
DATA BOOK Fall 1995

Application-Specific Memory

APPLICATION-SPECIFIC MEMORY DATA BOOK

Application Specific Memory 1995 Data Book

Document No. M11002EU1V0DB00 ©1995 NEC Electronics Inc. All rights reserved. Printed in the United States of America.

No part of this document may be copied or reproduced in any form or by any means without the prior consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. Devices sold by NECEL are covered by the warranty and patent indemnification provisions appearing in NECEL Terms and Conditions of Sale only. NECEL makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL makes no warranty of merchantability or fitness for any purpose. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitment to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices in these applications or they intend to use "standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. "Special" quality grade devices are recommended for automotive and transportation equipment, test for automotive and transportation equipment, test man measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. "Special" quality grade devices are recommended for automotive and transportation equipment, test man measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products.

Index

Selection Guide]1
Dual Port Graphics Buffer]7
Line Buffer]189
Field Buffer]227
Rambus [™] DRAM]253
Synchronous GRAM	357

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

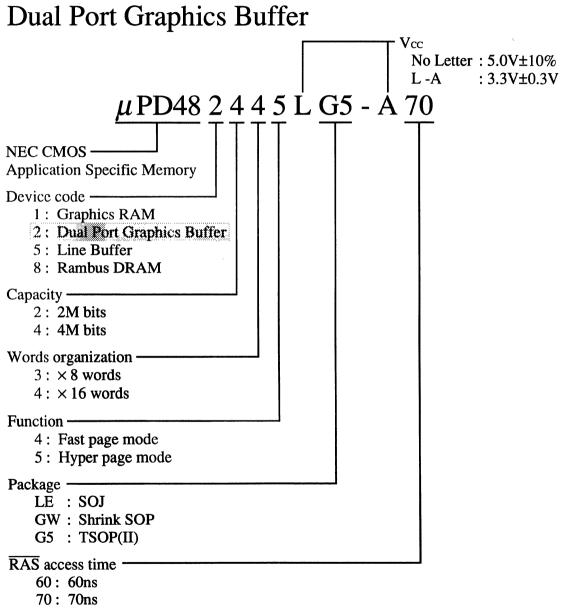
Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

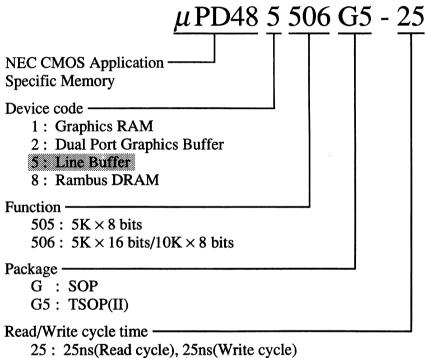
③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

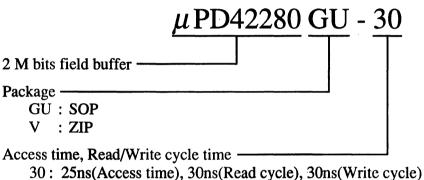

Contents

Selection Guide	•••••	
Dual Port Graphics Buffer	•••••	
4M 256K×16 5V±10%	Fast Page	— μPD482444
	Hyper Page	— μPD482445
2M 256K×8 5V±10%	– Fast Page –	— μPD482234 107
	Hyper Page	— μPD482235 107
Line Buffer		
80K 5K × 16/10K × 8	- 5V±10%	— μPD485506 191
40K 5K × 8	5V±10%	— μPD485505 211
Field Buffer		
2M 256K × 8	5V±10%	— μPD42280 229
Rambus DRAM	•••••	
18M $1M \times 9 \times 2$ banks	3.3V±0.15V	— μPD488170L 255
16M $1M \times 8 \times 2$ banks	3.3V±0.15V	— μPD488130L 305
Synchronous GRAM		
8M 128K × 32 × 2 banks	- 3.3V±0.3V	— μPD481850 359

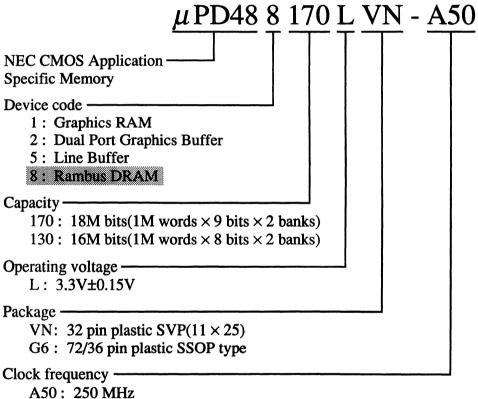
·


Selection Guide

Part Number


80: 80ns

Line Buffer


- 27 : 27ns(Read cycle), 25ns(Write cycle)
- 35: 35ns(Read cycle), 35ns(Write cycle)

Field Buffer

- 40: 30ns(Access time), 40ns(Read cycle), 40ns(Write cycle)
- 60: 40ns(Access time), 60ns(Read cycle), 60ns(Write cycle)

Rambus DRAM

A30 : 230 MHz A45 : 225 MHz

Dual Port Graphics Buffer

DATA SHEET

MOS INTEGRATED CIRCUIT μ PD482444, 482445

4M-Bit Dual Port Graphics Buffer

256K WORDS BY 16 BITS

Description

The μ PD482444 and μ PD482445 have a random access port and a serial access port. The random access port has a 4M-bit (262,144 words × 16 bits) memory cell array structure. The serial access port can perform clock operations of up to 50 MHz from the 8K-bit data register (512 words × 16 bits).

To simplify the graphics system design, the split data transfer function and binary boundary jump function have been adopted so that the number of split data registers can be programmed with the software during serial read/write operations.

The μ PD482445 is provided with the hyper page mode, an improved version of the fast page mode of the μ PD482444. The random access port can input and output data by \overline{CAS} clock operations of up to 33 MHz. The power supply voltage is 5 V ± 10 %.

Features

Dual port structure (Random access port, Serial access port)

Random access port (262,144-word × 16-bit structure)

μ**PD482444**

	μPD482444-60	μPD482444-70
RAS access time	60 ns(MAX.)	70 ns(MAX.)
Fast page mode cycle time	35 ns(MIN.)	40 ns(MIN.)

μ**PD482445**

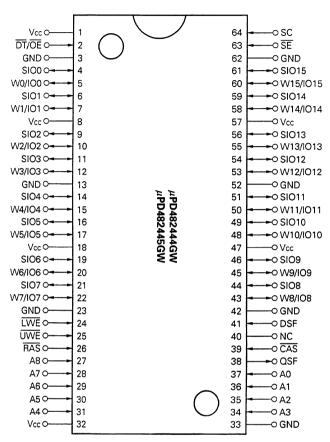
	μPD482445-60	μPD482445-70
RAS access time	60 ns(MAX.)	70 ns(MAX.)
Hyper page mode cycle time	30 ns(MIN.)	35 ns(MIN.)

- Flash write function^{Note}
- Block write function (8 columns)^{Note}
- · Mask write (Write-per-bit function)
- 512 refresh cycles /8 ms
- CAS before RAS refresh, RAS only refresh, Hidden refresh

Note Write-per-bit can be specified.

The information in this document is subject to change without notice.

- Serial access port (512 words × 16 bits organization)
 - · Serial read/write cycle time

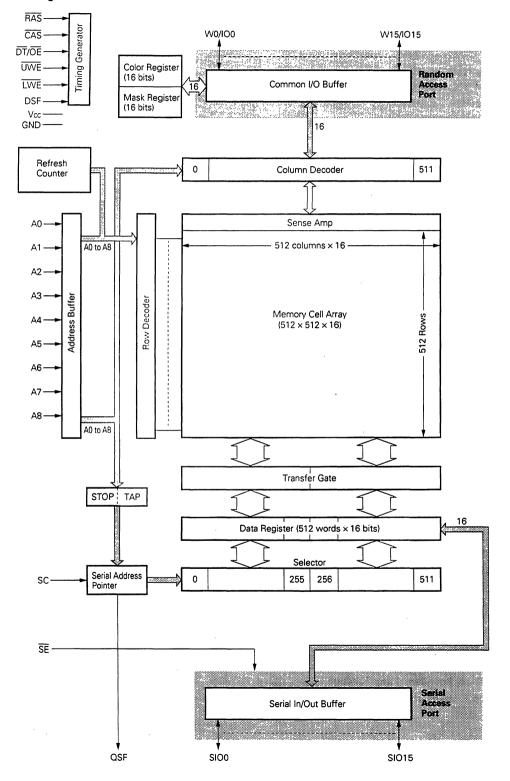

μPD482444-60	μPD482444-70
μPD482445-60	μPD482445-70
20 ns(MIN.)	22 ns(MIN.)

- · Serial data read/write
- · Split buffer data transfer
- Binary boundary jump function

Ordering Information

Part Number	RAS Access Time ns (MAX.)	Package	Power Supply Voltage	Page Mode
μPD482444GW-60	60	64-pin plastic shrink	5 V ± 10 %	Fast page mode
μPD482444GW-70	70	SOP (525 mil)		
μPD482445GW-60	60	64-pin plastic shrink	5 V ± 10 %	Hyper page mode
μΡD482445GW-70	70	SOP (525 mil)		

Pin Configurations (Marking Side)



64-Pin Plastic Shrink SOP (525 mil)

A0 to A8	:	Address inputs
W0 to W15/IO0 to IO15	:	Mask data selects/Data inputs and outputs
SIO0 to SIO15	:	Serial data inputs and outputs
RAS	:	Row address strobe
CAS	:	Column address strobe
DT/OE	:	Data transfer/Output enable
UWE, LWE	:	Write-per-bit/Write enable
SE	:	Serial data input/Output enable
SC	:	Serial clock
QSF	:	Special function output
DSF	:	Special function enable
Vcc	:	Power supply voltage
GND	:	Ground
NC ^{Note}	:	No connection

Note Some signals can be applied because this pin is not connected to the inside of the chip.

Block Diagram

1. Pin Functions

This product is equipped with the RAS, CAS, UWE, LWE, DT/OE, A0 to A8, DSF, SC, SE inputs, QSF output, and W0 to W15/IO0 to IO15, SIO0 to SIO15 input/output pins.

(1/3)

Pin Name	Input/ Output	Function
RAS (Row address strobe)	Input	This signal latches the row addresses (A0 to A8), selects the corresponding word line, and activates the sense amplifier. It also refreshes the memory cell array of the one line (8,192 bits) selected from the row addresses (A0 to A8).
		It also serves as the signal which selects the following operations. • Write-per-bit • Flash write • CAS before RAS refresh • Split data transfer
CAS (Column address strobe)		This signal latches the column addresses (A0 to A8), selects the digit line connecting the sense amplifier, and activates the output circuit which outputs data to the random access port.
		It also serves as the signal which selects the following operations.• Read/write• Block write• Color register set• Mask register set
A0 to A8 (Address inputs)		These are the address input pins, TAP register input pins, and STOP register input pins.
		Address input This is a 9-bit address bus. It inputs a total of 18 bits of the address signal, starting from the upper 9 bits (row address) and then followed by the lower 9 bits (column bits) (address multiplex method). Using these, one word memory cells (16 bits) are selected from the 262, 144 words × 16 bits memory cell array.
		During use, specify the row address, activate the \overline{RAS} signal, latch the row address, switch to the column address, and activate the \overline{CAS} signal. After activating the \overline{RAS} and \overline{CAS} signals, each address signal is taken into the device. For this reason, the address input setup time (task, tasc) and hold time (trank, tcah) are specified for activating the \overline{RAS} and \overline{CAS} signals.
		TAP Register Input In the data transfer cycle, this TAP register input pin functions as the address input pin which selects the memory cell for transferring (9 bits are latched at the falling edge of \overline{RAS}) and the TAP register data input pin which specifies the start addresses of the serial read/write operation after data transfer (9 bits are latched at the falling edge of the \overline{CAS}).
		STOP Register Input This pin functions as the STOP register input pin when the STOP register is set (STOP register data (9 bits) are latched at the falling edge of the RAS.)

NEC

(2/3)

Pin Name	Input/ Output	Function
DT/OE (Data transfer/ output enable)	Input	These are the data transfer control signal and read operation control signa respectively. They have different functions in the data transfer cycle and read cycle.
		Data transfer control signal (in data transfer cycle) The data transfer cycle is initiated when a low level is input to this pin a the falling edge of \overline{RAS} .
		Read operations control signal (in read cycle) Read operation is performed when this signal, and the \overline{RAS} and \overline{CAS} signals are activated. The input/output pin is high impedance when this signal is not activated. When the \overline{UWE} and \overline{LWE} signals are activated while the $\overline{DT}/\overline{OE}$ signals are activated, the $\overline{DT}/\overline{OE}$ signals are invalid in the memory and read operations cannot be performed.
UWE, LWE (Write enable)		These are the write operation control signal and mask write cycle (write per-bit function) mask data input control signal, respectively. UWE controls the upper bytes (W8 to W15/IO8 to IO15) and LWE controls the lower bytes (W0 to W7/IO0 to IO7) of the input/output pins. When this signal, RAS and CAS signals are activated, write operations o mask write can be performed. These mode are determined by the leve of UWE and LWE at the falling edge of RAS. • High level8 or 16-bit write cycle • Low level Mask write cycle (Write-per-bit)
DSF (Special function enable)		 This signal controls the selection of functions. The selection of functions is determined by the level of this signal at the falling edge of the RAS and CAS. The functions will change as follow when this signal is high level. The data transfer cycle changes to a split data transfer cycle. The read/write cycle of each RAS clock changes to the flash write cycle The write cycle of each CAS clock changes to the block write cycle
W0 to W15/IO0 to IO15 (Mask data selects/ Data inputs, outputs)	Input/ Output	These are normally 16-bit data bus and are used for inputting an outputting data. (IO0 to IO15). Function as the mask data input pins (W0 to W15) in the mask write cycl (write-per-bit function). Write operations can be performed only for W0 to W15 that are input wit a high level at the falling edge of RAS (new mask data). Functions as the column selection data input pin in the block write cycle

(3/3)

Pin Name	Input/ Output	Function
SC (Serial clock)	Input	This pin inputs the clock which controls the serial access port operation. Serial Read The data of the data register which is synchronized with the rising edge of the SC are output from the SIO0 to SIO15 pins and kept until the next SC rising edge. Serial Write The data from the SIO0 to SIO15 pins are latched at the rising edge of the SC and written in the data register.
SE (Serial data input/ output enable)		This is a control pin for the serial access port input/output buffer. It controls data output during serial reading and controls data input during serial writing. By inputting the serial clock, the serial pointer will operate even if SE has not been activated (high level input).
SIO0 to SIO15 (Serial data inputs/ outputs)	Input/ Output	These are the serial data input and output pins of the serial access port.
QSF (Special function output)	Output	 This is a position discrimination pin of the serial pointer (upper side or lower side). Which side is being serial accessed (upper side or lower side) can be discriminated according to the output of this pin. High level Upper side (Addresses 256 to 511) Low level Lower side (Addresses 0 to 255)

2. Random Access Port Operations

The operation mode is determined by the \overline{CAS} , $\overline{DT}/\overline{OE}$, \overline{UWE} , \overline{LWE} , and DSF level at the falling edge of \overline{RAS} and DSF level at the falling edge of \overline{CAS} .

	RAS Fa	lling I	Edge		CAS Falling Edge		Operation Mode
CAS	DT/OE	UWE	LWE	DSF	DSF		
н	н	Н	н	L	L		Read/Write cycle
н	н	н	н	L	н		Block write cycle
н	Н	L	L	L	L		Mask write cycle ^{Note 1}
н	н	L	н	L	L		Upper byte mask write cycle ^{Note 1}
н	Н	Н	L	L	L		Lower byte mask write cycleNote 1
н	Н	L	L	L	н	e l	Block mask write cycle ^{Note 1}
н	н	L	Н	L	Н	e Cycle	Upper byte block mask write cycle ^{Note 1}
н	Н	н	L	L	н	Vrite	Lower byte block mask write cycle ^{Note 1}
н	Н	н	Н	Н	Н	Read/Write	Color register set cycle
н	н	н	Н	H	L	Re	Write mask register set cycle
н	Н	L	L	н	×		Flash write cycle ^{Note 1}
н	н	L	Н	н	×		Upper byte flash write cycle ^{Note 1}
н	н	н	L	н	×		Lower byte flash write cycle ^{Note 1}
н	L	Н	Н	L	×	Cycle	Single read data transfer cycle
н	L	Н	н	Н	×	Transfer (Split read data transfer cycle
н	L	L	L	L	×		Single write data transfer cycleNote 1
н	L	L	L	н	×	Data	Split write data transfer cycle ^{Note 1}
L	×	×	×	L	×	Cycle	CAS before RAS refresh cycle (Option reset)Note 1, 2
L	×	н	н	н	×		CAS before RAS refresh cycle (No reset)
L	×	L	L	н	×	Refresh	CAS before RAS refresh cycle (STOP register set)Note 2
Н	н	×	×	×	×	Re	RAS only refresh cycle

Table 2-1. Operation Mode

Notes 1. Observe the following conditions when using the new mask data or old mask data in these cycles. (1) Old mask data

Can be used after setting the mask data using the write mask register set cycle.

(2) New mask data

Can be used after selecting the new mask register using the write mask register set cycle (new mask selection) and after the optional reset cycle.

2. The STOP register is set to "FFH (1111111)" by the optional reset cycle.

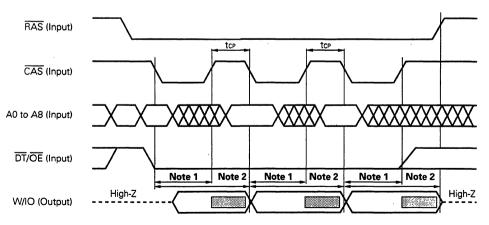
Remark H: High level, L: Low level, X: High level or low level

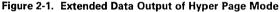
2.1 Random Read Cycle

This product has a common 16-bit input/output pin. To output data, specify the address using the \overline{RAS} and \overline{CAS} clocks and then set $\overline{DT/OE}$ to low level.

The data output will be kept until one of the following conditions is set.

- (1) Set RAS and CAS to high level
- (2) Set DT/OE to high level
- (3) Set UWE and LWE to low level (UWE controls the upper bytes, LWE controls the lower bytes)


The read cycle and data transfer cycle are differentiated according to the level of $\overline{\text{DT}/\text{OE}}$ at the falling edge of the $\overline{\text{RAS}}$ clock. If $\overline{\text{DT}/\text{OE}}$ is set to low level at the falling edge of the $\overline{\text{RAS}}$ clock, data transfer cycle operations will be initiated. Therefore, to set the read cycle, input a high level above tDHH (MIN.) to $\overline{\text{DT}/\text{OE}}$ from the falling edge of the $\overline{\text{RAS}}$ clock, and then input a low level.


Caution Set the DSF to low level at the falling edge of RAS. If set to high level, the memory cell data cannot be output.

2.1.1 Extended Read Data Output (µPD482445)

The μ PD482445 adopts the hyper page mode cycle which is a faster resd/write cycle than the fast page mode of the μ PD482444 (Hyper page mode cycle time: 30 ns (MIN.)).

With this cycle, the read data output can be kept until the next \overline{CAS} cycle, and because the output is extended, the minimum cycle can easily be used. For example, by fixing $\overline{DT}/\overline{OE}$ at low level after dropping \overline{RAS} and executing the hyper page read cycle, each time the column address is latched at the falling edge of \overline{CAS} , the data output will be updated and kept until the next falling edge of \overline{CAS} . As a result, the output will be extended only during \overline{CAS} precharge time (tcp) as compared to the normal fast page mode.

- Notes 1. Time during which the output data is kept in the fast page read cycle.
 - 2. Time during which the output data is kept in the hyper page read cycle (part: Extended data output).

2.2 Random Write Cycle (Early Write, Late Write, Read Modify Write)

There are three types of random write cycles-the early write, late write, and read modify write. To use these cycles, activate the RAS and CAS clocks and set \overline{UWE} and \overline{LWE} to low level. In addition, as this product has two write enables, data input can be controlled for every 8 bits (upper byte and lower byte). \overline{UWE} controls the upper bytes (W8 to W15/IO8 to IO15) while \overline{LWE} controls the lower bytes (W0 to W7/IO0 to IO7). Byte write cycle can therefore be performed by controlling \overline{UWE} and \overline{LWE} .

The random write cycle, regardless of the word/byte write cycle, latches the word data (16 bits) input to the data bus. By inputting a low level to $\overline{\text{UWE}}$ (or $\overline{\text{LWE}}$) during the byte write cycle, the latched word (16 bits) data will be written only in the upper byte (or lower byte) and the data of the unselected lower byte (or upper byte) will be ignored. In the same write cycle, by inputting a low level to $\overline{\text{LWE}}$ (or $\overline{\text{LWE}}$) later, the ignored lower byte (or upper byte) data can be written. By controlling the $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ pins, the word data (16 bits) in the same cycle can be written in one byte (8 bits).

The UWE and LWE also control the mask data for the write-per-bit function (mask write cycle). Therefore, when performing the normal write cycle which does not use the write-per-bit function, set these pins to high level at the falling edge of the RAS clock.

2.2.1 Early Write Cycle

The early write cycle controls data writing according to the CAS clock.

To execute this cycle, set \overline{UWE} and \overline{LWE} to low level earlier than the \overline{CAS} clock. The write data is taken into the device at the falling edge of the \overline{CAS} clock.

2.2.2 Late Write Cycle

The late write cycle controls data writing according to the WE clock.

To execute this cycle, set $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ to low level later than the $\overline{\text{CAS}}$ clock. The write data is taken into the device at the falling edge of $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$. To set the output to high impedance at this time, keep $\overline{\text{DT/OE}}$ at high level until $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ are input.

2.2.3 Read Modify Write Cycle

The read modify write cycle performs data reading and writing in one RAS and CAS cycle.

To execute this cycle, delay UWE and LWE from the late write cycle by the (MIN.), tcwb (MIN.), and tawb (MIN.). Follow the toez and toeb specifications so that the output data and input data do not clash in the data bus. The data after modification can be input after more than toeb (MIN.) from the rising edge of DT/OE.

2.3 Fast Page Mode Cycle (µPD482444)

The μ PD482444 adopts the fast page mode. This mode accesses memory cells in the same row array in about 1/3 of the time taken by the normal random read/write cycle. This fast page mode cycle is executed by repeating the \overline{CAS} clock cycle more than two times while the \overline{RAS} clock is being activated. In this mode read, write and read modify write cycles are available for each of the consecutive \overline{CAS} cycles within the same \overline{RAS} cycle.

2.4 Hyper Page Mode Cycle (µPD482445, 482445L)

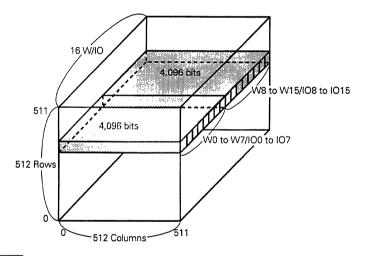
The μ PD482445 adopts a hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482444 (Hyper page mode cycle time: 30 ns (MIN.)).

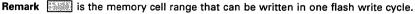
In this cycle, because the read data output is kept until the following \overline{CAS} cycle and as a result, the output is extended, the minimum cycle can easily be used. The output is extended compared to the normal fast page mode of μ PD482444. Refer to 2.1.1 Extended Read Data Output.

2.5 Flash Write Cycle

This cycle writes the color register data in a 8,192-bit or 4,096-bit memory cell in one cycle. The memory cell range for one flash write cycle is 512 columns on the same row address (512-column \times 16 \cdot IO = 8,192 bits or 512-column \times 8 \cdot IO = 4,096 bits).

2.5.1 Execution of Flash Write Cycle


(1) Execution of flash write for word (512-column \times 16 \cdot IO = 8,192 bits)


To execute the flash write cycle, set both UWE and LWE to low level at the falling edge of RAS. By using the write-per-bit function (new mask data/old mask data), only the required W/IO can be selected and written.

(2) Execution of flash write for byte (512-column \times 8 \cdot IO = 4,096 bits)

To execute the flash write cycle, set either \overline{UWE} or \overline{LWE} to low level at the falling edge of \overline{RAS} . By using the write-per-bit function (new mask data/old mask data), only the required W/IO can be selected and written.

2.6 Block Write Cycle

This cycle writes the color register data in 128-bit or 64-bit memory cell in one cycle. The memory cell range in which data can be written in one block write cycle is eight continuous columns on one row address (8-column \times 16 \cdot 10 = 128 bits or 8-column \times 8 \cdot 10 = 64 bits).

Any column of the eight columns can be selected and writing prohibited. Determine whether to write or prohibit writing according to the data selected for column.

2.6.1 Free Column Selection

Determine which column to select according to the W/IO pin to which the data selected for the column is to be input.

The eight columns (1st to 8th) correspond to W0 to W15/IO0 to IO15 to which the data selected for column will be input (The following table shows the 1st to 8th columns specified by A0, A1, and A2 and the corresponding W/IO pins to which the data selected will be input.).

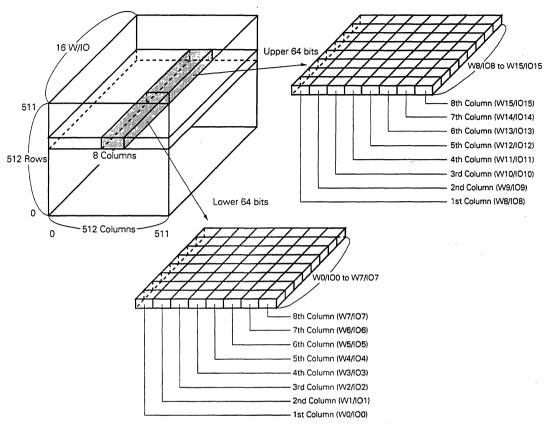
2.6.2 Column Select Data

Input column select data for every eight columns at the upper 64 bits and lower 64 bits (a total of 16 columns). The data will be written if the column select data is "1". Writing will be prohibited if the column select data is "0".

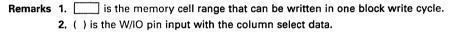
2.6.3 Execution of Block Write Cycle

At the falling edge of the slowest signal (CAS, UWE, or LWE), input the "1" column select data or "0" column select data to W0 to W15/IO0 to IO15 corresponding to columns 1st to 8th.

By using the write-per-bit (new mask data/old mask data) function, only the required W/IO can be selected and written.


Table 2-2. I/O Pins Input with Column Select Data Corresponding to Columns 1st to 8th

Column Select Data of Lower Byte (IO0 to IO7)


Column Select Data of Upper Byte (IO8 to IO15)

Selected 8 Columns	and	Cor W/	resp IO Pi		Column Select Data	Writing
	A2	A1	A0	10		
1st column	0	0	0	100	1	Yes
					0	No
2nd column	0	0	1	101	1	Yes
					0	No
3rd column	0	1	0	102	1	Yes
					0	No
4th column	0	1	1	103	1	Yes
					0	No
5th column	1	0	0	104	1	Yes
					0	No
6th column	1	0	1	105	1	Yes
					0	No
7th column	1	1	0	106	1	Yes
					0	No
8th column	1	1	1	107	1	Yes
					0	No

Selected 8 Columns	Column Address and Corresponding W/IO Pin				Column Select Data	Writing	
	A2	A1	A0	10	Dala		
1st column	0	0	0	108	1	Yes	
					0	No	
2nd column	0	0	1	109	1	Yes	
					0	No	
3rd column	0	1	0	1010	1	Yes	
					0	No	
4th column	0	1	1	1011	1	Yes	
					0	No	
5th column	1	0	0	1012	1	Yes	
					0	No	
6th column	1	0	1	1013	1	Yes	
					0	No	
7th column	1	1	0	1014	1	Yes	
					0	No	
8th column	1	1	1	1015	1	Yes	
					0	No	

2.7 Register Set Cycle (Color Register, Write Mask Register)

This cycle writes data in the color register and write mask register. To execute the register set cycle, set \overline{CAS} , $\overline{DT/OE}$, \overline{UWE} , \overline{LWE} and DSF to high level at the falling edge of \overline{RAS} . Determine which register to select according to the DSF level at the falling edge of \overline{CAS} .

The register set cycle also serves as the RAS only refresh cycle.

Table	2-3.	Register	Selection
-------	------	----------	-----------

DSF level at \overline{CAS} falling edge	Selected register
High level	Color register
Low level	Write mask register

Caution After selecting the write mask register and writing the mask data, the write-per-bit function in the mask write cycle will be set for the old mask register. Refer to 2.8.1 Write-Per-Bit Function.

2.8 Mask Write Cycle

Cycles that use the write-per-bit function during the random write cycle, flash write cycle, block write cycle, write data transfer cycle, are called mask write cycles. In the fast page/hyper page mode write cycle, the mask data cannot be changed during the TAS cycle.

2.8.1 Write-Per-Bit Function

The write-per-bit function writes data using the mask data only in the required IO-pin. It writes when the mask data is "1" and prohibits writing when the data is "0".

Table	2-4.	Mask	Data	Selection

W Pin	Mask Data	Writing	
W0 to W15	1	Yes	
	0	No	

2.8.2 Selecting Mask Data

There are two ways of selecting mask data. One is the new mask data method and the other is the old mask data method.

With the new mask data method, new mask data is set in the cycle writing. With the old mask data, mask data set in the write mask register is used.

(1) New Mask Data Method

The new mask data method consists of the write mask register set cycle (new mask selection) method and \overline{CAS} before \overline{RAS} refresh cycle (optional reset cycle) method.

(a) Method Using Write Mask Register Set Cycle (New Mask Selection)

To switch to the mode using new mask data, keep the $\overline{\text{DT}/\text{OE}}$, $\overline{\text{UWE}}$, $\overline{\text{LWE}}$ DSF to high level and set the $\overline{\text{CAS}}$ and DSF to high level at the falling edge of $\overline{\text{RAS}}$, the DSF to low level at the falling edge of $\overline{\text{CAS}}$, and start up the next $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ after the tcas and tras.

As a result, the write-per-bit function can be used using the new mask data from the next mask write cycle.

(b) Method Using CAS Before RAS Refresh Cycle (Optional Reset Cycle)

To switch to the mode using new mask data, set the DSF to low level at the falling edge of \overline{CAS} in the \overline{CAS} before \overline{RAS} refresh cycle.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

(2) Old Mask Data Method

To switch to the mode using old mask data, set the DSF to low level at the falling edge of \overline{CAS} in the write mask register set cycle, and write the mask data in the write mask register.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

2.8.3 Execution of Mask Write Cycle

To execute the write-per-bit function, select the new mask data method or old mask data method, and set $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ to low level at the falling edge of $\overline{\text{RAS}}$ of each write cycle ($\overline{\text{UWE}}$ controls the upper byte (W8 to W15/ IO8 to IO15) and $\overline{\text{LWE}}$ controls the lower byte (W0 to W7/IO0 to IO7).). At this time, input the mask data to the W pin in the write cycle using the new mask data. In the write cycle using the old mask data, as the mask data set to the write mask register will be used, there is no need to input the mask data to the W pin.

This function is valid only at the falling edge of \overline{RAS} . In the fast page/hyper page mode write cycle, the mask data determined in the first \overline{RAS} cycle for moving onto the next fast page/hyper page mode will be valid while the fast page/hyper page mode write cycle continues.

2.9 Refresh Cycle

The refresh cycle of this product consists of the \overline{CAS} before \overline{RAS} refresh cycle and refresh cycle using external address inputs (\overline{RAS} only refresh and read/write refresh). The refresh period is the same as the 2M-bit dual port graphics buffer (× 8), 512 cycles/8 ms.

2.9.1 Refresh Cycle Using External Address Input (RAS Only Refresh and Read/Write Refresh)

By specifying the row address using the 9 bits between A0 to A8 at the falling edge of \overline{RAS} , setting \overline{CAS} to high level, and keeping \overline{CAS} at high level while \overline{RAS} is low level, the memory cells on the specified row address (512 × 16 bits) can be refreshed. At this time, refresh is executed, W0 to W15/IO0 to IO15 pins are kept at high impedance, and information such as memory contents, register data, function settings, etc. are all also kept.

At the falling edge of RAS, all cycles whose CAS are high level input the external address. Therefore, in addition to the read/write cycle operations, etc. refresh operations similar to the RAS only refresh operations will be performed. For this reason, in systems in which addresses in the memory are always increased or decreased, it may not be necessary to perform refresh again.

When several devices exist on one bus, data will clash in the bus during the above read/write operations unless each device is equipped with a buffer. Consequently, as it is necessary to set the I/O line to high impedance beforehand during refresh, normally the RAS only refresh operation is used.

2.9.2 CAS Before RAS Refresh Cycle (Including Hidden Refresh)

When CAS is set to low level at the falling edge of RAS, the refresh address is supplied from the internal refresh address counter. The internal refresh address counter is increased automatically each time this refresh cycle is executed.

During this refresh cycle, functions of random access port and serial access port are selected as follows according to the DSF, \overline{UWE} , and \overline{LWE} levels at the falling edge of \overline{RAS} .

(1) When DSF is low level: Optional reset

All STOP register data become "1" and the mask write cycle switches to the new mask data method.

(2) When DSF is high level and UWE, LWE are low level: STOP register set The STOP register data is input from the A0 to A8 pins at the falling edge of RAS.

(3) When DSF, \overline{UWE} , and \overline{LWE} are high level: No reset

Only refresh operations are performed and the function selection state is kept.

In all cases, the W/IO pin is kept at high impedance. When CAS and DT/OE are kept low level while the mode is changed to the CAS before RAS refresh cycle following the read cycle, and RAS is activated, the hidden refresh cycle will be initiated. In this cycle, the W/IO pin does not become high impedance and the data read in the former read cycle will be kept as it is.

Because internal memory operations are equivalent to CAS before RAS refresh, no external addresses are required.

Like \overline{CAS} before \overline{RAS} refresh, in the hidden cycle, functions will be selected according to the level of DSF, \overline{UWE} , and \overline{LWE} at the falling edge of \overline{RAS} . Operations are guaranteed when DSF is low level and when DSF, \overline{UWE} , and \overline{LWE} are high level.

3. Serial Access Port Operations

There are two types of data transfer cycles-data transfer from the random access port to the serial access port (read data transfer) and data transfer from the serial access port to the random access port (write data transfer). There are also two types of data transfer methods-single data transfer and split data transfer.

To set the data transfer cycle, input high level to \overline{CAS} and input low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} . The data transfer type differs according to the input levels of \overline{UWE} , \overline{LWE} , and DSF at the falling edge of \overline{RAS} .

At RAS Falling Edge				Transfer Direction		
CAS	DT/OE	UWE, IWE	DSF	Data Transfer Type	Transfer Source	Transfer Destination
н	L	н	L	Single read data transfer	Random access	Serial access port
н	L	н	н	Split read data transfer	port	
н	L	L	L	Single mask write data transfer ^{Note}	Serial access	Random access port
н	L	L	н	Split mask write data transfer ^{Note}	port	

Table 3-1. Serial Access Port Operation Mode

Note Write-per-bit function can be specified.

Remark H: High level, L: Low level

3.1 Single Data Transfer Method

With this method, 512 words \times 16 bits (whole memory range of serial access port) data is transferred at one time. This method can be used in both write data transfer and read data transfer.

3.1.1 Single Read Data Transfer Cycle

This cycle transfers the 8K-bit (512 words \times 16 bits) data of the random access port to the serial access port in one cycle.

(a) Setting of Single Read Data Transfer Cycle

To set the data transfer cycle, input a high level to \overline{CAS} , \overline{UWE} , and \overline{LWE} and low level to $\overline{DT}/\overline{OE}$ and DSF at the falling edge of \overline{RAS} .

Using the row address input to A0 to A8 at the falling edge of \overline{RAS} , the memory cells (512 words × 16 bits) of the transfer source of the random access port can be selected. The address data input to A0 to A8 at the falling edge of \overline{CAS} will be latched as the TAP register data. Refer to **3.4 TAP Register**.

(b) Execution of Single Read Data Transfer Cycle

To execute the data transfer cycle, set the single read data transfer cycle and then input a high level to $\overline{\text{DT/OE}}$ and $\overline{\text{RAS}}$.

When SC is active (edge control), data transfer will be executed at the rising edge of $\overline{\text{DT}/\text{OE}}$. When SC is inactive (self control), it will be executed at the rising edge of $\overline{\text{RAS}}$. At the same time, the serial address pointer jumps to the start column (TAP) of the next serial read cycle, and the TAP register will be set the empty state.

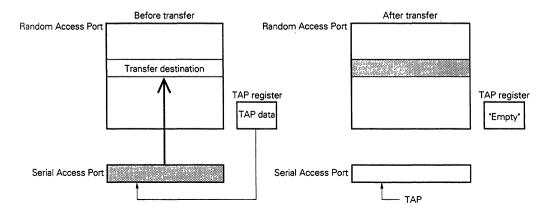
After the transfer is completed, the new serial access port data is output after tscA following the rise of the SC clock that occurs after tspH if the SC is active, and after tspHR if SC is inactive.

Caution When the single read data transfer cycle is executed while the serial access port is performing serial write operations, the serial access port will start serial read operations at the rising edge of RAS. Refer to 4. Electrical Characteristics Read Data Transfer Cycle (Serial Write → Serial Read Switching) Timings.

3.1.2 Single Mask Write Data Transfer Cycle

This cycle transfers 8K-bit (512 word × 16 bits) data of the serial access port to the random access port in one cycle. Because $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ are low level at the falling edge of $\overline{\text{RAS}}$, the write-per-bit function always functions in this transfer cycle. Refer to **2.8 Mask Write Cycle**.

(a) Setting of Single Mask Write Data Transfer Cycle


To set this cycle, latch the data to be transferred to the serial access port, and then input a high level to \overline{CAS} and low level to $\overline{DT/OE}$, \overline{UWE} , \overline{LWE} , and DSF at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W15 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 16 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A8 at the falling edge of \overline{CAS} is input as the TAP register data. Refer to **3.4 TAP Register**.

(b) Execution of Single Mask Write Data Transfer Cycle

To execute this cycle, set the single write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . At the same time, the serial address pointer jumps to the start column (TAP) of the next serial write cycle, and the TAP register will be set the empty state. After the transfer is completed, the new serial access port data is latched at the rising edge of the SC clock that occurs after tsphe.

- Caution 1. When the single mask write data transfer cycle is executed while the serial access port is performing serial read operations, the serial access port will start serial write operations at the rising edge of RAS. Refer to 4. Electrical Characteristics Write Data Transfer Cycle (Serial Read → Serial Write Switching) Timings.
 - 2. Always make CAS low level in the write data transfer cycle and latch TAP. If write data transfer is performed without setting TAP, serial access port operations cannot be ensured until either one of the following points. If the SC clock is input during this time, the serial register value also cannot be guaranteed.
 - Until the falling edge of CAS during the write data transfer cycle
 - Until the read data transfer cycle is executed again

Figure 3-1. Single Write Data Transfer and TAP Operation

3.2 Split Data Transfer Method

With this method, the 512 words \times 16 bits (whole memory range of serial access port) data is divided into the lower column (0 to 255) and upper column (256 to 511), each consisting of 256 words \times 16 bits.

Because the columns are divided into upper and lower columns with this method, data transfer can be performed on lower column (or upper column) while performing read/write operations in the upper column (or lower column). For this reason, transfer timing design is easy. This transfer method can be used in both write data transfer and read data transfer.

3.2.1 Split Read Data Transfer Cycle

This cycle divides the 8K-bit (512 words \times 16 bits) data of the random access port into the lower and upper columns and transfers them to the serial access port.

In this cycle, the serial read/write can be performed in the columns to which data is not transfer.

(a) Setting of Split Read Data Transfer Cycle

To set this cycle, input a high level to \overline{CAS} , \overline{UWE} , \overline{LWE} and DSF, and low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} .

The memory cells (512 words \times 16 bits) of the transfer source of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . And the address data input to A0 to A7 at the falling edge of \overline{CAS} is latched as the TAP register data of serial access port. There is no need to control address data input to A8. Refer to 3.4 TAP Register.

(b) Execution of Split Read Data Transfer Cycle

To execute this cycle, set the split read data transfer cycle and then input the high level to RAS. Data will be transferred at the rising edge of RAS. Data is transferred from the random access port to the serial access port automatically at the column side where serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**. When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

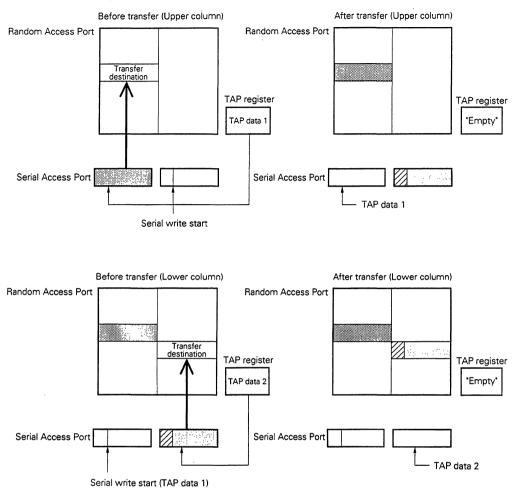
3.2.2 Split Mask Write Data Transfer Cycle

This cycle divides the 8K-bit (512 words × 16 bits) data of the serial access port into the lower and upper columns and transfers them to the random access port.

In this cycle, serial read/write can be performed for columns to which data is not transferred.

Because UWE and LWE are low level at the falling edge of RAS, the write-per-bit function always functions in this transfer cycle. Refer to 2.8 Mask Write Cycle.

(a) Setting of Split Mask Write Data Transfer Cycle


To set this data transfer cycle, input a high level to \overline{CAS} and DSF and low level to $\overline{DT/OE}$, \overline{UWE} , and \overline{LWE} at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W15 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 16 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A7 at the falling edge of \overline{CAS} is input as the TAP register data. There is no need to control address data input to A8. Refer to 3.4 TAP Register.

(b) Execution of Split Mask Write Data Transfer Cycle

To execute this cycle, set the split write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the serial access port to the random access port automatically at the column side where the serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

Figure 3-2. Split Mask Write Data Transfer and TAP Operations

3.3 Serial Read/Write

The serial access port ($512K \times 16$ bits) is independent from the random access port and can perform read and write operations. The serial access port performing single data transfer and split data transfer can not perform read and write operations independently.

Caution When the power is turned on, the serial access port sets into the input (write) mode and the SIO pin is the high impedance state.

3.3.1 Serial Read Cycle

To set the serial read cycle, perform the single read data transfer cycle (The mode will not change in the split read data transfer cycle.).

Execute the single read data transfer cycle and latch the data and TAP data. By inputting a clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data will be output from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is output from the SIO0 to SIO15 pin, and the data is kept until the next rising edge of the SC clock.

(a) Reading-Jump

The SE pin controls the SIO pin output buffer independently from the SC clock. By setting the SE pin to high level even while inputting the SC clock, SIO0 to SIO15 pins become high impedance. But the operations of serial address pointer will be continued while the SC clock is being input even though reading has been prohibited from SE pin. Reading-jump of the column can be performed using this function.

3.3.2 Serial Write Cycle

To set the serial write cycle, perform the single write data transfer cycle (The mode will not change in the split write data transfer cycle.). To prevent the transfer data from being written in the memory cell of the random access port, set all bits of the mask data to "0" and control the mask data.

Execute the single write data transfer cycle and set the serial write cycle. By inputting the clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data can be latched from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is input from SIO0 to SIO15 pins. Be sure to follow the specifications for the setup time (tses) and hold time (tseh) of \overline{SE} pin for the SC clock.

(a) Writing-Jumps (Intermittent Writing)

The SE pin controls writing operations independently from the SC clock. By setting the SE pin to high level even while inputting the SC clock, writing will not be executed. But the operations of serial address pointer will be continued while the SC clock is being input even though writing has been prohibited from SE pin. These functions enable writing-jumps (intermittent writing) to be performed. The masked data is kept as the old data.

3.3.3 QSF Pin Output

QSF pin determines whether the serial address pointer is at the upper column side (addresses 256 to 511) or the lower column side (addresses 0 to 255) at the rising edge of the following SC clock during serial read or write. In other words, it outputs the uppermost bit (A8) of the column address of the serial address pointer. The following table shows the QSF pin output state and the access pointer of following SC clocks.

Access Address of Following SC clock	QSF Output
Addresses 0 to 255	Low level
Addresses 256 to 511	High level

3.4 TAP (Top Access Point) Register

The TAP register is a data register which specifies the start address (first serial address point = TAP) of the serial read or serial write.

Set data to this register each time a transfer cycle is executed.

3.4.1 Setting of TAP Register

The data input to A0 to A8 at the falling edge of \overline{CAS} during the setting of a transfer cycle is set as the TAP register data. By executing the transfer cycle, the start address of the following serial read (or write) operations is specified by the data of the TAP register and the TAP register will be kept in the empty state until the TAP register is set again.

In the split data transfer cycle, because the inactive serial access port column addresses are specified by the data of the TAP register automatically, there is no need to control the A8 data.

Caution When the TAP register is empty, the address following the 511 serial address point will be 0. In addition, because the serial address pointer will not jump to the column specified by the STOP register, the binary boundary jump function cannot be used. Refer to 3.6 Binary Boundary Jump Function.

3.5 STOP Register

The STOP register is a data register which determines the column of the jump source when jumping to a different column side (lower column or upper column) in the split data transfer cycle. Five types of columns can be selected for starting jump (jumping is possible at 2, 4, 8, 16, and 32 points). The following table shows the correspondence between the column at the jump source and data of the STOP register.

Once set, the STOP register data is kept until it is set again.

3.5.1 Setting of STOP Register

To set the STOP register, set $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$ to low level at the falling edge of RAS in the $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle. The data input to A0 to A7 will be input as the STOP register data.

S	тор	Reg	iste	r Data	Divi-	Bit	
A7	A6	A5	A4	A3 to A0		Width	Jump Source Bit Column (Decimal Number)
1	1	1	1	1	1/2	256	255
Ľ	•		•		1/2	200	511
0	1	1	1	1	1/4	128	127, 255
Ľ		<u> </u>	•		1/4	120	383, 511
0	0	1	1	1	1/8	64	63, 127, 191, 255
Ľ	•				04	319, 383, 447, 511	
0	0	0	1	1	1/16	32	31, 63, 95, 127, 159, 191, 223, 255
Ľ	•	Ů	•		1/10	52	287, 319, 351, 383, 415, 447, 479, 511
0	0	0	0	1	1/32	16	15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255
Ľ			0		.,52		271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511

Table 3-2. STOP Register Data and Jump Source Column

Remark A8: Don't care.

Caution When the power is supplied, all STOP register data will be set to all "1".

3.6 Binary Boundary Jump Function

This function causes the serial address pointer jump to the TAP specified by the TAP register when the pointer moves to a column specified by the STOP register (split data transfer).

This function cannot be used when the jump destination address is not set (TAP register is empty).

This function facilitates tile map application which divides the screen into tiles and manages data for each tile.

3.6.1 Usage of Binary Boundary Jump Function

After setting the STOP register, execute the single read (or write) data transfer and initialize the serial access port. The initialization process will switch the serial access port read (or write) operations, set TAP, set the serial access port data, and set the TAP register to empty. By inputting the serial clock in this state, the serial access port will read (or write) operations from TAP in ascending order of address. Because the TAP register is in the empty state, the address at the jump source set by the STOP register will be ignored, and the serial address pointer will move on.

When the column to be jumped approaches, execute split data transfer and set new TAP data in the TAP register. The serial pointer will jump at the desired jump source address. Jump can be controlled freely by repeating these operations.

3.7 Special Operations

3.7.1 Serial Address Set Operations

Because the serial address counter is undefined when the power up, the serial access port operations when the SC clock is input are not guaranteed. Execute single read (or write) transfer after turning on the power. The serial access port will be initialized, enabling serial access port operations to be performed.

3.7.2 Lap Around Operations

If all the data of the register is read (write) during data transfer while the serial read (write) cycle is being executed, the serial pointer will repeat 0 to 511.

3.7.3 Cycle After Power On

Execute the dummy cycle eight times more than 100 μ s after Vcc reaches the specified voltage in the recommended operation conditions.

If RAS, CAS, DT/OE, UWE, LWE are kept at high level when the power is turned on, the following will be set automatically.

- Serial access port Input mode, SIO: High impedance
- Color register Undefined
- Mask register All "1"
- TAP register Undefined
- STOP registerAll "1"

4. Electrical Characteristics

4.1 μ PD482444, 482445 (Power Supply Voltage Vcc = 5 V ± 10 %)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Pin voltage	VT	-1.0 to +7.0	V
Supply voltage	Vcc	-1.0 to +7.0	v
Output current	lo	50	mA
Power dissipation	Po	1.5	w
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	v
High level input voltage	Viн	2.4		5.5	v
Low level input voltage	Vil	-1.0		+0.8	v
Operating ambient temperature	ΤA	0		70	°C

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	lı.	V _{IN} = 0 V to 5.5 V, Other inputs are 0 V	-10		+10	μA
Output leakage current	IOL .	W/IO, SIO, QSF are inactive, Vout = 0 V to 5.5 V	-10		+10	μA
Random access port high level output voltage	Vон (R)	Іон (R) = -1.0mA	2.4			V
Random access port low level output voltage	Vol (R)	lol (R) = 2.1mA			0.4	V
Serial access port high level output voltage	Vон (S)	lон (S) = -1.0mA	2.4			V
Serial access port low level output voltage	Vol (S)	lol (S) = 2.1mA			0.4	V

DC Characteristics 1 (Recommended operating conditions unless otherwise noted)

Capacitance (TA = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	CI1	RAS, CAS, UWE, LWE, DT/OE, DSF, SE, SC			8	pF
	Cı2	A0 to A8			5	
Input/Output Capacitance	Сю	W/IO (0 to 15), SIO (0 to 15)			7	pF
Output Capacitance	Co	QSF			7	рF

DC Characteristics 2 (Recommended operating conditions unless otherwise noted) ^{Note 1}
--

Random Access Port	Serial Access Port		Symbol) μPD482444-70 μPD482445-70		Unit	Conditions
	Standby	Active		MIN.	MAX.	MIN.	MAX.		
Random Read/Write Cycle	0		Icc1		110		95	mA	
\overline{RAS} , \overline{CAS} cycle, trc = trc (MIN.), lo = 0mA		0	Icc7		130		110		
Standby RAS = CAS = VIII.	0		lcc2		10		10	mA	Note 2
RAS = CAS = VIH, Dout ≈ high impedance		0	Іссв		50		45	mA	Note 2
RAS only refresh cycle RAS cycle, CAS = VIH,	0		Іссз		100		85	mA	Note 3
trc = trc (MIN.)		0	ါငင္ခ		140		120		
Fast/Hyper page mode cycle $\overline{RAS} = V_{IL}$, \overline{CAS} cycle,	0		lcc₄		120		105	mA	Note 4, 5
$t_{PC} = t_{PC}$ (MIN.) or $t_{PPC} = t_{PPC}$ (MIN.)		0	Icc10		150		130		
CAS before RAS refresh cycle trc = trc (MIN.)	0		lcc5		100		95	mA	
		0	Icc11		130		120		
Data transfer cycle trc = trc (MIN.)	0		lccs		120		105	mA	
trc = trc (totto)		0	ICC12		150		130		
Color/Mask write register set cycle trc = trc (MIN.)	0		Іссіз		90		80	mA	
		0	Icc14		120		105		
Flash write cycle trc = trc (MIN.)	0		Icc15		90		80	mA	
		0	Icc16		120		105		
Block write cycle trc = trc (MIN.)	0		lcc17		110		100	mA	
		0	Icc18		140		125		
Fast/Hyper page mode block write cycle tPc = tPc (MIN.) or tHPc = tHPc (MIN.)	0		Icc19		135		120	mA	
		0	Icc20		155		135		Note 4, 5

Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.

- 2. A change in row addresses must not occur more than once in trc = trc (MIN.).
- 3. When the address input is set to VIH or VIL during the tRAS period.
- 4. Value when the address in trc one cycle is changed once when μ PD482444 trc = trc (MIN.).
- 5. Value when the address in the cone cycle is changed once when μ PD482445 thec = the (MIN.).

AC Characteristics (T_A = 0 to 70 °C, Vcc = 5.0 V \pm 10 %, GND = 0 V)^{Notes 1, 2, 3, 4} (Common for μ PD482444, 482445)

(1/4)

Parameter	Symbol		2444-60 2445-60		2444-70 2445-70	Unit	Condition
		MIN.	MAX.	MIN.	MAX.		· .
Access time from RAS	t rac		60		70	ns	Note 5
Access time from CAS	tcac		18		18	ns	Note 5
Access time from column address	taa		30		35	ns	Note 5
Access time from CAS trailing edge	t ACP		30		35	ns	
Access time from OE	t OEA		18		18	ns	
Serial output access time from SC	tsca		15		17	ns	
Serial output access time from \overline{SE}	t SEA		15		17	ns	
Output disable time from \overline{SE} high	tsez	0	15	0	15	ns	Note 6
Random read or write cycle time	trc	110		130		ns	
Read modify-write cycle time	trwc	160		180		ns	
Transition time (Rise/Fall)	tτ	3	35	3	35	ns	
RAS precharge time	tRP	40		50		ns	
RAS pulse width	tras	60	10,000	70	10,000	ns	
(Non page mode)							
RAS pulse width	TRASP	60	125,000	70	125,000	ns	
(Fast page/Hyper page mode)							
RAS hold time	trsh	15		18		ns	
CAS precharge time	t CPN	10		10		ns	
(Non page mode)							
CAS precharge time	tcp	10		10		ns	
(Fast page/Hyper page mode)	•••••	60		70			
CAS hold time	tсян	60		70	50	ns	
RAS to CAS delay time	trcd	25	40	30	50	ns	Note 5
CAS high to RAS low precharge time	tCRP	10		10		ns	
RAS high to CAS low precharge time	trpc	10		10		ns	
Row address setup time	tasr	0		0		ns	
Row address hold time	trah	15		15		ns	
Column address setup time	tasc	0		0		ns	
Column address hold time	t CAH	10		10		ns	
RAS to column address delay time	trad	15	30	15	35	ns	Note 5
Column address to RAS lead time	tral	30		35		ns	
Read command setup time	trcs	0		0		ns	

(Common for µPD482444, 482445)

Parameter	Symbol		2444-60 2445-60		2444-70 2445-70	Unit	Condition
		MIN.	MAX.	MIN.	MAX.	, o i iii	
Read command hold time after RAS high	trrн	0		0		ns	Note 7
Read command hold time after CAS high	trcн	0		0		ns	Note 7
\overline{OE} hold time after \overline{RAS} high	torh	10		10		ns	
$\overline{\text{OE}}$ hold time after $\overline{\text{CAS}}$ high	tосн	10		10		ns	
Write command setup time	twcs	0		0		ns	Note 9
Write command hold time	twcн	12		12		ns	
Write command pulse width	twp	12		12		ns	
Write command to \overline{RAS} lead time	t RWL	20		20		ns	
Write command to \overline{CAS} lead time	tcwl	15		15		ns	
Data in setup time	tos	0		0		ns	Note 8
Data in hold time	tон	15		15		ns	Note 8
Refresh period	tref		8		8	ms	
CAS to UWE, LWE delay time	tcwp	40		40		ns	Note 9
RAS to UWE, LWE delay time	trwd	85		90		ns	Note 9
Column address to UWE, LWE delay time	tawd	55		55		ns	Note 9
CAS setup time (for CAS before RAS refresh cycle)	tcsr	5		5	,	ns	
CAS hold time (for CAS before RAS refresh cycle)	t CHR	10		10		ns	
Masked byte write setup time	tMCS	0		0		ns	
Masked byte write to RAS hold time	tмrн	0		0		ns	
Masked byte write to \overline{CAS} hold time	tмсн	0		0		ns	
DT low setup time	tdls	0		0		ns	
DT low hold time after RAS low	trdh	55		60		ns	Note 10
DT low hold time after RAS low	trdhs	15		15		ns	Note 10
DT low hold time after CAS low	tcdh	20		20		ns	Note 10
DT low hold time after address	tadd	25		25		ns	Note 10
SC high to DT high	tsdd	0		0		ns	Note 10
SC high to CAS low	tssc	10		10		ns	Note 10, 14, 1
SC low hold time after DT high	tsph	60		60		ns	Note 10

(Common for µPD482444, 482445)

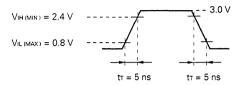
10	1.	۱
- 11-4	<i>'</i> / A	1
10	7 -	1

Parameter	Symbol	μPD482444-60 μPD482445-60				Unit	Condition
	_	MIN.	MAX.	MIN.	MAX.		
SC low hold time after \overline{DT} high	tsdhr	60		60		ns	Note 10, 14
OE high to data in setup delay time	toed	15		15		ns	
OE high hold time after UWE, LWE low	tоен	0		0		ns	
Serial clock cycle time	tscc	20		22		ns	
SC pulse width	tscн	5		5		ns	
SC precharge time	tsc∟	5		5		ns	
SE low to serial output setup delay time	tsoo	3		5		ns	
Serial output hold time after SC high	tsoн	3		5		ns	
DT high setup time	t DHS	0		0		ns	
DT high hold time	tонн	15		15		ns	
DT high to RAS high delay time	t dtr	0		0		ns	Note 10
DT high pulse width	t DTP	20		20		ns	
OE to RAS inactive setup time	toes	0		0		ns	
Write-per-bit setup time	twвs	0		0		ns	
Write-per-bit hold time	twвн	15		15		ns	
DSF setup time from RAS	tfrs	0		0		ns	
DSF hold time from RAS	t frh	15		15		ns	
DSF setup time from \overline{CAS}	trcs	0		0		ns	
DSF hold time from \overline{CAS}	t FCH	12		12		ns	
Write-per-bit selection setup time	tws	0		0		ns	
Write-per-bit selection hold time	twн	15		15		ns	
SE pulse width	t see	5		5		ns	
SE precharge time	tsep	5		5		ns	
SE setup time	tses	0		0		ns	
SE hold time from SC	tseн	10		10		ns	
Serial data in setup time	tsis	0		0		ns	
Serial data in hold time	tsıн	10		10		ns	
Serial input disable time from SC	tsız	0		0		ns	
Serial output disable time from \overline{RAS}	tsrz	0		0		ns	

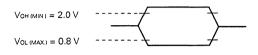
(Common for µPD482444, 482445)

Parameter	Symbol	· ·		μPD482444-70 μPD482445-70		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
Serial input enable time from RAS	tszн	40		40		ns	
SC setup time from RAS	tsrs	10		10		ns	Note 13, 14, 15
SC hold time from RAS	tsrн	10		10		ns	Note 13
Propagation delay time from SC to QSF	tpd	0	20	0	20	ns	
Propagation delay time from RAS to QSF	trad	0	80	0	95	ns	
Propagation delay time from CAS to QSF	tcop	0	60	0	65	ns	
Propagation delay time from DT/OE to QSF	toop	0	30	0	30	ns	
Propagation delay time from RAS high to QSF	TDOR	0	40	0	40	ns	

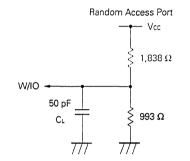
(4/4)

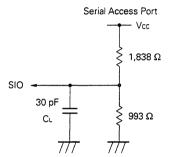

(µPD482444 Only)

		μPD482444-60		μPD482444-70			A B
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit	Condition
Output disable time from CAS high	toff	0	15	0	15	ns	Note 6, 11
Output disable time from OE high	toez	0	15	0	15	ns	Note 6, 11
Output disable time from \overline{LWE} , \overline{UWE} low	twez	0	15	0	15	ns	Note 6, 11
Write command pulse width	twpz	12		12		ns	Note 11
Fast page mode cycle time	tPC	35		40		ns	
Fast page mode read modify write cycle time	tprwc	90		95		ns	
CAS pulse width	tcas	15	100,000	15	100,000	ns	


(µPD482445 Only)

Descenter	Symbol	μPD482445-60		μPD482445-70			0
Parameter		MIN.	MAX.	MIN.	MAX.	Unit	Condition
Output hold time from CAS	tонс	3		5		ns	
Output disable time from \overline{RAS} high	tofr	0	15	0	15	ns	Note 6, 12
Output disable time from CAS high	torc	0	15	0	15	ns	Note 6, 12
Output disable time from \overline{OE} high	toez	0	15	0	15	ns	Note 6, 12
Output disable time from LWE, UWE low	twez	0	15	0	15	ns	Note 6, 12
Write command pulse width	twpz	12		12		ns	Note 12
Hyper page mode cycle time	thpc	30		35		ns	
Hyper page mode read modify	thprwc	80		90		ns	
write cycle time							
CAS pulse width	thcas	10	100,000	10	100,000	ns	


- Notes 1. All applied voltages are referenced to GND.
 - 2. After power up, wait more than 100 μ s and then, execute eight \overline{RAS} cycles as dummy cycles to initialize internal circuit.
 - 3. Measure at $t\tau = 5 ns$
 - 4. AC characteristic measuring conditions
 - (1) Input voltage, timing



(2) Output voltage determined

(3) Output load conditions

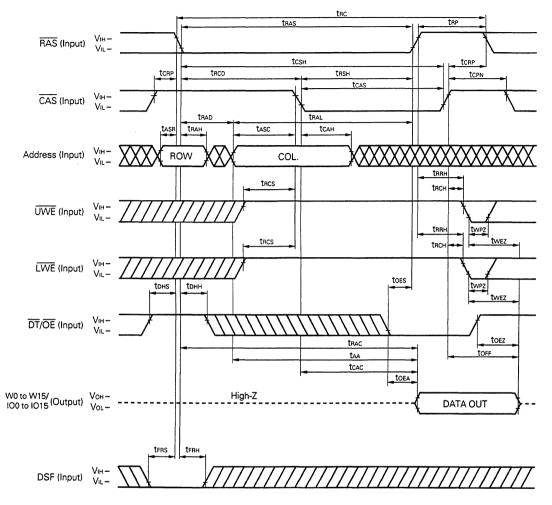
5. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from \overline{RAS}
$t_{RAD} \leq t_{RAD}$ (MAX.) and $t_{RCD} \leq t_{RCD}$ (MAX.)	trac (MAX.)	trac (MAX.)
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA, tCAC) is to be used for finding out data will be available. Therefore, the input conditions tRAD \geq tRAD (MAX.) and tRCD \geq tRCD (MAX.) will not cause any operation problems.

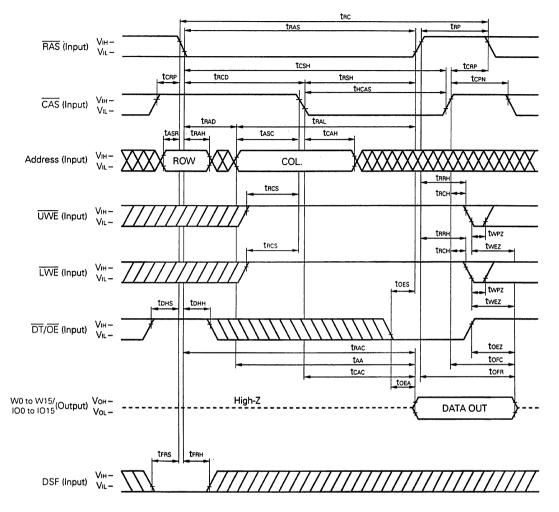
- 6. tsez, toez, twez, toff, toff, and tofc define the time when the output achieves the condition of high impedance and is not referenced to VoH or VoL.
- 7. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles.
- 8. These parameters are referenced to the following points.
 - (1) Early write cycle : The falling edge of CAS
 - (2) Late write cycle : The falling edge of UWE, LWE
 - (3) Read modify write cycle : The falling edge of UWE, LWE
- twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dou⊤ becomes high impedance during the cycle.

 $t_{RWD} \ge t_{RWD}$ (MIN.), $t_{CWD} \ge t_{CWD}$ (MIN.), $t_{AWD} \ge t_{AWD}$ (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

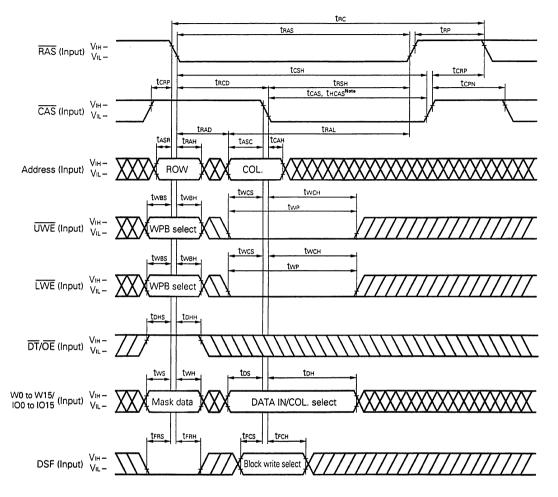

If any of the above conditions are not met, pin W/IO will become undefined.

- Notes 10. One of the following specifications will be valid depending on the type of read data transfer method used.
 - (1) $\overline{\text{DT/OE}}$ edge control: Satisfy the following specifications.
 - For DT/OE edge inputs : trdh, tcdh, tadd, tdtr
 - For SC inputs : tsdd, tsdh
 - (2) Self control: Satisfy the following specification.
 - For DT/OE edge inputs : tRDHs
 - For SC inputs : tssc, tsdhr
 - Control pins CAS, OE, UWE, LWE to set pin W/IO to high impedance. Because the timings at which CAS and OE are set to high level and UWE and LWE are set to low level affect the high impedance state, the specifications will change as follows.
 - (1) When CAS is set to high level at OE (low level) and UWE and LWE (high level) at the end of the read cycle: torr is valid
 - (2) When UWE and LWE are set to low level at CAS (low level) and OE (low level) at the end of the read cycle: twez and twez are valid
 - (3) When OE is set to high level at CAS (low level) and UWE and LWE (high level) at the end of the read cycle: toEz is valid
 - 12. Control pins RAS, CAS, OE, UWE, LWE to set pin W/IO to high impedance. Because the timings at which RAS, CAS, and OE are set to high level and UWE and LWE are set to low level affect the high impedance state, the specifications will change as follows.
 When controlling RAS and CAS the output cannot be made high impedance unless both pins are

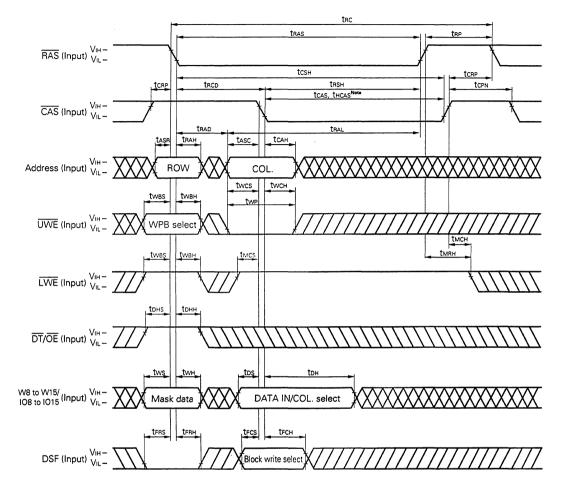
When controlling \overline{RAS} and \overline{CAS} , the output cannot be made high impedance unless both pins are set to high. There is difference between torc and torr, because \overline{RAS} and \overline{CAS} control is specified from the rising edge of the slower one.


- (1) When RAS is set to high level after CAS is set to high level at OE (low level) and UWE and LWE (high level) at the end of the read cycle: torr is valid
- (2) When CAS is set to high level after RAS is set to high level at OE (low level) and UWE and LWE (high level) at the end of the read cycle: torc is valid
- (3) When UWE and LWE are set to low level at RAS, CAS (low level) and OE (low level) at the end of the read cycle: twez and twpz are valid
- (4) When \overline{OE} is set to high level at \overline{RAS} , \overline{CAS} (low level) and \overline{UWE} and \overline{LWE} (high level) at the end of the read cycle: toEz is valid
- 13. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.
- 14. tssc (split read data transfer cycle) and tsrs (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tsphr (Refer to Note 2 Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tsrs to that of the SC specifying tsohr (Refer to Note 2 Split Read/Write Data Transfer Cycle Timing Chart.)
- 15. Limitations of split read/write data transfer cycle during serial write operations. When split read/ write data transfer is performed while serial write is executed for the column specified by the STOP register, serial write operations cannot be guaranteed.

Read Cycle (µPD482444)


Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

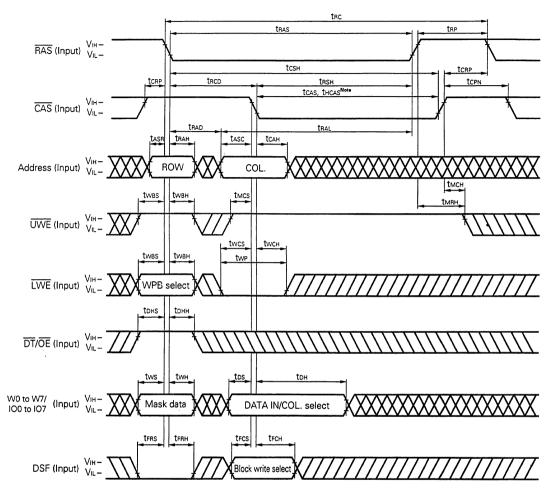
Read Cycle (Extended data output: µPD482445)


Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Early Write Cycle/Early Block Write Cycle

Note tcas for the μ PD482444 tHcas for the μ PD482445

- Remarks 1. When DSF is high level : Block write cycle
 - When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

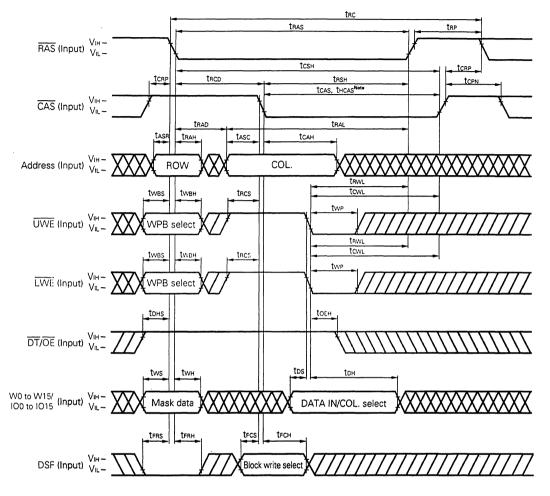


Upper Byte Early Write Cycle/Upper Byte Early Block Write Cycle

Note tcas for the μ PD482444 tHcas for the μ PD482445

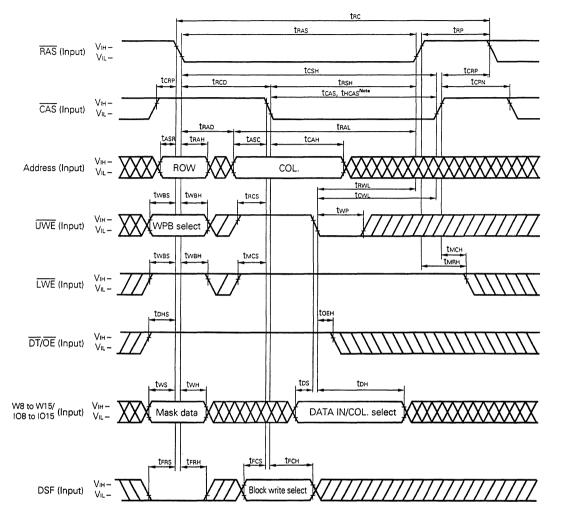
Remarks 1. W0 to W7/IO0 to IO7 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.



Lower Byte Early Write Cycle/Lower Byte Early Block Write Cycle

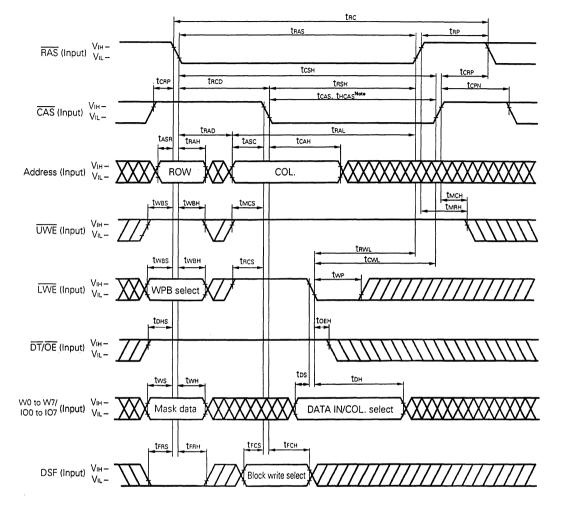
Note tcas for the μ PD482444 tHcas for the μ PD482445


- Remarks 1. W8 to W15/IO8 to IO15 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Late Write Cycle/Late Block Write Cycle

Note tcas for the μ PD482444 thcas for the μ PD482445

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.



