

MOS INTEGRATED CIRCUIT Phase-out/Discontinued μ PD72872

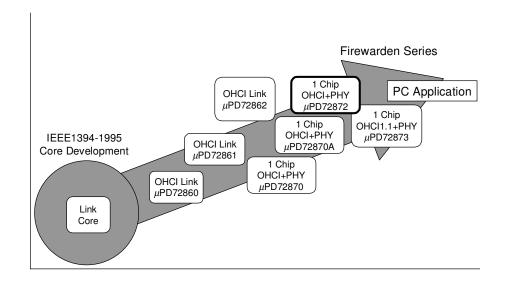
IEEE1394 1-CHIP OHCI HOST CONTROLLER

The μ PD72872 is the LSI which integrated OHCI-Link and PHY function into a single chip.

The μPD72872 complies with the P1394a draft 2.0 specifications and the OpenHCI IEEE1394 1.0, and works up to 400 Mbps.

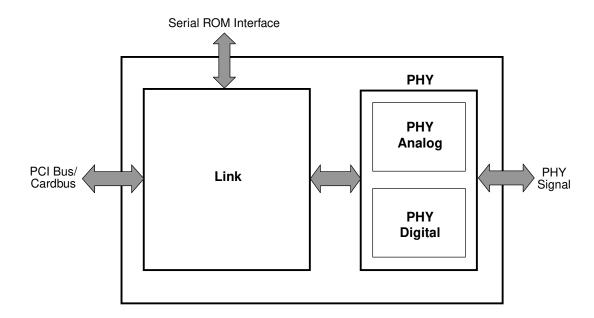
It makes design so compact for PC and PC card application.

FEATURES

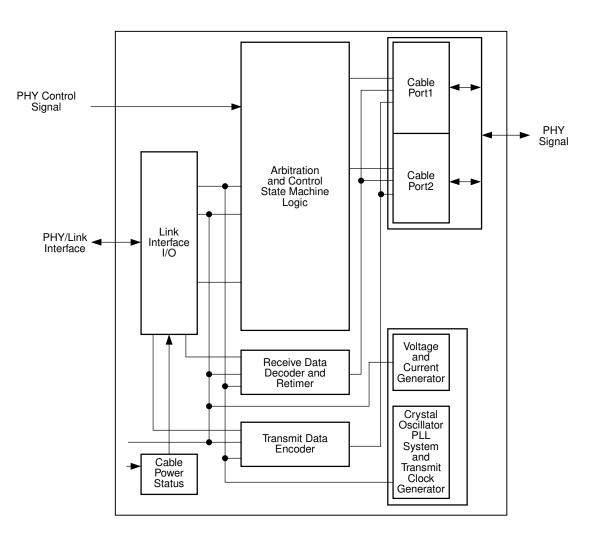

- Shrink from the μ PD72870A.
- Compliant with Link Layer Services as defined in 1394 Open Host Controller Interface specification release 1.0
- Compliant with Physical Layer Services as defined in P1394a draft 2.0 (Data Rate 100/200/400 Mbps)
- Numbers of supported port (1, 2 ports) are selectable
- Compliant with protocol enhancement as defined in P1394a draft 2.0
- Modular 32-bit host interface compliant to PCI local bus specification Revision 2.2
- Support PCI-Bus Power Management Interface Specification release 1.1
- Modular 32-bit host interface compliant to Card Bus Specification
- Cycle Master and Isochronous Resource Manager capable
- 32-bit CRC generation and checking for receive/transmit packets
- · 4 isochronous transmit DMAs and 4 isochronous receive DMAs supported
- 32-bit DMA channels for physical memory read/write
- Clock generation by 24.576 MHz X'tal
- Internal control and operational registers direct-mapped to PCI configuration space
- 2-wire Serial EEPROM[™] interface supported
- Separate power supply Link and PHY

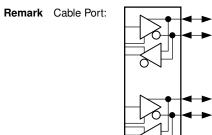
ORDERING INFORMATION

Part number	Package
μPD72872GC-9EV	120-pin plastic TQFP (Fine pitch) (14 x 14)

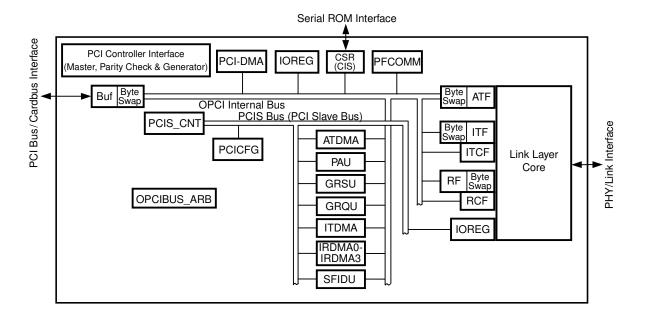

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Firewarden™ ROADMAP




BLOCK DIAGRAMS

Top Block Diagram


PHY Block Diagram

Link Block Diagram

ATDMA : Asynchronous Transmit DMA ATF : Asynchronous Transmit FIFO

CIS : CIS Register

CSR : Control and Status Registers

IOREG : IO Registers

IRDMA : Isochronous Receive DMA

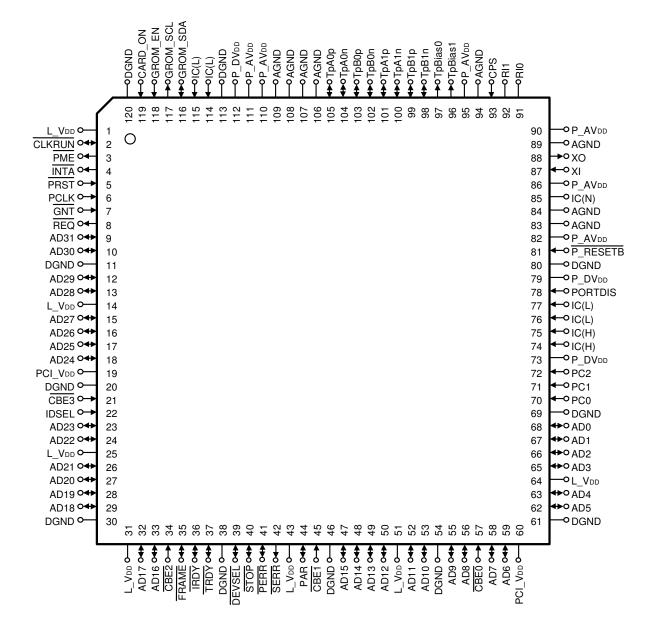
ITCF : Isochronous Transmit Control FIFO

ITDMA : Isochronous Transmit DMA
ITF : Isochronous Transmit FIFO
OPCIBUS_ARB : OPCI Internal Bus Arbitration

PAU : Physical Response and Request Unit

PCICFG : PCI Configuration Registers

PCIS_CNT : PHY Control Isochronous Control


PFCOMM : Pre Fetch Command FIFO RCF : Receive Control FIFO

RF : Receive FIFO SFIDU : Self-ID DMA

PIN CONFIGURATION (TOP VIEW)

• 120-pin plastic TQFP (Fine pitch) (14 x 14)

