit TTL Bipolar PROM (32 x 8) 25 ns	347
V82S123A D	256-bit TTL Bipolar PROM (32 x 8) 25 ns	347
N82S123A N	256-bit TTL Bipolar PROM (32 x 8) 25 ns	347
N82US123 A	256-bit TTL Bipolar PROM (32 x 8) 10 ns	351
N82US123 D	256-bit TTL Bipolar PROM (32 x 8) 10 ns	351
V82US123 N	256-bit TTL Bipolar PROM (32 x 8) 10 ns	351
N82S126 A	1024-bit TTL Bipolar PROM (256 x 4) 50 ns	355
N82S126 N	1024-bit TTL Bipolar PROM (256 x 4) 50 ns	355
82S126A A	1024-bit TTL Bipolar PROM (256 x 4) 30 ns	359
82S126A D	1024-bit TTL Bipolar PROM (256 x 4) 30 ns	359
82S126A N	1024-bit TTL Bipolar PROM (256 x 4) 30 ns	359
82S129 A	1024-bit TTL Bipolar PROM (256 x 4) 50 ns	355
82S129 N	1024-bit TTL Bipolar PROM (256 x 4) 50 ns	355
82S129A A	1024-bit TTL Bipolar PROM (256 x 4) 27 ns	359
82S129A D	1024-bit TTL Bipolar PROM (256 x 4) 27 ns	359
82S129A N	1024-bit TTL Bipolar PROM (256 x 4) 27 ns	359
82S130 A	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S130 N	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S130A A	2048-bit TTL Bipolar PROM (512 x 4) 33 ns	367
82S130A D	2048-bit TTL Bipolar PROM (512 x 4) 33 ns	367
82S130A N	2048-bit TTL Bipolar PROM (512 x 4) 33 ns	367
82S131 A	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S131 N	2048-bit TTL Bipolar PROM (512 x 4) 50 ns	363
82S131A A	2048-bit TTL Bipolar PROM (512 \times 4) 30 ns	367
82S131A D	2048-bit TTL Bipolar PROM (512 x 4) 30 ns	367
82S131A N	2048-bit TTL Bipolar PROM (512 \times 4) 30 ns	367
N82LS135 A	2048-bit TTL Bipolar PROM (256 x 8) 100 ns	375
82LS135 D	2048-bit TTL Bipolar PROM (256 x 8) 100 ns	375
182LS135 N	2048-bit TTL Bipolar PROM (256 x 8) 100 ns	375
182S135 A	2048-bit TTL Bipolar PROM (256 x 8) 45 ns	371
182S135 D	2048-bit TTL Bipolar PROM (256 x 8) 45 ns	371
182S135 N	2048-bit TTL Bipolar PROM (256 x 8) 45 ns	371
82S137 A	4096-bit TTL Bipolar PROM (1024 x 4) 60 ns	385
182S137 N	4096-bit TTL Bipolar PROM (1024 x 4) 60 ns	385
182S137A A	4096-bit TTL Bipolar PROM (1024 x 4) 45 ns	389
182S137A A	4096-bit TTL Bipolar PROM (1024 x 4) 45 ns	389
182S137A N	4096-bit TTL Bipolar PROM (1024 x 4) 45 hs	389
182S137B A	4096-bit TTL Bipolar PROM (1024 x 4) 35 ns	389
	4096-bit TTL Bipolar PROM (1024 x 4) 35 hs	393
182S141A A		393
182S141A N	4096-bit TTL Bipolar PROM (512 x 8) 45 ns	
N82S141A N3	4096-bit TTL Bipolar PROM (512 x 8) 45 ns	393

type number	description	page
N82S141 N	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	393
N82S141 N3	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	393
N82S147A A	4096-bit TTL Bipolar PROM (512 x 8) 45 ns	397
N82S147A N	4096-bit TTL Bipolar PROM (512 x 8) 45 ns	397
N82S147 A	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	397
N82S147 N	4096-bit TTL Bipolar PROM (512 x 8) 60 ns	397
N82S147B A	4096-bit TTL Bipolar PROM (512 x 8) 25 ns	401
N82S147B N	4096-bit TTL Bipolar PROM (512 x 8) 25 ns	401
N82S181A A	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	407
N82S181A N	8192-bit TTL Bipolar PROM (1024 x 8) 55 ns	407
N82S181 A	8192-bit TTL Bipolar PROM (1024 x 8) 70 ns	407
N82S181 N	8192-bit TTL Bipolar PROM (1024 x 8) 70 ns	407
N82S181C A	8192-bit TTL Bipolar PROM (1024 x 8) 35 ns	411
N82S181C N	8192-bit TTL Bipolar PROM (1024 x 8) 35 ns	411
N82S181C N3	8192-bit TTL Bipolar PROM (1024 x 8) 35 ns	411
N82S183 A	8192-bit TTL Bipolar PROM (1024 x 8) 60 ns	415
N82S183 N	8192-bit TTL Bipolar PROM (1024 x 8) 60 ns	415
N82S185A N	8192-bit TTL Bipolar PROM (2048 x 4) 50ns	423
N82S185B N	8192-bit TTL Bipolar PROM (2048 x 4) 35 ns	427
N82S185 N	8192-bit TTL Bipolar PROM (2048 x 4) 100 ns	419
N82S191A A	16 384-bit TTL Bipolar PROM (2048 x 8) 55 ns	441
N82S191A N	16 384-bit TTL Bipolar PROM (2048 x 8) 55 ns	441
N82S191 A	16 384-bit TTL Bipolar PROM (2048 x 8) 80 ns	441
N82S191 N	16 384-bit TTL Bipolar PROM (2048 x 8) 80 ns	441
N82S191C A	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	445
N82S191C N	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	445
N82S191C N3	16 384-bit TTL Bipolar PROM (2048 x 8) 35 ns	445
N82S212A A	2304-bit TTL Bipolar RAM (256 x 9) 35 ns	331
N82S212A N	2304-bit TTL Bipolar RAM (256 x 9) 35 ns	331
N82S212 A	2304-bit TTL Bipolar RAM (256 x 9) 45 ns	331
N82S212 N	2304-bit TTL Bipolar RAM (256 x 9) 45 ns	331
PCA8582BP	256 x 8-bit static EEPROM with 1^{2} C-bus interface	
04030201	for automotive applications	139
PCA8582BT	256×8 -bit static EEPROM with I ² C-bus interface	100
	for automotive applications	139
PCD5101P	256 x 4-bit static RAM	93
PCD5101T	256 x 4-bit static RAM	93
PCD5114P	1024 x 4-bit static RAM	10
PCD5114T	1024 x 4-bit static RAM	10 ⁻
PCF8570P	256×8 -bit static RAM with 1^{2} C-bus interface	109
PCF8570T	256×8 -bit static RAM with 1 ² C-bus interface	10
PCF8570CP	256×8 -bit static RAM with 1 ² C-bus interface	109
PCF8570CF	256 x 8-bit static RAM with 1 ² C-bus interface	109
PCF8570C1 PCF8571P	128×8 -bit static RAM with 1 ² C-bus interface	109
PCF8571F PCF8571T	128 x 8-bit static RAM with 1° C-bus interface	109
PCF8581P	128 x 8-bit EEPROM with 1 ² C-bus interface	15
PCF8581P PCF8581T	128 x 8-bit EEPROM with 1 ² C-bus interface 128 x 8-bit EEPROM with 1 ² C-bus interface	15 15
		15
PCF8581CP	128 x 8-bit EEPROM with I ² C-bus interface	15

type number	umber description		
PCF8582AP	256 x 8-bit static CMOS EEPROM with I ² C-bus interface	161	
PCF8582AT	256 x 8-bit static CMOS EEPROM with I ² C-bus interface	161	
PCF8582CP	256 x 8-bit static EEPROM with I ² C-bus interface		
	for automotive applications	171	
PCF8582CT	256 x 8-bit static EEPROM with I^2C -bus interface		
	for automotive applications	171	
PCF8583P	256 x 8-bit static RAM with I ² C-bus interface	119	
PCF8583T	256 x 8-bit static RAM with I ² C-bus interface	119	
10P016 F	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	529	
100P016 F	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	533	
10P256 F	256-bit ECL Bipolar PROM (32 x 8) 3 ns	495	
100P256 F	256-bit ECL Bipolar PROM (32 x 8) 3 ns	499	
10149B F	1024-bit ECL Bipolar PROM (256 x 4) 5 ns	519	
10149 F	1024-bit ECL Bipolar PROM (256 x 4) 20 ns	503	
100149B F	1024-bit ECL Bipolar PROM (256 x 4) 5 ns	523	
100149 F	1024-bit ECL Bipolar PROM (256 x 4) 20 ns	507	
10149A F	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	511	
100149A F	1024-bit ECL Bipolar PROM (256 x 4) 10 ns	515	
27C64AI15 FA	64K-bit CMOS EPROM (8K x 8) 150 ns	185	
27C64A120 FA	64K-bit CMOS EPROM (8K x 8) 200 ns	185	
27C64A115 N	64K-bit CMOS EPROM (8K x 8) 150 ns	185	
27C64A120 N	64K-bit CMOS EPROM (8K x 8) 200 ns	185	
27C64A115 A	64K-bit CMOS EPROM (8K x 8) 150 ns	185	
27C64A120 A	64K-bit CMOS EPROM (8K x 8) 200 ns	185	
27C64A-10 N	64K-bit CMOS EPROM (8K x 8) 100 ns	189	
27C64A-10 A	64K-bit CMOS EPROM (8K x 8) 100 ns	189	
27C64A-12 N	64K-bit CMOS EPROM (8K x 8) 120 ns	193	
27C64A-15 N	64K-bit CMOS EPROM (8K x 8) 150 ns	193	
27C64A-12 A	64K-bit CMOS EPROM (8K x 8) 120 ns	193	
27C64A-15 A	64K-bit CMOS EPROM (8K x 8) 150 ns	193	
27C64A-20 N	64K-bit CMOS EPROM (8K x 8) 200 ns	197	
27C64A-20 A	64K-bit CMOS EPROM (8K x 8) 200 ns	197	
27C64A-10 FA	64K-bit erasable CMOS EPROM (8K x 8) 100 ns	201	
27C64A-12 FA	64K-bit erasable CMOS EPROM (8K x 8) 120 ns	205	
27C64A-15 FA	64K-bit erasable CMOS EPROM (8K x 8) 150 ns	205	
27C64A-20 FA	64K-bit erasable CMOS EPROM (8K x 8) 200 ns	209	
27C210-15 N	1M programmable EPROM (64K x 16) 150 ns	273	
27C210-20 N	1M programmable EPROM (64K \times 16) 200 ns	273	
27C210-15 A	1M programmable EPROM ($64K \times 16$) 150 ns	273	
27C210-20 A	1M programmable EPROM (64K \times 16) 200 ns	273	
27C210-15 FA	1M erasable CMOS EPROM (64K x 16) 150 ns	277	
27C210-20 FA	1M erasable CMOS EPROM (64K x 16) 200 ns	277	
27C256I15 FA	256K-bit EPROM (32K x 8) 150 ns	233	
27C256I20 FA	256K-bit EPROM (32K x 8) 200 ns	233	
27C256I15 N	256K-bit EPROM (32K x 8) 150 ns	233	
27C256I20 N	256K-bit EPROM (32K x 8) 200 ns	233	
27C256I15 A	256K-bit EPROM (32K x 8) 150 ns	233	
27C256120 A	256K-bit EPROM (32K x 8) 200 ns	233	

type number	nber description	
27C256-12 N	256K-bit EPROM (32K x 8) 120 ns	237
27C256-12 A	256K-bit EPROM (32K x 8) 120 ns	237
27C256-15 N	256K-bit EPROM (32K x 8) 150 ns	24 1
27C256-17 N	256K-bit EPROM (32K x 8) 170 ns	241
27C256-15 A	256K-bit EPROM (32K x 8) 150 ns	241
27C256-17 A	256K-bit EPROM (32K x 8) 170 ns	241
27C256-20 N	256K-bit EPROM (32K x 8) 200 ns	245
27C256-20 A	256K-bit EPROM (32K x 8) 200 ns	245
27C256-12 FA	256K-bit erasable EPROM (32K x 8) 120 ns	249
27C256-15 FA	256K-bit erasable EPROM (32K x 8) 150 ns	253
27C256-17 FA	256K-bit erasable EPROM (32K x 8) 170 ns	253
27C256-20 FA	256K-bit erasable EPROM (32K x 8) 200 ns	257
27C512-15 N	512K-bit CMOS EPROM (64K x 8) 150 ns	263
27C512-17 N	512K-bit CMOS EPROM (64K x 8) 170 ns	263
27C512-20 N	512K-bit CMOS EPROM (64K x 8) 200 ns	263
27C512-15 A	512K-bit CMOS EPROM (64K x 8) 150 ns	263
27C512-17 A	512K-bit CMOS EPROM (64K x 8) 170 ns	263
27C512-20 A	512K-bit CMOS EPROM (64K x 8) 200 ns	263
27C512-15 FA	512K-bit erasable CMOS EPROM (64K x 8) 150 ns	267
27C512-17 FA	512K-bit erasable CMOS EPROM (64K x 8) 170 ns	267
27C512-20 FA	512K-bit erasable CMOS EPROM (64K x 8) 200 ns	267
27HC128-45 N	128K-bit CMOS EPROM (16K x 8) 45 ns	223
27HC128-55 N	128K-bit CMOS EPROM (16K x 8) 55 ns	223
27HC128-45 A	128K-bit CMOS EPROM (16K x 8) 45 ns	223
27HC128-55 A	128K-bit CMOS EPROM (16K x 8) 55 ns	223
27HC128-45 FA	128K-bit erasable CMOS EPROM (16K x 8) 45 ns	227
27HC128-55 FA	128K-bit erasable CMOS EPROM (16K x 8) 55 ns	227
27HC641-45 N	64K-bit CMOS EPROM (8K x 8) 45 ns	213
27HC641-55 N	64K-bit CMOS EPROM (8K x 8) 55 ns	213
27HC641-45 A	64K-bit CMOS EPROM (8K x 8) 45 ns	213
27HC641-55 A	64K-bit CMOS EPROM (8K x 8) 55 ns	213
27HC641-35 FA	64K-bit erasable CMOS EPROM (8K x 8) 35 ns	213
27HC641-45 FA	64K-bit erasable CMOS EPROM (8K x 8) 45 ns	217
27HC641-55 FA	64K-bit erasable CMOS EPROM (8K x 8) 55 ns	217

INTRODUCTION

Introduction for type numbers with prefixes FCB, PCA, PCD and PCF	17
Introduction for type numbers with numerical prefixes	25

Introduction for type numbers with prefixes FCB, PCA, PCD and PCF

page
10

Type designation	19
Rating systems	21
Handling MOS devices	23

PRO ELECTRON TYPE DESIGNATION CODE FOR INTEGRATED CIRCUITS

This type nomenclature applies to semiconductor monolithic, semiconductor multi-chip, thin-film, thick-film and hybrid integrated circuits.

A basic number consists of:

THREE LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST AND SECOND LETTER

1. DIGITAL FAMILY CIRCUITS

The FIRST TWO LETTERS identify the FAMILY (see note 1).

2. SOLITARY CIRCUITS

The FIRST LETTER divides the solitary circuits into:

- S : Solitary digital circuits
- T : Analogue circuits
- U: Mixed analogue/digital circuits

The SECOND LETTER is a serial letter without any further significance except 'H' which stands for hybrid circuits.

3. MICROPROCESSORS

The FIRST TWO LETTERS identify microprocessors and correlated circuits as follows:

- MA : { Microcomputer
- Central processing unit
- MB : Slice processor (see note 2)
- MD : Correlated memories
- ME : Other correlated circuits (interface, clock, peripheral controller, etc.)

4. CHARGE-TRANSFER DEVICES AND SWITCHED CAPACITORS

The FIRST TWO LETTERS identify the following:

- NH : Hybrid circuits
- NL : Logic circuits
- NM : Memories
- NS : Analogue signal processing, using switched capacitors
- NT : Analogue signal processing, using CTDs
- NX : Imaging devices
- NY: Other correlated circuits

Notes

- 1. A logic family is an assembly of digital circuits designed to be interconnected and defined by its basic electrical characteristics (such as: supply voltage, power consumption, propagation delay, noise immunity).
- 2. By 'slice processor' is meant: a functional slice of microprocessor.

THIRD LETTER

TYPE

It indicates the operating ambient temperature range. The letters A to G give information about the temperature:

- A : temperature range not specified
- B : 0 to + 70 °C
- C : -55 to + 125 °C
- D : -25 to + 70 °C
- E : -25 to +85 °C
- F : -40 to +85 °C
- G: -55 to + 85 °C

If a circuit is published for another temperature range, the letter indicating a narrower temperature range may be used or the letter 'A'.

Example: the range 0 to + 75 °C can be indicated by 'B' or 'A'.

SERIAL NUMBER

This may be either a 4-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

To the basic type number may be added:

A VERSION LETTER

Indicates a minor variant of the basic type or the package. Except for 'Z', which means customized wiring, the letter has no fixed meaning. The following letters are recommended for package variants:

- C : for cylindrical
- D: for ceramic DIL
- F : for flat pack
- L : for chip on tape
- P : for plastic DIL
- Q: for QIL
- T : for miniature plastic (mini-pack)
- U: for uncased chip

Alternatively a TWO LETTER SUFFIX may be used instead of a single package version letter, if the manufacturer (sponsor) wishes to give more information.

FIRST LETTER: General shape

- C : Cylindrical
- D : Dual-in-line (DIL)
- E: Power DIL (with external heatsink)
- F : Flat (leads on 2 sides)
- G : Flat (leads on 4 sides)
- K : Diamond (TO-3 family)
- M: Multiple-in-line (except Dual-, Triple-, Quadruple-in-line)
- Q : Quadruple-in-line (QIL)
- R : Power QIL (with external heatsink)
- S : Single-in-line
- T : Triple-in-line

A hyphen precedes the suffix to avoid confusion with a version letter.

ie letters A to C

SECOND LETTER: Material

- C : Metal-ceramic
- G: Glass-ceramic (cerdip)
- M : Metal
- P : Plastic

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

Caution

Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport

Store and transport the circuits in their original packing. Alternatively, use may be made of a conductive material or special IC carrier that either short-circuits all leads or insulates them from external contact.

Testing or handling

Work on a conductive surface (e.g. metal table top) when testing the circuits or transferring them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord or chain. Connect all testing and hand-ling equipment to the same surface.

Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected to either the supply voltage or ground.

Mounting

Mount MOS integrated circuits on printed circuit boards *after* all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential. If it is impossible to ground the printed-circuit board the person mounting the circuits should touch the board before bringing MOS circuits into contact with it.

Soldering

Soldering iron tips, including those of low-voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges

Dress personnel in clothing of non-electrostatic material (no wool, silk or synthetic fibres). After the MOS circuits have been mounted on the board proper handling precautions should still be observed. Until the sub-assemblies are inserted into a complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tape be put on the circuit board terminals.

Transient voltages

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed-circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges

Beware of voltage surges due to switching electrical equipment on or off, relays and d.c. lines.

HANDLING MOS DEVICES

•

Introduction for type numbers with numerical prefixes

page
oduct Status
dering Information
uality and Reliability
polar Reliability Information
ROM Reliability Information
lection Guide
AM Cross Reference Guide 40
COM Cross Reference Guide 41
ROM Cross Reference Guide 51
ROM Programming Information53
polar Programming Information

Product Status

Memory Products

DEFINITIONS			
Data Sheet Identification	Product Status	Definition	
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.	
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	

Ordering Information

Memory Products

Signetics Memory integrated circuit products may be ordered by contacting either the local Signetics sales office, Signetics representatives and/or Signetics authorized distributors. A complete listing is located in the back of this manual. The tables shown below provide part number definitions for Signetics memory products. The Signetics part number system allows complete definition for ordering a device. The part number itself and the product description is defined on each data sheet. The suffix is a letter defining a package type. Additional or special processing is defined by adding the processing indicator when required.

The military qualification, Full MIL Signetics or Full JAN slash sheet status, can be determined by contacting Signetics Military Division or referring to the Signetics Military Data Book.

Quality and Reliability

Memory Products

SIGNETICS MEMORY QUALITY

Signetics has put together a winning process for manufacturing Memories. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The memories produced in Signetics must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed 2×10^5 amps/cm². Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to insure that the distribution of parameters resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data also provides a basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from -55° C to $+125^{\circ}$ C and at $\pm 10\%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05 — QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available upon request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Memory products, samples are selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One-hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life: T_J = 150°C, 1000 hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: T_J = 150°C, 1000 hours
- Temperature Humidity Biased Life: 85°C, 85% relative humidity, 1000 hours, static biased
- Temperature Cycling (Air-to-Air): -65°C to +150°C, 1000 cycles

THE SHORT-TERM MONITOR

Every other week a 50-piece sample from each generic family is run to 168 hours of pressure pot (15psig, 121°C, 100% saturated steam) and 300 cycles of thermal shock (-65°C to +150°C)

In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fiftypiece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

Quality and Reliability

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the memory SURE program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

Included in the engineering process are:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors
- Device or generic group failure rate studies
- Advanced environmental stress development
- Failure mechanism characterization and corrective action/prevention reporting

The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cycle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, *lower cost of ownership*. Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals, inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues. For example, in 1978 a program to reduce electrically defective units for a major automotive manufacturer improved outgoing quality levels by an order of magnitude.

In 1980 we recognized that in order to achieve outgoing levels on the order of 100ppm (parts per million), down from an industry practice of 10,000ppm, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedent-

ed low defect levels could only be achieved by contributions from all employees, from the R and D laboratory to the shipping dock. In short, from a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning tc adopt these cost-saving practices.

We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality (see Figure 1).

Quality and Reliability

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed-upon price (see Figure 2).

ONGOING QUALITY PROGRAM

The quality improvement program at Signetics is based on "Do it Right the First Time". The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared by all technical and administrative functions equally.

This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.

Key components of the program are the Quality College, the 'Make Certain' Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.

- The system to achieve quality improvement is prevention.
- The performance standard is zero defects.
- 4. The measurement system is continuous improvement.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

"MAKING CERTAIN" — ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing issues.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

PRODUCT QUALITY PROGRAM

To reduce defects in outgoing products, we created the Product Quality Program. This is managed by the Product Engineering Council, composed of the top product engineering and test professionals in the company. This group:

- Sets aggressive product quality improvement goals;
- provides corporate-level visibility and focus on problem areas;
- serves as a corporate resource for any group requiring assistance in quality improvement; and
- 4. drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.

Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated.

Quality and Reliability

MATERIAL WAIVERS

1988 - 0 1987 - 0 1986 - 0 1985 - 0 1984 - 0 1983 - 0 1982 - 2 1981 - 134

Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.

Quality and Reliability Functions:

Manufacturing quality control

- Product assurance testing and qualification
- Laboratory facilities failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letterhead directly to the corporate VP of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence levels
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur
- Test correlation data is very useful. Line-pull information and field failure reports also help us improve product performance
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action
- An advance sample of the devices in question can start us on the problem resolution before physical return of shipment.

This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the quality improvement program. Key changes included such things as implementing 100% temperature testing on all products as well as upgrading test handlers to insure 100% positive binning. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.

The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading quality supplier of memories. These achievements have also led to our participation in several Ship-to-Stock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user *cost of ownership* by saving both time and money.

Bipolar Reliability Information

Memory Products

OUR GOAL: 100% PROGRAMMING YIELD

Our original goal back in the early 1970s was to develop a broad line of programmable products which would be recognized as having the best programming yield in the industry. Within the framework of a formal quality program, our efforts to improve circuit designs and refine manufacturing controls have resulted in major advances toward that goal.

Also within the framework of our formal quality program, we have now established a stated goal of 100% programming yield. Through the increasing effectiveness of a quality attitude of "Do It Right The First Time" we're moving ever closer to that target.

A significant amount of data on bipolar programming yields has been collected over the past three years. This data is the result of both inhouse programming (customer orders) and reports from major users of fuseable products. The data covers the full range of products from 256-bit PROMs to 64K PROMs and indicates an average level of 97.9% programming yield.

As time goes on the drive for a product line that has Zero Defects will grow in intensity. These efforts will provide both Signetics and our customers with the ability to achieve the mutual goal of improved product quality.

The Memory Quality Assurance department has monitored Bipolar ppm progress, which can be seen in Figure 1. We are pleased with the progress that has been made, and expect to achieve even more impressive results as the procedures for accomplishing these tasks are fine tuned. The real measure of any quality improvement program is the result that our customers see. The meaning of *Quality* is more than just working circuits. It means commitment to *On Time Delivery* at the *Right Place* of the *Right Quantity* of the *Right Product* at the *Agreed Upon Price*.

Bipolar Reliability Information

February 1989

Bipolar Reliability Information

Memory Products

All Signetics' EPROM die are designed as low power UV light erasable and electrically programmable read only memories. They have been designed to perform over military and commercial temperature ranges. These die are assembled in EPROM packages that comply with industry standard packages: Cerdip (Quartz window), Plastic DIP (One Time Programmable) and Plastic Leaded Chip Carrier (One Time Programmable).

The following descriptions are of the tests and calculations performed on each device organization and package type to validate the quality and reliability of the CMOS design and technology. All described tests are performed on each package type, with the exception of the 'Program-erase cycling' test for the One Time Programmable devices.

ELECTROSTATIC DISCHARGE PROTECTION (ESD)

This test is performed to validate the product's tolerance to electrostatic discharge damage.

Both MIL-STD-883 criteria (human body model) and mechanical model charged device test are performed.

HIGH TEMPERATURE STORAGE LIFE TEST (HTSL)

Another popular name for this test is data retention bake. This process is used to thermally accelerate charge loss from the floating gate. The test is performed by subjecting devices that contain a 100% programmed data pattern to a 250°C bake with no applied electrical bias or clocks.

In addition to charge loss, this test is used to detect mechanical reliability (i.e., bond integrity) and process instability.

EPROM Reliability Information

DYNAMIC LOW TEMPERATURE LIFE TEST (DLTL)

This test is performed at -10° C to detect the effects of hot electron injection into the gate oxide as well as package-related failures (i.e., metal corrosior). The biasing and clocking conditions for this test are identical to the DHTL #1 test.

TEMPERATURE CYCLE (TMCL)

This test consists of performing 200 cycles of ambient air temperature of the chamber and housing the unbiased subject devices from -65°C to +150°C and back. The 200 cycles are performed at 20 minutes per cycle.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL #1)

This test is used to accelerate failure mechanisms by operating the devices at 125°C ambient temperature with worst-case specified power supply voltages of V_{CC} and V_{FP} at 5.5V. The memory is sequentially addressed to exercise the fully-loaded outputs. A checkerboard complement data pattern is used to simulate random patterns expected during actual use.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL #2)

This test is used to accelerate oxide breakdown failures and to further accelerate the failure mechanisms of DHTL #1. The test setup is identical to the one used for the DHTL #1 test except the temperature is 150°C and the V_{CC} and V_{PP} power supply voltages are 6.5V, resulting in a 20% increase over the specified operational electrical field across the gate oxides of the device (1.25mV/cm for 325Å oxide thickness). This represents a 55 × electrical field induced acceleration in addition to the thermal acceleration at 150°C.

PROGRAM-ERASE CYCLING AND PROGRAMMABILITY

All four power supply voltage combinations for V_{CC} and V_{PP} are tested for programmability ($V_{CC} = 6.0V \pm 0.25V$ and $V_{PP} = 12.5V \pm 0.5V$ in program mode). The number of possible program/erase cycles is then tested to establish program-erase cycling expectations.

FAILURE RATE PREDICTIONS

In preparation for the various life tests, a 168 hour, 125°C, 5.5V production burn-in is performed on the devices. The infant mortality rejects are removed from the population in order to develop long-term failure rate information during the random failure rate portion of the device life cycle.

The failure rate calculation combines all failure mechanisms by activation energies and associated device hours for the 125°C, 5.5V Dynamic Life Test (DHTL #1), the 150°C, 6.5V Dynamic Life Test (DHTL #2), the 150°C, 7.5V Static Life Test and the 250°C Bake.

The activation energies for the various EPROM failure mechanisms are:

Defective bit	0.6eV
charge gain/loss	
(electron hopping conduct	ion)
Oxide breakdown	0.3eV
Silicon defects	0.3eV
Contamination	1.0 – 1.2eV
Intrinsic charge loss	1.4eV

NOTE:

The combined failure rate for the stresses is the sum of failure rates by activation energies.

Reliability Information

METHODS OF FAILURE RATE CALCULATIONS

Actual Device Hours = Number of Devices × Number of Hours. In order to determine the Equivalent Hours derated to a given operating temperature, the junction temperatures of the devices should be calculated using the known thermal resistance of the package (θ_{JA}) and the power dissipation of the devices:

$$T_{1,2} = \theta_{JA} (IV)_{1,2} + T_{A1,2}$$

(1)

Using the Arrhenius relation, the test temperature and the derated operating temperature will yield the thermal acceleration factor from T_1 to T_2 :

$$\frac{R_1}{R_2} = \frac{A \cdot \exp\left[\frac{E_A}{kT_1}\right]}{A \cdot \exp\left[\frac{E_A}{kT_2}\right]} = \exp\left[\frac{E_A}{k}\right] \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$
(2)

- $k = 8.617 \times 10^{-5}$ eV/Kelvin (Boltzmann's constant)
- A = proportionality constant for a given failure mechanism
- R1 = mean time to failure @ T1
- R_2 = mean time to failure @ T_2
- E_A = activation energy for the failure mechanism
- $T_1 = operating temperature$
- $T_2 =$ life test temperature

An additional $55 \times$ acceleration factor should be added for the $150^{\circ}C/6.5V$ dynamic life test due to the time-dependent oxide failure acceleration (20% higher than specified power supply voltace).

Multiplying the actual device hours by the acceleration factor for each failure mechanism will result in the equivalent hours.

Poisson statistics are applied to estimate the performance of the population from the life test results of a sample test. This is useful when the probability of failures is small and the failures occur randomly in time. A commonly used formula for estimating the failure rate is the "chi-squared" equation:

$$F_{\rm C} = \frac{\chi^2}{2nt} \times 100\%$$
 (3)

- F_C = calculated failure rate estimate (in %/1000 hrs) at upper confidence limit
- χ^2 = "chi-squared" value for 2F_A + 2 degrees of freedom for \propto where F_A is the number of actual failures (χ^2 comes from available tables for a known \propto)
- $\alpha = 1-B$, where B is the confidence limit (B is stated in %).

n = number of units in test

t = test time in thousands of hours (equivalent) Equation 3 will calculate the estimated failure rates/1000 hrs for 60% confidence level (industry standard) for each failure mechanism.

Selection Guide

Memory Products

DEVICE ⁵	ORGANIZATION	OUTPUT CIRCUIT ¹	OUTPUT LOGIC ²	ACCESS TIME ³	PACKAGE ⁴	PINS	MAX Icc
RAMs			7		······································		
82S25	16 × 4	oc	в	50	N. D	16	105
3101A	16 × 4	oc	B	35	N. D	16	105
74S189	16 × 4	TS	в	35	N, D	16	110
74F189A	16 × 4	TS	-	15	N. D	16, 20	70
82S16	256 × 1	TS	т	50	N, D	16	115
74S301	256 × 1	oc	в	50	N, D	16	130
82LS16	256 × 1	TS	Ť	40	N, D	16	70
74LS301	256 × 1	oc	в	40	N, D	16	70
82509	64 × 9	oc	Т	45	A, N	28	190
82509 82509A	64 × 9		Ť	35	A, N A, N	28	190
82S19			в	35			
	64 × 9		В		N	28	190
82S212	256 × 9	TS	-	45	N, A	22	185
82S212A	256 × 9	TS	В	35	N, A	22	185
8X350	256 × 8	TS	В	N/A	N, A	22	185
PROMs							
82S23	32 × 8	OC	_	50	N, A	16, 20	96
82S23A	32 × 8	oc	_	25	N, A, D	16, 20	96
82US23	32 × 8	OC .	_	10	N, A, D	16, 20	115
82S123	32 × 8	TS		50	N. A	16, 20	96
82S123A	32 × 8	TS		25	N, A, D	16, 20	96
82US123	32 × 8	TS	_	13	N, A, D	16, 20	115
10P256	32 × 8	OE		3	F	16	150
100P256	32 × 8	OE		3	F	16	150
82S126	256 × 4	OC OC		50	Ň	16, 20	120
82S126A	256 × 4	oc		30	N, A, D	16, 20	120
82S129	256 × 4	TS		50		1 '	
82S129	256 × 4 256 × 4	TS		27	N	16, 20	120
10149	256 × 4 256 × 4	OE	-		N, A, D	16, 20	120
10149 10149A	256 × 4		-	20	F	16	160
		OE	-	10	F	16	160
10149B	256 × 4	OE	-	5	F	16	160
100149	256 × 4	OE	-	20	F	16	160
100149A	256 × 4	OE	-	10	F	16	160
100149B	256 × 4	OE	-	5	F	16	160
82S130	512 × 4	OC	— .	50	N	16, 20	140
82S130A	512 × 4	OC	-	33	N, A, D	16, 20	140
82S131	512 × 4	TS	_	50	N	16, 20	140
82S131A	512 × 4	TS	-	30	N, A, D	16, 20	140
82LS135	256 × 8	TS	- - - - - - -	100	A, N	20	100
82S135	256 × 8	TS	-	45	A, N, D	20	150
82S115	512 × 8	TS	-	60	N	24	175
82S137	1024 × 4	TS	- 1	60	N, A	18, 20	140
82S137A	1024 × 4	TS	- 1	45	N, A	18, 20	140
82S137B	1024 × 4	TS	- 1	35	N, A	18, 20	140
82S141	512 × 8	TS	- 1	60	Ň	24	175
82S141A	512 × 8	TS	- 1	45	N, N3, A	24	175
82S147	512 × 8	TS	- 1	60	A, N	20	155
82S147A	512 × 8	TS	-	45	A, N	20	155
82S147B	512 × 8	TS		25	N, A	20	155
82S181	1024 × 8	TS	_	70	N	24	175
82S181A	1024 × 8	TS	_	55	N. A	24. 28	175
82S181C	1024 × 8	TS		35	N. N3. A	24, 28	175
82S183	1024 × 8	TS		60	N. A	24, 28	175
	2048 × 4	TS		100	i 19. A	27,20	1/3

38

Selection Guide

DEVICE ⁵	ORGANIZATION	OUTPUT CIRCUIT ¹	OUTPUT LOGIC ²	ACCESS TIME ³	PACKAGE ⁴	PINS	MAX Icc
PROMs							
82S185A	2048 imes 4	TS		50	N	18	155
82S185B	2048 × 4	TS	_	35	N, A	18, 20	155
82HS187	1024 × 8	TS	R	55	N, A	24, 28	175
82HS187A	1024 × 8	TS	R	45	N, A	24, 28	175
82HS189	1024 × 8	TS	R	55	N, A	24, 28	175
82HS189A	1024 × 8	TS	R	45	N, A	24, 28	175
82HS191	2048 × 8	TS		25	N, N3, A	24, 28	175
82S191	2048 × 8	TS	-	80	N, A	24, 28	175
82S191A	2048 × 8	TS	-	55	N, A	24, 28	175
82S191C	2048 × 8	TS		35	A, N, N3	24	175
82LHS191	2048 × 8	TS	_	35	N, N3, A	24	110
82HS195	4096 × 4	TS	—	45	N	20	145
82HS195A	4096 × 4	TS	_	35	N	20	145
82HS195B	4096 × 4	TS	_	25	N	20	145
10P016	4096 × 4	OE	_	10	F	20	200
100P016	4096 $ imes$ 4	OE	_	10	F	20	200
82HS321	4096 × 8	TS	-	45	N, A	24, 28	175
82HS321A	4096 × 8	TS	-	35	N, A	24, 28	175
82HS321B	4096 × 8	TS		30	N, A, N3	24, 28	175
82HS321C	4096 × 8	TS	_	25	N3, A	24, 28	185
82LHS321	4096 × 8	TS	_	35	N3, A	24, 28	110
82HS641	8192 × 8	TS	-	55	Ň	24, 28	175
82HS641A	8192 × 8	TS	_	45	N	24, 28	175
82HS641B	8192 × 8	TS	_	35	N	24, 28	175
82HS641C ⁶	8192 × 8	TS	_	25	N, A	24, 28	185
27C64A	8192 × 8	TS		120	FA, N, A	28, 32	20
27HC641	8192 × 8	TS	-	45	FA, N, A	24, 28	110
27HC128	16384 × 8	TS	_	35	FA, N, A	28, 28	110
27C256	32768 × 8	TS		120	FA, N, A	28, 32	20
27C512	65538 × 8	TS		150	FA, N, A	28, 32	20
27C210	65538 × 16	TS	_	150	FA. N. A	40, 44	50

NOTES:

1. Output circuit

OE = Open Emitter OC = Open Collector

TS = 3-State 2. Output logic

T = Transparent - input data appears on output during Write B = Blanked -- output is blanked during Write

- R = Registers
- 3. Commercial (0°C to +75°C)

4. Packages:

N = Plastic Dual In Line (N3 = 300mil-wide)*

FA = CERDIP with quartz window

A = Plastic Square Leaded Chip Carrier

D = Small Outline Large (SO-L)

Whenever a single device is offered in both 300mil-wide and 600mil-wide packages, designate either N3 (300mil) or N (600mil) to assure proper order entry and shipment.

5. Part numbers:

82Sxxx Junction-Isolated NiCr fuse

82HSxxx Oxide-Isolated vertical fuse 82USxxx Oxide-Isolated TiW fuse

27Cxxx EPROM

27HCxxx High Speed EPROM 6. Objective specification (under product development)

RAM Cross Reference Guide

Bipolar Memory Products

ORGANIZATION	PKG PINS	SIGNETICS	T _{AA} I _{CC}	FAIRCHILD		ті		AMD		NATIONAL	
16 × 4 OC	16	N3101A	35 105	93403*	NA	SN74S289B	35 105	AM27S02	35 100	DM74S289	35 110
								AM3101A	35 100		
16 $ imes$ 4 TS	16	N74S189	35 110	93405*	NA	SN74S189B	35 110	AM27S03	35 100	DM74S189	35 110
		N74F189A	15 55					AM27S03A	25 100	DM74S189A	25 10
16 × 4 OC	16	N82S25	<u>50</u> 105	93403*	NA	SN74S289B	35 105	AM27S02	35 100	DM74S289	35 110
64 × 9 OC	28	N82S09	45 190								
		N82S09A T	35 190								-
64 × 9 OC	28	N82S19	<u>35</u> 190	93419	45 150						
				93419A	35 150					-	
256 × 1 OC	16	N74S301	50 130			SN74S301	65 140	AM27LS01A	35 115		
256 × 1 OC	16	N74LS301	40 70					AM27LS01	45 70		
256 × 1 TS	16	N82S16 T	50 115	93421* T	NA	SN74S201	65 140	AM27LS00-1A T	35 115	74S200* T	N,
256 × 1 TS	16	N82LS16 T	40 70					AM27LS00-1 T	45 70	74S206* T	N/
256 × 8 TS	22	N8X350	NA 185								
256 × 9 TS	22	N82S212	45 185	93479	45 185						
		N82S212A	35 185	93479A	35 185						

NOTES:

T: Output is Transparent during write *: Possibly Discontinued

Bipolar Memory Products

ТІ	PERFORMANCE	SIGNETICS	PERFORMANCE
PART NO.	t _{AA} /I _{CC}	PART NO.	t _{AA} /Icc
1/4K 32×8			
18SA030	40/110	82S23A	25/96
38SA030	25/125	82S23A	25/96
38SA032		82S23A A	25/96
18S030	40/110	82S123A	25/96
385030	15/125	82US123	10/110
38L030	20/45	82US123*	
385032	15/125	82S123A A	25/96
38SA030	10/120	82US23	10/110
385030	15/125	82US123	10/110
1K 256 × 4			
24SA10	65/100	82S126A	30/120
34SA10	25/95	82S126A*	007 120
34SA12	20,00	82S126A A	30/120
24S10	55/100	82S129A	27/120
34S10	18/95	82S129A*	217120
34L10	27/50	82S129A*	
34S12	27/150	82S129A A	27/120
34L12	27/150	82S129A	50/120
2K 256 × 8			
281.22	70/100	82S135	45/155
28LA22	75/100	82S135*	
38L22	45/70	82S135*	
38S22	25/125	82S135	45/155
38SA22	30/125	82S135*	
4K 512 × 8			
28SA42	65/135	82S147*	
28L42	95/85	82S147	60/155
28S42	60/135	82S147	60/155
34S42	45/155	82S147A	45/155
28SA46	65/135	82S141*	-
28L46	95/85	82S141*	
28S46	60/135	82S141A	45/175
4K 1K×4			
24SA41	60/140	82S137*	
34SA41	35/110	82S137B*	
34S41	25/120	82S137B	35/140
24S41	60/140	82S137A	45/140
8K 1K×8			
28L86A	110/80	82S181*	
28S2708A	70/165	82S181*	
28SA86A	70/175	82S181*	
28S86A	65/165	82S181A	55/175
38S86	45/165	82S181C	35/175

NOTE: * Nearest Equivalent

TI (Cont'd) PART NO.		SIGNETICS PART NO.	PERFORMANCE t _{AA} /I _{CC}
8K 2K×4			
24SA81	70/175	82S185A*	
24S81	70/175	82S185A	50/155
38585	45/175	82S185B	45/155
16K 2K×8			······································
28S166	75/175	82S191A	55/175
28L166	125/110	82LHS191	35/110
38L165	35/100	82LHS191 N3	35/110
38L166	35/100	82LHS191 N	35/110
38L167	35/100	82LHS191 A	35/110
38S165	25/175	82HS191 N3	25/175
38SA165	35/175	82S191C N3*	
38S166	25/175	82HS191 N	25/175
38SA166	35/175	82S191C*	
38S167	35/175	82S191C A	35/175
38SA167	35/175	82S191C*	
16K 4K×4	· .		
34SA162	35/155	82HS195A*	
34L162	30/100	82HS195B*	
34S162-45	45/155	82HS195	45/155
34S162-35	35/155	82HS195A	35/155
34S162-25	25/155	82HS195B	25/155

NOTE: * Nearest Equivalent

PACKAGES	TI Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F
PLCC (Plastic)	FN	Α
LCC (Ceramic)	FK	G
SOL	DW	D
Plastic DIP (Skinny)	NT	N3
Ceramic DIP (Skinny)	JT	F3
Plastic DIP (Wide)	NW	N
Ceramic DIP (Wide)	JW	F
Super II Burn-In	- N3	- B

AMD	PERFORMANCE	SIGNETICS	PERFORMANCE
PART NO.	t _{AA} /I _{CC}	PART NO.	t _{AA} /Icc
1/4K 32 × 8			
27S18A	25/115	82S23A	25/96
27S19A	25/115	82S123A	25/96
27S19SA	15/115	82US123A	10/110
1K 256 × 4			
27S20	45/130	82S126A	30/120
27S20A	30/130	82S126A	30/120
27S21	45/130	82S129A	27/120
27S21A	30/130	82S129A	27/120
2K 512 × 4			
27S16	55/160	82S131	50/140
27S16A	35/160	82S131A	30/140
4K 512×8			
27S29	55/160	82S147A	45/155
27S29A	35/160	82S147B	25/155
27S31	55/175	82S141A	45/175
27S31A	35/175	82S141B	35/175
4K 1K×4			
27S33	55/140	82S137A	45/140
27S33A	35/140	82S137B	35/140
8K 1K×8			
27S181	60/185	82S181A N	55/175
27S181A	35/185	82S181C N	35/175
27S281	60/185	82S181A N3	55/175
27S281A	35/185	82S181C N3	35/175
6K 2K × 4		······	
27S185	50/150	82S185A	50/155
27S185A	35/150	82S185C	35/155
BK Registered 1K \times 8			
27\$35	20/185	82HS187	20/175
27S35A	15/185	82HS187A	15/175
27\$37	20/185	82HS189	20/175
27S37A	15/185	82HS189A	15/175
16K 2K × 8			· · · · · · · · · · · · · · · · · · ·
27S191	50/185	82S191A	55/175
27S191A	35/185	82S191C	35/175
27S191SA	25/185	82HS191	25/185
27S291	50/185	82S191A N3	55/175
27S291A	35/185	82S191C N3	35/175
27S291SA	25/185	82HS191 N3	25/185
16K 4K×4			
27S41	50/165	82HS195	45/155
27S41A	35/165	82HS195A	35/155
		82HS195B	25/155

Ħ

AMD (Cont'd)	PERFORMANCE	SIGNETICS	PERFORMANCE
PART NO.	t _{AA} /I _{CC}	PART NO.	t _{AA} /I _{CC}
32K 4K × 8			
27S43	55/185	82HS321	45/185
27S43A	40/185	82HS321A	35/185
64K 8K × 8			
27S49	55/190	82HS641	55/185
27S49A	40/190	82HS641B	35/185

PACKAGES	AMD Suffix	SIGNETICS Suffix
Plastic DIP	Р	N
Ceramic DIP	D	F
PLCC (Plastic)	J	Α
LCC (Ceramic)	L	G
SOL		D
Plastic DIP (Skinny)		N3
Ceramic DIP (Skinny)		F3
Super II Burn-In	В	- B

NATIONAL SEMI	PERFORMANCE	SIGNETICS	PERFORMANCE
PART NO.	t _{AA} /I _{CC}	PART NO.	tAA/ICC
1/4K 32 × 8			
74S188	35/110	82S23A	25/96
74S188A	25/110	82S23A	25/96
74S288	35/110	82S123A	25/96
74S288A	25/110	82S123A	25/96
PL87X288B	15/140	82US123	10/110
1K 256 × 4			
74S387	50/130	82S126A	30/120
74S387A	30/130	82S126A	30/120
74S287	50/130	82S129A	27/120
74S287A	30/130	82S129A	27/120
2K 512 × 4			
74S570A	45/130	82S130A	33/140
74S571A	45/130	82S131A	33/140
74S571B	35/130	82S131A	30/140
2K 256 × 8			
74LS471	60/100	82LS135	100/100
4K 512 × 8			
74S472	60/155	82S147	60/155
74S472A	45/155	82S147A	45/155
74S472B	35/155	82S147B	25/155
74S474	65/170	82S141	60/175
74S474A	45/170	82S141A	45/175
74S474B	35/170	82S141B	35/175
4K 1K×4			
74S573	60/140	82S137	60/140
74S573A	45/140	82S137A	45/140
74S573B	35/140	82S137B	35/140
8K 1K×8			
87S181	55/170	82S181A	55/175
87S181A	45/170	82S181C	35/175
87S281	55/170	82S181A N3	55/175
		82S181C N3	35/175
8K 2K×4			
87S185	55/140	82S185A	50/155
87S185A	45/140	82S185B	45/155
87S185B	35/140	82S185C	35/155
BK Registered 1K $ imes$ 8			
87SR181	20/175	82HS189	20/175
16K 2K × 8		·····	
87S191	65/175	82S191A N	55/175
87S191A	45/175	82S191C N	35/175
87S191B	35/175	82S191C N	35/175
87S291	65/175	82S191A N3	55/175
87S291A	45/175	82S191C N3	35/175
87S291B	35/175	82S191C N3	35/175

*

NATIONAL SEMI (Cont'd) PART NO.	PERFORMANCE t _{AA} /I _{CC}	SIGNETICS PART NO.	PERFORMANCE t _{AA} /I _{CC}
16K 4K × 4			
87S195A	45/170	82HS195A	35/155
87S195B	35/170	82HS195A	35/155
32K 4K×8			
87S321	55/185	82HS321	45/185

PACKAGES	NSC Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F.
PLCC (Plastic)	v	Α
LCC (Ceramic)		G
SOL		D
Plastic DIP (Skinny)	N	N3
Ceramic DIP (Skinny)	J	F3
Plastic DIP (Wide)		N
Ceramic DIP (Wide)		F
Super II Burn-In	-	- B

MMI (Now AMD)	PERFORMANCE	SIGNETICS	PERFORMANCE
PART NO.	t _{AA} /Icc	PART NO.	t _{AA} /I _{CC}
1/4K 32 × 8			
63S081	25/125	82S123A	25/96
PLE5P8C	25/125	82S123A	25/96
63S081A	15/125	82US123A	10/110
PLE5P8AC	15/125	82US123A	10/110
1K 256 × 4			
63S140	45/130	82S126A	30/120
63S141	45/130	82S129A	27/120
63S141A	30/130	82S129A	27/120
PLE8P4C	30/130	82S129A	27/120
2K 512 × 4			
63S240	45/130	82S130A	33/140
63S241	45/130	82S131A	30/140
63S241A	35/130	82S131A	30/140
PLE9P4C	35/130	82S131A	30/140
2K 256 × 8			
63S281	45/140	82S135	45/155
63S285	45/160	82S135	45/155
4K 512 × 8			
63S481	45/155	82S147A	45/155
63S481A	30/155	82S147A	45/155
PLE9P8C	30/155	82S147B	25/155
63S485	45/160	82S141	45/175
4K 1K×4			
63S441	45/140	82S137A	45/140
63S441A	35/140	82S137B	35/140
PLE10P4C	35/140	82S137B	35/140
8K 1K × 8			
635881	45/160	82S181C N	35/175
63S881A	30/160	82S181C N	35/175
PLE10P8C	30/160	82S181C N	35/175
63S881 × S	45/160	82S181C N3	35/175
63S881A $ imes$ S	30/160	82S181C N3	35/175
PLE10P8C × S	30/160	82S181C N3	35/175
8K 2K×4			
63S841	50/150	82S185A	50/155
63S841A	35/150	82S185C	35/155
PLE11P4C	35/150	82S185C	35/155
8K Registered 1K $ imes$ 8			
63RA881	20/175	82HS189	20/175
63RA881A	15/175	82HS189A	15/175
16K 2K × 8			
63S1681	50/185	82S191A N	55/175
63S1681A	35/185	82S191C N	35/175
PLE11P8C	35/185	82S191C N	35/175
63S1681 × S	50/185	82S191A N3	55/175
63S1681A × S	35/185	82S191C N3	35/175
PLE11P8C × S	35/185	82S191C N3	35/175

M

MMI (Now AMD) (Cont'd) PART NO.	PERFORMANCE t _{AA} /I _{CC}	SIGNETICS PART NO.	
16K 4K×4			
63S1641	50/175	82HS195	45/155
63S1641A	35/170	82HS195A	35/155
PLE12P4C	35/175	82HS195A	35/155
32K 4K × 8			
63S3281	45/185	82HS321	45/185
63S3281A	35/190	82HS321A	35/185
PLE12P8C	35/190	82HS321A	35/185
64K 8K×8			
63S6481	55/190	82HS641	55/185
63S6481A	45/190	82HS641A	45/185

PACKAGES	MMI Suffix	SIGNETICS Suffix
Plastic DIP	N	N
Ceramic DIP	J	F
PLCC (Plastic)	NL	Α
LCC (Ceramic)	L	G
SOL	Not available	D
Plastic DIP (Skinny)	NS	N3
Ceramic DIP (Skinny)	JS	F3
Super II Burn-In		– B

Fairchild (Now National Semi) PART NO.	PERFORMANCE t _{AA} /I _{CC}	SIGNETICS PART NO.	PERFORMANCE t _{AA} /I _{CC}
8K 1K×8			
93Z451	40/135	82S181C	35/175
16K 2K × 8			
93Z511 93Z611	45/175 25/185	82S191A 82HS191	55/175 25/185
64K 8K × 8			
93Z65	55/180	82HS641	55/185
93Z65A 93Z667	45/180 40/185	82HS641A 82HS641B	45/185 35/185

PACKAGES	FSC Suffix	SIGNETICS Suffix
Plastic DIP	Р	N
Ceramic DIP	D	F
PLCC (Plastic)	Not available	Α
LCC (Ceramic)	L	G
SOL	Not available	D
Plastic DIP (Skinny)	SP	N3
Ceramic DIP (Skinny)	SD	F3
Super II Burn-In	– N3	- B

*

CMOS Memory Products

Most manufacturers of EPROMs use the same part numbering system with only prefix changes to denote manufacturers and suffix changes to denote packages.

		PACKAGE SUFFIXES							
	AMD	INTEL	ALTERA	ті	MMI	NSC	FUJITSU	НІТАСНІ	SIGNETICS
DIP (Plastic)	PD	Р	Р	N	N	N	Р	DP	N
DIP (Ceramic)	CD		D	J	J	J	С	DG	F
PLCC (Plastic)	PL	N	L	FN	NL			CG	A
CLCC (Ceramic)	CL/CLR	R	J	FK	L				G
300 DIP (Plastic)				NT	NS			DP	N3
300 DIP (Ceramic)				JT	JS			DG	F3
600 DIP (Ceramic)				JW					F
600 DIP (Plastic)				NW					N
DIP (Ceramic) (with window)			JLCC			Q	1	DG	FA
DIP (Ceramic) (Side-Brazed)				JD	D	D			1

EPROM PACKAGES CROSS REFERENCE

÷.

EPROM Programming Information

CMOS Memory Products

Complete programming system specifications are available upon request from Signetics Memory Marketing.

Signetics encourages the purchase of programming equipment from a manufacturer who has a full line of programming products to offer. Signetics also encourages the manufacturers of EPROM programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from Signetics Memory Marketing.

PROGRAMMING THE 27HC641

Initially, all bits of the 27HC641 are in an undefined state. Data is introduced by programming "1"s and "0"s into the desired bit locations. Both "1"s and "0"s must be present in the data word to define each bit. Since the 27HC641 is shipped in a virgin (undefined) state, it is recommended that all locations be programmed to remove ambiguous states.

The 27HC641 is in the programming mode when the Output Enable (G) pin is at 12.5V. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C64A

Caution: Exceeding 14.0V on the V_{PP} Pin may permanently damage the 27C64A.

Initially, all bits of the 27C64A are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word. The 27C64A is in the programming mode when the V_{PP} input is at 12.5V, and CE and PGM is at TTL Logic Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27HC128

Caution: Exceeding 14.0V on the V_{PP} Pin may permanently damage the 27HC128.

Initially, all bits of the 27HC128 are in an undefined state. Data is introduced by programming "1"s and "0"s into the desired bit locations. Both "1"s and "0"s must be present in the data word to define each bit.

The 27HC128 is in the programming mode when the Output Enable (\overline{G}) pin is at 12.5V. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C256

Caution: Exceeding 14.0V on V_{PP} Pin may permanently damage the 27C256.

Initially, all bits of the 27C256 are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word.

The 27C256 is in the programming mode when the V_{PP} input is at 12.5V, \overline{CE} is at TTL Logic Low, and \overline{OE} is at TTL Logic High. The data to be programmed is applied 8 bits in parallel to the data output

pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C512

Caution: Exceeding 14.0V on the \overline{OE}/V_{PP} Pin may permanently damage the 27C512.

Initially, all bits of the 27C512 are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word.

The 27C512 is in the programming mode when the \overline{OE}/V_{PP} input is at 12.75V and \overline{CE} is at TTL Logic Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

PROGRAMMING THE 27C210

Caution: Exceeding 14.0V on V_{PP} Pin may permanently damage the 27C210.

Initially, all bits of the 27C210 are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word.

The 27C210 is in the programming mode when the V_{PP} input is at 12.5V, \overline{CE} and PGM is at TTL Logic Low, and \overline{OE} is at TTL Logic High. The data to be programmed is applied 16 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

EPROM Programming Information

SIGNETICS EPROM PROGRAMMER REFERENCE GUIDE

Data I/O Corporation 10524 Willows Road, N.E. Redmond, Washington 98073–9746 Telephone Number: (800) 247–5700

				MODEL 29				S10	00
DEVICE	PKG TYPE	FAMILY PINOUT	UNIPAK 2	UNIPAK 2B	351B	GANG PAK	SERIES 22	REV	SR
27C64A	DIP	5C33	V16	V16	086	V08		V13	28
27C64A	DIP	9333						·	-
27C64A	PLCC	5CC1		V18	099		V05		-
27HC641	DIP	3533						V14	28
27HC641	DIP	8767	V15	V15		V08		V14	28
27HC641	PLCC	879A		V15	093				-
27C256	DIP	05CF32						V13	28
27C256	DIP	9332						···	-
27C256	DIP	5C32	V16	V16	086	V08			-
27C256	PLCC	5CC3		V18	099				-
27C512	DIP	5EA4	V18	V18	086			V13	-
27C512	PLCC	5EC4		V19	099			V13	•
27C210	DIP	5FA8	V19	V19	095		* ·	V13	40
27C210	PLCC	5F88		V19	095P			V13	*

*Contact Mr. Lloyd Hyden/Data I/O for PLCC Rails.

EPROM Programming Information

	UNISITE						мо	DEL 60	
REV	PLCC	SET SITE	280	201	288	MOD.	REV	360A	BOARD SITE
2.2		V2.2				-			01
			VO4	V04	VO1	32	V10	005	
2.5	CPST					-			01
					1.2	-			
2.8						-			
2.8	CPST					-			
						-			
2.2		V2.2	V04	V04	V01	32	V10	005	
			V04	V04		-			01
2.4	CPST					-			01
2.5		V2.5				-	V13	005	
2.7	CPST					-			
2.7						-			
2.7	CPST					-			

ERASURE CHARACTERISTICS

The erasure characteristics are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000 - 4000 Å range. Data shows that constant exposure to room level fluorescent lighting could erase the typical EPROM in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the EP-ROM is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for EPROMs is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity × exposure time) for erasure should be a minimum of 15Wsec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000µW/cm² power rating. The package should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a Signetics EPROM can be exposed to without damage is 7258Wsec/cm² (1 week @ 12000µW/cm²). Exposure of these CMOS EPROMs to high intensity UV light for longer periods may cause permanent damage.

Note that all of the High speed EPROMs, (HCxxx), erase to an undefined state, i.e., neither "1"s or "0"s are stored after erasure. Both "1"s and "0"s *MUST* be programmed into the devices for proper operation.

INTELLIGENT IDENTIFIER

The intelligent identifier provides the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is functional in the 25°± 5°C ambient temperature range. To activate this mode, the equipment must force 11.5V to 12.5V on address A₉. Two bytes may then be read from the device outputs by toggling address line A₀ from V_{IL} to V_{IH}. The CE, OE and all other address lines must be at V_{IL} during interrogation.

The	identifier	information	for	Signetics'
27C64	4A is as f	ollows:		
Wh	en A ₀ = V	iL		

data is "Manufacturer"	15 _(HEX)
When A ₀ = V _{IH}	
data is "Product"	0B(HEX)

The identifier information for Signetics' 27C256 is as follows:

When A ₀ = V _{IL}	
data is "Manufacturer"	15(HEX)
When A ₀ = V _{IH}	,
data is "Product"	8C _(HEX)

The identifier information for Signetics' 27C512 is as follows:

When A ₀ = V _{IL}	
data is "Manufacturer"	15 _(HEX)
When A ₀ = V _{IH}	
data is "Product"	1D _(HEX)

The identifier information for Signetics' 27C210 is as follows:

When $A_0 = V_{IL}$	
data is ''Manufacturer'' When Ao = ViH	FF15 _(HEX)
data is "Product"	FF17 _(HEX)

Bipolar Programming Procedures

Bipolar Memory Products

GENERIC I PROGRAMMING

The Signetics family of Advanced Junction Isolated Schottky PROMs are high performance bipolar devices which use a nickel/ chromium (NiCr) allov fuse to provide the many benefits of field programming. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming (except the 82S115 which has two fusing pins: FE1 and FE2). The programming voltages and timing requirements make unintentional programming virtually impossible. Arrays of devices may be programmed in the user's circuit, if desirable, as long as proper application of programming voltages is provided.

GENERIC I PROCEDURE

The Generic I family of Schottky PROMs uses no special pins for programming. The address pins remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the V_{CC} pin to 8.75 ± 0.25V. This voltage is referred to as V_{CCP}. After the proper delay the output corresponding to the bit selected is raised to 17.5 ± 0.5V. This voltage is known as VOPF and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the VOPF power supply and circuitry. IOPF is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL "0" level for 10 to 25µs. It is during this time that the actual fusing of the NiCr link occurs. The actual time for fusing of a Signetics NiCr fuse link has been determined to be between 0.6 to 1.2μ s. The shorter the fusing pulse (CE), within the recommended limits, the sooner the total programming sequence is completed. Note that unprogrammed Generic I (Junction Isolated) parts are supplied with all bits at a logic "0" level. Only the bits intended to be "ones" will be programmed. Verification of programming can be performed after each bit or after the entire device has been programmed.

A fuse which does not blow during the first programming cycle should be considered a defective device and should be discarded.

GENERIC II PROGRAMMING

The Signetics family of Oxide Isolated Schottky PROMs are high performance bipolar devices which use a vertical diode fuse to provide the benefits of field programming. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming. The programming voltages and timing requirements make unintentional programming virtually impossible.

GENERIC II PROCEDURE

As with the Generic I devices, the addresses remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the V_{CC} pin to 8.75 ± 0.25V. This voltage is referred to as V_{CCP}. After the proper delay the output corresponding to the bit selected is raised to 20.0 ± 0.5V. This voltage is known as VOPE and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the VOPF power supply and circuitry. IOPF is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL "0" level for 1µs. The properly blown fuse will verify the TTL "0" level. Note that unprogrammed Generic II (Oxide Isolated) parts are supplied with all bits at a logic "1" level. Only the bits intended to be "zeros" will be programmed.

GENERIC III PROGRAMMING

The Signetics Generic III PROM family consist of those devices constructed with Oxide Isolated Schottky circuitry using Titanium Tungsten horizontal fuses. This results in a very high performance PROM at an optimum cost of manufacture. Programming is accomplished by application of voltages above those used for normal operation, therefore, no special pins are required for programming. The programming voltages and timing requirements make unintentional programming virtually impossible.

GENERIC III PROCEDURE

As with the Generic I devices, the addresses remain TTL compatible during the programming procedure and are used to select the unique word to be programmed. The outputs are used to supply fusing current during the programming mode as well as selection of the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the V_{CC} pin to 8.75 ± 0.25V. This voltage is referred to as V_{CCP}. After the proper delay the output corresponding to the bit selected is raised to 14.25 ± 0.25V. This voltage is known as VOPF and must be supplied by a voltage source with a low impedance and very fast transient response. Reliable programming depends on the VOPF power supply and circuitry. IOPF, approximately 300mA, is the current which will be drawn by the part during the programming sequence. Again, after the proper delay the chip enable CE is pulsed to a TTL "0" level for 5µs. The properly blown fuse will verify the TTL "1" or "High" level. Note that unprogrammed Generic III parts are supplied with all bits at a logic "0" or "Low" level. Only the bits intended to be "Ones" will be programmed.