Upper Byte Late Write Cycle/Upper Byte Late Block Write Cycle

Note tcas for the μ PD482444 tHcas for the μ PD482445

Remarks 1. W0 to W7/IO0 to IO7 : Don't care

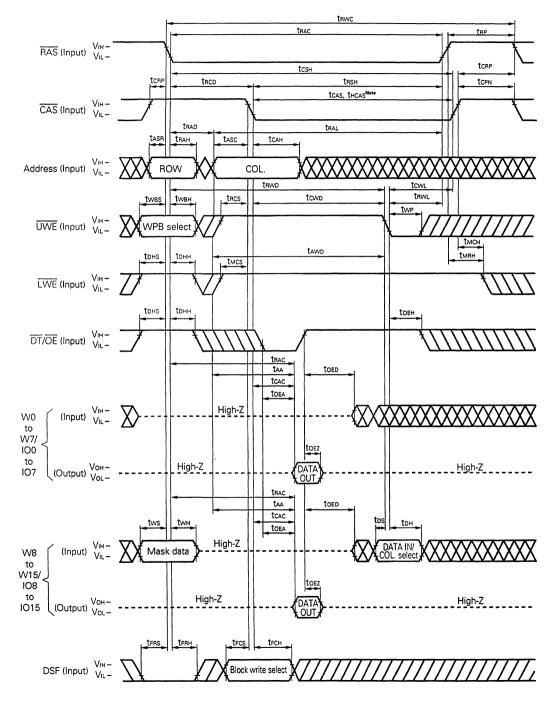
- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Lower Byte Late Write Cycle/Lower Byte Late Block Write Cycle

Note tcas for the μ PD482444 thcas for the μ PD482445

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- 5. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

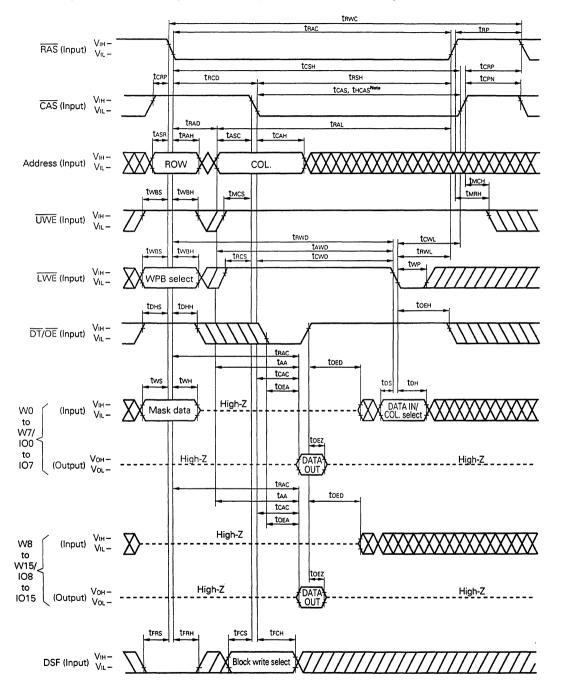


Read Modify Write Cycle/Read Modify Block Write Cycle

Note tcas for the μ PD482444 thcas for the μ PD482445

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

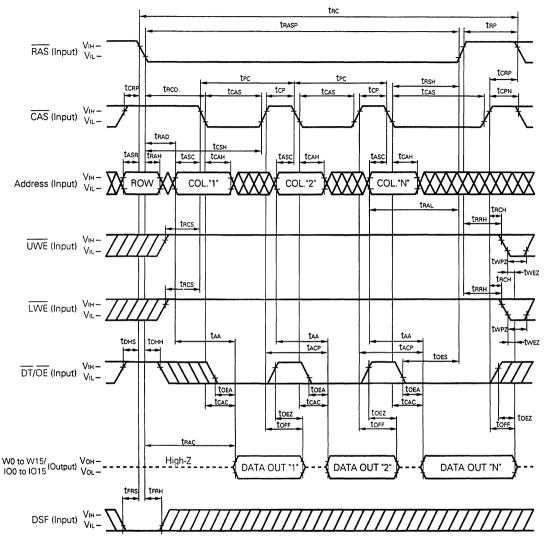

Read Modify Upper Byte Write Cycle/Read Modify Upper Byte Block Write Cycle

Note tcas for the μ PD482444 thcas for the μ PD482445

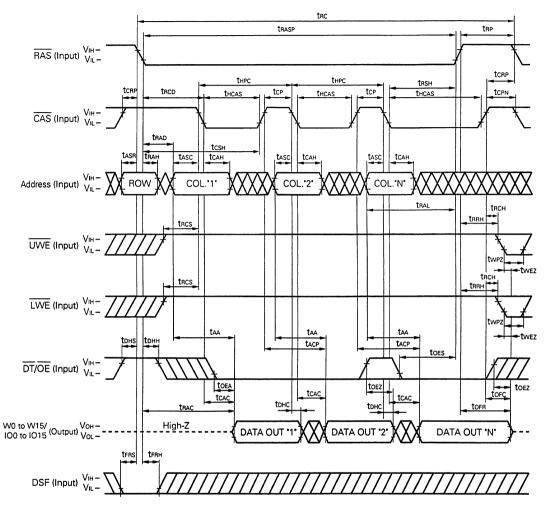
Remarks 1. When DSF is high level : Block write cycle

When DSF is low level : Write cycle

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

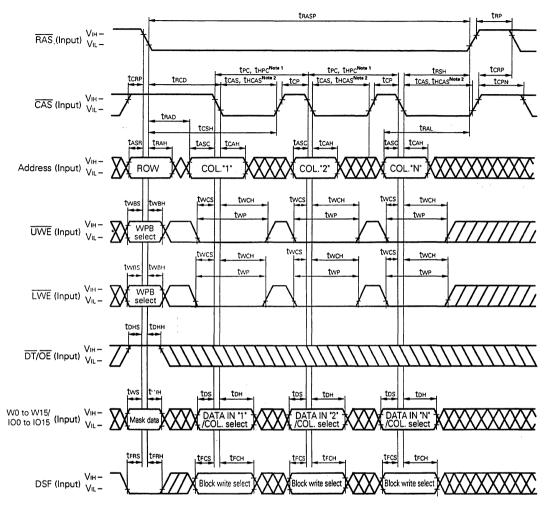

Read Modify Lower Byte Write Cycle/Read Modify Lower Byte Block Write Cycle

Note tcas for the μ PD482444

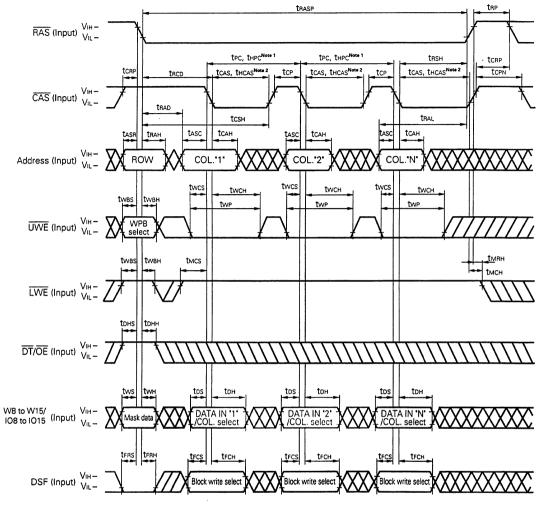

thcas for the μ PD482445

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

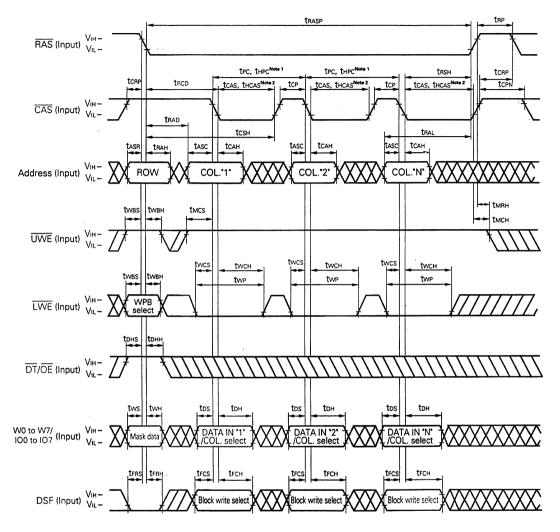
Fast Page Mode Read Cycle (µPD482444)



Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Hyper Page Mode Read Cycle (Extended data output: µPD482445)

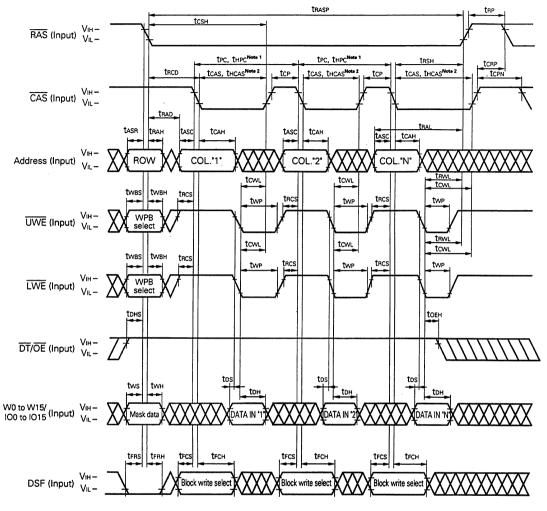
Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Fast Page, Hyper Page Mode Early Write Cycle/Fast Page, Hyper Page Mode Early Block Write Cycle

- Notes 1. tpc for the μ PD482444 tHPC for the μ PD482445
 - 2. tcas for the μPD482444 thcas for the μPD482445
- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

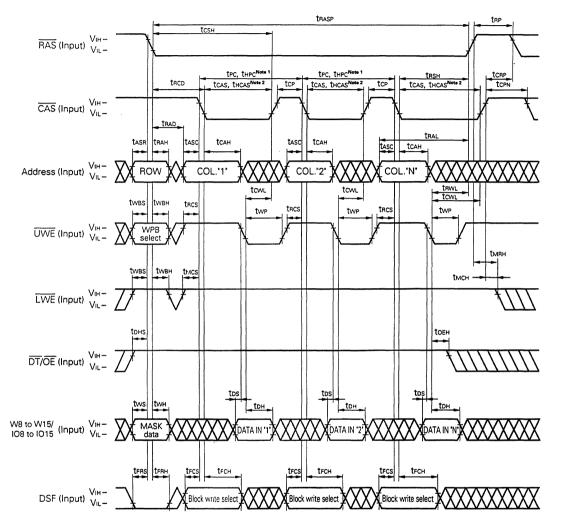
Fast Page, Hyper Page Mode Upper Byte Early Write Cycle/ Fast Page, Hyper Page Mode Upper Byte Early Block Write Cycle

- Notes 1. tPc for the μ PD482444 tHPC for the μ PD482445
 - 2. tcas for the μPD482444 thcas for the μPD482445
- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

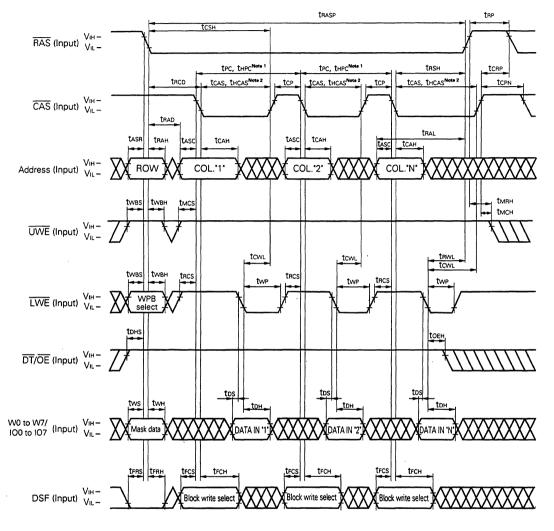


Fast Page, Hyper Page Mode Lower Byte Early Write Cycle/ Fast Page, Hyper Page Mode Lower Byte Early Block Write Cycle

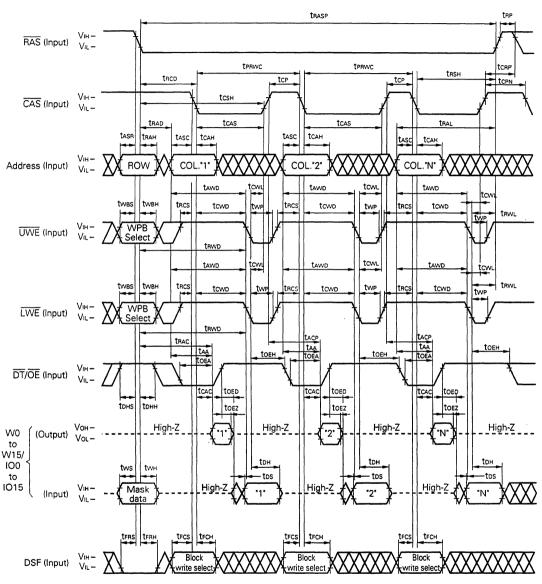
- Notes 1. trc for the μ PD482444 tHPC for the μ PD482445 2 tras for the μ PD482444
 - 2. tcas for the μ PD482444 theas for the μ PD482445.


Remarks 1. W8 to W15/IO8 to IO15 : Don't care

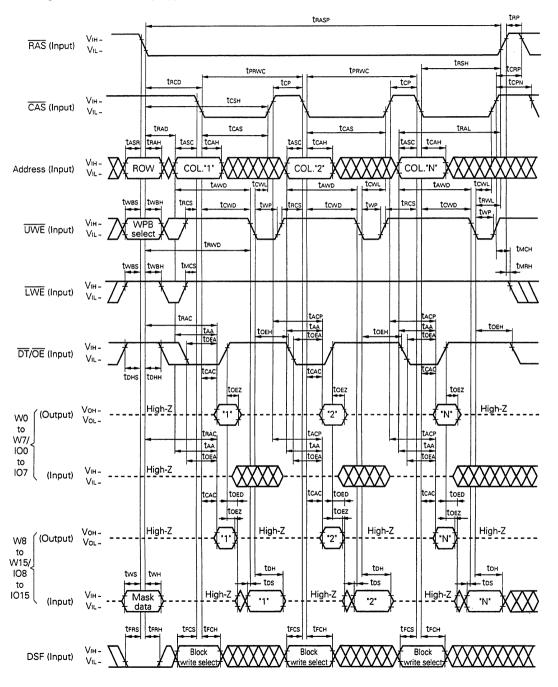
- 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
- 3. WPB : Write-per-bit
- 4. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Fast Page, Hyper Page Mode Late Write Cycle/Fast Page, Hyper Page Mode Late Block Write Cycle

- Notes 1. tpc for the μ PD482444 thpc for the μ PD482445
 - 2. tcas for the μPD482444 thcas for the μPD482445
- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

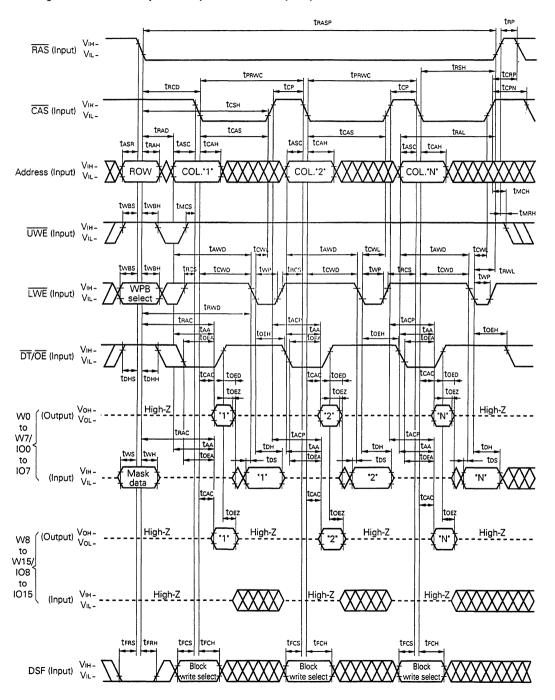

Fast Page, Hyper Page Mode Upper Byte Late Write Cycle/ Fast Page, Hyper Page Mode Upper Byte Late Block Write Cycle

- Notes 1. tpc for the μ PD482444 tHPc for the μ PD482445
 - 2. tcas for the μ PD482444 thcas for the μ PD482445
- Remarks 1. W0 to W7/IO0 to IO7 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Fast Page, Hyper Page Mode Lower Byte Late Write Cycle/ Fast Page, Hyper Page Mode Lower Byte Late Block Write Cycle

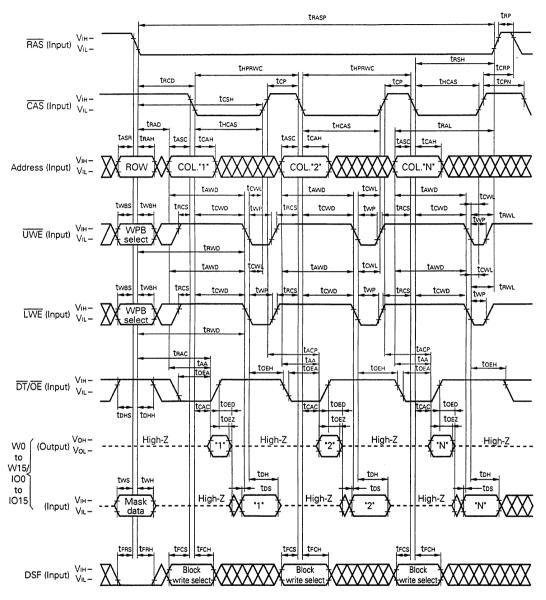
- Notes 1. tec for the μ PD482444 tHPC for the μ PD482445
 - 2. tcas for the μPD482444 thcas for the μPD482445
- Remarks 1. W8 to W15/IO8 to IO15 : Don't care
 - 2. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 3. WPB : Write-per-bit
 - 4. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Write Cycle (µPD482444)/ Fast Page Mode Read Modify Block Write Cycle (µPD482444)


- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Upper Byte Write Cycle (µPD482444)/ Fast Page Mode Read Modify Upper Byte Block Write Cycle (µPD482444)

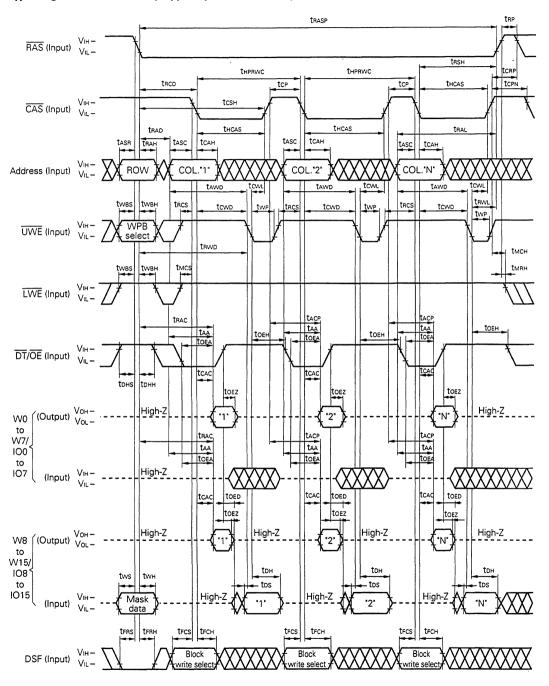
Remarks 1. When DSF is high level : Block write cycle


- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Modify Lower Byte Write Cycle (µPD482444)/ Fast Page Mode Read Modify Lower Byte Block Write Cycle (µPD482444)

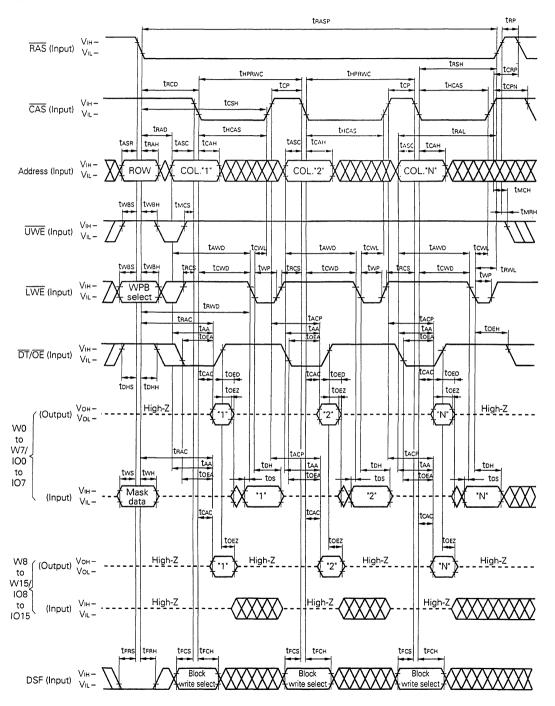
Remarks 1. When DSF is high level : Block write cycle

- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.



Hyper Page Mode Read Modify Write Cycle (Extended data output: μ PD482445) Hyper Page Mode Read Modify Block Write Cycle (Extended data output: μ PD482445)

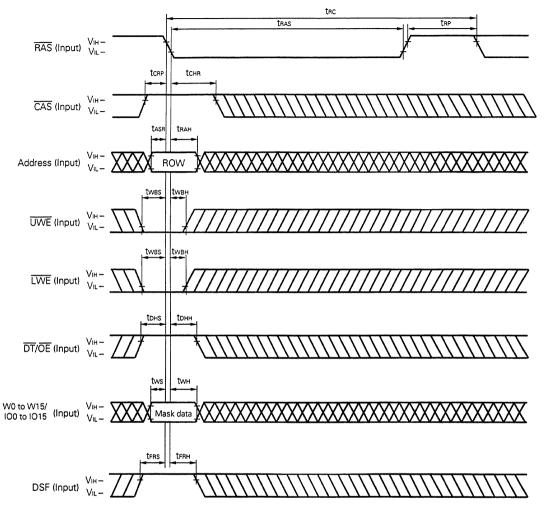
Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle


- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

[MEMO]

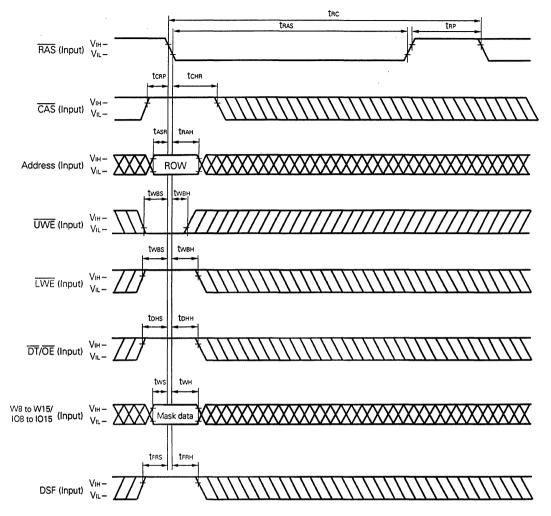
Hyper Page Mode Read Modify Upper Byte Write Cycle (Extended data output: μPD482445) Hyper Page Mode Read Modify Upper Byte Block Write Cycle (Extended data output: μPD482445) Remarks 1. When DSF is high level : Block write cycle

- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.



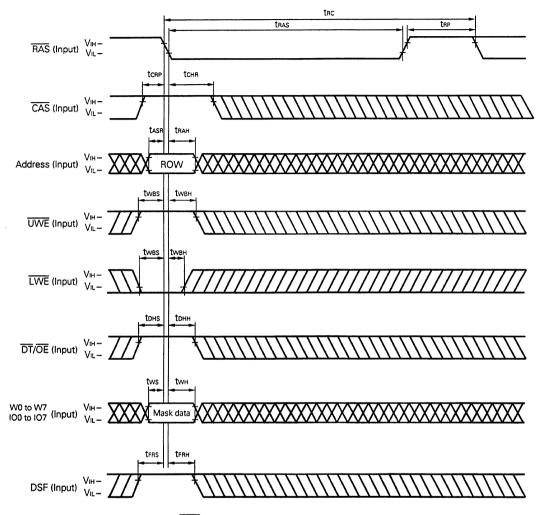
Hyper Page Mode Read Modify Lower Byte Write Cycle (Extended data output: μ PD482445) Hyper Page Mode Read Modify Lower Byte Block Write Cycle (Extended data output: μ PD482445)

Remarks 1. When DSF is high level : Block write cycle

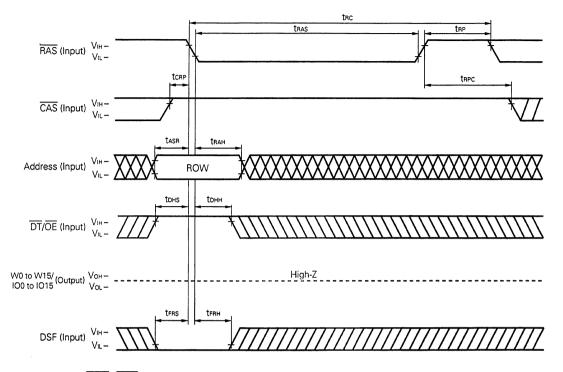

- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Flash Write Cycle

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

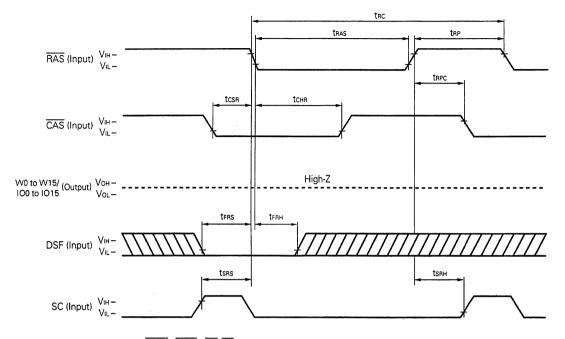

Flash Write Cycle (Upper Byte Flash Write)

Caution After the falling edge of \overline{RAS} , the operations performed for the upper byte will be the same as the \overline{RAS} only refresh cycle.

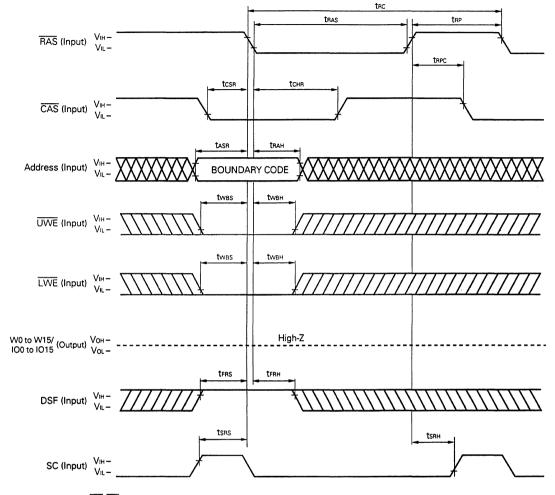

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Flash Write Cycle (Lower Byte Flash Write)

- Caution After the falling edge of \overline{RAS} , the operations performed for the upper byte will be the same as the \overline{RAS} only refresh cycle.
- **Remark** Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


RAS Only Refresh Cycle

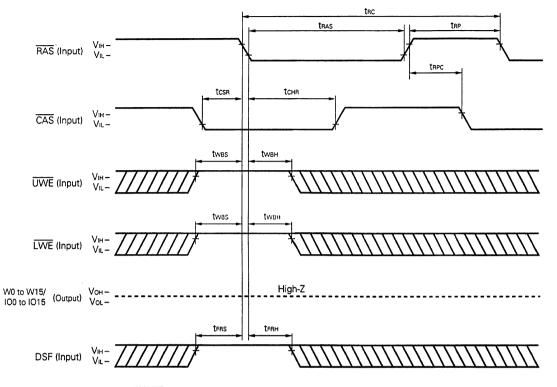
Remarks 1. UWE, UWE : Don't care


2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

CAS Before RAS Refresh Cycle (Optional Reset)

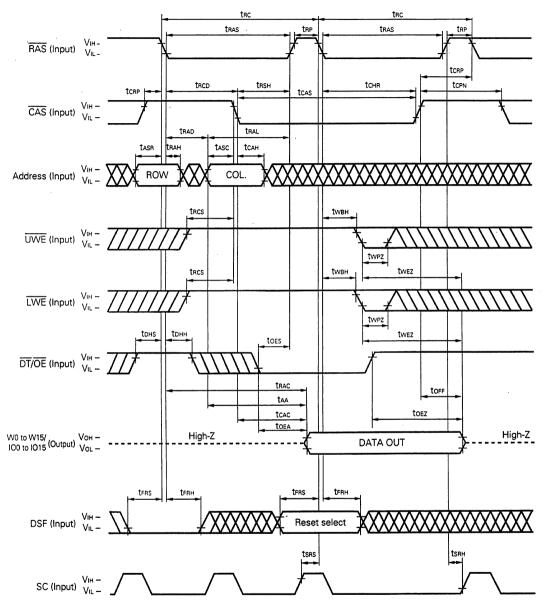
Remarks 1. A0 to A8, UWE, LWE, DT/OE : Don't care

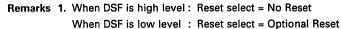
2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.



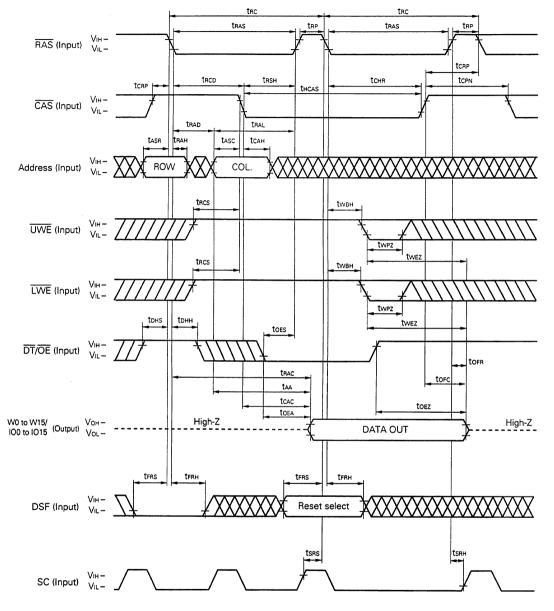
CAS Before RAS Refresh Cycle (STOP Register Set)

2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.

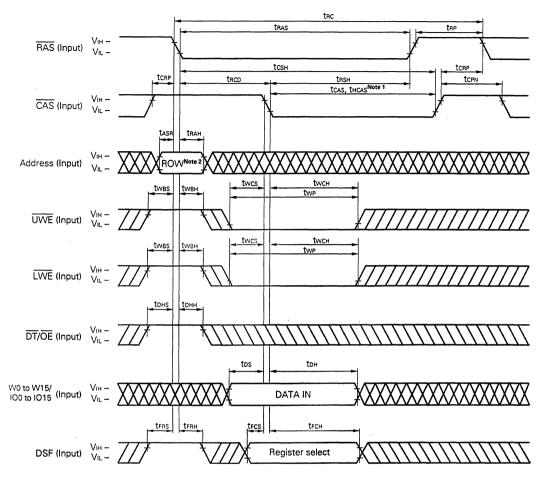

CAS Before RAS Refresh Cycle (No Reset)



Remarks 1. A0 to A8, DT/OE : Don't care

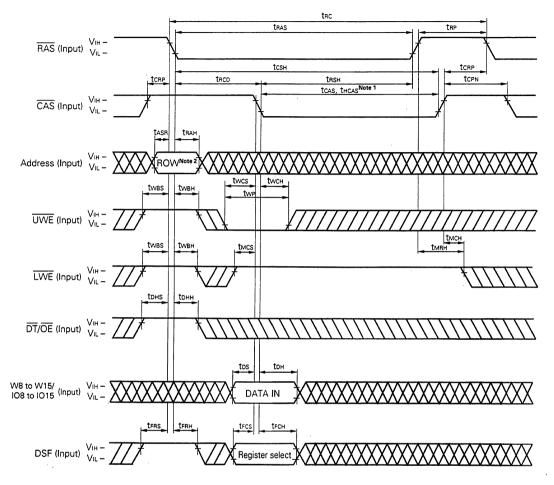

2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hidden Refresh Cycle (µPD482444)


2. Because the serial access port operates independently of the random access port, there is no need to control the \overline{SE} , SIO pins in this cycle.

Hidden Refresh Cycle (Extended data output: µPD482445)

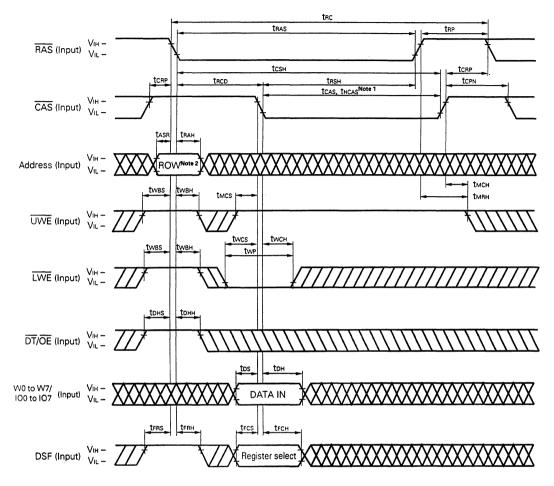
- Remarks 1. When DSF is high level : Reset select = No Reset When DSF is low level : Reset select = Optional Reset
 - Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.


Register Set Cycle (Early Write)

Notes 1. tcas for the μ PD482444 thcas for the μ PD482445

- 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Upper Byte Early Write)

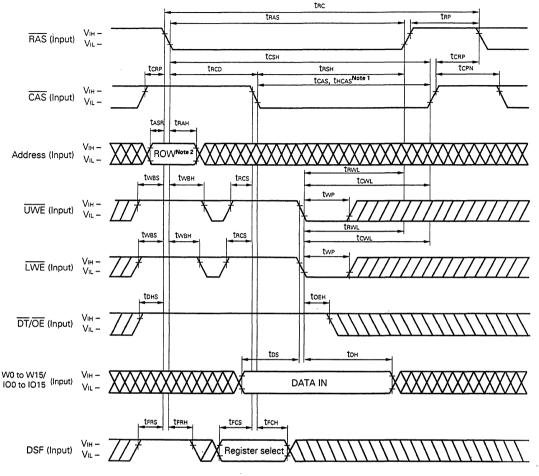

Notes 1. tcas for the μ PD482444 tHcas for the μ PD482445

2. Refresh address (RAS only refresh)

Remarks 1. W0 to W7/IO0 to IO7 : Don't care

- When DSF is high level : Register select = Color Register Select
 When DSF is low level : Register select = Write Mask Register Select
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

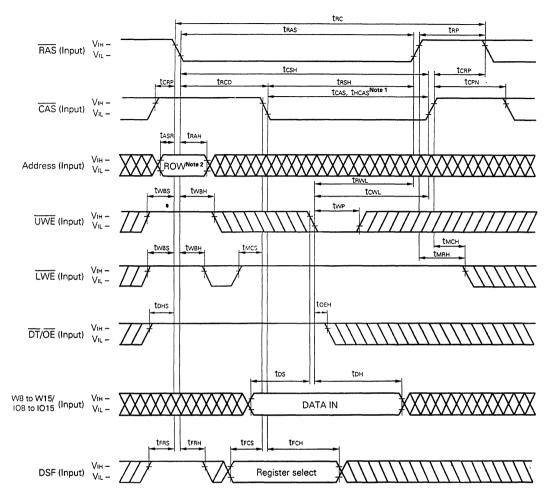
Register Set Cycle (Lower Byte Early Write)



- **Notes 1.** tcas for the μ PD482444 tHcas for the μ PD482445
 - 2. Refresh address (RAS only refresh)

Remarks 1. W8 to W15/IO8 to IO15 : Don't care

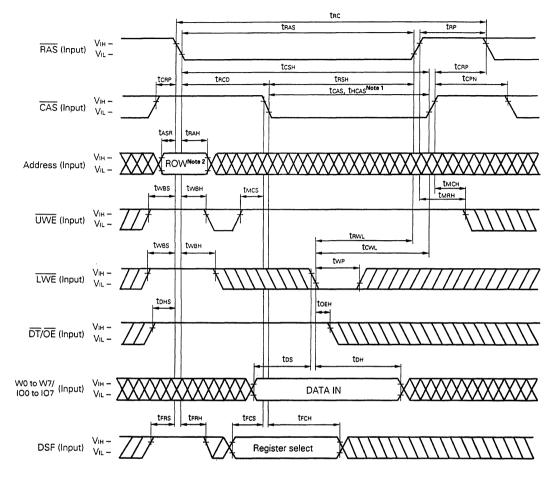
- When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Register Set Cycle (Late Write)

Notes 1. tcas for the μ PD482444 thcas for the μ PD482445

- 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Register Set Cycle (Upper Byte Late Write)

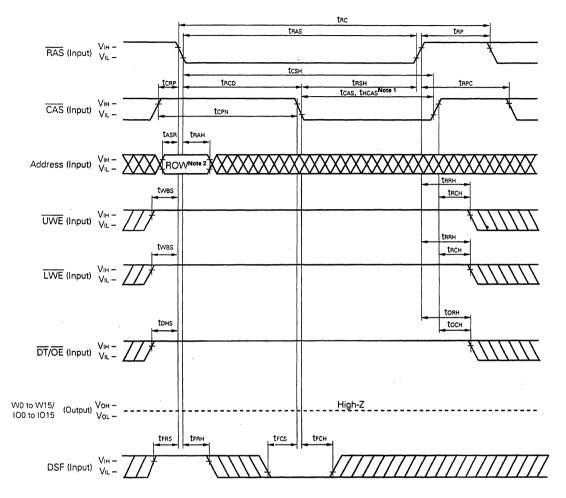


- **Notes 1.** tcas for the μ PD482444 tHcas for the μ PD482445
 - 2. Refresh address (RAS only refresh)

Remarks 1. W0 to W7/IO0 to IO7 : Don't care

- 2. When DSF is high level : Register select = Color Register Select
 - When DSF is low level : Register select = Write Mask Register Select
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

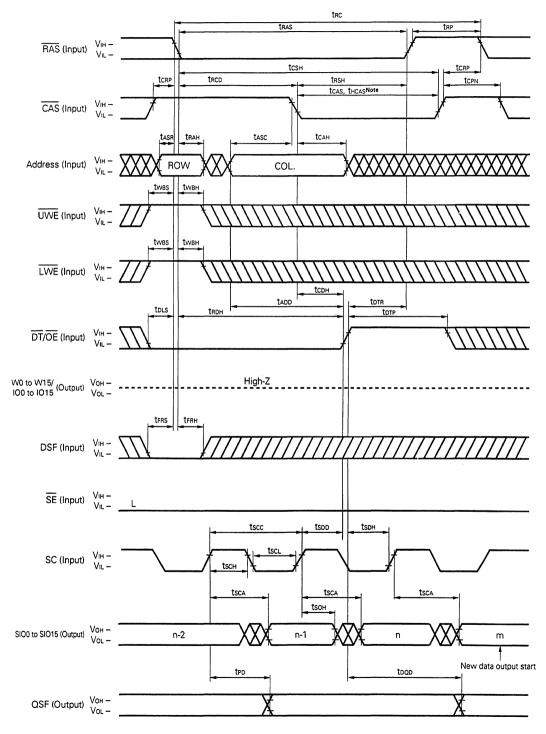
Register Set Cycle (Lower Byte Late Write)



Notes 1. tcas for the μ PD482444

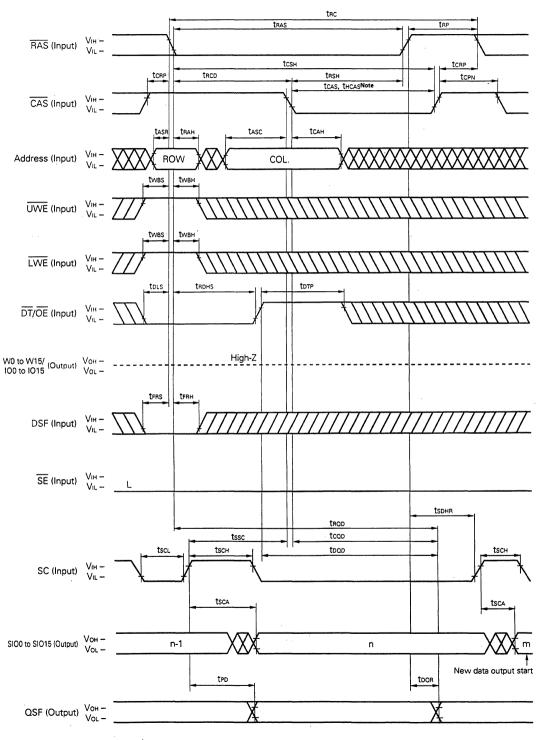
thcas for the µPD482445

- 2. Refresh address (RAS only refresh)
- Remarks 1. W8 to W15/IO8 to IO15 : Don't care
 - 2. When DSF is high level : Register select = Color Register SelectWhen DSF is low level : Register select = Write Mask Register Select
 - 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

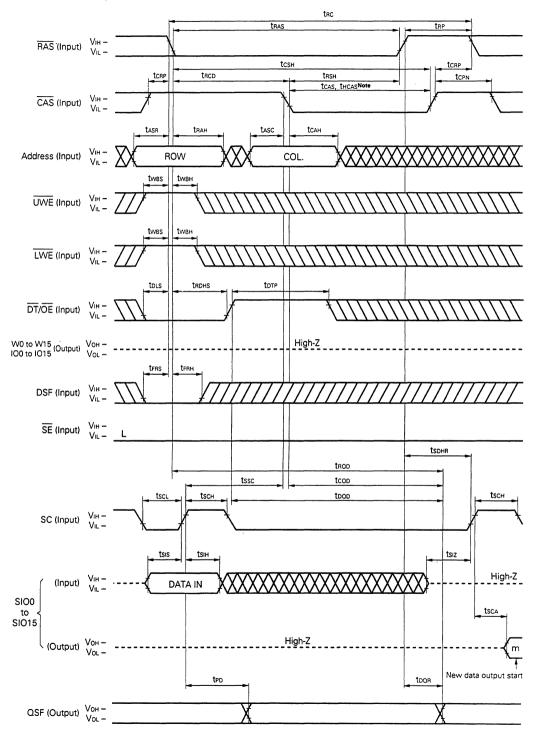

Mask Register Set Cycle (New Mask Selection)

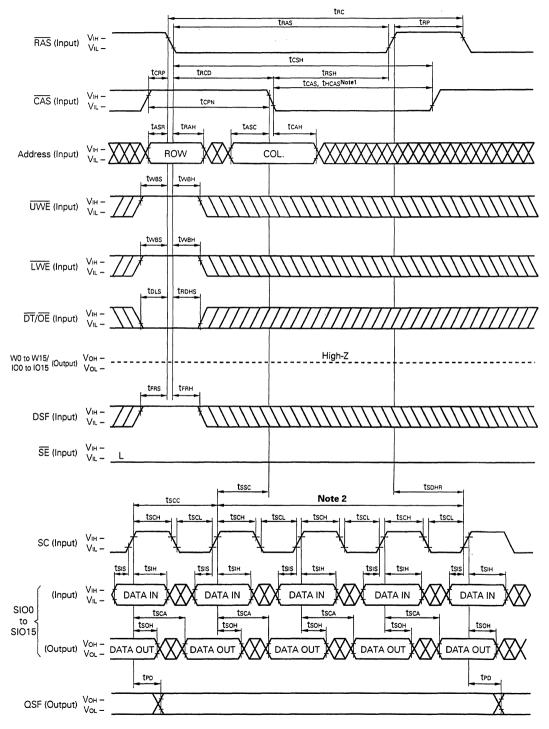
Notes 1. tcas for the μ PD482444

- thcas for the μPD482445
- 2. Refresh address (RAS only refresh)
- 3. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Read Data Transfer Cycle (SC Active)

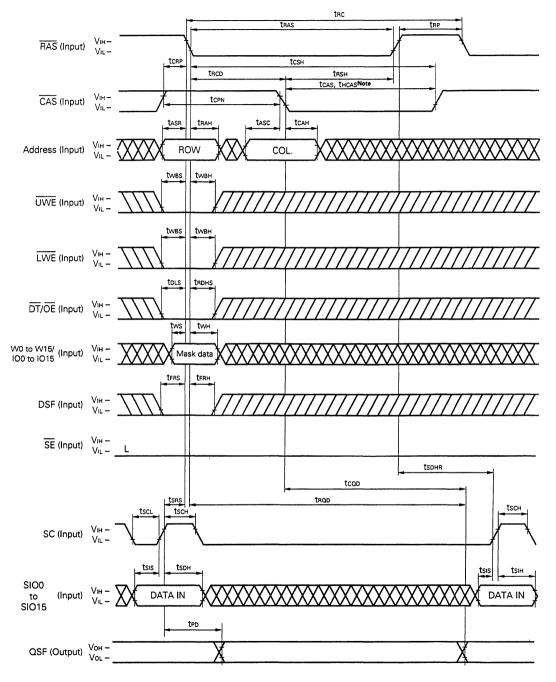
Note tcas for the μ PD482444


thcas for the μ PD482445

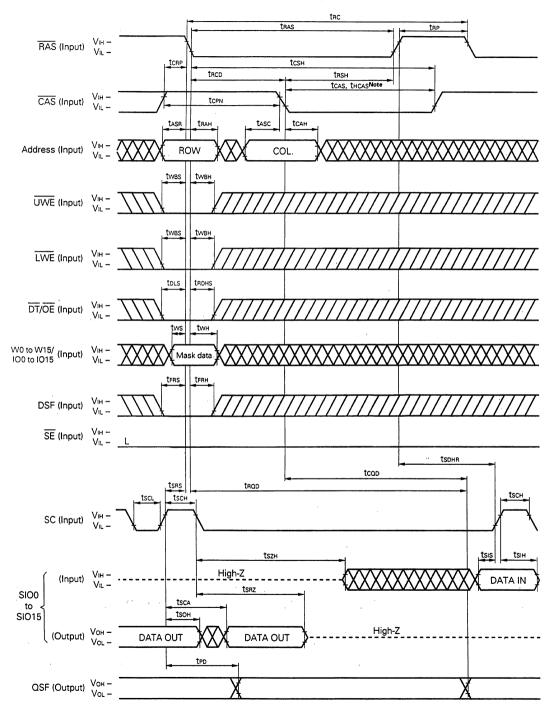

Note tcas for the μ PD482444 tHcas for the μ PD482445

Note tcas for the μ PD482444 tHcas for the μ PD482445 [MEMO]

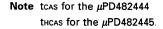
Split Read Data Transfer Cycle

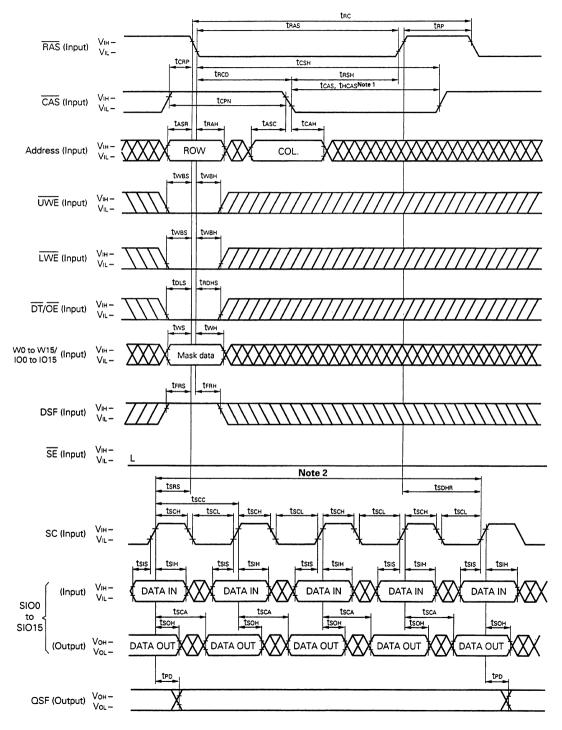


Notes 1. tcas for the μ PD482444


thcas for the μ PD482445

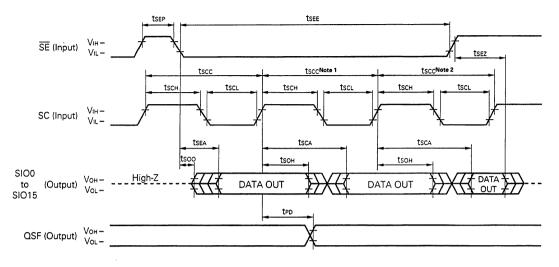
- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)


Write Data Transfer Cycle


Note tcas for the μ PD482444 thcas for the μ PD482445

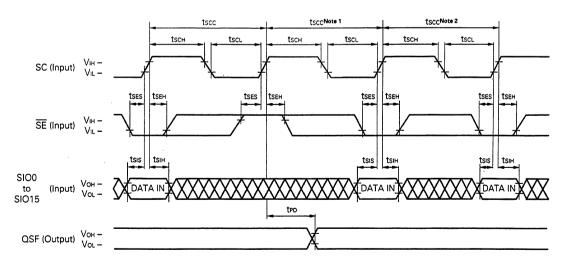
Write Data Transfer Cycle (Serial Read \rightarrow Serial Write Switching)

Split Write Data Transfer Cycle



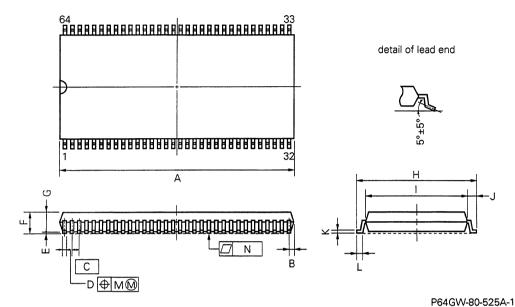
Notes 1. tcas for the μ PD482444

theas for the μ PD482445


- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)

Serial Read Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, \overline{CAS} , Address, \overline{UWE} , \overline{LWE} , $\overline{DT}/\overline{OE}$, WI/O, DSF pins in this cycle.


Serial Write Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, UWE, LWE, DT/DE, WI/O, DSF pins in this cycle.

5. Package Drawings

64 PIN PLASTIC SHRINK SOP (525 mil)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	26.30 MAX.	1.036 MAX.
В	0.75 MAX.	0.030 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.35±0.05	0.014+0.002
Е	0.15±0.05	0:006±0.002
F	2.3 MAX.	0.091 MAX.
G	2.0	0.079
н	13.8±0.3	0.543+0.013
I	11.8±0.1	0.465+0.004
J	1.0±0.2	0.039 ^{+0.009}
к	0.20+0.10	0.008+0.004
L	0.5±0.2	0.020+0.008
м	0.10	0.004
N	0.10	0.004

6. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD482444 and 482445 .

Types of Surface Mount Device

μPD482444GW	: 64-Pin Plastic Shrink SOP (525 mil)
μPD482445GW	: 64-Pin Plastic Shrink SOP (525 mil)

[MEMO]

DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD482234, 482235**

2M-Bit Dual Port Graphics Buffer

256K-WORD BY 8-BIT

Description

The μ PD482234 and μ PD482235 have a random access port and a serial access port. The random access port has a 2M-bit (262, 144 words × 8 bits) memory cell array structure. The serial access port can perform clock operations of up to 55 MHz from the 4K-bit data register (512 words × 8 bits).

To simplify the graphics system design, the split data transfer function and binary boundary jump function have been adopted so that the number of split data registers can be programmed with the software during serial read/write operations.

The μ PD482235 is provided with the hyper page mode, an improved version of the fast page mode of the μ PD482234. The random access port can input and output data by \overline{CAS} clock operations of up to 33 MHz.

Features

Dual port structure (Random access port, Serial access port)

Random access port (262, 144-word × 8-bit structure)

μ**PD482234**

	μPD482234-60	μPD482234-70	μPD482234-80
RAS access time	60 ns(MAX.)	70 ns(MAX.)	80 ns(MAX.)
Fast page mode cycle time	40 ns(MIN.)	45 ns(MIN.)	50 ns(MIN.)

μ**PD482235**

	μPD482235-60	μPD482235-70	μPD482235-80
RAS access time	60 ns(MAX.)	70 ns(MAX.)	80 ns(MAX.)
Hyper page mode cycle time	30 ns(MIN.)	35 ns(MIN.)	40 ns(MIN.)

- Flash write functionNote
- Block write function (4 columns)^{Note}
- · Mask write (Write-per-bit function)
- 512 refresh cycles /8 ms
- CAS before RAS refresh, RAS only refresh, Hidden refresh

Note Write-per-bit can be specified.

The information in this document is subject to change without notice.

- Serial access port (512 words × 8 bits organization)
 - · Serial read/write cycle time

μPD482234-60, 482235-60	μPD482234-70, 482235-70	μPD482234-80, 482235-80	
18 ns (MIN.)	22 ns (MIN.)	25 ns (MIN.)	

- · Serial data read/write
- · Split buffer data transfer
- · Binary boundary jump function

Version A, F, and E

NEC

There are three versions, A, F, and E, to both the μ PD482234 and μ PD482235. These versions operate with different specifications.

· Overview of each version

μ**PD482234**

The table below summarizes the operation of each version of the µPD482234.

ltem	Reference	Version A	Versions F and E
Specifying a column for data transfer during split data transfer cycle	3.2 Split Data Transfer Method	"MSB Don't Care" only	Version F: MSB Don't Care Version E: MSB Care
Selecting a new mask data method during mask write cycle	2.8.2 Selecting Mask Data	Option reset cycle only	Both option reset cycle and new mask selection can be used.

μ**PD482235**

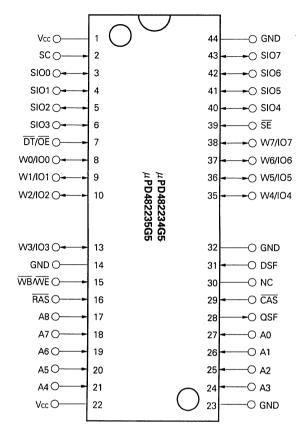
The table below summarizes the operation of each version of the μ PD482235.

ltem	Reference	Version A	Versions F and E
Specifying a column for data transfor during split data transfer cycle	3.2 Split Data Transfer Method	"MSB Don't Care" only	Version F: MSB Don't Care Version E: MSB Care
Selecting a new mask data system during mask write cycle	2.8.2 Selecting Mask Data	Option reset cycle only	Both option reset cycle and new mask selection can be used.
OE control system during hyper page mode cycle	2.4.1 Setting the Output to the High Impedance State	Latched control (conforming to JEDEC)	Non-latched control

· How to identify each version

Each version is identified with its lot number (Refer to 7. Example of Stamping).

Ordering Information

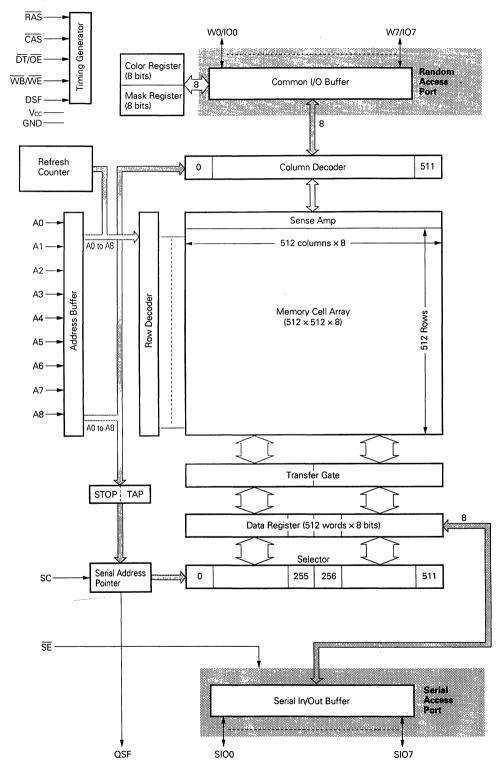

Part Number RAS Access Time ns (MAX.)		Package	Page Mode
μPD482234LE-60	60	40-pin plastic SOJ (400mil)	Fast page mode
μPD482234LE-70	70		
μPD482234LE-80	80		
μPD482234G5-60	60	44-pin plastic TSOP (II)	
μPD482234G5-70	70	(400mil)	
μPD482234G5-80	80		
μPD482235LE-60	60	40-pin plastic SOJ (400mil)	Hyper page mode
μPD482235LE-70	70		
μPD482235LE-80	80		
μPD482235G5-60	60	44-pin plastic TSOP (II)	
μPD482235G5-70	70	(400mil)	
μPD482235G5-80	80		

Pin Configurations (Marking Side)

	• •			
Vcc ()	1		40	O GND
SC O	2		39	→ SI07
SIO0 🔿 🗕 🕨	3		38	← ⊢ ⊖ SIO6
SIO1 O-	4		37	←O SIO5
SIO2 🔿 🛶 🕨	5		36	►O SIO4
SIO3 🔿 🗕 🕨	6		35	
	7		34	←O W7/IO7
W0/IO0 O	8		33	≻ ⊖ W6/IO6
W1/IO1 〇 	9	μP	32	← → O W5/IO5
W2/IO2 〇 	10	PD482234L PD482235L	31	
W3/IO3 〇 	11	1223	30	O GND
GND O	12	54	29	O DSF
WB/WE O	13		28	O NC
RAS O	14		27	
A8 ()	15		26	
A7 ()	16		25	
A6 O	17		24	 ⊖ A1
A5 O	18		23	O A2
A4 O	19		22	O A3
Vcc ()	20		21	O GND
W0 to W7/IO0 to IO7		-		inputs and outputs outputs
RAS	: Row a	ddress strobe	e	
CAS	: Colum	n address str	obe	
DT/OE	: Data tr	ansfer/Outpu	ıt er	able
		per-bit/Write		
		data input/Ou	utpu	t enable
SC	: Serial			
QSF		I function ou		
DSF Vcc		I function en		1
VCC GND	: Power : Groun	supply volta	ye	
		nnection		

40-pin plastic SOJ (400 mil)

Note Some signals can be applied because this pin is not connected to the inside of the chip.



44-pin plastic TSOP (II) (400 mil)

A0 to A8	: Address inputs
	•
W0 to W7/IO0 to IO7	: Mask data selects/Data inputs and outputs
SIO0 to SIO7	: Serial data inputs and outputs
RAS	: Row address strobe
CAS	: Column address strobe
DT/OE	: Data transfer/Output enable
WB, WE	: Write-per-bit/Write enable
SE	: Serial data input/Output enable
SC	: Serial clock
QSF	: Special function output
DSF	: Special function enable
Vcc	: Power supply voltage
GND	: Ground
NC ^{Note}	: No connection

Note Some signals can be applied because this pin is not connected to the inside of the chip.

Block Diagram

1. Pin Functions

This product is equipped with the RAS, CAS, WB/WE, DT/OE, A0 to A8, DSF, SC, SE inputs, QSF output, and W0 to W7/IO0 to IO7, SIO0 to SIO7 input/output pins.

(1/3)

Pin Name	Input/ Output	Function
RAS (Row address strobe)	Input	This signal latches the row addresses (A0 to A8), selects the corresponding word line, and activates the sense amplifier. It also refreshes the memory cell array of the one line (4,096 bits) selected from the row addresses (A0 to A8).
		It also serves as the signal which selects the following operations. • Write-per-bit • Flash write • CAS before RAS refresh • Split data transfer
CAS (Column address strobe)		This signal latches the column addresses (A0 to A8), selects the digit line connecting the sense amplifier, and activates the output circuit which outputs data to the random access port.
		It also serves as the signal which selects the following operations. • Read/write • Color register set • Mask register set
A0 to A8 (Address inputs)		These are the address input pins, TAP register input pins, and STOP register input pins.
		Address input This is a 9-bit address bus. It inputs a total of 18 bits of the address signal, starting from the upper 9 bits (row address) and then followed by the lower 9 bits (column bits) (address multiplex method). Using these, one word memory cells (8 bits) are selected from the 262,144 words × 8 bits memory cell array.
		During use, specify the row address, activate the $\overline{\text{RAS}}$ signal, latch the row address, switch to the column address, and activate the $\overline{\text{CAS}}$ signal. After activating the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signals, each address signal is taken into the device. For this reason, the address input setup time (tash, tasc) and hold time (trank, tcah) are specified for activating the $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signals.
		TAP Register Input In the data transfer cycle, this TAP register input pin functions as the address input pin which selects the memory cell for transferring (9 bits are latched at the falling edge of RAS) and the TAP register data input pin which specifies the start addresses of the serial read/write operation after data transfer (9 bits are latched at the falling edge of the CAS).
		STOP Register Input This pin functions as the STOP register input pin when the STOP register is set (STOP register data (9 bits) are latched at the falling edge of the RAS.)

Pin Name	Input/ Output	Function
DT/OE Input (Data transfer/ output enable)		These are the data transfer control signal and read operation control signal respectively. They have different functions in the data transfer cycle and read cycle.
		Data transfer control signal (in data transfer cycle) The data transfer cycle is initiated when a low level is input to this pin at the falling edge of \overline{RAS} .
		Read operations control signal (in read cycle) Read operation is performed when this signal, and the \overline{RAS} and \overline{CAS} signals are activated. The input/output pin is high impedance when this signal is not activated. When the $\overline{WB}/\overline{WE}$ signal is activated while the $\overline{DT}/\overline{OE}$ signal is activated, the $\overline{DT}/\overline{OE}$ signal is invalid in the memory and read operations cannot be performed.
WB/WE (Write-per-bit/ Write enable)		 These are the write operation control signal and mask write cycle (write-per-bit function) mask data input control signal, respectively. When this signal, RAS and CAS signals are activated, write operations or mask write can be performed. These mode are determined by the level of WB/WE at the falling edge of RAS. High level8-bit write cycle Low levelMask write cycle (Write-per-bit)
DSF (Special function enable)		 This signal controls the selection of functions. The selection of functions is determined by the level of this signal at the falling edge of the RAS and CAS. The functions will change as follows when this signal is high level. The data transfer cycle changes to a split data transfer cycle. The read/write cycle of each RAS clock changes to the flash write cycle. The write cycle of each CAS clock changes to the block write cycle.
W0 to W7/IO0 to IO7 (Mask data selects/ Data inputs, outputs)	Input/ Output	These are normally 8-bit data bus and are used for inputting and outputting data. (IO0 to IO7). Function as the mask data input pins (W0 to W7) in the mask write cycle (write-per-bit function). Write operations can be performed only for W0 to W7 that are input with a high level at the falling edge of RAS (new mask data). Functions as the column selection data input pin in the block write cycle.

(3/3)

Pin Name	Input/ Output	Function
SC (Serial clock)	Input	This pin inputs the clock which controls the serial access port operation. Serial Read The data of the data register which is synchronized with the rising edge of the SC are output from the SIO0 to SIO7 pins and kept until the next SC rising edge. Serial Write The data from the SIO0 to SIO7 pins are latched at the rising edge of the SC and written in the data register.
SE (Serial data input/ output enable)		This is a control pin for the serial access port input/output buffer. It controls data output during serial reading and controls data input during serial writing. By inputting the serial clock, the serial pointer will operate even if SE has not been activated (high level input).
SIO0 to SIO7 (Serial data inputs/ outputs)	Input/ Output	These are the serial data input and output pins of the serial access port.
QSF (Special function output)	Output	 This is a position discrimination pin of the serial pointer (upper side or lower side). Which side is being serial accessed (upper side or lower side) can be discriminated according to the output of this pin. High level Upper side (Addresses 256 to 511) Low level Lower side (Addresses 0 to 255)

2. Random Access Port Operations

The operation mode is determined by the \overline{CAS} , $\overline{DT}/\overline{OE}$, $\overline{WB}/\overline{WE}$, and DSF level at the falling edge of \overline{RAS} and DSF level at the falling edge of \overline{CAS} .

	RAS Fa	lling Edge		CAS Falling Edge		Operation Mode
CAS	DT/OE	WB/WE	DSF	DSF		
Н	н	×	L	×		Read cycle
н	н	н	L	L		Write cycle
н	н	Н	L	н	Cycle	Block write cycle
н	н	L	L	L	ite C	Mask write cycle (New mask/Old mask) ^{Note 1}
н	н	L	L	н	Read/Write	Block mask write cycle (New mask/Old mask) ^{Note 1}
н	н	. H .	Н	Н	Read	Color register set cycle
н	н	н	н	L	-	Write mask register set cycle
Н	н	L	н	×		Flash write cycle (New mask/Old mask) ^{Note 1}
н	L	Н	L	×	Cycle	Single read data transfer cycle
н	L	н	Н	×		Split read data transfer cycle
Н	L	L	L	×	Transfer	Single write data transfer cycle (New mask/Old mask) ^{Note 1}
н	L	L	Н	×	Data	Split write data transfer cycle (New mask/Old mask)Note 1
L	×	×	L	×	cle	CAS before RAS refresh cycle (Option reset)Note 1, 2
L	×	н	н	×	ז Cycle	CAS before RAS refresh cycle (No reset)
L	×	L	н	×	Refresh	CAS before RAS refresh cycle (STOP register set)Note 2
н	н	×	L	×	Ве	RAS only refresh cycle

Table 2-1. Operation Mode

Notes 1. Observe the following conditions when using the new mask data or old mask data in these cycles.

- (1) Old mask data
 - Can be used after setting the mask data using the write mask register set cycle.
- (2) New mask data

Can be used after selecting the new mask register using the write mask register set cycle (new mask selection) (Unusable in version A) and after the optional reset cycle.

2. The STOP register is set to "FFH (1111111)" by the optional reset cycle.

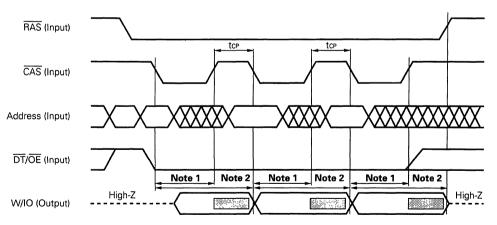
Remark H: High level, L: Low level, X: High level or low level

2.1 Random Read Cycle

This product has a common 8-bit input/output pin. To output data, specify the address using the \overline{RAS} and \overline{CAS} clocks and then set $\overline{DT}/\overline{OE}$ to low level.

The data output will be kept until one of the following conditions is set.

- (1) Set RAS and CAS to high level
- (2) Set $\overline{\text{DT}}/\overline{\text{OE}}$ to high level
- (3) Set $\overline{WB}/\overline{WE}$ to low level


The read cycle and data transfer cycle are differentiated according to the level of $\overline{\text{DT}/\text{OE}}$ at the falling edge of the $\overline{\text{RAS}}$ clock. If $\overline{\text{DT}/\text{OE}}$ is set to low level at the falling edge of the $\overline{\text{RAS}}$ clock, data transfer cycle operations will be initiated. Therefore, to set the read cycle, input a high level above tore (MIN.) to $\overline{\text{DT}/\text{OE}}$ from the falling edge of the $\overline{\text{RAS}}$ clock, and then input a low level.

Caution Set the DSF to low level at the falling edge of RAS. If set to high level, the memory cell data cannot be output.

2.1.1 Extended Read Data Output (µPD482235)

The μ PD482235 adopt the hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482234 (Hyper page mode cycle time: 30 ns (MIN.)).

With this cycle, the read data output can be kept until the next \overline{CAS} cycle, and because the output is extended, the minimum cycle can easily be used. For example, by fixing $\overline{DT}/\overline{OE}$ at low level after dropping \overline{RAS} and executing the hyper page read cycle, each time the column address is latched at the falling edge of \overline{CAS} , the data output will be updated and kept until the next falling edge of \overline{CAS} . As a result, the output will be extended only during \overline{CAS} precharge time (tcr) as compared to the normal fast page mode.

- Notes 1. Time during which the output data is kept in the fast page read cycle.
 - 2. Time during which the output data is kept in the hyper page read cycle (part: Extended data output).

2.2 Random Write Cycle (Early Write, Late Write, Read Modify Write)

There are three types of random write cycles-the early write, late write, and read modify write. To use these cycles, activate the $\overline{\text{KAS}}$ and $\overline{\text{CAS}}$ clocks and set $\overline{\text{WB}}/\overline{\text{WE}}$ to low level.

The WB/WE also controls the mask data for the write-per-bit function (mask write cycle). Therefore, when performing the normal write cycle which does not use the write-per-bit function, set this pin to high level at the falling edge of the RAS clock.

2.2.1 Early Write Cycle

The early write cycle controls data writing according to the CAS clock.

To execute this cycle, set $\overline{WB}/\overline{WE}$ to low level earlier than the \overline{CAS} clock. The write data is taken into the device at the falling edge of the \overline{CAS} clock.

2.2.2 Late Write Cycle

The late write cycle controls data writing according to the WE clock.

To execute this cycle, set $\overline{WB}/\overline{WE}$ to low level later than the \overline{CAS} clock. The write data is taken into the device at the falling edge of $\overline{WB}/\overline{WE}$. To set the output to high impedance at this time, keep $\overline{DT}/\overline{OE}$ at high level until $\overline{WB}/\overline{WE}$ is input.

2.2.3 Read Modify Write Cycle

The read modify write cycle performs data reading and writing in one RAS and CAS cycle.

To execute this cycle, delay WB/WE from the late write cycle by tRWD (MIN.), tcwb (MIN.), and tAWD (MIN.). Follow the torz and tore specifications so that the output data and input data do not clash in the data bus. The data after modification can be input after more than tord (MIN.) from the rising edge of DT/OE.

2.3 Fast Page Mode Cycle (µPD482234)

The μ PD482234 adopts the fast page mode. This mode accesses memory cells in the same row array in about 1/3 of the time taken by the normal random read/write cycle. This fast page mode cycle is executed by repeating the \overline{CAS} clock cycle more than two times while the \overline{RAS} clock is being activated. In this mode read, write and read modify write cycles are available for each of the consecutive \overline{CAS} cycles within the same \overline{RAS} cycle.

2.4 Hyper Page Mode Cycle (µPD482235)

The μ PD482235 adopts a hyper page mode cycle which is a faster read/write cycle than the fast page mode of the μ PD482434 (Hyper page mode cycle time: 30 ns (MIN.)).

In this cycle, because the read data output is kept until the following \overline{CAS} cycle and as a result, the output is extended, the minimum cycle can easily be used. The output is extended compared to the normal fast page mode of μ PD482234. Refer to **2.1.1 Extended Read Data Output**.

2.4.1 Setting the Output to the High Impedance State

The hyper page mode can use one of three methods of setting the output pin to the high impedance state depending on the version; these methods are \overline{WE} control, \overline{OE} control (latched control), and \overline{OE} control (non-latched control).

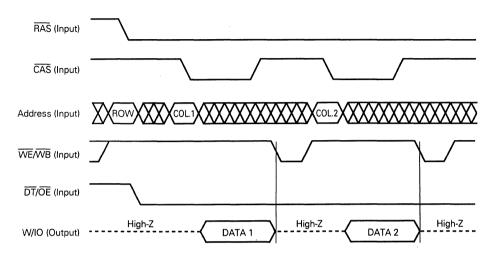
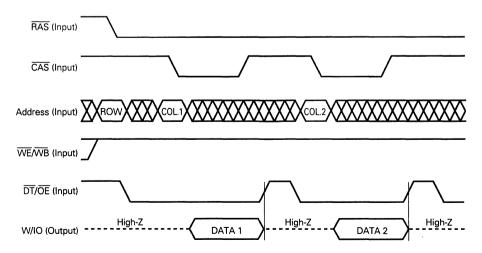

Table 2-2 lists the correspondence between the output control types and versions A, F, and E.

Table 2-2. Correspondence between Each Output Control Method and Versions A, F, and E

Output control	Version A	Version F	Version E
WE control	usable	usable	usable
OE control (latched control), conforming to JEDEC	usable	unusable	unusable
OE control (non-latched control)	unusable	usable	usable

(1) WE control (usable in all versions)


After a high level is input to \overline{CAS} , when a pulse conforming to the twez specification is supplied to the \overline{WE} pin (\overline{WE} = enable) during the same \overline{CAS} cycle, the W/IO pin is held in the high impedance state until the next \overline{CAS} cycle.

(2) OE control (latched control) (usable in version A)

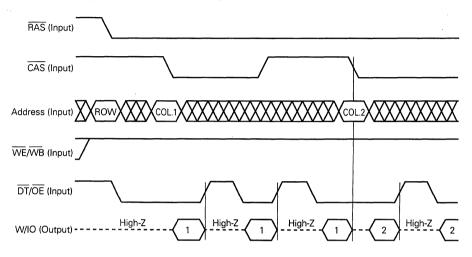

After a high level is input to \overline{CAS} , when a high level is supplied to the \overline{OE} pin (\overline{OE} = disable) during the same \overline{CAS} cycle, the W/IO pin is held in the high impedance state until the next \overline{CAS} cycle. This specification enables efficient use of \overline{OE} interleaving during parallel connection.

Figure 2-3. OE Control Output Control (Latched Control)

(3) $\overline{\text{OE}}$ control (non-latched control) (usable in versions F and E)

When a high level is input to the \overline{OE} pin (\overline{OE} = disable) during the same \overline{CAS} cycle, the W/IO pin enters the high impedance state. If a low level is input to the \overline{OE} pin again before the next \overline{CAS} cycle (\overline{OE} = enable), the data at the same address is output to the W/IO pin again.