μPD72872GC-9EV

PIN NAME

AD0-AD31 : PCI Multiplexed Address and Data

AGND : Analog GND
CARD ON : PCI/Card Select

CBE0-CBE3 : Command/Byte Enables
CLKRUN : PCICLK Running

CPS : Cable Power Status Input

DEVSEL : Device Select
DGND : Digital GND
FRAME : Cycle Frame
GNT : Bus master G

GNT : Bus_master Grant
GROM_EN : Serial EEPROM Enable

GROM_SCL: Serial EEPROM Clock Output
GROM_SDA: Serial EEPROM Data Input / Output
IC(H): Internally Connected (High Clamped)
IC(L): Internally Connected (Low Clamped)

IC(N) : Internally Connected (Open)

 IDSEL
 : ID Select

 INTA
 : Interrupt

 IRDY
 : Initiator Ready

L_VDD : VDD for Link Digital Core and Link I/Os

PAR : Parity

PC0-PC2 : Power Class Input
PCI_VDD : VDD for PCI I/Os
PCLK : PCI Clock

PERR : Parity Error

PME : PME Output
PORTDIS : Port Disable

PRST : Reset

P_AVDD : PHY Analog VDD P DVDD : PHY Digital VDD

P_RESETB : PHY Power on Reset Input
REQ : Bus_master Request

RIO : Resistor0 for Reference Current Setting
RI1 : Resistor1 for Reference Current Setting

SERR : System Error STOP : PCI Stop

TpA0n : Port-1 Twisted Pair A Negative Input/Output
TpA0p : Port-1 Twisted Pair A Positive Input/Output
TpA1n : Port-2 Twisted Pair A Negative Input/Output
TpA1p : Port-2 Twisted Pair A Positive Input/Output
TpB0n : Port-1 Twisted Pair B Negative Input/Output
TpB0p : Port-1 Twisted Pair B Positive Input/Output

TpB1n : Port-2 Twisted Pair B Negative Input/Output
TpB1p : Port-2 Twisted Pair B Positive Input/Output
TpBias0 : Port-1 Twisted Pair Bias Voltage Output

TpBias1 : Port-2 Twisted Pair Bias Voltage Output

TRDY : Target Ready
XI : X'tal XI
XO : X'tal XO

CONTENTS

1.	PIN	FUNCTIONS		10
	1.1	PCI/Cardbus Int	terface Signals: (52 pins)	10
	1.2	PHY Signals: (1	6 pins)	12
	1.3	PHY Control Sig	gnals: (4 pins)	12
	1.4	PCI/Cardbus Se	elect Signal: (1 pin)	12
	1.5	Serial ROM Inte	erface Signals: (3 pins)	13
	1.6	IC: (7 pins)		13
	1.8	GND		13
2.				
			ture for PHY Registers	
		-	ge (Page 000)	
	2.3	Vendor ID Page	e (Page 001)	18
3.			REGISTERS	
	3.1	PCI Bus Mode (Configuration Register (CARD_ON = Low)	
		3.1.1 Offset_00	Vendor ID Register	
		3.1.2 Offset_02	Device ID Register	20
		3.1.3 Offset_04	Command Register	
		3.1.4 Offset_06	Status Register	
		3.1.5 Offset_08	Revision ID Register	
		3.1.6 Offset_09	Class Code Register	
		3.1.7 Offset_0C	Cache Line Size Register	
		3.1.8 Offset_0D	Latency Timer Register	
		3.1.9 Offset_0E	Header Type Register	
		3.1.10 Offset_0F	·	
		3.1.11 Offset_10		
		3.1.12 Offset_20	, c	
		3.1.13 Offset_22		
		3.1.14 Offset_30		
		3.1.15 Offset_34	. –	
		3.1.16 Offset_3C		
		3.1.17 Offset_3D		
		3.1.18 Offset_3E	_ ·	
		3.1.19 Offset_3F	_ •	
		3.1.20 Offset_40	-	
		3.1.21 Offset_60		
		3.1.22 Offset_62 3.1.23 Offset 64		
	3 2	_	Power Management Control/Status Register Configuration Register (CARD ON = High)	
	J.Z		8 Base_Address_1/2 Register (Cardbus Status Registers)	
			Cardbus CIS Pointer	
		3.2.3 Offset 80	CIS Area	
		5.2.5 OHSEL_60	OIO AIGA	29

4.	. PHY FUNCTION	30
	4.1 Cable Interface	
	4.1.1 Connections	
	4.1.2 Cable Interface Circuit	31
	4.1.3 CPS	31
	4.1.4 Unused Ports	31
	4.2 PLL and Crystal Oscillation Circuit	31
	4.2.1 Crystal Oscillation Circuit	31
	4.2.2 PLL	31
	4.3 PC0-PC2	31
	4.4 P_RESETB	31
	4.5 RIO, RI1	31
5.	. ELECTRICAL SPECIFICATIONS	32
6.	. PACKAGE DRAWING	35
7.	RECOMMENDED SOLDERING CONDITIONS	36

1. PIN FUNCTIONS

1.1 PCI/Cardbus Interface Signals: (52 pins)

(1/2)

						(1/2)
Name	I/O	Pin No.	lol	Volts(V)	Function	Block *
PAR	I/O	44	PCI/Cardbus	5/3.3	Parity is even parity across AD0-AD31 and CBE0-	Link
					CBE3. It is an input when AD0-AD31 is an input; it	
					is an output when AD0-AD31 is an output.	
AD0-AD31	I/O	9, 10, 12, 13, 15-	PCI/Cardbus	5/3.3	PCI Multiplexed Address and Data	Link
		18, 23, 24, 26-29,				
		32, 33, 47-50, 52,				
		53, 55, 56, 58, 59,				
		62, 63, 65-68				
CBE0-CBE3	I	21, 34, 45, 57	-	5/3.3	Command/Byte Enables are multiplexed Bus	Link
					Commands & Byte enables.	
FRAME	I/O	35	PCI/Cardbus	5/3.3	Frame is asserted by the initiator to indicate the	Link
					cycle beginning and is kept asserted during the	
					burst cycle. If Cardbus mode (CARD_ON = 1), this	
					pin should be pulled up to VDD.	
TRDY	I/O	37	PCI/Cardbus	5/3.3	Target Ready indicates that the current data phase	Link
					of the transaction is ready to be completed.	
IRDY	I/O	36	PCI/Cardbus	5/3.3	Initiator Ready indicates that the current bus	Link
					master is ready to complete the current data phase.	
					During a write, its assertion indicates that the	
					initiator is driving valid data onto the data bus.	
					During a read, its assertion indicates that the	
					initiator is ready to accept data from the currently-	
					addressed target.	
REQ	0	8	PCI/Cardbus	5/3.3	Bus_master Request indicates to the bus arbiter	Link
					that this device wants to become a bus master.	
GNT	I	7	-	5/3.3	Bus_master Grant indicates to this device that	Link
					access to the bus has been granted.	
IDSEL	I	22	-	5/3.3	Initialization Device Select is used as chip select	Link
					for configuration read/write transaction during the	
					phase of device initialization. If Cardbus mode	
					(CARD_ON = 1), this pin should be pulled up to VDD.	
DEVSEL	I/O	39	PCI/Cardbus	5/3.3	Device Select when actively driven, indicates that	Link
					the driving device has decoded its address as the	
					target of the current access.	
STOP	I/O	40	PCI/Cardbus	5/3.3	PCI Stop when actively driven, indicates that the	Link
					target is requesting the current bus master to stop	
					the transaction.	
PME	0	3	PCI/Cardbus	5/3.3	PME Output for power management enable.	Link

Remark *: If the Link pin is pulled up, it should be connected to L_VDD .