GENERIC IV PROGRAMMING

The Signetics family of ECL PROMs are bipolar devices which use a nickel/chromium (NiCr) alloy fuse, or as in the case of the newest members a Titanium Tungsten (TiW) fuse. Both of these designs are programmed using the same Generic IV method.

GENERIC IV PROCEDURE

Unlike previous methods the addresses used to select the proper word are unique voltage levels which become necessary when the $V_{\rm CC}$ pin is raised to a positive voltage. (ECL normal mode of operation is with the $V_{\rm CC}$ pin held to ground potential.) The outputs are used to supply fusing current during the programming mode as well as select the bit to be programmed. Programming is performed one bit at a time. The programming mode is evoked by raising the $V_{\rm CC1}$ pin to 11.5 \pm 0.5V. This voltage is referred to as $V_{\rm CPP}$. After the proper delay the output corresponding to the bit selected is raised to

 $12\pm0.5V$ for 10 $\mu s.$ The properly blown fuse will verify a "High" level of 4.4V min. Note that unprogrammed Generic IV devices are supplied with all bits at a logic "Low" level. Only the bits intended to be "High" will be programmed.

PROGRAMMING INFORMATION

Complete programming system specifications are available upon request from the Memory Marketing department. Signetics encourages the purchase of programming equipment from a manufacturer who has a full line of programming products to offer. Signetics also encourages the manufacturers of programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from the Memory Marketing department.

SIGNETICS DISCOURAGES THE CONSTRUCTION AND USE OF "HOMEMADE" PROGRAMMING EQUIPMENT

1.4

In order to consistently achieve excellent programming yields, periodic calibration of the programming equipment is required. Consult the equipment manufacturer for the recommended calibration interval. Records of programming yield, by device type, should be kept and any downward trend or sudden change should be considered as an indication of a need to recalibrate the programming equipment.

PROM Programming Information

SIGNETICS PROM PROGRAMMER REFERENCE GUIDE

Data I/O Corporation 10524 Willows Road, N.E. Redmond, Washington 98073–9746 Telephone Number: (800) 247–5700

				MOD	EL 29B					
SIGNETICS	PACKAGE	PIN	UNI-	ADAPTOR	UNI-	351B	SERIES		UNISITE	
PART #		CODE	PACK2		PACK2B		22	ADAPTOR	40	ADAPTOR
100149A	DIP	B1D7							V2.0	
10149A	DIP	B1D7							V2.0	
82HS187/189	DIP	CE5C	V12		V12		V03		V2.2	
82HS191	DIP	CE21	V12		V12				V2.4	
82HS191	PLCC	CE8B			V18	093			V2.4	CPSITE
82HS195 A/B	DIP	CF53	V12		V12		V03	351A064	V2.2	
82HS195 A/B	PLCC	CE8C			V14	090			V2.2	CPSITE
82HS321	DIP	CF63	V12		V12		V03		V2.2	
82HS321	PLCC	CF8E			V17	093			V2.4	CPSITE
82HS641	DIP	CE67	V12		V12		V03		V2.2	
82HS641	PLCC	CE9A			V14	093			V2.2	CPSITE
82LHS191	DIP	CE21	V12		V12				V2.4	
82LHS321	DIP	CF63	V12		V12		V03	V03	V2.2	
82LHS321	PLCC	CF8E			V17	093			V2.4	CPSITE
82LS135	DIP	1008	V03		V07		V02	351A064	V1.4	
82S115	DIP	AE83	V07	351A068	V07		V02		V1.1	
82S123	DIP	1002	V04		V07		V02	351A064	V1.4	
82S123	DIP	106C			V15					
82S123	so	010802							V1.6	CPSITE
82S123	PLCC	010702			V15	087			V1.6	CPSITE
82S126	DIP	1001	V03		V07		V02	351A064	V1.7	
82S129	DIP	1001	V03		V07		V02		V1.7	
82S129	PLCC	106B							V2.5	CPSITE
82\$130	DIP	1003	V03		V07		V02	351A064	V1.7	
82S130	PLCC	106D			V18	088			V2.4	CPSITE
82S131	DIP	1003	V06		V07		V02	351A064	V1.7	
82S131	PLCC	106D			V07	088			V2.4	CPSITE
82S135	DIP	1008	V03		V07		V02	351A064	V2.4 V1.4	
82S137	DIP	1005	V03		V07		V02	351A064	V1.4	
82S137	PLCC	1065 106E			V07 V18	088			V1.4	
82S141	DIP	1015	V03		V18 V07		V02		V1.4	
82S141	PLCC	1015 107F			V07 V18	093			V1.4 V2.4	CPSITE
82S147	DIP	1009	V03		V18 V07	093	V02	351A064	V2.4 V1.4	
82S147	PLCC	1009 107C				089	V02 	351A064		CPSITE
82S181	PLCC				V18				V2.4	
		108A			V18	093			V2.4	CPSITE
82S181/183	DIP	1016	V03		V07		V02		V1.4	
82S183	PLCC	108A							V2.5	CPSITE
82S185	DIP	1006	V03		V07		V02	351A064	V1.4	
82S191	DIP	1021	V03		V07		V02		V1.4	
82S191	PLCC	108B			V18	093			V2.4	CPSITE
82S23	DIP	1002	V03		V07		V02	351A064	V1.8	
82S23	PLCC	010702			V15	087			V1.6	CPSITE
82S23	SO	010802							V1.4	CPSITE
82US123	DIP	0E02	V15		V15				V2.1	
82US123	PLCC	0E6C			V18	087			V2.4	CPSITE
82US23	DIP	0E02	V15		V15				V2.1	
82US23	PLCC	0E6C			V18	087			V2.4	CPSITE

MOS MEMORIES

D	а	a	е

CMOS static RAM	 •		•	 			• •	•	•	 •		•			•		 • •	59
CMOS EEPROM	 •		•	 •••				•	•	 •		•	 •	•	•		 • •	137
64K-bit CMOS EPROM	 •		•	 • •			• •	•	•			•	 •		•		 • •	183
128K-bit CMOS EPROM			•	 		 •	• •	•	•			•	 •		•		 ••	221
256K-bit CMOS EPROM			•	 		 •	• •	•	•			•	 •		•		 • •	231
516K-bit CMOS EPROM	 •		•	 				•		 •		•	 •				 	261
1M-bit CMOS EPROM .	 •	• •	•	 •••	•	 •	• •	•	•	 •		•	 •	•	•	 •	 	271

CMOS STATIC RAM

page

FCB51C64/65	8192 x 8-bit latched static RAM	61
FCB61C65(L/LL)	8192 x 8-bit static RAM	63
FCB61C251	26 144 x 1-bit static RAM	75
FCB61C252/253	65 536 x 4-bit static RAM	79
FCB61C257(L/LL)	32 768 x 8-bit static RAM	85
FCB61C1025(L/LL)	131 072 x 8-bit static RAM	89
PCD5101	256 x 4-bit static RAM	93
PCD5114	1024 x 4-bit static RAM	101
PCF8570/70C/71	256 x 8-bit static RAM with I ² C-bus interface	109
PCF8583	256 x 8-bit static RAM with I ² C-bus interface	119

8192 X 8-BIT LATCHED STATIC RAM

GENERAL DESCRIPTION

The FCB51C64/65 are 65 536-bit latched static RAMs organized as 8192 words of 8 bits each. Both memory devices are available with TTL (/64) and CMOS (/65) I/O and in standard 600 mil D1L28 and 330 mil SO28 packages.

The devices can operate from a power supply between 2 and 6 V with an access time of between 70 and 150 ns, depending on the supply voltage.

The memories are latched, which means the address must be clocked into the address latch. For every address change a latch clock pulse must be applied to either $\overline{CE1}$, (active going negative) with CE2 high or, to CE2, (active going positive) with $\overline{CE1}$ low. During the time preceding the active latch transition the memory is disabled.

Features

- Full CMOS 6 transistor memory cell
- Power supply 2 to 6 V
- Access times:
- Active power supply current:
- Standby current:

10 mA at 2 V, 40 mA at 4.5 V and 60 mA at 6 V 2 mA maximum for TTL input 2 μA maximum for CMOS input

150 ns at 2 V, 70 ns at 4.5 V and 65 ns at 6 V

Fig.2 Block diagram.

August 1989

62

Philips Components

Data sheet							
status	Product specification						
date of issue	June 1990						

FEATURES

- Operating supply voltage 5 V ± 10%
- · Inputs and outputs ESD protected
- Automatic power-down after a completed read access
- Access time: 55 ns and 70 ns

umption:
70 mA max.
3 mA max.
100 μA max.
(L-version)
1 μA max.
(LL-version)

Suitable for battery back-up operation: (FCB61C65L/LL only) data retention voltage 2 V min. data retention current 50 μA max. (L-version) data retention current 1 μA max. (LL-version)

Latched data outputs giving stable data between consecutive accesses

- Easy memory expansion
- Common data I/O interface
- All inputs and outputs TTL and CMOS compatible
- All inputs have a Schmitt trigger switching action
- Three-state outputs
- Operating temperature 0 °C to +70 °C

FCB61C65(L/LL) 8 K x 8 Fast CMOS low-power static RAM

GENERAL DESCRIPTION

The FCB61C65(L/LL) is a 65536-bit fast, low-power, static random access memory organized as 8192 words of 8 bits each.

The chip enable inputs CE1 and CE2 are available for memory expansion and to control the low-power/ standby mode.

The device operates from a 5 V power supply and has an access time of 55 ns and 70 ns.

The FCB61C65(L/LL) is ideally suited for memory applications where fast access time, low power and ease of use are required.

The FCB61C65(L/LL) is a CMOS device which uses a 6 transistor memory cell.

The IC is fabricated in a CMOS double-metal single-poly process using ion-implanted silicon gate technology.

ORDERING AND PACKAGE INFORMATION

EXTENDED		PACKAGE									
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE							
FCB61C65 (L/LL)-XXP	28	DIL (600 mil)	plastic	SOT117							
FCB61C65 (L/LL)-XXT	28	SOXL (330 mil)	plastic	SOT213							

Philips Components

FCB61C65(L/LL)

FCB61C65(L/LL)

TRUTH TABLE

CE1	CE2	OE	WE	MODE	IDD	I/O PIN	REF. CYCLE
Н	X	Х	X	not selected	I _{SB} *	HIGH Z	
Х	L	X	X	not selected	I _{SB} *	HIGH Z	
L	н	L	н	read	I _{DD} /I _{DD1} *	DOUT	read
L	H	н	L	write	I _{DD}	DIN	write
L	н	L	L	write	IDD	DIN	write
L	н	н	н	ready-read	I _{DD} /I _{DD1} *	HIGH Z	

* Including L/LL versions if input levels are CMOS.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
A12	2	address input
A7 to A0	3 to 10	address inputs
I/O 1 to I/O 3	11 to 13	data inputs/outputs
V _{SS}	14	ground
I/O 4 to I/O 8	15 to 19	data inputs/outputs
CE1	20	chip enable 1
A10	21	address input
ŌĒ	22	output enable
A11, A9, A8	23 to 25	address inputs
CE2	26	chip enable 2
WE	27	write enable
V _{DD}	28	+5 V supply

•(

FCB61C65(L/LL)

DECOUPLING ARRANGEMENTS

The FCB61C65(L/LL) is an address activated circuit. When an address change occurs, the operation is executed by an internal pulse generated from the Address Transition Detector (ATD). The current variation following an address or chip enable change may induce noise on the supply lines. This noise can be eliminated using a 100 nF capacitor with good high frequency characteristics as close as possible to the memory between V_{DD} and V_{SS} .

LIMITING VALUES

Limiting values are in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
VI	voltage range on any pin with respect to V_{SS}	DC inputs	-0.5	+7.0	v
VI	,	max. pulse width = 50 ns	-1.5	+7.0	V
Tamb	operating ambient temperature		0	+70	°C
T _{bias}	temperature range with bias		-10	+85	°C
T _{stg}	storage temperature range		55	+125	°C
Ptot	total power dissipation		-	1	W

Note

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to operation under the conditions specified in the DC and timing characteristics. Exposure to higher than the rated voltages for extended periods of time could effect device reliability.

HANDLING

Input and outputs are protected against electro static discharge in normal handling, however, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices.

RECOMMENDED OPERATION CONDITIONS

 $T_{amb} = 0 \text{ to } + 70 \ ^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	supply voltage	4.5	5.5	V
VIH	input voltage HIGH	2.2	V _{DD} +0.5	V
VIL	input voltage LOW	-0.5*	0.8	V

 $V_{IL} = -1.5$ V for a maximum pulse width of 50 ns.

FCB61C65(L/LL)

DC CHARACTERISTICS

 $V_{DD} = 5 \text{ V} \pm 10\%$; $T_{amb} = 0 \text{ to } 70 \text{ °C}$. Typical readings taken at $V_{DD} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$. All voltages are referenced to V_{SS} (0 V) unless otherwise specified. DC characteristics are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Iu	input leakage current	$V_I = V_{SS}$ to V_{DD}	-1	-	1	μA
ILO	output leakage current	$ \overline{CE1} \text{ or } \overline{OE} = V_{IH} \text{ or } CE2 = V_{IL}; \\ V_{I/O} = V_{SS} \text{ to } V_{DD} $	-1	-	1	μA
IDD	average operating current	cycle time 55 ns; 100% duty factor; note 1 I _{I/O} = 0 mA	-	40	70	mA
I _{DD}	average operating current	cycle time 70 ns; 100% duty factor; note 1 $I_{I/O} = 0$ mA	-	35	60	mA
I _{DD1}	DC operating current	$\label{eq:WE} \begin{split} \overline{WE} &= V_{IH}; \ I_{I/O} = 0 \ \text{mA}; \ f = 0 \ \text{Hz} \\ \overline{WE} &= CMOSH; \ V_I = CMOS; \\ \text{note } 2 \end{split}$	-	3	6	mA
	FCB61C65L only FCB61C65LL only		-	2 0.05	100 1.0	μΑ μΑ
I _{SB}	standby current	$\overline{CE1} = V_{IH}$ or $CE2 = V_{IL}$ $\overline{CE1} = CMOSH$ and $CE2 = CMOS$ or $CE2 = CMOSL$	-	1.5	3.0	mA
I _{SBL} ISBLL	FCB61C65L only FCB61C65LL only		-	2 0.05	100 1.0	μΑ μΑ
Vol Vol Voh Voh	output voltage LOW output voltage LOW output voltage HIGH output voltage HIGH		- 2.4 V _{DD} 0.2	- - -	0.4 0.2 - -	V V V V

Notes to the DC characteristics

1. $I_{DD} \le 50$ mA at a cycle time of 100 ns and ≤ 45 mA at a cycle time of 120 ns.

2. CMOS = CMOSH: $V_{DD} - 0.2 \text{ V} \le \text{level} \le V_{DD} + 0.2 \text{ V}$ or CMOSL: $-0.2 \text{ V} \le \text{level} \le +0.2 \text{ V}$.

CAPACITANCES

f = 1 MHz; T_{amb} = 25 °C (parameters in this table are sampled and not 100% tested).

SYMBOL	PARAMETER CONDITIONS		MAX.	UNIT
Cı Cı	input capacitance CE1, CE2, WE, OE all other inputs	V _I = 0 V V _I = 0 V	8 7	pF pF
C _{I/O}	input/output capacitance	$V_{I/O} = 0 V$	8	pF

FCB61C65(L/LL)

TIMING CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $T_{amb} = 0$ to 70 °C; inputs pulse levels = 0.4 to 2.4 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V and output loading as in Figure 3; unless otherwise specified.

CVMDOL	DADAMETED		55 1	YPE	701	YPE	
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
Read cyc	le						
t _{RC}	read cycle time		55	-	70	-	ns
t _{AA}	address access time		-	55	-	70	ns
t _{ACE}	chip enable access time		-	55	-	70	ns
t _{OE}	output enable access time		-	30	-	35	ns
t _{CLZ}	chip enable to output LOW Z	note 6	5		5	-	ns
tolz	output enable to output LOW Z	note 6	5	-	5	-	ns
t _{CHZ}	chip disable to output HIGH Z	note 6	-	30	-	30	ns
t _{OHZ}	output disable to output HIGH Z	note 6	-	30	-	30	ns
t _{OH}	output hold time		10	-	10	-	ns
Write cyc	le	·					
t _{WC}	write cycle time		55	-	70	-	ns
t _{CW}	chip enable to end of write	note 11	50	-	65	-	ns
t _{AW}	address valid to end of write		50	- '	65	-	ns
t _{AS}	address set up time		0	-	0	-	ns
t _{WP}	write pulse width	note 9	30	-	35	-	ns
t _{WR}	write recovery time	note 10	0	-	0	-	ns
t _{WHZ}	write enable to output HIGH Z	note 16	-	20	-	25	ns
t _{DW}	data to write time overlap		25	-	30	-	ns
t _{DH}	data hold from write time		5	-	5	-	ns
tow	end of write to output LOW Z	note 16	5	-	5	-	ns

Output load

68

FCB61C65(L/LL)

Product specification

8 K x 8 Fast CMOS low-power static RAM

FCB61C65(L/LL)

FCB61C65(L/LL)

Notes to the timing characteristics

Read cycle (see Fig.4)

- 1. $\overline{\text{WE}}$ is HIGH for read cycle.
- 2. Device is continuously selected, CE1 is LOW and CE2 is HIGH.
- 3. Address is valid prior to or coincident with $\overline{CE1}$ LOW or CE2 HIGH transition.
- 4. When CE1 is LOW and CE2 HIGH, the address inputs may not be floating.
- 5. $\overline{\text{OE}}$ is LOW.
- C_L = 5 pF for t_{CLZ}, t_{CHZ}, t_{OLZ}, output transition measured at ± 200 mV from preceding steady state. These
 parameters are sampled and not 100% tested.
- t_{CLZ} and t_{ACE} are measured from the last CE1 going LOW or CE2 going HIGH. t_{CHZ} is measured from the first of CE1 going HIGH or CE2 going LOW.
- 8. If D OUT in two consecutive read cycles is the same, D OUT remains stable.

Write cycle (see Fig.5)

- 9. A write occurs during an overlap of LOW $\overline{CE}1$, a HIGH CE2 and a LOW \overline{WE} .
- 10. t_{WR} is measured from the earlier of CE2 going to LOW or CE1 or WE going HIGH at the end of a write cycle.
- 11. If the CE1/CE2 transition occurs simultaneously to or after the WE LOW transition the outputs remain in a high impedance state.
- 12. \overline{OE} is continuously LOW.
- 13. D OUT is in the same phase as the write data of this write cycle.
- 14. D OUT is the read data of the next address.
- 15. If CE1 is LOW (CE2 is HIGH) and I/O pins are in the output state during this period then input data signals of opposite phase to the outputs must not be applied.
- 16. C_L = 5 pF for t_{WHZ} and t_{OW}, measured at ± 200 mV from steady state. These parameters are sampled and not 100% tested.

FCB61C65(L/LL)

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

(FCB61C65L/LL only)

Tamb = 0 to +70 °C; IDRL/LL measurements are valid after thermal equilibrium has been established.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply		· · · · · · · · · · · · · · · · · · ·				
V _{DR}	supply voltage for data retention	$\overline{CE}1 = CMOSH \text{ or } CE2 = CMOSL$ with other V _I = CMOS; note 1	2.0	-	5.5	V
	supply current during data retention	$V_{DR} = 3 V;$ <u>CE2</u> = CMOSL; other V _I = CMOS or CE1 = CMOSH; other V _I = CMOS				
I _{DRL} I _{DRLL}	FCB61C65L only FCB61C65LL only		-	2 0.05	50 1	μΑ μΑ
Timing						
tCDR	chip disable to data retention time		0	-	-	ns
t _R	recovery time to fully active	note 2	t _{RC}		-	ns

Notes to the data retention characteristics

1. CMOS = CMOSH: $V_{DR} - 0.2 \text{ V} \le \text{level} \le V_{DR} + 0.2 \text{ V}$ or CMOSL: $-0.2 \text{ V} \le \text{level} \le +0.2 \text{ V}$.

2. t_{RC} = read cycle time.

FCB61C65(L/LL)

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice. FCB61C251

262 144 X 1-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C251 is a 256 K-bit static RAM memory organized as 262 144 words of 1 bit each.

The FCB61C251 operates from a power supply of 5 V and is available with access times of 20, 25, 35 and 45 ns.

The inputs and outputs are TTL-level compatible; with a small DC load the outputs will generate CMOS compatible levels.

The FCB61C251 is suitable for use in very large and very fast computer memories. The FCB61C251 has some unique built-in test features. These features enable the user to check if the redundancy circuits on the chip have been used; to electrically check to vendor ID code; or to put the device in a very low power mode ($I_{SB} < 10 \ \mu A$). It is also possible to bypass the peripheral circuits on the chip to directly stress the memory matrix, for, for example, reliability testing.

The device is available in the standard 24-pin 300 mil DIP and SOJ packages.

Features

- Operating supply voltage: 5 V
- Access times: 20, 25, 35 and 45 ns
- Active power dissipation: 120 mA (maximum)
- Standby power: 10 mA (maximum)
- Five built-in test modes

Fig.1 Pinning diagram.

FCB61C251

August 1989

76

TRUTH TABLE

ĈĒ	WE	mode	VDD current	output	ref. cycle
н	х	not selected	I _{SB}	HIGH Z	
L	н	read	IDD	D OUT	read cycle
L	L	write	IDD	HIGH Z	write cycle

DC CHARACTERISTICS

 $V_{DD} = 5 V \pm 10\%$; $V_{SS} = 0 V$; $T_{amb} = 0 \text{ to } 70 \text{ }^{\circ}\text{C}$

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		V _{DD}	4.5	5.0	5.5	v
Input voltage HIGH		VIH	2.2	3.5	V _{DD} +0.5	v
Input voltage LOW*		VIL	-0.3	-	0.8	v
Average operating current	min. cycle, I _{I/O} = 0 mA	IDD	-	50	120	mA
Standby current	CE = VIH	ISB	-	5	10	mA
Output voltage LOW	IOL = 8 mA	VOL	-	-	0.4	V
Output voltage LOW	l _{OL} = 20 μA	VOL	-	-	0.2	V
Output voltage HIGH	I _{OH} = -4 mA	∨он	2.4	-	_	V
Output voltage HIGH	I _{OH} = -20 μA	∨он	V _{DD} -0.2	-	_	۰V

CAPACITANCE

f = 1 MHz; V_{DD} = 5 V; T_{amb} = 25 °C

parameter	conditions	symbol	typ.	max.	unit
Input capacitance	V _I = 0 V	CI	4	6	pF
Input/output capacitance	V _{I/O} = 0 V	CI/O	5	8	pF

TIMING CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C; input pulse levels = 0 to 3 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V; C_L = 30 pF; unless otherwise specified.

		-2	0	-2	5	-3	5	4	5	
parameter	symbol	min.	max.	min.	max.	min.	max.	min.	max.	unit
Read cycle										
Read cycle time	tRC	20	-	25	-	35	-	45	-	ns
Address access time	tAA	-	20	-	25	-	35	—	45	ns
Chip enable access time	^t ACE	_	20	_	25	_	35	-	45	ns
Chip enable to output LOW Z*	^t CLZ	5	_	5	_	5	_ `	5	_	ns
Chip enable to output HIGH Z*	tCHZ	_	10		15	_	15	-	15	ns
Output hold time*	tOH	5	_	5	-	5	-	5	-	ns
Write cycle										
Write cycle time	twc	20	_ ·	25	-	35	-	45		ns
Chip enable to end of write	tcw	17	_	20	_	30	_	40	_	ns
Address valid to end of write	taw	17	_	20	-	30	_	40	_	ns
Address set-up time	tAS	0	_	0	_	0	_	0	_	ns
Write pulse width	twp	15	_	15	_	25	_	35	_	ns
Write recovery time	twR	0	_	0	-	0		0	-	ns
Write enable to output HIGH Z*	twhz		10	_	15	_	15	-	15	ns
Data to write time overlap	tDW	10	_	15	_	20	_	25	_	ns
Data hold from write time	tDH	0	_	0	_	0	_	0	_	ns
End of write to output LOW Z*	tow	5	_	5	-	5	-	5	_	ns

* CL = 5 pF for t_{CLZ}, t_{CHZ}, t_{OH}, t_{WHZ} and t_{OW}. Measured at 200 mV from a steady state.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

FCB61C252 FCB61C253

65 536 X 4-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C252/253 are 256 K-bit static RAM memories organized as 65 536 words of 4 bits each.

The FCB61C252/253 operate from a power supply of 5 V and are available with access times of 20, 25, 35 and 45 ns.

The inputs and outputs are TTL-level compatible; with a small DC load the outputs will generate CMOS compatible levels.

The FCB61C252/253 are suitable for use in very large and very fast computer memories. The FCB61C252/253 have some unique built-in test features. These features enable the user to check if the redundancy circuits on the chip have been used; or to electrically check the vendor ID code. It is also possible to bypass the peripheral circuits on the chip to directly stress the memory matrix, for, for example, reliability testing.

The FCB61C253 has an additional output enable pin to provide extra control for the output buffers and is available in the standard 28-pin 300 mil DIP and SOJ packages. The FCB61C252 is available in the standard 24-pin 300 mil DIP and SOJ packages.

Features

- Operating supply voltage: 5 V
- Access times: 20, 25, 35 and 45 ns
- Active power dissipation: 120 mA (maximum)
- Standby power: 10 mA (maximum)
- Four built-in test modes

OE input for FCB61C253 only.

Fig.1 Block diagram.

80

AO 1

FCB61C252 FCB61C253

Fig.2(a) Pinning diagram (FCB61C252).

Fig.2(b) Pinning diagram (FCB61C253).

TRUTH TABLE

CE	WE	mode	V _{DD} current	output	ref. cycle
н	х	not selected	I _{SB}	HIGH Z	
L	н	read	IDD	D OUT	read cycle
L	L	write	IDD	HIGH Z	write cycle

H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF state

CAPACITANCE

f = 1 MHz; V_{DD} = 5 V; T_{amb} = 25 °C (parameters in this table are sampled not 100% tested)

parameter	conditions	symbol	typ.	max.	unit
Input capacitance	VI = 0 V	CI	4	6	pF
Input/output capacitance	VI/O = 0 V	CI/O	5	8	pF

DC CHARACTERISTICS

 V_{DD} = 5 V ± 10%; V_{SS} = 0 V; T_{amb} = 0 to 70 °C

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		VDD	4.5	5.0	5.5	V
Input voltage HIGH		VIH	2.2	3.5	V _{DD} +0.5	V
Input voltage LOW*		VIL	-0.3	-	0.8	V
Average operating current	min. cycle, I _{I/O} = 0 mA	IDD	_	50	120	mA
Standby current	CE = VIH	ISB	-	5	10	mA
Output voltage LOW	IOL = 8 mA	VOL	-	-	0.4	v
Output voltage LOW	ΙΟL = 20 μΑ	VOL	-	_	0.2	V
Output voltage HIGH	I _{OH} =4 mA	Voн	2.4	-	-	v
Output voltage HIGH	l _{OH} = -20 μA	Voң	V _{DD} 0.2	_	-	V

* V_{1L} = -3.5 V for maximum pulse width of 20 ns.

TIMING CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C; input pulse levels = 0 to 3 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V; C_L = 30 pF; unless otherwise specified.

		-2	20 —	-2	25	_3	35	-4	5	
parameter	symbol	min.	max.	min.	max.	min.	max.	min.	max.	unit
Read cycle										
Read cycle time	tRC	20		25	-	35	-	45	-	ns
Address access time	tAA	-	20	-	25	-	35	-	45	ns
Chip enable access time	tACE	_	20	-	25	_	35	_	45	ns
Chip enable to output LOW Z*	tCLZ	5	-	5	-	5	_	5	-	ns
Chip enable to output HIGH Z *	tCHZ	_	10	_	15	_	15	_	15	ns
Output hold time *	tОН	5	-	5	-	5	-	5	-	ns
Output enable access time**	^t OE		10	_	15	_	20	_	30	ns
Output enable to output LOW Z**	tolz	0	-	0	-	0	_	0	_	ns
Write cycle										
Write cycle time	twc	20	_	25	_	35	_	45	_	ns
Chip enable to end of write	tcw	17	_	20	_	30		40	_	ns
Address valid to end of write	tAW	17	-	20	-	30	_	40	-	ns
Address set-up time	tAS	0		0	_	0	_	0	_	ns
Write pulse width	twp	15	_	15	_	25	_	35	_	ns
Write recovery time	tWR	0	-	0	_	0	_	0	_	ns
Write enable to output HIGH Z*	twhz	_	10	_	15	_	15	_	15	ns
Data to write time overlap	tDW	10	_	15	_	20	_	25	_	ns
Data hold from write time	tDH	0	_	0	-	0	_	0	_	ns
End of write to output LOW Z*	tow	5	_	5	 .	5	_	5	-	ns

* $C_L = 5 \text{ pF}$ for t_{CLZ} , T_{CHZ} , t_{OH} , t_{WHZ} and t_{OW} . Measured at 200 mV from a steady state. ** Only applicable for FCB61C253.

DEVELOPMENT DATA

32 768 X 8-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C257(L/LL) is a 256 K-bit static random access memory organized as 32 768 of 8 bits each.

The FCB61C257(L/LL) operates from a power supply of 5 V and is available with access times of 55, 70 and 100 ns. The inputs and outputs are TTL-level compatible; without a DC load, the outputs will generate CMOS compatible levels.

The device has low active and very low standby power and is suitable for use in battery back-up applications.

The FCB61C257(L/LL) is available in the standard 28-pin mil DIL and SOG packages.

Features

- Operating supply voltage: 5 V
- Access times: 55, 70 and 100 ns maximum
- Active power dissipation: 80 mA maximum
- Standby power: 5 µA maximum

Fig.1 Pinning diagram.

TRUTH TABLE

ĈĒ	ŌĒ	WE	mode	V _{DD} current	I/O pin	ref. cycle
H	X L	х н	not selected read	I _{SB} I _{DD}	HIGH Z D OUT	read (1) - (2)
L	н	с. С. с. с.	write	IDD	DIN	write (1)
L	L	L	write	IDD	DIN	write (2)
L	н	н	ready-read	IDD	HIGH Z	-

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

$T_{amb} = 0$ to 70 °C

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage for data retention	$\overline{CE} = CMOSL,$ other V ₁ = CMOS	VDR	2.0	_	5.5	v
Supply current during data retention	$V_{DR} = 3 V;$ $\overline{CE} = CMOSL$ other $V_1 = CMOS$					
FCB61C257L only FCB61C257LL only		^I DRL ^I DRLL	-		50 5	μΑ μΑ
Timing						
Chip select to data retention time		^t CDR	0	_	-	ns
Recovery time to fully active		tR	^t RC [*]	_	-	ns

* t_{RC} = read cycle time.

RECOMMENDED DC OPERATING CONDITIONS

 $T_{amb} = 0$ to 70 °C

parameter	symbol	min.	typ.	max.	unit
Supply voltage	V _{DD}	4.5	5.0	5.5	v
Input voltage HIGH	VIH	2.2	3.5	V _{DD} +0.5	V
Input voltage LOW	VIL	-0.5*	_	0.8	V

DC CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C. (Typical readings taken at V_{DD} = 5 V; T_{amb} = 25 °C). All voltages are with reference to V_{SS} (0 V) unless otherwise specified; L/LL current measurements are valid after thermal equilibrium has been established.

parameter	conditions	symbol	min.	typ.	max.	unit
Input leakage current Output leakage current	$V_{I} = V_{SS}$ to V_{DD}	1 _{L1}	-1.0	-	1.0	μA
e a spar lound go our ont	$V_{I/O} = V_{SS}$ to V_{DD}	ILO	-1.0	-	1.0	μA
Standby current FCB61C257L only FCB61C257LL only	$ \overline{CE} \ge V_{IH} $ all $V_I = CMOS^{**}$ all $V_I = CMOS^{**}$	I _{SB} I _{SBL} ISBLL	- - -	1.5 10 0.1	3.0 100 5	mΑ μΑ μΑ
DC read current FCB61C257L only FCB61C257LL only	$\overline{WE} = V_{1H}$; I/O = 0 mA all V ₁ = CMOS* all V ₁ = CMOS*	^I DD1 ^I DDL ^I DDLL	- - -	3 10 0.1	10 100 5	mΑ μΑ μΑ
Average operating current	minimum cycle time; I _{I/O} = 0 mA	IDD	_	50	80	mA
Output voltage LOW	I _{OL} = 4 mA	VOL	-	-	0.4	V
Output voltage LOW	I _{OL} = 20 μA	VOL	-	-	0.2	V.
Output voltage HIGH	I _{OH} = -2 mA	Vон	2.4	-	_	v
Output voltage HIGH	l _{OH} = -20 μA	VOH	V _{DD} -0.2	-	_	v

- * $V_{1L} = -1.5$ V for a maximum pulse width of 50 ns.
- ** CMOS = CMOSH: V_{DD} -0.2 \leq level \leq V_{DD} +0.2 or CMOSL: -0.2 \leq level \leq 0.2 V.

TIMING CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C; input levels = 0 to 3 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V; C_L = 30 pF; unless otherwise specified.

		_	55	-	70		100	
parameter	symbol	min.	max.	min.	max.	min.	max.	unit
Read cycle							· · ·	
Read cycle time	^t RC	55	-	70	_	100		ns
Address access time	tAA	- ·	55		70	—	100	ns
Chip enable access time	^t ACE	<u> </u>	55	-	70	_	100	ns
Output enable access time	^t OE	—	30	_	35		50	ns
Chip enable to output LOW Z	^t CLZ	5	-	5		5	-	ns
Output enable to output LOW Z	tolz	5	_	5	_	5	-	ns
Chip disable to output HIGH Z	^t CHZ	-	20	_	30	_	35	ns
Output disable to output HIGH Z	tohz	_	30	_	30	_	35	ns
Output hold time	tОН	10	-	10	-	10	-	ns
Write cycle								-
Write cycle time	twc	55	_	70	_	100	_	ns
Chip enable to end of write	tCW	50	_	65	_	80	_	ns
Address valid to end of write	taw	50	_	65	_	80	_	ns
Address set-up time	tAS	0	_	0	_ '	0	_	ns
Write pulse width	tWF	45	_	55	_	70	· _ ·	ns
Write recovery time	tWR	0	_	0	_	0	_	ns
Write enable to output HIGH Z	twnz	_	20	_	25	_	30	ns
Data to write time overlap	tDW	25	_	30	_	40	-	ns
Data hold from write time	^t DH	5		5	_	5	-	ns
End of write to output LOW Z	tow	5	-	5	_	5	_	ns

131 072 X 8-BIT STATIC RAM

GENERAL DESCRIPTION

The FCB61C1025(L/LL) is a 1 M-bit static RAM memory organized as 131 072 words of 8 bits each.

The FCB61C1025(L/LL) operates from a power supply of 5 V and is available with access times of 35, 45, and 55 ns. The inputs and outputs are TTL-level compatible; without a DC load, the outputs will generate CMOS compatible levels.

The device has low active and very low standby power and is suitable for use in battery back-up applications.

The FCB61C1025(L/LL) is available in the standard 32-pin mil DIL and SOG packages.

Features

- Operating supply voltage: 5 V
- Access times: 35, 45, and 55 ns maximum
- Active power dissipation: 60 mA maximum
- Standby power: 2 μA maximum (FCB61C1025LL only)

Fig.1 Pinning diagram.

TRUTH TABLE

CE2	CE1	ŌĒ	WE	mode	VDD current	I/O pin	ref. cycle
L	x	x	x	not selected	ISB	z	
×	H	X	X	not selected	ISB	z	
н	L	Ļ	н	read	IDD	D OUT	read (1) - (3)
H	L	н	L	write	IDD	DIN	write (1)
Н	L	L	L	write	IDD	DIN	write (2)
Н	L	H	Н	ready-read	DD	Z	

DATA RETENTION CHARACTERISTICS FOR LOW POWER/STANDBY MODE

T_{amb} = 0 to 70 °C

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage for data retention	CE2 = CMOSL, other V _I = CMOS	VDR	2.0		5.5	v
Supply current during data retention	V _{DR} = 3 V; CE2 = CMOSL other V _I = CMOS					
FCB61C1025L FCB61C1025LL		IDRL IDRLL	-		50 2	μΑ μΑ
Timing						
Chip select to data retention time		^t CDR	0	— .	_	ns
Recovery time to fully active		tR	^t RC*	_	-	ns

* t_{RC} = read cycle time.

RECOMMENDED DC OPERATING CONDITIONS

 $T_{amb} = 0$ to 70 °C

parameter	symbol	min.	typ.	max.	unit
Supply voltage	V _{DD}	4.5	5.0	5.5	v
Input voltage HIGH	VIH	2.2	3.5	V _{DD} +0.5	v
Input voltage LOW	VIL	-0.3*	-	0.8	V

DC CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C. (Typical readings taken at V_{DD} = 5 V; T_{amb} = 25 °C). All voltages are with reference to V_{SS} (0 V) unless otherwise specified; L/LL current measurements are valid after thermal equilibrium has been established.

parameter	conditions	symbol	min.	typ.	max.	unit
Input leakage current	V _I = V _{SS} to V _{DD}	ILI	-1.0	-	1.0	μA
Output leakage current	$\overline{CE1}$ or $\overline{OE} = V_{IH}$ or $CE2 = V_{IL}$;					
	$V_{I/O} = V_{SS}$ to V_{DD}	ILO	-1.0	-	1.0	μA
Standby current FCB61C1025L	$CE2 \leq V_{IL} \text{ or } \overline{CE1} \geq V_{IH}$	I _{SB}		1.5	3.0	mΑ
only FCB61C1025LL	all V _I = CMOS*	ISBL	-	10	100	μA
only	all V _I = CMOS*	ISBLL	-	0.1	2.0	μA
DC read current FCB61C1025L	WE = V _{IH} ; I/O = 0 mA	IDD1	_	4	10	mA
only FCB61C1025LL	all V _I = CMOS*	IDDL	-	10	100	μA
only	all V _I = CMOS*	IDDLL	-	0.1	2.0	μA
Average operating						
current	minimum cycle time; $I_{I/O} = 0 \text{ mA}$	IDD	-	55	80	mA
Output voltage LOW	I _{OL} = 4 mA	VOL	-	-	0.4	v
Output voltage LOW	I _{OL} = 20 μA	VOL		-	0.2	v
Output voltage HIGH	I _{OH} = -2 mA	v _{он}	2.4	-	<u>-</u> ,	v
Output voltage HIGH	I _{OH} = -20 μA	V _{OH}	V _{DD} 0.2	-	-	v

* CMOS = CMOSH: V_{DD} $-0.2 \le$ level \le V_{DD} + 0.2 or CMOSL: $-0.2 \le$ level \le 0.2 V.

* V_{1L} = -1.5 V with a maximum pulse width duration of 50 ns.

TIMING CHARACTERISTICS

 V_{DD} = 5 V ± 10%; T_{amb} = 0 to 70 °C; input pulse levels = 0 to 3 V; input rise and fall times = 5 ns; input and output timing reference levels = 1.5 V; C_L = 30 pF; unless otherwise specified.

	T	-3	5		45	-5	5	
parameter	symbol	min.	max.	min.	max.	min.	max.	unit
Read cycle								
Read cycle time	^t RC	35	-	45		55	_	ns
Address access time	^t AA		35	-	45	_	55	ns
Chip enable access time	^t ACE	_	35	_	45	_	55	ns
Output enable access time	tOE	_	20	_	25	_	30	ns
Chip enable to output LOW Z	tCLZ	10	_	10		10	_	ns
Output enable to output LOW Z	tolz	5	_	5	_	5	_	ns
Chip disable to output HIGH Z	tCHZ	_	15	-	20	_	25	ns
Output disable to output HIGH Z	tOHZ	_	15	_	20	_	25	ns
Output hold time	tOH	5	_	5		5		ns
Write cycle								
Write cycle time	twc	35	_	45	_	55	_	ns
Chip enable to end of write	tCW	30	-	40	_	50		ns
Address valid to end of write	tAW	30	_	40	_	50	_	ns
Address set-up time	tAS	0	_	0	·	0	_	ns
Write pulse width	tWP	25	_	35	· _	45	·	ns
Write recovery time	tWR	0	_	0	_	0	_	ns
Write enable to output HIGH Z	twhz	- ·	15	_	20	-	25	ns
Data to write time overlap	tDW	20		25	-	25	_	ns
Data hold from write time	^t DH	0	_	0	—	0	_	ns
End of write to output LOW Z	tOW	5	-	5	_	5		ns

256 × 4-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD5101 is a very low-power 1024-bit static CMOS random access memory, organized as 256 words by 4 bits. It is suitable for low power and high speed applications where battery standby power is required to ensure non-volatility of data. All inputs and outputs are fully TTL compatible and pinning is compatible with 2101-type NMOS static RAMs and 5101-type CMOS static RAMs.

There are two chip enable inputs, $\overline{CE1}$ and CE2, selection being made when $\overline{CE1}$ is LOW and CE2 is HIGH. The memory has an output disable function, OD, which allows the inputs/outputs to be used separately, or to be tied together for use in common data I/O systems.

Features

- Operating supply voltage range
- Low data retention voltage
- Low power consumption in both operating and standby modes
- Access time 150 ns at V_{DD} = 5 V; 400 ns at V_{DD} = 3 V
- Three-state outputs
- All inputs and outputs directly TTL compatible
- Choice of two package types

Fig. 1 Block diagram: pin numbers in parentheses are for PCD5101T; other pin numbers are applicable to PCD5101P.

PACKAGE OUTLINES

PCD5101P: 22-lead DIL; plastic (SOT116). PCD5101T: 24-lead mini-pack; plastic (SO24; SOT137A).

2.5 to 5.5 V

1 V

min.

PI	NN	IN	G

D1 D2 D3 D4	data inputs
A0 A1 A2 A3 A4 A5 A6 A7	address inputs
R/W	read/write input
CE1	chip enable inputs
OD	output disable
Q1 Q2 Q3 Q4	data outputs
V _{DD}	positive supply
VSS	negative supply
n.c.	not connected

July 1984

94

OPERATING MODES

Table 1 Mode selection

CE1	CE2	R/₩	OD	mode of operation	output state
н	х	х	х	standby	high impedance
x	L	х	х	standby	high impedance
L	н	L	н	write	high impedance
L	н	L	L	write	equal to input data
L	н	н	L	read	data valid
L	н	Н	н	read	high impedance

Separate input/output: write cycle OD = X; read cycle OD = L.

Common input/output: write cycle OD = H; read cycle OD = L.

H = HIGH voltage level

L = LOW voltage level

X = don't care

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	V _{DD}	-0,3 to 8,0 V
Input voltage range (any pin)	VI	V_{SS} – 0,3 to V_{DD} +0,3 V
Operating temperature range	⊤ _{amb}	-25 to +70 °C
Storage temperature range	T _{stg}	–55 to +125 °C

D.C. CHARACTERISTICS (VDD = 5 V)

 V_{DD} = 5 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	V _{DD}	4,5	5,0	5,5	v
Operating supply current at V _I = V _{DD} or V _{SS} ; f = 1 MHz; outputs open	IDD	-	10	17	mA
at V _I = 0,8 or 2,0 V; f = 1 MHz; outputs open	IDD	— ·	10	17	mA
at V _I = 0,8 or 2,0 V; f = 5 MHz; outputs open	IDD	_	12	20	mA
Standby supply current at CE2 = V _{SS}	ISB	— 1	0,02	5,0	μA
Input leakage current at V _I = V _{SS} to V _{DD}	 _	_ '		0,1	μA
Input voltage LOW	VIL	0,3	-	+0,8	V .
Input voltage HIGH	VIH	2,0	-	V _{DD} +0,3	v
Output leakage current at V _O = V _{SS} to V _{DD} ; OD = HIGH or chip disabled	^{II} OLI		_	0,2	μA
Output voltage LOW at I _{OL} = 4,0 mA	VOL	<u> </u>	_	0,4	v
Output voltage HIGH at $-I_{OH} = 2,0 \text{ mA}$	VOH	2,4	-	-	v

D.C. CHARACTERISTICS (V_{DD} = 3 V)

 $V_{DD} = 3 \pm 0.5 V$; $V_{SS} = 0 V$; $T_{amb} = -25 \text{ to } + 70 \text{ }^{\circ}\text{C}$

parameter	symbol	min.	typ.	max.	unit
Operating supply voltage	V _{DD}	2,5	3,0	3,5	v
Operating supply current at V _I = V _{DD} or V _{SS} ; f = 1 MHz; outputs open	IDD	_	5	8	mA
at V _I = 0,4 or 1,6 V; f = 1 MHz; outputs open	IDD	-	5	8	mA
Standby supply current at CE2 = V _{SS}	ISB	— ·	0,02	5,0	μA
Input leakage current at V _I = V _{SS} to V _{DD} Input voltage LOW	∥ _{1L} Vլլ	- -0,3		0,1 +0,4	μA V
Input voltage HIGH	VIH	1,6	-	V _{DD} +0,3	V
Output leakage current at V _O = V _{SS} to V _{DD} ; OD = HIGH or chip disabled	IIOLI		_	0,2	μA
Output voltage LOW at I _{OL} = 1,0 mA	VOL	-	-	0,3	V
Output voltage HIGH at $-I_{OH} = 1,0 \text{ mA}$	V _{OH}	1,7	-	-	V

July 1984

A.C. TEST CONDITIONS (VDD - 5 V	V)	V _{DD}
Input pulse levels	0,8 V to 2,0 V	
Input rise and fall times	5 ns	960 Q
Input timing reference levels	1,5 V	data
Output timing levels	1,5 V	output
Output timing levels for high/low impedance	1,2 V and 2,8 V	
Output load (2 TTL inputs and load capacitance CL)	Fig. 4	が か 7287756 Fig. 4 Test load.
· · · · · · ·	U	iy icstillau.

A.C. CHARACTERISTICS (V_{DD} = 5 V)

 V_{DD} = 5 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C; loads as per Fig. 4 with C_L = 100 pF unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	^t RC	150	-	<u> </u>	ns
Address access time	tAA	-	— ,	150	ns
Chip enable CE1 to output	tCO1	-	<u> </u>	150	ns
Chip enable CE2 to output	tCO2	-	<u> </u>	150	ns
Output disable OD to output	tOD			.70	ns
Data output to high impedance state at C _L = 5 pF	^t DF	10		70	ns
Previously read data valid with respect to address change	^t OH1	10	—	-	ns
Previously read data valid with respect to chip enable	tOH2	10	-	_	ns
Write cycle					
Write cycle time	twc	150	_	<u> </u>	ns
Write delay time	tAW	0	-	_ · ·	ns
Chip enable CE1 to write	^t CW1	120		_	ns
Chip enable CE2 to write	tCW2	120	-	-	ns
Data set-up time	tDW	70	_	_	ns
Data hold time	tDH	0	-	-	ns
Write pulse duration	twp	70	-	-	ns
Write recovery time	twr	0	-	- $-$	ns
Output disable OD set-up time	tDS	70	-	-	ns

A.C. TEST CONDITIONS ($V_{DD} = 3$)	V) a d	
Input pulse levels	0,4 V to 1,6 V	V _{DD} a sa s
Input rise and fall times	5 ns	1920 Ω
Input timing reference levels	1,0 V	and the second
Output timing levels	1,0 V	data output
Output timing levels for high/low impedance	0,7 V and 1,7 V	
Output load	Fig. 5	7777 7287757

Fig. 5 Test load.

A.C. CHARACTERISTICS (V_{DD} = 3 V)

 V_{DD} = 3 ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C; loads as per Fig. 5 with C_L = 100 pF unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle			-	an th	
Read cycle time	tRC	400		<u>-</u> : • .	ns
Address access time	^t AA	— ·	<u> </u>	400	ns
Chip enable $\overline{CE1}$ to output	tcO1	-	$a^{2}-a^{2}=0$	400	ns
Chip enable CE2 to output	tCO2	-	°. —	400	ns
Output disable OD to output	toD	, <u></u> ;		200	ns
Data output to high impedance state at C _L = 5 pF	^t DF	10	- -	200	ns
Previously read data valid with respect to address change	tOH1	10	n an an the The second se	2017 20 17 - 100	ns
Previously read data valid with respect to chip enable	^t OH2	10			ns
Write cycle				:	
Write cycle time	twc	400	_	<u> </u>	ns
Write delay time	tAW	0	-		; ns.
Chip enable $\overline{CE1}$ to write	^t CW1	300	<u> </u>	<u> </u>	ns
Chip enable CE2 to write	^t CW2	300	-	. — ¹ .	ns
Data set-up time	tDW	200			ns
Data hold time	^t DH	0	<u> </u>	e r i	ns
Write pulse duration	twp	200	-	_	ns
Write recovery time	twr	0	-	.	ns
Output disable OD set-up time	t _{DS}	200	<u> </u>		ns

WAVEFORMS

July 1984

LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

 $CE2 \le 0.2 \text{ V}; \text{ T}_{amb} = -25 \text{ to } + 70 \text{ }^{o}\text{C}.$

parameter	symbol	min.	typ.	max.	unit
Supply voltage for data retention	VDR	1,0	· _ ·	5,5	V
Data retention current at V_{DD} = 1,5 V	IDR	n <u>aa</u> n g	0,02	2,0	μΑ
Chip deselect to data retention time	^t CDR	0	<u> </u>	-	ns
Operation recovery time	t _R .	0		-	ns

Fig. 8 Low supply voltage data retention characteristics.

100

DEVELOPMENT DATA This data sheet contains advance information and

specifications are subject to change without notice.

PCD5114

1024 x 4-BIT STATIC RAM

GENERAL DESCRIPTION

The PCD5114 is a low-power, high-speed 4096-bit static CMOS RAM, organized as 1024 words of 4 bits each. The IC is suitable for low power and high speed applications, for battery operation and where battery backup is required. Inputs R/\overline{W} and \overline{CE} control the read/write operation and standby mode respectively. The PCD5114 is pin compatible with the SBB2114 types.

Features

- Operating supply voltage
- Low data retention voltage
- Low standby current
- Cycle time = access time
- Static operation requiring no clock or timing strobe
- Low power consumption
- 3-state common data input/output interface
- All inputs and outputs directly TTL compatible
- Pin compatible with SBB2114 variants
- 18-lead DIL package
- 20-lead SO package

2,5 V to 5,5 V min. 1,0 V max. 5 μA max. 200 ns

PACKAGE OUTLINES

PCD5114P: 18-lead DIL; plastic (SOT102G). PCD5114T: 20-lead mini-pack; plastic (SO20; SOT163A).

Fig. 2 Pinning diagram: PCD5114D; PCD5114P.

A ₀ to A ₃	column address inputs
A4 to A9	row address inputs
ĈĒ	chip enable input
R/W	read/write input

Fig. 3 Pinning diagram: PCD5114T.

1/01 to 1/04	data input/output
V _{SS}	negative supply (ground)
V _{DD}	positive supply (+ 5 V)

Table 1 Mode selection

CE	R∕₩	mode	output	power
H	H	not selected	high impedance	standby
H	L	not selected	high impedance	standby
L	H	read	active	active
L	L	write	high impedance	active

H = HIGH logic level (the most positive voltage)

L = LOW logic level (the most negative voltage)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	V _{DD}	-0,3 to +8 V
Input voltage range (any pin)	V _I	V_{SS} –0,3 to V_{DD} + 0,3 V
Storage temperature range	T _{stg}	-55 to + 125 °C
Operating ambient temperature range	Tamb	-25 to +70 °C

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

D.C. CHARACTERISTICS

 V_{DD} = 5 V \pm 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply current at VI = VDD/VSS; f = 1 MHz; outputs open at VI = 0,8 V/2,0 V; f = 1 MHz; outputs open at VI = 0,8 V/2,0 V; f = 5 MHz; outputs open		-	10 10 12	17 17 20	mA mA mA
Standby current at CE = V _{DD} Input voltage HIGH	I _{SB} VIH	_ 2,0	0,02 —	5 V _{DD} + 0,3 +0,8	μΑ V V
Input voltage LOW Input leakage current at VI = VSS to VDD	VIL ± IIL	0,3 -	_	0,1	μA
Output voltage HIGH at -IOH = 2 mA	∨он	2,4	-	_	v
Output voltage LOW at IOL = 4 mA	VOL	-	-	0,4	v
Output leakage current at $V_0 = V_{SS}$ to V_{DD} ; $\overline{CE} = HIGH$	^{± I} OL	-		0,5	μA

D.C. CHARACTERISTICS

 V_{DD} = 3 V ± 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 °C; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Operating supply current at $V_I = V_{DD}/V_{SS}$; f = 1 MHz; outputs open at $V_I = 0,4 V/1,6 V$; f = 1 MHz; outputs open			5 5	8 8	mA mA
Stand <u>by</u> current at CE = V _{DD}	I _{SB}	_	0,02	5	μA
Input voltage HIGH Input voltage LOW	VIH VIL	1,6 0,3	-	V _{DD} + 0,3 +0,4	v v
Input leakage current at VI = VSS to VDD Output voltage HIGH	±IIL	-		0,1	μA
at $-I_{OH} = 1 \text{ mA}$	Voн	1,7		— 1	v
Output voltage LOW at IOL = 1 mA	VOL	-	_	0,3	v
Output leakage current at VO = VSS to VDD; CE = HIGH	± IOL	_	_	0,5	μA

A.C. CHARACTERISTICS

 V_{DD} = 5 V ±0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70 o C; measured in Fig. 4, C_{L} = 100 pF; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	tRC	200	_ ·	_	ns
Address access time	tAA	-	_	200	ns
Chip select access time	tAC	-	_	200	ns
Output hold from address change	tOHA	20	_	_`	ns
Output hold from chip select	tOHC	20	_	-	ns
Output to low impedance from chip selection at $C_L = 5 \text{ pF}$	^t CLZ	20	_	_	ns
Output to high impedance from chip deselection at $C_L = 5 \text{ pF}$	^t CHZ	_	_	80	ns
Write cycle					
Write cycle time	twc	200	_	_	ns
Chip selection to end of write	tCW	120	-	-	ns
Address set-up time	tAS	0	_	_	ns
Write pulse duration	twp	140	-	-	ns
Write recovery time	twr	0	-	-	ns
Data set-up time	tDS	80	_	_ ·	ns
Data hold time	tDH	0		-	ns
Output to high impedance from write enabled at $C_L = 5 \text{ pF}$	twz	_	_	60	ns
Output active from end of write at C _L = 5 pF	tRZ	20	_	-	ns

A.C. TEST CONDITIONS (see Fig. 4)

Input pulse levels	0,8 V to 2,0 V	
Input rise and fall times	5 ns	
Input timing reference levels	1,5 V	V _{DD}
Output timing levels	1,5 V	960 Ω
Output timing levels for high/low impedance	1,2 V and 2,8 V	Ϋ́
Output load	2 TTL gates and $C_L = 100 \text{ pF}$	

Fig. 4 Load for a.c. test conditions $(V_{DD} = 5 V \pm 0.5 V).$

104

A.C. CHARACTERISTICS

 V_{DD} = 3 V \pm 0,5 V; V_{SS} = 0 V; T_{amb} = -25 to + 70°C; measured in Fig. 5, CL = 100 pF; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Read cycle					
Read cycle time	tRC	500	-	-	ns
Address access time	tAA	-	-	500	ns
Chip select access time	^t AC	_	-	500	ns
Output hold from address change	tOHA	20	-	-	ns
Output hold from chip select	tонс	20	-	_	ns
Output to low impedance from chip selection at $C_L = 5 \text{ pF}$	tCLZ	20	_		ns
Output to high impedance from chip deselection at $C_L = 5 \text{ pF}$	^t CHZ	- -	_	200	ns
Write cycle					
Write cycle time	twc	500	-		ns
Chip selection to end of write	tCW	300	-	_	ns
Adress set-up time	tAS	0	-	_	ns
Write pulse duration	tWP	350	-	_	ns
Write recovery time	twr	0	-		ns
Data set-up time	tDS	200	-	_	ns
Data hold time	^t DH	0	-	_	ns
Output to high impedance from write enabled at $C_L = 5 \text{ pF}$	twz	. –	_	150	ns
Output active from end of write at $C_L = 5 pF$	tRZ	20	-	_	ns

A.C. TEST CONDITIONS (see Fig. 5)

Input pulse levels	0,4 V to 1,6 V	
Input rise and fall times	5 ns	
Input timing reference levels	1,0 V	
Output timing levels	1,0 V	
Output timing levels for high/low impedance	0,7 V and 1,7 V	
Output load	2 TTL gates and $C_L = 100 pF$	1,92 kΩ

Fig. 5 Load for a.c. test conditions $(V_{DD} = 3 V \pm 0.5 V).$

PCD5114

Fig. 6 Read cycle timing (1): R/W is HIGH; CE is LOW for a read cycle.

Fig. 7 Read cycle timing (2): R/W is HIGH for a read cycle.

Fig. 9 Write cycle (2): CE controlled.

Note : If the \overline{CE} low transition occurs after the R/ \overline{W} low transition, the outputs remain in the high impedance state.

June 1985

CAPACITANCE

f = 1 MHz; T_{amb} = 25 °C

parameter	symbol	min.	typ.	max.	unit
Input capacitance at VI = VSS	CI	_		5	pF
Output capacitance at V _O = V _{SS}	co	·	_	5	pF

LOW V_{DD} data retention characteristics

T_{amb} = -25 to + 70 °C

parameter	symbol	min.	typ.	max.	unit
V _{DD} for data retention at CE = V _{DDR} ± 0,2 V; V _I = V _{DDR} to V _{SS}	V _{DDR}	1		5,5	v
Data retention current at V _{DDR} = 1,5 V	IDDR	-	0,02	2	μA
Chip deselect to data retention time	^t CR	0	—	-	ns
Operation recovery time	^t R	0		_	ns

Fig. 10 LOW VDD data retention.

PCF8570 PCF8570C PCF8571

128 X 8-BIT/256 X 8-BIT STATIC RAMS WITH I²C-BUS INTERFACE

GENERAL DESCRIPTION

The PCF8570, PCF8570C and PCF8571 are low-power static CMOS RAMs. The PCF8570 and PCF8570C are organized as 256 words by 8-bits and the PCF8571 is organized as 128 words by 8-bits. Addresses and data are transferred serially via a two-line bidirectional bus (l^2C). The built-in word address register is incremented automatically after each written or read data byte. Three address pins A0, A1 and A2 are used for hardware address, allowing the use of up to eight devices connected to the bus without additional hardware. For system expansion over 8 devices the PCF8570/71 can be used in conjunction with the PCF8750C which has an alternative slave address for memory extension up to 16 devices.

Features

- Operating supply voltage
- Low data retention voltage min. 1.0 V
- Low standby current
- Power saving mode

Applications

- Telephony
- Radio and television
- Video cassette recorder
- General purpose

RAM expansion for stored numbers in repertory dialling (e.g. PCD3343 applications)

Serial input/output bus (I²C)

8-lead DIL package

Address by 3 hardware address pins

Automatic word address incrementing

channel presets

2.5 V to 6 V

max. 15 µA

typ. 50 nA

channel presets

RAM expansion for the microcontroller families MAB8400, PCF84CXX and most other microcontrollers

PCF8570/PCF8570C/ PCF8571/P: 8-lead DIL; plastic (SOT97). PCF8570/PCF8570C/ PCF8571/T: 8-lead mini-pack (SO8L; SOT176C).

March 1989

PCF8570 PCF8570C PCF8571

PINNING

1 to 3 4	A0 to A2 Vss	address inputs negative supply
5	SDA	
6	SCL	serial data line) 1 ² C-bus
7	TEST	test input for test speed-up; must be connected to V _{SS} when not in use
		(power saving mode, see Figs 12 and 13)
8	V _{DD}	positive supply

Fig.2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range	V _{DD}	0.8	+ 8.0	V
Input voltage range	V _I	-0.8	V _{DD} +0.8	v
DC input current	± 1		10	mA
DC output current	± IO	-	10	mA
VDD or VSS current	± IDD; ± ISS		50	mA
Total power dissipation	P _{tot}		300	mW
Power dissipation per output	PO		50	mW
Operating ambient temperature range	Tamb	-40	+ 85	oC
Storage temperature range	T _{stg}	65	+ 150	٥C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

Purchase of Philips' I²C components conveys a license under the Philips' I²C patent to use the components in the I²C-system provided the system conforms to the I²C specifications defined by Philips.

110

March 1989

CHARACTERISTICS

 V_{DD} = 2.5 to 6 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage		VDD	2.5	-	6.0	v
Supply current operating	VI = V _{DD} or V _{SS} f _{SCL} = 100 kHz	DD	_	-	200	μA
standby	f _{SCL} = 0 Hz T _{amb} =25 to + 70 °C			- -	15 5	μΑ μΑ
Power-on reset level	note 1	VPOR	1.5	1.9	2.3	v
Inputs, input/output SDA						
Input voltage LOW	note 2	VIL	-0.8	_	0.3 V _{DD}	v
Input voltage HIGH	note 2	VIH	0.7 V _{DD}	-	V _{DD} +0.8	v
Output current LOW	V _{OL} = 0.4 V	IOL	3	-	_	mA
Leakage current	$V_{I} = V_{DD}$ or V_{SS}	11LL	-	-	1	μA
Inputs A0 to A2; TEST						
Input leakage current	V _I = V _{DD} or V _{SS}	±ILI	-	-	250	nA
Inputs SCL; SDA						
Input capacitance	VI = VSS	CI		-	7	pF
LOW VDD data retention						
Supply voltage for data retention	• • • •	VDDR	1	_	6	v
Supply current	V _{DDR} = 1 V	IDDR	_	_	5	μA
Supply current	$V_{DDR} = 1 V;$					
	$T_{amb} = -25 \text{ to } + 70 \text{ °C}$	IDDR	-	-	2	μA
Power saving mode	see Figs 12 and 13					
Supply current	TEST = V _{DD} ; T _{amb} = 25 °C					
PCF8570/PCF8570C PCF8571		I _{DDR} I _{DDR}	-	50 50	400 200	nA nA
Recovery time		tHD2		50	-	μs

Notes to the characteristics

- The power-on reset circuit resets the I²C-bus logic when V_{DD} < V_{POR}. The status of the device after a power-on reset condition can be tested by sending the slave address and testing the acknowledge bit.
- 2. If the input voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow: this current must not exceed \pm 0.5 mA.

CHARACTERISTICS OF THE I²C-BUS

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig.3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig.4 Definition of start and stop conditions.