NEC

2.5 Flash Write Cycle

This cycle writes the color register data in a 4,096-bit memory cell in one cycle. The memory cell range for one flash write cycle is 512 columns on the same row address (512-column \times 8 \cdot IO = 4,096 bits).

2.5.1 Execution of Flash Write Cycle

To execute the flash write cycle, set $\overline{\text{WB}/\text{WE}}$ to low level at the falling edge of $\overline{\text{RAS}}$. By using the write-per-bit function (new mask data/old mask data), only the required W/IO can be selected and written.

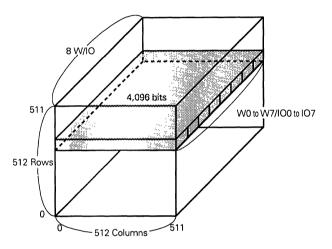


Figure 2-5. Memory Cell Range That Can be Written with Flash Write Cycle

Remark is the memory cell range that can be written in one flash write cycle.

2.6 Block Write Cycle

This cycle writes the color register data in 32-bit memory cell in one cycle. The memory cell range in which data can be written in one block write cycle is four continuous columns on one row address (4-column $\times 8 \cdot 10$ = 32 bits).

Any column of the four columns can be selected and writing prohibited. Determine whether to write or prohibit writing according to the data selected for column.

2.6.1 Free Column Selection

Determine which column to select according to the W/IO pin to which the data selected for the column is to be input.

The four columns (1st to 4th) correspond to W0 to W3/IO0 to IO3 to which the data selected for column will be input (The following table shows the 1st to 4th columns specified by A0 and A1 and the corresponding W/IO pins to which the data selected will be input.).

2.6.2 Column Select Data

Input column select data for every four columns at the 32 bits (4-column \times 8 · IO). The data will be written if the column select data is "1". Writing will be prohibited if the column select data is "0"

2.6.3 Execution of Block Write Cycle

At the falling edge of the slowest signal (\overline{CAS} , $\overline{WB}/\overline{WE}$), input the "1" column select data or "0" column select data to W0 to W3/IO0 to IO3 corresponding to columns 1st to 4th.

By using the write-per-bit (new mask data/old mask data) function, only the required W/IO can be selected and written.

Selected 4 Columns	Column Ado	tress and Co W/IO Pin	rresponding	Column Select Data	Writing
	A1	A0	10		
1st column	0	0	100	1	Yes
				0	No
2nd column	0	1	101	1	Yes
				0	No
3rd column	1	0	IO2	1	Yes
				0	No
4th column	1	1	103	1	Yes
				0	No

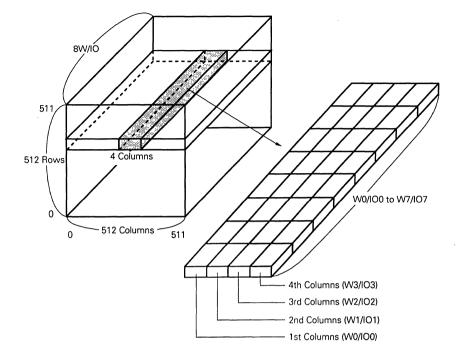


Figure 2-6. Memory Cell Range That Can be Written in Block Write Cycle

Remarks 1. is the memory cell range that can be written in one block write cycle.
2. () is the W/IO pin input with the column select data.

2.7 Register Set Cycle (Color Register, Write Mask Register)

This cycle writes data in the color register and write mask register. To execute the register set cycle, set CAS, $\overline{\text{DT/OE}}$, $\overline{\text{WB/WE}}$ and DSF to high level at the falling edge of $\overline{\text{RAS}}$. Determine which register to select according to the DSF level at the falling edge of $\overline{\text{CAS}}$.

The register set cycle also serves as the RAS only refresh cycle.

Table 2	2-4.	Register	Selection
---------	------	----------	-----------

DSF level at CAS falling edge	Selected register	
High level	Color register	
Low level	Write mask register	

Caution After selecting the write mask register and writing the mask data, the write-per-bit function in the mask write cycle will be set for the old mask register. Refer to 2.8.1 Write-Per-Bit Function.

2.8 Mask Write Cycle

Cycles that use the write-per-bit function during the random write cycle, flash write cycle, block write cycle, write data transfer cycle, are called mask write cycles. In the fast page/hyper page mode write cycle, the mask data cannot be changed during the TAS cycle.

2.8.1 Write-Per-Bit Function

The write-per-bit function writes data using the mask data only in the required IO-pin. It writes when the mask data is "1" and prohibits writing when the data is "0".

W Pin	Mask Data	Writing
W0 to W7	1	Yes
	0	No

Table 2-5. Mask Data Selection

2.8.2 Selecting Mask Data

There are two ways of selecting mask data. One is the new mask data method and the other is the old mask data method.

With the new mask data method, new mask data is set in the cycle writing. With the old mask data, mask data set in the write mask register is used.

(1) New Mask Data Method

The new mask data method consists of the write mask register set cycle (new mask selection) method and CAS before RAS refresh cycle (optional reset cycle) method.

However, only the CAS before RAS refresh cycle (option reset cycle) can be used in version A. Table 2-6 lists how to select the new mask data method for each version.

Table 2-6. New Mask Data Selection Method for Each Version

New mask data selection method	Version A	Version F	Version E
Method to use the write mask register set cycle (new mask selection)	unusable	usable	usable
Method to use the \overline{CAS} before \overline{RAS} refresh cycle (option reset cycle.)	usable	usable	usable

(a) Method Using Write Mask Register Set Cycle (New Mask Selection) (Versions F and E)

This method is usable in both version F and version E.

To switch to the mode using new mask data, keep the $\overline{\text{DT}/\text{OE}}$, $\overline{\text{WB}/\text{WE}}$ DSF to high level and set the $\overline{\text{CAS}}$ and DSF to high level at the falling edge of $\overline{\text{RAS}}$, the DSF to low level at the falling edge of $\overline{\text{CAS}}$, and start up the next $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ after the tcas and tras.

As a result, the write-per-bit function can be used using the new mask data from the next mask write cycle.

(b) Method Using CAS Before RAS Refresh Cycle (Optional Reset Cycle) (All versions)

This method is usable in all versions.

To switch to the mode using new mask data, set the DSF to low level at the falling edge of \overline{CAS} in the \overline{CAS} before \overline{RAS} refresh cycle.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

(2) Old Mask Data Method

To switch to the mode using old mask data, set the DSF to low level at the falling edge of \overline{CAS} in the write mask register set cycle, and write the mask data in the write mask register.

As a result, the write-per-bit function can be used using the old mask data from the next mask write cycle.

2.8.3 Execution of Mask Write Cycle

To execute the write-per-bit function, select the new mask data method or old mask data method, and set $\overline{\text{WB}/\text{WE}}$ to low level at the falling edge of $\overline{\text{RAS}}$ of each write cycle. At this time, input the mask data to the W pin in the write cycle using the new mask data. In the write cycle using the old mask data, as the mask data set to the write mask register will be used, there is no need to input the mask data to the W pin.

This function is valid only at the falling edge of \overline{RAS} . In the fast page/hyper page mode write cycle, the mask data determined in the first \overline{RAS} cycle for moving onto the next fast page/hyper page mode will be valid while the fast page/hyper page mode write cycle continues.

2.9 Refresh Cycle

The refresh cycle of this product consists of the CAS before RAS refresh cycle and refresh cycle using external address inputs (RAS only refresh and read/write refresh). The refresh period is the same as the DRAM (Standard), 512 cycles/8 ms.

2.9.1 Refresh Cycle Using External Address Input (RAS Only Refresh and Read/Write Refresh)

By specifying the row address using the 9 bits between A0 to A8 at the falling edge of \overline{RAS} , setting \overline{CAS} and $\overline{DT/OE}$ to high level, and keeping \overline{CAS} at high level while \overline{RAS} is low level, the memory cells on the specified row address (512 × 8 bits) can be refreshed. At this time, refresh is executed, W0 to W7/IO0 to IO7 pins are kept at high impedance, and information such as memory contents, register data, function settings, etc. are all also kept.

At the falling edge of RAS, all cycles whose CAS are high level input the external address. Therefore, in addition to the read/write cycle operations, etc. refresh operations similar to the RAS only refresh operations will be performed. For this reason, in systems in which addresses in the memory are always increased or decreased, it may not be necessary to perform refresh again.

When several devices exist on one bus, data will clash in the bus during the above read/write operations unless each device is equipped with a buffer. Consequently, as it is necessary to set the I/O line to high impedance beforehand during refresh, normally the \overline{RAS} only refresh operation is used.

2.9.2 CAS Before RAS Refresh Cycle (Including Hidden Refresh)

When CAS is set to low level at the falling edge of RAS, the refresh address is supplied from the internal refresh address counter. The internal refresh address counter is increased automatically each time this refresh cycle is executed.

During this refresh cycle, functions of random access port and serial access port are selected as follows according to the DSF and $\overline{WB}/\overline{WE}$ levels at the falling edge of \overline{RAS} .

(1) When DSF is low level: Optional reset

All STOP register data become "1" and the mask write cycle switches to the new mask data method.

(2) When DSF is high level and WB/WE is low level: STOP register set

The STOP register data is input from the A0 to A7 pins at the falling edge of RAS.

(3) When DSF, WB/WE is high level: No reset

Only refresh operations are performed and the function selection state is kept.

In all cases, the W/IO pin is kept at high impedance. When CAS and DT/OE are kept low level while the mode is changed to the CAS before RAS refresh cycle following the read cycle, and RAS is activated, the hidden refresh cycle will be initiated. In this cycle, the W/IO pin does not become high impedance and the data read in the former read cycle will be kept as it is.

Because internal memory operations are equivalent to CAS before RAS refresh, no external addresses are required.

Like CAS before RAS refresh, in the hidden cycle, functions will be selected according to the level of DSF, WB/WE at the falling edge of RAS. Operations are guaranteed when DSF is low level and when DSF, WB/WE are high level.

3. Serial Access Port Operations

There are two types of data transfer cycles-data transfer from the random access port to the serial access port (read data transfer) and data transfer from the serial access port to the random access port (write data transfer). There are also two types of data transfer methods-single data transfer and split data transfer.

To set the data transfer cycle, input high level to \overline{CAS} and input low level to $\overline{DT/OE}$ at the falling edge of \overline{RAS} . The data transfer type differs according to the input levels of $\overline{WB}/\overline{WE}$, and DSF at the falling edge of \overline{RAS} .

A	At RAS Falling Edge		le		Transfer Direction	
CAS	DT/OE	WB/WE	DSF	Data Transfer Type	Transfer Source	Transfer Destination
н	L	н	L	Single read data transfer	Random access	Serial access
н	L	н	н	Split read data transfer	port	port
н	L	L	L	Single mask write data transfer ^{Note}	Serial access	Random access
н	L	L	Н	Split mask write data transfer ^{Note}	port port	

Table 3-1. Serial Access Port Operation Mode

Note Write-per-bit function can be specified.

Remark H: High level, L: Low level

3.1 Single Data Transfer Method

With this method, 512 words \times 8 bits (whole memory range of serial access port) data is transferred at one time. This method can be used in both write data transfer and read data transfer.

3.1.1 Single Read Data Transfer Cycle

This cycle transfers the 4K-bit (512 words \times 8 bits) data of the random access port to the serial access port in one cycle.

(a) Setting of Single Read Data Transfer Cycle

To set the data transfer cycle, input a high level to \overline{CAS} and $\overline{WB}/\overline{WE}$ and low level to $\overline{DT}/\overline{OE}$ and DSF at the falling edge of \overline{RAS} .

Using the row address input to A0 to A8 at the falling edge of \overline{RAS} , the memory cells (512 words × 8 bits) of the transfer source of the random access port can be selected. The address data input to A0 to A8 at the falling edge of \overline{CAS} will be latched as the TAP register data of serial access port. Refer to 3.4 TAP Register.

(b) Execution of Single Read Data Transfer Cycle

To execute the data transfer cycle, set the single read data transfer cycle and then input a high level to $\overline{\text{DT/OE}}$ and $\overline{\text{RAS}}$.

When SC is active (edge control), data transfer will be executed at the rising edge of $\overline{\text{DT/OE}}$. When SC is inactive (self control), it will be executed at the rising edge of $\overline{\text{RAS}}$. At the same time, the serial address pointer jumps to the start column (TAP) of the next serial read cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is output after tscA following the rise of the SC clock that occurs after tsDH if the SC is active, and after tsDHR if SC is inactive.

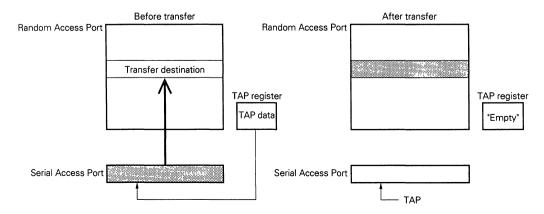
Caution When the single read data transfer cycle is executed while the serial access port is performing serial write operations, the serial access port will start serial read operations at the rising edge of \overline{RAS} . Refer to 4. Electrical Characteristics Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching) Timings,

3.1.2 Single Mask Write Data Transfer Cycle

This cycle transfers 4K-bit (512 word \times 8 bits) data of the serial access port to the random access port in one cycle. Because $\overline{WB}/\overline{WE}$ is low level at the falling edge of \overline{RAS} , the write-per-bit function always functions in this transfer cycle. Refer to 2.8 Mask Write Cycle.

(a) Setting of Single Mask Write Data Transfer Cycle

To set this cycle, latch the data to be transferred to the serial access port, and then input a high level to \overline{CAS} and low level to $\overline{DT/OE}$, $\overline{WB/WE}$, and DSF at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W7 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.


The memory cells (512 words \times 8 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A8 at the falling edge of \overline{CAS} is input as the TAP register data of serial access port. Refer to **3.4 TAP Register**.

(b) Execution of Single Mask Write Data Transfer Cycle

To execute this cycle, set the single write data transfer cycle and then input high level to RAS. Data will be transferred at the rising edge of RAS. At the same time, the serial address pointer jumps to the start column (TAP) of the next serial write cycle, and the TAP register will be set the empty state.

After the transfer is completed, the new serial access port data is latched at the rising edge of the SC clock that occurs after tspin.

- Caution 1. When the single mask write data transfer cycle is executed while the serial access port is performing serial read operations, the serial access port will start serial write operations at the rising edge of RAS. Refer to 4. Electrical Characteristics Write Data Transfer Cycle (Serial Read → Serial Write Switching) Timings.
 - 2. Always make CAS low level in the write data transfer cycle and latch TAP. If write data transfer is performed without setting TAP, serial access port operations cannot be ensured until either one of the following points. If the SC clock is input during this time, the serial register value also cannot be guaranteed.
 - Until the falling edge of CAS during the write data transfer cycle
 - · Until the read data transfer cycle is executed again

Figure 3-1. Single Write Data Transfer and TAP Operation

3.2 Split Data Transfer Method

With this method, the 512 words \times 8 bits (whole memory range of serial access port) data is divided into the lower column (0 to 255) and upper column (256 to 511), each consisting of 256 words \times 8 bits.

Because the columns are divided into upper and lower columns with this method, data transfer can be performed on lower column (or upper column) while performing read/write operations in the upper column (or lower column). For this reason, transfer timing design is easy. This transfer method can be used in both write data transfer and read data transfer.

This transfer method uses either of two modes, "MSB Care" and "MSB Don't Care," depending on the method used to select the column for data transfer (See the table below.). The mode to be used varies from one version to another. Refer to **7. Example of Stamping** for how to identify each version.

Mode	Version	Function
MSB Don't Care	Versions A and F	A8 input as TAP is ignored, and an inactive column is selected automatically for data transfer.
MSB Care	Version E	The column (upper or lower) is specified for data transfer according to A8 input as TAP.

Table 3-2. Differences between the MSB Don't Care and MSB Care Modes

3.2.1 Split Read Data Transfer Cycle (Versions A and F: For "MSB Don't Care")

This cycle divides the 4K-bit (512 words \times 8 bits) data of the random access port into the lower and upper columns and transfers them to the serial access port.

In this cycle, the serial read/write can be performed in the columns to which data is not transfer.

(a) Setting of Split Read Data Transfer Cycle

To set this cycle, input a high level to \overline{CAS} , \overline{WB}/WE and DSF, and low level to $\overline{DT}/\overline{OE}$ at the falling edge of \overline{RAS} .

The memory cells (512 words \times 8 bits) of the transfer source of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . And the address data input to A0 to A7 at the falling edge of \overline{CAS} is latched as the TAP register data of serial access port. Refer to 3.4 TAP **Register**. There is no need to control address data input to A8 (See the table below.).

 Table 3-3. Relationships among Data Register Transfer Destination, A8 Inputs, and QSF

 Outputs (Split Read Data Transfer Cycle in the MSB Don't Care Mode)

A8 data input to the TAP register	QSF output	Data register transfer destination
A8 = ×	QSF = 1	Lower column (addresses 0 to 255)
	QSF = 0	Upper column (addresses 256 to 511)

Remark 1 = high level; 0 = low level; × = high or low level

(b) Execution of Split Read Data Transfer Cycle

To execute this cycle, set the split read data transfer cycle and then input the high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the random access port to the serial access port automatically at the column side (Column not pointed to by the serial address pointer) where serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

3.2.2 Split Read Data Transfer Cycle (Versions E: For "MSB Care")

This cycle divides the 4K-bit (512 words \times 8 bits) data of the random access port into the lower and upper columns and transfers them to the serial access port.

In this cycle, the serial read/write can be performed in the columns to which data is not transfer.

(a) Setting of Split Read Data Transfer Cycle

To set this cycle, input a high level to \overline{CAS} , $\overline{WB/WE}$ and DSF, and low level to $\overline{DT/OE}$ at the falling edge of \overline{RAS} .

The memory cells (512 words \times 8 bits) of the transfer source of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . And the address data input to A0 to A8 at the falling edge of \overline{CAS} is latched as the TAP register data of serial access port. Refer to **3.4 TAP Register**.

If the address data input to A8 is 0, data in lower columns is transferred from the random access port to the serial access port. If it is 1, data in upper columns is transferred from the random access port to the serial access port. To perform the data transfer in columns for which no serial read is not being made (columns for which the serial register is inactive), it is necessary to supply an inverted QSF output to A8 (See the table below.).

Table 3-4. Relationships among Data Register Transfer Destination, A8 Inputs, and QSF Outputs (Split Read Data Transfer Cycle in the MSB Care Mode)

A8 data input to the TAP register	QSF output	Data register transfer destination
A8 = 0	QSF = 1	Lower column (addresses 0 to 255)
A8 = 1	QSF = 0	Upper column (addresses 256 to 511)

Remark 1 = high level; 0 = low level

(b) Execution of Split Read Data Transfer Cycle

To execute this cycle, set the split read data transfer cycle and then input the high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data in the upper or lower column is transferred from the random access port to the serial access port, depending on the data input to A8. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

Caution When data is tranferred in a split read data transfer cycle, if the related serial register is already involved in serial read/write operation, the serial address pointer changes during data transfer, and the TAP register becomes empty. The timing for this operation is the same as for the read data transfer cycle (SC inactive).

3.2.3 Split Mask Write Data Transfer Cycle (Versions A and F: For "MSB Don't Care")

This cycle divides the 4K-bit (512 words × 8 bits) data of the serial access port into the lower and upper columns and transfers them to the random access port.

In this cycle, serial read/write can be performed for columns to which data is not transferred.

Because $\overline{\text{WB}/\text{WE}}$ is low level at the falling edge of $\overline{\text{RAS}}$, the write-per-bit function always functions in this transfer cycle. Refer to **2.8 Mask Write Cycle**.

(a) Setting of Split Mask Write Data Transfer Cycle

To set this data transfer cycle, input a high level to \overline{CAS} and DSF and low level to $\overline{DT/OE}$, $\overline{WB/WE}$ at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W7 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 8 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overline{RAS} . The address data input to A0 to A7 at the falling edge of \overline{CAS} is input as the TAP register data. Refer to **3.4 TAP Register**. There is no need to control address data input to A8 (See the table below.).

 Table 3-5. Relationships among Data Register Transfer Source, A8 Inputs, and QSF

 Outputs (Split Write Data Transfer Cycle in the MSB Don't Care Mode)

A8 data input to the TAP register	QSF output	Data register transfer destination
A8 = ×	QSF = 1 Lower column (addresses 0 to 255)	
	QSF = 0	Upper column (addresses 256 to 511)

Remark 1 = high level; 0 = low level; × = high or low level

(b) Execution of Split Mask Write Data Transfer Cycle

To execute this cycle, set the split write data transfer cycle and then input high level to \overline{RAS} . Data will be transferred at the rising edge of \overline{RAS} . Data is transferred from the serial access port to the random access port automatically at the column side (Column not pointed to by the serial address pointer) where the serial access port is inactive. To confirm the transferred column side, check the output state of the QSF pin. Refer to 3.3.3 QSF Pin Output.

When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

3.2.4 Split Mask Write Data Transfer Cycle (Versions E: For "MSB Care")

This cycle divides the 4K-bit (512 words \times 8 bits) data of the serial access port into the lower and upper columns and transfers them to the random access port.

In this cycle, serial read/write can be performed for columns to which data is not transferred.

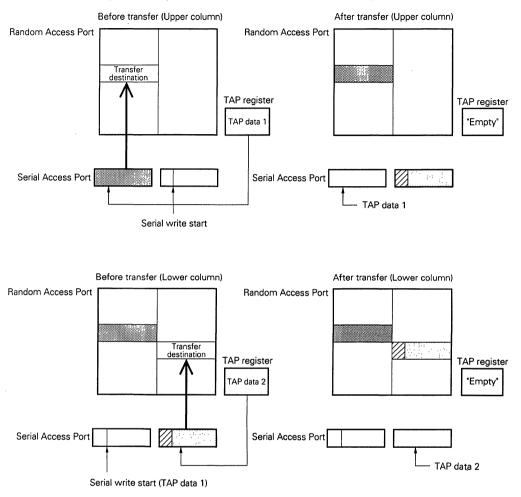
Because WB/WE is low level at the falling edge of RAS, the write-per-bit function always functions in this transfer cycle. Refer to 2.8 Mask Write Cycle.

(a) Setting of Split Mask Write Data Transfer Cycle

To set this data transfer cycle, input a high level to \overline{CAS} and DSF and low level to $\overline{DT}/\overline{OE}$, $\overline{WB}/\overline{WE}$ at the falling edge of \overline{RAS} . Because the write-per-bit function functions in this transfer operation, for the new mask data method, the mask data must be supplied to W0 to W7 at the falling edge of \overline{RAS} , and for the old mask data method, there is no need to control the mask data.

The memory cells (512 words \times 8 bits) of the transfer destination of the random access port are selected using the row address input to A0 to A8 at the falling edge of \overrightarrow{RAS} . The address data input to A0 to A8 at the falling edge of \overrightarrow{CAS} is input as the TAP register data. Refer to **3.4 TAP Register**.

If the address data input to A8 is 0, data in lower columns is transferred from the serial access port to the random access port. If it is 1, data in upper columns is transferred from the serial access port to the random access port. To perform the data transfer in columns for which no serial write is not being made (columns for which the serial register is inactive), it is necessary to supply an inverted QSF output to A8 (See the table below.).


Table 3-6. Relationships among Data Register Transfer Source, A8 Inputs, and QSF Outputs (Split Write Data Transfer Cycle in the MSB Care Mode)

A8 data input to the TAP register	QSF output	Data register transfer destination
A8 = 0	QSF = 1	Lower column (addresses 0 to 255)
A8 = 1	QSF = 0	Upper column (addresses 256 to 511)

Remark 1 = high level; 0 = low level

(b) Execution of Split Mask Write Data Transfer Cycle

To execute this cycle, set the split write data transfer cycle and then input high level to \overrightarrow{RAS} . Data will be transferred at the rising edge of \overrightarrow{RAS} . Data in the upper or lower column is transferred from the serial access port to the random access port, depending on the data input to A8. To confirm the transferred column side, check the output state of the QSF pin. Refer to **3.3.3 QSF Pin Output**. When the serial address pointer comes to the jump source address specified by the STOP register, the serial address pointer jumps to the start column (TAP) of the serial read/write cycle at the inactive column side, and the TAP register will be set the empty state.

Figure 3-2. Split Mask Write Data Transfer and TAP Operations

3.3 Serial Read/Write

The serial access port ($512K \times 8$ bits) is independent from the random access port and can perform read and write operations. The serial access port performing single data transfer and split data transfer can not perform read and write operations independently.

Caution When the power is turned on, the serial access port sets into the input (write) mode and the SIO pin is the high impedance state.

3.3.1 Serial Read Cycle

To set the serial read cycle, perform the single read data transfer cycle (The mode will not change in the split read data transfer cycle.).

Execute the single read data transfer cycle and latch the data and TAP data. By inputting a clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data will be output from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is output from the SIO0 to SIO7 pin, and the data is kept until the next rising edge of the SC clock.

(a) Reading-Jump

The \overline{SE} pin controls the SIO pin output buffer independently from the SC clock. By setting the \overline{SE} pin to high level even while inputting the SC clock, SIO0 to SIO7 pins become high impedance. But the operations of serial address pointer will be continued while the SC clock is being input even though reading has been prohibited from \overline{SE} pin. Reading-jump of the column can be performed using this function.

3.3.2 Serial Write Cycle

To set the serial write cycle, perform the single write data transfer cycle (The mode will not change in the split write data transfer cycle.). To prevent the transfer data from being written in the memory cell of the random access port, set all bits of the mask data to "0" and control the mask data.

Execute the single write data transfer cycle and set the serial write cycle. By inputting the clock signal to the SC pin and inputting a low level to the \overline{SE} pin, data can be latched from the serial address pointer specified by TAP register. The data synchronizes with the rising edge of the SC clock and is input from SIO0 to SIO7 pins. Be sure to follow the specifications for the setup time (tses) and hold time (tseH) of \overline{SE} pin for the SC clock.

(a) Writing-Jumps (Intermittent Writing)

The SE pin controls writing operations independently from the SC clock. By setting the SE pin to high level even while inputting the SC clock, writing will not be executed. But the operations of serial address pointer will be continued while the SC clock is being input even though writing has been prohibited from SE pin. These functions enable writing-jumps (intermittent writing) to be performed. The masked data is kept as the old data.

3.3.3 QSF Pin Output

QSF pin determines whether the serial address pointer is at the upper column side (addresses 256 to 511) or the lower column side (addresses 0 to 255) at the rising edge of the following SC clock during serial read or write. In other words, it outputs the uppermost bit (A8) of the column address of the serial address pointer.

The following table shows the QSF pin output state and the access pointer of following SC clocks.

Access Address of Following SC clock	QSF Output
Addresses 0 to 255	Low level
Addresses 256 to 511	High level

3.4 TAP (Top Access Point) Register

The TAP register is a data register which specifies the start address (first serial address point = TAP) of the serial read or serial write.

Set data to this register each time a transfer cycle is executed.

3.4.1 Setting of TAP Register

The data input to A0 to A8 at the falling edge of \overline{CAS} during the setting of a transfer cycle is set as the TAP register data. By executing the transfer cycle, the start address of the following serial read (or write) operations is specified by the data of the TAP register and the TAP register will be kept in the empty state until the TAP register is set again.

In the split data transfer cycle (Versions A and F: For "MSB Don't Care"), because the inactive serial access port column addresses are specified by the data of the TAP register automatically, there is no need to control the A8 data. However in the split data transfer cycle (Version E: For "MSB Care"), the data in the TAP register, which is input to A8, specifies the column on the side that performs the transfer (A8 = 0: Lower column, A8 = 1: Upper column).

Caution When the TAP register is empty, the address following the 511 serial address point will be 0. In addition, because the serial address pointer will not jump to the column specified by the STOP register, the binary boundary jump function cannot be used. Refer to 3.6 Binary Boundary Jump Function.

3.5 STOP Register

The STOP register is a data register which determines the column of the jump source when jumping to a different column side (lower column or upper column) in the split data transfer cycle. Five types of columns can be selected for starting jump (jumping is possible at 2, 4, 8, 16, and 32 points). The following table shows the correspondence between the column at the jump source and data of the STOP register.

Once set, the STOP register data is kept until it is set again.

3.5.1 Setting of STOP Register

To set the STOP register, set $\overline{WB}/\overline{WE}$ to low level at the falling edge of \overline{RAS} in the \overline{CAS} before \overline{RAS} refresh cycle. The data input to A0 to A7 will be input as the STOP register data.

S	тор	Reg	giste	r Data	Divi-	Bit	
A7	A6	A5	A4	A3 to A0		Width	Jump Source Bit Column (Decimal Number)
1	1	1	1	1	1/2	256	255
		•			1/2	200	511
0	1	1	1	1	1/4	128	127, 255
Ľ				•	1/ 7	120	383, 511
0	0	1	1	1	1/8	64	63, 127, 191, 255
ľ	Ŭ				1/0	04	319, 383, 447, 511
0	0	0	1	1	1/16	32	31, 63, 95, 127, 159, 191, 223, 255
	Ŭ	Ū		I	1/10	52	287, 319, 351, 383, 415, 447, 479, 511
0	0	0	0	1	1/32	16	15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255
Ľ	J	5	5	'	1/52	10	271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511

Table 3-7. STOP Register Data and Jump Source Column

Remark A8: Don't care.

Caution When the power is supplied, all STOP register data will be set to all "1".

3.6 Binary Boundary Jump Function

This function causes the serial address pointer jump to the TAP specified by the TAP register when the pointer moves to a column specified by the STOP register (split data transfer).

This function cannot be used when the jump destination address is not set (TAP register is empty).

This function facilitates tile map application which divides the screen into tiles and manages data for each tile.

3.6.1 Usage of Binary Boundary Jump Function

After setting the STOP register, execute the single read (or write) data transfer and initialize the serial access port. The initialization process will switch the serial access port read (or write) operations, set TAP, set the serial access port data, and set the TAP register to empty. By inputting the serial clock in this state, the serial access port will read (or write) operations from TAP in ascending order of address. Because the TAP register is in the empty state, the address at the jump source set by the STOP register will be ignored, and the serial address pointer will move on.

When the column to be jumped approaches, execute split data transfer and set new TAP data in the TAP register. The serial pointer will jump at the desired jump source address. Jump can be controlled freely by repeating these operations.

3.7 Special Operations

3.7.1 Serial Address Set Operations

Because the serial address counter is undefined when the power up, the serial access port operations when the SC clock is input are not guaranteed. Execute single read (or write) transfer after turning on the power. The serial access port will be initialized, enabling serial access port operations to be performed.

3.7.2 Lap Around Operations

If all the data of the register is read (write) during data transfer while the serial read (write) cycle is being executed, the serial pointer will repeat 0 to 511.

3.7.3 Cycle After Power On

After supplying power, initialize the internal circuitry by waiting for at least 100 μ s after Vcc \ge 4.5 V, then supplying at least 8 RAS clock cycles. The RAS clock only requires that trac, trass, and trap are satisfied; there is no problem if other signals are in any state. Note however that if the signal supplied to RAS, CAS, DT/OE, and WB/WE is high at power-on, the serial access port and each register have the following values.

- Serial access port Input mode, SIO: High impedance
- Color register Undefined
- Mask registerAll "1"
- TAP register Undefined
- STOP registerAll "1"

4. Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Pin voltage	VT	-1.0 to +7.0	V
Supply voltage	Vcc	-1.0 to +7.0	V
Output current	lo	50	mA
Power dissipation	Po	1.5	w
Operating ambient temperature	TA	0 to 70	°C
Storage temperature	Tstg	–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits in the operational sections of this characteristics. Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	v
High level input voltage	Viн	2.4		5.5	v
Low level input voltage	VIL	-1.0		+0.8	v
Operating ambient temperature	TA	0		70	°C

DC Characteristics 1 (Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	hı	V _{IN} = 0 V to 5.5 V, Other inputs are 0 V	-10		+10	μA
Output leakage current	lol	W/IO, SIO, QSF are inactive, Vout = 0 V to 5.5 V	-10		+10	μA
Random access port high level output voltage	Vон (R)	Іон (R) = -1.0mA	2.4			v
Random access port low level output voltage	Vol (R)	lol (R) = 2.1mA			0.4	V
Serial access port high level output voltage	Vон (S)	Іон (S) = -1.0mA	2.4			V
Serial access port low level output voltage	Vol (S)	loi. (S) :: 2.1mA			0.4	V

Capacitance (TA = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cıı	RAS, CAS, WB/WE, DT/OE, DSF, SE, SC			8	рF
	C12	A0 to A8			5	
Input/Output Capacitance	Сю	W/IO (0 to 7), SIO (0 to 7)			7	pF
Output Capacitance	Co	QSF			7	pF

	Serial Acc	ess Port		μPD48	2234-60	μPD482	2234-70	μPD482	2234-80		
Random Access Port	Standby	Active	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Conditions
Random Read/Write Cycle RAS, CAS cycle,	0		lcc1		110		130		130	mA	Note 2
$t_{RC} = t_{RC}$ (MIN.), $I_0 = 0 mA$		0	Icc7		155		195		190		
Standby RAS = CAS = VIH,	0		Icc2		10		10		10	mA	
Dout = high impedance					1		1		1	mA	Note 3
		0	Ісся		55		70		65	mA	
RAS only refresh cycle RAS cycle, CAS = Viii,	0		lcc3		110		115		115	mA	Note 4
$t_{RC} = t_{RC}$ (MIN.)		0	lcca		155		180		175		
Fast page mode cycle RAS = Vιι, CAS cycle,	0		lcc₄	-	100		100		90	mA	Note 5
hAS = VIL, CAS cycle, $t_{PC} = t_{PC} (MIN.)$		0	Icc10		145		165		150		
CAS before RAS refresh cycle	0		Icc5		110		90		90	mA	
tac = tac (MIN.)		0	Icc11		155		155		150		
Data transfer cycle	0		Icc6		120		140		140	mA	
tac = tac (MIN.)		0	Icc12		165		205		200		
Color/Mask write register set cycle trc = trc (MIN.)	0		lcc13		100		120		120	mA	
(nc = LRC (IVIIIN.))		0	Icc14		145		185		180		
Flash write cycle	0		Icc15		100		120		120	mA	
trc = trc (MIN.)		0	Icc16		145		185		180		
Block write cycle	0		Icc17		120		130		130	mA	
tnc = tnc (MIN.)		0	Іссів		165		195		190		
Fast page mode block write cycle	0		Icc19		100		110		100	mA	
$t_{PC} = t_{PC}$ (MIN.)		0	Icc20		130		175		160		Note 5

DC Characteristics 2 (Recommended operating conditions unless otherwise noted)^{Note 1} (μ PD482234)

- **Notes 1.** No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.
 - 2. A change in row addresses must not occur more than once in tRc = tRc (MIN.).
 - 3. RAS, CAS, and SE remain at V_{IH} ≥ V_{CC} 0.2 V, and A0 to A8, WB/WE, DT/OE, DSF, SC remain at V_{IH} ≥ V_{CC} 0.2 V or V_{IL} ≤ GND + 0.2 V.
 - 4. When the address input is set to VIH or VIL during the tras period.
 - 5. Value when the address in trc one cycle is changed once when trc = trc (MIN.).

DC Characteristics 2 (Recommended operating conditions unless otherwise noted)^{Note 1} (μ PD482235)

	Serial Acce	ess Port		Ľ	235-60	μPD482	2235-70	μPD482	2235-80		
Random Access Port	Standby	Active	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Conditions
Random Read/Write Cycle RAS, CAS cycle,	0		Icc1		110		130		130	mA	Note 2
$t_{RC} = t_{RC}$ (MIN.), $I_{O} = 0 mA$		0	Icc7		155		195		190		
Standby RAS = CAS = Vін,	0		Icc2		10		10		10	mA	
Dout = high impedance					1		1		1	mA	Note 3
		0	Іссв		55		70		65	mA	
RAS only refresh cycle RAS cycle, CAS = VIH,	0		Іссз		110		115		115	mA	Note 4
$t_{RC} = t_{RC} (MIN.)$		0	Icc9		155		180		175		
Hyper page mode cycle $\overline{RAS} = V_{IL}$, \overline{CAS} cycle,	0		lcc₄		120		130		120	mA	Note 5
HAS = VIL, CAS cycle, thec = thec (MIN.)		0	Icc10		155		195		180		
CAS before RAS refresh cycle	0		Icc5		110		90		90	mA	
trc = trc (MIN.)		0	lcc11		155		155		150		
Data transfer cycle	0		Іссе		120		140		140	mA	
trc = trc (MIN.)		0	Icc12		165		205		200		
Color/Mask write register set cycle	0		Icc13		100		120		120	mA	
trc = trc (MIN.)		0	lcc14		145		185		180		
Flash write cycle trc = trc (MIN.)	0		lcc15		100		120		120	mA	
IRC = IRC (IVIIIN.)		0	Icc16		145		185		180		
Block write cycle trc = trc (MIN.)	0		lcc17		120		130		130	mA	
LKC = LKC (IVIIIN.)		0	Ісств		165		195		190		
Hyper page mode block write cycle	0		Icc19		140		135		125	mA	
thpc = thpc (MIN.)		0	lcc20		190		200		185		Note 5

Notes 1. No load on W/IO, SIO, QSF. The current consumption actually used depends on the output load and operating frequency of each pin.

- 2. A change in row addresses must not occur more than once in tRc = tRc (MIN.).
- RAS, CAS, and SE remain at V_{IH} ≥ Vcc 0.2 V, and A0 to A8, WB/WE, DT/OE, DSF, SC remain at V_{IH} ≥ Vcc 0.2 V or V_{IL} ≤ GND + 0.2 V.
- 4. When the address input is set to VIH or VIL during the tras period.
- 5. Value when the address in the one cycle is changed once when the = the (MIN.).

AC Characteristics (Ta = 0 to 70 °C, Vcc = 5.0 V \pm 10 %, GND = 0 V)^{Notes 1, 2, 3, 4} (Common for μ PD482234, 482235)

(1/4)

Parameter	Symbol	1'	2234-60 2235-60						Condition
	-,	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Access time from RAS	t RAC		60		70		80	ns	Note 5
Access time from CAS	tcac		15		20		25	ns	Note 5
Access time from column address	taa		30		35		40	ns	Note 5
Access time from CAS trailing edge	tacp		35		40		45	ns	
Access time from OE	toea		15		20		25	ns	
Serial output access time from SC	tsca		15		17		20	ns	
Serial output access time from \overline{SE}	t SEA		15		17		20	ns	
Output disable time from SE high	tsez	0	15	0	15	0	20	ns	Note 6
Random read or write cycle time	trc	120		140		150		ns	
Read modify-write cycle time	trwc	165		185		205		ns	
Transition time (Rise/Fall)	tτ	3	35	3	35	3	35	ns	
RAS precharge time	trp	50		60		60		ns	
RAS pulse width	tras	60	10,000	70	10,000	80	10,000	ns	
(Non page mode)									
RAS pulse width	trasp	60	100,000	70	100,000	80	100,000	ns	
(Fast page/Hyper page mode)									
RAS hold time	trsh	15		20		25		ns	
CAS precharge time	t CPN	10		10		10		ns	
(Non page mode)									
CAS precharge time	tcp	10		10		10		ns	
(Fast page/Hyper page mode)					ļ				·
CAS hold time	tcsн	60		70		80		ns	
RAS to CAS delay time	trcd	20	40	20	50	22	55	ns	Note 5
\overline{CAS} high to \overline{RAS} low precharge time	t CRP	5		10		10		ns	
RAS high to CAS low precharge time	trpc	10		10		10		ns	
Row address setup time	tasr	0		0		0		ns	
Row address hold time	t RAH	10		10		12		ns	
Column address setup time	tasc	0		0		0		ns	
Column address hold time	t CAH	10		10		12		ns	
RAS to column address delay time	trad	15	30	15	35	17	40	ns	Note 5
Column address to RAS lead time	tral	30		35		40		ns	
Read command setup time	trcs	0		0		0		ns	

(Common for µPD482234, 482235)

(2/4)

Parameter	Symbol	11	2234-60 2235-60	l.	2234-70 2235-70	'	2234-80 2235-80	Unit	Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read command hold time after RAS high	trrн	0		0		0		ns	Note 7
Read command hold time after CAS high	trcн	0		0		0		ns	Note 7
OE hold time after RAS high	tовн	10		10		10		ns	Note 8
$\overline{\text{OE}}$ hold time after $\overline{\text{CAS}}$ high	tосн	10		10		10		ns	Note 8
Write command setup time	twcs	0		0		0		ns	Note 10
Write command hold time	twcн	10		12		15		ns	
Write command pulse width	twp	10		12		15		ns	
Write command to RAS lead time	trwl	20		20		20		ns	
Write command to CAS lead time	tcwL	15		15		20		ns	
Data in setup time	tos	0	1	0		0		ns	Note 9
Data in hold time	tdн	12		12		15		ns	Note 9
Refresh period	TREF		8		8		8	ms	
CAS to WB/WE delay time	tcwp	40		40		50		ns	Note 10
RAS to WB/WE delay time	trwd	85		90		105		ns	Note 10
Column address to WB/WE delay time	tawd	55		55		65		ns	Note 10
CAS setup time (for CAS before RAS refresh cycle)	tcsr	0		0		0		ns	
CAS hold time (for CAS before RAS refresh cycle)	tсня	10		10		12		ns	
DT low setup time	tols	0		0		0		ns	
DT low hold time after RAS low	trdh	55		65		70		ns	Note 11
$\overline{\text{DT}}$ low hold time after $\overline{\text{RAS}}$ low	trdhs	10		25		30		ns	Note 11
$\overline{\text{DT}}$ low hold time after $\overline{\text{CAS}}$ low	tcdн	15		20		25		ns	Note 11
DT low hold time after address	tadd	20		25		30		ns	Note 11
SC high to $\overline{\text{DT}}$ high	tsod	0		0		0		ns	Note 11
SC high to \overline{CAS} low	tssc	10		10		10		ns	Note 11, 15, 16
SC low hold time after \overline{DT} high	tsdн	40		40		50		ns	Note 11

(Common for µPD482234, 482235)

(3/4)

Parameter	Symbol	1.	2234-60 2235-60		2234-70 2235-70			Unit	Condition
	ey.inser	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	0	Condition
SC low hold time after $\overline{\text{DT}}$ high	t SDHR	40		45		55		ns	Note 11, 15
OE high to data in setup delay time	toed	15		15		20		ns	
OE high hold time after WB/WE low	tоен	0		0		0		ns	
Serial clock cycle time	tscc	18		22		25		ns	
SC pulse width	tscн	5		5		7		ns	
SC precharge time	tscl	5		5		7		ns	
SE low to serial output setup delay time	tsoo	3		5		5		ns	
Serial output hold time after SC high	tsoн	3		5		5		ns	
DT high setup time	t DHS	0		0		0		ns	
DT high hold time	tdнн	10		10		12		ns	
\overline{DT} high to \overline{RAS} high delay time	t dtr	0		0		0		ns	Note 11
\overline{DT} high pulse width	t dtp	20		20		25		ns	
OE to RAS inactive setup time	toes	0		0		0		ns	
Write-per-bit setup time	twas	0		0		0		ns	
Write-per-bit hold time	twвн	10		10		12		ns	
DSF setup time from RAS	t FRS	0		0		0		ns	
DSF hold time from RAS	t frh	10	1	10		12		ns	
DSF setup time from CAS	trcs	0		0		0		ns	
DSF hold time from CAS	tғсн	10		12		15		ns	
Write-per-bit selection setup time	tws	0		0		0		ns	
Write-per-bit selection hold time	twн	10		10		12		ns	
SE pulse width	t SEE	5		5		7		ns	
SE precharge time	t SEP	5		5		7		ns	
SE setup time	tses	0		0		0		ns	
SE hold time from SC	tseн	10		10		12		ns	
Serial data in setup time	tsis	0		0		0		ns	
Serial data in hold time	tsıн	10		10		12		ns	
Serial input disable time from SC	tsız	0		0		0		ns	
Serial output disable time from \overline{RAS}	tsrz	0		0		0		ns	

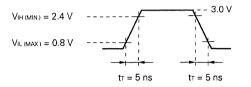
NEC

(Common for µPD482234, 482235)

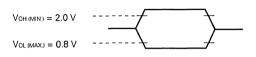
(4/4)

Parameter	Symbol				μPD482234-70 μPD482235-70				Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Serial input enable time from RAS	tszн	20		20		25		ns	
SC setup time from RAS	tsrs	10		10		10		ns	Note 14, 15, 16
SC hold time from RAS	tsrн	10		10		10		ns	Note 14
Propagation delay time from SC to QSF	tpd		20		20		25	ns	
Propagation delay time from RAS to QSF	trad		80		95		105	ns	
Propagation delay time from CAS to QSF	tcap		60		65		75	ns	
Propagation delay time from DT/OE to QSF	tood		30		30		35	ns	
Propagation delay time from RAS high to QSF	t DQR		40		40		45	ns	

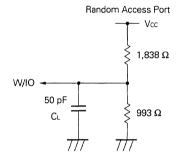
(µPD482234 Only)

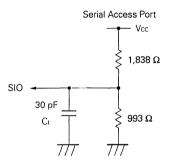

		μPD48	μPD482234-60		μPD482234-70		μPD482234-80		O and this are
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Condition
Output disable time from CAS high	t off	0	15	0	15	0	20	ns	Note 6, 12
Output disable time from OE high	toez	0	15	0	15	0	20	ns	Note 6, 12
Output disable time from WB/WE low	twez	0	15	0	15	0	20	ns	Note 6, 12
Write command pulse width	twpz	10		12		15		ns	Note 12
Fast page mode cycle time	tPC	40		45		50		ns	
Fast page mode read modify write cycle time	t PRWC	90		90		105		ns	
CAS pulse width	tcas	15	10,000	20	10,000	20	10,000	ns	

(µPD482235 Only)


Parameter	Symbol	μPD482235-60		μPD482235-70		μPD482235-80			0
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Condition
Access time from previous CAS	t ACE		60		65		75	ns	Note 17
Access time from previous WE	tawe		55		60		70	ns	Note 17
Output hold time from CAS	tонс	3		5		5		ns	
Output disable time from RAS high	tofr	0	15	0	15	0	20	ns	Note 6, 13
Output disable time from CAS high	torc	0	15	0	15	0	20	ns	Note 6, 13
Output disable time from OE high	torz	0	15	0	15	0	20	ns	Note 6, 13
Output disable time from $\overline{\text{WB}}/\overline{\text{WE}}$ low	twez	0	15	0	15	0	20	ns	Note 6, 13
Write command pulse width	twpz	10		12		15		ns	Note 13
Hyper page mode cycle time	thec	30		35		40		ns	
Hyper page mode read modify write cycle time	thprwc	80		90		105		ns	
CAS pulse width	thcas	10	10,000	10	10,000	12	10,000	ns	

- Notes 1. All applied voltages are referenced to GND.
 - After supplying power, initialize the internal circuitry by waiting for at least 100 µs after Vcc ≥ 4.5 V, then supplying at least 8 RAS clock cycles. The RAS clock only requires tac, tras, and tap are satisfied; there is no problem if other signals are in any state.
 - 3. Measure at $t\tau = 5 ns$
 - 4. AC characteristic measuring conditions





(2) Output voltage determined

(3) Output load conditions

5. For read cycle, access time is defined as follows:

Input conditions	Access time	Access time from \overline{RAS}		
trad \leq trad (MAX.) and trcd \leq trcd (MAX.)	trac (MAX.)	trac (MAX.)		
trad > trad (MAX.) and trcd \leq trcd (MAX.)	taa (MAX.)	trad + taa (MAX.)		
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)		

tRAD (MAX.) and tRCD (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (tRAC, tAA, tCAC) is to be used for finding out data will be available. Therefore, the input conditions tRAD \geq tRAD (MAX.) and tRCD \geq tRCD (MAX.) will not cause any operation problems.

- 6. tsez, toez, twez, tore, tore, and torc define the time when the output achieves the condition of high impedance and is not referenced to VOH or VOL.
- 7. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles.
- 8. Because torh and toch are used during the mask register set cycle (new mask selection) only, these ratings are applied only to versions F and E.
- 9. These parameters are referenced to the following points.
 - (1) Early write cycle : The falling edge of CAS
 - (2) Late write cycle : The falling edge of WB/WE
 - (3) Read modify write cycle : The falling edge of WB/WE

Notes 10. twcs ≥ twcs (MIN.) is the condition for early write cycle to be set. Dou⊤ becomes high impedance during the cycle.

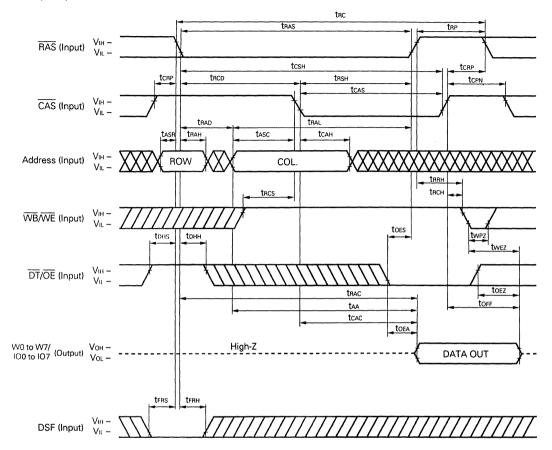
tRWD \ge tRWD (MIN.), tCWD \ge tCWD (MIN.), tAWD \ge tAWD (MIN.), are conditions for read modify write cycle to be set. The data of the selected address is output to Dout.

If any of the above conditions are not met, pin W/IO will become undefined.

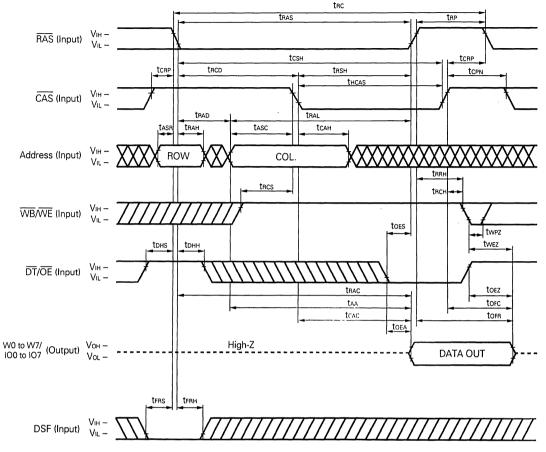
- 11. One of the following specifications will be valid depending on the type of read data transfer method used.
 - (1) $\overline{\text{DT}}/\overline{\text{OE}}$ edge control: Satisfy the following specifications.
 - For DT/OE edge inputs : tRDH, tCDH, tADD, tDTR
 - For SC inputs : tsod, tsdн
 - (2) Self control: Satisfy the following specification.
 - For DT/OE edge inputs : troths
 - For SC inputs : tssc, tsphr
- 12. Control pins CAS, DT/OE, WB/WE to set pin W/IO to high impedance. Because the timings at which CAS and DT/OE are set to high level and WB/WE is set to low level affect the high impedance state, the specifications will change as follows.
 - (1) When CAS is set to high level at DT/OE (low level) and WB/WE (high level) at the end of the read cycle: toFF is valid
 - (2) When WB/WE is set to low level at CAS (low level) and DT/OE (low level) at the end of the read cycle: twez and twpz are valid
 - (3) When DT/OE is set to high level at CAS (low level) and WB/WE (high level) at the end of the read cycle: toEz is valid
- 13. Control pins RAS, CAS, DT/OE, WB/WE to set pin W/IO to high impedance. Because the timings at which RAS, CAS, and DT/OE are set to high level and WB/WE is set to low level affect the high impedance state, the specifications will change as follows.

When controlling \overline{RAS} and \overline{CAS} , the output cannot be made high impedance unless both pins are set to high. There is difference between torc and torr, because \overline{RAS} and \overline{CAS} control is specified from the rising edge of the slower one.

- (1) When RAS is set to high level after CAS is set to high level at DT/OE (low level) and WB/WE (high level) at the end of the read cycle: torr is valid
- (2) When CAS is set to high level after RAS is set to high level at DT/OE (low level) and WB/WE (high level) at the end of the read cycle: torc is valid
- (3) When WB/WE is set to low level at RAS, CAS (low level) and DT/OE (low level) at the end of the read cycle: twez and twez are valid
- (4) When DT/OE is set to high level at RAS, CAS (low level) and WB/WE (high level) at the end of the read cycle: toEz is valid
- 14. The tsRs and tsRH in the hidden refresh cycle, CAS before RAS refresh cycle (STOP register set cycle and optional reset cycle) are specified to guarantee the serial port operations until the transfer cycle is executed after the STOP register value is changed. When the STOP register value is not to be changed, or when the binary boundary jump function is not used (when the TAP register is empty), tsRs and tsRH will not be specified.

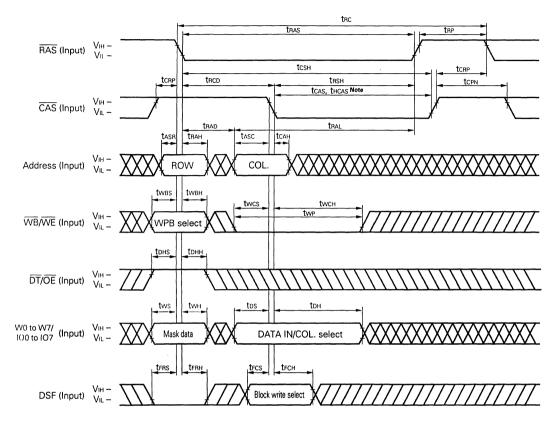

- 15. tssc (split read data transfer cycle) and tsrs (split write data transfer cycle) are specified at the rising edge of SC which reads/writes the address of the jump source in the binary boundary jump function. tsdhr (split read data transfer cycle and split write data transfer cycle) is specified at the rising edge of SC which reads/writes the address of the jump destination in the binary boundary jump function. The rising edge of these SCs cannot be input in periods (1) and (2).
 - (1) Split read data transfer cycle: Period from the rising edge of the SC specifying tssc to that of the SC specifying tsphr (Refer to Note 2 Split Read/Write Data Transfer Cycle Timing Chart.)
 - (2) Split write data transfer cycle: Period from the rising edge of the SC specifying tsrs to that of the SC specifying tsphr (Refer to Note 2 Split Read/Write Data Transfer Cycle Timing Chart.)
- 16. Restrictions to the split read data transfer cycle during serial write operation

NEC


- (1) If split read data transfer is attempted for an address which is already involved in serial write, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from when SE goes low at the rising edge of SC to just before the serial write begins.
- (2) If split read data transfer is attempted when an address involved in serial write is the boundary address specified by the STOP register, normal operation is not guaranteed, except for a period in which no serial write has been performed, that is from just after the mask write or mask split write transfer cycle is executed to just before the serial write is started by setting SE to a low level at the rising edge of SC.
- In the hyper page mode, the hyper page mode read modify write cycle, the hyper page mode read modify block write cycle, this parameter is valid when the read cycle changes to the write cycle.

NEC

Read Cycle (µPD482234)


Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Read Cycle (Extended data output: µPD482235)

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Early Write Cycle/Early Block Write Cycle

Note tcas for the μ PD482234 tHcas for the μ PD482235

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Late Write Cycle/Late Block Write Cycle

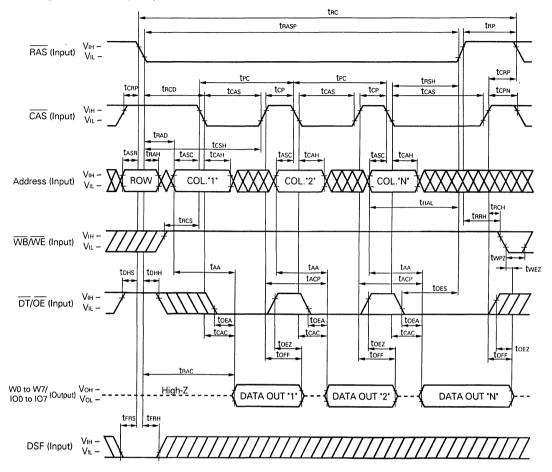
Note tcas for the μ PD482234

theas for the μ PD482235

- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

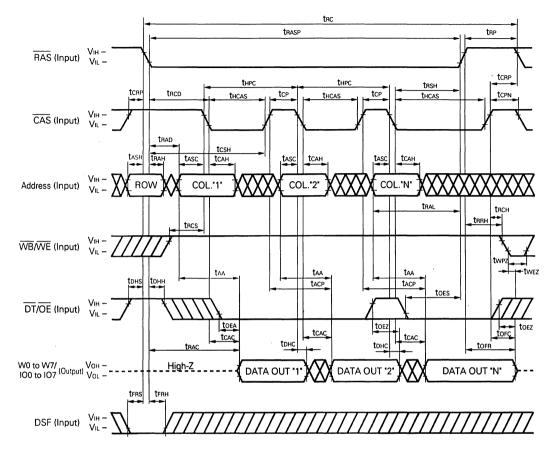
tRAS trp νы RAS (Input) VIL **t**CSH tcrp trcd trsh **t**CPN tCRF tCAS, THCAS Note Vін CAS (Input) . Vil TRAD **t**RAL tASF tRAH tasc **t**CAH Address (Input) COL. ROW Vii trwD tcwL tawd tRWL twbs twbh tRCS tcwp twp Vін – WB/WE (Input) WPB select VIL tdhs tонн **t**OEH Viii – DT/OE (Input) Vii tavc t۸۸ teac tws twn torp tos tон **t**OEA Vін – High-Z DATA IN/ W0 Mask data (Input) COL. select to W7/ toez 100 to High-Z High-Z 107 DATA OUT (Output) VoL tras **t**ERH tres **t**fch DSF (Input) Block write select

tRWC

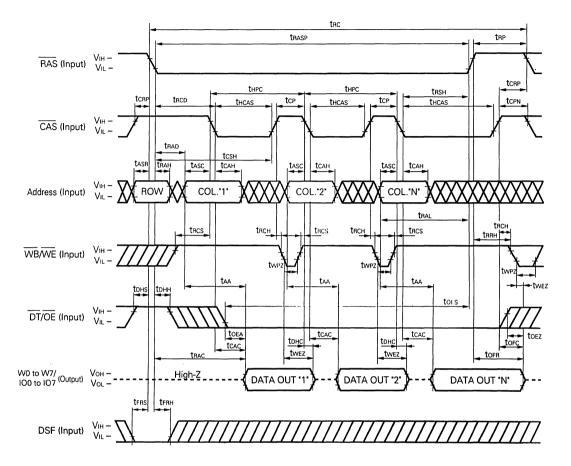

Read Modify Write Cycle/Read Modify Block Write Cycle

Note tcas for the μ PD482234 thcas for the μ PD482235

Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle

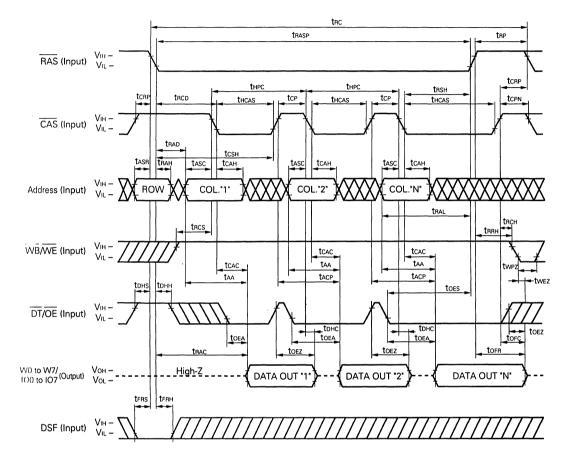

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Fast Page Mode Read Cycle (µPD482234)

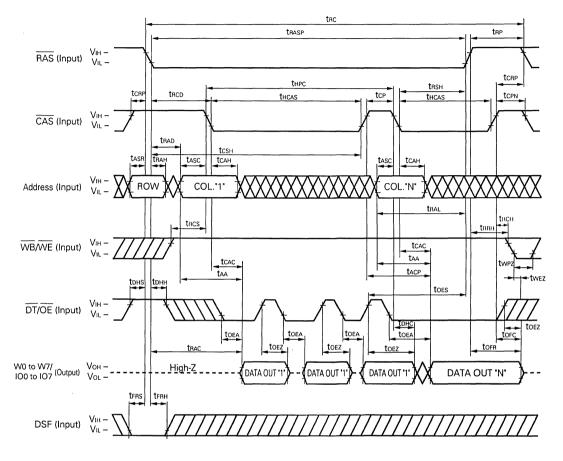


Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle (Extended data output: µPD482235)

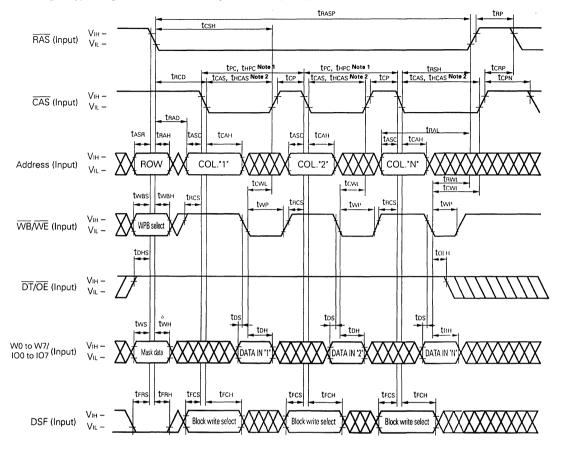

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, \overline{SE} , SIO pins in this cycle.

Hyper Page Mode Read Cycle (WE controlled) (Extended data output: µPD482235 (Versions A, F and E))

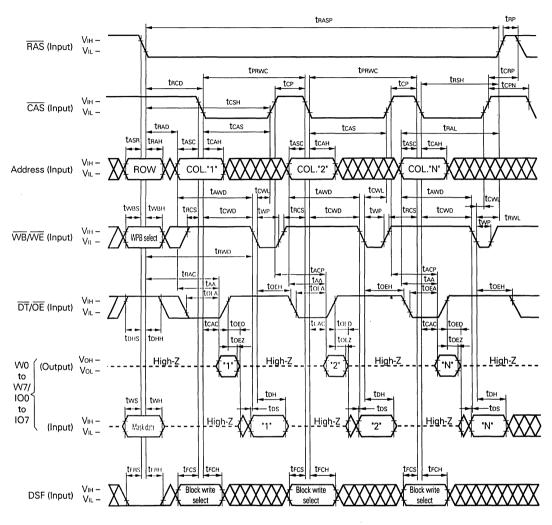

Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

Hyper Page Mode Read Cycle ($\overline{\text{OE}}$ controlled: Latched control) (Extended data output: μ PD482235 (Version A))

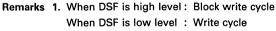
Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, \overline{SE} , SIO pins in this cycle.


Hyper Page Mode Read Cycle ($\overline{\text{OE}}$ controlled: Non-Latched control) (Extended data output: μ PD482235 (Versions F, E))

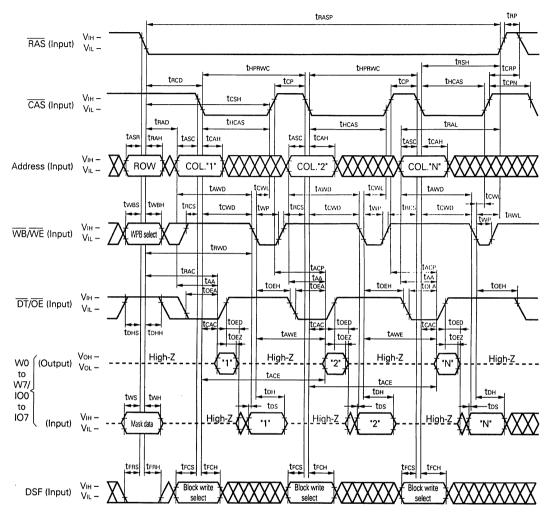
Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Fast Page, Hyper Page Mode Early Write Cycle/Fast Page, Hyper Page Mode Early Block Write Cycle

- **Notes 1.** tPc for the μ PD482234 tHPc for the μ PD482235
 - **2.** tcas for the μPD482234 tHCAS for the μPD482235
- Remarks 1. When DSF is high level : Block write cycle When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - 4. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

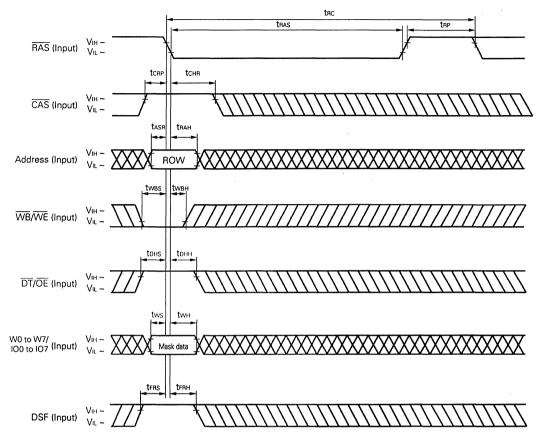


Fast Page, Hyper Page Mode Late Write Cycle/Fast Page, Hyper Page Mode Late Block Write Cycle


- **Notes 1.** tpc for the μPD482234 tHPc for the μPD482235
 - 2. tcas for the μ PD482234 thcas for the μ PD482235
- Remarks 1. When DSF is high level : Block write cycle
 - When DSF is low level : Write cycle
 - 2. WPB : Write-per-bit
 - 3. When block write cycle is selected, input the column selection data to DATA IN.
 - Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

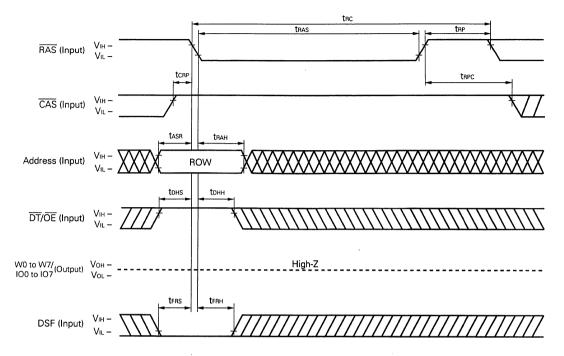
Fast Page Mode Read Modify Write Cycle (µPD482234)/ Fast Page Mode Read Modify Block Write Cycle (µPD482234)

- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

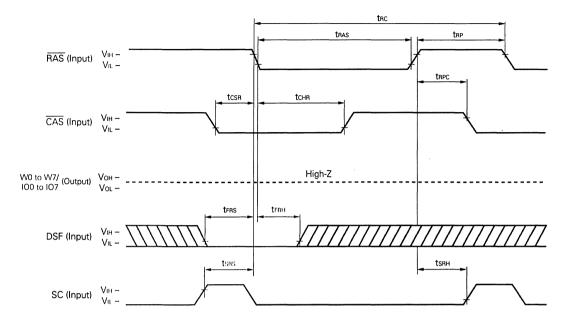


Hyper Page Mode Read Modify Write Cycle (Extended data output: μ PD482235)/ Hyper Page Mode Read Modify Block Write Cycle (Extended data output: μ PD482235)

Remarks 1. When DSF is high level : Block write cycle


- When DSF is low level : Write cycle
- 2. WPB : Write-per-bit
- 3. When block write cycle is selected, input the column selection data to DATA IN.
- Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

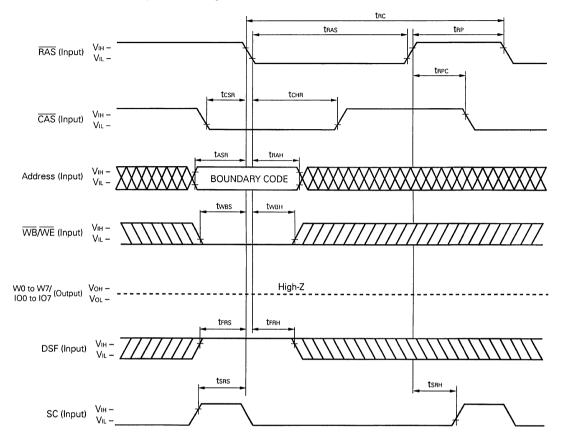
Flash Write Cycle


Remark Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

RAS Only Refresh Cycle

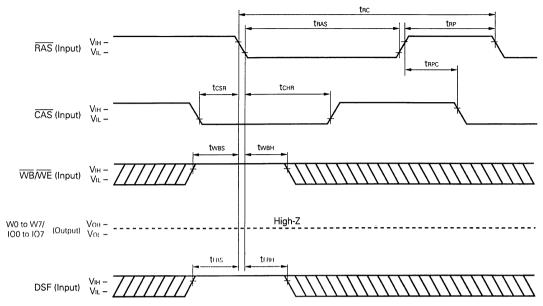
Remarks 1. WB/WE : Don't care

2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.



CAS Before RAS Refresh Cycle (Optional Reset)

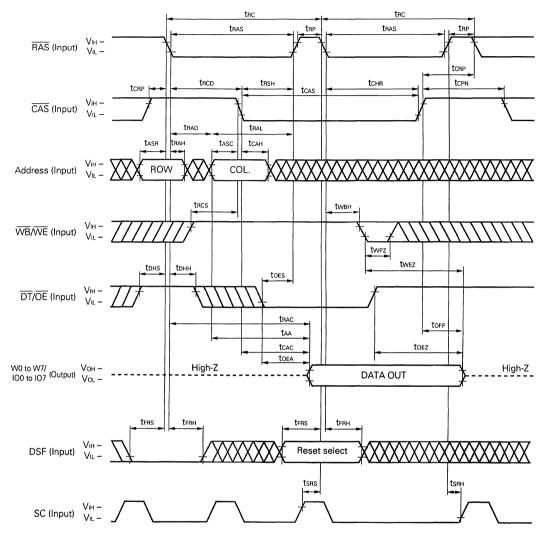
Remarks 1. Address, WB/WE, DT/OE : Don't care


2. Because the serial access port operates independently of the random access port, there is no need to control the \overline{SE} , SIO pins in this cycle.

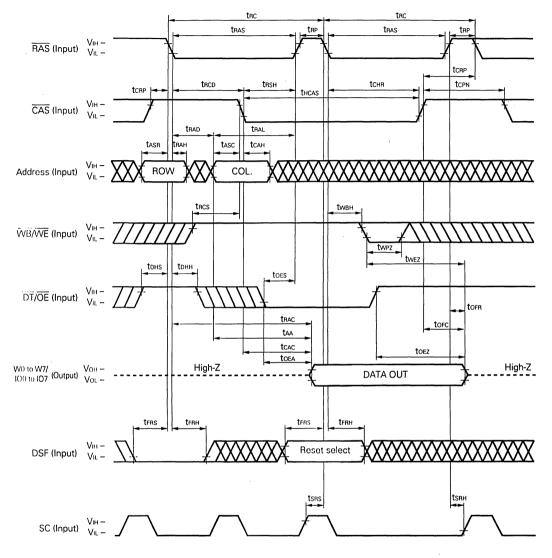
CAS Before RAS Refresh Cycle (STOP Register Set)

Remarks 1. DT/OE : Don't care

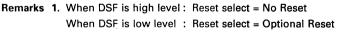
2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.



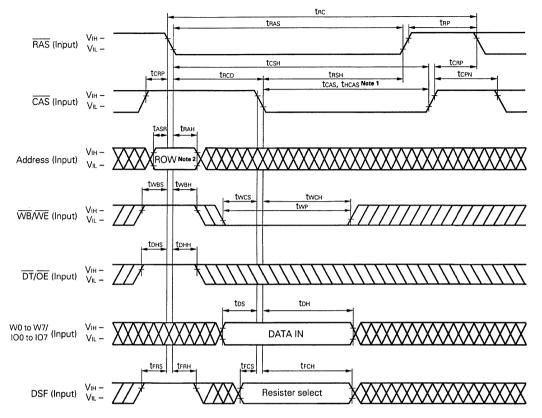
CAS Before RAS Refresh Cycle (No Reset)


Remarks 1. Address, DT/OE : Don't care

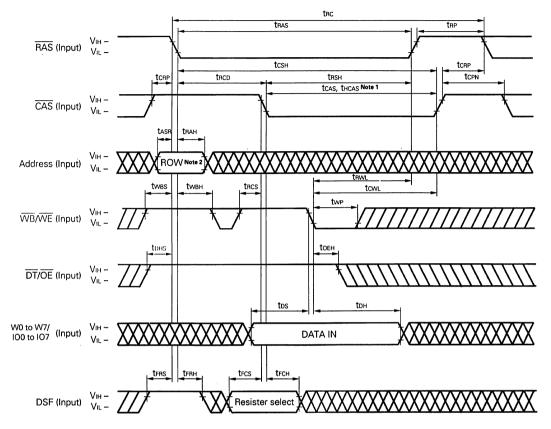
2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.


