

DIGITAL SIGNAL PROCESSOR (DSP) AND SPEECH PROCESSOR PRODUCTS DATA BOOK
2HN

NEC

1992
 Digital Signal Processor (DSP) and

 Speech Processor Products

 Speech Processor Products Data Book

 Data Book}

March 1992
Document No. 50052-1
© 1992 NEC Electronics Inc./Printed in the U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.

Selection Guides
 Reliability and Quality Control

Digital Signal Processors

Speech Processors

Development Tools

Package Drawings

Section 1 Selection Guides	
Single-Chip Microcomputers	1-1
V-Series and RISC Microprocessors and Peripherals	1-8
Intelligent Peripheral Devices (IPD)	1-11
DSP and Speech Products	1-13
Development Tools for Micro Products	
V-Series Microprocessors	1-15
75xx Series Single-Chip Microcomputers	1-18
75xxx Series Single-Chip Microcomputers	1-20
78xx Series Single-Chip Microcomputers	1-24
K2 (782xx) Series Single-Chip	1-26
Microcomputers	
K3 (783xx) Series Single-Chip	1-28
Microcomputers	
DSP and Speech Products	1-30
PG-1500 Programming Adapters	1-32
Section 2 Reliability and Quality Control	
Built-in TQC	2-1
Approaches to TQC	2-1
Implementation of Quality Control	2-3
Reliability Theory	2-5
Failure Analysis	2-9
Summary	2-9
Figure 1. NEC's Quality Control System	2-2
Figure 2. New Product Development	2-3
Figure 3. Electrical Testing and Screening	2-5
Figure 4. Reliability Life (Bathtub) Curve	2-5
Appendix 1A. Typical QC Flow for CMOS Fabrication	2-10
Appendix 1B. Typical QC Flow for PLCC Assembly/Test	2-11
Appendix 2. Typical Reliability Assurance Tests	2-13
Appendix 3. New Product/Process Change Tests	2-13
Appendix 4. Failure Analysis Flowchart	2-14

Section 5 Development Tools	
Third-Party Development Tools	5-1
μ PD77C20A, 7720A, 77P20 Digital Signal Processors	
EVAKIT-7720B μ PD7720 Standalone Emulator	5a
ASM77 μ PD7720 Absolute Assembler	5b
μ PD77C25/77P25 Digital Signal Processor	
EVAKIT-77C25 μ PD77C25 Standalone Emulator	5 c
RA77C25 μ PD77C25 Relocatable Assembler Package	5d
SM77C25 PC-Based Simulator for μ PD77C25 and μ PD77C20	5 e
μ PD77220/P220, μ PD77230/P230 Digital Signal Processors	
EVAKIT-77220 μ PD77220 Standalone Emulator	$5 f$
EVAKIT-77230 μ PD77230 Standalone Emulator	59
DDK-77220A μ PD77220 Evaluation Board	5h
RA77230 μ PD77220/ μ PD77230 Relocatable Assembler Package	$5 i$
SM77230 PC-Based Simulator for μ PD77220/ μ PD77230	5j
μ PD77240 Digital Signal Processor	
IE-77240 In-Circuit Emulator for the μ PD77240	5k
RA77240 Relocatable Assembler Package	51
¢PD77810 Modem Digital Signal Processor	
IE-77810 In-Circuit Emulator for the μ PD77810	5m
RA77810 Relocatable Assembler Package for the μ PD77810	5n

Section 5 Development Tools	
μ PD775x ADPCM Speech Processors and μ PD77501 ADPCM Record and Playback Speech Processor	
NV-300 Speech Analysis Tool for μ PD775x and μ PD77501	50
NV-310 Speech Analysis Tool for μ PD775x	5p
EB-775x Demonstration and Evaluation Box for μ PD775x	$5 q$
PG-1500 Series EPROM Programmer	5 r
Section 6 Package Drawings	
Package/Device Cross Reference	6-1
18-Pin Plastic DIP (300 mil) (A, C Outine)	6-3
18-Pin Plastic DIP (300 mil) (SA Outline)	6-3
20-Pin Plastic DIP (300 mil)	6-4
24-Pin Plastic SOP (450 mil)	6-4
28-Pin Plastic SOP (450 mil)	6-5
28-Pin Plastic DIP (600 mil)	6-5
28-Pin Ceramic DIP (600 mil)	6-6
28-Pin Cerdip (600 mil)	6-7
28-Pin PLCC	6-8
32-Pin SOP (525 mil)	6-8
$40-\mathrm{Pin}$ Plastic DIP (600 mil)	6-9
$40-\mathrm{Pin}$ Ceramic DIP (600 mil)	6-10
44-Pin PLCC	6-11
52-Pin Plastic QFP	6-12
68-Pin Ceramic PGA (A Outline)	6-13
68-Pin Ceramic PGA (A-1 Outline)	6-14
68-Pin PLCC	6-15
80-Pin Plastic QFP	6-16
132-Pin Ceramic PGA	6-17

Numerical Index	Section
Device, μ PD	3g
7281	3a
7720 A	3c
77220	3d
77230 A	3e
77240	4d
77501	4e
77522	4b
7755	4b
7756	4b
7757	4b
7758	4c
7759	3f
77810	3a
$77 C 20 A$	3b
$77 C 25$	4a
$77 C 30$	3a
$77 P 20$	3b
$77 P 25$	3c
$77 P 220$	3d
9305	4b

Selection Guides

Pellabulity and Quallty Contrel

Digital Signall promessons

Speech rocessarz

Development Tools

Package Dranting
Section 1Selection Guides
Single-Chip Microcomputers 1-1
V-Series and RISC Microprocessors and 1-8
Peripherals
Intelligent Peripheral Devices (IPD) 1-11
DSP and Speech Products 1-13
Development Tools for Micro Products V-Series Microprocessors 1-15
75xx Series Single-Chip Microcomputers 1-18
75xxx Series Single-Chip Microcomputers 1-20
78xx Series Single-Chip Microcomputers 1-24
K2 (782xx) Series Single-Chip 1-26
Microcomputers
K3 (783xx) Series Single-Chip 1-28
Microcomputers
DSP and Speech Products 1-30
PG-1500 Programming Adapters 1-32

Part Numbering System

μ PD72001L Typical microdevice part number
$\mu \mathrm{P} \quad$ NEC monolithic silicon integrated circuit
D Device type ($\mathrm{D}=$ digital MOS)
72001 Device identifier (alphanumeric)
L Package type ($\mathrm{L}=\mathrm{PLCC}$)
A part number may include an alphanumeric suffix that identifies special device characteristics; for example, μ PD72001L-11 has an $11-\mathrm{MHz}$ CPU clock rating.

4-Bit, Single-Chip CMOS Microcomputers; 75xx Series

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	I/O	Package \dagger	Pins
7502A	LCD controller/driver	0.41	2.5 to 6.0	2K	128	23	QFP	64
7503A	LCD controller/driver	0.41	2.5 to 6.0	4K	224	23	QFP	64
7507B	General-purpose	0.5	2.2 to 6.0	2K	128	32	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \end{aligned}$
7508B	General-purpose	0.5	2.2 to 6.0	4K	224	32	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \end{aligned}$
7533	A/D converter	0.51	2.7 to 6.0	4K	160	30	DIP SDIP QFP	$\begin{aligned} & 42 \\ & 42 \\ & 44 \end{aligned}$
75CG33	Piggyback EPROM; A/D converter	0.51	4.5 to 5.5	4K	160	30	Ceramic DIP	42
7554	Serial I/O; external clock or RC oscillator	0.71	2.5 to 6.0	1K	64	16	$\begin{aligned} & \hline \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
7554A	Serial I/O; external clock or RC oscillator	0.71	2.0 to 6.0	1K	64	16	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
75P54	Serial I/O; external clock or RC oscillator	0.71	4.5 to 6.0	1K OTPROM	64	16	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
7564/7564A	Serial I/O; ceramic oscillator	0.71	2.7 to 6.0	1K	64	15	$\begin{aligned} & \hline \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
75P64	Serial I/O; ceramic oscillator	0.71	4.5 to 6.0	1K OTPROM	64	15	$\begin{aligned} & \hline \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
7556	Comparator; external clock or RC oscillator	0.71	2.5 to 6.0	1K	64	20	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$
7556A	Comparator; external clock or RC oscillator	0.71	2.0 to 6.0	1K	64	20	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$
75P56	Comparator; external clock or RC oscillator	0.71	4.5 to 6.0	1K OTPROM	64	20	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$
7566/7566A	Comparator; ceramic oscillator	0.71	2.7 to 6.0	1K	64	19	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$
75P66	Comparator; ceramic oscillator	0.71	4.5 to 6.0	1K OTPROM	64	19	$\begin{aligned} & \text { SDIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$

\dagger Plastic unless ceramic (or cerdip) is specified.
4-Bit, Single-Chip CMOS Microcomputers; 75xxx Series

Device (μ PD)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	1/0	Package \dagger	Pins
75004	General-purpose	4.19	2.7 to 6.0	4K	512	34	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \end{aligned}$
75006	General-purpose	4.19	2.7 to 6.0	6K	512	34	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \end{aligned}$
75008	General-purpose	4.19	2.7 to 6.0	8K	512	34	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \end{aligned}$
75P008	General-purposè; onchip OTPROM	4.19	4.5 to 5.5	8K OTPROM	512	34	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 42 \\ & 44 \end{aligned}$
75028	A/D converter	4.19	2.7 to 6.0	8K	512	48	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75P036	A/D converter; on-chip OTPROM	4.19	2.7 to 6.0	16K OTPROM	1024	48	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$

4-Bit, Single-Chip CMOS Microcomputers; 75xxx Series (cont)

Device (μ PD)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	1/0	Package \dagger	Pins
75048	A/D converter; $1 \mathrm{~K} \times 4$ EEPROM	4.19	2.7 to 6.0	8K	512	48	$\begin{aligned} & \text { SDIP } \\ & \text { OFFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75P048 *	A/D converter; 1K x 4 EEPROM; on-chip OTPROM	4.19	2.7 to 6.0	8K OTPROM	512	48	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75104	High-end with 8-bit instruction	4.19	2.7 to 6.0	4K	320	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75104A	High-end with 8-bit instruction	4.19	2.7 to 6.0	4K	320	52	QFP	64
75106	High-end with 8-bit instruction	4.19	2.7 to 6.0	6 K	320	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75108	High-end with 8-bit instruction	4.19	2.7 to 6.0	8K	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75108A	High-end with 8-bit instruction	4.19	2.7 to 6.0	8K	512	52	QFP	64
75108F	High-end with 8-bit instruction; high speed	4.19	2.7 to 5.0	8K	512	52	QFP	64
75P108	High-end with 8-bit instruction; on-chip OTPROM or UVEPROM	4.19	4.5 to 5.5	8K OTPROM	512	52	$\begin{aligned} & \hline \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
				8K UVEPROM	512	52	Shrink cerdip	64
75P108B	High-end with 8-bit instruction; on-chip OTPROM	4.19	2.7 to 6.0	8K OTPROM	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75112	High-end with 8-bit instruction	4.19	2.7 to 6.0	12K	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75112F	High-end with 8-bit instruction; high speed	4.19	2.7 to 5.0	12K	512	52	QFP	64
75116	High-end with 8 -bit instruction	4.19	2.7 to 6.0	16K	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75116F	High-end with 8-bit instruction; high speed	4.19	2.7 to 5.0	16K	512	52	QFP	64
75P116	High-end with 8-bit instruction; on-chip OTPROM	4.19	4.5 to 5.5	16K OTPROM	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75116H	High-end with 8-bit instruction; high speed; low voltage	4.19	1.8 to 5.0	16K	768	52	QFP	64
75117H	High-end with 8-bit instruction; high speed; low voltage	4.19	1.8 to 5.0	24K	768	52	QFP	64
75P117 ${ }^{*}$	High-end with 8-bit instruction; high speed; low voltage; onchip OTPROM	4.19	1.8 to 5.0	24K OTPROM	768	52	QFP	64
75206	FIP controller/driver	4.19	2.7 to 6.0	6K	369	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 54 \end{aligned}$
75208	FIP controller/driver	4.19	2.7 to 6.0	8K	497	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$

4-Bit, Single-Chip CMOS Microcomputers; 75xxx Series (cont)

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	I/O	Package \dagger	Pins
75212A	FIP controller/driver	4.19	2.7 to 6.0	12K	512	28	$\begin{aligned} & \hline \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75216A	FIP controller/driver; on-chip OTPROM	4.19	2.7 to 6.0	16K	512	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75P216A	FIP controller/driver; on-chip OTPROM	4.19	4.5 to 5.5	16K OTPROM	512	28	SDIP	64
75217	FIP controller/driver	4.19	2.7 to 6.0	24K	768	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75218	FIP controller/driver	6.0	2.7 to 6.0	32K	1024	28	$\begin{aligned} & \hline \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75P218	FIP controller/driver; on-chip OTPROM or UVEPROM	6.0	2.7 to 6.0	32 K OTPROM	1024	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
				32K UVEPROM	1024	28	Ceramic LCC	64
75236	FIP controller/driver; A/D converter	4.19	2.7 to 6.0	16K	768	40	QFP	94
75237	FIP controller/driver; A/D converter	6.0	2.7 to 6.0	24K	1024	40	QFP	94
75238	FIP controller/driver; A/D converter	6.0	2.7 to 6.0	32K	1024	40	QFP	94
75P238	FIP controller/driver; A/D converter; on-chip OTPROM or UVEPROM	6.0	2.7 to 6.0	32K OTPROM	1024	40	QFP	94
				32K UVEPROM	1024	40	Ceramic LCC	94
75268	FIP controller/driver	4.19	2.7 to 6.0	8K	512	28	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
75304	LCD controller/driver	4.19	2.7 to 6.0	4K	512	32	QFP	80
75306	LCD controller/driver	4.19	2.7 to 6.0	6K	512	32	QFP	80
75308	LCD controller/driver	4.19	2.7 to 6.0	8K	512	32	QFP	80
75308B	LCD controller/driver; low voltage	4.19	2.0 to 6.0	8K	512	32	QFP	80
75P308	LCD controller/driver; on-chip OTPROM or UVEPROM	4.19	4.75 to 5.25	8K OTPROM	512	32	QFP	80
				8K UVEPROM	512	32	Ceramic LCC	80
75312	LCD controller/driver	4.19	2.7 to 6.0	12K	512	32	QFP	80
75316	LCD controller/driver	4.19	2.7 to 6.0	16K	512	32	QFP	80
75P316	LCD controller/driver; on-chip OTPROM	4.19	4.75 to 5.25	16K OTPROM	512	32	QFP	80
75P316A	LCD controller/driver; on-chip OTPROM or UVEPROM	4.19	2.7 to 6.0	16 K OTPROM	512	32	QFP	80
				16K UVEPROM	512	32	Ceramic LCC	80
75328	LCD controller/driver; A/D converter	4.19	2.7 to 6.0	8K	512	36	QFP	80
75P328	LCD controller/driver; A/D converter; on-chip OTPROM	4.19	4.5 to 5.5	8K OTPROM	512	36	QFP	80
75336	LLCD controller/driver; A/D converter; high-end	4.19	2.7 to 6.0	16K	768	36	QFP	80

4-Bit, Single-Chip CMOS Microcomputers; 75xxx Series (cont)

Device (μ PD)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X4)	1/0	Package \dagger	Pins
75P336	LCD controller/driver; A/D converter; highend; on-chip OTPROM	4.19	2.7 to 6.0	16K OTPROM	768	36	QFP	80
75348	LCD controller/driver; DTMF, high-end	4.19	2.0 to 6.0	8K	1024	32	QFP	100
75352	LCD controller/driver; DTMF, high-end	4.19	2.0 to 6.0	12K	1024	32	QFP	100
75402A	Low-end	4.19	2.7 to 6.0	2K	64	22	$\begin{aligned} & \text { DIP } \\ & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 44 \end{aligned}$
75P402	Low-end; on-chip OTPROM	4.19	4.5 to 5.5	2K OTPROM	64	22	$\begin{aligned} & \hline \text { DIP } \\ & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 44 \end{aligned}$
75512	High-end; A/D converter	4.19	2.7 to 6.0	12K	512	64	QFP	80
75516	High-end; A/D converter	4.19	2.7 to 6.0	16K	512	64	QFP	80
75P516	High-end; A/D converter; on-chip OTPROM or UVEPROM	4.19	4.75 to 5.5	16K OTPROM	512	64	QFP	80
				16K UVEPROM	512	64	Ceramic LCC	80
75517	High-end; A/D converter; high-speed	6.0	2.7 to 6.0	24K	1024	64	QFP	80
75518	High-end; A/D converter; high-speed	6.0	2.7 to 6.0	32K	1024	64	QFP	80
75P518	High-end; A/D converter; high-speed; on-chip OTPROM and UVEPROM	6.0	2.7 to 6.0	32 K OTPROM	1024	64	QFP	80
				32 K UVEPROM	1024	64	Ceramic LCC	80
75616	LCD controller/driver; DTMF, high-end; A/D converter	6.0	2.0 to 6.0	16K	1536	32	QFP	100
75617	LCD controlier/driver; DTMF, high-end; A/D converter	6.0	2.0 to 6.0	24K	1536	32	QFP	100
75P618	LCD controller/driver; DTMF, high-end; A/D converter; on-chip OTPROM	6.0	2.0 to 6.0	32K OTPROM	2048	32	QFP	100

\dagger Plastic unless ceramic (or cerdip) is specified.
8-Bit, Single-Chip CMOS Microcomputers; 78xx Series

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	1/0	Package \dagger	Pins
78C10A	CMOS; A/D converter	15	4.5 to 5.5	External	256	32	QUIP	64
							SDIP	64
							QFP	64
							PLCC	68
78C11A	CMOS; A/D converter	15	4.5 to 5.5	4K	256	40	QUIP	64
							SDIP	64
							QFP	64
							PLCC	68

8-Bit, Single-Chip CMOS Microcomputers; 78xx Series (cont)

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	1/0	Package \dagger	Pins
78C12A	CMOS; A/D converter	15	4.5 to 5.5	8K	256	40	QUIP	64
							SDIP	64
							QFP	64
							PLCC	68
78C14/8C14A	CMOS; A/D converter	15	4.5 to 5.5	16K	256	40	QUIP	64
							SDIP	64
							QFP	64
							PLCC	68
78CP14	CMOS; A/D converter; on-chip OTPROM or UVEPROM	15	4.75 to 5.25	16K OTPROM	256	40	QUIP	64
							SDIP	64
							QFP	64
							PLCC	68
				16K UVEPROM	256	40	Ceramic QUIP	64
							Shrink cerdip	64
78 C 17	CMOS; A/D converter	15	4.5 to 5.5	External	1024	40	QUIP	64
							SDIP	64
							QFP	64
78C18	CMOS; A/D converter	15	4.5 to 5.5	32K	1024	40	QUIP	64
							SDIP	64
							QFP	64
78CP18	CMOS; A/D converter; on-chip OTPROM or UVEPROM	15	4.75 to 5.25	32 K OTPROM	1024	40	QUIP	64
							SDIP	64
							QFP	64
				32K UVEPROM	1024	40	Ceramic LCC	64

\dagger Plastic unless ceramic (or cerdip) is specified.
8-Bit, Single-Chip CMOS Microcomputers; 782xx (K2) Series

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	I/O	Package \dagger	Pins
78212	CMOS; A/D converter; advanced peripherals	12	4.5 to 5.5	8K	384	54	SDIP	64
							QUIP	64
							QFP	64
							QFP	74
							PLCC	68
78213	CMOS; A/D converter; advanced peripherals	12	4.5 to 5.5	External	512	36	SDIP	64
							QUIP	64
							QFP	64
							QFP	74
							PLCC	68
78214	CMOS; A/D converter; advanced peripherals	12	4.5 to 5.5	16K	512	54	SDIP	64
							QUIP	64
							QFP	64
							QFP	74
							PLCC	68
78P214	CMOS; A/D converter; advanced peripherals; on-chip OTPROM or UVEPROM	12	4.5 to 5.5	16K OTPROM	512	54	SDIP	64
							QUIP	64
							QFP	64
							QFP	74
							PLCC	68
				16K UVEPROM	512	54	Shrink cerdip	64
78217A	CMOS; A/D converter; advanced peripherals	12	4.5 to 5.5	External	1024	36	SDIP	64
							QFP	64

8-Bit, Single-Chip CMOS Microcomputers; 782xx (K2) Series (cont)

Device (μ PD)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	1/0	Package \dagger	Pins
78218A	CMOS; A/D converter; advanced peripherals	12	4.5 to 5.5	32K	1024	54	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
78P218A	CMOS; A/D converter; advanced peripherals; on-chip OTPROM or UVEPROM	12	4.5 to 5.5	32 K OTPROM	1024	54	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
				32K UVEPROM	1024	54	Shrink cerdip	64
78220	CMOS; analog comparator; large I/O	12	4.5 to 5.5	External	640	53	PLCC QFP	$\begin{aligned} & 84 \\ & 94 \end{aligned}$
78224	CMOS; analog comparator; large I/O	12	4.5 to 5.5	16K	640	71	PLCC QFP	$\begin{aligned} & 84 \\ & 94 \end{aligned}$
78P224	CMOS; analog comparator; large I/O; on-chip OTPROM	12	4.5 to 5.5	16K OTPROM	640	71	PLCC QFP	$\begin{aligned} & 84 \\ & 94 \end{aligned}$
78233	CMOS; real-time outputs; A/D and D/A converters	12	4.5 to 5.5	External	640	46	QFP QFP PLCC	$\begin{aligned} & 80 \\ & 94 \\ & 84 \end{aligned}$
78234	CMOS; real-time outputs; A/D and D/A converters	12	4.5 to 5.5	16K	640	64	QFP QFP PLCC	$\begin{aligned} & 80 \\ & 94 \\ & 84 \end{aligned}$
78237	CMOS; real-time outputs; A/D and D/A converters	12	4.5 to 5.5	External	1024	64	QFP QFP PLCC	$\begin{aligned} & 80 \\ & 94 \\ & 84 \end{aligned}$
78238	CMOS; real-time outputs; A/D and D/A converters	12	4.5 to 5.5	32K	1024	64	$\begin{aligned} & \text { QFP } \\ & \text { QFP } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & 80 \\ & 94 \\ & 84 \end{aligned}$
78P238	CMOS; real-time outputs; A/D and D/A converters; on-chip OTPROM or UVEPROM	12	4.5 to 5.5	32 K OTPROM	1024	64	QFP QFP PLCC	$\begin{aligned} & 80 \\ & 94 \\ & 84 \end{aligned}$
				32K UVEPROM	1024	64	Ceramic LCC	94
78243	CMOS; A/D converter; EEPROM	12	4.5 to 5.5	External	$\begin{aligned} & 512 \\ & 512 \\ & \text { EEPROM } \end{aligned}$	36	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$
78244	CMOS; A/D converter; EEPROM	12	4.5 to 5.5	16K	$\begin{aligned} & \hline 512 \\ & 512 \\ & \text { EEPROM } \end{aligned}$	54	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \end{aligned}$

\dagger Plastic unless ceramic (or cerdip) is specified.
8/16-Bit, Single-Chip CMOS Microcomputers; 783xx (K3) Series

Device (μ PD)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	1/0	Package \dagger	Pins
78310A	Real-time motor control	12	4.5 to 5.5	External	256	48	SDIP	64
							QUIP	64
							QFP	64
							PLCC	68
78312A	Real-time motor control	12	4.5 to 5.5	8K	256	48	SDIP	64
							QUIP	64
							QFP	64
							PLCC	68

Single-Chip Microcomputers

8/16-Bit, Single-Chip CMOS Microcomputers; 783xx (K3) Series

Device ($\mu \mathrm{PD}$)	Features	Clock (MHz)	Supply Voltage (V)	ROM (X8)	RAM (X8)	1/0	Package †	Pins
78P312A	Real-time motor control; on-chip OTPROM or UVEPROM	12	4.5 to 5.5	8K UVEPROM	256	48	Shrink cerdip	64
							Ceramic QUIP	64
				8K OTPROM	256	48	SDIP	64
							QUIP	64
							QFP	64
							PLCC	68
78320	Real-time control; A/D converter	16	4.5 to 5.5	External	640	37	QFP	74
							PLCC	68
78322	Real-time control; A/D converter	16	4.5 to 5.5	16K	640	55	QFP	74
							PLCC	68
78P322	Real-time control; A/D converter; on-chip OTPROM or UVEPROM	16	4.5 to 5.5	16K OTPROM	640	55	QFP	74
							PLCC	68
				16K UVEPROM	640	55	Ceramic LCC	68
							Ceramic LCC	74
78323	Real-time control; A/D converter	16	4.5 to 5.5	External	1024	37	QFP	74
							PLCC	68
78324	Real-time control; A/D converter	16	4.5 to 5.5	32K	1024	55	QFP	74
							PLCC	68
78P324	Real-time control; A/D converter	16	4.5 to 5.5	32 K OTPROM	1024	55	QFP	74
							PLCC	68
				32 K UVEPROM	1024	55	Ceramic LCC	68
							Ceramic LCC	74
78327	Real-time control; A/D converter; enhanced real-time output	16	4.5 to 5.5	External	512	34	SDIP	64
							QFP	64
78328	Real-time control; A/D converter; enhanced real-time output	16	4.5 to 5.5	16K	512	52		64
							QFP	64
78P328	Real-time control; A/D converter; enhanced real-time output; onchip OTPROM or UVEPROM	16	4.5 to 5.5	16K OTPROM	512	52	$\begin{aligned} & \text { SDIP } \\ & \text { QFP } \end{aligned}$	64
								64
								64
				16K UVEPROM	512	52	Ceramic SDIP	64
78330	Real-time control; A/D converter, enhanced real-time pulse unit	16	4.5 to 5.5	External	1024	52	QFP	94
							PLCC	84
78334	Real-time control; A/D converter, enhanced real-time pulse unit	16	4.5 to 5.5	32 K	1024	70	QFP	94
							PLCC	84
78P334	Real-time control; A/D converter, enhanced real-time pulse unit; on-chip OTPROM or UVEPROM	16	4.5 to 5.5	32 K OTPROM	1024	70	QFP	94
							PLCC	84
				32 K UVEPROM	1024	70	Ceramic LCC	94
							Ceramic LCC	84
78350	High speed; multiply and accumulate instruction	25	4.5 to 5.5	External	640	30	QFP	64
78P352	High speed; multiply and accumluate instruction; on-chip OTPROM	25	4.5 to 5.5	32 K OTPROM	640	50	QFP	64

Device, $\mu \mathrm{PD}$	Features	Data Bits	Clock (MHz)	Package \dagger	Pins
70108 (V20)	8088 compatible; enhanced	8/16	8 or 10	DIP	40
				Ceramic DIP	40
				QFP	52
				PLCC	44
$70108 \mathrm{H}(\mathrm{V} 20 \mathrm{H})$	Fully static; pin compatible with 80C88 enhanced microprocessor	8/16	10, 12, 16		40
				QFP	52
				PLCC	44
70116 (V30)	8086 compatible; enhanced	16	8 or 10	DIP	40
				Ceramic DIP	40
				QFP	52
				PLCC	44
$70116 \mathrm{H}(\mathrm{V} 30 \mathrm{H})$	Fully static; pin compatible with 80C86 enhanced microprocessor	16	10, 12, 16	DIP	40
				QFP	52
				PLCC	44
70208 (V40)	MS-DOS, V20 compatible CPU with peripherals	8/16	8 or 10	Ceramic PGA	68
				PLCC	68
				QFP	80
$70208 \mathrm{H}(\mathrm{V} 40 \mathrm{H})$	Fully static; low power; 80C88 compatible CPU plus peripherals	8/16	10, 12, 16	Ceramic PGA	68
				PLCC	68
				QFP	80
70216 (V50)	MS-DOS, V30 compatible CPU with peripherals	16/16	8 or 10	PGA	68
				PLCC	68
				QFP	80
$70216 \mathrm{H}(\mathrm{V} 50 \mathrm{H})$	Fully static; low power; 80 C 88 compatible CPU plus peripherals	16	10, 12, 16	Ceramic PGA	68
				PLCC	68
				QFP	80
70136 (V33)	Hardwired, enhanced V30	8 and 16 dynamic	12 or 16	PGA	68
				PLCC	68
70236 (V53)	V33 core-based; high-integration; DMA, serial I/O, interrupt controller, etc.	8 and 16 dynamic	10, 12, 16	Ceramic PGA QFP	$\begin{aligned} & 132 \\ & 120 \end{aligned}$
70320 (V25)	MS-DOS compatible microcontroller; highintegration; DMA, serial I/O, interrupt controller, etc.	8/16	5 or 8	PLCC	84
				QFP	94
70330 (V35)	MS-DOS compatible microcontroller; highintegration; DMA, serial I/O, interrupt controller, etc.	16	8	PLCC	84
				QFP	94
70325 (V25 Plus)	MS-DOS compatible microcontroller; highintegration; high-speed DMA	8/16	8 or 10	PLCC	84
				QFP	94
70335 (V35 Plus)	MS-DOS compatible microcontroller; highintegration; high-speed DMA	16	8 or 10	PLCC	84
				QFP	94
70327 (V25 Software Guard)	MS-DOS compatible microcontroller; highintegration; software protection	8/16	8	PLCC	84
				QFP	94
$\begin{aligned} & 70337 \text { (V35 } \\ & \text { Software Guard) } \end{aligned}$	MS-DOS compatible microcontroller; highintegration; software protection	16	8	PLCC	84
				QFP	94

[^0]V-Series and RISC Microprocessors and Peripherals

V-Series CMOS System Support Products

Device, $\mu \mathrm{PD}$	Features	Data Bits	Clock (MHz)	Package \dagger	Pins
71011	Clock Pulse Generator/Driver	-	20	DIP	18
				SOP	20
71037	Programmable DMA Controller	8	10	DIP	40
				QFP	40
				PLCC	44
71051	Serial Control Unit	8	8/10	DIP	28
				QFP	44
				PLCC	28
71054	Programmable Timer/Controller	8	8/10	DIP	24
				QFP	44
				PLCC	28
71055	Parallel Interface Unit	8	8/10	DIP	40
				QFP	44
				PLCC	44
71059	Interrupt Control Unit	8	8/10	DIP	28
				QFP	44
				PLCC	28
71071	DMA Controller	8/16	8/10	DIP	48
				Ceramic DIP	48
				QFP	52
				PLCC	52
71082	Transparent Latch	8	8	DIP	20
				SOP	20
71083	Transparent Latch	8	8	DIP	20
				SOP	20
71084	Clock Pulse Generator/Driver	-	25	DIP	18
				SOP	20
71086	Bus Buffer/Driver	8	8	DIP	18
				SOP	20
71087	Bus Buffer/Driver	8	8	DIP	20
				SOP	20
71088	System Bus Controller	-	8/10	DIP	20
				SOP	20
71101	Complex Peripheral Unit; serial, parallel, timer, interrupt	8	10	QFP	120
71641	Cache Memory Controller	8/16/32	25	PGA	132
72291	Floating Point Coprocessor for V33/V53	16	16	PGA	68
9335	Numeric Interface Adapter for V40/V50 $¢ 8087$	-	8	DIP	20

\dagger Plastic unless ceramic (or cerdip) is specified.

V-Series and RISC Microprocessors and Peripherals

RISC Microprocessors and Peripherals

Device	Name	Clock	Package	Pins
μ PD30310 ($\mathrm{R}^{3} 3000 \mathrm{~A}$)	RISC Microprocessor	25 MHz	PQFP	160
		25, 33 MHz	PPGA or CPGA	175
		40 MHz	CPGA	175
$\mu \mathrm{PD} 30311\left(\mathrm{R}_{\mathrm{R}} 3010 \mathrm{~A}\right)$	Floating-Point Processor	25 MHz	PQFP	160
		25, 33 MHz	PPGA or CPGA	84
		40 MHz	CPGA	84
$\mu \mathrm{PD} 30361\left(\mathrm{~V}_{\mathrm{R}} 3600\right)$	RISC Microprocessor	25, 33 MHz	PPGA	175
		40 MHz	CPGA	175
μ PD30362 (R^{3600})	RISC Microprocessor	25, 33. MHz	PPGA	175
		40 MHz	CPGA	175
μ PD31311	Bus Interface Unit	25, 33 MHz	PPGA	208
μ PD46710	$16 \mathrm{~K} \times 10$-Bit $\times 2$ SRAM	Access time: 12, 1520 ns	PLCC	52
μ PD46741	$8 \mathrm{~K} \times 20$-Bit $\times 2$ SRAM	Access time: $12,15,20 \mathrm{~ns}$	PLCC	68
$\mu \mathrm{PD} 30400$ ($\mathrm{R}^{4000 \mathrm{PC}}$)	RISC Microprocessor	$50,66,75 \mathrm{MHz}$	CPGA	179
μ PD30401 ($\mathrm{R}^{\text {4 }}$ (000SC)	RISC Microprocessor	$50,66,75 \mathrm{MHz}$	CPGA or LGA	447
μ PD30402 ($\mathrm{V}_{\mathrm{R}} 4000 \mathrm{MC}$)	RISC Microprocessor	$50,66,75 \mathrm{MHz}$	CPGA or LGA	447

Communications Controllers

Device, $\mu \mathrm{PD}$	Name	Description	Maximum Data Rate	Package \dagger	Pins
72001	CMOS, Advanced Multiprotocol Serial Communications Controller	Functional superset of 8530; 8086/V30 interface; two full-duplex serial channels; two DPLLs; two baud-rate generators per channel; loopback test mode; short frame and mark idle detection	$2.5 \mathrm{Mb} / \mathrm{s}$	DIP QFP PLCC	$\begin{aligned} & 40 \\ & 52 \\ & 52 \end{aligned}$
72002	CMOS, Advanced Multiprotocol Serial Communications Controller	Low-cost, single-channel version of 72001 ; software compatible; direct interface to 71071/ 8237 DMA controllers	$2.5 \mathrm{Mb} / \mathrm{s}$	DIP QFP PLCC	$\begin{aligned} & 40 \\ & 44 \\ & 44 \end{aligned}$
72103	CMOS, HDLC Controller	Single full-duplex serial channel; on-chip DMA controller	$4 \mathrm{Mb} / \mathrm{s}$	SDIP PLCC QFP	$\begin{aligned} & 64 \\ & 68 \\ & 80 \end{aligned}$

Graphics Controllers

Device, $\mu \mathrm{PD}$	Name	Description	Maximum Drawing Rate	Package \dagger	Pins
7220A	High-Performance Graphics Display Controller	General-purpose, high-integration controller; hardwired support for lines, arc/circles, rectangles, and graphics characters; 1024×1024 pixel display with four planes	$500 \mathrm{~ns} / \mathrm{dot}$	Ceramic DIP	40
72020	Graphics Display Controller	CMOS 7220A with 2M video memory; dual-port RAM control; write-masking on any bit; enhanced external sync	$500 \mathrm{~ns} / \mathrm{dot}$	$\begin{aligned} & \text { DIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 40 \\ & 52 \end{aligned}$
72120	Advanced Graphics Display Controller	High-speed graphics operations including paint, area fill, slant, arbitrary angle rotate, up to 16 x enlargement and reduction; dual-port RAM control; CMOS	$500 \mathrm{~ns} / \mathrm{dot}$	$\begin{aligned} & \text { PLCC } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 84 \\ & 94 \end{aligned}$
72123	Advanced Graphics Display Controller II	Enhanced 72120; expanded command set; improved painting performance; laser printer interface controls; CMOS	$400 \mathrm{~ns} / \mathrm{dot}$	$\begin{aligned} & \text { PLCC } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 84 \\ & 94 \end{aligned}$

Advanced Compression/Expansion Engine

Device, μ PD	Name	Description	Package \dagger	Pins
72185	Advanced Compression/ Expansion Engine (ACEE)	High-speed CCITT Group $3 / 4$ bit-map image compression/expansion (A4 test chart, $400 \mathrm{PPI} \times 400$ LPI in under 1 second); 32K-pixel line length; 32-megabyte image memory; on-chip DMA and refresh timing generator; CMOS	$\begin{aligned} & \hline \text { SDIP } \\ & \text { PLCC } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 64 \\ & 68 \\ & 80 \end{aligned}$
72186	High-Speed Advanced Compression/Expansion Engine	High-speed upgrade of 72185 (A4 test chart, 400 PPI $\times 400$ LPI in 0.5 second average); software compatible with 72185 ; separate image address and data buses	QFP	100

[^1]Floppy-Disk Controllers

Device, $\mu \mathrm{PD}$	Name	Description	Maximum Transfer Rate	Package †	Pins
765A/B	Floppy-Disk Controller	Industry-standard controller supporting IBM 3740 and IBM System 34 double-density format; enhanced 765B supports multitasking applications	$500 \mathrm{~kb} / \mathrm{s}$	DIP	40
72064	Floppy-Disk Controller	CMOS; all features of 72068 with complete AT register set and $48-\mathrm{mA}$ drivers. Pin compatible with WD 37C65/A/B but with higher performance DPLL and reliable multitasking operation	$500 \mathrm{~kb} / \mathrm{s}$	$\begin{aligned} & \text { PLCC } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 44 \\ & 52 \end{aligned}$
72065/65B	CMOS Floppy-Disk Controller	100\% 765A/B microcode compatible; compatible with $808 x$ microprocessor families	$500 \mathrm{~kb} / \mathrm{s}$	DIP PLCC QFP	$\begin{aligned} & 40 \\ & 44 \\ & 52 \end{aligned}$
72070	High-Capacity Universal Floppy-Disk Controller (UFDC)	Single-chip FDC solution for high-capacity FDDs of various types, conventional FDDs; DPLL; $1.25 \mathrm{Mb} / \mathrm{s}$ data rate; perpendicular recording format	24 MHz	QFP	64

SCSI Controllers

Device, $\mu \mathrm{PD}$	Name	Description	Maximum Read/Write Clock	Package \dagger	Pins
72111	Small Computer System Interface (SCSI) Controller	Selectable 8/16-bit data bus width; 16 high-level commands for reduced CPU load; singlecommand automatic execution; $4-\mathrm{Mb}$ sync/ async; CMOS	16 MHz	SDIP PLCC QFP	$\begin{aligned} & 64 \\ & 68 \\ & 74 \end{aligned}$
72611	Small Computer System Interface-2 (SCSI-2) Controller	8/16/32-bit host data bus; supports fast SCSI, command queuing, single and automatic execution	20 MHz	QFP	100

\dagger Plastic unless ceramic (or cerdip) is specified.

DSP and Speech Products

Digital Signal Processors

| Device,
 μ PD | Description | Instruction
 Cycle (ns) | Instruction
 ROM (Bits) | Data ROM
 (Bits) | Data RAM
 (Bits) | Package \dagger | Pins |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\dagger Plastic unless ceramic (or cerdip) is specified.

Speech Processors

Device, μ PD	Name	Technology	Bit Rate (kb/s)	Data ROM (Bits)	Package \dagger	Pins
77C30	ADPCM Speech Encoder/Decoder	NMOS	32, 24	-	$\begin{aligned} & \text { DIP } \\ & \text { PLCC } \end{aligned}$	$\begin{aligned} & 28 \\ & 44 \end{aligned}$
7755	ADPCM Speech Processor	CMOS	10-32	96K	$\begin{aligned} & \text { DIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$
7756	ADPCM Speech Processor	cmos	10-32	256K	$\begin{aligned} & \hline \text { DIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$
77P56	ADPCM Speech Processor	CMOS	10-32	256K OTPROM	$\begin{aligned} & \text { DIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \end{aligned}$
7757	ADPCM Speech Processor	CMOS	10-32	512K	$\begin{aligned} & \text { DIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$
7758	ADPCM Speech Processor	CMOS	10-32	1M	$\begin{aligned} & \text { DIP } \\ & \text { SOP } \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \end{aligned}$
7759	ADPCM Speech Processor	CMOS	10-32	1024K External RAM	$\begin{aligned} & \text { DIP } \\ & \text { QFP } \end{aligned}$	$\begin{aligned} & 40 \\ & 52 \end{aligned}$
77501	ADPCM Record and Playback Speech Processor	cmos	12, 18, 24	16M DRAM 1M SRAM External RAM	QFP	80
77522	ADPCM Codec	CMOS	32	-	SOP	28

\dagger Plastic unless ceramic (or cerdip) is specified.

Development Tools for Micro Products

V-Series Microprocessors

Device (Note 1)	Full Emulator	Full Emulator Probe	Mini-IE Emulator	Mini-IE Probe	Evaluation Boards	EPROM Device	Relocatable Assembler (Note 11)	C Compiler (Note 12)
μ PD70136GJ-12	$\begin{aligned} & \text { IE-70136- } \\ & \text { A016 } \end{aligned}$	$\begin{aligned} & \text { EP-70136L-A } \\ & \text { (Note 2) } \end{aligned}$	IE-70136-PC	$\begin{aligned} & \text { EP-70136L-PC } \\ & \text { (Note 2) } \end{aligned}$	DDK-70136	-	RA70136	CC70136
μ PD70136GJ-16	IE-70136A016	$\begin{aligned} & \text { EP-70136L-A } \\ & \text { (Note 2) } \end{aligned}$	IE-70136-PC	$\begin{aligned} & \text { EP-70136L-PC } \\ & \text { (Note 2) } \end{aligned}$	DDK-70136	-	RA70136	CC70136
μ PD70136L-16	IE-70136A016	EP-70136L-A	IE-70136-PC	EP-70136L-PC	DDK-70136	-	RA70136	CC70136
MPD70136L-12	IE-70136A016	EP-70136L-A	IE-70136-PC	EP-70136L-PC	DDK-70136	-	RA70136	CC70136
μ PD70136R-12	$\begin{aligned} & \text { IE-70136- } \\ & \text { A016 } \end{aligned}$	$\begin{aligned} & \text { EP-70136L-A } \\ & \text { (Note 3) } \end{aligned}$	IE-70136-PC	$\begin{aligned} & \text { EP-70136L-PC } \\ & \text { (Note 3) } \end{aligned}$	DDK-70136	-	RA70136	CC70136
μ PD70136R-16	$\begin{aligned} & \text { IE-70136- } \\ & \text { A016 } \end{aligned}$	$\begin{aligned} & \text { EP-70136L-A } \\ & \text { (Note 3) } \end{aligned}$	IE-70136-PC	$\begin{aligned} & \text { EP-70136L-PC } \\ & \text { (Note 3) } \end{aligned}$	DDK-70136	-	RA70136	CC70136
μ PD70208GF-8	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	-	$\begin{aligned} & \text { EB-V40MINI- } \\ & \text { IE } \end{aligned}$	-	EB-70208	-	RA70116	CC70116
$\mu \mathrm{PD} 70208 \mathrm{GF}-10$	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	-	$\begin{aligned} & \text { EB-V40MINI- } \\ & \text { IE } \end{aligned}$	-	EB-70208	-	RA70116	CC70116
μ PD70208L-8	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2958 \end{aligned}$	EB-V40MINI- IE	ADAPT68PGA 68PLCC (Note 4)	EB-70208	-	RA70116	CC70116
μ PD70208L-10	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2958 \end{aligned}$	EB-V40MINI- IE	ADAPT68PGA 68PLCC (Note 4)	EB-70208	-	RA70116	CC70116
μ PD70208R-8	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2959 \end{aligned}$	$\begin{aligned} & \text { EB-V40MINI- } \\ & \text { IE } \end{aligned}$	(Note 4)	EB-70208	-	RA70116	CC70116
μ PD70208R-10	$\begin{aligned} & \text { IE-70208- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2959 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EB-V40MINI- } \\ & \text { IE } \\ & \hline \end{aligned}$	(Note 4)	EB-70208	-	RA70116	CC70116
$\mu \mathrm{PD} 70216 \mathrm{GF}-8$	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	EP-70320J	EB-V50MINIIE	-	EB70216	-	RA70116	CC70116
μ PD70216GF-10	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	EP-70320J	EB-V50MINIIE	-	EB70216	-	RA70116	CC70116
μ PD70216L-8	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2958 \end{aligned}$	EB-V50MINIIE	ADAPT68PGA 68PLCC (Note 4)	EB70216	-	RA70116	CC70116
μ PD70216L-10	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2958 \end{aligned}$	$\begin{aligned} & \text { EB-V50MINI- } \\ & \text { IE } \end{aligned}$	ADAPT68PGA 68PLCC (Note 4)	EB70216	-	RA70116	CC70116
μ PD70216R-8	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 29.59 \end{aligned}$	EB-V50MINI- IE	(Note 4)	EB70216	-	RA70116	CC70116
μ PD70216R-10	$\begin{aligned} & \text { IE-70216- } \\ & \text { A010 } \end{aligned}$	$\begin{aligned} & \text { IE-70000- } \\ & 2959 \end{aligned}$	$\begin{aligned} & \text { EB-V50MINI- } \\ & \text { IE } \end{aligned}$	(Note 4)	EB70216	-	RA70116	CC70116
μ PD70236GD-10	IE-70236-BX	$\begin{aligned} & \text { EV-9500GD- } \\ & 120 \\ & \text { (Note 16) } \end{aligned}$	-	-	DDK-70236	-	RA70136	CC70136
$\mu \mathrm{PD} 70236 \mathrm{GD}-12$	IE-70236-BX	$\begin{aligned} & \text { EV-9500GD- } \\ & 120 \\ & \text { (Note 16) } \end{aligned}$	-	-	DDK-70236	-	RA70136	CC70136
$\mu \mathrm{PD} 70236 \mathrm{GD}-16$	IE-70236-BX	$\begin{aligned} & \text { EV-9500GD- } \\ & 120 \\ & \text { (Note 16) } \end{aligned}$	-	-	DDK-70236	-	RA70136	CC70136

V-Series Microprocessors (cont)

Device (Note 1)	Full Emulator	Full Emulator Probe	Mini-IE Emulator	Mini-IE Probe	Evaluation Boards	EPROM Device	Relocatable Assembler (Note 11)	C Compiler (Note 12)
μ PD70236R-10	IE-70236-BX	(Note 15)	-	-	DDK-70236	-	RA70136	CC70136
$\mu \mathrm{PD} 70236 \mathrm{R}-12$	IE-70236-BX	(Note 15)	-	-	DDK-70236	-	RA70136	CC70136
μ PD70236R-16	IE-70236-BX	(Note 15)	-	-	DDK-70236	-	RA70136	CC70136
μ PD70320GJ	IE-70320A008	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320	-	RA70320	CC70116
μ PD70320GJ-8	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	EP-70320GJ (Note 5)	EB-V25MINI-IE-P	EP-70320GJ (Note 6)	DDK-70320	-	RA70320	CC70116
$\mu \mathrm{PD70320L}$	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK-70320	-	RA70320	CC70116
μ PD70320L-8	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	EP-70320L	EB-V25MINI-IE-P	(Note 7)	DDK-70320	-	RA70320	CC70116
μ PD70322GJ	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	$\begin{aligned} & \text { EV-9500GJ- } \\ & 94 \\ & \text { (Note 14) } \end{aligned}$	EB-V25MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70320	-	RA70320	CC70116
μ PD70322GJ-8	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	EP-70320GJ	EB-V25MINI-IE-P	EP-70320GJ	DDK-70320	-	RA70320	CC70116
μ PD70322L	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	(Note 13)	EB-V25MINI-IE-P	(Note 7)	DDK-70320	70P322K (Note 10)	RA70320	CC70116
μ PD70322L-8	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	(Note 13)	EB-V25MINI-IE-P	(Note 7)	DDK-70320	70P322K (Note 10)	RA70320	CC70116
μ PD70325GJ-8	IE-70325-BX	$\begin{aligned} & \text { EV-9500GJ- } \\ & 94 \\ & \text { (Note 14) } \end{aligned}$	EB-V25MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70325	-	RA70320	CC70116
μ PD70325GJ-10	$\begin{aligned} & \text { IE-70325-BX } \\ & \text { (Note 8) } \end{aligned}$	```EV-9500GJ- 94 (Note 14)```	EB-V25MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70325	-	RA70320	CC70116
μ PD70325L-8	IE-70325-BX	(Note 13)	EB-V25MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	DDK-70325	-	RA70320	CC70116
μ PD70325L-10	$\begin{aligned} & \text { IE-70325-BX } \\ & \text { (Note 8) } \end{aligned}$	(Note 13)	$\begin{aligned} & \text { EB-V25MINI- } \\ & \text { IE-P } \end{aligned}$	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70325	-	RA70320	CC70116
$\begin{aligned} & \mu \text { PD70327GJ-8 } \\ & \text { (Note 9) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IE-70320- } \\ & \text { A008 } \end{aligned}$	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 5) } \end{aligned}$	EB-V25MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	-	-	RA70320	CC70116
$\begin{aligned} & \mu \text { PD70327L-8 } \\ & \text { (Note 9) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IE-70230- } \\ & \text { A008 } \end{aligned}$	EP-70320L	EB-V25MINI-IE-P	(Note 7)	-	-	RA70320	CC70116
μ PD70330GJ-8	$\begin{aligned} & \text { IE-70330- } \\ & \text { A008 } \end{aligned}$	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 5) } \end{aligned}$	EB-V35MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70330	-	RA70320	CC70116
μ PD70330L-8	$\begin{aligned} & \text { IE-70330- } \\ & \text { A008 } \end{aligned}$	EP-70320L	$\begin{aligned} & \text { EB-V35MINI- } \\ & \text { IE-P } \end{aligned}$	(Note 7)	DDK-70330	-	RA70320	CC70116
$\mu \mathrm{PD} 70332 \mathrm{GJ}$-8	$\begin{aligned} & \text { IE-70330- } \\ & \text { A008 } \end{aligned}$	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 5) } \end{aligned}$	EB-V35MINI-IE-P	$\begin{aligned} & \text { EP-70320GJ } \\ & \text { (Note 6) } \end{aligned}$	DDK-70330	-	RA70320	CC70116
μ PD70332L-8	$\begin{aligned} & \text { IE-70330- } \\ & \text { A008 } \end{aligned}$	EP-70320L	$\begin{aligned} & \text { EB-V35MINI- } \\ & \text { IE-P } \end{aligned}$	(Note 7)	DDK-70330	70Р322K (Note 10)	RA70320	CC70116
$\mu \mathrm{PD} 70335 \mathrm{GJ}$-8	IE-70335-BX	$\begin{aligned} & \text { EV-9500GJ- } \\ & 94 \\ & \text { (Note 14) } \end{aligned}$	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	-	RA70320	CC70116

V-Series Microprocessors (cont)

Device (Note 1)	Full Emulator	Full Emulator Probe	Mini-IE Emulator	Mini-IE Probe	Evaluation Boards	EPROM Device	Relocatable Assembler (Note 11)	C Compiler (Note 12)
μ PD70335GJ-10	IE-70335-BX (Note 8)EV- 9500GJ-94 (Note 14)	EV-9500GJ- 94 (Note 14)	EP-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	-	RA70320	CC70116
μ PD70335L-8	IE-70335-BX	(Note 13)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	-	RA70320	CC70116
μ PD70335L-10	IE-70335-BX (Note 8)	(Note 13)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	DDK-70330	-	RA70320	CC70116
μ PD70337GJ-8 (Note 9)	$\begin{aligned} & \text { IE-70330- } \\ & \text { A008 } \end{aligned}$	EP-70320GJ (Note 5)	EB-V35MINI-IE-P	EP-70320GJ (Note 6)	-	-	RA70320	CC70116
μ PD70337L-8 (Note 9)	$\begin{aligned} & \text { IE-70330- } \\ & \text { AOO8 } \end{aligned}$	EP-70320L	EB-V35MINI-IE-P	(Note 7)	-	-	RA70320	CC70116

Notes:

(1) Packages:

GF 80-pin plastic QFP
GJ 74-pin or 94 -pin plastic QFP
K 84-pin ceramic LCC with window
L 68-pin or 84-pin plastic LCC
R 68-pin PGA
(2) The EP-70136GL-A and EP-70136L-PC contain both a 68 -pin PLCC probe and an adapter which converts the 68-pin PLCC probes to a 74-pin QFP footprint.
(3) 68 -pin PGA parts are supported by using the EP-70136L-A PLCC probe or EP-70136L-PC PLCC probe, plus a PLCC socket with a PGA-pinout. A PLCC socket of this type is supplied with the EP-70136L-A.
(4) The EB-V40 MINI-IE and EB-V50 MINI-IE support PGA packages directly; the ADAPT68PGA68PLCC adapter converts the PGApinout on the MINI-IE to a PLCC footprint. This adapter is supplied with the MINI-IE.
(5) The EP-70320GJ is an adapter to the EP-70320L, which converts 84 -pin PLCC probes to a 94 -pin QFP footprint. For GJ parts, both the PLCC probe and the adapter are needed.
(6) The EP-70320GJ adapter can be used to convert the supplied 84 -pin PLCC cable of the EB-V25 MINH-IE-P or EB-V35 MINI-IE-P to a 94 -pin QFP.
(7) The EB-V25 MINI-IE-P and EB-V35 MINI-IE-P are supplied with an 84-pin PLCC cable.
(8) Contact your local NEC Sales Office for the latest information on $10-\mathrm{MHz}$ emulation.
(9) Development for the μ PD70327 or μ PD70337 can be done using the appropriate μ PD70320 or μ PD70330 tools; however, debugging the programs in the Software Guard mode is not supported at this time.
(10) The μ PD70P322K EPROM device can be used for both μ PD70322 and μ PD70332 emulation. The μ PD70P322K EPROM device can be programmed by using the PA-70P322L Programming Adapter and the PG-1500 EPROM Programmer.
(11) The following relocatable assemblers are available:
RA70116-D52 For V20®/V30®/ (MS-DOS ${ }^{\text {® }}$)

RA70116-VVT1 V40'm/V50'm (VAX®/VMS ${ }^{\text {® }}$) RA70116-VXT1 (VAX/UNIX® 4.2 BSD or Ultrix ${ }^{\text {" }}$)
RA70136-D52 For V33 ${ }^{\text {TM }} /$ V53 $^{\text {™ }} \quad$ (MS-DOS)
RA70136-VVT1 (VAX/VMS)
RA70136-VXT1
(VAX/UNIX 4.2 BSD or
Ultrix)
RA70320-D52 For V25 ${ }^{\text {TM }} /$ V35 $5^{\text {re }} \quad$ (MS-DOS)
RA70320-VVT1
(VAX/VMS)
RA70320-VXT1
(VAX/UNIX 4.2 BSD or Ultrix)
(12) The following C compilers are available:

CC70116-D52 For V20®/V30® (MS-DOS)
CC70116-VVT1 V40 ${ }^{\text {m" } / V 50 ~}{ }^{\text {rm }}$ (VAX/VMS)
CC70116-VXT1 \quad (VAX/UNIX
CC70136-D52 For V33 ${ }^{\text {rm }} /$ V53 $^{\text {rm }}$ (MS-DOS)
CC70136-VVT1 (VAX/VMS)
CC70136-VXT1
(VAX/UNIX 4.2 BSD or Ultrix)
(13) 84-pin PLCC probe shipped with IE-70325-BX and IE-70335-BX.
(14) The EV-9500GJ-94 is an adapter that converts the 84-pin PLCC probe to a $94-$ pin QFP. Target sockets must also be purchased to mate to this adapter. Target sockets are sold in packs of five as part number EV-92006-94x5.
(15) The IE-70236-BX is shipped with the 132-pin PGA probe.
(16) The EV-9500GD-120 is an adapter that converts the 132-pin PGA probe to a 120 -pin QFP. Target sockets must also be purchased to mate to this adapter. Target sockets are sold in packs of five as part number EV-9200GD-120.

75xx Series Single-Chip Microcomputers

Device (Note 1)	Emulator*	Add-on Board*	System Evaluation Board	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Absolute Assembler (Note 3)
μ PD7502AGF-3B8	EVAKIT-7500B	EV-7514	SE-7514-A	-	-	ASM75
μ PD7503AGF-3B8	EVAKIT-7500B	EV-7514	SE-7514-A	-	-	ASM75
$\mu \mathrm{PD} 7507 \mathrm{BCU}$	EVAKIT-7500B	-	-	-	-	ASM75
μ PD7507BGB-3B4	EVAKIT-7500B	-	-	-	-	ASM75
$\mu \mathrm{PD} 7508 \mathrm{BCU}$	EVAKIT-7500B	-	-	-	-	ASM75
μ PD7508BGB-3B4	EVAKIT-7500B	-	-	-	-	ASM75
μ PD7533C	EVAKIT-7500B	EV-7533	-	μ PD75CG33E	-	ASM75
$\mu \mathrm{PD} 7533 \mathrm{CU}$	EVAKIT-7500B	EV-7533	-	-	-	ASM75
$\mu \mathrm{PD} 7533 \mathrm{G}-22$	EVAKIT-7500B	EV-7533	-	-	-	ASM75
μ PD75CG33E	EVAKIT-7500B	EV-7533	-	-	-	ASM75
$\mu \mathrm{PD} 7554 \mathrm{CS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P54CS	PA-75P54CS	ASM75
$\mu \mathrm{PD7554G}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P} 54 \mathrm{G}$	PA-75P54CS	ASM75
μ PD7554ACS	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P54CS	PA-75P54CS	ASM75
$\mu \mathrm{PD} 7554 \mathrm{AG}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P54G	PA-75P54CS	ASM75
$\mu \mathrm{PD} 75 \mathrm{P} 54 \mathrm{CS}$	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD} 75 \mathrm{P} 54 \mathrm{G}$	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD} 7556 \mathrm{CS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P} 56 \mathrm{CS}$	PA-75P56CS	ASM75
$\mu \mathrm{PD7556G}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P56G	PA-75P56CS	ASM75
$\mu \mathrm{PD} 7556 \mathrm{ACS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P} 56 \mathrm{CS}$	PA-75P56CS	ASM75
$\mu \mathrm{PD} 7556 \mathrm{AG}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P56G	PA-75P56CS	ASM75
μ PD75P56CS	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD} 75 \mathrm{P} 56 \mathrm{G}$	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD} 7564 \mathrm{CS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P64CS	PA-75P54CS	ASM75
$\mu \mathrm{PD} 7564 \mathrm{G}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P64G}$	PA-75P54CS	ASM75
$\mu \mathrm{PD} 7564 \mathrm{ACS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P64CS	PA-75P54CS	ASM75
$\mu \mathrm{PD} 7564 \mathrm{AG}$	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P64G	PA-75P54CS	ASM75
μ PD75P64CS	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD} 75 \mathrm{P64G}$	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
$\mu \mathrm{PD7566CS}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD75P66CS}$	PA-75P56CS	ASM75
$\mu \mathrm{PD} 7566 \mathrm{G}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P66G}$	PA-75P56CS	ASM75
μ PD7566ACS	EVAKIT-7500B	EV-7554A	SE-7554-A	μ PD75P66CS	PA-75P56CS	ASM75
$\mu \mathrm{PD} 7566 \mathrm{AG}$	EVAKIT-7500B	EV-7554A	SE-7554-A	$\mu \mathrm{PD} 75 \mathrm{P66G}$	PA-75P56CS	ASM75

Development Tools for Micro Products

75xx Series Single-Chip Microcomputers (cont)

	Emulator*	Add-on Board*	System Evaluation Board	EPROM/OTP Device	PG-1500 Adapter (Note 2)	Absolute Assembler (Note 3)
μ PDD75P66CS	EVAKIT-7500B	EV-7554A	-	-	-	ASM75
μ PD75P66G	EVAKIT-7500B	EV-7554A	-	-	-	ASM75

Notes:

(1) Packages:

C 42-pin plastic DIP (μ PD7533)
CS 20-pin plastic shrink DIP (μ PD7554/54A/P54/64/64A/P64) 24-pin plastic shrink DIP (μ PD7556/56A/P56/66/66A/P66)
CU $\quad 40$-pin plastic shrink DIP (μ PD7507B/08B)
42-pin plastic shrink DIP (μ PD7533)
E 42-pin ceramic piggy-back DIP (μ PD7533)
G 20-pin plastic SO (μ PD7554/54A/P54/64/64A/P64)
24-pin plastic SO (μ PD7556/56A/P56/66/66A/P66)
44-pin plastic QFP (1.45 mm thick)
44-pin plastic QFP (2.7 mm thick)
64-pin plastic QFP (2.7 mm thick)

G-22
GB-3B4
GF-3B8
(2) By using the specified adapter, the PG-1500 EPROM programmer can be used to program the OTP device.
(3) The ASM75 Absolute Assembler is provided to run under the MS-DOS® operating system. (ASM75-D52).

75xxx Series Single-Chip Microcomputers

Device (Note 5)	Emulator*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 3)	Structured Assembler (Note 4)
$\mu \mathrm{PD} 75004 \mathrm{CU}$	IE-75000-R	EP-75008CU-R	-	μ PD75P008CU	RA75X	ST75X
μ PD75004GB-3B4	IE-75000-R	EP-75008GB-R	EV-9200G-44	μ PD75P008GB	RA75X	ST75X
$\mu \mathrm{PD} 75006 \mathrm{CU}$	IE-75000-R	EP-75008CU-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 008 \mathrm{CU}$	RA75X	ST75X
μ PD75006GB-3B4	IE-75000-R	EP-75008GB-R	EV-9200G-44	μ PD75P008GB	RA75X	ST75X
$\mu \mathrm{PD} 75008 \mathrm{CU}$	IE-75000-R	EP-75008CU-R	-	$\mu \mathrm{PD75P008CU}$	RA75X	ST75X
$\mu \mathrm{PD} 75008 \mathrm{~GB}-3 \mathrm{~B} 4$	IE-75000-R	EP-75008GB-R	EV-9200G-44	$\mu \mathrm{PD} 75 \mathrm{P} 008 \mathrm{~GB}$	RA75X	ST75X
$\mu \mathrm{PD75P008CU}$	IE-75000-R	EP-75008CU-R	-	-	RA75X	ST75X
μ PD75P008GB	IE-75000-R	EP-75008GB-R	EV-9200G-44	-	RA75X	ST75X
$\mu \mathrm{PD} 75028 \mathrm{CW}$	IE-75000-R	EP-75028CW-R	-	μ PD75P036CW	RA75X	ST75X
μ PD75028GC-AB8	IE-75000-R	EP-75028GC-R	EV-9200GC-64	μ PD75P036GC	RA75X	ST75X
μ PD75P036CW	IE-75000-R	EP-75028CW-R	-	-	RA75X	ST75X
μ PD75P036GC-AB8	IE-75000-R	EP-75028GC-R	EV-9200GC-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75048 \mathrm{CW}$	IE-75000-R	EP-75028CW-R	-	μ PD75P048CW	RA75X	ST75X
$\mu \mathrm{PD} 75048 \mathrm{GC-AB8}$	IE-75000-R	EP-75028GC-R	EV-9200GC-64	μ PD75P048GC	RA75X	ST75X
μ PD75P048CW	IE-75000-R	EP-75028CW-R		-	RA75X	ST75X
μ PD75P048GC-AB8	IE-75000-R	EP-75028GC-R	EV-9200GC-64	-	RA75X	ST75X
$\mu \mathrm{PD75104CW}$	IE-75000-R	EP-75108CW-R	-	μ PD75P108CW/ DW/BCW μ PD75P116CW	RA75X	ST75X
$\mu \mathrm{PD} 75104 \mathrm{G}-1 \mathrm{~B}$	IE-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P108G μ PD75P116GF	RA75X	ST75X
μ PD75104GF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P108G/BGF μ PD75P116GF	RA75X	ST75X
μ PD75104AGC-AB8	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75106 \mathrm{CW}$	IE-75000-R	EP-75108CW-R	-	$\begin{aligned} & \mu \text { PD75P108CW/ } \\ & \text { DW/BCW } \\ & \mu \text { PD75P116CW } \end{aligned}$	RA75X	ST75X
$\mu \mathrm{PD75106G-1B}$	IE-75000-R	EP-75108GF-R	EV-9200G-64	$\begin{aligned} & \mu \text { PD75P108G } \\ & \mu \text { PD75P116GF } \end{aligned}$	RA75X	ST75X
μ PD75106GF-3BE	E-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P108G/BGF μ PD75P116GF	RA75X	ST75X
$\mu \mathrm{PD75108CW}$	IE-75000-R	EP-75108CW-R	-	μ PD75P108CW/ DW/BCW μ PD75P116CW	RA75X	ST75X
$\mu \mathrm{PD} 75108 \mathrm{G}-1 \mathrm{~B}$	IE-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P108G μ PD75P116GF	RA75X	ST75X
μ PD75108GF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P108G/BGF μ PD75P116GF	RA75X	ST75X
$\mu \mathrm{PD} 75108 \mathrm{AG}-22$	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	-	RA75X	ST75X
μ PD75108AGC-AB8	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	-	RA75X	ST75X
μ PD75108FGF-3BE	IE-7500-R	EP-75108GF-R	EV-9200G-64	μ PD75P108BGF μ PD75P116GF	RA75X	ST75X
μ PD75P108BCW	IE-75000-R	EP-75108CW-R	-	-	RA75X	ST75X
μ PD75P108BGF	IE-75000-R	EP-75108GF-R	EV-9200G-64	-	RA75X	ST75X

Development Tools for Micro Products

75xxx Series Single-Chip Microcomputers (cont)

Device (Note 5)	Emulator*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 3)	Structured Assembler (Note 4)
μ PD75P108CW	IE-75000-R	EP-75108CW-R	-	-	RA75X	ST75X
μ PD75P108DW	IE-75000-R	EP-75108CW-R	-	-	RA75X	ST75X
μ PD75P108G-1B	IE-75000-R	EP-75108GF-R	EV-9200G-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75112 \mathrm{CW}$	IE-75000-R	EP-75108CW-R	-	μ PD75P116CW	RA75X	ST75X
μ PD75112GF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	μ PD75P116GF	RA75X	ST75X
μ PD75112FGF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	$\mu \mathrm{PD} 75 \mathrm{P} 116 \mathrm{GF}$	RA75X	ST75X
$\mu \mathrm{PD} 75116 \mathrm{CW}$	IE-75000-R	EP-75108CW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 116 \mathrm{CW}$	RA75X	ST75X
μ PD75116GF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	$\mu \mathrm{PD} 75 \mathrm{P} 116 \mathrm{GF}$	RA75X	ST75X
μ PD75116FGF-3BE	IE-75000-R	EP-75108GF-R	EV-9200G-64	$\mu \mathrm{PD} 75 \mathrm{P} 116 \mathrm{GF}$	RA75X	ST75X
μ PD75P116CW	IE-75000-R	EP-75108CW-R	-	-	RA75X	ST75X
μ PD75P116GF	IE-75000-R	EP-75108GF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75116HGC-AB8	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	μ PD75P117HGC	RA75X	ST75X
μ PD75117HGC-AB8	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	μ PD75P117HGC	RA75X	ST75X
μ PD75P117HGC-AB8	IE-75000-R	EP-75108AGC-R	EV-9200GC-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75206 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 216 \mathrm{ACW}$	RA75X	ST75X
$\mu \mathrm{PD} 75206 \mathrm{G}-1 \mathrm{~B}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75206GF-3BE	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75208 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 216 \mathrm{ACW}$	RA75X	ST75X
$\mu \mathrm{PD} 75208 \mathrm{G}-1 \mathrm{~B}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75208 \mathrm{GF}-3 \mathrm{BE}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75212ACW	IE-75000-R	EP-75216ACW-R	-	μ PD75P216ACW	RA75X	ST75X
μ PD75212AGF-3BE	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75216ACW	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 216 \mathrm{ACW}$	RA75X	ST75X
$\mu \mathrm{PD} 75216 \mathrm{AGF}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75P216ACW	IE-75000-R	EP-75216ACW-R	-	μ PD75P216ACW	RA75X	ST75X
$\mu \mathrm{PD} 75217 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 218 \mathrm{CW}$	RA75X	ST75X
$\mu \mathrm{PD} 75217 \mathrm{GF}-3 \mathrm{BE}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	μ PD75P218GF/KB	RA75X	ST75X
$\mu \mathrm{PD} 75218 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 218 \mathrm{CW}$	RA75X	ST75X
μ PD75218GF-3BE	IE-75000-R	EP-75216AGF-R	EV-9200G-64	$\mu \mathrm{PD} 75 \mathrm{P} 218 \mathrm{GF} / \mathrm{KB}$	RA75X	ST75X
$\mu \mathrm{PD} 75 \mathrm{P} 218 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	-	RA75X	ST75X
μ PD75P218GF-3BE	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
$\mu \mathrm{PD} 75 \mathrm{P} 218 \mathrm{~KB}$	IE-75000-R	EP-75216AGF-R	EV-9200G-64	- -	RA75X	ST75X
μ PD75236GJ-5BG	IE-75000-R	EP-75238GJ-R	EV-9200G-94	$\mu \mathrm{PD} 75 \mathrm{P} 238 \mathrm{GJ} / \mathrm{KF}$	RA75X	ST75X
μ PD75237GJ-5BG	IE-75000-R	EP-75238GJ-R	EV-9200G-94	$\mu \mathrm{PD} 75 \mathrm{P} 238 \mathrm{GJ} / \mathrm{KF}$	RA75X	ST75X
μ PD75238GJ-5BG	IE-75000-R	EP-75238GJ-R	EV-9200G-94	$\mu \mathrm{PD} 75 \mathrm{P} 238 \mathrm{GJ} / \mathrm{KF}$	RA75X	ST75X
μ PD75P238GJ-5BG	IE-75000-R	EP-75238GJ-R	EV-9200G-94	-	RA75X	ST75X
$\mu \mathrm{PD} 75 \mathrm{P} 238 \mathrm{KF}$	IE-75000-R	EP-75238GJ-R	EV-9200G-94	-	RA75X	ST75X
$\mu \mathrm{PD} 75268 \mathrm{CW}$	IE-75000-R	EP-75216ACW-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 216 \mathrm{ACW}$	RA75X	ST75X
μ PD75268GF-3BE	IE-75000-R	EP-75216AGF-R	EV-9200G-64	-	RA75X	ST75X
μ PD75304GF-3B9	IE-75000-R	EP-75308GF-R	EV-9200G-80	$\mu \mathrm{PD} 75 \mathrm{P} 308 \mathrm{GF} / \mathrm{K}$	RA75X	ST75X

75xxx Series Single-Chip Microcomputers (cont)

Device (Note 5)	Emulator*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 3)	Structured Assembler (Note 4)
μ PD75306GF-3B9	IE-75000-R	EP-75308GF-R	EV-9200G-80	μ PD75P308GF/K	RA75X	ST75X
μ PD75308GF-3B9	IE-75000-R	EP-75308GF-R	EV-9200G-80	μ PD75P308GF/K	RA75X	ST75X
μ PD75308BGF-3B9	IE-75000-R	EP-75308GF-R	EV-9200G-80	μ PDP316AGF/AK	RA75X	ST75X
μ PD75P308GF	IE-75000-R	EP-75308GF-R	EV-9200G-80	- -	RA75X	ST75X
μ PD75P308K	IE-75000-R	EP-75308GF-R	EV-9200G-80	-	RA75X	ST75X
$\mu \mathrm{PD} 75312 \mathrm{GF}-3 \mathrm{B9}$	IE-75000-R	EP-75308GF-R	EV-9200G-80	μ PD75P316GF/ AGF/AK	RA75X	ST75X
$\mu \mathrm{PD} 75316 \mathrm{GF}-3 \mathrm{B9}$	IE-75000-R	EP-75308GF-R	EV-9200G-80	μ PD75P316GF/ AGF/AK	RA75X	ST75X
$\mu \mathrm{PD} 75 \mathrm{P} 316 \mathrm{GF}$	IE-75000-R	EP-75308GF-R	EV-9200G-80	-	RA75X	ST75X
μ PD75P316AGF	IE-75000-R	EP-75308GF-R	EV-9200G-80	-	RA75X	ST75X
μ PD75P316AK	IE-75000-R	EP-75308GF-R	EV-9200G-80	-	RA75X	ST75X
μ PD75328GC-3B9	IE-75000-R	EP-75328GC-R	EV-9200GC-80	$\mu \mathrm{PD} 75 \mathrm{P} 328 \mathrm{GC}$	RA75X	ST75X
μ PD75P328GC-3B9	IE-75000-R	EP-75328GC-R	EV-9200GC-80	-	RA75X	ST75X
$\mu \mathrm{PD} 75336 \mathrm{GC}-389$	IE-75000-R	EP-75336GC-R	EV-9200GC-80	$\mu \mathrm{PD} 75 \mathrm{P} 336 \mathrm{GC}$	RA75X	ST75X
μ PD75P336GC-3B9	IE-75000-R	EP-75336GC-R	EV-9200GC-80	-	RA75X	ST75X
$\mu \mathrm{PD} 75348 \mathrm{GF}-3 \mathrm{BA}$	IE-75001-R	EP-75617GF-R	EV-9200G-100	$\mu \mathrm{PD} 75 \mathrm{P} 618 \mathrm{GF}$	RA75X	ST75X
$\mu \mathrm{PD} 75352 \mathrm{GF}-3 \mathrm{BA}$	IE-75001-R	EP-75617GF-R	EV-9200G-100	μ PD75P618GF	RA75X	ST75X
$\mu \mathrm{PD} 75402 \mathrm{AC}$	IE-75000-R	EP-75402C-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 402 \mathrm{C}$	RA75X	ST75X
μ PD75402ACT	IE-75000-R	EP-75402C-R	-	$\mu \mathrm{PD} 75 \mathrm{P} 402 \mathrm{CT}$	RA75X	ST75X
$\mu \mathrm{PD} 75402 \mathrm{AGB}-3 \mathrm{B4}$	IE-75000-R	EP-75402GB-R	EV-9200G-44	$\mu \mathrm{PD} 75 \mathrm{P} 402 \mathrm{~GB}$	RA75X	ST75X
μ PD75P402C	IE-75000-R	EP-75402C-R	-	-	RA75X	ST75X
μ PD75P402CT	IE-75000-R	EP-75402C-R	-	-	RA75X	ST75X
$\mu \mathrm{PD} 75 \mathrm{P} 402 \mathrm{~GB}-3 \mathrm{B4}$	IE-75000-R	EP-75402GB-R	EV-9200G-44	-	RA75X	ST75X
$\mu \mathrm{PD} 75512 \mathrm{GF}-3 \mathrm{B9}$	IE-75000-R	EP-75516GF-R	EV-9200G-80	$\mu \mathrm{PD} 75 \mathrm{P} 516 \mathrm{GF} / \mathrm{K}$	RA75X	ST75X
$\mu \mathrm{PD} 75516 \mathrm{GF}-3 \mathrm{B9}$	IE-75000-R	EP-75516GF-R	EV-9200G-80	$\mu \mathrm{PD} 75 \mathrm{P} 516 \mathrm{GF} / \mathrm{K}$	RA75X	ST75X
μ PD75P516GF	IE-75000-R	EP-75516GF-R	EV-9200G-80	-	RA75X	ST75X
μ PD75P516K	IE-75000-R	EP-75516GF-R	EV-9200G-80	-	-	-
μ PD75517GF-3B9	IE-75000-R	EP-75516GF-R	EV-9200G-80	μ PD75P518GF/K	RA75X	ST75X
μ PD75518GF-3B9	IE-75000-R	EP-75516GF-R	EV-9200G-80	$\mu \mathrm{PD} 75 \mathrm{P} 518 \mathrm{GF} / \mathrm{K}$	RA75X	ST75X
μ PD75P518GF-3B9	IE-75000-R	EP-75516GF-R	EV-9200G-80	-	RA75X	ST75X
μ PD75P518K	IE-75000-R	EP-75516GF-R	EV-9200G-80	-	RA75X	ST75X

75xxx Series Single-Chip Microcomputers (cont)

Device (Note 5)	Emulator*	Emulation Probe*	Optional Socket Adapter (Note 1)	EPROM/OTP Device (Note 2)	Relocatable Assembler (Note 3)	Structured Assembler (Note 4)
μ PD75616GF-3BA	IE-75001-R	EP-75617GF-R	EV-9200G-100	μ PD75P618GF	RA75X	ST75X
μ PD75617GF-3BA	IE-75001-R	EP-75617GF-R	EV-9200G-100	μ PD75P618GF	RA75X	ST75X
μ PD75P618GF-3BA	IE-75001-R	EP-75617GF-R	EV-9200G-100	-	RA75 X	ST75X

Notes:

(1) The EV-9200G-XX is an LCC socket with the footprint of the flat package. One unit is supp lied with the probe. Additional units are available as replacement parts in sets of five.
(2) All EPROM/OTP devices can be programmed using the NEC PG-1500. Refer to the PG-1500 Programming Socket Adapter Selection Guide for the appropriate socket adapter.
(3) The RA75X relocatable assembler package is provided for the following operating system:
RA75X-D52 (MS-DOS®)
(4) The ST75X structured assembler preprocessor is provided with RA75X.
(5) Packages:

C 28-pin plastic DIP
CT 28-pin plastic shrink DIP
CU 42-pin plastic shrink DIP
CW 64-pin plastic shrink DIP
DW 64-pin ceramic shrink DIP with window
G-1B \quad 64-pin plastic QFP (2.05 mm thick)
G-22 64-pin plastic QFP (1.55 mm thick)
GB-3B4 44-pin plastic QFP
GC-AB8 64-pin plastic QFP (2.55 mm thick)
GC-3B9 $\quad 80$-pin plastic QFP
GF-3BA 100-pin plastic QFP
GF-3BE 64-pin plastic QFP (2.77 mm thick)
GF-3B9 80-pin plastic QFP
GJ-5BGK 94-pin plastic QFP
KB 64-pin ceramic LCC
KF 94-pin ceramic LCC

* Required tools.

78xx Series Single-Chip Microcomputers

Device (Note 1) \dagger	Emulator*	Emulation Probe*	EPROM/OTP Device	$\begin{aligned} & \text { PG-1500 } \\ & \text { Adapter (Note 2) } \end{aligned}$	Relocatable Assembler (Note 8)	C Compiler (Note 8)
μ PD78C10ACW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	-	-	RA87	CC87
μ PD78C10AGQ36	IE-78C11-M	(Note 4)	-	-	RA87	CC87
μ PD78C10AGF	IE-78C11-M	(Note 5)	-	-	RA87	CC87
$\mu \mathrm{PD78C10AL}$	IE-78C11-M	(Note 7)	-	-	RA87	CC87
μ PD78C11ACW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	μ PD78CP14CW/DW (Note 6)	PA-78CP14CW	RA87	CC87
μ PD78C11AGQ-36	IE-78C11-M	(Note 4)	$\begin{aligned} & \mu \text { PD78CP14G36/R } \\ & \text { (Note 6) } \end{aligned}$	PA-78CP14GQ	RA87	CC87
μ PD78C11AGF-3BE	IE-78C11-M	(Note 5)	μ PD78CP14GF (Note 6)	PA-78CP14GF	RA87	CC87
$\mu \mathrm{PD78C11AL}$	IE-78C11-M	(Note 7)	μ PD78CP14L (Note 6)	PA-78CP14L	RA87	CC87
μ PD78C12ACW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	$\begin{aligned} & \mu \text { PD78CP14CW/DW } \\ & \text { (Note 6) } \end{aligned}$	PA-78CP14CW	RA87	CC87
$\mu \mathrm{PD78C12AGQ}$	IE-78C11-M	(Note 4)	$\begin{aligned} & \mu \text { PD78CP14G36/R } \\ & \text { (Note 6) } \end{aligned}$	PA-78CP14GQ	RA87	CC87
μ PD78C12AGF	IE-78C11-M	(Note 5)	μ PD78CP14GF (Note 6)	PA-78CP14GF	RA87	CC87
$\mu \mathrm{PD78C12AL}$	IE-78C11-M	(Note 7)	$\begin{aligned} & \mu \text { PD78CP14L } \\ & \text { (Note 6) } \end{aligned}$	PA-78CP14L	RA87	CC87
μ PD78C14CW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	μ PD78CP14CW/DW	PA-78CP14CW	RA87	CC87
μ PD78C14G-36	IE-78C11-M	(Note 4)	μ PD78CP14G36/R μ PD78CG14E	PA-78CP14GQ	RA87	CC87
$\mu \mathrm{PD} 78 \mathrm{C} 14 \mathrm{G}-1 \mathrm{~B}$	IE-78C11-M	(Note 5)	μ PD78CP14GF	PA-78CP14GF	RA87	CC87
μ PD78C14GF	IE-78C11-M	(Note 5)	μ PD78CP14GF	PA-78CP14GF	RA87	CC87
$\mu \mathrm{PD78C14L}$	IE-78C11-M	(Note 7)	$\mu \mathrm{PD} 78 \mathrm{CP} 14 \mathrm{~L}$	PA-78CP14L	RA87	CC87
μ PD78C14AG-AB8	IE-78C11-M	(Note 5)	-	-	RA87	CC87
$\mu \mathrm{PD78CP14CW}$	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	-	PA-78CP14CW	RA87	CC87
μ PD78CP14DW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	-	PA-78CP14CW	RA87	CC87
μ PD78CP14G36	IE-78C11-M	(Note 4)	-	PA-78CP14GQ	RA87	CC87
μ PD78CP14GF	IE-78C11-M	(Note 5)	-	PA-78CP14GF	RA87	CC87
$\mu \mathrm{PD78CP14L}$	IE-78C11-M	(Note 7)	-	PA-78CP14L	RA87	CC87
μ PD78CP14R	IE-78C11-M	(Note 4)	-	PA-78CP14GQ	RA87	CC87
$\mu \mathrm{PD78C17CW}$	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	-	-	RA87	CC87
$\mu \mathrm{PD} 78 \mathrm{C17GQ36}$	IE-78C11-M	(Note 4)	-	-	RA87	CC87
μ PD78C17GF	IE-78C11-M	(Note 5)	-	-	RA87	CC87
$\mu \mathrm{PD} 78 \mathrm{C} 18 \mathrm{CW}$	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	μ PD78CP18CW (Note 6)	PA-78CP14CW	RA87	CC87
$\mu \mathrm{PD78C18GQ}$	IE-78C11-M	(Note 4)	μ PD78CP18GQ (Note 6)	PA-78CP14GQ	RA87	CC87

78xx Series Single-Chip Microcomputers (cont)

Device (Note 1) \dagger	Emulator*	Emulation Probe*	EPROM/OTP Device	$\begin{aligned} & \text { PG-1500 } \\ & \text { Adapter (Note 2) } \end{aligned}$	Relocatable Assembler (Note 8)	C Compiler (Note 8)
μ PD78C18GF	IE-78C11-M	(Note 5)	μ PD78CP18GF (Note 6)	PA-78CP14GF	RA87	CC87
			μ PD78CP18KB (Note 6)	PA-78CP14KB		
μ PD78CP18CW	IE-78C11-M	$\begin{aligned} & \text { EV-9001-64 } \\ & \text { (Note 3) } \end{aligned}$	-	PA-78CP14CW	RA87	CC87
μ PD78CP18GQ	IE-78C11-M	(Note 4)	-	PA-78CP14GQ	RA87	CC87
μ PD78CP18GF	IE-78C11-M	(Note 5)	-	PA-78CP14GF	RA87	CC87
μ PD78CP18KB	IE-78C11-M	(Note 5)	-	PA-78CP14KB	RA87	CC87

* Required tools
\dagger For all μ PD78C1x devices, you may use the DDK-78C10 for evaluation purposes.

Notes:

(1) Packages:

CW 64-pin plastic shrink DIP
DW 64-pin ceramic shrink DIP with window
G-1B 64-pin plastic QFP (resin thickness 2.05 mm)
G-36 64-pin plastic QUIP
G-AB8 64-pin plastic QFP (interpin pitch 0.8 mm)
GF-3BE \quad 64-pin plastic QFP (resin thickness 2.7 mm)
GQ-36 64-pin plastic QUIP
KB 64-pin ceramic LCC with window
L 68-pin PLCC
R 64-pin ceramic QUIP with window
(2) By using the specified adapter, the PG-1500 EPROM programmer can be used to program the EPROM/OTP device.
(3) 64-pin shrink DIP adapter which plugs into the EP-7811HGQ emulation probe supplied with each IE.
(4) The emulation probe for the 64-pin QUIP package (EP-7811HGQ) is supplied with the IE.
(5) No emulation probe available.
(6) The μ PD78CP14/CP18 EPROM/OTP devices do not have pull-up resistors on ports A, B, and C .
(7) The optional AS-QIP-PCC-D781X QUIP-to-PLCC adapter can be used with the EP-7811HGQ emulation probe supplied with each IE.
(8) The following relocatable assemblers and C compilers are available:

RA87-D52	(MS-DOS®)	Relocatable assem- RA87-VVT1 (VAX®/VMS $®)$
blers for $78 x x$ series		
CCMSD-15DD-87	(MS-DOS)	C Compilers for
CCMSD-15DD-87-16	(MS-DOS;	78xx Series

K2 (μ PD782xx) Series Single-Chip Microcomputers

Device (Notes 1, 2)	Evaluation Board (Note 3)	Low-End Emulator	Emulation System	Emulation Probe (Note 4)	Optional Socket Adapter (Note 5)	EPROM/OTP Device (Note 6)
$\mu \mathrm{PD} 78212 \mathrm{CW}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240CW-R	-	μ PD78P214CW/DW
$\mu \mathrm{PD} 78212 \mathrm{GC}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GC}$
$\mu \mathrm{PD} 78212 \mathrm{GJ}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GJ-R	EV-9200G-74	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GJ}$
$\mu \mathrm{PD} 78212 \mathrm{GQ}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GQ-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GQ}$
$\mu \mathrm{PD} 78212 \mathrm{~L}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240LP-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{~L}$
$\mu \mathrm{PD} 78213 \mathrm{CW}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240CW-R	-	-
μ PD78213GC	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	-
μ PD78213GJ	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GJ-R	EV-9200G-74	-
$\mu \mathrm{PD} 78213 \mathrm{G} 36$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GQ-R	-	-
$\mu \mathrm{PD} 78213 \mathrm{~L}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240LP-R	-	-
μ PD78214CW	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240CW-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{CW} / \mathrm{DW}$
μ PD78214GC	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	μ PD78P214GC
$\mu \mathrm{PD} 78214 \mathrm{GJ}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GJ-R	EV-9200G-74	μ PD78P214GJ
$\mu \mathrm{PD} 78214 \mathrm{G36}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GQ-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GQ}$
$\mu \mathrm{PD} 78214 \mathrm{~L}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240LP-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{~L}$
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{CW}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240CW-R	-	-
μ PD78P214DW	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240CW-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GC}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	-
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{GJ}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GJ-R	EV-9200G-74	-
$\mu \mathrm{PD78P214GQ}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240GQ-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 214 \mathrm{~L}$	DDB-78K2-21X	EB-78210-PC	IE-78240-R	EP-78240LP-R	-	-
μ PD78217ACW	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{ACW} / \mathrm{DW}$
μ PD78217AGC	-	EB-78240-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	μ PD78P218AGC
μ PD78218ACW	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	μ PD78P218ACW/DW
μ PD78218AGC	. -	EB-78240-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	$\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{AGC}$
$\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{ACW}$	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 218 \mathrm{ADW}$	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	-
μ PD78P218AGC	-	EP-78240-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	-
$\mu \mathrm{PD78220GJ}$	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
$\mu \mathrm{PD} 78220 \mathrm{~L}$	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230LQ-R	-	-
$\mu \mathrm{PD} 78224 \mathrm{GJ}$	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	μ PD78P224GJ
$\mu \mathrm{PD} 78224 \mathrm{~L}$	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230LQ-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 224 \mathrm{~L}$
μ PD78P224GJ	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
$\mu \mathrm{PD} 78 \mathrm{P} 224 \mathrm{~L}$	DDB-78K2-22X	EB-78220-PC	IE-78230-R	EP-78230LQ-R	-	-
$\mu \mathrm{PD} 78233 \mathrm{GC}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GC-R	EV-9200GC-80	-
$\mu \mathrm{PD} 78233 \mathrm{GJ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
$\mu \mathrm{PD} 78233 \mathrm{LQ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230LQ-R	-	-
μ PD78234GC	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GC-R	EV-9200GC-80	$\mu \mathrm{PD} 78 \mathrm{P} 238 \mathrm{GC}$
$\mu \mathrm{PD} 78234 \mathrm{GJ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	μ PD78P238GJ/KF
$\mu \mathrm{PD} 78234 \mathrm{LQ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230LQ-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 238 \mathrm{LQ}$

K2 (μ PD782xx) Series Single-Chip Microcomputers (cont)

Device (Notes 1, 2)	Evaluation Board (Note 3)	Low-End Emulator	Emulation System	Emulation Probe (Note 4)	Optional Socket Adapter (Note 5)	EPROM/OTP Device (Note 6)
$\mu \mathrm{PD} 78237 \mathrm{GC}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GC-R	EV-9200GC-80	-
μ PD78237GJ	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
$\mu \mathrm{PD} 78237 \mathrm{LQ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230LQ-R	-	-
$\mu \mathrm{PD} 78238 \mathrm{GC}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GC-R	EV-9200GC-80	μ PD78P238GC
μ PD78238GJ	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	μ PD78P238GJ/KF
$\mu \mathrm{PD} 78238 \mathrm{LQ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230LQ-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 238 \mathrm{LQ}$
$\mu \mathrm{PD78P238GC}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GC-R	EV-9200GC-80	-
μ PD78P238GJ	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
μ PD78P238KF	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230GJ-R	EV-9200G-94	-
$\mu \mathrm{PD78P238LQ}$	DDB-78K2-23X	EB-78230-PC	IE-78230-R	EP-78230LQ-R	-	-
$\mu \mathrm{PD} 78243 \mathrm{CW}$	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	-
μ PD78243GCAB8	-	EB-78240-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	-
$\mu \mathrm{PD78244CW}$	-	EB-78240-PC	IE-78240-R	EP-78240CW-R	-	
$\mu \mathrm{PD} 78244 \mathrm{GC}$	-	EB-78240-PC	IE-78240-R	EP-78240GC-R	EV-9200GC-64	-

Notes:

(1) The following software packages are available for the K2 Series. RA78K2 Relocatable Assembler Package: RA78K2-D52 (MS-DOS ${ }^{\text {® }}$)
ST78K2 Structured Assembler Preprocessor: provided with RA78K2
CC78K2 C-Compiler package: CC78K2-D52 (MS-DOS)
(2) Packages:

CW
DIP
DW 64-pin ceramic shrink DIP with window
G36 64-pin plastic QUIP (μ PD78213/214)
GC 64-pin plastic QFP
(μ PD78212/213/214/P214/217A/218A/P218A/244)
GC $\quad 80-$ pin plastic QFP (μ PD78233/234/237/238/P238)
GC-AB8 64-pin plastic QFP
GJ 94-pin plastic QFP (μ PD78220/224/P224/233/234/ 237/238/P238)
GJ 74-pin plastic QFP (μ PD78212/213/214/P214)
GQ 64-pin plastic QUIP (μ PD78212/P214)
KF 94-pin ceramic LCC with window
$L \quad$ 68-pin PLCC (μ PD78213/214/P214L)
84-pin PLCC (μ PD78220/224/P224L)
LQ 84-pin PLCC
(3) The DDB-78K2-2xx Evaluation Board is shipped with the RA78K2 Relocatable Assembler Package and the ST78K2 Structured Assembler Preprocessor.
(4) This emulation probe can be used with both the EB-782xx-PC low-end emulator and the IE-782xx-R emulation system.
(5) The EV-9200Gx-YY is an LCC socket with the footprint of the flat package. One unit is supplied with the probe. Additional units are available as replacement parts in sets of five.
(6) All EPROM/OTP devices can be programmed using the NEC PG-1500. Refer to the PG-1500 Programming Socket Adapter Selection Guide for the appropriate programming adapter.

MS-DOS is a registered trademark of Microsoft Corporation.

K3 (μ PD783xx) Series Single-Chip Microcomputers

Device (Notes 1, 2)	Evaluation Board (Note 3)	Emulation System	Emulation Probe	Optional Socket Adapter (Note 4)	EPROM/OTP Device (Note 5)
μ PD78310ACW	DDK-78310A	IE-78310A-R	EP-78310CW (Note 6)	-	-
μ PD78310AGF3BE	DDK-78310A	IE-78310A-R	EP-78310GF	EV-9200G-64	-
μ PD78310AGQ-36	DDK-78310A	IE-78310A-R	EP-78310GQ (Note 7)	-	-
$\mu \mathrm{PD} 78310 \mathrm{AL}$	DDK-78310A	IE-78310A-R	EP-78310L	-	-
μ PD78312ACW	DDK-78310A	IE-78310A-R	EP-78310CW (Note 6)	-	μ PD78P312ACW/DW
$\mu \mathrm{PD} 78312 \mathrm{AGF}$	DDK-78310A	IE-78310A-R	EP-78310GF	EV-9200G-64	μ PD78P312AGF
$\mu \mathrm{PD} 78312 \mathrm{AGQ}$	DDK-78310A	IE-78310A-R	EP-78310GQ (Note 7)	-	$\mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{AGQ} / \mathrm{RQ}$
$\mu \mathrm{PD} 78312 \mathrm{AL}$	DDK-78310A	IE-78310A-R	EP-78310L	-	$\mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{~L}$
μ PD78P312ACW	DDK-78310A	IE-78310A-R	EP-78310CW (Note 6)	-	-
μ PD78P312ADW	DDK-78310A	IE-78310A-R	EP-78310CW (Note 6)	-	-
μ PD78P312AGF	DDK-78310A	IE-78310A-R	EP-78310GF	EV-9200G-64	-
μ PD78P312AGQ-36	DDK-78310A	IE-78310A-R	EP-78310GQ (Note 7)	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{AL}$	DDK-78310A	IE-78310A-R	EP-78310L	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 312 \mathrm{ARQ}$	DDK-78310A	IE-78310A-R	EP-78310GQ (Note 7)	-	-
μ PD78320GJ	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
$\mu \mathrm{PD} 78320 \mathrm{~L}$	EB-78320-PC	IE-78327-R	EP-78320L-R	-	-
μ PD78322GJ	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	μ PD78P322GJ/KD
$\mu \mathrm{PD} 78322 \mathrm{~L}$	EB-78320-PC	IE-78327-R	EP-78320L-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 322 \mathrm{~L} / \mathrm{KC}$
$\mu \mathrm{PD} 78 \mathrm{P} 322 \mathrm{GJ}$	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
μ PD78P322KC	EB-78320-PC	IE-78327-R	EP-78320L-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 322 \mathrm{KD}$	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
$\mu \mathrm{PD} 78 \mathrm{P} 322 \mathrm{~L}$	EB-78320-PC	IE-78327-R	EP-78320L-R	-	- .
μ PD78323GJ	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
μ PD78323LP	EB-78320'PC	IE-78327-R	EP-78320L-R	-	- .
μ PD78324GJ	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	μ PD78P324GJ/KD
$\mu \mathrm{PD} 78324 \mathrm{LP}$	EB-78320-PC	IE-78327-R	EP-78320L-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 324 \mathrm{LP} / \mathrm{KC}$
μ PD78P324GJ	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
$\mu \mathrm{PD} 78 \mathrm{P} 324 \mathrm{KC}$	EB-78320-PC	IE-70327-R	EP-78320L-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 324 \mathrm{KD}$	EB-78320-PC	IE-78327-R	EP-78320GJ-R	EV-9200G-74	-
$\mu \mathrm{PD} 78 \mathrm{P} 324 \mathrm{LP}$	EB-78320-PC	IE-78327-R	EP-78320L-R	-	-
$\mu \mathrm{PD} 78327 \mathrm{CW}$	EB-78327-PC	IE-78327-R	EP-78327CW-R	-	-
μ PD78327GF	EB-78327-PC	IE-78327-R	EP-78327GF-R	EV-9200G-64	-
$\mu \mathrm{PD} 78328 \mathrm{CW}$	EB-78327-PC	IE-78327-R	EP-78327CW-R	-	$\mu \mathrm{PD} 78 \mathrm{P} 328 \mathrm{CW} / \mathrm{DW}$
$\mu \mathrm{PD} 78328 \mathrm{GF}$	EB-78327-PC	IE-78327-R	EP-78327GF-R	EV-9200G-64	μ PD78P328GF
μ PD78P328CW	EB-78327-PC	IE-78327-R	EP-78327CW-R	-	-
μ PD78P328DW	EB-78327-PC	IE-78327-R	EP-78327CW-R	-	-
$\mu \mathrm{PD} 78 \mathrm{P} 328 \mathrm{GF}$	EB-78327-PC	IE-78327-R	EP-78327GF-R	EV-9200G-64	-
μ PD78330G $\sqrt{ }$	EB-78330-PC	IE-78330-R	EP-78330GJ-R	EV-9200G-94	-
$\mu \mathrm{PD} 78330 \mathrm{LQ}$	EB-78330-PC	IE-78330-R	EP-78330LQ-R	-	-
μ PD78334GJ	EB-78330-PC	IE-78330-R	EP-78330GJ-R	EV-9200G-94	$\mu \mathrm{PD} 78 \mathrm{P} 334 \mathrm{GJ}$

K3 (μ PD783xx) Series Single-Chip Microcomputers (cont)

Device (Notes 1, 2)	Evaluation Board (Note 3)	Emulation System	Emulation Probe	Optional Socket Adapter (Note 4)	EPROM/OTP Device (Note 5)
μ PD78334LQ	EB-78330-PC	IE-78330-R	EP-78330LQ-R	-	μ PD78P334LQ/KE
μ PD78P334GJ	EB-78330-PC	IE-78330-R	EP-78330GJ-R	EV-9200G-94	-
$\mu \mathrm{PD78P334KE}$	EB-78330-PC	IE-78330-R	EP-78330LQ-R	-	-
$\mu \mathrm{PD78P334LQ}$	EB-78330-PC	IE-78330-R	EP-78330LQ-R	-	-
μ PD78350GC	EB-78350-PC	IE-78350-R	EP-78240GC-R	EV-9200GC-64	μ PD78P352GC
μ PD78P352GC	EB-78350-PC	IE-78350-R	EP-78240GC-R	EV-9200GC-64	-

Notes:
(1) The following software packages are available for the $K 3$ series: RA78K3 Relocatable Assembler Package: RA78K3-D52 (MS-DOS®)
ST78K3 Structured Assembler Preprocessor: provided with RA78K3
CC78K3 C-Compiler Package: CC78K3-D52 (MS-DOS)
(2) Packages:

CW
64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
GF-3BE 64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
GJ-5BG 94-pin plastic QFP
GJ-5BJ $\quad 74$-pin plastic QFP ($20 \mathrm{~mm} \times 20 \mathrm{~mm}$)
GQ-36 64-pin plastic QUIP
KC 68-pin ceramic LCC with window
KD 74-pin ceramic LCC with window
KE 84-pin ceramic LCC with window
L 44-pin PLCC (μ PD71P301L)
68-pin PLCC
(μ PD78310A/312A/P312AL, μ PD78320/322L)
LP 68-pin PLCC
LQ 84-pin PLCC
RQ 64-pin ceramic QUIP with window
(3) Evaluation boards are shipped with the RA78K3 Relocatable Assembler Package and the ST78K3 Structured Assembler Preprocessor.
(4) The EV-9200G-xx is an LCC socket with the footprint of the flat package. One unit is supplied with the probe. Additional units are available as replacement parts in sets of five.
(5) All EPROM/OTP devices can be programmed using the NEC PG-1500. Refer to the PG-1500 Programming Socket Adapter Selection Guide for the appropriate programming adapter.
(6) The emulation probe for the 64-pin shrink DIP package (EP78310 CW) is supplied with the IE.
(7) The emulation probe for the 64-pin QUIP package (EP-78310GQ) is supplied with the IE.

MS-DOS is a registered trademark of Microsoft Corporation.

DSP and Speech Products

Device (Note 6)	Emulator	Evaluation Board	Assembler (Note 1)	Simulator (Note 2)	EPROM/OTP Device	PG-1500 Adapter (Note 3)
μ PD77P20D	EVAKIT-7720B	-	ASM77	SM77C25	-	-
μ PD77C20AC	EVAKIT-77C25	-	ASM77	SM77C25	μ PD77P20D	(Note 5)
μ PD77C20AGW	EVAKIT-77C25	-	ASM77	SM77C25	μ PD77P20D	-
μ PD77C20AL	EVAKIT-77C25	-	ASM77	SM77C25	-	-
μ PD77C20ALK	EVAKIT-77C25	-	ASM77	SM77C25	-	-
$\mu \mathrm{PD77220L}$	EVAKIT-77230	-	RA77230	SM77230, SIM77230	-	-
μ PD77220R	EVAKIT-77230	DDK-77220 (Note 7)	RA77230	SM77230, SIM77230	μ PD77P220R (EPROM) μ PD77P220L (OTP)	PA-77P230R
$\mu \mathrm{PD77P220L}$	EVAKIT-77230	-	RA77230	$\begin{aligned} & \text { SM77230 } \\ & \text { SIM77230 } \end{aligned}$	-	PA-77P220L
$\mu \mathrm{PD77P220R}$	EVAKIT-77230	DDK-77220 (Note 7)	RA77230	SM77230, SIM77230	-	PA-77P230R
$\mu \mathrm{PD} 77230 \mathrm{AR}$	EVAKIT-77230	-	RA77230	SM77230, SIM77230	μ PD77P230R	PA-77P230R
μ PD77230AR-003	EVAKIT-77230	-	RA77230	SM77230, SIM77230	$\mu \mathrm{PD} 77 \mathrm{P} 230 \mathrm{R}$	PA-77P230R
μ PD77P230AR	EVAKIT-77230	-	RA77230	SM77230, SIM77230	μ PD77P230R	PA-77P230R
μ PD77240R	IE-77240	IE-77240	RA77240	SIM77240	-	-
μ PD77C25C	EVAKIT-77C25	-	RA77C25	SM77C25	μ PD77P25C/D	PA-77P25C
$\mu \mathrm{PD77C25GW}$	EVAKIT-77C25	-	RA77C25	SM77C25	μ PD77P25GW	-
μ PD77C25L	EVAKIT-77C25	-	RA77C25	SM77C25	μ PD77P25L	PA-77P25L
μ PD77P25C	EVAKIT-77C25	-	RA77C25	SM77C25	-	PA-77P25C
μ PD77P25D	EVAKIT-77C25	-	RA77C25	SM77C25	-	PA-77P25C
μ PD77P25GW	EVAKIT-77C25	-	RA77C25	SM77C25	-	PA-77P25GW
μ PD77P25L	EVAKIT-77C25	-	RA77C25	SM77C25	-	PA-77P25L
μ PD7755C	NV-300 System (Note 8)	EB-775x	-	-	μ PD77P56CR	PA-77P56C
μ PD7755G	NV-300 System (Note 8)	EB-775x/NV-310	-	-	μ PD77P56G (Note 9)	PA-77P56C
μ PD7756C	NV-300 System (Note 8)	EB-775x/NV-310	-	-	μ PD77P56CR (Note 9)	PA-77P56C
μ PD7756G	NV-300 System (Note 8)	EB-775x/NV-310	-	-	μ PD77P56G (Note 9)	PA-77P56C
μ PD77P56CR	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	PA-77P56C
μ PD77P56G	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	PA-77P56C
μ PD7757C	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	-
μ PD7757G	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	-
μ PD7759C	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	-

DSP and Speech Products (cont)

Device (Note 6)	Emulator	Evaluation Board	Assembler (Note 1)	Simulator (Note 2)	EPROM/OTP Device	PG-1500 Adapter (Note 3)
μ PD7759GC	NV-300 System (Note 8)	EB-775x/NV-310	-	-	-	-
μ PD77501GC	NV-300 System $($ Note 8)	-	-	-	-	-
μ PD77810L	IE-77810	-	RA77810	-	-	-
μ PD77810R	IE-77810	-	RA77810	-	-	-

Notes:

(1) The following assemblers are available:

ASM77-D52	Assembler for 7720 (MS-DOS®)
RA77C25-D52	Assembler for 77C25 (MS-DOS)
RA77C25-VVT1	Assembler for 77C25 (VAX®/VMS®)
RA77230-D52	Assembler for 77230 (MS-DOS)
RA77230-VVT1	Assembler for 77230 (VAX/VMS)
RA77230-VXT1	Assembler for 77230 (VAX/UNIX® 4.2 BSD or Ultrix ${ }^{\text {M }}$)

(2) The following simulators are available:

SIM77230-VVT1 Simulator for 77230 (VAX/UNIX)
SIM77230-VXT1 Simulator for 77230 (VAX/UNIX 4.2 BSD or Ultrix)
SM77C25 Simulator for 77C25 (IBM-PC)
SM77230 Simulator for 77220, 77230 (IBM-PC)
SIM77240 Simulator for 77240 (IBM-PC)
(3) By using the specified adapter, the NEC PG-1500 EPROM programmer can be used to program the EPROM/OTP device.
(4) Please check with your NEC Sales Representative on the availability of a PLCC emulation probe.
(5) The μ PD77P20D can be programmed using the EVAKIT-7720B.
(6) Packages:

C 18,28 , or $40-$ pin plastic DIP
D 28-pin ceramic DIP
G 24-pin plastic SOP
GC 52-pin plastic QFP
L 44-or 68-pin PLCC
LK 28-pin PLCC
R 68-pin ceramic PGA
GW 32-pin SOP
(7) DDK-77220 is supported by Hypersignal Workstation/Window, a DSP software platform from Hyperception.
(8) The NV-300 current version is Version 3.0. An upgrade from previous versions (hardware and software) is available under the designation NV-301.
(9) The NV-310 emulation board includes a simple 77P56 programmer module.