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by *not* generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

1

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	-	-	100	kHz
Tolerable spike width on bus	tSW	-	-	100	ns
Bus free time	tBUF	4.7	-	-	μs
Start condition set-up time	^t SU; STA	4.7	_	-	μs
Start condition hold time	tHD;STA	4.0	-	-	μs
SCL LOW time	tLOW	4.7	-	-	μs
SCL HIGH time	tHIGH	4.0	-	-	μs
SCL and SDA rise time	tr		-	1.0	μs
SCL and SDA fall time	t _f	-		0.3	μs
Data set-up time	tSU; DAT	250	-	-	ns
Data hold time	tHD; DAT	0	-	_	ns
SCL LOW to data out valid	tVD; DAT	-	-	3.4	μs
Stop condition set-up time	^t SU; STO	4.0			μs

Fig.7 I²C-bus timing diagram.

March 1989

114

Bus protocol

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The I²C-bus configuration for different PCF8570/PCF8570C/PCF8571 READ and WRITE cycles is shown in Fig.8.

(WRITE word address; READ data).

APPLICATION INFORMATION

The PCF8570/PCF8571 slave address has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig.9). The PCF8570C has slave address 1011 as group 1, while group 2 is fully programmable (see Fig.10).

Fig.9 PCF8570 and PCF8571 address.

Fig.10 PCF8570C address.

A0, A1, and A2 inputs must be connected to VDD or VSS but not left open-circuit.

Note

March 1989

It is recommended that a 4.7 $\mu F/10$ V solid aluminium capacitor (SAL) be connected between V_DD and V_SS.

Fig.11 Application diagram.

March 1989

POWER SAVING MODE

With the condition TEST = V_{DD} or V_{DDR} the PCF8570/PCF8570C/PCF8571 goes into the power saving mode and I²C-bus logic is reset.

(1) Power saving mode without 5 V supply voltage.

(2) Power saving mode with 5 V supply voltage.

(3) t_{SU} and $t_{HD1} \ge 4 \ \mu s$ and $t_{HD2} \ge 50 \ \mu s$.

Fig.12 Timing for power saving mode.

(1) In the operating mode TEST = 0; In the power saving mode TEST = V_{DDR} . It is recommended that a 4.7 μ F/10 V solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS} .

Fig.13 Application example for power saving mode.

.118

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

CLOCK CALENDAR WITH 256 X 8-BIT STATIC RAM

GENERAL DESCRIPTION

The PCF8583 is a low power 2048-bit static CMOS RAM organized as 256 words by 8-bits. Addresses and data are transferred serially via a two-line bidirectional bus (I²C). The built-in word address register is incremented automatically after each written or read data byte. One address pin A0 is used for programming the hardware address, allowing the connection of two devices to the bus without additional hardware. The built-in 32.768 kHz oscillator circuit and the first 8 bytes of the RAM are used for the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm registers or used as free RAM space.

Features

- I²C-bus interface operating supply voltage: 2.5 V to 6 V
- Clock operating supply voltage (0 to 70 °C): 1.0 V to 6 V
- Data retention voltage: 1.0 V to 6 V
- Operating current (f_{SCL} = 0 Hz): max. 50 μA
- Clock function with four year calendar
- 24 or 12 hour format
- 32.768 kHz or 50 Hz time base
- Serial input/output bus (I²C)
- Automatic word address incrementing
- Programmable alarm, timer and interrupt function

PACKAGE OUTLINES

PCF8583P: 8-lead DIL; plastic (SOT97). PCF8583T: 8-lead mini-pack; plastic (SO8L; SOT176A).

PINNING

1 OSCI oscillator input, 50 Hz or event-pulse	input
---	-------

- 2 OSCO oscillator output
- 3 A0 address input
- 4 V_{SS} negative supply
- 5 SDA serial data line
- 6 SCL serial clock line
- l²C-bus
- 7 INT open drain interrupt output (active low)
- 8 V_{DD} positive supply

Fig.2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range (pin 8)	V _{DD}	0.8	+ 7.0	v
Supply current (pin 4 or pin 8)	IDD; ISS	_	50	mA
Input voltage range	VI	–0.8 to V _{DD}	+ 0.8	V
DC input current	l _l	_	10	mA
DC output current	IO	-	10	mA
Power dissipation per package	P _{tot}		300	mW
Power dissipation per output	PO	-	50	mW
Operating ambient temperature range	T _{amb}	40	+ 85	°C
Storage temperature range	T _{stg}	-65	+ 150	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

FUNCTIONAL DESCRIPTION

The PCF8583 contains a 256 by 8-bit RAM with an 8-bit auto-increment address register, an on-chip 32.768 kHz oscillator circuit, a frequency divider, a serial two-line bidirectional I²C-bus interface and a power-on reset circuit.

The first 8 bytes of the RAM (memory addresses 00 to 07) are designed as addressable 8-bit parallel registers. The first register (memory address 00) is used as a control/status register. The memory addresses 01 to 07 are used as counters for the clock function. The memory addresses 08 to 0F are free RAM locations or may be programmed as alarm registers.

Counter function modes

When the control/status register is set a 32.768 kHz clock mode, a 50 Hz clock mode or an eventcounter mode can be selected.

In the clock modes the hundredths of a second, seconds, minutes, hours, date, month (four year calendar) and weekdays are stored in a BCD format. The timer register stores up to 99 days. The eventcounter mode is used to count pulses applied to the oscillator input (OSCO left open). The event counter stores up to 6 digits of data.

When one of the counters is read (memory locations 01 to 07), the contents of all counters are strobed into capture latches at the beginning of a read cycle. Therefore faulty reading of the count during a carry condition is prevented.

When a counter is written, other counters are not affected.

Alarm function modes

By setting the alarm enable bit of the control/status register the alarm control register (address 08) is activated.

By setting the alarm control register a dated alarm, a daily alarm, a weekday alarm or a timer alarm may be programmed. In the clock modes, the timer register (address 07) may be programmed to count hundredths of a second, seconds, minutes, hours or days. Days are counted when an alarm is not programmed.

Whenever an alarm event occurs the alarm flag of the control/status register is set. A timer alarm event will set the alarm flag and an overflow condition of the timer will set the timer flag. The open drain interrupt output is switched on (active LOW) when the alarm or timer flag is set (enabled). The flags remain set until directly reset by a write operation.

When a timer function without any alarm function is programmed the remaining alarm registers (addresses 09 to 0F) may be used as free RAM space.

Control/status register

The control/status register is defined as the memory location 00 with free access for reading and writing via the I²C-bus. All functions and options are controlled by the contents of the control/status register (see Fig.3).

Fig.3 Control/status register.

Counter registers

In the different modes the counter registers are programmed and arranged as shown in Fig.4. Counter cycles are listed in Table 1.

In the clock modes 24 h or 12 h format can be selected by setting the most significant bit of the hours counter register. The format of the hours counter is shown in Fig.5.

The year and date are packed into memory location 05 (see Fig.6). The weekdays and months are packed into memory location 06 (see Fig.7). When reading these memory locations the year and weekdays are masked out when the mask flag of the control/status register is set. This allows the user to read the date and month count directly.

In the event-counter mode events are stored in BCD format. D5 is the most significant and D0 the least significant digit. The divider is by-passed.

					-
Control/Status			Control	/Status	00
Hundredths		1	D1 D0		1 **
1/10s	1/100s			00	01
Seco 10s I	onds 1s		D3	D2	
Min					02
10 m	1 m		D5	D4	
Ho	urs				03
10 h	1 h		fre	ee	04
Year/	Date	1 [fre		1 ~
10 d	1 d				05
Weekda			fre	e	
10 m	1 m				06
Tim 10d	ner 1d		Tin T1 I	ner T0	
					07
Alarm control			Alarm control		
Hundredths	of a second		Alarm	Alarm	08
1/10s	1/100 s		D1	D0	09
Alarm seconds			D3	D2	1
					- 0A
Alarm m	ninutes		D5	D4	
Alarm	bours				- ⁰⁸
	nours		fre	e	
Alarm	date				00
			fre	:e	
Alarm month			free		1
					0E
Alarm timer			Alarm timer		
					OF
free RAM			free RAM		
		l l	\sim		J
CLOCK I	MODES		EVENT C	OUNTER	
2200111					

7**Z**81195

Counter registers (continued)

Fig.5 Format of the hours counter.

Fig.6 Format of the year/date counter,

Fig.7 Format of the weekdays/months counter.

unit counting cycle		carry to the next unit	contents of the month counter		
hundredths of					
a second	00 to 99	99 to 00			
seconds	00 to 59	59 to 00			
minutes	00 to 59	59 to 00			
hours (24 h)	00 to 23	23 to 00			
hours (12 h)	12 AM, 01 AM to 11 AM, 12 PM, 01 PM to 11 PM	11 PM to 12 AM			
date	01 to 31 01 to 30 01 to 29 01 to 28	31 to 01 30 to 01 29 to 01 28 to 01	1, 3, 5, 7, 8, 10, 12 4, 6, 9, 11 2, year = 0 2, year = 1, 2, 3		
months	01 to 12	12 to 01			
year	0 to 3				
weekdays	0 to 6	6 to 0			
timer	00 to 99	no carry			

Table 1 Cycle length of the time counters, clock modes

Alarm control register

When the alarm enable bit of the control/status register is set the alarm control register (address 08) is activated. All alarm, timer and interrupt output functions are controlled by the contents of the alarm control register (see Figs 8a and 8b).

Fig.8a Alarm control register, clock modes.

Fig.8b Alarm control register, event-counter mode.

Alarm registers

All alarm registers are allocated with a constant address offset of hex 08 to the corresponding counter registers.

An alarm goes off when the contents of the alarm registers matches bit-by-bit the contents of the involved counter registers. The year and weekday bits are ignored in a dated alarm. A daily alarm ignores the month and date bits. When a weekday alarm is selected, the contents of the alarm weekday/month register will select the weekdays on which an alarm is activated (see Fig.9).

Note: In the 12 h mode bits 6 and 7 of the alarm hours register must be the same as the hours counter.

Interrupt output

The open-drain n-channel interrupt output is programmed by setting the alarm control register. It is switched on (active LOW) when the alarm flag or the timer flag is set. In the clock mode without alarm the output sequence is controlled by the timer flag. The OFF voltage of the interrupt output may exceed the supply voltage.

Oscillator and divider

A 32.768 kHz quartz crystal has to be connected to OSCI (pin 1) and OSCO (pin 2). A trimmer capacitor between OSCI and V_{DD} is used for tuning the oscillator (see quartz frequency adjustment). A 100 Hz clock signal is derived from the quartz oscillator for the clock counters.

In the 50 Hz clock mode or event-counter mode the oscillator is disabled and the oscillator input is switched to a high impedance state. This allows the user to feed the 50 Hz reference frequency or an external high speed event signal into the input OSCI.

Initialization

When power-up occurs the I²C-bus interface, the control/status register and all clock counters are reset. The device starts time keeping in the 32.768 kHz clock mode with the 24 h format on the first of January at 0.00.00: 00. 1 Hz is output at the interrupt (starts HIGH). This can be disabled by setting the alarm enable bit in the control/status register.

A second level-sensitive reset signal to the I²C-bus interface is generated as soon as the supply voltage drops below the interface reset level. This reset signal does not affect the control/status or clock counter registers.

It is recommended to set the stop counting flag of the control/status register before loading the actual time into the counters. Loading of illegal states will lead to a clock malfunction but will not latch up the device.

CHARACTERISTICS OF THE I²C-BUS

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

System configuration

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Fig.12 System configuration.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master also generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledge has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. A master receiver must signal an end of data to the transmitter by *not* generating an acknowledge on the last byte that has been clocked out of the slave the data line HIGH to enable the master to generate a stop condition.

Fig.13 Acknowledgement on the I²C-bus.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	-	-	100	kHz
Tolerable spike width on bus	tsw	-	-	100	ns
Bus free time	tBUF	4.7	-	_	μs
Start condition set-up time	^t SU; STA	4.7	_	_	μs
Start condition hold time	^t HD; STA	4.0	-		μs
SCL LOW time	^t LOW	4.7	-	_	μs
SCL HIGH time	thigh	4.0	-	-	μs
SCL and SDA rise time	t _r	-	-	1.0	μs
SCL and SDA fall time	t _f	-	-	0.3	μs
Data set-up time	^t SU; DAT	250	-	-	ns
Data hold time	^t HD; DAT	0	-	-	ns
SCL LOW to data out valid	^t VD; DAT	-	_	3.4	μs
Stop condition set-up time	^t SU; STO	4.0	-	-	μs

I²C-bus protocol

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The I²C-bus configuration for the different PCF8583 READ and WRITE cycles is shown in Fig.15.

Fig. 15b Master reads after setting word address (WRITE word address; READ data).

132

CHARACTERISTICS

 V_{DD} = 2.5 to 6.0 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage operating clock	T _{amb} = 0 to + 70 °C	V _{DD} V _{DD}	2.5 1.0	-	6.0 6.0	v v
Supply current operating clock clock	f _{SCL} = 100 kHz V _{DD} = 5 V V _{DD} = 1 V	I _{DD} I _{DDO} I _{DDO}		_ 10 2	200 50 10	μΑ μΑ μΑ
Power-on reset voltage level	note 1	V _{POR}	1.5	1.9	2.3	V
Inputs; Input/output SDA						
Input voltage LOW	note 2	VIL	-0.8	-	0.3V _{DD}	V
Input voltage HIGH	note 2	V _{IH}	0.7V _{DD}	—	V _{DD} + 0.8	v
Output current LOW Leakage current	V _{OL} = 0.4 V V _I = V _{DD} or V _{SS}	IOL L	3 -		- 1	mA μA
A0; OSCI						
Input leakage current	$V_I = V_{DD}$ or V_{SS}	ILL	-	-	250	nA
SCL; SDA Input capacitance	V _I = V _{SS}	CI			7	рF
Input capacitance	vi - vss	9	-	-		þi
Output INT						
Output current LOW Leakage current	V _{OL} = 0.4 V V _I = V _{DD} or V _{SS}	ו₀∟ וו∟ו	3	— —	- 1	mA μA
LOW V _{DD} data retention						
Supply voltage for data retention		V _{DDR}	1	_	6	v
Supply current	note 3 V _{DDR} = 1 V T _{amb} = -25 to + 70 °C;	IDDR	_	_	5	μA
	V _{DDR} = 1 V	IDDR	_	_	2	μA

AND A DECK STATE

parameter	conditions	symbol	min.	typ.	max.	unit
Oscillator						
Integrated oscillator			45.000		1	
capacitance		COSC	_ ·	40	-	рF
Oscillator stability						
for ∆V _{DD} = 100 mV	T _{amb} = 25 °C; V _{DD} = 1.5 V					
	V _{DD} = 1.5 V	f/fOSC		2 x 10 ⁻⁷		
Input frequency	note 4	fi	-	-	1	MHz
Quartz crystal			- 14			
parameters						
Frequency = 32.768 kHz						
Series resistance		RS	-		40	kΩ
Parallel capacitance		CI	 '	10	-	pF
Trimmer capacitance		CT	5	_	25	pF

Notes to the characteristics

- 1. The power-on reset circuit resets the I^2C -bus logic when $V_{DD} < V_{POR}$.
- 2. When the voltages are a diode voltage above or below the supply voltage V_{DD} or V_{SS} an input current will flow; this current must not exceed \pm 0.5 mA.
- 3. Event or 50 Hz mode only (no Quartz).
- 4. Event mode only.

APPLICATION INFORMATION

Quartz frequency adjustment

Method 1: Fixed OSCI capacitor

By evaluating the average capacitance necessary for the application layout a fixed capacitor can be used. The frequency is best measured via the 1 Hz signal available after power-on at the interrupt output (pin 7). The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance and the device-to-device tolerance (on average $\pm 5 \times 10^{-6}$). Average deviations of ± 5 minutes per year can be achieved.

Method 2: OSCI Trimmer

Using the alarm function (via the I²C-bus) a signal faster than 1 Hz can be generated at the interrupt output for fast setting of a trimmer.

Procedure:

Power-on Initialization (alarm function)

Routine:

Set clock to time T and set alarm to time T + dT. At time T + dT (interrupt) repeat routine.

If time dT is approximately 10 ms a frequency of approximately 40 Hz is obtained.

APPLICATION INFORMATION (continued)

The PCF8583 slave address has a fixed combination 1010 as group 1.

Fig.16 PCF8583 address.

Recommendation: Connect a 4.7 μ F 10 V solid aluminium (SAL) capacitor between V_{DD} and V_{SS}.

Fig.17 PCF8583 application diagram.

February 1989

135

Fig.18 Typical supply current as a function of supply voltage (clock); $T_{amb} = -40$ to + 85 °C.

Purchase of Philips' I²C components conveys a license under the Philips' I²C patent to use the components in the I²C-system provided the system conforms to the I²C specifications defined by Philips.

136

February 1989

CMOS EEPROM

444

PCA8582B	256 x 8-bit static EEPROM with I ² C-bus interface	
	for automotive applications	139
PCF8581/81C	128 x 8-bit EEPROM with I ² C-bus interface	151
PCF8582A	256 x 8-bit static EEPROM with I ² C-bus interface \ldots	161
PCF8582C	256 x 8-bit static EEPROM with I ² C-bus interface	
	for automotive applications	171

page

This data sheet contains advance information and specifications are subject to change without notice.

256 x 8-BIT STATIC CMOS EEPROM WITH I²C-BUS INTERFACE FOR AUTOMOTIVE APPLICATIONS

GENERAL DESCRIPTION

The PCA8582B is a 2 Kbit (256 x 8 bit) floating gate electrically erasable programmable read only memory (EEPROM). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases reliability compared to conventional EEPROM memories.

Power consumption is low due to the full CMOS technology used. The programming voltage is generated on chip using a voltage multiplier.

As data bytes are received and transmitted via the serial I²C-bus, an eight pin DIL package is sufficient. Up to eight PCA8582B devices may be connected to the I²C-bus.

Chip select is accomplished by three address inputs.

Timing of the Erase/Write cycle can be done in two ways: either by connecting an external clock to the "Programming Time Control (PTC)" pin (7) or by using an internal oscillator. In the latter application an RC time constant must be connected to pin 7.

Features

- Non-volatile storage of 2 Kbits organized as 256 x 8 bits
- High reliability by using a redundant storage code (single bit error correction)
- Only one power supply required
- On chip voltage multiplier for erase/write
- Serial input/output bus (I²C)
- Automatic word address incrementing
- Low power consumption
- One point erase/write timer
- Power on reset
- Up to 500 000 erase/write cycles per byte
- 10 years non-volatile data retention time
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571 and PCD8572
- External clock signal possible
- Extended temperature range: -40 to +125 °C

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage range	VDD	4.5	5	5.5	v
Operating supply current READ	IDD	-	-	0.6	mA
Operating supply current WRITE/ERASE	IDD	-		2	mA
Standby supply current	IDDO		-	20	μA

PACKAGE OUTLINES

PCA8582BP: 8-lead DIL, plastic (SOT97). PCA8582BT: 16-lead mini-pack; plastic (SO16L; SOT162A).

PCA8582B

Fig.1 Block diagram for PCA8582BP.

August 1989

140

PCA8582B

PINNING

Fig.2 (b) Pinning diagram (PCA8582BT).

1	A0	
2	A1	address inputs
3	A2	
4	VSS	ground
5	SDA)	1 ² O L L
6	SCL)	l ² C-bus lines
7	PTC	programming time control
8	VDD	positive supply voltage
1	n.c.)	
2	n.c.	not connected
3	A0 1	
4	A1	address inputs
5	A2	·
6	Vss	ground
7	n.c.	3
8	n.c.	
9	n.c.	not connected
10	n.c.	
11	SDA)	
12	SCL	I ² C-bus lines
13	PTC	programming time control
14	VDD	positive supply voltage
15	n.c.)	

16 n.c. i not connected

August 1989

FUNCTIONAL DESCRIPTION

Characteristics of the I²C-bus

The I²C-bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The following bus conditions have been defined:

Bus not busy: both data and clock lines remain HIGH.

Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH defines the start condition.

Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the stop condition.

Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the I^2 C-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCA8582B operates in both modes.

By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".

Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.

Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the I²C-bus are available on request.

I² C-Bus Protocol

40-1

The I^2 C-bus configurations for different READ and WRITE cycles of the PCA8582B are shown in Fig.4, (a) (b) and (c).

- After this stop condition the erase/write cycle starts and the bus is free for another transmission. Its duration is 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the 1²C-bus.
- (2) The second data byte is voluntary. It is not allowed to erase/write more that two bytes.

Fig.4 (b) Master reads PCA8582B slave after setting word address (WRITE word address; READ data).

FUNCTIONAL DESCRIPTION (continued)

Chip address (slave address) allocation

Three chip address inputs (A0, A1, A2) can produce eight different chip addresses. This means that up to eight different PCA8582B devices may be connected to the I²C-bus. Address allocation is illustrated by Fig.5.

Fig.5 Slave address.

I² C-bus timing

144

PCA8582B

Fig.7 (a) One byte ERASE/WRITE cycle.

Fig.7 (b) Two byte ERASE/WRITE cycles.

(1) If an external clock is chosen for the PTC, this information is latched internally by leaving pin 7 LOW after transmission of the eighth bit of the word address (negative edge of SCL). The state of the PTC then, may be previously undefined.

August 1989 145

PCA8582B

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V _{DD}	-0.3	+7	V
Voltage on any input pin input impedance $> 500 \Omega$	VI	V _{SS} – 0.8	V _{DD} + 0.8	
Operating ambient temperature range	Tamb	40	+ 125	oC .
Storage temperature range	T _{stg}	65	+ 150	°C
Current into any input pin	111	-	1	mA
Output current	llol	-	10	mA

Purchase of Philips' l^2C components conveys a license under the Philips' l^2C patent to use the components in the l^2C -system provided the system conforms to the l^2C specifications defined by Philips.

146

CHARACTERISTICS

 V_{DD} = 5 V; V_{SS} = 0 V; T_{amb} = -40 to + 125 °C unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage		VDD	4.5	5	5.5	V
Operating supply current READ	V _{DD} = 5.5 V f _{SCL} = 100 kHz	IDD	_	_	0.6	mA
Operating supply current WRITE/ERASE	V _{DD} = 5.5 V	IDDW	_	_	2.0	mA
Standby supply current	V _{DD} = 5.5 V	IDDO	-	-	20	μA
Input PTC						
Input voltage HIGH		VIH	V _{DD} -0.3		-	v
Input voltage LOW		VIL	-		V _{SS} +0.3	v
Input SCL and input/output SDA						
Input voltage HIGH		VIH	3.0	-	V _{DD} +0.8	v
Input voltage LOW		VIL	0.3	-	1.5	V
Output voltage LOW	I _{OH} = 3 mA; V _{DD} = 4.5 V	VOL	_	_	0.4	v
Output leakage current HIGH	V _{OH} = V _{DD}	ILO	_	_	10	μA
Input leakage current (SCL)	$V_I = V_{DD}$ or V_{SS}	±111	_	_	10	μΑ
Clock frequency	V _I = V _{SS}	fSCL	0		100	kHz
Input capacitance (SCL; SDA)	1 00	CI		_	7	pF
Time the bus must be free before new transmission can start		tBUF	4.7			μs
Start condition hold time after which first clock pulse is						
generated		^t HD; STA	4	-	-	μs
The LOW period of the clock		^t LOW	4.7		-	μs
The HIGH period of the clock		thigh	4			μs
Set-up time for start condition	repeated start	^t SU; STA	4.7	_	_	μs
Data hold time for I ² C-bus compatible masters		^t HD; DAT	5		_	μs

CHARACTERISTICS (continued)

parameter	conditions	symbol	min.	typ.	max.	unit
Data hold time for I ² C devices	note 1	tHD; DAT	0		_	ns
Data set-up time	1	tSU; DAT	250		-	ns
Rise time for SDA and SCL lines		tr		-	1	μs
Fall time for SDA and SCL lines		tf			300	ns
Set-up time for stop condition		tSU; STO	4.7		_	μs
Erase/write cycle time		tE/W	5		40	ms
Endurance						
(E/W cycles per byte)	note 2					
	T _{amb} = 125 °C t _{E/W} = 5-40 ms	NE/W		-	50 000	cycles
	T _{amb} = 85 °C t _{E/W} = 5-40 ms	NE/W			100 000	cycles
	T _{amb} = 33 °C t _{E/W} = 10 ms	NE/W	-		500 000	cycles
Data retention time	T _{amb} = 55 °C	tS	10	-	-	years

Notes to the characteristics

1. An internal transmitter must provide a hold time (max. 300 ns) to bridge the undefined region of the falling edge of SCL.

2. Technical note in preparation.

PCA8582B

E/W programming time control

A. Using an internal oscillator

Resistor $R_{E/W}$ connected between pin 7 and V_{DD} and capacitor $C_{E/W}$ connected between pin 7 and V_{SS} (see Table 1).

R _{E/W} (kΩ) note 1	CE/W (nF) note 2	tE/W (typ.) (ms) note 3
56	3.3	34
56	2.2	21
22	3.3	13
22	2.2	7.5 (note 4)

Table 1 Recommended RC combinations

Notes to Table 1

- 1. Maximum tolerance is 10%.
- 2. Maximum tolerance is 5%.
- 3. E/W times are mainly influenced by the tolerances in values of R and C.
- 4. Minimum allowed tE/W is 5 ms (see CHARACTERISTICS). The tolerances of R and C over the whole temperature range.
- B. Using an external clock (see Table 2 and Fig.7)

Table 2	F/W	programming	time control	using an	external clock
	L/ VV	programming	time control	using an	CALCINAL CIOCK

parameter	symbol	min.	max.	unit
frequency	fp	10	50	kHz
period LOW	tLOW	9	_	μs
period HIGH	tHIGH	9	_	μs
rise time	tr	_	300	ns
fall time	tf	-	300	ns
delay time	td	0	^t LOW	ns

specifications are subject to change without notice.

128 x 8-BIT EEPROM WITH I²C-BUS INTERFACE

GENERAL DESCRIPTION

The PCF8581 and PCF8581C are low-power CMOS EEPROMs with standard and wide operating voltage:

4.5 to 5.5 V (PCF8581); 2.5 to 6.0 V (PCF8581C).

In the following text, the generic term "PCF8581" is used to refer to both types in all packages except where specified.

The PCF8581 is organized as 128 words by 8-bits.

Addresses and data are transferred serially via a two-line bidirectional bus (I²C). The built-in word address register is incremented automatically after each written or read data byte. All bytes can be read in a single operation. Up to eight bytes can be written in one operation, reducing the total write time per byte. Three address pins AO, A1 and A2 are used to define the hardware address, allowing the use of up to eight devices connected to the bus without additional hardware.

Features

- Operating supply voltage: 4.5 to 5.5 V (PCF8581); 2.5 to 6.0 V (PCF8581C)
- Integrated voltage multiplier and timer for writing (no external components required)
- Automatic erase before write
- Low standby current max. 10 μA
- Eight-byte page write mode
- Serial input/output bus (I²C)
- Address by 3 hardware address pins
- Automatic word address incrementing
- Designed for 10 000 write cycles per byte minimum
- 10 years minimum non-volatile data retention
- Infinite number of read cycles
- Pin and address compatibility to PCF8570, PCF8571 and PCF8582

PACKAGE OUTLINES

PCF8581P/PCF8581CP: 8-lead DIL; plastic (SOT97). PCF8581T/PCF8581CT: 8-lead mini-pack (SO-8L; SOT176C).

PCF8581 PCF8581C

.

Fig.1 Block diagram.

PINNING

1	A0)	
2	A1	hardware address inputs
3	A2	
4	V _{SS}	negative supply
5	SDA	serial data input/output
6	SCL	serial clock input
7	TEST	test output can be connected to V_{SS} , V_{DD} or left open-circuit
8	V _{DD}	positive supply

Fig.2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage range (pin 8)	V _{DD}	-0.3	7.0	v
Voltage range on any input*	VI	-0.8	V _{DD} +0.8	V
DC input current (any input)	±I	-	10	mA
DC output current (any output)	±IO	-	10	mA
Total power dissipation	P _{tot}	-	150	mW
Power dissipation per output	Р	-	50	mW
Storage temperature range	T _{stg}	-65	+ 150	°C
Operating ambient temperature range	Tamb	-40	+ 85	°C

* Measured via a 500 Ω resistor.

CHARACTERISTICS

 V_{DD} = 2.5 to 6 V (PCF8581C) 4.5 to 5.5 V (PCF8581); V_{SS} = 0 V; T_{amb} = -40 to + 85 °C unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage range PCF8581C PCF8581		V _{DD} V _{DD}	2.5 4.5	-	6.0 5.5	V V
Supply current standby operating during write	f _{SCL} = 0 Hz f _{SCL} = 100 kHz see bus protocol	I _{DD} I _{DD} I _{DD}	- - -	-	10 400 1000	μΑ μΑ μΑ
Inputs						
A0, A1, A2, SCL, SDA						
Input voltage LOW		VIL	-	-	0.3V _{DD}	v
Input voltage HIGH		VIH	0.7V _{DD}	-	-	v
Input leakage current	pin at V _{SS} or V _{DD}	1.0	-	-	1	μA
Input capacitance	pin at V _{SS}	CI	-	_	7	pF
Outputs						
SDA						
Output current LOW	pin at 0.4 V	IOL	3	_	-	mA
TEST						
Output leakage current	pin at V_{SS} or V_{DD}	1LO	-	-	1	μA
Erase/write data						
Write time		twr	6	_	12	ms
Data retention time		TRET	10	-	-	years

Purchase of Philips' I²C components conveys a license under the Philips' I²C patent to use the components in the I²C-system provided the system conforms to the I²C specifications defined by Philips.

154

CHARACTERISTICS OF THE I²C-BUS

The I²C-bus is for two-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

System configuration

PCF8581 PCF8581C

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eigth bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by **not** generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

parameter	symbol	min.	typ.	max.	unit
SCL clock frequency	fSCL	-	-	100	kHz
Tolerable spike width on bus	^t SW	-	-	100	ns
Bus free time	^t BUF	4.7	-	-	μs
Start condition set-up time	^t SU; STA	4.7	_	-	μs
Start condition hold time	^t HD; STA	4.0	-	-	μs
SCL LOW time	^t LOW	4.7	-	-	μs
SCL HIGH time	thigh	4.0	_	_	μs
SCL and SDA rise time	t _r	-	-	1.0	μs
SCL and SDA fall time	t _f	-	-	0.3	μs
Data set-up time	^t SU; DAT	250	_	-	ns
Data hold time	^t HD; DAT	0	-	-	ns
SCL LOW to data out valid	^t VD; DAT	-	-	3.4	μs
Stop condition set-up time	^t SU; STO	4.0	_	_	μs

Bus protocol

PCF8581 PCF8581C

Before any data is transmitted on the l^2 C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure. The l^2 C-bus configuration for PCF8581 WRITE cycle is shown in Fig. 8 and READ cycle in Figs 10 and 11.

÷ġ,

Writing

Fig. 8 Master transmits to slave receiver (WRITE mode).

After the word address, one to eight data bytes can be sent. The address is automatically incremented, but the four highest address bits (row) are internally latched. Therefore all bytes are written in the same row.

An example of writing eight bytes with word address X0000000 and six bytes with word address X0010101 is shown in Fig. 9. Where X = don't care.

word address	row		bytes							
X0000000	0	1 →	2 →	3 ->	4 →	5 →	6 →	7 →	8 →	1
X0000001	1								1	1
X0010101	2	4 →	5 →	6		1	1→	2 →	3 →	1
X0011101	3				1	1	1	1	1	1
	•				I	ļ		ļ		
	1.) 	1	1	1	1	1	1		1
	column	0	1	2	3	4	5	6	7	1

Fig. 9 Writing eight and six bytes with different word addresses.

To transmit eight bytes in sequential order, begin with the lowest address bits 000. The data is written after a stop is detected. The data is only written if complete bytes have been received and acknowledged. Writing takes a time t_{WR} (6 to 12 ms) during which the device will not respond to its slave address. Note that to write the next row, a new write operation is required (start, slave address, row address, data, stop).

LIFE SUPPORT APPLICATIONS

Faselec's product is not designed for use in life support appliances, devices or systems where malfunction of above product can reasonably be expected to result in a personal injury. Faselec's customers using or selling Faselec's PCF8581/81C for use in life support applications do so at their own risk and agree to fully indemnify Faselec for any damages resulting from such improper use or sale.

June 1989

128 x 8-bit EEPROM with I²C-bus interface

Reading

Fig. 10 Master reads after setting word address (WRITE word address; READ data).

Fig. 11 Master reads slave immediately after first byte (READ mode).

An unlimited number of data bytes can be read in one operation. The address is automatically incremented. If a read without setting the word address is performed after a write operation, the address pointer may point at a byte in the row after the previously written row. This occurs if, during writing, the three lowest address bits (column) rolled over.

APPLICATION INFORMATION

The PCF8581 slave address has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig. 12).

Fig. 13 Application diagram.

Note

A0, A1 and A2 inputs must be connected to V_{DD} or V_{SS} but not left open-circuit.

DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

256×8 -bit STATIC CMOS EEPROM WITH I²C-BUS INTERFACE

GENERAL DESCRIPTION

The PCF8582A is a 2 Kbits 5 Volt electrically erasable programmable read only memory (EEPROM) organized as 256 by 8-bits. It is designed in a floating gate CMOS technology.

As data bytes are received and transmitted via the serial I^2 C-bus, an eight pin DIL package is sufficient. Up to eight PCF8582A devices may be connected to the I^2 C-bus.

Chip select is accomplished by three address inputs.

Timing of the Erase/Write cycle can be done in two different ways; either by connecting an external clock to the "Programming Timing Control", pin (7 or 13), or by using an internal oscillator. If the latter is used an RC time constant must be connected to pin 7 or 13.

Features

- Non-volatile storage of 2 Kbits organized as 256 x 8
- Only one power supply required (5 V)
- On chip voltage multiplier for erase/write
- Serial input/output bus (I²C)
- Automatic word address incrementing
- Low power consumption
- One point erase/write timer
- Power on reset
- 10,000 erase/write cycles per byte
- 10 years non-volatile data retention
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571, PCF8582 and PCD8572
- External clock signal possible.

PACKAGE OUTLINE

PCF8582AP; 8-lead dual in line; plastic (SOT97). PCF8582AT; 16-lead mini-pack; plastic (SO16L; SOT162A).

PCF8582A

di.

Fig. 1 Block diagram.

162

May 1989

PCF8582A

Fig. 2 (a) Pinning diagram.

Fig. 2 (b) Pinning diagram.

4 V _{SS} ground 5 SDA 6 SCL 7 PTC programming time control 8 V _{DD} positive supply

1	n.c.	
2	n.c.	
3	A0)	
4	A1 }	address inputs/test
5	A2 ¹	mode select
6	VSS	ground
7	n.c.	
8	n.c.	
9	n.c.	
10	n.c.	
11	SDA)	120 have lines
12	SCL)	I ² C-bus lines
13	PTC	programming time control
14	VDD	positive supply
15	n.c.	
16	n.c.	

Figs. 3 (a) and (b) RC circuit connections to PCF8582AP and PCF8582AT when using the internal oscillator

-

FUNCTIONAL DESCRIPTION

Characteristics of the I²C-bus

The I²C-bus is intended for communication between different ICs. The serial bus consists of two bi-directional lines, one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

Data transfer may be initiated only when the bus is not busy.

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The following bus conditions have been defined:

Bus not busy; both data and clock lines remain HIGH.

Start data transfer; a change in the state of the data line, from HIGH to LOW,

while the clock is HIGH defines the start condition. Stop data transfer; a change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the stop condition.

Data valid; the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the I²C-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF8582A operates in both modes.

By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".

Each word of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse in clock pulse.

Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this condition the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the I²C-bus are available on request.

May 1989

I²C-Bus Protocol

The l^2 C-bus configurations for different READ and WRITE cycles of the PCF8582A are shown in Fig. 4, (a), (b) and (c).

(1) After this stop condition the erase/write cycle starts and the bus is free for another transmission. The duration of the erase/write cycle is approximately 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the l²C-bus.

- (2) The second data byte is voluntary. It is not allowed to erase/write more than two types.
 - Fig. 4(a) Master transmitter transmits to PCF8582A slave receiver (ERASE/WRITE mode).

Fig. 4(c) Master reads PCF8582A slave immediately after first byte (READ mode).*

1 0 1	0 A:	A1	A0 R/Ŵ
-------	------	----	--------

* The device can be used as read only without the programming clock.

May 1989

l²C-bus timing

(1) If external clock for PTC is chosen, this information is latched internally by leaving pin 7 LOW after transmission of the eight bit of the word address (negative edge of SCL). The state of PTC then, may be previously undefined.

Fig. 6 (a) One-byte ERASE/WRITE cycle; (b) two-byte ERASE/WRITE cycle.

Ratings

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V _{DD}	-0.3	+7	v
Voltage on any input pin input impedance 500 Ω	VI	V _{SS} – 0.8	V _{DD} + 0.8	v
Operating temperature range	Tamb	-40	+85	°C
Storage temperature range	T _{stq}	-65	+150	°C
Current into any input pin	11	_	1	mA
Output current	llol	-	10	mA

Purchase of Philips' I^2C components conveys a license under the Philips' I^2C patent to use the components in the I^2C -system provided the system conforms to the I^2C specifications defined by Philips.

CHARACTERISTICS

 V_{DD} = 5 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

parameter	conditions	symbol	min.	typ.	max.	unit
Operating supply voltage		V _{DD}	4.5	5.0	5.5	v
Operating supply current READ	V _{DD} max. f _{SCL} = 100 kHz	IDD	_	_	0.4	mA
Operating supply current WRITE/ERASE	V _{DD} max.	IDDW			2.0	mA
Standby supply current	V _{DD} max.	IDDO		_	10	μA
Input PTC						
Input voltage HIGH Input voltage LOW			V _{DD} – 0.3 –	-	– V _{SS} + 0.3	v v
Input SCL and input/output SDA						
Input voltage LOW		VIL	-0.3	-	1.5	v
Input voltage HIGH		VIH	3.0	-	V _{DD} + 0.8	v
Output voltage LOW	I _{OL} = 3 mA V _{DD} = 4.5 V	VOL	_	_	0.4	v
Output leakage current HIGH	V _{OH} = V _{DD}	1LO	_	_	1	μA
Input leakage current (SCL)	V _I = V _{DD} or V _{SS}	ILI	_	-	1	μA
Clock frequency		fSCL	0	-	100	kHz
Input capacitance (SCL; SDA)		CI	-	_	7	pF
Time the bus must be free before new transmission can start		tBUF	4.7	_	_	μs
Start condition hold time after which first clock pulse is						
generated		THD;STA	4	-	-	μs

168

PCF8582A

parameter	conditions	symbol	min.	typ.	max.	unit
The LOW period of the clock		^t LOW	4.7		-	μs
The HIGH period of the clock		thigh	4.0	-	_	μs
Set-up time for start condition	repeated start only	^t SU;STA	4.7		_	μs
Data hold time for I ² C- bus compatible masters		^t HD;DAT	5.0	-	_	μs
Data hold time for I ² C devices	note 1	^t HD;DAT	0	_	_	ns
Date set up time		^t SU; DAT	250		-	ns
Rise time for SDA and SCL lines		t _r	_	-	1	μs
Fall time for SDA and SCL lines		t _f		-	300	ns
Set-up time for stop condition		TSU;STO	4.7	_	_	μs
Programming time control						
Erase/write cycle time		^t E/W	5	-	40	ms
Capacitor used for E/W		_,				
cycle of 30 ms	max. tolerance ±10%;					
	using internal oscillator (Fig. 3)	C _{E/W}		3.3	_	nF
Resistor used for E/W		OE/W		0.0		
cycle of 30 ms	max. tolerance ±5%;					
	using internal					
	oscillator (Fig. 3)	R _{E/W}	-	56.0	-	kΩ
Programming frequency using external clock						
Frequency		fp	10	_	50	kHz
Period LOW		tLow	10.0		_	μs
Period HIGH Rise-time		thigh t	10.0	_	_ 300	μs ns
Fall-time		t _r t _f	-	_	300	ns
Delay-time		td	0	-		ns
Data retention time	T _{amb} = 55 ^o C	ts	10		-	years

Note to the characteristics

1. The hold time required to bridge the undefined region of the falling edge of SCL must be internally provided by a transmitter. It is not greater than 300 ns.

CHARACTERISTICS (continued)

E/W programming time control

A. Using external resistor $R_{\mbox{E/W}}$ and capacitor $C_{\mbox{E/W}}$ (see Table 1)

Table 1 Recommended R, C combinations

R _{E/W} (kΩ) note 1	C _{E/W} (nF) note 2	tE/W (typ.) (ms) note 3
56	3.3	34
56	2.2	21
22	3.3	13
22	2.2	7.5 (note 4)

Notes to Table 1

- 1. Maximum tolerance is 10%.
- 2. Maximum tolerance is 5%.
- 3. Actual E/W lines are mainly influenced by the tolerances in values of R and C.
- 4. Minimum allowed $t_{E/W}$ is 5 ms (see CHARACTERISTICS).

B. Using an external clock (see Table 2 and Fig.6)

Table 2 E/W programming time control using an exter	ernal clock
---	-------------

párameters	symbol	min.	max.	unit
frequency	fp	10.0	50.0	kHz
period LOW	tLOW	10.0	-	S
period HIGH	thigh	10.0	-	s
rise time	tr	_	300	ns
fall time	tf	_	300	ns
delay time	^t d	0	-	ns

170

specifications are subject to change without notice.

256 x 8-BIT STATIC CMOS EEPROM WITH I²C-BUS INTERFACE FOR AUTOMOTIVE APPLICATIONS

GENERAL DESCRIPTION

The PCF8582C is a 2 Kbit (256 x 8-bit) floating gate electrically erasable programmable read only memory (EEPROM). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases reliability compared to conventional EEPROM memories.

Power consumption is low due to the full CMOS technology used. The programming voltage is generated on chip using a voltage multiplier.

As data bytes are received and transmitted via the serial I²C-bus, a package using eight pins is sufficient. Up to eight PCF8582C devices may be connected to the I²C-bus.

Chip select is accomplished by the three address inputs, which may also be used to choose between eleven test modes which simplify circuit testing.

Timing of the Erase/Write cycle is done internally so no external components are needed. Pin 7 must be connected to either V_{DD} or left open.

There is an option (described in PCF8582A and PCA8582B data sheets) of using an external clock for timing the length of an Erase/Write cycle.

Features

- Non-volatile storage of 2 Kbits organized as 256 x 8 bits
- High reliability by using a redundant storage code (single bit error correction)
- Only one power supply required
- On chip voltage multiplier
- Serial input/output bus (I²C)
- Automatic word address incrementing
- Low power consumption
- Extended supply voltage range (2.5 to 6 V)

- Internal timer for writing (no external components)
- Power on reset
- 500 000 erase/write cycles per byte with low failure rate
- 10 years non-volatile data retention time
- Infinite number of read cycles
- Pin and address compatible to PCF8570, PCF8571, PCD8572 and PCF8582A

QUICK REFERENCE DATA

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage range	V _{DD}	2.5	-	6	v
Operating supply current READ	IDD	0.25	_	1.6	mA
Operating supply current WRITE/ERASE	IDD	0.35		2.5	mA
Standby supply current	IDDO	3.5	-	10	μA

PACKAGE OUTLINES

PCF8582P: 8-lead DIL; plastic (SOT97). PCF8582T: 16-lead mini-pack; plastic (SO16L; SOT162A). September 1989

172

Fig.1 Block diagram for PCF8582CP.

PCF8582C

15

16

n.c.

n.c.

not connected

Fig.2(b) Pinning diagram; PCF8582CT.

7Z24890

DEVELOPMENT DATA

September 1989 173

FUNCTIONAL DESCRIPTION

Characteristics of the I²C-bus

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

The following bus conditions have been defined:

Bus not busy: both data and clock lines remain HIGH.

Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH defines the start condition.

Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the stop condition.

Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE/WRITE mode and unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the I²C-bus specifications a low speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF8582C operates in both modes.

By definition a device that sends a signal is called a "transmitter", and the device which receives the signal is called a "receiver". The device which controls the signal is called the "master". The devices that are controlled by the master are called "slaves".

Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a HIGH level put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.

Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the stop condition.

Note

Detailed specifications of the I²C-bus are available on request.

I²C-bus Protocol

The 1^2 C-bus configurations for different READ and WRITE cycles of the PCF8582C are shown in Fig.3 (a), (b) and (c).

 After this stop condition the erase/write cycle starts and the bus is free for another transmission. Its duration is 30 ms if only one byte is written and 60 ms if two bytes are written. During the erase/write cycle the slave receiver does not send an acknowledge bit if addressed via the I²C-bus.
 The second data between the start element and the second data between the start of the start of

(2) The second data byte is voluntary. It is not allowed to erase/write more than two bytes.

Fig.3(a) Master transmitter transmits to PCF8582C slave receiver (ERASE/WRITE mode).

Fig.3(b) Master reads PCF8582C slave after setting word address (WRITE word address; READ data).

FUNCTIONAL DESCRIPTION (continued)

Chip address (slave address) allocation

Three chip address inputs (A0, A1, A2) can produce eight different chip addresses. This means that up to eight different PCF8582C devices may be connected to the I²C-bus. Address allocation is illustrated by Fig.4.

Fig.4 Slave address.

PCF8582C

l²C-bus timing

FUNCTIONAL DESCRIPTION (continued)

.

Fig.6(b) Two byte ERASE/WRITE cycles.

(1) If an external clock is chosen, this information is latched internally by leaving pin 7 (Test) LOW after transmission of the eighth bit of the word address (negative edge of SCL). The state of pin 7 then, may be previously undefined.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V _{DD}	-0.3	+ 7	v
Voltage on any input pin input impedance $>$ 500 Ω	VI	V _{SS} — 0.8	V _{DD} + 0.8	v
Operating ambient temperature range	Tamb	-40	+ 85	°C
Storage temperature range	T _{stg}	65	+ 150	°C
Current into any input pin		_	1	mA
Output current	ll0l	-	10	mA

Purchase of Philips' 1^2 C components conveys a license under the Philips' 1^2 C patent to use the components in the 1^2 C-system provided the system conforms to the 1^2 C specifications defined by Philips.

CHARACTERISTICS

 V_{DD} = 2.5 to 6 V; V_{SS} = 0 V; T_{amb} = -40 to + 85 °C unless otherwise specified

conditions	symbol	min.	typ.	max.	unit
	V _{DD}	2.5		6	V
		_	_	0.25	mA
V _{DD} = 6 V;	.004				
f _{SCL} = 100 kHz	IDDR	-	-	1.6	mA
$V_{DD} = 3 V_{C}$					
	waal	_		0.35	mA
V _{DD} = 6 V;					
	DDW	-	-	2.5	mA
		_	_	3.5	μA
V _{DD} = 6 V;	.000				
f _{SCL} = 100 kHz	^I DDO	-	-	10	μA
	VIH	0.9V _{DD}	-	V _{DD} + 0.8	V
	VIL	-0.8	-	0.1V _{DD}	V
		0.7V _{DD}	-		V
	VIL	-0.8	-	0.3V _{DD}	V
$I_{OH} = 3 \text{ mA};$				0.4	v
v _{DD} = 2.5 v	VOL	_	-	0.4	V
νομ = νρρ	10	_	_	10	μA
	20				
$V_{I} = V_{DD}$					
or V _{SS}		-	-		μA
	^f SCL	0	-	100	kHz
V _I = V _{SS}	CI			7	pF
	$V_{DD} = 3 V;$ f _{SCL} = 100 kHz V_{DD} = 6 V; f _{SCL} = 100 kHz V_{DD} = 3 V; f _{SCL} = 100 kHz V_{DD} = 6 V; f _{SCL} = 100 kHz V_{DD} = 6 V; f _{SCL} = 100 kHz V_{DD} = 6 V; f _{SCL} = 100 kHz V_{DD} = 2.5 V V_{DD} = 2.5 V V_{OH} = V_{DD} V_{I} = V_{DD} or V_{SS}	$V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDR} $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDW} $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDW} $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDW} $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDO} $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ I_{DDO} $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ $V_{DD} = 6 V;$ I_{DDO} V_{IH} V_{IL} V_{IL} V_{IH} V_{IL} V_{IL} V_{IL} V_{IH} V_{IL}	$V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDR} -$ $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDW} -$ $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDW} -$ $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDW} -$ $V_{DD} = 3 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDO} -$ $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDO} -$ $V_{DD} = 6 V;$ $f_{SCL} = 100 \text{ kHz}$ $I_{DDO} -$ $V_{DD} = 6 V;$ $I_{DDO} -$ $V_{IL} 0.9V_{DD} -$ 0.8 $V_{IL} 0.7V_{DD} -$ $V_{IL} -0.8$ $V_{IL} -0.8$ $V_{OH} = V_{DD} I_{LO} -$ $V_{I} = V_{DD} 1_{LO} -$ $V_{I} = V_{DD} \frac{\pm I_{LI}}{5CL} 0$	VDD 3 V; VDD 2.5 - VDD 6 V; IDDR - - VDD 6 V; IDDR - - VDD 3 V; IDDR - - VDD 3 V; IDDR - - VDD 3 V; IDDW - - VDD 6 V; IDDW - - VDD 6 V; IDDW - - VDD 3 V; IDDW - - VDD 3 V; IDDW - - VDD 3 V; IDDO - - VDD 6 V; IDDO - - VDD 6 V; IDDO - - VDD VIH 0.9VDD - - VIL 0.9VDD - - - VIL 0.7VDD - - - VIL 0.7VDD - - - VDD VOL - - - VOH	VDD = 3 V; fSCL = 100 kHzVDD2.5-6VDD = 3 V; fSCL = 100 kHzIDDR0.25VDD = 3 V; fSCL = 100 kHzIDDR1.6VDD = 3 V; fSCL = 100 kHzIDDW0.35VDD = 6 V; fSCL = 100 kHzIDDW2.5VDD = 3 V; fSCL = 100 kHzIDDW2.5VDD = 3 V; fSCL = 100 kHzIDDO3.5VDD = 6 V; fSCL = 100 kHzIDDO10VDD = 6 V; fSCL = 100 kHzIDDO10VDD = 6 V; fSCL = 100 kHzIDDO10VIH0.9VDD10VDD = 6 V; fSCL = 100 kHzVIH0.9VDD-VDD + 0.8 0.1VDDVDD = 0 kHzVIH0.7VDD-VDD + 0.8 0.1VDDVIL0.7VDD-0.40.3VDDVOH = VDDILO10VI = VDD or VSS±ILI10VI = VDD or VSS±ILI10

256 x 8-bit static CMOS EEPROM with I^2C -bus interface for automotive applications

PCF8582C

parameter	conditions	symbol	min.	typ.	max.	unit
Time the bus must be free before a new transmission can start		^t BUF	4.7	_	_	μs
Start condition hold time. After this period the first clock pulse is generated		THD; STA	4	_	_	μs
The LOW period of the clock		tLOW	4.5	_	_	μs
The HIGH period of the clock		tнібн	4	_	_	μs
Set-up time for start condition	repeated start	^t SU; STA	4.7	_	_	μs
Data hold time for I ² C-bus compatible masters		^t HD; DAT	5	—	_	μs
Data hold time for I ² C devices	note 1	^t HD; DAT	0	_	_	ns
Data set-up time		^t SU; DAT	250	-	_	ns
Rise time for SDA and SCL lines		tr	_	_	1	μs
Fall time for SDA and SCL lines		t _f	_	_	300	ns
Set-up time for stop condition		tsu; sto	4.7	_	_	μs
Erase/write cycle time		te/w	5	_	25	ms
Endurance (E/W cycles per byte)	T _{amb} = 85 °C;			100.000		
	$t_{E/W} = 5-25 \text{ ms}$ $T_{amb} = 33 \text{ °C};$ $t_{E/W} = 10 \text{ ms}$			100 000 500 000		cycles cycles
Data retention time	$T_{amb} = 55 \text{ °C}$	ts	10	_	_	years

Note to the characteristics

1. An internal transmitter must provide a hold time (max. 300 ns) to bridge the undefined region of the falling edge of SCL.

DEVELOPMENT DATA

E/W programming time control

A. Using an internal oscillator

Using an internal oscillator $t_{E/W}$ has a minimum value of 5 ms and a maximum value of 25 ms; the typical value is 10 ms.

.

B. Using an external clock (see Table 1 and Fig.6)

parameter	symbol	min.	max.	unit
frequency	fp	10	50	kHz
period LOW	tLOW	5	-	μs
period HIGH	thigh	5	-	μs
rise time	tr	-	300	ns
fall time	t _f	-	300	ns
delay time	^t d	0	^t LOW	μs

Table 1 E/W programming time control using an external clock

64K-bit CMOS EPROM

page

Application Specific Products

DESCRIPTION

Signetics 27C64A CMOS EPROM is a 64K-bit 5V only memory organized as 5,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27C64.

The 27C64A is specified to operate over the INDUSTRIAL TEMPERATURE RANGE of -40° C to $+85^{\circ}$ C with no degradation in performance.

The 27C64A is available in both the windowed ceramic DIP, the plastic DIP and the PLCC packages. This device can be programmed with standard EP-ROM programmers.

27C64A-IND Industrial Temperature Range 64K-Bit CMOS EPROMs (8K \times 8)

Product Specification

FEATURES

- Quick pulse programming algorithm for high speed production programming (3 second typical programming time)
- High-performance speeds
 - 27C64AI15: 150ns maximum access time
 - 27C64AI20: 200ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

A ₀ - A ₁₂	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output Enable
ĈĒ	Chip Enable
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
D.U.	Don't Use
PGM	Program strobe
N.C.	No Connection

PIN CONFIGURATIONS

BLOCK DIAGRAM

27C64A-IND

Industrial Temperature Range 64K-Bit CMOS EPROMs (8K \times 8)

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been Low and addresses have been stable for at least $t_{\text{ACC}} - t_{\text{OE}}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin CERDIP with quartz window (600mil-wide)	27C64Al15 FA 27C64Al20 FA
28-pin Plastic Dual in-line (600mil-wide)	27C64Al15 N 27C64Al20 N
32-pin Plastic Leaded Chip Carrier (450 $ imes$ 550mil)	27C64Al15 A 27C64Al20 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
VI, VO	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on V _{PP} ² (During programming) -2.0		v
V _{CC}	Supply voltage ²	-2.0 to +7.0	v

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	PGM ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	VIL	VIH	V _{CC}	D _{OUT}
Output disable	VIL	VIH	V _{IH}	V _{CC}	Hi-Z
Standby	VIH	X	x	V _{CC}	Hi-Z

Notes on following page.

Industrial Temperature Range 64K-Bit CMOS EPROMs (8K \times 8)

27C64A-IND

DC ELECTRICAL CHARACTERISTICS -40°C \leqslant T_A \leqslant +85°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

	DADAMETER	TEAT ADUDITIONS		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt					
Iн	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
կլ	Low	V _{IL} = 0.45V		0.01	1.0	μA
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output curr	rent					
		\overline{OE} or $\overline{CE} = V_{H}$			1.0	μA
ILO	Leakage	$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			1.0	μA
I _{OS}	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply curr	ent		LL		- I I	
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, \ f = 6.7 MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0 mA$			20	mA
I _{SB} TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	mA
I _{SB} CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input voltag	je ²					
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	V
VIL	Low (CMOS)	$V_{PP} = V_{CC}$	-0.2		0.2	V
VIH	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	V
V _{IH}	High (CMOS)	$V_{PP} = V_{CC}$	V _{CC} - 0.2		V _{CC} + 0.2	V
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	V
Output volta	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	٧
V _{OH}	High	I _{OH} = −2.5mA	3.5			٧
Capacitance	⁹ T _A = 25°C					
C _{IN}	Address and control	$V_{CC} = 5.0V$ f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

NOTES:

(**1**6)

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. \overline{CE} is V_{CC} ± 0.2V. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of I_{PP} + I_{CC} and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below $V_{\text{CC}},$ and can be connected directly to $V_{\text{CC}}.$

9. Guaranteed by design, not 100% tested.

Industrial Temperature Range 64K-Bit CMOS EPROMs ($8K \times 8$)

27C64A-IND

*

AC ELECTRICAL CHARACTERISTICS -40°C \leqslant T_A \leqslant +85°C, +4.5V \leqslant V_{CC} \leqslant +5.5V, R_L = 660\Omega, C_L = 100pF

		5504	27C64AI15 27C64AI20		27C64AI15 27C64AI20	UNIT	
SYMBOL	то	FROM	Min	Max	Min	Max	UNIT
Access tim	e ¹						
t _{ACC}	Output	Address		150		200	ns
t _{CE}	Output	CE		150		200	ns
t _{OE} ³	Output	ŌE		65		75	ns
Disable tim	e ²		•				
t _{DF} ⁴	Output Hi-Z	OE or CE		45		55	ns
t _{OH}	Output hold	Address, CE or OE 0 0					ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested. 3. \overline{OE} may be delayed up to $t_{CE} - t_{OE}$ after the falling edge of \overline{OE} without impact on t_{CE} . 4. t_{DE} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

10060938

CL

Figure 1. Test Configuration

Application Specific Products

DESCRIPTION

Signetics' 27C64A CMOS O.T.P. EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

The 27C64A O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Ouick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times. In the absence of quick-pulse programming equipment, the intelligent programming algorithm may be utilized.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current

27C64A O.T.P. One Time Programmable 64K-Bit CMOS EPROM (8K \times 8)

Product Specification

- High-performance speeds
 27C64A-10: 100ns maximum
- access time
- Noise immunity features
 - \pm 10% V_{CC} tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)

PIN DESCRIPTION

A ₀ – A ₁₂	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't use
PGM	Program strobe

PIN CONFIGURATIONS

TOP VIEW

CD156418

27C64A O.I.P.

One Time Programmable 64K-Bit CMOS EPROM ($8K \times 8$)

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output enable (\overline{OE}) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28-pin Plastic Dual in-line 600mil-wide	27C64A-10 N
32-pin Plastic Leaded Chip Carrier 450mil $ imes$ 550mil	27C64A-10 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A ₉ ² (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	٧

NOTE:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	PGM ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	V _{IL}	VIH	V _{CC}	D _{OUT}
Output disable	VIL	VIH	ViH	V _{CC}	Hi-Z
Standby	VIH	x	х	V _{CC}	Hi-Z

Notes on following page.

One Time Programmable 64K-Bit CMOS EPROM (8K \times 8)

27C64A O.T.P.

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V

SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curren	nt					
IIH	Leakage	$V_{\rm IN} = 5.5V = V_{\rm CC}$		0.01	1.0	μA
կլ	Low	V _{IL} = 0.45V		0.01	1.0	μA
Ірр	V _{PP} read	$V_{PP} = V_{CC}$			100	μA
Output curr	ent					
		\overline{OE} or $\overline{CE} = V_{IH}$			1.0	μA
I _{LO} Leakage	$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			1.0	μA	
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply curr	ent	•				
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{iL}, \ f = 10.0MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
I _{SB} TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	mA
I _{SB} CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input voltag	je ²					
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v
V _{IL}	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v
VIH	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	۷
V _{IH}	High (CMOS)	$V_{PP} = V_{CC}$	V _{CC} - 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	۷
Output volta	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	⁹ T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
COUT	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

NOTES:

46.0

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

4. TTL inputs: Spec V_{IL} , V_{IH} levels. CMOS inputs: GND ± 0.2V to V_{CC} ± 0.2V.

5. $\overline{\text{CE}}$ is V_{CC} $\pm\,0.2\text{V}.$ All other inputs can have any value within spec.

6. Maximum active power usage is the sum of Ipp + ICC and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second,

8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

.

One Time Programmable 64K-Bit CMOS EPROM (8K \times 8)

27C64A O.T.P.

AC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V, R_L = 660 \Omega, C_L = 100 pF

		5004		27C64A - 10	
SYMBOL	то	FROM	Min	Max	UNIT
Access time ¹					
tACC	Output Addres			100	ns
t _{CE}	Output	CE		100	ns
toe ³	Output	ŌE		35	ns
Disable time ²					
t _{DF} ⁴	Output Hi-Z	OE or CE		25	ns
t _{OH}	Output hold	Address, CE or OE 0			ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

OE may be delayed up to t_{CE} - t_{OE} after the falling edge of CE without impact on t_{CE}.
 t_{DF} is specified from OE or CE, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

192

Application Specific Products

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- High-performance speeds
 - 27C64A–12: 120ns maximum access time
 - 27C64A–15: 150ns maximum access time
- Noise immunity features
 - ±10% V_{cc} tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)

DESCRIPTION

Signetics 27C64A CMOS O.T.P. EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

BLOCK DIAGRAM

27C64A O.T.P. One Time Programmable 64K (8K \times 8) EPROMs

Product Specification

The 27C64A O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMS provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times. In the absence of quick-pulse programming equipment, the intelligent programming algorithm may be utilized.

PIN DESCRIPTION

$A_0 - A_{12}$	Addresses
O ₀ – O ₇	Outputs
OE	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
Vpp	Program voltage
V _{CC}	Power supply
DU	Don't use
PGM	Program strobe

PIN CONFIGURATIONS

27C64A O.T.P.

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of tog from the falling edge of OE, assuming that CE has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100µA. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28–Pin Plastic Dual in-Iine	27C64A–12 N
600mil-wide	27C64A–15 N
32-Pin Plastic Leaded Chip Carrier	27C64A–12 A
450mil × 550mil	27C64A–15 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _i , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A ₉ ² (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on V _{PP} (During programming)	-2.0 to +14.0	v
V _{cc}	Supply voltage ²	-2.0 to +7.0	v

NOTES:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION¹

MODE	CE	OE ²	PGM ²	V _{PP} ³	OUTPUTS
Read	VIL	ViL	V _{IH}	V _{cc}	D _{OUT}
Output disable	ViL	V _H	V _{IH}	V _{cc}	HiZ
Standby	VIH	X	X	V _{cc}	Hi–Z

NOTES:

1. All voltages are with respect to network ground.

2. X can be VIH or VIL

3. VPP may be one diode voltage drop below VCC, and can be connected directly to VCC.

27C64A O.T.P.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt					
I _{IH}	Leakage	V _{IN} = 5.5V = V _{CC}		0.01	1.0	μΑ
l _{IL}	Low	V _{IL} = 0.45V		0.01	1.0	μΑ
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μΑ
Output curi	rent					
ILO	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μΑ
		$V_{OUT} = 0V = GND$			1.0	μΑ
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply cur	rent					
		$\overline{OE} = \overline{CE} = V_{IL}$, f = 8.0MHz				
ICC TTL	Operating (TTL inputs) ⁴	V _{PP} = V _{CC}			20	mA
		$O_{0-7} = 0mA$				
I _{SB} TTL	Standby (TTL inputs) ⁴	CE = V _H			1.0	mA
ISB CMOS	Standby (CMOS inputs) ^{5, 6}	CE = V _{IH}			100	μΑ
Input voltag	je ²			****	****	
VIL	Low (TTL)	V _{PP} = V _{CC}	0.5		0.8	v
V _{IL}	Low (CMOS)	V _{PP} = V _{CC}	0.2		0.2	V
V _{IH}	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	V
V _{IH}	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	V
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	V
Output volt	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V
V _{OH}	High	l _{OH} = -2.5mA	3.5			v
Capacitanc	e⁹ T_A = 25° C				•	
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	рF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS 0°C ≤ TA ≤ +70°C, +4.5V ≤ VCC ≤ +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at V_{CC} = 5V, T_A = 25°C. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND \pm 0.2V to V_{CC} \pm 0.2V.