(2/2)

Name	I/O	Pin No.	lol	Volts(V)	Function	Block *
CLKRUN	I/O	2	PCI/Cardbus	5/3.3	PCICLK Running as input, to determine the status	Link
					of PCLK; as output, to request starting or speeding	
					up clock.	
ĪNTA	0	4	PCI/Cardbus	5/3.3	Interrupt the PCI interrupt request A.	Link
PERR	I/O	41	PCI/Cardbus	5/3.3	Parity Error is used for reporting data parity errors	Link
					during all PCI transactions, except a Special Cycle.	
					It is an output when AD0-AD31 and PAR are both	
					inputs. It is an input when AD0-AD31 and PAR are	
					both outputs.	
SERR	0	42	PCI/Cardbus	5/3.3	System Error is used for reporting address parity	Link
					errors, data parity errors during the Special Cycle, or	
					any other system error where the effect can be	
					catastrophic. When reporting address parity errors,	
					it is an output.	
PRST	I	5	-	5/3.3	Reset PCI reset	Link
PCLK	I	6	-	5/3.3	PCI Clock 33 MHz system bus clock.	Link

Remark *: If the Link pin is pulled up, it should be connected to L_V_{DD}.

1.2 PHY Signals: (16 pins)

Name	I/O	Pin No.	Іоь	Volts(V)	Function	Block *
ТрА0р	I/O	105	-	-	Port-1 Twisted Pair A Positive Input/Output Note 1	PHY Analog
TpA0n	I/O	104	-	-	Port-1 Twisted Pair A Negative Input/Output Note 1	PHY Analog
ТрВ0р	I/O	103	-	-	Port-1 Twisted Pair B Positive Input/Output Note 1	PHY Analog
TpB0n	I/O	102	-	-	Port-1 Twisted Pair B Negative Input/Output Note 1	PHY Analog
ТрА1р	I/O	101	-	-	Port-2 Twisted Pair A Positive Input/Output Note 1	PHY Analog
TpA1n	I/O	100	-	-	Port-2 Twisted Pair A Negative Input/Output Note 1	PHY Analog
ТрВ1р	I/O	99	-	-	Port-2 Twisted Pair B Positive Input/Output Note 1	PHY Analog
TpB1n	I/O	98	-	-	Port-2 Twisted Pair B Negative Input/Output Note 1	PHY Analog
PORTDIS	I	78			Port Disable This selected state will be loaded to Disabled bit which allocated PHY register Port Status Page. 1:Disable At this time, all ports will be disabled. For normal use, it should be connected to DGND.	PHY Digital
CPS	I	93	-	-	Cable Power Status Input Note2	PHY Digital
TpBias0	0	97	-	-	Port-1 Twisted Pair Bias Voltage Output Note 1	PHY Analog
TpBias1	0	96	-	-	Port-2 Twisted Pair Bias Voltage Output Note 1	PHY Analog
RI0	-	91	-	-	Resistor0 for Reference Current Setting Note 3	PHY Analog
RI1	-	92	-	-	Resistor1 for Reference Current Setting Note 3	PHY Analog
XI	1	87	-	-	X'tal XI	PHY Analog
XO	0	88	-	-	X'tal XO	PHY Analog

Notes 1. If unused port, please refer to 4.1.4 Unused Ports.

- 2. Please refer to 4.1.3 CPS.
- 3. Please refer to 4.5 RIO, RI1.

1.3 PHY Control Signals: (4 pins)

Name	I/O	Pin No.	Ю	Volts(V)	Function	Block *
PC0-PC2	ı	70-72	-	3.3	Power Class Input Note 1	PHY Digital
P_RESETB	I	81			PHY Power on Reset Input Note 2	PHY Digital

Notes 1. Please refer to 4.3 PC0-PC2.

2. Please refer to 4.4 P_RESETB.

1.4 PCI/Cardbus Select Signal: (1 pin)

Name	I/O	Pin No.	lol	Volts(V)	Function	Block *
CARD_ON	I	119	-	3.3	PCI/Card Select (1:Cardbus, 0:PCI bus)	Link

Remark *: If the Link pin is pulled up, it should be connected to L_VDD.

If the PHY Digital pin is pulled up, it should be connected to P_DVDD.

If the PHY Analog pin is pulled up, it should be connected to P_AVDD.

1.5 Serial ROM Interface Signals: (3 pins)

Name	I/O	Pin No.	Ю	Volts(V)	Function	Block *
GROM_SDA	I/O	116	6 mA	3.3	Serial EEPROM Data Input / Output	Link
GROM_SCL	0	117	6 mA	3.3	Serial EEPROM Clock Output	Link
GROM_EN	ı	118	-	3.3	Serial EEPROM Enable	Link
					(1: GUID Load enabled, 0: GUID Load disabled)	

1.6 IC: (7 pins)

Name	I/O	Pin No.	Ю	Volts(V)	Function	Block *
IC(H)	I	74, 75	-	-	Internally Connected (High clamped)	PHY Digital
IC(L)	1	76, 77, 114, 115	-	-	Internally Connected (Low clamped)	-
IC(N)	-	85	-	-	Internally Connected (Open)	-

1.7 V_{DD}

Name	I/O	Pin No.	lol	Volts(V)	Function	Block *
PCI_VDD	-	19, 60	-	5/3.3	V _{DD} for PCI I/Os	Link
L_V _{DD}	-	1, 14, 25, 31, 43,	-	3.3	V _{DD} for Link digital Core and Link I/Os	Link
		51, 64				
P_DV _{DD}	-	73, 79, 112	-	3.3	PHY digital VDD	PHY Digital
P_AV _{DD}	-	82, 86, 90, 95, 110,	-	3.3	PHY Analog VDD	PHY Analog
		111				

1.8 GND

Name	I/O	Pin No.	lol	Volts(V)	Function
DGND	-	11, 20, 30, 38, 46,	-	-	Digital GND
		54, 61, 69, 80, 113,			
		120			
AGND	-	83, 84, 89, 94, 106-	-	-	PHY Analog GND
		109			

Remark *: If the Link pin is pulled up, it should be connected to L_VDD.

If the PHY Digital pin is pulled up, it should be connected to P_DV_{DD} .

If the PHY Analog pin is pulled up, it should be connected to P_AV_{DD} .