PG-1500 Programming Adapters

Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)
Standard 27xxx EPROM Devices		
$\mu \mathrm{PD} 27256$ (21 V)	-	027A Board
$\mu \mathrm{PD} 27256 \mathrm{~A}$ (12.5 V)	-	027A Board
$\mu \mathrm{PD} 27 \mathrm{C} 256$ (21 V)	-	027A Board
$\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ (12.5 V)	-	027A Board
μ PD27C512	-	027A Board
μ PD27C1000	-	027A Board
μ PD27C1000A	-	027A Board
μ PD27C1001	-	027A Board
μ PD27C1001A	-	027A Board
$\mu \mathrm{PD} 27 \mathrm{C} 1024$	-	027A Board
μ PD27C1024A	-	027A Board
V-Series Devices		
μ PD70P322K	PA-70P322L	027A Board
75xx Series Devices		
μ PD75P54CS	PA-75P54CS	04A Board
μ PD75P54G	PA-75P54CS	04A Board
μ PD75P56CS	PA-75P56CS	04A Board
μ PD75P56G	PA-75P56CS	04A Board
μ PD75P64CS	PA-75P54CS	04A Board
μ PD75P64G	PA-75P54CS	04A Board
μ PD75P66CS	PA-75P56CS	04A Board
$\mu \mathrm{PD75P66G}$	PA-75P56CS	04A Board
75xxx Series Devices		
μ PD75P008CU	PA-75P008CU	04A Board
μ PD75P008GB	PA-75P008CU	04A Board
μ PD75P036CW	PA-75P036CW	04A Board
μ PD75P036GC	PA-75P036GC	04A Board
μ PD75P048CW	PA-75P036CW	04A Board
μ PD75P048GC	PA-75P036GC	04A Board
μ PD75P108BCW	PA-75P108CW	04A Board
μ PD75P108CW	PA-75P108CW	04A Board
μ PD75P108DW	PA-75P108CW	04A Board
μ PD75P108BGF	PA-75P116GF	04A Board
μ PD75P108G	PA-75P108G	04A Board
μ PD75P116CW	PA-75P108CW	04A Board
μ PD75P116GF	PA-75P116GF	04A Board
μ PD75P117HGC	PA-75P117HGC	04A Board
μ PD75P216ACW	PA-75P216ACW	04A Board
μ PD75P218CW	PA-75P216ACW	04A Board
μ PD75P218GF	PA-75P218GF	04A Board
μ PD75P218KB	PA-75P218KB	04A Board
μ PD75P238GJ	PA-75P238GJ	04A Board
μ PD75P238KF	PA-75P238KF	04A Board
μ PD75P308GF	PA-75P308GF	04A Board
μ PD75P308K	PA-75P308K	04A Board
μ PD75P316GF	PA-75P308GF	04A Board
μ PD75P316AGF	PA-75P308GF	04A Board

Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)
μ PD75P316AK	PA-75P308K	04A Board
μ PD75P328GC	PA-75P328GC	04A Board
μ PD75P336GC	PA-75P328GC	04A Board
μ PD75P402C	(Note 3)	027A Board
μ PD75P402GT	PA-75P402CT	027A Board
μ PD75P402GB	PA-75P402GB	027A Board
μ PD75P516GF	PA-75P516GF	04A Board
μ PD755516K	PA-75P516K	04A Board
μ PD75P518GF	PA-75P516GF	04A Board
μ PD75P518K	PA-75P516K	04A Board
μ PD75P618GF	PA-75P516GF	04A Board
$78 x x$ Series Devices		
μ PD78CP14CW	PA-78CP14CW	027A Board
μ PD78CP14DW	PA-78CP14CW	027A Board
μ PD78CP14G36	PA-78CP14GQ	027A Board
μ PD78CP14GF	PA-78CP14GF	027A Board
μ PD78CP14L	PA-78CP14L	027A Board
μ PD78CP14R	PA-78CP14GQ	027A Board
μ PD78CP18CW	PA-78CP14CW	027A Board
μ PD78CP18GQ	PA-78CP14GQ	027A Board
μ PD78CP18GF	PA-78CP14GF	027A Board
μ PD78CP18KB	PA-78CP14KB	027A Board

K2 (782xx) Series Devices

μ PD78P214CW	PA-78P214CW	027A Board
μ PD78P214DW	PA-78P214CW	027A Board
μ PD78P214GC	PA-78P214GC	027A Board
μ PD78P214GJ	PA-78P214GJ	027A Board
μ PD78P214GQ	PA-78P214GQ	027A Board
μ PD78P214L	PA-78P214L	027A Board
μ PD78P218ACW	PA-78P214CW	027A Board
μ PD78P218ADW	PA-78P214CW	027A Board
μ PD78P218AGC	PA-78P214GC	027A Board
μ PD78P224GJ	PA-78P224GJ	027A Board
μ PD78P224L	PA-78P224L	027A Board
μ PD78P238GC	PA-78P238GC	027A Board
μ PD78P238GJ	PA-78P238GJ	027A Board
μ PD78P238KF	PA-78P238KF	022A Board
μ PD78P238LQ	PA-78P238LQ	027A Board

K3 (783xx) Series Devices

μ PD78P312ACW	PA-78P312CW	027A Board
μ PD78P312ADW	PA-78P312CW	027A Board
μ PD78P312AGF	PA-78P312GF	027A Board
μ PD78P312AGQ	PA-78P312GQ	027A Board
μ PD78P312AL	PA-78P312L	027A Board
μ PD78P312ARQ	PA-78P312GQ	027A Board
μ PD78P322GJ	PA-78P322GJ	027A Board
μ PD78P322KC	PA-78P322KC	027A Board
μ PD78P322KD	PA-78P322KD	027A Board

Development Tools for Micro Products

PG-1500 Programming Adapters (cont)

Target Chip	Socket Adapter (Note 1)	Adapter Module (Note 2)
$\boldsymbol{K 3}$ (783xx) Series Devices (cont)		
μ PD78P322L	PA-78P322L	027A Board
μ PD78P324GJ	PA-78P324GJ	027A Board
μ PD78P324KC	PA-78P324KC	027A Board
μ PD78P324KD	PA-78P324KD	027A Board
μ PD78P324LP	PA-78P324LP	027A Board
μ PD78P328CW	PA-78P328CW	027A Board
μ PD78P328DW	PA-78P328CW	027A Board
μ PD78P328GF	PA-78P328GF	027A Board
μ PD78P334GJ	PA-78P334GJ	027A Board
μ PD78P334KE	PA-78P334KE	027A Board
μ PD78P334LQ	PA-78P334LQ	027A Board
μ PD78P352GC	PA-78P352GC	027A Board
DSP and Speech Products		
μ PD77P25C	PA-77P25C	027A Board
μ PD77P25D	PA-77P25C	027A Board
μ PD77P25GW	PA-77P25GW	027A Board
μ PD77P25L	PA-77P25L	027A Board
μ PD77P220L	PA-77P220L	027A Board
μ PD77P220R	PA-77P230R	027A Board
μ PD77P230R	PA-77P230R	04A Board
μ PD77P56CR	PA-77P56C	04A Board
μ PD77P56G	PA-77P56C	027A Board

Notes:

(1) Adapters must be purchased separately.
(2) The 27A and 04A Adapter Modules are shipped with the PG-1500.
(3) The μ PD75P402C does not require a programming socket adapter. It can be plugged directly into the 027A board.

Reliability and Quality Control

Reliability and Quality Control

Section 2	
Reliability and Quality Control	
Built-in TQC	$\mathbf{2 - 1}$
Approaches to TQC .	$\mathbf{2 - 1}$
Implementation of Quality Control	$\mathbf{2 - 5}$
Reliability Theory	$\mathbf{2 - 9}$
Failure Analysis	$\mathbf{2 - 9}$
Summary	$\mathbf{2 - 2}$
Figure 1. NEC's Quality Control System	$\mathbf{2 - 3}$
Figure 2. New Product Development	$\mathbf{2 - 5}$
Figure 3. Electrical Testing and Screening	$\mathbf{2 - 5}$
Figure 4. Reliability Life (Bathtub) Curve	$\mathbf{2 - 1 0}$
Appendix 1A. Typical QC Flow for CMOS	
Fabrication	$\mathbf{2 - 1 1}$
Appendix 1B. Typical QC Flow for PLCC	$\mathbf{2 - 1 3}$
Assembly/Test	$\mathbf{2 - 1 3}$
Appendix 2. Typical Reliability Assurance	
Tests	$\mathbf{2 p p e n d i x}$
Tests	New Product/Process Change
Appendix 4. Failure Analysis Flowchart	

As large-scale integration (LSI) reaches a higher level of density, the reliability of individual devices imposes a more profound impact on system reliability. As a result, great emphasis has been placed on assuring device reliability.

Conventionally, performing reliability tests and using feedback from the field have been the only methods of monitoring and measuring reliability. As LSI density increases, however, it has become more difficult to activate internal circuit elements in a device from external terminals and to detect their degradation. Testing and feedback alone cannot provide enough information to ensure today's demanding reliability requirements.
To guarantee and improve high levels of reliability for large-scale integrated circuits, a new philosophy and methodology are needed for reliability assurance. Quality and reliability must not only be monitored and measured but, most importantly, must be built into the product.

BUILT-IN TQC

NEC has introduced the concept of total quality control (TQC) across its entire semiconductor product line to implement this philosophy. Rather than performing only a few simple quality inspections, quality control has become an integral part of each process step involving production, engineering, quality control staffs, and all management personnel. Figure 1 is a flowchart that shows how these activities form a comprehensive quality control system at NEC.
In addition to TQC, NEC has introduced a prescreening method into the production line that eliminates potentially defective units. This combination of building in quality and screening out projected early failures has resulted in superior quality and reliability.

Most large-scale integrated circuits use high-density MOS technology with state-of-the-art high performance due to improved fine-line generation techniques. When physical parameters are reduced, circuitdensity and performance increase while active circuit power dissipation decreases. The information presented here will show that this advanced technology combined with the practice of TQC yields products as reliable as those from previous technologies.

APPROACHES TO TQC

TQC activities are geared toward total customer satisfaction. The success of these activities depends on management's commitment to enhancing employee development, maintaining a customer-first attitude, and fulfilling community responsibilities.
TQC is implemented in the following steps. First, quality control is embedded into each process, allowing early detection of possible failure mechanisms and immediate feedback. Second, the reliability and quality assurance policy is upheld through company-wide quality control activities. Third, emphasis is placed on research and development efforts to achieve even higher standards of device quality and reliability. Fourth, extensive failure analysis is performed periodically, and appropriate corrective actions are taken as preventative measures.

Process control limits are based on statistical data gathered from this analysis and used to determine the effectiveness of the in-process quality control steps.
New standards are continuously upgraded, and the iterative process continues. The goal is to maintain the superior product quality and reliability that has become synonymous with the NEC name.

Zero Defects Program

One of the quality control activities that involves every staff level is the Zero Defects (ZD) Program. The purpose of the ZD Program is to minimize, if not prevent, defects due to controllable causes. These activities are organized by groups of workers around these four premises.

- A group must have a target or purpose to pursue.
- Several groups can be organized to pursue a common target.
- Each group must have a responsible leader.
- Each group is well supported by management.

Figure 1. NEC's Quality Control System

The group's target is selected from items relating to specifications, inspections, operation standards, etc. When past data is available, a Pareto diagram is created and reviewed to select an item most in need of quality improvement. Target defects related to this item are clearly defined. Records are analyzed to compute numerical equivalents of the defects. Then, action is taken to control these defects.

Statistical Approach

Another approach to quality control is statistical analysis. NEC uses statistical analysis at each stage of LSI product development, trial runs, and mass production. Some implementations of this statistical approach are:

- Process comparisons
- Control charts
- Data analysis
- Correlation, regression, multivariance, etc.
- Cp/Cpk studies
- Variables and attributes data (performed monthly)
Process control sheets and other QC tools are used to monitor important parameters such as $\mathrm{Cp}, \mathrm{Cpk}, \mathrm{X}, \mathrm{X}-\mathrm{R}$, electrical parameters, pattern dimensions, bond strength, test percentage defects, etc. The results of these studies are monitored by the production staff, QC engineers, and other associated engineers. If any out-of-control or out-of-specification limit is observed, corrective procedures are quickly taken.

IMPLEMENTATION OF QUALITY CONTROL

Building quality into a product requires early detection of possible failure mechanisms and immediate feedback to remove such problems. A fixed quality inspection station often cannot provide prompt and accurate feedback about the process steps prior to the inspection. Quality control functions have therefore been distributed into each process step including the conceptual stage. The most significant areas where quality control has been placed include:

- Product development
- Incoming material inspection
- Wafer processing
- Chip mounting and packaging
- Electrical testing and infant mortality screening
- Outgoing material inspection
- Reliability assurance tests
- Process/product changes

Figure 2. New Product Development

Product Development

New product development includes the product concept, device proposal review, physical element design and organization, engineering evaluation, and, finally, product transfer to manufacturing. Quality and reliability are considered at every step. The new product development flow at NEC is shown in figure 2.

Design is the first and most important step in new product development. NEC believes that the foundation of device quality is determined at the design stage. The four steps involved are circuit design, mask pattern layout, package design, and the setting of process and product manufacturing conditions. Design standards have been established at NEC to maximize quality and reliability.

After completion of the design, a design review is performed to check for conformity to design standards and to consider other factors influencing reliability and quality. At this stage, modification or re-design may be necessary. NEC believes that design reviews are essential for product modifications as well as newly designed products.

Once a design successfully passes its review, a trial run takes place in which the product's electrical and mechanical characteristics, quality, and reliability are evaluated.
Additional runs are performed in which process conditions are varied deliberately, causing characteristic factors to change in mass production. These samples are evaluated to determine the best combination of process conditions. Reliability tests are then conducted to check the new product's electrical and mechanical stress resistance. If no problems are found at this stage, the product is approved for mass production.

Mass production begins after the product design department prepares a schedule that includes reliability and quality control steps. The standards for production and control steps are continuously re-examined for possible improvement, even after mass production has started.

Incoming Material Inspection

NEC has the following programs to control incoming materials:

- Vendor/material qualification system
- Purchasing specifications for materials
- Incoming materials inspection
- Inspection data feedback
- Meetings with vendors concerning quality
- Vendor audits

If any parts or materials are rejected at incoming inspection, they are returned to the vendor with a rejection notification form specifying the failure items and modes. The results of these inspections are used to rate the vendors for future purchasing.

In-Process Quality Inspection

Typical in-process quality inspections performed at wafer fabrication, chip mounting and packaging, and device testing stages are listed in appendix 1A and appendix 1B.

Electrical Testing and Screening

At the first electrical test, dc parameters are tested according to electrical specifications on 100% of each lot. This is a prescreening prior to any infant mortality test. At the second electrical test, ac functional tests as well as dc parameter tests are performed on 100% of each lot. If the percentage of defective units in a lot is unacceptably high in this test, the lot is subjected to an infant mortality rescreen. During this time, any defective units undergo extensive failure analysis. The results of these analyses are fed back into the process through corrective actions.
Figure 3 is a flowchart of the typical infant mortality screening and electrical testing.

Outgoing Inspection

Prior to warehouse storage or shipment, lots are subjected to an outgoing inspection according to the following sampling plan:

- Electrical
- Dc parameters, lot tolerance parts defective (LTPD) 3\%
- Ac functional LTPD 3\%
- Appearance
- Major LTPD 3\%
- Minor LTPD 7\%

Figure 3. Electrical Testing and Screening

Reliability Assurance Tests

Prior to shipment, representative samples from each process family are taken on a regular basis and subjected to monitoring reliability tests. This testing is performed to confirm that NEC's products continually meet their field reliability targets.

Process/Product Changes

As mentioned previously, a design review occurs for product changes as well as for new products. Once a design is approved and processes are altered for maximum quality, qualification testing is performed to check reliability. If the test results are acceptable, the product is internally qualified for mass production.

The typical reliability qualification tests performed at NEC are listed in appendix 3.

RELIABILITY THEORY

Reliability is defined as a characteristic of an item expressed by the probability that it will perform a required function, under specific conditions, for a cer-
tain period of time. The concept of probability, the definition of required function, and the knowledge of how time affects the item of concern are therefore necessary tools for the study of reliability.

Definition of a required function, by implication, treats the definition of a failure. Failure of a device is defined as the termination of a device's ability to perform its required function. A device has failed if it is unable to meet guaranteed values given in its electrical specifications.

Failures are categorized by the period of time in which they occur. The critical times used in the discussion of device reliability and failure are the periods of early, random, and wearout failures. Probability is used to quantitatively estimate reliability levels during these periods as well as overall reliability. The relevant theories and methods of calculation will be discussed later.

Regarding individual devices, specific failure mechanisms seen in life tests and in infant mortality screening tests are the parameters of concern in the determination of overall device failure rates, thus reliability levels.

Regarding systems, the sum of individual device failure rates is the expected failure rate of the system hardware.

Life Distribution

The fundamental principles of reliability engineering predict that the failure rate of a group of devices will follow the well-known bathtub curve in figure 4.

Figure 4. Reliability Life (Bathtub) Curve

The curve is divided into three regions: infant mortality, random failures, and wearout failures.

The infant mortality section of the curve, where the failure rate is declining rapidly, represents the early-life device failures. These failures are usually associated with one or more manufacturing defects.
After a period of time, the failure rate reaches a low value. This random failure area of the curve represents the useful portion of a device's life. During this random failure period, a slight decline is observed due to the depletion of potential random failures from the general population.

Wearout failures occur at the end of useful device life. These failures are observed in the rapidly rising failure rate portion of the curve; devices are wearing out both physically and electrically.
Therefore, for a device that has a very long life expectancy compared to the system that contains it, the areas of concern will be the infant mortality and random failure portions of the bathtub curve.

Failure Distribution at NEC

To eliminate infant mortality failures, NEC subjects its products to production burn-in whenever necessary. This burn-in is performed at an elevated temperature on 100% of the devices involved and is designed to remove potentially defective units.

After elimination of early device failures, a system will be left to the random failures of its components. To make proper projections of the failure rate of a system in the operating environment, random failure rates must be predicted for the system's components.
To qualitatively study random failures, integrated circuits returned from the field, as well as in-house life testing failures, undergo extensive failure analyses at respective NEC manufacturing divisions. Failure mechanisms are identified and resulting data is fed back to appropriate production and engineering groups. Longterm failure rates are determined from this data to quantitatively study this random failure population.

Infant Mortality Failure Screening

Establishing infant mortality screening requires knowledge of likely failure mechanisms and their associated activation energies.

Typical problems associated with infant mortality failures are manufacturing defects and process anomalies, which consist of contamination, cracked chips, wire bond shorts, or bad wire bonds. Since these problems can result from a number of possible failure mechanisms, the activation energy for infant mortality can vary considerably. Correspondingly, the effectiveness of an infant mortality screening condition (preferably at some stress level to shorten the screening time) varies greatly with the failure mechanism.

For example, failures due to ionic contamination have an activation energy of approximately 1.0 eV . Therefore, a 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature would be the equivalent of approximately 314 days of operation at a junction temperature of $55^{\circ} \mathrm{C}$. On the other hand, failures due to oxide defects have an activation energy of approximately 0.3 eV . A 15 -hour stress at $125^{\circ} \mathrm{C}$ junction temperature in this case would be the equivalent of approximately 4 days of operation at $55^{\circ} \mathrm{C}$ junction temperature. The condition and duration of infant mortality screening is determined by the economic factors involved in the screening and by the allowable rate of component failure. A component failure causes a system failure.
Empirical data gathered at NEC indicates that any early failures generally occur after less than 4 hours of stress at $125^{\circ} \mathrm{C}$ ambient temperature. This fact is supported by the bathtub curve created from actual life test results. The failure rate after 4 hours of such stress testing shows random distribution as opposed to the rapidly decreasing failure rate observed in the early life portion of the curve.
Whenever necessary, NEC has adopted this infant mortality burn-in at $125^{\circ} \mathrm{C}$ as a standard production screening procedure. NEC believes it is imperative that failure modes associated with such infant mortality screens be understood and fixed at the manufacturing level. Failure analysis is performed on all infant mortality failures for this purpose. This in-line data coupled with data accumulated from the field is used to introduce corrective actions and quality improvement measures. If the early-life failures of a device can be minimized or eliminated and countermeasures appropriately monitored, then such screens can be eliminated. The result of such practices is that field reliability of NEC devices is an order of magnitude higher than NEC's long-term failure rate goals.

Table 1. Typical Reliability Test Results

Name	Type	HTB	T/H	PCT	T/C
Micro (Note 1)	NMOS	$\begin{aligned} & 9 / 23817 \\ & (15 \mathrm{FIT}) \end{aligned}$	3/13625	0/5034	0/1817
	cmos	$\begin{aligned} & 7 / 20361 \\ & (6.6 \mathrm{FIT}) \end{aligned}$	6/15155	8/16727	0/5913
Memory (HTOL)	DRAM (Note 2)	$\begin{aligned} & 9 / 13072 \\ & (8.2 \mathrm{FIT}) \end{aligned}$	2/12796	4/8477	3/3085
	1 Meg DRAM (Note 3)	24/13459 (68 FIT)	0/5414	0/2920	0/2100
	4 Meg DRAM (Note 4)	$\begin{aligned} & 4 / 2150 \\ & (4.2 \mathrm{FIT}) \end{aligned}$	0/550	0/550	0/760
	SRAM (Note 5)	$\begin{aligned} & 0 / 3966 \\ & (6.6 \mathrm{FIT}) \end{aligned}$	0/275	0/316	0/305
	1 Meg SRAM (Note 5)	0/458 (5.8 FIT)	1/3026	0/3838	0/1350
ASIC (Note 6)	cmos	$\begin{aligned} & 7 / 6146 \\ & (43 \mathrm{FIT}) \end{aligned}$	2/2848	4/9159	6/5738
	ECL	$\begin{aligned} & 0 / 1368 \\ & (8 \mathrm{FI}) \end{aligned}$	-	-	0/246
	BiCMOS	$\begin{aligned} & 3 / 2801 \\ & (29 \mathrm{FIT}) \end{aligned}$	0/3505	0/4370	0/5555

Note:
Information in the table above has been extracted from NEC report numbers:
(1) $\operatorname{IRQ}-3 Q-22833$
(4) IRQ-2Q-70117
(2) TRQ-89-01-0021
(5) TRQ-90-11-0085
(3) TRQ-89-01-0021
(6) TRQ-91-02-0093

Accelerated Reliability Testing

NEC performs extensive reliability testing at both preproduction and post-production levels to ensure that all products meet NEC's minimum expectations and those of the field.

Assume an electronic system contains 1000 integrated circuits and that 1% system failures per month can be tolerated by this system. The allowable failure rate per component is then calculated as follows:

$$
\begin{aligned}
\frac{1 \% \text { failures }}{720 \text { hours } \times 1000 \text { pieces }} & =(0.0014) \frac{\% \text { failures }}{1000 \text { hours }} \\
& =14 \text { FITs }
\end{aligned}
$$

The rate of 14 FITs corresponds to one failure in 85 devices during an operating test of approximately 10,000 hours. To demonstrate this reliability level in a reasonable amount of time, a test condition is apparently required to accelerate the time-to-failure in a predictable and understandable way.
The most common method for decreasing time-tofailure is the use of high temperature to accelerate physiochemical reactions that can lead to device fail-
ure. Other stressful environmental conditions are voltage, current, humidity, vibration, or some combination of these. Appendix 2 lists typical accelerated reliability assurance tests performed at NEC on molded integrated circuits. Table 1 shows the results of some of these tests for various process types.

Reliability Assurance Tests

NEC's life tests consist of the high-temperature operating/bias life (HTOL/HTB), the high-humidity storage life (HHSL), the high-temperature, high-humidity ($\mathrm{T} / \mathrm{H}=\mathrm{HHSL}+$ bias), and the high-temperature storage life (HTSL). Additionally, NEC performs various environmental and mechanical tests.

HTOL/HTB Test. These tests are used to accelerate failure mechanisms by operating devices in a dynamic (operating life) or static (bias) condition at an elevated temperature of $125^{\circ} \mathrm{C}$. The data obtained is translated to a lower temperature to estimate device life expectancy using the Arrhenius relationship explained later.

HHSL and T/H Tests. Integrated circuits are extremely sensitive to the effects of humidity such as electrolytic corrosion between biased lines. The high-temperature and high-humidity tests are performed to detect failure mechanisms accelerated by temperature and humidity, such as leakage related problems and drifts in device parameters due to process instability.

HTSL Test. Another common test is the hightemperature storage life test in which devices are subjected to elevated temperatures with no applied bias. This test is used to detect process instability and stress migration problems.
Environmental Tests. Other environmental tests such as the pressure cooker test (PCT) or the temperature cycling test (T/C) detect problems related to the package and/or interactions between materials as well as the degradation of environmentally sensitive device characteristics.

Failure Rate Calculation/Prediction

To predict the device failure rate from accelerated life test data, the activation energies of the failure mechanisms involved should be considered. In some cases, an average activation energy is assumed to accomplish a quick first-order approximation. NEC assumes an average activation energy of 0.7 eV for most products (0.3 eV for high-density memory devices). This average value has been assessed from extensive reliability test results and yields a conservative failure rate.

Since most semiconductor failures are temperature dependent, the Arrhenius relationship is used to normalize failure rate predictions at a system operation temperature of $55^{\circ} \mathrm{C}$. It assumes that temperature dependence is an exponential function that defines the probability of failure occurrence, and that degradation of a performance parameter is linear with time. The Arrhenius model includes the effects of temperature and activation energies of the failure mechanisms in the following Arrhenius equation:

$$
A=\exp \frac{-E_{A}\left(T_{J 1}-T_{J 2}\right)}{k\left(T_{J 1}\right)\left(T_{J 2}\right)}
$$

Where:
$A(T)=$ Acceleration factor
$\mathrm{E}_{\mathrm{A}}=$ Activation energy
$\mathrm{T}_{\mathrm{J} 1}=$ Junction temperature (in K) at $\mathrm{T}_{\mathrm{A} 1}=55^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J} 2}=$ Junction temperature (in K) at $\mathrm{T}_{\mathrm{A} 2}=125^{\circ} \mathrm{C}$
$\mathrm{k}=$ Boltzmann's constant $=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Because the thermal resistance and power dissipation of a particular device type cannot be ignored, junction temperatures ($\mathrm{T}_{\mathrm{J} 1}$ and $\mathrm{T}_{\mathrm{J} 2}$) are used instead of ambient temperatures ($T_{A 1}$ and $T_{A 2}$). We calculate junction tem-
peratures using the following formula:
$T_{J}=T_{A}+$ (thermal resistance)(power diss. at T_{A})
With this information, a temperature acceleration factor can be calculated.

In some cases, the effect of voltage acceleration on failure rate must also be considered. Voltage acceleration can be characterized by the following equation:
$A(V)=\exp [-\beta(V d-V s)]$
Where:
$\mathrm{Vd}=$ Operating voltage (5.5 V)
$\mathrm{Vs}=$ Life test stress voltage (7 V)
$\beta=$ Empirically determined constant (dependent on electric field constant and oxide thickness)
The constant β has been given the value ≈ 1, which is a conservative figure. Therefore, the overall acceleration factor will be determined as the product:
$A(T, V)=A(T) * A(V)$
To estimate long-term failure rate, the acceleration factor must be multiplied by the actual time to determine the simulated test time. From the hightemperature operating or bias life test results, failure rates can then be predicted at a 60% confidence level using the following equation:

$$
L=\frac{\left(X^{2}\right) 10^{5}}{2 T}
$$

Where:
$\mathrm{L}=$ Failure rate in \%/1000 hours
$X^{2}=$ The tabular value of chi-squared distribution at a given confidence level and calculated degrees of freedom (2f +2 , where $f=$ number of failures) See note below.
$\mathrm{T}=\#$ of equivalent device hours = (\# of devices) $\times(\#$ of test hours) x (acceleration factor)
Note: Since the failures of concern here are the long-term failures, not the infant mortality failures (that is, the end of the downward slope and the middle constant section of the bathtub curve in figure 4), X^{2} is determined by assuming a one-sided, fixed time test.
Another method of expressing failures is in FITs (failures in time). One FIT is equal to one failure in 109 hours. Since L is already expressed as \%/1000 hours (10^{-5} failure/hr), an easy conversion from \%/1000 hours to FIT would be to multiply the value of L by 104 .

To accurately determine this failure rate, a statistically large sample size must be accumulated. Depending on the accuracy needed, the following conditions should be imposed:

- A minimum of 1.2 million device hours (equal to sample size multiplied by test period) at $125^{\circ} \mathrm{C}$ should be accumulated to accurately predict a failure rate of 0.02% per 1000 hours at $55^{\circ} \mathrm{C}$, with a 60% confidence level.
- A minimum of 3 million device hours at $125^{\circ} \mathrm{C}$ should be accumulated to accurately predict a failure rate of 0.01% per 1000 hours at $55^{\circ} \mathrm{C}$, with a 60% confidence level.

Failure Rate Calculation Example. As an example of how this failure rate is calculated, assume a sample of 960 pieces was subjected to 1000 hours at $125^{\circ} \mathrm{C}$ burnin. One reject was observed. Given that the acceleration factor was calculated to be 34.6 using the Arrhenius equation, what is the failure rate normalized to $55^{\circ} \mathrm{C}$ using a confidence level of 60% ? Express the failure rate in FITs.

Solution:
For $n=2 f+2=2(1)+2=4, X^{2}=4.046$

$$
\begin{aligned}
& \text { Then } L=\frac{\left(X^{2}\right) 10^{5}}{2 T} \quad(\% / 1000 \text { hours } \\
& =\frac{\left(X^{2}\right) 10^{5}(\% / 1000 \text { hours })}{2(\# \text { devices })(\# \text { test hours)(accel. factor) }} \\
& =\frac{(4.046) 105}{2(960)(1000)(34.6)}=0.0061(\% / 1000 \text { hours })
\end{aligned}
$$

Therefore, FIT $=(0.0061)\left(10^{4}\right)=61$

Failure Rate Goals

Reject rates at customer's incoming inspection, infant mortality rates, and long-term failure rates are monitored and checked against quality and reliability targets. Long-term failure rate goals are based on mask and process designs. NEC's quality and reliability targets are listed in table 2.

Table 2. Quality and Reliability Targets

Memory		Micro	ASIC			
Year	ECL RAM	MOS		BiCMOS	ECL	CMOS

Reject Rate at Customer's
Incoming Equipment Inspection (PPM)

1991	30	30	70	300	80	80
1992	30	30	50	200	50	60
Long-Term	Reliability (FIT)					
1991	30	30	30	300	30	90
1992	30	30	20	300	30	80
Infant	Mortality					
1991	30	30	40	300	50	270
1992	30	30	30	300	50	240

FAILURE ANALYSIS

At NEC, failure analysis is performed not only on reliability testing and field failures, but also on products that exhibit defects during production. This data is closely checked for correlation process quality information, inspection results, and reliability test data. Information derived from these failure analyses is fed back into the process.

Since many failure mechanisms can be exhibited by LSI devices, highly advanced analytical tools and methodologies are required to investigate such LSI failures in detail. The standard failure analysis flowchart relating to the returned products from customers is shown in appendix 4.

SUMMARY

Building quality and reliability into products by forming a total quality control system is the most efficient way to ensure product success.

The combination of building quality into products, effective prescreening of potential failures, and monitoring of reliability through extensive testing has established a singularly high standard for NEC's large-scale integrated circuits, as demonstrated in the most recent year's production.

The company's quality control program supports continuous research and development activities, extensive failure analysis, and process improvements. With this extensive program, NEC continuously sets and maintains higher standards of quality and reliability.

Appendix 1A. Typical QC Flow for CMOS Fabrication

Contact hole and metallization steps are repeated twice.

Appendix 1B. Typical QC Flow for PLCC Assembly/Test

Process/Materials		Inspection of Manufacturing Conditions				Inspection of Manufacturing Qualitles			
		Inspection Item	Frequency	Instrument	Inspected by	Inspection Item	Frequency	Instrument	Inspected by
1 \square 2 3 4 5	Sorted Wafers								
	Wafer Visual					Wafer Visual	100\%	Naked Eye	Operator
	Dicing	Table Speed DI Water Blade Helght	Every Shift	Indicators Gauges	P.C.	Sawing Dimenslons	Before Running	Microscope With Filter Eyeplece	Operator
	Break and Expand	Wafer Break Conditions Wafer Expand Conditions	Every Shift	Indicators Gauges	P.C.	Wafer Visual	100\%	Naked Eye	Operator
	Die Visual Inspection					Die Visual	Every Lot Sampling (Or 100\%)	Microscope	Operator
	Lead Frames Die Attached	Die Attached Conditions Temperature	Every Shift	Indicators Thermocouple, Potentiometer	P.C.	Die Visual Epoxy Coverage	Every Magazine Every Shlft	Naked Eye Microscope	Operator
8	Epoxy Cure (Not Done for Gold Dle Attached product)	Heat Temperature N_{2} Flow	Every Shift	Indicators Gauges	P.C.	Shear Strength	Every Shilt	Dynamometer	Operator
	Fine Wire	Bonding Condilitions	Every Shift	Indicators	P.C.	VIsual	Every Magazine	Microscope	
10	Wire Bonding	Temperature	Every Week	Thermocouple and Potentlometer	P.C.	Wire Pull Test		Tenslon Gauge	Operator
11	Pre-Seal Visual Inspection					Die VIsual	Every Lot Sampling (Or 100\%)	Microscope	Inspector
	Molding Compound Molding	Temperature of Pellet, Expiration Date Temperature Profile of Die Set Preheat Temperature Pressure Cure Tlime	Every Shift Every Shift	Thermocouple Thermocouple, Potentlometer	P.C. P.C.	Visual	100\%	Naked Eye	Operator
(14)	Mold Aging	Temperature	Every Shilt	Indicator	P.C.				
15	Deflashing	Deflashing Conditions Concentration Density Water Jet Pressure	Every Shlft Every Week Every Week Every Day	Indicators TItration Densily Meter Gauge	P.C. Tech. Tech. Tech.	Visual	Every Lot	Naked Eye	Operator
	Plating	Plating Conditions Concentration	Every Day Every Week	Indicators Titration	P.C. Tech.				

Appendix 1B. Typical QC Flow for PLCC Assembly/Test (cont)

Appendix 2. Typical Reliability Assurance Tests

Test	Symbol	MIL-STD-883C Method	Test Conditions
High-temperature operating/bias life (Note 1)	HTOL/HTB	1005	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} ; \mathrm{V}_{\text {DD }}$ specified per device type
High-temperature storage life (Note 1)	HTSL	1008	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}\left(175^{\circ}\right.$ or $200^{\circ} \mathrm{C}$ in some cases)
High-temperature/high-humidity (Note 1)	T/H		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{RH}=85 \% ; \mathrm{V}_{\text {DD }}=5.5 \mathrm{~V}$
High-humidity storage life (Note 1)	HHSL		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{RH}=85 \%$
Pressure cooker (Note 1)	PCT		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} ; \mathrm{P}=2.3 \mathrm{~atm} ; \mathrm{RH}=100 \%$
Temperature cycling (Note 1)	T/C	1010	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$; 1 hour/cycle
Lead fatigue (Note 2)	C3	2004	90 -degree bends; 3 bends without breaking
Solderability (Note 3)	C4	2003	$230^{\circ} \mathrm{C} ; 5 \mathrm{sec}$; rosin base flux
Soldering heat/temperature cycle/ thermal shock (Note 1)	C6	$\begin{gathered} 1010 \\ 1011 \\ (\text { Note } 4) \end{gathered}$	$10 \mathrm{sec} @ 230^{\circ} \mathrm{C}$; rosin base flux Ten 1 -hour cycles @ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Fifteen 10 -minute cycles @ $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Notes:

(1) Electrical test per data sheet is performed. Devices that exceed the data sheet limits are considered rejects.
(3) Less than 95% coverage is considered a reject.
(2) Broken lead is considered a reject.
(4) MIL-STD-750A, method 2031.

Appendix 3. New Product/Process Change Tests

Test	Sample Size	Newly Developed Product	Shrink Die	New Package	Wafer	Assembly	Test Conditions
High-temperature operating/bias life	$\begin{aligned} & 20-50 \text { pieces; } \\ & 1 \text { - lots } \end{aligned}$	0	0	0	0	0	See appendix 2; 1000 H
High-temperature storage life	$\begin{aligned} & 10-20 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	0	0	0	0	$\begin{aligned} & \mathrm{T}=150^{\circ} \mathrm{C} \text { (plastic); } \\ & \mathrm{T}=175^{\circ} \mathrm{C} \text { (ceramic); } \\ & 1000 \mathrm{H} \end{aligned}$
High-temperature/ high-humidity bias life (plastic package)	$\begin{aligned} & 20-50 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	0	0	0	0	See appendix 2; 1000 H
Pressure cooker (plastic package)	$\begin{aligned} & 10-20 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	0	0	0	0	See appendix 2; 288H
Thermal environmental	$\begin{aligned} & 10-20 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	X	0	X	0	See appendix 2
Mechanical environmental (ceramic package)	$\begin{aligned} & 10-20 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	X	0	X	0	20G, 10 - 2000Hz; 1500G, 0.5 ms ; 20000G, 1 min
Lead fatigue	$\begin{aligned} & 5 \text { pieces; 1-3 } \\ & \text { lots } \end{aligned}$	X	-	X	-	X	See appendix 2
Solderability	5 pieces; 1-3 lots	X	-	X	-	X	See appendix 2
ESD	$\begin{aligned} & 20 \text { pieces; } 1-3 \\ & \text { lots } \end{aligned}$	0	0		0	X	$\begin{aligned} & \text { (1) } \mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \\ & \text { (2) } \mathrm{C}=100 \mathrm{pF}, \\ & \mathrm{R}=1.5 \mathrm{k} \end{aligned}$
Long term T/C	$\begin{aligned} & 10-50 \text { pieces; } \\ & 1-3 \text { lots } \end{aligned}$	0	0	0	0	0	See appendix 2; $1000 \mathrm{cy}$

Notes:

0: Performed. X: Perform if necessary. -: Not performed.

Appendix 4. Failure Analysis Flowchart

4.

Digital Signal Processors

ramex

Section 3
Digital Signal Processors
μ PD77C20A, 7720A, 77P20 3a
Digital Signal Processors
μ PD77C25/77P25 3b
Digital Signal Processor
μ PD77220, 77P220 3c
24-Bit Fixed-Point Digital Signal Processor
μ PD77230A, 77P230 3d
32-Bit Floating-Point Digital Signal Processor (150 ns cycle time)
μ PD77240 3e
32-Bit Floating-Point Digital Signal Processor
(90 ns cycle time)
μ PD77810 3f

Modem Digital Signal Processor
μ PD7281 3g
Image Pipelined Processor
μ PD9305
Memory Access and General Bus Interface for the μ PD7281

Description

The μ PD77C20A, μ PD7720A, and μ PD77P20-three signal processing interface (SPI) chips that are functionally the same-are advanced architecture microcomputers optimized for signal processing algorithms. Their speed and flexibility allow these SPIs to efficiently implement signal processing functions in a wide range of environments and applications.
The 7720A SPI, a revision of the 7720, the original mask ROM chip, uses a third less power than the 7720 .
The 77C20A is a CMOS pin-for-pin compatible version of the NMOS version, 7720A. This advanced architecture CMOS microcomputer has power requirements 80 percent less than the 7720A, making the 77C20A appropriate for portable applications and other designs requiring low power and low heat dissipation.

Minor differences between 7720A and 77C20A are described in the Instruction Timing section.
The 77P20 is an ultraviolet erasable and electrically programmable (EPROM) version of the 7720A. Program and data ROM, masked for the 7720A, are implemented in EPROM for the 77P20. The 77P20 is useful in prototype applications or in systems where product quantities are insufficient for masked ROM development.

Since the inception of 7720 and its companion EPROM version, 77P20, there have been several mask revisions to improve manufacturability and function. A 77P20 must always be used to verify the functions of a user's system before ROM code for 77C20A or 7720A is submitted, but certain early versions of 77P20 must not be used for final verification. Refer to the section on μ PD77P20 for details.

Features

- Low-power CMOS: 24 mA typical current use (77C20A)
- Fast instruction execution: 240 ns with $8.333-\mathrm{MHz}$ clock
- 16-bit data word
- Multioperation instructions for fast program execution: multiply, accumulate, move data, adjust memory pointers-all in one instruction cycle
- Modified Harvard architecture with three separate memory areas
-Program ROM (512 x 23 bits)
-Data ROM (510×13 bits)
-Data RAM (128×16 bits)
- 16×16-bit multiplier; 31-bit product with every instruction
- Dual 16-bit accumulators
- External maskable interrupt
- Four-level stack for subroutines and/or interrupt
- Multiple I/O capabilities
-Serial: 8 - or 16 -bit ($480 \mathrm{~ns} / \mathrm{bit}$)
—Parallel: 8 - or 16 -bit
-DMA
- Compatible with most $\mu \mathrm{Ps}$, including:
$-\mu$ PD8080
- μ PD8085
- μ PD8086/88
$-\mu$ PD780 (Z80®)
- Single +5 -volt power supply
- NMOS technology (7720A, 77P20)
- Extended temperature range

Applications

- Portable telecommunications equipment
- Digital filtering
- High-speed data modems
- Fast Fourier transforms (FFT)
- Speech synthesis and analysis
- Dual-tone multifrequency (DTMF) transmitters/ receivers
- Equalizers
- Adaptive control
- Numerical processing

Performance Benchmarks

- Second-order digital filter (biquad): $2.21 \mu \mathrm{~s}$
- Sin/cos of angles: $5.16 \mu \mathrm{~s}$

ㅁ $\mu /$ A law to linear conversion: $0.49 \mu \mathrm{~s}$

- FFT
-32-point complex: 07 ms
-64-point complex: 1.6 ms

Z80 is a registered trademark of Zilog Corporation.

Ordering Information

Part Number	Package	Max Frequency of Operation	Normal Temperature Range
μ PD77C20AC	28-pin plastic DIP	8.33 MHz	-40 to $+85^{\circ} \mathrm{C}$
ALK	28-pin PLCC		
AL	44-pin PLCC		
AGW	32-pin SOP		
$\mu \mathrm{PD} 7720 \mathrm{AC}$	28-pin plastic DIP	8.33 MHz	-10 to $+70^{\circ} \mathrm{C}$
$\mu \mathrm{PD} 77 \mathrm{P} 20 \mathrm{D}$	28-pin cerdip	8.196 MHz	-10 to $+70^{\circ} \mathrm{C}$

Pin Configurations

28-Pin DIP, Plastic and Ceramic

NC/ $/ P_{\text {PP }} N_{\text {CC }}$ (1) $\sqrt{1}$	28	$\square v_{C C}$
$\overline{\text { DACK }-2 ~}$	27	$\square A_{0}$
DRQ ${ }^{3}$	26	$\square \overline{\mathrm{CS}}$
$\mathrm{P}_{0}-4$	25	$\square \overline{\mathrm{RD}}$
$\mathrm{P}_{1} \mathrm{C}_{5}$	24	$\square \overline{W R}$
D $\square_{6} 6$	23	\square SORQ
$\mathrm{D}_{1} \mathrm{H}_{7}$	22	$\square \mathrm{SO}$
$\mathrm{D}_{2} \square_{8}$	21	$\square \mathrm{SI}$
$\mathrm{D}_{3}-9$	20	$\square \overline{\text { SOEN }}$
$\mathrm{D}_{4}-10$	19	$\square \overline{\text { SIEN }}$
$\mathrm{D}_{5} \mathrm{C}_{11}$	18	\square SCK
$\mathrm{D}_{6}{ }^{12}$	17	\square INT
$\mathrm{D}_{7} \mathrm{C}_{13}$	16	$\square \mathrm{RST}$
GND 14	15	$\square \mathrm{CLK}$

Notes:
(1) No connection: 77C20A, 7720A

Must be connected for EPROM version; consult 77P20 specifications.

28-Pin PLCC

32-Pin SOP

44-Pin PLCC

Pin Identification

Symbol	Function
A_{0}	Status/data register select input
CLK	Single-phase master clock input
$\overline{\mathrm{CS}}$	Chip select input
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Three-state I/O data bus
$\overline{\text { DACK }}$	DMA request acknowledge input
DRQ	DMA request output
INT	Interrupt input
$\mathrm{P}_{0}, \mathrm{P}_{1}$	General-purpose output control lines
$\overline{\mathrm{RD}}$	Read control signal input
RST	Reset input
SCK	Serial data 1/O clock input
SI	Serial data input
SIEN	Serial input enable input
So	Three-state serial data output
SOEN	Serial output enable input
SORQ	Serial data output request
$\overline{\mathrm{WR}}$	Write control signal input
GND	Ground
$\mathrm{V}_{C C}$	+5V power supply
$\mathrm{NC} / \mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{CC}}$	No connection (77C20A, 7720A)/ programming voltage (77P20)

PIN FUNCTIONS

A_{0} (Status/Data Register Select)

This input selects data register for read/write (low) or status register for read (high).

CLK

This is the single-phase master clock input.

$\overline{\mathbf{C S}}$ (Chip Select)

This input enables data transfer through the data port with $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$.

$\mathrm{D}_{0}-\mathrm{D}_{7}$ (Data Bus)

This three-state I/O data bus transfers data between the data register or status register and the external data bus.

DACK (DMA Request Acknowledge)

This input indicates to the SPI that the data bus is ready for a DMA transfer (DACK $=C S$ and $A_{0}=0$).

DRQ (DMA Request)

This output signals that the SPI is requesting a data transfer on the data bus.

INT (Interrupt)

A low-to-high transition on this pin executes a call instruction to location 100 H if interrupts were previously enabled.
$\mathrm{P}_{0}, \mathrm{P}_{1}$
These pins are general-purpose output control lines.

$\overline{\mathrm{RD}}$ (Read Control Signal)

This input latches data from the data or status register to the data port where it is read by an external device.

RST (Reset)

This input initializes the SPI internal logic and sets the PC to 0 .

SCK (Serial Data I/O Clock)

When this input is high, a serial data bit is transferred.

SI (Serial Data Input)

This pin inputs 8 - or 16 -bit serial data words from an external device such as an A / D converter.

SIEN (Serial Input Enable)

This input enables the shift clock to the serial input register.

SO (Serial Data Output)

This three-state port outputs 8 - or 16 -bit data words to an external device such as a D/A converter.

$\overline{\text { SOEN }}$ (Serial Output Enable)

This input enables the shift clock to the serial output register.

SORQ (Serial Data Output Request)

This output specifies to an external device that the serial data register has been loaded and is ready for output. SORQ is reset when the entire 8 - or 16 -bit word has been transferred.

$\overline{W R}$ (Write Control Signal)

This input writes data from the data port into the data register.

GND

This is the connection to ground.

$\mathbf{V}_{\mathbf{c c}}$ (Power Supply)

This pin is the +5 -volt power supply.

$\mathrm{NC} / \mathrm{V}_{\mathrm{pp}} / \mathrm{V}_{\mathrm{Cc}}$

This pin is not internally connected in the 77C20A and 7720A. In the 77P20, this pin inputs the programming voltage ($V_{P P}$) when the part is being programmed.

This pin must be connected to V_{CC} for proper 77P20 operation. Consult the section on the μ PD77P20 for details.

Block Diagram

FUNCTIONAL DESCRIPTION

The primary bus (unshaded in the block diagram) makes a data path between all of the registers (including I/O), memory, and the processing sections. This bus is referred to as the IDB (internal data bus). The multiplier input registers K and L can be loaded not only from the IDB but alternatively via buses (darkened in the block diagram) directly from RAM to the K register and directly from data ROM to the L register. Output from the multiplier in the M and N registers is typically added via buses (shaded in the block diagram) to either accumulator A or B as part of a multioperation instruction.
The SPI is a complete 16 -bit microcomputer on a single chip. ROM space provides program and coefficient storage; the on-chip RAM may be used for temporary data, coefficients, and results. A 16-bit arithmetic/logic unit (ALU) and a separate 16×16-bit, fully-parallel multiplier provide computational power. This combination allows the implementation of a "sum of products" operation in a single 240 -ns instruction cycle. In addition, each arithmetic instruction allows a number of data movement operations to further increase throughput.
Two serial $1 / O$ ports interface to codecs and other serial-oriented devices; a parallel port provides both data and status information to conventional microprocessors. Handshaking signals, including DMA controls, allow the SPI to act as a sophisticated programmable peripheral as well as a standalone microcomputer.

MEMORY

Memory is divided into three types: instruction ROM, data ROM, and data RAM. The 512×23-bit words of instruction ROM are addressed by a 9-bit program counter that can be modified by an external reset, interrupt, call, jump, or return instruction.
The data ROM is organized in 510×13-bit words that are addressed through a 9-bit ROM pointer (RP register). The RP may be modified simultaneously with arithmetic instructions so that the next value is available for the next instruction. The data ROM is ideal for storing the necessary coefficients, conversion tables, and other constants for your processing needs.
Do not use data ROM locations 0 and 1 in the 77C20A or 7720A. These locations are reserved for storage of test pattern data. (When submitting code, set these locations to 0). Note that 77P20 allows use of these locations, but using them is not advised.

The data RAM is 128×16-bit words and is addressed through a 7 -bit data pointer (DP register). The DP has extensive addressing features that operate simultaneously with arithmetic instructions, eliminating additional time for addressing or address modification.

ARITHMETIC CAPABILITIES

One of the unique features of the SPI's architecture is its arithmetic facilities. With a separate multiplier, ALU, and multiple internal data paths, the SPI is capable of carrying out a multiply, an add, or other arithmetic operation, and a data move between internal registers in a single instruction cycle.

ALU

The ALU is a 16 -bit two's complement unit capable of executing 16 distinct operations on virtually any of the SPI's internal registers, thus giving the SPI both speed and versatility for efficient data management.

Accumulators (ACCA/ACCB)

Associated with the ALU are two 16-bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction (except NOP). Table 1 shows the ACC A/B flag registers. In addition to zero result, sign, carry, and overflow flags, the SPI incorporates auxiliary overflow and sign flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as three successive additions or subtractions.

Table 1. ACC A/B Flag Registers

Flag A	SA1	SAO	CA	ZA	OVA1	OVA0
Flag B	SB1	SB0	CB	ZB	OVB1	OVB0

Sign Register (SGN)

When OVA1 is set, the SA1 bit will hold the corrected sign of the overflow. The SGN register will use SA1 to automatically generate saturation constants 7FFFH(+) or $8000 \mathrm{H}(-)$ to permit efficient limiting of a calculated value. The SGN register is not affected by arithmetic operations on accumulator B, but flags SB1, SBO, CB, ZB, OVB1, and OVBO are affected.

Multiplier

Thirty-one bit results are developed by a 16×16-bit two's complement multiplier in 240 ns . The result is automatically latched to two 16 -bit registers, M and N , at the end of each instruction cycle. The sign bit and 15 higher bits are in M and the 15 lower bits are in N ; the

LSB in N is zero. A new product is available for use after every instruction cycle, providing significant advantages in maximizing processing speed for real-time signal processing.

Stack

The SPI contains a four-level program stack for efficient program usage and interrupt handling.

Interrupt

The SPI supports a single-level interrupt. Upon sensing a high level on the INT pin, a subroutine call to location 100 H is executed. The El bit of the status register automatically resets to 0 , disabling the interrupt facility until it is reenabled under program control.

INPUT/OUTPUT

General

The SPI has three communication ports as shown in figure 1: two serial and one 8 -bit parallel, each with its own control lines for interface handshaking. Parallel port operation is software-configurable to be in either polled mode or DMA mode. A general-purpose, twoline output port rounds out a full complement of interface capability.

Serial I/O

The two shift registers (SI, SO) are softwareconfigurable to single- or double-byte transfers. The shift registers are externally clocked (SCK) to provide a simple interface between the SPI and serial peripherals such as A / D and D / A converters, codecs, or other SPIs. Figure 2 shows serial I/O timing

Figure 1. SPI Communication Ports

Figure 2. Serial I/O Timing

Parallel I/O

The 8-bit parallel I/O port may be used for transferring data or reading the SPI's status as shown in table 2. Data transfer is handled through a 16 -bit data register (DR) that is software-configurable for double- or singlebyte data transfers. The port is ideally suited for operating with 8080,8085 , and 8086 processor buses and may be used with other processors and computer systems.

DMA Mode Option

Parallel data transfers may be controlled (optionally) via DMA control lines DRQ and DACK. DMA mode allows high-speed transfers and reduced processor overhead. When in DMA mode, $\overline{\text { DACK }}$ input resets DRQ output when data transfer is completed. $\overline{\text { DACK }}$ does not affect any status register bit or flag bit.

Table 2. Parallel R/W Operation

$\overline{\text { CS }}$	A_{0}	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	Operation
1	X	X	X	No effect on internal operation; $D_{0}-D_{7}$ are at high impedance levels.
X	X	1	1	
0	0	0	1	Data from $D_{0}-D_{7}$ is latched to DR (Note 1)
0	0	1	0	Contents of DR are output to $D_{0}-D_{7}$ (Note 1)
0	1	0	1	Illegal (SR is read only)
0	1	1	0	Eight MSBs of SR are output to $\mathrm{D}_{0}-\mathrm{D}_{7}$
0	X	0	0	Illegal (may not read and write simultaneously)

Notes:

(1) Eight MSBs or 8 LSBs of data register (DR) are used, depending on DR status bit (DRS). The condition of DACK $=0$ is equivalent to $A_{0}=C S=0$.

Status Register

The status register (figure 3) is a 16 -bit register in which the eight most significant bits may be read by the system's microprocessor for the latest parallel datal/O status. The RQM and DRS bits can only be affected by parallel data moves. The other bits can be written to (or read) by the SPl's load immediate (LDI) or move (MOV) instructions. The El bit is automatically reset when an interrupt is serviced.

Figure 3. Status Register (SR)

15	14	13	12	11	10	9	8
RQM	USF1	USF0	DRS	DMA	DRC	SOC	SIC
MSB							
7	6	5	4	3	2	1	0
EI	0	0	0	0	0	P1	PO

Table 3. Status Register Flags

Flag	Description		
RQM (Request for Master)	A read or write from DR to IDB sets RQM $=$ 1.		
USF1 and USF0 external read (write) resets RQM $=0$. (User Flags 1 and 0) General-purpose flags which may be read by an external processor for user-defined signaling DRS (DR Status) For 16-bit DR transfers (DRC $=0$). DRS $=1$ after first 8 bits have been transferred. DRS $=0$ DMA (DMA Enabler all 16 bits have been transferred.			DMA $=0$ (Non-DMA transfer mode)
:---	:---		
DMA $=1$ (DMA transfer mode)			

Table 3. Status Register Flags (cont)

Flag	Description
DRC (DR control)	DRC $=0$ (16-bit mode)
	DRC $=1$ (8-bit mode)
SOC (SO Control)	SOC $=0$ (16-bit mode)
	SOC $=1$ (8-bit mode)
SIC (SI Control)	SIC $=0$ (16-bit mode)
	SIC $=1$ (8-bit mode)
EI (Enable	$\mathrm{EI}=0$ (interrupts disabled)
Interrupt)	$\mathrm{EI}=1$ (interrupts enabled)
PO, P1	PO and P1 directly control the state of
(Ports 0 and 1)	output pins P_{0} and P_{1}

INSTRUCTIONS

The SPI has three types of instructions: Load Immediate, Branch, and the multifunction OP instruction. Each type takes the form of a 23 -bit word and executes in 240 ns .

Instruction Timing

To control the execution of instructions, the external $8-\mathrm{MHz}$ clock is divided into four phases for internal execution. The various elements of the 23 -bit instruction word are executed in a set order. Multiplication automatically begins first. Also, data moves from source to destination before other elements of the instruction. Data being moved on the internal data bus (IDB) is available for use in ALU operations (if P -select field of the instruction specifies IDB). However, if the accumulator specified in the ASL field is also specified as the destination of the data move, the ALU operation becomes an NOP as the data move supersedes the ALU operation.
Pointer modifications occur at the end of the instruction cycle after their values have been used for data moves. The result of multiplication is available at the end of the instruction cycle for possible use in the next instruction. If a return is specified as part of an OP instruction, it is executed last.

An assembly language OP instruction may consist of what looks like one to six lines of assembly code, but all of these lines are assembled together into one 23 -bit instruction word. Therefore, the order of the six lines makes no difference in the order of execution described above. However, for understanding the SPI's operation and to eliminate confusion, write assembly code in the order described; that is, data move, ALU operations, data pointer modifications, and then return.

Minor differences exist between 7720A and 77C20A in internal instruction execution timing. Using normal programming instruction statements, the differences will not appear. However, an instruction such as the following will yield a difference between NMOS and CMOS operation.

OP MOV @MEM,B XOR ACCB, RAM

The instruction, which is acceptable using the NEC assembler (AS77201), has an inherent conflict in that data is simultaneously being moved into memory and fetched in one instruction. ALU instructions involving either ACCA or ACCB should not be used. In summary, observe the following rules.
(1) DST should not be @MEM when PSEL is RAM.
(2) When SRC is NON, DST must be @NON.
(3) A should not be used as both DST and ASL.
(4) B should not be used as both DST AND ASL.

OP/RT Instruction Field Specification

Figure 4 illustrates the OP/RT instruction field specification. There are two instructions of this type, both of which are capable of executing all ALU functions listed in table 4. The ALU functions operate on the value specified by the P-select field (see table 5).

Besides the arithmetic functions, these instructions can also (1) modify the RAM data pointer DP, (2) modify the data ROM pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register. The possible source and destination registers are listed in tables 6 and 7 , respectively.

The difference in the two instructions of this type is that RT executes a subroutine or interrupt return at the end of the instruction cycle, but the OP does not. Tables 8, 9 , 10, and 11 show the ASL, DPL, DPH, and RPDCR fields, respectively.

Figure 4. OP/RT Instruction Field

Table 4. ALU Field

Mnemonic	D_{18}	D_{17}	D_{16}	D_{15}	ALU Function	SA1, SB1	SAO, SBO	CA, CB	ZA, ZB	OVA1, OVB1	OVAO, OVBO
NOP	0	0	0	0	No operation	-	-	-	-	-	-
OR	0	0	0	1	OR	x	Δ	0	\triangle	0	0
AND	0	0	1	0	AND	x	Δ	0	\triangle	0	0
XOR	0	0	1	1	Exclusive OR	x	Δ	0	\triangle	0	0
SUB	0	1	0	0	Subtract	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
ADD	0	1	0	1	ADD	\triangle	Δ	\triangle	\triangle	\triangle	\triangle
SBB	0	1	1	0	Subtract with borrow	\triangle	Δ	\triangle	\triangle	\triangle	\triangle
ADC	0	1	1	1	Add with carry	\triangle	Δ	\triangle	\triangle	\triangle	\triangle
DEC	1	0	0	0	Decrement ACC	\triangle	Δ	Δ	\triangle	\triangle	\triangle
INC	1	0	0	1	Increment ACC	\triangle	Δ	\triangle	\triangle	\triangle	\triangle
CMP	1	0	1	0	Complement ACC (one's complement)	x	Δ	0	\triangle	0	0
SHR1	1	0	1	1	1-Bit right shift	x	Δ	Δ	\triangle	0	0
SHL.	1	1	0	0	1-Bit left shift	x	Δ	\triangle	\triangle	0	0
SHL2	1	1	0	1	2-Bit left shift	x	Δ	0	\triangle	0	0
SHL4	1	1	1	0	4-Bit left shift	x	\triangle	0	\triangle	0	0
XCHG	1	1	1	1	8-Bit exchange	x	\triangle	0	\triangle	0	0

Table 5. P-Select Field

Mnemonic	D_{20}	D_{19}	ALU Input
RAM	0	0	RAM
IDB	0	1	Internal Data Bus (Note 1)
M	1	0	M Register
N	1	1	N Register

Notes:

(1) Any value on the on-chip data bus. Value may be selected from any of the registers listed in table 6 source register selections.

Table 6. SRC Field

Mnemonic	D_{7}	D_{6}	D_{5}	$\mathrm{D}_{\mathbf{4}}$	Source Register
NON	0	0	0	0	No register
A	0	0	0	1	ACCA (Accumulator A)
B	0	0	1	0	ACCB (Accumulator B)
TR	0	0	1	1	TR temporary register
DP	0	1	0	0	DP data pointer
RP	0	1	0	1	RP ROM pointer
RO	0	1	1	0	RO ROM output data
SGN	0	1	1	1	SGN sign register
DR	1	0	0	0	DR data register
DRNF	1	0	0	1	DR no flag (Note 1)
SR	1	0	1	0	SR status register
SIM	1	0	1	1	SI serial in MSB (Note 2)
SIL	1	1	0	0	SI serial in LSB (Note 3)
K	1	1	0	1	K register
L	1	1	1	0	L register
MEM	1	1	1	1	RAM

Notes:
(1) DR to IDB, RQM not set. In DMA, DRQ not set.
(2) First bit in goes to MSB, last bit to LSB.
(3) First bit goes to LSB, last bit to MSB (bit reversed).

Table 7. DST Field

Mnemonic	D_{3}	D_{2}	D_{1}	D_{0}	Destination Register
$@ N O N$	0	0	0	0	No register
$@ A$	0	0	0	1	ACCA (Accumulator A)
$@ B$	0	0	1	0	ACCB (Accumulator B)
$@ T R$	0	0	1	1	TR temporary register
@DP	0	1	0	0	DP data pointer
@RP	0	1	0	1	RP ROM pointer
$@ D R$	0	1	1	0	DR data register
$@ S R$	0	1	1	1	SR status register

Table 11. RPDCR Field

Mnemonic	$\mathbf{D}_{\mathbf{8}}$	RP Operation
RPNOP	0	No operation
RPDEC	1	Decrement RP

Jump/Call/Branch

Figure 5 shows the JP instruction field specification. Three types of program counter modifications accommodated by the processor are listed in table 12. All the instructions, if unconditional or if the specified condition is true, take their next program execution address from the next address field (NA); otherwise PC = PC + 1.

For the conditional jump instruction, the condition field specifies the jump condition. Table 13 lists all the instruction mnemonics of the jump/call/branch codes. BRCH or CND values not in table 13 are prohibited.

Load Data (LDI)

Figure 6 shows the LD instruction field specification. The load data instruction will take the 16 -bit value contained in the immediate data field (ID) and place it in the location specified by the destination field (DST) See table 7.

Figure 5. JP Instruction Fleld

Figure 6. LD Instruction Fleld

Table 12. BRCH Field

\mathbf{D}_{20}	\mathbf{D}_{19}	\mathbf{D}_{18}	Branch Instruction
1	0	0	Unconditional jump
1	0	1	Subroutine call
0	1	0	Conditional jump

Table 13. BRCH/CND Fields

Mnemonic	D_{20}	D_{19}	D_{18}	D_{17}	D_{16}	D_{15}	D_{14}	D_{13}	Conditions
JMP	1	0	0	0	0	0	0	0	No condition
CALL	1	0	1	0	0	0	0	0	No condition
JNCA	0	1	0	0	0	0	0	0	$C A=0$
JCA	0	1	0	0	0	0	0	1	$C A=1$
JNCB	0	1	0	0	0	0	1	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	$C B=1$
JNZA	0	1	0	0	0	1	0	0	$Z A=0$
JZA	0	1	0	0	0	1	0	1	$Z A=1$
JNZB	0	1	0	0	0	1	1	0	$Z B=0$
JZB	0	1	0	0	0	1	1	1	$Z B=1$
JNOVAO	0	1	0	0	1	0	0	0	OVAO $=0$
Jovao	0	1	0	0	1	0	0	1	OVAO $=1$
JNOVBO	0	1	0	0	1	0	1	0	OVBO $=1$
Jovbo	0	1	0	0	1	0	1	1	$\mathrm{OVBO}=1$
JNOVA1	0	1	0	0	1	1	0	0	OVA1 $=0$
JoVA1	0	1	0	0	1	1	0	1	OVA1 $=1$
JNOVB1	0	1	0	0	1	1	1	0	OVB1 $=0$
JOVB1	0	1	0	0	1	1	1	1	$\mathrm{OVB1}=1$
JNSAO	0	1	0	1	0	0	0	0	$S A O=0$
JSAO	0	1	0	1	0	0	0	1	$S A O=1$
JNSBO	0	1	0	1	0	0	1	0	$\mathrm{SBO}=0$
JSBO	0	1	0	1	0	0	1	1	$S B O=1$
JNSA1	0	1	0	1	0	1	0	0	SA1 $=0$
JSA1	0	1	0	1	0	1	0	1	$S A 1=1$
JNSB1	0	1	0	1	0	1	1	0	$\mathrm{SB} 1=0$
JSB1	0	1	0	1	0	1	1	1	$\mathrm{SB1}=1$
JDPLO	0	1	0	1	1	0	0	0	DPL $=0$
JDPLF	0	1	0	1	1	0	0	1	$\mathrm{DPL}=\mathrm{FH}$
JNSIAK	0	1	0	1	1	0	1	0	SIACK $=0$
JSIAK	0	1	0	1	1	0	1	1	SIACK = 1
JNSOAK	0	1	0	1	1	1	0	0	SO ACK $=0$
JSOAK	0	1	0	1	1	1	0	1	SO ACK = 1
JNRQM	0	1	0	1	1	1	1	0	RQM $=0$
JRQM	0	1	0	1	1	1	1	1	RQM $=1$

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Supply voltage, $\mathrm{V}_{\text {CC }}$	
77C20A	-0.5 to +7.0 V
7720A	-0.5 to +7.0 V
77P20	-0.3 to +7.0 V
Programming voltage, $\mathrm{V}_{\text {PP }}$ (77P20)	-0.3 to +22 V
Input voltage, V_{1}	
77C20A	-0.5 to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
7720A	-0.5 to +7.0 V
77P20	-0.3 to +7.0 V
Output voltage, V_{O}	
77C20A	-0.5 to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
7720A	-0.5 to +7.0 V
77P20	-0.3 to +7.0 V
Operating temperature, TOPT	
77C20A	-40 to $+85^{\circ} \mathrm{C}$
7720A, 77P20	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

Parameter	Symbol	Min	Max	Unit	Conditions
CLK, SCK capacitance	$\mathrm{C} \phi$	20	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	
Input pin capacitance	C_{IN}	10	pF		
Output pin Capacitance	$\mathrm{C}_{\mathrm{OUT}}$	20	pF		

DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input low voltage	$\mathrm{V}_{\text {IL }}$					
77C20A		-0.3		0.8	V	
7720A, 77P20		-0.5		0.8	V	
Input high voltage	V_{IH}					
77C20A		2.2		$V_{C C}+0.3$	V	
7720A, 77P20		2.0		$\mathrm{V}_{\text {cc }}+0.5$	V	
CLK low voltage	$\mathrm{V}_{\phi} \mathrm{L}$					
77C20A		-0.3		0.45	V	
7720A, 77P20		-0.5		0.45	V	
CLK high voltage	$\mathrm{V}_{\boldsymbol{\phi}} \mathrm{H}$					
77C20A		3.5		$V_{c c}+0.3$	v	
7720A, 77P20		3.5		$\mathrm{V}_{\text {cc }}+0.5$	V	
Output low voltage	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output high voltage	V_{OH}	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input load current	LIIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
Input load current	$\mathrm{ILIH}^{\text {L }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
Output float leakage	LOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.47 \mathrm{~V}$
Output float leakage	ILOH^{2}			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply current	Icc					
77C20A			24	40	mA	${ }^{\mathrm{f}} \mathrm{CLK}=8.192 \mathrm{MHz}$
7720A			120	170	mA	
77P20			270	350	mA	
$\mathrm{V}_{\text {PP }}$ current (77P20 only)	IPP	-		70	mA	Program mode max pulse current (Note 1)
		0.5		3.0	mA	Program verify, inhibit (Note 2)

Notes:

(1) $\mathrm{V}_{\mathrm{PP}}=21 \pm 0.5 \mathrm{~V}$
(2) For K-level parts: $\quad V_{\mathrm{PP}} \max =\left(V_{C C}-0.6 \mathrm{~V}\right)+0.25 \mathrm{~V}$
$V_{\text {PP } \min }=\left(V_{C C}-0.6 V\right)-0.25 V$
For all other step levels: $V_{P P} \max =V_{C C}+0.25 \mathrm{~V}$

AC Characteristics
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
CLK cycle time	$\phi \subset Y$					
77C20A, 7720A		120		2000	ns	
77P20		122		2000	ns	
CLK pulse width	$\phi \mathrm{D}$	60			ns	Note 4
CLK rise time	$\phi \mathrm{R}$			10	ns	Note 1
CLK fall time	$\phi \mathrm{F}$			10	ns	Note 1
Address setup time for $\overline{\mathrm{RD}}$	$t_{\text {AR }}$	0			ns	
Address hold time for $\overline{\mathrm{RD}}$	$t_{\text {RA }}$	0			ns	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RR }}$	250			ns	
Data delay from $\overline{\mathrm{RD}}$	$t_{\text {RD }}$			150	ns	$C_{L}=100 \mathrm{pF}$
Read to data floating	$t_{\text {DF }}$	10		100	ns	$C_{L}=100 \mathrm{pF}$
Address setup time for $\overline{W R}$	${ }^{\text {A }}$ W	0			ns	
Address hold time for $\overline{W R}$	${ }^{\text {twa }}$	0			ns	
$\overline{\text { WR pulse width }}$	$t_{\text {w }}$ w	250			ns	
Data setup time for $\overline{W R}$	${ }^{\text {t }}$ W ${ }^{\text {w }}$	150			ns	
Data hold time for $\overline{W R}$	${ }^{\text {W }}$ W	0			ns	
$\overline{\overline{R D}, \overline{W R}, ~ r e c o v e r y ~ t i m e ~}$	$t_{\text {t }}{ }^{\text {d }}$	250			ns	Note 2
DRQ delay	${ }^{\text {AM }}$			150	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
DACK delay time	$t_{\text {dack }}$	1			ϕD	Note 2
$\overline{\text { DACK pulse width }}$	$t_{\text {D }}$					
77C20A		250				
7720A		250		2000	ns	
77P20		250		50,000	ns	
SCK cycle time	$\mathrm{t}_{\text {SCY }}$	480		DC	ns	
SCK pulse width	tsck	230			ns	
SCK rise/fall time	$\mathrm{t}_{\text {RSC }} / \mathrm{t}_{\text {FSC }}$		20		ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
SORQ delay	$t_{\text {DRQ }}$	30		150	ns	$C_{L}=100 \mathrm{pF}$
SOEN hold time	${ }^{\text {t cso }}$	30			ns	
SOEN setup time	tsoc	50			ns	
SO delay from SCK = low	$t_{\text {DCK }}$			150	ns	
SO delay from SCK before 1st bit (Note 3)	$t_{\text {DZRQ }}$	20		300	ns	Note 2
SO delay from SCK	$t_{\text {DZSC }}$	20		300	ns	Note 2
SO delay for $\overline{\text { SOEN }}$	$\mathrm{t}_{\text {DZE }}$	20		180	ns	Note 2
SOEN to SO floating	${ }^{\text {thzE }}$	20		200	ns	Note 2
SCK to SO floating with SORQ high	${ }^{\text {thzsC }}$	20		300	ns	Note 2
SO delay from SCK for last bit	${ }^{\text {thzRQ }}$	70		300	ns	Note 2
SIEN, SI setup time	${ }^{t} \mathrm{DC}$	55			ns	Note 2
$\overline{\text { SIEN, }}$ SI hold time	$t_{C D}$	30			ns	
$\mathrm{P}_{0}, \mathrm{P}_{1}$ delay	$t_{\text {DP }}$			$\begin{aligned} & \phi C Y \\ & +150 \end{aligned}$	ns	
RST pulse width	$t_{\text {RST }}$	4			$\phi \subset Y$	
INT pulse width	$\mathrm{t}_{\text {INT }}$	8			$\phi \subset Y$	

Notes:

(1) Voltage at timing measuring point: 1.0 V and 3.0 V .
(2) Voltage at ac timing measuring point:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}
\end{aligned}
$$

(3) SO goes out of tristate, but data is not valid yet.
(4) Pulse width includes CLK rise and fall times. Refer to Clock Timing Waveform.

Timing Waveforms

Input Waveform of AC Test (except CLK)

Clock
(

Read Operation

Write Operation

DMA Operation

16-Bit Transfer Mode

Port Output

Reset

Timing Waveforms (cont)

Read/Write Cycle

Interrupt

SERIAL TIMING

Serial Output, Case 1

Figure 7 shows serial output timing when $\overline{\text { SOEN }}$ is asserted in response to SORQ when SCK is low. If $\overline{\text { SOEN }}$ is held inactive until after SORQ is asserted, and then SOEN is asserted while SCK is low (SOEN should be held inactive until the period of $\mathrm{t}_{\mathrm{CSO}}$ after the falling edge of SCK), SO will become active but not valid $t_{\text {DZSC }}$ after the next rising edge of SCK. SO will become valid with the first bit $t_{\text {DCK }}$ after the next falling edge of SCK for use by an external device at the subsequent rising edge of SCK.
Subsequent bits will be shifted out $t_{D C K}$ after subsequent falling edges of SCK for use at subsequent rising edges of SCK. The last bit to be shifted out will also follow this pattern and will be held valid $t_{H Z R Q}$ after the corresponding rising edge of SCK at which it is to be used. SORQ will be held $t_{D R Q}$ after this same rising edge of SCK and then removed. SOEN should be released at least $t_{\text {soc }}$ before the next falling edge of SCK.

Serial Output, Case 2

Figure 8 shows timing for serial output when SOEN is asserted in response to SORQ when SCK is high. If SOEN is held inactive until after SORQ is asserted, and then SOEN is asserted while SCK is high (at least tsoc before the falling edge of SCK), SO will become active but not valid $t_{\text {DZE }}$ after the falling edge of SOEN. SO will become valid $\mathrm{t}_{\mathrm{DCK}}$ after the falling edge of SCK for use by an external device at the subsequent rising edge of SCK.
Note that although figure 8 shows $\overline{\text { SOEN }}$ being asserted during a different SCK pulse than the one in which SORQ is asserted, it is permissible for these to occur during the same pulse of SCK as long as SOEN is still asserted $\mathrm{t}_{\text {SOC }}$ before the falling edge of SCK. The timing for the second through the last bits is identical to the timing shown in figure 7.

Serial Output, Case 3

Figure 9 shows output timing when SOEN is active before SORQ is high. If SOEN is held active before SORQ is high, data will be shifted out whenever it becomes available in the serial output register (assuming previous data is already shifted out). In this case, SORQ will rise $t_{D R Q}$ after a rising edge of SCK. SO will become active (but not valid yet) $t_{D Z R Q}$ after the same rising edge of SCK. The first valid SO bit occurs $t_{D C K}$ after the next falling edge of SCK for use by an external device at the subsequent rising edge of SCK.
Subsequent bits will be shifted out $t_{D C K}$ after subsequent falling edges of SCK for use at subsequent rising edges of SCK. The last bit to be shifted out will also follow this pattern and will be held valid $t_{H Z R Q}$ after the corresponding rising edge of SCK at which it is to be used. SORQ will be held $t_{D R Q}$ after this same rising edge of SCK and then removed.

Figure 7. Serial Output Case 1: $\overline{\text { SOEN }}$ Asserted in Response to SORQ When SCK Is Low

Figure 8. Serial Output Case 2: $\overline{\text { SOEN }}$ Asserted in Response to SORQ When SCK Is High

Figure 9. Serial Output Case 3: $\overline{\text { SOEN }}$ Active Before SORQ Is High

Serial Output, Case 4A

Avoid releasing $\overline{\text { SOEN }}$ in the middle of a transfer (that is, before the last bit is shifted out), since this will stop the output shift operation. When SOEN is again asserted, the remainder of the transfer will be shifted out before the next transfer can begin. The next transfer will begin immediately without any indication of the byte/word boundary. If SOEN is released while SCK is high (figure 10) at least $t_{S O c}$ before the falling edge of SCK, then SO will go inactive $\mathrm{t}_{\text {HZE }}$ after SOEN is released (which may be before or after the falling edge of SCK).

Serial Output, Case 4B

If $\overline{\text { SOEN }}$ is released while SCK is low (figure 11) at least ${ }^{\mathrm{t}}$ CSO after the falling edge of SCK, then the next bit will be shifted out $t_{D C K}$ after the falling edge of SCK for
useat the subsequent rising edge of SCK. SO will then go inactive $\mathrm{t}_{\mathrm{Hzsc}}$ after this rising edge of SCK.
Note: For all its uses, $\overline{\text { SOEN }}$ must not change state within $\mathrm{t}_{\text {soc }}$ before or $\mathrm{t}_{\text {cso }}$ after the falling edge of SCK; otherwise, the results will be indeterminate.

Serial Input

Serial input timing (figure 12) is much simpler than serial output timing. Data bits are shifted in on the rising edge of SCK if SIEN is asserted. Both SIEN and SI must be stable at least $t_{D C}$ before and $t_{C D}$ after the rising edge of SCK; otherwise the results will be indeterminate.

Figure 10. Serial Output Case 4A: If $\overline{\text { SOEN }}$ Is Released in the Middle of a Transfer During SCK High

Figure 11. Serial Output Case 4B: If SOEN Is Released in the Middle of a Transfer During SCK Low

Figure 12. Serial Input

Serial Timing Example

Figure 13 shows serial timing of cascaded SPIs with a common SCK. SO from the first SPI equals SI of the second, and the first SPI's SORQ inverts to become SIEN of the second. SOEN of the first SPI is always asserted.

When cascading two SPIs in the described configuration, most of the timing involved is directly copied from the case of serial output with $\overline{\text { SOEN }}$ always enabled (figure 13). It must be shown that the results will be suitable for the serial input timing of the second SPI.
(1) SORQ(1) rises $t_{D R Q}$ after a rising edge of SCK, and it is inverted (inverter has $\mathrm{t}_{\mathrm{PHL}}$ delay time) to become $\overline{\operatorname{SIEN}}(2)$, which must be stable $t_{D C}$ before the next rising edge of SCK. It also must not change until t_{CD} after this first rising edge of SCK as shown by case 2 in figure 8 .

$$
\begin{aligned}
\mathrm{t}_{\mathrm{DRQ}}(\max) & +\mathrm{t}_{\mathrm{PHL}}+\mathrm{t}_{\mathrm{DC}}(\min) \leq \mathrm{t}_{\mathrm{SCY}}(\min) \\
\mathrm{t}_{\mathrm{PHL}}(\max) & \leq \mathrm{t}_{\mathrm{scY}}(\min)-\mathrm{t}_{\mathrm{DC}}(\min)-\mathrm{t}_{\mathrm{DRQ}}(\max) \\
& \leq 480-55-150 \\
& \leq 275 \mathrm{~ns} \text { (readily achieved by } 74 \mathrm{LS} 14, \\
& \text { for example) }
\end{aligned}
$$

(2) $\operatorname{SORQ}(1)$ is released $t_{D R Q}$ after the last useful rising edge of SCK and is inverted (inverter has $\mathrm{t}_{\text {PHL }}$ delay time) to become $\overline{\operatorname{SIEN}}(2)$, which must remain stable $t_{C D}$ after the rising edge of SCK.

$$
\begin{aligned}
\mathrm{t}_{\mathrm{DRQ}}(\min) & +\mathrm{t}_{\mathrm{tLH}}(\min) \geq \mathrm{t}_{\mathrm{CD}}(\mathrm{~min}) \\
\mathrm{t}_{\mathrm{PLH}}(\mathrm{~min}) & \geq \mathrm{t}_{\mathrm{CD}}(\mathrm{~min})-\mathrm{t}_{\mathrm{DRQ}}(\mathrm{~min}) \\
& \geq 30-30 \\
& \geq 0 \text { (no problem, assuming causality) }
\end{aligned}
$$

Note: This also shows $\mathrm{t}_{\mathrm{PHL}}(\mathrm{min}) \geq 0$ for the rising edge of SORQ.

Figure 13. Serial Timing Example

(3) $\mathrm{SO}(1)$ is valid $\mathrm{t}_{\mathrm{DCK}}$ after a falling edge of SCK; since it becomes $\mathrm{SI}(2)$, it must be valid t_{DC} before the next rising edge of SCK.

$$
\begin{aligned}
\mathrm{t}_{\mathrm{DCK}}(\max)+\mathrm{t}_{\mathrm{DC}}(\min) & \leq \mathrm{t}_{\mathrm{SCK}}(\mathrm{~min}) \\
150+55 & \leq 230 \\
205 & \leq 230 \text { (this condition is } \\
& \text { satisfied) }
\end{aligned}
$$

(4) $S O$ (1) remains valid $t_{H Z R Q}$ after the last useful rising edge of SCK; since it becomes $\mathrm{SI}(2)$, it must remain valid t_{CD} after this rising edge of SCK.
$\mathrm{t}_{\mathrm{HZRQ}}(\mathrm{min}) \geq \mathrm{t}_{\mathrm{CD}}(\mathrm{min})$

$$
70 \geq 30 \text { (this condition is satisfied) }
$$

Note: The above calculations may need to be adjusted for rise and fall times, since $t_{s c y}$ and $t_{s c k}$ are measured for midpoints of wave slopes.

μ PD77P20 UV ERASABLE EPROM VERSION

Function

The 77P20 operates from a single +5 -volt power supply and can accordingly be used in any 77C20A/7720A masked ROM application.

Use of Evakit-7720

The following sections describe electrical conditions that are required for programming the 77P20. However, the Evakit-7720, NEC's hardware emulator development tool for the 77C20A/7720A/77P20, meets the electrical and timing specifications presented below. When the Evakit-7720 is used for programming 77P20, all data transfers and formatting are handled automatically by Evakit's monitor program. Please refer to the Evakit7720 (B) User's Manual for programming procedures.
The information presented below in the sections on Configuration, Operation, and Programming (and the various subsections) is required only for users who do NOT intend to use an Evakit to program the 77P20.

Configuration

Data transfer for programming and reading the internal ROM is partitioned into three bytes for each 23 -bit wide instruction location and into two bytes for each 13-bit wide data location. Partitioning of data transfer into and out of the data port is shown in figure 14.

Figure 14. Instruction ROM Format

Instruction ROM

The instruction ROM data is transferred through the data port as a high byte, middle byte, and low byte as shown in figure 15. Bit 7 of the middle byte should be assigned a value of zero. Data is presented to the data port in a bit-reversed format. The LSB through the MSB of an instruction ROM byte is applied to the MSB through the LSB of the data port, respectively.

Data ROM

Figure 16 shows the data ROM format. The data ROM data is transferred through the data port as a low byte and a high byte as shown in figure 17. Bits 0,1 , and 2 of the low byte should be assigned a value of zero. Data is presented to the data port in corresponding order. The MSB through the LSB of a data ROM byte is applied to the MSB through the LSB of the data port, respectively.

Initially and after each erasure, all bits of the 77P20 are in the zero state.

Figure 15. Transfer of Instruction ROM Data

Data Port	7	6	5	4	3	2	1	0
High Byte	15	16	17	18	19	20	21	22
Middle Byte	*	8	9	10	11	12	13	14
Low Byte	0	1	2	3	4	5	6	7
* Set to 0 as dummy data.								

Figure 16. Data ROM Format

MSB												
12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 17. Transfer of Data ROM Data

| Data Port | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Byte | 12 11 10 9 8 7 6 5 | | | | | | | |
| 4 3 2 1
 Low Byte 0 $*$ $*$ | | | | | | | | |
| | $*$ Set to 0 as dummy data. | | | | | | | |

Operating Modes

In order to read or write the instruction or data ROMs, the mode of operation of the 77P20 must be initially set. At the RST trailing edge, the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ should be logical zero and the DACK, A_{0}, and SI signals should be set to determine the mode of operation accordingly, as set out in table 14.

Table 14. μ PD77P20 Operation Mode

DACK	A_{0}	SI	
0	0	0	Write mode instruction and data ROM
0	0	1	Read the instruction ROM
0	1	0	Read the data ROM

Once set, the 77P20 will remain in the selected mode. A reset is required to transfer to another mode.

Write Mode

The individual instruction ROM and data ROM bytes are specified by control signals $\overline{R D}, A_{0}, S I$, and INT as set out in table 15. Before writing the EPROM location, the bytes should be loaded accordingly.

Table 15. Write Mode Specification of ROM Bytes

$\mathbf{R D}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{S I}$	INT	
1	0	0	1	Write instruction byte, high
1	0	1	0	Write instruction byte, middle
1	0	1	1	Write instruction byte, low
1	1	0	0	Write data byte, low
1	1	0	1	Write data byte, high

Read Mode

The instruction ROM and data ROM bytes are specified by the control signals $\overline{R D}, A_{0}, S I$, and INT as set out in table 16. Reading is accomplished by setting the control signals accordingly.

Table 16. Read Mode Specification of ROM Bytes

$\overline{\mathbf{R D}}$	$\mathbf{A}_{\mathbf{0}}$	SI	INT	
0	0	0	1	Read instruction byte, high
0	0	1	0	Read instruction byte, middle
0	0	1	1	Read instruction byte, low
1	0	0	0	Read data byte, high and low

The instruction ROM and data ROM are addressed by the 9 -bit program counter and the 9 -bit ROM pointer respectively. The PC is reset to 000 H and is automatically incremented to the end address 1FFH. The RP is reset to 1 FFH and is automaticaly decremented to 000 H .

Erasing

Programming can occur only when all data bits are in an erased or low (0) level state. Erase 77 P 20 programmed data by exposing it to light with wavelengths shorter than approximately 4000 angstroms. Note that constant exposure to direct sunlight or room level fluorescent lighting could erase the 77P20. Consequently, if the 77P20 will be exposed to these types of lighting conditions for long periods of time, mask its window to prevent unintentional erasure.

The recommended erasure procedure for the 77P20 is exposure to ultraviolet light with wavelength of 2537 angstroms. The integrated dose (i.e., UV intensity x exposure time) for erasure should not be less than 15 $\mathrm{W} \cdot \mathrm{s} / \mathrm{cm}^{2}$. The erasure time is approximately 20 minutes using an ultraviolet lamp with a power rating of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$.

During erasure, place the 77P20 within 1 inch of the lamp tubes. If the lamp tubes have filters, remove the filters before erasure.

Programming

Programming of the 77P20 is achieved with a single $50-\mathrm{ms}$ TTL pulse. Total programming time for the 11,776 bits of instruction EPROM and also for the 6630 bits of data EPROM is 26 seconds. Data is entered by programming a high level in the chosen bit locations. Both instruction ROM and data ROM should be programmed since they cannot be erased independently. Both instruction ROM and data ROM programming modes are entered in the same manner.
The device must be reset initially before it can be placed into the programming mode. After reset, the $\overline{\mathrm{WR}}$ signal and all other inputs ($\overline{R D}, \overline{C S} / P R O G, \overline{D A C K}, A_{0}, S I$, and INT) should be a TTL low signal $t_{\text {RS }}$ prior to the falling edge of RST. WR is then held for $t_{R H}$ before being
set to a TTL high-level signal. The device is now in a programming mode and will stay in this mode, allowing ROM locations to be sequentially programmed.

Programming Mode of Instruction ROM. Instruction ROM locations are sequentially programmed from address 000 H to address 1 FFH . The location address is incremented by the application of CLK for a duration of t_{C}. Data bytes for each location as specified by control signals $\overline{\mathrm{RD}}, \mathrm{A}_{0}, \mathrm{SI}$, and INT (table 15) are clocked into the device by the falling edge of $\overline{\mathrm{RD}}$.

After the three bytes have been loaded into the device, V_{PP} is raised to $21 \mathrm{~V} \pm 0.5 \mathrm{~V}$, tvs prior to $\overline{\mathrm{CS}} / \mathrm{PROG}$ transitioning to a TTL high-level signal. V_{PP} is held for the duration of tpRPR plus tpry before returning to the V_{CC} level. After $\mathrm{t}_{\text {PRCL }}$, the instruction ROM address can be incremented to program the next location. Figure 18 shows the programming mode of instruction ROM timing.

Programming Mode of Data ROM. Data ROM locations are sequentially programmed from address 1 FFH to address 000 H . The location address is decremented by the application of CLK for $t_{c y}$. The data bytes for each location as specified by control signals $\overline{\mathrm{RD}}, \mathrm{A}_{0}, \mathrm{SI}$, and INT are clocked into the device by the falling edge of $\overline{\mathrm{RD}}$.

After the two bytes have been loaded into the device, $V_{P P}$ is raised to $21 \mathrm{~V}, \pm 0.5 \mathrm{~V}$ tVPR prior to $\overline{\mathrm{CS}} / \mathrm{PROG}$ transitioning to a TTL high-level signal. V_{PP} is held for the duration of tPRPR plus tpRV before returning to the $V_{\text {CC }}$ level. After tpRCL , the data ROM address can be decremented to program the next location. Figure 19 shows programming mode of data ROM timing.
Read Mode. A read should be performed to verify that the data was programmed correctly. Prior to entering read mode, the device must be reset.

Read Mode of Instruction ROM. This mode is entered by holding the $\overline{\mathrm{WR}}$ signal at a TTL low level with the SI signal at a TTL high level and all other specified inputs ($\overline{\mathrm{RD}}, \overline{\mathrm{CS}} / \mathrm{PROG}, \overline{\mathrm{DACK}}, \mathrm{A}_{0}, \mathrm{INT}$) at TTL low levels for $\mathrm{t}_{\mathrm{CORS}}$ prior to the falling edge of RST. WR is then held for $t_{\text {RSW }}$ before being set to a TTL high level. The device is now in the instruction ROM read mode and will stay in this mode until reset.

Instruction ROM locations are sequentially read from address 000 H through 1 FFH . Application of CLK for t_{CY} will increment the location address. The three data bytes will be read as specified by the control signals $\overline{R D}, A_{0}, S I$, and INT (table 16). Figure 20 shows read mode of instruction ROM timing.

Figure 18. Programming Mode of Instruction ROM

Figure 19. Programming Mode of Data ROM

Figure 20. Read Mode of Instruction ROM

Figure 21. Read Mode of Data ROM

Read Mode of Data ROM. Figure 21 shows read mode of data ROM timing. This mode is entered by holding the WR signal at a TTL low level with the A_{0} signal at a TTL high level and all other specified inputs ($\overline{\mathrm{RD}}$, $\overline{C S} / P R O G, \overline{D A C K}, S I, I N T)$ at TTL low levels for $t_{\text {CORS }}$ prior to the falling edge of RST. $\overline{W R}$ and A_{0} are then held for $t_{\text {CORS }}$ prior to the falling edge of RST. WR and A_{0} are then held for $\mathrm{t}_{\mathrm{RSW}}$ before being set to a TTL high level
and TTL low level, respectively. The device is now in the data ROM read mode and will stay in this mode until it is reset.

Data ROM locations are sequentially read from address 1 FFH through 000 H . Application of CLK for t_{Cy} will decrement the location address. After the address has been decremented, the low byte of the current location

رPD77C20A, 7720A, 77P20
will be available at the data port subsequent to a tcld delay. Application of $\overline{\mathrm{RD}}$ will present the high byte $\mathrm{t}_{\mathrm{RD} 1}$ from the falling edge of the $\overline{R D}$ pulse. $\overline{R D}$ is then applied for $\mathrm{t}_{\mathrm{RV} 1}$ to complete reading of the current location.

Read Operation, AC Characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}+0.25 \mathrm{~V}$ max; $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}-0.85 \mathrm{~V}$ min

Parameter	Symbol	Min	Max	Unit	Conditions
Data access time from CLK	${ }^{\text {t }}$ CLD		1	$\mu \mathrm{s}$	
Data delay time from SI, IN \uparrow	${ }^{\text {t }}$ COD		1	$\mu \mathrm{s}$	
Data flat time from SI, IN \uparrow	${ }^{\text {t CODF }}$	0		ns	
SI, INT pulse width	tcoco	1		$\mu \mathrm{s}$	
$\overline{\mathrm{RD}}$ recovery time	$t_{\text {miv1 }}$	500		ns	
Data access time from $\overline{R D} \downarrow$	t $\overline{\mathrm{RD}} 1$		150	ns	
Data float time from $\overline{R D} \uparrow$	$t_{\text {DF } 1}$	10		ns	

Programming Operation, AC Characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{Pp}}=21 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
CLK cycle time	t_{CY}	240			ns	
CLK setup time to $\overline{\mathrm{RD}} \downarrow$	${ }^{\text {t CLR }}$	2			$\mu \mathrm{s}$	
CLK hold time from RST \downarrow	$t_{\text {tSSCL }}$	6			$\mu \mathrm{s}$	
CLK hold time from PROG \downarrow	${ }_{\text {t PRCL }}$	200			ns	
Control signal set-up time to RST \downarrow	$\mathrm{t}_{\text {CORS }}$	1			$\mu \mathrm{s}$	
$\overline{\text { WR }}$ hold time from RST \downarrow	$t_{\text {RSW }}$	6			$\mu \mathrm{s}$	
Data set-up time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {DR1 }}$	1			$\mu \mathrm{s}$	
Data hold time from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RD }}$	100			ns	
$\overline{\mathrm{RD}}$ pulse width	${ }^{\text {tran }}$	1			$\mu \mathrm{s}$	
SI, INT set-up time from $\overline{\mathrm{RD}} \uparrow$	${ }^{\text {t }}$ COR	100			ns	
SI, INT hold time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{t}_{\mathrm{RCO}}$	100			ns	
$\overline{\mathrm{RD}}$ set-up time to PROG \uparrow	$\mathrm{t}_{\text {RPR }}$	100			ns	
$\overline{\mathrm{RD}}$ hold time from PROG \downarrow	$t_{\text {PRR }}$	2			$\mu \mathrm{s}$	
$V_{\text {PP }}$ set-up time to PROG \uparrow	tVPR	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {PP }}$ hold time from PROG \downarrow	$\mathrm{t}_{\text {PR }}$	2			$\mu \mathrm{s}$	
RST pulse width	$t_{\text {RST1 }}$	4			t_{CH}	
PROG pulse width	tPRPR	45	50	55	ms	

Operation Mode

The 77P20 may be utilized in an operation mode after the instruction ROM and data ROM have been programmed. Since it was first introduced in 1982, the 77P20 has undergone several mask revisions to improve manufacturability and/or function. And since the purpose of the 77P20 is to run any program that may be programmed in the masked ROM 77C20A/7720A, it is
important to know how to determine the step levels and the differences between them.

Step Level

The markings on the μ PD77P20 package consist of three lines, as follows:

NEC JAPAN	Manufacturer
D77P20D	Part Number
nnnnXnnnn	Date code

In the date code, " X " identifies the step level of the part. Parts marked with step level K, E, or P should not be used for final system test by customers who are planning to submit code for the masked ROM 77C20A/ 7720A.
On all other 77P20 step versions, a slight functional change was made, and the change is incorporated in the 77C20A/7720A. The change allows the serial clock (SCK) to run asynchronously with CLK. Specified versions of 77P20 (i.e. K, E, P) and all Evakit-7720s and Evakit-7720Bs (Evaluation Systems for 77C20A/ 7720A/ 77P20) require that SCK run synchronously with CLK.
Because this functional change results in a slight change in internal serial timing, it is mandatory that code to be submitted for 77C20A/7720A be verified in customer's system using versions of 77P20 other than those listed above (i.e. K, E, P).

Pin 1 Connection

The K mask version requires that the programming voltage V_{PP} be supplied in a different manner than for all later versions, as shown in figure 22. A silicon junction diode of 0.6 V forward voltage $\left(V_{F}\right)$ should be used. R should be 800 to 1800Ω to satisfy the $V_{P P}$ and Ipp requirements.
In all mask versions other than K, pin 1 must be connected directly to V_{CC}.

Figure 22. Vpp Circuitry for K Mask Version

DEVELOPMENT TOOLS

For software development, assembly into object code, and debugging, an absolute assembler and simulator are available. The ASM77 Absolute Assembler and SM77C25 Simulator for analyzing development code and I/O timing characteristics are available for systems
supporting $\mathrm{CP} / \mathrm{M}^{\circledR}$ and $\mathrm{CP} / \mathrm{M}-86{ }^{\oplus}$, $\mathrm{ISIS}-\mathrm{II}$ © , or MS-DOS ${ }^{\circledR}$ operating systems. Additionally, the ASM77 Absolute Assembler is offered in Fortran source code for mini and main frame computer systems.

Once software development is complete, the code can be completely evaluated and debugged in hardware with the Evakit-7720 Evaluation System. The Evakit provides true in-circuit real-time emulation of the SPI for debugging and demonstrating your final system design. Code may be down-loaded to the Evakit from a development system via an RS232 port using the EVA communications program. This program is available in executable form for ISIS-II systems and many CP/M, CP/M-86, and MS-DOS systems. The EVA communications source code is also available for adapting the program to other systems.
The Evakit also serves to program the 77P20, a fullspeed EPROM version of the SPI. The 77P20 may also be programmed using DATA I/O "Unisite" and "2900 Programming Systems." Library routines for common DSP routines such as N -stage IIR (biquadratic) and FIR (transversal filters) are available on disk (free). Other hardware interface test routines as well as a Software Development Took Kit are also available.
Further operational details of the SPI can be found in the μ PD77C20A/7720A/77P20 Signal Processing Interface Design Manual. Operation of the SPI development tools is described in the Absolute Assembler User Manual, the Simulator Operating Manual, and the Evakit- 7720 User's Manual.

SYSTEM CONFIGURATION

Figures $23,24,25$, and 26 show typical system applications for the 77C20A/7720A/77P20 SPI.

Figure 23. Spectrum Analysis System

CP/M and CP/M-86 are registered trademarks of Digital Research Corp. ISIS-II is a registered trademark of Intel Corp. MS-DOS is a registered trademark of Microsoft Corp.

Figure 24. Analog-to-Analog Dlgital Processing System Using a SIngle SPI

Figure 25. Signal Processing System Using Cascaded SPls and Serial Communication

Figure 26. Signal Processing System Using SPls as a Complex Computer Peripheral

Description

The μ PD77C25 and μ PD77P25 Digital Signal Processors (DSP) are significant upgrades to the μ PD7720-the original member of NEC's DSP family. μ PD77C25 is the mask ROM version; μ PD77P25 has an OTP ROM or a UVEPROM. All versions are CMOS and identical in function. Unless contextually excluded, references in this data sheet to 77C25 include 77P25

The 77C25 executes instructions twice as fast as the 77C20A/7720A. Additional instructions allow the 77C25 to execute common digital filter routines more efficiently and at more than twice the speed of a 7720 implementation.
In addition to doubled execution speed, the 77 C 25 has four times the instruction ROM space and twice the data ROM and RAM space of the 7720 . Real savings are now possible, especially where one 77 C 25 can do the work of and replace two or more 7720s.

The external clock frequency (8.3 MHz maximum) remains the same as for 77C20A/7720A while the internal instruction execution speed is doubled. For most applications, the 77C25 is plug-in compatible with the 77C20A/7720A/77P20.

The feature that distinguishes digital signal processing chips from general-purpose microcomputers is the onchip multiplier necessary for high-speed signal processing algorithms. The 77C25 multiplier is very sophisticated, especially for a low-cost DSP chip; both multiplier inputs can be loaded simultaneously from two separate memory areas. These loading operations are only two of nine operations that can occur during one 122 -ns instruction cycle.
For a typical DSP filter application involving many successive multiplications, the 77 C 25 provides a new multiplication product for addition to a sum of products every 122 nanoseconds. Additionally, during the same instruction, memory data pointers are manipulated, and even a return from subroutine may be executed. Table 1 compares 77C25 with 77C20A.

Features

- Low-power CMOS: 25 mA typical current use (77C25)
\square Fast instruction execution: 122 ns with $8.192-\mathrm{MHz}$ clock
\square All instructions execute in one instruction cycle
- Drop-in compatible with $77 \mathrm{C} 20 \mathrm{~A} / 7720 \mathrm{~A} / 77 \mathrm{P} 20$
- 16-bit data word
- Multioperation instructions for fast program execution: any part, any combination, or all of the following operations may constitute one instruction that executes in 122 ns.
- Load one multiplier input
- Load the other multiplier input
- Multiply (automatic)
- Load product to output registers (automatic)
- Add product to accumulator
- Move RAM column data pointer
- Move RAM row pointer
- Move data ROM pointer
- Return from subroutine
- Modified Harvard architecture with three separate memory areas
- Instruction ROM (2048×24 bits)
-Data ROM (1024×16 bits)
-Data RAM (256×16 bits)
- 16×16-bit multiplier; 31-bit product with every instruction
- Dual 16-bit accumulators
- External maskable interrupt
- Four-level stack for subroutines and/or interrupt
- Multiple I/O capabilities
-Serial: 8 or 16 -bit ($244 \mathrm{~ns} /$ bit)
-Parallel: 8 or 16-bit
-DMA
- Compatible with most microprocessors, including:
$-\mu$ PD8080
- μ PD8085
- μ PD8086/88
- μ PD780 (Z80®)
$-\mu$ PD78xx family
- Packages: 28-pin DIP, 32-pin SOP, 44-pin PLCC
- Single +5 -volt power supply

Z80 is a registered trademark of Zilog Corporation.

Applications

\square Portable telecommunications equipment

- Digital filtering
- High-speed data modems
- Fast Fourier transforms (FFT)
- Speech synthesis and analysis
- Dual-tone multifrequency (DTMF) transmitters/ receivers
- Equalizers
- Adaptive control
- Numerical processing

Performance Benchmarks

- Second-order digital filter (biquad): $1.1 \mu \mathrm{~s}$
- Sin/cos of angles: $2.58 \mu \mathrm{~s}$
- μ-law or A-law to linear conversion: $0.24 \mu \mathrm{~s}$
- FFT
-32-point complex: 0.35 ms
-64-point complex: 0.8 ms

Ordering Information

Part Number	Package	ROM	Operating Temperature Range
μ PD77C25C-xxx	28-pin plastic DIP	Mask	-40 to $+85^{\circ} \mathrm{C}$
C25GW-xxx	32-pin SOP		
C25L-xxx	44-pin PLCC		
μ PD77P25C	28-pin plastic DIP	OTP	-10 to $+70^{\circ} \mathrm{C}$
P25D	28-pin ceramic DIP	UVEPROM	
P25GW	32-pin SOP	OTP	
P25L	44-pin PLCC	OTP	

Table 1. Comparison of 77C25 With 77C20A

	77C25/77P25	77C20A/77P20
Technology	CMOS/CMOS	CMOS/NMOS
Instruction cycle	122 ns	244 ns
Instruction ROM	2048×24 bits	512×23 bits
Data ROM	1024×16 bits	510×13 bits
Data RAM	256×16 bits	128×16 bits
Fixed-point multiplier	16 bits $\times 16$ bits $\rightarrow 31$ bits	16 bits $\times 16$ bits $\rightarrow 31$ bits
ALU	16 -bit fixed-point	16 -bit fixed-point
Accumulator	2×16 bits	2×16 bits
Host CPU interface	8 -bit bus	8 -bit bus
Serial interface	One input and one output	One input and one output
	4 MHz	2 MHz
Temporary registers	Two	One

Table 1. Comparison of 77C25 With 77C20A (cont)

	77C25/77P25	77C20A/77P20
Additional instructions	JDPLNO	-
	JDPLNF	-
	Modification of RAM column data pointer M8-MF	-
DMA mode	Fully implemented	Partially implemented
Package	28-pin DIP	28-pin DIP
	44-pin PLCC	44-pin PLCC
	32-pin SOP	-
Power supply	5 V	5 V
Power consumption	$\begin{aligned} & 50 \mathrm{~mA}(\max) @ 8.192 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~mA}(\max) @ 8.192 \\ & \mathrm{MHz} \end{aligned}$
Power saving mode (when idle)	Yes	No

Since the 77C25 executes an instruction in one external clock cycle (versus two cycles of the same 8.192MHz clock for 77C20A), the 77C25 may be substituted for a 77C20A (or 7720A or 77P20) in a circuit without modification of that circuit. Hardware/software that implements data transfers--both serial and parallelbetween the 77C25 and other devices in an existing 7720 design should use the handshake protocol described in the 77C25 User's Manual.

Pin Configurations

28-Pin DIP

Pin Configurations（cont）

32－Pin SOP

NC 1	$32 \mathrm{~V}_{\mathrm{DD}}$	
NC／${ }_{\text {PPP }}{ }^{2}$	$31 \square v_{D D}$	
DACK ${ }^{3}$	30 －${ }_{0}$	
DRQ ${ }^{4}$	29 日 $\overline{C S}$	
$\mathrm{P}_{0} \mathrm{~S}_{5}$	28 日 $\overline{\mathrm{RD}}$	
$\mathrm{P}_{1} \mathrm{C}_{6}$	$27 \square \overline{\mathrm{WR}}$	
$\mathrm{D}_{0} 7$	26 SORQ	
$\mathrm{D}_{1} 8^{8}$	25 so	
$\mathrm{D}_{2}{ }_{9}$	$24 \square$	
$\mathrm{D}_{3} 10$	$23 \square \overline{\text { SOEN }}$	
$\mathrm{D}_{4} 11$	$22 \square \overline{\text { SIEN }}$	
$\mathrm{D}_{5} 12$	21 －sck	
$\mathrm{D}_{6}{ }^{13}$	$20 \square \mathrm{INT}$	
$\mathrm{D}_{7} 14$	19 R RST	
GND 15	18 صCLK	
GND 16	17 习 NC	
		83NR－8079A

44－Pin PLCC

Pin Identification

Symbol	Function
A_{0}	Status／data register select input
CLK	Single－phase master clock input
$\overline{\text { CS }}$	Chip select input
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Three－state I／O data bus
$\overline{\text { DACK }}$	DMA request acknowledge input
DRQ	DMA request output
INT	Interrupt input
$\mathrm{P}_{0}, \mathrm{P}_{1}$	General－purpose output control lines
$\overline{\mathrm{RD}}$	Read control signal input
RST	Reset input
SCK	Serial data I／O clock input
SI	Serial data input
SIEN	Serial input enable input
So	Three－state serial data output
SOEN	Serial output enable input
SORQ	Serial data output request
$\overline{\mathrm{WR}}$	Write control signal input
GND	Ground
V_{DD}	+5 V power supply
$N C / V_{P P}$	77C25：no connection 77P25：＋12．5 V programming 77P25：+5 V for normal operation

PIN FUNCTIONS

A_{0}（Status Data Register Select）

This input selects data register for read／write（low）or status register for read（high）．

CLK

This is the single－phase master clock input．

$\overline{\mathbf{C S}}$（Chip Select）

This input enables data transfer through the data port with $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ ．

$\mathrm{D}_{0}-\mathrm{D}_{7}$（Data Bus）

This three－state I／O data bus transfers data between the data register or status register and the external data bus．

$\overline{\text { DACK }}$（DMA Request Acknowledge）

This input indicates to the 77C25 that the data bus is ready for a DMA transfer（ $\overline{\mathrm{DACK}}=\mathrm{CS}$ and $\mathrm{A}_{0}=0$ ）．

DRQ (DMA Request)

This output signals that the 77 C 25 is requesting a data transfer on the data bus.

INT (Interrupt)

A low-to-high transition on this pin executes a call instruction to location 100 H if interrupts were previously enabled.
$\mathrm{P}_{0}, \mathrm{P}_{1}$
These pins are general-purpose output control lines.

$\overline{\text { RD }}$ (Read Control Signal)

This input latches data from the data or status register to the data port where it is read by an external device.

RST (Reset)

This input initializes the 77C25 internal logic and sets the PC to 0 .

SCK (Serial Data I/O Clock)

When this input is high, a serial data bit is transferred.

SI (Serial Data Input)

This pin inputs 8 - or 16 -bit serial data words from an external device such as an A/D converter.

$\overline{\text { SIEN }}$ (Serial Input Enable)

This input enables the shift clock to the serial input register.

SO (Serial Data Output)

This three-state port outputs 8 - or 16-bit data words to an external device such as a D/A converter.

$\overline{\text { SOEN }}$ (Serial Output Enable)

This input enables the shift clock to the serial output register.

SORQ (Serial Data Output Request)

This output specifies to an external device that the serial data register has been loaded and is ready for output. SORQ is reset when the entire 8- or 16-bit word has been transferred.

$\overline{\text { WR }}$ (Write Control Signal)

This input writes data from the data port into the data register.

GND

This is the connection to ground.
$V_{D D}$ (Power Supply)
This pin is the +5 -volt power supply.

NC/VPP

This pin is not internally connected in the 77C25. In the 77P25, this pin inputs the programming voltage (V_{PP}) when the part is being programmed.
This pin must be connected to V_{DD} for normal 77P25 operation.

Block Diagram

DATA BUSES

The primary bus (unshaded in the block diagram) makes a data path between all of the registers (including I/O), memory, and the processing sections. This bus is referred to as the IDB (internal data bus). The multiplier input registers K and L can be loaded not only from the IDB but alternatively via buses (darkened in the block diagram) directly from RAM to the K register and directly from data ROM to the L register. Output from the multiplier in the M and N registers is
typically added via buses (shaded in the block diagram) to either accumulator A or B as part of a multioperation instruction.

MEMORY

Memory is divided into three types: instruction ROM, data ROM, and data RAM. The 2048×24-bit words of instruction ROM are addressed by an 11-bit program counter that can be modified by an external reset, interrupt, call, jump, or return instruction.

The data ROM is organized in 1024×16-bit words that are addressed through a 10 -bit ROM pointer (RP register). The RP may be modified simultaneously with arithmetic instructions so that the next value is available for the next instruction. The data ROM is ideal for storing the necessary coefficients, conversion tables, and other constants for signal and math processing.

The data RAM is 256×16-bit words and is addressed through an 8 -bit data pointer (DP register). The DP has extensive addressing features that operate simultaneously with arithmetic instructions, eliminating additional time for addressing or address modification.