5. CE is $V_{CC} \pm 0.2V$. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of IPP + ICC and is measured at a frequency ofd 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. Vpp may be one diode voltage drop below Vcc, and can be connected directly to Vcc.

9. Guaranteed by design, not 100% tested.

27C64A O.T.P.

				27C64A-12		27C64A-15	
SYMBOL	IBOL TO FROM		Min	Max	Min	Max	
Access tim	e ¹				•		
tACC	Output	Address		120		150	ns
t _{CE}	Output	CE		120		150	ns
t _{OE} ³	Output	ŌE		60		65	ns
Disable tim	e ²						
t _{DF} ⁴	Output Hi-Z	OE or CE		30		45	ns
t _{OH}	Output hold	Address, CE or OE	0	1	0	· · · · · · · · · · · · · · · · · · ·	ns

AC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +70^{\circ}C$, $+4.5V \le V_{CC} \le +5.5V$, $R_L = 660\Omega$, $C_L = 100pF$

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. \overline{OE} may be delayed up to $t_{\overline{OE}} - t_{\overline{OE}}$ after the falling edge of \overline{CE} without impact on $t_{\overline{CE}}$. 4. $t_{\overline{DF}}$ is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Application Specific Products

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- High-performance speeds
 - 27C64A-20: 200ns maximum access time
- Noise immunity features
 - ±10% V_{cc} tolerance
 - Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm (3 second typical programming times)

DESCRIPTION

Signetics 27C64A CMOS O.T.P. EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

BLOCK DIAGRAM

DATA OUTPUTS $0_{0} - 0_{7}$ OF OUTPUT ENABLE OUTPUT BUFFERS POM ĈĒ CHIP ENABLE Y-GATING Y DECODE 65,536 BIT X DECODE CELL MATRIX ADDRESS 800271

27C64A O.T.P. One Time Programmable $64K (8K \times 8) EPROMs$

Product Specification

The 27C64A O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMS provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times. In the absence of quick-pulse programming equipment, the intelligent programming algorithm may be utilized.

PIN DESCRIPTION

$A_0 - A_{12}$	Addresses
O ₀ – O ₇	Outputs
ŌE	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't use
PGM	Program strobe

PIN CONFIGURATIONS

13

One Time Programmable 64K (8K \times 8) EPROMs

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of tog from the falling edge of OE, assuming that CE has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100µA. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28–Pin Plastic Dual in–line 600mil–wide	27C64A-20 N
32-Pin Plastic Leaded Chip Carrier 450mil × 550mil	27C64A-20 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on Ag ² (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on V _{PP} (During programming)	-2.0 to +14.0	v
V _{cc}	Supply voltage ²	-2.0 to +7.0	v

NOTES:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and funtional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION¹

MODE	CE	OE ²	PGM ²	V _{PP} ³	OUTPUTS
Read	VIL	VIL	V _{IH}	V _{cc}	D _{OUT}
Output disable	VIL	V _{IH}	V _H	V _{cc}	Hi–Z
Standby	VIH	X	x	V _{CC}	HiZ

NOTES:

1. All voltages are with respect to network ground.

2. X can be V_{IH} or V_{IL}

3. VPP may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

27C64A O.T.P.

27C64A O.T.P.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур ³	Max	UNIT
Input curre	nt					
IIH	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μΑ
۱ _L	Low	V _{IL} = 0.45V		0.01	1.0	μΑ
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output cur	rent					
ILO	Leakage	OE or CE = V _{IH} V _{OUT} = 5.5V = V _{CC}	-		1.0	μA
	-	V _{OUT} = 0V = GND			1.0	μΑ
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply cur	rent					
		$\overline{OE} = \overline{CE} = V_{IL}$, f = 5.0MHz				
ICC TTL	Operating (TTL inputs) ⁴	$V_{PP} = V_{CC}$			20	mA
		$O_{0-7} = 0mA$				
I _{SB} TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1.0	mA
ISB CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μΑ
Input voltag	ge ²					
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v
VIL	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	v
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	V
V _{PP}	Read ⁸	(Operating)	V _{CC} – 0.7		V _{cc}	v
Output volt	age ²	· · · · · · · · · · · · · · · · · · ·				
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitanc	e⁹ T_A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +70^{\circ}C, +4.5V \leq V_{CC} \leq +5.5V$

NOTES:

e1

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND \pm 0.2V to V_{CC} \pm 0.2V.

5. $\overline{\text{CE}}$ is V_{CC} ± 0.2V. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of $I_{PP} + I_{CC}$ and is measured at a frequency ofd 5MHz. 7. Test one output at a time, duration should not exceed 1 second.

Vpp may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
 Guaranteed by design, not 100% tested.

27C64A O.T.P.

			27C6	27C64A-20		
SYMBOL	то	FROM	Min	Мах	UNIT	
Access tim	ne ¹					
tACC	Output	Address		200	ns	
t _{CE}	Output	CE		200	ns	
t _{OE} 3	Output	OE		75	ns	
Disable tim	ne ²					
t _{DF} ⁴	Output Hi–Z	OE or CE		55	ns	
t _{OH}	Output hold	Address, CE or OE	0		ns	

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660 Ω , C_L = 100pF

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. OE may be delayed up to $\xi_E - \xi_E$ after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

Application Specific Products

DESCRIPTION

Signetics' 27C64A CMOS EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current

27C64A U.V. 64K-Bit Erasable CMOS EPROM (8K \times 8)

Product Specification

- High-performance speeds
 - 27C64A-10: 100ns maximum access time
- Noise immunity features
- ± 10% V_{CC} tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_0 - A_{12}$	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
PGM	Program strobe

PIN CONFIGURATION

64K-Bit Erasable CMOS EPROM (8K imes 8)

27C64A U.V.

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been Low and addresses have been stable for at least $t_{\text{ACC}} - t_{\text{OE}}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic DIP with quartz window (600mil-wide)	27C64A-10 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
T _A Temperature under bias		-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	V
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	v
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTES:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	PGM ¹⁰	Vpp ⁸	OUTPUTS
Read	VIL	VIL	VIH	V _{CC}	D _{OUT}
Output disable	VIL	VIH	VIH	V _{CC}	Hi-Z
Standby	VIH	x	X	V _{CC}	Hi-Z

Notes on following page.

64K-Bit Erasable CMOS EPROM (8K \times 8)

27C64A U.V.

	PARAMETER	TEST CONDITIONS		LIMITS		
SYMBOL		TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt					
ін	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
l _{IL}	Low	V _{IL} = 0.45V		0.01	1.0	μA
lpp	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output curi	rent					
1	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$			1.0	μA
ILO	Leakage	$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply curi	rent		dd.		- I	
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 10MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	mA
ISB CMOS	Standby (CMOS inputs) ^{5.6}	CE = V _{IH}			100	μA
Input voltag	ge ²					
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v
VIL	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	V
VIH	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	v
VIH	High (CMOS)	$V_{PP} = V_{CC}$	V _{CC} – 0.2		V _{CC} + 0.2	V
V _{PP}	Read ⁸	(Operating)	V _{CC} – 0.7		V _{CC}	v
Output volt	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v
V _{OH}	High	I _{OH} = -2.5mA	3.5			V
Capacitance	e⁹ T _A = 25°C					
C _{IN}	Address and control	$V_{CC} = 5.0V$ f = 1.0MHz			6	pF
C _{OUT}	Outputs	$V_{IN} = 0V$ $V_{OUT} = 0V$			12	pF

DC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

NOTES:

44

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

4. TTL inputs: Specification VIL, VIH levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. \overline{CE} is V_{CC} ± 0.2V. All other inputs can have any value within specification.

6. Maximum active power usage is the sum of IPP + ICC and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below $V_{\mathsf{CC}},$ and can be connected directly to $V_{\mathsf{CC}}.$

9. Guaranteed by design, not 100% tested.

1

64K-Bit Erasable CMOS EPROM (8K imes 8)

27C64A U.V.

27C64A - 10 SYMBOL FROM UNIT то Min Max Access time¹ Address 100 **t**ACC Output ns Output ĈĒ 100 t_{CE} ns toe³ ŌĒ Output 35 ns Disable time² t_{DF}⁴ Output Hi-Z OF or CF 25 ns Address, CE or OE Output hold 0 t_{OH} ns

AC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} < +5.5V, RL = 660 \Omega, CL = 100 pF

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{II} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

2. Obtaining of design, not not a setup. 3. \overline{OE} may be delayed up to $t_{CE} - t_{OE}$ after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DF} is specified from \overline{OE} or \overline{OE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

204

Application Specific Products

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- High-performance speeds
 - 27C64A–12: 120ns maximum access time
 - 27C64A–15: 150ns maximum access time
- Noise immunity features
 - ±10% V_{cc} tolerance
 - Maximum latch-up immunity through Epitaxial processing

DESCRIPTION

Signetics 27C64A CMOS EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

27C64A U.V. UV Erasable 64K (8K × 8) EPROMs

Product Specification

The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

PIN CONFIGURATION

PIN DESCRIPTION

$A_0 - A_{12}$	Addresses
O ₀ – O ₇	Outputs
OE	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
Vpp	Program voltage
V _{CC}	Power supply
PGM	Program strobe

BLOCK DIAGRAM

UV Erasable 64K (8K \times 8) EPROMs

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of tog from the falling edge of OE, assuming that CE has been Low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100µA. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

	PACKAGE DESCRIPTION	ORDER CODE
Γ	28-Pin CERDIP with quartz window (600mil-wide)	27C64A-12 FA 27C64A-15 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _i , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A9 ² (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	.V
V _{cc}	Supply voltage ²	-2.0 to +7.0	V

NOTES:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION¹

MODE	CE	OE ²	PGM ²	V _{PP} ³	OUTPUTS
Read	VIL	VIL	V _{IH}	V _{CC}	D _{OUT}
Output disable	VIL	V _H	V _{IH}	V _{CC}	Hi–Z
Standby	V _{IH}	x	X	V _{cc}	Hi–Z

NOTES:

1. All voltages are with respect to network ground.

2. X can be VIH or VIL

3. V_{PP} may be one diode voltage drop below V_{CC} , and can be connected directly to V_{CC} .

November 28, 1988

27C64A U.V.

UV Erasable 64K (8K \times 8) EPROMs

27C64A U.V.

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT	
Input curre	nt						
l _H	Leakage	V _{IN} = 5.5V = V _{CC}		0.01	1.0	μΑ	
I _{IL}	Low	V _{IL} = 0.45V		0.01	1.0	μΑ	
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μΑ	
Output cur	rent				, I		
ILO	Leakage	$ \begin{array}{l} \overline{OE} \text{ or } \overline{CE} = V_{IH} \\ V_{OUT} = 5.5V = V_{CC} \end{array} $			1.0	μΑ	
		V _{OUT} = 0V = GND			1.0	μΑ	
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA	
Supply cur	rent						
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{OE} = \overline{CE} = V_{IL}, f = 8.0MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA	
I _{SB} TTL	Standby (TTL inputs) ⁴	CE = VIH			1.0	mA	
ISB CMOS	Standby (CMOS inputs) ^{5, 6}	CE = VIH			100	μA	
Input volta	ge ²						
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v	
VIL	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v	
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	v	
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	v	
VPP	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v	
Output vol	lage ²						
VOL	Low	I _{OL} = 2.1mA			0.45	v	
V _{он}	High	l _{OH} =2.5mA	3.5			۷	
Capacitanc	æ ⁹ T _A = 25°C						
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF	
Cout	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF	

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND \pm 0.2V to V_{CC} \pm 0.2V.

5. $\overline{\text{CE}}$ is $V_{\text{CC}}\pm0.2V$ All other inputs can have any value within specifications.

Maximum active power usage is the sum of Ipp + I_{CC} and is measured at a frequency ofd 5MHz.

Test one output at a time, duration should not exceed 1 second. 7

8. VPP may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

já

UV Erasable 64K (8K \times 8) EPROMs

27C64A U.V.

			27C64A-12		27C64A-15			
SYMBOL	то	FROM	Min	Max	Min	Max	UNIT	
Access tim	e ¹							
tACC	Output	Address		120		150	ns	
t _{CE}	Output	CE		120		150	ns	
t _{OE} ³	Output	ŌE		60		65	ns	
Disable tim	le ²						-	
t _{DF} ⁴	Output Hi-Z	OE or CE		30		45	ns	
t _{OH}	Output hold	Address, CE or OE	0		0		ns	

AC ELECTRICAL CHARACTERISTICS 0°C < TA < +70°C, +4.5V < Voc < +5.5V, BL = 660Ω, CL = 100 F

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V. 2. Guaranteed by design, not 100% tested.

OE may be delayed up to t_{CE} − t_{DE} after the falling edge of CE without impact on t_{CE}.
 t_{DF} is specified from OE or CE, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

27C64A U.V. 64K-Bit Erasable CMOS EPROM (8K \times 8)

Product Specification

Application Specific Products

DESCRIPTION

Signetics' 27C64A CMOS EPROM is a 64K-bit 5V only memory organized as 8,192 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C64A has a non-multiplexed addressing interface and is plug-compatible with the industry standard 2764.

The 27C64A achieves both high performance and low power consumption, making it ideal for high performance, portable equipment. The 27C64A is offered in a ceramic DIP package. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current

High-performance speeds

- 27C64A-20: 200ns maximum access time
- Noise immunity features
- ± 10% V_{CC} tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

A ₀ – A ₁₂	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
PGM	Program strobe

PIN CONFIGURATION

BLOCK DIAGRAM

2011

64K-Bit Erasable CMOS EPROM (8K \times 8)

27C64A U.V.

READ MODE: 27C64A

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been Low and addresses have been stable for at least $t_{\text{ACC}} - t_{\text{OE}}$.

STANDBY MODE

The 27C64A has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
28-pin CERDIP with quartz window (600mil-wide)	27C64A-20 FA	

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
T _A	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A ₉ ² (During intelligent identifier interrogation)	-2.0 to +13.5	V
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	v
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	PGM ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	VIL	V _{IH}	V _{CC}	D _{OUT}
Output disable	V _{IL}	ViH	VIH	V _{CC}	Hi-Z
Standby	V _{IH}	х	x	V _{CC}	Hi-Z

Notes on following page.

64K-Bit Erasable CMOS EPROM (8K \times 8)

27C64A U.V.

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT	
Input curre	nt						
цн	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA	
I _{IL}	Low	V _{IL} = 0.45V		0.01	1.0	μA	
Ірр	V _{PP} read	$V_{PP} = V_{CC}$			100	μA	
Output curr	rent						
ILO	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μA	
		$V_{OUT} = 0V = GND$			1.0	μA	
los	Short circuit ^{7, 9}	V _{OUT} = 0V		- 10 - ¹ American (1997)	100	mA	
Supply curr	rent				······		
I _{CC} TTL Operating (TTL inputs) ⁴		$CE = OE = V_{IL}, f = 5MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA	
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	mA	
ISB CMOS	Standby (CMOS inputs) ^{5, 6}	CE = V _{IH}			100	μA	
Input voltag	ge ²				4		
VIL	Low (TTL)	$V_{PP} = V_{CC}$	-0.5		0.8	v	
V _{IL}	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v	
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	v	
V _{IH}	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	v	
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v	
Output volt	age ²						
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v	
V _{OH}	High	I _{OH} = -2.5mA	3.5			v	
Capacitance	e ⁹ T _A = 25°C						
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF	
COUT	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF	

DC ELECTRICAL CHARACTERISTICS 0°C $\stackrel{<}{<}$ T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

4. TTL inputs: Specification VIL, VIH levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. $\overline{\text{CE}}$ is V_{CC} $\pm 0.2 V.$ All other inputs can have any value within specification.

6. Maximum active power usage is the sum of IPP + ICC and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

8

64K-Bit Erasable CMOS EPROM (8K \times 8)

27C64A U.V.

AC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V, R_L = 660 \Omega, C_L = 100 pF

		27C64		
10	FROM	Min	Max	UNIT
1				
Output	Address		200	ns
Output	CE		200	ns
Output	ŌE		75	ns
2				
Output Hi-Z	OE or CE		55	ns
Output hold	Address, CE or OE	0		ns
	Output Output Output 2 Output Hi-Z	1 Output Address Output CE Output OE 2 Output Hi-Z OE or CE	TO FROM 1 Output Output Output Output Output Output Output Output Output Output	Min Max 1 1 Output Address 200 Output CE 200 Output OE 75 2 Output Hi-Z OE or CE 55

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and \dot{V}_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

OE may be delayed up to t_{CE} - t_{OE} after the falling edge of CE without impact on t_{CE}.
 t_{DF} is specified from OE or CE, whichever occurs first.

AC VOLTAGE WAVEFORMS

27HC641 O.T.P. One Time Programmable 64K-Bit CMOS EPROM ($8K \times 8$)

Product Specification

Application Specific Products

DESCRIPTION

The 27HC641 CMOS, O.T.P. EPROM is a high-speed electrically programmable Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single 5V \pm 10% power supply. All outputs offer 3-State operation and are fully TTL compatible.

The 27HC641 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC641 is available in industry standard packages with the same pinout as most 64K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

ORDERING INFORMATION

FEATURES

- Address access time:
- 27HC641-55 55ns max
- 27HC641-45 45ns max
- Operating I_{CC}: 110mA max
- 3-State outputs
- JEDEC standard 24-pin DIP and 28-pin PLCC package
- Direct replacement for standard 64K TTL PROMs
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

PIN CONFIGURATIONS

DESCRIPTION	ORDEF	CODE
DESCRIPTION	45ns	55ns
24-pin plastic DIP (600mil-wide)	27HC641-45 N	27HC641-55 N
28-pin plastic leaded chip carrier	27HC641-45 A	27HC641-55 A

BLOCK DIAGRAM

PIN NAMES

A ₀ - A ₁₂	Address inputs
O ₁ - O ₈	Data outputs
G	Output Enable
V _{CC}	Supply voltage
NC	No Connect
GND	Ground (V _{SS})

27HC641 O.T.P.

One Time Programmable 64K-Bit CMOS EPROM ($8K \times 8$)

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _I , V _O	Voltage on any pin ²	-0.5 to V_{CC} + 1V	V
T _A	Temperature under bias	-10 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C
Vpp	Voltage on G pin	-0.5 to 13.5	٧

DC OPERATING CONDITIONS $0^{\circ}C \leqslant T_{A} \leqslant + 70^{\circ}C$

SYMBOL	PARAMETER	TEST CONDITIONS				
			Min	Тур	Max	UNIT
Supply volta	age					
V _{CC}		GND = 0V	4.5	5.0	5.5	V
Input voltag	le					
VIH	High		2.0		V _{CC} + 0.5	v
VIL	Low		-0.1		0.8	٧

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant$ + 70°C, 4.5V $\leqslant V_{CC} \leqslant$ 5.5V

	PARAMETER					
SYMBOL		TEST CONDITIONS	Min	Тур	Max	
Input Curre	nt		L	.		
l _{ін}	High	V _{IN} = V _{CC}			10	μΑ
ا _{ال} ^ع	Low	V _{IN} = 0.45V			10	μA
Output Curi	rent					
ILO	Leakage	$V_{OUT} = 0$ to V_{CC}			± 10	μA
los	Output short-circuit current4	$V_{OUT} = 0V, \ \overline{G} = V_{IL}$	- 15		-70	mA
Supply Curr	rent		1		-A	-
Icc	V _{CC} operating current	$\overline{G} = V_{IH}, O_{1-8} = 0mA, $ f = 20MHz			110	mA
Input Voltag	ge				4	
V _{IC}	Input clamp voltage	I _{IC} = -12mA			-1.2	V
Output Volt	age					
V _{OH}	High	$I_{OH} = -4mA$	2.4			V
VOL	Low	I _{OL} = 16mA			0.45	V
Capacitance	₉ 5		.			1
		f = 1MHz, T _A = 25°C				1
		V _{CC} = 5.0V				
CIN	Input	V _{IN} = 0V			6	pF
COUT	Output	V _{OUT} = 5.0V			12	pF

NOTES:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

3. Input current for \overline{G} input only = -100 μ A.

4. Test one output at a time for 1 sec max.

5. Capacitance limits are sampled and not 100% tested.

One Time Programmable 64K-Bit CMOS EPROM (8K \times 8)

27HC641 O.T.P.

AC ELECTRICAL CHARACTERISTICS C_L = 30pF, R_L = 98 $\Omega,~0^\circ C \leqslant T_A \leqslant$ + 70°C, 4.5V \leqslant $V_{CC} \leqslant$ 5.5V

OV11DOL	DADAMETED		5004	27HC641-45		27HC641-55		
SYMBOL	PARAMETER	то	FROM	Min	Max	Min	Max	UNIT
t _{AA}	Address access time	Output	Address		45		55	ns
t _{ES}	Output Enable access time	Output	Output Enable		25		30	ns
t _{ED}	Output disable time	Output	Output Enable		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Application Specific Products

DESCRIPTION

The 27HC641 is a CMOS, high-speed ultraviolet light erasable electrically programmable Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single 5V \pm 10% power supply. All outputs offer 3-State operation and are fully TTL-compatible.

The 27HC641 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC641 is available in an industry standard 24-pin dual in-line package with the same pinout as most 64K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

ORDERING INFORMATION

PACKAGE DESCRIPTION ORDER CODE 24-pin ceramic DIP with quartz window 600mil-wide 27HC641-35 FA 27HC641-45 FA 27HC641-55 FA

BLOCK DIAGRAM

27HC641 U.V. 64K-Bit Erasable CMOS EPROM (8K \times 8)

Product Specification

FEATURES

• Address access time:

- 27HC641-55 55ns max
- 27HC641-45 45ns max
- 27HC641-35 35ns max
- Operating I_{CC}: 110mA max
- 3-State outputs
- JEDEC standard 24-pin DIP package
- Direct replacement for standard 64K TTL PROMs
- Fully TTL-compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

PIN CONFIGURATION

PIN NAMES

A ₀ - A ₁₂	Address inputs
O ₁ - O ₈	Data outputs
G	Output Enable
V _{CC}	Supply voltage
GND	Ground (V _{SS})

64K-Bit Erasable CMOS EPROM (8K imes 8)

27HC641 U.V.

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _I , V _O	Voltage on any pin ²	-0.5 to V _{CC} + 1V	V
TA	Temperature under bias	-10 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C
V _{PP}	Voltage on Pin 20 ²	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ}C \le T_A \le +70^{\circ}C$

SYMBOL	PARAMETER					
		TEST CONDITIONS	Min	Тур	Max	UNIT
Supply vol	tage					
V _{CC}		GND = 0V	4.5	5.0	5.5	V
Input volta	ge		•			
VIH	High		2.0		V _{CC} + 0.5	V
VIL	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.5V \le V_{CC} \le 5.5V$

	PARAMETER					
SYMBOL		TEST CONDITIONS	Min	Тур	Max	
Input Curre	nt					
IIH	High	$V_{\rm IN} = V_{\rm CC}$			10	μA
ا _{ال} ³	Low	V _{IN} = 0.45V			10	μA
Output Cur	rent					
LO	Leakage	$V_{OUT} = 0$ to V_{CC}			± 10	μA
los	Output short-circuit current ⁴	$V_{OUT} = 0V, \ \overline{G} = V_{IL}$	-15	1997 - 19	-70	mA
Supply Cur	rent	· · · ·	4			
lcc	V _{CC} operating current	$\overline{G} = V_{IH}, O_{1-8} = 0mA, $ f = 20MHz			110	mA
Input Volta	ge					
VIC	Input clamp voltage	I _{IC} = – 12mA			-1.2	V
Output Volt	age			•		
V _{OH}	High	I _{OH} = -4mA	2.4			٧
V _{OL}	Low	I _{OL} = 16mA			0.45	v
Capacitance	₉ 5		1	.t		
		f = 1MHz, T _A = 25°C				
		V _{CC} = 5.0V				
CIN	Input	V _{IN} = 0V			6	pF
COUT	Output	V _{OUT} = 5.0V			12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Implied and exposure to absolute maximum rating conditions for extended periods may affect device reliading.
2. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.
3. Input current for G input only = -100µA.
4. Test one output at a time for 1 sec max.
5. Capacitance limits are sampled and not 100% tested.

64K-Bit Erasable CMOS EPROM (8K \times 8)

27HC641 U.V.

AC ELECTRICAL CHARACTERISTICS C_L = 30pF, R_L = 98 $\Omega,~0^\circ C \leqslant T_A \leqslant$ + 70°C, 4.5V \leqslant V_{CC} \leqslant 5.5V

0,000			PARAMETER TO FROM		27HC	641-35	27HC	641-45	27HC	641-55	
SYMBOL	PARAMETER	то	FROM	Min	Max	Min	Max	Min	Max	UNIT	
t _{AA}	Address access time	Output	Address		35		45		55	ns	
t _{ES}	Output Enable access time	Output	Output Enable		20		25		30	ns	
t _{ED}	Output disable time	Output	Output Enable		20		25		30	ns	

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

128K-bit CMOS EPROM

27HC128 O.T.P.	128K-bit CMOS EPROMs (16K x 8) 45 ns; 55 ns	223
27HC128 U.V.	128K-bit erasable CMOS EPROMs (16K x 8)	
	45 ns; 55 ns	227

Application Specific Products

DESCRIPTION

The 27HC128 CMOS, O.T.P. EPROM is a high-speed electrically programmable Read Only Memory. It is organized as 16,384 words of 8 bits and operates from a single 5V \pm 10% power supply. All outputs offer 3-State operation and are fully TTL compatible.

The 27HC128 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC128 is available in industry standard packages with the same pinout as most 128K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

DESCRIPTION

ORDERING INFORMATION

28-pin plastic DIP (600mil-wide)

28-pin r lastic leaded chip carrier

27HC128 O.T.P. One Time Programmable 128K (16K \times 8) EPROMs

Preliminary Specification

FEATURES

- Address access time:
 - 27HC128-55 55ns max
 - 27HC128-45 45ns max
- Operating I_{CC}: 110mA max
- 3-State outputs
- JEDEC standard 28-pin DIP and 28-pin PLCC package
- Direct replacement for standard 128K TTL PROMs
- Fully TTL compatible

APPLICATIONS

45ns

27HC128-45 N

27HC128-45 A

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

ORDER CODE

55ne

27HC128-55 N

27HC128-55 A

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN NAMES

A ₀ - A ₁₃	Address inputs
O ₁ - O ₈	Data outputs
Ğ-G	Output Enables
V _{CC}	Supply voltage
GND	Ground (V _{SS})

One Time Programmable 128K (16K \times 8) EPROMs

27HC128 O.T.P.

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
Vi, Vo	Voltage on any pin ²	-0.5 to V _{CC} + 1V	V
TA	Temperature under bias	-10 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C
Vpp	Voltage on G pin	-0.5 to 13.5	v

DC OPERATING CONDITIONS $0^\circ C \leqslant T_A \leqslant$ + $70^\circ C$

SYMBOL						
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Supply vo	bitage	an a	- <u>1</u>	*		
V _{CC}		GND = 0V	4.5	5.0	5.5	V
Input volt	age					
VIH	High		2.0		V _{CC} + 0.5	V
VIL	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^\circ\text{C} \leqslant \text{T}_{\text{A}} \leqslant + 70^\circ\text{C}, \ 4.5\text{V} \leqslant \text{V}_{\text{CC}} \leqslant 5.5\text{V}$

-	PARAMETER					
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNIT
Input Curre	nt				••••••••••••••••••••••••••••••••••••••	
lін	High	V _{IN} = V _{CC}			10	μA
I _{IL} ³	Low	V _{IN} = 0.45V			10	μA
Output Cur	rent					
ILO	Leakage	$V_{OUT} = 0$ to V_{CC}			± 10	μA
los	Output short-circuit current ⁴	$V_{OUT} = 0V, \ \overline{G} = V_{IL}$	- 15		-70	mA
Supply Cur	rent					
Icc	V _{CC} operating current	$\overline{G} = V_{IH}, O_{1-8} = 0mA,$ f = 20MHz			110	mA
Input Volta	ge					
VIC	Input clamp voltage	$I_{IC} = -12mA$			-1.2	V
Output Volt	age					
V _{OH}	High	I _{OH} = -4mA	2.4			V
V _{OL}	Low	i _{OL} = 16mA			0.45	v
Capacitance	, 5					
		f = 1MHz, T _A = 25°C		T		Τ
		$V_{\rm CC} = 5.0 V$				
CIN	Input	V _{IN} = 0V 6		6	pF	
COUT	Output	V _{OUT} = 5.0V			12	pF

NOTES:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

3. Input current for \overline{G} input only = -100 μ A.

4. Test one output at a time for 1 sec max

5. Capacitance limits are sampled and not 100% tested.

February 1989

27HC128 O.T.P.

AC ELECTRICAL CHARACTERISTICS C_L = 30pF, R_1 = 98 $\Omega_{\rm r}$, 0°C < T_A < + 70°C, 4.5V < V_{CC} < 5.5V

0,440,01					FROM		128-45	27HC	128-55	
SYMBOL	PARAMETER	то	FROM	Min	Max	Min	Max	UNIT		
t _{AA}	Address access time	Output	Address		45		55	ns		
t _{ES}	Output Enable access time	Output	Output Enable		25		30	ns		
t _{ED}	Output disable time	Output	Output Enable		25		30	ns		

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Application Specific Products

DESCRIPTION

The 27HC128 is a CMOS, high-speed Ultra-violet light erasable electrically programmable Read Only Memory. It is organized as 16,384 words of 8 bits and operates from a single $5V \pm 10\%$ power supply. All outputs offer 3-State operation and are fully TTL-compatible.

The 27HC128 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to high noise environments.

The 27HC128 is available in an industry standard 24-pin dual-in-line package with the same pin out as most 128K bipolar PROMs. This makes it easy to upgrade systems currently using bipolar PROMs and provide a lower power memory system solution.

ORDERING INFORMATION

PACKAGE DESCRIPTION ORDER CODE 28-pin ceramic DIP with quartz window 600mil-wide 27HC128-45 FA 27HC128-55 FA

Address access time: 27HC128-55 55ns max

Product Specification

27HC128 U.V.

- 27HC128-45 45ns max

EPROM

- Operating I_{CC}: 110mA max
- 3-State outputs

FEATURES

- JEDEC standard 24-pin DIP
 package
- Direct replacement for standard 128K TTL PROMs
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High-performance mini- and microcomputers
- High-speed program store and look-up tables

PIN CONFIGURATION

128K Erasable CMOS ($16K \times 8$)

PIN NAMES

A ₀ - A ₁₃	Address inputs
O ₁ - O ₈	Data outputs
G	Output Enable
V _{CC}	Supply voltage
GND	Ground (V _{SS})

BLOCK DIAGRAM

128K Erasable CMOS (16K imes 8) EPROM

27HC128 U.V.

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _I , V _O	Voltage on any pin ²	-0.5 to V_{CC} + 1V	۷
T _A	Temperature under bias	-10 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C
VPP	Voltage on Pin 20 ²	-0.5 to 13.5	V

DC OPERATING CONDITIONS $0^{\circ}C \leq T_A \leq +70^{\circ}C$

	- A.					
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Supply volta	ige	· · ·				
V _{CC}		GND = 0V	4.5	5.0	5.5	V
Input voitag	e		······································			
VIH	High	· · · · ·	2.0		V _{CC} + 0.5	V ¹
V _{IL}	Low		-0.1		0.8	V

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.5V \le V_{CC} \le 5.5V$

	PARAMETER					
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNIT
Input Curre	nt		· ·			
liH	High	V _{IN} = V _{CC}	1		10	μA
1 ₁₁ 3	Low	V _{IN} = 0.45V			10	μA
Output Curr	rent					
ILO	Leakage	$V_{OUT} = 0$ to V_{CC}			± 10	μA
los	Output short-circuit current ⁴	$V_{OUT} = 0V, \ \overline{G} = V_{IL}$	-15		-70	mA
Supply Curr	rent					
lcc	V _{CC} operating current	$\overline{G} = V_{IH}, O_{1-8} = 0mA, $ f = 20MHz			110	mA
Input Voltag	ge	: :				-
VIC	Input clamp voltage	I _{IC} = -12mA			-1.2	V
Output Volt	age					
VOH	High	I _{OH} = -4mA	2.4			V
VOL	Low	$I_{OL} = 16 \text{mA}$			0.45	V
Capacitance	9 ⁵			·		4
		$f = 1MHz, T_A = 25^{\circ}C$	-	1.1		
		V _{CC} = 5.0V	1			
CIN	Input	V _{IN} = 0V	V _{IN} = 0V 6		6	pF
COUT	Output	V _{OUT} = 5.0V			12	pF

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns. 3. Input current for \overline{G} input only = $-100\mu A$. 4. Test one output at a time for 1 sec max. 5. Conseitance times a complete ded by 100% tested

5. Capacitance limits are sampled and not 100% tested.

128K Erasable CMOS (16K imes 8) EPROM

27HC128 U.V.

AC ELECTRICAL CHARACTERISTICS C_L = 30pF, R_L = 98 $\Omega,~0^{\circ}C \leqslant T_A \leqslant$ + 70°C, 4.5V \leqslant V_{CC} \leqslant 5.5V

SYMBOL		27HC128-45 27HC128-55			FROM 27HC128-45 Min Max		128-55	
	PARAMETER	то	FROM	Min			Max	UNIT
t _{AA}	Address access time	Output	Address		45		55	ns
t _{ES}	Output Enable access time	Output	Output Enable		25		30	ns
t _{ED}	Output disable time	Output	Output Enable		25		30	ns

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

256K-bit CMOS EPROM

page

27C256-IND	256K-bit EPROMs (32K x 8) 150 ns; 200 ns 233
27C256 O.T.P.	256K-bit EPROM (32K x 8) 120 ns 237
27C256 O.T.P.	256K-bit EPROMs (32K x 8) 150 ns; 170 ns 241
27C256 O.T.P.	256K-bit EPROM (32K x 8) 200 ns 245
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 120 ns 249
27C256 U.V.	256K-bit erasable EPROMs (32K x 8) 150 ns; 170 ns 253
27C256 U.V.	256K-bit erasable EPROM (32K x 8) 200 ns 257

Application Specific Products

DESCRIPTION

Signetics 27C256 CMOS EPROM is a 256K-bit 5V only memory organized as 131,072 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 is specified to operate over the industrial temperature range of -40° C to $+85^{\circ}$ C with no degradation in performance.

The 27C256 is available in both the windowed Ceramic DIP, the plastic DIP and the PLCC Packages. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming (4 second typical programming times)

BLOCK DIAGRAM

27C256–IND 256K (32K \times 8) EPROMs Industrial Temperature Range

Product Specification

• High-performance speeds

- 27C256I15: 150ns maximum access time
- 27C256l20: 200ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_0 - A_{14}$	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output Enable
ĈĒ	Chip Enable
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
N.C.	No Connection
D.U.	Don't Use

PIN CONFIGURATIONS

256K (32K imes 8) EPROMs Industrial Temperature Range

27C256

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been Low and addresses have been stable for at least $t_{\text{ACC}} - t_{\text{OE}}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin CERDIP with quartz window (600mil-wide)	27C256l15 FA 27C256l20 FA
28-pin Plastic Dual in-line (600mil-wide)	27C256l15 N 27C256l20 N
32-pin Plastic Leaded Chip Carrier (450 \times 550mil)	27C256l15 A 27C256l20 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
T _A	Temperature under bias	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
VI, VO	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	V
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	V
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	VPP ⁸	OUTPUTS
Read	VIL	V _{IL}	V _{CC}	D _{OUT}
Output disable	VIL	VIH	V _{CC}	Hi-Z
Standby	V _{IH} *	X	V _{CC}	Hi-Z

Notes on following page.

256K (32K \times 8) EPROMs Industrial Temperature Range

27C256

	DADAMETER			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT	
Input curre	nt						
IIH	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA	
կլ	Low	V _{IL} = 0.45V		0.01	1.0	μA	
Ірр	V _{PP} read	$V_{PP} = V_{CC}$			100	μA	
Output curr	ent						
ILO	Leakage	$\overline{OE} \text{ or } \overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CG}$ $V_{OUT} = 0V = GND$			1.0 1.0	μA μA	
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA	
Supply curr	ent						
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 6.7MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA	
ISB TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1.0	μA	
ISB CMOS	Standby (CMOS inputs)5. 6	CE = V _{IH}			100	μA	
Input voltag	je ²						
VIL	Low (TTL)	$V_{PP} = V_{CC}$	-0.5	******	0.8	v	
V _{IL}	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v	
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	٧	
ViH	High (CMOS)	V _{PP} = V _{CC}	'V _{CC} - 0.2		V _{CC} + 0.2	v	
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v	
Output volta	age ²						
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v	
V _{OH}	High	I _{OH} = -2.5mA	3.5			v	
Capacitance	⁹ T _A = 25°C						
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF	
COUT	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF	

DC ELECTRICAL CHARACTERISTICS -40°C \leqslant T_A \leqslant +85°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Specification V_{IL} , V_{IH} levels. CMOS inputs: GND ±0.2V to $V_{CC} \pm 0.2V$.

5. CE is V_{CC} ±0.2V. All other inputs can have any value within specification.

6. Maximum active power usage is the sum of $I_{PP} + I_{CC}$ and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC} and can be connected directly to V_{CC}

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

256K (32K imes 8) EPROMs Industrial Temperature Range

27C256

1.8

AC ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_A \le +85^{\circ}C$, $+4.5V \le V_{CC} \le +5.5V$, $R_L = 660\Omega$, $C_L = 100pF$

SYMBOL		FROM	27C256115		27C256120		
	то		Min	Max	Min	Max	UNIT
Access time ¹							1
tACC	Output	Address		150		200	ns
t _{CE}	Output	CE		150		200	ns
t _{OE} ³	Output	ŌĒ.		65		75	ns
Disable time ²	· · · · · · · · · · · · · · · · · · ·			••••••			
t _{DF} ⁴	Output Hi-Z	OE or CE		45		55	ns
toн	Output hold	Address, CE or OE	0		0		ns

NOTES:

1. AC characteristics are tested at $V_{IH} = 2.4V$ and $V_{IL} = 0.45V$. Timing measurements made at $V_{OL} = 0.8V$ and $V_{OH} = 2.0V$.

2. Guaranteed by design, not 100% tested.

3. \overline{OE} may be delayed up to $t_{\overline{CE}} - t_{\overline{OE}}$ after the falling edge of \overline{CE} without impact on $t_{\overline{CE}}$. 4. $t_{\overline{DF}}$ is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

1.84V ۶ RL DEVICE UNDER TEST OUT CL ᅼ 1C06093S Figure 1. Test Configuration

Application Specific Products

DESCRIPTION

Signetics' 27C256 CMOS O.T.P. EP-ROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming

BLOCK DIAGRAM

27C256 O.T.P. One Time Programmable 256K (32K \times 8) EPROMs

Product Specification

High-performance speeds

- 27C256-12: 120ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

A ₀ - A ₁₄	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't use

PIN CONFIGURATIONS

27C256 O.T.P.

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output enable (\overline{OE}) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin plastic DIP (600mil-wide)	27C256-12 N
32-pin plastic leaded chip carrier (450mil $ imes$ 550mil)	27C256-12 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on Ag ² (During intelligent identifier interrogation)	-2.0 to +13.5	۷
V _{PP}	Voltage on VPP ² (During programming)	-2.0 to +14.0	v
V _{CC}	Supply voltage ²	-2.0 to +7.0	٧

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	ĈĒ	OE ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	VIL	V _{CC}	D _{OUT}
Output disable	VIL	ViH	V _{CC}	Hi-Z
Standby	VIH	x	V _{CC}	Hi-Z

Notes on following page.

27C256 O.I.P.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt					
hн	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
IIL	Low	V _{IL} = 0.45V		0.01	- 1.0	μA
Ipp	V _{PP} read	$V_{PP} = V_{CC}$			100	μA
Output curr	rent					
ILO	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μA
20		$V_{OUT} = 0V = GND$			- 1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			- 100	mA
Supply curr	ent					
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, \ f = 8.0MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	μA
ISB CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input voltag	je ²					
VIL	Low (TTL)	$V_{PP} = V_{CC}$	-0.5		0.8	V
VIL	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	V
V _{IH}	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	٧
VIH	High (CMOS)	$V_{PP} = V_{CC}$	V _{CC} - 0.2		V _{CC} + 0.2	٧
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	V
Output volt	age ²					
VOL	Low	I _{OL} = 2.1mA			0.45	٧
V _{OH}	High	I _{OH} = -2.5mA	3.5			V
Capacitance	e ⁹ T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C, \ +4.5V \leqslant V_{CC} \leqslant +5.5V$

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

З. Typical limits are at V_{CC} = 5V, T_A = 25°C.

4.

TTL inputs: Spec V_{IL} , V_{IH} levels. CMOS inputs: GND ±0.2V to V_{CC} ±0.2V.

5. $\overline{\text{CE}}$ is V_{CC} $\pm 0.2 \text{V}.$ All other inputs can have any value within spec.

Maximum active power usage is the sum of IPP + ICC and is measured at a frequency of 5MHz. 6.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC} and can be connected directly to V_{CC}

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

27C256 O.T.P.

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} < +5.5V, R_L = 660\Omega, C_L = 100pF

SYMBOL			27C256 - 12		
	то	FROM States and States	Min	Max	UNIT
Access time	1				
tACC	Output	Address		120	ns
t _{CE}	Output	CE		120	ns
t _{OE} ³	Output	ŌĒ		60	ns
Disable time	2		,		
t _{DF} ⁴	Output High-Z	OE or CE	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	. 30	റട
t _{OH}	Output hold	Address, CE or OE	0	14	ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. OE may be delayed up to t_{CE} - t_{DE} after the falling edge of CE without impact on t_{CE} . 4. t_{DF} is specified from OE or CE, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

27C256 O.T.P. One Time Programmable 256K ($32K \times 8$) EPROMs

Product Specification

- 27C256-15: 150ns maximum

- 27C256-17: 170ns maximum

- Maximum latch-up immunity

Addresses

Output enable

No connection

Program voltage

Power supply

Don't use

Chip enable

Outputs

Ground

through epitaxial processing

• High-performance speeds

• Noise immunity features

- ± 10% Vcc tolerance

access time

access time

PIN DESCRIPTION

 $A_0 - A_{14}$

 $O_0 - O_7$

ŌĒ

CE

N.C.

GND

 V_{PP}

Vcc

DU

Application Specific Products

DESCRIPTION

Signetics 27C256 CMOS O.T.P. EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming

BLOCK DIAGRAM

PIN CONFIGURATIONS

27C256 O.T.P.

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{OE}) is the power control and should be used for device selection. Output enable (\overline{OE}) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin plastic dual in-line (600mil-wide)	27C256-15 N 27C256-17 N
32-pin plastic leaded chip carrier (450mil $ imes$ 550mil)	27C256-15 A 27C256-17 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER RATING		UNIT
T _A	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs -2.0 to (V _{CC} + 1)		V
V _H	Voltage on $A_9{}^2$ (During intelligent identifier interrogation)	-2.0 to +13.5	V
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	VIL	V _{CC}	D _{OUT}
Output disable	VIL	ViH	V _{CC}	Hi-Z
Standby	VIH	х	V _{CC}	Hi-Z

Notes on following page.

27C256 O.T.P.

SYMBOL PA			LIMITS			
	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input currer	nt					
l _{iH}	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
կլ	Low	V _{IL} = 0.45V		0.01	- 1.0	μA
IPP	V _{PP} read	$V_{PP} = V_{CC}$			100	μA
Output curr	ent					
1.0	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μA
10	Leanaye	$V_{OUT} = 0V = GND$			-1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			-100	mA
Supply curr	ent		L L.		-1I	
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 6.7MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	μA
I _{SB} CMOS	Standby (CMOS inputs)5. 6	CE = V _{IH}			100	μA
Input voltag	le ²					
V _{IL}	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v
V _{IL}	Low (CMOS)	$V_{PP} = V_{CC}$	-0.2		0.2	v
VIH	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	V
V _{IH}	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} – 0.7		V _{CC}	v
Output volta	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	⁹ T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
COUT	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

4. TTL inputs: Spec VIL, VIH levels.

CMOS inputs: GND ±0.2V to V_{CC} ±0.2V.

5. \overrightarrow{CE} is V_{CC} ± 0.2V. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of $I_{PP} + I_{CC}$ and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. Vpp may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

*

One Time Programmable 256K (32K imes 8) EPROMs

27C256 O.T.P.

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660\Omega, C_L = 100pF

SYMBOL	то		27C256 - 15		27C256 - 17		
		FROM	Min	Max	Min	Max	UNIT
Access time	1						
tACC	Output	Address		150		170	ns
t _{CE}	Output	CE		150		170	ns
t _{OE} ³	Output	ŌE		65		70	ns
Disable time	2						
t _{DF} ⁴	Output Hi-Z	OE or CE		45		55	ns
tон	Output hold	Address, CE or OE	0		0		ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. \overline{OE} may be delayed up to $t_{CE} - t_{OE}$ after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DE} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

244

Application Specific Products

DESCRIPTION

Signetics' 27C256 CMOS O.T.P. EP-ROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27256.

The 27C256 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current

27C256 O.I.P. One Time Programmable 256K (32K imes 8) EPROMs

Product Specification

- High-performance speeds
- 27C256-20: 200ns maximum access time
- Noise immunity features
- ± 10% V_{CC} tolerance
- Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm

PIN DESCRIPTION

$A_0 - A_{14}$	Addresses
O ₀ – O ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
N.C.	No connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't use

PIN CONFIGURATIONS

BLOCK DIAGRAM

27C256 O.T.P.

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been low and addresses have been stable for at least $t_{\text{ACC}} - t_{\text{OE}}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when $\overline{\text{CE}}$ is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{\text{OE}}$ input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin plastic DIP 600mil-wide	27C256-20 N
32-pin plastic leaded chip carrier 450mil × 550mil	27C256-20 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	V
V _H	Voltage on $A_9{}^2$ (During intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on VPP ² (During programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	٧

NOTE:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	Vpp ⁸	OUTPUTS
Read	VIL	VIL	V _{CC}	D _{OUT}
Output disable	VIL	V _{IH}	V _{CC}	Hi-Z
Standby	VIH	x	V _{CC}	Hi-Z

Notes on following page.

27C256 O.T.P.

	PARAMETER	TEAT CONDITIONS		LIMITS		UNIT
SYMBOL		TEST CONDITIONS	Min	Typ ³	Max	
Input curre	nt					
I _{IH}	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
I _{IL}	Low	V _{IL} = 0.45V		0.01	1.0	μA
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output curr	rent					
ILO	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μA
20	5	$V_{OUT} = 0V = GND$			1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply curr	ent					
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, \ f = 5.0 \text{MHz}$ $V_{PP} = V_{CC}$ $O_{0-7} = 0 \text{mA}$			20	mA
ISB TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1.0	mA
ISB CMOS	Standby (CMOS inputs) ^{5, 6}	CE = V _{IH}			100	μA
Input voltag	je ²					
V _{IL}	Low (TTL)	$V_{PP} = V_{CC}$	-0.5		0.8	V
VIL	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	V
VIH	High (TTL)	$V_{PP} = V_{CC}$	2.0		V _{CC} + 0.5	v
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} + 0.2		V _{CC} + 0.2	V
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	V
Output volt	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	$r^{9} T_{A} = 25^{\circ}C$					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS 0°C $\stackrel{<}{<}$ T_A $\stackrel{<}{<}$ +70°C, +4.5V $\stackrel{<}{<}$ V_{CC} $\stackrel{<}{<}$ +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at V_{CC} = 5V, T_A = 25°C.

4. TTL inputs: Spec V_{IL} , V_{IH} levels. CMOS inputs: GND ± 0.2V to V_{CC} ± 0.2V.

5. $\overline{\text{CE}}$ is V_{CC} ± 0.2V. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of $I_{PP} + I_{CC}$ and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC} and can be connected directly to V_{CC}

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

4

One Time Programmable 256K (32K \times 8) EPROMs

27C256 O.T.P.

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660\Omega, C_L = 100pF

SYMBOL			27C256 - 20		
	то	FROM	Min	Max	UNIT
Access time	1				
tACC	Output	Address		200	ns
t _{CE}	Output	CE		200	ns
toe ³	Output	ŌE		75	ns
Disable time	2				1.1
t _{DF} ⁴	Output Hi-Z	OE or CE		55	ns
t _{OH}	Output hold	Address, CE or OE	0		ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V. 2. Guaranteed by design, not 100% tested.

3. \overline{OE} may be delayed up to t_{CE} - t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

DESCRIPTION

Signetics' 27C256 CMOS EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming

27C256 U.V. Erasable 256K (32K \times 8) EPROMs

Product Specification

- High-performance speeds
 - 27C256-12: 120ns maximum access time
- Noise immunity features
- ± 10% V_{CC} tolerance
- Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

A ₀ – A ₁₄	Addresses	
O ₀ – O ₇	Outputs	
ŌĒ	Output enable	
CE	Chip enable	
GND	Ground	
V _{PP}	Program voltage	
V _{CC}	Power supply	

PIN CONFIGURATION

	FA Package	
Vpp 1 A12 2 A7 3 A6 4 A5 5 A4 6		28 Vcc 27 A14 26 A13 25 A8 24 A9 23 A11
A ₃ 7 A ₂ 8 A ₁ 9 A ₀ 10 O ₁ 11 O ₁ 12 O ₂ 13 GND 14		22 0E 21 A ₁₀ 20 0E 19 07 18 0 ₆ 17 0 ₅ 16 0 ₄ 15 0 ₃
		CD09511S

BLOCK DIAGRAM

27C256 U.V.

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE} , assuming that \overline{CE} has been Low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic DIP with quartz window (600mil-wide)	27C256-12 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING		
T _A	Temperature under bias	-10 to +80	°C	
T _{STG}	Storage temperature	-65 to +125	°C	
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	V	
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	v	
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	v	
V _{CC}	Supply voltage ²	-2.0 to +7.0	V	

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	V _{PP} ⁸	OUTPUTS
Read	VIL	VIL	V _{CC}	D _{OUT}
Output disable	VIL	VIH	V _{CC}	Hi-Z
Standby	VIH	x	V _{CC}	Hi-Z

Notes on following page.

27C256 U.V.

SYMBOL	PARAMETER	TEST CONDITIONS				
		TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt		A			
Iн	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
IIL	Low	V _{IL} = 0.45V		0.01	- 1.0	μA
Ipp	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output curr	rent					
ILO	Leakage	\overline{OE} or $\overline{CE} = V_{IH}$ $V_{OUT} = 5.5V = V_{CC}$			1.0	μA
		V _{OUT} = 0V = GND			-1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			-100	mA
Supply curr	rent					
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, \text{ f} = 8.0\text{MHz}$ $V_{PP} = V_{CC}$ $O_{0-7} = 0\text{mA}$			20	mA
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	μA
ISB CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input voltag	je ²					
VIL	Low (TTL)	$V_{PP} = V_{CC}$	-0.5		0.8	v
VIL	Low (CMOS)	$V_{PP} = V_{CC}$	-0.2		0.2	v
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	v
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} – 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v
Output volt	age ²					
VOL	Low	I _{OL} = 2.1mA			0.45	v
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	e ⁹ T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C, \ +4.5V \leqslant V_{CC} \leqslant +5.5V$

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Specification V_{IL} , V_{IH} levels.

 \underline{CMOS} inputs: GND $\pm\,0.2V$ to V_{CC} $\pm\,0.2V.$

5. \overline{CE} is V_{CC} ± 0.2V. All other inputs can have any value within specification

6. Maximum active power usage is the sum of I_{PP} + I_{CC} and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC} and can be connected directly to V_{CC}

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

27C256 U.V.

SYMBOL	10 A				27C256 - 12		
	то			FROM	Min	Max	UNIT
Access time	1						
t _{ACC}	Output	1		Address		120	ns
t _{CE}	Output			CE		120	ns
t _{OE} ³	Output			ŌĒ	11	60	ns
Disable time	2						
t _{DF} 4	Output Hi-Z		- Luna	OE or CE		30	ns
t _{OH}	Output hold			Address, CE or OE	0		ns

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A < +70°C, +4.5V < V_{CC} < +5.5V, R_L = 660\Omega, C_L = 100 pF

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested. 3. \overline{OE} may be delayed up to t_{CE} toge after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

DESCRIPTION

Signetics 27C256 CMOS EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick pluse programming algorithm for high-speed production programming

27C256 U.V. Erasable 256K (32K \times 8) EPROMs

Product Specification

• High-performance speeds

- 27C256-15: 150ns maximum access time
- 27C256-17: 170ns maximum access time
- Noise immunity features
 - \pm 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_0 - A_{14}$	Addresses	
O ₀ – O ₇	Outputs	
ŌĒ	Output enable	
CE	Chip enable	
GND	Ground	
V _{PP}	Program voltage	
V _{CC}	Power supply	

PIN CONFIGURATION

BLOCK DIAGRAM

27C256 U.V.

Erasable 256K (32K imes 8) EPROMs

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and should be used for device selection. Output Enable ($\overline{\text{OE}}$) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of $\overline{\text{OE}}$, assuming that $\overline{\text{CE}}$ has been Low and addresses have been stable for at least t_{ACC} - t_{OE} .

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin cerdip with quartz window (600mil-wide)	27C256-15 FA 27C256-17 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature	emperature -65 to +125	
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	v
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	, v
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	CE	OE ¹⁰	Vpp ⁸	OUTPUTS
Read	VIL	VIL	V _{CC}	D _{OUT}
Output disable	VIL	VIH	V _{CC}	Hi-Z
Standby	VIH	×	V _{CC}	Hi-Z

Notes on following page.

27C256 U.V.

		PARAMETER TEST CONDITIONS		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt				-1	
łн	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
կլ	Low	$V_{IL} = 0.45V$		0.01	-1.0	μA
Ірр	V _{PP} read	V _{PP} = V _{CC}			100	μA
Output curr	rent					
		\overline{OE} or $\overline{CE} = V_{IH}$			1.0	μA
ILO	Leakage	$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			-1.0	μA
los	Short circuit ^{7, 9}	V _{OUT} = 0V			-100	mA
Supply curr	ent					
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 6.7MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
I _{SB} TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1.0	μA
ISB CMOS	Standby (CMOS inputs)5. 6	CE = V _{IH}			100	μA
Input voltag	je ²					
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	V
V _{IL}	Low (CMOS)	$V_{PP} = V_{CC}$	-0.2		0.2	v
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	v
V _{IH}	High (CMOS)	$V_{PP} = V_{CC}$	V _{CC} - 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v
Output volta	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	9 T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Specification V_{IL} , V_{IH} levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. CE is V_{CC} ± 0.2V. All other inputs can have any value within specification

6. Maximum active power usage is the sum of $I_{PP} + I_{CC}$ and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. Vpp may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

27C256 U.V.

AC ELECTRICAL CHARACTERISTICS 0°C < T_A < +70°C, +4.5V < V_{CC} < +5.5V, R_L = 660\Omega, C_L = 100pF

0,445.01		5501	27C256 - 15 27C25		256 - 17		
SYMBOL	то	FROM	Min	Max	ax Min	Max	UNIT
Access time ¹	an ta bahan mahandan menangkan kanangkan dari kanangkan dari kanangkan dari kanangkan dari kanangkan dari kanan						•
tACC	Output	Address		150		170	ns
t _{CE}	Output	CE		150		170	ns
toe ³	Output	ŌĒ		65		70	ns
Disable time ²						•	•
t _{DF} ⁴	Output Hi-Z	OE or CE		45		55	ns
t _{OH}	Output hold	Address, CE or OE	0	-	0		ns

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. \overline{OE} may be delayed up to $t_{CE} - t_{OE}$ after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DE} is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

DESCRIPTION

Signetics' 27C256 CMOS EPROM is a 256K-bit 5V only memory organized as 32,768 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27256.

The 27C256 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers, and the intelligent programming algorithm may be used.

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current

27C256 U.V. Erasable 256K (32K \times 8) EPROMs

Product Specification

- High-performance speeds
 27C256-20: 200ns maximum
- 270256-20: 200ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

PIN DESCRIPTION

$A_0 - A_{14}$	Addresses
0 ₀ – 0 ₇	Outputs
ŌĒ	Output enable
CE	Chip enable
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply

PIN CONFIGURATION

BLOCK DIAGRAM

27C256 U.V.

1.5

READ MODE: 27C256

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{OE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the outputs ontrol and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE} , assuming that \overline{CE} has been Low and addresses have been stable for at least $t_{ACC}-t_{OE}.$

STANDBY MODE

The 27C256 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE} input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic DIP with quartz window (600mil-wide)	27C256-20 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
T _A	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	V
V _H	Voltage on A_9^2 (During intelligent identifier interrogation)	-2.0 to +13.5	V
V _{PP}	Voltage on V _{PP} ² (During programming)	-2.0 to +14.0	٧
V _{CC}	Supply voltage ²	-2.0 to +7.0	٧

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION²

MODE	ĈĒ	OE ¹⁰	Vpp ⁸	OUTPUTS
Read	V _{IL}	V _{IL}	V _{CC}	D _{OUT}
Output disable	V _{IL}	VIH	V _{CC}	Hı-Z
Standby	VIH	×	V _{CC}	Hi-Z

Notes on following page.

27C256 U.V.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input curre	nt					
l _{IH}	Leakage	$V_{\rm IN} = 5.5V = V_{\rm CC}$		0.01	1.0	μA
h _L	Low	V _{IL} = 0.45V		0.01	1.0	μA
Ipp	V _{PP} read	$V_{PP} = V_{CC}$			100	μA
Output curr	rent	-			•••••••••••••••••••••••••••••••••••••••	
		\overline{OE} or $\overline{CE} = V_{1H}$			1.0	μA
LO	Leakage	$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			1.0	μA
I _{OS}	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply curr	rent	L	-		4	
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 5.0MHz$ $V_{PP} = V_{CC}$ $O_{0-7} = 0mA$			20	mA
ISB TTL	Standby (TTL inputs)4	CE = V _{IH}			1.0	μA
ISB CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input voltag	je²					
V _{IL}	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	v
V _{IL}	Low (CMOS)	V _{PP} = V _{CC}	-0.2		0.2	v
V _{IH}	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	· V
V _{IH}	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{CC}	v
Output volt	age ²					
V _{OL}	Low	I _{OL} = 2.1mA			0.45	v
V _{OH}	High	I _{OH} = -2.5mA	3.5			v
Capacitance	$P^{9} T_{A} = 25^{\circ}C$					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
C _{OUT}	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C, \ +4.5V \leqslant V_{CC} \leqslant +5.5V$

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Specification V_{IL} , V_{IH} levels.

CMOS inputs: GND $\pm\,0.2V$ to $\,V_{CC}\,\pm\,0.2V.$

5. \overline{CE} is V_{CC} ±0.2V. All other inputs can have any value within specification

6. Maximum active power usage is the sum of Ipp + ICC and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. V_{PP} may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.

9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

27C256 U.V.

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660\Omega, C_L = 100pF

		5004	OM 27C256 - 20 Min Max			
SYMBOL	то	FROM			UNIT	
Access time	e ¹					
tACC	Output	Address		200	ns	
t _{CE}	Output	CE		200	ns	
toe ³	Output	ŌĒ		75	ns	
Disable time	e ²					
t _{DF} ⁴	Output High-Z	OE or CE		55	ns	
t _{OH}	Output hold	Address, CE or OE	0		ns	

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. $\overline{\text{OE}}$ may be delayed up to $t_{\text{CE}} - t_{\text{OE}}$ after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} . 4. t_{DF} is specified from $\overline{\text{OE}}$ or $\overline{\text{CE}}$, whichever occurs first.

AC VOLTAGE WAVEFORMS

516K-bit CMOS EPROM

21

page

27C512 O.T.P.	512K-bit CMOS EPROMs (64K x 8) 150 ns; 170 ns; 200 ns	263
27C512 U.V.	512K-bit erasable CMOS EPROMs (64K x 8) 150 ns; 170 ns; 200 ns	267

DESCRIPTION

Signetics 27C512 CMOS O.T.P. EPROM is a 512K-bit 5V only memory organized as 65,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C512 has a non-multiplexed addressing interface and is plugcompatible with the industry standard 27512.

The 27C512 O.T.P. is offered in plastic DIP and plastic leaded chip carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick-pulse programming is employed on plastic devices which may speed up programming by as much as one hundred times.

27C512 O.T.P. 512K-Bit CMOS EPROMs $(64K \times 8)$

Product Specification

FEATURES

- Low power consumption
- 100µA maximum CMOS standby current
- Quick-pulse programming algorithm for high-speed production programming
- High-performance speeds
 - 27C512-15: 150ns maximum access time
 - 27C512-17: 170ns maximum access time
 - 27C512-20: 200ns maximum access time
- Noise immunity features - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity
 - through epitaxial processing

PIN CONFIGURATIONS

DIN DESCRIPTION

FIN DESCRIPTION				
A ₀ – A ₁₅	Addresses			
O ₀ – O ₇	Outputs			
OE/V _{PP}	Output enable/ Programming Voltage			
CE	Chip enable			
N.C.	No connection			
GND	Ground			
V _{CC}	Power supply			
DU	Don't use			

512K-Bit CMOS EPROMs (64K imes 8)

READ MODE: 27C512

at least tACC - tOF.

STANDBY MODE

The 27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{OE}) is the power control and should be used for device selection. Output enable \overline{OE}/V_{PP} is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE}/V_{PP} , assuming that \overline{CE} has been low and addresses have been stable for

The 27C512 has a standby mode which reduces the maximum V_{CC} current to 100μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE}/V_{PP} pin.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	27C512-15 N
28-Pin Plastic DIP (600mil-wide)	27C512-17 N
	27C512-20 N
	27C512-15 A
32-Pin Plastic Leaded Chip Carrier (450mil $ imes$ 550mil)	27C512-17 A
	27C512-20 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS	UNIT
T _A	Operating temperature range	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
VI, VO	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	٧
V _H	Voltage on A_9^2 (during intelligent identifier interrogation)	-2.0 to +13.5	۷
V _{PP}	Voltage on OE/V _{PP} pin (during programming)	-2.0 to +14.0	٧
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION¹

MODE	CE	OE/V _{PP}	OUTPUT
Read	VIL	VIL	D _{OUT}
Output disable	VIL	VIH	Hi-Z
Standby	VIH	X ²	Hi-Z

NOTES:

1. All voltages are with respect to network ground.

2. X can be VIH or VIL.

27C512 O.T.P.