2. PHY REGISTERS

2.1 Complete Structure for PHY Registers

Figure 2-1. Complete Structure of PHY Registers

	0	1	2	3	4	5	6	7
0000			Physic	cal_ID			R	PS
0001	RHB	IBR			Gap_	count		
0010		Extended (7)		Reserved		Total_	_ports	
0011		Max_speed		Reserved		De	lay	
0100	Link_active	Contender		Jitter			Pwr_class	
0101	Resume_int	ISBR	Loop	Pwr_fail	Timeout	Port_event	Enab_accel	Enab_multi
0110				Rese	erved			
0111		Page_select		Reserved	Port_select			
1000				Register0 (page_select)				
1001				Register1 (p	age_select)			
1010				Register2 (p	age_select)			
1011		Register3 (page_select)						
1100	Register4 (page_select)							
1101	Register5 (page_select)							
1110		Register6 (page_select)						
1111				Register7 (p	age_select)			

Table 2-1. Bit Field Description (1/3)

Field	Size	R/W	Reset value	Description
Physical_ID	6	R	000000	Physical_ID value selected from Self_ID period.
R	1	R	0	If this bit is 1, the node is root.
				1: Root
				0: Not root
PS	1	R		Cable power status.
				1: Cable power on
				0: Cable power off
RHB	1	R/W	0	Root Hold -off bit. If 1, becomes root at the bus reset.
IBR	1	R/W	0	Initiate bus reset.
				Setting to 1 begins a long bus reset.
				Long bus reset signal duration: 166 μ s.
				Returns to 0 at the beginning of bus reset.
Gap_count	6	R/W	111111	Gap count value.
				It is updated by the changes of transmitting and receiving the PHY
				configuration packet Tx/Rx.
				The value is maintained after first bus reset.
				After the second bus reset it returns to reset value.

Table 2-1. Bit Field Description (2/3)

Field	Size	R/W	Reset value	Description	
Extended	3	R	111	Shows the extended register map.	
Total_ports	4	R	0010	Supported port number.	
				0010: 2 ports	
Max_speed	3	R	010	Indicate the maximum speed that this node supports.	
				010: 98.304, 196.608 and 393.216 Mbps	
Delay	4	R	0010	Indicate worst case repeating delay time. 144 + (2 x 20) = 184 ns	
Link_active	1	R/W	1	Link active.	
				1: Enable	
				0: Disable	
				The logical AND status of this bit and LPS.	
				State will be referred to "L bit" of Self-ID Packet#0.	
				The LPS is a PHY/Link interface signal and is defined in P1394a draft 2.0. It	
				is an internal signal in the μ PD72872.	
Contender	1	R/W	0	Contender.	
				"1" indicate this node support bus manager function. This bit will be referred	
				to "C bit" of Self-ID Packet#0.	
Jitter	3	R	010	The difference of repeating time (MaxMin.). (2+1) x 20 = 60 ns	
Pwr_class	3	R/W	See	See Power class.	
			Description	Please refer to P1394a draft 2.0 [7.5.1] Table 7-3.	
				PC0-PC2 Description	
				000 Node does not need power and does not repeat power.	
				001 Node is self-powered and provides a minimum of 15 W to the bus.	
				010 Node is self-powered and provides a minimum of 30 W to the bus.	
				011 Node is self-powered and provides a minimum of 45 W to the bus.	
				100 Node may be powered from the bus and is using up to 3 W.	
				No additional power is needed to enable the link. Note	
				101 Reserved for future standardization.	
				110 Node is powered from the bus and is using up to 3 W.	
				An additional 3 W is needed to enable the link. Note	
				111 Node is powered from the bus and is using up to 3 W.	
				An additional 7 W is needed to enable the link. ^{Note}	
				This bit will be referred to Pwr field of Self-ID Packet#0.	
				The reset data will be determined by PC0-PC2 Pin status.	
Resume_int	1	R/W	0	Resume interrupt enable. When set to 1, if any one port does resume, the	
riesuille_IIIt	'	1 1/ V V	U	Port_event bit becomes 1.	
ISBR	1	R/W	0	Initiate short (arbitrated) bus reset.	
IODIT	'	11/ 44	U	Setting to 1 acquires the bus and begins short bus reset.	
				Short bus reset signal output : 1.3 μ s	
				Returns to 0 at the beginning of the bus reset.	

Note This link is enabled by the link-on PHY packet described in P1394a draft 2.0 [7.5.2]; this packet may also enable application layers.

Table 2-1. Bit Field Description (3/3)

Field	Size	R/W	Reset value	Description
Loop	1	R/W	0	Loop detection output.
				1: Detection
				Writing 1 to this bit clears it to 0.
				Writing 0 has no effect.
Pwr_fail	1	R/W	0	Power cable disconnect detect.
				It becomes 1 when there is a change from 1 to 0 in the CPS bit.
				Writing 1 to this bit clears it to 0.
				Writing 0 has no effect.
Timeout	1	R/W	0	Arbitration state machine time-out.
				Writing 1 to this bit clears it to 0.
				Writing 0 has no effect.
Port_event	1	R/W	0	Set to 1 when the Int_Enable bit in the register map of each port is 1 and
				there is a change in the ports connected, Bias, Disabled and Fault bits.
				Set to 1 when the Resume_int bit is 1 and any one port does resume.
				Writing 1 to this bit clears it to 0.
				Writing 0 has no effect.
Enab_accel	1	R/W	0	Enables arbitration acceleration.
				Ack-acceleration and Fly-by arbitration are enabled.
				1: Enabled
				0: Disabled
				If this bit changes while the bus request is pending, the operation is not
				guaranteed.
Enab_multi	1	R/W	0	Enable multi-speed packet concatenation.
				Setting this bit to 1 follows multi-speed transmission.
				When this bit is set to 0,the packet will be transmitted with the same speed
				as the first packet.
Page_select	3	R/W	000	Select page address between 1000 to 1111.
				000: Port Status Page
				001: Vendor Definition Page
				Others: Unused
Port_select	4	R/W	0000	Port Selection.
				Selecting 000 (Port Status Page) with the page selection selects the port.
				0000: Port 0
				0001: Port 1
				Others: Unused
Reserved	-	R	000	Reserved. Read as 0.

2.2 Port Status Page (Page 000)

Figure 2-2. Port Status Page

	0	1	2	3	4	5	6	7	
1000	AStat		BStat		Child	Connected	Bias	Disabled	
1001	N	egotiated_spe	ed	Int_enable	Fault	Reserved			
1010				Rese	erved				
1011					Reserved				
1100					Reserved				
1101				Reserved					
1110				Reserved					
1111				Reserved					

Table 2-2. Bit Field Description

Field	Size	R/W	Reset value	Description
AStat	2	R	XX	A port status value.
				00:, 10: "0"
				01: "1", 11: " Z "
BStat	2	R	XX	B port status value.
				00:, 10: "0"
				01: "1", 11: " Z "
Child	1	R		Child node status value.
				1: Connected to child node
				0 : Connected to parent node
Connected	1	R	0	Connection status value.
				1: Connected
				0: Disconnected
Bias	1	R		Bias voltage status value.
				1: Bias voltage
				0: No bias voltage
Disabled	1	R/W	See	The reset value is set by the PORTDIS pin.
			Description	1: Disable
Negotiated_	3	R		Shows the maximum data transfer rate of the node connected to this port.
speed				000: 100 Mbps
				001: 200 Mbps
				010: 400 Mbps
Int_enable	1	R/W	0	The Port_event is set to 1 by a change to 1 of the Connected, Bias, Disable,
				and Fault bits.
Fault	1	R/W	0	Set to 1 if an error occurs during Suspend/Resume.
				Writing 1 to this bit clears it to 0.
				Writing 0 has no effect.
Reserved	-	R	000	Reserved. Read as 0.