Hidden Refresh Cycle (µPD482234)

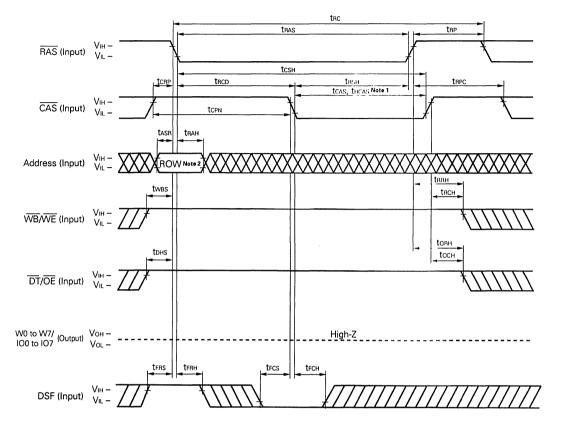
- Remarks 1. When DSF is high level : Reset select = No Reset When DSF is low level : Reset select = Optional Reset
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SE, SIO pins in this cycle.



Hidden Refresh Cycle (Extended data output: µPD482235)

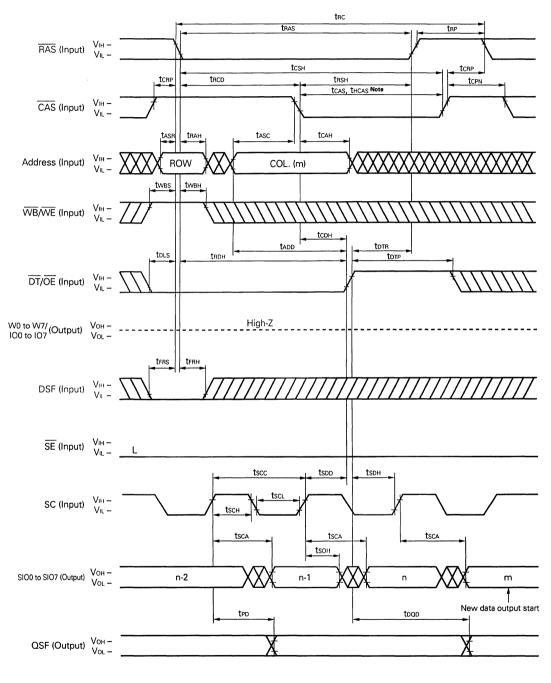

2. Because the serial access port operates independently of the random access port, there is no need to control the \overline{SE} , SIO pins in this cycle.

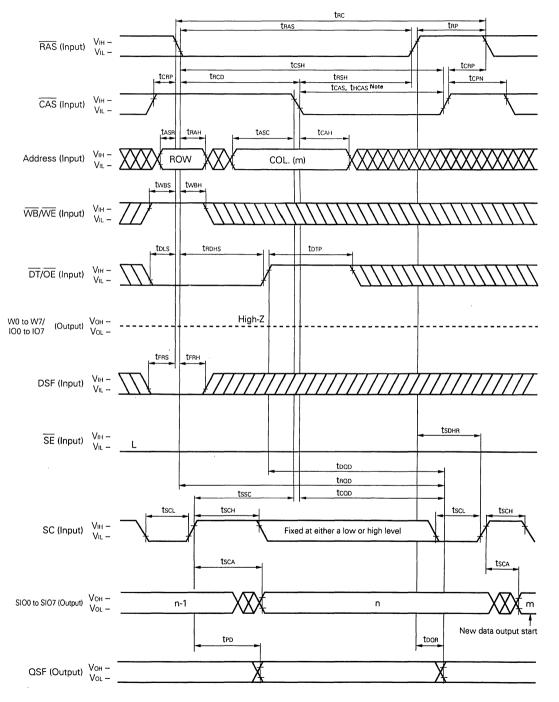
Register Set Cycle (Early Write)



- **Notes 1.** tcas for the μPD482234 tHCAS for the μPD482235
 - 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

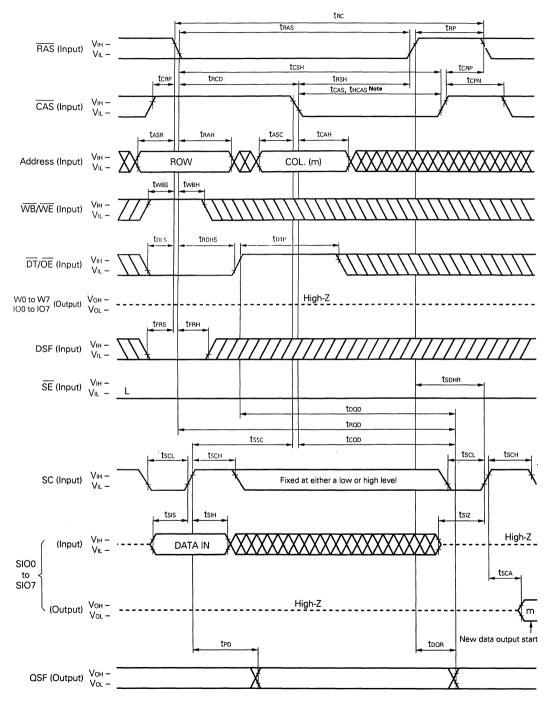
Register Set Cycle (Late Write)


- **Notes 1.** tcas for the μ PD482234 tHcas for the μ PD482235
 - 2. Refresh address (RAS only refresh)
- Remarks 1. When DSF is high level : Register select = Color Register Select When DSF is low level : Register select = Write Mask Register Select
 - 2. Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

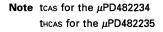

Mask Register Set Cycle (New Mask Selection) (Versions F and E only)

- **Notes 1.** tcas for the μPD482234 thcas for the μPD482235
 - 2. Refresh address (RAS only refresh)
- **Remark** Because the serial access port operates independently of the random access port, there is no need to control the SC, SE, SIO pins in this cycle.

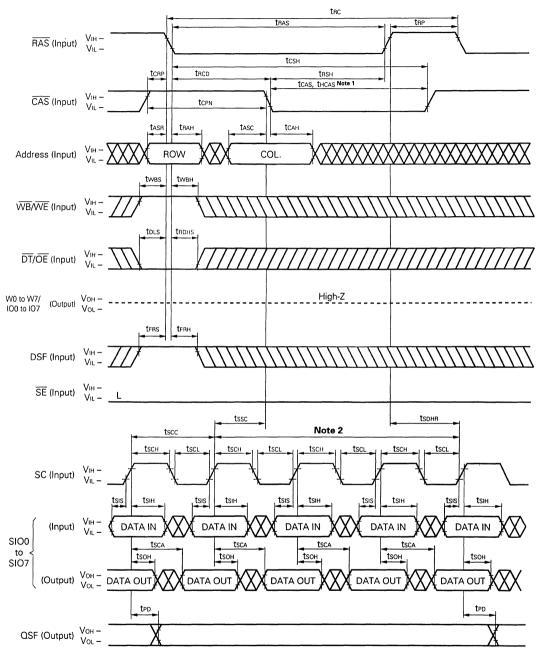
Read Data Transfer Cycle (SC Active)



Note tcas for the μ PD482234 thcas for the μ PD482235

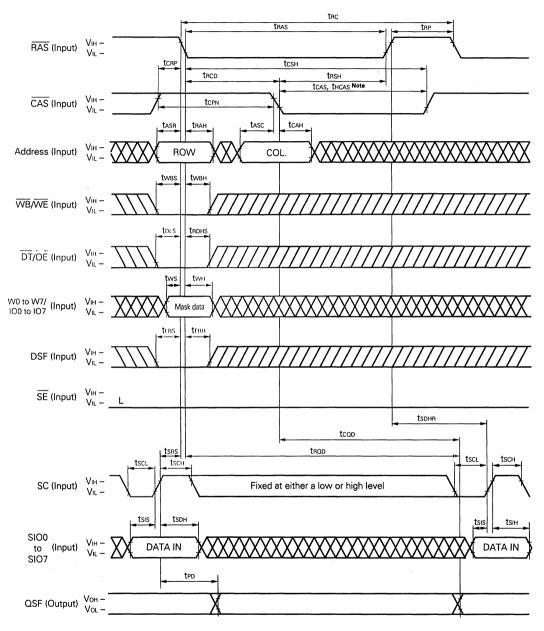


Read Data Transfer Cycle (SC Inactive)

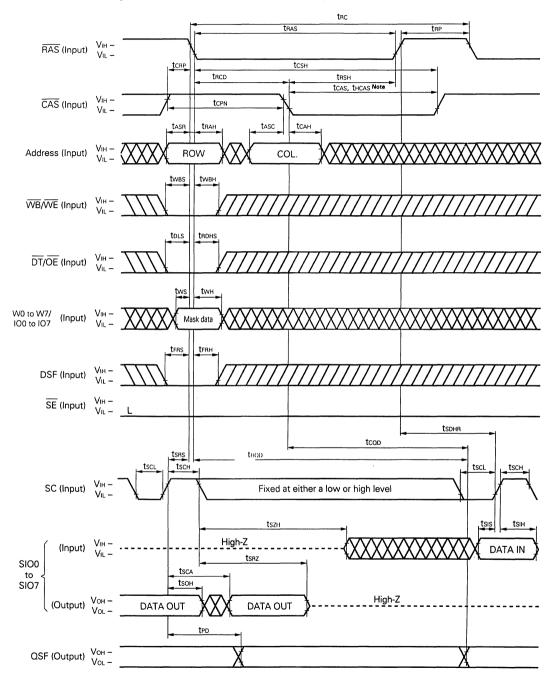

Note tcas for the μ PD482234 thcas for the μ PD482235

Read Data Transfer Cycle (Serial Write \rightarrow Serial Read Switching)

Split Read Data Transfer Cycle

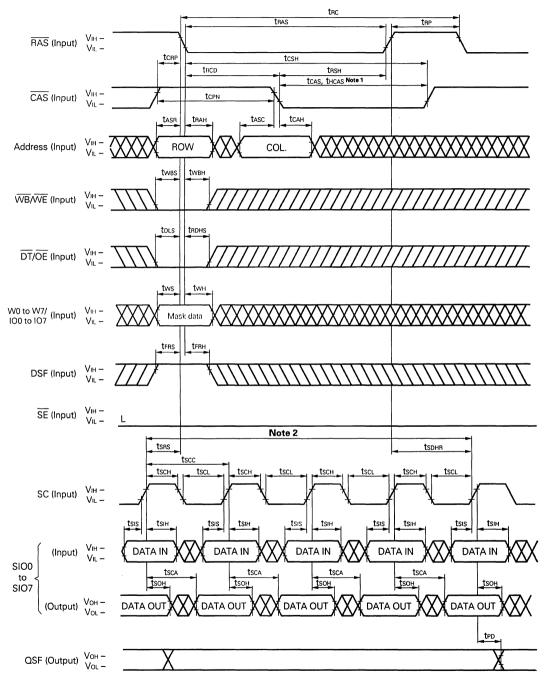


Notes 1. tcas for the μ PD482234


thcas for the μ PD482235

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does
 not perform the data transfer cycle.
 - · Serial read/write of last address of data register (Address 255 or 511)
 - · Data register serial read for the side to be involved in data transfer cycle (for version E only)

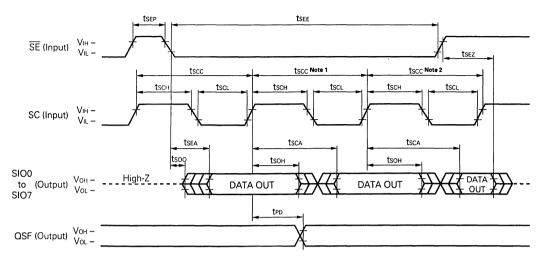
Write Data Transfer Cycle


Note tcas for the μ PD482234 tHcas for the μ PD482235

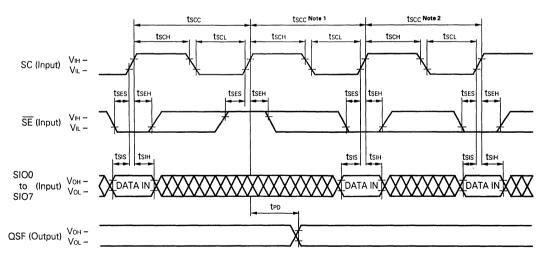
Write Data Transfer Cycle (Serial Read \rightarrow Serial Write Switching)

Note tcas for the μ PD482234 thcas for the μ PD482235

Split Write Data Transfer Cycle



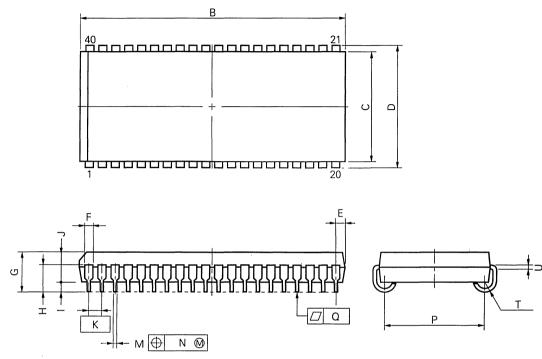
Notes 1. tcas for the μ PD482234


thcas for the μ PD482235

- 2. Do not perform the following two serial read/write during this period.
 - Serial read/write of jump source address set to the STOP register of the data register which does not perform the data transfer cycle.
 - Serial read/write of last address of data register (Address 255 or 511)
 - Data register serial read for the side to be involved in data transfer cycle (for version E only)

Serial Read Cycle

- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- Remark Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, WB/WE, DT/OE, WI/O, DSF pins in this cycle.

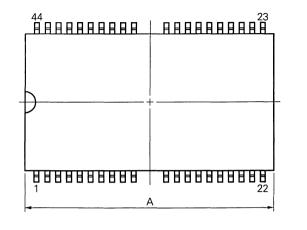


Serial Write Cycle

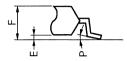
- Notes 1. Last address of data register (Address 255 or 511)
 - 2. Starting address of data register newly read (address is specified in the data transfer cycle).
- **Remark** Because the random access port operates independently of the serial access port, there is no need to control the RAS, CAS, Address, WB/WE, DT/OE, WI/O, DSF pins in this cycle.

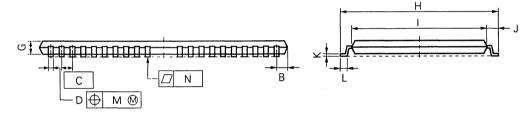
5. Package Drawings

40 PIN PLASTIC SOJ (400 mil)


NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
В	26.29 ^{+0.2}	$1.035\substack{+0.008\\-0.014}$
С	10.16	0.400
D	11.18±0.2	0.440±0,008
Е	1.08±0.15	0.043 ^{+0.006} -0.007
F	0.7	0.028
G	3.5±0.2	0.138±0.008
н	2.4±0.2	0.094+0.009 -0.008
1	0.8 MIN.	0.031 MIN.
J	2.6	0.102
К	1.27(T.P.)	0.050(T.P.)
м	0.40±0.10	$0.016^{+0.004}_{-0.005}$
N	0.12	0.005
Р	9.40±0.20	0.370±0.008
Q	0.15	0.006
T	R0.85	R0.033
U	0.20+0.10 -0.05	$0.008^{+0.004}_{-0.002}$
		D401 E 400 A 2


P40LE-400A-2

44 PIN PLASTIC TSOP(II) (400 mil)

detail of lead end

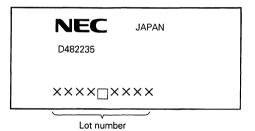
ΝΟΤΕ

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	18.63 MAX.	0.734 MAX.
В	0.93 MAX.	0.037 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.32+0.08	0.013±0.003
E	0.1±0.05	0.004±0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
н	11.76±0.2	0.463±0.008
ł	10.16±0.1	0.400 ± 0.004
J	0.8±0.2	0.031 ^{+0.009} -0.008
к	0.145+0.025	0.006±0.001
L	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
М	0.13	0.005
N	0.10	0.004
Р	3°+7° -3°	3°+7° -3°

S44G5-80-7JF4

6. Recommended Soldering Conditions


Please consult with our sales offices for soldering conditions of the μ PD482234, μ PD482235.

Types of Surface Mount Device

μPD482234LE-××	: 40-pin plastic SOJ (400 mil)
μPD482235LE-××	: 40-pin plastic SOJ (400 mil)
μPD482234G5-××	: 44-pin plastic TSOP (II) (400 mil)
μPD482235G5-××	: 44-pin plastic TSOP (II) (400 mil)

7. Example of Stamping

Letter A in the fifth character position in a lot number signifies version A, letter F, version F, and letter E, version E.

Line Buffer

.

MOS INTEGRATED CIRCUIT μ PD485506

LINE BUFFER 5K-WORD BY 16-BIT/10K-WORD BY 8-BIT

Description

The μPD485506 is a high speed FIFO (First in First Out) ine buffer. Word organization can be changed either 5 048 words by 16 bits or 10 096 words by 8 bits.

Its CMOS static circuitry provides high speed access and low power consumption.

The μ PD485506 can be used for one line delay and time axis conversion in high speed facsimile machines and digital copiers.

Moreover, the μ PD485506 can execute read and write operations independently on an asynchronous basis. Thus the μ PD485506 is suitable as a buffer for data transfer between units with different transfer rates and as a buffer for the synchronization of multiple input signals.

Features

- 5 048 words by 16 bits (Word mode) /10 096 words by 8 bits (Byte mode)
- Full static operation; data hold time = infinity
- · Suitable for sampling one line of A3 size paper (16 dots/mm)
- · Asynchronous read/write operations available
- Variable length delay bits; 21 to 5 048 bits or 10 096 bits (Cycle time: 25 ns)

19 to 5 048 bits or 10 096 bits (Cycle time: 27 ns)

- Power supply voltage Vcc = 5 V ± 10 %
- All input/output TTL compatible
- 3-state output

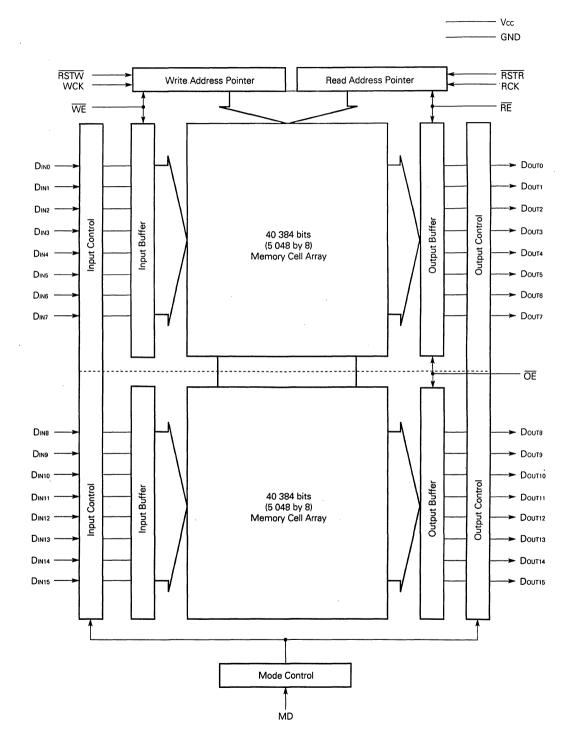
Ordering Information

Part Number	R/W Cycle Time	Package	Quality Grade
μPD485506G5-25	25 ns		
μPD485506G5 - 27	27 ns ^{Note}	44-pin plastic TSOP (II)	Standard
		(400 mil)	

Note Write cycle time is 25 ns.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.


Pin Configuration (Marking side)

Douto	0∢	1			44	<0	DINO
Douti	0∢—	2		,	43	←0	DIN1
Dout2	0◄	3			42	←0	Din2
Douts	0∢	4			41	◄0	Ding
Dout4	0	5			40	←0	DIN4
Dout5	○	6			39	←0	Din5
Doute	○	7			38	0	DIN6
Dout7	0∢	8			37	~ 0	Din7
ŌĒ	0>	9	μ		36	~ 0	WE
RE	0	10	Ŭ 4		.35	0	MD
GND	0	11	355		34	0	GND
RSTR	0>	12	µ PD48 5506G5		33	←0	RSTW
RCK	0>	13	σi		32	0	WCK
Vcc	0	14			31	0	Vcc
Douts	0◄—	15			30	0	DIN8
Doute	0∢	16			29	<0	DIN9
Dout10	⊶	17			28	~ 0	DIN10
Dout11	⊶	18			27	 0	DIN11
Dout12	○	19			26	 0	DIN12
Dout13	0∢	20			25	 0	D іN13
Dout14	0◄	21			24	 0	DIN14
Dout15	0◄	22			23	0	DIN15
	1		 			J	

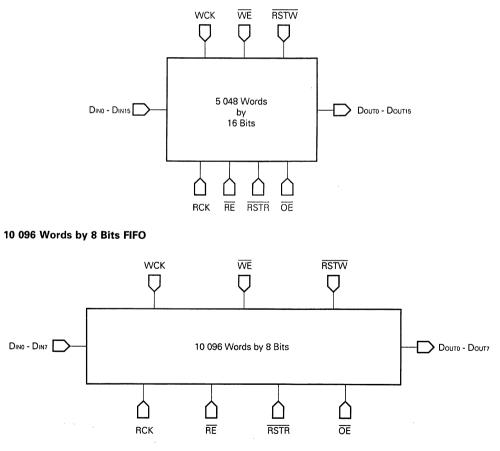
44-pin Plastic TSOP (II) (400 mil)

DINO TO DIN15	:	Data Inputs
DOUTO tO DOUT15	:	Data ,Outputs
WCK	:	Write Clock Input
RCK	:	Read Clock Input
WE	:	Write Enable Input
RE	:	Read Enable Input
ŌĒ	:	Output Enable Input
RSTW	:	Reset Write Input
RSTR	:	Reset Read Input
MD	:	Mode Set Input
Vcc	:	+5 V Power Supply
GND	:	Ground

Block Diagram

Pin Function

	Pin			
Pin Number	Symbol	Pin Name	1/0	Function
23 - 30 37 - 44	Dino I Din15	Data Input	In	Write data input pins. The data inputs are strobed by the rising edge of WCK at the end of a cycle and the setup and hold times (tos, toн) are defined at this point.
1 - 8 15 - 22	Do∪т₀ I Douт15	Data Output	Out	Read data output pins. The access time is regulated from the rising edge of RCK at the beginning of a cycle and defined by tac.
33	RSTW	Reset Write Input	In	Reset input pin for the initialization of the write address pointer. The state of $\overrightarrow{\text{RSTW}}$ is strobed by the rising edge of WCK at the beginning of a cycle and the setup and hold times (tris, trii) are defined.
12	RSTR	Reset Read Input	In	Reset input pin for the initialization of the read address pointer. The state of RSTR is strobed by the rising edge of RCK at the beginning of a cycle and the setup and hold times (trs, trн) are defined.
36	WE	Write Enable Input	In	Write operation control signal input pin. When $\overline{\text{WE}}$ is in the disable mode ("H" level), the internal write operation is inhibited and the write address pointer stops at the current position.
10	RE	Read Enable Input	İn	Read operation control signal input pin. When RE is in the disable mode ("H" level), the internal read operation is inhibited and the read address pointer stops at the current position. The data outputs remain valid for that address.
9	ŌĒ	Output Enable Input	In [.]	Output operation control signal input pin. When \overline{OE} is in the disable mode ("H" level), the data out is inhibited and the output changes to high impedance. The internal read operation is executed at that time and the read address pointer incremented in synchronization with the read clock.
32	WCK	Write Clock Input	İn	Write clock input pin. When \overline{WE} is enabled ("L" level), the write operation is executed in synchronization with the write clock. The write address pointer is incremented simultaneously.
13	RCK	Read Clock Input	In	Read clock input pin. When RE is enabled ("L" level), the read operation is executed in synchro- nization with the read clock. The read address pointer is incremented simultaneously.
35	MD	Mode Set Input	In	Mode set input pin. The level of MD gives the operation mode. When MD is in "L" level, 5 048 words by 16 bits configuration with DINO - DIN15, DOUTO - DOUT15 is enabled. When MD is in "H" level, 10 096 words by 8 bits configuration with DINO - DIN7, DOUTO - DOUT7 is enabled.


Operation Mode

(1) Mode Set Cycle (5 048 words by 16 bits or 10 096 words by 8 bits organization) μ PD485506 has a capability of selecting from two operation modes by judging the MD level when $\overline{\text{RSTW}}$ or $\overline{\text{RSTR}}$ is enabled in the reset cycle.

MD Level	Bit Configuration	Data Inputs/Outputs	Control Signal
"L"	5 048 words by 16 bits	DINO - DIN15	WCK, WE, RSTW
		Douto - Doutis	RCK, RE, RSTR
"Н"	10 096 words by 8 bits	Dino - Din7	WCK, WE, RSTW
		Douto - Douta	RCK, RE, RSTR

Caution Don't change the MD level during a reset cycle.

5 048 Words by 16 Bits FIFO

Remark Fix DINB - DIN15 to "L" or "H" level in the 10 096 words by 8 bits mode.

(2) Write Cycle

When the $\overline{\text{WE}}$ input is enabled ("L" level), a write cycle is executed in synchronization with the WCK clock input.

The data inputs are strobed by the rising edge of the clock at the end of a cycle so that read data after a one-line (5 048 bits or 10 096 bits) delay and write data can be processed with the same clock. When creating a variable length delay line by controlling \overline{WE} or \overline{RSTW} , delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5 048 bits/21 to 10 096 bits
μPD485506-27	. •	

Unless inhibited by $\overline{\text{WE}}$, the internal write address will automatically wrap around from 5 047 to 0 and begin incrementing again.

(3) Read Cycle

When the \overline{RE} input is enabled ("L" level), a read cycle is executed in synchronization with the RCK clock input. When the \overline{OE} input is also enabled ("L" level) at that time, data is output at tac. When creating a variable length delay line by controlling \overline{RE} or \overline{RSTR} , delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5 048 bits/21 to 10 096 bits
μPD485506-27	27 ns	19 to 5 048 bits/19 to 10 096 bits

When read and write cycles contend for the same line for a time axis conversion, etc., the old data (previous line) may be output for the last 21 bits in the case of 25 ns read cycle time, the last 19 bits in the case of 27 ns read cycle time.

Unless inhibited by RE, the internal read address will automatically wrap around from 5 047 to 0 and begin incrementing again.

(4) Write Reset Cycle/Read Reset Cycle

After power up, the μ PD485506 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

It is necessary to satisfy setup requirements and hold times as measured from the rising edge of WCK and RCK, and then input the RSTW and RSTR signals to initialize the circuit.

- **Remark** Write and read reset cycles can be executed at any time and do not depend on the state of $\overline{\text{RE}}$, $\overline{\text{WE}}$ or $\overline{\text{OE}}$.
- Caution Write and read reset cycles can be executed asynchronously. However, 1/2 cycle and 500 ns is required after a write cycle to read the data written in a cycle.

Electrical Specifications

• All voltages are referenced to GND.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	VT		-0.5 ^{Note} to Vcc + 0.5	V
Supply voltage	Vcc		-0.5 to +7.0	V
Output current	lo		20	mA
Power dissipation	Po		1	W
Operating temperature	Topt		0 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	V
High level input voltage	Viн		2.4		Vcc + 0.5	v
Low level input voltage	Vil		-0.3 ^{Note}		+0.8	V
Ambient temperature	Ta		0		70	.c

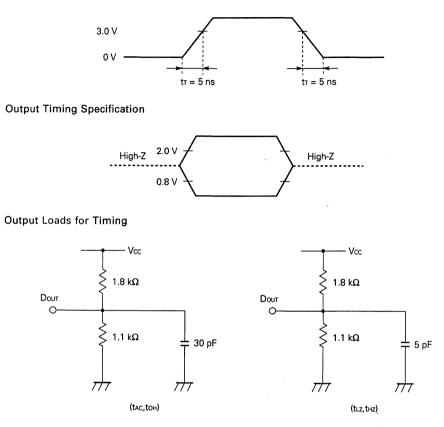
Note -3.0 V MIN. (Pulse width = 10 ns)

DC Characteristics (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Operating current	lcc				140	mA
Input leakage current	h	Vi = 0 to Vcc, Other Input 0 V	-10		+10	μA
Output leakage current	lo	Vo = 0 to Vcc, Dour: High Impedance	-10		+10	μA
High level output voltage	Vон	lон = −1 mA	2.4			v
Low level output voltage	Vol	Ιοι = 2 mA			0.4	v

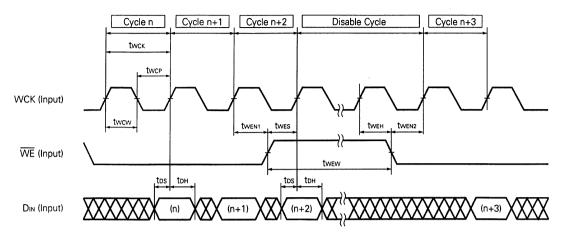
Capacitance (Ta = +25 °C, f = 1 MHz)

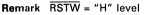
Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı				10	рF
Output capacitance	Co				10	pF

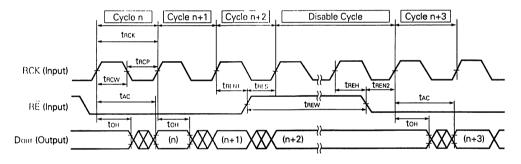

NEC

AC Characteristics (Recomm	ended Operating Conditions u	nless otherwise noted) ^{Notes 1, 2, 3}
----------------------------	------------------------------	---

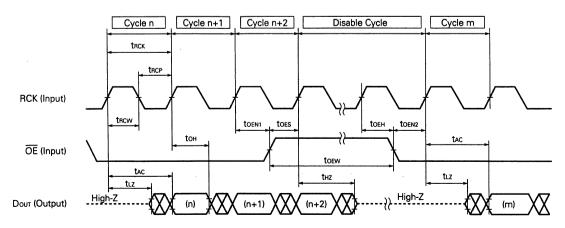
	Symbol	μPD485506-25		μPD485506-27			
Parameter		MIN.	MAX.	MIN.	MAX.	Unit	Notes
Write clock cycle time	twcĸ	25		25		ns	
Write clock pulse width	twcw	9		9		ns	
Write clock precharge time	twcp	9		9		ns	
Read clock cycle time	trck	25		27		ns	
Read clock pulse width	trcw	9		9		ns	
Read clock precharge time	trcp	9		9		ns	
Access time	tac		18		18	ns	
Output hold time	tон	5		5		ns	
Output low-impedance time	tız	5	18	5	18	ns	4
Output high-impedance time	tнz	5	18	5	18	ns	4
Input data setup time	tos	7		7		ns	
Input data hold time	tон	3		3		ns	
MD Set setup time	tмs	20		20		ns	
MD Set hold time	tмн	10		10		ns	
MD Set time	tмd	0		0		ns	5
Output low-impedance time (Mode change)	tlzм	5	18	5	18	ns	4
Output high-impedance time (Mode change)	tнzм	5	18	5	18	ns	4
RSTW/RSTR Setup time	trs	7		7		ns	6
RSTW/RSTR Hold time	tян	3		3		ns	6
RSTW/RSTR Deselected time (1)	t _{BN1}	3		3		ns	7
RSTW/RSTR Deselected time (2)	tan2	7		7		ns	7
WE Setup time	twrs	7		7		ns	8
WE Hold time	twen	3		3		ns	8
WE Deselected time (1)	twent	3		3		ns	9
WE Deselected time (2)	twen2	7		7		ns	9
RE Setup time	tres	7		7		ns	10
RE Hold time	t REH	3		3		ns	10
RE Deselected time (1)	t REN1	3		3		ns	11
RE Deselected time (2)	tren2	7		7		ns	11
OE Setup time	toes	7		7		ns	10
OE Hold time	toeн	3		3		ns	10
OE Deselected time (1)	toen1	3		3		ns	11
OE Deselected time (2)	toen2	7		7		ns	11
WE Disable time	twew	0		0		ms	
RE Disable time	trew	0		0		ms	
OE Disable time	toew	0		0		ms	
Write reset time	trstw	· 0		0		ms	
Read reset time	TRSTR	0		0		ms	
Transition time	tτ	3	35	3	35	ns	


- Notes 1. AC measurements assume $t\tau = 5$ ns.
 - 2. AC Characteristics test condition

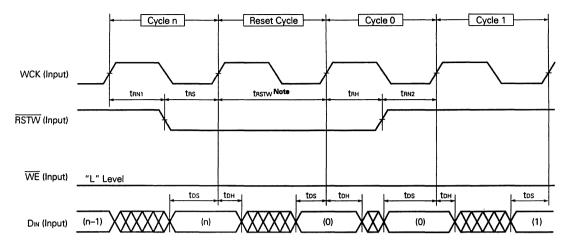

Input Timing Specification


- 3. Input timing reference levels = 1.5 V.
- tLz, tHz, tLZM and tHZM are measured at ±200 mV from the steady state voltage. Under any conditions, tLz ≥ tHz and tLZM ≥ tHZM.
- Mode set signal (MD) must be input synchronously with write reset signal (trstw period) or read reset signal (trstw period). Under this condition, trstw = tmp (trstm = tmp).
- 6. If either this or the is less than the specified value, reset operations are not guaranteed.
- 7. If either tRN1 or tRN2 is less than the specified value, reset operations may extend to cycles preceding or following the period of reset operations.
- 8. If either twees or tween is less than the specified value, write disable operations are not guaranteed.
- 9. If either tWEN1 or tWEN2 is less than the specified value, internal write disable operations may extend to cycles preceding or following the period of write disable operations.
- 10. If either trees or treeh, toes or toeh is less than the specified value, read disable operations are not guaranteed.
- 11. If either tREN1 OF TREN2, TOEN1 OF TOEN2 is less than the specified value, internal read disable operations may extend to cycles preceding or following the period of read disable operations.

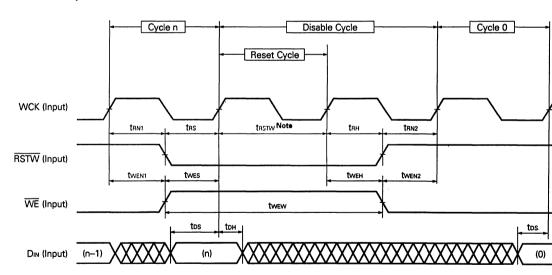
Write Cycle



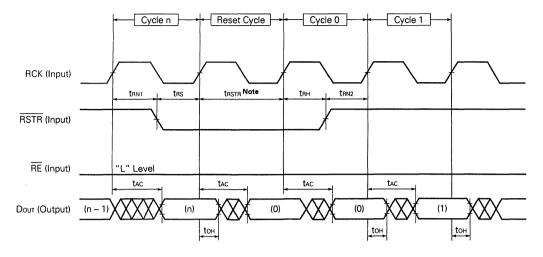
Read Cycle (RE Control)



Remark $\overline{OE} = "L"$ level, $\overline{RSTR} = "H"$ level

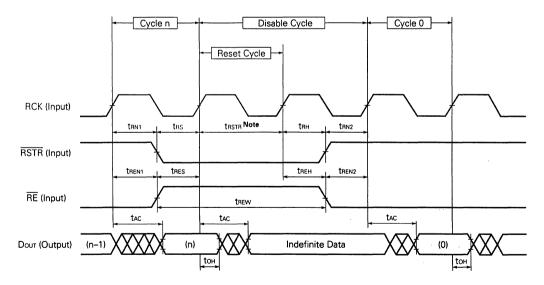

Read Cycle (OE Control)

Write Reset Cycle (WE Controlled 1)


Note In write reset cycle, reset operation is executed even without a reset cycle (tnstw). WCK can be input any number of times in a reset cycle.

Write Reset Cycle (WE Controlled 2)

Note In write reset cycle, reset operation is executed even without a reset cycle (t_{RSTW}). WCK can be input any number of times in a reset cycle.


Read Reset Cycle (RE Controlled 1)

Note In read reset cycle, reset operation is executed even without a reset cycle (trstr). RCK can be input any number of times in a reset cycle.

Remark OE = "L" level

Read Reset Cycle (RE Controlled 2)

Note In read reset cycle, reset operation is executed even without a reset cycle (trstr). RCK can be input any number of times in a reset cycle.

Remark $\overline{OE} = "L"$ level

Application

• 1 H Delay Line

 μ PD485506 easily allows a 1 H (5 048 bits/10 096 bits) delay line (see Figure 1, 2 below). It is also possible to change the number of delay bits depending on the cycle time as follows.

Part Number	Cycle Time	Delay Bits
μPD485506-25	25 ns	21 to 5 048 bits/21 to 10 096 bits
μPD485506-27	27 ns	19 to 5 048 bits/19 to 10 096 bits

To change the number of delay bits, you can choose the one of the following methods.

Adjustments of the number of delay bits

- (1) Reset the cycle proportionate to the delay length (Figure 3).
- (2) Shift the input timing of write reset (RSTW) and read reset signals (RSTR) according to the delay length (Figure 4).
- (3) Shift the address by disabling \overline{WE} or \overline{RE} for the period proportionate to the delay length (Figure 5).

Caution After power up, the μ PD485506 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

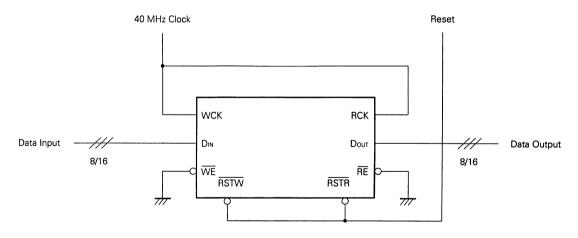
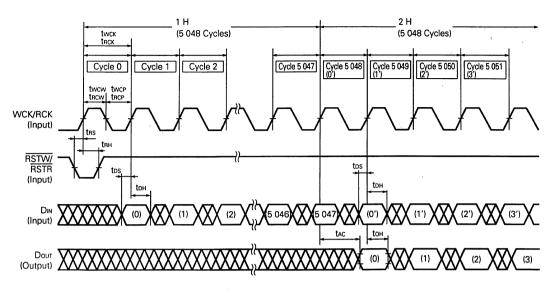
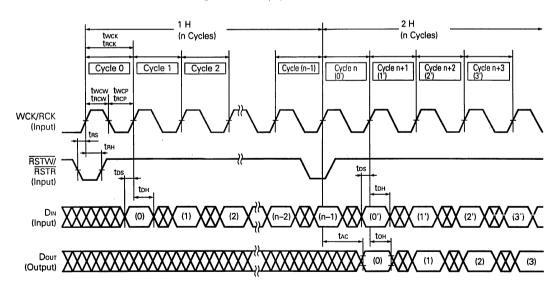
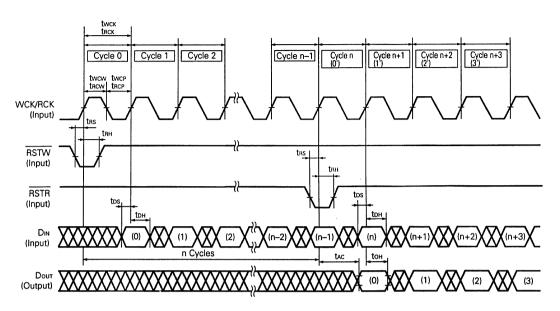
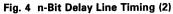
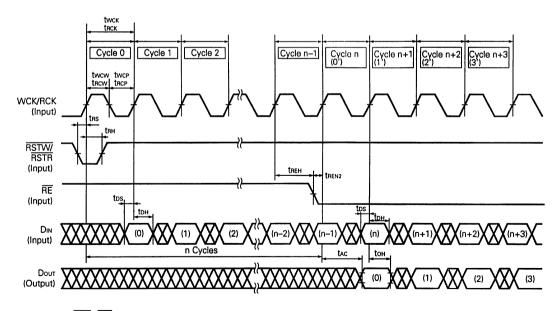
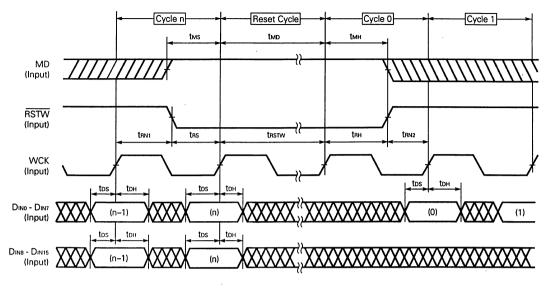




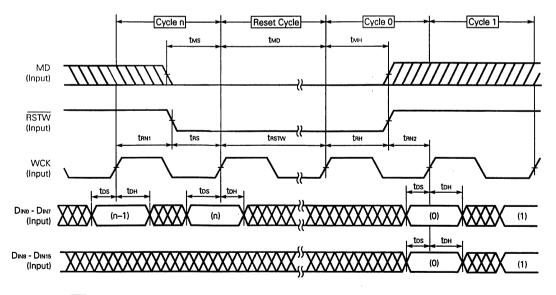
Fig. 1 1 H Delay Line Circuit

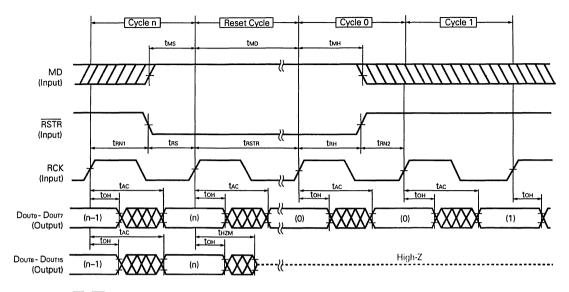


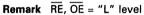



Remark \overline{RE} , \overline{WE} , \overline{OE} = "L" level




Remark \overline{WE} , \overline{OE} = "L" level





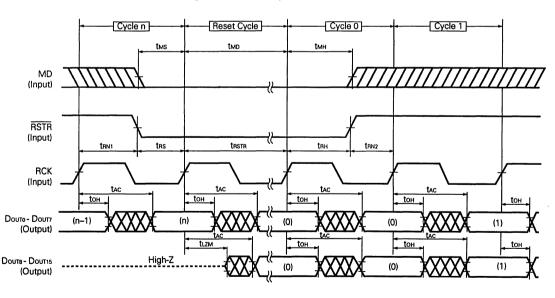
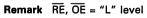
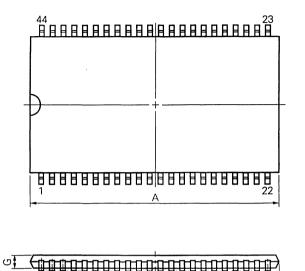
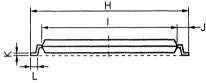




Fig. 9 Mode Set Cycle (Read) (2)

Package Drawing


44 PIN PLASTIC TSOP(II) (400 mil)

Ν

 \square

detail of lead end

S44G5-80-7JF1-1

в

NOTE

С

D⊕

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

М Ø

ITEM	MILLIMETERS	INCHES
Α	18.81 MAX.	0.741 MAX.
В	1.0 MAX.	0.040 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	0.30±0.10	0.012+0.004
E	0.05±0.05	0.002±0.002
F	1.1 MAX.	0.044 MAX.
G	0.97	0.038
н	11.76±0.2	0.463±0.008
1	10.16±0.1	0.400±0.004
J	0.8±0.2	0.031+0.009
к	0.125+0.10	0.005+0.004
L	0.5±0.1	0.020+0.004
М	0.13	0.005
Ν	0.10	0.004

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD485506.

Type of Surface Mount Device

μPD485506G: 44-pin Plastic TSOP (II) (400 mil)

[MEMO]

MOS INTEGRATED CIRCUIT μ PD485505

LINE BUFFER 5K-WORD BY 8-BIT

Verders: MARSHALL

Description

The μPD485505 is a 5 048 words by 8 bits high speed FIFO (First In First Out) line buffer. Its CMOS static circuitry provides high speed access and low power consumption.

The μ PD485505 can be used for one line delay and time axis conversion in high speed facsimile machines and digital copiers.

Moreover, the μ PD485505 can execute read and write operations independently on an asynchronous basis. Thus the μ PD485505 is suitable as a buffer for data transfer between units with different transfer rates and as a buffer for the synchronization of multiple input signals.

Features

- 5 048 words by 8 bits
- Full static operation; data hold time = infinity
- · Suitable for sampling one line of A3 size paper (16 dots/mm)
- · Asynchronous read/write operations available
- Variable length delay bits; 21 to 5 048 bits (Cycle time: 25 ns)

19 to 5 048 bits (Cycle time: 27 ns)

- Power supply voltage Vcc = 5 V ± 10 %
- All input/output TTL compatible
- 3-state output

Ordering Information

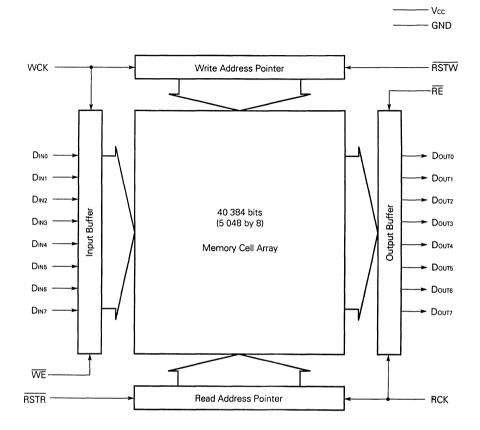
Part Number	R/W Cycle Time	Package	Quality Grade
μPD485505G-25	25 ns		
μPD485505G-27	27 ns Note	24-pin plastic SOP	Standard
		(450 mil)	

Note Write cycle time is 25 ns.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

Pin Configuration (Marking side)


NEC

1		~		1
Douto O <	1	\bigcirc	24	O Dino
Douti O	2		23	O DIN1
Dout2 O-	3		22	<o din2<="" td=""></o>
Dо∪тз О <	4		21	<o ding<="" td=""></o>
	5	μP	20	
	6	D485505G	19	O RSTW
GND O	7	5505	18	O Vcc
	8	Ğ	17	<О WCК
Dout4 O <	9	r v	16	<o din4<="" td=""></o>
Douts O <	10		15	<o din5<="" td=""></o>
Doute O <	11		14	<o ding<="" td=""></o>
Dout7 O	12		13	<o din7<="" th=""></o>

DINO - DINT : Data Inputs DOUTO - DOUT7 : Data Outputs WCK : Write Clock Input RCK : Read Clock Input WE : Write Enable Input RE : Read Enable Input RSTW : Reset Write Input RSTR : Reset Read Input : +5 V Power Supply Vcc GND : Ground

24-pin Plastic SOP (450 mil)

Block Diagram

Pin Function

	Pin			
Pin Number	Symbol	Pin Name	1/0	Function
13 - 16 21 - 24	Dino 1 Din7	Data Input	In	Write data input pins. The data inputs are strobed by the rising edge of WCK at the end of a cycle and the setup and hold times (tos, tox) are defined at this point.
1 - 4 9 - 12	Ο ουτο Ι Οουτ7	Data Output	Out	Read data output pins. The access time is regulated from the rising edge of RCK at the beginning of a cycle and defined by tac.
19	RSTW	Reset Write Input	In	Reset input pin for the initialization of the write address pointer. The state of RSTW is strobed by the rising edge of WCK at the beginning of a cycle and the setup and hold times (trs., trн) are defined.
6	RSTR	Reset Read Input	In	Reset input pin for the initialization of the read address pointer. The state of RSTR is strobed by the rising edge of RCK at the beginning of a cycle and the setup and hold times (trs, trn) are defined.
20	WE	Write Enable Input	In	Write operation control signal input pin. When WE is in the disable mode ("H" level), the internal write operation is inhibited and the write address pointer stops at the current position.
5	RE	Read Enable Input	In	Read operation control signal input pin. When RE is in the disable mode ("H" level), the internal read operation is inhibited and the read address pointer stops at the current position. The output changes to high impedance.
17	WCK	Write Clock Input	In	Write clock input pin. When \overline{WE} is enabled ("L" level), the write operation is executed in synchronization with the write clock. The write address pointer is incremented simultaneously.
8	RCK	Read Clock Input	In	Read clock input pin. When RE is enabled ("L" level), the read operation is executed in synchro- nization with the read clock. The read address pointer is incremented simultaneously.

Operation Mode

(1) Write Cycle

When the WE input is enabled ("L" level), a write cycle is executed in synchronization with the WCK clock input.

The data inputs are strobed by the rising edge of the clock at the end of a cycle so that read data after a one-line (5 048 bits) delay and write data can be processed with the same clock.

When creating a variable length delay line by controlling WE or RSTW, delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485505-25	25 ns	21 to 5 048 bits
μPD485505-27		

Unless inhibited by \overline{WE} , the internal write address will automatically wrap around from 5 047 to 0 and begin incrementing again.

(2) Read Cycle

When the RE input is enabled ("L" level), a read cycle is executed in synchronization with the RCK clock input and data is output at tAc.

When creating a variable length delay line by controlling \overline{RE} or \overline{RSTR} , delay bits are as follows.

Part Number	Cycle Time	Delay Bits
μPD485505-25	25 ns	21 to 5 048 bits
μPD485505-27	27 ns	19 to 5 048 bits

When read and write cycles contend for the same line for a time axis conversion, etc., the old data (previous line) may be output for the last 21 bits in the case of 25 ns read cycle time, the last 19 bits in the case of 27 ns read cycle time.

Unless inhibited by RE, the internal read address will automatically wrap around from 5 047 to 0 and begin incrementing again.

(3) Write Reset Cycle/Read Reset Cycle

After power up, the μ PD485505 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.

It is necessary to satisfy setup requirements and hold times as measured from the rising edge of WCK and RCK, and then input the $\overline{\text{RSTW}}$ and $\overline{\text{RSTR}}$ signals to initialize the circuit.

- **Remark** Write and read reset cycles can be executed at any time and do not depend on the state of $\overline{\text{RE}}$ or $\overline{\text{WE}}$.
- Caution Write and read reset cycles can be executed asynchronously. However, 1/2 cycle and 500 ns is required after a write cycle to read the data written in a cycle.

Electrical Specifications ⁰

• All voltages are referenced to GND.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	VT		-0.5 ^{Note} to Vcc + 0.5	V
Supply voltage	Vcc		-0.5 to +7.0	٧
Output current	lo		20	mA
Operating temperature	Topt		0 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

Note -3.0 V MIN. (Pulse width = 10 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	v
High level input voltage	Vін		2.4		Vcc + 0.5	V
Low level input voltage	ViL		-0.3Note		+0.8	v
Ambient temperature	Ta		0		70	°C

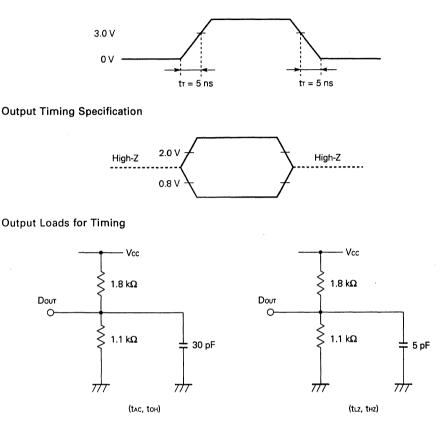
Note -3.0 V MIN. (Pulse width = 10 ns)

DC Characteristics (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Operating current	Icc				80	mA
Input leakage current	li li	Vi = 0 to Vcc, Other Input 0 V	-10		+10	μA
Output leakage current	lo	Vo = 0 to Vcc, Dout: High Impedance	-10		+10	μA
High level output voltage	Vон	Іон = –1 mA	2.4			v
Low level output voltage	Vol	loL = 2 mA			0.4	v

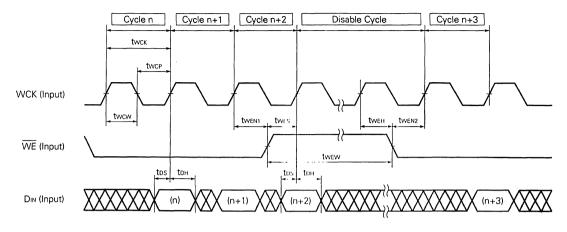
Capacitance (T_a = +25 °C, f = 1 MHz)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı				10	pF
Output capacitance	Co				10	pF

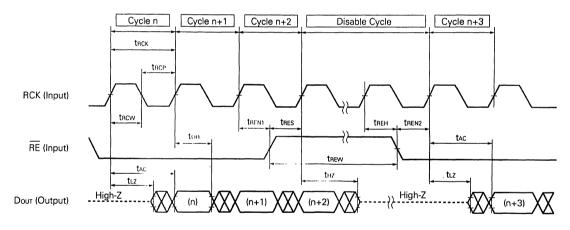

AC Characteristics (Recommended Operating Conditions unless otherwise noted)^{Notes 1, 2, 3}

		μPD48	5505-25	μPD48	5505-27		
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Write clock cycle time	twcĸ	25		25		ns	
Write clock pulse width	twcw	9		9		ns	
Write clock precharge time	twcp	9		9		ns	
Read clock cycle time	trck	25		27		ns	
Read clock pulse width	trcw	9		9		ns	
Read clock precharge time	trcp	9		9		ns	
Access time	tac		18		18	ns	
Output hold time	tон	5		5		ns	
Output low-impedance time	t∟z	5	18	5	18	ns	4
Output high-impedance time	tнz	5	18	5	18	ns	4
Input data setup time	tos	7		7		ns	
Input data hold time	toн	3	_	3		ns	
RSTW/RSTR Setup time	trs	7		7		ns	5
RSTW/RSTR Hold time	tвн	3		3		ns	5
RSTW/RSTR Deselected time (1)	trn1	3		3		ns	6
RSTW/RSTR Deselected time (2)	trn2	7		7		ns	6
WE Setup time	fwes	7		7		ns	7
WE Hold time	tweн	3		3		ns	7
WE Deselected time (1)	t WEN1	3		3		ns	8
WE Deselected time (2)	twen2	7		7		ns	8
RE Setup time	tres	7		7		ns	9
RE Hold time	tren	3		3		ns	9
RE Deselected time (1)	T REN1	3		3		ns	10
RE Deselected time (2)	tren2	7		7		ns	10
WE Disable time	twew	0		0		ms	
RE Disable time	trew	0	,	0		ms	
Write reset time	t RSTW	0		0		ms	
Read reset time	t rstr	0		0		ms .	
Transition time	tr [°]	3	35	3	35	ns	

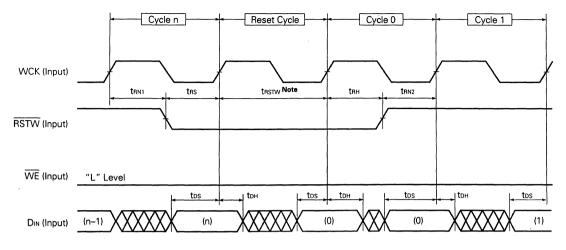
Notes 1. AC measurements assume $t\tau = 5$ ns.


2. AC Characteristics test condition

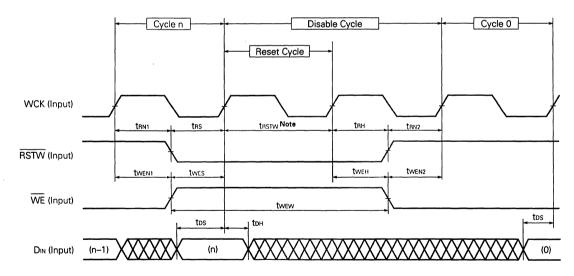
Input Timing Specification


- 3. Input timing reference levels = 1.5 V.
- 4. tLz and tHz are measured at ±200 mV from the steady state voltage. Under any conditions, tLz \ge tHz.
- 5. If either the or the is less than the specified value, reset operations are not guaranteed.
- 6. If either tRN1 or tRN2 is less than the specified value, reset operations may extend to cycles preceding or following the period of reset operations.
- 7. If either twees or tween is less than the specified value, write disable operations are not guaranteed.
- 8. If either twEN1 or twEN2 is less than the specified value, internal write disable operations may extend to cycles preceding or following the period of write disable operations.
- 9. If either tres or treh is less than the specified value, read disable operations are not guaranteed.
- **10.** If either tREN1 or tREN2 is less than the specified value, internal read disable operations may extend to cycles preceding or following the period of read disable operations.

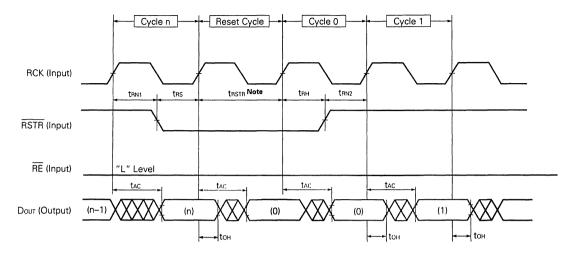
Write Cycle

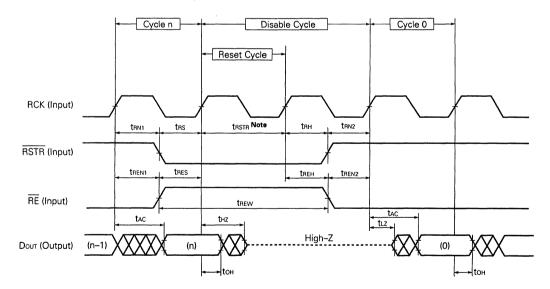


Read Cycle



Write Reset Cycle (WE Controlled 1)


Note In write reset cycle, reset operation is executed even without a reset cycle (trstw). WCK can be input any number of times in a reset cycle.


Write Reset Cycle (WE Controlled 2)

Note In write reset cycle, reset operation is executed even without a reset cycle (trstw). WCK can be input any number of times in a reset cycle.

Read Reset Cycle (RE Controlled 1)

Note In read reset cycle, reset operation is executed even without a reset cycle (thsth). RCK can be input any number of times in a reset cycle.

Read Reset Cycle (RE Controlled 2)

Note In read reset cycle, reset operation is executed even without a reset cycle (t_{RSTR}). RCK can be input any number of times in a reset cycle.

Application

1 H Delay Line

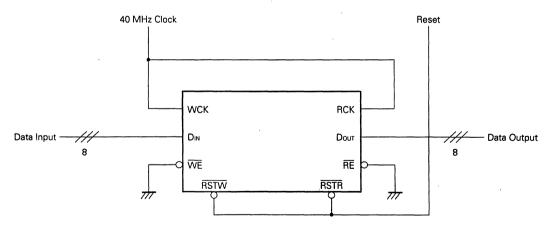
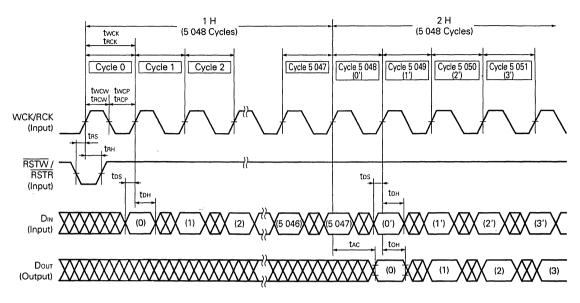
 μ PD485505 easily allows a 1 H (5 048 bits) delay line (see Figure 1, 2 below). It is also possible to change the number of delay bits depending on the cycle time as follows.

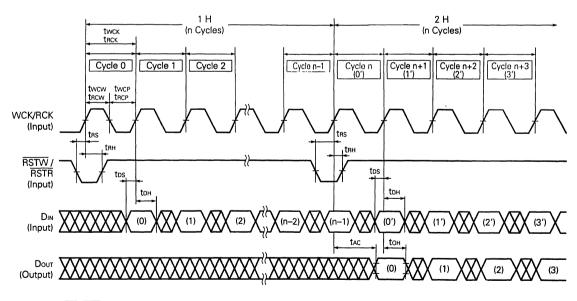
Part Number	Cycle Time	Delay Bits
μPD485505-25	25 ns	21 to 5 048 bits
μPD485505-27	27 ns	19 to 5 048 bits

To change the number of delay bits, you can choose the one of the following methods.

Adjustments of the number of delay bits

- (1) Reset the cycle proportionate to the delay length (Figure 3).
- (2) Shift the input timing of write reset (RSTW) and read reset signals (RSTR) according to the delay length (Figure 4).
- (3) Shift the address by disabling \overline{WE} or \overline{RE} for the period proportionate to the delay length (Figure 5).
- Caution After power up, the µPD485505 requires the initialization of internal circuits because the read and write address pointers are not defined at that time.



Fig. 1 1 H Delay Line Circuit

Remark \overline{RE} , \overline{WE} = "L" level

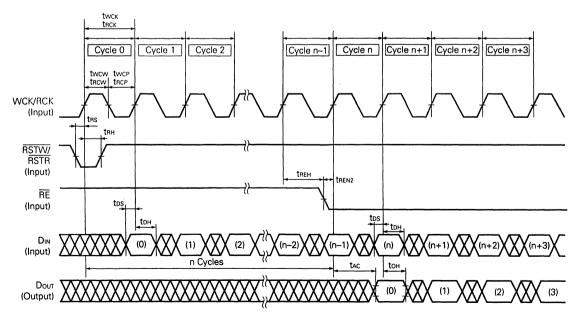
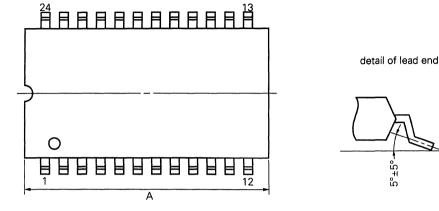
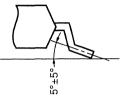
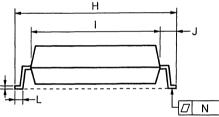



Fig. 4 n-Bit Delay Line Timing (2)






Package Drawing

24 PIN PLASTIC SOP (450 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

		P24GM-50-450A-2
ITEM	MILLIMETERS	INCHES
А	16.51 MAX.	0.650 MAX.
В	1.27 MAX.	0.050 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40±0.10	0.016+0.004
E	0.1+0.2	0.004 ^{+0.008} -0.004
F	2.5 MAX.	0.099 MAX.
G	2.00	0.079
н	12.2±0.3	0.480+0.013
1	8.4	0.331
J	1.9	0.075
к	0.15 ^{+0.10} -0.05	0.006+0.004
L	0.9±0.2	0.035 ^{+0.009}
М	0.12	0.005
N	0.10	0.004

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD485505.

Type of Surface Mount Device

μPD485505G: 24-pin Plastic SOP (450 mil)

Field Buffer

t

MOS INTEGRATED CIRCUIT $\mu PD42280$

2 M-BIT FIELD BUFFER

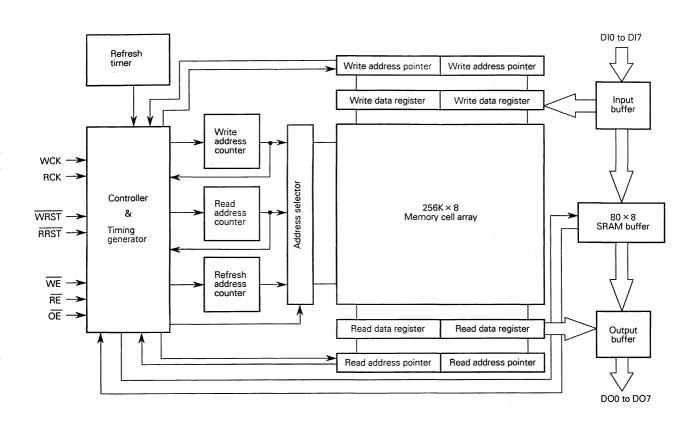
The μ PD42280 is a high-speed field buffer equipped with a memory of 256K words × 8bit (262, 224 × 8bit) configuration. The high-speed and the low power consumption are realized in CMOS dynamic circuit.

The μ PD42280 consists of FIFO (First In First Out) configuration, and the write/read operations are possible asynchronously and simultaneously.

Because it has refresh circuit internally, 1 field delay line and time axis conversion etc. are realized easily. Therefore it is suitable for YC separation between frames, interpolation between fields, reproduction of freeze picture and frame synchronizer in the digital TV, VCR systems.

FEATURES

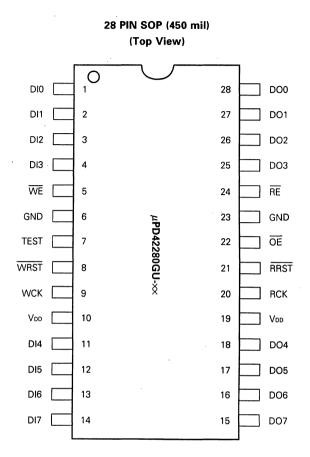
- 256K words × 8 bit FIFO configuration
- · Write/read operations are possible asynchronously and simultaneously
- · Reset is possible apart from write/read address (real time reset)
- Serial read cycle time : 30 ns(MIN.)
- Serial read access time : 25 ns(MAX.)
- Serial write cycle time : 30 ns (MIN.)
- · Self refresh function incorporated
- · Output enable
- All I/O TTL compatible
- CMOS low power consumption: (tRcκ, twcκ = 30 ns) Ibb = 50 mA (TYP.)
- 28 pin plastic SOP (450 mil) μPD42280GU
- 28 pin plastic ZIP (400 mil) μPD42280V

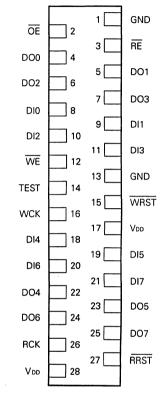

ORDERING INFORMATION

Part number	Package	Read cycle time (ns)	Access time (ns)	Write cycle time (ns)	Quality level
μPD42280GU-30	28-pin plastic SOP (450 mil)	30	25	30	Standard
μPD42280V-30	28-pin plastic ZIP (400 mil)	30	25	30	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.




 $V_{DD} \times 2 \longrightarrow$ GND $\times 2 \longrightarrow$

µPD42280

230

PIN CONFIGURATION

28 PIN ZIP (400 mil)

(Bottom View)

(Marking Side)

Pin name

DI0 to DI7	: Data input	Input
DO0 to DO7	: Data output	Output
WCK	: Write clock input	Input
RCK	: Read clock input	Input
WE	: Write enable input	Input
RE	: Read enable input	Input
OE	: Output enable input	Input
WRST	: Write reset input	Input
RRST	: Read reset input	Input
TEST	: Test pin	Input
Vdd	: +5 V power source	—
GND	: Ground	_

1. PIN FUNCTION

Pin name	Input/Output	Function
DI0 to DI7	I	This is a write data input. Fetching data is executed on the back rise up edge of WCK input cycle, and the setup/hold time (tos , toh) are specified against the edge.
DO0 to DO7	O (3-state)	This is a read data output. The access time is specified from the front rise up edge of RCK cycle and determined by tac. It is 3 state output.
WRST	I	This is a reset input for initializing a write address. Fetching reset signals is executed on the front rise up edge of WCK input cycle, and the setup/hold time (tяs, tян) are specified against the edge.
RRST	I	This is a reset input for initializing a read address. Fetching reset signals is executed on the front rise up edge of RCK input cycle, and the setup/hold time (trss, trst) are specified against the edge.
WE	I	This is a write operation control input. In case of high level, the internal write operation is prohibited, and the write address pointer is also stopped at the present position. WE signal is fetched on the front rise up edge of WCK input cycle.
RE	I	This is a read operation control input. In case of high level, the internal read operation is executed, and the read address pointer is stopped at the present position. RE signal is fetched on the front rise up edge of RCK input cycle.
ŌE	I	This is a read data control input. In case of high-level, DO0 to DO7 will be high impedance. In the read address pointer an increment is executed synchro- nously for RCK, not depending on the OE signal input level. OE signal is fetched on the front rise up edge of RCK input cycle.
wcк	I	This is a write clock input. The write operation is executed synchronously for the write clock when \overline{WE} is in low level, and in the write address pointer, the increment is executed at the same time.
RCK	ł	This is a read clock input. The read operation is done synchronously for the read clock, and when $\overline{\text{RE}}$ is in low level, in the read address pointer the increment is executed at the same time.
TEST	l	This is a pin for testing. It is to be fixed on low level on the practical operation.

2. EXPLANATION FOR THE MEMORY AND FUNCTION BLOCK

2.1 MEMORY CELL ARRAY

This is a memory cell array in this product consisting of dynamic memory cells, with 256K × 8 (2M bit) configuration.

2.2 INPUT BUFFER

This is a buffer to input the signals of DI0 to DI7 to the write data register or SRAM buffer.

2.3 OUTPUT BUFFER

This is a buffer to output the data from the read data register or SRAM buffer to DO0 to DI7.

2.4 WRITE DATA REGISTER/WRITE ADDRESS POINTER

This is a register to temporarily store the data input to DI0 to DI7. The input data is stored in the address directed by the write address pointer. In the write address pointer, its content increases every WCK input. When the write data register is filled with data, the data are transferred to the memory cell array together, and the write address pointer is reset to the 0 address. The data are transferred by 64 words unit.

2.5 READ DATA REGISTER/READ ADDRESS POINTER

This is a register to temporarily store the data transferred together from the memory cell array. The data in the register directed by the read address pointer is output to DO0 to DO7. In the read address pointer, its content increases every RCK input. When the read data register is emptied, the data read from the memory cell array is transferred together to the register, and the read address pointer is reset to the 0 address. The data are transferred by 64 words unit.

2.6 SRAM

This is a buffer to store the data for 80 words after the write address is reset by WRST. Also, when a read address is reset by the input of RRST signals, the data for 80 words after the reset is output (to DO0 to DO7) from SRAM buffer.

2.7 WRITE ADDRESS COUNTER

This is a counter to direct the row address of the write data. When the data is transferred to memory cell array from the write data register, the content of the counter increases. When input of the last address is attained, the content of the counter is reset to the 0 address.

2.8 READ ADDRESS COUNTER

This is a counter to direct the row address of the read data. When the data is transferred to the read data register from memory cell array, the content of the counter increases. When input of **RRST** signals or the last address is attained, the content of the counter is reset to the 0 address.

2.9 REFRESH ADDRESS COUNTER/REFRESH TIMER

This is a counter to direct the refresh address. Its content is increased one by one by the refresh timer. Because self refresh function is incorporated, the refresh operation is executed automatically.

2.10 ADDRESS SELECTOR

This is a selector which selects one of the addresses directed by the address counter, read address counter and refresh address counter as the row address of memory cell array.

2.11 CONTROLLER/TIMING GENERATOR

Each block is controlled by the control signals from the input pins of this block.

3. MEMORY OPERATION

3.1 WRITE OPERATION

When \overline{WE} input is in low level, the data input to DI0 to DI7 is written into the write data register every 8 bits together synchronizing with WCK input.

The write data should be input to meet the setup time and the hold time for the back rise up edge of WCK input cycle.

When \overline{WE} input is attained to a high level, the write operation is prohibited. The write address pointer is stopped at the position of high level input state. When the low level is input again, the operation is started from the stopped address.

Though the write operation is prohibited at any time, $\overline{\text{WE}}$ signal should be input to meet the set up time and the hold time for the rise up edge of WCK.

3.2 READ OPERATION

When RE input and OE input are in low level, the data is output to DO0 to DO7 from the read data register every 8 bits together synchronizing with RCK input.

The read data is output after access time (tac) from the rise up edge of RCK input cycle.

When \overline{RE} input is attained to a high level, the read address pointer is stopped at the position of the high level input state. When inputting a low level again, the operation is started from the stopped address.

When \overline{OE} input is attained to a high level, the output will be a high impedance. The content of the read address pointer increases synchronously with RCK input, not depending on the input level of \overline{OE} signal.

Though the read operation can be prohibited at any time, RE signal/OE signal should be input to meet the setup time and hold time for the rise up edge of RCK.

When the new data is read, the write address should be preceded 200 to 262, 223 or less cycles than the read address.

When the old data is read, the difference between the write address and the read address should be 0 cycle (the read address and the write address are the same).

When the read address and the write address compete with each other by double speed conversion etc. in the same field, in the data of the last 192 words the old data (the data prior to 1 field) may be output.

3.3 RESET OPERATION

The reset signal can be input any time, without depending on WE, RE and OE signals. WRST and RRST signals should be input to meet the setup time and the hold time for the rise up edge of WCK, RCK inputs. When the reset signal is input in disable cycles, the reset operation is executed after the disable cycles.

The output and input of data are possible from the cycle (0 address) where low level is input to WRST, RRST.

3.4 INITIALIZE

Following initializing should be taken when the power supply is ON.

- (1) Stand-by period should be taken more than 100 μ s.
- (2) WRST and RRST signals should be input for initializing of the write address and read address.
- (3) More than 82 dummy cycles should be taken where low level is input to $\overline{\text{RE}}$ and $\overline{\text{WE}}$.
- (4) Ordinary operation is executed after next low level is input to WRST and RRST.