512K-Bit CMOS EPROMs (64K imes 8)

27C512 O.T.P.

DC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant +70°C, +4.5V \leqslant V_{CC} \leqslant +5.5V

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT	
Input curre	nt v						
IIH	Leakage	$V_{IN} = 5.5V = V_{CC}$			10	μA	
ارر	Low	V _{IL} = 0.45V			-10	μA	
Output curr	ent	-					
		\overline{OE}/V_{PP} or $\overline{CE} = V_{IH}$			1.0	μA	
ILO		$V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$			-1.0	μA	
los	Short circuit ^{6, 7}	V _{OUT} = 0V			- 100	mA	
Supply curr	ent						
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 6.7MHz$ $V_{PP} = V_{CC},$ $O_{0-7} = 0mA$		A	20	mA	
I _{SB} TTL	Standby (TTL inputs) ⁴	ĒĒ = V _{IH}			1.0	mA	
I _{SB} CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA	
Input voltag	je ²						
VIL	Low (TTL)		-0.5		0.8	V	
VIL	Low (CMOS)		-0.2		0.2	V	
V _{IH}	High (TTL)		2.0		V _{CC} + 0.5	V	
VIH	High (CMOS)		V _{CC} - 0.2		V _{CC} + 0.2	v	
Output volta	age ²						
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V	
V _{OH}	High	I _{OH} = -2.5mA	3.5			V	
Capacitance	$T_{A} = 25^{\circ}C$	-					
C _{IN}	Address and CE	V _{CC} = 5.0V			6	pF	
C _{OUT}	Outputs	f = 1.0MHz V _{IN} = 0V			12	pF	
CIN	OE/V _{PP}	V _{OUT} = 0V			25	pF	

NOTES:

 \mathbf{w}_{i}

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels. CMOS inputs: GND + 0.2V to V_{CC} + 0.2V.

5. CE is V_{CC} + 0.2V. All other inputs can have any value within specification.

6. Test one output at a time, duration should not exceed 1 second.

7. Guaranteed by design, not 100% tested.

512K-Bit CMOS EPROMs (64K \times 8)

27C512 O.I.P.

SYMBOL		5501	27C512 - 15		27C512 - 17		27C512 - 20		
	то	FROM	Min	Max	Min	Max	Min	Max	UNIT
Access time	1								
t _{ACC}	Output	Address		150		170		200	ns
t _{CE}	Output	CE		150		170		200	ns
t _{OE} 3	Output	OE/V _{PP}		60		60		75	ns
Disable time	2						•		
t _{DF} ⁴	Output Hi-Z	OE/V _{PP} or CE		45		50		55	ns
t _{OH}	Output hold	Address, CE or OE/VPP	0		0		0		ns

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660\Omega, C_L = 100 pF

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. \overline{OE}/V_{PP} may be delayed up to $t_{CE} - t_{OE}$ after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DF} is specified from \overline{OE}/V_{PP} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

266

DESCRIPTION

Signetics 27C512 CMOS EPROM is a 512K-bit, 5V-only memory organized as 65,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C512 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27512.

The 27C512 available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

27C512 U.V. 512K-Bit Erasable CMOS EPROMs (64K \times 8)

Product Specification

FEATURES

• Low power consumption

- 100µA maximum CMOS standby current
- Quick pluse programming algorithm for high-speed production programming
- High-performance speeds
 - 27C512-15: 150ns maximum access time
 - 27C512-17: 170ns maximum access time
 - 27C512-20: 200ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

$A_0 - A_{15}$	Addresses
O ₀ – O ₇	Outputs
OE/V _{PP}	Output enable/ Programming Voltage
CE	Chip enable
GND	Ground
V _{CC}	Power supply

512K-Bit Erasable CMOS EPROMs (64K imes 8)

27C512 U.V.

READ MODE: 27C512

The 27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{OE}) is the power control and should be used for device selection. Output Enable \overline{OE}/V_{PP} is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of t_{OE} from the falling edge of \overline{OE}/V_{PP} , assuming that \overline{CE} has been Low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C512 has a standby mode which reduces the maximum V_{CC} current to 100 μ A. It is placed in the Standby mode when \overline{CE} is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the \overline{OE}/V_{PP} pin.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DIP with Quartz Window (600mil-wide)	27C512-15 FA 27C512-17 FA 27C512-20 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS	UNIT
TA	Operating temperature range	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _I , V _O	Voltage inputs and outputs	-2.0 to (V _{CC} + 1)	V
V _H	Voltage on A_9^2 (during intelligent identifier interrogation)	-2.0 to +13.5	v
V _{PP}	Voltage on OE/V _{PP} pin (during programming)	-2.0 to +14.0	V
V _{CC}	Supply voltage ²	-2.0 to +7.0	V

NOTE:

 Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

DEVICE OPERATION¹

MODE	CE	OE/V _{PP}	OUTPUT
Read	VIL	VIL	D _{OUT}
Output disable	VIL	VIH	Hi-Z
Standby	VIH	X ²	Hi-Z

NOTES:

1. All voltages are with respect to network ground.

2. X can be VIH or VIL.

512K-Bit Erasable CMOS EPROMs (64K imes 8)

27C512 U.V.

LIMITS SYMBOL PARAMETER TEST CONDITIONS UNIT Tvp³ Min Max Input current hн Leakage $V_{IN} = 5.5V = V_{CC}$ 10 μA $V_{1L} = 0.45V$ - 10 \mathbf{h}_{HL} Low μA Output current \overline{OE}/V_{PP} or $\overline{CE} = V_{IH}$ 1.0 μA $V_{OUT} = 5.5V = V_{CC}$ $V_{OUT} = 0V = GND$ ILO Leakage -1.0 μA Short circuit6. 7 los $V_{OUT} = 0V$ - 100 mΑ Supply current $\overline{\text{CE}} = \overline{\text{OE}} = V_{\text{IL}}, \text{ f} = 6.7 \text{MHz}$ $V_{PP} = V_{CC}$ ICC TTL Operating (TTL inputs)4 20 mΑ $O_{0-7} = 0mA$ Standby (TTL inputs)4 $\overline{CE} = V_{IH}$ ISB TTL 1.0 mΑ Standby (CMOS inputs)5. 6 ISB CMOS $\overline{CE} = V_{IH}$ 100 μA Input voltage² V_{IL} Low (TTL) -0.5 0.8 ٧ V_{IL} Low (CMOS) -0.2 0.2 v VIH High (TTL) 2.0 V_{CC} + 0.5 v VIH High (CMOS) $V_{\rm CC} - 0.2$ $V_{CC} + 0.2$ v Output voltage² VOL Low $I_{OL} = 2.1 \text{mA}$ 0.45 v Vон High $I_{OH} = -2.5 mA$ 3.5 v Capacitance⁷ T_A = 25°C CIN Address and CE $V_{\rm CC} = 5.0V$ 6 pF f = 1.0MHzCOUT Outputs 12 pF $V_{1N} = 0V$ OE/VPP C_{IN} $V_{OUT} = 0V$ 25 рF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C, \; +4.5V \leqslant V_{CC} \leqslant +5.5V$

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

4. TTL inputs: Specification V_{IL} , V_{IH} levels.

CMOS inputs: GND +0.2V to V_{CC} +0.2V.

5. $\overline{\text{CE}}$ is V_{CC} ±0.2V. All other inputs can have any value within specification.

6. Test one output at a time, duration should not exceed 1 second.

7. Guaranteed by design, not 100% tested.

512K-Bit Erasable CMOS EPROMs (64K imes 8)

27C512 U.V.

SYMBOL TO	·		27C512 - 15		27C512 - 17		27C512 - 20		
	TO	FROM	Min	Max	Min	Max	Min	Max	UNIT
Access time ¹									
tACC	Output	Address		150		170		200	ns
t _{CE}	Output	CE		150		170		200	ns
t _{OE} ³	Output	ŌĒ		60		60		75	ns
Disable time ²				đ.,		•		******	
t _{DF} ⁴	Output Hi-Z	OE or CE		45		50		55	ns
t _{OH}	Output hold	Address, CE or OE	0		0		0		ns

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 660 \Omega, C_L = 100 pF

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

2. Subalances by design, not a restrict the falling edge of \overline{CE} without impact on t_{CE} . 3. \overline{DE}/V_{PP} may be delayed up to t_{CE} -to_E after the falling edge of \overline{CE} without impact on t_{CE} . 4. t_{DE} is specified from \overline{OE}/V_{PP} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

1M-bit CMOS EPROM

page

27C210 O.T.P.	1M programmable EPROMs (64K x 16)	
	150 ns; 200 ns	273
27C210 O.V.	1M erasable EPROMs (64K x 16) 150 ns; 200 ns	277

DESCRIPTION

Signetics 27C210 CMOS O.T.P. EPROM is a 1,048,576-bit 5V only memory organized as 65,536 words of 16 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C210 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27210.

The 27C210 O.T.P. is offered in plastic DIP and Plastic Leaded Chip Carrier (PLCC) packages. Plastic EPROMs provide optimum cost effectiveness in production environments. Quick—pulse programming is employed on plastic devices which may speed up programming by as much as one hundred time. In the absence of quick pulse programming equipment, the intelligent programming algorithm may be utilized.

27C210 O.T.P. Programmable 1 MEG ($64K \times 16$) EPROM

Objective Specification

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- High-performance speeds:
- 150ns maximum access time
- 200ns maximum access time
- Noise immunity features:
 - ±10% V_{cc} tolerance
 - Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm

PIN DESCRIPTION

$A_0 - A_{15}$	Address
O ₀ - O ₁₅	Outputs
ŌE	Output Enable
CE	Chip Enable
PGM	Program
NC	No Connection
GND	Ground
V _{PP}	Program voltage
V _{CC}	Power supply
DU	Don't Use

BLOCK DIAGRAM

PIN CONFIGURATIONS

Programmable 1 MEG (64K × 16) EPROM

27C210 O.T.P.

READ MODE: 27C210

The 27C210 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of OE, assuming that CE has been Low and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The 27C210 has a standby mode which reduces the maximum V_{CC} current to 100µA. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the OE input.

DEVICE OPERATION

The modes of operation of the 27C210 are listed in Table 1. A single 5V power supply is reguired in the read mode. All inputs are TTL levels except for VPP and 12V on Ag for Signetics Identifier.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
40-Pin Plastic Dual-In-Line (600mil-wide)	27C21015 N
40-Pin Plastic Dual-In-Line (600mil-wide)	27C210-20 N
44–Pin Plastic Leaded Chip Carrier (0.69 \times 0.6)	27C210-20 A
44–Pin Plastic Leaded Chip Carrier (0.69 \times 0.6)	27C210-15 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
TA	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _b V _O	Voltage inputs and outputs	-0.6 to (V _{CC} + 1)	V
V _H	Voltage on Ag ² (during intelligent identifier interrogation)	-0.6 to +13.0	v
V _{PP}	Voltage on V _{PP} ² (during programming)	-0.6 to +14.0	V
V _{CC}	Supply voltage ²	-0.6 to +7.0	V

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

Table 1. Modes Selection

	Pins	CE	ŌE	PGM	Ay	Ao	V _{PP}	V _{cc}	Outputs
Mode									
Read		VIL	V _{IL}	x	X1	х	х	5.0V	D _{OUT}
Output Disable		VIL	V _{IH}	X	X	x	х	5.0V	Hi–Z
Standby		Vн	x	x	x	х	V _{cc}	5.0V	Hi-Z
Programming		VIL	V _{IH}	V _{IL}	X	x	Note 4	Note 4	D _{IN}
Program Verify		VIL	VIL	VH	Х	Х	Note 4	Note 4	D _{OUT}
Program Inhibit		Vн	x	×	х	х	Note 4	Note 4	HiZ
Signetics	Manufactured ²	VIL	VIL	×	V _H 2	V _{IL}	V _{cc}	5.0V	FF15
Identifier	Device ³	VIL	VIL	X	V _H ²	VIH	V _{cc}	5.0V	FF17

NOTES:

1. X can be VIL or VIH

2. $V_{H} = 12.0V \pm 0.5V$ 3. $A_{1} - A_{8}, A_{10} - A_{15} = V_{IL}$ 4. See Table 2 for V_{CC} and V_{PP} voltages.

Programmable 1 MEG (64K × 16) EPROM

27C210 O.T.P.

SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур ³	Max	UNIT
Input curre	nt					
I _{IH}	Leakage	$V_{IN} = 5.5V = V_{CC}$		0.01	1.0	μA
l _{iL}	Low	V _{IL} = 0.45V		0.01	1.0	μA
lpp	V _{PP} read	V _{PP} = V _{CC}			10	μА
Output cur	rent					
		OE or CE = V _{IH}			10.0	μА
IOL	Leakage	$V_{OUT} = 5.5V = V_{CC}$			10.0	μA
		V _{OUT} = 0V = GND			10.0	μΑ
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA
Supply cur	rent					
I _{CC} TTL	Operating (TTL inputs) ⁴	$\overline{CE} = \overline{OE} = V_{IL}, f = 5.0 \text{MHz}$ $V_{PP} = V_{CC}$ $O_{0-15} = 0 \text{mA}$			50	mA
I _{SB} TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1	mA
I _{SB} CMOS	Standby (CMOS inputs)5, 6	CE = V _{IH}			100	μA
Input volta	ge ²	 				
VL	Low (1TL)	V _{PP} = V _{CC}	0.5		0.8	v
VIL	Low (CMOS)	V _{PP} = V _{CC}	02		0.2	v
V _H	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	V
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	v
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{cc}	v
Output volt	tage ²	· · ·				
V _{OL}	Low	I _{OL} = 2.1mA			0.45	V
V _{OH}	High	l _{OH} = -400μA	2.4			v
Capacitanc	xe ⁹ T _A = 25°C					
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF
COUT	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +70^{\circ}C, +4.5V \leq V_{CC} \leq +5.5V$

NOTES:

Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.
 All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. CE is $V_{CC} \pm 0.2V$. All other inputs can have any value within spec.

6. Maximum active power usage is the sum of IPP + ICC and is measured at a frequency of 5MHz.

7. Test one output at a time, duration should not exceed 1 second.

8. Vpp may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}. 9. Guaranteed by design, not 100% tested.

10. X can be VIH or VIL.

14

Programmable 1 MEG (64K × 16) EPROM

27C210 O.T.P.

			27C2	1015	27C210-20			
SYMBOL TO		FROM	Min Max		Min Ma		UNIT	
Access time ¹								
t _{ACC}	Output	Address		150		200	ns	
t _{CE}	Output	CE		150		200	ns	
t _{OE} 3	Output	OE		75		85	ns	
Disable time ²					•			
t _{DF} 4	Output Hi–Z	OE or CE		55		60	ns	
t _{OH}	Output hold	Address, CE or OE	0		0		ns	

$\textbf{AC ELECTRICAL CHARACTERISTICS} ~~0^{\circ}\text{C} \leq \textbf{T}_{\textbf{A}} \leq +70^{\circ}\text{C},~+4.5\text{V} \leq \textbf{V}_{\text{CC}} \leq +5.5\text{V},~\textbf{R}_{L} = 3.3\text{k}\Omega,~\textbf{C}_{L} = 100\text{pF}$

NOTES:

1. AC characteristics are tested at V_{IH} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

2. Obtaining by design, not not we set 0. 3. OE may be delayed, in the two after the falling edge of CE without impact on t_{CE} . 4. t_{DF} is specified from OE or CE, whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

DESCRIPTION

Signetics 27C210 CMOS EPROM is a 1M-bit 5V only memory organized as 65,536 words of 16 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 27C210 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27210.

The 27C210, available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

FEATURES

- Low power consumption
 - 100µA maximum CMOS standby current
- Quick pulse programming algorithm for high-speed production programming

BLOCK DIAGRAM

27C210 U.V. 1 MEG Erasable CMOS EPROM (64K \times 16)

Objective Specification

- High-performance speeds:
 - 27C210–15: 150ns maximum access time
 - 27C210–20: 200ns maximum access time
- Noise immunity features:
 - ±10% V_{CC} tolerance
 - Maximum latch-up immunity through Epitaxial processing
- Quick-pulse programming algorithm

PIN DESCRIPTION

$A_0 - A_{15}$	Address
$O_0 - O_{15}$	Outputs
<u>OE</u>	Output Enable
CE	Chip Enable
PGM	Program
NC	No Connection
GND	Ground
Vpp	Program voltage
V _{CC}	Power supply

PIN CONFIGURATION

		FA Package		
V _{PP} CE			40 39	V _{CC} PGM
0 ₁₅	2		38	NC
014	4		37	A15
0 ₁₃	5		36	A ₁₄
0 ₁₂	6		35	A ₁₃
011	2		34	A12
0 ₁₀	8		33	A ₁₁
0 9	9		32 31	A ₁₀
0 ₈ GND	10		30	Ag GND
07	12		29	AB
06 06	13		28	A7
05	14		27	A6
04	15		26	A ₅
03	16		25	A4
02	17		24	A3
01	18		23	A2
00	19		22	A1
OE	20		21	A0

1 MEG Erasable CMOS EPROM ($64K \times 16$)

27C210 U.V.

READ MODE: 27C210

The 27C210 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data from the output pins. Data is available at the outputs after a delay of toE from the falling edge of OE, assuming that CE has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 27C210 has a standby mode which reduces the maximum V_{CC} current to 100µA. It is placed in the Standby mode when CE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the OE input.

DEVICE OPERATION

The modes of operation of the 27C210 are listed in Table 1. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V_{PP} and 12V on A₉ for Signetics Identifier.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
40-pin CERDIP with quartz window (600mil-wide)	27C210-15 FA
40-pin CERDIP with quartz window (600mil-wide)	27C210-20 FA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
T _A	Temperature under bias	-10 to +80	°C
T _{STG}	Storage temperature range	-65 to +125	°C
V _i , V _O	Voltage inputs and outputs	-0.6 to (V _{CC} + 1)	v
V _H	Voltage on A ₉ ² (during intelligent identifier interrogation)	-0.6 to +13.0	V
Vpp	Voltage on VPP ² (during programming)	-0.6 to +14.0	V
V _{cc}	Supply voltage ²	-0.6 to +7.0	V

NOTES:

 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. All voltages are with respect to network ground.

Table 1. Modes Selection

	Pins	CE	ŌE	PGM	Ag	A ₀	V _{PP}	V _{cc}	Outputs
Mode									
Read		VIL	VIL	X	X ¹	x	X	5.0V	D _{OUT}
Output Disable		х	ViH	X	X	X	X	5.0V	Hi–Z
Standby		VIH	X	X	X	X	V _{cc}	5.0V	Hi–Z
Programming		VIL	VIH	VIL	x	X	Note 4	Note 4	D _{IN}
Program Verify		VIL	VIL	V _H	X	X	Note 4	Note 4	DOUT
Program Inhibit		ViH	X	X	X	X	Note 4	Note 4	Hi–Z
Signetics	Manufactured ²	VIL	VIL	X	V _H ²	VIL	V _{cc}	5.0V	FF15
Identifier	Device ³	VIL	VIL	X	V _H ²	VIH	V _{cc}	5.0V	FF17

NOTES:

1. X can be V_{IL} or V_{IH}

2. V_H = 12.0V ±0.5V

3. $A_1 - A_8$, $A_{10} - A_{15} = V_{IL}$

See Table 2 for V_{CC} and V_{PP} voltages.

1 MEG Erasable CMOS EPROM (64K × 16)

27C210 U.V.

SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT	
Input curre	ent			<u> </u>			
l _{IH}	Leakage	V _{IN} = 5.5V = V _{CC}		0.01	1.0	μА	
l _{il}	Low	V _{IL} = 0.45V		0.01	1.0	μA	
Ipp	Vpp	V _{PP} = V _{CC}			10	μA	
Output cur	rent						
		OE or CE = VIH			10.0	μA	
IOL	Leakage	$V_{OUT} = 5.5V = V_{CC}$			10.0	μA	
		$V_{OUT} = 0V = GND$			10.0	μΑ	
los	Short circuit ^{7, 9}	V _{OUT} = 0V			100	mA	
Supply cur	rent						
I _{CC} TTL	Operating (TTL inputs) ⁴	$CE = OE = V_{IL}, f = 5.0MHz$ $V_{PP} = V_{CC}$ $O_{0-15} = 0mA$			50	mA	
ISB TTL	Standby (TTL inputs) ⁴	CE = V _{IH}			1	mA	
I _{SB} CMOS	Standby (CMOS inputs) ^{5, 6}	CE = V _{IH}			100	μA	
Input volta	ge ²	**************************************			- <u>1</u>		
VIL	Low (TTL)	V _{PP} = V _{CC}	-0.5		0.8	V	
VIL	Low (CMOS)	V _{PP} = V _{CC}	02		0.2	٧	
VIH	High (TTL)	V _{PP} = V _{CC}	2.0		V _{CC} + 0.5	V	
VIH	High (CMOS)	V _{PP} = V _{CC}	V _{CC} - 0.2		V _{CC} + 0.2	٧	
V _{PP}	Read ⁸	(Operating)	V _{CC} - 0.7		V _{cc}	V	
Output voli	lage ²	·			-		
V _{OL}	Low	I _{OL} = 2.1mA			0.45	٧	
V _{OH}	High	ί _{OH} = -400μΑ	2.4			v	
Capacitanc	xe ⁹ T _A = 25°C				- i		
C _{IN}	Address and control	V _{CC} = 5.0V f = 1.0MHz			6	pF	
Cout	Outputs	V _{IN} = 0V V _{OUT} = 0V			12	pF	
		1			1		

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$, $+4.5V \leq V_{CC} \leq +5.5V$

NOTES:

1. Minimum DC input voltage is -0.5V. During transitions the inputs may undershoot to -2.0V for periods less than 20ns.

2. All voltages are with respect to network ground.

3. Typical limits are at $V_{CC} = 5V$, $T_A = 20^{\circ}C$. 4. TTL inputs: Spec V_{IL} , V_{IH} levels.

CMOS inputs: GND $\pm 0.2V$ to V_{CC} $\pm 0.2V$.

5. CE is V_{CC} ±0.2V. All other inputs can have any value within spec.

Oct is VCC ±0.2V. All other inputs can have any value within spec.
 Maximum active power usage is the sum of Ip_p + I_{CC} and is measured at a frequency of 5MHz.
 Test one output at a time, duration should not exceed 1 second.
 Vpp may be one diode voltage drop below V_{CC}, and can be connected directly to V_{CC}.
 Guaranteed by design, not 100% tested.
 V are by V are V

10. X can be VIH or VIL.

1 MEG Erasable CMOS EPROM (64K × 16)

27C210 U.V.

1.8

			27C2	10–15	27C210-20			
SYMBOL	то	FROM	Min	Max	Min Max		UNIT	
Access time ¹								
tACC	Output	Address		150		200	ns	
t _{CE}	Output	CE		150		200	ns	
t _{OE} ³	Output	OE		75		85	ns	
Disable time ²		***						
t _{DF} ⁴	Output Hi-Z	OE or CE		55		60	ns	
t _{OH}	Output Hold	Address, CE or OE	0		0		ns	

AC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +70°C, +4.5V \leq V_{CC} \leq +5.5V, R_L = 3.3k Ω , C_L = 100pF

NOTES:

1. AC characteristics are tested at V_{H} = 2.4V and V_{IL} = 0.45V. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.

2. Guaranteed by design, not 100% tested.

3. OE may be delayed up to $\xi_E - \xi_E$ after the falling edge of \overline{CE} without impact on $t_{\overline{CE}}$. 4. $t_{\overline{DF}}$ is specified from \overline{OE} or \overline{CE} , whichever occurs first.

AC VOLTAGE WAVEFORMS

AC TESTING LOAD CIRCUIT

TTL MEMORIES

64-bit TTL RAM	3
256-bit TTL RAM	3
Byte-Organized TTL RAM 32'	I
Low Complexity TTL PROM 34	I
4K-bit TTL PROM	9
8K-bit TTL PROM 40	õ
16K-bit TTL PROM 439	9
32K-bit TTL PROM 46'	۱
64K-bit TTL PROM 47	5
128K-bit TTL PROM 48	ō

64-bit TTL RAM

1	າລ	пe
ŀ	Ja	ye

82\$25	64-bit RAM (16 x 4) 50 ns	285
310A/74S189	64-bit RAM (16 x 4) 35 ns	285
74F189A	64-bit RAM (16 x 4) 15 ns	289
74F219A	64-bit RAM (16 x 4) 10 ns	293
74F410	64-bit Register stack (16 x 40) 19.5 ns	297

Bipolar Memory Products

DESCRIPTION

This family of Read/Write Random Access Memories is ideal for use in scratch pad and high-speed buffer memory applications.

These products are fully decoded memory arrays with separate input and output lines. They feature PNP inputs and 1 Chip Enable line for ease of memory expansion.

During Write, the outputs of each product assume the logic state defined in the truth table.

Ordering information can be found on the following page.

The 82S25 and 74S189 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S25 3101A 74S189 64-Bit TTL Bipolar RAM

Product Specification

FEATURES

- Output access time:
 - N82S25: 50ns max
 - N3101A: 35ns max
 - N74S189: 35ns max
- Power dissipation: 6.25mW/bit, typ
- Input loading: −100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S25: Open-Collector
 - N3101A: Open-Collector
- N74S189: 3-State
- Schottky clamped
- TTL compatible

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

ph

64-Bit TTL Bipolar RAM (16 imes 4)

82S25, 3101A, 74S189

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S25 N • N3101A N • N74S189 N
16-pin Plastic Small Outline 300mil-wide	N82S25 D • N3101A D • N74S189 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	V _{IN} Input voltage		V _{DC}
V _{OH}	V _{OH} Output voltage High		V _{DC}
T _A	T _A Operating temperature range		°C
T _{STG}	T _{STG} Storage temperature range		°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, 4.75V \leq V_{CC} \leq 5.25V.

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min Typ		Max	UNIT
Input voltage ¹				4	L	
V _{IL} V _{IH} V _{IC}	Low High Clamp ⁷	$V_{CC} = 4.75V$ $V_{CC} = 5.25V$ $I_{IN} = -12mA$, $V_{CC} = 4.75V$	2.0		0.8	V V V
Output voltage				L	L	1
V _{OL} Low ^{2,3} V _{OH} High (74S189)		$\overline{CE} = Low$ $I_{OUT} = 16mA, V_{CC} = 4.75V$ $I_{OUT} = -2mA$	2.4		0.45	v v
Input current ⁵	1			T		r
hi Inn	Low High	V _{IN} = 0.45V V _{IN} = 5.5V			-100 10	μΑ μΑ
Output current	5					
I _{OLK} Ios Ioz	Leakage Short circuit (74S189) Hi-Z (74S189)	$\overline{CE} = \text{High, } V_{\text{OUT}} = 5.5\text{V}, V_{\text{CC}} = 4.75\text{V}$ $\overline{CE} = \text{Low, } V_{\text{OUT}} = 0\text{V}$ $2.4 \ge V_{\text{OUT}} \ge 0.4\text{V}$			100 - 100 ± 50	μΑ mA μA
Supply current	6			•		
Icc	82S25 3101A 74S189	$V_{CC} = 5.25V$ $V_{CC} = 5.25V$ $V_{CC} = 5.25V$ $V_{CC} = 5.25V$			105 105 110	mA
Capacitance						
C _{IN} C _{OUT}	Input Output	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V, \ \overline{CE} = High$		5 8		pF pF

TRUTH TABLE

				82S25	3101A	74S189
MODE	CE	WE	DIN		Data Out	.
Read	0	1	X	Stored Data	Stored Data	Stored Data
Write ''0''	0	0	0	1	1	Hi-Z
Write ''1''	0	0	1	1	1	Hi-Z
Disable	1	x	X	1	1	Hi-Z

82S25, 3101A, 74S189

SYMBOL	PARAMETER	то	FROM	N82S25			N3101A, N74S189			UNIT
				Min	Тур	Max	Min	Тур	Max	1
Access time										
	Address Chip Enable					50 35			35 17	ns
Disable time ⁸	· •			L	A	•				1
t _{CD}		Output	Chip Enable			35			17	ns
Response tim	e ⁸				•					
two		Output	Write Enable			25			25	ns
Write recover	ry time		•••••••		•					4
twR				1	Ι	50			35	ns
Setup and ho	old time		• • • • • • • • • • • • • • • • • • • •							
t _{WSA} 9 t _{WHA}	Setup time Hold time	Write Enable	Address	5 5			0 0			ns
twsp twhp	Setup time Hold time	Write Enable	Data in	30 5			25 0			ns
twsc twнc	Setup time Hold time	Write Enable	CE	0 5			0 0			ns
Pulse width ⁴			••••••••••••••••••••••••••••••••••••••	•	•					•
twp ¹⁰	Write Enable	1		30			25	Ι		ns

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270\Omega, \hspace{0.1 cm} \texttt{R}_2 = 600\Omega, \hspace{0.1 cm} \texttt{C}_L = 30p\texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ\texttt{C} \ll \texttt{T}_A \ll +75^\circ\texttt{C}, \hspace{0.1 cm} \texttt{4}.75^\circ\texttt{C} \ll \texttt{5}.25^\circ\texttt{V} = 10^\circ\texttt{C} \times \texttt{1}^\circ\texttt{C} \times \texttt{1}^\circ\texttt{1}^\circ\texttt{C} \times \texttt{1}^\circ\texttt{C} \times \texttt{1}^\circ\texttt{C} \times \texttt{1}^\circ\texttt{C} \times \texttt{1}^\circ\texttt$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Output sink current is supplied through a resistor to $V_{\text{CC}}.$

3. All sense outputs in Low state.

4. To guarantee a Write into the slowest bit.

5. Positive current is defined as into the terminal referenced.

6. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the outputs open.

7. Test each input one at a time.

8. Measured at a delta of 0.5V from the logic level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

9. Measured with minimum twp.

10. Measured with minimum twsA-

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82S25, 3101A, 74S189

TIMING DIAGRAM

Bipolar Memory Products

DESCRIPTION

The 74F189A is a high-speed, 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-State and are in the high-impedance state whenever the Chip Select (\overline{CE}) input is High. The outputs are active only in the Read mode and the output data is the complement of the stored data.

Ordering information can be found on the following page.

74F189A 64-Bit TTL Bipolar RAM

Preliminary Specification

FEATURES

- Address access time: 15ns max
- Power dissipation: 4.3mW/bit typ
- Schottky clamped TTL
- One Chip Enable input
- 1/0
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

BLOCK DIAGRAM

74F189A

64-Bit TL Bipolar RAM (16 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N74F189A N
16-pin Plastic Small Outline 300mil-wide	N74F189A D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	V _{CC} Supply voltage		V _{DC}
V _{IN}	Input voltage	-0.5 to +7.0	
V _{OH}	Output voltage High	-0.5 to +5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	T _{STG} Storage temperature range		°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leq T_{A} \leq +75^{\circ}C, 4.75V \leq V_{CC} \leq 5.25V$

SYMBOL	PARAMETER	TEST CONDITIONS	Min Typ ³ M		Max	UNIT	
Input voltage	2			•	·····	•	
V _{IC} ⁷	Clamp	$V_{CC} = 5.25V, I_1 = -18mA$			-1.2	V	
Output voltag	e						
V _{OH} Vol ^{2,3}	High Low	$V_{CC} = 4.75V, V_{IH} = 2.0V, V_{IL} = 0.8V$ $I_{OH} = -3.0mA$ $I_{OL} = 20mA$	2.4	0.35	0.5	v v	
Input current	· ·						
ł _{IH} IIL	High Low	V _{CC} = 5.25V V _{IN} = 5.5V V _{IN} = 0.5V			40 0.6	μΑ μΑ	
Output curren	ıt						
loz los	Off-State Short circuit	$\begin{array}{c} V_{CC} = 5.25V \\ V_{IH} = 2.0V, \ 2.4V \geqslant V_{OUT} \geqslant 0.5V \\ V_{CC} = 5.25V \end{array}$	-60		± 50 - 150	μA mA	
Supply curren	t ⁶						
lcc		$V_{CC} = 5.25V, \ \overline{WE}, \ \overline{CE} = GND$			70	mA	
Capacitance				•		•	
C _{IN} C _{OUT}	Input Output	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		5 8		pF pF	

TRUTH TABLE

MODE	CE	WE	DIN	DATA OUT
Read	0	1	х	Stored Data
Write ''0''	0	0	0	Hi-Z
Write "1"	0	0	1	Hi-Z
Disable	1	X	×	Hi-Z

X = Don't care

74F189A

AC ELECTRICAL CHARACTERISTICS $R_L = 500\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

	PARAMETER		5001				
SYMBOL		то	FROM	Min	Тур	Max	UNIT
Access time					.		
t _{AA} t _{CE}	Address Chip Enable					15 13	ns
Disable time	8						
t _{CD}		Output	Chip Enable			9	ns
Response ti	me ⁸					•	
t _{WD}		Output	Write Enable			9	ns
Write recove	ery time						
twR		Output	Write Enable			13	ns
Setup and h	old time					***************************************	
twsa ⁹ twha	Setup time Hold time	Write Enable	Address	3 2			ns
twsp twhp	Setup time Hold time	Write Enable	Data in	13 2		-	ns
twsc twhc	Setup time Hold time	Write Enable	CE	3			ns
Pulse width	í			****	*		
twp ¹⁰	Write Enable		1	10	Ι		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Output sink current is supplied through a resistor to $V_{\text{CC}}.$

3. All sense outputs in Low state.

4. To guarantee a Write into the slowest bit.

5. Positive current is defined as into the terminal referenced.

6. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

7. Test each input one at a time.

8. Measured at a delta of 0.5V from the logic level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

9. Measured with minimum twp.

10. Measured with minimum twsA-

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

74F189A

1.8

TIMING DIAGRAM

Bipolar Memory Products

DESCRIPTION

The 74F219A is a high-speed, 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-State and are in the High-impedance state whenever the Chip Select (\overline{CE}) input is High. The outputs are active only in the Read mode and are of the same polarity as of the stored data.

Ordering information can be found on the following page.

BLOCK DIAGRAM

FAST 74F219A 64-Bit TTL Bipolar RAM

Preliminary Specification

FEATURES

- Address access time: 10ns max
- Power dissipation: 4.3mW/bit typ
- Schottky clamped TTL
- One chip enable input
- Non-inverting data outputs. (For inverting see 74F189A)
- 1/0
 - Inputs: PNP Buffered
 - Outputs: 3-State

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

FAST 74F219A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Plastic Dual-In-Line 300mil-wide	N74F219N
16-Pin Plastic Small Outline 300mil-wide	N74F219D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
Vcc	Supply voltage	-0.5 to +7.0	V _{DC}
V _{IN}	Input voltage	-0.5 to +7.0	V _{DC}
V _{OH}	Output voltage High	-0.5 to +5.5	V _{DC}
TA	Operating temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leqslant T_A \leqslant + 70°C, 4.75V \leqslant V_{CC} \leqslant 5.25V.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min Typ ³		Max	UNIT
Input vo	litage ²			L	L	
V _{IC} ⁷	Clamp	$V_{\rm CC} = 5.25V, \ I_{\rm I} = -18mA$			-1.2	v
Output	voltage					
V _{OH} Vol ^{2,3}	High Low	$V_{CC} = 4.75V, V_{IH} = 2.0V, V_{IL} = 0.8V$ $I_{OH} = -3.0mA$ $I_{OL} = 20mA$	2.4	0.35	0.5	v
Input cu	irrent					
կը կլ	High Low	$V_{CC} = 5.25V$ $V_{IN} = 5.5V$ $V_{IN} = 0.5V$			40 0.6	μΑ
Output	current					
loz los ¹¹	Off-state Short circuit	$V_{CC} = 5.25V$ $V_{IH} = 2.0V, 2.4V \ge V_{OUT} \ge 0.5V$ (See Note)	-60		± 50 - 150	μA mA
Supply	current ⁶					
Icc		$V_{CC} = 5.25V, \ \overline{WE}, \ \overline{CE} = GND$			70	mA
Capacita	ance					
C _{IN} C _{OUT}	Input Output	$V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		5 8		pF

TRUTH TABLE

MODE	CE	WE	l _n	Q _n
Read	0	1	x	Same polarity as stored data
Write ''0''	0	0	0	Hi-Z
Write ''1''	0	0	1	Hi-Z
Disable	1	х	X	Hi-Z

X = Don't care

FAST 74F219A

AC ELECTRICAL CHARACTERISTICS $R_L = 500\Omega$, $C_L = 50pF$, $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

					LIMITS		
SYMBOL	PARAMETER	то	FROM	Min	Тур	Max	
Access	time	······································					
t _{AA}	Address	Output	Address			10.5	ns
tCE	Chip enable	Output	Chip enable			7.5	ns
Disable	time ⁸						
t _{CD}		Output	Chip enable			7.5	ns
Respons	se time ⁸						
t _{WD}		Output	Write enable			8.5	ns
Write re	covery time						
t _{WR}		Output	Write enable			7.5	ns
Setup a	nd hold time	· · · · · · · · · · · · · · · · · · ·					
twsa ⁹ t _{WHA}	Setup time Hold time	Write enable	Address	0.5 0			
twsp t _{WHD}	Setup time Hold time	Write enable	Data in	5 0			ns
twsc t _{WHC}	Setup time Hold time	Write enable	CE	4.5 4.5			1
Pulse w	idth	••••••••••••••••••••••••••••••••••••••				•	
twp ¹ 0	Write enable			6.5			ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Output sink current is supplied through a resistor to V_{CC} .

3. All sense outputs in Low state.

4. To guarantee a Write into the slowest bit.

5. Positive current is defined as into the terminal referenced.

6. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

7. Test each input one at a time.

8. Measured at a delta of 0.3V from the logic level with $R_1 = 500\Omega$, $R_2 = 500\Omega$ and $C_L = 50pF$.

9. Measured with minimum twp.

10. Measured with minimum twsA

11. For I_{OS} test: V_{CC} = 5.75 V V_{OUT} = 0.5 V

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

1

64-Bit TTL Bipolar RAM (16 imes 4)

FAST 74F219A

TIMING DIAGRAMS

FAST 74F410 Register Stack — 16×4 RAM 3-State Output Register

Product Specification

Bipolar Memory Products

FEATURES

- Edge-triggered output register
- Typical access time of 19.5ns
- 3-State outputs
- Optimized for register stack operation
- 18-pin package

DESCRIPTION

The 74F410 is a register-oriented highspeed 64-bit Read/Write Memory organized as 16-words by 4-bits. An edgetriggered 4-bit output register allows new input data to be written while previous data is held. 3-State outputs are provided for maximum versatility. The 74F410 is fully compatible with all TTL families.

ТҮРЕ	TYPICAL ACCESS TIME	TYPICAL SUPPLY CURRENT (TOTAL)
74F410	19.5ns	45mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-Pin Plastic Dual-In-Line 300mil-wide	N74F410N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A ₀ – A ₃	Address Inputs	1.0/1.0	20µA/0.6mA
D ₀ – D ₃	Data Inputs	1.0/1.0	20µA/0.6mA
CS	Chip Select Input (active-Low)	1.0/2.0	20µA/1.2mA
ŌĒ	Output Enable Input (active- Low)	1.0/1.0	20µA/0.6mA
WE	Write Enable Input (active-Low)	1.0/1.0	20µA/0.6mA
CP	Clock Input (outputs change on Low-to-High transition)	1.0/2.0	20µA/1.2mA
Q ₀ – Q ₃	Data outputs	150/40	3mA/24mA

PIN CONFIGURATION

LOGIC SYMBOL

Register Stack — 16×4 RAM 3-State Output Register

FAST 74F410

FUNCTIONAL DESCRIPTION

Write Operation — When the three control inputs, Write Enable (WE), Chip Select (\overline{CS}), and Clock (CP), are Low the information on the data inputs (D₀ – D₃) is written into the memory location selected by the address inputs (A₀ – A₃). If the input data changes while WE, \overline{CS} , and CP are Low, the contents

BLOCK DIAGRAM

of the selected memory location follow these changes, provided setup and hold time criteria are met.

Read Operation — Whenever \overline{CS} is Low, WE is High, and CP goes from Low-to-High, the contents of the memory location selected by the address inputs (A₀ – A₃) are edgetriggered into the Output Register. When $\overline{\text{WE}}$ is Low, $\overline{\text{CS}}$ is Low, and CP goes from Low-to-High, the data at the Data Inputs is edge-triggered into the output register.

The (\overline{OE}) input controls the output buffers. When \overline{OE} is High the four outputs $(Q_0 - Q_3)$ are in a high-impedance or OFF-state; when \overline{OE} is Low, the outputs are determined by the state of the Output Register.

Register Stack — 16×4 RAM 3-State Output Register

FAST 74F410

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	v
VIN	Input voltage	-0.5 to +7.0	V
IIN	Input current	-30 to +5	mA
VOUT	Voltage applied to output in High output state	-0.5 to $+V_{CC}$	V
lout	Current applied to output in Low output state	48	mA
TA	Operating free-air temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

	PARAMETER		LIMITS			
SYMBOL			Nom	Max	UNIT	
V _{CC}	Supply voltage	4.5	5.0	5.5	V	
VIH	High-level input voltage	2.0			V	
VIL	Low-level input voltage			0.8	V	
liк	Input clamp current			-18	mA	
Юн	High-level output current			-3	mA	
lol	Low-level output current			24	mA	
T _A	Operating free-air temperature range	0		70	°C	

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

	IBOL PARAMETER				LIMITS				
SYMBOL	PARAME	FER	TEST CONDITIONS ¹		5.	Min	Typ ²	Max	UNIT
			V _{CC} = MIN		± 10% V _{CC}	2.4			v
V _{OH}	High-level output voltage		V _{IL} = MAX V _{IH} = MIN	I _{OH} = MAX	± 5% V _{CC}	2.7	3.3		v
				±10% V _{CC}		0.35	0.5	v	
V _{OL}	Low-level output voltage		V _{IL} = MAX V _{IH} = MIN	I _{OL} = MAX	±5% V _{CC}		0.35	0.5	V.
VIK	Input clamp voltage		Vc	$_{\rm C} = MIN, \ I_{\rm I} = I_{\rm IK}$	(-1.2	V
4	Input current at maximum	input voltage	V _{CC}	= MAX, V ₁ = 7.0	v			100	μA
Чн	High-level input current		V _{CC}	= MAX, V _I = 2.	7V			20	μA
կլ	Low-level input current	$\begin{array}{c} A_0-A_3, \ D_0-D_3, \\ \overline{WE}, \ \overline{OE} \end{array}$	Vcc	= MAX, V ₁ = 0.9	5V			-0.6	mA
		CP, CS						-1.2	mA
югн	OFF-state output current, applied	High-level voltage	$V_{CC} = MAX, V_{OUT} = 2.7V$				50	μΑ	
lozl	OFF-state output current, applied	Low-level voltage	V _{CC} = MAX, V _{OUT} = 0.5V				-50	μΑ	
los	Short-circuit output curren	t ³	V _{CC} = MAX		-60		-150	mA	
Icc	Supply current (total)			V _{CC} = MAX			45	70	mA

NOTES:

^{1.} For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.

^{2.} All typical values are at V_{CC} = 5V, T_A = 25°C.

^{2.} Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} should be performed test.

FAST 74F410

AC ELECTRICAL CHARACTERISTICS

					LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	EST CONDITIONS $\begin{array}{c} T_A = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_L = 50pF \\ R_L = 500\Omega \end{array}$		$\begin{array}{c} V_{CC} = +5.0V \\ C_L = 50 pF \end{array} \qquad \begin{array}{c} V_{CC} = +5.0V \pm 10\% \\ C_L = 50 pF \end{array}$				UNIT
			Min	Тур	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation delay CP ↑ to Q _n	Waveform 1	4.0 4.5	6.5 6.5	8.5 9.0	3.5 4.0	9.5 10.0	ns	
t _{PZH} t _{PZL}	Enable time OE to Q _n	Waveform 3, 4	3.0 4.5	4.5 6.0	7.5 9.0	2.5 3.5	8.5 9.5	ns	
t _{PHZ} t _{PLZ}	Disable time OE to Q _n	Waveform 3, 4	2.0 2.0	3.5 3.5	6.0 6.5	1.5 2.0	6.5 7.0	ns	

AC SETUP AND HOLD REQUIREMENTS

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	NS $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50pF$ $R_L = 500\Omega$		v			UNIT
			Min	Тур	Max	Min	Max	
READ M	IODE					.•		
t _s (L)	Setup time Low CS to CP 1	Waveform 1	4.0			4.5		ns
t _h (L)	Hold time Low CS to CP 1	Waveform 1	3.5			4.5		ns
t _s (H) t _s (L)	Setup time High or Low A_n to CP 1	Waveform 1	13.0 13.0			15.0 15.0		ns
t _h (H) t _h (L)	Hold time High or Low A_n to CP 1	Waveform 1	0			0 0		ns
t _s (H)	Setup time High WE to CP 1	Waveform 1	13.0			15.0		ns
t _h (H)	Hold time High WE to CP 1	Waveform 1	0			0		ns
t _w (H)	CP pulse width, High	Waveform 1	5.0			6.0		ns
WRITE	MODE							
t _s (H) t _s (L)	Setup time High or Low A_n to \overline{WE} , \overline{CS} , CP	Waveform 2	0			0 0		ns
t _h (H) t _h (L)	Hold time High or Low A_n to WE, CS, CP	Waveform 2	0			0 0		ns
t _s (H) t _s (L)	Setup time High or Low D_n to \overline{WE} , \overline{CS} , CP	Waveform 2	6.0 6.0			8.0 8.0		ns
t _h (H) t _h (L)	Hold time High or Low D_n to \overline{WE} , \overline{CS} , CP	Waveform 2	0			0		ns
tw	WE pulse width, Low	Waveform 2	7.0			8.0		ns
tw	CS pulse width, Low	Waveform 2	6.0			7.0		ns
tw	CP pulse width, Low	Waveform 2	7.0			8.0		ns

Register Stack — 16×4 RAM 3-State Output Register

FAST 74F410

AC WAVEFORMS

Register Stack — 16×4 RAM 3-State Output Register

FAST 74F410

TEST CIRCUIT AND WAVEFORMS

256-bit TTL RAM

n	ac	e
~	чч	

82S16	256-bit RAM (256 x 1) 50 ns	305
82LS16	256-bit RAM (256 x 1) 40 ns	309
74S301	256-bit RAM (256 x 1) 50 ns	313
74LS301	256-bit RAM (256 x 1) 40 ns	317

82S16 256-Bit TTL Bipolar RAM

Product Specification

• Address access time: 50ns max

• Power dissipation: 1.5mW/bit typ

Output follows complement of

• Write cycle time: 50ns max

• Input loading: -100µA max

data input during Write

• Three Chip Enable inputs

On-chip address decoding

• Output: 3-State

• TTL compatible

APPLICATIONS

Buffer memory

Memory mapping

• Push down stack

Scratch pad

• Writable control store

Schottky clamped

FEATURES

Bipolar Memory Products

DESCRIPTION

The 82S16 is a Read/Write memory array which features 3-State outputs for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 Chip Enable inputs and PNP input transistors which reduce input loading.

During Write operation, the logical state of the output follows the complement of the data input being written. This feature allows faster execution of Write/Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following Write cycle.

The 82S16 has fast Read access and Write cycle times, and thus is ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

The 82S16 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data book.

BLOCK DIAGRAM

DATA WRITE AMPLIFIERS INPUT O DIN BUFFER 16 AD (x) CODER DRESS 2 16 × 16 R/W OWF A- C WEFEE MATRIX O CE O ĈĒ2 O ČĒs -----16 OUTPUT SENSE AMPLIFIERS 000 BUFFER 16 AD-As C DRESS 1:16 (Y) DECODER As C BUFFE A7 C BD00791S

PIN CONFIGURATION

82\$16

256-Bit TTL Bipolar RAM (256 imes 1)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S16 N
16-pin Plastic Small Outline 300mil-wide	N82S16 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OUT}	Output voltage High (open-collector)	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $_{0}^{\circ}C \leqslant T_{A} \leqslant +\,75^{\circ}C,\;4.75V \leqslant V_{CC} \leqslant 5.25V$

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ¹	Max	UNIT
Input voltage	2					•
VIH	High	V _{CC} = Max	2.0			v
VIL	Low	V _{CC} = Min			0.8	V
V _{IC}	Clamp ³	$V_{CC} = Min, I_{IN} = -12mA$		-1.0	- 1.5	V
Output voltag	je ²					
		V _{CC} = Min				
V _{OH}	High	$I_{OH} = -3.2 \text{mA}$	2.6			V
VOL	Low ⁵	$I_{OL} = 16 \text{mA}$		0.35	0.45	V
Input current	3					
		V _{CC} = Max				
կե	High	V _{IN} = 5.5V		1	25	μΑ
l _{iL}	Low	V _{IN} = 0.45V		-10	100	μA
Output currer	nt					
loz	Hi-Z state ⁶	V _{OUT} = 5.5V		1	40	μΑ
01		$V_{OUT} = 0.45V$		-1	-40	
los	Short circuit ⁷	$V_{\rm CC} = Max, V_{\rm O} = 0V$	- 15		-70	mA
Supply currer	nt ⁸					
Icc		V _{CC} = 5.25V		80	115	mA
Capacitance				•		
		V _{CC} = 5.0V				
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

TRUTH TABLE

MODE	CE'	WE	D _{IN}	D _{OUT}
Read	0	1	X	Stored Data
Write "0"	0	0	0	1
Write "1"	0	0	1	0
Disabled	1	×	x	Hi-Z

""0" = All CE inputs Low; "1" = One or more CE inputs High. X = Don't care.

82\$16

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} \textbf{R}_1 = 270 \Omega, \hspace{0.1cm} \textbf{R}_2 = 600 \Omega, \hspace{0.1cm} \textbf{C}_L = 30 p F, \hspace{0.1cm} 0^\circ \textbf{C} \leqslant \textbf{T}_A \leqslant +75^\circ \textbf{C}, \hspace{0.1cm} 4.75 \textbf{V} \leqslant \textbf{V}_{\text{CC}} \leqslant 5.25 \textbf{V}_{\text{CC}} \ast 5.25 \textbf{V}_{\text{CC}}$

	RAMETER TO	FROM	LIMITS			
PARAMETER			Min	Typ ¹	Max	UNIT
Address Chip Enable	Output Output	Address Chip Enable		40 30	50 40	ns
		derer of Seasan er Breasan er Sanar in Andre Seasan er Staat	and the fact former of the second second second	····		Acre
Valid time	Output Output	Chip Enable Write Enable		30 30	40 40	ns
time	***************************************					
Setup time Hold time	Write Enable	Address	15 5	5 0		ns
Setup time Hold time	Write Enable	Data in	40 5	30 0		ns
Setup time Hold time	Write Enable	ĈĒ	10 5	0 0		ns
		*		4		4
Write Enable			30	15		ns
	Chip Enable Valid time time Setup time Hold time Setup time Hold time Setup time Hold time	Address Chip Enable Output Output Valid time Output time Output Setup time Hold time Write Enable Setup time Hold time Write Enable Setup time Hold time Write Enable	Address Chip Enable Output Output Address Chip Enable Valid time Output Output Chip Enable Valid time Output Output Chip Enable time Write Enable Address Setup time Hold time Write Enable Address Setup time Hold time Write Enable Data in Setup time Hold time Write Enable CE	Address Chip Enable Output Output Address Chip Enable Valid time Output Output Chip Enable Valid time Output Output Chip Enable Setup time Hold time Write Enable 15 5 Setup time Hold time Write Enable Data in Setup time Hold time Write Enable 5	PARAMETER TO FROM Address Output Address Output Output Address Valid time Output Chip Enable Valid time Output Ohip Enable Valid time Output Chip Enable Setup time Write Enable 30 Hold time Write Enable 5 Setup time Write Enable Data in Hold time Write Enable CE Setup time Write Enable 0	PARAMETERTOFROMMinTyp1MaxAddress Chip EnableOutputAddress Chip Enable4050Valid timeOutputChip Enable3040Valid timeOutputChip Enable3040Valid timeOutputChip Enable3040Valid timeOutputChip Enable3040Valid timeOutputChip Enable3040Setup time Hold timeWrite EnableAddress15 550Setup time Hold timeWrite EnableData in40 53030Setup time Hold timeWrite EnableCE10 500

NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. All voltage values are with respect to network ground terminal.

3. Test each input one at a time.

4. Measured with a logic Low stored and V_{IL} applied to $\overline{CE}_1,\ \overline{CE}_2$ and $\overline{CE}_3,$

5. Measured with a logic High stored. Output sink current is supplied through a resistor to V_{CC} .

6. Measured with V_{IH} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

7. Duration of the short-circuit should not exceed 1 second.

8. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

9. Minimum required to guarantee a Write into the slowest bit.

10. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

11. Measured with minimum twp.

12. Measured with minimum t_{WSA}

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82\$16

4

256-Bit TTL Bipolar RAM (256 imes 1)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
t _{CE}	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in off-state.
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
twsc	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
t _{WP}	Width of Write Enable pulse.
twsa	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.
twsd	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.
twD	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
t _{WHC}	Required delay between end of Write Enable pulse and end of Chip Enable.
t _{WHA}	Required delay between end of Write Enable pulse and end of valid Address.

82LS16 256-Bit TTL Bipolar RAM

Product Specification

Address access time: 40ns max

• Write cycle time: 45ns max

Input loading: −100µA max

data input during Write

On-chip address decoding

Three Chip Enable inputs

• Output follows complement of

• Power dissipation:

0.98mW/bit typ

• Output: 3-State

TTL compatible

APPLICATIONS

Buffer memory

Memory mapping

• Push down stack

· Scratch pad

Writable control store

Schottky clamped

FEATURES

Bipolar Memory Products

DESCRIPTION

The 82LS16 is a Read/Write memory array which features 3-State outputs for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 Chip Enable inputs and PNP input transistors which reduce input loading.

During Write operation, the logical state of the output follows the complement of the data input being written. This feature allows faster execution of Write/Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following Write cycle.

The 82LS16 has fast Read access and Write cycle times, as well as low power requirements and thus is ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, where power limitations are of major concern.

Ordering information can be found on the following page.

BLOCK DIAGRAM

PIN CONFIGURATION

82LS16

1

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82LS16 N
16-pin Plastic Small Outline 300mil-wide	N82LS16 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
V _{OUT}	Output voltage High (open-collector)	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Min Typ ¹		UNIT	
Input voltage ²							
VIH	High	V _{CC} = 5.25V	2.0			V	
VIL	Low	$V_{CC} = 4.75V$			0.8	V	
VIC	Clamp ³	$V_{CC} = 4.75V, I_{IN} = -12mA$		-1.0	- 1.5	V	
Output voltage	e ²						
		$V_{CC} = 4.75V$					
V _{OH}	High	I _{OH} = -3.2mA	2.6			V	
V _{OL}	Low ⁵	$I_{OL} = 16 \text{mA}$		0.35	0.45	V	
Input current ³							
		$V_{\rm CC} = 5.25 V$		[
hн	High	$V_{IN} = 5.5V$		1	25	μA	
l _{fL}	Low	V _{IN} = 0.45V		-10	- 100	μA	
Output curren	t						
loz	Hi-Z state ⁶	V _{OUT} = 5.5V		1	40	μA	
•••		$V_{OUT} = 0.45V$		-1	-40		
los	Short circuit ⁷	$V_{CC} = 5.25V, V_O = 0V$	-15		-70	mA	
Supply curren	t ⁸				4	1	
Icc		V _{CC} = 5.25V		50	70	mA	
Capacitance							
		V _{CC} = 5.0V		Τ	Τ		
CIN	Input	$V_{IN} = 2.0V$		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8		pF	

TRUTH TABLE

MODE	CE.	WE	D _{IN}	D _{OUT}
Read	0	1	х	Stored Data
Write ''0''	0	0	0	1
Write "1"	0	0	1	0
Disabled	1	X	X	Hi-Z

*"0" = All CE inputs Low; "1" = One or more CE inputs High. X = Don't care.

82LS16

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \ll T_A \ll +75^{\circ}C$, $4.75V \ll V_{CC} \ll 5.25V$

CYMPOL D		ETER TO		LIMITS			
SYMBOL	PARAMETER		FROM	Min	Typ ¹	Мах	UNIT
Access time							
t _{AA} t _{CE}	Address Chip Enable	Output Output	Address Chip Enable		30 15	40 25	ns
Disable time ¹⁰			**************************************				
t _{CD} t _{WD}	Valid time	Output Output	Chip Enable Write Enable		15 30	25 40	ns
Setup and hold	l time		· · · · · · · · · · · · · · · · · · ·				
twsa ¹¹ twha	Setup time Hold time	Write Enable	Address	0	-5 -5		ns
t _{WSD} t _{WHD}	Setup time Hold time	Write Enable	Data in	25 0	15 5		ns
t _{wsc} t _{wHC}	Setup time Hold time	Write Enable	CE	0	-5 -5		ns
Pulse width ⁹							•
twp ¹²	Write Enable			25	15		ns

NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. All voltage values are with respect to network ground terminal.

3. Test each input one at a time.

4. Measured with a logic Low stored and V_{IL} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

5. Measured with a logic High stored. Output sink current is supplied through a resistor to V_{CC} . 6. Measured with V_{H} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

7. Duration of the short-circuit should not exceed 1 second.

8. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

9. Minimum required to guarantee a Write into the slowest bit.

10. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

- 11. Measured with minimum twp.
- 12. Measured with minimum twsA

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

82LS16

1.4

256-Bit TTL Bipolar RAM (256 imes 1)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
t _{CE}	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in off-state.
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
twsc	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
twp	Width of Write Enable pulse.
twsa	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.
t _{WSD}	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.
t _{WD}	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
twhC	Required delay between end of Write Enable pulse and end of Chip Enable.
twha	Required delay between end of Write Enable pulse and end of valid Address.

74S301 256-Bit TTL Bipolar RAM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 74S301 is a Read/Write memory array which features an Open-Collector output for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full onchip address decoding, 3 Chip Enable inputs and PNP input transistors, which reduce input loading.

The additional feature of output blanking during Write ($\overline{D_0}$ terminal High) permits $\overline{D_0}$ and D_{1N} terminals to share a common I/O line to reduce system interconnections. These devices have fast Read access and Write cycle times, and thus are ideally suited in high speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

FEATURES

- Address access time: 50ns max
- Write cycle time: 55ns max
- Power dissipation: 1.5mW/bit typ
- Input loading: -100µA max
- Output blanking during Write
- On-chip address decoding
- Schottky clamped
- TTL compatible
- Three Chip Enable inputs
- Output: Open-Collector

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

PIN CONFIGURATION

BLOCK DIAGRAM

74S301

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N74S301 N
16-pin Plastic Small Outline 300mil-wide	N74S301 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
V _{OUT}	Output voltage High (open-collector)	+ 5.5	V _{DC}
T _A	Operating temperature Range	0 to +75	°C
T _{STG}	Storage temperature Range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

0.445.01				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ¹	Max	UNIT
Input voltage						
VIL	Low	$V_{\rm CC} = 4.75 V$			0.8	V
VIH	High	$V_{\rm CC} = 5.25V$	2.0			V
VIC	Clamp ³	$V_{CC} = 4.75V, I_{IN} = -12mA$		- 1.0	-1.2	V
Output voltag	e					
		V _{CC} = 4.75V				
V _{OL}	Low ⁵	$I_{OL} = 16 \text{mA}$		0.35	0.45	V
Input current						
		V _{CC} = 5.25V				
կլ	Low	$V_{IL} = 0.45V$			-100	μA
lin .	High	$V_{\rm IH} = 2.7 V$			25	μA
Output curren	it					
IOLK	Leakage	V _{IH} = 2V, V _O = 5.5V			40	μA
Supply curren	it ⁸ rac					
Icc	5.75 -	$V_{CC} = 5.25V, T_A = +125^{\circ}C$		80	130	mA
Capacitance						
		V _{CC} = 5.0V				
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

TRUTH TABLE

MODE	CE	WE	D _{IN}	D _{OUT}
Read	0	1	x	Stored Data
Write ''0''	0	0	0	1
Write ''1''	0	0	1	1
Disabled	1	X	X	1

""0" = All \overline{CE} inputs Low: "1" = One or more \overline{CE} inputs High.

X = Don't care.

74\$301

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_1 = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

				LIMITS			
SYMBOL	PARAMETER	PARAMETER TO	FROM	Min	Typ ¹	Max	UNIT
Access time							
t _{AA} t _{CE}	Address Chip Enable	Output Output	Address Chip Enable		40 30	50 40	ns
Disable time ¹⁰							
t _{CD} t _{WD}	Valid time	Output Output	Chip Enable Write Enable		30 30	40 40	ns
Setup and hold	time						
twsa ¹¹ twha	Setup time Hold time	Write Enable	Address	20 5	5 0		ns
t _{WSD} t _{WHD}	Setup time Hold time	Write Enable	Data in	40 5	30 0		ns
twsc twнc	Setup time Hold time	Write Enable	ĈĒ	10 5	0 0		ns
Pulse width ⁹	·····						
twp ¹²	Write Enable			30	15		ns

NOTES:

1. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. All voltage values are with respect to network ground terminal.

3. Test each input one at a time.

5. Near each hipping one at a minor 4. Measured with a logic Low stored and V_{IL} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 . 5. Measured with a logic High stored. Output sink current is supplied through a resistor to V_{CC}.

6. Measured with V_{IH} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

7. Duration of the short-circuit should not exceed 1 second.

8. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

9. Minimum required to guarantee a Write into the slowest bit.

10. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

11. Measured with minimum t_{WP}.

12. Measured with minimum twsa.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

74S301

10

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
t _{CE}	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in off-state.
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
t _{wsc}	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
t _{WP}	Width of Write Enable pulse.
t _{WSA}	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.
t _{WSD}	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.
t _{WD}	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
t _{WHC}	Required delay between end of Write Enable pulse and end of Chip Enable.
twha	Required delay between end of Write Enable pulse and end of valid Address.

Bipolar Memory Products

DESCRIPTION

The 74LS301 is a Read/Write memory array which features an Open-Collector output for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full onchip address decoding, 3 Chip Enable inputs and PNP input transistors, which reduce input loading.

The additional feature of output blanking during Write ($\overline{D_O}$ terminal High) permits $\overline{D_O}$ and D_{IN} terminals to share a common I/O line to reduce system interconnections. These devices have fast Read access and Write cycle times, and thus are ideally suited in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

Ordering information can be found on the following page.