ARITHMETIC CAPABILITIES

One of the unique features of the 77 C 25 architecture is its arithmetic facilities. With a separate multiplier, ALU, and multiple internal data paths, the 77 C 25 is capable of carrying out a multiply, an add or other arithmetic operation, and a data move between internal registers in a single instruction cycle.

ALU

The ALU is a 16 -bit two's complement unit capable of executing 16 distinct operations on data routed via the P and Q ALU inputs.

Accumulators (ACCA/ACCB)

Associated with the ALU are two 16 -bit accumulators, each with its own set of flags, which are updated at the end of each arithmetic instruction. Table 2 shows the ACC A/B flag registers. In addition to zero result, sign, carry, and overflow flags, the 77C25 incorporates auxiliary overflow and sign flags (SA1, SB1, OVA1, OVB1). These flags enable the detection of an overflow condition and maintain the correct sign after as many as three successive additions or subtractions.

Table 2. ACC A/B Flag Registers

Flag A	SA1	SAO	CA	ZA	OVA1	OVAO
Flag B	SB1	SB0	CB	ZB	OVB1	OVB0

Sign Register (SGN)

When OVA1 is set, the SA1 bit will hold the corrected sign of the overflow. The SGN register will use SA1 to automatically generate saturation constants 7FFFH(+) or $8000 \mathrm{H}(-)$ to permit efficient limiting of a calculated value. The SGN register is not affected by arithmetic operations on accumulator B, but flags SB1, SB0, CB, ZB, OVB1, and OVB0 are affected.

Multiplier

Thirty-one bit results are developed by a 16×16-bit two's complement multiplier in 122 ns . The result is automatically latched to two 16 -bit registers, M and N, at the end of each instruction cycle. The sign bit and 15 higher bits are in M and the 15 lower bits are in N ; the LSB in N is zero. A new product is available for use after every instruction cycle, providing significant advantages in maximizing processing speed for real-time signal processing.

Stack

The 77C25 contains a four-level program stack for efficient program usage and interrupt handling.

Interrupt

The 77C25 supports a single-level interrupt. Upon sensing a high level on the INT terminal, a subroutine call to location 100 H is executed. The El bit of the status register automatically resets to 0 , disabling the interrupt facility until it is reenabled under program control.

INPUT/OUTPUT

The 77C25 has three communication ports as shown in figure 1: two serial and one 8-bit parallel, each with its own control lines for interface handshaking. Parallel port operation is software-configurable to be in either polled mode or DMA mode. A general-purpose, twoline output port rounds out a full complement of interface capability.

Serial I/O

The two shift registers (SI, SO) are softwareconfigurable to single- or double-byte transfers. The shift registers are externally clocked (SCK) to provide a simple interface between the 77C25 and serial peripherals such as A/D and D/A converters, codecs, or other 77C25's. Figure 2 shows serial I/O timing

Figure 1. 77C25 Communication Ports

Parallel I/O

The 8-bit parallel I/O port may be used for transferring data or reading the 77C25 status as shown in table 3. Data transfer is handled through a 16 -bit data register (DR) that is software-configurable for double- or singlebyte data transfers. The port is ideally suited for operating with 8080,8085 , and 8086 processor buses and may be used with other processors and computer systems.

DMA Mode Option

Parallel data transfers may be controlled (optionally) via DMA control lines DRQ and DACK. DMA mode allows high-speed transfers and reduced processor overhead. When in DMA mode, DACK input resets DRQ output when data transfer is completed.

Note: The RQM bit of the status register is affected by read/write operations in DMA mode the same as nonDMA mode. (In 7720 operation, RQM is not affected when in DMA mode.)

Table 3. Parallel R/W Operation

CS	A_{0}	WR	RD	Operation
1	X	X	X	No effect on internal operation; $D_{0}-D_{7}$ are at high impedance levels.
x	X	1	1	
0	0	0	1	Data from $\mathrm{D}_{0}-\mathrm{D}_{7}$ is latched to DR (Note 1)
0	0	1	0	Contents of $D R$ are output to $D_{0}-D_{7}$ (Note 1)
0	1	0	1	Illegal (SR is read only)
0	1	1	0	Eight MSBs of SR are output to $\mathrm{D}_{0}-\mathrm{D}_{7}$
0	X	0	0	Illegal (may not read and write simultaneously)

Notes:

(1) Eight MSBs or LSBs of data register (DR) are used, depending on DR status bit (DRS). The condition of $\overline{D A C K}=0$ is equivalent to $A_{0}=C S=0$.

Status Register

The status register, (figure 3, table 4) is a 16-bit register in which the 8 most significant bits may be read by the system's microprocessor for the latest parallel data I/O status. The RQM and DRS bits can only be affected by parallel data moves. The other bits can be written to (or read) by the 77C25 load immediate (LD) or move (MOV) instruction. The El bit is automatically reset when an interrupt is serviced.

Figure 2. Serial I/O Timing

Figure 3. Status Register

15	14	13	12	11	10	9	8
RQM	USF1	USFO	DRS	DMA	DRC	SOC	SIC
MSB							
7	6	5	4	3	2	1	0
EI	0	0	0	0	0	P1	PO

Table 4. Status Register Flags

Flag	Description
RQM (Request for master)	A read or write from DR to IDB sets $\mathrm{RQM}=1$. An external read (write) resets $\mathrm{RQM}=0$.
USF1 and USFO (User flags 1 and 0)	General-purpose flags that may be read by an external processor for user-defined signaling
DRS (DR status)	For 16-bit DR transfers (DRC $=0$). DRS $=1$ after the first 8 bits have been transferred. DRS $=0$ after all 16 bits have been transferred.
DMA (DMA enable)	$D M A=0$ (Non-DMA transfer mode) $D M A=1$ (DMA transfer mode)
DRC (DR control)	DRC $=0$ (16-bit mode) $D R C=1$ (8 -bit mode)
SOC (SO control)	$\begin{aligned} & S O C=0(16 \text {-bit mode }) \\ & S O C=1 \text { (8-bit mode) } \end{aligned}$
SIC (SI control)	$\begin{aligned} & \text { SIC }=0 \text { (16-bit mode) } \\ & \text { SIC }=1 \text { (8-bit mode) } \end{aligned}$
El (Enable interrupt)	$\begin{aligned} & E I=0 \text { (interrupts disabled) } \\ & E I=1 \text { (interrupts enabled) } \end{aligned}$
P1, PO (Ports 0 and 1)	P0 and P1 directly control the state of output pins P_{0} and P_{1}

Temporary Registers

The 77C25 has two 16-bit temporary registers.

INSTRUCTIONS

The 77C25 has three types of instructions: OP/RT (operation/return), JP (jump), and LD (load immediate). Each type takes the form of a 24-bit word and executes in 122 ns .

Instruction Timing

To control the execution of instructions, the external $8-\mathrm{MHz}$ clock is divided into phases for internal execution. The various elements of the 24 -bit instruction word are executed in a set order. Multiplication automatically begins first. Also, data moves from source to destination before other elements of the instruction.
Data being moved on the internal data bus (IDB) is available for use in ALU operations (if P-select field of
the instruction specifies IDB). However, if the accumulator specified in the ASL field is also specified as the destination of the data move, the ALU operation becomes a NOP, as the data move supersedes the ALU operation.

Pointer modifications occur at the end of the instruction cycle after their values have been used for data moves. The result of multiplication is available at the end of the instruction cycle for possible use in the next instruction. If a return is specified as part of an OP instruction, it is executed last.
An assembly language OP instruction may consist of what looks like one to six lines of assembly code, but all of these lines are assembled together into one 24-bit instruction word. Therefore, the order of the six lines makes no difference in the order of execution described above. However, for understanding 77C25 operation and to eliminate confusion, assembly code should be written in the order described; that is: data move, ALU operations, data pointer modifications, and then return.

OP/RT Instructions

Figure 4 illustrates the OP/RT (operation/return) instruction field specification. This is really one instruction type capable of executing all ALU functions listed in table 6.

The ALU functions operate on the value specified by the P -select field (table 5).
The RT indicates an option in bit D_{22} that causes a return from subroutine or interrupt service.
Besides the arithmetic functions, this instruction can also (1) modify the RAM data pointer DP, (2) modify the data ROM pointer RP, and (3) move data along the on-chip data bus from a source register to a destination register. Tables 7, 8, 9, and 10 show the ASL, DPL, DPH, and RPDCR fields, respectively. The possible source and destination registers are listed in tables 11 and 12.

Table 5. P-Select Field

Mnemonic	\mathbf{D}_{21}	\mathbf{D}_{20}	ALU Input
RAM	0	0	RAM
IDB	0	1	$*$ Internal data bus
M	1	0	M register
N	1	1	N register

* Any value on the on-chip data bus. Value may be selected from any of the source registers listed in table 11.

Figure 4. OP/RT Instruction Field

Table 6. ALU Field

Mnemonic	D_{19}	D_{18}	D_{17}	D_{16}	ALU Function	SA1, SB1	SA0, SBO	CA, CB	ZA, ZB	OVA1, OVB1	OVA0, OVBO
NOP	0	0	0	0	No operation	-	-	-	-	-	-
OR	0	0	0	1	OR	x	\triangle	0	\triangle	0	0
AND	0	0	1	0	AND	x	\triangle	0	\triangle	0	0
XOR	0	0	1	1	Exclusive OR	\times	\triangle	0	\triangle	0	0
SUB	0	1	0	0	Subtract	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
ADD	0	1	0	1	Add	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
SBB	0	1	1	0	Subtract with borrow	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
ADC	0	1	1	1	Add with carry	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
DEC	1	0	0	0	Decrement ACC	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
INC	1	0	0	1	Increment ACC	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
CMP	1	0	1	0	Complement ACC (one's complement)	x	\triangle	0	\triangle	0	0
SHR1	1	0	1	1	1 -bit right shift	x	\triangle	\triangle	\triangle	0	0
SHL1	1	1	0	0	1-bit left shift	\times	\triangle	\triangle	\triangle	0	0
SHL2	1	1	0	1	2-bit left shift	x	\triangle	0	\triangle	0	0
SHL4	1	1	1	0	4-bit left shift	x	\triangle	0	\triangle	0	0
XCHG	1	1	1	1	8 -bit exchange	x	\triangle	0	\triangle	0	0

Symbols:

\triangle May be affected, depending on the results

- Previous status can be held

0 Reset
x Indefinite

Table 7. ASL Field

Mnemonic	D_{15}	ACC Selection
ACCA	0	ACCA
ACCB	1	ACCB

Table 8. DPL Field

Mnemonic	\mathbf{D}_{14}	$\mathbf{D}_{\mathbf{1 3}}$	Low DP Modify (DP $\mathbf{3}_{\mathbf{3}}$-DP $\mathbf{0}_{\mathbf{0}}$)
DPNOP	0	0	No operation
DPINC	0	1	Increment DPL
DPDEC	1	0	Decrement DPL
DPCLR	1	1	Clear DPL

Table 9. DPH Field

Mnemonic	D_{12}	D_{11}	D_{10}	D_{9}	High DP Modify
MO	0	0	0	0	Exclusive OR of DPH ($\mathrm{DP}_{7}-\mathrm{DP}_{4}$) with the mask defined by the 4 bits $\left(D_{12}-D_{9}\right)$ of the DPH field
M1	0	0	0	1	
M2	0	0	1	0	
M3	0	0	1	1	
M4	0	1	0	0	
M5	0	1	0	1	
M6	0	1	1	0	
M7	0	1	1	1	
M8	1	0	0	0	
M9	1	0	0	1	
MA	1	0	1	0	
MB	1	0	1	1	
MC	1	1	0	0	
MD	1	1	0	1	
ME	1	1	1	0	
MF	1	1	1	1	

Table 10. RPDCR Field

Mnemonic	$\mathbf{D}_{\mathbf{8}}$	RP operation
RPNOP	0	No operation
RPDEC	1	Decrement RP

Table 11. SRC Field

Mnemonic	$\mathrm{D}_{\mathbf{7}}$	$\mathrm{D}_{\mathbf{6}}$	$\mathrm{D}_{\mathbf{5}}$	$\mathrm{D}_{\mathbf{4}}$	Source Register
NON/TRB	0	0	0	0	TRB (Note 1)
A	0	0	0	1	ACCA (Accumulator A)
B	0	0	1	0	ACCB (Accumulator B)
TR	0	0	1	1	TR temporary register
DP	0	1	0	0	DP data pointer
RP	0	1	0	1	RP ROM pointer
RO	0	1	1	0	RO ROM output data
SGN	0	1	1	1	SGN sign register
DR	1	0	0	0	DR data register
DRNF	1	0	0	1	DR no flag (Note 2)
SR	1	0	1	0	SR status register

Table 11. SRC Field (cont)

Mnemonic	$\mathbf{D}_{\mathbf{7}}$	$\mathbf{D}_{\mathbf{6}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{4}}$	Source Register
SIM	1	0	1	1	SI serial in MSB (Note 3)
SIL	1	1	0	0	SI serial in LSB (Note 4)
K	1	1	0	1	K register
L	1	1	1	0	L register
MEM	1	1	1	1	RAM

Notes:
(1) Contents of TRB register are also output if NON is specified.
(2) DR to IDB, RQM not set. In DMA, DRQ not set.
(3) First bit in goes to MSB, last bit to LSB.
(4) First bit goes to LSB, last bit to MSB (bit reversed).

Jump Instructions

Figure 5 shows the JP instruction field specification. Bits D_{21}, D_{20}, and D_{19} of the BRCH field identify the three types of instructions: unconditional jump (100), subroutine call (101), and conditional jump (010). Table 13 lists the instruction mnemonics for the complete BRCH field, bits $D_{21}-D_{13}$.

All the instructions in table 13-if unconditional or if the specified condition is true-take their next program execution address from the next address field (NA) in figure 5. Otherwise, $P C=P C+1$.

Load Data (LD) Instructions

Figure 6 shows the LD instruction field specification.
The load data instruction will take the 16 -bit value contained in the immediate data field (ID) and place it in the register specified by the destination field (DST). This is the same as the DST field (table 12) in the OP/RT instruction.

Table 12. DST Field

Mnemonic	$\mathbf{D}_{\mathbf{3}}$	$\mathrm{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathrm{D}_{\mathbf{0}}$	Destination Register
@NON	0	0	0	0	No register
@A	0	0	0	1	ACCA (Accumulator A)
@B	0	0	1	0	ACCB (Accumulator B)
@TR	0	0	1	1	TR temporary register
@DP	0	1	0	0	DP data pointer
@ RP	0	1	0	1	RP ROM pointer
@DR	0	1	1	0	DR data register
@SR	0	1	1	1	SR status register
@SOL	1	0	0	0	SO serial out LSB (Note 1)

Table 12. DST Field (cont)

Mnemonic	D_{3}	D_{2}	D_{1}	D_{0}	Destination Register
@SOM	1	0	0	1	SO serial out MSB (Note 2)
@K	1	0	1	0	K (Mult)
@KLR	1	0	1	1	IDB \rightarrow K, ROM \rightarrow L (Note 3)
@KLM	1	1	0	0	Hi RAM \rightarrow K, IDB \rightarrow L (Note 4)
@L	1	1	0	1	L register
@TRB	1	1	1	0	TRB register

Mnemonic	D_{3}	D_{2}	D_{1}	D_{0}	Destination Register
$@ M E M$	1	1	1	1	RAM

Notes:

(1) LSB is first bit out.
(2) MSB is first bit out.
(3) Internal data bus to K , and ROM to L register.
(4) Contents of RAM address specified by $\mathrm{DP}_{6}=1$ is placed in K register, IDB is placed in L (that is: $1, D P_{5}, D P_{4}, D P_{3}-D P_{0}$).

Figure 5. JP Instruction Field Specification

Figure 6. LD Instruction Field Specification

Table 13. BRCH Field
$\left.\begin{array}{llllllll}\hline \text { Mnemonic } & \mathbf{D}_{21}-\mathbf{D}_{19} & \mathbf{D}_{18}-\mathbf{D}_{16} & \mathbf{D}_{15}-\mathbf{D}_{13} & \text { Conditions } \\ \hline \text { JMP } & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\left.\begin{array}{lllllllll}\hline \text { Mnemonic } & \mathbf{D}_{21} \mathbf{- D}_{19} & \mathbf{D}_{18} \text { - }_{16} & \mathbf{D}_{15}-\mathbf{D}_{13} & \text { Conditions } \\ \hline \text { JNOVB1 } & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)$

Table 13. BRCH Field (cont)

Mnemonic	$D_{21}-D_{19}$	$D_{18}-D_{16}$	$D_{15}-D_{13}$	Conditions		
JNSOAK	0	1	0	1	1	1
JSOAK	0	1	0	1	1	1

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Supply voltage, V_{DD}	-0.5 to +7.0 V
V_{PP} (77P25)	-0.5 to +13.5 V
Input voltage, V_{1}	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
$\mathrm{V}_{\text {RST }}$ (77P25)	-0.5 to +13 V
Output voltage, V_{O}	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $150^{\circ} \mathrm{C}$
Operating temperature, $\mathrm{T}_{\text {OPT }}$	
77C25/77C25-10	-40 to $+80^{\circ} \mathrm{C}$
77P25 (Normal operation)	-10 to $+70^{\circ} \mathrm{C}$
77P25 (PROM mode)	+20 to $+30^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Supply voltage	V_{DD}	4.5	5.0	5.5	V	Normal operation
		5.7	6.0	6.25	V	Programming*
	$\mathrm{V}_{\mathrm{PP}}{ }^{*}$	4.5	5.0	5.5	V	Reading and normal operation
		12	12.5	12.8	V	Programming
Input voltage, low	$\mathrm{V}_{\text {IL }}$	-0.3		0.8	V	
Input voltage, high	V_{IH}	2.2		$V_{D D}+0.3$	V	
CLK input voltage, low	$V_{\text {ILC }}$	-0.3		0.5	V	
CLK input voltage, high	$\mathrm{V}_{\text {IHC }}$	3.5		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input voltage for setting PROM mode	$V_{\text {RST }}{ }^{*}$	11.5	12.0	12.5	V	Reading and writing
Operating temperature	TOPT	-40	+25	+85	${ }^{\circ} \mathrm{C}$	77C25/77C25-10
		-10	+25	+70	${ }^{\circ} \mathrm{C}$	Normal operation*
		$+20$	+25	+30	${ }^{\circ} \mathrm{C}$	PROM mode*

[^2]DC Characteristics, Normal
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}(77 \mathrm{C} 25 / 77 \mathrm{C} 25-10),-10$ to $70^{\circ} \mathrm{C}(77 \mathrm{P} 25) ; \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Output voltage, low	V_{OL}			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{l}_{\mathrm{OH}}=400 \mu \mathrm{~A}$
Input leakage current, low	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$
Input leakage current, high	ILIH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DD}}$
Output leakage current, low	LOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.47 \mathrm{~V}$
Output leakage current, high	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
Supply current (77C25)	IDD		25	50	mA	$\mathrm{f}_{\text {CLK }}=8.192 \mathrm{MHz}$
			15	25	mA	$\mathrm{f}_{\text {CLK }}=8.192 \mathrm{MHz}$; RST $=1$
Supply current (77P25)	IDD		35	60	mA	$\mathrm{f}_{\mathrm{CLK}}=8.192 \mathrm{MHz}$
			20	35	mA	$\mathrm{f}_{\text {CLK }}=8.192 \mathrm{MHz}$; RST $=1$
	IPP			1	mA	

DC Characteristics, PROM Mode
$T_{A}=+20$ to $+30^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5.75$ to 6.25 V

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input leakage current	IRST			30	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{RST}}=12.0 \\ & \pm 0.5 \mathrm{~V} \end{aligned}$
Supply current	Icc			60	mA	
	IPP			30	mA	

Capacitance
$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Typ	Max	Unit	Conditions
CLK, SCK capacitance	C_{ϕ}	20	pF	$\mathrm{fc}=1 \mathrm{MHz}$	
Input capacitance	C_{IN}	20	pF		
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$	20	pF		

AC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Clock						
CLK cycle time 77C25/77P25 77C25-10	$\mathrm{t}_{\mathrm{CYC}}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 122 \\ & 100 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Measuring at 2 V
```CLK pulse width 77C25 77P25 77C25-10```	${ }^{\mathrm{t}} \mathrm{CC}$	$\begin{aligned} & 55 \\ & 60 \\ & 45 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
CLK rise time	${ }^{\text {t }}$ CR			10	ns	Measuring at 1 and 3 V
CLK fall time	${ }^{\text {t }}$ CF			10	ns	
SCK cycle time 77C25/77P25 77C25-10	${ }^{\text {t Crys }}$	$\begin{aligned} & 240 \\ & 200 \end{aligned}$	$\begin{aligned} & 244 \\ & 200 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
SCK high pulse with 77C25/77P25 77C25-10	${ }_{\text {tSSH }}$	$\begin{aligned} & 100 \\ & 80 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
SCK low pulse width 77C25/77P25 77C25-10	$\mathrm{t}_{\text {SSL }}$	$\begin{aligned} & 100 \\ & 80 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
SCK rise time	$\mathrm{t}_{\mathrm{SR}}$			20	ns	
SCK fall time	${ }^{\text {t }}$ SF			20	ns	

## Host Interface Timing

AO, $\overline{C S}, \overline{\mathrm{DACK}}$ setup time for $\overline{\mathrm{RD}}$	$t_{\text {SAR }}$	0	ns	
$\overline{A O}, \overline{C S}, \overline{D A C K}$ hold time for $\overline{R D}$	$t_{\text {HRA }}$	0	ns	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {WRD }}$			
77C25/77P25		120	ns	
77C25-10		100	ns	
AO, $\overline{C S}, \overline{D A C K}$ setup time for $\overline{W R}$	$t_{\text {SAW }}$	0	ns	
A0, CS, $\overline{\text { DACK }}$ hold time for $\overline{W R}$	$t_{\text {HWA }}$	0	ns	
WR pulse width	twWR			
77C25/77P25		120	ns	
77C25-10		100	ns	
Data setup time for $\overline{\mathrm{WR}}$	tspw			
77C25/77P25		100	ns	-
77C25-10		80	ns	
Data hold time for $\overline{W R}$	$t_{\text {HWD }}$	0	ns	
$\overline{\overline{\mathrm{RD}}, \overline{\mathrm{WR}} \text { recovery time }}$	$\mathrm{t}_{\text {RV }}$			
77C25/77P25		100	ns	
77C25-10		80	ns	
DACK hold time for DRQ	$\mathrm{t}_{\mathrm{HRQA}}$	$0.5 \mathrm{t}_{\mathrm{CyC}}$	ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ setup time for CLK	$t_{\text {SRWC }}$	50	ns	Note 1
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ hold time for CLK	$t_{\text {HCRW }}$	50	ns	Note 1

## Host Interface Switching

$\overline{R D} \downarrow \rightarrow$ data delay time	tDRD		
$77 \mathrm{C} 25 / 77 \mathrm{P} 25$		100	ns
$77 \mathrm{C} 25-10$		80	ns

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data float time	$t_{\text {F }} \mathrm{RD}$					
77C25/77P25		10		65	ns	
77C25-10		10		50	ns	
CLK $\uparrow \rightarrow$ DRQ delay time	${ }^{t} \mathrm{DCRQ}$					
77C25/77P25				80	ns	
77C25-10				65	ns	
$\overline{\text { DACK }} \downarrow \rightarrow$ DRQ delay time	$t_{\text {DARQ }}$					
77C25/77P25				110	ns	
77C25-10				90	ns	
CLK $\uparrow \rightarrow \mathrm{P}_{0}, \mathrm{P}_{1}$ delay time	${ }^{\text {t }}$ DCP					
77C25/77P25				100	ns	
77C25-10				80	ns	
Interrupt Reset Timing						
RST setup time for CLK	$t_{\text {SRSC }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
RST hold time for CLK	$t_{\text {HCRS }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
RST pulse width	$\mathrm{t}_{\text {RST }}$	$2 \mathrm{t}_{\mathrm{CYC}}$			ns	System reset
		$3{ }^{\text {c }} \mathrm{CYC}$			ns	Enter power saving state
INT setup time for CLK	$\mathrm{t}_{\text {SINC }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
INT hold time for CLK	${ }^{\text {thCIN }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
INT pulse width	$\mathrm{t}_{\text {INT }}$	$3{ }^{\text {c }} \mathrm{CYC}$			ns	
INT recovery time	$t_{\text {RINT }}$	$2 \mathrm{t}_{\mathrm{cyc}}$			ns	
Interrupt Reset Switching						
CLK $\uparrow \rightarrow$ reset state delay time 77C25/77P25	${ }^{\text {t }}$ CCRS			100	ns	
77C25-10				80	ns	
Serial Interface Timing						
$\overline{\text { SIEN, SI setup time for SCK }}$	$\mathrm{t}_{\text {ss }}$ IS					
77C25/77P25		50			ns	
77C25-10		40			ns	
$\overline{\text { SIEN, SI hold time for SCK }}$	${ }_{\text {thssi }}$					
77C25/77P25		30			ns	
77C25-10		20			ns	
$\overline{\text { SOEN setup time for SCK }}$	tsses					
77C25/77P25		50			ns	
77C25-10		40			ns	
SOEN hold time for SCK	$t_{\text {HSSE }}$					
77C25/77P25		30			ns	
77C25-10		25			ns	
CLK setup time for SCK	tscs					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
CLK hold time for SCK	$\mathrm{t}_{\mathrm{HSC}}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
SCK setup time for CLK	$\mathrm{t}_{\text {SSC }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	
SCK hold time for CLK	$t_{\text {HCS }}$					Note 1
77C25/77P25		50			ns	
77C25-10		40			ns	

## Serial Interface Switching

SCK $\uparrow \rightarrow$ SORQ delay time	$\mathrm{t}_{\text {DSSQ }}$			
77C25/77P25		30	150	ns
77C25-10		20	120	ns
SCK $\downarrow \rightarrow$ SO delay time	$\mathrm{t}_{\text {DSLSO }}$			
77C25/77P25			60	ns
77C25-10			50	ns
SCK $\downarrow \rightarrow$ SO hold time	$t_{\text {HSLSO }}$			
77C25/77P25		0		ns
77C25-10		0		ns
SCK $\downarrow \rightarrow$ SO float time	$\mathrm{t}_{\text {FSS }}$			
77C25/77P25			60	ns
77C25-10			50	ns

## Notes:

(1) Setup and hold requirement for asynchronous signal only guarantees recognition at next CLK.

PROM Program Timing
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IHR}}=12.0 \pm 0.5 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Data Read						
CE setup time for RST	t $_{\text {SRSCE }}$	2		$\mu \mathrm{~s}$	$V_{D D}=5.0 \pm 0.5 \mathrm{~V}$	
OE setup time for RST	t $_{\text {SRSOE }}$	2		$\mu \mathrm{~s}$	$V_{P P}=V_{D D}$	

Data Read Switching

Address to output delay	$t_{\text {DAD }}$		200	ns	$\begin{aligned} & V_{D D}=5.0 \pm 0.5 \mathrm{~V} \\ & V_{P P}=V_{D D} \end{aligned}$
CE to output delay	$t_{\text {DCD }}$		200	ns	
OE to output delay	$t_{\text {DODR }}$		75	ns	
OE high to output float	$\mathrm{t}_{\mathrm{FCD}}$	0	60	ns	
Address to output hold	$t_{\text {HAD }}$	0		ns	
Data Write					
CE setup time for RST	$t_{\text {SRSCE }}$	2		$\mu \mathrm{s}$	$\begin{aligned} & V_{D D}=6.0 \pm 0.25 \mathrm{~V} \\ & V_{P P}=12.5 \pm 0.3 \mathrm{~V} \end{aligned}$
CE setup time for address	${ }^{\text {t }}$ SAC	2		$\mu \mathrm{s}$	
CE setup time for data	$t_{\text {SDC }}$	2		$\mu \mathrm{s}$	
CE setup time for $V_{P P}$	$t_{\text {SVPC }}$	2		$\mu \mathrm{s}$	
CE setup time for $V_{\text {DD }}$	tsvDC	2		$\mu \mathrm{s}$	
OE setup time for data	$\mathrm{t}_{\text {SDO }}$	2		$\mu \mathrm{s}$	

PROM Program Timing (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Address hold time	$t_{\text {HCA }}$	2			$\mu \mathrm{s}$	
Data hold time	$t_{\text {HCD }}$	2			$\mu \mathrm{s}$	
Initial program pulse width	$t_{\text {WCo }}$	0.95	1.0	1.05	ms	
Overprogram pulse width	${ }^{\text {WCO1 }}{ }^{*}$	2.85		78.75	ms	
Data Write Switching						
OE to output float time	$t_{\text {FOD }}$	0		130	ns	$V_{\text {DD }}=6.0 \pm 0.25 \mathrm{~V}$
OE to output delay	${ }^{\text {t DODW }}$			150	ns	$V_{P P}=12.5 \pm 0.3 \mathrm{~V}$

${ }^{{ }_{W}}{ }_{W C 1}=3 n^{W}{ }_{W C 0}$ assuming initial program pulse is applied $n$ times.

## Timing Waveforms

## Input/Output Voltage Reference Levels



## Clock Timing



Host Read Operation


Host Write Operation


## Normal Operation, 8-Bit Mode

Internal Timing


## External Timing



Normal Operation, 16-Bit Mode


## Port Operation



DMA Operation, 8-Bit Mode


DMA Operation, 16-Bit Mode
Internal Timing


## RQM flag



## External Timing



Notes: [1] Setting RQM flag to "1" [MOV @DR, XXX or MOV XXX, DR] [2] The RQM flag is recognized as " 0 " from this instruction

Reset Operation


Interrupt Operation
Internal Timing
$\left.\begin{array}{c}\text { Instruction } \\ \text { execute } \\ \text { timing }\end{array}\right]$

El bit


## External Timing



Notes: [1] Setting EI bit to "1" [LDI @SR, Imm]
[2] El bit can be set to "1" from this instruction

## PROM Read Timing



PROM Program Timing


Figure 7. Serial Input Operation


## SERIAL TIMING

## Serial Output Case 1: $\overline{\text { SOEN }}$ Asserted in Response to SORQ

Figure 8 shows timing for serial output when $\overline{\text { SOEN }}$ is asserted in response to SORQ. If $\overline{\text { SOEN }}$ is held inactive until after SORQ is asserted, and then $\overline{\text { SOEN }}$ is asserted at least tsSES before the falling edge of SCK, SO will become valid $t_{\text {DSLSO }}$ after the falling edge of SCK for use by an external device at the subsequent rising edge of SCK.

Note that, although figure 8 shows $\overline{\text { SOEN }}$ being asserted during a different SCK pulse than the one in which SORQ is asserted, it is permissible for these to occur during the same pulse of SCK as long as SOEN is still asserted $\mathrm{t}_{\text {SSES }}$ before the falling edge of SCK.

Figure 8. Serial Output Case 1


## Serial Output Case 2: $\overline{\text { SOEN }}$ Active Before SORQ Is High

Figure 9 shows output timing when $\overline{\text { SOEN }}$ is active before SORQ is high. If $\overline{\text { SOEN }}$ is held active before SORQ is high, data will be shifted out whenever it becomes available in the serial output register (assuming previous data is already shifted out). In this case, SORQ will rise $t_{D S S Q}$ after a rising edge of SCK. The first SO bit occurs $t_{\text {DSLSO }}$ after the next falling edge of SCK for use by an external device at the subsequent rising edge of SCK.
Subsequent bits will be shifted out $t_{\text {DSLso }}$ after subsequent falling edges of SCK for use at subsequent rising edges of SCK. The last bit to be shifted out will also follow this pattern, and will be held valid $\mathrm{t}_{\mathrm{FSSO}}$ after the
corresponding falling edge of SCK at which it is to be used. SORQ will be held $t_{D S S Q}$ after this same rising edge of SCK, and then removed.

## Serial Output Case 3: SOEN Released During a Transfer

If $\overline{\text { SOEN }}$ is released while SCK is in the middle of a transfer, as shown in figure 10, at least $t_{\text {HSSE }}$ after the falling edge of SCK, then the next bit will be shifted out $t_{\text {DSLSO }}$ after the falling edge of SCK for use at the subsequent rising edge of SCK. SO will go inactive $t_{\text {FSSO }}$ after the falling edge of SCK.

Note: For all its uses, $\overline{\text { SOEN }}$ must not change state within $\mathrm{t}_{\text {SSES }}$ before or $\mathrm{t}_{\text {HSSE }}$ after the falling edge of SCK; otherwise the results will be indeterminate.

Figure 9. Serial Output Case 2


Figure 10. Serial Output Case 3


## Serial Input

Serial input timing (figure 11) is much simpler than serial output timing (figure 12). Data bits are shifted in on the rising edge of SCK if $\overline{\text { SIEN }}$ is asserted. Both $\overline{\text { SIEN }}$
and SI must be stable at least $\mathrm{t}_{\mathrm{SSIS}}$ before and $\mathrm{t}_{\text {HSSI }}$ after the rising edge of SCK; otherwise the results will be indeterminate.

Figure 11. Serial Input Timing Example


## External Timing



Figure 12. Serial Output Timing Example


## $\mu$ PD77P25 PROM

The $\mu$ PD77P25 has a PROM-one-time programmable (OTP) or ultraviolet erasable (UVE)-consisting of a 2 K x 24 -bit instruction ROM and a $1 \mathrm{~K} \times 16$-bit data ROM.

Data is written to or read from the PROM in 8-bit bytes. Because instruction words are 24 bits and data words are 16 bits, special byte addresses are assigned to the instruction ROM ( $0 \mathrm{H}-1 \mathrm{FFFH}$ ) and data ROM ( $2000 \mathrm{H}-$ 27 FFH ) as shown in figures 13 and 14.

Each internal word address of the instruction ROM is equivalent to three byte addresses used by external devices plus one dummy byte address. For example, in figure 13, internal word address OH corresponds to byte addresses $0 \mathrm{H}, 1 \mathrm{H}$, and 2 H plus dummy byte address 3 H (not shown).

Figure 13. Instruction ROM


Figure 14. Data ROM


## UVEPROM Erasure

Data in a UVEPROM can be erased by exposure to light with a wavelength shorter than 400 nm . Usually, ultraviolet light with a $254-\mathrm{nm}$ wavelength is used. The erasure process, which sets all data bits to 1's, must take place before data is programmed to a UVEPROM.

The total light quantity required to completely erase the written data is $15 \mathrm{Ws} / \mathrm{cm}^{2}$, equivalent to exposure to a UV lamp with a rating of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for about 20 minutes. A longer time may be necessary because of such factors as the age of the UV lamp and stains on the package window. The window must be positioned within 1 inch of the UV lamp.
If the UVEPROM is exposed to direct sunlight or fluorescent light for a long time, the data might be destroyed. To prevent this, mask the window with a cover or film after the erasure process.

## Data Programming Procedure

Following is the procedure for programming the 77 P 25 . Table 15 shows the reassigned pin functions when writing/reading the PROM.

Since the area from byte address 2800 H to 3 FFFH is for internal testing, the area for the instruction ROM and data ROM must be set from byte address 0 H to 27 FFH . Set the data to dummy byte addresses in the instruction ROM area to FFH in the normal programming.
(1) Apply +12.5 V to RST (pin 16), +6 V to $\mathrm{V}_{\mathrm{DD}}$, and +12.5 V to $\mathrm{V}_{\mathrm{PP}}$. This causes the PROM to enter program mode.
(2) Specify the desired ROM byte address from address input pins $A_{0}$ to $A_{13}$.
(3) Program the data on the data bus ( $D_{0}-D_{7}$ ) by applying 0 to $\overline{\mathrm{CE}}$ while $\overline{\mathrm{OE}}$ is 1 (program mode).
(4) Output the programmed data to the data bus ( $\mathrm{D}_{0^{-}}$ $D_{7}$ ) by applying 0 to $\overline{\mathrm{OE}}$ while $\overline{\mathrm{CE}}$ is 1 (program verify mode).
(5) Repeat steps 2 through 4, 25 times maximum until the data is properly written to the specified address.
(6) After verifying that the data has been properly programmed, apply additional pulses by setting $\overline{\mathrm{OE}}$ to 1 (clear $\overline{\mathrm{CE}}$ to 0 ). The pulse width is 3 X ms if the number of repetitions in steps 3 and 4 is $X$.

The above procedure completes writing one byte of data. If the data will not be properly programmed even after steps 2 to 4 have been repeated more than 25 times, the 77P25 is defective.

Table 14. Pin Functions for PROM Programming/
Reading

## Data Reading Procedure

(1) Apply +12.5 V to $\mathrm{RST},+5.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$, and +5.0 V to $V_{\text {Pp. }}$. This causes the PROM to enter read mode.
(2) Specify the desired ROM byte address from the address input pins $A_{0}$ to $A_{13}$.
(3) Data will be output to the data bus ( $\mathrm{D}_{0}-\mathrm{D}_{7}$ ) by clearing $\overline{O E}$ and $\overline{C E}$ to 0 .

## Instruction ROM Code Protection

A word of the instruction ROM can be protected if data FEH is programmed to a dummy byte address. For example, byte addresses $0 \mathrm{H}, 1 \mathrm{H}$, and 2 H (word address OH ) are protected if FEH is programmed to dummy byte address 3 H . Following is the procedure for protecting the instruction ROM.
(1) Set data FFH to the dummy addresses; then perform the data program procedure.
(2) Verify the programmed data by the data read procedure.
(3) Set data FEH to the dummy addresses; again perform the data program procedure.

## DEVELOPMENT TOOLS

For software development and assembly into object code, a relocatable assembler (RA77C25) is available. This software is available to run on MS-DOS ${ }^{\oplus}, \mathrm{CP}^{( }{ }^{\oplus}$, VAX $\oplus$ NMS®, and VAX/UNIX® systems.
For debugging, a hardware emulator (EVAKIT-77C25) provides in-circuit, real-time emulation of the 77 C 25. Features of the EVAKIT-77C25 include break/step emulation, symbolic debugging, and on-line assembly/ disassembly of code.
The EVAKIT-77C25 connects via a probe to the target system for test and demonstration of the final system design. It also connects to the host development system via an RS-232 port. Using Kermit or NEC's EVA communications program, code can be downloaded or uploaded between development system and EVAKIT.

By connecting to a PROM programmer, the EVAKIT is also used to prepare 77P25 PROMs intended for prototyping and small volume applications. A program adaptor, PA-77P25, is provided for use with the data I/O programmer.
Code submittal for the mask ROM $\mu$ PD77C25 is accomplished by preparing a 27C256A or $\mu$ PD77P25 PROM using the same programming device.

## SYSTEM CONFIGURATION

Figures 15, 16, 17, and 18 show typical system applications for the 77C25.

Figure 15. Spectrum Analysis System


Figure 16. Analog-to-Analog Digital Processing System Using a Single 77C25


[^3]Figure 17. Signal Processing System Using Cascaded 77C25's and Serial Communication


Figure 18. Signal Processing System Using 77C25's As a Complex Computer Peripheral


## Description

The $\mu$ PD77220 is a highly accurate digital signal processor (DSP). The $\mu$ PD77220 has a mask ROM; the $\mu$ PD77P220 has a one-time programmable (OTP) or an ultraviolet erasable (UVE) PROM. There are also two speed versions, 8 and 10 MHz . The part numbers of $10-\mathrm{MHz}$ versions have a -10 suffix. The 8 - and $10-\mathrm{MHz}$ units process 24-bit fixed-point data at 122 and $100 \mathrm{~ns} /$ instruction.

Note: Unless excluded by context, $\mu$ PD77220 means both the $\mu$ PD77220 and the $\mu$ PD77P220.
The internal circuit consists of a multiplier ( $24 \times 24$ bits), instruction ROM ( 2 K words $\times 32$ bits), data ROM ( 1 K words $\times 24$ bits), and two independent data RAMs ( 256 words $\times 24$ bits each).

The $\mu$ PD77220 has two operation modes: master and slave. These modes can be set using external pins. In master mode, an external 8 K -word memory can be added, and 4 K words in the memory can be used as an instruction area. In slave mode, the $\mu$ PD77220 operates as an I/O processor for the host CPU. An external 8K-byte data memory can be added.

## Features

- Processes 24-bit fixed-point data
-24-bit fixed-point multiplication circuit 24 bits $\times 24$ bits $\rightarrow 47$ bits
-47-bit ALU with eight working registers
-47-bit barrel shifter
- High-speed operation and efficient data transfer
- Instruction cycle 122 or 100 ns
-Three-stage pipeline processing
-Dedicated data buses in the internal RAM, multiplication circuit, and ALU
- Architecture suitable for digital signal processing
- Two built-in independent data RAMs and data RAM pointers
-Each data RAM pointer consists of a base pointer and index register: the base pointer performs a ring count operation in any range
- Data ROM pointer steps forward in two-step increments ( 2 N ) in addition to normal autoincrement/autodecrement addressing
- Flexible external interfaces
- Two modes of operation: master or slave
- In master mode, 4K words by 32-bit instruction area
-High-speed access to external memory Master mode: 4 K words by 24 bits Slave mode: 4 K words by 8 bits
- CMOS process
- Single +5 -volt single power supply
- 68-pin PGA array and PLCC packages

Ordering Information

Part Number	Package	Max Speed	ROM
$\mu$ PD77220R	68-pin PGA	8 MHz	Mask
L	68-pin PLCC	8 MHz	
R-10	68-pin PGA	10 MHz	
L-10	68-pin PLCC	10 MHz	
$\mu$ PD77P220R	68-pin PGA	8 MHz	UVE
L	68-pin PLCC	8 MHz	OTP
R-10	68-pin PGA	10 MHz	UVE
L-10	68-pin PLCC	10 MHz	OTP

## Pin Configurations

## 68-Pin PLCC



Notes:
The symbol in ( ) denotes the pin symbol applicable to the pin in the Slave mode.
The VPP pin is only used for the $\mu$ PD77P220.
$\mu$ PD77220, 77P220

## Pin Configurations (cont)

68-Pin Ceramic PGA


## $\mu$ PD77220 and $\mu$ PD77230A Comparison

The $\mu$ PD77220 is a 24-bit fixed-point signal processor; the $\mu$ PD77230A is a 32-bit floating-point signal processor. The two processors are generally compatible on an object level. However, the following $\mu$ PD77230A instructions are not available on the $\mu$ PD77220.
ADDF, SUBF, NORM, CVT (OP field)

- TRNORM, RDNORM, FLTFIX, FIXMA (CNT field)
- SPIE, IESP (CNT field)
- WRBEL8, WRBL8E (CNT field)
- JEV0, JEV1 (C field)
- TRE (DST field)

Also, the CMP instruction on the $\mu$ PD77220 treats data as 47-bit fixed-point data at the time of comparison (as opposed to 55-bit floating-point data on the $\mu$ PD77230A).

Internal memory differences between the two processors are shown in table 1. Table 2 describes the differences in the data lengths between the $\mu$ PD77220 and the $\mu$ PD77230A.

Table 1. Internal Memory Differences Between $\mu$ PD77220 and $\mu$ PD77230A

Memory Type	$\mu$ PD77220	$\mu$ PD77230A
Instruction ROM	$2 K$ words $\times 32$ bits	2 K words $\times 32$ bits
Data ROM	1 K words $\times 24$ bits	1 K words $\times 32$ bits
RAM 0	$256 \times 24$ bits	$512 \times 32$ bits
RAM 1	$256 \times 24$ bits	$512 \times 32$ bits

Table 2. Data Length Differences Between $\mu$ PD77220 and $\mu$ PD77230A

Symbol	$\mu$ PD77220	$\mu$ PD77230A
MAIN BUS	24 bits	32 bits
$P, ~ Q$	47 bits	55 bits
PSW0, PSW1	4 bits (OVFE not present)	5 bits
RAMO, RAM1	24 bits	32 bits
IXO, IX1	9 bits	$\leftarrow$
RP	10 bits	$\leftarrow$
M	47 bits	55 bits
DRS	32 bits	$\leftarrow$
SI, SO	32 bits	$\leftarrow$
LC	10 bits	$\leftarrow$
TR	24 bits	32 bits
PU BUS	47 bits	55 bits
WRO - WR7	47 bits	55 bits
SVR	7 bits	$\leftarrow$
BPO, BP1	9 bits	$\leftarrow$
ROM	24 bits	32 bits
K, L	24 bits	32 bits
DR	32 bits	$\leftarrow$
AR	13 bits	$\leftarrow$
STK	13 bits	$\leftarrow$
SR	20 bits	$\leftarrow$

## Master Mode Block Diagram



## Slave Mode Block Diagram



## Master Mode Operation



Slave Mode Operation


## Pin Functions

Symbol	PGA   Pin Location	PLCC   Pin Number	1/0	Function
Power Supply				
$\mathrm{V}_{\mathrm{DD}}$	B6	36	-	+5 V power supply   Be sure to connect these three pins
	K4	66	-	
	K8	6	-	
$\mathrm{V}_{\mathrm{PP}}$	F11	18	-	PROM program power input pin. Connect +5 V for normal operation or +12.5 V for PROM program mode
GND	B4	40	-	Ground terminals   Be sure to ground these three pins
	B8	32	-	
	K6	2	-	
Setting Modes				
$\overline{\mathrm{M}} / \mathrm{S}$	E2	51	1	Operation mode; mode cannot be changed during operation   0 : Master mode   1: Slave mode
Clocks				
X1	L10	9	1	Input pins for crystal oscillator connection If an external clock is used, connect it to the X1 pin and leave X2 open
X2	K9	8	-	
CLKKOUT	L9	7	0	$\mu$ PD77220 internal system clock output. The output signal frequency is half the frequency of the crystal oscillator connected to the X 1 or X 2 pin
Reset and Interrupt				
$\overline{\text { RESET }}$	L7	3	I	Internal system reset signal input (low-level active)   - Requires latitude of more than three system clock (CLKOUT) cycles

## Pin Functions (cont)

Symbol	PGA   Pin Location	$\begin{aligned} & \text { PLCC } \\ & \text { Pin Number } \end{aligned}$	1/0	Function
$\overline{\text { NMI }}$	F2	53	1	Non-maskable interrupt input (low-level active)   - Requires latitude of more than three system clock (CLKOUT) cycles   - Fall edge detection   - The interrupt address is 10 H
INT	F1	52	1	Maskable interrupt input (low-level active)   -Requires latitude of more than three system clock (CLKOUT) cycles   - Fall edge detection   — The interrupt address is 100 H
Serial Interfaces				
sock	L3	63	1/0	Serial output data clock I/O   - Serial data is output synchronously when the clock to be input or output at this pin rises   - Whether the external clock is to be input or the internal clock to be output depends on the status register
SORQ	K2	62	0	Serial output request (high-level active)   - When output data is in the SO register, set to 1 When output is terminated, set to 0
$\overline{\text { SOEN }}$	K5	68	1	Serial output enable (low-level active) - Enables serial data output from the SO pin
so	L4	65	0   (3 state)	Serial data output   - Serial data output is synchronized with the leading edge of the SOCK signal
SICK	K3	64	1/O	Serial input data clock I/O   - Serial data is latched internally at the trailing edge of the clock input to or output from this terminal   - The status register determines whether to input the external clock or to output the internal clock
$\overline{\text { SIEN }}$	L6	1	I	Serial input enable (low-level active)   - Enables serial data input from the SI pin
SI	L5	67	1	Serial data input   - inputs serial data synchronously when SICK falls

Note: The system clock is an internal clock generated by CLK GEN on the basis of the clock (master clock hereafter) input in X1. Its frequency is half of that of the master clock.

External Memory Interfaces (Master Mode Only)				
$\overline{W R}$	K7	4	$\bigcirc$	Write output (low-level active)   - Write control output for external memory. If 0 is set, the output address is valid and data is output to data bus (DO to D31)
$\overline{\mathrm{RD}}$	L8	5	0	Read output (low-level active)   - Read output control for the external memory. If 0 is set, the output address is valid and data is output to data bus (DO to D31)
AX	A5	37	0	Highest-order memory address output   - If the external instruction memory is accessed (highest-order bit PC12 of the internal program counter is 1 ), 0 is output   - If the external data memory is accessed, the value of the highest-order bit AR12 of the internal address register is output   0 : High-speed access area   1: Low-speed access area

## Pin Functions (cont)

Symbol	PGA   Pin Location	$\begin{aligned} & \text { PLCC } \\ & \text { Pin Number } \end{aligned}$	1/0	Function
External Memory Interfaces (Master Mode Only) (cont)				
A0-A11	See PGA pin configuration diagram	See PLCC pin configuration diagram	$\begin{aligned} & \hline 0 \\ & (3 \\ & \text { state }) \end{aligned}$	Memory address output   - Address output when the external memory is accessed   - If the external instruction memory is accessed, the value of low-order 12 bits of the internal program counter is output   - If the external data memory is accessed, the value of low-order 12 bits of the address register is output
D0-D31	See PGA pin configuration diagram	See PLCC pin configuration diagram	I/O (3 state)	32-bit data bus for the external memory
Host CPU Interfaces (Slave Mode Only)				
$\overline{\mathrm{CS}}$	H10	15	1	Chip select input (low-level active)   - If 0 is set, read/write from host CPU through 16 -bit data bus (//OO to I/O15) is enabled
HWR	G11	16	1	Host CPU write input (low-level active)   - If 0 is set, 16 -bit data bus (//OO to $/ / O 15$ ) is ready for input (also $\overline{\mathrm{CS}}=0$ )
$\overline{\text { HRD }}$	G10	17	I	Host CPU read input (low-level active)   - If 0 is set, 16 -bit data bus (/OO to $/ / O 15$ ) is ready for output (for $\overline{C S}=0$ )
I/O0 to //O15	See PGA pin configuration diagram	See PLCC pin configuration diagram	I/O (3 state)	16-bit data buses for host CPU   - Bidirectional buses that input and output data according to control signals $\overline{\mathrm{CS}}, \overline{\mathrm{HWR}}$, and $\overline{\mathrm{HRD}}$ from the host CPU   - 16-bit or 32 -bit I/O data transfer format can be set in the internal status register
RQM	H11	14	0	Host request input   - Signal that indicates a read or write request to host CPU
External Data Memory Interfaces (Slave Mode Only)				
$\overline{\overline{W R}}$	K7	4	$\bigcirc$	Write data output (low-level active)   - Write control output for the external memory. If set to 0 , the output address is valid and data is output to data buses (DO to D7)
$\overline{\mathrm{RD}}$	L8	5	0	Read data output (low-level active)   - Read control output for the external memory. If set to 0 , the output address is valid and data is input through data buses (DO to D7)
AX	A5	37	0	Highest-order memory address output   - If the external memory is accessed, the value of the highest-order bit   AR12 of the internal address register is output   0 : High-speed access area   1: Low-speed access area
A0-A11	See PGA pin configuration diagram	See PLCC pin configuration diagram	0	Memory address output   - Address output when the external memory is accessed. The value of the low-order 12 bits of the internal address resister is output from this address
D 0 - D7	See PGA pin configuration diagram	See PLCC pin configuration diagram	I/O (3 state)	8-bit data bus for external memory   - 1-byte, 2-byte, 3-byte, or 4-byte I/O data transfer format can be set in the internal status register

Pin Functions (cont)

Symbol	PGA   Pin Location	PLCC   Pin Number	I/O	Function
General-Purpose I/O Ports	(Slave Mode On/y)	I	General-purpose input port   - The status of these general-purpose input ports can be determined by   an instruction	
P0, P1	J10, J11	13,12	0	General-purpose output port   - Data to be output from these general-purpose output pins can be set   using an instruction; the data is stored unless the set value is   changed
P2, P3	K10, K11	11,10		

## Internal Functions

Symbol	Multiplier	Description
Multiplier Peripheral	Circuits	
MPY	Multiplier	24 -bit fixed-point data multiplier
		24 bits $\times 24$ bits $\rightarrow 47$ bits
K	K Register	MPY input data storage register (24 bits)
L	L Register	MPY input data storage register (24 bits)
M	M Register	MPY multiplication result storage register (47 bits)

## ALU Peripheral Circuits

ALU	Arithmetic Logic Unit	47-bit data logical operation circuit
P	P Register	ALU input data storage register (47 bits)
Q	Q Register	ALU input data storage register (47 bits)
EXCHANGE	Data Exchanger	Selects P or Q from which the fixed-point data is to be input to the barrel shifter
BSHIFT	Barrel Shifter	Barrel shifter for fixed-point data in the P or Q register
SVR	Shift Value Register	Shift value set register
WRIC	Working Register   Interface Circuit	Specifies the format of data transfer between the working register and PU bus
WRO - WR7	Working Register (0-7)	ALU operation result storage register (47 bits)
PSWO	Program Status Word 0	ALU operation result status register
PSW1	Program Status Word 1	ALU operation result status register

Data Memory Peripheral Circuits

ROM	Data ROM	Fixed-data storage ROM (1 kW $\times 24$ bits)
RP	ROM Pointer	Register specifying ROM address (10 bits)
RAM0	Data RAM0	Data storage RAMO (256 W $\times 24$ bits)
BP0	Base Pointer 0	Register specifying RAM0 base address (9 bits)
X0	Index Register 0	Register specifying RAM0 index address (9 bits)
RAM1	Data RAM1	Data storage RAM1 (256 W $\times 24$ bits)
BP1	Base Pointer 1	Register specifying RAM1 base address 9 bits)
X1	Index Register 1	Register specifying RAM1 index address (9 bits)

## Instruction ROM Peripheral Circuits

INSTRUCTION ROM	Instruction ROM	Instruction storage ROM (2 kW $\times 32$ bits)
PC	Program Counter	Register specifying instruction ROM address (13 bits)
STK	Stack	8-level 13-bit stack

$\mu$ PD77220, 77P220

## Internal Functions (cont)

Symbol	Multiplier	Description
Instruction ROM Peripheral Circuits (cont)		
SP	Stack Pointer	Pointer indicating stack address
DECODER	Instruction Decoder	Instruction decoding circuit
Parallel Interface Buses		
DP	Data Port	Master mode:   - 32-bit parallel data bus for the external memory
		Slave mode:   - 8-bit parallel data bus for the external data memory   - 16-bit parallel data bus for host CPU   - Read/write control signal for host CPU   - General-purpose I/O port
AP	Address Port	Master mode:   - Address bus for the external memory
		Slave mode:   - Address bus for the external data memory
DR	Data Register	Master mode:   - Register for interface between mode DP and internal data bus (main bus) (32 bits)
		Slave mode:   - Register for interface between mode DP (8-bit parallel data bus for the external data memory) and main bus ( 32 bits)
DRS	Data Register for Slave	Slave mode:   - Register for interface between mode DP (16-bit parallel data bus for host CPU) and main bus ( 32 bits)
AR	Address Register	Register specifies external data memory address (13 bits)
HOST RW CNT	Host CPU Read/Write Control Circuit	Slave Host CPU interface control mode circuit
RN CNT	Read/Write Control Circuit	External memory read/write control circuit
Serial Input/Output Interfaces		
So	Serial Output Data Register	Serial output data storage register (32 bits)
OSFT	Output Shift Register	Shift register - outputs SO data serially
SOCNT	Serial Output Control Circuit	Serial output control circuit
SI	Serial Input Data Register	Serial input data storage register (32 bits)
ISFT	Input Shift Register	Shift register - inputs serial data
SICNT	Serial Input Control Circuit	Serial input control circuit
Control Circuits		
CLK GEN	Clock Generator	Circuit for generating internal system clock and serial I/O clock
INT CNT	Interrupt Controlier	Internal interrupt control circuit
TR	Temporary Register	General-purpose register (24 bits)
LC	Loop Counter	Register which sets program loop count (10 bits)
SR	Status Register	Register which specifies or indicates operation mode ( 20 bits)

## ELECTRICAL SPECIFICATIONS

For the electrical specifiactions of the $\mu$ PD77P220 in PROM program/read mode, see the later section titled PROM Electrical Specifications.

## Capacitance

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
Output capacitance	$\mathrm{C}_{\text {OUT }}$	20	pF	

Absolute Maximum Ratings
$T_{A}=+25^{\circ} \mathrm{C}$

Operating temperature, TOPT	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Input voltage, $\mathrm{V}_{1}$ (except $\overline{\text { SIEN } / P R O G)}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$\mathrm{~V}_{1}(\overline{\text { SIEN } / P R O G)}$	-0.5 to +12.5 V
Power supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 to +6.5 V
$\mathrm{~V}_{\text {PP }}$	-0.5 to +13.5 V

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

## Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Power supply voltage	$V_{D D}$	4.75	5.0	5.25	V	Normal operation
		5.75	6.0	6.25	V	PROM mode
	$V_{P P}$	4.75	5.0	5.25	V	Normal operation
		12.2	12.5	12.8	V	PROM mode
Low-level input voltage	$V_{\text {IL }}$	-0.3		0.8	V	
High-level input voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		$V_{D D}+0.3$	V	
Low-level X1 input voltage	$V_{\text {ILX }}$	$-0.3$		0.5	$\checkmark$	
High-level X1 input voltage	$\mathrm{V}_{\text {IHX }}$	3.9		$V_{D D}+0.3$	V	
Input voltage for PROM mode	VPROG	11.5	12.0	12.5	V	
Operating temperature	TOPT	-10	$+25$	$+70$	${ }^{\circ} \mathrm{C}$	Normal operation
		$+20$	$+25$	$+30$	${ }^{\circ} \mathrm{C}$	PROM mode

## DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Low-level output voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Low-level input current	$\mathrm{IL}_{\text {L }}$			-400	$\mu \mathrm{A}$	$\overline{\text { RESET, }}$ SICK, SOCK, $\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$
High-level input current	$\mathrm{IIH}^{\text {H}}$			400	$\mu \mathrm{A}$	$\bar{M} / \mathrm{S} \mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{DD}}$
Low-level input leak current	LILI			-10	$\mu \mathrm{A}$	Except $\overline{\text { RESET, }}$, SICK, SOCK, $\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$
High-level input leak current	$\mathrm{ILIH}^{\text {L }}$			10	$\mu \mathrm{A}$	Except $\overline{\mathrm{M}} / \mathrm{S}, \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{DD}}$
Low-level output leak current	ILOL			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0 \mathrm{~V}$
High-level output leak current	L LOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
X1 input current	${ }_{1 \times 1}$			400	$\mu \mathrm{A}$	X1 pin, external clock input
Input leak current	Iprog			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {PROG }}=12.0$
Power supply current	${ }^{\text {dD }}$		140	200	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CYX}}=16.384 \mathrm{MHz} \\ & \text { (Normal operation) } \end{aligned}$
				100	mA	PROM programming mode
	IPP			1	mA	Normal operation
				30	mA	PROM programming mode

## Crystal Oscillator Connection Conditions

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Oscillation frequency	$\mathrm{f}_{\mathrm{CYX}}$					Figure 1
$8-\mathrm{MHz}$ version		1.0	16.384	16.667	MHz	
$10-\mathrm{MHz}$ version		1.0	-	20.000	MHz	
$\mathrm{C} 1, \mathrm{C} 2$ capacitance			15		pF	

Timing Requirements (Figure 4)
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	8-MHz Version			10-MHz Version			Unit	Conditions
		Min	Typ	Max	Min	Typ	Max		
X1 cycle time	$t_{C Y X}$	60	61	1000	50		1000	ns	Figures 2 and 3. Voltage threshold for timing measurements are 1.0 and 3.0 volts.
X1 high pulse width	${ }^{\text {t XXH }}$	25			20			ns	
X1 low pulse width	${ }^{\text {tXXL }}$	25			20			ns	
X 1 rise time	${ }^{\text {t }}$ XR			5			5	ns	
X1 fall time	$t_{\text {XF }}$			5			5	ns	
SICK, SOCK cycle time	$\mathrm{t}_{\text {CYS }}$	240	244		240	244		ns	
SICK, SOCK high pulse width	$t_{\text {SSH }}$	100			100			ns	
SICK, SOCK low pulse width	$t_{\text {SSL }}$	100			100			ns	
SICK, SOCK rise time	$t_{\text {SR }}$			20			20	ns	
SICK, SOCK fall time	${ }^{t_{S F}}$			20			20	ns	

## Switching Characteristics (Figure 4)

Parameter	Symbol	Min	Max	Unit
$\mathrm{X} 1 \uparrow$ to $\overline{\mathrm{RD}}$ delay time	$t_{\text {DXC }}$		50	ns
X1 $\uparrow$ to CLKOUT hold time	$\mathrm{t}_{\mathrm{HXC}}$	0		ns
SCK cycle time	$t_{\text {cres }}$	$8{ }^{\text {cticy }}$		ns
SCK high pulse width	$\mathrm{t}_{\text {SSH }}$	$4 t_{C Y X}-65$		ns
SCK low pulse width	$t_{\text {SSL }}$	$4 t_{C Y X}$		ns
SCK rise time	${ }^{\text {t }}$ SR		20	ns
SCK fall time	${ }^{\text {t }}$ SF		20	ns
$\mathrm{X} 1 \uparrow$ to SCK $\uparrow$ delay time	${ }^{\text {t DXS }}$	10	120	ns

External Memory Access Timing (Figures 5, 6)
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	8-MHz Version		10-MHz Version		Unit	Conditions
		Min	Max	Min	Max		
Data set time (for address)	$t_{\text {SADI }}$		${ }^{2} \mathrm{ccyx}^{\text {c }} 85$		${ }^{21}{ }_{\text {cry }}-75$	ns	When an instruction is read
Data set time (for $\overline{\mathrm{RD}} \downarrow$ )	$t_{\text {SRDI }}$		${ }_{\text {t }}^{\text {crx }}$ - 25		${ }^{\text {c }}$ CYX -25	ns	
Data hold time (for $\overline{\mathrm{RD}} \uparrow$ )	$t_{\text {HRDI }}$	0		0		ns	
Data set time (for address)	$t_{\text {SAD1 }}$		${ }^{4} \mathrm{c}$ crx -135		$4 \mathrm{t}_{\text {cyx }}-115$	ns	Applies to high-speed access area
	$t_{\text {SAD2 }}$		${ }^{81} \mathrm{crx}-135$		${ }^{8 t}{ }_{\text {c }}^{\text {cx }}$ - 115	ns	Applies to low-speed access area
Data set time (for $\overline{\mathrm{RD}} \downarrow$ )	$t_{\text {SRD1 }}$		${ }^{3} \mathrm{t}_{\mathrm{c}}^{\mathrm{rax}}$ - 75		$3 t_{\text {crex }}-65$	ns	Applies to high-speed access area
	$t_{\text {SRD2 }}$		$7 \mathrm{t}_{\text {cru }}-75$		$7{ }_{\text {chx }}$-65	ns	Applies to low-speed access area
Data hold time (for $\overline{\mathrm{RD}} \mathrm{f}$ )	$\mathrm{t}_{\text {HRD }}$	0		0		ns	

Switching Characteristics (Figures 5-8)

Parameter	Symbol	Min	Max	Unit	Conditions
$\mathrm{X} 1 \uparrow$ to $\overline{\mathrm{RD}}$ delay time	$t_{\text {DXRD }}$		55	ns	
$\mathrm{X} 1 \uparrow$ to $\overline{\mathrm{WR}}$ delay time	tDXWR		55	ns	
Address set time (for $\overline{\mathrm{RD}} \downarrow$ )	$t_{\text {SAR }}$	${ }^{\text {t }} \mathrm{CYX}$ - 50		ns	
Address hold time (for $\overline{\mathrm{RD}}$ ¢)	$t_{\text {HRA }}$	5		ns	
$\overline{\mathrm{RD}}$ low-level width	$t_{\text {WR1 }}$	${ }^{\text {c }}$ crx -20		ns	When an instruction is read
	$t_{\text {WR2 }}$	$3 \mathrm{c}_{\mathrm{cyx}}-30$		ns	Applies to high-speed access area
	$t_{\text {WR3 }}$	$7 \mathrm{tcyx}-30$		ns	Applies to low-speed access area
Address set time (For $\overline{W R} \downarrow$ )	$t_{\text {SAW }}$	${ }_{\text {t }}^{\text {crx }}$ - 45		ns	
Address hold time (for $\overline{\mathrm{WR}} \uparrow$ )	$t_{\text {HWA }}$	5		ns	
$\overline{\text { WR low-level width }}$	${ }^{\text {twW1 }}$	$3{ }^{3} \mathrm{cyx}-50$		ns	Applies to high-speed access area
	$t_{\text {WW2 }}$	$7 \mathrm{ctcx}-50$		ns	Applies to low-speed access area
Data set time (for $\overline{\mathrm{WR}} \uparrow$ )	$t_{\text {SDW1 }}$	${ }^{3 t} \mathrm{Crx}-100$		ns	Applies to high-speed access area
	$t_{\text {SDW2 }}$	$7 \mathrm{chx}-100$		ns	Applies to low-speed access area
$\overline{\mathrm{WR}} \downarrow$ to data delay time	$t_{\text {DWD }}$	0		ns	
Data float time (for $\overline{\mathrm{WR}} \uparrow$ )	$t_{\text {FWD }}$	10	50	ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ recovery time	$t_{\text {R }}$	$t_{\text {crex }} \mathbf{3 0}$		ns	At time of continuous operation

Host Interface Timing, Slave Mode
(Figures 9, 10)
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Unit
$\overline{\mathrm{CS}}$ set time (for $\overline{\mathrm{HRD}} \downarrow$ )	$t_{\text {SCR }}$	0	ns
$\overline{\mathrm{CS}}$ hold time (for $\overline{\mathrm{HRD}} \uparrow$ )	$t_{\text {HRC }}$	0	ns
$\overline{\text { HRD }}$ low-level width	$t_{\text {WHRD }}$	150	ns
$\overline{\mathrm{CS}}$ set time (for $\overline{H W R} \downarrow$ )	$\mathrm{t}_{\text {SCW }}$	0	ns
$\overline{\mathrm{CS}}$ hold time (for $\overline{\mathrm{HWR}} \uparrow$ )	$\mathrm{t}_{\text {HWC }}$	0	ns
HWR low-level width	${ }^{\text {W WHWR }}$	150	ns
Data set time (for $\overline{\text { HWR }} \downarrow$ )	${ }^{\text {S SIHW }}$	100	ns
Data hold time (for $\overline{\mathrm{HHR}} \uparrow$ )	$\mathrm{t}_{\text {HHWI }}$	0	ns
$\overline{\text { HRD, }}$ HWR recovery time	$t_{\text {HRV }}$	100	ns
$\overline{\overline{H R D}, ~ \overline{H W R}}$ hold time (for RQM $\uparrow$ )	$t_{\text {HRH }}$	${ }^{t} \mathrm{CYX}$	ns
P0, P1 set time (for X1 $\uparrow$ )	$t_{\text {SPX }}$	${ }^{t}$ CYX	ns
P0, P1 hold time (for X1 $\uparrow$ )	$\mathrm{t}_{\text {HXP }}$	${ }^{\text {t }}$ CYX	ns

Switching Characteristics (Figures 9, 11)
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Parameter	Symbol	Min	Max	Unit
	$t_{\text {DHRI }}$		100	ns
$\overline{\mathrm{HRD}} \downarrow$ to data float time	$t_{\text {FHRI }}$	10	65	ns
$\mathrm{X} 1 \uparrow$ to RQM $\uparrow$ delay time	${ }^{\text {t DXRH }}$		100	ns
X1 $\uparrow$ to RQM $\downarrow$ delay time	$t_{\text {DXRL }}$		100	ns
$\overline{\text { HRD, }} \overline{\text { HWR }} \uparrow$ to RQM $\downarrow$ delay time	${ }^{\text {t }}$ DHR		$2 t_{C Y X}+100$	ns
X1 $\uparrow$ to P2, P3 delay time	${ }_{\text {t DXP }}$		100	ns

Figure 1. Oscillation Circuit Diagram


Interrupt Reset Timing (Figure 12)

Parameter	Symbol	Min	Unit
RESET low-level width	$\mathrm{t}_{\text {RST }}$	${ }^{6 t} \mathrm{cyx}$	ns
$\overline{\text { NMI, }} \overline{\text { NT }}$ hold time (for $\overline{\mathrm{RESET}} \uparrow$ )	$\mathrm{t}_{\text {HRNI }}$	${ }^{6 t} \mathrm{cyX}$	ns
$\overline{\mathrm{NM}}$, $\overline{\text { INT }}$ low-level width	$\mathrm{t}_{\mathrm{INT}}$	$6{ }^{6} \mathrm{cyX}$	ns
$\overline{\mathrm{NMI}}$, $\overline{\text { INT }}$ recovery time	${ }^{\text {trinT }}$	${ }^{6 t} \mathrm{CYX}$	ns

Serial Interface Timing (Figure 13)
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Unit
$\overline{\text { SIEN, SI set time (for SCK } \downarrow \text { ) }}$	$\mathrm{t}_{\text {SSIS }}$	55	ns
$\overline{\text { SIEN, SI hold time (for SCK } \downarrow \text { ) }}$	$\mathrm{t}_{\text {HSSI }}$	30	ns
$\overline{\text { SOEN }}$ set time (for SCK $\uparrow$ )	$\mathrm{t}_{\text {SSES }}$	50	ns
$\overline{\text { SOEN }}$ hold time (for SCK $\uparrow$ )	$\mathrm{t}_{\text {HSSE }}$	30	ns
$\overline{\text { SIEN, }} \overline{\text { SOEN recovery time }}$	$\mathrm{t}_{\text {SRN }}$	$\mathrm{t}_{\mathrm{CYS}}$	ns

Switching Characteristics (Figures 14-16)

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$				
	Symbol	Min	Max	Unit
Parameter	$\mathrm{t}_{\text {DSSQ }}$	30	150	ns
SCK $\downarrow$ to SORQ $\uparrow$ delay time				
$\overline{\text { SOEN } \downarrow \text { to SO delay time }}$	$\mathrm{t}_{\text {DSESO }}$		60	ns
$\overline{\overline{S O E N} \uparrow \text { to SO float time }}$	$\mathrm{t}_{\text {FSESO }}$	10	100	ns
SCK $\uparrow$ to SO delay time	$\mathrm{t}_{\text {DSHSO }}$		60	ns
SCK $\downarrow$ to SO hold time	$\mathrm{t}_{\text {HSHSO }}$	0		ns
SCK $\downarrow$ to SO delay time	$\mathrm{t}_{\text {DSLSO }}$		60	ns
Switching Characteristics				
SCK $\downarrow$ to SO float time   (at time of SORQ $\downarrow$ )	$\mathrm{t}_{\text {FSSO }}$	10	100	ns

Figure 2. External Clock Connection Diagram


Figure 3. Switching Characteristics


Figure 4. Clock Input/Output


Figure 5. Instruction Read Operation (Master Mode OnIy)


Figure 6. Data Read Operation


Figure 7. Data Write Operation


Figure 8. Data Read/Write Operation


Figure 9. Host Read Operation


Figure 10. Host Write Operation


Figure 11. RQM Port


Figure 12. Interrupt Reset Timing Chart


Figure 13. Serial In


Figure 14. Serial OUT 1 (SOEN Interrupt Control)


Figure 15. Serial OUT 2 (SOEN Control: $\overline{\text { SOEN }}$ Low AT SCK is Low Level


Figure 16. Serial OUT 3 ( $\overline{\text { SOEN }}$ Control: $\overline{\text { SOEN }}$ Low AT SCK is High Level


## DATA FORMAT

The $\mu \mathrm{PD} 77220$ can process fixed-point data. Data is represented by a 2 's complement, and the highestorder bit of fixed-point data indicates the sign. See figure 4. Table 3 shows the 24-bit fixed-point data format. Table 4 shows the 47-bit fixed point data.

Numeric data is processed in fixed-point data format, and the decimal point is positioned between the sign bit and the following bit.

Figure 17. Fixed-Point Data Format


Table 3. 24-Bit Fixed-Point Internal Data Format

Value	Binary Notation	Hexadecimal Notation	Conversion to Decimal Number
Maximum Positive Value	0111 ..... 1111	$7 \mathrm{FFFFF}_{\mathrm{H}}$	$1.0-2^{-23} \approx 1.0$
	0111 ..... 1110	7FFFFF ${ }_{\text {H }}$	1.0-2-22
	:	:	:
	0100 ..... 0000	$4^{400000}{ }_{H}$	$1.0-2^{-1}=0.5$
	:	:	:
Minimum Positive Value	$0000 \ldots . . .0001$	$000001_{H}$	$2^{-23} \approx 1.2 \times 10^{-7}$
Zero	0000 ..... 0000	$000000_{H}$	0.0
Maximum Negative Value	1111 ..... 1111	FFFFFF $_{\mathrm{H}}$	$-\left(2^{-23}\right) \approx-1.2 \times 10^{-7}$
	:	$:$	:
	$1100 \ldots . . .0000$	$\mathrm{COOOOO}_{\mathrm{H}}$	$-\left(2^{-1}\right)=-0.5$
	:	:	:
	1000 ..... 0001	$800001_{H}$	$-1.0+2^{-23}$
Minimum Negative Value	1000 ..... 0000	$800000{ }_{H}$	-1.0

Table 4. 47-Bit Fixed-Point Internal Data Format

Value	Binary Notation	Hexadecimal Notation	Conversion to Decimal Number
Maximum Positive Value	0111 .... 1111	7FFFFFFFFFFE ${ }_{H}$	$1.0-2^{-46} \approx 1.0$
	0111 ..... 1110	7FFFFFFFFFFC ${ }_{\text {H }}$	$1.0-2^{-45}$
	:	:	:
	$0100 \ldots . .0000$	$400000000000_{H}$	$1.0-2^{-1}=0.5$
	:	:	:
Minimum Positive Value	0000 .... 0001	000000000002H	$2^{-46} \approx 1.4 \times 10^{-14}$
Zero	0000 ..... 0000	$000000000000_{H}$	0.0
Maximum Negative Value	1111 ..... 1111	FFFFFFFFFFFE ${ }_{H}$	$-\left(2^{-46}\right) \approx-1.4 \times 10^{-14}$
	:	:	$\cdot$
	$1100 \ldots 0000$	$\mathrm{C00000000000} \mathrm{H}$	$-\left(2^{-1}\right)=-0.5$
	:	:	:
	1000 ..... 0001	$800000000002_{\mathrm{H}}$	$-1.0+2^{-46}$
Minimum Negative Value	1000 .... 0000	$800000000000_{\mathrm{H}}$	-1.0

Conversion of data ( 47 bits) into hexadecimal format ranges from the highest-order bit (sign bit) to the lowest-order bit sequentially.

## INSTRUCTIONS

All $\mu$ PD77220 instructions consist of a 32-bit word. The instructions fall into three categories:

- Operation instructions
- Branch instructions
- Load instructions


## Operation Instructions

An operation (OP) instruction is an ALU operation instruction where 22 different operations may be specified in the upper five bits. Figure 5 shows the bit format.

Pointer modifications may be specified in the CNT field. Transfers may also be specified within the SRC and DST fields of an OP instruction. When all fields are specified in an OP instruction, several different tasks are performed simultaneously.

OP Field. The 5-bit OP field specifies the operation type in the ALU. Table 5 lists the 22 types of operations it may contain.

CNT (Control) Field. The CNT field is 12 bits long and specifies a pointer, flag operation, register switch-over, data transfer format, and loop counter decrement.
The control field bit configuration is shown in figure 6. The field has 22 types of subfields. Table 6 describes the subfields.

Figure 18. Operation Instruction Format


Table 5. OP Field Specifications

Symbol	OP Field   $(\mathbf{3 1 - 2 7 )}$	Operation
NOP	00000	No operation
INC	00001	Increment
DEC	00010	Decrement
ABS	00011	Absolute
NOT	00100	Not
NEG	00101	Negate
SHLC	00110	Shift left with carry for double   precision
SHRC	00111	Shift right with carry for   double precision
ROL	01000	Rotate left


Table 5.	OP Field Specifications	
Symbol	OP Field   $(31-27)$	Operation
ROR	01001	Rotate right
SHLM	01010	Shift left multiple (see note)
SHRM	01011	Shift right multiple (see note)
SHRAM	01100	Shift right arithmetic multiple   see note)
CLR	01101	Clear
ADD	10000	Add fixed-point data
SUB	10001	Subtract fixed-point data
ADDC	10010	Add fixed-point data with   carry
SUBC	10011	Subtract fixed-point data with   carry
CMP	10100	Compare
AND	10101	AND
OR	10110	OR
XOR	10111	Exclusive OR

Multiple value is in SVR or specification value of SHV bit.

## Table 6. Control Field Specifications

Group	Field	Function	Effective
Interrupt	EM	Enables/disables maskable interrupt	$\rightarrow$
	BM	Sets and clears maskable interrupt input flag	$\rightarrow$
PSW	FIS	PSW control	$* / \rightarrow$
	FC	Switches over PSW0, PSW1	*
ROM pointer	RP	Rules ROM pointer count operations	$\rightarrow$
	RPC	Specifies $n$ value in ROM pointer operation	$\rightarrow$
	RPS	Specifies low-order nine bits of data ROM address	$\rightarrow$
RAMO/RAM1 pointers	MO	Specifies base pointer 0 and index register 0	$\rightarrow$
	M1	Specifies base pointer 1 and index register 1	$\rightarrow$
	DPO	Rules count operations of base pointer 0 and index register 0	$\rightarrow$
	DP1	Rules count operations of base pointer 1 and index register 1	$\rightarrow$
	BASEO	Specifies counter length of modulo counter base pointer 0	$\rightarrow$
	BASE1	Specifies counter length of modulo counter counter base pointer 1	$\rightarrow$
Data format conversion	WI	Specifies transfer format when working register is specified in the DST field	$\rightarrow$
	WT	Specifies transfer format when working register is specified in the SRC field	$\rightarrow$
Shift specification	SHV	Specifies amount of shift for 47-bit fixed-point data	*
Data memory access	RW	Specifies input/output operation for external memory	*
	EA	Address register increment and decrement	$* / \rightarrow$
General-purpose output port	P2	Controls signal output of pins with the same name	$\rightarrow$
	P3	Controls signal output of pins with the same name	$\rightarrow$
Loop counter	L	Loop counter decrement	*
Jump	NAL	Specifies unconditional jump address	*

[^4]P Field. The 2-bit $P$ field (bits 14, 13) specifies the source of input to the register, which is used as an input to the ALU for operations requiring two operands. The internal data bus, MPY output, RAMO, or RAM1 can be specified. Table 7 shows the field specifications.

Table 7. P Field Specifications

Symbol	Bit 14	Bit 13	Input of P Register
IB	0	0	PU bus
M4	0	1	Multiplier output register (MPY output)
RAMO	1	0	RAM block 0
RAM1	1	1	RAM block 1

Figure 19. CNT Field Bit Configuration


Q Field. The 3-bit Q field (bits 12-10) specifies the source of input to the $Q$ register, which is the second of two ALU input registers.

One of the working registers, WRO to WR7, must be specified in the $Q$ field. The result of the operation is placed in the working register specified in the $Q$ field. Table 8 provides the Q field specifications.

Table 8. Q Field Specifications

Symbol	Bit 12	Bit 11	Bit 10	Register
WR0	0	0	0	Working register 0
WR1	0	0	1	Working register 1
WR2	0	1	0	Working register 2
WR3	0	1	1	Working register 3
WR4	1	0	0	Working register 4
WR5	1	0	1	Working register 5
WR6	1	1	0	Working register 6
WR7	1	1	1	Working register 7

SRC (Source) Field. The 5-bit SRC field (bits 9-5) holds the source register for a transfer instruction. Table 9 lists the 32 types of registers that may be specified in this field.

Table 9. SRC Field Specifications

Symbol	SRC Field (9-5)	Selected Source Register
NON	00000	Non-selection
RP	00001	ROM pointer
PSWO	00010	Program status word 0
PSW1	00011	Program status word 1
SVR	00100	SVR (shift value register)
SR	00101	Status register
LC	00110	Loop counter
STK	00111	Stack
M	01000	M register
ML	01001	Low 24 bits of $M$ register
ROM	01010	Data ROM
TR	01011	Temporary register
AR	01100	Address register
SI	01101	Serial input register
DR	01110	Data register
DRS	01111	Data register for slave
WRO	10000	Working register 0
WR1	10001	Working register 1
WR2	10010	Working register 2
WR3	10011	Working register 3
WR4	10100	Working register 4
WR5	10101	Working resister 5
WR6	10110	Working register 6
WR7	10111	Working register 7
RAMO	11000	RAM 0
RAM1	11001	RAM 1
BPO	11010	Base pointer 0
BP1	11011	Base pointer 1
IXO	11100	Index register 0
IX1	11101	Index register 1
K	11110	K register
L	11111	$L$ register

DST (Destination) Field. The DST field (bits 4-0) is 5 bits long and specifies the destination register for a transfer instruction. Table 10 lists the 31 destinations that may be specified in the DST field.

Table 10. DST Field Specifications

Symbol	DST Field (4-0)	Selected Destination Register
NON	00000	Non-selection
RP	00001	ROM pointer
PSWO	00010	Program status word 0
PSW1	00011	Program status word 1
SVR	00100	SVR (shift value register)
SR	00101	Status register
LC	00110	Loop counter
STK	00111	Stack
LKRO	01000	$L$ register (RAM 0 to $K$ register)
KLR1	01001	$K$ register (RAM 1 to $L$ register)
TR	01011	Temporary register
AR	01100	Address register
SO	01101	Serial output register
DR	01110	Data register
DRS	01111	Data register for slave
WRO	10000	Working register 0
WR1	10001	Working register 1
WR2	10010	Working register 2
WR3	10011	Working register 3
WR4	10100	Working register 4
WR5	10101	Working resister 5
WR6	10110	Working register 6
WR7	10111	Working register 7
RAMO	11000	RAM 0
RAM1	11001	RAM 1
BPO	11010	Base pointer 0
BP1	11011	Base pointer 1
IXO	11100	Index register 0
X1	11101	Index register 1
K	11110	K register
L	11111	L register

## Branch Instructions

Branch instructions specify a conditional jump, an unconditional jump, subroutine call, or return. The format of the branch instruction, consisting of five fields, is shown in figure 7.

Note that the SRC and DST fields may be included as part of the branch instruction. This data transfer will take place regardless of any condition upon which a jump may be dependent.

B Field. This field (bits 31-28) indicates a branch instruction. The value of this field is always 1101.
C Field. This 5-bit field (bits 14-10) indicates the nature of the branch instruction. Table 11 summaries the branch conditions that can be specified.

NA Field. The destination address of the branch is contained in the 13-bit NA field (bits 27-15). Note that the most significant bit of the NA field is used to determine whether the destination address is in internal or external instruction memory.
SRC Field. The SRC field (bits 9-5) specifies a type of source register for a transfer instruction. There are 32 possible types.

DST Field. The DST field (bits 4-0) indicates the type of destination register to be used for a transfer instruction. There are 31 possible types.

## Load Instructions

The load instruction consists of three fields as shown in figure 8. This instruction loads 24-bit data specified in the IM field into the register specified in the DST field. The data is input to each register through the main bus.

The value of the LDI field is always 111.
Figure 20. Branch Instruction Format


Figure 21. Load Instruction Format

31		0
LDI		IM
		DST

Table 11. Branch Condition Summary

Symbol	C Field (14-10)	Jump with Condition
JMP	00000	Jump with no condition
CALL	00001	Subroutine call
RET	00010	Return
JNZRP	00011	Jump if ROM pointer is not zero
JZO	00100	Jump if zero flag 0 is set
JNZO	00101	Jump if zero flag 0 is reset
JZ1	00110	Jump if zero flag 1 is set
JNZ1	00111	Jump if zero flag 1 is reset
JCO	01000	Jump if carry flag 0 is set
JNCO	01001	Jump if carry flag 0 is reset
JC1	01010	Jump if carry flag 1 is set
JNC1	01011	Jump if carry flag 1 is reset
JSO	01100	Jump if sign flag 0 is set
JNSO	01101	Jump if sign flag 0 is reset
JS1	01110	Jump if sign flag 1 is set
JNS1	01111	Jump if sign flag 1 is reset
JVo	10000	Jump if overflow flag 0 is set
JNVO	10001	Jump if overflow flag 0 is reset
JV1	10010	Jump if overflow flag 1 is set
JNV1	10011	Jump if overflow flag 1 is reset
JNFSI	10110	Jump if SI register is not full
JNESO	10111	Jump if SO register is not empty
JIPO*	11000	Jump if input port 0 is on
JIP1*	11001	Jump if input port 1 is on
JNZIXO	11010	Jump if index register 0 is nonzero
JNZIX1	11011	Jump if index register 1 is nonzero
JNZBPO	11100	Jump if base pointer 0 is nonzero
JNZBP1	11101	Jump if base pointer 1 is nonzero
JRDY	11110	Jump if ready is on
JRQM*	11111	Jump if request for master is on

## PROM INTERFACE

The $\mu$ PD77P220 has a PROM-one-time programmable (OTP) or ultraviolet erasable (UVE)—consisting of a 2K-word $x$ 32-bit instruction ROM and a 1K-word $x$ 24-bit data ROM.

The 32-bit instruction words and 24-bit data words require special byte addresses because data is written to and read from the PROM in 8-bit bytes. Figure 22 shows the special byte addresses assigned to the data ROM $(2000 \mathrm{H}$ to 2003 H$)$.

Each internal word address for the data ROM is equivalent to three byte addresses used by external devices plus one dummy byte address. For example, in figure 23 , the internal word address OH corresponds to 3 byte addresses (2001H to 2003 H ) plus one dummy byte address $(2000 \mathrm{H})$

Figure 22. Instruction ROM Memory Map


Note: The number in each box indicates the byte address of the Instruction ROM as vlewed from outside.

Figure 23. Data ROM Memory Map


## UVEPROM Erasure

Data in the UVEPROM can be erased by exposure to light with a wavelength shorter than 400 nm . Usually, ultraviolet light with a $254-\mathrm{nm}$ wavelength is used. The erasure process, which sets all data bits to 1's, must take place before data is programmed to a UVEPROM.

The total light quantity required to completely erase the written data is $15 \mathrm{Ws} / \mathrm{cm}^{2}$, equivalent to exposure to a UV lamp with a rating of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for about 20 minutes. A longer time may be necessary due to factors such as the age of the UV lamp and stains on the package window. The window must be positioned within 1 inch of the UV lamp.

If the UVEPROM is exposed to direct sunlight or fluorescent light for a long time, the data might be destroyed. To prevent this, mask the window with a cover of film after the erasure process.

## Data Programming Procedure

This section describes how to program the PROM. Table 12 shows the reassigned pin functions when in PROM program/read mode. Figure 24 shows the onchip PROM program timing.

Since no PROM cell exists for the data ROM dummy byte addresses, set the dummy byte addresses to FFH, the default data for normal programming. The data programming procedure is as follows:
(1) Enter PROM program mode by applying +12.5 $\pm 0.5 \mathrm{~V}$ to the SIEN/PROG PIN, +6 V to the $\mathrm{V}_{\mathrm{DD}}$ pin, and $+12.5 \pm 0.3 \mathrm{~V}$ to the $\mathrm{V}_{\mathrm{PP}}$ pin.
(2) Specify the desired ROM byte address from the address input pins $A_{0}-A_{13}$.
(3) Program the data on the data bus ( $D_{0}-D_{7}$ ) by applying 0 to the $\overline{\mathrm{CE}}$ pin and 1 to the $\overline{\mathrm{OE}}$ pin. (Program mode.)
(4) Output programmed data to the data bus $\left(D_{0}-D_{7}\right)$ by applying 0 to the $\overline{\mathrm{OE}}$ pin and 1 to the $\overline{\mathrm{CE}}$ pin. (Program verify mode.)
(5) Repeat steps 2 through 4 to a maximum of 25 times until the data is properly written to the specified address.
(6) After verifying that the data has been properly programmed, apply an additional overprogram pulse by setting $\overline{\mathrm{OE}}$ to 1 (clear $\overline{\mathrm{CE}}$ to 0 ). The overprogram pulse width is determined by multiplying the initial pulse width by $3 X \mathrm{~ms}$, where $X$ equals the number of times steps 3 and 4 were repeated.

The above procedure completes writing one byte of data. If steps 2 to 4 have been repeated more than 25 times and the data has not programmed properly, the $\mu$ PD77P220 is defective.

Table 12. Pin Functions for PROM

Program Mode	Normal M/S Mode	Function
$\mathrm{A}_{0}-\mathrm{A}_{8}$	$\mathrm{A}_{0}-\mathrm{A}_{8}$	Input address pins (viewed from external device) for programming/ reading PROM (instruction ROM and data ROM).
$\mathrm{A}_{9}$	INT	
$\mathrm{A}_{10}$	$\mathrm{A}_{10}$	
$\mathrm{A}_{11}$	$\mathrm{A}_{11}$	
$\mathrm{A}_{12}$	AX	
$\mathrm{A}_{13}$	$\mathrm{A}_{9}$	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Input/output data pins for PROM (instruction ROM and data ROM).
$\overline{C E}$	$\mathrm{D}_{25} / \overline{\mathrm{HWR}}$	PROM program strobe signal (active low)
$\overline{O E}$	$\mathrm{D}_{24} / \overline{\mathrm{HRD}}$	PROM read strobe signal (active low)
$V_{\text {PP }}$	$V_{\text {PP }}$	Power pin to read or program PROM; apply +12.5 V for programming and +5 V for reading.
$\mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}$	Power pin; apply +6 V for programming and +5 V for reading.
GND	GND	Ground terminals
PROG	SIEN	Sets PROM program or read mode; apply +12.5 V to set PROM program/ read mode.

## Data Reading Procedure

This section describes the data reading procedure. Figure 25 shows the on-chip PROM read timing. The programming procedure is as follows:
(1) Enter the PROM read mode by applying +12.5 $\pm 0.5 \mathrm{~V}$ to $\overline{\text { SIEN }} / \mathrm{PROG}$ pin, +5 V to the $\mathrm{V}_{\mathrm{DD}}$ pin, and +5 V to the $\mathrm{V}_{\mathrm{PP}}$ pin.
(2) Specify the desired ROM byte address from the address input pins $A_{0}-A_{13}$.
(3) Output data to the data bus $\left(D_{0}-D_{7}\right)$ by clearing $\overline{O E}$ and $\overline{\mathrm{CE}}$ to 0 .

## PROM ELECTRICAL SPECIFICATIONS

This section lists the electrical specifications of the $\mu$ PD77P220 while in PROM program/read mode.

Data Program Timing Requirements
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{PROG}}=12.0 \pm 0.5 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
$\overline{\mathrm{CE}}$ setup time for $\overline{\text { SIEN }} / \mathrm{PROG}$	$\mathrm{t}_{\text {SRSCE }}$	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time for address	$\mathrm{t}_{\text {SAC }}$	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time for data	$t_{\text {SDC }}$	2			$\mu \mathrm{s}$
$\overline{\overline{\mathrm{CE}} \text { setup time for } \mathrm{V}_{\mathrm{PP}}}$	$\mathrm{t}_{\text {SVPC }}$	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ setup time for $\mathrm{V}_{\mathrm{DD}}$	tsvDC	2			$\mu \mathrm{s}$
$\overline{\text { OE setup time for data }}$	tsDo	2			$\mu \mathrm{s}$
Address hold time	$t_{\text {HCA }}$	2			$\mu \mathrm{s}$
Data hold time	$\mathrm{t}_{\mathrm{HCD}}$	2			$\mu \mathrm{s}$
Initial program pulse width	${ }_{\text {t }}^{\text {WCD }}$	0.95	1.0	1.05	ms
Overprogram pulse width	twC1*	2.85		78.75	ms

${ }^{* t}{ }_{W C 1}=3 n t_{W C O}$ assuming initial program pulse is applied $n$ times.
Data Program Switching Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{PROG}}=12.0 \pm 0.5 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
$\overline{\overline{O E}}$ to output float time	$t_{\text {FOD }}$	0	130	ns	
$\overline{\overline{O E} \text { to output delay }}$	$t_{\text {DODW }}$		250	ns	

Data Program Read Timing Requirements

Parameter	Symbol	Min	Typ	Max	Unit
	$t_{\text {SRSCE }}$	2			$\mu \mathrm{s}$
$\overline{\text { OE setup time for } \overline{\text { SIEN/ }} / \mathrm{PROG}}$	$t_{\text {SRSOE }}$	2			$\mu \mathrm{s}$

Data Read Switching Characteristics

Parameter	Symbol	Min	Typ	Max	Unit
Address to output delay	t ${ }_{\text {d }}$			200	ns
$\overline{\mathrm{CE}}$ to output delay	$t_{\text {b }}$			200	ns
$\overline{\mathrm{OE}}$ to output delay	${ }^{\text {t }}$ DODR			100	ns
$\overline{\overline{O E}}$ to high to output float	${ }_{\text {ffic }}$	0		65	ns
Address to output hold	HIAD	0			ns

Figure 24. On-Chip PROM Program Timing


Figure 25. On-Chip PROM Read Timing


## Description

The $\mu$ PD77230A Digital Signal Processor (DSP) is the high-end member of a new third-generation family of 32-bit DSPs. This CMOS chip implements 32-bit full floating-point arithmetic, and is intended for digital signal processing and other applications requiring high speed and high precision.
The $\mu$ PD77230A has on-chip instruction and data ROM. These ROM areas can be mask ROM ( $\mu$ PD77230AR) or EPROM ( $\mu$ PD77P230R). The mask ROM is also available as a standard part with a standard, general-purpose DSP library ( $\mu$ PD77230AR-003).

All instructions execute in one instruction cycle. The $\mu$ PD77230A executes a 32-bit by 32-bit floating-point multiply with 55 -bit product, sum of products, data move, and multiple data pointer manipulations-all in one 150-ns instruction cycle.

Note: Unless contextually excluded, references in this data sheet to $\mu$ PD77230 mean $\mu$ PD77230A and $\mu$ PD77P230.

## Features

- Fast instruction cycle: 150 ns using 13.3-MHz clock
- All instructions execute in one cycle
- 32-x 32-bit floating-point arithmetic
- Large on-chip memory (32-bit words)
- 1K data RAM (two 512-word blocks)
- 1K data coefficient ROM
-2 K instruction ROM
- 8K-x 32-bit external memory; 4K may be instruction memory
- $1.5-\mu \mathrm{m}$ CMOS technology
- 32-bit internal bus
- 55-bit ALU bus
- Dedicated internal buses for RAM, multiplier, and ALU
$\square$ Eight accumulators/working registers (55 bits)
- 47-bit bidirectional barrel shifter
- Two independent data RAM pointers
- Modulo $2^{n}$ incrementing for circular RAM buffers
- Base and index addressing of internal RAM
- Data ROM capable of $2^{n}$ incrementing
- Loop counter for repetitive processing
- Eight-level stack accessible to internal bus
- Two interrupts: maskable and nonmaskable (NMI)
- Serial I/O (4 MHz)
- Master/slave mode operation
- Three-stage instruction pipeline
- Single +5 -volt power supply
- Approximately 1.2 watts


## Ordering Information

| Part Number | ROM | Package Type |
| :--- | :--- | :--- | :--- |
| $\mu$ PD77230AR | Mask ROM | 68-pin ceramic PGA |
| $\mu$ PD77230AR-003 | Mask ROM <br> (Standard library) |  |
| $\mu$ PD77P230R | EPROM |  |

## Applications

- General-purpose digital filtering (FIR, IIR, FFT)
- High-speed data modems
- Adaptive equalization (CCITT)
- Echo cancelling
- High-speed controls
- Image processing
- Graphic transformations
- Instrumentation electronics
- Numerical processing
- Speech processing
- Sonar/radar signal processing
- Waveform generation

Floating-Point Performance Benchmarks

Second-order digital filter (biquad)	$0.9 \mu \mathrm{~s}$
32-tap finite impulse response filter	$5.25 \mu \mathrm{~s}$
Fast Fourier transform (FFT)	
32-point complex (radix 2)	0.15 ms
512-point complex FFT	4.7 ms
1024-point complex FFT	11.78 ms
4096-point complex FFT	69.51 ms
Square root	$6.0 \mu \mathrm{~s}$

## Pin Configuration

## 68-Pin Ceramic PGA

49-001663A

## Pin Identification

No.	Master	*Slave	No.	Master	*Slave
A2	$\mathrm{A}_{7}$		F10	$\mathrm{D}_{23}$	$\mathrm{l} / \mathrm{O}_{15}$
A3	$\mathrm{A}_{9}$		F11	NC (No connection)	
A4	$\mathrm{A}_{10}$		G1	$\mathrm{D}_{7}$	
A5	$A_{X}$		G2	$\mathrm{D}_{6}$	
A6	$\mathrm{D}_{8}$	$1 / \mathrm{O}_{0}$	G10	$\mathrm{D}_{24}$	HRD
A7	$\mathrm{D}_{10}$	$1 / \mathrm{O}_{2}$	G11	$\mathrm{D}_{25}$	HWR
A8	$\mathrm{D}_{11}$	$1 / \mathrm{O}_{3}$	H1	$\mathrm{D}_{5}$	
A9	$\mathrm{D}_{12}$	$1 / \mathrm{O}_{4}$	H2	$\mathrm{D}_{4}$	
A10	$\mathrm{D}_{15}$	$1 / \mathrm{O}_{7}$	H10	$\mathrm{D}_{26}$	$\overline{C S}$
B1	$\mathrm{A}_{6}$		H11	$\mathrm{D}_{27}$	RQM
B2	$\mathrm{A}_{5}$		J1	$\mathrm{D}_{3}$	
B3	$A_{8}$		J2	$\mathrm{D}_{2}$	
B4	GND		J10	$\mathrm{D}_{28}$	PC
B5	$\mathrm{A}_{11}$		J11	$\mathrm{D}_{29}$	P1
B6	$V_{D D}$		K1	D1	
B7	$\mathrm{D}_{9}$	$1 / \mathrm{O}_{1}$	K2	SORQ	
B8	GND		K3	SICK	
B9	$\mathrm{D}_{13}$	$1 / \mathrm{O}_{5}$	K4	$V_{D D}$	
B10	$\mathrm{D}_{14}$	$1 / \mathrm{O}_{6}$	K5	SOEN	
B11	$\mathrm{D}_{16}$	$1 / \mathrm{O}_{8}$	K6	GND	
C1	$\mathrm{A}_{4}$		K7	$\overline{W R}$	
C2	$\mathrm{A}_{3}$		K8	$V_{D D}$	
C10	$\mathrm{D}_{17}$	$1 / \mathrm{O}_{9}$	K9	X2	
C11	$\mathrm{D}_{18}$	$1 / O_{10}$	K10	$\mathrm{D}_{30}$	P2
D1	$\mathrm{A}_{2}$		K11	$\mathrm{D}_{31}$	P3
D2	$\mathrm{A}_{1}$		L2	$\mathrm{D}_{0}$	
D10	$\mathrm{D}_{19}$	$1 / O_{11}$	L3	sock	

Pin Identification (cont)

No.	Master	*Slave	No.	Master	*Slave
D 11	$\mathrm{D}_{20}$	$\mathrm{I} / \mathrm{O}_{12}$	L 4	SO	
E 1	$\mathrm{~A}_{0}$		L 5	SI	
E 2	$\mathrm{M} / \mathrm{S}$		L 6	$\overline{\mathrm{SIEN}}$	
E 10	$\mathrm{D}_{21}$	$\mathrm{I} / \mathrm{O}_{13}$	L 7	$\overline{\mathrm{RESET}}$	
E 11	D 22	$\mathrm{I} / \mathrm{O}_{14}$	L 8	$\overline{\mathrm{RD}}$	
F 1	$\overline{\mathrm{NT}}$		L 9	CLKOUT	
F 2	$\overline{\mathrm{NM1}}$		L 10	X 1	

* If not specified, slave-mode pins are the same in master-mode.

Pin Function Summary

Symbol	1/0	Function
$A_{0}-A_{11}$	0	Address bus to external memory
$A_{X}$	0	Highest bit of memory address
CLKOUT	0	Internal system clock
$\overline{\mathrm{CS}}$	1	Chip select
$\mathrm{D}_{0}-\mathrm{D}_{7}$	I/O*	Data bus for access to external memory in slave mode.
$\mathrm{D}_{0}-\mathrm{D}_{31}$	I/O*	Data bus for access to external memory (data or instruction) in master mode.
GND		Ground (Connect ground to all GND pins.)
$\overline{\text { HRD }}$	1	Host CPU read
HWR	1	Host CPU write
$\mathrm{l} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{15}$	1/O*	Port to host CPU data bus
$\overline{\text { INT }}$	1	Maskable interrupt
$\overline{\mathrm{NMI}}$	1	Nonmaskable interrupt
M/S	1	Operation mode select
P0, P1	1	General-purpose input port
P2, P3	0	General-purpose output port
$\overline{\mathrm{RD}}$	0	Controls data read from external memory
RESET	1	System reset
RQM	0	Data read/write request
SI	1	Serial input data
SICK	I/O	Clock for serial input data
SIEN	1	Serial input data enable
SO	O*	Serial output data
SOCK	1/O	Clock for serial output data
SOEN	1	Serial output data enable
SORQ	0	Serial output request
$\mathrm{V}_{\mathrm{DD}}$		+5 -volt power (Connect +5 V to all $\mathrm{V}_{\mathrm{DD}}$ pins.)
$\overline{\text { WR }}$	0	Controls data write to external memory
X1, X2	1	External clock (X1) or crystal (X1, X2)

[^5]
## PIN FUNCTIONS

Paragraphs below supplement the brief descriptions in the preceding table. Pin symbols are in alphabetical order within several master and slave mode categories.

## Master and Slave Modes

CLKOUT (System Clock). Outputs internal system clock. Output signal frequency is half the oscillation frequency of crystal connected across X 1 and X 2 pins.
INT (Maskable Interrupt). Inputs maskable interrupt signal, which is active-low and must be at least three system clock pulses wide. Interrupt signal is detected at falling edge. Interrupt address is 100 H .

M/S (Mode Select). Selects operation mode. Operation mode must not be switched during operation, however. Master = 0; slave $=1$.
$\overline{\text { NMI }}$ (Nonmaskable Interrupt). Inputs nonmaskable interrupt signal, which is active-low and must be at least three system clock pulses wide. Interrupt signal is detected at falling edge. Interrupt address is 10 H .
$\overline{\text { RESET }}$ (System Reset). Inputs internal system reset signal, which is active-low and must be at least three system clock pulses wide.
SI (Serial Input Data). Inputs serial data synchronized with falling edge of SICK.
SICK (Serial Input Clock). Inputs or outputs clock for serial input data. Serial data is internally latched at the falling edge of the clock that is input to or output from this pin. Whether the clock is to be input from an external source or the internal clock is to be output is determined by the status register setting.
$\overline{\text { SIEN }}$ (Serial Input Enable). Enables SI pin to input serial data. This pin is active-low.
SO (Serial Output Data). Outputs serial data synchronized with rising edge of SOCK pin. When inactive, this pin becomes high impedance.
SOCK (Serial Output Clock). Inputs or outputs clock for serial output data. The serial output data is synchronized with the clock that is input to or output from this pin. Whether the clock is to be input from an external source or the internal clock is to be output is determined by the status register setting.
$\overline{\text { SOEN }}$ (Serial Output Enable). Enables SO pin to output serial data. This pin is active-low.
SORQ (Serial Output Request). Outputs serial output request signal, which is active-high. When data is ready
in the serial output register, this signal becomes 1. It will become 0 after data has been output.
X1, X2 (External Clock). Connection to external oscillator crystal (X1, X2) or external clock (X1).

## Master Mode, External Memory Interface

$\mathrm{A}_{0}-\mathrm{A}_{11}$ (Address Bus). Address bus for access to external memory. When accessing external instruction memory, the lower 12 bits of the program counter are output to these pins. When accessing external data memory, the lower 12 bits of the external address register are output to these pins.
$A_{X}$ (Highest Address Bit). Outputs the highest bit of the memory address. When accessing external instruction memory, the highest bit of the program counter ( $\mathrm{PC}_{12}$ ) is output to this pin. When accessing external data memory, the highest bit of the external address
$=0$; low-speed memory area $=1$.
$D_{0}-D_{31}$ (Data Bus). These pins form a 32-bit, threestate data bus for external memory (data or instruction).
$\overline{\text { RD }}$ (Data Read). Controls data read from external memory. This signal becomes 0 after the output address is valid, and data is input at the rising edge to the data port formed by pins $D_{0}$ to $D_{31}$.
$\overline{W R}$ (Data Write). Controls data write to external memory. This signal becomes 0 after the output address is valid and data is output to the data port formed by pins $D_{0}$ to $D_{31}$.

## Slave Mode, External Memory Interface

$A_{0}-A_{11}$ (Address Bus). Address bus for accessing external memory. When accessing external data memory, the lower 12 bits of the external address register are output to these pins.
$A_{X}$ (Highest Address Bit). When accessing external data memory, the highest bit of the external address register is output to this pin. High-speed memory area $=0$; low-speed memory area $=1$.
$D_{0}-D_{7}$ (Data Bus). These pins form an 8-bit, threestate data bus for external data memory access. Data may be transferred in one of four formats (1-, 2-, $3-$, or 4-byte words), depending on the status register setting.
$\overline{R D}$ (Data Read). Controls data read from external memory. This signal becomes 0 after the output address is valid, and data is input at the rising edge to the data port formed by pins $D_{0}$ to $D_{7}$.

WR (Data Write). Controls data write to external memory. This signal becomes 0 after the output address is valid, and data is output to the data port formed by pins $D_{0}$ to $D_{7}$.

## Slave Mode, Host CPU Interface

$\overline{\mathrm{CS}}$ (Chip Select). Active-low chip select input signal. When this pin becomes 0 , the host CPU may perform read/write operations on the 16 -bit port formed by pins $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{15}$.
HRD (Host CPU Read). Active-low host read input signal. In conjunction with $\overline{\mathrm{CS}}$, this signal allows the host CPU to read data from the DRS register via the 16 -bit port formed by pins $I / O_{0}$ to $I / O_{15}$.
HWR (Host CPU Write). Active-low host write input signal. In conjunction with $\overline{C S}$, this signal allows the host CPU to write data into the DRS register via the 16-bit port formed by pins $\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{15}$.
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$ (Data Port). These pins form an I/O port to the host CPU bidirectional data bus. It is used for input to or output from the DRS register under control of host CPU signals $\overline{\mathrm{CS}}, \overline{\mathrm{HWR}}$, and $\overline{\mathrm{HRD}}$. Data transfer format can be specified in the status register as either a 16-bit or a 32-bit transfer.

RQM (Read/Write Request). Requests host CPU to read or write data via the host CPU data bus.

## Slave Mode, I/O Port

P0, P1 (Input Port). These pins form a general-purpose input port. Status of either of these pins may be tested by a conditional branch instruction.

P2, P3 (Output Port). These pins form a generalpurpose output port. Data output by these pins can be set directly by an instruction and will be retained until explicitly changed.

## FUNCTIONAL DESCRIPTION

Figure 1 is the functional block diagram of the $\mu$ PD77230 in its master mode configuration. The main internal bus ( 32 bits) ties together all the functional blocks of the $\mu$ PD77230, including the ALU area. The 55 -bit processing unit (PU) bus links the ALU input to the 55 -bit multiplier output register and the eight 55 -bit working registers. Thus, the full 55 bits of precision can be maintained during extensive calculations.
In addition to the main bus and the PU bus, there is a sub-bus linking each of the two RAM areas to both the ALU input and the multiplier input registers. This allows simultaneous loading of the multiplier input registers in
parallel with ALU operations and in parallel with data transfer operations, which make use of the main bus. There is a sub-bus connecting the ALU input to the 55 -bit multiplier output and another sub-bus that can route the working registers' contents back to the ALU input.

## Architecture

The $\mu$ PD77230 has a Harvard architecture with separate memory areas for program storage and data storage as well as separate multiple buses. A threestage instruction execution pipelining scheme performs instruction fetch and execution in parallel. All instructions are executed in a single cycle, even if the instruction is stored in the exernal instruction memory expansion area.

## Instruction Memory

The $\mu$ PD77230 has an internal instruction ROM that holds 2 K 32 -bit instruction words. An additional 4 K word external memory expansion is also available. A 13 -bit program counter (PC) contains the current instruction address; the most significant bit of the PC determines whether on-chip or external instructions are to be fetched. An eight-level stack holds subroutine and interrupt return addresses, and it is accessible to/from the main internal bus.

## Data Memory

The data ROM area on the $\mu$ PD77230 holds 1 K 32 -bit words. The ROM pointer (RP) contains the current ROM address, which can also be specified within an instruction field. The ROM pointer has auto-increment and auto-decrement features and an add $2^{n}$ to the RP option.

There are two separate and independently addressable data RAM areas, each 512 words by 32 bits. Each RAM area can be addressed by a base register, an index register, or the sum of the two. The base register and/or the index register may be incremented, decremented, or cleared. In addition, the base pointer can operate in a modulo count mode, and the index register contents may be replaced by the sum of the index and base registers.

Data memory may be expanded by the addition of 8 K words of external memory. External data memory is divided into a high-speed half, which is accessed in two instruction cycles, and a low-speed half, which is accessed in four instruction cycles. Both high-speed and low-speed memory accesses occur in parallel with normal program execution.

## Multiplier and ALU

The floating-point multiplier has two 32-bit input registers, called the K and L registers, which are accessible both to and from the main bus. The multiplier produces the 55 -bit product of the K and L register contents automatically in a single instruction cycle (there is no multiply instruction). The 55 -bit result is stored in the M register in 8 -bit exponent, 47-bit mantissa format. The contents of the M register can be transferred to the main bus ( 32 bits) or to the ALU via the processing unit bus ( 55 bits). The multiplier con sists of a 24 - by 24 -bit fixed-point multiplier and an exponent adder, so that it can also be used for fixed-point multiplications.

The 55 -bit floating-point ALU is capable of a full set of arithmetic and logical operations (see Instruction Set section). There is a 47-bit bidirectional barrel shifter, which can perform general-purpose shifting in addition to the mantissa alignments required for floatingpoint arithmetic. A separate exponent ALU (EAU) determines shift values in floating-point work. The ALU status is reflected in one of two identical processor status words (PSW) that contain carry, zero, sign, and overflow flags. The results of the ALU operation are stored in one of eight 55 -bit accumulators or '"working registers."
There are two 55 -bit input registers to the ALU called the $P$ register and the $Q$ register. The $Q$ register input is selected from one of the eight working registers, while the P register input is selected from among the 32-bit main bus, data RAM 0 , data RAM 1, and the 55 -bit $M$ register.
A loop counter is included in the design of the $\mu$ PD77230. This loop counter is a 10 -bit register, attached to the main bus, which can be decremented by a control bit built into an ordinary ALU instruction. When the loop counter is decremented to zero, the instruction following the one that decremented it will be skipped.

## System Control

The master system clock may be provided to the $\mu$ PD77230 via either an external crystal or an already available clock signal. The internal clock of the $\mu$ PD77230 contains two phases and is obtained by dividing the master clock frequency by 2 . If desired, the serial input and output clocks can be derived from the master clock by dividing it by 8 .
Both a maskable and nonmaskable interrupt are available in the $\mu$ PD77230. The maskable interrupt can be "memorized," so that if an interrupt occurs while it is in the interrupt disabled condition, then it may be acted
upon (or disregarded) at a later time. The status of the interrupts and other aspects of the $\mu$ PD77230 are determined by or reflected in the 20 -bit status register.

## Serial I/O

The serial input and output circuitry in the $\mu$ PD77230 is designed for easy interfacing to codecs and other $\mu$ PD77230s. The input and output circuits are independently clocked by either an internal clock or an external clock up to 4 MHz . The length of the serial input and output data words can be independently programmed to be $8,16,24$, or 32 bits.

The parallel I/O capabilities in the $\mu$ PD77230 can be used for external instruction and data memory expansion and for interaction with a host processor. The difference between master mode and slave mode operation must be defined to further discuss the nature of the parallel interface in the $\mu$ PD77230.

## Master/Slave Modes

The master mode parallel interface is shown in figure 1. In this mode, the $\mu$ PD77230 is intended to act as a standalone processor with the parallel interface allowing access to external memory, memory-mapped I/O devices, and/or a system-level bus. Master mode operation allows for external instruction memory expansion and external data memory expansion. There is an 8 K external memory space. The lower 4 K can be shared between instructions and data, while the upper 4 K can be used for data only.

The slave mode parallel interface is shown in figure 2. In this mode, the $\mu$ PD77230 is a ''peripheral" to a host processor. The full 8K external memory space is available for data memory expansion, but instruction memory expansion is not allowed in slave mode. The 8 -bit external data bus is used to assemble words in the data register (DR), which can be $8,16,24$, or 32 bits wide. Communication with the host occurs across the 16 -bit host data bus. Word lengths of 16 or 32 bits can be transferred between the $\mu$ PD77230 and the host. Four pins can be used in slave mode as generalpurpose I/O ports: two input pins and two output pins.
Figure 3 shows the functional pin groups in master mode and slave mode.

Figure 1. Master Mode Block Diagram


Figure 2. Slave Mode Block Diagram


Figure 3. Functional Pin Groups


## INSTRUCTION SET

All $\mu$ PD77230 instructions consist of a single 32-bit word. Figure 4 shows the bit format for the three basic types of instructions.

## OP Type Instruction

This is an ALU operation instruction where 26 different operations may be specified in the upper five bits (figure 4). Pointer modifications may be specified in the CNT field. Transfers may also be specified within an OP instruction by use of the SRC and DST fields. When all fields are specified in an OP instruction, several different tasks are performed at once. The high five bits make up the OP field, summarized in table 1.

Table 2 summarizes the effect on bits in the PSW resulting from ALU operations.

## Control Field (CNT)

This 12-bit field contains specifications for control modes and pointer modifications. Figure 5 summarizes the bit field format, table 3 summarizes the function of CNT field groups, and table 4 summarizes the function of each mnemonic within the 23 groups. Table 5 shows the possible combinations of control field instructions according to the 15 lines in the table on figure 5 ; for example, case 1 includes the MO, M1, DPO, and DP1 instructions.

Figure 4. Instruction Type Formats
A. OP Type Instruction

B. Branch Type Instruction

C. Load Type Instruction

31	29	28	5
LDI $[3]$	$I M[24]$	5	0

$\mu$ PD77230A, 77P230

Table 1. OP Field Specifications

Mnemonic	OP Field (31-27)	Operation
NOP	00000	No operation
INC	00001	Increment
DEC	00010	Decrement
ABS	00011	Absolute value
NOT	00100	Not-one's complement
NEG	00101	Negate-two's complement
SHLC	00110	Shift left with carry
SHRC	00111	Shift right with carry
ROL	01000	Rotate left
ROR	01001	Rotate right
SHLM	01010	Shift left multiple
SHRM	01011	Shift right multiple
SHRAM	01100	Shift right arithmetic multiple
CLR	01101	Clear
NORM	01110	Normalize
CVT	01111	Convert floating point format
ADD	10000	Fixed-point add
SUB	10001	Fixed-point subtract
ADDC	10010	Fixed-point add with carry
SUBC	10011	Fixed-point subtract with borrow
CMP	10100	Compare (floating-point)
AND	10101	Logical AND
OR	10110	Logical OR
XOR	10111	Logical exclusive OR
ADDF	11000	Floating-point add
SUBF	11001	Floating-point subtract

Table 2. Effects of ALU Operations on PSW Flags

	Contents of PSW				
ALU Operation	OVFE	C	$\mathbf{z}$	$\mathbf{S}$	OVFM
NOP	$*$	$*$	$*$	$*$	$*$
INC	$*$	$\$$	$\$$	$\$$	$\$$
DEC	$*$	$\$$	$\$$	$\$$	$\$$
ABS	$*$	$\$$	$\$$	0	$\$+$
NOT	$*$	0	$\$$	$\$$	0
NEG	$*$	$\$$	$\$$	$\$$	$\$+$
SHLC	$*$	$\$$	$\$$	$\$$	0
SHRC	$*$	$\$$	$\$$	$\$$	0
ROL	$*$	0	$*$	$\$$	0
ROR	$*$	0	$*$	$\$$	0
SHLM	$*$	0	$\$$	$\$$	0

Table 2. Effects of ALU Operations on PSW Flags (cont)

	Contents of PSW				
ALU Operation	OVFE	C	$\mathbf{z}$	$\mathbf{S}$	OVFM
SHRM	$*$	0	$\$$	$\$$	0
SHRAM	$*$	0	$\$$	$\$$	0
CLR	0	0	1	0	0
NORM (NORM.)	$\$$	0	$\$$	$\$$	0
(ROUNDING)	$\$$	$\$$	$\$$	$\$$	$\$$
(FLT-FIX)	$*$	0	$\$$	$\$$	$\$$
(FIX M.A.)	$*$	0	$\$$	$\$$	$\$$
CVT	x	0	$\$$	$\$$	0
ADD	$*$	$\$$	$\$$	$\$$	$\$$
SUB	$*$	$\$$	$\$$	$\$$	$\$$
ADDC	$*$	$\$$	$\$$	$\$$	$\$$
SUBC	$*$	$\$$	$\$$	$\$$	$\$$

Table 3. Control Field Function Summary

Group	Field	Function	Effective
Interrupt	EM, BM	Enable and disable maskable interrupt, and control interrupt memorization.	$\rightarrow$
PSW	FIS	PSW control (select and clear)	*
	FC	Select other PSW	*
Data ROM poiner	RP	Controls ROM pointer operation	$\rightarrow$
	RPC	Specifies $n$ value for special manipulation of ROM pointer	$\rightarrow$
	RPS	Specifies 9 lower bits of data ROM address	$\rightarrow$
Data RAMO and RAM1 pointers	Mo	Specifies RAMO addressing mode	$\rightarrow$
	M1	Specifies RAM1 addressing mode	$\rightarrow$
	DPO	Controls modification of base pointer 0 and index register 0	$\rightarrow$
	DP1	Controls modification of base pointer 1 and index register 1	$\rightarrow$
	BASEO	Specifies counter length of modulo count operation of base pointer 0	$\rightarrow$
	BASE1	Specifies counter length of modulo count operation of base pointer 1	$\rightarrow$
Data format conversion	FD	Controls conversion mode for floating point CVT.	*
	WI	Controls transfer format when working register is specified in DST field.	$\rightarrow$
	WT	Controls transfer format when working register is specified in SRC field.	$\rightarrow$
Normalization NF specification		Specifies normalization, normalization with rounding, floating-point to fixed-point conversion, or digit alignment.	*
Shift specification	SHV	Controls amount of shift for 47bit mantissa	*
Data memory access	RW	Specifies read/write operation for external memory.	*
	EA	Increments or decrements external address register	*
Generalpurpose output port	P2	Controls state of P2 pin	$\rightarrow$
	P3	Controls state of P3 pin	$\rightarrow$
Loop. counter	L	Decrements loop counter	$\rightarrow$
Jump	NAL	Specifies unconditional local jump address	*

* Effective starting with current instruction.
$\rightarrow$ Effective starting with next instruction.
Table 4. Control Field Mnemonic Summary

Operation	Mnemonic		Code
EM, BM Field (19-17)			
Maskable interrupt	EM	BM	
No operation	(NOP)	(NOP)	000
Clear booking flag	(NOP)	CLRBM	001
Set booking flag	(NOP)	SETBM	010
Interrupt disabled	DI	(NOP)	011
Interrupt enabled	EI	(NOP)	100
Interrupt enabled and   clear booking flag	EI	CLRM	101
Interrupt enabled and set   booking flag	EI	SETBM	110
Use prohibited	-	-	111
* Default: interrupt disabled and clear booking flag.   * Writing (NOP) is not necessary, just useful for remembering the   available combinations and their effects.			

## FIS Field (21-19)

Flag initialize and select

No operation	(NOP)	000
Specify PSW 0 for   operation (default)	SPCPSW0	001
Specify PSW 1 for   operation	SPCPSW1	010
Clear PSW 0	CLRPSW0	100
Clear PSW 1	CLRPSW1	101
Clear PSW 0 and PSW 1	CLRPSW	110
FC Bit (15)		

Flag change operation

No operation	(NOP)	0
Exchange PSW for   operation	XCHPSW	1

RP Field $(22,21)$
ROM pointer modification

No operation	(NOP)	00
Increment ROM pointer	INCRP	01
Decrement ROM pointer	DECRP	10
Increment specified	INCBRP	11

bit of ROM pointer (that
is, add $2^{N}$ )

## RPC Field (21-18)

Specify N for adding $2^{\mathrm{N}}$ to BITRP imm (imm)B ROM pointer *imm $(=n)$ is
0 through 9

## Table 4. Control Field Mnemonic Summary (cont)

(COnt)	Mnemonic	Code
Operation		
RPS Field (23-15)	(imm)B	
Specify immediate ROM   address *0 $\leq$ imm $\leq 511$	SPCRA imm	
MO Field		00
Specify RAM pointer		01
No change in specification	(NON)	10
Base pointer 0	SPCBPO	11
Index register 0	SPCIXO	
Base pointer O + index   register 0 (default)	SPCBIO	

## M1 Field

Specify RAM pointer

No change in specification	(NON)	00
Base pointer 1	SPCBP1	01
Index register 1	SPCIX1	10
Base pointer 1 + index   register 1 (default)	SPCBI1	11

## DPO Field

Pointer modification operation		
No operation	(NOP)	000
Increment base pointer 0	INCBPO	001
Decrement base pointer 0	DECBPO	010
Clear base pointer 0	CLRBPO	011
Store base + index to   index register 0	STIXO	100
Increment index register 0	INCIXO	101
Decrement index register   0	DECIXO	110
Clear index register 0	CLRIXO	111

DP1 Field

Pointer modification operation		
No operation	(NOP)	000
Increment base pointer 1	INCBP1	001
Decrement base pointer 1	DECBP1	010
Clear base pointer 1	CLRBP1	011
Store base + index to   index register 1	STIX1	100
Increment index register 1	INCIX1	101
Decrement index register   1	DECIX1	110
Clear index register 1	CLRIX1	111

BASEO Field (21-19)

Operation	Mnemonic	Code
Specify modulo count number ( $2^{N}$ ) for incrementing base pointer 0	MCNBPO imm	(imm) B
*imm ( $=\mathrm{n}$ ) is 1 through 7; 0 specifies ordinary count		
BASE1 Field (18-16)		
Specify modulo count number ( $2^{N}$ ) for incrementing base pointer 1	MCNBP1 imm	(imm) B
*imm ( $=\mathrm{n}$ ) is 1 through 7; 0 specifies ordinary count		
FD Field		
Data conversion format specification		
No change of specification	(NON)	00
Conversion of ASP format to IEEE format (default)	SPIE	01
Conversion of IEEE format to ASP format	IESP	10
Use prohibited		11
WI Field (18, 17)		
Specification of transfer format when data is moved from IB to WR		
No change of specification	(NON)	00
Transfer low 24 bits of mantissa to high 24 bits	BWRL24	01
Ordinary transfer (default)	BWRORD	10
Use prohibited		11
WT Field (21-19)		
Specification of transfer format when data is moved from WR to IB		
No change of specification	(NON)	000
Ordinary transfer (default)	WRBORD	001
Low 24 bits of mantissa to high 24	WRBL24	010
Low 23 bits (bit $23=0$ ) to high 24	WRBL23	011
Exponent part to mantissa low 8 bits	WRBEL8	100
Mantissa low 8 bits to exponent part	WRBL8E	101
Exchange high 8 bits of mantissa with low 8 bits of mantissa	WRBXCH	110
Bit reverse entire mantissa	WRBBRV	111
NF Field (21-19)		
Normalization format specification		
No change of specification	(NON)	000
Truncating normalization (default)	TRNORM	010

Table 4. Control Field Mnemonic Summary (cont)

Operation	Mnemonic	Code
Rounding normalization	RDNORM	100
Convert floating-point to   fixed-point	FLTFIX	110
Fixed-point multiple   alignment (multiple value   is in SVR)	FIXMA	111

## SHV Field (21-15)

Set shift value to SVR

imm bits left shift   (default)	SETSVL imm	0 (imm)B
imm bits right shift	SETSVR imm	1 (imm)B
$* 0 \leq \mathrm{imm} \leq 46$		

RW Field $(21,20)$

Operation for external data memory		
No operation	(NOP)	00
Read	RD	01
Write	WR	10
Use prohibited		11

EA Field (22, 21)
Operation for external address register

No operation	(NOP)	00
Increment external   address register	INCAR	01


Operation	Mnemonic	Code
Decrement external   address register	DECAR	10
Use prohibited		11
P2 Bit (20)		
P2 pin control (slave mode only)		
Clear output port pin 2	CLRP2	0
Set output port pin 2	SETP2	1
P3 Bit (21)		
P3 pin control (slave mode only)		
Clear output port pin 3	CLRP3	0
Set output port pin 3	SETP3	1
LBit (16)		
Loop counter operation		0
No operation	(NOP)	1
Decrement loop counter	DECLC	

NAL Bit (23-15)
Local branch; jump to imm JBLK imm (imm)B address in local block

* $\leq \mathrm{imm} \leq 511$

Table 5. Control Field Instruction Combinations

Case 1	SPCBPO SPCIXO SPCBIO	SPCBP1 SPCIX1 SPCB11	INCBPO   DECBPO   STIXO   INCIXO   DECIXO   CLRIXO	INCBP1 DECBP1 CLRBP1 STIX1 INCIX1 DECIX1 CLRIX1
Case 2	INCAR DECAR	INCBPO   DECBPO   CLRBPO   stixo   INCIXO   DECIXO   CLRIXO		
Case 3	INCRP DECRP INCBRP	SPCBPO SPCIXO SPCBIO	INCBPO DECBPO   CLRBPO STIXO INCIXO DECIXO CLRIXO	XCHPSW

Table 5. Control Field Instruction Combinations (cont)

Case 4	INCRP DECRP INCBRP	SPCBP1   SPCIX1   SPCBI1	INCBP1 DECBP1   CLRBP1   STIX1   INCIX1   DECIX1   CLRIX1	XCHPSW		
Case 5	INCRP DECRP INCBRP	SPCBPO   SPCIXO   SPCBIO	SPCBP1   SPCIX1   SPCBI1	DECLC	XCHPSW	
Case 6	MCNBPO imm	MCNBP1 imm	XCHPSW			
Case 7	BITRP imm	DECLC	XCHPSW			
Case 8	CLRP2 SETP2	CLRP3 SETP3	$\begin{aligned} & \mathrm{El} \\ & \mathrm{DI} \end{aligned}$	CLRBM SETBM	DECLC	XCHPSW
Case 9	$\begin{aligned} & \text { RD } \\ & \text { SR } \end{aligned}$	DECLC	XCHPSW			
Case 10	WRBORD   WRBL24   WRBL23   WRBEL8   WRBL8E   WRBXCH   WRBBRV	DECLC	XCHPSW			
Case 11	TRNORM RDNORM FLTFIX FIXMA	BWRL24 BWRORD	DECLC	XCHPSW		
Case 12	SPCPSWO   SPCPSW1   CLRPSWO   CLRPSW1   CLRPSW	$\begin{aligned} & \text { SPIE } \\ & \text { IESP } \end{aligned}$	DECLC			
Case 13	SETSVL imm SETSVR imm					
Case 14	SPCRA imm					
Case 15	JBLK imm					

## P Field

The two-bit $P$ field specifies the source of input to the $P$ register, which is used as an input to the ALU for operations requiring two operands. See table 6.

Table 6. P Field Specifications

Mnemonic	P Field $(14, \mathbf{1 3 )}$	Input of P Register
IB	00	Internal bus
M	01	Multiplier output register
RAMO	10	RAM block 0
RAM1	11	RAM block 1

## Q Field

The three-bit Q field specifies the source of input to the $Q$ register, which is the other of two ALU input registers. See table 7.

Table 7. Q Field Specifications

Mnemonic	Q Field (12-10)	Register
WR0	000	Working register 0
WR1	001	Working register 1
WR2	010	Working register 2
WR3	011	Working register 3
WR4	100	Working register 4
WR5	101	Working register 5
WR6	110	Working register 6
WR7	111	Working register 7

## Source Field

Table 8 lists 32 source registers that may be specified in the source field.

## Destination Field

Table 9 lists 32 destinations that may be specified in the DST field. Note that the LKRO and KLR1 specifications will simultaneously load both the $K$ and $L$ registers as destinations.

## Branch Instruction

The branch instruction type is used for a jump, conditional jump, call, or return. The format of the branch instruction is shown in figure 4. The destination address of the branch is contained in the 13-bit NA field. Note that the most significant bit of the NA field is used to determine whether the destination address is in internal or external instruction memory. The five-bit C field summarized in table 10 determines the nature of the branch.

Note also that an SRC and DST may be included as part of the branch instruction. This data transfer will take place regardless of any condition upon which a jump may be dependent.

## LDI Instuction

Figure 4 shows the format of the LDI instruction type. The 24-bit IM (immediate) field contains the data that will be loaded into the register specified by the DST field. It is also possible to load a 32-bit floating-point number using this instruction in conjunction with the TRE destination field specification.

Table 8. SRC Field Specifications

Mremonic	SRC Field (9-5)	Selected Source Register
NON	00000	No source selected
RP	00001	ROM pointer
PSW0	00010	Program status word 0
PSW1	00011	Program status word 1
SVR	00100	SVR (shift value register)
SR	00101	Status register
LC	00110	Loop counter
STK	00111	Top of stack
M	01000	M register (multiplier output)
ML	01001	Low 24 bits of M register
ROM	01010	Data ROM output
TR	01011	Temporary register
AR	01100	External address register
SI	01101	Serial input register
DR	01110	Data register
DRS	01111	Data register for slave
WR0	10000	Working register 0
WR1	10001	Working register 1
WR2	10010	Working register 2
WR3	10011	Working register 3
WR4	10100	Working register 4
WR5	10101	Working register 5
WR6	10110	Working register 6
WR7	10111	Working register 7
RAM0	11000	RAM block 0
RAM1	11001	RAM block 1
BPO	11010	Base pointer 0
BP1	11011	Base pointer 1
X0	11100	Index register 0
X1	11101	Index register 1

Table 9. DST Field Specifications

Mnemonic	DST Field (4-0)	Selected Destination Register
NON	00000	No destination selected
RP	00001	ROM pointer
PSWO	00010	Program status word 0
PSW1	00011	Program status word 1
SVR	00100	SVR (shift value register)
SR	00101	Status register
LC	00110	Loop counter
STK	00111	Top oi _rack
LKRO	01000	$L$ register (RAM 0 to $K$ register)
KLR1	01001	K register (RAM 1 to L register)
TRE	01010	Exponent part of temporary register
TR	01011	Temporary register
AR	01100	External address register
SO	01101	Serial output register
DR	01110	Data register
DRS	01111	Data register for slave
WRO	10000	Working register 0
WR1	10001	Working register 1
WR2	10010	Working register 2
WR3	10011	Working register 3
WR4	10100	Working register 4
WR5	10101	Working register 5
WR6	10110	Working register 6
WR7	10111	Working register 7
RAMO	11000	RAM block 0
RAM1	11001	RAM block 1
BPO	11010	Base pointer 0
BP1	11011	Base pointer 1
1X0	11100	Index register 0
IX1	11101	Index register 1
K	11110	K register
L	11111	L register

Table 10. Branch Condition Summary (C Field)

Mnemonic	C Field (14-10)	Jump with Condition
JMP	00000	Jump unconditionally
CALL	00001	Subroutine call
RET	00010	Return from interrupt or subroutine
JNZRP	00011	Jump if ROM pointer not zero
JZO	00100	Jump if zero flag 0 is set
JNZO	00101	Jump if zero flag 0 is reset
JZ1	00110	Jump if zero flag 1 is set
JNZ1	00111	Jump if zero flag 1 is reset
JCO	01000	Jump if carry flag 0 is set
JNCO	01001	Jump if carry flag 0 is reset
JC1	01010	Jump if carry flag 1 is set
JNC1	01011	Jump if carry flag 1 is reset
JSO	01100	Jump if sign flag 0 is set
JNSO	01101	Jump if sign flag 0 is reset
JS1	01110	Jump if sign flag 1 is set
JNS1	01111	Jump if sign flag 1 is reset
JVO	10000	Jump if overflow flag 0 is set
JNVO	10001	Jump if overflow flag 0 is reset
JV1	10010	Jump if overflow flag 1 is set
JNV1	10011	Jump if overflow flag 1 is reset
JEVO	10100	Jump if exponent overflow flag 0 is set
JEV1	10101	Jump if exponent overflow flag 1 is set
JNFSI	10110	Jump if SI register is not full
JNESO	10111	Jump if SO register is not empty
JIPO	11000	Jump if input port 0 is on
JIP1	11001	Jump if input port 1 is on
JNZIXO	11010	Jump if index register 0 nonzero
JNZIX1	11011	Jump if index register 1 nonzero
JNZBPO	11100	Jump if base pointer 0 nonzero
JNZBP1	11101	Jump if base pointer 1 nonzero
JRDY	11110	Jump if ready is on
JROM	11111	Jump if request for master is on

## SYSTEM CONFIGURATIONS

The $\mu$ PD77230 may be configured in a variety of ways, from simple to complex systems. Figure 6 is the simplest example showing the $\mu$ PD77230 as a standalone processor performing a preset filtering function. The only other devices needed are A/D and D/A converters, which can be a single-chip combo device as shown in the figure plus necessary clock and timing circuitry. Figure 7 shows the same standalone operation with external memory and memory-mapped $1 / O$ to implement various control functions along with processing the signal itself.

Figure 6. Standalone $\mu$ PD77230 With Codec


Figure 7. Standalone $\mu$ PD77230 With Codec, External Memory, and I/O


Figure 8 shows a $\mu$ PD77230 in a slave mode as a peripheral to a host processor. Note that in slave mode, the $\mu$ PD77230 can still be the "master" of its local bus with the four general-purpose I/O pins available for use.
Figure 9 shows how to cascade multiple $\mu$ PD77230s to increase system throughput. The cascading is done by using only the serial ports so that the $\mu$ PD77230s themselves can be in any mode of operation desired. For example, they may all be in master mode, they may all be slaves to the same host processor, they may all be slaves to different hosts, or one may be the master with the others as slaves to it.

Figure 8. Slave $\mu$ PD77230 as Peripheral to Host Processor


Figure 9. $\mu$ PD77230s Cascaded Through Serial I/O Ports


Figure 10. Large System With Many Options


Figure 10 shows an arbitrarily large system with cascading master mode and slave mode $\mu$ PD77230s. In this example, the master $\mu$ PD77230 might do little actual signal processing. Instead, it will be an overall system controller gathering information from inputs in
the I/O block, from the slave $\mu$ PD77230 I/O ports, and from its own processing of the signal. It will then control the other $\mu$ PD77230s and the system outputs of the I/O block.

## SUPPORT TOOLS

The $\mu$ PD77230 has a wide variety of development and software support tools. Both absolute and relocatable assemblers, with powerful pre-assembler options, are available. In addition, a software simulator and incircuit emulator will aid the designer in performance evaluation and hardware integration. The software tools options are as follows:

- Assembler: MS-DOS ${ }^{\circledR}, \mathrm{CP} / \mathrm{M}^{\circledR-86}, \mathrm{VAX}^{\circledR} / \mathrm{VMS}$ ®, VAX/ UNIX ${ }^{\circledR}$
- Simulator: VAX/VMS, VAX/UNIX


## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 to +6.5 V
Voltage on any input pin, $\mathrm{V}_{\mathrm{l}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Voltage on any output pin, $\mathrm{V}_{\mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ}$

Note: Voltages are with respect to ground.

## Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	4.75	5.0	5.25	V
Low-level input   voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		0.8	V
High-level input   voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Low-level X1 input   voltage	$\mathrm{V}_{\mathrm{ILX}}$	-0.3		0.5	V
High-level X1 input   voltage	$\mathrm{V}_{\mathrm{IHX}}$	3.9		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Operating free-air   temperature	TOPT	-10	25	70	${ }^{\circ} \mathrm{C}$

## Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input   capacitance	$\mathrm{C}_{\mathrm{IN}}$		10	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	
Output   capacitance $\mathrm{C}_{\text {OUT }}$  20 pF						

MS-DOS is a registered trademark of Microsoft Corporation.
CP/M is a registered trademark of Digital Research, Incorporated.
VAX and VMS are registered trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Incorporated.

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Low-level output voltage	VOL			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} 0.7 \\ \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Low-level input current	IIL			-400	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { RESET, SICK, } \\ & \text { SOCK } \end{aligned}$
High-level input current	$\mathrm{IIH}^{\text {H}}$			400	$\mu \mathrm{A}$	$\frac{V_{I N}}{M / S}=V_{D D} ;$
Low-level input leak current	LIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text {, }$ SICK, SOCK
High-level input leak current	$\mathrm{L}_{\text {LIH }}$			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{D D}, \\ & \text { except } \frac{M / S}{} \end{aligned}$
Low-level output leak current	Lol			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
High-level output leak current	L LOH			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
X1 input current	$\mathrm{I}_{\mathrm{X} 1}$			400	$\mu \mathrm{A}$	External clock input
Supply current	$\mathrm{I}_{\mathrm{DD}}$		200	300	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CrX}}=13.3333 \\ & \mathrm{MHz} \end{aligned}$

Clock Timing
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Parameter Symbol Min Typ Max Unit Conditions
Internal Clock

| Input clock <br> frequency | $\mathrm{f}_{\mathrm{CYX}}$ | 1 | 13.3333 | 13.513 MHz |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 1, \mathrm{C} 2$ <br> capacitance |  | 15 | pF |  |

## External Clock

X1 cycle time	${ }_{t}$ CYX	74	75	1000	ns	
X1 high pulse width	${ }^{\text {tXXH }}$	27			ns	Measured at 1.0 V and 3.0 V
X1 low pulse width	${ }^{t} \times X L$	27			ns	
X1 rise time	$t^{\prime} \mathrm{XR}$			10	ns	
X1 fall time	${ }^{t} \times \mathrm{F}$			10	ns	
SICK, SOCK cycle time	${ }^{\text {t CYS }}$	242	244		ns	
SICK, SOCK high pulse width	$t_{\text {SSH }}$	101			ns	.
SICK, SOCK low pulse width	$t_{\text {SSL }}$	101			ns	
SICK, SOCK rise time	${ }^{t} \mathrm{SR}$			20	ns	

## Clock Timing (cont)

Parameter	Symbol Min	Typ	Max	Unit Conditions
SICK, SOCK   fall time	tsF		20	ns


Switching			
$\mathrm{X} 1 \uparrow \rightarrow$	50	ns	
CLKOUT delay			
time			
Xit			


X1 $\uparrow \rightarrow$	$t_{H X C}$	0	ns
CLKOUT hold   time			


SCK cycle time	${ }^{t} \mathrm{Crs}$	${ }^{8 t} \mathrm{CrX}$		ns
SCK high pulse width	${ }_{\text {tSSH}}$	$\begin{array}{r} 4 \mathrm{t} \\ { }_{-65} \end{array}$		ns
SCK low pulse width	$t_{\text {SSL }}$	$\begin{gathered} 4 \mathrm{t} \mathrm{CYK} \\ -65 \end{gathered}$		ns
SCK rise time	$t_{\text {SR }}$		20	ns
SCK fall time	$\mathrm{t}_{\text {SF }}$		20	ns
$S 1 \rightarrow S C K \uparrow$   delay time	${ }^{\text {t }}$ DKS	10	120	ns

## Clock Circuits



## External Memory Access Timing

| $\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |
| :--- | :--- | :--- | :--- |
| Parameter Symbol Min Max Unit $\quad$ Conditions |

Setup and Hold

Data setup time for address	$t_{\text {SADI }}$		$\begin{gathered} 2 t_{\mathrm{CYx}} \\ -95 \end{gathered}$	ns	Instruction read
Data setup time for $\overline{R D}$	$t_{\text {SRDI }}$		$\begin{gathered} 2 \mathrm{t} \mathrm{CYx} \\ -35 \end{gathered}$	ns	
Data hold time for $\overline{R D}$	$\mathrm{t}_{\mathrm{HRDI}}$	0		ns	
Data setup time for address	$t_{\text {SAD1 }}$		$\begin{gathered} 4 t \text { CYX } \\ -135 \end{gathered}$	ns	High-speed
	$t_{\text {SAD2 }}$		8 C CYX $-135$	ns	Low-speed
Data hold time for $\overline{R D}$	$t_{\text {HRD }}$	0		ns	


$\begin{aligned} & \mathrm{X} 1 \uparrow \rightarrow \overline{\mathrm{RD}}_{\text {delay time }} \end{aligned}$	$t_{\text {DXRD }}$		70	ns	
$\overline{\mathrm{X} 1 \uparrow \rightarrow \overline{\mathrm{WR}}}$   delay time	$t_{\text {DXWR }}$		70	ns	
Address setup time for $\overline{R D}$	tsAR	$\mathrm{t}_{\mathrm{CYK}}{ }^{\text {60 }}$		ns	
Address hold time for $\overline{R D}$	$t_{\text {HRA }}$	5		ns	
$\overline{\overline{R D}}$ pulse width	${ }^{\text {twRI }}$	$t_{\text {cyx }}{ }^{-30}$		ns	Instruction read
	tWR1	${ }^{31} \mathrm{CYYK}^{-30}$		ns	High-speed
	$t_{\text {WR2 }}$	$7 \mathrm{t}_{\mathrm{CYX}}-30$		ns	Low-speed
Address setup time for $\overline{W R}$	${ }^{\text {tsAW }}$	${ }^{\text {t }} \mathrm{CYX}$-55		ns	
Address hold time for $\overline{W R}$	$t_{\text {HWA }}$	5		ns	
$\overline{\text { WR }}$ pulse width	$t_{\text {WW1 }}$	${ }^{31} \mathrm{CYKK}^{-50}$		ns	High-speed
	twW2	$7 \mathrm{t}_{\text {cYK }}-50$		ns	Low-speed
Data setup time for $\overline{W R}$	tsDW1	$3 \mathrm{t}_{\mathrm{CYX}}{ }^{\text {-100 }}$		ns	High-speed
	$t_{\text {SDW2 }}$	$7 \mathrm{t}_{\mathrm{CYX}}-100$		ns	Low-speed
$\overline{\mathrm{WR}} \downarrow \rightarrow$ data delay time	t DWD	0		ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data float time	$t_{\text {FWD }}$	10	50	ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ recovery time	$t_{\text {RV }}$	${ }^{\text {t }} \mathrm{CrX}^{-35}$		ns	


Parameter	Symbol	Min	Max	Unit
Setup and Hold				
$\overline{\overline{\mathrm{CS}}}$ setup time for HRD	${ }^{\text {tSCR }}$	0		ns
$\overline{\mathrm{CS}}$ hold time for $\overline{\mathrm{HRD}}$	${ }^{\text {thRC }}$	0		ns
$\overline{\text { HRD pulse width }}$	$t_{\text {WHRD }}$	150		ns
$\overline{\mathrm{CS}}$ setup time for HWR	tscw	0		ns
$\overline{\text { CS }}$ hold time for $\overline{\text { HWR }}$	$\mathrm{t}_{\mathrm{HWC}}$	0		ns
HWR pulse width	twhwn	150		ns
Data setup time for HWR	${ }^{\text {tsiHW }}$	100		ns
Data hold time for HWR	$\mathrm{t}_{\mathrm{HHWI}}$	0		ns
$\overline{\text { HRD, }} \overline{\text { HWR }}$ recovery time	$\mathrm{t}_{\text {HRV }}$	100		ns
$\overline{\text { HRD, }}$ HWR hold time for RQM	$t_{\text {HRH }}$	${ }^{\text {t }} \mathrm{CYX}$		ns
PO, P1 setup time for X1	${ }_{\text {t }}$ SPX	${ }^{\text {t }} \mathrm{CrX}$		ns
P0, P1 hold time for X1	$\mathrm{t}_{\mathrm{HXP}}$	${ }^{\text {t }} \mathrm{CrX}$		ns
Switching				
$\overline{\overline{\text { HRD }} \downarrow \rightarrow \text { data delay }}$ time	${ }^{\text {t }}$ DHRI		100	ns
$\overline{\operatorname{HRD}} \uparrow \rightarrow$ data float time	${ }^{\text {frHRI }}$	10	65	ns
$\mathrm{X} 1 \uparrow \rightarrow \mathrm{RQM} \uparrow$ delay time	${ }^{\text {t DXRH }}$		100	ns
$\mathrm{X} 1 \uparrow \rightarrow \mathrm{RQM} \downarrow$ delay time	${ }_{\text {t DXRL }}$		100	ns
$\overline{\text { HRD, }} \overline{\text { HWR }} \uparrow \rightarrow$ RQM $\downarrow$ delay time	${ }^{\text {t }}$ HR		${ }^{2 t} \mathrm{CrX}+100$	ns
$\mathrm{X} 1 \uparrow \rightarrow \mathrm{P} 2, \mathrm{P} 3$ delay time	${ }^{\text {t DXP }}$		100	ns

Interrupt Reset Timing

Parameter	Symbol	Min	Max	Unit
$\overline{\mathrm{NMI}}$, $\overline{\text { INT }}$ pulse width	$\mathrm{t}_{\text {INT }}$	${ }^{64} \mathrm{CyX}$		ns
$\overline{\overline{N M I}, ~ \overline{N T}}$ hold time for RESET $\uparrow$	$t_{\text {HRNI }}$	$6^{6 t} \mathrm{CYX}$		ns
$\overline{\text { NMI, }}$ INT recovery time	$t_{\text {RINT }}$	$6{ }_{\text {cher }}$		ns
RESET pulse width	$\mathrm{t}_{\text {RST }}$	$6 \mathrm{t}_{\mathrm{CYX}}$		ns

Serial Interface Timing

Parameter	Symbol	Min	Max	Unit
Setup and Hold				
$\overline{\mathrm{SIEN}}, \mathrm{SI}$ setup time for SCK $\downarrow$	$t_{\text {ssis }}$	55		ns
SIEN, SI hold time for SCK $\downarrow$	$\mathrm{t}_{\mathrm{HSSI}}$	30		ns
SOEN setup time for SCK $\uparrow$	$\mathrm{t}_{\text {SSES }}$	50		ns
SOEN hold time for SCK	${ }^{\text {thSSE }}$	30		ns
SIEN, SOEN recovery time	$\mathrm{t}_{\text {SR }}$	${ }^{\text {t }} \mathrm{CYS}$		ns


Switching				
SCK $\downarrow \rightarrow$ SORQ delay time	$t_{\text {DSSQ }}$	30	150	ns
$\overline{\mathrm{SOEN}} \downarrow \rightarrow \text { SO delay }$ time	${ }^{\text {t }}$ SSESO		60	ns
$\overline{\overline{\text { SOEN }} \uparrow \rightarrow \text { SO float }}$ time	$\mathrm{t}_{\text {FSES }}$	10	100	ns
$\begin{aligned} & \text { SCK } \uparrow \rightarrow \text { SO delay } \\ & \text { time } \end{aligned}$	${ }^{\text {t }}$ SLSO		60	ns
$\text { SCK } \uparrow \rightarrow \text { SO hold }$ time	$\mathrm{t}_{\mathrm{HSHSO}}$	0		ns
$\begin{aligned} & \text { SCK } \uparrow \rightarrow \text { SO delay } \\ & \text { time } \end{aligned}$	${ }^{\text {t }}$ DSHSO		60	ns
SCK $\uparrow \rightarrow$ SO float time (SORQ $\downarrow$ )	$\mathrm{t}_{\text {FSSO }}$	10	100	ns

Timing Measurement Points


Clock Timing Waveforms
Master Clock


## Clock Output



Clock Timing Waveforms (cont)

## Switching



## Notes: [1] SCK is an output

[2] SICK and SOCK are inputs [asynchronous with X1]

## External Memory Access Timing Waveforms

Instruction Read (Master)


## External Memory Access Timing Waveforms (cont)

## Data Read



## External Memory Access Timing Waveforms (cont)

## Data Write



Read $\rightarrow$ Write


Write $\rightarrow$ Read


Host Interface Timing Waveforms, Slave Mode

## RQM Port



## Host Read



## Host Write



Interrupt Reset Timing Waveform


## Serial Interface Timing Waveforms

## Serial In



## Serial Interface Timing Waveforms (cont)

Serial Out, Case 1 ( $\overline{\text { SOEN }}$ interrupt control)


Serial Out, Case 2 ( $\overline{\text { SOEN }}$ control: $\overline{\text { SOEN }}$ low at SCK Iow)


Serial Interface Timing Waveforms (cont)
Serial Out, Case 3 ( $\overline{\text { SOEN }}$ control: $\overline{\text { SOEN }}$ low at SCK high)


## Description

The $\mu$ PD77240 Digital Signal Processor (DSP) has been developed for applications that demand high speed, high precision, and a large data address area. Operations on 32 -bit floating-point data (8-bit exponent, 24-bit mantissa) or 24-bit fixed-point data are executed at 90 ns per instruction.

The instruction area is $64 \mathrm{~K} \times 32$-bit words, and the data area is $16 \mathrm{M} \times 32$-bit words. These large memory areas open a wide range of application fields, such as computer graphics.
Internal circuitry includes a multiplier ( $32 \times 32$ bits), instruction decoder, ALU ( 55 bits), and two independent data RAMs (each $512 \times 32$-bit words). An on-chip library of commonly used DSP utility programs is accessed as subroutine calls.

Also, there are two input ports and two generalpurpose output ports for system expansion, such as handshaking with the host CPU, external device control, memory bank switching, etc.
Note: A table at the end of this data sheet compares the $\mu$ PD77240 with its predecessor, the $\mu$ PD77230A.

## Features

- 32-bit floating-point or 24-bit fixed-point data operations
- 32-bit floating-point multiplication circuit (8-bit exponent +24 -bit mantissa) $\times 8$-bit exponent +24 -bit mantissa) $\rightarrow$ (8-bit exponent +47 -bit mantissa)
-55-bit floating-point ALU and eight 55 -bit working registers
-47-bit barrel shifter
- Fast operations and efficient data transfer
-90-ns instruction cycle
-Three-stage pipelining
- Dedicated data bus for on-chip RAM, multiplier, and ALU
- Architecture specially suited to digital signal processing
- Two independent on-chip data RAMs and data RAM pointers
- On-chip data RAM pointer comprises base pointer and index register; base pointer can use ring counting within any desired range.
-Data ROM pointer operations include $2^{n}$-step incrementing in addition to normal increment/ decrement operations
- External interface maintains Harvard architecture with separate paths to instruction and data memory areas.
-Usable instruction area: $64 \mathrm{~K} \times 32$-bit words
-Usable data area: 16M x 32-bit words
- Address register specifying data area address has provision for addition to base register as well as increment/decrement operations.
- On-chip utility programs (subroutines)
- 34 vector/matrix operations
- Data transfer to/from RAM with/without IEEE format conversion
- Conversion: radians/degrees
- Scalar functions:

Floating-point division
Exponential, logarithmic
Trigonometric

- CMOS technology
- Single 5 -volt power supply
- 132-pin ceramic PGA


## Applications

- Graphics processing
- Image compression
- Numerical processing
- Speech processing
- General-purpose digital signal processing
- Digital filtering (FIR, IIR) and FFT
- Instrumentation electronics
- High-speed controls


## Ordering Information

Part Number	Package
$\mu$ PD77240R	132-pin ceramic PGA

Pin Configuration
132-Pin Ceramic PGA

83FM-79578

Pin-to-Symbol

Pin	Symbol								
A1	$\mathrm{D}_{11}$	C1	$\mathrm{D}_{5}$	F3	$\mathrm{D}_{2}$	L1	$\mathrm{A}_{12}$	N9	$\mathrm{IA}_{3}$
A2	$\mathrm{D}_{13}$	C 2	$\mathrm{D}_{9}$	F12	$1 \mathrm{D}_{10}$	L2	$\mathrm{A}_{9}$	N10	$1 A_{1}$
A3	$\mathrm{D}_{16}$	C3	GND	F13	$1 \mathrm{D}_{12}$	L3	GND	N11	RESET
A4	$\mathrm{D}_{17}$	C4	$V_{D D}$	F14	$\mathrm{ID}_{13}$	L12	$\mathrm{ID}_{31}$	N12	CLOCK
A5	$\mathrm{D}_{20}$	C5	$\mathrm{D}_{14}$	G1	$\mathrm{A}_{21}$	L. 13	$1 \mathrm{D}_{28}$	N13	GND
A6	$\mathrm{D}_{22}$	C6	$\mathrm{D}_{18}$	G2	$\mathrm{A}_{22}$	L14	$\mathrm{ID}_{25}$	N14	$1 \mathrm{D}_{29}$
A7	$\mathrm{D}_{25}$	C7	$\mathrm{D}_{23}$	G3	$\mathrm{A}_{23}$	M1	$\mathrm{A}_{11}$	P1	$\mathrm{A}_{6}$
A8	$\mathrm{D}_{26}$	C8	$\mathrm{D}_{27}$	G12	$\mathrm{ID}_{14}$	M2	$\mathrm{A}_{7}$	P2	$\mathrm{A}_{3}$
A9	$\mathrm{D}_{28}$	c9	$\mathrm{D}_{31}$	G13	$1 \mathrm{D}_{15}$	M3	GND	P3	$\mathrm{A}_{0}$
A10	$\mathrm{D}_{30}$	C10	OP1	G14	$\mathrm{ID}_{16}$	M4	$\mathrm{A}_{5}$	P4	$1 \mathrm{~A}_{14}$
A11	IPO	C11	$\mathrm{ID}_{1}$	H1	$\mathrm{A}_{20}$	M5	$\mathrm{A}_{1}$	P5	$1 \mathrm{~A}_{12}$
A12	OPO	C12	GND	H2	$\mathrm{A}_{19}$	M6	$1 A_{13}$	P6	$1 \mathrm{~A}_{10}$
A13	IC	C13	$\mathrm{ID}_{3}$	H3	$\mathrm{A}_{18}$	M7	$1 A_{9}$	P7	$V_{\text {DD }}$
A14	$1 \mathrm{D}_{2}$	C14	$1 \mathrm{D}_{7}$	H12	$1 \mathrm{D}_{19}$	M8	$\mathrm{IA}_{5}$	P8	$\mathrm{IA}_{7}$
B1	$\mathrm{D}_{8}$	D1	$\mathrm{D}_{4}$	H13	$\mathrm{ID}_{18}$	M9	$\underline{1 A_{0}}$	P9	$1 \mathrm{~A}_{4}$
B2	GND	D2	$\mathrm{D}_{7}$	H14	$1 \mathrm{D}_{17}$	M10	$\overline{\mathrm{NMI}}$	P10	$1 A_{2}$
B3	$\mathrm{D}_{12}$	D3	$\mathrm{D}_{10}$	J1	$\mathrm{A}_{17}$	M11	$V_{\text {DD }}$	P11	$\overline{\mathrm{RD}}$
B4	$\mathrm{D}_{15}$	D12	GND	J2	$\mathrm{A}_{16}$	M12	GND	P12	$\overline{W R}$
B5	$\mathrm{D}_{19}$	D13	$1 \mathrm{D}_{5}$	J3	$\mathrm{A}_{14}$	M13	$\mathrm{ID}_{30}$	P13	$\overline{\text { INT }}$
B6	$\mathrm{D}_{21}$	D14	$1 \mathrm{D}_{8}$	J12	$\mathrm{ID}_{23}$	M14	$1 \mathrm{D}_{26}$	P14	$V_{D D}$
B7	$\mathrm{D}_{24}$	E1	$\mathrm{D}_{1}$	J13	$\mathrm{ID}_{21}$	N1	$\mathrm{A}_{8}$		
B8	$\mathrm{V}_{\mathrm{DD}}$	E2	$\mathrm{D}_{3}$	J14	$1 \mathrm{D}_{20}$	N2	$V_{\text {DD }}$		
B9	$\mathrm{D}_{29}$	E3	$\mathrm{D}_{6}$	K1	$\mathrm{A}_{15}$	N3	$\mathrm{A}_{4}$		
B10	IP1	E12	$1 \mathrm{D}_{6}$	K2	$\mathrm{A}_{13}$	N4	$\mathrm{A}_{2}$		
B11	IC	E13	$1 \mathrm{D}_{9}$	K3	$\mathrm{A}_{10}$	N5	$\mathrm{IS}_{15}$		
B12	$1 \mathrm{D}_{0}$	E14	$\mathrm{ID}_{11}$	K12	$\mathrm{ID}_{27}$	N6	$\mathrm{IA}_{11}$		
B13	$\mathrm{V}_{\mathrm{DD}}$	F1	BUSFREZ	K13	$\mathrm{ID}_{24}$	N7	$1 A_{B}$		
B14	$1 \mathrm{D}_{4}$	F2	$\mathrm{D}_{0}$	K14	$\mathrm{I}_{22}$	N8	$1 A_{6}$		

## Symbol-to-Pin



## Pin Functions

Symbol	Function
$A_{0}-A_{23}$	External data memory address output; becomes high impedance when BUSFREZ is driven low.
BUSFREZ	External data memory break input. When this pin is driven low, pins $A_{0}-A_{31}$ and $D_{0}-D_{31}$ become high impedance.
CLOCK	External clock input; 11.1111 MHz maximum
$1 A_{0}-1 A_{15}$	External instruction memory address bus; outputs program counter (PC) value; becomes high impedance on RESET input.
$\underline{I D} \mathrm{D}_{0}-\mathrm{ID}_{31}$	External instruction memory data bus input.
$\overline{\text { INT }}$	Maskable interrupt input; keep low at least three system clock cycles. INT should be driven high during reset and within four system clock cycles after rise of RESET signal. Falling edge detection; interrupt address 8 H .
IPO, IP1	General-purpose input port; pin status is judged by branch instruction.
$\overline{\mathrm{NMI}}$	Nonmaskable interrupt input; keep low at least three system clock cycles. $\overline{\mathrm{NMI}}$ should be driven high during reset and within four system clock cycles after rise of $\overline{\text { RESET }}$ signal. Falling edge detection; interrupt address 4 H .
OPO, OP1	General-purpose output port; pin status can be set and checked by bits 2 and 3 of status register SR.
$\overline{\mathrm{RD}}$	External data memory read strobe output; when $\overline{R D}$ is low, data is input via the data bus. $\overline{R D}$ is high during hardware reset and is not influenced by BUSFREZ.
RESET	Internal system reset signal input; keep low at least three system clock cycles.
$\overline{W R}$	External data memory write strobe output; when $\overline{W R}$ is low, data is output via the data bus. $\overline{W R}$ is high during hardware reset and is not influenced by BUSFREZ.
$V_{D D}$	+5 -volt power supply input; connect all $V_{D D}$ pins to +5 volts.
GND	Connect all GND pins to ground.
IC	Internal connection; leave this pin open. Caution: When any signal is applied to or read out from this pin, normal operation of the $\mu$ PD77240 is not assured.

## FUNCTIONAL DESCRIPTION

The block diagram shows the internal 32-bit main bus connecting to all functional blocks, including the ALU area. Blocks are described in the Internal Functions table.
The 55 -bit processing-unit (PU) bus links the ALU input to the 55 -bit multiplier output register and the eight 55 -bit working registers. Thus, the full 55 bits of precision can be maintained during extensive calculations.

In addition to the main bus and the PU bus, there is a sub-bus linking the two RAM areas to both the ALU input and the multiplier input registers. This link allows simultaneous loading of the multiplier input registers in parallel with ALU operations and in parallel with data transfer operations that make use of the main bus. There is a sub-bus connecting the ALU input to the 55 -bit multiplier output and another sub-bus that can route the working registers' contents back to the ALU input.

## Architecture

The $\mu$ PD77240 has a Harvard architecture with separate memory areas for program storage and data storage as well as separate multiple buses. A three stage instruction execution pipelining scheme performs instruction fetch and execution in parallel. All instructions are executed in a single cycle regardless of whether the instruction is stored internally or in external memory.

## Instruction Memory

Internal instruction ROM holds 2 K words x 32 bits pre-programmed with library functions that perform vector/matrix operations, scalar functions, conversions, etc. The addresses of these subroutines are in the high 2 K of the 64 K -word instruction memory address space.

## Data Memory

$\mu$ PD77240 has three data memory areas: internal data ROM, internal data RAM, and external data RAM. Data ROM holds 1 K words $\times 32$ bits pre-programmed with table lookup data and constants accessed by the internal library routines as well as by user programs.
Internal data RAM consists of two separate and independently addressable areas, each 512 words $\times 32$ bits. Each RAM area can be addressed by a base register, an index register, or the sum of the two. The base register and/or index register may be incremented, decremented, or cleared. In addition, the base pointer can operate in a modulo count mode, and the index register contents may be replaced by the sum of the index and base registers. Data stored in RAM0 and RAM1 can be simultaneously input to the multiplier.

External data RAM may contain up to 16M words x 32 bits for data exchange with other devices and processing large volumes of data. External RAM is addressed by the 24-bit AR register.

## Multiplier and ALU

The floating-point multiplier has two 32-bit input registers ( K and L ), which are accessible both to and from the main bus. The multiplier produces the 55-bit product of the K and L register contents automatically in a single instruction cycle (there is no multiply instruction).
The 55-bit result is stored in the M register in 8-bit exponent, 47-bit mantissa format. The contents of the M register can be transferred to the main bus ( 32 bits) or to the ALU via the processing unit bus ( 55 bits). The multiplier consists of a 24 - by 24 -bit fixed-point multiplier and an exponent adder, so that it can also be used for fixed-point multiplications.
The 55-bit floating-point ALU is capable of a full set of arithmetic and logical operations (see "Instructions" section). There is a 47-bit bidirectional barrel shifter, which can perform general-purpose shifting in addition to the mantissa alignments required for floatingpoint arithmetic.
A separate exponent ALU (EAU) determines shift values in floating-point work. The ALU status is reflected in one of two identical processor status words (PSW) that contain carry, zero, sign, and overflow flags. The results of the ALU operation are stored in one of eight 55 -bit accumulators or "working registers."
There are two 55-bit input registers to the ALU called the $P$ register and the $Q$ register. The $Q$ register input is selected from one of the eight working registers, while the P register input is selected from among the 55-bit PU bus, the 32-bit main bus, data RAM0, data RAM1, and the 55 -bit M register.

## Loop Counter

A loop counter is included in the design of the $\mu$ PD77240. This 32 -bit register connects to the main bus and can be used for general-purpose storage as well as a loop counter. When used as a loop counter, only the low 10 bits are active; the upper 22 bits are not affected. The count can be decremented by a control field bit during an operation (OP) instruction. When the loop counter is decremented past zero, the instruction following the decrementing will be skipped.

## System Control

An external clock drives internal clocking at the same rate (single phase).
Two interrupts are provided: one maskable, one nonmaskable. The maskable interrupt can be "memorized," so that if an interrupt occurs while it is in the interrrupt
disabled condition, then it may be acted upon (or disregarded) at a later time. Interrupt status can be read from the SR register; status is changed by control field manipulation in an OP instruction.
Control of two general-purpose output pins is effected by writing to the SR register. The states of two generalpurpose intput pins are tested by conditional branch instructions.

## Mode Register

Addition of the 32 -bit mode register (MR) is a significant enhancement over $\mu$ PD77230 architecture. The various bit fields of the mode register are usually set/cleared by control field (CNT) instructions. The register can be read and written, saved and restored. This feature is useful for interrupt handling and other subroutines, as well as during debugging. The mode register records the state of RAM and ROM addressing specifications, PU specifications for format and normalization processing, and for interfacing the PU bus with the main bus.

Internal Functions

Symbol	Name	Description
ALU	Arithmetic logic unit	Logical operation circuit for 47-bit mantissa data
AP	Address port	24-bit address port for data memory
AR	Address register	24-bit register specifying data memory address
BPO	Base pointer 0	Register specifying RAMO base address
BP1	Base pointer 1	Register specifying RAM1 base address
BR	Base register	32-bit base register for data memory address register AR
BSHIFT	Barrel shifter	Barrel shifter for $P$ and $Q$ register mantissa
CLKGEN	Clock generator	Internal system clock generation circuit
Decoder	Instruction decoder	Instruction decoding circuit
DP	Data port	32-bit data port for data memory
DR	Data register	32 -bit register for interface . between DP and internal data bus (main bus)
DROM	Data ROM	ROM holding fixed data ( 1 K words x 32 bits)
EAU	Exponent arithmetic unit	8 -bit exponent data operation circuit
Exchange	Data exchanger	Selects $P$ or $Q$ mantissa data as input to barrel shifter.
FMPY	Floatingpoint multiplier	32-bit floating-point data multiplier (8-bit exponent, 24 -bit mantissa); 32 bits $\times 32$ bits $\rightarrow 55$ bits
IAP	instruction address port	16-bit address bus for instruction memory
IDP	Instruction data port	32-bit data bus for instruction memory
INT CNT	Interrupt controller	External interrupt control circuit
IROM	Instruction ROM	ROM holding on-chip, fixed utility programs (2K words x 32 bits)
IXO	Index register 0	Register specifying RAMO index address
IX1	Index register 1	Register specifying RAM1 index address
K	K register	32-bit register holding FMPY input data
L	L register	32-bit register holding FMPY input data
LC	Loop counter	32-bit program loop count setting register


Symbol	Name	Description
M	M register	55-bit register holding FMPY multiplication result
MR	Mode register	32-bit register showing specification or operation status of internal status, such as on-chip data RAM pointer specification
$p$	P register	55-bit register holding ALU and EAU input data
PC	Program counter	16-bit register specifying instruction memory address
PORT	Port	General-purpose input-output port
PSWO, PSW1	Program status word 0 , word 1	Registers indicating ALU/EAU operation result status
Q	Q register	55-bit register holding ALU and EAU input data.
RAMO, RAM1	Data RAM 0, 1	Data storage RAM0 and RAM1 (each 512 words $\times 32$ bits)
RP	ROM pointer	Register specifying ROM address
R/W CNT	Read/write control circuit	Data memory read/write control circuit
SAC	Shift and count circuit	Shift amount detection circuit for $Q$ register mantissa data
SP	Stack pointer	Pointer indicating stack address
SR	Status register	22-bit register showing generalpurpose output port setting, confirmation and error status, and maskable interrupt operating status
STK	Stack	Eight-level, 16-bit stack
SVR	Shift value register	Shift amount setting register
TR	Temporary register	32-bit general-purpose register
WRIC	Working register interface circuit	Specifies data transfer format between working registers and PU bus
WRO to WR7	Working register 0 to 7	Registers holding ALU and EAU operation results

$\mu$ PD77240 Block Diagram


## DATA FORMATS

Figure 1 shows the formats for floating-point data and fixed-point data.

Figure 1. Data Formats


## Floating-Point Data

On the 32-bit bus, the high-order 8 bits represent the exponent and the low-order 24 bits represent the mantissa.

In a 55-bit representation as used in the $M$ register, the $P$ and $Q$ registers, WRO through WR7, etc., the highorder 8 bits are the exponent and the low-order 47 bits are the mantissa.

Both the exponent and the mantissa are expressed in two's complement with the most significant bit (MSB) as the sign bit.

## Fixed-Point Data

Fixed-point data does not use the high-order 8 bits (exponent) of the floating-point notation. The 8 bits are set to 00 H by execution of a fixed-point operation or an LDI instruction. They are unchanged by a logical operation.

Only the low-order 24 or 47 bits of a 32-bit or 55-bit bus or register are valid.
Data is expressed in two's complement with the most significant bit (MSB) as the sign bit.

## INSTRUCTIONS

Each $\mu$ PD77240 instruction is one 32-bit word. The three basic types are Operation, Branch, and Load. All types execute in a single instruction cycle, except the
"long branch" requires two cycles to branch to any arbitrary location in the 64K-word instruction ROM area.

## Operation Instructions

The three basic elements of operation (OP) instructions are ALU, transfer, and control. All three elements operate simultaneously, sometimes interactively. Figure 2 shows the six fields in the instruction format.

Figure 2. Operation Instruction Format


OP Field. The 5-bit OP field specifies the type of ALU operation. Table 1 lists the 26 types.

Table 1. OP Field Contents

	OP Field					
Mnemonic	Bits	31	-27	Operation		
NOP	0	0	0	0	0	No operation
INC	0	0	0	0	1	Increment
DEC	0	0	0	1	0	Decrement
ABS	0	0	0	1	1	Absolute
NOT	0	0	1	0	0	NOT
NEG	0	0	1	0	1	Negate
SHLC	0	0	1	1	0	Shift left with carry for double precision
SHRC	0	1	0	1	1	Shift right with carry for double precision
ROL	0	1	1	0	0	Rotate left
ROR	0	1	1	0	1	Rotate right
SHLM	0	1	1	0	0	*Shift left multiple
SHRM	0	1	1	0	1	*Shift right multiple
SHRAM	0	1	1	0	0	*Shift right arithmetic multiple
CLR	0	1	1	0	1	Clear
NORM	0	1	1	1	0	Normalize
CVT	0	1	1	1	1	Convert pseudo IEEE data format
ADD	1	0	0	0	0	Add fixed-point data
DUB	1	0	0	0	1	Subtract fixed-point data
SDDC	1	0	0	1	0	Add fixed-point data with carry
SUBC	1	0	0	1	1	Subtract fixed-point data with carry
CMP	1	0	1	0	0	Compare floating-point data
AND	1	0	1	0	1	AND
OR	1	0	1	1	0	OR
XOR	1	0	1	1	1	Exclusive OR
ADDF	1	1	0	0	0	Add floating-point data
SUBF	1	1	0	0	1	Subtract floating-point data

[^6]CNT Field. The 12-bit CNT field is used to perform pointer specification, flag manipulation, register switching, data transfer format specification, etc. The

23 subfields described in table 2 can be arranged in any of the 15 patterns shown in figure 3.

## Table 2. Control Field List

Group	Subfield	Subfield Function	*Function Valid
Interrupt	EM	Maskable interrupt enable/disable	$\rightarrow$
	BM	Maskable interrupt input flag set/clear	$\rightarrow$
PSW	FIS	PSW control	- or $\rightarrow$
	FC	PSW0/PSW1 switchover	-
RAM ponter	RP	ROM pointer count operation specification	$\rightarrow$
	RPC	n -value specification in ROM pointer special operation	$\rightarrow$
	RPS	Specification of data ROM address low-order 9 bits	$\rightarrow$
RAM0, RAM1 pointer	M0	Base pointer0/index register0 selection	$\rightarrow$
	M1	Base pointer1/index register1 selection	$\rightarrow$
	DPO	Base pointer0/index register0 count operation specification	$\rightarrow$
	DP1	Base pointer1/index register1 count operation specification	$\rightarrow$
	BASEO	Modulo counter base pointerO counter length specification	$\rightarrow$
	BASE1	Modulo counter base pointer1 counter length specification	$\rightarrow$
Data format conversion	FD	$\mu$ PD77240/IEEE data format conversion operation specification	-
	WI	Transfer format specification when working register is specified by DST field	$\rightarrow$
	WT	Transfer format specification when working register is specified by SRC field	$\rightarrow$
Normalization specification	NF	Normalization/rounding normalization/floating-point to fixedpoint conversion/fixed-point data left shift specification	-
Shift specification	SHV	Shift amount specification for 47-bit mantissa data	$\bullet$
Data memory access	RW	Input/output operation specification for external data memory	-
	EA	Address register increment/decrement	- or $\rightarrow$
	APM	Address register increment/decrement and IXO or IX1 decrement specification	$\rightarrow$
Loop counter	L	Loop counter decrement	-
Jump	NAL	Unconditional jump address specification	-

[^7]Figure 3. CNT Field of the Operation Instructions


P Field. The 2-bit P field specifies the input data to the $P$ register object of the operation when a dyadic operation is executed. See table 3.

Table 3. P Field Contents

Mnemonic	P Field Bits 14-13	Input Data to P Register
IB	00	PU bus
M	01	*FMPY output data
RAMO	10	RAMO
RAM1	11	RAM1

* In the SRC field, $M$ refers to $M$ register data.

Q Field. The 3-bit Q field specifies one of the working registers, WR0 through WR7. See table 4.
(1) A monadic (one-operand) operation is performed on the data in the working register specified by the $Q$ field and the result is stored in the same working register.
(2) A dyadic (two-operand) operation is performed on the data specified by the $Q$ field and the $P$ field, and the result is stored in the working register specified by the $Q$ field.

Table 4. Q Field Contents

Mnemonic	Q Field Bits $\mathbf{1 2 - 1 0}$	Working Register	
WR0	0	0	0
	0	0	1
WR1	0	1	0
WR2	0	1	1

SRC Field. The 5-bit SRC field specifies the source register in a transfer instruction. Table 5 lists the 32 selections.

DST Field. The 5 -bit DST field specifies the destination register in a transfer instruction. Table 6 lists the 32 selections.

Table 5. SRC Field Contents

Mnemonic	SRC Field Bits 9-5	Selected Register	*Bus
NON	00000	Nonselection	-
RP	00001	ROM pointer	Main
PSWO	00010	Program status word0	Main
PSW1	00011	Program status word1	Main
SVR	00100	Shift value register	Main
SR	00101	Status register	Main
LC	00110	Loop counter	Main
STK	00111	Stack	Main
M	01000	\# M register	PU
ML	01001	Low 24 bits of M register	PU
ROM	01010	Data ROM	Main
TR	01011	Temporary register	Main
AR	01100	Address register	Main
BR	01101	Address base register	Main
DR	01110	Data register	Main
MR	01111	Mode register	Main
WRO	10000	Working register0	PU
WR1	10001	Working register1	PU
WR2	10010	Working register2	PU
WR3	10011	Working register3	PU
WR4	10100	Working register4	PU
WR5	10101	Working register5	PU
WR6	10110	Working register6	PU
WR7	10111	Working register7	PU
RAMO	11000	RAMO	Main
RAM1	11001	RAM1	Main
BPO	11010	Base pointer0	Main
BP1	11011	Base pointer1	Main
IXO	11100	Index register0	Main
\|X1	11101	Index register1	Main
K	11110	K register	Main
L	11111	$L$ register	Main

[^8]Table 6. DST Field Contents

Mnemonic	DST Field Bits 4-0	Selected Register	*Bus
NON	00000	Nonselection	-
RP	00001	ROM pointer	Main
PSWO	00010	Program status word0	Main
PSW1	00011	Program status word1	Main
SVR	00100	Shift value register	Main
SR	00101	Status register	main
LC	00110	Loop counter	Main
STK	00111	Stack	Main
LKRO	01000	L register (RAMO to K register)	PU
KLR1	01001	K register (RAM1 to L register)	PU
TRE	01010	Exponent part of TR register	Main
TR	01011	Temporary register	Main
AR	01100	Address register	Main
BR	01101	Address base register	Main
DR	01110	Data register	Main
MR	01111	Mode register	Main
WRO	10000	Working register0	PU
WR1	10001	Working register1	PU
WR2	10010	Working register2	PU
WR3	10011	Working register3	PU
WR4	10100	Working register4	PU
WR5	10101	Working register5	PU
WR6	10110	Working register6	PU
WR7	10111	Working register7	PU
RAMO	11000	RAMO	Main
RAM1	11001	RAM1	Main
BPO	11010	Base pointer0	Main
BP1	11011	Base pointer1	Main
IXO	11100	Index register0	Main
\|X1	11101	Index register1	Main
K	11110	K register	Main
L	11111	L register	Main

* Bus connected to selected register.


## Branch Instructions

Branch instructions specify unconditional jump, conditional jump, subroutine call, and return. Transfer processing can be performed at the same time. Figure 4 shows the format of the branch instruction and the long branch prefix instruction. The latter is used to extend the displacement value of the branch destination address.

Figure 4. Branch Instruction Format

Branch					
$31 \quad 281$	-	15	101	5	0
$1^{1} 1^{1} 0^{1} 1$   $B$			C   (5)	SRC (5)	DST (5)
Long Branch Prefix					
$31 \quad 28$	T181	15	10	5	0
$\begin{gathered} 1^{1} 1^{\top} 0^{\top} 1 \\ B \end{gathered}$	171111	NAH   (3)	111111	SRC   (5)	DST   (5)
83FM-7953A					

B Field. The 4-bit $B$ field indicating a branch instruction is always binary 1101.
NA Field. This field contains the 13 -bit displacement value (+4096 to -4096) added to the current $P C$ value to give the branch destination address.

NAH Field. This field contains a 3-bit prefix that is combined with the NA field of the immediately following branch instruction to create a 16 -bit displacement value, +32 K to -32 K
C Field. The 5-bit C field specifies one of the 28 kinds of branch instructions described in table 7.

SRC Field. The 5-bit SRC field specifies the source register in a transfer (move) instruction. See table 5.
DST Field. The 5 -bit DST field specifies the destination register in a transfer (move) instruction. See table 6.

Table 7. C Field Contents

Mnemonic	C-Field   Bits 14-10	Branch Condition
JMP	00000	Branch with no condition.
CALL	00001	Subroutine call.
RET	00010	Return
JNZRP	00011	If ROM pointer is not zero.
JZO	00100	If zero flag0 is set.
JNZO	00101	If zero flago is reset.
JZ1	00110	If zero flag1 is set.
JNZ1	00111	If zero flag1 is reset.
JCO	01000	If carry flago is set.
JNCO	01001	If carry flag0 is reset.
JC1	01010	If carry flag1 is set.
JNC1	01011	If carry flag1 is reset.
JSO	01100	If sign flag0 is set.
JNSO	01101	If sign flago is reset.
JS1	01110	If sign flag1 is set.
JNS1	01111	If sign flag1 is reset.
JVO	10000	If overflow flag0 is set.
JNVO	10001	If overflow flago is reset.
JV1	10010	If overflow flag1 is set.
JNV1	10011	If overflow flag1 is reset.
JEVO	10100	If exponent overflow flag0 is set.
JEV1	10101	If exponent overflow flag1 is reset.
JIPO	11000	If input porto is on.
JIP1	11001	If if input port1 is on.
JNZIXO	11010	If index registero is not zero.
JNZIX1	11011	If index register1 is not zero.
JNZBPO	11100	If base pointer0 is not zero.
JNZBP1	11101	If base pointer1 is not zero.
PRE	11111	Prefix for long branch

Note: A result is not assured if an object code not specified above is used.

## Load Instructions

A load instruction consists of three fields as shown in figure 5 . The register (or other element) specified by the DST field (table 5) is loaded with the 24 -bit data contents of the IM field. The data path into the register is via the 24 mantissa bits of the main bus.

The LDI field is always binary 111.
Figure 5. Load Instruction Format

Branch		
3129	-1, 5	0
$\begin{array}{lll} 1 & 1 & 1 \\ L & 1 \end{array}$		DST   (5)

## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings

$T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5 to +6.5 V
Power supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-10 to $+70^{\circ} \mathrm{C}$
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-65 to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Power supply voltage	$\mathrm{V}_{\mathrm{DD}}$	4.75	5.0	5.25	V
Low-level input   voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		+0.8	V
High-level input   voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V	
Low-level clock input   voltage	$\mathrm{V}_{\mathrm{ILC}}$	-0.3	+0.5	V	
High-level clock input   voltage	$\mathrm{V}_{\mathrm{IHC}}$	3.9	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V	

## Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V} ; \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$					
Parameter	Symbol	Typ	Max	Unit	Conditions
Input   Capacitance	$\mathrm{C}_{\mathrm{I}}$		10	pF	Unmeasured pins   returned to 0 V
Output   capacitance	$\mathrm{C}_{\mathrm{O}}$	20	pF		

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Low-level output voltage	V OL			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Low-level input leakage current	LILL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$
High-level input leakage current	LiH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
Low-level output leakage current	Lol			-10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0 \mathrm{~V}$
High-level output leakage current	LOH			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {DD }}$
Clock input current	\|licl			400	$\mu \mathrm{A}$	
Power supply current	IDD		320	460	mA	$\mathrm{f}_{\mathrm{CY}}=11.1111 \mathrm{MHz}$

## AC Characteristics

Parameter	Symbol	Min	Max	Unit	Conditions
Clock Timing					
Clock cycle time	$\mathrm{t}_{\mathrm{CC}}$	90	1000	ns	Test points at 1.0 and 3.0 V
Clock high-level width	${ }^{\text {t }}$ WCH	45	500	ns	
Clock low-level width	${ }^{\text {W }} \mathrm{WCL}$	45	500	ns	
Clock rise time	$\mathrm{t}_{\mathrm{RC}}$		5	ns	
Clock fall time	$\mathrm{t}_{\mathrm{FC}}$		5	ns	
Instruction Read Timing					
Data setup time to CLOCK $\downarrow$	$\mathrm{t}_{\text {S UIDC }}$	15		ns	When an instruction is read
Data hold time from address fixed	$t_{\text {HAID }}$	5		ns	
CLOCK $\downarrow$ to address delay time	$t_{\text {DCIA }}$		35	ns	
CLOCK $\downarrow$ to address hold time	${ }_{\text {thCIA }}$	0		ns	
Data Read/Write Timing					
Data setup time to CLOCK $\uparrow$	$t_{\text {S U }}$	15		ns	Applies to external data memory access
Data hold time from $\overline{R D} \uparrow$	$t_{\text {HRD }}$	5		ns	
CLOCK $\downarrow$ to address delay time	$t_{\text {DCA }}$		35	ns	
CLOCK $\downarrow$ to address hold time	$t_{\text {HCA }}$	0		ns	
CLOCK $\uparrow$ to $\overline{\mathrm{RD}} \downarrow$ delay time	${ }_{\text {t }}$		25	ns	
CLOCK $\uparrow$ to $\overline{\mathrm{RD}}$ hold time	$\mathrm{t}_{\mathrm{HCR}}$	0		ns	
$\overline{\overline{R D}}$ low-level width	$t_{\text {WR }}$	70		ns	
CLOCK $\uparrow$ to $\overline{\mathrm{WR}} \downarrow$ delay time	tocw		25	ns	
CLOCK $\uparrow$ to $\overline{\mathrm{WR}}$ hold time	$t_{\text {HCW }}$	0		ns	
WR low-level width	${ }_{\text {tww }}$	70		ns	
CLOCK $\uparrow$ to data delay time	${ }^{\text {t }}$ DCD		45	ns	
CLOCK $\downarrow$ to output data hold time	$\mathrm{t}_{\mathrm{HCO}}$	0		ns	
CLOCK $\downarrow$ to output float time	$t_{\text {dCDZ }}$		60	ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ recovery time	$\mathrm{t}_{\mathrm{RV}}$	70		ns	Continuous operation

## AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit	Conditions
Interrupt, Reset Timing					
$\overline{\text { RESET }}$ setup time to CLOCK $\downarrow$	ts URSTCL	30		ns	
RESET low-level width	tWRST	4 tcc		ns	
$\overline{\text { NMI, }}$ INT input disable time from $\overline{\text { RESET } \uparrow}$	${ }^{\text {D DISRSTINT }}$	${ }^{4 t} \mathrm{CC}$		ns	
$\overline{\text { NMI, }}$ INT low-level width	twINT	3 ccc		ns	
$\overline{\text { NMI, }}$, $\overline{N T}$ recovery time	$\mathrm{t}_{\text {RVINT }}$	3 ccc		ns	
$\overline{\text { RESET } \downarrow \text { to Hi-Z data float time }}$	t DRSTDZ		3 ccc	ns	
Hi-Z data fixed time	${ }^{\text {t }}$ CLLDV		$3 \mathrm{t}_{\mathrm{CC}}+\mathrm{t}_{\mathrm{FC}}+30$	ns	
Input, Output Port Timing					
IPO, IP1 setup time to CLOCK $\downarrow$	$\mathrm{t}_{\text {s UIP }}$	35		ns	
IPO, IP1 hold time from CLOCK $\downarrow$	$t_{\text {HIP }}$	35		ns	
CLOCK $\downarrow$ to OPO, OP1 delay time	${ }_{\text {t }}$		40	ns	
BUSFREZ Timing					
BUSFREZ low-level width	tWBFR	$3{ }^{\text {c }} \mathrm{Cc}$		ns	
$\overline{\text { BUSFREZ }}$ setup time to CLOCK $\downarrow$ '	ts UBFR	10		ns	
BUSFREZ input disable time from $\overline{\text { RESET }} \uparrow$	$t_{\text {DISRSTBFR }}$	${ }^{4 t} \mathrm{CC}$		ns	
RESET release disable time from BUSFREZ $\uparrow$	$t_{\text {DISBFRRST }}$	4 c CC		ns	
CLOCK $\downarrow$ to data output float time	$t_{\text {DBFRDZ }}$		60	ns	
CLOCK $\downarrow$ to address output float time	$t_{\text {dBF RAZ }}$		60	ns	
CLOCK $\downarrow$ to data output delay time	t ${ }_{\text {DBF R }}$		45	ns	
CLOCK $\downarrow$ to address output delay time	t DBFRA		40	ns	

## Timing Waveforms

## Voltage Thresholds for Timing Measurements

2.4 V Output Waveform

## Clock Input



## Instruction Read



## Data Read



## Data Write



## Read/Write

Read-to-Write Operation


Write-to-Read Operation


Interrupt, Reset


Input/Output Port


## $\overline{B U S F R E Z}$


$\mu$ PD77230A and $\mu$ PD77240 Comparison

Item		$\mu$ PD77230A	$\mu$ PD77240
1 O	Operation mode	Master and slave modes	Master mode   Most functions are derived from 77230A master and slave mode functions.
2 H	Host I/O pins	$\overline{\mathrm{CS}}, \overline{\mathrm{HRD}}, \overline{\mathrm{HWR}}, \mathrm{RQM}$, and $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}$	Not available   Data input/output with another CPU is via the external data memory area.
3 S	Serial l/O pins	SICK, $\overline{\text { SIEN, }}$, SI, SOCK, SORQ, $\overline{\text { SOEN, }}$, and SO	Not available   Data input/output with another device is via the external data memory area.
4 L	Low-speed area of external data memory	External data memory access timing is divided by the memory address into two parts:   - High-speed access area requiring two instruction cycles per read or write operation.   - Low-speed access area requiring four instruction cycles per read or write operation.	All external data memory accesses can be made in two instruction cycles.
5 E	External clock	External clock, if required, must be twice the internal clock frequency. Internal clock can be controlled by an external crystal.	External clock must be the same frequency as the internal clock.

$\mu$ PD77230A and $\mu$ PD77240 Comparison (cont)

Item		$\mu$ PD77230A	$\mu$ PD77240
6	RDY function	Available	Not available   All external data memory accesses are terminated in two instruction cycles.
7	Instruction cycle	150 ns max ( 6.66 MHz )	90 ns max ( 11.11 MHz )
8	External memory pins	Pins $D_{0}-D_{31}$ and $A_{0}-A_{31}$ serve external instruction memory and data memory. While a program in instruction memory is being executed, data memory cannot be accessed.	Pins $I D_{0}-I D_{31}$ and $I A_{0}-I A_{15}$ serve external instruction memory; pins $D_{0}-D_{31}$ and $A_{0}-A_{23}$ serve external data memory.   While a program in instruction memory is being executed, data memory can be accessed.
9	Instruction memory area	6K words max   On-chip memory: 2K words   External addition: 4 K words max	64 K words max   On-chip memory: 2K words   External addition: 62 K words max
10	External data memory area	8 K words ( 32 K bytes) max   4 K words are shared with external instruction memory	16 M words ( 64 M bytes) max All words are dedicated to data memory.
11	Address and library program of on-chip instruction memory	OH to 7FFH: user programmable	F800H to FFFFH: library program is loaded.   - Primary math functions (sin, exp, etc.)   - Vector matrix operation library
12	Loop counter (LC)	10-bit configuration 10-bit down counter	32-bit configuration   High-order 22-bit latch + low-order 10-bit down counter.   In decrement by DECLC instruction, only the loworder 10-bit data changes.
13	Branch operation	Absolute address branch   - Branch instructions (JMP and others): branch to all areas ( 0 H to $7 \mathrm{FFH}, 1000 \mathrm{H}$ to 1 FFFH )   - CNT field NAL bit (JBLK): branch in block every 200 H . When $\mathrm{PC}=470 \mathrm{H}$, branch to 400 H to 5 FFH .	Relative address branch   - Branch instructions (JMP and others): $\mathrm{PC} \leftarrow$ current $\mathrm{PC}+$ jdisp (jdisp; signed displacement -4096 to 4095).   When $\mathrm{PC}=1470 \mathrm{H}$, branch to 470 H to 246 FH .   - Long branch prefix instruction (PRE instruction): branch to all address areas ( OH to FFFFH) in combination with the above branch instruction.   - CNT field NAL bit (JBLK): PC $\leftarrow$ current PC + jdisp (jdisp; signed displacement -256 to +255 ). When PC $=470 \mathrm{H}$, branch to 370 H to 46 FH .
14	$\overline{\mathrm{NM}}, \overline{\mathrm{INT}}$ interrupt address	INT: subroutine call at address 100 H .	$\overline{\mathrm{NT}}$ : subroutine call at address 8 H .
15	SVR (shift value register)	When the hardware is reset, the register contents are undefined.	Initialized to 00 H by hardware reset.
16	Package	68-pin PGA	132-pin PGA
17	$V_{\text {DD }}$ and GND pins	$3 V_{\text {DD }}$ pins; 3 GND pins	$7 \mathrm{~V}_{\text {DD }}$ pins; 8 GND pins
18	General-purpose input and output ports	Input: PO, P1   Output: P2, P3   Data at the output ports is set by bits P2 and P3 in the CNT field	Input: IPO, IP1   Output: OPO, OP1   Data at the output ports is set by transferring bits OPO and OP1 from the status register.
19	Hardware reset timing	Interrupt input is disabled in three instruction cycles after hardware reset.	Interrupt input is disabled in four instruction cycles after hardware reset.
20	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ signal	Active low for 1.5 instruction cycles.   When "MOV WRO, DR RD;" is executed, the WRO contents are undefined.	Active low for 1 instruction cycle.   When "MOV WRO, DR RD;" is executed, the DR contents are transferred to WRO before RD instruction execution.
21	Address port in $\overline{\mathrm{RD}} /$ $\overline{\mathrm{WR}}$ operation	AR contents cannot be changed in execution of $\overline{\mathrm{RD}} \overline{\mathrm{WR}}$ instruction.	AR contents can be changed in execution of $\overline{\mathrm{RD}} /$ $\overline{\mathrm{WR}}$ instruction (read/write operations are carried out with the contents before change).

$\mu$ PD77230A AND $\mu$ PD77240 COMPARISON (cont)

Item		$\mu$ PD77230A	$\mu$ PD77240
22	Timing when data transferred to address register AR becomes valid	The data becomes valid when the external data memory address from the next instruction cycle of data is transferred to AR.   Example: LDI AR, 1000 H ; RD;   Contents at address 1000 H of the external data memory can be read to DR.   Data in CNT field operations becomes valid from the next instruction cycle of the executed instruction cycle.	The data becomes valid when the external data memory address from the second instruction cycle of data is transferred to DR.   Example: LDI AR, 1000H;   NOP;   RD;   Contents at address 1000 H of the external data memory can be read to DR.   Data in CNT field operations becomes valid from the next instruction cycle of the executed instruction cycle.
23	Status register SR	The following statuses are indicated/set:   - Error status (6-bit configuration)   - Operation mode (master/slave)   - Bus transfer format in slave mode   - Serial input/output format   - Interrupt status	The following statuses are indicated/set:   - Error status (1-bit configuration)   - General-purpose output port data   - Interrupt status
24	Base register $B R$	Not available	Available: 32-bit general-purpose register. Since a special instruction for addition to address register $A R$ is available (STRAR: AR $\leftarrow A R+B R$ ), the $B R$ is most suitable for an AR operation register.
25	Mode register MR	Not available	Available: 32-bit general-purpose register for internal operation status set/read.   The MR supports the following internal functions:   - RAMO and RAM1 address pointer   - BPO and BP1 modulo counter   - Data ROM direct addressing address   - Data ROM addressing method   - RP $2^{n}$ addition   - PSW selection   - CVT instruction format conversion   - NORM instruction normalization   - Format for data transfer with PU bus and working register
26	BUSFREZ pin	Not available	Available.   The external data memory pins $\left(D_{0}-D_{31}\right.$ and $A_{0}$ - $A_{23}$ ) can be set to high impedance by setting this pin to low level.   The BUSFREZ pin is used for data exchange with the host CPU via the external data memory.
27	APM bit	Index registers IXO and IX1 and address register AR cannot be operated at the same time.	Index registers IXO and IX1 and address register AR can be operated at the same time.   Example: INCARDXO $; A R \leftarrow A R+1, \quad\|X O \leftarrow\| X O-1$   The APM bit is useful to transfer data between the external data memory and RAM0 or RAM1.

$\mu$ PD77810
Modem Digital

## Description

The $\mu$ PD77810 is a CMOS 16 -bit signal processor designed for modem applications. It provides a compact digital signal processing system for modulation and demodulation and features low power consumption and high reliability at low cost. The $\mu$ PD77810 consists of a dual processor and a modem function block. The dual processor comprises a $\mu$ PD77C25 digital signal processor (DSP) and $\mu \mathrm{COM} 78 \mathrm{~K} / /$ general purpose processor (GPP).
The $\mu$ PD77810 is software compatible with both the $\mu \mathrm{PD} 77 \mathrm{C} 25$ and $\mu \mathrm{COM} 78 \mathrm{~K} / /$ families.

## Features