Remark New data: Data written latest,

Old data : Stored data just before write operation

4. ELECTRIC CHARACTERISTICS

ABSOLUTE MAXIMUM RATING (TA = +25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
Operational Power Supply	VDD		-1.0 to +7.0	v
Pin Voltage	VT		-1.0 to V _{DD} +0.5 (7.0 V or less)	V
Output Current	lo		±20	mA
Operating Ambient Temperature	TA	\	-20 to +70	°C
Storage Temperature	Tstg		–55 to +125	°C

RECOMMENDED OPERATION RANGE

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power Supply Voltage 1	VDD		4.5	5.0	5.5	v
High Level Input Voltage	Ин		2.4		VDD + 0.5	v
Low Level Input Voltage	ViL		-1.0		0.8	V
Ambient Temperature	TA		-20		+70	v

DC CHARACTERISTICS (BASED ON THE RECOMMENDED OPERATING CONDITIONS)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating Current 1	Icc1	twcк, trcк = 30 ns		50	90	mA
Standby Current	lccs	WCK, RCK = 'L' (TTL input)		4	10	mA
Input Leak Current	h	Vi = 0 to Vod Other input: 0 V	-10		10	μA
Output Leak Current	lo	Vo = 0 to Voo Do: High impedance	-10		10	μA
High Level Output Voltage	Vон	Іон = –1 mA	2.4			v
Low Level Output Voltage	Vol	lol = 2 mA			0.4	v

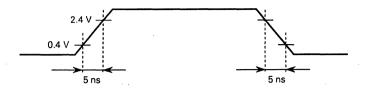
INPUT/OUTPUT CAPACITANCE (TA = +25 °C, f = 1 MHz)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Ci				5	pF
Output Capacitance	Co				7	pF

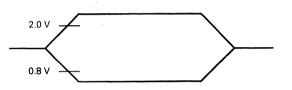
AC CHARACTERISTICS (BASED ON THE RECOMMENDED OPERATING CONDITIONS) Note 1, 2, 3, 5

	0 h . l	μPD42	μPD42280-30		
Parameter	Symbol	MIN.	MAX.	Unit	
Write Clock (WCK) Cycle Time	twcк	30		ns	
Write Clock Active Time	twcw	12		ns	
Write Clock Precharge Period	twcp	12		ns	
Read Clock (RCK) Cycle Time	trck	30		ns	
Read Clock Active Time	trcw	12		ns	
Read Clock Precharge Period	trcp	12		ns	
Access Time	tac		25	ns	
Output Hold Time	toн	5		ns	
Output Low Impedance Time from RCK Rise Note 4	tız	5	25	ns	
Output High Impedance Time from RCK Rise №1• 4	tнz	5	25	ns	
Input Data, Setup Time	tos	7		ns	
Input Data, Hold Time	toн	3		ns	
Reset Setup Time from WCK or RCK Rise Note 6	trs	7		ns	
Reset Hold Time from WCK or RCK Rise Note 6	tвн	3		ns	
Reset Non Selection Time 1 from WCK or RCK Rise ^{Note 7}	trn1	3		ns	
Reset Non Selection Time 2 from WCK or RCK Rise Note 7	trn2	7		ns	
WE Setup Time from WCK Rise Note 8	twrs	7		ns	
WE Hold Time from WCK Rise Note B	twen	3		ns	
WE Non Selection Time 1 from WCK Rise Note D	t WEN1	3		ns	
WE Non Selection Time 2 from WCK Rise Note P	twen2	7		ns	
RE Setup Time from RCK Rise Note 8	tres	7		ns	
RE Hold Time from RCK Rise Note 8	tren	3		ns	
RE Non Selection Time 1 from RCK Rise Note 9	t ren1	3		ns	
RE Non Selection Time 2 from RCK Rise Note 9	tren2	7		ns	
OE Setup Time from RCK Rise Note 10	toes	7		ns	
OE Hold Time from RCK Rise Note 10	toeh	3		ns	
OE Non Selection Time 1 from RCK Rise Note 11	t oen1	3		ns	
OE Non Selection Time 2 from RCK Rise Note 11	toen2	7		ns	
WE High Level Period	twew	0		ns	
RE High Level Period	trew	0		ns	
OE High Level Period	toew	0		ns	
WRST Low Level Period (Write Reset Period)	twrst	0		ns	
RRST Low Level Period (Read Reset Period)	trrst	0		ns	
Rise Up, Fall Down Time	t⊤	3	35	ns	

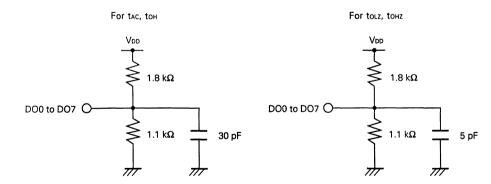
NEC


Notes

- 1. All voltages are determined by referring to the ground level.
- 2. Measurement by $t\tau = 5$ ns.
- 3. Input voltage standard levels in the timing specification are V_{IH} = 2.4 V and V_{IL} = 0.4 V. Transferring time tr is determined between V_{IH} = 2.4 V and V_{IL} = 0.4 V.
- 4. tLz, tHz are measured by ±200 mV from a stationary state. And tLz is equal to, or more than tHz.
- 5. The reference level of input signals is 1.5 V.
- 6. When the reset pulse which does not meet the, then is input, the reset operation is not assured.
- 7. When the reset pulse which does not meet tRN1, tRN2 is input, the reset operation may affect the cycles before and after.
- When WE (RE) pulse which does not meet twes, twen (or trees, treen) is input, the write (read) disable operation is not assured.
- 9. When WE (RE) pulse which does not meet tWEN1, tWEN2 (or tREN1, tREN2) is input, the write (read) disable operation may affect the cycles before and after.
- 10. When OE pulse which does not meet toes, toeH is input, the output disable operation is not assured.
- 11. When OE pulse which does not meet tOEN1, tOEN2 is input, the output disable operation may affect the cycles before and after.


AC CHARACTERISTICS MEASUREMENT CONDITION

Input timing specification


NEC

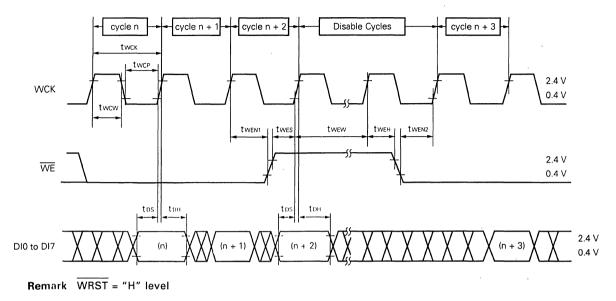
Output timing specification

DO external load

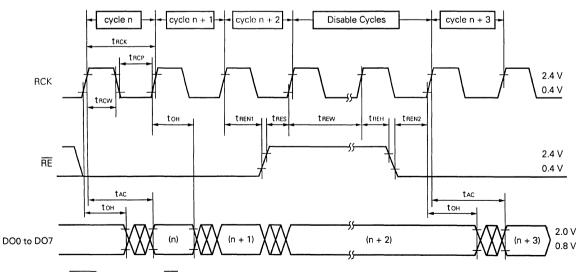
RESTRICTIONS

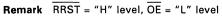
- 1. When the new data is read, the write address should precede 200 to 262, 223 or less cycles than the read address. When the old data is read, the difference between the write address and the read address should be 0 cycle (the read address and the write address are same).
- 2. As this product transfers the data between the data register and the memory cell array by 64 word unit, when the low level is input to WRST at the n address after the 80 address, the old data up to the m address shown in the following formula after the n address is not guaranteed.

$$m = 143 + int\left(\frac{n-80}{64}\right) \times 64$$

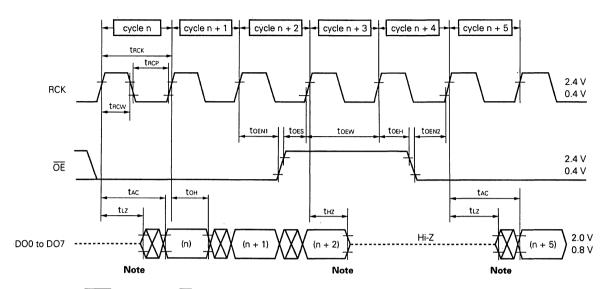

 $int\left(\frac{n-80}{64}\right) \text{ shows only integral parts of the value which the n - 80 is divided by 64.}$ For example: in case of n = 280, it is 3. Therefore, m = 335, the old data from 280 address to 335 address is not guaranteed.

- The low level of WRST signals should be input taking the interval of more than 82 address from last WRST low level input.
- 4. The low level of RRST signals should be input taking the interval of more than 82 address from last RRST low level input.
- 5. RE signals should not rise at 0 address and reset cycle.

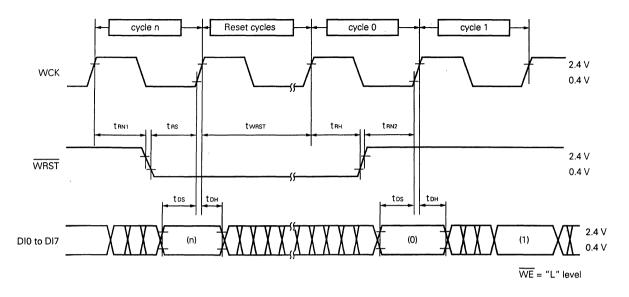

TIMING DIAGRAM

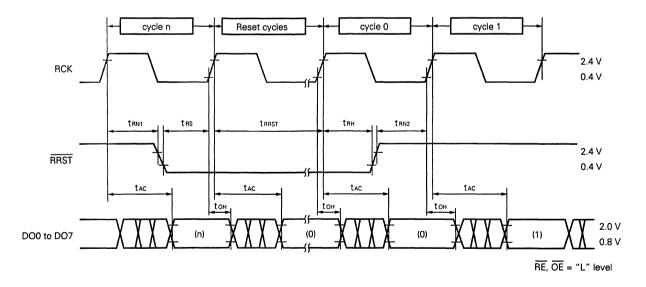

Write cycle

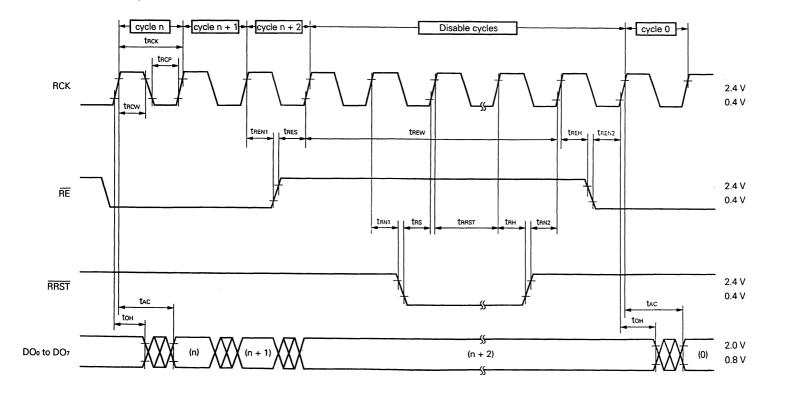
NEC



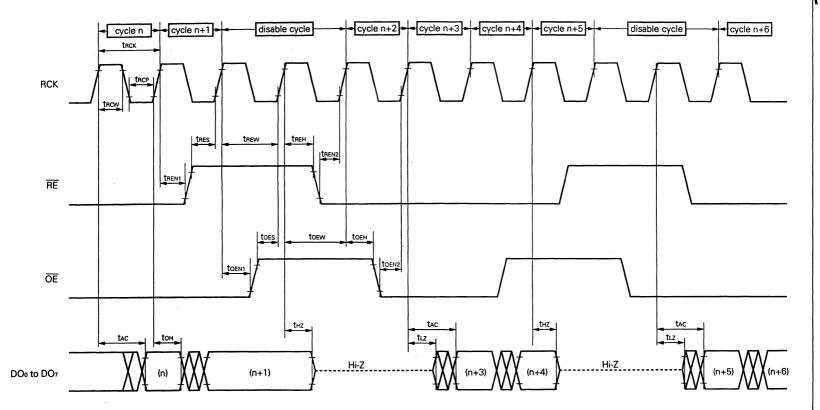
Read cycle (RE control)


Read cycle (OE control)


Remark $\overline{\text{RRST}} = \text{"H" level, } \overline{\text{RE}} = \text{"L" level}$

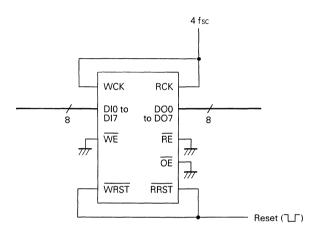

Note tLz and tHz are measured in ±200 mV point from the steady state of DO.

Write reset cycle



Read reset cycle

µPD42280


244

5. APPLICATION EXAMPLE

(1) 1 field delay line (the old data read)

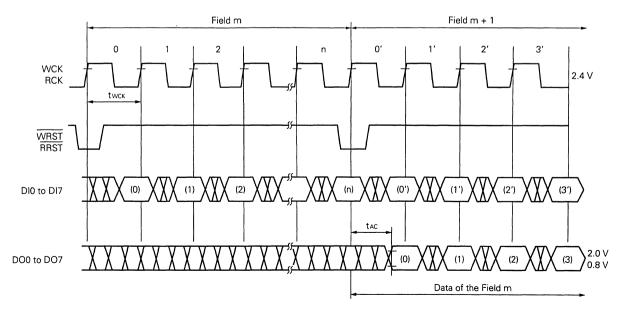
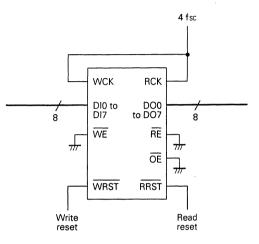

With connection as shown in Fig. 1 by inputting the reset every 1 field cycle (in common with $\overline{\text{WRST}}$ and $\overline{\text{RRST}}$), 1 field delay line is realized easily (See Fig. 2). When the difference between the write address and the read address is 0 (the read address and the write address are same), the old data is read as shown in Fig. 2

Fig. 1 Circuit of 1 field delay line

fsc: Color subcarrier frequency


Fig. 2 1 field delay line timing diagram

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

(2) The new data read

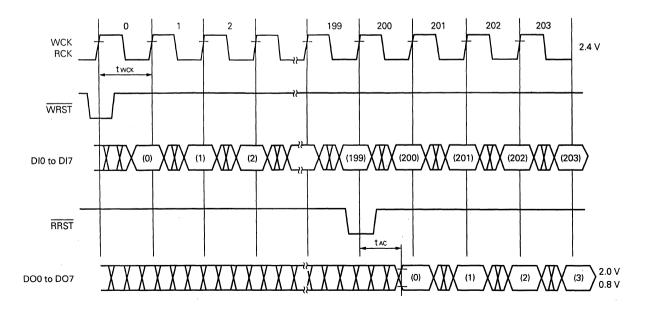

With connection as shown in Fig. 3 by inputting RRST 200 cycle after WRST, new data (the latest written data) can be read. (See Fig.4)

Fig. 3 Circuit of new data read

fsc: Color subcarrier frequency

Fig. 4 The new data read timing diagram

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

(3) Double speed conversion

By reading with double cycles for the write cycle, the double speed conversion can be done. Fig. 5 shows an example circuit in which the data is written by 13.5 MHz and the data is read by 27 MHz. In this example, the same field is read 2 times (Timing Fig. 6).

Caution Note that when the read and the write compete each other in the same field like this application, in the last 192 words, the data before 1 field may be output.

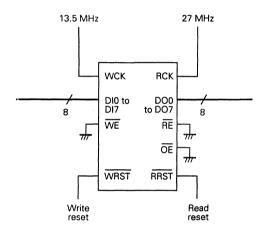
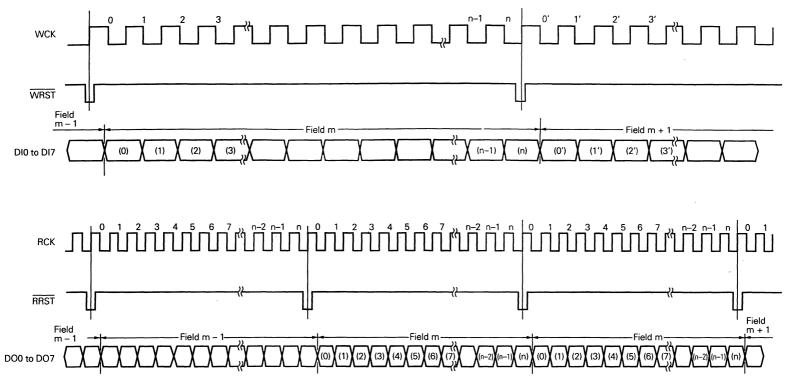
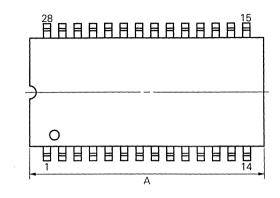
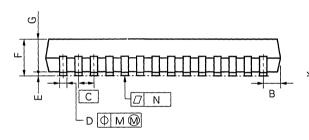



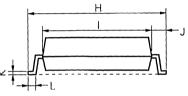
Fig. 5 Circuit of double speed conversion

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.



(In the last 192 words, the data before 1 field may be output.)


NEC

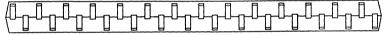

6. PACKAGE DRAWINGS

28 PIN PLASTIC SOP (450 mil)

detail of lead end

P28GM-50-450A2-2

NOTE


Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	19.05 MAX.	0.750 MAX. /
В	1.27 MAX.	0.050 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40±0.10	0.016+0.004
E	0.1±0.1	0.004 ^{+0.005} _{-0.004}
F	3.0 MAX.	0.119 MAX.
G	2.55	0.100
н	11.8±0.3	0.465+0.012
1	8.4	0.331
J	1.7	0.067
К	0.15 ^{+0.10} -0.05	0.006+0.004
L	0.7±0.2	0.028+0.008
М	0.12	0.005
Ν	0.10	0.004

P28V-254-400A

28PIN PLASTIC ZIP (400mil)

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
΄ Α	36.83 MAX.	1.450 MAX.
F	0.5 ^{+0.1}	0.020-0.005
G	<i>φ</i> 0.25	¢0.010
н	2.54	0.100
I	1.27	0.050
J	1.27 MAX.	0.050 MAX.
к	1.0 MIN.	0.039 MIN.
м	8.9 MAX.	0.350 MAX.
N	2.8 ^{±0.2}	0.110-0.008
٥	10.16 MAX.	0.400 MAX.
v	0.25 ^{+0.10}	0.010-0.003
w	2.54	0.100
Y	3.3 ^{±0.5}	0.130 ^{±0.02}

7. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering μ PD42280.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-127).

Please consult with our sales offices in case other soldering process is used, or in case other soldering is done under different conditions.

TYPE OF SURFACE MOUNT DEVICE

µPD42280GU: 28-pin plastic SOP (450 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	 Peak temperature of package surface: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow processes: MAX. 2 Exposure limit Note : 3 days (20 hours pre-baking is required at 125 °C afterwards) [Remark] (1) Please start the second reflow process after the tempera- ture, raised by the first reflow process, returns to normal. (2) Please avoid removing the residual flux with water after the first reflow process. 	IR35–203–2
VPS Peak temperature of package surface: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit Note : 3 days (20 hours pre-baking is required at 125 °C afterwards) [Remark] (1) Please start the socond reflow process after the tempera- ture, raised by the first reflow process, returns to normal. (2) Please avoid removing the residual flux with water after the first reflow process.		VP15-203-2
Wave Soldering Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Temperature of pre-heat: 120 °C MAX. (Plastic surface temperature) Number of flow process: 1 Exposure limit Note : 3 days (10 hours pre-baking is required at 125 °C afterwards)		WS60-203-1
Partial heating method	Terminal temperature: 300 °C or below, Time: 3 seconds or below (Per one side of the device).	

- Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.
- Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

TYPE OF THROUGH HOLE MOUNT DEVICE

μ PD42280V: 28-pin plastic ZIP (400 mil)

Soldering process	Soldering conditions
Wave soldering (For leads only)	Solder temperature: 260 °C or below, Flow time: 10 seconds or below
Partial heating method	Terminal temperature: 300 °C or below, Time: 3 seconds or below (Per one lead)

Caution Do not jet molten solder on the surface of package.

Rambus DRAM

NEC

mos integrated circuit μ **PD488170L**

18M-BIT Rambus DRAM 1M-WORD X 9-BIT X 2-BANK

Description

The 18-Megabit Rambus[™] DRAM (RDRAM[™]) is an extremely-high-speed CMOS DRAM organized as 2M words by 9 bits and capable of bursting up to 256 bytes of data at 2 ns per byte. The use of Rambus Signaling Logic (RSL) technology makes this 500 MHz transfer rate achievable while using conventional system and board design methodologies. Low latency is attained by using the RDRAM's large internal sense amplifier arrays as high speed caches.

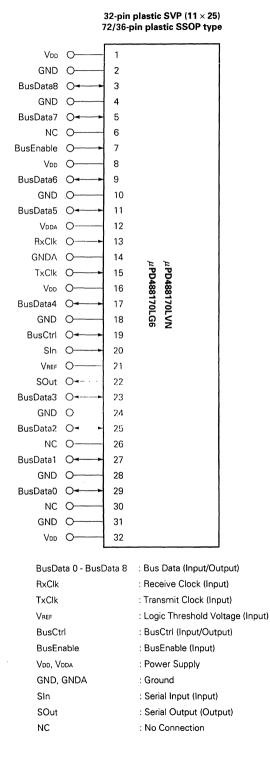
RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including main memory, graphics, video, and any other application where high-performance and low cost are required.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

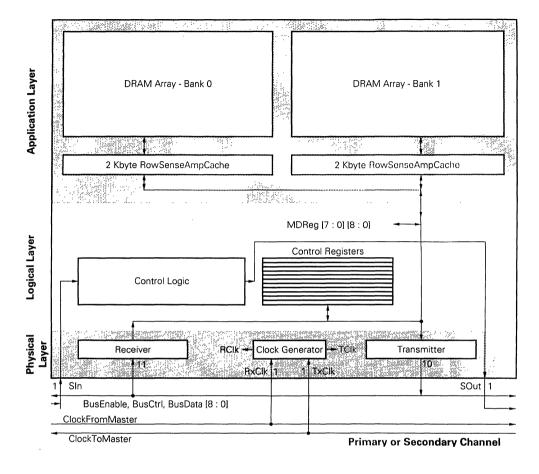
Rambus DRAM user's manual (Reference Manual) : IEU-1401

Rambus and RDRAM are trademarks of Rambus Inc.

Features


- Rambus Interface
- 500 MB/sec peak transfer rate per RDRAM
- RSL interface
- Synchronous protocol for fast block-oriented transfers
- Direct connection to Rambus ASICs, MPUs, and Peripherals
- 40 ns from start of read request to first byte; 2 ns per byte thereafter
- Features for graphics include random-access mode, write-per-bit and mask-per-bit operations
- Dual 2K-Byte sense amplifiers act as caches for low latency accesses
- Multiple power-saving modes
- On-chip registers for flexible addressing and timing
- Low pincount-only 15 active signals
- Standardized pinout across multiple generations of RDRAMs
- 3.3 volt operation

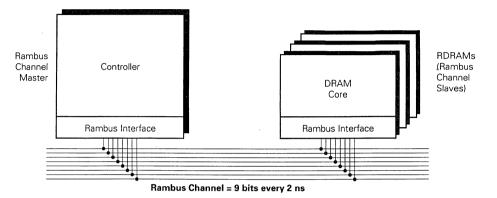
Part Number	Clock Frequency	Operation Voltage	Package
μPD488170LVN-A50	250MHz	3.3±0.15 V	32-pin plastic SVP (11 $ imes$ 25)
μPD488170LVN-A45	225MHz	3.3±0.15 V	32-pin plastic SVP (11 $ imes$ 25)
μPD488170LG6-A50	250MHz	3.3±0.15 V	72/36-pin plastic SSOP type
μPD488170LG6-A45	225MHz	3.3±0.15 V	72/36-pin plastic SSOP type


The information in this document is subject to change without notice.

NEC

Pin Configuration (Marking Side)

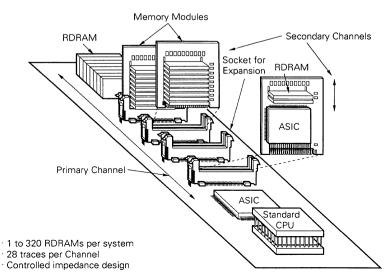
Block Diagram


1. Pin Function

Signal	1/0	Description	
BusData [8:0]	I/O	Signal lines for request, write data, and read data packets. The request packet contains the address, operation codes, and the count of the bytes to be transferred. This is a low-swing, active-low signal referenced to VREF.	
RxClk	I	Receive clock. Incoming request and write data packets are aligned to this clock. This is a low-swing, active-low signal referenced to VREF.	
TxClk	1	Transmit clock. Outgoing acknowledge and read packets are aligned with this clock. This is a low-swing, active-low signal referenced to VREF.	
VREF	1	Logic threshold voltage for low swing signals.	
BusCtrl	I/O	Control signal to frame packets, to transmit part of the operation code, and to acknowledge requests. Low-swing, active-low signal referenced to VREF.	
BusEnable	I	Control signal to enable the bus. Long assertions of this signal will reset all devices on the Channel. This is a low-swing, active-low signal referenced to VREF.	
Vdd, Vdda		+3.3 V power supply. VDDA is a separate analog supply.	
GND, GNDA		Circuit ground. GNDA is a separate analog ground.	
SIn		Initialization daisy chain input. TTL levels. Active high.	
SOut	0	Initialization daisy chain output. TTL levels. Active high.	

2. Rambus System Overview

A typical Rambus memory system has three main elements: the Rambus Channel, the RDRAMs, and a Rambus Interface on a controller. The logical representation of this is shown in the following figure.



The Rambus Channel is a synchronous, high-speed, byte-wide bus that is used to directly connect Rambus devices together. Using only 13 high-speed signals, the Channel carries all address, data, and control information to and from devices through the use of a high level block-oriented protocol.

The Rambus Interface is implemented on both master and slave devices. Rambus masters are the only devices capable of generating transaction requests and can be ASIC devices, memory controllers, graphics engines, peripheral chips, or microprocessors. RDRAMs are slave devices and only respond to requests from master devices.

The following figure shows a typical physical implementation of a Rambus system. It includes a controller ASIC that acts as the Channel master and a base set of RDRAMs soldered directly to the board. An RSocket[™] is included on the Channel for memory upgrade using RModule[™] expansion cards.

3. Rambus Signaling Logic

RSL technology is the key to attaining the high data rates available in Rambus systems. By employing high quality transmission lines, current-mode drivers, low capacitive loading, low-voltage signaling, and precise clocking, systems reliably transfer data at 2 nanosecond intervals on a Rambus Channel with signal quality that is superior to TTL or GTL-based interfaces.

All Rambus Interfaces incorporate special logic to convert signals from RSL to CMOS levels for internal use. In addition, these interfaces convert the Channel data rate of one byte every 2 nanoseconds to an internal data rate of 8 bytes every 16 nanoseconds as shown in the following figure. Although the bandwidth remains the same, the use of a wide internal bus eases internal timing requirements for chip designers.

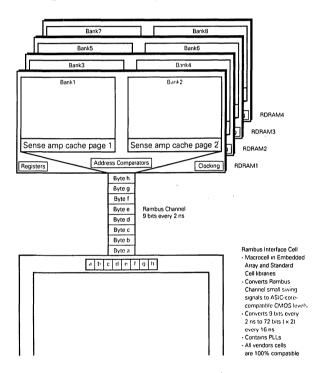


Figure 3-1. Converting the Channel Data Rate

4. Register Space Map

The following table summarizes the registers included in all 18M RDRAMs.

Register Name	Adr[20:10]	Adr[9:2]	Register Number
Device Type[3:0][8:0]	xxxx	00000000	0
DeviceId[3:0][8:0]	xxxx	00000001	1
Delay[3:0][8:0]	xxxx	00000010	2
Mode[3:0][8:0]	xxxx	00000011	3
RefInterval[3:0][8:0]	xxxx	00000100	4
RefRow[3:0][8:0]	xxxx	00000101	5
RasInterval[3:0][8:0]	xxxx	00000110	6
MinInterval[3:0][8:0]	xxxx	00000111	7
AddressSelect[3:0][8:0]	xxxx	000010 00	8
DeviceManufacturer[3:0][8:0]	xxxx	00001001	9
Undefined	xxxx	0000101×	10-11
Undefined	xxxx	000011××	12-15
Undefined	xxxx	0001××××	16-31
Undefined	xxxx	001×××××	32-63
Undefined	xxxx	01×××××	64-127
Row[3:0][8:0]	××××	10000000	128
Undefined	xxxx	1000 0001	129
Undefined	xxxx	1000 001×	130-131
Undefined	xxxx	100001××	132-135
Undefined	xxxx	10001×××	136-143
Undefined	xxxx	1001××××	144-159
Undefined	xxxx	1010××××	160-175
Undefined	xxxx	1011××××	176-191
Undefined	xxxx	1100××××	192-207
Undefined	xxxx	1101××××	208-223
Undefined	xxxx	1110××××	224-239
Undefined	xxxx	1111××××	240-255

Table 4-1. Registers Space Map

(1) Device Type Register

This register specifies RDRAM configuration and size.

(2) DeviceId Register

This register specifies RDRAM base address.

(3) Delay Register

This register specifies RDRAM programmable CAS delay values.

(4) Mode Register

This register specifies RDRAM programmable output drive current.

(5) Refinterval Register

This register specifies RDRAM programmable refresh interval. RefInterval Register is used to time the refresh interval for devices which require refresh.

(6) RefRow Register

This register specifies RDRAM refresh row and bank address.

The RefRow register contains read-write fields. It is used to keep track of the bank and row being refreshed. Normally this register is only read or written for testing purposes. The fields are aliased in the following way:

RowField[7:1] equals RefRow[0][7:1] RowField[9:8] equals RefRow[2][1:0] BankField[3] equals RefRow[1][3]

(7) RasInterval Register

This register specifies RDRAM programmable RAS delay values. The RasInterval Register contains four write-only fields. When a rowmiss occurs, or when a row is being refreshed during a burst refresh operation, it is necessary for the control logic of an RDRAM to count the appropriate number of clock cycles (tcycle) for four intervals. This is done with a counter which is loaded successively with three values from the RasInterval Register. This counter is not available for read access and must be tested indirectly.

(8) MinInterval Register

This register specifies RDRAM refresh and powerdown control. This register provides the minimum values for three time intervals for framing packets. The time intervals are specified in clock cycle (tcycle) units.

Caution MinInterval Register[3][2] = 0 is necessary. Because, 18M RDRAM cannot accept Power Down request.

(9) AddressSelect Register

This register specifies RDRAM address mapping.

(10) DeviceManufacturer Register

This register specifies RDRAM manufacturer information. This register specifies the manufacturer of the device. Additional bits are available for manufacturer specific information, e.g. stepping or revision numbers.

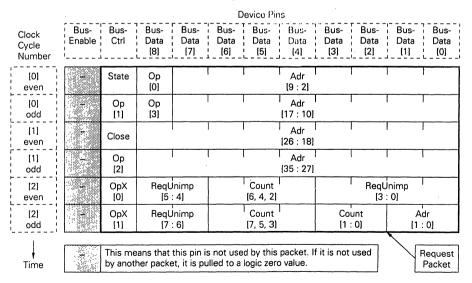
(11) Row Register

This register specifies RDRAM current sensed row in each bank.

The detailed functional description is provided in RDRAM Reference Manual.

5. Packet Formation

5.1 Packet Summary


The following table summarizes the transmit/receive functionality of the two RDRAM types for the different packet classes.

Packet Type	Initiating Devices	μPD488170L
Request Packet	Transmit	Receive
Acknowledge Packet	Receive	Transmit
Read Data Packet	Receive	Transmit
Write Data Packet	Transmit	Receive
Serial Address Packet	Transmit	Receive
Serial Control Packet	Transmit	Receive
Serial Mode Packet	Transmit	Receive

Table 5-1. Transmitting/Receiving Devices for Packet Types

5.2 Request Packet

The request packet format is shown in the following figure.

Figure 5-1. Request Packet Format

The vertical axis in all packet figures in the following sections shows time in units of clock cycles, with each clock cycle broken into even and odd bus ticks. The timing is relative, measured from the beginning of the packet.

5.2.1 Start Field

A device should start framing a request packet when it sees this bit asserted to a logical one and it is not looking for an acknowledge packet nor framing an earlier request packet.

5.2.2 Op[3:0], OpX[1:0] Fields

The command opcode also determines which packets (in addition to the request packet) will form the transaction. A detailed functional description of the actions that an RDRAM takes for each implemented command is provided in "Rambus DRAM user's manual (Reference Manual)". The following table summarizes the functionality of each subcommand:

SubCommand	Description
Rseq	Read sequential data from memory space.
Rnsq	Read non-sequential (random-access) data from memory space.
Wseq	Write sequential data to memory space.
Wnsq	Write non-sequential (random-access) data to memory space.
Wbns	Write non-sequential (random-access) data to memory space with non-contiguous byte masking.
Npb	Write data is from data packet. There is no bit mask.
Dpb	Write data is from data packet. The bit mask is in the MDReg.
Bpb	Write data is from data packet. The bit mask is also from the data packet.
Mpb	Write data is from MDReg. The bit mask is from the data packet.
Rreg	Read sequential data from register space.
Wreg	Write sequential data to register space.
WregB	Broadcast write with no Okay acknowledge permitted.
Alt	Alternate command (same function as the primary command - intended for use in future shared memory multiprocessor systems).

Table !	5-2.	Subcommand	Summary
---------	------	------------	---------

The memory read commands are formed using the Rseq and Rnsq subcommands to select sequential or nonsequential (random) access. The Alt and "null" subcommands select between two equivalent command sets ("null" means no subcommand). The "Alt" subcommands are reserved for use in future shared memory multiprocessor systems.

RrrrAaa Rrrr = {Rseq, Rnsq}
 Aaa = {Alt, null}

The following table summarizes the available write commands and shows how they are formed from a 3×4 matrix of the Wwww and Bbb subcommands. The Alt and "null" subcommands have the same meaning as in the memory read commands.

WwwwBbbAaa Wwww = {Wseq, Wnsq, Wbns}
 Bbb = {Npb, Dpb, Bpb, Mpb}
 Aaa = {Alt, null}

	Wwww subcommands			
Bbb subcommand	Wseq (seqential-access with contiguous byte masking)	Wnsq (non-sequential- access)	Wbns (non-sequential-access with non-contiguous-byte- masking)	
Npb	WseqNpb	WnsqNpb	WbnsNpb	
Dpb	WseqDpb	WnsqDpb	WbnsDpb	
Mpb	WseqMpb	WnsqMpb	WbnsMpb	
Bpb	WseqBpb	WnsqBpb	Not implemented	

Table 5-3. Write Commands

There are three Wwww subcommands. They control the accessing pattern and the use of non-contiguous byte masking.

- Wseq octbyte blocks in the RDRAM core are accessed in sequential (ascending little-endien) address
 order. Contiguous byte masking is controlled with the Adr[2:0] and Count[2:0] fields of the
 request packet.
- Wnsq octbyte blocks in the RDRAM core are accessed in non-sequential address order. The
 addresses for the octbyte blocks within the sensed row come from serial address packets
 which are received on the BusEnable pin.
 The address order is arbitrary.
- Wbns octbyte blocks in the RDRAM core are accessed in non-sequential address order, as in the Wnsq subcommand. In addition, byte masks are transmitted with the write data, permitting arbitrary non-contiguous byte masking of this write data. The bytemask octbytes are not included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 4 bitmask octbytes and 32 write data octbytes, for a data packet size of 36 octbytes.

There are four Bbb subcommands. They select the type of bit masking to be applied to the write data.

- Npb (no-per-bit) There is no bit mask applied to the write data. The MDReg is not used or modified.
- Dpb (data-per-bit) The MDReg is used as a bit mask, the write data comes from the data packet. The same bit mask is used for each octbyte. This is also called persistent bit masking. The MDReg is not modified.

- Mpb (mask-per-bit) The bit mask comes from the data packet, the write data comes from the MDReg. The same data is used for each octbyte. This is also called color masking. The MDReg is not modified.
- Bpb (both-per-bit) The bit mask and the write data come from the data packet. The MDReg is not used, but is modified as a side effect (the WwwwBpbAaa commands are used to load the MDReg for the WwwwDpbAaa and WwwwMpbAaa commands). This is also called non-persistent bit masking.
 The bitmask octbytes are included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 16 bitmask octbytes and 16 write data octbytes.

5.2.2.1 Op[3:0] and OpX[1:0] Fields for 18M RDRAM

The Op and OpX fields are summarized in the following table.

Op[3:0]	OpX[1:0] = 00	OpX[1:0] = 01	OpX[1:0] = 10	OpX[1:0] = 11
0000	Rseq	Rnsq	Rsrv	Rsrv
0001	RseqAlt	RnsqAlt	Rsrv	Rsrv
001 0	Rsrv	Rsrv	Rsrv	Rsrv
0011	Rsrv	Rsrv	Rsrv	Rsrv
0100	WseqNpb	WseqDpb	WseqBpb	WseqMpb
010 1	WseqNpbAlt	WseqDpbAlt	WseqBpbAlt	WseqMpbAlt
01 10	Rreg	Rsrv	Rsrv	Rsrv
0111	Wreg	Rsrv	Rsrv	Rsrv
1000	WnsqNpb	WnsqDpb	WnsqBpb	WnsqMpb
1001	WnsqNpbAlt	WnsqDpbAlt	WnsqBpbAlt	WnsqMpbAlt
1010	Rsrv	Rsrv	Rsrv	Rsrv
1011	Rsrv	Rsrv	Rsrv	Rsrv
1100	WbnsNpb	WbnsDpb	Rsrv	WbnsMpb
1101	WbnsNpbAlt	WbnsDpbAlt	Rsrv	WbnsMpbAlt
1110	Rsrv	Rsrv	Rsrv	Rsrv
1111	WregB	Rsrv	Rsrv	Rsrv

Table 5-4. Op[3:0] and OpX[1:0] Fields - Command Encodings

The command opcode determines whether the other fields of the request packet are implemented (Imp) or unimplemented (Unimp). This is summarized in the table below.

Command	Adr[35:3]	Adr[2]	Adr[1:0]	Count[7:3]	Count[2]	Count[1:0]	Close	ReqUnimp[7:0]
Rsrv	Unimp(0.0)	Unimp(0)	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
Rseq	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
Rnsq	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
RseqAlt	Imp	Imp	lmp	Imp	Imp	Imp	Imp	Unimp(0.0)
RnsqAlt	Imp	Imp	lmp	Imp	Imp	lmp	lmp	Unimp(0.0)
WseqNpb	Imp	Imp	Imp	Imp	lmp	Imp	lmp	Unimp(0.0)
WseqDpb	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqBpb	lmp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqMpb	Imp	Imp	Imp	Imp	lmp	Imp	lmp	Unimp(0.0)
WseqNpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqDpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqBpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqMpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
Rreg	Imp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
Wreg	lmp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
WnsqNpb	lmp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqDpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqBpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqMpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqNpbAlt	lmp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqDpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqBpbAlt	lmp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqMpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsNpb	Imp	Unimp(0)	Unimp(00)	lmp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsDpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsMpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsNpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	lmp	Unimp(0.0)
WbnsDpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsMpbAlt	lmp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WregB	Imp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)

Table 5-5. 18M RDRAM Request Packet Fields - Imp or Unimp

5.2.3 Adr[35:0] Field

The Adr field is used as either a memory or register space address depending upon the OP[3:0] and OpX[1:0] fields. Devices extract a portion of the Adr field to match against their Deviceld register (IdMatch), thus selecting the device to which the request is directed. The remainder of the Adr field accesses the desired region of the device's memory or register space. The memory read and write commands and the Rreg and Wreg commands will only take place if there is an IdMatch. The IdMatch criteria is ignored for the WRegB commands, with all responding devices performing the required actions.

The Rambus protocol uses quadbyte resolution in the data packet for register space read and write commands; i.e. one quadbyte is the smallest data item that may be transferred, and all transfers are an integral number of quadbytes. The Adr[35:2] field is the quadbyte address. The Adr[1:0] field is Unimp for these commands, and should be driven with "00" by initiating devices.

The Rambus protocol uses octbyte resolution in the data packet for memory space read and write commands; i.e. one octbyte is the smallest data item that may be transferred, and all transfers are an integral number of octbytes. The Adr[35:3] field is the octbyte address.

Some commands use the Adr[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

5.2.4 Count[7:0] Field

The following table summarizes the transfer count ranges for 18M RDRAMs:

Count Range	μPD488170L
Maximum count for memory space	32 octbytes
Minimum count for memory space	1 octbyte
Maximum count for register space	1 quadbyte
Minimum count for register space	1 quadbyte

Table 5-6. Transfer Count Summary

Register space read and write commands use a transfer count of one quadbyte, regardless of the Count[7:0] field value.

Memory space read and write commands specify the number of octbytes to be transferred with the Count[7:3] field. An offset-by-one-encoding is used so that "00000" specifies one octbyte, "00001" specifies two octbytes, and so on up to "11111" which specifies thirty-two octbytes. The transfer count does include the octbytes containing bitmasks (for commands using the Bpb subcommand). The transfer count does not include the octbytes containing non-contiguous ByteMasks (for commands using the Wbns subcommand).

Some commands use the Count[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

Memory space transactions to RDRAMs are not allowed to cross internal row address boundaries within the device. Attempts to do so have Undef (undefined) results. These row boundaries are at 2kbyte intervals for 18M RDRAMs.

5.2.5 Adr[2:0] and Count[2:0] Fields for Contiguous Byte Masking

An initiating device wishing to transfer an arbitrary number of contiguous bytes to a starting address on an arbitrary byte boundary may do so with the Adr[2:0] and Count[2:0] fields for some of the commands. These commands include:

- RrrrAaa
- WseqBbbAaa

The transfer count and starting address are given by:

- MasterCount[7:0] specifies the number of bytes which the master device wishes to transfer.
- Adr[35:0] specifies the starting byte address (this is the same as the Adr[35:0] field in the request packet)

Where the convention used by the initiating device for the count is that Master-Count[7:0] = "00000000" means one byte, MasterCount[7:0] = "00000001" means two bytes and MasterCount[7:0] = "11111111" means 256 bytes (an offset-by-one encoding; the data block count is equal to MasterCount[7:0]+1).

The initiating device converts this internal count value into a value for the request packet with the following formula. Little-endien byte addressing is used for specifying bytes within octbytes.

Count[7:0] = Adr[2:0] + MasterCount[7:0] (Eq 5-1)

Where "+" denotes unsigned in eger addition of two bit fields (short fields are zero-extended on the left). If the value of Adr[2:0] + MasterCount[7:0] is greater than 255 (it may be as much as 262), then the initiating device must break the request into two transactions.

The Adr[2:0] and Count[2:0] field generate masks for individual bytes within an octbyte. The Adr[35:3] and Count[7:3] field have the octbyte resolution previously described. The following tables show how the byte masks are generated. In the case of memory read transactions, the byte masks that are generated do not affect the data that is returned by the RDRAM; all data bytes in the first and last octbytes are returned in the read data packet.

In the case of memory write transactions, ByteMaskLS[7:0] applies to the first octbyte at Mem[AV][7:0][8:0]. Byte MaskMS[7:0] applies to the last octbyte at Mem[AV+CV][7:0][8:0]. All intermediate octbytes use a byte mask of 11111111 (a one means the byte is written, a zero means it is not). Here AV is the value of the Adr[35:3] field when interpreted as an unsigned, 33 bit integer, and CV is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit interger. If the Count[7:3] is "00000" (one octbyte), the ByteMaskLS[7:0] and ByteMaskMS[7:0] masks are logically 'anded' together to give the effective byte mask.:

Adr[2:0]	ByteMaskLS[7:0]	Adr[2:0]	ByteMaskLS[7:0]
000	11111111	100	11110000
001	11111110	101	11100000
010	11111100	110	11000000
011	11111000	111	10000000

Table 5-7. Adr[2:0] to ByteMaskLS[7:0] Encoding

Count[2:0]	ByteMaskMS[7:0]	Count[2:0]	ByteMaskMS[7:0]
000	00000001	100	00011111
001	00000011	101	00111111
010	00000111	110	01111111
011	00001111	111	11111111

Table 5-8. Count[2:0] to ByteMaskMS[7:0] Encoding

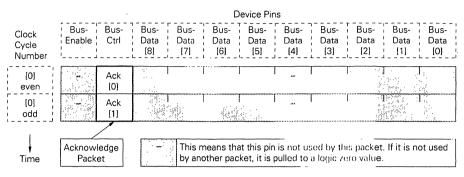
The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.2.6 Close Field

The Close field causes a currently accessed row to be explicitly restored (written back to the core if its Dirty flag for that bank is set) after the current access has completed. This reduces the latency of a subsequent access to a different row of memory space in the same bank of that device; i.e. the tReterSensedClean Nack timing is used rather than the tRetrySensedDirty timing.

Table 5-9. Close Field Encodings

Close Field	Description
0	Don't restore the currently accessed row of memory. It may be left sensed and either clean or dirty.
1	Restore the currently accessed row of memory if its Dirty flag is set. It will be left sensed and clean.


5.2.7 ReqUnimp[7:0] Fields

These fields are unimplemented (Unimp) in the request packet. They should be driven as zeroes by initiating devices which satisfy this Version of the Rambus protocol.

Responding devices which satisfy this Version of the Rambus protocol should ignore these fields and process the request according to the content of the Start, Op[3:0], OpX[1:0], Adr[35:0], Count[7:0], and Close fields. The protocol Version number of a device is held in the DeviceType register.

5.3 Acknowledge Packet

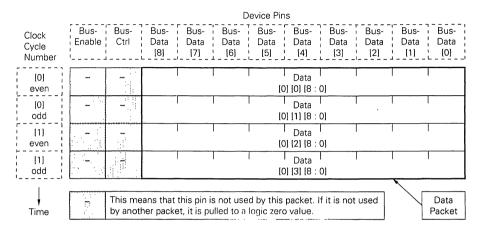
The Ack[1:0] field carries the acknowledge encoding from the responding device(s) to the initiating device and any other listening devices. The following figure shows the format of the acknowledge packet.

Figure 5-2. Acknowledge Packet Format

The following table summarizes the four combinations of the Ack[1:0] field. The Ack3 combination is Undef. The Okay combination indicates that the read or write access to the specified space will take place.

When a responding device acknowledges a request with a Nack, then there will be no immediate change in the state of the device's memory space or register space. The responding device will take the appropriate steps to make the requested region of memory or register space accessible when the initiating device makes a subsequent request. The initiating device will need to wait some device-dependent length of time until the requested region is available.

There are three possible reasons for an RDRAM to respond with Nack. They are summarized below. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".


- tPostMemWriteDelay Or tPostRegWriteDelay Violation
- RowMiss (this causes a delay of tRetrySensedClean Or tRetrySensedDirty)
- ongoing refresh (this causes a delay of up to tRetryRefresh)

Commands allowed to use the Ack Combination		Name	Description	Spec Undef
All commands	00	Nonexistent	Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands).	Spec
All commands but WregB	01	Okay	Indicates that the request was accepted by the addressed by the addressed (responding) device.	Spec
All commands	10	Nack	Indicates that the request could not be accepted because the state of the responding device prevented an access at the fixed timing slot.	Spec
All commands but WregB	11	Ack3	This should not be returned by this responding device. Initiating devices will, when presented with this combi- nation, have an undefined response.	Undef

5.4 Data Packet

The following figure shows the format of a data packet for register space read and write commands. It consists of 1 quadbyte driven on the BusData[8:0] wires for RDRAMs.

Other responding devices may support data packet lengths longer than one quadbyte.

Figure 5-3. Data Packet Format (Register Space)

The following figure shows the format of a data packet for memory space read and write commands. For most of these commands, it consists of 1 to 32 octbytes driven on the BusData[8:0] wires. In the figure, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Class	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-	Bus-
Clock Cycle	Enable		Data [8]	Data [7]	Data	Data [5]		Data [3]		Data	Data
Number		1 I			1 _ 2 2		· · · · ·	L _ 272			L
[0] even				1	ſ	I C	Data		1	ſ	ł
1					[0] [0] [8 :				
[0] odd						[0	Data)] [1] [8 :	0]			
[1] even	•••	ار کی العلمی (میٹر) (میٹر) کی العلمی (میٹر) (میٹر) کی العلمی (میٹر)			1		Data)] [2] [8 :	0]	ı •		
[1] odd							Data] [3] [8 : [) 0]	I		I
[2] even		1					Data)] [4] [8 : (
[2] odd		-				[0	Data)] [5] [8 : (0]			1
(3) even							Data)] [6] [8 : (1
[3] odd	-	-							[]
· · · · · · · · · · · · · · · · · · ·	:	:					:				
[4*n] even							Data] [0] [8 : (0]		l	
[4*n] odd						(r	Data] [1] [8 : (<u>כן</u>			l
[4*n+1] even		-					Data] [2] [8 : (0]			
[4*n+1] odd	1 1 0 1					(r	Data] [3] [8 : (0]			1
[4*n+2]							Data] [4] [8 : (1
even	6.962.5	<u>.</u>									1
even [4*n+2] odd											
[4*n+2]						(n	Data] [6] [8 : (D]	I	ĺ	1

Figure 5-4. Data Packet Format (Memory Space)

Time

by another packet, it is pulled to a logic zero value.

Data Packet

5.5 Serial Address Packet Format

The serial address packet is transmitted by the initiating device and received by the responding devices. It provides eight low-order address bits for each octbyte which is accessed in memory space (a non-sequential or random-access transfer). These eight address bits are transferred serially on the BusEnable pin of the RDRAM, and are thus called a serial address. Each eight bit serial address accesses an octbyte of data within the RowSenseAmpCache of one of the two banks of the RDRAM. The complete set of serial addresses transmitted by the initiating device during the transaction are referred to as a serial address packet. The commands which use this packet are the RnsqAaa, WnsqBbbAaa, and WbnsBbbAaa classes of commands.

The high order bits for each octbyte are provided by the Adr[35:11] address bits from the request packet. The low-order address bits for the first octbyte are Adr[10:3], also from the request packet. The low-order address bits for octbytes [n:1] are provided by the serial address packet. As before, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer. The detailed functional description is provided in "Rembus DRAM user's manual (Reference Manual)".

Serial Address Field	Description	Unimp Imp
SAdr[i][10:3]	Low-order address bits for each octbyte.	Imp

Table 5-11. Serial Address Fields (i	=	n:'	1)
--------------------------------------	---	-----	----

Figure 5-5. Serial Address Packet Format

					[Device Pir	IS ,				
Clock Cycle	Bus- Enable	Bus- Ctrl	Bus- Data	Bus- Data	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data
Number	·		[0]		[0]	[] []		[3]	[2]		
[4] even	SAdr [1] [3]		الية. 14 14 - 14 14			NGC 2. Starter					
[4] odd	SAdr [1] [4]	1918 (an an Allanda An Anna An								
[5] even	SAdr [1] [5]										
[5] odd	SAdr [1] [6]										
[6] even	SAdr [1] [7]										
[6] odd	SAdr [1] [8]				19 ¹⁰ .1	1				la stat	
[7] even	SAdr [1] [9]					1					
[7] odd	SAdr [1] [10]	-			l						
[4*n] even	SAdr [n] [3]										
[4*n] odd	SAdr [n] [4]										,
[4*n+1] even	SAdr [n] (5]					1					1
[4*n+1] odd	SAdr [n] [6]								Ri II.	. ·	
[4*n+2] even	SAdr [n] [7]										
[4*n+2] odd	SAdr [n] [8]	·· _					53				
[4*n+3] even	SAdr [n] [9]										
[4*n+3] odd	SAdr [n] [10]					1 :	I				
Time	Serial A Pacl		2000 1000 1000 1000 1000 1000			at this pir cket, it is					not used

276

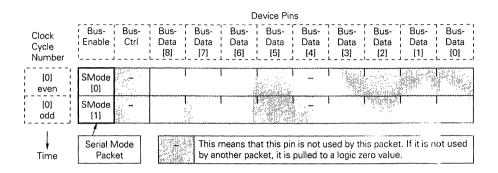
5.5.1 Serial Control Packet Format

The serial control packet is transmitted by the initiating device and received by the responding devices. It provides for the early termination of a memory space read or write transaction (before the specified data count in the Count[7:3] field has elapsed). It consists of eight bits transferred serially on the BusCtrl pin of the device, thus it is referred to as a serial control packet. The eight bits have the same timing alignment as the serial address packet. The commands which use this packet are all of those which access memory space. The register read and write commands do not use the serial control packet. The 18M RDRAM implements this packet.

The termination occurs on octbyte data packet boundaries. The next figure shows the format of the serial control packet. The following table summarizes the function of the bits within the serial control packet. Note that the bits in the even bus ticks must be zero in order for framing to work properly (otherwise, one of these bits would be interpreted as the Start bit of a new request packet). The SCtrl[5] bit is used to control termination, and the other three odd bus tick bits are unimplemented.

Serial Control Fields	Description	Unimp Imp		
SCtrl[0]	This bit must be a zero due to framing requirements.			
SCtrl[1]	unimplemented			
SCtrl[2]	This bit must be a zero due to framing requirements.	Imp		
SCtrl[3]	unimplemented	Unimp(0)		
SCtrl[4]	This bit must be a zero due to framing requirements.	Imp		
SCtrl[5]	0 means don't terminate the current access.	Imp		
	1 means terminate the current access.			
SCtrl[6]	This bit must be a zero due to framing requirements.	Imp		
SCtrl[7]	unimplemented	Unimp(0)		

Table 5-12. Serial Control Fields


If a memory read transaction (RrrrAaa) is terminated by asserting the SCtrl[5] bit to a logical one, the data octbyte with which it is associated is not transmitted by the responding device. The initiating device may start a new transaction once the transmission of the read data packet has ceased. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

					[Device Pir	IS				
Clock Cycle Number	Bus- Enable	Bus-	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data	Bus- Data [0]
[0] even		SCtrl [0]				l Second					
[0] odd		SCtrl [1]									
[1] even		SCtrl [2]									
[1] odd	X ² L	SCtrl [3]									
[2] even		SCtrl [4]				1 1955 1967					
[2] odd	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SCtrl [5]					-				
[3] even		SCtrl [6]				1	-				
[3] odd		SCtrl [7]					-]			
Time	Serial Co Pack					nat this pir cket, it is					ot used

Figure 5-6. Serial Control Packet Format

5.5.2 Serial Mode Packet Format

The serial mode packet transmitted by initiating devices, and received by responding device. Its format is shown in the following figure.

Figure 5-7. Serial Mode Packet Format

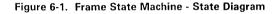
The serial mode packet modifies the state of the Count00[7:0] and Count11[7:0] counters.

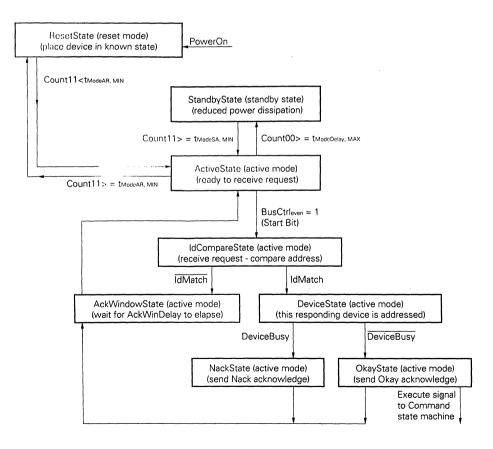
These counters cause operating mode transitions when they reach special values. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

A serial mode packet with the SMode[1:0] field set to 00 is the default. Most transitions are caused by blocks of sequential serial mode packets, each with the SMode[1:0] field set to 11. The serial mode packets should never set SMode[1:0] field to 01 or 10. This is because in some of the operating modes, the clock generator is unlocked (the frequency is correct but not the phase). When this happens, the BusEnable receiver is unable to discriminate anything other than long pulses of zeros or ones. Because the frequency of the clock generator is correct, it can count the length of these pulses with moderate accuracy.

Table 5-13. Serial Mode Fields

SMode[1:0]	Description	Spec/Rsrv/ Undef
00	Increments Count00[3:0], clears Count11[7:0].	Spec
01	-	Undef
10	-	Undef
11	Increments Count11[7:0], clears Count00[3:0]	Spec


6. State Diagram


The following figure is a state diagram of the Frame state machine. The operating mode of the device depends upon which of the nine states it is in:

- reset mode ResetState
- standby mode StandbyState
- active mode ActiveState, IdCompareState, DeviceState, OkayState, NackState, AckWindowState

This section will only discuss the first three states (ResetState, StandbyState, ActiveState). The remaining five states which are shown shaded in the state diagram (IdCompareState, DeviceState, OkayState, NackState, AckWindowState) will be dealt with in the "Rambus DRAM user's manual (Reference Manual)".

The device will enter ResetState when power is initially applied (PowerOn). In ResetState, the device will be in the reset operating mode, in which all control registers assume a known state. If power has just been applied, the device will pass through ActiveState and settle in StandbyState, and remain there until serial mode packets are received from an initiating device.

ActiveState is the state in which all decisions are made to transition to the states for the other operating modes. From here, the device will also enter the transaction-framing states. Refer to "Rambus DRAM user's manual (Reference Manual)".

After poweron, the device will re-enter ResetState when the value of the Count11[7:0] counter is greater than or equal to tModeAR,MIN. The device will leave ResetState when the value of the Count11[7:0] counter is less than tModeSA,MIN. This will happen when an SMode[1:0] field of 00 is received, causing the Count11[7:0] counter to clear.

The device will enter StandbyState when the value of the Count00[3:0] counter is greater than or equal to tModeDelay,MAX. The device will leave StandbyState when the value of the Count11[7:0] counter is greater than or equal to tModeSA,MIN.

Caution The device will enter PowerDownState when the PD bit is set (after a delay of txxxx). But PD (MinInterval Register [3][2]) = 0 is necessary. Because, 18M RDRAM cannot accept Power Down request.

6.1 Parameters for Operating Mode Transitions

The following table summarizes the parameter values associated with operating mode transitions of a responding device. A minimum and maximum value are given for the parameters to account for implementation differences. In all cases, the SMode[1:0] field of the consecutive serial mode packets must have the value 11 to cause an operating mode transition (with the exception of the tModeDelay.MAX as mentioned in the previous section). Initiating devices must use values within the minimum and maximum SMode packet count requirements shown above to control operating mode transitions.

Count Parameter Name	Minimum (clock cycles)	Maximum (clock cycles)	Description
t ModeSA	1	4	Number of SMode packets to cause a transition from
			Standby-Mode to ActiveMode
Rsrv	5	9	Reserved for future functionality
Undef	10	15	Undefined
Rsrv	21	189	Reserved for future functionality
Undef	190	207	Undefined
Rsrv	225	253	Reserved for future functionality
Undef	254	271	Undefined
tModeAR	272	-	Number of SMode packets to cause a transition from Active- Mode to ResetMode
tModeOffSet	4	_	Offset from beginning of SMode packet to request packet for standby to active transition
tModeDelay	_	10	Delay from end of SMode packet to request packet for standby to active transition

Table 6-1. Responding Device Parameters for Operating Mode Transitions

6.2 Standby Mode and Active Mode

The following figure shows the basic transitions between active and standby modes in response to serial mode packets

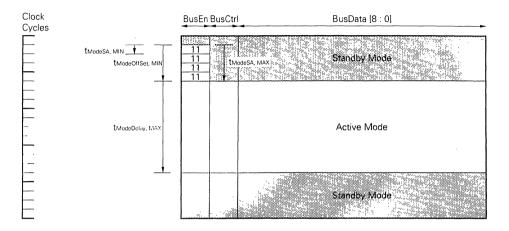


Figure 6-2. Basic ActiveMode/StandbyMode Transitions

This is a timing diagram, with time increasing in the downward direction. The time scale is in clock cycles, as shown on the left scale. The value of each of the eleven low-swing signal pins of the responding device is shown with the assumption that $t\tau_R$ is zero (the responding device is located at the master end of the Channel).

Serial mode packets with an SMode[1:0] field are shown as a box with a "11" label in the BusEn column. The BusEnable defaults to a logical zero value. The initiating device has transmitted tModeSA,MAX serial mode packets with SMode[1:0] equal to 11 (this is the longest sequence permitted for invoking a standby to active transition). After the first tModeSA,MIN serial mode packets, the device begins the transition to active mode. It reaches active mode after tModeOffset, MIN clock cycles after the start of the first serial mode packet. It remains there for tModeOffset,MAX clock cycles after the last serial mode packet.

The responding device is in active mode when it begins framing the request packet. A transaction may begin in any of the clock cycles with the light shading above (labeled "Active Mode").

If the serial mode packet(s) causing a standby to active mode transition are not followed by a transaction with tModeOffSet,MAX clock cycles after the last serial mode packet, then the responding device will return to standby mode.

The next figure shows the case in which a transaction is started as early as possible after a serial mode packet which causes a standby to active mode transition.

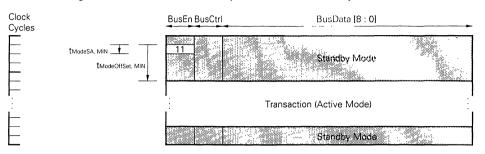


Figure 6-3. ActiveMode/StandbyMode Transition - Early Transaction

A transaction is composed of packet types other than serial mode packets, and will be defined in the next chapter. These other packet types lie entirely inside the heavy black box in the above two figures. When a transaction has completed, the device returns to standby mode. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

6.3 ResetMode

Reset mode is entered when a consecutive sequence of tModeAILMIN serial mode packets with a value of 11 are seen by a responding device (shown in the following figure). In reset mode, all devices enter a known state from which they may be initialized. The device remains in reset mode for as long as serial mode packets with 11 value are received. When one or more serial mode packets with a value of 00 are seen, the responding device enters the active mode state.

Although devices enter the active mode state immediately, their clock circuitry requires a time tLock,MIN to resynchronize. Initiating devices must wait this long after the transition out of reset mode before starting any transactions.

Note that in order to keep the devices in active mode during this synchronization process, it is necessary to provide a burst of serial mode packets every tModeDelay,MAX clock cycles. This burst is shown as tModeSA,MAX in length, but may, of course, be as short as tModeSA,MIN. If the device is not kept in active mode during synchronization, then the synchronization process requires tLock,MIN clock cycles.

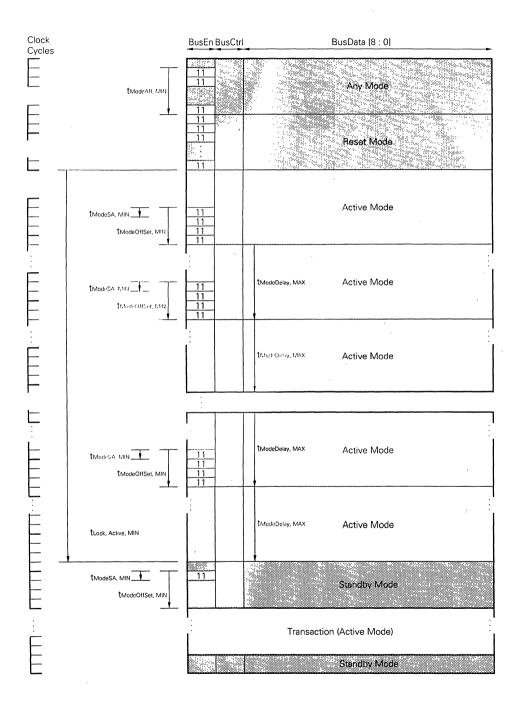


Figure 6-4. ResetMode to ActiveMode Transition

7. Transactions

7.1 Read Transactions

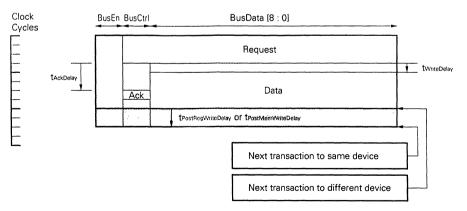
The following figure shows the basic form of a memory space or register space read transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed (tackWinDelay will not be shown explicitly on any further transaction diagrams in this document.

When the responding device transmits an Okay acknowledge packet to the initiating device, it will also transmit a data packet with read data. This packet is sent a time tReadDelay after the end of the request packet. The tReadDelay value is in tcrcLE units and is programmed into the ReadDelay field of the Delay register of each responding device. It is not required to be the same for all devices within a Rambus system, but the difference (tReedDelay - tAckDelay) is required to be the same. This allows initiating devices to use the acknowledge packet to determine when the read data packet begins. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".



Figure 7-1. Read Transaction

7.2 Write Transactions


The following figure shows the basic form of a memory space or register space write transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed.

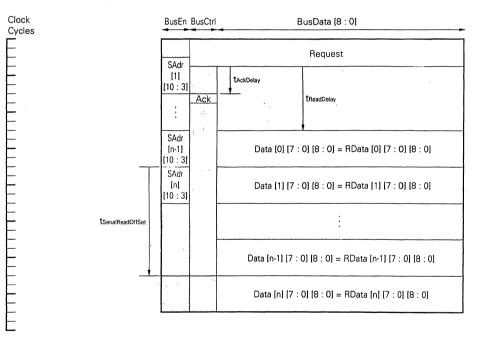
When the initiating device transmits a request packet to the responding devices, it will also transmit a data packet with write data. This packet is sent a time twnteDelay cycles after the end of the request packet. The twnteDelay is in tcycle units and is programmed into the WriteDelay field of the Delay register of each responding device. It is required to be the same for all devices within a Rambus system. A responding device will see the same twnteDelay interval between the request and write data packets whether the device is on the Primary Channel or on a Secondary Channel.

If the responding device returns an Okay acknowledge packet, then the transaction is complete at the end of the acknowledge window or at the end of the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle except for the case in which a register or memory space write to a device is followed by any other transaction to that device. In that case, one of the following two intervals must be inserted between the two transactions, where the memory or register case depends upon the first transaction.

- tPostRegWriteDelay if the current transaction is a register space access
- tPostMemWriteDelay if the current transaction is a memory space access

If the responding device returns a Nack or Nonexistent acknowledge packet for a write command, then no write data packet is required by the responding device. The current transaction is complete at the end of the acknowledge window, or when the initiating device stops transmitting the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle. For the case of a Nack or Nonexistent, the initiating device must terminate the write data packet before another initiating device is given control of the Rambus Channel for a transaction. This is part of the arbitration mechanism used by the initiating devices. The arbitration mechanism is not specified in this document because it does not use the Rambus Channel. The detailed functional description is provided in **''Rambus DRAM user's manual (Reference Manual)''**.

Figure 7-2. Write Transaction


7.3 Read Transactions with Serial Address Packet

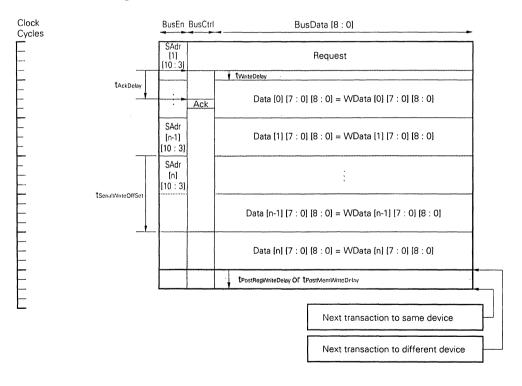
The following figure shows a memory space read transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of read data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of read data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tsenalReadOffset clock cycles before the octbyte of read data to which it corresponds. This means that the serial address packet will move with the read data packet, with a constant offset.

• tserialReadOffset is the delay from the beginning of a serial address subpacket to the beginning of the read data subpacket (octbyte) with which it is associated.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-3. Read Transaction with Serial Address Packet


7.4 Write Transactions with Serial Address Packet

The following figure shows a memory space write transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of write data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of write data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialwriteOffset clock cycles before the octbyte of write data to which it corresponds. This means that the serial address packet will move with the write data packet, with a constant offset.

• tsenalWriteOffset is the delay from the beginning of a serial address subpacket to the beginning of the write data subpacket (octbyte) with which it is associated.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either point since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

7.5 Read Transactions with Serial Control Packet

The following figure shows a memory space read transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of read data have been transferred, where CV is the value of the Count[7:3] Field when interpreted as an unsigned, five bit integer. In the example shown, the read data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tsenattreadouset clock cycles before the end of the last read data octbyte which is transmitted by the responding device.

The serial control packet is also constrained to lie entirely outside the tAckWeitDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

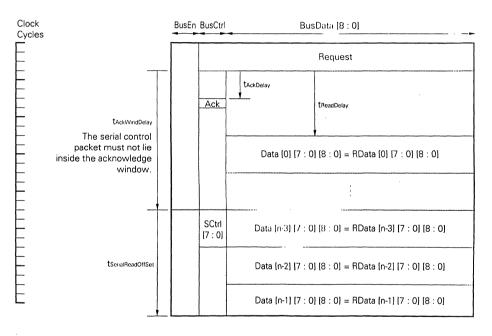


Figure 7-5. Read Transaction with Serial Control Packet

7.6 Write Transactions with Serial Control Packet

The following figure shows a memory space write transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of write data have been transferred, where CV is the value of the Count[7:3] field when interpreted as an unsigned, five bit integer. In the example shown, the write data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tsenalWriteOffSet clock cycles before the end of the last write data octbyte which is transmitted by the initiating device.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results.

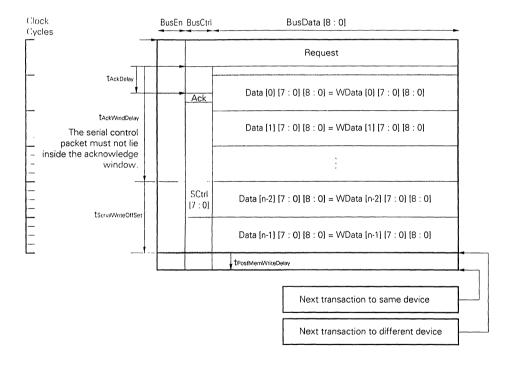


Figure 7-6. Write Transaction with Serial Control Packet

8. Nack Acknowledge Response

8.1 Retry and Miss Latency

If a responding device returns a Nack acknowledge packet, then no read or write data packet is transacted. The current transaction is complete at the end of the acknowledge window. It will be necessary to wait for an interval of time (called a tRETRY interval) before resubmitting the transaction. The following figure illustrates this case.

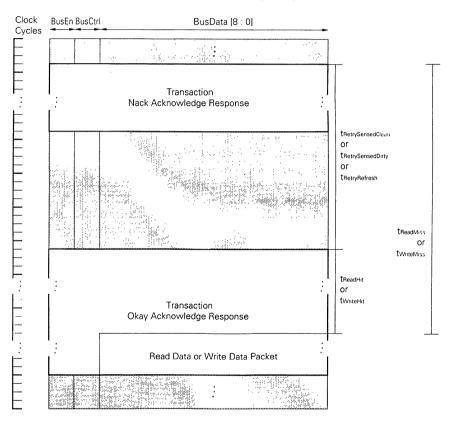


Figure 8-1. Nack Acknowledge Response

Once the tRETRY interval has elapsed, the transaction may be restarted by the initiating device, and the RDRAM will return an Okay acknowledge packet and the data packet will be transferred. An RDRAM will Nack any other transactions which are issued during the tRETRY interval.

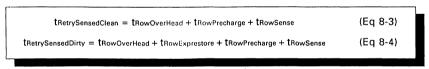
Two miss latency parameters may be derived with the following equations:

tReadMiss = tRETRY + tReadHit	(Eq 8-1)
twriteMiss = tretry + twriteHit	(Eq 8-2)

where tRETRY = {tRetrySensedClean, tRetrySensedDirty, tRetryRefresh}. The tReadMiss and twriteMiss parameters are the time from the beginning of the original (Nacked) request packet to the beginning of the data packet which is eventually transferred.

8.2 **tretry Interval**

8.2.1 Retry Due to RowMiss


If an initiating device requests a region of memory space in an RDRAM slave which is not currently held in the RowSenseAmpCache, the RDRAM will respond with a Nackacknowledge packet. The RDRAM will then begin a RowMiss operation to get the proper row into the RowSenseAmpCache. During the RowMiss, the RDRAM will Nack any request it is given. When the RowMiss is complete, the new row may be accessed.

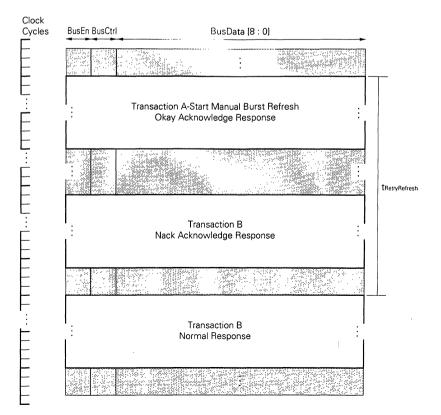
Each bank has a Valid flag and a Dirty flag for its Row register. After reset, both are zero. After a RowMiss has caused a new row to be placed into the RowSenseAmpCache, the Row register contains its row address and the Valid flag is set to a one. If the RowSenseAmpCache contents are modified with a memory write transaction, the dirty flag will be set. These flags are not directly accessible to initiating devices.