74LS301 256-Bit TTL Bipolar RAM

Product Specification

FEATURES

- Address access time: 40ns max
- Write cycle time: 45ns max
 Power dissipation: 0.98mW/bit typ
- Input loading: 100µA max
- Output blanking during Write
- On-chip address decoding
- Schottky clamped
- TTL compatible
- Three Chip Enable inputs
- Open-Collector output

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N74LS301 N
16-pin Plastic Small Outline 300mil-wide	N74LS301 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OUT}	Output voltage High (open-collector)	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C,\;4.75 V \leqslant V_{CC} \leqslant 5.25 V$

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Input voltage	2					
V _{IL} V _{IH}	Low High	V _{CC} = 4.75V V _{CC} = 5.25V	2.0		0.8	v v
VIC	Clamp ³	$V_{CC} = 4.75V, I_{IN} = -12mA$	2.0		-1.2	v
Output voltag	je					*****
V _{OL}	Low ⁵	V _{CC} = 4.75V I _{OL} = 16mA			0.45	v
Input current	2					
lıL İle	Low High	V _{CC} = 5.25V V _{IL} = 0.45V V _{IH} = 2.7V		-	- 100 25	μΑ μΑ
Output curren	nt			.		
IOLK	Leakage ⁵	$V_{IH} = 2V, V_O = 5.5V$			40	μA
Supply curren	nt ⁸			•	•	
lcc		V _{CC} = 5.25V		50	70	mA
Capacitance		·		•	-	
C _{IN} C _{OUT}	Input Output	V _{CC} = 5.0V V _{IN} = 2.0V V _{OUT} = 2.0V		5 8		pF pF

TRUTH TABLE

MODE	CE.	WE	D _{IN}	D _{OUT}
Read	0	1	X	Stored Data
Write "0"	0	0	0	1
Write "1"	0	0	1	1
Disabled	1	X	X	1

*''0'' = All CE inputs Low: ''1'' = One or more CE inputs High. X = Don't care.

74LS301

74LS301

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \textbf{R}_1 = 270\Omega, \hspace{0.1 cm} \textbf{R}_2 = 600\Omega, \hspace{0.1 cm} \textbf{C}_L = 30 p F, \hspace{0.1 cm} 0^\circ \textbf{C} \leqslant \textbf{T}_A \leqslant +75^\circ \textbf{C}, \hspace{0.1 cm} 4.75 \textbf{V} \leqslant \textbf{V}_{\textbf{CC}} \leqslant 5.25 \textbf{V}

			FROM	LIMITS			
SYMBOL	PARAMETER	то		Min	Typ ¹	Max	UNIT
Access time							
t _{AA} t _{CE}	Address Chip Enable	Output Output	Address Chip Enable		30 15	40 25	ns
Disable time ¹⁰							
t _{CD} t _{WD}	Valid time	Output Output	Chip Enable Write Enable		15 30	25 40	ns
Setup and hole	d time						
t _{WSA} ¹¹ t _{WHA}	Setup time Hold time	Write Enable	Address	0 0	-5 -5		ns
t _{WSD} t _{WHD}	Setup time Hold time	Write Enable	Data in	25 0	15 -5		ns
t _{WSC} t _{WHC}	Setup time Hold time	Write Enable	ĈĒ	0 0	-5 -5		ns
Pulse width ⁹							
twp ¹²	Write Enable			25	15		ns

NOTES:

1. All typical values are at $V_{CC}=5V,\ T_{A}=+25^{\circ}C.$

2. All voltage values are with respect to network ground terminal.

3. Test each input one at a time.

4. Measured with a logic low stored and V_{IL} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

5. Measured with a logic high stored. Output sink current is supplied through a resistor to V_{CC} .

6. Measured with V_{IH} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

7. Duration of the short-circuit should not exceed 1 second.

8. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

9. Minimum required to guarantee a Write into the slowest bit.

10. Measured at a delta of 0.5V from logic levels with R₁ = 750 Ω , R₂ = 750 Ω and C_L = 5pF.

11. Measured with minimum t_{WP}.

12. Measured with minimum twsA.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

74LS301

.ş

256-Bit TTL Bipolar RAM (256 imes 1)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
^t CE	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in off-state.
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
twsc	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
twhD	Required delay between end of Write Enable pulse and end of valid input data.
twp	Width of Write Enable pulse.
^t wsa	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.
twsd	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.
twD	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.
twhc	Required delay between end of Write Enable pulse and end of Chip Enable.
twha	Required delay between end of Write Enable pulse and end of valid Address.

Byte-Organized TTL RAM

page

82509	576-bit TTL Bipolar RAM (64 x 9) 45 ns
82S09A	576-bit TTL Bipolar RAM (64 x 9) 35 ns
82S19	576-bit TTL Bipolar RAM (64 x 9) 35 ns
82S212	2304-bit TTL Bipolar RAM (256 x 9) 45 ns 331
82S212A	2304-bit TTL Bipolar RAM (256 x 9) 35 ns 331
8X350	2048-bit TTL Bipolar RAM (256 x 8)

Bipolar Memory Products

DESCRIPTION

The organization of this device allows byte storage of data, including parity. Where parity is not monitored, the ninth bit can be used as a tag or status indicator for each word stored. Ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S09/09A features Open-Collector outputs, Chip Enable input, and a very low current PNP input structure to enhance memory expansion.

Ordering information can be found on the following page.

The 82S09 and 82S09A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S09 82S09A 576-Bit TTL Bipolar RAM

Product Specification

FEATURES

Address access time:

- N82S09: 45ns max
- N82S09A: 35ns max
- Write cycle time:
- N82S09/09A: 45ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: -100µA max
 On-chip address decoding
- Schottky clamped
- Fully TTL compatible
- Output is non-blanked during Write
- One Chip Enable input
- Outputs: Open-Collector

APPLICATIONS

- Buffer memory
- Control register
- FIFO memory
- Push down stack
- Scratch pad

PIN CONFIGURATIONS

576-Bit TL Bipolar RAM (64 imes 9)

82S09, 82S09A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Plastic DIP 600mil-wide	N82S09 N · N82S09A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S09 A · N82S09A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH}	Output voltage High	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \; 4.75V \leqslant V_{CC} \leqslant 5.25V$

				LIMITS		
SYMBOL	PARAMETER	PARAMETER TEST CONDITIONS		Min Typ		UNIT
Input voltage	, ¹					
VIL	Low	V _{CC} = 4.75V			0.8	v
VIH	High	$V_{CC} = 5.25V$	2.0			V
VIC	Clamp ²	$V_{CC} = 4.75V$ Min, $I_{IN} = -12mA$			-1.5	V
Output voltag	ge ¹		· · · ·			
VOL	Low ³	$V_{\rm CC} = 4.75V,$			0.5	V
		$I_{OL} = 8.0 \text{mA}$		1.1		
Input current	· · · · · · · · · · · · · · · · · · ·					
l _{IL}	Low	V _{IN} = 0.45V			-100	μΑ
l _{iH}	High	V _{IN} = 5.5V			25	μA
Output curre	nt			-		
IOLK	Leakage ⁴	$V_{CC} = 5.25V, V_{OUT} = 5.5V$			40	μA
Supply curre	nt ⁵			•••••	•	••••••
Icc		V _{CC} = 5.25V			190	mA
Capacitance				• • • • • • • • • • • • • • • • • • • •	·····	
		V _{CC} = 5.0V			Ι	
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

TRUTH TABLE

MODE	CE	WE	I _N	O _N
Read	0	1	х	Stored Data
Write ''0''	0	0	0	1
Write ''1''	0	0	1	0
Disabled	1	x	x	1

X = Don't care

576-Bit TTL Bipolar RAM (64 imes 9)

82S09, 82S09A

25

25

ns

ns

ns

ns

ns

N82S09 N82S09A SYMBOL PARAMETER то FROM UNIT Max Тур Тур Min Min Max Access time Address 45 35 t_{AA} ns Chip Enable 30 25 t_{CE} Disable time⁸

Chip Enable

Write Enable

Address

Data in

ĈĒ

5

5

35

5

5

5

35

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 600\Omega, \hspace{0.1 cm} \texttt{R}_2 = 900\Omega, \hspace{0.1 cm} \texttt{C}_L = 30p\texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ\texttt{C} \leqslant \texttt{T}_A \leqslant + 75^\circ\texttt{C}, \hspace{0.1 cm} \texttt{4.75V} \leqslant \texttt{V}_{\texttt{CC}} \leqslant \texttt{5.25V}$

t _{WP} ¹⁰	J
-------------------------------	---

t_{CD}

twA

t_{WSA}9

t_{WHA}

twsp

t_{WHD}

twsc

twhc

Pulse width⁶

NOTES:

1. All voltage values are with respect to network ground.

2. Test each input one at a time.

3. Measured with the logic low stored. Output sink current is applied through a resistor to V_{CC} .

4. Measured with VIH applied to CE.

Valid time

Setup time

Setup time

Setup time

Write Enable

Hold time

Hold time

Hold time

Setup and hold time

5. I_{CC} is measured with the Write enable and chip enable input grounded, all other inputs at 0.45V, and the outputs open.

Output

Output

Write

Enable

Write

Enable

Write

Enable

6. Minimum required to guarantee a Write into the slowest bit.

7. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.

8. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

9. Measured with minimum twp.

10. Measured with minimum twsA-

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

30

30

5

5

30

5

5

5

35

÷.

82S09, 82S09A

576-Bit TTL Bipolar RAM (64 imes 9)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

OVMDOL	DADAMETED			
SYMBOL	PARAMETER			
t _{CE}	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.			
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.			
twsc	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.			
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.			
t _{WP}	Width of Write Enable pulse.			
t _{WSA}	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.			
twsD	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.			
t _{WD}	Delay between beginning of Write Enable pulse and when Data Output goes High (blanks).			
t _{WHC}	Required delay between end of Write Enable pulse and end of Chip Enable.			
t _{WHA}	Required delay between end of Write Enable pulse and end of valid Address.			
twr	Delay between end of Write Enable pulse and when Data Output becomes valid. (As- suming Address still valid.)			
twa	Delay between beginning of Write Enable pulse and when Data Output reflects complement of Data Input.			

Bipolar Memory Products

DESCRIPTION

The organization of this device allows byte storage of data, including parity. Where parity is not monitored, the ninth bit can be used as a tag or status indicator for each word stored. Ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S19 features Open Collector outputs, Chip Enable input, and a very low current PNP input structure to enhance memory expansion.

During Write operation, the 82S19 output goes to a "1".

Ordering information can be found on the following page.

82S19 576-Bit TTL Bipolar RAM

Product Specification

FEATURES

- Address access time: 35ns max
- Write cycle time: 45ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: -100µA max
 On-chip address decoding
- Schottky clamped
- Fully TTL compatible
- One Chip Enable input
- Output is blanked during Write
- Output is blanked during write
 Outputs: Open-Collector

APPLICATIONS

- Buffer memory
- Control register
- FIFO memory
- Push down stack
- Scratch pad

PIN CONFIGURATIONS

BLOCK DIAGRAM

576-Bit TL Bipolar RAM (64 imes 9)

ORDERING INFORMATION

ſ	DESCRIPTION	ORDER CODE
	28-pin Plastic DIP 600mil-wide	N82S19 N
	28-pin Plastic Leaded Chip Carrier 450mil-square	N82S19 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
V _{OH}	Output voltage High	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Input voltage						
VIL	Low	V _{CC} = 4.75V			0.8	v
VIH	High	$V_{CC} = 5.25V$	2.0			V
VIC	Clamp ²	$V_{CC} = 4.75V, I_{IN} = -12mA$			-1.5	V
Output voltage	e					
VOL	Low ³	$V_{CC} = 4.75V,$			0.5	V
		$I_{OL} = 8.0 \text{mA}$				
Input current				•		
l _{IL}	Low	V _{IN} = 0.45V			-100	μA
Iн	High	V _{IN} = 5.5V		-	26	μA
Output curren	t					
IOLK	Leakage ⁴	V _{CC} = 5.25V, V _{OUT} = 5.5V			40	μA
Supply curren	t ^{3,5}			•		
Icc		V _{CC} = 5.25V			190	mA
Capacitance						
		V _{CC} = 5.0V	<u> </u>		[
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

TRUTH TABLE

MODE	ĈĒ	WE	IN	Ō _N
Read	0	1	x	Stored Data
Write ''0''	0	0	0	1
Write ''1''	0	0	1	1
Disabled	1	x	x	1

X = Don't care

82519

4

576-Bit TTL Bipolar RAM (64 imes 9)

82519

AC ELECTRICAL CHARACTERISTICS $R_1 = 600\Omega$, $R_2 = 900\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

SYMBOL	04.04WETED		5001		LIMITS		
	PARAMETER	то	FROM	Min	lin Typ Max		UNIT
Access time							L .,
t _{AA} t _{CE}	Address Chip Enable					35 25	ns
t _{CD} t _{WD} t _{WR}	Disable time Valid time Write recovery time	Output Output Output	Chip Enable Write Enable Write Enable			25 25 25	ns
Setup and hol	ld time		1			· · · · · · · · · · · · · · · · · · ·	
twsa ⁸ t _{WHA}	Setup time Hold time	Write Enable	Address	5 5			ns
twsp twhp	Setup time Hold time	Write Enable	Data in	30 5			ns
twsc twнc	Setup time Hold time	Write Enable	CE	5 5			ns
Pulse width ⁶							
twp ⁹	Write enable		· · · · · · · · · · · · · · · · · · ·	35			ns

NOTES:

2. Test each input one at a time.

3. Measured with a logic low stored and V_{IL} applied to \overline{CE}_1 , \overline{CE}_2 and \overline{CE}_3 .

4. Measured with V_{IH} applied to \overline{CE} .

5. I_{CC} is measured with the Write enable and chip enable inputs grounded, all other inputs at 0.45V, and the outputs open.

6. Minimum required to guarantee a Write into the slowest bit.

7. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.

8. Measured with minimum twp.

9. Measured with minimum twsA-

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

^{1.} All voltage values are with respect to network ground terminal.

82519

576-Bit TL Bipolar RAM (64 imes 9)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
t _{CE}	Delay between beginning of Chip Enable Low (with Ad- dress valid) and when Data Output becomes valid.
t _{CD}	Delay between when Chip Enable becomes High and Data Output is in off-state.
t _{AA}	Delay between beginning of valid Address (with Chip En- able Low) and when Data Output becomes valid.
twsc	Required delay between be- ginning of valid Chip Enable and beginning of Write En- able pulse.
t _{WHD}	Required delay between end of Write Enable pulse and end of valid input data.
t _{WP}	Width of Write Enable pulse.
t _{WSA}	Required delay between be- ginning of valid Address and beginning of Write Enable pulse.
t _{WSD}	Required delay between be- ginning of valid Data Input and end of Write Enable pulse.
t _{WD}	Delay between beginning of Write Enable pulse and when Data Output goes High (blanks).
twhc	Required delay between end of Write Enable pulse and end of Chip Enable.
t _{WHA}	Required delay between end of Write Enable pulse and end of valid Address.
t _{WR}	Delay between end of Write Enable pulse and when Data Output becomes valid. (As- suming Address still valid.)

82S212 82S212A 2304-Bit TTL Bipolar RAM

70

D_N

TC00701S

Product Specification

Common I/O

APPLICATIONS

Cache memory

Buffer storage

DISABLE

– Inputs: PNP Buffered

- Outputs: 3-State

• Writable control store

TYPICAL I/O STRUCTURE

Bipolar Memory Products

DESCRIPTION

The organization of the 82S212 and 82S212A allows byte wide storage of data, including parity. Where parity is not required, the ninth bit can be used as a tag for each word stored. The 82S212 and 82S212A are ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which space and performance requirements dictate a wide data path in favor of word depth.

Data inputs and outputs are common (common I/O) with separate output disable (OD) line that allows ease of Read/ Write operations using a common bus.

Ordering information can be found on the following page.

The 82S212 and 82S212A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time:
 - N82S212: 45ns max
 - N82S212A: 35ns max
- Power dissipation: 0.3mW/bit typ
- Schottky clamped TTL
- One Chip Enable input

BLOCK DIAGRAM

PIN CONFIGURATIONS

November 11, 1986

18

2304-Bit TTL Bipolar RAM (256 imes 9)

82S212, 82S212A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Plastic DIP 400mil-wide	N82S212 N · N82S212A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S212 A · N82S212A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
VOUT	Output voltage High (open-collector)	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C, \; 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ³	Max	UNIT
Input voltage ²						_
VIL	Low	V _{CC} = 4.75V			0.80	v
ViH	High	$V_{CC} = 5.25V$	2.0			V
VIC	Clamp ⁴	$V_{CC} = 4.75V, I_{IN} = -12mA$			-1.5	v
Output voltage	2 ²				•	************
VOH	High	I _{OH} = -2mA	2.4			V
VOL	Low	$V_{CC} = 4.75V, I_{OL} = 8.0mA$			0.5	l v
Input current						
l _{IL}	Low	V _{IN} = 0.45V			-100	μΑ
l _{iH}	High	V _{IN} = 5.5V			25	μA
Output current	ł				•	
loz	Hi-Z State	\overline{CE} = High, or OD = High, V _{OUT} = 5.5V			40	μΑ
		\overline{CE} = High or OD = High, V_{OUT} = 0.5V			-100	
los	Short circuit ^{4,5}	$\overline{CE} = OD = Low, V_{OUT} = 0V$	-15		-70	mA
Supply current	17					
Icc		V _{CC} = 5.25V		135	185	mA
Capacitance	· · · · · · · · · · · · · · · · · · ·				•	
		V _{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

TRUTH TABLE

MODE	WE	ĊE	OD	D _N IN/OUT
Disable output	X	х	1	Hi-Z
Disable R/W	X	1	x	Hi-Z
Write	0	0	1	Data in
Read	1	0	0	Data out

X = Don't care

2304-Bit TTL Bipolar RAM (256 imes 9)

82S212, 82S212A

N82S212 N82S212A SYMBOL PARAMETER¹ то FROM UNIT Typ³ Typ³ Min Max Min Max Access time Address Output Address 45 35 t_{AA} ns Enable time OD 25 25 Output 5 tOE Output ns Output Output Chip Enable 25 25 t_{CE} Disable time⁶ Output Output OD 25 25 top ns Output Output Chip Enable 25 25 tcn Pulse width twp⁸ Write 25 25 ns Setup and hold time Write Chip Enable Setup time 5 5 tswc ns twhD Hold time Chip Enable Write 5 5 25 Setup time Write Data 25 twsp ns twhD Hold time Data Write 5 5 twsa⁹ Write Setup time Address 5 5 ns Hold time Address Write 5 5 tw+A Chip Enable OD Setup time (from disabled state) 5 5 tso ns Hold time OD Chip Enable 5 5 t_{HO}

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 600\Omega, \hspace{0.1 cm} \texttt{R}_2 = 900\Omega, \hspace{0.1 cm} \texttt{C}_L = 30p\texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ\texttt{C} \leqslant \texttt{T}_A \leqslant +75^\circ\texttt{C}, \hspace{0.1 cm} \texttt{4}.75\texttt{V} \leqslant \texttt{V}_{\texttt{CC}} \leqslant 5.25\texttt{V} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C} \ast \texttt{C}_{\texttt{C}} \ast \texttt{C} \ast \texttt{C$

NOTES:

1. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warmup.

2. All voltages are with respect to network ground terminal.

3. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

4. Measured on one pin at a time.

5. Duration of I_{OS} test should not exceed one second.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the outputs open.

8. Measured with minimum t_{WSA}.

9. Measured with minimum twp.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

2304-Bit TL Bipolar RAM (256 imes 9)

82S212, 82S212A

TIMING DIAGRAM

8X350 2048-Bit TTL Bipolar RAM

70

DN

TC00741S

Product Specification

8X300 or 8X305 working storage

зк

20K

TYPICAL I/O STRUCTURE

APPLICATIONS

DISABLE

Bipolar Memory Products

DESCRIPTION

The 8X350 bipolar RAM is designed principally as a working storage element in an 8X305 based system. Internal circuitry is provided for direct use in 8X305 applications. When used with the 8X305, the RAM address and data buses are tied together and connected to the IV bus of the system.

The data inputs and outputs share a common I/O bus with 3-State outputs.

Ordering information can be found on the following page.

The 8X350 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- On-chip address latches
- Schottky clamped
- One Master Enable input
- Directly interfaces with the 8X305 bipolar microprocessor with no external logic
- May be used on left or right bank
- Common I/O:
 - Inputs: PNP buffered
 - Outputs: 3-State

BLOCK DIAGRAM

PIN CONFIGURATIONS

2048-Bit TL Bipolar RAM (256 imes 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		
22-pin Plastic DIP 400mil-wide	N8X350 N		
28-pin Plastic Leaded Chip Carrier 450mil-square	N8X350 A		

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
V _{OH} Vo	Output voltage High Off-stage	+ 5.5 + 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, 4.75V \leq V_{CC} \leq 5.25V

		PARAMETER TEST CONDITIONS		LIMITS	LIMITS	
SYMBOL	PARAMETER			Тур	Max	UNIT
Input voltage						
VIL	Low	V _{CC} = 4.75V			0.8	V
VIH	High	$V_{CC} = 5.25V$	2.0			V
V _{IC}	Clamp ³	$V_{CC} = 4.75V, I_{IN} = -12mA$		•	-1.2	v
Output voltage)					
		V _{CC} = 4.75V				
VOL	Low ⁴	$I_{OL} = 9.6 \text{mA}$			0.5	V
V _{OH}	High ⁵	$I_{OH} = -2mA$	2.4			V
Input current					•	•
41	Low	V _{IN} = 0.45V			-100	μA
Чн	High	V _{IN} = 5.5V			25	μΑ
Output current	l					
loz	Hi-Z State	ME = High, V _{OUT} = 5.5V			40	μA
		ME = High, V _{OUT} = 0.5V			-100	
los	Short circuit ^{3,6}	$SC = WC$, $\overline{ME} = Low$,				
		V _{OUT} = 0V, High stored	-15		-70	mA
Supply current	7					
lcc		V _{CC} = 5.25V			185	mA
Capacitance						
		$\overline{\text{ME}}$ = High, V_{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

1.6

2048-Bit TTL Bipolar RAM (256 imes 8)

TRUTH TABLE

MODE	ME	sc	wc	MCLK	BUSSED DATA/ADDRESS LINES
Hold address Disable data out	1	x	x	x	Hi-Z data out
Input new address	0	1	0	1	Address Hi-Z
Hold address Disable data out	o	1	0	0	Hi-Z data out
Hold address Write data	o	0	1	1	Data in
Hold address Disable data out	0	0	1	0	Hi-Z data out
Hold address Read data	0	0	0	×	Data out
Undefined state ¹²	0	1	1	1	-
Hold address ¹² Disable data out	0	1	1	o	Hi-Z data out

NOTE:

X = Don't care

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$, $0^{\circ}C \ll T_A \ll +75^{\circ}C$, $4.75V \ll V_{CC} \ll 5.25V$

0,0000					LIMITS		
SYMBOL	PARAMETER	то	FROM	Min	Тур	Max	ns ns
Enable time							
t _{E1} t _{E2}	Output Output	Data out Data out	SC- ME-			35 35	ns
Disable time ¹³							
t _{D1} t _{D2}	Output Output	Data out Data out	SC+ ME+			35 35	ns
Pulse width ⁸							
tw	Master clock			40			ns
Setup and hol	d time						
t _{SA} t _{HA}	Setup time Hold time	MCLK- Address	Address MCLK-	30 5			ns
t _{SD} t _{HD}	Setup time Hold time	MCLK- Data in	Data in MCLK	35 5			ns
t _{S3} t _{H3}	Setup time Hold time	MCLK- ME+	ME- MCLK-	40 5			ns
t _{S1} t _{H2}	Setup time Hold time	MCLK- ME-	ME- MCLK-	30 5			ns
ts2 tн1 t _{H4}	Setup time Hold time Hold time	ME- SC- WC-	SC-, WC- MCLK- MCLK-	0 5 5			ns

NOTES:

1. All voltage values are with respect to network ground terminal.

2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.

3. Test each pin one at a time.

4. Measured with a logic Low stored. Output sink current is supplied through a resistor to V_{CC} .

- 5. Measured with a logic High stored.
- 6. Duration of the short circuit should not exceed 1 second.

7. I_{CC} is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45V, and the output open.

8. Minimum required to guarantee a Write into the slowest bit.

9. Applied to the 8X300 based system with the data and address pins tied to the IV Bus.

10. SC + ME = 1 to avoid bus conflict.

11. WC + ME = 1 to avoid bus conflict.

13. Measured at at delta of 0.5V from the logic level with R₁ = 750 Ω , R₂ = 500 Ω , and C_L = 5pF.

8X350

^{12.} The SC and WC outputs from the 8X300 are never at 1 simultaneously.

8X350

2048-Bit TTL Bipolar RAM (256 imes 8)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

	Y TIMING DEFINITIONS
SYMBOL	PARAMETER
t _{S1}	Required delay between be- ginning of Master Enable Low and falling edge of Master Clock.
t _{SA}	Required delay between be- ginning of valid Address and falling edge of Master Clock.
t _{HA}	Required delay between fall- ing edge of Master Clock and end of valid Address.
t _{H1}	Required delay between fall- ing edge of Master Clock and when Select Command becomes Low.
t _{E1}	Delay between beginning of Select Command Low and beginning of valid Data Out- put on the IV Bus.
t _{D1}	Delay between when Select Command becomes High and end of valid Data Out- put on the IV Bus.
t _{H2}	Required delay between fall- ing edge of Master Clock and when Master Enable be- comes Low.
t _{E2}	Delay between when Master Enable becomes Low and beginning of valid Data Out- put on the IV Bus.
t _{D2}	Delay between when Master Enable becomes High and end of valid Data Output on the IV Bus.
t _{S2}	Required delay between when Select Command or Write Command becomes Low and when Master En- able becomes Low.
tw	Minimum width of the Master Clock pulse.
t _{S3}	Required delay between when Master Enable be- comes Low and falling edge of Master Clock.
t _{H3}	Required delay between fall- ing edge of Master Clock and when Master Enable be- comes High.
t _{SD}	Required delay between be- ginning of valid Data Input on the IV Bus and falling edge of Master Clock.
tнD	Required delay between fall- ing edge of Master Clock and end of valid Data Input on the IV Bus.
t _{H4}	Required delay between fall- ing edge of Master Clock and when Write Command becomes Low.

2048-Bit TTL Bipolar RAM (256 imes 8)

TYPICAL 8X350 APPLICATION

٠

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

8X350

Low Complexity TTL PROM

page

82S23/82S123	256-bit TTL Bipolar PROM (32 x 8) 50 ns 343
82S23A/82S123A	256-bit TTL Bipolar PROM (32 x 8) 25 ns 347
82US23	256-bit TTL Bipolar PROM (32 x 8) 13 ns 351
82US123	256-bit TTL Bipolar PROM (32 x 8) 10 ns 351
82S126/82S129	1024-bit TTL Bipolar PROM (256 x 4) 50 ns 355
82S126A	1024-bit TTL Bipolar PROM (256 x 4) 30 ns 359
82S129A	1024-bit TTL Bipolar PROM (256 x 4) 27 ns 359
82S130/82S131	2048-bit Bipolar PROM (512 x 4) 50 ns
82S130A	2048-bit Bipolar PROM (512 x 4) 33 ns
82S131A	2048-bit Bipolar PROM (512 x 4) 30 ns
82S135	2048-bit Bipolar PROM (256 x 8) 45 ns
82LS135	2048-bit Bipolar PROM (256 x 8) 100 ns 375

Bipolar Memory Products

DESCRIPTION

The 82S23 and 82S123 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23 and 82S123 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing a Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either Open-Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S23 and 82S123 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S23 82S123 256-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S23: Open-Collector
 - N82S123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

PIN CONFIGURATIONS

256-Bit TTL Bipolar PROM (32 imes 8)

82S23, 82S123

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S23 N • N82S123 N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S23 A • N82S123 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
VIN	input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82S23) Off-State (82S123)	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

		12		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}		Typ ⁵	Max	UNIT
Input voltage						
VIL	Low	V _{CC} = 4.75V			0.8	v
VIH	High	$V_{CC} = 5.25V$	2.0			v
V _{IC}	Clamp	$I_{IN} = -12mA$			-1.2	V
Output voltage	9					
		CE = Low				
VOL	Low	I _{OUT} = 16mA			0.45	v
VOH	High	$I_{OUT} = -2mA$	2.4			V V
Input current						•
IIL	Low	V _{IN} = 0.45V			-100	μA
lін	High	V _{IN} = 5.5V			50	μA
Output curren	t					
IOLK	Leakage (82S23)	CE = High, V _{OUT} = 5.5V			40	μA
loz	Hi-Z State (82S123)	\overline{CE} = High, V _{OUT} = 5.5V			40	1
		CE = High, V _{OUT} = 0.5V			-40	
los	Short circuit (82S123) ³	CE = Low, V _{OUT} = 0V, High stored	-15		-90	mA
Supply curren	t ⁷					
Icc		V _{CC} = 5.25V			96	mA
Capacitance						
		\overline{CE} = High, V _{CC} = 5.0V				Γ
CIN	Input	V _{IN} = 2.0V		5	1	pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

256-Bit TL Bipolar PROM (32 imes 8)

82S23, 82S123

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ\texttt{C} \leq \texttt{T}_A \leq +75^\circ\texttt{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V}_{CC} \leq 5.25 \texttt{V}$

SYMBOL PARAMETER			LIMITS				
	то	FROM	Min	Typ⁵	Max	UNIT	
Access time ⁴							•
t _{AA}		Output	Address		45	50	ns
t _{CE}		Output	Chip Enable			35	ns
Disable time ⁶							* *
t _{CD}		Output	Chip Enable			35	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

- 2. All voltages with respect to network ground terminal.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 82S23A and 82S123A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23A and 82S123A devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either Open-Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S23A and 82S123A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

LOGIC DIAGRAM

82S23A 82S123A 256-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 25ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: −100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S23A: Open-Collector
 - N82S123A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

PIN CONFIGURATIONS

256-Bit TTL Bipolar PROM (32 imes 8)

82S23A, 82S123A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S23A N • N82S123A N
16-pin Plastic SO 300mil-wide	N82S23A D • N82S123A D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S23A A • N82S123A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82S23A) Off-State (82S123A)	+ 5.5 + 5.5	V_{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +75^\circ C, \ 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

		12	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input voltage)					
VIL	Low				0.8	V
VIH	High		2.0			V
VIC	Clamp	$I_{IN} = -12mA$			-1.2	V
Output voltag	ge					
		CE = Low				
VOL	Low	$I_{OUT} = 16mA$			0.45	v
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input current	t				•	
IIL	Low	V _{IN} = 0.45V			-100	μA
liπ	High	V _{IN} = 5.5V			50	
Output curre	nt					
IOLK	Leakage (82S23A)	\overline{CE} = High, V_{OUT} = 5.5V			40	μA
loz	Hi-Z State (82S123A)	\overline{CE} = High, V_{OUT} = 5.5V			40	
		\overline{CE} = High, V_{OUT} = 0.5V			-40	
los	Short circuit (82S123A) ³	\overline{CE} = Low, V_{OUT} = 0V, High stored	-15		-90	mA
Supply curre	nt ⁷					
lcc		V _{CC} = 5.25V			96	mA
Capacitance						
		\overline{CE} = High, V _{CC} = 5.0V				
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

256-Bit TTL Bipolar PROM (32 imes 8)

82S23A, 82S123A

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \ll T_A \ll +75^{\circ}C$, $4.75V \ll V_{CC} \ll 5.25V$

SYMBOL PARAMETER							
	PARAMETER	то	FROM	Min	n Typ ⁵ Max		UNIT
Access time							•
t _{AA} 4		Output	Address		20	25	ns
t _{CE}		Output	Chip Enable			18	ns
Disable time ⁶				• •			
t _{CD}		Output	Chip Disable			18	ns

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_C = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

an an the state of
artista († 1997) 1990 - Standard Markel, son artista († 1997) 1990 - Standard Markel, son artista († 1997) 1990 - Standard Markel, son artista († 1997) 1990 - Standard Markel, son artista († 1997) 1990 - Standard Markel, son artista († 1997)

Bipolar Memory Products

DESCRIPTION

The 82US23 and 82US123 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic III fusing procedure. The 82US23 and 82US123 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ti-W link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82US23 and 82US123 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

LOGIC DIAGRAM

82US23 82US123 256-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- 82US23: 13ns max
- 82US123: 10ns max
- Power dissipation: 2.3mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82US23: Open Collector
- N82US123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

PIN CONFIGURATIONS

256-Bit TTL Bipolar PROM (32×8)

82US23, 82US123

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82US23 N • N82US123 N
16-pin Plastic SOL 300mil-wide	N82US23 D • N82US123 D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82US23 A • N82US123 A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82US23) Off-state (82US123)	+ 5.5 + 5.5	V_{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

NOTE:

 Stress above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1, 2}		Typ⁵	Max	UNIT
Input voltage						
VIL	Low				0.8	v
VIH	High		2.0			V
VIC	Clamp	I _{IN} = -18mA			-1.2	v
Output voltag	je					
		CE = Low				
VOL	Low	$I_{OUT} = 16mA$			0.45	v
VOH	High	$I_{OUT} = -2mA$	2.4			v
Input current						
l _{IL}	Low	V _{IN} = 0.45V			-250	μA
łн	High	V _{IN} = 5.5V			50	μA
Output curre	nt					
IOLK	Leakage (82US23)	CE = High, V _{OUT} = 5.5V			40	μA
loz	Hi-Z State (82US123)	\overline{CE} = High, V_{OUT} = 5.5V			40	
		\overline{CE} = High, V_{OUT} = 0.5V			-40	
los	Short circuit (82US123) ³	\overline{CE} = Low, V_{OUT} = 0V, High stored	- 15		-90	mA
Supply curre	nt ⁷					
lcc		V _{CC} = 5.25V			115	mA
Capacitance						
		\overline{CE} = High, V _{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

256-Bit TL Bipolar PROM (32 imes 8)

82US23, 82US123

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

SYMBOL PARAMETER	то	FROM	N82US23			N82US123			
			Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
					•	•			
	Output	Address			13			10	ns
	Output	Chip Enable			8			7	ns
					•	•			
	Output	Chip Enable			8			7	ns
	PARAMETER	Output Output	Output Address Output Chip Enable	PARAMETER TO FROM Output Address Output Chip Enable	PARAMETER TO FROM Output Address Output Chip Enable	PARAMETER TO FROM Min Typ ⁵ Max Output Address 13 Output Chip Enable 8	PARAMETER TO FROM Min Typ ⁵ Max Min Output Address 13 13 Output Chip Enable 8 8	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Output Address 13 - - Output Chip Enable 8 - -	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max Output Address 13 10 Output Chip Enable 8 7

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1 µs.

5. Typical values are at $V_C = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω and C_L = 5pF.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

.

Bipolar Memory Products

DESCRIPTION

The 82S126 and 82S129 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S126 and 82S129 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S126 and 82S129 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S126 82S129 1K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: 0.5mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- Two Chip Enable inputs
- Output options:
 - N82S126: Open Collector
 - N82S129: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

1K-Bit TTL Bipolar PROM (256 imes 4)

82\$126, 82\$129

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
16-pin Plastic DIP 300mil-wide	N82S126 N • N82S129 N	
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S126 A • N82S129 A	÷.,

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82S126) Off-State (82S129)	+ 5.5 + 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

		TEST CONDITIONS ^{1,2}		LIMITS		
SYMBOL	PARAMETER			Typ⁵	Max	UNIT
Input voltage	·					
VIL	Low				0.8	V
VIH	High		2.0	· · · ·	- · · ·	V
VIC	Clamp	$I_{IN} = -12mA$			-1.2	• V
Output voltage			1			
		$\overline{CE}_{1,2} = Low$				
VOL	Low	$I_{OUT} = 16 mA$			0.45	V
VOH	High (82S129)	$I_{OUT} = -2.0 \text{mA}$	2.4			V.
Input current						
 Ι _Ι L	Low	V _{IN} = 0.45V			-100	μA
l _{iH}	High	$V_{IN} = 5.5V$			40	μA
Output current					•	
IOLK	Leakage (82S126)	\overline{CE}_1 or \overline{CE}_2 = High, V_{OUT} = 5.5V			40	μA
loz	Hi-Z State (82S129)	\overline{CE}_1 or \overline{CE}_2 = High, V_{OUT} = 5.5V			40	
		\overline{CE}_1 or \overline{CE}_2 = High, V_{OUT} = 0.5V			-40	
los	Short circuit (82S129) ³	$\overline{CE}_{1,2}$ = Low, V_{OUT} = 0V, High stored	- 15		-70	mA
Supply current	7					
lcc	T T	V _{CC} = 5.25V			120	mA
Capacitance						
		\overline{CE}_1 or \overline{CE}_2 = High, V_{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V	1	8		pF

Notes on following page.

1K-Bit TTL Bipolar PROM (256 imes 4)

825126, 825129

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \textbf{R}_1 = 270 \Omega, \hspace{0.1 cm} \textbf{R}_2 = 600 \Omega, \hspace{0.1 cm} \textbf{C}_L = 30 p F, \hspace{0.1 cm} 0^{\circ} \textbf{C} \leq \textbf{T}_A \leq +75^{\circ} \textbf{C}, \hspace{0.1 cm} 4.75 V \leq \textbf{V}_{CC} \leq 5.25 V \text{ sc} =

SYMBOL							
	PARAMETER	то	FROM	Min	Typ ⁵	Max	
Access time ⁴		1					
t _{AA}		Output	Address		40	50	ns
t _{CE}		Output	Chip Enable			25	ns
Disable time ⁶							
t _{CD}		Output	Chip Disable			25	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S126A and 82S129A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S126A and 82S129A devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S126A and 82S129A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S126A 82S129A 1K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
 - N82S126A: 30ns max
- N82S129A: 27ns max
- Power dissipation: 0.5mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- Two Chip Enable inputs
- Output options:
 - 82S126A: Open-Collector
 - 82S129A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

1K-Bit TTL Bipolar PROM (256 imes 4)

82S126A, 82S129A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S126A N • N82S129A N
16-pin Plastic SO 300mil-wide	N82S126A D • N82S129A D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S126A A • N82S129A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82S126) Off-state (82S129)	+ 5.5 + 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	T _{STG} Storage temperature range		°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant$ + 75°C, 4.75V $\leqslant V_{CC} \leqslant$ 5.25V

		12	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵ Max		UNIT
Input voltage	•			•		·
V _{IL} V _{IH} V _{IC}	Low High Clamp	$V_{CC} = 4.75V$ $V_{CC} = 5.25V$ $V_{CC} = 4.75V$, $I_{IN} = -12mA$	2.0		0.8 -1.2	V V V
Output voltag	je .			•		
V _{OL} Voн	Low High (82S129A)	CE _{1,2} = Low I _{OUT} = 16mA I _{OUT} = -2.0mA	2.4		0.45	v v
Input current	·			••••••		
hL hH	Low High	V _{IN} = 0.45V V _{IN} = 5.5V			-100 40	μΑ μΑ
Output curre	nt					
l _{OLK} l _{OZ}	Leakage (82S126A) Hi-Z State (82S129A)	$ \begin{array}{c} \overline{CE}_1 \mbox{ or } \overline{CE}_2 = \mbox{High}, \ V_{OUT} = 5.5 \ V \\ \overline{CE}_1 \mbox{ or } \overline{CE}_2 = \mbox{High}, \ V_{OUT} = 5.5 \ V \\ \overline{CE}_1 \mbox{ or } \overline{CE}_2 = \mbox{High}, \ V_{OUT} = 0.5 \ V \\ \end{array} $			40 40 40	μA
los	Short circuit (82S129A) ³	$\overline{CE}_{1,2}$ = Low, V_{OUT} = 0V, High stored	-15	Li	-70	mA
Supply curre	nt'			·		
lcc		$V_{CC} = 5.25V$			120	mA
Capacitance						
C _{IN} C _{OUT}	Input Output	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}}_1 \ \text{or} \ \overline{\text{CE}}_2 = \text{High}, \ V_{\text{CC}} = 5.0 \text{V} \\ V_{\text{IN}} = 2.0 \text{V} \\ V_{\text{OUT}} = 2.0 \text{V} \end{array}$		5 8		pF pF

Notes on following page.

1K-Bit TL Bipolar PROM (256 imes 4)

82S126A, 82S129A

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \textbf{R}_1 = 270 \Omega, \hspace{0.1 cm} \textbf{R}_2 = 600 \Omega, \hspace{0.1 cm} \textbf{C}_L = 30 p F, \hspace{0.1 cm} 0^\circ \textbf{C} \leqslant \textbf{T}_A \leqslant + 75^\circ \textbf{C}, \hspace{0.1 cm} \textbf{4.75V} \leqslant \textbf{V}_{\text{CC}} \leqslant 5.25 \textbf{V}_{\text{CC}} \end{cases}$

SYMBOL PARAME			FROM	N82S129A			N82S126A			
	PARAMETER	ETER TO		Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
Access time ⁴										
t _{AA}		Output	Address		17	27		17	30	ns
t _{CE}		Output	Chip Enable		10	20		10	20	ns
Disable time ⁶										
t _{CD}		Output	Chip Enable		6	15		6	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

n an an Arland an Ar Arland an Ar

Bipolar Memory Products

DESCRIPTION

The 82S130 and 82S131 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130 and 82S131 are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S130 and 82S131 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S130 82S131 2K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Power dissipation: 0.3mW/bit typ
- Input loading: 100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S130: Open-Collector
 N82S131: 3-State
- No separate fusing-pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

2K-Bit TL Bipolar PROM (512 imes 4)

82\$130, 82\$131

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S130 N • N82S131 N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S130 A • N82S131 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{OH} V _O	Output voltage High (82S130) Off-State (83S131)	+ 5.5 + 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	T _{STG} Storage temperature range		°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C,\;4.75 V \leqslant V_{CC} \leqslant 5.25 V$

			LIMITS				
SYMBOL	PAHAMETER	PARAMETER TEST CONDITIONS ^{1,2}		Typ ⁵	Max	UNIT	
Input voltage))			•		L	
VIL	Low				0.8	V	
VIH	High		2.0	ļ		V	
V _{IC}	Clamp	$I_{IN} = -12mA$			-1.2	v	
Output voltag	ge						
		CE = Low					
VOL	Low	$I_{OUT} = 16 \text{mA}$			0.45	V	
V _{OH}	High (82S131)	$I_{OUT} = -2mA$	2.4		1.1	v	
Input current					•		
l _{IL}	Low	V _{IN} = 0.45V			-100	μA	
he	High	$V_{IN} = 5.5V$			40	μΑ	
Output curre	nt						
OLK	Leakage (82S130)	\overline{CE} = High, V_{OUT} = 5.5V,			40	μA	
l _{oz}	Hi-Z State (82S131)	\overline{CE} = High, V_{OUT} = 5.5V			40	μΑ	
		\overline{CE} = High, V_{OUT} = 0.5V	Ì		-40		
los	Short circuit (82S131) ³	\overline{CE} = Low, V_{OUT} = 0V, High stored	- 15		-70	. mA	
Supply curre	nt ⁷						
lcc		V _{CC} = 5.25V			140	mA	
Capacitance							
		\overline{CE} = High, V _{CC} = 5.0V					
CIN	Input	$V_{IN} = 2.0V$	1	5		pF	
COUT	Output	$V_{OUT} = 2.0V$. 8		pF	

Notes on following page.

2K-Bit TL Bipolar PROM (512 imes 4)

825130, 825131

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0}^{\circ}\texttt{C} \leq \texttt{T}_A \leq +75^{\circ}\texttt{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V}_{\texttt{CC}} \leq 5.25 \texttt{V}$

SYMBOL			FROM				
	PARAMETER	то		Min	Typ ⁵	Max	UNIT
Access time ⁴					·		·····
t _{AA}		Output	Address			50	ns
t _{CE}		Output	Chip Enable			30	ns
Disable time ⁶			····		•		
t _{CD}		Output	Chip Disable			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1 µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S130A and 82S131A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130A and 82S131A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for ease of memory expansion. They feature either Open Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S130A and 82S131A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82S130A 82S131A 2K-Bit TTL Bipolar PROM

Product Specification

FEATURES

• Address access time:

- N82S130A: 33ns max
- N82S131A: 30ns max
- Power dissipation: 0.3mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S130A: Open-Collector
 - N82S131A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

BLOCK DIAGRAM

2K-Bit TTL Bipolar PROM (512 imes 4)

82S130A, 82S131A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S130A N • N82S131A N
16-pin Plastic SO 300mil-wide	N82S130A D • N82S131A D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S130A A • N82S131A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
V _{OH} Vo	Output voltage High (82S130) Off-State (82S131)	+ 5.5 + 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
TSTG	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C,\;4.75 V \leqslant V_{CC} \leqslant 5.25 V$

			LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS ^{1, 2}	Min	Typ ⁵	Max	UNIT
Input vol	tage			·		
VIL	Low				0.8	V
V _{IH}	High		2.0			v
VIC	Clamp	$I_{IN} = -12mA$			-1.2	v
Output v	oltage					
		CE = Low				
VOL	Low	$I_{OUT} = 16mA$			0.45	v
VOH	High (82S131)	$I_{OUT} = -2mA$	2.4			V
Input cur	rent					•
l _{IL}	Low	V _{IN} = 0.45V			-100	μΑ
ίн	High	V _{IN} = 5.5V	· *		40	μA
Output c	urrent			1		•
IOLK	Leakage (82S130A)	CE = High, V _{OUT} = 5.5V			40	μA
loz	Hi-Z State (82S131A)	\overline{CE} = High, V_{OUT} = 5.5V			40	μA
		\overline{CE} = High, V_{OUT} = 0.5V	· · ·	1	-40	
los	Short circuit (82S131A) ³	\overline{CE} = Low, V_{OUT} = 0V, High stored	-15		-70	mA
Supply c	urrent ⁷	· · · · · · · · · · · · · · · · · · ·		1		
lcc		V _{CC} = 5.25V	1.1		140	mA
Capacita	nce					
		\overline{CE} = High, V_{CC} = 5.0V		1.		
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

2K-Bit TTL Bipolar PROM (512 imes 4)

82S130A, 82S131A

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ \texttt{C} \leq \texttt{T}_A \leq +75^\circ \texttt{C}, \hspace{0.1 cm} 4.75 \texttt{V} \leq \texttt{V}_{\texttt{CC}} \leq 5.25 \texttt{V}$

SYMBOL PARAMETER	TO FROM		N82S131A			N82S130A			
		FROM	Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
ime ⁴								•	
	Output	Address		18	30		18	33	ns
	Output	Chip Enable		10	20		10	20	ns
ime ⁶									
	Output	Chip Enable		6	15		6	15	ns
	ime ⁴	Ime ⁴ Output Output	ime ⁴ Output Address Output Chip Enable	PARAMETER TO FROM ime ⁴ Output Address Output Output Chip Enable	PARAMETER TO FROM ime ⁴ Output Address 18 Output Chip Enable 10 ime ⁶ Image 10	PARAMETER TO FROM Min Typ ⁵ Max ime ⁴ Output Address 18 30 Output Output Chip Enable 10 20	PARAMETER TO FROM Min Typ ⁵ Max Min ime ⁴ Output Address 18 30 Output Output Chip Enable 10 20 ime ⁶ V V V V V V	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ ime ⁴ Output Address 18 30 18 Output Output Chip Enable 10 20 10 ime ⁶ Image Image Image Image Image Image	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max ime ⁴ Output Address 18 30 18 33 Output Output Chip Enable 10 20 10 20 ime ⁶

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at V_{CC} = 5V, T_A = + 25°C.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

•

Bipolar Memory Products

DESCRIPTION

The 82S135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S135 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S135 2K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 45ns max
- Power dissipation: 329µW/bit typ
- Input loading: -100µA max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

2K-Bit TL Bipolar PROM (256 imes 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82S135 N
20-pin Plastic SO 300mil-wide	N82S135 D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S135 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Power supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant$ + 75°C, 4.75V \leqslant V_{CC} \leqslant 5.25V

	12		LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input vol	tage	· · · · · · · · · · · · · · · · · · ·			· · · .	
V _{IL} V _{IH} V _{IC}	Low High Clamp	$V_{CC} = 4.75V$ $V_{CC} = 5.25V$ $I_{IN} = -12mA$	2.0		0.8 -1.2	V V V
Output v	oltage					
V _{OL} V _{OH}	Low High	$I_{OUT} = 9.6mA$ \overline{CE}_1 , $\overline{CE}_2 = Low$, $I_{OUT} = -2mA$, High stored	2.4		0.5	v v
Input cu	rrent					
կլ հա	Low High	V _{IN} = 0.45V V _{IN} = 5.5V			-100 40	μΑ μΑ
Output c	urrent		·			
l _{oz} l _{os}	Hi-Z State Short circuit ³	$\begin{array}{c} \overline{CE}_1, \ \overline{CE}_2 = \text{High}, \ V_{\text{OUT}} = 0.5 \text{V} \\ \overline{CE}_1, \ \overline{CE}_2 = \text{High}, \ V_{\text{OUT}} = 5.5 \text{V} \\ \overline{CE}_1, \ \overline{CE}_2 = \text{Low}, \ V_{\text{OUT}} = 0 \text{V}, \ \text{High stored} \end{array}$	-15		-40 40 -75	μA mA
Supply c	urrent ⁷		L		1	
Icc		V _{CC} = 5.25V		135	150	mA
Capacita	nce			•		1
C _{IN} C _{OUT}	Input Output	$V_{CC} = 5.0V, \ \overline{CE} = High$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		5 8		pF pF

Notes on following page.

82S135

2K-Bit TTL Bipolar PROM (256 imes 8)

82S135

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R_1} = 470 \Omega, \hspace{0.1 cm} \texttt{R_2} = 1 \text{k} \Omega, \hspace{0.1 cm} \texttt{C_L} = 30 \text{pF}, \hspace{0.1 cm} \texttt{0^{\circ}C} \leqslant \texttt{T_A} \leqslant +75^{\circ}\text{C}, \hspace{0.1 cm} \texttt{4.75V} \leqslant \texttt{V}_{\text{CC}} \leqslant 5.25 \text{V} \text{CC} \approx 5.25 \text{CC} \text{CC} \approx 5.25 \text{V}

SYMBOL PARAMETER	то	FROM	LIMITS				
			Min	Typ⁵	Max	UNIT	
Access time	4				A		
t _{AA}		Output	Address		40	45	ns
tCE		Output	Chip Enable		20	25	ns
Disable time	6						
t _{CD}		Output	Chip Disable		20	35	ns

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82LS135 2K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LS135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82LS135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

FEATURES

- Address access time: 100ns max
- Power dissipation: 200 μ W/bit typ
- Input loading: -100µA max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Unprogrammed outputs are at Low level
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

2K-Bit TTL Bipolar PROM (256 imes 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82LS135 N
20-pin Plastic SO 300mil-wide	N82LS135 D
20-pin Plastic Leaded Chip Carrier 350mil-square	N82LS135 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-state	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ\text{C} \leqslant \text{T}_\text{A} \leqslant +75^\circ\text{C}, \ 4.75\text{V} \leqslant \text{V}_\text{CC} \leqslant 5.25\text{V}$

		12	LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min	Typ⁵	Max	UNIT
Input voltage						
VIL	Low				0.8	V
VIH	High		2.0			V
VIC	Clamp	I _{IN} = – 12mA			-1.2	V
Output voltage)					
VOL	Low	I _{OUT} = 16mA		Ţ	0.5	V
VOH	High	$I_{OUT} = -2mA$, High stored	2.4			V
Input current						
IIL	Low	V _{IN} = 0.45V	T	T	-100	μA
I _{IH}	High	$V_{IH} = 5.5V$			40	μA
Output current	t		_ .			
loz	Hi-Z State	\overline{CE}_1 , \overline{CE}_2 = High, V_{OUT} = 0.5V			-40	μA
		\overline{CE}_1 , \overline{CE}_2 = High, V_{OUT} = 5.5V			40	
los	Short circuit ³	\overline{CE}_1 , \overline{CE}_2 = Low, V_{OUT} = 0V, High stored	-15		-75	mA
Supply current	t ⁷					
Icc		V _{CC} = 5.25V		80	100	mA
Capacitance						
		$V_{CC} = 5.0V, \overline{CE} = High$				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8	1	pF

Notes on following page.

82LS135

2K-Bit TTL Bipolar PROM (256 \times 8)

82LS135

AC ELECTRICAL CHARACTERISTICS R₁ = 270Ω, R₂ = 600Ω, C_L = 30pF, 0°C ≤ T_A ≤ +75°C, 4.75V ≤ V_{CC} ≤ 5.25V

SYMBOL							
	PARAMETER	то	FROM	Min	Typ ⁵	Max	
Access time ⁴			. L				4
t _{AA}		Output	Address		70	100	ns
t _{CE}		Output	Chip Enable		30	50	ns
Disable time ⁶	**************************************				•		
t _{CD}		Output	Chip Disable		30	60	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$. 6. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω and C_L = 5pF.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

S. A.

4K-bit TTL PROM

82S115	4096-bit PROM (512 x 8) 60 ns	381
82S137	4096-bit PROM (1024 x 4) 60 ns	385
82S137A	4096-bit PROM (1024 x 4) 45 ns	389
82S137B	4096-bit PROM (1024 x 4) 35 ns	389
82S141	4096-bit PROM (512 x 8) 60 ns	393
82S141A	4096-bit PROM (512 x 8) 45 ns	393
82S147	4096-bit PROM (512 x 8) 60 ns	397
82S147A	4096-bit PROM (512 x 8) 45 ns	397
82S147B	4096-bit PROM (512 x 8) 25 ns	401

	e distance El constance de la constance El constance de la
	1
$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2}$	
$(1,1,2,\dots,n_{n-1},n_{n-1},\dots,n_{n-1},n_{n-1},\dots,n_{n-1},n_{n-1},\dots,n_{n-1},n_{n-1},\dots,\dots,n_{n-1},\dots,\dots$	
المواجد والأراج المراجع والأردية	

82S115 4K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S115 is field programmable and includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations. A D-type latch is used to enable the 3-State output drivers. In the Transparent Read mode, stored data is addressed by applying a binary code to the address inputs while holding Strobe High. In this mode the bit drivers will be controlled solely by $\overline{CE_1}$ and CE_2 lines.

In the Latched Read mode, outputs are held in their previous state (High, Low, or Hi-Z) as long as Strobe is Low, regardless of the state of Address or Chip Enable. A positive Strobe transition causes data from the applied address to reach the outputs if the chip is enabled, and causes outputs to go to the Hi-Z State if the chip is disabled.

A negative Strobe transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the Hi-Z condition if the chip was disabled.

BLOCK DIAGRAM

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 60ns max
- Power dissipation: 165µW/bit typ
- Input loading: -100µA max
- Two Chip Enable inputs
- On-chip storage latches
- Schottky clamped
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Hardware algorithms
- Character generation
- Control store
- Sequential controllers

PIN CONFIGURATION

82\$115

4K-Bit TTL Bipolar PROM (512 imes 8)

ORDERING INFORMATION

DESCRIPTION	ORDERING CODE
24-pin Plastic DIP 600mil-wide	N82S115 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		LIMITS					
SYMBOL PARAMETER		TEST CONDITIONS ⁵		Typ ⁸	Max	UNIT	
Input volt	age				•••••••••••		
VIL	Low				0.8	v	
VIH	High		2.0			V	
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	V	
Output vo	bitage						
		$\overline{CE}_1 = Low, CE_2 = High$					
VOL	Low	I _{OUT} = 9.6mA		0.4	0.45	V	
VOH	High	$I_{OUT} = -2mA$	2.7			v	
Input curi	rent ⁵			L			
կլ	Low	V _{IN} = 0.45V		1	-100	μA	
Iн	High	V _{IN} = 5.5V			25	μA	
Output cu	urrent ⁵				•		
loz	Hi-Z State	\overline{CE}_1 = High or CE_2 = Low, V_{OUT} = 5.5V			40	μA	
		\overline{CE}_1 = High or CE_2 = Low, V_{OUT} = 0.5V			-40		
los	Short circuit ¹	\overline{CE}_1 = Low, CE_2 = High, V_{OUT} = 0V, High stored	-15		-70	mA	
Supply cu	urrent ¹⁰				•••••••••••••••••••••••••••••••••••••••		
Icc		V _{CC} = 5.25V		130	175	mA	
Capacitan	ice			•			
		\overline{CE}_1 = High or CE_2 = Low, V_{CC} = 5.0V			1		
CIN	Input	V _{IN} = 2.0V		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8	1	pF	

Notes on following page.

4K-Bit TL Bipolar PROM (512 imes 8)

82S115

LIMITS PARAMETER то FROM TEST CONDITIONS UNIT SYMBOL Min Tvp⁸ Max Access time⁶ Output Address 40 60 ns t_{AA} Latched or transparent 40 Output Chip 20 ns tCF Read^{2,4} Fnable Disable time⁹ Output Chip Latched or transparent 20 40 t_{CD} ns Read^{2,4} Disable Setup and hold time 40 Setup time Output Chip ns tons Latched Read only^{3,4} Hold time Enable 10 ns t_{CDH} Hold time Latched Read only^{3,4} Hold time Address Strobe 0 ns t_{ADH} Pulse Width Latched Read only^{3,4} Strobe 30 15 tsw ns Latch time Latched Read only^{3,4} Strobe 60 35 ns t_{SL} Delatch time9 Latched Read only^{3,4} Strobe 35 ns t_{DL}

NOTES:

1. No more than one output should be grounded at the same time and strobe should be disabled Strobe is in the High state.

 If the Strobe is High, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear T_{AA} nanoseconds after the address has changed or T_{CE} nanoseconds after the output circuit is enabled.

3. In latched Read Mode data from any selected address will be held on the output when Strobe is lowered only when Strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.

4. During operation the fusing pins FE_1 and FE_2 must be grounded or left floating.

5. Positive current is defined as into the terminal referenced.

6. Tested at an address cycle time of 1μ s.

7. Areas shown by crosshatch are latched data from previous address.

8. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

9. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, and $C_L = 5pF$.

10. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

4K-Bit TTL Bipolar PROM (512 imes 8)

82S115

82S137 4K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S137 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S137 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S137 devices are also processed to military requirements for operation over the military temperature range, for specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

FEATURES

- Address access time: 60ns max
- Power dissipation: 0.13mW/bit typ
- Input loading: −100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Two Chip Enable inputs
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logic
- Code conversion

82S137

4K-Bit TL Bipolar PROM (1024 imes 4)

DESCRIPTION	ORDER CODE	i A
18-pin Plastic DIP 300mil-wide	N82S137 N	
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S137 A	

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
Vcc	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-state	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		10	LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}		Typ ⁵	Max	UNIT
Input voltage		· · · · · ·				
VIL	Low				0.8	V
VIH	High		2.0			· V
VIC	Clamp	$I_{IN} = -12mA$	a da da se		- 1.2	Υ N
Output voltag	je					
		CE _{1,2} = Low	T			
VOL	Low	I _{OUT} = 16mA			0.45	v
VOH	High	$I_{OUT} = -2mA$	2.4			v
Input current	· · · · · · · · · · · · · · · · · · ·					
- Ι _{ΙL}	Low	V _{IN} = 0.45V			-100	μA
lн	High	V _{IN} = 5.5V			40	μA
Output curre	nt					
loz	Hi-Z State	CE _{1,2} = High, V _{OUT} = 0.5V			-40	μA
		$\overline{CE}_{1,2}$ = High, V_{OUT} = 5.5V		1	40	
los	Short circuit ³	$\overline{CE}_{1,2}$ = Low, V_{OUT} = 0V, High stored	-15		-70	mA
Supply curre	nt ⁷					
lcc		V _{CC} = 5.25V			140	mA
Capacitance						
		$\overline{CE}_{1,2}$ = High, V _{CC} = 5.0V				
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

ORDERING INFORMATION

4K-Bit TTL Bipolar PROM (1024 imes 4)

82S137

AC ELECTRICAL CHARACTERISTICS R₁ = 270 Ω , R₂ = 600 Ω , C_L = 30pF, 0°C \leq T_A \leq + 75°C, 4.75V \leq V_{CC} \leq 5.25V

				LIMITS			
SYMBOL	PARAMETER	то	FROM	Min Typ ⁵		Max	UNIT
Access time ⁴							
t _{AA}		Output	Address		40	60	ns
tCE		Output	Chip Enable		25	30	ns
Disable time ⁶	· · · ·						
t _{CD}		Output	Chip Enable		25	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S137A and 82S137B are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S137A and 82S137B are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. They feature 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S137A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S137A 82S137B 4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S137A: 45ns max
- N82S137B: 35ns max
- Power dissipation: 0.13mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Two Chip Enable inputs
- Outputs: 3-State

APPLICATIONS

- Control store
- Sequential controllers
- Random logic
- Code conversion

PIN CONFIGURATIONS

82S137A, 82S137B

4K-Bit TL Bipolar PROM (1024 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300mil-wide	N82S137A N • N82S137B N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S137A A • N82S137B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to + 75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

		12				
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵ Max		UNIT
input voltage	· · ·		L	. .		
VIL	Low			1	0.8	V
VIH	High		2.0			V
VIC	Clamp	$t_{IN} = -12mA$		-0.8	-1.2	V
Output voltag	e					
. 1.		$\overline{CE}_{1,2} = Low$		1		
VOL	Low	I _{OUT} = 16mA			0.45	V.
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input current						
կլ	Low	V _{IN} = 0.45V			-100	μA
IIH	High	V _{IN} = 5.5V			40	μA
Output curren	t		· · · · ·			•
loz	Hi-Z State	$\overline{CE}_{1,2}$ = High, V_{OUT} = 0.5V			40	μA
		$\overline{CE}_{1,2}$ = High, V_{OUT} = 5.5V			-40	
los	Short circuit ³	$\overline{CE}_{1,2} = Low, V_{OUT} = 0V$				
		High stored	-15		-70	mA
Supply curren	t ⁷					
Icc		V _{CC} = 5.25V		85	140	mA
Capacitance	·			-		
		$\overline{CE}_{1,2}$ = High, V _{CC} = 5.0V				
CIN	input	V _{IN} = 2.0V		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

4K-Bit TTL Bipolar PROM (1024 imes 4)

82S137A, 82S137B

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

SYMBOL	PARAMETER	то	FROM	N82S137A		N82S137B				
				Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
Access time	4	<u> </u>			1					·
t _{AA}		Output	Address		35	45		30	35	ns
t _{CE}		Output	Chip Enable		20	30		15	25	ns
Disable time	6									
t _{CD}		Output	Chip Disable		20	30		15	25	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

ي المراجعين المراجعين المراجع المراجع المراجع المستعمر المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والان 1986 من المراجع ا

12

Bipolar Memory Products

DESCRIPTION

The 82S141 and 82S141A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S141 and 82S141A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

82S141 82S141A 4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S141: 60ns max
- N82S141A: 45ns max
- Power dissipation: 76µW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

4K-Bit TTL Bipolar PROM (512 imes 8)

82S141, 82S141A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300 mil-wide	N82S141 N3 • N82S141A N3
24-pin Plastic DIP 600mil-wide	N82S141 N • N82S141A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S141A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
v _o	Output voltage Off-state	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG} Storage temperature range		-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C, \; 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

	12		LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input vol	tage ²					
VIL	Low				0.8	V
VIH	High		2.0			V
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v
Output v	oltage ²					
		$\overline{CE}_{1,2}$ = Low, $CE_{3,4}$ = High		1		
Vol	Low	$I_{OUT} = 9.6 \text{mA}$			0.45	v
VOH	High	$I_{OUT} = -2mA$	2.4			v
Input cur	rrent ¹			L		I
կլ	Low	V _{IN} = 0.45V	T	Ι	-100	μA
hin	High	V _{IN} = 5.5V			40	μA
Output c	urrent ¹			L		
loz	Hi-Z state	$\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 5.5V,			40	μA
		$\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 0.5V			-40	
los	Short circuit ³	$\overline{CE}_{1,2} = Low, CE_{3,4} = High, V_{OUT} = 0V$ High stored	- 15		-70	mA
Supply c	urrent ⁷			· ·		
Icc		V _{CC} = 5.25V		125	175	mA
Capacita	nce					
		$\overline{CE}_{1,2} = High, V_{CC} = 5.0V$				[
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

4K-Bit TL Bipolar PROM (512 imes 8)

82S141, 82S141A

SYMBOL	SVMBOI						N82S141			N82S141A		
	PARAMETER	то	FROM	Min	Typ⁵	Max	Min	Typ⁵	Max			
Access tim	ne ⁴				-					•		
t _{AA}		Output	Address			60			45	ns		
t _{CE}		Output	Chip Enable			40			30	ns		
Disable tin	ne ⁶											
t _{CD}		Output	Chip disable			40			30	ns		

NOTES:

1. Positive current is defined as into the terminal referenced.

1. All voltages with respect to network ground.

3. Duration of the short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with R1 = 750 Ω , R2 = 750 Ω and CL = 5pF.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S147 and 82S147A are fieldprogrammable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S147 and 82S147A includes onchip decoding and one Chip Enable input for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S147 and 82S147A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S147 82S147A 4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S147: 60ns max
- N82S147A: 45ns max
- Power dissipation: 625mW typ
- Input loading: -100µA max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

4K-Bit Bipolar PROM (512 \times 8)

82S147, 82S147A

ORDERING INFORMATION

PACKAGES	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82S147 N • N82S147A N
20-pin Plastic Leaded Chip Carrier 300mil-square	N82S147 A • N82S147A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Power supply voltage	+7	V _{DC}
ViN	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-state	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Min Typ ⁵		UNIT	
Input voltage	8		·····				
VIL	Low				0.8	v	
VIH	High		2.0			V V	
VIC	Clamp	I _{IN} = -12mA		-0.8	-1.2	V	
Output volta	ge						
		CE = Low					
VOL	Low	$I_{OUT} = 9.6 \text{mA}$			0.45	V V	
VOH	High	$I_{OUT} = -2mA$	2.4			v	
Input curren	t						
կլ	Low	V _{IN} = 0.45V		1	-100	μA	
Iн	High	V _{IN} = 5.5V			40	μA	
Output curre	ent						
loz	Hi-Z State	CE = High, V _{OUT} = 5.5V			40	μΑ	
		\overline{CE} = High, V_{OUT} = 0.5V			-40		
los	Short circuit ³	$\overline{CE} = Low, V_{OUT} = 0V$	-15		-70	mA	
Supply curre	ent ⁷						
lcc		V _{CC} = 5.25V		125	155	mA	
Capacitance							
		CE = High, V _{CC} = 5.0V					
CIN	Input	V _{IN} = 2.0V		5		pF	
COUT	Output	V _{OUT} = 2.0V		8		pF	

4K-Bit Bipolar PROM (512 imes 8)

82S147, 82S147A

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$, $0^\circ C \le T_A \le +75^\circ C$, $4.75V \le V_{CC} \le 5.25V$

		TO FROM		N82S147		N82S147A				
SYMBOL	PARAMETER		FROM	Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
Access time ⁴										
t _{AA}		Output	Address		45	60		40	45	ns
t _{CE}		Output	Chip Enable		20	35		20	30	ns
Disable time ⁶	i									
t _{CD}		Output	Chip Disable		20	35		20	30	ns

NOTES:

1. All voltage values are with respect to network ground terminal.

2. Positive current is defined as into the terminal referenced.

3. Duration of the short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82S147B 4K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S147B is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S147B includes on-chip decoding and one Chip Enable input for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S147B device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 25ns max
- Power dissipation: 625mW typ
- Input loading: -100µA max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

BLOCK DIAGRAM

4K-Bit Bipolar PROM (512 imes 8)

82S147B

ORDERING INFORMATION

PACKAGES	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82S147B N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S147B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
v _o	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input voltage		······································			.	
VIL	Low				0.8	V
VIH	High		2.0			V
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	V
Output voltage						
		CE = Low				
VOL	Low	I _{OUT} = 9.6mA			0.45	V V
VOH	High	$I_{OUT} = -2mA$	2.4			v
Input current						
liL	Low	V _{IN} = 0.45V	Π.		-100	μA
hн	High	V _{IN} = 5.5V			40	μΑ
Output current	· · · · ·					
loz	Hi-Z State	CE = High, V _{OUT} = 5.5V			40	μA
		CE = High, V _{OUT} = 0.5V			-40	
los	Short circuit ³	$\overline{CE} = Low, V_{OUT} = 0V$	-15		-70	mA
Supply current	7				•••••	
Icc		V _{CC} = 5.25V		125	155	mA
Capacitance						
19 ge		\overline{CE} = High, V _{CC} = 5.0V				1
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

4K-Bit Bipolar PROM (512 imes 8)

82S147B

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 470 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 1 \texttt{k} \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 \texttt{pF}, \hspace{0.1 cm} \texttt{0^{\circ}C} \leqslant \texttt{T}_A \leqslant +75 \texttt{^{\circ}C}, \hspace{0.1 cm} \texttt{4.75V} \leqslant \texttt{V}_{\texttt{CC}} \leqslant 5.25 \texttt{V} \times \texttt{C}_L \approx 100 \texttt{m}, \hspace{0.1 cm} \texttt{C}_L$

SYMBOL							
	PARAMETER	PARAMETER TO	FROM	Min	Typ ⁵	Max	UNIT
Access time ⁴							
t _{AA}		Output	Address			25	ns
t _{CE}		Output	Chip Enable			15	ns
Disable time ⁶							
t _{CD}		Output	Chip Disable			15	ns

NOTES:

1. All voltage values are with respect to network ground terminal.

2. Positive current is defined as into the terminal referenced.

3. Duration of the short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1μ s.

5. Typical values are at V_{CC} = 5V, T_A = + 25°C.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

8K-bit TTL PROM

1	22	a	e
- 1	~	.9	6

82S181	8192-bit PROM (1024 x 8) 70 ns
82S181A	8192-bit PROM (1024 x 8) 55 ns 407
82S181C	8192-bit PROM (1024 x 8) 35 ns
82S183	8192-bit PROM (1024 x 8) 60 ns
82S185	8192-bit PROM (2048 x 4) 100 ns
82S185A	8192-bit PROM (2048 x 4) 50 ns
82S185B	8192-bit PROM (2048 x 4) 35 ns 427
82HS187	8192-bit PROM (1024 x 8) 55 ns
82HS187A	8192-bit PROM (1024 x 8) 45 ns
82HS189	8192-bit PROM (1024 x 8) 55 ns
82HS189A	8192-bit PROM (1024 x 8) 45 ns

Bipolar Memory Products

DESCRIPTION

The 82S181 and 82S181A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S181 and 82S181A are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S181 and 82S181A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S181 82S181A 8K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S181: 70ns max
- N82S181A: 55ns max
- Power dissipation: 76µW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

CD12571S

8K-Bit TL Bipolar PROM (1024 imes 8)

82S181, 82S181A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82S181 N • N82S181A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S181 A • N82S181A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ\text{C} \leqslant \text{T}_{\text{A}} \leqslant +75^\circ\text{C}, \ 4.75\text{V} \leqslant \text{V}_{\text{CC}} \leqslant 5.25\text{V}$

				LIMITS		
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input voi	tage ²	\				L
VIL	Low	() () () () () () () () () ()			0.8	V
VIH	High		2.0			V
VIC	Clamp	I _{IN} = –12mA		-0.8	-1.2	V
Output v	oltage ²					
		$\overline{CE}_{1,2} = Low, CE_{3,4} = High$		1		
VOL	Low	$I_{OUT} = 9.6 \text{mA}$			0.45	V
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input cur	rrent ¹			•		
Ι _{ΙL}	Low	V _{IN} = 0.45V		1	-100	μA
Чн	High	V _{IN} = 5.5V			40	μΑ
Output c	urrent ¹			•		
loz	Hi-Z State	$\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 5.5V, $\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 0.5V			40 40	μA
los	Short circuit ³	$\overline{CE}_{1,2} = \text{Low}, CE_{3,4} = \text{Low}, V_{OUT} = 0.3V$ $\overline{CE}_{1,2} = \text{Low}, CE_{3,4} = \text{High}, V_{OUT} = 0.5V$	-15		-70	mA
105		High stored	10			
Supply c	urrent ⁷		l			4
ICC		V _{CC} = 5.25V		125	175	mA
Capacita	nce				L	
		$\overline{CE}_{1,2}$ = High, V_{CC} = 5.0V	1	T		
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8	l	pF

Notes on following page.

8K-Bit TTL Bipolar PROM (1024 imes 8)

82S181, 82S181A

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} \textbf{R}_1 = 470 \Omega, \hspace{0.1cm} \textbf{R}_2 = 1 \text{k} \Omega, \hspace{0.1cm} \textbf{C}_L = 30 \text{pF}, \hspace{0.1cm} 0^\circ \text{C} \leqslant \textbf{T}_A \leqslant +75^\circ \text{C}, \hspace{0.1cm} 4.75 \text{V} \leqslant \text{V}_{\text{CC}} \leqslant 5.25 \text{V} \text{C} \text{C} \approx 5.25 \text{V} \text{C} \approx 5.25 \text$

	PARAMETER TO	TO FROM	N82S181		N82S181A					
SYMBOL			FROM	Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
Access tim	ne ⁴									
t _{AA}		Output	Address		50	70		45	55	ns
t _{CE}		Output	Chip Enable		25	40		25	40	ns
Disable tim	ne ⁶		-							
t _{CD}		Output	Chip Disable		25	40		25	40	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

1. All voltages with respect to network ground.

3. Duration of the short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with R1 = 750 Ω , R2 = 750 Ω and CL = 5pF.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S181C is field programmable. which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S181C is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S181C 8K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Power dissipation: 76µW/bit typ
- Input loading: 100µA max
- On-chip address decoding
- Four Chip Enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

01 02 ٥ 04 05

PIN CONFIGURATIONS

06

OUTPUT LINES

07 0.

8D00974S

8K-Bit TL Bipolar PROM (1024 imes 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
24-pin Plastic DIP 600mil-wide	N82S181C N	
24-pin Plastic DIP 300mil-wide	N82S181C N3	
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S181C A	

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		2		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1, 2}	Min	Typ ⁵	Max	UNI
Input volt	age ²					1
VIL	Low				0.8	V
ViH	High		2.0			. V
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v
Output vo	ltage ²					
		$\overline{CE}_{1,2} = Low, CE_{3,4} = High$				
V _{OL}	Low	I _{OUT} = 9.6mA			0.45	V
V _{OH}	High	$I_{OUT} = -2mA$	2.4			V
Input curr	rent ¹					
հլ	Low	V _{IN} = 0.45V			-100	μA
Чн	High	$V_{IN} = 5.5V$			40	μA
Output cu	irrent ¹					•
loz	Hi-Z State	$\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 5.5V			40	μA
		$\overline{CE}_{1,2}$ = High, $CE_{3,4}$ = Low, V_{OUT} = 0.5V			-40	
los	Short circuit	$\overline{CE}_{1,2}$ = Low, $CE_{3,4}$ = High, V_{OUT} = 0V	-15		-70	mA
		High stored				
Supply cu	irrent ⁷					
Icc		V _{CC} = 5.25V		125	175	mA
Capacitan	ce		· · · · · · · · · · · · · · · · · · ·			
		$\overline{CE}_{1,2}$ = High, V _{CC} = 5.0V				
CIN	Input	$V_{IN} = 2.0V$		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

82S181C

8K-Bit TTL Bipolar PROM (1024 imes 8)

82S181C

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$, $0^\circ C \ll T_A \ll +75^\circ C$, $4.75V \ll V_{CC} \ll 5.25V$

SYMBOL PAR				LIMITS			
	PARAMETER	то	FROM	Min	Typ ⁵	Max	UNIT
Access time ⁴	l						
t _{AA}		Output	Address		25	35	ns
t _{CE}		Output	Chip Enable		15	20	ns
Disable time	3						
tCD		Output	Chip Disable		15	20	ns

NOTES:

0

o

0 A4

0 As

0

0 A7

0 48 CE2 CE.

٨n

٩, 0 A2

A3

As

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of $1\mu s$.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

vcc

CL

TEST LOAD CIRCUIT

٥

٥,

NOTE: All inputs: $t_r = t_l = 5ns$ (10% to 90%).

vçc

DUT

CE3 GNC

82S183 8K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S183 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S183 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

In the Transparent Read mode, stored data is addressed by applying a binary code to the address inputs while holding Strobe High. In this mode the output drivers are controlled solely by \overline{CE}_1 , \overline{CE}_2 , and CE_3 lines.

A D-type latch is used to enable the 3-State output drivers. In the Latched Read mode, outputs are held in their previous state (High, Low, or Hi-Z) as long as Strobe is Low, regardless of the state of Address or Chip Enable. A positive Strobe transition causes data from the applied address to reach the outputs if the chip is enabled, and caus-

BLOCK DIAGRAM

es outputs to go to the Hi-Z state if the chip is disabled.

A negative Strobe transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the Hi-Z condition if the chip was disabled.

Ordering information can be found on the following page.

FEATURES

- Address access time: 60ns max
- Power dissipation: 80µW/bit typ
- Input loading: 100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Three Chip Enable inputs
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Code conversion

8K-Bit TL Bipolar PROM (1024 imes 8)

825183

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82S183 N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S183 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

			LIMITS			1
SYMBOL	PARAMETER	TEST CONDITIONS ⁴	Min	Max	UNIT	
Input volta	age					
VIL	Low				0.8	V
VIH	High		2.0			V
VIC	Clamp	l _{IN} = -12mA		-0.8	-1.2	v
Output vo	Itage					
		$\overline{CE}_{1,2}$ = Low, CE_3 = Strobe = High	1	Ι	[
VOL	Low	I _{OUT} = 9.6mA			0.45	V
VOH	High	$I_{OUT} = -2.0 \text{mA}$	2.4			v
Input curr	ent ⁴				I	1
t _{IL}	Low	V _{IN} = 0.45V		1	-100	μA
Чн	High	V _{IN} = 5.5V	25		25	μA
Output cu	rrent ⁴	· · · · · · · · · · · · · · · · · · ·			•	J
loz	Hi-Z State	\overline{CE} = High or CE = Low, V _{OUT} = 5.5V	T		40	μA
		\overline{CE} = High or CE = Low, V _{OUT} = 0.5V			-40	
1	Short circuit ¹	\overline{CE} = Low, CE = High, V _{OUT} = 0V,	-15		-70	-
los		High stored	-15		-70	mA
Supply cu	rrent ⁹					
Icc		V _{CC} = 5.25V		130	175	mA
Capacitan	Ce				•	
		$\overline{CE}_{1,2}$ = High or CE ₃ = Low, V _{CC} = 5.0				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

8K-Bit TTL Bipolar PROM (1024 imes 8)

82S183

SYMBOL PARAMETER TYP⁶ UNIT то FROM TEST CONDITIONS MIN MAX Access time² Address Latched or transparent read 45 60 t_{AA} Output ns Output Chip 25 40 tCE Enable ns Disable time^{2,7} Chip Latched or transparent read 25 40 t_{CD} Output ns Disable Setup and hold time³ Setup time Chip Latched read only 40 t_{CDS} Output Hold time Enable t_{CDH} 10 ns Hold time Output Address 0 ns t_{ADH} Pulse width³ tsw Strobe Latched read only 30 15 ns Latch time³ Strobe t_{SL} Latched read only 60 35 ns Delatch time^{3,7} Strobe Latched read only 30 t_{DL} ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 470\Omega$, $R_2 = 1k\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

NOTES:

1. No more than one output should be grounded at the same time and Strobe should be disabled. Strobe is in High state.

 If the Strobe is High, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear T_{AA} nanoseconds after the address has changed the T_{CE} nanoseconds after the output circuit is enabled. T_{CD} is the time required to disable the output and switch it to an off or High impedance state after it has been enabled.

3. In Latched Read Mode data from any selected address will be held on the output when Strobe is lowered. Only when Strobe is raised will new location data be transfered and chip enable conditions be stored. The new data will appear on the output if the chip enable conditions enable the outputs.

4. Positive current is defined as into the terminal referenced.

5. Areas shown by crosshatch are latched data from previous address.

6. Typical values are $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

7. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

TEST LOAD CIRCUIT

825183

8K-Bit TTL Bipolar PROM (1024 imes 8)

TIMING DIAGRAMS

82S185 8K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S185 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S185 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S185 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

FEATURES

- Low power dissipation: 50µW/bit typ
- Address access time: 100ns max
- Input loading: -100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

8K-Bit TTL Bipolar PROM (2048 imes 4)

82S185

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300mil-wide	N82S185 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ\text{C} \leqslant \text{T}_\text{A} \leqslant +75^\circ\text{C}, \ 4.75\text{V} \leqslant \text{V}_\text{CC} \leqslant 5.25\text{V}$

SYMBOL		12	LIMITS			
	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input volta	ge ¹	L		1	L	A
VIL	Low				0.8	V
VIH	High		2.0			v
VIC	Clamp	I _{IN} = -12mA		-0.8	-1.2	V
Output vol	tage ¹	•				
		CE = Low				
VOL	Low	$I_{OUT} = 16 \text{mA}$			0.45	· v
VOH	High	$I_{OUT} = -2mA$	2.4	1.1		V
Input curre	ent ²				•	
կլ	Low	V _{IN} = 0.45V			-100	μΑ
hΗ	High	V _{IN} = 5.5V			40	μA
Output cur	rent	· · · · · · · · · · · · · · · · · · ·				1
loz	Hi-Z State	CE = High, V _{OUT} = 0.5V			-40	μA
		\overline{CE} = High, V_{OUT} = 5.5V			40	·
los	Short circuit ³	\overline{CE} = Low, V_{OUT} = 0V, High stored	-15		-70	mA
Supply cur	rent ⁷			.		1
lcc		V _{CC} = 5.25V		90	120	mA
Capacitanc	e		•	•	•••••••	
		\overline{CE} = High, V_{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

November 11, 1986

8K-Bit TL Bipolar PROM (2048 imes 4)

825185

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^\circ C < T_A < +75^\circ C$, $4.75V < V_{CC} < 5.25V$

SYMBOL				LIMITS			
	PARAMETER	то	FROM	Min	Typ ⁵	Max	UNIT
Access time ⁴						L	•
t _{AA}		Output	Address		70	100	ns
t _{CE}		Output	Chip Enable		30	40	ns
Disable time ⁶							-
t _{CD}		Output	Chip Disable		30	40	ns

NOTES:

- 1. All voltage values are with respect to network ground terminal.
- 2. Positive current is defined as into the terminal referenced.
- 3. Duration of the short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. All typical values are at $V_{CC} = 50^{\circ}$ T, T = +25°C. 6. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω and C_L = 5pF.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82S185A 8K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S185A is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S185A device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

FEATURES

- Low power dissipation: 70μW/bit typ
- Address access time: 50ns max
- Input loading: -100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

8K-Bit TTL Bipolar PROM (2048 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300mil-wide	N82S185A N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +75^\circ C, \ 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

		12	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min Typ ⁵		Max	UNIT
Input voltage						
VIL	Low	$V_{CC} = 4.75V$			0.8	v
ViH	High	$V_{CC} = 5.25V$	2.0			v
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v
Output voltag	e					
	1	CE = Low	T	Τ		
VOL	Low	I _{OUT} = 16mA			0.45	v
V _{OH}	High	$I_{OUT} = -2mA$	2.4			v
Input current						
lıL	Low	V _{IN} = 0.45V			-100	μA
hн	High	$V_{IN} = 5.5V$			40	μA
Output curren	t					
loz	Hi-Z State	CE = High, V _{OUT} = 0.5V			-40	μA
		CE = High, V _{OUT} = 5.5V			40	
los	Short circuit ³	CE = Low, V _{OUT} = 0V High stored	-15		-70	mA
Supply curren	t ⁷					
lcc		V _{CC} = 5.25V		110	155	mA
Capacitance	· ·					
		\overline{CE} = High, V_{CC} = 5.0V	T			
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

82S185A

8K-Bit TL Bipolar PROM (2048 imes 4)

82S185A

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R_1} = 270 \Omega, \hspace{0.1 cm} \texttt{R_2} = 600 \Omega, \hspace{0.1 cm} \texttt{C_L} = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0^{\circ}C} \leq \texttt{T_A} \leq +75 \hspace{0.1 cm} \texttt{^{\circ}C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{V_{CC}} \leq 5.25 \texttt{V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{4.75V} \leq \texttt{4.75V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \leq \texttt{4.75V} \leq \texttt{4.75V} \text{C}, \hspace{0.1 cm} \texttt{4.75V} \approx \texttt{4.75V} \text{C}, \hspace{0.$

SYMBOL				N82S185A			
	PARAMETER	то	FROM	Min	Typ ⁵	Max	
Access time ⁴					•	L	
t _{AA}		Output	Address		40	50	ns
t _{CE}		Output	Chip Enable		20	30	ns
Disable time ⁶							
t _{CD}	1	Output	Chip Disable		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_C = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82S185B is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 1 Chip Enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S185B device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S185B 8K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Low power dissipation: 70µW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One Chip Enable input
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

82S185B

8K-Bit TL Bipolar PROM (2048 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Plastic DIP 300mil-wide	N82S185B N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	SYMBOL PARAMETER		UNIT
V _{CC}	Supply voltage	.+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +75^\circ C, \ 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min Typ ⁵		Max	UNIT	
Input voltage	, , , , , , , , , , , , , , , , , , ,						
VIL	Low	V _{CC} = 4.75V			0.8	v	
VIH	High	$V_{CC} = 5.25V$	2.0	1		l v	
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	V	
Output voltag	le					•	
		CE = Low					
V _{OL}	Low	I _{OUT} = 16mA			0.45	V	
V _{OH}	High	$I_{OUT} = -2mA$	2.4			v	
Input current							
IIL.	Low	V _{IN} = 0.45V			-100	μΑ	
hн	High	V _{IN} = 5.5V			40	·μΑ	
Output curren	nt				•		
loz	Hi-Z State	CE = High, V _{OUT} = 0.5V			-40	μΑ	
		\overline{CE} = High, V_{OUT} = 5.5V			40		
los	Short circuit ³	\overline{CE} = Low, V_{OUT} = 0V High stored	- 15		-70	mA	
Supply current	nt ⁷						
Icc		V _{CC} = 5.25V		110	155	mA	
Capacitance					•		
		CE = High, V _{CC} = 5.0V	1				
CIN	Input	$V_{IN} = 2.0V$		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8		pF	

Notes on following page.

March 14, 1989

82S185B

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R_1} = 270 \Omega, \hspace{0.1 cm} \texttt{R_2} = 600 \Omega, \hspace{0.1 cm} \texttt{C_L} = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0^{\circ}C} \leqslant \texttt{T_A} \leqslant +75^{\circ}\texttt{C}, \hspace{0.1 cm} \texttt{4.75V} \leqslant \texttt{V}_{\texttt{CC}} \leqslant 5.25 \texttt{V} \times \texttt{C}$

SYMBOL					UNIT		
	PARAMETER	то	FROM	Min	Min Typ ⁵ Max		
Access time ⁴					·		<u></u>
t _{AA}		Output	Address		20	35	ns
t _{CE}		Output	Chip Enable		12	20	ns
Disable time ⁶							
t _{CD}		Output	Chip Disable		12	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{\rm C} = 5V$, $T_{\rm A} = +25^{\circ}$ C.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82HS187 is a programmable read only memory containing D-type, masterslave data registers. The 82HS187 contains 1024 words of 8 bits each. The unprogrammed state is with all outputs at a High level and can be selectively programmed to a Low level by following the Signetics Generic II programming method. The output structure is 3-State for ease in connection to bus-organized systems. The combination of on-chip registers and 3-State outputs will substantially reduce cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.

All outputs will go into the third state or Hi-Z condition whenever the Asynchronous Chip Enable (\overline{G}) is High. The outputs are enabled when (\overline{GS}) is brought Low before the rising edge of the clock and (\overline{G}) is held Low. The (\overline{GS}) flip-flop is designed to power-up in the third state or Hi-Z condition with the application of V_{CC}.

BLOCK DIAGRAM

A۵

82HS187 82HS187A 8K-Bit TTL Bipolar PROM

Product Specification

The 82HS187 also features an initialize function, \overline{INIT} . The initialize function provides the user with an extra word of programmable memory which is accessed with single-pin control by applying a Low on \overline{INIT} . The initialize function is asynchronous and is loaded into the Output Register and will appear at the outputs upon an application of a Low on \overline{INIT} if the outputs are enabled, and will control the state of the data registers independent of all other inputs. The unprogrammed state of \overline{INIT} is all ones.

Data is read from the PROM by first applying an address to inputs A_0 to A_9 . During the setup time the output of the array is loaded into the master flip-flop of the data register. During the rising edge (Low-to-High transition) of the clock, the data is transferred to the slave of the flip-flop and will appear on the output if the output is enabled. Following the rising edge clock transition, the Addresses and Synchronous Chip Enable can be removed and the output data will remain stable.

FEATURES

- On-chip edge-triggered registers
- Programmable register with Asynchronous initialize function
- 24-pin 300mil-wide DIP package
- Read cycle "Address setup plus clock to output delay"
 - N82HS187: 55ns max
 - N82HS187A: 45ns max
- Outputs: 3-State
- Unprogrammed outputs are High level
- Synchronous and Asynchronous Enables for word expansion

PIN CONFIGURATIONS

82HS187/82HS187A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	N82HS187 N • N82HS187A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82HS187 A • N82HS187A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	SYMBOL PARAMETER		UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperatue range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		12				
SYMBOL	PARAMETER	METER TEST CONDITIONS ^{1,2}			Max	
Input voltage ²						,
VIL	Low				0.8	v
ViH	High		2.0			v
VIC	Clamp	l _{IN} = -18mA		-0.8	-1.2	v
Output voltage	2 ²			L	L	
		G, GS = Low	T			
VOL	Low	$I_{OUT} = 16 mA$			0.5	v
V _{OH}	High	$I_{OUT} = -2mA$	2.4			v
Input current ¹						
t _{iL}	Low	V _{IN} = 0.45V			-250	μA
Ιн	High	V _{IN} = 5.25V			40	μΑ
Output current	1					
loz	Hi-Z State	$\overline{G} = High, V_{OUT} = 5.25V$			40	μA
		$\overline{G} = High, V_{OUT} = 0.5V$			-40	
los	Short circuit ³	\overline{G} , $\overline{GS} = Low$, $V_{OUT} = 0V$ High stored	- 15		-70	mA
Supply current	17				•	
Icc	· · · · · · · · · · · · · · · · · · ·	V _{CC} = 5.25V		125	175	mA
Capacitance						
		\overline{G} = High, V _{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

Notes on following page.

82HS187/82HS187A

	4			N82HS187			ħ			
SYMBOL	PARAMETER ⁴	то	FROM	Min	Typ ⁵	Max	Min	Тур	Max	UNIT
t _{CSA} t _{CHA}	Setup Hold	CLK	Address	35 0			30 0			ns
toc	Delay	Output	CLK			20	0		15	ns
twc	Width	H&L	CLK	20	10		15	10		ns
t _{CSGS} t _{CHGS}	Setup Hold	CLK	GS	15 5			10 5			ns
t _{OIN}	Delay	Output	INIT		12	30			25	ns
t _{CIN}	Recovery	CLK	INIT	20	9		15			ns
t _{WIN}	Width		INIT	25			20			ns
tog	Delay	Output	G		11	25			20	ns
tozc ⁶	Delay	Output	CLK		16	25			20	ns
tozg ⁶	Delay	Output	G		14	25			20	ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1μs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82HS187/82HS187A

Bipolar Memory Products

DESCRIPTION

The 82HS189 is a programmable read only memory containing D-type, masterslave data registers. The 82HS189 contains 1024 words of 8 bits each. The unprogrammed state is with all outputs at a High level and can be selectively programmed to a Low level by following the Signetics Generic II programming method. The output structure is 3-State for ease in connection to bus-organized systems. The combination of on-chip registers and 3-State outputs will substantially reduce cost and size of pipelined microprogrammed systems and other designs where accessed PROM data is temporarily stored in a register.

All outputs will go into the third state or Hi-Z condition if the Asynchronous Chip Enable (\overline{G}) is held High. The outputs are enabled when (\overline{GS}) is brought Low before the rising edge of the clock and (\overline{G}) is held Low. The (\overline{GS}) flip-flop is designed to power-up in the third state or

1 OF 64

WORD

DECODER

1 OF 18

BIT

BLOCK DIAGRAM

A0 A1

A2

A3

A4

A

A-

A

ax D

0B

82HS189 82HS189A 8K-Bit TTL Bipolar PROM

Product Specification

Hi-Z condition with the application of $V_{\rm CC}$

The 82HS189 also features an initialize function, INIT. The initialize function provides the user with an extra word of programmable memory which is accessed with single-pin control by applying a Low on INIT. The initialize function is synchronous and is loaded into the Output Register on the next rising edge of the clock. The unprogrammed state of INIT is all ones.

Data is read from the PROM by first applying an address to inputs A_0 to A_9 . During the setup time the output of the array is loaded into the master flip-flop of the data register. During the rising edge (Low-to-High transition) of the clock, the data is transferred to the slave of the flip-flop and will appear on the output if the output is enabled. Following the rising edge clock transition, the Addresses and Synchronous Chip Enable can be removed and the output data will remain stable.

64 WORD × 128-BIT

1:16 MULTIPLEXER

INITIAL IZE WORD

8-BIT EDGE-TRIGGERED REGISTER

AMMABLE FUSE ARRAY

FEATURES

- On-chip edge-triggered registers
- Asynchronous and Synchronous Enables for word expansion
- Programmable register with synchronous initialize function
- 24-pin 300mil-wide package
- Read cycle "Address setup plus clock to output delay"
 - N82HS189: 55ns max - N82HS189A: 45ns max
- Unprogrammed outputs are High level
- Outputs: 3-State

PIN CONFIGURATIONS

ā

Os C7 Os O5 O4 O3 O2 O1

FLIP-FLOP

82HS189/82HS189A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	N82HS189 N • N82HS189A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82HS189 A • N82HS189A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

		12		LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNI	
Input voltage ²	2	· · · ·		•			
VIL	Low				0.8		
VIH	High		2.0			V	
VIC	Clamp	$I_{IN} = -18 \text{mA}$		-0.8	-1.2	v	
Output voltag	e ²						
		$\overline{G}, \overline{GS} = Low$					
V _{OL}	Low	$I_{OUT} = 16mA$			0.5	l v	
V _{OH}	High	$I_{OUT} = -2mA$	2.4			v	
Input current ¹							
l _{IL}	Low	V _{IN} = 0.45V			-250	μA	
l _{iH}	High	V _{IN} = 5.25V			40	μA	
Output curren	t ¹	-		1	1		
loz	Hi-Z State	\overline{G} = High, V _{OUT} = 5.25V			40	μA	
		$\overline{G} = High, V_{OUT} = 0.5V$			-40		
los	Short circuit ³	\overline{G} , \overline{GS} = Low, V_{OUT} = 0V	-15		-70	mA	
		High stored				ļ	
Supply curren	tt ⁷			•••••••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	
Icc		V _{CC} = 5.25V		125	175	mA	
Capacitance					•		
		\overline{G} = High, V _{CC} = 5.0V					
CIN	Input	V _{IN} = 2.0V		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8		pF	

Notes on following page.

82HS189/82HS189A

	4		FROM	1	N82HS18	9	N	182HS189	A	
SYMBOL	PARAMETER ⁴	то		Min	Typ ⁵	Max	Min	Тур	Max	UNIT
t _{CSA} t _{CHA}	Setup Hold	CLK	Address	35 0			30 0			ns
toc	Delay	Output	CLK		10	20	0		15	ns
twc	Width	H&L	CLK	20	10		15			ns
t _{CSGS} t _{CHGS}	Setup Hold	CLK	GS	15 5			10 5			ns
t _{CSIN} t _{CHIN}	Setup Hold	CLK	INIT	25 0	8		20 0			ns
tog	Delay	Output	G		11	25			20	ns
tozc ⁶	Delay	Output	CLK		16	25			20	ns
tozg ⁶	Delay	Output	G		14	25			20	ns

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{0}^\circ \texttt{C} \ll \texttt{T}_A \ll +75^\circ \texttt{C}, \hspace{0.1 cm} \texttt{4}.75 \texttt{V} \ll \texttt{V}_{\texttt{CC}} \ll 5.25 \texttt{V}$

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82HS189/82HS189A

16K-bit TTL PROM

82S191 82S191A 82S191C 82HS191 16 384-bit TTL PROM (2048 x 8) 35 ns 453 82LHS191 16 384-bit TTL PROM (4096 x 4) 45 ns 457 82HS195 82HS195A 16 384-bit TTL PROM (4096 x 4) 35 ns 457 82HS195B 16 384-bit TTL PROM (4096 x 4) 25 ns 457

page

Signetics

Bipolar Memory Products

DESCRIPTION

The 82S191 and 82S191A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S191 and 82S191A are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S191 and 82S191A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82S191 82S191A 16K-Bit ПL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82S191: 80ns max
- N82S191A: 55ns max
- Power dissipation: 40µW/bit typ
- Input loading: -100µA max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

82S191, 82S191A

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82S191 N • N82S191A N
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S191 A • N82S191A A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		12		LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max		
Input volta	ge				.		
VIL	Low				0.8	v	
VIH	High		2.0			V	
V _{IC}	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v	
Output vol	tage						
		$\overline{CE}_1 = Low, CE_{2,3} = High$					
Vol	Low	$I_{OUT} = 9.6 \text{mA}$			0.45	v	
VOH	High	$I_{OUT} = -2mA$	2.4			v	
Input curre	ent ¹						
t _{IL}	Low	V _{IN} = 0.45V		1	- 100	μA	
lн	High	V _{IN} = 5.5V		1	40	μA	
Output cur	rent ¹			-			
loz	Hi-Z state	\overline{CE}_1 = High, $CE_{2,3}$ = Low,			-40	μA	
		$V_{OUT} = 0.5$					
		$\overline{CE}_1 = High, CE_{2,3} = Low,$			40		
		$V_{OUT} = 5.5$					
los	Short circuit ³	$\overline{CE}_1 = Low, CE_{2,3} = High,$	- 15		-70	mA	
		V _{OUT} = 0V					
Supply cur	rent ⁷			•			
lcc		V _{CC} = 5.25V		130	175	mA	
Capacitanc	e						
		\overline{CE}_1 = High, $CE_{2,3}$ = Low,		1	Τ		
		$V_{CC} = 5.0V$					
CIN	Input	$V_{IN} = 2.0V$		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8		pF	

Notes on following page.

82S191, 82S191A

AC ELECTRICAL CHARACTERISTICS R₁ = 470 Ω , R₂ = 1k Ω , C_L = 30pF, 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

SYMBOL				N82S191		N82S191A				
	PARAMETER	то	FROM	Min	Typ ⁵	Max	Min	Тур	Max	UNIT
Access time	4							•		•••••
t _{AA}		Output	Address		50	80		50	55	ns
t _{CE}		Output	Chip Enable		30	40		20	30	ns
Disable time	6						•			
t _{CD}		Output	Chip Disable		30	40		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1µs.

5. Typical values are at V_{CC} = 5V, T_A = + 25°C.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82S191C 16K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S191C is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S191C is supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S191C devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

FEATURES

- Address access time: 35ns max
- Power dissipation: 40µW/bit typ
- Input loading: 100µA max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- 300mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

Code conversion

PIN CONFIGURATIONS

82S191C

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82S191C N
24-pin Plastic DIP 300mil-wide	N82S191C N3
28-pin Plastic Leaded Chip Carrier 450mil-square	N82S191C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, 4.75V \leq V_{CC} \leq 5.25V

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input volta	ge					
VIL	Low			T	0.8	v
VIH	High		2.0			v
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v
Output vol	tage		· · · · · ·			
		$\overline{CE}_1 = Low, CE_{2,3} = High$				
VOL	Low	I _{OUT} = 9.6mA			0.45	V
V _{OH}	High	$I_{OUT} = -2mA$	2.4			V
Input curre	ent					
I _{IL}	Low	V _{IN} = 0.45V			-100	μA
ЧH	High	V _{IN} = 5.5V			40	μA
Output cur	rent ¹					
loz	Hi-Z state	$\overline{CE}_1 = High, CE_{2,3} = Low,$			-40	μA
		$V_{OUT} = 0.5$		}		
		$\overline{CE}_1 = High, CE_{2,3} = Low,$		1	40	1
		V _{OUT} = 5.5				
los	Short circuit ³	$\overline{CE}_1 = Low, CE_{2,3} = High,$	-15		-70	mA
		V _{OUT} = 0V				
Supply cur	rent ⁷					
ICC		V _{CC} = 5.25V		130	175	mA
Capacitanc	e		,			
		V _{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page.

82S191C

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.2cm} \textbf{R}_1 = 470\Omega, \hspace{0.2cm} \textbf{R}_2 = 1 k\Omega, \hspace{0.2cm} \textbf{C}_L = 30 p F, \hspace{0.2cm} 0^\circ C \leqslant \textbf{T}_A \leqslant +75^\circ C, \hspace{0.2cm} 4.75 V \leqslant \textbf{V}_{CC} \leqslant 5.25 V \text{ (Intersection of the sector)}$

SYMBOL	PARAMETER		TO FROM				
		то		Min	Typ ⁵	Max	UNIT
Access time ⁴							
t _{AA}		Output	Address		30	35	ns
tCE		Output	Chip Enable		15	20	ns
Disable time ⁶					<u>.</u>		
t _{CD}		Output	Chip Disable		15	20	ns

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1μ s.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82HS191 16K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82HS191 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS191 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82HS191 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 25ns max
- \bullet Power dissipation: 40 $\mu W/bit$ typ
- Input loading: -250µA max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP (600mil-wide)	N82HS191 N
24-pin Plastic DIP (300mil-wide)	N82HS191 N3
28-pin Plastic Leaded Chip Carrier (450mil-square)	N82HS191 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

	PARAMETER TEST CONDITIONS ^{1,2}	12		1		
SYMBOL PARAME	PARAMETER	TEST CONDITIONS	Min	Typ ⁵	Max	UNIT
Input vo	bitage			.		
VIL	Low ³				0.8	v
Ϋ́ιн	High ³		2.0			v
VIC	Clamp	I _{IN} = -18mA		-0.8	-1.2	v
Output	voltage					
Vol	Low	\overline{CE}_1 = Low, $CE_{2,3}$ = High I _{OUT} = 16mA			0.5	v
V _{OH}	High	\overline{CE}_1 = Low, $CE_{2,3}$ = High I_{OUT} = -2mA	2.4			v
Input cu	irrent					
١ _{١L}	Low	V _{IN} = 0.45V			-250	μA
łн	High	V _{IN} = 5.25V			40	μA
Output	current					
loz	Hi-Z state	$ \overline{CE}_1 = \text{High, } CE_{2,3} = \text{Low, } V_{OUT} = 0.5 $ $ \overline{CE}_1 = \text{High, } CE_{2,3} = \text{Low, } V_{OUT} = 5.25 $			-40 40	μA
los	Short circuit ³	\overline{CE}_1 = Low, $CE_{2,3}$ = High, V_{OUT} = 0V	-15		-70	mA
Supply	current ⁷					
lcc		V _{CC} = 5.25V		125	175	mA
Capacita	ance					
0		\overline{CE}_1 = High, $CE_{2,3}$ = Low, V _{CC} = 5.0V				-
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	\overline{CE}_1 = High, $CE_{2,3}$ = Low, V_{OUT} = 2.0V		8		pF

Notes on following page

82HS191

82HS191

SYMBOL PARAME			FROM				
	PARAMETER	то		Min	Typ ⁵	Max	
Access time ⁴			····		.		<u></u>
t _{AA}		Output	Address		15	25	ns
t _{CE}		Output	Chip enable		10	15	ns
Disable time ⁶							
t _{CD}		Output	Chip disable		10	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Duration of short circuit should not exceed 1 second.

4. Tested at an address cycle time of 1 µs.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

82LHS191 16K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82LHS191 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82LHS191 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip decoding and 3 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82LHS191 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

FEATURES

- Address access time: 35ns max
- Power dissipation: 32µW/bit typ
- Input loading: −250µA max
- Three Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300 mil-wide Plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

82LHS191

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP (600mil-wide)	N82LHS191 N
24-pin Plastic DIP (300mil-wide)	N82LHS191 N3
28-pin Plastic Leaded Chip Carrier (450mil-square)	N82LHS191 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voitage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C, \ 4.75V \leqslant V_{CC} \leqslant 5.25V$

		12				
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ⁵	Max	UNIT
input vo	litage	• · · · · · · · · · · · · · · · · · · ·			•	
VIL	Low ³				0.8	V
ViH	High ³		2.0			v
VIC	Clamp	I _{IN} = -18mA		-0.8	-1.2	, V
Output	voltage					
		$\overline{CE}_1 = Low, CE_{2,3} = High$				
VOL	Low	I _{OUT} = 16mA			0.5	v
		$\overline{CE}_1 = Low, CE_{2,3} = High$				
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input cu	irrent					
μ	Low	V _{IN} = 0.45V			-250	μA
hн	High	V _{IN} = 5.25V			40	μA
Output	current	•			•	
loz	Hi-Z state	\overline{CE}_1 = High, $CE_{2,3}$ = Low, V_{OUT} = 0.5			-40	μA
		\overline{CE}_1 = High, $CE_{2,3}$ = Low, V_{OUT} = 5.25			40	
los	Short circuit ³	$\overline{CE}_1 = Low, CE_{2,3} = High, V_{OUT} = 0V$	-15		-70	mA
Supply	current ⁷					
Icc		V _{CC} = 5.25V		100	110	mA
Capacita	ince					
		$\overline{CE}_1 = High, CE_{2,3} = Low,$				
		$V_{\rm CC} = 5.0 V$				
CIN	Input	V _{IN} = 2.0V		5		pF
		\overline{CE}_1 = High, $CE_{2,3}$ = Low,				
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page

82LHS191

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1 cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1 cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1 cm} \texttt{o}^\circ \texttt{C} \ll \texttt{T}_A \ll +75^\circ \texttt{C}, \hspace{0.1 cm} \texttt{4.75v} \ll \texttt{V}_{\texttt{CC}} \ll 5.25 \texttt{V}_{\texttt{CC}} \texttt{$

SYMBOL	PARAMETER	то	FROM	Min Typ ⁵ M		Max	UNIT	
Access time ⁴		.					•	
t _{AA}		Output	Address		30	35	ns	
t _{CE}		Output	Chip enable		15	20	ns	
Disable time ⁶								
t _{CD}		Output	Chip disable		15	20	ns	

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µs.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

Bipolar Memory Products

DESCRIPTION

The 82HS195 is field programmable, which means that custom patterns are immediately available by following the Generic II fusing procedure. The Signetics 82HS195 is supplied with all outputs at logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

BLOCK DIAGRAM

82HS195 82HS195A 82HS195B 16K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Low power dissipation: 35µW/bit typ
- Address access time:
 - N82HS195: 45ns max
 - N82HS195A: 35ns max
 - N82HS195B: 25ns max
- Input loading: -250 μ A max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State
- SMD packaging 20-pin PLCC

PIN CONFIGURATIONS N Package A8 [] 20 Vcc A7 2 19 Ag 18 A10 As 3 17 A11 A5 4 A4 5 16 CE1 A3 6 15 CE2 A2 7 14 01 A1 [8 13 02

A0 9

GND 10

12 03

11 04

16K-Bit TL Bipolar PROM (4096 imes 4)

82HS195, 82HS195A, 82HS195B

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	N82HS195 N • N82HS195A N • N82HS195B N
20-pin Plastic Leaded Chip Carrier	N82HS195 A • N82HS195A A • N82HS195B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

		1 2					
SYMBOL PARAMETER		TEST CONDITIONS ^{1, 2}	Min	Min Typ ⁵ M			
Input volta	ge				h		
VIL	Low ³				0.8	v	
VIH	High ³		2.0			v	
VIC	Clamp	$I_{IN} = -12mA$		-0.8	-1.2	v	
Output vol	tage						
		$\overline{CE}_1 \& \overline{CE}_2 = Low$					
VOL	Low	$I_{OUT} = 16 mA$			0.45	v V	
VOH	High	$I_{OUT} = -2mA$	2.4	{		v	
Input curre	ent						
41	Low	V _{IN} = 0.45V			-250	μA	
Iн	High.	V _{IN} = 5.25V			40	μA	
Output cur	rent						
loz	Hi-Z State	\overline{CE}_1 & \overline{CE}_2 = High, V_{OUT} = 0.5V			-40	μΑ	
		$\overline{CE}_1 \& \overline{CE}_2 = High, V_{OUT} = 5.25V$			40		
los	Short circuit ⁴	$\overline{CE}_1 \& \overline{CE}_2 = Low, V_{OUT} = 0V$, High stored	- 15		-70	mA	
Supply cur	rent ⁸						
Icc		V _{CC} = 5.25V		120	145	mA	
Capacitanc	e						
		\overline{CE}_1 & \overline{CE}_2 = High, V_{CC} = 5.0V					
CIN	Input	V _{IN} = 2.0V		5		pF	
COUT	Output	$V_{OUT} = 2.0V$		8		pF	

Notes on following page.

16K-Bit TTL Bipolar PROM (4096 \times 4) 82HS195, 82HS195A, 82HS195B

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

PARAMETER	то	FROM	N82HS195		N82HS195A			N82HS195B				
			Min	Typ ⁵	Max	Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
me ⁷	L								.			-
	Output	Address		35	45		25	35		20	25	ns
	Output	Chip Enable		20	25		15	20		10	15	ns
me ⁶					•						he 1	
	Output	Chip Disable		20	25		15	20		10	15	ns
	me ⁷	me ⁷ Output Output me ⁶	me ⁷ Output Address Output Chip Enable me ⁶	PARAMETER TO FROM Min me ⁷ Output Address Output Chip Enable me ⁶	PARAMETER TO FROM me7 Output Address 35 Output Chip Enable 20	PARAMETER TO FROM Min Typ ⁵ Max me ⁷ Output Address 35 45 Output Chip Enable 20 25	PARAMETER TO FROM Min Typ ⁵ Max Min me ⁷ Output Address 35 45 Output Chip Enable 20 25	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ me ⁷ Output Address 35 45 25 Output Chip Enable 20 25 15 me ⁶ V V V V	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max me ⁷ Output Address 35 45 25 35 Output Address 20 25 15 20 me ⁶ Image: Max Image: Max Image: Max Image: Max Image: Max	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max Min me ⁷ Output Address 35 45 25 35 Output Address 20 25 15 20 me ⁶ Image: Max Imax Image: Max Imax	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵	PARAMETER TO FROM Min Typ ⁵ Max me ⁷ Output Address 35 45 25 35 20 25 25 Output Chip Enable 20 25 15 20 10 15

NOTES:

1. All voltage values are with respect to network ground terminal.

2. Positive current is defined as into the terminal referenced.

3. Measured with one output switching from a Logic "1" to a Logic "0".

4. Duration of the short circuit should not exceed 1 second.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.

7. Tested at an address cycle time of 1µs.

8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

32K-bit TTL PROM

page

82HS321	32 768-bit PROM (4096 x 8) 45 ns 4	63
82HS321A	32 768-bit PROM (4096 x 8) 35 ns 4	63
82HS321B	32 768-bit PROM (4096 x 8) 30 ns 4	63
82HS321C	32 768-bit PROM (4096 x 8) 25 ns 4	67
82LHS321	32 768-bit PROM (4096 x 8) 35 ns 4	71

Bipolar Memory Products

DESCRIPTION

The 82HS321 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82HS321 82HS321A 82HS321B 32K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: N82HS321: 45ns max N82HS321A: 35ns max N82HS321B 30ns max
- \bullet Power dissipation: 20 $\mu W/bit$ typ
- Input loading: -250µA max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

32K-Bit TTL Bipolar PROM (4096 imes 8)

82HS321, 82HS321A, 82HS321B

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82HS321 N • N82HS321A N • N82HS321B N
24-pin Ceramic DIP 600mil-wide	N82HS321 F • N82HS321A F • N82HS321B F
28-pin Plastic Leaded Chip Carrier 450mil-square	N82HS321 A • N82HS321A A • N82HS321B A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
VIN	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C, \; 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

	12		1			
SYMBOL PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT	
Input vo	ltage			••••••		
VIL	Low ³				0.8	V
ViH	High ³		2.0			V
VIC	Clamp	I _{IN} = -18mA		-0.8	-1.2	V
Output	voltage					
		\overline{CE}_1 = Low, CE_2 = High				
VOL	Low	$I_{OUT} = 16 \text{mA}$			0.5	V
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input cu	irrent					
h _L	Low	V _{IN} = 0.45V			-250	μΑ
hн	High	V _{IN} = 5.25V			40	μA
Output	current					
loz	Hi-Z state	\overline{CE}_1 = High, CE_2 = Low, V_{OUT} = 0.5			-40	μA
		\overline{CE}_1 = High, CE_2 = Low, V_{OUT} = 5.25			40	
los	Short circuit ⁴	\overline{CE}_1 = Low, CE_2 = High, V_{OUT} = 0V	-15		-70	mA
Supply	current ⁸					
ICC		V _{CC} = 5.25V		130	175	mA
Capacita	ince					
		$\overline{CE}_1 = High, CE_2 = Low,$				
		$V_{CC} = 5.0V$				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page

32K-Bit TTL Bipolar PROM (4096 imes 8)

82HS321, 82HS321A, 82HS321B

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

				N82HS321		N82HS321A		1 A	N82HS321B				
SYMBOL	PARAMETER	то	FROM	Min	Typ ⁵	Max	Min	Typ ⁵	Max	Min	Typ ⁵	Max	UNIT
Access time	9 ⁷			•	•				L		•		
t _{AA}		Output	Address		40	45		30	35		25	30	ns
t _{CE}		Output	Chip Enable		25	30		20	25		18	20	ns
Disable time	9 ⁶												
t _{CD}		Output	Chip Disable		25	30		20	25		18	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Measured with one output switching from from a Logic "1" to a Logic "0".

4. Duration of short circuit should not exceed 1 second.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.

7. Tested at an address cycle time of 1µs.

8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

82HS321C 32K-Bit TTL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82HS321 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: N82HS321C: 25ns max
- Power dissipation: 20µW/bit typ
- Input loading: -250µA max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- 300mil-wide plastic DIP
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

32K-Bit TTL Bipolar PROM (4096 imes 8)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	• N82HS321C N
24-pin Plastic DIP 300mil-wide	• N82HS321C N3
24-pin Ceramic DIP 600mil-wide	• N82HS321C F
28-pin Plastic Leaded Chip Carrier 450mil-square	• N82HS321C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+ 7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C, \ 4.75 V \leqslant V_{CC} \leqslant 5.25 V$

ovupo:	DADAMETER					
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input vo	Itage					
VIL	Low ³				0.8	V
VIH	High ³		2.0			V
VIC	Clamp	I _{IN} = -18mA		-0.8	-1.2	V
Output	voltage			•		
		$\overline{CE}_1 = Low, CE_2 = High$				
VOL	Low	I _{OUT} = 16mA			0.5	v
VOH	High	$I_{OUT} = -2mA$	2.4			V
Input cu	rrent	· · · · · · · · · · · · · · · · · · ·				
l _{iL}	Low	V _{IN} = 0.45V			-250	μA
Iн	High	V _{IN} = 5.25V			40	μA
Output	current					
loz	Hi-Z state	\overline{CE}_1 = High, CE_2 = Low, V_{OUT} = 0.5			-40	μA
		\overline{CE}_1 = High, CE_2 = Low, V_{OUT} = 5.25			40	
los	Short circuit ⁴	$\overline{CE}_1 = Low, CE_2 = High, V_{OUT} = 0V$	-15		-70	mA
Supply	current ⁸					
Icc		V _{CC} = 5.25V		130	175	mA
Capacita	ince		-		•	
	·	$\overline{CE}_1 = High, CE_2 = Low,$				1
		$V_{CC} = 5.0V$				
CIN	lņput	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

Notes on following page

82HS321C

32K-Bit TL Bipolar PROM (4096 \times 8)

82HS321C

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1cm} \texttt{R}_1 = 270 \Omega, \hspace{0.1cm} \texttt{R}_2 = 600 \Omega, \hspace{0.1cm} \texttt{C}_L = 30 p \texttt{F}, \hspace{0.1cm} \texttt{0^{\circ}C} \leqslant \texttt{T}_A \leqslant +75^{\circ} \texttt{C}, \hspace{0.1cm} \texttt{4.75V} \leqslant \texttt{V}_{\texttt{CC}} \leqslant 5.25 \texttt{V}_{\texttt{CC}} \ast 5.25 \texttt{V}_{\texttt{$

					UNIT		
SYMBOL	PARAMETER	то	FROM	Min Typ ⁵ Max			
Access time ⁷							
t _{AA}		Output	Address		20	25	ns
t _{CE}		Output	Chip Enable		10	15	ns
Disable time ⁶	****** <u>*******************************</u>						
t _{CD}		Output	Chip Disable		10	15	ns

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Measured with one output switching from from a Logic "1" to a Logic "0".
- 4. Duration of short circuit should not exceed 1 second.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = + 25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.
- 7. Tested at an address cycle time of 1µs.
- 8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

Bipolar Memory Products

DESCRIPTION

The 82LHS321 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82LHS321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip decoding and 2 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

This device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82LHS321 32K-Bit TTL Bipolar PROM

Product Specification

FEATURES

Address access time: N82LHS321: 35ns max

- Power dissipation: 16µW/bit typ
- Input loading: -250µA max
- Two Chip Enable Inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

82LHS321

32K-Bit TTL Bipolar PROM (4096 × 8)

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24pin Plastic DIP 600milwide	N82LHS321 N
24pin Plastic DIP 300milwide	N82LHS321 N3
28-pin Plastic Leaded Chip Carrier 450mil-square	N82LHS321 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+5.5	V _{DC}
Vo	Output voltage Off-State	+5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_{A} \le +75^{\circ}C$, 4.75V $\le V_{CC} \le 5.25V$

SYMBOL PARAMETER						
		TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Мах	UNIT
Input voltag	je	-	-		.	
VIL	Low ³		1		0.8	V
ViH	High ³		2.0			V
V _{IC}	Clamp	l _{IN} = -18mA		-0.8	-1.2	V
Output volt	age					
		$\overline{CE}_1 = Low, CE_2 = High$				
Vol	Low	I _{OUT} = 16mA			0.5	V
V _{OH}	High	I _{OUT} = -2mA	2.4			v
Input curre	nt					
l _{iL}	Low	V _{IN} = 0.45V			-250	μA
łн	High	V _{IN} = 5.25V			40	μΑ
Output curr	ent		- !	A		
loz	Hi-Z state	$\overline{CE}_1 = \text{High}, CE_2 = \text{Low}, V_{OUT} = 0.5$	Τ	I	-40	μA
		$\overline{CE}_1 = High, CE_2 = Low, V_{OUT} = 0.5$			40	
los	Short circuit ⁴	$\overline{CE}_1 = Low, CE_2 = High, V_{OUT} = 0V$	-15		-70	mA
Supply curi	rent ⁶					
lcc		V _{CC} = 5.25V		100	110	mA
Capacitanc	e	· · · · · · · · · · · · · · · · · · ·		18.	. <u></u>	
	[$\overline{CE}_1 = High, CE_2 = Low$	1	T		
	·	$V_{CC} = 5.0V$	1	1		
CIN	Input	$V_{IN} = 2.0V$		5		pF
Cout	Output	$V_{OUT} = 2.0V$	1	8		pF

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

Measured with one output switching from a Logic "1" to a Logic "0".
 Duration of short circuit should not exceed 1 second.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$. 6. Measured with all inputs grounded and all outputs open.

32K-Bit TTL Bipolar PROM (4096 × 8)

82LHS321

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \leq T_A \leq +75^{\circ}C$, $4.75V \leq V_{CC} \leq 5.25V$

			T				
SYMBOL	PARAMETER	то	FROM	Min	Typ ¹	Max	UNIT
Access time ²							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
taa tce		Output Output	Address Chip Enable		30 20	35 25	ns ns
Disable time ³		•			· • • • • • • • • • • • • • • • • • • •		
tco		Output	Chip Disable		20	25	ns
NOTES.	*********						

NOTES:

1. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. Tested at an address cycle time of 1µs.

3. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω , C_L = 5pF.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

64K-bit TTL PROM

82HS641	65 536-bit PROM (8192 x 8) 55 ns	477
82HS641A	65 536-bit PROM (8192 x 8) 45 ns	477
82HS641B	65 536-bit PROM (8192 x 8) 35 ns	477
82HS641C	65 536-bit PROM (8192 x 8) 25 ns	481

Bipolar Memory Products

The 82HS641 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS641 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip address decoding with 1 Chip Enable input for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused applications.

Ordering information can be found on the following page.

This device is also processed to military requirements for operating over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82HS641 82HS641A 82HS641B 64K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- N82HS641 55ns max - N82HS641A 45ns max
- N82HS641B 35ns max
- Power dissipation: 10µW/bit typ
- Input loading: -250µA max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

64K-Bit TTL Bipolar PROM (8192 \times 8) 82HS641, 82HS641A, 82HS641B

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	N82HS641 N • N82HS641A N • N82HS641B N
24-pin Ceramic DIP 600mil-wide	N82HS641 F • N82HS641A F • N82HS641B F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
Vo	Output voltage Off-state	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ C \leqslant T_A \leqslant +\,75^\circ C,\;4.75 V \leqslant V_{CC} \leqslant 5.25 V$

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input volta	ge					
V _{IL} V _{IH} V _{IC}	Low ³ High ³ Clamp	l _{IN} = - 18mA	2.0	-0.8	0.8	V V V
Output volt						I
V _{OL} V _{OH}	Low High	$\overline{CE}_1 = Low$ $I_{OUT} = 16mA$ $I_{OUT} = -2mA$	2.4		0.5	v v
Input curre	nt					
հլ հր	Low High	V _{IN} = 0.45V V _{IN} = 5.25V			-250 40	μA μA
Output cur	rent					
l _{OZ}	Hi-Z State Short circuit ⁴	$ \overline{CE}_1 = High, V_{OUT} = 0.5V \\ \overline{CE}_1 = High, V_{OUT} = 5.25V \\ \overline{CE}_1 = Low, V_{OUT} = 0V $	- 15		-40 40 -70	μA mA
Supply cur	rent ⁸		t		L	
Icc		V _{CC} = 5.25V		130	175	mA
Capacitanc	e				*·····	
C _{IN} C _{OUT}	Input Output	$\overline{CE}_{1} = High$ $V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		5		pF pF

Notes on following page.

64K-Bit TTL Bipolar PROM (8192 imes 8)

82HS641, 82HS641A, 82HS641B

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_A \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

			N82HS641		N82HS641A		N82HS641B					
PARAMETER	ER TO	FROM	Min	Typ ⁵	Max	Min	Typ⁵	Max	Min	Typ ⁵	Max	UNIT
time ⁷		·		4		4				L		
	Output	Address		50	55		40	45		30	35	ns
	Output	Chip Enable		30	35		20	25		15	20	ns
time ⁶												
	Output	Chip Disable		30	35		20	25		15	20	ns
		time ⁷ Cutput Output time ⁶	time ⁷ Output Address Output Chip Enable time ⁶	PARAMETER TO FROM time ⁷ Output Address Output Output Chip Enable time ⁶ Output Chip Enable	PARAMETER TO FROM Min Typ ⁵ time ⁷ Output Address 50 Output Output Chip Enable 30 time ⁶ Output Output Output	PARAMETER TO FROM Min Typ ⁵ Max time ⁷ Output Address 50 55 Output Chip Enable 30 35 time ⁶ Output Output Output	PARAMETER TO FROM Min Typ ⁵ Max Min time ⁷ Output Address 50 55 Output Output Chip Enable 30 35 time ⁶ Output Output Output	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ time ⁷ Output Address 50 55 40 Output Output Chip Enable 30 35 20 time ⁶ Image: Chip Enable Image: Chip En	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max time ⁷ Output Address 50 55 40 45 Output Output Chip Enable 30 35 20 25 time ⁶ Image: Chip Enable Image: Chip Enable	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max Min time ⁷ Output Address 50 55 40 45	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max Min Typ ⁵ time ⁷ Output Address 50 55 40 45 30 Output Output Chip Enable 30 35 20 25 15 time ⁶ Output Output	PARAMETER TO FROM Min Typ ⁵ Max Min Typ ⁵ Max time ⁷ Output Address 50 55 40 45 30 35 Output Output Chip Enable 30 35 20 25 15 20 time ⁶ V V V V V V V

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Measured with one output switching from a Logic "1" to a Logic "0".

4. Duration of short circuit should not exceed 1 second.

5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.

7. Tested at an address cycle time of 1µs.

8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

.

Bipolar Memory Products

The 82HS641 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS641 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip address decoding with 1 Chip Enable input for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused applications.

Ordering information can be found on the following page.