```
\square Dual Processor
 -DSP (\muPD77C25)
 Minimum instruction execution time
 (181 ns with 5.5296 MHz clock)
 Dedicated built-in 16-bit multiplier (31 bits)
 Instruction ROM (2048 words x 24 bits)
 Data ROM (1024 words x 16 bits)
 Data RAM (256 words x }16\mathrm{ bits)
 -GPP (}\mu\textrm{COM78K/I)
 Minimum instruction execution time
 (362 ns with 5.5296 MHz clock)
 Memory mapped built-in peripheral hardware
 (special function register)
 Powerful interrupt functions
 Non-maskable interrupt (1 type)
 Maskable interrupt (9 types)
 Internal ROM (16,384 words x }8\mathrm{ bits)
 Internal RAM (192 words x 8 bits)
 Control RAM (16 words x 8 bits)
```

- Modem Function Block
- Built-in scrambler and descrambler CCITT V Series Recommendations Built-in hardware for the V.22, V.22bis, V.26, V.27, V.27bis, V. 27 ter, V. 29 and V. 32
- Built-in transmit and receive PLLs (TxPLL and RxPLL)
- Built-in synchronous/asynchronous serial communication interfaces (ASC, SAC, and UART)
- Built-in A/D and D/A converter serial interfaces ( 8 or 16 bits)
- Software Compatibility
-DSP ( $\mu$ PD77C25) Compatible at assembler source program level Upward compatible with the $\mu$ PD7720 at assembler source program level
- GPP ( $\mu$ COM78K/I)

Compatible at assembler source program level

- Built-in clock generator ( 11.0592 MHz )
- CMOS
- Single +5 V power supply
- 68-pin PLCC
- 68 -pin PGA


## Ordering Information

Part Number	Package Type
$\mu$ PD77810L	68-pin PLCC
$\mu$ PD77810R	68-pin PGA

## Pin Configurations

## 68-Pin PLCC



Notes:
[1] In normal operation connect the Pull $\mathrm{Up}(\mathrm{PU})$ pin to the $\mathrm{V}_{\mathrm{DD}}$ pin through a pull up resistor.
[2] In normal operation the internal Connection (IC) pin must be open.

## 68-Pin PGA



Notes:
[1] In normal operation connect the Pull Up (PU) pin to the $\mathrm{V}_{\mathrm{DD}}$ Pin through a pull up resistor.
[2] In normal operation the Internal Connection (IC) pin must be open.

## Pin Identification

Symbol	I/O	Function
General-Purpose Parallel Port		
$\mathrm{A}_{0}-\mathrm{A}_{3}$ $\mathrm{PC}_{0}-\mathrm{PC}_{3}$	In	Address A0 to A3: Address input. Used to specify the C-RAM address.
$\overline{\mathrm{CS} / \mathrm{PC}_{4}}$	In	Chip Select: Chip Select Input.
$\begin{aligned} & \mathrm{D}_{0}-\mathrm{D}_{7} / \\ & \mathrm{PD}_{0}-\mathrm{PD}_{7} \end{aligned}$	I/O	Data Bus $D_{0}-D_{7}$ : Data Bus. When specified as a bus by the PCMR register, $D_{0}-D_{7}$ are used as a tri-state data bus. In this case, port C is used as an address bus or control bus, or inputs a Chip Select signal.
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	I/O	Port A: 8-bit general-purpose I/O port. I/O is selectable on a four-bit basis. It can be specified by the PTMR register.
$\overline{\mathrm{PB}_{0}-\mathrm{PB}_{7}}$	I/O	Port B: 8-bit general-purpose I/O port. I/O is selectable on a two-bit basis. It can be specified by the PTMR register.
$\overline{\mathrm{PC}_{0}-\mathrm{PC}_{6}}$	I/O	Port C: 7-bit general-purpose 1/O port. I/O is selectable as a general-purpose I/O port on a bit basis. Port C inputs an address or a read/write signal from the host computer when port $D$ is used as the bus. I/O can be specified by the PCMR register.
$\mathrm{PD}_{0}-\mathrm{PD}_{7}$	I/O	Port D: 8-bit general-purpose I/O port. I/O is selectable as a general-purpose I/O port on a bit basis. It can be specified by the PDMR register. Port $D$ has a data bus function, transferring data to and from an external unit in the 16-byte C-RAM space. The bus/port can be specified by the PCMR register.
PE	In	Port E: 1-bit general-purpose input port.
$\mathrm{PF}_{0}-\mathrm{PF}_{2}$	Out	Port F: 3-bit general-purpose input port.
$\overline{\mathrm{RD}} / \mathrm{PC}_{5}$	In	Read Strobe: Used to input Read Strobe from the host computer.
$\overline{\overline{W R} / P_{6}}$	In	Write Strobe: Used to input Write Strobe from the host computer.

## General-Purpose Serial Port

SI1	InSerial Input 1: General-purpose serial input pin (16   bits).   The pin reads data input to SIT in synchronization   with the rising edge of the STCK serial clock when   the S1EN pin is 0.	
SIICK	InSerial Clock for SI1 and SO1: Input pin for SII and   SO1 serial clock. The I/O serial data is in   synchronization with S1CK.	
SITEN	In	Serial Input 1 Enable: SI1 serial input enable pin.   When this pin is 0, SI1 serial input is enabled.
SO1	OutSerial Output 1: General-purpose serial output   pin (16 bits).   The pin outputs data in synchronization with the   falling edge of the S1CK serial clock when the	
SO1EN pin is 0.		


Symbol	I/O	Function
General-Purpose Serial Port (cont)		
SO1EN	In	Serial Output 1 Enable: Enable pin for SO1 serial   input. When this pin is 0, SO1 serial output is   enabled.
SO1RQ	Out	Serial Output 1 Request: Request pin for SO1   serial output. This pin is set to 1 when a serial   output instruction to SO1 is executed. When   inverted, SO1RQ can be input to SO1EN.
SO2	Out	Serial Output 2: DSP serial output pin (16 bits).   This pin outputs serial data with an instruction in   synchronization with the falling edge of the $\overline{\text { ADCK }}$   serial clock when SO2ST is 1.
SO2ST	Out	Serial Output 2 Strobe: Request pin for SO2 serial   output. This pin is set to 1 when a serial output   instruction to SO2 is executed.

## A/D and D/A Serial Interface

$\overline{\text { ADCK }}$	Out	A/D Serial Clock: A/D conversion serial clock.   Data is input to the ADIN pin in synchronization   with the falling edge of the $\overline{\text { ADCK. }}$
ADIN	In	A/D Data Input: Input pin for A/D conversion data.   Data input to this ADIN pin is input from MSB in   synchronization with the rising edge of the $\overline{\text { ADCK }}$   serial clock when ADST is 1.   The ADIN pin is serial input of the DSP portion.
ADST	Out	A/D Start Strobe: Output pin for A/D conversion   start strobe. This ADST pin is enable signal for   the ADIN serial input. It can combine receive PLL   with ADCK.
$\overline{\text { DACK }}$	Out	D/A Serial Clock: D/A conversion serial clock.   Data is output from the DAOT pin in   synchronization with the falling edge of $\overline{\text { DACK, }}$
DALD	Out	D/A Data Load Strobe: Output pin for D/A   conversion load strobe. This pin can combine   transmit PLL together with $\overline{\text { DACK. }}$
DAOT	Out	D/A Data Output: Output pin for D/A conversion   data. The pin outputs D/A conversion data from
	MSB in synchronization with the falling edge of   the $\overline{\text { DACK serial clock when DALD pin output is 1. }}$	

## Serial Control

$\left.\begin{array}{l}\text { RBAUD } \\ \text { (PG }\end{array}\right)$	I/O	RX Baud Rate Clock: Received data baud rate   clock output. This pin is also used as an input port   $\left(\right.$ PG $\left._{0}\right)$ depending on the PLLMR1 mode setting.
RT	Out	RX Clock: Received data bit rate clock output.
R×D	Out	Received Data: Received data serial output or   output port. The received data is output from LSB
using the bit string synchronous to the RT		
received clock as a start-stop signal.		


Symbol	1/0	Function
Serial Control		(cont)
SBAUD ( $\mathrm{PG}_{1}$ )	I/O	TX Baud Rate Clock: Transmitted data baud rate clock output. This pin is also used as an input port ( $\mathrm{PG}_{1}$ ) depending on the PLLMR1 mode setting.
STEXT	In	TX Clock External: Transmitted data bit rate clock input.
STINT	Out	TX Clock Internal: Transmitted data bit rate clock output.
TxD	In	Transmitted Data: Transmitted data serial input or input port. The transmitted data is input from LSB using the start-stop signal input to the TxD pin as a transmit clock or in synchronization with STINT or STEXT.

Circuit Control
CLKO Out Clock Out: CLKO is a 3.6864 MHz ( $50 \%$ duty) output pin, one third of a system clock ( 11.0592 MHz ).

INT	In	Interrupt: Maskable interrupt input. The interrupt   address is 14H.
RST	In	Reset: Low-level active system reset input. $\overline{\text { RST }}$   takes priority over any other operations. After   reset, the GPP and DSP start programs from   address 0.
$\mathrm{X1}$	In	Crystal oscillator (11.0592 MHz $\pm 100 \mathrm{ppm})$   connector.
XZ	Out	
VDD	Power Supply: +5V $\pm 10 \%$.	
GND	Ground: GND (common).	

Absolute Maximum Ratings
$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

## Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Max	Unit	Conditions
X1, SCK   capacitance	$\mathrm{C}_{\boldsymbol{\phi}}$	20	pF	$\mathrm{f} \mathrm{C}=1 \mathrm{MHz}$. All pins   are grounded except   measuring pins.	
Input   capacitance	$\mathrm{C}_{\mathrm{l}}$	20	pF		
Output   capacitance	$\mathrm{C}_{\mathrm{O}}$	20	pF		

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$V_{\text {IL }}$	-0.3		0.8	V	
Input voltage, high	$\mathrm{V}_{\mathrm{H}}$	2.2		$\begin{aligned} & V_{D D} \\ & +0.3 \end{aligned}$	V	
X1 input voltage low	VILC	-0.3		0.8	V	
X1 input voltage high	$\mathrm{V}_{\text {IHC }}$	2.2		$\begin{aligned} & V_{D D} \\ & +0.3 \end{aligned}$	V	
Output voltage low	VOL			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
Output voltage, high	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 0.7 \\ & V_{D D} \end{aligned}$			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input leak current, low	ILIL			- 10	$\mu \mathrm{A}$	$V_{1}=0 \mathrm{~V}$
Input leak current, high	$\mathrm{I}_{\text {LIH }}$			10	$\mu \mathrm{A}$	$V_{1}=V_{D D}$
Output leak current,low	LoL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.47 \mathrm{~V}$
Output leak current, high	ILOH			10	$\mu \mathrm{A}$	$V_{O}=V_{D D}$
Supply current	IDD		80		mA	

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{D D}=+5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
X1 cycle time	${ }^{\text {t }}$ CYC		90		ns	$11.0592 \mathrm{MHz} \pm 100 \mathrm{ppm}$
X1 pulse width, high	${ }^{\text {t }} \mathrm{CCH}$		35		ns	
X1 pulse width, low	${ }^{\text {t }}$ CCL		35		ns	
X 1 rise time	${ }^{\text {t }}$ CR			10	ns	(Note 4)
X1 fall time	${ }^{\text {t }}$ CF			10	ns	
CLKO cycle time	$\mathrm{t}_{\mathrm{COCY}}$		271		ns	
CLKO width, high	${ }^{\text {t }} \mathrm{COCH}$		115		ns	
CLKO width, low	${ }^{\text {t }}$ COCL		115		ns	
Address set time for $\overline{\mathrm{RD}}$	$t_{\text {AR }}$	0			ns	
Address hold time for $\overline{\mathrm{RD}}$	$t_{\text {RA }}$	0			ns	
$\overline{\mathrm{RD}}$ width	$t_{\text {RR }}$	170			ns	
Data access time $\overline{\mathrm{RD}}$	$t_{\text {RD }}$		110		ns	$C_{L}=100 \mathrm{pF}$
Data float time for $\overline{\mathrm{RD}}$	$t_{\text {bF }}$	0		50	ns	$C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
Access set time for WR	$t_{\text {AW }}$	0			ns	
Address hold time for $\overline{\mathrm{WR}}$	$t_{\text {WA }}$	0			ns	
$\overline{\text { WR }}$ pulse width	${ }^{\text {w }}$ W	150			ns	
Data set time $\overline{\text { WR }}$	tow	100			ns	
Data hold time $\overline{\text { WR }}$	$t_{\text {WD }}$	0			ns	
$\overline{\mathrm{RD}}$ and $\overline{W R}$ recovery time	$t_{\text {RV }}$	180			ns	
$\overline{\text { ADCK cycle time }}$	$\mathrm{t}_{\text {ADCY }}$		1065		ns	
ADCK pulse width, high	$t_{\text {ADCH }}$		532		ns	
$\overline{\text { ADCK }}$ pulse width, low	$t_{\text {ADCL }}$		532		ns	
DACK cycle time	$t_{\text {DACY }}$		1085		ns	
DACK pulse width, high	${ }^{\text {t }}$ DACH		532		ns	
$\overline{\text { DACK }}$ pulse width, low	${ }^{\text {t }}$ DACL		532		ns	
Serial I/O request delay time	${ }^{\text {t }}{ }_{\text {DRQ }}$	50		150	ns	
Serial input set time for SCK	${ }^{t}{ }_{D C}$	50			ns	
Serial input hold time for SCK	${ }^{\text {t }}$ CD	30			ns	
SO1EN set time for SCK	tsoc	50			ns	
SO1EN hold time for SCK	${ }_{\text {t }}$	30			ns	
Serial output delay time for SCK	${ }^{\text {t }}{ }_{\text {DCK }}$			60	ns	
Serial output hold time for SCK	$\mathrm{t}_{\mathrm{HCK}}$	0			ns	
Serial output float time for SCK	$\mathrm{t}_{\mathrm{HzCK}}$			60	ns	
Reset pulse width	$t_{\text {RST }}$	10			$\mu \mathrm{s}$	
INT pulse width	$\mathrm{t}_{\text {INT }}$	8		${ }_{\text {t }}^{\text {cre }}$		

## Notes:

(1) $\overline{\mathrm{SCK}}$ includes $\overline{\mathrm{S} 1 \mathrm{CK}}, \overline{\mathrm{ADCK}}$, and $\overline{\mathrm{DACK}}$.
(2) Serial input includes ADIN and SI1.
(3) Serial output includes DAOT, SO1, and SO2.
(4) Voltage at timing measuring point: 1.0 V and 3.0 V .

Timing Waveforms


Reset


## Interrupt



## Read Operation



Write Operation


Timing Waveforms (cont)

## Read/Write Cycle Timing



A/D Serial Input


D/A Serial Output


## Timing Waveforms (cont)

Serial Input S/1


## Serial Output 501



Serial Output SO2


## Block Diagram



## $\mu$ PD77810 Functional Units

The $\mu$ PD77810 contains the following functional units:

- DSP ( $\mu$ PD77C25)
- GPP ( $\mu$ COM78KI)
- Modem Function Block
- Timers: WDTMR and TMR
- Control RAM
- Scrambler and Descrambler
- UART, SAC, and ASC
- Phase-Locked Loops: TxPLL and RxPLL
- Interface to A/D and D/A
- Serial I/O
- Parallel I/O

Figure 1 shows an overview of the $\mu$ PD77810. Figure 2 shows the functional pin groups of the $\mu$ PD77810.

## DSP FUNCTIONAL DESCRIPTION

Figure 3 is the block diagram of the DSP. The DSP consists of the following:

- Multiplier
- ALU Peripheral
- Data Memory with Data ROM and RAM
- Instruction ROM
- Parallel Interface
- Serial Interface
- G-bus Interface

Figure 1. Overview of the $\mu$ PD77810


Figure 2. Functional Pin Groups of the $\mu$ PD77810


## Differences Between the $\mu$ PD77810 and $\mu$ PD7720 and $\mu$ PD77C25 Families.

The DSP was designed on the basis of the $\mu$ PD7720 and $\mu$ PD77C25 16-bit signal processor families, allowing the $\mu$ PD77810 to be compatible with these families at the assembler source program level. Table 1 lists the differences between the $\mu$ PD77810 and the $\mu$ PD7720 and $\mu$ PD77C25 families.

## DSP Internal Functions

Instruction ROM. The instruction ROM is a 2048 word x 24 bit mask programmable ROM that stores programs. Its addressing is generated by the Program Counter (PC).
Program Counter [PC]. The program counter is an 11-bit binary counter that addresses the instruction ROM. The PC is incremented during every instruction fetch cycle and instructions are read from the ROM sequentially. When a jump or subroutine call instruction is executed, the contents of the address field (NA field) of the instruction are transferred to the PC. When a return instruction is executed, the contents of the stack register are transferred to the PC and when a interrupt is issued, the fixed address 100 H is transferred.During a reset, the PC is set to the start address 000 H .

Stack. The $4 \times 11$ bit stack memory stores the return address when a subroutine call instruction is executed or an interrupt is issued. It has a four-level last-in first-out (LIFO) memory. When a return instruction is executed, the return address is read from the stack memory to the PC.

RAM. The 256 word $\times 16$ bit RAM stores data. Its address is set by the data pointer (DP). Data is transferred between the RAM and internal data bus and also to the ALU $P$ input. Data at the RAM address specified as $D P_{6}$ $=1$ can be directly output to the K register.
Data Pointer [DP]. The 8-bit data pointer specifies the RAM address. The DP is connected to the low-order eight bits of the internal data bus and is transferred to and from other registers via the bus.

Figure 3. DSP Block Diagram


Table 1. Differences Between the $\mu$ PD77810 and the $\mu$ PD7720 and $\mu$ PD77C25 Families

Member		$\mu$ PD7720	$\mu$ PD77C25	$\mu$ PD77810 DSP
Memory	Instruction ROM	$512 \times 23$ bits	$2048 \times 24$ bits	$2048 \times 24$ bits
	Data ROM	$510 \times 13$ bits	$1024 \times 16$ bits	$1024 \times 16$ bits
	RAM	$128 \times 16$ bits	$256 \times 16$ bits	$256 \times 16$ bits
Registers	PC	9 bits	11 bits	11 bits
	STACK	9 bits $\times 4$ levels	11 bits $\times 4$ levels	11 bits $\times 4$ levels
	RP	9 bits	10 bits	10 bits
	RO	13 bits	16 bits	16 bits
	DP	7 bits	8 bits	8 bits
	Additional register		TRB	TRB
Instruction length		$\begin{aligned} & 23 \text { bits } \\ & \left(\mathrm{DP}_{\mathrm{H}} / \mathrm{M} \text { field, } 3\right. \text { bits) } \end{aligned}$	$\begin{aligned} & 24 \text { bits } \\ & \left(\mathrm{DP}_{\mathrm{H}} / \mathrm{M} \text { field, } 4 \text { bits }\right) \end{aligned}$	24 bits (DP $/$ /M field, 4 bits)
Additional instruction			JDPLNO   JDPLNF   M8-MF   (DP modified)	JDPLNO   JDPLNF   M8-MF   (DP modified)

Table 1. Differences Between the $\mu$ PD77810 and the $\mu$ PD7720 and $\mu$ PD77C25 Families (cont)

Member	$\mu$ PD7720	$\mu$ PD77C25	$\mu$ PD77810 DSP
DMA mode	Available	Available	Unavailable
Operation clock (instruction cycle)	$\begin{aligned} & 8.192 \mathrm{MHz} \\ & (244 \mathrm{~ns}) \end{aligned}$	$\begin{aligned} & \hline 8.192 \mathrm{MHz} \\ & (122 \mathrm{~ns}) \end{aligned}$	$\begin{aligned} & 5.5296 \mathrm{MHz} \\ & (181 \mathrm{~ns}) \end{aligned}$
Other			- SR (status register) bits 0 and 1 have been changed to $\mathrm{R}_{\mathrm{X}}$ PLL decremental data setting port output.   - SR (status register) bit 11 has been changed to USFO.

The high-order four bits ( $\mathrm{DP}_{\mathrm{H}}$ ) of DP can be modified by exclusive OR of four bits of the $D P_{H} / M$ field in an instruction.
The low-order four bits (DPL) of DP are assigned to an increment/decrement counter. The DP increments, decrements, or clears $D P_{\mathrm{L}}$ field of an instruction.

Data ROM. The 1024 word $\times 16$ bits mask ROM stores fixed data; for example, digital filter coefficients and data used to decode $\mu$-law or A-law compressed nonlinear data. The data ROM address is set by the RP register. ROM data is output to the internal data bus via the RO register.
Addresses 0 and 1 that were not accessible to the $\mu$ PD7720 family user are available for the $\mu$ PD77810.

ROM Pointer [RP]. The ROM pointer specifies the data ROM address. RP consists of a 10 -bit decrement counter. It can transfer data to and from the low-order ten bits of the internal data. The RP register can be decremented by the RPDCR bit of an instruction.

ROM Output Buffer [RO]. The ROM output buffer (RO) is a 16 -bit register that stores the ROM output data. RO data is output to the internal data bus or directly output to the L register.
Multiplier. The parallel multiplier using the Second Order Booth algorithms multiplies 16-bit data of two's compliments notation. The result is a sign bit plus 30 bits of data. The sign bit plus the low-order 15 bits are output to the M register and the lower-order 15 bits without the sign bit are output to the high-order of the N register. Bit 0 of the N register is set to 0 . The multiplier inputs data from the $K$ and $L$ registers.
$K$ and $L$ Registers. The $K$ and $L$ registers are 16-bit registers that store the multiplier and multiplicand that are to be input to the multiplier. The K register also inputs RAM output data and the L register inputs data ROM output data. Immediately after input data is set in the K and $L$ registers, it is input to the multiplier for processing.

M and N Registers. The M and N registers are multiplier output registers. Of the multiplier result , the signed bit and the high-order 15 bits are output to the M register and the low-order 15 bits are output to the high-order of the N register. Bit 0 of the N register is set to 0 . The M and N register output is connected to the ALU $P$ input.
ALU, $A_{c c}$ A and $A_{c c}$ B. The ALU is a 16 -bit arithmetic and logical unit, which performs the following operations for its P and Q data inputs:

- OR
- AND
- XOR (Exclusive OR)
- SUB
- ADD
- Shift [AccA, $A_{c c} B$ only]
-1 's complement [ $A_{C C A}, A_{C C} B$ only]
$P$ input: RAM, internal data bus, $M$ register, N register, shift register, 0000 H
$Q$ input: $A_{c c} A, A_{c c} B$
$A_{C C} A$ and $A C C B$ are 16-bit registers that store the result of the ALU operation. It can also input data from the internal data bus. The ASL bit of an instruction specifies whether the ALU output is input to $A_{C C} A$ or $A_{C C} B$. Register data can be output to the internal data bus or to the shift register together with the ALU Q input.

Shift. The shift register shifts 16 -bits of data that is input from $A_{C C} A$ and $A_{C C} B$. One-bit right shifting, left shifting on one-, two, and four bit basis, and 8 -bit replacement are available.
Flag A and Flag B Registers. Flag A is a register used to store flags generated when $A_{C C} A$ is selected. Similarly, flag $B$ is the register which stores flags when $A_{C C} B$ is selected. Table 2 shows the flags changed by the results of ALU operations. The flag A and flag B register contain flag bits as shown below.

FLAG A


FLAG B

SB1	SB0	CB	ZB	OVB1	OVB0

$C A$ and $C B$ [Carry]: $C A$ and $C B$ are flags that store the carries that occur from the results of an operation. The operations are SUB, ADD, SBB, ADC, DEC, and INC.
ZA and ZB [Zero]: When data to be stored in the $A_{C C}$ is 0 after an operation, excluding NOP, a 1 is set in the ZA or ZB flag.
SAO and SBO [Sign 0]: SAO and SBO store the MSB of the data to be stored in $A_{C C}$, when an operation excluding NOP is executed.

OVAO and OVBO [Overflow 0]: OVAO and OVBO store the exclusive ORed results of carries that occur in ALU bits 15 and 14 when SUB, ADD, SBB, ADC, DEC, or INC is executed.

OVA1 and OVB1 [Overflow 1]: OVA1 and OVB1 flags are designed for effective overflow processing from the results of up to three operations. The operations are SUB, ADD, SBB, ADC, DEC, and INC.

SA1 and SB1 [Sign1]: SA1 and SB1 are used in conjunction with OVA1 and OVB1 flags. The flags are designed for effective overflow processing and indicate the direction in which the overflow occurred.

Table 2. Flags Changed by Results of ALW Operations

Mnemonic	SA1/   SB1	SA0/   SB0	CA/   CB	ZA/   ZB	OVA1/   OVB1	OVA0/   OVB0
NOP	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
OR	X	$\$$	0	$\$$	0	0
AND	X	$\$$	0	$\$$	0	0
XOR	X	$\$$	0	$\$$	0	0
SUB	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
ADD	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
SBB	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
ADC	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
DEC	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
INC	$\$$	$\$$	$\$$	$\$$	$\$$	$\$$
CMP	$X$	$\$$	0	$\$$	0	0
SHR1	$X$	$\$$	$\$$	$\$$	0	0
SHL1	$X$	$\$$	$\$$	$\$$	0	0
SHL2	$x$	$\$$	0	$\$$	0	0
SHL4	$X$	$\$$	0	$\$$	0	0
$X C H G$	$X$	$\$$	0	$\$$	0	0

## Symbols:

$\$$ = The flag is changed by the result of operation.

- = The flag remains unchanged.
$0=$ Flag is reset.
$X=$ Undefined
Temporary Register [TR and TRB].TR and TRB are 16-bit general-purpose registers that can be used to latch data temporarily.

Sign Register [SGN].The SGN register stores 8000 H when the SA1 flag is 0 and 7FFFH when it is 1 . If an overflow occurs, overflow correction can be performed with only one instruction.
Status Register [SR].The SR register stores interface information for the GPP. Internally, it is handled as a 16-bit register. Of the 16 bits of data, eight bits can be read by the GPP by specifying the SFR address FF62H or FF6H.

The SR register consists of 16 -bits as shown below.
MSB

RQM	USF2	USF1	DRS	USFO	DRC	SOC	SIC


MSB	0	0	0	0	0	RF1

RF0 and RF1: RF0 and RF1 correspond to output ports RFO and RF1. The values set in the bits are output directly to the ports.

Bits RFO and RF1 specify the value to be set in the decrementer in RxPLL of the modem function block.

El [Enable Interrupt]: The El bit specifies whether an interrupt request input to the INT pin is enabled.
$0=$ Disabled
1 = Enabled
SIC [SI Control]: The SIC bit specifies the length of serial data to be input to the ADIN A/D conversion input pin.
$0=$ Serial input data is 16 bits
$1=$ Serial input data is 8 bits
SOC [SO Control]: The SOC bit specifies the length of serial data to be output to the SO serial output pin.
$0=$ Serial output data is 16 bits
$1=$ Serial output data is 8 bits
DRC [DR Control]: The DRC bit sets the DR register configuration for GPP as eight or 16 bits.
$0=$ The DR register is treated as a 16-bit register
$1=$ The DR register is treated as a 8-bit register.
DRS [DR Status]: The DRS bit indicates the DR register transfer status.
$0=$ End of data transfer
$1=$ Data is being transferred
When DRC $=1$, the DRS bit is always set to 0 .
USF0, USF 1, and USF2 [User's Flag]: USF0, USF 1, and USF2 are flag bits which can be used freely. They are used as a status bit in an interface with an external unit.

Request for Master [RQM]: RQM is a flag bit used to transfer data between the DR register and GPP.

Data Register [DR]. DR is a 16-bit register used to transfer data to and from the GPP. One of its sides is connected to the 8-bit bus and reads or writes data from an external unit in two operations. Internally, it transfers data in one operation (16 bits). When the DR register is defined as an 8-bit register by the DRC bit, only the low-order eight bits of DR can be transferred.
Serial Input Register [SI]. The SI register inputs serial data from an external unit. Serial data is input to DSP ADSI from the ADIN pin at the rising edge of the ADCK serial clock, converted to parallel data by SI , and output
to the internal data bus with an instruction. Serial data can be handled from either the LSB or MSB.

Serial Output Register [SO]. The SO register loads parallel data to be output from the internal data bus, converts to serial data, and outputs to an external unit. Serial data can be handled from the either the LSB or MSB. It is output at the rising edge of the ADCK serial clock.

Interrupt. An interrupt is accepted with an instruction from the GPP, when interrupt is enabled (El bit of SR register $=1$ ). Program control jumps to the interrupt address 100 H and executes an interrupt process.
Reset [RST]. $\overline{\operatorname{RST}}$ initializes the following by SFR INTDSPO (0) of the GPP:

## - PC

- Flags A and B
- ADSI ASK flag and SO ACK flag


## DSP Instructions

All DSP instructions consist of a single 24-bit word. Four types of instructions are available and are distinguished by the OP code which are the highest two bits of an instruction.

- OP instruction: Normal operations and transfer
- RT instruction: Return instruction
- JP instruction: Jump instructions including unconditional jump, conditional jump, and subroutine call
- LD instruction: Immediate data load instruction See table 3 for DSP instruction codes.

OP Instruction. The OP instruction has the following functions:

- Performs operations specified by six fields and two bits.
- Increments the current address set in the program counter by one.


P-SELECT Field: The P-SELECT field selects ALU P input. See table 4 for P-SELECT field specifications.

ALU Field: The ALU field specifies an ALU operation. See table 5 for ALU field specifications.
ASL [ $A_{C C}$ Selection] Bit: The ASL bit specifies whether $A_{C C} A$ or $A_{C C} B$ is selected to the ALU input/output. See table 6 for ASL bit specifications.
$D P_{L}$ Field: The $D P_{L}$ field specifies the operation of the loworder four bits of the data pointer. The changed $\mathrm{DP}_{\mathrm{L}}$ is valid from the next instruction. See table 7 for $D P_{L}$ field specifications.
$D P_{H} / \mathrm{MP}\left[\mathrm{DP}_{\mathrm{H}}\right.$ Modify] Field: The $\mathrm{DP}_{\mathrm{H}} / \mathrm{M}$ field modifies the high-order four bits of the data pointer. The OP instruction performs exclusive $O R$ of $D P_{H}$ four bits with the value in the field for each bit. The modified $\mathrm{DP}_{\mathrm{H}}$ value is valid from the next instruction. See table 8 for $\mathrm{DP}_{\mathrm{H}} / \mathrm{M}$ field specifications.

RPDCR [RP Decrement] Bit: The RPDCR bit specifies whether RP data is decremented or not decremented. The decremented value is valid from the next instruction. See table 9 for RPDCR bit specifications.

SRC [Source] Field: The SCR field specifies the register that outputs data to the internal data bus. See table 10 for SCR field specifications.

DST [Destination] Field: The DST field specifies the register that inputs data from the internal data bus. This is source data from the register specified in the SRC field. See table 11 for DST field specifications.

RT Instruction. The RT instruction has the following functions:

- Performs operations specified by six fields and two bits, similar to the OP instruction. Therefore, RT has the same function as that of the OP instruction.
- Sets the program counter as the stacked return address. See table 4 through table 11 for RT instruction specifications.


JP Instruction. The JP instruction includes three functions, such as unconditional jump, conditional jump, and subroutine call.

23	2221	211	21
10	BRCH	NA	

BRCH (Branch) Field: The BRCH field selects the instruction to be executed from unconditional jump, conditional jump, and subroutine call. See table 12 for BRCH field specifications.
NA (Next Address) Field: The NA field specifies the address of the jump destination. See table 13 for NA field specifications.

LD Instruction. The LD instruction transfers imediate data to the specified register.


ID (Immediate Data) Field: The 16-bit ID field sets immediate data. Immediate data is transferred to the register specified in the DST field. See table 14 for ID field specifications.

DST (Destination) Field: The DST field specifies the register where data in the ID field is transferred. The DST field is the same as that of the OP instruction. See table 11 for DST field specifications.

Table 3. DSP Instruction Codes

	OP Field		
Instruction	$\mathbf{2 3}$	$\mathbf{2 2}$	
OP	0	0	Meaning
RT	0	1	Operation and transfer
JP	1	0	Return
LD	1	1	Jump

Table 4. P-Select Field Specifications

$\mu$ PD77810

Table 5. ALU Field Specifications

Mnemonic	ALU Field				Operation	
	19	18	17	16		
NOP	0	0	0	0	No operation	
OR	0	0	0	1	OR	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right) \vee(P)$
AND	0	0	1	0	AND	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right) \vee(P)$
XOR	0	0	1	1	Exclusive OR	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right) \forall(P)$
SUB	0	1	0	0	Subtract	$\left(A_{C C}\right)-\left(A_{C C}\right)-(P)$
ADD	0	1	0	1	Add	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right)+(P)$
SBB	0	1	1	0	Subtract with borrow	$\left(A_{C C}\right)-\left(A_{C C}\right)-(P)-(C)$
ADC	0	1	1	1	Add with carry	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right)+(P)+(C)$
DEC	1	0	0	0	Decrement $A_{C C}$	$\left(A_{C C}\right)<-\left(A_{C C}\right)-1$
INC	1	0	0	1	Increment ACC	$\left(A_{C C}\right) \leftarrow\left(A_{C C}\right)+1$
CMP	1	0	1	0	Complement $\mathrm{A}_{\text {CC }}$ (1's complement)	$\left(A_{C C}\right) \leftarrow\left(\overline{A_{C C}}\right)$
SHR1	1	0	1	1	1-bit R-shift	
SHL1	1	1	0	0	1-bit L-shift	
SHL2	1	1	0	1	2-bit L-shift	
SHL4	1	1	1	0	4-bit L-shift	
XCHG	1	1	1	1	8-bit exchange	

Symbols:
$P=$ Input selected in the $P$-Select field; C = Carry flag not selected by the ASL bit.

Table 6. ASL Bit Specifications

Mnemonic	ASL Bit 15	A $_{C C}$ Selection
ACCA	0	$A_{C C} A$
ACCB	1	$A_{C C} B$

Table 7. $D P_{L}$ Field Specifications

	DP Field		
Mnemonic	$\mathbf{1 4}$	$\mathbf{1 3}$	
Operation			
DPNOP	0	0	
DPINC	0	1	No operation
DPDEC	1	0	IncrementDP
DPCLR	1	1	DecrementDP $P_{\text {L }}$

Table 8. $D P_{H} / M$ Field Specifications

Mnemonic	$\mathrm{DP}_{\mathrm{H}} / \mathrm{M}$ Field				Exclusive OR
	12	11	10	9	
M0	0	0	0	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall(00000)$
M1	0	0	0	1	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{lllll}0 & 0 & 1\end{array}\right)$
M2	0	0	1	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall(0010)$
M3	0	0	1	1	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{lllll}0 & 1 & 1\end{array}\right)$
M4	0	1	0	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}1 & 0 & 0\end{array}\right)$
M5	0	1	0	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{llllll}0 & 1 & 0 & 1\end{array}\right)$
M6	0	1	1	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}0 & 1 & 1\end{array}\right)$
M7	0	1	1	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{lllll}0 & 1 & 1 & 1\end{array}\right)$
M8	1	0	0	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$
M9	1	0	0	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{lllll}1 & 0 & 0 & 1\end{array}\right)$
MA	1	0	1	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$
MB	1	0	1	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{lllll}1 & 0 & 1 & 1\end{array}\right)$
MC	1	1	0	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}1 & 1 & 0\end{array}\right)$
MD	1	1	0	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{llllll}1 & 1 & 0 & 1\end{array}\right)$
ME	1	1	1	0	$\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)$
MF	1	1	1	1	$\left.\left(\mathrm{DP}_{7} \mathrm{DP}_{6} \mathrm{DP}_{5} \mathrm{DP}_{4}\right) \forall \begin{array}{llllll}1 & 1 & 1 & 1\end{array}\right)$

Table 9. RPDCR Bit Specifications

Mnemonic	RPDCR Bit 8	Operation
RPNOP	0	No operation
RPDEC	1	Decrement RP

Table 10. SCR Field Specifications

	SRC Field				
Mnemonic	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	Source Register
NON, TRB (Note 1)	0	0	0	0	TRB
A	0	0	0	1	A CCA $^{\prime}$
B	0	0	1	0	A CC B $^{\prime}$
TR	0	0	1	1	TR
DP	0	1	0	0	DP
RP	0	1	0	1	RP register
RO	0	1	1	0	RO register
SGN	0	1	1	1	SGN register
DR	1	0	0	0	DR register
DRNF	1	0	0	1	DR register (Note 2)
SR	1	0	1	0	SR register
SIM	1	0	1	1	ADSI register (Note 3)
SIL	1	1	0	0	ADSI register (Note 4)
K	1	1	0	1	Kregister
L	1	1	1	0	Lregister
MEM	1	1	1	1	RAM

## Notes:

(1) TRB register data is output to the internal data bus even when NON is specified.
(2) DR register data is output to the internal data bus but the ROM flag is not set.
(3) For 16-bit data, the first serial input data is output to the highest bit (MSB) and the last is output to the lowest bit (LSB).
(4) For 16 -bit data, the first serial input data is output to the LSB of the internal data bus and the last is output to the MSB.

Table 11. DST Field Specifications

Mnemonic	DST Field				Destination Register
	3	2	1	0	
@ NON	0	0	0	0	No register
@ A	0	0	0	1	$\mathrm{A}_{C C} \mathrm{~A}$ (accumulator A )
@ B	0	0	1	0	$\mathrm{A}_{C C} \mathrm{~B}$ (accumulator B )
@ TR	0	0	1	1	TR (temporary register)
@ DP	0	1	0	0	DP (data pointer)
@ RP	0	1	0	1	RP register
@ DR	0	1	1	0	DR register
@ SR	0	1	1	1	SR register
@ SOL	1	0	0	0	SO register serial out LSB (Note 1)
@ SOM	1	0	0	1	SO register serial out MSB (Note 2)
@ K	1	0	1	0	K register
@ KLR	1	0	1	1	KLR (Note 3)
@ KLM	1	1	0	0	KLM (Note 4)
@ L	1	1	0	1	Lregister
@ TRB	1	1	1	0	TRB register
@ MEM	1	1	1	1	RAM

## Notes:

(1) For 16-bit serial data, serial data is output from the LSB of the internal data bus sequentially.
(2) For 16 -bit data, serial data is output from the MSB of the internal data bus sequentially.
(3) The K register stores data on the internal data bus and the L register stores the RO register (ROM) output.
(4) The $L$ register stores data on the internal data bus and the K register stores RAM data specified by $\mathrm{DP}_{6}=1\left(\mathrm{DP}_{7}, 1, \mathrm{DP}_{5}, \mathrm{DP}_{4}, \mathrm{DP}_{3}, \mathrm{DP}_{2}\right.$, $D P_{1}$, and $D P_{0}$ ).

Table 12. BRCH Field Specifications

Mnemonic	BRCH Field ${ }^{\text {* }}$									Conditions
	21	20	19	18	17	16	15	14	13	
JMP	1	0	0	0	0	0	0	0	0	Unconditional
CALL	1	0	1	0	0	0	0	0	0	Unconditional
JNCA	0	1	0	0	0	0	0	0	0	$C A=0$
JCA	0	1	0	0	0	0	0	1	0	$C A=1$
JNCB	0	1	0	0	0	0	1	0	0	$C B=0$
JCB	0	1	0	0	0	0	1	1	0	$C B=1$
JNZA	0	1	0	0	0	1	0	0	0	$\mathrm{ZA}=0$
JZA	0	1	0	0	0	1	0	1	0	$\mathrm{ZA}=1$
JNZB	0	1	0	0	0	1	1	0	0	$\mathrm{ZB}=0$
JZB	0	1	0	0	0	1	1	1	0	$\mathrm{ZB}=1$
JNOVAO	0	1	0	0	1	0	0	0	0	OVAO $=0$
JoVAO	0	1	0	0	1	0	0	1	0	OVAO $=1$
JNOVB0	0	1	0	0	1	0	1	0	0	$\mathrm{OVBO}=0$
JovB0	0	1	0	0	1	0	1	1	0	OVBO $=1$
JNOVA1	0	1	0	0	1	1	0	0	0	OVA $1=0$
JoVA1	0	1	0	0	1	1	0	1	0	OVA1 $=1$
JNOVB1	0	1	0	0	1	1	1	0	0	OVB1 $=0$
JoVB1	0	1	0	0	1	1	1	1	0	OVB1 $=1$
JNSAO	0	1	0	1	0	0	0	0	0	SAO $=0$
JSAO	0	1	0	1	0	0	0	1	0	SAO $=1$
JNSB0	0	1	0	1	0	0	1	0	0	SBO $=0$
JSB0	0	1	0	1	0	0	1	1	0	$\mathrm{SBO}=1$
JNSA1	0	1	0	1	0	1	0	0	0	$\mathrm{SA} 1=0$
JSA1	0	1	0	1	0	1	0	1	0	$S A 1=1$
JNSB1	0	1	0	1	0	1	1	0	0	SB1 $=0$
JSB1	0	1	0	1	0	1	1	1	0	$\mathrm{SB} 1=1$
JDPL0	0	1	0	1	1	0	0	0	0	$D P_{L}=0$
JDPLNO	0	1	0	1	1	0	0	0	1	$\mathrm{DP}_{\mathrm{L}} \neq 0$
JDPLF	0	1	0	1	1	0	0	1	0	$\mathrm{DP}_{\mathrm{L}}=\mathrm{F}(\mathrm{HEX})$
JDPLNF	0	1	0	1	1	0	0	1	1	$\mathrm{DP}_{\mathrm{L}} \neq \mathrm{F}$ (HEX)
JNSIAK	0	1	0	1	1	0	1	0	0	SIACK $=0$
JSIAK	0	1	0	1	1	0	1	1	0	SIACK = 1
JNSOAK	0	1	0	1	1	1	0	0	0	SO ACK $=0$
JSOAK	0	1	0	1	1	1	0	1	0	SO ACK $=1$
JNRQM	0	1	0	1	1	1	1	0	0	RQM $=0$
JRQM	0	1	0	1	1	1	1	1	0	RQM $=1$

## Note:

* The BRCH field values not listed in this table are prohibited.

Table 13. NA Field Specifications

NA Field											
$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	Jump Address
0	0	0	0	0	0	0	0	0	0	0	Address 0
0	0	0	0	0	0	0	0	0	0	1	Address 1
0	0	0	0	0	0	0	0	0	1	0	Address 2
					1						1
1	$\mathbf{1}$	Address 2047									

## Table 14. ID Field Specifications

ID Field																HEX
21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0001
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0002
								1								)
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	FFFF

## GPP FUNCTIONAL DESCRIPTION

Figure 4 is the block diagram of the GPP.
Figure 4. GPP Block Diagram


## Memory Map

The general purpose processor (GPP) has a 64 K byte address space (16-bit address). Figure 5 shows memory mapping of the GPP.

The GPP address space consists of the following:

- 16,384 byte internal program memory (INT-ROM) space.
- 192 byte internal data memory (INT-RAM) space.
- 256 byte special function register (SFR) space.

Internal Program Memory Space [INT-ROM]. A 16,384 word $\times 8$-bit mask programmable ROM occupies an area of addresses from 0000 H to 3FFFH. The ROM can be used for storing programs and data. The internal program memory space is allocated as follows:
Vector Table Area: The 22 bytes from 0000H to 0015H holds vectors for reset and interrupts. The low-order eight bits of a 14-bit address are stored in an even-numbered address and the high order six bits are stored in an oddnumbered address. See table 15 for the interrupt-vector address.

Figure 5. GPP Memory Mapping


Table 15. Interrupt Vector Address

		Interrupt Source
Interrupt Vector Address	Flag Name	Condition
0000 H		Reset ( $\overline{\text { RESET }}$ ) input
0002 H	NMIWD	Watch dog timer
0004 H	IST	STINT rising edge
0006 H	IRT	RT rising edge
0008 H	IIU	Data was input to URTI, or a break signal was detected.
000 AH	IOU	Data was input to URTO
000 CH	IFIFO	Data was read from FIFO, or four levels of FIFO data were output.
000 EH	IAT	TMRA is 0
0010 H	IBT	TMRB is 0
0012 H	IS1	Data is input to SIT
0014 H	INT	Interrupt (INT) input

CALLT Instruction Table Area: A 64-byte area from 0040H to 007 FH stores a one-byte call instruction (CALLT) subroutine entry address.

CALLF Instruction Entry Area: An area from 0800 H to OFFFH stores a two-byte call instruction (CALLF) which calls a subroutine directly.

Internal Data Memory Space (INT-RAM). A memory area from FE40H to FEFFH is allocated to a 192-byte RAM.
In the RAM's 32-byte area from FEEOH to FEFFH a fourbank general-purpose register group is mapped. Data memory is also used as stack memory.

Special Function Register (SFR) Space. A 61-byte area within a 256 -byte area from FFOOH to FFFFH stores a special function register (SFR) of on-chip peripheral hardware. The addresses not mapped with SFR are not accessible. C-RAM is also mapped within the SFR space. Note that it is possible for C-RAM to be externally accessible. See I/O port and C-RAM.

C-RAM which is able to write externally in the slave mode, is also allocated in the SFR space.

## Registers

Program Counter [PC]. The program counter is a 14 -bit binary counter containing address information of the next program to be executed. It is incremented automatically depending on the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data or the contents of a register is set in the counter.

When the $\overline{\text { RESET }}$ signal is input, the PC is initialized with the data at addresses 0000 H and 0001 H in INT-ROM; the data at address 0000 H are placed in the low-order eight bits of the PC, and the low-order six bits of the data at 0001 H are placed in the high-order six bits of the PC. See Figure 6.

Figure 6. Program Counter Configuration


Program Status Word [PSW]. The program status word is an 8 -bit register consisting of flags. See Figure 7. It can be read or written on an eight-bit basis. The flags area is operated by bit operation instructions. The PSW data is saved into a stack area when an interrupt request is issued or a PUSH instruction is executed and is restored with a RETI or POP instruction.
When $\overline{\text { RESET }}$ is input, all flags are cleared and PSW is set to 02 H .

Figure 7. Program Status Word Configuration

	7	6	5	4	3	2	1	0
PSW	IE	Z	RBS1	AC	RBSO	0	1	CY

Note: Bit 2 and Bit 1 must be set as follows:
Bit $2=0$
Bit $1=1$

Carry Flag [CY]: The carry flag (CY) stores overflow or underflow when arithmetic instructions are executed. The flag stores the value shifted out when a shift rotate instruction is executed and performs as a bit accumulator when a bit operation instruction is executed.

Register Bank Select Flags $\left[\mathrm{RBS}_{0}\right.$ and $\left.\mathrm{RBS}_{1}\right]: \mathrm{RBS}_{0}$ and RBS $_{1}$ are used to select one of the four register banks. See table 16.

Table 16. Register Bank Selection

RBS $_{\mathbf{1}}$	RBS $_{\mathbf{0}}$	Register Bank
0	0	Register bank 0
0	1	Register bank 1
1	0	Register bank 2
1	1	Register bank 3

Figure 8. Stack Pointer Configuration

	7	6	5	4	3	2	1	0
SP	SP 7	SP 6	SP 5	SP 4	SP 3	SP 2	SP 1	SP 0

Auxiliary Carry Flag [AC]: The auxiliary carry flag is set to 1 when a bit 3 carry occurs at the end of an operation or when a bit 3 borrow occurs. Otherwise it is reset to 0 . The AC flag is used when a BCD correct instruction is executed.
Zero Flag [Z]: The zero flag is set to 1 when the result of an operation is 0 . If the result of an operation is not 0 , the $Z$ flag is reset to 0 . The $Z$ flag can be tested with a conditional branch instruction.

Interrupt Request Enable Flag [IE]: The interrupt request enable flag controls whether a CPU interrupt request (maskable vector interrupt) is accepted. When the flag is set to 0 , the processor is set to the DI state and all interrupts except a non-maskable interrupt (watch dog timer interrupt) are disabled. When the flag is set to 1 , the processor is set to the El state and interrupt requests are controlled by the interrupt mask flag for each interrupt request. The El flag is set to 1 when an El instruction is executed and reset to 0 when a DI instruction is executed or an interrupt is accepted.

Stack Pointer [SP]. The stack pointer is an 8-bit register used to retain the low-order eight bits of the return address in a stack area (LIFO form). The high-order eight bits of an address in this area are always FEH. The stack memory is allocated to any area in data memory (FE40H to FEFFH). When the SP value is set SP data is not stored from 00 H to 3FH. SP data is decremented when a write (save) operation is performed to stack memory and incremented when data is read (restored) from stack memory. SP is accessible with a dedicated instruction. SP data is not acted upon when RESET is input. $\overline{\text { RESET }}$ must initialize the SP before a subroutine call. See Figures 8, 9, and 10.

Figure 9. Data Saved to the Stack Memory


Figure 10. Data Restored From the Stack Memory


General-Purpose Registers. General-purpose registers are mapped to special addresses in the INT-RAM (FEEOH to FEFFH). The registers consist of four bank registers; each having eight 8 -bit registers ( $X, A, C, B, E, D, L$, and H). The actual register bank in operation is determined by RBS0 and RBS1 of PSW.
Normally, general-purpose registers are operated on an eight-bit basis. These can also be operated on a 16 -bit basis as a pair of 8 -bit registers (AX, BC, DE, and HL). See Figure 11.
Registers have functional names ( $\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}, \mathrm{H}, \mathrm{AX}$, $B C, D E$, and $H L$ ) as well as absolute names ( $R 0$ to $R 7$ and RP0 to RP3). See table 17 for the relationship between functional names and absolute names.
The general-purpose register area is accessible by specifying a normal data memory address. It does not have to be used as a register area.
The GPP has four register banks and the user can use different register banks for efficient programming of normal and interrupt operations.

Table 17. Relationship Between Functional Names and Absolute Names

Functional Name	Absolute Name
$X$	R0
$A$	R1
C	R2
B	R3
E	R4
$D$	R5
L	R6
H	R7
AX	RP0
BC	RP1
DE	RP2
$H L$	RP3

Figure 11. General-Purpose Register Configuration

FEEOH	8-bit Register Processing			16-bit Register Pair Processing	
	${ }^{\text {A }} \mathrm{EIH}$	$X_{\text {EOH }}$	Register Bank 3 (RBS 1, $0=11$ )	AX	EOH
	${ }^{\text {B E3H }}$	$\mathrm{C}_{\text {E2H }}$		BC	E2H
	$\mathrm{D}_{\text {E5 }}$	$E_{\text {E4H }}$		DE	E4H
	$\mathrm{H}_{\text {E7 }}$	$L_{\text {E6H }}$		HL	E6H
	${ }^{\text {A E9H }}$	$\chi_{\text {E8H }}$	Register Bank 2   (RBS 1, $0=10$ )	AX	E8H
	${ }^{\text {B }}$ EBH	${ }^{\text {c EAH }}$		BC	EAH
	${ }^{\text {d EDH }}$	$E_{\text {ECH }}$		DE	ECH
	${ }^{+}$EHF	$L_{\text {EEH }}$		HL	EEH
	$A^{\text {F1H }}$	$\mathrm{X}_{\text {FOH }}$	Register Bank 1   (RBS 1, 0 = 01)	AX	FOH
	${ }^{\text {B }}$ F3H	$C^{\text {F2H }}$		BC	F2H
	$\mathrm{D}_{\text {F5H }}$	$\mathrm{E}_{\mathrm{F} 4 \mathrm{H}}$		DE	F4H
	$\mathrm{H}_{\mathrm{F} 7 \mathrm{H}}$	$L_{\text {F6H }}$		HL	F6H
	${ }^{\text {A }} \mathrm{F9H}$	$\mathrm{X}_{\text {F8H }}$	Register Bank 0 (RBS 1, $0=00$ )	AX	F8H
	${ }^{\text {a }}$ FBH	$C_{\text {FAH }}$		BC	FAH
	${ }^{\text {P }} \mathrm{FDH}$	$\mathrm{E}_{\mathrm{FCH}}$		DE	FCH
FEFFH	$\mathrm{H}_{\text {FFH }}$	$L_{\text {FEH }}$		HL	FEH

## Special Function Register [SFR]

The special function registers are assigned to special functions like the built-in peripheral hardware mode register and control registers. They are mapped to 61 bytes in the 256-byte area from FFOOH to FFFFH.
SFRs are instruction operands which can be used for transfer instructions, bit operation instructions, and arithmetic instructions.

Note that only addresses assigned for the SFR are accessible. If an address not assigned for the SFR is accessed, the processor may malfunction.

Table 18 lists the SFRs.

Table 18. Special Function Register (SFR) List

Functional Area	SFR Name	Mnemonic	R/W	Status at Reset	Address
Port	Port mode register (PTMR)	PTMR	R/W	3FH	FF28H (8-bits)
	Port C mode register (PCMR)	PCMR		7FH	FF29H (8-bits)
	Port D mode register (PDMR)	PDMR		FFH	FF2AH (8-bits)
	Port A (PORTA) (Note 1)	PA		00 H	FF2CH (8-bits)
	Port B (PORTB) (Note 1)	PB		OOH	FF2DH (8-bits)
	Port C (PORTC) (Note 1)	PC		OOH	FF2EH (low-order 7-bits)
	Port D (PORTD) (Note 1)	PD		OOH	FF2FH (8-bits)
	PortE (PORTE)	PE	R	OH	FF57H (low-order 1-bit)
	Port F (PORTF)	PF	R/W	OH	FF5CH (low-order 3-bits)
Interrupt	Interrupt request flag register (IFO)	IFO	R/W	$\begin{aligned} & \mathrm{OOH} \\ & \mathrm{OOH} \end{aligned}$	FFEOH (16-bits) FFE1H
	Interrupt mask register (MKO)	MKO		$\begin{aligned} & \text { FFH } \\ & \text { FFH } \end{aligned}$	$\begin{aligned} & \text { FFE4H (16-bits) } \\ & \text { FFE5H } \end{aligned}$
	DSP interrupt register (INTDSP) (Note 8)	INTDSP		OH	FF64H (low-order 2-bits)
Scrambler/descrambler	Mode register (SCRMR)	SCRMR	R/W	OOH	FF40H (8-bits)
	Scrambler port (SCR) (Note 3)	SCR		Undefined	FF41H (low-order 1-bit)
	Descrambler port (DSC) (Note3)	DSC			FF42H (low-order 1-bit)
	Scrambler control register (SCRM)	SCRM		OH	FF65H (low-order 4-bits)
	Descrambler control register (DSCM)	DSCM		OH	FF66H (low-order 3-bits)
Transmit PLL/receive PLL	PPL mode register 1 (PLLMR1)	PLLMR1	R/W	OOH	FF44H (8-bits)
	PPL mode register 2 (PLLMR2)	PLLMR2		33H	FF7EH (8-bits)
	SBAUD, RBAUD status register (BAUDSR)	BAUDSR	R	OH	FF45H (low-order 2-bits)
Serial communication interface ASC, SAC, UART	Synchronous/asynchronous mode register (ASMR)	ASMR	R/W	OOH	FF49H (8-bits)
	UART mode register (URTMR)	URTMR		OOH	FF4AH (low-order 7-bits)
	UART status register (URTSR) (Note 4)	URTSR	R	OH	FF4BH (low-order 4-bits)
	ASC register (ASCR)	ASCR		Undefined	FF4CH (8-bits)
	SAC register (SACR)	SACR	R/W		FF4DH (8-bits)
	URO register (URO)	URO			FF3EH (8-bits)
	URI register (URI)	URI	R		FF3FH (8-bits)
A/D, D/A interface	D/A mode register (DAMR)	DAMR	R/W	OOH	FF4EH (low-order 6-bits)
	FIFO read address (FFRA)	FFRW		OH	FF4FH (high-order 3-bits)
	FIFO write address (FFWA)	FFRW		OH	FF4FH (low-order 3-bits)
	FIFO (FIFO) (Note5)	FIFO		Undefined	$\begin{aligned} & \text { FF54H (16-bits) } \\ & \text { FF55H } \end{aligned}$
Serial I/O	Status register (S1SR)	S1SR	R	OH	FF56H (2-bits)
	Serial input port 1 (SI1)	SI1	R/W	0000H	$\begin{aligned} & \text { FF58H (16-bits) } \\ & \text { FF59H } \end{aligned}$
	Serial output port 1 (SO1)	SO1		0000H	$\begin{aligned} & \text { FF5AH (16-bits) } \\ & \text { FF5BH } \end{aligned}$
Timer	Timer mode register (TMMR) (Note 6)	TMMR	R/W	OOH	FF5DH (8-bits)
	Timer A (TMRA)	TMRA		FFH	FF5EH (8-bits)
	Watch dog timer control register (WDMSR) (Note 7)	WDMSR		OOH	FF6DH (8-bits)

$\mu$ PD77810

Table 18. Special Function Register (SFR) List (cont)

Functional Area	SFR Name	Mnemonic	R/W	Status at Reset	Address
DSP interface	Data register (DR) (Note 2)	DR	R/W	Undefined	$\begin{aligned} & \text { FF60H (16-bits) } \\ & \text { FF61H } \end{aligned}$
	Status register (SR)	SR	R	OOH	$\begin{aligned} & \text { FF62H (8-bits) } \\ & \text { FF63H } \end{aligned}$
C-RAM	Control RAM (C-RAM)		R/W	Undefined	FF90H (8-bits) FF9FH (8-bits)

Notes:
(1) Write operation is invalid when the register is used as an input port.
(2) The DSP status (RQM flag) is changed by a Read/Write signal.
(3) The shift register of the scrambler/descrambler is shifted one bit by a Write signal to the SCR and DSC.
(4) URTSR is reset after it is read.
(5) The FFWA write address is incremented by a Write signal to the FIFO.
(6) This register is reset to 0 by TMRA.
(7) The write operation is performed with special instructions (MOV WDMSR, \# byte).
(8) INTDSP is reset six clocks after it is set to 1 .
(9) The 16 -bit SFR registers must be accessed one byte at a time. For high byte access the symbol H is appended to the SFR mnemonic and for the low byte access the symbol L is used.

## Interrupt Functions

The GPP has one non-maskable interrupt and nine maskable vector interrupts.
The vector interrupt saves status information (PC and PSW information) of the program being executed. The status information is stored in memory specified by the stack pointer when an interrupt request is accepted. Then data is stored at the address of the interrupt request (vector table address) in the PC as vector address information and starts the interrupt service program. Control is returned from the interrupt service program by transferring the program counter value and status information from stack memory to the PC and PSW with the RETI instruction.

Maskable Vector Interrupt. Maskable vector interrupt processing indicates when an interrupt is enabled by the
interrupt mask register [MKO]. The interrupt source state can be checked by the interrupt request flag register [IFO]. Maskable vector interrupt operations are explained below. The interrupt enable state indicates that the IE bit of PSW is 1 and the corresponding bit of the interrupt mask register MKO is 0 .

- When an interrupt source is detected, the corresponding bit of IFO is set.
- When interrupt processing starts, the corresponding bit of IFO is reset.
- When an interrupt source is detected while interrupt is enabled, interrupt processing starts.
- If two or more interrupt sources are detected, priority is given to the lowest interrupt vector address.
- If an interrupt request is detected during interrupt processing, it is nested when interrupt is enabled.
The GPP has a total of ten interrupt request sources; nine maskable interrupts and one non-maskable interrupt. Of the ten sources the maskable interrupt request sources are listed in table 19.
Table 20 lists the interrupt vector table addresses. Table 21 lists the IFO and MKO SFR addresses.


## Table 19. Maskable Interrupt Request Sources

Interrupt Source	Interrupt Signal	Condition
$\mathrm{T}_{\mathrm{X}}$ PLL	IST	STINT rising edge
PxPLL	IRT	RT rising edge
TIMRA	IAT	Timer TMRA is set to 0
TIMRB	IBT	Timer TMRB is set to 0
FIFO	IFIFO	Data was read from FIFO. Or, four levels of FIFO data were output from FIFO.
SI1	IS1	Data was input to SII
UART	IIU	Data was input to URTI. Or, a break signal was detected.
External	IOU	URTO data was output

Table 20. Interrupt Vector Table Address

Interrupt Request Type	Vector Table Address	Default Priorities	Interrupt Request Signal	IFO   Corresponding Bit	MKO   Corresponding Bit
Maskable	0004H	1	IST	0	0
	0006H	2	IRT	1	1
	0008H	3	IIU	2	2
	000AH	4	IOU	3	3
	000 CH	5	IFIFO	4	4
	000EH	6	IAT	5	5
	0010H	7	IBT	6	6
	0012H	8	IS1	7	7
	0014H	9	INT	8	8
Non-maskable	0002H	0	Watch dog timer interrupt	-	-

Table 21. IFO and MKO, SFR Addresses

Mnemonic	SFR Address	Function
IF0	FFE0, FFE1H	Interrupt request flag register (16-bits)
MK0	FFE4, FFE5H	Interrupt mask register (16-bits)

Interrupt Request Flag Register [F0]: The interrupt request flag register is a 16-bit register. It consists of the interrupt source flags listed in table 20. The flags in the interrupt request flag register are set when a corresponding interrupt source is detected and reset when it is processed. Flags are reset to 0 when $\overline{\mathrm{RST}}$ is input. The low-order seven bits are always 0 .

Interrupt Mask Register [MK0]: The interrupt mask register is a 16-bit register. It sets even if interrupt is enabled when an interrupt source flag is set. See table 20 for interrupt source flags. The flags of the MKO are set to 0 to enable interrupt and set to 1 to disable interrupt.

The low-order seven bits are always 1. Flags are initialized to 1 when RST is input.

Vector Interrupt Processing: The vector interrupt processing sequence is shown in Figure 12. It is automatically executed internally. The latency in the interrupt process routine gaining control is 18 clocks (approximately $3.3 \mu \mathrm{~s}$ ).

Figure 12. Vector Interrupt Operation


Non-Maskable Interrupt. The processor has a watch dog timer interrupt function as a non-maskable interrupt. This interrupt is executed immediately when a source is detected. Interrupt execution does not affect the IE flag of PSW.
Interrupt to the DSP. The GPP has reset and interrupt functions to the DSP. These functions are specified by the 2-bit INTDSP register. INTDSP is initialized to 0 when Reset is input. See table 22 and table 23.

Table 22. INTDSP Function

INTDSP	Function
INTDSP   (bit 1)	When INTDSP is set to 1 an interrupt request is issued to   the DSP. After being issued INTDSP resets automatically.
INTDSO   (bit 0)	When INTDSO is a 1, DSP is reset

Table 23. INTDSP SFR Address

Mnemonic	SFR Address	Function
INTDSP	FF64H	DSP reset/interrupt request register

## Addressing

GPP addressing includes the following:

- Data memory addressing
- Instruction addressing

Data Memory Addressing. Figure 13 shows the data memory map, SFR memory map, and applicable addressing.

Register Addressing: Addresses a general-purpose register mapped at a specific address in data memory. The general-purpose register in the register bank specified by RBS0 and RBS1 flags in the PSW is registered.
Coding example follows:
XCH A, r
To specify the $C$ register as $r$, code as follows:
XCH A, C
Short and Direct Addressing: Addresses an area from FE40H to FEFFH in the internal data memory and an area from FF00H to FF1FH in the SFR. To access 16-bit data, 2-byte data specified by continuous even-numbered and odd-numbered addresses is specified.

Coding example follows:
ADDC saddr, A
To specify address FE50H as saddr, code as follows:
ADDC OFE50H, A
SFR Addressing: Addresses a special function register (SFR) mapped to the SFR area (FFOOH to FFFH).

Coding example follows:
MOV A, sfr
To specify the PTMR register as sfr, code as follows:
MOV A, PTMR

Figure 13. Data Memory Map and Addressing


Register Indirect Addressing: Addresses data memory indirectly by the contents of the register stored in the operand. The register in the register bank specified by the RBS0 and RBS1 flags in the PSW is specified. Only when the E register is specified with the MOV instruction are the contents of the register automatically incremented by one after the instruction is executed. In this case, the operand is coded as $[\mathrm{E}+\mathrm{]}$. Register indirect addressing using the HL register pair can address the overall space including the internal ROM.

## Coding example follows:

SUB A, [r4]

To specify the E register a r4, code as follows:
SUB A, [E]

Indexed Addressing: Addresses data as the result of an addition of 16 -bit immediate data and 8 -bit register data. The 8 -bit register is in the register bank specified by the RBS0 and RBS1 flags of the PSW. This technique can address the overall space including the internal ROM.
Coding example follows:
MOV A, word [r1]
To specify FEAOH as word and the B register as r 1 , code as follows:

MOV A, OFEAOH [B]
Stack Indirect Addressing: Addresses internal memory data (FE40H to FEFFH) indirectly by the contents of the stack pointer (SP).
This technique is applicable when executing PUSH and POP instructions, save or restore operations by interrupt processing, and subroutine call and return.

Coding example follows:
PUSH rp
To specify the DE register pair as rp, code as follows:

## PUSH DE

Instruction Addressing. The instruction address is determined by the program counter (PC) value. Normally, the PC is automatically incremented by one (for one byte) depending on the number of bytes to be fetched every time an instruction is executed. If a branch instruction is executed, branch destination information is set in the PC by distinct addressing, as shown below:

Relative Addressing: The first address of a subsequent instruction is added by 8 -bit immediate data (displacement value: jdisp) of an instruction code and transferred to the PC . Then program control branches to the address set in the PC. The displacement value is handled as signed two's complements ( -128 to +128 ) and bit 7 is used as a sign bit.

Relative addressing is applicable for the BR S addr 14 instruction and a branch instruction.

Immediate Addressing: Immediate data in an instruction word is transferred to the PC and program control branches to the address set in the PC.
Immediate addressing is applicable for the CALL laddr14, BR laddr14, and CALLF laddr11 instructions. For the CALLF laddr11 instruction, program control branches to the fixed area of the low-order 2-bit address.

Table Indirect Addressing: The contents of a specific location table (branch destination address) addressed by immediate data of the low-order five bits of an instruction code are transferred to the PC and program control branches to the address set in PC.

Table indirect addressing is applicable for the CALLT [addr5] instruction.

Register Addressing: The contents of a register pair (RP3 to RPO) specified by an instruction word is transferred to the PC and program control branches to the address set in PC. Register addressing is applicable for the BR rp instruction.

## INSTRUCTION SET

Tables 24 through 27 and figure 14 define the operands, symbols, and codes that appear in table 28. Table 28 lists the instruction encodings and shows all the legitimate combinations of operands. The instruction set terminology is as follows:
Operands and Coding Requirements: In the operand field of an instruction, operands are accepted according to their value. An operand having two or more values can have only one selected. Uppercase letters and symbols like +, \#, !, \$, /, and [ ] are keywords and must be written as they are presented. The symbols have the following meanings:

```
+ = Automatic increment
= Immediate data
! = Absolute address
$ = Relative address
/ = Bit reverse
[] = Indirect addressing
```

For immediate data, write an appropriate numeric value or label. When a label is used, it must be defined elsewhere.
The clock column symbols are as follows:

- n in the clock column of a shift rotate instruction indicates the number of bits to be shifted.
- The value enclosed in () in the clock column of a conditional branch instruction indicates the number of clocks when program control does not branch.
- When accessing SFR by register indirect addressing ([HL]) and indexed addressing (word [r1]), the number of clocks is set to the one shown after a slash (/) in the column.
- If the result of word +r1 overflows in indexed addressing, the number of clocks is increased to the value enclosed in ().


## Table 24. Operand Values

Operand	Value
$r$	X(R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
$r 1$	A, B
$r 2$	B, C
$r 3$	D, E, E +
$r 4$	D, E
$r p$	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register abbreviation (see table 16)
sfrp	Special function register abbreviation (16-bit operable   register, see table 16)
saddr	FE40H to FE1FH immediate data or label
saddrp	FE40H to FE1FH immediate data (bit 0 = 0) or label (for      16-bit data)
laddr14	0000H to 3FFFH immediate data or label: immediate   addressing
\$addr13	0000H to 1FFFH immediate data or label: relative   addressing
addr11	800H to FFFH immediate data or label   addr5
40H to 7EH immediate data (bit 0 = 0) or label	

## Note:

$r$ and $r p$ can be coded with a functional name ( $X, A, C, B, E, D, L, H, A X$, $B C, D E$, and $H L$ ) as well as an absolute name (RO to R7 and RPO to RP3).

Table 25. Abbreviations

Identifier	Description
A	A register (8-bit accumulator)
X	Xregister
B	Bregister
C	Cregister
D	Dregister
E	E register
H	Hregister
L	Lregister
ROtoR7	Register 0to register 7 (absolute names)
AX	Register pair AX(16-bit accumulator)
BC	Register pair BC
DE	Register pair DE
HL	Register pair HL

Table 25. Abbreviations (cont)

Identifier	Description
RP0 to RP3	Register pair 0 to register pair 3 (absolute names)
PC	Program counter
SP	Stack pointer
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
RBSO to RBS1	Register bank select flag
IE	Interrupt request enable flag
WDMSR	Watch dog timer control register
( )	Memory data indicated by the address in ( ) or register   data
$\mathbf{x x H}$	Hexadecimal number
$\mathrm{XH}_{\text {H }}, \mathrm{X}_{\mathrm{L}}$	High-order and low-order 8-bits of 16-bit register pair

## Table 26. Flag Symbols

Symbol	Description
(Biank)	Flag not affected
0	Data was cleared to 0
$\mathbf{x}$	Data was set to 1
R	Data was set or cleared according to the result of operation

Table 27. Instruction Code Field Identifiers

Identifier	Description
Bn	Immediate data corresponding to bits
Nn	Immediate data corresponding to
Data	8-bit immediate data corresponding to bytes
Low/high/byte	16-bit immediate data corresponding to words
Saddr-offset	Low-order 8-bit offset data of 16-bit address cor-   responding to saddr
Sfr-offset	Low-order 8-bit offset data of 16-bit address of   special function register (sfr)
Low/high offset	16-bit offset data corresponding to words in   indexed addressing
Low/high addr	16-bit immediate data corresponding to addr 14
jdisp	Signed two's complements of the difference be-   tween the first address of the following instruction   and the branch destination address (8-bits)
fa	Low-order 11-bits of immediate data correspond-   ing to addr 11
ta	Low-order 5-bits of immediate data corresponding   to (addr5 $\times$ 1/2)

Figure 14. Operand Register Selection Codes
r

$R_{2}$	$R_{1}$	$R_{0}$	Register	
$R_{6}$	$R_{5}$	$R_{4}$		
0	0	0	$R$	$X$
0	0	1	$R 1$	$A$
0	1	0	$R 2$	$C$
0	1	1	$R 3$	$B$
1	0	0	$R 4$	$E$
1	0	1	$R 5$	$D$
1	1	0	$R 6$	$L$
1	1	1	$R 7$	$H$

rp

$P_{1}$	$P_{0}$		
$P_{2}$	$P_{1}$	Register-Pair	
$P_{6}$	$P_{5}$		
0	0	$R P 0$	$A X$
0	1	$R P 1$	$B C$
1	0	$R P 2$	$D E$
1	1	$R P 3$	$H L$

Example of Machine Code and Operands: When both the first and second operands are arranged as registers or register pairs in the operand field, the instruction code is structured as follows:

Of a register byte, the high-order four bits are used to specify the second operand and the low-order four bits are used to specify the first operand.

MOV r, r


83ML-61 42A

To specify the first operand as A register and the second operand as $L$ register, code as follows:

MOV A,L
In this case, the instruction code is set as shown below.


Table 28. Instruction Encodings

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { Z ACCY }}$
		B1/B3	B2/B4				
8-Bit Data Transfer Instructions							
MOV	r, \#byte	$10111 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	Data	2	2	$r \leftarrow$ byte	
	saddr, \#byte	00111010	Saddr-offset	3	3	(saddr) $\leftarrow$ byte	
		Data					
	sfr, \#byte (Note 1)	00101011	Sfr-offset	3	5	sfr $\leftarrow$ byte	
		Data					
	$r$ r, r	00100100	$0 R_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	2	$r \leftarrow r$	
	A, r	$11010 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$		1	2	$A \leftarrow r$	
	A, saddr	00100000	Saddr-offset	2	2	$A \leftarrow($ saddr $)$	
	saddr, A	00100010	Saddr-offset	2	3	(saddr) $\leftarrow A$	
	A, sfr	00010000	Sfr-offset	2	4	$A \leftarrow s f r$	
	sfr, A	00010010	Sfr-offset	2	5	$\mathrm{sfr} \leftarrow \mathrm{A}$	
	A, [r3] (Note 2)	$011111 \mathrm{R}_{1} \mathrm{R}_{0}$		1	5/6	$\mathrm{A} \leftarrow(\mathrm{FEOOH}+\mathrm{r} 3) \mathrm{r} 3=40 \mathrm{H}-\mathrm{FFH}$	
	[r3], A (Note 2)	$011110 \mathrm{R}_{1} \mathrm{R}_{0}$		1	5/6	$(\mathrm{FEOOH}+\mathrm{r} 3) \leftarrow \mathrm{A}$ r $3=40 \mathrm{H}-\mathrm{FFH}$	
	A, [ HL ]	01011101		1	5/7	$A \leftarrow(H L)$	
	[HL], A	01010101		1	5/7	$(\mathrm{HL}) \leftarrow \mathrm{A}$	
	A, word [r1]	00001010	$\underline{00 R_{5} 10000}$	4	$7(8) /$	$A \leftarrow($ word $+r 1)$	
		Low offset	High offset		9(10)		
	word [r1], A	00001010	$10 \mathrm{R}_{5} 10000$	4	$7(8) /$	(word +r 1 ) $\leftarrow \mathrm{A}$	
		Low offset			$9(10)$		
	PSW, \#byte	00101011	11111110	3	5	PSW ¢ byte	$\mathrm{X} \times \mathrm{X}$
		Data					
	PSW, A	00010010	11111110	2	5	$\mathrm{PSW} \leftarrow \mathrm{A}$	X X X
	A, PSW	00010000	11111110	2	4	$A \leftarrow P S W$	
XCH	A, r	$11011 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$		1	4	$A \longleftrightarrow r$	
	A, saddr	00100001	Saddr-offset	2	4	$A \longleftrightarrow$ (saddr)	
	A, sfr	00000001	00100001	3	10	A $\leftrightarrow$ sfr	
		Sfr-offset					
	A, [r4]	0111 1R211		1	8	$A \longleftrightarrow(\mathrm{FEOOH}+\mathrm{r} 4) \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH}$	

Notes:
(1) When sfr is coded as WDMSR, MOV is used as another dedicated instruction. In this case, the numbers of bytes and clocks are different from MOV (see CPU control instruction).
(2) When r 3 is coded as $\mathrm{E}+$, the E register is automatically incremented by one after the instruction is executed and the number of clocks is set to 6 .

## Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { Z ACCY }}$
		B1/B3	B2/B4				
16-Bit Data Transfer Instructions							
MOVW	rp, \#word	$0110 \mathrm{OP}_{2} \mathrm{P}_{1} 0$	Low byte	3	3	$r p \leftarrow$ word	
		High byte					
	saddrp, \#word	00001100	Saddr-offset	4	4	( saddrp +1 ) (saddrp) $\leftarrow$ word	
		Low byte	High byte				
	sfrp, \#word	00001011	Sfr-offset	4	8	sfrp $\leftarrow$ word	
		Low byte	High byte				
	rp,rp	00100100	$0 \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{O} \quad 1 \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	4	$\mathrm{rp} \leftarrow \mathrm{rp}$	
	AX, saddrp	00011100	Saddr-offset	2	6	$A X \leftarrow$ (saddrp +1$)$ (saddrp)	
	saddrp, AX	00011010	Saddr-offset	2	5	(saddrp +1 ) (saddrp) $\leftarrow \mathrm{AX}$	
	AX, sfrp	00010001	Sfr-offset	2	10	$A X \leftarrow \operatorname{sfr}$	
	sfrp, AX	00010011	Sfr-offset	2	9	sfrp $\leftarrow A X$	

8-Bit Operation Instructions

ADD	A, \#byte	10101000	Data	2	2	A, CY $\leftarrow A+$ byte	$x \times \times$
	saddr, \#byte	01101000	Saddr-offset	3	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	$\mathrm{x} \times \mathrm{x}$
		Data					
	sfr, \#byte	00000001	01101000	4	9	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	$x \times 1$
		Sfr-offset	Data				
	r, r	10001000	$0 R_{6} R_{5} R_{4} \quad 0 R_{2} R_{1} R_{0}$	2	3	$r, C Y \leftarrow r+r$	$\mathrm{X} \times \mathrm{X}$
	A, saddr	10011000	Saddr-offset	2	3	$A, C Y \leftarrow A+$ (saddr)	X X X
	A, sfr	00000001	10011000	3	7	$A, C Y \leftarrow A+s f r$	$\mathrm{X} \times \mathrm{X}$
		Sfr-offset					
	A, [r4]	00010110	011R 41000	2	7	$\begin{aligned} & \mathrm{A}, \mathrm{CY} \leftarrow \mathrm{~A}+(\mathrm{FEOOH}+\mathrm{r} 4) \\ & \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH} \end{aligned}$	$\mathrm{X} \times \mathrm{x}$
	A, [HL]	00010110	01011000	2	8/10	$A, C Y \leftarrow A+(H L)$	$x \times \mathrm{x}$
ADDC	A, \#byte	10101001	Data	2	2	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte + CY	$x \times \times$
	saddr, \#byte	01101001	Saddr-offset	3	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte + CY	$x \times \times$
		Data					
	sfr, \#byte	00000001	01101001	4	9	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	$\mathrm{X} \times \mathrm{X}$
		Sfr-offset	Data				
	$r$ r, r	10001001	$0 R_{6} \mathrm{R}_{5} \mathrm{R}_{4} \quad 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r, C Y \leftarrow r+r+C Y$	$x \times 1$
	A, saddr	10011001	Saddr-offset	2	3	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (saddr) +CY	$x \times x$
	A, sfr	00000001	10011001	3	7	$A, C Y \leftarrow A+s f r+C Y$	$\mathrm{X} \times \mathrm{X}$
		Sfr-offset					
	A, [r4]	00010110	011R ${ }_{4} 1001$	2	7	$\begin{aligned} & A, C Y \leftarrow A+(F E O O H+r 4)+C Y \\ & r 4=40 H-F F H \end{aligned}$	X X X
	A, [HL]	00010110	01011001	2	8/10	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	$x \times \mathrm{x}$

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\mathrm{ZACCY}}$
		B1/B3	B2/B4				
8-Bit Operation Instructions (cont)							
SUB	A, \#byte	10101010	Data	2	2	A, CY $\leftarrow \mathrm{A}$-byte	$\mathrm{x} \times \mathrm{x}$
	saddr, \#byte	01101010	Saddr-offset	3	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte	$\mathrm{x} \times \mathrm{x}$
		Data					
	sfr, \#byte	00000001	$\underline{01101010}$	4	9	sfr, CY $\leftarrow \mathrm{sfr}$-byte	$\mathrm{x} \times \mathrm{x}$
		Sfr-offset	Data				
	r, r	10001010	$0 \mathrm{R}_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r, C Y \leftarrow r-r$	$\mathrm{x} \times \mathrm{X}$
	A, saddr	10011010	Saddr-offset	2	3	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (saddr)	$\mathrm{x} \times \mathrm{x}$
	A, sfr	00000001	10011010	3	7	A, $\mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}$	$\mathrm{x} \times \mathrm{x}$
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1010$	2	7	$\begin{aligned} & \mathrm{A}, \mathrm{CY} \leftarrow \mathrm{~A}-(\mathrm{FEOOOH}+\mathrm{r} 4) \\ & \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH} \end{aligned}$	$\mathrm{x} \times \mathrm{x}$
	A, [HL]	00010110	01011010	2	8/10	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})$	$x \times x$
SUBC	A, \#byte	10101011	Data	2	2	A, CY $\leftarrow$ A-byte - CY	$x \times \mathrm{x}$
	saddr, \#byte	$\underline{01101011}$	Saddr-offset	3	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr)- byte-CY	$\mathrm{x} \times \mathrm{x}$
		Data					
	sfr, \#byte	00000001	01101011	4	9	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}$ - byte-CY	$\mathrm{X} \times \mathrm{X}$
		Sfr-offset	Data				
	r, r	10001011	$0 \mathrm{R}_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r, C Y \leftarrow r-r-C Y$	$x \times x$
	A, saddr	10011011	Saddr-offset	2	3	$A, C Y \leftarrow A-$ (saddr) $-C Y$	$\mathrm{x} \times \mathrm{x}$
	A, sfr	00000001	10011011	3	7	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}-\mathrm{CY}$	$\times \mathrm{x} \times$
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1011$	2	7	$\begin{aligned} & \mathrm{A}, \mathrm{CY} \leftarrow \mathrm{~A}-(\mathrm{FEOOOH}+\mathrm{r} 4)-\mathrm{CY} \\ & \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH} \end{aligned}$	X X X
	A, [HL]	00010110	01011011	2	8/10	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	$x \times \mathrm{x}$
AND	A, \#byte	10101100	Data	2	2	$A \leftarrow A \wedge$ byte	$x$
	saddr, \#byte	$\underline{01101100}$	Saddr-offset	3	3	(saddr) $\leftarrow$ (saddr) $\wedge$ byte	X
		Data					
	sfr, \#byte	00000001	01101110	4	9	sfr $\leftarrow \operatorname{sfr} \wedge$ byte	X
		Sfr-offset	Data				
	$r$ r, r	10001100	$0 \mathrm{R}_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r \leftarrow r \wedge r$	X
	A, saddr	10011100	Saddr-offset	2	3	$A \leftarrow A \wedge$ (saddr)	X
	A, sfr	00000001	10011100	3	7	$A \leftarrow A \wedge$ sfr	X
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1100$	2	7	$\mathrm{A} \leftarrow \mathrm{A} \wedge(\mathrm{FEOOH}+\mathrm{r} 4) \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH}$	X
	A, [HL]	00010110	01011100	2	8/10	$A \leftarrow A \wedge(H L)$	

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { ZACCY }}$
		B1/B3	B2/B4				
8-Bit Operation Instructions (cont)							
OR	A, \#byte	10101110	Data	2	2	A $\leftarrow$ A V byte	X
	saddr, \#byte	$\underline{01101110}$	Saddr-offset	3	3	(saddr) $\leftarrow$ (saddr) V byte	X
		Data					
	sfr, \#byte	00000001	01101110	4	9	sfr $\leftarrow$ sfr V byte	X
		Sfr-offset	Data				
	r, r	10001110	$0 R_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r \leftarrow r V r$	X
	A, saddr	10011110	Saddr-offset	2	3	$\mathrm{A} \leftarrow \mathrm{AV}$ ( saddr)	x
	A, sfr	00000001	10011110	3	7	$A \leftarrow A V$ sfr	x
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1110$	2	7	$\mathrm{A} \leftarrow \mathrm{AV}(\mathrm{FEOOH}+\mathrm{r} 4) \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH}$	x
	A, [HL]	00010110	01011110	2	8/10	$A \leftarrow A V(H L)$	X
XOR	A, \#byte	10101101	Data	2	2	$A \leftarrow A \forall$ byte	X
	saddr, \#byte	01101101	Saddr-offset	3	3	(saddr) $\leftarrow$ (saddr) $\forall$ byte	X
		Data					
	sfr, \#byte	00000001	$\underline{01101101}$	4	9	sfr $\leftarrow \mathrm{sfr} \forall$ byte	v
		Sfr-offset	Data				
	r, r	10001101	$0 R_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	$r \leftarrow r \forall r$	x
	A, saddr	10011101	Saddr-offset	2	3	$A \leftarrow A \forall$ (saddr)	X
	A, sfr	00000001	10011101	3	7	$A \leftarrow A \forall s f r$	X
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1101$	2	7	$A \leftarrow A \forall(F E O O H+r 4) r 4=40 \mathrm{H}-\mathrm{FFH}$	X
	A, [HL]	00010110	01011101	2	8/10	$A \leftarrow A \forall(H L)$	X
CMP	A, \#byte	10101111	Data	2	2	A-byte	$x \times x$
	saddr, \#byte	01101111	Saddr-offset	3	3	(saddr)-byte	$\mathrm{x} \times \mathrm{x}$
		Data					
	sfr, \#byte	00000001	01101111	4	7	sfr-byte	$\mathrm{X} \times \mathrm{X}$
		Sfr-offset	Data				
	$r$ r, r	10001111	$0 \mathrm{R}_{6} \mathrm{R}_{5} \mathrm{R}_{4} 0 \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	3	r-r	$\underline{x} \times$
	A, saddr	10011111	Saddr-offset	2	3	A-(saddr)	$\mathrm{x} \times \mathrm{x}$
	A, sfr	00000001	10011111	3	7	A-sfr	X $\mathrm{x} \times$
		Sfr-offset					
	A, [r4]	00010110	$011 \mathrm{R}_{4} 1111$	2	7	$\mathrm{A}-(\mathrm{FEOOH}+\mathrm{r} 4) \mathrm{r} 4=40 \mathrm{H}-\mathrm{FFH}$	$x \times x$
	A, [HL]	00010110	01011111	2	8/10	A-(HL)	X $\times \mathrm{X}$
16-Bit Operation Instructions							
ADDW	AX, \#word	00101101	Low byte	3	4	$A X, C Y \leftarrow A X+$ word	$x \times x$
		High byte					
	AX, rp	10001000	$00001 \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	6	$A X, C Y \leftarrow A X+r p$	$x \times x$
	AX, saddrp	00011101	Saddr-offset	2	7	$A X, C Y \leftarrow A X+$ (saddrp +1) (saddrp)	$\mathrm{x} \times \mathrm{x}$
	AX, sfrp	00000001	00011101	3	13	$A X, C Y \leftarrow A X+$ sfrp	X $\times$ X
		Sfr-offset					

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { Z ACCY }}$
		B1/B3	B2/B4				
16-Bit Operation Instructions (cont)							
SUBW	AX, \#word	00101110	Low byte	3	4	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}$-word	$\mathrm{X} \times \mathrm{x}$
		High byte					
	AX, rp	10001010	$00001 \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	6	$A X, C Y \leftarrow A X-r p$	$x \times \mathrm{X}$
	AX, saddrp	00011110	Saddr-offset	2	7	$A X, C Y \leftarrow A X-$ (saddrp +1$)$ (saddrp)	$x \times \mathrm{x}$
	AX, sfrp	00000001	00011110	3	13	$A X, C Y \leftarrow A X-$ sfrp	$x \times \times$
		Sfr-offset					
CMPW	AX, \#word	00101111	Low byte	3	3	AX-word	$x \times x$
		High byte					
	AX, rp	10001111	$00001 \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	5	AX-rp	$x \times x$
	AX, saddrp	00011111	Saddr-offset	2	6	AX-(saddrp + 1) (saddrp)	$x \times 1$
	AX, sfrp	00000001	00011111	3	12	AX-sfrp	$x \times \times$
		Sfr-offset					

## Multiplication/Division Instructions

| MULUW | $r$ | 00000101 | $0000 \quad 0 R_{2} R_{1} R_{0}$ | 2 | 43 | AX (high-order 16 bits), $r$ <br> (low-order 8 bits) $\leftarrow A X x r$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIVUW | $r$ | 00000101 | $0001 \quad 1 R_{2} R_{1} R_{0}$ | 2 | 71 | $A X$ (dividend), $r$ (remainder) $\leftarrow A X \div r$ |

Increment and Decrement Instructions

INC	$r$	1100	$0 R_{2} R_{1} R_{0}$		1	2	$r \leftarrow r+1$	X	X
	saddr	0010	0110	Saddr-offset	2	2	(saddr) $\leftarrow$ (saddr) +1	X	X
DEC	$r$	1100	$1 R_{2} R_{1} R_{0}$		1	2	$\mathrm{r} \leftarrow \mathrm{r}-1$	X	$x$
	saddr	0010	0111	Saddr-offset	2	2	(saddr) $\leftarrow$ (saddr) -1	X	X
INCW	rp	0100	$01 P_{1} P_{0}$		1	3	$r p-r p+1$		
DECW	rp	0100	$11 P_{1} P_{0}$		1	3	$r p \leftarrow r p-1$		

## Shift Rotate Instructions

ROR	$\mathrm{r}, \mathrm{n}$	00110000	$01 N_{2} N_{1} N_{0} R_{2} R_{1} R_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y, r_{7} \leftarrow r_{0}, r_{m-1} \leftarrow r_{m}\right) \times n \text { times } \\ & n=0-7 \end{aligned}$	X
ROL	$\mathrm{r}, \mathrm{n}$	00110001	$01 N_{2} N_{1} N_{0} R_{2} R_{1} R_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y, r_{0} \leftarrow r_{7}, r_{m+1} \leftarrow r_{m}\right) \times n \text { times } \\ & n=0-7 \end{aligned}$	X
RORC	r, n	00110000	$00 N_{2} N_{1} N_{0} R_{2} R_{1} R_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y \leftarrow r_{0}, r_{7} \leftarrow C Y, r_{m-1} \leftarrow r_{m}\right) \\ & x n \text { times } n=0-7 \end{aligned}$	X
ROLC	$\mathrm{r}, \mathrm{n}$	00110001	$00 \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y \leftarrow r_{7}, r_{0} \leftarrow C Y, r_{m+1} \leftarrow r_{m}\right) \\ & \text { xntimes } n=0-7 \end{aligned}$	X
SHR	$r, n$	00110000	$10 \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y \leftarrow r_{0}, r_{7} \leftarrow 0, r_{m-1} \leftarrow r_{m}\right) \\ & x n \text { times } n=0-7 \end{aligned}$	$x 0 \times$
SHL	$r, n$	00110001	$10 \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$	2	$3+2 n$	$\begin{aligned} & \left(C Y \leftarrow r_{7}, r_{0} \leftarrow 0, r_{m+1} \leftarrow r_{m}\right) \\ & x \text { ntimes } n=0-7 \end{aligned}$	$x \mathrm{O}$
SHRW	$\mathrm{rp}, \mathrm{n}$	00110000	$11 \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	$3+3 n$	$\begin{aligned} & \left(\mathrm{CY} \leftarrow \mathrm{rp} p_{0}, r p_{15} \leftarrow 0, r p_{\mathrm{m}-1} \leftarrow r p_{\mathrm{m}}\right) \\ & \mathrm{xn} \text { times } \mathrm{n}=0-7 \end{aligned}$	$x \mathrm{O}$
SHLW	rp, n	00110001	$11 \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	$3+3 n$	$\begin{aligned} & \left(C Y \leftarrow r p_{15}, r p \leftarrow 0, r p_{m+1} \leftarrow r p_{m}\right) \\ & x n \text { times } n=0-7 \end{aligned}$	$x \mathrm{O}$
ROR4	[r4]	00000101	$100010 R_{1} 0$	2	22	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\text { FEOO }+\mathrm{r} 4)_{3-0},(\text { FEOO }+\mathrm{r} 4)_{7-4} \leftarrow \\ & \mathrm{~A}_{3-0},(\text { FEOO }+\mathrm{r} 4)_{3-0} \leftarrow(\text { FE } 00+\mathrm{r})_{7-4} \end{aligned}$	
ROL4	[r4]	00000101	$1001 \mathrm{H}^{10 R_{1} 1}$	2	23	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{FEOO}+\mathrm{r} 4)_{7-4},(\text { (FEOO }+\mathrm{r} 4)_{3-0} \leftarrow \\ & \mathrm{~A}_{3-0},(\mathrm{FEOO}+\mathrm{r} 4)_{7-4} \leftarrow(\mathrm{FEOO}+\mathrm{r} 4)_{3-0} \end{aligned}$	

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { ZACCY }}$	
		B1/B3	B2/B4					
BCD Correct Instructions								
ADJBA		00001110		1	3	Decimal adjust accumulator after addition		$x$ x
ADJBS		00001111		1	3	Decimal adjust accumulator after subtract		X X
Bit Operation Instructions								
MOV1	CY, saddr. bit	00001000	$00000 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow$ (saddr. bit)		X
		Saddr-offset						
	CY, sfr. bit	00001000	$00001 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	CY $\leftarrow$ sfr.bit		X
		Sfr-offset						
	CY, A. bit	00000011	$00001 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$C Y \leftarrow A$. bit		X
	CY, X. bit	00000011	$00000^{0} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{X}$. bit		X
	CY, PSW. bit	00000010	$0000 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$C Y \leftarrow P S W$. bit		X
	saddr. bit, CY	00001000	$0001 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	8	(saddr. bit) $\leftarrow \mathrm{CY}$		
		Saddr-offset						
	sfr. bit, CY	00001000	$0001 \mathrm{H}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	12	sfr. bit $\leftarrow \mathrm{CY}$		
		Sfr-offset						
	A. bit, CY	00000011	$00011 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	8	A. bit $\leftarrow \mathrm{CY}$		
	X, bit, CY	00000011	$0001 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	8	$X$. bit $\leftarrow \mathrm{CY}$		
	PSW. bit, CY	00000010	$0001 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	7	PSW. bit $\leftarrow C Y$	X	X
AND1	CY, saddr. bit	00001000	$0010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr. bit)		X
		Saddr-offset						
	CY, /saddr. bit	00001000	$0011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ ( $\overline{\text { saddr. bit }}$ )		X
		Saddr-offset						
	CY, sfr. bit	00001000	$0010 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	$C Y \leftarrow C Y \wedge$ sfr. bit		x
		Sfr-offset						
	CY, /sfr. bit	00001000	$0011 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfr. bit		X
		Sfr-offset						
	CY, A. bit	00000011	$00101^{1} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$C Y \leftarrow C Y \wedge A . b i t$		X
	CY,/A. bit	00000011	$00111^{1} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A}}$. bit		X
	CY, X. bit	00000011	$0010{ }_{0 B_{2} B_{1} \mathrm{~B}_{0}}$	2	5	$C Y \leftarrow C Y \wedge X$. bit		X
	CY, X . bit	00000011	$0011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \text { bit }}$		X
	CY, PSW. bit	00000010	$0010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$C Y \leftarrow C Y \wedge P S W$. bit		X
	CY,/PSW. bit	00000010	$0011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSW. }}$ bit		X

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { ZACCY }}$
		B1/B3	B2/B4				
Bit Operation Instructions (cont)							
OR1	CY, saddr. bit	00001000	$0100 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow \mathrm{CYV}$ (saddr. bit)	X
		Saddr-offset					
	CY, /saddr. bit	00001000	$0101 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow \mathrm{CYV} \overline{\text { (saddr. bit) }}$	x
		Saddr-offset					
	CY, sfr. bit	00001000	$0100 \mathrm{BB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	$\mathrm{CY} \leftarrow \mathrm{CYV}$ sfr. bit	x
		Sfr-offset					
	CY, /sfr. bit		$01011 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	$\mathrm{CY} \leftarrow \mathrm{CYV} \overline{\text { sfr. bit }}$	X
		Saddr-offset					
	CY, A. bit	00000011	$0100 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYV} \mathrm{A}$.	$x$
	CY,/A. bit	00000011	$0101 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYV} \overline{\mathrm{A} . \text { bit }}$	x
	CY, X. bit	00000011	$0100 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYVX}$. bit	X
	CY, /X. bit	00000011	$0101 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYV} \overline{\mathrm{X} . \mathrm{bit}}$	X
	CY, PSW. bit	00000010	$0100 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYVPSW}$. bit	X
	CY,/PSW. bit	00000010	$0101 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CYV} \overline{\text { PSW. bit }}$	x
XOR1	CY , saddr. bit	00001000	$0110 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	5	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr, bit)	x
		Saddr-offset					
	CY, sfr. bit	00001000	$0110 \mathrm{BB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ sfr. bit	x
		Sfr-offset					
	CY, A. bit	00000011	$0110 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$C Y \leftarrow C Y \forall A . b i t$	X
	CY, X. bit	00000011	$0110 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$. bit	X
	CY, PSW. bit	00000010	$0110 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{PSW}$. bit	X
SET1	saddr. bit	$1011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	Saddr-offset	2	3	(saddr. bit) $\leftarrow 1$	
	sfr. bit	00001000	$1000 \mathrm{BB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	10	sfr. bit $\leftarrow 1$	
		Sfr-offset					
	A. bit	00000011	$1000 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	A. bit $\leftarrow 1$	
	X. bit	00000011	$1000 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	X. bit $\leftarrow 1$	
	PSW. bit	00000010	$1000 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	PSW. bit $\leftarrow 1$	$\mathrm{x} \times \mathrm{x}$
CLR1	saddr. bit	$1010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	Saddr-offset	2	3	(saddr. bit) $\leftarrow 0$	
	sfr. bit	00001000	$1001 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	10	sfr. bit $\leftarrow 0$	
		Sfr-offset					
	A. bit	00000011	$1001 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	A. bit $\leftarrow 0$	
	X. bit	00000011	$1001 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	X. bit $\leftarrow 0$	
	PSW. bit	00000010	$1001 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	PSW. bit $\leftarrow 0$	$\mathrm{X} \times \mathrm{x}$
NOT1	saddr. bit	$\underline{00001000}$	$0111 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	6	(saddr. bit) $\leftarrow(\overline{\text { saddr. bit) }}$	
		Saddr-offset					
	sfr. bit	00001000	$01111 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	10	sfr. bit $\leftarrow \overline{\text { sfr. bit }}$	
		Sfr-offset					
	A. bit	00000011	$0111 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	A. bit $\leftarrow \overline{\text { A. bit }}$	
	X. bit	00000011	$0111 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	6	X. bit $\leftarrow \overline{\text { X. bit }}$	
	PSW. bit	00000010	$01110 \mathrm{O}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	2	5	PSW. bit $\leftarrow \overline{\text { PSW. bit }}$	$\mathrm{x} \times \mathrm{x}$

Table 28. Instruction Encodings (cont)

		Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { Z ACCY}}$
Mnemonic	Operand	B1/B3	B2/B4				
Bit Operation Instructions (cont)							
SET1	CY	01000001		1	2	$\mathrm{CY} \leftarrow 1$	1
CLR1	CY	01000000		1	2	$\mathrm{CY} \leftarrow 0$	0
NOT1	CY	01000010		1	2	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	X

## Call Return Instructions

CALL	laddr14	00101000	Low addr	3	9	$\begin{aligned} & (S P-1)(S P-2) \leftarrow P C+3, \\ & P C \leftarrow \operatorname{addr} 14, S P \leftarrow S P-2 \end{aligned}$	
		High addr					
CALLF	laddr11	10010 -	fa	2	9	$\begin{aligned} & (\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}+2, \mathrm{PC}_{12-11} \\ & \leftarrow 01, \mathrm{PC}_{10-0} \leftarrow \text { laddr11 }, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
CALLT	[addr5]	$111 \leftarrow \mathrm{ta} \rightarrow$		1	12	$\begin{aligned} & (\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}+1, \mathrm{PC}_{\mathrm{H}} \leftarrow \\ & \text { (addr5 }+1), \mathrm{PC}_{\mathrm{L}} \leftarrow(\text { addr5 }), \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
RET		01010110		1	8	$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	
RETI		01010111		1	10	$\begin{aligned} & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC} \mathrm{C}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+3 \end{aligned}$	R R R

## Stack Operation Instructions



Unconditional Branch Instructions						
BR	laddr14	00101100	Low addr	3	5	$\mathrm{PC} \leftarrow$ laddr 14
		High addr				
	rp	00000101	$01001 \mathrm{P}_{2} \mathrm{P}_{1} 0$	2	5	$\mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{rP}_{\mathrm{H}}, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{rP}_{\mathrm{L}}$
	\$addr14	00010100	jdisp	2	4	$\mathrm{PC} \leftarrow$ \$addr14

Conditional Branch Instructions

BC	\$addr14	1000	0011	jdisp	2	4(2)	$\mathrm{PC} \leftarrow \$$ addr 14 if $\mathrm{CY}=1$	
BL								
BNC	\$addr14	10000010		jdisp	2	4(2)	$\mathrm{PC} \leftarrow$ \$addr14 if $\mathrm{CY}=0$	
BNL								
BZ	\$addr14	1000		jdisp	2	4(2)	$\mathrm{PC} \leftarrow \$$ addr14 if $\mathrm{Z}=1$	
BE								
BNZ	\$addr14	10000000		jdisp	2	4(2)	$\mathrm{PC} \leftarrow \$$ addr14 if $\mathrm{Z}=0$	
BNE								

Table 28. Instruction Encodings (cont)

Mnemonic	Operand	Instruction Code		Bytes	Clocks	Operation	$\frac{\text { Flags }}{\text { ZACCY }}$
		B1/B3	B2/B4				
Conditional Branch Instructions (cont)							
BT	saddr. bit, \$addr14	$\frac{0111 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}}{\text { jdisp }}$	Saddr-offset	3	6(4)	PC $\leftarrow$ \$addr 14 if (saddr. bit) $=1$	
	sfr. bit, \$addr 14	$\begin{array}{\|c} \hline 00001000 \\ \hline \text { Sfr-offset } \\ \hline \end{array}$	$\frac{1011 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}}{\text { jdisp }}$	4	9(7)	$\mathrm{PC} \leftarrow$ \$ ${ }^{\text {addr }} 14$ if sfr. bit $=1$	
	A. bit, \$addr14	$\frac{00000011}{\text { jdisp }}$	$1011 \mathrm{IB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow$ \$addr 14 if A. bit $=1$	
	X. bit, \$addr14	$\frac{00000011}{\text { jdisp }}$	$1011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow \$$ addr 14 if X. bit $=1$	
	PSW, bit, \$addr14	$\frac{00000010}{\text { jdisp }}$	$1011 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow$ \$ addr 14 if PSW. bit $=1$	
BF	saddr. bit, \$addr14	$\frac{00001000}{\text { Saddr-offset }}$	$\frac{1010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}}{\text { jdisp }}$	4	7(5)	$\mathrm{PC} \leftarrow$ \$addr14 if (saddr. bit) $=0$	
	sfr. bit, \$addr14	$\frac{00001000}{\text { Sfr-offset }}$		4	9(7)	$\mathrm{PC} \leftarrow$ \$addr 14 if sfr. bit $=0$	
	A. bit, \$addr14	$\frac{00000011}{\text { jdisp }}$	$1010 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow$ \$addr14 if A . bit $=0$	
	X. bit, \$addr14	$\frac{00000011}{\text { jdisp }}$	$1010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow$ \$addr 14 if X. bit $=0$	
	PSW. bit, \$addr14	$\frac{00000010}{\text { jdisp }}$	$1010 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	7(5)	$\mathrm{PC} \leftarrow$ \$ ${ }_{\text {addr }} 14$ if PSW. bit $=0$	
BTCLR	saddr. bit, \$addr14	$\frac{00000011}{\text { Saddr-offset }}$	$\frac{1101 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}}{\text { jdisp }}$	4	$9(5)$	$\begin{aligned} & \mathrm{PC} \leftarrow \text { \$addr14 if (saddr. bit) }=1 \\ & \text { then reset (saddr. bit) } \end{aligned}$	
	sfr. bit, \$addr14	$\frac{00001000}{\text { Sfr-offset }}$	$\frac{1101 \mathrm{1B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}}{\text { jdisp }}$	4	13(7)	$\begin{aligned} & \mathrm{PC} \leftarrow \text { \$addr14 if sfr. bit }=1 \\ & \text { then reset sfr. bit } \end{aligned}$	
	A. bit, \$addr14	$\frac{00000011}{\text { jdisp }}$	$1101 \mathrm{BB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	9(5)	$\begin{aligned} & \mathrm{PC} \leftarrow \text { \$addr14 if } \mathrm{A} \text {. bit }=1 \\ & \text { then reset } \mathrm{A} \text {. bit } \end{aligned}$	
	X . bit, \$addr 14	$\frac{00000011}{\text { jdisp }}$	$1101 \mathrm{OB}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	9(5)	$\begin{aligned} & P C \leftarrow \$ \text { addr } 14 \text { if } X . \text { bit }=1 \\ & \text { then reset } X \text {. bit } \end{aligned}$	
	PSW. bit, \$addr14	$\frac{00000010}{\text { jdisp }}$	$11010 \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$	3	8(5)	$\begin{aligned} & \mathrm{PC} \leftarrow \text { \$addr14 if PSW. bit }=1 \\ & \text { then reset PSW. bit } \end{aligned}$	$x \times x$
DBNZ	r2, \$addr 14	$0011{ }^{001 R_{0}}$	jdisp	2	5(3)	$\mathrm{r} 2 \leftarrow \mathrm{r} 2-1$, then $\mathrm{PC} \leftarrow$ addr14 if $\mathrm{r} 2=0$	
	saddr, \$addr14	$\frac{00111011}{\text { jdisp }}$	Saddr-offset	3	6(4)	$\begin{aligned} & \text { saddr } \leftarrow \text { saddr }-1 \text {, then } \mathrm{PC} \leftarrow \text { \$addr14 } \\ & \text { if saddr } \neq 0 \end{aligned}$	
CPU Control Instructions							
MOV	WDMSR, \#byte	$\underline{00001001}$	01101101	4	12	WDMSR ¢ byte	
		Data	Data				
SEL	RBn	00000101	$1010 \mathrm{HaN}_{1} \mathrm{~N}_{0}$	2	2	RBS1-0ヶn $n=0-3$	
NOP		00000000		1	2	No operation	
El		01001011		1	2	$\mathrm{IE} \leftarrow 1$ (enable interrupt)	
DI		01001010		1	2	$\mathrm{IE} \leftarrow 0$ (disable interrupt)	

## MODEM FUNCTION BLOCK FUNCTIONAL DESCRIPTION

For a general overview of the modem function block units, see Figure 1.

## Parallel I/O Port and C-RAM

General. The modem function block, ports A, B, and D are 8 -bit general-purpose I/O ports. Port C is a 7 -bit generalpurpose I/O port. These ports are selectively set to be used as an input or output port by the internal program using three mode registers PTMR, PCMR, and PDMR.
Port D has a data bus function for transferring data to and from an external unit. The processor has an internal C-RAM used as a 16-byte buffer to transfer data to and from an external unit.

Port E is a one-bit input port and port F is a 3-bit output port. See table 29.

## Table 29. Parallel I/O Ports and C-RAM SFR Addresses and Descriptions

Unit	SFR Address	Description
PTMR	FF28H	Ports A, B, TxD, and Rxd mode registers
PCMR	FF29H	Port C mode register
PDMR	FF2AH	Port D mode register
Port A	FF2CH	8-bit general-purpose I/O port
Port B	FF2DH	8-bit general-purpose I/O port
Port C	FF2EH	7-bit general-purpose I/O port
Port D	FF2FH	8-bit general-purpose I/O port
Port E	FF57H	1-bit general-purpose input port
Port F	FF5CH	3-bit general-purpose output port
C-RAM	FF90H   to FF9FH	Memory used to transfer data to and from an   external unit

Functions. Port $A\left(P A A_{0}\right.$ to $\left.P A_{7}\right)$ : Port $A$ is a generalpurpose I/O port consisting of an 8 -bit register. Its SFR address is FF2CH. It is used as an input port when the processor is reset and OOH is the initial value of the internal buffer. Bits 4 and 5 of the PTMR (PTMR 4 and PTMR 5 ) determines whether each of two 4 -bit groups are input or output.

Port $\mathrm{B}\left(\mathrm{PB}_{0}\right.$ to $\left.\mathrm{PB}_{7}\right)$ : Port B is a general-purpose I/O port consisting of an 8 -bit register. Its SFR address is FF2DH. It is used as an input port when the processor is reset and 00 H is the initial value of the internal buffer. Bits 0 through 3 of the PTMR (PTMR ${ }_{0}$ through PTMR $_{3}$ ) determines whether each of three 2-bit groups are input or output.

Port C ( $\mathrm{PC}_{0}$ to $\mathrm{PC}_{6}$ ): Port C is a general-purpose $1 / \mathrm{O}$ port when PCMR bit $7=0$ and consists of a 7 -bit register. Its SFR address is FF2EH. It is used as an input port when the processor is reset and 00 H is the initial value of the internal buffer. I/O is selectable on a bit basis as a general-purpose I/O port. It is determined by the seven bits in the PCMR register (bits 0 through 6).
Port C functions as bus control when PCMR bit $7=1$. In this mode, the port inputs C-RAM addresses and Read/ Write signals from the host computer. See table 30.

## Table 30. Port C Functions

Pin Symbol   as a Port	Pin Symbol   as a Bus	Function as a Bus
$\mathrm{PC}_{0}-\mathrm{PC}_{3}$	$\mathrm{~A}_{0}-\mathrm{A}_{3}$	C-RAM address input
$\mathrm{PC}_{4}$	$\overline{\mathrm{CS}}$	Chip select input
$\mathrm{PC}_{5}$	$\overline{\mathrm{RD}}$	Read strobe input from host computer
$\mathrm{PC}_{6}$	$\overline{\mathrm{WR}}$	Write strobe input from host computer

Port $\mathrm{D}\left(\mathrm{PD}_{0}\right.$ to $\left.\mathrm{PD}_{7}\right)$ : Port D is a general-purpose $\mathrm{I} / \mathrm{O}$ when PCMR bit $7=0$ and consists of an 8 -bit register. Its SFR address is FF2FH. It is used as an input port when the processor is reset and 00 H is the initial value of the internal buffer. I/O is selectable on a bit basis as a general-purpose I/O port. It is determined by eight bits (PDMR bit 0 through PDMR bit 7) in the PDMR register. See table 33.

Port D functions as a data bus when PCMR bit $7=1$. In this mode, port C is used as an address and control bus for an 16 -byte data bus of C-RAM and its address is specified by $A_{0}$ through $A_{3}$ of port C.
Ports A through D are all selected as input ports when the processor is initialized or reset. The ports when selected as input or output ports, can be either written or read. When used as an output port, the following applies:

- Write - GPP data will be written to the external port.
- Read - the most recent data written to the port from the GPP will be read back to the GPP.
When used as an input port, the following applies:
- Write - GPP data will be written to the external port.
- Read - the external data that is input to the port is read into the GPP.

Port $E$ (PE): Port $E$ is a general-purpose input port consisting of a 1 -bit register. Its SFR address is FF57H. The input value can be read from bit 0 of the G -bus. The remaining bits 1 through 7, contain 0's. No data can be written to port E .

Port $\mathrm{F}\left(\mathrm{PF}_{0}\right.$ to $\left.\mathrm{PF}_{2}\right)$ : Port F is a general-purpose output port consisting of a 3-bit register. Its SFR address is FF5CH. The internal register is set as OH when the processor is reset.

Bits 0 through 2 of the G-bus are output bits. The port can also be read. Bits 3 through 7 contain 0's.

Port Mode Register (PTMR): The PTMR consists of an 8 -bit register. It selects the mode of ports $A$ and $B$ and the RxD and TxD pins. Its address is FF28H and is 3FH when the processor is initialized and reset. See table 31.

Table 31. PTMR Functions

PTMR	Value	Function
Bit 7	0	RxD is an output port and TxD is an input port
	1	RxD and TxD are not used as a port
Bit 6		Not used
Bit 5	0	$\mathrm{PA}_{4}$ to $\mathrm{PA}_{7}$ (high-order four bits) are output ports
	1	$\mathrm{PA}_{4}$ to $\mathrm{PA}_{7}$ (high-order four bits) are input ports
Bit 4	0	$\mathrm{PA}_{0}$ to $\mathrm{PA}_{3}$ (low-order four bits) are output ports
	1	$\mathrm{PA}_{0}$ to $\mathrm{PA}_{3}$ (low-order four bits) are input ports
Bit 3	0	$\mathrm{~PB}_{7}$ and $\mathrm{PB}_{6}$ are output ports
Bit 2	0	$\mathrm{~PB}_{7}$ and $\mathrm{PB}_{6}$ are input ports
	$\mathrm{PB}_{5}$ and $\mathrm{PB}_{4}$ are output ports	
Bit 1	0	$\mathrm{~PB}_{5}$ and $\mathrm{PB}_{4}$ are input ports
	$\mathrm{PB}_{3}$ and $\mathrm{PB}_{2}$ are output ports	
Bit 0	0	$\mathrm{~PB}_{3}$ and $\mathrm{PB}_{2}$ are input ports

Port C Mode Register (PCMR): The PCMR consists of an 8 -bit register. Its address is F 29 H and is 7FH when the processor is reset. See table 32.

Table 32. PCMR Functions

PCMR	Value	Function
Bit 7	0	Ports $C$ and $D$ are set as a port
Bit $n$   $n=0-6$ 1 Ports $C$ and $D$ are set as a bus    1 PCn is an output port (valid when PCMR   bit $7=0$PCn is an input port (valid when PCMR   bit $=0$ )		

Port D Mode Register (PDMR): The PDMR consists of an 8 -bit register. It selects port $D$ in the input or output mode. Its SFR address is FF29H and is FFH when the processor is reset. See table 33.

Table 33. PDMR Functions

PDMR	Value	Function
Bit $n$   $n=0-7$	0	PDn is an output port (valid when PCMR   bit $7=0$
	1	PDn is an input port (valid when PCMR   bit $7=0$

Control RAM (C-RAM): C-RAM is a 16-byte by 8-bit memory. It is mapped as SFR addresses FF90H through FF9FH. Table 34 shows the relationship between C-RAM and SFR addresses, when $\mathrm{PC}_{0}$ to $\mathrm{PC}_{3}$ of port C are used as an address bus.

## Table 34. C-RAM SFR Address Mapping

External Address $\left(\mathrm{PC}_{3}-\mathrm{PC}_{0}\right)$						
$\mathbf{A 3}$	A2	A1	A0	(HEX)		SFR Address
0	0	0	0	$(0 H)$	FF90H	
0	0	0	1	$(1 H)$	FF91H	
	2				2	
1	1	1	0	(EH)	FF9EH	
1	1	1	1	(FH)	FF9FH	

Addresses 7H and FH (C-RAM memory external addresses) store information indicating the C-RAM status. 7 H indicates the status of OH to 6 H and FH indicates the status of 8 H to EH . See table 35.

Table 35. C-RAM Status Functions

7H Memory Bit	Function	FH Memory Bit	Function
Bit 0	0H memory status	Bit 0	8H memory status
Bit 1	1H memory status	Bit 1	9H memory status
	2	2	2
Bit 6	6H memory status	Bit 6	EH memory status
Bit 7	0	Bit 7	0

The state of a memory status bit, indicates the following:
$0=$ No write or read request is issued by the $\mu$ PD77810.
$1=A$ write or read request is issued by the $\mu$ PD77810.
Each status bit is set to 1 by a GPP transfer instruction, but cannot be set to 0 by a GPP transfer instruction. When an external host computer accesses OH to 6 H and 8 H to EH , the corresponding status bit is set to 0 . All bits are set to 0 when the processor is reset.

A read access to the C-RAM can be performed by the GPP and an external host computer simultaneously, but simultaneous write access is denied.

## Scrambler (SCR) and Descrambler (DSC)

Both the scrambler (SCR) and descrambler (DSC) consist of a polynomial counter, a protection circuit, and an SCRMR used to set the mode. Registers SCR and DSC are one-bit registers corresponding to the LSB of the data bus. They also have a 4-bit SCRM register and 3-bit DSCM register as a control register. See table 36.

Table 36. Scrambler and Descrambler SFR Addesses and Descriptions

Unit	SFR Address	Description
SCRMR	FF40H	Mode register
SCR	FF41H	Scrambler port
DSC	FF42H	Descrambler port
SCRM	FF65H	Scrambler control register
DSCM	FF66H	Descrambler control register

Mode Register (SCRMR). The SCRMR is an 8 -bit register. Each bit (bit $7=$ MSB and bit $0=$ LSB) specifies the multiplexer mode as shown in Figures 15 and 16. Bits 7 through 2 are shared by the SCR and DSC. Bit 1 is used only by DSC and bit 0 is used only by the SCR. Table 37 shows the relationship between the SCRMR bit patterns and CCITT V series recommendations.

Table 37. SCRMR Functions

CCITT   Recommendation	Bits								Generating Function	
	$\begin{array}{llllllll}7 & 6 & 5 & 3 & 2 & 1\end{array}$									
V.22, V.22bis	0	0	0	0	0	0			$1+X^{-14}+X^{-17}$	Note 1)
V. 27	1	1	1	0	1	0			$1+X^{-6}+X^{-7}$	te2)
V.27bis, V.27ter	1	1	1	1	1	0	-		$1+X^{-6}+X^{-7}$	te3)
V. 29	1	-	-	-	1	1	0		$1+X^{-18}+X^{-23}$	
V.26/V. 32 call	1	-	-	-	1	1	1	0	$\begin{aligned} & 1+X^{-18}+X^{-23} \\ & 1+X^{-5}+X^{-23} \end{aligned}$	$\begin{aligned} & \text { : SCR } \\ & \text { : DSC } \end{aligned}$
V.26/V. 32 answer	1	-	-	-	1	1	0		$\begin{aligned} & 1+X^{-5}+X^{-23} \\ & 1+X^{-18}+X^{-23} \end{aligned}$	$\begin{aligned} & \text { : SCR } \\ & \text { : DSC } \end{aligned}$

## Notes:

(1) The processor has a protection circuit (conforming to Recommendation V.22) that reverses the next scrambler input, when 1 is output continuously to the scrambler 64 times.
(2) The processor has a protection circuit (conforming to Recommendation V.27) that protects repeated patterns of $1,2,3,4,6,9$, and 12 in bits 2 through 6 . Example of 45 bits of transmitted bit strings follows:

$$
P(x)=\sum_{(i=0)}^{2} a(i) x^{i}
$$

Where, $a(i)=0$ or 1
$a(i)=a(i+9)$ or $a(i+12)$
Bit data is inverted before transmission.
(3) The processor has a protection circuit (conforming to V.27bis and V.27ter Recommendations) that protects repeat patterns of 1, 2, 3, 4, $6,8,9$, and 12 in bits 2 through 6.

Control Registers (SCRM and DSCM). Table 38 shows the functions of the 4-bit SCRM and the 3-bit DSCM.

Table 38. SCRM and DSCM Functions

Bit	Name	Function
4-Bit SCRM Functions		
$\mathbf{3}$	SCRM.INT	Initial data loading (when the bit changes from   0 to 1)
2	SCRM.CLR	Scrambler clear (when the bit is 1)
$\mathbf{1}$	SCRM.STT	Scrambler protection circuit start (when the bit   changes from 0 to 1)
$\mathbf{0}$	SCRM.RST	Scrambler protection circuit reset (when the   bit is 1)
$\mathbf{3 - B i t}$ DSCM Functions		
$\mathbf{2}$	DSCM.CLR	Descrambler clear (when the bit is 1)
$\mathbf{1}$	DSCM.STT	Descrambler protection circuit start (when the bit   changes from 0 to 1)
$\mathbf{0}$	DSCM.RST	Descrambler protection circuit reset (when the   bit is 1)

## TXPLL and RXPLL

The transmitting phase-locked loop ( $T_{x} P L L$ ) and the receiving phase-locked loop ( $\mathrm{R}_{\mathrm{x}} \mathrm{PLL}$ ) consist of a group of counters, including some that are only partially resettable, a preset controller, and a PLL mode register (PLLMR) to set the mode. See Figure 17. The TXPLL adjusts the phase to the external bit rate clock. RXPLL adjusts it to the phase detected internally. The A/D and D/A precisions (bit length) are set by the SR register (see DSP internal functions) and DAMR register (see A/D and D/A interface) in DSP.
Table 39 lists the clocks used by $T_{X}$ PLL and $\mathrm{R}_{\mathrm{X}}$ PLL.
Table 39. $\quad T_{X}$ PLL and $R_{X}$ PLL Clocks

Pin Symbol	Clock Function
ADST	A/D sampling clock
$\overline{\text { ADCK }}$	A/D data serial clock
RT	Received data bit rate clock (1 in asynchronous mode)
RBAUD	Received data baud rate clock
DALD	D/A data load strobe clock
$\overline{\text { DACK }}$	D/A data serial clock
STINT	Transmited data bit rate clock (1 in asynchronous mode)
SBAUD	Transmitted data baud rate clock
ST16	16-time clock of transmitted bit rate used in ASC block
RT16	16-time clock of received bit rate used in SAC block

Figure 15. SCR Block Diagram

$T_{X} P L L$. TXPLL $_{X}$ is a PLL whose theory of operation is based on a frequency divider with an adjustable ratio. The incrementer (INCR) shown in Figure 18 is incremented by one at an input clock rate of 5.5296 MHz . When INCR reaches the number 6 it inputs either 0,1 , or 2 as determined by the 2-bit FLIP/FLOP (TFO and TF1). Table 40 shows the TFO and TF1 values.

Table 40. TF0/RF0 and TF1/RF1 Values

TF0/RF0	TF1/RF1	Data to be Loaded in INCR
0	0	$1(1 / 6)$
1	0	$2(1 / 5)$
0	1	$0(1 / 7)$
1	1	Inhibited

In Figure 18, CMP is a phase comparator that outputs the phase of STEXT or RT at the rising edge of SBAUD. CNT is an incremental/decremental counter. It is incremented or decremented by one according to the CMP output. When CMP reaches +3 or more, it issues a TFO set signal; when -3 or less, it issues a TF1 set signal. TF0 and TF1 are updated every time an SBAUD is generated. TFO and TF1 select the multiplexer output and change the timing for the INCR division ratio to $2400 \mathrm{~Hz} / 9600 \mathrm{~Hz}$, selectable by PLLMR.

At the rising edge of STINT, an interrupt signal IST is output.
$\mathbf{R}_{\mathbf{X}}$ PLL. $\mathrm{R}_{\mathbf{X}}$ PLL is a PLL whose theory of operation is based on a frequency divider with an adjustable ratio.

Figure 16. DSC Block Diagram

*V.27 = V.27/V.27bis/V.27ter
83ML-5826B

In Figure 19, INCR is an incrementer that is incremented by an input clock rate of 5.5296 MHz . When INCR reaches the number 6, it inputs 0,1 , or 2 at the next increment. Data to be loaded is determined by the 2-bit FLIP/FLOP (RFO and RF1). Table 40 shows the RF0 and RF1 values.
RF0 and RF1 are set or reset with a DSP instruction (write instruction to the SR register). These bits select the multiplexer output and change the timing for the INCR division ratio to $2400 \mathrm{~Hz} / 9600 \mathrm{~Hz}$, selectable by PLLMR. At the rising edge of RTINT, an interrupt signal IRT is output.

Mode Registers. Table 41 shows the PLLMR1, PLLMR2, and BAUDSR register SFR addresses.

Table 41. PLLMR1, PLLMR2, and BAUDSR Register SFR Addresses

Unit	SFR Address	Description
PLLMR1	FF44H	PLL mode register 1 (8 bits)
PLLMR2	FF7EH	PLL mode register 2 (8 bits)
BAUDSR	FF45H   (low-order 2bits)	SBAUD and RBAUD status register (2 bits)

Mode Register PLLMR1: The PLLMR1 mode register is an 8 -bit register. Each bit (bit $0=$ LSB) specifies the multiplexer mode. PLLMR1 specifies whether the SBAUD and RBAUD pins are used as a baud rate clock output pin or input port ( $\mathrm{PG}_{0}$ and $\mathrm{PG}_{1}$ ). PLLMR1 also performs as an input register when the pins are used as input ports.
Bit 7 (MSB) of the PLLMR1 controls TF0 and TF1 of TXPLL and bit 6 controls RFO and RF1 of RxPLL. Bits 5 and 4 specify the clock source of the transmitting PLL and bit 3 specifies the mode of the SBAUD and RBAUD pins. Bits 1 and 0 enables the SBAUD and RBAUD pins, when the pins are used as input ports. Figure 17 shows the PLLMR1 functions.

The PLLMR1 register uses the SFR address of FF44H. PLLMR1 bits 2 through 7 are set to 0 , and bits 0 and 1 are set to an undefined value when the processor is reset.
When PLLMR1 is read immediately after it is written an incorrect value may occur in bits 6 and 7 .

Figure 17. PLLMR1 Functions

PLLMR1	
Bit 7	TFO and TF1 Update Cycle
0	2400 Hz
1	9600 Hz


PLLMR1	
Bit 6	RF0 and RF1 Update Cycle
0	2400 Hz
1	9600 Hz


PLLMR1		
Bit		
5	4	Transmitter Clock
0	0	
0	1	External Clock (STEXT)
1	0	Slave Clock (RT)
1	1	Inhibited


PLLMR1	
Bit 3	SBAUD and RBAUD Pin Mode
0	Input Port
1	Baud Rate Clock Output

## Note:

(1) A Frequency Rate of 2400 Hz cannot be used for the update cycle clock in phase control of the Tx PLL.

Mode Register PLLMR2: The PLLMR2 mode register is an 8 -bit register. Each bit selects a multiplexer mode. The high-order four bits of PLLMR2 select the transmit (TXPLL) clock rate and the low-order four bits select the receive ( $\mathrm{R}_{\mathrm{X}} \mathrm{PLL}$ ) clock rate.

Table 42 lists the PLLMR2 functions. The PLLMR2 register has an SFR address of FF7EH. The SFR address is 33 H when the processor is reset.

SBAUD and RBAUD Status Register BAUDSR: The BAUDSR is a 2-bit read-only register that indicates the SBAUD and RBAUD status. Bit 1 indicates the SBAUD status and bit 0 indicates the RBAUD status 1 or 0.

The BAUDSR register has an SFR address of FF45H. The SFR address is set as OH when the processor is reset. In read mode, bits 2 through 7 output 0 s.

Table 42. PLLMR2 Functions

Bits				SBAUD (Hz)	STINT (Hz)	ST 16 (Hz)	Bits				RBAUD (Hz)	RT (Hz)	RT 16 (Hz)
7	6	5	4				3	2	1	0			
0	0	0	0	300	300	4800	0	0	0	0	300	300	4800
0	1	0	0	600	600	9600	0	1	0	0	600	600	9600
0	0	0	1	600	1200	19200	0	0	0	1	600	1200	19200
0	0	1	1	600	2400	38400	0	0	1	1	600	2400	38400
0	0	1	0	1200	1200	19200	0	0	1	0	1200	1200	19200
0	1	1	0	1200	2400	38400	0	1	1	0	1200	2400	38400
0	1	1	1	1600	4800	76800	0	1	1	1	1600	4800	76800
1	0	0	0	2400	2400	38400	1	0	0	0	2400	2400	38400
1	0	0	1	2400	4800	76800	1	0	0	1	2400	4800	76800
1	0	1	1	2400	9600	153600	1	0	1	1	2400	9600	153600
1	0	1	0	2400	7200	115200	1	0	1	0	2400	7200	115200
1	1	1	0	2400	14400	230400	1	1	1	0	2400	14400	230400
1	1	1	1	2400	19200	307200	1	1	1	1	2400	19200	307200

Note:
(1) There is a possibility that erroneous data could occur if the GPP is allowed to write and read data to the PLLMR2 simultaneously.

## ASC, SAC, and UART

This circuit provides a serial interface asynchronously with the DTE. The circuit consists of an asynchronous-tosynchronous converter (ASC), and synchronous-toasynchronous converter (SAC), and a universal asynchronous receiver transmitter (UART) (URTI for input and URTO for output).
The mode of the ASC and SAC is selected by the ASMR mode register. In synchronous mode, the serial clock is RT and ST. The mode and control of UART is selected by the URTMR mode register and its status is retained in the URTSR register.
This circuit is invalid when PTMR bit $7=0$. The $R_{X} D$ pin is used a an output port and the $T_{X} D$ pin is used a an input port. The LSB of SACR is input to $R_{X} D$ and $T_{X} D$ outputs data to the MSB of ASCR.

Table 43 lists the SFR addresses of the ASC, SAC, and UART register. Figure 20 shows the block diagram of the ASC, SAC, and UART.

Table 43.		ASC, SAC, UART Register SFR Addresses
Unit	SFR Address	Description
ASMR	FF49H	Asynchronous/synchronous mode register
URTMR	FF4AH   (low-order 7 bits)	UART mode register
URTSR	FF4BH   (low-order 4 bits)	UART status register
ASCR	FF4CH	ASC register
SACR	FF4DH	SAC register
URO	FF3EH	URO register
URI	FF3FH	URI register

The asynchronous/synchronous mode register (ASMR) is an 8 -bit register. It inputs ASC serial data and URTI serial data, selects the $R_{X} D$ pin output signal, selects the character length and signaling rate range, sets a loop from $R_{X} D$ to $T_{X} \mathrm{D}$, and selects aynchronous or synchronous mode. The register contains 00 H when the processor is reset. Figure 21 lists the ASMR functions.

Figure 18. $T_{\mathrm{x}}$ PLL Block Diagram


Figure 19. $R_{X}$ PLL Block Diagram


Figure 20. ASC, SAC, UART Block Diagram


ASC. The asynchronous-to-synchronous converter (ASC) converts a start-stop signal that is being input to the $T_{X} D$ pin to a bit string, which is synchronous to the transmit clock ST of the modem. If the rate of the input signal is high ( $1 \%$ or $2.3 \%$ ), it deletes the stop bit. ASC also has a break character detection function. When a break character is
detected, it generates break signals for $2 \mathrm{M}+3$ bits ( M indicates the character length including the start and stop bits). ASC has an 8-bit ASCR output register that can output data to the G-bus. ASCR inputs data converted from asynchronous to synchronous from the MSB. When data is processed bit by bit, the ASCR MSB has valid data. Figure 22 provides a diagram of the ASC break signal.

Figure 21. ASMR Functions

ASMR	
Bit 7	ASC Serial Input
0	$T_{x} D$ pin
1	URTO output


ASMR	
Bit 6	ASC Control
0	Input disable
1	Input enable


ASMR	
Bit 5	$R_{X}$ D Pin Output
0	SAC output
1	URTO output


ASMR		
Bit 4	Bit 3	Character Length M (1)
0	0	8
0	1	9
1	0	10
1	1	11


ASMR	
Bit 1	Loop to $R_{X} D$ to $T_{X} D$
0	No loop
1	Loop (3)


ASMR	
Bit 2	Signaling Rate Range
0	Basic
1	Expanded


ASMR	
Bit 0	Asynchronous/Synchronous
0	Asynchronous (2)
1	Synchronous (2)

## Notes:

(1) Includes Start and Stop Bits
(2) RT and STINT Pins $=1$
(3) $R_{X} D$ Outputs all 1 s

Figure 22. ASC Break Signal Diagram

## Break Signal from $\mathbf{T x D}=\mathbf{2 M + 3}$ or Less



## Break Signal from TxD = $\mathbf{2 M}+\mathbf{3}$ or More



SAC. The synchronous-to-asynchronous converter (SAC) inserts a stop bit if it is deleted in a circuit that outputs a bit string, which is synchronous to the RT receive clock from the $R_{X} D$ pin as a start-stop signal. The width of the stop bit to be inserted is shorter than the original stop bit by $1 / 8$ (1/4 in extension mode) and is retained until conversion ends.

If two null codes with a deleted stop bit are continuous (start bit length $=2 \mathrm{M}-2$ bits), they must be distinguished from a break signal (start bit length $=2 \mathrm{M}+3$ bits or more). SAC has an 8-bit input register than can input data from the G-bus. SAC converts data from the LSB of SACR. Figure 23 shows a diagram of the SAC stop bit insertion.

Figure 23. SAC Stop Bit Insertion


Note:
[1] The stop bit is never a $7 / 8$ bit after conversion ends.

UART. The universal asynchronous receiver transmitter (UART) consists of a URTI serial input and URTO output. URTI extracts a character from the start-stop data, deletes the start, stop, and parity bits, and inputs only data to the 8 -bit URI register. URTI also performs parity checking if specified. URTO adds the start, stop, and parity bits to URO data and outputs it serially.

The UART mode register (URTMR) is an 8-bit register. The UART functions are shown in Figure 24. ASC and SAC are independent of the UART.

The UART status register (URTSR) is a 4-bit register. All the UART bits are cleared when its status is output to the G-bus. The URTSR functions are shown in Figure 25.

Figure 24. URTMR Functions

URTMR	
Bit 7	URTI Serial Input
0	$T_{\mathrm{x}} \mathrm{D}$ pin
1	SAC output


URTMR	
Bit 5	URTO Control
0	Serial output disable
1	Serial output enable


URTMR	
Bit 6	Break Signal
0	Not sent
1	Sent (continuously)


URTMR		
Bit 3	Bit 2	Parity
0	-	No check/generate
1	0	Odd
1	1	Even


URTMR	
Bit 4	URTI Control
0	Serial input disable
1	Serial input enable


URTMR	
Bit 0	Stop Bit Length
0	1
1	2

## Note:

(1) The data length does not include the start, stop, and parity bits.

Figure 25. URTSR Functions

URTSR	
Bit 3	Parity Error
0	No parity error
1	Parity error


URTSR	
Bit 2	Framing Error
0	No framing error
1	Framing error


URTSR	
Bit 1	Overrun Error
0	No overrun error
1	Overrun error


URTSR	
Bit0	Break Signal
0	No break signal
1	Break signal $\quad$ (2)

## Notes:

(1) If data is input to the URTI serially or a break signal is detected, an interrupt request (IIU) is issued. URTSR data must be checked every time an IIU is issued. If data is output to the URTO serially, an interrupt signal IOU is issued.
(2) The URTSR determines that a break signal is issued when two or more continous characters (excluding the start, stop, and parity bits) are 0.

## A/D and D/A Interface

This circuit interfaces the $A / D$ and $D / A$ converters. It consists of a variable-length serial I/O and FIFO, a mode register used to reset the mode, and a DAMR. The A/D serial input signal ADIN inputs DSP ADSI.

The circuit uses the ADST pin to output the A/D conversion start strobe and uses the ADIN pin to input A/D data serially. The circuit also uses the $\overline{A D C K}$ pin for the A/D conversion serial clock. The circuit inputs data from the ADIN pin in synchronization with the rising edge of $\overline{\text { ADCK }}$. The DALD pin is used to output a D/A conversion load strobe signal. The circuit outputs data from the DAOT pin in synchronization with the DACK D/A conversion serial clock.

Serial data is input or output from the MSB. The data length is selectable between 8 or 16 bits. Table 44 lists the A/D and D/A SFR addresses

Table 44. A/D and D/A SFR Addresses

Unit	SFR Address	Description
DAMR	FF4EH (low-order 6 bits)	A/D and D/A mode register
FFRA	FF4FH (high-order 3 bits)	FIFO read address
FFWA	FF4FH (low-order 3 bits)	FIFO write address
FIFO	FF54, FF55H	FIFO

D/A Mode Register (DAMR). The DAMR is a 6 -bit register. It controls the FIFO read address and selects the A/D and D/A previous bit length and sampling cycle. Its SFR address is FF4EH which corresponds to the low-order six bits of the G-bus. DAMR changes the width of the serial enable signal ADST or DALD, depending on the A/D bit length and the duty of the ADST signal. However, the data width for actual processing is selected by the SR register (SIC bit) of the DSP. DAMR bit 4 and SIC bits must be identical. Figure 26 shows the DAMR functions.

Figure 26. DAMR Functions

DAMR Bit 5	FFRA Control
0	Data is not output from FIFO
1	FFRA changes depending on FIFO read


DAMR Bit 4	A/D Precision
0	16
1	8


DAMR Bit 3	A/D Precision
0	16
1	8


DAMR Bit			A/D, D/A Sampling Frequency
2	1	0	
0	0	0	9.6 kHz
0	0	1	19.2 kHz
0	1	0	38.4 kHz
0	1	1	Inhibited
1	0	0	14.4 kHz
1	0	1	28.8 kHz
1	1	0	7.2 kHz
1	1	1	Inhibited

## Notes:

(1) There is a possibility that erroneous data could be read in bits 0,1 , and 2 if the GPP reads DMAR immediately after it is written.
(2) The DAOT pin outputs on $F$ when DAMR bit 5 is 0 .
(3) Writes to the FFRA are inhibited when DAMR bit 5 is 1.

FIFO. FIFO is an eight-level stack memory. When data is read from the FIFO and output to an external unit by the DASO, the next data is read. If data is read from the level 4 of the FIFO or all the data is read from the FIFO (write address = read address), an interrupt request from the FIFO is issued. The write address is selected by FFWA and the read address by FFRA. Both FFWA and FFRA are three-bit registers.

The FIFO SFR address is FF54H (low-order eight bits) and FF55H (high-order eight bits). FFRA and FFWA have the same address of FF4FH. FFRA corresponds to bits 6, 5 , and 4 of the G-bus and FFWA corresponds to bits 2, 1 , and 0 .

When the D/A precision is eight bits, data is written into the FIFO by an instruction to write in the low-order eight bits (MOV FIFO, $x x$ ). When it is 16 bits, data is written into the FIFO by an instruction to write in the high-order 8 bits (MOV FIFO + 1, xx). When a 16-bit transfer instruction (MOVW FIFO, $x x$ ) is executed, data is written in the loworder eight bits and then in the high-order eight bits. When FIFO data (FF54H, FF55H) is read to the G-bus, the data is also immediately read from the G-bus. The operation does not affect FFWA and FFRA. Note that data is stored in a buffer before it is written into FIFO and data in the buffer is read when the G-bus is read. Also, at FIFO levels 2 and 3 immediately after DAMR bit 5 is changed from 0 to 1 , a 1 is read from the FIFO.

Refer to timing waveforms for the $A / D$ serial input and D/A serial output timing.

## Serial Interface [SI1, SO1, S1SR]

General. The serial input port 1 (SI1) and serial output port 1 (SO1) are 16-bit serial I/O interfaces. The serial interface has an internal status register (S1SR) used to indicate the status of the SI1 and SO1 interfaces.

Both the SI1 and SO1 consist of a four-bit counter, a 16-bit shift register, and a 16-bit register buffer. The S1SR consists of a two-bit register.

Table 45 lists the serial interface SFR addresses.

Table 45. Serial Interface SFR Addresses

Unit	SFR Address	Description
S1SR	FF56H, (2 bits)	Status register
SI1	FF58, FF59H	Serial input port 1
SO1	FF5A, FF5BH	Serial output port 1

Interface Functions. The S1SR indicates the SI1 and SO serial interface status. It consists of two bits, and is set to OH when the processor is reset.

Table 46 lists the S1SR functions. The SFR address is FF56H.

Table 46. S1SR

S1SR	Value	Functions
Bit 0	1	Data was input to SI 1
Bit 1	1	SO1 buffer is full

SI1: SI1 is a 16 -bit serial input interface. It is comprised of a 16-bit shift register, an SI1 register (buffer), and a 4-bit counter. The SFR address of the SI1 register is FF58H (low-order eight bits) and FF59H (high-order eight bits). The SFR address is undefined when the processor is reset. SI1 counts 16 bits of serial input data at the rising edge of S1CK and inputs them to the shift register when the SIIEN pin goes active. After the 16 bits of serial data are input, the register resets the counter with a carry and transfers the contents of the shift register to the SI 1 register.

This sets S 1 SR bit 0 to 1 and issues an Sl 1 interrupt. A read signal then allows the contents of the SI1 register to be output to the G-bus. At this instant of time, data at FF59H (high-order eight bits) is read and S1SR bit 0 goes to 0. This completes the execution of the serial input.

To read SI1 data, the SFR address FF58H (low-order eight bits) must be read first and then SFR address FF59H (high-order eight bits). When S1SR0 is 0 , serial input is disabled, so the same data will be read repeatedly from SI1.

SO1: SO1 is a 16-bit serial output interface. It consists of a 16-bit shift register, an SO1 register (buffer), and a 4-bit counter. The SFR address of the SO1 register is FF5AH (low-order eight bits) and FF5BH (high-order eight bits). The SFR address is undefined when the processor is reset. SO1 writes serial output data from the G-bus (SO1 register) by a Write signal generated from the G-bus interface. When data is written in the high-order eight bits (FF5BH), S1SR bit 1 (SO1 buffer full) is set to 1 . SO1 register data is transferred to the shift register when it is not in the output mode and S1SR bit 1 (SO1 buffer full) is set to 0 . When data is input to the shift register, SO1 automatically outputs serial output request signal SO1RQ from the SO1RQ pin, using S1CK as a serial clock. When the SO1EN pin goes active, SO1 outputs 16 bits of serial data from the SO1 pin at the falling edge of the S1CK serial clock. SO1 stores output data in the buffer before transferring it to the shift register. It stores the next data in the buffer when the buffer becomes free. The buffer status is checked by the S1SR register and SO1 can output bytes of serial data continuously.

To write serial output data to the SO 1 register, the low-order eight bits must be written first and then the high-order eight bits. Data is then transferred to the shift register.

When S1SR bit 1 is a 1 , the write operation is disabled. Consequently, in this type of occurrence, the address is rewritten. Figure 27 shows the SI1 timing diagram and Figure 28 shows the SO1 timing diagram.

Figure 27. SI1 Timing Diagram


Figure 28. SO1 Timing Diagram

$\mu$ PD77810

## General-Purpose Timer and Watch Dog Timer

 [TMMR, TMRA, TMRB, WDMSR, WDTMR]General. TMRA is a general-purpose timer consisting of an 8 -bit decrement counter. TMRB is an interval timer consisting of an 8 -bit decrement counter. TMMR is a control register for TMRA and TMRB.

WDTMR is an 8 -bit watch dog timer that monitors software hangup. If the specified time is expired, it issues a nonmaskable interrupt (MNIWD) to GPP. WDMSR is a register used to specify the mode of WDTMR. Table 47 lists the timer SFR addresses.

Table 47. Timer SFR Addresses

Unit	SFR Address	Description
TMMR	FF5DH	General-purpose timer control register
TMRA	FF5EH	8-bit general-purpose timer

Functions. General-Purpose Timer Control Register (TMMR): TMMR is a 5 -bit register used to control the TMRA general-purpose timer and the TMRB interval timer. TMMR bit 0 specifies the TMRA operation; bits 4 through 6 specify the TMRB interval clock; and bit 7 specifies the TMRB initialization.

When TMMR bit 0 is changed from 0 to 1 , TMMR loads the data stored in the buffer into TMRA and decrements it at the rising edge of the timer clock ( 230.4 kHz ). When the counter value reaches 0 , TMMR sets bit 0 to 0 and issues an interrupt signal to stop the counter.
When bit 7 is changed from 0 to 1 , TMMR clears TMRB and increments the counter at the rising edge of the timer clock ( $921.6 \mathrm{kHz}, 460.8 \mathrm{kHz}, 230.4 \mathrm{kHz}$, or 115.2 kHz ). If the counter overflows, TMMR issues an interrupt signal. Bit 7 is cleared to 0 at the same time the timer starts operation. The TMMR initial value and reset value is 00 H .
The TMMR SFR address is FF5DH. In TMMR read mode, a 0 is output to $G$-bus unassigned bits 3 through 7. Table 48 shows the TMMR functions.

Table 48. TMMR Functions

TMMR	Name	Contents				Initial Value
Bit 7	TBI	When bit 7 is 1 , TMRB is initialized				0
Bits 6-4	TBS	TMRB interval timer clock selection				000
		Bits				
		6	5	4	Clock Frequency	
			0	0	921.6 kHz	
			1	1	460.8 kHz	
			0	1	230.4 kHz	
			1	1	115.2 kHz	
Bits 3-1	-		used	0 is	utputif read)	-
Bit0	TAE		n bi	0 is	TMRA is enabled	0

General-Purpose Timer (TMRA): TMRA consists of a buffer register and a counter. The TMRA SFR address is FF5EH. Buffer register TMRA is set to FFH when reset, however other values can be written to the buffer. A value of 0 may cause the TMRA to malfunction.
When TMRA is enabled by the TAE $=1$, data from the buffer register is loaded to the counter, which decrements at a $230.4 \mathrm{kHz}(4.34 \mu \mathrm{~s})$ frequency rate generated by $\mathrm{T}_{\mathrm{X}}$ PLL. When the counter is decremented to 0 , TMRA issues a timer interrupt signal IAT, sets the TAE bit to 0 , and stops the counter. When TMRA is read by the GPP, the counter value is output if the counter is in the operation mode. If the counter is not in the operation mode, the buffer register value is output.
Interval Timer (TMRB): TMRB consists of an interval timer clock selector and a counter. The counter is reset to 00 H . When TMMR bit 7 (initialization signal TBI) is 1, TMRB clears the counter and decrements it at the frequency selected by the TBS (interval timer clock selection bit) of TMMR bits 6 through 4. Four interval times are available: $0.28 \mathrm{~ms}, 0.55 \mathrm{~ms}, 1.1 \mathrm{~ms}$, and 2.2 ms .
If the counter overflows, TMRB issues a timer interrupt signal IBT. The TMRB counter value cannot be read by the GPP.

Watch Dog Timer Control Register (WDMSR): The WDMSR is an 8-bit register used to control the watch dog timer (WDTMR). Its SFR address is FF6DH. It is set to 00 H when reset and the watch dog timer stops. WDMSR bit 0 and WDMSR bit 1 specify the WDTMR interval time (ITVO and ITV1). WDMSR bit 7 enables the WDTMR and WDMSR bit 2 through WDMSR bit 6 (five bits) are not defined, but when read 0 is output to the G -bus.

Table 49 shows the WDMSR SFR address. Figure 29 shows the WDMSR functions.

Table 49. WDMSR SFR Address

Unit	SFR Address	Description
WDMSR	FF6DH	Watch dog timer control register

Watch Dog Timer Counter Register (WDTMR): The WDTMR monitors software hangup. If the time, specified by WDMSR expires, WDTMR issues a non-maskable interrupt signal (MNIWD). WDTMR consists of an 8-bit increment counter and a decoder. WDTMR is set to 00 H when
initialized or reset. WDTMR is enabled by WDR $=1$ (operation enable signal) of WDMSR, and starts incrementing at the clock rate of 75 Hz . The decoder decodes a carry from bits 6 through 8 of the counter. The internal signal ITV bit 0/ ITV bit 1 which is output from WDMSR, selects the interval time, and issues a non-maskable signal (NMIWD). Next, the increment counter is reset by NMIWD and starts incrementing again at 75 Hz . The watch dog timer has no address and cannot be read and written.

WDTMR is reset and starts counting every time data is written into the WDMSR. Figure 30 shows the 8 -bit increment counter and decoder.

Figure 29. WDMSR Functions


Figure 30. WDTMR 8-Bit Increment Counter and Decoder

$\mu$ PD77810

## DSP Interface

General. The DSP interface consists of an INTDSP register that issues an interrupt and reset to the DSP, a data register (DR) that inputs and outputs data to and from the DSP, and a status register (SR). The INTDSP register, DR, and SR are all mapped in memory as SFR of the GPP.

## DSP Functions

DSP Reset and Interrupt: The INTDSP register issues reset and interrupt requests to the DSP. The INTDSP register is a 2-bit register, which is set to 00 H when initialized or reset. Its address is SFR FF64H, which corresponds to the low-order 2 bits of the G-bus. 0 is output from the G-bus bits 2 through 7 when the interface is read.

Table 50 shows the INTDSP SFR address and table 51 shows the INTDSP functions.

Table 50. INTDSP SFR Address

Unit	SFR Address	Description
INTDSP	FF64H	DSP reset and interrupt request register

Table 51. INTDSP Functions

INTDSP	Function
Bit 0	When this bit = 1, INTDSP resets DSP
Bit 1	When this bit is changed from 0 to 1, INTDSP issues an inter-   rupt request to DSP. After the interrupt request is issued, the   bit is automatically reset.

Data Input/Output Between the GPP and DSP: The SR register stores the DSP status. The SR register consists of an 11-bit status register. Internally, it is handled as a 16-bit register. The high-order eight bits can be read by the GPP by specifying the SFR address FF62H or FF63H.
The SR register is set to 00 H when the processor is reset. Table 52 shows the SR register SFR address and Figure 31 shows the status register configuration. See DSP Status Register (SR) for functional details.

Table 52. SR Register SFR Address

Unit	SFR Address	Description
SR	FF62H or FF63H	DSP SR register

Figure 31. Status Register Configuration


The DR register is a 16-bit register. It can be used as a data transfer register to and from the DSP. Since the GPP is eight bits, DR transfers 16-bit data in two operations. Internally, 16 -bit data is transferred in one operation. For 16-bit transfer, DR first transfers the low-order eight bits then the high-order eight bits. When the DR register is defined as an 8-bit register by the DRC bit of the status register (SR), only the low-order eight bits of DR are transferred. The high-order eight bits are not defined (or their value is the one previous to being changed). The DR register can be read and written by the GPP by specifying the SFR address FF60H or FF61H. Table 53 shows the DR register SFR address. See DSP Data Register (DR) for the functional details.

Table 53. DR Register SFR Address

Unit	SFR Address	Description
DR	FF60H or FF61H	DSP DR register

## SYSTEM CONFIGURATION

Figure 32 shows a typical V.22bis system application for the $\mu$ PD77810.

Figure 32. V.22bis System Application Example


## Description

The NEC $\mu$ PD7281 Image Pipelined Processor is a high-speed digital signal processor specifically designed for digital image processing such as restoration, enhancement, compression, and pattern recognition. The $\mu$ PD7281 employs token-based dataflow and pipelined architecture to achieve a very high throughput rate. A high-speed on-chip multiplier speeds calculations. More than one $\mu$ PD7281 can easily be cascaded with a minimum amount of interface hardware to increase the throughput rate even further. The $\mu$ PD7281 is designed to be used as a peripheral processor for minicomputers or microcomputers, thereby relieving the host processor from the burden of time-intensive computations. The $\mu$ PD7281 has a very powerful instruction set designed specifically for digital image processing algorithms. The Image Pipelined Processor can also be used as either a general purpose digital signal processor or a numeric processor.

## Features

Token-based data-flow architectureInternal pipelined ring architecturePowerful instruction set for image processing$17 \times 17$-bit (including sign bits) fast multiplier: 200 nsHigh-speed data I/O handling- Asynchronous two-wire handshaking protocols
- Separate data input and output pinsEasy multiple-processor configurationRewritable program storesOn-chip memories:
- Link Table (LT): $128 \times 16$ bits
- Function Table (FT): $64 \times 40$ bits
- Data Memory (DM): $512 \times 18$ bits
- Data Queue (DQ): $32 \times 60$ bits
- Generator Queue (GQ): $16 \times 60$ bits
- Output Queue (OQ): $8 \times 32$ bitsNMOS technologySingle +5 V power supply40-pin DIP


## Applications

Digital image restorationDigital image enhancementPattern recognitionDigital image data compressionRadar and sonar processingFast Fourier Transforms (FFT)
Digital filteringSpeech processingNumeric processing

## Pin Configuration



## Performance Benchmarks

Operation	$\mathbf{1} \mu \mathbf{P D 7 2 8 1} \mathbf{3} \mu \mathbf{P D 7 2 8 1 s}$	Note	
Rotation	1.5 sec	0.6 sec	$512 \times 512$ binary image
1/2 Shrinking	80 ms	30 ms	$512 \times 512$ binary image
Smoothing	1.1 sec	0.4 sec	$512 \times 512$ binary image
3x3 Convolution	3.0 sec	1.1 sec	$512 \times 512$ grey scale image
64-stage FIR   Filter	$50 \mu \mathrm{~S}$	$18 \mu \mathrm{~S}$	17-bit fixed point
$\cos (\mathrm{x})$	$40 \mu \mathrm{~s}$	$15 \mu \mathrm{~S}$	33-bit fixed point

Ordering Information

Part Number	Package Type
$\mu$ PD7281D	40-pin ceramic DIP

## Pin Identification

No.	Signal	I/O	At   RESET	Description

## Architecture

The $\mu$ PD7281 utilizes a token-based, data-flow architecture. This novel architecture not only provides multiprocessing capability without complex external hardware, but also offers high computational efficiency within each processor. Taking advantage of the multiprocessing capability of data-flow architecture, almost any processing speed requirements can be satisfied by using as many $\mu$ PD7281s as needed in the system. Within each $\mu$ PD7281, the data-flow architecture provides high computational efficiency through concurrent operations. For example, while the Processing Unit (or ALU) spends its time for actual computations only, the internal memory address calculations, internal memory read and write operations and input/output operations are all being done concurrently. Furthermore, in contrast to conventional von Neumann processors, a data-flow processor doesn't fetch instructions, perform subroutine stack operations or do data transfers between registers. Therefore, it does not spend the time required for these operations.
The $\mu$ PD7281 also utilizes an internally pipelined architecture. As shown in the block diagram, a circular pipeline is formed by five functional blocks: the Link Table (LT), the Function Table (FT), the Data Memory (DM), the Queue (Q), and the Processing Unit (PU). A token entered through the Input Controller (IC) is passed on to the Link Table to be processed around the pipelined ring as many times as needed. When a token is finished being processed, it is queued into Output Queue (OQ) and then output via the Output Controller (OC).

## Block Diagram



## Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 V to +7.0 V
Input voltage, $\mathrm{V}_{1}$	-0.5 V to +7.0 V
Output voltage, $\mathrm{V}_{0}$	-0.5 V to +7.0 V
Operating temperature, $\mathrm{T}_{0 \mathrm{OT} 1}(2 \mathrm{~m} / \mathrm{s}$ air flow)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating temperature, $\mathrm{T}_{0 \mathrm{OT} 2}(\mathrm{No}$ air flow)	$0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
CLK capacitance	$\mathrm{C}_{\mathrm{K}}$		20	pF	1 MHz
Input capacitance	$\mathrm{C}_{1}$		10	pF	other pins
Output capacitance	$\mathrm{C}_{0}$		20	pF	

## DC Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{D D}=5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input low   voltage 1   (RESET, IDB ${ }_{15-0}$ )	$V_{\text {IL1 }}$	-0.5		0.7	V	
Input high   voltage 1   ( $\overline{\text { RESET, }}{ }^{\text {IDB }}{ }_{15-0}$ )	$\mathrm{V}_{\mathrm{H} 1}$	2.0		$V_{D D}+0.5$	V	
Input low   voltage 2   (IREQ, $\overline{\text { OACK }}, \mathrm{CLK}$ )	VIL2	-0.5		0.45	V	
Input high voltage 2   (IREQ, $\overline{0 A C K}, C L K)$	$\mathrm{V}_{\mathrm{H} 2}$	3.5		$\mathrm{V}_{\mathrm{DD}}+0.5$	V	
Output low voltage	$\mathrm{V}_{0 \mathrm{~L}}$			0.45	V	$\mathrm{I}_{0 \mathrm{~L}}=2.0 \mathrm{~mA}$
Output high voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input leakage current	$\mathrm{l}_{\mathrm{LI}}$			$\pm 10$	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$
Output leakage current	'L0		$\pm 10$		$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD}}$
Supply current	$I_{\text {DD }}$		320	500	mA	

AC Characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
CLK cycle time	${ }^{\text {t CLK }}$	100		500	ns	Measured at 2 V
CLK pulse width high	${ }^{\text {twKH }}$	40			ns	
CLK pulse width low	${ }^{\text {twKL }}$	40			ns	
CLK rise time	$t_{\text {KR }}$			10	ns	
CLK fall time	$t_{\text {KF }}$			10	ns	
$\overline{\text { IACK }}$ delay time 1 (from IREQ down) (Note 1)	$\mathrm{t}_{\text {DIAL1 }}$	20		50	ns	
$\overline{\text { IACK }}$ delay time 1 (from $\overline{\mathrm{REQ}}$ up) (Note 2)	$\mathrm{t}_{\text {IIAH1 }}$	20		55	ns	
$\overline{\text { ACK }}$ delay time 2 (from $\overline{\mathrm{REQ}}$ down)	${ }^{\text {d }}$ IAL2	20		70	ns	
$\overline{\text { ACK }}$ delay time 2 (from $\overline{\mathrm{RE} E Q}$ up)	$\mathrm{t}_{\text {DIAH2 }}$	20		70	ns	
Min time between transitions on $\overline{\text { IREQ }}$ and IACK	$\mathrm{t}_{\mathrm{HIO}}$	15			ns	
$\overline{\text { REQ }}$ rise time	$\mathrm{t}_{\text {IQR }}$			10	ns	

## AC Characteristics (cont)

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$					
		Limits			Test   Parameter
	Symbol	Min	Typ	Max	Unit
Conditions					

## Notes:

(1) "Down" = on falling edge
(2) "Up" = on rising edge
(3) Output load capacitance: $\overline{\mathrm{IACK}}, \overline{\mathrm{OREQ}}=50 \mathrm{pF} ; \mathrm{ODB}_{15-0}=$ 100 pF

## Timing Waveforms

## AC Test Input Voltage

$\overline{\mathrm{RESET}}, \mathrm{IDB}$

## Clock Timing



AC Test Output Voltage

$\overline{\text { OREQ }}$, $\overline{\text { ACK }}$, ODB		
	83-001866A	

## Module Number and RESET Timing



Input Handshake Timing


## Output Handshake Timing



## Functional Description

As shown in the block diagram, the $\mu$ PD7281 consists of 10 functional blocks. Before any processing occurs, the host processor down-loads the object code into the Link Table and the Function Table of the $\mu$ PD7281 by using specially formatted input tokens. At this time, constants may also be sent to the Data Memory to be stored. The contents of the Link Table and the Function Table are closely related to a computational graph. When a computational process is represented graphically, it usually forms a directed data-flow graph. In such a graph, the arcs (or edges, links, etc.) represent the entries in the Link Table and the nodes represent the entries in the Function Table. An arc between any two nodes has a data value, called a "token", and is identified by a corresponding entry in the Link Table. A node in the directed data-flow graph signifies an operation, and the type of operation is logged into the Function Table along with the identification information about the outgoing arc.

A minimal amount of interface hardware is required to configure $\mu$ PD7281s in a multiprocessor system. As many as $14 \mu$ PD7281s can be cascaded together, as
shown in figure 1. Each $\mu$ PD7281 must be assigned a Module Number (MN) during reset. Figure 2 shows the timing diagram for assigning the module number.

When any token enters a $\mu$ PD7281, regardless of the total number of $\mu$ PD7281s used in the system, the Input Controller of that $\mu$ PD7281 discerns whether or not the entering token is to be processed by checking the Module Number (MN) field of the token. If the Module Number is not the same as the Module Number assigned during reset, the token is passed to the Output Controller so that it can be sent out via the Output Data Bus. However, if the token has the same Module Number, then the Input Controller strips off the MN field and sends the remaining part of the token to the Link Table for processing.
Once a token enters the circular pipeline by accessing the Link Table, it requires seven pipeline clock cycles for the token to fully circulate around the ring. One pipeline clock cycle is needed for the Link Table, the Function Table, or the Data Memory to process an incoming token, and two pipeline clock cycles are needed for the Queue or the Processing Unit to process a token. The Queue requires one pipeline

Figure 1. Connecting Multiple $\mu$ PD7281s


Figure 2. Timing Dlagram for Assigning Module Numbers During RESET

clock cycle to write and one cycle to read. Similarly, the Processing Unit requires one pipeline clock cycle to execute and one clock cycle to output the result. In other words, both the Processing Unit and the Queue are made of two-stage pipelines. Therefore, when seven tokens exist simultaneously in the circular pipeline, the pipeline is full and full parallel processing is achieved.

When a data token flows through each functional block in a given $\mu$ PD7281, the format of the token changes significantly. The actual transitions of a token format through different functional blocks are shown
in figure 3. A data token flowing within the circular pipeline must have at least a 7-bit Identifier (ID) field and an 18-bit data field. The ID field is used as an address to access the Link Table memory. When a token accesses the LT memory, the ID field of the token is replaced by a new ID (shown as ID' in figure 3) previously stored in the LT memory. As a result, every time a data token accesses LT memory, its ID field is renewed. The data field of a token consists of a control bit, a sign bit and a 16-bit data. A token may have up to two data fields, as well as other fields (OP code, control, etc.) if necessary.

Figure 3. Token Formats and Transitions

## Input Controller [IC]

A 32-bit token is entered into a $\mu$ PD7281 in two 16 -bit halves using a two-signal request/acknowledge handshake method, as shown in figure 4. The input/output token format is shown in figure 7. After a token is accepted by the IC, the MN field of the token is compared to the Module Number of $\mu$ PD7281 which was assigned at reset. If the Module Number of the accepted token is not the same, the IC passes the token directly to the Output Controller. If the MN field of the accepted token is the same, then the IC strips off the Module Number and sends the remaining part of the token to the Link Table. The IC also monitors the status of the Processing Unit. If it is busy, the IC delays accepting another token until it is no longer busy. The IC also accepts the refresh tokens from the Refresh Controller (RC) and sends them to the Link Table.

Figure 4. Handshake Timing Waveforms


## Output Controlier [OC]

The OC outputs 32 -bit tokens in two 16 -bit halves using a two-signal request/acknowledge handshake method, as shown in figure 4. The types of tokens output by the OC are as follows: output data tokens from the Output Queue, error status data tokens generated internally by OC, DUMP tokens, and passing data tokens from the Input Controller.

## Link Table [LT]

The LT is a $128 \times 16$-bit dynamic RAM. The ID field of an incoming LT token is used to access the LT memory. The contents of an LT memory location
consist of a 6-bit Function Table Address (FTA), a 7 -bit ID, a 1-bit Function Table Right Field Control (FTRC), and a 2-bit Selection (SEL) field. When a token accesses LT memory, its ID field is replaced by the new ID field contained in the memory location being accessed. Therefore, every time a token accesses LT memory, it is given a new ID. The FTA field is used to access FT memory locations. The FTRC bit and the SEL field are used to specify the type of instruction. By using specially formatted tokens, the contents of the LT can either be set during a program download or be read during a diagnosis.

## Function Table [FT]

The FT is a $64 \times 40$-bit dynamic RAM. As for the case of the Link Table, the contents can either be set during a program download or be read during a diagnosis by using specially formatted tokens.
Each FT memory location consists of a 14-bit Function Table Left field (FTL), a 16 -bit Function Table Right field (FTR), and a 10-bit Function Table Temporary field (FTT). These fields contain control information for different types of instructions.

## Address Generator and Flow Controller [AG/FC]

The AG/FC generates the addresses to access the Data Memory (DM) and controls the writing of data to and the reading of data from the Data Memory. AG/FC determines whether the incoming token contains a one-operand instruction or a two-operand instruction. One-operand instruction tokens can be sent directly to the Queue. However, if the token contains a twooperand instruction, then both operands must be available before they can be sent to the Queue. For a two-operand instruction, the token which arrives at the Data Memory first is temporarily stored until the second operand token arrives. When the second operand token exits the Function Table, the AG/FC generates the Data Memory address which contains the first operand. Then, the second operand token and the first operand data read out from the Data Memory are sent to the Queue together.

## Data Memory [DM]

The DM is a $512 \times 18$-bit dynamic RAM which is used to queue the first operand for a two-operand instruction until the second operand arrives. DM can also be used as a temporary memory or as a buffer memory for I/O data.

## Queue [Q]

The $Q$ is a FIFO memory configured with a $48 \times 60$-bit dynamic RAM. The Q is used to temporarily store the Processing Unit-bound and the Output Queue-bound tokens. The Q is further divided into two different FIFO memories: a $32 \times 60$-bit Data Queue (DQ) and a $16 \times$ 60 -bit Generator Queue (GQ). The DQ is used for the

PU, OUT and AG/FC instructions. The DQ temporarily stores the PU and AG/FC tokens before they are sent to the Processing Unit for processing. The DQ also temporarily stores the Output Queue tokens before they are sent to the Output Queue. The GQ is used for Generate (GE) instructions only. The DQ will not output tokens to the Output Queue if it is full, and the DQ or GQ will not output tokens to the Processing Unit if the Processing Unit is busy.
In order to control the number of tokens in the circular pipeline to prevent $Q$ overflow, the $Q$ is further restricted by the following two situation rules: when the $D Q$ has eight or more tokens stored, the read from the GQ is inhibited, and when the DQ has fewer than eight tokens stored, the read from the GQ has a higher priority than the read from the DQ. Since instructions stored in the GQ generate tokens, restricting the number of GQ tokens is important in order to keep the $Q$ from overflowing. In case the internal processing speed is slower than the rate of incoming data tokens, the DQ posseses a potential overflow condition. To prevent overflow, the processor is put into restrict/inhibit mode when the DQ reaches a level greater than 23.

## Output Queue [OQ]

The OQ is a first-in first-out (FIFO) memory configured in an $8 \times 32$-bit static RAM. The OQ is used to temporarily store the output data tokens from the Data Queue so that they can be output by the Output Controller via the output data bus. When OQ is full, it sends a signal to the Data Queue to delay accepting further tokens.

## Processing Unit [PU]

The PU executes two types of instructions: PU and GE. PU instructions include logical, arithmetic (add, subtract and multiply), barrel-shift, compare, data-exchange, bit-manipulation, bit-checking, data-conversion, doubleprecision adjust, and other operations. The control information for a PU instruction is contained in the Function Table Left field of the PU token. The GE instructions are used to generate a new token, multiple copies of a token, or block copies of a token. They can also be used to set the Control field (CTLF) of a token and to generate external memory addresses. If the current PU operation cannot be completed within a pipeline clock cycle, the PU sends a signal to the

Queue and the Input Controller to prevent them from releasing any more tokens.

## Refresh Controller [RC]

The RC automatically generates refresh tokens for the dynamic RAMs used in the circular pipeline, i.e. the LT, FT, DM, and Q. Each RC token, generated periodically, is sent to the Input Controller and is propagated through the LT, FT, DM and Q, in that order. The RC tokens are deleted after reaching the Q.

## Operation Modes

There are three different modes in which the $\mu$ PD7281 can operate: Normal, Test, and Break (see figure 5). After an external hardware reset, the $\mu$ PD7281 is in the Normal mode of operation. The $\mu$ PD7281 can enter the Test mode for program debugging by inputting a SETBRK token (see figure 6) while the processor is in the Normal mode. If an overflow occurs in the Data Queue or the Generator Queue, the processor enters into the Break mode so that the internal contents of the processor can be examined; see table 1. Table 2 describes the effects of software and hardware resets.

Table 1. DUMPD Output Token Format

MN	z	10	CTLF DA	TA (16-bit field)
0000	0	0000000	0111 xxxxx(5) GQ Size(5 bits) DQ Size(6 bits)	
0000	0	0000001	0111 xxxx(4) $u(1)$	ID(7) CTLF(4)
0000	0	0000010	0111	DATA(16)
0000	0	0000011	0111 xxx (3) $u(1) \mathrm{ID}(7) \mathrm{x}(1) \mathrm{C}_{\mathrm{B}}, \mathrm{S}_{\mathrm{B}}, \mathrm{C}_{\mathrm{A}}, \mathrm{S}_{\mathrm{A}}$	
0000	0	0000100	$0111 \mathrm{xx}(2)$ FTL (Lower 12 bits) $\mathrm{xx}(2)$	
0000	0	0000101	0111	$\mathrm{DATA}_{A}(16)$
0000	0	0000110	0111	$\mathrm{DATA}_{B}(16)$
0000	0	0000111	0111 xxxxxxxxx(9)	ID(7)

$x$ : Don't care u: Unused
Table 2. Effects of Reset Operation

	Hardware Reset	Software Reset
MN	$\mu$ PD7281 reads in MN	No Change
High/Low Word Flip-flop	Reset	No Change
Input Inhibit Control	Reset (No constraint)	No Change
LT Break State	Reset	Reset
Internal Operation	Stopped	Stopped
DQ, GQ, and OQ Pointers	Set to 0	Set to 0

Figure 5. $\mu$ PD7281 Operation Modes


Figure 6. SETBRK (Set Break Condition) and SETMD (Set Mode) Token Formats

SETBRK Token Format


Event Count: Breaks after the ID Link Table entry has been accessed a specified number of times.
Timer Count: Breaks after a specified number of internal pipeline clock cycles.

SETMD [Set Mode] Token Format


## Input/Output Tokens

The only way any external device can communicate with the $\mu$ PD7281 is by using the I/O tokens (see figure 7). Both the input and the output tokens have the same format so that a token may flow through a series of multiple processors without a format change. A 32-bit I/O token is divided into upper and lower 16-bit words and input to or output from the $\mu$ PD7281 a 16-bit word at a time. Object code is down-loaded into the Link

Table and the Function Table using SETLT, SETFTR, SETFTL and SETFTT input tokens. The contents of the Function Table and the Link Table can also be read using RDLT, RDFTR, RDFTL and RDFTT tokens. In order to write or read a value to and from the Data Memory, a program must be down-loaded and executed. Once object code is down-loaded into the $\mu$ PD7281, data tokens are input to the processor, thereby initiating the processing. For a description of the input and output tokens, see tables 3 and 4.

Figure 7. Input/Output Token Format


Table 3. Input Token Format

Input Token	High Word (16)			Low Word (16)		Remarks
	MN (4)	Z (1)	ID (7)	CTLF (4)	DATA (16)	
	1512	11	104	30	15 0	
SETLT	MN	0	LT address	1100	Data to be set in LT	Set LT
SETFTR	MN	0	FT address	1101	Data to be set in FTR	Set FT Right Field
SETFTL	MN	0	FT address	1110	Data to be set in FTL	Set FT Left Field
SETFTT	MN	0	FT address	1111	Data to be set in FTT	Set FT Temporary Field
RDLT	MN	0	LT address	1000		Read LT
RDFTR	MN	0	FT address	1001		Read FT Right Field
RDFTL	MN	0	FT address	1010		Read FT Left Field
RDFTT	MN	0	FT address	1011		Read FT Temporary Field
CRESET	MN	0		0100		Command Reset
SETMD	MN	0		0101	Mode set data	Set Operation Mode
SETBRK	MN	0	ID	0110	M (1) Count (15)	Set Break Condition
DUMP	MN	0	xxxx(4) DUMP (3)	0111		Dump
CBRK	0000	0		0100		Command Break
VAN	1111	0				Vanish Data
PASS	M ${ }^{*}$	0				Pass Data
EXEC	MN	0	ID	00 CS	Data	Normal Execution Data

[^9]Table 4. Output Token Format


## Instruction Set Summary

Tables 5 through 8 summarize the instruction set.

Table 5. AG/FC Instructions

Mnemonic	Instruction
QUEUE	Queue
RDCYCS	Read cyclic short
RDCYCL	Read cyclic long
WRCYCS	Write cyclic short
WRCYCL	Write cyclic long
RDWR	Read/Write Data Memory
RDIDX	Read Data Memory with index
PICKUP	Pickup data stream
COUNT	Count data stream
CONVO	Convolve
CNTGE	Count generation
DIVCYC	Divide cyclic
DIV	Divide
DIST	Distribute
SAVE	Save ID
CUT	Cut data stream

Table 6. PU Instructions

Mnemonic	Instruction
OR	Logical OR
AND	Logical AND
XOR	Logical EXCLUSIVE-OR
ANDNOT	Logical INVERT an operand then AND: ( $\overline{\text { AैB }}$ )
NOT	Invert
ADD	Add
SUB	Subtract

Table 6. PU Instructions (cont)

Mnemonic	Instruction
MUL	Multiply
NOP	No operation
ADDSC	Add and shift count
SUBSC	Subtract and shift count
MULSC	Multiply and shift count
NOPSC	NOP and shift count
INC	Increment
DEC	Decrement
SHR	Shift right
SHL	Shift left
SHRBRV	Shift right with bit reverse
SHLBRV	Shift left with bit reverse
CMPNOM	Compare and normalize
CMP	Compare
CMPXCH	Compare and exchange
GET1	Get one bit
SET1	Set one bit
CLR1	Clear one bit
ANDMSK	Mask a word with logical AND
ORMSK	Mask a word with logical OR
CVT2AB	Convert 2's complement to sign-magnitude
CVTAB2	Convert sign-magnitude to 2's complement
ADJL	Adjust long (for double precision numbers)
ACC	Accumulate
COPYC	Copy control bit

$\mu$ PD7281

Table 7. GE Instructions

Mnemonic	Instruction
COPYBK	Copy block
COPYM	Copy multiple
SETCTL	Set control field

Table 8. OUT Instructions

Mnemonic	Instruction
OUT1	Output 1 token
OUT2	Output 2 tokens

There are four different types of instructions which can be specified by the SEL field of an FT token. See table 9.
Table 9. SEL Field of an FT Token

SEL Type	Description	
11	AG/FC	Executes instructions specified by the Function Table   Right field while monitoring the Function Table   Temporary field.
01	PU	Performs arithmetic, logical, barrel-shift, bit-   manipulation, data-conversion, etc.
10	GE	Generates ablock or multiple new tokens from a token.   Sets the control field of a token. Increments or   decrements the data field of a token.
00	OUT	Outputs data tokens from the circular pipeline to the   Output Queue after the tokens are finished being   processed.

## AG/FC Instructions

There are 16 AG/FC instructions (see table 10). They can be grouped into three types: Address Generator (AG), Flow Controller (FC), and AG/FC type.
AG type: RDCYCS, RDCYCL, WRCYCS, WRCYCL, RDWR, RDIDX

FC type: PICKUP, COUNT, CUT, DIVCYC, DIV, DIST, CONVO, SAVE, CNTGE

AG/FC type: QUEUE
A 4-bit OP code in the Function Table right field specifies the instruction to be executed.


## QUEUE

For a two-operand instruction, a QUEUE instruction is used to temporarily store the first operand token in the Data Memory until the second operand token arrives. The maximum Queue size is 16 . See figure 8.

Figure 8. QUEUE Instruction


Note: See Data-flow Graph Explanation [figure 27] for the explanation of figures.

## RDCYCS [Read Cyclic Short]

RDCYCS reads 18 -bit data words from the Data Memory cyclically (see figure 9). The first data to be read is specified by the DM Base address. The last data to be read is specified by the buffer size. The Read Counter (RC) contains the offset address from Data Memory Base (DMB) address. It is incremented each time the Data Memory is accessed. The maximum buffer size is 16 .

Figure 9. RDCYCS Instruction Operation



## RDCYCL [Read Cyclic Long]

RDCYCL reads 18 -bit data words from the Data Memory in a cyclic manner like RDCYCS but has a longer cyclic
range. The first data to be read is specified by the DM Base address. The last data to be read is specified by the buffer size. The maximum buffer size is 256 .


## WRCYCS [Write Cyclic Short]

WRCYCS writes 18-bit data words into the Data Memory cyclically. The first the Data Memory address
is specified by the DM Base address. The last address is specified by the buffer size. The maximum buffer size is 16 .


## WRCYCL [Write Cyclic Long]

WRCYCL writes 18 -bit data words into the data memory in a cyclic manner similar to WRCYCS but has a longer
cyclic range. The first DM address is specified by the DM Base address. The last address is specified by the buffer size. The maximum buffer size is 256 .
$\mu$ PD7281


## RDWR [Read/Write Data Memory]

RDWR is used to write or read data to and from the Data Memory. This instruction reads/modifies/writes the Data Memory with the Address Register as index.
If a token arriving at the instruction has FTRC bit $=0$, then the instruction performs a DM read operation. If it has FTRC bit = 1, then the instruction performs a DM write operation.
For a token with the FTRC bit $=0$, the actual DM address location to be read is determined by the sum of the following three values: 8 -bit Address Register (AR),

FTRC $=0$

the lower eight bits of the data field of the token, and the DM Base address. After the read operation, the lower eight bits of the token's data field is added to the value of AR. Additionally, the data field of the token is replaced by the contents read from the Data Memory location.
If a token with FTRC bit = 1 is used along with RDWR, a write operation is performed. The Data Memory address location is determined by the sum of 8 -bit AR and DM Base address. The 18 -bit data from the token is written into the DM address calculated. After the write operation, AR is reset to 00 H .
FTRC = 1



## RDIDX [Read Data Memory with Index]

RDIDX is used to read the contents of the Data Memory. This instruction is most useful when a part of the Data Memory is used as a look-up table. The RDIDX instruction performs different operations depending upon the FTRC bit of the token using the instruction. If the FTRC bit $=0$, then the instruction reads a Data Memory location. The DM address location to be read is determined by the sum of the following three values: the 8 -bit AR, the lower eight bits

FTRC $=0$

of the token's data field, and the DM Base address. After the read operation, the data field of the token is replaced by the contents of the Data Memory location read. The value of AR is reset to zero after the operation.
If the FTRC bit = 1, no operation is performed on the Data Memory. However, the token's AR contents are replaced by the modulo- 256 sum of the lower eight bits of data field and the current contents of AR.
$F T R C=1$



## PICKUP [Pickup Data Stream]

This instruction picks up every $(\mathrm{n}+1)^{\text {th }}$ token from a stream of incoming tokens and increments the ( $\mathrm{n}+1)^{\text {th }}$ token's ID field by one. The number n is specified by the Count

Size (CS) of the Function Table Right field.
Figure 10 illustrates the PICKUP instruction with $C S=3$.
Note: These figures use the data-flow graph convention. See figure 27, Data-flow Graph Explanation for the explanation of figures.


Figure 10. Pickup Instruction


## COUNT [Count Data Stream]

COUNT copies every $(n+1)^{\text {th }}$ token from a stream of incoming tokens and increments the copied token's ID
field by one. The number n is specified by CS of the Function Table Right field. Figure 11 illustrates the COUNT instruction with $C S=3$.


Figure 11. COUNT Instruction


## CONVO [Convolve]

CONVO instruction is used to perform cumulative operations such as $\Sigma A_{i}$ or $\Pi A_{i}$. The CONVO instruction is best suited for convolving two sequences of the same length. Figure 12 illustrates the CONVO instruction by computing

$$
\text { SUM }=\sum_{i=1}^{n} A_{i} B_{i} .
$$

The $A_{i}$ sequence is input to $I N 1$ while the $B_{i}$ sequence is input to IN2. Together they are queued and multiplied to form the $\mathrm{C}_{i}$ sequence. The $\mathrm{C}_{i}$ 's arriving at CONVO instruction are queued and added together to form the final answer SUM. The length of the summation, $n$, is specified by the CS.

Figure 12. CONVO Instruction


49-000088A


## CNTGE [Count Generation]

CNTGE is normally used with COPYBK (Copy Block) to generate more than 16 copies of a single token (see figure 13). This instruction has both the dead (inactive) state and the wait (active) state. The instruction starts in the dead state. The FTRC bit $=0$ tokens that arrive during the dead state of instruction are output to the ID +2 token stream. It enters the wait state when a token with FTRC bit $=1$ arrives and the token is output to ID token stream. Once the instruction is in the wait state, it counts the number of tokens arriving with FTRC bit $=$ 0 , outputting them to the ID token stream, until the number exceeds the number specified by CS. If Counter (C) reaches the number specified by Count Size (CS), the instruction automatically enters the dead state. Tokens with the FTRC bit = 1 arriving at CNTGE while the instruction is in the wait state are deleted by the instruction. Once the instruction enters the dead state, it can be reactivated by the arrival of a token with FTRC bit $=1$.

Figure 13. CNTGE Instruction