A subsequent RowMiss will cause the old row to be written back to the bank (if it was dirty and an explicit restore was not forced with the Close bit in the request packet) and a new row to be placed into the RowSenseAmpCache. The time required for this is called the tRETRY time, and is added to the normal read and write hit latency times, as shown in the preceding figure. These times are given by the following equations. The component parameters are shown in a subsequent table. All of these tRETRY intervals correspond roughly to the cycle time parameter the of a conventional page mode DRAM. This is because RDRAMs use CAS-type accesses for all memory read and write transactions.

After a new row is sensed and placed into the RowSenseAmpCache, a final interval thoutmprestore is used to restore the row in core back to its original state. This is necessary because the DRAM sense operation is destructive. This interval is not in the critical timing path, and is performed in parallel with a subsequent data transfer. It can extend a subsequent retry operation.

There are two tRETRY equations for the 18M RDRAM:

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".


8.2.2 Retry Due to Pending Burst Refresh

In a 18M RDRAM, a refresh burst will also restore the currently accessed row if it is dirty. This requires a tRowExprestore interval. If the row is clean, this interval is not required. A burst of four rows are precharged/ sensed/restored (using the tRowImprestore interval), and the current row is precharged/sensed so the RDRAM is left with its RowSenseAmpCache state unaltered (except the row's dirty flag will be cleared):

tRetryRefresh =	
$(t_{RowOverHead} + t_{RowExprestore} Note 1 + 2t_{RowPrecharge} Note 2 + t_{RowSense})$	
+ 4 (tRowOverHead + tRowImprestore + 2tRowPrecharge ^{Note 2} + tRowSense)	(Eq 8-5)

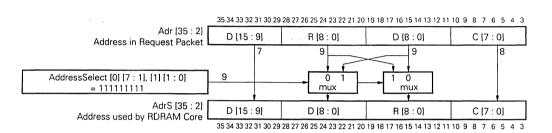
When a transaction initiates a manual burst refresh in an RDRAM (transaction "A" in the figure below), the RDRAM will Nack all further transactions directed to in during the tRetryRefresh interval after. No information from these Nacked transactions will be retained after the tRetryRefresh interval. After the tRetryRefresh interval, transactions will be handled in a normal fashion. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- Notes 1. This term is not present if the current row is clean.
 - 2. This term is present twice in each cycle because the tRowPrecharge interval is also used to ensure that a minimum delay between restore operations is met.

Figure 8-2. Transaction Holdoff Due to Burst Refresh

8.3 Retry Component Intervals

The tRETRY intervals are built from the tRowOverHead, tRowPrecharge, tRowSense, tRowImprestore, and tRowExprestore intervals. All five intervals are measured in tcycle units, and thus scale with the clock frequency.


The thowOverHead interval consists of the RowMiss state machine overhead. The remaining four intervals represent the width of intervals used for timing core operations. These core operations have minimum times measured in nanosecond units (this is shown in the "core timing(ns)" columns in the table below). The four intervals are composed of a fixed part and a variable (programmable) part. If the clock frequency is reduced, the variable part may be reduced so the sum of the fixed and variable parts remain greater than or equal to the minimum core operation time (in nanoseconds).

Delay	Fixed Part (overhead)	18M RDRAM		
Parameter	and Variable Part ^{Note}	tcycle Units (4 ns)	core timing (ns) with tcycle = 4ns	
t RowOverHead	Row overhead	6	24	
	-	n/a		
tRowPrecharge	RowPrecharge overhead	4	20	
	RowPrecharge[4:0]	1		
tRowSense	RowSense overhead	4	44	
	RowSense[4:0]	7		
tRowImprestore	RowImpRestore overhead	4	56	
	RowImpRestore[4:0]	10		
tRowExprestore	RowExpRestore overhead	4	32	
	RowExpRestore[4:0]	4		

Note The variable part is programmed into the indicated field of the RasInterval register.

9. AddressMapping

The address space decoding logic contained in a 18M RDRAM is shown in the following figure. The initiating device places a 33 bit physical octbyte address Adr[35:3] on the Channel. This address is received by the RDRAM slave. The AddressSelect[1][1:0], [0][7:1] control register allows individual bits of the Adr[28:20] and Adr [19:11] fields to be swapped to produce the AdrS[28:20] and AdrS[19:11] fields. The Adr[35:29] and Adr[10:3] fields pass through unaltered to the AdrS[35:29] and AdrS[10:3] fields. The figure shows the case when AddressSelect[0][7:1],[1][1:0] = 11111111, and the two nine bit address fields are exchanged. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 9-1. AddressMapping Hardware

10. Electrical Characteristics (Preliminary)

Absolute Maximum Ratings

Symbol	Parameter	MIN.	MAX.	Unit	Note
VI,ABS	Voltage applied to any RSL pin with respect to GND	-0.5	VDD+0.5	v	
VI,TTL,ABS	Voltage applied to any TTL pin with respect to GND	-0.5	VDD+0.5	v	
Vdd, abs	Voltage on VDD with respect to GND	-0.5	Vdd,max+1.0	V	
Торт	Operation temperature	0	+70	°C	1
TSTORE	Storage temperature	-55	+125	°C	

Caution The following table represents stress ratings only, and functional operation at the maximums is not guaranteed. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although devices contain protective circuitry to resist damage from static electric discharge, always take precautions to avoid high static voltages or electric fields.

Note 1 This parameter apply at the status of using 50% Rambus channel by Read or Write and a transverse air flow greater than 1.5m/s maintained.

Thermal Parameters

Symbol	Parameter	MIN.	MAX.	Unit
TJ	Junction operating temperature		100	°C
οıc	Junction-to-Case thermal resistance		5	°C/W

Capacitance

Symbol	Parameter	MIN.	MAX.	Unit
C I/O	Low-swing input/output parasitic capacitance		2	рF
CI,TTL	TTL input parasitic capacitance		8	рF

Power Consumption

Mode	Parameter		MIN.	MAX.	Unit
lcc1	Active Current	-A45		110	mA
		-A50		125	
lcc2	Standby Current	-A45		330	mA
		-A50		350	
Іссз	Read Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	
Icc4	Write Operation Current	-A45		435	mA
		-A50		460	

Caution These do not include the loc current passing through the low-swing pins to ground.

Recommended Operating Conditions

Symbol	Parameter	MIN.	MAX.	Unit
Vdd, Vdda	Supply voltage	3.15	3.45	v
Vref	Reference voltage	1.95	2.15	v
Vswing	Input voltage range	1.0	1.4	v
VIL	Input low voltage	Vref-0.7	VREF-0.5	v
Viн	Input high voltage	VREF+0.5	Vref+0.7	v
Vil, ttl	TTL input low voltage	-0.5	+0.8	v
VIH, TTL	TTL input high voltage	2.0	VDD+0.5	v

DC Characteristics (Recommended operating conditions unless otherwise noted)

Symbol	Parameter	Conditions	MIN.	MAX.	Unit
IREF	VREF current	VREF=Maximum	-10	+10	μA
Іон	High level output current	0≤Vout≤Vdd	-10	+10	μA
lol	Low level output current	Vουτ=1.6 V		25	mA
II, ТТL	TTL input leakage current	0≤VI, TTL≤Vdd	-10	+10	μA
Vон, ттl	High level TTL output voltage	Іон, тті=–0.25 mA	2.4	VDD	v
Vol, ttl	Low level TTL output voltage	Ιοι, ττι= 1.0 mA	0	0.4	v

Recommended Timing Conditions

Symbol	Parameter		MIN.	MAX.	Unit
t PAUSE	Pause time after Power On			200	μs
tcr, tcf	TxClk and RxClk input rise and fall times		0.3	0.7	ns
t CYCLE	TxClk and RxClk cycle times	-A45	4.45	6	ns
		-A50	4	6	ns
tтіск	Transport time per bit per pin (this timing interval is synthesized by the RDRAM's internal clock generator)		tcycle/2	tcycle/2	ns
tсн, tc∟	TxClk and RxClk high and low times		47%	53%	t CYCLE
ttr	TxClk-RxClk differential		0.25	0.7	ns
tsp	SIn-to-SOut propagation delay			50	ns
ta	TxClk-to-Data/Control output time		tcycle/8+0.05	tcycle3/8-0.05	ns
ts	Data/Control-to-RxClk setup time		tcycle/4-0.05		ns
tн	RxClk-to-Data/Control hold time		tcycle/4-0.05		ns
tref	Refresh interval			32	ms
tlock	RDRAM internal clock generator lock time		500		tcycle

Transaction Timing Characteristics

Symbol	Parameter	MIN.	Unit
tPostRegWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to register space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	6	tcycle
tPostMemWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to memory space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	4	tcycle
tPostMemReadDelay	Delay from the end of the current memory read transac- tion to the beginning of the next transaction.	2	TCYCLE
tSerialReadOffSeเ	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the read data subpacket (octbyte) with which it is associated.	12	tcycle
tSerialWriteOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the write data subpacket (octbyte) with which it is associated.	8	tcycle

Data and Transaction Latency Characteristics

Symbol	Parameter	MIN.	Unit	Notes
t ReadDelay	Delay from the end of a read request packet to the beginning of the read data packet.	7	tcycle	1
twriteDelay	Delay from the end of a write request packet to the beginning of the write data packet.	1	tcycle	2

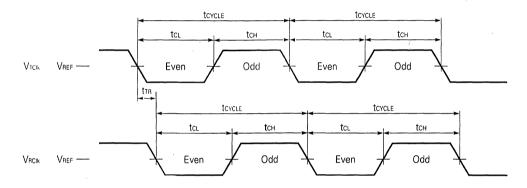
Notes 1. tReadDelay is programmed to its minimum value.

2. twriteDelay is programmed to its minimum value.

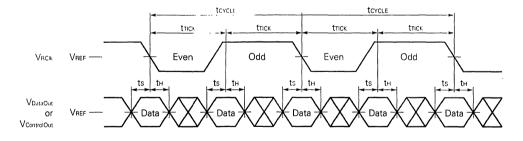
Hit, Retry and Miss Delay Characteristics

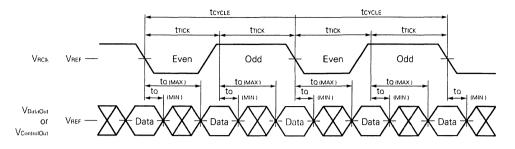
Symbol	Parameter		MIN.	Unit	Notes
tReadHit	Start of request packet to start of read data row hit (Okay).	packet for	10	tcycle	1
tWriteHit	Start of request packet to start of write data row hit (Okay).	packet for	4	tcycle	1
t RetrySensedClean	Start of request packet for row miss (Nacl of request packet for row hit (Okay). The previous row is unmodified.	22	tcycle	2	
[†] RetrySensedDirty	Start of request packet for row miss (Nacl of request packet for row hit (Okay). The previous row is modified.	30	tcycle	2	
tRetryRefresh	Start of request packet for row miss	Clean	191	tcycle	2
	(Nack) to start of request packet for row hit (Okay).	Dirty	199		
t ReadMiss	Start of request packet for row miss (Nack Read Data packet for row hit (Okay).	32	t CYCLE	3	
twriteMiss (Start of request packet for row miss (Nack) Write Data packet for row hit (Okay).	to start of	26	t CYCLE	3

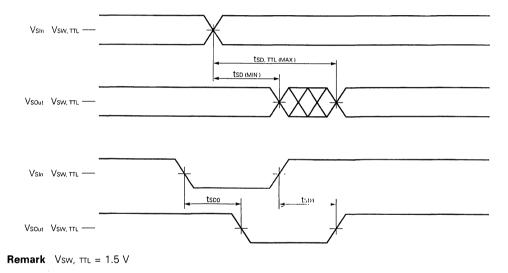
Notes 1. Programmable


- 2. tRowExprestore, tPrecharge, and tsense are programmed to their minimum value.
- 3. Calculated with tRetrySensedClean(MIN).

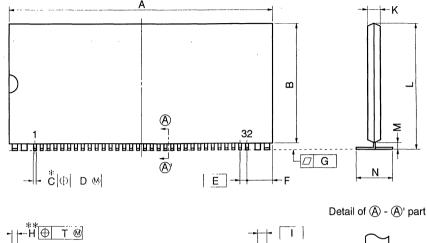
Rise/Fall Timing Chart

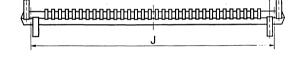

VRxClk, VTxClk


Clock Timing Chart


Receive Data Timing Chart

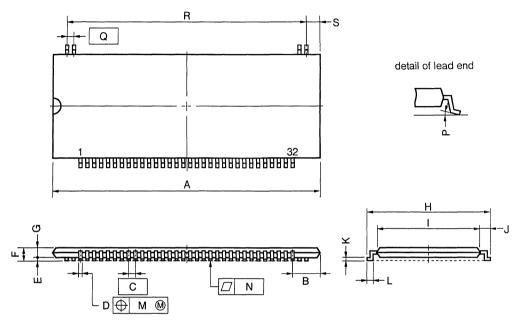
Transmit Data Timing Chart




Serial Configuration Pin Timing Chart

11. Package Drawings

32 PIN PLASTIC SVP (11×25)


- * Each I/O lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
- ** Each support lead centerline is located within 0.18 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.30 MAX.	0.996 MAX.
В	11.0±0.1	0.433±0.004
С	0.24±0.06	$0.009^{+0.003}_{-0.002}$
D	0.13	0.005
E	0.65 (T.P.)	0.026 (T.P.)
F	2.575 MAX.	0.102 MAX.
G	0.10	0.004
н	0.52±0.06	0.020±0.002
1	0.9 (T.P.)	0.035 (T.P.)
J	23.20	0.913
к	1.25	0.049
L	11.80 MAX.	0.465 MAX.
м	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
N	3.70 MAX.	0.146 MAX.
Р	0.17+0.025	0.007±0.001
Q	0.9±0.25	$0.035^{+0.011}_{-0.010}$
R	3°+7° -3°	3°+7° -3°
s	1.90 MAX.	0.075 MAX.
т	0.18	0.007
		S32VN-65-9

S32VN-65-9

72/36 PIN PLASTIC SSOP TYPE

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	25.30 MAX.	0.996 MAX.
В	2.575 MAX.	0.102 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.24±0.06	0.009+0.003
E	0.25±0.05	$0.010 \substack{+0.002 \\ -0.003}$
F	1.6 MAX.	0.063 MAX.
G	1.25	0.049
н	13.0±0.2	0.512±0.008
I	11.0±0.1	0.433±0.004
J	1.0±0.2	$0.039\substack{+0.009\\-0.008}$
к	0.17+0.025	0.007±0.001
L	0.5±0.1	0.020+0.004
м	0.13	0.005
N	0.10	0.004
Р	3° <u>+7</u> °	3° <u>+7</u> °
Q	0.65 (T.P.)	0.026 (T.P.)
R	22.75	0.896
S	1.275 MAX.	0.051 MAX.
		P32G6-65A

[MEMO]

MOS INTEGRATED CIRCUIT μ PD488130L

16M-BIT Rambus DRAM 1M-WORD X 8-BIT X 2-BANK

Description

The 16-Megabit Rambus[™] DRAM (RDRAM[™]) is an extremely-high-speed CMOS DRAM organized as 2M words by 8 bits and capable of bursting up to 256 bytes of data at 2 ns per byte. The use of Rambus Signaling Logic (RSL) technology makes this 500 MHz transfer rate achievable while using conventional system and board design methodologies. Low latency is attained by using the RDRAM's large internal sense amplifier arrays as high speed caches.

RDRAMs are general purpose high-performance memory devices suitable for use in a broad range of applications including main memory, graphics, video, and any other application where high-performance and low cost are required.

Detailed information about product features and specifications can be found in the following document. Please make sure to read this document before starting design.

Rambus DRAM user's manual (Reference Manual) : IEU-1401

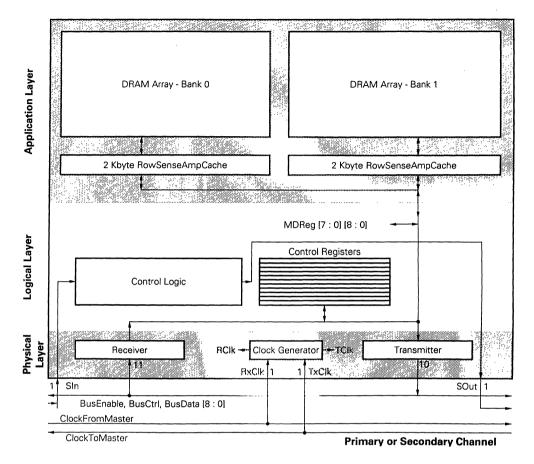
Rambus and RDRAM are trademarks of Rambus Inc.

Features

- Rambus Interface
- 500 MB/sec peak transfer rate per RDRAM
- RSL interface
- Synchronous protocol for fast block-oriented transfers
- Direct connection to Rambus ASICs, MPUs, and Peripherals
- 40 ns from start of read request to first byte; 2 ns per byte thereafter
- Features for graphics include random-access mode, write-per-bit and mask-per-bit operations
- Dual 2K-Byte sense amplifiers act as caches for low latency accesses
- Multiple power-saving modes
- On-chip registers for flexible addressing and timing
- Low pincount-only 15 active signals
- Standardized pinout across multiple generations of RDRAMs
- 3.3 volt operation

Ordering Information

 Part Number	Clock Frequency	Operation Voltage	Package
μPD488130LVN-A50	250MHz	3.3±0.15 V	32-pin plastic SVP (11 $ imes$ 25)
μPD488130LVN-A45	225MHz	3.3±0.15 V	32-pin plastic SVP (11 $ imes$ 25)
μPD488130LG6-A50	250MHz	3.3±0.15 V	72/36-pin plastic SSOP type
μPD488130LG6-A45	225MHz	3.3±0.15 V	72/36-pin plastic SSOP type

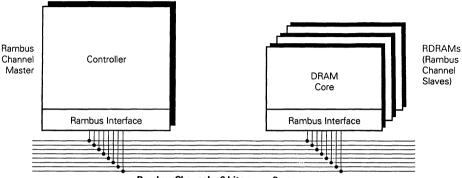

The information in this document is subject to change without notice.

Pin Configuration (Marking Side)

	;	72/36-p	oin plastic SSOP type	e
Vdd	0	1]
GND	0	2		
BusData8	0	3		[
GND	0	4		
BusData7	0	5		
NC	0	6		
BusEnable	0	7		
Vdd	0	8		
BusData6	0>	9		
GND	0	10		
BusData5	0	11		
Vdda	0	12		
RxClk	0→	13		
GNDA	0	14	<i>4 4</i>	
TxClk	0	15	PD	
Vdd	0	16	1881	
BusData4	0	17	¹ /2 PD488130LVN ¹ /2 PD488130LG6	
GND	0	18	.G6	
BusCtrl	0	19		
Sin	0	20		
VREF	0	21		
SOut	0	22		
BusData3	0	23		
GND	0	24		
BusData2	0	25		
NC	0	26		
BusData1	0	27		
GND	0	28		
BusData0	0	29		
NC	0	30		
GND	0	31		
Vdd	0	32		
D . D.				
	ta U - Busi	Jata 8	: Bus Data (Input/Ou	
RxClk			: Receive Clock (Inp	
TxClk			: Transmit Clock (Inp	
			: Logic Threshold Vo	
BusCtrl			: BusCtrl (Input/Out	ρυτ)
BusEnable			: BusEnable (Input)	
VDD, VDDA			: Power Supply	
GND, GNDA			: Ground	
Sin			: Serial Input (Input)	
SOut			: Serial Output (Out	put)
NC			: No Connection	

32-pin plastic SVP (11 \times 25) 72/36-pin plastic SSOP type

Block Diagram

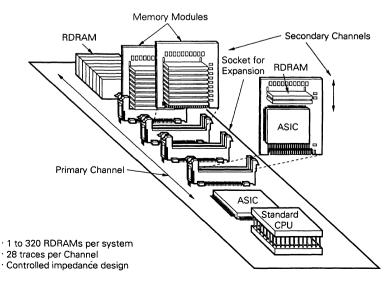

1. Pin Function

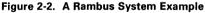
Signal	I/O	Description
BusData [8:0]	I/O	Signal lines for request, write data, and read data packets. The request packet contains the address, operation codes, and the count of the bytes to be transferred. This is a low-swing, active-low signal referenced to VREF. BusData [8] is "Don't Care" in data packet of the accessing memory space.
RxClk	1	Receive clock. Incoming request and write data packets are aligned to this clock. This is a low-swing, active-low signal referenced to VREF.
TxClk	1	Transmit clock. Outgoing acknowledge and read packets are aligned with this clock. This is a low- swing, active-low signal referenced to VREF.
Vref	1	Logic threshold voltage for low swing signals.
BusCtrl	1/0	Control signal to frame packets, to transmit part of the operation code, and to acknowledge requests. Low-swing, active-low signal referenced to VREF.
BusEnable	I	Control signal to enable the bus. Long assertions of this signal will reset all devices on the Channel. This is a low-swing, active-low signal referenced to VREF.
Vdd, Vdda		+3.3 V power supply. VDDA is a separate analog supply.
GND, GNDA		Circuit ground. GNDA is a separate analog ground.
SIn	1	Initialization daisy chain input. TTL levels. Active high.
SOut	0	Initialization daisy chain output. TTL levels. Active high.

2. Rambus System Overview

A typical Rambus memory system has three main elements: the Rambus Channel, the RDRAMs, and a Rambus Interface on a controller. The logical representation of this is shown in the following figure.

Figure 2-1. Logical Representation




Rambus Channel = 8 bits every 2 ns

The Rambus Channel is a synchronous, high-speed, byte-wide bus that is used to directly connect Rambus devices together. Using only 13 high-speed signals, the Channel carries all address, data, and control information to and from devices through the use of a high level block-oriented protocol.

The Rambus Interface is implemented on both master and slave devices. Rambus masters are the only devices capable of generating transaction requests and can be ASIC devices, memory controllers, graphics engines, peripheral chips, or microprocessors. RDRAMs are slave devices and only respond to requests from master devices.

The following figure shows a typical physical implementation of a Rambus system. It includes a controller ASIC that acts as the Channel master and a base set of RDRAMs soldered directly to the board. An RSocket[™] is included on the Channel for memory upgrade using RModule[™] expansion cards.

3. Rambus Signaling Logic

RSL technology is the key to attaining the high data rates available in Rambus systems. By employing high quality transmission lines, current-mode drivers, low capacitive loading, low-voltage signaling, and precise clocking, systems reliably transfer data at 2 nanosecond intervals on a Rambus Channel with signal quality that is superior to TTL or GTL-based interfaces.

All Rambus Interfaces incorporate special logic to convert signals from RSL to CMOS levels for internal use. In addition, these interfaces convert the Channel data rate of one byte every 2 nanoseconds to an internal data rate of 8 bytes every 16 nanoseconds as shown in the following figure. Although the bandwidth remains the same, the use of a wide internal bus eases internal timing requirements for chip designers.

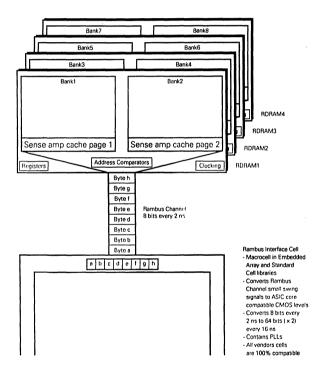


Figure 3-1. Converting the Channel Data Rate

4. Register Space Map

The following table summarizes the registers included in all 16M RDRAMs.

Register Name	Adr[20:10]	Adr[9:2]	Register Number
Device Type[3:0][8:0]	xxxx	00000000	0
Deviceld[3:0][8:0]	xxxx	00000001	1
Delay[3:0][8:0]	xxxx	00000010	2
Mode[3:0][8:0]	xxxx	00000011	3
RefInterval[3:0][8:0]	xxxx	00000100	4
RefRow[3:0][8:0]	xxxx	00000101	5
RasInterval[3:0][8:0]	xxxx	00000110	6
MinInterval[3:0][8:0]	xxxx	00000111	7
AddressSelect[3:0][8:0]	xxxx	00001000	8
DeviceManufacturer[3:0][8:0]	xxxx	00001001	9
Undefined	xxxx	0000101×	10-11
Undefined	xxxx	000011××	12-15
Undefined	xxxx	0001××××	16-31
Undefined	xxxx	001×××××	32-63
Undefined	xxxx	01×××××	64-127
Row[3:0][8:0]	xxxx	1000000	128
Undefined	xxxx	1000001	129
Undefined	xxxx	1000001×	130-131
Undefined	xxxx	100001××	132-135
Undefined	xxxx	10001×××	136-143
Undefined	xxxx	1001××××	144-159
Undefined	xxxx	1010××××	160-175
Undefined	xxxx	1011××××	176-191
Undefined	xxxx	1100××××	192-207
Undefined	xxxx	1101××××	208-223
Undefined	xxxx	1110××××	224-239
Undefined	xxxx	1111××××	240-255

Table 4-1. Registers Space Map

(1) Device Type Register

This register specifies RDRAM configuration and size. Device Type [0] [2]=0: This means that the RDRAM is 8-bit wide.

(2) DeviceId Register

This register specifies RDRAM base address.

(3) Delay Register

This register specifies RDRAM programmable CAS delay values.

(4) Mode Register

This register specifies RDRAM programmable output drive current.

(5) Refinterval Register

This register specifies RDRAM programmable refresh interval. RefInterval Register is used to time the refresh interval for devices which require refresh.

(6) RefRow Register

This register specifies RDRAM refresh row and bank address.

The RefRow register contains read-write fields. It is used to keep track of the bank and row being refreshed. Normally this register is only read or written for testing purposes. The fields are aliased in the following way:

RowField[7:1] equals RefRow[0][7:1] RowField[9:8] equals RefRow[2][1:0] BankField[3] equals RefRow[1][3]

(7) RasInterval Register

This register specifies RDRAM programmable RAS delay values. The RasInterval Register contains four write-only fields. When a rowmiss occurs, or when a row is being refreshed during a burst refresh operation, it is necessary for the control logic of an RDRAM to count the appropriate number of clock cycles (tcycle) for four intervals. This is done with a counter which is loaded successively with three values from the RasInterval Register. This counter is not available for read access and must be tested indirectly.

(8) MinInterval Register

This register specifies RDRAM refresh and powerdown control. This register provides the minimum values for three time intervals for framing packets. The time intervals are specified in clock cycle (tcycLE) units.

(9) AddressSelect Register

This register specifies RDRAM address mapping.

(10) DeviceManufacturer Register

This register specifies RDRAM manufacturer information. This register specifies the manufacturer of the device. Additional bits are available for manufacturer specific information, e.g. stepping or revision numbers.

(11) Row Register

This register specifies RDRAM current sensed row in each bank.

The detailed functional description is provided in RDRAM Reference Manual.

5. Packet Formation

5.1 Packet Summary

The following table summarizes the transmit/receive functionality for the different packet classes.

Packet Type	Initiating Devices	μPD488130L
Request Packet	Transmit	Receive
Acknowledge Packet	Receive	Transmit
Read Data Packet	Receive	Transmit
Write Data Packet	Transmit	Receive
Serial Address Packet	Transmit	Receive
Serial Control Packet	Transmit	Receive
Serial Mode Packet	Transmit	Receive

Table 5-1. Transmitting/Receiving Devices for Packet Types

5.2 Request Packet

The request packet format is shown in the following figure.

Figure	5-1.	Request	Packet	Format
--------	------	---------	--------	--------

					D	levice Pir	15				
Clock Cycle Number	Bus- Enable		Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even		Start	Op [0]			1	Adr [9 : 2]		[l	
[0] odd	1	Op [1]	Ор [3]				Adr [17 : 10]				
[1] even	-	Close		[Adr [26 : 18]				
[1] odd	-	Op [2]					Adr [35 : 27]				
[2] even	-	OpX [0]	· ·	Jnimp : 4]		Count [6, 4, 2]				Jnimp : 0]	
[2] odd	-	OpX [1]		Jnimp : 6]		Count [7, 5, 3]	1		unt : 0]	A [1	dr : 0]
Time	-			this pin i et, it is pu			packet. If o value.	it is not	used		Request Packet

The vertical axis in all packet figures in the following sections shows time in units of clock cycles, with each clock cycle broken into even and odd bus ticks. The timing is relative, measured from the beginning of the packet.

5.2.1 Start Field

A device should start framing a request packet when it sees this bit asserted to a logical one and it is not looking for an acknowledge packet nor framing an earlier request packet.

5.2.2 Op[3:0], OpX[1:0] Fields

The command opcode also determines which packets (in addition to the request packet) will form the transaction. A detailed functional description of the actions that an RDRAM takes for each implemented command is provided in "Rambus DRAM user's manual (Reference Manual)". The following table summarizes the functionality of each subcommand:

SubCommand	Description
Rseq	Read sequential data from memory space.
Rnsq	Read non-sequential (random-access) data from memory space.
Wseq	Write sequential data to memory space.
Wnsq	Write non-sequential (random-access) data to memory space.
Wbns	Write non-sequential (random-access) data to memory space with non-contiguous byte masking.
Npb	Write data is from data packet. There is no bit mask.
Dpb	Write data is from data packet. The bit mask is in the MDReg.
Bpb	Write data is from data packet. The bit mask is also from the data packet.
Mpb	Write data is from MDReg. The bit mask is from the data packet.
Rreg	Read sequential data from register space.
Wreg	Write sequential data to register space.
WregB	Broadcast write with no Okay acknowledge permitted.
Alt	Alternate command (same function as the primary command - intended for use in future shared memory multiprocessor systems).

Table 5-2. Subcommand Summary

The memory read commands are formed using the Rseq and Rnsq subcommands to select sequential or nonsequential (random) access. The Alt and "null" subcommands select between two equivalent command sets ("null" means no subcommand). The "Alt" subcommands are reserved for use in future shared memory multiprocessor systems.

RrrrAaa Rrrr = {Rseq, Rnsq}
 Aaa = {Alt, null}

The following table summarizes the available write commands and shows how they are formed from a 3×4 matrix of the Wwww and Bbb subcommands. The Alt and "null" subcommands have the same meaning as in the memory read commands.

WwwwBbbAaa Wwww = {Wseq, Wnsq, Wbns}
 Bbb = {Npb, Dpb, Bpb, Mpb}
 Aaa = {Alt, null}

	Wwww subcommands				
Bbb subcommand	Wseq (seqential-access with contiguous byte masking)	Wnsq (non-sequential- access)	Wbns (non-sequential-access with non-contiguous-byte- masking)		
Npb	WseqNpb	WnsqNpb	WbnsNpb		
Dpb	WseqDpb	WnsqDpb	WbnsDpb		
Mpb	WseqMpb	WnsqMpb	WbnsMpb		
Bpb	WseqBpb	WnsqBpb	Not implemented		

Table 5-3. Write Commands

There are three Wwww subcommands. They control the accessing pattern and the use of non-contiguous byte masking.

- Wseq octbyte blocks in the RDRAM core are accessed in sequential (ascending little-endien) address
 order. Contiguous byte masking is controlled with the Adr[2:0] and Count[2:0] fields of the
 request packet.
- Wnsq octbyte blocks in the RDRAM core are accessed in non-sequential address order. The addresses for the octbyte blocks within the sensed row come from serial address packets which are received on the BusEnable pin. The address order is arbitrary.
- Wbns octbyte blocks in the RDRAM core are accessed in non-sequential address order, as in the Wnsq subcommand. In addition, byte masks are transmitted with the write data, permitting arbitrary non-contiguous byte masking of this write data. The bytemask octbytes are not included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 4 bitmask octbytes and 32 write data octbytes, for a data packet size of 36 octbytes.

There are four Bbb subcommands. They select the type of bit masking to be applied to the write data.

- Npb (no-per-bit) There is no bit mask applied to the write data. The MDReg is not used or modified.
- Dpb (data-per-bit) The MDReg is used as a bit mask, the write data comes from the data packet. The same bit mask is used for each octbyte. This is also called persistent bit masking. The MDReg is not modified.

- Mpb (mask-per-bit) The bit mask comes from the data packet, the write data comes from the MDReg. The same data is used for each octbyte. This is also called color masking. The MDReg is not modified.
- Bpb (both-per-bit) The bit mask and the write data come from the data packet. The MDReg is not used, but is modified as a side effect (the WwwwBpbAaa commands are used to load the MDReg for the WwwwDpbAaa and WwwwMpbAaa commands). This is also called non-persistent bit masking.
 The bitmask octbytes are included in the total octbyte transfer count ; i.e. a Count[7:3] field of 31 implies 16 bitmask octbytes and 16 write data octbytes.

5.2.2.1 Op[3:0] and OpX[1:0] Fields for 16M RDRAM

The Op and OpX fields are summarized in the following table.

Op[3:0]	OpX[1:0] = 00	OpX[1:0] = 01	OpX[1:0] = 10	OpX[1:0] = 11
0000	Rseq	Rnsq	Rsrv	Rsrv
0001	RseqAlt	RnsqAlt	Rsrv	Rsrv
0010	Rsrv	Rsrv	Rsrv	Rsrv
0011	Rsrv	Rsrv	Rsrv	Rsrv
0100	WseqNpb	WseqDpb	WseqBpb	WseqMpb
0101	WseqNpbAlt	WseqDpbAlt	WseqBpbAlt	WseqMpbAlt
0110	Rreg	Rsrv	Rsrv	Rsrv
0111	Wreg	Rsrv	Rsrv	Rsrv
1000	WnsqNpb	WnsqDpb	WnsqBpb	WnsqMpb
1001	WnsqNpbAlt	WnsqDpbAlt	WnsqBpbAlt	WnsqMpbAlt
1010	Rsrv	Rsrv	Rsrv	Rsrv
1011	Rsrv	Rsrv	Rsrv	Rsrv
1100	WbnsNpb	WbnsDpb	Rsrv	WbnsMpb
1101	WbnsNpbAlt	WbnsDpbAlt	Rsrv	WbnsMpbAlt
1110	Rsrv	Rsrv	Rsrv	Rsrv
1111	WregB	Rsrv	Rsrv	Rsrv

Table 5-4. Op[3:0] and OpX[1:0] Fields - Command Encodings

The command opcode determines whether the other fields of the request packet are implemented (Imp) or unimplemented (Unimp). This is summarized in the table below.

Command	Adr[35:3]	Adr[2]	Adr[1:0]	Count[7:3]	Count[2]	Count[1:0]	Close	ReqUnimp[7:0]
Rsrv	Unimp(0.0)	Unimp(0)	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
Rseq	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
Rnsq	lmp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
RseqAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
RnsqAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqNpb	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqDpb	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqBpb	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqMpb	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqNpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqDpbAlt	Imp	Imp	Imp	Imp	Imp	lmp	Imp	Unimp(0.0)
WseqBpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
WseqMpbAlt	Imp	Imp	Imp	Imp	Imp	Imp	Imp	Unimp(0.0)
Rreg	Imp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
Wreg	Imp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)
WnsqNpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqDpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqBpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqMpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqNpbAlt	lmp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqDpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqBpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WnsqMpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsNpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	imp	Unimp(0.0)
WbnsDpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsMpb	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsNpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsDpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WbnsMpbAlt	Imp	Unimp(0)	Unimp(00)	Imp	Unimp(1)	Unimp(11)	Imp	Unimp(0.0)
WregB	Imp	Imp	Unimp(00)	Unimp(0.0)	Unimp(1)	Unimp(11)	Unimp(0)	Unimp(0.0)

Table 5-5. 16M RDRAM Request Packet Fields - Imp or Unimp

5.2.3 Adr[35:0] Field

The Adr field is used as either a memory or register space address depending upon the OP[3:0] and OpX[1:0] fields. Devices extract a portion of the Adr field to match against their Deviceld register (IdMatch), thus selecting the device to which the request is directed. The remainder of the Adr field accesses the desired region of the device's memory or register space. The memory read and write commands and the Rreg and Wreg commands will only take place if there is an IdMatch. The IdMatch criteria is ignored for the WRegB commands, with all responding devices performing the required actions.

The Rambus protocol uses quadbyte resolution in the data packet for register space read and write commands; i.e. one quadbyte is the smallest data item that may be transferred, and all transfers are an integral number of quadbytes. The Adr[35:2] field is the quadbyte address. The Adr[1:0] field is Unimp for these commands, and should be driven with "00" by initiating devices.

The Rambus protocol uses octbyte resolution in the data packet for memory space read and write commands; i.e. one octbyte is the smallest data item that may be transferred, and all transfers are an integral number of octbytes. The Adr[35:3] field is the octbyte address.

Some commands use the Adr[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

5.2.4 Count[7:0] Field

The following table summarizes the transfer count ranges for 16M RDRAMs:

Count Range	μPD488130L
Maximum count for memory space	32 octbytes
Minimum count for memory space	1 octbyte
Maximum count for register space	1 quadbyte
Minimum count for register space	1 quadbyte

Table 5-6. Transfer Count Summary

Register space read and write commands use a transfer count of one quadbyte, regardless of the Count[7:0]. field value.

Memory space read and write commands specify the number of octbytes to be transferred with the Count[7:3] field. An offset-by-one-encoding is used so that "00000" specifies one octbyte, "00001" specifies two octbytes, and so on up to "11111" which specifies thirty-two octbytes. The transfer count does include the octbytes containing bitmasks (for commands using the Bpb subcommand). The transfer count does not include the octbytes containing non-contiguous ByteMasks (for commands using the Wbns subcommand).

Some commands use the Count[2:0] field to specify contiguous byte masking. Refer to "Rambus DRAM user's manual (Reference Manual)".

Memory space transactions to RDRAMs are not allowed to cross internal row address boundaries within the device. Attempts to do so have Undef (undefined) results. These row boundaries are at 2kbyte intervals for 16M RDRAMs.

5.2.5 Adr[2:0] and Count[2:0] Fields for Contiguous Byte Masking

An initiating device wishing to transfer an arbitrary number of contiguous bytes to a starting address on an arbitrary byte boundary may do so with the Adr[2:0] and Count[2:0] fields for some of the commands. These commands include:

- RrrrAaa
- WseqBbbAaa

The transfer count and starting address are given by:

- MasterCount[7:0] specifies the number of bytes which the master device wishes to transfer.
- Adr[35:0] specifies the starting byte address (this is the same as the Adr[35:0] field in the request packet)

Where the convention used by the initiating device for the count is that Master-Count[7:0] = "00000000" means one byte, MasterCount[7:0] = "00000001" means two bytes and MasterCount[7:0] = "11111111" means 256 bytes (an offset-by-one encoding; the data block count is equal to MasterCount[7:0]+1).

The initiating device converts this internal count value into a value for the request packet with the following formula. Little-endien byte addressing is used for specifying bytes within octbytes.

Where "+" denotes unsigned integer addition of two bit fields (short fields are zero-extended on the left). If the value of Adr[2:0] + MasterCount[7:0] is greater than 255 (it may be as much as 262), then the initiating device must break the request into two transactions.

The Adr[2:0] and Count[2:0] field generate masks for individual bytes within an octbyte. The Adr[35:3] and Count[7:3] field have the octbyte resolution previously described. The following tables show how the byte masks are generated. In the case of memory read transactions, the byte masks that are generated do not affect the data that is returned by the RDRAM; all data bytes in the first and last octbytes are returned in the read data packet.

In the case of memory write transactions, ByteMaskLS[7:0] applies to the first octbyte at Mem[AV][7:0][8:0]. Byte MaskMS[7:0] applies to the last octbyte at Mem[AV+CV][7:0][8:0]. All intermediate octbytes use a byte mask of 11111111 (a one means the byte is written, a zero means it is not). Here AV is the value of the Adr[35:3] field when interpreted as an unsigned, 33 bit integer, and CV is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit interger. If the Count[7:3] is "00000" (one octbyte), the ByteMaskLS[7:0] and ByteMaskMS[7:0] masks are logically 'anded' together to give the effective byte mask.:

Adr[2:0]	ByteMaskLS[7:0]	Adr[2:0]	ByteMaskLS[7:0]
000	11111111	100	11110000
001	11111110	101	11100000
010	11111100	110	11000000
011	11111000	111	1000000

Table 5-7. Adr[2:0] to ByteMaskLS[7:0] Encoding

Count[2:0]	ByteMaskMS[7:0]	Count[2:0]	ByteMaskMS[7:0]
000	00000001	100	00011111
001	00000011	101	00111111
010	00000111	110	01111111
011	00001111	111	11111111

Table 5-8. Count[2:0] to ByteMaskMS[7:0] Encoding

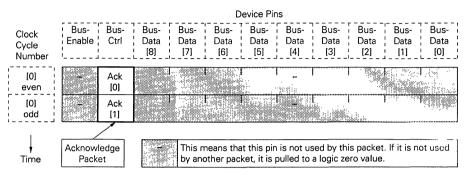
The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.2.6 Close Field

The Close field causes a currently accessed row to be explicitly restored (written back to the core if its Dirty flag for that bank is set) after the current access has completed. This reduces the latency of a subsequent access to a different row of memory space in the same bank of that device; i.e. the tReterSensedClean Nack timing is used rather than the tRetrySensedDirty timing.

Table 5-9. Close Field Encodings

Close Field	Description
0	Don't restore the currently accessed row of memory. It may be left sensed and either clean or dirty.
1	Restore the currently accessed row of memory if its Dirty flag is set. It will be left sensed and clean.


5.2.7 ReqUnimp[7:0] Fields

These fields are unimplemented (Unimp) in the request packet. They should be driven as zeroes by initiating devices which satisfy this Version of the Rambus protocol.

Responding devices which satisfy this Version of the Rambus protocol should ignore these fields and process the request according to the content of the Start, Op[3:0], OpX[1:0], Adr[35:0], Count[7:0], and Close fields. The protocol Version number of a device is held in the DeviceType register.

5.3 Acknowledge Packet

The Ack[1:0] field carries the acknowledge encoding from the responding device(s) to the initiating device and any other listening devices. The following figure shows the format of the acknowledge packet.

Figure 5-2. Acknowledge Packet Format

The following table summarizes the four combinations of the Ack[1:0] field. The Ack3 combination is Undef. The Okay combination indicates that the read or write access to the specified space will take place.

When a responding device acknowledges a request with a Nack, then there will be no immediate change in the state of the device's memory space or register space. The responding device will take the appropriate steps to make the requested region of memory or register space accessible when the initiating device makes a subsequent request. The initiating device will need to wait some device-dependent length of time until the requested region is available.

There are three possible reasons for an RDRAM to respond with Nack. They are summarized below. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- tPostMemWriteDelay Of tPostRegWriteDelay violation
- RowMiss (this causes a delay of tRetrySensedClean Or tRetrySensedDirty)
- ongoing refresh (this causes a delay of up to tRetryRefresh)

Commands allowed to use the Ack Combination		Name	Description	Spec Undef
All commands	00	Nonexistent	Indicates passive acceptance of the request (WregB), or indicates that the addressed device did not respond (all other commands).	Spec
All commands but WregB	01	Okay	Indicates that the request was accepted by the addressed by the addressed (responding) device.	Spec
All commands	10	Nack	Indicates that the request could not be accepted because the state of the responding device prevented an access at the fixed timing slot.	Spec
All commands but WregB	11	Ack3	This should not be returned by this responding device. Initiating devices will, when presented with this combi- nation, have an undefined response.	Undef

Table 5-10. Ack[1:0] Encodings

5.4 Data Packet

The following figure shows the format of a data packet for register space read and write commands. It consists of 1 quadbyte driven on the BusData[8:0] wires for RDRAMs.

Other responding devices may support data packet lengths longer than one quadbyte.

				D	evice Pir	IS				
Clock Cycle Number	Bus- Bus- Enable Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]		Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even					(C	Data)] [0] [8 : 1	0]			
[0] odd	-				ĮC	Data 0] [1] [8 :	0]			
[1] even					[C	Data 0] [2] [8 : 1	0]			
[1] odd					[0	Data)] [3] [8 :	0]			
Time		eans that her packe					f it is not	used		Data Packet

The following figure shows the format of a data packet for memory space read and write commands. For most of these commands, it consists of 1 to 32 octbytes driven on the BusData[7:0] wires. BusData [8] is not used by this packet. In the figure, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

5.4.1 MD Reg [7:0] [7:0]=U

This register holds the write data or mask for the persistent per-bit operations (Dpb & Mpb). The MDreg need not implement the ninth bits when the RDRAM is 8-bit wide.

					D	evice Pir	IS .				
Clock Cycle Number	Bus- Enable	Bus-	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]		Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	-	.			[Data] [0] [7 :	0]			
[0] odd	-		-		[Data] [1] [7 :				l
[1] even		-	-		Γ		Data] [2] [7 :				
[1] odd	-	-	-		Γ		Data] [3] [7 :		I		1
[2] even	<u> (</u>	-	-		1		Data] [4] [7 :		1	1	'
[2] odd	-	1	-		[Data] [5] [7 :		[1
[3] even		•••	~		/		Data [6] [7 :	ļ			
[3] odd	- Te	i.	C : :				Data] [7] [7 : 1				1
	•						:				
(4*n) even		101 7 .00	-			[] [r	Data] [0] [7 : [0]	[1	
[4*n] odd	-					(r	Data] [1] [7 : (1	1	I
[4*n+1] even	-						Data] [2] [7 : (
[4*n+1] odd	-	+				 [r	Data] [3] [7 :	 D]	1		
[4*n+2] even	1	Ŧ	-			 [r	Data] [4] [7 : (0]			
[4*n+2] odd	-	-	-			[[r	Data] [5] [7 : (D]			
[4*n+3] even	-	1	-			[[n	Data] [6] [7 : (0]			1
[4*n+3] odd	-	-	-				Data] [7] [7 : (1		I
Time	-		eans that her packe					lf it is not	t used		Data Packet

Figure 5-4. Data Packet Format (Memory Space)

5.5 Serial Address Packet Format

The serial address packet is transmitted by the initiating device and received by the responding devices. It provides eight low-order address bits for each octbyte which is accessed in memory space (a non-sequential or random-access transfer). These eight address bits are transferred serially on the BusEnable pin of the RDRAM, and are thus called a serial address. Each eight bit serial address accesses an octbyte of data within the RowSenseAmpCache of one of the two banks of the RDRAM. The complete set of serial addresses transmitted by the initiating device during the transaction are referred to as a serial address packet. The commands which use this packet are the RnsqAaa, WnsqBbbAaa, and WbnsBbbAaa classes of commands.

The high order bits for each octbyte are provided by the Adr[35:11] address bits from the request packet. The low-order address bits for the first octbyte are Adr[10:3], also from the request packet. The low-order address bits for octbytes [n:1] are provided by the serial address packet. As before, "n" is either the CV value (if the transaction is allowed to complete) or the last count value (if the transaction is terminated prematurely by the serial control packet). "CV" is the value of the Count[7:3] field when interpreted as an unsigned, 5 bit integer. The detailed functional description is provided in "**Rembus DRAM user's manual (Reference Manual)**".

Serial Address Field	Description	Unimp Imp
SAdr[i][10:3]	Low-order address bits for each octbyte.	Imp

Table 5-11. Serial Address Fields (i = n:1)	Table 5-11.	Serial	Address	Fields	(i =	n:1)
---	-------------	--------	---------	--------	------	------

					[Device Pir	าร				
Clock Cycle Number	Bus- Enable	Bus- Ctrl	Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[4]	SAdr [1] [3]				I	T	I	1			
[4] odd	SAdr [1] [4]	ŧ			I	I	1	l.			
[5] even	SAdr [1] [5]	1			1	1	-	1			
[5] odd	SAdr [1] [6]	t.			1		1	1			
[6] even	SAdr [1] [7]	1			1		: ب		1		
[6] odd	SAdr [1] [8]	•			I	1	: 		I		
[7] even	SAdr [1] [9]						l				1
[7] odd	SAdr [1] [10]	-		r.:	1	1	-				1
:	:						:				
[4"n] even	SAdr [n] [3]	1				1	I _	1		I	
[4 n] odd	SAdr [n] [4]	Ŧ			[1	-		I		1
[4*n+1] even	SAdr [n] [5]			,	1		l	1			1
[4*n+1] odd	SAdr [n] [6]			ا ب	I.	1 			F	, 	1
[4*n+2] cven	SAdr [n] [7]				, ,		۱ ۲	1 4	-		
[4*n+2] odd	SAdr [n] [8]					1 	' ~:-:: :::::::::::::::::::::::::::::::::				L
[4*n+3] even	SAdr [n] [9]				<u>к</u>	1 	-		•		
[4*n+3] odd	SAdr [n] [10]	-			1	1	' <u>-</u>	•	•	(I
Time	Serial A Pacl		-			nat this pir cket, it is					not used

Figure 5-5. Serial Address Packet Format

;

5.5.1 Serial Control Packet Format

The serial control packet is transmitted by the initiating device and received by the responding devices. It provides for the early termination of a memory space read or write transaction (before the specified data count in the Count[7:3] field has elapsed). It consists of eight bits transferred serially on the BusCtrl pin of the device, thus it is referred to as a serial control packet. The eight bits have the same timing alignment as the serial address packet. The commands which use this packet are all of those which access memory space. The register read and write commands do not use the serial control packet. The 16M RDRAM implements this packet.

The termination occurs on octbyte data packet boundaries. The next figure shows the format of the serial control packet. The following table summarizes the function of the bits within the serial control packet. Note that the bits in the even bus ticks must be zero in order for framing to work properly (otherwise, one of these bits would be interpreted as the Start bit of a new request packet). The SCtrl[5] bit is used to control termination, and the other three odd bus tick bits are unimplemented.

Serial Control Fields	Description	Unimp Imp
SCtrl[0]	This bit must be a zero due to framing requirements.	Imp
SCtrl[1]	unimplemented	Unimp(0)
SCtrl[2]	This bit must be a zero due to framing requirements.	Imp
SCtrl[3]	unimplemented	Unimp(0)
SCtrl[4]	This bit must be a zero due to framing requirements.	lmp
SCtrl[5]	0 means don't terminate the current access. 1 means terminate the current accoss.	Imp
SCtrl[6]	This bit must be a zero due to framing requirements.	Imp
SCtrl[7]	unimplemented	Unimp(0)


If a memory read transaction (RrrrAaa) is terminated by asserting the SCtrl[5] bit to a logical one, the data octbyte with which it is associated is not transmitted by the responding device. The initiating device may start a new transaction once the transmission of the read data packet has ceased. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

					C	Device Pir	IS				
Clock Cycle Number	Bus- Enable		Bus- Data [8]	Bus- Data [7]	Bus- Data [6]	Bus- Data [5]	Bus- Data [4]	Bus- Data [3]	Bus- Data [2]	Bus- Data [1]	Bus- Data [0]
[0] even	_	SCtrl [0]					_				
[0] odd		SCtrl [1]					-				
[1] even	4	SCtrl [2]					+				
[1] odd		SCtrl [3]				1	-				
[2] even		SCtrl [4]					Ŧ				
[2] odd	<u></u>	SCtrl [5]				1	-				
[3] even		SCtrl [6]	1	5. ⁻ - 1		I @01	1989 <u>-</u> 1997 		. 1		
[3] odd		SCtrl [7]	I	1					1		1
Time	Serial Co Pack		102			at this pir cket, it is					ot used

Figure 5-6. Serial Control Packet Format

5.5.2 Serial Mode Packet Format

The serial mode packet transmitted by initiating devices, and received by responding device. Its format is shown in the following figure.

Figure 5-7. Serial Mode Packet Format

The serial mode packet modifies the state of the Count00[7:0] and Count11[7:0] counters.

These counters cause operating mode transitions when they reach special values. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

A serial mode packet with the SMode[1:0] field set to 00 is the default. Most transitions are caused by blocks of sequential serial mode packets, each with the SMode[1:0] field set to 11. The serial mode packets should never set SMode[1:0] field to 01 or 10. This is because in some of the operating modes, the clock generator is unlocked (the frequency is correct but not the phase). When this happens, the BusEnable receiver is unable to discriminate anything other than long pulses of zeros or ones. Because the frequency of the clock generator is correct, it can count the length of these pulses with moderate accuracy.

Table	5-13.	Serial	Mode	Fields
-------	-------	--------	------	--------

SMode[1:0]	Description	Spec/Rsrv/ Undef
00	Increments Count00[3:0], clears Count11[7:0].	Spec
01	-	Undef
10	-	Undef
11	Increments Count11[7:0], clears Count00[3:0]	Spec

6. State Diagram

The following figure is a state diagram of the Frame state machine. The operating mode of the device depends upon which of the nine states it is in:

- reset mode ResetState
- powerdown mode PowerDownState
- standby mode StandbyState
- active mode ActiveState, IdCompareState, DeviceState, OkayState, NackState, AckWindowState

This section will only discuss the first three states (ResetState, StandbyState, ActiveState). The remaining five states which are shown shaded in the state diagram (IdCompareState, DeviceState, OkayState, NackState, AckWindowState) will be dealt with in the "Rambus DRAM user's manual (Reference Manual)".

The device will enter ResetState when power is initially applied (PowerOn). In ResetState, the device will be in the reset operating mode, in which all control registers assume a known state. If power has just been applied, the device will pass through ActiveState and settle in StandbyState, and remain there until serial mode packets are received from an initiating device.

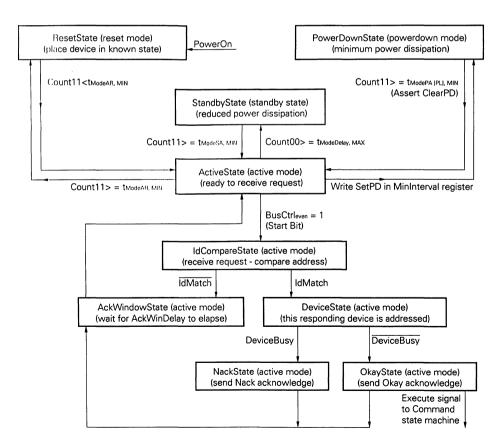


Figure 6-1. Frame State Machine - State Diagram

ActiveState is the state in which all decisions are made to transition to the states for the other operating modes. From here, the device will also enter the transaction-framing states. Refer to "Rambus DRAM user's manual (Reference Manual)".

After poweron, the device will re-enter ResetState when the value of the Count11[7:0] counter is greater than or equal to tModeAR,MIN. The device will leave ResetState when the value of the Count11[7:0] counter is less than tModeSA,MIN. This will happen when an SMode[1:0] field of 00 is received, causing the Count11[7:0] counter to clear.

The device will enter StandbyState when the value of the Count00[3:0] counter is greater than or equal to tModeDelay,MAX. The device will leave StandbyState when the value of the Count11[7:0] counter is greater than or equal to tModeSA,MIN.

6.1 Parameters for Operating Mode Transitions

The following table summarizes the parameter values associated with operating mode transitions of a responding device. A minimum and maximum value are given for the parameters to account for implementation differences. In all cases, the SMode[1:0] field of the consecutive serial mode packets must have the value 11 to cause an operating mode transition (with the exception of the tModeDelay.MAX as mentioned in the previous section). Initiating devices must use values within the minimum and maximum SMode packet count requirements shown above to control operating mode transitions.

Count Parameter Name	Minimum (clock cycles)	Maximum (clock cycles)	Description
t ModeSA	1	4	Number of SMode packets to cause a transition from Standby-Mode to ActiveMode
Rsrv	5	9	Reserved for future functionality
Undef	10	15	Undefined
Rsrv	21	189	Reserved for future functionality
Undef	190	207	Undefined
Rsrv	225	253	Reserved for future functionality
Undef	254	271	Undefined
tModeAR	272	-	Number of SMode packets to cause a transition from Active- Mode to ResetMode
tModeOffSet	4	_	Offset from beginning of SMode packet to request packet for standby to active transition
tModeDelay	_	10	Delay from end of SMode packet to request packet for standby to active transition

Table 6-1. Responding Device Parameters for Operating Mode Transitions

6.2 Standby Mode and Active Mode

The following figure shows the basic transitions between active and standby modes in response to serial mode packets

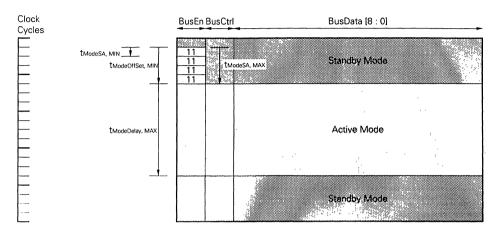


Figure 6-2. Basic ActiveMode/StandbyMode Transitions

This is a timing diagram, with time increasing in the downward direction. The time scale is in clock cycles, as shown on the left scale. The value of each of the eleven low-swing signal pins of the responding device is shown with the assumption that $t\tau_R$ is zero (the responding device is located at the master end of the Channel).

Serial mode packets with an SMode[1:0] field are shown as a box with a "11" label in the BusEn column. The BusEnable defaults to a logical zero value. The initiating device has transmitted tModeSA,MAX serial mode packets with SMode[1:0] equal to 11 (this is the longest sequence permitted for invoking a standby to active transition). After the first tModeSA,MIN serial mode packets, the device begins the transition to active mode. It reaches active mode after tModeOffSet, MIN clock cycles after the start of the first serial mode packet. It remains there for tModeOffSet,MAX clock cycles after the last serial mode packet.

The responding device is in active mode when it begins framing the request packet. A transaction may begin in any of the clock cycles with the light shading above (labeled "Active Mode").

If the serial mode packet(s) causing a standby to active mode transition are not followed by a transaction with tModeOffSet,MAX clock cycles after the last serial mode packet, then the responding device will return to standby mode.

The next figure shows the case in which a transaction is started as early as possible after a serial mode packet which causes a standby to active mode transition.

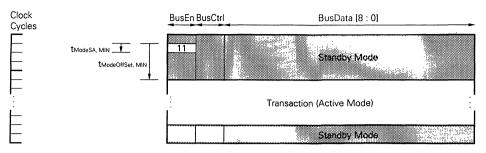
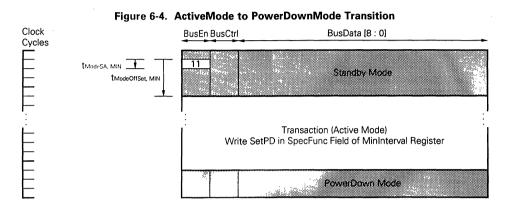



Figure 6-3. ActiveMode/StandbyMode Transition - Early Transaction

A transaction is composed of packet types other than serial mode packets, and will be defined in the next chapter. These other packet types lie entirely inside the heavy black box in the above figure. When a transaction has completed, the device returns to standby mode. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

6.3 PowerDown Mode

When responding devices watch the bus, their interface circuits consume power. Standby mode reduces this power by trading a small latency for reduced power. While in standby mode, the device's receivers are inactive.

Power may be greatly reduced using the powerdown mode at the expense of moderate latency. In powerdown mode, the device's receivers and clock circuitry are inactive. The device may deactivate other power-hungry circuits also. Power-up enables all these circuits and makes the device available for transactions once the clock circuitry resynchronizes and stabilizes.

Powerdown mode is controlled by the PD bit. This bit is not directly accessible in the register space. Instead, the "SetPD" combination is written to the SpecFunc field in the MinInterval register, as indicated in the above figure. When this is done, the RDRAM performs the following operations:

- · Restore and precharge the RowSenseAmpCache for both banks
- Disable the clock generator
- Disable all DC current sources except for a special BusEnable receiver

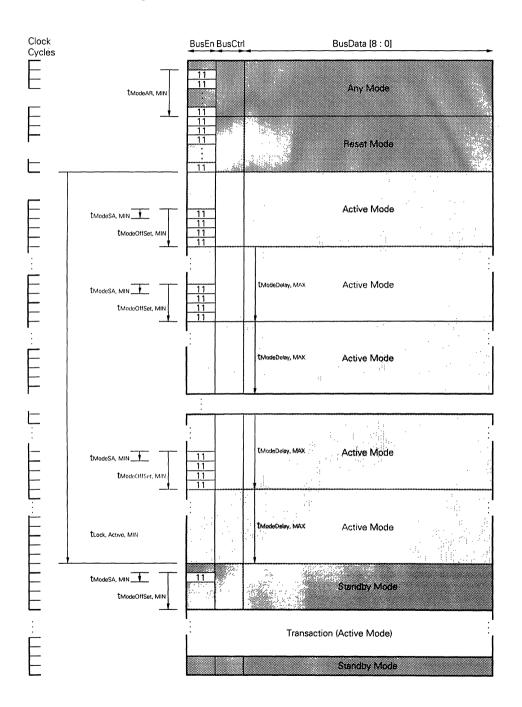
When these operations have completed, the RDRAM is in powerdown mode. It will consume power for refresh (which is performed with the SIn/SOut TTL pins), and it will consume a small amount of power watching the BusEnable pin waiting for a serial mode packet of the proper length. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

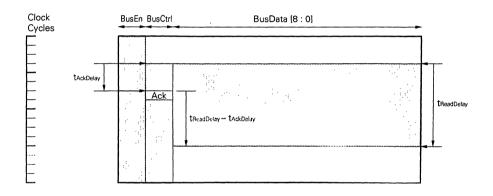
6.4 ResetMode

Reset mode is entered when a consecutive sequence of tModeAR.MIN serial mode packets with a value of 11 are seen by a responding device (shown in the following figure). In reset mode, all devices enter a known state from which they may be Initialized. The device remains in reset mode for as long as serial mode packets with 11 value are received. When one or more serial mode packets with a value of 00 are seen, the responding device enters the active mode state.

Although devices enter the active mode state immediately, their clock circuitry requires a time tLock,MIN to resynchronize. Initiating devices must wait this long after the transition out of reset mode before starting any transactions.

Note that in order to keep the devices in active mode during this synchronization process, it is necessary to provide a burst of serial mode packets every tModeDelay,MAX clock cycles. This burst is shown as tModeSA,MAX in length, but may, of course, be as short as tModeSA,MIN. If the device is not kept in active mode during synchronization, then the synchronization process requires tLock,MIN clock cycles.




Figure 6-5. ResetMode to ActiveMode Transition

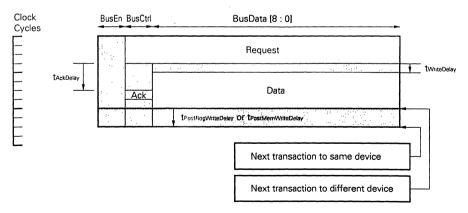
7. Transactions

7.1 Read Transactions

The following figure shows the basic form of a memory space or register space read transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed (tackWinDelay will not be shown explicitly on any further transaction diagrams in this document.

When the responding device transmits an Okay acknowledge packet to the initiating device, it will also transmit a data packet with read data. This packet is sent a time theadDelay after the end of the request packet. The theadDelay value is in tcvcLE units and is programmed into the ReadDelay field of the Delay register of each responding device. It is not required to be the same for all devices within a Rambus system, but the difference (theadDelay - tackDelay) is required to be the same. This allows initiating devices to use the acknowledge packet to determine when the read data packet begins. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

7.2 Write Transactions


The following figure shows the basic form of a memory space or register space write transaction. There are request and acknowledge packets, with the same tackDelay and tackWinDelay timing constraints as already discussed.

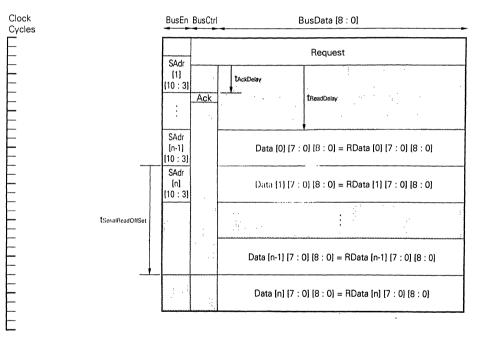
When the initiating device transmits a request packet to the responding devices, it will also transmit a data packet with write data. This packet is sent a time twriteDelay cycles after the end of the request packet. The twriteDelay is in tcycle units and is programmed into the WriteDelay field of the Delay register of each responding device. It is required to be the same for all devices within a Rambus system. A responding device will see the same twriteDelay interval between the request and write data packets whether the device is on the Primary Channel or on a Secondary Channel.

If the responding device returns an Okay acknowledge packet, then the transaction is complete at the end of the acknowledge window or at the end of the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle except for the case in which a register or memory space write to a device is followed by any other transaction to that device. In that case, one of the following two intervals must be inserted between the two transactions, where the memory or register case depends upon the first transaction.

- tPostRegWriteDelay if the current transaction is a register space access
- tPostMemWriteDelay if the current transaction is a memory space access

If the responding device returns a Nack or Nonexistent acknowledge packet for a write command, then no write data packet is required by the responding device. The current transaction is complete at the end of the acknowledge window, or when the initiating device stops transmitting the write data packet, whichever is later. The next request packet can be transmitted in the following clock cycle. For the case of a Nack or Nonexistent, the initiating device must terminate the write data packet before another initiating device is given control of the Rambus Channel for a transaction. This is part of the arbitration mechanism used by the initiating devices. The arbitration mechanism is not specified in this document because it does not use the Rambus Channel. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

Figure 7-2. Write Transaction


7.3 Read Transactions with Serial Address Packet

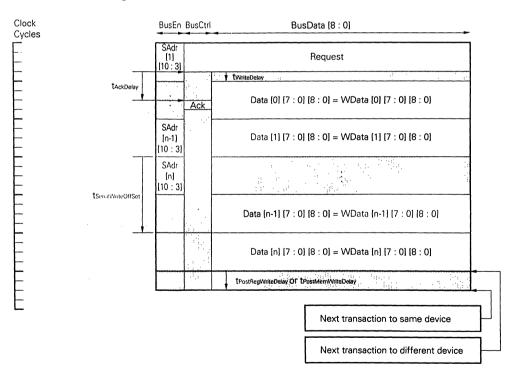
The following figure shows a memory space read transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of read data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of read data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialReadOffset clock cycles before the octbyte of read data to which it corresponds. This means that the serial address packet will move with the read data packet, with a constant offset.

• tsenalReadOffset is the delay from the beginning of a serial address subpacket to the beginning of the read data subpacket (octbyte) with which it is associated.

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

Figure 7-3. Read Transaction with Serial Address Packet


7.4 Write Transactions with Serial Address Packet

The following figure shows a memory space write transaction for a command which uses the serial address packet. For a transaction which moves (n+1) octbytes of write data, the serial address packet will be $(4 \times n)$ clock cycles in length (recall that the low-order address bits for the first octbyte of write data come from the request packet).

Each serial address subpacket (each SAdr[i][10:3] field) is transmitted by the initiating device a time tserialwriteoffset clock cycles before the octbyte of write data to which it corresponds. This means that the serial address packet will move with the write data packet, with a constant offset.

• tserialWriteOffset is the delay from the beginning of a serial address subpacket to the beginning of the write data subpacket (octbyte) with which it is associated.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either point since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

7.5 Read Transactions with Serial Control Packet

The following figure shows a memory space read transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of read data have been transferred, where CV is the value of the Count[7:3] Field when interpreted as an unsigned, five bit integer. In the example shown, the read data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialReadOffSet clock cycles before the end of the last read data octbyte which is transmitted by the responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

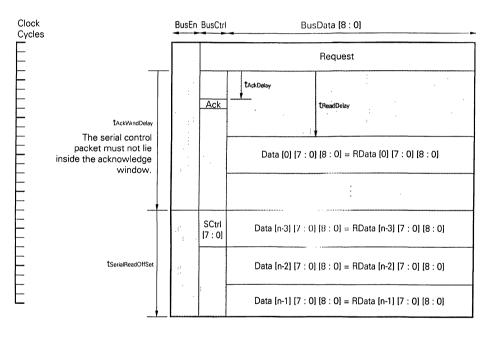
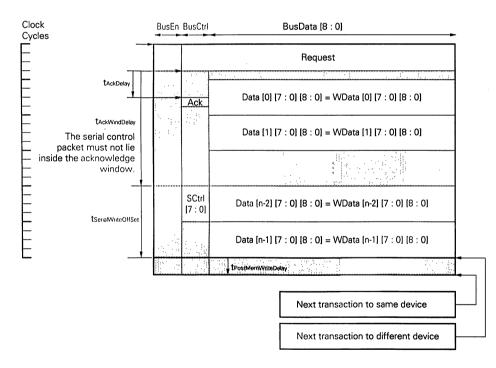


Figure 7-5. Read Transaction with Serial Control Packet


7.6 Write Transactions with Serial Control Packet

The following figure shows a memory space write transaction for a command which uses the serial control packet. This packet is used to terminate a transaction before the (CV+1) octbytes of write data have been transferred, where CV is the value of the Count[7:3] field when interpreted as an unsigned, five bit integer. In the example shown, the write data is terminated after (n) octbytes have been transferred.

The serial control packet is transmitted by the initiating device a time tserialWriteOffSet clock cycles before the end of the last write data octbyte which is transmitted by the initiating device.

Note that this offset interval is measured at the initiating device or the responding device; it will be the same at either since the serial address packet and write data packet are moving in the same direction - from initiating device to responding device.

The serial control packet is also constrained to lie entirely outside the tAckWinDelay interval, as shown in the figure, in order to avoid interference with the acknowledge packet which is being returned by the responding device. Violation of this constraint will produce undefined (Undef) results.

Figure 7-6. Write Transaction with Serial Control Packet

8. Nack Acknowledge Response

8.1 Retry and Miss Latency

If a responding device returns a Nack acknowledge packet, then no read or write data packet is transacted. The current transaction is complete at the end of the acknowledge window. It will be necessary to wait for an interval of time (called a tRETRY interval) before resubmitting the transaction. The following figure illustrates this case.

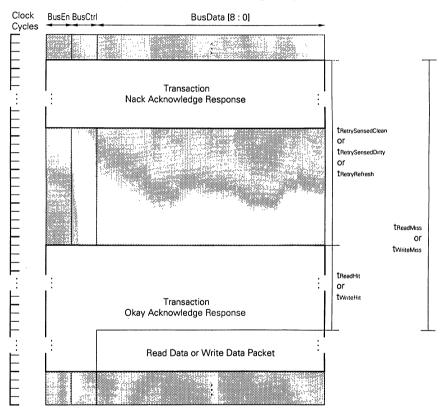


Figure 8-1. Nack Acknowledge Response

Once the tRETRY interval has elapsed, the transaction may be restarted by the initiating device, and the RDRAM will return an Okay acknowledge packet and the data packet will be transferred. An RDRAM will Nack any other transactions which are issued during the tRETRY interval.

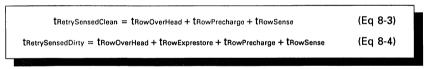
Two miss latency parameters may be derived with the following equations:

tReadMiss = tRETRY + tReadHit	(Eq 8-1)
twriteMiss = tretry + twriteHit	(Eq 8-2)

where tRETRY = {tRetrySensedClean, tRetrySensedDirty, tRetryRefresh}. The tReadMiss and twriteMiss parameters are the time from the beginning of the original (Nacked) request packet to the beginning of the data packet which is eventually transferred.

8.2 **tretry interval**

8.2.1 Retry Due to RowMiss


If an initiating device requests a region of memory space in an RDRAM slave which is not currently held in the RowSenseAmpCache, the RDRAM will respond with a Nackacknowledge packet. The RDRAM will then begin a RowMiss operation to get the proper row into the RowSenseAmpCache. During the RowMiss, the RDRAM will Nack any request it is given. When the RowMiss is complete, the new row may be accessed.

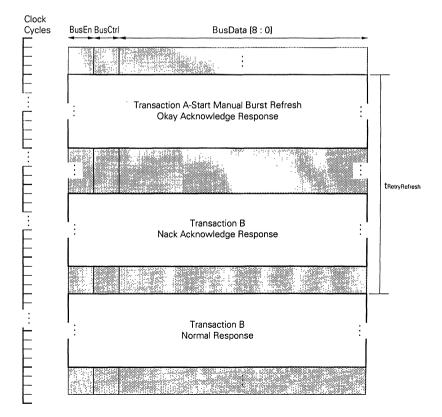
Each bank has a Valid flag and a Dirty flag for its Row register. After reset, both are zero. After a RowMiss has caused a new row to be placed into the RowSenseAmpCache, the Row register contains its row address and the Valid flag is set to a one. If the RowSenseAmpCache contents are modified with a memory write transaction, the dirty flag will be set. These flags are not directly accessible to initiating devices.

A subsequent RowMiss will cause the old row to be written back to the bank (if it was dirty and an explicit restore was not forced with the Close bit in the request packet) and a new row to be placed into the RowSenseAmpCache. The time required for this is called the tRETRY time, and is added to the normal read and write hit latency times, as shown in the preceding figure. These times are given by the following equations. The component parameters are shown in a subsequent table. All of these tRETRY intervals correspond roughly to the cycle time parameter the of a conventional page mode DRAM. This is because RDRAMs use CAS-type accesses for all memory read and write transactions.

After a new row is sensed and placed into the RowSenseAmpCache, a final interval tRowImprestore is used to restore the row in core back to its original state. This is necessary because the DRAM sense operation is destructive. This interval is not in the critical timing path, and is performed in parallel with a subsequent data transfer. It can extend a subsequent retry operation.