2.3 Vendor ID Page (Page 001)

Figure 2-3. Vendor ID Page

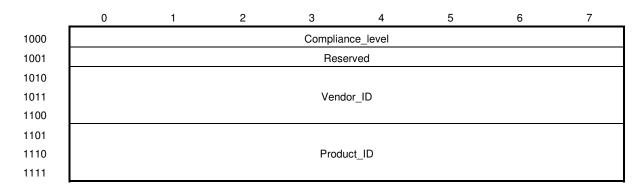


Table 2-3. Bit Field Description

Field	Size	R/W	Reset value	Description
Compliance_level	8	R	0000001	According to IEEE P1394a.
Vendor_ID	24	R	00004CH	Company ID Code value, NEC IEEE OUI.
Product_ID	24	R		Product code.
Reserved		R	000	Reserved. Read as 0.

3. CONFIGURATION REGISTERS

3.1 PCI Bus Mode Configuration Register (CARD_ON = Low)

31 24	23 16	15 08	07	00	
Devi	ce ID	Vendor ID			
Sta	atus	Comr	nand		
	Class Code	Revision			
BIST	Header Type	Latency Timer	Cache Line Size		
	Base Ad	ddress 0			
	Base Ad	ddress 1			
	Base Ad	ddress 2			
	Base Ad	ddress 3			
	Base Ad	ddress 4			
	Base Ad	ddress 5			
	CardBus C	CIS Pointer			
Subsy	stem ID	Subsystem	Vendor ID		
	Expansion ROM Ba	se Address Register			
	000000H		Cap_Ptr		
	00000	0000H			
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line		
	PCI_OHC	CI_Control			
	00000	0000H			
	00000	0000H			
	00000	0000H			
	Diagnostic	c register0		_	
Diagnostic register1					
	Diagnostic	c register2			
	Diagnostic	register3			
Power Manager	ment Capabilities	Next_Item_Ptr	Cap_ID		
Data	PMCSR_BSE	Power Manageme	ent Control/Status		
00000000H					
00000000Н					
User Area (GENERAL_RegisterA)					
User Area (GENERAL_RegisterB)					
00000000Н					
	00000				
	00000	0000H			

*

*

3.1.1 Offset_00 Vendor ID Register

This register identifies the manufacturer of the μ PD72872. The ID is assigned by the PCI_SIG committee.

Bits	R/W	Description
15-0	R	Constant value of 1033H.

3.1.2 Offset_02 Device ID Register

This register identifies the type of the device for the μ PD72872. The ID is assigned by NEC Corporation.

Bits	R/W	Description
15-0	R	Constant value of 00CEH.

3.1.3 Offset_04 Command Register

The register provides control over the device's ability to generate and respond to PCI cycles.

Bits	R/W	Description
0	R	I/O enable Constant value of 0. The μ PD72872 does not respond to PCI I/O accesses.
1	R/W	Memory enable Default value of 1. It defines if the μ PD72872 responds to PCI memory
		accesses. This bit should be set to one upon power-up reset.
		0: The μ PD72872 does not respond to PCI memory cycles
		1: The μPD72872 responds to PCI memory cycles
2	R/W	Master enable Default value of 1. It enables the μ PD72872 as bus-master on the PCI-bus.
		0: The μPD72872 cannot generate PCI accesses by being a bus-master
		1: The μ PD72872 is capable of acting as a bus-master
3	R	Special cycle monitor enable Constant value of 0. The special cycle monitor is always
		disabled.
4	R/W	Memory write and invalidate enable Default value of 1. It enables Memory Write and Invalid
		Command generation.
		0: Memory write must be used
		1: The μ PD72872, when acts as PCI master, can generate the command
5	R	VGA color palette invalidate enable Constant value of 0. VGA color palette invalidate is
		always disabled.
6	R/W	Parity error response Default value of 0. It defines if the μ PD72872 responds to PERR.
		0: Ignore parity error
		1: Respond to parity error
7	R	Stepping enable Constant value of 0. Stepping is always disabled.
8	R/W	System error enable Default value of 0. It defines if the μ PD72872 responds to SERR.
		0: Disable system error checking
		1: Enable system error checking
9	R	Fast back-to-back enable Constant value of 0. Fast back-to-back transactions are only
		allowed to the same agent.
15-10	R	Reserved Constant value of 000000.

3.1.4 Offset_06 Status Register

This register tracks the status information of PCI-bus related events which are relevant to the μ PD72872. "Read" and "Write" are handled somewhat differently.

Bits	R/W	Description			
3-0	R	Reserved Constant value of 0000.			
4	R	New capabilities Constant value of 1. It indicates the existence of the Capabilities List.			
6,5	R	Reserved Constant value of 00.			
7	R	Fast back-to-back capable Constant value of 1. It indicates that the μ PD72872, as a target,			
		cannot accept fast back-to-back transactions when the transactions are not to the same agent.			
8	R/W	Signaled parity error Default value of 0. It indicates the occurrence of any "Data Parity".			
		0: No parity detected (default)			
		1: Parity detected			
10,9	R	DEVSEL timing Constant value of 01. These bits define the decode timing for DEVSEL.			
		0: Fast (1 cycle)			
		1: Medium (2 cycles)			
		2: Slow (3 cycles)			
		3: undefined			
11	R/W	Signaled target abort Default value of 0. This bit is set by a target device whenever it			
		terminates a transaction with "Target Abort".			
		0: The μ PD72872 did not terminate a transaction with Target Abort			
		1: The μ PD72872 has terminated a transaction with Target Abort			
12	R/W	Received target abort Default value of 0. This bit is set by a master device whenever its			
		transaction is terminated with a "Target Abort".			
		0: The μ PD72872 has not received a Target Abort			
		1: The μ PD72872 has received a Target Abort from a bus-master			
13	R/W	Received master abort Default value of 0. This bit is set by a master device whenever its			
		transaction is terminated with "Master Abort". The μ PD72872 asserts "Master Abort" when a			
		transaction response exceeds the time allocated in the latency timer field.			
		0: Transaction was not terminated with a Master Abort			
		1: Transaction has been terminated with a Master Abort			
14	R/W	Signaled system error Default value of 0. It indicates that the assertion of SERR by the			
		μPD72872.			
		0: System error was not signaled			
		1: System error was signaled			
15	R/W	Received parity error Default value of 0. It indicates the occurrence of any PERR.			
		0: No parity error was detected			
		1: Parity error was detected			

3.1.5 Offset_08 Revision ID Register

This register specifies a revision number assigned by NEC Corporation for the μ PD72872.

Bits	R/W	Description
7-0	R	Default value of 01H. It specifies the silicon revision. It will be incremented for subsequent
		silicon revisions.

3.1.6 Offset_09 Class Code Register

This register identifies the class code, sub-class code, and programming interface of the μ PD72872.