## DIVCYC [Divide Cyclic]

DIVCYC divides an incoming stream of tokens into two streams of tokens: an ID token stream and an ID + 1 token stream. The pattern in which the incoming tokens are divided is specified by the Divide Size (DS) and Count Size (CS). The DS specifies cycle size whereas CS specifies the number of consecutive tokens to be in the ID stream. The first CS +1 tokens are output to the ID token stream. The following consecutive (DS - CS) tokens are output to the ID + 1 token stream.
Figure 14 illustrates the DIVCYC instruction with DS $=7$ and CS $=2$. Note that an incoming stream of tokens is divided into a stream of ID tokens and a stream of ID +1 tokens with a cycle of 8 tokens. Since $C S=2$, the number of ID tokens in one cycle is 3 , the number of ID +1 tokens in a cycle is 5 .

Figure 14. DIVCYC Instruction



## DIV [Divide]

DIV with CS $=\mathrm{n}$ divides an incoming stream of tokens with FTRC bit $=0$ into two streams of tokens: ID tokens and ID +1 tokens. The first ( $n+1$ ) incoming tokens with FTRC bit $=0$ are output as the ID tokens, and the rest of the incoming tokens with FTRC bit $=0$ are output as ID +1 tokens. An incoming token with FTRC bit $=1$ is used to reinitialize the DIV instruction. The stream of input tokens with FTRC bit $=0$ after the reinitialization is again divided into a stream of $(\mathrm{n}+1$ ) ID tokens followed by ID +1 tokens. A token with FTRC bit $=1$ which reinitializes the DIV instruction is deleted from the output token stream. A DIV instruction with CS $=3$ is illustrated in figure 15. The 10th and 16th input tokens have FTRC bit $=1$, so they reinitialize the DIV instruction.

Figure 15. DIV Instruction



## DIST [Distribute]

DIST is used to divide a stream of incoming tokens with the same ID into more than one stream of tokens with different IDs (see figure 16). The $\Delta I D$ size determines the maximum number of output token streams the instruction can have. $\Delta I D$ is the value added to an incoming token's ID field to form the ID field of the output token. The $\Delta I D$ field is initially set to zero, and it is incremented by one after a token with FTRC bit $=1$ passes through the instruction. However, a token with FTRC bit $=0$ has no effect on the value of $\Delta I D$ field. If the value of $\Delta I D$ before being incremented by a token with the FTRC bit $=1$ is equal to the contents of the $\Delta I D$ size field, the $\Delta I D$ field will be reset to zero.

Figure 16. DIST Instruction



## SAVE [Save ID]

SAVE is used to set the value of the ID field of a token. The instruction performs two different operations depending on whether the token's FTRC bit is 1 or 0 . If the token's FTRC bit $=0$, the instruction copies the lower eight bits of the data field into the Identifier Stack Register (IDSR) field. However, if the token's FTRC bit is 1 , the instruction replaces the token's ID field with the contents of IDSR.
Figure 17 illustrates the use of the SAVE instruction. Token 1 assigns an ID field value of 10 H to tokens 2,3 , 4 and 5 , token 6 assigns an ID field value of 20 H to tokens 7 and 8, and token 9 assigns an ID field value of 30 H to tokens 10, 11 and 12. In this example, tokens 1, 6 and 9 are deleted after SAVE instruction.

Figure 17. SAVE Instruction



## CUT [Cut Data Stream]

CUT is used to delete unnecessary tokens from a series of incoming tokens. The first $n$ tokens arriving at the instruction are deleted, where $n$ is the value contained in the CS field of the instruction. Initially the $S / F$ bit and the Counter (C) are set to zero. When a token with its FTRC bit $=0$ enters the instruction while $S / F$ bit is zero, the token increments the Counter by one and the token itself is deleted. As the first $(n+1)$ tokens are deleted by the instruction, the Counter has the same value as $n$, the contents of CS field. This condition sets the S/F bit to 1 . When the S/F bit is 1 , a token with its FTRC bit $=0$ can pass through the instruction without being deleted. However, if a token with its FTRC bit = 1 passes through the instruction, it resets the $S / F$ bit to 0 , thereby reinitializing the instruction. The token with its FTRC bit $=1$ is also deleted after reinitializing the instruction. Figure 18 illustrates the use of CUT to delete tokens 7 and 12 and the three tokens following them.

Figure 18. CUT Instruction



Table 10. AG and FC Instructions


## PU Instructions



F/L: Fuil/Left
XCH: Exchange
OUT:Output
BRC: Branch Control
CNOP: C-Bit NOP
PNZ: Positive, Negative, or Zero
OP: Op code

PU instructions (see table 20) are stored in the Function Table Left field of the Function Table memory. The bits 0 through 11 are used as control information for the Processing Unit. The bits 12 and 13 are deleted before the token arrives at the Processing Unit. Two operands from the $A$ and $B$ sides are operated on by the Processing Unit and the result is output to the $X$ and $Y$ sides (see figure 19).

Figure 19. The Processing Unit


## Bit Assignments

F/L [Full/Left]: F/L bit $=0$ indicates that the PU instruction is a one-operand instruction, and only the Function Table Left field is meaningful. F/L bit $=1$ indicates that the PU instruction is a two-operand instruction, and both the Function Table Left field and the Function Table Right field are meaningful. Therefore, when $F / L$ bit $=1$, the PU instruction is used in conjunction with an AG/FC instruction.

XCH [Exchange]: This bit controls the exchange operation. Operands will be exchanged just before the two tokens enter the QUEUE when $\mathrm{XCH}=1$.

OUT [Output]: There are four different PU output token formats. The two OUT bits specify the output token format. See table 11.
Table 11. OUT Bits

OUT Bits	No. of Outputs	ID	First Output	Second Output   DATA, S	
ID	DATA, C, S				

Notes: 1. This is the 18 -bit result of the operation output to the $X$ side. It includes the $C_{X}$ and $S_{X}$ bits.
2. This is the 18-bit result of the operation output to the $Y$ side. It includes the $C_{Y}$ and $S_{Y}$ bits.

BRC [Branch Control]: The BRC bit controls the flow of the PU output data token. The output data token may be output to either the ID token stream or the ID +1 token stream. When the BRC bit is set to 1 and the $C$ bit of the PU output data token is also 1 , the output data token is sent to the ID +1 token stream. But when the BRC bit is set to 1 and the $C$ bit of the output data token is 0 , the token is sent to the ID token stream. Therefore, using the BRC bit implements a conditional branch on C.
CNOP Bit: This bit informs the Processing Unit whether or not the incoming token should be processed. If the CNOP bit is set, and the $\mathrm{C}_{A}$ bit is not equal to the $\mathrm{C}_{\mathrm{B}}$ bit, then the token passes through the Processing Unit with no operation performed. See table 12.
Table 12. CNOP Bit

$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C}_{\mathbf{B}}$	PU Operation
0	0	Processing specified by the OP code is   performed.
0	1	Token passes through the Processing Unit as   NOP.
1	0	Token passes through the Processing Unit as   NOP.
1	1	Processing specified by the OP code is   performed.

PNZ [Positive, Negative, Zero] Field: The PNZ field is used to test the resulting condition of the PU operation. If the resulting condition matches the condition set by the PNZ field, then the C bit of the output data token is set to 1 . See table 13.
$\mu$ PD7281

Table 13. PNZ Field

$\mathbf{P}$	N	$z$	2 Condition	$\mathrm{C}_{\mathbf{X}}$	$\mathrm{Cr}_{\boldsymbol{Y}}$	Assembler Description	
0	0		O No condition set	$\mathrm{C}_{\text {A }}$	$\mathrm{C}_{B}$		
0	0		1 Result of operation $=0$	1	1	EQ	True
			Result of operation $\neq 0$	0	0		False
0	1		0 Result of operation $<0$	1	1	LT	True
			Result of operation $\geq 0$	0	0		False
0	1		1 Result of operation $\leq 0$	1	1	LE	True
			Result of operation $>0$	0	0		False
1	0		0 Result of operation $>0$	1	1	GT	True
			Result of operation $\leq 0$	0	0		False
1	0		1 Result of operation $\geq 0$	1	1	GE	True
			Result of operation $<0$	0	0		False
1	1		0 Result of operation $\neq 0$	1	1	NE	True
			Result of operation $=0$	0	0		False
1	1		1 Overflow generated	1	1	OVF	True
			No overflow generated	0	0		False

OP Code Field: This 5-bit OP code field specifies the PU operations to be performed. See table 14

Table 14. OP Code Field

Instruction	Mnemonic	Opcode
Logical	OR	00000
	AND	00001
	XOR	00010
	ANDNOT	00011
	NOT	01100
Arithmetic	ADD	11000
	ADDSC	11100
	SUB	11001
	SUBSC	11101
	MUL	11010
	MULSC	11110
	NOP	11011
	NOPSC	11111
	INC	01010
	DEC	01011
Shift	SHL	00100
	SHLBRV	00101
	SHR	00110
	SHRBRV	00111
Compare	CMPNOM	01000
	CMP	01001
	CMPXCH	10001
Bit manipulation	GET1	10101
	SET1	10110
	CLR1	10111
Bit check	ANDMSK	01101
	ORMSK	10000
Data conversion	CVT2AB	01110
	CVTAB2	01111
Double precision adjust	ADJL	10100
Accumulative addition	ACC	10010
C bit copy	COPYC	10011

## Logical Instructions

These instructions perform 16-bit logical operations on DATA $_{A}$ and DATA D. Usually there are no changes $^{\text {. }}$ in $C$ and $S$ bits between the input token and the output token, however $C$ bits can be affected by PNZ condition when specified.
OR, AND, XOR: These instructions perform 16-bit logical OR, AND, and XOR operations using input data tokens from the $A$ and $B$ sides of the Processing Unit. The 16 bit result is output to the $X$ side.
ANDNOT: This instruction first complements DATA $_{A}$ and then performs logical AND operation with DATA $A_{B}$. The 16 -bit result is output to the $X$ side.
NOT: This is a one-operand instruction which requires 16-bit data input from the A side only. The B side input is ignored. This instruction complements the 16-bit input data from the A side. The 16-bit result is output to the $X$ side.

## Arithmetic Instructions

These instructions perform 17-bit (including the sign bit) arithmetic operations on DATA $A$ and DATA D. When $^{\text {D }}$ a PNZ condition is specified, the $C$ bits of output data, $C_{X}$ and $C_{Y}$, reflect the setting. However, if no PNZ condition is specified (i.e., $\mathrm{PNZ}=000$ ), then $\mathrm{C}_{X} \leftarrow \mathrm{C}_{\mathrm{A}}$ and $C_{Y} \leftarrow C_{B}$.
ADD, SUB: These instructions perform addition or subtraction on DATA $A$ and DATA Da $_{B}$ along with the sign bits, $S_{A}$ and $S_{B}$. The result is output to the $X$ side. DATA $_{Y}$ is normally 0000 H . However, if an overflow occurs, then DATA $A_{Y}$ is equal to $+0001 \mathrm{H}\left(S_{Y}=0\right)$. If an underflow occcurs, then the DATAY is equal to -0001 H ( $S_{Y}=1$ ).

MUL: This instruction multiplies DATA $_{A}$ and DATA D. $_{B}$. The correct sign bit for the product is determined from $S_{A}$ and $S_{B}$. The 33-bit result including a sign bit is output as two 17-bit words, $S_{X}$ and DATAX, followed by $S_{Y}$ and DATA $A_{Y}$. DATA $A$ is the upper 16-bit word and DATA ${ }_{Y}$ is the lower 16-bit word. $S_{X}$ holds the resulting sign bit, and $S_{Y}$ is a mere duplicate of $S_{X}$.
NOP: This instruction performs no operation on the input token. The input data from $A$ and $B$ sides are output to the $X$ and $Y$ sides, respectively, without any change in their contents. If any control other than the OP code (such as PNZ control, BRC control, etc.) has been specified, the output complies with the control.

## Shift Count Instructions

These four Shift Count (SC) instructions first perform the normal operations, then count the number of leading zeros in DATA $X$ of the result, and finally output
the number of zeros as DATAY (see table 15). These instructions are provided for easy floating point processing.
ADDSC, SUBSC, NOPSC: These instructions perform addition, subtraction, or no operation. The number of preceding zeros in DATA ${ }_{X}$ of the result is output as DATAY. If an overflow or an underflow occurs as a result of an operation, DATAY contains $+0001 \mathrm{H}\left(\mathrm{S}_{Y}=0\right)$ or $-0001 \mathrm{H}\left(S_{Y}=1\right)$, respectively.
MULSC: This instruction performs a normal multiplication operation using the two 17-bit data. The upper order 16-bit data and its sign bit are output as DATA $A_{X}$ and $S_{X}$, but the lower 16-bit data is not output as $D^{D} A A_{Y}$. Instead, the number of preceding zeros in DATA $X$ are counted and output as DATA ${ }_{Y}$. The $S_{Y}$ bit is always zero.

DATA ${ }_{\mathbf{X}}$ After Operation																	SC Output (Y)					
15			13	12	11	110	10		8	76	65	54		2	1	0	SY			Data		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			01	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0			00	F	H
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	x	0			00	E	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	$x$	$x$	0			00	D	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	$x$	$x$	x	0		0	00	C	
0	0	0	0	0	0	0	0	0	0	0	0	1	$x$	$x$	$x$	x	0			00	B	
0	0	0	0	0	0	0	0	0	0	01	1	$x$ x	$x$	$x$	$x$	$\times$	0			00	A	
0	0	0	0	0	0	0	0	0	01	$1 \times$	$x$	$x \times$	$x$	$x$	$x$	$x$	0			00	9	
0	0	0	0	0	0	0	0	1	1 x	$x \times$	$x$	$x$	$x$	$x$	$x$	$x$	0		00	00	8	
0	0	0	0	0	0	0	1	x	$x$ x	x	$x$	$x$	x	$x$	$x$	$x$	0		0	00	7	
0	0	0	0		0	1	x	x	$x \times$	$x$	x	x	$x$	$x$	$x$	x	0			00	6	
0	0	0	0	0	1	$x$	$x$	$x \times$	$x$	$x$	$x$	$x$	$x$	$x$	x	$x$	0			00	5	
0	0	0	0	1	$x$	$x$	$x$	$x \times$	$x$	$x$	$x$	$\times \times$	$x$	$x$	x	$\times$	0			00	4	
0	0	0	1	$x$	$x$	$x$	$x$	$x$	$x$	$x \times$	$x$	x	$x$	$x$	x	$x$	0			0	3	
0	0	1	$x$	$x$	x	x	x	x	x	x $\times$	x	X	$\times$	x	x	x	0		0	00	2	
0	1	x	$x$	$x$	x	$x$	$\times$	$\times \times$	$x$	$x$	x	x	$x$	$x$	$x$	$\times$	0		0	00	1	
1	x	X	X	x	X		x	x	X	x	x	x	x	x	x	x	0			00	0	

Notes: * When an overflow or underflow has occurred $x$ don't care

## Increment and Decrement Instructions

INC, DEC: These instructions increment or decrement the 17-bit data from the $A$ side ( $S_{A}$ and DATA $_{A}$ ), and outputs the result to $X$ side as $S_{X}$ and DATA $A_{X}$. The $S_{Y}$ and DATAY are normally zero. However, if an overflow or an underflow occurs, then the $Y$ side outputs +0001 H $\left(S_{Y}=0\right)$ or $-0001 \mathrm{H}\left(S_{Y}=1\right)$, respectively.

## Shift Instructions

SHR [Shift Right], SHL [Shift Left]: SHR or SHL instructions perform a barrel-shifting operation on the 16-bit data, DATA $_{\text {A. }}$. The actual number of shifts and the direction is further specified by the lower five bits of DATA $_{B}$ and $S_{B}$, respectively. See figure 20 for detailed operation explanations.

Figure 20. SHR and SHL

Right Shift [SHR execution]


Left Shift [SHL execution]


SHRBRV [Shift Right with Bit Reverse], SHLBRV [Shift Left with Bit Reverse]: SHRBRV or SHLBRV first reverses the order of the bits in DATA $A$ and then performs a normal SHR or SHL operation, respectively. See figure 21.

## Compare Instructions

The Compare instructions (see table 16) are different from other PU instructions in that PNZ conditions must be specified along with the instructions. When a compare instruction is used along with a specified PNZ field, the Processing Unit performs a subtract operation. This subtract operation produces a set of PNZ flags, which are compared against the PNZ field specified by the instruction. When these two PNZ fields coincide, the specified PNZ conditions are said to be true. When they do not coincide, the specified PNZ conditions are said to be false (see table 17). The output data from the Processing Unit differs significantly depending on the PNZ conditions. The following three instructions compare the 17-bit data ( $\mathrm{S}_{\mathrm{A}}$ and DATA $_{A}$ ) from the $A$ side against the 17-bit data ( $S_{B}$ and DATA $_{B}$ ) from the $B$ side.
CMPNOM [Compare and normalize]: If the specified PNZ conditions are false, then the control bits, sign bits and data for both the $X$ and $Y$ sides are set to zero. If the $P N Z$ conditions are true, then $C_{X}$ and $C_{Y}$ are set to one, $S_{X}$ and $S_{X}$ are set to zero, DATA $A_{X}$ is set to 0001 H , and DATAY is set to 0000 H .
CMP [Compare]: This instruction outputs the 17-bit data words from the $A$ and $B$ sides to the $X$ and $Y$ sides without any change in their contents. It only alters the control bits. If the specified PNZ conditions are true, then $C_{X}$ and $C_{Y}$ are set to one. If the PNZ conditions are false, then $C_{X}$ is set to one and $C_{Y}$ is set to zero.

CMPXCH [Compare and exchange]: If the specified PNZ conditions are true, then both the input data from the $A$ side and $B$ side are unchanged and output to the $X$ side and $Y$ side, respectively, including their sign bits and the control bits. However, if the PNZ conditions are false, then the input data from the $A$ side is exchanged with the input data from the $B$ side, including the control and sign bits.

Figure 21. Bit Reversal Operations in SHRBRV and SHLBRV


Table 17. PNZ Field Conditions for Compare Instructions

P N Z Condition	True/	Function	Mnemonic
$001 \mathrm{~S}_{\mathrm{A}}$ DATA $_{A}=\mathrm{S}_{\mathrm{B}}$ DATA $_{\text {B }}$	True	Equal	EQ
$\mathrm{S}_{\mathrm{A}}$ DATA $^{\text {A }} \neq \mathrm{S}_{\mathrm{B}}$ DATA $^{\text {d }}$	False	Not equal	
$010 \mathrm{~S}_{A}$ DATA $_{A}<\mathrm{S}_{B}$ DATA $_{B}$	True	Less than	LT
$\mathrm{S}_{\mathrm{A}}$ DATA $_{A} \geq \mathrm{S}_{\mathrm{B}}$ DATA $^{\text {d }}$	False	Greater or equal	
$011 \mathrm{~S}_{\mathrm{A}}$ DATA $_{A} \leq \mathrm{S}_{\mathrm{B}}$ DATA $^{\text {b }}$	True	Less or equal	LE
$\mathrm{S}_{A}$ DATA $_{A}>\mathrm{S}_{\mathrm{B}}$ DATA $_{B}$	False	Greater than	
$100 S_{A}$ DATA $_{A}>S_{B}$ DATA $_{B}$	True	Greater than	GT
$\mathrm{S}_{\mathrm{A}}$ DATA $_{A} \leq \mathrm{S}_{\mathrm{B}}$ DATA $^{\text {d }}$	False	Less or equal	
$101 \mathrm{~S}_{A}$ DATA $_{A} \geq \mathrm{S}_{B}$ DATA $_{B}$	True	Greater or equal	GE
$S_{A}$ DATA $_{A}<S_{B}$ DATA $_{B}$	False	Less than	
$110 S_{A}$ DATA $^{\prime} \neq S_{B}$ DATA $_{B}$	True	Not equal	NE
$\mathrm{S}_{\mathrm{A}}$ DATA $_{A}=\mathrm{S}_{\mathrm{B}}$ DATA $^{\text {d }}$	False	Equal	

Note: The significance of the PNZ bits when Compare instructions are executed differs from that of other instructions. Here, the use of $P N Z=111$ or 000 is prohibited.

Table 16. Compare Instructions

Mnemonic	Input						Output						Notes
	$\mathrm{C}_{\mathrm{A}}$	$S_{\text {A }}$	DATA $_{A}$	CB	$\mathrm{S}_{\mathbf{B}}$	DATA $^{\text {B }}$	$c_{x}$	SX	DATAX	$C_{\gamma}$	SY	DATAY	
CMPNOM	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{B}$	$\mathrm{S}_{\mathrm{B}}$	B	0	0	0000H	0	0	0000-	When PNZ is False
	$\mathrm{C}_{\text {A }}$	$S_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	1	0	0001H	1	0	0000H	When PNZ is true
CMP	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	0	$\mathrm{S}_{\mathrm{A}}$	A	0	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is false
	$\mathrm{C}_{\mathrm{A}}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	1	$\mathrm{S}_{\mathrm{A}}$	A	1	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is true
CMPXCH	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{B}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is true
	$\mathrm{C}_{\text {A }}$	$S_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	A	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{B}}$	A	When PNZ is false

## Bit Manipulation Instructions

GET1 [Get one bit]: This instruction is used to read a particular bit from DATA $A_{A}$ (see table 18). A bit of DATA $A_{A}$ specified by the lower 4 bits of DATA $A_{B}$ is output as the least significant bit of DATAX. All other bits of DATAX are set to zero. DATA $A_{Y}$ is also set to zero. The control bits and the sign bits of DATA Da $_{X}$ and DATA ${ }_{Y}$ are as follows: $\mathrm{C}_{X} \leftarrow \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{Y} \leftarrow \mathrm{C}_{\mathrm{B}}, \mathrm{S}_{X} \leftarrow \mathrm{~S}_{\mathrm{A}}, \mathrm{S}_{Y} \leftarrow 0$.
SET1 [Set one bit]: This instruction is used to set a particular bit of DATA $A$. The bit of DATA $A_{A}$ to be set is specified by the lower 4 bits of DATA $A_{B}$. After the bit is set, the 16 -bit result is output as DATAX. DATAY is always output as zero. The control bits and the sign bits of DATA $X$ and DATA are as follows: $C_{X} \leftarrow C_{A}, C_{Y} \leftarrow C_{B}$, $S_{X} \leftarrow S_{A}, S_{Y} \leftarrow 0$.
CLR1 [Clear one bit]: This instruction is used to reset a particular bit of DATA $A_{A}$. The bit of DATA $A_{A}$ to be reset is specified by the lower 4 bits of DATA $A_{B}$. After the bit is reset (cleared), the 16-bit result is output as DATAX. DATA $_{Y}$ is always output as zero. The control bits and the sign bits of DATA $X$ and DATAY are as follows: $C_{X} \leftarrow$ $\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{Y} \leftarrow \mathrm{C}_{\mathrm{B}}, \mathrm{S}_{X} \leftarrow \mathrm{~S}_{\mathrm{A}}, \mathrm{S}_{Y} \leftarrow 0$.

Table 18. Bit Addressing

DATA $_{\mathbf{B}}$ Bit				
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	DATA $_{\mathbf{A}}$ Bit Position
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

## Bit Check Instructions

ANDMSK [Mask a word with logical AND]: This instruction tests certain bits in DATA $A_{A}$. The bits in DATA $A_{A}$ to be tested are first masked with a bit pattern in DATA ${ }_{B}$. Only those bits in DATA $A$ corresponding to the one bits of DATA $A_{B}$ are considered. Then only those masked bits
of $\operatorname{DATA}_{A}$ are ANDed together to set or reset the control bits, $C_{X}$ and $C_{Y}$. If the result of the AND operation is 1 , then both the $C_{X}$ and $C_{Y}$ are set to 1 . If the result of the operation is 0 , then the both $C_{X}$ and $C_{Y}$ are set to 0 . The rest of the output data fields are the following: $\mathrm{S}_{X} \leftarrow \mathrm{~S}_{\mathrm{A}}, \mathrm{S}_{Y} \leftarrow \mathrm{~S}_{\mathrm{B}}$, DATA $\leftarrow \leftarrow$ DATA $_{A}$, DATA $A_{Y} \leftarrow$ DATAB. $^{\text {. }}$
ORMSK [Mask a word with logical OR]: This instruction tests certain bits in DATA ${\text {. The bits in } \text { DATA }_{A} \text { to be }}^{\text {D }}$ tested are first masked with a bit pattern in DATA D. $^{\text {. }}$ Only those bits in DATAA corresponding to the one bits of DATA $A_{B}$ are considered. Then only those masked bits of DATA $A$ are ORed together to set or reset the control bits, $C_{X}$ and $C_{Y}$. If the result of the OR operation is 1 , then both $C_{X}$ and $C_{Y}$ are set to 1 . If the result of the
rest of the output data fields are the following: $S_{X}-S_{A}$, $S_{Y} \leftarrow \mathrm{~S}_{\mathrm{B}}$, DATA $_{X} \leftarrow$ DATA $_{A}$, DATA $_{Y} \leftarrow$ DATA $_{B}$.

## Data Conversion Instructions

CVT2AB [Convert two's complement to sign-magnitude]: This instruction converts a 16-bit number in two's complement form to a 17-bit number in sign-magnitude form. The sign of the two's complement number is output as the $\mathrm{S}_{\mathrm{X}}$ bit.
CVTAB2 [Convert sign-magnitude to two's complement]: This instruction converts a 17-bit number in sign-magnitude form to a 16-bit number in two's complement form. This operation has the potential danger of an overflow or an underflow. If an overflow or an underflow occurs, the $C_{X}$ bit is set to 1 .

## Double Precision Adjustment Instruction

ADJL [Adjust long]: This instruction is used to adjust a double precision number, in which the sign bits of the upper and lower words are different. This situation may occur after a double precision arithmetic operation. The examples in table 19 illustrate the adjustments of double precision numbers.

Table 19. Double Precision Adjustment Examples

	Input/Output	Sign	Data
Input	High (A data)	0	1234 H
	Low (B data)	0	5678 H
	High (X data)	0	1234 H
	Low (Y data)	0	5678 H
Input	High (A data)	0	1234 H
	Low (B data)	1	5678 H
	High (X data)	0	1233 H
	Low (Y data)	0	A988H
Input	High (A data)	1	1234 H
	Low (B data)	0	5678 H
	High (X data)	1	1233 H
	Low (Y data)	1	A 988 H

## Accumulative Addition Instruction

ACC [Accumulate]: This instruction (see figure 22) performs cumulative additions of incoming tokens' data fields. The incoming tokens are classified into type 1 and type 2 tokens. A type 1 token is deleted after the ACC operation, but a type 2 token is not. Moreover, a type 2 token reads the contents of the ACC register, which contains the accumulated sum of tokens. When a type 2 token reads the contents of the ACC register, the ID field of the token is unchanged. However, if an overflow has occurred prior to the arrival of a type 2 token, the ID field is incremented by one. Only the following three tokens qualify as type 2 tokens.

1. If the ACC instruction is used along with RDCYCS instruction, and the token's FTRC bit $=1$, and the Buffer Size and Read Counter of RDCYCS instruction are equal.
2. If the ACC instruction is used along with RDCYCL instruction, and the token's FTRC bit = 1, and the Buffersize and Read Counter of RDCYCL instruction are equal.
3. If the ACC instruction is used along with COUNT instruction, and the token's FTRC bit $=0$, and the Count Size and Counter of COUNT instruction are equal.

## C Bit Copy Instruction

COPYC [Copy control bit]: This instruction copies the control bit of the $A$ side and outputs it as $C_{Y}$.
$C_{X} \leftarrow C_{A}, S_{X} \leftarrow S_{A}$, DATA $_{X} \leftarrow$ DATA $_{A}, C_{Y} \leftarrow C_{A}$, $S_{Y} \leftarrow S_{B}$, DATA $_{Y} \leftarrow$ DATA $_{B}$.

Figure 22. ACC Instruction

$\mu$ PD7281

Table 20. PU Instruction (Sheet 1 of 3)

Mnemonic	OP Code	Input						Output						Notes
		$\mathrm{C}_{\text {A }}$	$\mathbf{S}_{\text {A }}$	DATA $_{\text {A }}$	$\mathrm{C}_{\text {B }}$	$\mathrm{S}_{\text {B }}$	DATA $_{\text {B }}$	$\mathrm{c}_{\mathrm{X}}$	$\mathrm{s}_{\mathrm{X}}$	DATAX	$\mathrm{C}_{\boldsymbol{Y}}$	SY	DATA ${ }^{\text {r }}$	
Logical Operations														
OR	00000	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\mathrm{X}}$	$\mathrm{S}_{\mathrm{A}}$	A ORB	$\mathrm{C}_{Y}$	0	0000H	
AND	00001	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$S_{B}$	B	$\mathrm{C}_{\mathrm{X}}$	$\mathrm{S}_{\mathrm{A}}$	A AND B	$\mathrm{C}_{Y}$	0	0000H	
XOR	00010	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$C_{X}$	$\mathrm{S}_{\text {A }}$	A XOR B	$\mathrm{C}_{Y}$	0	0000 H	
ANDNOT	00011	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{B}$	B	$C^{\prime}$	$\mathrm{S}_{\mathrm{A}}$	$\overline{\text { A }}$ AND B	$\mathrm{C}_{Y}$	0	0000 H	
NOT	01100	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A				$\mathrm{C}_{\mathrm{X}}$	$\mathrm{S}_{\text {A }}$	$\bar{A}$	$\mathrm{C}_{Y}$	0	0000H	

## Arithmetic Operations

ADD	11000	$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$C^{\prime}$	0	$A+B$	$\mathrm{C}_{Y}$	0	*	
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	1	B	${ }^{\text {c }}$	0	$A-B$	$\mathrm{C}_{Y}$	0	O000H	When $A \geq B, S_{X}=0$
								$\mathrm{C}_{\mathrm{X}}$	1	$B-A$	$\mathrm{C}_{Y}$	1	0000H	When $A<B, S_{X}=1$
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\text {B }}$	0	B	$\mathrm{C}_{\mathrm{x}}$	0	$B-A$	$\mathrm{C}_{Y}$	0	0000H	When $A<B, S_{X}=0$
								$C_{X}$	1	$A-B$	$\mathrm{C}_{Y}$	1	0000H	When $A \geq B, S_{X}=1$
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\text {B }}$	1	B	$\mathrm{C}_{\mathrm{X}}$	1.	$A+B$	$\mathrm{C}_{Y}$	1	*	
ADDSC	11100	$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$C_{X}$	0	$A+B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{B}$	1	B	${ }^{C_{X}}$	0	$A-B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	*	When $A \geq B, S_{X}=0$
								$C_{X}$	1	$B-A$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	When $A<B, S_{X}=1$
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$C_{x}$	0	$B-A$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	*	When $A<B, S_{X}=0$
								$C_{X}$	1	A - B	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	When $A \geq B, S_{X}=1$
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{B}$	1	B	$C^{\prime}$	1	$A+B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	
SUB	11001	$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{B}$	0	B	$C_{x}$	0	$A-B$	$\mathrm{C}_{\mathrm{Y}}$	0	0000H	When $A>B, S_{X}=0$
								$C_{X}$	1	$B-A$	$\mathrm{C}_{Y}$	1	0000 H	When $A<B, S_{X}=1$
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C^{\prime}$	0	$A+B$	$\mathrm{C}_{Y}$	0	*	
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$\mathrm{C}_{\mathrm{X}}$	1	$A+B$	$\mathrm{C}_{Y}$	1	*	
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C_{X}$	0	$B-A$	$\mathrm{C}_{Y}$	0	0000H	When $A<B, S_{X}=0$
								$c_{x}$	1	$A-B$	$\mathrm{C}_{Y}$	1	0000H	When $A \geq B, S_{X}=1$
SUBSC	11101	$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$C_{X}$	0	$A-B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	When $A \geq B, S_{X}=0$
								$\mathrm{C}_{\mathrm{X}}$	1	$B-A$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	When $\mathrm{A}<\mathrm{B}, \mathrm{S}_{\mathrm{X}}=1$
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C^{\prime}$	0	$A+B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\text {B }}$	0	B	$C^{\prime}$	1	$A+B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C^{\prime}$	0	$B-A$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	When $\mathrm{A}<\mathrm{B}, \mathrm{S}_{\mathrm{X}}=0$
								$\mathrm{C}_{X}$	1	$A-B$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No of shifts $\dagger$	When $A \geq B, S_{X}=1$
MUL	11010	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{B}$	$\mathrm{S}_{\mathrm{B}}$	B	$C^{\prime}$	$S_{x}$	$\begin{aligned} & \text { A } \times \text { B } \\ & \text { High } \end{aligned}$	$\mathrm{C}_{Y}$	$S_{x}$	$\begin{aligned} & \mathrm{A} \times \mathrm{B} \\ & \text { Low } \end{aligned}$	$\begin{aligned} & \mathrm{S}_{X}=\mathrm{S}_{A} \text { OR } \mathrm{S}_{B} \\ & \text { (logical OR) } \end{aligned}$
MULSC	11110	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{B}$	$\mathrm{S}_{\mathrm{B}}$	B	$C^{\prime}$	$S_{x}$	$\begin{aligned} & \mathrm{A} \times \mathrm{B} \\ & \text { High } \end{aligned}$	$\mathrm{C}_{Y}$	$\mathrm{S}_{\mathrm{S}}$	No. of shifts $\dagger$	$\begin{aligned} & \mathrm{S}_{\mathrm{X}}=\mathrm{S}_{A} O R \mathrm{~S}_{\mathrm{B}} \\ & \text { logical OR) } \end{aligned}$

Table 20. PU Instruction (Sheet 2 of 3)


## Comparison

CMPNOM	01000	$\mathrm{C}_{\text {A }}$	$S_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	0	0	0000H	0	0	0000H	When PNZ is false
		$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{B}$	$\mathrm{S}_{B}$	B	1	0	0001H	1	0	00,00H	When PNZ is true
CMP	01001	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	0	$\mathrm{S}_{\text {A }}$	A	0	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is false
		$\mathrm{C}_{\text {A }}$	$S_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	1	$\mathrm{S}_{\mathrm{A}}$	A	1	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is true
CMPXCH	10001	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	When PNZ is true
		$\mathrm{C}_{\text {A }}$	$S_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	When PNZ is false
Accumulative Addition														
ACC	10010	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{B}$	B	$C_{x}$	$S_{X}$	$\Sigma \mathrm{A}$				Used as a pair with AG \& FC instruction COUNT

C Bit Copy

COPYC	10011	$C_{A}$	$S_{A}$	$A$	$C_{B}$	$S_{B}$	$B$	$C_{A}$	$S_{A}$	$A$	$C_{A}$	$S_{B}$	$B$

Table 20. PU Instruction (Sheet 3 of 3)

Mnemonic	OP code	Input						Output						Notes
		$\mathrm{C}_{\mathrm{A}}$	$\mathrm{S}_{\text {A }}$	DATA $_{\text {a }}$	$\mathbf{C}_{\text {B }}$	$\mathbf{S}_{\text {B }}$	DATA $_{B}$	$\mathrm{C}_{\mathrm{x}}$	$S_{x}$	DATAX	$\mathrm{C}_{\mathbf{Y}}$	sY	DATA ${ }^{\prime}$	
Bit Operations													,	
GET1	10101	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	$\begin{gathered} \text { Bit } \\ \text { position } \end{gathered}$	$C_{x}$	$\mathrm{S}_{\text {A }}$	0000H	$\mathrm{C}_{Y}$	0	0000H	When the bit specified by the lower 4 bits of DATA $_{B}$ is 0
		$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	Bit position	$C_{x}$	$\mathrm{S}_{\mathrm{A}}$	0001H	$\mathrm{C}_{Y}$	0	0000H	When the bit specified by the lower 4 bits of DATA $_{B}$ is 1
SET1	10110	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	$\begin{gathered} \text { Bit } \\ \text { position } \end{gathered}$	$C_{x}$	$\mathrm{S}_{\text {A }}$	A bit in DATA $_{A}$ is set	$\mathrm{C}_{Y}$	0	0000H	Bit specification by the lower 4 bits of DATA $_{B}$
CLR1	10111	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	$\begin{gathered} \text { Bit } \\ \text { position } \end{gathered}$	$C_{x}$	$\mathrm{S}_{\text {A }}$	A bit in DATA $_{A}$ is cleared	$\mathrm{C}_{Y}$	0	0000H	Bit specification by the lower 4 bits of DATA $_{B}$
Bit Check														
ANDMSK	01101	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{B}$	B	0	$\mathrm{S}_{\text {A }}$	A	0	$\mathrm{S}_{\mathrm{B}}$	B	If ANDMSK $=0$
		$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	1	$S_{\text {A }}$	A	1	$\mathrm{S}_{\mathrm{B}}$	B	If ANDMSK $=1$
ORMSK	10000	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	0	$\mathrm{S}_{\text {A }}$	A	0	$\mathrm{S}_{\mathrm{B}}$	B	If 0 RMSK $=0$
		$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	1	$\mathrm{S}_{\mathrm{A}}$	A	1	$\mathrm{S}_{\mathrm{B}}$	B	If 0 RMSK $=1$
Data Conversion														
CVT2AB	01110	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\mathrm{A}}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{B}$	B	$C l_{x}$	$S_{X}$	Converted A data	$\mathrm{C}_{Y}$	0	0000H	Absolute value - twos complement
CVTAB2	01111	$\mathrm{C}_{\text {A }}$	$\mathrm{S}_{\text {A }}$	A	$\mathrm{C}_{\mathrm{B}}$	$\mathrm{S}_{\mathrm{B}}$	B	$C_{x}$	$S_{X}$	Converted A data	$\mathrm{C}_{Y}$	0	0000H	Twos complement - absolute value
Adjustment of Double Precision Numbers														
ADJL	10100	$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C^{\text {c }}$	0	A-1	$\mathrm{C}_{Y}$	0	0000H-B	$A \neq 0$ AND $B \neq 0$
		$\mathrm{C}_{\text {A }}$	1	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$\mathrm{C}_{\mathrm{x}}$	1	A-1	$\mathrm{C}_{Y}$	1	$0000 \mathrm{H}-\mathrm{B}$	$A \neq 0$ AND $B \neq 0$
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	1	O000H	$C^{\prime}$	0	A	$\mathrm{C}_{Y}$	0	0000H	
		$\mathrm{C}_{\text {A }}$	0	0000H	$\mathrm{C}_{\mathrm{B}}$	1	B	$C_{x}$	1	0000H	$\mathrm{C}_{Y}$	1	B	$B \neq 0$
		$\mathrm{C}_{\mathrm{A}}$	1	A	$\mathrm{C}_{\mathrm{B}}$	0	0000H	$\mathrm{C}_{\mathrm{x}}$	1	A	$\mathrm{C}_{Y}$	1	OOOOH	
		$\mathrm{C}_{\text {A }}$	1	0000H	$\mathrm{C}_{\mathrm{B}}$	0	B	$C_{x}$	0	0000H	$\mathrm{C}_{Y}$	0	B	$B \neq 0$
		$\mathrm{C}_{\text {A }}$	0	A	$\mathrm{C}_{\mathrm{B}}$	0	B	$C_{x}$	0	A	$\mathrm{C}_{Y}$	0	B	
		$\mathrm{C}_{\mathrm{A}}$	1	A	$\mathrm{C}_{\mathrm{B}}$	1	B	$C_{x}$	1	A	$\mathrm{C}_{Y}$	1	B	

Notes: * If an overflow occurs as the result of $A+B$, DATA $_{Y}=0001 \mathrm{H}$ and if no overflow, DATAY $=0000 \mathrm{H}$.
$\dagger$ This indicates the number of consecutive zeros from the MSB of DATAX. This number is used to calculate the number of shifts to be performed by subsequent processing.

## GE Instructions



## Bit Assignments

F/L [Full/Left]: F/L bit $=0$ indicates that the GE instruction is used alone, whereas $\mathrm{F} / \mathrm{L}$ bit $=1$ indicates that the GE instruction is used in conjunction with an AG/FC instruction.
XCH [Exchange]: XCH bit $=1$ indicates that the data from $A$ side and $B$ side are to be exchanged before the two data tokens enter the Queue.
OP [OP code]: These two bits select an operation to be performed. See table 21.

Table 21. OP Bits

$\mathbf{O P}$	Operation
00	COPYBK (Copy block)
01	COPYM (Copy multiple)
11	SETCTL (Set control field)

GS [Generation Size]: These four bits determine the number of copies of a token to be made. A minimum of 2 and a maximum of 17 copies can be made using a GE instruction.
CTLFD [Control Field]: This field is used with Set Control Field (SETCTL) instruction. The data in CTLFD field further specifies the types of operations to be performed by the SETCTL instruction.

## COPYBK [Copy Block]

COPYBK is used to duplicate a block of tokens from a single token. These duplicated tokens have exactly the same ID as the orriginal token except the token copied last which has the original token's ID plus one. The number of tokens to be generated is specified by the GS field, and the COPYBK instruction generates exactly GS +2 tokens. The data fields of the tokens being duplicated can also be incremented or decremented in a systematic manner. The incremental (or decremental) step value is contained in DATA D. $^{\text {D }}$ The tokens generated are sent to the Link Table. The series of LT tokens output by the instruction is shown in figure 23.

COPYBK FTL Format

13	12	11	65		0
F/L	X C H	00	GS	-	

Figure 23. COPYBK Instruction Output

## COPYM [Copy Multiple]

COPYM is used to generate multiple tokens from a single token. Each generated token has a different ID value. The number of tokens generated from the original token is GS +2 . The data field of the tokens being generated can also be incremented or decremented in a systematic manner. The incremental (or decremental) step value is contained in DATA D. The $^{\text {. }}$
generated tokens are sent to the Link Table as LT tokens. The series of LT tokens output by the COPYM instruction is shown in figure 24.


Figure 24. COPYM Instruction Output Tokens


## SETCTL [Set Control Field]

SETCTL FTL Format
$\qquad$13 12 11 10 9
F/L

SETCTL is used to read and rewrite the contents of the Link Table and the Function Table. Since it can change the contents of the Link Table and the Function Table, this instruction can be used to write a self-modifying code. The type of operation to be performed is further specified by the contents of CTLFD field, as shown in table 22.

Table 22. SETCTL Instruction Control Field Operation

	CTLFD	Operation		
0	0	C	S	Normal data. Operation is exactly the same as COPYM.
1	1	0	0	The data field of this token is used to set a location in   the Link Table memory (C and S bits are not included.)   After the data is set, the token is deleted.
1	1	0	1	The data field of this token is used to set a location in   the Function Table Right field. After the data is set, the   token is deleted.
1	1	1	0	The lower 14 bits of the data field of this token are used   to set a location in the Function Table Left field (higher   bits are ignored.) After the data is set, the token is   deleted.
1	1	1	1	The lower 10 bits of the data field of this token are used   to set a location in the Function Table Temporary field   (higher bits are ignored.) After the data is set, the   token is deleted.
1	0	0	0This token reads the LT address indicated by the ID   field and outputs the contents.	
1	0	0	1	This token reads the Function Table Right field address   indicated by the ID field and outputs the contents.
1	0	1	0	This token reads the Function Table Left field address   indicated by the ID field and outputs the contents.
1	0	1	1	This token reads the Function Table Temporary field   address indicated by the ID field and outputs the   contents.
0	1	0	0	These tokens should not be generated by the   Processing
0	1	0	1	Unit. They are operating-mode-related tokens.

## OUT Instructions



## Bit Assignments

F/L [Full/Left]: F/L bit $=0$ indicates that the OUT instruction is to be used alone. F/L bit $=1$ indicates that the OUT instruction is to be used in conjunction with an $A G / F C$ instruction.
XCH [ExChange]: If XCH bit $=1$, the output data tokens from the $A$ side are exchanged with those from the $B$ side before they go to the Output Queue. If XCH bit $=0$, no exchange operation is performed.
OP [OP Code]: This bit is used to further specify the OUT instruction. If $\mathrm{OP}=0$, then OUT1 instruction is performed, whereas if $O P=1$, OUT2 instruction is performed.
ID2 [Second ID]: This field is used only by the OUT2 instruction. ID2 is the ID of the second output data token.
MN [Module Number]: This field indicates the destination module of the output data token.

## OUT1



This instruction outputs a 32-bit data token via the Output Data Bus (ODB). Since the size of the ODB is 16 bits, a 32-bit output data token is divided into two 16 -bit words and output one 16 -bit word at a time. The format of an output data token is shown in figure 24.

Figure 25. OUT1 Output Token Format


MN: Determined by the lower 4 bits of FTL contents
ID': 7-bit ID comes from the contents of LT referenced by the OUT1 instruction
$C_{A}, S_{A}$ : Control bit and sign bit of DATA $A$
DATA $_{A}$ : 16-bit output data

## OUT2

This instruction outputs two 32-bit data tokens via ODB. Since the ODB is 16 bits wide, each 32-bit token is divided into two 16-bit words and output one 16-bit word at a time. This instruction is useful when a double precision number is to be output. The formats of two
 output data tokens are shown in figure 25.

Figure 26. OUT2 Output Tokens Format


Note: First and second tokens must have the same module numbers

[^10]Figure 27. Data-Flow Graph Explanation


Figure 27. Data-Flow Graph Explanation (cont)


## Description

The NEC $\mu$ PD9305 memory access and general bus interface chip (MAGIC) is a peripheral LSI support device for the $\mu$ PD7281 image pipelined processor (ImPP). The $\mu$ PD7281 is a data flow architecture processor that supports high speed image and signal processing applications. The $\mu$ PD9305 chip can support from one to eight $\mu$ PD7281s and also interfaces to both 8-bit and 16bit host processors.

The $\mu$ PD9305's powerful interface capabilities allow it to support basic interface operations, object program load, read/write/modify operations on image memory, and multiple $\mu$ PD7281 image memory accesses.
Since the $\mu$ PD7281 ImPP does not use direct addressing, the memories in a $\mu$ PD7281 processor system can be seen as processing modules with unique module numbers. These separate modules must output memory access tokens containing their own unique address, data, and control signals. The modules must perform the necessary processing, and then output the result of the access as another memory access token. To do this, the multiple $\mu$ PD7281 modules require external circuitry to process the memory access tokens that they output. In addition, this same circuitry is required to organize the data output from the memory into token format.

Circuitry is also needed between the host processor and the $\mu$ PD7281s to organize the data from the host into token format and to return the data output from the $\mu \mathrm{PD} 7281 \mathrm{~s}$ into the form required by the host processor. Finally, tokens may have to be returned to other $\mu$ PD7281s in token form for further processing.

The $\mu$ PD9305 simplifies the above operations by keeping the data in the most convenient form. The $\mu$ PD9305 replaces approximately 80 medium/small scale integrated devices with a single integrated circuit.

## Features

$\square$ High performance image memory interface
$\square$ Reduces external circuits required for ImPP system
$\square$ Simplifies host interface
$\square$ Up to 24-bit image memory addressing
$\square$ Up to 18 -bit image memory data
$\square$ Register file for memory access
$\square$ Refresh control of image memory
$\square$ Functions with separate DMA controller
$\square$ Single +5 V power supply
$\square$ CMOS technology for lower power consumption

## Ordering Information

Part   Number	Package Type
$\mu$ PD9305R	132-pin ceramic grid array

## Pin Configuration



## Pin Identification

No.	Symbol	Function
1	CLK	Clock input
$2-4$	$\mathrm{D}_{10}, \mathrm{D}_{12}$,	Bidirectional data bus bits
5	$\mathrm{D}_{15}$	
6	$\overline{\mathrm{OACK}}$	Output acknowledge input
7	$\overline{\mathrm{OREQ}}$	Output request output
8	$\mathrm{IDB}_{14}$	Input data bus bit
9	$\mathrm{ODB}_{14}$	Output data bus bit
10,11	$\mathrm{IDB}_{11}$	Input data bus bit
12	$\mathrm{ODB}_{11}$,	Output data bus bits
13	$\mathrm{ODB}_{8}$	
14	$\mathrm{IDB}_{9}$	Input data bus bit
15	$\mathrm{ODB}_{5}$	Output data bus bit
16	$\mathrm{IDB}_{8}$	Input data bus bit
17	$\mathrm{ODB}_{4}$	Output data bus bit

Pin Identification (Cont)

No.	Symbol	Function
18	$1 \mathrm{DB}_{6}$	Input data bus bit
19	MN2	Module number output
20	$\mathrm{IDB}_{4}$	Input data bus bit
21	$1 \mathrm{MA}_{22}$	Image memory address output bit
22	$\mathrm{IDB}_{2}$	Input data bus bit
23, 24	$\begin{aligned} & \mathrm{IMA}_{18}, \\ & \mathrm{IMA}_{15} \end{aligned}$	Image memory address output bits
25	$\mathrm{IDB}_{0}$	Input data bus bit
26-28	IMA ${ }_{12}-\mathrm{IMA}_{10}$	Image memory address output bits
29	SOLBSY	Self object load busy output
30	CPURQ	CPU request output
31	DMAAEN	DMA address enable input
32-34	$\begin{aligned} & \mathrm{IMA}_{5}, \mathrm{MA} A_{2} \\ & I M A_{0} \end{aligned}$	Image memory address output bits
35	DMAAK1	DMA / 1 acknowledge input
36	DMARQ1	DMA / 1 request output
37	$1 \mathrm{MD}_{13}$	Bidirectional image memory data bus bit
38	IMAK	Image memory acknowledge input
39-42	$1 \mathrm{MD}_{10}-\mathrm{IMD}_{7}$	Bidirectional image memory data bus bits
43	$A_{0}$	Address select input
44,45	$\mathrm{IMD} \mathrm{S}_{3}, \mathrm{MDD}_{1}$	Bidirectional image memory data bus bits
46	IMWR	Image memory write output
47	$\overline{\mathrm{WR}}$	Write input
48,49	$\mathrm{D}_{2}, \mathrm{D}_{5}$	Bidirectional data bus bits
50	$\overline{\mathrm{CS}}$	Chip select input
51,52	$\mathrm{D}_{8}, \mathrm{Dg}_{9}$	Bidirectional data bus bits
53	GND	Ground
54,55	$\mathrm{D}_{11}, \mathrm{D}_{14}$	Bidirectional data bus bits
56	$\overline{\text { IREQ }}$	Input request input
57	IACK	Input acknowledge output
58	$\mathrm{IDB}_{13}$	Input data bus bit
59	$\mathrm{ODB}_{13}$	Output data bus bit
60	$\mathrm{IDB}_{10}$	Input data bus bit
61-63	$\begin{aligned} & \mathrm{ODB}_{10}, \mathrm{ODB}_{7}, \\ & \mathrm{ODB}_{6} \end{aligned}$	Output data bus bits
64	$V_{D D}$	+5 V power supply
65,66	$\mathrm{ODB}_{3}, \mathrm{ODB}_{1}$	Output data bus bits
67	$\mathrm{IDB}_{5}$	Input data bus bit
68	$\mathrm{MN}_{1}$	Module number output bit

## Pin Indentification (Cont)

No.	Symbol	Function
69,70	$1 \mathrm{MA}_{23}, \mathrm{IMA}_{21}$	Image memory address output bits
71	$\mathrm{IDB}_{1}$	Input data bus bit
$72-74$	$\begin{aligned} & \mathrm{IMA}_{17}, \mathrm{IMA} A_{14}, \\ & \mathrm{IMA}_{13} \end{aligned}$	Image memory address output bits
75	GND	Ground
76,77	$\mathrm{IMA}, \mathrm{IMA}_{8}$	Image memory address output bits
78	INBUSY	Input to ImPP busy output
79, 80	$\mathrm{IMA}_{4}, \mathrm{IMA}_{1}$	Image memory address output bits
81	$\mathrm{MMD}_{17}$	Bidirectional image memory data bus bit
82	DMAAK2	DMA / 2 acknowledge input
83	DMARQ2	DMA / 2 request output
84, 85	$\mathrm{IMD}_{12}, \mathrm{MMD}_{11}$	Bidirectional image memory data bus bits
86	$V_{D D}$	+5 V power supply
87,88	$\mathrm{IMD}_{6}, \mathrm{MMD}_{5}$	Bidirectional image memory data bus bits
89	$\mathrm{A}_{1}$	Address select input
90	$1 \mathrm{MD}_{0}$	Bidirectional image memory data bus bit
91	IMRF	Image memory refresh output
92	$\mathrm{D}_{0}$	Bidirectional data bus bit
93	$\overline{\mathrm{RD}}$	Read input
94-96	$\mathrm{D}_{4}, \mathrm{D}_{6}, \mathrm{D}_{7}$	Bidirectional data bus bits
97	GND	Ground
98	$\mathrm{D}_{13}$	Bidirectional data bus bit
99	$\overline{\text { PPPRST }}$	Image pipelined processor reset output
100	$\mathrm{IDB}_{15}$	Input data bus bit
101	$\mathrm{ODB}_{15}$	Output data bus bit
102	$\mathrm{IDB}_{12}$	Input data bus bit
103,104	$\mathrm{ODB}_{12}, \mathrm{ODB}_{9}$	Output data bus bits
105;106	GND	Ground
107	$\mathrm{ODB}_{0}$	Output data bus bit
108,109	$\mathrm{MN}_{3}, \mathrm{MN}_{0}$	Module number output bits
110	$\mathrm{IDB}_{3}$	Input data bus bit
111-113	$\begin{aligned} & \mathrm{IMA}_{20}, \mathrm{IMA}_{19}, \\ & \mathrm{IMA} \\ & \text { I } \end{aligned}$	Image memory address outputs
114	$\mathrm{V}_{\mathrm{DD}}$	+5 V power supply
115	GND	Ground
116-118	$\begin{aligned} & \mathrm{IMA}_{7}, \mathrm{IMA}_{6}, \\ & \mathrm{IMA}_{3} \end{aligned}$	Image memory address outputs

## Pin Identification (Cont)

No.	Symbol	Function
119	$\overline{\text { RESET }}$	Reset input
$120-122$	$\mathrm{IMD}_{16}-\mathrm{IMD}_{14}$	Bidirectional image memory   data bus bits
123,124	GND	Ground
125,126	$\mathrm{IMD}_{4}, \mathrm{IMD}_{2}$	Bidirectional image memory   data bus bits
127	IMRD	Image memory read output
128	GND	Ground
129	ERR	Error output
130,131	$\mathrm{D}_{1}, \mathrm{D}_{3}$	Bidirectional data bus bits
132	$\mathrm{~V}_{\mathrm{DD}}$	+5 V power supply

## Pin Functions

Table 1 shows the $\mu$ PD9305 pins in their particular functional groups. The paragraphs that follow table 1 describe the operation of the pins in each group.
All unused input or output pins should be pulled up to $\mathrm{V}_{\mathrm{DD}}$ or down to GND through a $2 \mathrm{~K}-3 \mathrm{~K}$ ohm resistor.

Table 1. $\mu$ PD9305 Pins by Function

/10	Signal	No.
1	CLK	1
	$\overline{\text { RESET }}$	119
Status		
0	ERR	129
	SOLBSY	29
	CPURQ	30
	INBUSY	78
Host Interrace		
1	$\overline{\mathrm{WR}}$	47
	$\overline{\mathrm{RD}}$	93
	$\overline{\overline{C S}}$	50
	$\mathrm{A}_{0}$	43
	$\mathrm{A}_{1}$	89
1/0	$\mathrm{D}_{0}$	92
	$\mathrm{D}_{1}$	130
	$\mathrm{D}_{2}$	48
	$\mathrm{D}_{3}$	131
	$\mathrm{D}_{4}$	94
	$\mathrm{D}_{5}$	49
	$\mathrm{D}_{6}$	95
	$\mathrm{D}_{7}$	96
	$\mathrm{D}_{8}$	51
	$\mathrm{D}_{9}$	52
	$\mathrm{D}_{10}$	2
	$\mathrm{D}_{11}$	54
	$\mathrm{D}_{12}$	3
	$\mathrm{D}_{13}$	98
	$\mathrm{D}_{14}$	55
	$\mathrm{D}_{15}$	4
DMA		
0	DMARQ1	36
	DMARQ2	83
1	DMAAK ${ }^{1}$	35
	$\overline{\text { DMAAK2 }}$	82
	DMAAEN	31

Table 1. $\mu$ PD9305 Pins by Function (Cont)

1/0	Signal	No.
${ }_{\mu \text { PD7281 }}$ Interiace		
0	MN0	109
	$\mathrm{MN}_{1}$	68
	$\mathrm{MN}_{2}$	19
	$\mathrm{MN}_{3}$	108
0	$\overline{\text { OREQ }}$	6
1	OACK	5
	IREQ	56
0	$\overline{\text { IACK }}$	57
	IPPRST	99
0	$\mathrm{ODB}_{0}$	107
	$\mathrm{ODB}_{1}$	66
	$\mathrm{ODB}_{2}$	17
	$\mathrm{ODB}_{3}$	65
	$\mathrm{ODB}_{4}$	15
	$\mathrm{ODB}_{5}$	13
	$\mathrm{ODB}_{6}$	63
	$\mathrm{ODB}_{7}$	62
	$\mathrm{ODB}_{8}$	11
	$\mathrm{ODB}_{9}$	104
	$\mathrm{ODB}_{10}$	61
	$\mathrm{ODB}_{11}$	10
	$\mathrm{ODB}_{12}$	103
	$\mathrm{ODB}_{13}$	59
	$\mathrm{ODB}_{14}$	8
	$\mathrm{ODB}_{15}$	101
I	$\mathrm{IDB}_{0}$	25
	$\mathrm{IDB}_{1}$	71
	$\mathrm{IDB}_{2}$	22
	$\mathrm{IDB}_{3}$	110
	$\mathrm{IDB}_{4}$	20
	$\mathrm{IDB}_{5}$	67
	$\mathrm{IDB}_{6}$	18
	$\mathrm{IDB}_{7}$	16
	$\mathrm{IDB}_{8}$	11
	$\mathrm{IDB}_{9}$	12
	$\mathrm{IDB}_{10}$	60
	$\mathrm{IDB}_{11}$	9
	$\mathrm{IDB}_{12}$	102
	$\mathrm{IDB}_{14}$	7
	$\mathrm{IDB}_{15}$	100

Table 1. $\mu$ PD9305 Pins by Function (Cont)

1/0	Signal	No.
Image Memory Interíace		
I	$\overline{\text { IMAK }}$	38
0	IMRD	127
	IMWR	46
	IMRF	91
I/O	$\mathrm{IMD}_{0}$	90
	$\mathrm{IMD}_{1}$	45
	$\mathrm{IMD}_{2}$	126
	$\mathrm{MDD}_{3}$	44
	$\mathrm{IMD}_{4}$	125
	$\mathrm{IMD}_{5}$	88
	$\mathrm{IMD}_{6}$	87
	$\mathrm{MMD}_{7}$	42
	$\mathrm{IMD}_{8}$	41
	$\mathrm{MDD}_{9}$	40
	$\mathrm{MMD}_{10}$	39
	$\mathrm{MMD}_{11}$	85
	$\mathrm{MD}_{12}$	84
	$\mathrm{MDD}_{13}$	37
	$\mathrm{MDD}_{14}$	122
	$\mathrm{MD}_{15}$	121
	$\mathrm{MDD}_{16}$	120
	$\mathrm{IMD}_{17}$	81

Table 1. $\mu$ PD9305 Pins by Function (Cont)

I/0	Signal	No.
Image Memory Interface		
0	$1 \mathrm{MA}_{0}$	34
	$\mathrm{IMA}_{1}$	80
	$\underline{M A}{ }_{2}$	33
	$\mathrm{IMA}_{3}$	118
	$\mathrm{IMA}_{4}$	79
	$\mathrm{IMA}_{5}$	32
	$1 \mathrm{MA}_{6}$	117
	$\mathrm{IMA}_{7}$	116
	$\mathrm{MMA}_{8}$	77
	$\mathrm{IMA}_{9}$	76
	$\mathrm{IMA}_{10}$	28
	$\mathrm{MMA}_{11}$	27
	$\underline{M A A_{12}}$	26
	$\underline{M A}{ }_{13}$	74
	$\mathrm{MAA}_{14}$	73
	$\mathrm{IMA}_{15}$	24
	$\mathrm{IMA}_{16}$	113
	$\mathrm{MMA}_{17}$	72
	$\mathrm{IMA}_{18}$	23
	$\mathrm{IMA}_{19}$	112
	$\mathrm{MMA}_{20}$	111
	$\mathrm{MA}_{21}$	70
	$1 \mathrm{MA}_{22}$	21
	$\mathrm{MMA}_{23}$	69

## CLK (Clock)

CLK is the single phase master clock input. The $\mu \mathrm{PD} 9305$ clock frequency can be independent of ImPP clock frequency.

## $\overline{\text { RESET }}$ (Reset)

$\overline{\text { RESET }}$ initializes the $\mu$ PD9305. A reset places $\overline{\text { OREQ, }}$ $\overline{\text { IACK, }}$, the token I/O flip-flop, and IM access request signals at an inactive level. $\overline{\text { RESET }}$ resets the refresh address counter, refresh timer counter, and mode register to 0 . RESET must be held low for a minimum of four $\mu$ PD9305 or $\mu$ PD7281 clock cycles, whichever is slower.
$V_{D D}$ (Power)
$V_{D D}$ is the single +5 volt power supply.
GND (Ground)
GND is the ground signal.

## Status Signal Pin Functions

## CPURQ (CPU Request)

CPURQ indicates to the host processor that the $\mu \mathrm{PD} 9305$ is ready to transfer a token to the host.

## INBUSY (Input Busy)

INBUSY indicates that tokens are being input to the first ImPP from the $\mu$ PD9305.

## SOLBSY (Self Object Load Busy)

SOLBSY indicates that a self object load is being executed.

## ERR (Error)

ERROR indicates that an error was output from the ImPPs, the host has read an invalid output token, or that

## Host Interface Signal Pin Functions

## $\overline{\operatorname{RD}}$ (Read)

RD reads the contents of the internal registers specified by $\mathrm{A}_{1}$ and $\mathrm{A}_{0}$.

## $\overline{W R}$ (Write)

$\overline{\text { WR }}$ writes an input from the data bus to the internal register specified by $A_{1}$ and $A_{0}$.

## $\overline{\mathbf{C S}}$ (Chip Select)

$\overline{\mathrm{CS}}$ enables the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ control signals.

## $\mathrm{A}_{0}, \mathrm{~A}_{1}$ (Address)

$A_{0}$ and $A_{1}$ select the internal register for a read or write operation.

## $D_{0}-D_{15}$ (Data Bus)

The contents of the internal registers are read from or written to via data bus bits $D_{0}-D_{15}$.

## DMA Signal Pin Functions

DMAAEN (Direct Memory Access Address Enable)
DMAAEN is used to indicate to the $\mu$ PD9305 that an external DMA controller is putting DMA addresses on the address bus. During a DMA operation, DMA addresses (system memory addresses) are input to $A_{0}$ and $A_{1}$. However, these addresses have no meaning for the $\mu$ PD9305 and might alter register contents. For this reason, the $\mu$ PD9305 operates as if $\mathrm{A}_{0}$ and $\mathrm{A}_{1}$ are both reset to 0 when DMAAEN is active (high).

## DMARQ1 (Direct Memory Access Request 1)

DMARQ1 issues a request to an external DMA controller to transfer data from the host system memory to the $\mu$ PD9305.

## DMARQ2 (Direct Memory Access Request 2)

DMARQ2 issues a request to an external DMA controller to transfer data from the $\mu$ PD9305 to the host system memory.

## DMAAK1 (Direct Memory Access Acknowledge 1)

$\overline{\text { DMAAK } 1 ~ i s ~ i s s u e d ~ b y ~ t h e ~ e x t e r n a l ~ D M A ~ c o n t r o l l e r ~ t o ~ i n d i-~}$ cate to the $\mu$ PD9305 that DMARQ1 has been received.

## $\overline{\text { DMAAK2 }}$ (Direct Memory Access Acknowledge 2)

$\overline{\text { DMAAK } 2}$ is issued by the external DMA controller to indicate to the $\mu$ PD9305 that DMARQ2 has been received.

## $\mu$ PD7281 Interface Signal Pin Functions

## $\mathrm{MN}_{0}-\mathrm{MN}_{3}$ (Module Number)

$\mathrm{MN}_{0}-\mathrm{MN}_{3}$ specify the module number of one ImPP. During a reset, one module number is output via $\mathrm{MN}_{0}-\mathrm{MN}_{3}$, the other via $\mathrm{IDB}_{12}-\mathrm{IDB}_{15} . \mathrm{MN}_{0}-\mathrm{MN}_{3}$ are three-state pins.

## OREQ (Output Request)

$\overline{\text { OREQ signals to the first ImPP that the } \mu \mathrm{PD} 9305 \text { is ready }}$ to transfer half a token.

## $\overline{\text { OACK }}$ (Output Acknowledge)

$\overline{\mathrm{OACK}}$ signals to the $\mu \mathrm{PD} 9305$ that a half token has been accepted by the first ImPP.

## IREQ (Input Request)

$\overline{\text { IREQ signals from the last ImPP that a half token is ready }}$ to be transferred from the ImPP to the $\mu$ PD9305.

## $\overline{\text { IACK }}$ (Input Acknowledge)

$\overline{\text { IACK }}$ indicates to the last ImPP that the $\mu$ PD9305 has accepted the half token.

## IPPRST (Image Pipelined Processor Reset)

IPPRST resets the ImPPs during RESET or a command reset.

## ODB $_{0}-$ ODB $_{15}$ (Output Data Bus)

$\mathrm{ODB}_{0}-\mathrm{ODB}_{15}$ transfer tokens from the $\mu \mathrm{PD} 9305$ to the first ImPP.

## IDB $_{0}-$ IDB $_{15}$ (Input Data Bus)

$\mathrm{IDB}_{0}-\mathrm{IDB}_{15}$ transfer tokens between the output of the last ImPP and the $\mu$ PD9305.

## Image Memory Interface Signal Pin Functions

## IMRD (Image Memory Read)

IMRD requests a read of the contents of the image memory addressed by $I \mathrm{MA}_{0}-1 \mathrm{MA}_{23}$.

## IMWR (Image Memory Write)

IMWR requests a write to the image memory location addressed by $\mathrm{IMA}_{0}-\mathrm{IMA}_{23}$.

IMRF (Image Memory Refresh)
IMRF indicates an image memory refresh cycle.

## IMAK (Image Memory Acknowledge)

$\overline{\text { IMAK }}$ indicates to the $\mu$ PD9305 that an image memory read, write or refresh has been completed.

## IMA $_{\mathbf{0}}$-IMA $\mathbf{2 M}_{\mathbf{2 3}}$ (Image Memory Address)

$I \mathrm{MA}_{0}-\mathrm{IMA}_{23}$ supplies the image memory address for a read or write operation or for DRAM refresh ( $\mathrm{IMA}_{0}-\mathrm{IMA}_{9}$ only).

## IMD $_{\mathbf{0}}$-IMD $\mathbf{1 7}^{\text {(Image Memory Data) }}$

$\mathrm{IMD}_{0}-\mathrm{IMD}_{17}$ is the bidirectional data bus for transferring data to and from the image memory.

## $\mu$ PD9305 Block Diagram



## Functional Description

The $\mu$ PD9305 has the following functional units:

- $\mu$ PD7281 input bus interface
- $\mu$ PD7281 output bus interface
- System bus interface
- Image memory bus interface
-Register file
-R/M/W control
-Self object load control
-Image memory refresh control


## $\mu$ PD7281 Input Bus Interface

After the last ImPP outputs a token, the input bus interface determines whether the token should be an output token to the host CPU, to the image memory, or to the output bus interface block. The high order 16 bits of the token output from the last ImPP are latched into in the high word register (HWR) and then decoded by the input token decoder to determine the token type.

## $\mu$ PD7281 Output Bus Interface

The output bus interface logic transmits tokens through the multiplexer (MUX) to the first ImPP. The transmitted tokens come from the system bus interface, the $\mu$ PD7281 input bus interface, or the image memory bus interface. The output bus interface uses a priority control mechanism to prevent collisions between the tokens coming from the different blocks.

## System Bus Interface

The system bus interface receives a token from the host CPU for the ImPPs, sends it to the output register (OUTR), and signals the output bus interface. Conversely, it sends a token, which is output from the last ImPP, through the input register (INR) to the host CPU according to instructions from the host CPU. The host CPU can set input or output modes (MODER register), read the status register (STATUSR), set image memory refresh timing (RFTMR register), and set module numbers (MNR) for two $\mu$ PD7281s.

## Image Memory Bus Interface

The image memory bus interface accepts the following five types of tokens:

Token	Description
WHA	Write high address
WLA	Write low address
WD	Write data
RHA	Read high address
RLA	Read low address

Tokens have a 16-bit data value, so the address is transferred in two tokens to form the 24-bit image memory address. The lower 16 -bits of the image memory address are latched in the lower address register.

The image memory bus interface also performs read/ modify/write functions with the R/M/W control logic and provides a register file.

Register File. The register file is used for storing write high addresses (WHAR/four 8-bit registers), write data (WDR/four 18-bit registers), and read high addresses (RHAR/four 8-bit registers).

Read/Modify/Write (R/M/W) Control. The R/M/W control reads a word from the image memory, performs a logical operation (AND, OR, or XOR) between it and the contents of a write data register (WDR), and then writes it back to a location referenced by the WHAR (the same lower 16-bit address, but a different upper eight bits).

Self Object Load (SOL). The self object load control loads ImPP object programs stored in image memory into the ImPPs. When the SOL is given a starting address, the SOL control automatically generates the appropriate addresses to read the image memory.

Image Memory Refresh Control. The $\mu$ PD9305 generates a 10 -bit address and the timing for refreshing dynamic image memories. The timing is set by the RFTMR register.

Figure 1 shows the input/output token format and table 2 shows how the image memory access tokens function.

Figure 1. Input/output Token Format


Table 2. Image Memory Access Tokens ${ }^{(1)}$

MN	Z	ID		CTLF	Data	Function	Operation
0001	-	MN ${ }^{\prime}$ ID	ID'	----	Image memory read low address	Image memory read (RHAR1 reference)	R
		111 -	---	----	-- - - Image memory read high address	Read high address register (RHAR1) set (Note 2)	S
0010	-	MN ${ }^{\prime}$ ID	ID'	---	Image memory read low address	Image memory read (RHAR2 reference)	R
		111 -	---	---	----- Image memory read high address	Read high address register (RHAR2) set (Note 2)	S
0011	-	MN ${ }^{\prime}$ ID	ID'	--	Image memory read low address	Image memory read (RHAR3 reference)	R
		111 -	----	----	----- Image memory read high address	Read high address register (RHAR3) set (Note 2)	S
0100	-	MN ${ }^{\prime}$ ID	$1 \mathrm{D}^{\prime}$	-	Image memory read low address	Image memory read (RHAR4 reference)	R
		111 -	----	--	---- Image memory read   high address	Read high address register (RHAR4) set (Note 2)	S
		00000	DIR	-	Image memory write low address	Image memory write (referencing WHAR and WDR selected by DIR)	W
		001--	DIR	----	--- - Image memory write high address	Set write high address register (WHAR) selected by DIR	S
0101	-	010--	DIR	- - C,S	Image memory write data register	Set write data register (WDR) selected by DIR	S
		011--	DIR	----	----- Image memory read   high address	Set read high address register (RHAR) selected by DIR	S
		100 MASK	K DIR	----	Read/write low address	Read/modify/write	RW
		101--	DIR	----	Read/write low address	Read / modify / write (write CS bits selects mask)	RW
		00---	DIR	----	Load starting low address	Self object load	R
0110	-	01--	DIR	----	Load starting low address	Self object load MN of output token is SOLMN)	R
		1----	--	----	----------SOLMN	Set SOLMN for self object load	S

## Notes:

(1) The following definitions refer to the above table:

MN: Module number
Z: Always 0
ID: Identifier
CTLF: Control field
ID': ID used for next circulation
$M N^{\prime}$ : MN used for next circulation ( $M N \neq 111$ )
DIR: Specifies registers for memory image access
MASK: Specifies the modify mode
-: Do not care
S: Set
R: Read
W: Write
(2) When RHASEL of the mode register is 1 , the tokens become image memory read (request) tokens

Table 3 shows moduie number (MN) values and the five token types (refer to figure 12).
The five token types are:
(1) Output request data to the host
(2) Image memory access data
(3) DMA request data
(4) Pass data
(5) Delete data

Table 3. MN Values and Token Types

Token Type	MN	ID	Function	Abbreviation
(1)	0000	$\mathrm{x} \times \mathrm{x} \quad \mathrm{x} \times \mathrm{x} \times$	$\mu$ PD7281 output data to host	CPU
(2)	0001	$\begin{array}{cc} \mathrm{MN}^{\prime} & I D^{\prime} \\ \times \times \times & \mathrm{x} \times \mathrm{x} \end{array}$	Image memory read1 (RHAR1 select)	IMR
		$111 \times \times \times x$	RHAR1 set (Note 2)	
	0010	$\begin{array}{cc} \mathrm{MN}^{\prime} & \mathrm{ID}^{\prime} \\ \mathrm{xxx} & \mathrm{xxxx} \end{array}$	Image memory read2 (RHAR2 select)	
		$111 \times \mathrm{x} \times \mathrm{x}$	RHAR2 set (Note 2)	
	0011	$\stackrel{\mathrm{MN}^{\prime}}{\sim} \quad \stackrel{\mathrm{ID}^{\prime}}{-}$	Image memory read3 (RHAR3 select)	
		$111 \times \times \times$	RHAR3 set (Note 2)	
	0100	$\underset{\rightarrow}{\mathrm{MN}^{\prime}} \stackrel{\mathrm{ID}^{\prime}}{\rightarrow}$	Image memory read4 (RHAR4 select)	
		$111 \times \mathrm{x} \times \mathrm{x}$	RHAR4 set (Note 2)	
	0101	$00000 \mathrm{DIR}$	Image memory write	IMW
		$001 \times \times \mathrm{DIR}$	High address set for write (selected register file is DIR +1 )	IMWHA
		$010 \times \times \text { DIR }$	Write data set (selected register file is $\mathrm{DIR}+1$ )	IMWD
		$011 \times \times \text { DIR }$	High address set for read (selected register file is DIR +1 )	IMREA
		$100 \text { Mask DIR }$	Read/modify/write1	RMW1
		$101 \times \times \text { DIR }$	Read / modify / write2 (mask selected by CS bits of image memory write data)	RMW2
(3)	0101	$110 \times \mathrm{xxx}$	DMA1 (host $\rightarrow \mu$ PD7281)	DMA1
		$111 \times \times \times x$	DMA2 ( $\mu$ PD7281 $\rightarrow$ host)	DMA2
(2)	0110	$00 \times \times \times \mathrm{DIR}$	Self object load1	SOL1
		$01 \times \times \times \mathrm{DIR}$	Self object load2 (rewrite MN)	SOL2
		$1 \times \times \times \times \times x$	MN set for self object load	SOLMN
(4)	0111		$\begin{aligned} & \mu \text { PD7281 module number (when } \\ & \text { RHASEL=1) } \end{aligned}$	PASS
	$\begin{array}{lllll} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}$		$\mu$ PD7281 module numbers	
	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}$			
(5)	1111		Deleted	VANISH

## Notes:

(1) The following definitions refer to the above table:

MN: Module number
ID: Identifier
$\mathrm{MN}^{\prime}$ : MN used for next circulation $(\mathrm{MN} \neq 111)$
ID': ID used for next circulation
(2) When RHASEL of the mode register is 1 , the tokens become image memory read tokens.

Absolute Maximum Ratings   $T_{A}=25^{\circ} \mathrm{C}$	
Power supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 V to 7.0 V
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.5 V to 7.0 V
Output current, $\mathrm{I}_{0}$	10 mA
Operating temperature, $\mathrm{T}_{\text {OPT }}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

*Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. Do not operate the device under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limits		Unit	TestConditions
		Min	Max		
Input capacitance	$\mathrm{C}_{1}$		10	pF	
Output capacitance	$\mathrm{C}_{0}$		15	pF	Unmeasured pins are
Input/output capacitance	$\mathrm{C}_{10}$		15	pF	at 0 V .

DC Characteristics

Parameter	Symbol	Limits			Unit	TestConditions
		Min	Typ	Max		
Input low voltage	VIL	-0.5		0.8	V	
Input high voltage	$\mathrm{V}_{\text {IH }}$	2.0		$V_{D D}+0.5$	V	
Output low voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=2 \mathrm{~mA}$
Output high voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} \\ -0.4 \end{gathered}$			V	$\mathrm{l}_{0 \mathrm{~L}}=-400 \mu \mathrm{~A}$
Input leakage current	$l_{L I}$			$\pm 10$	$\mu \mathrm{A}$	$0 \leq V_{1} \leq V_{D D}$
Output leakage current	L'0			$\pm 10$	$\mu \mathrm{A}$	$0 \leq V_{1} \leq V_{D D}$
Supply current	$I_{D D}$		10	100	mA	10 MHz

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$

## Clock Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
CLK cycle time	$\mathrm{t}_{\text {CYK }}$	80		ns	
Clock pulse width high	$\mathrm{t}_{\text {WKH }}$	30		ns	
Clock pulse width low	${ }_{\text {t }}$ KL	30		ns	
Clock rise time	$t_{\text {KR }}$		10	ns	
Clock fall time	$\mathrm{t}_{\mathrm{KF}}$		10	ns	

Input Timing

		Limits			Test   Parameter
	Symbol	Min	Max	Unit	Conditions
Input rise   time	$\mathrm{t}_{\mathrm{RR}}$	0	10	$\mu \mathrm{~S}$	
Input fall   time	$\mathrm{t}_{\mathrm{IF}}$	0	10	$\mu \mathrm{~S}$	

## RESET Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
$\overline{\text { RESET }}$ pulse width	$\mathrm{t}_{\text {RST }}$	$\mathrm{t}_{\text {CYK }}$		ns	$\mu$ PD9305 only
$\begin{aligned} & \overline{\text { RESET }} \text { setup } \\ & \text { time to } \overline{\text { IPPRST }} \end{aligned}$	$\mathrm{t}_{\text {DRSPRL }}$		40	ns	
IPPRST hold time after RESET 1	torspre		50	ns	
$\overline{\overline{\text { PPRRST}} \text { setup to }}$ $\mathrm{MN}_{0}-\mathrm{MN}_{3}$	$\mathrm{t}_{\text {DMN }}$		60	ns	
$\mathrm{MN}_{0}-\mathrm{MN}_{3}$ float time after IPPRST	$\mathrm{t}_{\mathrm{FMN}}$		50	ns	
IPPRST low until $0 \mathrm{BD}_{15}-0 \mathrm{BD}_{12}$ active	$\mathrm{t}_{\text {DPROD }}$		60	ns	
$\begin{aligned} & \mathrm{OBD}_{15}-\mathrm{OBD}_{12} \text { float } \\ & \text { time after IPPRST } \end{aligned}$	$\mathrm{t}_{\text {FPROD }}$		50	ns	

Host CPU $\rightarrow \mu$ PD9305 Read/Write Timing

		Limits		
Parameter	Symbol	Min	Max	Unit
Conditions				

DMA Request Timing ${ }^{(1)}$

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
$\overline{\text { DMARQ }}$ setup time to DMAAK !	$t_{\text {DDODA }}$	20		ns	
$\overline{\text { DMARQ } \uparrow ~}$ time from DMAAK $\downarrow$	$t_{\text {DDADQ }}$		50	ns	
$\overline{\overline{\text { DMARQ }} \downarrow}$ time from DMAAK	$\mathrm{t}_{\text {RVDQ }}$	50		ns	
DMAAEN $\dagger$ setup time to ( $\overline{\mathrm{RD}, \mathrm{WR})!}$	${ }^{\text {S SDERW }}$	30		ns	
DMAAEN   hold time after ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}) \dagger$	$t_{\text {HRWDE }}$	30		ns	
DMAAK Iow setup time to ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}})$ !	${ }^{\text {S SDARW }}$	0		ns	
DMAAK hold time after ( $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ) $\dagger$	$t_{\text {HRWDA }}$	0		ns	
DMAAK pulse width	$t_{\text {WDAL }}$	$\mathrm{t}_{\text {CYK }}$		ns	

## Note:

(1) $\overline{\text { DMAAK }}=\overline{\text { DMAAK } 1}$ or DMAAK2
$\overline{\mathrm{DMARQ}}=\overline{\mathrm{DMARQ}}$ or $\overline{\text { DMARQ2 }}$

I/O Request/Acknowledge Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
$\overline{\text { IREQ }!~ \text { setup }}$ time to $\overline{\text { ACK }}$ ।	$\mathrm{t}_{\text {DIOIALI }}$	15	60	ns	
$\overline{\overline{\text { ACK }} \downarrow}$   setup time to IREQ $\dagger$	$\mathrm{t}_{\text {DIAIOHI }}$	10		ns	
$\overline{\overline{R E D}} \uparrow$ setup time to IACK $\dagger$	$t_{\text {DIOIAHI }}$	20	70	ns	
$\overline{\overline{\text { ACK }} \uparrow}$ setup to $\overline{\text { REQ }} \downarrow$	$\mathrm{t}_{\text {DIAIOL }}$	10		ns	
ID bus setup time to IREQ 1	${ }^{\text {tidIa }}$	20		ns	
ID bus hold time from IREQ $\dagger$	$\mathrm{t}_{\text {HIOID }}$	10		ns	
$\overline{\overline{\text { RED }}!}$ setup time to OACK !	$t_{\text {DOOOAL }}$	10		ns	
OACK !   setup time to OREQ 1	$t_{\text {DOAOOH }}$	20	70	ns	
$\overline{\text { OREQ }} 1$ setup time to OACK 1	$t_{\text {Dоооан }}$	10		ns	
$\overline{\overline{\text { OACK}}} 1$ setup time to OREQ !	$\mathrm{t}_{\text {DOAOOL }}$	15	60	ns	
$\overline{\text { OREQ }}$ ! setup time to $\overline{O D B}$ valid	$t_{\text {DOaOD }}$		10	ns	
$\overline{\overline{O D B}}$ float time after OREQ $\dagger$	$\mathrm{t}_{\text {foood }}$	10		ns	
Note: Pull-up resis timing.	required	n $\mu$ PD	05 ID		meet $t_{H}$

$\mu$ PD9305

## Image Memory Read, Write, Refresh Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
IMA ${ }^{(1)} \uparrow$ active time from CLK $\downarrow$	tokmarf		100	ns	IM refresh
IMA active time from CLK $\downarrow$	$t_{\text {DKMAMC }}$		60	ns	IM read or IM write
IMA float time from IMC $\downarrow$	$\mathrm{t}_{\text {FMCMA }}$	10		ns	
IMC recovery time	$\mathrm{t}_{\text {RVMC }}$	1.5tCYK		ns	
IMC $\uparrow$ delay time from CLK $\downarrow$	${ }^{\text {DKMMCH }}$		35	ns	
IMC $\downarrow$ delay time from CLK $\downarrow$	$t_{\text {DKMCL }}$		40	ns	
$\overline{\overline{M A K}}$ recovery time	trivmk	1.5t ${ }_{\text {CYK }}$		ns	
$\overline{\overline{M A K}}$ setup time to CLK $\downarrow$	tsmkk	10		ns	
$\overline{\overline{\text { MAK }} \text { hold time }}$ from IMC $\downarrow$	thmCMK	0		ns	
IMD setup time to CLK $\uparrow$	tsmbk	20		ns	Image memory read timing
IMD hold time from IMRD $\downarrow$	thmRMD $^{\text {d }}$	0		ns	Image memory read timing
IMD delay time from CLK $\downarrow$	tDKMD		30	ns	Image memory write timing
IMD float time from IMWR $\downarrow$	$\mathrm{t}_{\text {FMWMD }}$	20		ns	Image memory write timing

## Note:

(1) $\mathrm{IMA}=I M A_{23} \cdot I M A_{0}$
(2) IMC + IMRD, IMWR or IMRF
(3) To maximize IM access time use $\overline{\mathrm{IMAK}}=\overline{\mathrm{IMC}}$. Then IM cycle time will be $3 . \mathrm{k}_{\mathrm{CYK}}$

## SOLBSY Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
SOLBSY delay time from IACK 1	$\mathrm{t}_{\text {dIASB }}$		30	ns	
SOLBSY delay time from CLK !	$\mathrm{t}_{\text {DKSB }}$		60	ns	
CPURQ Timing					
Parameter	Symbol	Limits			
		Min	Max	Unit	Conditions
CPURQ delay time from $\overline{\text { IACK }} \uparrow$	$t_{\text {DIAPQ }}$		30	ns	
CPURQ delay time from $\overline{R D}$ ।	$\mathrm{t}_{\text {DPRQ }}$		60	ns	

INBUSY Timing

Parameter	Symbol	Limits		Unit	Test Conditions
		Min	Max		
INBUSY 1 delay time from WR $\dagger$	$t_{\text {DWIB }}$		70	nS	
INBUSY !   delay time from OREQ 1	$t_{\text {DOOIB }}$		40	ns	

ERR Timing

Parameter	Symbol	Limits		Unit	TestConditions
		Min	Max		
ERR $\uparrow$ delay time from $\overline{\text { ACK }} \uparrow$	$t_{\text {DIAE }}$		30	ns	Error token output
ERR I delay time from WR $\downarrow$	$t_{\text {DWE }}$		60	ns	INBUSY $=1$
ERR 1 delay time from RD	$\mathrm{t}_{\text {DRE }}$		60	ns	$C P U R Q=0$
INBUSY hold time from $\overline{W R}$ !	$\mathrm{t}_{\text {HWIB }}$		10	ns	
CPURQ setup time to $\overline{R D}$ ।	$\mathrm{t}_{\text {SPQR }}$		10	ns	

## Note:

All unused input or output pins should be pulled up to $V_{D D}$ or down to GND through a $2 \mathrm{~K}-3 \mathrm{~K}$ ohm resistor.

## Timing Waveforms

## Clock Timing



Input Timing


RESET Timing


## Host CPU $-\mu$ PD9305 Write Timing



Host CPU $-\mu$ PD9305 Read Timing

$\mu$ PD9305

DMA1 Request Timing


DMA2 Request Timing


I/O Request/Acknowledge Timing


## I/O Data Bus Handshake Timing



Image Memory Read Timing


## Image Memory Write Timing



## Image Memory Refresh Timing



## IM Command Timing



## SOLBSY Timing



CPURQ Timing


INBUSY Timing


ERR Timing, Error from ImPP


ERR Timing, INBUSY


## ERR Timing, CPU Request



## $\mu$ PD9305 Operation

Table 4 shows how the $\mu$ PD9305 uses signals $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, $\overline{\mathrm{WR}}$, and $\mathrm{A}_{1}, \mathrm{~A}_{0}$ to read or write to I/O ports.

Table 4. I/O Ports

$\overline{\overline{\mathrm{CS}}}$	$\overline{\mathrm{AD}}$	$\overline{\mathrm{WB}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	Internal I/O Ports
0	0	1	0	0	Read ImPP input data register (from ImPP)
0	0	1	0	1	Read status register
0	0	1	1	0	Command $\overline{\text { RESET; data read has no meaning }}$
0	0	1	1	1	Not used
0	1	0	0	0	Write ImPP output data register (to ImPP)
0	1	0	0	1	Write mode register
0	1	0	1	0	Write module number register
0	1	0	1	1	Write refresh timing register

Figure 2 shows the status register format.

Figure 2. Status Register Format

7	6	5	4	3	2	1				
SOLBSY	IPPERR	CPURQ	inbusy	DMARQ1	DMARQ1	INERR	OUTERR			
								OUTERR [1]	1	$\mu$ PD7281 input data register (INR) is read while CPURQ $=0$ (incl. during DMA)
									0	RESET
								INERR [1]	1	$\mu$ PD7281 output data register is written to when INBUSY $=\mathbf{1}$ (incl. during DMA)
									0	RESET
								DMARQ2	1	DMA2 token $[3](M N=5, I D=7 \times H)$ input from the $\mu$ PD7281
									0	$\overline{\text { DMAAK } 2}+\overline{\mathrm{RD}}=0$ or $\overline{\text { RESET }}$
								DMARQ1	1	DMA1 token [3] ( $\mathrm{MN}=5, \mathrm{ID}=6 \times \mathrm{H})$ is input from the $\mu$ PD7281
									0	$\overline{\text { DMAAK } 1}+\overline{\text { WR }}=0$ or $\overline{\text { RESET }}$
								InBUSY	1	Output token (OUTR) is being input to the $\mu$ PD7281
									0	$\mu$ PD7281 input of the token complete, or RESET
								CPURQ [2]	1	MN = 0 token is input from the $\mu$ PD7281
									0	Host read of the $\mu$ PD7281 input token completed (INR) or RESET
								IPPERR [1,2]	1	Error token is input from the $\mu$ PD7281
									0	$\overline{\text { RESET }}$
								SOLBSY	1	SOL1 or SOL2 token [4] is input from the $\mu$ PD7281
									0	SOL terminates or $\overline{\text { RESET }}$

Notes: [1] IPPERR. INERR and OUTERR are ORed and output to the ERR pin

Figure 3 shows the mode register format.
Figure 3. Mode Register Format


Note: All bits of the mode register default to 0 when an external reset is applied

Figures 4-20 graphically show $\mu$ PD9305 operation. For a detailed description of $\mu$ PD9305 operation, refer to the $\mu$ PD9305 User's Manual.

Figure 4. Setting Write Method for Input Data


Notes: [1] Circled numbers indicate order in which data is written [2] Fixed data should be defined beforehand

Figure 5. Setting Read Method for Output Data


Note: [1] Circled numbers indicate order in which data is written

Figure 6. Setting Fixed (16-Bit) Data

| For 16-bit CPUs <br> Set the mode: <br> BBITIN $=0$ <br> HALFIN $=0$ |
| :--- | :--- |
|  |
|  |
| Write the 16-bit data (H) to <br> be set in the output data <br> register (OUTR) (Low data <br> is not written) |
| Set the mode: <br> BBITIN $=0$ <br> HALFIN $=1$ |

Note: Each time the 16 -bit low data is written to the output data register, the 16 -bit high data set by the above procedure will be input with it to the $\mu$ PD7281.


Figure 7. MN Register


Figure 8. Refresh Timing Register


Notes: [1] $X=$ don't care

$$
\begin{aligned}
& \text { [2] The actual refresh cycle is }(R C+1) \times 8 \text { CLK, RC }=0 \text { to } 63
\end{aligned}
$$

Figure 9. Input Timing (Host to $\mu$ PD9305 to $\mu$ PD7281)


Figure 10. Output Timing ( $\mu$ PD7281 to $\mu$ PD9305 to Host)


Figure 11. Output to $\mu$ PD7281, Control Data Paths


Figure 12. $\mu$ PD7281, Input Control Data Flow


Figure 13. Image Memory Read Timing (Without Refresh Request)


Figure 14. Image Memory Write Timing (Without Refresh Request)


Figure 15. Image Memory Access Request Priority Control


Figure 16. Read Data $\rightarrow \mu$ PD7281 Output Timing (Single Output)


Figure 17. Read Data $\rightarrow \mu$ PD7281 Output Timing (Continuous Output)


Figure 18. Self Object Load Timing


Notes: [1] When $\overline{\text { OACK }}$ is not returned, the $\mu$ PD9305 can retain up to two tokens. (H2)-L2 and
H3-L3 tokens). IMRD will not become active until the token is output.
2. If a refresh request is generated during execution of self object load, refresh is
given priority.

Figure 19. Refresh Timing


Figure 20. Read/Modify/Write Timing


Table 5 shows the differences between command and external resets.

Table 5. Command and External Reset Differences

Item	RESET	Commmand Reset
1/0 data counter; Tokens in the $\mu$ PD9305; image memory access requests (except refresh); $\overline{0 R E Q}, \overline{\text { IACK }}$; DMA request	Cleared	Cleared
Refresh timer; refresh request; refresh address; mode register	Default values	No change
$\overline{\text { IPPRST }}$ pin	0 (active)	0 (active)

Figure 21. Typical System Configuration


## Speech Processors

Section 4Speech Processors
$\mu$ PD77C30 ..... $4 a$
ADPCM Speech Encoder/Decoder
$\mu$ PD7755/56/P56/57/58 ..... 4b
ADPCM Speech Processors
$\mu$ PD7759 ..... $4 c$
ADPCM Speech Processor
$\mu$ PD77501 ..... 4d
ADPCM Record and Playback SpeechProcessor
$\mu$ PD77522 ..... $4 e$
ADPCM Codec

## Description

The $\mu$ PD77C30 is a large-scale integration (LSI) singlechip digital processor, which compresses and decompresses digitized speech signals. It is a speech encoder/decoder that converts pulse code modulated audio to and from adaptive differential pulse code modulation (ADPCM). The $\mu$ PD77C30 encodes pulse coded modulation (PCM) data into ADPCM data, and decodes ADPCM data into PCM data. The $\mu$ PD77C30 is ideal for office automation applications, such as voice store and forward systems, and for various telecommunication applications. It reduces voice transmission bandwidth and voice storage requirements by half (from $64 \mathrm{~kb} / \mathrm{s}$ to $32 \mathrm{~kb} / \mathrm{s}$ ). Its robust ADPCM algorithm makes it well qualified for transmission applications and the fact that it compresses speech by half makes it suitable for store and forward applications.
The maximum clock (CLK) frequency for the $\mu$ PD77C30 is 8.33 MHz , which corresponds to a CLK cycle time of 120 ns .

The $\mu$ PD77C30 accepts PCM data through its serial interface. The serial interface can be connected directly to a single-chip coder/decoder (codec) for digital $\mu$-law PCM input/output or to a general purpose A/D or D/A converter for linear PCM code. This programmable serial interface supports both 8 -bit logarithmic ( $\mu$-law) and 16 -bit linear formats. The $\mu$ PD77C30 interfaces to the host CPU through a standard microprocessor bus interface.

If a clock frequency of 8.33 MHz is used to encode PCM data, then the $\mu$ PD77C30 requires $116 \mu \mathrm{~s}$ to process each sample, thus limiting the sampling frequency to 8.59 kHz . This implies that if the sample frequency is 8.0 kHz and the CLK is 8.33 MHz , then the internal algorithm will take approximately $93 \%$ of the time between samples. Serial data being shifted in or out has the full time between samples to accomplish the transfer of the data. This is because there is an internal buffer that is separate from the shift register and the serial input is internally read at the rising edge of the sample clock, while the next value is starting to be shifted in.

When the $\mu$ PD77C30 operates in the sample 4-bit encode mode, it never outputs the value 00 H . However, when it is in the sample 4-bit decode mode, it can accept 00 H as an input value and interpret it the same as an input value of 88 H .

The $\mu$ PD77C30 performs as an intelligent peripheral device and is controlled and programmed from the host processor. The $\mu$ PD77C30 offers toll quality (equivalent quality to $56 \mathrm{~kb} / \mathrm{s} \mu$-law PCM) speech meeting the CCITT recommendations G. 712 .

The $\mu$ PD77C30 has an A-law version designated the $\mu$ PD77C31, which is available for products marketed in Europe.

## Features

- Half-duplex ADPCM encoder or decoder
- Compression data rate
$-32 \mathrm{~kb} / \mathrm{s} / 8 \mathrm{kHz}$ sampling/4-bit data
$-24 \mathrm{~kb} / \mathrm{s} / 8 \mathrm{kHz}$ sampling/3-bit data
- Byte data ( $2 \times$ ADPCM data) handling
- Robust adaptation scheme for quantizer and predictors
- Selectable functions
-Encoder/decoder operating mode
- ADPCM data length 3 or 4 bit
-A/D and D/A conversion $\mu$-law or linear
- Presentable voice detection threshold
- Standard microprocessor interface to the host CPU
- Easy interface to PCM combo
- Toll quality speech at $32 \mathrm{~kb} / \mathrm{s}$ (meets CCITT recommendations G.712)
- Single +5 -volt power supply
- Low-power CMOS technology
- Clock frequency 8.192 MHz maximum
- Packages: 28-pin plastic DIP and 44-pin PLCC

Ordering Information

Part Number	Type	Package
$\mu$ PD77C30C	CMOS	28-pin plastic DIP (600 mil)
L	CMOS	44-pin PLCC

Pin Configuration
28-Pin Plastic DIP


## 44-Pin PLCC



## Pin Identification

Symbol	I/O	Function
Host System Interface		
$\mathrm{A}_{0}$	In	Address 0 (register select): This input selects   internal registers. A high input selects the   status registers. A low input selects the data   registers.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	I/O	Data bus: This three-state bidirectional data   bus interfaces with the host CPU data bus.
$\overline{\overline{\mathrm{CS}}}$	In	Chip select: This input enable the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$   signals.

## Pin Identification

Symbol	I/O	Function
DET	Out	Signal detect: This output is asserted when   the input audio signal level exceeds the   threshold level specified.
DRQ	Out	Data request: This output requests data   transfer between the $\mu$ PD77C30 and host CPU.   In encoder mode, an ADPCM data read is   requested. In decoder mode, an ADPCM data   write is requested. (DRQ will not work unless   encoder or decoder mode is specified). The   data request status can also be checked by   polling the RQM bit of the status register.
$\overline{\overline{R D}}$	In	Read signal: This input controls data transfer   from the $\mu$ PD77C30 to the host CPU.
$\overline{\overline{W R}}$	In	Write signal: This input controls data transfer   from the host CPU to the $\mu$ PD77C30.

## A/D-D/A Interface

SCK	In	Serial clock: This input provides timing for   transfer of serial data to/from the A/D and D/A   converter.
SI	In	Serial input: serial data input.
SIEN	In	Serial input enable: This input enables data   transfer on the SI pin. If not used, tie to SOEN   SIEN must be asserted for the $\mu$ PD77C30 to   recognize an operation command.
SO	Out	Serial output: Serial data output.
SOEN	In	Serial output enable: This input enables data   transfer on the SO pin. If not used, tie to $\overline{\text { SIEN. }}$
SORQ	Out	Serial output request: This output indicates   that serial request output data is ready for   transfer at the SO pin.

## Circuit Control

CLK	In	Clock: 8.192 MHz TTL clock input.
GND	In	Ground.
IC	-	Internal connection: This pin is connected   internally and should be left open.
NC	-	No connection: This pin is not connected.
PU	-	Pullup: Pull this pin up to V DD
RST	In	Reset: A high input to this pin initializes the   $\mu$ PD77C30.
SMPL	In	Sample: This input determines the rate at   which the $\mu$ PD77C30 processes ADPCM data.   This rate must equal the sampling clock of the   A/D and D/A converter. SMPL must be active   for the $\mu$ PD77C30 to recognize an operation   command.
VDD	In+5-volt power supply	

## Block Diagram



## FUNCTIONAL DESCRIPTION

The $\mu$ PD77C30 has the following functional units:

- A/D-D/A interface
- PCM/ADPCM encoder/decoder
- Controller
- Data register
- Status register
- Host CPU interface

The ADPCM method is a medium bandwidth coding technique that represents speech waveforms. The specific ADPCM used employs a robust adaptation scheme for a quantizer and predictor to withstand transmission bit errors. Figure 1 shows the block diagram of the algorithm. The algorithm uses a backward adaptive quantizer and a fixed predictor so it never generates unstable poles in a decoder transfer function. This approach guarantees the stability of the decoder even with transmission errors.

The $\mu$ PD77C30 can operate in either encoder or decoder mode, but it only be set to one of the two modes at a time; it cannot handle simultaneous encoding and decoding. In encoder mode, the $\mu$ PD77C30 accepts
either linear or $\mu$-law PCM data from its serial voice interface, encodes it to ADPCM data format, and passes the ADPCM data through the parallel data bus to the host system. In decoder mode, the $\mu$ PD77C30 receives ADPCM data from the host CPU, decodes it to either linear or $\mu$-law format, and sends it to the output port of the serial interface.
The $\mu$ PD77C30 has serial interfaces that can connect directly to a single-chip PCM codec. It interfaces easily to a host CPU through its parallel bus. With its standard microprocessor bus interface, the $\mu$ PD77C30 can be viewed as a complex peripheral circuit. Figure 2 shows a typical system configuration.

Figure 1. Algorithm Block Diagram


Figure 2. Typical System Configuration


## OPERATIONAL DESCRIPTION

## Host PCU Interface

In order to transfer ADPCM data, commands, and status, the $\mu$ PD77C30 interfaces with the host CPU via $D_{0}-D_{7}$ and through control lines $\overline{C S}, A_{0}, \overline{W R}$, and $\overline{R D}$. $\overline{\mathrm{CS}}$ enables $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$. $A_{0}$ selects either the data or status register. A low input to $A_{0}$ selects the data register. This read/write register handles both commands and ADPCM data transfer. A high input to $A_{0}$ selects the status register, a read-only register that the CPU reads to determine the state of the $\mu$ PD77C30.

## Parallel I/O Operation

Table 1 shows the status of the $\overline{C S}, A_{0}, \overline{W R}$, and $\overline{R D}$ pins during parallel I/O operation. Figures 3 and 4 are timing diagrams that show the read and write operations for the host CPU interface with the $\mu$ PD77C30.
The RQM bit in the status register and the DRQ pin are the principal handshake signals. Their characteristics follow.

Table 1. Control Line States

$\overline{\mathbf{C S}}$	$\mathbf{A}_{0}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R D}}$	Function
$\mathbf{1}$	x	x	x	No effects on internal operation.
$\mathbf{x}$	x	1	1	$\mathrm{D}_{0}-\mathrm{D}_{7}$ are high impedance.
0	0	0	1	Data from $\mathrm{D}_{0}-\mathrm{D}_{7}$ is latched to the data   register.
0	0	1	0	Contents of the data register are output   to $\mathrm{D}_{0}-\mathrm{D}_{7}$.
0	1	0	1	Illegal operation.
0	1	1	0	Contents of the status register are output   to $D_{0}-D_{7}$.

$x=$ don't care.

## RQM characteristics:

- The $\mu$ PD77C30 requests a data transfer to or from a host CPU by setting the RQM signal to a high level.
- After ADPCM data has transferred, the RQM goes low at the rising edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ pulse.
- After the threshold data has transferred, RQM goes low at the second rising edge of the $\overline{W R}$ pulse.
- Reading the status register via the data bus does not reset RQM.

Figure 3. ADPCM Data Read Timing


Figure 4. ADPCM Data Write Timing


## DRQ characteristics:

- Except during initialization, the $\mu$ PD77C30 DRQ signal is high, when the status register bit RQM is set to indicate that an ADPCM data transfer to or from the host CPU is required.
-DRQ goes low after each encoding or decoding operation is completed.
- Because DRQ remains low throughout initialization, it cannot be used for handshaking during initialization.
- The DRQ signal may be connected to an interrupt pin of a host CPU.
Two different approaches can be used for servicing ADPCM I/O request by the $\mu$ PD77C30. The first approach is for the host CPU to repeatedly poll the status register until RQM = 1 is found. The second approach is for the DRQ pin to go high, forcing an interrupt of the host CPU. In either case the host CPU then reads the data register to capture the ADPCM data.


## Status Register

Figure 5 shows the format of the status register.
Figure 5. Status Register Format

7	6	5	4	3	2	1	0
RQM	0	DET	DRS	0	DRC	SOL	SIL
RQM		Request for Master					
$\begin{aligned} & 0 \\ & 1 \end{aligned}$		PCM input data is 16 -bit (linear) PCM input data is 8 -bit ( $\mu$-law)					
DET		Speech Detect					
$\begin{aligned} & 0 \\ & 1 \end{aligned}$		Silence interval Speech detected					
DRS		Data Register Status					
0 1		Data register is 16 -bit (for threshold data) Data register is 8 -bit (for all other data)					
DRC*		Data Register Control					
0		Second byte transferred First byte transferred					
SOL		Serial Output Data Length					
0 1		PCM output data is 16 -bit (linear) PCM ouput data is 8 -bit ( $\mu$-law)					
SIL		Serial Input Data Length					
0		PCM input data is 16 -bit (linear) PCM input data is 8 -bit ( $\mu$-law)					
1							

[^11] configured as 16 -bit (DRC 0 )

## Operation Command

Following a power-on reset, the host CPU polls the RQM bit in the status register. When the RQM bit is set, the host CPU can send an operation command to the data register, as shown in figure 6.

Figure 6. Operation Command

7	6	5	4	3	2	1	0
$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	0	0	0	0	0
Encoder Mode$D_{7}-D_{5}$		PCM Data Format			ADPCM Data Length/Sample (bits)		
111		$\mu$-law 8-bit codec (MSB first)			4		
101					3		
110		16-bit A/D-D/A (LSB first)			4		
100					3		
Decoder Mode$D_{7}-D_{5}$		PCM Data Format			ADPCM Data Length/Sample (bits)		
011		$\mu$-law 8-bit codec (MSB first)			4		
001					3		
010		16-bit A/D-D/A   (LSB first)			4		
000					3		

## Power-on and Reset

The $\mu$ PD77C30 operates on a single-phase, 50-50 duty cycle clock at 8 MHz . At power-on, asserting the RST pin for at least 3 clock cycles initializes the device, making it ready for an operation command from the host CPU. After the $\mu$ PD77C30 receives the command, it stays in the specified operational mode until the next hardware reset (high level on RST). Thus, to change the $\mu$ PD77C30 into different modes, reset it before writing an operation command.

## Initialization and Threshold Data

See figure 7 for the initialization sequence for the encoder mode. See figure 8 for the initialization sequence for the decoder mode. During initialization signal SMPL is ignored, but the SCK and SIEN signals must be active. This is because the $\mu$ PD77C30 internal code checks that the serial data is being transferred in before it accepts the mode byte. Also, it is of no consequence whether or not serial input data is valid during initialization. This is true whether the $\mu$ PD77C30 is placed in encoder or decoder mode.
A hardware reset must be issued before a mode byte can be sent, even when the $\mu$ PD77C30 is being powered up. A hardware reset signal also must be issued to
change modes (i.e., encoder to decoder mode). In either of the above cases, the reset signal must be held active for a minimum of 3 clock cycles to guarantee that the mode byte will be accepted. As explained below, the RQM bit of the status register should be used for data transfer handshaking, especially during initialization. The status register at a clock frequency of 8.192 MHz is not valid until $190 \mu \mathrm{~s}$ after the trailing edge of the reset pulse, and it should not be read until after that time interval.

The DRQ signal does not always follow the state of the RQM bit in the status register. In particular, the DRQ signal remains low throughout initialization. Therefore, it is essential during initialization to use the RQM bit of the status register for handshaking. The DRQ signal is intended for interrupting the host CPU so that it will transfer ADPCM data after initialization. The DRQ signal remains high until the encoding or decoding operation of the $\mu$ PD77C30 is complete. The RQM bit, in contrast, is intended for data transfer handshaking and is reset after each data port transfer is complete.

When the $\mu$ PD77C30 first enters the decoder mode the RQM bit is already set and the first byte of data sent to the $\mu$ PD77C30 will not be decoded properly. To avoid losing the first speech sample, a dummy first byte of ADPCM should be sent.

If the operation command places the $\mu \mathrm{PD} 77 \mathrm{C} 30$ in encoder mode, the next two bytes sent to the data register are the threshold data. The RQM bit establishes the data transfer signaling. In decoder mode, no threshold data is expected. The threshold data sets the level of the audio signal at which the DET pin is asserted. Figure 9 shows the format for the threshold data. Figure 10 shows how to determine the threshold data.

The $\mu$ PD77C30 asserts DET when the serial input audio signal exceeds the threshold level specified by the threshold data. Many silent segments exist in normal speech signals; memory storage can be used more efficiently if these segments are omitted. The host CPU can perform silent segment compression by using DET. The energy levels of 16 previous audio samples determine the state of DET. Thus DET changes at a 2 ms (16 $x 8 \mathrm{kHz}$ sampling) time frame. Bit 5 of the status register reflects the state of DET.

Figure 7. Encoder Mode Initialization Sequence


Figure 8. Decoder Mode Initialization Sequence


49TB-408A

Figure 9. Threshold Data

## Threshold Data



Note: The $\mu$ PD77C30 receives the lower 8 blts of this data before it receives the higher 8 bits.

Figure 10. Typical Relationship Between Input Level and Threshold Value


## ADPCM Data

In encoder mode, the $\mu$ PD77C30 generates one ADPCM sample (3 or 4 bits long) each PCM sample input ( 8 or 16 bits long). In decoder mode, the reverse operation is performed: the $\mu$ PD77C30 generates one PCM sample for each ADPCM sample input. To allow efficient data transfer to and from the host CPU, two ADPCM samples are packed into one byte and transferred at the rate of 1 byte per every 2 samples. Figure 11 illustrates the ADPCM data formats for 3 bits/sample and 4 bits/ sample.

The DRQ pin initiates ADPCM data transfer. In encoder mode, this pin is asserted when ADPCM data in the data register is ready to be read by the CPU. This pin is cleared after the host CPU reads the data, and is reasserted when the next byte of ADPCM data becomes available. In decoder mode, this pin serves as the data request to the host for the next byte of ADPCM data to be sent to the data register. After the host CPU writes the ADPCM data, this pin is cleared. The host CPU cannot send another byte to the $\mu$ PD77C30 until this pin is set again. (Note that the DRQ pin will not work until the $\mu$ PD77C30 is placed in encoder or decoder mode.)
The ADPCM data transfer is acknowledged by the RQM bit in the status register. The RQM bit is set when transfer to the host is requested for ADPCM data, and is reset when the host read/write is complete.

## Serial PCM Interface

The serial PCM interface can be connected directly to a codec. SMPL, SCK, SIEN, SI, SORQ, SOEN, and SO control the PCM interface.

SMPL is the sampling clock input. This signal must equal the frequency of the sampling clock of the codec or the A/D-D/A interface. SMPL is asserted after the completion of serial data transfers. Thus SMPL signals the $\mu$ PD77C30 firmware to initiate processing of the next byte of ADPCM data. SMPL is rising-edge triggered, but must be held high for at least 8 clock cycles. Since it is edge-triggered, SMPL does not need to be released until the next sampling cycle.
SCK determines the timing of the serial input and output. When the $\mu$ PD77C30 has data to send to the serial interface, SORQ goes high. The data is then clocked out to the SO pin serially at the falling edge of SCK, to be valid for the next rising edge. When serial data is ready to be sent to the $\mu$ PD77C30 SIEN is asserted externally, and data at the SI pin is clocked in at the rising edge of SCK.

Figure 11. ADPCM Data Format


Figure 12 illustrates an example of the serial interface using a combined filter and codec (combo) chip, the $\mu$ PD9514. This chip provides both the low pass filtering function and the conversion from an analog signal to digital PCM $\mu$-law representation. The timing controller provides the proper timing relationship between the combo and the $\mu$ PD77C30.

Figure 12. Serial Interface Using a Combo


## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 V to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{l}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{STG}}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage

## Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max
Unit	Conditions			
CLK, SCK capacitance	$\mathrm{C}_{\phi}$	20	pF	
Input capacitance	$\mathrm{C}_{l}$	10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
Output capacitance	$\mathrm{C}_{\mathrm{O}}$	20	pF	

DC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input low voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		0.8	V	
Input high voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		$\mathrm{v}_{\mathrm{CC}}+0.3$	v	
CLK input low voltage	$\mathrm{V}_{\text {ILC }}$	3.5		0.45	V	
CLK input high voltage	$\mathrm{V}_{\text {IHC }}$	-0.3		$\mathrm{V}_{C C}+0.3$	V	
Output low voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
Output high voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4			V	$\mathrm{lOH}=-400 \mu \mathrm{~A}$
Input leakage high current	ILIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
Input leakage high current	$\mathrm{ILIH}^{\text {l }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$
Output leakage low current	Lol			-10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0.47 \mathrm{~V}$
Output leakage high current	L LOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$
Supply current	IDD	24		40	mA	

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; V_{D D}=+5 \mathrm{~V} \pm 5 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
CLK cycle time	$\phi_{\text {CY }}$	120		2000	ns	
CLK pulse width	$\phi_{\mathrm{D}}$	60			ns	
CLK rise time	$\phi_{\mathrm{r}}$			10	ns	(Note 1)
CLK fall time	$\phi_{\mathrm{f}}$			10	ns	(Note 1)
$A_{0}, \overline{C S}$ set time for $\overline{R D}$	$t_{\text {AR }}$	0			ns	
$A_{0}, \overline{C S}$ hold time for $\overline{\mathrm{RD}}$	$t_{\text {RA }}$	0			ns	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RR }}$	250			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}$ set time for $\overline{\mathrm{WR}}$	${ }^{\text {t }}$ AW	0			ns	
$A_{0}, \overline{C S}$ hold time for $\overline{W R}$	twA	0			ns	
WR pulse width	${ }^{\text {tww }}$	250			ns	
Data set time for $\overline{\mathrm{WR}}$	$t_{\text {DW }}$	150			ns	
Data hold time for $\overline{\mathrm{WR}}$	${ }^{\text {twD }}$	0			ns	
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ recovering time	$\mathrm{t}_{\mathrm{RV}}$	250			ns	
SCK cycle time	${ }_{\text {tscy }}$	480		DC	ns	

AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
SCK pulse time	${ }_{\text {tsck }}$	230			ns	
SCK rise time	$\mathrm{t}_{\text {r }} \mathrm{Sc}$			20	ns	
SCK fall time	$\mathrm{t}_{\text {fiS }}$			20	ns	
$\overline{\text { SOEN }}$ set time for SCK	tsoc	50		$\begin{aligned} & \text { tscy } \\ & -30 \end{aligned}$	ns	
SOEN hold time for SCK	$\mathrm{t}_{\text {cso }}$	30		$\begin{aligned} & \text { tscy } \\ & -50 \end{aligned}$	ns	
$\overline{\text { SIEN, }}$, SI set time for SCK	${ }^{t} \mathrm{DC}$	55		$\begin{aligned} & \text { tscy } \\ & -30 \end{aligned}$	ns	
SIEN, SI hold time for SCK	${ }^{\text {t }}$ CD	30		$\begin{aligned} & \text { tscy } \\ & -55 \end{aligned}$	ns	
$\overline{\text { SIEN }}$, $\overline{\text { SOEN }}$ pulse width high	$t_{\text {HS }}$	122			$\phi_{\text {cr }}$	
RST pulse width	$t_{\text {trst }}$	4			$\phi_{\text {CY }}$	
SMPL pulse width	$t_{\text {SMPL }}$	8			$\phi_{\text {cy }}$	
Delay time between SMPL and SIEN (SOEN)	$t_{\text {DX }}$	-1	0	1	$\mu \mathrm{s}$	
Data access time for $\overline{\mathrm{RD}}$	$t_{\text {RD }}$			150	ns	$C_{L}=100 \mathrm{pF}$
Data float time for $\overline{\mathrm{RD}}$	$t_{\text {dF }}$	10		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
SORQ delay	${ }^{\text {t }}$ DRQ	30		150	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
SO delay time	${ }^{\text {t }}$ DCK			150	ns	
SO delay time for SORQ	${ }^{\text {t }}$ DZRQ	20		300	ns	
SO delay time for SCK		20		300	ns	
SO delay time for SOEN	$\mathrm{t}_{\text {DZE }}$	20		180	ns	
SO float time for SOEN	$t_{\text {HZE }}$	20		200	ns	
SO float time for SCK	$\mathrm{t}_{\mathrm{HzSC}}$	20		300	ns	
SO float time for SORQ	$t_{\text {HZRQ }}$	70		300	ns	

## Note:

(1) AC timing measuring point voltage $=1.0 \mathrm{~V}$ and 3.0 V .

## Timing Waveforms

## Clock



## Read Operation



## Write Operation



## Reset



## Sample



## Serial Input/Output Timing



Note: In SO, the data output at the rising edge is valid, while data output at other times is invalid. Therefore, the most critical data set-up and hold times are:

Set-up time $=$ tsCK - tDCK
Hold time $=$ thZRQ

Read/Write Cycle Timing


AC Waveform Measurement Point (except CLK)