There are two tRETRY equations for the 16M RDRAM:

The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".


8.2.2 Retry Due to Pending Burst Refresh

In a 16M RDRAM, a refresh burst will also restore the currently accessed row if it is dirty. This requires a tRowExprestore interval. If the row is clean, this interval is not required. A burst of four rows are precharged/ sensed/restored (using the tRowImprestore interval), and the current row is precharged/sensed so the RDRAM is left with its RowSenseAmpCache state unaltered (except the row's dirty flag will be cleared):

tRetryRefrosh =	
$(t_{RowOverHead} + t_{RowExprestore} Note 1 + 2t_{RowPrecharge} Note 2 + t_{RowSense})$	
+ 4 (tRowOverHead + tRowImprestore + 2tRowPrecharge ^{Note 2} + tRowSense)	(Eq 8-5)

When a transaction initiates a manual burst refresh in an RDRAM (transaction "A" in the figure below), the RDRAM will Nack all further transactions directed to in during the tRetryRefresh interval after. No information from these Nacked transactions will be retained after the tRetryRefresh interval. After the tRetryRefresh interval, transactions will be handled in a normal fashion. The detailed functional description is provided in "Rambus DRAM user's manual (Reference Manual)".

- Notes 1. This term is not present if the current row is clean.
 - 2. This term is present twice in each cycle because the tRowPrecharge interval is also used to ensure that a minimum delay between restore operations is met.

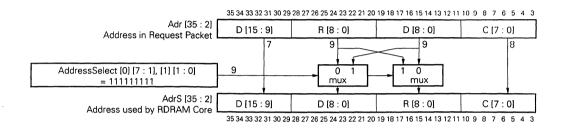
Figure 8-2. Transaction Holdoff Due to Burst Refresh

8.3 Retry Component Intervals

The tRETRY intervals are built from the tRowOverHead, tRowPrecharge, tRowSense, tRowImprestore, and tRowExprestore intervals. All five intervals are measured in tcycle units, and thus scale with the clock frequency.

The theorem overhead interval consists of the RowMiss state machine overhead. The remaining four intervals represent the width of intervals used for timing core operations. These core operations have minimum times measured in nanosecond units (this is shown in the "core timing(ns)" columns in the table below). The four intervals are composed of a fixed part and a variable (programmable) part. If the clock frequency is reduced, the variable part may be reduced so the sum of the fixed and variable parts remain greater than or equal to the minimum core operation time (in nanoseconds).

Delay	Fixed Part (overhead)	16M RDRAM		
Parameter	and Variable Part ^{Note}	tcycle Units (4 ns)	core timing (ns) with tcycle = 4ns	
tRowOverHead	Row overhead	6	24	
	_	n/a		
tRowPrecharge	RowPrecharge overhead	4	20	
	RowPrecharge[4:0]	1		
tRowSense	RowSense overhead	4	44	
	RowSense[4:0]	7		
tRowImprestore	RowImpRestore overhead	4	56	
	RowImpRestore[4:0]	10		
tRowExprestore	RowExpRestore overhead	4	32	
	RowExpRestore[4:0]	4		


Table	8-1.	Retry	Components
rabie	0-1.	neuy	oomponents

Note The variable part is programmed into the indicated field of the RasInterval register.

9. AddressMapping

The address space decoding logic contained in a 16M RDRAM is shown in the following figure. The initiating device places a 33 bit physical octbyte address Adr[35:3] on the Channel. This address is received by the RDRAM slave. The AddressSelect[1][1:0], [0][7:1] control register allows individual bits of the Adr[28:20] and Adr [19:11] fields to be swapped to produce the AdrS[28:20] and AdrS[19:11] fields. The Adr[35:29] and Adr[10:3] fields pass through unaltered to the AdrS[35:29] and AdrS[10:3] fields. The figure shows the case when AddressSelect[0][7:1],[1][1:0] = 11111111, and the two nine bit address fields are exchanged. The detailed functional description is provided in **"Rambus DRAM user's manual (Reference Manual)"**.

10. Electrical Characteristics (Preliminary)

Absolute Maximum Ratings

Symbol	Parameter	MIN.	MAX.	Unit	Note
VI,ABS	Voltage applied to any RSL pin with respect to GND	-0.5	VDD+0.5	v	
VI,TTL,ABS	Voltage applied to any TTL pin with respect to GND	-0.5	VDD+0.5	v	
Vdd, abs	Voltage on Vod with respect to GND	-0.5	VDD,MAX+1.0	V	
Торт	Operation temperature	0	+70	°C	1
TSTORE	Storage temperature	-55	+125	°C	

- Caution The following table represents stress ratings only, and functional operation at the maximums is not guaranteed. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although devices contain protective circuitry to resist damage from static electric discharge, always take precautions to avoid high static voltages or electric fields.
- **Note 1** This parameter apply at the status of using 50% Rambus channel by Read or Write and a transverse air flow greater than 1.5m/s maintained.

Thermal Parameters

Symbol	Parameter	MIN.	MAX.	Unit
TJ	Junction operating temperature		100	°C
οıc	Junction-to-Case thermal resistance		5	°C/W

Capacitance

Symbol	Parameter	MIN.	MAX.	Unit
C1/0	Low-swing input/output parasitic capacitance		2	рF
CI,TTL	TTL input parasitic capacitance		8	рF

Power Consumption

Mode	Parameter		MIN.	MAX.	Unit
lcc1	Active Current	-A45		110	mA
		-A50		125	
Icc2	Standby Current	-A45		330	mA
		-A50		350	
Іссз	Read Operation Current	-A45		440	mA
	(Burst Length = 256)	-A50		480	
ICC4	Write Operation Current	-A45		435	mA
		-A50		460	
ICC5	Power Down Current			T.B.D	mA

Caution These do not include the loL current passing through the low-swing pins to ground.

Recommended Operating Conditions

Symbol	Parameter	MIN.	MAX.	Unit
Vdd, Vdda	Supply voltage	3.15	3.45	v
Vref	Reference voltage	1.95	2.15	v
Vswing	Input voltage range	1.0	1.4	v
Vil	Input low voltage	VREF-0.7	Vref-0.5	v
Viн	Input high voltage	VREF+0.5	Vref+0.7	v
Vil, ttl	TTL input low voltage	-0.5	+0.8	v
Vih, ttl	TTL input high voltage	2.0	VDD+0.5	v

DC Characteristics (Recommended operating conditions unless otherwise noted)

Symbol	Parameter	Conditions	MIN.	MAX.	Unit
IREF	VREF current	VREF=Maximum	-10	+10	μA
Іон	High level output current	0≤Vουτ≤Vαα	-10	+10	μA
lol	Low level output current	Vоυт=1.6 V		25	mA
lı, тті	TTL input leakage current	0≤Vi, ttl≤Vdd	-10	+10	μA
Vон, тт∟	High level TTL output voltage	Іон, тті= -0.25 mA	2.4	VDD	v
Vol, ttl	Low level TTL output voltage	lol, πl=1.0 mA	0	0.4	v

Recommended Timing Conditions

Symbol	Parameter		MIN.	MAX.	Unit
t PAUSE	Pause time after Power On		-	200	μs
tcr, tcf	TxClk and RxClk input rise and fall times		0.3	0.7	ns
tcycle	TxClk and RxClk cycle times	-A45	4.45	6	ns
		-A50	4	6	ns
tтicк	Transport time per bit per pin (this timing interval is synthesized by the RDRAM's internal clock generator)		tcycle/2	tcycle/2	ns
tcн, tcl	TxClk and RxClk high and low times		47%	53%	tcycle
tтя	TxClk-RxClk differential		0.25	0.7	ns
tso	SIn-to-SOut propagation delay			50	ns
ta	TxClk-to-Data/Control output time		tcycle/8+0.05	tcycle3/8-0.05	ns
ts	Data/Control-to-RxClk setup time		tcycle/4-0.05		ns
tн	RxClk-to-Data/Control hold time		tcycle/4-0.05		ns
tref	Refresh interval			32	ms
tlocк	RDRAM internal clock generator lock time		500		t CYCLE

Transaction Timing Characteristics

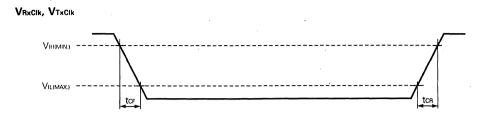
Symbol	Parameter	MIN.	Unit
tPostRegWriteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to register space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	6	tcycle
tPostMem₩riteDelay	Delay from the end of the current transaction to the beginning of the next transaction if the current transaction is a write to memory space and the next transaction is made to the same device. Use zero delay if the next transaction is to a different device.	4	tcycle
t PostMemReadDelay	Delay from the end of the current memory read transac- tion to the beginning of the next transaction.	2	tcycle
t SerialReadOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the read data subpacket (octbyte) with which it is associated.	12	tcycle
tSerialWriteOffSet	Delay from the beginning of a serial address subpacket or serial control packet to the beginning of the write data subpacket (octbyte) with which it is associated.	8	tcycle

Data and Transaction Latency Characteristics

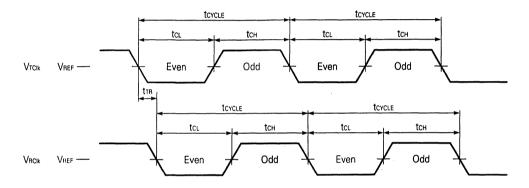
Symbol	Parameter	MIN.	Unit	Notes
tReadĎelay	Delay from the end of a read request packet to the beginning of the read data packet.	7	t CYCLE	1
t WriteDelay	Delay from the end of a write request packet to the beginning of the write data packet.	1	tcycle	2

Notes 1. tReadDelay is programmed to its minimum value.

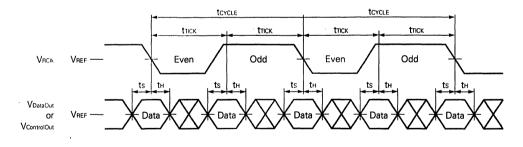
2. twriteDelay is programmed to its minimum value.

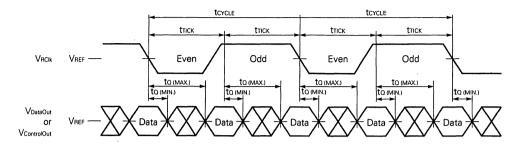

Hit, Retry and Miss Delay Characteristics

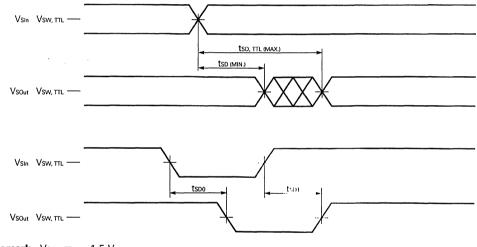
Symbol	Parameter		MIN.	Unit	Notes
tReadHit	Start of request packet to start of read data packet for row hit (Okay).		10	tcycle	1
tWriteHit	Start of request packet to start of write data packet for row hit (Okay).		4	tcycle	1
tRetrySensedClean	Start of request packet for row miss (Nack of request packet for row hit (Okay). The previous row is unmodified.) to start	22	t cycle	2
İRetrySensedDirty	Start of request packet for row miss (Nack) to start of request packet for row hit (Okay). The previous row is modified.		30	tcycle	2
tRetryRefresh	Start of request packet for row miss (Nack) to start of request packet for row	Clean	191	tcycle	2
	hit (Okay).	Dirty	199		
t ReadMiss	Start of request packet for row miss (Nack) to start of Read Data packet for row hit (Okay).		32	tcycle	3
twriteMiss 1	Start of request packet for row miss (Nack) to start of Write Data packet for row hit (Okay).		26	tcycle	3

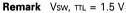

Notes 1. Programmable

- 2. tRowExprestore, tPrecharge, and tSense are programmed to there minimum value.
- 3. Calculated with tRetrySensedClean(MIN).

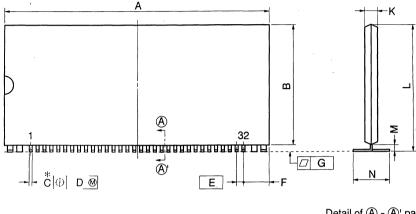

Rise/Fall Timing Chart

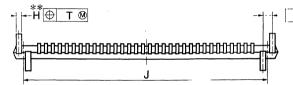

Clock Timing Chart


Receive Data Timing Chart



Transmit Data Timing Chart

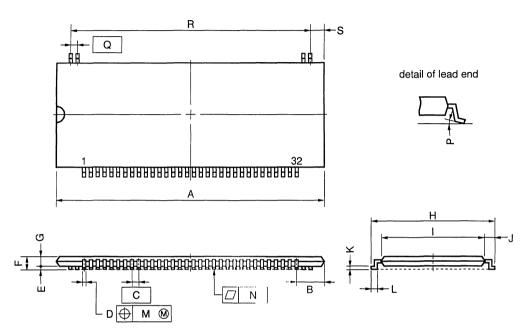

Serial Configuration Pin Timing Chart



11. Package Drawings

32 PIN PLASTIC SVP (11×25)

1


NOTE

- * Each I/O lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
- ** Each support lead centerline is located within 0.18 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	25.30 MAX.	0.996 MAX.
В	11.0±0.1	0.433±0.004
С	0.24±0.06	$0.009^{+0.003}_{-0.002}$
D	0.13	0.005
Е	0.65 (T.P.)	0.026 (T.P.)
F	2.575 MAX.	0.102 MAX.
G	0.10	0.004
н	0.52±0.06	0.020±0.002
<u> </u>	0.9 (T.P.)	0.035 (T.P.)
J	23.20	0.913
ĸ	1.25	0.049
L	11.80 MAX.	0.465 MAX.
м	0.5±0.1	$0.020 \substack{+0.004 \\ -0.005}$
N	3.70 MAX.	0.146 MAX.
Р	0.17+0.025	0.007±0.001
Q	0.9±0.25	0.035+0.011
R	3°+7° -3°	3°+7° -3°
S	1.90 MAX.	0.075 MAX.
Т	0.18	0.007
		CONVAL OF O

S32VN-65-9

72/36 PIN PLASTIC SSOP TYPE

ΝΟΤΕ

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.30 MAX.	0.996 MAX.
В	2.575 MAX.	0.102 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.24±0.06	0.009+0.003
E	0.25±0.05	0.010+0.002
F	1.6 MAX.	0.063 MAX.
G	1.25	0.049
н	13.0±0.2	0.512±0.008
I	11.0±0.1	0.433±0.004
J	1.0±0.2	0.039+0.009 -0.008
к	0.17+0.025	0.007±0.001
L	0.5±0.1	0.020+0.004
М	0.13	0.005
N	0.10	0.004
Р	3°+7° 3°-3°	3° ^{+7°} -3°
Q	0.65 (T.P.)	0.026 (T.P.)
R	22.75	0.896
S	1.275 MAX.	0.051 MAX.
		P32G6-65A

[MEMO]

ł

Synchronous GRAM

MOS INTEGRATED CIRCUIT μ PD481850

8M-bit Synchronous GRAM

Description

The μ PD481850 is a synchronous graphics memory (SGRAM) organized as 128 K words × 32 bits × 2 banks random access port.

This device can operate up to 100 MHz by using synchronous interface. Also, it has 8-column Block Write function to improve capability in graphics system.

This product is packaged in 100-pin plastic QFP (14 imes 20 mm).

Features

- * 131,072 words \times 32 bits \times 2 banks memory
- Synchronous interface (Fully synchronous DRAM with all input signals are latched at rising edge of clock) : Pulsed interface
 - : Automatic precharge and controlled precharge commands
 - : Ping-pong operation between the two internal memory banks
 - : Up to 100 MHz operation frequency
- · Possible to assert random column address in every cycle
- Dual internal banks controlled by A9 (Bank Address: BA)
- Byte control using DQM0 to DQM3 signals both in read and write cycle
- 8-column Block Write (BW) function
- Persistent write per bit (WPB) function
- Programmable wrap sequence (Sequential/Interleave)
- Programmable burst length (1, 2, 4, 8 and full page)
- Programmable CAS latency (1, 2, and 3)
- Power Down operation and Clock Suspend operation
- · Auto refresh (CBR refresh) or self refresh capability
- Single 3.3 V \pm 0.3 V power supply
- LVTTL compatible inputs and outputs
- 100-pin Plastic QFP (14 × 20 mm)
- 1,024 refresh cycles/16 ms
- · Burst termination by Precharge command
- · Burst termination by Burst stop command (in case of full-page burst)

Ordering Information

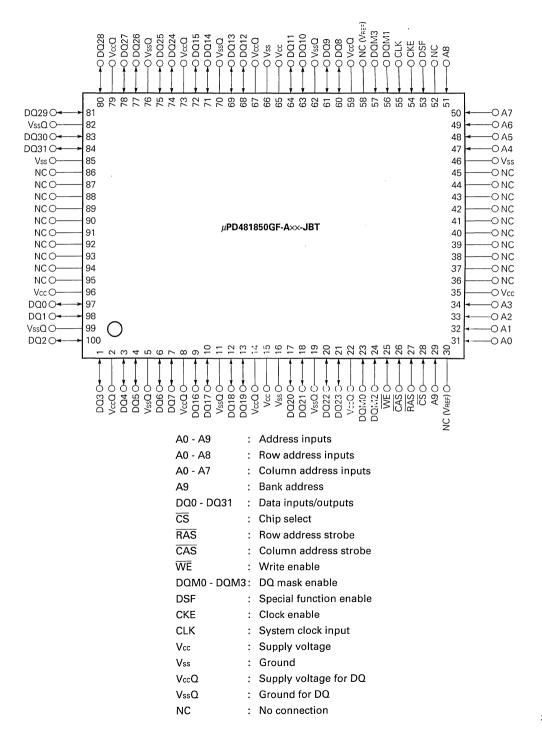
Part number	Cycle time ns (MIN.)	Clock frequency MHz (MAX.)	Package
μPD481850GF-A10-JBT	10	100	100-pin Plastic QFP (14 × 20 mm)
μPD481850GF-A12-JBT	12	83	
μPD481850GF-A15-JBT	15	66	

The information in this document is subject to change without notice.

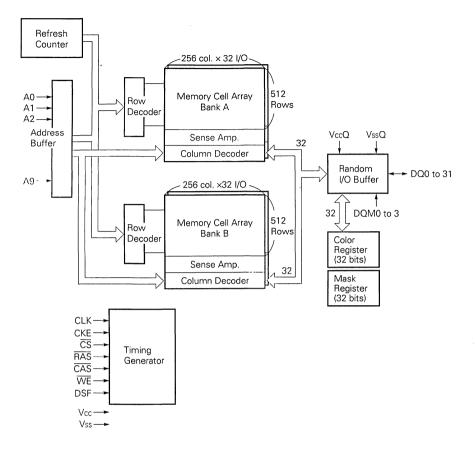
NEC

Part Number

Synchronous GRAM


	μ PD48	1	8	5	0	GF	-	А	10
NEC CMOS Application Specific Men	nory								
Device code									
Capacity 8: 8M bits									
Words organization 5: x32]					
Function									
Package GF: QFP									
Vcc A: 3.3 V ± 0.3 V]	
Cycle time 10: 10 ns 12: 12 ns									

15: 15 ns


١

Pin Configuration (Marking Side)

100-pin Plastic QFP (14 × 20 mm)

Block Diagram

CONTENTS

1.	Input/Output Pin Function	365
2.	Commands	366
3.	Simplified State Diagram	370
4.	Truth Table	371
	4.1 Command Truth Table	371
	4.2 DQM Truth Table	371
	4.3 CKE Truth Table	372
	4.4 Operative Command Table	373
	4.5 Command Truth Table for CKE	380
	4.6 Command Truth Table for Two Banks Operation	381
5.	Initialization	382
6.	Programming the Mode Register	383
7.	Mode Register	384
	7.1 Burst Length and Sequence	385
8.	Programming the Special Register	386
9.	Address Bits of Bank-Select and Precharge	387
10.	Precharge	388
11.	Auto Precharge	389
	11.1 Read with Auto Precharge	389
	11.2 Write with Auto Precharge	390
	11.3 Block Write with Auto Precharge	391
12.	Write/Block Write with Write Per Bit	392
13.	Block Write	392
14.	Read/Write Command Interval	394
	14.1 Read to Read Command Interval	394
	14.2 Write to Write Command Interval	394
	14.3 Write to Read Command Interval	395
	14.4 Block Write to Write or Write/Block Write Command Interval	396
	14.5 Block Write to Read Command Interval	396
	14.6 Read to Write/Block Write Command Interval	397

N	EC

15.	Burs	t Term	ination	399
	15.1	Burst S	Stop Command in Full Page	399
	15.2	Precha	rge Termination	400
		15.2.1	Precharge Termination in READ Cycle	400
		15.2.2	Precharge Termination in WRITE Cycle	401
16.	Elect	rical S	pecifications (Preliminary)	403
	16.1	AC Par	ameters for Read/Write Cycles	408
	16.2	Relatic	onship between Frequency and Latency	410
	16.3	CS Fur	nction	411
	16.4	Basic (Cycles	412
		16.4.1	Initialization	412
		16.4.2	Mode Register Set	413
		16.4.3	Refresh Cycle	414
		16.4.4	Cycle with Auto Precharge	416
		16.4.5	Full Page Mode Cycle	422
		16.4.6	Precharge Termination Cycle	428
		16.4.7	Clock Suspension	431
		16.4.8	Power Down Mode	437
		16.4.9	Other Cycles	438
	16.5	Graphi	cs Cycles	440
	16.6	Applic	ation Cycles	447
			Page Cycles with Same Bank	447
		16.6. 2	Cycles with Pingpong Banks	453
		16.6 .3	READ and WRITE Cycles	460
		16. 6.4	Interleaved Cycles	463
		16. 6.5	Full Page Random Cycles	469
17.	Pack	age Dr	awing	471
18.	Reco	om <mark>me</mark> n	ded Soldering Conditions	472

1. Input/Output Pin Function

Pin name	Input/Output	Function
CLK	Input	CLK is the master clock input. Other inputs signals are referenced to the CLK rising edge.
CKE	Input	CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not asserted and the μ PD481850 suspends operation. When the μ PD481850 is not in burst mode and CKE is negated, the device enters power down mode. During power down mode, CKE must remain low. In Self refresh mode, low level on this pin is also used as part of the input command to specify Self refresh.
<u>cs</u>	Input	$\overline{\text{CS}}$ low starts the command input cycle. When $\overline{\text{CS}}$ is high, commands are ignored but operations continue.
RAS, CAS, WE	Input	$\overline{\text{RAS}}$, $\overline{\text{CAS}}$ and $\overline{\text{WE}}$ have the same symbols on conventional DRAM but different functions. For details, refer to the command table.
DSF	Input	DSF is part of the inputs of graphics command of the μ PD481850. If DSF is inactive (Low level), μ PD481850 operates as same as SDRAM.
A0 - A8	Input	Row Address is determined by A0 - A8 at the CLK (clock) rising edge in the activate command cycle. Column Address is determined by A0 - A7 at the CLK rising edge in the read or write command cycle. A8 defines the precharge mode. When A8 is high in the precharge command cycle, both banks are precharged; when A8 is low, only the bank selected by A9 is precharged. When A8 high in read or write command cycle, the precharge start automati- cally after the burst access.
A9		A9 is the bank select signal (BA). In command cycle, A9 low selects bank A and A9 high selects bank B.
DQM0 - DQM3	Input	DQM controls I/O buffers. DQM0 corresponds to the lowest byte (DQ0 to DQ7), DQM1 corresponds to DQ8 to DQ15, DQM2 corresponds to DQ16 to DQ23. DQM3 corresponds to DQ24 to DQ31. In read mode, DQM controls the output buffers like a conventional OE pin. DQM high and DQM low turn the output buffers off and on, respectively. The DQM latency for the read is two clocks. In write mode, DQM controls the word mask. Input data is written to the memory cell if DQM is low but not if DQM is high. The DQM latency for the write is zero.
DQ0 - DQ31	Input/Output	 DQ pins have the same function as I/O pins on a conventional DRAM. These are normally 32-bit data bus and are used for inputting and outputting data. Function as the mask data input pins in the special register set command. Write operations can be performed after Active command with WPB (old mask data). Functions as the column selection data input pin in the block write cycle.
Vcc Vss VccQ VssQ	(Power supply)	Vcc and Vss are power supply pins for internal circuits. VccQ and VssQ are power supply pins for the output buffers.

2. Commands

Mode register set command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE}, DSF = Low)$

The μ PD481850 has a mode register that defines how the device operates. In this command, A0 through A9 are the data input pins. After power on, the mode register set command must be executed to initialize the device.

The mode register can be set only when both banks are in idle state. During 20 ns (tesc) following this command, the μ PD481850 cannot accept any other commands.

 $(\overline{CS}, \overline{RAS}, DSF = Low, \overline{CAS}, \overline{WE} = High)$

The μ PD481850 has two banks, each with 512 rows.

This command activates the bank selected by A9 (BA) and a row address selected by A0 through A8.

This command corresponds to a conventional DRAM's RAS falling.

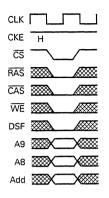
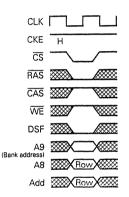



Fig. 1

Mode register set command

Fig. 2 Row address strobe and bank active command

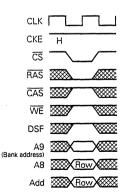


Fig. 3 Row address strobe and bank active command with WPB enable

Bank activate command with WPB enable

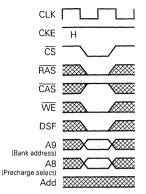
 $(\overline{CS}, \overline{RAS} = Low, \overline{CAS}, \overline{WE}, DSF = High)$

This command is same as Bank activate command. After this command, write per bit function is available. Mask register's data is used as write mask data.

Precharge command

 $(\overline{CS}, \overline{RAS}, \overline{WE}, DSF = Low, \overline{CAS} = High)$

This command begins precharge operation of the bank selected by A9 (BA) and A8. When A8 is High, both banks are precharged, regardless of A9. When A8 is Low, only the bank selected by A9 is precharged. A9 low selects bank A and A9 high selects bank B.


After this command, the μ PD481850 can't accept the activate command to the precharging bank during tre (precharge to activate command period). This command can terminate the current burst operation (2, 4, 8, full page burst length).

This command corresponds to a conventional DRAM's RAS rising.

Write command

 $(\overline{CS}, \overline{CAS}, \overline{WE}, DSF = Low, \overline{RAS} = High)$

If the mode register is in the burst write mode, this command sets the burst start address given by the column address to begin the burst write operation. The first write data must be input with this write operation. The first write data in burst mode can input with this command with subsequent data on following clocks.

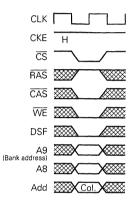


Fig. 5 Column address and write command

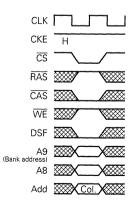


Fig. 6 Column address and read command

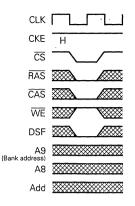
Read command

 $(\overline{CS}, \overline{CAS}, DSF = Low, \overline{RAS}, \overline{WE} = High)$

This command sets the burst start address given by the column address.

Read data is available after CAS latency requirements have been met.

CBR (auto) refresh command


 $(\overline{CS}, \overline{RAS}, \overline{CAS}, DSF = Low, \overline{WE}, CKE = High)$

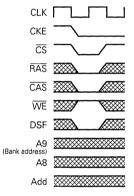
This command is a request to begin the CBR refresh operation. The refresh address is generated internally.

Before executing CBR refresh, both banks must be precharged.

After this cycle, both banks will be in the idle (precharged) state and ready for a bank activate command.

During the period (from refresh command to refresh or activate command), the μ PD481850 cannot accept any other command.

Fig. 7 Auto refresh command


Self refresh entry command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, DSF, CKE = Low, \overline{WE} = High)$

After the command execution, self refresh operation continues while CKE remains low. When CKE goes high, the μ PD481850 exits the self refresh mode.

During self refresh mode, refresh interval and refresh operation are performed internally, so there is no need for external control.

Before executing self refresh, both banks must be precharged.

Fig. 8 Self refresh entry command

CLK CKE H CKE H CS CAS CAS CAS WE CAS DSF CAS (Bank address) A8

Fig. 9 Burst stop command in Full Page mode

Burst stop command in full page

 $(\overline{CS}, \overline{WE}, DSF = Low, \overline{RAS}, \overline{CAS} = High)$

This command can stop the current full page burst (BL = 256) operation. If BL is set to 2, 4, 8, to execute this command is Nop.

No operation

 $(\overline{CS}, DSF = Low, \overline{RAS}, \overline{CAS}, \overline{WE} = High)$

This command is not a execution command. No operations begin or terminate by this command.

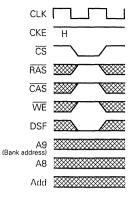
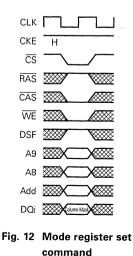



Fig. 10 No operation

CLK H CKE H CS RAS S CAS S WE DSF S A9 A8 Add S Conversion Conversion CAS S CA

Fig. 11 Mode register set command

Special register set command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE} = Low, DSF = High)$

The μ PD481850 has two special registers for graphics commands. One is color register and the other is mask register. In this command, A0 through A9 are the data input pins for the register select (color or mask register). DQ0 through DQ31 are the data input pins for the Color data or the WPB data.

During 20 ns (trsc) following this command, the μ PD481850 can not accept any other commands.

Masked block write command

 $(\overline{CS}, \overline{CAS}, \overline{WE} = Low, \overline{RAS}, DSF = High)$

This command activates 8-column block write function. This command assumes as burst length = 1. Write data comes from color register, column address mask data is input from DQi in this command.

Automatic sequence

4. Truth Table

4.1 Command Truth Table

Function	Symbol	С	KE	cs	RAS	CAS	WE	DSF		Addres	s
Function	Symbol	n–1	n	0.5	IIAS		VVE		A9	A8	A7 - A0
Device deselect	DESL	н	×	н	×	×	×	×	×	×	×
No operation	NOP	н	×	L	н	н	н	L	×	×	×
Burst stop in full page	BST	н	×	L	н	н	L	L	×	×	×
Read	READ	н	×	L	н	L	н	L	BA	L	CA
Read with auto precharge	READA	н	×	L	н	L	н	L	BA	н	CA
Write	WRIT	Н	×	L	н	L	L	L	BA	L	CA
Write with auto precharge	WRITA	н	×	L	н	L	L	L	BA	н	CA
Masked block write	BW	н	×	L	н	L	L	н	BA	L	CA
Masked block write with auto precharge	BWA	Н	×	L	н	L	L	н	BA	н	CA
Bank activate	ACT	н	×	L	L	н	н	L	BA	RA	
Bank activate with WPB enable	ACTWPB	н	×	L	L.	н	н	н	BA	RA	
Precharge select bank	PRE	Н	×	L	١.	н	L	L	BA	L	×
Precharge all banks	PALL	н	×	L	L	н	L	L	×	н	×
Mode register set	MRS	Н	×	L	L	L	L	L	OP. CC	DE	
Special register set	SRS	н	×	L	L	L	L	н	OP. CC	DDE	

Remark Legend:

H = High level, L = Low level, \times = High or Low level (Don't care), BA = Bank address (A9), RA = Row address, CA = Column address

4.2 DOM Truth Table

Function	Symbol	С	DQMi	
Function	Symbol	n–1	n	DUM
Data write/output enable	ENBi	н	×	L
Data mask/output disable	MASKi	н	×	н

Remark Legend:

H = High level, L = Low level, \times = High or Low level (Don't care), i = 0, 1, 2, 3

4.3 CKE Truth Table

Current state	Function	Symbol	CKE		\overline{CS}	RAS	CAS	WE	DSF	Address
		Symbol	n-1	n	0.5	IIA3	CAS	VVE	Dor	Address
Activating	Clock suspend mode entry		н	L	×	×	×	×	×	×
Any	Clock suspend		L	L	×	×	×	×	×	×
Clock suspend	Clock suspend mode exit		L	н	×	×	×	×	×	×
ldle	CBR refresh command	REF	н	н	L	L	L	н	L	×
Idle	Self refresh entry	SELF	н	L	L	L	L	н	L	×
Calf asfessh	Self refresh exit		L	н	L	н	н	н	×	×
Self refresh	Self refresh exit		L	н	н	×	×	×	×	×
ldle	Power down entry		н	L	×	×	×	×	×	×
Power down	Power down exit		L	н	×	×	×	×	×	×

Remark Legend:

H = High Level, L = Low level, \times = High or Low level (Don't care)

4.4 Operative Command Table^{Note 1}

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Idle	н	×	×	×	×	×	DESL	Nop or Power down	2
	L	н	н	н	×	×	NOP	Nop or Power down	2
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	× .	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	Bank active with WPB: Latch RA	
	L	L	н	н	L	BA, RA	ACT	Bank active: Latch RA	
	L	L	н	L	н	x	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Nop	11
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	CBR refresh/Self refresh	4, 12
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	Mode register access	12
Bank active	н	×	×	×	×	×	DESL	Nop	
	L	н	н	н	×	×	NOP	Nop	
	L	н	н	L	н	Χ.	Undefined	ILLEGAL	
	L	н	н	L	L	x	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAI.	
	L	н	L	н	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	5
	L	н	L	L	н	BA, CA, A8	BW/BWA	Begin block write: Latch CA: Determine AP	5
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	5
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Precharge	6
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	ĈŚ	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Bank active	
	L	н	н	н	×	×	NOP	Continue burst to end \rightarrow Bank active	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	× `'	BST	1, 2, 4, 8 burst length; Nop (Continue burst to end \rightarrow Bank active) Full page burst; Burst stop \rightarrow Bank active	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Term burst, new read: Determine AP	7
	L	н	L	L	н	BA, CA, A8	BW/BWA	Term burst, Start block write: Determine AP	7, 8
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, start write: Determine AP	7, 8
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for reads	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Write recovering	
	L	н	н	н	×	x	NOP	Continue burst to end \rightarrow Write recovering	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	1, 2, 4, 8 burst length; Nop (Continue burst to end → Bank active) Full page burst; Burst stop → Bank active	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Term burst, start read: Determine AP	7, 8
	L	н	L	L	н	BA, CA, A8	BW/BWA	Term burst, new block write: Determine AP	7
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, new write: Determine AP	7
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for writes	3, 9
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	$\overline{\text{CS}}$	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read with	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow precharging	
auto precharge	L	н	н	н	×	×	NOP	Continue burst to end \rightarrow precharging	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write with auto	н	×	×	×	×	×	DESL	Continue burst to end \rightarrow Write recovering with auto precharge	
precharge	L	н	н	Н	×	×	NOP	Continue burst to end \rightarrow Write recovering with auto precharge	
	L	н	н	L	н	× .	Undefined	ILLEGAL	
	L	н	н	L	L	x	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	1
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

						······			(4/
Current state			CAS		DSF	Address	Command	Action	Notes
Precharging	н	×	×	×	×	×	DESL	Nop \rightarrow Enter idle after t _{RP}	
	L	н	н	н	×	×	NOP	Nop → Enter idle after t _{RP}	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	_L	н	н	×	Undefined	ILLEGAL	
	L	Н	L	Н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	Н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	Nop \rightarrow Enter idle after the	11
	L	L	L	н	н	×	Undefined	ILLEGAL	
	I.	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Bank activating	н	×	×	×	×	×	DESL	Nop \rightarrow Enter bank active after taco	
(t _{RCD})	L	н	н	н	×	x	NOP	Nop \rightarrow Enter bank active after tree	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	Н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3, 10
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3, 10
	L	L	н	L	н	x	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

									(5
Current state	$\overline{\text{CS}}$	RAS	CAS	WE	DSF	Address	Command	Action	Note
Write recovering	н	×	×	×	×	×	DESL	Nop> Enter bank active after topu	
(tdpl)	L	н	н	н	×	×	NOP	Nop \rightarrow Enter bank active after topu	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	3
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	8
	L	н	L	L	н	BA, CA, A8	BW/BWA	Begin block write; Latch CA: Determine AP	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Vrite recovering	н	×	×	×	×	×	DESI.	Nop \rightarrow Enter precharge after tes	
vith auto	L	н	н	н	×	×	NOP	Nop \rightarrow Enter precharge after ter	
orecharge	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	3, 8
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	3
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	3
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	н	н	x	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

······································		·	·					P	(6/7
Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Refreshing	н	×	×	×	×	×	DESL	Nop \rightarrow Enter idle after t _{Rc}	
	L	н	н	н	×	×	NOP	Nop \rightarrow Enter idle after t _{Rc}	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Mode register	н	×	×	×	×	×	DESL	Nop Enter idle after tesc	
accessing	L	н	н	н	×	×	NOP	Nop \rightarrow Enter idle after t _{RSC}	
	L	н	н	L	н	×	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	×	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	x	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	- *

(7/7)

							I		(///)
Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Special mode	н	×	×	×	×	x	DESL	Nop \rightarrow Enter previous state after tasc	
register accessing	L	н	н	н	×	×	NOP	Nop \rightarrow Enter previous state after trace	
uooosing	L	н	н	L	н	x	Undefined	ILLEGAL	
	L	н	н	L	L	×	BST	ILLEGAL	
	L	н	L	н	н	x	Undefined	ILLEGAL	
	L	н	L	н	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	н	L	L	н	BA, CA, A8	BW/BWA	ILLEGAL	
	L	н	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	н	н	н	BA, RA	ACTWPB	ILLEGAL	
	L	L	н	н	L	BA, RA	ACT	ILLEGAL	
	L	L	н	L	н	×	Undefined	ILLEGAL	
	L	L	н	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	н	н	×	Undefined	ILLEGAL	
	L	L	L	н	L	×	REF/SELF	ILLEGAL	
	L	L	L	L	н	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Notes 1. All entries assume that CKE was active (High level) during the preceding clock cycle.

- If both banks are idle, and CKE is inactive (Low level), μPD481850 will enter Power down mode. All input buffers except CKE will be disabled.
- 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank.
- If both banks are idle, and CKE is inactive (Low level), μPD481850 will enter Self refresh. All input buffers except CKE will be disabled.
- 5. Illegal if theo is not satisfied.
- 6. Illegal if thas is not satisfied.
- 7. Must satisfy burst interrupt condition.
- 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 9. Must mask preceding data which don't satisfy tDPL.
- 10. Illegal if tRRD is not satisfied.
- 11. Nop to bank precharging or in idle state. May precharge bank(s) indicated by BA (and A8).
- 12. Illegal if any bank is not idle.

Remark Legend:

$$\begin{split} H &= \text{High level}, \ L &= \text{Low level}, \ \times &= \text{High or Low level (Don't care)}, \ V &= \text{Valid Data input}, \\ \text{BA} &= \text{Bank address (A9), A8} &= \text{Precharge select, RA} &= \text{Row address, CA} &= \text{Column address,} \\ \text{Term} &= \text{Terminate, AP} &= \text{Auto precharge, NOP} &= \text{No operation,} \\ \end{split}$$

ILLEGAL = Device operation and/or data-integrity are not guaranteed

4.5 Command Truth Table for CKE

Current state	CI	(E	CS	RAS	CAS	WE	DSF	Address	Action	Notes
	n-1	n								
Self refresh (S.R.)	н	×	×	×	×	×	×	×	INVALID, CLK(n-1) would exit S.R.	
(0.1)	н	н	н	×	×	×	×	×	S.R. Recovery	1
	L	н	L	н	н	×	×	×	S.R. Recovery	1
	L	н	L	н	L	×	×	×	ILLEGAL	1
	L	н	L	L	×	×	×	×	ILLEGAL	1
	L	L	×	×	×	×	×	X .	Maintain S.R.	
Self refresh	н	н	н	×	×	×	×	×	Idle after tac	
recovery	н	н	L	н	н	н	×	×	Idle after t _{RC}	
	н	н	L	н	н	L	×	×	ILLEGAL	
	н	н	L	н	L	×	×	×	ILLEGAL	
	н	Н	L	L	×	×	×	×	ILLEGAL	
	н	L	н	×	×	×	×	×	Begin clock suspend next cycle	
	н	L	L	н	н	н	×	×	Begin clock suspend next cycle	
	н	L	L	н	н	L	×	×	ILLEGAL	
	н	L	L	н	L	×	×	×	ILLEGAL	
	н	L	L	L	×	×	×	×	ILLEGAL	
	L	н	×	×	×	×	×	x	Exit clock suspend next cycle	1
	L	L	×	×	×	×	×	×	Maintain clock suspend	
Power down	н	×	×	×	×	×	×		INVALID, CLK(n-1) would exit P.D.	
(P.D.)	L	н	×	×	×	×	×	×	EXIT P.D. \rightarrow Idle	1
	L	L	×	×	×	×	×	×	Maintain power down mode	
Both banks idle	н	н	н	×	×	×	×	×	Refer to operations in Operative Command Table	
	н	н	L	н	×	×	×	×	Refer to operations in Operative Command Table	
	н	н	L	L	н	×	×	×	Refer to operations in Operative Command Table	
	н	н	L	L	L	н	L	×	Refresh	
	н	н	L	L	L	L	×	Op-Code	Refer to operations in Operative Command Table	
	н	L	н	×	×	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	н	×	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	L	н	×	×	×	Refer to operations in Operative Command Table	
	н	L	L	L	L	н	L	×	Self refresh	2
	н	L	L	L	L	L	×	Op-Code	Refer to operations in Operative Command Table	
	L	×	×	×	×	×	×	×	Power down	2
Any state other	н	н	×	×	×	×	×	×	Refer to operations in Operative Command Table	
than listed	н	. L	×	×	×	×	×	×	Begin clock suspend next cycle	3
above	L	н	×	×	×	×	×	×	Exit clock suspend next cycle	
	-	L	×	×	×	×	×	×	Maintain clock suspend	

Notes 1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT.

2. Power down and Self refresh can be entered only from the both banks idle state.

3. Must be legal command as defined in Operative Command Table.

Remark Legend:

H = High level, L = Low level, × = High or Low level (Don't care)

CS	RAS	CAS	WE	DSF	A9 (BA)	A8	A7 - A0	Action	"FROM" StateNote 1	"TO" StateNote 2
н	×	×	×	×	×	×	×	NOP	Any	Any
L	н	н	н	L	×	×	×	NOP	Апу	Any
L	н	н	L	L	×	×	×	BST	(R/W/A)0(I/A)1	A0(I/A)1
									I0(I/A)1	10(I/A)1
									(R/W/A)1(I/A)0	A1(I/A)0
									I1(I/A)0	I1(I/A)0
L	н	L	н	L	н	н	CA	Read	(R/W/A)1(I/A)0	RP1(I/A)0
					н	н	CA		A1(R/W)0	RP1A0
					н	L	CA		(R/W/A)1(I/A)0	R1(I/A)0
					н	L	CA		A1(R/W)0	R1A0
					L	н	CA]	(R/W/A)0(I/A)1	RP0(I/A)1
					L	н	CA]	A0(R/W)1	RP0A1
					L	L	CA		(R/W/A)0(I/A)1	R0(I/A)1
					L	L	CA		A0(R/W)1	R0A1
L	н	L	L	ц/н	н	н	CA	Write/Block Write	(R/W/A)1(I/A)0	WP1(I/A)0
					н	н	CA		A1(R/W)0	WP1A0
					н	L	CA		(R/W/A)1(I/A)0	W1(I/A)0
					н	L	CA		A1(R/W)0	W1A0
					L	н	СА		(R/W/A)0(I/A)1	WP0(I/A)1
					L	н	CA		A0(R/W)1	WP0A1
					L	L	CA		(R/W/A)0(I/A)1	W0(I/A)1
					L	L	CA		A0(R/W)1	W0A1
L	L	н	н	L/H	н	RA		Activate Row	l1Any0	A1Any0
					L	RA			l0Any1	A0Any1
L	L	н	L	L	×	н	×	Precharge	(R/W/A/I)0(I/A)1	1011
					×	н	×		(R/W/A/I)1(I/A)0	1110
					н	L	×		(R/W/A/I)1(I/A)0	I1(I/A)0
					н	L	×		(I/A)1(R/W/A/I)0	11(R/W/A/I)0
				ĺ	L	L	×		(R/W/A/I)0(I/A)1	I0(I/A)1
					L	L	×		(I/A)0(R/W/A/I)1	10(R/W/A/I)1
L	L	L	н	L	×	×	×	Refresh	1011	1011
L	L	L	L	L	Op-Coo	Op-Code		Mode Register Access	1011	1011
L	L	L	L	н	Op-Code		Special Register Access	(I/A)0(I/A)1	(I/A)0(I/A)1	

4.6 Command Truth Table for Two Banks Operation

- Notes 1. If the μ PD481850 is in a state other than above listed in the "From State" column, the command is illegal.
 - 2. The states listed under "To" might not be entered on the next clock cycle. Timing restrictions apply.

NEC

RemarkLegend:H = High level, L = Low level, × = High or Low level (Don't care),BA = Bank address (A9), I = Idle, A = Bank active,R = Read with No precharge (No precharge is posted)W = Write with No precharge (No precharge is posted)RP = Read with auto precharge (No precharge is posted)WP = Write with auto precharge (No precharge is posted)WP = Write with auto precharge (No precharge is posted)Any = Any StateX0Y1 = Bank0 is in state "X", Bank1 = in state "Y"(X/Y)0Z1 = Z1(X/Y)0 = Bank0 is in state "X" or "Y", Bank1 is in state "Z"

5. Initialization

The synchronous GRAM is initialized in the power-on sequence according to the following.

- To stabilize internal circuits, when power is applied, a 100-μs or longer pause must precede any signal toggling.
- (2) After the pause, both banks must be precharged using the Precharge command (The Precharge all banks command is convenient).
- (3) Once the precharge is completed and the minimum trep is satisfied, the mode register can be programmed. After the mode register set cycle, trace (20 ns minimum) pause must be satisfied as well.
- (4) Two or more CBR (Auto) refresh must be performed.
- Remarks 1. The sequence of Mode register programming and Refresh above may be transposed.
 - 2. CKE and DQM may be held high until the Precharge command is asserted to ensure databus Hi-Z.

6. Programming the Mode Register

The mode register is programmed by the Mode register set command using address bits A9 through A0 as data inputs. The register retains data until it is reprogrammed or the device loses power.

The mode register has four fields;

Options : A9 through A7 CAS latency: A6 through A4 Wrap type : A3 Burst length: A2 through A0

Following mode register programming, no command can be asserted before at least 20 ns (trisc) have elapsed.

CAS Latency

CAS latency is the most critical of the parameters being set. It tells the device how many clocks must elapse before the data will be available.

The value is determined by the frequency of the clock and the speed grade of the device. The table on page 52 shows the relationship of CAS latency to the clock period and the speed grade of the device.

Burst Length

Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is completed, the output bus will become Hi-Z.

The burst length is programmable as 1, 2, 4, 8 or full page (256 columns).

Wrap Type (Burst Sequence)

The wrap type specifies the order in which the burst data will be addressed. This order is programmable as either "Sequential" or "Interleave". The method chosen will depend on the type of CPU in the system.

Some microprocessor cache system are optimized for sequential addressing and others for interleaved addressing. The table on the page 27 shows the addressing sequence for each burst length using them. Sequential mode supports bursts of 1, 2, 4 and 8, Interleave mode supports bursts of 4 and 8. Additionally, sequential sequence supports the full page length.

NEC

7. Mode Register

9	8	7	6	5	4	3	2	1	0	_				
0	0	1								JEDEC Star	ndard T	est Set (refresh cour	nter test)
9	8	7	6	5	4	3	2	1	0					
1	0	0	L	тмое	DE	WT		BL		Burst Read			e	
9	8	7	6	5	4	3	2	1	0	(for Write Ti	hrough	(Cache)		
	1	0	1							Use in futur	е			
9	8	7	6	5	4	3	2	1	0	-				
×	1	/ 1	l v	v	V	T v	T v	T v	T v	Vender Spe	cific			
Ļ	<u> </u>	L		L		· · ·					ente		V.	= Valid
9	8	7	6	5	4	3	2	1	0	_				= Don't care
0	0	0	L	TMOE	DE	WT		BL		Mode Regis	ster Se	t		
										Burst length Wrap type)		WT = 1 R 4 8 R R R R R R
										Laten	су	Bits6-4 000 001 010 011	CAS late R 1 2 3	

Remark R: Reserved

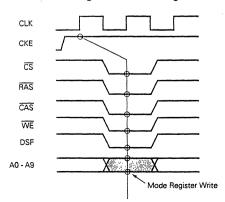
100

101

110

111

mode


R

R

R

R

Mode Register Write Timing

7.1 Burst Length and Sequence

[Burst of Two]

Starting Address (column address A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
0	0, 1	Not support
1	1, 0	Not support

[Burst of Four]

Starting Address (column address A1 - A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
00	0, 1, 2, 3	0, 1, 2, 3
01	1, 2, 3, 0	1, 0, 3, 2
10	2, 3, 0, 1	2, 3, 0, 1
11	3, 0, 1, 2	3, 2, 1, 0

[Burst of Eight]

Starting Address (column address A2 - A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
000	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7
001	1, 2, 3, 4, 5, 6, 7, 0	1, 0, 3, 2, 5, 4, 7, 6
010	2, 3, 4, 5, 6, 7, 0, 1	2, 3, 0, 1, 6, 7, 4, 5
011	3, 4, 5, 6, 7, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4
100	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3
101	5, 6, 7, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2
110	6, 7, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1
111	7, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0

Full page burst is an extension of the above tables of Sequential Addressing, with the length being 256.

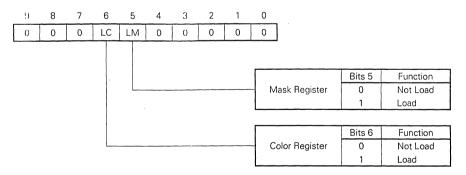
8. Programming the Special Register

The special register is programming by the Special register set command using address bits A9 through A0 and data bits DQ0 through DQ31. The color and mask register retain data until it is reprogrammed or the device losed power.

The special register has four fields.

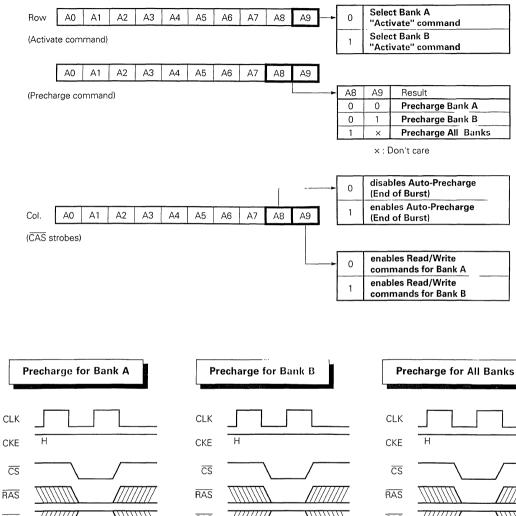
Reserved:A9 through A7Color register :A6Mask register :A5Reserved:A4 through A0

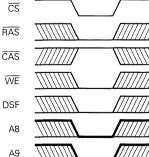
Following special register programming, no command can be asserted before at least 20 ns (tRSC) have elapsed.

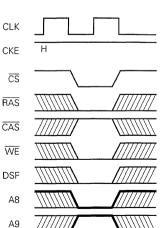

Color Register

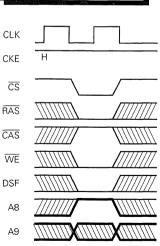
Color register is used as write data in Block Write cycle. In Special Register set command, if A5 is "0" and A6 is "1", the color register is selected. And the data of DQ0 through DQ31 is stored to color register as color data (write data).

Mask Register


Mask register is used as write mask data in Write and Block Write cycle. In Special Register set command, if A5 is "1" and A6 is "0", the mask register is selected. And the data of DQ0 through DQ31 is stored to mask register as write mask data.


Special Register

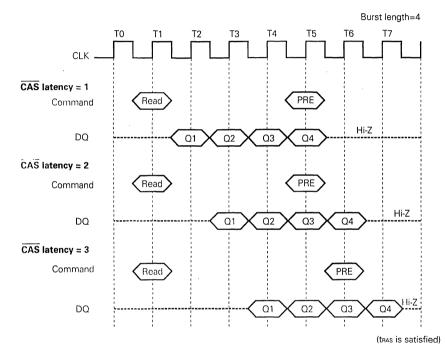



Remark If LC and LM are both high (1), data of Mask and Color register will be unknown.

9. Address Bits of Bank-Select and Precharge

10. Precharge

The precharge command can be asserted anytime after tras(MIN.) is satisfied.


Soon after the precharge command is asserted, precharge operation performed and the synchronous GRAM enters the idle state after two is satisfied. The parameter two is the time required to perform the precharge.

The earliest timing in a read cycle that a precharge command can be asserted without losing any data in the burst is as follows.

It is depending on the $\overline{\text{CAS}}$ latency.

CAS latency = 1 : At the same clock as the last read data.

 \overline{CAS} latency = 2 or 3 : One clock earlier than the last read data.

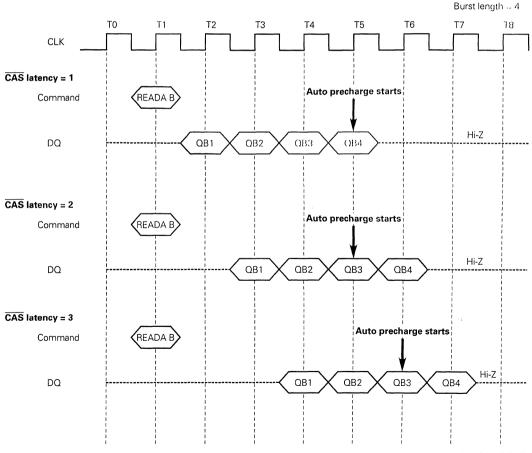
In order to write all data to the memory cell correctly, the asynchronous parameter "tDPL" must be satisfied. The tDPL(MIN.) specification defines the earliest time that a precharge command can be asserted. Minimum number of clocks are calculated by dividing tDPL (MIN.) with clock cycle time.

In summary, the precharge command can be asserted relative to reference clock that indicates the last data word is valid. In the following table, minus means clocks before the reference; plus means time after the reference.

CAS latency	Read	Write
1	0	+tdpl (MIN.)
2	-1	+topl (MIN.)
3	-1	+topl (MIN.)

11. Auto Precharge

During a read or write/block write command cycle, A8 controls whether auto precharge is selected. A8 high in the read or write/block write command (Read with Auto precharge command or Write with Auto precharge command/Block Write with Auto precharge command), auto precharge is selected and begins after the burst access automatically.

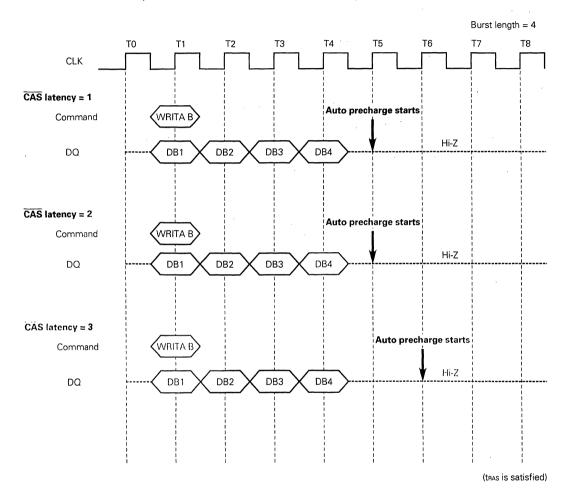

When the tras is not satisfied, the precharge does not start at above timing. And the precharge will start when the tras is satisfied.

The clock that begins the auto precharge cycle is depend on both the CAS latency programmed into the mode register and whether READ or WRITE/BLOCK WRITE cycle.

11.1 Read with Auto Precharge

When using auto precharge in READ cycle, knowing when the precharge starts is important because the next activate command to the bank being precharged cannot be executed until the precharge cycle ends. Once auto precharge has started, an activate command to the bank can be asserted after the has been satisfied.

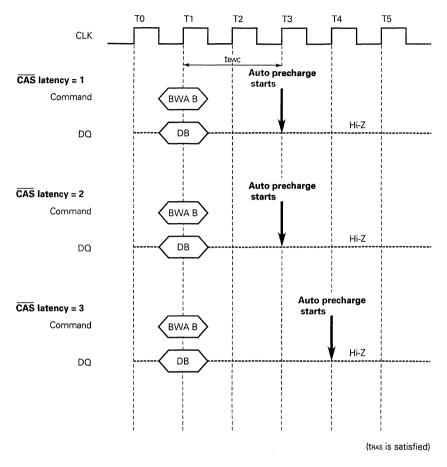
During READ cycle, the auto precharge begins after tras and begins on the clock that indicates the last data word output during the burst is valid (\overline{CAS} latency of 1) or one clock earlier (\overline{CAS} latency of 2 or 3).



(tras is satisfied)

11.2 Write with Auto Precharge

In write cycle, the tDAL must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know when the precharge starts. In block write cycle, the tBAL must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know the precharge starts.


During WRITE cycle, the auto precharge begins after tras and begins one clock after the last data word input to the device (\overline{CAS} latency of 1 or 2) or two clocks after (\overline{CAS} latency of 3).

Remark WRITA means Write with Auto precharge

11.3 Block Write with Auto Precharge

During BLOCK WRITE cycle, the auto precharge begins one clock after the block write command to the device (\overline{CAS} latency of 1) or two clocks after (\overline{CAS} latency of 2) or three clocks after (\overline{CAS} latency of 3).

In summary, the auto precharge cycle begins relative to a reference clock that indicates the last data word is valid.

In the table below, minus means clocks before the reference; plus means clocks after the reference.

CAS latency	Read	Write	Block Write
1	0	+1	+2
2	-1	+1	+2
3	-1	+2	+3

12. Write/Block Write with Write Per Bit

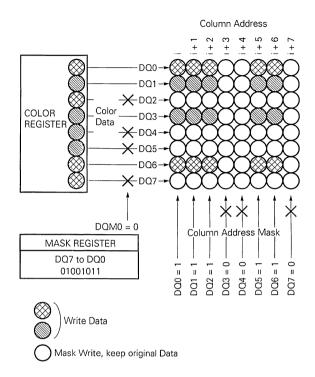
To use WPB operation

- (1) Execute Special register set command and set WPB data (32 bits) to mask register.
- (2) Execute Bank Activate with WPB enable command (ACTWPB) after trsc (20 ns) period from Special register set command (SRS).
- (3) Execute Write/Block write command after tRCD period from ACTWPB.

In case SRS command is executed in activate state to set new WPB data, it is necessary to take tRSC (20 ns) interval between SRS and Write/Block write command.

Remark Mask data = Mask register's data (WPB) + DQMi DQMi is prior to Mask register's data (WPB)

13. Block Write


In block write cycle, write data from color register can be written in 8 columns at one write cycle. It is also possible to execute Block write cycle with write per bit. Column Mask by DQi is available.

To use Block write operation

- (1) Execute Special register set command and set color data (32 bits) to color register.
- (2) Execute Bank Activate (ACT) or Bank Activate with WPB enable command (ACTWPB) after tRSC (20 ns) period from SRS.
- (3) Execute Block write command after tRCD period from ACT or ACTWPB.

In case new Write/Block write is executed or, it is necessary to take take take interval from Block Write command to new Write/Block write command.

Block Write Function

Remarks 1. i is times of 8 numeric.

2. This diagram shows only for DQ0 - 7. The other DQ is similar as this.

Column Mask

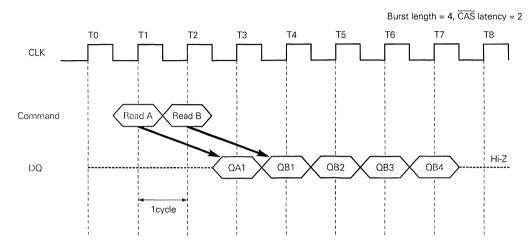
 DQ0 - 7
 :
 Column Mask for DQ0 - 7

 DQ8 - 15
 :
 Column Mask for DQ8 - 15

 DQ16 - 23:
 Column Mask for DQ16 - 23

 DQ24 - 31:
 Column Mask for DQ24 - 31

Write per Bit


Mask data = Mask Register + DQMi DQMi is prior to data of Mask Register.

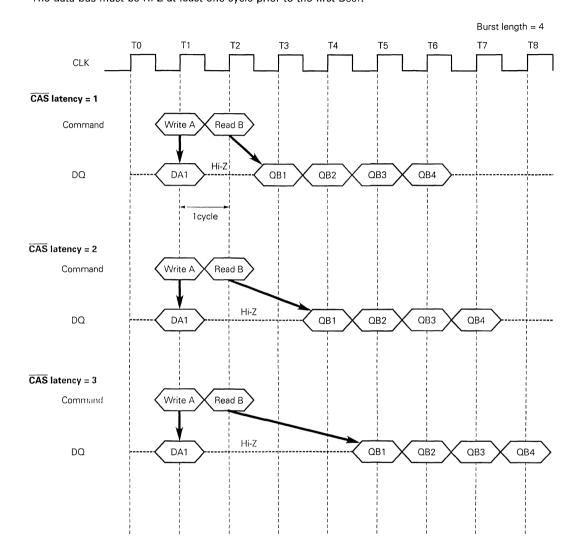
14. Read/Write Command Interval

14.1 Read to Read Command Interval

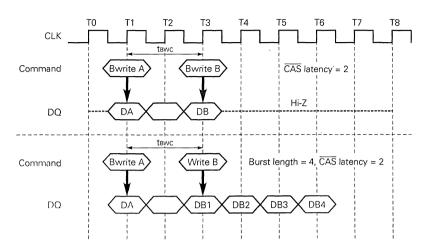
During READ cycle, when new Read command is asserted, it will be effective after CAS latency, even if the previous READ operation does not completed. READ will be interrupted by another READ.


The interval between the commands is minimum 1 cycle. Each Read command can be asserted in every clock without any restriction.

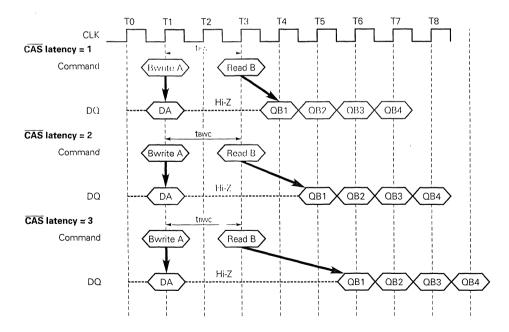
14.2 Write to Write Command Interval


During WRITE cycle, when new Write command is asserted, the previous burst will terminate and the new burst will begin with a new Write commnad. WRITE will be interrupted by another WRITE.

The interval between the commands is minimum 1 cycle. Each Write command can be asserted in every clock without any restriction.

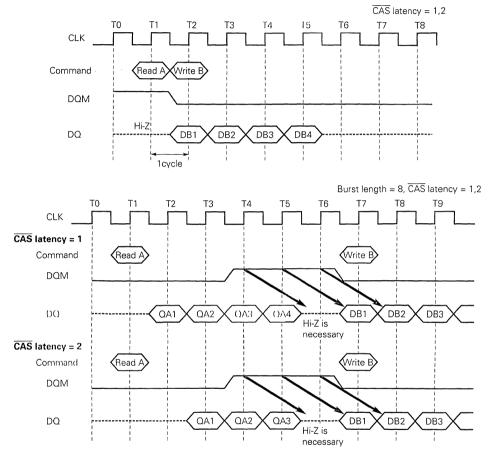

14.3 Write to Read Command Interval

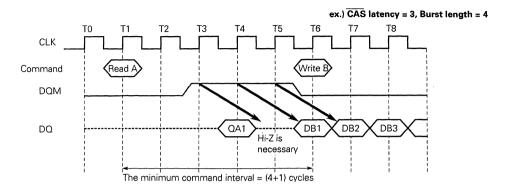
Write command and Read command interval is also 1 cycle. Only the write data before Read command will be written. The data bus must be Hi-Z at least one cycle prior to the first Dout.


14.4 Block Write to Write or Write/Block Write Command Interval

The interval between BLOCK WRITE and new BLOCK WRITE or WRITE is take or minimum 1 cycle. If tck is less than take, NOP command should be issued for the cycle between BLOCK WRITE and the following WRITE or new BLOCK WRITE.

14.5 Block Write to Read Command Interval


BLOCK WRITE command and READ command is also tawe or minimum 1 cycle. The data bus must be Hi-Z at least one cycle prior to the first Dout.


14.6 Read to Write/Block Write Command Interval

During READ cycle, Read can be interrupted by WRITE. But full page burst read can not be interrupted by WRITE. Full page burst read can be interrupted by Burst Stop command (BST) or Precharge command (Burst termination).

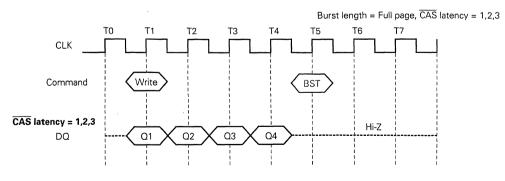
For CAS latency of 1 or 2, the READ and WRITE command interval is minimum 1 cycle. The data bus must be Hi-Z using DQM before WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the Write command.

For \overline{CAS} latency of 3, the READ and WRITE command interval is [Burst length + 1] cycles. The data bus must be Hi-Z using DQM before WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the WRITE command.

15. Burst Termination

Burst termination is to terminate a burst operation other than using a read or write command.

15.1 Burst Stop Command in Full Page


Burst Stop command is operated only in case full page burst mode. During the other burst mode, Burst Stop command is NOP.

During full page burst read cycle, when the burst stop command is asserted, the burst read data are terminated and the data bus goes to high-impedance after the \overline{CAS} latency from the burst stop command.

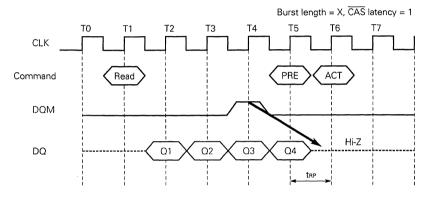
Remark BST: Burst stop command

During full page burst write cycle, when the burst stop command is asserted, the burst read data are terminated and data bus goes to high-impedance at the same clock with the burst stop command.

Remark BST: Burst stop command

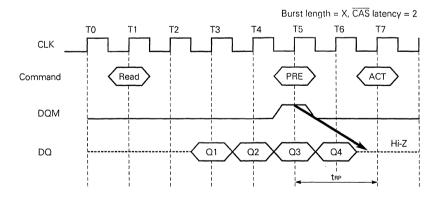
15.2 Precharge Termination

15.2.1 Precharge Termination in READ Cycle

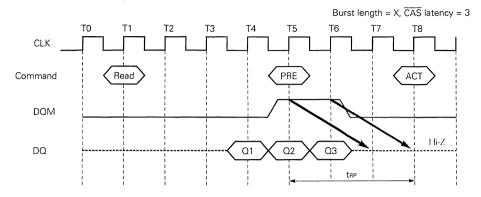

During READ cycle, the burst read operation is terminated by a precharge command.

When the precharge command is asserted, the burst read operation is terminated and precharge starts. The same bank can be activated again after t_{RP} from the precharge command.

The DQM must be high to mask the invalid data.


When CAS latency is 1, the read data will remain valid until the precharge command is asserted. Invalid data may appear one clock after valid data out.

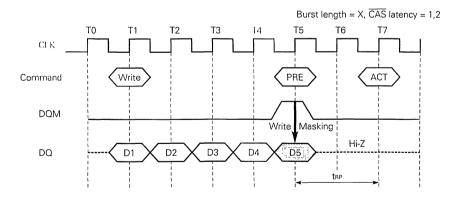
The DQM may be high to mask the invalid data.


When CAS latency is 2, the read data will remain valid until one clock after the precharge command. Invalid data may appear one clock after valid data out.

The DQM may be high to mask the invalid data.

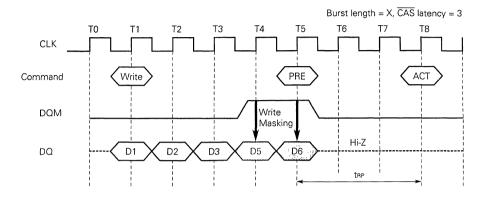
When CAS latency is 3, the read data will remain valid until one clock after the precharge command. Invalid data may appear one and two clocks after valid data out.

The DQM may be high to mask the invalid data.



15.2.2 Precharge Termination in WRITE Cycle

During WRITE cycle, the burst write operation is terminated by a precharge command. When the precharge command is asserted, the burst write operation is terminated and precharge starts. The same bank can be activated again after trap from the precharge command.


The DQM must be high to mask invalid data in.

When CAS latency is 1 or 2, the write data written prior to the precharge command will be correctly stored. However, invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM must be high at the same clock as the precharge command. This will mask the invalid data.

When \overline{CAS} latency is 3, the write data written more than one clock prior to the precharge command will be correctly stored.

However, invalid data may be written at one clock before and the same clock as the precharge command. To prevent this from happening, DQM must be high from one clock prior to the precharge command until the precharge command. This will mask the invalid data.

16. Electrical Specifications (Preliminary)

- All voltage are referenced to Vss (GND).
- After power up, wait more than 100 μ s and then, execute **Power on sequence and Auto Refresh** before proper device operation is achieved.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on power supply pin relative to GND	VT		-1.0 to +4.6	V
Voltage on input pin relative to GND	Vcc, VccQ		-1.0 to +4.6	V
Short circuit output current	lo		50	mA
Power dissipation	Po		1	w
Operating ambient temperature	TA		0 to 70	°C
Storage temperature	Tstg		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		3.0	3.3	3.6	V
High level input voltage	Vін		2.0		Vcc + 0.3	V
Low level input voltage	ViL		-0.3		+0.8	V
Operating ambient temperature	TA		0		70	°C

Capacitance (TA=25°C, f=1MHz)

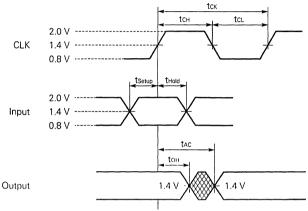
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CI1	A0 to A9	2		4	pF
	Cı2	CLK, CKE, CS, RAS, CAS, WE, DSF, DQM	2		4	pF
Data input/output capacitance	Ci/o	DQ0 to DQ31	2		5	pF

				,			
Parameter	Symbol	Test condition		Grade	MAX.	Unit	Notes
Operating current	Icc1	Burst length=1		-10	105		
		$t_{RAS} \ge t_{RAS} (MIN.)$ $t_{RP} \ge t_{RP} (MIN.)$		-12	90	mA	1
		lo=0mA		-15	85		
Precharge standby current	Icc2P	$CKE \leq V_{IL (MAX.)} t_{CK} = 15 ns^{-5}$			7	mA	
in Power down mode	Icc2PS	CKE ≤ VIL (MAX.) tck=∞			6	ША	
Precharge standby current		CKE ≥ VIH (MIN.) tck=15ns			36		
in Non power down mode	Icc2N	$\overline{CS} \ge V_{\text{IH (MIN.)}}$,			
		Input signals are changed one time	during 30ns.			mA	
	Icc2NS	CKE ≥ Vih (MIN.) tck=∞			22		
		Input signals are stable.					
Active standby current in	Icc3P	$CKE \le VIL (MAX.) tck=15ns$			7	mA	
Power down mode	Icc3PS	$CKE \leq VIL (MAX.) tck=\infty$			6		
Active standby current		CKE > VIH (MIN.) tck=15ns			36		
in Non power down mode	Icc3N	CS > VIH (MIN.)					
		Input signals are changed one time	during 30 ns.			mA	
	lcc₃NS	$CKE \ge V_{IH} (MIN.) tck = \infty$			22		
		Input signals are stable.					
Operating current	Icc4	tck ≥ tck (MIN.)	S latency = 1	-10	210		ļ
(Burst mode)		lo=0mA		-12	180		
				-15	165		
		CA	S latency = 2	-10	280	-	
				-12	235	mA	2
				-15	220		
		CA	S latency = 3	-10	365		
				-12	310		
				-15	285		
Refresh current	Icc5	$t_{RC} \ge t_{RC} (MIN.)$		-10	85		
				-12	80	mA	3
				-15	75		
Self refresh Current	Icce	CKE ≤ 0.2V		10	6	mA	
Operating Current	Icc7	tck ≥ tck (MIN.), lo = 0 mA,			250	mA	
(Block Write Mode)		$\frac{1000}{CAS} \text{ cycle} = 20 \text{ ns}$			200		

- Notes 1. lcc1 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, lcc1 is measured on condition that addresses are changed only one time during tck(MIN.).
 - 2. lcc4 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, lcc4 is measured on condition that addresses are changed only one time during tck(MIN.).
 - 3. Iccs is measured on condition that addresses are changed only one time during tck(MIN.).