Bits	R/W	Description
7-0	R	Constant value of 10H. It specifies an IEEE1394 OpenHCI-compliant Host Controller.
15-8	R	Constant value of 00H. It specifies an "IEEE1394" type.
23-16	R	Constant value of 0CH. It specifies a "Serial Bus Controller".

3.1.7 Offset_0C Cache Line Size Register

This register specifies the system cache line size, which is PC-host system dependent, in units of 32-bit words. The following cache line sizes are supported: 2, 4, 8, 16, 32, 64, and 128. All other values will be recognized as 0, i.e. cache disabled.

Е	Bits	R/W	Description
7-0		R/W	Default value of 00H.

3.1.8 Offset 0D Latency Timer Register

This register defines the maximum amount of time that the μ PD72872 is permitted to retain ownership of the bus after it has acquired bus ownership and initiated a subsequent transaction.

Bits	R/W	Description
7-0	R/W	Default value of 00H. It specifies the number of PCI-bus clocks that the μ PD72872 may hold
		the PCI bus as a bus-master.

3.1.9 Offset_0E Header Type Register

Bits	R/W	Description
7-0	R	Constant value of 00H. It specifies a single function device.

3.1.10 Offset_0F BIST Register

Bits	R/W	Description
7-0	R	Constant value of 00H. It specifies whether the device is capable of Built-in Self Test.

3.1.11 Offset 10 Base Address 0 Register

This register specifies the base memory address for accessing all the "Operation registers" (i.e. control, configuration, and status registers) of the μ PD72872, while the BIOS is expected to set this value during power-up reset.

Bits	R/W	Description
11-0	R	Constant value of 000H. These bits are "read-only".
31-12	R/W	-

3.1.12 Offset 20 Subsystem Vendor ID Register

This register identifies the subsystem that contains the NEC's μ PD72872 function. While the ID is assigned by the PCI_SIG committee, the value should be loaded into the register from the external serial ROM after power-up reset. Access to this register through PCI-bus is prohibited.

Bits	R/W	Description
15-0	R	Default value of 1033H.

3.1.13 Offset_22 Subsystem ID Register

This register identifies the type of the subsystem that contains the NEC's μ PD72872 function. While the ID is assigned by the manufacturer, the value should be loaded into the register from the external serial EEPROM after power-up reset. Access to this register through PCI-bus is prohibited.

Bits	R/W	Description
15-0	R	Default value of 00CEH.

3.1.14 Offset 30 Expansion ROM Base Address Register

This register is not supported by the current implementation of the μ PD72872.

Bits	R/W	Description
31-0	R	Reserved Constant value of 0.

3.1.15 Offset_34 Cap_Ptr Register

This register points to a linked list of additional capabilities specific to the μ PD72872, the NEC's implementation of the 1394 OpenHCl specification.

Bits	R/W	Description
7-0	R	Constant value of 60H. The value represents an offset into the μ PD72872's PCI Configuration
		Space for the location of the first item in the New Capabilities Linked List.

3.1.16 Offset 3C Interrupt Line Register

This register provides the interrupt line routing information specific to the μ PD72872, the NEC's implementation of the 1394 OpenHCI specification.

Bits	R/W	Description
7-0	R/W	Default value of 00H. It specifies which input of the host system interrupt controller the
		interrupt pin of the μ PD72872 is connected to.

3.1.17 Offset 3D Interrupt Pin Register

This register provides the interrupt line routing information specific to the μ PD72872, the NEC's implementation of the 1394 OpenHCI specification.

Bits	R/W	Description	
7-0	R	Constant value of 01H. It specifies PCI INTA is used for interrupting the host system.	

3.1.18 Offset 3E Min Gnt Register

This register specifies how long of a burst period the μ PD72872 needs, assuming a clock rate of 33 MHz. Resolution is in units of $\frac{1}{4}$ μ s. The value should be loaded into the register from the external serial EEPROM upon power-up reset, and access to this register through PCI-bus is prohibited.

Bits	R/W	Description	
7-0	R	Default value of 00H. Its value contributes to the desired setting for Latency Timer value.	

3.1.19 Offset 3F Max Lat Register

This register specifies how often the μ PD72872 needs to gain access to the PCI-bus, assuming a clock rate of 33 MHz. Resolution is in units of $\frac{1}{4}$ μ s. The value should be loaded into the register from the external serial EEPROM after hardware reset, and access to this register through PCI-bus is prohibited.

ĺ	Bits	R/W	Description	
ĺ	7-0	R	Default value of 00H. Its value contributes to the desired setting for Latency Timer value.	

3.1.20 Offset_40 PCI_OHCI_Control Register

This register specifies the control bits that are IEEE1394 OpenHCl specific. Vendor options are not allowed in this register. It is reserved for OpenHCl use only.

Bits	R/W	Description	
0	R/W	PCI global SWAP Default value of 0. When this bit is 1, all quadrates read from and written to	
		the PCI Interface are byte swapped, thus a "PCI Global Swap". PCI addresses for expansion	
		ROM and PCI Configuration registers, are, however, unaffected by this bit. This bit is not	
		required for motherboard implementations.	
31-1	R	Reserved Constant value of all 0.	

3.1.21 Offset_60 Cap_ID & Next_Item_Ptr Register

The Cap_ID signals that this item in the Linked List is the registers defined for PCI Power Management, while the Next_Item_Ptr describes the location of the next item in the μ PD72872's Capability List.

Bits	R/W	Description	
7-0	R	Cap_ID Constant value of 01H. The default value identified the Link List item as being the PCI	
		Power Management registers, while the ID value is assigned by the PCI SIG.	
15-8	R	Next_Item_Ptr Constant value of 00H. It indicated that there are no more items in the Link	
		List.	

3.1.22 Offset_62 Power Management Capabilities Register

This is a 16-bit read-only register that provides information on the power management capabilities of the μ PD72872.

Bits	R/W	Description	
2-0	R	Version Constant value of 010. The power management registers are implemented as	
		defined in revision 1.1 of PCI Bus Power Management Interface Specification.	
3	R	PME clock Constant value of 0.	
4	R	Reserved Constant value of 0.	
5	R	SI Constant value of 0.	
8,6	R	ux_current Constant value of 000. The auxiliary current requirement is not supported.	
9	R	D1_support Constant value of 0. The μPD72872 does not support the D1 Power	
		Management state.	
10	R	D2_support Constant value of 1. The μPD72872 supports the D2 Power Management state.	
15-11	R	PME_support Constant value of 01100.	

3.1.23 Offset_64 Power Management Control/Status Register

This is a 16-bit read-only register that provides control status information of the μ PD72872.