## Serial Input Timing



## Serial Output Timing



## Description

The $\mu$ PD775x speech processors utilize adaptive differential pulse-code modulation (ADPCM) to produce high-quality, natural-sounding speech. The $\mu$ PD775x family includes four types with a built-in ROM and one with a one-time programmable (OTP) ROM.

ROM	$\underline{\text { OTP ROM }}$
$\mu$ PD7755	-
$\mu$ PD7756	$\mu$ PD77P56
$\mu$ PD7757	-
$\mu$ PD7758	-

Note: Unless excluded by context, $\mu$ PD775x means all types listed above; $\mu$ PD7756 includes $\mu$ PD77P56. The $\mu$ PD7759, which uses external ROM, is also considered part of the $\mu$ PD775x family but is covered in a separate data sheet.

By combining melody mode, ADPCM, and pause compression, the $\mu$ PD775x achieves a compressed bit rate that can reproduce sound effects and melodies in addition to speech. A built-in speech data ROM allows reproduction of messages up to 4 seconds ( $\mu$ PD7755), 12 seconds ( $\mu$ PD7756), 24 seconds ( $\mu$ PD7757), or 48 seconds ( $\mu$ PD7758).
A wide range of operating voltages, a compact package, and a standby function permit applications of the $\mu$ PD775x in a variety of speech output systems, including battery-driven systems.

## Features

- High-quality speech reproduction using ADPCM
- Low bit rates ( 10 to $32 \mathrm{~kb} / \mathrm{s}$ ) using a combination of ADPCM and pause compression
- Bit rates to less than $1 \mathrm{~kb} / \mathrm{s}$ for sound effects, melodies, and tones (DTMF) using melody mode
- D/A converter with 9-bit resolution and unipolar current waveform output
- Built-in speech data ROM
- $\mu$ PD7755: 96K bits
$-\mu$ PD7756/P56: 256K bits
$-\mu$ PD7757: 512K bits
$-\mu$ PD7758: 1M bits
- Sampling frequency: 5,6 , or 8 kHz
- Standby function
- Typical standby current: $1 \mu \mathrm{~A}\left(\mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}\right)$
- Circuit to eliminate popcorn noise when entering or releasing standby mode
- Wide operating voltage range: 2.7 to 5.5 V
- CMOS technology
- 18- and 20-pin plastic DIP
- 24-pin plastic SOP


## Ordering Information

Part Number	Package	ROM (bits)
$\mu$ PD7755C	18-pin plastic DIP   ( $\mathrm{A}, \mathrm{C}$ outline)	96K
55G	24-pin plastic SOP	
$\mu$ PD7756C	18-pin plastic DIP   ( $\mathrm{A}, \mathrm{C}$ outline)	256K
56G	24-pin plastic SOP	
$\mu$ PD77P56CR	20-pin plastic DIP	256K (OTP)
P56G	24-pin plastic SOP	
$\mu$ PD7757C	18-pin plastic DIP (SA outline)	512K
57G	24-pin plastic SOP	
$\mu$ PD7758C	18-pin plastic DIP   (SA outline)	1M
58G	24-pin plastic SOP	

## Pin Configurations

18-Pin Plastic DIP

$\mu$ PD7755/56/57/58		
$1_{4} 41$	18	$\square l_{3}$
1542	17	$\mathrm{I}_{2}$
165	16	$\square l_{1}$
1744	15	10
REF 5	14	$\square \overline{\mathrm{ST}}$
AVO 4	13	$\square \overline{\mathrm{CS}}$
BUSY - 7	12	X 1
RESET 8	11	$\square \mathrm{X} 2$
GND 4	10	$\mathrm{V}_{\mathrm{DD}}$

83FM-8016A

## Pin Configurations (cont)

20-Pin Plastic DIP

$\mu$ PD77P56		
$14 / D_{4}{ }^{1}$	$\mathrm{l}^{1 / 2} \mathrm{D}_{3}$	
$15 / D_{5} \square^{2}$	$\square \mathrm{I}_{2} / \mathrm{D}_{2}$	
$16_{6} / D_{6} \square^{3}$	$\square \mathrm{I}_{1} / \mathrm{D}_{1}$	
$17 / D_{7} \square^{4}$	$\square \mathrm{I}^{\text {d }} \mathrm{D}_{0}$	
REF/MD ${ }_{2} 5$	$\square \mathrm{ST}$	
AVO $\square^{6}$	$\square \overline{\mathrm{CS}} / \mathrm{MD}_{3}$	
$\overline{\text { BUSY }} \mathrm{MDD}_{0}-7$	$\square \mathbf{x 1}$	
RESET $M_{1} \mathrm{C}_{1}$	$\square \times 2$	
GND 9	$\mathrm{v}_{\mathrm{DD}}$	
NC 10	$\square V_{P P}$	
		83FM-8017A

## 24-Pin Plastic SOP



Note: () =Additions for the $\mu$ PD77P56.

## Pin Identification

Symbol	Name
$\overline{A V O}$	Analog voice output
$\overline{B U S Y}$	Busy output
$\overline{\overline{C S}}$	Chip select input
$\mathrm{D}_{0}-\mathrm{D}_{7}$	PROM I/O data bus
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Message select code input
$\mathrm{MD}_{0}-\mathrm{MD}_{3}$	Operation mode selection input from PROM
$R E F$	D/A converter reference current input
$\overline{\overline{R E S E T}}$	Reset input
$\overline{S T}$	Start input
$\mathrm{X} 1, \mathrm{X} 2$	Ceramic resonator clock terminals
$V_{D D}$	+5 V power
VPP	+12.5 V PROM voltage application
GND	Ground
$N C$	No connection

## PIN FUNCTIONS

## AVO (Analog Voice Output)

AVO outputs speech from the D/A converter. This is a unipolar sink-load current. No current flows in standby mode.

## $\overline{\text { BUSY }}$ (Busy)

$\overline{\text { BUSY }}$ outputs the status of the $\mu$ PD775x. It goes low during speech decode and output operations. When $\overline{S T}$ is received, $\overline{B U S Y}$ goes low. While $\overline{B U S Y}$ is low, another $\overline{\text { ST }}$ will not be accepted. In standby mode, BUSY becomes high impedance. This is an active low output.

## $\overline{\mathbf{C S}}$ (Chip Select)

When the $\overline{\mathrm{CS}}$ input goes low, $\overline{\mathrm{ST}}$ is enabled.

## $D_{0}-D_{7}$ (Data Bus)

Eight-bit input/output data bus from PROM when programming and verifying data.

## $I_{0}-I_{7}$ (Message Select Code)

$I_{0}-I_{7}$ input the message number of the message to be decoded. The inputs are latched at the rising edge of the $\overline{\mathrm{ST}}$ input. Unused pins should be grounded. In standby mode, these pins should be set high or low. If they are biased at or near typical CMOS switch input, they will drain excess current.

## $\mathrm{MD}_{0}-\mathrm{MD}_{3}$ (Mode Select Input)

Operation mode selection inputs from PROM when programming and verifying data.

## REF (D/A Converter Reference Current)

REF inputs the sink-load current that controls the D/A converter output. REF should be connected to $V_{D D}$ via a resistor. In standby mode, REF becomes high impedance.

## RESET (Reset)

The $\overline{\operatorname{RESET}}$ input initialized the chip. Use $\overline{\text { RESET }}$ following power-up to abort speech reproduction or to release standby mode. $\overline{\operatorname{RESET}}$ must remain low at least 12 oscillator clocks. At power-up or when recovering from standby mode, RESET must remain low at least 12 more clocks after clock oscillation stabilizes.

## $\overline{\text { ST }}$ (Start)

Setting the $\overline{\mathrm{ST}}$ input low while $\overline{\mathrm{CS}}$ is low will start speech reproduction of the message in the speech ROM locations addressed by the contents of $I_{0}-I_{7}$. If the device is in standby mode, standby mode will be released.

## $\mathrm{X} 1, \mathrm{X} 2$ (Clock)

Pins X1 and X2 should be connected to a 640 kHz ceramic resonator. In standby mode, X1 goes low and X2 goes high.
$V_{D D}$ (Power)
+5-V power supply.

## $V_{P P}$ (PROM Power)

$+12.5-\mathrm{V}$ high-voltage application pin for programming and verifying data to PROM.

## GND (Ground)

Ground.

## NC (No Connection)

These pins are not connected.

## OPERATION

The $\mu$ PD775x can operate with a $V_{D D}$ supply voltage in the $2.7-$ to $5.5-\mathrm{V}$ range. An external $640-\mathrm{kHz}$ ceramic resonator connected to pins X1 and X2 drives the internal clock oscillator. Initialization is performed by holding the $\overline{\text { RESET }}$ pin low for at least 12 oscillator clock cycles.
When the $\mu \mathrm{PD} 775 \mathrm{x}$ has been idle (that is, when $\overline{\mathrm{CS}}, \overline{\mathrm{ST}}$, or RESET have not been asserted) for more than 3 seconds, the $\mu$ PD775x goes to a standby mode. It will automatically release from standby mode when $\overline{\mathrm{CS}}$ and $\overline{S T}$ are asserted again or when RESET is asserted.

A $\mu$ PD775x can store 256 different messages and up to 4 ( $\mu$ PD7755), 12 ( $\mu$ PD7756), 24 ( $\mu$ PD7757), or 48 ( $\mu$ PD7758) seconds of speech. The message selection at pins $I_{0}-I_{7}$ is latched at the rising edge of $\overline{S T}$ when $\overline{C S}$ is asserted. $\overline{B U S Y}$ goes low until the selected audio speech output is completed. While $\overline{B U S Y}$ is low, a new ST will not be accepted.

The internal D/A converter has 9-bit resolution and unipolar current output. Current can be controlled by

## $\mu$ PD775x Block Diagram



Note: () = Additions for the $\mu$ PD77P56

## ELECTRICAL SPECIFICATIONS

This section describes the electrical specifications for the $\mu$ PD775x family of processors. The $\mu$ PD77P56 electrical specifications in PROM operation mode are described in the later PROM electrical specifications section.

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input capacitance	$\mathrm{C}_{1}$		10	pF	$\mathrm{fc}=1 \mathrm{MHz}$	
Output capacitance	$\mathrm{C}_{\mathrm{O}}$		20	pF		

Absolute Maximum Ratings
$T_{A}=25^{\circ} \mathrm{C}$
$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.3 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
PROM power voltage, $\mathrm{V}_{\mathrm{PP}}$	-0.3 to +13.5 V
PROM output current, IO (AVO pin only)	50 mA


Operating temperature, TOPT   $7755 / 56 / 57 / 58$   $77 P 56$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$   $7755 / 56 / 57 / 58$   77 P 56	-40 to $+85^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

## Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Operating temperature	topt					Ambient temperature
7755/56/57/58		-10		+70	${ }^{\circ} \mathrm{C}$	
77P56		-40		+85	${ }^{\circ} \mathrm{C}$	
Power voltage	$V_{D D}$	2.7		5.5	V	Operation
		5.75		6.25	V	PROM Programming
PROM programming voltage	$\mathrm{V}_{\mathrm{PP}}$	2.7		5.5	V	Operation
		12.2		12.8	V	PROM programming
RESET pulse width	$\mathrm{t}_{\text {RST }}$	18.5			$\mu \mathrm{s}$	
ST set-up time	$\mathrm{t}_{\text {RS }}$	12.5			$\mu \mathrm{s}$	From RESET $\uparrow$
$\overline{\text { ST pulse width }}$	${ }^{\text {t CCl }}$	2			$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
	$\mathrm{t}_{\mathrm{CC} 2}$	350			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V
Data set time	$\mathrm{t}_{\text {DW1 }}$	2			$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
	${ }^{\text {twW2 }}$	350			ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V
Data hold time	${ }^{\text {twD }}$	0			ns	
$\overline{\overline{C S}}$ set-up time	$\mathrm{t}_{\mathrm{CS}}$	0			ns	
$\overline{\overline{C S}}$ hold time	$\mathrm{tsc}_{\text {c }}$	0			ns	
CLK frequency	fosc	630	640	650	kHz	

Note: Voltage at AC timing measuring point: $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V}_{\mathrm{DD}}$
DC Characteristics
$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mu \mathrm{PD} 77 \mathrm{P} 56) ; \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{OSC}}=640 \mathrm{kHz}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage high	$\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V	Applies to $\mathrm{I}_{0}-1_{7}, \overline{S T}, \overline{C S}, \overline{\text { RESET }}$
Input voltage low	$\mathrm{V}_{\text {IL }}$	0		0.3 $V_{D D}$	V	Applies to $\mathrm{I}_{0}-1_{7}, \overline{S T}, \overline{\mathrm{CS}}, \overline{\mathrm{RESET}}$
Output voltage high	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}-0.5$		$V_{\text {DD }}$	V	Applies to $\overline{\mathrm{BUSY}}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output voltage low	$\mathrm{V}_{\text {OL1 }}$			0.4	V	Applies to $\overline{\mathrm{BUSY}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{OL}}=1.6$ mA
	$\mathrm{V}_{\text {OL2 }}$	0		0.5	V	Applies to $\overline{\mathrm{BUSY}}, \mathrm{l} \mathrm{IOL}=-200 \mu \mathrm{~A}$

$\mu$ PD7755/56/P56/57/58

DC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input leakage current	'LI			3	$\mu \mathrm{A}$	Applies to $\mathrm{I}_{0}-\mathrm{I}_{7}, \overline{\mathrm{ST}}, \mathrm{REF}, \overline{\mathrm{CS}} ; \mathrm{V}_{1}=0$ to $\mathrm{V}_{\mathrm{DD}}$
Output leakage current	Lo			3	$\mu \mathrm{A}$	Applies to $\overline{B U S Y} ; V_{O}=0$ to $V_{D D}$ in standby mode
Supply current	IDD1		0.8	2	mA	$V_{D D}=2.7$ to 5.5 V
	${ }^{\text {DD2 }}$		1	20	$\mu \mathrm{A}$	$V_{D D}=2.7$ to 5.5 V in standby mode
	$\mathrm{I}_{\mathrm{DD} 3}$		250	600	$\mu \mathrm{A}$	$V_{D D}=2.7$ to 3.3 V
	IDD4		1	10	$\mu \mathrm{A}$	$V_{D D}=2.7$ to 3.3 V in standby mode
	Ipp		1	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{DD}}$
Reference input high current area (figure 1)	$\mathrm{I}_{\text {REF1 }}$	140	250	440	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=0 \Omega$
	$\mathrm{I}_{\text {REF2 }}$	500	760	1200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=0 \Omega$
Reference input low current area (figure 1)	$\mathrm{I}_{\text {REF3 }}$	21	30	39	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{R}_{\text {REF }}=50 \mathrm{k} \Omega$
	IREF4	68	78	88	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{R}_{\text {REF }}=50 \mathrm{k} \Omega$
D/A converter output current (figure 1)	$\mathrm{I}_{\text {AVO }}$	32	34	36	$\mathrm{I}_{\text {REF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AVO}}=2.0 \mathrm{~V}, \\ & \mathrm{D} / \mathrm{A} \text { input }=1 \mathrm{FFH} \end{aligned}$
D/A converter output leakage current	lıA			$\pm 5$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{AVO}}=0$ to $\mathrm{V}_{\mathrm{DD}}$ in standby mode

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mu \mathrm{PD} 77 \mathrm{P} 56)$; $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V ; fosc $=640 \mathrm{kHz}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\overline{\overline{B U S Y}}$ output time (from $\overline{\mathrm{ST}}$ and/or $\overline{\mathrm{CS}}$ )	${ }^{\text {t }}$ SBO		6.25	10	$\mu \mathrm{s}$	Operation mode
	$t_{\text {SBS }}$		4	80	ms	Standby mode, including oscillation start time
$\overline{\overline{B U S Y}}$ set time	$t_{S B}$		6.25	10	$\mu \mathrm{s}$	Standby mode
Speech output start time	$\mathrm{tsso}^{\text {S }}$		2.1	2.2	ms	Operation mode (from $\overline{\mathrm{BUSY}}$ )
	${ }^{\text {tsss }}$		2.1	2.2	ms	Standby mode
D/A converter set-up time	${ }^{\text {t }}$ DA		46.5	47	ms	Entering/releasing standby mode
$\overline{\text { BUSY }}$ delay time	$\mathrm{t}_{\mathrm{BD}}$			15	$\mu \mathrm{s}$	From end of speech output
BUSY output stop time	$\mathrm{t}_{\text {RB }}$			9.5	$\mu \mathrm{s}$	For $\overline{\text { EESET }} \downarrow$
Standby transition time	${ }^{\text {tSTB }}$		2.9	3	s	From end of speech output

Figure 1. Measuring Diagram for $I_{\text {REF }}$ and $I_{A V O}$


Figure 2. External Oscillator


Timing Waveforms

## AC Waveform Measurement Points



## Standby Mode



Reset Mode


Operating Mode ( $\overline{S T}$ Input Pulse Mode)


## Operating Mode ( $\overline{S T}$ Input Hold Low Mode)



## USING ONE-TIME PROGRAMMABLE ROM

The $\mu$ PD77P56 speech processor features a 256 K -bit one-time programmable (OTP) ROM. This section describes the PROM initialization procedure, the PROM operation modes, the PROM programming procedure, and the data readout verification procedure.

## Initialization

Before programming the PROM, the PROM address 0 clear mode must be set to prevent erroneous programming: set the $\mathrm{MD}_{0}-\mathrm{MD}_{3}$ pins to high, low, high, low, respectively. The PROM address 0 clear specifications are also shown in the PROM Operation Modes table.
Permanent data used for the LSI is stored in the system area of the memory from 0001 H to 0004 H . This data is $5 \mathrm{AH}, \mathrm{A} 5 \mathrm{H}, 69 \mathrm{H}$, and 55 H . Blank check the memory at 0000 H and from 0005 H to the end address. Program the memory from 0000 H to the end address.

## PROM Operation Modes

To enter the PROM operation modes, connect +6 V to $V_{D D}$ and +12.5 V to $\mathrm{V}_{P P}$ and set the $\overline{S T}$ pin to low level. Also set AVO and $X_{2}$ pins open and $X_{1}$ to low level. There are four PROM operation modes. The PROM Operation Modes table identifies and decribes these four modes.

## PROM Operation Modes

Operation Mode	Description	Operation Mode Specifications			
		M ${ }_{0}$	MD ${ }_{1}$	MD2	$\mathrm{MD}_{3}$
PROM address 0 clear	This mode sets the PROM address to 0 , even if set while switching between modes. Setting this mode out of sequence may result in erroneous changes to data.	High	Low	High	Low
Program mode	This mode programs speech data to PROM with data on $D_{0}$ $\mathrm{D}_{7}$.	Low	High	High	High
Verify mode	This mode checks the speech data stored in PROM. The data can be verified by reading $D_{0}-D_{7}$.	Low	Low	High	High
Inhibit mode	This precautionary mode can be used while switching between modes. This mode can be passed through to avoid an accidental setting of the program address 0 clear mode.	High	High or Low	High	High

## PROM Programming Procedure

This procedure describes how to program the PROM. Data can be programmed into PROM at two timing speeds, low or high. The procedure for both speeds is the same, except that at low speed data is programmed for 1 millisecond and at high speed data is programmed for 250 microseconds. The PROM timing waveforms section has diagrams that illustrate lowand high-speed timing. See figure 3 for a flow-chart diagram of the PROM programming procedure. The procedure is as follows:
(1) Set $\overline{\text { ST }}$ pin to low level, AVO and X2 pins to open, and $\mathrm{X1}$ to low level.
(2) Apply +5 V to $V_{D D}$ and to $V_{P P}$.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Set PROM address 0 clear mode.
(5) Apply +6 V to $\mathrm{V}_{\mathrm{DD}}$ and +12.5 V to $\mathrm{V}_{\mathrm{PP}}$
(6) Set program inhibit mode.
(7) Program data in 1 ms (low speed) or $250 \mu \mathrm{~s}$ (high speed) of program mode.
(8) Set inhibit mode.
(9) Set verify mode: If data has been programmed, go to step 10, if data has not been programmed, repeat steps 7 to 9 .
(10) For low-speed, additional programming: $\mathrm{X} \times 1 \mathrm{~ms}$, where $X$ is equal to the number of times data has been programmed in steps 7 to 9 .
(11) Set inhibit mode.
(12) Increment an address by applying a pulse to X1 pin four times.
(13) Repeat steps 7 to 9 up to the final address.
(14) Set PROM address 0 clear mode.
(15) Change voltages $V_{D D}$ and $V_{P P}$ to +5 V .
(16) Turn the power off.

## Notes:

(1) Avoid setting the PROM address 0 clear mode when moving to another mode.
(2) This high-speed programming procedure is different from that of $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$.

## PROM Data Readout Procedure

The programmed processor can read out data from the PROM. The PROM timing waveforms section has a diagram that illustrates the data readout timing. To verify the data, use the following procedure:
(1) Set $\overline{\text { ST }}$ pin to low level, AVO and X2 pins to open, and X 1 to low level.
(2) Apply +5 V to $\mathrm{V}_{\mathrm{DD}}$ and to $\mathrm{V}_{\mathrm{PP}}$.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Set PROM address 0 clear mode.
(5) Apply +6 V to $\mathrm{V}_{\mathrm{DD}}$ and +12.5 V to $\mathrm{V}_{\mathrm{PP}}$.
(6) Set inhibit mode.
(7) Set verify mode: Read data for one address on $D_{0}$ - $\mathrm{D}_{7}$; then apply four clock pulses to the X1 pin. Repeat for each address up to the end address.
(8) Set inhibit mode.
(9) Set PROM address 0 clear mode.
(10) Change voltages $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{PP}}$ to +5 V .
(11) Turn the power off.

Note: Avoid setting the PROM address 0 clear mode when moving to another mode.

Figure 3. PROM Programming Flow Chart


## PROM ELECTRICAL SPECIFICATIONS

This section lists the electrical specifications of the $\mu$ PD77P56 while in PROM operation modes.

DC Characteristics
$T_{A}=25 \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=6 \pm 0.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage high	$\mathrm{V}_{\mathrm{H} 1}$	4.2		6	V	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{MD}_{0}, \mathrm{MD}_{1}, \mathrm{MD}_{3}, \overline{\mathrm{ST}}, \mathrm{X} 1$
	$\mathrm{V}_{1+2}$	2.5		6	V	$\mathrm{MD}_{2}$
Input voltage low	$\mathrm{V}_{\text {IL } 1}$	0		1.8	V	$\mathrm{D}_{0}-\mathrm{D}_{7}, M \mathrm{D}_{0}, M \mathrm{D}_{1}, M D_{3}, \overline{\mathrm{ST}}, \mathrm{X} 1$
	$\mathrm{V}_{\text {IL2 }}$	0		0.5	V	$\mathrm{MD}_{2}$
Output voltage high	$\mathrm{V}_{\mathrm{OH}}$	5.5			v	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{IOH}=-1 \mathrm{~mA}$
Output voltage low	$\mathrm{V}_{\mathrm{OL}}$			0.5	V	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{l}_{\mathrm{OL}}=+1 \mathrm{~mA}$
Input leakage current	$\mathrm{l}_{\mathrm{LI}}$			3	$\mu \mathrm{A}$	$\mathrm{D}_{0}-\mathrm{D}_{7}, M \mathrm{MD}_{0}, \mathrm{MD}_{1}, \mathrm{MD}_{3}, \overline{\mathrm{ST}}, \mathrm{V}_{\mathbb{I N}}=0$ to $\mathrm{V}_{\mathrm{DD}}$
Clock input current	${ }_{1 / \mathrm{H} 1}$	3		20	$\mu \mathrm{A}$	$\mathrm{X} 1, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
	ILL1	3		20	$\mu \mathrm{A}$	$\mathrm{X} 1, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$
$\mathrm{MD}_{2}$ input current	$\mathrm{I}_{\mathrm{H} 2}$	0.5		1.4	mA	$M D D_{2}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$
		0.12		0.4	mA	$\mathrm{MD}_{2}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
	$11 / 2$			3	$\mu \mathrm{A}$	$\mathrm{MD}_{2}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
Supply current	$\mathrm{I}_{\mathrm{DD}}$			2	mA	
	Ipp			10	mA	

## AC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Address setup time (for $\mathrm{MD}_{0} \downarrow$ )	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
$\underline{M D_{1}}$ setup time (for $\mathrm{MD}_{0} \downarrow$ )	$t_{\text {M1S }}$	2			$\mu \mathrm{s}$	
Data setup time (for $\mathrm{MD}_{0} \downarrow$ )	$t_{D S}$	2			$\mu \mathrm{s}$	
Address hold time (for $\mathrm{MD}_{0} \uparrow$ )	${ }^{\text {t }}$ A	2			$\mu \mathrm{s}$	
Data hold time (for $\mathrm{MD}_{0} \uparrow$ )	$t_{\text {DH }}$	2			$\mu \mathrm{s}$	
$\mathrm{MD}_{0} \uparrow$ to data output float delay time	$t_{\text {DF }}$	0		130	ns	
$\mathrm{V}_{\mathrm{PP}}$ setup time (for $\mathrm{MD}_{3} \uparrow$ )	tvPs	2			$\mu \mathrm{s}$	
$\mathrm{V}_{\text {DD }}$ setup time (for $\mathrm{MD}_{3} \uparrow$ )	tvDs	2			$\mu \mathrm{s}$	
Initial program pulse width	${ }_{\text {t }}$ W	0.9	1	1.1	ms	Low-speed programming
		240	250	260	$\mu \mathrm{s}$	High-speed programming
$\underline{M D_{0} \text { setup time (for } \mathrm{MD}_{1}{ }^{\dagger} \text { ) }}$	$\mathrm{tmOS}^{\text {m }}$	2			$\mu \mathrm{s}$	
$\mathrm{MD}_{0} \downarrow$ to data output delay time	$t_{\text {DV }}$			1	$\mu \mathrm{s}$	$\mathrm{MD}_{0}=\mathrm{MD}_{1}=\mathrm{V}_{\mathrm{IL}}$
$\mathrm{MD}_{1}$ hold time (for $\mathrm{MD}_{0} \uparrow$ )	$\mathrm{t}_{\mathrm{M1H}}$	2			$\mu \mathrm{s}$	$\mathrm{t}_{\mathrm{M} 1 \mathrm{H}}+\mathrm{t}_{\mathrm{M} 1 \mathrm{R}} \geq 50 \mu \mathrm{~s}$
$\mathrm{MD}_{1}$ recovery time (for $M D_{0} \downarrow$ )	$\mathrm{t}_{\mathrm{M1R}}$	2			$\mu \mathrm{s}$	
Program counter reset time	${ }_{\text {t }}^{\text {PCR }}$	10			$\mu \mathrm{s}$	
X 1 input high-and low-level widths	${ }_{\text {t }}^{\text {XH, }}$, $\mathrm{t}_{\mathrm{XL}}$	1			$\mu \mathrm{s}$	
X1 input frequency	${ }^{\text {f }} \mathrm{X}$			1	MHz	
Initial mode-setting time	$t_{1}$	2			$\mu \mathrm{s}$	

## AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
$\mathrm{MD}_{3}$ setup time (for $\mathrm{MD}_{1}{ }^{\text {1 }}$ )	${ }^{\text {tM3S }}$	2			$\mu \mathrm{s}$	
$\mathrm{MD}_{3}$ hold time (for $M D_{1} \downarrow$ )	${ }^{\text {¢ }}$ M 3 H	2			$\mu \mathrm{s}$	
$\underline{M D_{3} \text { setup time (for } M D_{0} \downarrow \text { ) }}$	${ }^{\text {m M }}$ MSR	2			$\mu \mathrm{s}$	Program memory readout
Address to data output delay time	${ }^{\text {t }}$ DAD	2			$\mu \mathrm{s}$	
Address to data output hold time	$t_{\text {HAD }}$	0		130	ns	
$\mathrm{MD}_{3}$ hold time (for $\mathrm{MD}_{0} \uparrow$ )	${ }^{\text {m }}$ M ${ }^{\text {HR }}$	2			$\mu \mathrm{s}$	
$\underline{M D_{3} \downarrow \text { to data output float delay time }}$	$t_{\text {DFR }}$	2			$\mu \mathrm{s}$	
$\underline{M D_{0}}$ hold time (for $\mathrm{MD}_{2} \uparrow$ )	${ }^{\text {m MOHS }}$	2			$\mu \mathrm{s}$	
$\mathrm{MD}_{2} \uparrow$ to data output delay time	${ }^{\text {t }}$ D ${ }^{\text {d }}$	2			$\mu \mathrm{s}$	
$\underline{M D_{2} \text { hold time (for } \mathrm{MD}_{0} \downarrow \text { ) }}$	$t_{\text {moss }}$	2			$\mu \mathrm{s}$	

## PROM Timing Waveforms

Low-Speed Data Programming Timing


High-Speed Data Programming Timing


## Data Readout Timing



## Description

The $\mu$ PD7759 is a speech processing LSI that, with an external ROM, utilizes adaptive differential pulse-code modulation (ADPCM) to produce high-quality, naturalsounding speech. By combining melody mode with the ADPCM method and pause compression, the device achieves a compressed bit rate that can reproduce sound effects and melodies in addition to speech sound.

The $\mu$ PD7759 can directly address up to 1 M bits of external data ROM, or the host CPU can control the speech data transfer. The $\mu$ PD7759 is also suitable for applications requiring small production quantities or long messages, and for emulating the $\mu$ PD7755/56/P56/ 57/P57/58.

## Features

- High-quality speech reproduction using ADPCM
- Low bit-rates ( 10 to $32 \mathrm{~kb} / \mathrm{s}$ ) realized by combined use of ADPCM and pause compression
$\square$ Bit rates to less than $1 \mathrm{~kb} / \mathrm{s}$ for sound effects, melodies, and tones (DTMF) using melody mode
- Sampling frequency: 5,6 , or 8 kHz
- D/A converter with 9-bit resolution; unipolar current waveform output
- Up to 1 M bits addressing for external data ROM
- Reproduction time: 50 seconds typical (for 6 kHz sampling)
- Standby function
- Circuit to eliminate popcorn noise when entering or releasing standby mode
- Control signal interface; general purpose 4- or 8bit CPU
$\square$ Wide operating voltage range: 2.7 to 5.5 V
- CMOS technology
- 40-pin plastic DIP; 52-pin plastic QFP package


## Ordering Information

Part Number	Package
$\mu$ PD7759C	40-pin plastic DIP
$\mu$ PD7759GC	52-pin plastic QFP

## Pin Configurations

40-Pin Plastic DIP

$\mathrm{ASD}_{5}{ }^{1}$	$40{ }^{40}$
$\mathrm{ASD}_{6} \mathrm{G} 2$	$39 \mathrm{ASD}_{4}$
$\mathrm{ASD}_{7} \mathrm{~S}^{3}$	$38 \mathrm{ASD}_{3}$
104	${ }^{3} \mathrm{PaSD}$
$1{ }_{1} 5$	${ }^{36} \mathrm{ASD}_{1}$
1286	$25 \square \mathrm{ASD}_{0}$
13.7	$34 \mathrm{~A}_{8}$
1488	$33 \mathrm{~Pa}_{7}$
159	$32 \square \mathrm{~A}_{6}$
${ }_{16}{ }^{4} 10$	$31 \sim A_{5}$
17811	${ }_{0} \square^{2} A_{4}$
$\overline{\text { AEN }} \overline{\text { WR }} 12$	$29 \mathrm{~A}_{3}$
SAA $\mathrm{S}_{13}$	$28 \mathrm{~A}_{2}$
$\overline{\text { DRQ }} 14$	$27 \mathrm{~A}_{1}$
ale 515	${ }_{26} \mathrm{~A}_{0}$
REF 16	25 日cs
AVO 17	24 Px
BUSY 18	23 x ${ }^{1}$
RESET - 19	$22 \mathrm{\square} \overline{\mathrm{ST}}$
GND 20	$21] \overline{M D}$

## 52-Pin Plastic QFP



## Pin Identification

Symbol	Name
$\mathrm{A}_{0}-\mathrm{A}_{8}$	Lower 9 bits of address output for speech data
$\overline{\text { AEN }} / \overline{W R}$	Address valid output/Write strobe input for speech data
ALE	High address latch enable output
$\mathrm{ASD}_{0}-\mathrm{ASD}_{7}$	Higher 8 bits of address output/Speech data input (multiplexed)
AVO	Analog voice output
$\overline{\text { BUSY }}$	Busy output
$\overline{\mathrm{CS}}$	Chip select input
$\overline{\mathrm{DRQ}}$	Data request output
$\mathrm{I}_{0}-1_{7}$	Message select code input
$\overline{\mathrm{MD}}$	Mode select input (stand alone/slave)
REF	D/A converter reference current input
RESET	Reset input
SAA	Directory data output address valid
ST	Start input
X1, X2	Ceramic resonator clock terminals
$\mathrm{V}_{\mathrm{DD}}$	+5-volt power supply
GND	Ground
NC	No connection

## PIN FUNCTIONS

## $\mathrm{A}_{0}-\mathrm{A}_{\mathbf{8}}$ (Address Bus)

These are output lines for the lower 9 bits of the address bus. They are ineffective in the slave mode.

## $\overline{\text { AEN }} / \overline{W R}$ (Address Enable Output/Write Signal Input)

$\overline{\text { AEN }}$ is high when the address signal is valid in standalone mode. $\overline{W R}$ is the write input signal for speech data in slave mode.

## ALE (Address Latch Enable)

This signal defines the higher address bit timing latched externally. It is ineffective in the slave mode.

## $\mathrm{ASD}_{0}-\mathrm{ASD}_{7}$ (Address/Speech Data)

$A S D_{0}-A S D_{7}$ are the output lines for the higher 8 bits of the address signal and the input lines for speech data in standalone mode. In slave mode, these are input lines for speech data.

## AVO (Analog Voice Output)

AVO outputs speech from the D/A converter. This is a unipolar sink-load current. No current flows in standby mode.

## $\overline{\text { BUSY }}$ (Busy)

$\overline{\mathrm{BUSY}}$ outputs the status of the $\mu$ PD7759. It goes low during speech decode and output operations. When $\overline{S T}$ is received, $\overline{B U S Y}$ goes low. While $\overline{B U S Y}$ is low, another ST will not be accepted. In standby mode, $\overline{B U S Y}$ becomes high impedance. This is an active low output.

## $\overline{\mathbf{C S}}$ (Chip Select)

When the $\overline{\mathrm{CS}}$ input goes low, $\overline{\mathrm{ST}}$ is enabled. In standalone mode and $\overline{W R}$ is enabled in slave mode.

## $\overline{\mathrm{DRQ}}$ (Data Request)

This is the data request output signal for slave mode.

## $I_{0}-I_{7}$ (Message Select Code)

$I_{0}-I_{7}$ input the message number of the message to be reproduced. The inputs are latched at the rising edge of the $\overline{S T}$ input. Unused pins should be grounded. In standby mode, these pins should be set high or low. If they are biased at or near typical CMOS switch input, they will drain excess current.

## $\overline{\text { MD }}$ (Mode Select Input)

$\overline{M D}$ is low to specify slave mode operation. Transition between two operation modes is not accepted during speech output or in the standalone mode.

## REF (D/A Converter Reference Current)

REF inputs the sink-load current that controls the D/A converter output. REF should be connected to $V_{D D}$ via a resistor. In standby mode, REF becomes high impedance.

## RESET (Reset)

The $\overline{\operatorname{RESET}}$ input initialized the chip. Use $\overline{\text { RESET }}$ following power-up to abort speech reproduction or to release standby mode. $\overline{\text { RESET must remain low at least }}$ 12 oscillator clocks. At power-up or when recovering from standby mode, RESET must remain low at least 12 more clocks after clock oscillation stabilizes.

## SAA (Start Address)

SAA indicates that the start address of a message stored in the directory of the data memory is being read out. It is ineffective in the slave mode.

## $\overline{\text { ST }}$ (Start)

Setting the $\overline{S T}$ input low while $\overline{\mathrm{CS}}$ is low will start speech reproduction of the message in the speech ROM locations addressed by the contents of $I_{0}-I_{7}$. If the device is in standby mode, standby mode will be released.

## X1, X2 (Clock)

Pins X1 and X2 should be connected to a $640-\mathrm{kHz}$ ceramic resonator. In standby mode, X1 goes low and X2 goes high.
$\mathrm{V}_{\mathrm{DD}}$ (Power)
+5-V power supply.

## GND (Ground)

Ground.

## NC (No Connection)

These pins are not connected.

## Block Diagram



## OPERATION

The clock pins should be connected to a ceramic resonator at 640 kHz

The RESET input pin is used to initialize the device. To reset, assert the pin for a minimum of 12 oscillator clock cycles.
The $\mu$ PD7759 can operate with a wide range of supply voltages: 2.7 to 5.5 V . It also has a standby function; it goes to a standby mode when it has been idle (that is, when $\overline{\mathrm{CS}}, \overline{\mathrm{ST}}$, or $\overline{\mathrm{RESET}}$ have not been asserted) for more than 3 seconds. The device will automatically release from standby mode when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{ST}}$ are asserted again, or when $\overline{\text { RESET }}$ is asserted.

The $\mu$ PD7759 has a very simple message selection interface with 1 Mbit of external ROM and can store a maximum of 256 different messages and up to 50 seconds of speech. The message is selected by using input pins $I_{0}-I_{7}$. The selection is latched at the rising edge of $\overline{S T}$ when $\overline{\mathrm{CS}}$ is asserted. When $\overline{\mathrm{ST}}$ is asserted, $\overline{B U S Y}$ will go low until the selected audio speech output is completed. While $\overline{\mathrm{BUSY}}$ is low, a new $\overline{\text { ST }}$ will not be accepted.

The $\mu$ PD7759 has an internal D/A converter-a unipolar, current-output type with 9-bit resolution. The converter output current can be controlled by the voltage applied at the REF pin.

## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.3 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\text {OPT }}$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-40 to $+125^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

## Capacitance

$T_{A}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit
Conditions					
Input capacitance	$\mathrm{C}_{1}$	10	pF	$\mathrm{fc}=1 \mathrm{MHz}$	
Output capacitance	$\mathrm{C}_{\mathrm{O}}$	20	pF		

DC Characteristics
$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} ;$ fosc $=640 \mathrm{kHz}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	V	Common to $\mathrm{I}_{0}-17, \overline{\mathrm{ST}}, \overline{\mathrm{CS}}, \overline{\mathrm{RESET}}, \overline{\mathrm{MD}}, \overline{\mathrm{WR}}$
	$\mathrm{V}_{\mathrm{IH} 2}$	2.2		V ${ }_{\text {DD }}$	V	Common to $\mathrm{ASD}_{0}-\mathrm{ASD}_{7} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\pm 10 \%$
Input voltage, low	$\mathrm{V}_{\text {IL }}$	0		0.3 VDD	V	Common to $\mathrm{I}_{0}-17, \overline{\mathrm{ST}}, \overline{\mathrm{CS}}, \overline{\mathrm{RESET}}, \overline{\mathrm{MD}}, \overline{\mathrm{WR}}$
	$\mathrm{V}_{\text {IL } 2}$	0		0.8	V	$\text { Common to } \mathrm{ASD}_{0}-\mathrm{ASD}_{7} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\pm 10 \%$
Output voltage, high	$\mathrm{V}_{\mathrm{OH}}$	$V_{D D}-0.5$		$V_{\text {DD }}$	V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Output voltage, low	$\mathrm{V}_{\mathrm{OL}}$	0		0.4	V	$\mathrm{I}_{\mathrm{OL}}=-1.6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
Input leakage current	$\mathrm{l}_{\mathrm{LI}}$			3	$\mu \mathrm{A}$	Common to $\mathrm{I}_{0}-17, \overline{\mathrm{ST}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \overline{\mathrm{MD}}, \mathrm{ASD}_{0}$ $\mathrm{ASD}_{7}$
Output leakage current	Lo			3	$\mu \mathrm{A}$	$\overline{\text { BUSY, }} \mathrm{A}_{0}-\mathrm{A}_{8}$
Supply current	IDD1			10	mA	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
	IDD2			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ in standby mode
	IDD3			1	$\mu \mathrm{A}$	$V_{D D}=2.7$ to 3.5 V
	IDD4			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 3.5 V in standby mode
Reference input high current area (figure 1)	IREF1	140	250	440	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=0 \Omega$
	IREF2	500	760	1200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=0 \Omega$
Reference input low current area (figure 1)	IREF3	21	30	39	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega$
	$\mathrm{I}_{\text {REF4 }}$	68	78	88	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega$
D/A converter output current (figure 1)	$\mathrm{l}_{\text {AVO }}$	32	34	36	$\mathrm{I}_{\text {REF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AVO}}=2.0 \mathrm{~V} ; \mathrm{D} / \mathrm{A} \\ & \text { input }=1 \mathrm{FFH} \end{aligned}$
D/A converter output leakage current	ILA			$\pm 5$	$\mu \mathrm{A}$	Standby mode; $\mathrm{V}_{\text {AVO }}=0$ to $\mathrm{V}_{\mathrm{DD}}$

Figure 1. Measuring Diagram for IREF and IAVO


Figure 2. External Oscillator


Ceramic resonators:
Kyocera Corp. KBR-640B (C1 = C2 $=220$ pF)
Murata Mfg. Co. Ltd. CSB640P (C1 = C2 = 220 pF )

## AC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{fOSC}=640 \mathrm{kHz}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Timing for All Modes						
$\overline{\mathrm{CS}}$ setup time	$\mathrm{t}_{\mathrm{CS}}$	0			ns	When ST $\downarrow$
$\overline{\overline{C S}}$ hold time	$\mathrm{t}_{\mathrm{Sc}}$	0			ns	After ST $\uparrow$
$\overline{\text { ST pulse width }}$	$\mathrm{t}_{\mathrm{cc} 1}$	350			ns	$V_{D D}=5 \mathrm{~V} \pm 10 \%$
	$\mathrm{tcC2}$	5			$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
Message code setup time	${ }^{\text {t }}$ W1	350			ns	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$
	$t_{\text {DW2 }}$	5			$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
Message code hold time	twD	0			$\mu \mathrm{s}$	After ST $\uparrow$

## Switching Characteristics for All Modes

BUSY rise time	$t_{R 1}$	800	$n s$	$C_{L}=150 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
	$\mathrm{t}_{\mathrm{R} 2}$	2	$\mu \mathrm{~s}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} \pm 10 \%$
${\hline \multirow{18}{}}{ } }$	$\mathrm{t}_{\mathrm{F} 1}$	800	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
	$\mathrm{t}_{\mathrm{F} 2}$	2	$\mu \mathrm{~s}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} \pm 10 \%$

## Timing for Standalone Mode

RESET pulse width	$\mathrm{t}_{\text {RST }}$	18.5		$\mu \mathrm{s}$	
$\overline{\overline{C S}}$ setup time	${ }^{\text {t }} \mathrm{CS}$	0		ns	When ST $\downarrow$
$\overline{\mathrm{CS}}$ hold time	tsc	0		ns	After $\overline{\text { ST }} \uparrow$
ST pulse width	$\mathrm{tcCl}^{1}$	2		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
	${ }^{\text {t }} \mathrm{CC2}$	350		ns	$V_{D D}=4.5$ to 5.5 V
Message code setup time	$t_{\text {DW1 }}$	2		$\mu \mathrm{s}$	$V_{D D}=2.7$ to 5.5 V
	${ }_{\text {t WW2 }}$	350		ns	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V
Message code hold time	twD	0		ns	After ST $\uparrow$
Speech data setup time	$t_{\text {RD }}$	8		$\mu \mathrm{s}$	When $\overline{\mathrm{DRQ}} \downarrow$
Speech data hold time	$t_{\text {RDH }}$	1.25		$\mu \mathrm{s}$	After $\overline{\mathrm{DRQ}} \uparrow$
$\overline{\text { ST }}$ setup time	$t_{\text {RS }}$	12.5		$\mu \mathrm{s}$	After RESET $\uparrow$
$\overline{\text { BUSY }}$ hold time	$t_{\text {RB }}$		9.5	$\mu \mathrm{s}$	After RESET $\downarrow$

## Switching Characteristics for Standalone Mode

BUSY output delay	$t_{\text {sBO }}$	6.25	10	$\mu \mathrm{s}$	Operation mode after $\overline{S T} \downarrow$
Speech output delay	tsso	2.1	2.2	ms	Operation mode after $\overline{\text { BUSY }} \downarrow$
$\overline{\text { BUSY }}$ hold time	$t_{B D}$		15	$\mu \mathrm{s}$	After speech reproduction
ALE pulse width	$t_{\text {LL }}$	3.13		$\mu \mathrm{s}$	
Higher address setup time	$t_{\text {AL }}$	3.13		$\mu \mathrm{s}$	When ALE $\downarrow$
	$t_{\text {AE }}$	0		$\mu \mathrm{s}$	When AEN $\uparrow$
	$t_{\text {LA }}$	3.13		$\mu \mathrm{s}$	After ALE $\downarrow$
	$t_{\text {EA }}$	0		$\mu \mathrm{s}$	After $\overline{\text { AEN } \uparrow}$
$\overline{\text { AEN }}$ pulse width	$t_{\text {AEN }}$	14.1		$\mu \mathrm{s}$	
$\overline{\mathrm{DRQ}}$ output time	tic	3.13		$\mu \mathrm{s}$	After ALE $\downarrow$
Pulse width timing	$t_{A C}$	6.25		$\mu \mathrm{s}$	
$\overline{\mathrm{DRQ}}$ pulse duration	${ }^{\text {t }}$ DCC	7.81		$\mu \mathrm{s}$	
$\underline{\text { ROM read cycle time }}$	${ }_{\text {tMRO }}$	37.5		$\mu \mathrm{s}$	

## AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Timing for Slave Mode						
$\overline{\overline{M D}}$ input timing	$\mathrm{t}_{\mathrm{RM}}$	6.2			$\mu \mathrm{s}$	After $\overline{\text { RESET }} \uparrow$
	$t_{B M}$	0			ns	After $\overline{\text { BUSY }} \uparrow$
	${ }^{\text {t }}$ MD	6.2			$\mu \mathrm{s}$	After $\overline{\mathrm{MD}} \uparrow$
Speech data setup time	${ }^{\text {t }}$ D ${ }^{\text {d }}$	350			ns	When $\overline{\mathrm{WR}} \uparrow ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
Speech data hold time	tow	0			ns	When $\overline{\mathrm{WR}} \uparrow ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
Data write time	${ }^{\text {twR }}$			31.7	$\mu \mathrm{s}$	After $\overline{\mathrm{DRQ}} \downarrow$
$\overline{\text { WR }}$ pulse width	$\mathrm{tcc}^{\text {c }}$	350			ns	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$
$\overline{C S}$ setup time	${ }_{\text {t }}$ c ${ }_{\text {w }}$	0			ns	When WR $\downarrow$
$\overline{\overline{C S}}$ hold time	twc	0			ns	After $\overline{\mathrm{WR}} \uparrow$
$\overline{\overline{M D}}$ pulse width	$\mathrm{t}_{\text {MD2 }}$	6.2			ns	

Switching Characteristic for Slave Mode

$\overline{\mathrm{BUSY}}$ output delay	$\mathrm{t}_{\mathrm{SBO}}$	9.5	$\mu \mathrm{~s}$	After $\overline{\mathrm{MD}} \downarrow$	
$\overline{\overline{\mathrm{DRQ}} \text { output delay }}$	$\mathrm{t}_{\mathrm{MDR}}$	50	70	$\mu \mathrm{~s}$	After $\overline{\mathrm{MD}} \downarrow$
Data request timing	$\mathrm{t}_{\mathrm{WRQ}}$		3	$\mu \mathrm{~s}$	After $\overline{\mathrm{WR}} \downarrow$

Timing for Standby Mode
Pulse width standby escape signal $\quad t_{\text {AW }} \quad 350 \quad$ ns $\quad V_{D D}=5 \mathrm{~V} \pm 10 \%$
(Note)
Switching Characteristics for Standby Mode

Operation mode hold time	${ }_{\text {t }}$ STB	2.9	3	$s$	After speech reproduction
Activate/Inactivate D/A converter time	${ }^{\text {D }}$ D	46.5	47	ms	
$\overline{\text { BUSY } \downarrow ~}$	$t_{S B}$	6.25	10	$\mu \mathrm{s}$	After L $\downarrow$ (Note)
Speech reproduction start time	$t_{\text {SSS }}$	2.1	2.2	ms	After ${ }_{\text {DA }}$
$\overline{\text { BUSY }}$ output delay	$t_{\text {SBS }}$	4	80	ms	After L $\downarrow$ (Note)

Note: $L=$ Signal to escape standby mode or $\overline{S T} \downarrow$ following $\overline{\mathrm{CS}} \downarrow$ when operation is standalone mode or $\overline{\mathrm{WR}} \downarrow$ following $\overline{\mathrm{CS}} \downarrow$ when operation is slave mode

Timing Waveforms

## Reset



## Control Timing For Standalone Mode



Memory Access Timing for Standalone Mode


4978-413B

## Control Timing for Slave Mode



## Data Transfer for Slave Mode



## Timing for Standby Mode



NEC Electronics Inc.

## Preliminary

## Description

The $\mu$ PD77501 is a high-quality speech record/playback LSI using adaptive differential pulse-code modulation (ADPCM). With its dual-tone multifrequency (DTMF) receiver to identify inputs from a telephone keypad, the $\mu$ PD77501 is suitable for applications with telephone answering machines, voicemail systems, fax machines, and home automation equipment.

Received messages are recorded and played back in external DRAM. External ROM or SRAM can be used for outgoing messages or hold music.

## Features

- On-chip circuits
-DTMF receiver
- Lowpass filter
- Microphone amplifiers with variable/fixed gain
- 10-bit A/D and D/A converters
- ADPCM coder/decoder
- DRAM refresh controller
- Selectable bit rate: 12 , 18 , or $24 \mathrm{~kb} / \mathrm{s}$; fixed $6-\mathrm{kHz}$ sampling frequency.
- Messages: maximum 64 phrases (for each memory bank)
- Phrase recording: fixed or variable length
- Port control and bus control (selectable)
- Port control suitable for 4-bit CPU
- Bus control suitable for 8/16-bit CPU
- External DRAM (16M bits total max) for recording/ playback of incoming messages; approximate time:
$-24 \mathrm{~kb} / \mathrm{s}: 11 \mathrm{~min} 30 \mathrm{sec}$
- $18 \mathrm{~kb} / \mathrm{s}: 15 \mathrm{~min} 30 \mathrm{sec}$
- $12 \mathrm{~kb} / \mathrm{s}$ : 23 min 18 sec
- External ROM/SRAM (1M bits total max) for recording/playback of outgoing messages and playback of fixed words; approximate time:
$-24 \mathrm{~kb} / \mathrm{s}: 44 \mathrm{sec}$
- $18 \mathrm{~kb} / \mathrm{s}: 1 \mathrm{~min}$
$-12 \mathrm{~kb} / \mathrm{s}: 1 \mathrm{~min} 27 \mathrm{sec}$
Recording enabled by sound trigger to save memory
80-pin plastic QFP
- Single +5 -volt power supply

Ordering Information

Part Number	Package
$\mu$ PD77501GC-3B9	80 -pin plastic QFP

Pin Configuration
80-Pin Plastic QFP


## PIN FUNCTIONS

Tables 1, 2, and 3 describe the functions of pins on the 80 -pin plastic QFP package of the $\mu$ PD77501. Pins are listed in alphabetical order by symbol with power pins at the end of table 1.

Table 1. Pin Functions in Bus Control and Port Control Modes

Symbol	Pin No.	1/0	Function
$\mathrm{A}_{0} \cdot \mathrm{~A}_{16}$	66-80, 2-3	Out	Memory address
$\mathrm{AlN}^{\text {N }}$	28	In	A/D converter input. The analog signal to be recorded is input to the A/D converter. To use the onchip microphone amplifier, connect MOUT to $A_{I N}$.
AOUT	30	Out	D/A converter output. The decoded voice signal is output from the D/A converter.
$\overline{B C / \overline{P C}}$	43	In	* Specifies control mode according to interface with host CPU:   $0=$ Port control   $1=$ Bus control
BUSY	36	Out	Indicates execution of a recording/ playback:   $0=$ Standby   1 = Recording/playback
$\overline{\text { CAS }}$	14	Out	Column address strobe signal to DRAM
$\overline{\text { CDBUSY }}$	35	Out	Command processor status:   $0=$ Command in processing   $1=$ Standby
$\overline{\overline{C E}}$	18	Out	Chip enable signal to SRAM or ROM
$D_{0}-D_{7}$	4-11	I/O	Memory data input or output; three-state circuits
DET	37	Out	DTMF receiver status:   $0=$ Standby   1 = Receiving DTMF signal
DM	46	In	* Specifies DTMF receiving mode depending on the instantaneous interruption characteristics in DTMF receiving:   $0=$ PT short mode ( $30-\mathrm{ms}$ pause time)   $1=\mathrm{PT}$ long mode ( $40-\mathrm{ms}$ pause time)
END	34	Out	Recording disable bit; checks for existing space for phrase in memory.   $0=$ Recording enable   1 = Recording disable
MEM	44	In	* Specifies DRAM size: $\begin{aligned} & 0=256 \mathrm{~K} \times 4 \\ & 1=1 \mathrm{M} \times 1 \end{aligned}$

Table 1. Pin Functions in Bus Control and Port Control Modes (cont)

Symbol	Pin No.	I/O	Function
MIN1,   MIN2	24, 26	In	Microphone amplifier input
MOUT1, MOUT2	25, 27	Out	Microphone amplifier output
$Q_{0}-Q_{3}$	$\begin{aligned} & 42,40, \\ & 39,38 \end{aligned}$	Out	DTMF signal decoded to 4-bit hex data ( 0 thru F).
$\overline{\overline{\text { RASO }}}$	16, 15	Out	Row address strobe signals to DRAM
$\overline{\text { RST }}$	45	In	Reset signal for power-save mode.
$\overline{\text { WE }}$	17	Out	Write enable signal to DRAM and SRAM/ROM
$\overline{\mathrm{WR}}$	54	In	Data write strobe signal
X1, X2	48, 47	In	Connections to external 18.432MHz crystal
$\mathrm{AV}_{\mathrm{DD}}$	23	In	+5-V analog system power supply
AGND	22	-	Analog system ground
$\mathrm{V}_{\text {REF }}$	21	Out	Analog reference voltage
$\mathrm{V}_{\mathrm{DD}}$	12, 50-51	In	+5-V digital system power supply
GND	$\begin{aligned} & 13,19, \\ & 31,33,61 \end{aligned}$	-	Digital system ground
NC	$\begin{aligned} & 1,20,29, \\ & 32,41, \\ & 49,60 \end{aligned}$	-	No connection

* The High/Low input to pins BC/ $\overline{\mathrm{PC}}, \mathrm{DM}$, and MEM should be fixed when developing the system.

Table 2. Pin Functions in Bus Control Mode

Symbol	Pin No.	I/O	Function
$\mathrm{CD}_{0}-\mathrm{CD}_{7}$	$65-62,59-56$	I/O	8-bit data input/output; three-state   circuits
$\overline{\overline{\mathrm{CS}}}$	52	In	Chip select
$\overline{\mathrm{RD}}$	53	In	Data read strobe
REG	55	In	* Specifies register for data write/   read
			$0=$ DDR (DTMF data register)   $1=$ STR (Status register)

[^12] are being output from pins CDBUSY, BUSY, DET, $Q_{0}-Q_{3}$, and END.

Table 3. Pin Functions in Port Control Mode

Symbol	Pin No.	1/0	Function	
$B_{0}, B_{1}$	55, 52	In	Recording bit rate:	
			$\mathrm{B}_{1} \mathrm{~B}_{0}$	Bit Rate
			00	$24 \mathrm{~kb} / \mathrm{s}$
			01	$18 \mathrm{~kb} / \mathrm{s}$
			10	$12 \mathrm{~kb} / \mathrm{s}$
			11	Don't use
$\mathrm{CD}_{0}-\mathrm{CD}_{7}$	65-62, 59-56	In	8-bit command	
MBNK	53	In	Memory bank:$\begin{aligned} & 0=\text { DRAM } \\ & 1=\text { SRAM } / R O M \end{aligned}$	

## FUNCTIONAL OPERATION

Main Signal Flow
As shown on the block diagram, figure 1, the $\mu$ PD77501 has an external interface with memory and a host CPU. The latter may be a microcomputer: 4-bit in port control mode, 8/16-bit in bus control mode.

Record Mode. The analog signal entering at pin $A_{I N}$ is band limited by lowpass filter LPF, converted to 10-bit PCM by the A/D converter, and encoded to 4 -, 3 -, or 2-bit ADPCM codes. From the control circuit, the ADPCM signal goes through the memory interface to external memory via pins $D_{0}-D_{7}$.

Playback Mode. Entering on pins $D_{0}-D_{7}$, ADPCM data from external memory is decoded to 10-bit PCM and then converted to an analog signal. The lowpass filter smooths the waveform.

DTMF Receiver. Active during both record and playback modes, the DTMF receiver decodes dual signaling tones into a corresponding 4-bit hex code, which is output via the host CPU interface on pins $Q_{0}-Q_{3}$. The presence of a DTMF receiving signal is indicated by a 1 output on pin DET.

Figure 1. $\mu$ PD77501 Block Diagram


## Interface

Host CPU. The two control modes of the $\mu$ PD77501 are selectable at the BC/PC pin to interface the host CPU device. The port control mode is appropriate for a 4-bit single-chip microcomputer with an I/O port, and the bus control mode for an 8-bit microprocessor with an 8 -bit data bus. See figure 2.

External Memory. The $\mu$ PD77501 can connect to two types of memory: DRAM (16M bit max) and ROM/SRAM (1M bit max). It may access them independently via the bank switching for each memory. The connections are the same for port control and bus control modes. See figure 3.

Figure 2. Connections Between $\mu$ PD77501 and a Microcomputer


Figure 3. Connections Between $\mu$ PD77501 and Memory Banks


## Commands

The $\mu$ PD77501 processes analog and digital signals in response to commands from the host CPU on pins $\mathrm{CD}_{0}-\mathrm{CD}_{7}$. The 10 commands (table 4) can be classified into four operating modes: initialization, recording, playback, and "other." All commands are effective in bus control and port control modes except the MSEL and BSEL commands, which are effective only in bus control mode.

Table 4. List of Commands

Symbol	Command	Function
PSEL	Phrase specify	Specifies the number of the phrase to be recorded or played back; maximum of 64 phrases per memory bank.
INI1	Memory initialization 1	Initializes the address table in memory. This command assigns an equal recording area to each phrase by writing the start and stop addresses in the address table. The number of equal divisions may be 1 , $2,4,8,16,32$, or 64 as selected by INI1.
INI2	Memory initialization 2	Allows a change to initialization of the recording area. Beginning with the start address of the phrase defined by the PSEL command, this command divides the remaining memory area equally into the number of areas selected by INI2.
MSEL	Memory bank	Specifies the memory bank: DRAM or SRAM/ROM. Effective only in bus control mode.
BSEL	Recording bit rate	Specifies the recording bit rate: 24 , 18 , or $12 \mathrm{~kb} / \mathrm{s}$. Effective only in bus control mode.
REC	Recording	Specifies the threshold of the sound trigger and starts recording the phrase specified by the PSEL command. When the recording area becomes full or the recording/ playback stop command (STP) is input, this command terminates processing.


Symbol	Command	Function
PLY	Playback	Plays back the phrase specified by   the PSEL command. When the   recorded data finishes playing, or the   recording/playback stop command   (STP) is input, this command   terminates the processing.
STP	Recording/   playback stop	Terminates either recording or   playback. If the command is issued   when no recording/playback is being   executed, it will be ignored.
PAUSE	Recording/   playback pause	Initiates or releases a pause in the   recording or playback. Only the   PAUSE or STP command can be   processed during the pause. If PAUSE   is issued when no recording/playback   is being executed, it will be ignored.
ERA	Phrase erase	Erases the phrase selected by the   PSEL command.

## Operating Modes

Figure 4 shows switching from the command wait mode to the three main operating modes: initialization, recording, and playback.

Figure 4. $\mu$ PD77501 State Diagram


## Memory Configuration

As shown in figure 5, the voice data memory managed by the $\mu$ PD77501 comprises an address table and a data area for recording 64 phrases. The address table contains the start and stop addresses for each of the 64 phrases.

Since the stop address for one area becomes the start address for the next area, if the recording message length is shorter than the data area being initialized, the surplus is added to the area for the next phrase. Thus, phrases may be variable in length.

Fixed-length recording may be implemented by initializing the memory with twice as many areas as desired and recording every other odd area. This method may result in unused memory areas.

Figure 5. Memory Map Just After Initialization


## Application

Figure 6 is an application diagram of the $\mu$ PD 77501 in a telephone answering system.

Figure 6. Application of the $\mu$ PD77501 With a Telephone Set


## ELECTRICAL SPECIFICATIONS

## Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.3 to +7.0 V
Power supply voltage: $\mathrm{V}_{\mathrm{DD}}, \mathrm{AV}$	
Digital input voltage, $\mathrm{V}_{\mathrm{DI}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog input voltage, $\mathrm{V}_{\mathrm{AI}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital output voltage, $\mathrm{V}_{\mathrm{DO}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}$	4.5	5.0	5.5	V
Low-level input   voltage	$\mathrm{V}_{\mathrm{IL}}$	-0.3		+0.8	V
High-level input   voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
Oscillator   frequency	fCLK		18.432		MHz

## Capacitance

$T_{A}=-10$ to $+70^{\circ} \mathrm{C}, V_{D D}=0 \mathrm{~V}$

Parameter	Symbol	Typ	Max	Unit	Conditions
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	20	pF	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} ;$   unmeasured pins   returned to 0 V.	
Output capacitance	$\mathrm{C}_{\text {OUT }}$	20	pF		

## DC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Low-level output voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}$	$0.7 \mathrm{~V}_{\text {DD }}$			V	$\mathrm{l}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Low-level input leakage current	LIIL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$
High-level input leakage current	LIH			10	$\mu \mathrm{A}$	$V_{\mathbb{N}}=V_{\text {DD }}$
Low-level output leakage current	ILOL			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.47 \mathrm{~V}$
High-level output leakage current	ILOH			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
Supply current	IDD		35	60	mA	
				6	mA	$\overline{\mathrm{RST}}=0$

## AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Host Interface						
$\overline{\mathrm{REG}, \overline{\mathrm{CS}} \text { setup time to } \overline{\mathrm{RD}} \downarrow}$	$t_{\text {SAR }}$	0			ns	At power-on
REG, $\overline{\mathrm{CS}}$ hold time from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {HRA }}$	0			ns	
$\overline{\overline{R D}}$ low-level width	$t_{\text {WRL }}$	200			ns	
Data delay time	${ }^{\text {t }}$ DRD			200	ns	
Data float time	$t_{\text {FRD }}$			100	ns	.
REG, $\overline{\mathrm{CS}}$ setup time to $\overline{\mathrm{WR}} \downarrow$	$t_{\text {SAW }}$	0			ns	
REG, $\overline{C S}$ hold time from $\overline{W R} \uparrow$	${ }^{\text {t HWW }}$	0			ns	
MBNK, $\mathrm{B}_{0}, \mathrm{~B}_{1}$ setup time to $\overline{W R} \downarrow$	$t_{\text {SMW }}$	0.4			ms	$\mathrm{B}_{0}$ and $\mathrm{B}_{1}$ should be applied only in recording.
MBNK, $\mathrm{B}_{0}, \mathrm{~B}_{1}$ hold time from $\overline{\mathrm{WR}} \uparrow$	$\mathrm{t}_{\text {HWM }}$	0			ns	
$\overline{\overline{W R}}$ low-level width	${ }^{\text {t WWL }}$	200			ns	
Data setup time	$t_{\text {SDW }}$	100			ns	
Data hold time	${ }^{\text {t }}$ HWD	50			ns	
$\overline{\overline{W R}, ~ \overline{R D}}$ recovery time	$t_{\text {PV }}$	100			ns	
$\overline{\mathrm{RST}}$ low-level width	${ }^{\text {tWRSL }}$	330			ns	
$\overline{\text { RST high-level width }}$	${ }^{\text {t WRSH }}$	100			ns	At power-on
BUSY delay time	${ }^{\text {t }}$ DWB			1	ms	Excluding sound trigger
$\overline{\text { CDBUSY delay time }}$	${ }^{\text {t }}$ DWC			300	ns	
$\overline{\overline{C D B U S Y}}$ setup time to $\overline{W R} \downarrow$	$t_{\text {SCW }}$	0			ns	
$\overline{\overline{R S T}}$ setup time from $\overline{C D B U S Y} \uparrow$	$t_{\text {SCR }}$	300			ns	
$\overline{\text { RST setup time from BUSY } \downarrow \text { }}$	$t_{\text {SBR }}$	300			ns	
DRAM Interface						
Row address setup time	$t_{\text {SAR }}$	50	870		ns	
Row address hold time	$t_{\text {HRA }}$	50	870		ns	
$\overline{\overline{R A S}}$ low-level width	${ }^{\text {twRL }}$	400	4340		ns	
Column address setup time	$t_{S A C}$	50	870		ns	
Column address hold time	$\mathrm{t}_{\mathrm{HCA}}$	50	870		ns	
$\overline{\overline{C A S}}$ low-level width	${ }^{\text {W WCL }}$	250	2600		ns	
$\overline{\overline{W E} \text { setup time }}$	${ }^{\text {S SWC }}$	50	870		ns	
$\overline{\text { WE low-level width }}$	${ }^{\text {t WWL }}$	100	3470		ns	
Data output setup time	${ }^{\text {t SDOC }}$	50	540		ns	
Data output hold time	$\mathrm{t}_{\mathrm{HCDO}}$	50	2700		ns	
Data input setup time	${ }^{\text {S SDIC }}$	110			ns	
Data input hold time	$\mathrm{t}_{\mathrm{HCDI}}$	0			ns	
Data input access time	$t_{\text {ACDI }}$			100	ns	
Refresh $\overline{\mathrm{CAS}}$ setup time	$\mathrm{t}_{\text {RSCR }}$	200	1740		ns	
Refresh CAS low-level width	$t_{\text {RHRC }}$	200	2600		ns	
Refresh $\overline{R A S}$ low-level width	$t_{\text {RWRL }}$	200	2600		ns	
Refresh $\overline{\mathrm{RAS}}$ cycle time	$t_{\text {RSR }}$	500			ns	

## AC Characteristics (cont)

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
SRAM Interface						
Address setup time	${ }^{\text {t }}$ SAC	0	1740		ns	
Address-WE reset time	$t_{\text {RAW }}$	200	5210		ns	
$\overline{\mathrm{CE}}$ low-level width	${ }_{\text {t }}^{\text {WCL }}$	350	3470		ns	
Address hold time	$t_{\text {HCA }}$	. 100	1730		ns	
$\overline{\text { WE }}$ low-level width	$t_{\text {WWL }}$	200	4340		ns	
Data output setup time	$t_{\text {SDOC }}$	200	3470		ns	
Data output hold time	$\mathrm{t}_{\mathrm{HCDO}}$	0	100		ns	
Data input access time	$t_{\text {ACDI }}$	0		200	ns	
Data input setup time	${ }^{\text {tsDIC }}$	110			ns	
Data input hold time	$\mathrm{t}_{\mathrm{HCDI}}$	0			ns	
DTMF Receiver						
$\dagger$ Frequency deviation, accept		$\pm 2.4$			\%	Low group
		$\pm 2.1$			\%	High group
$\dagger$ Frequency deviation, reject				$\pm 3.6$	\%	Low group
				$\pm 3.8$	\%	High group
Valid input signal level		-29		0	dBm	
Reject input signal level				-37	dBm	
Level difference of two frequencies				$\pm 6$	dB	
Dial tone suppression ( 340 to 460 Hz )		40			dB	
Minimum signal duration	$t_{\text {RS }}$	26		40	ms	
Instantaneous cut absorption time	$t_{\text {BS }}$			10	ms	
Signal pause time	$t_{\text {PS }}$	30			ms	$\mathrm{DM}=0$
		40			ms	DM $=1$
Decode value output delay time	$t_{\text {DSQ }}$		80		ms	
DET set delay time	${ }^{\text {t }}$ DSD		80		ms	

$\dagger$ Receiving frequency, Hz
Low group $=697,770,852,941$
High group = 1209, 1336, 1477, 1633

## Analog Characteristics

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{f}_{\mathrm{l}}=1 \mathrm{kHz}$

Parameter	Symbol	Pin Name	Min	Typ	Max	Unit	Conditions
Load Conditions							
Load capacitance	$\mathrm{CL}_{\mathrm{M} 1}$		MOUT1			50	pF
Load resistance	$\mathrm{RL}_{\mathrm{M} 1}$			9		$\mathrm{k} \Omega$	
Load capacitance	$\mathrm{CL}_{\mathrm{M} 2}$	MOUT2		50	pF		
Load resistance	$\mathrm{RL}_{\mathrm{M} 2}$			9		$\mathrm{k} \Omega$	
Load capacitance	$\mathrm{CL}_{\text {AO }}$	AOUT		50	pF		
Load resistance	$\mathrm{RL}_{\mathrm{AO}}$			20		$\mathrm{k} \Omega$	

Microphone Amplifier 1

Allowable input voltage range	$\mathrm{V}_{\text {M11 }}$	MIN1	0.2	$V$ p-p	Gain 20 dB ; bias level $=\mathrm{V}_{\text {REF }}$
Closed loop gain	$\mathrm{A}_{\text {M1 }}$	MIN1 to MOUT1	20	dB	Input $200 \mathrm{mV} \mathrm{p-p;} \mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$ to 3 kHz
Total harmonic distortion	THD ${ }_{\text {M } 1}$	MIN1 to MOUT1	2	\%	$\mathrm{V}_{\text {MO1 }}=2 \mathrm{Vp-p;} \mathrm{f}_{1}=100 \mathrm{~Hz}$ to 3 kHz
Input resistance	$\mathrm{R}_{\text {M } 11}$	MIN1	20	k $\Omega$	$\mathrm{f}_{\mathrm{l}}=0 \mathrm{~Hz}$
Output voltage range	$\mathrm{V}_{\mathrm{MO1}}$	MOUT1	2	$\checkmark$ p-p	
Input bias current	$l_{\text {BMII }}$	MIN1	10	$\mu \mathrm{A}$	
Input offset voltage	$\mathrm{V}_{\text {IMO1 }}$	MIN1	500	mV	
Output resistance	$\mathrm{R}_{\mathrm{MO} 1}$	MOUT1	10	$\Omega$	$\mathrm{f}_{1}=0 \mathrm{~Hz}$

Microphone Amplifier 2

Allowable input voltage range	$\mathrm{V}_{\mathrm{MI2}}$	$\mathrm{MIN2}$	0.2	V p-p	Gain 20 dB; bias level $=\mathrm{V}_{\text {REF }}$
Open loop gain	$\mathrm{A}_{\mathrm{M} 2}$	MIN2 to MOUT2	80	dB	
Total harmonic distortion	$\mathrm{THD}_{\mathrm{M} 2}$	MIN2 to MOUT2	2	$\%$	$\mathrm{~V}_{\mathrm{MO} 2}=2 \mathrm{~V}$ p-p; $\mathrm{f}_{1}=100 \mathrm{~Hz}$ to 3 kHz
Input resistance	$\mathrm{R}_{\mathrm{MI2}}$	MIN2	1	$\mathrm{M} \Omega$	$\mathrm{f}_{1}=0 \mathrm{~Hz}$
Output range	$\mathrm{V}_{\mathrm{MO} 2}$	MOUT2	2	V p-p	
Input bias current	$\mathrm{I}_{\mathrm{BMI2}}$	MIN2	10	$\mu \mathrm{~A}$	
Input offset voltage	$\mathrm{V}_{\mathrm{IMO2}}$	MIN2	100	mV	
Output resistance	$\mathrm{R}_{\mathrm{MO} 2}$	MOUT2	10	$\Omega$	$\mathrm{f}_{1}=0 \mathrm{~Hz}$

A/D Input

Allowable input voltage range	$\mathrm{V}_{\mathrm{AI}}$	$\mathrm{A}_{\mathrm{IN}}$	2	V p-p	Midpoint $=\mathrm{V}_{\mathrm{REF}}$
Input resistance	$\mathrm{R}_{\mathrm{AI}}$	$\mathrm{A}_{\mathrm{IN}}$	1	$\mathrm{M} \Omega$	$\mathrm{f}_{\mathrm{I}}=0 \mathrm{~Hz}$

## D/A Output

Output voltage range	$\mathrm{V}_{\mathrm{AO}}$	AOUT	2	Vpp

## Others

A/D to D/A gain	$A_{A A}$	$A_{\text {IN }}$ to AOUT	0		dB	$\mathrm{f}_{1}=100 \mathrm{~Hz}$ to 3 kHz
A/D to D/A total harmonic distortion	$\mathrm{THD}_{\text {AA }}$	AIN to AOUT	2		\%	$\mathrm{V}_{\mathrm{AO}}=2 \mathrm{Vp-p;} \mathrm{f}_{\mathrm{l}}=100 \mathrm{~Hz}$ to 3 kHz
Reference output voltage	$\mathrm{V}_{\text {REFO }}$	$V_{\text {REF }}$	2.5		V	
Reference output current	IREFO	$V_{\text {REF }}$		10	$\mu \mathrm{A}$	

## Timing Waveforms

Host Interface


Host Interface (cont)


DRAM Interface


## SRAM Interface



## DTMF Receiver



## Preliminary

## Description

The $\mu$ PD77522 is a single-chip coder and decoder (codec) for $32-\mathrm{kb} / \mathrm{s}$ adaptive differential pulse-code modulation (ADPCM). The ADPCM technique conforms to the 1988 CCITT Recommendation G.721.

The serial data input to the coder and serial data output from the decoder can directly interface a PCM codec. The $\mu$ PD77522 is ideal for application to digital cordless telephone systems in which the data rate of the PCM signal must be reduced.

## Features

- 32-kb/s ADPCM codec conforms to CCITT

Recommendation G. 721

- Processes high-quality modem signals up to $4800 \mathrm{~b} / \mathrm{s}$
- Recovers from an error in the telecommunication circuit
- Free from sound quality degradation in multistage digital connections
- Built-in digital signal processor (DSP)
- Simultaneous coding and decoding
- Pin-selectable PCM format: $\mu$-law, A-law, or 16-bit linear
- Selectable coder and decoder muting
- Direct interface with $\mu$-law or A-law PCM codec
- Low operating power
-28 mA max at 5 V
-20 mA max at 2.7 V
- Power-down mode
$-100 \mu \mathrm{~A}$ max at 5 V
$-70 \mu \mathrm{~A}$ max at 2.7 V
Ordering Information

Part No.	Package
$\mu$ PD77522GU	28-pin plastic SOP (450 mil)

## Pin Configuration

28-Pin Plastic SOP (450 mil)

	XSYNCC 41
	$\overline{\text { RSTC }} 2227$ 日RSYNCC
	$\overline{\operatorname{RSTD}} \mathrm{O}^{3} 26$ صTEST4
	XCLKD 4025 TEST3
	RCLKD $45024 \square$ TEST2
	RSYNCD 6623 TEST1
	SID [7 722 - $\mathrm{V}_{\text {DD }}$
	GND 08021 SOD
	CLK 9920 ص SOC
	$\overline{\text { PDN }} 10$ 10 SIC
	TESTO 1118 - RCLKC
	FSELO 12 17 17 XCLKC
	FSEL1-13 16
	TSEL 414 15 16 MUTED
	83RD-8110A

## Pin Identification

Symbol	I/O	Function
CLK	In	System clock, 10 to 14 MHz
FSELO	In	Format select 0
FSEL1	In	Format select 1
$\overline{\text { MUTEC }}$	In	Coder mute control
$\overline{\text { MUTED }}$	In	Decoder mute control
$\overline{\text { PDN }}$	In	Power-down control
RCLKC	In	PCM data clock to coder
RCLKD	In	ADPCM data clock to decoder
RSTC	In	Coder reset
RSTD	In	Decoder reset
RSYNCC	In	Frame sync for coder PCM input
RSYNCD	In	Frame sync for decoder ADPCM input
SIC	In	PCM serial data input to coder
SID	In	ADPCM serial data input to decoder
SOC	Out	ADPCM serial data output from coder
SOD	Out	PCM serial data output from decoder
TESTO	In	Factory test; connect to ground for   normal use
TEST1-TEST4	I/O	Factory test; connect to ground for   normal use

Pin Identification (cont)

Symbol	1/O	Function
TSEL	In	Data input/output timing select
XCLKC	In	Transmit (output) data clock to coder
XCLKD	In	Transmit (output) data clock to decoder
XSYNCC	In	Frame sync for coder ADPCM output
XSYNCD	In	Frame sync for decoder PCM output
VDD	In	+5-volt do power
GND	In	Signal and power ground

## FUNCTIONAL OPERATION

The block diagram shows serial data signal flow through the $\mu$ PD77522, PCM-to-ADPCM on the coder side and ADPCM-to-PCM on the decoder side. Note that signal names are suffixed with C or D to denote the coder or decoder side, respectively.

Figure 1 shows the equivalent circuits at input and output pins.

Block Diagram


Figure 1. Input and Output Circuits


## Power-Up

Following the application of power, the $\mu$ PD77522 enters the standby state within $250 \mu$ s after system clock (CLK) input. In this state, PCM or ADPCM signals may be input. See figure 2.

Low inputs at $\overline{\text { RSTC }}$ and $\overline{\text { RSTD }}$ reset the coder and decoder, enabling operation. Reset timing is the same as the timing in figure 2 to fetch the least significant bit (LSB) of the SIC and SID input data. The state of the SOC and SOD output pins at reset is high impedance or low level.

## Power-Down

Two clock cycles after a low level is applied to the $\overline{\mathrm{PDN}}$ pin, the $\mu$ PD77522 enters the power-down mode. The low level must be maintained for at least four clock cycles. See figure 3.
In power-down mode, the SIC and SOD output pins are in the high-impedance state.
Two clock cycles after a high level is applied to the $\overline{\mathrm{PDN}}$ pin, the $\mu$ PD77522 is released from the power-down mode. Before restarting the $\mu$ PD77522, reset the coder and decoder by low inputs at the $\overline{\operatorname{RSTC}}$ and $\overline{\text { RSTD }}$ pins.

## Data Signal Interface

PCM and ADPCM data signals are input or output serially (MSB first) in synchronization with the frame sync and data clock signals listed in table 1. Frame sync is 8 kHz and the data clock is in the 64 kHz to 2.048 MHz range.

Table 1. PCM and ADPCM Interfaces

Interface	Frame Sync	Data Clock	Data
PCM input to coder	RSYNCC	RCLKC	SIC
ADPCM output from coder	XSYNCC	XCLKC	SOC
ADPCM input to decoder	RSYNCD	RCLKD	SID
PCM output from decoder	XSYNCD	XCLKD	SOD

## Data Signal Timing

The first data bit of a frame may begin with the rising or falling edge of frame sync depending on the type of PCM codec the $\mu$ PD77522 interfaces. The selection is made by connecting the TSEL pin to +5 V (1) or ground

PCM Codec
$\mu$ PD95xx Series
$\mu$ PD96xx Series

## TSEL Pin <br> 1 <br> 0

## Coder Operation

When frame sync RSYNCC goes high, input data from the PCM codec at the SIC pin is stored in an internal register in synchronization with the trailing edge of data clock RCLKC. The data may be 8 -bit companded or 16-bit linear.

The coder converts the PCM input data to 4-bit ADPCM output data and stores it in an internal register. When frame sync XSYNCC goes high, the ADPCM data is output at the SOC pin in synchronization with the leading edge of data clock XCLKC. The SOC pin returns to high impedance when the data output is complete.

## Decoder Operation

When frame sync RSYNCD goes high, 4-bit ADPCM input data at the SID pin is stored in an internal register in synchronization with the trailing edge of data clock RCLKD.
The decoder converts the ADPCM input data to PCM data, 8 -bit companded or 16 -bit linear. When frame sync XSYNCD goes high, the PCM data is output at the SOD pin in synchronization with the leading edge of data clock XCLKD. The SOD pin returns to high impedance when the data output is complete.

Figure 2. Power-Up Timing


Figure 3. Power-Down Timing


Figure 4. Data Signal Timing


## Note:

Add suffix C or D to signal name for coder or
decoder application. For example, RCLKC or RCLKD.

## Input-to-Output Delay

Input data to the coder or decoder is latched on the trailing edge of the receive data clock and output on the leading edge of the transmit data clock. If the clocks are synchronized, there will be a one-half clock cycle delay between data input and output.

## I/O Data Format

The I/O data format at the PCM interface is coordinated with the companding characteristic of the PCM codec by connecting pins FSELO and FSEL1 to +5 V (1) and GND (0) as shown below.

FSELO	FSEL1	1/O Data Format
1	1	A-law with even-bit inverter
1	0	A-law
0	1	$\mu$-law
0	0	16-bit linear

## Muting

Pins MUTEC and MUTED control muting of the PCM signal at the coder input and decoder output, respectively. A low level at the pin cuts off the signal within 1 ms ; a high level inhibits muting.

## Internal Timing

Encoding or decoding (analysis processing) starts on completion of serial data input. Processed data is immediately transferred to the intermediate register. Simultaneously, the previously processed data sample is transferred to the output register. See figure 5.
The output register contents exit serially in synchronization with the rising edge of the output SYNC signal if SYNC leads SCK, or the rising edge of serial clock SCK if SCK leads SYNC.

## SYSTEM CONFIGURATION

Figure 6 is an example of a basic system with serial PCM codec and the $\mu$ PD78C14 as a control CPU.

Figure 5. Processing Timing


Figure 6. System Configuration


## ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings
$T_{A}=+25^{\circ} \mathrm{C}$

Power supply voltage, $\mathrm{V}_{\mathrm{DD}}$	-0.5 to +7.0 V
Input voltage, $\mathrm{V}_{\mathrm{I}}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Open drain output voltage, $\mathrm{V}_{\mathrm{O}}$	-0.5 to +8.0 V
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

## Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Max	Unit
input capacitance	$\mathrm{C}_{\mathrm{IN}}$	10	pF	
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$	15	pF	
I/O capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	20	pF	

Recommended Operating Conditions
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

| Parameter | Symbol | Min | Typ | Max | Unit Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Operating <br> voltage | $\mathrm{V}_{\mathrm{DD} 1}$ | 2.7 | 5.5 | V | $\mathrm{f}_{\mathrm{CLK}}=10$ to <br> 11 MHz |
|  | $\mathrm{V}_{\mathrm{DD} 2}$ | 4.0 | 5.5 | V | $\mathrm{f}_{\mathrm{CLK}}=10$ to <br> 14 MHz |
| Low-level <br> input <br> voltage | $\mathrm{V}_{\mathrm{IL}}$ |  | $0.3 \mathrm{~V}_{\mathrm{DD}}$ | V | $\mathrm{V}_{\mathrm{DD}}=2.7$ <br> to 5.5 V |
| High-level <br> input <br> voltage | $\mathrm{V}_{\mathrm{IH}}$ | $0.7 \mathrm{~V}_{\mathrm{DD}}$ |  | V | $\mathrm{V}_{\mathrm{DD}}=2.7$ <br> to 5.5 V |

## DC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{CLK}}=11 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Current consumption	IDD1		20	28	mA	${ }^{\text {W }}{ }_{W C}=91 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
			15	20	mA	${ }^{\text {W }}$ WC $=91 \mathrm{~ns}, \mathrm{~V}_{\text {DD }}=2.7 \mathrm{~V}$
Current consumption in power down mode	$l_{\text {DD2 }}$			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
				70	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$
Low-level output voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}-0.3$			V	$\mathrm{l}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$
Low-level input leakage current	$\mathrm{IIL}^{\text {L }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
High-level input leakage current	$\mathrm{IIH}^{\text {H}}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$

## AC Characteristics

$T_{A}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
CLK cycle time	twe	91		100	ns	$V_{D D}=2.7$ to -5.5V
		72		100	ns	$V_{D D}=4.0$ to -5.5 V
CLK low pulse width	twCL	40		50	ns	See timing charts
CLK high pulse width	$\mathrm{t}_{\mathrm{WCH}}$	40		50	ns	
CLK rise time	${ }^{\text {cher }}$			10	ns	
CLK fall time	$\mathrm{t}_{\mathrm{CHL}}$			10	ns	
Transmit clock frequency	${ }^{\text {t XCLK }}$			2048	kHz	
Receive clock frequency	$t_{\text {RCLK }}$			2048	kHz	
Transmit sync signal frequency	tXSYNC		8		kHz	
Receive sync signal frequency	$t_{\text {RSYNC }}$		8		kHz	
Transmit sync signal low pulse width	tWXSL	1			XCLK	Measured at $1 / 2 \mathrm{~V}_{\mathrm{DD}}$
Transmit sync signal high pulse width	$t_{\text {WXSH }}$	1			XCLK	
Transmit sync signal low pulse width	tWRSL	1			RCLK	
Receive sync signal high pulse width	tWRSH	1			RCLK	
Transmit sync signal set time	$t_{\text {SXS }}$	140			ns	Measured at $1 / 2 \mathrm{~V}_{\text {DD }}$ (vs XCLK)
Transmit sync signal hold time	$t_{\text {HXS }}$	8			ns	
Receive sync signal set time	$t_{\text {SRS }}$	140			ns	Measured at $1 / 2 \mathrm{~V}_{\text {DD }}$ (vs RCLK)
Receive sync signal hold time	thRS	8			ns	
SI, RST, MUTE set time	tsp	40			ns	
SI, RST, MUTE hold time	$t_{\text {HD }}$	8			ns	
Serial mode; SO delay time vs XSYNC $\uparrow$	$t_{\text {PDS }}$			90	ns	$R_{L}=1000 \Omega ; C_{L}=100 \mathrm{pF}$
SO delay time vs XCLK $\uparrow$	tpDC			130	ns	

Note: The voltage at the measurement point is $1 / 2 V_{D D}$.

## Timing Waveforms

Clock Input


## Serial Data Input



## Serial Data Output



Third-Party Development Tools	5-1
«PD77C20A, 7720A, 77P20 Digital Signal Processors	
EVAKIT-7720B $\mu$ PD7720 Standalone Emulator	5a
ASM77 $\mu$ PD7720 Absolute Assembler	5b
$\mu$ PD77C25/77P25 Digital Signal Processor	
EVAKIT-77C25   $\mu$ PD77C25 Standalone Emulator	5c
RA77C25   $\mu$ PD77C25 Relocatable Assembler Package	5d
SM77C25   PC-Based Simulator for $\mu$ PD77C25 and $\mu$ PD77C20	5 e
$\mu$ PD77220/P220, $\mu$ PD77230/P230 Digital Signal Processors	
EVAKIT-77220 $\mu$ PD77220 Standalone Emulator	$5 f$
EVAKIT-77230   $\mu$ PD77230 Standalone Emulator	5 g
DDK-77220A   $\mu$ PD77220 Evaluation Board	5h
RA77230 $\mu$ PD77220/ $\mu$ PD77230 Relocatable Assembler Package	$5 i$
SM77230   PC-Based Simulator for $\mu$ PD77220/ $\mu$ PD77230	5j



## THIRD-PARTY DEVELOPMENT TOOLS

This list summarizes the development tools of these companies at this time. NEC makes no recommendation for any of these tools; this list is provided for information only. Contact the third-party company directly for further information on product features, availability, and pricing.

Company	Description	Host	NEC Device
Data I/O   10525 Willows Road NE   P.O. Box 97046   Redmond, WA 98703-9746   (206) 867-6899   (800) 247-5700 ext. 600	EPROM/OTP Programmer	PC-DOS®	$\mu$ PD77P20D $\mu$ PD77P230R $\mu$ PD77P25C/D/L $\mu$ PD77P56CR
Elan Digital Systems 538 Valley Way Milpitas, CA 95035 (408) 946-3864 (800) 541-3526	OTP Programmer	PC-DOS	$\mu$ PD77P56CR $\mu$ PD77P56G
Hyperception, Inc. 9550 Skillman LB 125 Dallas, TX 75243 (214) 343-8525	DSP Development Software/System	PC-DOS   (DDK-772.20)	$\mu$ PD77220
Intermetrics Microsystems   Software, Inc.   733 Concord Avenue   Cambridge, MA 02138-1002   (617) 661-0072   (800) 356-3594	C Compiler and Assembler (C Source Debugger)	VAX®/VMS®   VAX/UNIX®   Sun ${ }^{\text {™ }} / \mathrm{UNIX}$   Apollo@   HP®-UX ${ }^{\text {M }}$   (MS-DOS®)	$\mu$ PD77220   $\mu$ PD77230   $\mu$ PD77240   (IE-77240)
Signalogic, Inc. 9704 Skillman \#111 Dallas, TX 75243 (214) 343-0069	DSP Development Software (Hypersignal-Macro)	PC-DOS	$\mu$ PD77220
Signix Corporation 19 Pelham Island Road Wayland, MA 01778 (508) 358-5955	DSP Development Software	PC-DOS	$\mu$ PD77C20A   $\mu$ PD77C25
Xeltek   764 San Aleso Avenue   Sunnyvale, CA 94086   (408) 745-7974	EPROM/OTP Programmer	PC-DOS	$\mu$ PD77P56 $\mu$ PD77P25

PC-DOS is a registered trademark of International Business
Machines Corporation.
VAX and VMS are registered trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Incorporated.
Sun is a trademark of Sun Microsystems, Incorporated.
Apollo is a registered trademark of Apollo Computer, Incorporated.
HP is a registered trademark and UX is a trademark of Hewlett-
Packard Company.
MS-DOS is a registered trademark of Microsoft Corporation.

## Description

The EVAKIT-7720B is a standalone emulator for NEC's $\mu$ PD7720A, $\mu$ PD77P20, and $\mu$ PD77C20A digital signal processing interfaces (SPI). The EVAKIT-7720B provides complete hardware emulation and software debug capabilities for the SPI. Real-time and single-step emulation capability, a powerful on-board system monitor, and a user-specified breakpoint create a powerful debug environment.

The EVAKIT-7720B is controlled over a serial line from a terminal or host computer system. User programs are downloaded into the instruction ROM and data ROM emulation memory through a serial line or read from an EPROM device. An on-board programmer for $\mu$ PD2732 and $\mu$ PD2732A EPROMs provides an easy means for submitting your final code for production. You can also use the EVAKIT-7720B to program the $\mu$ PD77P20 EPROM version of the part for final system test and evaluation.

## Features

- Real-time single-step emulation capability
- Real-time program execution at 8 MHz
- Real-time program execution with address breakpoint and loop counter (up to 256 loops)
- Real-time program execution for a number of steps
- Single-step program execution with display of address, instruction, registers and flags
- On-board emulation memory: Instruction ROM, data ROM and internal RAM
- Powerful system monitor
- Display/change/initialize instruction and data ROM
—Display/change/initialize internal RAM
- Display/modify internal registers
- Read/write/display/verify/blank check EPROM device
- Upload/download/verify instruction and data ROM
- Perform self-diagnostics
- Reset emulation chip
- Supports two operating modes
- External terminal controlled
- Host computer system controlled
- Emulator controller for IBM PC®, $\mathrm{PC} / X T \oplus, \mathrm{PC} / \mathrm{AT}$ ® or compatibles
- Serial interface: RS-232C, TTL, or 20 mA current loop
- EPROM programming capability ( $\mu$ PD2732, $\mu$ PD2732A, $\mu$ PD77P20)
- Requires an external power supply

Ordering Information
Part Number Description
EVAKIT-7720B Standalone emulator for $\mu$ PD7720A/P20/C20A
$\mu$ PD7720 Standalone Emulator


[^13]
## Description

The ASM77 Absolute Assembler converts symbolic source code for the NEC $\mu$ PD7720A/77P20/77C20A Digital Signal Processing Interfaces (SPI) into executable absolute address object code. Two separate assemblers are provided: one assembles the source program for the Instruction ROM; the other assembles the source program for the Data ROM. An object code file is produced in ASCII hexadecimal format and may be downloaded to an EPROM programmer or the NEC stand-alone emulator, the EVAKIT-7720B.

The NEC ASM77 assembler is available for operation on an MS-DOS ${ }^{\circledR}$ computer system with at least one disk drive and 128 KB of installed system memory.

## Features

- Absolute address object code output
- Free format statements
- Separate assemblers for instruction and data ROMs
- User-selectable and directable output files
- Runs under the MS-DOS operating system

Ordering Information

Part Number	Description
ASM77-D52	MS-DOS, 5.25" Double Density Disk

ASM77 Block Diagram


NEC Electronics Inc.

## Description

The EVAKIT-77C25 is a standalone emulator for NEC's $\mu$ PD77C25 and $\mu$ PD77P25 digital signal processing interfaces (SPI+). The EVAKIT-77C25 provides complete hardware emulation and software debug capabilities for the SPI+ . Real-time and single-step emulation capability, coupled with sophisticated breakpoint capability, real-time tracer and a powerful on-board system monitor, create a powerful debug environment. A line assembler and symbolic disassembler, full register and memory control and complete upload/download capabilities simplify the task of debugging hardware and software.

An on-board EEPROM is available for storage of the current debug environment during EVAKIT power down. Using the freeze (FRZ) command, the current contents of the instruction and data ROM, the internal RAM, the SPI+ registers, the break registers and registered command strings are saved to the EEPROM. The Melt (MLT) command restores this information.
The EVAKIT-77C25 is controlled via serial line from a local terminal or host computer system. User programs can be uploaded from or downloaded to the Instruction and data ROM emulation memory through a serial line from a local host computer, a remote host computer system, or an external EPROM programmer. NEC provides an emulator controller program for use on an IBM $\mathrm{PC} \oplus, \mathrm{PC} / \mathrm{XT}^{\oplus}, \mathrm{PC} / \mathrm{AT}^{\oplus}$ or compatible local host computer. To transfer data to/from a remote host computer system, the EVAKIT-77C25 can be placed into terminal emulation mode and be used as a terminal for the remote system. Data can also be read from or written to an external EPROM programmer under the control of the on-board monitor.

## Features

- Real-time and single-step emulation capability
-Real-time program execution with/without breakpoint
- Single-step program execution with trace display

[^14]- Subcommands available during real-time emulation
- Generate an interrupt to the emulation chip
-Read/display status register
-Read/write the data register
- Reset the emulation chip
- On-board emulation memory
- Instruction ROM: $2 \mathrm{k} \times 24$ bits
-Data ROM: 1k x 16 bits
-Data RAM: $256 \times 16$ bits
- Symbolic debug capability
- Symbols may be used to specify addresses for commands
- Symbolic disassembler
- Symbol table clear command
- Powerful system monitor
- Display/change/initialize instruction and data ROM
- Display/change/initialize internal data RAM
- Display/modify general and status registers
- Transfer data to/from external EPROM programmer
- Upload/download instruction and data ROM code
- Line assembler
- Display break registers
- Reset emulation chip
- Set internal/external clock
- Mask interrupt (INT) signal from probe
- Sophisticated breakpoint capability
- Break on address and pass count (up to 65,535 passes)
- Break on being in or out of address range
- Breakpoints specified on command line or preset in the break address, address range, and mode registers
-Up to 37 break addresses or address ranges can be set
- Real-time program trace feature
- Store 4092 clocks worth of information
- Traces program counter, data bus, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}, \overline{\mathrm{CS}},}$ AO, DRQ, DACK, RST, INT, P0, P1, SCK, SI, SIEN, SO, SOEN, and SORQ
-Displays trace with/without mnemonics
- Trace buffer pointer and search capability
- EEPROM for temporary storage of instruction and data ROM, internal RAM and registers, break registers, command strings
- On-line help facility
- Three RS-232C serial ports
- CH1: Terminal or local host system
-CH 2 : Remote host system
- CH3: EPROM programmer
- Emulator controller for IBM PC, PC/XT, PC/AT or compatibles

Ordering Information

Part Number	Description
EVAKIT-77C25	Standalone emulator for $\mu$ PD77C25/P25

$\mu$ PD77C25 Standalone Emulator


## Block Diagram



## Description

The RA77C25 Relocatable Assembler Package converts symbolic source code for the $\mu$ PD77C25 and $\mu$ PD77P25 Digital Signal Processors into executable absolute address object code. It can also be used for $\mu$ PD7720A/77C20A/77P20 program development by creating a $\mu$ PD7720 hex-format object module using the hex converter.

The relocatable assembler package consists of five separate programs: an assembler (RA77C25), a linker (LK77C25), a hexadecimal format object code converter (OC77C25), a librarian (LB77C25), and a hex converter (HC7720).

RA77C25 translates a symbolic source module file with "include" files into a relocatable object module. The assembler produces a relocatable object module file and a listing file that can contain the assembly list, symbol list, and cross-reference list. If absolute addresses have been specified in the source module file and no relocatable segments or external variables or labels are referenced, the assembler can output an ASCII hexadecimal format object file and a symbol table file directly.
LK77C25 combines relocatable object modules, library modules when necessary, and other linker load modules and converts them into an absolute load module. The linker produces a link map and an absolute load module.

OC77C25 converts an absolute object module from RA77C25 or an absolute load module from LK77C25 into an ASCII hexadecimal format object file and a symbol table file.

LB77C25 allows commonly used relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input of the linker, the linker extracts only those modules required to resolve external references from the file and relocates and links them.

[^15]HC7720 converts a $\mu$ PD77C25 hex-format object module file output by the object converter to the format of a $\mu$ PD7720 hex-format object module output by the $\mu$ PD7720 absolute assembler. For code with the $\mu$ PD7720 as the target, error checking for mnemonics included in the $\mu$ PD77C25 but not in the $\mu$ PD7720, address space and RAM-to-RAM transfer functions are only performed by hex converter. File format can be separate IROM and DROM hex-format object module files or a combined IROM and DROM object module file.

## Features

- Absolute address object code output
- User-selectable and directable output files
- Extensive error reporting
- Macro capability
- Conditional assembly directives
- Powerful librarian
- Runs under the following operating systems:
-MS-DOS®
- VAX® ${ }^{-10}{ }^{-1}$
—VAX/UNIX® 4.2BSD or Ultrix ${ }^{\text {™ }}$
Ordering Information

Part Number	Description
RA77C25-D52	MS-DOS, 5.25" double density diskette
RA77C25-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape
RA77C25-VXT1	VAX/UNIX 4.2BSD or Ultrix, 9-track 1600BPI   magnetic tape

## Block Diagram



## Description

The SM77C25 Simulator is a software tool for analyzing program code and I/O timing for the NEC family of 16 -bit fixed-point digital signal processors: $\mu$ PD7720A, $\mu$ PD77C20A, $\mu$ PD77P20, $\mu$ PD77C25, and $\mu$ PD77P25. SM77C25 simulates the operation of this family using your instruction and data ROM codes. Optionally, specially prepared serial input and output timing, serial input data, parallel timing, and parallel input data files may be used. The simulator can then output to serial and parallel output data files.

SM77C25 is a full-screen oriented tool. An operation on a line in one window affects pertinent displays in other windows on the screen.

The PC screen displays five windows: status of all registers and flags; contents of instruction ROM (either assembly language or hex); contents of data RAM; contents of data ROM; and a command line window.

## Features

- All functions of 7720/77C25 are screen oriented and simulated interactively.
- All input pins are simulated by separate timing and data files. The status of all output pins can be written to output timing and data files.
- Internal instruction ROM, data ROM, data RAM areas, and all registers are displayed at the same time.
- Registers, RAM, and ROM contents can be displayed in hex, binary, integer, and scientific real notation; RAM and ROM areas are also in ASCII notation.
- Full-screen editing and windowing allow fast change of register and memory contents.
- In-line assembler and disassembler.
- Running, stepping, and tracing through programs possible.
- Powerful breakpoint settings.
- Loading of linker, hex, and binary files; storing of hex and binary files supported.
- Log and resource files for processing retrieval and status storage.
- Command files for demonstration or testing purposes and for creating batch jobs.
- Mode command allows choice of $\mu$ PD7720 mode of operation.
- A step count allows accurate determination of execution timing.
- Built-in editor similar to WordStar@ that handles I/O files.
- Powerful help menu.


## Ordering Information

Part Number	Description
SIMSD-15DD-77C25	MS-DOS $\odot, 5.25^{\prime \prime}$ double-density disk

[^16]
## Sample Screen Display



Block Diagram


## Description

The EVAKIT-77220 is a standalone emulator for NEC's $\mu$ PD77220 and $\mu$ PD77P220 24-Bit Fixed Point Digital Signal Processors. The EVAKIT-77220 provides complete hardware emulation and software debug capabilities for the $\mu$ PD77220/P220. The device includes realtime and single-step emulation capability with sophisticated breakpoint capability, real-time tracer, and a powerful debug environment. A symbolic line assembler and disassembler, full register and memory control and complete upload/download capabilities simplify the task of debugging your hardware and software.

The EVAKIT-77220 is controlled via serial line from a local terminal or host computer system. User programs can be uploaded from or downloaded to the instruction and data ROM emulation memory through a serial line from either a local host computer, a remote host computer system, or an external EPROM programmer. NEC provides an emulator controller program for use on an IBM PC®, PC/XT®, PC AT® or compatible local host computer. To transfer data to or from a remote host computer system, the EVAKIT-77220 can be placed into terminal emulation mode and used as a terminal for the remote system. Data can also be read from or written to an external EPROM programmer under the control of the monitor.

## Features

- On-board emulation memory for:
- Instruction ROM, data ROM, and internal data RAM
- External emulation RAM: fast/slow speed
- Selectable clock: internal or external
- Real-time and single-step emulation capability
- Real-time program execution with/without breakpoint
- Single-step program execution with trace display
- Console I/O available during real-time emulation
to:
- Generate INT and NMI signals to emulation chip
- Generate HWR, PO and P1 signals to emulation chip
——Display HRD, P2, P3 and RQM signals from emulation chip
IBM PC, PC/XT, and PC AT are registered trademarks of international
Business Machines Corporation.
- Memory manipulation commands
- Change/display/fill/move/search date in:

Internal instruction/data ROM
Internal data RAM
External emulation RAM

- Register manipulation commands
- Change/display general and status registers
-Read/write DRS, read SI, and write SO registers
- Powerful system utilities
- Transfer data to/from external EPROM programmer
- Upload/download instruction/data ROM code and symbols
-Transfer external memory contents between EVAKIT/prototype
- Reset emulation chip
-Specify internal/external INT, NMI, and Reset signals
- External memory mapping: internal/user, fast/ slow
- Symbolic debug capability
- Symbols may be used to specify addresses in commands
- Symbolic line assembler and disassembler
- Symbolic add/change/display/delete commands
- Sophisticated breakpoints for master and slave modes
- Instruction memory address or specified instruction
- Internal data RAM address or specifies data value
- External memory address or specified data value
- Loop counter borrow
- External break signal from probe
- Up to 65536 passes
—Read/write data from host system (slave mode only)
-Breakpoints specified on command line or preset in ten logical break registers
- Real-time program trace feature
- Store 2048 clocks worth of information
- Trace starts with emulation or on an address
- Traces program counter, ROM counter, loop counter borrow, internal bus, SIAK, SOAK, most external pins
- Displays trace with/without mnemonics
-Trace buffer pointer and search capability
- On-line help facility
- Automatic command execution from macro command table
- Three RS-232C serial ports
-CH 1 : Terminal or local host system
- CH2: Remote host system
- CH3: EPROM programmer
- Emulator controller for IBM PC, PC/XT, PC AT or compatibles

Ordering Information

Part Number	Description
EVAKIT-77220	Standalone emulator for $\mu$ PD777220/P220



## EVAKIT-77220 Block Diagram



## Description

The EVAKIT-77230 is a standalone emulator for NEC's $\mu$ PD77220 24-bit fixed point digital signal processor and $\mu$ PD77230 32 -bit floating point advanced signal processor (ASP). The EVAKIT-77230 provides complete hardware emulation and software debug capabilites for the ASP. Real-time and single-step emulation capability, coupled with sophisticated breakpoint capability, real-time tracer and a powerful on-board system monitor, create a powerful debug environment. A symbolic line assembler and disassembler, full register and memory control and complete upload/download capabilities simplify the task of debugging hardware and software.

The EVAKIT-77230 is controlled via serial line from a local terminal or host computer system. User programs can be uploaded from or downloaded to the instruction and data ROM emulation memory through a serial line from a local host computer, a remote host computer system, or an external EPROM programmer. NEC provides an emulator controller program for use on an IBM $\mathrm{PC} \oplus, \mathrm{PC} / \mathrm{XT}^{\oplus}, \mathrm{PC} / \mathrm{AT}^{\oplus}$ or compatible local host computer. To transfer data to/from a remote host computer system, the EVAKIT-77230 can be placed into terminal emulation mode and be used as a terminal for the remote system. Data can also be read from or written to an external EPROM programmer under the control of the monitor.

## Features

- On-board emulation memory for
- Instruction ROM, data ROM, internal data RAM
-External emulation RAM: fast/slow speed
- Selectable clock: $13.37 / 6.68 / 3.34 \mathrm{MHz}$ internal or external
- Real-time and single-step emulation capability
-Real-time program execution with/without breakpoint
-Single-step program execution with trace display
- Console I/O available during real-time emulation to - Generate INT and NMI signals to emulation chip

IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.
-Generate HWR, P0 and P1 signals to emulation chip

- Display HRD, P2, P3 and RQM signals from emulation chip
- Memory manipulation commands: Change/display/ fill/move/search data in Internal instruction/data ROM Internal data RAM External emulation RAM
- Register manipulation commands
-Change/display general and status registers
- Read/write DRS, read SI, and write SO registers
- Powerful system utilities
- Transfer data to/from external EPROM programmer
- Upload/download instruction/data ROM code and symbols
- Transfer external memory contents between EVAKIT/prototype
- Reset emulation chip
-Specify internal/external INT, NMI, and reset signals
- External memory mapping: internal/user, fast/ slow
- Symbolic debug capability
- Symbols may be used to specify addresses in commands
- Symbolic line assembler and disassembler
- Symbol add/change/display/delete commands
- Sophisticated breakpoints for master and slave modes
- Instruction memory address or specified instruction
- Internal data RAM address or specified data value
- External memory address or specified data value
- Loop counter borrow
- External break signal from probe
- Up to 65536 passes
- Read/write data from host system (slave mode only)
-Breakpoints specified on command line or preset in ten logical break registers
- Real-time program trace feature
-Store 2048 clocks worth of information
- Trace starts with emulation or on an address
- Traces program counter, ROM counter, loop counter borrow, internal bus, SIAK, SOAK, and most external pins
- Displays trace with/without mnemonics
- Trace buffer pointer and search capability
- On-line help facility
- Automatic command execution from Macro command table
- Three RS-232C serial ports
- CH 1 : Terminal or local host system
- CH 2 : Remote host system
- CH3: EPROM programmer
- Emulator controller for IBM PC, PC/XT, PC/AT or compatibles

Ordering Information

Part Number	Description
EVAKIT-77230	Standalone emulator for $\mu$ PD77230/P230 and     

Block Diagram

$\mu$ PD77230 Standalone Emulator


## Description

The DDK-77220A Evaluation Board for the NEC $\mu$ PD77220/77P220 Digital Signal Processor (DSP) provides a low-cost hardware evaluation and development tool for high-speed digital processing applications. The DDK-77220A board features a preprogrammed DSP that contains built-in ROM routines for: FFT, FIR, and IIR filters; math functions such as SIN, COS, LOG, and EXP; and serial I/O and others. This board provides an easy-to-use DSP hardware implementation that allows a user to become adept at writing DSP programs.

The DDK-77220A board is a peripheral processor that occupies a single slot in an IBM PC AT® or compatible. The DDK board package includes a hardware user's manual, host software drivers, DSP assembler software (RA77230), DSP programming examples, and additional literature. This DDK package provides a fast and efficient means for evaluating the DSP in an application.

## Features

- $\mu$ PD77P220-24-Bit Fixed-Point Digital Signal Processor
- $8 \mathrm{~K} \times 32$ bit, high-speed external instruction memory
$\square 32 \mathrm{~K} \times 24$ bit, low-speed external data memory
$\square 8 \mathrm{kHz}$ analog front end
- Daughter board expansion interface
- Programmable address breakpoint
- Hyperception Hypersignal Windows


## Applications

- General-purpose digital signal processing (FIR, IIR, FFT/IFFT)
- High-speed data modems
- Adaptive equalization (CCITT)
- Echo cancellation
- Numerical processing
- Speech processing
- Instrumentation electronics
- High-speed controls
- Waveform generation

Ordering Information

Part No.	Description
DDK-77220A	Development/Evaluation Board for $\mu$ PD77220/   77P220 (IBM based)

DDK-77220A Evaluation Board


## Block Diagram



## Application



## Description

The RA77230 Relocatable Assembler package converts symbolic source code for $\mu$ PD77220, $\mu$ PD77P220, $\mu$ PD77230, and $\mu$ PD77P230 Advanced Signal Processors into executable absolute address object code. The Relocatable Assembler package consists of four separate programs: an assembler (RA77230), a linker (LK77230), a hexadecimal format object code converter (OC77230), and a librarian (LB77230).
RA77230 source code modules can be written in either preassembly language or assembly language. Preassembly language allows programs to be written more simply. You do not need to consider the fields of an instruction or their combination, or pay attention to the execution timing of the $\mu$ PD77220/230. The assembler optimizes the code for you. However, by using assembly language and paying close attention to the instruction fields and their combination, and the execution timing of the chips, much more efficient programs can be written. Since RA77230 can generate an assembly language source file from a preassembly language source file, you can manually optimize this code and write both simple and efficient programs.

RA77230 translates a symbolic source module file containing preassembly or assembly language source code with include files into a relocatable object module. The assembler produces a relocatable object module file, a preassembly language list, and a listing file that can contain the assembly list, symbol list, and crossreference list.

LK77230 combines relocatable object modules, library modules, and other linker load modules and converts them into an absolute load module. The linker produces a link map and an absolute load module. OC77230 converts an absolute object module from RA77230 or an absolute load module from LK77230 into an ASCII hexadecimal format object file.
LB77230 allows commonly used relocatable object modules to be stored in one file and linked to multiple programs, greatly increasing programming efficiency. When a library file is included as input to the linker, the
linker only extracts those modules required to resolve external references from the file and relocates and links them.

## Features

- Assembles preassembly and assembly language source code
- Produces absolute address object code
- Supports master/slave modes
- User-selectable and directable output files
- Extensive error reporting
- Macro capability
- Conditional assembly directives
- Powerful librarian
- Runs under the following operating systems:
- MS-DOS®
- VAXVMS ${ }^{\text {® }}$
- VAX/UNIX ${ }^{\text {™ }} 4.2$ BSD or Ultrix ${ }^{\text {m }}$

Ordering Information

Part Number	Description
RA77230-D52	MS-DOS, 5.25" double density diskette
RA77230-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape
RA77230-VXT1	VAX/UNIX 4.2BSD or Ultrix, 9-track 1600 BPI   magnetic tape

[^17]RA77230 Block Diagram


## SM77230 <br> PC-Based Simulator For $\mu$ PD77230 and $\mu$ PD77220

## Description

The SM77230 Simulator is a software tool for analyzing program code and I/O timing for two NEC digital signal processors: $\mu$ PD77230 32-bit floating-point and $\mu$ PD77220 24-bit fixed-point. SM77230 simulates the operation of $\mu$ PD77230/220 using your instruction and data ROM codes. Optionally, specially prepared serial input and output timing, serial input data, parallel timing, and parallel input data files may be used. The simulator can then output to serial and parallel output data files.
$\mu$ PD77220 simulation is accomplished by assembling source code with the 77220 switch option. This option will allow only legal 77220 code to be assembled. (77220 source code is a subset of 77230 .) SM77230 does not have a mode switch for just 77220 operation.

## Features

$\square$ All $\mu$ PD77230 processor functions can be simulated.
$\square$ All input pins are simulated by separate timing and data files. The status of all output pins can be written to output and data files.

- Screen swapping by function keys to show all memory contents, internal and external. Instruction code can appear as hex code or assembly language.
- Status continuously updated at top of screen.
- Register, RAM, and ROM contents can be displayed in hex, binary, integer, and scientific real notation; RAM and ROM areas also in ASCII notation.
- Symbolic simulation and debugging ability.
- In-line assembler and disassembler.
- Running, stepping, and tracing through programs possible.
- Powerful breakpoint settings.
- Loading of linker, hex and binary files; storing of hex and binary files supported.
- Log and resource files for processing retrieval and status storage.
ㅁ Batch files for stored command sequences.
- Abbreviated commands.
- Step count allows accurate determination of execution timing
- Powerful help menu.


## Ordering Information

Part Number	Description
SM77230-D52	MS-DOS $\Theta, 5.25^{\prime \prime}$ double-density disk

## Sample Screen Display



## SM77230 Block Diagram