DC Characteristics 2 (Recommended Operating Conditions unless otherwise noted)

-


Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input leakage current	h (L)	V⊫0 to 3.6V, all other pins not under test =0V	-1.0		+1.0	μA
Output leakage current	IO(L)	Dout is disabled, Vo=0 to 3.6V	-1.0		+1.0	μA
High level output voltage	Vон	lo=-2mA	2.4			v
Low level output voltage	Vol	lo=+2mA			0.4	v

(1/2)

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

Test Conditions

- AC measurements assume tτ=1ns.
- Reference level for measuring timing of input signals is 1.4V. Transition times are measured between VIH and VIL.
- If tT is longer than 1 ns, reference level for measuring timing of input signals is ViH (MIN.) and VIL (MAX.).
- An access time is measured at 1.4V.

				-10	-12		-15			
Parameter		Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Note
	CAS latency=3	tскз	10	(100MHz)	12	(83MHz)	15	(66MHz)	ns	
Clock cycle time	CAS latency=2	tck2	15	(66MHz)	18	(55MHz)	19.5	(50MHz)	ns	
	CAS latency=1	tck1	30	(33MHz)	36	(28MHz)	39	(25MHz)	ns	
	CAS latency=3	tac3		9		11		14	ns	1
Access time from CLK	CAS latency=2	tAC2		12		15		16.5	ns	1
	CAS latency=1	tacı		27		33		36	ns	1
CLK high level width		tcH	3.5		4		5		ns	
CLK low level width		t CL.	3.5		4		5		ns	
Data-out hold time		tон	4		4		4		ns	
Data-out low-impedance time		tız	0		0		0		ns	
Data-out high-impedance time	CAS latency = 3	tнzз	4	8	4	8	4	10	ns	
	CAS latency = 2	tHZ2	4	11	4	11	4	11	ns	
	CAS latency = 1	tHZ1	4	27	4	27	4	27	ns	
Data-in setup time		tos	3		3.5		3.5		ns	
Data-in hold time		tон	1		1.5		1.5		ns	
Address setup time		tas	3		3.5		3.5	1	ns	
Address hold time		tан	. 1		1.5		1.5		ns	
CKE setup time		tcks	3		3.5		3.5		ns	
CKE hold time		tскн	1		1.5		1.5		ns	
CKE setup time (Power down ex	it)	tcksp	3		3.5		3.5		ns	

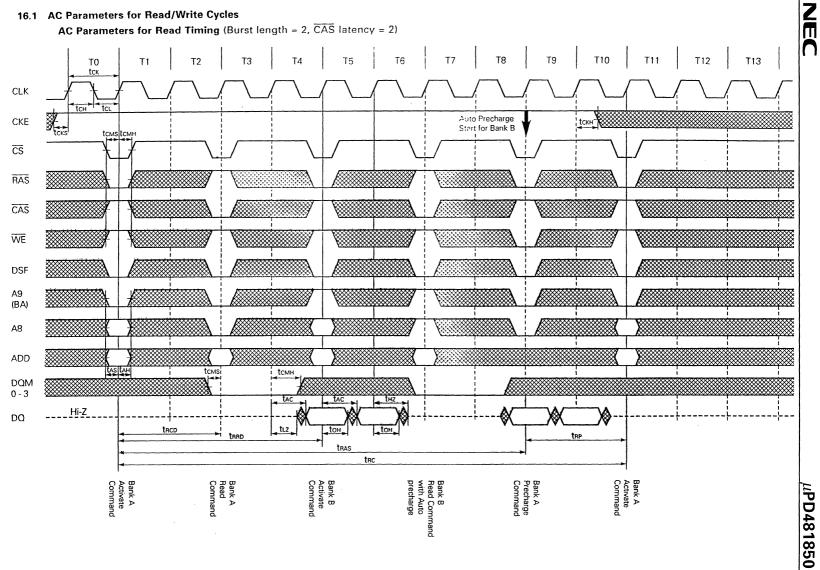
Synchronous Characteristics

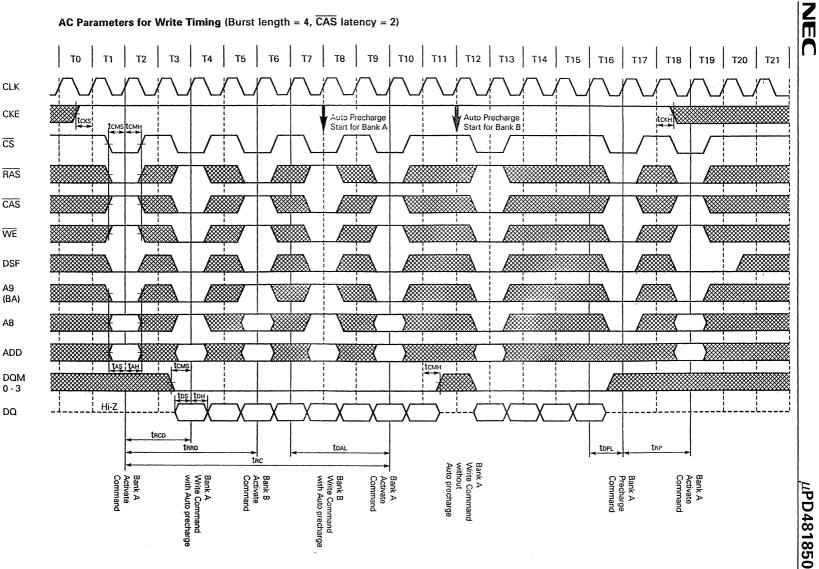
Note 1. Loading capacitance is 30 pF.

Synchronous Characteristics

(2/2)

Parameter	Symbol	-10		-12		-15		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	NOLE
Command (CS, RAS, CAS, WE, DSF, DQM) setup time	tсмs	3		3.5		3.5		ns	
Command (CS, RAS, CAS, WE, DSF, DQM) hold time	tсмн	1		1.5		1.5	!	ns	


Asynchronous Characteristics

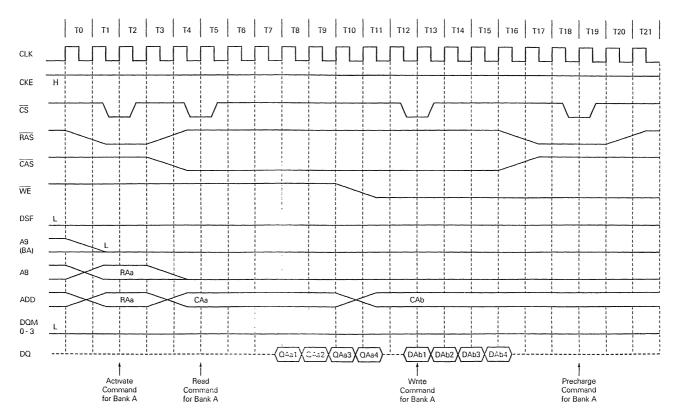

Bara		Cumbel	-1	0	-12		-15		Unit	Note
Para	meter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Onn	NOLE
REF to REF/ACT Command period		trc	100		120		130		ns	
ACT to PRE Comman	d period	tras	70	120,000	84	120,000	90	120,000	ns	
PRE to ACT Comman	d period	trp	30		36		39		ns	
Delay time ACT to RE	AD/WRITE Command	trcd	30		36		39		ns	
ACT(0) to ACT(1) Con	nmand period	trrd	30		36		39		ns	
Data-in to PRE	CAS latency≃3	tdpl3	1CLK+10		1CLK+12		1CLK+15		ns	
Command period	CAS latency=2	topu2	15		18		19.5		ns	
	CAS latency=1	tdpl1	15		18		19.5		ns	
Data-in to ACT (REF)	CAS latency=3	TDAL3	2CLK+30		2CLK+36		2CLK+45		ns	
Command period	CAS latency=2	tDAL2	1CLK+30		1CLK+36		1CLK+39		ns	
(Auto precharge)	CAS latency=1	tDAL1	1CLK+30		1CLK+36		1CLK+39		ns	
Block write cycle tin	าย	tewc	20		24		30		ns	
Block write data-in	CAS latency=3	tBPL3	1CLK+20		1CLK+24		1CLK+30		ns	
to PRE Command	CAS latency=2	tBPL2	30		36		39		ns	
period	CAS latency=1	tBPL1	30		36		36		ns	,
Block write data-in	CAS latency=3	TBAL3	2CLK+40		2CLK+48		2CLK+60		ns	
Active (REF) Command Period	CAS latency=2	tBAL2	1CLK+40		1CLK+48		1CLK+52		ns	
(Auto Precharge)	CAS latency=1	tBAL1	1CLK+40		1CLK+48		1CLK+52		ns	
Mode register set cyc	cle time	trsc	20		20		20		ns	
Transition time		tτ	1	30	1	30	1	30	ns	
Refresh time	·	tref		16		16		16	ms	

16.1 AC Parameters for Read/Write Cycles

AC Parameters for Read Timing (Burst length = 2, \overline{CAS} latency = 2)

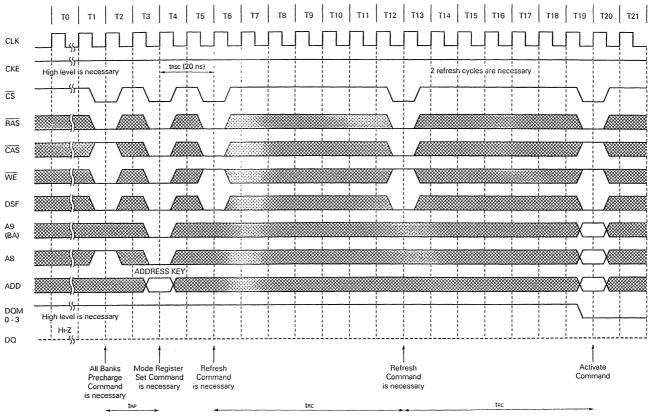
AC Parameters for Write Timing (Burst length = 4, \overline{CAS} latency = 2)

409


16.2 Relationship between Frequency and Latency

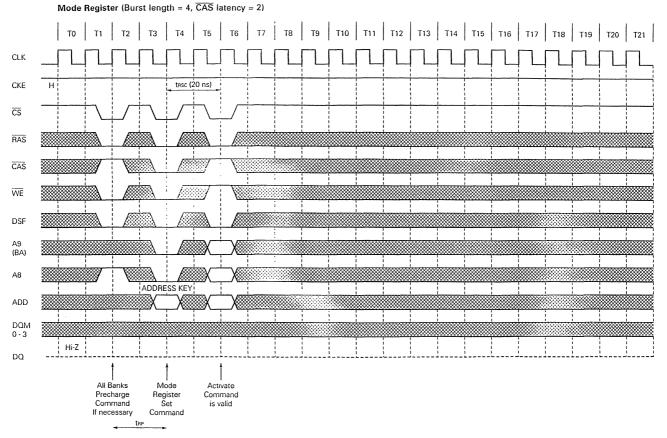
Speed version		-10			-12			-15	
Clock cycle time [ns]	10	15	30	12	18	36	15	19.5	39
Frequency [MHz]	100	66	33	83	55	28	66	50	25
CAS latency	3	2	1	3	2	1	3	2	1
[trcd]	3	2	1	3	2	1	3	2	1
RAS latency (CAS latency + [trco])	6	4	2	6	4	2	6	4	2
[tac]	10	7	4	10	7	4	10	7	4
[tras]	7	5	3	7	5	3	7	5	3
[trrd]	3	2	1	3	2	1	3	2	1
[trp]	3	2	1	3	2	1	3	2	1
[topl]	2	1	1	2	1	1	2	1	1
[tdal]	5	3	2	5	3	2	5	3	2

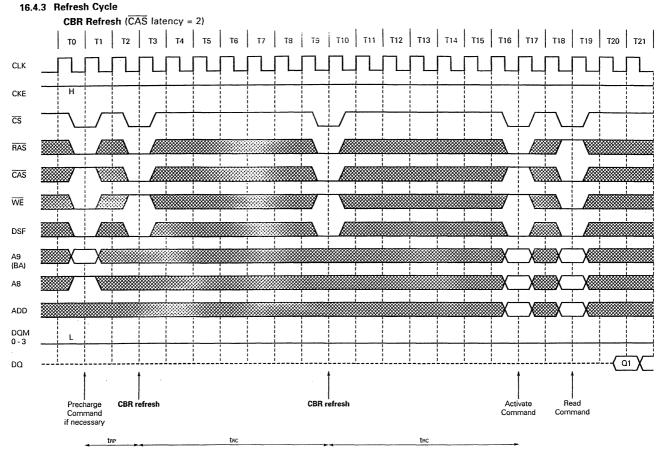
16.3 CS Function



16.4 Basic Cycles

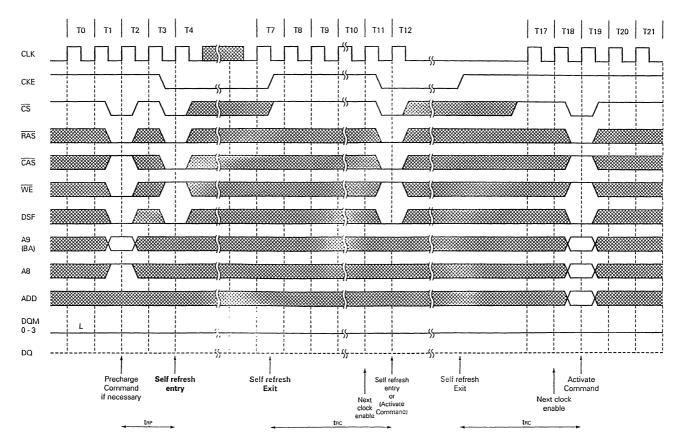
16.4.1 Initialization

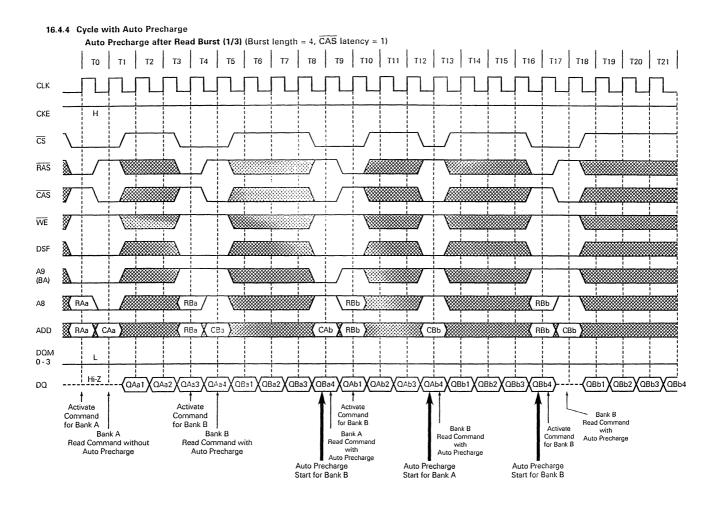

Power on Sequence and Auto Refresh

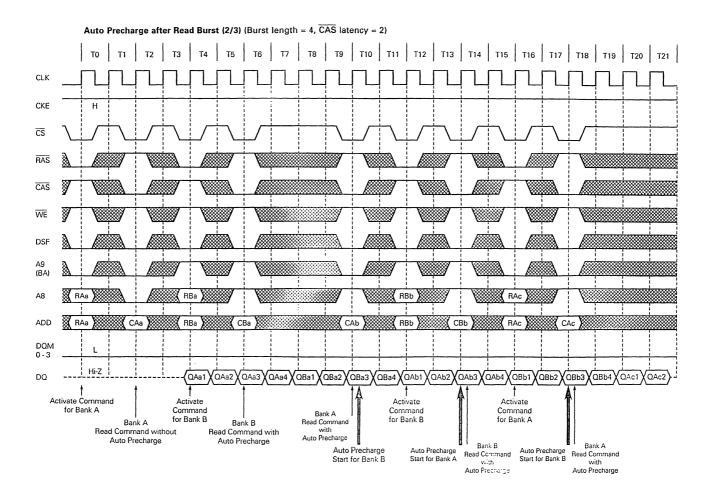

µPD481850

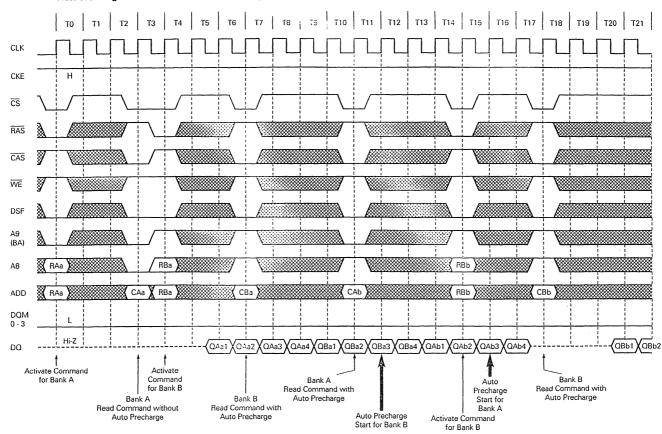
ZEC

16.4.2 Mode Register Set

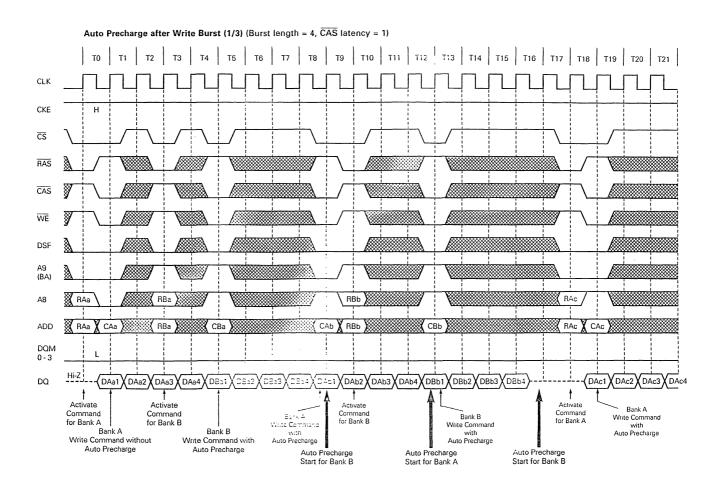

µPD481850

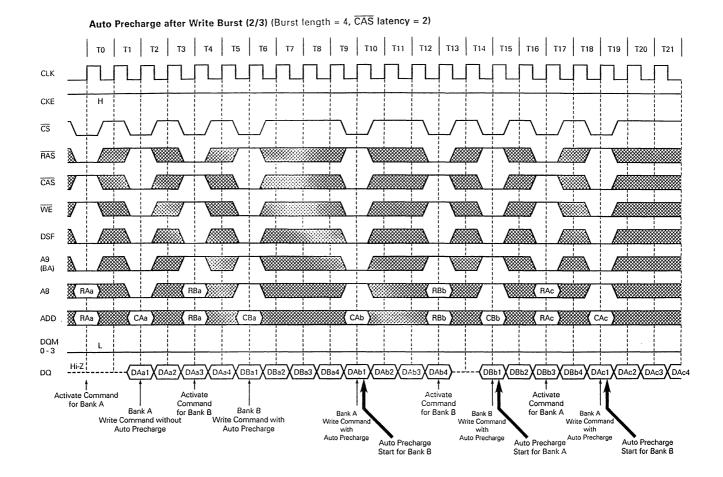



NEC

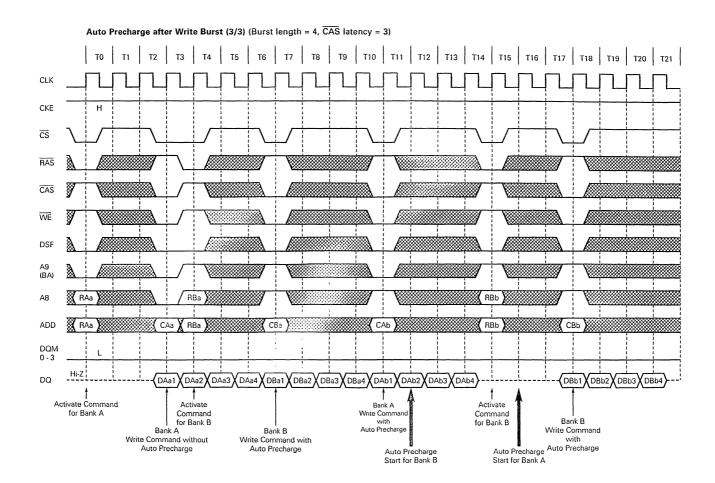

ZEC

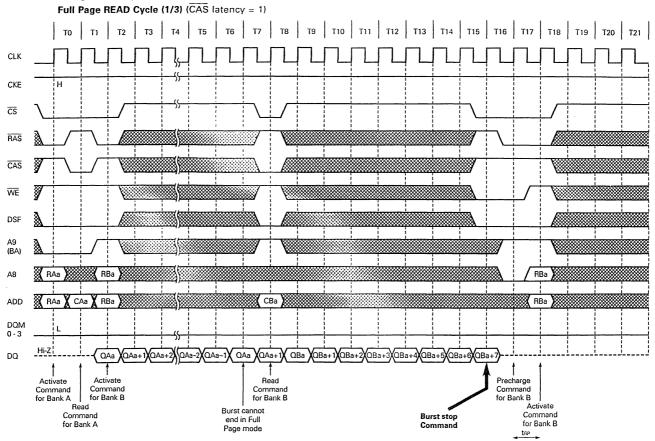
Self Refresh (entry and exit)





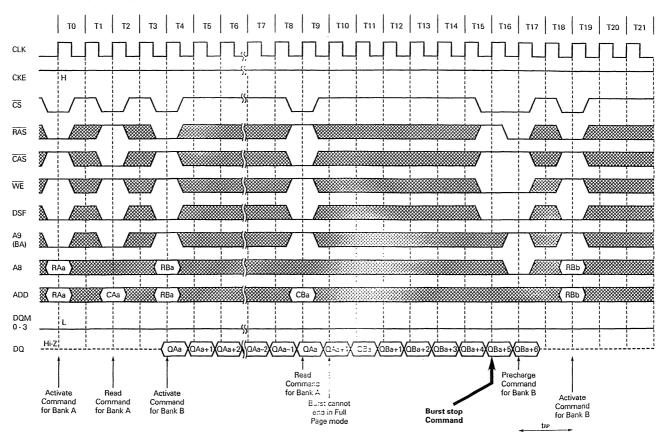
Auto Precharge after Read Burst (3/3) (Burst length = 4, CAS latency = 3)


Z



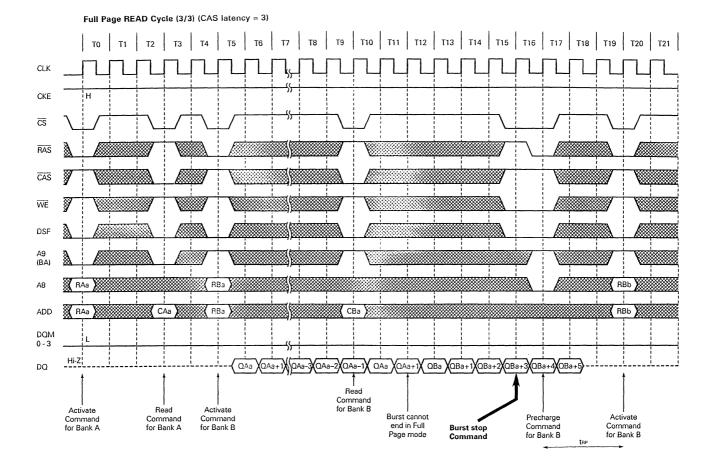
^wPD481850

16.4.5 Full Page Mode Cycle

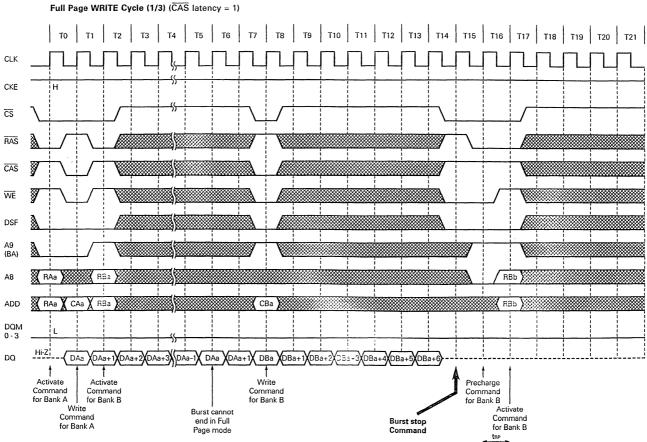


422

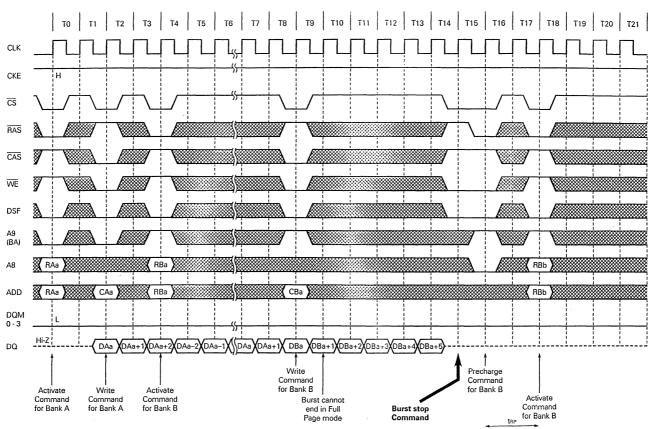
uPD481850


NEC

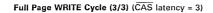
Full Page READ Cycle (2/3) (CAS latency = 2)

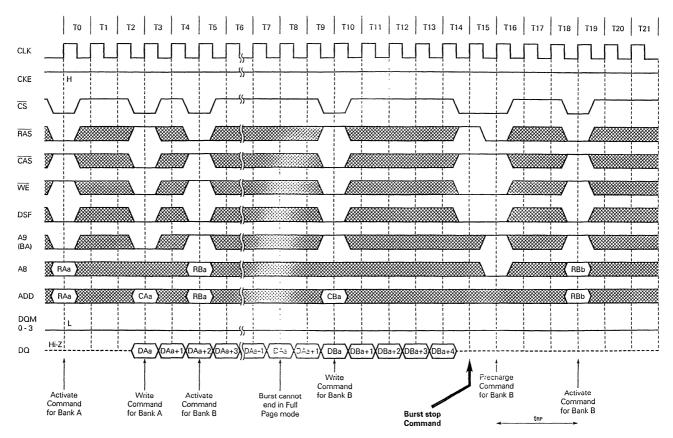

µPD481850

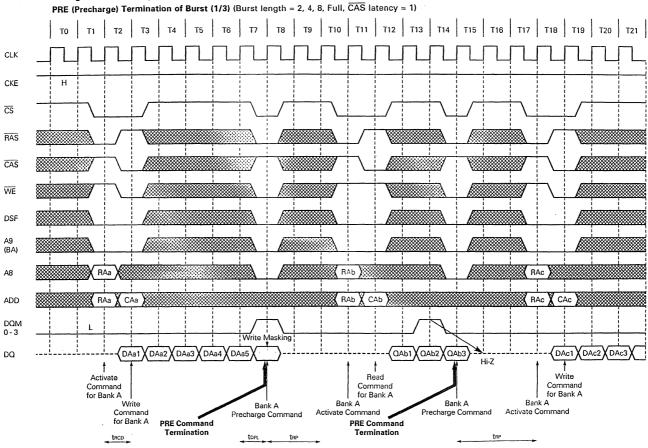
ZIIO

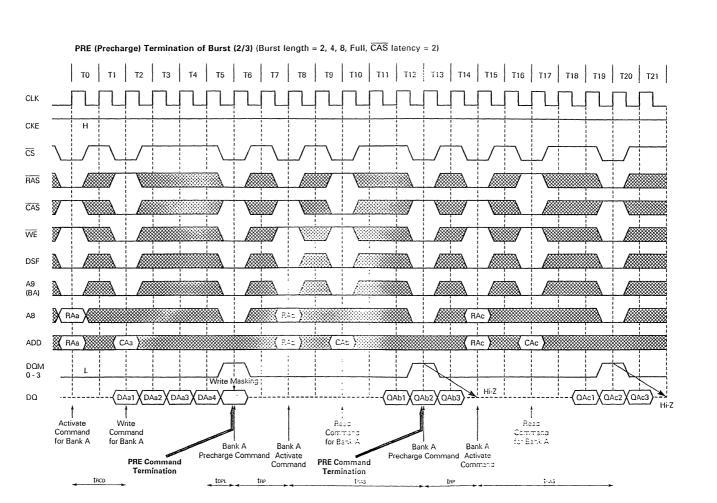


424

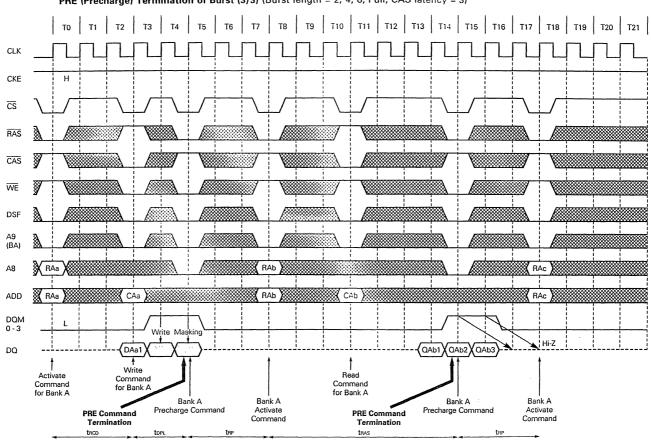

uPD481850

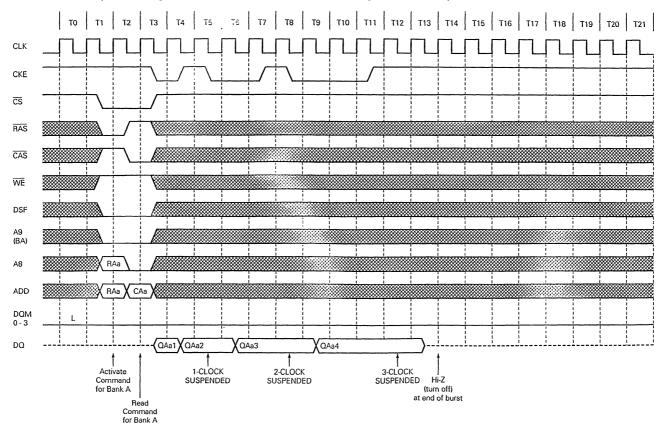


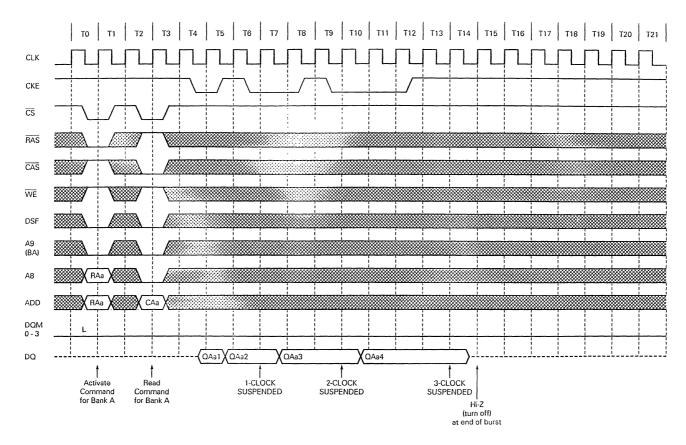

uPD481850



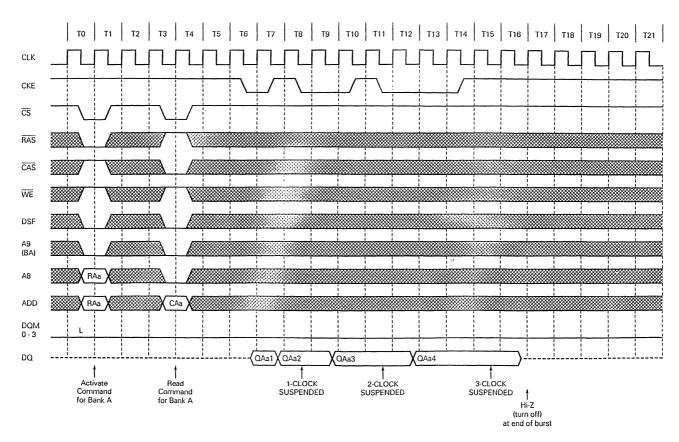
Full Page WRITE Cycle (2/3) (CAS latency = 2)

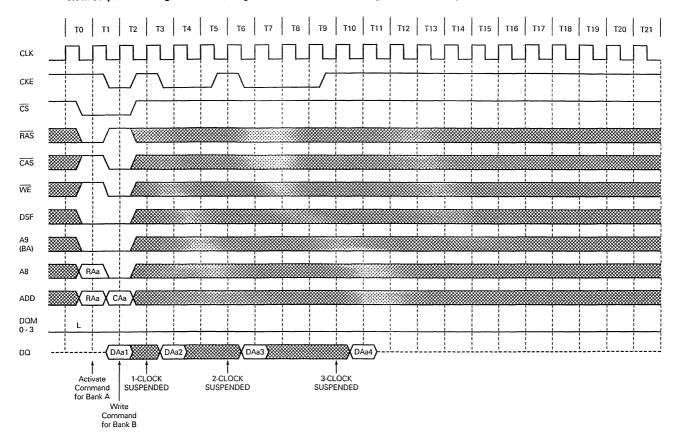


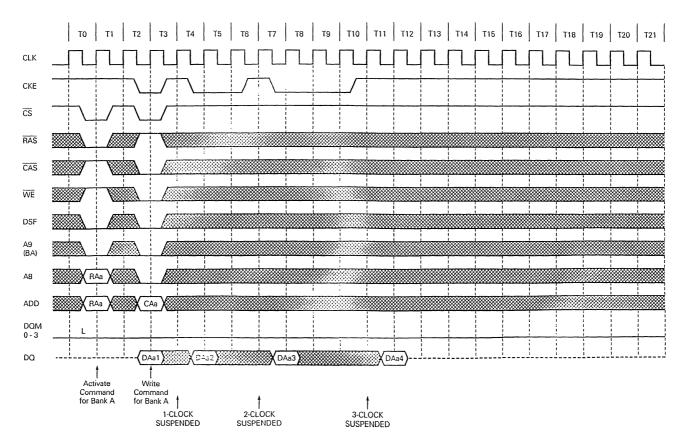

ZEC

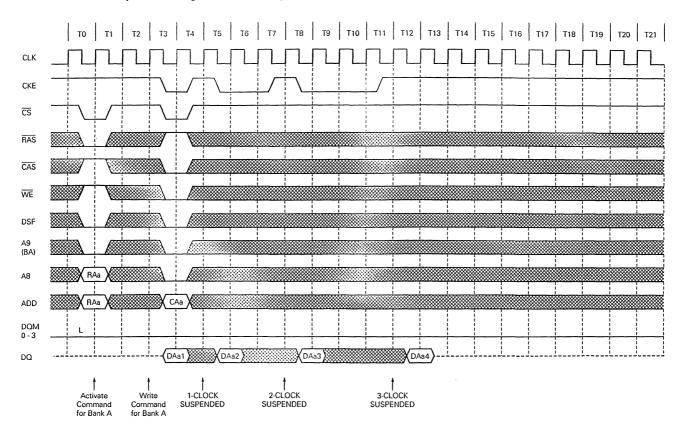


PRE (Precharge) Termination of Burst (3/3) (Burst length = 2, 4, 8, Full, CAS latency = 3)

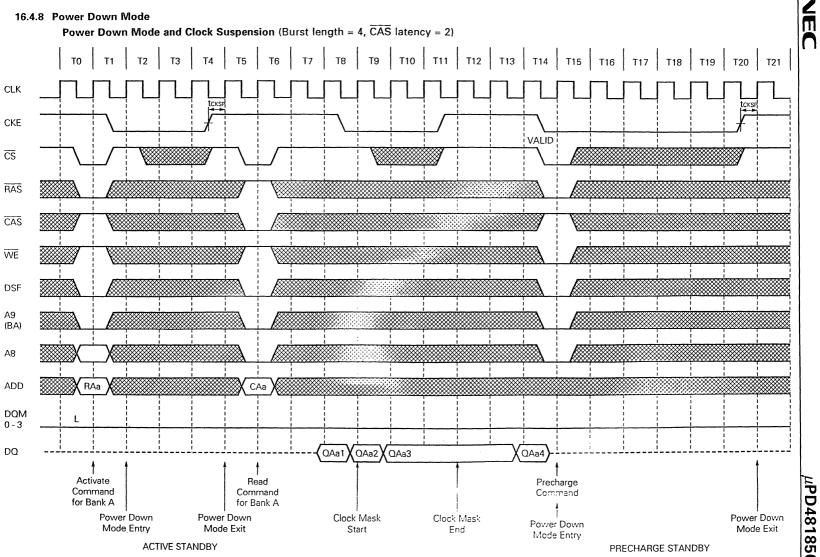

16.4.7 Clock Suspension




Clock Suspension during Burst Read (using CKE Function) (2/3) (Burst length = 4, CAS latency = 2)

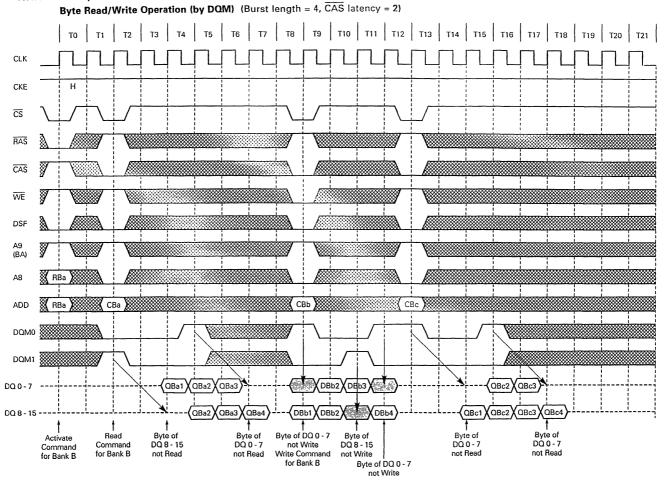

Clock Suspension during Burst Read (using CKE Function) (3/3) (Burst length = 4, \overline{CAS} latency = 3)

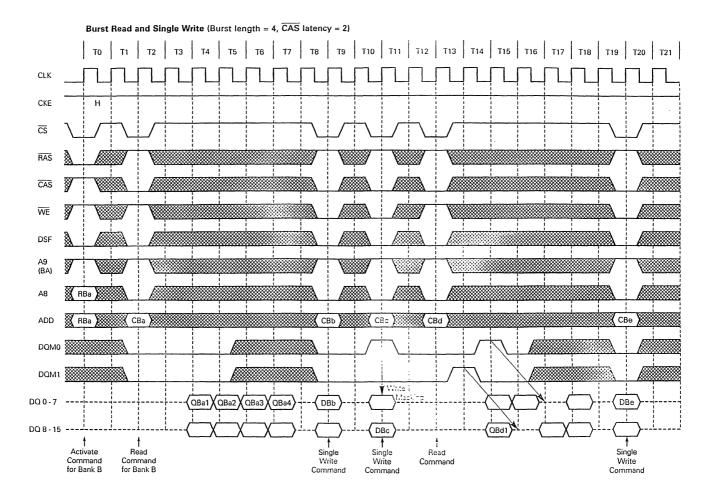
Clock Suspension during Burst Write (using CKE Function) (1/3) (Burst length = 4, CAS latency = 1)


Clock Suspension during Burst Write (using CKE Function) (2/3) (Burst length = 4, CAS latency = 2)

Clock Suspension during Burst Write (using CKE Function) (3/3) (Burst length = 4, CAS latency = 3)

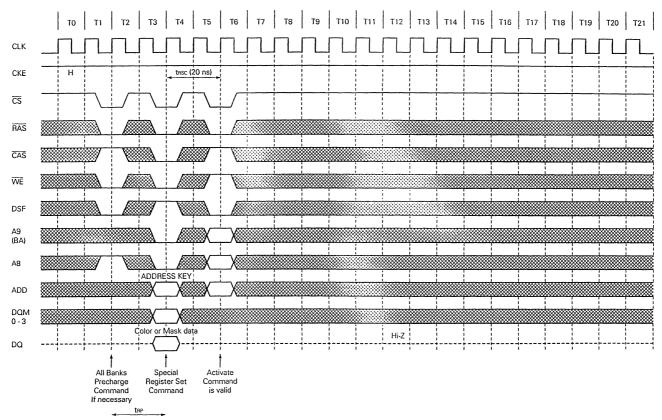
436

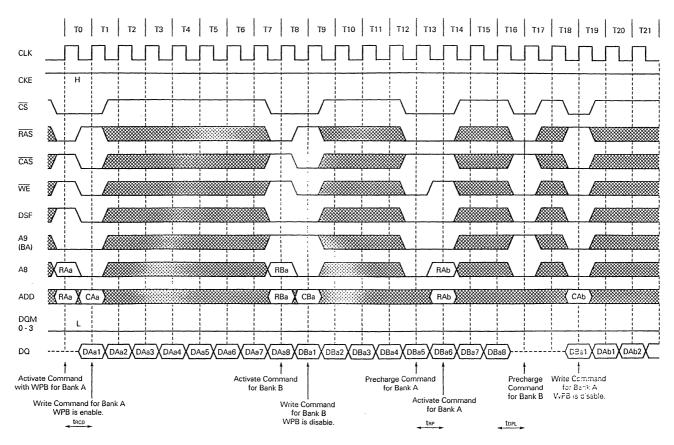

^{*u*}PD481850



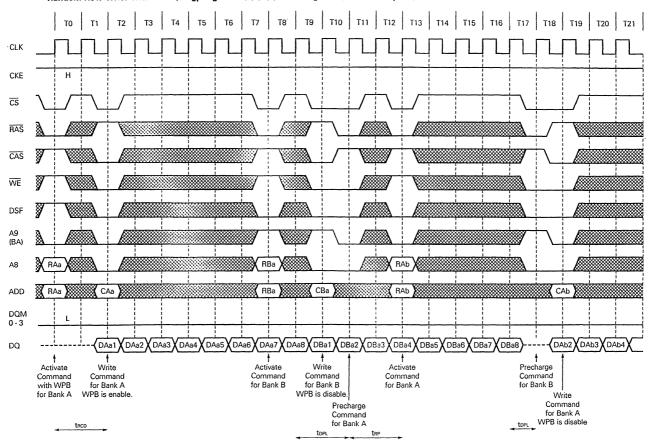
uPD481850

437



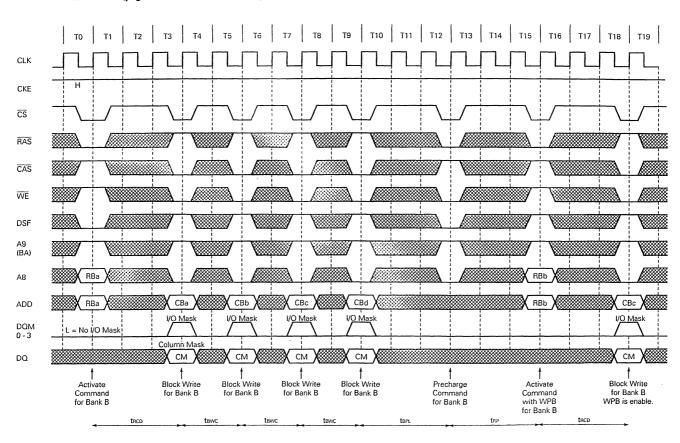

µPD481850

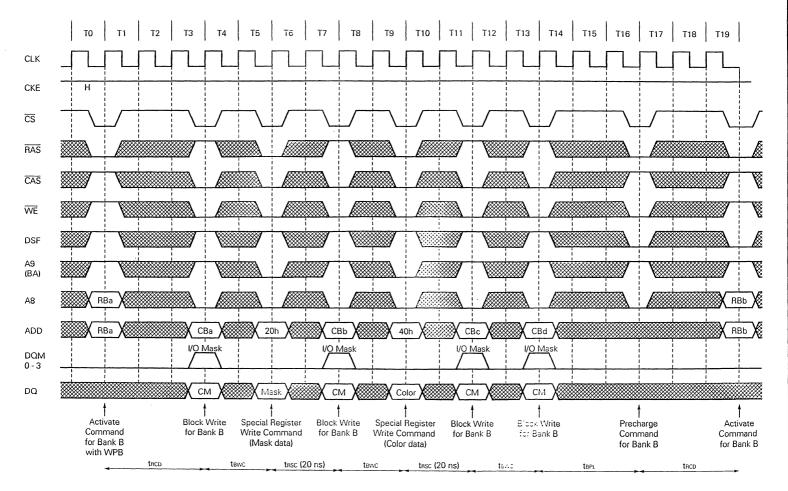
NEC



Special Register Set (Burst length = 4, \overline{CAS} latency = 2)

Remark Special Register Set command is able to input at any state.

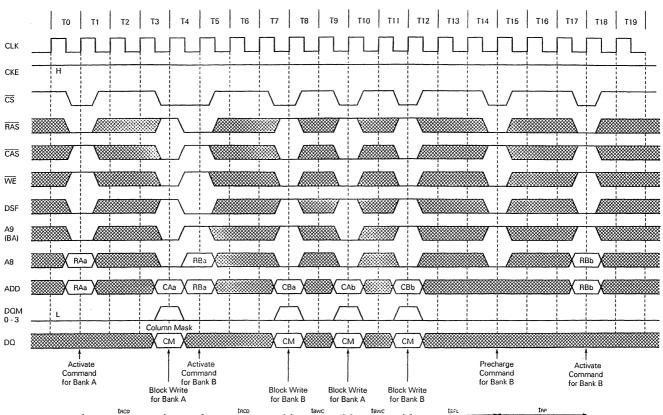

Random Row Write with WPB (Pingpong banks) (1/3) (Burst length = 8, CAS latency = 1)


Random Row Write with WPB (Pingpong banks) (2/3) (Burst length = 8, CAS latency = 2)

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T9 T10 то T3 T8 T1 T2 T4 T5 T6 T7 CLK CKE Н \overline{cs} RAS 2 CAS 8 WE Ø DSF 8 **\$\$\$** A9 (BA) 8 RAa A8 RBa RAb RAa CAb 🗴 CAa CBa RAb ADD RBa DQM L 0-3 DAa8 DBa1 DBa2 DBa3 DBa4 DBa5 DBa6 CBa7 DBa8 DAb1 DAb2 DAb3 X DAa2 X DAa3 X DAa4 X DAa5 X DAa6 X DAa7 DQ (DAa1 ------Activate Write Command Activate Write Command Precharge Actuate Write Command Precharge Command for Bank A Command for Bank B Command Command for Bank A Command with WPB WPB is enable. WPB is disable. for Bank B for Bank B WPB is disable. for Bank A for Bank A for Bank A **t**RCD t trp **t**DPL

Random Row Write with WPB (Pingpong banks) (3/3) (Burst length = 8, CAS latency = 3)

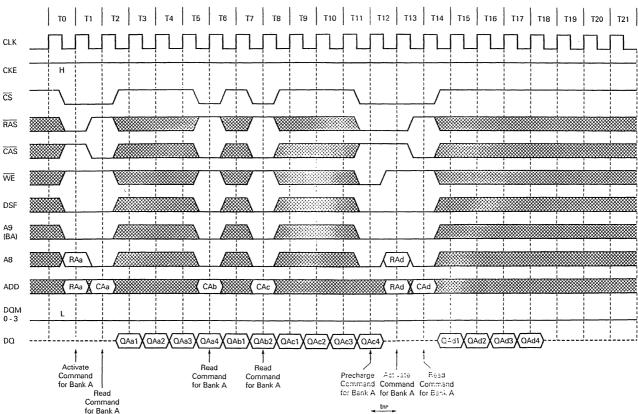
Block Write (page at same bank) (CAS latency = 3)



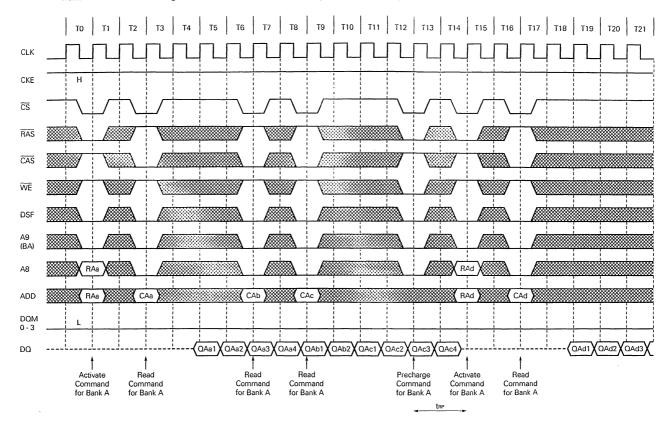
Block Write (page at same bank) changing color and mask data (\overline{CAS} latency = 3)

µPD481850

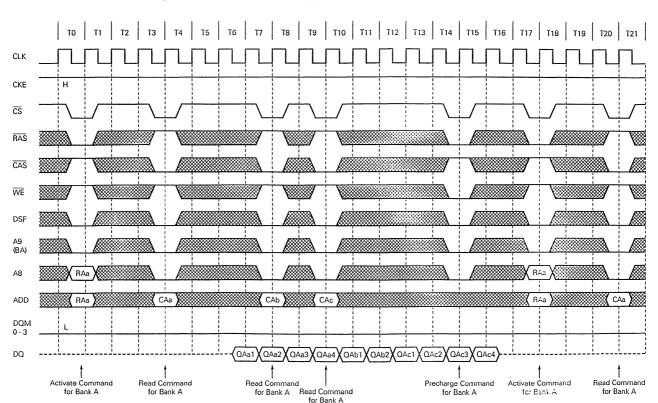
ZEC



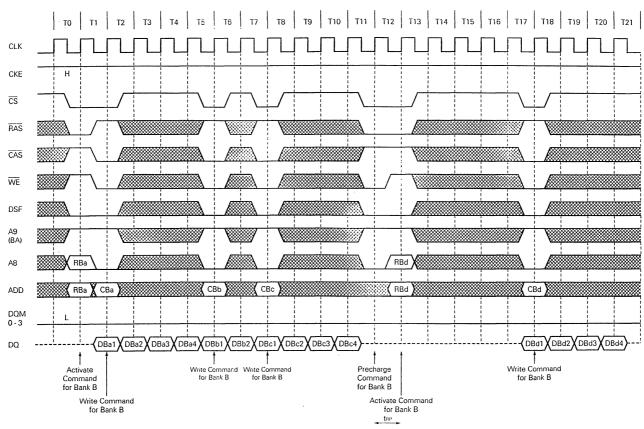
Interleaved Block Write (CAS latency = 3)

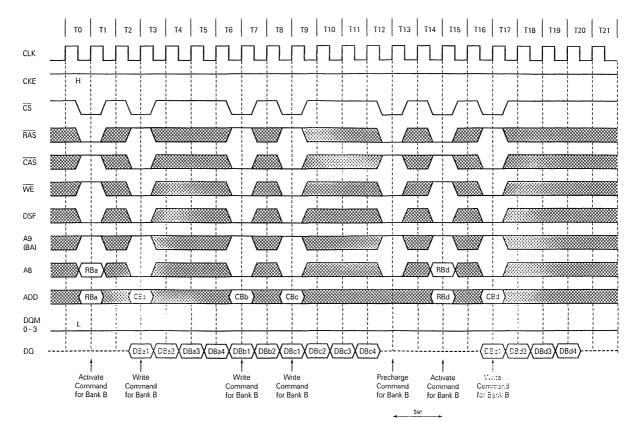

µPD481850

16.6 Application Cycles

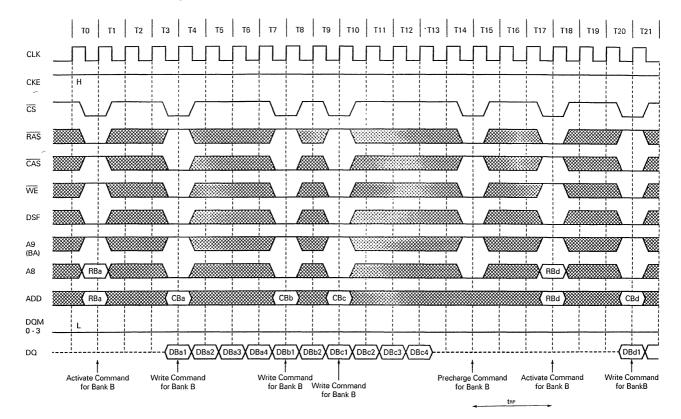

16.6.1 Page Cycles with Same Bank

Random Column Read (Page with same bank) (1/3) (Burst length = 4, \overline{CAS} latency = 1)

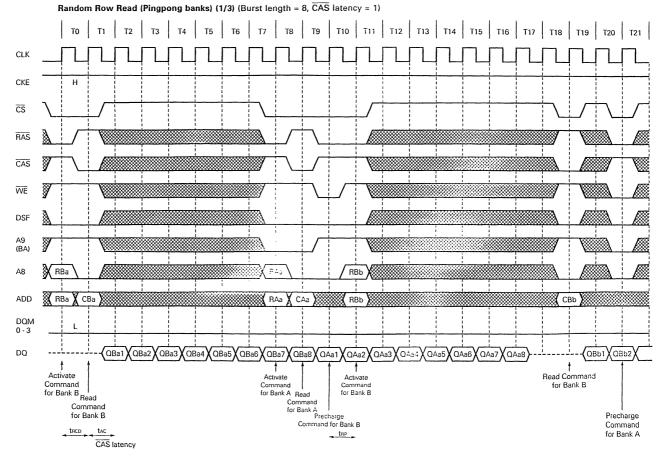

Random Column Read (Page with same bank) (2/3) (Burst length = 4, CAS latency = 2)


tRP

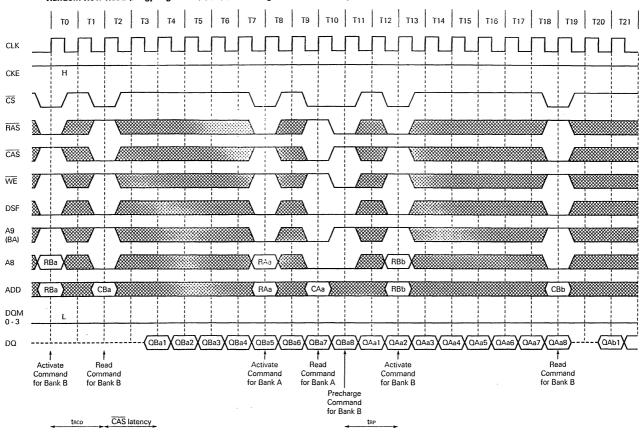
Random Column Read (Page with same bank) (3/3) (Burst length = 4, CAS latency = 3)


Z III O

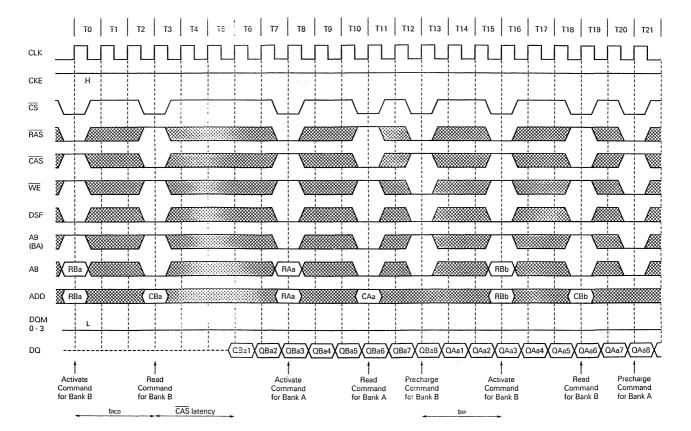
Random Column Write (Page with same bank) (1/3) (Burst length = 4, CAS latency = 1)

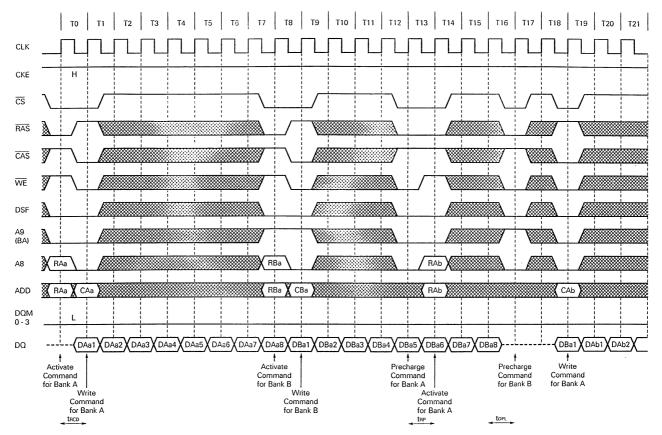


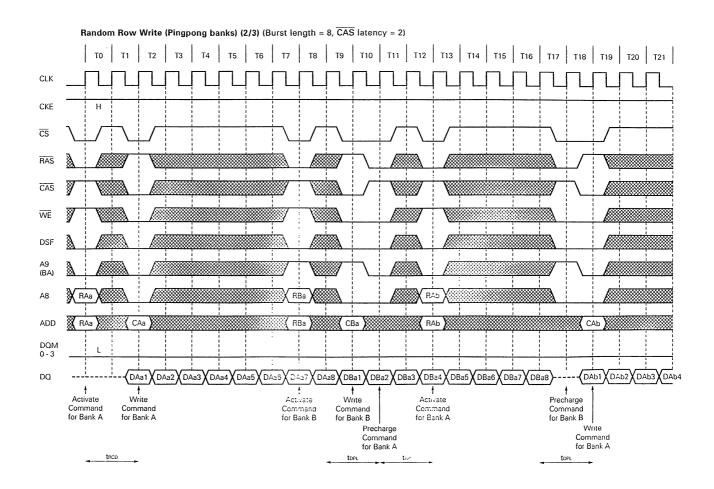
Random Column Write (Page with same bank) (2/3) (Burst length = 4, TAS latency = 2)



Random Column Write (Page with same bank) (3/3) (Burst length = 4, $C\overline{AS}$ latency = 3)


16.6.2 Cycles with Pingpong Banks


453


Random Row Read (Pingpong banks) (2/3) (Burst length = 8, $\overline{C}AS$ latency = 2)

Random Row Read (Pingpong banks) (3/3) (Burst length = 8, CAS latency = 3)

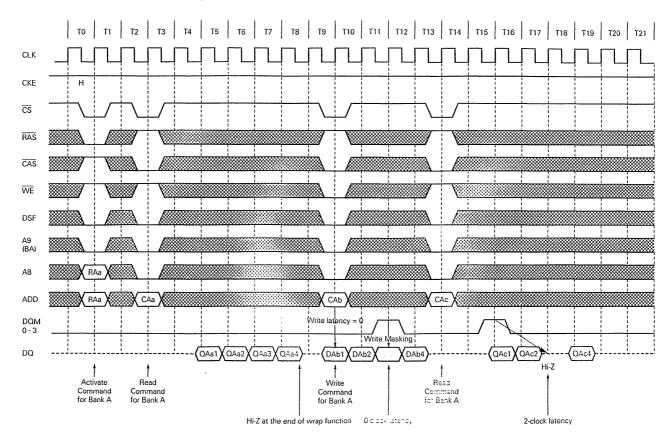
Random Row Write (Pingpong banks) (1/3) (Burst length = 8, CAS latency = 1)

µPD481850

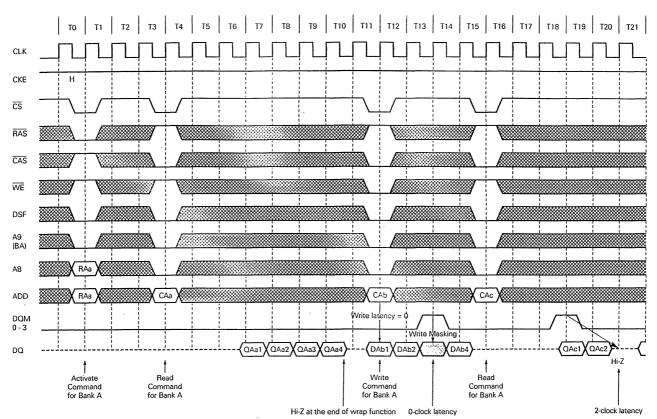
Random Row Write (Pingpong banks) (3/3) (Burst length = 8, CAS latency = 3)

NEC

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T8 Т9 T10 TO T1 T2 T3 Τ4 T5 T7 T6 CLK CKE н CS 1 RAS 3 CAS Ø WE Ø 2 DSF A9 (BA) Ø RBa RBe RAa RBb RBc RAe RBf A8 RAb RAc RBd RAd RBa CBb X RAb X CA5 X REc X CBc RAC X CAC X RBd X CBd X RAd X CAd X ADD CBa RAa CAa 🗙 явь RBe CBe X RAe X CAe RBf X CBf DQM 0 - 3 L QBa1 X QBa2 X QAa1 X QAa2 X QBb1 X QBb2 X QAb1 X QAb2 X QBc1 X QBc2 X QAc1 X QAc2 X QBd1 X QBd2 X QAd1 X QAd2 X QBe1 X QBe2 X QAe1 X QAe2 X QAE2 X QAE1 X QAE1 X QAE1 X QAE2 X QAE1 X QAE1 X QAE1 X QAE2 X QAE1 X QAE1 X QAE1 X QAE1 X QAE1 X QA DQ Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Precharge Precharge Precharge Precharge Precharge Precharge Precharge Precharge Precharge Precharge for bank B for bank A for bank B for bank B for bank A for bank B for bank B for bank A for bank A for bank A tre TRP **t**_{BP} **t**RP trp **t**RP **t**RP trp -t., lin

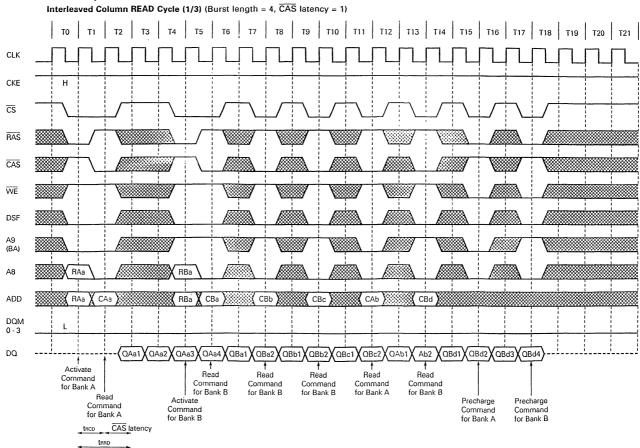

Random Row READ (Pingpong banks) (Burst length = 2, CAS latency = 1)

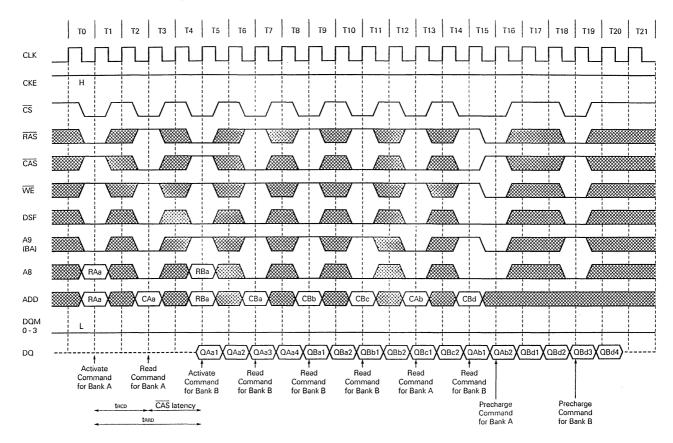
µPD481850


READ and WRITE (1/3) (Burst length = 4, CAS latency = 1) T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 Т9 T7 T8 T6 T5 TO T1 T2 **T**3 CLK CKE н CS RAS CAS ŴĒ DSF A9 (BA) A8 RAa CAb 💥 CAc ADD RAa 🗴 CAa Write latency = 0 DQM 0-3 Write Masking Hi-Z QAa1 QAa2 QAa3 QAa4 QAc4 DQ DAb1 DAb2 DAb4 QAc1 QAc2 Write Read Activate Command Command Command for Bank A for Bank A for Bank A Read 2-clock latency Hi-Z at the end of wrap function Command 0-clock latency for Bank A

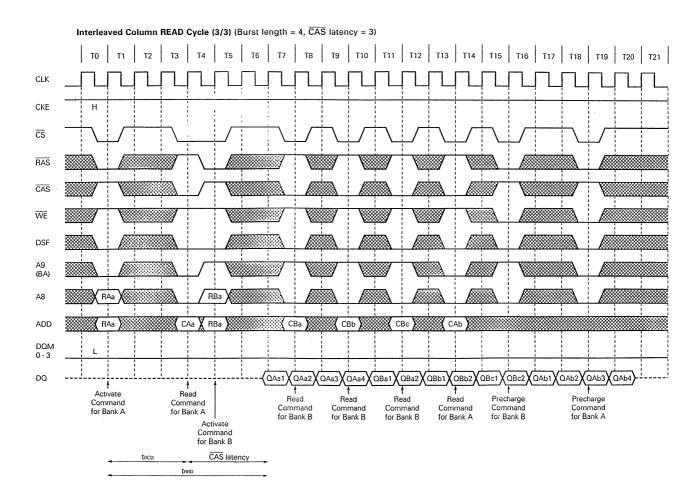
16.6.3 READ and WRITE Cycles

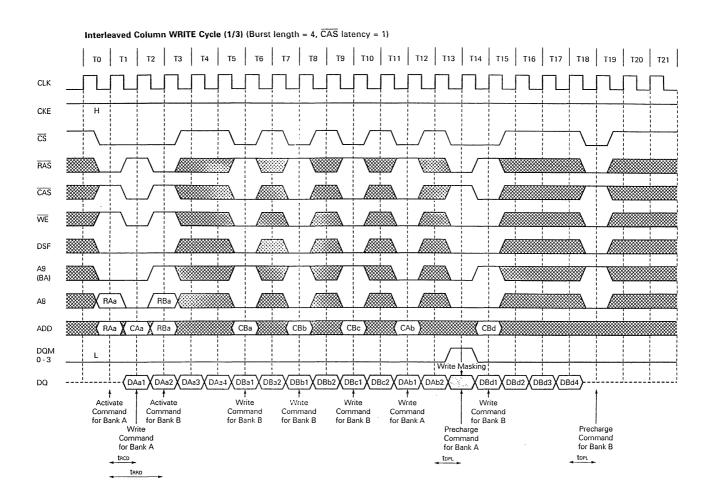
µPD481850

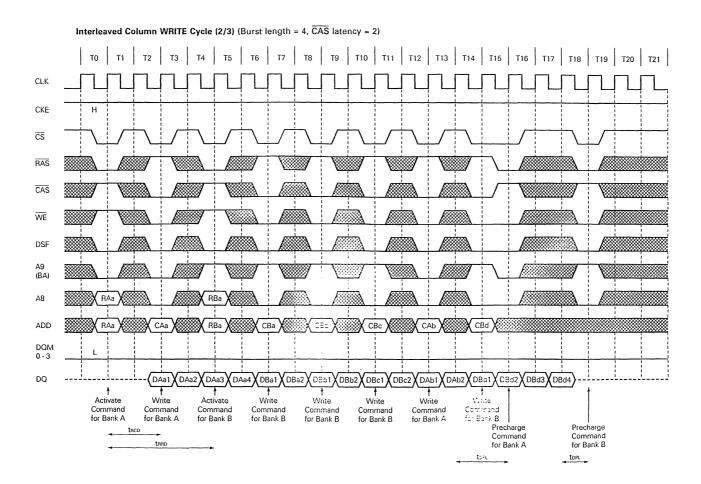


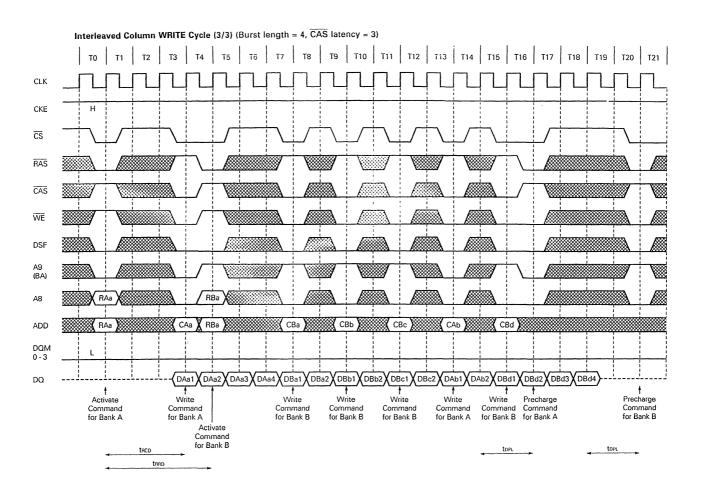

READ and WRITE (2/3) (Burst length = 4, \overline{CAS} latency = 2)

READ and WRITE (3/3) (Burst length = 4, \overline{CAS} latency = 3)



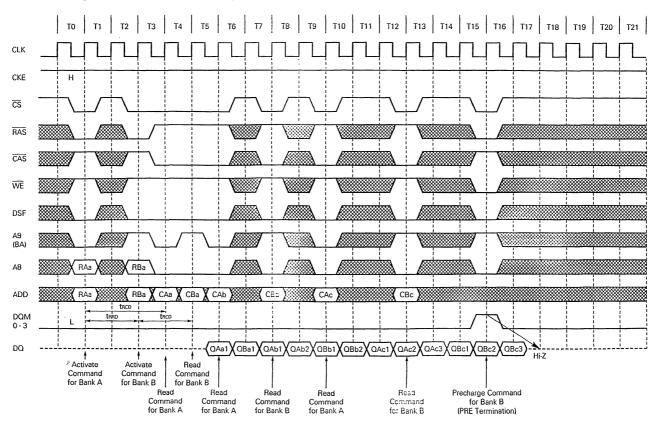

Interleaved Column READ Cycle (2/3) (Burst length = 4, \overline{CAS} latency = 2)

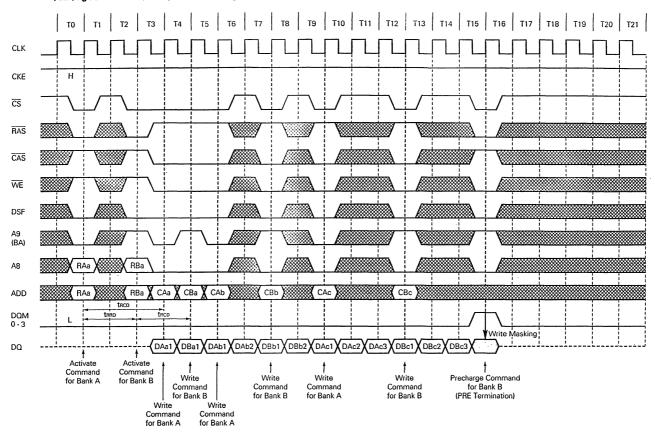

µPD481850



µPD481850

ZEC

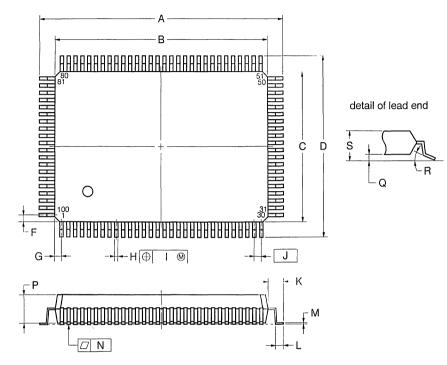



468

и**РD481850**

16.6.5 Full Page Random Cycles

Full Page Random Column Read (Burst length = Full Page, CAS latency = 2)



Full Page Random Column Write (Burst length = Full Page, \overline{CAS} latency = 2)

17. Package Drawing

100PIN PLASTIC QFP (14 \times 20)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
	MILLINE LING	
A	23.2±0.2	$0.913 \substack{+0.009 \\ -0.008}$
в	20.0±0.2	$0.787^{+0.009}_{-0.008}$
с	14.0±0.2	$0.551 \substack{+0.009 \\ -0.008}$
D	17.2±0.2	0.677±0.008
F	0.825	0.032
G	0.575	0.023
н	$0.32^{+0.08}_{-0.07}$	0.013±0.003
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
к	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17 \substack{+0.06 \\ -0.05}$	0.007±0.002
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	3.0 MAX.	0.119 MAX.
		S100GF-65-JBT

18. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD481850.

Type of Surface Mount Device

 μ PD481850GF-JBT: 100-pin Plastic QFP (14 \times 20 mm)

Corporate Headquarters 475 Ellis Street Mountain View, CA 94043 Telephone: 415-960-6000 Fax: 415-965-6130 New Corporate Headquarters (Spring 1996) 2880 Scott Blvd. Santa Clara, CA 95050

For literature, call toll-free 8 a.m. to 4 p.m., Pacific time: 1-800-366-9782