Bits	R/W	Description	
1,0	R/W	 PowerState Default value is undefined. This field is used both to determine the current power state of the μPD72872 and to set the μPD72872 into a new power state. As D1 is not supported in the current implementation of the μPD72872, writing of '01' will be ignored. 00: D0 (DMA contexts: ON, Link Layer: ON) 01: Reserved (D1 state not supported) 10: D2 (DMA contexts: OFF, Link Layer: OFF, LPS: OFF, PME will be asserted upon LinkON being active) 11: D3 (DMA contexts: OFF, Link Layer: OFF, LPS: OFF, PME will be asserted upon LinkON being active) The LPS is a PHY/Link interface signal and is defined in P1394a draft 2.0. It is an internal signal in the μPD72872. 	
7-2	R	Reserved Constant value of 000000.	
8	R/W	PME_En Default value of 0. This field is used to enable the specific power management features of the μ PD72872.	
12-9	R	Data_Select Constant value of 0000.	
14,13	R	Data_Scale Constant value of 00.	
15	R/W	PME_Status Default value is undefined. A write of '1' clears this bit, while a write of '0' is ignored.	

3.2 CardBus Mode Configuration Register (CARD_ON = High)

1 24	23 16	15 08	07 00
Devid	ce ID	Vendor ID	
Sta	tus	Command	
	Class Code		Revision ID
BIST	Header Type	Latency Timer	Cache Line Size
	Base Ad	ddress 0	
	Base Address 1 (Card	dBus Status Reg) Note	
	Base Address 2 (Card	dBus Status Reg) Note	
	Base Ad	ddress 3	
	Base Ac	ddress 4	
	Base Ac	ddress 5	
	CardBus CIS	S Pointer Note	
Subsys	tem ID	Subsystem	Vendor ID
	Expansion ROM Ba	se Address Register	
	000000H		Cap_Ptr
	00000	0000H	
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line
	PCI_OHC	CI_Control	
	00000	0000H	
	00000	0000H	
	00000	0000H	
	Diagnostic	c register0	
	Diagnostic	c register1	
	Diagnostic	register2	
	Diagnostic	c register3	
Power Managen	nent Capabilities	Next_Item_Ptr	Cap_ID
Data	PMCSR_BSE	Power Management Control/Status	
	00000	0000H	
	00000	0000H	
	User Area (GENE	ERAL_RegisterA)	
	User Area (GENE	ERAL_RegisterB)	
	00000	0000H	
	00000	0000H	
	CIS Ar	ea Note	

Note Different from PCI Bus Mode Configuration Register.

3.2.1 Offset_14/18 Base_Address_1/2 Register (Cardbus Status Registers)

Bits	R/W	Description
7-0	R	Constant value of 00.
31-8	R/W	-

(1) Function Event Register (FER) (Base Address 1 (2)+ 0H)

Bits	R/W	Description
0	R	Write Protect (No Use).
		Read only as '0'
1	R	Ready Status (No Use).
		Read only as '0'
2	R	Battery Voltage Detect 2 (No Use).
		Read only as '0'
3	R	Battery Voltage Detect 1 (No Use).
		Read only as '0'
4	R/W	General Wakeup
14-5	R	Reserved. Read only as '0'
15	R/W	Interrupt
31-16	R	Reserved. Read only as '0'

(2) Function Event Mask Register (FEMR) (Base Address 1 (2)+ 4H)

Bits	R/W	Description
0	R	Write Protect (No Use).
		Read only as '0'
1	R	Ready Status (No Use).
		Read only as '0'
2	R	Battery Voltage Detect 2 (No Use).
		Read only as '0'
3	R	Battery Voltage Detect 1 (No Use).
		Read only as '0'
4	R/W	General Wakeup Mask
5	R	BAM. Read only as '0'
6	R	PWM. Read only as '0'
13-7	R	Reserved. Read only as '0'
14	R/W	Wakeup Mask
15	R/W	Interrupt
31-16	R	Reserved. Read only as '0'

(3) Function Reset Status Register (FRSR) (Base Address 1 (2)+ 8H)

Bits	R/W	Description
0	R	Write Protect (No Use).
		Read only as '0'
1	R	Ready Status (No Use).
		Read only as '0'
2	R	Battery Voltage Detect 2 (No Use).
		Read only as '0'
3	R	Battery Voltage Detect 1 (No Use).
		Read only as '0'
4	R/W	General Wakeup Mask
14-5	R	Reserved. Read only as '0'
15	R/W	Interrupt
31-16	R	Reserved. Read only as '0'

(4) Function Force Event Register (FFER) (Base Address 1 (2)+ CH)

Bits	R/W	Description
0	R	Write Protect (No Use).
		Read only as '0'
1	R	Ready Status (No Use).
		Read only as '0'
2	R	Battery Voltage Detect 2 (No Use).
		Read only as '0'
3	R	Battery Voltage Detect 1 (No Use).
		Read only as '0'
4	R/W	General Wakeup Mask
14-5	-	No Use
15	R/W	Interrupt
31-16	R	Reserved. Read only as '0'

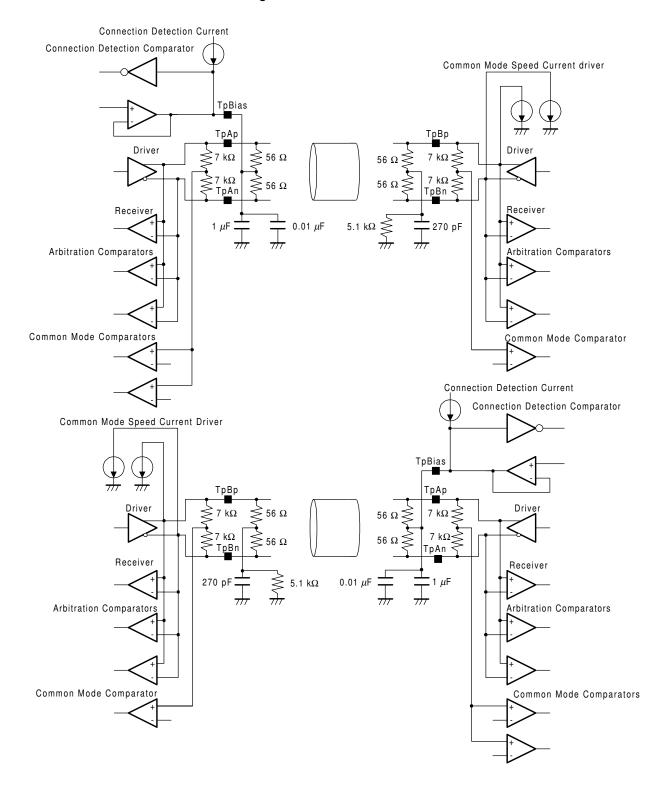
3.2.2 Offset_28 Cardbus CIS Pointer

This register specifies start memory address of the Cardbus CIS Area.

Bits	R/W	Description		
31-0	R	Starting Pointer of CIS Area.		
		Constant value of 00000080H.		

3.2.3 Offset_80 CIS Area

The μ PD72872 supports external Serial ROM (AT24C02 compatible) interface.


CIS Area Register can be loaded from external Serial ROM in the CIS area when CARD_ON is 1.

4. PHY FUNCTION

4.1 Cable Interface

4.1.1 Connections

Figure 4-1. Cable Interface

4.1.2 Cable Interface Circuit

Each port is configured with two twisted-pairs of TpA and TpB.

TpA and TpB are used to monitor the state of the Transmit/Receive line, control signals, data and cables.

During transmission to the IEEE1394 bus, the Data/Strobe signal received from the Link layer controller is encoded, converted from parallel to serial and transmitted.