This device is also processed to military requirements for operating over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

82HS641C 64K-Bit TTL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time:
- N82HS641C 25ns
- Power dissipation: $10\mu W/bit$ typ
- Input loading: -250µA max
- One Chip Enable input
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

BLOCK DIAGRAM

64K-Bit TTL Bipolar PROM (8192 imes 8)

82HS641C

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
24-pin Plastic DIP 600mil-wide	• N82HS641C N
24-pin Ceramic DIP 600mil-wide	• N82HS641C F
28-pin Plastic PLCC 450mil-square	• N82HS641C A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
vo	Output voltage Off-State	+ 5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^\circ\text{C} \leqslant \text{T}_{\text{A}} \leqslant +75^\circ\text{C}, \ 4.75\text{V} \leqslant \text{V}_{\text{CC}} \leqslant 5.25\text{V}$

		12				
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input volta	ge				•	
V _{IL} V _{IH} V _{IC}	Low ³ High ³ Clamp	l _{IN} = – 18mA	2.0	-0.8	0.8	V V V
Output volt	tage		I	1	L	1
V _{OL} V _{OH}	Low High	$\overline{CE}_1 = Low$ $I_{OUT} = 16mA$ $I_{OUT} = -2mA$	2.4		0.5	v v
Input curre	int					
կլ կլլ	Low High	V _{IN} = 0.45V V _{IN} = 5.25V			-250 40 -	μΑ μΑ
Output cur	rent	-			•	
l _{oz}	Hi-Z State Short circuit ⁴	$\overline{CE}_1 = \text{High}, V_{OUT} = 0.5V$ $\overline{CE}_1 = \text{High}, V_{OUT} = 5.25V$ $\overline{CE}_1 = \text{Low}, V_{OUT} = 0V$	- 15		-40 40 -70	μA mA
Supply cur	rent ⁸		d.	1		1
Icc		V _{CC} = 5.25V		130	175	mA
Capacitanc	e		l	1	*	ł
C _{IN} C _{OUT}	Input Output	$\overline{CE}_{1} = High$ $V_{CC} = 5.0V$ $V_{IN} = 2.0V$ $V_{OUT} = 2.0V$		5 8		pF pF

Notes on following page.

64K-Bit TTL Bipolar PROM (8192 imes 8)

82HS641C

AC ELECTRICAL CHARACTERISTICS R₁ = 270 Ω , R₂ = 600 Ω , C_L = 30pF, 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

SYMBOL	PARAMETER	то	FROM	Min	Typ ⁵	Max	UNIT
Access time	7						
t _{AA}		Output	Address		22	25	ns
t _{CE}		Output	Chip Enable		14	15	ns
Disable time	6						
t _{CD}		Output	Chip Disable		14	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground.

3. Measured with one output switching from a Logic "1" to a Logic "0".

4. Duration of short circuit should not exceed 1 second.

5. Typical values are at V_{CC} = 5V, T_A = + 25°C.

6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.

7. Tested at an address cycle time of 1µs.

8. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

128K-bit TTL PROM

02001201	121 072 his DDOM (16 204 y 0) 45 m	407
82HS1281	131 072-bit PROM (16 384 x 8) 45 ns	487

page

Document No.			
ECN No.			
Date of Issue	November 1986		
Status	Objective Specification		
Bipolar Memory Products			

DESCRIPTION

The 82HS1281 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic II fusing procedure. The 82HS1281 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.

This device includes on-chip address decoding with 4 Chip Enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

BLOCK DIAGRAM

82HS1281 128K–Bit TTL Bipolar PROM

FEATURES

- Address access time: 45ns max
- Power dissipation: 5µW/bit typ
- Input loading: -250µA max
- Four Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

PIN CONFIGURATION

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

128K–Bit TTL Bipolar PROM (16384 × 8)

82HS1281

ORDERING INFORMATION

PACKAGE DESCRIPTION	ORDER CODE
28-Pin Plastic DIP 600mil-wide	N82HS1281 N

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
Vcc	Supply voltage	+7	VDC
VIN	Input voltage	+5.5	V _{DC}
Vo	Output voltage Off-State	+5.5	V _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	65 to +150	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, 4.75V \leq V_{CC} \leq 5.25V

SYMBOL PARAMETER TEST CONDITIONS ^{1,}			LIMITS			
		TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT
Input voltag	je					
VIL	Low ³			T	0.8	v
VIH	High ³		2.0	1		v
VIC	Clamp	I _{IN} = -18mA		-0.8	-1.2	v
Output volt	age					
		$\overline{CE}_3 = \text{High}, \overline{CE}_{1,2,4} = \text{Low}$				
VOL	Low	I _{OUT} = 16mA			0.5	v
V _{OH}	High	I _{OUT} = -2mA	2.4			v
Input curre	nt	· · · · · · · · · · · · · · · · · · ·				
I _{IL}	Low	V _{IN} = 0.45V			-250	μΑ
l _H	High	V _{IN} = 5.25V			40	μΑ
Output curr	rent				·	
loz	Hi-Z state	CE ₃ = Low, CE _{1.2.4} = High, V _{OUT} = 0.5V			-40	
		$CE_3 = Low, \overline{CE}_{1,2,4} = High, V_{OUT} = 5.25V$			40	
los	Short circuit ⁴	$CE_3 = High, \overline{CE}_{1,2,4} = Low, V_{OUT} = 0V$	-15		-70	mA
Supply curr	rent ⁶	······································				
!cc		V _{CC} = 5.25V		100	110	mA
Capacitanc	0					
		$CE_3 = High, \overline{CE}_{1,2,4} = Low$				
		V _{CC} = 5.0V				
CIN	Input	V _{IN} = 2.0V		5		pF
COUT	Output	V _{OUT} = 2.0V		8		pF

NOTES:

1. Positive current is defined as into the terminal referenced.

Positive current is defined as into the terminal referenced.
 All voltages with respect to network ground.
 Measured with one output switching from a Logic "1" to a Logic "0".
 Duration of short circuit should not exceed 1 second.
 Typical values are at V_{CC} = 5V, T_A = +25°C.
 Measured with all inputs grounded and all outputs open.

128K-Bit TTL Bipolar PROM (16384 × 8)

82HS1281

$\textbf{AC ELECTRICAL CHARACTERISTICS} \hspace{0.1 cm} \textbf{R}_1 = 270\Omega, \hspace{0.1 cm} \textbf{R}_2 = 600\Omega, \hspace{0.1 cm} \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} ^\circ \textbf{C} \leq \textbf{T}_A \leq +75 \hspace{0.1 cm} ^\circ \textbf{C}, \hspace{0.1 cm} \textbf{4.75V} \leq \textbf{V}_{CC} \leq 5.25 V \hspace{0.1 cm} \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} ^\circ \textbf{C} \leq \textbf{T}_A \leq +75 \hspace{0.1 cm} ^\circ \textbf{C}, \hspace{0.1 cm} \textbf{4.75V} \leq \textbf{V}_{CC} \leq 5.25 V \hspace{0.1 cm} \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{0} > \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{0} > \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{0} > \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{0} > \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{0} > \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1 cm} \textbf{C}_L = 30 p \textbf{F}_1 \hspace{0.1$

SYMBOL PARAMETER	то	FROM	Min	Typ1	Max	UNIT	
Access time ²							.
t _{AA} t _{CE}		Output Output	Address Chip Enable			45 25	ns ns
Disable time ³							
tcD	*****	Output	Chip Disable			25	ns

NOTES:

1. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. Tested at an address cycle time of 1µs.

3. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω , C_L = 5pF.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

ECL MEMORIES

Low Complexity ECL PROM	493
16K-bit ECL PROM	527

page

Low Complexity ECL PROM

page

10P256	256-bit ECL Bipolar PROM (32 x 8) 3 ns 495
100P256	256-bit ECL Bipolar PROM (32 x 8) 3 ns 499
10149	1024-bit ECL Bipolar PROM (256 x 4) 20 ns 503
100149	1024-bit ECL Bipolar PROM (256 x 4) 20 ns 507
10149A	1024-bit ECL Bipolar PROM (256 x 4) 10 ns 511
100149A	1024-bit ECL Bipolar PROM (256 x 4) 10 ns 515
10149B	1024-bit ECL Bipolar PROM (256 x 4) 5 ns 519
100149B	1024-bit ECL Bipolar PROM (256 x 4) 5 ns 523

Bipolar Memory Products

DESCRIPTION

The 10P256 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 10P256 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

The 10P256 has power pins placed in the center of the package to provide low inductance paths for output drive current.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

10P256 256–Bit ECL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time: 3ns max
- Power dissipation: 2.6mW/bit typ
- High–impedance inputs (50KΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series
- Center package power pins

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

256-Bit ECL Bipolar PROM (32 × 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic DIP (300mil-wide)	10P256 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ¹	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to -3	V _{DC}
lo	Output source current	40	mA _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

NOTE: 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A < +75°C, -4.94V \leq V_{EE} \leq -5.46V

			0	0°C	+25°C		+25°C +75°C		+75°C	
SYMBOL	PARAMETER ¹	TEST CONDITIONS	Min	Max	Min	Typ ³	Max	Min	Max	UNIT
Input vol	age ^{2,3}									
VIL	Low	· · · · · · · · · · · · · · · · · · ·	-1.870		-1.850			-1.830		۷
VIH	High			0.840			-0.810		0.720	v
VILA	Low threshold			-1.480			-1.475		-1.445	v
VIHA	High threshold		-1.150		-1.105			-1.040		v
Output ve	oltage									
VOL	Low	V _{IH} = Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	٧
V _{OH}	High	V _{IL} = Min	-1.000	0.840	-0.960		-0.810	0.900	0.720	v
VOLA	Low threshold	V _{IHA} = Min, V _{ILA} = Max		-1.640			-1.630		-1.600	v
VOHA	High threshold	V _{IHA} = Min, V _{ILA} = Max	-1.020		-0.980			-0.920		v
Input cur	rent ⁴	•		•						
I _{IL}	Low	V _{IH} = Max			0.5					μA
Чн	High	V _{IL} = Min		250			250		250	μΑ
Supply d	rain current	• • • • • • • • • • • • • • • • • • •	•		•		*	•		
IEE		V _{EE} = -5.2V		150		130	150		150	mA

NOTES:

 All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
 Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50 Ω resistor to –2V.

3. Typical values are at $V_{EE} = -5.2V$, $T_A = +25^{\circ}C$.

4. Unused inputs must have 10K Ω min to V_{EE} or be connected to -2V_{DC}.

10P256

256-Bit ECL Bipolar PROM (32 × 8)

10P256

LIMITS SYMBOL PARAMETER то FROM Min UNIT Typ¹ Max Access time Output Address з tAA ns Chip Enable 1.3 2 Output [‡]CE ns **Disable time** 2 †CD Output Chip Disable 1.3 ns **Rise and fall time** Rise time (20-80%) t, 1.0 ns Fall time (80-20%) 1.0 t ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75$ °C, -4.94V $\leq V_{EE} \leq -5.46$ V

NOTES:

1. Typical values are at V_{EE} = -5.2V, T_A = +25°C.

TEST LOAD CIRCUIT

- NOTES:
- For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be $\langle k_i$ inch from TP_N to input pin and TP_{OUT} to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same 1.
- 2. manner.
- Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10μF capacitor between V_{CC} and V_{CC0} terminals, located as close to the device as possible, is recommended to reduce ringing.

256-Bit ECL Bipolar PROM (32 × 8)

10P256

Bipolar Memory Products

DESCRIPTION

The 100P256 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 100P256 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

The 100P256 has power pins placed in the center of the package to provide low inductance paths for output drive current.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

100P256 256-Bit ECL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time: 3ns max
- Power dissipation: 2.2mW/bit typ
- High-impedance inputs (50KΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series
- Center package power pins

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

100P256

256-Bit ECL Bipolar PROM (32 × 8)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic DIP (300mil-wide)	100P256 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
VEE	Supply voltage (V _{CC} = 0)	-8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to3	V _{DC}
lo	Output source current	40	mA _{DC}
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A < +75°C, -4.275V \leq V_{EE} \leq -4.725V

				LIMITS			
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min	Typ ⁴	Max		
Input voltag	8						
VIL	Low		-1.810			v	
V _{IH}	High				-0.880	v	
VILA	Threshold Low				-1.475	v	
Viha	Threshold High		-1.165			v	
Output volta	ige						
V _{OL}	Low	V _{IL} = Min	-1.810		-1.620	v	
V _{OH}	High	V _{IH} = Max	-1.025		-0.880	v	
VOLA	Threshold Low	V _{IL} = Max			-1.610	v	
VOHA	Threshold High	V _{IH} = Min	-1.035			v	
Input curren	nt ⁵						
I _{IL}	Low	V _{IL} = Min	0.5			μΑ	
Ιн	High	V _{IH} = Max			220	μΑ	
Supply curr	ent						
IEE		V _{EE} = -4.5V		130	150	mA	

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

 Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a testsocket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. For current measurements, maximum is defined as the maximum absolute value.

4. Typical values are at $V_{EE} = -4.5V$, $T_A = +25^{\circ}C$.

5. Unused inputs must have 10K Ω min to V_{EE} or be connected to –2V_{DC}.

100P256

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75^{\circ}$ C, -4.275V $\leq V_{EE} \leq -4.725$ V

				LIMITS		
PARAMETER	то	FROM	Min	Typ ¹	Max	UNIT
)	••••••••••••••••••••••••••••••••••••••					
	Output	Address	T		3	ns
	Output	Chip enable		1.3	2	ns
)						
	Output	Chip disable	Τ	1.3	2	ns
l time						
Rise time (20-80%)		1		1.0		ns
Fall time (80–20%)				1.0		ns
) I time Rise time (20–80%)	Output Output Utput Utput Utput Output Utput Utp	Output Address Output Chip enable Output Chip disable I time Filse time (20–80%)	Output Address Output Chip enable Output Chip disable Output Chip disable I time Rise time (20–80%)	PARAMETER TO FROM Min Typ1 Output Address Image: Chip enable 1.3 Output Chip enable 1.3 Output Chip disable 1.3 I time Fise time (20–80%) 1.0	PARAMETER TO FROM Min Typ1 Max Output Address 3 Output Chip enable 1.3 2 Output Chip disable 1.3 2 Output Chip disable 1.3 2 Htme 1.0 1.0

NOTE:

1. Typical values are at $V_{EE} = -4.5V$, $T_A = +25^{\circ}C$.

TEST LOAD CIRCUIT

For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be ' ¼ inch from TP_{N1} to input pin and TP_{OU1} to output pin A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same 2.

manner

manner. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10 μ F capacitor between V_{CC} and V_{CC0} terminals, located as close to the device as possible, is recommended to reduce ringing. З.

100P256

10149 1K-Bit ECL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 10149 is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 10149 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 20ns max
- Power dissipation: 0.66mW/bit typ
- High impedance inputs (50k Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

10149

1K-Bit ECL Bipolar PROM (256 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	2
16-pin Ceramic DIP 300mil-wide	10149 F	

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ¹	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	-8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to V _{EE}	V _{DC}
lo	Output source current	40	mA _{DC}
TA	Operating temperature range	-30 to +85	°C
T _{STG}	Storage temperature range	-55 to +165	

DC ELECTRICAL CHARACTERISTICS $-30^\circ\text{C} \leqslant T_A < +\,85^\circ\text{C},\;-4.94V \leqslant V_{EE} \leqslant -5.46V$

			-3	0°C		+ 25°C		+8	5°C	
SYMBOL PARAMETER ¹	TEST CONDITIONS	Min	Max	Min	Typ ³	Max	Min	Max	UNIT	
Input volt	age ^{2,3}								•	
V _{IL} V _{IH} V _{ILA} V _{IHA}	Low High Low threshold High threshold		-1.890	-0.890 -1.500	-1.850		-0.810 -1.475	-1.825	-0.700 -1.440	V
Output vo	ltage				L			L		I
V _{OL} V _{OH}	Low High	V _{IH} = Max V _{IL} = Min	-1.89 -1.06	-1.675 -0.89	- 1.85 - 0.96		-1.65 -0.81	-1.825 -0.89	-1.615 -0.70	v
V _{OLA} V _{OHA}	Low threshold High threshold	V _{IHA} = Min, V _{ILA} = Max	- 1.08	- 1.655	-0.98		-1.63	-0.91	-1.595	
Input curr	ent								•	.
I _{IL} I _{IH}	Low High	V _{IH} = Max V _{IL} = Min		250	0.5	-	250		250	μA
Supply dr	ain current		-					•		
IEE		V _{EE} = -5.2V		160		150	160		160	mA

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, $-30^{\circ}C \le T_A \le +85^{\circ}C$, $-4.94V \le V_{EE} \le -5.46V$

SYMBOL PARAMETER		PARAMETER TO		LIMITS			
	PARAMETER		FROM	Min	Typ ³	Max	UNIT
Access time					*		
t _{AA} t _{CE}		Output Output	Address Chip Enable		14 4	20 8	ns
Disable time	······································						
tCD		Output	Chip Enable		4	8	ns
Rise and fall t	ime			-			•
t+ t_	Rise time (20-80%) Fall time (80-20%)				4.0 4.0		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

 Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. Typical values are at V_{EE} = -5.2V, T_A = + 25°C.

1K-Bit ECL Bipolar PROM (256 \times 4)

TEST LOAD CIRCUIT

- For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < ¼ inch from TP_{N1} to input pin and TP_{QU1} to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same 2.
- manner З.
- manner. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10 μ F capacitor between V_{CC1} and V_{CC2} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

Bipolar Memory Products

DESCRIPTION

The 100149 is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 100149 is suitable for use in high-performance ECL systems. The outputs are capable of driving 50 Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

100149 1K-Bit ECL Bipolar PROM

Product Specification

FEATURES

- Address access time: 20ns max
- Power dissipation: 0.66mW/bit typ
- High impedance inputs (50k Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

100149

1K-Bit ECL Bipolar PROM (256 imes 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP 300mil-wide	100149 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	-8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to V _{EE}	V _{DC}
lo	Output source current	40	mA _{DC}
T _A	Operating temperature range	-0 to +75	°C
T _{STG}	T _{STG} Storage temperature range		°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, -4.275V \leq V_{EE} \leq -4.725V

SYMBOL PARAMETER				LIMITS		
	TEST CONDITIONS ^{1,2}	Min	Typ ⁴	Max	UNIT	
Input voltage						
VIL	Low		-1.810			٧
VIH	High				-0.880	v
VILA	Threshold Low				-1.475	v
VIHA	Threshold High		- 1.165			v
Output voltage)					
V _{OL}	Low	V _{IL} = Min	-1.810		-1.620	V
V _{OH}	High	V _{IH} = Max	-1.025		-0.880	v
VOLA	Threshold Low	V _{IL} = Max			-1.610	v
V _{OHA}	Threshold High	V _{IH} = Min	- 1.035			v
Input current						
կլ	Low	V _{IL} = Min	0.5			
lін	High	V _{IH} = Max			220	μA
Supply curren	t					
EE		V _{FF} = -4.5V		150	180	mA

AC ELECTRICAL CHARACTERISTICS $\mathsf{R}_1=50\Omega,\ \mathsf{C}_L=30\mathsf{p}\mathsf{F},\ 0^\circ\mathsf{C}\leqslant\mathsf{T}_A\leqslant+75^\circ\mathsf{C},\ -4.275\mathsf{V}\leqslant\mathsf{V}_{\mathsf{EE}}\leqslant-4.725\mathsf{V}$

SYMBOL		то					
	PARAMETER		FROM	Min	Typ⁵	Max	UNIT
Access time							
t _{AA} t _{CE}		Output Output	Address Chip Enable		15 5	20 8	ns ns
Disable time							
t _{CD}		Output	Chip Disable		5	8	ns
Rise and fall t	lime						
t ⁺ . t ⁻	Rise time (20-80%) Fall time (80-20%)				4.0 4.0		ns ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

 Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. For current measurements, maximum is defined as the maximum absolute value.

4. Typical values are at V_{EE} = -4.5V, T_A = +25°C.

1K-Bit ECL Bipolar PROM (256 \times 4)

TEST LOAD CIRCUIT

- manner
- manner, practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10 μ F capacitor between V_{CC1} and V_{CC2} terminals, located as close to the device as possible, is recommended to reduce ringing. З.

VOLTAGE WAVEFORMS

10149A 1K-Bit ECL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 10149A is field programmable, meaning that custom patterns are immediately available by following the Generic IV fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 10149A is suitable for use in high-performance ECL systems. The outputs are capable of driving 50 Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

FEATURES

- Address access time: 10ns max
- Power dissipation: 0.66mW/bit typ
- High impedance inputs (50k Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

1K-Bit ECL Bipolar PROM (256 \times 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP (300mil-wide)	10149A F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ¹	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	-8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to V _{EE}	V _{DC}
lo	Output source current	40	mA _{DC}
T _A	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

DC ELECTRICAL CHARACTERISTICS $-30^{\circ}C \le T_A < +75^{\circ}C, -4.94V \le V_{EE} \le -5.46V$

	1		0	°C		+ 25°C		+7	5°C	
SYMBOL	PARAMETER ¹	TEST CONDITIONS	Min	Max	Min	Typ ³	Max	Min	Max	UNIT
Input voli	age ^{2,3}						•		•	
VIL	Low		-1.870	· ·	-1.850			-1.830		V
VIH	High			-0.840			-0.810		-0.720	V
VILA	Low threshold			-1.480			-1.475		-1.445	V
VIHA	High threshold		-1.150		-1.105			-1.040		V
Output vo	oltage									
VOL	Low	V _{IH} = Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	V
V _{OH}	High	V _{IL} = Min	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	V
VOLA	Low threshold	V _{IHA} = Min, V _{ILA} = Max		-1.640		·	- 1.630		-1.600	V
VOHA	High threshold	$\mathbf{v}_{\text{IHA}} = \mathbf{w}_{\text{III}}, \ \mathbf{v}_{\text{ILA}} = \mathbf{w}_{\text{IAX}}$	-1.020		-0.980			-0.920		V
Input cur	rent									
կլ	Low	V _{IH} = Max			0.5					μA
l _{iH}	High	V _{IL} = Min		250			250		250	μA
Supply di	ain current				•				·····	*****
IEE		V _{EE} = -5.2V		160		150	160		160	mA

AC ELECTRICAL CHARACTERISTICS R_1 = 50 $\Omega,~C_L$ = 30 pF, 0°C \leqslant T_A \leqslant + 75°C, -4.94V \leqslant V_{EE} \leqslant - 5.46V

SYMBOL	PARAMETER	то					
			FROM	Min	Typ ³	Max	UNIT
Access time	· · · · ·						
t _{AA}		Output	Address			10	ns
t _{CE}		Output	Chip enable		4	6	ns
Disable time							
t _{CD}		Output	Chip enable		4	6	ns
Rise and fall	time						. Cinta na data ang kitan
t.,	Rise time (20-80%)				4.0		ns
t_	Fall time (80-20%)			1	4.0		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. Typical values are at $V_{EE} = -5.2V$, $T_A = +25^{\circ}C$.

10149A

TEST LOAD CIRCUIT

NOTes:
 1. For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < ¼ inch from TP_{IN} to input pin and TP_{OUT} to output pin. A 50Ω termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground.
 2. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same

 Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be a short as possible. A 10µ^c capacitor between V_{CC1} and V_{CC2} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

.

100149A **1K-Bit ECL Bipolar PROM**

Product Specification

Bipolar Memory Products

DESCRIPTION

The 100149A is field programmable, meaning that custom patterns are immediately available by following the ECL fusing procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 100149A is suitable for use in highperformance ECL systems. The outputs are capable of driving 50 Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

BLOCK DIAGRAM

FEATURES

- Address access time: 10ns max
- Power dissipation: 0.66mW/bit typ
- High impedance inputs (50k Ω pulldown)
- One Chip Enable input
- Open Emitter outputs (50 Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

32 x 32 MATRIX ____ 1:8 MUX 1:8 MUX 1:8 MUX 1:8 MUX As O A7 0 4 OUTPUT BUFFER CE O 01 02 03 04

October 27, 1987

100149A

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP (300mil-wide)	100149A F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
VEE	Supply voltage (V _{CC} = 0)	-8	V _{DC}	
V _{IN}	Input voltage (V _{CC} = 0)	0 to V _{EE}	V _{DC}	
lo	Output source current	40	mA _{DC}	
TA	Operating temperature range	-0 to +75	°C	
T _{STG}	Storage temperature range	range -55 to +165 °C		

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq + 75°C, -4.275V \leq V_{EE} \leq -4.725V

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}		Typ ⁴	Max	UNIT
Input voltage			· · · · · · · · · · · · · · · · · · ·			
V _{IL} V _{IH} V _{ILA} V _{IHA}	Low High Threshold Low Threshold High		-1.810		-0.880 -1.475	v
Output voltage						
V _{OL} V _{OH} V _{OLA} V _{OHA}	Low High Threshold Low Threshold High	V _{IL} = Min V _{IH} = Max V _{IL} = Max V _{IH} = Min	-1.810 -1.025 -1.035		-1.620 -0.880 -1.610	v
Input current						
l _{IL} I _{IH}	Low High	V _{IL} = Min V _{IH} = Max	0.5		220	μA
Supply current						
IEE		V _{EE} = -4.5V		150	160	mA

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, $C_L = 30pF$, $0^\circ C \leq T_A \leq +75^\circ C$, $-4.275V \leq V_{EE} \leq -4.725V$

SYMBOL		то		LIMITS			
	PARAMETER		FROM	Min	Typ ⁵	Max	UNIT
Access time							
t _{AA} t _{CE}		Output Output	Address Chip enable		5	10 6	ns
Disable time							•••••••••
t _{CD}		Output	Chip disable	1	5	6	ns
Rise and fall t	ime						
t ⁺ t ⁻	Rise time (20-80%) Fall time (80-20%)				4.0 4.0		ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. For current measurements, maximum is defined as the maximum absolute value.

4. Typical values are at $V_{EE} = -4.5V$, $T_A = +25^{\circ}C$.

TEST LOAD CIRCUIT

- For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable. Wire length should be < N inch from TP_N to input pin and TP_{QUT} to output pin A 50 Ω termination to ground is located in each scope input. Unused outputs are connected to a 50 Ω resistor to ground. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same 2
- manner. 3
- Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10µF capacitor between V_{CC1} and V_{CC2} terminals, located as close to the device as possible, is recommended to reduce ringing.

VOLTAGE WAVEFORMS

100149A

Bipolar Memory Products

DESCRIPTION

The 10149B is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 10149B is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

10149B 1K–Bit ECL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time: 5ns max
- Power dissipation: 0.76mW/bit typ
- High–impedance inputs (50KΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

- APPLICATIONS
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP (300mil-wide)	10149B F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ¹	RATING	UNIT
VEE	Supply voltage (V _{CC} = 0)	-8	V _{DC}
VIN	Input voltage (V _{CC} = 0)	0 to -3	V _{DC}
lo	Output source current	40	mA _{DC}
TA	Operating temperature range	-0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

+25°C +75°C 0°C UNIT SYMBOL Min Min Тур³ Max Min Max PARAMETER¹ TEST CONDITIONS Max Input voltage^{2,3} VIL Low -1.870 -1.850 -1.830 ۷ -0.810 -0.720 v VIH High -0.840 VII A Low threshold -1.480 -1.475 -1.445 ۷ VIHA High threshold -1.150 -1.105 -1.040 v Output voltage VOL Low V_{IH} = Max -1.870 -1.665 -1.850 -1.650 -1.830 -1.625 v Vон High V_{II} = Min -1.000 -0.840 -0.810 -0.900 -0.720 v -0.960 -1.600 VOLA Low threshold VIHA = Min, VILA = Max -1.640 -1.630 ۷ VOHA High threshold VIHA = Min, VILA = Max -1.020 -0.980 -0.920 ٧ Input current⁴ 4 Low V_{IH} = Max 0.5 μA V_{IL} = Min μΑ High 250 250 250 Iн Supply drain current IEE $V_{EE} = -5.2V$ 160 150 160 160 mΑ

DC ELECTRICAL CHARACTERISTICS 0°C ≤ TA ≤ +75°C, -4.94V ≤ VEE ≤ -5.46V

NOTES:

 All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
 Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50 Ω resistor to –2V.

3. Typical values are at $V_{EE} = -5.2V$, $T_A = +25^{\circ}C$.

4. Unused input pins must have 10K $\!\Omega$ min to V_{EE} or be connected to –2V_{DC}

10149B

8 9

1K-Bit ECL Bipolar PROM (256 × 4)

10149B

SYMBOL	PARAMETER	то	FROM	Min	Typ1	Max	UNIT
Access time)						
taa		Output	Address		[5	ns
t _{CE}		Output	Chip Enable		2	3	ns
Disable time)	••••••••••••••••••••••••••••••••••••••					
tcD		Output	Chip Disable		2	3	ns
Rise and fai	l time	•		•		······	
t,	Rise time (20-80%)				2.0		ns
t	Fall time (80-20%)				2.0		ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75$ °C, -4.94V $\leq V_{EE} \leq -5.46$ V

NOTE:

1. Typical values are at V_{EE} = -5.2V, T_A = +25°C.

TEST LOAD CIRCUITS

For AC tests, all input and output cables to the scope are equal lengths of 50Ω coaxial cable wire length should be < ½ inch from TP_N to input pin and TP_{OUT} to output pin. A 50\Omega termination to ground is located in each scope input. Unused outputs are connected to a 50Ω resistor to ground. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same

2.

These procedures are shown too biny one input or any comput computations, other inputs are tested in the same manner. Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A flow feasitor between VCc1 and VCc2 terminals, located as close to the device as possible, is recommended to reduce ringing. 3.

VOLTAGE WAVEFORMS

December 1988

10149B

Bipolar Memory Products

DESCRIPTION

The 100149B is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 100149B is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

100149B 1K–Bit ECL Bipolar PROM

Preliminary Specification

FEATURES

- Address access time: 5ns max
- Power dissipation: 0.66mW/bit typ
- High–impedance inputs (50KΩ pulidown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic DIP (300mil-wide)	100149B F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
VEE	Supply voltage (V _{CC} = 0)	-8	VDC
V _{IN}	Input voltage (V _{CC} = 0)	0 to -3	V _{DC}
lo	Output source current	40	mA _{DC}
TA	Operating temperature range	-0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A \leq +75°C, -4.275V \leq V_{EE} \leq -4.725V

				LIMITS		
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min Typ ⁴		Max	UNIT
Input voltag	je					
VIL	Low		-1.810			۷
VIH	High				-0.880	v
VILA	Threshold Low				-1.475	v
VIHA	Threshold High		-1.165			v
Output volt	age					
VOL	Low	V _{IL} = Min	-1.810		-1.620	۷
V _{OH}	High	V _{IH} = Max	-1.025		-0.880	v
VOLA	Threshold Low	V _{IL} = Max			-1.610	v
VOHA	Threshold High	V _{IH} = Min	-1.035			v
Input curre	nt ⁵					
I _{IL}	Low	V _{IL} = Min	0.5			μA
ιн	High	V _{IH} = Max			220	μΑ
Supply curr	rent					
EE		V _{EE} = -4.5V		150	160	mA

NOTES: 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open. 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50 Ω resistor to -2V.

3. For current measurements, maximum is defined as the maximum absolute value.

4. Typical values are at V_{EE} = -4.5V, T_A = +25°C.

5. Unused inputs must have 10K Ω minimum to V_{EE} or be connected to -2V_{DC}.

100149B

100149B

LIMITS SYMBOL PARAMETER то FROM Min Typ¹ Max UNIT Access time t_{AA} Output Address 5 ns t_{CE} Output Chip Enable 2 3 ns **Disable time** Output Chip Disable 2 з t_{CD} ns Rise and fall time ť Rise time (20-80%) 2.0 ns r Fall time (80-20%) 2.0 ns

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75^{\circ}$ C, -4.275V $\leq V_{EE} \leq -4.725$ V

NOTES:

1. Typical values are at $V_{EE} = -4.5V$, $T_A = +25^{\circ}C$.

TEST LOAD CIRCUIT

Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10μF capacitor between V_{CC1} and V_{CC2} terminals, located as close to the device as possible, is recommended to reduce ringing.

100149B

16K-bit ECL PROM

10P016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	529
100P016	16 384-bit ECL Bipolar PROM (4096 x 4) 10 ns	533

Bipolar Memory Products

DESCRIPTION

The 10P016 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 10P016 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

10P016 16K–Bit ECL Bipolar PROM

Objective Specification

FEATURES

- Address access time: 10ns max
- Power dissipation: 57µW/bit typ
- High-impedance inputs (50KΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 10K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

10P016

16K-Bit ECL Bipolar PROM (4096 × 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		
20-pin Ceramic DIP (300mil-wide)	10P016 F		

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER ¹	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	-8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to3	V _{DC}
lo	Output source current	40	mA
TA	Operating temperature range	0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

NOTE: 1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

DC ELECTRICAL CHARACTERISTICS 0°C \leq T_A < +75°C, -4.94V \leq V_{EE} \leq -5.46V

			6	0°C	+25°C		+75°C			
SYMBOL	PARAMETER ¹	TEST CONDITIONS	Min	Max	Min	Typ ³	Max	Min	Max	UNIT
Input volt	age ^{2,3}									
V _{IL}	Low		-1.870		-1.850		Γ	-1.830		٧
VIH	High			-0.840			-0.810		0.720	v
V _{ILA}	Low threshold			-1.480			-1.475	ſ	-1.445	v
VIHA	High threshold		-1.150		-1.105			-1.040		v
Output vo	oltage									
V _{OL}	Low	V _{IH} = Max	-1.870	-1.665	-1.850		-1.650	-1.830	-1.625	v
V _{OH}	High	V _{IL} = Min	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	v
VOLA	Low threshold	V _{IHA} = Min, V _{ILA} = Max		-1.640			-1.630	}	-1.600	v
VOHA	High threshold	V _{IHA} = Min, V _{ILA} = Max	-1.020		-0.980			-0.920		v
Input cur	rent ⁴									
I _{IL}	Low	V _{IH} = Max			0.5			Γ		μΑ
Iн	High	V _{IL} = Min		250			250		250	μΑ
Supply d	rain current		•							
IEE	· ·	V _{EE} = -5.2V		200		180	200		200	mA

NOTE:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

2. Each ECL 10K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50 Ω resistor to -2V.

3. Typical values are at $V_{EE} = -5.2V$, $T_A = +25^{\circ}C$.

4. Unused inputs must have 10K Ω min to V_{EE} or be connected to –2V_DC.

10P016

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75^{\circ}$ C, -4.94V $\leq V_{EE} \leq -5.46$ V

SYMBOL PARAMETER		LIMITS					
	PARAMETER	то	TO FROM Min	Min	Typ1	Max	UNIT
Access time	3					<u></u>	
t _{AA}		Output	Address	T	6	10	ns
t _{CE}		Output	Chip Enable		2	5	ns
Disable time	9	·····					
tco		Output	Chip Disable		2	5	ns
Rise and fai	l time	•					
t₊	Rise time (20–80%)			Τ	1.0		ns
L	Fall time (80–20%)				1.0		ns

NOTE:

1. Typical values are at $V_{EE} = -5.2V$, $T_A = +25^{\circ}C$.

TEST LOAD CIRCUIT

10P016

Bipolar Memory Products

DESCRIPTION

The 100P016 is field programmable, meaning that custom patterns are immediately available by following the Signetics Generic IV Programming procedure. The device is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the TiW link matrix.

The 100P016 is suitable for use in highperformance ECL systems. The outputs are capable of driving 50Ω loads.

A Chip Enable input is provided for ease of memory expansion.

Ordering information can be found on the following page.

100P016 16K-Bit ECL Bipolar PROM

Objective Specification

FEATURES

- Address access time: 10ns max
- Power dissipation: 49µW/bit typ
- High-impedance inputs (50KΩ pulldown)
- One Chip Enable input
- Open Emitter outputs (50Ω drive)
- On-chip address decoding
- No separate fusing pins
- Fully compatible with ECL 100K series

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

100P016

16K-Bit ECL Bipolar PROM (4096 × 4)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Ceramic DIP (300mil-wide)	100P016 F

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{EE}	Supply voltage (V _{CC} = 0)	8	V _{DC}
V _{IN}	Input voltage (V _{CC} = 0)	0 to -3	V _{DC}
lo	Output source current	40	mA
TA	Operating temperature range	-0 to +75	°C
T _{STG}	Storage temperature range	-55 to +165	°C

DC ELECTRICAL CHARACTERISTICS 0°C $\leq T_A \leq +75^{\circ}$ C, -4.275V $\leq V_{EE} \leq -4.725$ V

			.2 Min Typ ⁴ Max			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}			Max	UNIT
Input voltag	e •					
V _{IL}	Low		-1.810			v
V _{IH}	High				-0.880	v
VILA	Threshold Low				-1.475	v
VIHA	Threshold High		-1.165			v
Output volta	age	• • • • • • • • • • • • • • • • • • •				
V _{OL}	Low	V _{IL} = Min	-1.810		-1.620	v
V _{OH}	High	V _{IH} = Max	-1.025		-0.880	v
VOLA	Threshold Low	V _{IL} = Max			-1.610	v
V _{OHA}	Threshold High	V _{IH} = Min	-1.035			v
Input currer	nt ⁵		•••••••••••••••••••••••••			
I _{IL}	Low	V _{IL} = Min	0.5			μА
I _{IH}	High	V _{IH} = Max			220	μА
Supply curr	ent			• • • • • • • • • • • • • • • • • • •		
I _{EE}		V _{EE} = -4.5V		180	200	mA

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

 Each ECL 100K series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 400 linear fpm is maintained. Voltage levels will shift approximately 4mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2V.

3. For current measurements, maximum is defined as the maximum absolute value.

4. Typical values are at V_{EE} = -4.5V, T_A = +25 $^{\circ}$ C.

5. Unused inputs must have 10K Ω min to V_{EE} or be connected to -2V_{DC}.

100P016

AC ELECTRICAL CHARACTERISTICS $R_1 = 50\Omega$, 0°C $\leq T_A \leq +75$ °C, -4.275V $\leq V_{EE} \leq -4.725V$

					LIMITS		
SYMBOL	PARAMETER	то	FROM	Min	Typ1	Max	UNIT
Access time	8					•	•
t _{AA}		Output	Address		6	10	ns
^t CE		Output	Chip Enable		2	5	ns
Disable time	8						
t _{CD}		Output	Chip Disable		2	5	ns
Rise and fal	ll time						
t+	Rise time (20-80%)			1	1.0		ns
г	Fall time (80–20%)				1.0		ns

NOTE:

1. Typical values are at $V_{EE} = -4.5V$, $T_A = +25^{\circ}C$.

TEST LOAD CIRCUIT

2. manner.

Normal practice in test fixtures layout should be followed. Lead lengths, particularly to the power supply, should be as short as possible. A 10µ² capacitor between V_{CC} and V_{CC0} terminals, located as close to the device as possible, is recommended to reduce ringing. 3.

16K-Bit ECL Bipolar PROM (4096 × 4)

100P016

VOLTAGE WAVEFORMS

PACKAGE INFORMATION

	page
ackage outlines	539
Introduction	541
ackage outlines for product with prefixes: FCB, PCA, PCD, PCF	
Package outlines for product with prefixes: FCB, PCA, PCD, PCF	555

PACKAGE OUTLINES

Introduction	541
Plastic Leaded Chip Carrier	543
Plastic Small Outline	545
Ceramic DIP	547
Plastic DIP	551

page

Bipolar Memory Products

INTRODUCTION

The following information applies to packages currently used for Memories. For information on other package configurations, refer to the respective Data Manual for each product.

GENERAL

- The following pages contain information on plastic DIP and CERDIP packages ranging from 16 pins to 28 pins, SOLs 16 to 20-pin, and Plastic Leaded Chip Carriers from 20 pins to 32 pins.
- Information for each package such as notes and reference standards are included on each drawing for easy reference.
- 3. Thermal resistance values have been determined by utilizing the linear temperature dependence of the forward voltage drop across the substrate diode in a digital device to monitor the junction temperature rise during known power application across V_{CC} and ground. Since thermal resistance values are dependent on die size and

the value of power dissipated, measurements were made on packages containing various die sizes. The information in the tables shown here are typical values for a mid memory die size for a given package. For more detailed information on thermal performance of specific packages please contact your Signetics sales representative and request the latest publication of Thermal Performance Data published by Signetics Corporate Package Engineering.

PLASTIC LEADED CHIP CARRIER (PLCC)

NO. OF LEADS	PACKAGE CODE	θ_{JA}/θ_{JC}	DESCRIPTION
20	A	72/31	350mil-square
28	A	60/24	450mil-square
32	A	58/18	450 $ imes$ 550mil-rectangular

20-PIN PLASTIC LEADED CHIP CARRIER

- 1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
- 2. Body material: Plastic (Epoxy).
- 3. Thermal test Fixture: Device soldered to a glass epoxy test board with the dimensions $1.58''\times0.75''\times0.059''$ with 0.009'' stand off.

28-PIN PLASTIC LEADED CHIP CARRIER

32-PIN PLASTIC LEADED CHIP CARRIER

PLASTIC SMALL OUTLINE PACKAGES (SOL)

NO. OF LEADS	PACKAGE CODE	θ_{JA}/θ_{JC}	DESCRIPTION
16	D	95/27	300mil-wide
20	D	86/23	300mil-wide

- 1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
- 2. Body material: Plastic (Epoxy).
- 3. Thermal test fixture: Device soldered to a glass epoxy test board with the dimensions of $1.58''\times0.75''\times0.059''$ with 0.009'' stand off.

16-PIN PLASTIC SMALL OUTLINE (SOL)

20-PIN PLASTIC SMALL OUTLINE (SOL)

CERAMIC DUAL-IN-LINE PACKAGES

NO. OF LEADS	PACKAGE CODE	θ_{JA}/θ_{JC}	DESCRIPTION
16	F	77/12	300mil-wide
18	F	73/9	300mil-wide
20	F	72/8	300mil-wide
22	F	66/7	400mil-wide
24	F, F3 ¹	63/6	300mil-wide
24	F, FA	62/5	600mil-wide
28	F, FA	45/5	600mil-wide

CERDIP

- 1. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
- 2. Body Material: Ceramic with glass seal at leads.
- 3. Thermal test fixture: Device secured in Textool ZIF socket with 0.04" stand off.

NOTES:

1. Order coded as F3 when both 600 and 300mil-wide packages are available.

16-PIN HERMETIC CERDIP

18-PIN HERMETIC CERDIP

20-PIN HERMETIC CERDIP

548

22-PIN HERMETIC CERDIP

24-PIN HERMETIC CERDIP (300mil-wide)

24-PIN HERMETIC CERDIP (600mil-wide)

28-PIN CERDIP (600mil-wide)

PLASTIC DUAL-IN-LINE PACKAGES

NO. OF LEADS	PACKAGE CODE	θ_{JA}/θ_{JC}	DESCRIPTION
16	N	76/26	300mil-wide
18	N	63/24	300mil-wide
20	N	60/24	300mil-wide
22	N	56/21	400mil-wide
24	N/N3 ¹	52/20	300mil-wide
24	N	44/18	600mil-wide
28	N	42/16	600mil-wide

NOTES:

1. Order coded as N3 when both 600mil and 300mil-wide packages are available.

16-PIN PLASTIC DUAL IN-LINE (PDIP)

DS .004 (.10) NOTES: 1. Controlling dimension: inches. Metric are shown in parentheses. 2. Package dimensions conform to JEDEC specification Package dimensions conform to JEDEC specification MS-001-AA for standard dual in-line (UPI) package .300 inch row spacing (PLASTIC) 16 leads (issue 8. 7/85) Dimensions and tolerancing per ANSI 174. 5M-1982 "T", "D" and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 inch (.25mm) д ሊ Д Л д Л ٦l т .255 (6.48) - È - These dimensions measured with the leads constrained to be perpendicular to plane T. Pin numbers start with pin #1 and continue counterclockwise to pin #16 when viewed from the top. 245 (6.22) 1 PIN#1 h h. ኒ ህ ٦I 100 2.54 (BSC) 757 (19.23) ED-.746 (18.95) CORNER .064 (1.63) LEAD OPTION (4 PLACES) .322 (8.18) .045 (1.14) .300 (7.62) (NOTE 5) 125 (3.18) .160 (4.06) .135 (3.43) FT-SEATING Ŧ .035 (.89) .020 (.51) BSC .138 (3.51) .300 (7.62) (NOTE 5) 120 (3.05) .015 (.38) .022 (.56) TEDS .010 (.25) 8 395 (10.03) .017 (.43) 010 (.25) .300 (7.62) NJ1 853-0406 81232 PO00280S

PLASTIC DIP

1. Lead material: Olin 194 (Copper Alloy) or

equivalent, solder dipped. 2. Body material: Plastic (Epoxy). 3. Thermal test fixture: Device secured in a Textool ZIF socket with 0.04" stand off.

18-PIN PLASTIC DUAL IN-LINE (PDIP)

20-PIN PLASTIC DUAL IN-LINE (PDIP)

22-PIN PLASTIC DUAL IN-LINE (PDIP)

24-PIN PLASTIC DUAL IN-LINE (PDIP)

24-PIN PLASTIC DIP (600mil-wide)

28-PIN PLASTIC DUAL IN-LINE (600mil-wide)

PACKAGE OUTLINES

Introduction

for Prefixes: FCB, PCA, PCD, PCF	
----------------------------------	--

The package information for each type number is given below:

type number	description and package code	page
FCB51C64P	28-lead dual in-line; plastic (SOT117)	561
FCB51C64T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB51C65P	28-lead dual in-line; plastic (SOT117)	561
FCB51C65T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C65(L/LL)P	28-lead dual in-line; plastic (SOT117)	561
FCB61C65(L/LL)T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C251P	24-lead dual in-line; plastic (SOT101A,B,F,G,L)	558
FCB61C251T	24-lead mini-pack; plastic (SOJ24; SOT239)	570
FCB61C252P	24-lead dual in-line; plastic (SOT101A,B,F,G,L)	558
FCB61C252T	24-lead mini-pack; plastic (SOJ24; SOT239)	570
FCB61C253P	28-lead dual in-line; plastic (SOT117)	561
FCB61C253T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C257(L/LL)P	28-lead dual in-line; plastic (SOT117)	561
FCB61C257(L/LL)T	28-lead mini-pack; plastic (SO28XL; SOT213)	568
FCB61C1025(L/LL)P	32-lead dual in-line; plastic (SOT201)	567
FCB61C1025(L/LL)T	32-lead mini-pack; plastic (SO32 2XL; SOT221)	569
PCA8582BP	8-lead dual in-line; plastic (SOT97)	557
PCA8582BT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCD5101P	22-lead dual in-line; plastic (SOT116)	560
PCD5101T	24-lead mini-pack; plastic (SO24; SOT137A)	562
PCD5114P	18-lead dual in-line; plastic (SOT102G, N, PE)	559
PCD5114T	20-lead mini-pack; plastic (SO20; SOT 163A)	564
PCF8570P	8-lead dual in-line; plastic (SOT97)	557
PCF8570T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8570CP	8-lead dual in-line; plastic (SOT97)	557
PCF8570CT	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8571P	8-lead dual in-line; plastic (SOT97)	557
PCF8571T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8581P	8-lead dual in-line; plastic (SOT97)	557
PCF8581T	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8581CP	8-lead dual in-line; plastic (SOT97)	557
PCF8581CT	8-lead mini-pack; plastic (SO8L; SOT176C)	566
PCF8582AP	8-lead dual in-line; plastic (SOT97)	557
PCF8582AT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCF8582CP	8-lead dual in-line; plastic (SOT97)	557
PCF8582CT	16-lead mini-pack; plastic (SO16L; SOT162A)	563
PCF8583P	8-lead dual in-line; plastic (SOT97)	557
PCF8583T	8-lead mini-pack; plastic (SO8L; SOT176A)	565

page

8-LEAD DUAL IN-LINE; PLASTIC (SOT97)

24-LEAD DUAL IN-LINE; PLASTIC (SOT101A, B, F, G, L)

18-LEAD DUAL IN-LINE; PLASTIC (SOT102G, N, PE)

22-LEAD DUAL IN-LINE; PLASTIC (SOT116)

28-LEAD DUAL IN-LINE; PLASTIC (SOT117)

16-LEAD MINI-PACK; PLASTIC (SO16L; SOT162A)

20-LEAD MINI-PACK; PLASTIC (SO20; SOT163A)

8-LEAD MINI-PACK; PLASTIC (SO8L; SOT176A)

P

8-LEAD MINI-PACK; PLASTIC (SO8L; SOT176C)

32-LEAD DUAL IN-LINE; PLASTIC WITH INTERNAL HEAT SPREADER (SOT201)

28-LEAD MINI-PACK; PLASTIC (SO28XL; SOT213)

24-LEAD MINI-PACK; PLASTIC (J-BENT LEADS) (SOJ24; SOT239)

Dimensions in mm

SOLDERING

Plastic dual in-line (DIL) packages	573
Plastic mini-pack (SO) packages	573

page

SOLDERING PLASTIC MINI-PACKS

1. By hand-held soldering iron or pulse-heated solder tool

Fix the component by first soldering two, diagonally opposite end leads. Apply the heating tool to the flat part of the lead only. Contact time must be limited to 10 seconds at up to 300 °C. When using proper tools, all other leads can be soldered in one operation within 2 to 5 seconds at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages).

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to substrate by dipping or by an extra thick tin/lead plating before package placement.

2. By wave

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 seconds, if allowed to cool to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

3. By solder paste reflow

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing, for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 seconds according to method. Typical reflow temperatures range from 215 to 250 °C.

Pre-heating is necessary to dry paste and evaporate binding agent.

Pre-heating duration: 45 minutes at 45 °C.

4. Repairing soldered joints

The same precaution and limits apply as in (1) above.

SOLDERING PLASTIC DUAL IN-LINE PACKAGES

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300° C it must not be in contact for more than 10 seconds; if between 300 and 400 °C, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printedcircuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

Signetics

Sales Offices, Representatives & Distributors

Memories MOS, TTL and ECL

SIGNETICS HEADQUARTERS 811 East Arques Avenue P.O. Box 3409 Sunnyvale, CA 94088-3409 Phone: (408) 991-2000

ALABAMA Huntsville Phone: (205) 830-4001

CALIFORNIA Calabasas Phone: (818) 880-6304

Irvine Phone: (714) 833-8980 (714) 752-2780

San Diego Phone: (619) 560-0242

Sunnyvale Phone: (408) 991-3737

COLORADO Aurora Phone: (303) 751-5071

GEORGIA Atlanta Phone: (404) 594-1392

ILLINOIS Itasca Phone: (708) 250-0050

INDIANA Kokomo Phone: (317) 459-5355

MASSACHUSETTS Westford Phone: (508) 692-6211

MICHIGAN Farmington Hills Phone: (313) 553-6070

NEW JERSEY Parsippany Phone: (201) 334-4405

Toms River Phone: (201) 505-1200

NEW YORK Wappingers Falls Phone: (914) 297-4074

NORTH CAROLINA Raleigh Phone: (919) 787-4990

OHIO Columbus Phone: (614) 888-7143

Dayton Phone: (513) 436-0066 OREGON Beaverton Phone: (503) 627-0110

PENNSYLVANIA Plymouth Meeting Phone: (215) 825-4404

TENNESSEE Greeneville Phone: (615) 639-0251

TEXAS Austin Phone: (512) 339-9945

Richardson Phone: (214) 644-3500

CANADA SIGNETICS CANADA, LTD. Etobicoke, Ontario Phone: (416) 626-6676

Phone: (416) 626-6676 Nepean, Ontario Phone: (613) 225-5467

REPRESENTATIVES

ALABAMA Huntsville Elcom, Inc. Phone: (205) 830-4001

ARIZONA Scottsdale Thom Luke Sales, Inc. Phone: (602) 941-1901

CALIFORNIA Folsom Webster Associates Phone: (916) 989-0843

COLORADO Aurora Thom Luke Sales, Inc. Phone: (303) 751-5011

CONNECTICUT Wallingford JEBCO Phone: (203) 265-1318

GEORGIA Atlanta Elcom, Inc. Phone: (404) 594-1392

FLORIDA Oviedo Conley and Assoc., Inc. Phone: (407) 365-3283

ILLINOIS Hoffman Estates Micro-Tex, Inc. Phone: (708) 382-3001 INDIANA Indianapolis Mohrfield Marketing, Inc. Phone: (317) 546-6969

IOWA Cedar Rapids J.R. Sales Phone: (319) 393-2232

MARYLAND Columbia Third Wave Solutions, Inc. Phone: (301) 290-5990

MASSACHUSETTS Cheimsford JEBCO Phone: (508) 256-5800

MICHIGAN Brighton AP Associates, Inc. Phone: (313) 229–6550

MINNESOTA Eden Prairie High Technology Sales Phone: (612) 944-7274

MISSOURI Bridgeton Centech, Inc. Phone: (314) 291-4230

Raytown Centech, Inc. Phone: (816) 358-8100

NEW HAMPSHIRE Hooksett JEBCO Phone: (603) 645-0209

NEW MEXICO Albuquerque F.P. Sales Phone: (505) 345-5553

NEW YORK Ithaca Bob Dean, Inc. Phone: (607) 257-1111

Rockville Centre S-J Associates Phone: (516) 536-4242

Wappingers Falls Bob Dean, Inc. Phone: (914) 297-6406

NORTH CAROLINA Smithfield ADI Phone: (919) 934-8136

OHIO Centerville Bear Marketing, Inc. Phone: (513) 436-2061 Richfield Bear Marketing, Inc. Phone: (216) 659-3131

OREGON Beaverton Western Technical Sales Phone: (503) 644-8860

PENNSYLVANIA Pittsburgh Bear Marketing, Inc. Phone: (412) 531-2002

Hatboro Delta Technical Sales, Inc. Phone: (215) 957-0600

TEXAS Austin Synergistic Sales, Inc. Phone: (512) 346-2122

Houston Synergistic Sales, Inc. Phone: (713) 937-1990

Richardson Synergistic Sales, Inc. Phone: (214) 644-3500

UTAH Salt Lake City Electrodyne Phone: (801) 264-8050

WASHINGTON Bellevue Western Technical Sales Phone: (206) 641-3900

Spokane Western Technical Sales Phone: (509) 922-7600

WISCONSIN Waukesha Micro-Tex, Inc. Phone: (414) 542-5352

CANADA Burnaby, B.C. Tech-Trek, Ltd. Phone: (604) 439-1373

Mississauga, Ontario Tech-Trek, Ltd. Phone: (416) 238-0366

Nepean, Ontario Tech-Trek, Ltd. Phone: (613) 225-5161

Ville St. Laurent, Quebec Tech-Trek, Ltd. Phone: (514) 337-7540

PUERTO RICO Santurce Mectron Group Phone: (809) 728-3280

DATA HANDBOOK SYSTEM

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of six series of handbooks:

INTEGRATED CIRCUITS

DISCRETE SEMICONDUCTORS

DISPLAY COMPONENTS

PASSIVE COMPONENTS*

PROFESSIONAL COMPONENTS**

MATERIALS*

The contents of each series are listed on pages iii to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

- * Will replace the Components and materials (green) series of handbooks.
- ** Will replace the Electron tubes (blue) series of handbooks.

ii

November 1988

INTEGRATED CIRCUITS

This series of handbooks comprises:

code	handbook title
IC01	Radio, audio and associated systems Bipolar, MOS
IC02a/b	Video and associated systems Bipolar, MOS
IC03	ICs for Telecom Bipolar, MOS Subscriber sets, Cordless Telephones
IC04	HE4000B logic family CMOS
IC05	Advanced Low-power Schottky (ALS) Logic Series
IC06	High-speed CMOS; PC74HC/HCT/HCU Logic family
IC07	Advanced CMOS logic (ACL)
IC08	ECL 10K and 100K logic families
IC09N	TTL logic series
IC10	Memories MOS, TTL, ECL
IC11	Linear Products
IC12	I ² C-bus compatible ICs
IC13	Semi-custom Programmable Logic Devices (PLD)
IC14	Microcontrollers NMOS, CMOS
IC15	FAST TTL logic series
Supplement to IC15	FAST TTL logic series
IC16	CMOS integrated circuits for clocks and watches
IC17	ICs for Telecom Bipolar, MOS Radio pagers Mobile telephones ISDN
IC18	Microprocessors and peripherals
IC19	Data communication products

DISCRETE SEMICONDUCTORS

This series of data handbooks comprises:

current code	new code	handbook title
S1	SC01	Diodes High-voltage tripler units
S2a	SC02*	Power diodes
S2b	SC03*	Thyristors and triacs
S3	SC04	Small-signal transistors
S4a	SC05	Low-frequency power transistors and hybrid IC power modules
S4b	SC06	High-voltage and switching power transistors
S5	SC07	Small-signal field-effect transistors
S6	SC08 SC09	RF power transistors RF power modules
S7	SC10	Surface mounted semiconductors
S8a	SC11*	Light emitting diodes
S8b	SC12	Optocouplers
S9	SC13*	PowerMOS transistors
S10	SC14	Wideband transistors and wideband hybrid IC modules
S11	SC15	Microwave transistors
S15**	SC16	Laser diodes
S13	SC17	Semiconductor sensors
S14	SC18*	Liquid crystal displays and driver ICs for LCDs

* Not yet issued with the new code in this series of handbooks.
** New handbook in this series; will be issued shortly.

iv

June 1989

DISPLAY COMPONENTS

This series of data handbooks comprises:

current code	new code	handbook title
Т8	DC01	Colour display components
T16	DC02	Monochrome monitor tubes and deflection units
C2	DC03	Telavision tuners, coaxial aerial input assemblies
C3	DC04*	Loudspeakers
C20	DC05	Flyback transformers, mains transformers and general-purpose FXC assemblies

* These handbooks are currently issued in another series; they are not yet issued in the Display Components series of handbooks.

PASSIVE COMPONENTS

This series of data handbooks comprises:

current code	new code	handbook title
C14	PA01	Electrolytic capacitors; solid and non-solid
C11	PA02	Varistors, thermistors and sensors
C12	PA03	Potentiometers and switches
C7	PA04	Variable capacitors
C22	PA05*	Film capacitors
C15	PA06*	Ceramic capacitors
C9	PA07*	Piezoelectric quartz devices
C13	PA08	Fixed resistors

* Not yet issued with the new code in this series of handbooks.

vi

PROFESSIONAL COMPONENTS

This series of data handbooks comprises:

current code	new code	handbook title
T1	*	Power tubes for RF heating and communications
T2a	*	Transmitting tubes for communications, glass types
T2b	*	Transmitting tubes for communications, ceramic types
тз	PC01**	High-power klystrons
Т4	*	Magnetrons for microwave heating
Т5	PC02**	Cathode-ray tubes
Т6	PC03**	Geiger-Müller tubes
Т9	PC04**	Photo and electron multipliers
Т10	PC05	Plumbicon camera tubes and accessories
T11	PC06	Circulators and Isolators
T12	PC07	Vidicon and Newvicon camera tubes and deflection units
T13	PC08	Image intensifiers
T15	PC09**	Dry reed switches
C8	PC10	Variable mains transformers; annular fixed transformers
	PC11	Solid state image sensors and peripheral integrated circuits

* These handbooks will not be reissued.

** Not yet issued with the new code in this series of handbooks.

MATERIALS

This series of data handbooks comprises:

current code	new code	handbook title
C4 C5	MA01*	Soft Ferrites
C16	MA02**	Permanent magnet materials
C19	MA03**	Piezoelectric ceramics

- * Handbooks C4 and C5 will be reissued as one handbook having the new code MA01.
- ** Not yet issued with the new code in this series of handbooks.

viii

Philips Components — a worldwide Company

Argentina: PHILIPS ARGENTINA S.A. Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-4261. Australia: PHILIPS COMPONENTS PTY Ltd, 11 Waltham Street, ARTARMON, N.S.W. 2064, TEL. (02) 439 3322. Austria: OSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN. Tel. (0222) 60 101-820. Belgium: N.V. PHILIPS PROF. SYSTEMS - Components Div. 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 5256111. Brazil: PHILIPS COMPONENTS (Active Devices) Av. das Nacoes Unidas, 12495-SAO PAULO-SP, CEP 04578, P.O. Box 7383, Tel. (011) 534-2211 PHILIPS COMPONENTS (Passive Devices & Materials) Av, Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, CEP 09400, Tel. (011) 459-8211. Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8 Tel. (416) 292-5161. (IC Products) SIGNETICS CANADA LTD., 1 Eva Road, Suite 433, ETOBICOKE, Ontario, M9C 4Z5, Tel. (416 626-6676. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel (02) 773816 Colombia: IPRELENSO LTDA., Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (01) 2497624. Denmark: PHILIPS COMPONENTS A/S, Prags Boulevard 80, PB1919, DK-2300 COPENHAGEN S, Tel. 01-541133. Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-2630 ESPOO Tel 358-0-50261 France: PHILIPS COMPOSANTS, 117 Quai du President Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (01) 40938000. Germany (Fed. Republic): PHILIPS COMPONENTS UB der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Components Division, No. 15, 25th March Street, GR 17778 TAVBOS, Tel. (01) 4894339/4894911 Hong Kong: PHILIPS HONG KONG LTD., Components Div. 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-4245 121. India: PEICO ELECTRONICS & ELECTRICALS LTD., Components Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY -- 400025, Tel. (022) 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995. Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355 Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1. Japan: PHILIPS JAPAN LTD., Components Division, Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO (108), Tel. (03) 7405028 Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Components Division, Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011. Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div. 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511. Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHIHUAHUA 32340 MEXICO, Tel. (16) 18-67-01/02 Netherlands: PHILIPS NEDERLAND B.V., Marktgroep Philips Components, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749. New Zealand: PHILIPS NEW ZEALAND LTD., Components Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.

98-6900-110

Norway: NORSK A/S PHILIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 680200.

- Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.
- Peru: CADESA, Carretera Central 6.500, LIMA 3, Apartado 5612, Tel. 51-14-350059.
- Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.
- Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.

Singapore: PHILIPS SINGAPORE, PTE LTD., Components Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.

- South Africs: S.A. PHILIPS PTY LTD., Components Division, JOHANNESBURG 2000, P.O. Box 7430.
- Spain: PHILIPS COMPONENTS, Baimes 22, 08007 BARCELONA, Tel. (03) 3016312.
- Sweden: PHILIPS COMPONENTS, A.B., Tegeluddsvagen 1, S-11584 STOCKHOLM, Tel. (0)8-7821000.
- Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. (01) 4882211.
- Taiwan: PHILIPS TAIWAN LTD., 581 Min Sheng East Road, P.O. Box 22978, TAIPEI 10446, Taiwan, Tel. 886-2-5005899.
- Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.
- Turkey: TURK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (01) 1792770. United Kingdom: PHILIPS COMPONENTS LTD., Mullard House,
- Torrington Place, LONDON WC1E 7HD, Tel. (01) 5806633.

United States: (Color Picture Tubes - Monochrome & Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963, ANN ARBOR, Michigan 44016, Tel. (313) 996-8400. (IC Products) SIGNETICS COMPANY, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000. (Passive Components, Discrete Semiconductors, Materials and Professional Components) PHILIPS COMPONENTS, Discrete Products Division, 2001 West Blue Heron Bivd., P.O. Box 10330, RIVIERA BEACH, Florida 3340, Tel. (407) 881-3200

- Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) 70-4044.
- Venezuela: MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 241 7509.
- Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD., 62 Mutare Road, HARARE, P.O. Box 994, Tel. 47211.

For all other countries apply to: Philips Components Division, Strategic Accounts and International Sales, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax 23753.

AS80 04/26/90 @Philips Export B.V. 1990

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent — or industrial or intellectual property rights.

Copyright 1990 NAPC Printed in USA

0141N/40M/CR3/0690

PHILIPS

Philips Components