```
IE-77240
In-Circuit Emulator for \(\mu\) PD77240 Digital Signal Processor
```


## Description

The IE-77240 system is an in-circuit emulator for NEC's $\mu$ PD77240 Digital Signal Processor. The IE-77240-PC-EM is a low-cost PC plug-in board comprising a main board, instruction memory module, data memory module, and emulation pod.

Real-time emulation combined with step execution, real-time break conditions, and a friendly screen debugger provide an excellent development environment for the $\mu$ PD77240 DSP. The IE-77240 system can be used in three distinct modes of operation:

- In-circuit emulator
- Hardware simulator
- Application development board

A software driver provided with the IE-77240 allows the user to download $\mu$ PD 77240 hex and data files, execute code, display and modify registers, display and modify instruction memory, data memory, and internal RAM and ROM.

## Features

64K x 32-bit instruction memory module

- 256K x 32-bit data memory plug-in module
- Real-time emulation at 90 ns
- Step execution
- Register trace
-Break at specified register value
- Real-time break
- Ten break conditions
- Instruction/data address
- Three-phase sequential break
- 1000-step tracer
- Selectable NMI, INT, Port, Reset, Busfrez target or mask
- PC communication
- Access INT, NMI, and Reset from PC


## Hardware Simulator

- Real-time execution at 90 ns
- 64K x 32-bit instruction memory
- PC communication
- Debug function same as in-circuit emulator
$\square$ Read/write on-board instruction memory from PC
$\square$ Read on-target instruction memory data from PC
$\square$ Read/write on-target/board external memory data from PC
- Confirmation of board status from PC
- Wait circuit for DRAM
- Board configuration


## Application Development Board

$\square$ User development hardware can be connected to main board

- All DSP and PC bus signals are provided to interface connectors
$\square$ Requires main board and instruction memory board
- Board control library and application library


## Debug Features

$\square$ Friendly, easy-to-use full-screen debugger

- Step function adjusts to pipeline execution
- Register trace and reverse trace
- Hardware breakpoint in instruction/data memory address


## Software Support

- RA77240 MS-DOS® Assembler
- High-level C Language Debugger (by Intermetrics)
- Planned Software Simulator

Ordering Information

Part Number	Description
IE-77240-PC-EM	IE-77240 Main Board
IE-77240-PC-EM4	256K-word memory board for IE-77240
IE-77240-CM-PD	IE-77240 Emulation Pod

MS-DOS is registered trademark of Microsoft Corporation.

## IE-77240 Block Diagram



## Description

The RA77240 Relocatable Assembler Package converts symbolic source code for the $\mu$ PD77240 Digital Signal Processor into executable absolute address object code. The RA77240 package consists of four separate programs: an assembler (RA77240), a linker (LK77240), a hexadecimal format object code converter (OC77240), and a librarian (LB77240)
RA77240 translates a symbolic source code module file containing assembly language source code with include files into a relocatable object module. The assembler produces a relocatable object module file and a listing file that can include the symbol list and symbol cross-reference list.

LK77240 combines relocatable object modules, library modules, and other linker load modules and converts them into an absolute load module. The linker produces a link map and an absolute load module.

OC77240 converts an absolute object module from RA77240 or an absolute load module from LK77240 into a hexadecimal format object module file.

LB77240 allows commonly used relocatable object module files to be stored in one file and linked to multiple programs, greatly increasing programming efficiency. When a library file is included as input to the linker, the linker extracts only those modules required to resolve external references from the file and relocates and links them.

## Features

- Produces absolute address object code
- User-selectable and directable output files
- Extensive error reporting
- Macro capability
- Conditional assembly directives
- Powerful librarian
- Runs under MS-DOS® operating system


## Ordering Information

Part Number	Description
RA77240-D52	MS-DOS, 5.25" high-density diskette

## Description

The IE-77810 is a stand-alone in-circuit emulator for NEC's $\mu$ PD77810 Modem Digital Signal Processor (MDSP). The IE-77810 provides complete hardware and software debug capabilities for the $\mu$ PD77810. The IE77810 allows you to debug either the General-Purpose Processor (GPP) or the Digital Signal Processor (DSP) software while emulating the other, to debug or emulate both the GPP and DSP together, or to debug or emulate the MDSP. Real-time emulation capability, coupled with sophisticated breakpoint capability, real-time tracer, and a powerful on-board system monitor create a powerful debug environment. A symbolic line assembler and disassembler for both the GPP and DSP, full register and memory control, and complete upload/download capabilities simplify the task of debugging hardware and software.
The IE-77810 is controlled via a serial line from a local terminal or host computer system. User programs can be uploaded from or downloaded to both the GPP or DSP emulation memory tirrough a serial line from a local host computer, a remote host computer system, or an external EPROM programmer. NEC provides an emulator controller program for use on an IBM PC, PC/XT®, $\mathrm{PC} / \mathrm{AT}^{\circledR}$, or compatible local host computer. To transfer data to/from a remote host computer system, the IE77810 can be placed into terminal emulation mode and be used as a terminal for the remote system. Data can also be read from or written to an external EPROM programmer under the control of the on-board monitor.

## Features

- Real-time emulation for GPP, DSP, and MSDP
- Single-step emulation for GPP and DSP
- IE-77810 operation modes
- Debug DSP, Emulate GPP
- Debug GPP, Emulate DSP
- Debug GPP and DSP
- Emulate GPP and DSP
- Debug MDSP
- Emulate MDSP
- On-board emulation memory for GPP and DSP
- Powerful debug monitors for GPP, DSP, and MDSP
- Transfer data to/from external EPROM programmer
- Upload/download object code and symbol table
- Reset emulation chip
- For GPP and DSP only:

Display/change/initialize emulation memory Display/modify general and special registers Symbolic line assembler and disassembler

- Sophisticated breakpoint capability for GPP, DSP, and MDSP
- Real-time program trace feature for GPP and DSP
- Automatic command execution from macro command table
- On-line help facility
- Three RS-232C serial ports
- CH1: Terminal or local host system
- CH2: Remote host system
- CH3: EPROM programmer
- Emulator controller for IBM PC, PC/XT, PC AT, or compatibles


## Ordering Information

Part Number	Description
IE-77810	Stand-alone in-circuit emulator for $\mu$ PD77810

## IE-77810 Block Diagram



## Description

The RA77810 Relocatable Assembler package converts symbolic source code for the $\mu$ PD77810 Modem Digital Signal Processor (MDSP) into executable absolute address object code. The Relocatable Assembler package consists of five separate programs: an assembler (RA77810), a linker (LK77810), a locator (LC77810), a librarian (LB77810) and a concatenater (CN77810)
RA77810 has two assemblers: one for General Purpose Processor (GGP) and one for the Digital Signal Processor (DSP). Each assembler translates a symbolic source module file into a relocatable object module. Each assembler also produces a relocatable object module file and a listing file that can contain the assembly list, symbol list and cross-reference list.
LK77810 consists of a GPP linker and a DSP linker. LK77810 for the GPP combines relocatable object modules and other GPP linker load modules and converts them into a single relocatable load module. LK77810 for the DSP combines relocatable object modules, library modules when necessary, other DSP linker load modules, and converts them into an absolute load module. Each linker produces a link map and an absolute load module.
LC77810 is available only for the GPP. It converts a GPP relocatable object module with no external references or a GPP relocatable load module into an ASCII hexadecimal format absolute object code file.

LB77810 is available for only the DSP. It allows commonly used DSP relocatable object modules to be stored in one file and linked into multiple programs, greatly increasing programming efficiency. When a library file is included in the input of the DSP linker, the linker extracts only those modules required to resolve external references from the file and relocates and links them.

CN77810 combines a DSP absolute load module or a DSP relocatable object module and the GPP HEX file into a MSDP HEX file.

## Features

- Absolute address object code output
- User-selectable and directable output files
- Extensive error reporting
- Runs under the following operating systems:
-MS-DOS ${ }^{\text {® }}$
- VAXNMS ${ }^{\text {® }}$
- VAX/UNIX ${ }^{\text {™ }} 4.2$ BSD or Ultrix ${ }^{\text {™ }}$

Ordering Information

Part Number	Description
RA77810-D52	MS-DOS, 5.25" double density disk
RA77810-VVT1	VAX/VMS, 9-track 1600 BPI magnetic tape
RA77810-VXT1	VAXIUNIX 4.2BSD or Ultrix, 9-track 1600 BPI   magnetic tape

## RA77810 Block Diagram



## NV-300 System <br> Speech Analysis Tool For $\mu$ PD775x and $\mu$ PD77501 ADPCM Speech Processors

## Description

The NV-300 system is a speech analysis tool for use with the NEC $\mu$ PD775x and $\mu$ PD77501 ADPCM Speech Processors. The NV-300 plugs into an IBM PC AT® computer and is used to edit and encode analog original sound into the ADPCM code required for the $\mu$ PD775x family and the $\mu$ PD77501.

With the NV-300 system, users can (1) convert the original analog sound into digital data; (2) trim and edit the digital data; (3) play back the edited original sound data for evaluation; (4) encode the edited original sound data into ADPCM code used by $\mu$ PD775x and $\mu$ PD77501; and (5) decode the ADPCM code into PCM code for further evaluation. Finally, the NV-300 converts the ADPCM code into hex data for ROM/EPROM programming and evaluation in the target hardware.

The NV-300 can also create single-tone melodies for the $\mu$ PD775x family.

## Features

- Full-size IBM PC AT plug-in card
- Menu-driven host software for:
- Tape deck output level adjustments
-A/D conversion of original sounds
-Trimming silent sections around original sound data
-Editing original sound data
-D/A conversion of edited sound for evaluation
-Encoding edited sound into ADPCM code
- Decoding ADPCM data to PCM data for evaluation
- Converting ADPCM data to $\mu$ PD775x and $\mu$ PD77501 hex files
- Creating single-tone melodies for the $\mu$ PD775x family
- IBM PC AT or compatible host computer system:
- EGA Color Monitor
- EGA Card
- At least 1MB extension RAM recommended
- PC-DOS ${ }^{\text {™ }}$ or MS-DOS® operating system
- Uses I/O addresses 0220, 0222, 0224, 0226H

Ordering Information

Part No.	Description
NV-300	$\mu$ PD775x family speech analysis tool

NV-300 Speech Analysis Tool


[^18]
## Block Diagram


$\mu$ PD775x Family Development Flowchart


## Description

The NV-310 system is a speech emulation tool for the NEC $\mu$ PD775x ADPCM Speech Processors. The NV-310 plugs into an IBM PC AT® and is used to emulate speech data hex files created using the NV-300 system speech analysis tool. The NV-310 can verify speech quality for $5-, 6-$, and $8-\mathrm{kHz}$ sampling frequencies and can program NEC one-time-programmable speech devices $\mu$ PD77P56.
With the NV-310 system, developers can (1) set the output filter cutoff frequency; (2) read an NV-300 speech hex data file and download it into onboard RAM; (3) view the table file generated by the NV-300 hex conversion function; (4) concatenate a series of words into a single phrase; (5) set the interval time between words and repetition; and (6) program the $\mu$ PD77P56.

## Features

- Full-size IBM PC AT plug-in card
- Menu-driven host software for:
-Selecting NV-300 speech data file
-Downloading speech data file into RAM
- Selecting words/phrases to be concatenated
-Selecting interval between words
-Selecting repetition interval
—Programming $\mu$ PD77P56
- Target probe for user system emulation
- External sockets for $\mu$ PD77P56 (20-pin DIP or 24-pin SOP)
- System requirements:
-IBM PC AT or compatible host system
-MS-DOS® V. 3.0 or higher
—Default I/O addresses $0100(\mathrm{H})-010 \mathrm{C}(\mathrm{H})$

Ordering Information
Part No. Description

NV-310
$\mu$ PD775x family speech emulation tool

## NV-300/NV-310 Speech Development Block Diagram



## Demonstration and Evaluation Box For $\mu$ PD775x ADPCM Speech Processors

## Description

The EB-775x is a demonstration and evaluation box for the NEC $\mu$ PD775x ADPCM Speech Processors. The EB-775x can demonstrate the speech output capabilities of the $\mu$ PD775x family using NEC-supplied sample messages or evaluate the ADPCM code produced on the NV-300 speech analysis system. The EB-775x can also be plugged into target hardware to emulate the masked ROM parts, $\mu$ PD7756/57/58.

The EB-775x can be used as a standalone unit or it may be controlled remotely via a Centronics interface from an IBM PC®, $\mathrm{PC} / X \mathrm{~T}^{\oplus}$ or PC AT®, or compatibles using the supplied DBOX control software. Under remote control, concatenation of words and phrases is feasible, so that a wide variety of sentences can be built from a fixed vocabulary

## Features

- Standalone demonstration and evaluation box
-Supplied with external power supply
- Five operating modes
- $\mu$ PD7759 standalone mode for speech evaluation
$-\mu$ PD7759 slave mode for speech evaluation
$-\mu$ PD7756 for speech evaluation
- Remote control mode for speech evaluation allows concatenation of words and phrases
- $\mu$ PD7756/57/58 emulation mode

EB-775x Demonstration and Evaluation Box


- $\mu$ PD7759 ROMless ADPCM speech synthesizer
- $\mu$ PD77P56 socket
- Sockets for up to 1M bit of EPROM
- One 271001, 27512, or 27256
- Sample messages provided in one 27 C 1001
- Lowpass output filters selectable by changing plug-in resistor
- IBM PC DBOX controller software
-Windowed display
- Allows concatenation of up to 26 recorded words/phrases with pauses of 1 to $10,000 \mathrm{~ms}$
- Allows use of labels to access messages
-Read/store labels or phrase patterns from/to disk
-Automatically generate multiple combinations of phrase patterns
- Complete hardware schematics provided

Ordering Information

Part No.	Description
EB-775x	Demonstration and Evaluation Box for $\mu$ PD775x

IBM PC, PC/XT, and PC AT are registered trademarks of International Business Machines Corporation.

EB-775x Circuit Board


## EPROM Programmer

## Description

The PG-1500 series is a standalone EPROM programmer for programming 256 -kilobit to 1 -megabit EPROMs and EPROM/OTP devices for NEC's 4/8/16-bit singlechip microcomputers and digital signal processors. The system consists of the PG-1500 base programmer, interchangeable programmer adapter modules for standard EPROM devices and the $\mu$ PD75xx/75xxx series 4-bit microcomputers, and a variety of programmer adapters to support the individual devices and package types. The PG-1500 can be controlled directly from the on-board keypad in standalone mode from either a remote terminal or host computer via an RS-232C serial port.

## Features

- Interchangeable modules for programming:
-256-kilobit to 1-megabit EPROMs
- NEC $\mu$ PD75xx and $\mu$ PD75xxx series 4-bit microcomputers
- NEC $\mu$ PD78xx and $\mu$ PD78xxx series 8 -bit microcomputers
- NEC V-series 16-bit microcomputers
- NEC $\mu$ PD77xxx digital signal processors
- 512K-bytes data RAM
- Silicon signature read function
- PROM insertion error detection circuitry
- Address splitting for 16/32-bit microprocessors
- Memory edit function to change/confirm PG-1500 buffer
- Address/data/message display LCD
- RS-232C serial interface
- Centronics compatible parallel interface
- Power-on diagnostics
- Supports three data transfer formats
- Intel Extended Hex (Note 1)
- Extended Tektronix Hex (Note 2)
- Motorola S (Note 3)
- Two modes of operation
- Remote controlled
-Standalone
- Host Controller Program for IBM PC® Series

IBM PC is a registered trademark of International Business Machines Corporation.

## Notes:

(1) Developed by Intel Corporation.
(2) Developed by Tektronix Corporation.
(3) Developed by Motorola Incorporated

PG-1500 Series


Ordering Information

Part Number	Description
PG-1500	PG-1500 Series EPROM Programmer for 27XXX EPROMS, NEC 4/8/16-bit microcomputers, and DSP devices (includes 027A and 04A Programming Adapter Modules)
PA-70P322L	Programmer Adapter for $\mu$ PD70P322K
PA-71P301GF	Programmer Adapter for $\mu$ PD71P301GF
PA-71P301GQ	Programmer Adapter for $\mu$ PD71P301GQ
PA-71P301KA	Programmer Adapter for $\mu$ PD71P301KA
PA-71P301 KB	Programmer Adapter for $\mu$ PD71P301KB
PA-71P301L	Programmer Adapter for $\mu$ PD71P301L
PA-75P54CS	Programmer Adapter for $\mu$ PD75P54/64CS, $\mu$ PD75P54/64G
PA-75P56CS	Programmer Adapter for $\mu$ PD75P56/66CS, $\mu$ PD75P56/66G
PA-75P008CU	Programmer Adapter for $\mu$ PD75P008CU/GB
PA-75P036CW	Programmer Adapter for $\mu$ PD75P036CW
PA-75P036GC	Programmer Adapter for $\mu$ PD75P036GC
PA-75P108CW	Programmer Adapter for $\mu$ PD75P108CW/DW/ BCW, $\mu$ PD75P116CW
PA-75P108G	Programmer Adapter for $\mu$ PD75P108G/BGF, $\mu$ PD75P116GF
PA-75P116GF	Programmer Adapter for $\mu$ PD75P108G/BGF, $\mu$ PD75P116GF
PA-75P216ACW	Programmer Adapter for $\mu$ PD75P216ACW
PA-75P308GF	Programmer Adapter for $\mu$ PD75P308GF, $\mu$ PD75P316GF/AGF
PA-75P308K	Programmer Adapter for $\mu$ PD75P308K, $\mu$ PD75P316AK
PA-75P328GC	Programmer Adapter for $\mu$ PD75P328GC
PA-75P402CT	Programmer Adapter for $\mu$ PD75P402CT
PA-75P402GB	Programmer Adapter for $\mu$ PD75P402GB
PA-75P516GF	Programmer Adapter for $\mu$ PD75P516GF


Part Number	Description
PA-75P516K	Programmer Adapter for $\mu$ PD75P516K
PA-77P25C	Programmer Adapter for $\mu$ PD77P25C/D
PA-77P25L	Programmer Adapter for $\mu$ PD77P25L
PA-77P25GW	Programmer Adapter for $\mu$ PD77P25GW
PA-77P56C	Programmer Adapter for $\mu$ PD77P56CR/G
PA-77220L	Programmer Adapter for $\mu$ PD77P220L
PA-77P230R	Programmer Adapter for $\mu$ PD77P230R, $\mu$ PD77220R
PA-78CP14CW	Programmer Adapter for $\mu$ PD78CP14CW, DW
PA-78CP14GF	Programmer Adapter for $\mu$ PD78CP14GF
PA-78CP14GQ	Programmer Adapter for $\mu$ PD78CP14G/R
PA-78CP14L	Programmer Adapter for $\mu$ PD78CP14L
PA-78P214CW	Programmer Adapter for $\mu$ PD78P214CW
PA-78P214GJ	Programmer Adapter for $\mu$ PD78P214GJ
PA-78P214GQ	Programmer Adapter for $\mu$ PD78P214GQ
PA-78P214L	Programmer Adapter for $\mu$ PD78P214L
PA-78P224GJ	Programmer Adapter for $\mu$ PD78P224GJ
PA-78P224L	Programmer Adapter for $\mu$ PD78P224L
PA-78P238GC	Programmer Adapter for $\mu$ PD78P238GC
PA-78P238GJ	Programmer Adapter for $\mu$ PD78P238GJ
PA-78P238KF	Programmer Adapter for $\mu$ PD78P238KF
PA-78P238LQ	Programmer Adapter for $\mu$ PD78P238LQ
PA-78P312CW	Programmer Adapter for $\mu$ PD78P312ACW/DW
PA-78P312GF	Programmer Adapter for $\mu$ PD78P312AGF
PA-78P312GQ	Programmer Adapter for $\mu$ PD78P312AGQ/R
PA-78P312L	Programmer Adapter for $\mu$ PD78P312AL
PA-78P322GJ	Programmer Adapter for $\mu$ PD78P322GJ
PA-78P322KC	Programmer Adapter for $\mu$ PD78P322KC
PA-78P322KD	Programmer Adapter for $\mu$ PD78P322KD
PA-78P322L	Programmer Adapter for $\mu$ PD78P322L

Figure 1. PG-1500 System Block Diagram


## Architecture

The PG-1500 base unit contains an NEC $\mu$ PD70208 ( $\mathrm{V} 40^{\mathrm{TM}}$ ) microprocessor with 128K bytes of monitor ROM, 32 K bytes of working RAM, 512 K bytes of data memory, an RS-232C serial port, a Centronics compatible parallel interface, an LCD display, and a 23 -key keypad. Figure 1 shows a block diagram of the PG-1500.

The PG-1500 has two interchangeable programmer adapter modules: one for 27xxx EPROMS, NEC's 4/8/16bit microcomputers, and DSP devices that use the $\mu$ PD27C256A programming algorithm (027A board), and another for NEC's $\mu$ PD75xx/75xxx 4-bit microcomputers that must be programmed in a serial fashion (04A board). These adapter modules plug directly into the top of the PG-1500 and can accept a wide variety of programmer socket adapters to support NEC's de-
vices. Refer to the PG-1500 Programming Adapters Selection Guide for a list of all available adapters.

On power-up, the PG-1500 performs a self-diagnostic on its internal memory, its data bus, its power supply, and its reference voltages.

## Operation

The PG-1500 operates in standalone mode from the on-board keypad, or in remote control mode from either an external terminal or a host computer via an RS-232C serial port.

## Standalone Mode

Table 1 lists the PG-1500 commands available in standalone mode.

Table 1. PG-1500 Commands in Standalone Mode

Command	Function
DEVICE SELECT	Selects the EPROM to be used
DEVICE BLANK	Checks if the EPROM is blank
DEVICE COPY	Reads data from the EPROM
DEVICE PROG	Writes data into the EPROM
DEVICE VERIFY	Verifies EPROM contents against PG-1500   buffer
DEVICE CONT	Performs BLANK, PROG, VERIFY   commands in sequence
EDIT CHANGE	Display/change the contents of the PG-1500   buffer
EDIT MNITIAL	Initializes the PG-1500 buffer   buffer a block of data within PG-1500
EDIT SEARCH	Searches PG-1500 buffer for 1-, 2-, or   4-byte patterns
EDIT C-SUM	Performs checksum on all data in PG-1500   buffer
FUNCTION S-IN	Inputs data from serial port in three formats
FUNCTION S-OUT	Outputs data from serial port in three   formats
FUNCTION P-IN	Sets PG-1500 to remote control mode   formats

The standalone commands fall into three groups:

- DEVICE commands associated with the device to be programmed
- EDIT commands for interacting with the PG-1500 memory buffer
- FUNCTION commands for setting up and controlling the PG-1500

The DEVICE commands are available to check if an EPROM device is blank, to copy data from the device to the PG-1500 buffer, to write the buffer data to the device, and to compare the data in the device with the data in the buffer. Blank checking, programming, and verification of the device can be performed sequentially using a single command.

To support various 16- and 32-bit microprocessors, the PG-1500 can split the data in its buffer in a variety of ways. When a data file is loaded into the PG-1500, the complete file is stored in the buffer and can be dynamically split during writing and verification. The PG-1500 supports the address splitting modes described in table 2.

Table 2. Address Splitting Modes

Mode	Description
Normal	The data is not split at all. Each byte of data in the   buffer is programmed into the device.
16 EVN	Each byte of data on an even address in the buffer is   programmed into the device.
160 DD	Each byte of data on an odd address in the buffer is   programmed into the device.
$32 / 2 \mathrm{E}$	The first two bytes of every four bytes in the buffer is   programmed into the device.
$32 / 20$	The third and fourth byte of every four bytes in the   buffer is programmed into the device.
$32 / 4 \mathrm{E} 1$	The first byte of every four bytes in the buffer is   programmed into the device.
$32 / 401$	The second byte of every four bytes in the buffer is   programmed into the device.
$32 / 4 \mathrm{E} 2$	The third byte of every four bytes in the buffer is   programmed into the device.
$32 / 402$	The fourth byte of every four bytes in the buffer is   programmed into the device.

This method of address splitting also allows the complete original file to be recreated in the buffer when reading from a set of master EPROMs.
A silicon signature is stored in all NEC devices and contains information on the device type, start and stop addresses, and programming voltages. The PG-1500 can read the silicon signature of the particular device being programmed either manually or automatically, or the device code can be entered manually.

The EDIT commands initialize the PG-1500 buffer to a known value, move a block of data from one location to another, and change/display data at a particular address. The PG-1500 buffer can also be searched for all occurrences of any 1-, 2-, or 4-byte pattern. Finally, a checksum can be calculated for all the data contained in the buffer.

The FUNCTION commands control the setup of the RS-232C serial port, whether the PG-1500 checks for a PROM insertion error, whether the PG-1500 is operated through the serial port, and how data is input/output from the PG-1500. Data can be input to the PG-1500 through either the RS-232C serial port or the Centronics compatible parallel port in Intel Extended Hex, Extended Tektronix Hex, or Motorola S formats. Data can also be output via the RS-232C port in any of these three formats.

## Remote Control Mode

Table 3 lists the PG-1500 commands available in remote control mode.

Table 3.	PG-1500 Commands in Remote Control   Mode
Command	Function
RR	Reads data from the EPROM
RS	Selects the EPROM to be used
RV	Verifies EPROM contents against PG-1500 buffer
RW	Writes data into EPROM
RZ	Checks if EPROM is blank
MC	Change the contents of the PG-1500 buffer
MD	Displays the contents of the PG-1500 buffer
MF	Initializes the PG-1500 buffer
PI	Inputs data from parallel port (Intel Extended Hex)
PM	Inputs data from parallel port (Motorola S)    HT Hex)   Inputs data from serial port (Intel Extended Hex)    LI Hex) (Extended Tektronix   LM Help command data from serial port (Motorola S)   ST Onputs data from serial port (Extended Tektronix   Hex) Outputs data from serial port (Intel Extended Hex)  

## Host Controller Program

The PG-1500 can be controlled from an IBM PC series host computer using the accompanying PG-1500 controller program. The controller program has three modes of operation: control mode, auto mode, and terminal mode.

In the control mode, commands to be executed and parameters to be changed are selected from a screen display using the cursor control keys. The PG-1500 can be automatically configured from information contained in a optional configuration file. This file specifies the name of the file to be loaded, the ROM device, the address splitting mode, the hex file format, and which port (serial or parallel) is to be used for loading the data.

MS-DOS is a registered trademark of Microsoft Corporation

In auto mode, the controller program reads in the configuration file, configures itself accordingly, checks the ROM device, loads the file, writes the ROM and returns to the operating system when one set of ROM devices is completed.

In the terminal mode, all of the remote control commands listed in table 3 are available for entry at the prompt. An additional operating system shell (OS) command allows execution of MS-DOS ${ }^{\text {® }}$ programs without termination of the controller program. This OS command is also available in the control mode.

## Equipment Supplied

The PG-1500 package includes the following: PG-1500 EPROM programmer base unit

- 027A socket board for 27xxx EPROMS and $\mu$ PD27C256A-like devices
- 04A interface board for NEC $\mu$ PD75xx $/ \mu$ PD75xxx microcomputers
- PG-1500 controller program disk for IBM PC
- Power cord
- Power ground plug adapter
- Spare fuses (2)
- PG-1500 EPROM Programmer User's Manuals
- Warranty policy and registration card


## Basic Specifications

- Power requirements:
- 90 to $250 \mathrm{Vac}_{\mathrm{ac}}, 50$ to 60 Hz
- Environment conditions:
—Operating temperature range: 10 to $35^{\circ} \mathrm{C}$
-Operating humidity range: 20 to $80 \%$ relative humidity
- RS-232C serial port:
—Baud rates: 1200, 2400, 4800, 9600, 19200
- Parity: none, even, odd
-X-ON/X-OFF: on, off
-Bit configuration: 7, 8
-Stop bits: 1, 2


## Documentation

For further information on the operation of the PG1500, NEC provides the following documentation:

- PG-1500 EPROM Programmer User's Manual
- PG-1500 Controller Program User's Manual (IBM PC-based)


5ymectarmacessars

Section 6 Package Drawings	
Package/Device Cross Reference	6-1
18-Pin Plastic DIP (300 mil) (A, C Outine)	6-3
18-Pin Plastic DIP ( 300 mil ) (SA Outline)	6-3
20-Pin Plastic DIP ( 300 mil )	6-4
24-Pin Plastic SOP (450 mil)	6-4
28-Pin Plastic SOP (450 mil)	6-5
28-Pin Plastic DIP (600 mil)	6-5
28-Pin Ceramic DIP (600 mil)	6-6
28-Pin Cerdip (600 mil)	6-7
28-Pin PLCC	6-8
32-Pin SOP ( 525 mil )	6-8
40-Pin Plastic DIP (600 mil)	6-9
$40-\mathrm{Pin}$ Ceramic DIP ( 600 mil )	6-10
44-Pin PLCC	6-11
52-Pin Plastic QFP	6-12
68 -Pin Ceramic PGA (A Outline)	6-13
68 -Pin Ceramic PGA (A-1 Outline)	6-14
68-Pin PLCC	6-15
80-Pin Plastic QFP	6-16
132-Pin Ceramic PGA	6-17

## Package/Device Cross-Reference

Package	Device, $\mu \mathrm{PD}$
18-Pin Plastic DIP (300 mil)	7755C
(A, C Outline)	7756C
18-Pin Plastic DIP (300 mil)	7757C
(SA Outline)	7758C
20-Pin Plastic DIP ( 300 mil )	77P56CR
24-Pin Plastic SOP (450 mil)	7755G
	7756G
	7757G
	7758G
	77P56G
28-Pin Plastic SOP (450 mil)	77522GU
28-Pin Plastic DIP (600 mil)	7720AC
	77C20AC
	77C25C
	77C30C
	77P25C
28-Pin Ceramic DIP (600 mil)	77P25D
28-Pin Cerdip (600 mil)	77P20D
28-Pin PLCC	77C20ALK
$32-\mathrm{Pin}$ SOP ( 525 mil )	77C20AGW
	77C25GW
	77P25GW
40-Pin Plastic DIP (600 mil)	7759C
$40-\mathrm{Pin}$ Ceramic DIP (600 mil)	7281D
44-Pin PLCC	77C20AL
	77C25L
	77C30L
	77P25L


Package	Device, $\mu$ PD
52-Pin Plastic QFP	7759GC
68-Pin Ceramic PGA (A Outline)	77P230R
68-Pin Ceramic PGA   (A-1 Outline)	77810R   77220R   77220R-10   77230AR   77230AR-003   77P220R   77P220R-10
68-Pin PLCC	$\begin{aligned} & \hline 77810 \mathrm{~L} \\ & 77220 \mathrm{~L} \\ & 77220 \mathrm{~L}-10 \\ & 77 \mathrm{P} 220 \mathrm{~L} \\ & 77 \mathrm{P} 220 \mathrm{~L}-10 \end{aligned}$
80-Pin Plastic QFP	77501GC-3B9
132-Pin Ceramic PGA	$\begin{aligned} & \hline \text { 9305R } \\ & 77240 \mathrm{R} \end{aligned}$

Package Drawings

18-Pin Plastic DIP (300 mil) (A, C Outline)

Item	Millimeters	Inches
$A$	22.86 max	.900 max
B	1.27 max	.050 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	$0.50 \pm 0.10$	$.020 \pm .004$
F	1.2 min	.047 min
G	$3.5 \pm 0.3$	$.138 \pm .012$
H	0.51 min	.020 min
I	4.31 max	.170 max
J	5.08 max	.200 max
K	$7.62(\mathrm{TP})$	$.300(\mathrm{TP})$
L	6.4	.252
M	$0.25+0.10$	$.010 \pm .004$
N	0.25	.010
P	1.0 min	.039 min

* Item K to center of leads when formed parallel.


49NR-506B (2/92)

18-Pin Plastic DIP (300 mil) (SA Outline)

Item	Millimeters	Inches
A	22.86 max	.900 max
B	1.27 max	.050 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	$0.50 \pm 0.10$	$.020 \pm .004$
F	1.2 min	.047 min
G	$3.2 \pm 0.3$	$.126 \pm .012$
H	0.51 min	.020 min
I	4.31 max	.170 max
J	5.08 max	.200 max
$\mathrm{K} *$	$7.62(\mathrm{TP})$	$.300(\mathrm{TP})$
L	6.7	.264
M	$0.25+0.10$	$.010 \pm .004$
N	0.25	.010
P	1.0 min	.039 min

* Item K to center of leads when formed parallel.


49NR-507B (2/92)

20-Pin Plastic DIP (300 mil)


24-Pin Plastic SOP (450 mil)

Item	Millimeters	Inches
A	16.51 max	. 650 max
B	1.27 max	. 050 max
C	1.27 (TP)	. 050 (TP)
D	$0.40 \pm 0.10$	$.016+.004$ -.005
E	$0.1_{-0.1}^{+0.2}$	$.004+.008$
F	2.5 max	. 099 max
G	2.00	. 079
H	$12.2 \pm 0.3$	$\begin{array}{r} +.013 \\ .480 \\ -.012 \end{array}$
1	8.4	. 331
$J$	1.9	. 075
K	$\begin{array}{r} +0.10 \\ 0.15+0.05 \\ \hline \end{array}$	$\begin{array}{r} .006+.004 \\ -.002 \\ \hline \end{array}$
L	$0.9 \pm 0.2$	$\begin{array}{r}.035+.009 \\ -.008 \\ \hline\end{array}$
M	0.12	. 005



P24GM-50-450A

## 28-Pin Plastic SOP (450 mil)



## 28-Pin Plastic DIP ( 600 mil )

Item	Millimeters	Inches
A	38.10 max	1.500 max
B	2.54 max	.100 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	$0.50 \pm 0.10$	$.020 \pm .004$
F	1.2 min	.047 min
G	$3.6 \pm 0.3$	$.142 \pm .012$
H	0.51 min	.020 min
I	4.31 max	.170 max
J	5.72 max	.226 max
K*	$15.24(\mathrm{TP})$	$.600(\mathrm{TP})$
L	13.2	.520
M	$0.25+0.10$	$.010 \pm .004$
N	0.25	.010




P28C-100-600A1

28-Pin Ceramic DIP ( 600 mil )


## 28-Pin Cerdip (600 mil)

Hem	Millimeters	Inches
A	38.10 max	1.500 max
B	2.54 max	.100 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	$0.50 \pm 0.10$	$.020 \pm .004$
F	1.2 min	.047 min
G	$3.5 \pm 0.3$	$.138 \pm .012$
H	0.51 min	.020 min
I	3.80	.150
J	5.08 max	.200 max
K*	15.24 (TP)	$.600(\mathrm{TP})$
L	13.21	.520
M	$0.25 \pm 0.05$	$.010 \pm .002$
N	0.25	.010
S	7.62 dia	.300 dia



* Item K to center of leads when formed parallel.



## 28-Pin PLCC

Item	Millimeters	Inches
A	$12.45 \pm 0.2$	. $490 \pm .008$
B	11.50	. 453
C	11.50	. 453
D	$12.45 \pm 0.2$	. $490 \pm .008$
E	$1.94 \pm 0.15$	$.076+.007$ -.008
F	0.6	. 024
G	$4.4 \pm 0.2$	$\begin{array}{r}.173+.009 \\ -.008 \\ \hline\end{array}$
H	$2.8 \pm 0.2$	$.110+.009$ -.008
1	0.9 min	. 035 min
$J$	3.4	. 134
K	1.27 (TP)	. 050 (TP)
M	$0.40 \pm 0.10$	$.016+.004$   -.005
N	0.12	. 005
P	$10.42 \pm 0.20$	$\begin{array}{r}.410 \\ -.009 \\ \hline\end{array}$
Q	0.15	. 006
T	0.8 rad	. 031 rad
U	$0.20+0.10$ -0.05	$.008+.004$ -.002

P28L-60A1


49NR-5268 (292)

## 32-Pin SOP (525 mil)



## 40-Pin Plastic DIP ( 600 mil )



## 40-Pin Ceramic DIP (600 mil)

Item	Millimeters	Inches
A	53.34 max	2.100 max
B	2.54 max	.100 max
C	$2.54(\mathrm{TP})$	$.100(\mathrm{TP})$
D	$0.46 \pm 0.05$	$.018 \pm .002$
F	0.92 min	.036 min
G	$3.5 \pm 0.3$	$.138 \pm .012$
H	1.0 min	.039 min
I	2.64	.104
J	4.57 max	.180 max
$\mathrm{K}^{*}$	$15.24(\mathrm{TP})$	$.600 \mathrm{TP})$
L	14.93	.588
M	$0.25 \pm 0.05$	$.010 \pm .002$
N	0.25	.010

* Item K to center of leads
when formed parallel.



## 44-Pin PLCC

Item	Millimeters	Inches
A	$17.5 \pm 0.2$	. $689 \pm .008$
B	16.58	. 653
C	16.58	. 653
D	$17.5 \pm 0.2$	. $689 \pm .008$
E	$1.94 \pm 0.15$	. $076 \pm .006$
F	0.6	. 024
G	$4.4 \pm 0.2$	. $173 \pm .008$
H	$2.8 \pm 0.2$	. $110 \pm .008$
1	0.9 min	. 035 min
$J$	3.4	. 134
K	1.27 (TP)	. 050 (TP)
M	$0.40 \pm 0.10$	. $016 \pm .004$
N	0.12	. 005
P	$15.50 \pm 0.20$	. $610 \pm .008$
Q	0.15	. 006
T	0.8 radius	. 031 radius
U	$0.20{ }_{-0.05}^{+0.10}$	$\begin{array}{rr} +.004 \\ \hline & .008 \\ \hline \end{array}$



P44L-50A1-1

## 52-Pin Plastic QFP



## 68-Pin Ceramic PGA (A Outline)



## 68-Pin Ceramic PGA (A-1 Outline)



## 68-Pin PLCC



## 80-Pin Plastic QFP

Item	Millimeters	Inches
A	$17.2 \pm 0.4$	$.677 \pm .016$
B	$14.0 \pm 0.2$	$.551 \pm .009$
C	$14.0 \pm 0.2$	$.551 \pm .009$
D	$17.2 \pm 0.4$	$.677 \pm .016$
F	0.8	.031
G	0.8	.031
$H$	$0.30 \pm 0.10$	$.012 \pm .004$
I	0.13	.005
J	$0.65(T P)$	$.026(T P)$
K	$1.6 \pm 0.2$	$.063 \pm .008$
L	$0.8 \pm 0.2$	$.031 \pm .009$
M	$0.15 \pm 0.10$	$.006 \pm .004$
N	0.15	.006
P	2.7	.106
Q	$0.1 \pm 0.1$	$.004 \pm .004$
R	$0.1 \pm 0.1$	$.004 \pm .004$
S	$3.0 \pm \max$	.119 max



132-Pin Ceramic PGA


## FIELD SALES OFFICES

NORTHERN CALIFORNIA	CENTRAL REGION	CENTRAL REGION [cont]	EASTERN REGION	EASTERN REGION [cont]
REGION	1500 West Shure Drive	30050 Chagrin Blvd.	901 Lake Destiny Drive	200 Perinton Hills
401 Ellis Street	Suite 250	Suite 120	Suite 321	Office Park
P.O. Box 7241	Arlington Heights, IL 60004	Pepper Pike, OH 44124	Maitland, FL 32751	Fairport, NY 14450
Mountain View, CA 94039	TEL: 708-388-3600	TEL: 216-831-0067	TEL: 407-875-1145	TEL: 716-425-4590
TEL: 415-965-6200	FAX: 708-577-9219	FAX: 216-831-0758	FAX: 407-875-0962	FAX: 716-425-4594
FAX: 415-965-6683	Auto Sales \& Tech. Ctr.	16475 Dallas Parkway	The Centre at Stirling	300 Westage Business Center
WESTERN REGION	Regent Court	Suite 380	and Palm	Suite 200
One Embassy Centre	16800 Executive Drive	Dallas, TX 75248	9900 Stirling Road	Fishkill, NY 12524
9020 S.W. Washington	Suite 143E	TEL: 214-250-4522	Suite 206	TEL: 914-897-2101
Square Road	Dearborn, MI 48126	FAX: 214-931-8680	Cooper City, FL 33024	FAX: 914-897-2215
Suite 400	TEL: 313-336-5225	12777 Jones Road	TEL: 305-436-8114	8 Neshaming Interplex
Tigard, OR 97223	FAX: 313-336-7922	Suite 196	FAX: 305-436-8116	Suite 105
TEL: 503-671-0177	201 E. Big Beaver Road	Houston, TX 77070	6625 The Corners Parkway	Trevose, PA 19047
FAX: 503-643-5911	Suite 350	TEL: 713-955-2191	Suite 210	TEL: 215-244-8196
Encino Office Park Two	Troy, MI 48084	FAX: 713-955-2198	Norcross, GA 30092	FAX: 215-244-9071
6345 Balboa Blvd.	TEL: 313-680-0506	12015 Park 35 Circle	TEL: 404-447-4409	One Windsor Plaza
Suite 240	FAX: 313-680-1015	Suite 200.4	FAX: 404-447-8228	7535 Windsor Drive
Encino, CA 91316	7760 France Ave. So.	Austin, TX 78753	One Natick Executive Park	Suite B101
TEL: 818-342-3112	Suite 1015	TEL: 512-832-1105	Natick, MA 01760	Allentown, PA 18195-1014
FAX: 818-342-0842	Minneapolis, MN 55435	FAX: 512-832-0739	TEL: 508-650-4100	TEL: 215-391-9094
200 E. Sandpointe	TEL: 612-844-0209		FAX: 508-655-1605	FAX: 215-391-9107
Bldg. 8	FAX: 612-844-0509		2525 Meridian Parkway	
Suite 150	1105 Schrock Road		Suite 320	
Santa Ana, CA 92707	Suite 515		Durham, NC 27713	
TEL: 714-546-0501	Columbus, OH 43229		TEL: 919-544-4132	
FAX: 714-432-8793	TEL: 614-436-1778		FAX: 919-544-4109	
14001 East Iliff Avenue	FAX: 614-436-1769			
Suite 411				
Aurora, CO 80014				
TEL: 303-755-6353				
FAX: 303-755-6728				

## NEC <br> NEC Electronics Inc.

CORPORATE HEADQUARTERS
401 Ellis Street
For literature, call toll-free 7 a.m. to 6 p.m. Pacific time:
P.O. Box 7241

Mountain View, CA 94039
1-800-632-3531
TEL 415-960-6000
DOC NO. 50052-1
TLX 3715792


[^0]:    $\dagger$ Plastic unless ceramic (or cerdip) is specified.

[^1]:    $\dagger$ Plastic unless ceramic (or cerdip) is specified.

[^2]:    * For $\mu$ PD77P25

[^3]:    MS-DOS is a registered trademark of Microsoft Corporation. CP/M is a registered trademark of Digital Research, Incorporated. VAX and VMS are registered trademarks of Digital Equipment Corporation.
    UNIX is a registered trademark of UNIX System Laboratories, Incorporated.
    MS-DOS
    CP/
    is a

[^4]:    * Effective starting with current instruction.
    $\rightarrow$ Effective starting with the next instruction.

[^5]:    * These pins have a high-impedance inactive state.

[^6]:    * Multiple value is in SVR register or specification value of SHV bit.

[^7]:    * The timing for validity of the function set by each subfield differs.
    - Valid from the same instruction.
    $\rightarrow$ Valid from the next instruction.

[^8]:    * Bus connected to selected register.
    \# In the P field, M indicates FMPY output data.

[^9]:    * When MN is not the current module number
    $x$ : Don't care

[^10]:    MN: Determined by the lower four bits of the FTL contents.
    ID: 7-bit ID coming from the contents of the Link Table referenced by the OUT2 instruction.
    ID2: 7-bit ID comes from the FTL field of the OUT2 instruction
    $\mathrm{CA}_{\mathrm{A}}, \mathrm{SA}_{\mathrm{A}}$ : Control bit and sign bit of DATAA.
    DATAA: First 16-bit output data.
    $\mathrm{C}_{\mathrm{B}}, \mathrm{S}_{\mathrm{B}}$ : Control bit and sign bit of DATAB.
    DATAB: Second 16 -bit output data.

[^11]:    * DRS indicates the status of data transfers when the data register is

[^12]:    * Even in bus control mode, the contents of registers STR and DDR

[^13]:    IBM PC, PC/XT, and PC/AT are registered trademarks of International Business Machines Corporation.

[^14]:    IBM PC, PC/XT and PC/AT are registered trademarks of International Business Machines Corporation.

[^15]:    MS-DOS is a registered trademark of Microsoft Corporation. VAX and VMS are registered trademarks of Digital Equipment Corporation.
    UNIX is a registered trademark of UNIX System Laboratories, Incorporated.
    Ultrix is a trademark of Digital Corporation.

[^16]:    WordStar is a registered trademark of MicroPro International Corporation.
    MS-DOS is a registered trademark of Microsoft Corporation.

[^17]:    MS-DOS is a registered trademark of Microsoft Corporation. VAX and VMS are registered trademarks of Digital Equipment Corporation.
    Ultrix is a trademark of Digital Equipment Corporation. UNIX is a trademark of AT\&T.

[^18]:    IBM PC AT is a registered trademark and PC-DOS is a trademark of International Business Machines Corporation.

    MS-DOS is registered trademark of Microsoft Corporation