While receiving from the IEEE1394 bus, the Data/Strobe signal from TpA, TpB is converted from serial to parallel after synchronization by SCLK Note, then transmitted to the Link layer controller in 2/4/8 bits according to the data rate of 100/200/400 Mbps.

The bus arbitration for TpA and TpB and the state of the line are monitored by the built-in comparator. The state of the 1394 bus is transmitted to the state machine in the LSI.

Note The SCLK is a PHY/Link interface signal and is defined in P1394a draft 2.0. It is an internal signal in the μ PD72872.

4.1.3 CPS

An external resistance of 390 k Ω is connected in series to the power cable to monitor the power of the power cable. If the cable power falls under 7.5 V there is an indication to the Link layer that the power has failed.

4.1.4 Unused Ports

TpAp, TpAn: Not connected

TpBp, TpBn: AGND

TpBias : Not connected

4.2 PLL and Crystal Oscillation Circuit

4.2.1 Crystal Oscillation Circuit

To supply the clock of 24.576 MHz \pm 100 ppm, use an external capacitor of 10 pF and a crystal of 50 ppm.

4.2.2 PLL

The crystal oscillator multiplies the 24.576 MHz frequency by 16 (393.216 MHz).

4.3 PC0-PC2

The PC0-PC2 pin corresponds to the power field of the Self_ID packet and Pwr_class in the PHY register. Refer to Section 4.3.4.1 of the IEEE1394-1995 specification for information regarding the Pwr_class. The value of Pwr can be changed with software through the Link layer; this pin sets the initial value during Power-on Reset. Use a pull-up or pull-down resistor of $10 \text{ k}\Omega$ based on the application.

4.4 P RESETB

Connect an external capacitor of 0.1 μ F between the pins \overline{P} _RESETB and GND. If the voltage drops below 0 V, a reset pulse is generated. All of the circuits are initialized, including the contents of the PHY register.

4.5 RI0, RI1

Connect an external resistor of 9.1 k Ω ± 0.5 % to limit the LSI's current.

5. ELECTRICAL SPECIFICATIONS

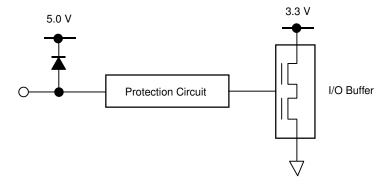
Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD}		-0.5 to +4.6	V
Input voltage	Vı	LVTTL @ (VI < 0.5 V + VDD)	-0.5 to +4.6	٧
		PCI @ (V _I < 3.0 V + V _{DD})	-0.5 to +6.6	٧
Output voltage	Vo	LVTTL @ (Vo < 0.5 V + VDD)	-0.5 to +4.6	٧
		PCI @ (Vo < 3.0 V + VDD)	-0.5 to +6.6	٧
Operating ambient temperature	TA		0 to +70	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Ranges

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD}	Used to clamp reflection on PCI bus.	4.5 to 5.5	V
			3.0 to 3.6	V
Operating ambient temperature	Та		0 to +70	°C



DC Characteristics (V_{DD} = 3.3 V \pm 10 %, V_{SS} = 0 V, T_A = 0 to +70°C)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH		2.0		V _{DD} +0.5	٧
Low-level input voltage	VIL		-0.5		+0.8	٧
High-level output current	Іон	VOH = 2.4 V,	-6			mA
		GROM_SDA, GROM_SCL				
Low-level output current	lol	VOL = 0.4 V,	6			mA
		GROM_SDA, GROM_SCL				
Input leakage current	lι	VIN = VDD or GND			±10.0	μΑ
PCI interface						
High-level input voltage	VIH		2.0		5.5	V
Low-level input voltage	VIL		-0.5		+0.8	٧
High-level output current	Іон	Vон = 2.4 V	-2			mA
Low-level output current	lol	Vol = 0.4 V	9			mA
Input leakage current	IL.	VIN = VDD or GND			±10.0	μΑ
Cable interface						
Differential input voltage	VID	Cable input, 100 Mbps operation	142		260	mV
		Cable input, 200 Mbps operation	132		260	mV
		Cable input, 400 Mbps operation	118		260	mV
TpB common mode input voltage	VICM	100 Mbps speed signaling off	1.165		2.515	٧
		200 Mbps speed signaling	0.935		2.515	V
		400 Mbps speed signaling	0.523		2.515	٧
Differential output voltage	Vod	Cable output (Test load 55Ω)	172.0		265.0	mV
TpA common mode output voltage	Vосм	100 Mbps speed signaling off	1.665		2.015	٧
		200 Mbps speed signaling	1.438		2.015	V
		400 Mbps speed signaling	1.030		2.015	٧
TpA common mode output current	Ісм	100 Mbps speed signaling off	-0.81		+0.44	mA
		200 Mbps speed signaling	-4.84		-2.53	mA
		400 Mbps speed signaling	-12.40		-8.10	mA
Power status threshold voltage	Vтн	CPS			7.5	٧
TpBias output voltage	VTPBIAS		1.665		2.015	٧

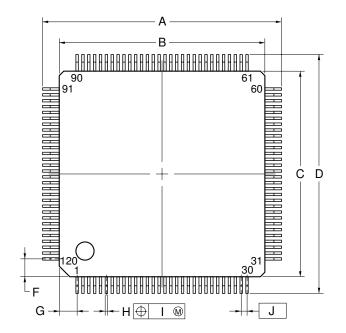
Remarks 1. Digital core runs at 3.3 V.

- 2. PCI Interface can run at 5 or 3.3 V, depending on the choice of 5 V-PCI or 3.3 V-PCI.
- 3. All other I/Os are 3.3 V driving, and 5 V tolerant.
- **4.** 5 V are used only for 5 V-PCI clamping diode.

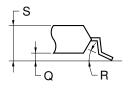
AC Characteristics

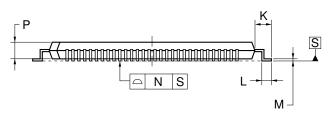
PCI Interface

See PCI local bus specification Revision 2.2.


Serial ROM Interface

See AT24C01A/02/04/08/16 Spec. Sheet.




6. PACKAGE DRAWING

120-PIN PLASTIC TQFP (FINE PITCH) (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.09 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	16.0±0.2
В	14.0±0.2
С	14.0±0.2
D	16.0±0.2
F	1.2
G	1.2
Н	0.18±0.05
ı	0.09
J	0.4 (T.P.)
K	1.0±0.2
L	0.5±0.2
М	0.145±0.05
N	0.08
Р	1.0±0.1
Q	0.1±0.05
R	3°+7°
S	1.2 MAX.

S120GC-40-9EV-1

★ 7. RECOMMENDED SOLDERING CONDITIONS

The μ PD72850A should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 7-1. Surface Mounting Type Soldering Conditions

 μ PD72872GC-9EV: 120-pin plastic TQFP (Fine pitch) (14 x 14)

Soldering	Soldering Conditions	Recommended
Method		Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher).	IR35-103-3
	Count: three times or less	
	Exposure limit: 3 days ^{Note} (after that prebake at 125°C for 10 hours)	
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM and Firewarden are trademarks of NEC Corporation.

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).